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Preface

Multilevel modeling is currently a very active research area with statistical
advances occurring at a rapid pace. It is also being increasingly used in the
applied world of data analysis because these techniques can address issues
that are problematic with traditional approaches. In this edited volume,
many of the leading multilevel modeling researchers from around the world
illustrate their current work. These authors were invited to write chapters
hased on an open competition and call for papers in 1999. All chapters
were peer reviewed by us and at least one external reviewer. We thank.
Steven West, Dougal Hutchinson, Antony Fielding, Russell Ecob, Peter
Bentler, Mike Seltzer, Juwon Song, Robert Cudeck, and Albert Satorra for
reviewing one or more chapters.

As per the title, the chapters focus on new statistical advances (e.g..
Cudeck & du Toit’s chapter on nonlinear models for repeated measures
data), methodological issues (e.g., Seltzer & Choi’s chapter on outlier
detection), and current applications of multilevel modeling {e.g., Baumler.
Harrist, & Carvajal's chapter that illustrates analyses from the safer choices
project). Because most chapters address each of these issues, it was
impossible to separate them into distinct and coherent sections. Instead,
the chapters are ordered in the sequence in which we were able to edit them.
Thus, the chapter ordering in no way reflects our subjective judgments of
quality. Our thanks is extended to James M. Henson for translating all
manuscripts into camera-ready copy.

We believe that this volume will be most beneficial for researchers with
advanced statistical training and extensive experience in applying multilevel
models. Several chapters are quite statistically advanced (e.g., Cudeck &
du Toit, Bentler & Liang, Fielding), although applications of these new
techniques to real data are often provided. This book is probably not an
optimal choice as an introductory graduate-level text, but may serve as a
supplement, to such a text. At the end of this volume, we provide a list of
author contact information.

vii
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Nonlinear Multilevel Models for
Repeated Measures Data

Robert Cudeck Stephen H. C. Du Toit

University of Minnesota  Scientific Software International, Inc.

Hierarchical or multilevel models (e.g., Bryk & Raudenbush, 1992;
Goldstein, 1987) have become valuable in many research domains as
a way to account for naturally occurring or experimentally imposed
hierarchical sampling configurations. The classic example in education
is the nesting structure that arises when students are sampled from
classrooms, which in turn are sampled from schools. Several desirable
features are associated with multilevel models for hierarchical designs,
including improved efficiency of estimation and more sensitive evaluation
of treatment effects.

An important application of multilevel models is the description of
mdividual change in repeated measures experiments or longitudinal studies.
The technology in this situation is essentially the same as in the study of
treatment effects in a hierarchically structured sample, but with different
objectives. The goal is to summarize the average change in the population
over time, while also describing individual patterns of development.
Individual observation vectors may well be unique. Typically, they differ
from the mean response as well. The statistical problem is to fit both the
mean vector and the collection of individual responses by the same function,
but with distinct parameterizations. A multilevel model for the repeated
measures problem is often referred to as a mized-effects model, after the
decomposition of a response into a fixed term for the mean vector plus a
term for individual variation.
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Several algorithms have been presented for maximum likelihood
estimation of the linear mixed-effects model assuming normality of the
residuals and random effects. Software is widely available (e.g., Kreft, De
Leeuw, & Van der Leeden, 1994). Estimation of the nonlinear model is
more difficult, even though nonlinear models are typically more realistic.
Consequently, although maximum likelihood estimation in linear models
is relatively standard, its use with nonlinear models is uncommon. The
problem is that the likelihood function for parameters of the nonlinear
model involves an integration over the random effects to obtain the
unconditional distribution of the response. Except in special cases, the
integration cannot be carried out explicitly (Davidian & Giltinan, 1995.
chap. 4). To estimate the model, at least three different strategies have
been suggested, only the first of which produces exact maximum likelihood
estimates; (a) empirical Bayes or fully Bayesian methods utilizing the EM
algorithm or a data augmentation method such as the Gibbs sampler
(Walker, 1996); (b) approximating the nonlinear response function by a
first-order Taylor series, treating the resulting problem as a linear model
that is handled with standard techniques (e.g., Lindstrom & Bates, 1990);
(¢) two-stage methods based on first obtaining estimates for each individual,
then pooling information across subjects (Davidian & Giltinan, 1995, chap.
4; Vonesh, 1992; Vonesh & Chinchilli, 1997, chap. 7).

These methods often perform satisfactorily, certainly as general-purpose
procedures. They work especially well in cases when the number of
parameters in the function is small and the number of observations per
individual is relatively large. All the same, limitations have been noted
(Davidian and Giltinan, 1993; Roe, 1997). With the EM algorithm,
convergence can be slow, irrespective of the method used to obtain
moments of the missing data. With estimators based on linearization, the
transformation of the nonlinear function involves an approximation whose
accuracy is difficult to assess and that varies from one response function to
another. With two-stage estimators, efficiency can be poor and the methods
may not be applicable at all if the individual data are sparse. Consequently.
results from both the approximate estimators and two-stage estimators can
differ in nontrivial ways. An important justification for ongoing research
on maximum likelihood estimation is that it provides a standard against
which other methods may be evaluated.

In recent treatments, Davidian and Giltinan (1995) and Pinheiro and
Bates (1995, sec. 2) suggested marginal maximum likelihood estimation
of the nonlinear mixed-effects model (cf. Bock, 1989). Gauss-Hermite
quadrature is recommended in both references for the integration over
the random effects to obtain the marginal distribution of the response.
However, no details have been presented about the way the likelihood
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function and the numerical approximation to it actually might be
implemented. In their review of methods for approximating this likelihood
function, Pinheiro and Bates (1995) reported numerical results for the
Gaussian quadrature approach, but did not describe how the estimates
summarized in their article were obtained. Pinheiro subsequently informed
us (personal communication, December 10, 1998) that a general algorithm
was employed for nonlinear function maximization from the S system
(Chambers & Hastie, 1992, chap. 10). In their use of this method, they
utilized an option for numerical differentiation. It is well known that this
strategy is convenient and generally satisfactory for many problems (e.g.,
Dennis & Schnabel, 1983, sec. 5.6). On the other hand, it can be expensive
in terms of function evaluations, and is subject to numerical inaccuracies
when truncation or round-off errors swamp the calculations (Burden &
Faires, 1993, chap. 4).

In this chapter, we also investigate marginal maximum likelihood
estimation for the nonlinear mixed-effects model for continuous variables
with structured covariance matrix for the residuals and a linear model
for covariates at the second level. The model allows incomplete response
vectors, data missing at random, time-varying covariates, and individual
patterns of measurement. Similar to the approach of Pinheiro and Bates,
the likelihood function is directly defined in terms of the quadrature
formula used to approximate the marginal distribution. Estimates by the
Newton-Raphson method will be obtained using explicit expressions for
the gradient vector and numerical approximation to the Hessian matrix.
This simple algorithm for the Hessian is generally twice as accurate as is
a purely numerical method for second-order derivatives. Another benefit
of this method is that the stochastic parameters can be easily computed
from terms obtained for the gradient vector. The main advantages of the
Newton-Raphson method is its reliable and rapid convergence rate and
the fact that it provides an accurate approximation to the asymptotic
covariance matrix of the estimates. An example with data from a repeated
measures experiment and a second illustration with data from a longitudinal
study are provided to demonstrate that the method performs satisfactorily.

THE NONLINEAR MIXED-EFFECTS MODEL
The nonlinear mixed-effects model is
yi = £i(8,,%:,2:) + e;

where y; = (Y1, - - -, Yin,)' i the vector of n; observed scores for the z-th
individual,

fi(ﬂiaxis z;) = [fil (ﬁivxiazi)a ooy fins (Bp Xi,Zi)]l
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is a vector-valued, nonlinear function of coeflicients, 3;, independent
variables, x;, and covariate scores, z;. This notation for f; is utilized because
the number of observed scores for an individual, as well as the form of the
function, may differ for each component of the response. The individual
vectors, B; : (p x 1), are the sum of fixed and random effects plus level-two

covariates

B;=p85+Bb, +0Z; (1.1)
where 8 : (p x 1) are fixed parameters, b; : (r x 1), r < p, are random
effects that vary across individuals. The second level regression coefficients
are elements of the (p x v) matrix ©. It is convenient subsequently to
define 8 = vec(®). The design matrix B : (p x r) usually has fixed values
of unity or zero. It is used to associate particular elements of b; with those
of 3, allowing for the possibility that some components of 8, do not vary.
or that some element of b; corresponds to two or more values of 3, as is
sometimes needed in the study of multiple populations. For example, if the
first and third coefficients of 8, are random but the second is fixed with no
level-two covariates, then

B=

OO
_ oo

and B; = (8, + bi1, By, B3 + biz)".
It is assumed that the residuals, e; = y; —£;(8,, X, 2;), have distribution
e; ~ N(0, A,) where the covariance matrix has structure

Ai = A (A

for parameters A : (gy x 1). The residuals often are taken to be independent
with constant variance, o2, in which case A;(A) = ¢21. In other situations,
structures that specify either nonconstant variance or serial correlation or
both can be accommodated. In still other cases, the error structure may
depend on the mean response (e.g., Davidian & Giltinan, 1995, sec. 4.2.2).
Although the order of A; is n;, the matrix depends on ¢ only through its
dimension.

The distribution of the random effects is assumed to be normal with
expected value zero and covariance matrix ®: b; ~ N(0,®). The
covariance matrix is parameterized in terms of its Choleski factorization,

® =TT (1.2)

Again, although many different situations are possible, two are common.
When the random effects are uncorrelated, ® is a function of ¢, = r
parameters

T = T(r) = Diag(71,...,77)
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with [®];; = 7'?. If @ is a general symmetric matrix, then T is lower
triangular,

tll 0
T = T(T) = 0
trl ’rr

The elements of T correspond to those of = by the relationship ¢, = 7.
with
Lj.k)=k+30-1)/2, >k (1.3)

The order of 7 when ® is symmetric is ¢, = r(r + 1)/2 and [®];x =

k
> iz tithi.
The conditional distribution of y; given b; is

N(f,(8 + Bb, + ©z;,x;,2;),A,)
The density function is
Fan(yi | bi) = 7)™ F |A7F exp [~ 4(vi - £/ AT (vi - £)]
where f; = £;(8,,%;,2:). The density function of b; is
g(bi) = (2m)F 2| 7% exp(~{bj@'b) (14)
Therefore, the joint distribution of y; and b; is

Jup(yis b)) = fyplyi | bi)g(bs)
= K*-exp[~3(yi — £) A7 (yi = £))] - exp(—3b; @ 'b))
(rtny)
where * = (27) 2 |Ai|_% |<I>|”%, and the unconditional distribution
of y; 18

hily) = / fyoly: | B)g(b)db = / fyo(ye,b)db (15)

For a sample of N independent observations, y = (¥},
y'v)', the likelihood function from the marginal distribution hr(y;) is

L[(E,G,T\A t Y) =
TIY, hi(y:), with log-likelihood

N
InLi(B,6,7,A|y) = > Inhi(y:) (1.6)
1=1

In general, the integral in (1.5) cannot be computed explicitly.
However, a satisfactory numerical approximation can be implemented with
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Gauss-Hermite quadrature, after an appropriate change of variables. Let
T~ be the inverse of the square root matrix in (1.2) and set u = 273 T~ b,
so that b;= /2Tu, with Jacobian

db;

r 1
=237 |P|2
ou’ 2|

Then, in terms of the transformed variable, the distribution function in
(1.5) becomes

hi(y;) = K/exp (—%egA;lei) exp(—u'u)du (1.7)

where e; =y, — £(8,,%:,2:),

B, =B+ B(V2Tu) + Oz; (1.8)
and b )
L o 1 _ ni (n‘.+7‘) -2 ] 1
K=K | = (2 T ) [A;] 2
The function under the integral in (1.7) is of the form g(z) =
exp(—2z'z) f*(z), where f*(z) is a scalar-valued function of z = (21, .. ., 2,.)’.

The Gauss-Hermite quadrature formula to approximate an r-dimensional
integral of this type by a sum is, using r = 3 for example,

/g(z)dz = ///e‘slze‘zzze_zi*zf*(z],zz,ZS)dZ

€

G G
Z Z Z (wylwyz wya)f*(um vugzv ’Ug3)

g1=1g2=1g3=1

R

where wg, and ug, are, respectively, the quadrature weights and abscissas
for an approximation with & points. It can be shown (e.g., Krommer &
Ueberhuber, 1994, sec. 4.2.6, or Stroud & Secrest, 1966, sec. 1) that the
approximation

G
/e‘zgf*(z)dz = z wy f*(ug)
g=1

is exact if f*(z) is a polynomial of degree 2G — 1. It can also be shown
(Krommer & Ueberhuber, 1994, sec. 4) that the approximation converges
to the true integral as the number of quadrature points increases

G
C}T@ngf*{ug) = /e”z fr(z)dz

=1
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Let W = wy, - -wg,. The corresponding approximation to (1.7) is

G G
h(y) = K> ) Weexp(-iejA;'e:) (1.9)
g1=1 g9r=1
~ /l](y,‘).

The residual vector e; used in (1.9) is a function of 8, in (1.8) with
abscissas, g, , - .., Ug, .

APPROXIMATING THE LIKELIHOOD FUNCTION

For marginal maximum likelihood estimation of the model, we define the
log-likelihood as

N
InL(B,6,7, A Y) = Inh(y;) (1.10)
=1

with h(y;) given in (1.9). For the Newton-Raphson method, the derivatives
of the log-likelihood are needed. It is important that (1.10) be defined as
the objective function rather than (1.6) with (1.7) because the gradient
vectors of (1.6) and (1.10) are not the same. To see this, it is sufficient to
show only the results pertaining to 7. As given in the Appendix, after the
change of variables, the gradient of (1.6) with respect to ¢z = [T]; is

N

OlnLi(B,6,7,A1Y) 21 hy(y:)
=2 T h 1.11)
Atjk ; Ot ( /
where
Onuly) _
K 'T-14 -1 1.1 1 13
0 T . 1 ! .
hi(y:) / [u 25 (T') u] exp(~juujmidu 5t [‘i' @;k]
(1.12)
with 0= (g, 1, ) i = oxp(~ Je{A ey),
; e . .,
Qjp = o — =TT +TTy,

6tjk
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and Tjx = ZX. As with the log-likelihood in (1.6), the integral in (1.12)
must be computed numerically, again with Gauss quadrature

G G

Olnhy(y:) = 2K N 1n

00 S S o ] - 1

(1.13)

On the other hand, if the log-likelihood is defined by (1.10) rather than
(1.6), then the corresponding partial derivative is

dInL(B,6,7, M| Y) _ <~ dlnh(y:) 114
5t]'k - 6tjk '

=1

91 h(y:) K & <
S L e =S S Womu, [B'AIA e, (1.15)

g1=1 gr=1

and
A, = TlBux) (116)
8ﬂu
and where the subscript of the abscissa ug, is associated with one of the
index variables, g« € {(g1,...,9r). In practice, the difference in values

obtained from (1.15) and (1.13) will depend on the model and the number
of quadrature points.

In summary, because (1.10) with (1.9) is the actual way the function is
implemented, it follows that the gradient vector must be calculated from
(1.10), as is illustrated with the partial derivative of In L(3,08,7, A|Y)
with respect to 7 in (1.14) and (1.15). Use of (1.11) with (1.13) does not
give the proper maximum of the function computed in practice, so that
gradient methods developed from it may either fail or at least perform
suboptimally, and the asymptotic covariance matrix of the estimates would
not be correct.

ESTIMATING THE MODEL

In this section, we present the steps needed to estimate the parameters
of the model based on the Newton-Raphson algorithm, followed by
estimation of the individual coefficients. The gradient vector for this
problem is straightforward to compute. In contrast, elements of the
Hessian matrix are not only complicated in form but are also relatively
time-consuming to calculate. Consequently, we propose approximating the
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Hessian numerically, using the explicit first derivatives (Dennis & Schnabel,
1983, sec. 5.6). Not only is this much simpler in terms of computer code,
it is also faster than using the exact matrix of second derivatives. Results
from the two methods typically agree to five or six significant digits, so
estimates and standard errors agree well for most practical purposes.

Parameter Estimation

The gradient vector of (1.10) with respect to the parameters v = 8,8,
7', A) is composed of the submatrices

dlnL , '
g=gly) = By (83 86> &1y 8))

The matrix of the Jacobian of the response function with respect to 3,
is (1.16). Let the product of weights be Wg = wy, ---w,, . Define m; =

exp(—%ei'A;]ei) and the following intermediate quantities

. oA .
A; = B a; =Aj'e; c; = Ala; a; = Aja; o; = B'c;.
J
The first section in g is
N 1 G G
gg=K Z VAN Z Wamic;
i=1 (YZ) g1=1 gr=1

S

Next, using the identity ¢;, = 71, with L defined in (1.3), the second section
is [of. (1.14) and (1.15)]

N
ol =3 MY ey

where

Bh(y,-) B \/_I( &} G
-8—tjk—' =v2 Z Z ng,'ugk[ai]j

g1=1 gr=1
Elements of the last section are
1 N . 1 G G
[g)\]j = —52 tr (A_lAj) - E Z Z VVGmia;éj 1<j5<qgx
i=1

g1=1 gr=1
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where
G

hy:) g
Si= o = NS Wemy (1.17)

K
g1=1 gr=1
The Hessian matrix has components

‘ Hggs
&*InL Hos Hyo
(v) = = 5
8’76’7' Hrﬁ HT0 HTT

H,s Hyy H,, H,

The finite-difference approximation to H at a particular point v = -, using
the explicit gradient vector is based on a related matrix, H*(+), that is built
up column by column. Define the j-th column of this approximation as
g(y+m;vi) —8(v)

1
where v; is a null vector except for a single value of unity in the j-th
position, and n; a small constant scaled in terms of parameter v;:

{H*(’Y)],j =

n; = || - eps
where eps is a machine-dependent constant. For example, on
microcomputers with 32-bit double precision word, one can set eps =
1.521077. The matrix actually used in practice is computed from H* () in
a way that insures the final matrix is symmetric

H(y) = 5 [H'(3) + (H' ()]

The Newton-Raphson step from an estimate, v¥)| of the parameters at
the k-th iteration to the next point in the sequence, v**1, is the solution
of the system of linear equations,

k k
H(v*)s = —g(+")
with updated parameters
,7(k+|) —_ 7(“ + wd

The step-halving coefficient, w > 0, is chosen to ensure that In L{~(*+1)) >
In L(~y)).

Define 4 as the maximizer of (1.10) that is hopefully obtained when the
iterative process converges. In large samples, the standard error of estimate
of element [4]; is computed from the corresponding diagonal element of

1
the approximate Hessian matrix in se[¥]; = [H( )™ ;- These are useful
for constructing interval estimates and for testing hypotheses about the
associated parameters.
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Estimates of Individual Coeflicients

After the maximum likelihood estimate 4 has been computed, individual
coefficients, b;, for the sum in (1.1) are estimated. These are the expected
values of the conditional distribution, fy,(b;| y;) where

bi = E(bil v,) = [ by (b |3,)db
From the joint density

fy I:(yla i) = fJIb(Yzl b, )g(b ) = .fbly(bi| yi)hl(yi)

the conditional density function of (b;] y;) can be written in terms of the
density of (y;| b;):

fyp(¥il b;)g(b;)
hi(ys:)

This allows the expected value to be written as

fory (il y;) =

By = hyly:) " / b f,p(yi| b)g(b)db

The integrals are again computed numerically by Gauss-Hermite
quadrature. In this instance, the individual coefficients are the ratio

_ Zgl——l Zg =1 WGmi v

E(b; | y:) G
291:1 e ZJ - Wem,
(1.18)
G G
-——S:l Z Z Wemsty,
91=1 gr=1

where t, = v2Tu, u = (ug,, ..., uy, )", and S; is in (1.17). Some estimators
proposed in the literature use the posterior mode rather than the expected
value for b;. In this implementation, (1.18) is convenient computationally.
Because of the assumption that b; has a normal distribution, there should
be little practical difference between the two.

EXAMPLES

Two examples are presented in this section. The first includes a
four-parameter function with one nonlinear coefficient. The second
example requires three nonlinear random effects plus three parameters for
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TABLE 1.1
Bradway and McArdle’s Longitudinal Study
Occasions
1 2 3 4 5 6
Year 1931 1941 1956 1969 1984 1992
Median Age 4.3 141 299 429 57.7 66.2
N 74 74 74 56 53 54

Note. Subjects with at least one measurement on occasion 4 - 6.

a level-two covariate. Although these are not highly complex nonlinear
functions compared to some examples that have been reported, the research
questions are realistic and important in their own contexts. The examples
show that this approach to nonlinear mixed-effects models is practical.
Many interesting studies with a repeated measures component can be
satisfactorily investigated using models that require only three or four
random effects.

Data From a Longitudinal Study

One of the longest running longitudinal studies ever conducted was begun
by Bradway (Bradway & Thompson, 1962) and extended by McArdle
(McArdle & Hamagami, 1996). In 1931, 138 children were initially
administered the Stanford-Binet. They were retested as many as five more
occasions up to 1992 on both the Stanford-Binet and the Wechsler scales.
A summary of the study is shown in Table 1.1. Our analysis is based
on N = 74 subjects who had at least one score on occasions 4, 5, or 6.
Thirty of these subjects were measured on all six occasions. The other 44
cases had one or two missing scores in six different missing data patterns.
The response variable is a weighted sum of nonverbal items from both
the Stanford-Binet and Wechsler scales, centered at the mean of the 1931
sample. Exact age was recorded at each occasion, so values on the predictor
differ for each person. Records for a random 25% subsample are shown in
Fig. 1.1. No level-two covariates are included in this analysis.

As shown in Fig. 1.1, there was an initial rapid growth phase until
the early teenage years, at which point, performance leveled off. In
late adulthood, some of the subjects had scores that gradually increased,
whereas others declined. Although the overall pattern was similar for the
sample as a whole, individual differences, as always, were a notable feature
of the data.
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FIG. 1.1. Bradway and McArdle data: Measures of nonverbal intelligence
over the lifespan on 25% of random sample N = 74.

Many models can be considered for this situation. Functions with
an asymptote seem inappropriate because the pattern of change was not
uniformly increasing or decreasing. It is of interest to formally test whether
overall improvement versus overall decline characterized the population.
In an effort to simply describe the data, various two phase models,
corresponding to the preadult and adult phases, were tried. A satisfactory
representation was possible with a segmented polynomial (e.g., Cudeck &
Klebe, in press; Morrell, Pearson, Carter, & Brant, 1995; Seber & Wild,
1989, chap. 9)

- I 2 )
R A

using x; is age at the j-th occasion of measurement. Two parameters are
especially interesting in this context. The transition point of the function
is B5. It is the value of X at which the polynomial of the first phase
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TABLE 1.2
Maximum Likelihood Estimates
L]

J (se) ) b b b3
0 81.1(2.20) bg 76.4
1 -.141 (0.05) by -.011 .026
2 -572(0.04) b, .090 .007 .032
3 18.6 (0.60) by 368 .099 .408 9.99

Note. 6° =77.5

changes to the linear component of the second. Developmentally, this would
be interpreted as the age when a qualitative change in rate of cognitive
growth occurs. The second interesting parameter is 5;, the slope of the
linear phase. It can be used to test whether there is overall improvement
or decline across the life span. If no random effects are specified for the
transition point, then the model can be fit by standard maximum likelihood
for linear models. Because there is variability in the age at which the
transition occurs, however, it is more reasonable to allow random effects on
34 as well as on the other parameters. Individual coefficients are therefore
B, = +b, with p =r = 4. We take & to be symmetric, but specify
homogeneous error variances as A; = o1

The model was fit with G = 16 quadrature points. Maximum likelihood
estimates are shown in Table 1.2. The fitted mean response, f (B x), is
shown in Fig. 1.2. The estimated transition point for the population was
35 = 18.6 years, with se(83;) = 0.60. After that age there was on average
a_gradual decline in performance of approximately .14 points per year
(3, = —.141, se(B,) = .05). Although the trend decreased overall, a few
individuals actually exhibited increases, whereas for others, the response
was essentially constant into old age. Figure 1.3 shows fitted functions for
a few selected cases. The two individuals in Fig. 1.3(a) had large differences
in intercept, 3., (70.8 vs. 91.9); those in Fig. 1.3(b) had large differences
in slope, 3, (-.32 vs. .04); those in Fig. 1.3(c) had large differences in
transition age, 3,5 (14.1 vs. 23.6).

In their analyses, McArdle and Hamagami (1996) examined several
different models. Their best fitting model was a latent curve structure. Tt
also showed a slight decline in nonverbal intelligence, but only in the later
adult years. In addition to differences in the statistical model, McArdle
and Hamagami used a larger sample of N = 111. Because in our simple
two-phase model, the linear component was of special interest, and because
we lacked information regarding the dropout mechanism that resulted
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FIG. 1.2. Bradway-McArdle data: Sample data with fitted function.

in a smaller sample at the later measurement occasions, it was thought
reasonable to require that subjects have at least one score in the last three
periods. In light of this consideration, and in light of the interpretable and
stable results, we believe these results are substantively reasonable, at least

as a preliminary description.

A Verbal Learning Experiment

Smith and Klebe (1997) conducted an experiment in which N = 143 college
students studied a list of 15 words during 10 trial periods. The number of
items correctly recalled in each trial was recorded. In addition to the free
recall experiment, a measure of verbal achievement, z;, was obtained as a
covariate. A 10% random sample of the data are shown in Fig. 1.4.

A three-parameter logistic response function seems appropriate for these

data

: N Bio
{fl( i’Xi’Zl)]j 1+ exp(8; — 512%’) (1.19)
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FIG. 1.4. Smith and Klebe’s data: Number of words correctly recalled by
10% of sample, N = 142.

where x = (0,...,9) are the trials. The maximum number correct in this
experiment is 15, which is the upper bound for the asymptote, 85, If 3%
is assumed to have a normal distribution with mean 3, then there may be
cases for which values of 37, > 15 occurs. It is more appropriate to assume
that individual asymptotes have a skewed distribution and that coefficients
are restricted to be 37 < 15. This is handled by a transformation of the
numerator of (1.19) in which

15

Bio(Bio) = 15 e Fn

where the basic parameter 3, together with 3,; and 3,, have a joint normal
distribution, but 87,(5,0) is bounded above.
Two versions of this model were examined. In Model 1, individual
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coefficients are simply the sum
My:B;=8+b,

with b; ~ N(0,®). Here, E(8,) = 8. In Model 2, the covariate, z;,
is included at the second level to investigate the effectiveness of verbal
achievement as a predictor of verbal learning. Let 8 = (6q,6;,03)" so that

My:B;,=8+b;+0z

with E(8;) = B+ 0u,. It should be noted that (1.19) has only nonlinear
parameters, and that the first is essentially a transformation of the
distribution of 8,5. The performance of model M, against M; gives a
means of assessing the improvement gained by adding the covariate. In
each model, the residual structure was A; = ¢°I.

The number of quadrature points was G = 14. For the two models,
the value of (1.10) was InL; = —2441.9 and InL, = —2426.7, with a
difference of —2(In Ly — InLy) = 30.4 on degrees of freedom difference,
df = 3. At least nominally, the covariate improves performance. Maximum
likelihood estimates for Ms are shown in Table 1.3. The largest value of the
estimated asymptotes in the sample is [‘3:0 = 14.7. The fitted mean curve
using E(f;(3,,x,,2;)) where
~1

£i(B,.x;,2) =15 [{1 + eXP(‘.Bio)} {1 + exp(B;; — Bizx)H

is shown in Fig. 1.5. In the second-order model, the covariate Z is most
effective as a predictor of 87, based on 8y = .044, se(fy) = .006. The
covariate also predicts 3,5, but only weakly so, 6, = .009, se(f;) = .002.
This suggests that verbal achievement is moderately successful in predicting
final learning, 8, and perhaps also rate of learning, 3;5. The weight for
3;; on Z, 81, could well be zero.

DISCUSSION

Accuracy of the estimates, as well as amount of computer time, are a
function of the number of quadrature points. In deciding on an appropriate
number for (G, a few different values can be tried and results based on the
smallest number associated with stable estimates can be reported. For
example, Model 2 of Example 2 had N = 142, r = 3 random effects,
v = 1 covariates, with a total of 13 parameters. Table 1.4 shows values of
In L(~y), 3, and the required computer time per Newton-Raphson iteration
for G = §8,10,12,14. The estimates for G = 12 and G = 14 are similar, at
least for two significant digits. Computer time essentiallv doubles for each
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TABLE 1.3
Maximum Likelihood Estimates on Recall Data
P (se)
B; (se) 8; (se) bo by by

1.33 (.54) -.010 (.005) b; -.102 (04) .186 (.03)
-208 (.18)  .009 (.002) b, 048 (.02) -.028 (.01) .124 (.02)

Note. 6° = 1.07 (.06)

J
0 2.46 (62) 044 (.006) & .699 (.08)
1
2

TABLE 1.4
Computer Time and Accuracy of Estimates for Different Values of G

G Time InL B B4 By
8 4 -24339 -232 1.57 -218
10 8 -24278 -242 148 -.213
12 14 -2426.1 -2.45 140 -.209
14 23 -24283 -246 1.33 -.208

increase in G to an elapsed time of 23 seconds per iteration for G = 14.
The method can be demanding when G is large, but not prohibitively so.

This work demonstrates that marginal maximum likelihood estimation
of the nonlinear mixed-effects models can be obtained by a direct
implementation of the Gauss-Hermite formulas for numerical integration.
The primary reason for this approach is to ensure that the likelihood
function and its derivatives are mutually consistent. For any gradient-based
method of estimation, it is essential that this be so. In addition to this
important technical consideration, the method is practical. Many nonlinear
models for repeated measures exist with a small number of random effects.
With four random effects or fewer, this approach is feasible.

Much of the literature on multilevel models makes a qualitative
distinction between linear and nonlinear models. Estimation in the former
case is straightforward and software is widely available to fit models
based on maximum likelihood assuming a normal distribution for both the
residuals and random effects. Maximum likelihood estimation of nonlinear
models is a much more difficult enterprise, in terms of derivation, computer
code, and computational effort in the estimation step. Consequently, a good
deal of statistical development has been concerned with approximations
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FIG. 1.5. Smith and Klebe’s data: Sample means and fitted function.

to the general nonlinear model that result in estimators that are more
manageable. These approximations work well in a variety of situations (e.g.,
Pinheiro & Bates, 1995; Vonesh & Carter, 1992). Nonetheless, it is more
atisfying, at least theoretically, to approach mixed-effects models from a
unified perspective that allows both linear and nonlinear response functions
to be treated in the same way. To some extent, there is a corresponding
distinction in the literature on linear versus nonlinear regression. A valuable
feature of modern approaches to regression is the unified treatment of
both classes of response function under maximum likelihood. This has
illuminated a variety of subtle and not so subtle features of the model that
would not be as clearly rendered from a compartmentalized approach. It is
likely that further study of the mixed-effects model from a single perspective
would be similarly advantageous.

Although the approach described here is successful as a method for
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estimating the nonlinear mixed-effects model, a sobering consideration
in its use is the computational burden. Research is being conducted to
investigate ways of reducing the computations. It appears that substantial
improvements can be made in the way the numerical integration is handled.
This will speed up the estimation process appreciably.
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APPENDIX

In this section, we derive %In hr(y:), which is needed in the partial

derivatives of (1.6) with respect to elements of 7. Define ¢ as the
nonduplicated elements of ®, with ®; = %Q. It is convenient to first

find gg—L]n hi(y:). From (1.4),
In(g(b;)) = % 1In(27) — iln|®| - %b;@‘lbi
Du Toit (1993, sec. 4) showed that

dIng(b;)

_ 1y a-la -1, 1o -1
G = el e, ztr[é @L] (A1)

From (1.5) (cf. Du Toit, 1993, sec. 5),

Al hi(y;) 1 / [ d J
= i|b) | —g(b)| db A2
i) = s [ty 1B) | Zg0) (42)
Because %lng(bi) = g(bi)_lang(bi), it follows that
dg(b;) dln g(b;)
= g(b;)———= A3
Do g(bs) G, (A3)
Substituting (A3) into (A2),
dlnhi(y;) 1 “Jln g(b)
5o = s [ C L2ty big(b) (a9)
and (Al) into (A4) gives
Olnh(y:s) 1 / 13 1 .
" = sy (BT £l Dlg(b)db
1 oy
—5tr [<1> 1@L] (A5)

Let K* = (2m)~ 7 |A;[ 7% |®]7%. Substituting f,,(y: | bs) and g(b;)
into (A6) gives

Alnhily:) K*
Dy, 2hi(y;:)

exp (—3b'®@ 'b) db — %tr [(I'_l‘i’l,] (A6)

/ (b’@'léLQ_lb) exp (—1ejA[ ' e))
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With the change of variables to u —TT‘lbz, (AB) becomes

Olmhy(y:) _ _
O [y v

mydu — %tr [!I"IQL}

with ¥ = 23 |<I>|% K* = (2n)” |A | ? and m; = exp(——e A7 e;).
Because @ depends on T in (1.2), substitution gives

Oln h(y:) K / tep—1 & /N—1 1.1
il (.0 AT A T 1, (T -1 .d
o, Al [u (T u] exp(—zu'u)m;du
s [ed,) (A7)
5 L

Gauss-Hermite quadrature is used to approximate (A7) as follows:

Olnhy(yi) h(yl) Z Z Wem; [uT Y (T ]—%tr [‘Irl‘i)L]

a‘pL gl=1 gr=1

where Wg = wy1 - wyr. Again, substituting for @ from (1.2) and noting
that <i>jk = TjkTI +TT;-k gives finally

Aln hily; 20K & N
T =iy 5, I Yo [ -
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Sensitivity Analysis for Hierarchical
Models: Downweighting and
[dentifying Extreme Cases Using the ¢
Distribution

Michael Seltzer
Kilchan Choi
University of California, Los Angeles

A key facet of data analysis entails checking the adequacy of models. Tt
is important to learn whether one’s results are being strongly influenced
by one or two cases, whether one’s results might be especially sensitive
to certain modeling choices and assumptions (e.g., choice of link function,
distributional assumptions regarding random effects), and whether one’s
model fails to capture important features of the data (e.g., nonlinear
relationships between key predictors and the outcome of interest).

Normality assumptions are commonly employed in hierarchical modeling
settings. For example, in the case of two-level hierarchical models (HMs)
for continuous outcomes, level-1 (within—cluster) error terms are typically
agsumed to be normally distributed. At level 2, cluster effects (i.e., random
effects) are generally assumed to be normally distributed as well. In the case
of HMs with more than two levels, normality assumptions are also typically
employed for random effects specified at higher levels of the hierarchy (e.g..
level 3).
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It is widely known that in fitting models under normality assumptions,
parameter estimates are potentially vulnerable to extreme cases (e.g.,
Mosteller & Tukey, 1977). This problem has stimulated the development
and use of an array of robust regression techniques.

In the case of HMs, some attention has been given to the sensitivity
of fixed effects estimates to extreme level-2 units. Consider, for
example, a multisite evaluation study in which treatment and control
conditions have been implemented in each of a series of sites. Treating
treatment /control group contrasts as outcormes in a level-2 (between—site)
model, we might be especially interested in modeling differences in the
magnitude of treatment/control group contrasts as a function of program
implementation. A problem, however, is that under normality assumptions
at level 2, a site at which a program was unusually successful or unsuccessful
could strongly impact the resulting estimate of the implementation fixed
effect (e.g., Seltzer, Wong, & Bryk, 1996). As a second example, consider a
growth modeling study in which children’s rates of change with respect
to a cognitive skill of interest are, in a level 2 (between—child) model,
modeled as a function of whether or not children have attended preschool.
Under normality assumptions in the level-2 model, one or two children with
unusually slow or rapid rates of change could strongly impact the estimation
of the fixed effect capturing the relationship between preschool and rate of
change.

To address problems of this kind, a number of researchers have presented
strategies for conducting sensitivity analyses under ¢ level-2 assumptions
{e.g., Carlin, 1992, Seltzer, 1993). These strategies are based on the scale
mixture of normals representation of the t (e.g., Dempster, Laird, & Rubin,
1980; Lange, Little, & Taylor, 1989; West, 1984). Such analyses can
be carried out fairly readily using Markov Chain Monte Carlo (MCMC)
techniques (discussed later). When we fix the degrees of freedom parameter
of the t distribution (e.g., v2) at a small value - that is, when heavy tails are
assumed at level 2 — extreme level-2 units are more easily accommodated
than under normality assumptions. The net effect is that extreme level-2
units will be downweighted in our analyses. Analogous to robust regression
techniques, vy serves as a tuning parameter. As the value at which we
fix vy decreases, the extent to which level-2 outliers will be downweighted
increases.

Careful application of HMs also requires that we attend to extreme
level-1 units. In a multisite evaluation study, for example, a person in the
treatment group at a particular site whose outcome score is very extreme
in relation to the other individuals in that particular group would be an
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example of a level-1 outlier. In the context of growth modeling applications,
a time-series observation for an individual that is unusually high or low
given the overall trend in that person’s data would be considered a level-1
outlier.

As Rachman-Moore and Wolfe (1984) pointed out, level-1 outliers can
“sour” summaries of the data for a given cluster, which, in turn, can impact
the estimation of fixed effects. Consider, for example, the simple one-way
ANOVA setting with random effects, where individuals are nested in J
different clusters. In this setting, OLS estimates of the means for the
clusters (Y, 7 = 1,...,J) are used in computing the generalized least
squares estimate of the grand mean (e.g., Bryk & Raudenbush, 1992, chap
3). Clearly, an extreme score within a particular cluster can impact the
estimate of the mean for that cluster, which, in turn, can impact the
estimate of the grand mean. Analogously, level-1 outliers can impact
estimates of treatment/control contrasts for particular sites, or estimates
of growth rates for certain children, which, in turn, can result in misleading
estimates of fixed effects of interest. To this end, Seltzer, Novak, Choi
and Lim (in press) presented a strategy that entails employing the scale
mixture of normals representation of the ¢ at both levels 1 and 2 of HMs
(cf. Spiegelhalter, Best, Gilks, & Inskip, 1996).

Through analyses of the data from a longitudinal study of change in
toddlers’ request behavior we will (a) further highlight possible problems
connected with level-1 and level-2 outliers, (b) illustrate the value of
conducting sensitivity analyses under ¢ distributional assumptions at levels
1 and 2 of HMs, and (c¢) illustrate how such analyses can be carried out
using the software package WinBUGS (Spiegelhalter, Thomas, & Best,
2000), which was developed by statisticians in the MRC Biostatistics Unit
in Cambridge, England. BUGS is a near acronym for Bayesian inference
using Gibbs sampling. There has been an explosion of interest in Gibbs
sampling and other MCMC techniques in the last 10 years in the statistics
community. This is due to the fact that MCMC provides a viable approach
to statistical inference in many complex settings. WinBUGS is freely
available via the web: www.mre-bsu.cam.ac.uk/bugs/welcome.shtml, and
can be used in a large array of modeling settings. Detailed descriptions of
the BUGS code that we have written for this chapter can be downloaded
from the following website: www.gseis.ucla.edu/faculty /pages/seltzer.html.

In the following section, we describe the data set that we use in our
illustrative examples. This provides a backdrop for a brief discussion of our
estimation approach. We then take the reader through a series of detailed
analyses of the data.
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GROWTH MODEL FOR THE REQUEST
BEHAVIOR DATA

When making requests of their caretakers, toddlers often employ hand
and body movements that partially enact the actions that they want their
caretakers to perform. Smiley, Greene, Seltzer, and Choi (2000) referred
to such behavior as enactive gesturing. Smiley et al.’s interest in enactive
gesturing stemmed from the potential insight that behaviors of this kind
can provide regarding the nature of toddlers’ knowledge of self and other.

In our illustrative examples, we utilize the data from a longitudinal study
that explored changes in the use of enactive gestures by toddlers (Smiley
et al., 2000). Our sample consisted of 9 children (5 females and 4 males)
and their mothers. Mother-child dyads were recruited from a middle class,
well-educated urban community through newspaper advertisements. The
dyads were videotaped during the course of their normal daily activities:
the length of each taping session ranged from 2.5 to 3.5 hours. All of
the requests initiated by a child during a taping session were subsequently
classified into various categories (e.g., initiated with enactive gestures:
initiated without enactive gestures, etc.). The outcome variable of interest
in our analyses was the percentage of requests that were initiated using
enactive gestures (EG).

Figure 2.1 displays the observed EG trajectories for the children in our
sample. The sample contained EG measures at ages 12, 16, 20, 24, and
30 months for children 1 through 8, and FG measures at ages 12, 16, and
24 months for child 9. At 12 months of age, EG percents ranged from
50.0 to 93.2, with a mean of 76.1 and a standard deviation of 15.0. The
general pattern is that FG percents decreased in a fairly linear fashion
during the 12— to 24-month age range, and then flattened out after 24
months. Note that EG values for the sample of children tended to converge
at the 24-month time point. This lends some support to prior research that
suggests that at approximately 24 months, children display behaviors that
indicate they have begun to construct a notion of self as a psychological
entity (see Smiley et al., 2000 for a review).

In addition to coding children’s request behaviors, mother’s responses
following children’s requests were categorized. Of particular interest in the
Smiley et al. study were caretaker responses that referred to children’s
states, actions, or goals, termed “speech about the child” (SPAC). Percents
of caretaker responses falling into this category were computed at each time
point.

Over the 12— to 20-month age range, mothers differed substantially
in terms of their levels of SPAC, but seemed to show little systematic
increase or decrease in their SPAC values over time. One question of interest
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FIG. 2.1. The observed enactive gesturing (EG) trajectories for the 9
children in our sample.

investigated by Smiley et al. was the following: How do differences in levels
of SPAC in this particular period relate to differences in rates of change in
enactive gesturing (EG) over the 12— to 24-month age range. To examine
this question, the SPAC values for each caretaker were averaged across the
12 to 20 month age span. The resulting variable (MSPAC) was employed as
alevel-2 (between-child) predictor in subsequent growth modeling analyses.

Smiley, Greene, Seltzer, and Choi (2000) modeled EG values across
the entire age range (i.e., 12-30 months). In doing so, they employed a
piecewise model for individual growth that captured rate of change during
the 12 to 24 month age range, status at 24 months, and rate of change
in the 24 to 30 month age range. For ease of exposition, we set aside
the 30-month EG values and use a simpler model. Note that the following
results are extremely similar to those reported by Smiley et al. (see Endnote
1). Note also that transforming EG values to the logit scale or using an
arcsin transformation does not alter the pattern of results.

We now pose the following two—level growth model. We begin by
specifying a level-1 (or within—child) model in which the series of EG
values for each child in the 12— to 24-month age span is modeled as a
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linear function of age:
Y = moi + ﬂ’]i(AGE“' — 24) + €4 €4~ ATV(O’ ()’2), (21)

where Y;; represents the EG percent for child ¢ (# = 1,...,I) at
measurement occasion t (t = 1, ..., T;), AGE}; represents the age in months
of child i at measurement occasion ¢, and 7y; represents the rate of change
for child ¢ during the 12 to 24 month age range. As noted earlier, 24 months
is viewed as a pivotal age in the development of autonomy. By virtue of
centering AGE,; around a value of 24, mg; represents the EG status of child
i at 24 months. Initially, we assume that the €;; (i.e., the level-1 residuals)
are normally distributed with mean 0 and variance o2.
We then pose the following level-2 or between-child model:

To: = Boo
Ty = ﬂlO + /311AISPAC1 + Uy Upy ~ ]\7(0, 7’11). (22)

The parameter of primary interest in this model is f#,,, which captures
the relationship between level of mother’s speech about the child (MSPAC)
and rate of change in enactive gesturing. The parameter Uy; is a random
effect that captures the deviation of the growth rate for child ¢ from an
expected value based on his or her caretaker’s MSPAC value [i.e., Uy; =
i — (B0 + 81, MSPAC;)]. We initially assume that the Uy; (i =1, ..., 1)
are normally distributed with mean 0 and variance 751, where 71; represents
the variance in growth rates across children that remains after taking into
account MSPAC.

In the first equation in the between-child model, 8y, represents mean
EG status at 24 months. Note that preliminary models that we fit to the
data indicate that the variance in EG status at 24 months across children
(To0) is extremely small, which is consistent with the pattern observed in
Fig. 2.1. As such, as in Smiley et al. (2000), we do not include random
effects for EG status in our level-2 model; that is, we constrain 7oy to a
value of 0.

ESTIMATION AND INFERENCE
Fully Bayesian Analysis via MCMC

Typically, point estimates and standard errors for fixed and random effects
in applications of HMs are based on the GLS and shrinkage estimation
formulae outlined in such sources as Bryk and Raudenbush (1992). In
these formulae, the variance components in HMs are assumed known.
From a Bayesian perspective, these formulae correspond to the means and
standard deviations of the conditional posterior distributions of the fixed
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and random effects given the data and given the variance components [e.g.,
p(311 1y, 711, 02)]. Tterative techniques such as the EM algorithm or Fisher
scoring are used to obtain ML estimates of the variance components, and
these estimates are then substituted into the formulae for the fixed and
random effects. Such an approach has been termed empirical Bayes (EB)
(Bryk & Raudenbush, 1992). Thus, for example, the mean and standard
deviation of the conditional posterior p(8,; |y. 711 = 711, 02 = §°) would
provide us with a point estimate and standard errvor for 3;,.

In this approach, it can be seen that ML estimates of the variance
components are essentially treated as the known true values of these
parameters. This can be problematic in small-sample settings. That is,
when the number of level-2 units in a sample is small, the EB approach
can potentially result in underestimates of uncertainty (e.g., standard
errors that are too small), and point estimates that may constitute poor
summaries of the data (Draper, 1995; Rubin, 1981; Seltzer et al., 1996).
(Regarding hypothesis tests and intervals for fixed effects in small-sample
settings, note that the HLM program performs a correction that tends to
provide appropriate rejection rates and levels of coverage provided that
one’s data are not too unbalanced.)

In contrast, the fully Bayesian (FB) approach entails basing inferences
on the marginal posterior distributions of parameters of interest [e.g.,
p(A;;1y)]. This involves specifying prior distributions for the variance
components, as well as all other parameters in one’s model. To obtain
the marginal posterior distribution of a parameter of interest, we integrate
over all other parameters in the model. Thus, for example, p(84; | y) would
provide a summary of the plausibility of different values for 3, given the
data at hand and any available prior information. The mode, median, and
mean of p(f; |y) would constitute various point estimates for 3;;, and
the .025 and .975 quantiles of this distribution would provide us with the
Bayesian analogue of a 95% confidence interval.

One of the advantages of the FB approach is that it provides a general
strategy for drawing inferences concerning a parameter of interest in a
manner that takes into account the uncertainty connected with all other
parameters in one’s model. For example, in drawing inferences concerning
3, integrating over 71; and o? along with all other unknowns in effect
propagates the uncertainty concerning these parameters into p(#,;|y)
(Draper, 1995; Rubin, 1981; Seltzer et al., 1996; see, especially, Box &
Tiao (1973, chap. 2) for a valuable discussion of this concept).

Calculating marginal posteriors of interest has heretofore been
intractable in all but the simplest HM settings. Markov Chain Monte
Carlo (MCMC) techniques, such as the Gibbs sampler, now make such an
approach extremely viable (see, e.g., Carlin & Louis, 1996; Gelfand, Hills,
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Racine-Poon, & Smith, 1990; Gelfand & Smith, 1990; Gelman, Carlin,
Stern, & Rubin, 1995; Gilks, Richardson, & Spiegelhalter, 1996; Seltzer et
al., 1996; Spiegelhalter, Thomas, et al., 1996b, 1996¢; Spiegelhalter et al.
2000; Tanner, 1996; Tanner & Wong, 1987). As detailed in these references,
MCMC techniques, in effect, provide a means of simulating marginal
posteriors of interest in high-dimensional modeling settings. Examples of
numerous applications of MCMC can be found in these references as well.

In addition to providing a viable strategy in settings in which the
use of large-sample theory may be problematic, conducting fully Bayesian
analyses via MCMC techniques places the data analyst in a position
to capitalize on other important aspects of the Bayesian approach.
In particular, the Bayesian approach encourages us to lay bare key
assumptions in our models (e.g., distributional assumptions, specifications
of priors) and to study the sensitivity of our results to sensible alternative
assumptions. These ideas are extremely well articulated in the work of
George Box (1979; 1980; see also Box & Tiao, 1973). MCMC greatly
increases our capacity to put this important set of ideas into practice. In
particular, we focus on the use of MCMC in conducting sensitivity analyses
under ¢ distributional assumptions.

Fitting HMs under ¢ distributional assumptions

In our analyses, we employ a mixed modeling formulation. Thus, we
collapse our level-1 and level-2 models (Equations 2.1 and 2.2) as follows:

Y = /300 + [510 + ﬁuMSPAQ + Uli](AGEti — 24) + €. (2.3)

As noted earlier, we initially assume normality at levels 1 and 2: ¢y ~
N(0, 02) and Uy; ~ N(0, 711). By virtue of assuming normality at level
1, we have

Yie ~ Ny, o), (2.4)

where
iy = ﬂ(]() + [,810 + ,Bllj\JSPACl + Ull](AGEtl - 24) . (25)

To implement the Gibbs sampler in settings in which we wish to
employ ¢ distributional assumptions at one or more levels of the algorithm.
it is extremely convenient to work with the scale mixture of normals
representation of the ¢. To help grasp the logic of this approach, recall
that a t— distributed variate with mean 0, scale 1, and degrees of freedom v
can be expressed as: z /w!/?, where z has a standard normal distribution
[z ~ N(0,1)] and w is a chi-squared distributed variate divided by
its deerees of freedom (w ~ +2/v). Note that the distribution v2/v
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corresponds to a Gamma distribution with shape parameter v/2 and scale
parameter v/2 [i.e., Gamma(v /2, v/2)] (see, e.g., Gelman et al., 1995, for
details concerning the Gamma distribution).

Building on this logic, if we wish to assume that level-1 errors are t
distributed with mean 0, scale 02, and v; degrees of freedom, N(u,;, 0?)
in Equation 2.4 is now replaced by:

}/15 ~ N(#‘tia Uz/w!i) ’ (26)

where
wy ~ Gamma(v/2,v1/2). (2.7)

We refer to the wy; as level-1 weight parameters. In Equation 2.6, note
that as wy; decreases, the variance of Y;; (i.e., 02/wy) increases. As can
be seen in the illustrative examples, those level-1 observations with small
weights will, as in a Weighted Least Squares analysis, be downweighted.

A Gibbs sampling algorithm for models of this kind is detailed in Seltzer
et al. (in press). Similar to the weights produced by robust regression
techniques such as biweighting, the algorithm produces estimates of the
wi;- Specifically, the algorithm is likely to generate small values for wy;
when the distance of Y3; from p,; is large.

This strategy can also be easily extended to level 2. Under the
assumption that the random effects in our model are ¢ distributed with v
degrees of freedom, we would use the scale mixture of normals formulation

as follows:
Ui ~ N0, 711 /4:), (2.8)

where:
g ~ Gamma(va/2, v2/2). (2.9)

In this formulation, the g; constitute level-2 weight parameters. A small
estimate (e.g., a small posterior mean) for g; would signal a child whose
rate of change is unusually slow or rapid.

If we wish to assume heavy tails at levels 1 or 2, we can fix the
corresponding degrees of freedom parameter (v1; v2) at a small value (e.g.,
4). If results obtained under heavy-tailed assumptions differ substantially
from those obtained under normality, a useful strategy entails fixing degrees
of freedom parameters along a grid of values (described later). We will also
see that it is possible to treat v; and vy as parameters that are estimated
based on the data at hand and on available prior information. This results
in estimates for parameters of interest (e.g., fixed effects) that are analogous
to robust adaptive estimates.
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Implementation

Deriving the steps of Gibbs sampling algorithms can be a fairly complex
task. Furthermore, implementing Gibbs sampling algorithms in languages
such as Fortran can be extremely time-consuming. Fortunately, the
software package WinBUGS, which we used to conduct the analyses
presented in this chapter, provides a relatively easy means of implementing
the Gibbs sampler in a wide range of modeling settings. In addition,
the developers of WinBUGS have made available a comprehensive suite of
programs for assessing convergence called CODA (Best, Cowles, & Vines,
1996). Like WinBUGS, CODA is freely available, and can be obtained via
the BUGS website.

In endnote 3, we discuss the procedures that we used to assess
convergence, and in endnote 4, we discuss the specification of priors for
the variance components and fixed effects in our models. All analyses were
run on a Pentium II 400mhz PC. To ensure high degrees of accuracy in
simulating marginal posteriors of interest, all posterior means, standard
deviations, and intervals reported are based on chains of 40,000 values
generated by the Gibbs sampler (see endnote 3). For all analyses except
those in which degrees of freedom parameters were treated as unknowns,
less than 1 minute of CPU time was required to complete 40, 000 iterations
of the Gibbs sampler; when degrees of freedom parameters were treated as
unknowns, approximately 4 minutes of CPU time were required.

ILLUSTRATIVE EXAMPLE 1

We first consider the growth model for the enactive gesturing data in which
normality is assumed at levels 1 and 2 (N/N) (see Equation 2.3). Note that
the HLM program (Bryk, Raudenbush, & Congdon, 1996) produces files
termed residual files that can be used to obtain EB and Least Squares
(LS) growth parameter estimates for the individuals in a sample (see
endnote 2). In building HMs and checking their fit, we often find it useful
to examine plots of the LS estimates produced by HLM versus level-2
predictor variables. Figure 2.2 displays the LS estimates of the rates of
change for the 9 children in our sample versus MSPAC. As can be seen, as
MSPAC increases, the LS estimates of the m1; become more negative; that
is, higher MSPAC values are associated with more rapid rates of decline in
enactive gesturing.

We now use WinBUGS to fit the HM specified in Equation 2.3. Note
that we have centered MSPAC around its grand mean. By virtue of this,
1 represents the mean rate of change in enactive gesturing during the 12—
to 24-month age range. For f3,,, we see in Table 2.1 that the mean of the
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FIG. 2.2. Illustrative Example 1: Least squares estimates of rates of
change in enactive gesturing versus level of mother’s speech about the child
(see endnote 2).

resulting marginal posterior distribution is equal to a value of —5.23. One
can interpret marginal posterior means just as one would interpret point
estimates obtained via programs such as HLM. Thus, this result indicates
that EG percents are, on average, declining at a rate of approximately 5%
points per month during the 12— to 24-month age range. For §y, (the fixed
effect representing mean status at 24 months), the marginal posterior mean
takes on a value of 13.70 percentage points.

Turning to the results for 3,, (the fixed effect capturing the relationship
between MSPAC and rate of change), we see that the mean of the marginal
posterior distribution takes on a value of —0.082, and that the lower and
upper boundaries of the 95% interval based on this distribution take on
values of —0.165 and —0.0003, respectively. It can also be seen that a value
of 0 lies just above the upper boundary of the 95% interval. Note that
approximately 2.5% of the marginal posterior for 3,, lies above a value of



TABLE 2.1
Example 1: Posterior distributions for mean status at 24 months, mean
rate, and the fixed effect for MSPAC (mother’s speech about the child)
under N/N, tq/N,Nfty, ts/ts , and t3/t4 level-1 / level-2 distributional
assumptions.

Mean SD 95% Interval Prob.>0¢

Mean Status (2 yrs)

p(Bool ¥)nyn 13.70  2.57  (8.68, 18.81)
P(Bool ¥)es/n 13.97 243 (9.19, 18.73)
P(Bool ¥/, 13.78 2.56  (8.74, 18.87)
P(Bool ¥)ta/ta 13.93 242  (9.09, 18.65)
p(Bool Wtasts 13.96 242  (9.11, 18.68)

Mean Rate

p(Brol ¥)nyy 523 0.493  (-6.21, -4.26)
P(B1rol ¥)ea/n 521 0.493  (-6.16, -4.26)
p(B1ol ¥) v /1 520 0505 (-6.21, -4.20)
P(Brol 9t st 520 0489 (-6.15, -4.25)
CIE I 520 0.494  (-6.19, -4.24)

MSPAC Coeff.

PBUl Y nN -0.082 0.042 (-0.165, -0.000) .025
PB11] Y)easw -0.083 0.043 (-0.169, 0.001) .026
p(B11] nsts -0.088 0.042 (-0.171,-0.005) .020
PB11] Wi sts -0.089 0.042 (-0.172,-0.004) .021
P(B1y] Ve sty -0.090 0.043 (-0.174, -0.005) .019

a. In the case of the MSPAC coefficient, the parameter of primary interest,
we have included the posterior probability that 3,, takes on values greater

than 0 (e.g., p(Byy > 0] ¥)nyn = 025).

36
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0 [i.e., p(811 > 0|y) = 0.0246]. To help interpret the value of the posterior
mean for 3;;, consider two children whose mothers differ by 30 percentage
points in terms of MSPAC, which is similar to the range of MSPAC values
in our sample. In this case, the expected difference in rates of change
in enactive gesturing for two such children would he | — 0.082 x 30|, or
approximately 2.5 percentage points per month.

We now reanalyze the data under ¢4 assumptions at level 1, while
retaining normality assumptions at level 2 (i.e., t4/N). In growth modeling
applications, employing heavy-tailed distributional assumptions at level 1
helps produce robust summaries of the data for each individual in a sample.
Hence, the ensuing results for §;,, for example, will in effect be based on
the relationship between an ensemble of robust growth parameter estimates
for the children in our sample and the predictor MSPAC.

As can be seen in Table 2.1, the t4/N analysis results in fairly minor
changes in the results for the fixed effects. In particular, we see that the
posterior mean for 3;; takes on a slightly larger negative value. It can
also be seen that there is a slight widening of the 95% interval for ;.
Although the upper boundary of the interval now includes 0, note that the
marginal posterior probability that §,, exceeds 0 is extremely close to the
value obtained in the N/N analysis (i.e., .026).

As noted earlier, in employing the scale mixture of normals
representation of the ¢ at level 1, each observation has a corresponding
weight parameter (i.e., wy). Similar to the use of robust regression
techniques such as biweighting, where the final values of the weights for
the observations in a data set can be used to identify outliers, the posterior
means or medians of the wy; can be used to help identify extreme level-1
observations. In the t4/N analysis, the resulting posterior means of the
wy; range from 0.59 to 1.22. The smallest posterior mean is associated
with the 16-month observation for child 1; the posterior means of the
weight parameters connected with the 12, 20, and 24 month observations
in this child’s time series all exceed values of 1 (see Fig. 2.1). Under N/N
distributional assumptions, the posterior mean of the growth rate for child 1
(m1(1)) is —4.46. Downweighting the second observation in this child’s time
series results in a posterior mean for m(;y that is slightly more negative
(—4.55).

In this application, reanalyzing the data under heavy tails at level 1
results in small amounts of change in the summaries of the data for each
child, and, in turn, little change in the results for the fixed effects. Thus,
this analysis provides us with a certain amount of comfort. We have some
assurance that the results concerning the relationship between MSPAC and
rate of change are not being unduly influenced by one or two extreme
outcome values. Examples in which level-1 outliers impact the results of
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fixed effects are treated later.

We now turn our attention to the issue of level 2 outliers and employ #4
assumptions at level 2. As can be seen in Table 2.1, under N/t4 assumptions
and t4/t4 assumptions, the posterior mean of §,; takes on a value that is
appreciably more negative. In addition, we see a downward shift in the
95% interval for 8;,. To help understand this change, recall that in the
scale mixture of normals representation of the ¢ at level 2, each level-2 unit
has a corresponding weight parameter (i.e., ¢;; see Equations 2.8 and 2.9).
In the N/t; analysis, note that the posterior mean of the level-2 weight
parameter for child 9 takes on a value of 0.84, whereas the posterior means
of the weight parameters for the other 8 children take on values ranging
from 0.94 to 1.12. In the plot of LS rate of change estimates versus MSPAC
values (Fig. 2.2), we see that child 9 deviates somewhat from the overall
pattern. Specifically, although child 9’s MSPAC value is fairly small, her
rate of decline in enactive gesturing is fairly steep compared with other
children with low MSPAC values. Thus, under normality assumptions at
level 2, child 9, to some extent, pulls the level-2 fit toward her, which. in
turn, has the effect of slightly dampening the magnitude of the posterior
mean of 8y;. Under t4 level-2 assumptions, the pull exerted by child 9 is
lessened to some extent.

Employing t3 level-2 assumptions further reduces the influence of child
9 on the fit. The posterior mean of the level-2 weight parameter for child
9 drops to a value of 0.81 in the t,/t3 analysis, and the posterior mean for
/#,, takes on a value of —0.090.

The heavy—tailed level-2 analyses point to a somewhat stronger
relationship between rate of decline in enactive gesturing and MSPAC.
Practically speaking, however, under both normal and heavy-tailed level-2
assumptions, the results lead to fairly similar conclusions concerning the
relationship between mother’s speech about the child and rates of change
in enactive gesturing. With only 9 children in our sample, the use
of t assumptions at level 2 provides us with some assurance that our
inferences concerning 3;; are not being unduly influenced by a child whose
rate of decline is unusually fast or slow. For examples in which level-2
outliers substantially affect conclusions regarding fixed effects of interest,
see Seltzer (1993) for a growth modeling application, and Carlin (1992) for
a meta—analysis application.

ILLUSTRATIVE EXAMPLE 2

Much of the literature on employing ¢ distributional assumptions in HM
settings has focused on the use of the t at level 2. A goal of this section is
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TABLE 2.2
Example 2: Posterior distributions of the fixed effect for mother’s speech
under N/N,N/ts,t4/N, and t4/t4 level-1/level-2 distributional
assumptions.

MSPAC Coeﬁ (3,,) Mean SD 95% Interval p(B11 > 0] y)

(Bl Wy 0.057 0041 (-0.139, 0.023) 076
p(ﬁu|y)N/t4 0.058 0.041 (-0.139, 0.022) 073
P(Bn] ¥)easn -0.085 0.041 (-0.163, -0.003) 022
p(B1] Wiasta -0.089 0.042 (-0.169, -0.005) 020

to highlight the important role that the use of t distributional assumptions
at level 1 can play in sensitivity analysis. In particular, we wish to bring
to light situations where the impact of level-1 outliers on results for fixed
effects of interest, can go undetected when ¢ distributional assumptions are
employed at level 2, but normality assumptions are retained at level 1.

To help illustrate this point, we change child 3’s EG value at age 16
months to a value of 90. Examining child 3’s time series (see Fig. 2.1),
it can be seen that such an increase will result in a larger negative OLS
estimate of the rate of change for child 3 - that is, an estimate suggesting
a steeper rate of decline (cf. Figs. 2.2 and 2.3).

Under normality assumptions at levels 1 and 2, we see in Table 2.2
that the marginal posterior mean of 5, (i.e., the MSPAC fixed effect)
takes on a substantially smaller negative value (—0.057) compared with the
results from the previous set of analyses. In addition, we see that the upper
boundary of the resulting 95% interval comfortably includes a value of 0;
more specifically, p(3,, > 0]y) = 0.075.

This difference in results is readily grasped when we compare Figs. 2.2
and 2.3. Note that child 3’s MSPAC value is the smallest in the sample.
Thus, when rate of change is regressed on MSPAC, child 3 will exert an

lo tho WIting it In B 99 that
)l\plﬁ’CLubl\, alr‘cu}lt \Jf lbverage Gll Ullb LbDulUllls 11U, E11 4 15 N AY W\_' q(‘(‘ lll(ll

child 3 is located in the extreme upper left-hand corner of the plot. In Fig.
2.3, however, child 3 is now shifted downward. The overall pattern in Fig.
2.3 suggests that the relationship between rate of change and MSPAC is
flatter (i.e., less negative) compared with Fig. 2.2.

When we retain normality assumptions at level 1 and employ t4
assumptions at level 2, we see in Table 2.2 that there is virtually no
change in the results for #,;. In the N/t¢y analysis, the posterior means
of the level-2 weight parameters range from 0.95 to 1.09. In particular, the
posterior mean of the weight parameter for child 3 is 1.06.
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FIG. 2.3. Least squares estimates of rates of change in enactive gesturing
versus level of mother’s speech about the child for Hlustrative Example 2.

We next employ t4 assumptions at level 1 while retaining normality
assumptions at level 2. The marginal posterior mean of 3,; now takes on
an appreciably larger negative value (—0.085), and the upper boundary of
the 95% interval now lies below a value of 0. In addition, we see that
p(B;; > 0}y) = 0.022.

This change in results stems from the fact that the 16-month observation
for child 3 is downweighted substantially in this analysis. The posterior
means of the level-1 weight parameters corresponding to the 12—, 16—,
20—, and 24-month observations for child 3 take on values of 1.00, 0.17,
0.95, and 1.11, respectively. This weighting scheme essentially returns us
to a situation where the overall pattern of rate of change versus MSPAC
resembles that in Fig. 2.2. Hence, the resulting value for the posterior mean
of 8, in this analysis is extremely similar to the values that we obtained
in the previous set of analyses (cf. Table 2.1).

It is also instructive to compare the marginal posterior means of the rate
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of change for child 3 (7, (3)) obtained in the N/N and t4/N analyses. In
the N/N analysis, where each observation receives equal weight, we obtain
a posterior mean of —4.53. However, in the ¢4/N analysis, the posterior
mean takes on a value that is substantially less negative (—3.52).

Reanalyzing the Data Under Varying Degrees of
Heavy Tailedness

When answers that we obtain under heavy-tailed distributional
assumptions differ appreciably from answers obtained under normality
assumptions, it is valuable to study how answers change when we vary
the degree of heavy tailedness. We now continue with our current example
and illustrate this strategy employing a grid of values for v;.

In the literature, one finds that degrees of freedom parameters are
sometimes fixed at values as small as 1. Because t distributions with 2
degrees of freedom or less have infinite variance, and because assumptions
of infinite variance at levels 1 or 2 do not seem to be sensible in the context
of our example, we focus on values of v; of 3 or more. In these analyses,
we fix vy at a value of 4.

As can be seen in Table 2.3, the posterior means for 3;; under t3 level-1
assumptions and under normal level-1 assumptions differ by approximately
0.033 points. As v increases, we see that the posterior mean for S,
gradually becomes less negative, and that the upper boundary of the 95%
credible interval takes on increasingly larger values. Note, however, that
ceven when vy is fixed at values of 11, 15, and 20, the results that we
obtain still differ appreciably from those obtained under level-1 normality
assumptions.

In this example, we focused on the presence of extreme level-1
observations nested within level-2 units that are leverage points (i.e.,
level-2 units that take on relatively large or small values in the space of the
level-2 predictors). Note, however, that the impact of level-1 outliers on
the estimation of fixed effects is decidedly not confined to such situations
(see, e.g., Seltzer et al., in press). A key point is that estimates of fixed
effects of interest based on a set of robust summaries of the level-1 data can
differ substantially from estimates based on a set of nonrobust summaries.

Treating Degrees of Freedom Parameters as Unknowns

In situations where answers change appreciably across a range of values
specified for a degrees of freedom parameter, it becomes important to try
to calculate the marginal posterior distribution of that parameter [e.g.,
p(r11]y)]- In the context of our current example, this would provide a means
of assessing the relative plausibility of various values for vy given the data



TABLE 2.3
Posterior means, standard deviations and intervals for the MSPAC
coefficient in Example 2 (a) fixing the degrees of freedom at level-1 (vy)
along a grid of values, and (b) treating 11 as unknown. In the analyses in
which v, is treated as unknown, three priors were employed; these three
analyses reflect increasing amounts of prior probability placed on
approximate Gaussian tails at level-1 (see the text below for details).

Results for the MSPAC Coeff. (5,;)

Mean  SD 95% Interval  Prob.> 0
Treating v fixed
along a grid of values:
ts/tq -0.091 0.041 (-0.171, -0.007) .018
ta/l4 -0.089 0.042 (-0.169, -0.005) .020
t7/t4 -0.083 0.041 (-0.162,-0.001) .024
ti/ta -0.077 0.042 (-0.158, 0.008) .034
tis/ty -0.073 0.042 (-0.155, 0.009) .039
tao/ts -0.070  0.041 (-0.152, 0.012) .045
t30/ts -0.066 0.042 (-0.147, 0.017) .056
Njty -0.058 0.041 (-0.139, 0.022) .073
Treating v
as unknown ® :
Prior 1 -0.085 0.042 (-0.168, -0.002) .023
Prior 2 -0.083 0.042 (-0.165, 0.000) .026
Prior 3 -0.081 0.042 (-0.164, 0.002) .028

Note. The degrees of freedom at level-2 (v3) is fixed at a value of 4.
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at hand and based on prior information or beliefs concerning v;. As will be
seen, the process of using the data and any available prior information to
estimate v gives rise to estimates for parameters of interest in HMs (e.g.,
£1,) that are analogous to adaptive robust estimates.

In using BUGS to conduct analyses of this kind, we must treat
degrees of freedom parameters as discrete variables that take on various
prespecified values (for alternative strategies, see Seltzer et al., in press,
and Draper, in press). The values may be equally spaced (e.g., v1 =
3. 4,5, ...,98,99, 100), or, the spacing can vary (e.g., 2, 4, 6, 8, 10, 12,
15, 20, 30, 50; see Spiegelhalter, Thomas, et al., 1996b, p. 35). In using
this approach, however, we have found that the autocorrelation among the
values generated for degrees of freedom parameters in runs of the Gibbs
sampler can be quite high. In such situations, the Gibbs sampler can “get
stuck” for an appreciable number of iterations at the same value for vy or
v (see also Spiegelhalter, Best, et al., 1996a, p. 37).

This has led us to consider possible reparameterizations. In many
applications of MCMC, one often encounters parameterizations that involve
log transformations or reciprocal transformations of various parameters in
a given model. In the case of degrees of freedom parameters, Gelman
et al.  (1995), Liu (1995), and Gelman and Meng (1996) employed
parameterizations that involved the reciprocal of degrees of freedom
parameters (e.g., 1/v). In the case of our HM application, we found that
the use of this parameterization in the WinBUGS environment resulted
in substantial reductions in autocorrelation, thus helping to alleviate the
kinds of problems previously discussed. The beauty of techniques such as
the Gibbs sampler is that we can simulate the marginal posterior for vy,
for example, simply by inverting the values generated for 1/v4.

Thus, in our analyses, we let 1/v, take on the following values: .01, .02,
03, ...,.31, .32, .33. Note importantly that a value of 1/y; = .01
corresponds to a value of vy = 100, and that a value of 1/v; = .33
corresponds to a value of v; ~ 3.

With regard to specifying a prior for 1/v,, we are not aware of
any published or unpublished work on enactive gesturing from which we
might be able to obtain prior information concerning level-1 tail behavior.
However, more generally, we do know that there is a tendency for data in the
social and behavioral sciences to be fairly noisy, especially in cases where the
data arc based on observations in field settings (e.g., home environments,
classrooms). Even in the physical sciences, it is quite common to encounter
sets of measurements that contain outliers or that exhibit fairly heavy tails
(see Draper, in press, p. 97; see also Gelman et al., 1995, pp. 166-167).

In our analyses, we consider three priors for 1/v,. The first prior places
equal probability on each of the prespecified values for 1/v;. Translating
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back to vy, this in effect corresponds to placing a fairly high degree of
prior probability on heavy tails at level 1 [i.e, p(3 < 1 < 3) ~ .39,
and a fairly small amount of prior probability on tails that are roughly
Gaussian [i.e., p(20 < vy < 100) = .15]. To see this, note that values for
1/v; that range from .21 to .33 (i.e., .21, .22, ..., .32, .33) correspond to
values of v that lie between 3 and 5, whereas values for 1/v, that range
from .01 to .05 correspond to values of 100, 50, 33.33, 25, and 20 for »y.
Thus, when we place equal prior probability on each of the prespecified
values for 1/vy, we are, in fact, placing a large amount of prior probability
on heavy-tailed level-1 assumptions. The second prior (Prior 2) that we
employ in effect places approximately equal amounts of prior probability
on heavy level-1 tails and roughly Gaussian tails [p(3 < v; < 5) = .24;
p(20 < vy < 100) = .25]. The third prior (Prior 3) places a prior probability
of .375 on approximately Gaussian tails and a prior probability of .225 on
heavy tails.

In an analysis based on our first prior (Prior 1), the resulting posterior
mean for 3,; is —0.085, which lies between the values that we obtained
with vy fixed at values of 4 and 7, respectively (see Table 2.3 and Fig.
2.4). We also see that the upper boundary of the 95% interval lies below a
value of 0. Using Priors 2 and 3, we see that as we increase the amount of
prior probability placed on roughly Gaussian tails, the posterior mean for
3., takes on slightly less negative values, and the upper boundary of the
95% interval includes values slightly larger than (. Note that the marginal
posterior probability that 3,, exceeds 0 [i.e., p(8;; > 0]y)] differs by an
extremely small amount across the three analyses.

This pattern of results can be readily grasped by considering the
following. The top half of Table 2.3 reports the results that we obtain for §,,
when we condition on a series of different values for vy [e.g., p(811 ]y, v1 =
3), p(B1 ]y, v1i = 4), etc.]. When v; is treated as an unknown, the
resulting marginal posterior distribution of 8;; [p(8;; | ¥)] can be viewed as
a weighted average of a set of conditional posteriors for 8, (i.e., conditional
on different possible values for v;) where weights are supplied by p(vy | y).
Note that under Priors 1, 2 and 3, p(3 < v1 < 7|y) takes on values of
.71, .61, and .58, respectively, whereas p(20 < v; < 100]y), for example,
takes on values of .05, .08, and .16. Thus, in all three analyses, extremely
large amounts of weight are placed on conditional posteriors for 5;; that
are conditional on fairly small values of vq.

Even with only 35 level-1 observations, the data in this example are
fairly informative regarding tail behavior at level 1. As the number of
level-1 observations in a data set increase, inferences concerning vy will
tend to be increasingly insensitive to choice of priors for vy.

One can also treat ve as an unknown in HM analyses. When the
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03 02 -0 0.0 0.1 02
B, (MSPAC Fixed Effect)

FIG. 2.4. Ilustrative Example 2: Marginal posterior distribution of
the MSPAC fixed effect under (a) N/t4 assumptions (solid line); (b) t3/t4
assumptions (dashed line); and (c) t/t; assumptions (dotted line) where
the degrees of freedom at level 1 is treated as unknown. For {c) we employ
a prior that places approximately equal amounts of prior probability on
heavy level-1 tails and roughly Gaussian tails.

number of level-2 units in an application is small, however, the data will
tend to provide very little information regarding level-2 tail behavior, and
inferences may be highly sensitive to choice of prior for vs.

DISCUSSION

A key aim of this chapter is to illustrate the value of conducting sensitivity
analyses via the use of t distributional assumptions at levels 1 and 2 of
HMs. Our strategy is based on the scale mixture of normals representation
of the . A strategy of this kind can help us identify extreme level-1 and
level-2 units, and study the sensitivity of inferences concerning fixed and
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random effects of interest to such units.

Examining the posterior means of the level-1 and level-2 weight
parameters in this formulation provides a useful supplement to available
diagnostics for identifying outliers in HM settings (e.g., inspecting plots of
residuals). In general, in conducting analyses under normality assumptions,
fitted surfaces can be pulled substantially toward extreme cases; as Hogg
(1979) notes, outliers may be masked in plots of residuals in such situations.

For HM settings in which vectors of level-1 parameters are assumed
to vary across level-2 units (e.g., initial status and individual growth rate
parameters in growth modeling appplications; site means and treatment
effects in multisite evaluation studies), Seltzer et al. (1996) illustrated
the use of multivariate t (MVT) distributional assumptions at level 2 (see
also, Wakefield, Smith, Racine-Poon, & Gelfand, 1994). Although one can
specify MVN distributional assumptions in WinBUGS, M VT assumptions
cannot as of yet be specified. However, in those situations in which the
same set of predictors is specified in each level-2 equation, we have found
that the use of univariate ¢ assumptions in each equation often yields results
that are similar to those obtained under MVT assumptions.

When different predictor sets are used in the level-2 equations in an
HM, Bryk and Raudenbush (1992) warned that mispecification in one
equation can distort estimates in another equation. The use of univariate
t distributions at level-2, which in essence sets level-2 covariance terms
to 0, provides us with a specification check akin to the specification check
outlined by Bryk and Raudenbush (1992, p. 216).

One can easily specify HMs consisting of three or more levels in
WinBUGS, and t distributional assumptions can be employed at any level
using the scale mixture of normals approach outlined in this chapter.
WinBUGS also enables one to employ an array of link functions at level 1
(e.g., logit, probit, log, complementary log-log).

In this chapter, we focus on level-1 units that take on unusually large or
small values with respect to Y, and on level-2 units that are extreme with
respect to level-1 parameters that are treated as random (e.g., individuals
with unusually rapid or slow rates of change; sites at which an intervention
has been unusually successful). Drawing sound inferences, particularly in
small-sample settings, of course requires more than attending to level-1 and
level-2 outliers. For example, as is well known, cases that are extreme in
the space of the predictors in a model can exert a high degree of influence
on one’s results. Thus, a strategy that we recommend, particularly in
small-sample settings, entails sequentially setting aside one level-2 unit at
a time from one’s sample, refitting one’s model, and examining changes in
results for parameters of interest.

Another important approach to model checking is posterior predictive
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model checking, which is discussed in detail in Rubin (1981, 1984),
Gelman et al. (1995), Belin and Rubin (1995), and Gelman and Meng
(1996). Posterior predictive model checking, which can be implemented
quite naturally using MCMC, provides a means of identifying important
discrepancies between the data one is analyzing and one's model. Finally
Gelfand, Dey, and Chang (1992) presented a cross—validation approach
that combined the logic of “leave—one~out analyses” with that of posterior
predictive model checking (see also Draper, 1998).
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ENDNOTES

1. Smiley et al. also included children’s mean length utterance, which
is a time-varying covariate, in their level-1 model. This covariate was
not statistically significant, and results concerning the relationship between
MSPAC and children’s rates of change in enactive gesturing were extremely
similar whether one included this covariate in the analysis or not.

2. In the case of HMs in which none of the level-2 variances is constrained
to be 0, least squares (LS) estimates of individual growth parameters can be
obtained simply by regressing the set of outcome values for a person on the
set of level-1 predictor values for that person. However, when, for example,
the variance connected with a particular facet of growth is constrained to
be 0, or when the level-1 model contains a time—varying covariate that is
treated as fixed, computing LS estimates of individual growth parameters
becomes more complex. In such cases, we find it extremely convenient to
obtain LS estimates using residual files produced by the HLM program. In
the case of our model, for example, HLM computes a fitted value of the
growth rate for each child (i.e. 610 + /311 MSPAC;), and an EB (shrinkage)
estimate (U};) and an LS estimate (U 11) of the random effect for each child.
Adding the EB estimates of the random effects to the corresponding fitted
values yields EB estimates of the mp; for the children in our sample, and
adding the LS estimates of the random effects to the fitted values yields LS
estimates of the my;.

3. The Gibbs sampler, in effect, walks through or traverses the joint
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posterior distribution of all unknowns in one’s model (see, e.g., Gelman,
Bois, & Jiang, 1996). The relative frequency with which the Gibbs sampler
visits various regions of the joint posterior is proportional to the joint
posterior density of each region. One thing that is important to attend
to in working with the Gibbs sampler is that in some cases, the values
sampled in successive iterations for particular parameters may be highly
correlated. In extreme cases, the Gibbs sampler may become “stuck” for a
number of iterations in certain regions of the parameter space.

To help diagnose possible problems, it is important to run multiple
sequences (chains) of the Gibbs sampler (see Gelman & Rubin, 1992).
Thus, for each analysis, we ran two chains of the Gibbs sampler using
different starting values for 1/7,; and 1/0? and using different seeds. (Note
that in WinBUGS, we work with reciprocals of variance components, i.e.,
precisions.) For one set of starting values, we used the reciprocals of the
REML estimates for 71; and ¢ that we obtained using the HLM program.
The second set of starting values was based on results from the first chain;
specifically, we inverted the .025 quantiles of the marginal posteriors for
74 and o?. After a “burn—in” or “warm-up” period of 2,000 iterations,
we ran each chain for an additional M = 40,000 iterations. Setting aside
the results from the burn—in period, we then compared results (e.g., the
empirical distributions for all parameters in the model) across the two
chains. For each analysis, the chains that we ran yielded highly similar
results. In addition, we assessed convergence through the use of trace
plots and autocorrelation function plots, which can be obatined in both
WinBUGS and CODA, and through the use of a diagnostic procedure
developed by Raftery and Lewis (1996), which is available in CODA. For
each analysis, the marginal posteriors that we report are based on deviates
generated in the first chain of M = 40,000 iterations.

4. In each of our analyses we placed diffuse priors on the fixed effects. In
particular, for each fixed effect, we specified a normal prior with extremely
small precision. In settings in which our samples consist of small numbers
of level-2 units, care must be used in specifying priors for level-2 variance
components. For example, certain choices can result in intervals for fixed
effects that are too liberal with respect to coverage, and other choices can
result in intervals that are too conservative. In this chapter, we use a
strategy discussed and illustrated in papers by Seltzer et al. (1996, in press);
the results of a simulation study reported in Seltzer et al. (in press) indicate
that this approach tends to produce intervals for fixed effects with good
coverage properties. This strategy involves the use of data-based priors for
the variance components. The basic idea is to specify priors for the variance
components that are fairly diffuse, but with modes approximately equal to
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REML estimates of the variance components.

In all analyses, we placed gamma priors on 1/0? and 1/71;. The
gamma distribution has two parameters: Gamma(a, b), where a is a shape
parameter and b is an inverse scale parameter. Following the approach
discussed in Seltzer et al. (1996, in press), we set a equal to a value of 1.5
in all of our analyses. In terms of priors for 1/711, under the assumption
of normality at level 2, b was set to the following value: b = 711 x (a + 1),
where 71 is the REML estimate of 71,. Under ¢ level-2 assumptions with
vy fixed at a particular value, we employed three different values for b
as a kind of sensitivity analysis: (a) the value of b used under normality
assumptions at level 2, which we refer to as by ; (b) by = [(v2—2)/v2 | xbn;
and (¢) byyr = (bv + 0i)/2. Little material difference was found in our
results for parameters of interest under these three different choices for b.
The results that we present in the chapter are based on byyy. In terms of
priors for 1/0%, we used a similar procedure in specifying values for b, with
the REML estimate of 62 (i.e., 52) replacing 71, and v, replacing v».
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Two-level Mean and Covariance

Structures: Maximum Likelihood via
an EM Algorithm

Peter M. Bentler Jiajuan Liang
University of California, University of New Haven,
Los Angeles School of Business

Methodologies for the analysis of two-level structural equation models
(SEM for simplicity) have been proposed by a number of authors. These
methodologies are usually suitable for some specific formulation of two-level
SEM. Goldstein and McDonald (1988) proposed a general model for
analysis of multilevel data that includes two-level SEM as its special case.
McDonald and Goldstein (1989) proposed a general treatment for maximum
likelihood (ML) analysis of two-level SEM. The importance of ML lies in
its asymptotic optimality, that is, an estimator with the smallest standard
error, meeting the Cramér-Rao lower bound. For an unbalanced design
of a sample, McDonald and Goldstein’s (1989) algorithm seems to be
computationally burdensome because a large number of inverse matrices
have to be computed to obtain the maximum likelihood estimates (MLE)
of model parameters. Muthén (1994) summarized the techniques in several
papers in which he developed the so-called MUML analysis for two-level
SEM. He implemented a pseudobalanced solution for unbalanced sample
designs. MUML analysis of two-level SEM is a kind of approximate ML
analysis (Hox, 2000). Raudenbush (1995) used a balanced complete data
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routine to show how ML analysis on two-level SEM with unbalanced designs
can be done by available software. Lee (1990) proposed a simple formulation
of two-level SEM and obtained general asymptotic properties of MLE for
model parameters. Lee and Poon (1998) proposed a treatment for exact
ML analysis of two-level SEM via EM type algorithms. An advantage of
Lee and Poon’s (1998) method is that it is applicable to arbitrary (balanced
and unbalanced) sample designs and their algorithm turns out to converge
fast.

The purpose of this chapter is to generalize Lee and Poon’s (1998)
model and their treatment for two-level SEM without a mean structure
to the case with both mean and covariance structures and to provide a new
computational approach to the estimation of parameters. The two-level
SEM is defined by (Lee, 1990; Lee & Poon, 1998) as

Tgi = Vg + Vg, (3.1)

where x,; is a vector of responses (observable random vector) from
individual ¢ (level-1 unit) nested in group g (level-2 unit). For example, z,;
may denote the measures of a student’s achievements for several courses.
A random sample of different students from different schools constitutes
a random sample of two-level data, {zg; : 1 =1,...,Ng; ¢ =1,....G}.
say, that is, randomly choosing N = ZG:l N, level-1 units (students) from
G randomly selected level-2 units (schools). In order to develop the ML
analysis for Equation 3.1 with both mean and covariance structures via an
EM algorithm, the following assumptions are necessary:

1. {v,:¢9=1,...,G} are iid. (independently identically distributed)
latent random vectors (p x 1) varying only at level 2, and v, has a normal
distribution Np(p, X g) with Xp > 0 (positive definite);

2. for each fixed g, {vg; : i =1,....N,} areii.d. latent random vectors
(px 1) varying only at level 1, and vg; ~ N, (0, w) with T, > 0 (E,w
may be different for g = 1,....G);

3. for each fixed ¢, v, and vy; (i = 1,....N,) are uncorrelated (ie.,
independent in the normal case);

4. for different level-2 indices g) # g2, {vg,s + ¢ = 1,..., Ny, } and
{vg,0 + @ = 1,...,Ny,} are assumed to be independent. Lee

and Poon’s (1998) treatment of ML analysis for Equation 3.1 is suitable
for the case without a mean structure, that is, in assumption 1 where
u=0,0r vy~ Np(0,Xg). When p # 0 and the components of g can be
considered as free parameters, p could be estimated by the overall sample
mean: & = Zg;l Zf\i"l 4. In this case, Lee and Poon’s (1998) method
for ML analysis of Equation 3.1 could still be approximately carried out
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hased on the centered two-level data
Ty—Z: 1=1,...,Ny; g=1,...,G. (3.2)
The mean and covariance structures for Equation 3.1 are defined as
p=pld), Xp=Xp(0), Zw=X,w(0)), (3.3)

where 8 = (6;....,8,) (r x 1) is a parameter vector consisting of all
interesting free parameters in Equation 3.1. For the mean and covariance
structure (3.3), an ML analysis for Equation 3.1 based on the centered
data (Equation 3.2) completely ignores the mean structure in Equation
3.3. This may bring about inaccuracy for the MLE of the parameter
vector @ or it may result in poor model fit relative to degrees of freedom.
Furthermore, smaller standard errors could he obtained for covariance
structure parameters when a mean structure is imposed (Yung & Bentler,
1999). Therefore, particular methods for ML analysis of Equation 3.1 with
mean and covariance structure (3.3) are necessary.

Equation 3.1 is a simple formulation of two-level SEM. It covers several
interesting two-level mean and covariance structure models. For example,
a two-level factor analysis model can be defined by (Muthén, 1994):

yg,' v+ Angi + 691‘,

3.4)
Ngi = a+Mpy+ Ny, (

where y,; is a vector of response, v is a vector of intercepts, €,; is a vector
of residuals, a is the overall expectation {grand mean), Npg 1s a random
factor component capturing level-2 (e.g., organizational) effects, and ny;
is a random factor component varying over individual levels (level 1) within
their organizations. Let v, = v + Ao+ Anp, and vy = Any,, + €y
in Equation 3.4. Then Equation 3.4 has the form of Equation 3.1 with
pu = E(vy) = v+Aa and E(vg;) = 0 [assuming E(ng,) = 0, E(ny,) =0
and F(egi) = 0]. It is noted that p = E(v,) = v+ Aa involves parameters
from the matrix of factor loadings A. Therefore, Equation 3.4 can be
formulated as Equation 3.1 with mean and covariance structure (3.3). In
addition to two-level factor analysis models, a variety of other two-level
SEM like those studied by Heck and Thomas (2000, chaps. 6-7) can also
e formulated as Equation 3.1 with mean and covariance structure (3.3).
The main idca for deriving the ML analysis of Equation 3.1 via an
EM algorithm is to formulate it as a missing data problem . Section 2
presents the details for deriving the EM algorithm. Section 3 gives some
simplified formulas for computing the asymptotic standard errors of the
MLE of model parameters and the chi-squared statistic for testing model
fit. An ML analysis on a practical data set is demonstrated in Section 4 by
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the proposed algorithm. Some concluding remarks on the convergence of
the proposed EM gradient algorithm and its possible further improvement
are given in the last section.

SECTION 2: THE EM GRADIENT ALGORITHM

Let {xg;: 1=1,...,Ny; g=1,...,G} be a set of response vectors (p x 1
random vectors) from Equation 3.1 and

(Bg1 Ty yl
. v
Ty = , T = : s Yy = < :EZ ) , Y= ,
TyN, TG Ya
(3.3)
and
LN Tg1' X
Ty = 5 Y omy, X, = ; ., X = : . (3.6)
g =1 mgN; XG‘

To formulate Equation 3.1 as a missing data problem, we consider the y,
in Equation 3.5 as the complete data from level-2 unit {group) g with a
missing value (random vector) v,. For the purpose of deriving the EM
algorithm for computing the MLE of the model parameter vector 8 (r x 1),
we use an arbitrarily specified value of @, say, 8*, to express the —2log M L
function, say, [(y,@"), of the complete data {yg : g=1...,G}. Under the
assumptions 1 through 4 in Section 1, [(y,8") can be written (except for
an additive constant) as:

{y,0")=-2log ML
G Ng
1 1
- }:Ny{log|2yw|+tr{2gw l[ﬁz(mgi—ug)(xm—vyy]}}
9

=] i=

G

* *— 1 * *
+G{ log |25+ tr{Zg 1[5 Z(vg —p*)(vy — p )’]}},
g=1
(3.7)
where p* = p(0"), .y = Zyw(0"), X" = Lp(0") and the notation “tr”
denotes the “trace” of a matrix. The EM algorithm requires computation
of the E-step function

M(6*16) = E{l(y,0%)|z, 0}, (3.8)

where both 8™ and @ are any two specified values of the same parameter
vector 0. See Dempster, Laird, and Rubin (1977) for the principle of the
EM algorithm.
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Simplification of the E-step

The E-step function defined by Equation 3.8 requires computation of the
conditional expectation

def

a;, = E(vglx,8)=E(vglzy,0)=p+ ay,
C, ¥ E(vyv)|z,0) = E(v,v)|a,,0) (3.9)
= ¥5-N,ZpZ, 'Zp+a,a,
wdefy,

where the sign “=7" means “defined as” and
Qg0 = 7V 232 ( p,) Eg = ng + NQEB. (3,10)

Then we can write Equation 3.8 as

G
M(07|6) = ZNg[logIEQ‘}[+tr(§l;;vl.5’gw)]
g=1

~k—1

+G[log| Syl +tr(S, SB)]

(3.11)

where the terms with the sign “*" imply that they depend on 6*, those
terms without the sign “*” imply that they are independent of 8, and

~* PP T Al TR T ~ Sp a
EB:< B #u ”1>, SB=(a€3 1>,

7
_ 1 & 1
=5 Y a,, Sp= a Y ¢, (3.12)
g:ll 9=1
Sow = FX;X,, ~&ga, —a,@, +C,.
g

When there is only one within covariance matrix, that is, Z,w = Zw
for ¢ = 1,...,G, computation of the terms in Equation 3.12 can be
substantially simplified. Let

Yw =CC' and C 'Ep(C 'Y = EAFE (3.13)

be the Cholesky decomposition of Xy and the eigenvector-eigenvalue
decomposition of C™' X g(C ™'Y, respectively, where C is a lower triangular
matrix, F is an orthogonal matrix, and

A = diag(dy,....0p), (3.14)
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is a diagonal matrix whose diagonal elements can be arranged as ; > --- >
dp > 0 without loss of generality. By Equations 3.13 and 3.14, the inverse
matux Ng¥, ~! in Equations 3.9 and 3.10 can be expressed as

N,Z, 7' = Ny(Zw + N,2p)"' =T'D,T, (3.15)
with
N N
= -1 D, = di: g g . .
(CE)”, D, ldg<1+Ng<51’ '1+Ng5,,> (3.16)
Let
1 G
dg = DgT(:i’g_N’)» d0=5zago,
G g=1 (3.17)
B = (¥ 2@, - wa ),
N Y g Bl

where ago is given by Equation 3.10. Then in the case Xyw = Zw, the
E-step function Equation 3.11 reduces to

M(0710) = N[logmwt +tr(z*—lsw)] 18
~*—1 .

+G[log| ZB [+tr(Xpg SB)]

and the terms in Equation 3.12 reduce to

G
@ = p+ o, = (T=5) (IZdQ),
9=1
Sg = pu +agy +udo+23
(€]
TEB( de'_ Z ))(TZp)
o=t (3.19)
Sy = NZNQSQW

1
= ’VXX B-B' +up' —@p' —px' +Ep

] o\,
+HTEp) (Z dydy ~ Y D g)(TzB).,

g=1

and & is the overall sample mean as in Equation 3.2.
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The M-step

By the principle of the EM algorithm, the M-step is to minimize the E-step
function M (07|@) given by Equation 3.11 or Equation 3.18 (for the case
Y,w = Zw) with regard to 8" for each fixed 8. As pointed out by Lee
and Poon (1998), Lange’s (1995a) EM gradient algorithm is a convenient
way to realize the M-step that converges to a local maximum of the ML
function fast. The idea of the EM gradient algorithm is that for each 8 = 8,
at the i-th iteration (8 corresponds to the starting value of 8), it is only
necessary to find a value of 8* = 8,1, such that

M(8:1110:) < M(6;]6;). (3.20)

This can be achieved by using the gradient direction of M(6*|@) at each
fixed 8. From the simple E-step function Equation 3.11, it is easy to obtain:

dlDM def *
) (018) = 5= M(0716)],. _,

= > NAgw (B @ E ot )vee(Sgw — Sqw) (3.21)
g=1

~ a1l -l ~ ~
+G AB (23 ®EB )VeC(EB'—SB),
where the sign “vec” denotes the vectorization of a matrix by stacking its

columns successively, “®@” denotes the Kronecker product of matrices, X g
is defined in Equation 3.12 with 8" = @, and the matrices of derivatives

~

d(vecE,w)’ ~ O(vec )’
Ay = (8—99W, Ap— %_ (3.22)

In the case Tyw = Ew (Ayw = Aw), Equation 3.21 reduces to
d*°M(6]10) = NAw(Zy ' @3y vee(Zw — Sw) (3.23)
~—1 ~—1 2
+G AB (ZB (?)EB )VGC(EB—SB)

The Fisher information matrix can also be easily obtained:

1) { B sz M 0°10)] |
(¢

= Y NyAgw(Zh 9S4 )AL, (3.24)

g=1

~—1 ~—l
+G AR (S, 0%, )AL
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In the case L, w = Ty, Equation 3.24 reduces to
O (3.25)
+G A (25 X5 ) A%

The updating process of the EM gradient algorithm for obtaining the MLE
of 8 is given by

011 = 0; — ad(0;)"'d*°M(6;]0,), (3.26)

where 0 < o < 1 is an adjusting constant, and @; denotes the value of 8 at
the s-th iteration.

SECTION 3: STANDARD ERROR AND
TEST OF MODEL FIT

Asymptotic properties of the MLE of the model parameter vector 8
from Equation 3.1 with zero mean structure {i.e., o = 0) were studied
by Lee (1990). In the case that Equation 3.1 has both mean and
covariance structures (Equation 3.3), approximate standard errors of model
parameters can be obtained from the asymptotic normality of the MLE of
6. Hoadley (1971) gave some general results on the asymptotic normality
of MLE for the case of independent nonidentically distributed (i.n.i.d. for
simplicity) samples with some mild regularity conditions imposed on the
underlying distribution. The MLE of 6, say, 6, minimizes the —2log ML
function, say, f(0), of the i.n.i.d. sample {z, : ¢ = 1,...,G} defined in
Equation 3.5. Under the assumptions 1 through 4 in Section 1, f(8) is
given by

G
FO) = D (Ng— 1) {log |Zyw| + tx(Sew ' Sy)}
o=t o (3.27)
+> {log|Zy| +tr(Z, Ug) } + Y Notr[27' Vo ()],
g=1 g=1
where
1 L
Sy = m ;(myi = &g )(Xg — Ty)', (3.28)
U, = Nyzgzy, Vyp)=pp' —z,4 —pz,

It can be verified that f(@) satisfies the regularity conditions in Theorem 2
of Hoadley (1971). Thus,_we have
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Theorem 1. The MLE 8 that minimizes f(8) given by Equation 3.27 has
the asymptotic normal distribution

G20 - 0) B N(0,2T71(0)), G — 0, (3.29)

where the sign «B» means “converge in distribution,” and the matrix I'(8)
is approximately given by

-4 £{542)

G
1 - _
= & - DAwER 0 S5 ALy (3.30)
9=1
+ A3 B )AL +2N,ASTTAL L

where the terms Agw (defined in Equation 3.22), Ap, and A, are matrices
of derivatives, and
{
ZAgW —}-NQAB, A“: %—%
(3.31)
By Theorem 1, the asymptotic standard errors of the components of the
MLE 6 can be approximately computed from the corresponding diagonal
components of the matrix

_ O(vecZp)' _
Ap= g A=

O(vecXy)’
o0

2 L a
T® L (3.32)

In the case ¥,w = Xw, a simplified formula for computing matrix

(Equation 3.30) can be provided by using the decompositions in Equations
3.13 and 3.15:

(% -DAw(E, e Ty AR (3.33)

Aw(T @ T)DW[Aw (T © T))

T(9)

Aw(T © T)DP{AR(T 2 T)]
{(Aw(T o T)DP[AR(T o T))')

AR(T © T)D®[AR(T @ T))
2(A.T)D(A,T),

+ 4+ o+ 4+ o+
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where
G G
D = 12 N, 2D, ® D D® = 12 D, D
- G ‘ g g 9 G ‘ g g»
g= 9=
G G
. 1 _ 1
D?® = EE:N!;IDMDQ, D = 52 D,.
g=1 g=1

(3.34)
Then P(@) can be computed by substituting 8 for 8 in Equation 3.33.
It can be verified that DV, D™ and D® are still diagonal matrices
with their diagonal elements given by

G

DY (k) = éZNg“zdg,[m—l)/pwdg,k-puk—n/ma
gzl

D(Z)(k) = é’zNyAldg,[(k—l)/ledg,kﬂl[(k—l)/p]’ (3.35)
yzl

D) = %Zdg¢[<k41>/p]+1dy.k—p[(k—l)/p]v

g=1

for k = 1,...,p% where dy; = N,/(1 + Nyd;) is the j-th diagonal
component of D, and the sign {-] denotes the integer part of a real number
(e.g.. [2.9) =2 and [3.1] = 3).

A test of model fit can be constructed using standard ML theory. The
asymptotic chi-squared statistic for testing model fit is given by

X2 = f(0) - £(8,) B\ *(m) (G — o0), (3.36)

where 8 denotes the MLE of 6 in the structured case Equation 3.3, (the
null hypothesis), 85 denotes the MLE of 6,, which is the model parameter
vector in the unstructured (or saturated) case (the alternative hypothesis):

!
B, = [(vecsEw), ..., (vecsTaw)', (vecsEp)', u’} , (3.37)

where the sign “vecs” operated on a symmetric matrix constitutes a column
vector stacked by the nonduplicated elements in the symmetric matrix. In
the saturated case, all nonduplicated elements in £g, Bow (9 =1,...,G)
and the components in g = (py,...,4,) are free model parameters.
Therefore, the number of degrees of freedom (df) m in Equation 3.36 is
given by

(GH+Lp(p+1)/2+p—r, if Bgw's are mutually distinguished,
m = 9 : _
p°+2p -, if ¥yw = Zw,
(3.38)
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where r is the number of free parameters in the structured case (Equation
3.3).

Computation of @, for the saturated model can be carried out by the
following iteration process. In the E-step function Equation 3.11 or 3.18,
we can consider 8% and @ as any two specified values of 8 because either
Equation is true for any structured case specified by Equation 3.3 and when
the parameter @ in Equation 3.3 takes the form of 6, the model defined by
Equation 3.1 becomes saturated. At the i-th iteration (: = 0 corresponds
to the case of starting values), let Sow (¢), Sg(i), pu{i), and a{i) be the
values of Sgw, Sp, p, and @, respectively; at the (i + 1)-th iteration, let
Sew(i+1), Sp(i+1), p(i+1), and a(i + 1) be the values of Sqw, Sgp,
and @, respectively. Because Sqw (i+1), Sp(i+1), u(i+1), and a(i+1) are
supposed to minimize the E-step function in equation 11 at the (¢ + 1)-th
iteration in the saturated case, we can obtain

EQW(Z+1) = SgW(’l)v
Sp(i+1) = Spli)-a@)a), (3.39)
uG+1 = al).

The updating process Equation 3.39 can stop when some given convergence
criterion is reached.

In the case ¥yw = Xw, a simplified formula for computing f(8) given
by Equation 3.27 can also be provided by using the decompositions in
Equations 3.13 and 3.15. It turns out that

G p G p 2
Nyez.
(0) = Nlog|Sw|+t[Sy S (1+N,d;) + — L
(3.40)
where the §;’s are given in Equation 3.14, and
N ¢ 1
Sw= X' Iy -——1Nq1’N D, O
?—; TN, T (3.41)

(ot Cap)  T(@y — 1),

where g = 1£(8) given by Equation 3.3 in computing f (9) for the structured
case and p = (g4, ..., /1,)" in computing f(és) for the saturated case. Iy,
is an Ny x Ny identity matrix, 1y, is

n Ny x 1 vector of ones, and X, and T are defined in Equations 3.6 and
3.16, respectively.
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SECTION 4: AN EXAMPLE

The two-level “Alcohol Use Data” were collected and analyzed by Duncan
et al. (1998) by using the technique of longitudinal latent variable modeling.
The data are from responses regarding use of four types of alcohol by
siblings (individuals or level-1 units) of at least 11 years of age in G = 435
families (groups or level-2 units). That is, we have p = 4 observable
variables. There are five distinct cluster (family or group) sizes (i.e., the
Ny, ¢ = 1,...,G) ranging from 2 to 6 members. The total sample size
(total number of individuals) is N = Z;;;INQ = 1204. The complete
data set is stored in a data file “duna.dat” in Mplus (Muthén & Muthén,
1998) examples website: (http://www.statmodel.com/mplus/examples/).
In this section, we carry out the ML analysis on this data set by using
the EM gradient algorithm developed in Section 2. Standard errors of the
estimates of model parameters and the chi-squared test of model fit derived
from Section 3 are also provided. In order to compare the results of our
ML analysis with those provided by Mplus, we set up the same model
with a mean structure and ran Mplus for the same data set. A two-level
confirmatory factor analysis model is set up for both the ML analysis and
the MUML analysis. We consider the casec ¥ w = Xw. Because the
algorithm in Section 2 has been coded in EQS (Bentler, 2002), we just
present the model by EQS commands:

within: V; = 1F1+0F2 4 F1, between: V| = 1F1+0F2+ E1,

Vy = 1F1+ 1F2 + E2, Vo = 1F1 + 1F2 + E2,
s = 1F1 + +F2 + E3, V3 = 1F1 + +F2 + E3,
7 = 1F1 + +F2 + E4, Vi =1F1++F2 + E4.

(3.42)

This implies that both the within and the between models have the same
structure. They are confirmatory factor analysis models with two factors.
In Equation 3.42, the sign “*” before the factor F2 stands for an unknown
factor loading parameter, and the constants “1” and “0” before £'1 and £'2
for fixed factor loadings, E'1, E2, E3, E4 are uncorrelated residual variables
with zero means and unknown variances. The assumptions 1 through 4 in
Section 1 are imposed on Equation 3.42. This equation implies that the

within and between covariance matrices are given by

Yw = AW‘§WAIW + Py, Xpg= ABQ’BAIB + ¥y (3.43)
where

; 1 1 1 1 . 11 1 1

”‘(0191 92>’ B—<01¢1 ¢>2>’ (3.44)
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and

03 05 ) ( ¢35 )
Fy = : 3, = (& ,
W < 5 64 B ¢5 P4 (3.45)
lIJVV = diag(66ﬁ97a08a69)a QB = diag(¢ﬁyd)7a (bsv ¢9)

Assume that the two factors F'1 and F2 in the between model in Equation
3.42 have unknown nonzero means:

E(F1) =y, E(F2) =, (3.46)

while the two factors in the within model in Equation 3.42 have zero means.
Then we can consider that Equation 3.42 has a mean structure

p=Ap(py, ) = (g, by + Lo, iy + Difig, iy + Pafis). (3.47)

Based on this mean structure and the covariance structure specified by
Equations 3.43 through 3.45, we can easily obtain the matrices of derivatives

Ay and Ap in implementing the EM gradient algorithm in Section 2.
Starting values for the model parameters 8;, ¢, (i = 1,...,9), py, and uy
need to be given in carrying out the iteration process defined by Equation
3.26. Theoretically, the convergence of the EM algorithm does not depend
on the choice of starting values of model parameters. A good choice of a
set of starting values may result in fast convergence of an EM algorithm.
Because we do not know the possible true values of the model parameters.
we choose a set of randomly generated starting values: (a) 8; and 8, are
chosen as two random numbers in (0,1); (b) #3 and 64 as two random
numbers in (0.5, 1.5); (c) #5 as a random number in (0,0.5); (d) 65 to 0 as
random numbers in (0.2,1.2); (e) p; and p, as random numbers in (0, 2).
The starting values of ¢, through ¢4 are chosen in exactly the same way
as for #; through 6. In computing the MLE of 8, = {vecsZw, vecsXp, p}
(1t = (po1. fe9. i3, tt)’] for the saturated model, we choose the starting values

for Yw. Xp, and p as Yy = Xp :g'W /(N — @) and p = &, where

Sw is defined in Equation 3.41, and & is the overall sample mean from
the data. In principle, the constant « in controlling the step length in
the iteration process Equation 3.26 can be selected dynamically. That is,
in cach iteration, a could be chosen as the largest value (0 < o < 1)
that would reduce Equation 3.20 and keep all covariance matrices positive
definite. In this example, we tried o = 1 in all iterations and it turns out
that the algorithm is convergent in the sense that the Root Mean Square
Error (RMSE for simplicity) converges to zero. The RMSE was used by
Lee and Poon (1998) as a criterion for convergence of the EM algorithm.
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Let 8; (r x 1) denote the value of @ (r x 1) at the i-th iteration. The RMSE
between two consecutive iterations is defined by

1 1/2
RMSE(8) = {;n(m1 - oiuz} : (3.48)

where the sign || - || stands for the Euclidean norm of a vector. For the
data set duna.dat in Equation 3.42, we choose the convergence criterion
for the EM gradient algorithm as RMSE < 107° (the same as for Mplus).
The algorithm converges after 246 iterations and it took approximately 1%
minutes of CPU time on a Pentium II PC to obtain the ML results. The
RMSE from the updating process Equation 3.26 is actually already less than
10~* after 45 iterations. This implies that the algorithm converges very fast
in the sense that the RMSE cannot be improved much after 45 iterations.
The ML results and those provided by running Mplus for Equation 3.42
with fixed intercepts of 0 for the between model and unknown means for
the two factors are presented in Table 3.1. The standard errors for the
MLE of model parameters (by the ML analysis) are computed from the
square roots of the asymptotic covariance matrix given by Equation 3.32.
The chi-square is computed by Equation 3.36 and the degress of freedomn
for the ML analysis is computed by Equation 3.38. From Table 3.1, we
can see that all ML results are close to the corresponding MUML results.
But the standard errors provided by the ML analysis are generally a little
bit smaller than those corresponding standard errors provided by MUML
analysis. For this data set with an unbalanced design, the cluster sizes range
from 2 to 6. Mplus carries out the MUML analysis by using the average
cluster size s = (N? — Zf:] N2)/[N(G = 1)] = 2.767 as the common
cluster size. According to Muthén (1991, 1994), Hox (1993), and McDonald
(1994), the pseudobalanced estimates provided by MUML analysis usually
give good approximation to the full ML estimates. Our full ML analysis on
the “Alcohol Use Data” is consistent with this observation.

CONCLUDING REMARKS

The mean and covariance structure model considered in this chapter is
a small extension to the covariance structure model studied by Lee and
Poon (1998). The EM gradient algorithm in this chapter was developed
with the same technique as that used by Lee and Poon (1998). In the
case of only one within covariance matrix, the utilization of the Cholesky
decomposition and the eigenvector—eigenvalue decomposition in simplifying
the computation of the E-step function in Section 2 greatly reduces the
computational burden by avoiding the computation of a large number of
iverse matrices. Therefore, the algorithm developed in this chapter is still
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TABLE 3.1
ML and MUML Estimates, Standard Errors, and Tests
01 62 03 64 05 6 67
ML 1.722 1874 0.663 0.111 -011 0.188 0.244
MUML 1.739 1.868 0.663 0.108 -.011 0.187  0.247
S.E.(ML) 0.180 0.215 0.053 0.034 0.028 0.042 0.016

S.E.(MUML) 0213 0245 0.053 0.038 0.031 0.052 0.024

ML 0.122 0.356 1.767 3.624 0.285 0.004 -.035

MUML 0.117 0.361 1.755 3.575 0.287 0.005 -.035
S.E.(ML) 0.022 0.031 0.393 0912 0.046 0.005 0.014

S.E.(MUML) 0.029 0.042 0415 1.030 0.044 0.006 0.015

ML 0.055 0.022 0.043 0.073 1.978 0.079
MUML 0.058 0.020 0.046 0.067 2.003 0.076
S.E.(ML) 0.020 0.012 0.012 0.028 0.039 0.024
S.E.(MUML) 0.026 0.014 0.016 0.037 0.038 0.026
ML chi-square= 6.311 df=4 p-value= 0.1771
MUML chi-square= 6.237 df=4 p-value= 0.1817

Note. In the Table 3.1, S E.(ML) stands for standard error from ML
analysis; S.E.(MUML) stands for standard error from MUML analysis.

an improvement over that of Lee and Poon (1998), even in the case of the
only covariance structure {g = 0) for Equation 3.1. It can be easily verified
that the E-step function (Equation 3.11 or 3.18) reduces to that derived by
Lee and Poon (1998) when no mean structure is involved in Equation 3.1.

As pointed out in Section 1, Equation 3.1 covers several interesting
mean and covariance structure models. In ML analysis of two-level factor
analysis models, it is meaningful to hypothesize that the factors have
unknown nonzero means. Such models can be formulated as Equation
3.1 with both mean and covariance structures. Ignorance of such a mean
structure may result in poor model fit by the chi-square test and less
accurate (larger standard error) estimates (Yung & Bentler, 1999). The
models considered in Muthén (1994) and some latent growth models studied
later by Muthén (1997) can also be formulated as Equation 3.1 with both
mean and covariance structures when some latent variables have unknown
nonzero means. Therefore, the method for ML analysis of two-level SEM
developed in this chapter is applicable to a wide range of two-level latent
variable models. A noticeable feature of the algorithm in this chapter is that
it avoids using the average group sample size to approximate the diverse
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group sample sizes in unbalanced sample designs that was suggested by
Muthén (1994, 1997).

Finally, we point out the fact that the EM gradient algorithm is at
least locally convergent in the sense that the series {0;} generated from the
M-step Equation 3.26 converges to a stationery point. This point must give
a local minimum of the —2log M L function (Equation 3.27) because the
E-step function (Equation 3.11 or 3.18) always decreases along its gradient
direction. The local convergence of general EM gradient algorithm was also
discussed by Lange (1995a). Boyles (1983) and Wu (1983) studied some
general conditions on the convergence of EM algorithms. It is noted that the
EM gradient algorithm is not the only one to minimize the E-step function
(Equation 3.11 or 3.18). Some existing accelerating EM algorithms, such
as those proposed by Lange (1995b) and Jamshidian and Jennrich (1997),
could also be employed. Further, the constant « for controlling the step
length in the M-step defined by Equation 3.26 could be chosen dynamically
at each iteration to improve the convergence of the EM gradient algorithm.
This means that 0 < @ < 1 can be chosen as large as possible while
ensuring Equation 3.20 and keeping the estimated covariance matrices
positive definite at each iteration.
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This chapter outlines how growth mixture modeling can be used to study
achievement and learning progress. The work is motivated by a study
of reading development among children from kindergarten to first grade.
Section 1 presents the data and the substantive problem. Section 2 discusses
random coefficient growth modeling. Section 3 presents how random
coefficient growth modeling in a latent variable framework can be used
to relate the growth factors of two growth processes. Section 4 extends the
latent variable framework so that multiple classes of development can be
studied.



SECTION 1: THE SUBSTANTIVE PROBLEM
The reading study

The research questions originated from the study entitled “Detecting
Reading Problems by Modeling Individual Growth” (Francis, 1996), also
referred to as the EARS study (Early Assessment of Reading Skills).
EARS collected data in a modified longitudinal time-sequential design
involving about 1,000 children. The children were measured four times
a year from kindergarten to grade two. In grades one and two,
measures included spelling, word recognition, and reading comprehension.
In kindergarten, skills that are considered precursor skills to reading
development were measured, such as alphabetic awareness, orthographic
and phonemic awareness, and visual motor integration. Standardized
reading comprehension tests were administered at the end of first and
second grade. The background variables gender, SES, and ethnicity were
collected.

Francis (1996) focused on the early detection and identification of
reading-disabled children. In this context, he formulated three research
hypotheses; (1) kindergarten children will differ in their growth and
development in precursor skills; (2) the rate of development of the precursor
skills will relate to the rate of development and the level of attainment
of reading and spelling skills, and individual growth rates in reading and
spelling skills will predict performance on standardized tests of reading and
spelling; (3) the use of growth rates for skills and precursors will allow for
earlier identification of children at risk for poor academic outcomes and
lead to more stable predictions regarding future academic performance.

General issues

Conventional growth modeling of individual differences in development can,
in principle, use growth trajectory features such as the rate of learning
as statistically based measures of progress. There is a general problem,
however, of measuring and modeling student progress over an extended
period of time. As the EARS study illustrates, the underlying construct
under study in a developmental process is changing and evolving due to
maturation of subjects. Reading skills are relevant in first grade but not in
kindergarten. In kindergarten, reading precursor skills are of interest, but
lose their relevance in first grade.

This exposes the Achilles heel of growth modeling, namely the
assumption that the outcome variable has a constant scale or metric and a
stable meaning over time. If it does not, conventional growth modeling
is not meaningful. Item response theory offers a limited solution to
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this problem by allowing the formation of scale scores based on different
test forms that change over time but that have overlapping items. But
constructs of interest in a longitudinal study are naturally changing and
evolving over time in more fundamental ways and to capture this, a more
radical solution is necessary.

Changing meaning of the outcome does not make growth modeling
impossible. Instead, conventional growth modeling needs to be developed
methodologically to suit the research problem. Developmental processes
that evolve over time need to be studied in the context of multistage
growth and multiple processes. There is a need to investigate modeling
methodology that can describe how one growth process leads into the next
process. It is of interest to see how relationships between trajectories of
early growth processes relate to failure or success in later growth processes.

The solution proposed in this chapter is essentially to turn the
problem into an opportunity. Different developmental phases have different
expressions of a construct and should not be forced onto the same scale.
Instead, a multistage analysis approach should be taken where the different
phases are viewed as sequential processes, one leading to another, and are
analyzed jointly. This study focuses on how an early process influences a
later process as exemplified by how the development of phonemic awareness
during kindergarten influences the development of word recognition in first
grade. Our special focus is on modeling that provides a prediction of
first-grade development by kindergarten development.

SECTION 2: GROWTH MODELING

Research hypotheses regarding achievement and learning are often
formulated in terms of individual development over time and tested using
repeated measurements on groups of individuals. With a developmental
perspective, the interest is not so much in the level of a certain outcome
at a particular time point as it is in the growth trajectory across multiple
time points. Learning outcomes typically show natural systematic growth
over time. There may be an initial phase of rapid increase followed by a
later phase of leveling out. The starting level, the rate of increase, and the
leveling out are of interest in studying learning theories. The focus is on
characterizing the individual variation in development and describing it in
terms of its antecedents and consequences.

Standard statistical techniques for repeated measures data use random
coefficient modeling to describe individual differences in development. This
is carried out using software such as BMDP5V, SAS PROC MIXED, and
MIXOR using the mixed linear model (Jennrich & Schluchter, 1986; Laird
& Ware, 1982; Lindstrom & Bates, 1988), or MLn and HLM drawing
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on hierarchical linear (multilevel) modeling (Bryk & Raudenbush, 1992;
Goldstein, 1995). From a modeling point of view, these approaches
are essentially the same. Although it is possible to model multivariate
outcomes using these techniques (see, MacCallum, Kim, Malarkey, &
Kiecolt-Glaser, 1997; Thum, 1997), applications typically focus on
longitudinal development of a univariate outcome variable. Antecedents
of individual variation are modeled as time-invariant covariates whereas
time-specific antecedents are modeled as time-varying covariates.
Developmental theories can be better modeled if the analysis
methodology can allow trajectory shapes to be of primary focus rather
than measurements at specific time points. This means that analysis
methodology is needed to describe trajectory shapes not only as outcomes,
but also as predictors, as mediators, and, in intervention studies, as
the performance of a control group to which the trajectories of the
intervention group are compared. Multiple processes, each with its own set
of trajectories, for which the interplay and dependencies of the processes
are of key interest should also be allowed. The trajectories should be able
to have multiple indicators at each time point to reduce measurement error
influence and to capture several aspects of the developing construct.
Given this broader research perspective, it is advantageous to perform
repeated measures analysis in a more general framework than in the
mixed linear model or multilevel model. Latent wvariable structural
equation modeling offers such a general framework. Although repeated
measures analysis of a single outcome variable is obtained as a special
case of latent variable structural equation modeling, the generalizations
discussed earlier are possible in the latent variable structural equation
modeling framework.  This is because the random coeflicients are
represented as latent variables where the latent variables can have regression
relations among themselves and where the latent variables can also
represent constructs as outcomes that have multiple indicators. Using
psychometric growth modeling introduced by Meredith and Tisak (1990)
as a starting point, Muthén and Curran (1997) gave an overview of
latent variable work related to longitudinal modeling as well as mixed
linear modeling and hierarchical linear modeling work and provided an
up-to-date account of the potential of latent variable techniques for
longitudinal data suitable for developmental studies. As pointed out
in Muthén and Curran (1997), once the mixed linear model is put
into the latent variable structural equation modeling framework, many
general forms of longitudinal analysis are possible, including mediational
variables influencing the developmental process; ultimate (distal) outcome
variables influenced by the developmental process; multiple developmental
processes for more than one outcome variable; sequential-cohort and
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treatment--control multiple-population studies; and longitudinal analysis
for latent variable constructs in the traditional psychometric sense of factor
analytic measurement models for multiple indicators. The latent variable
framework also accommodates missing data (Arminger & Sobel, 1990;
Muthén, Kaplan, & Hollis, 1987}, categorical and other nonnormal variable
outcomes (Muthén, 1984, 1996), and techniques for clustered (multilevel)
data (Muthén, 1994, 1997; Muthén & Satorra, 1995).

SECTION 3: MULTISTAGE GROWTH
MODELING OF READING SKILLS
DEVELOPMENT USING A CONVENTIONAL
LATENT VARIABLE FRAMEWORK

A first attempt at multistage modeling of sequential processes uses the
conventional latent variable framework for growth modeling. It is suitable
for relating multiple outcome variables to each other. The case of a single
outcome variable is discussed first.

Growth modeling with a single outcome variable

Consider a certain outcome variable y; that is measured repeatedly. For
individual ¢ at time ¢, we may formulate the following linear growth model
for this outcome variable:

Yije =M1 + (ar —ao) e +ejes t =1,2,... T, (4.1)

Here, n,;,(k = 1,2) are latent variables, or growth factors, representing
the random coefficients of the growth process, the individually varying
intercepts and slopes, respectively. Furthermore, a; denotes a time-related
variable such as age, ag is an anchor point (such as mean age), and ¢;;; is a
residual. The model may be elaborated by adding time-varying covariates
to Equation 4.1 representing educational inputs or other factors influencing
the learning at different time points.

The modeling in Equation 4.1 can be used to address the first research
hypothesis of Francis (1996): Kindergarten children will differ in their
growth and development in precursor skills. The amount of variation in
development is captured by the variance of the growth factors n,;;; and
1,52~ This variation can be explained by background variables observed for
the children, such as gender, SES, and ethnicity. A child’s developmental
status at a given time is of interest when transitioning to a new phase of
learning. Here, developmental status refers to the value predicted by the
growth curve, not including the time-specific term e¢;;; in Equation 4.1.
For instance, if aq represents the end of kindergarten, 7,;; represents the
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developmental status at that time. The child’s progress over time adds
further useful information. A measure of progress is obtained by 7,
the linear growth rate for individual ¢. This describes how the individual
reached the kindergarten endpoint. A child may have been close to that
level throughout the year or may have experienced rapid growth up to that
level. Given an estimated growth model for a sample of individuals, a
specific individual’s status and growth rate may be estimated by Bayesian
methods; in psychometrics, this is termed factor score estimation. This
describes the essence of how conventional growth modeling can be used to
study progress.

Growth modeling with multiple processes

The novel growth modeling feature to be considered is relating the random
coefficients of the later process to those of the earlier process. This addresses
the second research hypothesis of Francis (1996): The rate of development
of the precursor skills will relate to the rate of development and the level
of attainment of reading and spelling skills, and individual growth rates in
reading and spelling skills will predict performance on standardized tests
of reading and spelling.

Phonemic awareness can be taken as an example of a precursor
skill. Consider the influence of phonemic awareness on first-grade word
recognition. Using the subscripts p and w to replace the generic j
subscript in the growth model of Equation 4.1, these outcome variables
will be denoted y;p: and y;q,¢ With the corresponding subscripts for the 7
factors. The intercept and slope equations for the growth coefficients of the
first-grade process regressed on those of the kindergarten process may then
be written as,

Niwt = @1 + B11 M1 + Bra Mip2 + Cin s (4.2)

Niwz = @2 + Ba1 Nipy + Bas Mip + Cia- (4.3)

Here, the f§ coeflicients represent the strength of the dependencies on
past performance and acquired skills in transitioning to a new skill. It is
assumed that phonemic awareness development predicts word recognition
development, emphasizing the importance of the 2 transition parameters.

As an additional sequential link, the standardized reading and spelling
test scores at the end of first grade can be regressed on the growth
coeflicients of the first-grade process. Letting the reading and spelling scores
be denoted y, and ys, respectively,

Yr = ar + By N1 + Br2 Miwz + Cir (4.4)

Ys = Qg + ﬂsl Niwt + Bs‘l Niws + C’Lb (45)
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Products of 3 coefficients in Equations 4.2, 4.3, 4.4, and 4.5 translate
progress on precursor skills into predictions of ultimate outcomes on the
standardized reading and spelling tests. Background characteristics of the
child may have an influence on the dependent variables in all four of these

cquations.
Assembling the observed variables into the vector ¥, = (yip1,-- ., YipT»
Yiwls -« - YiwT, Yir:Yis)' and considering the latent variable vector n;, =

(Mip1s Mip2s Miwl> Miw2s Yirs ¥is)'s Equation 4.1 may be fitted into the
measurement part of a structural equation model,

vi=v+An +Kx;+e;. {4.6)

Equations 4.2 through 4.5 may be fitted into the structural part of a
structural equation model,

n,=a+Bn, +Tx;+(;, (4.7)

where x represents background variables. The model may be estimated
by maximum likelihood under normality assumptions using standard
structural equation modeling software (Muthén & Curran, 1997).

Results

The growth model in Equations 4.1, 4.2 and 4.3 was applied to the
growth processes of kindergarten phonemic awareness and first-grade word
recognition. Linear growth was found to hold for both processes. A
sample of n = 410 children had complete data on the four kindergarten
measures and the four first-grade measures and the analyses are based
on these children. To capture the phonemic awareness level at exit from
kindergarten, the intercept factor was defined at time point 4. Similarly, the
word recognition intercept factor was defined at time point 4 in first-grade.

The maximum-likelihood estimates of the mean of the phonemic
awareness slope factor was 0.21. The variance of the intercept and slope
factors was 0.64 and 0.02. Both values were significantly different from
zero. Their relative size showed the typical feature of a much higher level
variation than of a growth rate variation. The correlation between the
intercept and slope was high, 0.72. The estimates of the four A coefficients
in the growth factor Equations 4.2 and 4.3 are given in Table 4.1.

This indicates that for word recognition level at the end of first grade,
represented by the W intercept, the phonemic awareness level at the end of
kindergarten (P intercept) is important whereas the kindergarten growth
rate (P slope) is insignificant. The amount of variation in the W intercept
accounted for by the kindergarten growth factors was 42%. The first-grade
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TABLE 4.1
Estimates of the Relations Between the First-Grade and Kindergarten
Growth Factors

Dependent Variable P Intercept P Slope
W intercept
Unstandardized 0.79 (0.07) -0.41 (0.40)
Standardized 0.70 -0.07
W slope
Unstandardized -0.05 (0.02) 0.32 (0.11)
Standardized -0.24 0.30

Note. Standard errors are in parentheses.

growth rate (W slope) was best predicted by the kindergarten slope (P
slope). In this case, however, only 4% of the variation was accounted for.

SECTION 4: MODELING WITH MULTIPLE
TRAJECTORY CLASSES

This section describes shortcomings in the analysis of sequential processes
using growth modeling in a conventional latent variable framework. An
alternative, extended growth model analyzed in a more general latent
variable framework is presented.

Shortcomings of the growth model

The growth model allows for individual differences in development. In
this way, the estimated model gives not only an estimated mean curve,
but also estimates the variation in individual curves as a function of the
growth factors. This model allows curves for different individuals to be
very different. Nevertheless, the model is restrictive in that it does not
recognize that the sample of children may be heterogeneous so that different
subgroups may follow different models. This restriction is particularly
limiting when attempting to predict a later process from an earlier process.

The use of growth factors as predictors is complicated by the fact that
the meaning of a growth factor may be different at different levels of
another growth factor. Consider for example the hypothesis that a high
kindergarten phonemic awareness intercept and slope interact to influence
good first-grade word recognition development. The intercept is defined
at the kindergarten exit point so that a high positive slope value means
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that the child has been at considerably lower levels earlier in kindergarten.
This rapid growth can in principle be either good or bad. The rapid
growth may be good because the child shows potential for rapid learning
that may carry over to first grade. For example, a low starting point in
kindergarten may be due to detrimental home circumstances but the child
grows because his or her aptitude for reading is good. The rapid growth
may be bad because the child has not been at the kindergarten exit level
for long and therefore may have had limited learning opportunities during
kindergarten. It is conceivable that these two alternatives have different
plausibility at different kindergarten exit levels. If this is the case, the
influence of the interaction between kindergarten intercept and slope is not
monotonic and needs a special modeling approach. An approach of this
type is now presented.

Growth mixture modeling

The latent variable model in Equations 4.6 and 4.7 are now modified
drawing on the growth mixture model of Muthén, Shedden, and Spisic
(2000). This builds on a latent variable structural equation model
generalized to K classes of a finite mixture. The heterogeneity of the
growth is captured by a categorical latent variable ¢; = {(¢i1,...,cin),
where ¢ = 1 if individual ¢ falls in class & and zero otherwise. The
modeling and estimation is presented first, followed by the application to
the reading skills development.

Modeling and Estimation

For each class k, continuous outcome variables y are assumed normally
distributed, conditional on covariates x, related as follows:

Vi = Vi + Ap my + Ky Xip + €, (4.8)

Nir = ak + By + T xix + . (4.9)

The covariance matrices @ = V(ey) and ¥y, = V((;,) are also allowed
to vary across the K classes. Here, «aj contains the intercepts for
7 for latent class k. The different «y values are used to represent
different trajectory shapes for the different classes. This is a finite
mixture model similar to what was proposed by Verbeke and LeSaffre
(1996). To understand membership composition for the different trajectory
classes, it is useful to relate the probability of class membership to
background variables. As in Muthén and Shedden (1999), a further
component is therefore added to the model, where ¢ is related to x
through a multinomial logistic regression model for unordered polytomous



80 MUTHEN ET AL.

response. Defining nyx = P(cx = 1|x;), the K-dimensional vector
m; = (ma,m,...,%k), and the K — 1 dimensional vector logit (;)
= (log [mu [mik], log [Tia/mik], ..., log [mi k—1/7ik])’, this model part is

expressed as
logit () = a. + I'. x5, (4.10)

where . is a K — 1 dimensional parameter vector and I'; is a (K — 1) x ¢
parameter matrix.

Maximum-likelihood estimation under normality assumptions can be
carried out using the EM algorithm. In the EM algorithm, data are
considered missing on the latent categorical variable ¢;. The complete-data
likelihood of the EM algorithm for the model in Equations 4.8, 4.9, and
4.10 considers

[elx] [yle, x], (4.11)

where [z] denotes a density or probability distribution. The first term of
Equation 4.11 corresponds to a multinomial regression with a multinomial
latent categorical dependent variable determined by Equation 4.10, whereas
the second term corresponds to a multivariate normal distribution,
F(yielx:) = N(p;p, Bi) derived from Equations 4.8 and 4.9. The E and M
steps of the algorithm are discussed in Muthén, Shedden, and Spisic (2000).
A useful side product of the analysis is estimates of posterior probabilities
for each individual’s class membership,

pir = P(cir = Uy, xi) o< Plei = 1x;) fyu|xi) (4.12)

An individual may be classified into the class for which he or she has the
highest posterior probability.

In the context of growth modeling, the finite mixture model is referred
to as a growth mixture model. Mixture modeling can be viewed as a
form of cluster analysis. Many researchers have attempted to cluster
longitudinal measures to capture different classes of trajectories by various
ad hoc methods. The present method is a rigorous parametric approach;
for related mixture approaches to clustering, see, McLachlan and Basford
(1988). In the present study, a“confirmatory” clustering approach is used,
where parameter restrictions are imposed based on a priori hypotheses
about growth. Different prespecified growth shapes can be captured by
letting some of the parameters of ay, be fixed. The growth mixture modeling
results shown later were obtained using the new latent variable modeling
software Mplus (Muthén & Muthén, 1998). Input specifications for the
analyses can be obtained from the first author.

The posterior probability computations shown in Equation 4.12 can
be used to derive the most likely class membership for a given individual
observation vector (y;,x;). A typical use is where the estimated model is
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taken as given and a new individual from the same population is observed.
Here, the estimated madel is used as a measurement instrument in the sense
that an observation vector is translated into a class membership statement.
The Mplus program can be used for such posterior probability calculations
holding all model parameters fixed at the estimated values and doing only
one E step. Because the estimated model is still valid for a subset of the
outcome variables in y;, posterior probabilities can also be computed using
a subset of the repeated measures on y; up to a certain time point. This
responds to questions of how early a useful classification can be obtained.

The growth mixture modeling approach also provides a way to study
early indications of problematic development. As an example, it is of
interest to be able to identify students who are likely to belong to Class 1.
The estimated posterior probabilities obtained by Equation 4.12 provides a
classification of each individual into the class with the highest probability.
This is of interest when using the estimated model to classify a new student
as early as possible. In this case, the parameters of the estimated model are
taken as given and only the posterior probabilities are estimated. Although
the model is estimated from all the y and z variables, the estimation
of the posterior probabilities can be done using only a subset of early
measurements. This is a useful approach to identify children who are at
risk for reading failure as early as possible. Muthén, Francis, and Boscardin
(1999) provides an analysis of this kind.

Application to reading skills development

Applied to the prediction of first-grade word recognition growth using
kindergarten phonemic awareness growth, y; = (Yip1,- - ., Yipd, Yiwi s - - - »
yiu'4zyrsys)/ and n; = (niplvnip%niwl’77iw277]r’77s)" Here, the nlOdehng
includes the standardized reading and spelling test scores y, and y;s at the
end of first grade. These scores are included in the model as two further 5
variables n,. and 5, that are perfectly measured by corresponding y variables
(e, = 0,e; = 0). To illustrate the use of covariates x in Equation 4.10, a
measure of letters, name, and sounds skills obtained at the beginning of
kindergarten is used. This serves as a proxy for home literacy support and
early instruction and is a rudimentary early indicator of both automation of
the symbol recognition process needed for deciphering print into language
and, in the case of letter sounds, of phonemic awareness/grapho—phonemic
awareness.

In Equation 4.9, the first two elements of ay contain the means of the
phonemic awareness intercept and slope and the next two elements contain
the means of the word recognition intercept and slope. The trajectory



82 MUTHEN ET AL.

awareness intercept and slope to different values. Four classes are chosen
to represent variation in both intercept and slope values for phonemic
awareness development; they are described later. The latent class variable is
a predictor of first-grade development of word recognition. This is expressed
by Equation 4.9 where the six vectors ay, capture the across-class differences
in means. The estimated values of the word recognition intercept and slope
means in ay, are of primary interest in the analysis. Given the high number
of classes, it is assumed that relatively little within-class variation remains
in these growth factors. The variation is instead represented by the latent
classes. For simplicity, the latent class variable is therefore taken as the only
predictor of first-grade development of word recognition with corresponding
zero elements of B in Equation 4.9 in the present analysis. The 5, and
7, variables are specified to be predicted by the latent class variable in
the sense that their means are allowed to vary across classes, and they
will also be predicted by the intercept factors for phonemic awareness and
word recognition with corresponding nonzero elements in B. The model
is shown in path diagram form in the bottom part of Fig. 4.1, where,
as a comparison, the top part represents the conventional growth model
estimated in Section 3.

The four prespecified trajectory classes for phonemic awareness are
shown in the left-hand panel of Fig. 4.2. Each line is plotted at the mean
values of the phonemic awareness intercept and slope for the class. Each
class allows variation around this line as a function of variation in the
intercept and slope. The classes represent three different mean values at
the exit of kindergarten. These values are determined from the mean and
variance of the growth intercept in a single-class analysis of these data,
where the intercept is defined at the end of kindergarten. The values are
the mean and plus and minus one standard deviation away from the mean
of the intercept growth factor. The slopes for all classes except Class 1 are
the average values given that intercept value. Classes 1 and 2 differ only
in the growth slope, where Class 1 has zero growth. Class 1 is of special
interest given that it shows failure in reading precursor development. It is
also of interest to contrast Class 1 with Class 2. The choice of four classes
is not based on model fit criteria but on the degree of separation of classes
that is of substantive interest and that can be supported by the analysis. In
earlier analyses, six classes were used