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Preface

PURPOSE OF THIS BOOK

Why yet another book on linear models? Over the years, a multitude of books have
already been written about this well-traveled topic, many of which provide more
comprehensive presentations of linear modeling than this one attempts. My book is
intended to present an overview of the key ideas and foundational results of linear
and generalized linear models. 1 believe this overview approach will be useful for
students who lack the time in their program for a more detailed study of the topic.
This situation is increasingly common in Statistics and Biostatistics departments. As
courses are added on recent influential developments (such as “big data,” statistical
learning, Monte Carlo methods, and application areas such as genetics and finance),
programs struggle to keep room in their curriculum for courses that have traditionally
been at the core of the field. Many departments no longer devote an entire year or
more to courses about linear modeling.

Books such as those by Dobson and Barnett (2008), Fox (2008), and Madsen
and Thyregod (2011) present fine overviews of both linear and generalized linear
models. By contrast, my book has more emphasis on the theoretical foundations—
showing how linear model fitting projects the data onto a model vector subspace
and how orthogonal decompositions of the data yield information about effects,
deriving likelihood equations and likelihood-based inference, and providing extensive
references for historical developments and new methodology. In doing so, my book
has less emphasis than some other books on practical issues of data analysis, such as
model selection and checking. However, each chapter contains at least one section
that applies the models presented in that chapter to a dataset, using R software. The
book is not intended to be a primer on R software or on the myriad details relevant to
statistical practice, however, so these examples are relatively simple ones that merely
convey the basic concepts and spirit of model building.

The presentation of linear models for continuous responses in Chapters 1-3 has a
geometrical rather than an algebraic emphasis. More comprehensive books on linear
models that use a geometrical approach are the ones by Christensen (2011) and by

xi



xii PREFACE

Seber and Lee (2003). The presentation of generalized linear models in Chapters 4—
9 includes several sections that focus on discrete data. Some of this significantly
abbreviates material from my book, Categorical Data Analysis (3rd ed., John Wiley
& Sons , 2013). Broader overviews of generalized linear modeling include the classic
book by McCullagh and Nelder (1989) and the more recent book by Aitkin et al.
(2009). An excellent book on statistical modeling in an even more general sense is
by Davison (2003).

USE AS A TEXTBOOK

This book can serve as a textbook for a one-semester or two-quarter course on linear
and generalized linear models. It is intended for graduate students in the first or
second year of Statistics and Biostatistics programs. It also can serve programs with
a heavy focus on statistical modeling, such as econometrics and operations research.
The book also should be useful to students in the social, biological, and environmental
sciences who choose Statistics as their minor area of concentration.

As a prerequisite, the reader should be familiar with basic theory of statistics,
such as presented by Casella and Berger (2001). Although not mandatory, it will
be helpful if readers have at least some background in applied statistical modeling,
including linear regression and ANOVA. I also assume some linear algebra back-
ground. In this book, I recall and briefly review fundamental statistical theory and
matrix algebra results where they are used. This contrasts with the approach in many
books on linear models of having several chapters on matrix algebra and distribu-
tion theory before presenting the main results on linear models. Readers wanting
to improve their knowledge of matrix algebra can find on the Web (e.g., with a
Google search of “review of matrix algebra”) overviews that provide more than
enough background for reading this book. Also helpful as background for Chapters
1-3 on linear models are online lectures, such as the MIT linear algebra lectures
by G. Strang at http://ocw.mit.edu/courses/mathematics on topics such
as vector spaces, column space and null space, independence and a basis, inverses,
orthogonality, projections and least squares, eigenvalues and eigenvectors, and sym-
metric and idempotent matrices. By not including separate chapters on matrix algebra
and distribution theory, I hope instructors will be able to cover most of the book in a
single semester or in a pair of quarters.

Each chapter contains exercises for students to practice and extend the theory
and methods and also to help assimilate the material by analyzing data. Com-
plete data files for the text examples and exercises are available at the text website,
http://www.stat.ufl.edu/~aa/glm/data/. Appendix A contains supplemen-
tary data analysis exercises that are not tied to any particular chapter. Appendix B
contains solution outlines and hints for some of the exercises.

I emphasize that this book is not intended to be a complete overview of linear and
generalized linear modeling. Some important classes of models are beyond its scope;
examples are transition (e.g., Markov) models and survival (time-to-event) models. I
intend merely for the book to be an overview of the foundations of this subject—that
is, core material that should be part of the background of any statistical scientist. I
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invite readers to use it as a stepping stone to reading more specialized books that
focus on recent advances and extensions of the models presented here.
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CHAPTER 1

Introduction to Linear and Generalized
Linear Models

This is a book about linear models and generalized linear models. As the names
suggest, the linear model is a special case of the generalized linear model. In this first
chapter, we define generalized linear models, and in doing so we also introduce the
linear model.

Chapters 2 and 3 focus on the linear model. Chapter 2 introduces the least squares
method for fitting the model, and Chapter 3 presents statistical inference under the
assumption of a normal distribution for the response variable. Chapter 4 presents
analogous model-fitting and inferential results for the generalized linear model. This
generalization enables us to model non-normal responses, such as categorical data
and count data.

The remainder of the book presents the most important generalized linear models.
Chapter 5 focuses on models that assume a binomial distribution for the response
variable. These apply to binary data, such as “success” and “failure” for possible
outcomes in a medical trial or “favor” and “oppose” for possible responses in a
sample survey. Chapter 6 extends the models to multicategory responses, assuming
a multinomial distribution. Chapter 7 introduces models that assume a Poisson or
negative binomial distribution for the response variable. These apply to count data,
such as observations in a health survey on the number of respondent visits in the
past year to a doctor. Chapter 8 presents ways of weakening distributional assump-
tions in generalized linear models, introducing quasi-likelihood methods that merely
focus on the mean and variance of the response distribution. Chapters 1-8 assume
independent observations. Chapter 9 generalizes the models further to permit corre-
lated observations, such as in handling multivariate responses. Chapters 1-9 use the
traditional frequentist approach to statistical inference, assuming probability distri-
butions for the response variables but treating model parameters as fixed, unknown
values. Chapter 10 presents the Bayesian approach for linear models and generalized
linear models, which treats the model parameters as random variables having their

Foundations of Linear and Generalized Linear Models, First Edition. Alan Agresti.
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2 INTRODUCTION TO LINEAR AND GENERALIZED LINEAR MODELS

own distributions. The final chapter introduces extensions of the models that handle
more complex situations, such as high-dimensional settings in which models have
enormous numbers of parameters.

1.1 COMPONENTS OF A GENERALIZED LINEAR MODEL

The ordinary linear regression model uses linearity to describe the relationship
between the mean of the response variable and a set of explanatory variables,
with inference assuming that the response distribution is normal. Generalized linear
models (GLMs) extend standard linear regression models to encompass non-normal
response distributions and possibly nonlinear functions of the mean. They have three
components.

® Random component: This specifies the response variable y and its probability
distribution. The observations' y = (y;, ...,y,)T on that distribution are treated
as independent.

e Linear predictor: For aparameter vector f = (f1, s, ..., ﬁp)T and an X p model
matrix X that contains values of p explanatory variables for the n observations,
the linear predictor is X .

e Link function: This is a function g applied to each component of E(y) that relates
it to the linear predictor,

8lE(y)] = XB.

Next we present more detail about each component of a GLM.

1.1.1 Random Component of a GLM

The random component of a GLM consists of a response variable y with independent
observations (yy, ...,¥,) having probability density or mass function for a distribu-
tion in the exponential family. In Chapter 4 we review this family of distributions,
which has several appealing properties. For example, ). y; is a sufficient statistic
for its parameter, and regularity conditions (such as differentiation passing under an
integral sign) are satisfied for derivations of properties such as optimal large-sample
performance of maximum likelihood (ML) estimators.

By restricting GLMs to exponential family distributions, we obtain general expres-
sions for the model likelihood equations, the asymptotic distributions of estimators
for model parameters, and an algorithm for fitting the models. For now, it suffices
to say that the distributions most commonly used in Statistics, such as the normal,
binomial, and Poisson, are exponential family distributions.

'The superscript T on a vector or matrix denotes the transpose; for example, here y is a column
vector. Our notation makes no distinction between random variables and their observed values; this
is generally clear from the context.
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1.1.2 Linear Predictor of a GLM

For observation i, i =1, ...,n, let Xij denote the value of explanatory variable x;,
j=1,...,p. Letx; = (x;y, ... ,xip). Usually, we set x;; =1 or let the first variable
have index O with x;, = 1, so it serves as the coefficient of an intercept term in the
model. The linear predictor of a GLM relates parameters {#;} pertaining to {E(y;)}

to the explanatory variables x, ... 2 X using a linear combination of them,

P
nl=2ﬂ1xl], i=1,...,n.
=

The labeling of Zf: | Bixij as a linear predictor reflects that this expression is linear
in the parameters. The explanatory variables themselves can be nonlinear functions
of underlying variables, such as an interaction term (e.g., x;3 = X;;x;3) or a quadratic
term (e.g., xp = x?l).

In matrix form, we express the linear predictor as

n=Xp,

where 1= (1, ..., nn)T, p is the p X 1 column vector of model parameters, and X
is the n X p matrix of explanatory variable values {x;;}. The matrix X is called the
model matrix. In experimental studies, it is also often called the design matrix. It has
n rows, one for each observation, and p columns, one for each parameter in f. In
practice, usually p < n, the goal of model parsimony being to summarize the data
using a considerably smaller number of parameters.

GLMs treat y; as random and x; as fixed. Because of this, the linear predictor is
sometimes called the systematic component. In practice x; is itself often random, such
as in sample surveys and other observational studies. In this book, we condition on its
observed values in conducting statistical inference about effects of the explanatory
variables.

1.1.3 Link Function of a GLM

The third component of a GLM, the link function, connects the random component
with the linear predictor. Let u; = E(y;), i = 1,...,n. The GLM links #; to y; by
n; = g(u;), where the link function g(-) is a monotonic, differentiable function. Thus,
g links y; to explanatory variables through the formula:

P
gu) =Y By, i=1,...n. (L.1)
=1

In the exponential family representation of a distribution, a certain parameter
serves as its natural parameter. This parameter is the mean for a normal distribution,
the log of the odds for a binomial distribution, and the log of the mean for a Poisson
distribution. The link function g that transforms y; to the natural parameter is called
the canonical link. This link function, which equates the natural parameter with the
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linear predictor, generates the most commonly used GLMs. Certain simplifications
result when the GLM uses the canonical link function. For example, the model
has a concave log-likelihood function and simple sufficient statistics and likelihood
equations.

1.1.4 A GLM with Identity Link Function is a ‘“Linear Model”

The link function g(u;) = y; is called the identity link function. It has n; = p;. A
GLM that uses the identity link function is called a linear model. It equates the linear
predictor to the mean itself. This GLM has

)4
,ui=2ﬂjxij, l=1,,n
=1

The standard version of this, which we refer to as the ordinary linear model, assumes
that the observations have constant variance, called homoscedasticity. An alternative
way to express the ordinary linear model is

14
vi= D B e
=

where the “error term” ¢; has E(¢;) = 0 and var(e;) = 6%, i=1,...,n. This is natural
for the identity link and normal responses but not for most GLMs.

In summary, ordinary linear models equate the linear predictor directly to the
mean of a response variable y and assume constant variance for that response. The
normal linear model also assumes normality. By contrast, a GLM is an extension that
equates the linear predictor to a link-function-transformed mean of y, and assumes a
distribution for y that need not be normal but is in the exponential family. We next
illustrate the three components of a GLM by introducing three of the most important
GLMs.

1.1.5 GLMs for Normal, Binomial, and Poisson Responses

The class of GLMs includes models for continuous response variables. Most impor-
tant are ordinary normal linear models. Such models assume a normal distribution
for the random component, y; ~ N(y;, 62) fori = 1, ..., n. The natural parameter for a
normal distribution is the mean. So, the canonical link function for a normal GLM is
the identity link, and the GLM is then merely a linear model. In particular, standard
regression and analysis of variance (ANOVA) models are GLMs assuming a normal
random component and using the identity link function. Chapter 3 develops statistical
inference for such normal linear models. Chapter 2 presents model fitting for linear
models and shows this does not require the normality assumption.

Many response variables are binary. We represent the “success” and “failure” out-
comes, such as “favor” and “oppose” responses to a survey question about legalizing
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same-sex marriage, by 1 and 0. A Bernoulli trial for observation i has probabilities
P(y; =1) = z; and P(y; = 0) = | — x;, for which y; = x;. This is the special case of
the binomial distribution with the number of trials n; = 1. The natural parameter for
the binomial distribution is log[y; /(1 — u;)]. This is the log odds of response outcome
1, the so-called logit of u;. The logit is the canonical link function for binary random
components. GLMs using the logit link have the form:

Hi g
— K j=1

They are called logistic regression models, or sometimes simply logit models. Chapter
5 presents such models. Chapter 6 introduces generalized logit models for multino-
mial random components, for handling categorical response variables that have more
than two outcome categories.

Some response variables have counts as their possible outcomes. In a criminal
justice study, for instance, each observation might be the number of times a person
has been arrested. Counts also occur as entries in contingency tables. The simplest
probability distribution for count data is the Poisson. It has natural parameter log y;,
so the canonical link function is the log link, #; = log ;. The model using this link
function is

p
log y; = Zﬁjxl-j, i=1,...,n
j=1

Presented in Chapter 7, it is called a Poisson loglinear model. We will see there that
a more flexible model for count data assumes a negative binomial distribution for y;.

Table 1.1 lists some GLMs presented in Chapters 2—7. Chapter 4 presents basic
results for GLMs, such as likelihood equations, ways of finding the ML estimates,
and large-sample distributions for the ML estimators.

1.1.6 Advantages of GLMs versus Transforming the Data

A traditional way to model data, introduced long before GLMs, transforms y so that
it has approximately a normal conditional distribution with constant variance. Then,
the least squares fitting method and subsequent inference for ordinary normal linear

Table 1.1 Important Generalized Linear Models for Statistical Analysis

Random Component Link Function Model Chapters
Normal Identity Regression 2 and 3
Analysis of variance 2and 3
Exponential family Any Generalized linear model 4
Binomial Logit Logistic regression 5
Multinomial Generalized logits Multinomial response 6
Poisson Log Loglinear 7

Chapter 4 presents an overview of GLMs, and the other chapters present special cases.
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models presented in the next two chapters are applicable on the transformed scale.
For example, with count data that have a Poisson distribution, the distribution is
skewed to the right with variance equal to the mean, but \/§ has a more nearly normal
distribution with variance approximately equal to 1/4. For most data, however, it is
challenging to find a transformation that provides both approximate normality and
constant variance. The best transformation to achieve normality typically differs from
the best transformation to achieve constant variance.

With GLMs, by contrast, the choice of link function is separate from the choice
of random component. If a link function is useful in the sense that a linear model
with the explanatory variables is plausible for that link, it is not necessary that it
also stabilizes variance or produces normality. This is because the fitting process
maximizes the likelihood for the choice of probability distribution for y, and that
choice is not restricted to normality.

Let g denote a function, such as the log function, that is a link function in the
GLM approach or a transformation function in the transformed-data approach. An
advantage of the GLM formulation is that the model parameters describe g[E(y;)],
rather than E[g(y;)] as in the transformed-data approach. With the GLM approach,
those parameters also describe effects of explanatory variables on E(y;), after applying
the inverse function for g. Such effects are usually more relevant than effects of
explanatory variables on E[g(y;)]. For example, with g as the log function, a GLM
with log[E(y;)] = fy + f,x;; translates to an exponential model for the mean, E(y;) =
exp(fy + By x;1), but the transformed-data model® E[log(y;)] = f, + B,x; does not
translate to exact information about E(y;) or the effect of x;; on E(y;). Also, the
preferred transform is often not defined on the boundary of the sample space, such
as the log transform with a count or a proportion of zero.

GLMs provide a unified theory of modeling that encompasses the most important
models for continuous and discrete response variables. Models studied in this text
are GLMs with normal, binomial, or Poisson random component, or with extended
versions of these distributions such as the multinomial and negative binomial, or
multivariate extensions of GLMs. The ML parameter estimates are computed with
an algorithm that iteratively uses a weighted version of least squares. The same
algorithm applies to the entire exponential family of response distributions, for any
choice of link function.

1.2 QUANTITATIVE/QUALITATIVE EXPLANATORY VARIABLES
AND INTERPRETING EFFECTS

So far we have learned that a GLM consists of a random component that identifies the
response variable and its distribution, a linear predictor that specifies the explanatory
variables, and a link function that connects them. We now take a closer look at the
form of the linear predictor.

2We are not stating that a model for log-transformed data is never relevant; modeling the mean on
the original scale may be misleading when the response distribution is very highly skewed and has
many outliers.
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1.2.1 Quantitative and Qualitative Variables in Linear Predictors

Explanatory variables in a GLM can be

® quantitative, such as in simple linear regression models.
* qualitative factors, such as in analysis of variance (ANOVA) models.

¢ mixed, such as an interaction term that is the product of a quantitative explana-
tory variable and a qualitative factor.

For example, suppose observation i measures an individual’s annual income y;,
number of years of job experience x;;, and gender x;, (1 = female, 0 = male). The
linear model with linear predictor

Hi = PBo + Bixi + Boxip + B3xixpp

has quantitative x;;, qualitative x;,, and mixed x;3 = x;;x;, for an interaction term.
As Figure 1.1 illustrates, this model corresponds to straight lines y; = f, + f;x;; for
males and y; = (B + f,) + (| + P3)x;; for females. With an interaction term relating
two variables, the effect of one variable changes according to the level of the other.
For example, with this model, the effect of job experience on mean annual income
has slope f; for males and f§; + f; for females. The special case, 3 = 0, of a lack
of interaction corresponds to parallel lines relating mean income to job experience
for females and males. The further special case also having f, = 0 corresponds to
identical lines for females and males. When we use the model to compare mean
incomes for females and males while accounting for the number of years of job
experience as a covariate, it is called an analysis of covariance model.

Slope B4 + B3 (Females)

Bo + B2
Bo Slope B; (Males)

Mean income

Job experience

Figure 1.1 Portrayal of linear predictor with quantitative and qualitative explanatory
variables.
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A quantitative explanatory variable x is represented by a single fx term in the
linear predictor and a single column in the model matrix X. A qualitative explanatory
variable having c categories can be represented by ¢ — 1 indicator variables and terms
in the linear predictor and ¢ — 1 columns in the model matrix X. The R software uses
as default the “first-category-baseline” parameterization, which constructs indicators
for categories 2, ..., c. Their parameter coefficients provide contrasts with category
1. For example, suppose racial—ethnic status is an explanatory variable with ¢ =3
categories, (black, Hispanic, white). A model relating mean income to racial—ethnic
status could use

M = By + Bixiy + Brxp

with x;; = 1 for Hispanics and O otherwise, x;, = 1 for whites and 0 otherwise, and
x;1 = xp = 0 for blacks. Then f, is the difference between the mean income for His-
panics and the mean income for blacks, f, is the difference between the mean income
for whites and the mean income for blacks, and f; — f, is the difference between the
mean income for Hispanics and the mean income for whites. Some other software,
such as SAS, uses an alternative “last-category-baseline” default parameterization,
which constructs indicators for categories 1, ...,c — 1. Its parameters then provide
contrasts with category c. All such possible choices are equivalent, in terms of having
the same model fit.

Shorthand notation can represent terms (variables and their coefficients) in symbols
used for linear predictors. A quantitative effect fx is denoted by X, and a qualitative
effect is denoted by a letter near the beginning of the alphabet, such as A or B.
An interaction is represented® by a product of such terms, such as A.B or A.X. The
period represents forming component-wise product vectors of constituent columns
from the model matrix. The crossing operator A*B denotes A + B + A.B. Nesting of
categories of B within categories of A (e.g., factor A is states, and factor B is counties
within those states) is represented by A/B = A + A.B, or sometimes by A + B(A).
An intercept term is represented by 1, but this is usually assumed to be in the model
unless specified otherwise. Table 1.2 illustrates some simple types of linear predictors
and lists the names of normal linear models that equate the mean of the response
distribution to that linear predictor.

Table 1.2 Types of Linear Predictors for Normal Linear Models

Linear Predictor Name of Model

X +X,+ X5+ - Multiple regression

A One-way ANOVA

A+B Two-way ANOVA, no interaction
A+B+AB Two-way ANOVA, interaction
A+XorA+X+AX Analysis of covariance

3In R, a colon is used, such as A:B.
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1.2.2 Interval, Nominal, and Ordinal Variables

Quantitative variables are said to be measured on an interval scale, because numerical
intervals separate levels on the scale. They are sometimes called interval variables.
A qualitative variable, as represented in a model by a set of indicator variables,
has categories that are treated as unordered. Such a categorical variable is called a
nominal variable.

By contrast, a categorical variable whose categories have a natural ordering is
referred to as ordinal. For example, attained education might be measured with the cat-
egories (<high school, high school graduate, college graduate, postgraduate degree).
Ordinal explanatory variables can be treated as qualitative by ignoring the ordering
and using a set of indicator variables. Alternatively, they can be treated as quantita-
tive by assigning monotone scores to the categories and using a single fx term in the
linear predictor. This is often done when we expect E(y) to progressively increase, or
progressively decrease, as we move in order across those ordered categories.

1.2.3 Interpreting Effects in Linear Models

How do we interpret the f coefficients in the linear predictors of GLMs? Suppose
the response variable is a college student’s math achievement test score y;, and we
fit the linear model having x;; = the student’s number of years of math education as
an explanatory variable, y; = f, + f;x;;. Since f, is the slope of a straight line, we
might say, “If the model holds, a one-year increase in math education corresponds
to a change of f; in the expected math achievement test score.” However, this may
suggest the inappropriate causal conclusion that if a student attains another year of
math education, her or his math achievement test score is expected to change by f;.
To validly make such a conclusion, we would need to conduct an experiment that adds
a year of math education for each student and then observes the results. Otherwise,
a higher mean test score at a higher math education level (if f; > 0) could at least
partly reflect the correlation of several other variables with both test score and math
education level, such as parents’ attained educational levels, the student’s 1Q, GPA,
number of years of science courses, etc. Here is a more appropriate interpretation:
If the model holds, when we compare the subpopulation of students having a certain
number of years of math education with the subpopulation having one fewer year of
math education, the difference in the means of their math achievement test scores is f; .

Now suppose the model adds x;, = age of student and x;; = mother’s number of
years of math education,

Hi = Py + Prxit + Prxip + Paxi3.

Since f; = du;/0x;,, we might say, “The difference between the mean math achieve-
ment test score of a subpopulation of students having a certain number of years of
math education and a subpopulation having one fewer year of math education equals
f1, when we keep constant the student’s age and the mother’s math education.”
Controlling variables is possible in designed experiments. But it is unnatural and
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possibly inconsistent with the data for many observational studies to envision increas-
ing one explanatory variable while keeping all the others fixed. For example, x; and
x, are likely to be positively correlated, so increases in x; naturally tend to occur
with increases in x,. In some datasets, one might not even observe a 1-unit range in
an explanatory variable when the other explanatory variables are all held constant.
A better interpretation is this: “The difference between the mean math achievement
test score of a subpopulation of students having a certain number of years of math
education and a subpopulation having one fewer year equals §;, when both subpop-
ulations have the same value for f,x,, + f3x;3.” More concisely we might say, “The
effect of the number of years of math education on the mean math achievement test
score equals f;, adjusting* for student’s age and mother’s math education.” When the
model also has a qualitative factor, such as x;; = gender (1 = female, 0 = male), then
P4 is the difference between the mean math achievement test scores for female and
male students, adjusting for the other explanatory variables in the model. Analogous
interpretations apply to GLMs for a link-transformed mean.

The effect f§; in the equation with a sole explanatory variable is usually not the
same as f; in the equation with multiple explanatory variables, because of factors
such as confounding. The effect of x; on E(y) will usually differ if we ignore other
variables than if we adjust for them, especially in observational studies containing
“lurking variables” that are associated both with y and with x;. To highlight such
a distinction, it is sometimes helpful to use different notation® for the model with
multiple explanatory variables, such as

Hi=Po+ ﬁyl»23xi1 + ﬁyznxi2 + ‘ByS-leB’

where f,; ., denotes the effect of x; on y after adjusting for x; and x,.

Some other caveats: In practice, such interpretations use an estimated linear pre-
dictor, so we replace “mean” by “estimated mean.” Depending on the units of mea-
surement, an effect may be more relevant when expressed with changes other than one
unit. When an explanatory variable also occurs in an interaction, then its effect should
be summarized separately at different levels of the interacting variable. Finally, for
GLMs with nonidentity link function, interpretation is more difficult because f; refers
to the effect on g(y;) rather than y;. In later chapters we will present interpretations
for various link functions.

1.3 MODEL MATRICES AND MODEL VECTOR SPACES

For the data vector y with u = E(y), consider the GLM 5 = X with link function
g and transformed mean values n = g(u). For this GLM, y, u, and n are points in
n-dimensional Euclidean space, denoted by R”.

“#For linear models, Section 2.5.6 gives a technical definition of adjusting, based on removing effects
of x, and x; by regressing both y and x; on them.
>Yule (1907) introduced such notation in a landmark article on regression modeling.
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1.3.1 Model Matrices Induce Model Vector Spaces

Geometrically, model matrices of GLMs naturally induce vector spaces that deter-
mine the possible u for a model. Recall that a vector space S is such that if u and v
are elements in S, then so are # + v and cu for any constant c.

For a particular n X p model matrix X, the values of X for all possible vectors
of model parameters generate a vector space that is a linear subspace of R”. For all
possible B, n = X traces out the vector space spanned by the columns of X, that is,
the set of all possible linear combinations of the columns of X. This is the column
space of X, which we denote by C(X),

C(X) = {n: thereis a B such that n = X}.

In the context of GLMs, we refer to the vector space C(X) as the model space. The
71, and hence the p, that are possible for a particular GLM are determined by the
columns of X.

Two models with model matrices X, and X, are equivalent if C(X,,) = C(X,)). The
matrices X, and X, could be different because of a change of units of an explanatory
variable (e.g., pounds to kilograms), or a change in the way of specifying indicator
variables for a qualitative predictor. On the other hand, if the model with model
matrix X, is a special case of the model with model matrix X, for example, with X,
obtained by deleting one or more of the columns of X, then the model space C(X )
is a vector subspace of the model space C(X}).

1.3.2 Dimension of Model Space Equals Rank of Model Matrix

Recall that the rank of a matrix X is the number of vectors in a basis for C(X), which
is a set of linearly independent vectors whose linear combinations generate C(X).
Equivalently, the rank is the number of linearly independent columns (or rows) of
X. The dimension of the model space C(X) of n values, denoted by dim[C(X)], is
defined to be the rank of X. In all but the final chapter of this book, we assume p < n,
so the model space has dimension no greater than p. We say that X has full rank when
rank(X) = p.

When X has less than full rank, the columns of X are linearly dependent, with
any one column being a linear combination of the other columns. That is, there exist
linear combinations of the columns that yield the 0 vector. There are then nonzero
p X 1 vectors ¢ such that X{ = 0. Such vectors make up the null space of the model
matrix,

NX)={¢:X¢ =0}
When X has full rank, then dim[N(X)] = 0. Then, no nonzero combinations of

the columns of X yield 0, and N(X) consists solely of the p X 1 zero vector, 0 =
0,0,...,0)T. Generally,

dim[C(X)] + dim[N(X)] = p.
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When X has less than full rank, we will see that the model parameters f are not
well defined. Then there is said to be aliasing of the parameters. In one way this can
happen, called extrinsic aliasing, an anomaly of the data causes the linear dependence,
such as when the values for one predictor are a linear combination of values for the
other predictors (i.e., perfect collinearity). Another way, called intrinsic aliasing,
arises when the linear predictor contains inherent redundancies, such as when (in
addition to the usual intercept term) we use an indicator variable for each category of
a qualitative predictor. The following example illustrates.

1.3.3 Example: The One-Way Layout

Many research studies have the central goal of comparing response distributions for
different groups, such as comparing life-length distributions of lung cancer patients
under two treatments, comparing mean crop yields for three fertilizers, or comparing
mean incomes on the first job for graduating students with various majors. For ¢
groups of independent observations, let y; denote response observation j in group i,
fori=1,...,candj=1,...,n; This data structure is called the one-way layout.

We regard the groups as ¢ categories of a qualitative factor. For u; = E(y;), the
GLM has linear predictor,

8(ui) = Po + B;-
Let y; denote the common value of {,uij,j =1,...,n;},fori =1, ..., c. For the identity
link function and an assumption of normality for the random component, this model
is the basis of the one-way ANOVA significance test of Hy: y; = --- = ., which we

develop in Section 3.2. This hypothesis corresponds to the special case of the model
in which ) = --- = g...

Lety = (y“, e Vings oo Vels oo s Yen )T and B = (Bo, By, ..., B)". Let 1, denote
the n; X 1 column vector consisting of n; entries of 1, and llkew1se for 0, For the one-
way layout the model matrix X for the linear predictor Xf in the GLM expression

g(u) = Xp that represents g(u;;) = By + B; is

ny 1n1 Onl o 0;11
X = 1"12 0{’2 lflz 0"2
1 0 0 1

This matrix has dimension n X p withn =n; 4+ - +n.andp =c+ 1.

Equivalently, this parameterization corresponds to indexing the observations as y;,
for h =1, ...,n, defining indicator variables x;; = 1 when observation £ is in group
i and x;; = 0 otherwise, for i = 1, ..., c, and expressing the linear predictor for the
link function g applied to E(y;,) = p,, as

8up) = Py + Prxpy + -+ + Bexpe.

In either case, the indicator variables whose coefficients are {f,...,f.} add up to
the vector 1,. That vector, which is the first column of X, has coefficient that is
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the intercept term f,. The columns of X are linearly dependent, because columns
2 through ¢ + 1 add up to column 1. Here f is intrinsically aliased with };_, f;.
The parameter f, is marginal to {f, ..., p.}, in the sense that the column space for
the coefficient of f; in the model lies wholly in the column space for the vector
coefficients of {f, ..., B.}. So, f, is redundant in any explanation of the structure of
the linear predictor.

Because of the linear dependence of the columns of X, this matrix does not have full
rank. But we can achieve full rank merely by dropping one column of X, because we
need only ¢ — 1 indicators to represent a c-category explanatory variable. This model
with one less parameter has the same column space for the reduced model matrix.

1.4 IDENTIFIABILITY AND ESTIMABILITY

In the one-way layout example, let d denote any constant. Suppose we transform the
parameters ff to a new set,

B =By By B =By +d. By —d.....p.—d)".

The linear predictor with this new set of parameters is

8y = Py + B = By + ) + (B —d) = By + ;.

That is, the linear predictor X for g(u) is exactly the same, for any value of d. So,
for the model as specified with ¢ 4+ 1 parameters, the parameter values are not unique.

1.4.1 Identifiability of GLM Model Parameters

For this model, because the value for f is not unique, we cannot estimate f# uniquely
even if we have an infinite amount of data. Whether we assume normality or some
other distribution for y, the likelihood equations have infinitely many solutions. When
the model matrix is not of full rank, g is not identifiable.

Definition. For a GLM with linear predictor X 8, the parameter vector f is identifi-
able if whenever B* # B, then Xp* # XB.

Equivalently, g is identifiable if Xf* = X implies that g* = B, so this definition
tells us that if we know g(u) = X (and hence if we know u satisfying the model),
then we can also determine f3.

For the parameterization just given for the one-way layout, B is not identifiable,
because f = (fy, b1 --- ﬁC)T and g* = (P +d.py —d,...,p. — d)T do not have dif-
ferent linear predictor values. In such cases, we can obtain identifiability and eliminate
the intrinsic aliasing among the parameters by redefining the linear predictor with
fewer parameters. Then, different B values have different linear predictor values X 3,
and estimation of f is possible.
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For the one-way layout, we can either drop a parameter or add a linear constraint.
That s, in g(u;) = By + f;, we mightset f = Oor f. = 0or X, f; = 0or Y, n;; = 0.
With the first-category-baseline constraint §; = 0, we express the model as g(u) = X
with

L o, 0, - 0, P
L, 1, 0, - 0, (%
Xp = 1n3 0113 1n3 0113 _2
1 0, O 1 Pe

ne.
When used with the identity link function, this expression states that y; = f, (fromthe
first ny rows of X), and for i > 1, y; = f + f; (from the n; rows of X in set 7). Thus,
the model parameters then represent fy = y; and {f; = u; — u;}. Under the last-
category-baseline constraint §. = 0, the parameters are fy = y,. and {f; = y; — u..}.
Under the constraint ) ; n;f; = 0, the parameters are f, = jiand {f; = u; — ji}, where
fi = (X ninp)/n.

A slightly more general definition of identifiability refers instead to linear combi-
nations £  of parameters. It states that £ § is identifiable if whenever 27 g* # £7,
then Xf* # Xp. This definition permits a subset of the terms in f to be identifiable,
rather than treating the entire f# as identifiable or nonidentifiable. For example, sup-
pose we extend the model for the one-way layout to include a quantitative explanatory
variable taking value x;; for observation j in group i, yielding the analysis of covariance
model

8(uy) = Po + B; + rx;-

Then, without a constraint on {;} or f,, according to this definition {;} and f, are
not identifiable, but y is identifiable. Here, taking £T g = y, different values of £
yield different values of X .

1.4.2 Estimability in Linear Models

In a non-full-rank model specification, some quantities are unaffected by the parame-
ter nonidentifiability and can be estimated. In a linear model, the adjective estimable
refers to certain quantities that can be estimated in an unbiased manner.

Definition. In alinear model E(y) = X, the quantity #7 B is estimable if there exist
coefficients a such that E(a’y) = #7p.

That is, some linear combination of the observations estimates £ p unbiasedly.

We show now that if #T 8 can be expressed as a linear combination of means, it
is estimable. Recall that x; denotes row i of the model matrix X, corresponding to
observation y;, for which E(y;) = x;B. Letting T = x; and taking @ to be identically 0
except for a 1 in position i, we have E(a'y) = E(y;) = x;8 = €T forall B. S0 E(y;) =
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x, B is estimable. More generally, for any particulara, since E(a’y) = aTE(y) = aTX B,
the quantity #7 B is estimable with #T = aTX. That is, the estimable quantities are
linear functions a® u of u = XB. This is not surprising, since f affects the response
variable only through u = Xp.

To illustrate, for the one-way layout, consider the over-parameterization y;; = f +
p;. Then, fy + p; = u; as well as contrasts such as f, — f; = u;, — p; are estimable.
Any sole element in f is not estimable.

When X has full rank, g is identifiable, and then all linear combinations t’Tﬂ are
estimable. (We will see how to form the appropriate a'y for the unbiased estimator
in Chapter 2 when we learn how to estimate f.) The estimates do not depend on
which constraints we employ, if necessary, to obtain identifiability. When X does not
have full rank, g is not identifiable. Also in that case, for the more general definition
of identifiability in terms of linear combinations #T, at least one component of f
is not identifiable. In fact, for that definition, t’Tﬂ is estimable if and only if it is
identifiable. Then the estimable quantities are merely the linear functions of P that
are identifiable (Christensen 2011, Section 2.1).

Nonidentifiability of B is irrelevant as long as we focus on u = Xp and other
estimable characteristics. In particular, when £7 g is estimable, the values of #T j are
the same for every solution B of the likelihood equations. So, just what is the set of
linear combinations ZT B that are estimable? Since E(a’y) = T with#T = a™X, the
linear space of such p X 1 vectors ¢ is precisely the set of linear combinations of rows
of X. That is, it is the row space of the model matrix X, which is equivalently C(XT).
This is not surprising, since each mean is the inner product of a row of X with g.

1.5 EXAMPLE: USING SOFTWARE TO FIT A GLM

General-purpose statistical software packages, such as R, SAS, Stata, and SPSS, can
fit linear models and GLMs. In each chapter of this book, we introduce an example
to illustrate the concepts of that chapter. We show R code and output, but the choice
of software is less important than understanding how to interpret the output, which
is similar with different packages.

In R, the 1m function fits and performs inference for normal linear models, and
the g1m function does this for GLMs®. When the g1m function assumes the normal
distribution for y and uses the identity link function, it provides the same fit as the 1m
function.

1.5.1 Example: Male Satellites for Female Horseshoe Crabs

We use software to specify and fit linear models and GLMs with data from a study of
female horseshoe crabs’ on an island in the Gulf of Mexico. During spawning season,

%For “big data,” the biglm package in R has functions that fit linear models and GLMs using an
iterative algorithm that processes the data in chunks.

7See http://en.wikipedia.org/wiki/Horseshoe crab and horseshoecrab.org for details
about horseshoe crabs, including pictures of their mating.
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Table 1.3 Number of Male Satellites (y) by Female Crab’s Characteristics

y C S w Wt y Cc S W Wt y C S w Wt
8§ 2 3 283 305 0 33 225 15519 1 1 260 230
4 3 3 260 260 |0 2 3 238 210 |0 3 2 247 190
0O 3 3 256 215 |0 3 3 243 215 |0 2 3 258 265
0O 4 2 210 18 |14 2 1 260 230 [8 1 1 271 295

Source:The data are courtesy of Jane Brockmann, University of Florida. The study is described in Ethology
102: 1-21 (1996). Complete data (n = 173) are in file Crabs.dat at the text website, www.stat.
ufl.edu/~aa/glm/data.

C, color (1, medium light; 2, medium; 3, medium dark; 4, dark); S, spine condition (1, both good; 2, one
worn or broken; 3, both worn or broken); W, carapace width (cm); Wt, weight (kg).

a female migrates to the shore to breed. With a male attached to her posterior spine,
she burrows into the sand and lays clusters of eggs. The eggs are fertilized externally,
in the sand beneath the pair. During spawning, other male crabs may cluster around
the pair and may also fertilize the eggs. These male crabs are called satellites.

The response outcome for each of the n = 173 female crabs is her y = number of
satellites. Explanatory variables are the female crab’s color, spine condition, weight,
and carapace width.Table 1.3 shows a small portion of the data and the categories for
color and spine condition. As you read through the discussion below, we suggest that
you download the data from the text website and practice data analysis by replicating
these analyses and conduct others that occur to you (including additional plots) using
R or your preferred software.

‘We now fit some linear models and GLMs to these data. Since the data are counts,
the Poisson might be the first distribution you would consider for modeling y.

> Crabs <- read.table("Crabs.dat", header=T)

> attach(Crabs)

> mean(y); var(y)

[1] 2.9191

[1] 9.9120

> hist(y) # Provides a histogram display

> table(y) # Shows frequency distribution for y values

0 12 3 4 5 678910 11 12 14 15
62 16 919 19 1513 463 3 1 1 1 1

> fit.pois <- glm(y ~ 1, family = poisson(link=identity), data=Crabs)
> summary (fit.pois) # y ~ 1 puts only an intercept in model
Coefficients:
Estimate Std. Error z value Pr(s|z]|)

(Intercept) 2.9191 0.1299 22.47 <2e-16

Fitting the Poisson distribution with a GLM containing only an intercept and using
the identity link function gives an estimated Poisson mean that is the sample mean
2.92, for reasons we will see in Chapter 7 on models for count data. However, the
Poisson mean equals its variance, and the mode is the integer part of the mean. The
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sample variance of 9.92 and the strong mode at O shown by the frequency distribution
suggest that a Poisson assumption is inappropriate for the marginal distribution of y.
We study more appropriate distributions for the counts in Chapter 7.

1.5.2 Linear Model Using Weight to Predict Satellite Counts

Of the explanatory variables, two are quantitative (width and weight) and two are
ordinal categorical (color and spine condition). We begin by illustrating the use
of a quantitative explanatory variable. Weight and width are very highly positively
correlated, and for illustrative purposes we will use weight, in kilograms, as an
explanatory variable. We first find some simple descriptive statistics:

> mean (weight); sd(weight); quantile(weight, c(0, 0.25, 0.50, 0.75, 1)
[1] 2.4372
[1] 0.5770
0% 25% 50% 75% 100% # minimum, quartiles, and maximum
1.20 2.00 2.35 2.85 5.20
> plot (weight, y) # Scatterplot of y and x = weight

The quantiles reveal a relatively large maximum weight, which the scatterplot in
Figure 1.2 of the number of satellites against weight also highlights. That plot shows
there is not a clear trend in the relation.

We next fit the linear model having a straight-line relationship between E(y) and
x = weight.

> fit.weight <- 1lm(y ~ weight, data=Crabs)
> summary (fit.weight)

Estimate Std. Error t value Pr(>|t]|
(Intercept) -1.9911 0.9710 -2.050 0.0418
weight 2.0147 0.3878 5.196 5.75e-07
> fit.weight2 <- glm(y ~ weight, family=gaussian(link=identity),

+ data=Crabs)
> summary (fit.weight2)
Estimate Std. Error t value Pr(s|t])
(Intercept) -1.9911 0.9710 -2.050 0.0418
weight 2.0147 0.3878 5.196 5.75e-07
> abline(lm(y ~ weight)) # puts fitted line on the scatterplot

The fit of an ordinary linear model is the same as the fit of the GLM using
normal (Gaussian family) random component with identity link function. The fit
f#; = —1.991 + 2.015x;, with positive estimated slope, suggests that heavier female
crabs tend to have more satellites. Figure 1.2 shows the fitted line superimposed on
the scatterplot.
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Figure 1.2 Scatterplot of y = number of crab satellites against x = crab weight.

For linear modeling, it is most common to assume a normal response distribution,
with constant variance. This is not ideal for the horseshoe crab satellite counts, since
they are discrete and since count data usually have variability that increases as the
mean does. However, the normal assumption has the flexibility, compared with the
Poisson, that the variance is not required to equal the mean. In any case, Chapter 2
shows that the linear model fit does not require an assumption of normality.

1.5.3 Comparing Mean Numbers of Satellites by Crab Color

To illustrate the use of a qualitative explanatory variable, we next compare the mean
satellite counts for the categories of color. Color is a surrogate for the age of the crab,
as older crabs tend to have a darker color. It has five categories, but no observations
fell in the “light” color. Let us look at the category counts and the sample mean and
variance of the number of satellites for each color category.

> table (color)
color # 1 = medium light, 2 = medium, 3 = medium dark, 4 = dark
1 2 3 4
12 95 44 22
> cbind(by (y,color,mean), by(y,color,var)
[,1] [,2]
4.0833 9.7197 # color 1 crabs have mean(y) = 4.08, var(y) = 9.72
3.2947 10.2739
2.2273 6.7378
2.0455 13.0931

The majority of the crabs are of medium color, and the mean response decreases as the
color gets darker. There is evidence of too much variability for a Poisson distribution
to be realistic for y, conditional on color.



EXAMPLE: USING SOFTWARE TO FIT A GLM

19

We next fit the linear model for a one-way layout with color as a qualitative
explanatory factor. By default, without specification of a distribution and link func-
tion, the R glm function fits the normal linear model:

> fit.color <- glm(y ~ factor(color)
> summary (fit.color)

Estimate sStd. Error
(Intercept) 4.0833 0.8985
factor(color)2 -0.7886 0.9536
factor (color)3 -1.8561 1.0137
factor (color)4 -2.0379 1.1170

# normal dist. is default

t value

4.
-0.
-1.
-1.

544
827
831
824

Pr(>|t|)
1.05e-05
0.4094
0.0689
0.0699

The output does not report a separate estimate for the first category of color, because
that parameter is aliased with the other color parameters. To achieve identifiability, R
specifies first-category-baseline indicator variables (i.e., for all but the first category).
Infact, by =y, br =5, =1, b3 =3 — Y, and fy = J4, — J;.

If we instead assume a Poisson distribution for the conditional distribution of the

response variable, we find:

> fit.color2 <- glm(y ~ factor(color),
> summary (fit.color2)

Estimate Std. Error
(Intercept) 4.0833 0.5833
factor(color)2 -0.7886 0.6123
factor(color)3 -1.8561 0.6252
factor (color)4 -2.0379 0.6582

family=poisson (link=identity))

z value

7
-1
-2
-3

.000
.288
.969
.096

Pr(>|t]|)
2.56e-12
0.19780
0.00299
0.00196

The estimates are the same, because the Poisson distribution also has sample means
as ML estimates of {y;} for a model with a single factor predictor. However, the
standard error values are much smaller than under the normal assumption. Why do
you think this is? Do you think they are trustworthy?

Finally, we illustrate the simultaneous use of quantitative and qualitative explana-
tory variables by including both weight and color in the normal model’s linear

predictor.

> fit.weight.color <- glm(y ~ weight + factor(color)

> summary (fit.weight.color)

Estimate Std. Error
(Intercept) -0.8232 1.3549
weight 1.8662 0.4018
factor (color)2 -0.6181 0.9011
factor(color)3 -1.2404 0.9662
factor (color)4 -1.1882 1.0704

t value

-0

4.

-0
-1
-1

.608
645
.686
.284
.110

Pr(>|t]|)
0.544
6.84e-06
0.494
0.201
0.269
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Let us consider the model for this analysis and its model matrix. For response y; for
female crab i, let x;; denote weight, and let x; = 1 when the crab has color j and
X = 0 otherwise, for j = 2, 3, 4. Then, the model has linear predictor

Hi = B+ Bixiy + Baxip + Baxiz + Baxig-

The model has the form u = E(y) = X with, using some of the observations shown
in Table 1.3,

8 1 305 1 0 0\(4
0 1 155 0 1 offp
y=|9], xg=|1 230 0 0 ol|5
4 1 260 0 1 0f] s
. M . H : . ﬂ4

From ﬁl = 1.866, for crabs of a particular color that differ by a kilogram of weight,
the estimated mean number of satellites is nearly 2 higher for the heavier crabs. As
an exercise, construct a plot of the fit and interpret the color coefficients.

We could also introduce an interaction term, letting the effect of weight vary
by color. However, even for the simple models fitted, we have ignored a notable
outlier—the exceptionally heavy crab weighing 5.2 kg. As an exercise, you can redo
the analyses without that observation to check whether results are much influenced
by it. We’ll develop better models for these data in Chapter 7.

CHAPTER NOTES

Section 1.1: Components of a Generalized Linear Model

1.1 GLM: Nelder and Wedderburn (1972) introduced the class of GLMs and the algorithm
for fitting them, but many models in the class were in practice by then.

1.2 Transform data: For the transforming-data approach to attempting normality and vari-
ance stabilization of y for use with ordinary normal linear models, see Anscombe (1948),
Bartlett (1937, 1947), Box and Cox (1964), and Cochran (1940).

1.3 Random x and measurement error: When x is random, rather than conditioning on
x, one can study how the bias in estimated effects depends on the relation between x
and the unobserved variables that contribute to the error term. Much of the econometrics
literature deals with this (e.g., Greene 2011). Random x is also relevant in the study of
errors of measurement of explanatory variables (Buonaccorsi 2010). Such error results
in attenuation, that is, biasing of the effect toward zero.

1.4 Parsimony: For a proof of the result that a parsimonious reduction of the data to fewer
parameters results in improved estimation, see Altham (1984).

Section 1.2: Quantitative/Qualitative Explanatory Variables and Interpreting Effects

1.5 GLM effect interpretation: Hoaglin (2012, 2015) discussed appropriate and inappro-
priate interpretations of parameters in linear models. For studies that use a nonidentity
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1.6

link function g, du;/0x;; has value depending on g and y; as well as f;. For sample data
and a GLM fit, one way to summarize partial effect j, adjusting for the other explanatory
variables, is by ﬁ >0,/ 0x;;), averaging over the n sample settings. For example, for a
Poisson loglinear model, 5 Zi(ﬁﬁ,/axlj) = ﬂ})‘/ (Exercise 7.9).

Average causal effect: Denote two groups to be compared by x; =0 and x, = 1. For
GLMs, an alternative effect summary is the average causal effect,

n

1

- z [E()’,'|xi| =1,xp,...x,) — EQlx; = 0,x,, ... ,xip)].
i=1

This uses, for each observation i, the expected response for its values of x5, ..., X;p if that
observation were in group 1 and if that observation were in group 0. For a particular model
fit, the sample version estimates the difference between the overall means if all subjects
sampled were in group 1 and if all subjects sampled were in group 0. For observational
data, this mimics a counterfactual measure to estimate if we could instead conduct an
experiment and observe subjects under each treatment group, rather than have half the
observations missing. See Gelman and Hill (2006, Chapters 9 and 10), Rubin (1974),

and Rosenbaum and Rubin (1983).

EXERCISES

1.1 Supposethaty; hasaN(y;, o2) distribution, i = 1, ... , n. Formulate the normal

linear model as a special case of a GLM, specifying the random component,
linear predictor, and link function.

1.2 Link function of a GLM:

a. Describe the purpose of the link function g.

b. The identity link is the standard one with normal responses but is not
often used with binary or count responses. Why do you think this is?

1.3 Whatdo you think are the advantages and disadvantages of treating an ordinal

explanatory variable as (a) quantitative, (b) qualitative?

1.4 Extend the model in Section 1.2.1 relating income to racial—ethnic status to

include education and interaction explanatory terms. Explain how to interpret
parameters when software constructs the indicators using (a) first-category-
baseline coding, (b) last-category-baseline coding.

1.5 Suppose you standardize the response and explanatory variables before fitting

alinear model (i.e., subtract the means and divide by the standard deviations).
Explain how to interpret the resulting standardized regression coefficients.

1.6 When X has full rank p, explain why the null space of X consists only of the

0 vector.
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1.7

1.8

1.9

1.10

1.11

1.12

1.13

INTRODUCTION TO LINEAR AND GENERALIZED LINEAR MODELS

For any linear model u = X, is the origin 0 in the model space C(X)? Why
or why not?

A model M has model matrix X. A simpler model M, results from removing
the final term in M, and hence has model matrix X|, that deletes the final
column from X. From the definition of a column space, explain why C(X)
is contained in C(X).

For the normal linear model, explain why the expression y; = 25;1 Bixi; + €
with €; ~ N(0, 6?) is equivalent to y; ~ N(Zj;1 Bixis o2).

GLMs normally use a hierarchical structure by which the presence of a
higher-order term implies also including the lower-order terms. Explain why
this is sensible, by showing that (a) a model that includes an x> explanatory
variable but not x makes a strong assumption about where the maximum or
minimum of E(y) occurs, (b) a model that includes x;x, but not x; makes a
strong assumption about the effect of x; when x, = 0.

Show the form of X for the linear model for the one-way layout, E(y;;) =
By + B;, using a full-rank model matrix X by employing the constraint ), §; =
0 to make parameters identifiable.

Consider the model for the two-way layout for qualitative factors A and B,

EQy;) = o + b +7js

fori=1,...,r,j=1,...,c,and k = 1, ..., n. This model is balanced, having

an equal sample size n in each of the rc cells, and assumes an absence of

interaction between A and B in their effects on y.

a. For the model as stated, is the parameter vector identifiable? Why or why
not?

b. Give an example of a quantity that is (i) not estimable, (ii) estimable. In
each case, explain your reasoning.

Consider the model for the two-way layout shown in the previous exercise.

Suppose r =2,c=3,and n = 2.

a. Show the form of a full-rank model matrix X and corresponding parameter
vector B for the model, constraining f; = y; = 0 to make f identifiable.
Explain how to interpret the elements of f.

b. Show the form of a full-rank model matrix and corresponding param-
eter vector f when you constrain Y, f; =0 and ijj =0 to make B
identifiable. Explain how to interpret the elements of f.

c. In the full-rank case, what is the rank of X?
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1.14

1.15

1.16

1.17

1.18

1.19

1.20

For the model in the previous exercise with constraints f; = y; = 0, gener-
alize the model by adding an interaction term 6;;.

a. Show the new full-rank model matrix. Specify the constraints that {4}
satisfy. Indicate how many parameters the 5;; term represents in p.

b. Show how to write the linear predictor using indicator variables for the
factor categories, with the model parameters as coefficients of those indi-
cators and the interaction parameters as coefficients of products of indi-
cators.

Refer to Exercise 1.12. Now suppose r = 2 and ¢ = 4, but observations for the
first two levels of B occur only at the first level of A, and observations for the
last two levels of B occur only at the second level of A. In the corresponding
model, E(y;) = By + B; + 7j;)» B is said to be nested within A. Specify a
full-rank model matrix X, and indicate its rank.

Explain why the vector space of p X 1 vectors £ such that #T g is estimable
is C(XT).

If A is a nonsingular matrix, show that C(X) = C(XA). (If two full-rank
model matrices correspond to equivalent models, then one model matrix is
the other multiplied by a nonsingular matrix.)

For the linear model for the one-way layout, Section 1.4.1 showed the model
matrix that makes parameters identifiable by setting f; = 0. Call this model
matrix X.

a. Suppose we instead obtain identifiability by imposing the constraint §. =
0. Show the model matrix, say X,..

b. Show how to obtain X as a linear transformation of X.

Consider the analysis of covariance model without interaction, denoted by

1+X+A.

a. Write the formula for the model in such a way that the parameters are not
identifiable. Show the corresponding model matrix.

b. For the model parameters in (a), give an example of a characteristic that
is (i) estimable, (ii) not estimable.

c. Now express the model so that the parameters are identifiable. Explain
how to interpret them. Show the model matrix when A has three groups,
each containing two observations.

Show the first five rows of the model matrix for (a) the linear model
for the horseshoe crabs in Section 1.5.2, (b) the model for a one-way
layout in Section 1.5.3, (¢) the model containing both weight and color
predictors.
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1.21 Littell et al. (2000) described a pharmaceutical clinical trial in which 24
patients were randomly assigned to each of three treatment groups (drug A,
drug B, placebo) and compared on a measure of respiratory ability (FEV1 =
forced expiratory volume in 1 second, in liters). The data file®FEV.dat at
www.stat.ufl.edu/~aa/glm/data has the form shown in Table 1.4.
Here, we let y be the response after 1 hour of treatment (variable fevl in
the data file), x; = the baseline measurement prior to administering the
drug (variable base in the data file), and x, = drug (qualitative with labels
a, b, p in the data file). Download the data and fit the linear model for y
with explanatory variables (a) x;, (b) x,, (¢) both x; and x,. Interpret model
parameter estimates in each case.

Table 1.4 Part of FEV Clinical Trial Data File for Exercise 1.21

Patient Base fevl fev2 fev3d fev4d fev5 fev6 fev? fev8 Drug
01 246 268 276 250 230 214 240 233 220

a
02 350 395 365 293 253 3.04 337 314 262 a
03 196 228 234 229 243 206 218 228 229

72 2.88 3.04 3.00 324 337 269 289 289 276 p

Complete data (file FEV.dat) are at the text website www.stat.ufl.edu/~aa/glm/data

1.22 Refer to the analyses in Section 1.5.3 for the horseshoe crab satellites.

a. With color alone as a predictor, why are standard errors much smaller for
a Poisson model than for a normal model? Out of these two very imperfect
models, which do you trust more for judging significance of the estimates
of the color effects? Why?

b. Download the data (file Crabs.dat) from www.stat.ufl.edu/~
aa/glm/data. When weight is also a predictor, identify an outlying
observation. Refit the model with color and weight predictors without
that observation. Compare results, to investigate the sensitivity of the
results to this outlier.

1.23  Another horseshoe crab dataset’ (Crabs2.dat at www.stat.ufl.edu/~
aa/glm/data) comes from a study of factors that affect sperm traits of male
crabs. A response variable, SpermTotal, is measured as the log of the total
number of sperm in an ejaculate. It has mean 19.3 and standard deviation
2.0. Two explanatory variables are the crab’s carapace width (in centimeters,
with mean 18.6 and standard deviation 3.0) and color (1 = dark, 2 = medium,

8Thanks to Ramon Littell for making these data available.
9Thanks to Jane Brockmann and Dan Sasson for making these data available.
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3 =light). Explain how to interpret the estimates in the following table. Is the
model fitted equivalent to a GLM with the log link for the expected number
of sperm? Why or why not?

> summary (1lm(SpermTotal ~ CW + factor (Color))
Coefficients:

Estimate Std. Error t value Pr(s|t])
(Intercept) 11.366 0.638 17.822 < 2e-16
CW 0.391 0.034 11.651 < 2e-16
factor (Color) 2 0.809 0.246 3.292 0.00114
factor (Color) 3 1.149 0.271 4.239 3.14e-05

1.24 For 72 young girls suffering from anorexia, the Anorexia.dat file at the
text website shows their weights before and after an experimental period.
Table 1.5 shows the format of the data. The girls were randomly assigned to
receive one of three therapies during this period. A control group received
the standard therapy, which was compared to family therapy and cognitive
behavioral therapy. Download the data and fit a linear model relating the
weight after the experimental period to the initial weight and the therapy.
Interpret estimates.

Table 1.5 Weights of Anorexic Girls, in Pounds, Before and After Receiving
One of Three Therapies

Cognitive Behavioral Family Therapy Control
Weight Weight Weight Weight Weight Weight
Before After Before After Before After
80.5 82.2 83.8 95.2 80.7 80.2
84.9 85.6 83.3 94.3 89.4 80.1
81.5 81.4 86.0 91.5 91.8 86.4

Source: Thanks to Brian Everitt for these data. Complete data are at text website.



CHAPTER 2

Linear Models: Least Squares Theory

The next two chapters consider fitting and inference for the ordinary linear model. For
n independent observations y = (yy, ..., y,)" with g; = E(y;) and g = (uy, ..., )"
denote the covariance matrix by

bl

V = var(y) = E[(y — )y — )" 1.

Let X = (xl-]-) denote the n X p model matrix, where x;; is the value of explanatory

variable j for observation i. In this chapter we will learn about model fitting when
u=Xp with V=oI,

where f is a p X 1 parameter vector with p < n and I is the n X n identity matrix. The
covariance matrix is a diagonal matrix with common value ¢ for the variance. With
the additional assumption of a normal random component, this is the normal linear
model, which is a generalized linear model (GLM) with identity link function. We
will add the normality assumption in the next chapter. Here, though, we will obtain
many results about fitting linear models and comparing models that do not require
distributional assumptions.
An alternative way to express the ordinary linear model is

y=XB+e

for an error term € having E(e) = 0 and covariance matrix V = var(e) = ¢2I. Such a
simple additive structure for the error term is not natural for most GLMs, however,
except for normal models and latent variable versions of some other models and their
extensions with multiple error components. To be consistent with GLM formulas, we
will usually express linear models in terms of E(y).

Foundations of Linear and Generalized Linear Models, First Edition. Alan Agresti.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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Section 2.1 introduces the least squares method for fitting linear models. Sec-
tion 2.2 shows that the least squares model fit j is a projection of the data y onto
the model space C(X) generated by the columns of the model matrix. Section 2.3
illustrates for a few simple linear models. Section 2.4 presents summaries of vari-
ability in a linear model. Section 2.5 shows how to use residuals to summarize how
far y falls from 1 and to estimate 6% and check the model. Following an example in
Section 2.6, Section 2.7 proves the Gauss—Markov theorem, which specifies a type
of optimality that least squares estimators satisfy. That section also generalizes least
squares to handle observations that have nonconstant variance or are correlated.

2.1 LEAST SQUARES MODEL FITTING
Having formed a model matrix X and observed y, how do we obtain parameter

estimates f and fitred values j1 = X f that best satisfy the linear model? The standard
approach uses the least squares method. This determines the value of j that minimizes

2
n P
by = &ll> = D 0i = * = Y, (yi - ﬂ,-x,-,-> :
i i=1 j=1
That is, the fitted values ju are such that
lly — all < lly—pull forall pe CX).
Using least squares corresponds to maximum likelihood when we add a nor-

mality assumption to the model. The logarithm' of the likelihood for independent
observations y; ~ N(y;,62),i = 1,...,n, is (in terms of {y,})

n n
L _g—u)? /262
log ll I < 2”0,6 Oi—H)*[20 >] = constant — lg(yi_'ui)zl /20-2.
=

i=1

To maximize the log-likelihood function, we must minimize Y ;(y; — #;)*.

2.1.1 The Normal Equations and Least Squares Solution

The expression L(B) = Y,(v; — up)> = 2:(y; — Y Bix;j)* is quadratic in {f;}, so we
can minimize it by equating

oL _
9%;

'In this book, we use the natural logarithm throughout.
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These partial derivatives yield the equations:

Z(yi_ﬂi)xij =0, j=1,...,p.
7

Thus, the least squares estimates satisfy

n n
ZYixij = Zﬁixij’ ji=1...p. 2.0
i=1 =1

These are called? the normal equations. They occur naturally in more general settings
than least squares. Chapter 4 shows that these are the likelihood equations for GLMs
that use the canonical link function, such as the normal linear model, the binomial
logistic regression model, and the Poisson loglinear model.

Using matrix algebra provides an economical expression for the solution of these
equations in terms of the model parameter vector § for the linear model g = Xf. In
matrix form,

LB =1y-XBI>=0-Xp ¢ -Xp)=y"y - 2'Xp+ BT X"XB.
We use the results for matrix derivatives that
d@'p)/op=a and O(BTAB)/0f = (A +AT)B,

which equals 24 8 for symmetric A. So, dL(8)/dp = —2X"(y — X ). In terms of f,
the normal equations (2.1) are

XTy = xTx5. (2.2)

Suppose X has full rank p. Then, the p X p matrix (X' X) also has rank p and is
nonsingular, its inverse exists, and the least squares estimator of f is

B =X"x)""xTy. (2.3)

Since 02L(B)/0p* = 2XTX is positive definite, the minimum rather than maximum
of L(p) occurs at §.

2.1.2 Hat Matrix and Moments of Estimators

The fitted values ji are a linear transformation of y,
a=Xp=XX"X)"xTy.

2Here “normal” refers not to the normal distribution but to orthogonality of (y — f1) with each column
of X.
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The nx n matrix H = X(XTX)"'X7 is called® the hat matrix because it linearly
transforms y to it = Hy. The hat matrix H is a projection matrix, projecting y to ji
in the model space C(X). We define projection matrices and study their properties in
Section 2.2.
Recall that for a matrix of constants A, E(Ay) = AE(y) and var(Ay) = Avar(y)AT.
So, the mean and variance of the least squares estimator are
Ep) = EIX"X)"' X"yl = X"X)"'XTEp) = X"X)"' XX = B,
var(f) = X' X)"'XT(2DXXTX) ™ = 2(XTX) 7. (2.4)

For the ordinary linear model with normal random component, since f§ is a linear
function of y, B has a normal distribution with these two moments.

2.1.3 Bivariate Linear Model and Regression Toward the Mean
We illustrate least squares using the linear model with a single explanatory variable
for a single response, that is, the “bivariate linear model”
EQy;) = fo + brx;.
From (2.1) with x;; = 1 and x;, = x;, the normal equations are
n n n n n
Zyi=nﬂ0+ﬂlzxi7 in)’i=ﬁo <2xi>+ﬁ12x,~2-
i=1 i=1 i=1 i=1 i=1

By straightforward solution of these two equations, you can verify that the least
squares estimates are

Y =00 =3

3, = , =y—fx. 2.5
£ Z?:](xi_)_c)z fo=y-hx 2

From the solution for f,, the least squares fitted equation f; = f}, + f,x; satisfies
y= ﬁo + ﬁlic. It passes through the center of gravity of the data, that is, the point
(x,y). The analogous result holds for the linear model with multiple explanatory
variables and the point (X, ... S X ).

Denote the sample marginal standard deviations of x and y by s, and s,.. From the
Pearson product-moment formula, the sample correlation

r = corr(x,y) = Zi:l(xi — D0 =) = /?1 <S—x> .

\/ (X6 = 02X, 0 = )] g

y

3 According to Hoaglin and Welsch (1978), John Tukey proposed the term “hat matrix.”
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One implication of this is that the correlation equals the slope when both variables
are standardized to have s, = s, = 1. Another implication is that an increase of s, in x

corresponds to a change of /?1 sy = rsy in fi. This equation highlights the famous result
of Francis Galton (1886) that there is regression toward the mean: When |r| < 1, a
standard deviation change in x corresponds to a predicted change of less than a
standard deviation in y.

In practice, explanatory variables are often centered before entering them in a

model by taking xl.* = x; — X. For the centered values, X* = 0, so

bo=% b =<ny,>/2<x 2.
i=1

Under centering, XT™X)isa diagonal matrix with elements » and zi(xl’.‘)z. Thus, the
covariance matrix for f§ is then

1 0
var(f) = o2 (XTX)"! = 62 /n . )
0 1/[Xr,(x—%7]

Centering the explanatory variable does not affect f; and its variance but results in
corr(fy. fy) = 0

You can show directly from the expression for the model matrix X that the hat
matrix for the bivariate linear model is

1, -2 I S € e [ )
Yix—%)? n X ix=%?
H=XX"x)"'xT =
Ly GDE-n 1, =%
n Y i(—%)? no Yix=x)?

In Section 2.5.4 we will see that each diagonal element of the hat matrix is a measure
of the observation’s potential influence on the model fit.

2.1.4 Least Squares Solutions When X Does Not Have Full Rank

When X does not have full rank, neither does (X'X) in the normal equations. A
solution f of the normal equations then uses a generalized inverse of (X' X), denoted
by (XTX)~. Recall that for a matrix A, G is a generalized inverse if and only if
AGA = A. Generalized inverses always exist but may not be unique. The least squares
estimate f = (XTX)~XTy is not then unique, reflecting that g is not identifiable.
With rank(X) < p, the null space N(X) has nonzero elements. For any solution ﬁ
of the normal equations X'y = XX and any element y € N(X), B = p + 7 is also
a solution. This follows because Xy = 0 and X' X(f + y) = XTXJ. Although there
are multiple solutions B for estimating B, 1 = X is invariant to the solution (as are
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estimates of estimable quantities), because X = X (B + y) has the same fitted values
as given by i = Xﬁ.

Likewise, if #7 8 is estimable, then #7 B is the same for all solutions to the normal
equations. This follows because #™  can be expressed as a” X for some a, and fitted
values are identical for all B.

2.1.5 Orthogonal Subspaces and Residuals

Section 1.3.1 introduced the model space C(X) of X values for all the possible f
values. This vector space is a linear subspace of n-dimensional Euclidean space, R".
Many results in this chapter relate to orthogonality for this representation, so let us
recall a few basic results about orthogonality for vectors and for vector subspaces of
R™:

 Two vectors u and v in R" are orthogonal if u™v = 0. Geometrically, orthogonal
vectors are perpendicular in R".

e For a vector subspace W of R", the subspace of vectors v such that for any
u e W,uv =0, is the orthogonal complement of W, denoted by W+.

e Orthogonal complements W and W+ in R" satisfy dim(W) + dim(W+) = n.

* For orthogonal complements W and W+, any y € R" has a unique* orthogonal
decompositiony =y, +y, withy, € W andy, € W+.

Figure 2.1 portrays the key result about orthogonal decompositions into compo-

nents in orthogonal complement subspaces. In the decomposition y =y; +y,, we
will see in Section 2.2 that y, is the orthogonal projection of y onto W.

wt y

Figure 2.1 Orthogonal decomposition of y into components y, in subspace W plus y, in
orthogonal complement subspace W+.

“The proof uses the Gram—Schmidt process on a basis for R” that extends one for W to construct an
orthogonal basis of vectors in W and vectors in W*; y, and y, are then linear combinations of these
two sets of vectors. See Christensen (2011, pp. 414-416).
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Now, suppose W = C(X), the model space spanned by the columns of a model
matrix X. Vectors in its orthogonal complement C(X)* in R" are orthogonal with any
vector in C(X), and hence with each column of X. So any vector v in C(X)! satisfies
X"y =0, and C(X)! is the null space of X7, denoted N (XT). We will observe next
that C(X)* is an error space that contains differences between possible data vectors
and model-fitted values for such data.

The normal equations Xy = XTXf that the least squares estimates satisfy can be
expressed as

X'y-Xp=X"e=0,

where e = (y — Xf). The elements of e are prediction errors when we use 1 = X to
predicty or u. They are called residuals. The normal equations tell us that the residual
vector e is orthogonal to each column of X. So e is in the orthogonal complement
to the model space C(X), that is, e is in cx)t = N(XT). Figure 2.2 portrays the
orthogonality of e with C(X).

«— C(X)

Figure 2.2 Orthogonality of residual vector e = (y — j1) with vectors in the model space C(X)
for a linear model u = Xp.

Some linear model analyses decompose y into several orthogonal components.
An orthogonal decomposition of R" into k orthogonal subspaces {W;} is one for
which any u € W; and any v € W; have uv = 0foralli # j, and any y € R" can be
uniquely expressed asy =y + - +y, withy, € W;fori=1,... k.

2.1.6 Alternatives to Least Squares

In fitting a linear model, why minimize Y,(y; — fi;)* rather than some other metric,
such as ), |y; — 4;1? Minimizing a sum of squares is mathematically and computa-
tionally much simpler. For this reason, least squares has a long history, dating back
to a published article by the French mathematician Adrien-Marie Legendre (1805),



PROJECTIONS OF DATA ONTO MODEL SPACES 33

followed by German mathematician Carl Friedrich Gauss’s claim in 1809 of prior-
ity> in having used it since 1795. Another motivation, seen at the beginning of this
section, is that it corresponds to maximum likelihood when we add the normality
assumption. Yet another motivation, presented in Section 2.7, shows that the least
squares estimator is best in the class of estimators that are unbiased and linear in the
data.

Recent research has developed alternatives to least squares that give sensible
answers in situations that are unstable in some way. For example, instability may be
caused by a severe outlier, because in minimizing a sum of squared deviations, a single
observation can have substantial influence. Instability could also be caused by an
explanatory variable being linearly determined (or nearly so) by the other explanatory
variables, a condition called collinearity (Section 4.6.5). Finally, instability occurs
in using least squares with datasets containing very large numbers of explanatory
variables, sometimes even with p > n.

Regularization methods add an additional term to the function minimized, such
as A Zj |B;| or A Zj ﬁjz for some constant A. The solution then is a smoothing of the
least squares estimates that shrinks them toward zero. This is highly effective when
we have a large number of explanatory variables but expect few of them to have
a substantively important effect. Unless n is extremely large, because of sampling
variability the ordinary least squares estimates {ﬁ}} then tend to be much larger in
absolute value than the true values {f;}. Shrinkage toward O causes a bias in the
estimators but tends to reduce the variance substantially, resulting in their tending to
be closer to {f;}.

Regularization methods are increasingly important as more applications involve
“big data.” Chapter 11, which introduces extensions of the GLM, presents some
regularization methods.

2.2 PROJECTIONS OF DATA ONTO MODEL SPACES

We have mentioned that the least squares fit ji is a projection of the data y onto the
model space C(X), and the hat matrix H that projects y to fi is a projection matrix.
We now explain more precisely what is meant by projection of a vector y € R" onto
a vector subspace such as C(X).

2.2.1 Projection Matrices

Definition. A square matrix P is a projection matrix onto a vector subspace W if
(I)forally e W, Py =y.
(2)forally € W+, Py = 0.

For a projection matrix P, since Py is a linear combination of the columns of P, the
vector subspace W onto which P projects is the column space C(P). The projection

3See Stigler (1981, 1986, Chapters 1 and 4) for details.
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matrix P onto W projects an arbitrary y € R” to its componenty, € W for the unique
orthogonal decomposition of y into y; +y, using W and W+ (Recall Section 2.1.5).
We next list this and some other properties of a projection matrix:

e Ify =y, +y, withy, € Wandy, € W', then Py = P(y, +y,) = Py, + Py, =
y1 + 0 =y,. Since the orthogonal decomposition is unique, so too is the projec-

tion onto W unique®.

¢ The projection matrix onto a subspace W is unique. To see why, suppose P* is
another one. Then for the orthogonal decompositiony =y; +y, withy; € W,
Py =y, = Py for all y. Hence, P = P*. (Recall that if Ay = By for all y, then
A=B)

e I — Pis the projection matrix onto W+, For an arbitrary y = y, +y, withy, € W
andy, € W', we have Py =y, and (I — P)y =y —y, = y,. Thus,

y=Py+I-P)y

provides the orthogonal decomposition of y. Also, P(I — P)y = 0.

e P is a projection matrix if and only if it is symmetric and idempotent (i.e.,
P> =P).

We will use this last property often, so let us see why it is true. First, we suppose
P is symmetric and idempotent and show that this implies P is a projection matrix.
For any v € C(P) (the subspace onto which P projects), v = Pb for some b. Then,
Pv = P(Pb) = P>b = Pb = v. For any v € C(P)*, we have Py = 0, but this is also
Py by the symmetry of P. So, we have shown that P is a projection matrix onto C(P).
Second, to prove the converse, we suppose P is the projection matrix onto C(P) and
show this implies P is symmetric and idempotent. For any v € R", let v =v| + v,
with v, € C(P) and v, € C(P)*. Since

P*>v = P(P(v, +v,)) = Pv, = v, = Pv,

we have P? = P. To show symmetry, let w = w, + w, be any other vector in R", with
w; € C(P)and w, € C(P)*. Since I — P is the projection matrix onto C(P)*,

wIPT(I — Py =wiv, =0.

Since this is true for any v and w, we have PT(I —P)=0,o0r P' = PTP. Since PP
is symmetric, SO is PT and hence P.

Next, here are two useful properties about the eigenvalues and the rank of a
projection matrix.

* The eigenvalues of any projection matrix P are all 0 and 1.

5The projection defined here is sometimes called an orthogonal projection, because Py and y — Py
are orthogonal vectors. This text considers only orthogonal and not oblique projections, and we take
“projection” to be synonymous with “orthogonal projection.”
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This follows from the definitions of a projection matrix and an eigenvalue. For
an eigenvalue A of P with eigenvector v, Pv = Av; but either Pv = v (if v € W) or
Pv =0(ifv e W'), s0 A=1o0r0. In fact, this is a property of symmetric, idempotent
matrices.

¢ For any projection matrix P, rank(P) = trace(P), the sum of its main diagonal
elements.

This follows because the trace of a square matrix is the sum of the eigenvalues, and
for symmetric matrices the rank is the number of nonzero eigenvalues. Since the
eigenvalues of P (which is symmetric) are all 0 and 1, the sum of its eigenvalues
equals the number of nonzero eigenvalues.

Finally, we state a useful property’ about decompositions of the identity matrix
into a sum of projection matrices:

* Suppose {P;} are symmetric n X n matrices such that ), P; = 1. Then, the
following three conditions are equivalent:

1. P, is idempotent for each i.

2. P;P;=0foralli#.

3. Y, rank(P;) = n.
The aspect we will use is that symmetric idempotent matrices (thus, projection
matrices) that satisfy }’; P; = I also satisfy P;P; = 0 for all i # j. The proof of this is

aby-product of a key result of the next chapter (Cochran’s theorem) about independent
chi-squared quadratic forms.

2.2.2 Projection Matrices for Linear Model Spaces

Let Py denote the projection matrix onto the model space C(X) corresponding to a
model matrix X for a linear model. We next present some properties for this particular
case.

¢ If X has full rank, then Py is the hat matrix, H = X(XTX)_lXT.

This follows by noting that H satisfies the two parts of the definition of a projection
matrix for C(X):

e Ify € C(X), theny = Xb for some b. So
Hy =XX"X)"'XTy = XX"X)"'X"Xb = Xb = y.

e Recall from Section 2.1.5 that C(X)* = N(XT). If y € N(XT), then XTy = 0,
and thus, Hy = X(XTX)"'XTy = 0.

For a proof, see Bapat (2000, p. 60).
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We have seen that H projects y to the least squares fit 1 = Xf.

e If X does not have full rank, then Py = X (XTX)~XT. Moreover, Py is invariant
to the choice for the generalized inverse XTx)".

The proof is outlined in Exercise 2.16. Thus, j is invariant to the choice of the
solution B of the normal equations. In particular, if rank(X) = r < p and if X, is any
matrix having r columns that form a basis for C(X), then Py = XO(XgXO)‘ng. This
follows by the same proof just given for the full-rank case.

¢ If X and W are model matrices satisfying C(X) = C(W), then Py = Py.

To see why, for an arbitrary y € R", we use the orthogonal decompositions y =
Pyy + (I — Py)y and y = Pyy + (I — Py)y. By the uniqueness of the decomposition,
Pyy = Pyy. Buty is arbitrary, so Py = Py,. It follows that gande =y — X B are also
the same for both models. For example, projection matrices and model fits are not
affected by reparameterization, such as changing the indicator coding for a factor.

¢ Nested model projections: When model a is a special case of model b, with
projection matrices P, and P, for model matrices X, and X, then PP, = P,P, =
P, and P, — P, is also a projection matrix.

When one model is a special case of another, we say that the models are nested. To
show this result, for an arbitrary y, we use the unique orthogonal decomposition y =
y1 +¥,, with y, € C(X,) and y, € C(X,)*. Then, Py = y,, from which P,(P,y) =
Py, =y, =Py, since the fitted value for the simpler model also satisfies the more
complex model. So PP, = P,. But P,P, = P,P, because of their symmetry, so we
have also that PP, = P,. Since P,y = P,(P,y), we see that P,y is also the projection
of P,y onto C(X,). Since P,P, = P P, = P, and P, and P, are idempotent,

(P, ~P)(B,~P,) =P, - P,

So (P, — P,) is also a projection matrix. In fact, an extended orthogonal decomposition
incorporates such difference projection matrices,

y=Iy=[P,+ P, —P)+T—-P)ly=y, +y, +y;.

Here P, projects y onto C(X,,), (P, — P,) projects y to its component in C(X,) that is
orthogonal with C(X,), and (I — P,) projects y to its component in C(X b)l.

2.2.3 Example: The Geometry of a Linear Model

We next illustrate the geometry that underlies the projections for linear models. We
do this for two simple models for which we can easily portray projections graphically.
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The first model has a single quantitative explanatory variable,
w=EQy)=px;, i=1..,n

but does not contain an intercept. Its model matrix X is the n X 1 vector (xy, ... ,x,,)T.
Figure 2.3 portrays the model, the data, and the fit. The response values y =
1> ---»y,) " are a point in R". The explanatory variable values X are another such
point. The linear predictor values Xf for all the possible real values for f trace out a
line in R" that passes through the origin. This is the model space C(X). The model
fitp="Pyy= BX is the orthogonal projection of y onto the model space line.

y - BX

x

. | — BX
0 i = Pey = X 1
cX)

Figure 2.3 Portrayal of simple linear model with quantitative predictor x and no intercept,
showing the observations y, the model matrix X of predictor values, and the fit i = Pyy = fX.

Next, we extend the modeling to handle two quantitative explanatory variables.
Consider the models

EQ) = Puxit,  EQ) = Pyoxin.  E() = Byraxi + BioaXin-

We use Yule’s notation to reflect that g, ., and fy,; typically differ from g, and B,
as discussed in Section 1.2.3. Figure 2.4 portrays the data and the three model fits.
When evaluated for all real ., and f, |, p traces out a plane in R” that passes
through the origin. The projection P,y = ﬁAvl.zX 1+ ﬂAvZ-lXZ gives the least squares
fit using both predictors together. The projection Py = ﬁﬂX | onto the model space
for X, = (xy, ..., X,)" gives the least squares fit when x; is the sole predictor. The
projection Pyy = ﬁszz onto the model space for X, = (x5, ..., x,,)" gives the least
squares fit when x, is the sole predictor.

From the result in Section 2.2.2 that P,P, = P, when model a is a special case of
model b, Py is also the projection of P,y onto the model space for X, and Py is
also the projection of P,y onto the model space for X,. These ideas extend directly
to models with several explanatory variables as well as an intercept term.

2.2.4 Orthogonal Columns and Parameter Orthogonality

Although ﬁ | in the reduced model u = f,1X, is usually not the same as ﬁ 1.2 1In
the full model M= Py12X | + B X, the effects are identical when X/ is orthogonal
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BXa

Figure 2.4 Portrayal of linear model with two quantitative explanatory variables, showing
the observations y and the fits Py = ﬁ).le, Py = ﬁszz, and P,y = ﬁyl-ZXI + ﬂAyZ‘IXZ.

with X,. We show this for a more general context in which X; and X, may each refer
to a set of explanatory variables.
We partition the model matrix and parameter vector for the full model into

B

Xp=(X,:X,) <ﬂ > =X, + X;,5,.

2

Then, B, and B, are said to be orthogonal parameters if each column from X, is
orthogonal with each column from X,, that is, X]TX2 = (. In this case

XTx 0 xT
X'x = ( 11 T ) and XTy = < lTy>
0 XX, XJy

Because of this, (X" X)~! also has block diagonal structure, and ﬁ 1= (X]TX 1)_1X]Ty
from fitting the reduced model u = X, B, is identical to B | from fitting p = X, B, +
X, f,. The same property holds if each column from X, is orthogonal with each
column from X, after centering each column of X, (i.e., from subtracting off the
mean) or centering each column of X,. In that case, the correlation is zero for each
such pair (Exercise 2.19), and the result is a consequence of a property to be presented
in Section 2.5.6 showing that the same partial effects occur in regression modeling
using two sets of residuals.
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2.2.5 Pythagoras’s Theorem Applications for Linear Models

The projection matrix plays a key role for linear models. The first important result is
that the projection matrix projects the data vector y to the fitted value vector f that is
the unique point in the model space C(X) that is closest to y.

Data projection gives unique least squares fit: For eachy € R” and its projection
Pyy = j1 onto the model space C(X) for a linear model u = X,

lly — Pyl < lly —z|l forall ze C(X),

with equality if and only if z = Pyy.

To show why this is true, for an arbitrary z € C(X) we express

y—z=0—Pyy)+ Pxy—2).

Now (y —Pyy) = — Py)y is in C(X)* = N(XT), whereas (Pyy —z) is in C(X)
because each component is in C(X). Since the subspaces C(X) and C(X)* are orthog-
onal complements,

lly =zl = lly = Peyll* + [1Pxy —zII%,

because u"v = 0 for any u € C(X) and v € C(X)*. It follows from this application
of Pythagoras’s theorem that ||y —z]||? > ||y — Pyy||?, with equality if and only if
Pyy =z.

The fact that the fitted values fi = Pyy provide the unique least squares solution
for u is no surprise, as Section 2.2.2 showed that the projection matrix for a linear
model is the hat matrix, which projects the data to the least squares fit. Likewise,
(I — Py) is the projection onto C(X )L, and the residual vector e = (I — Pyy=y—p
falls in that error space.

Here is another application of Pythagoras’s theorem for linear models.

True and sample residuals: For the fitted values fi of a linear model u = X
obtained by least squares,

ly = pll? = lly = &lI* + e = pll.

This follows by decomposing (y — u) = (y — 1) + (it — p) and using the fact that
(f1 — p), which is in C(X), is orthogonal to (y — f1), which is in C(X YL In particular,
the data tend to be closer to the model fit than to the true means, and the fitted
values vary less than the data. From this result, a plot of ||y — u||> against f shows
a quadratic function that is minimized at 8. Figure 2.5 portrays this for the case of a
one-dimensional parameter £.
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2
[ly —pll

B

Figure 2.5 For a linear model u = X B, the sum of squares ||y — u||? is minimized at the least
squares estimate f.

Here is a third application of Pythagoras’s theorem for linear models.

Data = fit + residuals: For the fitted values j of a linear model y = X obtained
by least squares,

Iyl = 1Al + lly = &l

This uses the decomposition illustrated in Figure 2.6,

y=p+Q@-—p=Py+UI-Pyy, that is, data = fit + residuals,

y

/

‘— Residual

Figure 2.6 Pythagoras’s theorem for a linear model applies to the data vector, the fitted
values, and the residual vector; that is, data = fit + residuals.
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with f1 in C(X) orthogonal to (y — jt) in C(X)L. 1t also follows using the symmetry
and idempotence of projection matrices, from

IylI> =y"y =y"[Py + T — Py)ly =y Pyy +y" (I — Py)y
=y PPy +y A —P) U - Pyy =" o+ (v — "0 — o).
A consequence of f1 being the projection of y onto the model space is that the squared
length of y equals the squared length of ji plus the squared length of the residual
vector. The orthogonality of the fitted values and the residuals is a key result that we
will use often.
Linear model analyses that decompose y into several orthogonal components

have a corresponding sum-of-squares decomposition. Let P, P,, ..., P, be projection
matrices satisfying an orthogonal decomposition:

I=P1+P2++Pk
That is, each projection matrix refers to a vector subspace in a decomposition of R"

using orthogonal subspaces. The unique decomposition of y into elements in those
orthogonal subspaces is

y=Iy=Py+Py+--+Py=y +- +y.
The corresponding sum-of-squares decomposition is

Yy =y"Py+-+y'Py.

2.3 LINEAR MODEL EXAMPLES:
PROJECTIONS AND SS DECOMPOSITIONS

We next use a few simple linear models to illustrate concepts introduced in this
chapter. We construct projection matrices for the models and show corresponding
sum-of-squares decompositions for the data.

2.3.1 Example: Null Model

The simplest model assumes independent observations with constant variance o> but
has only an intercept term,

Ey)=p, i=1,....n

It is called the null model, because it has no explanatory variables. This is the relevant
model for inference about the population marginal mean for a response variable. We
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also use it as a baseline for comparison with models containing explanatory variables
to analyze whether those variables collectively have a significant effect.
With its model matrix X, the null model is

1
Ep)=Xp for X=| |=1

ne

The null model has projection matrix:

Py =XX"X)'XT = xnIXT = 11,11},
n
which is a n X n matrix with 1/n in each entry. The fitted values for the model are
therefore

N

1 i
h=Pyy= ;lnlfy =51,

the n X 1 vector with the sample mean in each element. In the sum-of-squares decom-
position yTy = yTPyy +y'(I — Py)y,

2
n
y' Py =y'31, =", = (Z y,-> [n=ny,

i=1

Y =Pyly =y" U =P I = Py = 0 = 51,)" (v = 51,) = D (3 = 9.

i=1

The sum-of-squares decomposition for “data = fit + residual” simplifies® to

n n
Doyi=ny+ Y -9
i=1 i=1

Let us visualize the model space, the projection matrix, and these sums of squares
for a simple dataset—a sample of size n = 2 with y; = 3 and y, = 4. For it, f=5=
3.5. For two-dimensional Euclidean space, Figure 2.7 shows the model space for the
null model. This is the straight line passing through the origin with slope 1, equating
the two components. The figure shows the data point y having coordinates (3, 4) and
its projection to the point fi = X in the model space having coordinates (3.5, 3.5) for

8Historical comment: Until the modern era of statistical software, introductory statistics textbooks
suggested reducing complexity in by-hand computing of the numerator of the sample variance for
an integer-valued response by instead computing ), ylz — ny?.
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Y2

51 4(5*&\
al N
i=(3.5,3.5)
sl i
21

Y1

o 1 2 3 4 5
Figure 2.7 Data space and the projection of the data onto the null model space for n =2
observations, y, = 3, and y, = 4.

which each component is the sample mean of the two observations. The projection
matrix for the model space is

1/2 1/2
P = XXTx)7XT = %1,112 B (1;2 1;2) '

The projection matrix for the error space is

I—Rx=<]/2 u2>.

-1/2 1/2

This is the projection onto the orthogonal complement subspace spanned by the
vector with coordinates (—1, 1), that is, the line passing through the origin with
slope —1. For these two observations, for example, (I — Py)y = (—1/2,1/2)T. The
total variability is yTy = 25, which decomposes into yTPyy = W =ny? =245 plus
YU = Py)y = 3,3, = 5)* = 0.5.

2.3.2 Example: Model for the One-way Layout

We next extend the null model to the linear model for the one-way layout. This is the
model for comparing means {y;} for ¢ groups, first considered in a GLM context in
Section 1.3.3. Let y;; denote observation j in group i, forj=1,...,n;andi = 1, ...,
with n = ', n;. With independent observations, an important case having this data
format is the completely randomized experimental design: Experimental units are
randomly assigned to ¢ treatments, such as in a randomized clinical trial in which
subjects with a particular malady are randomly assigned to receive drug A, drug B,
or a placebo. The model for y; = E(y;;) has linear predictor

E(ylj) = fy + B;.
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Identifiability requires a constraint, such as f; = 0. For now, we continue without a
constraint. In Exercise 2.33 you can analyze how the following discussion simplifies
by adding one.

As in Section 1.3.3, we express the linear predictor as u = X with

ny ny Onl ny ﬂO
xp=| i U e el
1n Onc On(. ln( ﬂc

Here, p has p = ¢ + 1 elements, but X has rank c. For this model matrix,

n ny np n.
ng n 0

XTX =1|1n 0 ny
n. 0 O n,

)T

You can verify that a generalized inverse for this matrix is

0 0 0 0
X'~ =[0o o 1/m 0
0 0 0 1/n,
by checking that (XTX)(XTX)~(XTX) = XTX. Since
X"y = 3, m31, o3
this generalized inverse yields the model parameter estimate, ﬁ = (ﬁo, ﬁl, - /ic)T =
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For this model matrix and generalized inverse, the corresponding projection matrix
is

1 T
L, 1 0 0
0 L1,1T . 0
Py =XX"X)X" = "2 2 (2.6)
1 T
0 0 L, 1

This yields the fitted values

N - S = - - T
B=Pyy =1 s VY20 V2 o3 Ve e Vo)

The same fitted values are generated by all generalized inverses and their correspond-
ing f, since they all have the same projection matrix. That is, the estimable quantities
{u; = Py + p;} from the linear predictor have {y;} as their least squares estimates.
With this parameterization, any individual f; in the linear predictor is not
estimable. So which linear combinations ); a;; of {f;} are estimable? In Section
1.4.2 we noted that #TB is estimable when ¢ € C(X"), that is, in the row space
of X. Now, the null space N(X) is the orthogonal complement for c(X"). Since
dim[C(X)] + dim[N(X)] = p, with here p = ¢ + 1, and since X has rank ¢, N(X) has

dimension 1. Now (1, -1, ..., —1)T is in N(X), since from the above expression for
X, X(1,-1,..., —l)T = 0 (i.e, the first column is the sum of the other ¢ columns).
Thus, this vector serves as a basis for N(X) and is orthogonal to c(X™. So > a;B;is
estimable when (0, a4, ..., a,) is orthogonal to (1, —1, ..., —1). It follows that Zi a;p;

is estimable if and only if }; a; = 0, that is, when Y, a;$; is a contrast. Then, since
B; = u; — Py, a contrast has form Y. a;; = Y, a;u;, and its estimate is Y, a;y;. An
example of a contrast is f; — fl, = u; — p,, with estimate y; — y,.

The normal equations (2.2), namely X'y = XTX$, are also satisfied by

Bo 0 -1
.| s y 1
= ﬂ‘l _ }’.1 _3

p.) \Je 1

for an arbitrary real value of A. In fact, these are the non-full-rank solutions cor-
responding to the various generalized inverses. For example, with 4 = y;, we have
ﬁ = (5;,0,% — ¥;, ..., 9. — ¥;) L. This corresponds to the full-rank solution obtained
by imposing the constraint f#; = 0 to make the parameters identifiable.
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2.3.3 Sums of Squares and ANOVA Table for One-Way Layout

For the linear model for the one-way layout, we next use an orthogonal decomposition
of the data to induce a corresponding sum-of-squares decomposition and a table for
displaying data analyses. We use

Vi =Y+ G =9+ 0y — Vs

forj=1,...,n;andi=1,...,c.Let Py = 1 1T denote the projection matrix for the
null model That model has X=1, Wthh is the first column of X as given above
for the one-way layout, and P, projects y to the overall mean vector y1,. When we
view the data decomposition for the entire n X 1 vector y expressed as Iy for the n X n
identity matrix I, it uses a decomposition of I into three projection matrices using F;
and Py from (2.6),

y=Iy=[Py+ Py —PF)+UA-Pyly.
The corresponding sum-of-squares decomposition is
Ty — Ty — T
yy=yly=y [P+ FPx—F)+IT—-Pyly.

For the null model, we have already found thaty " Py = ny*. Using the block diagonal
structure for the projection matrix Py found above for the one-way layout, you can
verify that yTPyy = >7_ n;3?. Therefore,

Cc

C
y Py - Py = Z ”ij’l-z —ny* = Z n(y; — 72,
i=1

i=1

called the between-groups sum of squares. It represents variability explained by
adding the group factor to the model as an explanatory variable. The final term in the
sum-of-squares decomposition is

y'd—Pyy= ZZyU—Z ZZ@U IO

i=1 j=1 i=1 i=1 j=1

called the within-groups sum of squares. Since the fitted value corresponding to
observation y; is fi;; = J;, this is a sum of squared residuals for the model for the
one-way layout.

An analysis of variance (ANOVA) table displays the components in the sum-of-
squares decomposition. Table 2.1 shows the form of this table for a one-way layout.
We have included in this table the corresponding projection matrices. The degrees of
freedom (df) values listed determine specific sampling distributions for the normal
linear model in the next chapter. Each df value equals the rank of the projection
matrix and the dimension of the corresponding vector subspace to which that matrix
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Table 2.1 ANOVA Table for Linear Model for One-Way Layout

Projection df Name for
Source Matrix (rank) Sum of Squares Sum of Squares
Mean P, 1 ny*
Groups P, - P, c—1 2;1 n,(y; — y)* Between-groups
Error I1-P; n—c Y, 27;1 Oy =) Within-groups
Total 1 n T XYy

projects. Sometimes the first source (mean) is not shown, and the total row is replaced
by a corrected total sum of squares:

c om c n

> D yi-n = oy — 7
1

i=1 j= i=1 j=1

This sum of squares has df =n — 1.

2.3.4 Example: Model for Two-Way Layout with Randomized Block Design

The model for the one-way layout generalizes to models with two or more explanatory
factors. We outline some basic ideas for two factors, with one observation at each
combination of their categories. An important case having this data format is the
randomized block design: The rows represent treatments whose means we would
like to compare. The columns represent blocks such that experimental units are more
homogeneous within blocks than between blocks. A classic example is comparing
mean yields of some type of crop for r fertilizer treatments, using c fields as blocks.
Within each field, the treatments are randomly assigned to r plots within that field.
The experiment yields n = rc observations.

Let y;; be the observation for treatment i in block j. Consider the linear model with
linear predictor

EGyp)=p+pbi+y, i=1...r, j=1..,¢

with constraints such as f; = y; = 0 for identifiability. Let y; be the sample mean
observation for treatment 7, y; the sample mean observation in block j, and y the
overall sample mean. The orthogonal decomposition of the data for all i and j as

Vi =¥+ @i =N+0;=N+0; =5 =, +9)

corresponds to applying to y a decomposition of the n X n identity matrix into four
projection matrices,

I=P,+(P —P)+@P,—P)+I—P.—P, +Py).
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Here, the null model projection matrix P, = ilnlz, when applied to y = (yy4, ...,

Vier - s Vrls o ,yrc)T, generates y1,,. The matrix

1/c - 1/c =~ 0 -« 0
1)e - 1/c « 0 -« 0
P. =
0 « 0 -« 1/c - 1/c
0 « 0 -« 1/c - 1/c

is a block diagonal matrix with r blocks of size ¢ X ¢, in which each element equals
1/c. The projection P,y generates the VECtor (¥, , ..., V1, ..., ¥, ,...,9,), where ¥;
occurs in the locations for the ¢ observations for treatment i. A corresponding projec-
tion matrix P, has elements 1/7 in appropriate locations to generate the block means
F1seeesVerees V1oV 0), where §; oceurs in the locations for the r observations
for block j. You can check that PP, = P, and that each of the four matrices in the
decomposition for I is symmetric and idempotent and hence a projection matrix.

Recall that the rank of a projection matrix equals its trace. For this decompo-
sition of projection matrices, the trace of (P, — F)) equals the difference of traces,
r — 1, corresponding to the (r — 1) nonredundant {f;}. Applied to y, it generates
the sample treatment effects (J; — ..., — ¥, ..., ¥, — ¥, ..., ¥, —y) 1. Likewise,
(P, — Py) has rank ¢ — 1 and generates sample block effects. The projection matrix
(I —P.— P, + Py) generates the term representing the residual error. Its rank is
rc—r—c+1=F-1)(c—1).

The decomposition of observations and of projection matrices corresponds to the
sum-of-squares decomposition shown in the ANOVA table (Table 2.2). The corrected
total sum of squares is Y, ¥ y%/. — rcy?. The larger the between-treatments sum of
squares relative to the error sum of squares, the stronger the evidence of a treatment

Table 2.2 ANOVA Table for Linear Model for Two-Way r X ¢ Layout with One
Observation Per Cell (as in Randomized Block Design)

Projection df
Source Matrix (rank) Sum of Squares
Mean P, 1 rcy’
Treatments P —-P, r—1 DIMCAESS
Blocks P. - P, c—1 r Z;;l(_)_)J -y
Error I-P.-P +P, r—=Dc-1 Yo 2 Oy =¥ =3+
Total I n=rc 2;:1 25:1 yizj
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effect. Inferential details for the normal linear model follow from results in the
next chapter.

2.4 SUMMARIZING VARIABILITY IN A LINEAR MODEL

For a linear model E(y) = X with model matrix X and covariance matrix V = 621,
in Section 2.2.5 we introduced the “data = fit + residuals” orthogonal decomposition
using the projection matrix Py = X(XTX)~'XT (i.e., the hat matrix H),

y=p+@-p=>ry+d-Py.

This represents the orthogonality of the fitted values f and the raw residuals e =
(y — j1). We have used Pyy = ju to estimate u. The other part of this decomposition,
(I — Py)y = (y — fu), falls in the error space C(X)* orthogonal to the model space
C(X). We next use it to estimate the variance o2 of the conditional distribution of
each y;, given its explanatory variable values. This variance is sometimes called the
errorvariance, from the representation of the model asy = X + e with var(e) = ¢2I.

2.4.1 Estimating the Error Variance for a Linear Model

To obtain an unbiased estimator of o2, we apply a result about E(yTAy), foran x n
matrix A. Since E(y — u) =0,

Ely - WAy - w] = EGTAy) — u"Ap.
Using the commutative property of the trace of a matrix,

E[(y — w"A(y — p)] = E{trace[(y — w)"A(y — w)]} = E{trace[A(y — p)(y — )" 1}
= trace{AE[(y — p)(y — p)"1} = trace(AV).

It follows that
E(y"Ay) = trace(AV) + u"Ap. .7

For a linear model with full-rank model matrix X and projection matrix Py, we
now apply this result with A = (I — Py) and V = oI for the n X n identity matrix 1.
The rank of X, which also is the rank of Py, is the number of model parameters p.
We have

Ely™(I - Py)y] = trace[(I — Py)o’I1 + u"(I — Py)u

= aztrace(l —Py),
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because (I — Py)u = p— p = 0. Then, since
trace(Py) = trace[X(XXT)"'XT] = trace[ X" X(XX")!] = trace(l,,),

where I, is the p X p identity matrix, we have trace(I — Py) = n — p, and

. [J’T(I—PX)J’] _2
n—p

So 52 = [yT(I — Py)yl/(n — p) is an unbiased estimator of o2, Since Py and (I — Py)
are symmetric and idempotent, the numerator of s is

Y =Py =y"d—P) A =Py =0 -0 — =Y 0;— )
i=1

2

In summary, an unbiased estimator of the error variance ¢~ in a linear model with

full-rank model matrix is

S2 _ Z?:l i :['21')2
n—p

an average of the squared residuals. Here, the average is taken with respect to the
dimension of the error space in which these residual components reside. When X
has less than full rank r < p, the same argument holds with the trace(Py) = r. Then,
s? has denominator 7 — r. The estimate s? is called’ the error mean square, where
error = residual, or residual mean square.

For example, for the null model (Section 2.3.1), the numerator of s%is Z?:] ;- 5))2
and the rank of X = 1,, is 1. An unbiased estimator of 62 is

S2 _ Z?:l(yi _57)2

n—1

This is the sample variance and the usual estimator of the marginal variance of y.

There is nothing special about using an unbiased estimator. In fact s, which is on a
more helpful scale for interpreting variability, is biased. However, s2 occurs naturally
in distribution theory for the ordinary linear model, as we will see in the next chapter.
The denominator (n — p) of the estimator occurs as a degrees of freedom measure in
sampling distributions of relevant statistics.

Not to be confused with the “mean squared error,” which is E(b — 0)* for an estimator 8 of a
parameter 6.
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2.4.2 Sums of Squares: Error (SSE) and Regression (SSR)

The sum of squares .,(y; — f3;)* in the numerator of s? is abbreviated by SSE, for
“sum of squared errors,” It is also referred to as the residual sum of squares.

The orthogonal decomposition of the data, y = Pyy + (I — Py)y, expresses obser-
vation i as y; = fi; + (y; — fi;). Correcting for the sample mean,

O =9 = (@ =) + O = i)

Using (y; — ¥) as the observation corresponds to adjusting y; by including an intercept
term before investigating effects of the explanatory variables. (For the null model
E(y;) = p, Section 2.3.1 showed that fi; = y.) This orthogonal decomposition into
the component in the model space and the component in the error space yields the
sum-of-squares decomposition:

D= = D=9+ Y0 — A
i i i
We abbreviate this decomposition as

TSS =SSR + SSE,

for the (corrected) rotal sum of squares TSS, the sum of squares due to the regression
model SSR, and the sum of squared errors SSE. Here, TSS summarizes the total
variation in the data after fitting the model containing only an intercept. The SSE
component represents the variation in y “unexplained” by the full model, that is, a
summary of prediction error remaining after fitting that model. The SSR component
represents the variation in y “explained” by the full model, that is, the reduction in
variation from TSS to SSE resulting from adding explanatory variables to a model
that contains only an intercept term. For short, we will refer to SSR as the regression
sum of squares. It is also called the model sum of squares.

We illustrate with the model for the one-way layout. From Section 2.3.3, TSS
partitions into a between-groups SS = 2;1 n;(y; — ¥)> and a within-groups SS =
Y Zj"; O — ¥,)*. The between-groups SS is the SSR for the model, representing
variability explained by adding the indicator predictors to the model. Since the fitted
value corresponding to observation y; is fl;; = y;, the within-groups SS is SSE for the
model. For the model for the two-way layout in Section 2.3.4, SSR is the sum of the
SS for the treatment effects and the SS for the block effects.

2.4.3 Effect on SSR and SSE of Adding Explanatory Variables

The least squares fit minimizes SSE. When we add an explanatory variable to a
model, SSE cannot increase, because we could (at worst) obtain the same SSE value
by setting ,BAJ = 0 for the new variable. So, SSE is monotone decreasing as the set
of explanatory variables grows. Since TSS depends only on {y;} and is identical for
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every model fitted to a particular dataset, SSR = TSS — SSE is monotone increasing
as variables are added.

Let SSR(xy, x,) denote the regression sum of squares for a model with two explana-
tory variables and let SSR(x;) and SSR(x,) denote it for the two models having only
one of those explanatory variables (plus, in each case, the intercept). We can partition
SSR(x;,x,) into SSR(x;) and the additional variability explained by adding x, to
the model. Denote that additional variability explained by x,, adjusting for x;, by
SSR(x; | x;). That is,

SSR(x,,x,) = SSR(x;) + SSR(x, | x)).

Equivalently, SSR(x, | x;) is the decrease in SSE from adding x, to the model.

Let {1;;} denote the fitted values when x, is the sole explanatory variable, and let
{/i;12} denote the fitted values when both x; and x, are explanatory variables. Then,
from the orthogonal decomposition (fi;15 —¥) = (f;; —¥) + (f;10 — ;1)

n

SSR(xy | x) = ) (fi2 = fin))*-

i=1

To show that this application of Pythagoras’s theorem holds, we need to show that
> (i1 — ¥)(A;12 — A;;) = 0. But denoting the projection matrices by P, for the model
containing only an intercept, P; for the model that also has x; as an explanatory
variable, and Py, for the model that has x; and x, as explanatory variables, this sum
is

(Py — Py) (Piyy — Py) =y (P, — P))(Py, — P)y.

Since P, P, = P, when model a is a special case of model b, (P; — Py)(P;, — P;) = 0,50
yT(P, — Py)(P;; — P)y = 0. This also follows from the result about decompositions
of I into sums of projection matrices stated at the end of Section 2.2.1, whereby
projection matrices that sum to I have pairwise products of 0. Here, I = Fy + (P, —
Py) + (P = P) + (I = Pp).

2.4.4 Sequential and Partial Sums of Squares

Next we consider the general case with p explanatory variables, xy, x,, ... S X and an
intercept or centered value of y. From entering these variables in sequence into the
model, we obtain the regression sum of squares and successive increments to it,

SSR(x;), SSR(x, | x;), SSR(x3 | x1,X,), ... , SSR(x,, | X1, %5, ..., X, 1)
These components are referred to as sequential sums of squares. They sum to

the regression sum of squares for the full model, denoted by SSR(xy, ... ,xp). The
sequential sum of squares corresponding to adding a term to the model can depend
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strongly on which other variables are already in the model, because of correlations
among the predictors. For example, SSR(x,,) often tends to be much larger than
SSR(x, | xq,...,x,_;) when x, is highly correlated with the other predictors, as hap-
pens in many observational studies. We discuss this further in Section 4.6.5.

An alternative set'? of increments to regression sums of squares, called partial
sums of squares, uses the same set of p explanatory variables for each:

SSR(x, | x,, ...,xp), SSR(x, | x4, ..,,x,,),... ,SSR(xp | xy, ...,xp_l).

Each of these represents the additional variability explained by adding a particular
explanatory variable to the model, when all the other explanatory variables are already
in the model. Equivalently, it is the drop in SSE when that explanatory variable is
added, after all the others. These partial SS values may differ from all the corre-
sponding sequential SS values SSR(x;), SSR(x, | x), ..., SSR(x,, [ x1, x5, ..., X, ),
except for the final one.

2.4.5 Uncorrelated Predictors:
Sequential SS = Partial SS = SSR Component

We have seen that the “data = fit + residuals” orthogonal decomposition y = Pyy +
(I — Py)y implies the corresponding SS decomposition, yTy = yTPyy + yT(I — Py)y.
When the values of y are centered, this is TSS = SSR + SSE. Now, suppose the p
parameters are orthogonal (Section 2.2.4). Then, X' X and its inverse are diagonal.

With the model matrix partitioned into X = (X, : X, : -+ : X,,),

Py =XX"X)"'X"=x,XTX)7'X] + - + Xp(X;Xp)‘lX;.

In terms of the projection matrices for separate models, each with only a single
explanatory variable, this is PX1 + e+ PXp' Therefore,

Yy =y"Pyy+ - +y Py +y I - Pyy.

Each component of SSR equals the SSR for the model with that sole explanatory
variable, so that

SSR(xy, ..., x,) = SSR(x)) + SSR(x,) + - + SSR(x,). 2.8)

When X, =1, is the coefficient of an intercept term, SSR(x;) = nj* and TSS =
yTy — SSR(x,) for the uncentered y. The sum of squares that software reports as

10 Alternative names are Type 1 SS for sequential SS and Type 3 SS for partial SS. Type 2 SS is an
alternative partial SS that adjusts only for effects not containing the given effect, such as adjusting
x, for x, but not for x,x, when that interaction term is also in the model.
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SSR is then SSR(x,) + -+ + SSR(x,). Also, with an intercept in the model, orthogo-
nality of the parameters implies that pairs of explanatory variables are uncorrelated
(Exercise 2.20).

When the explanatory variables in a linear model are uncorrelated, the sequential
SS values do not depend on their order of entry into a model. They are then identical
to the corresponding partial SS values, and the regression SS decomposes exactly in
terms of them. We would not expect this in observational studies, but some balanced
experimental designs have such simplicity.

For instance, consider the main effects model for the two-way layout with two
binary qualitative factors and an equal sample size » in each cell,

E(yip) = Po + B +v)s
fori=1,2,j=1,2,and k =1, ...,n. With constraints §; + f, =0and y; +y, =0

for identifiability and with y listing (i, ) in the order (1,1), (1,2), (2,1), (2,2), we can
express the model as E(y) = X with

ln ln 1n ﬂ()

Xﬂ _ ln ln _ln ﬁ]
ln _ln 1n

71
ln _ln _ln

The scatterplot for the two indicator explanatory variables has n observations that
occur at each of the points (—1,—1), (—1,1), (1,—1), and (1,1). Thus, those explanatory
variables are uncorrelated (and orthogonal), and SSR decomposes into its separate
parts for the row effects and for the column effects.

2.4.6 R-Squared and the Multiple Correlation

For a particular dataset and TSS value, the larger the value of SSR relative to SSE,
the more effective the explanatory variables are in predicting the response variable.
A summary of this predictive power is

g2 _ SSR _ TSS—SSE _ X0 -9 = X0 - 4)*
TSS TSS >0 —=9)? '
Here SSR = TSS—SSE measures the reduction in the sum of squared prediction errors
after adding the explanatory variables to the model containing only an intercept. So, R?
measures the proportional reduction in error, and it falls between 0 and 1. Sometimes
called the coefficient of determination, it is usually merely referred to as “R-squared.”
A related way to measure predictive power is with the sample correlation between
the {y;} and {/;} values. From (2.1), the normal equations solved to find the least
squares estimates are ) ; ViXij = > Aixj, j =1, ..., p. The equation corresponding to
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the intercept term is ). y; = )", fi;, so the sample mean of {/;} equals y. Therefore,
the sample value of

Zi()’i - y(f; - f) _ Zi(}’i =+ ;=Y —y)
VIZ0= 9 S - ] /S0 - 97] [Zia - 57

corr(y, i) =

The numerator simplifies to Y.(4; —)? = SSR, since Y, (y; — f#;)fi; =0 by the
orthogonality of (y — jt) and fi, and the denominator equals 4/(TSS)(SSR). So,

corr(y, fi) = V/SSR/TSS = +\/ﬁ. This positive square root of R? is called the
multiple correlation. Note that 0 < R < 1. With a single explanatory variable,
R = |corr(x,y)|.

Out of all possible linear prediction equations jz = X that use the given model
matrix, the least squares solution j has the maximum correlation with y. To ease
notation as we show this, we suppose that all variables have been centered, which
does not affect correlations. For an arbitrary § and constant c, for the least squares
fit,

ly — all* < lly — cill*.
Expanding both sides, subtracting the common term ||y|| 2, and dividing by a common
denominator yields
2T _ A 20 Sl
14101022 174111124 11172 2141921

Now, taking ¢* = |||/ || ||, we have

i o v
Iy T2 Ny Il

But since the variables are centered, this says that R = corr(y, 1) > corr(y, ji).
When explanatory variables are added to a model, since SSE cannot increase, R and
R? are monotone increasing. For a model matrix X, letx, ; denote columnj for explana-
tory variable j. For the special case in which the sample corr(x,;, x,;) = 0 for each
pair of the p explanatory variables, by the decomposition (2.8) of SSR(xy, ..., x,),

R? = [cor1r(y,x,k1)]2 + [corr(y,x,kz)]2 + -+ [corr(y,x*p)]z.

When 7 is small and a model has several explanatory variables, R? tends to
overestimate the corresponding population value. An adjusted R-squared is designed
to reduce this bias. It is defined to be the proportional reduction in variance based
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on the unbiased variance estimates, s§ for the marginal distribution and s2 for the
conditional distributions; that is,

52— 52 _l_SSE/(n—p) _1_n—1

djusted R? = = = = 1 - R?).
acuste 2 TSS/(n— 1) n—p )

It is slightly smaller than ordinary R?, and need not monotonically increase as we
add explanatory variables to a model.

2.5 RESIDUALS, LEVERAGE, AND INFLUENCE

Since the residuals from the linear model fit are in the error space, orthogonal to the
model space, they contain the information in the data that is not explained by the
model. Thus, they are useful for investigating a model’s lack of fit. This section
takes a closer look at the residuals, including their moments and ways of plotting
them to help check a model. We also present descriptions of the influence that each
observation has on the least squares fit, using the residuals and “leverage” values
from the hat matrix.

2.5.1 Residuals and Fitted Values Are Uncorrelated

From Section 2.4.6, the normal equation corresponding to the intercept termis Y., y; =
> f;. Thus, Y. e; = X,(y; — f;) = 0, and the residuals have a sample mean of 0.
Also,

Ee)=E(y-j)=Xp—XE(B)=Xp-Xp=0.

For linear models with an intercept, the sample correlation between the residuals
e and fitted values jz has numerator ) ; ¢;4; = eTj1. So, the orthogonality of e and ji
implies that corr(e, f1) = 0.

2.5.2 Plots of Residuals

Because corr(e, ft) = 0, the least squares line fitted to a scatterplot of the elements of
e = (y — ju) versus the corresponding elements of f1 has slope 0. A scatterplot of the
residuals against the fitted values helps to identify patterns of a model’s lack of fit.
Examples are nonconstant variance, sometimes referred to as heteroscedasticity, and
nonlinearity. Likewise, since the residuals are also orthogonal to C(X), they can be
plotted against each explanatory variable to detect lack of fit.

Figure 2.8 shows how a plot of e against ji tends to look if (a) the linear model
holds, (b) the variance is constant (homoscedasticity), but the mean of y is a quadratic
rather than a linear function of the predictor, and (c) the linear trend predictor is
correct, but the variance increases dramatically as the mean increases. In practice,
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Figure 2.8 Residuals plotted against linear-model fitted values that reflect (a) model ade-
quacy, (b) quadratic rather than linear relationship, and (c) nonconstant variance.

plots do not have such a neat appearance, but these illustrate how the plots can
highlight model inadequacy. Section 2.6 shows an example.

For the normal linear model, the conditional distribution of y, given the explanatory
variables, is normal. This implies that the residuals, being linear in y, also have
normal distributions. A histogram of the residuals provides some information about
the actual conditional distribution. Another check of the normality assumption is
a plot of ordered residual values against expected values of order statistics from a
N(0, 1) distribution, called a O—Q plot. We will discuss this type of plot in Section
3.4.2, in the chapter about the normal linear model.

2.5.3 Standardized and Studentized Residuals

For the ordinary linear model, the covariance matrix for the observations is V = ¢°I.
In terms of the hat matrix H = X(X"X)~'XT, this decomposes into

V =¢’I = ¢’H + ¢*(I - H).
Since 1 = Hy and since H is idempotent,
var(ft) = *H.

So, var(ji;) = 6%h;;, where {h;} denote the main diagonal elements of H. Since
variances are nonnegative, h; > 0. Likewise, since (y — i) = (I — H)y and since
(I — H) is idempotent,

var(y — j1) = o>(I — H).
So, the residuals are correlated, and their variance need not be constant, with

var(e;) = var(y; — fi;}) = 6>(1 — h;;).
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Again since variances are nonnegative, 0 < h; < 1. Also, var(ji;) = 6°h; < 62
reveals a consequence of model parsimony: If the model holds (or nearly holds),
fi; 1s better than y; as an unbiased estimator of ;.

A standardized version of e; = (y; — fi;) that divides it by 64/1 — h; has a standard
deviation of 1. In practice, ¢ is unknown, so we replace it by the estimate s of o derived

in Section 2.4.1. The standardized residual is

oo i M (2.9)

Ty

This describes the number of estimated standard deviations that (y; — fi;) departs from
0. If the normal linear model truly holds, these should nearly all fall between about —3
and +3. A slightly different residual, called'! a studentized residual, estimates ¢ in
the expression for var(y; — fi;) based on the fit of the model to the n — 1 observations
after excluding observation i. Then, that estimate is independent of observation i.

2.5.4 Leverages from Hat Matrix Measure Potential Influence

The element 4;; from H, on which var(e;) depends, is called the leverage of observation
i. Since var(j1;) = 6h;; with 0 < h;; < 1, the leverage determines the precision with
which f; estimates ;. For large h;; close to 1, var(ji;) ~ var(y;) and var(e;) = 0. In
this case, y; may have a large influence on f;. In the extreme case h;; = 1, var(e;) = 0,
and fi; = y;. By contrast, when #;; is close to 0 and thus var(j;) is relatively small,
this suggests that ; is based on contributions from many observations.

Here are two other ways to visualize how a relatively large leverage ;; indicates
that y; may have a large influence on f;. First, since fi; = Ej hijy;, 0f;/dy; = hy;.
Second, since {y,} are uncorrelated'?,

n n
cov(yp, fi)) = cov | yi D hy; | = D hycov (v, y) = hicov(y;, y) = 6y,
J=1 J=1

Then, since var(;) = 62h;;, it follows that the theoretical correlation,

Ny Gzhii _
COI‘I"(yi, ”1) == hii'

V 0-2 . U2h”

When the leverage is relatively large, y; is highly correlated with f;.

Student is a pseudonym for W. S. Gosset, who discovered the ¢ distribution in 1908. For the normal
linear model, each studentized residual has a ¢ distribution with df = n — p.
12Recall that for matrices of constants A and B, cov(Ax, By) = Acov(x,y)B".
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So, what do the leverages look like? For the bivariate linear model E(y;) = f, + fx;,
Section 2.1.3 showed the hat matrix. The leverage for observation i is

1 (x; — )_5)2

i T on . -0
n Zk=1(xk - %)?

The n leverages have a mean of 2/n. They tend to be smaller with larger datasets.
With multiple explanatory variables and values x; for observation i and means X
(as row vectors), let X denote the model matrix using centered variables. Then, the
leverage for observation i is

b=t e~ DE D o - )" 2.10)
n
(Belsley et al. 1980, Appendix 2A). The leverage increases as x; is farther from x.
With p explanatory variables, including the intercept, the leverages have a mean of
p/n. Observations with relatively large leverages, say exceeding about 3p/n, may be
influential in the fitting process.

2.5.5 Influential Points for Least Squares Fits

An observation having small leverage is not influential in its impact on {/;} and { ,[f]-},
even if it is an outlier in the y direction. A point with extremely large leverage can be
influential, but need not be so. It is influential when the observation is a “regression
outlier,” falling far from the least squares line that results using only the other n — 1
observations. See the first panel of Figure 2.9. By contrast, when the observation has
a large leverage but is consistent with the trend shown by the other observations, it is
not influential. See the second panel of Figure 2.9. To be influential, a point needs to
have both a large leverage and a large standardized residual.

Summary measures that describe an observation’s influence combine information
from the leverages and the residuals. For any such measure of influence, larger values
correspond to greater influence. Cook’s distance (Cook 1977) is based on the change
in B when the observation is removed from the dataset. Let ﬁ(i) denote the least

X X

Figure 2.9 High leverage points in a linear model fit may be influential (first panel) or
noninfluential (second panel).



60 LINEAR MODELS: LEAST SQUARES THEORY

squares estimate of f for the n — 1 observations after excluding observation i. Then,
Cook’s distance for observation i is

o Bo = PTABT By~ B _ Bo - HTE DB, - P
a P - ps? '

Incorporating the estimated variance of § makes the measure free of the units of
measurement and approximately free of the sample size. An equivalent expression

uses the standardized residual r; and the leverage h;;,

D, =r?
bt =hy)

psA(1 = hy)? 1D

h; ] _ i — ﬁi)zhii
A relatively large D;, usually on the order of 1, occurs when both the standardized
residual and the leverage are relatively large.

A measure with a similar purpose, DFFIT, describes the change in f; due to
deleting observation i. A standardized version (DFFITS) equals the studentized resid-
ual multiplied by the “leverage factor” 4/h;;/(1 — h;;). A variable-specific measure,
DFBETA (with standardized version DFBETAS), is based on the change in [?1 alone
when the observation is removed from the dataset. Each observation has a separate
DFBETA for each f,.

2.5.6 Adjusting for Explanatory Variables by Regressing Residuals

Residuals are at the heart of what we mean by “adjusting for the other explana-
tory variables in the model,” in describing the partial effect of an explanatory vari-
able x;. Suppose we use least squares to (1) regress y on the explanatory vari-
ables other than x;, (2) regress x; on those other explanatory variables. When we
regress the residuals from (1) on the residuals from (2), Yule (1907) showed that
the fit has slope that is identical to the partial effect of variable x; in the multi-
ple regression model. A scatterplot of these two sets of residuals is called a par-
tial regression plot, also sometimes called an added variable plot. The residuals
for the least squares line between these two sets of residuals are identical to the
residuals in the multiple regression model that regresses y on all the explanatory
variables.

To show Yule’s result, we use his notation for linear model coefficients, introduced
in Section 1.2.3. To ease formula complexity, we do this for the case of two explana-
tory variables, with all variables centered to eliminate intercept terms. Consider the
models

E(y) = Pyoxp,  E(xy) = Praxp,  EQp) = Py1oxy + Byo.iXi-



RESIDUALS, LEVERAGE, AND INFLUENCE 61

The normal equations (2.1) for the bivariate models are

n

n
inz@i = Pyoxp) =0, inz(xil = Praxp) = 0.
i=1

i=1

The normal equations for the multiple regression model are

n n
Z X1 (i = Byr.axin — Byoaxip) =0, inZ(yi = By1oxin — Bypaxip) = 0.
Py i=1

From these two equations for the multiple regression model,
n
0= Z(J’i - ﬁyl-zxn - ﬁyz-lxiz)(xil — PraXi)-
i=1
Using this and the normal equation for the second bivariate model,
n n
0= Z Yilxit = PraXp) = Py12 inl(xil = Praxip)
i=1 i=1

n n
2
= D0 = Bx) (i = Biaxip) = Ao ) (xip = Bioxip)
i=1 i=1
It follows that the estimated partial effect of x| on y, adjusting for x,, is

. i i — ﬁy2xi2)(xi1 = Praxi)

v1.2 = n ~
Y (i = Proxpn)?

But from (2.5) this is precisely the result of regressing the residuals from the regression
of y on x, on the residuals from the regression of x; on x,.

This result has an interesting consequence. From the regression of residuals just
mentioned, the fit for the full model satisfies

fii = PyoXip = By1.2(xip — PraXip)
so that
A; = PyaXip + Pyra(xiy — Proxip) = Byroxin + (Byo — By1.2b12)xin-

Therefore, the partial effect of x, on y, adjusting for x;, has the expression

A

Pya1 = Bya = By12bra-
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In particular, ﬁAy2-l = ﬁ;z if A, = 0, which is equivalent to corr(x,,,xX,,) = 0. They
are also equal if f;., = 0. Likewise, f,,1., = | — Byp.1»1- An implication is that if
the primary interest in a study is the effect of x; while adjusting for x, but the model
does not include x,, then the difference between the effect of interest and the effect
actually estimated is the omitted variable bias, py;.i B>; -

2.5.7 Partial Correlation

A partial correlation describes the association between two variables after adjusting
for other variables. Yule (1907) also showed how to formalize this concept using
residuals. For example, the partial correlation between y and x; while adjusting for
X, and x5 is obtained by (1) finding the residuals for predicting y using x, and x3,
(2) finding the residuals for predicting x; using x, and x3, and then (3) finding the
ordinary correlation between these two sets of residuals.

The squared partial correlation between y and a particular explanatory variable
considers the variability unexplained without that variable and evaluates the pro-
portional reduction in variability after adding it. That is, if RS is the proportional
reduction in error without it, and R? is the value after adding it to the model, then
the squared partial correlation between y and the variable, adjusting for the others, is
(R} = R3)/(1 = RY).

2.6 EXAMPLE: SUMMARIZING THE FIT OF A LINEAR MODEL

Each year the Scottish Hill Runners Association (www . shr . uk . com) publishes a list
of hill races in Scotland for the year. Table 2.3 shows data on the record time for
some of the races (in minutes). Explanatory variables listed are the distance of the
race (in miles) and the cumulative climb (in thousands of feet).

Table 2.3 Record Time to Complete Race Course (in minutes), by Distance of Race
(miles) and Climb (in thousands of feet)

Race Distance Climb Record Time
Greenmantle New Year Dash 2.5 0.650 16.08
Craig Dunain Hill Race 6 0.900 33.65
Ben Rha Hill Race 7.5 0.800 45.60
Ben Lomond Hill Race 8 3.070 62.27
Bens of Jura Fell Race 16 7.500 204.62
Lairig Ghru Fun Run 28 2.100 192.67

Source: From Atkinson (1986), by permission of the Institute of Mathematical Statistics, with correction
by Hoaglin!? (2012). The complete data for 35 races are in the file ScotsRaces.dat at the text website,
www.stat.ufl.edu/~aa/glm/data.

3Thanks to David Hoaglin for showing me his article and this data set.


http://www.shr.uk.com
http://www.stat.ufl.edu/~aa/glm/data
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We suggest that you download all 35 observations from the text website and view
some summary statistics and graphics, such as follows:

> attach(ScotsRaces) # complete data at www.stat.ufl.edu/~aa/glm/data
> matrix (cbind (mean(time), sd(time) ,mean(climb),sd(climb),
+ mean (distance) ,sd(distance)) ,nrow=2)

[,1] [,2] [,3] # e.g., time has mean = 56, std.dev.= 50
[1,] 56.0897 1.8153 7.5286
[2,] 50.3926 1.6192 5.5239
> pairs(~time+climb+distance) # scatterplot matrix for variable pairs

> cor(cbind(climb,distance,time)) # correlation matrix

climb distance time
climb 1.0000 0.6523 0.8327
distance 0.6523 1.0000 0.9431
time 0.8327 0.9431 1.0000

Figure 2.10 is a scatterplot matrix, showing a plot for each pair of variables. It
seems natural that longer races would tend to have greater record times per mile,
so we might expect the record time to be a convex increasing function of distance.
However, the scatterplot relating these variables reveals a strong linear trend, apart
from a single outlier. The scatterplot of record time by climb also shows linearity,
apart from a rather severe outlier discussed below.
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Figure 2.10 Scatterplot matrix for record time, climb, and distance, in Scottish hill races.
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For the ordinary linear model that uses both explanatory variables, without inter-
action, here is basic R output, not showing inferential results that assume normality
for y:

> fit.cd <- lm(time ~ climb + distance)
> summary (fit.cd)
Coefficients:

Estimate Std. Error

(Intercept) -13.1086 2.5608
climb 11.7801 1.2206
distance 6.3510 0.3578

Residual standard error: 8.734 on 32 degrees of freedom # This is s
Multiple R-squared: 0.9717, Adjusted R-squared: 0.970

> cor(time, fitted(fit.cd)) # multiple correlation

[1] 0.9857611

The model fit indicates that, adjusted for climb, the predicted record time increases
by 6.35 minutes for every additional mile of distance. The ‘“Residual standard error”
reported for the model fit is the estimated standard deviation of record times, at fixed
values of climb and distance; that is, it is s = 8.734 minutes. From Section 2.4.1,
the error variance estimate s2 = 76.29 averages the variability of the residuals, with
denominator n — p, which is here df = 35 — 3 = 32. The sample marginal variance
for the record times is si = 2539.42, considerably larger than s2.

From the output, R? = 0.972 indicates a reduction of 97.2% in the sum of squared
errors from using this prediction equation instead of y to predict the record times.
The multiple correlation of R = 1/0.972 = 0.986 equals the correlation between the
35 observed y; and fitted ji; values. The output also reports adjusted R? = 0.970. We
estimate that the conditional variance for record times is only 3% of the marginal
variance.

The standardized residuals (rstandard in R) have an approximate mean of 0 and
standard deviation of 1. A histogram (not shown here) of them or of the raw residuals
exhibits some skew to the right. From Section 2.5, the residuals are orthogonal to the
model fit, and we can check model assumptions by plots of them. Figure 2.11 plots
the standardized residuals against the model-fitted values. We suggest you construct
the plots against the explanatory variables. These plots do not suggest this model’s
lack of fit, but they and the histogram reveal an outlier. This is the record time of
204.62 minutes with fitted value of 176.86 for the Bens of Jura Fell Race, the race
having the greatest climb. For this race, the standardized residual is 4.175 and Cook’s
distance is 4.215, the largest for the 32 observations and 13 times the next largest
value. From Figure 2.10, the Lairig Ghru Fun Run is a severe outlier when record time
is plotted against climb; yet when considered with both climb and distance predictors
it has standardized residual of only 0.66 and Cook’s distance of 0.32. Its record time
of 192.67 minutes seems very large for a climb of 2.1 thousand feet, but not at all
unusual when we take into account that it is the longest race (28 miles). Atkinson
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rstandard(fit.cd)

T T
50 100 150
fitted(fit.cd)

Figure 2.11 Plot of standardized residuals versus fitted values, for linear model predicting
record time using climb and distance.

(1986) presented other diagnostic measures and plots for these data that are beyond
the scope of this book.

> hist (residuals(fit.cd)) # Histogram display of residuals
> quantile (rstandard(fit.cd), <(0,0.25,0.5,0.75,1)
0% 25% 50% 75% 100%
-2.0343433 -0.5684549 0.1302666 0.6630338 4.1751367
> cor(fitted(fit.cd),residuals(fit.cd)) # correlation equals zero
[1] -7.070225e-17
> mean (rstandard(fit.cd)); sd(rstandard(fit.cd))
[1] 0.03068615 # Standardized residuals have mean approximately = 0
[1] 1.105608 # and standard deviation approximately = 1
> plot (distance, rstandard(fit.cd)) # scatterplot display
> plot (fitted(fit.cd), rstandard(fit.cd))
> cooks.distance (fit.cd)
> plot (cooks.distance (fit.cd))

Null deviance: 86340.1 on 34 degrees of freedom
Residual deviance: 2441.3 on 32 degrees of freedom

We introduce the deviance in Chapter 4. For now, we mention that for the normal
linear model, the null deviance is the corrected TSS and the residual deviance is the
SSE. Thus, R? = (86340.1 — 2441.3)/86340.1 = 0.972. The difference 86340.1 —
2441.3 = 83898.8 is the SSR for the model.
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Next, we show ANOVA tables that provide SSE and the sequential SS for each
explanatory variable in the order in which it enters the model, considering both
possible sequences:

> anova(lm(time ~ climb + distance)) # climb entered, then distance
Analysis of Variance Table
Df Sum Sg Mean Sqg

climb 1 59861 59861
distance 1 24038 24038
Residuals 32 2441 76

> anova(lm(time ~ distance + climb)) # distance entered, then climb
Analysis of Variance Table
Df Sum Sg Mean Sg

distance 1 76793 76793
climb 1 7106 7106
Residuals 32 2441 76

The sequential SS values differ substantially according to the order of entering
the explanatory variables into the model, because the correlation is 0.652 between
distance and climb. However, the SSE and SSR values for the full model, and hence
R?, do not depend on this. For each ANOVA table display, SSE = 2441 and SSR =
59861 + 24038 = 76793 + 7106 = §83,899.

One way this model containing only main effects fails is if the effect of distance is
greater when the climb is greater, as seems plausible. To allow the effect of distance
to depend on the climb, we add an interaction term:

> summary (lm(time ~ climb + distance + climb:distance))

Coefficients:

Estimate Std. Error
(Intercept) -0.7672 3.9058
climb 3.7133 2.3647
distance 4.9623 0.4742
climb:distance 0.6598 0.1743

Residual standard error: 7.338 on 31 degrees of freedom
Multiple R-squared: 0.9807, Adjusted R-squared: 0.9788

The effect on record time of a 1 mile increase in distance now changes from
4962 + 0.660(0.3) = 5.16 minutes at the minimum climb of 0.3 thousand feet to
4.962 + 0.660(7.5) = 9.91 minutes at the maximum climb of 7.5 thousand feet.
As R? has increased from 0.972 to 0.981 and adjusted R? from 0.970 to 0.979,
this more informative summary explains about a third of the variability that had
been unexplained by the main effects model. That is, the squared partial correlation,
which summarizes the impact of adding the interaction term, is (0.981 — 0.972)/(1 —
0.972) = 0.32.
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2.7 OPTIMALITY OF LEAST SQUARES AND GENERALIZED
LEAST SQUARES

In this chapter, we have used least squares to estimate parameters in the ordinary
linear model, which assumes independent observations with constant variance. We
next show a criterion by which such estimators are optimal. We then generalize least
squares to permit observations to be correlated and to have nonconstant variance.

2.7.1 The Gauss—Markov Theorem

For the ordinary linear model, least squares provides the best possible estimator of
model parameters, in a certain restricted sense. Like most other results in this chapter,
this one does not require an assumption (such as normality) about the distribution
of the response variable. We express it here for linear combinations a’ B of the
parameters, but then we apply it to the individual parameters.

Gauss—-Markov theorem: Suppose E(y) = Xf, where X has full rank, and
var(y) = o2I. The least squares estimator /§ = (XTX)_IXTy is the best linear
unbiased estimator (BLUE) of B, in this sense: For any al B, of the estimators that
are linear in y and unbiased, @ f has minimum variance.

To prove this, we express a® f in its linear form in y as
a'p=a"X'X)"'x"y =y,

where ¢T = aT(X"X)"1XT. Suppose by is an alternative linear estimator of @™ § that
is unbiased. Then,

Eb—o)y=E®d ) - E("y)=a"p-a"B=0

for all . But this also equals (b —¢)"Xp = [ﬁTXT(b —¢)]" for all B. Therefore'4,
XY —¢)=0.So, (b —¢) is in the error space C(X)*+ = N(XT) for the model. Now,

Var(bTy) = var[cTy + b - c)Ty] = var(cTy) + b —c||’6 + 2cov[cTy, (R c)Ty].
But since XT(b —¢) = 0,
covlely, (b — )Tyl = cTvar@) (b —¢) = 62" X X)"'X (b - ¢) = 0.
Thus, var(bTy) > var(cTy) = var(a® §), with equality if and only if b = c.
From the theorem’s proof, any other linear unbiased estimator of a'f can be

expressed as a’f +d"y where E(d"y) = 0 and d"y is uncorrelated with a™ §; that is,

4Recall that if BTL = ™M for all B, then L = M; here we identify L = X" -c¢)and M = 0.
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the variate added to a” § is like extra noise. The Gauss—Markov theorem extends to
non-full-rank models. Using a generalized inverse of (XTX) in obtaining #,a"f is a
BLUE of an estimable function a’ .

With the added assumption of normality for the distribution of y, a®f is the
minimum variance unbiased estimator (MVUE) of a® B. Here, the restriction is still
unbiasedness, but not linearity in y. This follows from the Lehmann—Scheffé theorem,
which states that a function of a complete, sufficient statistic is the unique MVUE of
its expectation.

Leta have 1 in position j and 0 elsewhere. Then the Gauss—Markov theorem implies
that, for all j, var(ﬁ}) takes minimum value out of all linear unbiased estimators of ﬁ]

At first glance, the Gauss—Markov theorem is impressive, the least squares estima-
tor being declared “best.” However, the restriction to estimators that are both linear
and unbiased is severe. In later chapters, maximum likelihood (ML) estimators for
parameters in non-normal GLMs usually satisfy neither of these properties. Also, in
some cases in Statistics, the best unbiased estimator is not sensible (e.g., see Exer-
cise 2.41). In multivariate settings, Bayesian-like biased estimators often obtain a
marked improvement in mean squared error by shrinking the ML estimate toward a

prior mean'>.

2.7.2 Generalized Least Squares

The ordinary linear model, for which E(y) = X with var(y) = oI, assumes that
the response observations have identical variances and are uncorrelated. In practice,
this is often not plausible. With count data, the variance is typically larger when the
mean is larger. With time series data, observations close together in time are often
highly correlated. With survey data, sampling designs are usually more complex than
simple random sampling, and analysts weight observations so that they receive their
appropriate influence.
A linear model with a more general structure for the covariance matrix is

Ey)=Xp with var(y) =62V,

where V need not be the identity matrix. We next see that ordinary least squares is
still relevant for a linear transformation of y, and the method then corresponds to a
weighted version of least squares on the original scale.

Suppose the model matrix X has full rank and V is a known positive definite
matrix. Then, V can be expressed as V = BBT for a square matrix B that is denoted
by V'/2. This results from using the spectral decomposition for a symmetric matrix
as V = QAQT, where A is a diagonal matrix of the eigenvalues of V and Q is
orthogonal'® with columns that are its eigenvectors, from which V!'/2 = QA!/2QT

I5A classic example is Charles Stein’s famous result that, in estimating a vector of normal means,
the sample mean vector is inadmissible. See Efron and Morris (1975).
16Recall that an orthogonal matrix @ is a square matrix having Q0T = 0TQ = 1.
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using the positive square roots of the eigenvalues. Then, V™! exists, as does v-12 =
OA~1/2QT Let

y =V12y xr=—yol2x,
For these linearly transformed values,
Ey*) =V \2XB=X*B, var(y*) =2V '2yv(v1/H)T = 521
So y* satisfies the ordinary linear model, and we can apply least squares to the trans-

formed values. The sum of squared errors comparing y* and X* g that is minimized
is

O -XBO X =0 -XP)V 'y -XB).
The normal equations [(X*)TX*]18 = (X*)Ty* become
XTv-12yv-12x)p = XTv-12yv-12y  or X"V ly-XB)=0.
From (2.3), the least squares solution for the transformed values is
BGLS - [(X*)TX*]_I(X*)T * (XTV_IX)_IXTV_I_Y. (212)
The estimator ﬁGLS is called the generalized least squares estimator of f. When V is
diagonal and var(y;) = 62 /w; for a known positive weight w;, as in a survey design
that gives more weight to some observations than others, f;;¢ is also referred to
as a weighted least squares estimator. This form of estimator arises in fitting GLMs

(Section 4.5.4).
The generalized least squares estimator has

E(Bory) = X'VIX)'XTVEQR) = B.
Like the OLS estimator, it is unbiased. The covariance matrix is
var(Bgre) = XTVIX)TIXTVv I G2vyv-ix(xTv-1x)~!
=c’ XV X)L
It shares other properties of the ordinary least squares estimator, such as f being the
BLUE estimator of $ and also the maximum likelihood estimator under the normality

assumption.
The fitted values for this more general model are

i=XPgs = XXV IX)"IxTv 1y,
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Here, H = X(XTV_IX)_IXTV_1 plays the role of a hat matrix. In this case, H is
idempotent but need not be symmetric, so it is not a projection matrix as defined in
Section 2.2. However, H is a projection matrix in a more general sense if we instead
define the inner product to be (w,z) = wT V~!z, as motivated by the normal equations
given above. Namely, if w € C(X), say w = Xv, then

Hw =XX"Vvx)"'xTv- 1w
=XX'Vv X))y IXTvlxv=Xv=w

Also, if we C(X)l = N(XT), then for all v € C(X), (w,v) = wlv-ly = 0, so
Hw = 0.

The estimate of o2 in the generalized model with var(y) = 6>V uses the usual
unbiased estimator for the linearly transformed values. If rank(X) = r, the estimate
is

SO =X -XP) -V o)

n—r n—r

Statistical inference for the model parameters can be based directly on the regular
inferences of the next chapter for the ordinary linear model but using the transformed
variables.

2.7.3 Adjustment Using Estimated Heteroscedasticity

This generalization of the model seems straightforward, but we have neglected a
crucial point: In applications, V itself is also often unknown and must be estimated.
Once we have done that, we can use ﬁGLS in (2.12) with V replaced by V. But this
estimator is no longer unbiased nor has an exact formula for the covariance matrix,
which also must be estimated.

Since B¢ is no longer optimal once we have substituted estimated variances,
we could instead use the ordinary least squares estimator, which does not require
estimating the variances and is still unbiased and consistent (i.e., converging in
probability to  as n — o). In doing so, however, we should adapt standard errors to
adjust for the departure from the ordinary linear model assumptions. An important
case (heteroscedasticity) is when V is diagonal. Let var(y;) = o-l.2. Then, with x; as

rowiof X, f = X" X)"1XTy = (XTX)_I ( Z?=1xiTyi)’ SO

var(f) = (X'X)~ (Za )XTX)

Since var(e;) = o2(1 — h;;), we can estimate var(p) by replacing 62 by ?/(1 — hy),
for each i.
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CHAPTER NOTES

Section 2.1: Least Squares Model Fitting

2.1 History: Harter (1974), Plackett (1972), and Stigler (1981, 1986, Chapters 1 and 4)
discussed the history of the least squares method.

2.2 Computing f: For details about how software inverts X" X or uses another method to
compute ﬁ , see McCullagh and Nelder (1989, pp. 81-89), Seber and Lee (2003, Chapter
11), Wood (2006, Chapter 1), or do an Internet search on the Gauss—Jordan elimination
method (e.g., see the Gaussian elimination article in Wikipedia).

Section 2.2: Projections of Data onto Model Spaces

2.3 Geometry: For more on the geometry of least squares for linear models, see Rawlings
et al. (1998, Chapter 6), Taylor (2013), and Wood (2006, Section 1.4).

Section 2.4: Summarizing Variability in a Linear Model

2.4 Correlation measures: The correlation is due to Galton (1888), but later received much
more attention from Karl Pearson, such as in Pearson (1920). Yule (1897), in extending
Galton’s ideas about correlation and regression to multiple variables, introduced the
multiple correlation and partial correlation. Wherry (1931) justified adjusted R* as a
reduced-bias version of R.

Section 2.5: Residuals, Leverage, and Influence

2.5 Influence: For details about influence measures and related diagnostics, see Belsley et al.
(1980), Cook (1977, 1986), Cook and Weisberg (1982), Davison and Tsai (1992), Fox
(2008, Chapters 11-13), and Hoaglin and Welsch (1978).

Section 2.7: Optimality of Least Squares and Generalized Least Squares

2.6 Gauss—-Markov and GLS: The Gauss—Markov theorem is named after results estab-
lished in 1821 by Carl Friedrich Gauss and published in 1912 by the Russian probabilist
Andrei A. Markov. Generalized least squares was introduced by the New Zealand mathe-
matician/statistician A. C. Aitken (1935), and the model with general covariance structure
is often called the Aitken model.

EXERCISES

2.1 For independent observations yy, ...,y, from a probability distribution with
mean p, show that the least squares estimate of y is y.

2.2 In the linear model y = XB + €, suppose ¢; has the Laplace density, f(e) =
(1/2b) exp(—|e|/b). Show that the ML estimate minimizes Y, |y; — p;].

2.3 Consider the least squares fit of the linear model E(y;) = fy + f;x;.
a. Show that f; = [X,(x; — D(; — NI/[X,(x; — %71,
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b. Derive var(f 1)- State the estimated standard error of ﬁl , and discuss how its
magnitude is affected by (i) n, (ii) the variability around the fitted line, (iii)
the sample variance of x. In experiments with control over setting values
of x, what does (iii) suggest about the optimal way to do this?

In the linear model E(y;) = f, + px;, suppose that instead of observing x; we
observe x = x; + u;, where u; is independent of x; for all i and var(y;) = 65.

Analyze the expected impact of this measurement error on ﬁl and r.

In the linear model E(y;) = f + p;x;, consider the fitted line that minimizes
the sum of squared perpendicular distances from the points to the line. Is this
fit invariant to the units of measurement of either variable? Show that such
invariance is a property of the usual least squares fit.

For the model in Section 2.3.4 for the two-way layout, construct a full-rank
model matrix. Show that the normal equations imply that the marginal row
and column sample totals for y equal the row and column totals of the fitted
values.

Refer to the analysis of covariance model u; = f, + px;; + prx;, for quanti-
tative x; and binary x, for two groups, with x;, = 0 for group 1 and x;, = 1 for

group 2. Denote the sample means on x; and y by (x(l) 31 for group 1 and

(x(z) 7)) for group 2. Show that the least squares fit corresponds to parallel
llnes for the two groups, which | pass. through these points. (At the overall X,
the fitted values f, + f,%, and f, + f,%, + f, are called adjusted means of y.)

By the QR decomposition, X can be decomposed as X = QR, where Q consists
of the first p columns of a n X n orthogonal matrix and R is a p X p upper
triangular matrix. Show that the least squares estimate g = R~'QTy.

In an ordinary linear model with two explanatory variables x; and x, having
sample corr(x,;,x,,) > 0, show that the estimated corr(f;, f,) < 0.

For a projection matrix P, for any y in R"” show that Py and y — Py are
orthogonal vectors; that is, the projection is an orthogonal projection.

Prove that I — —1 1T is symmetric and idempotent (i.e., a projection matrix),
and identify the vector to which it projects an arbitrary y.

For a full-rank model matrix X, show that rank(H) = rank(X), where H =
XXTXx)~1xT.

From Exercise 1.17, if A is nonsingular and X* = XA (such as in using a
different parameterization for a factor), then C(X*) = C(X). Show that the
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2.14

2.15

2.16

2.17

2.18

2.19

linear models with the model matrices X and X* have the same hat matrix and
the same fitted values.

For a linear model with full rank X and projection matrix Py, show that
PxX = X and that C(Py) = C(X).

Denote the hat matrix by P, for the null model and H for any linear model that
contains an intercept term. Explain why P,H = HP, = P,. Show this implies
that each row and each column of H sums to 1.

When X does not have full rank, let’s see why Py = XXTX)~XT is invariant

to the choice of generalized inverse. Let G and H be two generalized inverses

of XTX. For an arbitrary v € R", let v = v, + v, with v, = Xb € C(X) for

some b.

a. Show that vTXGX"X =vTX, so that XGX"X = X for any generalized
inverse.

b. Show that XGXTv = XHX ", and thus XGX" is invariant to the choice of
generalized inverse.

When X has less than full rank and we use a generalized inverse to
estimate B, explain why the space of possible least squares solutions f
does not form a vector space. (For a solution, ﬁ, this space is the set of
B = ﬁ + y for all y € N(X); such a shifted vector space is called an affine
space.)

In R?, let W be the vector subspace spanned by (1, 0, 0), that is, the “x-
axis” in three-dimensional space. Specify its orthogonal complement. For any
y in R?, show its orthogonal decomposition y =y; +y, with y;, € W and
Yo S WJ'.

Two vectors that are orthogonal or that have zero correlation are linearly inde-
pendent. However, orthogonal vectors need not be uncorrelated, and uncorre-
lated vectors need not be orthogonal.

a. Show this with two particular pairs of 4 X 1 vectors.

b. Suppose u and v have corr(u,v) = 0. Explain why the centered ver-
sions u™ = (u — ) and v* = (v — ¥) are orthogonal (where, e.g., i denotes
the vector having the mean of the elements of u in each component).
Show that u and v themselves are orthogonal if and only if # =0, v = 0,
or both.

c. If u and v are orthogonal, then explain why they also have corr(u, v) = 0 iff
i =0,v =0, or both. (From (b) and (¢), orthogonality and zero correlation
are equivalent only when # = 0 and/or ¥ = 0. Zero correlation means that
the centered vectors are perpendicular. Centering typically changes the
angle between the two vectors.)
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Suppose that all the parameters in a linear model are orthogonal (Section 2.2.4).

a. When the model contains an intercept term, show that orthogonality implies
that each column in X after the first (for the intercept) has mean 0; i.e.,
each explanatory variable is centered. Thus, based on the previous exercise,
explain why each pair of explanatory variables is uncorrelated.

b. When the explanatory variables for the model are all centered, explain why
the intercept estimate does not change as the variables are added to the
linear predictor. Show that that estimate equals y in each case.

Using the normal equations for a linear model, show that SSE decomposes

into A A A
O-XPy-Xp)=y"y-p'X"y.
Thus, for nested M; and M,,, explain why
SSR(M, | My) = B X\y — By X;y.

In Section 2.3.1 we showed the sum of squares decomposition for the null
model E(y;) = f,i=1,...,n. Suppose you have n = 2 observations.

a. Specify the model space C(X) and its orthogonal complement, and find Py
and (I — Py).

b. Suppose y; =5 and y, = 10. Find f and ji. Show the sum of squares
decomposition, and find s. Sketch a graph that shows y, ji, C(X), and the
projection of y to fi.

In complete contrast to the null model is the saturated model, E(y;) = p;,
i=1,...,n, which has a separate parameter for each observation. For this
model:

a. Specify X, the model space C(X), and its orthogonal complement, and find
Py and (I — Py).

b. Find B and i in terms of y. Find s, and explain why this model is not
sensible for practice.

Verify that the n X n identity matrix I is a projection matrix, and describe the
linear model to which it corresponds.

Section 1.4.2 stated “When X has full rank, g is identifiable, and then all
linear combinations #T B are estimable.” Find a such that E(a"y) = #T g for

all .

For a linear model with p explanatory variables, explain why sample multiple
correlation R = 0 is equivalent to sample corr(y,x*j) =0forj=1,...,p.

In Section 2.5.1 we noted that for linear models containing an intercept
term, corr(ft, e) = 0, and plotting e against j1 helps detect violations of model
assumptions. However, it is not helpful to plot e against y. To see why not,
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2.28

2.29

2.30

231

2.32

2.33

2.34

2.35

using formula (2.5), show that (a) the regression of y on e has slope 1, (b) the
regression of e on y has slope 1 — R2, (¢) corr(y,e) = V1 — R2.

Derive the hat matrix for the centered-data formulation of the linear model
with a single explanatory variable. Explain what factors cause an observation
to have a relatively large leverage.

Show that an observation in a one-way layout has the maximum possible
leverage if it is the only observation for its group.

Consider the leverages for a linear model with full-rank model matrix and p
parameters.

a. Prove that the leverages fall between 0 and 1 and have a mean of p/n.

b. Show how expression (2.10) for i; simplifies when each pair of explanatory
variables is uncorrelated.

a. Give an example of actual variables y, x|, x, for which you would expect
p1 # 0 in the model E(y;) = fy + f;x;; but f; = 0 in the model E(y;) =
Bo + P1x;1 + Prx;p (e.g., perhaps x, is a “lurking variable,” such that the
association of x; with y disappears when we adjust for x,).

b. Letr| = corr(y,x,), r, = corr(y,x,,), and let R be the multiple correlation
with predictors x; and x,. For the case described in (a), explain why you
would expect R to be close to |r,|.

c¢. For the case described in (a), which would you expect to be relatively near
SSR(x1,x,): SSR(x;) or SSR(x,)? Why?

In studying the model for the one-way layout in Section 2.3.2, we found the

projection matrices and sums of squares and constructed the ANOVA table.

a. We did the analysis for a non-full-rank model matrix X. Show that the
simple form for (XTX)~ stated there is in fact a generalized inverse.

b. Verify the corresponding projection matrix Py specified there.

c. Verify that yT(I — Py)y is the within-groups sum of squares stated there.

Refer to the previous exercise. Conduct a similar analysis, but making param-
eters identifiable by setting f, = 0. Specify X and find Py and yT(I — Py)y.

From the previous exercise, setting f; = O results in {ﬁi =y,}. Explain why
imposing only this constraint is inadequate for models with multiple factors,
and a constraint such as #; = 01is more generalizable. Illustrate for the two-way
layout.

Consider the main-effects linear model for the two-way layout with one obser-
vation per cell. Section 2.3.4 stated the projection matrix P, that generates the
treatment means. Find the projection matrix P, that generates the block means.
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For the two-way r X ¢ layout with one observation per cell, find the hat matrix.

In the model for the balanced one-way layout, E(y;) = fy + f; with identi-
cal n;, show that {f;} are orthogonal with f, if we impose the constraint

2.6 =0.

Section 2.4.5 considered the “main effects” model for a balanced 2x2 layout,

showing there is orthogonality between each pair of parameters when we

constrain }; f; = 3,7, = 0.

a. If you instead constrain f; = y; = 0, show that pairs of columns of X are
uncorrelated but not orthogonal.

b. Explain why f, for the coding f; =0 in (a) is identical to 24, for the
coding f; + f, = 0.

c. Explain how the results about constraints and orthogonality generalize if
the model also contains a term §;; to permit interaction between A and B in
their effects on y.

Extend results in Section 2.3.4 to the r X ¢ factorial with n observations per

cell.

a. Express the orthogonal decomposition of y; to include main effects, inter-
action, and residual error.

b. Show how P, generalizes from the matrix given in Section 2.3.4.

c. Show the relevant sum of squares decomposition in an ANOVA table
that also shows the df values. (It may help you to refer to (b) and (c¢) in
Exercise 3.13.)

A genetic association study considers a large number of explanatory variables,
with nearly all expected to have no effect or a very minor effect on the
response. An alternative to the least squares estimator f for the linear model
incorporating those explanatory variables is the null model and its estimator,
B = 0 except for the intercept. Is B unbiased? How does Var(ﬁj) compare to
;/ar(ﬂ})? Explain why ZJ- E(ﬁj - ﬂj)z < Zj E(ﬁj - ﬂj)2 unless 7 is extremely
arge.

The Gauss—Markov theorem shows the best way to form a linear unbiased
estimator in a linear model. Are unbiased estimators always sensible? Consider
a sequence of independent Bernoulli trials with parameter z.

a. Let y be the number of failures before the first success. Show that the
only unbiased estimator (and thus the best unbiased estimator) of z is
Ty)=1if y=0 and T(y) =0 if y > 0. Show that the ML estimator of
z is # = 1/(1 +y). Although biased, is this a more efficient estimator?
Why?

b. For n trials, show there is no unbiased estimator of the logit, log[z /(1 — 7)].
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In some applications, such as regressing annual income on the number of
years of education, the variance of y tends to be larger at higher values of x.

Consider the model E(y;) = fx;, assuming var(y;) = x;6> for unknown 2.

a. Show that the generalized least squares estimator minimizes ) ,(y; —
px;)? /x (i.e., giving more weight to observations with smaller x;) and
has fig g = ¥/%, with var(Bg) = 62 /(T; X))

b. Show that the ordinary least squares estimator is f = (3, x,y,)/(Z; x?) and
has var(f) = oz(zix?)/(zixl?)z.

¢. Show that Var(ﬁ) > var(ﬁGLS).

Write a simple program to simulate data so that when you plot residuals against
x after fitting the bivariate linear model E(y;) = f + f;x;, the plot shows
inadequacy of (a) the linear predictor, (b) the constant variance assumption.

Exercise 1.21 concerned a study comparing forced expiratory volume (y =
fevl in the data file FEV . dat at the text website) for three drugs, adjusting for
a baseline measurement. For the R output shown, using notation you define,
state the model that was fitted, and interpret all results shown.

> summary (lm(fevl ~ base + factor (drug)))
Estimate Std. Error

(Intercept) 1.1139 0.2999
base 0.8900 0.1063
factor (drug)b 0.2181 0.1375
factor (drug)p -0.6448 0.1376

Residual standard error: 0.4764 on 68 degrees of freedom
Multiple R-squared: 0.6266, Adjusted R-squared: 0.6101
> anova (lm(fevl ~ base + factor(drug)))
Analysis of Variance Table

Df Sum Sg Mean Sg

base 1 16.2343 16.2343

factor (drug) 2 9.6629 4.8315

Residuals 68 15.4323 0.2269

> quantile (rstandard(lm(fevl ~ base + factor (drug))))
0% 25% 50% 75% 100%

-2.0139 -0.7312 -0.1870 0.6341 2.4772

A data set shown partly in Table 2.4 and fully available in the Optics. dat file
at the text website is taken from a math education graduate student research
project. For the optics module in a high school freshman physical science
class, the randomized study compared two instruction methods (1 = model
building inquiry, 0 = traditional scientific). The response variable was an
optics post-test score. Other explanatory variables were an optics pre-test
score, gender (1 = female, 0 = male), OAA (Ohio Achievement Assessment)
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reading score, OAA science score, attendance for optics module (number of

days), and individualized education program (IEP) for student with disabilities

(1 =yes, 0 =no).

a. Fit the linear model with instruction type, pre-test score, and attendance as
explanatory variables. Summarize and interpret the software output.

b. Find and interpret diagnostics, including residual plots and measures of
influence, for this model.

Table 2.4 Partial Optics Instruction Data” for Exercise 2.45

ID Post Inst Pre Gender Reading Science Attend 1IEP
1 50 1 50 0 368 339 14 0
2 67 1 50 0 372 389 11 0
37 55 0 42 1 385 373 7 0

Source: Thanks to Harry Khamis, Wright State University, Statistical Consulting Center, for these data,
provided with client permission. Complete data (n = 37) are in the file Optics.dat at www.stat.ufl
.edu/~aa/glm/data.

2.46

2.47

248

Download from the text website the data file Crabs . dat introduced in Section
1.5.1. Fit the linear model with both weight and color as explanatory variables
for the number of satellites for each crab, without interaction, treating color
as qualitative. Summarize and interpret the software output, including the
prediction equation, error variance, R?, adjusted R?, and multiple correlation.
Plot the residuals against the fitted values for the model, and interpret. What
explains the lower nearly straight-line boundary? By contrast, what residual
pattern would you expect if the response variable is normal and the linear
model holds with constant variance?

The horseshoe crab dataset!” crabs3.dat at www.stat.ufl.edu/~aa
/glm/data collects several variables for female horseshoe crabs that have
males attached during mating, over several years at Seahorse Key, Florida.
Use linear modeling to describe the relation between y = attached male’s
carapace width (AMCW) and x; = female’s carapace width (FCW), x, =
female’s color (Fcolor, where 1 = light, 3 = medium, 5 = dark), and x; =
female’s surface condition (Fsurf, where lower scores represent better condi-
tion). Summarize and interpret the output, including the prediction equation,
error variance, R2, adjusted R2, multiple correlation, and model diagnostics.

Refer to the anorexia study in Exercise 1.24. For the model fitted there, interpret
the output relating to predictive power, and check the model using residuals
and influence measures. Summarize your findings.

17Thanks to Jane Brockmann for making these data available.
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2.49 In later chapters, we use functions in the useful R package, veaMm. In that
package, the venice data set contains annual data between 1931 and 1981 on
the annual maximum sea level (variable r1) in Venice. Analyze the relation
between year and maximum sea level. Summarize results in a two-page report,
with software output as an appendix. (An alternative to least squares uses
ML with a distribution suitable for modeling extremes, as in Davison (2003,
p. 475).)



CHAPTER 3

Normal Linear Models: Statistical
Inference

Chapter 2 introduced least squares fitting of ordinary linear models. For n independent
observations y = (yy, ..., y,)T, with g = (4, ..., pu,)" for u; = E(y;) and a model
matrix X and parameter vector f, this model states that

u=Xp with V =var(y) ="l

We now add to this model the assumption that {y;} have normal distributions. The
model is then the normal linear model. This chapter presents the foundations of
statistical inference about the parameters of the normal linear model.

We begin this chapter by reviewing relevant distribution theory for normal linear
models. Quadratic forms incorporating normally distributed response variables and
projection matrices generate chi-squared distributions. One such result, Cochran’s
theorem, is the basis of significance tests about f in the normal linear model. Section
3.2 shows how the tests use the chi-squared quadratic forms to construct test statistics
having F distributions. A useful general result about comparing two nested models
is also derived as a likelihood-ratio test. Section 3.3 presents confidence intervals
for elements of B and expected responses as well as prediction intervals for future
observations. Following an example in Section 3.4, Section 3.5 presents methods for
making multiple inferences with a fixed overall error rate, such as multiple comparison
methods for constructing simultaneous confidence intervals for differences between
all pairs of a set of means. Without the normality assumption, the exact inference
methods of this chapter apply to the ordinary linear model in an approximate manner
for large n.

Foundations of Linear and Generalized Linear Models, First Edition. Alan Agresti.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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3.1 DISTRIBUTION THEORY FOR NORMAL VARIATES

Statistical inference for normal linear models uses sampling distributions derived
from quadratic forms with multivariate normal random variables. We now review the
multivariate normal distribution and related sampling distributions.

3.1.1 Multivariate Normal Distribution

Let N(u, V) denote the multivariate normal distribution with mean u and covariance
matrix V. If y = (yy, ..., y,)! has this distribution and V is positive definite, then the
probability density function (pdf) is

S 1 -
f =72V Zexp |-y =V - W),
where | V| denotes the determinant of V. Here are a few properties, wheny ~ N(u, V).

e Ifx=Ay+b,thenx ~ NAu + b, AVAT).
¢ Suppose that y partitions as

Vi V
y=<yl>,with/1=<”1>andV=< i 12>.
Y2 1) Var Vo
The marginal distribution of y,, is N(u,, V,,), a = 1,2. The conditional distri-
bution

(31 1y) ~N|p + V12V521()’2 — 1), Vi — V12V521V21] .

In addition, y; and y, are independent if and only if V{, = 0.
* From the previous property, if V = 621, then y; ~ N(u;,6?) and {y;} are inde-
pendent.

The normal linear model assumes thaty ~ N(u, V) with V = ¢I. The least squares
estimator f and the residuals e also have multivariate normal distributions, since they
are linear functions of y, but their elements are typically correlated. This estimator f§
is also the maximum likelihood (ML) estimator under the normality assumption (as
we showed in Section 2.1).

3.1.2 Chi-Squared, F, and ¢ Distributions

Let ;(g denote a chi-squared distribution with p degrees of freedom (df). A chi-
squared random variable is nonnegative with mean = df and variance = 2(df). Its
distribution! is skewed to the right but becomes more bell-shaped as df increases.

I'The pdf is the special case of the gamma distribution pdf (4.29) with shape parameter k = df /2.
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Recall that when yy, ..., yp are independent standard normal random variables,
Zle yl.2 ~ ;{3. In particular, if y ~ N(0, 1), then y> ~ ;(12. More generally

¢ If a p-dimensional random variable y ~ N(u, V) with V nonsingular of rank p,
then

x=-pV3io-w~z,.
Exercise 3.1 outlines a proof.

® Ifz~N(0,1)and x ~ )([f, with x and z independent, then

<
~t.,

the 7 distribution with df = p.

The ¢ distribution is symmetric around 0 with variance = df /(df — 2) when df > 2.
The term x/p in the denominator is a mean of p independent squared N(0, 1) random
variables, so as p — oo it converges in probability to their expected value of 1.
Therefore, the ¢ distribution converges to a N(0, 1) distribution as df increases.

Here is a classic way the ¢ distribution occurs for independent responses yy, ..., ¥,
from a N(u, o2) distribution with sample mean ¥ and sample variance s: For testing
Hy: u = g, the test statistic z = \/ﬁ(j} — Up)/o has the N(0,1) null distribution.
Also, s?/c% is a ;(3_1 variate x = (n — 1)s> /62 divided by its df. Since  and s? are
independent for independent observations from a normal distribution, under H,

4 _Y—Ho

VXIti—1)  s/y/n

Larger values of |f| provide stronger evidence against H,,.

=

~ 1

n—1-

o Ifx ~ )(5 and y ~ 15, with x and y independent, then

Xp

/g 7"

the F distribution with df; = p and df, = q.

An F random variable takes nonnegative values. When df, > 2, it has mean =
df,/(df — 2), approximately 1 for large df,. We shall use this distribution for testing
hypotheses in ANOVA and regression by taking a ratio of independent mean squares.
For a t random variable, ¢ has the F distribution with df; = 1 and df, equal to the df
for that 1.
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3.1.3 Noncentral Distributions

In significance testing, to analyze the behavior of test statistics when null hypotheses
are false, we use noncentral sampling distributions that occur under parameter values
from the alternative hypothesis. Such distributions determine the power of a test
(i.e., the probability of rejecting H)), which can be analyzed as a function of the
actual parameter value. When observations have a multivariate normal distribution,
sampling distributions in such non-null cases contain the ones just summarized as
special cases.

Let ;([i , denote a noncentral chi-squared distribution with df = p and with non-

centrality parameter A. This is the distribution of x = Zle in in which {y;} are
independent with y; ~ N(u;, 1) and A = Y7 | u?. For this distribution?, E(x) = p + 4
and var(x) = 2(p + 24). The ordinary (central) chi-squared distribution is the special
case with A = 0.

¢ If a p-dimensional random variable y ~ N(u, V) with V nonsingular of rank p,
then

by =yTV_1y ~ )(13,/1 with 4= yTV_ly.

The construction of the noncentral chi-squared from a sum of squared independent
N(u;, 1) random variables results when V = 1.

e Ifz~N(u,1)and x ~ ;(5, with x and z independent, then

4 ~t

\/)% Y27

the noncentral ¢ distribution with df = p and noncentrality u.

=

The noncentral ¢ distribution is unimodal, but skewed in the direction of the sign
of y=E(z). When p> 1 and u # 0, its mean E(t) ~ [1 —3/(4p — 1)]~' 4, which
is near u but slightly larger in absolute value. For large p, the distribution of ¢ is
approximately the N(u, 1) distribution.

o If x ~ )(j Landy ~ ;(5, with x and y independent, then

x/p
y/q

~

g A
the noncentral F distribution with df; = p, df; = ¢, and noncentrality A.

2Here is an alternative way to define noncentrality: Let z ~ Poisson(¢) and (x | z) ~ )(3”7. Then

unconditionally x ~ ){5 b This noncentrality ¢ relates to the noncentrality 4 we defined by ¢p = 4/2.
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For large df,, the noncentral F has mean approximately 1 + A/df;, which increases
in A from the approximate mean of 1 for the central case.

As reality deviates farther from a particular null hypothesis, the noncentrality 4
increases. The noncentral chi-squared and noncentral F distributions are stochasti-
cally increasing in A. That is, evaluated at any positive value, the cumulative distri-
bution function (cdf) decreases as 4 increases, so values of the statistic tend to be
larger.

3.1.4 Normal Quadratic Forms with Projection Matrices Are Chi-Squared

Two results about quadratic forms involving normal random variables are espe-
cially useful for statistical inference with normal linear models. The first generalizes
the above quadratic form result for the noncentral chi-squared, which follows with
A=Vl

e Supposey ~ N(u,V) and A is a symmetric matrix. Then,

T 2 N
y Ay ~ Xy Tay & AV is idempotent of rank r.

For the normal linear model, the n independent observations y ~ N(u, 62I) with
u=Xp,andsoy/oc ~ N(u/o,I). By this result, if P is a projection matrix (which is

symmetric and idempotent) with rank 7, then yTPy/c? ~ ;(Z”T Pujor Applying the
r, (3
result with the standardized normal variables (y — u)/o ~ N(0,I), we have

Normal quadratic form with projection matrix and chi-squared: Suppose
y ~ N(u, 0'21) and P is symmetric. Then,

é(v - w'Py—p) ~ ;(rz & Pis a projection matrix of rank r.

Cochran (1934) showed? this result, which also provides an interpretation for degrees
of freedom.

* Since the df for the chi-squared distribution of a quadratic form with a normal
linear model equals the rank of P, degrees of freedom represent the dimension
of the vector subspace to which P projects.

The following key result also follows from Cochran (1934), building on the first
result.

3From Cochran’s result I, since a symmetric matrix whose eigenvalues are 0 and 1 is idempotent.
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Cochran’s theorem: Suppose n observations y ~ N(u,s2I) and P,,...P,
are projection matrices having ), P; = I. Then, {yTP,y} are independent and

(ﬁ)yTPiy ~ ){rz,-,/l,- where r; = rank(P;) and A; = #yTPiﬂ, i=1,...,k, with

Ziri=l’l.

If we replace y by (y — u) in the quadratic forms, we obtain central chi-squared
distributions (4; = 0). This result is the basis of significance tests for parameters in
normal linear models. The proof of the independence result shows that all pairs of
projection matrices in this decomposition satisfy P;P; = 0.

3.1.5 Proof of Cochran’s Theorem

We next show a proof* of Cochran’s theorem. You may wish to skip these techni-
cal details for now and go to the next section, which uses this result to construct
significance tests for the normal linear model.

We first show that if y ~ N(u, 62I) and P is a projection matrix having rank r, then
(ﬁ) yTPy ~ ;(z L with 4 = ﬁ u Pu. Since P is symmetric and idempotent with rank
r, its eigenvalues are 1 (r times) and O (n — r times). By the spectral decomposition
of a symmetric matrix, we can express P = QAQT, where A is a diagonal matrix
of (1, 1,..., 1, 0,..., 0), the eigenvalues of P, and Q is an orthogonal matrix with
columns that are the eigenvectors of P. Let z = Q'y/o. Then, z ~ N(QT /o, 1),
and (Uiz)yTPy =z"Az = Y_, z7. Since each z; is normal with standard deviation
LY, z? has a noncentral chi-squared distribution with df = r and noncentrality
parameter

r

YIEGE = [EA2IEN)] = (= ) IAQTu"IAQ" k]

i=1
1 1
= (5)u'erQ™u= () u'Pu
Now we consider k quadratic forms with k projection matrices that are a decom-
position of I, the n X n identity matrix. The rank of a projection matrix is its trace, so
Y. ri = X trace(P;) = trace(}; P;) = trace(I) = n. We apply the spectral decompo-

sition to each projection matrix, with P; = QiAin.T, where A, is a diagonal matrix of
(1,1,...,1,0,...,0) with r; entries that are 1. By the form of A, this is identical to

P, = QiI,[_Ql.T = QiQiT, where Q; is a n X r; matrix of the first r; columns of Q,. Note
that QZTQ, =1I,. We stack the {Q;} together as
Q=10 : 0, : ~ : Ol

4This proof is based on one in Monahan (2008, pp. 113-114).
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for which
~ ~T ~ ~T
QQT =Q1Q1 + "'+Qka =P+ +P =1,

Thus, @ is an orthogonal n X n matrix and also QTQ = I, and QlTQj =0fori #j. So

0"y ~ N(Q" u, 62I), and its components {Q?y} are independent, as are {||Q;Fy||2 =
= =T . » ~Tx ~T

y'0,0;y =y'Py}. Note® also that for i # j, P,P; = 0,0, 0,0; =0.

3.2 SIGNIFICANCE TESTS FOR NORMAL LINEAR MODELS

We now use Cochran’s theorem to derive fundamental significance tests for the normal
linear model. We first revisit the one-way layout and then present inference for the
more general context of comparing two nested normal linear models.

3.2.1 Example: ANOVA for the One-Way Layout

For the one-way layout (introduced in Sections 1.3.3 and 2.3.2), let y;; denote obser-
vationjin group i, fori =1,...,candj=1,...,n;, withn = Zi n;. The observations
are assumed to be independent. The linear predictor for y; = E( Vij) is

E(yy) = fo + By
with a constraint such as f; = 0. We construct a significance test of Hy: pt; = «++ = .,
assuming that {y;; ~ N(u;, 6%)}. Under H,, which is equivalently Hy: f; = - = f,,

the model simplifies to the null model, E(y;;) = f§, for all i and j.
The projection matrix Py for this model is a block-diagonal matrix with compo-
nents %1,11_1;, shown in Equation 2.6 of Section 2.3.2. Let P = }llnlz denote the

projection matrix for the null model. We use the decomposition

Each of the three components is a projection matrix, so we can apply Cochran’s
theorem with P; = P, P, = Py — P, and P; = I — Py. Theranks of the components,
which equal their traces, are 1, ¢ — 1, and n — c.

From Section 2.3.3, the corrected total sum of squares (TSS) decomposes into two
parts,

c c n
y Py ~Pyy = 2 n(3; =97y d—Pyy= z Z(yij -5
i=1 i=1 j=1

5The result that P;P; =0 is also a special case of the stronger result about the decomposition of
projection matrices stated at the end of Section 2.1.1.
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the “between-groups” and “within-groups” sums of squares. By Cochran’s theorem,

c

1 N - _ 1o
S LG =D~ gl with d= (P = P,

i=1 | -
=\2 2
; lz Z(yij_yi) ] ~ Xy

i=1 j=1

and the quadratic forms are independent. The second one has noncentrality 0 because
U —Py)u = p"(u—Pyu) = u"0 = 0. As a consequence, the test statistic

_ T mOi— /-
Y Xy =32 (o)

c—1,n—c,A*

Using the expressions for Py and Py, you can verify that g"Pyu = Y7 nu?
and nTPOy = nji%, where ji = Y. nii;/n. Thus, the noncentrality simplifies to 4 =
(% Dy miu; — fi)>. Under Hy, A =0, and the F test statistic has an F distribution
with df; = ¢ — 1 and df, = n — c. Larger F values are more contradictory to Hy, so
the P-value is the right-tail probability from that distribution above the observed test
statistic value, F,,. When H,) is false, 4 and the power of the test increase as {n;}
increase and as the variability in {y;} increases.

This significance test for the one-way layout is known as (one-way) analysis
of variance, due to R. A. Fisher (1925). To complete the ANOVA table shown in
Table 2.1, we include mean squares, which are ratios of the two SS values to their
df values, and the F statistic as the ratio of those mean squares. The table has the
form shown in Table 3.1, and would also include the P-value, Py (F > F,). The
first line refers to the null model, which specifies a common mean for all groups.
Often, the ANOVA table does not show this line, essentially assuming the intercept
is in the model. The table then shows the total sum of squares after subtracting
ny?, giving the corrected total sum of squares, TSS = > Zj( Yij —5)? based on
df =n—-1.

Table 3.1 Complete ANOVA Table for the Normal Linear Model for the One-Way
Layout

Source df Sum of Squares Mean Square F s
Mean 1 ny?
- 5 — 7 ZimGi=? i niGi=9*/(e=1)
Group c—1 23 =) = %S g o
- ¥ Xy
2 i j
Error n—c X 2 (v =) ==

Total n Z,Zl 2;11 Y 3
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3.2.2 Comparing Two Nested Normal Linear Models

The model-building process often deals with comparing a model to a more complex
one that has additional parameters or to a simpler one that has fewer parameters. An
example of the first type is analyzing whether to add interaction terms to a model
containing only main effects. An example of the second type is testing whether
sufficiently strong evidence exists to keep a term in the model. Denote the simpler
model by M, and the more complex model by M. Denote the numbers of parameters
by py for M, and p,; for M, when both model matrices have full rank. We now
construct a test of the null hypothesis that M, holds against the alternative hypothesis
that M, holds.

Denote the projection matrices for the two models by P, and P;. The decomposi-
tion using projection matrices

I=Py+@P —-Py))+Ud-P))
corresponds to the orthogonal decomposition of the data as
y=Poy+ P —Pyy+UT—-Py.

Here Pyy = jiy and Py = fi; are the fitted values for the two models. The corre-
sponding sum-of-squares decomposition is

vy =y"Py +y" (P, - Pyy +y"I - P))y.

From Sections 2.4.1 and 2.4.2, yT(I —P)y =yT(I - Pl)T(I —-P)y= zi(y,» - ﬁ“)z
is the residual sum of squares for M, which we denote by SSE,. Likewise,

YIPy =~ Poy =yTd —Poly —yTd —Py)y
= Z()’i — i) — Z(yi — Aiy))* = SSEq — SSE;.
i i
Since (P; — Py) is a projection matrix, this difference also equals
J’T(Pl —Pyy =yT(P1 —Po)T(P1 —Pyy = (ja; - ﬁo)T(ﬁl - ).
So SSEq — SSE; = Y,(f; — fi0)*> = SSR(M, | M), the difference between the
regression SS values for M| and M,,.
Now I — P has rank n — p, since trace(I — P|) = trace(I) — trace(P;) and P has

full rank p,. Likewise, P| — P has rank p; — p,,. Under H), by Cochran’s theorem,

SSE,—SSE; SSE,
o2 " Ani-no o2 An-pp
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and these are independent. Here, under H, the noncentralities of the two chi-squared
variates are

u' P —Pyu=0, p'd-PHu=0

since for p satisfying M, P,y = Pypu = . It follows that, under H), the test statistic

_ (SSE, — SSE)/(p1 — po)
SSE, /(n—py)

has an F distribution with df} =p; —p, and df, =n—p;. The denominator
SSE,/(n — p;) is the error mean square, which is the s?> estimator of ¢ for M.
Larger differences in SSE values, and larger values of the F test statistic, provide
stronger evidence against Hyy. The P-value is Py (F > F).

@3.1)

3.2.3 Likelihood-Ratio Test Comparing Models

The test comparing two nested normal linear models can also be derived as a
likelihood-ratio test®. For the normal linear model with model matrix X, the like-
lihood function is

f(ﬂ,6)=< L ) exp [-(1/26%)y — XB)"(vy - XPB)| .
o\ 2x

The log-likelihood function is

L(B, o) = —(n/2)log(2x) — nlog(c) — (y — XB) (v — XB) /257

From Section 2.1.1, differentiating with respect to # yields the normal equations and
the least squares estimate, . Differentiating with respect to ¢ yields

_n, 0-XPp'y-Xp)
6L(ﬁ,0')/00'——;+ .

o3
Setting this equal to 0 and solving yields the ML estimator

2 _0-XP'o-Xp _SSE

n n

This estimator is the multiple (n — p)/n of the unbiased estimator, which is s* =
[ X:(yi = 4))*] /(n = p). The maximized likelihood function simplifies to

(o= —=) .
6\2rx

%The likelihood-ratio test is introduced in a more general context, for GLMs, in Section 4.3.1.
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Now, for testing M, against M, let 6'(2) and 6'% denote the two ML variance
estimates. The ratio of the maximized likelihood functions is

N n/2
supy, ¢ (B, 0) B 012 /
supy, (B, o) —\ 82

6-0
_(SSEN"P_ (|, SSEa=SSENNTV_ (1 pi—po T
SSE, SSE, n—p

for the F test statistic (3.1) derived above. A small value of the likelihood ratio, and
thus strong evidence against H,,, corresponds to a large value of the F statistic.

3.2.4 Example: Test That All Effects in a Normal Linear Model Equal Zero

In an important special case of the test comparing two nested normal linear models,
the simpler model M|, is the null model, E(y;) = f,, and M| has a set of explanatory
variables’,

E(y) = Po+ Bixip + -+ BpiXip_y-

Comparing the models corresponds to testing the global null hypothesis Hy: f; =
o=, =0.

The projection matrix for M, is Py = %IIT. The sum-of-squares decomposition
corresponding to the orthogonal decomposition

y=Py+@P, —Pyy+dT—-P)y
yields the ANOVA table shown in Table 3.2, where {/;} are the fitted values for the

full model. The F test statistic, which is the ratio of the mean squares, has df; = p — 1
and dfy =n —p.

Table 3.2 ANOVA Table for Testing That All Effects in a Normal Linear Model Equal
Zero

Source Projection Matrix daf Sum of Squares Mean Square
Intercept P, = ﬁllT 1 Y'Py = ny?
(hi—v)2
Regression P, -P, p—1  y'(P,—Pyy=Y.(f;— 57> th:l%
(vi=)?
Error I1-P, n—p Yd-P)y=Y(y— &> El(’l“T"’)
Total 1 n Yy

TWe use p — 1 for the highest index, so p is, as usual, the number of model parameters.
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The one-way ANOVA test for ¢ means constructed in Section 3.2.1 results when
p = c and the explanatory variables are indicator variables for ¢ — 1 of the ¢ groups.
Testing Hy: f; = -+ = f._; = 0 is then equivalent to testing Hy: yty = +-- = .. The
fitted value fi;; is then y;.

3.2.5 Non-null Behavior of F Statistic Comparing Nested Models

The numerator of the F test statistic for comparing two models summarizes the
sample information about how much better M, fits than M,,. A relatively large value
for SSEy — SSE; = || j1; — flOHZ yields a large F value. If M| holds but M, does not,
how large can we expect || ft; — ﬁol|2 and the F test statistic to be?

When M; holds, E(y) = p;. Since (P; — P,)) is symmetric and idempotent,

Ellft; — fioll* = ENPy = Pyyll* = Ely" (P, — Py)y].

Using the result (2.7) shown in Section 2.4.1 for V = var(y) and a matrix A that
E(yTAy) = trace(AV) + yTA M, we have (with V = o2I)

E[y" (P, — Py)y] = trace[(P; — Py)c*I] + u] (P, — Po)u,
= o?[rank(P)) — rank(Py)] + | (Py — Py)" (P, — Po)p; .

Let puy = Pyu, denote the projection of the true mean vector onto the model space
for M. Then, with full-rank model matrices, the numerator of the F test statistic has
expected value
Ao 12 PRV
E [”ﬂl ol ] N Iy — moll .
P1—=Po P1—=Po
The chi-squared component of the numerator of the F statistic is

a2
Il — foll 2
o2 A1y

with noncentrality 4 = ||u; — pol|*/c>.

Next, for this non-null case, consider the denominator of the F statistic, which is
the estimate of the error variance ¢ for model M. Since

Ely - iy |I* = Ely"I - Py)y] = trace[(I — P))o*I] + u] (I — P\,

and since (I — P)pu; =0, this expected sum of squares equals (n — pl)az. Thus,
regardless of whether H is true, the F denominator has

a2
E[Ily ulll]:&
n—=p
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Under H,, for testing M, against M, u; = u, and the expected value of the
numerator mean square is also o2. Then the F test statistic is a ratio of two unbiased
estimators of ¢2. The ratio of expectations equals 1, and when n — p; (and hence df;)
is large, this is also the approximate expected value of the F test statistic itself. That s,
under H,, we expect to observe F' values near 1, within limits of sampling variability.
Under the alternative, the ratio of the expected value of the numerator to the expected
value of the denominator is 1+ || — poll*/(p; — po)o?. The noncentrality of the
F test is the noncentrality of the numerator chi-squared, A = ||u; — p||>/o?. The
power of the F test increases as n increases, since then y, and u; contain more
elements that contribute to the numerator sum of squares in 4.

3.2.6 Expected Mean Squares and Power for One-Way ANOVA

To illustrate expected non-null behavior, consider the one-way ANOVA F test for ¢
groups, derived in Section 3.2.1. For it, the expected value of the numerator mean
square is

E Iy = Bl —E 2?:1”1'671‘ -9 — o4 2;1 ni(u; — i)
P1—=Po c—1 c—1 )

Suppose the ANOVA compares ¢ = 3 groups with n; = 10 observations per group.
The F test statistic for Hy: uy = pp = ps hasdfy =2anddf, =n—-3 =27.LetF,
denote the g quantile of the central F distribution with df; = a and df, = b. Consider
the relatively large effects y; — yy = u, — 3 = 0. The noncentrality (derived in
Section 3.2.1) of 4 = ﬁ ¥ ni(u; — fi)* then equals 20. The power of the F test with
size @ = 0.05 is the probability that a noncentral F random variable with df; = 2,df, =
27, and A = 20 exceeds F g5 5 »7- Using R, we find that the power is quite high, 0.973:

> gf(0.95, 2, 27) # 0.95 quantile of F dist. with dfl = 2, df2 = 27
[1] 3.354131

> 1 - pf(3.354131, 2, 27, 20) # right-tail prob. for noncentral F
[1] 0.9732551

In planning a study, it is sensible to find the power for various n for a variety of
plausible effect sizes.

3.2.7 Testing a General Linear Hypothesis

In practice, nearly all hypotheses tested about effects in linear models can be expressed
as Hy: Ap =0 for a £ X p matrix of constants A and a vector of estimable quanti-
ties AB. A special case is the example just considered of Hy: pj = - =, ; =0
for comparing a full model to the null model. Another example is a test for a
contrast or set of contrasts, such as Hy: f; — f; = 0 for comparing means j and k in a
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one-way layout (see Section 3.4.5). The form H,: A = 0 is called the general linear
hypothesis.

Suppose X and A are full rank, so the hypotheses contain no redundancies. That
is, Hy imposes ¢ independent constraints on an identifiable f. The estimator A of
Ap is the BLUE, and it is maximum likelihood under the assumption of normality
for y. As a vector of ¢ linear transformations of 8, Af has a N[AS, AXTX)"'ATs2]
distribution. The quadratic form

A - 0T [AXTX) AT (Af - 0)

compares the estimate A of A to its H,, value of 0, relative to the inverse covari-
ance matrix of Af. Under H,, it has a chi-squared distribution with df = #. By the
orthogonality of the model space and the error space, we can form an F test statistic
(with df| = ¢ and df; = n — p) from the ratio of chi-squared variates divided by their
df values,

AP AXTX) AT Ap/e
F= SSE/(1—p)

)

where 62 has canceled from the numerator and denominator.

The restriction Af = 0 implies a new model that is a special case M, of the
original model. In fact, the F statistic just derived is identical to the F' statistic
(3.1) for comparing the full model to the special case M. So, how can we express
the original model and the constraints Af =0 as an equivalent model M,? It is
the model having model matrix X, found as follows. Let U be a matrix such that
C(U) is the orthogonal complement of C(AT). That is, B is such that A = 0 if and
only if B € C(U). Then B = Uy for some vector y. But under this restriction the
original model E(y) = X simplifies to E(y) = XUy = X,y for X, = XU. Also, M,
is a simpler model than the original model, with C(X;)) contained in C(X), since
any vector that is a linear combination of columns of X, (e.g., X(y) is also a linear
combination of columns of X (e.g., X with = Uy).

In the F statistic for comparing the two models, it can be shown® that

SSE, — SSE, = (AR [AXTX)'AT] ' AB.

When we developed the F test for comparing nested models in Section 3.2.2, we
observed that SSE, — SSE, was merely y (P, — P,))y based on the projection matrices
for the two models. For the general linear hypothesis, what is the difference (P — P,)
projection matrix? Using the least squares solution for ﬁ,

SSE, — SSE; = (AR)T [AX™X)~1AT| ' Af
= yTXXTX) AT [AXTX) AT AT X)X Ty
=y'A@TA)~'ATy,

8See Christensen (2011, Section 3.3) or Monahan (2008, Section 6.3-6.5).
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where A = X(XTX)"'AT (Doss 2010). The projection matrix (P, —P) is
A(ATA)"1AT for A as just defined.

A yet more general form of the general linear hypothesis is Hy: Ap =c for
constants ¢. In the F test statistic, we then merely replace (Af — 0) by (A —c).
This more general H, is useful for inverting significance tests to construct confidence
regions (Exercise 3.18). Another useful application is noninferiority testing in drug
research, which analyzes whether the effect of a new drug falls within some acceptable
margin c of the effect for an established drug.

3.2.8 Example: Testing That a Single Model Parameter Equals Zero

A common inference in linear modeling is testing H: f; = O that a single explanatory
variable in the model can be dropped. This is the special case of Hy: Af = 0 that
substitutes for A a row vector 4 with a multiple 1 of §; and 0 elsewhere. Since the

denominator of the F test statistic for comparing two nested models is s (the error
mean square) for the full model, the F test statistic then simplifies to

(SSEy—SSEp/1_ GATAXTX)AT TN Ap B
~ SSE,/(n-p) 52 - (SE,')Z’

where SEj denotes the standard error of ﬁj, the square of which is 52 times the element

from the corresponding row and column of (XTX)~!. This test statistic has dfi =1
anddf, =n—p.

In the first ratio in this expression, (SSE;—SSE,) is the partial sum of squares
explained by adding term j to the linear predictor, once the other terms are already
there. The last ratio is F = 2, where 7 = /?1 / (SEJ-). The null distribution of this ¢
statistic is the ¢ distribution with df = n — p.

3.2.9 Testing Terms in an Unbalanced Factorial ANOVA

In Section 3.2.1 (Table 3.1) we showed sum-of-squares formulas for the sources in
the one-way layout. Analogous relatively simple formulas occur in factorial ANOVA
with two or more factors, in the balanced case of equal sample sizes in the cells (e.g.,
Exercise 3.13). Unbalanced cases do not yield such formulas.

Consider, for example, the two-way layout in which y;; is observation & in the cell
for level i of factor A and level j of factor B, fori =1, ...,r,j=1,...,c,k=1,... i
where n;; varies with i and j. The model with linear predictor

E(yj) =Po+ bi+v;+6;

permits interaction between A and B in their effects on y. To achieve identifiability, we
can express this as a linear model in which r — 1 of {;} are coefficients of indicator
variables for all except one level of A, ¢ — 1 of {yj} are coefficients of indicator
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variables for all except one level of B, and (r — 1)(c — 1) of {5ij} are coefficients of
products of the » — 1 indicator variables for A with the ¢ — 1 indicator variables for
B. With unbalanced data, a simple formula no longer occurs for the partial sum of
squares explained by the interaction terms, or when those terms are not in the model,
by the main effects. However, it is straightforward to fit the full model, fit a reduced
model such as with {51‘]' = 0}, and then conduct the F test to compare these two nested
models.

More complex models have several factors as well as higher-order interactions.
Moreover, some combinations of the factors may have no observations, or the levels of
some factors may be nested in levels of other factors, and the model may also contain
quantitative explanatory variables. It may not even be obvious how to constrain
parameters to achieve identifiability. Good software properly determines this, when
we enter the terms as predictors in the linear model. Then we can test whether we
need high-order terms in the model by fitting the model with and without those terms
and using the F test for nested models to evaluate whether the partial SS explained
by those terms is statistically significant. That test is a very general and useful one.

3.3 CONFIDENCE INTERVALS AND PREDICTION INTERVALS
FOR NORMAL LINEAR MODELS

We learn more from constructing confidence intervals for parameter values than from
significance testing. A confidence interval shows us the entire range of plausible
values for a parameter, rather than focusing merely on whether a particular value is
plausible.

3.3.1 Confidence Interval for a Parameter of a Normal Linear Model

To construct a confidence interval for a parameter ﬁ] in a normal linear model, we
construct and then invert a 7 test of Hy: f; = pj, about potential values for f;. The test
statistic is

)

SE;

)

the number of standard errors that ﬁ] falls from f;y. Recall that SE; is the square root

of the element in row j and column j of the estimated covariance matrix s2(X 1 X)!
of B, where s? is the error mean square. Just as the residuals are orthogonal to the
model space, the residuals are uncorrelated with f. Specifically, the p X n covariance
matrix

cov(B,y — i) = cov [X" X)Xy, I - H)y| = X' X)"' X6’ 1T — )",

and this is 0 because HX = X(X"X)~'XTX = X. Being linear functions of y, # and
(y — jr) are jointly normally distributed, so uncorrelatedness implies independence.
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Since 52 is a function of the residuals, § and s? are independent, and so are the
numerator and denominator of the ¢ statistic, as is required to obtain a ¢ distribution.

The 100(1 — a)% confidence interval for B; is the set of all Bjo values for which
the test has P-value > a, that is, for which |7] < 1, J2n—ps the 1 — a/2 quantile of the

t distribution having df = n — p. For example, the 95% confidence interval is
B; % 10.025.0-p(SE)).

3.3.2 Confidence Interval for E(y) = x,ff

At a fixed setting x, (a row vector) for the explanatory variables, we can construct a
confidence interval for E(y) = x,f. We do this by constructing and then inverting a
t test about values for that linear predictor.

Let g = xoﬁ. Now

var(f1) = var(xyp) = xovar(B)x] = o2xo(X X)"'x].
Since x ﬁ is a linear function of y, it has a normal distribution. Thus,

7= M ~ N(0, 1),

oy /%X X)"x]

and

xoP —xoB xoP —xoB 52
t= = /\/:2 ~ gy p-
s\ XX Xl oy fxo(XTX) k] o
This last result follows because (n — p)s®>/c? has a ;(3_ » distribution for a normal
linear model, by Cochran’s theorem, so the 7 statistic is a N(0, 1) variate divided by
the square root of the ratio of a xf_p variate to its df value. Also, since s? and § are

independent, so are the numerator and denominator of the ¢ statistic. It follows that a
100(1 — @)% confidence interval for E(y) = xf is

XoB £ ty/2.0-ps\ /XX X)1x]. (3.2)

When x, is the explanatory variable value x; for a particular observation, the term
under the square root is the leverage /; from the model’s hat matrix.

The construction for this interval extends directly to confidence intervals for linear
combinations Z . An example is a contrast of the parameters, such as f; — f; for a
pair of levels of a factor.

3.3.3 Prediction Interval for a Future y

At a particular value x), how can we form an interval that is very likely to contain a
future observation y at that value? This is more challenging than forming a confidence
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interval for the expected response. With lots of data, we can make precise inference
about the mean but not precise prediction about a single future observation.
The normal linear model states that a future value y satisfies

y=xpf+e, where e~ N(O, 0'2).

From the fit of the model, the prediction of the future y value is ji = xoﬁ. Now the
future y also satisfies

y=x0/§+e, where e=y—ji

is the residual for that observation. Since the future y is independent of the observa-
tions yy, ... ,y, used to determine f and then f,

var(e) = var(y — f1) = var(y) + var(i)) = o> [1 +x,(X"X)"'x .
It follows that

il . ~N@©,1) and bl ~t

n—p-
oq/1+xy X X)"1x] s/ 1 +xoX X)) 1x]

Inverting this yields a 100(1 — a)% prediction interval for the future y observation,

fi £ty 2 psy) 1+ XX X)~1x]. (3.3)

3.3.4 Example: Confidence Interval and Prediction Interval for Simple
Linear Regression

We illustrate the confidence interval for the mean and the prediction interval for a
future observation with the bivariate linear model,

E(y;) = By + Byix;.

Itis simpler to use the explanatory variable in centered form x7 = x; — X, which (from

Section 2.1.3) results in uncorrelated ﬁAo and ﬁl. For the centered predictor values,
ﬁo changes value to y, but ﬁl and var(ﬁl) = 02/[Zi(xi — %)?] do not change. So, at a
particular value x;, for x,

var(f1) = var[fy + f;(xy — X)]

— 7)2
= var(y) + (x —X)zvar(ﬁl) = 52 [% + (xg — X) ] .

Z?:l (x; — X)?
For a future observation y and its independent prediction /i,

JPSSREY PO SAC ek i
var(y—fi) = o l1+n+2?=1(xi_)_c)2].
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The variances are smallest at x; = X and increase in a symmetric quadratic manner
as xp moves away from x. At xy = X, we see that var(j) = var(y) = o2 /n, whereas
var(y — fi) = o2(1+1 /n). As n increases, var(j1) decreases toward 0, but var(y — 1)
has o2 as its lower bound. Even if we can estimate nearly perfectly the regression
line, we are limited in how accurately we can predict any future observation.

Figure 3.1 sketches the confidence interval and prediction interval, as a function of
Xg. As n increases, the width of a confidence interval for the mean at any x; decreases
toward 0, but the width of the 95% prediction interval decreases toward 2(1.96)c.

2\
. \eN
ed\o\'\o“ ot
Pt

ﬁ = 60 + 31 X
- Confidence interval
I for u

x

X Xp

Figure 3.1 Portrayal of confidence intervals for the mean, E(y) = §, + f,x,, and prediction
intervals for a future observation y, at various x,, values.

3.3.5 Interpretation and Limitations of Prediction Intervals

Interpreting a prediction interval is awkward. With a = 0.05, we would like to say
that conditional on the observed data and the model fit, we have 95% confidence
that the future y will fall in the interval; that is, close to 95% of a large number of
future observations would fall in the interval. However, the probability distributions
in the derivation of Section 3.3.3 treat j as well as the future y as random, whereas
in practice we use the interval after observing the data and hence ji. The conditional
probability that the prediction interval captures a future y, given f, is not 0.95. From
the reasoning that led to Equation 3.3, before collecting any data, for the /i (and s) to
be found and then the future y,

P [ly — fl/sy/1+xoX"X)"1x] < t0_025,,1_p] =0.95.

Once we observe the data and find /i and s, this probability (with y as the only random
part) does not equal 0.95. It depends on where j happened to fall. It need not be
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close to 0.95 unless var() is negligible compared to var(y). The 95% confidence for a
prediction interval means the following: If we repeatedly used this method with many
such datasets of independent observations satisfying the model (i.e., to construct both
the fitted equation and this interval) and each time made a future observation, in the
long run 95% of the time the interval formed would contain the future observation.

To this interpretation, we add the vital qualifier, if the model truly holds. In
practice, we should have considerable faith in the model before forming prediction
intervals. Even if we do not truly believe the model (the usual situation in practice),
a confidence interval for E(y) = xf at various x,, values is useful for describing the
fit of the model in the population of interest. However, if the model fails, either in
its description of the population mean as a function of the explanatory variables or
in its assumptions of normality with constant variance, then the actual percentage of
many future observations that fall within the limits of 95% prediction intervals may
be quite different from 95%.

34 EXAMPLE: NORMAL LINEAR MODEL INFERENCE

What affects the selling price of a house? Table 3.3 shows observations on recent
home sales in Gainesville, Florida. This table shows data for 8 houses from a data file
for 100 home sales at the text website. Variables listed are selling price (in thousands
of dollars), size of house (in square feet), annual property tax bill (in dollars), number
of bedrooms, number of bathrooms, and whether the house is new. Since these 100
observations are from one city alone, we cannot use them to make inferences about
the relationships in general. But for illustrative purposes, we treat them as a random
sample of a conceptual population of home sales in this market and analyze how
selling price seems to relate to these characteristics. We suggest that you download
the data from the text website, so you can construct graphics not shown here and fit
various models that seem sensible.

Table 3.3 Selling Prices and Related Characteristics for a Sample of Home Sales in
Gainesville, Florida

Home Selling Price Size Taxes Bedrooms Bathrooms New
1 279.9 2048 3104 4 2 No
2 146.5 912 1173 2 1 No
3 237.7 1654 3076 4 2 No
4 200.0 2068 1608 3 2 No
5 159.9 1477 1454 3 3 No
6 499.9 3153 2997 3 2 Yes
7 265.5 1355 4054 3 2 No
8 289.9 2075 3002 3 2 Yes

Complete file for 100 homes is file Houses.dat at www.stat.ufl.edu/~aa/glm/data.


http://www.stat.ufl.edu/~aa/glm/data

100 NORMAL LINEAR MODELS: STATISTICAL INFERENCE

3.4.1 Inference for Modeling House Selling Prices

For modeling, we take y = selling price. Section 4.6 discusses issues in selecting
explanatory variables for a model. For now, for simplicity we use only x; = size of
house and x, = whether the house is new (1 = yes, 0 = no). We refer to these as
“size” and “new.” To begin, let us look at the data.

> Houses # complete data at www.stat.ufl.edu/~aa/glm/data
case taxes beds baths new price size

1 1 3104 4 2 0 279.9 2048

2 2 1173 2 1 0 146.5 912

> cbind(mean (price), sd(price), mean(size), sd(size)
[,1] [,2] [,3] [,4]

[1,] 155.33 101.26 1629.28 666.94

> table (new)

new

0o 1

89 11

> pch.list <- rep(0, 100)
> pch.list [new=="0"] <- 1; pch.list[new=="1"] <- 4 # pick symbols
> plot(size, price, pch=(pch.list)) # plot with symbols for new=0,1

Figure 3.2 shows roughly an increasing linear trend for selling price as a function of
size. An exception is a relatively low selling price for a very large dwelling that was
not new (observation 64 in the data file). Only 11 houses in the sample were new, so
the impact of that variable is rather unclear.

We next fit the model E(y;) = fy + f1x;; + Box;p, having additive effects of these
explanatory variables. The least squares fit is j1; = —40.231 4+ 0.116x;; + 57.736x;,.
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Figure 3.2 Scatterplot of selling price (in thousands of dollars) versus size of house (in
square feet), labeled by whether new (X symbol for “yes” and o symbol for “no”).
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Adjusting for house size, the estimated mean selling price is $57,736 higher for new
homes. Because only 11 houses in the sample were new, this estimate is imprecise.
For new or older houses, the estimated mean selling price increases by $116 for each
additional square foot of size. The sample R” value is large (0.72).

> fit <- lm(price ~ size + new)

> summary (fit)

Coefficients:

Estimate  Std. Error t value Pr(>|t])
(Intercept) -40.2309 14.6961 -2.738 0.00737
size 0.1161 0.0088 13.204 < 2e-16
new 57.7363 18.6530 3.095 0.00257

Residual standard error: 53.88 on 97 degrees of freedom # This is s
Multiple R-squared: 0.7226, Adjusted R-squared: 0.7169

F-statistic: 126.3 on 2 and 97 DF, p-value: < 2.2e-16

> plot (fit)

Consider Hy: p; = f, = 0, stating that neither size nor new has an effect on selling
price. The global F test statistic equals 126.3, with df; = 2 (since there are two effect
parameters) and df, = 100 — 3 = 97. The P-value is 0 to many decimal places. This is
no surprise. With this global test, H, states that none of the explanatory variables are
truly correlated with the response. We usually expect a small P-value, and of greater
interest is whether each explanatory variable has an effect, adjusting for the other
explanatory variables in the model. The 7 statistic for testing the effect of whether the
house is new, adjusting for size, is t = 3.095 (df = 97), highly significant (P = 0.003).
Likewise, size has a highly significant partial effect, which again is no surprise.

Next we find a 95% confidence interval for the mean selling price of new homes
at the mean size of the new homes, 2354.73 square feet. If the model truly holds,
Equation 3.2 implies 95% confidence that the conceptual population mean selling
price falls between $258,721 and $323,207. Equation 3.3 predicts that a selling price
for another new house of that size will fall between $179,270 and $402,658.

> predict (fit,data.frame(size=2354.73, new=1l), interval="confidence”)
fit lwr upr # 95% confidence is default

1 290.964 258.7207 323.2072

> predict (fit,data.frame(size=2354.73, new=1), interval="prediction”)
fit lwr upr

1 290.964 179.2701 402.6579

3.4.2 Model Checking

We next check the adequacy of the normal linear model and highlight influential
observations. When the model holds, the standardized residuals have approximately
a N(0, 1) distribution. Let us look at a histogram and a O—Q plot. The latter plots the
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standardized residual values against expected values of order statistics from a N(0, 1)
distribution (so-called normal scores). When a normal linear model holds, the points
should lie roughly on a line through the origin with slope 1. Severe departures
from that line indicate substantial non-normality in the conditional distribution of
y. However, be cautious in interpreting such plots when n is not large, as they are
affected by ordinary sampling variability.

> hist (rstandard(fit)) # use rstudent instead for Studentized residuals

> ggnorm(rstandard(fit)) # Q-Q plot of standardized residuals

For these data, the histogram in Figure 3.3 suggests that the conditional distribution
of y is mound shaped, but possibly skewed to the right. Also, observation 64 has
a relatively large negative standardized residual of —4.2. The Q-Q plot also shows
evidence of skew to the right, because large positive theoretical quantiles have sample
quantiles that are larger in absolute value whereas large negative theoretical quantiles
have sample quantiles that are smaller in absolute value (except for the outlier).
However, it is difficult to judge shape well unless 7 is quite large, and the actual
error rate for two-sided statistical inference about f; parameters in the linear model is
robust to violations of the normality assumption. Inadequacy of statistical inference
and consequent substantive conclusions are usually affected more by an inappropriate
linear predictor (e.g., lacking an important interaction) and by practical sampling
problems (e.g., missing data, errors of measurement) than by non-normality of the
response. With clearly non-normal residuals, one can transform y to improve the
normality. But the linear predictor may then more poorly describe the relationship,
and effects on E[g(y)] are of less interest than effects on E(y). So, we recommend

Histogram of rstandard(fit) Normal Q-Q Plot
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Figure 3.3 Histogram and Q-Q plot of standardized residuals, for normal linear model
predicting selling price using size and new as explanatory variables.
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Figure 3.4 Plot of standardized residuals versus fitted values, for linear model predicting

selling price using size and new as explanatory variables.

such plots mainly to help detect unusual observations that could influence substantive

conclusions.

To investigate the adequacy of the linear predictor, we plot the residuals against

the fitted values (Figure 3.4) and against size.

> plot (fitted(fit), rstandard(fit))
> plot (size, rstandard(fit))

If the normal linear model holds, a plot of the residuals against fitted values or
values of explanatory variables should show a random pattern about 0 with relatively
constant variability (Section 2.5.2). Figure 3.4 also highlights the unusual observation
64, but generally does not indicate lack of fit. There is a suggestion that residuals
may tend to be larger in absolute value at higher values of the response. Rather than
constant variance, it seems plausible that the variance may be larger at higher mean

selling prices. We address this when we revisit the data in the next chapter.

The next table shows some standardized residuals and values of Cook’s dis-
tance, including results for observation 64, which has the only Cook’s distance

exceeding 1.

> cooks.distance (fit)
> plot (cooks.distance (fit))

> cbind(case,size,new,price, fitted(fit) ,rstandard(fit),h cooks.distance (fit))

case size new price
1 1 2048 0 279.9 197.607 1.541 1.462e-02
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2 2 912 0 146.5 65.681 1.517 1.703e-02

64 64 4050 0 225.0 430.102 -4.202 1.284e+00

> fit2 <- lm(price ~ size + new, subset (Houses, case != 64))
> summary (£it2)
Coefficients:

Estimate Std. Error t value Pr(>|t]

(Intercept) -63.1545 14.2519 -4.431 2.49e-05
size 0.1328 0.0088 15.138 < 2e-16
new 41.3062 17.3269 2.384 0.0191

Residual standard error: 48.99 on 96 degrees of freedom
Multiple R-squared: 0.772, Adjusted R-squared: 0.7672

The effect of a house being new has diminished from $57,736 to $41,306, the effect
of size has increased some, and R? has increased considerably. This observation
clearly is influential. We will see that it is not influential or even unusual when we
consider an alternative model in Section 4.7.3 that allows the variability to grow with
the mean.

There is no assurance that the effects of these two explanatory variables are truly
additive. Perhaps the effect of size is different for new houses than for others. We can
check by adding an interaction term, which we do for the dataset without the highly
influential observation 64:

> fit3 <- 1lm(price ~ size + new + size:new, subset (Houses, case != 64))
> summary (£it3)
Coefficients:

Estimate Std. Error t value Pr(s>|t])

(Intercept) -48.2431 15.6864 -3.075 0.00274
size 0.1230 0.0098 12.536 < 2e-16
new -52.5122 47.6303 -1.102 0.27303
size:new 0.0434 0.0206 2.109 0.03757

Residual standard error: 48.13 on 95 degrees of freedom
Multiple R-squared: 0.7822, Adjusted R-squared: 0.7753

Adjusted R? increases only from 0.767 to 0.775. The SSE values, not reported
here (but available in R by requesting deviance (£it2) and deviance (£it3)),
are 230,358 and 220,055. The F test comparing the two models has test statistic
F = =2.109? = 4.45 with df; = 1 and df, = 95, giving a P-value = 0.038. This
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model estimates that the effect of size is 0.123 for older houses and 0.123 + 0.043 =
0.166 for newer houses. The statistically significant improved fit at the 0.05 level must
be weighed against a practically insignificant increase in R? and a relatively wide
confidence interval for the true difference in size effects for new and older houses.

3.4.3 Conditional versus Marginal Effects: Simpson’s Paradox

Alternatively, we could continue with the complete dataset of 100 observations and
check whether an improved fit occurs from fitting other models. We might expect
that the number of bedrooms is an important predictor of selling price, yet it was not
included in the above model. Does it help to include “beds” in the model?

> cor (beds, price)

[1] 0.3940

> summary (1lm(price ~ beds))
Coefficients:

Estimate Std. Error t value Pr(s>|t]

(Intercept) -28.41 44 .30 -0.641 0.523
beds 61.25 14.43 4.243 5.01le-05
> fit4 <- Ilm(price ~ size + new + beds)

> summary (fit4)

Coefficients:

Estimate Std. Error t value Pr(s|t]
(Intercept) -25.1998 25.6022 -0.984 0.32745
size 0.1205 0.0107 11.229 < 2e-16
new 54.8996 19.1128 2.872 0.00501
beds -7.2927 10.1588 -0.718 0.47458

Residual standard error: 54.02 on 96 degrees of freedom
Multiple R-squared: 0.7241, Adjusted R-squared: 0.7155

Although the number of bedrooms has correlation 0.394 with selling price and is
highly significant on its own, it has a P-value of 0.47 for its partial effect. Moreover,
the adjusted R> = 0.7155 is smaller than the value 0.7169 without beds in the model.
Apparently once size and new are explanatory variables in the model, it does not help
to add beds.

Although the marginal effect of beds is positive, as described by the moderate
positive correlation, the estimated partial effect of beds is negative! This illustrates
Simpson’s paradox®: An effect of a variable can change direction after adjusting for
other variables. Figure 3.5 is a simplistic illustration of how this can happen.

9The name refers to Simpson (1951), but the result had been shown by Yule (1903).
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X4

Figure 3.5 Portrayal of Simpson’s paradox: The effect of x; on y is positive marginally but
negative after adjusting for x,.

3.4.4 Partial Correlation

The partial correlation between selling price and beds while adjusting for size and
new is obtained by (1) finding the residuals for predicting selling price using size and
new, (2) finding the residuals for predicting beds using size and new, and then (3)
finding the ordinary correlation between these two sets of residuals:

> cor(resid(lm(price ~ size + new)), resid(lm(beds ~ size + new))

[1] -0.07307201 # partial correlation between selling price and beds

> summary (lm(resid(lm(price ~ size+new)) ~ resid(lm(beds ~ size+new))))

Coefficients: # this yields partial effect of beds on selling price
Estimate Std. Error t value Pr(s|t]

(Intercept) 1.019e-14 5.346e+00 0.000 1.00
resid(lm(beds ~ size + new)) -7.293e+00 1.005e+01 -0.725 0.47
> plot (resid(lm(beds ~ size + new)), resid(lm(price ~ size + new))

The partial correlation value of —0.073 is weak. When a true partial correlation is 0,
the standard error of a sample partial correlation r for a normal linear model with p
parameters is /(1 — 2)/(n — p), about 0.1 in this case.

Using the fact that the multiple correlation R = corr(y, fi), we use the formula at
the end of Section 2.5.7 to find the squared partial correlation:

> (cor(price,fitted(fit4)) "2 - cor(price,fitted(fit))"2)/
+ (1 - cor(price,fitted(fit))"2)

The proportion of the variation in selling price unexplained by size and new that is
explained by adding beds to the model is only (=0.073)? = 0.0053. Again, you can
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check that effects change substantially if you refit the model without observation 64
(e.g., the partial correlation changes to —0.240).

3.4.5 Testing Contrasts as a General Linear Hypothesis

For a factor in a model, we can test whether particular parameters are equal by
expressing the null hypothesis as a set of contrasts. Such a hypothesis has the form
of the general linear hypothesis Hy: A = 0. To illustrate, the analysis that suggested
a lack of effect for beds, adjusting for size and new, investigated the linear effect. We
could instead treat beds as a factor, with levels (2,3,4,5), to allow a nonlinear impact.
Testing whether 3, 4, and 5 bedrooms have the same effect has a null hypothesis
consisting of two contrasts and yields a F statistic with df; = 2 and df, = 94. The
following code shows the contrasts expressed by equating the parameters for 3 bed-
rooms and 5 bedrooms and equating the parameters for 4 bedrooms and 5 bedrooms,
for R constraints that set the parameter for 2 bedrooms equal to 0.

> fit5 <-lm(price ~ size + new + factor (beds))
> Lambda <- matrix(c(0,0,0,0,0,0,1,0,0,1,-1,-1), nrow=2)
> Lambda
[,11 ,2] [,31 [,4] [,5] [,e6]
[1,] 0 0 0 1 0 -1 # betas for intercept, size, new,
[2,1 0 0 0 0 1 -1 # beds=3, beds=4, beds=5

> library (car)

> linearHypothesis (fit5, Lambda, test=c(”F”))
Hypothesis:

factor (beds)3 - factor(beds)5 = 0

factor (beds)4 - factor(beds)5 = 0

Res.Df RSS Df Sum of Sg F Pr(>F)
1 96 275849
2 94 273722 2 2127.4 0.3653 0.695

3.4.6 Selecting or Building a Model

This chapter has presented inferences for normal linear models but has not discussed
how to select a model or build a model from a set of potential explanatory variables.
These issues are relevant for all generalized linear models (GLMs), and we discuss
them in the next chapter (Section 4.6).

3.5 MULTIPLE COMPARISONS: BONFERRONI, TUKEY, AND FDR
METHODS

Using a model to compare many groups or to evaluate the significance of many
potential explanatory variables in a model can entail a very large number of inferences.
For example, in a one-way layout, comparing each pair of ¢ groups involves c(c — 1)/2
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inferences, which is considerable when c itself is large. Even if each inference has a
small error probability, the probability may be substantial that at least one inference
is in error. In such cases, we can construct the inferences so that the error probability
applies to the entire family of inferences rather than to each individual one. For
example, in constructing confidence intervals for pairwise comparisons of means, we
can provide 95% family-wise confidence that the entire set of intervals simultaneously
contains the true differences.

3.5.1 Bonferroni Method for Multiple Inferences

A popular way to conduct multiple inferences while controlling the overall error
rate is based on a simple inequality shown by the British mathematician George
Boole (1854), in an impressive treatise of which several chapters presented laws of
probability.

Boole’s inequality: Let E|,E,,... ,E, be t events in a sample space. Then, the
probability that at least one of these events occurs has the upper bound

t
PGE) < ), PE).
j=1

The proof of this is simple. We suggest that you construct a Venn diagram to
illustrate. Let

Bl =E1, Bzin‘mEz, B3=E§OESOE3,

:ll:ﬁen, U;B; = U;E; and B; C Ej, but the {B;} are disjoint and so P(U;B;) = ZJ- P(B;).
us,

t t
P(UE) = P(U;B) = ) P(B)) < ) P(E)).
j=1 j=1

In the context of multiple confidence intervals, let Ej (forj =1, ...,¢) denote the
event that interval j is in error, not containing the relevant parameter value. If each
interval has confidence coefficient (1 — a/¢), then the (a priori) probability that at
least one of the 7 intervals is in error is bounded above by #(a/f) = a. So, the family-
wise confidence coefficient for the set of the ¢ intervals is bounded below by 1 — a.
For example, for the one-way layout with ¢ = 5 means, if we use confidence level
99% for each of the 10 pairwise comparisons, the overall confidence level is at least
90%. This method for constructing simultaneous confidence intervals is called the
Bonferroni method. 1t relies merely on Boole’s inequality, but the name refers to the
Italian probabilist/mathematician Carlo Bonferroni, who in 1936 extended Boole’s
inequality in various ways.

An advantage of the Bonferroni method is its generality. It applies for any
probability-based inferences for any distribution, not just confidence intervals for
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a normal linear model. A disadvantage is that the method is conservative: If we want
overall 90% confidence (say), the method ensures that the actual confidence level is
at least that high. As a consequence, the intervals are wider than ones that would
produce exactly that confidence level. The next method discussed is more limited,
being designed specifically for comparing means in balanced normal linear models,
but it does not have this disadvantage.

3.5.2 Tukey Method of Multiple Comparisons

In 1953 the great statistician John Tukey proposed a method for simultaneously
comparing means of several normal distributions. Using a probability distribution for
the range of observations from a normal distribution, it applies to balanced designs
such as one-way and two-way layouts with equal sample sizes.

Definition. Suppose {y;} are independent, with y; ~ N(u,62), i = 1,...,c. Let 52
be an independent estimate of o> with vs?/c? ~ 2. Then,

_ max;y; — min; y;

N

has the Studentized range distribution with parameters ¢ and v. We denote the distri-
bution by Q. , and its 1 — « quantile by Q;_, .. ..

To illustrate how Tukey’s method uses the Studentized range distribution, we
consider the balanced one-way layout for the normal linear model. The sam-
ple means j,...,y. each have sample size n; =n. Let N = Y. n; = cn. Let 5* =
i ZJ’;I( Vij — ¥, /(N — ¢) denote the pooled variance estimate from the one-way

ANOVA (i.e., the error mean square in Section 3.2.1). Then each \/E(yi — p;) has a
N(O, 02) distribution, and so

Vnlmax,(5; — p;) — min,(5; — u)1/s ~ Qe N-c-

A priori, the probability is (1 — @) that this statistic is less than Q,
statistic is bounded above by Q;_, . y—.. then

o When the

—a,c,N—

all [(5; = ) = (5 = i)l < Q1_qev—e(s/ /1)

and thus (u; — ;) falls within Qy_, . y_.(s/ \/;) of (y;, — yj) for all pairs. So, we can
construct family-wise confidence intervals for the pairs {; — y;} using simultane-
ously for all i and j,

()_71' - )_’j) * Ql—a,c,N—c <ﬁ> .
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The confidence coefficient for the family of all f = ¢(c — 1)/2 such comparisons
equals 1 — a. A difference [y; — ;| that exceeds Q_,  y_c(s/ \/ﬁ) is considered sta-
tistically significant, as the interval for (y#; — p;) does not contain 0. The corresponding

margin of error using the Bonferroni method is 7,/ (c—1) y—cS \/m

To illustrate, suppose we plan to construct family-wise 95% confidence intervals
for the 45 pairs of means for ¢ = 10 groups, and we have n =20 observations
from each group and a standard deviation estimate of s = 15. The margin of error

for each comparison is Qgs.10,190(15/Vv20) = 15.19 for the Tukey method and

10.05/2(45),190(154/2/20) = 15.71 for the Bonferroni method. The Q and 7 quantiles
used here are easily obtained with software:

> gtukey (0.95, 10, 190); gt(l - 0.05/(2%45), 190)
[1] 4.527912
[1] 3.311379

The Tukey method applies exactly to this balanced case, for which the sample
means have equal variances. A generalized version applies in a slightly conservative
manner for unbalanced cases (see Note 3.5).

3.5.3 Controlling the False Discovery Rate

As the number of inferences (#) increases in multiple comparison methods designed
to have fixed family-wise error rate a, the margin of error for each inference increases.
When ¢is enormous, as in detecting differential expression in thousands of genes, there
may be very low power for establishing significance with any individual inference. It
can be difficult to discover any effects that truly exist, especially if those effects are
weak. But, in the absence of a multiplicity adjustment, most significant results found
could be Type I errors, especially when the number of true non-null effects is small.
Some multiple inference methods attempt to address this issue. Especially popular
are methods that control the false discovery rate (FDR). In the context of significance
testing, this is the expected proportion of the rejected null hypotheses (“discoveries’)
that are erroneously rejected (i.e., that are actually true—"false discoveries”).

Benjamini and Hochberg (1995) proposed a simple algorithm for ensuring
FDR < « for a desired . It applies with ¢ independent!® tests. Let Py <Py <
-+ < Py denote the ordered P-values for the 7 tests. We reject hypotheses (1), ...,
(%), where j* is the maximum j for which P ;) < ja/t. The actual FDR for this method
is bounded above by a times the proportion of rejected hypotheses that are actually
true. This bound is @ when the null hypothesis is always true.

Here is intuition for comparing P; to ja /t in this method: Suppose f, of the ¢
hypotheses tested are actually true. Since P-values based on continuous test statistics

0Benjamini and Yekutieli (2001) showed that the method also works with tests that are positively
dependent in a certain sense.
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have a uniform distribution when H,, is true, conditional on P(i) being the cutoff for
rejection, a priori we expect to reject about 7,P;) of the 7, true hypotheses. Of the j
observed tests actually having P-value < P;, this is a proportion of expected false
rejections of 7P ;) /j. In practice £ is unknown, but since #, < ¢, if 1P, /Jj < a then
this ensures 7, P,;) /j < a. Therefore, rejecting H, whenever Py <ja /t ensures this.

With this method, the most significant test compares Py to a/t and has the
same decision as in the ordinary Bonferroni method, but then the other tests have
less conservative requirements. When some hypotheses are false, the FDR method
tends to reject more of them than the Bonferroni method, which focuses solely on
controlling the family-wise error rate. Benjamini and Hochberg illustrated the FDR
for a study about myocardial infarction. For the 15 hypotheses tested, the ordered
P-values were

0.0001, 0.0004, 0.0019, 0.0095, 0.020, 0.028, 0.030,
0.034,0.046,0.32,0.43,0.57,0.65,0.76, 1.00.

With @ = 0.05, these are compared with j(0.05)/15, starting with j = 15. The maxi-
mum j for which P; <j(0.0033) is j = 4, for which P, = 0.0095 < 4(0.0033). So
the hypotheses with the four smallest P-values are rejected. By contrast, the Bonfer-
roni approach with family-wise error rate 0.05 compares each P-value to 0.05/15 =
0.0033 and rejects only three of these hypotheses.

CHAPTER NOTES

Section 3.1: Distribution Theory for Normal Variates

3.1 Cochran’s theorem: Results on quadratic forms in normal variates were shown by the
Scottish statistician William Cochran in 1934 when he was a 24-year old graduate student
at the University of Cambridge, studying under the supervision of John Wishart. He left
Cambridge without completing his Ph.D. degree to work at Rothamsted Experimental
Station, recruited by Frank Yates after R. A. Fisher left to take a professorship at Univer-
sity College, London. In the 1934 article, Cochran showed thatif x;, ..., x, are iid N(0, 1)
and Y, x> = Q) + -+ + Q, for quadratic forms having ranks r, ..., r, then Qy,..., 0,
are independent chi-squared with df values r,, ..., r, if and only if r| + --- 4+ r, = n.

3.2 Independent normal quadratic forms: The Cochran’s theorem implication that {y"P,y}
are independent when PP, = 0 extends to this result (Searle 1997, Chapter 2): When
y ~ N(u, V), y"Ay and y" By are independent if and only if AVB = 0.

Section 3.2: Significance Tests for Normal Linear Models

3.3 Fisher and ANOVA: Application of ANOVA was stimulated by the 1925 publication of
R. A. Fisher’s classic text, Statistical Methods for Research Workers. Later contributions
include Scheffé (1959) and Hoaglin et al. (1991).

3.4 General linear hypothesis: For further details about tests for the general linear hypothe-
sis and in particular for one-way and two-way layouts, see Lehmann and Romano (2005,
Chapter 7) and Scheffé (1959, Chapters 2—4).
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Section 3.5: Multiple Comparisons: Bonferroni, Tukey, FDR Methods

3.5

3.6

Boole, Bonferroni, Tukey, Scheffé: Seneta (1992) surveyed probability inequalities
presented by Boole and Bonferroni and related results of Fréchet. For an overview of
Tukey’s contributions to multiple comparisons, see Benjamini and Braun (2002) and
Tukey (1994). With unbalanced data, Kramer (1956) suggested replacing s/ \/ﬁ in the

Tukey interval by s/ % [(1 /n,)+ (1 /nb)] for groups a and b. Hayter (1984) showed this

is slightly conservative. For the normal linear model, Scheffé (1959) proposed a method
that applies simultaneously to all contrasts of ¢ means. For estimating a contrast )., a;4;
in the one-way layout (possibly unbalanced), it multiplies the usual estimated standard

error s4/ >, (a2 /n;) for ¥, a;3; by 1/(c — DF|_,._;,_, to obtain the margin of error. For
simple differences between means, these are wider than the Tukey intervals, because
they apply to a much larger family of contrasts. Hochberg and Tamhane (1987) and Hsu
(1996) surveyed multiple comparison methods.

False discovery rate: For surveys of FDR methods and issues in large-scale multiple
hypothesis testing, see Benjamini (2010), Dudoit et al. (2003), and Farcomeni (2008).

EXERCISES

31

3.2

33

34

3.5

3.6

Supposey ~ N(u, V) with V nonsingular of rank p. Show that (y — )TV~ (y —
W) ~ x2 by letting z = V~!2(y — p) and finding the distribution of z and z"z.

If T has a ¢ distribution with df = p, then using the construction of ¢ and F
random variables, explain why T2 has the F distribution with df;, = 1 and

df, = p.

Suppose z = x + y where 7 ~ )(5 and x ~ ;(5. Show how to find the distribution
of y.

Applying the SS decomposition with the projection matrix for the null model
(Section 2.3.1), use Cochran’s theorem to show that for y, ... ,y, independent
from N(u, 62), y and 52 are independent (Cochran 1934).

For i, ...,y, independent from N(u,?), apply Cochran’s theorem to con-
struct a F test of Hy: p = pg against H,: u # p, by applying the SS decom-
position with the projection matrix for the null model shown in Section
2.3.1 to the adjusted observations {y; — yo}. State the null and alterna-
tive distributions of the test statistic. Show how to construct an equivalent
t test.

Consider the normal linear model for the one-way layout (Section 3.2.1).

a. Explain why the F statistic used to test Hy: y; = -+ = y,. has, under H,
an F distribution.

b. Why is the test is called analysis of variance when H,y deals with means?
(Hint: See Section 3.2.5.)
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3.7

3.8

3.9

3.10

3.11

3.12

A one-way ANOVA uses n; observations from group i, i =1, ..., c.

a. Verify the noncentrality parameter for the scaled between-groups sum of
squares.

b. Suppose ¢ = 3, with y; — py = pu, — u3 = /2. Evaluate the noncentrality,
and use it to find the power of a F' test with size a = 0.05 for a common
sample size n, when (i) n = 10, (ii) n = 30, (iii) n = 50.

c. Now suppose p; — 4, = Hp — pi3 = Ac. Evaluate the noncentrality when

each n; = 10, and use it to find the power of a F test with size a = 0.05
when A =0,0.5, 1.0.

Based on the formula s2(XTX)~! for the estimated var(ﬁ), explain why the
standard errors of {ﬁj} tend to decrease as n increases.

Using principles from this chapter, inferentially compare p; and p, from

N(uy, 62)and N (Mo, 62) populations, based on independent random samples

of sizes n; and n,.

a. Put the analysis in a normal linear model context, showing a model matrix
and explaining how to interpret the model parameters.

b. Find the projection matrix for the model space, and find SSR and SSE.

c. Construct a F test statistic for testing Hy: py = u, against H,: u; # .
Using Cochran’s theorem, specify a null distribution for this statistic.

d. Relate the F test statistic in (¢) to the ¢ statistic for this test,

where s is the pooled variance estimate from the two samples.

Refer to the previous exercise. Based on inverting significance tests with
nonzero null values, show how to construct a confidence interval for y; — p,.

Section 2.3.4 considered the projection matrices and ANOVA table for the
two-way layout with one observation per cell. For testing each main effect in
that model, show how to construct test statistics and explain how to obtain
their null distributions, based on theory in this chapter.

For the balanced two-way r X ¢ layout with n observations {y;; } in each cell,

denote the sample means by {y;; } in the cells, y; inlevel i of A, y; in level

j of B, and ¥ overall for all N = nrc observations. Consider the model that

assumes a lack of interaction.

a. Construct the ANOVA table, including SS and df values, showing how to
construct F statistics for testing the main effects.

b. Show that the expected value of the numerator mean square for the test of

the A factor effect is 6% + (%) Yo - ).
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Refer to the previous exercise. Now consider the model permitting interaction.
Table 3.4 shows the resulting ANOVA table.

a. Argue intuitively and in analogy with results for one-way ANOVA that the
SS values for factor A, factor B, and residual are as shown in the ANOVA
table.

b. Based on the results in (a) and what you know about the total of the SS
values, show that the SS for interaction is as shown in the ANOVA table.

c. In the ANOVA table, show the df values for each source. Show the mean
squares, and show how to construct test statistics for testing no interaction
and for testing each main effect. Specify the null distribution for each test
statistic.

Table 3.4 ANOVA Table for Normal Linear Model with Two-Way Layout

Source df Sum of Squares Mean Square F s
Mean 1 Ny?

A (rows) — cn i =97 — —
B (columns) — my,y; - 7)? — —
Interaction — ny, Zj()_’,;f, -y, =yt 77 — -
Residual (error) — > Z_,' 2 — yij‘)z —

Total N i Z;=1 D y?/.k

3.14 a. Show that the F statistic in Section 3.2.4 for testing that all effects equal 0

3.15

3.16

317

has expression in terms of the R? value as

_ Rp-1)
C (1-RY)/(n—p)

b. Show that the F statistic (3.1) for comparing nested models has expression
in terms of the R? values for the models as

. (R?—R2)/(p, ~n)
(1=RD/(n—py)

Using the F formula for comparing models in the previous exercise, show that
adjusted R? being larger for the more complex model is equivalent to F > 1.

For the linear model E( Yii) = Po + B; for the one-way layout, explain how Hj:
py = -+ = p,. is a special case of the general linear hypothesis.

For a normal linear model with p parameters and n observations, explain how
to test Hy: ﬂj = f in the context of the (a) general linear hypothesis and (b)
F test comparing two nested linear models.
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3.18

3.19

3.20

3.21

3.22

3.23

3.24

3.25

Explain how to use the F test for the general linear hypothesis Hy: Af =¢
to invert a test of Hy: f = B to form a confidence ellipsoid for B. For p = 2,
describe how this could give you information beyond what you would learn
from separate intervals for f; and f,.

Suppose a one-way layout has ordered levels for the ¢ groups, such as dose

levels in a dose—response assessment. The model E(y;;) = f, + p; treats the

groups as a qualitative factor. The model E(y;;) = § + px; has a quantitative

predictor that assumes monotone group scores {x;}.

a. Explain why the quantitative-predictor model is a special case of the
qualitative-predictor model. Given the qualitative-predictor model, show
how the null hypothesis that the quantitative-predictor model is adequate
is a special case of the general linear hypothesis. [llustrate by showing A
for the case ¢ = 5 with {x; = i}.

b. Explain how to use an F test to compare the models, specifying the df
values.

c. Describe an advantage and disadvantage of each way of handling ordered
categories.

Mimicking the derivation in Section 3.3.2, derive a confidence interval for the
linear combination £ . Explain how it simplifies for the case B; = Br-

When there are no explanatory variables, show how the confidence interval in
Section 3.3.2 simplifies to a confidence interval for the marginal E(y).

Consider the null model, for simplicity with known ¢2. After estimating y =
E(y) by ¥, you plan to predict a future y from the N(u, ¢%) distribution. State
the formula for a 95% prediction interval for this model. Suppose, unknown to
you,y = pu +z,0/ \/r_t for some particular z, value. Find an expression for the
actual probability, conditional on ¥, that the prediction interval contains the
future y. Explain why this is not equal to 0.95 (e.g., what happens if z, = 0?)
but converges to it as n — 0.

Based on the expression for a squared partial correlation in Section 3.4.4,
show how it relates to a partial SS for the full model and SSE for the model
without that predictor.

For the normal linear model for the r X ¢ two-way layout with n observations
per cell, explain how to use the Tukey method for family-wise comparisons
of all pairs of the r row means with confidence level 95%.

An analyst plans to construct family-wise confidence intervals for normal lin-
ear model parameters { (!, ..., f®} in estimating an effect as part of a meta-
analysis with g independent studies. Explain why constructing each interval
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with confidence level (1 — a)'/8 provides exactly the family-wise confidence
level (1 — ). Prove that such intervals are narrower than Bonferroni intervals.

In the one-way layout with ¢ groups and a fixed common sample size n, con-
sider simultaneous confidence intervals for pairwise comparisons of means,
using family-wise error probability & = 0.05. Using software such as R, ana-
lyze how the ratio of margins of error for the Tukey method to the Bonferroni
method behaves as ¢ increases for fixed n and as n increases for fixed c¢. Show
that this ratio converges to 1 as a approaches O (i.e., the Bonferroni method is
only very slightly conservative when applied with very small «).

Selection bias: Suppose the normal linear model y; = f, + fx; holds with
p1 > 0, but the responses are truncated and we observe y; only when y; > L
(or perhaps only when y; < L) for some threshold L.

a. Describe a practical scenario for which this could happen. How would you
expect the truncation to affect f; and s? Illustrate by sketching a graph.
(You could check this with data, such as by fitting the model in Section
3.4.1 only to house sales having y; > 150.)

b. Construct a likelihood function with the conditional distribution of y, to
enable consistent estimation of B. (See Amemiya (1984) for a survey
of modeling with truncated or censored data. In R, see the truncreg
package.)

In the previous exercise, suppose truncation instead occurs on x. Would you
expect this to affect (a) E(f;)? (b) inference about f;? Why?

Construct a Q—Q plot for the model for the house selling prices that uses size,
new, and their interaction as the predictors, and interpret. To get a sense of
how such a plot with a finite sample size may differ from its expected pattern
when the model holds, randomly generate 100 standard normal variates a few
times and form a Q-Q plot each time.

Suppose the relationship between y = college GPA and x = high school GPA
satisfies y; ~ N(1.80 + 0.40x;,0.30%). Simulate and construct a scatterplot for
n = 1000 independent observations taken from this model when x; has a
uniform distribution (a) over (2.0, 4.0), (b) over (3.5, 4.0). In each case, find
R?. How do R? and corr(x,y) depend on the range sampled for {x;}? Use the
formula for R? to explain why this happens.

Refer to Exercise 1.21 on a study comparing forced expiratory volume (y =

fevl in the data file) for three drugs (x,), adjusting for a baseline measurement

(x)-

a. Fit the normal linear model using both x; and x, and their interaction.
Interpret model parameter estimates.
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3.32

3.33

3.34

3.35

b. Test to see whether the interaction terms are needed. Interpret using confi-
dence intervals for parameters in your chosen model.

For the horseshoe crab dataset Crabs.dat at the text website, analyze infer-
entially the effect of color on the mean number of satellites, treating the data
as a random sample from a conceptual population of female crabs. Fit the nor-
mal one-way ANOVA model using color as a qualitative factor. Report results
of the significance test for the color effect, and interpret. Provide evidence
that the inferential assumption of a normal response with constant variance is
badly violated. (Section 7.5 considers more appropriate models.)

Refer to Exercise 2.47 on carapace width of attached male horseshoe crabs.
Extend your analysis of that exercise by conducting statistical inference, and
interpret.

Section 3.4.1 used x; = size of house and x, = whether new to predict

y = selling price. Suppose we instead use a GLM, log(y;) = f + f; log(x;;) +

PaXia-

a. For this GLM, interpret #; and f,. (Hint: Adjusting for the other variable,
find multiplicative effects on y; of (i) changing x;, fromOto 1, (ii) increasing
x;; by 1%.)

b. Fit the GLM, assuming normality for {y;}, and interpret. Compare the
predictive power of this model with the linear model of Section 3.4.1 by
finding R = corr(y, jt) for each model.

¢. For this GLM or the corresponding LM for E[log(y;)], refit the model
without the most influential observation and summarize. Also, determine
whether the fit improves significantly by permitting interaction between
log(x;;) and x;,.

For the house selling price data of Section 3.4, when we include size, new,
and taxes as explanatory variables, we obtain

> summary (lm(price ~ size + new + taxes))
Estimate Std. Error t value Pr(s|t]

(Intercept) -21.3538 13.3115 -1.604 0.11196
size 0.0617 0.0125 4.937 3.35e-06
new 46.3737 16.4590 2.818 0.00588
taxes 0.0372 0.0067 5.528 2.78e-07

Residual standard error: 47.17 on 96 degrees of freedom
Multiple R-squared: 0.7896, Adjusted R-squared: 0.783
F-statistic: 120.1 on 3 and 96 DF, p-value: < 2.2e-16
> anova (lm(price ~ size + new + taxes)) # sequential SS, size first
Analysis of Variance Table
Response: price

Df Sum Sg Mean Sq F value Pr (>F)
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size 1 705729 705729 317.165 < 2.2e-16
new 1 27814 27814 12.500 0.0006283
taxes 1 67995 67995 30.558 2.782e-07
Residuals 96 213611 2225

a. Report and interpret results of the global test of the hypothesis that none
of the explanatory variables has an effect.

b. Report and interpret significance tests for the individual partial effects,
adjusting for the other variables in the model.

c. What is the conceptual difference between the test of the size effect in the
coefficients table and in the ANOVA table?

Using the house selling price data at the text website, describe the predictive
power of various models by finding adjusted R?> when (i) size is the sole
predictor, (ii) size and new are main-effect predictors, (iii) size, new, and taxes
are main-effect predictors, (iv) case (iii) with the addition of the three two-
way interaction terms. Of these four, which is the simplest model that seems
adequate? Why?

For the house selling price data, fit the model with size of home as the sole
explanatory variable. Find a 95% confidence interval for E(y) and a 95%
prediction interval for y, at the sample mean size. Interpret.

In a study!'! at Towa State University, a large field was partitioned into 20
equal-size plots. Each plot was planted with the same amount of seed corn,
using a fixed spacing pattern between the seeds. The goal was to study how the
yield of corn later harvested from the plots depended on the levels of use of
nitrogen-based fertilizer (low = 45 kg per hectare, high = 135 kg per hectare)
and manure (low = 84 kg per hectare, high = 168 kg per hectare). The corn
yields (in metric tons) for this completely randomized two-factor study are
shown in the table:

Fertilizer Manure Observations, by Plot

High High 13.7 15.8 13.9 16.6 15.5
High Low 16.4 12.5 14.1 14.4 12.2
Low High 15.0 15.1 12.0 15.7 12.2
Low Low 124 10.6 13.7 8.7 10.9

a. Conduct a two-way ANOVA, assuming a lack of interaction between fer-
tilizer level and manure level in their effects on crop yield. Report the
ANOVA table. Summarize the main effect tests, and interpret the P-values.

'Thanks to Dan Nettleton, Iowa State University, for data on which this exercise is based.
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3.39

3.40

341

b. If yield were instead measured in some other units, such as pounds or tons,
then in your ANOVA table, what will change and what will stay the same?

c. Follow up the main-effect tests in (a) by forming 95% Bonferroni confi-
dence intervals for the two main-effect comparisons of means. Interpret.

d. Now allow for interaction, and show results of the F test of the hypothesis
of a lack of interaction. Interpret.

Refer to the study for comparing instruction methods mentioned in Exercise
2.45. Write a short report summarizing inference for the model fitted there,
interpreting results and attaching edited software output as an appendix.

For the student survey.dat data file at the text website, model how polit-
ical ideology relates to number of times per week of newspaper reading and
religiosity. Prepare a report, posing a research question, and then summariz-
ing your graphical analyses, models and interpretations, inferences, checks of
assumptions, and overall summary of the relationships.

For the anorexia study of Exercise 1.24, write a report in which you pose
a research question and then summarize your analyses, including graphical
description, interpretation of a model fit and its inferences, and checks of
assumptions.



CHAPTER 4

Generalized Linear Models:
Model Fitting and Inference

We now extend our scope from the linear model to the generalized linear model
(GLM). This extension encompasses (1) non-normal response distributions and (2)
link functions of the mean equated to the linear predictor. Section 1.1.5 introduced
examples of GLMs: Loglinear models using the log-link function for a Poisson
(count) response and logistic models using the logit-link function for a binomial
(binary) response.

Section 4.1 provides more details about exponential family distributions for the
random component of a GLM. In Section 4.2 we derive likelihood equations for
the maximum likelihood (ML) estimators of model parameters and show their large-
sample normal distribution. Section 4.3 summarizes the likelihood ratio, score, and
Wald inference methods for the model parameters. Then in Section 4.4 we introduce
the deviance, a generalization of the residual sum of squares used in inference, such
as to compare nested GLMs. That section also presents residuals for GLMs and
ways of checking the model. Section 4.5 presents two standard methods, Newton—
Raphson and Fisher scoring, for solving the likelihood equations to fit GLMs. Section
4.6 discusses the selection of explanatory variables for a model, followed by an
example. A chapter appendix shows that fundamental results for linear models about
orthogonality of fitted values and residuals do not hold exactly for GLMs, but analogs
hold for an adjusted, weighted version of the response variable that satisfies a linear
model with approximately constant variance.

4.1 EXPONENTIAL DISPERSION FAMILY DISTRIBUTIONS
FOR A GLM

In Section 1.1 we introduced the three components of a GLM: (1) random compo-
nent, (2) linear predictor, (3) link function. We now take a closer look at the random

Foundations of Linear and Generalized Linear Models, First Edition. Alan Agresti.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.
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component, showing an exponential family form that encompasses standard distribu-

tions such as the normal, Poisson, and binomial and that has general expressions for
moments and for likelihood equations.

4.1.1 Exponential Dispersion Family for a Random Component

The random component of a GLM consists of a response variable y with indepen-
dent observations (yy, ... ,y,) from a distribution having probability density or mass
function for y; of the form

i3 0;, ) = exp{ly;0; — b(0)1/a() + c(v;, d) }. (4.1)
This is called the exponential dispersion family. The parameter 6; is called the natural
parameter, and ¢ is called the dispersion parameter. Often a(¢) = 1 and c(y;, p) =
c(y;), giving the natural exponential family of the form f(y;; 6;) = h(y;) exply,0; —
b(0,)]. Otherwise, usually a(¢) has the form a(¢) = ¢ ora(¢p) = ¢p/w; for¢p > O and a
known weight w;. For instance, when y; is a mean of n; independent readings, w; = n;.
Various choices for the functions b(-) and a(-) give rise to different distributions.

Expressions for E(y;) and var(y;) use quantities in (4.1). Let L, = logf(y;; 6;, ¢)
denote the contribution of y; to the log-likelihood function, L = }’. L;. Since

L; = [y,0;, — b(0)]/a(P) + c(v;, P), 4.2)
0L;/06; = [y; = V'(0)] Ja($), 9°L; /007 = —b" (6,)/a(e).

where b'(6;) and b”(6,) denote the first two derivatives of b(-) evaluated at 6;. We
now apply the general likelihood results

2 2
E(ﬁ):o and -F oL :E(%) s
00 062 00

which hold under regularity conditions satisfied by the exponential dispersion family.
From the first formula applied with a single observation,

Ey;—b'(0)] Ja(¢) =0, sothat u;=E(y;)="b"(0). (4.3)
From the second formula,

b'(0)/a(¢) = E [(y; = b'(6,))/ a(qﬁ)]2 = var(y,)/[a($)T,
so that

var(y;) = b"(0,)a(¢). (4.4)
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In summary, the function b(-) in (4.1) determines moments of y;. This function
is called the cumulant function, because when a(¢) = 1 its derivatives yield the
cumulants' of the distribution.

4.1.2 Poisson, Binomial, and Normal in Exponential Dispersion Family

We illustrate the exponential dispersion family by showing its representations for
Poisson, binomial, and normal distributions. We then evaluate the mean and variance
expressions for these cases.

When y, has a Poisson distribution, the probability mass function is

—Hi i

fOi ) = = exply; log y; — p; — log(y;1)]

i

= exply;0; — exp(0,) — log(y;N], y;=0,1,2,..., 4.5)

where the natural parameter 6; = log y;. This has exponential dispersion form (4.1)
with b(0;) = exp(0,), a(¢) = 1, and c(y;, p) = —log(y;!). By (4.3) and (4.4),

E(y;) = b'(6,) = exp(0;) = p;,
var(y;) = b"(8;) = exp(6;) = p;.

Next, suppose that n;y; has a bin(n;, ;) distribution; that is, here y; is the sample
proportion (rather than number) of successes, so E(y;) = x; does not depend on ;. Let
0; =log[x;/(1 — x;)]. Then xz; = exp(6;)/[1 + exp(8;)] and log(l — z;) = —log[1 +
exp(#;)]. We can express

n; Vi n. 1 2
SO m,n) = (n,»li>ﬂ?‘ (I =z, y; =0, T S
0. —log[1 + 0]
=exp[y’ i~ logll +exp@)] ( )] 4.6)
1/n;

This has exponential dispersion form (4.1) with b(6,) = log[1 + exp(,)], a(¢p) = 1/n;,

and c(y;, ¢) = log <nn)’} ) The natural parameter is 6; = log[x;/(1 — x;)], the logit.
iVi

By (4.3) and (4.4),

E(y,) = b'(6;) = exp(6;)/[1 + exp())] = ;,
Var(yi) = b”(H,-)a(d)) = exp(@i)/{[l + exp(Gl-)]zni} = ”i(l - ”i)/”i'

IRecall that cumulants {x,, } are coefficients in a power series expansion of the log mgf, log[E(e™)] =
Yo Kut"/n!. The moments determine the cumulants, and vice versa.
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For the normal distribution, observation i has probability density function

O = 1)’
fOip,0%) = exp |- =5 —
2o 20
= — ——log2 -— .
exp l = 5 og(2rwo”) 7 2

This satisfies the exponential dispersion family (4.1) with natural parameter 6; = y;
and

2

1 1 y:
Wr==02, alg) =0 ;)= -5 log(276?) — 27’2

b(@i) = 7V

1
2
Then

4.1.3 The Canonical Link Function of a Generalized Linear Model

The link function of a GLM connects the random component and the linear predictor.
That is, a GLM states that a linear predictor #; = 25.’:1 Bjx;; relates to p; by n; = g(u;),

for a link function g. Equivalently, the response function g~' maps linear predictor
values to the mean.

The link function g that transforms the mean y; to the natural parameter 6; in (4.1)
is called the canonical link. For it, the direct relationship

equates the natural parameter to the linear predictor. From the exponential dispersion
family expressions just derived, the canonical link functions are the log link for the
Poisson distribution, the logit link for the binomial distribution, and the identity link
for the normal distribution. Section 4.5.5 shows special results that apply for GLMs
that use the canonical link function.

4.2 LIKELIHOOD AND ASYMPTOTIC DISTRIBUTIONS FOR GLMS

We next obtain general expressions for likelihood equations and asymptotic distribu-
tions of ML parameter estimators for GLMs. For n independent observations, from
(4.2) the log likelihood is

Lp) = ZL =3 logf(5:0,9) = Z 2 Zc(yl,(p) @7
=1 i=1



124 GENERALIZED LINEAR MODELS: MODEL FITTING AND INFERENCE

The notation L(f) reflects the dependence of 8 on the model parameters f. For the
canonical link function, §; = Y i ﬂjxij, so when a(¢) is a fixed constant, the part of the
log likelihood involving both the data and the model parameters is

n )4 )4 n
So(Sm)-E0(Zom).
i=1 j=1 j=1 i=1

Then the sufficient statistics for {;} are {Z;’zl yixij» J=1,....p}.

4.2.1 Likelihood Equations for a GLM
ForaGLM y; = Zj Bixi; = g(u;) with link function g, the likelihood equations are

OL(B)/op; = ), 0L;/op; =0, forallj.
i=1

To differentiate the log likelihood (4.7), we use the chain rule,

oL _ L, 00,0 0n, -

Since 0L;/d0; = [y; — b'(0,)]/a(¢), and since y; = b'(0,) and var(y;) = b" (0,)a(¢)
from (4.3) and (4.4),

Also, since n; = Z;;l Bix;;, on;/0P; = x;;. Finally, since n; = g(u;), op;/0n; depends
on the link function for the model. In summary, substituting into (4.8) gives us

(3Ll _ 0L, 09, a[ll ()7’][

0p; — 06; ou; on; 9P
_Gimm) a@) o O H)X; oy

—_—x; = — . 4.9)
a(p) var(y;) on; ¥ var(y;)  on;
Summing over the n observations yields the likelihood equations.
Likelihood equations for a GLM:
oL o i — )X op;
B 3 D =12, (4.10)

9p; ~  var(y;) on

where 5; = Zfz | B = &(uy) for link function g.
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Let V denote the diagonal matrix of variances of the observations, and let D denote
the diagonal matrix with elements dy;/dy;. For the GLM expression = Xf with a
model matrix X, these likelihood equations have the form

X™Dvly—pw=0. 4.11)

Although B does not appear in these equations, it is there implicitly through u, since
=g ( f:l ﬁjxij). Different link functions yield different sets of equations. The
likelihood equations are nonlinear functions of f that must be solved iteratively. We
defer details to Section 4.5.

4.2.2 Likelihood Equations for Poisson Loglinear Model

For count data, one possible GLM assumes a Poisson random component and uses
the log-link function. The Poisson loglinear model is log(y;) = Zj.’z , Bjx;j. For the
log link, #; = log p;, so u; = exp(n;) and du;/0on; = exp(n;) = p;. Since var(y;) = y;,
the likelihood equations (4.10) simplify to

n
Z()’i_ﬂi)xij=0’ ]= 1,2,...,p. (412)
i=1

These equate the sufficient statistics { ) y;X;j} for p to their expected values. Section
4.5.5 shows that these equations occur for GLMs that use the canonical link function.

4.2.3 The Key Role of the Mean—Variance Relation

Interestingly, the likelihood equations (4.10) depend on the distribution of y; only
through y; and var(y;). The variance itself depends on the mean through a functional
form?

var(y;) = v(u;),

for some function v. For example, v(yu;) = p; for the Poisson, v(y;) = p;(1 — u;)/n;
for the binomial proportion, and v(y;) = 62 (i.e., constant) for the normal.

When the distribution of y; is in the exponential dispersion family, the relation
between the mean and the variance characterizes® the distribution. For instance, if y,
has distribution in the exponential dispersion family and if v(y;) = p;, then necessarily
y; has the Poisson distribution.

4.2.4 Large-Sample Normal Distribution of Model Parameter Estimators

From a fundamental property of maximum likelihood, under standard regularity
conditions*, for large n the ML estimator B of B for a GLM is efficient and has an

2We express the variance of y as v(u) to emphasize that it is a function of the mean.

3See Jgrgensen (1987), Tweedie (1947), and Wedderburn (1974).

4See Cox and Hinkley (1974, p. 281). Mainly, f falls in the interior of the parameter space and p is
fixed as n increases.
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approximate normal distribution. We next use the log-likelihood function for a GLM
to find the covariance matrix of that distribution. The covariance matrix is the inverse
of the information matrix J, which has elements E[—d?L(B)/ 9By, 9P;]. The estimator

B is more precise when the log-likelihood function has greater curvature at f. To find
the covariance matrix, for the contribution L; to the log likelihood we use the helpful

result
(o) =#1(55) ()]
E =FE|l — — 1,
aﬁh()ﬁj opy, aﬂj

which holds for distributions in the exponential dispersion family. Thus, using (4.9),

< —0°L; > _E [(yi — W)Xy OH; O = Hx;; %]
9p, 0p; var(y;)  dn;  var(y;)  on;

_ Sy (%)2
var(y) \on; )

Since L(B) = Y L;,

9Py, 9p; ~ var(y;) \ on;

Let W be the diagonal matrix with main-diagonal elements

_ (0u;/om)?
T ovar(y)

i

Then, generalizing from the typical element of the information matrix to the entire
matrix, with the model matrix X,

J =X"wx. (4.13)

The form of W, and hence J, depends on the link function g, since dn;/ou; = g’ (u,).
In summary,

Asymptotic distribution of g for GLM 5 = X§:
B has an approximate N[f, (XTWX)~!] distribution, (4.14)

where W is the diagonal matrix with elements w; = (dy;/0n;)* /var(y;).
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The asymptotic covariance matrix is estimated by var(f) = (XTWX)~!, where W is
W evaluated at .
For example, the Poisson loglinear model has the GLM form

logu = XpB.

For this case, #; = log(y;), so on;/du; = 1/u;. Thus,w; = (du;/on,)*/var(y;) = ;.
and in the asymptotic covariance matrix (4.14) of /§, W is the diagonal matrix with
the elements of u on the main diagonal.

For some GLMs, the parameter vector partitions into the parameters f for the linear
predictor and other parameters ¢ (such as a dispersion parameter) needed to specify
the model completely. Sometimes”, E(9*L/df;0¢) = 0 for each j and k. Similarly,
the inverse of the expected information matrix has 0 elements connecting each f;
with each ¢;. Because this inverse is the asymptotic covariance matrix, p and ¢ are
then asymptotically independent. The parameters B and ¢ are said to be orthogonal.
This is the generalization to GLMs of the notion of orthogonal parameters for linear
models (Cox and Reid 1987). For the exponential dispersion family (4.1), 6 and ¢
are orthogonal parameters.

4.2.5 Delta Method Yields Covariance Matrix for Fitted Values

The estimated linear predictor relates to by ## = Xf. Thus, for large samples, its
covariance matrix

var(f) = Xvar($)XT ~ X(XTWX)"'xT.

We can obtain the asymptotic var(f1) from var(#)) by the delta method, which
gives approximate variances using linearizations from a Taylor-series expansion.
For example, in the univariate case with a smooth function 4, the linearization
h(y) — h(u) = (y — w)h' (1), which holds for y near y, implies that var[h(y)] ~
14 (y)]zvar(y) when var(y) is small. For a vector y with covariance matrix V and
avector h(y) = (h;(y), ..., hn(y))T, let (0h /0 u) denote the Jacobian matrix with entry
in row i and column j equal to dh;(y)/dy; evaluated aty = p. Then the delta method
yields var[h(y)] ~ (0h/du)V(dh/du)T. So, by the delta method, using the diagonal
matrix D with elements dy; /dy;, for large samples the covariance matrix of the fitted
values

var(j1) ~ Dvar(j)D ~ DX(X"WX)"'X'D.
However, to obtain a confidence interval for y; when g is not the identity link, it is

preferable to construct one for #; and then apply the response function g=! to the
endpoints, thus avoiding the further delta method approximation.

3 An example is the negative binomial GLM for counts in Section 7.3.3.
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These results for f and jz are based on those for 8, for which the asymptotics refer
to n — co. However, #7 and f1 have length n. Asymptotics make more sense for them
when 7 is fixed and each component is based on an increasing number of subunits, such
that the observations themselves become approximately normal. One such example
is a fixed number of binomial observations, in which the asymptotics refer to each
binomial sample size n; — oo. In another example, each observation is a Poisson cell
count in a contingency table with fixed dimensions, and the asymptotics refer to each
expected cell count growing. Such cases can be expressed as exponential dispersion
families in which the dispersion parameter a(¢) = ¢/w,; has weight w; growing.
This component-specific large-sample theory is called small-dispersion asymptotics
(Jgrgensen 1987). The covariance matrix formulas are also used in an approximate
sense in the more standard asymptotic cases with large n.

4.2.6 Model Misspecification: Robustness of GLMs with Correct Mean

Like other ML estimators of a fixed-length parameter vector, ﬁ is consistent (i.e.,

ﬁ L P as n —» ). As n increases, X has more rows, the diagonal elements of the
asymptotic covariance matrix (XTWX)~! of f tend to be smaller, and f tends to fall
closer to B.

But what if we have misspecified the probability distribution for y? Models, such
as GLMs, that assume a response distribution from an exponential family have a
certain robustness property. If the model for the mean is correct, that is, if we have
specified the link function and linear predictor correctly, then f is still consistent® for
B. However, if the assumed variance function is incorrect (which is likely when the
assumed distribution for y is incorrect), then so is the formula for var(ﬁ). Moreover,
not knowing the actual distribution for y, we would not know the correct expression
for var(ﬁ). Section 8.3 discusses model misspecification issues and ways of dealing
with it, including using the sample variability to help obtain a consistent estimator of
the appropriate covariance matrix.

4.3 LIKELIHOOD-RATIO/WALD/SCORE METHODS OF INFERENCE
FOR GLM PARAMETERS

Inference about GLMs has three standard ways to use the likelihood function. For
a generic scalar model parameter f3, we focus on tests’ of Hy: f = f, against H;:
P # By. We then explain how to construct confidence intervals using those tests.

4.3.1 Likelihood-Ratio Tests

A general purpose significance test method uses the likelihood function through the
ratio of (1) its value £ at fy, and (2) its maximum #; over f§ values permitting H,,

Gourieroux et al. (1984) proved this and showed the key role of the natural exponential family and
a generalization that includes the exponential dispersion family.
"Here, f, denotes a particular null value, typically 0, not the intercept parameter.
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or H, to be true. The ratio A = £,/ < 1, since £ results from maximizing at a
restricted # value. The likelihood-ratio test statistic is®

—2log A = =2log(?y /1) = =2(Ly — L),

where L and L; denote the maximized log-likelihood functions. Under regularity
conditions, it has a limiting null chi-squared distribution as n — oo, with df = 1. The
P-value is the chi-squared probability above the observed test statistic value.

This test extends directly to multiple parameters. For instance, for f = (S, 1),
consider Hy: o = 0. Then 7 is the likelihood function calculated at the f value
for which the data would have been most likely, and 7, is the likelihood function
calculated at the B, value for which the data would have been most likely when B, = 0.
The chi-squared df equal the difference in the dimensions of the parameter spaces
under Hy U H; and under H,, which is dim(B,) when the model is parameterized
to achieve identifiability. The test also extends to the general linear hypothesis H:
AP = 0, since the linear constraints imply a new model that is a special case of the
original one.

4.3.2 Wald Tests

Standard errors obtained from the inverse of the information matrix depend on the
unknown parameter values. When we substitute the unrestricted ML estimates (i.e.,
not assuming the null hypothesis), we obtain an estimated standard error (SE) of B.
For Hy: § = f, the test statistic using this non-null estimated standard error,

z=(f - By)/SE,

is called” a Wald statistic. Tt has an approximate standard normal distribution when
B = Py, and 7> has an approximate chi-squared distribution with df = 1.

For multiple parameters f = (B, ), to test Hy: By = 0, the Wald chi-squared
statistic is

ﬁg[@(ﬁo)]_lﬁo,
where f, is the unrestricted ML estimate of §, and \72&(/30) is a block of the unre-

stricted estimated covariance matrix of f.

4.3.3 Score Tests

A third inference method uses the score statistic. The score test, referred to in some
literature as the Lagrange multiplier test, uses the slope (i.e., the score function) and

8The general form was proposed by Samuel S. Wilks in 1938; see Cox and Hinkley (1974, pp. 313,
314, 322, 323) for a derivation of the chi-squared limit.
9The general form was proposed by Abraham Wald in 1943.
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expected curvature of the log-likelihood function, evaluated at the null value f,. The
chi-squared form! of the score statistic is

[0L(B)/ 0]
—E[02L() /03]

where the notation reflects derivatives with respect to f that are evaluated at f,. In
the multiparameter case, the score statistic is a quadratic form based on the vector
of partial derivatives of the log likelihood and the inverse information matrix, both
evaluated at the H|, estimates.

4.3.4 Illustrating the Likelihood-Ratio, Wald, and Score Tests

Figure 4.1 plots a generic log-likelihood function L(f) and illustrates the three tests
of Hy: f = f,, at f = 0. The Wald test uses L(f) at the ML estimate B, having
chi-squared form p /SE)? with SE of f based on the curvature of L(f) at . The score
test uses the slope and curvature of L(f) at ff, = 0. The likelihood-ratio test combines
information about L(f#) at f and at fo = 0. In Figure 4.1, this statistic is twice the
vertical distance between values of L(#) at § = f and at g = 0.

To illustrate, consider a binomial parameter z and testing Hy: 7 = x,. With sample
proportion # =y for n observations, you can show that the chi-squared forms of the

L(B)

0 B

Figure4.1 Log-likelihood function and information used in likelihood-ratio, score, and Wald
tests of Hy: f = 0.

10The general form was proposed by C. R. Rao in 1948.
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test statistics are

7y (1= )"
Likelihood-ratio: —2(Ly—L;) = -2log | ——— | ;

(1 =y

(v — mp)?
Wald: 2> = ———~
T T -
Score: 7% = o= 7[0)2

[mo(1 — 7y)/n]

As n — oo, the three tests have certain asymptotic equivalences'!. For the best-
known GLM, the normal linear model, the three types of inference provide identical
results. Unlike the other methods, though, we show in Section 5.3.3 that the results
of the Wald test depend on the scale for the parameterization. Also, Wald inference
is useless when an estimate or H,, value is on the boundary of the parameter space.
Examples are # = 0 for a binomial and § = oo in a GLM (not unusual in logistic
regression).

4.3.5 Constructing Confidence Intervals by Inverting Tests

For any of the three test methods, we can construct a confidence interval by inverting
the test. For instance, in the single-parameter case a 95% confidence interval for f is
the set of f, for which the test of Hy: § = f, has P-value exceeding 0.05.

Let z, denote the (1 — a) quantile of the standard normal distribution. A 100(1 -
@)% confidence interval based on asymptotic normality uses z,, /2, forinstance, 2
1.96 for 95% confidence. The Wald confidence interval is the set of g, for Wthh
| = ol /SE < z, /2- This gives the interval f+z, /2(SE). The score-test-based confi-
dence interval often simplifies to the set of §, for which |§ — f,|/SE, < z, /2> Where
SE| is the standard error estimated under the restriction that § = f,. Let )(j(a) denote
the (1 — a) quantile of the chi-squared distribution with df = d. The likelihood-ratio-
based confidence interval is the set of f, for which —2[L(f) — L(ﬁ)] <1 2(a). [Note
that y; 2(a) = 22 w2 Ny

When f has a normal distribution, the log-likelihood function is a second-degree
polynomial and thus has a parabolic shape. For small samples of highly non-normal
data or when f falls near the boundary of the parameter space, # may have distribution
far from normality, and the log-likelihood function can be far from a symmetric,
parabolic curve. A marked divergence in the results of Wald and likelihood-ratio
inference indicates that the distribution of 4 may not be close to normality. It is then
preferable to use the likelihood-ratio inference or higher order asymptotic methods'?

11See, for example, Cox and Hinkley (1974, Section 9.3).
12For an introduction to higher-order asymptotics, see Brazzale et al. (2007).
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4.3.6 Profile Likelihood Confidence Intervals

For confidence intervals for multiparameter models, especially useful is the profile
likelihood approach. It is based on inverting likelihood-ratio tests for the various
possible null values of f, regarding the other parameters y in the model as nuisance
parameters. In inverting a likelihood-ratio test of Hj: f = f to check whether f,
belongs in the confidence interval, the ML estimate y(f,) of y that maximizes
the likelihood under the null varies as f, does. The profile log-likelihood function is
L(fy, (), viewed as a function of ff,. For each f this function gives the maximum
of the ordinary log-likelihood subject to the constraint § = f,. Evaluated at f, = B,
this is the maximized log likelihood L(f, ), which occurs at the unrestricted ML
estimates. The profile likelihood confidence interval for f is the set of f, for which

—2[L(By. ¥ (B) — LB, )] < xi().

The interval contains all £, not rejected in likelihood-ratio tests of nominal size a.
The profile likelihood interval is more complex to calculate than the Wald interval,

but it is available in software!3.

44 DEVIANCE OF A GLM, MODEL COMPARISON, AND
MODEL CHECKING

For a particular GLM with observations y = (yy, ...,Y,), let L(u;y) denote the log-
likelihood function expressed in terms of the means u = (yy, ..., u,). Let L(fi;y)
denote the maximum of the log likelihood for the model. Considered for all possible
models, the maximum achievable log likelihood is L(y;y). This occurs for the most
general model, having a separate parameter for each observation and the perfect fit
ft =y. This model is called the saturated model. It explains all variation by the linear
predictor of the model. A perfect fit sounds good, but the saturated model is not a
helpful one. It does not smooth the data or have the advantages that a simpler model
has because of its parsimony, such as better estimation of the true relation. However,
it often serves as a baseline for comparison with other model fits, such as for checking
goodness of fit.

4.4.1 Deviance Compares Chosen Model with Saturated Model

For a chosen model, for all i denote the ML estimate of the natural parameter 6; by
0., corresponding to the estimated mean fi;. Let 6; denote the estimate of 6; for the
saturated model, with corresponding fi; = y;. For maximized log likelihoods L(jfi;y)
for the chosen model and L(y; y) for the saturated model,

maximum likelihood for model
maximum likelihood for saturated model

~2log | | =212y - Ly

I3Examples are the confint function and ProfileLikelihood and cond packages in R.
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is the likelihood-ratio statistic for testing H,, that the model holds against H that a
more general model holds. It describes lack of fit. From (4.7),

—2[L(;y) = Lyl
=2 )16, ~ b(0)1/a($) = 2 Y [vi; ~ b(6))] /().

Usually a(¢) = ¢/w;, in which case this difference equals

2260 1yi(8; — 6,) = b(B)) + b8/ = D(y; )/ b, (4.15)

called the scaled deviance. The statistic D(y; jt) is called the deviance.

Since L(f1;y) < L(y;y), D(y; 1) > 0. The greater the deviance, the poorer the fit.
For some GLMs, such as binomial and Poisson GLMSs under small-dispersion asymp-
totics in which the number of observations # is fixed and the individual observations
converge to normality, the scaled deviance has an approximate chi-squared distribu-
tion. The df equal the difference between the numbers of parameters in the saturated
model and in the chosen model. When ¢ is known, we use the scaled deviance
for model checking. The main use of the deviance is for inferential comparisons of
models (Section 4.4.3).

4.4.2 The Deviance for Poisson GLMs and Normal GLMs

For Poisson GLMs, from Section 4.1.2, éi =log fi; and b(éi) = exp(éi) = f1;. Simi-
larly, 6; = log y; and b(éi) =y, for the saturated model. Also a(¢) = 1, so the deviance
and scaled deviance (4.15) equal

D(y: ) =2 Y [y log(yi/ i) = yi + Ayl

When a model with log link contains an intercept term, the likelihood equation (4.12)
implied by that parameter is ) ; y; = Y., fi;. Then the deviance simplifies to

D(y: 1) = 2 Y, yilog(vi/ ). (4.16)

For some applications with Poisson GLMs, such as modeling cell counts in con-
tingency tables, the number n of counts is fixed. With p model parameters, as the
expected counts grow the deviance converges in distribution to chi-squared with
df = n — p. Chapter 7 shows that the deviance then provides a test of model fit.

For normal GLMs, by Section 4.1.2, §; = /i; and b(9)) = 6?/2. Similarly, §; = y,
and b(0;) = y? /2 for the saturated model. So the deviance equals

D(y; i) = 22[%(% u)——+—] Z(y,—m)2
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For linear models, this is the residual sum of squares, which we have denoted by SSE.
Also ¢ = 62, so the scaled deviance is [Y,(y; — /1;)*]/0. When the model holds, we
have seen (Section 3.2.2, by Cochran’s theorem) that this has a ;(3_[7 distribution.
For a particular GLM, maximizing the likelihood corresponds to minimizing the
deviance. Using least squares to minimize SSE for a linear model generalizes to using

ML to minimize a deviance for a GLM.

4.4.3 Likelihood-Ratio Model Comparison Uses Deviance Difference

Methods for comparing deviances generalize methods for normal linear models that
compare residual sums of squares. When ¢ = 1, such as for a Poisson or binomial
model, the deviance (4.15) equals

D(y; i) = =2[L(f1;y) — L(y; y)].

Consider two nested models, M, with p, parameters and fitted values fi, and M,
with p; parameters and fitted values fi;, with M, a special case of M. Section 3.2.2
showed how to compare nested linear models. Since the parameter space for M,
is contained in that for My, L(fiy;y) < L(f1;y). Since L(y;y) is identical for each
model,

D(y; j1;) < D(y; fag).

Simpler models have larger deviances.
Assuming that model M| holds, the likelihood-ratio test of the hypothesis that A/,
holds uses the test statistic

=2[L(f1y;y) — L(jay;y)] = =2[L(fy: y) — L(y; )] — {=2[L(ay:y) — Ly; )1}
= D(y; fiy) — D(y; f1y),

when ¢ = 1. This statistic is large when M|, fits poorly compared with M. In expres-
sion (4.15) for the deviance, since the terms involving the saturated model cancel,

D frg) = D(y: 1)) =2 3 01yi@y; = ) = b(B) + bi@y,)]-

This also has the form of the deviance. Under standard regularity conditions for which
likelihood-ratio statistics have large-sample chi-squared distributions, this difference
has approximately a chi-squared null distribution with df = p; — p,.

For example, for a Poisson loglinear model with an intercept term, from expression
(4.16) for the deviance, the difference in deviances uses the observed counts and the
two sets of fitted values in the form

D(y; jrg) — D(y; jay) =2 Z yilog(#y;/ fo:)-

We denote the likelihood-ratio statistic for comparing nested models by G? My | My).
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4.4.4 Score Tests and Pearson Statistics for Model Comparison

For GLMs having variance function var(y;) = v(;) with ¢ = 1, the score statistic for
comparing a chosen model with the saturated model is'#

> o 0i— fi;)?
X2 = Z G 4.17)

For Poisson y;, for which v(#i;) = f;, this has the form

Z(observed — fitted)? /fitted.

This is known as the Pearson chi-squared statistic, because Karl Pearson introduced
it in 1900 for testing various hypotheses using the chi-squared distribution, such as
the hypothesis of independence in a two-way contingency table (Section 7.2.2). The
generalized Pearson statistic (4.17) is an alternative to the deviance for testing the fit
of certain GLMs.

For two nested models, a generalized Pearson statistic for comparing nested models
is

XMy | M) = )Gy = g /7o) (4.18)

This is a quadratic approximation for G*>(M,, | M), with the same null asymptotic
behavior. However, this is not the score statistic for comparing the models, which is
more complex. See Note 4.4.

4.4.5 Residuals and Fitted Values Asymptotically Uncorrelated

Examining residuals helps us find where the fit of a GLM is poor or where unusual
observations occur. As in ordinary linear models, we would like to exploit the decom-
position

y=p+(@—p (.e.,data=fit + residuals).

With GLMs, however, ft and (y — ft) are not orthogonal when we leave the simple
linear model case of identity link with constant variance. Pythagoras’s theorem does
not apply, because maximizing the likelihood does not correspond to minimizing
[ly — f||. With a nonlinear link function, although the space of linear predictor values
n that satisfy a particular GLM is a linear vector space, the corresponding set of yu =
g~ () values is not. Fundamental results for ordinary linear models about projections
and orthogonality of fitted values and residuals do not hold exactly for GLMs.

14See Lovison (2005, 2014), Pregibon (1982), and Smyth (2003).
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We next obtain an asymptotic covariance matrix for the residuals. From Section
4.2.4, W = diag{(dy;/on;)>/var(y;)} and D = diag{du;/dn;}, so we can express the
diagonal matrix V = var(y) as V = DW~!D. For large n, if j1 is approximately uncor-
related with (y — f1), then V = var(jt) + var(y — ft). Then, using the approximate
expression for var(f1) from Section 4.2.5 and V'/2 = DW=1/2,

var(y — fi) # V — var(i) ~ DW='D - DX(X"WX)~'XTD
=DW 21 - w'2x(Xx"Wx)- 1 x"w'/21w=1/2p.

This has the form V'/ 2[I -H W]Vl/ 2, where [ is the identity matrix and
H =W/7xX"Wwx) ' x"w'/2, (4.19)

You can verify that H  is a projection matrix by showing it is symmetric and
idempotent. McCullagh and Nelder (1989, p. 397) noted that it is approximately a
hat matrix for standardized units of y, with

H V2w~ V12— p).

The chapter appendix shows that the estimate of H  is also a type of hat matrix,
applying to weighted versions of the response and the linear predictor.

So why is (y — ji) asymptotically uncorrelated with f, thus generalizing the exact
orthogonal decomposition for linear models? Lovison (2014) gave an argument that
seems relevant for small-dispersion asymptotic cases in which “large samples” refer
to the individual components, such as binomial indices. If (y — i) and & were not
approximately uncorrelated, one could construct an asymptotically unbiased estima-
tor of u that is asymptotically more efficient than i using " = [f1 + L(y — j1)] for a
matrix of constants L. But this would contradict the ML estimator ji being asymptot-
ically efficient. Such an argument is an asymptotic version for ML estimators of the
one in the Gauss—Markov theorem (Section 2.7.1) that unbiased estimators other than
the least squares estimator have difference from that estimator that is uncorrelated
with it. The small-dispersion asymptotic setting applies for the discrete-data models
we will present in the next three chapters for situations in which residuals are mainly
useful, in which individual y; have approximate normal distributions. Then (y — p)
and (1 — p) jointly have an approximate normal distribution, as does their difference.

4.4.6 Pearson, Deviance, and Standardized Residuals for GLMs
For a particular model with variance function v(u), the Pearson residual for observa-

tion y; and its fitted value f; is

Pearson residual: ¢; = . (4.20)
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Their squared values sum to the generalized Pearson statistic (4.17). For instance,
consider a Poisson GLM. The Pearson residual is

e = (i — A/ R

and when {y;} are large and the model holds, ¢; has an approximate normal distribu-
tion and X? = Y, ¢? has an approximate chi-squared distribution (Chapter 7). For a
binomial GLM in which n;y; has a bin(n;, x;) distribution, the Pearson residual is

e; = —#2)/VE( = 7)/n;,

and when {n;} are large, X2 = > ei2 also has an approximate chi-squared distribution
(Chapter 5). In these cases, such statistics are used in model goodness-of-fit tests.
In expression (4.15) for the deviance, let D(y; i) = Zi d;, where

d; = 20,[y;(0; — 8,) — b)) + b(B))].
The deviance residual is
Deviance residual: \/Z X sign(y; — fi;). (4.21)

The sum of squares of these residuals equals the deviance.

To judge when a residual is “large” it is helpful to have residual values that,
when the model holds, have means of 0 and variances of 1. However, Pearson and
deviance residuals tend to have variance less than 1 because they compare y; with
the fitted mean f; rather than the true mean y;. For example, the denominator of the
Pearson residual estimates [v(;)]'/? = [var(y; — y;)]'/? rather than [var(y; — fi;)]'/>.
The standardized residual divides each raw residual (y; — fi;) by its standard error.
From Section 4.4.5, var(y; — fi;) = v(u;)(1 — h;;), where h;; is the diagonal element
of the generalized hat matrix H  for observation i, its leverage. Let h;; denote the
estimate of 4;;. Then, standardizing by dividing y; — fi; by its estimated SE yields

= 0. e
Standardized residual: r; = i M -

Vi -y ) Vi

For Poisson GLMs, for instance, r; = (y; — f1;)/4/ f;,(1 — fzii). Likewise, deviance
residuals have standardized versions. They are most useful for small-dispersion
asymptotic cases, such as for relatively large Poisson means and relatively large
binomial indices. In such cases their model-based distribution is approximately stan-
dard normal.

To detect a model’s lack of fit, any particular type of residual can be plotted against
the component fitted values in & and against each explanatory variable. As with the
linear model, the fit could be quite different when we delete an observation that has a

(4.22)
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large standardized residual and a large leverage. The estimated leverages fall between
0 and 1 and sum to p. Unlike in ordinary linear models, the generalized hat matrix
depends on the fit as well as on the model matrix, and points that have extreme
values for the explanatory variables need not have high estimated leverage. To gauge
influence, an analog of Cook’s distance (2.11) uses both the standardized residuals
and the estimated leverages, by rl.2 [fzii /p(1 — fzii)].

4.5 FITTING GENERALIZED LINEAR MODELS

How do we find the ML estimator  of GLM parameters? The likelihood equations
(4.10) are usually nonlinear in §. We next describe a general purpose iterative method
for solving nonlinear equations and apply it in two ways to determine the maximum
of the likelihood function.

4.5.1 Newton—Raphson Method

The Newton—Raphson method iteratively solves nonlinear equations, for example, to
determine the point at which a function takes its maximum. It begins with an initial
approximation for the solution. It obtains a second approximation by approximating
the function in a neighborhood of the initial approximation by a second-degree
polynomial and then finding the location of that polynomial’s maximum value. It
then repeats this step to generate a sequence of approximations. These converge
to the location of the maximum when the function is suitable and/or the initial
approximation is good.

Mathematically, here is how the Newton—Raphson method determines the value
ﬁ at which a function L(f) is maximized. Let

T
_ <0L(.3) oL(B) 0L(ﬁ)>
B, o, T B,
Let H denote!3 the matrix having entries h,, = 0>L(B)/dp,0p,., called the Hessian
matrix. Let u® and H be u and H evaluated at ), approximation ¢ for f. Step ¢ in

the iterative process (t = 0, 1,2, ...) approximates L(f) near f by the terms up to
the second order in its Taylor series expansion,

L(B) ~ L) +u (B - p¥) + (1) (B - B)HO(B - BO).
Solving 0L(B)/0B ~ u + HO(B — B©) = 0 for B yields the next approximation,
ﬂ(t+1) — ﬁ(t) _ (H(t))_lu(t), (4.23)
assuming that H is nonsingular.

5Here, H is not the hat matrix; it is conventional to use H for a Hessian matrix.
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Iterations proceed until changes in L(B")) between successive cycles are suffi-
ciently small. The ML estimator is the limit of B as t = co; however, this need not
happen if L(f) has other local maxima at which u(f) = 0. In that case, a good initial
approximation is crucial. Figure 4.2 illustrates a cycle of the method, showing the
parabolic (second-order) approximation at a given step.

L)

L .
/ Quadratic
approximation

1
1
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I
1
1
1
1
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1
1
1
1
I
I
1
+

B b pe Y

Figure 4.2 Illustration of a cycle of the Newton—Raphson method.

For many GLMs, including Poisson loglinear models and binomial logistic models,
with full-rank model matrix the Hessian is negative definite, and the log likelihood
is a strictly concave function. Then ML estimates of model parameters exist and
are unique under quite general conditions'®. The convergence of ® to f in the
neighborhood of § is then usually fast.

4.5.2 Fisher Scoring Method

Fisher scoring is an alternative iterative method for solving likelihood equations. The
difference from Newton—Raphson is in the way it uses the Hessian matrix. Fisher scor-
ing uses the expected value of this matrix, called the expected information, whereas
Newton—Raphson uses the Hessian matrix itself, called the observed information.

Let J denote approximation ¢ for the ML estimate of the expected information
matrix; that is, J ¥ has elements —E (0>L(f)/df, 0p,), evaluated at B©). The formula
for Fisher scoring is

BUFD = BO 4 (FOY IO o  FWREHD — OO Ly (424)
Formula (4.13) showed that JJ = XTWX, where W is diagonal with elements
w; = (0u;/0n;)?/var(y;). Similarly, J© = XTW®X, where W® is W evaluated at

BO. The estimated asymptotic covariance matrix J ' of B [see (4.14)] occurs as

16See, for example, Wedderburn (1976).
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a by-product of this algorithm as (J =1 for ¢ at which convergence is adequate.
For GLMs with a canonical link function, Section 4.5.5 shows that the observed and
expected information are the same.

A simple way to begin either iterative process takes the initial estimate of u to be
the data y, smoothed to avoid boundary values. This determines the initial estimate
of the weight matrix W and hence the initial approximation for f.

4.5.3 Newton—-Raphson and Fisher Scoring for a Binomial Parameter

In the next three chapters we use the Newton—Raphson and Fisher scoring methods
for models for categorical data and count data. We illustrate them here with a simpler
problem for which we know the answer, maximizing the log likelihood with a sample
proportion y from a bin(n, ) distribution. The log likelihood to be maximized is then
L(z) = log[#™(1 — z)"™] = nylog z + (n — ny) log(l — x).

The first two derivatives of L(x) are

u=(ny—nn)/n(l —x), H=—[ny/z>+n-ny)/ - 7).

Each Newton—Raphson step has the form

-1
t+1) _ 0 ny o n-ny ny — nz®
(72 (1 = z®0)2 7O = z®)

This adjusts 7® up if y > 7 and down if y < z¥. For instance, with z(® = %, you

can check that 7(1) = y. When 7z =y, no adjustment occurs and z(*+! =y, which

is the correct answer for z. From the expectation of H above, the information is
n/[z(1 — x)]. A step of Fisher scoring gives

-1 — nx®
20D = 70 4 n ny —nr
201 = z0)| 701 = z0)

=70 4 (v— n.(f)) =y

This gives the correct answer for 7 after a single iteration and stays at that value for
successive iterations.

4.5.4 ML as Iteratively Reweighted Least Squares

A relation exists between using Fisher scoring to find ML estimates and weighted
least squares estimation. We refer here to the general linear model

z=Xp +e.
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When the covariance matrix of € is V, from Section 2.7.2 the generalized least squares
estimator of B is

XTv-1x)"1xTy- 1z,

When V is diagonal, this is referred to as a weighted least squares estimator.

From (4.11), the score vector for a GLM is X'DV~!(y — u). Since D =
diag{du;/on;} and W = diag{(du;/n;)*/var(y;)}, we have DV~! = WD~! and we
can express the score function as

u=X"WD(y - p.
Since J = XTWX, it follows that in the Fisher scoring formula (4.24),
TJOBO 14O = XTWOX)BO + XTWODO) (y — u®)
= XTWOIXBD + (D) (y — p®)] = XTWOLO,
where z(¥) has elements
t t
0= By 80+ (=) 2 04 (=) 2
j ou; op;
The Fisher scoring equations then have the form

(XT W(f)X)ﬁ(Hl) = XTw00,

These are the normal equations for using weighted least squares to fit a linear model
for a response variable z, when the model matrix is X and the inverse of the
covariance matrix is W®. The equations have the solution

ﬂ(l+l) — (XTW(I)X)_IXTW(I)Z(I).

The vector z” in this formulation is an estimated linearized form of the link
function g, evaluated at y,

on"
20 ~ g (1) + (v = 1) & (") = 1 + (vi — ") # =70, (425)
Hi

The adjusted response variable 7 has element i approximated by z?) for cycle 7 of the
iterative scheme. That cycle regresses z¥ on X with weight (i.e., inverse covariance)
W® to obtain a new approximation f*1_ This estimate yields a new linear predictor
value n*+D = X B+ and a new approximation z(*1 for the adjusted response for
the next cycle. The ML estimator results from iterative use of weighted least squares,
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in which the weight matrix changes at each cycle. The process is called iteratively
reweighted least squares (IRLS). The weight matrixW used in var(f) =~ (XTWX)~!,

in the generalized hat matrix (4.19), and in Fisher scoring is the inverse covariance
matrix of the linearized form z = X + D~y — p) of g(y). At convergence,

B=X"Wx) " xTWws,
A Al
for the estimated adjusted response Z = X+ D (y — fi).

4.5.5 Simplifications for Canonical Link Functions

Certain simplifications result for GLMs that use the canonical link function. For that
link,

)4
n=0;= Z ﬂjxij:
J=1

and
Op;/on; = ou;/00; = ab/(ei)/aei = b”(“)i)

Since var(y;) = b"(6,)a(¢), the contribution (4.9) to the likelihood equation for f;
simplifies to

()Ll- (y, - #z) " (yi - ﬂz)xlj
=2t e = ——— 7 4.26
o8, = vary | = ) (%20

Often a(¢) is identical for all observations, such as for Poisson GLMs [a(¢) = 1]

and for binomial GLMs with each n; = 1 [for which a(¢) = 1]. Then, the likelihood
equations are

n n
le]yl = le]ﬂl, j = 1, 2, B /N (4.27)
i=1 i=1

We noted at the beginning of Section 4.2 that {7}, x;y;} are the sufficient statistics
for { ﬂj}. So equation (4.27) illustrates a fundamental result:

e For GLMs with canonical link function, the likelihood equations equate the
sufficient statistics for the model parameters to their expected values.

For a normal distribution with identity link, these are the normal equations. We
obtained them for Poisson loglinear models in (4.12).
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From expression (4.26) for dL;/dp;, with the canonical link function the second
partial derivatives of the log likelihood are

o~ 58 on)
008~ ald) \9p, )"

This does not depend on y;, so

9°L(B)/3p,0p; = E[0°L(B)/9,0B].

Thatis, H = —J , so the Newton—Raphson and Fisher scoring algorithms are identical
for GLMs that use the canonical link function (Nelder and Wedderburn 1972).
Finally, in the canonical link case the log likelihood is necessarily a concave
function, because the log likelihood for an exponential family distribution is concave
in the natural parameter. In using iterative methods to find the ML estimates, we do
not need to worry about the possibility of multiple maxima for the log likelihood.

4.6 SELECTING EXPLANATORY VARIABLES FOR A GLM

Model selection for GLMs faces the same issues as for ordinary linear models. The
selection process becomes more difficult as the number of explanatory variables
increases, because of the rapid increase in possible effects and interactions. The
selection process has two competing goals. The model should be complex enough to
fit the data well. On the other hand, it should smooth rather than overfit the data and
ideally be relatively simple to interpret.

Most research studies are designed to answer certain questions. Those questions
guide the choice of model terms. Confirmatory analyses then use a restricted set of
models. For instance, a study hypothesis about an effect may be tested by comparing
models with and without that effect. For studies that are exploratory rather than
confirmatory, a search among possible models may provide clues about the structure
of effects and raise questions for future research. In either case, it is helpful first to
study the marginal effect of each predictor by itself with descriptive statistics and a
scatterplot matrix, to get a feel for those effects.

This section discusses some model-selection procedures and issues that affect the
selection process. Section 4.7 presents an example and illustrates that the variables
selected, and the influence of individual observations, can be highly sensitive to the
assumed distribution for y.

4.6.1 Stepwise Procedures: Forward Selection and Backward Elimination

With p explanatory variables, the number of potential models is 27, as each variable
either is or is not in the chosen model. The best subset selection identifies the model
that performs best according to a criterion such as maximizing the adjusted R? value.
This is computationally intensive when p is large. Alternative algorithmic methods
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can search among the models. In exploratory studies, such methods can be informative
if we use the results cautiously.

Forward selection adds terms sequentially. At each stage it selects the term giving
the greatest improvement in fit. A point of diminishing returns occurs in adding
explanatory variables when new ones added are themselves so well predicted by
ones already used that they do not provide a substantive improvement in R2. The
process stops when further additions do not improve the fit, according to statistical
significance or a criterion for judging the model fit (such as the AIC, introduced
below in Section 4.6.3). A stepwise variation of this procedure rechecks, at each
stage, whether terms added at previous stages are still needed. Backward elimination
begins with a complex model and sequentially removes terms. At each stage, it selects
the term whose removal has the least damaging effect on the model, such as the largest
P-value in a test of its significance or the least deterioration in a criterion for judging
the model fit. The process stops when any further deletion leads to a poorer fit.

With either approach, an interaction term should not be in a model without its
component main effects. Also, for qualitative predictors with more than two cate-
gories, the process should consider the entire variable at any stage rather than just
individual indicator variables. Add or drop the entire variable rather than only one of
its indicators. Otherwise, the result depends on the choice of reference category for
the indicator coding.

Some statisticians prefer backward elimination over forward selection, feeling it
safer to delete terms from an overly complex model than to add terms to an overly
simple one. Forward selection based on significance testing can stop prematurely
because a particular test in the sequence has low power. It also has the theoretical
disadvantage that in early stages both models being compared are likely to be inad-
equate, making the basis for a significance test dubious. Neither strategy necessarily
yields a meaningful model. When you evaluate many terms, some that are not truly
important may seem so merely because of chance. For instance, when all the true
effects are weak, the largest sample effect is likely to overestimate substantially its
true effect. Also, the use of standard significance tests in the process lacks theoretical
justification, because the distribution of the minimum or maximum P-value evaluated
over a set of explanatory variables is not the same as that of a P-value for a preselected
variable. Use variable-selection algorithms in an informal manner and with caution.
Backward and forward selection procedures yielding quite different models is an
indication that such results are of dubious value.

For any method, since statistical significance is not the same as practical signif-
icance, a significance test should not be the sole criterion for including a term in
a model. It is sensible to include a variable that is central to the purposes of the
study and report its estimated effect even if it is not statistically significant. Keeping
it in the model may make it possible to compare results with other studies where
the effect is significant, perhaps because of a larger sample size. If the variable is a
potential confounder, including it in the model may help to reduce bias in estimating
relevant effects of key explanatory variables. But also a variable should not be kept
merely because it is statistically significant. For example, if a selection method results
in a model having adjusted R? = 0.39 but a simpler model without the interaction
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terms has adjusted R? = 0.38, for ease of interpretation it may be preferable to drop
the interaction terms. Algorithmic selection procedures are no substitute for careful
thought in guiding the formulation of models.

Some variable-selection methods adapt stepwise procedures to take such issues
into account. For example, Hosmer et al. (2013, Chapter 4) recommended a purpose-
ful selection model-building process that also pays attention to potential confounding
variables. In outline, they suggest constructing an initial main-effects model by (1)
choosing a set of explanatory variables that include the known clinically important
variables and others that show any evidence of being relevant predictors in a univari-
able analysis (e.g., having P-value <0.25), (2) conducting backward elimination with
the full set from (1), keeping a variable if it is either significant at a somewhat more
stringent level or shows evidence of being a relevant confounder, in the sense that the
estimated effect of a key variable changes by at least 20% when it is removed, (3)
checking whether any variables not included in (1) are significant when adjusting for
the variables in the model after Step (2). One then checks for plausible interactions
among variables in the model after Step (3), using significance tests at conventional
levels such as 0.05, followed by the usual diagnostic investigations presented in
Section 4.4.

4.6.2 Model Selection: The Bias—Variance Tradeoff

In selecting a model from a set of candidates, we are mistaken if we think that there is
a “correct” one. Any model is a simplification of reality. For instance, an explanatory
variable will not have exactly a linear effect, no matter which link function we use.
And it is not always a good idea to choose a more complex model in order to obtain a
better fit. A simple model that fits adequately has the advantages of model parsimony,
including a tendency to provide more accurate estimates of the quantities of interest.
The choice of how complex a model to use is at the heart of the basic statistical
tradeoff between the variance of an estimator and its bias. Here, bias occurs when the
true { E(y;)} values differ from the values {y,,;} corresponding to fitting model M to
the population. Using a simpler model has the disadvantage of increasing the bias;
that is, the differences {|u;; — E(y;)|} between the model-based means and the true
means tend to be larger. But a simpler model has the advantage that the decrease in
the number of model parameters results in decreased variance in the estimators. This
can result in overall lower mean squared error!’ in estimating characteristics such as
the true {E(y;)} values.

In practice, many models can be consistent with the data. If not one of them is
“correct,” it is logically inconsistent to choose one model based on its fitting the
data well and then make subsequent inferences as if the model had been chosen
before seeing the data. Although this is common practice, it results in a tendency to
underestimate uncertainty and to exaggerate significance. Keep in mind the selection
uncertainty in making inferences based on a model, because those inferences use
the same data that helped you to select the model. Although selection procedures are

17Recall that MSE = variance + (bias)?.
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helpful tools, results of an exploratory study are highly tentative and useful mainly for
suggesting effects and hypotheses to analyze in future studies. The model-building
process should also be based on theory and common sense.

Other criteria besides significance tests comparing models can help you to select
a sensible model. We next introduce the best known of such criteria.

4.6.3 AIC: Minimizing Distance of the Fit from the Truth

The Akaike information criterion (AIC) judges a model by how close we can expect
its sample fit to be to the true model fit. In the population of interest, even though
a simple model is farther from the true relationship than is a more complex model,
for a sample it may tend to provide a closer fit because of the advantages of model
parsimony. In a set of potential models, the optimal model is the one that tends to
have sample fit closest to the true model fit.

Here “closeness” is defined in terms of the Kullback—Leibler divergence of a model
M from the unknown true model. Let p(y) denote the density (or probability, in the
discrete case) of the data under the true model, and let p;,(y; B,,) be the density under
model M with parameters f,,. For a given value of the ML estimator f,, of f,, and
for a future sample y* from p(-), the Kullback-Leibler divergence between the true
and fitted distributions is

A py*)
KL[p,py(By)] = E |log ———— | ,
e l pM@*;ﬂM)]

where the expectation is taken relative to the true distribution p(-). The goal of AIC is to
choose the model to minimize E[KL(p, py,( B )] for a set of potential models, where
this expectation also is taken relative to p(-), now with ) as the random variable for
another sample. To do this, it is sufficient to minimize E{—FE log[p,,(y*; p )]} over
the set of models. The true distribution p(-) needed to evaluate this expectation is
unknown, but the expectation can be estimated consistently. Akaike (1973) showed
that when M is reasonably close to the true model, the maximized log likelihood
L(ﬁM) for M is a biased estimator of E{E log[p,,(y*; ﬁM)]}, and for large sample
sizes the bias is reduced by subtracting the number of parameters in M. This implies
that out of a set of reasonably fitting models, the optimal model minimizes'3

AIC = -2 [L(B);) — number of parameters in M| .

Although the role of subtracting the number of parameters in M is to adjust for
bias, the AIC essentially penalizes a model for having many parameters. With many
potential explanatory variables, using AIC can aid in variable selection. Out of a set
of candidate models, we identify the one with smallest AIC or identify parsimonious

18 Akaike introduced the multiple of 2 merely for convenience, to link the AIC formula with
likelihood-ratio chi-squared statistics.
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models that have AIC near the minimum value. The candidate models need not be
nested or even based on the same family of distributions for the random component.

An alternative to AIC, a Bayesian information criterion (BIC), penalizes more
severely for the number of model parameters. It replaces 2 by log(n) as its multiple.
Compared with AIC, BIC gravitates less quickly toward more complex models as
n increases. It is based on a Bayesian argument for determining which of a set
of models has highest posterior probability (Schwarz 1978). Because of selection
bias, however, model-selection criteria such as minimizing AIC or minimizing BIC
can result in inclusion of irrelevant variables (George 2000). This can be especially
problematic when p is large and few variables truly have an effect!®.

4.6.4 Summarizing Predictive Power: R-Squared and Other Measures

In ordinary linear models, R and the multiple correlation R describe how well the
explanatory variables predict the sample response values, with R =1 for perfect
prediction. For any GLM, the correlation between the fitted values {/;} and the
observed responses {y;} measures predictive power. It is also useful for comparing
fits of different models for the same data. For the ordinary linear model, corr(y, ft)
is the multiple correlation. An advantage of the correlation, relative to its square,
is the appeal of working on the original scale and its approximate proportionality
to effect size: For a small effect with a single explanatory variable, doubling the
slope corresponds approximately to doubling the correlation. For GLMs, unlike
linear models, corr(y, ft) need not be nondecreasing as the model gets more complex,
although it usually is.

Other measures of predictive power directly use the likelihood function. Denote
the maximized log likelihood by L,, for a given model, L for the saturated model,
and L for the null model containing only an intercept term. Then, Ly < L), < Lg,
and

Ly ~Lo (4.28)
Lg =Ly

falls between 0 and 1. It equals O when the model provides no improvement in fit over
the null model, and it equals 1 when the model fits as well as the saturated model.
A weakness is that the scale for the log likelihood may not be as easy to interpret as
the scale for the response variable itself. The measure is mainly useful for comparing
models.

With any such measure, with many explanatory variables, the sample estimators
can be biased upward in estimating the true population value. It can be misleading to
compare sample values for models with quite different numbers of parameters. Bias
corrections are possible, for example, by using cross-validation (Stone 1974) or the
jackknife (Zheng and Agresti 2000).

YFor example, when no variables truly have an effect, for ¢ tests of the individual partial effects,
E(t% )~ 2logp (George 2000).

max
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4.6.5 Effects of Collinearity

In an observational study with many explanatory variables, relations among them
may suggest that not one variable is important when all the others are in the model.
A variable may have little partial effect because it is predicted well by the others.
Deleting a nearly redundant predictor can be helpful, for instance, to reduce standard
errors of other estimated effects.

In a linear model, the variance of ﬁA/ is

1 o2

1= [ Xy =57 |

var(ﬂ}) =

where R/? denotes the value of R? for predicting x; as a response using the other
explanatory variables in the model. One can derive this formula from an expression
of /?1 for a regression using two sets of residuals, as in Section 2.5.6 (e.g., see Greene
2011, p. 90). The ratio VIF; = 1/(1 — Rjz) is called the variance inflation factor for
predictor x;. It is the multiple by which the variance increases because the other
predictors are correlated with X;. As RJ? increases, var(ﬁj) increases. If R}2 = 1, there
is extrinsic aliasing (Section 1.3.2): The model matrix has less than full rank, and
there are infinitely many solutions for 8. When Rf isnear 1, ,B; can be unstable. When

Rj? =0, ﬂAj and its variance are identical to their values when x; is the sole explanatory
variable in the model.

To illustrate, for the horseshoe crab data (Section 1.5.1), the width of the carapace
shell is highly statistically significant as a predictor of a female crab’s number of
satellites. What happens if we add the crab’s weight as a predictor? Here is the result
of fitting Poisson loglinear models:

> attach(Crabs) # y is number of satellites

> summary (glm(y ~ width, family=poisson(link=1log)))
Estimate Std. Error z value Pr(s|z])

(Intercept) -3.30476 0.54224 -6.095 1.1e-09

width 0.16405 0.01997 8.216 < 2e-16

> summary (glm(y ~ weight + width, family=poisson(link=log)))

Estimate Std. Error z value Pr(s|z])

(Intercept) -1.29521 0.89890 -1.441 0.14962
weight 0.44697 0.15862 2.818 0.00483
width 0.04608 0.04675 0.986 0.32433

> cor (weight, width)
[1] 0.8868715

Width loses its significance. The loss also happens with normal linear models and
with a more appropriate two-parameter distribution for count data that Chapter 7
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uses. The dramatic reduction in the significance of the crab’s shell width when its
weight is added to the model reflects the correlation of 0.887 between weight and
width. The variance inflation factor for the effect of either predictor in a linear model
is 1/[1 — (0.887)?] = 4.685. The SE for the effect of width more than doubles when
weight is added to the model, and the estimate itself is much smaller, reflecting also
the strong correlation.

This example illustrates a general phenomenon in modeling. When an explana-
tory variable x; is highly correlated with a linear combination of other explanatory
variables in the model, the relation is said to exhibit2° collinearity (also referred to
as multicollinearity).

When collinearity exists, one approach chooses a subset of the explanatory vari-
ables, removing those variables that explain a small portion of the remaining unex-
plained variation in y. When several predictors are highly correlated and are indicators
of a common feature, another approach constructs a summary index by combining
responses on those variables. Also, methods such as principal components analysis
create artificial variables from the original ones in such a way that the new vari-
ables are uncorrelated. In most applications, though, it is more advisable from an
interpretive standpoint to use a subset of the variables or create some new variables
directly. The effect of interaction terms on collinearity is diminished if we center the
explanatory variables before entering them in the model. Section 11.1.2 introduces
alternative methods, such as ridge regression, that produce estimates that are biased
but less severely affected by collinearity.

Collinearity does not adversely affect all aspects of regression. Although collinear-
ity makes it difficult to assess partial effects of explanatory variables, it does not hinder
the assessment of their joint effects. If newly added explanatory variables overlap
substantially with ones already in the model, R* will not increase much, but the
presence of collinearity has little effect on the global test of significance.

4.7 EXAMPLE: BUILDING A GLM

Section 3.4 introduced a dataset on home selling prices. The response variable is
selling price in thousands of dollars. The explanatory variables are size of the home
in square feet, whether it is new (1 = yes, 0 = no), annual zax bill in dollars, number of
bedrooms, and number of bathrooms. A scatterplot matrix has limited use for highly
discrete variables such as new, beds, and baths, but Figure 4.3 does reveal the strong
positive correlation for each pair of price, size, and taxes.

> attach(Houses) # data at www.stat.ufl.edu/~aa/glm/data
> pairs(cbind(price,size,taxes)) # scatterplot matrix for pairs of var’'s

20Technically, collinearity refers to an exact linear dependence, but the term is used in practice when
there is a near dependence.
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Figure 4.3 Scatterplot matrix for price, size, and taxes in dataset on house selling prices.

> cor (cbind(price, size, taxes,beds, baths))

price size taxes beds baths
price 1.0000 0.8338 0.8420 0.3940 0.5583
size 0.8338 1.0000 0.8188 0.5448 0.6582
taxes 0.8420 0.8188 1.0000 0.4739 0.5949
beds 0.3940 0.5448 0.4739 1.0000 0.4922
baths 0.5583 0.6582 0.5949 0.4922 1.0000

# correlation matrix

4.7.1 Backward Elimination with House Selling Price Data

We illustrate a backward elimination process for selecting a model, using all the
variables except taxes. (A chapter exercise uses all the variables.) Rather than relying
solely on significance tests, we combine a backward process with judgments about
practical significance.

To gauge how complex a model may be needed, we begin by comparing models
containing the main effects only, also the second-order interactions, and also the
third-order interactions. The anova function in R executes the F test comparing
nested normal linear models (Section 3.2.2).

> fitl <- lm(price ~ size + new + baths + beds)

> fit2 <- lm(price ~ (size + new + baths + beds)"2)
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> fit3 <- lm(price ~ (size + new + baths + beds) "3)
> anova (fitl, f£it2)

Analysis of Variance Table

Model 1: price ~ size + new + baths + beds

Model 2: price ~ (size + new + baths + beds) "2
Res.Df RSS Df Sum of Sg F Pr (>F)

1 95 279624

2 89 217916 6 61708 4.2004 0.0009128

A statistically significant improvement results from adding six pairwise interac-
tions to the main effects model, with a drop in SSE of 61,708. A similar analysis
(not shown here) indicates that we do not need three-way interactions. The R? values
for the three models are 0.724, 0.785, and 0.804. In this process we compare models
with quite different numbers of parameters, so we instead focus on the adjusted R?
values: 0.713, 0.761, and 0.771. So we search for a model that fits adequately but is
simpler than the model with all the two-way interactions.

In fit2 (not shown), the least significant two-way interaction is baths X beds.
Removing that interaction yields fit4 with adjusted R? = 0.764. Then the least signifi-
cant remaining two-way interaction is size X baths. With fit5 we remove it, obtaining
adjusted R? = 0.766. At that stage, the new X beds interaction is least significant, and
we remove it, yielding adjusted R? = 0.769. The result is fiz6:

> summary (£ité6)

Estimate Std. Error ¢t value Pr(s|t])
(Intercept) 135.6459 54.1902 2.503 0.0141
size -0.0032 0.0323 -0.098 0.9219
new 90.7242 77.5413 1.170 0.2450
baths 12.2813 12.1814 1.008 0.3160
beds -55.0541 17.6201 -3.125 0.0024
size:new 0.1040 0.0286 3.630 0.0005
size:beds 0.0309 0.0091 3.406 0.0010
new:baths -111.5444 45.3086 -2.462 0.0157
Multiple R-squared: 0.7851, Adjusted R-squared: 0.7688

The three remaining two-way interactions are statistically significant at the 0.02
level. However, the P-values are only rough guidelines, and dropping the new X
baths interaction (fit7, not shown) has only a slight effect, adjusted R*> dropping to
0.756. At this stage we could drop baths from the model, as it is not in the remaining
interaction terms and its ¢ = 0.40.

> fit8 <- update(fit7, .~. - baths)
> summary (£it8)
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Estimate Std. Error t value Pr(s|t])
(Intercept) 143.47098 54.1412 2.650 0.0094
size 0.00684 0.0326 0.210 0.8345
new -56.68578 49.3006 -1.150 0.2531
beds -53.63734 17.9848 -2.982 0.0036
size:new 0.05441 0.0210 2.588 0.0112
size:beds 0.03002 0.0092 3.254 0.0016
Multiple R-squared: 0.7706, Adjusted R-squared: 0.7584

> plot (fits8)

Both interactions are highly statistically significant, and adjusted R drops to 0.716
if we drop them both. Viewing this as a provisional model, let us interpret the effects
in fit8:

¢ For an older two-bedroom home, the effect on the predicted selling price of a
100 square foot increase in size is 100[0.00684 + 2(0.03002), or $6688. For an
older three-bedroom home, it is 100[0.00684 + 3(0.03002)], or $9690, and for
an older four-bedroom home, it is 100[0.00684 + 4(0.03002)], or $12,692. For
a new home, $5441 is added to each of these three effects.

¢ Adjusted for the number of bedrooms, the effect on the predicted selling price of
a home’s being new (instead of older) is —56.686 + 1000(0.0544), or —$2277,
for a 1000-square-foot home, —56.686 + 2000(0.0544), or $52,132, for a 2000-
square-foot home, and —56.686 + 3000(0.0544), or $106,541 for a 3000-square-
foot home.

¢ Adjusted for whether a house is new, the effect on the predicted selling price of
an extra bedroom is —53.637 + 1000(0.0300), or —$23, 616, for a 1000-square-
foot home, —53.637 + 2000(0.0300), or $6405, for a 2000-square-foot home,
and —53.637 + 3000(0.0300), or $36,426, for a 3000-square-foot home.

For many purposes in an exploratory study, a simple model is adequate. We obtain
a reasonably effective fit by removing the beds effects from fit8, yielding adjusted R?
= 0.736 and very simple interpretations from the fit g = —22.228 + 0.1044(size) —
78.5275(new) + 0.0619(size X new). For example, the estimated effect of a 100
square-foot increase in size is $10,440 for an older home and $16,630 for a new
home. In fact, this is the model having minimum BIC. The model having minimum
AIC is?! slightly more complex, the same as fit6 above.

> step(lm(price ~ (size + new + beds + baths)"2))
Start: AIC=790.67 # AIC for initial model with two-factor interactions

2IThe AIC value reported by the step and extractaIc functions in R ignores certain constants,
which the az1c function in R includes.
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Step: AIC=784.78 # lowest AIC for special cases of starting model
price ~ size + new + beds + baths + size:new + size:beds + new:baths
> AIC(lm(price ~ size+new+beds+baths+size:new+size:beds+new:baths))

[1] 1070.565 # correct value using AIC formula for normal linear model
> BIC(lm(price ~ size+new+size:new)) # this is model with lowest BIC
[1] 1092.973

4.7.2 Gamma GLM Has Standard Deviation Proportional to Mean

We ignored an important detail in the above model selection process. Section 3.4.2
noted that observation 64 in the dataset is an outlier that is highly influential in
least squares fitting. Repeating the backward elimination process without it yields a
different final model. This makes any conclusions even more highly tentative.

Section 3.4 noted some evidence of greater variability when mean selling prices
are greater. This seems plausible and often happens for positive-valued response
variables. At settings of explanatory variables for which E(y) is low, we would not
expect much variability in y (partly because y cannot be < 0), whereas when E(y) is
high, we would expect considerable variability. In each case, we would also expect
some skew to the right in the response distribution, which could partly account for
relatively large values. For such data, ordinary least squares is not optimal. One
approach instead uses weighted least squares, by weighting observations according
to how the variance depends on the mean. An alternative GLM approach assumes a
distribution for y for which the variance increases as the mean increases. The family
of gamma distributions has this property.

The two-parameter gamma probability density function for y, parameterized in
terms of its mean u and the shape parameter k£ > 0, is

k k
(k/p) e_ky/'”yk_l

SOk, p) = 0 ,

y=0, (4.29)

for which E(y) = u, var(y) = ;42/k.

Gamma GLMs usually assume k to be constant but unknown, like ¢% in ordinary

linear models. Then the coefficient of variation, 1/var(y)/u =1/ \/7<, is constant as u
varies, and the standard deviation increases proportionally with the mean. The density
is skewed to the right, but the degree of skewness (which equals 2/ \/%) decreases
as k increases. The mode is O when k < 1 and u(k — 1)/k when k > 1 , with k =1
giving the exponential distribution. The chi-squared distribution is the special case
with y = df and k = df /2.

The gamma distribution is in the exponential dispersion family with natural param-
eter 0 = —1/u, b(0) = —log(—0), and dispersion parameter ¢ = 1/k. The scaled
deviance for a gamma GLM has approximately a chi-squared distribution. However,
the dispersion parameter is usually treated as unknown. We can mimic how we elimi-
nate it in ordinary linear models by constructing an F statistic. For example, consider
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testing M, against M, for nested GLMs M, and M, with p, < p; parameters. Using

the model deviances, the test statistic

[D(My) — DM )1/ (py — Po)
DM,)/(n - py) '

distribution, if the numerator and denominator are

has an approximate F Py =Py,
approximately independent®?. Or, we can explicitly estimate ¢ for the more complex

model and use the approximation

[D(My) — DM ]1/(py — po) P
) M e

Some software (e.g., SAS) uses ML to estimate ¢p. However, the ML estimator is
inconsistent if the variance function is correct but the distribution is not truly the
assumed one (McCullagh and Nelder 1989, p. 295). Other software (e.g., R) uses23
the scaling ¢ =X /(n — p) of the Pearson statistic (4.17), which is based on equating
the average squared Pearson residual to 1, adjusted by using the dimension of the
error space n — p instead of n in the denominator (Wedderburn 1974). It is consistent
when f is. In the gamma context, this estimate is

n

b= 1 Z()’i—ﬁi)z
n—p& i

When £ is large, a gamma variate y has distribution close to normal. However, the
gamma GLM fit is more appropriate than the least squares fit because the standard
deviation increases as the mean does. Sometimes the identity link function is inad-
equate, because y must be nonnegative. It is then more common to use the log link.
With that link, results are similar to least squares with a log-normal assumption for
the response, that is, applying least squares to a linear model expressed in terms of
log(y) (Exercise 4.27).

4.7.3 Gamma GLMs for House Selling Price Data

For the house selling price data, perhaps observation 64 is not especially unusual if
we assume a gamma distribution for price. Using the same linear predictor as in the
model (with fi8) interpreted in Section 4.7.1, we obtain:

> fit.gamma <- glm(price ~ size + new + beds + size:new + size:beds,
family = Gamma (link = identity))
> summary (fit.gamma) $coef
Estimate Std. Error t value Pr(>|t]|)
(Intercept) 44 .3759 48.5978 0.9131 0.3635

22This holds when the dispersion parameter is small, so the gamma distribution is approximately
normal. See Jgrgensen (1987) for the general case using the F.
Z3But ML is available in R with the gamma . dispersion function in the MASS package.



EXAMPLE: BUILDING A GLM 155

size 0.0740 0.0400 1.8495 0.0675
new -60.0290 65.7655 -0.9128 0.3637
beds -22.7131 17.6312 -1.2882 0.2008
size:new 0.0538 0.0376 1.4325 0.1553
size:beds 0.0100 0.0126 0.7962 0.4279

Now, neither interaction is significant! This also happens if we fit the model without
observation 64. Including that observation, its standardized residual is now only
—1.63, not at all unusual, because this model expects more variability in the data
when the mean is larger. In fact, we may not need any interaction terms:

> fit.gl <- glm(price ~ size+new+baths+beds, family=Gamma (link=identity))
> fit.g2 <- glm(price~ (size+new+baths+beds) "2, family=Gamma (link=identity))
> anova (fit.gl, fit.g2, test="F"

Analysis of Deviance Table

Resid. Df Resid. Dev Df Deviance F Pr(>F)
1 95 10.4417
2 89 9.8728 6 0.5689 0.8438 0.5396

Further investigation using various model-building strategies reveals that according
to AIC the model with size alone does well (AIC = 1050.7), as does the model with
size and beds (AIC = 1048.3) and the model with size and new (AIC = 1049.5), with
a slight improvement from adding the size X new interaction (AIC = 1047.9). Here is
the output for the latter gamma model and for the corresponding normal linear model
that we summarized near the end of Section 4.7.1:

> summary (glm(price ~ size+new+size:new, family=Gamma (link=identity)))
Estimate Std. Error t value Pr(>|t])

(Intercept) -7.4522 12.9738 -0.574 0.5670
size 0.0945 0.0100 9.396 2.95e-15
new -77.9033 64.5827 -1.206 0.2307
size:new 0.0649 0.0367 1.769 0.0801

(Dispersion parameter for Gamma family taken to be 0.11021)
Residual deviance: 10.563 on 96 degrees of freedom
AIC: 1047.9
> plot (glm(price ~ size + new + size:new, family=Gamma (link=identity)))
> summary (lm(price ~ size + new + size:new))
Estimate Std. Error ¢t value Pr(s|t])

(Intercept) -22.2278 15.5211 -1.432 0.1554
size 0.1044 0.0094 11.082 < 2e-16
new -78.5275 51.0076 -1.540 0.1270
size:new 0.0619 0.0217 2.855 0.0053

Residual standard error: 52 on 96 degrees of freedom
Multiple R-squared: 0.7443, Adjusted R-squared: 0.7363
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Effects are similar, but the interaction term in the gamma model has larger SE. For
this gamma model, ¢ = 0.11021, so the estimated shape parameter is k = 1/¢ =
9.07, which corresponds to a bell shape with some skew to the right. The estimated
standard deviation & of the conditional distribution of y relates to the estimated mean

A by
6=1/da=n/Vi=0331974.

For example, at predictor values having estimated mean selling price 4 = $100,000,
the estimated standard deviation is $33,197, whereas at 4 = $400,000, 6 is four times
as large.

The reported AIC value of 1047.9 for this gamma model is much better than the
AIC for the normal linear model with the same explanatory variables, or for the
normal linear model (fit6) in Section 4.7.1 that minimized AIC, of the models with
main effects and two-way interactions.

> AIC(lm(price ~ size + new + size:new))

[1] 1079.9

> AIC(lm(price ~ size +new +beds +baths +size:new +size:beds +new:baths))
[1] 1070.6

We learn an important lesson from this example:

¢ Inmodeling, it is not sufficient to focus on how E(y;) depends on x; for all i. The
assumption about how var(y;) depends on E(y;) can have a significant impact
on conclusions about the effects.

Other approaches, such as using the log link instead of the identity link, yield
other plausible models. Analyses that are beyond our scope here (such as Q—Q plots)
indicate that selling prices may have a somewhat longer right tail than gamma and
log-normal models permit. An alternative response distribution having this property
is the inverse Gaussian, which has variance proportional to x> (Seshadri 1994).

APPENDIX: GLM ANALOGS OF ORTHOGONALITY RESULTS
FOR LINEAR MODELS

This appendix presents approximate analogs of linear model orthogonality results.
Lovison (2014) showed that a weighted version of the estimated adjusted responses
that has approximately constant variance has the same orthogonality of fitted values
and residuals as occurs in ordinary linear models.
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Recall that D = diag{dy;/dn;} and W = diag{(du;/on;)*/var(y;)}. From Section
4.5.4, the IRLS fitting process is naturally expressed in terms of the estimate Z =

N ~—1
Xp+D (y— jr) of an adjusted response variable z = X + D! (y — p). Since
f1=XB=XX"WX)"'XTW;3

A PN A~—=1/2~ ~1/2
for the fitted linear predictor values, X(XTWX)~' XTW = W / H WW / is a sort of

asymmetric projection adaptation of the estimate of the generalized hat matrix (4.19),
namely,

A~ ~1/2 A ~1/2
H = W' X(XTWX)‘IXTW/ )

Consider the weighted adjusted responses and linear predictor, z, = W1/2z and

o = W'/2n. For V = var(y), W =DV~'D and W~! = D~'VD~!. Since var(z) =
~1/2
D-'VD~' = W~ it follows that var(zy) = I. Likewise, let Z, = W / Z and g =
~1/2
w / f]. Then
A1/2 A Al1/2 A A ~
=W / Xg=w P xTWxX) T XTWE = H 2.

So the weighted fitted linear predictor values are the orthogonal projection of the
estimated weighted adjusted response variable onto the vector space spanned by the
~1/2
columns of the weighted model matrix W / X. The estimated generalized hat matrix

~ ~1/2
HW equals XO(XgXO)‘ng for the weighted model matrix X, = W / X.

For the estimated weighted adjusted response, the raw residual is
e =2y —flg = (I = H )%,

so these residuals are orthogonal to the weighted fitted linear predictor values. Also,
these residuals equal

~1/2 A 1 ol .
eg=W @-ip=W D @y-p=V -,

which are the Pearson residuals defined in (4.20).
A corresponding approximate version of Pythagoras’s theorem states that

~ 2 A s 12 2 2 2 - 2
120 — moll™ =~ 11Zo — fioll” + llf1o — moll” = llegll™ + [l — Mo~

The relation is not exact, because 7y = W!/2X B lies in C(W'/2X), not C(VAV1/2X).
Likewise, other decompositions for linear models occur only in an approximate
manner for GLMs. For example, Firth (1991) noted that orthogonality of columns of
X does not imply orthogonality of corresponding model parameters, except when the
link function is such that W is a constant multiple of the identity matrix.
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CHAPTER NOTES

Section 4.1: Exponential Dispersion Family Distributions for a GLM

4.1

4.2

Exponential dispersion: Jgrgensen (1987, 1997) developed properties of the exponen-
tial dispersion family, including showing a convolution result and approximate normal-
ity for small values of the dispersion parameter. Davison (2003, Section 5.2), Morris
(1982, 1983a), and Pace and Salvan (1997, Chapters 5 and 6) surveyed properties of
exponential family models and their extensions.

GLMs: For more on GLMs, see Davison (2003), Fahrmeir and Tutz (2001), Faraway
(2006), Firth (1991), Hastie and Pregibon (1991), Lee et al. (2006), Lovison (2014),
Madsen and Thyregod (2011), McCullagh and Nelder (1989), McCulloch et al. (2008),
and Nelder and Wedderburn (1972). For asymptotic theory, including conditions for
consistency of f3, see Fahrmeir and Kaufmann (1985).

Section 4.4: Deviance of a GLM, Model Comparison, and Model Checking

4.3

44

Diagnostics: Cox and Snell (1968) generalized residuals from ordinary linear models,
including standardizations. Haberman (1974, Chapter 4) proposed standardized resid-
uals for Poisson models, and Gilchrist (1981) proposed them for GLMs. For other
justification for them, see Davison and Snell (1991). Pierce and Schafer (1986) and
Williams (1984) evaluated residuals and presented standardized deviance residuals.
Lovison (2014) proposed other adjusted residuals and showed their relations with test
statistics for comparing nested models. See also Fahrmeir and Tutz (2001, pp. 147-148)
and Tutz (2011, Section 3.10). Atkinson and Riani (2000), Davison and Tsai (1992), and
Williams (1987) proposed other diagnostic measures for GLMs. Since residuals have
limited usefulness for assessing GLMs, Cook and Weisberg (1997) proposed marginal
model plots that compare nonparametric smoothings of the data to the model fit, both
plotted as a function of characteristics such as individual predictors and the linear
predictor values.

Score statistics: For comparing nested models M|, and M,, let X be the model matrix
for M, and let V(ji,) be the estimated variances of y under M,,. With the canonical link,
Lovison (2005) showed that the score statistic is

(B = )" XIX V() X1 X" (B, — fag)

and this statistic bounds below the X?(M,, | M) statistic in (4.18). Pregibon (1982)
showed that the score statistic equals X*(M,) — X>(M,) when X?*(M,) uses a one-step
approximation to f1,. Pregibon (1982) and Williams (1984) showed that the squared
standardized residual is a score statistic for testing whether the observation is an outlier.

Section 4.5: Fitting Generalized Linear Models

4.5

4.6

IRLS: For more on iteratively reweighted least squares and ML, see Bradley (1973),
Green (1984), and Jgrgensen (1983). Wood (2006, Chapter 2) illustrated the geometry
of GLMs and IRLS.

Observed versus expected information: Fisher scoring has the advantages that it
produces the asymptotic covariance matrix as a by-product, the expected information
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is necessarily nonnegative-definite, and the method relates to weighted least squares
for ordinary linear models. For complex models, the observed information is often
simpler to calculate. Efron and Hinkley (1978) argued that observed information has
variance estimates that better approximate a relevant conditional variance (conditional
on ancillary statistics not relevant to the parameter being estimated), it is “close to the
data” rather than averaged over data that could have occurred but did not, and it tends
to agree more closely with variances from Bayesian analyses.

Section 4.6: Selecting Explanatory Variables for a GLM

4.7

4.8

4.9

Bias—variance tradeoff: See Davison (2003, p. 405) and James et al. (2013, Section
2.2) for informative discussions of the bias—variance tradeoff.

AIC and BIC: Burnham and Anderson (2010) and Davison (2003, Sections 4.7 and 8.7)
justified and illustrated the use of AIC for model comparison and suggested adjustments
when n/p is not large. Raftery (1995) showed that differences between BIC values for
two models relate to a Bayes factor comparing them. George (2000) presented a brief
survey of variable selection methods and cautioned against using a criterion such as
minimizing AIC or BIC to select a model.

Collinearity: Other measures besides VIF summarize the severity of collinearity and
detect the variables involved. A condition number is the ratio of largest to smallest
eigenvalues of X, with large values (e.g., above 30) being problematic. See Belsley
et al. (1980) and Rawlings et al. (1998, Chapter 13) for details.

EXERCISES

4.1

4.2

4.3

44

4.5

Suppose that y; has a N(u;, 02) distribution, i = 1, ..., n. Formulate the normal
linear model as a GLM, specifying the random component, linear predictor,
and link function.

Show the exponential dispersion family representation for the gamma distri-
bution (4.29). When do you expect it to be a useful distribution for GLMs?

Show that the ¢ distribution is not in the exponential dispersion family.
(Although GLM theory works out neatly for family (4.1), in practice it is
sometimes useful to use other distributions, such as the Cauchy special case
of the t.)

Show that an alternative expression for the GLM likelihood equations is

n

C— ) ou:
Zwﬁ=o, =12
& var(y;) 9p;

Show that these equations result from the generalized least squares problem of
minimizing Zi[(yi — /4[)2 /var(y;)], treating the variances as known constants.

For a GLM with canonical link function, explain how the likelihood equations
imply that the residual vector e = (y — ji) is orthogonal with C(X).
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4.7

4.8

4.9

4.10

4.11

4.12
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Suppose y; has a Poisson distribution with g(y;) = f + f;x;, where x; = 1 for
i=1,...,ny from group A and x; = 0 for i = ny + 1, ...,n4 + np from group
B, and with all observations being independent. Show that for the log-link
function, the GLM likelihood equations imply that the fitted means /i, and fig
equal the sample means.

Refer to the previous exercise. Using the likelihood equations, show that the
same result holds for (a) any link function for this Poisson model, (b) any
GLM of the form g(u;) = fy + p,x; with a binary indicator predictor.

For the two-way layout with one observation per cell, consider the model
whereby y; ~ N(u;, %) with

Hy = Po + B +v; + ABy;.

For independent observations, is this a GLM? Why or why not? (Tukey (1949)
proposed a test of H,: 4 = 0 as a way of testing for interaction; in this setting,
after we form the usual interaction SS, the residual SS is 0, so the ordinary
test that applies with multiple observations degenerates.)

Consider the expression for the weight matrix W in var(ﬁ) = (XT WX)~! for
a GLM. Find W for the ordinary normal linear model, and show how var(f)
follows from the GLM formula.

For the normal bivariate linear model, the asymptotic variance of the cor-
relation 7 is (1 — p%)?/n. Using the delta method, show that the transform
% log[(1 + r)/(1 — r)] is variance stabilizing. (Fisher (1921) noted this, show-
ing that 1 /(n — 3) is an improved variance for the transform.) Explain how to
use this result to construct a confidence interval for p.

For a binomial random variable ny with parameter z, consider the null model.

a. Explain how to invert the Wald, likelihood-ratio, and score tests of H:
x = my against H,: & # m to obtain 95% confidence intervals for z.

b. In teaching an introductory statistics class, one year I collected data from
the students to use for lecture examples. One question in the survey asked
whether the student was a vegetarian. Of 25 students, 0 said “yes.” Treating
this as a random sample from some population, find the 95% confidence
interval for 7 using each method in (a).

c¢. Do you trust the Wald interval in (b)? (Your answer may depend on whether
you regard the standard error estimate for the interval to be credible.)
Explain why the Wald method may behave poorly when a parameter takes
value near the parameter space boundary.

For the normal linear model, Section 3.3.2 showed how to construct a confi-
dence interval for E(y) at a fixed x,,. Explain how to do this for a GLM.
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4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

For a GLM assuming y; ~ N(u;, 62), show that the Pearson chi-squared statis-
tic is the same as the deviance. Find the form of the difference between the
deviances for nested models M and M.

In a GLM that uses a noncanonical link function, explain why it need not
be true that ), 4; = >, y;. Hence, the residuals need not have a mean of 0.
Explain why a canonical link GLM needs an intercept term in order to ensure
that this happens.

For a binomial GLM, explain why the Pearson residual for observation i,

e; = (y; — #;)/\/#;(1 — #;) /n;, does not have an approximate standard normal
distribution, even for a large n;.

Find the form of the deviance residual (4.21) for an observation in (a) a
binomial GLM, (b) a Poisson GLM.

Suppose x is uniformly distributed between O and 100, and y is binary
with log[z;/(1 — x;)] = —2.0 + 0.04x;. Randomly generate n = 25 indepen-
dent observations from this model. Fit the model, and find corr(y — f1, ft). Do
the same for n = 100, n = 1000, and n = 10,000, and summarize how the
correlation seems to depend on 7.

Derive the formula Var(ﬁj) =c2/{(1 - R]?)[Z,'(xij - J_Cj)z] }.

Consider the value ﬁ that maximizes a function L(f). This exercise motivates

the Newton—Raphson method by focusing on the single-parameter case.

a. Using L'(f) = L'(BO) + (f — pOL"(BO) + ---, argue that for an ini-
tial approximation f© close to f, approximately 0= L'(f©) + (§ —
BOYL(BD). Solve this equation to obtain an approximation g for 4.

b. Let p© denote approximation ¢ for f, r =0, 1,2, .... Justify that the next
approximation is

P = g0 — L'(B™)/L" (5.

For n independent observations from a Poisson distribution with parameter
u, show that Fisher scoring gives u*! =3 for all # > 0. By contrast, what
happens with the Newton—Raphson method?

For an observation y from a Poisson distribution, write a short computer
program to use the Newton—Raphson method to maximize the likelihood. With
y = 0, summarize the effects of the starting value on speed of convergence.

For noncanonical link functions in a GLM, show that the observed information
matrix may depend on the data and hence differs from the expected information
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4.24

4.25

4.26

4.27
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matrix. Thus, the Newton—Raphson method and Fisher scoring may provide
different standard errors.

The bias—variance tradeoff: Before an election, a polling agency randomly
samples n = 100 people to estimate 7 = population proportion who prefer
candidate A over candidate B. You estimate z by the sample proportion 7. I
estimate it by 14 %(0.50). Which estimator is biased? Which estimator has
smaller variance? For what range of x values does my estimator have smaller
mean squared error?

In selecting explanatory variables for a linear model, what is inadequate about
the strategy of selecting the model with largest R value?

For discrete probability distributions of {p; } for the “true” model and {p,,;} for
amodel M, prove that the Kullback—Leibler divergence E{log[p(y)/py1}=>
0.

For a normal linear model M; with p + 1 parameters, namely, {ﬂj} and o2,
which has ML estimator 6% = D f1:)*1/n, show that

AIC = n[log(276?) + 11+ 2(p + 1).

Using this, when M, has ¢ additional terms, show that M, has smaller AIC
value if SSE, /SSE; < e~24/",

Section 4.7.2 mentioned that using a gamma GLM with log-link function gives

similar results to applying a normal linear model to log(y).

a. Use the delta method to show that when y has standard deviation o propor-
tional to u (as does the gamma GLM), log(y) has approximately constant
variance for small o.

b. The gamma GLM with log link refers to log[E(y;)], whereas the ordinary
linear model for the transformed response refers to E[log(y;)]. Show that if
log(y;) ~ N(u;, 62), then log[E(y))] = E[log(y)] + 62 /2.

c. For the lognormal fitted mean L; for the linear model for log(y;), explain
why exp(L;) is the fitted median for the conditional distribution of y;.
Explain why the fitted median would often be more relevant than the fitted
mean of that distribution.

Download the Houses . dat data file from www.stat .ufl.edu/~aa/glm/
data. Summarize the data with descriptive statistics and plots. Using a forward
selection procedure with all five predictors together with judgments about
practical significance, select and interpret a linear model for selling price.
Check whether results depend on any influential observations.


http://www.stat.ufl.edu/~aa/glm/data
http://www.stat.ufl.edu/~aa/glm/data
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4.29

4.30

431

4.32

Refer to the previous exercise. Use backward elimination to select a model.

a. Use an initial model containing the two-factor interactions. When you reach
the stage at which all terms are statistically significant, adjusted R> should
still be about 0.87. See whether you can simplify further without serious
loss of practical significance. Interpret your final model.

b. A simple model for these data has only main effects for size, new, and
taxes. Compare your model with this model in terms of adjusted R?, AIC,
and the summaries of effects.

c. If any observations seem to be influential, redo the analyses to analyze their
impact.

Refer to the previous two exercises. Conduct a model-selection process assum-
ing a gamma distribution for y, using (a) identity link, (b) log link. For each,
interpret the final model.

For the Scottish races data of Section 2.6, the Bens of Jura Fell Race was an
outlier for an ordinary linear model with main effects of climb and distance in
predicting record times. Alternatively the residual plots might merely suggest
increasing variability at higher record times. Fit this model and the corre-
sponding interaction model, assuming a gamma response instead of normal.
Interpret results. According to AIC, what is your preferred model for these
data?

Exercise 1.21 presented a study comparing forced expiratory volume after
1 hour of treatment for three drugs (a, b, and p = placebo), adjusting for a
baseline measurement x;. Table 4.1 shows the results of fitting some normal
GLMs (with identity link, except one with log link) and a GLM assuming a
gamma response. Interpret results.

Table 4.1 Results of Fitting GLMs for Exercise 4.32

Explanatory Variables R? AIC Fitted Linear Predictor
base 0.393 1344 0.95+ .90x,

drug 0242 1524  3.49+ .20b - .67p

base + drug 0.627 103.4 1.11 4 .89x, +.22b — .64p
base + drug (gamma) 0.626 106.2  0.93 + .97x, + .20b — .66p

base + drug (log link) 0.609 106.8  0.55 + .25x, + .06b — .20p
base + drug + base:drug ~ 0.628 107.1 1.33 4+ 81x, —.176 — 91p + 15x,b + .10x,p

4.33

Refer to Exercise 2.45 and the study for comparing instruction methods. Write
a report summarizing a model-building process. Include instruction type in
the chosen model, because of the study goals and the small n, which results
in little power for finding significance for that effect. Check and interpret the
final model.
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The horseshoe crab dataset Crabs2.dat at the text website comes from a
study of factors that affect sperm traits of males. One response variable is
ejaculate size, measured as the log of the amount of ejaculate (microliters)
measured after 10 seconds of stimulation. Explanatory variables are the loca-
tion of the observation, carapace width (centimeters), mass (grams), color
(1 =dark, 2 = medium, 3 = light), the operational sex ratio (OSR, the number
of males per females on the beach), and a subjective condition number that
takes into account mucus, pitting on the prosoma, and eye condition (the higher
the better). Prepare a report (maximum 4 pages) describing a model-building
process for these data. Attach edited software output as an appendix to your
report.

The MASS package of R contains the Boston data file, which has several
predictors of the median value of owner-occupied homes, for 506 neighbor-
hoods in the suburbs near Boston. Describe a model-building process for these
data, using the first 253 observations. Fit your chosen model to the other 253
observations. Compare how well the model fits in the two cases. Attach edited
software output in your report.

For x between 0 and 100, suppose the normal linear model holds with

E(y) = 45 + 0.1x + 0.0005x> + 0.0000005x> + 0.0000000005x*
+0.0000000000005x°

and ¢ = 10.0. Randomly generate 25 observations from the model, with
x having a uniform distribution between O and 100. Fit the simple model
E(y) = fy + pyx and the “correct” model E(y) = fy + p1x + -+ + ﬂ5x5. Con-
struct plots, showing the data, the true relationship, and the model fits. For each
model, summarize the quality of the fit by the mean of |f; — y;|. Summarize,
and explain what this exercise illustrates about model parsimony.

What does the fit of the “correct” model in the previous exercise illustrate
about collinearity?

Randomly generate 100 observations (x;,y;) that are independent uniform
random variables over [0, 100]. Fit a sequence of successively more complex
polynomial models for using x to predict y, of degree 1, 2, 3, ... . In principle,
even though the true model is E(y) = 50 with population R?> = 0, you should
be able to fit a polynomial of degree 99 to the data and achieve R> = 1. Note
that when you get to p ~ 15, (X'X) is effectively singular and effects of
collinearity appear. As p increases, monitor R?, adjusted R?, and the P-value
for testing significance of the intercept term. Summarize your results.



CHAPTER 5

Models for Binary Data

For binary responses, analysts usually assume a binomial distribution for the random
component of a generalized linear model (GLM). From its exponential dispersion
representation (4.6) in Section 4.1.2, the binomial natural parameter is the log odds,
the so-called logit. The canonical link function for binomial GLMs is the logit, for
which the model itself is referred to as logistic regression. This is the most important
model for binary response data and has been used for a wide variety of applications.
Early uses were in biomedical studies, for instance to model the effects of smoking,
cholesterol, and blood pressure on the presence or absence of heart disease. The past
25 years have seen of substantial use in social science research for modeling opinions
(e.g., favor or oppose legalization of same-sex marriage) and behaviors, in marketing
applications for modeling consumer decisions (e.g., a choice between two products),
and in finance for modeling credit-related outcomes (e.g., whether a credit card bill
is paid on time).

In this chapter we focus on logistic regression and other models for binary response
data. Section 5.1 presents some link functions and a latent variable model that moti-
vates particular cases. Section 5.2 shows properties of logistic regression models and
interprets its parameters. In Section 5.3 we apply GLM methods to specify likelihood
equations and then conduct inference based on the logistic regression model. Sec-
tion 5.4 covers model fitting. In Section 5.5 we find the deviance for binomial GLMs
and discuss ways of checking the model fit. In Section 5.6 we present alternatives to
logistic regression, such as the model using the probit link. Section 5.7 illustrates the
models with two examples.

5.1 LINK FUNCTIONS FOR BINARY DATA

In this chapter, we distinguish between two sample size measures: a measure n; for
the number of Bernoulli trials that constitute a particular binomial observation, and
a measure N for the number of binomial observations. We assume that y;, ..., yy are

Foundations of Linear and Generalized Linear Models, First Edition. Alan Agresti.
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independent binomial proportions, with n;y; ~ bin(n;, z;). That is, y; is the proportion
of “successes” out of n; independent Bernoulli trials, and E(y;) = x; does not depend
onn;. Letn = (ny, ..., ny) denote the binomial sample sizes. The overall number of
binary observations is n = Zfi | e

5.1.1 Ungrouped versus Grouped Binary Data

Data files for binary data have two possible formats. For ungrouped data, n =
(1,...,1). The data file takes this form when each observation y; results from a
single Bernoulli trial, and thus equals O or 1. Large-sample methods for statistical
inference then apply as N — oo.

For grouped data, sets of observations have the same value for each explanatory
variable. Most commonly this happens when all explanatory variables are categorical.
Then, n; refers to the number of observations at setting i of the explanatory variables,
i=1,...,N. For example, in a dose—response study of the effect of various dosages
of a drug on the probability of an adverse outcome, {n;} record the number of
observations at the various dosages. For grouped data, the number N of combinations
of the categorical predictors is fixed, and large-sample methods for inference and
model checking apply as each n; — co. Under such small-dispersion asymptotics, as
we obtain more data, the variance for each binomial observation decreases.

A grouped-data file for binary data can be converted to ungrouped form. The same
maximum likelihood (ML) estimates ﬁ and standard errors occur, with the same
large-sample normal distributions; however, other summary measures of fit, such as
the deviance, change. We will see that the grouped-data format is useful for checking
model fit. An ungrouped-data file can be converted to grouped-data form only when
multiple subjects share the same values for explanatory variables.

5.1.2 Latent Variable Threshold Model for Binary GLMs

A latent variable model called a threshold model provides motivation for families of
GLMs. We express this model in terms of ungrouped data. The model assumes (1)
there is an unobserved continuous response y’ for subject i satisfying y; = ZJ- Bix;; +
€;, where {¢