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Preface

This book is about models in statistical social research. The expression ‘statistical
social research’ is here used to denote approaches that start from formally defined
variables (in contrast, e.g. to case studies); individual cases only exemplify the
variables, and their identities are ignored.

The models constructed in these approaches to social research may serve
quite different purposes. A basic distinction is between descriptive and analytical
models. Descriptive models serve to represent something and thereby provide
(in some sense) a more useful view of that thing. In the realm of statistical
social research these are most often models representing statistical distributions,
or certain features of such distributions, as they happen to exist in some specified
populations. Analytical models, on the other hand, do not intend to provide
descriptions but permit one to deal with modal questions and, in particular, with
causal and non-causal dependency relations between variables.

The distinction between factual and modal questions (and notions) is funda-
mental for much of the argument in the present text. Factual questions relate
to facts and, from a temporal view, are retrospective questions referring to
what happened in the past. This is particularly true of statistical descriptions
which conceptually presuppose a data generating process. In contrast, modal
questions refer to possibilities and to modalities which relate to possibilities (like
probabilities). An important kind of modal question concerns dependency relations
between events and/or states of affairs.

Corresponding to the distinction between factual and modal questions, a
distinction between two kinds of variables is proposed. On the one hand,
there are variables intended to represent (actually observed or hypothetically
assumed) facts. They are called statistical variables because they represent
statistical data. On the other hand, modal variables serve to formulate modal
questions and hypotheses (e.g. questions concerning probabilities in a hypothetical
experiment).

As will be discussed in Chapter 1, statistical variables provide a useful starting
point for a systematic development of all basic concepts of descriptive statistics
(broadly understood as statistical methods to be used for descriptive purposes).
This chapter also introduces an extension of the statistical framework that allows an
explicit representation of relations. Based on these frameworks, the second chapter
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argues that there is no clearcut opposition between statistical and relational notions
of structure, and several possibilities exist for the statistical approach to take into
account relational properties. Limitations only result from the presupposition that
individual units cannot be identified.

The main interest of the present text concerns analytical models. In order to
approach an understanding, we begin (in Chapter 3) with a distinction between
historical processes, understood as unique developments in historical time, and
process frames to be used as conceptual frameworks for the definition of (actually
or hypothetically) repeatable processes. Given this distinction, a broad class of
analytical models can be understood as relating to process frames for repeatable
processes.

This book argues that such models can best be understood as functional models,
models that use deterministic or stochastic functions to connect modal variables.
As will be discussed in Chapters 5 and 6, these models also provide a useful
framework for a definition of “causal relationships.” Our proposal is based on a
distinction between values of variables that can be viewed as conditions of values
of other variables and changes of values of variables that can be viewed as causes
of changes of values of other variables. Since the definitions relate to functional
models this approach is termed functional causality.

Stochastic functional models proposed in the statistical literature are often
conceptualized as data models, that is, models relating to a data generating process
assumed for a given set of data. This approach allows one to think of the model’s
exogenous variables as stochastic variables having a given distribution. However,
data generating processes must be distinguished from substantial processes that
actually generate events and states for which afterwards data might become
available. If to be used as analytical models, functional models must relate to
a process frame for substantial processes without providing an empirical basis
for assumptions about exogenous variables. In contrast to data models, analytical
functional models for substantial processes are then theoretical constructs without
a direct relationship to the empirical world.

The distinction between substantial and data generating processes also helps
to understand randomized experiments, namely as process frames for substantial
processes. Chapter 6 develops the argument that the conceptual framework of
randomized experiments is of only limited use in social research and argues
that (self) selection processes should not be understood as biasing “true” causal
relationships but as being a substantial part of the social processes to be modeled.

Several possibilities exist for the formulation of functional models for substan-
tial processes. A first alternative concerns the representation of time. One can
use an implicit representation of time by interpreting the functions of a functional
model as implying a temporal relationship. Alternatively, one can use a time axis to
define processes as sequences of variables (e.g. time series or statistical processes
defined as sequences of statistical variables).

A second alternative concerns whether processes are defined in terms of states
or events. Time series and statistical processes are almost always defined in terms
of state variables (variables recording the possibly changing state of something).
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Alternatively, one can think of processes as temporally structured series of events.
A formal representation requires event variables which are conceptually different
from state variables. Within this framework, Chapter 7 introduces a dynamic (as
opposed to only comparative) version of functional causality.

A third alternative concerns whether a functional model relates to a generic
individual unit or to a collection of individual units. Statistical social research is
predominantly occupied with individual-level models. Even then it may be nec-
essary to use multilevel models that include population-level variables. However,
important questions also concern relationships between statistical distributions
(defined for some population). Such questions cannot, in general, be answered
from individual-level models. They require population-level models which allow
taking into account constraints and interdependencies at the population level. Such
models will be discussed in Chapter 8.

I thank Ulrich Pötter for many helpful discussions and also acknowledge that
many ideas developed in the present text derive from earlier work done together
with him (see the references). For helpful comments I also thank Christian Dudel,
Sebastian Jeworutzki, and Bernhard Schimpl-Neimanns. Lastly, I would like
to thank John Haisken-DeNew for his help in polishing the English used in
this book.

G. Rohwer
Bochum, June 2009



List of symbols

The table shows the special symbols that are most often used. Brackets indicate
sections where the notations are explained.

X ,Y ,Z, . . . statistical variables (1.1)

� reference set of a statistical variable (1.1)

Ẋ , Ẏ , Ż, . . . stochastic modal variables (3.3, 4.2)

Ẍ , Ÿ , Z̈, . . . deterministic modal variables (3.2, 4.1)

X̃, Ỹ, Z̃, . . . property spaces of statistical or modal variables (1.1)

x̃, ỹ, z̃, . . . property values (elements of property spaces)

X̃ , Ỹ , Z̃, . . . property sets (subsets of property spaces)

P[X ] frequency distribution of the statistical variable X (1.1)

Pr[Ẋ ] probability distribution of the stochastic variable Ẋ (3.3)

M(X ) mean of the statistical variable X

E(Ẋ ) mean (expectation) of the stochastic variable Ẋ

�(x′,x′′) change of a modal variable from x′ to x′′ (5.1)

Ė, Ė1, Ė2, . . . stochastic event variables (7.1)

Ë, Ë1, Ë2, . . . deterministic event variables (7.1)

Ẽ, Ẽ1, Ẽ2, . . . ranges of event variables (7.1)

R set of real numbers

|M | number of elements of a finite set M

P(M ) set of all subsets (power set) of M



1 Variables and relations

The text is partitioned into chapters and sections as indicated in the table of
contents. A further subdivision into paragraphs (denoted by §) is provided at
the beginning of each chapter.

1.1 Variables and distributions
1. Statistical variables
2. A fictitious illustration
3. Multidimensional variables
4. Statistical distributions
5. Descriptive statistical statements
6. Conditional distributions
7. Regression functions
8. Descriptive regression models
9. Statistical and substantial conditions

1.2 Relations
1. Relational variables
2. Construction of networks
3. Formal descriptions of networks
4. Different kinds of relations
5. Factual and modal views of relations

The first section introduces elementary statistical concepts for descriptive
purposes, in particular, statistical variables and distributions, conditional dis-
tributions, and regression functions. The second section extends the statistical
framework to allow for an explicit formal representation of relations and then
discusses different notions of relations.

1.1 Variables and distributions

1. Statistical variables

Most statistical concepts derive from the notion of a statistical variable. Unfortu-
nately, the word ‘variable’ is easily misleading because it suggests something
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that “varies” or being a “variable quantity.”1 In order to get an appropriate
understanding it is first of all necessary to distinguish statistical from logical
variables. Consider the expression ‘x ≤ 5’. In this expression, x is a logical variable
that can be replaced by a name. Obviously, without substituting a specific name,
the expression ‘x ≤ 5’ has no definite meaning and, in particular, is neither a true
nor a false statement. The expression is actually no statement at all but a sentential
function. A statement that is true or false or meaningless only results when a name
is substituted for x. For example, if the symbol 1 is substituted for x, the result
is a true statement (1 ≤ 5); if the symbol 9 is substituted for x, the result is a
false statement (9 ≤ 5); and if some name not referring to a number is substituted
for x, the result is meaningless. Such logical variables are used, for example, in
mathematics to formulate general statements. Statistical variables serve a quite
different purpose. They are used to represent the data for statistical calculations
which refer to properties of objects. The basic idea is that one can characterize
objects by properties. Since this is essentially an assignment of properties to
objects, statistical variables are defined as functions:2

X : � −→ X̃

X is the name of the function, � is its domain, and X̃ is the codomain (a set of
possible values), also called the range of X . To each element ω ∈ �, the statistical
variable X assigns exactly one element of X̃ denoted by X (ω). In this sense, a
statistical variable is simply a function.3 What distinguishes statistical variables
from other functions is a specific purpose: statistical variables serve to characterize
objects. Therefore, in order to call X a statistical variable (and not just a function),
its domain, �, should be a set of objects and its codomain, X̃ , should be a set of
properties that can be meaningfully used to characterize the elements of �. To
remind of this purpose, the set of possible values of a statistical variable will be
called its characteristic or property space and its elements will be called property
values.4

In the statistical literature domains of statistical variables are often called
populations. This is unfortunate because a statistical variable can refer to any
kind of object. We therefore often prefer to speak of the domain or, equivalently,
the reference set of a statistical variable.

2. A fictitious illustration

A simple example can serve to illustrate the notion of a statistical variable. In this
example, the reference set is a set of 10 people, symbolically � := {ω1, . . . ,ω10}.5
The variable, denoted X , is intended to represent, for each member of �, the sex.
This can be done with a property space X̃ := {0,1}, with elements 0 (meaning
‘male’) and 1 (meaning ‘female’). Then, for each member ω ∈ �, X (ω) is a value
in X̃ and shows ω’s sex.

Of course, in order to make use of a statistical variable one needs data. In
contrast to most functions that are used in mathematics, statistical variables cannot
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Table 1.1 Fictitious data for a statistical variable X (left-hand side)
and a two-dimensional statistical variable (X ,Y ) (right-hand side)

ω X (ω) ω X (ω) Y (ω)

ω1 0 ω1 0 22
ω2 1 ω2 1 29
ω3 0 ω3 0 26
ω4 0 ω4 0 25
ω5 1 ω5 1 26
ω6 0 ω6 0 24
ω7 1 ω7 1 22
ω8 1 ω8 1 25
ω9 0 ω9 0 25
ω10 0 ω10 0 23

be defined by referring to some kind of rule. There is no rule that allows one to
infer of the sex, or any other property, of an individual by knowing its name. In
order to make a statistical variable explicitly known one almost always needs a
tabulation of its values. The left-hand side of Table 1.1 provides fictitious data as
an illustration for the current example.

Note that it is general practice in statistics to represent properties (the
elements of a property space) by numbers. One reason for doing so is the
resulting simplification in the tabulation of statistical data. The main reason
is, however, another one: numerical representations allow the performing of
statistical calculations. The mean value of a statistical variable can serve as an
example. The definition is M(X ) :=∑

ω∈� X (ω)/|�|. The calculation consists in
summing up the values of the variable for all elements in the reference set and
then dividing by the number of elements.6 Obviously, the calculation requires a
numerical representation for the values of the variable, that is, for the elements of
its property space. But as soon as one has introduced a numerical representation
one can do anything that can be done with numbers too with the values of a
variable. To be sure, this does not guarantee a result with an immediate and sensible
interpretation. This might, or might not, be the case and can never be guaranteed
from a statistical calculation alone.7 However, in the present example one gets
a sensible result. Performing the calculation of a mean value for the variable X,
the result is M(X ) = 0.4, providing the proportion of female individuals in the
reference set.

3. Multidimensional variables

It is often possible and informative to characterize objects simultaneously by
several properties. In the example of the previous paragraph one can assume that
each person can also be assigned a specific age. Correspondingly, one uses a
two-dimensional variable

(X ,Y ) : � −→ X̃ × Ỹ
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which combines two property spaces: X̃ for the sex and another property space
Ỹ := {0,1,2, . . .} for age (recorded, e.g. in completed years). The right-hand side
of Table 1.1 provides again fictitious data. For example, (X ,Y ) (ω1) = (0,22),
meaning that ω1 is the name of a man of age 22.

Obviously, there can be any number of dimensions. The expression has no
spatial meaning and simply refers to a property space in the sense of a set
of attributes. In fact, the number of dimensions has no substantial meaning
at all because two or more dimensions can always be combined into a single
property space. Conversely, referring to a formally one-dimensional variable, say
X : � −→ X̃ , one can always assume that it is a short-hand notation for several
dimensions, e.g. X = (X1, . . . ,Xm) with a property space X̃ = X̃1 ×·· ·× X̃m.

4. Statistical distributions

The notion of statistical variables provides a quite general conceptual framework
for the representation of objects (of any kind) and their properties. Knowing a
variable X : � −→ X̃ , one also knows for each element ω ∈ � the assigned
property value X (ω). However, the statistical concern is not with the individual
members of �. For example, referring to Table 1.1, it is of no interest that ω1 is
the name of a male and ω2 is the name of a female person; the statistically relevant
information rather is that � consists of 60 per cent male and 40 per cent female
persons.8 This is then called the statistical distribution of X (in the reference
set �). Thus, from a statistical point of view, statistical variables only serve to
derive statistical distributions. Referring to a variable X : � −→ X̃ , its statistical
distribution is a function which provides, for each subset X̃ ⊆ X̃ , a number

P(X ∈ X̃ ) := |{ω ∈ � |X (ω) ∈ X̃ }|
|�| (1.1)

It is the proportion of members of � which are assigned by the variable X a
property value in the set X̃ . If X̃ consists of a single element, say x, the notation
P(X = x) is also used. Using, for example, the figures from Table 1.1, P(X = 0) =
0.6, P(Y = 25) = 0.3, P(Y ∈ {22,23,24}) = 0.4. In the last case, an equivalent
notation would be P(Y ≤ 24).

Like statistical variables, statistical distributions are also functions. However,
the domain is no longer the original reference set of objects but the power set of
a property space. In a formal notation, the distribution of a variable X : � −→ X̃ ,
also called its frequency function, is a function

P[X ] : P(X̃ ) −→ R (1.2)

providing, for each element X̃ ∈P(X̃ ), the number P[X ](X̃ ) := P(X ∈X̃ ) as defined
in (1.1).9 The notation P[X ] is used when referring to the distribution of a statistical
variable in a general sense. In order to indicate to which variable the distribution
refers, its name is appended in square brackets. These square brackets form a part
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Table 1.2 Number of men (nm
τ ) and women (nf

τ ) of age τ in the year 1999 in Germany;
95∗ refers to all ages τ ≥ 95

τ nm
τ n f

τ τ nm
τ n f

τ τ nm
τ n f

τ

0 399633 378251 32 732651 686810 64 472336 511058
1 410782 389437 33 748125 697478 65 409837 445060
2 413836 391872 34 758218 705906 66 361225 399667
3 403107 381972 35 761731 711736 67 359314 405178
4 398813 377741 36 746559 700436 68 365748 423645
5 409761 387869 37 727433 687469 69 362427 431229
6 422128 400905 38 711239 675052 70 347956 425406
7 435168 413392 39 690941 656171 71 319299 416670
8 466447 442107 40 663561 630073 72 283797 410392
9 485976 461036 41 641087 608883 73 258704 416006

10 490076 464833 42 627205 597762 74 228253 407353
11 492537 465361 43 610005 584657 75 202335 390714
12 482637 456705 44 594357 575662 76 196282 387353
13 469636 445784 45 578806 566937 77 193182 395011
14 461216 437317 46 570259 561714 78 180053 390951
15 463159 438441 47 566062 558353 79 144258 328396
16 472798 446710 48 563942 556038 80 96563 221190
17 479914 453245 49 558611 548502 81 68960 161774
18 481413 457174 50 529900 517217 82 65068 156443
19 473334 451301 51 494176 482985 83 70399 177521
20 462189 441633 52 450618 442241 84 79463 213228
21 460967 441747 53 397251 392979 85 78125 219593
22 460272 441953 54 434885 432973 86 67852 197433
23 456346 436715 55 502194 498201 87 55469 168730
24 458828 438622 56 500889 496426 88 44330 141995
25 469223 449325 57 545671 544075 89 35770 120032
26 500605 477112 58 612495 615985 90 27775 97204
27 557051 528212 59 621650 630333 91 20817 75582
28 603444 568797 60 593275 606556 92 15772 58386
29 644108 604417 61 551237 569910 93 11724 42726
30 686013 642576 62 522738 546881 94 8658 30973
31 712393 668147 63 502833 534670 95∗ 21807 69931

Totals 40047972 42038610

Source: Segment 685 of the STATIS data base of the Statistisches Bundesamt.

of the function name and must not be confused with possible arguments to be
appended in round brackets.10 Note also that identical definitions can be used if
X is a multidimensional variable consisting of two or more components.

5. Descriptive statistical statements

If statistical statements intend to describe something this is the reference set of a
statistical variable. More specifically, given a variable X : � −→ X̃ , a descriptive
statistical statement uses the distribution P[X ] as a description of the reference
set �. The actual formulation can be in many different ways. Often it is possible to
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Figure 1.1 Graphical presentation of the absolute frequencies (in 1000) from Table 1.2
until an age of 94 years for men (solid line) and women (dotted line).

present the complete distribution in the form of a table or graphically. In addition,
or alternatively, one can use quantities derived from statistical distributions, e.g.
mean values, quantiles, and measures of dispersion.

As an example, the age distributions of men and women who lived in Germany
in the year 1999 will be considered. Two statistical variables, Y m : �m −→ Ỹ
and Y f : �f −→ Ỹ , provide the formal framework. �m represents the male
and �f represents the female persons who lived in Germany in the year 1999.
The common property space is Ỹ := {0,1,2, . . .} with elements representing
age in completed years. Table 1.2 shows the data published by the Statistisches
Bundesamt. Obviously, this is already a statistical distribution: for each age the
table provides the number of men and the number of women of that age.

The table also illustrates a problem that has motivated the development of
many statistical methods: that it is difficult to make sense of the data if simply
presented as a tabulated frequency distribution. A famous remark of the statistician
R. A. Fisher refers to this problem:

Briefly, and in its most concrete form, the object of statistical methods is
the reduction of data. A quantity of data, which usually by its mere bulk is
incapable of entering the mind, is to be replaced by relatively few quantities
which shall adequately represent the whole, or which, in other words, shall
contain as much as possible, ideally the whole, of the relevant information
contained in the original data.

(Fisher 1922: 311)

In the present example one can use a graphical presentation as shown in Figure 1.1
to support the interpretation of the data. One can easily compare male and female
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age distributions; and the figure also allows the relating of the frequencies to
broader age classes and to think of relations with birth frequencies in corresponding
birth years.

6. Conditional distributions

Many statistical methods employ the notion of a conditional distribution. This text
uses the general notation

P[variables |conditions]
in order to denote the distribution of the variables (given before the | sign)
restricted to a reference set demarcated by the conditions (given behind the |
sign). Like any other distributions, conditional distributions are functions; specific
values (frequencies) only result if an argument is appended (in round brackets).
To illustrate the notation, the following examples refer to the two-dimensional
variable (X ,Y ) : � −→ X̃ × Ỹ that was introduced in § 3 (see Table 1.1).

(a) P[Y |X = 0]. This is the distribution of Y in the subset {ω|X (ω) = 0}. It is
a function, the age distribution of men; specific values result by providing
arguments, for example

P(Y ≥ 25 |X = 0) = P[Y |X = 0](Y ≥ 25) = 0.5

meaning that 50 per cent of the men are of age 25 or older.11

(b) P[X |Y ≥ 25] is the distribution of X in the set of persons who are of age 25
or older. A specific value is

P(X = 1 |Y ≥ 25) = P[X |Y ≥ 25](1) = 0.5

meaning that 50 per cent of the persons of age 25 or older are female.
(c) P[Y |Y ≥ 25,X = 1] is the age distribution in the set of women who are of age

25 or older. This example shows that the same variables can be used before
and behind the | sign.

7. Regression functions

Often used are methods of regression analysis. In a general sense, these are
methods to calculate, and present, conditional distributions. To understand the
basic approach, a distinction between general and specific regression functions
is useful. Definitions refer to a two-dimensional variable (X ,Y ) : � −→ X̃ × Ỹ .
One component, say X , is selected as an independent, the other component, Y , as
a dependent variable. A general regression function is a function that assigns to
each value x ∈ X̃ the conditional frequency function P[Y |X = x].

The idea is that regression functions can show how values of a variable depend
on values of another variable. However, the values of a general regression function
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are not simple values (numbers) but again functions (distributions). The following
diagram illustrates this:

x −→
conditional distribution︷ ︸︸ ︷

(y −→ P[Y |X = x](y))︸ ︷︷ ︸
general regression function

To each value x of the independent variable X , the general regression function
assigns a conditional distribution P[Y |X = x] that is again a function that assigns to
each value y of the dependent variable Y the conditional frequency P(Y = y |X = x).

This leads to the question how to describe general regression functions. Two (to
some extent overlapping) approaches exist. The first approach uses parameterized
frequency functions, say f (y;θ),12 as a general framework for the distribution
of the dependent variable, P[Y ]. Then, in order to approximate the condi-
tional distributions, one uses a link function, say θ = g(x;β), that allows the
approximation

P(Y = y |X = x) = P[Y |X = x](y) ≈ f (y;g(x;β)) (1.3)

The other approach uses specific regression functions having the form

x −→ Characterization of P[Y |X = x]

Values of these functions are numbers which characterize the conditional
distributions in some way. Many different possibilities exist. Of widespread use
are the following versions.

(a) Conditional mean values. Specific regression functions have then the form
x −→ M(Y |X = x). The function assigns to each value x ∈ X̃ the conditional
mean value of Y , given X = x. This is often called a mean value regression
( function).

(b) Conditional quantiles. Specific regression functions have then the form
x −→ Qp(Y |X = x). The function assigns to each value x ∈ X̃ the conditional
p-quantile of Y , given X = x. It is, of course, possible to use several functions
with different p-values simultaneously.

(c) Conditional frequencies. Specific regression functions have then the form
x −→ P[Y |X = x](y). Following this approach one can define a specific
regression function for each value y ∈ Ỹ . In particular, if Y is a binary variable
with possible values 0 and 1, it suffices to consider a regression function
x −→ P(Y = 1 |X = x).

8. Descriptive regression models

General as well as specific regression functions provide variants of statistical
descriptions (derived from the distribution of a two-dimensional variable).
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Table 1.3 Mean values, in specified income classes, of income and
of expenditures on food (including beverages and tobacco) of private
households in Germany 1998

Expenditures on food

Income class Mean income in DM in %

under 1800 1383 269 19.45
1800–2500 2196 341 15.53
2500–3000 2788 391 14.02
3000–4000 3543 473 13.35
4000–5000 4566 584 12.79
5000–7000 6057 677 11.18
7000–10000 8422 775 9.20

10000–35000 13843 894 6.46

Source: Statistisches Jahrbuch für Deutschland 2001: 573.

This corresponds to a statement made by V. R. McKim (1997: 7), “that regression
is providing new facts, not interpretations or explanations of facts.” Talk of
regression models is more difficult to understand because quite different notions
of such models exist. A basic distinction can be made between descriptive and
analytical regression models. Descriptive regression models are used to provide
simplified representations of general or specific regression functions, and their
descriptive claim is derived from the regression functions they represent. In
contrast, analytical regression models use the formal framework of regression
functions to express hypotheses about substantial dependency relations. Since
these models transcend the descriptive claims of regression functions derived from
statistical variables, their formulation requires a different conceptual approach. In
this text, analytical regression models will be considered as a variant of functional
models; the discussion begins in Chapter 4.

A regression of private household’s food expenditures on their income will be
used to illustrate the notion of a descriptive regression model. The data, shown in
Table 1.3, refer to private households who participated in a survey conducted in
Germany in the year 1998. A variable (X ,Y ) :�−→ X̃ ×Ỹ can be used to provide
a conceptual framework. � is the set of households participating in the survey; X
records the net income, Y records the expenditures on food.13 The data published
by the Statistisches Bundesamt are mean values calculated for eight income
classes, as shown in the table. Employing a further variable, Z , for the income
classes (Z̃ = {1, . . . ,8}), the table shows: x̄j := M(X |Z = j), the mean income in
income class j, and ȳj := M(Y |Z = j), the mean value of expenditures on food in
income class j. This then allows the consideration of a specific regression function

x̄j −→ q̄j := ȳj

x̄j
( j = 1, . . . ,8)

To each mean income value, the function assigns the mean value of the proportion
of expenditures spent on food. This function is shown by the dots in Figure 1.2.
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Figure 1.2 The dots correspond to the data in Table 1.3 (mean income values and proportion
of income spend on food). The solid line shows the function g(x; α̂, β̂, γ̂ )
explained in § 8.

This is the original regression function as derived from the data. A descriptive
model is a, in some sense simpler, representation of this function. In this example,
one can consider a function g : [0,15000] −→ R, defined for some range of
income values, that approximates the original regression function: g(x̄j) ≈ q̄j . As
suggested by the data, one might try model functions of the form

g(x;α,β,γ ) := α xβ + γ

Using then the data from Table 1.3, one finds parameter values α̂ = 123.03, β̂ =
−0.15, and γ̂ = −21.79, that provide the best approximation (in a least squares
sense). The solid line in Figure 1.2 shows the function with these parameter values.

Many different versions of descriptive regression models have been developed
in the statistical literature. Often used are simple models for conditional mean
values having the general form M(Y |X = x) ≈ g(x;θ); a well-known special case
is the linear regression model M(Y |X = x) ≈ α + xβ. Obviously, also the first
approach to the construction of regression functions, mentioned in § 7 (see (1.3)),
leads to descriptive models.

9. Statistical and substantial conditions

Regression functions seem well suited to investigate how values of one variable
depend on values of another variable. It is therefore important to understand
that these functions cannot immediately provide information about dependency
relations. The crucial distinction is between covariation and dependence. Regres-
sion functions provide descriptive information about covariation; in contrast,
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dependence is not a descriptive but a modal notion that refers to conditions for
possibilities.

A conditional distribution like P[Y |X = x] neither requires nor implies that
values of X are in any substantial sense a condition for values of Y . This follows
already from the fact that both variables can be interchanged and no statistical
criteria exist for a distinction between dependent and independent variables.
Furthermore, the condition, X = x, just demarcates a part of the reference set for
which the two-dimensional variable (X ,Y ) is defined. A quite different reasoning
would be required in order to think of conditions in a substantial sense. One
would need to consider the processes by which values of the dependent variable,
Y , come into being; and only then it might become possible to think of values of
X as referring to conditions on which these processes depend. (The argument will
be continued in Section 2.1 dealing with statistical notions of structure.)

1.2 Relations

The statistical approach has been criticized as being “atomistic.”14 In a sense
this is true. Beginning with statistical variables, the statistical approach can only
consider properties which can be individually assigned to the members of a
reference set. This is, however, only a formal requirement and does not exclude the
possibility of considering relational properties. Given a reference set of people,
say �, not only can each individual ω be characterized as being involved in
relationships of some kind, also properties of the partners (e.g. their age) and of
the relationships (e.g. their duration) can be recorded by formally attributing these
properties to ω. However, the present section briefly introduces a simple extension
of the conceptual framework that allows an explicit representation of relationships
among the members of a reference set. This will also be helpful for the discussion,
in Section 2.2, of an often assumed opposition between statistical and network
approaches to social research.

1. Relational variables

As a general formal framework for the representation of relations between
identifiable objects one can use relational variables having the form

R : �×� −→ R̃

Like statistical variables, relational variables are also functions. The domain
consists of all pairs of objects which can be created from the members of �,
a set of objects of some kind,15 and the codomain R̃ is a set of properties that
can be used to characterize relationships between the members of �. In the most
simple case is R̃ = {0,1}, and the variable only records whether a relationship
exists:

R(ω,ω′) :=
{

1 if ω and ω′ are connected (in a specified way)

0 otherwise
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Table 1.4 Participation of 18 women in 14 social events. The crosses indicate in which
events a women participated

1 2 3 4 5 6 7 8 9 10 11 12 13 14

ω1 Evelyn x x x x x x x x
ω2 Laura x x x x x x x
ω3 Theresa x x x x x x x x
ω4 Brenda x x x x x x x
ω5 Charlotte x x x x
ω6 Frances x x x x
ω7 Eleanor x x x x
ω8 Pearl x x x
ω9 Ruth x x x x
ω10 Verne x x x x
ω11 Myra x x x x
ω12 Katherine x x x x x x
ω13 Sylvia x x x x x x x
ω14 Nora x x x x x x x x
ω15 Helen x x x x x
ω16 Dorothy x x
ω17 Olivia x x
ω18 Flora x x

Source: Homans (1951: 83).

However, R̃ can consist of any number of values referring to properties of possible
relations between the members of �; and like statistical variables, also relational
variables can be multidimensional consisting of two or more components.

2. Construction of networks

In this text, the word network will be used in an abstract meaning: something is
a network if it can be represented by a relational variable. The reference set can
consist of objects of any kind, often called the nodes of the network.

An example, often cited in the literature, will be used to illustrate the
construction of networks. The data as published by G. C. Homans (1951: 83) are
shown in Table 1.4. They provide information about the participation of 18 women
in 14 social events.16 In order to construct a network one first needs a reference
set. In this example, the obvious choice is the set � := {ω1, . . . ,ω18} containing
the names of the women. Networks can then be defined in different ways.

(a) For each of the events, t = 1, . . . ,14, one can define a separate relational
variable Rt : � × � −→ {0,1} with Rt(ω,ω′) = 1 if ω and ω′ have both
participated in the tth event.

(b) One can combine the information and define relations by the number of times
two women have participated in the same event. The result is a single relational
variable R : � × � −→ {0,1,2, . . .} with R(ω,ω′) providing the number of
events in which ω and ω′ have both participated. Table 1.5 shows values of



1.2 Relations 13

Table 1.5 Adjacency matrix of a relational variable that records the number of times two
women have participated in the same event. Calculated from Table 1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

8 6 7 6 3 4 3 3 3 2 2 2 2 2 1 2 1 1
6 7 6 6 3 4 4 2 3 2 1 1 2 2 2 1 0 0
7 6 8 6 4 4 4 3 4 3 2 2 3 3 2 2 1 1
6 6 6 7 4 4 4 2 3 2 1 1 2 2 2 1 0 0
3 3 4 4 4 2 2 0 2 1 0 0 1 1 1 0 0 0
4 4 4 4 2 4 3 2 2 1 1 1 1 1 1 1 0 0
3 4 4 4 2 3 4 2 3 2 1 1 2 2 2 1 0 0
3 2 3 2 0 2 2 3 2 2 2 2 2 2 1 2 1 1
3 3 4 3 2 2 3 2 4 3 2 2 3 2 2 2 1 1
2 2 3 2 1 1 2 2 3 4 3 3 4 3 3 2 1 1
2 1 2 1 0 1 1 2 2 3 4 4 4 3 3 2 1 1
2 1 2 1 0 1 1 2 2 3 4 6 6 5 3 2 1 1
2 2 3 2 1 1 2 2 3 4 4 6 7 6 4 2 1 1
2 2 3 2 1 1 2 2 2 3 3 5 6 8 4 1 2 2
1 2 2 2 1 1 2 1 2 3 3 3 4 4 5 1 1 1
2 1 2 1 0 1 1 2 2 2 2 2 2 1 1 2 1 1
1 0 1 0 0 0 0 1 1 1 1 1 1 2 1 1 2 2
1 0 1 0 0 0 0 1 1 1 1 1 1 2 1 1 2 2

this relational variable in the form of an adjacency matrix A = (aij) having
coefficients defined by aij := R(ωi,ωj).

These are just two possibilities to construct networks from the data in Table 1.4;
one can easily invent further possibilities. The example thus shows that networks,
similar to statistical distributions, are conceptual constructions even if they are
derived from empirical facts.

3. Formal descriptions of networks

If a network has been explicitly defined by a relational variable, say R : �×� −→
{0,1,2, . . .}, it can be described in different ways. The main possibilities are as
follows:17

(a) One can consider formal properties of the relationships, in particular, whether
they are symmetrical, reflexive, and transitive.18

(b) One can investigate how often specified relationships occur and consider, for
each r ∈ R̃, a frequency |{(ω,ω′) |R(ω,ω′) = r}|/|�×�|. If R̃ = {0,1} and
r = 1, this is often called the density of the network. The general approach is
obviously similar to the consideration of a statistical distribution.

(c) One can consider a great variety of formal properties of the network, for
example the number of components and the existence of cliques and other
types of subgroups.
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(d) One can investigate how the individual nodes are embedded in the network
and then characterize the nodes by accordingly defined properties (e.g. the
node’s number of connections to other nodes). The result is a statistical
variable that can be described by a statistical distribution.

It is noteworthy that these are all formal descriptions of a network, independent
of any substantial meaning of the relations referred to.

4. Different kinds of relations

Of course, understanding a network first of all requires an understanding of the
relations used to construct the network. This is all the more necessary because
these relations are often also conceptual constructions. The following distinctions
point to some of the possibilities.

(a) Comparative relations between two or more objects are derived from
properties which can be attributed to each object separately. For example,
ω is older than ω′. In particular, comparative relations can be derived from a
previously defined statistical variable, say X : � −→ X̃ , by comparing X (ω)
and X (ω′).

(b) Context-dependent relations between two or more objects are derived from
properties of a context to which the objects belong. These properties might
refer to events or other kinds of facts. An event-based relation between two
objects derives from an event in which both objects are involved in some
way. For example, two persons talk together, or are both involved in a traffic
accident, or have visited the same art exhibition, or have participated in an
election in the same district. Event-based relations will be called interactive
relations, or briefly interactions, if a communicative or in some sense causally
relevant relationship is involved. Context-dependent relations can also be
defined without referring to an event. For example, two villages are connected
by a street, or two computers are connected by a cable that allows an exchange
of data.

5. Factual and modal views of relations

An important distinction can be made between two views of relations. As an
example, consider two computers connected by a cable that allows the exchange
of data. On the one hand, this is an empirical fact that allows a factual statement;
but the same fact, on the other hand, also refers to possibilities (the exchange of
data) which might, or might not, become realized. Or think of another example:
a person employed by a firm. Again this is an empirical fact that consists in the
existence of an employment contract between the person and the firm; but again
this fact also refers to modalities, in this example to certain kinds of behavior
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which should take place due to the contract. In the same way, when referring to a
relation, one can distinguish between two views:

(a) A factual view that allows to state empirical facts constituting the relation
(e.g. the existence of a cable conncecting two computers, or the existence of
an employment contract); and

(b) a modal view that considers kinds of behaviors which, as a consequence of
the relation, become possible, or probable, or normatively required.

It is noteworthy that the modalities referred to by a modal view of relations
are different from empirical facts. The modal view must be distinguished, in
particular, from a retrospective view of the history of a relation. For example, in a
retrospective view one can consider whether, and to what extent, the connection
between the two computers has in fact been used to exchange data, or one can
describe the way in which the employee actually behaved (with respect to the
contract that constituted the relation). In contrast, the modal view does not consider
empirical facts (realized in the past), but modalities constituted by a relation,
meaning behaviors that a relation makes possible, or probable, or normatively
required.



2 Notions of structure

2.1 Statistical notions of structure
1. Structures as distributions
2. A version of social structure
3. Units of statistical structures
4. Data generating and substantial processes
5. Different kinds of macro facts
6. Statistical structures as conditions?

2.2 Taking relations into account
1. Relational notion of structure
2. Statistical reference sets
3. Statistical variables and relations
4. Dependence on structural conditions
5. Using induced relations

The previous chapter introduced the basic conceptual framework for statistical and
relational descriptions. In the realm of social research those concepts can be used
to provide descriptions of people and their living conditions. Further questions
concern dependency relations: How are people dependent on social conditions?
Arguments often employ notions of structure; for example:

“Structure” is one of the most important and most elusive terms in the
vocabulary of current social science. [. . .] The term structure empowers what
it designates. Structure, in its nominative sense, always implies structure in
its transitive verbal sense. Whatever aspect of social life we designate as
structure is posited as “structuring” some other aspect of social existence –
whether it is class that structures politics, gender that structures employment
opportunities, rhetorical conventions that structure texts or utterances, or
modes of production that structure social formations.

(Sewell 1992: 1–2)

Leaving aside the obscure idea that structures can, in some sense, play an active
role, it seems plausible that notions of social structure can sensibly be used to
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refer to those aspects of social conditions on which people effectively depend.
But how can social structures be conceptually captured? An obvious idea would
be to refer to the institutions that people have created as arrangements of their living
conditions. The conceptual approach of both statistical and relational notions of
structure is, however, quite different. These notions derive from statistical and
relational variables and therefore immediately give rise to the question in which
sense, if at all, they can provide an understanding of social conditions on which
people depend.

The first section of the present chapter considers statistical notions of structure.
It is argued that these versions of structure are essentially conceptual constructions;
and this argument then leads to the question whether, or in which sense, statistical
structures can be understood as conditions on which people (or more abstractly
defined social processes) depend. The second section argues that there is no
clearcut opposition between statistical and relational notions of structure, and
several possibilities exist for the statistical approach to take into account relational
properties.

2.1 Statistical notions of structure

1. Structures as distributions

The word ‘structure’ does not have a unique meaning. In statistical social research
it is most often used synonymously with ‘statistical distribution.’ In this sense,
for example, the age structure of a population simply means the distribution
of a statistical variable that records for each member of the population its
age. Correspondingly, social structure in its statistical sense often means the
distribution of statistical variables that record relevant properties, like education
and income, or an assignment of categories from a previously constructed
stratification.

It is noteworthy that some of the ideas often connected with an understanding
of “structure” do not fit with its statistical notion. Consider the following remark
made by G. C. Homans:

[M]any sociologists use “social structure” to refer to some kind of social
whole, which can be divided, at least conceptually, into parts, and in which
the parts are in some way interdependent, at least in the sense that a change
in some of them will be associated with changes in some of the others.

(Homans 1976: 54)

In contrast to this understanding, the statistical notion of structure has no relational
connotations at all. A second difference concerns the idea that ‘structure’ often
means a set of relatively permanent conditions (for processes of some kind). Not
only has the statistical notion of structure no implications with respect to temporal
permanence. Most often it is also not possible to think of a substantial process
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for which a statistical structure (distribution) is in some sense a condition. (This
argument will be continued in § 6.)

2. A version of social structure

The macrostructural approach proposed by Peter M. Blau provides a good example
of a statistical notion of social structure. The following statement explains the
general idea:

Macrostructural concepts refer to people’s distribution in various dimensions
and the degrees to which these dimensions of social differences among people
are related. Macrosociology is concerned primarily with large populations –
composed of many thousands or even millions of persons. My endeavor is to
develop a systematic theoretical scheme for the study of macrostructures and
their impact on social life.

(Blau 1994: 1)

The dimensions can refer to any properties by which the members of a society
can be distinguished. Blau often speaks of “social positions,” but actually means
“any difference among people in terms of which they make social distinctions
among themselves in social intercourse” (Blau 1994: 3). Important is the interest
in relations between the various dimensions because this requires not to merge
the different dimensions into a one-dimensional classification. Correspondingly,
Blau proposes the following definition:

Social structure can be conceptualized as a multidimensional space of social
positions among which a population is distributed.

(Blau 1994: 4)

As a formal framework one can use a multidimensional statistical variable

(X1, . . . ,Xm) : � −→ X̃1 ×·· ·× X̃m (2.1)

The reference set, �, represents the population, and the property spaces,
X̃1, . . . , X̃m, refer to the dimensions to be used for distinctions between the
members of �. What Blau calls a social structure is formally identical with the
statistical distribution of (X1, . . . ,Xm). Relations between the various dimensions
can then be studied with measures of correlation (Blau 1994: 5) or, more generally,
with various kinds of regression functions.

3. Units of statistical structures

Blau’s notion of social structure refers to populations consisting of human
individuals. It is obvious, however, that a completely analogous approach can
be used to define statistical structures for other kinds of units, e.g. households,
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firms, or regions. Units are simply the individual members of the reference set
used to define the statistical variable (2.1).

One should be aware, however, of a certain ambiguity that, for example, occurs
in the following passage (Blau 1974: 615–6):

The concept of social structure is used widely in sociology, often broadly,
and with a variety of meanings. [. . .] A generic difference is whether social
structure is conceived explicitly as being composed of different elements and
their interrelations or abstractly as a theoretical construct or model. [. . .] If one
adopts the first view, as I do, that social structure refers to the differentiated
interrelated parts in a collectivity, not to theories about them, the fundamental
question is how these parts and their connections are conceived. My concept
of social structure starts with simple and concrete definitions of the component
parts and their relations. The parts are groups or classes of people, such as men
and women, ethnic groups, or socioeconomic strata; more precisely, they are
the positions of people in different groups and strata. The connections among
as well as within the parts are the social relations of people that find expression
in their social interaction and communication.

At first sight this seems to contradict the understanding that Blau’s notion of
social structure refers to a population (a reference set consisting of human
individuals). The contradiction dissolves, however, if one explicitly distinguishes
between units and positions (in the meaning supposed by Blau). The formal
framework of a statistical variable, say X : � −→ X̃ , supports the distinction.
The elements of the reference set, �, are the units, and the elements of the
(possibly multidimensional) property space, X̃ , are the positions. The variable, X ,
also induces a partition of the reference set: To each position x ∈ X̃ corresponds
a subset

X −1({x}) = {ω ∈ � |X (ω) = x}

consisting of units sharing the position x. Although these subsets are conceptually
different from the positions (as indicated by Blau), the frequency of the positions
obviously equals the size of the subsets.

A real source of obscurity is, however, Blau’s statement that his notion of
social structure refers to “component parts and their relations” (emphasis added).
As already remarked in § 1, this relational rhetoric does not fit with a statistical
notion of structure. While the fact that two or more individuals share the same
position (in Blau’s sense) might be used to construct comparative relations,
these relations only exist on a conceptual level and should not be confused with
relations in any substantial sense (see Section 1.2, § 4).1 On the other hand, while
Blau’s talk of “social interaction and communication” clearly refers to substantial
relations, these relations do not play any role in the statistical notion of social
structure.
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4. Data generating and substantial processes

In order to understand better statistical notions of structure, one might ask: how
do statistical facts come into being? Consider the following picture:

� � � � � � � � � �

What the picture shows (10 objects of which 4 are black and 6 are not black) is
obviously not already a statistical fact. A statistical fact only comes into being as the
result of a specific procedure which consists of three steps: (a) conceptualization of
a statistical variable; (b) a (real or fictitious) data generating process that provides
values of the variable; and (c) calculations which finally create the statistical fact
(the variable’s distribution or some quantities, or functions, derived thereof ).

In the example, the three steps can easily be performed. Using a reference set
� := {ω1, . . . ,ω10} to represent the objects, and a property space, say Ỹ := {0,1},
to distinguish black (1) and non-black (0) objects, one can define a statistical
variable Y : � −→ Ỹ that assigns to each object a specific value in the property
space Ỹ . Then follows the second step providing the data. In this example this is
easily done, and the result can be made available in the following form:

ω ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

Y(ω) 0 0 1 0 1 1 0 0 0 1

This table provides the data for the third step, that is, the calculation of the
distribution P[Y ]. In this example no extensive calculations are necessary and
one directly gets the result: P(Y = 0) = 0.6 and P(Y = 1) = 0.4.

These statements formulate the statistical fact; and the example thus provides
one possible answer to the initial question: Statistical facts come into being as the
result of a theoretical and practical procedure that consists of the three mentioned
steps. The example also shows that a data generating process presupposes that the
facts to which the data refer already exist. These facts, which correspond to the
individual elements of the reference set, will subsequently be called micro facts.
Obviously, they are different from the derived statistical facts, and it is necessary,
therefore, to distinguish two questions:

(a) How did the micro facts (supposed to exist in the empirical world) come into
being? (In the example: How did the 10 black and non-black objects come
into being?)

(b) How do statistical facts (referring to already existing micro facts) come into
being?

The following diagram illustrates the distinction:

−→ Y (ω1)
...

−→ Y (ωn)

⎫⎬
⎭ =⇒ P[Y ]
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Arrows of the form −→ are intended to hint at the substantial processes that
create the micro facts referred to by Y (ω1), . . . ,Y (ωn). Given that these micro
facts already exist, a quite different process, indicated by the arrow =⇒ , creates
the statistical fact P[Y ]. Thus, three processes should be distinguished:

(1) Substantial processes generating the micro facts assumed to exist correspond-
ingly to the individual elements of a reference set;

(2) data generating processes generating information (data) about the micro
facts;2 and

(3) calculations which, beginning with the results of a data generating process,
create statistical facts.

5. Different kinds of macro facts

The foregoing talk of micro facts might suggest calling statistical facts corre-
spondingly macro facts. However, it is important, then, to distinguish statistical
facts from other kinds of macro facts which can be considered as being empirical
facts because they result from the interaction of people. A diagram proposed by
J. S. Coleman (1990: 8–23) can serve to illustrate the difference:

Micro Level

Macro Level

�������
Micro-to-macro transition

Following Coleman, micro-level propositions refer to the behavior of (individual
or corporate) actors, and macro-level propositions refer to facts which, in some
sense, result from the actions performed at the micro level. But given this
understanding, statistical facts do not correspond to the macro level. The reason is
not that the micro facts from which statistical facts are derived most often do not
consist in individual actions; the interpretation of the micro level may be extended
to allow a reference to any kind of micro facts. The crucial point is that statistical
facts do not result from processes which can be theoretically linked to the behavior
of micro-level actors; they rather result from observations and calculations which
presuppose that the substantial processes have already taken place.3

6. Statistical structures as conditions?

Can statistical structures be used to capture conditions on which the behavior of
people effectively depends? Dealing with this question, one should be aware of
a possible confusion. Consider, as a simple example, a variable X : � −→ {0,1}.
� is a set of people, and X records whether members of � live in a household
that has available a washing-machine (1) or otherwise (0). For each ω ∈ �, X (ω)
obviously documents an aspect of ω’s living conditions. However, these are values
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of a statistical variable, not structures. The statistical structure, in this example,
refers to the distribution P[X ], and this distribution is not a condition on which
any member of � effectively depends.

The question remains whether individuals sometimes also depend on structural
conditions, that is, conditions defined in terms of statistical distributions. Using
again a variable X : � −→ X̃ as a formal framework, the question is whether there
are examples in which one can think of the distribution P[X ] as being a relevant
condition for . . .? Three cases can be distinguished.

(a) One can think of an individual actor, say A, and imagine that A’s behavior in
some way depends on the distribution P[X ]. Although it is not required that
A is a member of �, it must be assumed that P[X ] refers to a situation which
contains A and is relevant for A’s behavior. As an example, one can think that
A is teacher of a class, represented by �, and P[X ] describes the proportions
of boys and girls in the class.

(b) The example directly leads to a second possibility. It is obviously possible
to say that P[X ] is also a condition for the individual members of �. Of
course, the way in which P[X ] is an effective condition for each individual
ω ∈ � may also depend on other circumstances, including ω’s properties
(e.g. ω’s sex).

(c) A third case is different in that P[X ]no longer characterizes situations in which
individual actors actually exist. As a modification of the previous example,
assume that � consists of two classes, �1, consisting only of boys, and �2,
consisting only of girls. P[X ], the sex distribution in the reference set � =
�1 ∪ �2, no longer, then, refers to effective conditions of the individual
members in the two classes.

The conclusion is that statistical distributions can sometimes be used to define
structural conditions; a crucial precondition is, however, that these conditions
can be linked to situations in which individual actors (or other kinds of objects)
actually exist.

2.2 Taking relations into account

1. Relational notion of structure

The following quotation explains a relational notion of structure: “A structure is
a configuration of parts, and a structural description is a characterization of the
way the components in a set are interrelated.” (Hernes 1976: 518) The notion is
obviously very general and abstract. It might refer to a structured unit, meaning
a unit that can be considered as consisting of identifiable parts which are in some
way related. For example, in social research, these are couples, households, firms,
and other kinds of organizations. But the notion can also be used to refer to any
kind of network (as defined in § 2 of Section 1.2). To describe a relational structure
then means to describe the network.
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2. Statistical reference sets

Reference sets of statistical variables are most often considered as consisting of
unrelated units.4 In contrast, the network approach in social research starts from
the consideration of systems consisting of elements which are in some way related.
These systems are formally represented as networks which then become the objects
of description and analysis. It therefore seems that there is a fundamental difference
between a statistical and a network approach to social research. However, there
are several reasons why the contradistinction is not clearcut.

First, statistical variables can also be used to characterize the elements of a
statistical reference set by relational properties. This is obvious if these elements
are already defined as structured units (e.g. households or firms). But even if not,
they can be characterized by properties of structured units to which they belong.
For example, one can characterize individual persons by the size of the household
to which they belong. This obviously does not require that all household members
have an explicit representation in the statistical reference set.

3. Statistical variables and relations

A second consideration concerns the simplistic opposition of statistical and
relational notions of structure. Actually, given a statistical variable X : � −→ X̃ ,
one can always derive at least one relational structure for the reference set �.
The most simple one would be the equivalence relation induced by X , that is,
a partition of � into classes of elements having identical values of X . This is
the basic statistical relation: Two units, ω′ and ω′′, are statistically equivalent
(w.r.t. X ) if X (ω′) = X (ω′′).

It should be added that the relevant meaning of this notion derives from a
presupposition: that in defining the property space of a statistical variable one
does not use proper names which identify the individual units. In other words, a
reference set is considered as a set of generic units, only distinguishable by values
of explicitly defined variables. While there are sometimes exceptions in small-N
research, I take this presupposition as fundamental to the statistical approach to
social research.5

On the other hand, assume that a relational structure for � is explicitly given by
a relational variable R : �×� −→ R̃. Instead of statistically equivalent units one
can then identify units that have an equivalent position in the relational structure.
We briefly consider two definitions.

(a) Two units, ω′ and ω′′, are structurally equivalent (w.r.t. R) iff R(ω′,ω) =
R(ω′′,ω) and R(ω,ω′) = R(ω,ω′′) for all ω ∈ � \ {ω′,ω′′}.6

(b) Two units, ω′ and ω′′, are automorphically equivalent (w.r.t. R) iff there exists
an automorphism π : � −→ � with ω′′ = π(ω′).7

An important difference concerns the question whether individual units can be
identified (by using their labels). As an illustration consider a reference set
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consisting of seven units with a relational structure as follows:

� � � � � � �ω1 ω2 ω3 ω4 ω5 ω6 ω7

There are two classes of automorphically equivalent units: {ω1,ω4,ω7} and
{ω2,ω3,ω5,ω6}. Using instead the notion of structural equivalence would allow
to further distinguish between {ω2,ω3} and {ω5,ω6}. However, the statement
that, say, ω2 and ω5 are not structurally equivalent obviously requires that one
can distinguish between ω3 and ω6, and this is only possible by using their
labels.

One should therefore prefer the notion of automorphic equivalence when
following a statistical view that assumes that individual units cannot be iden-
tified (but only characterized by values of variables). The statistically relevant
information provided by the relational structure R can then be represented
by a statistical variable that assigns each element of � to an equivalence
class of the automorphic equivalence relation. In the example, the statistical
variable would distinguish between {ω1,ω4,ω7} and {ω2,ω3,ω5,ω6}; and this
partition would provide a complete formal characterization of how the units
are part of the relational structure: Belonging to the first class a unit is
isolated, and belonging to the second class a unit is connected with another
one. Of course, one normally has additional information about the relation (e.g.
being married), and this then provides additional meaning for the equivalence
classes.

The consideration shows that the information which a relational structure
contains about the individual members of the reference set might well be
captured by statistical variables. This undermines any simple opposition between
a statistical and a relational (network) approach. Of course, the leading question
might concern properties of a system, represented by the relational structure,
as a whole. A statistical approach that views the elements of the system as
individual elements of a statistical reference set is then clearly not appropriate, and
proper methods of network analysis should be applied. But our present question
is different: Starting from the idea that the individual elements of a statistical
reference set might depend on structural relations, how can this be taken into
account? The consideration has shown that the conceptual framework of statistical
variables might well suffice.8

There are, of course, limitations. In accordance with the definition given in § 1,
a reference set � can be called a structured unit if there is a relational structure
and there are no (or almost no) automorphically equivalent elements. A statistical
variable that records membership in equivalence classes will then assign all (or
almost all) elements of � a unique value, and in this sense allows the identification
of them. Such a variable cannot be used for statistical analyses because the notion
of a frequency distribution (although formally still applicable) loses its sense.
The idea that statistical variables can be used to capture positions in a relational
structure therefore has limitations.
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4. Dependence on structural conditions

A further consideration takes up the idea that individual units might depend on
properties of a relational structure. This is often seen as one of the basic and most
important ideas of a network approach.9 However, since the notion of a relational
structure is extremely general and abstract, one will need an explicit argument for
the assumption that a relational structure constitutes effective conditions for its
elements.

Whether, and how, this assumption can be justified depends on the application
context. But remembering the discussion in Section 1.2, there is at least the general
requirement that relations allow a modal interpretation. Therefore, comparative
relations can most often not be interpreted as effective conditions. Instead one
has to consider context-dependent relations that characterize environments of the
members of the reference set �. For each individual unit ω, the specification of
the relevant environment might require a reference to other members of �; but
this is obviously of no importance for the question whether or not the specified
environment constitutes an effective condition.

The argument parallels the one made at the end of Section 2.1. In any case,
using statistical or relational notions of structures, it is important to refer to local
environments of the individual units in order to specify conditions on which these
units effectively depend.

5. Using induced relations

In statistical social research one rarely has data about context-dependent relations
among the individual units of a reference set. It might well be possible, however,
to incorporate information derived from relations defined on property spaces.
Assume that a relational structure R : X̃ × X̃ −→ R̃ is defined for the property
space of a statistical variable X : � −→ X̃ . This induces a relation on �, say
R∗ : � × � −→ R̃, defined by R∗(ω′,ω′′) := R(X (ω′),X (ω′′)).10 For example,
X̃ may comprise a set of spatial locations, and R provide information about
their spatial distances. R∗(ω′,ω′′) is then a measure of the spatial proximity of
ω′ and ω′′. (An application will be discussed in Section 8.2 when dealing with
diffusion models.)
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Having introduced elementary statistical and relational concepts in Chapter 1 and
discussed corresponding notions of structure in Chapter 2, this chapter deals with
some possibilities to conceptualize processes. The first section is concerned with a
distinction between historical processes and process frames that are used to define
repeatable processes. The second section deals with schematic process frames that
are based on explicitly defined time axes, in particular time series and statistical
processes. The third section explains a notion of stochastic process frames that
will be used in later chapters for the discussion of stochastic models.

3.1 Historical and repeatable processes

1. Some notions of process

In its most general sense, ‘process’ only means that something develops in time.
The word can therefore be used in many different more specific meanings. Here are
some possibilities:
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• The word can refer to the development of states (properties) of identifiable
objects; for example the development of the employment status of a specified
person during a specified time span.

• The word can refer to the development of states attributable to a plurality
of objects. Using statistical concepts, this leads to statistical processes in the
sense of temporal sequences of statistical variables.

• Different notions of process emerge if one begins, not with states, but with
events. In a general sense, the notion of process then means a temporally
structured series of events.

• Depending on the kinds of events more specific notions can be used. In
particular, one can think of behavioral processes which consist of temporally
structured activities of (one or several) individuals.

An obvious question always concerns how to delineate the events, or objects
and their properties, that are part of the process. Observations will not provide
an answer because the possibilities of considering objects and events as being
part of a process are virtually unlimited. It is therefore proposed to understand
‘process’, not as an ontological category (something that exists in addition
to objects and events), but as belonging to the ideas and imaginations of
humans aiming at an understanding of the occurrences they are observing. Put
somewhat differently, it is suggested to understand processes as conceptual
constructions. This is not to deny that processes can meaningfully be linked to
observations of objects and events; but this will then be an indirect link: one can
observe objects and events, but not processes (even if they are constructed from
observations).

2. Historical processes

A process will be called historical if its construction refers to an empirically
identifiable development in the empirical world. The notion presupposes a human
practice that provides the point of view from which a historical process can be
identified. Correspondingly, the notion also presupposes an understanding of time
that is grounded in human practice, in particular, the distinction between temporal
modalities: a past that consists of realized facts which cannot be changed, a future
that consists of possibilities which might become realized, and a transitory present
in which some of the possibilities become realized and thereby become part of
the past.1

As proposed here, the construction of historical processes does not require any
specific conceptual tools. One can construct historical processes as behavioral
processes or, more generally, as a temporally structured series of events. But also
statistical concepts can be used to construct, for example, a historical process
that refers to the development of the population in Germany during a specified
period.
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Since it is required that historical processes can be empirically identified, these
processes always have a beginning and an end in the historical time. It follows
that a historical process always refers to the past of the human practice by which
the process is identified. As examples one can think of a conversation, a walk, the
formation of a building, or the population development during a specified period.
Obviously, there is no limit to imagining different historical processes.

As the examples also show, there is no requirement that historical processes
occupy a “long” time span. The distinction between processes and events that
will be made in this text does not result from different temporal extensions
but rather concerns the ontological status. Events are conceived as occurrences
that can be observed in the empirical world; in their ontological status they
are therefore similar to empirically identifiable objects. Processes, on the other
hand, are conceptual constructions and do not have an empirical existence on
their own.2

3. Process frames

A repeatable process is a process that can take place several times in a similar way.
For example, walking from home to work. In this understanding, the notion only
requires that one can think of several processes which are in some way comparable.

The notion of repeatable processes suggests an important distinction between
processes and process frames. While a process is a unique development, a process
frame provides a conceptual framework that allows one to think of repeatable
processes as realizations of the process frame. These realizations will be historical
processes if they actually take place in the empirical world; it is quite possible,
however, also to imagine a fictitious process as being the realization of a process
frame. The relevant distinction is therefore not between historical and repeatable
processes, but between historical and fictitious processes. If a historical (or
fictitious) process is termed repeatable, the meaning is that the process shall be
viewed as the realization of a (previously constructed) process frame.

• As examples one can think of computer programs (or more abstract,
algorithms). One obviously has to distinguish between a computer program, in
the sense of a process frame, and the repeatable processes that will take place
when the program gets started. Each of these processes will be a historical
process that takes place in a specific spatial and temporal context.3

• Also games, like chess, provide easily understandable examples. On the
one hand there is a process frame defined by the rules of the game, on the
other hand there are the realized games which can be imagined as fictitious
processes or actually performed as historical processes.

• One can also think of behavioral processes which are regulated to some
extent, for example, the preparation of dishes or the provision of a medical
diagnosis. The regulation (consisting of rules) provides a process frame to
be distinguished from the behavioral processes that take place as real or
imaginary realizations.
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• Finally, human life courses can also be considered as repeatable processes.
Of course, no one can repeat his or her life; but the idea simply is to view
life courses (of a specified set of individuals) as being realizations of a
process frame. The process frame might be a pure theoretical construction or
correspond to institutionalized regulations.

The examples show that repeatable processes can be quite different. While
computer programs are examples of mechanical processes, games are behavioral
processes which can be influenced by human actors.4 The examples also show
that the scope of potential realizations which a process frame allows can be
quite different. While algorithms that uniquely determine a process provide an
extreme case, most process frames allow a more or less broad spectrum of different
realizations.

4. Processes and rules

Process frames can often be described by rules. In these cases one might say
that the realized processes are “governed by rules.” The formulation is, however,
ambiguous.

First of all, that a process is governed by rules does not imply that the process
is determined by rules. Gilbert Ryle (1949: 77–9) has shown this by referring to
games of chess: although governed by rules, the rules do not determine specific
courses of the game. The example also shows that rules cannot be understood as
causes which, in some sense, guarantee that a process develops in accordance with
the rules; the rules which exist for games of chess cannot guarantee that players
observe the rules.

This is quite independent of the scope of possible processes allowed by a
set of rules and is true also for mechanical processes. For example, also a
computer program cannot guarantee that its activation generates a process that
conforms to the program. The actual development of the historical process which
follows the program’s activation rather depends on many conditions not taken
into account by the program (e.g. the physical conditions of the hardware). For an
understanding of the idea that processes are governed by rules it is, nevertheless,
of importance whether actors only initialize a process or also influence its
development.

In both cases rules can be part of a model, that is, a process frame which is
constructed from the point of view of an observer for the consideration of possible
or actually realized processes. Rules of this kind (called modeling rules in this
text) govern the processes which are possible in the framework of the model.
However, if processes involve actors it becomes possible and is often the case that
these actors also have knowledge about rules. These are not modeling rules which
govern the possible realizations of a model but rules from the point of view of
actors. Nevertheless, the development of a process also depends on these actor’s
rules (as they will briefly be called), or more precisely, it depends on how the
actors observe, or not observe, the rules in their activities.
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3.2 Time series and statistical processes

Processes and process frames can be constructed in several different ways. This
section considers time series and statistical processes which are based on explicitly
defined time axes.

1. Time axes

A time axis is a formal representation of time. Mainly two versions can be
distinguished. One approach treats time as a sequence of temporal locations (e.g.
seconds, hours, days, months, or years) and represents a time axis by integral
numbers with an arbitrarily fixed origin. This is called a discrete time axis. Another
approach treats time as a continuum (a “continuous flow of time”) and represents
a time axis by the set of real numbers. This is called a continuous time axis.

In this text a discrete time axis will be used. This has the advantage that
one can think of a sequence of temporal locations. The notation is T :=
{. . . ,−3,−2,−1,0,1,2,3, . . .}, and it is assumed that the integers represent
temporal locations (suitably specified in the application context). The notation
T ∗ is used if only a part of T is needed; it is always a contiguous and (if not
explicitly said otherwise) also a finite subset of T .

2. Timed process frames

Having available the notion of a time axis one can immediately construct timed
process frames. The following definition will be used: Given a time axisT ∗, a timed
process frame is a corresponding sequence of logical variables (of some kind).5

Realizations will accordingly be called timed processes (or briefly processes).
Mainly two types of timed process frames will be distinguished.

• Process frames for time series. These process frames can formally be
represented by sets {Ẍ t | t ∈ T ∗} where Ẍ t are logical variables for real
numbers or vectors. Realizations are called accordingly simple or vectorial
time series, formally {xt | t ∈ T ∗}. Note the distinction between the logical
variables, Ẍ t , used to represent the process frame, and its possible values
denoted by xt . The lower-case symbols xt are used not as logical variables,
but as names representing specific real numbers or vectors.

• Process frames for statistical processes. These process frames can formally
be represented by sets {X ∗

t | t ∈ T ∗} where X ∗
t are logical variables for

statistical variables (i.e. variables having statistical variables as possible
values).6 Realizations of these process frames are sequences of statistical
variables and will be called statistical processes.

3. Statistical processes

As the word is used in this text, a statistical process is a sequence of statistical
variables, Xt , with t referring to a time axis T ∗.7 It will be assumed that there
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is a common property space, X̃ , for all variables Xt . Three types of statistical
processes can then be distinguished. (a) If the reference sets of the variables can
be different in each temporal location, formally

Xt : �t −→ X̃ (3.1)

the process is called synchronously aggregated. (b) If there is a single reference
set, �, that does not change while the process continues, formally

Xt : � −→ X̃ (3.2)

the process is called temporally aggregated. (c) A further possibility is that the
reference sets can change while the process continues but, different from case (a),
one can identify individual members across temporal locations.

In case (a), T ∗ is most often part of a historical time axis and the statistical
process can then be considered as a historical process that develops during a
specified historical period. In case (b), the time axis often does not correspond to
a specific historical time span but is a theoretical construct that is used to define
the statistical process; and most often the time axis is then formally specified as
T0 := {0,1,2, . . .}.

4. Aggregation of individual processes

Temporally aggregated statistical processes can be viewed as resulting from an
aggregation of individual processes. As is obvious from (3.2), the statistical
process equals a collection of individual processes, {Xt(ω) | t ∈ T ∗}.

While in this expression the individual processes are already defined on a
common process time axis, T ∗, it is quite possible that they derive from individual
processes that begin in different temporal locations on a historical time axis; to
illustrate:

�
t1 t2 t3

� � � � � � �ω1

� � � �ω2

� � � � �ω3

�
�

�

historical time axis

As an example, one can think of marriage episodes; the diagram then shows three
marriage episodes which begin in the temporal locations t1, t2, and t3, respectively.

The diagram also shows that individual processes can be aggregated in different
ways. (a) One can define � as consisting of individuals whose individual processes
began in the same temporal location on the historical time axis; for example:
individuals who married in the same year. (b) One can define � as consisting of
individuals whose individual processes ended in the same temporal location on the
historical time axis; for example: individuals who became divorced in the same
year. (c) One can define � as consisting of individuals whose individual processes
began (or ended) during a longer historical period. Possibility (a) corresponds to a
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cohort approach, based on the understanding that “a cohort is defined as
those people within a geographically or otherwise delineated population who
experienced the same significant life event within a given period of time.” (Glenn
1977: 8) In any case, if one is interested in statistical statements about a collection
of individual processes, they must be aggregated on a common process time axis.
In the example:

�

0

� � � � � � �ω1

� � � �ω2

� � � � �ω3

�
�
�

process time axis

it is assumed that all individual processes begin in the same temporal location 0
of a time axis T0 := {0,1,2,3, . . .} ; and this allows for the consideration of the
individual processes as if they develop in parallel.

3.3 Stochastic process frames

If the goal is to describe time series, or statistical processes, as historical processes
for which data are available, it is not necessary to conceive of the processes as
realizations of suitably constructed process frames. Explicitly constructed process
frames are only required for the construction of (dynamic) models serving to
consider repeatable processes and how they might be governed by rules. An
extensive discussion of such models begins in Chapter 4. Since these models
often use stochastic process frames the present section briefly introduces the
basic notions.

1. Random generators

For the definition of stochastic process frames a specific notion of probability
is used that is called aleatoric probability and refers to random generators. The
following diagram can serve as an explanation.8

Activation −→ Random generator −→ Outcome

• First of all, a random generator is a method to generate outcomes. This implies
that a random generator is not by itself an actor, but presupposes an actor who,
by using the random generator, generates outcomes. Think for example of a
die. In order to generate an outcome somebody must throw the die.

• The description of a random generator therefore consists in the description of
a procedure to be followed in the generation of outcomes. This might include
a description of specific devices (a die, for example) and how they shall be
used.
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• The notion of a random generator implies that it can be used any number of
times to generate outcomes.

• A random generator has two or more possible outcomes; whenever activated,
the random generator generates exactly one of its possible outcomes. The
specification of the set of possible outcomes is part of the definition of the
random generator.

• It is required that the process that begins with the activation of a random
generator and creates the outcome develops independently of all historical
circumstances, including, in particular, the time, the place, and the actor who
initiates the process but cannot influence its further development.9 Of course,
this is to be understood as an ideal requirement which can be satisfied only
approximately by real random generators.

• The requirement just mentioned also includes that processes which begin with
the activation of a random generator develop independently of all processes
and their outcomes which have been realized earlier (with the same or with any
other random generator). Again, it is an ideal requirement: an ideal random
generator has no memory.

2. Aleatoric probability

The notion of aleatoric probability serves to describe random generators. Referring
to a random generator G, the formal definition proceeds in two steps.

In a first step one defines a set, say Z̃ , that represents the possible outcomes.
Analogously to the property spaces of statistical variables, it will be assumed that
one uses a numerical representation and Z̃ can be treated as a subset of the real
numbers. For example, Z̃ = {1, . . . ,6} if G refers to the generation of numbers
with a single die. In a second step one specifies a probability measure, that is,
a function

Pr[G] : P(Z̃) −→ R

which associates with each subset Z̃ ⊆ Z̃ (each element of the power set P(Z̃))
a number Pr[G](Z̃), to be interpreted as the probability that the activation of G
generates an outcome in Z̃ , and which satisfies the following requirements:

(a) for all Z̃ ⊆ Z̃ : 0 ≤ Pr[G](Z̃) ≤ 1

(b) Pr[G](∅) = 0, Pr[G](Z̃) = 1

(c) for all Z̃, Z̃ ′ ⊆ Z̃ : if Z̃ ∩ Z̃ ′ = ∅ then:

Pr[G](Z̃ ∪ Z̃ ′) = Pr[G](Z̃) + Pr[G](Z̃ ′)

These requirements formally equal those for a statistical distribution, and
probability measures are therefore formally equivalent with frequency functions.
Unfortunately, this fact easily obscures the fundamental difference in meaning:
While a statistical distribution refers to a collection of facts which have been
realized in the past, a probability measure refers to possibilities which, in the
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case of aleatoric probability, might become realized by using a random generator.
This text therefore uses different symbols, P[X ] for the distribution of a statistical
variable X , and Pr[G] for the probability measure of a random generator G.

A further question concerns the numerical specification of probabilities.
However, when aleatoric probabilities refer to random generators which are
explicitly known there is no estimation problem; numerical values can directly
be derived from the known properties of the random generator.

3. Stochastic variables

To allow flexible references to random generators it is practical to use stochastic
variables (also called random variables). A stochastic variable is a function

Ẋ : Z̃ −→ X̃

that has as its domain, Z̃ , the set of possible outcomes of a random generator;
the codomain, also called the range of Ẋ , is any property space (which can be
identical with Z̃). If then a stochastic variable Ẋ is defined by referring to a random
generator G, one can associate with each subset X̃ ⊆ X̃ an induced probability

Pr[Ẋ ](X̃ ) := Pr[G](Ẋ −1(X̃ ))

The function Pr[Ẋ ] is called the probability distribution, or probability measure,
of Ẋ . Accordingly, one says that Pr[Ẋ ](X̃ ) is the probability that Ẋ realizes a value
in the set X̃ . Often the following equivalent notations are used:

Pr(Ẋ ∈ X̃ ) := Pr[Ẋ ](X̃ ) and Pr(Ẋ = x) := Pr[Ẋ ]({x})
As already mentioned, from a purely formal view there are no differences between
probability distributions of stochastic variables and statistical distributions of
statistical variables. This text, nevertheless, uses different notations (Ẋ for
stochastic variables, and X for statistical variables) to remind of quite different
meanings:

• A statistical variable X : � −→ X̃ has as its domain a set � which consists of
real or fictitious objects or situations. In contrast, the domain of a stochastic
variable Ẋ consists of the set of possible outcomes of a random generator.

• Correspondingly, a statistical variable records properties of objects or
situations which are actually realized or assumed to be realized. A stochas-
tic variable, in contrast, refers to processes by which outcomes might
come into being. Using stochastic variables therefore presupposes a modal
consideration.

• This implies that the distributions also have a different meaning. While a
statistical distribution P[X ] represents a (statistically constructed) fact derived
from realized properties of the members of a reference set, the probability
distribution Pr[Ẋ ] describes a random generator, that is, a method that can be
used to generate facts.
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4. Stochastic process frames

Using stochastic variables one can construct stochastic process frames in many
different ways. Here two timed versions will be considered which are defined
analogously to process frames for time series (see Section 3.2, § 2). Both are based
on a process time axis T ∗ = {0,1,2,3, . . .}. The first version is simply defined as
a sequence of stochastic variables:

{Ẋt | t ∈ T ∗} (3.1)

The second version is defined as a sequence

{(Ẋt, Z̈t) | t ∈ T ∗} (3.2)

In each temporal location, t, there is a stochastic variable Ẋt and also a non-
stochastic variable Z̈t .

Both versions establish frames for processes that emerge if the variables Ẋt , or
(Ẋt, Z̈t), get specific values. The results are time series

x0,x1,x2, . . . or (x0,z0), (x1,z1), (x2,z2), . . .

Obviously, a stochastic process frame allows one to think of, or actually generate,
any number of such time series. Referring to n realizations of a process frame
{Ẋt | t ∈ T ∗}, they can also be viewed as the elements of a temporally aggregated
statistical process Xt : � −→ X̃ . The elements of � identify the n time series, and
Xt(ω) is the value of the time series identified by ω in the temporal location t.
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Statistical social research is based on data, values of statistical and relational
variables, resulting from observations or interviews. However, rarely are data of
interest on their own. The interest most often concerns more general questions
which, in some sense, transcend the given data. Two kinds of generalizations
must then be distinguished.

One idea, often discussed in the statistical literature, takes the cases for which
data are available to be a subset of a larger population of cases and intends a
generalization to that population. The conceptual framework of statistical variables
allows an explicit formulation. Suppose a statistical variable, say X : � −→ X ,
represents the available data. This allows statistical statements about the reference
set �, basically statements about P[X ], the distribution of X in �. The reference
set of the data, �, is then considered as a subset of a larger population �† for
which an analogously defined variable, say X † : �† −→ X , can be assumed. The
goal of the generalization is a statement about P[X †], the distribution of X † in
the population �†, or some quantity derived from that distribution. For example,
under certain circumstances it might be reasonable to believe that P[X †] ≈ P[X ].
In any case, the result is a descriptive statement about the distribution of X † in the
population for which the generalization is desired; the approach will therefore be
called descriptive generalization.

While often reasonable, a descriptive approach to generalization has, in fact,
severe limitations. The most important limitation results from the notion of a
population. In order to be used as a reference set for a statistical variable, the
elements of a population can only represent cases which actually do exist or have
existed in the past.1 However, interest in future possibilities often provides the
main reason for an interest in generalizations. For example, one might be interested
in the behavior of car drivers approaching traffic lights. Will they stop when the
traffic light shows ‘red’? This question no longer refers to a definite set of realized
facts but is a modal question that concerns the dependency of possibilities on
conditions. Such questions cannot be answered in the conceptual framework of
descriptive generalizations but require a different kind of generalization that will
be called modal generalization.

The main linguistic tool for the formulation of modal generalizations are rules.
Corresponding to different kinds of modal generalizations there are different
kinds of rules. A rule might say, for example, what, in a situation of a certain
kind, might happen, or will probably happen, or should be done, or can be
achieved by performing some specified action. Scientific research is often
concerned with rules that allow predictions, in particular with causal rules that
are intended to show how facts, or events, of some kind depend on other facts
and/or events.2 Modal generalizations may then be called predictive or causal
generalizations.

A widespread approach to predictive and causal generalizations consists in the
construction of functional models, that is, models which show how one or more
endogenous variables depend on one or more exogenous variables. The important
point is that these variables, contrary to statistical variables, do not represent
realized facts, but are intended to serve modal thinking about dependencies
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between possible facts and/or events. These variables will therefore be called
modal variables and a specific notation will be used. They will be marked by a
single point if stochastic or by double points if deterministic.

The present chapter presents an abstract discussion of functional models
which are based on modal variables. It will be supposed that the interest is in
predictive and causal generalizations. Models are therefore considered, not as
descriptive, but as analytical models. The first section deals with deterministic
functional models. The second section considers functional models which also
contain stochastic variables and stochastic functions. The third section discusses
some conceptual problems related to speculations about unobserved variables.
Additional questions concerning the interpretation and application of functional
models will be discussed in subsequent chapters.

4.1 Deterministic models

1. A simple example

A functional model consists of modal variables which are connected by functions.
This section deals with deterministic functional models containing only deter-
ministic variables connected by deterministic functions. The following diagram
illustrates a simple example:

� ���
��
	

����

A battery and a bulb are connected by a circuit that can be closed or opened with
a switch. Depending on the position of the switch the bulb gives light or not.
A functional model for this situation uses three variables:3 Ÿ records whether
the bulb gives light (Ÿ = 1) or not (Ÿ = 0), Ẍ records whether the switch is
closed (Ẍ = 1) or not (Ẍ = 0), and Z̈ records whether the battery can provide
power (Z̈ = 1) or not (Z̈ = 0). In addition there is a function that shows how the
possible values of Ÿ depend on values of Ẍ and Z̈ . The following table defines the
function:

Ẍ Z̈ Ÿ

0 0 0
0 1 0
1 0 0
1 1 1

(4.1)

The bulb gives light if the battery provides power and the switch is closed; in all
other cases the bulb is off.
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2. Endogenous and exogenous variables

A main ingredient of functional models are the modal variables.4 Their definition
requires:

(a) The name of the variable and an explication of its intended meaning. For
example, a variable is called Ẍ and it is intended to record whether a switch
is open or closed.

(b) The range of the variable, that is, the set of its possible values must be defined
and the intended meaning of the values must be explained.5 For example, Ẍ
has the range {0,1} and 0 means that the switch is open and 1 means that it is
closed.

(c) How modal variables get specific values.

The requirement (c) is particularly important in order to make functional models
intelligible. A basic distinction between endogenous and exogenous variables
must be made. Endogenous modal variables get their values as functions of
other variables. In the example in § 1, Ÿ is an endogenous variable that gets
its values as a function of the values of Ẍ and Z̈ . Modal variables which are
not endogenous are called exogenous modal variables; they get their values from
arbitrary assumptions. In the example Ẍ and Z̈ are exogenous variables.

3. Functions and rules

The variables of a functional model are connected by functions. In a deterministic
model the functions are of the form f : X̃ −→ Ỹ . The set X̃ , being the range of a
variable Ẍ , is the function’s domain, and Ỹ , being the range of another variable
Ÿ , is the function’s codomain. The function assigns to each element x ∈ X̃ exactly
one element f (x) ∈ Ỹ . In this sense, given a value of Ẍ , the function uniquely
determines a value of Ÿ .6

Such dependency relations can be graphically depicted by arrows. In the just
used example: Ẍ −→ Ÿ . A variable can, of course, depend on two or more
other variables simultaneously. For the example in § 1 one can use the following
diagram: Ẍ −→ Ÿ ←− Z̈ . Note that the two arrows do not correspond to two
separate functions; rather all arrows which lead to the same variable belong to one
function. In this example, this is the function g : X̃ × Z̃ −→ Ỹ which assigns to
each element (x,z) ∈ X̃ × Z̃ a value g(x,z) ∈ Ỹ (as shown in (4.1)). Therefore, if
two variables are connected by an arrow, this only shows that the model contains
a function having one of the variables as its depending variable and the other one
as an argument variable.

Since mathematical functions can be used for many different purposes one
can reasonably ask for their specific meaning when used for the specification
of functional models. Our discussion is based on the idea that they formulate
modeling rules which show how values of the endogenous variables of a model
are determined from values of other variables of the model. One might say that
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the functions express, or characterize, the processes that produce values of the
endogenous variables of a model. Of course, such modeling rules are only valid
for the model and they do not have any implications for processes in the real world.
For example, referring to the model in § 1, it is a valid rule that the bulb gives light
if the battery provides power and the switch is closed. But whether this will also
be true of a real system that one has created by connecting a battery, a bulb, and
a switch, is obviously a quite different question.

4. Functional models as process frames

A functional model can also be viewed as a process frame (see Section 3.1, § 4)
that specifies how, beginning with values of the exogenous variables, values of the
endogenous variables successively are produced. In the graphical presentation of
the model the arrows depict the processes. If the direction of the arrows (functions)
corresponds to a temporal ordering one can speak of a dynamic functional model.
In any case a functional model permits the thinking of repeatable processes.

5. Formal definition of functional models

A functional model M can formally be defined as M = (V,F) with V being a
set of modal variables, and F being a set of functions which connect the variables
in V . A variable can occur in at most one function as a dependent variable; if
it does it is called an endogenous variable, otherwise an exogenous variable. It
is required that each member of V occurs in at least one function, either as an
argument or as a dependent variable. A further requirement is that all argument
variables are effective conditions for the corresponding dependent variables.7

To each functional model M = (V,F) can be associated a directed graph
G(M) = (V,K) with V the set of nodes and K the set of edges. The nodes
correspond to the variables of the model, and if V ,V ′ ∈ V , there is a directed
edge (an arrow) from V to V ′ if F contains a function having V as an argument
variable and V ′ as the dependent variable.

The graph of a functional model shows the structure of the model. These graphs
are always simple graphs without loops. If not explicitly said otherwise, it will be
assumed that the graphs are weakly connected and do not contain cycles. Then, for
example, the following model structures are possible with three variables (ignoring
permutations of variable names)

Z̈ ←− Ẍ −→ Ÿ

Ẍ −→ Ÿ −→ Z̈

Ẍ −→ Ÿ ←− Z̈

Ÿ

Z̈

Ẍ ������

					
�

Since it is possible that different models have the same structure, the following
definition is often helpful: Two models, M = (V,F) and M′ = (V ′,F ′), are
structurally identical if their graphs are isomorphic.
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6. Possible values and equivalent models

The range of a variable specifies its possible values. However, which values are
actually possible also depends on whether two ore more variables are considered
simultaneously. The following notation is helpful: If V is a list of variables defined
in a model M = (V,F) (or a set of variables for which some ordering is given),
BM[V ] denotes the set of possible values of the variables in V within the model
M. For example, referring to the model in § 1,

BM[Ẍ ] = X̃ , BM[Ÿ ] = Ỹ, BM[Z̈] = Z̃

but

BM[Ẍ , Ÿ , Z̈] = {(0,0,0), (0,0,1), (1,0,0), (1,1,1)}
is only a subset of X̃ × Ỹ × Z̃ .

The notion of possible values of sets of variables can be used to define equivalent
models: Two models, M = (V,F) and M′ = (V ′,F ′), are equivalent if BM[V] =
BM′ [V ′]. Equivalence obviously implies a one-to-one mapping from V to V ′; it
is not implied, however, that the models are structurally identical. This is shown,
for example, by the following models:

Ẍ −→ Ÿ −→ Z̈ and Ẍ ←− Ÿ −→ Z̈

Both models will be equivalent if one specifies X̃ := {0,1}, Ỹ := {0,2}, Z̃ := {0,8},
and assumes the functions y = 2x and z = 4y for the first model and the functions
x = 0.5y and z = 4y for the second model.

7. Elementary and derived functions

The definition of a functional model provides for each endogenous variable a
function that shows how values of the variable depend on values of other variables.
These functions (the elements of F) will be called elementary functions. Other
functions can often be derived from the elementary functions. For example, if a
model has the structure

Z̈
fxz−→ Ẍ

fyx−→ Ÿ

one can derive a function fyz : Z̃ −→ Ỹ that concatenates the two elemen-
tary functions: fyz(z) = fyx( fxz(z)). As another example with a somewhat more
complicated structure consider the model

Ẍ

Z̈

Ÿ������� 				


with elementary functions fyxz(x,z) and fzx(x). From these one can derive a function

fyx(x) = fyxz(x, fzx(x)), corresponding to a single arrow from Ẍ to Ÿ , which no longer
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explicitly refers to values of Z̈ . Moreover, the function only has an exogenous
argument variable.

For each endogenous variable of a model, one can always derive a function
which has only exogenous variables as arguments. This leads to the notion of
a reduced model. Beginning with a functional model M = (V,F), the reduced
form of M only contains the exogenous and the ultimate endogenous variables
(variables without a successor) together with the functions derived from the
original model.

8. Set-valued functions

The elementary functions of a model are single-valued functions: these functions
assign to each value of their domain exactly one value of their codomain. It is
sometimes helpful to use instead set-valued functions which assign to each value
of their domain a subset of their codomain. The example from § 1 can serve to
illustrate the notion. Although there is no single-valued function Ÿ −→ (Ẍ , Z̈),
a set-valued function can be used to characterize the relationship:

y = 0 −→ {(0,0), (0,1), (1,0)}
y = 1 −→ {(1,1)}

An extension of the notation introduced in § 6 allows flexible references to set-
valued functions which can be derived from the elementary functions of a model:
BM[Ÿ |Ẍ = x] denotes the set of all values of Ÿ which are possible in the model
M given the condition Ẍ = x. Similarly, several variables can be used before as
well as behind the condition symbol. For example, if M refers to the model in § 1,
then BM[Ẍ , Z̈ |Ÿ = 0] = {(0,0), (0,1), (1,0)}, BM[Ẍ , Z̈ |Ÿ = 1] = {(1,1)}, and the
set-valued function Ÿ −→ (Ẍ , Z̈) can be written as y −→ BM[Ẍ , Z̈ | Ÿ = y].

9. Dependencies between variables

When investigating relationships between variables it is useful to distinguish two
kinds of dependencies. The following definitions refer to a model M = (V,F) and
two variables Ẍ and Ÿ in V: Ÿ depends on Ẍ if BM[Ÿ |Ẍ = x] �= BM[Ÿ |Ẍ = x′]
for some values x,x′ ∈ BM[Ẍ ]. Ÿ functionally depends on Ẍ if Ÿ depends on Ẍ
and there is a directed path leading from Ẍ to Ÿ . In this case it is also said that Ẍ
is an effective condition for Ÿ .

Dependence (in contrast to functional dependence) is in most applications
symmetrical: if Ÿ depends on Ẍ then also Ẍ depends on Ÿ .8 This allows the
definition of a symmetric notion of independence: With respect to some model
M, two variables Ẍ and Ÿ are independent, symbolically denoted by Ẍ⊥ Ÿ , if
neither Ẍ depends on Ÿ nor Ÿ depends on Ẍ . Accordingly, the variables are called
dependent (in a symmetrical sense) if they are not independent. For example, with
respect to the model in § 1, the variables Ẍ and Z̈ are independent, but Ẍ and Ÿ
as well as Z̈ and Ÿ are dependent.
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If two variables are independent it obviously follows that none can be
functionally dependent on the other one. On the other hand, if two variables are
not functionally dependent, it does not follow that they are independent; it is quite
possible that both variables depend on a third one. Note also that from pairwise
independence of three or more variables it does not follow that the variables
are simultaneously independent. For example, if Ẍ⊥ Ÿ and Ẍ ′⊥ Ÿ , one cannot
conclude that (Ẍ , Ẍ ′)⊥ Ÿ .9

A further useful notion is conditional independence. If Ẍ , Ÿ , and Z̈ are variables
of some model M, two versions of this notion can be defined as follows: Ẍ and
Ÿ are independent conditional on Z̈ = z, symbolically denoted by Ẍ⊥ Ÿ |Z̈ = z,
if BM[Ÿ |Ẍ =x, Z̈ =z] = BM[Ÿ |Ẍ =x′, Z̈ =z] for all values x,x′ ∈BM[Ẍ |Z̈ =z].
Ẍ and Ÿ are independent conditional on Z̈ , symbolically denoted by Ẍ⊥ Ÿ |Z̈ , if
Ẍ⊥ Ÿ |Z̈=z for all z∈BM[Z̈]. Referring to the model in § 1 one finds, for example,
Ẍ⊥ Ÿ |Z̈ = 0, but not Ẍ⊥ Ÿ |Z̈ = 1.

Remarkably, conditional independence does not imply independence. As an
illustration consider a model Ẍ ←− Z̈ −→ Ÿ where Ẍ and Ÿ are functionally
dependent on a variable Z̈ . This implies Ẍ⊥ Ÿ |Z̈ , but not Ẍ⊥ Ÿ .10 Conversely,
as shown by the example in footnote 9, Ẍ⊥ Ÿ does not imply Ẍ⊥ Ÿ | Z̈ .

10. Predictions and effective conditions

If two variables of a model M, say Ẍ and Ÿ , are dependent, each variable can be
used to predict values of the other one. Two forms can be distinguished: Given
Ẍ = x, Ÿ can be uniquely predicted if the set BM[Ÿ |Ẍ = x] contains a single
element. Given Ẍ =x, Ÿ can be indeterminately predicted if the set BM[Ÿ |Ẍ =x]
contains two or more elements but is a proper subset of BM[Ÿ ].

Using these definitions, predicting values of a variable Ÿ from the knowledge
of the value of a variable Ẍ does not require that Ÿ functionally depends on Ẍ .
For example, referring to the model in § 1, given Ÿ = 1 one can uniquely predict
values of Ẍ and Z̈ ; but, of course, Ÿ is an effective condition neither for Ẍ nor
for Z̈ .

11. Multidimensional variables and constraints

Variables of a functional model can be multi-dimensional. For example, one
can assume that a variable Ẍ consists of m components, having the form Ẍ =
(Ẍ1, . . . , Ẍm). In the same way one can combine already defined variables into a
single multi-dimensional variable; for example, given variables Ẍ and Ÿ with
ranges X̃ and Ỹ , respectively, they can be combined into a two-dimensional
variable (Ẍ , Ÿ ) with the range X̃ × Ỹ .

Multi-dimensional variables are particularly useful in the definition of con-
straints on their ranges. For example, if Ẍ and Ÿ are two variables with ranges
X̃ = Ỹ = {1, . . . ,5}, it might be required to restrict the possible joint range by the
constraint x + y ≤ 5. The variables are then dependent, but their dependency
cannot be expressed by functions.11 However, the condition that creates the
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dependency can easily be captured by referring to the two-dimensional variable
(Ẍ , Ÿ ) and specifying the range by {(x,y) ∈ X̃ × Ỹ |x + y ≤ 5}.

It is evident that constraints can also be defined for two or more exogenous
variables of a model. This has the important implication that exogenous variables
are independent only if no constraints exist. Of course, they are never functionally
dependent because only endogenous variables of a model can functionally depend
on other variables.

12. Conditions for independence

The possible existence of constraints is of particular importance for the question
whether dependent variables can be made independent by proper conditions. This
is always possible in deterministic models without constraints: If Ẍ and Ÿ are
two dependent variables (by assumption also endogenous and not functionally
dependent), and the set of preceding variables (variables from which a directed
path leads to Ẍ or Ÿ ) consists of Z̈1, . . . , Z̈m, the conditional independence
Ẍ⊥ Ÿ | Z̈1, . . . , Z̈m will always be true.

This statement, sometimes called the deterministic Markov condition, is not
generally true if there are constraints. It is quite possible, then, that no variables
exist that can be used as conditions in order to make Ẍ and Ÿ conditionally
independent. Of course, one can always construct a variable Z̈ such that
Ẍ⊥ Ÿ | Z̈ .12 But this is then a fictitious variable not contained in the actual model.

The argument implies a qualification for what has been called the principle of
common dependence: If two variables of a functional model M, say Ẍ and Ÿ ,
are dependent, then either Ẍ is functionally dependent on Ÿ , or Ÿ is functionally
dependent on Ẍ , or there exists a further variable Z̈ such that both Ẍ and Ÿ are
functionally dependent on Z̈ and Ẍ⊥ Ÿ | Z̈ . While it is always possible to construct
such a variable Z̈ , if a model contains constraints it is not guaranteed that such a
variable exists as part of the model.

4.2 Models with stochastic variables

This section deals with functional models which contain not only deterministic
variables, denoted Ẍ , Ÿ , and so on, but also stochastic variables that will be
distinguished from deterministic variables by a single dot, e.g. Ẋ , Ẏ , and so on.

1. Deterministic and stochastic functions

If a functional model contains not only deterministic but also stochastic variables
two kinds of functions must be distinguished:

(a) Deterministic functions which can connect deterministic variables Ẍ and
Ÿ , or stochastic variables Ẋ and Ẏ , in the following way: Ẍ −→ Ÿ or
Ẋ −→ Ẏ . In both cases the deterministic function assigns to each element
in X̃ , the range of Ẍ or Ẋ , exactly one element in Ỹ , the range of Ÿ or Ẏ .13
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In the second case one can derive the distribution of Ẏ from the distribution
of Ẋ .14

(b) Stochastic functions which can connect variables in the following way:
Ẍ −→→ Ẏ or Ẋ −→→ Ẏ . In both cases the stochastic function assigns to each
element in X̃ , the range of Ẍ or Ẋ , a conditional distribution, Pr[Ẏ |Ẍ =x] or
Pr[Ẏ |Ẋ =x], respectively.15

Because these are different kinds of functions they are distinguished also
graphically: −→ is used for deterministic functions and −→→ is used for stochastic
functions.

2. A simple example

A simple model for a toaster can serve to illustrate the notion of a stochastic
function. There are two variables. The deterministic variable Ẍ , with range X̃ ,
records the position of a lever that can be used to adjust the toasting duration,
and the stochastic variable Ẏ , with range Ỹ , records the realized toasting duration.
A stochastic function Ẍ −→→ Ẏ connects the two variables and provides, for each
value x ∈ X̃ , a conditional distribution Pr[Ẏ |Ẍ = x]. The function shows how the
distribution of toasting durations depends on the position of the lever. Of course,
it might suffice to consider a function x −→ E(Ẏ |Ẍ = x) if one is interested only
in mean toasting durations.

3. Dependent and independent variables

If stochastic variables are involved dependency relations can be defined in two
different ways. The following definitions refer to a model M = (V,F) and two
variables Ẍ and Ẏ (analogous definitions apply if a stochastic variable Ẋ is used
instead of the deterministic variable Ẍ ).

• One can apply the definitions of § 9 in Section 4.1, in particular: Ẍ and Ẏ are
independent, symbolically denoted by Ẍ⊥ Ẏ , if BM[Ẏ |Ẍ = x] = BM[Ẏ |Ẍ =
x′] for all values x,x′ ∈ BM[Ẍ ]; otherwise the variables are dependent.

• One can exploit the fact that at least one of the variables is stochastic
and use the following definition: Ẍ and Ẏ are stochastically independent,
symbolically denoted by Ẍ⊥⊥ Ẏ , if Pr[Ẏ |Ẍ = x] = Pr[Ẏ |Ẍ = x′] for all
values x,x′ ∈ BM[Ẍ ]; otherwise the variables are stochastically dependent.16

Stochastic independence can be defined equivalently in the following way:

For all (x,y) ∈ BM[Ẍ , Ẏ ]: Pr(Ẏ = y | Ẍ = x) = Pr(Ẏ = y)

and, if both variables are stochastic:

For all (x,y) ∈ BM[Ẋ , Ẏ ]: Pr(Ẏ = y, Ẋ = x) = Pr(Ẏ = y)Pr(Ẋ = x)
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Both notions of dependence and independence are symmetric,17 and the fol-
lowing statements can be derived: If two variables are dependent they are also
stochastically dependent; and conversely: if they are stochastically independent
they are also independent. It is quite possible, however, that two independent
variables are stochastically dependent. As in the deterministic case, a conditional
independence Ẋ ⊥⊥ Ẏ |Ż does not imply the simple independence Ẋ ⊥⊥ Ẏ , and vice
versa; and pairwise stochastic independence of three or more variables does not
imply simultaneous stochastic independence of the variables.

4. Notations for stochastic models

The notation M = (V,F), introduced in Section 4.1 for deterministic models, can
also be used for stochastic models. The specification of V must then distinguish
between deterministic and stochastic variables, and the specification of F must
distinguish between deterministic and stochastic functions. It will be assumed
that a stochastic model contains at least one endogenous stochastic variable. This
implies that there is also at least one stochastic function.

Exogenous variables can be deterministic or stochastic. If a model contains
exogenous stochastic variables assumptions about their distributions are taken
as being a part of the model specification. Of course, if there are two or more
exogenous stochastic variables their common distribution must be specified. It
will furthermore be assumed that there are no constraints connecting stochastic
and deterministic exogenous variables. This implies that stochastic exogenous
variables are always stochastically independent of deterministic exogenous
variables.18

Like deterministic models, stochastic models can be represented by directed
graphs. Each node refers to a deterministic or stochastic variable, and each edge
refers to a deterministic (−→) or stochastic (−→→) function (of course, edges
belonging to the same function are of the same form). So one can again use the
following definition: Two models M = (V,F) and M′ = (V ′,F ′) are structurally
identical if their graphs are isomorphic.

5. Closed stochastic models

The general definition of § 4 permits stochastic models in which all exogenous
(and consequently all endogenous) variables are stochastic. Such models will be
called closed stochastic models. A simple example is

Ẋ −→→ Ẏ

In closed stochastic models, the joint distribution of all variables can be derived
easily:

Pr(Ẋ = x, Ẏ = y) = Pr(Ẏ = y | Ẋ = x)Pr(Ẋ = x)
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In particular, the joint distribution of all endogenous variables of the model is just
the marginal distribution of these variables; in the example:

Pr(Ẏ = y) = ∑
x Pr(Ẋ = x, Ẏ = y)

Authors who discuss stochastic models very often use closed models right from the
beginning and (consequently) presuppose the existence of a common distribution
of all variables defined in the model.19 This is possibly due to a widespread belief
that stochastic models are to be understood as (sampling) models of statistical data.
However, there is no direct relationship between functional models and statistical
data (this will be further discussed in Chapter 6). In fact, as will be argued in
Section 4.3, there is no reason why stochastic exogenous variables should be
required in the definition of analytical functional models.

6. Concatenation of functions

Functions along a directed path between variables can be concatenated. With three
variables, the following elementary forms are possible:

(1) Ż
g−→ Ẋ

f−→ Ẏ . The concatenation is y = f (g(z)).

(2) Ż
g−→ Ẋ −→→ Ẏ . The concatenation is

z −→ Pr[Ẏ | Ż = z] = Pr[Ẏ | Ẋ = g(z)]

(3) Ż −→→ Ẋ
f−→ Ẏ . The concatenation is

z −→ Pr(Ẏ = y | Ż = z) = ∑
x∈f −1({y}) Pr(Ẋ = x | Ż = z)

(4) Ż −→→ Ẋ −→→ Ẏ . A stochastic function that directly connects Ż and Ẏ has the
form:

z −→ Pr(Ẏ = y | Ż = z) = ∑
x∈X̃ Pr(Ẏ = y, Ẋ = x | Ż = z) =∑

x∈X̃ Pr(Ẏ = y | Ẋ = x, Ż = z)Pr(Ẋ = x | Ż = z)

One might ask whether Ẏ and Ż are stochastically independent conditional on Ẋ .
While this is not, in general, true if the three variables have an arbitrary common
distribution, it can safely be assumed for the model structures shown above. In
the first three cases the independence can directly be proved. In the last case it
follows from the omission of an arrow leading from Ż to Ẏ . This also allows the
simplification of the stochastic function:

z −→ Pr[Ẏ |Ż = z] = ∑
x∈X̃ Pr[Ẏ |Ẋ = x]Pr(Ẋ = x|Ż = z)
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7. Stochastically equivalent models

Although the definition of equivalent models introduced in Section 4.1 (§ 6) is
applicable to stochastic models as well it is rarely useful. A stochastic version
of equivalence is often more appropriate. This version is based on the notion of
a reduced model already defined for deterministic models in § 7 of Section 4.1.
The definition for a stochastic model M = (V,F) proceeds in two steps: First
one eliminates all intermediate variables leading to a model that only contains
exogenous and ultimate endogenous variables. Then, if present, one also eliminates
stochastic exogenous variables. This can be done by mixing the previously derived
functions with the distributions of the stochastic exogenous variables (which are
known as part of the model specification). The final result is a reduced model of
the form Ẍ −→→ Ẏ where Ẍ refers to all deterministic exogenous variables and Ẏ
refers to all ultimate endogenous variables.20

This notion of a reduced model can now be used for the following definition
of stochastic equivalence: Two stochastic models are stochastically equivalent
if their reduced models are identical. The definition implies that each model is,
in particular, stochastically equivalent with its reduced model. A model of the
form Ẍ −→ Ẏ ←− Ż can serve as an example. The reduced form is Ẍ −→→ Ẏ .
Although the models are formally and structurally different they are stochastically
equivalent.

8. Direct and indirect predictions

Let M = (V,F) denote a deterministic model. All elementary functions (the
elements of F) and also all functions which can be recursively derived by
concatenations will be called direct prediction functions. For example, the model

Ẍ −→ Ÿ ←− Z̈ ←− V̈ (4.2)

allows consideration of three direct prediction functions: two elementary func-
tions, and a derived function for Ÿ with arguments Ẍ and V̈ . In contrast, functions
which can be used for unique or indeterminate predictions will be called indirect
prediction functions if they cannot be derived by concatenating elementary
functions.

As was discussed in Section 4.1, these functions must often be formulated as
set-valued functions. For example, referring to (4.2), one could define a set-valued
function v −→ BM[Ẍ |V̈ =v] that connects the variables V̈ and Ẍ , and this would
be an indirect prediction function if BM[Ẍ |V̈ =v] is a proper subset of BM[Ẍ ]
for at least one value v.

An analogous distinction between direct and indirect prediction functions is pos-
sible for stochastic models. As an example that parallels (4.2) consider the model

Ẍ −→→ Ẏ ←←− Ż ←←− V̈

There are again three direct, now stochastic prediction functions; and it would
also be possible to construct set-valued functions. However, set-valued functions
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derived from stochastic models are rarely useful for predictions. We therefore
briefly consider the question how stochastic versions of indirect prediction
functions might be constructed.

9. Inversion of stochastic functions

Consider as an example the stochastic function Ẋ −→→ Ẏ . Without further
preconditions it will not be possible to derive a stochastic function Ẏ −→→ Ẋ
which would allow the use of values of Ẏ to predict conditional distributions of
Ẋ . The specification of Pr[Ẋ ], the marginal distribution of Ẋ , is needed. Given
the distribution of Ẋ , the joint distribution of Ẋ and Ẏ is

Pr(Ẋ = x, Ẏ = y) = Pr(Ẏ = y | Ẋ = x)Pr(Ẋ = x)

from which the stochastic function Ẏ −→→ Ẋ could be derived.
Except for the special (and problematic) case of closed models, marginal

distributions cannot be derived from the original model. The crucial question
therefore is how one can find, and justify, enlarged models. A simple example can
serve to illustrate the problem. The model is Ẍ −→→ Ẏ with binary variables as
follows: Ẍ = 1 if a patient was given a particular therapy, Ẍ = 0 otherwise, and
Ẏ = 1 if there were a successful recovery and Ẏ = 0 otherwise. The stochastic
function is given by

Pr(Ẏ = 1 | Ẍ = 0) = 0.2 and Pr(Ẏ = 1 | Ẍ = 1) = 0.7

Now consider an indirect prediction problem: Knowing that the recovery was
successful, how can one predict whether the therapy was applied or not?
Obviously, neither a unique nor an indeterminate (set-valued) prediction is
possible.

This may motivate a probabilistic approach. The formal requirement is to
substitute the deterministic variable Ẍ by a stochastic variable Ẋ (having the same
range). This allows one to consider a different version of the indirect prediction
problem: Given knowledge about a value of Ẏ , what is the conditional distribution
of Ẋ ? For the example assume that one knows Ẏ = 1. This is, however, insufficient
to compute a conditional distribution of Ẋ , one also needs an assumption about
the unconditional distribution of Ẋ . For example, the assumption could be that
both possibilities have equal probability: Pr(Ẋ = 1) = 0.5. Using this information
about the distribution of Ẋ together with the value of Ẏ it is possible to calculate
the common distribution:

Pr(Ẋ = x, Ẏ = y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0.8 · 0.5 = 0.40 if x = 0 and y = 0

0.2 · 0.5 = 0.10 if x = 0 and y = 1

0.3 · 0.5 = 0.15 if x = 1 and y = 0

0.7 · 0.5 = 0.35 if x = 1 and y = 1
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Figure 4.1 The graph shows how Pr(Ẋ = 1 | Ẏ = 1), given on the Y -axis, depends on
assumptions about Pr(Ẋ =1), given on the X -axis.

and one can derive the following answer to the prediction problem:

Pr(Ẋ = 1 | Ẏ = 1) = 0.35/0.45 ≈ 0.78

Of course, as illustrated in Figure 4.1, the answer depends heavily on the
unconditional distribution of Ẋ .

4.3 Exogenous and unobserved variables

1. Stochastic exogenous variables?

A main task of functional models is to show how endogenous variables (values
of deterministic or distributions of stochastic endogenous variables) depend on
values of exogenous variables. The exogenous variables can be deterministic or
stochastic. However, if exogenous variables are stochastic their distributions are
actually irrelevant. Consider the following example:

(4.3)(a) Ẏ
Ẍ

Z̈

�����
�����
������
������ (b) Ẏ

Ẍ

Ż

�����
�����
������
������

The only difference is that version (a) uses a deterministic variable Z̈ and version
(b) uses a stochastic variable Ż instead. The stochastic functions that connect the
variables are in both versions identical:

(x,z) −→ Pr[Ẏ | Ẍ = x, Z̈ = z] = Pr[Ẏ | Ẍ = x, Ż = z]
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The distribution of Ż which must be assumed for version (b) is obviously irrelevant
for this function.

Consequently, if the goal is to learn about dependencies on values of exogenous
variables it is reasonable to use deterministic variables that allow assumptions
about their values. On the other hand, using stochastic exogenous variables seems
sensible just in those cases where assumptions about specific values cannot be
justified. Instead, one assumes distributions and this allows the elimination of
variables in the stochastic functions of the model. For example, in version (b), one
can derive the function

x −→ Pr[Ẏ |Ẍ = x] = ∑
z∈Z̃ Pr[Ẏ |Ẍ = x, Ż = z]Pr(Ż = z)

in which the dependence on Ż no longer occurs.
However, if stochastic exogenous variables can be eliminated, and eventually

must be eliminated in order to use a model for conditional predictions, why
introduce such variables at all? A widespread idea is that such variables can
be used to represent “unobserved variables.” It is difficult, however, to give a
clear meaning to this idea. Below, it will be suggested that this is only possible
for explicitly defined unobserved variables. To prepare the discussion, the next
paragraph briefly considers pseudo-indeterministic models which are widespread
in the literature.

2. Pseudo-indeterministic models

Consider a simple stochastic model

Ẍ −→→ Ẏ (4.4)

Instead, one can also consider a model of the form

Ẍ −→ Ẏ ←− Ż (4.5)

which is stochastically equivalent to (4.4).21 Both versions of the model suggest
different interpretations. Version (4.4) requires a stochastic interpretation: the
model shows how the distribution of Ẏ depends on values of the exogenous
variable Ẍ . Version (4.5), on the other hand, seems to allow a deterministic
interpretation. In fact, this model presupposes a deterministic function y = f (x,z)
by which Ẍ and Ż generate specific values of Ẏ . Models having the form (4.5) are
therefore often called pseudo-indeterministic models.22

In the literature most discussions of functional models start from pseudo-
indeterministic models. The most prominent examples are regression models of
the form

Ẏ = g(Ẍ ) + Ż (4.6)
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with a deterministic function g. Such models often serve as the starting point for
more complex definitions, including all kinds of structural equations models.23

The crucial questions are in all cases the same: What meaning can be given to
exogenous stochastic variables and their distributions? Can they be interpreted
as “unobserved variables”? How can assumptions about their distributions be
justified?24

3. Defined unobserved variables

The expression ‘unobserved variables’ can be used in two different ways. The
expression may refer to explicitly defined variables for which data are missing;
if this is meant we speak of defined unobserved variables. The expression might
as well refer to stochastic exogenous variables of a pseudo-indeterministic model
interpreted as “unknown factors.”

No problems arise if defined unobserved variables are used for the definition of
a functional model. With respect to the definition of a model there is actually no
difference between observed and unobserved variables. The fact that no data are
available for some variables only complicates the estimation of model parameters
and, of course, may also restrict the applicability of a model. As an illustration,
consider the model

Ẍ −→→ Ẏ ←←− Z̈ (4.7)

Ẏ refers to a child’s educational success (0 or 1), and Ẍ records the school type
(1 or 2). In addition there is an unobserved variable Z̈ for the parents’ educational
level (0 or 1). The model states the hypothesis that the child’s educational success
depends on the school type and on the parents’ educational level.

Whether variables are observed or unobserved obviously is of no importance
for the definition of a model. In particular, there is no reason to treat unobserved
exogenous variables as stochastic variables. This is only required if estimates of
model parameters are used for predictions.

If data are only available for Ẍ and Ẏ it is not possible to estimate (4.7); rather,
only a model of the form (4.4) can be estimated. This also provides a reason for
substituting the deterministic variable Z̈ by a stochastic variable Ż : The assumption
of a distribution for Ż allows one to think of (4.4) as being a reduced form of the
original model (4.7). Of course, a distributional assumption is no substitute for
missing data; the assumption nevertheless permits a conceptual clarification of the
relationship between the model that can be estimated with the available data and
the model that formulates the theoretical hypothesis. In the example, the theoretical
model suggests that the relationship between school type and educational success,
as it is found in the available data, also depends on an unknown distribution of
parents’ educational levels. Note that this formulation requires the notion of a sta-
tistical distribution which presupposes a specified population. On the other hand,
being part of a functional model, the variable Ż does not refer to any specific pop-
ulation and its distribution is conceptually different from a statistical distribution.
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4. Endogenous unobserved variables

Defined unobserved variables can also occur as endogenous variables of a model.
To illustrate, the example of the previous paragraph is modified in the following
way:

(4.8)Ẏ

Ẋ

Z̈ ������

					


������

					
��

In addition to the hypothesis that the child’s educational success depends on
the school type and on the parents’ educational level, there is now the further
hypothesis that the selection of a school type depends on the parents’ educational
level.

Now assume that Ẋ is an unobserved variable and data are available only for
the parent’s educational level, Z̈ , and the child’s educational success, Ẏ . Again,
the data only allows the estimation of a reduced model, Z̈ −→→ Ẏ, corresponding
to the stochastic function

z −→ Pr[Ẏ |Z̈ = z] = ∑
x Pr[Ẏ |Z̈ = z, Ẋ = x]Pr(Ẋ = x|Z̈ = z)

However, no assumption about the distribution of Ẋ is required. The reduced
model can be derived from the original model without any additional assumptions.

5. Assumptions about distributions

The examples have shown that there is an important difference between exogenous
and endogenous stochastic variables. Exogenous stochastic variables require
assumptions about their distributions; in contrast, one neither directly nor
indirectly makes assumptions about endogenous stochastic variables, instead, one
specifies stochastic functions which show how distributions of these variables
depend on values of other variables. Consequently, only conditional distributions
are needed, but these are part of the model’s definition.

Consider, for example, the variable Ẋ in model (4.8) which refers to the school
type. Although it is a stochastic variable it is not possible to derive, or even to
think of, just one distribution of this variable. The model only shows how the
distribution of Ẋ depends on values of an exogenous variable Z̈ , but makes no
assumptions about these values. There also is no immediate relationship between
the stochastic variable Ẋ and a statistical variable X which records the distribution
of children’s school types in some specified population. A functional model does
not relate to any population, and its deterministic as well as stochastic variables
are conceptually different from statistical variables.

Since exogenous stochastic variables require assumptions about their distribu-
tions, the question arises what meanings can be given to these distributions, and
how it might be possible to justify assumptions. Possible answers depend on the
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reasons for using stochastic exogenous variables in the formulation of a functional
model. As argued earlier, since these models are intended to show how endogenous
variables depend on values of exogenous variables, stochastic exogenous variables
are only reasonable if corresponding data are missing and it is therefore necessary
to employ a reduced model.

Further considerations depend on whether the problem of missing data occurs
when estimating a model or when using a model for predictions. In the first case
one often needs assumptions about distributions of unobserved variables already
for the formulation of model parameterizations that can be estimated with the
available data. The second case is somewhat different. The model (4.7) can serve
as an example. Assume that this model is to be used in order to predict, for
some specific child (or some collection of children), how its educational success
depends on the school type. If information about the parents’ educational level
were available the model could be applied immediately. If such information is
not available one can either confine oneself to conditional statements, or one can
presuppose a subjective probability distribution for the unobserved variable and
then derive subjective expectations.

6. Interpretation of residuals

As was argued previously, no conceptual problems arise from defined unobserved
variables. In contrast, stochastic exogenous variables, as used in the formulation
of pseudo-indeterministic models, create conceptual problems already from the
beginning. Consider, for example, the model (4.5). In order to justify the existence
of a deterministic function y = f (x,z) one would need to assume that the stochastic
variable Ż captures all conditions, except Ẍ , on which values of Ẏ depend. It is
therefore impossible to give this variable any empirically explicable meaning.

At first sight, it might seem possible to set up a model of the form

Ẍ −→ Ẏ ←− (Ż1, . . . , Żm) (4.9)

with variables Ż1, . . . , Żm intended to represent all conditions which are possibly
relevant in addition to Ẍ . However, since no one can know all possibly relevant
conditions, it is impossible to formulate such a model explicitly. But even if that
would be possible the question still remains how to define a function

φ : Z̃1 ×·· ·× Z̃m −→ Z̃

that maps the variables Ż1, . . . , Żm into a single variable Ż , and how to justify a
distributional assumption about Ż .

It is remarkable that such questions are never considered when pseudo-
indeterministic models are used. Instead, Ż is interpreted as a residual that, in some
sense, comprises all conditions which are not explicitly defined in the model. But
then, analogously to defined unobserved variables, there is no immediate reason to
use a stochastic variable Ż ; instead one should begin with a deterministic variable
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Z̈ and consequently with a model of the form Ẍ −→ Ÿ ←− Z̈ . Only the intention
to use a reduced model instead might then provide a reason for substituting Z̈ by
a stochastic variable Ż . However, the reduced model is then of the form (4.4), and
Ż no longer occurs.

This consideration also allows clarification of the question whether one can
assume that the residuals (i.e. the stochastic exogenous variables) of a pseudo-
indeterministic model are stochastically independent of its explicitly defined
exogenous variables; in the example, whether Ż is stochastically independent
of Ẍ .25 In a sense, the question has no point because it vanishes as soon as
one considers a stochastically equivalent reduced model.26 Of course, beginning
with model (4.5), it would be possible to assume that Ż might be stochastically
dependent on Ẍ . But then results a new model that has the following form:

(4.10)Ẏ

Ż

Ẍ ������

					
��

Ż then becomes an endogenous variable, and the model is no longer pseudo-
indeterministic. In fact, the resulting model only has a single deterministic
exogenous variable. Assuming that residuals might be stochastically dependent on
explicitly defined exogenous variables therefore implies the presupposition that a
pseudo-indeterministic model would not be adequate.
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5.1 Functional causes and conditions
1. Deterministic models
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This chapter discusses notions of “causal relationships” in the framework of
functional models. The leading idea is to distinguish between values of variables
that can be viewed as conditions of values of other variables and changes of values
of variables that can be viewed as causes of changes of values of other variables.
Since the definitions relate to functional models this approach is termed functional
causality. It provides a formal framework within which further distinctions (in
particular between comparative and dynamic conceptions) can be discussed.

The chapter contains three sections. The first section discusses definitions of
functional causality for deterministic and stochastic models. It is stressed that the
definitions relate to models and not immediately to the empirical world, and some
implications and restrictions due to this fact are considered. The second section
deals with an approach, currently widespread in the statistical literature, that tries
to define a notion of causality in terms of counterfactual (statistical or stochastic)
variables. The third section is concerned with the idea that it should be possible
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to isolate causes and attribute to them specific effects. It is argued that this is
not always possible, resulting in some limitations for the applicability of causal
ideas.

5.1 Functional causes and conditions

1. Deterministic models

LetM= (V,F) denote a deterministic functional model and Ẍ and Ÿ two variables
in V . The goal is to explicate what is meant when saying that a change �(x′,x′′)
in variable Ẍ is a functional cause of a change �(y′,y′′) in the variable Ÿ .1

A covariate context of a variable Ẍ having the value Ẍ = x with respect to a
variable Ÿ (which is functionally dependent on Ẍ ) consists of a variable Z̈ ∈ V
such that, if Z̈ takes the value z, the value of Ÿ can be uniquely determined from
the knowledge of Ẍ = x and Z̈ = z.2 Of course, it might be possible to derive a
unique value of Ÿ already from a knowledge of Ẍ = x alone. With the help of this
notion a deterministic version of functional causality can be defined:

A change �(x′,x′′) in the variable Ẍ in the covariate context Z̈ = z is a
functional cause of a change �(y′,y′′) in the variable Ÿ if Ÿ is functionally
dependent on Ẍ , Ÿ = y′ can be derived from Ẍ = x′ and Z̈ = z, and Ÿ = y′′
can be derived from Ẍ = x′′ and Z̈ = z. If these derivations do not depend on a
covariate context, �(x′,x′′) is called a context-independent functional cause
of �(y′,y′′).

Correspondingly, �(y′,y′′) is called a functional effect of its (context-dependent or
-independent) functional cause. The following remarks may clarify the definitions.

(a) Statements about functional causes and effects always relate to a functional
model. These notions can therefore not be used for statements which directly
refer to the empirical world. This is also important for an understanding of
formulations which refer to changes of values of a variable. Such changes as,
for example, a change �(x′,x′′) in a variable Ẍ , result from assumptions, or
some other kind of mental operation, which a person performs in the context
of a model.

(b) Functional causality connects changes of the values of variables.3 Following
the suggested definition, neither variables nor values of variables can be
viewed as causes.4 It is often possible, however, to think of values of a variable
as being functional conditions of values of some other variable.5 Referring to
the example discussed in § 1 of Section 4.1, one can reasonably say that the
switch’s being closed (Ẍ =1) is a functional condition for the bulb’s giving
light (Ÿ =1). However, only a change like closing the switch (�(0,1) in the
variable Ẍ ) can possibly (in the covariate context Z̈ =1, that is, if the battery
provides power) be called a functional cause of another change (�(0,1) in
the variable Ÿ ).6



58 Functional causality

(c) While the idea of restricting functional causes to changes and to distinguish
them from conditions is of fundamental importance, it is unfortunately also
a source of potential confusions. This is due to the fact that a substantial
notion of change cannot readily be formulated with an abstract functional
model. Instead, it is often only possible to compare different functional
conditions.7

(d) Functional causality is in most cases context-dependent: Whether, and how,
a change �(x′,x′′) is a functional cause of a change �(y′,y′′) most often also
depends on values of further variables. For example, closing the switch is only
a cause for the bulb’s giving light if the battery provides power. This is in
accordance with the fact, stressed in Section 4.1 (§ 3), that the dependencies in
a functional model are given by functions which often have several arguments.
The arrows used in the graphical illustrations of these functions can therefore
not, in general, be associated with specific causal relations.

(e) In order for a change �(x′,x′′) in a variable Ẍ to be a functional cause of
a change in the values of another variable Ÿ , the change �(x′,x′′) must be
possible without a simultaneous change in the values of other variables on
which Ÿ depends. This is not always true if Ẍ is an endogenous variable or
if there are constraints for the covariation of Ẍ and some other variables.
Further restrictions can result from context-dependencies because it must be
possible, then, to have the same covariate context Z̈ = z both with Ẍ = x′ and
Ẍ = x′′. Restrictions result if Z̈ depends on Ẍ ; there is then no effect which
can be uniquely attributed to the change �(x′,x′′). (Such problems will be
further discussed in Section 5.3.)

(f) Since functional models do not require a temporal interpretation of their
functions the definition proposed above does not require that a cause precedes
its effects in time. It is quite possible, however, to add this demand when
dealing with dynamic models that can be viewed as process frames based on
a time axis.

The idea to distinguish between causes and conditions allows for a better
understanding of the often made statement that events result, in most cases, from
a multitude of causes.8 It is, of course, always possible to think of any number of
conditions on which the occurrence of an event depends; however, the intention
of causal statements normally is to learn about one, or a few, causes which under
given conditions led to the event. It is mainly for this reason that the notion of
cause requires that context conditions can be held constant.

2. Definitions for stochastic models

The definitions of functional causality in stochastic models must take into account
the type of function. If two stochastic variables are connected by a deterministic
function, for example Ẋ −→ Ẏ (where further variables may be added to provide
a covariate context), one can directly apply the definition of § 1. A different
definition is required if the possible effects relate to an endogenous stochastic



5.1 Functional causes and conditions 59

variable Ẏ whose dependency on other variables is specified by a stochastic
function.

To begin with, consider a simple model having the form Ẍ −→→ Ẏ , for example
(as in § 2 of Section 4.2), a toaster where Ẍ and Ẏ record, respectively, the position
of a lever and the toasting duration. A change �(x′,x′′) is then associated, not with
a single change in Ẏ , but with two conditional distributions: Pr[Ẏ |Ẍ = x′] and
Pr[Ẏ |Ẍ = x′′]. There are, therefore, different possibilities to define causal effects
of a change �(x′,x′′). Because there is no context-dependence in this example, it
would be possible to use a difference of expected values:

E(Ẏ |Ẍ = x′′) − E(Ẏ |Ẍ = x′)

However, depending on the application, different definitions can be useful and
therefore the general notation �s(Ẏ ;x′,x′′) will be used to denote a stochastic
effect which is in some way defined with respect to a stochastic variable Ẏ and
a change �(x′,x′′) of another variable.

Using this general notation, and adopting accordingly the meaning of covariate
context from § 1, functional causes of stochastic effects can be defined in the
following way (it is assumed that the variables used in the definitions are defined
for some stochastic model M = (V,F)):

A change �(x′,x′′) in the variable Ẍ in the covariate context Z̈ = z is a
functional cause of a stochastic effect �s(Ẏ ;x′,x′′) if a directed path leads
from Ẍ to Ẏ , and the stochastic effect can be determined from the conditional
distributions Pr[Ẏ |Ẍ =x′, Z̈ =z] and Pr[Ẏ |Ẍ =x′′, Z̈ =z]. �(x′,x′′) is called a
context-independent functional cause of the stochastic effect if its derivation
only requires the conditional distributions Pr[Ẏ |Ẍ = x′] and Pr[Ẏ |Ẍ = x′′].
(Both definitions can be used accordingly if Ẍ and/or Z̈ are stochastic.)

The comments (a)–(f) of § 1 apply accordingly to stochastic effects. It should
be stressed, again, that functional causes are defined as changes �(x′,x′′).9 It is
also important that stochastic effects are most often context-dependent. It is quite
possible, for example, that a change �(x′,x′′) in one covariate context increases
the probability of an event while it decreases the probability in another covariate
context. Context-independent definitions of probabilistic causality, while often
attempted, are thus difficult to justify.10 In particular, it seems not reasonable to
require by definition that a cause always increases (in all possible contexts) the
probability of an event.11

3. True and spurious causes?

In discussions of probabilistic causality it is often deemed necessary to distinguish
between true and spurious causes. The idea is that a supposed cause of some effect
is spurious if it becomes superfluous for an explanation of the effect when further
conditions are taken into account.12 However, the distinction cannot reasonably
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be applied if one uses the definition of functional causes proposed in § 2. Given the
necessary context, a functional cause is always a “true” cause. Of course, whether
a change �(x′,x′′) is a functional cause of some stochastic effect �s(Ẏ ;x′,x′′) also
depends on the assumed model. However, this is actually a truism since functional
causal statements always relate to a model.

4. Singular and generic causal statements

Singular causal statements refer to specific situations which can be identified
in the empirical world; for example: The stone’s impact on the window-pane
was the cause of its break. Causal statements of this kind presuppose the
reference to a situation that allows the speaking of specific events. Generic
causal statements, on the other hand, refer to event types (or, more abstract,
to changes in the values of variables); for example: a window-pane probably
breaks if hit by a stone. This is a general statement that does not refer to any
specific events occurring in an empirically identifiable situation. Obviously, the
definitions of functional causes and effects proposed above lead to generic causal
statements.

Generic causal statements do not directly refer to (aspects of ) the empirical
world, but to models. On the other hand, singular causal statements refer to real
world situations. A singular causal statement presupposes a real world context in
which not just the events referred to in the causal statement can be empirically
identified, but any number of additional aspects of the situation can also be
identified if that would be necessary in order to explicate the statement.

The situation is quite different with generic causal statements. Since they do
not relate to any specific situation in the empirical world, there is no chance to add
(empirical) references if that would be required for an explication. Instead, the
context on which the statement’s meaning and validity depend must be provided
in a general way, that is, in the framework of a model, as conditions that can be
specified by values of variables. Since only very few conditions can be explicitly
stated in a model, the meaning as well as the validity of generic causal statements
always remain confined to a model and cannot without qualifications be applied to
the empirical world. In particular, it is not possible to derive (in any valid sense)
singular from generic causal statements. This does not, of course, exclude the
possibility of using generic causal statements as arguments in the reasoning about
singular causal questions.

5. Retrospective and prospective questions

A further distinction concerns the kind of question to which causal statements
answer. Retrospective questions ask how (by which causes) some fact came into
being. The question presupposes that the fact, to be explained, already happened
and can be empirically identified; the question only concerns whether, and how,
a causal explanation can be given. Prospective questions, on the other hand,
ask for the possible effects of some cause. Questions of this kind presuppose,
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hypothetically or as a matter of fact, the realization of some cause and ask what
effects will probably result.

It has been suggested that only prospective causal questions can be answered
unambiguously.13 However, as will be shown in Section 5.3, prospective questions
do not always permit an unambiguous answer. On the other hand, retrospective
questions can often be answered within a presupposed model. For example, given
the model mentioned in § 1 of Section 4.1, if one knows that the battery provides
power, the only possible cause for the bulb’s ceasing to provide light is that the
switch has been turned off. Of course, in many cases one can imagine several
different causes which might have brought about a fact (to be explained) and it is
then impossible to give an unambiguous explanation.

6. Dynamic and comparative causes

The definitions of functional causes given at the beginning of this section provide
a formal framework compatible with substantially different notions of cause.
In particular, the framework covers both dynamic and comparative notions of
cause. To illustrate the distinction, consider a change �(x′,x′′) defined for some
variable Ẍ .

• �(x′,x′′) can be called a dynamic cause (of some effect) if one can imagine
an event during which the value of Ẍ changes from x′ to x′′. For example, a
switch is closed, a person becomes unemployed, a patient takes a drug.

• In contrast, �(x′,x′′) will be called a comparative cause if the values x′ and
x′′ relate to two different situations (or objects), say σ (x′) and σ (x′′), and
one is unwilling or unable to think of an event, or process, by which σ (x′′)
developed from σ (x′).

Statistical social research is predominantly concerned with comparative causes.
The standard approach consists in comparing people, or situations, which can be
characterized by different properties. One compares, for example, the salaries of
people having different levels of education; and this leads to the conclusion that
differences in the educational level are a (possible) cause of differences in salaries.
This would be an example of a comparative cause and should be distinguished
from a dynamic cause which, in this example, would consist in a change of a
person’s educational level.

5.2 Ambiguous references to individuals

The definitions of functional causality proposed in the previous section are
based on functional models. These models are formulated in terms of generic
variables and therefore do not directly apply to identifiable individuals (objects or
situations). The same is true of the causal statements which can be derived from
these models. This also distinguishes our approach from the potential outcomes
approach that was proposed, in particular, by D. B. Rubin, P. W. Holland, and
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P. R. Rosenbaum.14 The present section tries to show that some of the crucial
difficulties of the potential outcomes approach mainly result from its attempt
to directly explicate causal statements by referring to (empirically) identifiable
individuals.15

1. Holland’s definition of causal effects

The following discussion refers to an explication of the potential outcomes
approach developed by P. W. Holland. The starting point is a finite collection
of individuals that will be denoted by � = {ω1, . . . ,ωn}. A property space
X̃ = {x̃1, . . . , x̃m} serves to define possible causes. The elements of X̃ denote
different treatments which can be applied to the individuals in �. A selection of
treatments is then given by a statistical variable

X : � −→ X̃

with X (ω) being the treatment applied to ω. A further property space, Ỹ , is used
to record possible effects. Holland’s basic idea is to assume, for each value x̃ ∈ X̃ ,
the existence of a statistical variable

Yx̃ : � −→ Ỹ

having the following interpretation: Yx̃(ω) is the outcome which would result if
the treatment x̃ would have been applied to ω. Holland assumes a deterministic
relationship, but this is not crucial and stochastic formulations would also be
possible. Of crucial importance is, however, that Holland assumes that for
each individual ω ∈ � all possible effects Yx̃1

(ω), . . . ,Yx̃m
(ω) exist in some

sense simultaneously and can be used in subsequent theoretical derivations. Due
possibly to the counterfactual formulations used by Holland, this seems to be an
obscure assumption.16 It is quite possible, however, to begin with a more abstract
formulation:

Assumption: For every individual ω ∈ � exists (5.1)
a function: fω : X̃ −→ Ỹ

Given such functions, they immediately provide values of the statistical variables
supposed by Holland: Yx̃(ω) = fω(x̃). One has to note, of course, that (5.1) is not
an empirical assumption but actually implies a separate functional model for each
individual in �.17

As an important implication, the assumption (5.1) allows to define individual
causal effects:

�i(Y ;x′,x′′;ω) := fω(x′′) − fω(x′) = Yx′′(ω) − Yx′(ω) (5.2)

where x′ and x′′ are any values in X̃ . And this definition finally creates Holland’s
(1986: 947) “fundamental problem of causal inference”: that values of such causal
effects can never be observed.
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2. Two kinds of questions

In order to understand Holland’s “fundamental problem,” one should distinguish
two kinds of questions. Questions of the first kind will be called concrete modal
questions because they ask for possible consequences of an event that can be
identified in a concrete situation; for example: How will the disease of a patient
probably develop if a specific therapy is applied?18

It is obvious that questions of this kind compare two (or more) possibilities
and that at best one realization can be observed. It is also obvious, however,
that the problem does not result from observational limitations. The problem
rather concerns justifications of conditional statements which correspond to
the different possibilities. While the necessary knowledge can only result from
observations, these observations cannot result from the situation referred to by the
modal question. Instead, the necessary empirical knowledge can only result from
observations of comparable situations which took place in the past.

This then motivates the development of models as means to make observations
of previous situations useful for considerations of modal questions. But then the
kind of question changes as well. Instead of concrete questions which refer to
a concrete situation, one has to consider generic modal questions which refer to
generic situations that cover all situations of a specific type (including the previous
situations that generated the data).

Following this line of reasoning, Holland’s “fundamental problem” actually
becomes irrelevant, as can be seen by a comparison of the following model
frameworks.

(5.3)(a) Ÿ

Ï

Ẍ �����
������ (b) Ẏ

Z̈

Ẍ �����
������
�����

������

Holland’s approach corresponds to (a). Ẍ records treatments defined in X̃ , and Ÿ
records outcomes which can be observed afterwards. In addition, there is a variable
Ï that serves to identify individual members of the presupposed collection �.19

But as a consequence of using this variable Ï , the model can only be used to
represent data which might be available for the individuals in �; it does not allow
the formulation of any generic question. Furthermore, it also cannot be used for a
concrete modal question that refers to some individual ω∗, simply because values
of Ẍ are already fixed for all individuals in �, and ω∗ cannot, therefore, be a
member of �.

In contrast, the approach in (5.3b) corresponds to a generic modal question. It
is based on a statistical view that distinguishes between individuals only insofar
as they have distinct values for some variables (having ranges defined without
reference to individual names).20 In the example a variable Z̈ having some range
Z̃ is used. The model no longer relates to the members of some specific collection
�, but in an abstract way to individuals which can be characterized by values
of Z̈ . The model simply does not distinguish between individuals having the same
value of Z̈ . Since it is quite possible that individuals with identical values of Ẍ
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and Z̈ generate different values in Ỹ , the model uses a stochastic variable Ẏ that
is stochastically dependent on Ẍ and Z̈ .

3. Different homogeneity assumptions

A further question concerns the assumptions needed to justify estimation of
(individual) causal effects with statistical data. In Holland’s approach, the
crucial assumption is that the functions fω are identical for all individuals in
� (or in subgroups defined by generic variables).21 This assumption, however,
conflicts with a statistical view since it implies that all individuals which can be
characterized by identical values of some variables therefore behave identically.

In contrast, the statistical view posits that it is sometimes, for some kinds of
questions, reasonable to consider only a few differences between individuals
and abstract from any other differences which certainly exist as well. To this
idea corresponds the model (5.3b). The model obviously does not require the
assumption that the functions fω are identical for all individuals having the same
value of Z̈ . In fact, it is not even necessary to assume that these functions actually
do exist. Instead of (5.1), the model requires a statistical homogeneity assumption:
that there exists, for each value Z̈ = z, a stochastic function

x −→ Pr[Ẏ | Ẍ = x, Z̈ = z]
Thus Z̈ figures as a covariate context for functional causal relationships between
Ẍ and Ẏ .

4. Generic effects for individuals

It is noteworthy that the model (5.3b) does not permit definition of variables of
the form Yx̃ (see § 1). Instead, one can consider variables

Y ∗
x̃ : � −→ R

defined by Y ∗̃
x (ω) := E(Ẏ | Ẍ = x̃, Z̈ =Z(ω)).22 Generic causal effects for individ-

uals can then be defined as

�∗(Ẏ ;x′,x′′;ω) := Y ∗
x′′(ω) − Y ∗

x′(ω) (5.4)

In contrast to the effects defined in (5.2), these are now generic effects which are
not defined for identifiable individuals but for equivalence classes induced by Z̈ .
Of course, referring to a specified collection � and using assumption (5.1), these
generic effects can be expressed as mean values of the individual effects defined
in (5.2):

�∗(Ẏ ;x′,x′′;ω) = 1

|{ω′|Z̈(ω′) = Z̈(ω)}|
∑

ω′∈{ω′|Z̈(ω′)=Z̈(ω)}
�i(Y ;x′,x′′;ω′)
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However, this interpretation rests on the assumption (5.1) which is not required
in order to interpret the generic effects defined in (5.4). And since it requires the
reference to a specified collection of individuals, this interpretation is compatible
neither with concrete nor with generic causal questions.

5.3 Isolating functional causes

Notions of (functional) causality usually imply the idea that one can isolate
causes and attribute to them specific effects.23 The definitions proposed in
Section 5.1 adhere to this idea by explicitly referring to a possible covariate context.
Furthermore, in order to interpret a change �(x′,x′′) as a cause (of some effect),
it must be possible to keep the covariate context constant.24 However, as will be
discussed in the present section, this is not always possible, in particular when
trying to associate causes with endogenous variables of a model.

1. Deterministic covariates

Consider a simple model with a single endogenous variable, Ẏ , having a
distribution which depends on values of deterministic variables Ẍ and Z̈ . The
dependence is specified by a stochastic function

(x,z) −→ Pr[Ẏ |Ẍ = x, Z̈ = z] (5.5)

The stochastic effect of a change �(x′,x′′) in the variable Ẍ can then be defined,
for example, by

�s(Ẏ ;x′,x′′;z) := E(Ẏ |Ẍ = x′′, Z̈ = z) − E(Ẏ |Ẍ = x′, Z̈ = z) (5.6)

and the formulation directly shows how the effect depends on the covariate context
Z̈ = z. The definition is based on the assumption that a change �(x′,x′′) in the
variable Ẍ is compatible with a constant covariate context Z̈ = z. This is required
in order to think of �(x′,x′′) as a specific cause that can be isolated. However, one
can easily imagine models in which it is impossible to hold constant a covariate
context. This may result, for example, from constraints that restrict the possibilities
to vary values of Ẍ independently of values of Z̈ .

Another situation of interest is when Z̈ depends on values of Ẍ . Assuming for
the moment a deterministic relationship, the model then takes the following form:

(5.7)Ẏ

Z̈

Ẍ ������

					


������

					
�

In addition to the function (5.5) there is a deterministic function z = g(x).
Consequently, the distribution of Ẏ depends only on values of Ẍ :

x −→ Pr[Ẏ |Ẍ = x, Z̈ = g(x)]
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Even though in this case a change �(x′,x′′) is not compatible with a constant
covariate context, it can nevertheless be interpreted as the functional cause of a
stochastic effect

E(Ẏ |Ẍ = x′′, Z̈ = g(x′′)) − E(Ẏ |Ẍ = x′, Z̈ = g(x′))

The reason is that Z̈ deterministically depends on Ẍ so that Z̈ does not figure as a
(in some sense autonomous) covariate context. This implies in turn that changes
in the values of Z̈ cannot be interpreted as possible causes of stochastic effects
defined with respect to Ẏ .

2. Stochastic covariates

Somewhat different considerations are required if the covariate context is given
by a stochastic variable Ż . To begin with, consider a model

(5.8)
Ẏ

Ż

Ẍ �����
������
�����

������

where Ż , with distribution Pr[Ż], is stochastically independent of Ẍ . The mean
effect of �(x′,x′′) may be defined in the following way:

�s(Ẏ ;x′,x′′; Ż) := (5.9)∑
z (E(Ẏ |Ẍ = x′′, Ż = z) − E(Ẏ |Ẍ = x′, Ż = z))Pr(Ż = z)

where the mean is calculated with respect to the distribution of Ż . Obviously, this
mean effect equals the effect of �(x′,x′′) in the reduced model Ẍ −→→ Ẏ which
can be derived from (5.8).

3. Interaction and distribution-dependence

It is quite possible that the stochastic effect defined in (5.9) also depends on the
distribution of Ż . This is the case if Ẍ and Ż are interactive conditions (for the
distribution of Ẏ ) defined as follows:

Ẍ and Z̈ are interactive conditions for Ẏ if the stochastic effect �s(Ẏ ;x′,x′′;z)
defined in (5.6) depends on z, that is, if there exist at least two values z′ and
z′′ such that �s(Ẏ ;x′,x′′;z′) �= �s(Ẏ ;x′,x′′;z′′).

If the covariate context is stochastic, the same definition applies with Ż
replacing Z̈ in (5.6). A further definition refers to the stochastic effect defined
in (5.9). It will be said that this effect is distribution-dependent if it depends
on the distribution of Ż .25
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Linear regression functions can serve to illustrate the definitions. Given a
regression function

E(Ẏ |Ẍ = x, Ż = z) = α + xβx + zβz

Ẍ and Ż are not interactive conditions; the effect of a change of the values of Ẍ
does not depend on Ż . If one extends the model by adding an interaction term:

E(Ẏ |Ẍ = x, Ż = z) = α + xβx + zβz + x zβxz

Ẍ and Ż become interactive conditions and the stochastic effectwill be distribution-
dependent:

�s(Ẏ ;x′,x′′; Ż) = (x′′ − x′)(βx +βxz E(Ż))

As a simple illustration, let Ż record the type (1 or 2) of the school visited by
a child, Ẍ records the parents’ educational level (0 low, 1 high), and Ẏ records
the child’s educational success (0 not successful, 1 successful). The following
conditional expectations will be assumed:

x z E(Ẏ |Ẍ = x, Ż = z)

0 1 0.8
0 2 0.6
1 1 0.8
1 2 0.9

(5.10)

In this example, the parents’ educational level is of relevance for the child’s
educational success in school type 2, but not in school type 1. Ẍ and Ż are then
interactive conditions: �s(Ẏ ;0,1;1) = 0 and �s(Ẏ ;0,1;2) = 0.3; and the effect
is also distribution-dependent:

�s(Ẏ ;0,1; Ż) = �s(Ẏ ;0,1;2)Pr(Ż = 2)

The probability of the child’s success depends on the probability of visiting one or
the other school type. The example nevertheless assumes that the distribution of
Ż does not depend on values of Ẍ . As mentioned in § 2, this is required in order to
think of �(x′,x′′) as a cause which can be isolated. Distribution-dependence can
then be viewed as a form of dependency on a covariate context (which parallels
the dependency on values of deterministic covariates).

4. Exogenous and endogenous causes

A possible cause can relate to an exogenous or to an endogenous variable of a
model. The change results in both cases from an assumption: that the value of
a variable changes from x′ to x′′; and this assumption only requires that, in the
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given model, both values must be possible. Of course, if the change relates to an
endogenous variable, one has to take into account that its values depend on values
or distributions of other variables.

If the endogenous variable is deterministic one can consider, for example,
a model

Ẍ −→ Z̈ −→→ Ẏ (5.11)

where Ẍ and Z̈ are connected by a deterministic function z = g(x). It seems quite
possible, then, to think of a change �(z′,z′′) in the endogenous variable Z̈ as being
the cause of some stochastic effect defined with respect to Ẏ . The reason is that,
if z′ and z′′ are possible values of Z̈ , then also there exist values x′ and x′′ of Ẍ
such that z′ = g(x′) and z′′ = g(x′′). Note that this is different from the example
considered in § 1 where Ẏ depends also directly on Ẍ .26

Now consider a model with a stochastic endogenous variable Ż :

Ẍ −→→ Ż −→→ Ẏ (5.12)

In the same way as was done before one can interpret changes �(z′,z′′) as causes
of stochastic effects defined with respect to Ẏ . There is, however, a remarkable
difference. The model (5.11) allows the creation of a cause �(z′,z′′) by some
appropriate manipulation of the exogenous variable Ẍ ; but this is not possible in
the model (5.12).

5. Direct and indirect effects

Finally, consider a situation where Ẏ also directly depends on Ẍ . The model has
then the form

(5.13)Ẏ

Ż

Ẍ ������

					


������

					
��

A modification of the example considered in § 3 can serve as an illustration.
Ż (with values 1 or 2) records the school type, Ẍ (with values 0 or 1) records
the parents’ educational level, and Ẏ (with values 0 or 1) records the child’s
educational success. In the modified example the child’s school type depends
on the parents’ educational level. The following values will be assumed for the
illustration:

x z E(Ẏ |Ẍ = x, Ż = z) x Pr(Ż = 2 |Ẍ = x)

0 1 0.5 0 0.4

0 2 0.7 1 0.8

1 1 0.8

1 2 0.9

(5.14)
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Comparing this model with (5.12), one observes that effects of a change �(z′,z′′)
are now context-dependent. For example, corresponding to a change �(1,2) one
finds:

E(Ẏ |Ż = 2, Ẍ = 0) − E(Ẏ |Ż = 1, Ẍ = 0) = 0.7 − 0.5 = 0.2

E(Ẏ |Ż = 2, Ẍ = 1) − E(Ẏ |Ż = 1, Ẍ = 1) = 0.9 − 0.8 = 0.1

The model (5.13) also suggests an attempt to distinguish direct, indirect, and total
effects of a change �(x′,x′′) in the variable Ẍ . However, that will not always be
possible. Consider, for example, the total effect of a change �(0,1):27

E(Ẏ |Ẍ = 1) − E(Ẏ |Ẍ = 0) = 0.88 − 0.58 = 0.3

If one considers Ż as providing a covariate context and assumes that values of Ż
can be fixed, one can also calculate direct effects; in the example:

E(Ẏ |Ẍ = 1, Ż = 1) − E(Ẏ |Ẍ = 0, Ż = 1) = 0.8 − 0.5 = 0.3

E(Ẏ |Ẍ = 1, Ż = 2) − E(Ẏ |Ẍ = 0, Ż = 2) = 0.9 − 0.7 = 0.2

These effects are obviously context-dependent and it is not possible, therefore, to
think of just one direct (context-independent) effect of the parents’ educational
level on the child’s educational success. As a consequence, it is also not possible
to calculate an indirect effect that results from the different probabilities for the
selection of school types. The example shows that total effects cannot always
clearly be separated into direct and indirect effects.



6 Models and statistical data

6.1 Functional models and data
1. Functional models and data models
2. Data generation with functional models
3. Functional models for statistical data
4. Indeterminate mean effects
5. Individuals and populations

6.2 Experimental and observational data
1. Randomized experiments
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Functional models are theoretical constructs. They do not entail anything about
the facts of the empirical world, nor are they rendered false by any facts. But
reference to the empirical world is indispensable if a model is to be used for
(retrospective) explanations or (prospective) predictions; and being interested in
quantitative statements the model’s deterministic or stochastic functions need
numerical specification. There are thus often reasons to use statistical data to
calculate estimates of the functions of a model.
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This chapter discusses the relationship between functional models and statistical
data. The discussion is conceptual; techniques for the estimation of model
parameters will not be treated. The first section examines the dichotomy between
functional models and statistical data. The second section considers the question
whether, and how, statistical data can be used to learn about causal relationships
defined within functional models. It is shown that the conceptual framework of
randomized experiments is of only limited use for social science applications. The
third section argues that several reference problems relevant for understanding
empirical claims to be connected with functional models should be distinguished.

6.1 Functional models and data

1. Functional models and data models

Considered as analytical models, functional models express relationships between
modal variables and serve to consider modal questions. In contrast, data models
(as the expression is used here) relate to statistical data representing facts realized
in the past. The statistical data are represented by a (multi-dimensional) statistical
variable, say S, which is defined for a reference set �.

• A statistical data model describes the statistical distribution P[S], or some
aspects of this distribution (e.g. a regression function that can be derived from
P[S]).

• A stochastic data model invents and describes a random generator such that
one can imagine the data, S, to be a realization of the generator.1 The random
generator may be seen as a model for a data generating (and sometimes also
a substantial) process that might have produced the data.2

Stochastic data models can be viewed as a particular way to connect functional
models with statistical data. Starting from a functional model one creates a
stochastic model for the data. In the simplest case (assumed for the illustrations in
this chapter) one can then directly use the (conditional) statistical distributions
derived from the data as estimates of correspondingly defined (conditional)
probability distributions of the functional model.

2. Data generation with functional models

Given a functional model M = (V,F), it can be used to generate data. There are
four steps.

(1) The first step is the definition of a reference set, �, whose elements can be
used as units (objects or situations) to be associated with valuations of the
model’s variables.

(2) Corresponding to the variables in V , one then defines statistical variables for
�. If, for example, V contains variables Ẍ , Z̈ , and Ẏ with domains X̃ , Z̃ , and
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Ỹ , respectively, one defines a three-dimensional statistical variable

(X ,Z,Y ) : � −→ X̃ × Z̃ × Ỹ

such that (X ,Z,Y ) (ω) records the values of Ẍ , Z̈ , and Ẏ that will be realized
for the unit ω.

(3) One then creates for each ω ∈ � values for the statistical variables that
correspond to the model’s exogenous variables. If the variables are stochastic
this is done with appropriate random generators, otherwise values can be
created arbitrarily (observing, of course, any constraints which might be
defined in the model).

(4) Finally, beginning with the values created in step (3), one uses the functions
given in F in order to derive (recursively) values of the remaining variables.
Again, if the functions are stochastic, one uses appropriately defined random
generators.

It is remarkable that in step (3) values of the deterministic exogenous variables
can be generated arbitrarily. It follows in particular that one can assume arbitrary
distributions for the correspondingly defined statistical variables and, in turn, that
these distributions are not determined by the model.

3. Functional models for statistical data

A further important consequence is that different functional models may be
employed for the interpretation of any given set of data. As an illustration I use
an example previously discussed by N. Cartwright (1979). The example relates
to a statistical collection of humans, �, and there are three statistical variables:
X records whether a person regularly smokes (X = 1) or not (X = 0); Z records
whether a person regularly exercises (Z = 1) or not (Z = 0); and Y records whether
a heart attack occurred (Y = 1) or not (Y = 0). It will be assumed that the following
data (different from Cartwright’s) have been observed.

X Z Y = 0 Y = 1 Total

0 0 420 80 500
0 1 95 5 100
1 0 70 30 100
1 1 450 50 500

(6.1)

A simple model construction starts with modal variables Ẍ , Z̈ , and Ẏ , defined in
correspondence to X , Z , and Y , and assumes that the distribution of Ẏ depends on
the values of Ẍ and Z̈ :

(6.2)Ẏ
Z̈

Ẍ �����
������
�����

������
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The stochastic function can be written as

(x,z) −→ Pr[Ẏ |Ẍ = x, Z̈ = z]
and, using the conditional frequencies which can be derived from the data in (6.1)
as estimates of the conditional probabilities assumed by the model, one gets:3

x z Pr(Ẏ = 0 |Ẍ = x, Z̈ = z) Pr(Ẏ = 1 |Ẍ = x, Z̈ = z)

0 0 0.84 0.16
0 1 0.95 0.05
1 0 0.70 0.30
1 1 0.90 0.10

(6.3)

Referring to the model, one can now consider a change �(0,1) in the variable Ẍ
as a functional cause of a stochastic effect. Considering mean differences

�s(Ẏ ;0,1;z) := E(Ẏ |Ẍ = 1, Z̈ = z) − E(Ẏ |Ẍ = 0, Z̈ = z)

as an effect measure, one compares the probabilities of heart attacks of smokers
and non-smokers in the covariate context Z̈ = z. From the values in (6.3) one finds
the following context-depending effects:

�s(Ẏ ;0,1;0) = 0.30 − 0.16 = 0.14

�s(Ẏ ;0,1;1) = 0.10 − 0.05 = 0.05

Note that the calculation presupposes that a change �(0,1) in Ẍ can take place
without a simultaneous change of the covariate context. This is an assumption of
the model which can not be corroborated from the data.

4. Indeterminate mean effects

This assumption is completely independent of the distribution of the statistical
variables corresponding to the exogenous model variables (X and Z in the
example). As discussed in § 2, arbitrary distributions of these variables are
compatible with the same model. For example, instead of (6.1) the following
data could be used:

X Z Y = 0 Y = 1 Total

0 0 420 80 500
0 1 475 25 500
1 0 350 150 500
1 1 450 50 500

(6.4)

One would get the same conditional probabilities as those shown in (6.3) and
consequently also the same context-dependent effects of a change �(0,1) in the
variable Ẍ .
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However, since mean effects depend on the distribution of covariate contexts
in the respective statistical collections, conclusions of causal effects differ. Using
the data (6.1), one is led to

P(Y = 1 |X = 1) − P(Y = 1 |X = 0) = 80

600
− 85

600
= −0.008

Using instead the data in (6.4) one finds:

P(Y = 1 |X = 1) − P(Y = 1 |X = 0) = 200

1000
− 105

1000
= 0.095

In the first case the frequency of heart attacks is lower for smokers than for non-
smokers, in the second case it is the other way around.

It should be stressed that these calculations of mean effects relate to the data,
not to the functional model. The model (6.2) does not allow one to calculate a
mean effect of a change �(x′,x′′) in the variable Ẍ because the effect is context-
dependent and different contexts are possible.4

5. Individuals and populations

There is no unique relationship between functional models and statistical data, if
only because functional models are models for generic individuals which refer
in an abstract sense to an individual (person, object, or situation). Of course,
when there is a population of individuals the model can be applied to each of
its members. Still, models for generic individuals can only be used for questions
concerning each individual independently. They cannot be used for questions
concerning the development of statistical distributions, and relationships between
such distributions, in a population. This would require a quite different type of
functional model; one would need modal variables which can record statistical
distributions and then assume functional relationships between such variables.
Models of this kind, here called population-level models, will be treated in
Chapter 8.

6.2 Experimental and observational data

The distinction between passive observation and active experimentation has a long
tradition. This section takes up the distinction in order to discuss some suggestions
to connect functional models with data.

1. Randomized experiments

Randomized experiments are often assumed to be especially useful to establish
causal knowledge. In order to understand the argument, and its limitations,
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consider a functional model

Ẍ −→→ Ẏ (6.5)

Suppose that the conditional distributions Pr[Ẏ |Ẍ = x] are to be estimated using
experimental data. Suppose further that such data can be generated for a collection
of individuals (persons, objects, or situations). I represent the collection by � =
{ω1, . . . ,ωn}. The experimenter can, for each individual ω ∈ �, decide about a
treatment, i.e. a value of Ẍ , and then observe a value of Ẏ . At the end there are
values of a two-dimensional statistical variable

(X ,Y ) : � −→ X̃ × Ỹ (6.6)

which can be used to calculate (a model function for) the regression function
x −→ P[Y |X = x]. This function can then be considered as an estimate of the
function x −→ Pr[Ẏ |Ẍ = x] assumed by the model (6.5).

The data generation is called a randomized experiment if the experimenter uses
a random generator with a known distribution to decide about the assignment of
treatments (values of Ẍ ) to the members of �.5 Why might this be a good idea?
One can imagine that Ẏ not only depends on values of Ẍ but also on values of
another variable Z̈ . For the sake of argument it will also be assumed that values of Z̈
are fixed before any intervention by the experimenter. The theoretical supposition
then refers to a model of the form

Ẍ −→→ Ẏ ←←− Z̈ (6.7)

Would Z̈ be observable one could use, instead of (6.6), values of a statistical
variable (X ,Y ,Z) : � −→ X̃ × Ỹ × Z̃ and then investigate whether, and how,
effects of changes �(x′,x′′) also depend on values of Z̈ . If values of Z̈ cannot be
observed one has to consider a model of the form

Ẍ −→→ Ẏ ←←− Ż (6.8)

such that (6.5) can be viewed as a reduced version (see Section 4.3). Then two
questions arise: Is the assumption made in the formulation of (6.8), that Ż is
stochastically independent of Ẍ , valid? Which distribution can be assumed for Ż ?

Randomization is related to the first question and makes it plausible to use
a model of the form (6.8).6 Completely independent of the randomization one
can approach the second question when referring to a population �. One can
simply stipulate that the distribution of Ż approximately equals the statistical
distribution of Z in �: Pr[Ż] ≈ P[Z]. While it is true (by assumption) that Z cannot
be observed, this stipulation nevertheless allows one to explicate the relationship
between the original model (6.5) and the enlarged model (6.8) which is used for
an interpretation of the available data. Effects of a change �(x′,x′′) calculated
with the reduced model are then understandable as mean effects with respect to
the distribution of covariate contexts in the experimental population.
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2. What can be achieved with randomization?

The conclusion so far is that randomization can be viewed as a method for
the construction of mean effects with respect to the distributions of unobserved
covariates. It is important, however, to understand that the mean effects neverthe-
less depend on the contingent realization of these unobserved distributions in the
experimental population that was used to generate the data.

A variant of the school example discussed in § 5 of Section 5.3 will be used
to illustrate the argument. Ẍ records the school type (1 or 2), and Ẏ records the
child’s educational success (0 or 1); in addition there is a variable Z̈ for the parent’s
educational level (0 = low or 1 = high).7 The theoretical model has the form (6.7)
and, as in Section 5.3, the following function will be assumed:

z x E(Ẏ |Ẍ = x, Z̈ = z)

0 1 0.5

0 2 0.7

1 1 0.8

1 2 0.9

(6.9)

As a precondition for the practicability of a randomized experiment it will be
assumed that the children can be distributed among the school types independently
of the educational level of their parents. If px and 1−px denote the probabilities for
the assignment of school types 2 and 1, respectively, the randomization process
results in a statistical variable X :�−→{1,2} with distribution P(X = 2) ≈ px.
If eventually the educational success has been observed, the data then provide,
for each child ω ∈ �, the school type X (ω) and the educational success Y (ω).
A further statistical variable, Z , records the educational levels of the children’s
parents, and pz := P(Z = 1) denotes the proportion of children in � whose parents
have a high educational level.

The task is to compare, and interpret, the mean values M(Y |X = 2) and
M(Y |X = 1) which can be calculated from the data. As a result of the
randomization, one can assume that X and Z are approximately independent (in a
statistical sense) and, referring to model (6.8), this allows one to use the following
approximation:

M(Y |X = x) ≈ E(Ẏ |Ẍ = x, Ż = 1)pz + E(Ẏ |Ẍ = x, Ż = 0)(1 − pz)

Using then the values assumed in (6.9), one finds

M(Y |X = 2) − M(Y |X = 1) ≈ 0.2 − 0.1pz

Obviously, the effect of the school type for a child’s educational success also
depends on the distribution of the parent’s educational levels as realized in the
population of children selected for the experiment.
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3. The standard argument for randomization

An often evoked argument for randomization is as follows:

The key virtue of randomization is to create balanced treatment and control
groups that resemble each other across all causally relevant variables except
treatment status.

(Elwert and Winship 2002: 433)

At first sight the idea seems plausible. In order to discover the effect, defined
for some variable Ẏ , of a change �(x1,x2) in a variable Ẍ one needs data
for correspondingly defined statistical variables X and Y (which relate to some
population �) that allow the comparison of two groups:

�2 := {ω |X (ω) = x2} and �1 := {ω |X (ω) = x1}
Referring to a (randomized) experiment, �2 is the treatment and �1 the control
group. It seems plausible: If values of X result from a randomization device, the
two groups can be assumed to be similar with respect to all variables having fixed
values before the randomized assignments took place. However, why should this
be important for the interpretation of the finally found effect of �(x1,x2)?

Think of a variable Z with possibly different distributions in �1 and �2. There
are two possibilities. Either Z is irrelevant for the effect; then a randomization
with respect to this variable is not necessary. Or the effect depends on values of Z .
If the experimental population is sufficiently large one may assume that, due to
the randomization, X and Z are approximately independent (in a statistical sense):
P[Z |X = x1] ≈ P[Z |X = x2]. This allows the expression of the effect of �(x1,x2)
as a simple difference of means:

M(Y |X = x2) − M(Y |X = x1) ≈ �a(Y |x1,x2;Z) (6.10)

where the right-hand side is defined by

�a(Y |x1,x2;Z) := (6.11)∑
z (M(Y |X = x2,Z = z) − M(Y |X = x1,Z = z))P(Z = z)

However, (6.10) does not imply that the mean effect calculated from the
randomized data is independent of Z and only attributable to the change �(x1,x2).
As shown by the example in § 2, the effect can also depend on the distribution
of Z in the experimental population that generated the data; and the effects in
a population with another distribution of Z might be quite different. In fact,
supposing that the effect also depends on values of Z , reliable conclusions can
only be based on a knowledge of the context-specific effects

M(Y |X = x2,Z = z) − M(Y |X = x1,Z = z)

and this knowledge, of course, can only be gained from additional data for the
variable Z .8
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4. Limitations of using mean effects

The argument can be continued: If it would be possible to observe values of Z
it would not be necessary to randomize with respect to this variable. It would be
possible, then, to investigate how the effect also depends on values of Z . Of course,
without a randomization there is no guarantee that X and Z will be approximately
independent. However, why should this be relevant for the definition of a causal
effect?

The question concerns a problem that, in a sense, results from a theoretical
conflict. On the one hand, one wants to estimate a definite effect but, on the other
hand, one knows, or believes, that the effect is context-dependent. In the example,
the effect of �(x1,x2) also depends on values of Z . In order to attribute a definite
effect to �(x1,x2) one has either to refer to a specified covariate context Z = z,
or one has to rely on a mean effect defined with respect to some distribution of
covariate contexts. Viewed in this way, (6.11) is a proposal for the definition of a
mean effect.

However, mean effects can be determined in many different ways. Why use
(6.11)? A possible consideration refers to an individual ω randomly drawn
from �. If one does not know the covariate context Z(ω), but only knows that ω is a
member of �, and Z is distributed in � according to P[Z], it might be reasonable to
calculate an expectation as in (6.11). However, one can easily imagine situations
where the available information suggests otherwise. For example, assume that
40 per cent of the children in the population � have parents with a higher
educational level: P(Z = 1) = 0.4, and also assume that the assignment to school
types depends in the following way on the parents’ educational level:

P(X = 2 |Z = 0) = 0.4 and P(X = 2 |Z = 1) = 0.8

Using the data from (6.9), one then finds for the mean effect defined in (6.11)
the value (0.7 − 0.5)0.6 + (0.9 − 0.8)0.4 = 0.16. Now, referring to a child
randomly drawn from �, one might expect the probability of an educational
success to be about 16 percentage points higher in school type 2 than in school
type 1.

However, there are other and possibly more interesting questions. For example,
how would the probability of an educational success change if a child who began
in school type 1 changes into school type 2? To answer this question one would
need to randomly draw the child from the subpopulation �1 := {ω|X (ω)=1} in
which the distribution of the parents’ educational levels is given by

P(Z =0 |X =1) = 0.82 and P(Z =1 |X =1) = 0.18

and then one finds a different mean effect, namely

(0.7 − 0.5)0.82 + (0.9 − 0.8)0.18 = 0.18
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5. Arguments based on potential outcomes

A somewhat different version of the standard argument for randomization has
been proposed by authors who adhere to the potential outcomes approach (see
Section 5.2). In order to discuss this version of the argument, I again follow
Holland’s exposition. Using the notations of Section 5.2, the following table can
serve to explain the argument:

ω X (ω) Y0(ω) Y1(ω) Y (ω)

ω1 x1 y01 y11 y1
ω2 x2 y02 y12 y2
...

...
...

...
...

ωn xn y0n y1n yn

(6.12)

The table relates to individual units in a population �. To each individual ωi can
be applied one of the treatments X = 0 or X = 1. Yx(ωi) is the outcome that would
result if the treatment X = x had been applied to ωi.

9 X (ωi) and Y (ωi) record the
treatment actually applied and the actual outcome, respectively:

Y (ωi) =
{

Y0(ωi) if X (ωi) = 0

Y1(ωi) if X (ωi) = 1

The goal of the experiment is to calculate a mean effect

M(Y1 − Y0) = ∑
i=1,n (Y1(ωi) − Y0(ωi))/n

Since only one treatment can be applied to each individual, how can this
mean effect be discovered? The argument as given, for example, by Holland
(1986: 948–9) relies on a randomization of the assignment of treatments and can
be summarized as follows: If values of X are randomly assigned, then

�0 := {ω |X (ω) = 0} and �1 := {ω |X (ω) = 1}

are simple random samples from � and, given the samples are sufficiently large,
one gets estimates of the potential outcomes as M(Y0) ≈ M(Y |X = 0) and M(Y1) ≈
M(Y |X = 1), and consequently also a reasonable estimate of the mean difference
between the potential outcomes:

M(Y1 − Y0) ≈ M(Y |X = 1) − M(Y |X = 0)

The argument obviously depends in a crucial way on the assumption that values of
the variables Y0 and Y1 exist in some sense already before any specific treatment
is applied. It is this assumption that allows the thinking of randomization as if it
were a method of generating a random sample of both.
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6. Causal and pseudo-descriptive questions

The argument of the potential outcome approach can be illustrated using an urn
model.10 For each individual ωi, the urn contains a ball one half blue-colored and
the other half red-colored; on the blue-colored half y0i is written, on the red-colored
half it is y1i. Then two random samples are drawn; the first sample provides values
of the blue halves and the second sample provides values of the red halves of their
balls, respectively.

This view is, however, in conflict with the meaning of a causal question which
presupposes the existence of some process that leads from a cause to an effect.
While more detailed conceptualizations of such processes also depend on whether
one considers dynamic or comparative causes, the essential idea can be explained
if one simply assumes values of a variable X being conditions of values of another
variable Y :

X (ωi) Y (ωi)
causal process

�

The crucial point is that the potential outcome approach does not refer to a causal
process but presupposes a selection process instead. Again, the school example can
serve for an illustration. X (ωi) determines the school type which then is a condition
for a subsequent process that brings about a value of Y (ωi), the child’s educational
success. Obviously, it is important that one can think of a process for which X (ωi) is
a relevant condition. This is of particular importance if there are further conditions
which might become effective after the realization of the condition X (ωi). To
continue with the example, it will be assumed that the child’s educational success
also depends on whether his or her parents provide much support (X ′ = 1) or
otherwise (X ′ = 0). Following the potential outcome approach one would need to
define further fictitious variables Y ′

x′ which capture the child’s educational success
if X ′ = x′. As an extension of (6.12) one would get the following extended scheme:

ω X (ω) X ′(ω) Y0(ω) Y1(ω) Y ′
0(ω) Y ′

1(ω)

ω1 x1 x′
1 y01 y11 y′

01 y′
11

ω2 x2 x′
2 y02 y12 y′

02 y′
12

...
...

...
...

...
...

...
ωn xn x′

n y0n y1n y′
0n y′

1n

This extended scheme obviously excludes the possibility to vary X and X ′
independently. Referring to a child ωi, if the school type xi is fixed, the educational
success Yxi

(ωi) is already assumed to exist, whatever the value of X ′(ωi) might
be.11 Imagine, for example, the following values:

y0i = 0, y1i = 1, y′
0i = 0, y′

1i = 1

If xi = 1 and x′
i = 0, should it be concluded that the educational success

simultaneously is 1 and 0? A better conclusion is that the potential outcome
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approach is, in particular, not suited for the consideration of causal processes
which depend on several causes.12

The potential outcome approach replaces a causal question by a pseudo-
descriptive question. This might be reasonable if one refers to data, i.e. to causes
and effects already realized for the members of some population �. Then one can
consider a counterfactual question: Which values of Y might have been realized
if, instead of the actually realized values X (ω), some other values would have
been realized? However, even if it were possible to find, and justify, an answer,
the answer would only be relevant for � without any implications for individuals,
or situations, not belonging to �.

7. Observational data

So far only data were considered that result from experiments in which an
experimenter has some control about (the assignment of ) some of the conditions
on which values of an outcome variable depend. When no control can be exercised
and values of the relevant variables are merely observed, one commonly speaks
of observational data. This is the kind of data almost always used in statistical
social research. Since the data do not arise from (randomized) manipulation of
conditions, many authors judge such data as problematic for causal questions.13

For example, Rosenbaum (1984: 41) writes:

The purpose of an observational study is to “elucidate cause-and-effect
relationships.” An assessment of the evidence concerning the extent to
which the treatment actually causes its apparent effects is, therefore, central
and necessary. There are, however, difficulties involved. The most familiar
difficulty is that, since treatments were not randomly assigned to experimental
units, the treated and control groups may not be directly comparable.

Of course, difficulties only arise if observational data are to be used for causal
questions and not just for descriptive purposes. It is important, however, that causal
questions in the realm of social research can be conceptualized quite differently.
One might ask how observational data can be used to estimate causal effects
defined in the framework of randomized experiments. One then views observa-
tional data from the point of view of an only hypothetically possible (randomized)
experiment.14 However, this view is of only limited use in social research.

To elucidate the argument, assume that one is interested in a functional model
Ẍ −→→ Ẏ which refers to a hypothesized relationship between school type (Ẍ ) and
educational success (Ẏ ). The model formulation leaves indeterminate how values
of Ẍ come into being; one may think of a theoretical context as follows:

substantial process −→ values of Ẍ
...

observations

(6.13)
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There is a substantial process that generates the empirical facts to be captured
by values of Ẍ , and afterwards an observational process possibly generates data
(about previously existing facts). In the example, the school type is determined by a
substantial process for each child. The data generating process provides knowledge
about the realized attachments. The argument shows that randomization is not a
data generating, but a substantial process.

How can one attribute a determinate effect to a cause �(x′,x′′) in the variable
Ẍ? At first sight it seems that it is irrelevant how the cause �(x′,x′′) comes into
being.15 However, this is only true if the process that generated the cause is not
already in some relevant sense context-dependent on conditions which also have
implications for the supposed effect. Suppose that the child’s educational success
also depends on the parent’s educational level, Z̈ . One can then consider the
following possibilities:

(6.14)(a) Ẏ
Ẍ

Z̈ �����
������
�����

������ (b) Ẏ
Ẋ

Z̈

��
�����
������
�����

������

While model (a) does not make an assumption about the process that creates values
of Ẍ , model (b) assumes that this process also depends on the parents’ educational
level (implying the substitution of Ẍ by a stochastic variable Ẋ ). Model (b) is
therefore not compatible with the idea of a randomization with respect to Ẋ and,
consequently, one cannot use this idea in order to define the effect of a change
in Ẋ .

It is important to see that the problem does not result from the impossibility of
a randomization but from its being theoretically incompatible with the processes
as they may develop in the empirical world.16 Even if it would be possible in
some experiment to assign children randomly to different school types, the result
would not be relevant because the process to be clarified by the causal analysis is
different from the one generated by the randomized experiment.

In conclusion, definitions of causal effects based on randomized experiments
cannot, without further qualifications, be viewed as a theoretical ideal. To the
contrary, only an extensive elaboration on contexts and purposes will make
knowledge gained from randomized experiments useful. This conclusion is
of particular importance if the causal knowledge is intended to serve as an
assessment of possible courses of action; since then it must be taken into account
which actors actually perform the decisions (e.g. decide about school types of
children).

6.3 Interventions and reference problems

The previous section argued that the idea of randomized experiments not only
is often impractical but runs into theoretical problems when applied to social
processes. Additional problems arise from the involvement of human actors.
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1. Causal knowledge and interventions

It is obvious that causal knowledge often serves to assess possible effects
of interventions (a term here used to denote deliberately generated causes).
Some authors have tried to make this a leading idea for a definition of causal
relationships.17 The idea seems particularly attractive in the context of experiments
where causes can be generated deliberately. However, in considerations of social
processes one has to take into account that they already involve actors, and that
these actors perform interventions and thereby generate effects.

Before elaborating on this point, it is worth remembering that the idea of a
(fictitious) intervention can be applied without difficulties only to the exogenous
variables of a model. The very definition of exogenous variables requires that they
may be given arbitrary values. In contrast, the values of endogenous variables
depend on values of other variables. The models in (6.14) may serve to illustrate
the difference. Model (a) represents the school type by an exogenous variable
Ẍ so that arbitrary assignments are possible. In contrast, in model (b) Ẋ is an
endogenous variable whose values depend on another variable, Z̈ , the parents’
educational level. What is implied by assignments of values to Ẋ is therefore not
immediately clear.

Some authors have proposed that by stipulating an intervention with respect to
some variable, that variable is made automatically into an exogenous variable;18

for example Woodward (2001: 50):

[. . .] if a variable is endogenous, then intervening on it alters the causal
structure of the system in which it figures – giving it a new exogenous causal
history.

The idea is to use a modified model in order to make a hypothetical experiment
(Woodward 1999: 201) conceivable. In order to investigate possible effects of a
change �(x′,x′′) in an endogenous variable Ẋ , a new model is constructed that
no longer contains the function that made Ẋ dependent on other variables in
the original model.19 For example, starting from model (6.14b) a hypothetical
experiment intervening in Ẋ would presuppose model (6.14a) which contains the
exogenous variable Ẍ instead of the endogenous variable Ẋ .20

2. Causes as parts of processes

The proposal just described evades an answer to the question of a possible
causal meaning of endogenous variables. In fact, the two model versions in
(6.14) correspond to different questions. Model (a) relates to the question how
a child’s educational success depends on the parents’ educational level and on
the school type, and deliberately leaves unspecified how values of these two
“independent” variables come into being. Model (b), on the other hand, explicitly
assumes a process by which the choice of a school type depends on the parents’
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educational level. While in both models the child’s educational success depends
on the parents’ educational level and on the school type, one needs to add that the
school type has no longer an autonomous causal meaning in model (b).

The change of status of variables in models (a) and (b) corresponds to a change
of questions that may be answered by the use of the models. More often than not,
interest centers on interventions which actually can be performed. One can speak
of praxeological questions that ask for interventions by which people can achieve
specified effects.21 The question how a child’s educational success comes into
being is of another kind. This question asks for a causal explanation; the goal is
some insight into a process that generated a specific fact (singular explanation)
or into processes which generate facts of some kind (generic explanation). In any
case it becomes necessary to place supposed causes into the context of a substantial
process that leads to the possible effects. This also might require to refer to actors;
but their interventions are then to be seen as being part of the substantial process
to which the model relates.

3. Different kinds of interventions

The reference to interventions in connection with models is fictitious: The creator,
or user, of the model assigns values to some variables defined in the model.
Whether, and how, one can speak of real interventions primarily depends on how
the model relates to the empirical world. We are here concerned with models of
social processes that necessarily involve human actors. Two kinds of interventions
must therefore be distinguished:22

• Substantial actors involved in the substantial processes that generate the facts
referred to by the model’s variables. In the school example these are first of
all the children and their parents who, inter alia, decide on the school type;
further actors (e.g. teachers) are then involved in the process that subsequently
leads to the pupils’ success or failure.

• Secondary actors which are (implicitly) referred to if one speaks of observa-
tions, the construction of models, and of real and fictitious experiments. One
can think, e.g. of researchers, administrators, and advisory boards.

Note that these need not be different groups of actors. The distinction rather results
from the fact that “one” can, empirically as well as theoretically, refer to processes
which involve actors. “One” then, by performing this kind of reference, becomes
a secondary actor, and the actors referred to become the substantial actors.

This distinction between kinds of actors leads to a corresponding distinction
between kinds of interventions. On the one hand are the interventions performed
by substantial actors; these will be called substantial interventions. On the other
hand are the inventions performed by secondary actors; these will be called modal
interventions (because they use models for the reasoning about modal questions).
This distinction suggests a reasonable interpretation of modal interventions. If
model variables are exogenous one may make assumptions about their values.
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However, this is impossible without contradicting the model when variables are
endogenous, because then the model already implies the existence of functions
that generate values of the variables. Instead, modal interventions must then be
applied to these functions.

4. Assumptions about people’s behavior

Possible interpretations of modal interventions concerning the functions of a model
depend on the processes to which the functions relate. Functions in models for
social processes often relate to the behavior (or implications of the behavior) of the
substantial actors involved in the processes. Modal interventions then essentially
equal assumptions about the behavior of these actors.

Again, the school example may serve as an illustration. In this example, the
relevant behavior function connects the parents’ educational level with the choice
of a school type:

z −→ Pr[Ẋ | Z̈ = z] (6.15)

One question concerns the effect on children’s educational success of a change,
or difference, in the values of Z̈ , the parents’ educational level, being mediated
through the school type. Using the abbreviations

px,0 = Pr(Ẋ = 2 | Z̈ = 0) and px,1 = Pr(Ẋ = 2 | Z̈ = 1)

one gets from the data in (6.9):

E(Ẏ |Z̈ = 1) − E(Ẏ |Z̈ = 0) = 0.3 + 0.1px,1 − 0.2px,0 (6.16)

The difference between the probabilities of an educational success becomes greater
if more children of parents with a higher educational level visit school type 2, and
the difference becomes smaller if more children of parents with a lower educational
level visit school type 2.

A complementary question concerns the effect on children’s educational success
of a change, or difference, in the school type, taking now into account that the
composition, with respect to parents’ educational level, is different in the school
types. In addition to assumptions about the behavior function (6.15), one therefore
needs assumptions about the distributions of the parents’ educational levels. Using
in model (6.14b) instead of Z̈ a stochastic variable Ż , one can, with the help of the
formula

E(Ẏ |Ẋ = x) =
∑

z E(Ẏ | Ẋ = x, Ż = z)Pr(Ẋ = x | Ż = z)Pr(Ż = z)∑
z Pr(Ẋ = x | Ż = z)Pr(Ż = z)

calculate an effect

E(Ẏ | Ẋ = 1) − E(Ẏ | Ẋ = 0) (6.17)

Assuming once again pz = P(Z = 1) = 0.4, Figure 6.1 demonstrates the
dependence of the mean effect (6.17) on the probabilities px,0 and px,1. The figure
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Figure 6.1 For px,0 = 0.1,0.3,0.5,0.7, and 0.9, the curves show how the effect

E(Ẏ |Ẋ = 1) − E(Ẏ |Ẋ = 0) depends on the probabilities px,1 (shown on the
X-axis).

also shows the mean effect 0.16 that would result from a randomized distribution
(px,0 = px,1).23

Notice that (6.16), as well as Figure 6.1, refers to a combined effect that results
from different educational levels of the parents, from different school types,
and from the children’s distribution on the school types. However, exactly such
interplay of conditions must be investigated in order to understand how differences
in children’s educational success come into being.

5. Relevance of the substantial actors

Authors who conceive of causality in terms of interventions often distinguish
between active and passive predictions; for example:

It is important to understand that (i) the information that a variable has been
set to some value by an intervention is quite different from (ii) the information
that the variable has taken that value as the result of some process that leaves
intact the causal structure that has previously generated the values of that
variable.

(Woodward 2003: 47)

A standard example is using a barometer. Observing a change in the atmospheric
pressure this information can be used to predict some change of the weather;
on the other hand, intentionally changing the reading of a barometer will not
change the weather. However, Woodward’s argument needs modification if
variables obtain their values by actions of substantial actors. Passive observations,
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then, nevertheless provide information about results of interventions, and it
becomes important to distinguish these substantial interventions from the modal
interventions of the model builder.

Also, when processes involve substantial actors, the randomization idea
becomes problematic because randomization then substitutes realizations of a
random generator for the decisions of the substantial actors. In consequence, the
belief that randomization is a desirable method24 either presupposes a process not
involving actors capable of acting on their own decisions, or it deliberately ignores
the actors’ capabilities.

A further implication is of some importance: It is often reasonable to assume
that the substantial actors in social processes have better knowledge about relevant
context conditions than the secondary actors who try to get some insight into
these processes with the help of models.25 One may then assume that there is at
least one variable that is unobserved by the secondary actors but accessible to
the substantial actors. Some authors suggest that in these conditions estimates of
causal effects are always “biased.”26 The suggestion is questionable, however,
because there is no model that could establish an “unbiased” definition. In fact,
almost always functional models only allow one to explicate generic causal effects
having realizations depending on context conditions not explicitly represented in
the model.

6. Distortions due to self selection?

The belief that self selection can lead to “biased” estimates (of causal effects)
is widespread in the econometric literature.27 For a proper understanding the
following distinctions must be kept in mind:

(a) The selection problem can refer to a data generating process as depicted in
the following diagram:

Y Y ∗data generating process
�

One is interested in the distribution P[Y ] of a statistical variable Y ; but the data
generating process provides data only about a variable Y ∗ having a distribution
P[Y ∗] which is different from P[Y ]. Using then the data to estimate quantities
defined with respect to P[Y ] produces biased estimates.28 In this context one
can speak of self selection if the data generating process depends on decisions
of substantial actors. For example, assume that a survey is performed in order
to get information about the income distribution of households, P[Y ]. Then
self selection problems can arise because values of Y ∗ produced by the survey
depend on how the interviewed persons respond on the income question.

(b) When one is interested in causal processes which depend on decisions of
substantial actors the problem takes a different form. In the school example
self selection refers to the fact that values of the school type variable result
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from decisions of the children and their parents. This, however, is not a data
generating process (which may be viewed as producing distorted data), but a
substantial process that produces part of the causes which are effective in the
real world.

Also in the school example, self selection (school type decisions of children
and their parents) may be viewed as creating distorted samples: Starting with
variables Z (parent’s educational level), X (school type), and Y (children’s
educational success), defined for some population �, self selection leads to
different distributions P[Z |X = 0] �= P[Z |X = 1]. Using then, for example, data
from the children in only one school type, the resulting distribution of Z would
be a biased estimate for P[Z].

However, the question how to attribute a specific causal effect to a difference
�(x′,x′′) in the school type variable does not translate into an equivalent
estimation problem. If one decides to estimate the effect �a(Y |x′,x′′;Z) defined
in (6.11), using the difference of means, M(Y |X = x′′) − M(Y |X = x′) , would
lead to a biased estimate. However, why estimate �a(Y |x′,x′′;Z)? In fact,
knowledge about this version of a mean effect is not required for the insight
that a child’s educational success depends on the school type and the parents’
educational level. Knowing the mean effect, in particular, provides no hints about
the causal roles played by the two conditions. This would require estimating
separately the two functions which characterize the causal process in the
model (6.14b).

7. Selection problems from expectations?

The econometric literature that deals with questions of self selection often argues
with expectations. For an illustration I use an example discussed by Maddala
(1977):

Returns to college education: If we are given data on incomes of a sample
of individuals, some of whom have college education and others not, we
have to take into account in our analysis the fact that those who have college
education are those that chose to go to college and those that do not have
college education are those that have chosen (for some reason) not to go to
college. This is what we call “self selectivity.” A naive and commonly used
way of analyzing these differences is to define a dummy variable

D = 1 if the individual goes to college

= 0 otherwise

and estimate an earnings function with D as an extra explanatory variable.
This, however, is not a satisfactory solution to the problem.

(p. 351)
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In trying to provide reasons for this statement, Maddala refers to a situation without
covariates so that (in his notation) ȳ1 − ȳ2 is the mean income difference between
persons with and without a college education:

[. . .] the estimate ȳ1 − ȳ2 can be criticized on grounds that it does not take into
account the fact that those who went to college did so precisely because they
expected their incomes to be higher than otherwise and those who did not go,
chose not to go to college precisely because they did not expect their incomes
to be higher by doing so. Thus there is a selectivity bias in the estimate ȳ1 − ȳ2.

But how can a selection problem result from the fact that people use expectations
for their decisions?29 To begin with, think of a model

D̈−→→ Ẏ

that corresponds to the assumption that the income, Ẏ , depends on the level of
education, D̈ (D̈ = 1 if the person has a college education, D̈ = 0 otherwise). This
model cannot, however, lead to a selection problem because (given Maddala’s
preconditions) all persons would make their decision in the same way, depending
only on E(Ẏ |D̈ = 1) − E(Ẏ |D̈ = 0) being greater or less than zero. However, this
value is fixed within the model. The decision for or against a college education
must therefore depend on values of at least one further variable, say Z̈ , that further
differentiates between background conditions. One may consider two versions:

(6.18)(a) Ẏ
Ḋ

Z̈

��
������
������ (b) Ẏ

Ḋ

Z̈

��
�����
������
�����

������

In version (a), only the decision variable Ḋ depends on Z̈ . Persons with and without
a college education may then be different with respect to Z̈ , but this would be
irrelevant for the relationship between Ḋ and Ẏ . Consider then version (b). This
version implies that Z̈ and Ḋ are interactive conditions for Ẏ ; there are at least two
values, z′ and z′′, such that

E(Ẏ |Ḋ = 1, Z̈ = z′) > E(Ẏ |Ḋ = 0, Z̈ = z′)

E(Ẏ |Ḋ = 1, Z̈ = z′′) < E(Ẏ |Ḋ = 0, Z̈ = z′′)

because otherwise all decisions must be either for or against a college education.
However, then there is no uniquely defined causal effect that might serve as the
target of an (unbiased) estimation.

8. Fictitious stochastic anticipations

The argumentation in the previous paragraph was based on the idea that an
expectation must be connected, in some way, with information that is available at
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the time the expectation is made. It was therefore assumed that there is a further
variable, Z̈ , being of some relevance for the subsequent income Ẏ , and that all
substantial actors know their value of Z̈ , allowing them to make their expectations,
and decisions, dependent on that knowledge. However, in the cited example,
Maddala follows a different route and assumes that expectations can directly,
without any real or imagined informational basis, refer to incomes that might be
achieved with or without a college education.

This then leads to a variant of the potential outcome approach (see Section 6.2,
§ 5) that uses stochastic individual-level effects:

Ḋ−→→ (Ẏ0, Ẏ1) (6.19)

The stochastic variables record the income that could be achieved with (Ẏ1) and
without (Ẏ0) a college education. It is assumed, then, that each individual can have
expectations about his or her values of these variables and that decisions for or
against a college education can be based on these expectations. These assumptions
imply, however, that one no longer refers to the model (6.19), but to a different
model

(Ẏ0, Ẏ1) −→ Ḋ−→→ Ẏ (6.20)

that contains a deterministic function, connecting (Ẏ0, Ẏ1) with Ḋ, specified by the
decision rule

Ḋ =
{

1 if Ẏ1 ≥ Ẏ0

0 otherwise
(6.21)

Obviously, Ẏ0 and Ẏ1 are now latent variables without any definite (causal)
relationship with the income variable Ẏ . Instead, like a secret oracle, they only
provide imaginations for the decision for or against a college education. Maddala
therefore adds the assumption that, in the mean, expectations become true:30

E(Ẏ |Ḋ = 1) = E(Ẏ1|Ḋ = 1)

E(Ẏ |Ḋ = 0) = E(Ẏ0|Ḋ = 0)
(6.22)

So he finally arrives at a complete model (In the graphical representation in (6.20)
one may add a double arrow that directly connects (Ẏ0, Ẏ1) and Ẏ ) demonstrating
a purported selection problem:

E(Ẏ |Ḋ = 1) − E(Ẏ |Ḋ = 0) �= E(Ẏ1) − E(Ẏ0) (6.23)

It suffices to assume that the distributions of Ẏ0 and Ẏ1 to some extent overlap
(otherwise always Ḋ = 0 or Ḋ = 1).31

An obvious objection is that the model does not allow for a causal interpretation:
The assumed stochastic function Ḋ−→→ Ẏ does not refer to a causal process.
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This corresponds to the critique of the potential outcome approach discussed
in Section 6.2 (§ 6). Maddala’s model can also be used to illustrate the arbitrariness
of arguing with distortions when referring to (supposed) causal effects. It suffices
to assume that, according to the model, there is a realizable process (a process
which can be simulated):

(1) In a first step, random generators are used to create values y0 and y1 of the
stochastic variables Ẏ0 and Ẏ1, respectively.

(2) Then, if y1 ≥ y0, one decides for a college education and receives the income
Ẏ = y1; otherwise one decides against a college education and receives Ẏ = y0.

This allows for the definition of the effect of a difference �(0,1) in the variable
Ḋ by

�s(Ẏ ;0,1) := E(Ẏ |Ḋ = 1) − E(Ẏ |Ḋ = 0) (6.24)

which equals the left-hand side of (6.23). Why might it be important that this
definition differs from the other one?:

�e(Ẏ ;0,1) := E(Ẏ1) − E(Ẏ0) (6.25)

This definition actually corresponds to another model that assumes an exogenous
variable D̈ instead of the endogenous variable Ḋ. This would allow one to perform
an intervention as described by Woodward or Pearl.32 However, if one refers to
this modified model, both effect definitions become equivalent; the reasoning
therefore does not provide an argument in favor of the definition (6.25).

The important question is, rather, which definition would be adequate for the
model (6.20) that contains Ḋ as an endogenous variable? Since values of Ḋ result
from decisions of substantial actors, one has to think of modal interventions as
discussed in § 4. In the current example, this necessitates thinking about causal
implications of different decision rules assumed to be followed by the substantial
actors. However, this can only be done by using the effect definition (6.24); the
alternative definition (6.25) already implies one specific decision rule, namely
randomization, and consequently contradicts the assumption of any other decision
rule for the substantial actors.

9. Presuppositions about invariances

Authors who think of causal effects as resulting from (hypothetical) interventions
often propose a further requirement: that, in order to allow for a causal
interpretation, the functions of a model should be invariant with respect to possible
interventions.33 This requirement leads, however, into two difficulties. The first
one is simply due to the fact that the invariance requirement relates to applications
of a model and therefore cannot be formulated without referring to a specified
application context.
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More important is a second difficulty that results if models relate to substantial
processes involving actors. In most cases, then, at least one model function
depends on the behavior of substantial actors and those functions obviously cannot
be invariant with respect to substantial interventions. However, it also becomes
questionable, then, to relate the invariance requirement to modal interventions
(of secondary actors) since these interventions consist in modifying assumptions
about functions which refer to the behavior of substantial actors.
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Having discussed functional models and notions of functional causality in the three
preceding chapters, this chapter continues with the consideration of processes.
Several approaches are possible. A first alternative concerns the representation of
time. One can use an implicit representation of time by interpreting the functions
of a functional model as implying a temporal relationship. Alternatively, one can
use a time axis to define processes as sequences of variables (e.g. time series or
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statistical processes). A second alternative concerns whether processes are defined
in terms of states or events. Time series and statistical processes are almost always
defined in terms of state variables (see the definitions in Section 3.2). Alternatively,
one can think of processes as temporally structured series of events. A formal
representation requires event variables which are conceptually different from state
variables. A third alternative concerns the distinction between individual-level and
population-level processes. Individual-level processes relate to a single object (or
situation) considered as a whole. Population-level processes, on the other hand,
are conceptual constructions derived from two or more individual-level processes
and therefore permit a distinction between two conceptual levels.

Given these alternatives, one can understand the functional models introduced
in Chapter 4 as models for individual-level processes defined in terms of state
variables (with or without an explicit representation of time). The present chapter,
correspondingly, considers functional models for individual-level processes
defined in terms of event variables. The first section introduces the conceptual
framework and discusses simple models without an explicit time axis. Time
axes will be introduced in the second section. This allows one to make event
probabilities dependent on temporal durations and on time-varying values of
covariates. The third section discusses some possibilities of using event models in
order to define a version of dynamic causality that conceives of causes as events
and of effects as changes of event probabilities.

7.1 Situations and events

1. Events and event types

A few examples of events suggest an understanding: a child is born, a person
becomes employed or unemployed, two persons marry or become divorced, a
traffic accident happens. While a general definition is fraught with difficulties, the
examples suggest at least the following characteristics: Events are occurrences
which can be empirically identified; each event involves at least one object which
undergoes a change while the event occurs; events need some time to occur and
therefore have a temporal extension; when referring to two events it is often
possible to say that one event occurred earlier, or later, than another event; events
can be characterized as examples of event types.

Of particular importance is the distinction between events and event types. An
event is an empirically identifiable occurrence, for example, the event that two
particular persons marry. A corresponding event type would be a possible event
whose happening would imply that two persons become married. While an event
can only occur once, there can be many events that are examples of the same
event type. Characterizing an event by an event type does not, therefore, provide
an identifying description. Obviously, such a description would only be possible
after the event actually has occurred. On the other hand, whenever one wants
to speak of possible events (which have not yet occurred, or which might have
occurred) the notion of event types becomes necessary.
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2. Event variables

A model of events requires, first, variables that can be used to refer to the
occurrence of possible events, and to conditions on which the occurrence of
events may depend. The definition of such variables must refer to situations in
which events might, or might not, occur (then, in a retrospective view, one can
determine which events actually did occur). The basic task therefore consists in
the specification of the situations (to be used for the model). Three specifications
are of particular importance.

(a) The type of the situations to be considered must be specified. For example:
situations in which car drivers approach traffic lights, or situations in which
people might become unemployed. We speak of a generic situation when
reference is made to a situation, or situations, of a previously specified
type.

(b) The types of the events that might occur in a generic situation must be
specified. This is done by using event variables which will be denoted by Ė
(or Ė1, Ė2, . . .).

1 The range of an event variable is denoted by Ẽ (or Ẽ1, Ẽ2, . . .)
and has the general form

Ẽ = {0,1, . . . ,m}
The elements 1, . . . ,m refer to the possible event types; the notation Ẽ∗ :=
Ẽ \{0} will be used for the subset of these values. The element 0 does not refer
to a specific event type, but is sometimes necessary to express that an event
did not (yet) occur.2 For example, referring to situations where car drivers
approach a traffic light, one could define an event variable Ė having the range
Ẽ = {0,1,2} with the understanding that 1 means that the car driver stops,
2 means that the car driver does not stop, and 0 means that none of the two
possible events has (yet) occurred.

It will be assumed that event types which belong to the same range (of
some event variable) do exclude each other. One can define, however, two
or more event variables for a generic situation so that events can occur in
different combinations (examples will be discussed in § 5 and in Section
7.2). In particular, instead of an event variable Ė having a range {0,1, . . . ,m}
one can always use an m-dimensional event variable (Ė1, . . . , Ėm) with the
range {0,1}m and components which refer to single event types: (Ėj = 1) ≡
(Ė = j).

(c) It must be specified whether situations should be further distinguished by
properties not already part of the generic framework. Variables used to record
such properties will be termed contextual variables. In particular, they will
be called static contextual variables if their values cannot change during the
current situation. These might be event variables which got a specific value
in a previous situation, or state variables like those used in Chapter 4. On the
other hand, they will be called dynamic contextual variables if values can
change while a situation is going on.
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Next, the temporal extension of generic situations must be considered. It will be
assumed that a situation continues until, for the first time, an event occurs; then,
as a consequence of the event, a new situation comes into being.

It follows that event variables do not always have a value that refers to a specific
event. This distinguishes event variables from state variables. An example from
Section 4.1 (§ 1) may serve as an illustration. In this example, there are three state
variables: Ÿ records whether a bulb gives light, Ẍ records the state of a switch,
and Z̈ records whether a battery can provide power. All variables always have
a specific value (0 or 1 in the example). An event variable, on the other hand,
is always associated with a generic situation in which the variable can assume a
specific value (for example, a situation in which a switch can be closed). Up to
the occurrence of an event that provides a specific value, the event variable has no
positive value but has the value zero, indicating that an event did not yet occur.
Further, if in fact an event did occur and provide a specific value for the event
variable, this value can never change.

3. Referring to event data

Events and their properties can only be determined after the events actually
occurred, that is, in a retrospective perspective. This is also required in order
to record events with statistical variables. In the simplest case each element ω of
a reference set � refers to a specific situation, and there is a statistical variable

(X ,E) : � −→ X̃ × Ẽ

X (ω) records properties of the situation ω, and E(ω) shows the type of the event
that has happened.

4. Functional event models

Instead of referring to events which actually have occurred one can think about
possible events which might occur in the future (or which might have occurred in
the past). This motivates the construction of models that show how the possible
occurrence of events depends on identifiable conditions. In the following we
consider event models which are defined as functional models (see Chapter 4)
containing at least one event variable.

A special feature of such models is that functions with a dependent event variable
always require a temporal interpretation. Such functions determine how events
might occur and the corresponding event variables get their values. Consequently,
any variable which functionally depends on an event variable is also an event
variable. The following model can serve as an example:

Ë0
f1−→→ Ė1

f2−→→ Ė2 (7.1)

When defining the stochastic function f1 one has to take into account that Ė1
can take a specific value only after a specific value of Ë0 has been realized.
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Therefore, the following notation will be used:

j0 −→ Pr[Ė1 ‖ Ë0 = j0]
The symbol ‖ indicates that the conditional distribution refers to a situation in
which the conditions (given on the right of the ‖ symbol) are already realized
facts.3 In the same way, the stochastic function f2 is written

j1 −→ Pr[Ė2 ‖ Ė1 = j1]
in order to indicate that the realization of a specific value of Ė1 must temporally
precede the realization of a specific value of Ė2.

5. Models for single situations

In the simplest case an event model refers to a generic situation specified by two
variables: A deterministic contextual variable Ẍ which records relevant properties
of the situation,4 and a stochastic event variable Ė specifying the events which
might occur. The model then stipulates a stochastic function

x −→ Pr[Ė‖ Ẍ = x] (7.2)

defining how the probabilities of the possible events depend on values of the
contextual variable Ẍ .

Several event variables for the same generic situation may be defined. The
following diagram illustrates a simple model with two event variables Ė1 and Ė2:

Ẍ −→→ (Ė1, Ė2)

There is now a two-dimensional endogenous event variable (Ė1, Ė2), and the
corresponding stochastic function is

x −→ Pr[Ė1, Ė2 ‖ Ẍ = x] (7.3)

showing how the probability distribution of (Ė1, Ė2) depends on values of Ẍ . If one
assumes that both event variables refer to only one event type (Ẽ1 = Ẽ2 = {0,1}),
possible values are:

Ė1 Ė2

1 0 the Ė1 event occurs first
0 1 the Ė2 event occurs first
1 1 both events occur simultaneously
0 0 no event occurs

The last case is impossible because we have assumed that a situation continues
until at least one event occurs; (Ė1, Ė2) therefore has the range (Ẽ1 × Ẽ2)∗ =
{(1,0), (0,1), (1,1)}.
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6. Consecutive situations

Instead of a single situation one can consider two or more consecutive situations.
This allows models where event probabilities also depend on the occurrence of
events in earlier situations. The school example discussed in Section 6.2 will
be used for an illustration. There are two situations, σ1 and σ2. Depending on
the parents’ educational level, the decision about the type of the child’s school
is made in σ1. This is captured by a contextual variable Z̈ with possible values
0 (low) and 1 (higher educational level) and an event variable Ė1 with possible
values

Ė1 =
{

1 ≡ the child visits a school of type 1

2 ≡ the child visits a school of type 2

Then follows situation σ2: the child visits a school of the previously decided type
and an event variable Ė2 with possible values

Ė2 =
{

1 ≡ the school was not successfully completed

2 ≡ the school was successfully completed

records the educational success. The context for Ė2 is given by the parents’
educational level and the type of the school.

There are now two possibilities to express the dependence of Ė2 on this
context. If σ2 is viewed as an isolated situation, the context can be represented by
deterministic variables. This corresponds to version (a) in the following diagram:5

(7.4)
(a) Ė2

Ë1

Z̈ �����
������
�����
����� (b) Ė2

Ė1

Z̈
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�����
������
�����
�����

Ë1 is then a deterministic variable representing the child’s school type.6 On the
other hand, in version (b), Ė1 is an endogenous variable with the implication that
the model refers to two consecutive situations. There is a stochastic function

z −→ Pr[Ė1 ‖ Z̈ = z]
for the situation σ1 which determines how Ė1 gets its value; and there is another
stochastic function

(z, j1) −→ Pr[Ė2 ‖ Z̈ = z, Ė1 = j1]
that determines, depending on the outcome of σ1, how Ė2 gets a value in the
consecutive situation σ2.

7. Ramification of situations

Models may become slightly more complicated when a situation allows realiza-
tions of two or more event variables because different consecutive situations may
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arise depending on the realized event. To illustrate, we consider couples living
in a consensual union. There are two event variables: Ė1 takes the value 1 (if the
couple marries) or 2 (if the couple separates or one partner dies), and Ė2 takes the
value 1 if the woman becomes pregnant. In addition there is a contextual variable
Z̈ characterizing the situation.7 As shown in the following diagram there are now
two (or more) follow-up situations:

(7.5)Z̈
σ1�� (Ė1, Ė2) ��������

������

σ21

σ22

Ė1

(Ė2, Ė3)

The stochastic function

z −→ Pr[Ė1, Ė2 ‖ Z̈ = z]
for situation σ1 determines the generation of values for Ė1 and/or Ė2. If a pregnancy
comes first the resulting situation is σ21, and the couple can marry or separate.
Correspondingly, there is a stochastic function

z −→ Pr[Ė1 ‖ Z̈ = z, Ė2 = 1]
On the other hand, if the first event is a realization of Ė1, what follows depends
on which type of event occurred. The model considers a new situation only as a
result of the event Ė1 = 1 (marriage). If this event happens the new situation is
σ22, and a pregnancy as well as a separation becomes possible. However, to record
the possibility of a separation one cannot use the variable Ė1 because this variable
already received a specific value (Ė1 = 1) in σ1. Therefore, one needs another
event variable, called Ė3 in the example, to express this possibility.8 There is then
a new situation σ22 with a corresponding stochastic function

z −→ Pr[Ė2, Ė3 ‖ Z̈ = z, Ė1 = 1]
A further possibility is that both event variables get a value in σ1. The process
considered by the model depicted in (7.5) is then finished.

The example shows that one needs to specify a separate (stochastic) function
when a situation depends on the outcome of a previous situation.9 The example
also illustrates the two kinds of conditional distributions distinguished in § 4.
Pr(Ė1 = 1 ‖ Z̈ = z, Ė2 = 1) is the probability of a marriage in a situation that
followed a previous pregnancy. On the other hand, Pr(Ė1 = 1 | Z̈ = z, Ė2 = 1)
refers to the situation σ1 and provides the probability that, given a pregnancy, the
couple simultaneously marries.

7.2 Event models with time axes

1. Time axes for situations

The models discussed in the previous section relate to generic situations (situations
of a specific type) which provide the context for the occurrence of events
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(of specific predefined types). It was assumed that a situation continues until the
first occurrence of an event whereby a new situation begins. This approach suffices
if one is only interested in probabilities for the occurrence of events. However,
often one is also interested in the duration of situations until events occur or in
the dependence of event probabilities on changing conditions. This requires an
explicit representation of the situation’s temporal extension.

To provide this representation, a deterministic variable T̈ will be used that
records the duration since the beginning of a situation. It will be assumed that T̈
has a discrete range T0 = {0,1,2, . . .} which allows one to think of a situation as a
sequence of temporal locations. The beginning of a situation can, in most cases, be
defined by referring to an event by which the situation comes into being. In these
cases it will be assumed that the temporal location in which the event occurs equals
the temporal location T̈ = 0 of the following situation. Therefore, two successive
events may occur in the same temporal location. A person, for example, can fall
ill and then recover during the same day.

2. Time-dependent event probabilities

A time axis allows the making of event probabilities dependent on the duration
since the beginning of a situation. However, a time axis is not automatically implied
by event models; it must be explicitly constructed. Consider an event variable Ė
with range Ẽ = {0,1, . . . ,m} which is defined for a situation σ . If T̈ records the
duration since the beginning of the situation, one can consider duration-dependent
event probabilities

rj(t) := Pr(Ė = j‖ T̈ = t) (7.6)

The condition T̈ = t says that the situation has continued until the temporal location
t and implies that no event occurred before t. The function rj(t) will be termed
a risk function. It provides the probability for the occurrence of an event Ė = j
in the temporal location t under the condition that the situation has not ended
before t. Also possible is the definition of a summarized risk function

r(t) :=
∑
j∈Ẽ∗

rj(t) (7.7)

which provides the probability for the occurrence of any event in temporal location
t under the condition that the situation has not ended before t.

Since T̈ is a deterministic variable it can only be used to express conditions.
However, starting from (7.6) one can also define a stochastic variable Ṫ (having
the same range as T̈ ) that records the duration until the situation ends by some
event. The distribution of Ṫ can be characterized by a survivor function

G(t) := Pr(Ṫ ≥ t) =
t−1∏
k=0

(1 − r(k))
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with G(0) = Pr(Ṫ ≥ 0) = 1, and one gets the equation

r(t) = Pr(Ṫ = t)

Pr(Ṫ ≥ t)
= Pr(Ṫ = t)

G(t)

3. Non-occurring events

Since situations continue until at least one event occurs, models without an explicit
time axis do not allow the defining of probabilities for the non-occurrence of
events. This becomes possible, however, if one can view a situation as a sequence
of temporal locations. If Ė is an event variable one can use the definition

Pr(Ė = 0‖ T̈ = t) := 1 − r(t) (7.8)

and interpret this as the probability that no event (of a type specified by the range
of Ė) occurs in the temporal location t.

4. Aggregation of temporal locations

Beginning with duration-dependent event probabilities, models which abstract
from durations (like those discussed in Section 7.1) can be derived by aggregation
over temporal locations. A simple summation

Pr(Ė = j) =
∞∑

t=0

rj(t)Pr(Ṫ ≥ t) (7.9)

provides the probability of the occurrence of an event Ė = j in the situation for
which the event variable Ė is defined.

As an illustration consider an event variable Ė with the range Ẽ := {0,1,2}
which is defined for a situation σ . Assuming time-constant risk functions r1(t) =
0.1 and r2(t) = 0.2, the following table shows how the process evolves until t = 5:

t Pr(Ṫ ≥ t) Pr(Ė = 1, Ṫ = t) Pr(Ė = 2, Ṫ = t) Pr(Ṫ = t)

0 1.000 0.100 0.200 0.300
1 0.700 0.070 0.140 0.210
2 0.490 0.049 0.098 0.147
3 0.343 0.034 0.069 0.103
4 0.240 0.024 0.048 0.072
5 0.168 0.017 0.034 0.050

Using (7.9), summation of the time-dependent probabilities provides the overall
event probabilities Pr(Ė = 1) = 1/3 and Pr(Ė = 2) = 2/3.

It is remarkable that knowing a risk function rj(t) does not suffice to calculate

event probabilities Pr(Ė = j). In addition one needs the survivor function G(t)
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or, equivalently, the summarized risk function r(t) defined in (7.7). It is therefore
possible that an event probability Pr(Ė = j) changes its value without a change
in the corresponding risk function rj(t). For instance, using a risk function
r2(t) = 0.15 instead of r2(t) = 0.2 in the example just considered would result in
event probabilities Pr(Ė = 1) = 0.4 and Pr(Ė = 2) = 0.6.

5. Situations with several event variables

Aggregation over temporal locations is also possible if several event variables are
defined for a situation. To illustrate we continue with the example from Section 7.1
(§ 7). In this example, there are two event variables: Ė1 records whether a couple
living in a consensual union marries or separates, and Ė2 records whether the
woman becomes pregnant. Introducing a time axis allows the definition of a two-
dimensional risk function

rj1j2
(t) = Pr(Ė1 = j1, Ė2 = j2 ‖ T̈ = t) (7.10)

providing duration-dependent event probabilities. By aggregating over temporal
locations one can then derive the model of Section 7.1 (§ 7) that abstracts from
the temporal extension of the situation. The following table shows time-constant
risk functions that can be used for a simple illustration.

j1 j2 rj1j2
(t) Pr(Ė1 = j1, Ė2 = j2)

1 0 0.10 0.30
2 0 0.16 0.48
0 1 0.05 0.15
1 1 0.01 0.03
2 1 0.01 0.03

Aggregation can be done with formula (7.9) and results in the overall event prob-
abilities shown in the right column. They approximately equal the probabilities
used for the illustration in Section 7.1.

6. Static and dynamic contextual variables

In models with duration-dependent event probabilities (risk functions) one can use
static as well as dynamic contextual variables. Model specification then requires
the definition of context-dependent risk functions having the general form

(t,z,xt) −→ Pr(Ė = j‖ T̈ = t, Z̈ = z, Ẍ t = xt)

In this expression Ė is the dependent event variable; Z̈ is a static contextual
variable, and Ẍ t is a dynamic contextual variable with values that can depend
on the temporal location t. The notation indicates that T̈ can also be considered
as a dynamic contextual variable.
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Event variables can be used as contextual variables when they have already
assumed a specific value. Because those values cannot change, these are static
contextual variables. Conditional event probabilities have the form

Pr(Ė = j‖ T̈ = t, Ė′ = j′, . . .)

In this expression Ė′ is a contextual variable that has assumed the value j′, meaning
that an event Ė′ = j′ already has occurred in some temporal location not later than
t. In any case, our interpretation of ‖ implies that Ė′ = j′ is a realized condition
for the possible occurrence of Ė = j.

7. Time axes for consecutive situations

In the models so far considered the time axis is reset to zero whenever a new
situation begins. Sometimes it is easier to use a single time axis T̈ that starts with
the model’s first situation and records durations since then through all subsequent
situations. The following model may serve as a simple example:

Ë0 −→→ Ė1 −→→ Ė2

As soon as some event Ë0 = j0 has taken place the first situation begins in the
temporal location T̈ = 0. Risk functions for this situation can therefore be defined
as

rj1
(t; j0) := Pr(Ė1 = j1 ‖ T̈ = t, Ë0 = j0)

If now an event Ė1 = j1 occurs and the time axis is not reset there are two
possibilities to define stochastic functions for the event variable Ė2. One can use
conditional probabilities of the form

Pr(Ė2 = j2 ‖ T̈ = t, Ė1 = j1) (7.11)

where the condition says that the current situation continued at least until the
temporal location t and the event Ė1 = j1 occurred in some temporal location before
or at t. An additional notation is necessary if one wants to take into consideration
when that event occurred. To allow flexible notations, we use an operator τ (Ė)
that records the temporal location in which the event variable Ė got for the first
time a specific value.10 Instead of (7.11) one can then use an expression of the
form

Pr(Ė2 = j2 ‖ T̈ = t, Ė1 = j1,τ (Ė1) = t1) (7.12)

which, of course, implies t ≥ t1, and this allows the defining of a risk function

rj2
(t; j1, t1) := Pr(Ė2 = j2 ‖ T̈ = t1 + t, Ė1 = j1,τ (Ė1) = t1)

for Ė2. The definition conforms with the assumption of § 1 that whenever an event
occurs in a temporal location t the following situation begins in the same temporal
location.
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7.3 Dynamic causality

1. Introductory remarks

The discussion of functional causality in Chapter 5 was based on a comparative
notion of cause referring to two different values of a state variable. However, state
variables rarely refer to events. In the current section causes will be conceived
as events. We speak then of dynamic causes and, correspondingly, of a dynamic
conception of causality.

This does not immediately imply a specific notion of effect. While an often
meaningful idea is that events can set off processes, or modify already ongoing
processes, this idea is difficult to make precise. We therefore begin with a
narrower approach that again refers to events. However, in most cases it is not
possible to define effects directly as events because a dynamic cause only changes
probabilities for the occurrence of other events. The leading idea therefore will
be that the dynamic effect of an event e consists in changes of subsequent event
probabilities which are attributable to the occurrence of e.

It is evident, then, that one needs models that specify the possible events to be
used for statements about effects (= changes of event probabilities). The following
considerations use event models as discussed in the two previous sections. Events
then consist in event variables assuming specific values.11

2. A definition of dynamic causality

How can one attribute specific effects to the occurrence of an event? Our approach
is based on a comparison of two situations: one in which the event has occurred
and another one in which the event has not occurred. The formal definition refers
to a model that contains an event variable Ė1 (or a deterministic event variable
Ë1) that allows one to speak of an event Ė1 = j1 (or Ë1 = j1). Possible effects can
be considered with respect to all events Ė2 = j2 given that also Ė2 belongs to the
supposed model and there is a directed path leading from Ė1 to Ė2. This implies
the existence of a conditional probability

Pr(Ė2 = j2 ‖ Ė1 = j1, Z̈ = z)

where Z̈ covers all contextual variables which are possibly relevant for the
probability of the event Ė2 = j2, and allows the following definition: The dynamic
effect of the event Ė1 = j1 with respect to the possible event Ė2 = j2 in the context
Z̈ = z is12

Pr(Ė2 = j2 ‖ Ė1 = j1, Z̈ = z) − Pr(Ė2 = j2 ‖ Ė1 = 0, Z̈ = z) (7.13)

It is assumed that the expression on the right-hand side is zero if the event
Ė2 = j2 is only possible after the event variable Ė1 has got a specific value. In
the following paragraphs we use some examples for a discussion of this definition
and also explore a notion of time-depending effects.
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3. Illustration with a random generator

The first example is a random generator without contextual variables:

Ë0
σ1−→→ Ė1

σ2−→ Ė2

The exogenous event variable Ë0 with range Ẽ0 = {0,1} records whether a die has
been thrown. If this happens the situation σ1 begins in which the event variable Ė1
with range Ẽ1 = {0,1, . . . ,6} records the result. The die is assumed to be unbiased
so that

Pr(Ė1 = j ‖ Ë0 = 1) = 1/6 ( j = 1, . . . ,6) (7.14)

Then follows the situation σ2 in which the event variable Ė2 with range Ẽ2 =
{0,1,2} records which type of action occurs. For simplicity it is assumed that
Ė2 = 1 if Ė1 gives an uneven result and Ė2 = 2 if Ė1 gives an even result so that
Ė1 and Ė2 are connected by a deterministic function.

What effects can be attributed to the events that can occur in this model? First,
consider the event Ë0 = 1, the throw of the die. The model provides probabilities
for values of Ė1 and Ė2. To apply the definition of § 2 one also has to consider a
situation in which the die is not thrown. However, in the context of the current
model, no specific value for Ė1 is then possible, implying that Pr(Ė1 = j ‖ Ë0 =
0) = 0 and the dynamic effects of the event Ë0 = 1 are already given by (7.14).

Now consider an endogenous event, for example Ė1 = 1. The model provides
the conditional probabilities

Pr(Ė2 = 1‖ Ë1 = 1) = 1 and Pr(Ė2 = 2‖ Ë1 = 1) = 0

and again, these probabilities express the dynamic effects of Ė1 = 1 because, in
this model, Ė1 �= 0 is a necessary condition for a specific value of Ė2, implying
that Pr(Ė2 = 1‖ Ë1 = 0) = Pr(Ė2 = 2‖ Ë1 = 0) = 0.

4. Two kinds of modal comparisons

Following the definition of § 2, in order to calculate the dynamic effect of an
event Ė = j one has to compare a situation in which the event has occurred with
a situation in which Ė has not yet any specific value. A quite different approach
would be to compare a situation in which the event Ė = j has occurred with a
situation in which another event, say Ė = j′, has occurred.

The school example discussed in Section 7.1 (§ 6) can serve to illustrate the
differences. As possible causes one can consider the events Ė1 = 1 (the child
visits a school of type 1) and Ė1 = 2 (the child visits a school of type 2). Following
the definition of § 2 one can attribute dynamic effects with respect to possible
values of Ė2 to each of these events separately; and because Ė1 must assume
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some specific value before any event Ė2 = j2 can occur, these dynamic effects are
directly given by the context-dependent probabilities

Pr(Ė2 = j2 ‖ Ė1 = 1, Z̈ = z) and Pr(Ė2 = j2 ‖ Ė1 = 2, Z̈ = z)

Of course, one can afterwards compare the effects of Ė1 = 1 and Ė1 = 2; but this
is not required for a calculation of the effects that can be attributed to both events
separately.

It is noteworthy that the kind of comparison which is used for the definition
of dynamic causality in § 2 is possible only with event variables, not with state
variables. Because state variables always assume some specific value one can only
compare implications of different values (as was done in the definition of effects
of comparative causes in Chapter 5).

5. Exogenous intervening causes

So far we have discussed examples where an event variable Ė1 (specifying a
cause) must assume some specific value in order that an event Ė2 = j2, specifying
an effect, can occur. We speak of intervening causes if this is not the case. The
following model provides a simple illustration.

(7.15)

Ë0
�� Ė2

Ë1
����

The event Ë0 = 1 means that a person falls ill. Subsequently the person can
recover (Ė2 = 1) or die (Ė2 = 2). Also possible is an event Ë1 = 1 that
consists in the application of some therapy. The difference from the examples
considered in previous paragraphs is that events Ė2 = j2 do not require that Ë1 has
already assumed some specific value. Therefore two conditional distributions are
necessary for a full specification:

Pr(Ė2 = j2 ‖ Ë0 = 1, Ë1 = 1) and Pr(Ė2 = j2 ‖ Ë0 = 1, Ë1 = 0)

Effects of the event Ë1 = 1 with respect to the possible events Ė2 = 1 and Ė2 = 2
can then be calculated from these probabilities.

6. Endogenous intervening causes

We now consider the possibility of defining intervening causes by an endogenous
event variable. To illustrate the discussion we take up the example of Section
7.1 (§ 7) which refers to consensual unions. To connect to the discussion in the
previous paragraph the following notation is used: A consensual union begins with
the event Ë0 = 1, Ė2 records whether the couple marries (Ė2 = 1) or separates
(Ė2 = 2), and Ė1 = 1 records the occurrence of a pregnancy. The question
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concerns the effect of a pregnancy on the probability of a marriage. Ė1 = 1 is
obviously an intervening cause (if at all).

Since Ė1 is now an endogenous event variable, the beginning of a consensual
union (Ë0 = 1) implies some probability for the occurrence of an event Ė1 (to be
considered as an intervening cause). To provide a graphical picture one could
replace Ë1 by Ė1 in (7.15) and add an arrow from Ë0 to Ė1. However, the
diagram would be misleading because it would obscure the fact that, after forming
the consensual union, both event variables, Ė1 and Ė2, can get specific values.
Preferable is therefore a graphical illustration like (7.5) in Section 7.1. For the
current discussion a simplified version suffices:

Ë0
σ1−→→ (Ė1, Ė2)

σ2−→→ Ė2 (7.16)

Corresponding to situation σ1 there are conditional probabilities

Pr(Ė1 = j1, Ė2 = j2 ‖ Ë0 = 1)

from which probabilities of a marriage and a separation before, or simultaneous
with, the occurrence of a pregnancy, follow:

Pr(Ė2 = j2 ‖ Ë0 = 1) =
Pr(Ė1 = 0, Ė2 = j2 ‖ Ë0 = 1) + Pr(Ė1 = 1, Ė2 = j2 ‖ Ë0 = 1)

Relevant for the causal question is a subsequent situation σ2 that follows when, in
the first situation, a pregnancy, but neither a marriage nor a separation occurs.
In this situation either a marriage or a separation occurs, with corresponding
probabilities given by

Pr(Ė2 = j2 ‖ Ë0 = 1, Ė1 = 1)

Dynamic effects of a pregnancy can finally be calculated by the difference

Pr(Ė2 = j2 ‖ Ë0 = 1, Ė1 = 1) − Pr(Ė2 = j2 ‖ Ë0 = 1)

Using the numerical values from Section 7.1 (§ 7) one finds that a pregnancy
increases the probability of a marriage by 0.6 − 0.33 = 0.27 and decreases the
probability of a separation by 0.4 − 0.51 = −0.11.

7. Concurrent causes

Concurrent causes can occur if the probability of an event depends on two (or
more) different event variables. The following example is often discussed in the
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philosophical literature:

Fred goes into the desert. He has two enemies, Zack and Mack: Zack aims to
poison him by putting poison in his water-bottle; Mack aims to cause him to
die of dehydration by punching a hole in his bottle.

(Barker 2004: 124)

In order to set up a model, the following event variables are used: Ë1 = 1 if Mack
punches a hole in the water-bottle, Ë2 = 1 if Zack puts poison in the water-bottle,
Ė′

2 = 1 if Fred drinks the poisoned water, Ė3 = 1 if Fred dies. The functional
relationships are assumed as follows:

(7.17)
Ë1

�� Ė3

Ë2
��

������

������
Ė′

2
������

������

The model allows the consideration of several causal questions. In any case, one
needs the conditional probabilities

Pr(Ė3 = 1 | Ë1 = j1, Ë2 = j2) =
Pr(Ė3 = 1 | Ë1 = j1, Ė′

2 = 0)Pr(Ė′
2 = 0 | Ë1 = j1, Ë2 = j2)+

Pr(Ė3 = 1 | Ë1 = j1, Ė′
2 = 1)Pr(Ė′

2 = 1 | Ë1 = j1, Ë2 = j2)

To illustrate, the following values are assumed:

j1 j2 E(Ė′
2 | Ë1 = j1, Ë2 = j2)

0 0 0.0
0 1 0.9
1 0 0.0
1 1 0.8

j1 j′2 E(Ė3 | Ë1 = j1, Ė′
2 = j′2)

0 0 0.0
0 1 0.90
1 0 0.85
1 1 0.95

One then finds: If Ë2 = 0, the occurrence of Ë1 = 1 raises the probability of
Fred’s death from zero to 0.85; and if Ë1 = 0, the occurrence of Ë2 = 1 raises
the probability of Fred’s death from zero to 0.81. The philosophical discussion
mainly concerns a situation where both events occur simultaneously. There are
then different possibilities to describe effects. One can consider a joint effect:
E(Ė3 | Ë1 = 1, Ë2 = 1) = 0.93. Alternatively, one can consider each event as a
covariate context for the other event resulting in

E(Ė3 | Ë1 =1, Ë2 =1) − E(Ė3 | Ë1 =0, Ë2 =1) = 0.93 − 0.89 = 0.04

E(Ė3 | Ë1 =1, Ë2 =1) − E(Ė3 | Ë1 =1, Ë2 =0) = 0.93 − 0.85 = 0.08
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In both cases, the events contribute positively to the probability of Fred’s death.
This depends, however, on the chosen parameters. For example, assuming deter-
ministic preemption (E(Ė′

2 | Ë1=1, Ë2=1) = 0 instead of 0.8), the contribution of
Ë2 = 1 would disappear:

E(Ė3 | Ë1 =1, Ë2 =1) − E(Ė3 | Ë1 =1, Ë2 =0) = 0.85 − 0.85 = 0

8. Time-dependent dynamic effects

If an event model contains a time axis one can consider time-dependent dynamic
effects. In the simplest case there are two event variables, Ė1 and Ė2, and Ė2 can
assume a specific value only if some event Ė1 = j1 has occurred earlier. This
implies that Pr(Ė2 = j2 ‖ Ė1 = 0) = 0, and time-dependent effects of an event
Ė1 = j1 can directly be expressed by a risk function

Pr(Ė2 = j2 ‖ Ė1 = j1, T̈ = t)

where it is assumed that the time axis T̈ begins with the occurrence of the event
Ė1 = j1.

Intervening causes require a slightly different approach. We begin with the
model discussed in § 5. If the exogenous cause Ë1 = 1 occurs in a temporal location
τ (Ë1) = t1 one can first consider a risk function

rj2
(t;1, t1) := (7.18)

Pr(Ė2 = j2 ‖ Ë0 = 1, Ë1 = 1,τ (Ë1) = t1, T̈ = t1 + t)

that begins at t1. A sensible comparison arises from assuming that an event
Ë1 = 1 did not occur until, and including, the temporal location t1 which allows
consideration of a risk function

rj2
(t;0, t1) := Pr(Ė2 = j2 ‖ Ë0 = 1, Ë1 = 0, T̈ = t1 + t) (7.19)

The time-dependent effect of an event Ë1 = 1 that occurs in t1 can be defined,
then, by the difference of the risk functions (7.18) and (7.19):

Time-dependent effect = rj2
(t;1, t1) − rj2

(t;0, t1) (7.20)

It is thus possible that the effect not only depends on the duration since the
occurrence of the cause, but also on the temporal location t1, that is the duration
between the beginning of the process, defined by Ë0 = 1, and the occurrence of
the cause Ë1 = 1.

Since the risk functions in (7.18) and (7.19) can also be defined if an endogenous
event variable Ė1 is used instead of Ë1, the same approach can be used to express
time-dependent effects of endogenous intervening causes.
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9. Local and integrated effects

The definition (7.20) relates to risk functions and therefore provides effects which
are temporally local. A further question is how an intervening cause changes
the overall probability (integrated over all subsequent temporal locations) for
the occurrence of another event. An answer can be derived analogously to the
reasoning in Section 7.2 (§ 4).

As an illustration consider again the model (7.15). In order to calculate the
integrated effect of a cause Ë1 = 1 that occurred in a temporal location t1 one
needs the risk functions defined in (7.18) and (7.19) and also probabilities for
the continuation of the situation that began in t1. Since these probabilities also
depend on whether the cause event occurred, two different duration variables and
distributions are required: A duration variable Ṫ1 with distribution

Pr(Ṫ1 ≥ t1) =
t−1∏
k=0

(1 − r(k;1, t1)

where r(k;1, t1) := ∑
j rj(k;1, t1), records the situation’s duration if the cause

event Ë1 = 1 occurred in t1; and another duration variable Ṫ0 with an analogously
defined distribution records the situation’s duration if the cause event did not occur
in t1. An integrated effect can then be calculated as the difference

∞∑
t=0

rj2
(t;1, t1)Pr(Ṫ1 ≥ t) − rj2

(t;0, t1)Pr(Ṫ0 ≥ t) (7.21)

To illustrate we use the constant risk functions of the example in Section 7.2 (§ 4):
r1(t;0, t1) = 0.1 and r2(t;0, t1) = 0.2. This implies that the integrated effect does
not depend on the temporal location in which the cause event occurred, so one can
simply assume that due to the occurrence of an event Ë1 = 1, the risk functions
change to r1(t;1, t1) = 0.15 and r2(t;0, t1) = 0.25. The integrated effect of the
event Ë1 = 1 is then

for Ė2 = 1: 0.375 − 1/3 ≈ 0.042

for Ė2 = 2: 0.625 − 2/3 ≈ −0.042

The example shows again that no simple relationship exists between risk functions
and temporally integrated event probabilities.



8 Multilevel and population-level
models

8.1 Conceptual frameworks
1. Deterministic population-level models
2. Populations without identifiable units
3. Distribution-dependent regression functions
4. Corresponding individual-level models?
5. A version of multilevel models
6. Stochastic population-level models
7. Deriving multilevel models
8. Endogenous population-level variables

8.2 Models of statistical processes
1. Process frames and models
2. Simple diffusion models
3. Pure individual-level models
4. Modeling interdependencies

8.3 Functional causality and levels
1. Distribution-dependent causation
2. Effects of changing distributions
3. Population-level effects
4. Relationships between levels
5. Self selection with constraints
6. Time-dependent effects
7. Mixing group-level effects

Functional models can be constructed for any kind of object or situation as far as
their properties can be represented by variables. An interesting distinction arises
if one considers a collection of individual units, say � = {ω1, . . . ,ωn}. Functional
models may then refer either to individual members of �, or to � as a set. In
the former case, models connect variables characterizing individual members of
�; such models will therefore be called individual-level models. In the latter case
models connect statistical variables or distributions that characterize � as a set of
individual units; such models will be called population-level models.

The two types of models correspond to different questions. The school example
introduced in Section 4.3 provides an illustration. On the one hand, one can refer
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to an individual child and ask how his or her educational success depends on the
school type and the parents’ educational level. This is the question of an individual-
level model. On the other hand, one can refer to a population of children and ask
in which way the proportion of successful children depends on the distribution
of school types and parents’ educational levels. This would be the question of a
population-level model.

Statistical social research is predominantly concerned with individual-level
models.1 It is important to recognize, however, that answers to questions concern-
ing connections between statistical distributions cannot, in general, be answered
from individual-level models. They require population-level models which allow
taking into account constraints and interdependencies at the population level. In
fact, this may already be necessary for questions relating to the individual level.
It will often be the case that what happens on the individual level depends on
circumstances to be defined on a population level. Individual-level models must
then be extended into (some version of) multilevel models.

Collections of individual units can be small (e.g. classes), or of intermediate
size (e.g. neighborhoods and communities), or represent whole countries. In this
chapter, I indiscriminately speak of populations and do not consider distinctions
relating to their size. The first section introduces conceptual frameworks for
deterministic and stochastic population-level models. These models relate to
statistical populations consisting of individual units which cannot be identified
and therefore differ from models for structured units (as defined in Section 2.2).
The first section also introduces a version of multilevel models which combine
individual-level and population-level variables. The second section briefly dis-
cusses models of statistical processes using diffusion models for an illustration.
The third section takes up the notion of functional causality, introduced in
Chapter 5, and discusses how this notion can be used for multilevel and
population-level models.

8.1 Conceptual frameworks

1. Deterministic population-level models

Suppose that a deterministic individual-level model, say Ẍ −→ Ÿ , is applicable
to all members of a fixed reference set � = {ω1, . . . ,ωn}. The ranges of Ẍ and Ÿ
will be denoted by X̃ and Ỹ , respectively.

In a first step one can arbitrarily create values of Ẍ for each ω ∈ � and thereby
create values of a statistical variable X : � −→ X̃ . This implies a statistical
distribution P[X ]. Given then, for each member of �, a value of Ẍ , one can
use the individual-level model to derive corresponding values of Ÿ and thereby
create values of a statistical variable Y : � −→ Ỹ that implies a distribution P[Y ].
In this way, the individual-level model for the members of � can be used to
construct a functional model for � that associates with each distribution P[X ]
another distribution P[Y ].
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Notice that the derived model for � connects modal variables, but variables
of a special kind, having statistical distributions as values. Such variables will be
called deterministic population-level variables and denoted by Ẍ∗, Ÿ ∗, and so on.
Ranges of possible values will be denoted, respectively, byD[�, X̃ ],D[�, Ỹ], and
so on. For example, D[�, X̃ ] is the set of all distributions of variables X :�−→ X̃
which can be defined for � with the property space X̃ .2 Of course, population-
level variables can also refer to quantities derived from statistical distributions
(e.g. the number of units exhibiting some specified property), and ranges will then
be different from the standard form.

Using these notations, the model just considered can be depicted by a diagram
of the following form:

Ẍ∗ −→ Ÿ ∗ (8.1)

where the arrow −→ refers to a deterministic function which assigns to each
possible value of Ẍ∗ exactly one value of Ÿ ∗. It is a functional model for �

that shows how values of the endogenous variable Ÿ ∗ depend on values of the
exogenous variable Ẍ∗. So it is an example of a deterministic population-level
model.

2. Populations without identifiable units

In accordance with the statistical approach it will be assumed that population-
level models concern populations whose individual members cannot be identified.
Values of population-level variables are therefore taken as statistical distributions
(or quantities derived from such distributions). When referring to the statistical
variables from which the distributions are derived, one must bear in mind that
population-level models do not distinguish between statistical variables having
the same distribution.

In order to emphasize the statistical approach in which individual units are not
identifiable, we avoid using vector-valued population variables having the form
(Ẍ1, . . . , Ẍ n) where the components refer to the individual members of �. This
notation is only useful if the purpose is to develop models for structured units (as
defined in Section 2.2). Moreover, it must be kept in mind that the population-
level models considered in the present chapter do not refer to structured units but
to statistical populations, and hence that assumptions about relational structures
must not presuppose that individual units can be identified.

3. Distribution-dependent regression functions

The model in (8.1) connects two marginal distributions. In order to use conditional
distributions the model must be extended to

Ẍ∗ −→ (Ẍ , Ÿ )∗
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that associates with each distribution P[X ] a two-dimensional distribution P[X ,Y ]
having P[X ] as a marginal distribution. Only in the extended formulation can a
regression function

x −→ P[Y |X = x]
be formulated. However, this regression function may also depend on P[X ] (to be
distinguished from the value x). It will be called, then, a distribution-dependent
regression function and written as

(x,P[X ]) −→ P[Y |X = x, Ẍ∗ = P[X ]] (8.2)

As an example, think of a population, �, consisting of n persons who want to use
a train. The train has two classes ( j = 1,2), and sj is the number of seats in class j.
Variables are defined as X (ω) = j if ω buys a ticket for class j, and Y (ω) = 1 if ω

gets a seat (in the class for which he or she bought a ticket), otherwise Y (ω) = 0.
Due to the constraint that results from the limited number of seats, the regression
function will be dependent on the distribution of X . As an example one can think
of a function

P(Y = 1 |X = j, Ẍ∗= P[X ]) = min{1,sj/(nP(X = j))} (8.3)

4. Corresponding individual-level models?

If a population-level model results from independent repetitions of an individual-
level model, as was assumed in § 1, it obviously leads to distribution-independent
regression functions. On the other hand, starting from a population-level model
that implies distribution-dependent regression functions, it is impossible to specify
a corresponding pure individual-level model. The reason is simply that it is then
necessary to refer to a statistical distribution, and this requires a population-level
variable.

The example of the previous paragraph can serve to illustrate the argument.
It is quite possible to define an individual-level variable, Ẍ , that records whether
a person buys a first or second class ticket. Similarly, it is possible to define an
individual-level dependent variable. This obviously must be a stochastic variable,
say Ẏ , with Ẏ = 1 if the person gets a seat, and otherwise Ẏ = 0. However, there is
no function x −→ Pr[Ẏ | Ẍ = x] because the relationship between Ẍ and Ẏ depends
on the distribution of a statistical variable, X , that provides the distribution of
tickets bought in the relevant population.

5. A version of multilevel models

A stochastic version of distribution-dependent regression functions (as exempli-
fied by (8.2)) has the following form:

(x,P[X ]) −→ Pr[Ẏ | Ẍ = x, Ẍ∗ = P[X ]] (8.4)
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The corresponding functional model may be depicted as

(8.5)Ẏ
Ẍ∗

Ẍ �����
�����
�����
�����

showing that the probability distribution of the endogenous variable depends not
only on an individual-level variable, Ẍ , but also on a population-level variable, Ẍ∗.

A model of this kind can be called a multilevel model since it combines
individual-level and population-level variables. Corresponding to (8.3), one would
get the formulation

Pr(Ẏ = 1 | Ẍ = j, Ẍ∗ = P[X ]) = min{1,sj/(nP(X = j))} (8.6)

In contrast to the deterministic population-level model (8.3), this model implies
some kind of individual-level stochastic process in which probabilities for getting
a seat are defined for generic individuals. Multilevel models having the form (8.5)
are therefore different from population-level models. Their focus on an individual-
level endogenous variable suggests thinking of these models as a version of
individual-level models that incorporate at least one exogenous population-level
variable. In general, it is not required that the model also includes a corresponding
individual-level variable. A model that contains both variables, say Ẍ∗ and Ẍ , as
assumed in the example, obviously implies restrictions on the idea of independent
repetitions. The assignment of values to Ẍ must be consistent with the specified
distribution Ẍ∗ = P[X ], and must be completed before a value of Ẏ can be
generated. Note that, according to (8.6), the number of persons assigned to seats
may well exceed the number of available seats. (This will be further discussed
in § 8.)

6. Stochastic population-level models

In § 1 a deterministic population-level model was derived from independent
repetitions of a deterministic individual-level model. Instead one can start from
a stochastic model, say Ẍ −→→ Ẏ. As an example think of � as a set of persons.
Values of Ẏ record their educational level, and values of Ẍ record the educational
level of their parents. Both variables are binary, 0 represents a “low” and 1
represents a “high” educational level. The stochastic function is given by

Pr(Ẏ = 1 | Ẍ = 0) = π01 and Pr(Ẏ = 1 | Ẍ = 1) = π11

Now let P[X ] ∈D[�, X̃ ] be the distribution of a statistical variable X , representing
the parents’ educational levels. The number of persons whose parents have a low or
a high educational level are then, respectively, n0 := nP(X =0) and n1 := nP(X =
1). Now, given the distribution P[X ], what can be said about the distribution of
the educational levels of the members of �? Since the individual-level model
is stochastic, it is not possible to derive a unique distribution. Instead one has
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to consider a probability distribution for these distributions, that is, a probability
distribution for the elements of D[�, Ỹ].

In the present example one can use a stochastic variable, say K̇∗, that records
the number of persons in � having a high educational level. Possible values are
k = 0, . . . ,n. Analogously defined are variables K̇∗

0 and K̇∗
1 referring, respectively,

to the subgroups of persons whose parents have a low or a high educational level.
Since values result from independent repetitions, the distributions are given by

Pr(K̇∗
j = k) =

(
nj

k

)
πk

j1(1 −πj1)nj−k

(for j = 0,1), and one gets the mixture distribution

Pr(K̇∗ = k) =
min{k,n0}∑

l=max{0,k−n1}
Pr(K̇∗

0 = l)Pr(K̇∗
1 = k − l)

for K̇∗ = K̇∗
0 + K̇∗

1 . Notice that K̇∗ is not an individual-level variable but refers to
the population. Pr(K̇∗ = k) is the probability of a distribution of educational levels
in �:

Pr(K̇∗ = k) = Probability of (P(Y =1) = k/n)

In contrast to the deterministic population-level variables introduced in § 1, the
variable K̇∗ provides an example of a stochastic population-level variable. The
‘*’ sign is used to distinguish these variables from corresponding individual-level
variables. If not otherwise suggested by the application context, ranges will be
taken as sets of statistical distributions. For example, one might use a stochastic
population-level variable Ẏ ∗ having the range D[�, Ỹ]. There is then, for each
P[Y ]∈D[�, Ỹ], a (conditional) probability Pr(Ẏ ∗= P[Y ]), to be interpreted as the
probability of the statistical distribution P[Y ].

A stochastic population-level model will be defined as a functional model that
has at least one endogenous stochastic population-level variable. In the simplest
case (as illustrated by the example) the model can be depicted as

Ẍ∗ −→→ Ẏ ∗ (8.7)

The model connects a deterministic exogenous variable Ẍ∗ with a stochastic
endogenous variable Ẏ ∗. The functional relationship is stochastic (depicted by
the arrow −→→) and may be written explicitly as

P[X ] −→ Pr(Ẏ ∗= P[Y ] | Ẍ∗ = P[X ]) (8.8)

To each value P[X ] of Ẍ∗ the function assigns a probability distribution for the
possible values of Ẏ ∗.
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7. Deriving multilevel models

The marginal model (8.7) suffices to derive population-level regression functions.
The derivation of a multilevel model that explicitly also refers to the individual
level requires a population-level model Ẍ∗ −→→ (Ẍ , Ẏ )∗ in which, conditional
on a given distribution P[X ], probabilities for the joint distributions P[X ,Y ] are
defined. The stochastic function may be written as

P[X ] −→ Pr((Ẍ , Ẏ )∗ = P[X ,Y ] | Ẍ∗ = P[X ])
and is defined for all distributions P[X ,Y ] ∈ D[�, X̃ × Ỹ] having a fixed marginal
distribution P[X ].

This then allows one to derive a multilevel model in the sense of § 5. The
model includes a deterministic population-level variable Ẍ∗, a correspondingly
defined deterministic individual-level variable Ẍ , and a stochastic individual-level
variable Ẏ . The distribution of Ẏ is defined by

Pr(Ẏ = y | Ẍ = x, Ẍ∗ = P[X ]) :=
∑

P[X ,Y ]∈D[�,X̃×Ỹ]
P(Y = y |X = x)Pr((Ẍ , Ẏ )∗ = P[X ,Y ] | Ẍ∗ = P[X ])

with the understanding that the summation only includes joint distributions
with a given marginal distribution. If there is no distribution-dependence, as in
the example of § 6, the expression reduces to a simple individual-level model
providing values of Pr(Ẏ = y | Ẍ = x). In general, however, one needs a multilevel
model that allows one to take into account distribution-dependent relationships.

8. Endogenous population-level variables

An important task of functional models is to provide explicit representations of the
(substantial) processes that generate the outcomes of interest. Multilevel models
are particularly interesting because they allow one to investigate how individual
outcomes may also depend on endogenously generated values of population-level
variables (statistical distributions). To illustrate, assume that all of the n children in
the population � want to attend a school that has capacity for s children. Selection
depends on an admission test, and the probability of successfully passing the test
depends on the parents’ educational level recorded by X (0 low, 1 high). The
probabilities are, respectively, π0 and π1. Finally, if the number of successful
children is not greater than s, all of them are admitted; otherwise s of them are
randomly selected.

In order to set up a multilevel model the following variables will be used.
Ẍ∗ provides the distribution of parents’ educational levels in the population;
Ẍ is the corresponding individual-level variable. K̇ records whether a generic
individual successfully passes the admission test (1 if successful, 0 otherwise);
the corresponding population-level variable K̇∗ records the number of individuals



118 Multilevel and population-level models

who successfully pass the test. Ẏ = 1 if an individual is accepted to visit the school,
otherwise Ẏ = 0. The model may then be depicted as follows.

(8.9)Ẏ
K̇∗

K̇ �����
�����
�����
�����

Ẍ∗

Ẍ ��

��

Three processes can be distinguished.

(a) The individual-level process Ẍ −→→ K̇ which, by assumption, is not
distribution-dependent and can be independently repeated. The conditional
probabilities are simply given by Pr(K̇ = 1 | Ẍ = j) = πj .

(b) The population-level process Ẍ∗ −→→ K̇∗ which, of course, depends on
the distribution P[X ] given as value of Ẍ∗ but results from independent
repetitions of the individual-level process mentioned in (a). Calculation of
Pr(K̇∗= k | Ẍ∗= P[X ]) can be done as illustrated in § 6.

(c) Finally there is a process that generates values of Ẏ depending on K̇ and
K̇∗. It might be considered as an individual-level process (as suggested in
§ 5). However, examples of this process cannot be realized in the form of
independent repetitions of the individual-level model.

Given a value of K̇∗, a distribution of the population-level variable Ẏ ∗ that records
the number of finally accepted individuals, cannot be generated from independent
repetitions. In fact, in the example a deterministic function connects K̇∗ with Ẏ ∗:

Pr(Ẏ ∗= y | K̇∗= k) =
{

1 if y = min{k,s}
0 otherwise

A reduced individual-level model can further illustrate the limitations and possi-
bilities of independent repetitions (due to constraints on endogenous population-
level variables). One can start from

Pr(Ẏ = 1 | Ẍ = j, Ẍ∗ = P[X ], K̇∗ = k) = πj min
{
1,

s

k

}

Assuming that K̇∗, given Ẍ∗, is (approximately) independent of Ẍ , it is possible
to average over possible outcomes:

Pr(Ẏ = 1 | Ẍ = j, Ẍ∗ = P[X ]) = (8.10)

πj

n∑
k=0

min
{
1,

s

k

}
Pr(K̇∗= k | Ẍ∗= P[X ])

The sum on the right-hand side can be interpreted as the mean proportion of finally
accepted children, measured as part of the children who successfully passed the
test, the mean taken over all possible repetitions of the process. Assuming n = 100,
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Figure 8.1 Dependence of the sum term in (8.10) on P(X = 1) for different values of s.
Parameters: n = 100, π0 = 0.5, and π1 = 0.8.

π0 = 0.5, and π1 = 0.8, Figure 8.1 illustrates the dependence of this mean
proportion on P(X = 1) for different values of s. Multiplication with πj would
show how the probability of being accepted depends on the distribution of X .

Thus, (8.10) can well be used to derive expectations of individual outcomes
(“ceteris paribus”). However, it cannot be used to generate a distribution of
outcomes in the population because independent repetitions will not guarantee
an adherence to the constraint s.

8.2 Models of statistical processes

1. Process frames and models

Statistical processes have been defined in Section 3.2 (§ 3) as temporal sequences
of statistical variables. They may be depicted as

Y0 −→ Y1 −→ Y2 −→ Y3 −→ ·· · (8.11)

These variables have a common range, Ỹ , and are defined alternatively for a fixed
reference set, �, or for a sequence of changing reference sets, �0,�1, . . . Models
of such processes can be descriptive or analytical. Analytical models must be
conceived of as population-level models. A stochastic version may be depicted as

Ÿ ∗
0 −→→ Ẏ ∗

1 −→→ Ẏ ∗
2 −→→ Ẏ ∗

3 −→→ ···

It begins with a deterministic population-level variable Ÿ ∗
0 providing the initial

distribution, followed by a sequence of stochastic variables. The arrows represent
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not just temporal sequence but stochastic functional relationships between
population-level variables. As an illustration we briefly discuss diffusion models.

2. Simple diffusion models

Diffusion models concern the spread of some property in a population and start
from the idea that the speed of the spread depends in some way on the number
of units which have already got the property.3 A basic version considers a fixed
reference set, �, and uses statistical variables Yt such that

Yt(ω) =
{

1 if ω got the specified property until (and including) t

0 otherwise

Consequently, if Yt(ω) = 1 for the first time, it stays at this value forever. The
corresponding individual-level variable will be denoted by Ẏt , and the number of
individuals with Ẏt = 1 will be denoted by Ṅ ∗

t .4 The construction of a diffusion
model can then start from a multilevel model which, for a single time step, may
be depicted as

(8.12)Ẏt+1
Ṅ ∗

t

Ẏt �����
����
�����
�����

The state of a generic individual in t + 1, Ẏt+1, stochastically depends on its
previous state Ẏt and on Ṅ ∗

t , that is, the current number of individuals who are
already in the specified state. A simple specification of the stochastic function is

P(Ẏt+1 = 1 | Ẏt = 0, Ṅ ∗
t = nt) = α

nt

n
(8.13)

In addition one needs a specification for the generation of Ṅ ∗
t+1. Assuming that

the aggregation results from independent repetitions, one can use

Pr(Ṅ ∗
t+1 = nt+1 | Ṅ ∗

t = nt) = (8.14)

(
n − nt

nt+1 − nt

)
π

nt+1−nt
t (1 −πt)

n−nt+1

with πt := α nt/n. The formula provides probabilities for possible developments
of the diffusion process. To get an impression of these possible developments,
Figure 8.2 shows ten simulated diffusion paths, generated with the algorithm in
Box 8.1.

3. Pure individual-level models

The basic idea of a diffusion model is to think of probabilities of individual-level
variables as dependent on population-level properties. This requires a multilevel
model and an aggregation mechanism as exemplified by (8.13) and (8.14).
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Figure 8.2 Ten simulated diffusion processes, generated with the algorithm shown in
Box 8.1. Parameters: n = 100, n0 = 1, α = 0.1.

Box 8.1 Simulation of diffusion processes according to (8.13) and (8.14).

(1) t ← 0, n0 ← initial value
(2) t ← t + 1
(3) nt ← nt−1; do (n − nt−1) times: draw a random number ε equally

distributed in [0,1], if ε ≤ α nt−1/n then nt ← nt + 1
(4) if nt < n continue with (2), otherwise end.

In order to stress the importance of an explicit reference to the population level,
I briefly consider the idea to interpret individual-level transition rate models as
describing diffusion processes.5 The approach starts from transition rates r(t) :=
Pr(Ẏt+1 = 1 | Ẏt = 0). This allows one to derive a survivor function

G(t) =
t−1∏
j=0

(1 − r( j))

describing the individual-level process. Estimating such a function from a given
set of data, it may also be interpreted as the estimated proportion of individuals not
infected until t. On the other hand, if not viewed as a data model, but as a generic
functional model, the interpretation of G(t) as a proportion becomes problematic
because there is no explicit reference to a population.

One may think of the population, implicitly presupposed by interpreting G(t)
as a proportion, as resulting from independent repetitions of the individual-level
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transition rate model. There remains, however, an important difference to the
diffusion model of § 2. Starting from an individual-level transition rate model
would allow independent repetitions of individual processes. This would not be
possible with a multilevel diffusion model. Even the very simple version described
in § 2 would not allow an independent generation of individual processes because
time-dependent transition rates depend on outcomes of the population-level
process.

4. Modeling interdependencies

It is obvious that diffusion models imply some form of distribution-dependence
and, consequently, interdependency among the individual units in the population.
It is therefore an interesting question whether these interdependencies can be
explicitly represented. One can think in terms of interactions between members
of two groups,

N 0
t := {ω |Yt(ω) = 0} and N 1

t := {ω |Yt(ω) = 1}

It often seems plausible that a diffusion process depends on contacts between
members of these two groups, and moreover on properties of the interacting
individuals. However, an explicit representation of such contacts would only be
possible if one could refer to identifiable individuals.6 If this is not possible one
can nevertheless follow an idea already hinted at in § 5 of Section 2.2 and use
groups (equivalence classes) instead of identifiable individuals.7

Assume that X̃ = {x̃1, . . . , x̃m} is a property space that allows one to define
relations between its categories which can be interpreted as proximities between
units in �. For example, X̃ might be a set of spatial locations, and δkl := R(x̃k , x̃l)
is some measure of proximity between x̃k and x̃l . Given then a statistical variable
X : � −→ X̃ , one can define groups �j := {ω |X (ω) = x̃j} ( j = 1, . . . ,m), and one
can assume that δkl is a measure of proximity between members of �k and �l ,
respectively.

The population variable Ṅ ∗
t that records the number of units that got the

specified property until t can be replaced by a vector (Ṅ ∗
1t, . . . , Ṅ ∗

mt), having
components Ṅ ∗

jt that record the number of units in�j who got the specified property
until t. Finally one can generalize (8.13) into

Pr(Ẏt+1 = 1 | Ẏt = 0, Ẍ = x̃j, Ṅ ∗
1t = n1t, . . . , Ṅ ∗

mt = nmt) = (8.15)

m∑
k=1

δjk αk
nkt

n

This is now a multilevel diffusion model where the probability of getting the
specified property depends on the group, �j , that an individual unit belongs to

and, for k = 1, . . . ,m, on the value of Ṅ ∗
kt and the proximity between �j and �k .
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To complete the model, formally analogous to (8.14), one can set up a separate
equation for each group:

Pr(Ṅ ∗
j,t+1 = nj,t+1 | Ṅ ∗

1t = n1t, . . . , Ṅ ∗
mt = nmt) = (8.16)(

nj − njt

nj,t+1 − njt

)
π

nj,t+1−njt
jt (1 −πjt)

nj−nj,t+1

with πjt := ∑
k δjkαknkt/n and nj denoting the size of group j. It is therefore

possible to sequentially simulate diffusion processes in basically the same way
as was done with the algorithm in Box 8.1. (Illustrations will be discussed in the
next section.)

8.3 Functional causality and levels

1. Distribution-dependent causation

Assume a multilevel model as defined in § 5 of Section 8.1 that has the form

(8.17)Ẏ

Z̈∗

Ẍ �����
�����
�����
�����

The property spaces X̃ (of Ẍ ) and Z̃ (used for D[�, Z̃]) may be identical or
different. In any case, the functional causal relationship between Ẍ and Ẏ may
depend on values of Z̈∗. The causal relationship will then be called distribution-
dependent.8 Obviously, the notion presupposes a multilevel model and cannot
be explicated in an individual-level model that does not explicitly refer to a
population.

2. Individual effects of changing distributions

Distribution-dependent causation concerns the dependence of a causal relation-
ship, say between Ẍ and Ẏ , on a statistical distribution, say P[Z]. Thinking of
possible effects of changes of such distributions, one can distinguish between
individual-level and population-level effects. Concerning individual-level effects,
the question is how a change in the distribution P[Z] changes the relationship
between Ẍ and Ẏ .

The question can be considered in two forms. The example of § 8 in Section 8.1
will be used to illustrate the distinction. One version considers how the conditional
probability Pr(Ẏ = 1 | Ẍ = j, Ẍ∗ = P[X ]), defined in (8.10), depends on the
distribution of X if Ẍ has a fixed value, say Ẍ = j. An answer can be derived from
Figure 8.1 by multiplying the curves with πj . The solid line in Figure 8.3 shows
the result for s = 50. The admission probability of a child whose parents have a
high educational level gets smaller when the proportion of those children increases.
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Figure 8.3 Dependence of Pr(Ẏ = 1|Ẍ = 1, Ẍ∗ = P[X ]) (solid line) and E(Ẏ |Ẍ = 1,
Ẍ∗ = P[X ]) − E(Ẏ |Ẍ = 0, Ẍ∗ = P[X ]) (broken line) on P(X = 1). Parameters:
n = 100, s = 50, π0 = 0.5, and π1 = 0.8.

The converse holds for children having parents with a low educational level. If their
proportion increases also their admission probability gets larger.

Another version of the question concerns how the effect of a change of Ẍ
depends on the distribution of X . Accordingly, the broken line in Figure 8.3 shows
the dependence of

E(Ẏ |Ẍ = 1, Ẍ∗= P[X ]) − E(Ẏ |Ẍ = 0, Ẍ∗= P[X ])

on P(X = 1). It is seen that also the comparative advantage of children having
parents with a high educational level diminishes if their group extends.

3. Population-level effects

A quite different question concerns effects of changes in statistical distributions
at the population level. In the example: How does the proportion of children who
get admitted depend on changes in the distribution of parents’ educational levels?
Since the population-level model is stochastic, there is no unique distribution of the
statistical variable Y representing the proportion of admitted children. However,
one can calculate a mean proportion as follows:

P(Y = 1) ≈ Pr(Ẏ = 1 | Ẍ = 0, Ẍ∗= P[X ])P(X = 0)+ (8.18)

Pr(Ẏ = 1 | Ẍ = 1, Ẍ∗= P[X ])P(X = 1)
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Figure 8.4 Dependence of P(Y = 1) as defined in (8.18) on P(X = 1) for selected values
of s. Parameters: n = 100, π0 = 0.5, and π1 = 0.8.

Figure 8.4 shows how this proportion depends on P(X = 1), the proportion of
children having parents with a high educational level. It is seen that the relationship
is mainly governed by the constraints due to s, the school’s capacity. Under a broad
variety of circumstances, changes in the distribution of X have no effect for the
distribution of Y .

The example not only shows that population-level effects can be quite different
from individual-level effects. It also shows that an apparent absence of a
relationship at the population level can be the result of counteracting processes
at the individual level.

4. Relationships between levels

It seems obvious that neither deterministic nor stochastic functional relationships
can connect an individual-level variable with a population-level variable.9 On the
other hand, as shown by the previously discussed multilevel models, it is quite
possible that a stochastic function connects a population-level variable with an
individual-level variable. In fact, both variables may refer to the same property
space, e.g. Ẏ ∗

t −→→ Ẏt+1 as assumed in a simple diffusion model. The temporal
relationship may be left implicit; it is important, however, to be explicit about the
process that leads from the population-level to the individual-level variable.10

To illustrate, assume that � represents children educated in a school. Ẏ records
a child’s educational success (0 or 1), Ẍ records the parents’ educational level
(0 or 1), and the population-level variable Ẍ∗ provides a statistical distribution,
P[X ], of the values of Ẍ in the school. Assuming that Ẏ stochastically depends
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on Ẍ and Ẍ∗, the model has the structure of (8.5) in Section 8.1. Would it make
sense to change Ẍ into an endogenous variable Ẋ resulting in the model

(8.19)Ẏ
Ẍ∗

Ẋ �����
�����
�����
�������

The question is whether, and how, one can think of a process leading from Ẍ∗ to
Ẋ . Of course, knowing a value of Ẍ∗ would allow to better predict values of Ẋ .
But how can one think of a substantial process?

An example would be that the school can select children according to the
educational level of their parents. Of course, a selection process cannot change
values of Ẋ for any given child. In fact, the idea of a selection process presupposes
a population of children having fixed values of the selection variable. From the
point of view of the school, however, the model may well be used to consider
causal effects of different selection policies.

5. Self selection with constraints

We now reconsider a previously discussed example with self selection (see Section
5.3, § 5): The educational success Ẏ (0 or 1) depends on the parents’ educational
level Ẍ (0 or 1) and on the school type Ż (1 or 2), and it is assumed that Ż is an
endogenous variable depending on Ẍ .

How to set up a corresponding multilevel model? One can start from exogenous
variables Ẍ∗ and Z̈∗ providing, respectively, statistical distributions of educational
levels and school types. The distribution of school types is taken as exogenous
because it does not result from parental choices. Nevertheless, there will be a
selection of school types that takes place in the frame of a given distribution
Z̈∗ = P[Z]. The selection processes concern the distribution of a variable (Ẋ , Ż)
having marginal distributions given by values of the exogenous population-level
variables Ẍ∗ and Z̈∗. A multilevel model may then be depicted as follows:

(8.20)(Ẋ , Ż)

Z̈∗

Ẍ∗ �����
����
�����
����� � Ẏ

Of course, one needs assumptions about the selection processes that generate
the distribution of (Ẋ , Ż). Here we continue with the numerical illustration of
Section 5.3 (§ 5) and assume Pr(Ż = 2 | Ẋ = 0) = 0.4 and Pr(Ż = 2 | Ẋ = 1) = 0.8.
However, these are parents’ plans, and they might be incompatible with the given
distribution of school types. One therefore needs an additional mechanism that
solves possible conflicts. For an illustration we simply assume that parents having
a high educational level can realize their plans first:

Pr(Ẋ = 1, Ż = 2 | Ẍ∗= P[X ], Z̈∗= P[Z]) = (8.21)

min{Pr(Ż = 2 | Ẋ = 1)P(X = 1),P(Z = 2)}
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Figure 8.5 Dependence of (a) E1, (b) E0, and (c) E1 −E0, as defined in (8.22), on P(Z = 2)
(proportion of schools of type 2).

From this assumption one can calculate the joint distribution of (Ẋ , Ż) and finally
the distribution of Ẏ .

In particular, one can investigate how the causal effect of a change �(0,1) in
Ẋ , that is, E1 − E0 with

Ej := E(Ẏ |Ẋ = j, Ẍ∗= P[X ], Z̈∗= P[Z]) (8.22)

depends on the distribution of school types. Based on the numerical specification
of the function (Ẋ , Ż)−→→ Ẏ assumed in § 5 of Section 5.3, this is shown in
Figure 8.5.

6. Time-dependent effects

Further considerations concern causal relationships in models of statistical
processes. An example of the diffusion model introduced in § 4 of Section 8.2 will
be used for illustration. In this example there are two groups (m = 2), identified
by x̃1 and x̃2. Parameters are

α1 = 0.2, α2 = 0.1, δ11 = 1, δ12 = δ21 = 0.1, δ22 = 0.5

The population size is n = 1000, and the group sizes are n1 = 600 and n2 = 400.
Diffusion processes are generated with a slightly modified version of the algorithm
in Box 8.1. Figure 8.6 shows one of these processes that starts from n1,0 = n2,0 = 1.

In order to assess effects of group membership one can compare the conditional
probabilities (transition rates) defined in (8.15). Figure 8.7 illustrates their
development for the example. These are now time-dependent effects. Moreover,
the effects heavily depend on the distribution of X . Figure 8.7 was generated with
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Figure 8.6 Simulation of a structured diffusion processes with two groups. Parameter
values are defined at the beginning of § 6. Initial values are n1,0 = n2,0 = 1.
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Figure 8.7 Development of the conditional probabilities defined in (8.15), simulated with
group sizes n1 = 600 and n2 = 400.
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Figure 8.8 Development of the conditional probabilities defined in (8.15), simulated with
group sizes n1 = 100 and n2 = 900.
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Figure 8.9 Development of the overall rates defined in (8.23). Solid line: n1 = 600 and
n2 = 400, dotted line: n1 = 100 and n2 = 900.

group sizes n1 = 600 and n2 = 400. Changing the distribution, e.g. into n1 = 100
and n2 = 900 will result in completely different effects, as shown by Figure 8.8.

7. Mixing group-level effects

The previous paragraph considered the conditional probabilities defined in (8.15)
separately for each group. Overall rates, for the whole population, can be derived
by mixing the group-specific rates in the following way:

Pr(Ẏt+1 = 1 | Ẏt = 0, Ṅ ∗
1t = n1t, . . . , Ṅ ∗

mt = nmt) = (8.23)∑
j Pr(Ẏt+1 = 1 | Ẏt = 0, Ẍ = x̃j, . . .)P(X = x̃j | Ẏt = 0)

Mixing is with proportions P(X = x̃j | Ẏt = 0), denoting the proportion of members
of group x̃j in the risk set at t. Figure 8.9 illustrates these overall rates for two
different distributions of the group variable X .



Notes

1 Variables and relations

1 In this text a distinction is made between single and double quotation marks. Single
quotation marks are used to refer to linguistic expressions; double quotation marks are
used either for citations or to indicate that an expression has no clear meaning or that it
is used in a metaphorical way. Within citations, it is tried to reproduce quotation marks
in their original form. If something is added, or omitted, inside a quotation this will be
indicated by square brackets.

2 Throughout this text the word ‘function’ is always used in its mathematical sense.
3 It follows that logical and statistical variables are completely different things. Moreover,

the term ‘variable’ is misleading in both cases. For a more extensive discussion that
also shows how both notions, logical and statistical variables, can be linked by using
sentential functions, see Rohwer and Pötter (2002b: ch. 9). – Of course, when there is
no danger of confusion, one can drop the qualification ‘statistical’ and simply speak of
variables.

4 In this text, statistical variables will always be denoted by upper case letters (e.g.,
A,B,C, . . . ,X ,Y ,Z) and their property spaces by corresponding calligraphic letters
that are marked by a tilde (Ã, B̃, C̃, . . . , X̃ , Ỹ,Z̃).

5 In this text ‘:=’ is used instead of ‘=’ if the definitional character of a statement is to
be stressed.

6 If M is a finite set, |M | denotes the number of its elements.
7 One cannot rely on any general rules but needs to consider each statistical calculation in

its specific context. As an example, think of household income and rent. Subtracting rent
from household income provides a meaningful result, but simply to add both quantities
does not.

8 This view has been expressed by the International Statistical Institute (1986: 238)
in a Declaration on Professional Ethics in the following way: “Statistical data are
unconcerned with individual identities. They are collected to answer questions such
as ‘how many?’ or ‘what proportions?’, not ‘who?’. The identities and records of
co-operating (or non-cooperating) subjects should therefore be kept confidential,
whether or not confidentiality has been explicitly pledged.”

9 In this text, R is used to denote the set of real numbers, and P(X̃ ) denotes the power
set of X̃ , that is, the set of all subsets of X̃ .

10 Of course, different notations can be used inside the round brackets to indicate the
subsets of the variable’s property space to be used as arguments.

11 The two notations will be used equivalently. While the notation on the right-hand side
of the first equality sign is formally preferable because it clearly distinguishes between
the name of the function and possibly appended arguments, the notation used on the
left-hand side often allows an easier grasp of the intended meaning.

12 Arguments behind the semicolon will be treated as parameters of the function.
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13 In order to keep the illustration simple household size will not be included as a separate
variable.

14 See, e.g., Burt (1982: 4–8), Wellman (1988: 38–9).
15 Explicitly written: �×� = {(ω,ω′) |ω,ω′ ∈ �}.
16 “The events are various: a day’s work behind the counter of a store, a meeting of a

women’s club, a church supper, a card party, a supper party, a meeting of the Parent–
Teacher Association, etc.” (Homans 1951: 82).

17 For an extensive overview see Wasserman and Faust (1994).
18 Symmetry can be defined in an obvious way for arbitrary relational variables. The

other two properties are only defined if R̃ = {0,1}: R is reflexive if R(ω,ω) = 1 for all
ω ∈ �; and R is transitive if, for all ω,ω′,ω′′ ∈ �, R(ω,ω′) = R(ω′,ω′′) = 1 implies
R(ω,ω′′) = 1.

2 Notions of structure

1 For a detailed critique see Bates and Peacock (1989).
2 Note that the term ‘data generating process’ is sometimes also used to refer to substantial

processes. The following statement made by D. Freedman (1985: 348) provides an
example: “In social-science regression analysis [. . .] usually the idea is to fit a curve
to the data, rather than figuring out the process which generated the data. As a matter
of fact, investigators often talk about ‘modeling the data.’ This is almost perverse:
surely the object is to model the phenomenon, and the data are interesting only because
they contain information about that phenomenon.” Freedman obviously means that one
should be interested in the substantial processes that created the facts (referred to by
the data).

3 This is not to deny that institutions exist (e.g., voting systems) which employ methods
for an aggregation of individual behavior that are formally similar to statistical methods.
The aggregated outcome can then sensibly be characterized as resulting from the
behavior of individual actors, but is clearly not just a statistical fact.

4 This should not be confused with the assumption, often made when estimating
stochastic models, that the individual observations contained in a sample can be
considered as corresponding to independent repetitions of the model. See, e.g., Greene
(1993: 87).

5 See also the discussion, in Przeworski and Teune (1970), of using proper names in
comparative research.

6 See Wasserman and Faust (1994: 357).
7 A permutation π : � −→ � is called an automorphism iff R(ω′,ω′′) = R(π(ω′),π(ω′′))

for all ω′,ω′′ ∈ �. See Everett et al. (1990).
8 Note that this statement does not invalidate the remark, made in § 1 of Section 2.1, that

the statistical notion of structure has no relational connotations. The additional argument
only says that it might well be possible to represent (aspects of ) a relational structure
by statistical variables; and this then would allow one to make statistical statements
about the relational structure (e.g., about the distribution of living alone or involved in
a relationship).

9 See, e.g., Knoke and Kuklinski (1982: 9), Berkowitz (1988: 480–1), Wasserman and
Faust (1994: 4).

10 Obviously, if ω′ and ω′′ are statistically equivalent w.r.t. X , they are structurally
equivalent w.r.t. R∗.

3 Processes and process frames

1 For a good discussion see the essay “Present, Future and Past” in Oakeshott (1983).
2 A similar distinction has been proposed by H.-R. Jauss (1973: 554): “Ereignis ist eine

objektive, für das historische Geschehen selbst konstitutive Kategorie. Das Ereignis liegt
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dem Zugriff des Historikers immer schon voraus; es ist nicht ein subjektives Schema
narrativer Aneignung, sondern dessen äußere Bedingung.”

3 See the discussion of this distinction in B. C. Smith (1996: 32–6).
4 In this text, a process is termed mechanical if human actors are not involved or can

only initialize the process without influencing its subsequent development. Using this
understanding the statement made above does not include interactive computer programs.

5 Although in many applications all logical variables have the same range, this is not
required by the definition.

6 Models which consider X ∗
t as modal variables will be discussed in Chapter 8.

7 If such processes are considered as repeatable one also needs suitably defined process
frames; this will be discussed when dealing with population-level models in Chapter 8.

8 The explanation here given follows the treatment in Rohwer and Pötter (2002b).
9 These are therefore prototypical examples of mechanical processes as defined in

Section 3.1 (§ 3, footnote 4).

4 Functional models

1 Moreover, in order to think of � as a random sample from �†, all elements of the
population must exist at the time of generating the sample.

2 The designation reflects the very broad usage of the term ‘causal’ in the scientific
literature. It is certainly reasonable, and will be done in Chapter 5 to distinguish different
understandings and definitions of causality.

3 As explained in Section 3.3, in order to distinguish deterministic modal variables from
stochastic modal variables as well as from statistical variables they are designated by
two points.

4 If there is no danger of confusion, qualifications of variables will be dropped.
5 As for statistical variables, it will be assumed for modal variables that there exists a

numerical representation for their values; ranges of modal variables will therefore be
treated as subsets of the set of real numbers.

6 This is the distinct feature of deterministic models; stochastic versions will be introduced
in Section 4.2.

7 The meaning of ‘effective condition’ will be explained below in § 9.
8 This is easily seen if one views BM[Ẍ ] × BM[Ÿ ] as a two-dimensional table. It is

assumed that both domains, BM[Ẍ ] as well as BM[Ÿ ], contain at least two elements.
9 As an example, consider the following situation where Ẍ and Ẍ ′ represent two parallel

switches for the bulb Ÿ :

Z̈ Ẍ Ẍ ′ Ÿ

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0

Z̈ Ẍ Ẍ ′ Ÿ

1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

10 Consider, for example, the following situation:

Z̈ Ẍ Ÿ

0 0 0
1 1 0
2 0 1
3 1 1

Z̈ Ẍ Ÿ

0 0 0
1 1 1
2 0 1
3 1 1

Ẍ and Ÿ are independent on the left-hand side, but dependent on the right-hand side.
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11 In this text, talk of constraints is always meant to imply that the resulting dependencies
cannot be expressed by functions involving only the given variables.

12 It suffices to specify a distinct value of Z̈ for each pair (x,y) ∈ BM[Ẍ , Ÿ ].
13 Deterministic relationships of the form Ẍ −→ Ẏ or Ẋ −→ Ÿ are not possible.
14 If the function is called f : Pr(Ẏ = y) = ∑

x∈f −1({y}) Pr(Ẋ = x).
15 Whether deterministic or stochastic variables are used to formulate the conditions is

obviously irrelevant. Of course, only with a stochastic variable would it be possible to
form a common distribution with the dependent variable. It is important, however, that
the stochastic function x −→Pr[Ẏ |Ẋ = x] is completely independent of any assumptions
about the distribution of Ẋ and, in particular, does not require that all values in the range
of Ẋ can occur with a positive probability.

16 Since Ẍ is a deterministic variable one might prefer to say that Ẏ is stochastically
dependent on, or independent of, Ẍ .

17 Obviously, one can also define an asymmetric notion of functional dependence as was
done in Section 4.1 (§ 9).

18 A stochastic variable which is stochastically dependent on an exogenous variable is
then, by definition, an endogenous variable; see also Section 4.3 (§ 6).

19 See, e.g., Spirtes et al. (1993), Cooper (1999), Greenland et al. (1999), Robins (1999),
Pearl (2000), Woodward (2001: 41).

20 For simplicity, this formulation presupposes that the model does not contain ultimate
deterministic variables.

21 Beginning with a model of the form (4.4), the construction of (4.5) can always be done in
a trivial way: Using as the range of Ż the Cartesian product of the ranges of Ẍ and Ẏ ,
the distribution of Ż can be defined by the conditional probabilities Pr(Ẏ = y | Ẍ = x).

22 In general, pseudo-indeterministic models are models containing only deterministic
functions and at least one stochastic endogenous variable. Their stochastic features are
completely determined from exogenous stochastic variables. See, e.g., Glymour et al.
(1991: 155–6), Spirtes et al. (1993: 38–9), and Papineau (2001: 17).

23 See, e.g., Pearl (2000: 26–7, 44), and Woodward (2003: 339).
24 Such questions are rarely discussed in the literature; but see Tryfos (2004: ch. 5).
25 See, e.g., Freedman (1992), Clogg and Haritou (1997), Woodward (2003: 325–7).
26 The situation is quite different for defined unobserved variables. Questions concerning

possible dependencies may then become quite important, in particular for causal
interpretations. This will be discussed in Chapter 5.

5 Functional causality

1 The notation �(x′,x′′) is used to express that the value of a variable, referred to in the
context, changes from x′ to x′′. The notation implies that x′ �= x′′.

2 Instead of Z̈ one can also use a vector (Z̈1, . . . , Z̈m) who’s components are elements
of V .

3 This is in accordance with the idea that causal statements are (most often) intended
to capture relationships between events, or types of events; see, e.g., Hausman
(1998: ch. 2).

4 This text therefore avoids an unspecific talk of “(causal) factors,” in particular,
in contexts where causes and (functional) conditions might be confused. See also
Woodward (2003: 39).

5 Beginning with John St. Mill, this has led to a quite different notion of causality which
identifies causes and conditions, see, e.g., Rothman and Greenland (2005), and Susser
(1991). This notion should not be confused with the definition given above.

6 For another example that clearly illustrates the distinction see Hausman (1998: 25).
7 See also the remarks in § 6. A dynamic version of functional causality that conceives

of causes as events will be discussed in Section 7.3.



134 Notes

8 See, e.g., Marini and Singer (1988: 354). The main promoter of this idea is, again, John
St. Mill who explicitly identified causes and conditions.

9 This immediately avoids several problems that easily occur if one thinks instead, in
some obscure sense, of “factors;” see the discussion in Hitchcock (1993).

10 Such attempts were widespread in the early discussions of probabilistic causality, see,
e.g., Eells and Sober (1983: 37), and Eells (1991: 94–107). Against these attempts, the
importance of context-dependencies has been stressed by Carroll (1991). For continual
discussion of the “contextual unanimity thesis” see Twardy and Korb (2004).

11 This was assumed by Suppes (1970) in his original definition of probabilistic causes
and then adopted, e.g., by Sober (1986: 97). For further comments on this assumption
see Eells (1988, 1991).

12 This idea already played an important role in Suppes’ (1970) original discussion of
probabilistic causality. The same idea also shows up in a widespread statistical notion
of causality as can be seen from the following formulation given by Cox (1992: 293):
“[. . .] a variable xC is a cause of the response yE if it occurs in all regression equations
for yE whatever other variables xB are included.” Cox also provides a critical discussion;
for further discussion from a sociological point of view see Goldthorpe (2001).

13 See, e.g., Holland (1986: 959; 1988b; 1993).
14 Rubin (1974), Rosenbaum and Rubin (1983), Holland (1986, 1988a, 1994, 2001).

Adaptations for social science applications have been propagated by King et al. (1994),
Sobel (1995), and Winship and Morgan (1999).

15 The discussion will be continued in Section 6.2.
16 See Dawid (2000), the discussion which followed his contribution, and also the

additional comments in Dawid (2006).
17 These models have been called “causal models” by Holland (2001: 178).
18 Characterizing this as a modal question means that the question concerns possibilities.

Counterfactual questions are modal questions of a special type, based on counterfactual
presuppositions; for example: How might the disease have developed if, contrary to
what actually was done, the therapy would not have been applied? For a discussion of
some of these variants of modal questions see Dawid (2000, 2006).

19 A stochastic version of this model that uses stochastic variables instead of Ẍ and Ï was
proposed by Steyer et al. (2000).

20 This implies that functions depending non-trivially on the identity of the individuals
are ruled out.

21 See Holland (1986: 948).
22 The range is specified by the set of real numbers, R, because expected values of Ẏ need

not be elements of Ỹ .
23 See, e.g., McKim (1997: 7–8), Wooldridge (2002: 3), or Bollen (1989: 41).
24 Heckman (2005: 1) wrote: “Holding all factors save one at a constant level, the change

in the outcome associated with manipulation of the varied factor is called a causal effect
of the manipulated factor.” See also his definition of functional causality in Heckman
(2000: 52–3).

25 Note that the definition of (5.9) nevertheless requires that Ż is stochastically independent
of Ẍ .

26 In both models, (5.7) and (5.11), it is not possible to hold constant the values of Ẍ if a
change �(z′,z′′) occurs. However, in model (5.11) it is not necessary to consider Ẍ as
a covariate context for effects of �(z′,z′′).

27 One can use the equation

E(Ẏ |Ẍ = x) =
E(Ẏ |Ẍ = x, Ż = 1)Pr(Ż = 1|Ẍ = x) + E(Ẏ |Ẍ = x, Ż = 2)Pr(Ż = 2|Ẍ = x)

to perform the calculations.
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6 Models and statistical data

1 In the literature these models are often called “statistical models.” There is no uniform
usage of this expression. The naming conventions followed here correspond to the
distinction between statistical and stochastic variables.

2 In the statistical literature, authors using stochastic data models often follow this
idea. The following quote from Cox and Wermuth (1996: 12) provides an example:
“The basic assumptions of probabilistic analyses are as follows: 1. The data are
observed values of random variables, i.e. of variables having a probability distribution.
2. Reasonable working assumptions can be made about the nature of these distributions,
usually that they are of a particular mathematical form involving, however, unknown
constants, called parameters. We call this representation a model, or more fully a
probability model, for the data. 3. Given the form of the model, we regard the objective
of the analysis to be the summarization of evidence about either the unknown parameters
in the model or, occasionally, about the values of further random variables connected
with the model, and, very importantly, the interpretation of that evidence.” What the
authors call a probability model obviously corresponds to a stochastic data model as
explained above.

3 That is, P[Y |X = x,Z = z] serves to estimate Pr[Ẏ |Ẍ = x, Z̈ = z].
4 It is noteworthy that this fact becomes obscured if one begins with a closed functional

model that presupposes specified probability distributions for all exogenous variables.
As an example, see the modeling approach in Woodward (2001: 41).

5 In a formulation of Holland (1994: 269): “Randomization is a physical act in which a
known chance mechanism is used in particular ways to construct the function x [that
is, in our notation, the statistical variable X ].” For an extensive discussion of different
methods see Shadish et al. (2002).

6 A possible argument would be: If values of (X ,Z) could be observed then, as a
consequence of the randomization, X and Z would be approximately statistically
independent.

7 In order to conform to the notations of the present section the meaning of Ẍ and Z̈ has
been reversed.

8 See also the critical remarks made by Cox and Wermuth (2004: 292).
9 Note that it must be assumed, in order to set up the table, that values of the variables

Yx exist independently of the actually applied treatment.
10 This proposal was already made by Neyman who is often viewed as one of the

originators of the potential outcome idea; see Splawa-Neyman (1990) and the comment
by Rubin (1990).

11 Note that the problem does not result from Holland’s deterministic approach that is
followed here. Essentially the same problem, and the same inconsistencies, would result
if the fictitious variables, Yx and Y ′

x′ , would be conceived of as stochastic quantities.
12 The argument does not exclude the possibility to combine the causes. In the example

one could combine X and X ′ into a variable X ′′ and for each of its four possible
values assume a specified educational success. It would then not be possible, however,
to associate with each of its components, X and X ′, separate causal effects; and,
in particular, separate randomizations with respect to the components would not be
possible.

13 See, e.g., Collier et al. (2004: 230–3).
14 This idea is followed, for example, by Rosenbaum (2002).
15 Conceptualizations of processes by which causes come into being depend on whether

one refers to dynamic or comparative causes; but for the current consideration it suffices
to abstract from the distinction.

16 For a similar argument see Heckman (1992).
17 For systematic expositions of this approach see, in particular, Woodward (2003), and

Pearl (2000).
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18 Woodward (2001: 50); Pearl (1998: 266, 1999: 105–6), Scheines (1997: 189).
19 See Woodward (2003: 98), Pearl (2000: 70). Somewhat different formulations have

been discussed by Dawid (2002).
20 In many cases the modified model then shows that effects of the supposed cause are

context-dependent. This problem is rarely discussed because most authors confine
their considerations to closed models. Starting with a model only containing stochastic
variables, an intervention with respect to a variable Ẋ creates a modified model with
only a single exogenous variable Ẍ instead of Ẋ . In this way it may seem possible to
think of uniquely defined mean effects due to a change �(x′,x′′).

21 See Nurmi (1974).
22 See also Goldthorpe (2001: 8).
23 See Section 6.2, § 4.
24 This belief is often already by the definition a part of the notion of a hypothetical

experiment, see, e.g., Woodward (2003: 96).
25 This has been stressed by Heckman (1996: 461).
26 See, e.g., Sobel (2005: 117).
27 See, e.g., Maddala (1977, 1983), Heckman (1990), Wooldridge (2002).
28 This is the topic of (probabilistic) selection models; for a survey see Pötter (2006).
29 Just in order to follow Maddala’s argument one might accept the unreal presuppositions

that people can deliberately decide for or against a college education and that their
decisions only depend on expected income.

30 See Maddala (1977: 354).
31 Of course, one also needs the assumption that the distributions of Ẏ0 and Ẏ1 are in

some sense given and known because they cannot be estimated from observations of Ḋ
and Ẏ .

32 Another possibility would be to substitute the decision rule (6.21) by a randomization
device. The modified model then contains an exogenous stochastic variable Ḋ (having
a known distribution), and there is no longer an arrow from (Ẏ0, Ẏ1) to Ḋ.

33 See Hausman (1998: ch. 11), Woodward (1999).

7 Models with event variables

1 These notations specify event variables as stochastic variables. Analogously, the
notation Ë, Ë1, Ë2, . . . is used to refer to deterministic event variables.

2 In the following, the formulation that an event variable takes a specific value always
means that the variable takes a value that is not equal to zero associated with a specific
event type.

3 The | and the ‖ notation for conditional probabilities differentiates between distinct
meanings; the formal properties are the same.

4 Without qualification contextual variables are assumed to be static. Instead of an
exogenous state variable Ẍ one could use a deterministic event variable. The model
then refers to a situation where this event variable already has a specific value.

5 The variants correspond to (6.14) in Section 6.2.
6 Of course, one can imagine a situation in which the event variable Ë1 gets a specific

value. However, because Ë1 is exogenous the situation would not be a part of the model.
7 For an empirical investigation of such situations see Blossfeld et al. (1999).
8 Another, and often simpler, approach would employ binary event variables, for example

(Ė1, Ė2, Ė3), with Ė1 = 1 for a marriage, Ė2 = 1 for a pregnancy, and Ė3 = 1 for a
separation. There is then a first situation where one of the events

(1,0,0), (1,1,0), (0,1,0), (0,1,1), (0,0,1)

can occur and in the first three cases one can consider successive situations.
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9 A version of the model without the contextual variable Z̈ can be illustrated by the
following numerical values:

σ1 : Pr(Ė1 = 1, Ė2 = 0) = 0.30 σ21 : Pr(Ė1 = 1‖ Ė2 = 1) = 0.6

σ1 : Pr(Ė1 = 2, Ė2 = 0) = 0.48 σ21 : Pr(Ė1 = 2‖ Ė2 = 1) = 0.4

σ1 : Pr(Ė1 = 0, Ė2 = 1) = 0.15 σ22 : Pr(Ė2 = 1, Ė3 = 0‖ Ė1 = 1) = 0.69

σ1 : Pr(Ė1 = 1, Ė2 = 1) = 0.03 σ22 : Pr(Ė2 = 0, Ė3 = 1‖ Ė1 = 1) = 0.28

σ1 : Pr(Ė1 = 2, Ė2 = 1) = 0.03 σ22 : Pr(Ė2 = 1, Ė3 = 1‖ Ė1 = 1) = 0.03

10 It follows that the expression τ (Ė) has a defined value only if there is already a specific
value for the event variable used as an argument.

11 There are other approaches to dynamic causality that conceive of events as temporally
identifiable changes of the values of state variables. For a discussion of these approaches
see Pötter and Blossfeld (2001).

12 Of course, there can be cases that do not require a reference to any specific context.

8 Multilevel and population-level models

1 See the critical remarks made by Coleman (1990: 1).
2 Explicitly indicating � in the notation emphasizes its importance in the definition. It

implies, e.g., that the number of units is known.
3 See, e.g., Bartholomew (1982), Mahajan and Peterson (1985), Rogers (1995), Morris

(1994), Palloni (2001).
4 Notice that Ṅ ∗

t is derived, not from Ẏt , but from the population-level variable Ẏ ∗
t

recording the distribution of Yt in �.
5 See, e.g., Diekmann (1989), Brüderl and Diekmann (1995).
6 This is assumed in the approaches proposed by Strang (1991), Strang and Tuma (1993),

Greve et al. (2001), Yamaguchi (1994), Buskens and Yamaguchi (1999). These models
therefore relate to diffusion processes in structured units.

7 To be sure, the idea is not new but has a long history in modeling structured diffusion
processes; see Morris (1994).

8 The special case where Z̈∗ refers to a statistical distribution of values of Ẍ is often
called frequency-dependent causation, following Sober (1982).

9 This does not exclude the possibility that selecting the value of an individual-level
variable may constrain the range of possible values of a (corresponding) population-
level variable.

10 This has been stressed in the literature dealing with modeling contextual effects; see,
e.g., Blalock (1984), Duncan and Raudenbush (1999).
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