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Figure 1.4. Left and Right columns show two separate outputs, each of two �gures, produced
by MatPlot2figs.py. (We used the slider button to add some space between the red and
blue plots.)

The result is shown on the left of Figure 1.3, with the desired labels and title. The
show() command produces the graph on your desktop.

In Listing 1.4 we give the codeGradesMatplot.py, and on the right of Figure 1.3
we show its output. Here we repeat theplot command several times in order to plot
several data sets on the same graph and to plot both the data points and the lines
connecting them. We import Matplotlib (pylab), and then import NumPy, which we
need for the array command. Because we have imported two packages, we add the
pylab pre�x to the plot commands so that Python knows which package to use. A
horizontal line is created by plotting an array with all y values equal to zero, unequal
lower and upper error bars are included as well as grid lines.

Often the science is clearer if there are several curves in one plot, and, several plots
in one �gures. Matplotlib lets you do this with the plot and the subplot commands.
For example, in MatPlot2figs.py in Listing 1.5 and Figure 1.4, we have placed two
curves in one plot, and then output two di�erent �gures, each containing two plots.
The key here is repetition of the subplot command:

figure(1) # 1st figure
subplot(2,1,1) # 1st subplot, 2 rows, 1 column
subplot(2,1,2) # 2nd subplot

If you want to visualize a function like the dipole potential

V (x; y ) = [ B + C=(x 2 + y2)3=2]x; (1.1)

you need a 3-D visualization in which the mountain height z = V(x; y ), and the x
and y axes de�ne the plane below the mountain. The impression of three dimensions
is obtained by shading, parallax, and rotations with the mouse, and other tricks. In
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vector1 = [1 2 3 4 5]
>>> vector2 = vector1 + vector1 # Add 2 vectors
>>> print('vector2=', vector2)
vector2= [ 2 4 6 8 10]
>>> matrix1 = array(([0,1],[1,3]) # An array of arrays
>>> print(matrix1)
[[0 1]
[1 3]]

>>> print (matrix1 * matrix1) # Matrix multiply
[[0 1]
[1 9]]

When describing NumPy arrays, the number of �dimensions�, ndim, means the number
of indices, which can be as high as 32. What might be called the �size� or �dimensions�
of a matrix is called the shapeof a NumPy array:

>>> import numpy as np
>>> np.arange(12) # List 12 ints
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
>>> np.arange(12).reshape((3,4)) # Reshape to 3x4
array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])

>>> a = np.arange(12).reshape((3,4))
>>> a.shape
(3L, 4L)
>>> a.ndim # Dimension?
2
>>> a.size # Number of elements?
12

If you want to form the familiar matrix product from two arrays, you use the dot
function, whereas the asterisk* is used for an element-by-element product:

>>> matrix1= array( [[0,1], [1,3]])
>>> matrix1
array([[0, 1],

[1, 3]])
>>> print ( dot(matrix1,matrix1) ) # Matrix or dot product
[[ 1 3]
[ 3 10]]

>>> print (matrix1 * matrix1) # Element-by-element product
[[0 1]
[1 9]]

Rather than writing your own matrix routines, for the sake of speed and reliability we
recommend the use of well established libraries. Although the array objects of NumPy
are not the same as mathematical matrices, there is theLinearAlgebra package that
treats 2-D arrays as mathematical matrices. Consider the standard solution of linear
equations

Ax = b; (1.2)

where we have used a bold character to represent a vector. For example,
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>>> from numpy import *
>>> from numpy.linalg import*
>>> A = array( [ [1,2,3], [22,32,42], [55,66,100] ] ) # Array of arrays
>>> print ('A =', A)
A = [[ 1 2 3]

[ 22 32 42]
[ 55 66 100]]

We solve (1.2) with NumPy's solve command, and then test the solution:

>>> b = array([1,2,3])
>>> from numpy.linalg import solve
>>> x = solve(A, b) # Finds solution
>>> print ('x =', x)
x = [ -1.4057971 -0.1884058 0.92753623] # The solution
>>> print ('Residual =', dot(A, x) - b) # LHS-RHS
Residual = [4.44089210e-16 0.00000000e+00 -3.55271368e-15]

A direct, if not most e�cient, way to solve (1.2) is to calculate the inverse A �1 , and
then multiply through by the inverse, x = A �1 b:

>>> from numpy.linalg import inv
>>> dot(inv(A), A) # Test inverse
array([[ 1.00000000e+00, -1.33226763e-15, -1.77635684e-15],

[ 8.88178420e-16, 1.00000000e+00, 0.00000000e+00],
[ -4.44089210e-16, 4.44089210e-16, 1.00000000e+00]])

>>> print ('x =', multiply(inv(A), b))
x = [-1.4057971 -0.1884058 0.92753623] # Solution
>>> print ('Residual =', dot(A, x) - b)
Residual = [ 4.44089210e-16 0.00000000e+00 -3.55271368e-15]

To solve the eigenvalue problem,
I! = �!; (1.3)

we call the eig method (as in Eigen.py):

>>> from numpy import*
>>> from numpy.linalg import eig
>>> I = array( [[2./3,-1./4], [-1./4,2./3]] )
>>> print('I =\n', I)

I = [[ 0.66666667 -0.25 ]
[-0.25 0.66666667]]

>>> Es, evectors = eig(A) # Solve eigenvalue problem
>>> print('Eigenvalues =', Es, '\n Eigenvector Matrix =\n', evectors)

Eigenvalues = [ 0.91666667 0.41666667]
Eigenvector Matrix = [[ 0.70710678 0.70710678]

[-0.70710678 0.70710678]]
>>> Vec = array([ evectors[0, 0], evectors[1, 0] ] )
>>> LHS = dot(I, Vec)
>>> RHS = Es[0]*Vec
>>> print('LHS - RHS =', LHS-RHS) # Test for 0

LHS - RHS = [ 1.11022302e-16 -1.11022302e-16]
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1. Find the numerical inverse of

A =

2

4
+4 �2 +1
+3 +6 �4
+2 +1 +8

3

5 : (1.4)

a. Check your inverse in both directions; that is, check thatAA �1 = A �1 A = I .
b. Note the number of decimal places to which this is true as this gives you some

idea of the precision of your calculation.
c. Determine the number of decimal places of agreement there is between your

numerical inverse and the analytic result:

A �1 =
1

263

2

4
+52 +17 +2
�32 +30 +19
�9 �8 +30

3

5: (1.5)

2. Consider the matrix A again, here being used to describe three simultaneous
linear equations, Ax = b. Solve for three di�erent x vectors appropriate to the
three di�erent b's:

b1 =

2

4
+12
�25
+32

3

5; b2 =

2

4
+4
�10
+22

3

5; b3 =

2

4
+20
�30
+40

3

5:

3. Consider the matrix A =
�

� �
�� �

�
, where you are free to use any values you

want for � and � . Show numerically that the eigenvalues and eigenvectors are
the complex conjugates

x1;2 =
�
+1
�i

�
; � 1;2 = � � i�: (1.6)

1.2.3 Python Algebraic Tools

Symbolic manipulation software represents a supplementary, yet powerful, approach
to computation in physics [Napolitano(18)]. Python distributions often contain the
symbolic manipulation packagesSageand SymPy, which are quite di�erent from each
other. Sageis in the same class as Maple and MATHEMATICA and is beyond what
we care to cover in this book. In contrast, the SymPy package runs very much like
any other Python package from within a Python shell. For example, here we use
Python's interactive shell to import methods from SymPy and then take some analytic
derivatives:

>>> from sympy import *
>>> x, y = symbols('x y')
>>> y = diff(tan(x),x); y
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double precision in other languages). Doubles have approximately 16 decimal places
of precision and magnitudes in the range

4:9 � 10� 324 � double precision � 1:8 � 10308: (1.7)

If a double becomes larger than1:8 � 10308; a fault condition known as an over�ow
occurs. If the double becomes smaller than4:9 � 10� 324; an under�ow occurs. For
over�ows, the resulting number may end up being a machine-dependent pattern, not
a number (NAN), or unpredictable. For under�ows, the resulting number is usually
set to zero.

Because a 64-bit �oating point number stores the equivalent of only 15�16 deci-
mal places, �oating-point computations are usually approximate. For example, on a
computer

3 + 1:0 � 10� 16 = 3 : (1.8)

This loss of precision is measured by de�ning themachine precision � m as the maxi-
mum positive number that can be added to a stored1:0 without changing that stored
1.0:

1:0c + � m
def
= 1 :0c; (1.9)

where the subscript c is a reminder that this is a computer representation of 1. So,
except for powers of 2, which are represented exactly, we should assume that all
�oating-point numbers have an error in the �fteenth place.

1.3.1 Uncertainties in Computed Numbers

Errors and uncertainties are integral parts of computation. Some errors are computer
errors arising from the limited precision with which computers store numbers, or
because of the approximate nature of algorithm. An algorithmic error may arise from
the replacement of in�nitesimal intervals by �nite ones or of in�nite series by �nite
sums, such as,

sin(x) =
1X

n =1

(� 1)n � 1x2n � 1

(2n � 1)!
'

NX

n =1

(� 1)n � 1x2n � 1

(2n � 1)!
+ E(x; N ); (1.10)

where E(x; N ) is the approximation error. A reasonable algorithm should haveE
decreasing asN increases.

A common type of uncertainty in computations that involve many steps is round-
o� errors. These are accumulated imprecisions arising from the �nite number of digits
in �oating-point numbers. For the sake of brevity, imagine a computer that kept just
four decimal places. It would then store 1=3 as 0:3333 and 2=3 as 0:6667, where
the computer has �rounded o�� the last digit in 2=3. Accordingly, even a simple
subtraction can be wrong:

2
�

1
3

�
�

2
3

= 0 :6666� 0:6667 = � 0:00016= 0 : (1.11)
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So although the result is small, it is not 0. Even with full 64 bit precision, if a
calculation gets repeated millions or billions of times, the accumulated error answer
may become large.

Actual calculations are often a balance. If we include more steps then the ap-
proximation error generally follows a power-law decrease. Nevertheless the relative
round-o� error after N steps tends to accumulate randomly, approximately like

p
N� m .

Because the total error is the sum of both these errors, eventually the ever-increasing
round-o� error will dominate. As rule of thumb, as you increase the number of steps
in a calculation you should watch for the answer to converge or stabilize, decimal place
by decimal place. Once you see what looks like random noise occurring in the last
digits, you know round-o� error is beginning to dominate, and you should probably
step back a few steps and quit. An example is given inFigure 1.9.

1. Write a program that determines your computer's under�ow and over�ow limits
(within a factor of 2). Here's a sample pseudocode

under = 1.
over = 1.
begin do N times

under = under/2.
over = over * 2.
write out: loop number, under, over

end do

a. IncreaseN if your initial choice does not lead to under�ow and over�ow.
b. Check where under- and over�ow occur for �oating-point numbers.
c. Check what are the largest and the most negative integers. You accomplish

this by continually adding and subtracting 1.

2. Write a program to determine the machine precision� m of your computer system
within a factor of 2. A sample pseudocode is

eps = 1.
begin do N times

eps = eps/2.
one = 1. + eps

end do

a. Determine experimentally the machine precision of �oats.
b. Determine experimentally the machine precision of complex numbers.

1.4 Numerical Derivatives
Although the mathematical de�nition of the derivative is simple,

dy(t)
dt

def
= lim

h!0

y(t + h) � y(t)
h

; (1.12)
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it is not a good algorithm. As h gets smaller, the numerator to �uctuate between 0
and machine precision� m , and the denominator approaches zero. Instead, we use the
Taylor series expansion of af (x + h) about x with h kept small but �nite. In the
forward-di�erence algorithm we take

dy(t)
dt

�
�
�
�
F D

'
y(t + h) � y(t)

h
+ O(h): (1.13)

This O(h) error can be cancelled o� by evaluating the function at a half step less than
and a half step greater thant. This yields the central-di�erence derivative :

dy(t)
dt

�
�
�
�
CD

y(t + h=2) � y(t � h=2)
h

+ O(h2): (1.14)

The central-di�erence algorithm for the second derivative is obtained by using the
central-di�erence algorithm on the corresponding expression for the �rst derivative:

d2y(t)
dt2

�
�
�
�
CD

'
y0(t + h=2) � y0(t � h=2)

h
'

y(t + h) + y(t � h) � 2y(t)
h2 : (1.15)

1. Use forward- and central-di�erence algorithms to di�erentiate the functions cost
and et at t = 0:1; 1:, and 100.

a. Print out the derivative and its relative error E as functions ofh. Reduce the
step sizeh until it equals machine precision h ' � m .

b. Plot log10 jEj versuslog10 h and check whether the number of decimal places
obtained agrees with the estimates in the text.

2. Calculate the second derivative ofcost using the central-di�erence algorithms.

a. Test it over four cycles, starting with h ' �=10 and keep reducingh until you
reach machine precision

1.5 Numerical Integration
Mathematically, the Riemann de�nition of an integral is the limit

Z b

a
f (x) dx = lim

h!0

(b�a)=hX

i=1

f (x i )h: (1.16)

Numerical integration is similar, but approximates the integral as the a �nite sum
over rectangles of heightf (x) and widths (or weights) wi :

Z b

a
f (x) dx '

NX

i=1

f (x i )w i : (1.17)
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Equation (1.17) is the standard form for all integration algorithms: the function f (x)
is evaluated at N points in the interval [a; b], and the function values f i � f (x i )
are summed with each term in the sum weighted bywi . The di�erent integration
algorithms amount to di�erent ways of choosing the points x i and weights wi . If
you are free to pick the integration points, then our suggested algorithm is Gaussian
quadrature. If the points are evenly spaced, then Simpson's rule makes good sense.

The trapezoid and Simpson integration rules both employN � 1 boxes of width h
evenly-spaced throughout the integration region[a; b]:

x i = a + ih; h =
b� a
N � 1

; i = 0; N � 1: (1.18)

For each interval, the trapezoid rule assumes a trapezoid of widthh and height (f i +
f i+1 )=2, and, accordingly, approximates the area of each trapezoid as12 hf i + 1

2 hf i+1 .
To apply the trapezoid rule to the entire region [a; b], we add the contributions from
all subintervals:

Z b

a
f (x) dx '

h
2

f 1 + hf 2 + hf 3 + � � � + hf N �1 +
h
2

f N ; (1.19)

where the endpoints get counted just once, but the interior points twice. In terms of
our standard integration rule (1.17), we have

wi =
�

h
2

; h; : : : ; h;
h
2

�
(Trapezoid Rule): (1.20)

In TrapMethods.py in Listing 1.15 we provide a simple implementation.
Simpson's rule is also for evenly spaced points of widthh, though with the heights

given by parabolas �t to successive sets of three adjacent integrand values. This leads
to the approximation:

Z b

a
f (x)dx '

h
3

f 1 +
4h
3

f 2 +
2h
3

f 3 +
4h
3

f 4 + � � � +
4h
3

f N �1 +
h
3

f N : (1.21)

In terms of our standard integration rule (1.17), this is

wi =
�

h
3

;
4h
3

;
2h
3

;
4h
3

; : : : ;
4h
3

;
h
3

�
(Simpson's Rule): (1.22)

Because the �tting is done with sets of three points, the number of pointsN must be
odd for Simpson's rule.

In general, you should choose an integration rule that gives an accurate answer
using the least number of integration points. For the trapezoid and Simpson rules the
errors vary as

Et = O
�

[b� a]3

N 2

�
d2f
dx2 ; Es = O

�
[b� a]5

N 4

�
d4f
dx4 ; (1.23)
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where the derivatives are evaluated someplace within the integration region. So un-
less the integrand has behavior problems with its derivatives, Simpson's rule should
converge more rapidly than the trapezoid rule and with less error. While it seems like
one might need only to keep increasing the number of integration points to obtain
better accuracy, relative round-o� error tends to accumulate, and, after N integration
points, grows like

� ro '
p

N� m ; (1.24)

where � m ' 1015 is the machine precision (discussed in Ÿ1.3). So even though the
error in the algorithm can be made arbitrary small, the total error, that is, the error
due to algorithm plus the error due to round-o�, eventually will increase like

p
N .

1.5.1 Gaussian Quadrature

Gauss �gured out a way of picking the N points and weights in (1.17) so as to make an
integration over [-1,1] exact if g(x) is a polynomial of degree2N � 1 or less. To accom-
plish this miraculous feat, the x i 's must be the N zeros of the Legendre polynomial
of degreeN , and the weights related to the derivatives of the polynomials [LPB(15)]:

PN (x i ) = 0 ; wi =
2

(1 � x2
i )[P 0

N (x i )]2
: (1.25)

Not to worry, we supply a program that determines the points and weights. If your
integration range is [a,b] and not [-1,+1], they will be scaled as

x0
i =

b+ a
2

+
b� a

2
x i ; w0

i =
b� a

2
wi : (1.26)

In general, Gaussian quadrature will produce higher accuracy than the trapezoid and
Simpson rules for the same number of points, and is our recommended integration
method.

Our Gaussian quadrature codeIntegGaussCall.py in Listing 1.16 requires the value
for precisioneps of the points and weights to be provided by the user. Overall precision
is usually increased by increasing the number of points used. The points and weights
are generated by the methodGaussPoints.py, which will be included automatically in
your program via the from GaussPoints import GaussPoints statement.

1.5.2 Monte Carlo (Mean Value) Integration

Monte Carlo integration is usually simple, but not particularly e�cient. It is just a
direct application of the mean value theorem:

I =
Z b

a
dx f (x) = ( b� a) hf i : (1.27)
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Figure 1.9. A log-log plots of the relative error in an integration using the trapezoid rule,
Simpson's rule, and Gaussian quadrature versus the number of integration points N.

The mean is determined bysampling the function f (x) at random points within the
integration interval:

hf i '
1
N

NX

i=1

f (x i ) )
Z b

a
dx f (x) ' (b � a)

1
N

NX

i=1

f (x i ): (1.28)

The uncertainty in the value obtained for the integral I after N samples off (x ) is
measured by the standard deviation� I . If � f is the standard deviation of the integrand
f in the sampling, then for a normal distribution of random number we would have

� I '
1

p
N

� f : (1.29)

So, for large N the error decreases as1=
p

N . In Figure 1.6 left we show a scatter
plot of the points used in a Monte Carlo integration by the code PondMapPlot.py in
Listing 1.7.

Before you actually use random numbers to evaluate integrals, we recommend that
you work through Ÿ1.6.2 to be sure your random number generator is working properly.

On the left of Figure 1.6 we show a pond whose area we wish to determine. We can
determine the area of such an irregular �gure by throwing stones in the air (generating
random (x; y ) values), and counting the number of splashesNpond as well as the
number of stones lying on the groundNbox . The area of the pond is then given by
the simple ratio:

Apond =
Npond

Npond + Nbox
Abox : (1.30)

1. Write a program to integrate a function for which you know the analytic answer
so that you can determine the error. Use
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Figure 1.10. Left: A graphical representation of three steps involved in solving for a zero of
f (x) using the bisection algorithm. Right: Two steps shown for the Newton-Raphson method
of root �nding in which the function is approximated as a straight line, and then the intercept
of that line is determined.

Computers, being deterministic, cannot generate truly random numbers. However,
they can generatepseudorandom numbers, and the built-in generators are often very
good at this. The randommodule in Python produces a sequence of random numbers,
and can be used after animport random statement. The module permits many options,
with the simple command random.random() returning the next random �oating point
number, distributed uniformly in the range [0.0, 1.0). But if you look hard enough,
you are sure to �nd correlations among the numbers.

The linear congruential or power residuemethod is the common way of generating
a pseudorandom sequence of numbers:

r i +1
def
= ( a r i + c) modM = remainder

�
a r i + c

M

�
: (1.31)

Wikipedia has a table of common choices, for instance,m = 2 48; a = 25214903917; c =
11: Here mod is a function (% sign in Python) for modulus or remaindering, which is
essentially a bit-shift operation that results in the least signi�cant part of the input
number and hence counts on the randomness of round-o� errors.

Your computer probably has random-number generators that should be better than
one computed by a simple application of the power residue method. In Python we use
random.random() , the Mersenne Twister generator. To initialize a random sequence,
you need to plant a seed (r 0), or in Python say random.seed(None), which seeds the
generator with the system time, which would di�er for repeated executions. If random
numbers in the range[A; B ] are needed, you only need to scale, for example,

x i = A + ( B � A)r i ; 0 � r i � 1; ) A � x i � B: (1.32)
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Figure 1.11. Left: A plot of successive random numbers (x; y ) = (r i ; r i +1 ) generated with
a deliberately �bad� generator. Right: A plot generated with the built-in random number
generator. While the plot on the right is not proof that the distribution is random, the plot
on the left is proof enough that the distribution is not random.

1.6.1 Tests of Random Generators

A good general rule, before starting a full calculation, is to check your random number
generator by itself. Here are some ways:

� Look at a print out of the numbers and check that they fall within the desired
range and that they look di�erent from each other.

� A simple plot of r i versusi (Figure 1.12) may not prove randomness, though it
may disprove it as well as showing the range of numbers.

� Make an x-y plot of (x i ; yi ) = ( r 2i ; r 2i+1 ). If your points have noticeable regular-
ity (Figure 1.11 left), the sequence is not random. Random points (Figure 1.11
right) should uniformly �ll a square with no discernible pattern (a cloud).

� A simple test of uniformity, though not randomness, evaluates thekth moment
of a distribution

hxk i =
1
N

NX

i=1

xk
i '

Z 1

0
dx x k P(x) '

1
k + 1

+ O
�

1
p

N

�
; (1.33)

where the approximate value is good for a continuous uniform distribution. If the
deviation from (1.33) varies as1=

p
N , then you also know that the distribution

is random since this assumes randomness.
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� Another simple test determines thekth order correlation of a sequence:

C(k) =
1
N

NX

i=1

x i x i+k ; '
Z 1

0
dx

Z 1

0
dy xy =

1
4

; (k = 1; 2; : : :); (1.34)

where the approximate value will hold if the random numbers are distributed
with a constant joint probability, which we take to be 1. Here again, if the
deviation from (1.34) varies as1=

p
N , then you also know that the distribution

is random.

1. To help see why we recommend using an industrial strength random-number
generator, try instead using the linear congruential method (1.31).

a. Start with an unwise choice: (a; c; M; r 1) = (57; 1;256;10).
b. Determine the period, that is, how many numbers are generated before the

sequence repeats.
c. Look for correlations in this unwise choice by observing clustering on a plot

of successive pairs(x i ; yi ) = (r 2i�1 ; r 2i ), i = 1 ; 2; : : :. (Do not connect the
points with lines.)

d. Plot r i versusi and comment on its comparison toFigure 1.12.
e. Now get serious and test the linear congruential method using one of the set

of constants given by Wikipedia.

2. Test the built-in random-number generator on your computer by using a variety
of the tests discussed above.

3. Compare the scatter plot you obtain using the built-in random-number generator
with that of your �good� linear congruential method

1.6.2 Central Limit Theorem

Before you start using random numbers in computations, it is a good idea to verify
that your generated randomness agrees with the statistical meaning of randomness. A
way to do that is to test if your generated numbers obey thecentral limit theorem. One
of the things that the theorem tells us is that when a large numberN of independent,
random variables are added together, their sum tends toward a normal (Gaussian)
distribution:

�(x) =
1

�
p

2�
e�(x�hxi) 2 =2� 2

; (1.35)

where hxi is the mean value ofx and � is the standard deviation:

hxi =
1
N

NX

i=1

x i ; � =
1
N

NX

i=1

(x � hxi) 2: (1.36)
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Figure 1.14. A sequence of uniform steps of lengthh taken in solving a di�erential equation.
The solution starts at time t = 0 and is integrated in steps of h until t = T.

RHS's combined into the vector f :

dy(t)
dt

= f (t; y); (1.37)

y =

2

6
6
6
4

y(0) (t)
y(1) (t)

. . .
y(N �1) (t)

3

7
7
7
5

; f =

2

6
6
6
4

f (0) (t; y)
f (1) (t; y)

. . .
f (N �1) (t; y)

3

7
7
7
5

: (1.38)

The rule indicated by (1.37) is that the RHS function f (t; y) may not contain any ex-
plicit derivatives, although individual components of y( i) may be equal to derivatives.

To see how this works, we start with Newton's law with an arbitrary force, and
de�ne each level of derivative as a new variable:

d2x
dt2 =

1
m

F
�

t; x;
dx
dt

�
; (1.39)

y(0) (t)
def
= x(t); y (1) (t)

def
=

dx
dt

=
dy(0) (t)

dt
; (1.40)

)
dy(0)

dt
= y(1) (t) = f (0) ;

dy(1)

dt
=

1
m

F (t; y (0) ; y(1) ) = f (1) : (1.41)

1.7.1 Euler & Runge-Kutta Rules

As illustrated in Figure 1.14, an ODE is solved numerically by starting with an initial
value of the dependent variabley(t = 0) � y0, and using the derivative function f (t; y )
to advancey0 one small steph forward in time to y(t = h) � y1. The algorithm then
just keeps repeating itself, treating the new values fory as new initial conditions for
the next step. Euler's rule does this via a straightforward application of the forward-
di�erence algorithm for the derivative:

yn+1 ' yn + hf (t n ; yn ) (Euler's Rule); (1.42)

where yn � y(t n ) is the value of y at time tn . Aside from its use in initiating other
algorithms, Euler's method is not accurate enough for scienti�c work. As with the
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forward-di�erence derivative, the error in Euler's rule is O(h2), which is equivalent to
ignoring the e�ect of acceleration on the position of a projectile, but including it on
the projectile's velocity.

In contrast to Euler's rule, the fourth-order Runge-Kutta algorithm, rk4, has
proven to be robust and capable of industrial strength work. It is our recommended
approach for solving ODEs. The algorithm is based upon the formal integral of the
di�erential equation:

dy
dt

= f (t; y ) ) y(t) =
Z

f (t; y ) dt ) yn+1 = yn +
Z t n+1

t n

f (t; y ) dt: (1.43)

The critical idea here is to expand the integrand around the midpoint of the integration
interval and thereby obtain O(h4) precision via the cancellation of theh and h3 terms.
The price paid for the improved precision is having to approximate three derivatives
and the unknown y at the middle of the interval [Press et al.(94)]:

yn+1 =' yn +
1
6

(k 1 + 2k 2 + 2k 3 + k4); (1.44)

k1 = hf (t n ; yn ); k2 = hf
�

tn +
h
2

; yn +
k1

2

�
;

k3 = hf
�

tn +
h
2

; yn +
k2

2

�
; k4 = hf (t n + h; yn + k3):

The program rk4Call.py in Listing 1.12 uses rk4 to solve •y = �100y � 2 _y +
100 sin(3t), and plots up the results usingVPython. As an alternative, the program
rk4Duffing.py in Listing 1.13 solves •y = �2 _y � �y � �y 3 + F cos!t, and plots up
the results using Mathplotlib. The details of the rk4 algorithm remain unchanged
regardless of the ODE and are contained in the functionrk4Algor.py. Do not modify
it! Instead, modify only the force function f() in rk4Call.py that contains the RHS
(1.38) of the ODE. Note, after the �rst call to rk4Algor.py, the compiled version of
it, rk4Algor.pyc, will be left in the working directory. The statement from rk4Algor
import rk4Algor at the beginning of rk4Call.py includes the precompiled method.
Here is a pseudocode version ofrk4Call.py:

# Pseudocode for rk4Call.py for ODE y" = -100y-2y'+ 100 sin(3t)
import packages
Initialize variables, y(0) = position, y(1) = velocity
h = (Tend-Tstart)/N # Time step
Define f(t, y) # Function with RHS's
while (t < Tend)

call rk4Algor # y_new = y_old + Delta
t = t + h
plot each new point

Here is a pseudocode version ofrk4Duffing.py:
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# Pseudocode for rk4Duffing.py
import packages
Declare yy = all positions, vy = all velocities, tt = all t's
Define f(t, y) # RHS Force Function
i = 0, initialize y[0], y[1]
for 0 < t < 100

store tt[i], yy[i] = y[0], vy[i] = y[1]
call rk4Algor # rk4: y_new = y_old + Delta y
i = i + 1

plot yy, vy vectors

1.8 Partial Di�erential Equations Algorithms
There is no one algorithm that can be applied to all of the di�erent types of partial
di�erential equations. Although all PDE solutions we discuss apply �nite di�erence
approximations for derivatives, the details depend upon the equation and boundary
conditions. Accordingly, we present the di�erent techniques within the context of their
physics use:relaxation for Laplace and Poisson's equations, Ÿ5.2.1, andtime stepping
for the heat and wave equations, Ÿ7.2, Ÿ4.2. As an example, which we cover more fully
in Ÿ7.2, the heat equation,

@T(x; t )
@t

= �
@2T(x; t )

@x2
; (1.45)

is a PDE in space and time. When the time and space derivatives are approximated
in terms of �nite di�erences, the PDE becomes the �nite di�erence equation

T(x; t + � t) � T(x; t )
� t

= �
T(x + � x; t ) + T(x � � x; t ) � 2T(x; t )

� x2 : (1.46)

We form an algorithm from this equation by reordering it such that the temperature
at an earlier time j can be stepped forward to yield the temperature at a later time
j + 1 :

Ti;j +1 = Ti;j + � [Ti +1 ;j + Ti � 1;j � 2Ti;j ] : (1.47)

1.9 Code Listings

� �

# EasyVisualVP . py : VPthon , s imp le graph o b j e c t

from vpython import � # Import Vpython

graph1=graph ( a l i g n= ' le f t ' , width =400 , h e i g h t =400 ,
background=c o l o r . white , f o reg round=c o l o r . b lack )

P lo t1=gcurve ( c o l o r=c o l o r . red ) # gcurve method
f o r x in arange ( 0 , 8 . 1 , 0 . 1 ) : # x range

Plo t1 . p l o t ( pos=(x , 5 � cos (2 � x ) � exp ( � 0.4 � x ) ) )
graph2=graph ( a l i g n= ' r i gh t ' , width =400 , h e i g h t =400 ,

background=c o l o r . white , f o reg round=c o l o r . b lack ,
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Data Analytics for Physics

2.1 Chapter Overview
We start this chapter with two methods for �nding roots via trial-and-error search-
ing. This is a widely-used computational tool which we apply in Ÿ2.3 to least-squares
�tting. We then discuss and give problems dealing with Fourier analysis and its im-
plementation as the discrete Fourier transform (DFT) algorithm. In Ÿ2.5 we discuss
the industrial-strength version of DFT known as the fast Fourier transform (FFT),
which we consider optional due to its intricacies. We then show two methods that use
Fourier analysis to reduce noise in signals. In Ÿ2.7.1 we go on to extend the Fourier
analysis to nonstationary signals, �rst by use of short-term Fourier transforms, and
then by wavelet analysis (Ÿ2.7.2). This leads naturally to the industrial-strength multi-
resolution wavelet analysis in Ÿ2.7.3, which we also consider optional due to its intri-
cacies. In Ÿ2.8 we introduce principal components analysis (PCA), a powerful tool for
analyzing complex and large data sets, and for extracting space-time correlations. We
conclude the chapter with the determination of the fractal dimension of an object.

2.2 Root Finding
Many problems require �nding the root or zero of a function:

f (x ) ' 0; (2.1)

where f (x) may be vector of equations. Numerical root �nders employ a trial-and-
error technique that starts with a guess for x (the �trial�), substitutes the guess into
f (x), sees how farf (xguess ) is from zero (the �error�), and then makes a better guess
for x based on the error found. The procedure continues untilf (x) ' 0 to some
desired level of precision, or until the changes inx are insigni�cant, or until the search
seems endless.

The most elementary trial-and-error technique is the bisection algorithm. It is
reliable, slow, and bound to work if you know that f (x) changes sign within some

39
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Figure 2.1. Left: Some of the steps involved in solving for a zero off ( x) using the bisection
algorithm. The algorithm progressively takes the midpoint of the interval as the new guess
for x, which progressively reduces the interval size by one-half. Right: Some of the steps
involved in solving for a zero of f ( x) using the Newton-Raphson method. The method takes
the new guess as the zero of the straight line tangent to f ( x) at the x value of the old guess.

interval. As shown on the left of Figure 2.1, we start with two values x � and x+

between which a zero occurs:

f (x � ) < 0; f (x + ) > 0; (2.2)

where x+ may be less thanx � in value. As the next guess, pick a value ofx halfway
between x+ and x � , and then changex+ or x � to this new x based upon the value
for f (x):

# Pseudocode for Bisection.py: Find x for f(x)=0 via Bisection algorithm
Define function f(x) = 2 cos(x) - x
Define function bisection(x-, x+, N, eps)

Repeat N times
x = (x+ + x-)/2
if f(x+)f(x) > 0 then x+=x
else x- = x
if abs(f(x)) < eps then quit

return x
Call bisection(x_min, x_max, N, eps)

Our code Bisection.py is given in Listing 2.6, where you will note that, without
being modi�ed, the method Bisection can be called from your program.

The Newton-Raphson algorithm (Figure 2.1 right) starts with a guess x0 for the
root, assumes that we are in a regime wheref (x) is linear, and then computes a
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correction �x based on where the zero of the linear function occurs:

f (x = x0 + �x) ' f (x 0) +
df
dx

�
�
�
�
x 0

�x ' 0; (2.3)

) �x ' �
f (x 0)

df=dx jx 0

: (2.4)

The procedure is then repeated. If a guess is in a region wheref (x) is nearly linear,
then the convergence is more rapid than the bisection algorithm; however if the guess
is in a region wheref (x ) has local minima or maxima (df=dx ' 0), the method may
fail.

If you have an analytic expression for the derivative, you can use that in the
algorithm. Otherwise, or for complicated functions, it may be easier and less error-
prone to use a numerical forward-di�erence or central-di�erence approximation to the
derivative:

df
dx

�
�
�
�
F D

'
f (x + �x) � f (x)

�x
;

df
dx

�
�
�
�
CD

'
f (x + �x

2 ) � f (x � �x
2 )

x
; (2.5)

where �x 6= �x is some small change inx. (Once you have found a root, the approxi-
mations made to get there are irrelevant.)

In Listing 2.7 we give a programNewtonCall.py that implements a Newton-Raphson
search with the central-di�erence derivative. Note that you should supply your own
integrand function f(x), but leave the function NewtonRas is.

1. A standard problem in elementary quantum mechanics is to �nd the energies of
the bound states within a square well potential. The energiesE = �E B < 0 of
the bound states are solutions of the transcendental equations [Gott]

p
10� EB tan

� p
10� EB

�
=

p
EB (even); (2.6)

p
10� EB cotan

� p
10� EB

�
=

p
EB (odd); (2.7)

where even and odd refer to the symmetry of the wave function.

a. A good �rst step in a search is to get some idea of what your function looks
like. For this purpose plot the LHS-RHS of (2.6) or (2.7) versusEB .

b. Use the bisection algorithm to �nd several solutions of (2.6) and (2.7).
c. Use the Newton-Raphson algorithm to �nd some solutions of (2.6) and (2.7)

to the same level of precision as demanded of the bisection algorithm, and
compare the speed of the two methods.

2. Warning: Because thetan function has singularities, numerical procedures
may become inaccurate near singularities. One cure is to use a di�erent, though
equivalent, form of the equation. Show that an equivalent form of (2.6) is

p
E cot(

p
10� E) �

p
10� E = 0: (2.8)
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a. Make a plot of (2.8) and note how the singularities are at di�erent places.
b. Compare the roots you �nd with those given by Maple or Mathematica.
c. The �10� in (2.6) is proportional to the potential's depth. Verify that making

the potential deeper, say, by changing the 10 to a 20 or a 30, produces a larger
number of, and deeper, bound states.

3. Nonlinear equations are often challenging to solve analytically. Find the solu-
tions of the nonlinear, simultaneous equations:

x2 � 4y2 = 1; x � 8y3 = 3:

4. Find the x values at which the function 10x4 sin(k x) and its �rst two derivatives
vanish.

2.3 Least-Squares Fitting
Least-square �tting is the preferred approach for �tting a formula (�theory�) to data
that contain statistical uncertainties. We start with ND data values of some indepen-
dent variable y as a function of dependent variablex:

(x i ; yi � � i ); i = 1; N D : (2.9)

The function also contains M P parameters fa 1; a2; : : : ; aM P g:

g(x) = g(x; fa 1; a2; : : : ; aM P g) = g(x ; fa m g): (2.10)

Our aim is to �t these data to the function g(x); speci�cally, to determine the values
of fa m g that produce a best �t to the data.

The �tting is based on �nding the minimum value of the chi-square measure of
goodness of �t [Bevington & Robinson(02)]:

� 2 def
=

N DX

i=1

�
yi � g(x i ; fa m g)

� i

� 2

: (2.11)

The sum here is over theND data points, where the 1=� 2
i weighting ensures that

measurements with greater uncertainties contribute proportionally less to � 2. For
M P parameters, minimization of � 2 leads to M P equations to solve:

@�2

@am
= 0; )

N DX

i=1

[yi � g(x i )]
� 2

i

@g(x i )
@am

= 0; m = 1; M P : (2.12)

A necessary but not necessarily su�cient condition for a solution to exist is that the
number of data points ND is equal to or greater than the number of parameters.
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Figure 2.2. Left: A linear least-squares best �t of a parabola to data. Here we see that the
�t misses approximately one-third of the points, as expected from the statistics for a good
�t. Right: The number of decays per unit time of � mesons as a function of time since their
creation. The curve is a least-squares �t to the log N (t).

2.3.1 Linear Least-Square Fitting

The M P simultaneous equations (2.12) simplify considerably if the functionsg(x; fa m g)
dependlinearly on the parametersai , e.g.,

g (x; fa 1; a2g) = a1 + a2x: (2.13)

Notice that even though there are only two parameters to determine, there is still an
arbitrary number ND of data points to �t. For a linear dependence on the ai 's, the
solution can be written as [Press et al.(94)]:

@g(x i )
@a1

= 1;
@g(x i )

@a2
= x i ; ) a1 =

Sxx Sy � Sx Sxy

�
; a2 =

SSxy � Sx Sy

�
;

S =
N DX

i=1

1
� 2

i
; Sx =

N DX

i=1

x i

� 2
i

; Sy =
N DX

i=1

yi

� 2
i

; (2.14)

Sxx =
N DX

i=1

x2
i

� 2
i

; Sxy =
N DX

i=1

x i yi

� 2
i

; � = SSxx � S2
x : (2.15)

The function being �tted does not have to be linear in the independent variable,
rather only in the parameters. As a case in point, imagine �tting a parabola

g(x) = a1 + a2x + a3x2 (2.16)

to data (Figure 2.2 left). In this case (2.12) leads to three simultaneous, linear equa-
tions for a1, a2, and a3:

N DX

i=1

[yi � g(x i )]
� 2

i
= 0;

N DX

i=1

[yi � g(x i )]
� 2

i
x = 0;

N DX

i=1

[yi � g(x i )]
� 2

i
x2 = 0: (2.17)
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Table 2.1. Temperature versus distance along a metal rod.
x i (cm) 2.0 4.0 6.0 84.0 10.0 12.0 14.0 16.0 18.0
Ti (C) 7.3 9.3 18.3 15.4 30 30 31.1 39.7 49.8

These equations can be rewritten as simple extensions of those used in (2.14)�(2.15):

Ax = b; (2.18)

A =

2

4
S Sx Sxx

Sx Sxx Sxxx

Sxx Sxxx Sxxxx

3

5; x =

2

4
a1

a2

a3

3

5; b =

2

4
Sy

Sxy

Sxxy

3

5; (2.19)

where the matrix form is convenient for computation. In Listing 2.8 we present the
codeFit.py that performs such a �t using a linear algebra subroutine library to solve
for the parameter vector a. The results are shown inFigure 2.2. A pseudocode is

# Fit.py: Linear least-squares fit via matrix solution
Import packages
Define constants
Define arrays with data values
for i in range(0, Nd)

calculate s's
Set up A matrix, b vector
Solve for x = A^{-1} b
Plot data and fit

1. Table 2.1 gives the temperatureT along a metal rod as a function of the distance
x along the rod.

a. Plot the data in Table 2.2 and, accordingly, con�rm the linear relation

T(x) ' a + bx: (2.20)

b. Perform a least-squares straight-line �t to these data.
c. Plot your �t a + bx on the same graph as the data.
d. Verify that your �t produce a minimum in � 2.

2. Show that (2.17) can be written as (2.19).

3. Unstable particles often decay spontaneously and stochastically. In the limit of
large number of particles, the decay rate can be approximated with an exponen-
tial function:

dN (t)
dt

'
dN (0)

dt
e�t=� : (2.21)

Fit the exponential decay law (2.21) to the data of [Stetz et al.(73)] in Figure 2.2
and thus deduce a values for the pion lifetime� .
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Table 2.2. Distance r in megaparsecs versus radial velocity for 24 extragalactic nebulae.
Object r v (km/s) Object r v (km/s) Object r v (km/s)

0.032 170 3627 0.9 650 0.034 290
4826 0.9 150 6822 0.214 -130 4649 2.0 1090
5236 0.9 500 598 0.263 -70 1068 1.0 920
221 0.275 -185 5055 1.1 450 224 0.275 -220

7331 1.1 500 5457 0.45 200 4258 1.4 500
4736 0.5 290 4141 1.7 960 5194 0.5 270
4382 2.0 500 4449 0.63 200 4472 2.0 850
4214 0.8 300 4486 2.0 800 3031 0.9 -30

a. Read from the �gure approximate values for [�N i =�t, t i ], picking the middle
of each bin as the time value.

b. Deduce an approximate value for the error� i for each point equal to how
much the histogram values appear to �uctuate about a smooth curve.

c. Although the exponential is a nonlinear function of the parameter � , the
logarithm ln[�dN=dt(t)] ' ln[�dN (0)=dt] + t=� is expected to be linear in
both t and 1=� .

d. Compare your deduction to the tabulated pion lifetime of � = 2:6 � 10�8 s.
e. Verify that your �t is a minimum in � 2.
f. Repeat the exercise without taking the logarithms, and compare to the de-

duced lifetime obtained previously. (Hint: See Problem 7 for a sample ap-
proach to use.)

4. In 1929 Edwin Hubble examined the data inTable 2.2 relating the radial velocity
v of 24 extra galactic nebulae to their distancer from our galaxy [Hubble(29)].
Although there was considerable scatter in the data, he �t them with a straight
line:

v = Hr; (2.22)

where H is now called the Hubble constant.

a. Plot the data to verify the appropriateness of a linear relation

v(r ) ' a + Hr: (2.23)

b. Deduce a value for the error� i for each point as how much the histogram
values appear to �uctuate about a smooth curve.

c. Compute a least-squares straight-line �t to these data.
d. Plot your �t on the curve with the data.
e. After �tting the data, compute the variance and verify that approximately

one-third of the points miss the � error band (that's what is expected for a
random distribution of errors).

f. Determine the � 2 of the �t and comment on its value.
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Table 2.3. Measured total cross sections in millibarns of neutron-carbon scattering as a
function of neutron energy in KeVs.

i 1 2 3 4 5 6 7 8 9
E i (keV) 0 13 25 38 50 63 75 87 100
� T (mb) 10.6 16.0 45.0 83.5 52.8 19.9 10.8 8.25 4.7
Error (mb) 9.34 17.9 41.5 85.5 51.5 21.5 10.8 6.29 4.14

5. Linear Quadratic Fit Assessment Fit the quadratic (2.16) to the four
following data sets. In each case indicate the values found for thea's, the
number of degrees of freedom,and the value of � 2.

a. (0; 2)
b. (0; 2); (2; 6)
c. (0; 2); (2; 6); (4; 14)
d. (0; 2); (2; 6); (4; 14); (6; 30)

6. Find a �t to the last set of data to the function

y = Ae�bx 2
: (2.24)

Hint: A judicious change of variables will permit you to convert this to a linear
�t. Does a minimum � 2 still have the usual meaning here?

7. Nonlinear Fitting to a Resonance Table 2.3 gives total cross section data
� T for low energy neutron scattering from carbon nuclei as a function of energy
E. Determine if these data may be �t by the Breit-Wigner resonance formula:

� T (E ) =
� 0

(E � E r )2 + � 2=4
; (2.25)

where E r is the resonance energy and� is the full width at half maxima.

a. Plot these data so you have some idea as to the function you wish to �t.
b. Show that for this problem the parameters and function are:

g(x) =
a1

(x � a2)2 + a3
; a1 = � 0; a2 = ER ; a3 = � 2=4; x = E: (2.26)

c. Verify that the three derivatives required by the best �t equations (2.12) are:

@g
@a1

=
1

(x � a2)2 + a3
;

@g
@a2

=
�2a 1(x � a2)

[(x � a2)2 + a3]2
;

@g
@a3

=
�a 1

[(x � a2)2 + a3]2
:

d. Show that minimum � 2 leads to three equations nonlinear in theai 's:

9X

i=1

[yi � g(x i )]
� 2

i

@g(x i )
@am

= 0; (m = 1; 3): (2.27)
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e. Determine the best �t values for the parameters E r ; � 0, and � to the data
in Table 2.3. Write a program that �nds the three roots of (2.27). We
recommend a Newton-Raphson search procedure with the equations written
in matrix form.

f. Compare the deduced values of the parameters to estimates based on a casual
inspection of a plot of these data.

2.4 Discrete Fourier Transforms (DFT)
A function is said to be periodic in the variable t, which does not have to be time, if
it keeps repeating after each intervalT:

y(t + T) = y(t): (2.28)

HereT is called thefundamental period if it is the smallest number for which the func-
tion repeats; smallest, because there's also repetition after2T, 3T, . . . . Equivalently,
we can say that the function has afundamental frequency! , where

! � ! 1 =
2�
T

: (2.29)

Given a set {yi } of N signal measurements at timest i ; i = 1; : : : N , Fourier's theorem
states that any single valued, periodic functions with at most a �nite number of
discontinuities can be approximated as the in�nite series:

y(t) '
a0

2
+

1X

n=1

(an cosn!t + bn sinn!t) : (2.30)

This series (2.30) is a �best or least-square" �t (Ÿ2.3) in the sense that it minimizes
the squared deviation between theory and measurement,

P
i [y(t i ) � yi ]2. A Fourier

series will miss the function at discontinuities, where it converges to the mean, or at
sharp corners, where it has a �Gibbs overshoot".

The coe�cients an and bn in (2.30) measure, respectively, the amount ofcosn!t
and sinn!t present in y(t):

�
an

bn

�
=

2
T

Z T

0
dt

�
cosn!t
sinn!t

�
y(t): (2.31)

If a function is not periodic, then a series is not as accurate a representation as is a
Fourier integral :

y(t) =
Z +1

�1
d! Y (! )

ei!t
p

2�
: (2.32)

Here the Fourier transform Y(! ) is analogous to the Fourier coe�cients (an ; bn ):

Y (! ) =
Z +1

�1
dt

e�i!t
p

2�
y(t); (2.33)
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where the 1=
p

2� factor in (2.32) and (2.33) is a common convention in physics.
Likewise, our sign conventions in the exponents are sometimes reversed, which is okay
as long as one remains consistent.

In the discrete Fourier transform (DFT) algorithm we assume that the signaly(t)
is measured or computed at only a �nite number N of uniform time intervals �t = h,
and for a total time T = Nh:

yk
def
= y(t k ); t k

def
= kh; k = 0; 1;2; : : : ; N: (2.34)

By its very nature, the DFT is an approximation because the signal is not known for
all times and because we will evaluate the integrals approximately. However, the DFT
can be used to reconstructy(t) for any time. The algorithm evaluates the integral in
(2.33) using the equally-spaced measurementsfy i g and the trapezoid integration rule:

Y (! n )
def
=

Z +1

�1
dt

e�i! n t
p

2�
y(t) '

Z T

0
dt

e�i! n t
p

2�
y(t); (2.35)

'
NX

k=1

h y(t k )
e�i! n t k

p
2�

= h
NX

k=1

yk
e�2�ikn=N

p
2�

: (2.36)

To make the notation symmetric, the step sizeh is factored out from Y:

Yn
def
=

1
h

Y(! n ) =
NX

k=1

yk
e�2�ikn=N

p
2�

; n = 0; 1: : : ; N; (2.37)

) y(t) '
NX

n=1

2�
N

ei! n t
p

2�
Yn ; ! n = n! 1 = n

2�
T

= n
2�
Nh

: (2.38)

Here the extra n = 0 value, ! n=0 = 0, corresponds to the zero-frequency or DC
component of the transform, that is, the part of the signal that does not oscillate.
Regardless of the true periodicity of the signal, when we sample the signal over a
�nite period T, the mathematics produces ay(t) that is periodic with period T,

y(t + T) = y(t): (2.39)

We build this periodicity into the algorithm by having a �ctitious, measurement YN

at time Nh, that is equals to the �rst signal measurement:

yN = y0: (2.40)

This does not change the fact that there are justN independent measurements span-
ning one period.

We see from (2.38) that the larger we make the timeT = Nh over which we sample
the function, the smaller will be the frequency steps or resolution. Accordingly, if you
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want a smooth frequency spectrum, you need to have a small frequency step2�=T ,
which means a longer observation timeT.

The DFT algorithm can be expressed succinctly by introducing a complex variable
Z for the exponential, and then raising Z to various powers:

yk =

p
2�

N

NX

n=1

Z �nk Yn ; Yn =
1

p
2�

NX

k=1

Z nk yk ; Z = e�2�i=N : (2.41)

With this formulation, the computer needs to compute only powers of Z . Our DFT
codeDFTcomplex.py is given in Listing 2.1. Here is its pseudocode:

# DFTcomplex.py: Discrete Fourier Transform
Import packages
Define constant
Declare arrays
Set up plots
Function Signal(y) # Generates a sample signal y[i]

Function DFT(Ycomplex} # Computes DFT, returns complex Y
Y = Sum y_k exp(- i 2 pi k n/N)

Call Signal
Call DFT

1. It is always a good idea to perform simple checks before applying your own or
packaged Fourier tools. And so, sample the mixed-symmetry signal

y(t) = 5 sin(!t) + 2 cos(3!t) + sin(5!t): (2.42)

a. Decompose this into its components.
b. Check that the components are essentially real and in the ratio 5:2:1.
c. Verify that the frequencies have the expected values.
d. Verify that the summed transform values reproduce the input signal.

2. Sum the Fourier series for thesawtooth function up to order n = 2; 4;10;20, and
plot the results over two periods.

a. Check that in each case the series gives the mean value of the functionat the
points of discontinuity.

b. Check that in each case the seriesovershootsby about 9% the value of the
function on either side of the discontinuity (the Gibbs overshoot).

c. Experiment on the e�ects of picking di�erent values of the step sizeh and of
enlarging the measurement periodT = Nh.

3. An electron initially localized at x = 5 with momentum k0 is described by the
wave packet (~ = 1):

 (x; t = 0) = exp

"

�
1
2

�
x � 5:0

� 0

� 2
#

eik 0 x : (2.43)
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Determine and plot the momenta components in this wave packet by evaluating
the Fourier transform

 (p) =
Z +1

�1
dx

eipx
p

2�
 (x): (2.44)

4. For your signal of choice, take the output from DFTcomplex.py and inverse-
transform it back to signal space. Compare it to your input.

5. The sampling of a signal by DFT for only a �nite number of times both limits
the accuracy of the deduced high-frequency components, and contaminates the
deduced low-frequency components (calledaliasing). Consider the two functions
sin(�t=2) and sin(2�t) for 0 � t � 8.

a. Make graphs of both functions on the same plot.
b. Perform a DFT on both functions.
c. Sample at timest = 0; 2;4;6;8; : : : and draw conclusions.
d. Sample at times t = 0; 12=10;4=3; : : : and draw conclusions about the high-

frequency components (Hint: they may be aliased by the low-frequency com-
ponents).

e. The Nyquist criterion states that when a signal containing frequencyf is
sampled at a rate of s = N=T measurements per unit time, with s � f=2,
then aliasing occurs. Verify speci�cally that the frequencies f and f � 2s
yield the same DFT.

6. Perform a Fourier analysis of the chirp signal y(t) = sin(60t 2). As seen in
Figure 2.11, this signal is not truly periodic, and is better analyzed with methods
soon to be discussed.

7. Consider the following wave packets:

y1(t) = e�t 2 =2; y2(t) = sin(8 t)e�t 2 =2; y3(t) = (1 � t2) e�t 2 =2: (2.45)

For each wave packet:

a. Estimate �t = the full width at half-maxima (FWHM) of jy(t)j.
b. Compute and plot the Fourier transform Y(! ) for each wave packet, going

out to large enough! 's to see periodicity. Makeboth linear and semilog plots
(small components may be important however not evident in linear plots).

c. What are the units for Y (! ) and ! in your DFT?
d. For each wave packet, estimate�! = the full width at half-maxima of jY (! )j.
e. For each wave packet compute approximate value for the constantC in the

uncertainty principle:
�t �! � 2�C: (2.46)
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Figure 2.3. The basic butter�y operation in which input data yp and yq on the left are
transformed into yp + Z yq and yp � Z yq on the right.

2.5 Fast Fourier Transforms (FFT)�

Equation (2.41) presents the discrete Fourier transform in the compact form

Yn =
1

p
2�

NX

k=1

Z nk yk ; Z = e�2�i=N ; n = 0; 1; : : : ; N � 1: (2.47)

As n and k range over their N integer values, the multiplications of complex numbers,
(Z n )k yk , lead to long computation times. Yet [Cooley & Tukey(65), Donnelly &
Rust(05)] showed that theseN 2 multiplications can be reduced to N log2 N steps,
which can lead to order-of-magnitude speedup in processing. Because of its widespread
use (such as in cell phones), this fast Fourier transform (FFT) is considered one of the
10 most important algorithms of all time.

The FFT's economy arises from the computationally expensive complex factor
Z nk = [( Z )n ]k having values that are repeated as the integersn and k vary sequentially.
Here we have you work out problems that lead you through the basis of the FFT.
Although realistic application might have millions of observations, you only have to
consider a signal that has been observed forN = 8 times: y0; y1; : : : ; y7:

1. Write the eight equations for Y0; Y1; : : : ; Y7 in terms of the yi 's and powers of
the eight Z i 's in (2.47).

2. Show that these eight equations contain 64 elements, each of which contains
several multiplications.

3. Show that the equations contain only four independentZ values, Z 0;:::3 , and,
accordingly, only 64 complex number multiplications.

4. Show that the transform values can be expressed in terms of sums and di�erences
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Figure 2.5. From top left to right bottom: A function that is a signal plus noise s(t)+ n(t); the
autocorrelation function versus time deduced by processing this signal; the power spectrum
obtained from autocorrelation function; the signal plus noise after passage through a lowpass
�lter.

3. Compare the transforms obtained with a FFT to those obtained with a DFT.
Make sure to compare both precision and execution times.

2.6 Noise Reduction

2.6.1 Noise Reduction via Autocorrelation Function

All measured signalsy(t) contain noisen(t). If the true signal is s(t), and if the noise
is random and just adds to it as

y(t) = s(t) + n(t); (2.48)

then we can use Fourier transforms to �average out� some of the noise. To do that, we
introduce the autocorrelation function A(� ), which folds or convolutes the measured
signal onto itself, thereby measuring the correlation of a signal with itself:

A(� )
def
=

Z + 1

�1
dt y � (t) y(t + � ) �

Z + 1

�1
dt y(t) y� (t � � ): (2.49)

Here � is called the lag time, and A(t) tends to look like y(t)2.
To see how this folding removes noise from a signal, we start with the Fourier
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transform of y(t) = s(t) + n(t):

Y (! ) = S(! ) + N (! ); (2.50)

S(! ) =
Z +1

�1
dt s(t)

e�i!t
p

2�
; N (! ) =

Z +1

�1
dt n(t)

e�i!t
p

2�
: (2.51)

We evaluate the autocorrelation function (2.49) of the signaly(t) = s(t) + n(t):

Ay (� ) =
Z +1

�1
dt [s(t)s(t + � ) + s(t)n(t + � ) + n(t)n(t + � )] : (2.52)

If the noise n(t) is random and uncorrelated at timest and t + � , then it should average
out to zero, leaving an approximate autocorrelation function of the pure signal:

Ay (� ) '
Z +1

�1
dt s(t) s(t + � ) = As(� ): (2.53)

Yet the convolution theorem tells us that the Fourier transform of a convolution is
proportional to the product of the two functions being convoluted, and so:

As(� )
Z +1

�1
dts(t + � )s(t) ) A(! ) '

p
2� jS(! )j2: (2.54)

The function jS(! )j2 is called thepower spectrumof the true signal, and is proportional
to the squared modulus of the Fourier transform. Often the power spectrum itself
provides all that we need to know about the components in a signal.

For example, in Figure 2.5 we see a noisy signal (upper left), the autocorrelation
function (upper right), which clearly is smoother than the signal, and, lastly, the
deduced power spectrum (lower left). Notice that broadband high-frequency compo-
nents, characteristic of noise, are absent from the power spectrum, and for this reason
jS(! )j2 provides a clean indication of the components in the true signal.

1. Modify the program DFTcomplex.py in Listing 2.1 so that it computes the auto-
correlation function A(� ) and then extract the power spectrum from A(! ).

2. Consider the noiseless (true) signal

s(t) =
1

1 � 0:9 sint
: (2.55)

a. Compute the DFT S(! ) of the true signal ensuring that you have good sen-
sitivity to the high-frequency components.

b. Create a semilog plot of the power spectrumjS(! )j2 of the true signal.
c. Compute the autocorrelation function A(� ) of the input signal s(t).
d. Compute the power spectrum by computing a DFT of the autocorrelation

function.
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Figure 2.6. Left: The rectangle function rect (! ) that is constant for a �nite frequency
interval. Right: The sinc �lter, the Fourier transform of the rectangular function.

e. Compare the extracted power spectrum to that obtained by computingjS(! )j2

directly.

3. Use a random number generator to add noise to the true signal:

y(t i ) = s(t i ) + � (2r i � 1); 0 � r i � 1; (2.56)

where � is an adjustable parameter and thet i 's cover an entire period in detail.

a. Try a range of � values, from small ones that just add fuzz to the signal, to
large ones that nearly hide the signal.

b. Plot the noisy signal, its Fourier transform, and its power spectrum.
c. Compute the autocorrelation function A(� ) of the nosy signal and its Fourier

transform A(! ).
d. Compute the DFT of A(� ) and compare to the true power spectrum. Com-

ment on the e�ectiveness of reducing noise by use of the autocorrelation
function.

e. For what value of � do you essentially lose all the information in the input?

2.6.2 Noise Reduction via Digital Filters

A �lter converts an input signal f (t) to an output signal g(t) with a desired speci�c
property. An analog �lter does this via a convolution [Hartmann(98)]:

g(t) =
Z +1

�1
d� f (� ) h(t � � )

def
= f (t) � h(t); (2.57)

where h(t) is the �lter's transfer function and � is the lag time. The convolution
theorem tells us that �ltering is a multiplication of the signal's transform with the
�lter's transform:

G(! ) =
p

2� F (! ) H (! ): (2.58)
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Figure 2.7. Left: The original photograph. Center: With noise added. Right: The noisy
photograph after �ltering.

Filters that decrease high-frequency components are calledlowpass�lters, and those
that �lter out the low frequencies are called highpass �lters.

An ideal low-frequency �lter look like the rectangular pulse rect(! ) shown on the
left of Figure 2.6. The Fourier transform of this rectangular pulse in frequency is the
sinc function in the time domain [Smith(99)]:

Z +1

�1
d! e �i!t rect(! ) = sinc

�
t
2

�
def
=

sin(�t=2)
�t=2

: (2.59)

A popular digital lowpass �lter is the windowed sinc �lter [Smith(99)]. By decreasing
the high frequencies in a signal it tends to remove some of the noise from the signal.
For example, the graph in the lower right corner of Figure 2.5 was obtained by pass-
ing the noisy signal in the upper left corner through a sinc �lter using the program
SincFilter.py. In practice, �ltering with a pure sinc function may lead to excessive
Gibbs overshoot, that is, rounded corners and oscillations beyond the corner. This is
usually corrected by multiplying the sinc function by a smoothly tapered curve such
as the Hamming window function:

w[i ] = 0 :54� 0:46 cos(2�i=M ): (2.60)

The resulting truncated sinc �lter is shown on the right of Figure 2.6. In terms of
discrete times i , the �lter's kernel is now

h[i ] =
sin[2�! c(i � M=2)]

i � M=2
[0:54� 0:46 cos(2�i=M )] : (2.61)

The cuto� frequency ! c should be a fraction of the sampling rate, with the time length
M determining the bandwidth over which the �lter changes from 1 to 0.

On the left of Figure 2.7 we show a photograph of Mariana. It is stored in theplain
portable gray map(pmg) digital format in the �le MarianaNoise.pgm in the Codesdirec-
tory. The picture is constructed from 512 rows and 512 columns of integer numbers,
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each in the range [0,255]. A 0 represents black, 255 represents white, and intermediate
numbers represent gray tones. In the center ofFigure 2.7we show the same photograph
to which random noise,20*(2*random.random()-1), has been added to each number in
the �le. On the right of the �gure we show the output after �ltering the data with a
truncated sinc �lter in the program SincFilter.py. The �ltered image shows reduced
noise, though also with reduced contrast.

1. Your problem is either to repeat the process we have just gone through with
Mariana.pgm, or, better yet, repeat the process with one of your own digital
photographs that you have converted toplain pgm format.

a. Read the disk �le Mariana.dat containing 512�512 integers in range 0 � N �
255. These are the gray scale tones. Fill the arrayfg[512,512] with the
integers.

b. Write a disk �le Mariana.pgm. The �rst entries in the �le de�ne the format:
P2
512 512
255

After this de�nition place the 512 lines of 512 elements fromMariana.dat.
c. View the .pgm �le with a photo viewing program such as irfanview or Gimp.
d. Add noise (20 (2*random.random()-1)) to each integer in the �le, and output

the numbers to MarianaNoise.pgm maintaining 512 lines of 512 elements.
e. To clean up the image, form an array of 100 entries to sample with parameters

wc = 0:7, for M=100:
for i in range(0,100): # Calculate low-pass filter kernel

if ((i-(m//2)) == 0): h[i] = 2*math.pi*fc
if ((i-(m//2)) != 0): h[i] = sin(2*math.pi*fc*(i-m/2))/(i-m/2)
h[i] = h[i]*(0.54 - 0.46*cos(2*math.pi*i/m)) # Hamming window

Normalize the values by summing all of the elements ofh[i], and then di-
viding each element by the sum.

f. Compute the convolution integral of the �lter and data. Output the result to
the �le MarianaFiltered.pgn, still maintaining the 512 rows of 512 elements.

g. Compare the images from the input �le, the noisy �le, and the �ltered �le.
h. See what happens if you repeat the �ltering several times.

2.7 Spectral Analysis of Nonstationary Signals
Consider analyzing the signal inFigure 2.8 containing an increasing number of fre-
quencies as time increases. Imagine that you actually measured this signal and that
no one told you that it derives from the analytic form

y(t) =

8
><

>:

sin 2�t; for 0 � t � 2;
5 sin 2�t + 10 sin 4�t; for 2 � t � 8;
2:5 sin 2�t + 6 sin 4�t + 10 sin 6�t; for 8 � t � 12:

(2.62)
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Figure 2.8. A signal containing additional frequencies as time increases. The boxes are
possible placements of windows for short-time Fourier transforms.

2.7.1 Short-Time Fourier Transforms

A limitation of the Fourier series (2.30) for analyzing nonstationary signals such as
Figure 2.8 is the absence of any time dependence ofan and bn , and the in�nite ex-
tent in time of sin ! n t and cos! n t. This leads to considerable overlap and correlation
among the components, which in turn can lead to excessively large data storage. An
extension of Fourier analysis for nonstationary signals is theshort-time Fourier trans-
form that �chops � the signal y(t) into segments for di�ering times, and then analyzes
each segment separately. For instance, we show three such segments as the boxes
of Figure 2.8, and these would lead to the Fourier transformsfY (ST)

� 1 ; Y (ST)
� 2 ; Y (ST)

� 3 g,
where the superscript (ST) indicates short time.

Rather than chopping up a signal by hand, we can do it mathematically by trans-
lating a window w(t) of �nite length (a box in the �gure) over the signal:

Y (ST) (!; � ) =
Z +1

�1
dt

ei!t
p

2�
w(t � � ) y(t): (2.63)

Here di�erent values for the translation time � correspond to di�erent locations of the
window w over the signal. The price paid for this extension of Fourier analysis is that
the transform is now a function of two variables, ! and � .

1. Use a short-time Fourier transform to analyze the signal (2.62).

a. Modify your Fourier transform code to include an arbitrary window function.
b. Choose a smooth window function such as a Gaussian. A rectangular win-

dow is simple, though the sharp corners may lead to spurious least-squares
components.

c. Does your transform exhibit three distinct frequencies, with a progressive
increase in time?

d. Invert the computed short-time transform and compare to input signal.
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Figure 2.9. Left: The real part of the Morlet mother wavelet. Right: The Mexican hat
mother wavelet.

2.7.2 Wavelet Analysis

Wavelet analysis extends the short-time Fourier transform idea by using basis functions
that oscillate for only a short period of time (localized in both time and frequency).
The complete set of bases functions are calledwaveletsor wave packets, with each
individual wavelet centered at a di�erent time. For example, Figure 2.9 shows two
such wavelets:

	 Morlet (t) = e2�it e�t 2 =2� 2
; 	 hat (t) = (1 �

t2

� 2 ) e�t 2 =2� 2
: (2.64)

The wavelet transform is similar in notation to the short-time Fourier transform (2.63):

Y (s; � ) =
Z +1

�1
dt  �

s;� (t) y(t); s =
2�
!

: (2.65)

Here the � variable indicates the time portion of the signal being decomposed, while
the s variable is proportional to the inverse of frequency present during that time
(small s corresponds to high-frequencies). Because each wavelet is localized in time,
each acts as its own window function. Furthermore, because each wavelet is oscillatory,
each contains its own small range of frequencies.

The wavelet transform is not restricted to any particular basis. You start with
a mother wavelet 	(t), and then generate the daughter wavelets  s;� that form the
basis from it. For example, as displayed inFigure 2.10, the mother wavelet

	(t) = sin(8 t)e�t 2 =2 (2.66)

is scaled and translated to form the daughters:

 s;� (t)
def
=

1
p

s
	

�
t � �

s

�
=

1
p

s
sin

�
8(t � � )

s

�
e�( t �� )2 =2s2

; (2.67)

where
p

s is a normalization factor. We see that larger or smaller values ofs, re-
spectively, expand or contract the mother wavelet, while di�erent values of � shift
the center of the wavelet. Because the wavelets are oscillatory, the scaling leads to
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Figure 2.10. Four wavelet basis functions (daughters) generated by scaling (s value) and
translating (� value) an oscillating Gaussian mother wavelet. Clockwise from top: (s = 1,
� = 0), (s = 1/2, � = 0), (s = 1, � = 6), and (s = 2, � = 60). Note how s < 1 is a wavelet
with higher frequency, while s > 1 has a lower frequency than the s = 1 mother. Likewise,
the � = 6 wavelet is a translated and compressed version of the� = 0 one directly above it.

the same number of oscillations occurring in di�erent time spans, which is equivalent
to having basis states with di�ering frequencies. Values ofs < 1 produce higher-
frequency wavelets, whiles > 1 produces lower-frequency ones, both of the same
shape. After substituting in the de�nition of daughters, the wavelet transform (2.65)
and its inverse become

Y(s; � ) =
1

p
s

Z +1

�1
dt 	 �

�
t � �

s

�
y(t); (2.68)

y(t) =
1
C

Z +1

�1
d�

Z +1

0
ds

 �
s;� (t)

s3=2
Y(s; � ); (2.69)

where the normalization constant C depends on the wavelet used.
As an illustration of how the s and � degrees of freedom in a wavelet transform

are used, consider the analysis of a chirp signaly(t) = sin(60 t2) (Figure 2.11). We see
that a segment at the beginning of the signal is compared to the �rst basis function
using a narrow version of the wavelet, that is, a low scale one. The comparison at
this scale continues with the next signal segment, and eventually ends when the entire
signal has been covered (the top row inFigure 2.11). Then in the second row the
wavelet is expanded to largers values, and comparisons are repeated. Eventually, the
data are processed at all scales and at all time intervals. As used in the wavelet-based
PEG compression of digital images, transform values from the narrow wavelets provide
high-resolution reconstruction, while the broad wavelets provide the overall shape. As
the scales get larger, fewer details of the time signal remain visible, though the gross
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Figure 2.11. A schematic representation of the steps followed in performing a wavelet trans-
formation over all time displacements and scales. The upper signal is �rst analyzed by
evaluating its overlap with a narrow wavelet at the signal's beginning. The wavelet is succes-
sively shifted over the length of the signal and the overlaps are successively evaluated. After
the entire signal is covered, the wavelet is expanded and the entire analysis is repeated at a
larger scale.

features of the signal are preserved.

1. Modify the program used for the Fourier transform so that it now computes the
wavelet transform.

2. Examine the e�ect of using di�erent wavelets by running the computation with
these other mother wavelets:

a. a Morlet wavelet (2.64),
b. a Mexican hat wavelet (2.64).

3. Transform the following input signals and comment on the results:

a. A pure sine wavey(t) = sin 2�t,
b. A sum of sine wavesy(t) = 2 :5 sin 2�t + 6 sin 4�t + 10 sin 6�t,
c. The nonstationary signal of (2.62)

y(t) =

8
><

>:

sin 2�t; for 0 � t � 2;
5 sin 2�t + 10 sin 4�t; for 2 � t � 8;
2:5 sin 2�t + 6 sin 4�t + 10 sin 6�t; for 8 � t � 12:

(2.70)

d. The half-wave function

y(t) =

(
sin !t; for 0 < t < T=2;
0; for T=2< t < T:

(2.71)
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Figure 2.14. Left: A multifrequency dyadic �lter tree used for discrete wavelet transforma-
tions. The L boxes represent lowpass �lters, the H boxes highpass �lters, and the #2 �lter
out half of their input. Right: The relation between time and frequency resolutions (uncer-
tainty relation). Each box contains the same area but with di�erent proportions of time and
frequency.

4. Use (2.69) to invert your wavelet transform and compare the reconstructed signal
to the input signal (feel free to adjust the normalization). In Figure 2.12we show
our reconstruction.

In Listing 2.4 we give ourcontinuous wavelet transformationCWT.py[Lang & Fori-
nash(98)]. Because wavelets, with their transforms in two variables, are somewhat
hard to grasp at �rst, we suggest that you write your own code and include a portion
that does the inverse transform as a check.Figure 2.13 shows a surface plot of the
spectrum produced for the input signal (2.62) ofFigure 2.8. We see predominantly one
frequency at short times, two frequencies at intermediate times, and three frequencies
at longer times.

2.7.3 Discrete Wavelet Transforms, Multi-Resolution Analysis�

The discrete wavelet transform(DWT) evaluates the transforms with discrete values
for the scaling parameters and the time translation parameter � :

 j;k (t) =
	

�
t=2j � k

�

p
2j

s = 2j ; � =
k
2j ; k; j = 0; 1; : : : ; (2.72)

where the times are scaled so that the total interval T = 1. This choice of s and
� based on powers of 2 is called adyadic grid arrangement and will automatically
perform the scalings and translations at the di�erent time scales inherent in wavelet
analysis. The discrete wavelet transform and its inverse now become the sums

Yj;k '
X

m

 j;k (t m )y(t m )h; y(t) =
+1X

j; k =�1

Yj;k  j;k (t): (2.73)
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Table 2.4. PCA data.

Data Zero Mean Data In PCA Basis
x y x y x1 x2

2.5 2.4 0.69 0.49 -0.828 -0.175
0.5 0.7 -1.31 -1.21 1.78 0.143
2.2 2.9 0.39 0.99 -0.992 0.484
1.9 2.2 0.09 0.29 -0.274 0.130
3.1 3.0 1.29 1.09 -1.68 -0.209
2.3 2.7 0.49 0.79 0.913 0.175

2 1.6 0.19 -0.31 0.0991 -0.350
1.0 1.1 -0.81 -0.81 1.14 0.464
1.6 1.6 -0.31 -0.31 0.438 0.0178
1.1 0.9 -0.71 -1.01 1.22 -0.163

multiple variable systems.1 PCA views a data set as elements in a multi-dimensional
data space, and then �nds the basis vectors for this space [Jackson(91),Jolli�e(01),
Smith(02)]. This is analogous to the principal axes theorem of mechanics, in which
the description of the rotation of a solid object is greatly simpli�ed if moments of
inertia relative to the principal axes are used.

To understand how PCA works, we present a demonstration, following [Smith(02)].
We assume that the data have two dimensions, which we callx and y, although they
need not be related to spatial positions.

1. Input Data Input �rst two columns of Table 2.4 into a matrix.

2. Subtract the Mean PCA theory assumes that the data in each dimension has
zero mean. Accordingly, columns three and four inTable 2.4 each have zero mean.

3. Calculate the Covariance Matrix The covariance is a measure of how much
the variance of one variable from the mean is correlated with the deviation of another
variable from the mean:

cov(x; y) = cov( y; x) =
1

N � 1

NX

i=1

(x i � �x)(y i � �y): (2.74)

A positive covariance indicates that the x and y variables tend to change together in
the same direction. Place the covariance values into the covariance matrix:

C =
�
cov(x; x) cov( x; y)
cov(y; x) cov(y; y)

�
=

�
0:6166 0:6154
0:6154 0:7166

�
: (2.75)

1The PCA approach [Wiki(14)] is used in many �elds, sometimes with names such as the
Karhunen-Loève transform, the Hotelling transform, the proper orthogonal decomposition, singular
value decomposition, factor analysis, empirical orthogonal functions, empirical component analysis,
empirical modal analysis, and so forth.
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4. Compute Unit Eigenvector and Eigenvalues of C (Easy with NumPy):

� 1 = 1:284; � 2 = 0:4908; e1 =
�
�0:6779
�0:7352

�
; e2 =

�
�0:7352
+0:6789

�
; (2.76)

where the largest eigenvalue is placed �rst. In Figure 2.15we show the normalized data
and the two eigenvectors. The �rst eigenvector corresponds to the major component
in the data, with e1 looking very much like a best straight-line �t to the data. The
second eigenvectore2 is orthogonal to (and, accordingly, independent of) e1, and
contains much less of the signal strength.

5. Express Data in Terms of Principal Components: Form the feature vector
F from the eigenvectors. For simplicity's sake, those eigenvectors of minimal signal
strength can be discarded.

F2 =
�
�0:6779 �0:7352
�0:7352 0:6779

�
; F1 =

�
�0:6779
�0:7352

�
; (2.77)

whereF1 keeps just one principal component, whileF2 keeps two. Form the transpose
of the feature matrix and of the adjusted data matrix:

F T
2 =

�
�0:6779 �0:7352
�0:7352 0:6779

�
; (2.78)

X T =
�
:69 �1:31 :39 :09 1:29 :49 :19 �:81 �:31 �:71
:49 �1:21 :99 :29 1:09 :79 �:31 �:81 �:31 �1:01

�
: (2.79)

Express the data in terms of the principal components by multiplying the transposed
feature matrix by the transposed-adjusted data matrix:

X P CA = F T
2 X T =

�
:82 1:8 �:99 �:27 �1:7 �:91 :10 1:2 :44 1:2

�:18 :14 :38 :13 �:21 :18 �:35 :46 :18 �:16

�

In columns �ve and six of Table 2.4 we place the transformed data elements back
into standard form, and on the right of Figure 2.15we plot the normalized data using
the eigenvectorse1 and e2 as basis. The plot shows just where each datum point sits
relative to the trend in the data. If we use only the principal component, we would
have all of the data on a straight line (we leave that as an exercise). Of course our
data are so simple that this example does not show the power of the technique. On
the other hand if there are large numbers of data, it is valuable to be able to categorize
them in terms of just a few components.

1. Use just the principal eigenvector to perform the PCA analysis just completed
with two eigenvectors.

2. Store data from ten cycles of the chaotic pendulum studied inChapter 3, but do
not include transients. Perform a PCA of these data and plot the results using
principal component axes.
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Figure 2.16. Left: A simulated coastline of Britain. Right: A linear �t to the results of box
counting leading to a deduced fractal dimension.

2.9 Fractal Dimension Determination
Mandelbrot asked the classic question �How Long Is the Coast of Britain?." The answer
depends upon the length of the ruler you lay down to measure the coastline, and
whether the coastline has a geometric or fractal shape. If the coastline is geometric,
then a �nite number of measurements will su�ce, though if the coastline is fractal,
then it looks similar, regardless of how small a scale it is observed at, and an in�nite
number of measurements is needed, which would yield an in�nite length.

The rule we ask you to apply to determine the fractal dimension of an object, is
simply to count the number of spheres or cubes of successively diminishing size that
are needed to cover the object. If it takesN little spheres or cubes of sider ! 0, then
the fractal dimension df is deduced as

N (r ) = C
�

1
r

� df

= C0sdf (as r ! 0); (2.80)

) df = � lim
r ! 0

� log N (r )
� log r

: (2.81)

Here s / 1=r is called the scale, so r ! 0 corresponds to an in�nite scale. Once we
have a value fordf , we determine a value for the perimeterP of an object as

P(r ) = lim
r ! 0

Mr 1� df ; (2.82)

where M is an empirical parameter. For a geometric �guredf = 1 , and the perimeter
approaches a constant asr ! 0. Yet for a fractal with df > 1, L ! 1 as r ! 0.
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1. Use box counting to determine the fractal dimension of a square.

2. Use box counting to determine the fractal dimension of a straight line.

3. Use box counting to determine the fractal dimension of a model of the British
coastline.

a. Take the output from the random deposition program (top of Figure 7.6 left)
and use it as your hypothetical coastline.

b. Print your coastline graph with the same physical scale (aspect ratio) for the
vertical and horizontal axes.

c. Place a piece of graph paper over your printout and look through the graph
paper at your coastline. Count the number of boxes containing any part of
the coastline (Figures 7.6 right). If you prefer, you can do this digitally as
well, but the paper version is quick and sort of quaint.

d. If the vertical height of your printout is 17 cm, and the largest boxes on your
graph paper is1 cm, then your lowest scale is 1:17, ors = 17.

e. With our largest boxes of 1cm � 1cm, we found that the coastline passed
through N = 24 large boxes, that is, that 24 large boxes covered the coastline
at s = 17. Determine how many of the largest boxes (lowest scale) are needed
to cover your coastline.

f. Determine and record how many of the largest boxes (lowest scale) of your
graph paper are needed to cover the coastline.

g. Determine and record how many midsize boxes (midrange scale) are needed
to cover your coastline.

h. Determine and record how many of the smallest boxes (highest scale) are
needed to cover your coastline.

i. Equation (2.81) tells us that as the box sizes get progressively smaller,

logN ' logA + df logs; (2.83)

) df '
� log N
� log s

=
logN2 � logN1

logs2 � logs1
=

log(N2=N1)
log(s2=s1)

: (2.84)

Plot logN versuslogs and determine the slope of the resulting straight line.
Although only two points are needed to determine the slope, use your lowest
scale point as a check.

4. Does your fractal imply an in�nite coastline? Does it make sense that a small
island like Britain, which you can walk around, has an in�nite perimeter?

5. Figure 8.2 is a bifurcation graph from the problems involving the logistics map.
Take that graph, or one of the bifurcation graphs you produced, and determine
the fractal dimension of di�erent parts of the graph by using the same technique
that was applied to the coastline of Britain.

Our program CoastDimension.py in Listing 2.9 determines the dimension of a sim-
ulated coastline, and produces the output shown inFigure 2.16.
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Classical & Nonlinear Dynamics

3.1 Chapter Overview
The �rst half of this chapter focuses on nonlinear oscil lations. The prime tool is the
numerical solution of ordinary di�erential equations (Ÿ1.7), which is both easy and
precise. We look at a variety of systems, with emphases on behaviors in phase-space
plots and bifurcation diagrams. In addition, the solution for the realistic pendulum gets
new life since we can actually evaluate elliptic integrals using the integration techniques
of Ÿ1.5. We then analyze the output from the simulations using the discrete Fourier
transform of Ÿ2.4. The second half of the chapter examines projectile motion, bound
states of three-body systems, and Coulomb and chaotic scattering. We also look at some
of the unusual behavior of bil liards, which are a mix of scattering and bound states.
(The quantum version of these same billiards is examined in Ÿ6.8.4.) Problems related
to Lagrangian and Hamiltonian dynamics then follow, with the actual computation of
Hamilton's principle. Finally, we end the chapter with the problem of several weights
connected by strings: a simple problem that requires a complex solution involving both
a derivative algorithm and a search algorithm, as discussed in Chapters 1and 2.

Note that Chapter 8 contains a number of problems dealing with the several discrete
maps that lead to chaotic behavior in biological systems. These materials, as well as
the development of the predator-prey models in that chapter, might well be included in
a study of classical dynamics.

3.2 Oscillators

3.2.1 First a Linear Oscillator

1. Consider the 1-D harmonic (linear) oscillator with viscous friction:

d2x
dt2 + �

dx
dt

+ ! 2
0x = 0: (3.1)

a. Verify by hand or by using a symbolic manipulation package (Ÿ3.2.7) that

x(t) = eat [x0 cos!t + (p 0=m! ) sin !t ] (3.2)

81
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Figure 3.1. Left: The potentials of an harmonic oscillator (solid curve) and of an anharmonic
oscillator (dashed curve). If the amplitude becomes too large for the anharmonic oscillator,
the motion becomes unbound.Right: The shapes of the potential energy function V(x) / jxj p

for p = 2 and p = 6. The �linear� and �nonlinear� labels refer to the restoring force derived
from these potentials.

is a solution of (3.1).
b. Determine the constants! , x0, and p0 in (3.2) in terms of initial conditions.
c. Plot the phase-space portrait [x(t); p(t)] for ! 0 = 0:8 and several values of

p(0). (Phase space portraits are discussed in Ÿ3.3.3.)

2. Do a number of things to check that your ODE solver is working well and that
you know the proper integration step size needed for high precision.

a. Choose initial conditions corresponding to a frictionless oscillator initially at
rest, for which the analytic solution is:

x(t) = A sin(! 0t); v = ! 0A cos(! 0t); ! 0 =
p

k=m: (3.3)

b. Pick values of k and m such that the period T = 2�=! = 10.
c. Start with a time step size h ' T=5 and make h smaller until the solution

looks smooth, has a period that remains constant for a large number of cycles,
and agrees with the analytic result. As a general rule of thumb, we suggest
that you start with h ' T=100, whereT is a characteristic time for the
problem at hand. You should start with a large h so that you can see a bad
solution turn good.

d. Make sure that you have exactly the same initial conditions for the analytic
and numerical solutions (zero displacement, nonzero velocity) and then plot
the two solutions together. Also make a plot of their di�erence versus time
since graphical agreement may show only 2�3 places of sensitivity.

e. Try di�erent initial velocities and verify that a harmonic oscillator is isochronous,
that is, that its period does not change as the amplitude is made large.
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Figure 3.2. A mass m (the block) attached to a spring with restoring force Fk (x) driven by
an external time-dependent driving force (the hand).

3.2.2 Nonlinear Oscillators

Figure 3.2 shows a massm attached to a spring that exerts a restoring forceFk (x ) to-
ward the origin, as well as a hand that exerts a time-dependent external forceFext (x; t)
on the mass. The motion is constrained to one dimension and so Newton's second law
provides the equation of motion

Fk (x) + Fext (x; t) = m
d2x
dt2 : (3.4)

Consider two models for a nonlinear oscillator:

V (x) '
1
2

kx2
�

1 �
2
3

�x
�

; Model 1; (3.5)

V (x) =
1
p

kxp; Model 2 (p even): (3.6)

Model 1's potential is quadratic for small displacementsx, but also contains a per-
turbation that introduces a nonlinear term to the force for large x values: If �x � 1,
we would expect harmonic motion, though asx ! 1=� the anharmonic e�ects should
increase. Model 2's potential is proportional to an arbitrary p of the displacementx
from equilibrium, with the power p being even for this to be a restoring force. Some
characteristics of both potentials can be seen inFigure 3.1.

1. Modify your harmonic oscillator program to study anharmonic oscillations for
strengths in the range0 � �x � 2. Do not include any explicit time-dependent
forces yet.

2. Test that for � = 0 you obtain simple harmonic motion.

3. Check that the solution remains periodic as long asxmax < 1=� in model 1 and
for all initial conditions in model 2.
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12. Verify that for oscillations with energy E = k=6� 2, the motion in potential 1
changes from oscillatory to translational.

13. For Model 1, see how close you can get to theseparatrix where a single oscillation
takes an in�nite amount of time.

3.2.3 Assessing Precision via Energy Conservation

It is important to test the precision and reliability of a numerical solution. For the
present cases, as long as there is no friction and no external forces, we expect energy
to be conserved. Energy conservation, which follows from the mathematics and not
the algorithm, is hence an independent test of our algorithm.

1. Plot for 50 periods the potential energy PE(t) = V [x(t)], the kinetic energy
KE(t) = mv2(t)=2, and the total energy E(t) = KE(t) + PE(t).

2. Check the long-termstability of your solution by plotting

� log10

�
�
�
�
E (t) � E (t = 0)

E(t = 0)

�
�
�
� ' number of places of precision (3.7)

for a large number of periods. BecauseE(t) should be independent of time, the
numerator is the absolute error in your solution, and when divided by E(0),
becomes the relative error. If you cannot achieve 11 or more places, then you
need to decrease the value ofh or debug.

3. Because(x < 1)p is a small number, a particle bound by a large-p oscillator is
essentially �free� most of the time, and so you should observe that the average
of its kinetic energy over time exceeds the average of its potential energy. This is
actually the physics behind the Virial theorem for a power-law potential [Marion
& Thornton(03)]:

hKEi =
p
2

hPEi: (3.8)

Verify that your solution satis�es the Virial theorem and in doing so compute
the e�ective value of p.

3.2.4 Models of Friction

Three simple models for frictional force arestatic, kinetic, and viscous friction:

F (static)
f � � � sN; F (kinetic)

f = �� k N
v
jvj

; F (viscous)
f = �bv; (3.9)

whereN is the normal force on the object under consideration,� and bare parameters,
and v is the velocity.1

1The e�ect of air resistance on projectile motion is studied Ÿ3.6.
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1. Extend your harmonic oscillator code to include the three types of friction in
(3.9) and observe how the motion di�ers for each.

a. For the simulation with static plus kinetic friction, each time the oscillator has
v = 0 you need to check that the restoring force exceeds the static frictional
force. If not, the oscillation must end at that instant. Check that your
simulation terminates at nonzero x values.

b. For your simulations with viscous friction, investigate the qualitative changes
that occur for increasing b values:

Underdamped: b < 2m! 0 Oscillate within decaying envelope
Critically: b = 2m! 0 Nonoscillatory, �nite decay time
Overdamped: b > 2m! 0 Nonoscillatory, in�nite decay time

3.2.5 Linear & Nonlinear Resonances

A periodic external force of frequency! f is applied to an oscillatory system with
natural frequency ! 0. As the frequency of the external force passes through! 0, a
resonancemay occur. If the oscillator and the driving force remain in phase over time,
the amplitude of oscillation will increase continuously unless there is some mechanism,
such as friction or nonlinearity, that limits the growth. If the frequency of the driving
force is close to, though not exactly equal to! 0, a related phenomena,beating, may
occur in which there is interference between the natural vibration and the driven
vibrations:

x ' x0 sin ! f t + x0 sin ! 0t =
�

2x0 cos
! f � ! 0

2
t
�

sin
! f + ! 0

2
t: (3.10)

The resulting motion resembles the natural oscillation of the system at the average
frequency (! f + ! 0)=2, however with an amplitude 2x0 cos(! f � ! 0)=2t that varies
slowly with the beat frequency(! f � ! 0)=2.

1. Include the time-dependent external forceF cos(! f t) in your rk4 ODE solver.
You can modify the rk4Call.py program given earlier in Listing 1.12 which uses
VPython, or ForcedOscillate.py in Listing 3.1 which usesMatplotlib.

2. Start with a harmonic oscillator with these parameters and the initial conditions:

p = 2; k = 1; m = 1; � = 0:001; ! f = 2; y (0) (0) = 0 :1; y(1) (0) = 0 :3:

3. Starting with a large value for the magnitude of the driving force F0 should lead
to mode locking in which the system is overwhelmed by the driving force, and,
after the transients die out, will oscillate in phase with the driver. See if you
can reproduce a behavior like that found on the left ofFigure 3.4.

4. Why don't the oscillations appear damped?
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Figure 3.5. Position versus time for an oscillator with p = 2 , k = 1 , m = 1 , � = 0 :1, ! f = 2 ,
and ! 0 = 1 .

�hits� the wall and falls out of phase with the driver, thereby making the driver
less e�ective at pumping in energy.

3.2.6 Famous Nonlinear Oscillators

1. The nonlinear behavior in once-common objects such as vacuum tubes and
metronomes is described by thevan der Pool Equation ,

d2x
dt2 + �(x 2 � x2

0)
dx
dt

+ ! 2
0x = 0: (3.11)

a. Explain why you can think of (3.11) as describing an oscillator with x-
dependent damping.

b. Create some phase space plots of the solutions to this equation, that is, plots
of _x(t) versusx(t).

c. Verify that this equation produces a limit cycle in phase space, that is orbits
internal to the limit cycle spiral out until they reach the limit cycle, and those
external to it spiral in to it.

The Du�ng oscillator is another example of a damped, driven nonlinear oscil-
lator. It is described by the di�erential equation [Kov(11), Enns(01)]:

d2x
dt2 = �2

dx
dt

� �x � �x 3 + F cos!t: (3.12)
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space plot.

3. Include a driving force, wait 100 cycles in order to eliminate transients, and then
create a phase space plot. We used� = 1:0, � = 0:2,  = 0:2, ! = 1:, F = 4:0,
x(0) = 0 :009, and _x(0) = 0 .

4. Search for a period-three solution like those inFigure 3.6, where we used� = 0:0,
� = 1:,  = 0:04, ! = 1:, and F = 0:2.

5. Change your parameters to! =1 and � =0 in order to model an Ueda oscillator.
Your solution should be similar to Figure 3.7.

6. Consider a nonlinear perturbed harmonic oscillator with friction:

p = _q; _p = q � q3 � p: (3.13)

a. Create several phase space portraits for this system.
b. Determine analytically the Liapunov coe�cients and from these the position

and nature of the critical points.
c. Does your analytic analysis agree with your computed results?

7. Investigate the simpli�ed version of the Lorenz attractors developed byRoessler
[Becker(86)]:

_x = �y � z _y = x + ay _z = b+ xz � cz (a; b; c) = (0:2;0:2;5:7): (3.14)

a. Compute and plot x(t), y(t), and z(t) as functions of time.
b. Plot projections of your solutions onto the (x; y ) and (x; _x) planes.
c. Make a Poincaré mapping of the transverse section_x = 0. (A Poincaré

mapping is the intersection of a periodic orbit in the phase space with a
lower-dimensional subspace.)

d. When _x = 0, x has an extremum. Plot the value of the extremax i+1 as a
function of the previous extremum x i .

3.2.7 Solution via Symbolic Computing

1. Repeat the study of the damped and driven harmonic oscillator using a symbolic
manipulation package. Listing 3.2 presents a direct solution of the di�erential
equation using SymPy (seeChapter 1 for discussion of Python packages) and
produces the output

ODE to be solved:
Eq(kap*Derivative(f(t), t) + w0**2*f(t) + Derivative(f(t), t, t), 0)
Solution of ODE:

Eq(f(t), C1*exp(t*(-kap - sqrt(kap**2 - 4*w0**2))/2)
+ C2*exp(t*(-kap + sqrt(kap**2 - 4*w0**2))/2))
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Figure 3.8. A pendulum of length l driven through resistive air (dotted arcs) by an external
sinusoidal torque (semicircle). The strength of the external torque is given by f and that of
air resistance by �.

In turn, Listing 3.2 presents a determination of the parameters in the solution
by evaluating the initial conditions, and produces the output

Soltn:
(x0*cos(t*w) + p0*sin(t*w)/(m*w))*exp(alf*t)
Derivatives:

kap*(alf*(x0*cos(t*w) + p0*sin(t*w)/(m*w))*exp(alf*t) + (-w*x0*sin(t*w)
+ p0*cos(t*w)/m)*exp(alf*t)) + w0**2*(x0*cos(t*w)
+ p0*sin(t*w)/(m*w))*exp(alf*t) + (alf**2*(x0*cos(t*w) + p0*sin(t*w)/(m*w))
- 2*alf*(w*x0*sin(t*w) - p0*cos(t*w)/m) - w*(w*x0*cos(t*w)
+ p0*sin(t*w)/m))*exp(alf*t)

Initial value y2:
y2 = alf**2*x0 + 2*alf*p0/m + kap*(alf*x0 + p0/m) - w**2*x0 + w0**2*x0
Coefficients of p0/m, A = {-kap/2}
W = {-sqrt(alf**2 + alf*kap + w0**2), sqrt(alf**2 + alf*kap + w0**2)}
frequency w = {-sqrt(-kap**2 + 4*w0**2)/2, sqrt(-kap**2 + 4*w0**2)/2}

2. As you can see from the output, the analytic solution is output as exponentials.
How do you reconcile these results compared with the previous ones in terms of
sines and cosines?

3. Use a symbolic manipulation package to solve the equations of motion for a
nonlinear oscillator.

3.3 Realistic Pendula
We call a pendulum without a small angle approximation �realistic� or �nonlinear�,
and a realistic pendulum with a periodic driving torque �chaotic." The chaotic pen-
dulum in Figure 3.8 is described by the ordinary di�erential equation,

d2�
dt2 = �! 2

0 sin � � �
d�
dt

+ f cos!t; ! 0 =
mgl

I
; � =

�
I

; f =
� 0

I
: (3.15)

Here ! 0 is the natural frequency, the � term arises from friction, and the f term
measures the strength of the driving torque. The di�culty with the computer study
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of this system is that the four parameters space(! 0; �; f; ! ) is immense, and the
results may be hypersensitive to the exact values used for them. So you may have to
adjust somewhat the suggested parameter values to obtain the predicted behaviors.

1. Consider the ODE for an undriven realistic pendulum without friction:

d2�
dt2 = �! 2

0 sin �: (3.16)

a. Use conservation of energy to show that the pendulum's velocity as a function
of position is

d�
dt

(� ) = 2

r
g
l

�
sin2(� 0=2) � sin2(�=2)

� 1=2
; (3.17)

where � 0 is the angle of displacement for a pendulum released from rest.
b. Solve this equation fordt and then integrate analytically to obtain the integral

expression for the period of oscillation as a function of� 0:

T
4

=
T0

4�

Z � m

0

d�
�
sin2(� m =2) � sin2(�=2)

� 1=2
= 4

s
L
g

K (sin2 � 0

2
): (3.18)

The K function in (3.18) is an elliptic integral of the �rst kind, and in Ÿ3.3.1
we discuss its numerical evaluation.

2. Again consider the ODE for an undriven realistic pendulum without friction
(3.16), though now solve it numerically.

a. To ensure that you can solve the ODE for the realistic pendulum with high
accuracy, start by plotting the total energy E(t) as a function of time. Adjust
(decrease) the integration step size in rk4 until the relative energy of your
solution E(t)=E (0) varies by less than10�6 , even for exceedingly large times.

b. It may be easiest to start the pendulum at � = 0 with _� (0) 6= 0, and gradually
increase_� (0) to increase the energy of the pendulum. Check that for all initial
conditions your solution is periodic with unchanging amplitude.

c. Verify that as the initial KE approaches 2mgl, the motion remains oscillatory
but with ever-increasing period.

d. At E = 2 mgl (the separatrix), the motion changes from oscillatory to rota-
tional (�over the top� or �running�). See how close you can get your solution
to the separatrix and hence to an in�nite period.

e. Convert your di�erent oscillations to sound and hear the di�erence between
harmonic motion (boring) and anharmonic motion containing overtones (in-
teresting). Some ways to do this are discussed in Ÿ3.4.2.
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3.3.1 Elliptic Integrals

Conservation of energy permits us to solve for the period of a realistic pendulum
released from rest with initial displacement of � 0:

T = 4

s
L
g

K (sin2 � 0

2
); (3.19)

' T0

"

1 +
�

1
2

� 2

sin2 � m

2
+

�
1 � 3
2 � 4

� 2

sin4 � m

2
+ � � �

#

: (3.20)

Here K is the incomplete elliptic integral of the �rst kind,

K (m) =
Z 1

0

dt
p

(1 � t2)(1 � mt 2)
=

Z �=2

0

d�
p

1 � m sin2 �
: (3.21)

Tabulated values for elliptic integrals are available, or they can be evaluated directly
using, for instance, Gaussian quadrature. In a mathematical sense, an in�nite power
series provides an exact representation of a function. However, it is often not good
as an algorithm because it may converge slowly and because round�o� error may
dominate when there are many terms summed or when there is signi�cant cancellation
of terms. On the other hand, a polynomial approximation, such as [Abramowitz &
Stegun(72)]

K (m) ' a0 + a1m1 + a2m2
1 � [b0 + b1m1 + b2m2

1] ln m1 + �(m);

m1 = 1 � m; 0 � m � 1; j�(m)j � 3 � 10�5 ; (3.22)

a0 = 1:38629 44 a1 = 0:11197 23 a2 = 0:07252 96
b0 = 0:5 b1 = 0:12134 78 b2 = 0:02887 29

;

provides an approximation of known precision with only a few terms, and is often very
useful in its own right or as a check on numerical quadrature.

1. Compute K (m) by evaluating its integral representation numerically. Tune your
evaluation until you obtain agreement at the � 3� 10�5 level with the polynomial
approximation.

2. Use numerical quadrature to determine the ratio T=T0 for �ve values of � m

between0 and � . Show that you have attained at least four places of accuracy
by progressively increasing the number of integration points until changes occur
only in the �fth place, or beyond.

3. Now use the power series (3.20) to determine the ratioT=T0. Continue summing
terms until changes in the sum occur only in the �fth place, or beyond and note
the number of terms needed.

4. Plot the values you obtain for T=T0 versus � m for both the integral and power
series solutions. Note that any departure from 1 indicates breakdown of the
familiar small-angle approximation for the pendulum.
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Figure 3.9. From top to bottom, position versus time, phase space plot, and Fourier spectrum
for a chaotic pendulum with ! 0 = 1, � = 0.2, f = 0.52, and ! = 0.666 and, from left to right,
three di�erent initial conditions. The leftmost column displays three dominant cycles, the
center column only one, while the rightmost column has multiple cycles.

a phase space plot from the output of your realistic or chaotic pendulum by
plotting � (t + � ) versus� (t) for a large range oft values.

a. Explore how the graphs change for di�erent values of the lag time� .
b. Compare your results to the conventional phase space plots you obtained

previously for the same parameters.

6. Extend your ODE solution to the chaotic pendulum with parameters

f = 0:52; � = 0:2; ! 0 = 1: (3.23)

a. Using your previously tested ODE solver, create phase-space orbits by plot-
ting [� (t); d�=dt(t)] for long time intervals (Figure 3.9).

b. Indicate which parts of the orbits are transients.
c. Correlate phase-space structures with the behavior of� (t) by also plotting �

versust (preferably next to d�=dt versus� ).
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d. Gain some physical intuition about the �ow in phase space by watching how
it builds up with time.

7. For the second part of the chaotic pendulum study, use the same parameters as
in �rst part, though now sweep through a range of ! values.

a. Use initial conditions: d� (0)=dt = 0:8, and � (0) = �0:0888.
b. Verify that for ! ' 0:6873there is a period-three limit cycle where the pen-

dulum jumps between three orbits in phase space.
c. Verify that for ! ' 0:694� 0:695 there are running solutions in which the

pendulum goes over the top multiple times. Try to determine how many
rotations are made before the pendulum settles down.

d. For ! ' 0:686and long times, the solutions for very slightly di�erent initial
conditions tend to �ll in bands in phase space. If needed, decrease your time
step and try to determine how the bands get �lled, in particular, just how
small a di�erence in ! values separates the regular and the chaotic behaviors.

8. Create a Poincaré map for the chaotic pendulum.

3.3.4 Vibrating Pivot Pendulum

As an alternative to what we have called the chaotic pendulum, repeat the pendulum
analysis for another version of the chaotic pendulum, this one with a vibrating pivot
point (in contrast to our usual sinusoidal external torque):

d2�
dt2 = ��

d�
dt

�
�
! 2

0 + f cos!t
�

sin �: (3.24)

Essentially, the acceleration of the pivot is equivalent to a sinusoidal variation of
g or ! 2

0 [Landau & Lifshitz(77), DeJong(92), Gould et al.(06)]. The scatterplot in
Figure 3.10 displays a sampling of _� as a function of the magnitude of the vibrating
pivot point.

3.4 Fourier Analysis of Oscillations
1. Consider a particle oscillating in the nonharmonic potential of (3.6):

V (x) =
1
p

kjxj p; p 6= 2: (3.25)

While nonforced oscillations in this potential are always periodic, they are not
sinusoidal.

a. For p = 12, decompose the solutionx(t) into its Fourier components.
b. Determine the number of components that contribute at least10%.
c. Check that resuming the components reproduces the inputx(t).
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2. Recall the perturbed harmonic oscillator (3.5):

V (x ) =
1
2

kx2(1 �
2
3

�x ) ) F (x) = �kx(1 � �x ): (3.26)

For small oscillations (x � 1=� ), x(t) should be well approximated by solely the
�rst term of the Fourier series.

a. Fix your value of � and the maximum amplitude of oscillation xmax so that
�x max ' 10%. Plot up resulting x(t) along with a pure sine wave.

b. Decompose your numerical solution into a discrete Fourier spectrum.
c. Make a semilog plot of the power spectrumjY (! )j2 as a function of xmax .

Because power spectra often vary over several orders of magnitude, a semi-log
plot is needed to display the smaller components.

d. As always, check that summation of your transform reproduces the signal.

3. For cases in which there are one-, three-, and �ve-cycle structures in phase space
(Figure 3.9), store your post-transients solutions for the chaotic pendulum, or
for the double pendulum.

4. Perform a Fourier analysis ofx(t). Does it verify the statement that �the number
of cycles in the phase-space plots corresponds to the number of major frequencies
contained in x(t)�?

5. See if you can deduce a relation among the Fourier components, the natural
frequency ! 0, and the driving frequency ! .

6. Examine your system for parameters that give chaotic behavior and plot the
power spectrum in a semi-logarithmic plot. Does this verify the statement that
�a classic signal of chaos is a broad Fourier spectrum�?

3.4.1 Pendulum Bifurcations

Fourier analysis and phase-space plots indicate that a chaotic system contains a num-
ber of dominant frequencies, and that the system tends to �jump� from one frequency
to another. In contrast to a linear system in which the Fourier components occur si-
multaneously, in nonlinear systems the dominant frequencies may occur sequentially.
Thus a sampling of the instantaneous angular velocity _� = d�=dt of the chaotic pen-
dulum for a large number of times indicates the frequencies to which the system is
attracted, and, accordingly, should be related to the system's Fourier components.

1. Make a scatter plot of the sampled _� s for many times as a function of the
magnitude of the driving torque.

2. For each value off , wait 150 periods of the driver before sampling to permit
transients to die o�. Then sample _� for 150 times at the instant the driving force
passes through zero.
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Figure 3.12. Left: Phase space trajectories for a double pendulum with m1 = 10m2 and with
two dominant attractors. Right: A bifurcation diagram for the double pendulum displaying
the instantaneous velocity of the lower pendulum as a function of the mass of the upper
pendulum. (Both plots courtesy of J. Danielson.)

1. Show that the Lagrangian for the double pendulum is:

L = KE � PE =
1
2

(m1 + m2)l2
1

_� 1
2

+
1
2

m2l2
2

_� 2
2

(3.27)

+ m2l1l2 _� 1
_� 2 cos(� 1 � � 2) + ( m1 + m2)gl1 cos� 1 + m2gl2 cos� 2:

2. Use this Lagrangian to show that the equations of motion are

(m1+ m2)L 1
•� 1 + m2L 2

•� 2 cos(� 2 � � 1) = m2L 2
_� 2
2 sin(� 2 � � 1) � (m1+ m2)gsin � 1

L 2
•� 2 + L 1

•� 1 cos(� 2 � � 1) = � L 1
_� 1

2
sin(� 2 � � 1) � gsin � 2: (3.28)

3. Deduce the equations of motion for small displacement of each pendulum from
its equilibrium position (usually what is found in textbooks).

4. Deduce analytically the frequencies of slow and fast modes for the small angle
oscillations.

5. Solve the equations of motion numerically without making any small angle ap-
proximations.

6. Verify that your numerical solution has a slow mode in which � 1 = � 2 and a fast
mode in which � 1 and � 2 have opposite signs.
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Figure 3.13. Schematics of the trajectories of a projectile �red with initial velocity V0 in the
� direction. The lower curve includes air resistance.

7. Reproduce the phase space plots on the left inFigure 3.12describing the motion
of the lower pendulum for m1 = 10m 2. When given enough initial kinetic energy
to go over the top, the trajectories are seen to �ow between two major attractors
with energy being transferred back and forth between the pendula.

8. Reproduce the bifurcation diagram for the double pendulum shown on the right
in Figure 3.12. This is created by sampling the set of instantaneous angular
velocity _� 2 of the lower pendulum as it passes through its equilibrium position,
and plotting the set as a function of the mass of the upper pendulum. The
resulting structure is fractal with the bifurcations indicative of the dominant
Fourier components.

9. Compute the Fourier spectrum for the double pendulum with the same param-
eters used for the bifurcation plot. Do the two plots correlate?

3.6 Realistic Projectile Motion
Figure 3.13shows trajectories for a projectile shot at inclination � and with an initial
velocity V0. If we ignore air resistance, the projectile has only the force of gravity
acting on it and the trajectory will be a parabola with range R = 2V 2

0 sin � cos�=g
and maximum height H = 1

2 V 2
0 sin2 �=g. Because a parabola is symmetric about its

midpoint it does not describe what appears to be a sharp, nearly vertical, drop-o� of
baseballs and golf balls near the end of their trajectories.

1. Investigate several models for the frictional force:

F (f ) = �k m jvjn
v
jvj

: (3.29)

Here the �v =jvj factor ensures that the frictional force is always in a direction
opposite that of the velocity.

a. Show that for our model of friction, the equations of motion are

d2x
dt2 = �k v n

x
vx

jvj
;

d2y
dt2 = �g � k vn

y
vy

jvj
; jvj =

q
v2

x + v2
y : (3.30)
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3.7 Bound States
In contrast to the analytic case, the numerical solutions to orbit problems are straight-
forward. A simple approach is to express the forces and equations of motion in Carte-
sian coordinates (Figure 3.15), and then to solve the resulting two simultaneous ODEs:

F = ma = m
d2x
dt2 ) (3.31)

Fx = F (g ) cos � = F (g) x
p

x2 + y2
; Fy = F (g ) sin � = F (g) y

p
x2 + y2

; (3.32)

d2x
dt2 = �GM

x
(x 2 + y2)3=2

;
d2y
dt2 = �GM

y
(x 2 + y2)3=2

: (3.33)

1. Show that in order to apply rk4 to simultaneous ODEs, we need only increase
the dimension of the vectors in the dynamical form of the equation of motion
from two to three:

y(0) = x(t); y (1) =
dx(t)

dt
=

dy(0)

dt
; (3.34)

y(2) = y(t); y (3) =
dy(t)

dt
=

dy(2)

dt
; (3.35)

) f (0) = y(1) (t); f (1) =
Fx (y )

m
; f (2) = y(3) (t); f (3) =

Fy (y )
m

: (3.36)

2. What are the explicit expressions forf (2) and f (3) in terms of the y( i) s?

3. Modify your ODE solver program to solve the equations of motion.

a. Assume units such thatGM = 1 and the initial conditions

x(0) = 0 :5; y(0) = 0 ; vx (0) = 0 :0; vy (0) = 1 :63: (3.37)

b. Check that you are using small enough time steps by verifying that the orbits
remain closed and fall upon themselves for long periods of time.

c. Experiment with the initial conditions until you �nd the ones that produce
a circular orbit (a special case of an ellipse).

d. Progressively increase the initial velocity until the orbits become unbound.
e. Using the same initial conditions that produce elliptical orbits, investigate

the e�ect of varying continuously the power in Newton's law of gravitation
from two. Even small changes should cause the orbits to precess, as predicted
by general relativity.

4. Consider the motion of a particle of massm with angular momentum l in an
inverse-square force �eld subjected to an inverse-cube perturbation:

F =
�

�k
r 2 +

C
r 3

�
êr ; (3.38)
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The solutions to the orbit equation fall into three classes depending on the
constant C:

jC j < l 2=m; jC j = l2=m; jC j > l 2=m: (3.39)

a. Solve the equations of motion numerically for each of the three conditions
given in (3.39).

b. Indicate which of your solutions are bound, that is, the particle remains
localized to some region of space.

c. What are the conditions for the solutions to look like ellipses with a slow rate
of precession?

5. A mass is in a circular orbit about an attractive potential U(r ).

a. Find an analytic expression for the frequency of oscillations for small radial
perturbations about the circular orbit.

b. Consider now the potential

U(r ) =
�k

r n�1 ; (3.40)

with n an integer. Prove analytically that the angle through which the orbit
rotates asr varies from its minimum to maximum value is �=

p
3 � n.

c. Solve numerically for the orbits for various values ofn and plot your results.
d. Is it true that the orbit returns to itself only for n = 2?
e. Plot the phase space portraitsfor various combinations of variables for oscil-

lations about a circular orbit, and for various values of n.

6. A particle is con�ned to a 2-D square well potential of depth W and radius R,

V (r ) = �W � (R � r ): (3.41)

a. Solve for the 2-D orbits of a particle of massm = 1 within this square well,
either by deriving the appropriate orbit equation, or geometrically by using
a ruler, a pencil, and a piece of paper.

b. Explain why there are problems solving for a square well potential numeri-
cally. (Hint: Think about derivatives.)

c. As an approximation to a square well, try the potential

V (r ) = V0r 10; (3.42)

which is small for r < 1, though gets large rapidly for r > 1.
d. Start by looking at x(t) and y(t) and making sure that they are reasonable

(like a free particle for small x or small y, and then like a particle hitting a
wall for larger x or y).

e. Next look at the trajectories [x(t); y (t)] and see if they seem close to what
you might expect for a mass re�ecting o� the walls of a circular cavity.
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f. Evaluate the angular momentum l(t) and the total energy of the massE(t)
as functions of time and determine their level of constancy.

7. Solve for the orbits of a particle of massm = 1 con�ned within a 2-D racetrack
shaped (ellipse-like) potential,

V (r ) = axn + byn ; (3.43)

where you are free to choose values for the parametersa, b, and n.

a. Test your program for the two cases(b = 0 ; n = 2) and (a = 0 ; n = 2) . You
should obtain simple harmonic motion with frequency ! 0 =

p
a and

p
b.

b. Verify that the orbits are symmetric in the xy plane.
c. Verify that the angular momentum and energy of the particle are constants

as functions of time for all a = b values and for all values ofn.
d. Plot the orbits for several a 6= b cases.
e. Check that for largen values the orbits look like internal re�ections from the

racetrack walls.
f. Search for those combinations of(a; b) values for which the orbits close on

themselves.
g. Search for those combinations of(a; b) values for which the orbits precess

slowly.
h. Evaluate the energy and angular momentum as functions of time for ana 6= b

case, and comment on their variability.

3.8 Three-Body Problems: Neptune, Two Suns, Stars

The planet Uranus was discovered in 1781 by William Herschel, and found to have an
orbital period of approximately 84 years. Nevertheless, even before it had completed
an entire orbit around the sun in the time since its discovery, it was observed that
Uranus's orbit was not precisely that predicted by Newton's law of gravity. Accord-
ingly, it was hypothesized that a yet-to-be-discovered and distant planet was perturb-
ing Uranus's orbit. The predicted planet is called Neptune.

Use these data for the calculation:

Mass Distance Orbital Period Angular Position
(10� 5 Solar Masses) (AU) (Years) (in 1690)

Uranus 4.366244 19.1914 84.0110 � 205.64o

Neptune 5.151389 30.0611 164.7901 � 288.38o

You may enter these data into your program much as we did:
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lighter planet moves about them [Row 2004]. We use natural unitsG = 1 to keep
the calculations simpler, and treat all bodies as point particles. It is best to view the
output as animations so that you can actually see the planet pass through a number
of orbits. A characteristic of this kind of chaotic system is that there are periods with
smooth precessions followed by chaotic behavior, and then smooth precession again.
This means that we on earth are lucky having only one sun as this makes the year of
reliably constant length [Liu(14)].

1. Start with M 1 = M 2 = 1 and the planet at (x; y )0 = (0:4; 0:5) with (vx ; vy )0 =
(0; �1).

2. Set M 2 = 2 and see if the planet remains in a stable orbit about sun 2.

3. Return to the equal mass case and investigate the e�ect of di�ering initial ve-
locities.

4. Make M 1 progressively smaller until it acts as just a perturbation on the motion
around planet 2, and see if the year now becomes of constant length.

5. What might be the di�culty of having life develop and survive in a two sun
system?

6. Explore the e�ect on the planet of permitting one of the suns to move.

3.8.2 Hénon-Heiles Bound States

The Hénon-Heiles potential

V (x; y ) =
1
2

x2 +
1
2

y2 + x2y �
1
3

y3 (3.44)

is used to model the interaction of three close astronomical objects. The potential
binds the objects near the origin though releases them if they move far out.

1. Show that the minimum in the potential for x = 0 occurs at y = 1.

2. Show that the value of the potential at its minimum implies bound orbits occur
for energies0 < E < 1=6.

3. Show that the equations of motion following from Hamiltonian equations are:

dpx

dt
= �x � 2xy;

dpy

dt
= �y � x2 + y2;

dx
dt

= px ;
dy
dt

= py : (3.45)

4. Solve for the position[x(t); y (t)] for a number of initial conditions.

5. Verify that the orbits are bounded for energies less than 1/6.
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Figure 3.17. A particle with impact parameter b incident along the y axis is scattered by a
force center at the origin into a scattering angle � .

6. As check on your numerics, verify that the Hamiltonian remains constant.

7. Produce a Poincare section by creating a(y; py ) plot, adding a point each time
x ' 0. With the energy �xed, make several plots for di�erent initial conditions.

8. Isolate a smaller region of phase space and look for unusual structures.

3.9 Scattering

3.9.1 Rutherford Scattering

A particle of mass m = 1 and velocity v is scattered by the force center

V (r ) =
�
r 2 (3.46)

with � positive. As seen in Figure 3.17, the particle starts at the left (x = �1)
with an impact parameter b (distance above thex axis) and is scattered into an angle
� . Because the force center does not recoil, the magnitude of the initial and �nal
velocities are the same, though their directions di�er.

1. Calculate and plot the positions [x(t); y (t)] for a range of impact parametersb
starting from negative values and proceeding to positive ones, and for a range
of velocities v.

2. For �xed angular momentum, for what values of � does the particle make one
and two revolutions about the center of force before moving o�?

3. See if you can �nd an orbit that collapses into the origin r = 0. This should be
possible for angular momentuml2 < 2m� .

4. Use a central-di�erence approximation to calculate the derivative d�=db as a
function of � .
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5. Deduce the scattering angle for a trajectory by examining the trajectory of the
scattered particle at a large enough distance from the target so that the potential
no longer has much e�ect, sayjPEj=KE � 10�6 . The scattering angle is then
deduced from the components of velocity,

� = tan �1 (vy =vx ) = math.atan2(y, x): (3.47)

Here atan2 computes the arctangent in the correct quadrant and eliminates the
possibility of division by zero when computing tan �1 (y=x).

6. Calculate the di�erential scattering cross section from the dependence of the
scattering angle upon the classical impact parameterb [Marion & Thornton(03)]:

� (� ) =

�
�
�
�
d�
db

�
�
�
�

b
sin � (b)

: (3.48)

7. In units for which the Coulomb potential between a target of chargeZT e and a
projectile of chargeZP e is

V (r ) =
ZT ZP e2

r
; (3.49)

the cross section for pure Coulomb scattering is given by the Rutherford formula

� (� )R =
�

ZT ZP e2

4E sin2 �=2

� 2

; (3.50)

where E = p2=2� is essentially the projectile's energy, withp the COM momen-
tum, and � the reduced target-projectile mass (for a �xed scattering center, the
target mass is in�nite, and so � = mP ) [Landau(96)]. Compare the� dependence
of your computed results to that of the Rutherford cross section.

3.9.2 Mott Scattering

Rutherford scattering is appropriate for the scattering of two spinless particles (no
magnetic moments). In many important applications, high energy electrons are scat-
tered from the Coulomb �eld of heavy nuclei and the magnetic moment (spin) of the
electron interacts with the Coulomb �eld. This is called Mott scattering and leads to
a multiplicative correction term being a�xed to the Rutherford cross section:

� (� )Mott = � (� )R

�
1 �

v2

c2 sin2 �=2
�

: (3.51)

1. Compute and plot the Mott and Rutherford di�erential cross sections for the
scattering of 150 MeV electrons from gold nuclei.
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Figure 3.18. Experimental results for high-energy electron scattering from a nucleus showing
deviations from assumption of a point nucleus.

2. At what angle does the di�erence reach 50%?

3. At what angle does the di�erence reach 10%?

4. It was found experimentally by Hofstadter et al. that the reduction in 150o

cross section for 150 MeV electrons scattering was 1000 times greater than that
predicted by the Mott formula. Apparently, there must be a reduction in the
strength of the Coulomb potential from that given by (3.49). This reduction
could arise from the electron penetrating into the nucleus, and , accordingly, not
being a�ected by all of the nucleus's electric charge. Quantum mechanics tells
us that the correction for the �nite nuclear size is approximately

� (� )f inite ' � (� )jMott

�
1 �

q2R2
rms

6~2

� 2

; (3.52)

where q2 = 2p2(1 � sin � ) is the scattered electron's momentum transfer and
Rrms is the root mean square radius of the nucleus. Based on this reduction in
the cross section, what would you estimate as the size of the gold nucleus?
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Figure 3.19. Square (a, c), circular (b, d), Sinai (e), and stadium billiards (f). The arrows
are trajectories. The stadium billiard has two semicircles on the ends.

3.9.3 Chaotic Scattering

1. One expects the scattering of a projectile from a force center to be a continuous
process. Nevertheless in some situations the projectile undergoes multiple inter-
nal scatterings and ends up with a �nal trajectory that seems unrelated to the
initial one. Speci�cally, consider the 2-D potential [Blehel et al.(90)]

V (x; y ) = �x 2y2e�(x 2 +y 2 ) : (3.53)

As seen inFigure 3.20, this potential has four circularly symmetric peaks in the
xy plane. The two signs produce repulsive and attractive potentials, respectively.

a. Show that the two simultaneous equations of motions are:

m
d2x
dt2 = � 2y2x(1 � x2)e�(x 2 +y 2 ) ; m

d2y
dt2 = � 2x2y(1 � y2)e�(x 2 +y 2 ) :

(3.54)
b. Show that the force vanishes at thex = �1 and y = �1 peaks inFigure 3.20,

that is, where the maximum value of the potential is Vmax = �e �2 . This sets
the energy scale for the problem.

c. Apply the rk4 method to solve the simultaneous second-order ODEs.
d. The initial conditions are 1) an incident particle with only an x component of

velocity and 2) an impact parameterb(the initial y value). You do not need to
vary the initial x, though it should be large enough such thatPE=KE � 10�6 ,
which means that the KE ' E .
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In Figure 3.19 we show square (a, c), circular (b, d), Sinai (e), and stadium billiards
(f), with the arrows indicating possible trajectories. Note how right-angle collisions
lead to two-point periodic orbits for both square and circular billiards, while in (c)
and (d) we see how 45o collisions leads to four-point periodic orbits. Figures (e) and
(d) show nonperiodic trajectories that are ergodic, that is, orbits that in time will pass
with equal likelihood through all points in the allowed space. These latter orbits lead
to chaotic behaviors.

1. The problems for this section are for you to write programs that compute the
trajectories for any or all of these billiards and for a range of initial conditions.
This is straightforward computationally (it's just geometry) and is an excellent
way to study chaos. Preferably, your programs should produce animated output
so you can view the trajectories as they occur. InListing 3.3 we give a sample
program for a square billiard that produces an animation using the VPython
package (we do the quantum version of this problem in Ÿ6.8.3).

2. Have your program compute, keep track of, and plot the distance between suc-
cessive collision points as a function of collision number. The plot should be
simple for periodic motion, but show irregular behavior as the motion becomes
chaotic. Hint: 20�30 collisions typically occur before chaos sets in.

3. Keep in mind that not all initial conditions lead to chaos, especially for circles,
and so you may need to do some scanning of initial conditions.

4. Keep track of how many collisions occur before chaos sets in. You need at least
this many collisions to test hypersensitivity to initial conditions.

5. For initial conditions that place you in the chaotic regime, explore the di�erence
in behavior for a relatively slight (� 10�3 ) variation in initial conditions.

6. Try initial conditions that di�er at the machine precision level to gauge just how
sensitive chaotic trajectories really are to initial conditions (be patient).

7. How much does the number of steps to reach chaos change for a10�3 variation?

3.11 Lagrangian and Hamiltonian Dynamics

3.11.1 Hamilton's Principle

As illustrated in Figure 3.22, Hamilton's principle states that the actual trajectory
of a physical system described by a set of generalized coordinateq = ( q1; q2; � � � ; qN )
between two speci�c states1 and 2 is such that the action integral is stationary under
variation in q:

S[q] =
Z t 2

t 1

L(q (t); _q; t) dt;
�S

� q(t)
= 0; (3.55)
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Figure 3.22. A physical system evolves such that out of the many possibilities, the actual
path taken through con�guration space is that which produces a stationary action, �S = 0
[Penrose(07)].)

where L is the Lagrangian of the system.

1. You are given the fact that a particle falls a known distanced in a known time
t =

p
2D=g. Assume a quadratic dependence on distance and time,

d = �t + �t 2: (3.56)

Show that the action S =
Rt 0

0 L dt for the particle's trajectory is an extremum
only when � = 0 and � = g=2.

2. Consider a massm attached to a harmonic oscillator with characteristic fre-
quency ! = 2� that undergoes one periodT = 1 of an oscillation:

x(t) = 10 cos(!t ): (3.57)

a. Propose a modi�cation of the known analytic form that agrees with it at
t = 0 and t = T, though di�ers for intermediate values of t. Make sure that
your proposed form has an adjustable parameter that does not change the
t = 0 or t = T values.

b. Compute the action for an entire range of values for the parameter in your
proposed trajectory and thereby verify that only the known analytic form
yields a minimum action.

3.11.2 Lagrangian & Hamiltonian Problems

1. A bead of massm moves without friction on a circular hoop of wire of radius
R. The hoop's axis is vertical in a uniform gravitational �eld and the hoop is
rotating at a constant angular velocity ! .
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a. Derive the Lagrange equations of motion for this system.
b. Determine the angle that the bead assumes at equilibrium, that is, an angle

that does not change with time.
c. For small perturbations about this equilibrium con�guration, what is the

frequency ! 0 of oscillations?
d. Choose parameter values and solve Lagrange equations numerically.
e. Verify that the analytic expression you have derived for the equilibrium angle

and for the frequency of oscillations about the equilibrium position agrees
with the numerical results.

f. Examine some initial conditions that lead to nonequilibrium positions of the
bead.

g. Plot the time dependence of the bead's position and its trajectory in phase
space for a wide range of initial conditions.

2. Consider a 1-D harmonic oscillator with displacementq and momentum p. The
energy

E(p; q) =
p2

2m
+

m! 2q2

2
(3.58)

is an integral of the motion, and the area of a periodic orbit is

A(E) =
I

p dq= 2
Z qmax

qmin

p dq: (3.59)

a. Use the analytic, or numeric, solution for simple harmonic motion to compute
the area A(E).

b. Compute the derivative T = dA(E)=dE via a central-di�erence approxima-
tion and compare to the analytic answer.

c. Now repeat this problem using a nonlinear oscillator for which there is only
a numerical solution. (Oscillators of the form V = kxp with p even should
work just �ne.) You can determine the period from the time dependence
of your solution, and then use your solution to computeA(E) for di�erent
initial conditions.

3. Verify Liouville's Theorem for the realistic (nonlinear) pendulum without
friction. In particular, verify that the �ow of trajectories in phase space is
similar to that of an incompressible �uid.

a. The equations of motion for this problem are

dy(0)

dt
= y(1) (t);

dy(1)

dt
= � sin(y(0) (t)) : (3.60)

You should already have worked out solutions to these equations in your
study of nonharmonic motion.
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3. Why can't we assume the equilibrium of torques?

4. You now have a set of simultaneous, nonlinear equations to solve. You may treat
� as a single unknown or you may treatsin � and cos� as separate unknowns
with an additional identity relating them. In any case, you will need to search
for a solution.

5. We recommend setting the problem up as a matrix problem with all of the
unknowns as a vector, and using a Newton-Raphson algorithm to search in a
multi�dimensional space for a solution. For example, our solution [LPB(15)] was
of the form

~f + F 0 ~�x = 0; ) F 0 ~�x = � ~f ; (3.61)

~�x =

0

B
B
B
@

�x 1

�x 2

. . .
�x 9

1

C
C
C
A

; ~f =

0

B
B
B
@

f 1

f 2

. . .
f 9

1

C
C
C
A

; F 0 =

0

B
B
B
@

@f1=@x1 � � � @f1=@x9
@f2=@x1 � � � @f2=@x9

. . .
@f9=@x1 � � � @f9=@x9

1

C
C
C
A

; (3.62)

) ~�x = �F 0�1 ~f ;

where the inverse must exist for a unique solution.

6. At some stage, derivatives are needed, and it is easiest to use a forward-di�erence
approximation for them:

@fi
@xj

'
f i (x j + �x j ) � f i (x j )

�x j
; (3.63)

where � j is an arbitrary small value.

3.13 Code Listings

� �

# ForcedOsc . py Driven O s c i l l a t o r w i th M a t p l o t l i b

import numpy as np , m a t p l o t l i b . py lab as p l t
from rk4Algor import rk4A lgor

F=1; m=1; mu=0.001 ; omegaF=2; k=1 # Constants
omega0 = np . s q r t ( k/m) # Natura l f requency
y = np . z e r o s ( ( 2 ) )
t t = [ ] ; yP lo t = [ ] # Empty l i s t i n i t

de f f ( t , y ) : # RHS f o r c e func t i on
f r e t u r n = np . z e r o s ( ( 2 ) ) # Set up 2D array
f r e t u r n [ 0 ] = y [ 1 ]
f r e t u r n [ 1 ] = 0 .1 � np . cos ( omegaF � t ) /m � mu � y [ 1 ] /m � omega0 �� 2� y [ 0 ]
re tu rn f r e t u r n
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Figure 4.2. Schematic of the algorithm used to solve the wave equation. Four sites (black
centers) are used to advance the solution a single time step ahead (black circle). The boundary
and initial conditions are indicated by the white-centered dots.

4.2 String Waves
Consider a string of length L and density �(x) per unit length, tied down at both
ends, and under tensionT(x) (Figure 4.1 left). Assume that the relative displacement
of the string from its rest position y(x; t)=L is small and that the slope@y=@xis also
small.

1. Consider the in�nitesimal section of the string shown on the right of Figure 4.1
and how the di�erence in the components of the tensions atx and x + �x
results in a vertical restoring force. Show that application of Newton's laws to
this section leads to the wave equation:

dT(x)
dx

@y(x; t)
@x

+ T(x)
@2y(x; t)

@x2
= �(x )

@2y(x; t)
@t2

: (4.1)

2. What conditions are necessary to obtain the familiar wave equation

@2y(x; t)
@x2

=
1
c2

@2y(x; t)
@t2

; c =
p

T=� ? (4.2)

3. What conditions must be met to obtain a unique solution to this second-order
partial di�erential equation?

4. Figure 4.2 shows a spacetime lattice with time varying in steps of length�t and
space in steps of�x on whose sites we want to obtain the numerical solution

y(x; t) = y(i �x; j �t)
def
= yi;j (4.3)

to the wave equation upon these lattice sites.
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a. Express the second derivatives in (4.2) in terms of �nite di�erences, and show
that this results in the di�erence form of the wave equation:

yi;j +1 + yi;j �1 � 2yi;j

c2(�t) 2 =
yi+1 ;j + yi�1;j � 2yi;j

(�x) 2 : (4.4)

b. Show that a rearrangement of (4.4) leads to a �leapfrog� algorithm that pre-
dicts y(x; t) at a future time in terms of the known values at present and past
times and three nearby positions (Figure 4.2):

yi;j +1 = 2y i;j � yi;j �1 +
c2

c02 [yi+1;j + yi�1;j � 2yi;j ] ; c0 def
= �x=�t: (4.5)

Here c0, the grid or lattice velocity, is the ratio of numerical parameters.
c. Where in Figure 4.2 do the initial conditions enter?
d. Where in Figure 4.2 do the boundary conditions enter?
e. (Optional) Show that in order for the solution to be stable, the step size must

satisfy the Courant condition [Press et al.(94),Courant et al.(28)],

c
c0 =

c�t
�x

� 1: (4.6)

Equation (4.6) means that the solution gets better with smaller time steps,
though gets worse for smaller space steps (unless you simultaneously make
the time step smaller).

f. Write a program that implements the leapfrog algorithm (4.5) and plots up
the motion of the string, or, better yet, produces an animation of the motion.

g. Examine a variety of initial conditions with the string at rest. The program
EqStringMovMat.py in Listing 4.1 uses Matplotlib, while EqStringMov.py uses
Visual, both with the initial conditions:

y(x; t = 0) =

(
1:25x=L; x � 0:8L;
(5 � 5x=L); x > 0:8L;

@y
@t

(x; t = 0) = 0: (4.7)

h. In order to start the algorithm, you will need to know the solution at a
negative time (j = 0). Show that use of the central-di�erence approximation
for the initial velocity leads to needed value,yi; 0 = yi; 2.

i. Change the time and space steps used inyour simulation so that sometimes
they satisfy the Courant condition (4.6), and sometimes they don't. Describe
what happens in each case.

j. Use the plotted time dependence to estimate the peak's propagation velocity
c. Compare to (4.2).

k. When a string is plucked near its end, a pulse re�ects o� the ends and bounces
back and forth. Change the initial conditions of the program to one corre-
sponding to a string plucked exactly in its middle, and see if a traveling or a
standing wave results.
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Figure 4.3. Left: A uniform string suspended from its ends in a gravitational �eld assumes
a catenary shape. Right: A force diagram of a section of the catenary at its lowest point.
Because the ends of the string must support the entire weight of the string, the tension varies
along the string.

5. A standard procedure is to analyze waves as the sum of normal modes, with
each mode having a distinct frequency:

y(x; t) =
1X

n=0

Bn sinkn x cos! n t: (4.8)

Because the wave equation is linear, each individual product in (4.8) is an inde-
pendent solution.

a. Determine the coe�cients Bn in (4.8) for your chosen initial conditions.
b. Compare the numerical solution to the sum of normal modes, taking note of

the number of terms kept in the sum.
c. Increase the number of terms included in your sum of normal modes until

you notice random noise arising from round-o� error.
d. Change your initial conditions so that only a single normal mode is excited.

Does your simulation remain in this normal mode for all times?

6. Outline a procedure that would solve the wave equation for all times simultane-
ously, and estimate how much memory would be required.

7. Examine the possibilities of solving the wave equation via a relaxation technique
like that used for Laplace's equation in Ÿ5.2.1.

4.2.1 Extended Wave Equations

With Friction

1. Consider a string vibrating in a viscous medium with a frictional force opposing
motion, proportional to the string velocity, and proportional to the length of a
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string element:

Ff ' � 2� �x
@y
@t

: (4.9)

Here � is proportional to the viscosity of the medium.

a. Modify the wave equation so that it includes the frictional force (4.9).
b. Extend the algorithm used to solve the wave equation to now include friction.
c. Check that the results of your simulation show waves that damp in time.
d. As a check, reverse the sign of� and see if the wave grows in time.

Variable Density & Tension

1. Realistic cables on bridges may be thicker near the ends in order to support
the additional weight of the cable and other elements. Accordingly, the wave
equation should incorporate variable density and correspondingly tension.

a. Extend your wave equation algorithm so that it is now appropriate to (4.1)
including a T(x) and a �(x).

b. Assume that the string's tension and density vary as

�(x) = � 0e�x ; T(x) = T0e�x ; (4.10)

and explore the e�ect of using (4.10) in your simulation.
c. In which regions would you expect faster wave propagation? Is that what

you �nd?
d. Since the extended wave equation including (4.10) is still linear, normal-mode

solutions that vary like u(x; t) = A cos(!t ) sin(x ) should still exist. Explore
this possibility.

e. Examine standing wave solutions including (4.10) and verify that the string
acts like a high-frequency �lter, that is, that there is a frequency below which
no waves occur.

2. Telephone wires and power lines tend to sag in the middle under their own weight
(Figure 4.3). Their shape is a catenary, and their tension is nonuniform:

y(x) = D cosh
�

�gx
T0

�
; T(x) = T0 cosh

�
�gx
T0

�
; (4.11)

where T0 is the tension in the absence of gravity [Becker(54)].

a. Modify your simulation to compute waves on a catenary with� = 0:5, T0 = 40
N, and � 0 = 0:01 kg/m.

b. Search for normal-mode solutions of this variable-tension wave equation, that
is, solutions that vary as u(x; t) = A cos(!t ) sin(x ).

c. The wave speed should be higher in regions of high density. Develop an
empirical measure of the propagation velocity and determine the percentage
di�erences in speeds.
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Figure 4.4. Left: Integrating a string wave YL (x) out from the left to xmatch , and checking if
it matches the string wave Y R (x) obtained by integrating in from the right. Right: Identical
masses ofm and uniform spacing D on stretched string with �xed ends.

d. Extend the simulation to produce waves on a catenary including friction. The
program CatFriction.py in Listing 4.2 does this.

e. Plot your results showing both the disturbance u(x; t) about the catenary
and the actual height y(x; t) above the horizontal for a plucked string initial
condition.

4.2.2 Computational Normal Modes

The normal modes of a system are de�ned as oscillations in which all parts of the
system move with a de�nite phase relation and with a sinusoidally time dependence
with one frequency. The subject is treated extensively in most classical mechanics
texts. We repeat (4.1) describing a vibrating string with variable mass and tension:

dT(x)
dx

@y(x; t)
@x

+ T(x)
@2y(x; t)

@x2
= �(x)

@2y(x; t)
@t2

: (4.12)

If the system is excited in a normal mode with frequency! n , and is at rest at time
t = 0, then the time dependence of the solution to (4.12) must separate as

y(x; t) = Y (x) sin( ! n t): (4.13)

1. Show that substitution of (4.13) into the PDE (4.12) leads to the ODE

dT(x)
dx

dY(x)
dx

+ T(x)
d2Y(x)

dx2 = �(x) � ! 2
n Y(x): (4.14)

The approach used to search for normal modes of (4.14) is indicated on the left
of Figure 4.4. It follows the same path as that discussed in Ÿ6.2.2, and indicated in
Figure 6.1, for the bound state eigenvalues of the Schrödinger equation:

1. Guess a value for the frequency! n .
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2. Impose the boundary conditionsY(0) = Y(L) = 0 , where L is the length of the
string (your choice).

3. Start at x = 0 and use an ODE solver to stepYL (x) to the right until you reach
the matching point xmatch (Figure 4.4 left). The exact value of this matching
point is not important, and your �nal solution should be independent of it.

4. Start at x = L and use an ODE solver to stepYR (x) to the left until you reach
the matching point xmatch .

5. In order for amplitude and transverse velocity to be continuous atx = xmatch ,
Y and dY=dx must be continuous there. Requiring continuity of the logarith-
mic derivative Y 0=Y combines both requirements into a single condition that is
independent of Y 's normalization. Incorporate expressions in your program for
the logarithmic derivative of both the left and right waves.

6. It is unlikely the left and right waves YL and YR will match for an arbitrary ! n

guess, and so measure the mismatch in logarithmic derivatives as:

�(! n ; x) =
Y 0

L (x)=YL (x) � Y 0
R (x)=YR (x)

Y 0
L (x)=YL (x) + Y 0

R (x)=YR (x)

�
�
�
�
x=x match

; (4.15)

where the denominator is included in order to limit the magnitude of �.

7. Conduct a search for those! n 's for which � = 0. Continue each search until
� ' 0 within some set tolerance. The bisection algorithm can be used for the
search.

8. Test your procedure for the standard wave equation whose eigenfreqencies! n =
n�c=L are known.

9. Obtain the eigenfreqencies for several normal modes of the realistic wave equa-
tion and compare them to the frequencies obtained from the simple wave equa-
tion.

4.2.3 Masses on Vibrating String

Figure 4.4 right shows N identical massesm attached to a massless string under
tension T, with distance D between the masses [Beu(13)]. We denote the vertical
displacement of massi from equilibrium by yi (t), and assume that the �rst and last
masses are kept �xed,y1(t) = yN (t) = 0 .

1. Show that for small yi (t), the equation of motion for mass i is:

(yi�1 � 2yi + yi+1 )
T
D

= m
d2yi

dt2 ; i = 1; 2; : : : ; N � 1: (4.16)
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2. Assume the system is in a normal mode, in which case all masses vibrate at the
same frequency! n and with related phases:

yi (t) = A i sin(! n t); (4.17)

where the amplitudesA i are constants. What are the equations of motions now?

3. Show that the equations of motion now reduce to the set ofN linear equations
in the amplitudes A i and the parameter � = Dm! 2

n =T:

A1 = 0;

2A2 � A3 = �A 2;

�A i�1 + 2A i � A i+1 = �A i ; (i = 2; : : : ; N � 1)

. . . (4.18)

�A N �2 + 2A N �1 = �A N �1 ;

AN = 0:

4. Show that theses linear equations can be cast into the form of a matrix eigenvalue
problem with a tridiagonal matrix:

2

6
6
6
6
6
6
6
6
6
4

1 0 0 0 0 0 0
0 2 �1 0 0 0 0
0 �1 2 �1 0 0 0
. . .
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7
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: (4.19)

5. Assign values to the parameters. Good choices areDm=T = 1 and N = 150.

6. Use a matrix library (Ÿ1.2.2) to solve for the �ve lowest normal modes.

7. Compare the eigenvalues obtained from the numerical solution to those of a
string with the same mass density and tension.

8. Plot the eigenfunctions for the masses on a string along with those of a string
with the same mass density and tension.

Single Mass on Vibrating String

1. [Fetter & Walecka(80)] discuss the normal modes for a stretched string with a
point mass m attached to its center. The string has length L, mass density �,
and �xed ends (Figure 4.4 right, with just the center mass).
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a. Show that the asymmetric normal modes with a node at the center of the
string are unperturbed by the mass and have eigenfrequencies

! n = n
c�
L

; n = 2; 4;5; : : : ; (4.20)

where c =
p

T=� is the propagation speed.
b. Show that the symmetric normal modes in which the mass moves have eigen-

frequencies! n that are roots of the transcendental equation

cot
! n L
2c

=
m

2c�
! n : (4.21)

c. Find the lowest �ve roots of (4.21) for c = 1, L = 100, � = 10, and m = 10.
d. Compare the perturbed eigenvalues so obtained to those of a string with the

same mass density and tension, though no mass at the center.
e. Are the eigenfrequencies for the symmetric and antisymmetric modes inter-

laced?
f. Plot the x dependence of the eigenfunctions for these �ve eigenvalues along

with those of a string with the same mass density and tension, though no
mass at the center.

2. Another approach to solving for the normal modes of a string with a massm
at its center is to view it as a string with a mass density �(x) that has a delta
function at x = L, and then to solve the wave equation (4.1). Although one
cannot place a singularity into a computer program, one can introduce a�(x)
that is very large in a very small region near the center of the string.

a. Construct a �(x) that approximates the parameters given in Problem (1),
namely: c = 1, L = 100, � = 10, and m = 10.

b. You will want to make �x very small so that the high density region is
included in a number of steps.

c. Compute the normal modes of the system by following the procedures given
in Ÿ4.2.2.

d. Compare to the results found in Problem (1). Are the symmetric modes
a�ected more than the asymmetric modes?

4.2.4 Wave Equation for Large Amplitudes

The wave equations we have studied so far all follow from the assumption of small
displacements, and are , accordingly, linear equations.

1. Show that an extension of the wave equation so that it contains the next order
in displacements is [Taghipour et al.(14),Keller(59)]:

c2 @2y(x; t)
@x2

=
�
1 +

@2y(x; t)
@x2

� 2 @2y(x; t)
@t2

: (4.22)
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Figure 4.5. A small part of an oscillating membrane and the forces that act on it.

2. Extend the leapfrog algorithm to solve this nonlinear equation, making whatever
assumptions about initial conditions are needed.

a. Repeat some of the solutions to the wave equation studied previously, only
now for large values ofy=L, in which case nonlinear e�ects are important.

b. Examine what were normal modes for the linear problem, but now for large
amplitude oscillations.

4.3 Membrane Waves
Figure 4.5 shows a square section of the vertical displacement of a membrane, and the
resulting components of the tension in thex andy directions.

1. We want to extend the simulation of waves on a string to now describe waves
on a 2-D stretched membrane under tension per unit lengthT, and a mass per
unit area of � [Kreyszig(98)].

a. Show that the forces on the membrane in thez direction as a result of a
change in just y, or in just x, are

X
Fz (x f ixed ) � T �x

@2u
@y2

�y;
X

Fz (yf ixed ) � T �y
@2u
@x2

�x: (4.23)

b. Show that applying Newton's second law to the square section leads to the
wave equation

1
c2

@2u
@t2

=
@2u
@x2

+
@2u
@y2

; c =
p

T=�: (4.24)
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c. Assume that the solution is separable into the product of individual function
of x, y, and t, u(x; y; t ) = X (x)Y (y)T (t), and show that this leads to the
solution:

X (x) = A sinkx + B coskx; Y (y) = C sinqy+ D cosqy; (4.25)

T(t) = E sinc�t + F cosc�t: (4.26)

d. The boundary condition is that the membrane's ends are �xed to the top
edges of a square box of sides� . The initial condition is that the membrane
is initially at rest, with a vertical displacement from equilibrium u(x; y; t =
0) = sin 2x siny. Write down the equations describing the initial and the
boundary conditions.

e. Show that imposition of the initial and boundary conditions require

u(x; y; t ) = cos c
p

5 sin 2x siny: (4.27)

f. Use the central-di�erence expression for derivatives to express the wave equa-
tion (4.24) in terms of �nite di�erences.

g. Discretize the variables so that u(x = i�; y = i �y; t = k�t) � uk
i;j , and

rearrange the di�erence equation to obtain the leapfrog algorithm predicting
future values in terms of the present and past ones:

uk+1
i;j = 2u k

i;j � uk �1
i;j

c2

c02

h
uk

i+1;j + uk
i�1;j � 4uk

i;j + uk
i;j +1 + uk

i;j �1

i
; (4.28)

where c0 def
= � x=�t is the grid velocity.

h. To initiate this algorithm, we need to know the solution at t = ��t, that
is, before the initial time. Show that applying the initial condition that the
membrane is released from rest impliesu�1

i;j = u1
i;j

i. Use the previous result to show that the algorithm for the �rst step is

u1
i;j = u0

i;j +
c2

2c02

h
u0

i+1;j + u0
i�1 ;j � 4u0

i;j + u0
i;j +1 + u0

i;j �1

i
: (4.29)

j. Solve the 2-D wave equation numerically. The programWaves2D.pyin List-
ing 4.4 solves the 2-D wave equation numerically, whileWaves2Danal.pycom-
putes the analytic solution.

k. Compare the numerical solution to the analytic one (4.27).
l. Tune your numeric solution to obtain the best possible agreement with the

analytic solution (which in this case is not a slowly converging in�nite series).

2. A membrane with the shape of a sector of a circle has an opening angle� and
radius R. Its edges are �xed [Fetter & Walecka(80)].
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a. Show that the solution to the wave equation is separable in plane polar co-
ordinates (r; �) and leads to the eigenfunctions

umn (r; �) = CJm�=�

�
X mn r

R

�
sin

m��
�

m = 1; 2;3; : : : ;1; (4.30)

where the eigenvaluesX mn are determined by the condition

Jm�=� (X mn ) = 0 n = 1; 2;3; : : : ;1: (4.31)

Here C is a constant andJ is the Bessel function.
b. Determine the values ofX mn for the �rst three eigenfunctions.
c. Make plots of the normal modes and nodal lines for a several low-lying modes.
d. Find numerical values for the three lowest eigenfrequencies for waves with

� = �=2; �; and 2� .

3. Modify the program in Problem 1 for waves on a square drumhead to one that
solves for waves on the sectors of Problem 12.

a. Choose sets of initial conditions that lead to the excitation of individual
eigenfunctions of the membrane. (You may want to use the form of the
analytic solution as a guide.)

b. Deduce the lowest three eigenvalues. We discuss one way to do this via
matching in Ÿ4.2.2. Or you may want to use the form of the analytic solution
as a guide.

4. Problem 8.1 in [Fetter & Walecka(80)] considers a stretched circular membrane
with a point mass m attached to its center. They use perturbation theory to
deduce the change in eigenfrequencies of the circularly symmetric modes.

a. Model the point mass as a very large increase in the density�(x) near the
center of the membrane.

b. Make the step size small enough in your wave equation solution that several
steps are needed to cover the�(x) variation.

c. Solve the wave equation for the perturbed normal modes and compare to the
unperturbed case.

4.4 Shock Waves

4.4.1 Advective Transport

The continuity equation describes conservation of mass:

@�(x; t)
@t

+ ~r � j = 0; j
def
= �v (x ; t): (4.32)

Here �(x ; t) is the mass density, v(x ; t) is the velocity of a �uid, and the product
j = �v is the mass current. For 1-D �ow in the x direction, and for a �uid that is
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Figure 4.6. A visualization showing the wave height versus position for increasing times
showing the formation of a shock wave (sharp edge) from an initial sine wave.

moving with a constant velocity v = c, the continuity equation (4.32) takes a simple
form known as the advection equation:

@�
@t

+ c
@�
@x

= 0: (4.33)

1. Use the substitution u(x; t) = f (x � ct) to prove that any function with the form
of a traveling wave is a solution of the advection equation.

2. Prove that wavefronts of constant phase move with along the �uid c = dx=dt.

3. Develop a leapfrog algorithm for the solution of the advection equation.

4. The simple leapfrog algorithm is known to lead to instabilities when applied
to the advection equation [Press et al.(94)]. Soon we will examine a better
algorithm, the Lax-Wendro� method.

5. Test your algorithm for a number of initial conditions corresponding to di�ering
initial wave forms, and look for instabilities.

4.4.2 Burgers' Equation

A simple model for shock waves and turbulence is Burgers' equation [Burgers(74),
Falkovich & Sreenivasan(06)]:

@u
@t

+ �u
@u
@x

= 0: (4.34)
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This nonlinear equation is an extension of the advection equation (4.33) in which
the wave speedc = �u is proportional to the amplitude of the wave [Tabor(89)].
Accordingly, the shapes of waveforms are not preserved in time since parts of the
wave with large amplitudes propagate faster than those with small amplitudes, and
in time this leads to shock waves, such as that shown inFigure 4.6.

1. Express the derivatives in Burgers' equation as central di�erences, and show
that this leads to the leapfrog algorithm for time stepping:

u(x; t + �t) = u(x; t � �t) � �
�

u2(x + �x; t) � u2(x � �x; t)
2

�
;

) ui;j +1 = ui;j �1 � �

"
u2

i+1;j � u2
i�1;j

2

#

; � =
�

�x=�t
: (4.35)

Here u2 is the square ofu and is not its second derivative, and� is a ratio of
constants known as theCourant-Friedrichs-Lewy (CFL) number.

2. Shock wave with their large gradients are notoriously di�cult to compute and
require a higher order version of the leapfrog algorithm. TheLax-Wendro�
method retains second-order di�erences for the time derivative and uses Burgers'
equation itself to relate derivatives:

ui;j +1 = ui;j �
�
4

�
u2

i+1;j � u2
i�1;j

�
(4.36)

+
� 2

8

�
(u i+1;j + ui;j )

�
u2

i+1;j � u2
i;j

�
�(u i;j + ui�1;j )

�
u2

i;j � u2
i�1;j

��
:

3. Write a program to solve Burgers' equation via the Lax-Wendro� method.

a. De�ne arrays u0[100] and u[100] for the initial data and the solution.
b. Take the initial wave to be sinusoidal, u0[i]= 3 sin(3:2x), with speed c = 1.
c. Incorporate the boundary conditions u[0]=0 and u[100]=0.
d. Keep the CFL number � = �=(�x=�t) < 1 for stability.
e. Plot the initial wave and the solution for several time values on the same

graph in order to see the formation of a shock wave (like Figure 4.6).
f. Run the code for several increasingly large CFL numbers. Is the stability

condition � < 1 correct for this nonlinear problem?

AdvecLax.py in Listing 4.5 presents our implementation of the Lax-Wendro� method.

4.5 Solitary Waves (Solitons)
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Figure 4.7. Left: A single two-level waveform progressively breaking up into eight solitons
(labeled) as time increases, with the tallest soliton (1) becoming narrower and faster in time.
Right: Two solitons crossing, with the taller soliton (left at t = 0 ) catching up and overtaking
the shorter one at t ' 5. The waves resume their original shapes after the collision.

4.5.1 Including Dispersion, KdeV Solitons

1. Dispersion broadens a wavefront as it travels through a medium. Start with a
plane wave traveling to the right,

u(x; t) = e�i(kx�!t ) : (4.37)

a. Show that when (4.37) is substituted into the advection equation (4.33), the
dispersion relation ! = ck results.

b. Evaluate the group velocity vg = @!=@kas a function of frequency! for a
wave obeying this dispersion relation.

c. Why is this called dispersionlesspropagation?
d. Consider a wave is propagating with a small amount ofdispersion,

! ' ck � �k 3; (4.38)

with � small. Evaluate the group velocity corresponding to this dispersion
relation.

e. Show that if the plane-wave solution (4.37) arises from a wave equation, then
the ! term of the dispersion relation (4.38) would arise from a �rst-order time
derivative, the ck term from a �rst-order space derivative, and the k3 term
from a third-order space derivative:

@u(x; t)
@t

+ c
@u(x; t)

@x
+ �

@3u(x; t)
@x3

= 0: (4.39)
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2. The analytic description of solitons, unusual water waves that occur in shallow,
narrow canals, was given by [Korteweg & deVries(1895)] based on the partial
di�erential equation [Abarbanel et al.(93), Tabor(89)]:

@u(x; t)
@t

+ "u(x; t)
@u(x; t)

@x
+ �

@3u(x; t)
@x3

= 0: (4.40)

The nonlinear term "u @u=@tsharpens the wave and causes ashock wave, the
@3u=@x3 term produces dispersive broadening, and the@u=@tterm produces
traveling waves.

a. Show by substitution that the soliton waveform,

u(x; t) = �c sech2[
p

c(x � ct � � 0)=2]=2; (4.41)

is a solution of the KdeV equation (4.40) with c the wave speed.
b. The c term in the wave's amplitude leads to faster waves having larger am-

plitudes. Plot the sech2 term and show that it produces a single lump-like
wave.

3. Show that application of time and space derivatives given by central-di�erence
approximations leads to the �nite-di�erence form of the KdeV equation:

ui;j +1 ' ui;j �1 �
�
3

�t
�x

[ui+1;j + ui;j + ui�1;j ] [ui+1;j � ui�1;j ]

� �
�t

(�x) 3 [ui+2;j + 2u i�1;j � 2ui+1 ;j � ui�2;j ] : (4.42)

4. Show that a good starting condition is:

ui; 2 ' ui; 1 �
� �t
6 �x

[ui+1;1 + ui; 1 + ui�1 ;1 ] [ui+1;1 � ui�1;1 ]

�
�
2

�t
(�x) 3 [ui+2;1 + 2u i�1;1 � 2ui+1 ;1 � ui�2;1 ] : (4.43)

5. Modify or run the program Soliton.py that solves the KdeV equation (4.40) for
the initial condition and parameters:

u(x; 0) = 0 :5[1 � tanh(x=5 � 5)]; � = 0:2; � = 0:1; �x = 0:4; �t = 0:1:

These constants satisfy the stability condition with juj = 1.

a. Plot the KdeV solutions as a 3-D graph of disturbanceu versus positionand
versustime. The program SolitonAnimate.py produces an animated solution.

6. Observe the wave pro�le as a function of time and try to con�rm the experimental
observation that a taller soliton travels faster than a smaller one.
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Figure 4.8. Left: A 1-D chain of pendula attached to a torsion bar. The pendula swing in
planes perpendicular to the length of the bar. Right: The dispersion relation for a linearized
chain of pendula.

7. Explore what happens when a tall soliton collides with a short one.

a. Start with a tall soliton at x = 12 and a smaller one in front of it at x = 26:

u(x; t = 0) = 0:8[1 � tanh2(3x=12� 3)]+0 :3[1� tanh2(4:5x=26� 4:5)]: (4.44)

b. Identify re�ection, transparency, interference, and di�erent propagation speeds
(Figure 4.7 right).

8. Construct phase-space plots of_u(t) versusu(t) for various parameter values.

a. Show that soliton solutions correspond to theseparatrix solutions to the KdeV
equation, analogous to the in�nite period for a vertical pendulum.

9. A two-meter bore 5000 m o�shore spawns a series of solitons. What force is
exerted upon a solid breakwater when the soliton reaches land?

4.5.2 Pendulum Chain Solitons, Sine-Gordon Solitons

Consider the 1-D chain of coupled pendula shown on left ofFigure 4.8. The pendula
are identical, equally spaced by distance, and attached to a torsion bar that twists as
the pendula swing.

1. Assume that each pendulum is acted upon by a gravitational torque as well as
two torques arising from the twisting of the connecting rod. Prove that Newton's
law for rotational motion leads to a set of coupled nonlinear equations:

�(� j +1 � 2� j + � j �1 ) � mgL sin � j = I
d2� j (t)

dt2 ; (4.45)

where I is the moment of inertia of each pendulum, L is the length of each
pendulum, and � is the torque constant of the bar.
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2. How many equations are there?

3. Show that the linear version of (4.45) is

d2� j (t)
dt2 + ! 2

0 � j (t) =
�
I

(� j +1 � 2� j + � j �1 ); (4.46)

where ! 0 =
p

mgL=I is the natural frequency for any one pendulum.

a. Show that a traveling-wave � j (t) = A exp[i(!t � kx j )] can propagate on the
chain in the linear approximation if its frequency and wave number are related
by the dispersion relation (Figure 4.8 right):

! 2 = ! 2
0 �

2�
I

(1 � coska): (4.47)

b. Under what conditions might there be dispersionless propagation in which all
frequencies propagate with the same velocity?

c. Prove that the dispersion relation (4.47) limits which frequencies that can
propagate on the chain to the range

! 0 � ! � ! � (! � )2 = ! 2
0 +

4�
I

: (4.48)

d. Prove that waves with ! > ! � are nonphysical because they correspond to
wavelengths� < 2a, that is, oscillations where there are no particles.

4. Show that if the wavelengths in a pulse are much longer than the pendulum-
pendulum repeat distancea, that is, if ka � 1, then a can be replaced by the
continuous variable x, and the system of coupled, nonlinear equations becomes
a single nonlinear equation:

1
c2

@2�
@t2

�
@2�
@x2

= sin �; (Sine-Gordon Equation); (4.49)

where time is measured in
p

I=mgL units and distances in
p

�a=(mgLb) units.
This equation is called the Sine-Gordon equation since it is similar to the Klein-
Gordon equation studied in Ÿ6.2.4.

5. Prove that the Sine-Gordon equation supports the two soliton solutions

� (x � vt) =4 tan �1
�

exp
�
+

x � vt
p

1 � v2

��
; (4.50)

� (x � vt) =4 tan �1
�

exp
�
�

x � vt
p

1 � v2

��
+ �: (4.51)

6. Plot up these two solutions and thereby show that they correspond to a solitary
kink traveling with velocity v = �1 that �ips the pendulums around by 2� as
it moves down the chain, and anantikink in which the initial � = � values are
�ipped to �nal � = �� values.
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Figure 4.9. A circular ring, Sine-Gordon soliton at several times.

The 2-D generalization of the SGE equation (4.49) is

1
c2

@2u
@t2

�
@2u
@x2

�
@2u
@y2

= sin u (2-D SGE): (4.52)

Whereas the 1-D SGE describes wave propagation along a chain of connected pen-
dulums, the 2-D form describes wave propagation in nonlinear elastic media, or ele-
mentary particles in some �eld theoretic models [Christiansen & Lomdahl(81),Chris-
tiansen & Olsen(78), Argyris(91)]. The equation can be solved numerically via the
�nite di�erence technique:

u2
m;l '

1
2

�
u1

m+1;l + u1
m�1;l + u1

m;l +1 + u1
m;l �1

�

�
�t 2

2
sin

�
1
4

�
u1

m+1;l + u1
m�1;l + u1

m;l +1 + u1
m;l �1

�
�

; (4.53)

where for simplicity we have made the time and space steps proportional,�t = �x=
p

2
[LPB(15)]. Figure 4.9 shows the time evolution of a circular ring soliton. We note
that the ring at �rst shrinks in size, then expands, and then shrinks back into another
(though not identical) ring soliton. Our 2-D Sine-Gordon code TwoDsol.py is given in
Listing 4.8, with a pseudocode below:

# TwoDsol.java: solves Sine-Gordon equation for 2D soliton
Import packages
Set parameter values
Declare arrays

Function initial(u) # Set initial conditions for x & y arrays
u[i,j] = 4 * atan(3-sqrt(x^2 + y^2)

Function solution(ninit) # Solves KGE
Determine u along borders
Assign otherwise undefined u values
Iterate
Assign past u values = present values
Iterate again
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Figure 4.10. Side view of the �ow of a stream around a submerged beam (left ) and around
two parallel plates ( right ). Both beam and plates have length L along the direction of �ow.
The �ow is seen to be symmetric about the centerline and to be una�ected at the bottom
and at the surface by the submerged object.

Call initial
assign x & y values
Set up plotting grid
Solve for u for 22 iterations
Plot sin(u(x,y)/2) as surface plot

4.6 Hydrodynamics

4.6.1 Navier-Stokes Equation

The basic equation of hydrodynamics is the continuity equation (4.32):

@�(x; t)
@t

+ ~r � j = 0; j
def
= �v (x ; t): (4.54)

A more general description is provided by theNavier-Stokes equation,

Dv
Dt

= � r 2v �
1
�

~rP (�; T; x ); (4.55)

which describes �uid �ow including viscosity. Here � is the kinematic viscosity and
P is the pressure. The explicit functional dependence of the pressure on the �uid's
density and temperature P(�; T; x ) is known as theequation of state of the �uid, and
would have to be known before trying to solve the Navier-Stokes equation. The new
operator here is thehydrodynamic derivative,

Dv
Dt

def
= (v � ~r)v +

@v
@t

; (4.56)
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that gives the rate of change, as viewed from a stationary frame, of the velocity of
material in an element of �owing �uid . This derivative incorporates changes as a
result of the motion of the �uid (�rst, nonlinear term) as well as any explicit time
dependence of the velocity. The explicit form of the Navier-Stokes equation is:

@vx
@t

+
zX

j = x

vj
@vx
@xj

= �
zX

j = x

@2vx

@x2j
�

1
�

@P
@x

;

@vy
@t

+
zX

j = x
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@vy
@xj

= �
zX

j = x

@2vy

@x2j
�

1
�

@P
@y

; (4.57)
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+
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vj
@vz
@xj

= �
zX

j = x

@2vz

@x2j
�

1
�

@P
@z

:

For simplicity, we assume that the pressure is independent of density and temperature,
and that there is steady-state �uid �ow (velocity independent of time). Under these
conditions, the Navier-Stokes equation becomes

X

i

@vi
@xi

= 0 ; (v � ~r )v = � r 2v �
1
�

~r P: (4.58)

The �rst equation expresses the equality of in�ow and out�ow and is known as the
condition of incompressibility. If the channel in which the �uid is �owing is wide (in
z), we can ignore thez dependence of the velocity, and so have three PDEs:

@vx
@x

+
@vy
@y

= 0 ; (4.59)
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+
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�
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; (4.60)
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+
1
�
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@y

: (4.61)

The algorithm for solution of the Navier-Stokes and continuity PDEs uses succes-
sive overrelaxation (discussed in Ÿ5.2.1 for Poisson's equation). We divide space into
a rectangular grid with the spacing h in both the x and y directions:

x = ih; i = 0 ; : : : ; Nx ; y = jh; j = 0 ; : : : ; Ny ; (4.62)

and assume� = 1 m2=s and � = 1 kg/m 3. For problems in which the velocity varies
only along the direction of �ow x, we obtain a relaxation algorithm for vx , which we
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Figure 4.11. Boundary conditions for �ow around a submerged beam. The �ow is symmetric
about the centerline, and the beam has length L in the x direction (along �ow).

express as the new value ofvx as given as the old value plus a correction (residual):

vx
i;j = vx

i;j + !r i;j ; r
def
= vx(new)

i;j � vx(old)
i;j (4.63)

r =
1
4

�
vx

i+1 ;j + vx
i�1;j + vx

i;j +1 + vx
i;j �1 �

h
2

vx
i;j

�
vx

i+1;j � vx
i�1;j

�

�
h
2

vy
i;j

�
vx

i;j +1 � vx
i;j �1

�
�

h
2

[Pi+1;j � Pi�1;j ]
�

� vx
i;j (4.64)

Successive iterations sweep the interior of the grid, continuously adding in the residual
(4.63) until the change becomes smaller than some set level of tolerance. In this
successive overrelaxationform, convergence is accelerated via an amplifying factor
! � 1.

4.6.2 Flow over Submerged Beam

Boundary conditions for hydrodynamic �ow can be challenging. For a submerged
beam (Figure 4.11), those used in our simulation are:

u = 0; w = 0 Centerline EA
u = 0; w i;j = �2(u i+1 ;j � ui;j )=h2 Beam back B
u = 0; w i;j = �2(u i;j +1 � ui;j )=h2 Beam top C
u = 0; w i;j = �2(u i�1;j � ui;j )=h2 Beam front D

@u=@x= 0; w = 0 Inlet F
@u=@y= V0; w = 0 Surface G
@u=@x= 0; @w=@x = 0 Outlet H

(4.65)
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1. Modify the program Beam.py, or write your own, to solve the Navier-Stokes
equation for the velocity of a �uid in 2-D �ow. Represent the x and y components
of the velocity by the arrays vx[Nx,Ny] and vy[Nx,Ny].

2. Specialize your solution to the rectangular domain and boundary conditions
indicated in Figure 4.11.

3. Using the following parameter values,

� = 1 m2=s; � = 103 kg/m 3 (�ow parameters),

Nx = 400; N y = 40; h = 1 (grid parameters);

leads to the analytic solution

@P
@x

= �12;
@P
@y

= 0; v x =
3j
20

�
1 �

j
40

�
; vy = 0: (4.66)

4. For the relaxation method, output the iteration number and the computed vx .

5. Repeat the calculation and see if overrelaxation speeds up convergence.

4.6.3 Vorticity Form of Navier-Stokes Equation

Solution of the hydrodynamic equations is made easier by the introduction of two
potentials from which the velocity is obtained by di�erentiation. The �rst is the
stream function u(x ) whose curl gives the velocity:

v
def
= ~r � u(x ) = �̂ x

�
@uz
@y

�
@uy
@z

�
+ �̂ y

�
@ux
@z

�
@uz
@x

�
; (4.67)

where we assumed no �ow in thez direction. Because~r � ( ~r � u) � 0, any v that can
be written as the curl of u automatically satis�es the continuity equation ~r � v = 0 .
Furthermore, becausev has only x and y components, the stream functionu(x ) needs
have only a z component:

uz � u ) vx =
@u
@y

; vy = �
@u
@x

: (4.68)

For 2-D �ows the contour lines u = constant are calledstreamlines.
The second potential function is the vorticity �eld w(x ), and is related to the

angular velocity ! of the �uid:

w
def
= ~r � v(x ); wz =

�
@vy
@x

�
@vx
@y

�
; (4.69)
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where the second form is for �ow in thez direction. We see from (4.67) that the
vorticity w is related to the stream function via:

w = ~r � v = ~r � ( ~r � u) = ~r( ~r � u) � r 2u; (4.70)

) ~r 2u = �w ; (4.71)

where the second form follows for �ow in thez direction. Equation (4.71) is analogous
to Poisson's equation of electrostatics,r 2� = �4��, only now each component of
vorticity w is a source for the corresponding component of the stream functionu.
The vorticity form of the Navier-Stokes equation is obtained by taking the curl of the
velocity form:

� r 2w = [( ~r � u) � ~r]w : (4.72)

Equations (4.71) and (4.72) yield the two simultaneous PDEs that we need to solve.
In 2-D, with u and w having only z components for no �ow in thez direction:

@2u
@x2

+
@2u
@y2

= �w; (4.73)

�
�

@2w
@x2

+
@2w
@y2

�
=

@u
@y

@w
@x

�
@u
@x

@w
@y

: (4.74)

After expressing the derivatives in terms of �nite di�erences on the previous lattice,
we obtain the algorithm:

ui;j = ui;j + ! r (1)
i;j ; wi;j = wi;j + ! r (2)

i;j (SOR); (4.75)

r (1)
i;j =

1
4

(u i+1;j + ui�1;j + ui;j +1 + ui;j �1 + wi;j ) � ui;j ; (4.76)

r (2)
i;j =

1
4

�
wi+1;j + wi�1;j + wi;j +1 + wi;j �1 �

R
4

f[ ui;j +1 � ui;j �1 ]

� [wi+1;j � wi�1;j ] � [ui+1;j � ui�1;j ] [wi;j +1 � wi;j �1 ]g
�

� wi;j :

Here ! is the overrelaxation parameter used to accelerate convergence. It should lie in
the range 0 < ! < 2 for stability. The residuals are just the changes in a single step,
r (1) = unew � uold and r (2) = wnew � wold . The parameter R is a Reynolds number.
When we solve the problem in natural units, we measure distances in units of grid
spacing h, velocities in units of initial velocity V0, stream functions in units of V0h,
and vorticity in units of V0=h. This R is known as the grid Reynolds number and
di�ers from the physical R, which has a pipe diameter in place of the grid spacingh.

Beam.py in Listing 4.9 is our program for the solution of the vorticity form of
the Navier-Stokes equation. You will notice that although the relaxation algorithm,
which is applied to the stream- and vorticity functions separately, is rather simple,
implementing the boundary conditions is not.

1. Use Beam.py as a basis for your solution for the stream function u and the
vorticity w using the �nite-di�erences algorithm (4.75).
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Figure 4.14. Left: A tank �lled with �uid entering on the left and leaving on the right.
Various boundary conditions are indicated. The cavity has in�ow at the left between J1 and
J2 and out�ow at the right surface between J3 and J4 . Right: The contour lines of constant
u for the in�ow and out�ow tank.

The �uid tends to stick to the side of the tank, and so:

vy = � @u=@x= 0 ; w(0; y) = � 2[u(0; y) � u(h; y)]=h2: (4.77)

Except at hole, the �uid cannot move down along the bottom of the tank ( y = b), and
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so
vy = �@u=@y= 0; w (x; b) = �2[ u(x; b) � u(x; b + h)]=h2: (4.78)

By symmetry, the velocity vx along the centerline (right side of x = a) has no x
component, while the y component is given by Torricelli's law vy = �

p
2gH:

vx =
@u
@y

= 0; v y = �
@u
@x

� �
u(a; y) � u([a � h; y])

h
= �

p
2gh; (4.79)

w(a; y) = �2[ u(a; y) � u(a; y � h)]=h2: (4.80)

At the very edge of the hole, the �uid is still in contact with the tank and so vx =
vy = 0 . Below the hole the �uid �ows smoothly out with constant vorticity w, and
so at the hole vx = 0, vy =

p
2gH, and @w=@y= 0. Since the hole is very narrow,

choose they components of velocity asvy = 0 at the beginning of the hole,vy = 0, at
the right surface vy =

p
2g(H � y) with H height from bottom ( y = 0 ) to the upper

surface of the tank:

vx =
@u
@y

= 0; v y =
p

2g(H � y) = �
@u
@x

; w(x; y = 0) = w(x; y = h):

1. Solve the vorticity form of the Navier-Stokes equation for the stream lines (con-
stant u) and the vorticity lines (constant w) using the algorithm (4.75).

2. Construct a velocity vector plot of the �ow within the tank.

3. Use! = 0:1 as the overrelaxation parameter andh = 0:4 as the space step size.

4. Con�rm that on the lattice the boundary conditions are:

On top (j = Ny ):

u[i; Ny ] = u[i; Ny ]; 1 � i < N x ; w[i; Ny ] = 0 :

On the left wall:

u[0; j ] = u[1; j ]; Ndown � j < N y ; w[0; j ] = �2(u[0; j ] � u[1; j ])=h2:

At bottom, left of hole:

u[i; N down ] = u[i; N down � 1]; 1 � i � Nb; w[i; N down ] = �2(u [i; 0]� u[i; 1])=h2:

Along the centerline:

vy = �
p

2gh(Ny � j ); 1 � j � Ny ; u[Nx; j ] = u[Nx � 1; j ] + vy h;

u[Nx; j ] = u[Nx; j � 1]; w[Nx; j ] = �2(u [Nx; j ] � u[Nx; j � 1])=h2:
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For j > j2:

w(0; j ) =
2[u(0; j ) � u(h; j )]

h2 ;
@u
@y

=
@u
@x

= 0:

Right surface: same as left surface, though withi = Nx .
Upper surface: moves to the right with a velocity u0:

vy = �
@u
@x

= 0 ) �w =
@2u
@x2

+
@2u
@y2

=
@2u
@y2

;

) ui;N y �1 = ui;N y �
@u
@y

�
�
i;N y

h +
@2u
@y2

�
�
�
i;N y

� � � = ui;N y �
@u
@y

�
�
i;N y

h

) wi;N y =
2(ui;N y � ui;N y �1 )

h2 �
2u0

h
:

Bottom surface:

vx = 0:; v y = 0; w [i; 0] =
2(u[i; 0] � u[i; 1])

h2 :

1. Con�rm the validity of the boundary conditions given above.

2. Solve the vorticity form of the Navier-Stokes equation for the stream lines (con-
stant u) and the vorticity lines (constant w) in the �uid using the algorithm
(4.75).

3. Construct a velocity vector plot of the �ow within the tank.

The program CavityFlow.py in Listing 4.11 employs overrelaxation to compute the
constant u streamlines and outputs to the disk �le Cavity.dat. The contours shown on
the right of Figure 4.14were constructed with gnuplot. The pseudocode is essentially
the same as forTorricelli.py above.

1. Solve the vorticity form of the Navier-Stokes equation for the stream lines (con-
stant u) and the vorticity lines (constant w) in the �uid using the algorithm
(4.75).

2. Construct a velocity vector plot of the �ow within the tank.

4.6.6 Chaotic Convective Flow

In 1961 Edward Lorenz used a simpli�ed version of the hydrodynamic equations includ-
ing convection, viscosity, and gravity to predict weather patterns. The computations
were so sensitive to parameter values that at �rst he thought he had a numerical prob-
lem, though eventually realized that the system was chaotic [Peitgen et al.(94),Motter
& Campbell(13)]. Lorenz's equations with simpli�ed variables are

_x = � (y � x); _y = � x � y � x z; _z = �� z + x y; (4.81)































5

Electricity & Magnetism

5.1 Chapter Overview

Thank the richness of Maxwell's equations for there being so many problems in this
chapter.1 We start by expressing Laplace's and Poisson's equations as �nite di�erence
equations, and then solve them byrelaxation techniques. These techniques are ele-
gant in their simplicity and powerful in their wide applicability. (The �nite element
approach is computationally more e�cient, though requires signi�cantly more devel-
opment.) After electrostatics, we examine the solutions of the Maxwell's equations as
electromagnetic vector waves. The algorithm, �nite di�erence time domain, is a vari-
ation of the leapfrog algorithm also used inChapters 4and 6 to solve wave equations.
We end the discussion of waves with some problems on thin �lm interference.

The last part of the chapter continues with a number of problems requiring the
calculation of electric �elds by direct integration. We then pose problems requiring
solutions for the trajectories of charged particles in magnetic �elds. The chapter ends
with relativity, �rst the study of the Lorentz transformations of E&M �elds between
frames, and then the transformation of the resulting motions in the two frames. To
conclude, there is the di�cult problem of two interacting relativistic particles.

We have tried to restate all problems here in SI units in which:

F =
q1q2

4�� 0r 2 ; B(r) =
� 0

4�

Z
Id l � r̂ 0

jr 0j2
; r 2� = �

�
�

: (5.1)

r � E =
1
� 0

�; r � B = � 0J + � 0� 0
@E
@t

; (5.2)

r � E +
@B
@t

= 0; r � B = 0: (5.3)

1We thank Viktor Podolski for his conttibutions to this chapter.
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Figure 5.1. The algorithm for Laplace's equation in which the potential at the point (x; y) =
(i ; j )� equals the average of the potential values at the four nearest-neighbor points. The
nodes with white centers correspond to �xed values of the potential along the boundaries.

5.2 Electric Potentials via Laplace's & Poisson's Equations
The electric potential U(x) arising from a charge density� (x ) satis�es Poisson's partial
di�erential equation (PDE):

r 2U(x) = �
1
� 0

� (x ); (5.4)

where � (x) is the charge density. In a charge-free region of space,� (x ) = 0 , and so
the potential there satis�es Laplace's equation:

r 2U(x) = 0 : (5.5)

5.2.1 Solutions via Finite Di�erences

Even for problems with cylindrical symmetry, the inherent simplicity of setting up
rectangular grids and of expressing derivatives in terms of rectangular coordinates
leads us to solve these equations in rectangular coordinates:

@2U(x; y; z)
@x2

+
@2U(x; y; z)

@y2
+

@2U(x; y; z)
@z2

= 0 ; Laplace, (5.6)

@2U(x; y; z)
@x2

+
@2U(x; y; z)

@y2
+

@2U(x; y; z)
@z2

= �
1
� 0

� (x ); Poisson: (5.7)
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Figure 5.2. Left: A region of space in which a wire at the top is kept at 100 V with the sides
and bottom grounded. Right: The computed electric potential as a function of x and y. The
projections onto the shaded xy plane are equipotential (contour) lines.

Electric charge is the source of electrostatic �elds, be it directly in the charge density,
or indirectly through the imposition of boundary conditions.

Because theU's in (5.6) and (5.7) depend simultaneously onx, y, and z, the
equations are partial di�erential equations (PDEs). And because we want to obtain a
unique solution, we must ensure that it satis�es some speci�ed boundary conditions. In
contrast to solving ordinary di�erential equations where we can use a single algorithm
(usually rk4) for nearly all equations, each type of PDE including its particular set
of boundary conditions tends to demand a custom-built algorithm. Fortunately, we
can use simple and powerful�nite di�erence techniques for Laplace's and Poisson's
equations.

We assume a 2-D problem and divide space up into a lattice (Figure 5.1), and solve
for U(x; y ) only at each lattice site. Because we will express derivatives in terms of
the �nite di�erences in the values of U at the di�erent lattice sites, the approach is
called a �nite-di�erence method. Speci�cally, we start with the Taylor expansions:

U(x + �x; y ) = U(x; y ) +
@U
@x

�x + 1
2

@2U
@x2

(�x) 2 + � � � ; (5.8)

U(x � �x; y ) = U(x; y ) �
@U
@x

�x +
1
2

@2U
@x2

(�x) 2 � � � � ; (5.9)

U(x; y + �y ) = U(x; y ) +
@U
@y

�y + 1
2

@2U
@y2

(�y )2 + � � � ; (5.10)

U(x; y � �y ) = U(x; y ) �
@U
@y

�y +
1
2

@2U
@y2

(�y )2 � � � � : (5.11)

Rather cleverly, the additions U(x +�x; y )+ U(x � �x; y ) and U(x; y +�y )+ U(x; y �
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Figure 5.3. Left: A simple model of a parallel-plate capacitor within a box. A realistic
model would have the plates close together, in order to condense the �eld, and the enclosing
grounded box so large that it has no e�ect on the �eld near the capacitor. Right: A numerical
solution for the electric potential for this geometry. The projection on the xy plane gives the
equipotential lines.

�y ) improves precision by canceling o� theO(�) terms. With the central-di�erence
algorithm for derivatives, we obtain approximations good to order � 4:

@2U(x; y )
@x2 '

U(x + �x; y ) + U(x � �x; y ) � 2U(x; y )
(�x) 2 ; (5.12)

@2U(x; y)
@y2 '

U(x; y + �y ) + U(x; y � �y ) � 2U(x; y )
(�y )2 : (5.13)

Substitution of these approximations in Poisson's equation (5.7) produces the �nite-
di�erence equation:

U(x + �x; y ) + U(x � �x; y ) � 2U(x; y )
(�x) 2

+
U(x; y + �y ) + U(x; y � �y ) � 2U(x; y )

(�y )2 = �
�
� 0

: (5.14)

For simplicity, we take the x and y grids in Figure 5.1 to be of equal spacings�, and
replace thex and y variables by the discrete labelsi and j :

x = x0 + i �; y = y0 + j �; i; j = 0; : : : ; N max �1 : (5.15)

This leads to a di�erence equation, which we rearrange into an algorithm:

Ui+1;j + Ui�1;j + Ui;j +1 + Ui;j �1 � 4Ui;j = �
� i;j

� 0
; (5.16)

) Ui;j = � � i;j + 1
4 [Ui+1;j + Ui�1;j + Ui;j +1 + Ui;j �1 ] : (5.17)
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Figure 5.6. Left: The geometry of a capacitor formed by placing two long, square cylinders
within each other. Right: The geometry of a capacitor formed by placing two long, circular
cylinders within each other. The cylinders are cracked on the side so that wires connected
to a battery can enter the region.

and �100 V. One approach here is to solve Laplace's equation as before to
determine U(x; y ). Then substitute U(x; y ) into Poisson's equation (5.4) to
determine �(x; y ). Figure 5.4 shows some of the results we found.

3. Capacitance of Realistic Capacitor Now that you have computed the charge
distribution on the realistic capacitor, go one step further and compute the total
charge on one plate.

a. Now that you know the charge on the capacitor and the voltage of the ca-
pacitor, compute the capacitance of the realistic capacitor and compare that
to the capacitance of the ideal capacitor that does not include edge e�ects.

b. Run a series of simulations that vary the plate separation and determine
which plate separations agree best with the formula for the ideal capacitor.

4. Figure 5.5 shows anEquilateral Triangle formed from conducting wires sepa-
rated by insulators, with one side at 1000V and the other two sides at 0 V. Find
the potential within the triangle.

5. For the preceding triangle, �nd the potential outside of the triangle. Assume
that the potential vanishes at in�nity ( Hint: think big box.).

6. Figure 5.6 left shows a capacitor formed by a box within a box. Determine the
electric potential between the boxes.

7. Figure 5.6 right shows a cracked cylindrical capacitor. Determine the electric
potential between the conductors.

8. The PDE algorithm can be applied to arbitrary boundary conditions. Two
boundary conditions to explore for the two cyclinders are triangular and sinu-
soidal:

U(x) =

(
200x=w; x � w=2;
100(1� x=w); x � w=2;

or U(x) = 100 sin
�

2�x
w

�
: (5.18)
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Figure 5.7. Left: Computed equipotential surfaces and electric �eld lines for a realistic
capacitor. Right: Equipotential surfaces and electric �eld lines mapped onto the surface for
a 3-D capacitor constructed from two tori.

5.2.3 Fourier Series vs. Finite Di�erences

Consider again the simple problem illustrated in Figure 5.2of a wire in a box. In this
case there exists what might be called an analytic solution of Laplace's equation (5.6)
in the form of an in�nite series [LPB(15)]:

U(x; y ) =
1X

n=1;3;5;:::

400
n�

sin
� n�x

L

� sinh(n�y=L)
sinh(n� )

: (5.19)

There are problems in using (5.19) as an algorithm. First, we must terminate the sum
at some point. Nevertheless the convergence of the series may be so painfully slow
that many terms are needed, and so the method is slow and round-o� error may be
large. In addition, the sinh functions tend to over�ow for large n, and so one would
need to take a largen limit:

sinh(n�y=L)
sinh(n� )

=
en� (y=L�1) � e�n� (y=L+1)

1 � e�2n� !
n!1

en� (y=L�1) : (5.20)

Yet this means that the terms in the series get to be large and oscillatory, which may
lead to unacceptable levels of subtractive cancellation. And �nally, a Fourier series
converges only in themean square, that is, to the averageof the left- and right-hand
limits in the regions where the solution is discontinuous [Kreyszig(98)]. Explicitly,
note in Figure 5.8 the large oscillations that tend to overshoot the function at corners.
This is called Gibbs overshoot and occurs when a Fourier series with a �nite number
of terms is used to represent a discontinuous function.

1. Explicitly sum a Fourier series (either the one here or some other one with a
�nite conductor).
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Figure 5.8. The analytic (Fourier series) solution of Laplace's equation summing 21 terms.
Gibbs-overshoot leads to the oscillations near x = 0, and persist even if a large number of
terms is summed.

a. Stop summing the series when it has converged, for instance, when the ratio
|(Last Term)/Sum| is � 10�6 .

b. Note the e�ect of not including the large n limit (5.20).

2. Compare the series summation to the solution obtained with the relaxation
algorithm.

3. Explore the Gibb's overshoot that occurs at the edge of the conductor in your
solution by varying the number of terms used in your summation.

As seen inFigure 5.9, a point chargeq is placed at point (� 0; � 0; z0) inside a cylindri-
cal box of length L and radius a, with its sides and end caps grounded. [Jackson(88)]
solves for the potential as the in�nite series

U(x ; x0) =
q

�� 0a

1X

m=�1

1X

n=1

eim(��� 0) Jm (x mn �=a)J m (x mn � 0=a)
xmn J 2

m+1 (x mn ) sinh(x mn L=a)
(5.21)

� sinh
� xmn z<

a

�
sinh

�
xmn (L � z> )

a

�
; (5.22)

where z< is the smaller ofz and z0, z> the larger of z and z0, and xmn is the nth zero
of the Bessel function of orderm.
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Figure 5.12. A wedge constructed from two in�nite, conducting planes intersecting at an
angle � with both sides kept at a potential V .

5.2.4 Disk in Space, Polar Plots

Consider the �at, conducting, circular disk of radius R shown on the left ofFigure 5.11
[Jackson(88)]. The disk is kept at a constant potential V , and has a charge density
� / (R2 � � 2) �1 =2, where � is the radial distance from the center of the disk.

1. Show that for r > R the potential is:

U(r; �; �) =
2V
�

R
r

1X

`=0

(�1) `

2` + 1

�
R
r

� 2`

P2` (cos� ): (5.23)

2. Write a program that creates a polar plot of the potential at �xed values of r
and � as a function of the polar angle� . Make the plot for several values ofr .
(Note: in Ÿ6.5.1 we give a program for computing Legendre polynomials.)

3. Now create some surface plots of the potentialU(r; �; �). Take note that the
potential is symmetric with respect to �, so in a sense you will be rotating the
polar plots created above.

4. Compare the analytic solution given above to a numeric one that solves Laplace's
or Poisson's equation using �nite di�erences and relaxation. How do the two
compare?

Our program LaplaceDisk.py created the polar plot shown on the right of Fig-
ure 5.11using Matplotlib.

5.2.5 Potential within Grounded Wedge

Consider the wedge shown inFigure 5.12 that is formed by the interaction of two
in�nite, conducting planes at an angle � that are kept at a potential V .
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Figure 5.13. Some equipotential surfaces of a point charge at z = 30 between two parallel,
grounded conducting planes at z = 0 and z = 30. The plot on the right shows a magni�ed
view near the z = 0 plane.

1. Compute the potential within the wedge by solving Laplace's equation using a
relaxation technique.

2. Plot with care the solution near the apex where the error will be larger.

3. Adjust the step size as a way of reducing the size of the error near the vertex.

4. Show that the potential near the apex drops o� with a power law dependence,
� � r �=� (make a semilog plot oflog � versusr , and determine the slope).

5. Use Poisson's equation to determine the surface charge density on the planes,
and verify that charge tends to accumulate at edges.

6. Show that the amount of charge at the vertex and the electric �eld there de-
creases rapidly as the wedge angle� is made smaller.

5.2.6 Charge between Parallel Planes

A point charge q is placed atz = 30 between two in�nite, parallel grounded conducting
planes placed atz0 = 0 and z = L. Problem 3.20 in [Jackson(88)] asks for you to
show that the resulting potential can be written as

�(z; r ) =
q

� � 0L

1X

n=1

sin
� n�z 0

L

�
sin

� n� z
L

�
K 0

� n� r
L

�
; (5.24)

where K 0 is the modi�ed Bessel function of order 0.

1. Derive (5.24) and use it as a basis for its visualization (ours is inFigure 5.13).

a. Use a subroutine library for the computation of the modi�ed Bessel function.
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5.3 E&M Waves via FDTD
The basic technique used to solve for electromagnetic waves is essentially the same
as that used for strings in Ÿ4.2 and quantum waves in Ÿ6.7.3: set up a grid in space
and time, and step the initial solution forward in time one step at a time. When used
for E&M simulations, this technique is known as the �nite di�erence time domain
(FDTD) method. What is new for E&M waves is that there are now two orthogonal
vector �elds with propagation in a third direction.

5.3.1 In Free Space

Maxwell's equations for the free space propagation of EM waves in thez direction
reduces to four coupled PDEs:

~r � E = 0 )
@Ex (z; t)

@x
= 0; (5.25)

~r � H = 0 )
@Hy (z; t)

@y
= 0; (5.26)

@E
@t

= +
1

� 0� 0

~r � H )
@Ex
@t

= �
1

� 0� 0

@Hy (z; t)
@z

; (5.27)

@H
@t

= � ~r � E )
@Hy

@t
= �

@Ex (z; t)
@z

: (5.28)

Here we have chosen the electric �eldE(z; t) to be polarized in the x direction and
the magnetic �eld H(z; t) to be polarized in the y direction (Figure 5.14 right), and
accordingly the power �ows in the direction of the bold arrow.

We express the space and time derivatives in central-di�erence approximations:

@E(z; t)
@t

'
E (z; t + �t

2 ) � E (z; t � �t
2 )

�t
; (5.29)

@E(z; t)
@z

'
E(z + �z

2 ; t) � E (z � �z
2 ; t)

�z
: (5.30)

We next look for solutions at only the discrete sites on the space time lattice ofFigure
5.14 left. We increase the precision and robustness of the algorithm by solving for the
E and H �elds on separate lattices displaced from each other by half a time step and
half a space step. For the present case this means that we use half-integer time steps
as well as half-integer space steps, withH determined at integer time sites and half-
integer space sites (open circles inFigure 5.14 left), and E determined at half-integer
time sites and integer space sites (�lled circles).

Because the �elds already have subscripts indicating their directions, we indicate
the lattice position as superscripts, for example,

Ex (z; t) ! Ex (k �z; n�t) ! E k;n
x : (5.31)
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Figure 5.14. Left: The lattice used for converting the known values of Ex and Hy at three
earlier times and three di�erent space positions to obtain the solution at the present time.
Note that the values of Ex are determined on the lattice of �lled circles, corresponding
to integer space indices and half-integer time indices. In contrast, the values of Hy are
determined on the lattice of open circles, corresponding to half-integer space indices and
integer time indices. Right: A single electromagnetic pulse traveling along the z axis. The
coupled E and H pulses are indicated by solid and dashed curves, respectively, and the pulses
at di�erent z values correspond to di�erent times.

After substituting the �nite-di�erence approximations into Maxwell's equations (5.27)
and (5.28), we obtain the discrete equations

E k;n+1 =2
x � E k;n�1=2

x

�t
= �

H k+1=2;n
y � H k �1=2;n

y

� 0� 0�z
; (5.32)

H k+1=2;n +1
y � H k+1=2;n

y

�t
= �

E k+1;n +1=2
x � E k;n+1=2

x

�z
: (5.33)

We rearrange the equations into the form of an algorithm that advances the solution
step by step through time, solving for Ex at time n + 1

2 , and H y at time n:

E k;n+1=2
x = E k;n�1=2

x �
�t

� 0� 0 �z

�
H k+1 =2;n

y � H k �1 =2;n
y

�
; (5.34)

H k+1=2;n +1
y = H k+1=2;n

y �
�t
�z

�
E k+1;n +1=2

x � E k;n+1=2
x

�
: (5.35)

Note that the algorithms must be applied simultaneously because the space vari-
ation of H y determines the time derivative of Ex , while the space variation of Ex

determines the time derivative of H y (Figure 5.14). Furthermore, even though there
are half step displacements of the lattices used forE and H , time always advances
by a single time step, and successive space sites always di�er by one space step. As
an alternative viewpoint, we can double the index values and refer to even and odd
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times:

E k;n
x = E k;n�2

x �
�t

� 0� 0�z

�
H k+1 ;n �1

y � H k �1;n �1
y

�
; k even, odd; (5.36)

H k;n
y = H k;n�2

y �
�t
�z

�
E k+1;n �1

x � E k �1;n �1
x

�
; k odd, even: (5.37)

This makes it clear that E is determined for even space indices and odd times, while
H is determined for odd space indices and even times. We simplify the algorithm and
make its stability analysis simpler by renormalizing the electric �elds to have the same
dimensions as the magnetic �elds, which leads to

~E k;n+1=2
x = ~E k;n�1=2

x + �
�

H k �1=2;n
y � H k+1=2;n

y

�
; (5.38)

H k+1=2;n +1
y = H k+1=2;n

y + �
�

~E k;n+1=2
x � ~E k+1;n +1=2

x

�
; (5.39)

� =
c

�z=�t
; c =

1
p

� 0� 0
: (5.40)

Here c is the speed of light in a vacuum and� is the ratio of the speed of light to grid
velocity �z=�t.

The space step�z and the time step �t must be chosen so that the algorithm is
stable. The scales of the space and time dimensions are set by the wavelength and
frequency, respectively, of the propagating wave. As a minimum, we want at least10
grid points to fall within a wavelength:

�z �
�
10

: (5.41)

The time step is then determined by the Courant stability condition [Sullivan(00)]:

� =
c

�z=�t
� 1

2 : (5.42)

Equation (5.42) implies that making the time step smaller improves precision and
maintains stability, but making the space step smaller must be accompanied by a
simultaneous decrease in the time step in order to maintain stability.

In Listing 5.9 we present our implementation FDTD.py of the FDTD algorithm
using the Visual package to create a 3-D animation of a propagating EM wave. Its
pseudocode is:

Import packages
Set parameters
Declare Ex, Hy arrays (all space, 2 times)
Set up 3-D plots
Define PlotFields function
Initialize fields (all x)
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Figure 5.15. Left: E and H �elds at t = 100 for a circularly polarized wave in free space.
Right: One frame from the program QuarterPlate.py showing a linearly polarized electro-
magnetic wave entering a quarter wave plate from the left and leaving as a circularly polarized
wave on the right.

The program Dielect.py in Listing 5.10 performs a FDTD simulation of a wave
entering a dielectric, and produces a 2-D animation using Matplotlib. Likewise, the
program DielectVis.py in Listing 5.11 performs the same simulation, and produces a
3-D animation using the Visual package.

5.3.3 Circularly Polarized Waves

To describe a circularly polarized wave propagating in thez direction we extend (5.27)
and (5.28) to include:

@Hx

@t
=

@Ey
@z

;
@Ey
@t

=
1

� 0� 0

@Hx

@z
: (5.43)

When discretized in the same way as (5.34) and (5.35), we obtain

H k+1=2;n +1
x = H k+1=2;n

x +
�t
�z

�
E k+1;n +1 =2

y � E k;n+1 =2
y

�
; (5.44)

E k;n+1=2
y = E k;n�1=2

y +
�t

� 0� 0 �z

�
H k+1=2;n

y � H k �1=2;n
y

�
: (5.45)

To produce a circularly polarized wave, we take E and H as having the same dimensions
and set the initial conditions to:

Ex = cos
�

t �
z
c

+ � y

�
; H x = cos

�
t �

z
c

+ � y

�
; (5.46)

Ey = cos
�

t �
z
c

+ � x

�
; H y = cos

�
t �

z
c

+ � x + �
�

; (5.47)

where we have set the frequency! = 1. We take the phases to be� x = �=2 and � y = 0,
so that their di�erence � x � � y = �=2, the requirement for circular polarization.

Listing 5.12 gives our implementation CircPolarztn.py for waves with transverse
two-component E and H �elds. Some results of the simulation are shown inFig-
ure 5.15, where you will note the di�erence in phase betweenE and H.
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Figure 5.16. Three pulses enter and are then re�ected from a dielectric medium on the right.

5.3.4 Wave Plates

A quarter-wave plate is an optical device that changes the polarization of light trav-
eling through it by a quarter of a wavelength. We simulate a wave plate by starting
with a linear polarized wave propagating along thez direction with both Ex and Ey

components. The wave enters the plate and emerges from it still traveling in thez di-
rection, though now with the relative phase of these �elds shifted. The corresponding
Maxwell equations are:

@Hx

@t
= +

@Ey
@z

;
@Hy

@t
= �

@Ex
@z

; (5.48)

@Ex
@t

= �
1

� 0� 0

@Hy

@z
;

@Ey
@t

= +
1

� 0� 0

@Hx

@z
: (5.49)

We take as initial conditions a wave incident from the left along the z axis with its E
�eld at 45 o, and with corresponding H components:

Ex (t = 0) = 0 :1 cos
2�x
�

; Ey (t = 0) = 0 :1 cos
2�y
�

; (5.50)

H x (t = 0) = 0 :1 cos
2�x
�

; H y (t = 0) = 0 :1 cos
2�y
�

: (5.51)

For a quarter-wave plate, the Ex and H y components have their phases changed by
�= 4 when they leave the plate, and then propagate through free space with no further
changes in relative phase.

The algorithm again follows by discretizing time and space, and using a forward-
di�erence approximation to express the derivatives. Because there are more coupled
equations than before, it takes some more manipulations to solve for the �elds at a
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Figure 5.17. Left: A transmission line repeats inde�nitely every �x . Right: Two frames of
an animation produced by TeleMat.py using Matplotlib, showing a power wave transmitted
along a telegraph line and being re�ected from an end.

future time in terms of the past �elds. In this case two past values are required,
though we do end up with very symmetric equations:

E k;n+1
x = E k;n

x + �
�
H k+1;n

y � H k;n
y

�
; E k;n+1

y = E k;n
y + �

�
H k+1 ;n

x � H k;n
x

�
;

(5.52)

H k;n+1
x = H k;n

x + �
�
E k+1;n

y � E k;n
y

�
; H k;n+1

y = H k;n
y + �

�
E k+1;n

x � E k;n
x

�
:

(5.53)

1. Modify the FDTD program of Listing 5.9 so that it solves the algorithm (5.52)�
(5.53). Use� = 0:01.

2. After each time step, impose a gradual increment of the phase so that the total
phase change will be one quarter of a wavelength.

3. Verify that the plate converts an initially linearly polarized wave into a circularly
polarized one.

4. Verify that the plate converts an initially circularly polarized wave into a linearly
polarized one.

5. What happens if you put two plates together? Three? Four? (Verify!)

5.3.5 Telegraph Line Waves

A model of a twin-lead transmission line consists of two parallel wires on which alter-
nating current or pulses propagate [Sullivan(00),Inan & Marshall(11)]. The equivalent
circuit for a segment of length �x of a transmission line is shown on the left ofFig-
ure 5.17. There is an inductanceL�x, a resistance R�x, a capacitance C�x, and a
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conductance (inverse resistance of the dielectric material connecting the wires)G�x.
The telegrapher's equations describe the voltage and current:

@V(x; t)
@x

= �R I � L
@I(x; t)

@t
; (5.54)

@I(x; t)
@x

= �G V � C
@V(x; t)

@t
: (5.55)

For lossless transmission lines, that is those withR = G = 0, the equations become

@V(x; t)
@x

= �L
@I(x; t)

@t
;

@I(x; t)
@x

= �C
@V(x; t)

@t
: (5.56)

Di�erentiation of these equations and substitution into one another leads to a 1-D
wave equation:

@2V(x; t)
c2@t2

�
@2V(x; t)

@x2
= 0; c =

1
p

LC
: (5.57)

Wave equations are easy to solve using theleapfrog method, as we do with string
waves inChapter 4, the Schrödinger equation inChapter 6, and Maxwell's equations in
Ÿ5.3. One starts by using a central-di�erence approximation to express the derivatives
in terms of �nite di�erences, for instance,

@V(x; t)
@x

'
V (x + �x; t) � V (x � �x; t)

2�
; (5.58)

with a similar expression for the time derivative. Then, as we indicate inFigure 5.18,
one rearranges the �nite di�erence equations into a form that expresses the value of
V (x; t) at a future time in terms of its values at previous times. Finally, as also shown
in Figure 5.18, one limits the solution to values on a space time lattice. The known
initial conditions and boundary values are incorporated into the algorithm in order to
propagate the initial values of V (x; t) through all of space and time.

Algorithms often involve a balance between precision and robustness. If you arbi-
trarily keep decreasing the step size with the aim of achieving greater accuracy, you
may �nd that your solution becomes unstable and eventually blows up exponentially.
And when you have a time-dependent PDE, there are both time and space steps, and
they must all be varied in a coordinated manner to avoid instabilities. For this type
of leapfrog algorithm to be stable, the Courant condition requires

c
�t
�x

� 1: (5.59)

In order to solve the two, coupled �rst-order PDEs (5.54), or the second-order PDE
(5.57), we need to be given su�cient initial conditions and boundary conditions. Typ-
ically, one condition might be the initial voltage along the wire V (x; t = 0), and the
other might be that the initial voltage on the line is a constant, @V(x; t = 0)=@t= 0.
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Figure 5.18. A space time lattice upon which the telegrapher's equations are solved using a
leapfrog algorithm that uses values of V at three present times and one past time to compute
a single value in the future.

We convert the velocity condition into something we can use in the time stepping
algorithm by using the forward-di�erence form of the derivative:

@V(x; t)
@t

'
V (x; �t) � V (x; 0)

�x
= 0; ) V (x; �t) = V (x; 0) = 0 : (5.60)

1. Write down and program the leapfrog algorithm appropriate to the telegrapher's
equations (5.56).

a. The boundary conditions areV (0; t) = V (L; t) = 0, where L is the length of
the transmission line.

b. Use as initial conditions that a pulse was placed on a line that had a constant
voltage:

V (x; t = 0) = 10 e�x 2 =0:1 ;
@V(x; t)

@t
= 0: (5.61)

c. Good values to try areL = 0:1, C = 2:5, �t = 0:025, and �x = 0:05.

2. Experiment with di�erent values for �x and �t in order to obtain better preci-
sion (noisy solutions are usually not precise), or to speed up the computation.

3. Explore a selection of di�erent time and space step sizes and see for which choices
your solution becomes unstable.

4. Compare results from your experimental investigation of stability with the pre-
diction of the Courant stability condition (5.59).

5. Investigate the e�ect of a nonzero value for the conductanceG and the resistance
R. Do your results agree with what you might expect?
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from the top and bottom surfaces is [Atkins & Elliot(10)]:

� =
2�an cos� i

�
+ � (Re�ected): (5.62)

Here the � (an inversion) arises from the re�ection from the top surface occurring from
a medium with an index of refraction n larger than that of air. Likewise the phase
di�erence between the directly transmitted wave and the transmitted wave that has
undergone internal re�ection is:

� =
2�na cos� i

�
(Transmitted): (5.63)

No additional � occurs here because the internal re�ection is from a medium (air)
that has a smaller index of refraction than that of the �lm (n > 1). In both cases, we
see that the �e�ective thickness� of the �lm is an.

The amplitude of the re�ected or transmitted wave is proportional to cos(�=2),
and since intensity is proportional to the square of the amplitude, we have

I / cos2(�=2): (5.64)

For a particular value of the wavelength �, complete destructive interference occurs
when the phase shift is an odd multiple of� :

� = (2 n + 1)�; n = 0; 1; : : : (Destructive): (5.65)

Accordingly, for normal incidence and re�ection (90o), complete destructive interfer-
ence occurs when

na =
1
2

n�; m = 0; 1: : : (Destructive): (5.66)

1. Compute the intensity of the re�ected wave as a function of the e�ective thickness
na for the three colors: red (572 nm), green (540 nm), and blue (430 nm). Take
the incident wave to be normal to the �lm.

2. Compute the intensity of the transmitted wave as a function of the e�ective
thickness na for the three colors: red (572 nm), green (540 nm), and blue (430
nm). Take the incident wave to be normal to the �lm.

3. Convert the intensity pro�les into a color panel (a spectrum) by having the
intensity of each of the three colors vary according to (5.64).

4. A soap �lm in a bottle cap is tilted at an angle so that its thickness varies linearly
with height. What are the expected intensity pro�les and color panels?
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Figure 5.20. A dielectric sphere is placed in an initially uniform electric �eld.

5.5 Electric Fields

5.5.1 Vector Field Calculations & Visualizations

The preceding solutions of Laplace's equation for potentials can be extended to yield
the electric �eld vector, either by taking the derivatives of the potentials, or by solving
for the �eld directly. A traditional exercise involved drawing E-�eld curves by hand
orthogonal to the equipotential lines, beginning and ending on the boundaries (where
the charges lie). The regions of high line density are regions of high electric �elds. A
more modern approach would be to extend �nite-di�erence calculations of potentials
to compute electric �elds as the negative gradient of the potential:

E = �rU (x; y ) = �
@U(x; y )

@x
�̂ x �

@U(x; y )
@y

�̂ y : (5.67)

If we use a central-di�erence approximation for the derivative, we obtain

Ex '
U(x + �; y ) � U(x � �; y )

2�
=

Ui+1;j � Ui�1;j

2�
: (5.68)

We see that we have already calculated all that is needed, and only need to make
some subtractions. To represent a vector �eld, one may use software to plot arrows of
varying lengths and directions, or with just lines intersecting the equipotential surface
(Figure 5.7).

5.5.2 Fields in Dielectrics

Computing electric �elds in dielectrics is much the same as computing them for con-
ductors, but with the need to incorporate the appropriate boundary conditions. At
the interface of the dielectric with free space (or with a di�erent dielectric) we must
require continuous tangential E and normal D:

Ek

�
�
1

= Ek

�
�
2

; � 1E? j1 = � 2E? j2 : (5.69)

Even though the boundary conditions are on the vector �elds, and not the scalar po-
tential, we can still solve Laplace's equation, though now with the boundary conditions
on the derivatives of the potential.
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Figure 5.21. A dielectric cylinder of length L is placed in an initially uniform electric �eld.

The standard dielectric problem is the one illustrated in Figure 5.20, where there
is a dielectric sphere of radiusR and permittivity � placed in an initially uniform
electric �eld in the positive x direction [Jackson(88)]. As before, we employ Cartesian
coordinates and express the boundary conditions in terms of them. We start o� the
simulation with the same initial �eld as in the problem,

V (x; y ) = �E 0x; (5.70)

which is imposed over all of space, and which, presumably, will remain as the �eld at
in�nity. The boundary conditions at the dielectric-free space interface are simplest to
express in polar coordinates:

@Vin
@�

�
�
�
�
r =R

=
@Vout

@�

�
�
�
�
r =R

; �
@Vin
@r

�
�
�
�
r =R

= � 0
@Vout

@r

�
�
�
�
r =R

: (5.71)

We use the chain rule to express the derivatives in polar coordinates in terms of
Cartesian derivatives:

@V
@�

=
@V
@x

@x
@�

+
@V
@y

@y
@�

= �
@V
@x

sin � +
@V
@y

cos�; (5.72)

@V
@r

=
@V
@x

@x
@r

+
@V
@y

@y
@r

= +
@V
@x

cos� +
@V
@y

sin �: (5.73)

The Cartesian derivatives are expressed simply in terms of �nite di�erences of the
potential, and, of course,sin � = yi =(x2

i + y2
i ).

In the case of a dielectric sphere, the expansion of the �eld as an in�nite series of
Legendre polynomials reduces to just one term [Jackson(88)]:

Vin = �
3

�=� 0 + 2
E0r cos�; V out = �E 0r cos� +

�=� 0 � 1
�=� 0 + 2

E0
R3

r 2 cos�: (5.74)

1. Take the simulation used for the potential in the presence of conductors, and
modify it to describe a dielectric sphere placed in an initially uniform electric
�eld.
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a. Make your lattice spacing �ne enough to incorporate the curvature of the
sphere.

b. Start with the potential on all lattice points given by (5.70).
c. Use a central-di�erence approximation to deduce expressions for the deriva-

tives @V =@�and @V @rin terms of values ofVi;j on the Cartesian grid. (Equa-
tions (5.72) and (5.72) will be useful for this.)

d. Use a relaxation technique to solve this problem by iteration.
e. Adjust your lattice spacing and possibly the number of iterations used so that

you obtain good agreement with the analytic results (5.74).
f. Check that the potential at in�nity remains unchanged.

2. Take your solution for the electric potential and compute the electric �eld within
and without the sphere.

a. Visualize the electric �eld and con�rm that there is a constant electric �eld
within the sphere.

3. Modify your simulation to one that computes the electric �eld throughout all
of space when a empty spherical cavity is placed within an in�nite dielectric
medium in which there was an initially uniform electric �eld in the x direction.

4. As shown in Figure 5.21, a dielectric cylinder is placed in an initially uniform
electric �eld. Compute the potential and the electric �eld both within and
without the cylinder. The �eld should increase with radius within the cylinder,
but decrease outside.

5. A dielectric sphere, like that in Figure 5.20, has a uniform charge density of�.

a. Use Gauss's law to calculate the electric �eld and potential around the sphere.
b. Use a relation technique to solve Poisson's equation for the potential around

the sphere, and from that deduce the electric �eld.
c. Compare the analytic and numeric results.

5.5.3 Electric Fields via Integration

Gauss's law relates the surface integral of the electric �eld to the charge enclosed by
that surface. Often those integrals cannot be evaluated analytically, while sometimes
they can be expressed in terms of the elliptic integral of the �rst kind,

K (m) =
Z �=2

0

d�
p

1 � m sin2 �
; 0 � m � 1: (5.75)
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Figure 5.22. Left: The electric �eld due to two charges, the one on the right being an image
charge. Right: The electric �eld due to a charge to the left of a conducting plane. The �eld
vanishes within the conductor. Produced with Matplotlib from ImagePlaneMat.py.

We shall evaluate elliptic integrals numerically, and use as a check a comparison with
the polynomial approximation [Abramowitz & Stegun(72)]:

K (m) ' a0 + a1m1 + a2m2
1 � [b0 + b1m1 + b2m2

1] ln m1 + �(m);

a0 = 1:38629 44 a1 = 0:11197 23 a2 = 0:07252 96
b0 = 0:5 b1 = 0:12134 78 b2 = 0:02887 29

;

m1 = 1 � m; j�(m)j � 3 � 10�5 :

1. Compute K (m) by evaluating the integral in (5.75) numerically. Tune your
integral evaluation until you obtain agreement at the � 3 � 10�5 level with the
polynomial approximation.

2. Consider the problem of an in�nite, grounded, thin, plane sheet of conducting
material with a hole of radius a cut in it. The hole contains a conducting disc of
slightly smaller radius kept at potential V and separated from the sheet by a thin
ring of insulating material. The potential at a perpendicular distance z above
the edgeof the disk can be expressed in terms of an elliptic integral [Jackson(88)]:

�(z ) =
V
2

 

1 �
kz
�a

Z �=2

0

d�
p

1 � k2 sin2 �

!

; k = 2a=(z2 + 4a2)1=2: (5.76)

Compute and plot the potential for V = 1, a = 1, and for values of z in the
interval (0:05;10). Compare to a1=r fallo�.
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Figure 5.24. The electric �eld due to a charge outside of a spherical conductor, with the
image charge within the conductor also shown. Because the image charge does not physically
exist, the �eld within the conductor vanishes. Conversely, the �eld due to a physical charge
within the conductor would vanish outside of the sphere. Left: Produced with Matplotlib
from ImageSphereMat.py. Right: Produced with Visual from ImageSphereVis.py.

b. Modify the Matplotlib-based program ImagePlaneMat.py that uses stream-
lines to use other visualization methods such aspcolormesh with levels and
contourf with levels.

5. Use the method of images to determine and visualize the electric �eld due to
a point charge within a grounded conducting sphere. As seen inFigure 5.23,
the conducting sphere of radiusa is centered at the origin, the point chargeq is
located at d, and the image chargeq0 is located at d0. With d0 = a2=d, the net
potential on the surface of the sphere is zero.

6. Use the method of images to determine and visualize the electric �eld due to a
point charge outside of a grounded, conducting sphere.

a. Modify the Visual-based program ImageSphereVis.py so that the vector E at
each lattice point is proportional to the strength of the �eld.

b. Modify the Matplotlib-based program ImageSphereMat.py to use other visual-
ization methods such aspcolormesh with levels and contourf with levels.

5.6 Magnetic Fields via Direct Integration
The basic experimental law relating the �ow of a steady current I to the magnetic
induction B is

dB =
� 0

2�
I

dl � r̂
r 2 ; (5.77)
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where r is the observation point and d` is a di�erential length pointing the direction
of current �ow. The Biot-Savart law evaluates the basic law as a line integral,

dB =
� 0

4�
I

Z
dl � r̂

r 2 ; (5.78)

or more generally as integration over a current density,

dB =
� 0

4�

Z
J(r 0) �

\r � r 0

jr � r 0j2
d3r 0: (5.79)

1. Evaluate the integral in (5.78) numerically for the straight wire illustrated on
the left of Figure 5.25.

a. Compute the magnetic �eld and con�rm that its magnitude is B = � 0I=2��,
where � = r sin � is radial distance to the wire in Figure 5.25 left. Do this by
evaluating the cross product in (5.78) and computing the three components
of the magnetic �eld.

b. Show numerically that the lines of magnetic �eld are circles that lie in a plane
perpendicular to the wire and centered on it.

2. Consider a coil of wire carrying a currentI and wound uniformly upon a sphere,
as shown on the right ofFigure 5.25.

a. Compute the magnetic �eld inside the sphere and con�rm that it is uniform
and in the direction shown in the �gure.

b. Estimate the precision of your computed magnetic �eld by evaluating the
ratio of the �small� components of B , that is, the ones which should vanish,
to the �large� components.

c. Compute the magnetic �eld on the exterior of the sphere and con�rm that it
looks like that of a dipole.

5.6.1 Magnetic Field of Current Loop

The analytic expression for the �eld due to a magnetic dipole is a basic element in
much of physics. The expression is usually derived under the assumption that the
observation point is a long distance from the dipole. Here we wish to compute those
�elds without any assumptions as to distance. Figure 5.26 shows a current loop of
radius a carrying a current I . The point P is a distancer from the center of the loop
with spherical coordinates (r , � , �).

1. Rather than solving for the magnetic �eld directly, it is often simpler to solve for
the vector potential A, and then calculate the magnetic �eld as the derivative
of A. In terms of elliptic integrals, the � component of the vector potential at
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Figure 5.25. Left: A straight wire carrying a current I in the vertical direction. A magnetic
�eld component in a plane perpendicular to the wire is shown. Right: A coil of wire carrying
a current I wrapped uniformly around a sphere. The interior B �eld is uniform, while the
exterior one is similar to a dipole.

point P is

A � (r; � ) =
� 0

4�
4Ia

p
a2 + r 2 + 2ar sin �

�
(2 � k2)K (k) � 2E(k)

k2

�
; (5.80)

E(k) =
Z �=2

0

q
1 � k2 sin2 � d�; k 2 =

4ar sin �
a2 + r 2 + 2ar sin �

: (5.81)

Here K (k) is a complete elliptic integral of the �rst kind (5.75), and E(k) is
a complete elliptic integral of the second kind. Compute and plot the vector
potential for a = 1, I = 3, and � 0=4� = 1, speci�cally:

a. A � (r = 1:1; � ) versus� .
b. A � (r; � = �=3) versusr .

2. Evaluate and plot the magnetic �eld by computing

B r =
1

r sin �
@
@�

(sin � A � ); B � = �
1
r

@
@r

(rA � ); B � = 0: (5.82)

a. You may either evaluate the derivative of the expression forA � (r; � ) in terms
of elliptic integrals and then evaluate the integrals, or evaluate a numerical
derivative of your numerical values for A � (r; � ).

3. The magnetic dipole aspect of the current loop emerges whenA � (r; � ) and then
B are evaluated for the far �elds when r >> a:

B r '
� 0m
2�

cos�
r 3 ; B � '

� 0m
4�

sin �
r 3 ; (5.83)
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Figure 5.27. A uniform magnetic �eld perpendicular to the plane of the �gure is used as a
spectrometer to count particles of a single momentum originating from point source. The
counter accepts particles entering at di�erent angles, though not with too high a momentum
(dashed curve).

c. Run a series of simulations from which you can determine the acceptance
angle � for this device.

d. How would you change the dimensions of the device so that it could measure
electrons of 250 KeV? Verify numerically.

e. What would happen if a dielectron with twice the mass of a single electron
and twice the charge entered the spectrometer?

5.7.2 Quadruple Focusing

On the left of Figure 5.28 we show the magnetic �eld of a vertical focusing, magnetic
quadrupole lens. On the right we show the magnetic �eld of a horizontal focusing
lens. You can create �elds like these by placing the poles of four bar-like magnets
into an X, with the N and S poles alternating. When a positively charged particle
passes perpendicular to the plane of the �gure for the con�guration on the left, those
particles above the center will be focused down towards the center, while those below
will be focused up towards the center (vertical focusing). Particles passing to the right
or left of the center will be defocused away from the center. Just the reverse occurs
for the con�guration on the right, which focuses particles horizontally. Furthermore,
because the �elds get stronger as you move away from the center, speci�cally,

By = K x; B x = K y; (5.84)

those particles further from the center feel a greater push back to the center than those
closer to the center. Accordingly, by having a particle beam pass through a series of
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Figure 5.29. A schematic of one line of the earth's magnetic �eld. The full �eld resembles
that of a bar magnet. Shown is the orbit of one charged particle trapped in a spiral-like orbit
between the poles (http://astronauticsnow.com/ENA/ena_rsi_1997.html).

5.7.3 Magnetic Con�nement

As illustrated in Figure 5.29, the earth is surrounded by a magnetic �eld that resembles
that of a bar magnet with the magnet's south pole at the earth's north pole. This type
of �eld tends to trap charged particles coming from the solar wind and cosmic rays, and
causes them to bounce back and forth between the poles along spiral orbits around
the magnetic �eld lines. (This is called a magnetic mirror e�ect.) The doughnut-
shaped regions in which the charged particles move are known as the Van Allen belts.
Because the �eld gets stronger near the poles, as the particles move closer to the pole
they spiral in tighter and tighter orbits, and so their velocity perpendicular to the
�eld rises. However, because a magnetic �eld cannot change the energy of a particle,
the particle's velocity parallel to the �eld lines decreases, and the particle eventually
stops, reverses direction, and spirals out, away from the pole.

In so far as we can model the earth's �eld as that of a bar magnet, we can use our
knowledge of the dipole �eld given in Ÿ5.6.1 to describe the earth's �eld. Speci�cally,
in terms of the coordinates ofFigure 5.26, the radial and azimuthal �eld components
far from the dipole, (5.83), specialized to the earth, are

B r = 2B 0

�
RE

r

� 3

cos�; B � = B0

�
RE

r

� 3

sin �; (5.85)

where RE is the mean radius of the earth (' 6370 km) andB0 ' 3:12� 10�5 T.

1. Develop a simulation that shows the orbits of charged particles around the earth.
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Figure 5.30. Two frames from the animations produced by the program LorentzFieldVP.py.
Left: The B �eld in frame O causes a charge to move in a circle. Right: When viewed in the
moving frame O', the motion is no longer circular.

a. Consider the charged particles to be electrons and protons.
b. Consider particles of di�erent speeds and directions projected towards the

earth. Determine which ones get captured, de�ected, or reach the earth. The
solar wind has velocities in the range 300�750 km/s.

5.8 Relativity in E&M

5.8.1 Lorentz Transformations of Fields and Motion

As illustrated on the left of Figure 5.30, an observer in frame O sees a magnetic �eld
in the z direction (the dots coming out of the plane). This observer sets a chargeq
in motion with a velocity V in the x direction and observes the charge undergoing
circular motion in the xy plane. This problem asks you to determine the motion of
the charge as viewed in a frame O' moving with velocityv to the right with respect
to O (right side of Figure 5.30).

There are at least two ways to solve this problem, and we want you to verify by
actual computation that they are equivalent. And, of course, for relativistic e�ects
to matter, the velocities must be large. The �rst approach is geometric. We have a
charge moving in a circle in frame O, which the observer there describes as[x(t); y (t)].
The motion in O' is obtained by transforming the circular motion in O into the path
[x0(t 0); y0(t 0)]. You are given the transformation of positions, times, and velocities:

ct0 =  (ct � �x ); x 0 =  (x � �ct ); (5.86)

y0 = y; z0 = z;  =
1

p
1 � � 2

; � =
v
c

; (5.87)

u0
k =

uk � v
1 � v�u

c2

; u0
? =

u?


�
1 � v�u

c2

� : (5.88)
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Here uk and u? denote the components of an observed velocity parallel and perpen-
dicular to velocity of the frames v, and u is a velocity as observed in the O frame.

The second approach to this problem transforms the electric and magnetic �elds in
O', and then solves for the motion in O' due to these �elds. Physically, the reason for
an electric �eld in O' is clear. Observer O', seeing the charge undergoing translational
motion in addition to circular motion, will conclude that there must be an electric �eld
E 0 causing the translation in addition to the magnetic �eld B 0 causing the rotation.
You are given that the �elds transform as

E 0
x = Ex ; E 0

y =  (E y � �B z ); (5.89)

E 0
z =  (E z + �B y ); B 0

x = Bx (5.90)

B 0
y =  (B y + �E z ); B 0

z =  (B z � �E y ): (5.91)

1. Use both ways of solving this problem to determine the motion of the charge as
viewed in O'.

a. To make life simpler, you may want to solve the equations of motion using
Euler's integration rule, yn+1 ' yn + dy

dt

�
�
�
n

: Because Euler's rule is of low

order in the time step �t, you must select a smaller step size than you might
otherwise with rk4. You can check if you have a small enough time step if
the motion in O remains circular, with future orbits falling on top of previous
orbits.

b. In frame O you can use the analytic result for circular motion in a B �eld,
or you can solve the equations of motion numerically.

c. Solve the equation of motion,F = ma, in O, and keep repeating the solution
until you reach a large value of time t.

d. Transform the motion in O, [x(t); y (t)] into [x0(t 0); y0(t 0)], as seen in O'.
e. Is the B in O' larger or smaller than the magnetic �eld in O? Explain.
f. Is E0 in O' pointing in the expected direction? Explain.
g. You can solve the equations of motion in O' asF0 = m0a0, though do remem-

ber that m0 is no longer the rest massm.

2. Construct animated plots (movies) of the motion in the O and O' frames. You
can do this by adding plotting inside the time loop of Euler's rule.

3. Once your programs are running, investigate a range of values for the velocityv
of frame O'. Make sure to include negative as well as positive values, and some
very small and some very large (v' c) values.

4. Can you �nd a value of v for which the motion in O' is a closed �gure?

5. Repeat some parts of this exercise where relativistic e�ects seemed largest, only
now do it using Galilean transformations.

Our codeLorentzFieldVP.py that solves this problem by transforming �elds is given
in Listing 5.16. Some frames from its animations are shown inFigure 5.30.
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Figure 5.31. Two equal charges start o� in frame O (left) with equal velocities u and a
separation r 2 � r 1 . On the right we see the same two charges as viewed in frame O' moving
to the right with velocity v.

5.8.2 Two Interacting Charges, the Breit Interaction

A proper relativistic treatment of two interacting particles accounts for the �nite
amount of time it takes for the �eld to travel between the particles. This is a hard
problem though is necessary to explain the �ne structure in hydrogen. When treated
to lowest order in v=c, we obtain the Darwin and Breit interactions, which we examine
in this section [Jackson(88),Darwin(20), Page & Adams(45),Essen(96)].

As illustrated in Figure 5.31, an observer in frame O sets two identical, spinless
charges in motion at the same time, each with a velocityu in the x direction. The
charges are initially separated by a distancer . The charges repel each other via their
E �elds, yet also attract each other via their B �elds (use the right hand rule to check
that). Since electric forces tend to be stronger than magnetic ones, we expect the
observer in O to see the charges move apart in curved trajectories.

As with the previous problem, there are at least two ways to solve this problem,
and we want you to verify by actual computation that they are equivalent. And,
of course, for relativistic e�ects to matter, the velocities must be large. The �rst
approach is geometric. We have a charge moving with some trajectory in frame O,
which is described as[x(t); y (t)]. The solution follows by using (5.86)�( 5.88) to Lorentz
transform the motion in O into [x0(t 0); y0(t 0)]. The second approach uses (5.89)�(5.91)
to transform the �elds, and then solves the equations of motion in O' using these
transformed �elds.

In O, the magnetic �eld produced by chargeq1 with velocity v1 at the location of
chargeq2 a distancer away is:

B =
� 0

r 3 v1 � r: (5.92)
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The force on q2 due to the magnetic �eld produced by q1 is:

Fm = qv2 � B =
� 0

jr 2 � r 1 j3
v2 � [v1 � (r 2 � r 1 )]: (5.93)

The electrostatic force onq2 due to q1 is

E =
q1q2(r 2 � r 1 )

4�� 0j(r 2 � r 1 )j3 : (5.94)

Because the particles are no longer static, there are retardation corrections to this,
which we ignore.

The steps to follow for this problem then are essentially the same as in the pre-
vious problem. Figure 5.31 shows some of the results we obtained with the program
TwoCharges.py given in Listing 5.17. The program TwoFields.py that transforms �elds
is given in Listing 5.18.

5.8.3 Field Propagation E�ects

Consider again the interaction between the two charged, spinless particles ofFig-
ure 5.31. The relativistic two-body problem has its di�culties and is usually treated
only approximately. To this end, Jackson derives the Darwin Lagrangian describing
the interaction between two charged particles correct to order1=c2 as

L int =
q1q2

r

�
�1 +

1
2c2 [v1 � v2 + (v 1 � r̂)(v 2 � r̂)]

�
: (5.95)

The full Lagrangian correct to order 1=c2 is

L Darwin =
2X

i=1

mi v2
i

2

�
1 +

v2
i

4c2

�
�

q1q2

r
+

q1q2

2c2r
[v1 � v2 + (v 1 � r̂)(v 2 � r̂)] : (5.96)

The equations of motion are derived from the Lagrangian in the usual way, which we
write in several forms as

@L(q; _q)
@qj

�
d
dt

@L(q; _q)
@_q

= 0; (5.97)

) rL(r 1; v1) =
d
dt

�
@L(r 1; v1)

@v1

�
=

dp1

dt
; (5.98)

where p1 is the generalized momentum associated with particle 1, with a similar
equation for particle 2. If we do not include interactions, we obtain the equation of
motion for a free particle,

d
dt

��
1 + 1

2

v2
1

c2

�
m1v1

�
= 0; p1 =

�
1 + 1

2

v2
1

c2

�
m1v1: (5.99)
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As advertised, the Lagrangian includes relativistic e�ects up to order v2=c2. Finally,
we obtain the equation of motion and the generalized momentum, which includes a
contribution from the electromagnetic �eld:

dp1

dt
=

q1q2

r 2

�
r̂ +

v1(r̂ � v2) + v2(r̂ � v1) � r̂[ v1 � v2 + 3(v 1 � r̂)(v 2 � r̂)]
2c2

�
; (5.100)

p1 = m1v1 +
v2

1

2c2 m1v1 +
q1

c
A; (5.101)

A =
q2

2cr
[v2 + r̂ (r̂ � v2)]; r = r 1 � r 2: (5.102)

Note: While we have given several references that study the e�ects of the Darwin
interaction, none of them appear to compute numerical values that indicate the size of
the e�ects. So consider the problems here exploratory in nature and possibly worthy
of serious study.

1. Consider again Figure 5.31showing two charges initially separated by a distance
r . Since we start o� with a symmetrical con�guration for both charges, and since
the equations of motion are symmetric, assume that the paths of the charges
remain symmetric.

a. Program up the equation of motion (5.100) so that you can solve it with a
standard ODE solver such as rk4.

b. The point of this problem is to explore the size of the relativistic e�ects in the
interaction term for two particles. So you need to havev2=c2 large enough to
be signi�cant, but not so large that the ignored v4=c4 terms are signi�cant.
In particular, see if you can �nd any di�erences from the treatment in Ÿ5.8.2.

2. A physical system to which the Darwin interaction has been applied is positron-
ium, a bound state of an electron and a positron [Page & Adams(45)]. Consider
a situation in which the charges are moving in a plane, in a circular orbit, and
with a common velocity.

a. Explore the solution to the equation of motion and identify e�ects due to
�eld propagation.

5.9 Code Listings

� �

# LaplaceTr i . py : Ma tp l o t l i b , Laplace Eq f i e l d t r i a n g u l a r capac i t o r

import m a t p l o t l i b . py lab as p
from mp l_ too l k i t s . mplot3d import Axes3D ; from numpy import �

#i = 0 ; x = 0 . 0 ; y = 0 . 3 ; a1 = � 0.5; b1 = � 0.433
#a2 = 0 . 5 ; b2 = � 0.433; a3 = 0 . 0 ; b3 = 0.433 v e r t i c e s
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Figure 6.1. Left: The solution of the Schroödinger found by integrating out from the left is
matched at xmatch to the solution found by integrating in from the right. Right: The wave
functions for energies that are either too low or too high to be an eigenvalue.

6.2 Bound States

6.2.1 Bound States in 1-D Box (Semianalytic)

Conduct a trial-and-error search technique to solve a transcendental equation to de-
termine the energies of a particle bound within a 1-D square well of radiusR:1

V(x) =

(
�V 0; for jxj � R;
0; for jxj � R:

(6.1)

The energies of the bound statesE = �E B < 0 within this well are solutions of the
transcendental equations [Gottfried(66)]

p
V0 � EB tan

� p
V0 � EB

�
=

p
EB (even); (6.2)

p
V0 � EB cotan

� p
V0 � EB

�
=

p
EB (odd); (6.3)

where even and odd refer to the symmetry of the wave function. Here we have chosen
units such that ~ = 1, 2m = 1, a = 1. You can solve this problem by stepping through
values forEB and observing when the LHS and the RHS are equal. That is essentially
what we automate using the bisection algorithm, as illustrated in Figure 2.1 left, and
programmed in Bisection.py in Listing 2.6.

1. Rewrite (6.2)�( 6.3) in the standard form for a search: f (x) = 0 .

1We solve this same problem in Ÿ6.2.2 using a completely numerical approach that is applicable
to almost any potential and which also provides the wave functions.
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6.2.4 Relativistic Bound States of Klein-Gordon Equation

Incorporating relativity into quantum mechanics presents challenges, one of which is
the inconsistent possibility of multiple particles within a single-particle theory. Incon-
sistencies aside, relativity is a more accurate description of nature than is Newtonian
dynamics, and so should be incorporated into a proper quantum mechanics. Here we
look at solutions of the Klein-Gordon equation (KGE) that intrinsically include rel-
ativity. Although spin e�ects arise naturally in relativistic quantum mechanics, that
requires the more complex Dirac equation, and so the problem here is more appro-
priate as description of spinless particles, like pions, than of electrons [Landau(96)].
Furthermore, since a � � forms an exotic atom with a radius some 280 times smaller
than that of an electron, relativistic e�ects are more important for pionic atoms than
for electrons.

The KGE starts with the relation

E 2 = p2 + m2; (6.10)

where we use units in which~ = c = 1 . As did Schrödinger with E = KE + PE, we
makes the canonical associations

E ! H 0 ! i@=@t; p ! r=i; (6.11)

) �
@2 (x ; t)

@t2
= �r 2 (x ; t) + m2 (x ; t): (6.12)

The interaction with a static electric �eld � follows by the minimal coupling postulate:

(i
@
@t

� q�) 2 (x ; t) = �r 2 (x ; t) + m2 (x ; t): (6.13)

We solve (6.13) in the partial-wave basis,3

 (x ; t) = e�iEt
1X

`=0

X̀

m=�`

ul (kr )
r

Ylm (�; �); (6.14)

with the external electric �eld generated by a nuclear chargeZe, q� = �Ze 2=r.

1. Show that the resulting radial KGE is

d2ul (kr )
dr2 +

�
2EZ�

r
� (m2 � E 2) �

l (l + 1) � (Z� )2

r 2

�
ul (kr ) = 0 ; (6.15)

� = e2 �
e2

~c
'

1
137

(�ne-structure constant). (6.16)

3Note that the partial wave basis used previously for the hydrogen bound state did not have the
1=r division.
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6.9.4 Hydrogen Hyper�ne Structure

The energy levels of the hydrogen atom exhibit a �ne structure splitting arising from
the interaction of the electron's spin with its orbital angular momentum. These split
levels have an additional hyper�ne splitting arising from the interaction of the elec-
tron's spin with the proton's spin [Squirtes(02), Brans(91)]. In Gaussian CGS units
the magnetic moment of a particle of chargeq is related to its angular S by

� = g
q

2m
S; (6.97)

where g is the particle's g factor and m its mass. An electron hasq = �e, g ' �2,
and S = ~�=2, and so

� e ' (�2)
�e

2me

�
2

= � B � ; � B =
e~

2me
= 5:05082� 10�27 joule/Tesla; (6.98)

where� B is called the electron's Bohr magneton. Because the proton's mass is so much
larger than the electron's, the proton's Bohr magneton is some 2000 times smaller in
magnitude than the electron's:

� B jp =
�e~
2mp

= �
me

mp
� B je = �

1
1836:15

� B ; (6.99)

and consequently the hyper�ne structure is some 2000 times smaller than the �ne
structure.

Even though the electron's and the proton's spins exist in di�erent internal spaces,
they are both spin 1/2 and so both can be represented by the Pauli matrices:

� = � x �̂ x + � y �̂ y + � z �̂ z (6.100)

� x =
�

0 1
1 0

�
; � y =

�
0 �i
i 0

�
; � z =

�
1 0
0 �1

�
: (6.101)

In terms of the Pauli matrices, the electron-proton interaction is

V = W� e � � p = W (� e
x � p

x + � e
y � p

y + � e
z � p

z ); (6.102)

where we are not specifying the value forW . The spin 1/2 state for either the electron
or proton can be either up or down:

j� i =
�
1
0

�
; j� i =

�
0
1

�
: (6.103)

For example, the action of the electron�proton interaction (6.102) might be

V j i = W� e � � p j� e� p i = ( � e
x � p

x + � e
y � p

y + � e
z � p

z j� e� p i (6.104)

= j� e� p i + i j� e� p i + j� e� p i : (6.105)
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Figure 6.10. The splitting of the hydrogen triplet and singlet ground states induced by an
external magnetic �eld.

1. Show that the Hamiltonian matrix h� e� p j H0 j� e� p i for the state (6.105) is

HB =

2

6
6
4

W 0 0 0
0 �W 2W 0
0 2W �W 0
0 0 0 W

3

7
7
5 : (6.106)

2. Use a symbolic manipulation program, such assimpy in Python, to verify that
the eigenvalues of this Hamiltonian are:

�3W (multiplicity 3, triplet state); W (multiplicity 1, singlet state): (6.107)

The value predicted by [Brans(91)] for the level splitting of the 1S state was

� = ~�E = 4W=~ = 1420 MHz (predicted): (6.108)

The value measured by [Ram & Town(21)] is:

� = 1420.405751800� 0.000000028 Hz (measured). (6.109)

In addition to being one of the most accurately measured quantities in physics,
(6.109) agrees with theory.

3. Determine the e�ect on the 1S states of hydrogen of introducing an external
magnetic �eld B in the z direction.
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a. Show that the electron-proton Hamiltonian now includes the term

H 0 = � e � B + � p � B = (� e� e
z + � p� p

x )B: (6.110)

b. Show, using the same spin states and matrices as before, that the Hamiltonian
matrix for this interaction is:

H 0 =

2

6
6
4

�(� e + � p)B 0 0 0
0 �(� e � � p)B 0 0
0 0 �(�� e + � p)B 0
0 0 0 (� e + � p)B

3

7
7
5 :

c. Add this correction to the original Hamiltonian and use a symbolic manipu-
lation program to show that the eigenvalues of this new Hamiltonian are:

e1 = �W �
q

B 2� 2
e � 2B2� e� p + B 2� 2

p + 4W 2; (6.111)

e2 = B� e + B� p + W; e3 = �B� e � B� p + W; (6.112)

e4 = �W �
q

B 2� 2
e � 2B2� e� p + B 2� 2

p + 4W 2: (6.113)

d. Evaluate and plot these four hydrogen 1S energy-level values as a function of
the external magnetic �eld B .

e. Check if your answers change when the proton's contribution is ignored.
f. Set W = 1 and plot the eigenvalues as a function ofB .

Our program in Python using sympy and Matplotlib is given in Listing 6.21, with
typical results shown in Figure 6.10.

6.9.5 SU(3) Symmetry of Quarks

Fundamental theories derive, and experiments con�rm, that for each symmetry of
nature there is an associated conserved quantity. For example, translational invariance
is related to momentum conservation, and rotational invariance is related to angular
momentum conservation. Likewise elementary particle interactions are observed to
have a number of conserved quantities associated with them, and, presumably, these
must be related to symmetries of the strong interactions. For example, Gellman and
Zweig independently found that the mass values of the elementary particles can be
related to each other if one assumes an internal SU(3) symmetry, the symmetry shown
by Special (determinate 1), Unitary matrices of dimension 3.

The SU(3) group has eight generators of transformations that act on complex
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vectors in an internal 3-D space:

� 1 =

2

4
0 1 0
1 0 0
0 0 0

3

5 ; � 2 =

2

4
0 � i 0
i 0 0
0 0 0

3

5 ; � 3 =

2

4
1 0 0
0 � 1 0
0 0 0

3

5 ;

� 4 =

2

4
0 0 1
0 0 0
1 0 0

3

5 ; � 5 =

2

4
0 0 � i
0 0 0
i 0 0

3

5 ; � 6 =

2

4
0 0 0
0 0 1
0 1 0

3

5 ;

� 7 =

2

4
0 0 0
0 0 � i
0 1 0

3

5 ; � 8 = 1p
3

2

4
1 0 0
0 1 0
0 0 � 2

3

5 :

(6.114)

You may think of these generators as an extension of the Pauli matrices to 3-D. In
analogy to spin up and down vectors forming a basis for the Pauli matrices, for SU(3)
there are three basis vectors:

jui =

2

4
1
0
0

3

5 ; jdi =

2

4
0
1
0

3

5 ; jsi =

2

4
0
0
1

3

5 : (6.115)

These basis vectors are called �up� (p), �down� (n), and �strange� ( � ) quarks. While
originally imagined as just mathematical objects, we have now come to realized that
these quarks represent subparticles within the elementary particles.

Just as the Pauli matrices can be combined into raising and lowering operators, the
SU(3) generators can be combined into raising and lowering operators, for instance:

I � =
1
2

(� 1 � i� 2); U� =
1
2

(� 6 � i� 7); V� =
1
2

(� 4 � i� 5): (6.116)

Use a linear algebra software package such asScipy to show that:

1. The SU(3) matrices are unitary (UyU = 1).

2. The SU(3) matrices have a determinant of 1.

3. The commutation relations for the Pauli matrices are [� i ; � j ] = 2 i� ijk .

4. I + raises d to u.

5. V+ raises s to u.

6. U+ raises s to d.

7. Verify the actions of the lowering operatorsI � ; V� , and U� .

8. What happens when you applyI + to u?



6. Quantum Mechanics 265

9. What happens when you applyU� to s?

10. Verify the commutation relations

[Ta ; Tb] = i
8X

c=1

f abcTc (6.117)

where the f 's are the structure constants

f 123 = 1; f 458 = f 678 =
p

3
2 ; (6.118)

f 147 = �f 156 = f 246 = f 257 = f 345 = �f 367 = 1
2 ; (6.119)

with other f ijk = 0 unless they are related to the above by permutation.

11. Verify the anticommutation relations

fT a ; Tbg = 1
3 � ab +

8X

c=1

dabcTc; (6.120)

where the d's are symmetric and take the values

d118 = d228 = d338 = �d 888 = 1p
3
; (6.121)

d448 = d558 = d668 = d778 = �1
2

p
3
; (6.122)

d146 = d157 = �d 247 = d256 = d344 = d355 = �d 366 = �d 377 = 1
2 : (6.123)

12. Verify that there is an invariant quadratic Casimir operator

8X

i=1

� i � i = 16=3: (6.124)

The program SU3.py in Listing 6.23 performs some of these operations.

6.10 Coherent States and Entanglement

6.10.1 Glauber Coherent States

A particle within a harmonic oscillator (HO) potential is described by the Hamiltonian

H = 1
2 p2 + 1

2 ! 2
0q2; (6.125)

where we have setm = 1. This Hamiltonian can also be written as

H = ~! 0(aay + 1
2 ); a =

1
p

2~! 0
(! 0q + ip); ay =

�1
p

2~! 0
(! 0q � ip); (6.126)
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wherea and ay are operators that annihilate and create a quanta, respectively. Because
these operators acting on the HO basisjni change the numbern of quanta present,
the HO basis vectors are not eigenstates of the annihilation operator:

a jni =
p

n jn � 1i ; ay jni =
p

n + 1 jn + 1i : (6.127)

However, if we construct a �coherent state� as a linear superposition of HO basis state,

j� i = e�� 2 =2
1X

n=0

� n
p

(n!)
jni ; (6.128)

then it can be veri�ed by substitution that this state is an eigenstate of both the an-
nihilation and creation operators [Hartley(82), Stephen(87),Carruthers & Nieto(65)]:

a j� i = � j� i ; H j� i = ( � 2 + 1
2 ) j� i ; (6.129)

as well as the Hamiltonian. Such states have some classical-like properties and are
useful in describing the quantum state of lasers. In fact, as we shall see, a coherent
state behaves much like a wavepacket in which its position and momentum change
with time, though not its shape.

To investigate the spatial dependence of these coherent states, recall the coordinate
space solution of the time-independent Schrödinger equation for the HO is:

hxjn i = Hn (�x ) e�� 2 x 2 =2; � 2 =
p

k=~; (6.130)

where k is the elastic constant andHn is the Hermite polynomial of order n. Since
the coherent state can be expanded in the HO basis, it is straightforward to include
the time dependence:

j�; ti = e�� 2 =2
1X

n=0

� n

(n!) 1=2
e�i! 0 (n+ 1

2 )t jni ; (6.131)

where ! 0 =
p

k=m is the classical frequency.

1. Verify by substitution that the Glauber state j� i is an eigenstate of the annihi-
lation operator as well as the Hamiltonian.

2. Write a program that constructs a time-dependent coherent state (6.131) by
summing up to n = nmax .

3. UseE � = � 2 + 1=2, to �nd � for a given energy, andm = k = ! 0 = ~ = 1 , and
nmax = 5 to start.

4. Plot the coherent state as time progresses.

5. Increase the value ofnmax until a stable wavepacket results.

6. What is the normalization of the coherent state?

7. How does the normalization change with time?

Our program GlauberState.py is given in Listing 6.20.
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Figure 6.11. A semilog plot of the probability of a neutral kaon decaying into two pions as
function of time. Note the change in slopes and the deviation from a straight line.

6.10.2 Neutral Kaons as Superpositions of States

One way physicists have tried to introduce some order into the zoo of elementary
particles is by observing what appears to be a conserved quantity, and then relating
that quantity to an underlying symmetry in the particles' interactions. An example of
this is the pair of neutral kaons, K 0 and K 0. These two particles are antiparticles of
each other, are spinless, have the same mass, though with theK 0 having strangeness
+1 while the K 0 has strangeness�1. The di�ering strangeness, being conserved
by the strong and electromagnetic interactions, means that these interactions cannot
connect one particle to the other. Consequently, theK 0 and K 0 states are eigenstates
of the strong and electromagnetic interaction, and so retain their identities when
only these two interactions dominate. However, since strangeness is not conserved
by the weak interaction, it can lead to a slow and indirect conversion between the
particles [Fraunfelder & Henley(91)]:

K 0 
 2� 
 K 0: (6.132)

Even though the weak interaction does not conserve strangeness, experiments in-
dicated, and theoretical considerations supported, the belief that the weak interaction
does conserve the CP, the combined operation of charge conjugation and parity re-
�ection. However, the strongly interacting version of these particles, K 0 and K 0, get
converted into each other by the CP operation:

CPjK 0i = �j K 0i; CP jK 0i = �jK 0i: (6.133)

Consequently, an eigenstate of CP, and , accordingly, the type of state that decays via
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