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Preface 

Multilevel modeling is currently a very active research area with statistical 
advances occurring at a rapid pace. It is also being increasingly used in the 
applied world of data analysis because these techniques can address issues 
that are problematic with traditional approaches. In this edited volume, 
many of the leading multilevel modeling researchers from around the world 
illustrate their current work. These authors were invited to write chapters 
based on an open competition and call for papers in 1999. All chapters 
were peer reviewed by us and at least one external reviewer. We thank, 
Steven West, Dougal Hutchinson, Antony Fielding, Russell Ecob, Peter 
Bentler, Mike Seltzer, Juwon Song, Robert Cudeck, and Albert Satorra for 
reviewing one or more chapters. 

As per the title, the chapters focus on new statistical advances (e.g.. 
Cudeck & du Toit’s chapter on nonlinear models for repeated measures 
data), methodological issues (e.g., Seltzer SC Choi’s chapter on outlier 
detection), and current applications of multilevel modeling (e.g., Baumler. 
Harrist, & Carvajal’s chapter that illustrates analyses from the safer choices 
project). Because most chapters address each of these issues, it was 
impossible to separate them into distinct and coherent sections. Instead, 
the chapters are ordered in the sequence in which we were able to edit them. 
Thus, the chapt,er ordering in no way reflects our subjective judgments of 
quality. Our thanks is extended to James M. Henson for translating all 
manuscripts into camera-ready copy. 

We believe that this volume will be most beneficial for researchers with 
advanced statistical training and extensive experience in applying multilevel 
models. Several chapters are quite statistically advanced (e.g., Cudeck Sr 
du Toit, Bentler & Liang, Fielding), although applications of these new 
t;echniques to real data are often provided. This book is probably not an 
optimal choice as an introductory graduate-level text, but may serve as a 
supplement to such a text. At the end of t.his volume, we provide a list of 
author contact information. 

vii 
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1 

Nonlinear Multilevel Models 
Repeated Measures Data 

for 

Robert Cudeck Stephen H. C. Du Toit 
University of Minnesota Scientific Software International, Inc. 

Hierarchical or multilevel models (e.g., Bryk & Raudenbush, 1992; 
Goldstein, 1987) have become valuable in many research domains as 
a way to account for naturally occurring or experimentally imposed 
hierarchical sampling configurations. The classic example in education 
is the nesting structure that arises when students are sampled from 
classrooms, which in turn are sampled from schools. Several desirable 
features are associated with multilevel models for hierarchical designs, 
including improved efficiency of estimation and more sensitive evaluation 
of treatment effects. 

An important application of multilevel models is the description of 
individual change in repeated measures experiments or longitudinal studies. 
The technology in this situation is essentially the same as in the study of 
treatment effects in a hierarchically structured sample, but with different, 
objectives. The goal is to summarize the average change in the population 
over time, while also describing individual patterns of development. 
Individual observation vectors may well be unique. Typically, they differ 
from the mean response as well. The statistical problem is to fit both the 
mean vector and the collection of individual responses by the same function, 
but with distinct parameterizations. A multilevel model for the repeated 
measures problem is often referred to as a mixed-eflects model, after the 
decomposition of a response into a fixed term for the mean vector plus a 
term for individual variation. 
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Several algorithms have been presented for maximum likelihood 
estimation of the linear mixed-effects model assuming normality of the 
residuals and random effects. Software is widely available (e.g., Kreft, De 
Leeuw, & Van der Leeden, 1994). Estimation of the nonlinear model is 
more difficult, even though nonlinear models are typically more realistic. 
Consequently, although maximum likelihood estimation in linear models 
is relatively standard, its use with nonlinear models is uncommon. The 
problem is that the likelihood function for parameters of the nonlinear 
model involves an integration over the random effects to obtain the 
unconditional distribution of the response. Except in special cases, the 
integration cannot be carried out explicitly (Davidian & Giltinan, 1995, 
chap. 4). To estimate the model, at least three different strategies have 
been suggested, only the first of which produces exact maximum likelihood 
estimates; (a) empirical Bayes or fully Bayesian methods utilizing the EM 
algorithm or a data augmentation method such as the Gibbs sampler 
(Walker, 1996); (b) app roximating the nonlinear response function by a 
first-order Taylor series, treating the resulting problem as a linear model 
that is handled with standard techniques (e.g., Lindstrom & Bates, 1990); 
(c) two-stage methods based on first obtaining estimates for each individual. 
then pooling information across subjects (Davidian & Giltinan, 1995, chap. 
4; Vonesh, 1992; Vonesh & Chinchilli, 1997, chap. 7). 

These methods often perform satisfactorily, certainly as general-purpose 
procedures. They work especially well in cases when the number of 
parameters in the function is small and the number of observations per 
individual is relatively large. All the same, limitations have been noted 
(Davidian and Giltinan, 1993; Roe, 1997). With the EM algorithm, 
convergence can be slow, irrespective of the method used to obtain 
moments of the missing data. With estimators based on linearization, the 
t,ransformation of the nonlinear function involves an approximation whose 
accuracy is difficult to assess and that varies from one response function to 
another. With two-stage estimators, efficiency can be poor and the methods 
may not, be applicable at all if the individual data are sparse. Consequently. 
results from both the approximate estimators and two-stage estimators can 
differ in nontrivial ways. An important justification for ongoing research 
on maximum likelihood estimation is that it provides a standard against 
which other methods may be evaluated. 

In recent treatments, Davidian and Giltinan (1995) and Pinheiro and 
Bates (1995, sec. 2) suggested marginal maximum likelihood estimation 
of the nonlinear mixed-effects model (cf. Bock, 1989). Gauss-Hermite 
quadrature is recommended in both references for the integration over 
the random effects to obtain the marginal distribution of the response. 
However, no details have been presented about the way the likelil~oocl 
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function and the numerical approximation to it actually might be 
implemented. In their review of methods for approximating this likelihood 
function, Pinheiro and Bates (1995) reported numerical results for the 
Gaussian quadrature approach, but did not describe how the estimates 
summarized in their article were obtained. Pinheiro subsequently informed 
us (personal communication, December 10, 1998) that a general algorithm 
was employed for nonlinear function maximization from the S system 
(Chambers & Hastie, 1992, chap. 10). In their use of this method, they 
utilized an option for numerical differentiation. It is well known that this 
strategy is convenient and generally satisfactory for many problems (e.g., 
Dennis & Schnabel, 1983, sec. 5.6). On the other hand, it can be expensive 
in terms of function evaluations, and is subject to numerical inaccuracies 
when truncation or round-off errors swamp the calculations (Burden & 
Faires, 1993, chap. 4). 

In this chapter, we also investigate marginal maximum likelihood 
estimation for t,he nonlinear mixed-effects model for continuous variables 
with st#ructured covariance matrix for the residuals and a linear model 
for covariates at the second level. The model allows incomplete response 
vectors, data missing at random, time-varying covariates, and individual 
patterns of measurement. Similar to the approach of Pinheiro and Bates, 
the likelihood function is directly defined in terms of the quadrature 
formula used to approximate the marginal distribution. Estimates by the 
Newton-Raphson method will be obtained using explicit expressions for 
t,he gradient vector and numerical approximation to the Hessian matrix. 
This simple algorithm for the Hessian is generally twice as accurate as is 
a purely numerical met,hod for second-order derivatives. Another benefit, 
of t,his method is that the stochastic parameters can be easily computed 
from terms obt,ained for the gradient vector. The main advantages of the 
Newton-Raphson method is its reliable and rapid convergence rate and 
t,hc fact t,hat it provides an accurate approximation to the asymptotic 
covariance matrix of the estimates. An example with data from a repeated 
measures experiment and a second illustration with data from a longitudinal 
study are provided to demonstrate that the method performs satisfactorily. 

THE NONLINEAR MIXED-EFFECTS MODEL 

The nonlinear mixed-effects model is 

yi = fi(&,xi, zi> + ei 
where yi = 
individual, 

(Yil, .“, yin,)’ is the vector Of 1Zi observed scores for the i-th 

fi(Pi? xi, 4 = [Al (Pi, xi, Zi), * f * , fi,n* (Pi, xi, Zi)]’ 
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is a vector-valued, nonlinear function of coefficients, pi, independent 
variables, xi, and covariate scores, zi. This notation for fi is utilized because 
the number of observed scores for an individual, as well as the form of the 
function, may differ for each component of the response. The individual 
vectors, pi : (JJ x l), are the sum of fixed and random effects plus level-two 
covariates 

pi = p + Bb, + OZi (1.1) 
where ,L!? : (p x 1) are fixed parameters, bi : (T x l), T 5 p, are random 
effects that vary across individuals. The second level regression coefficients 
are elements of the (p x V) matrix 0. It is convenient subsequently to 
define 8 = vet(O). The design matrix B : (p x r) usually has fixed values 
of unity or zero. It is used to associate particular elements of bi with those 
of ,L3, allowing for the possibility that some components of pi do not vary. 
or that some element of bi corresponds to two or more values of ,8, as is 
sometimes needed in the study of multiple populations. For example, if the 
first and third coefficients of pi are random but the second is fixed with no 
level-two covariates, then 

1 0 
B= 00 

( ) 0 1 

and B, = (Pl + h, P2, P3 + k3)‘. 
It is assumed that the residuals, ei = yi - fi (pi, xi, zi), have distribution 

ei N N(0, Ai) where the covariance matrix has structure 

ni = A@) 

for parameters X : (q~ x l), The residuals often are taken to be independent 
with constant variance, 02, in which case Ai = a21. In other situations, 
structures that specify either nonconstant variance or serial correlation or 
both can be accommodated. In still other cases, the error structure may 
depend on the mean response (e.g., Davidian & Giltinan, 1995, sec. 4.2.2). 
Although the order of Ai is ?zi, the matrix depends on i only through its 
dimension. 

The distribution of the random effects is assumed to be normal with 
expected value zero and covariance matrix 9: bi N N(0, a). The 
covariance matrix is parameterized in terms of its Choleski factorization, 

<P=TT’ (13 

Again, although many different situations are possible, two are common. 
When the random effects are uncorrelated, Qi is a function of qT = T 
parameters 

T=T(7) =Diag(~,,...,~,) 
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with [(a]j.j = ~3. If G is a general symmetric matrix, then T is lower 
t,riangular , 

The elements of T correspond to those of r by the relationship tik = TL, 
with 

L(j, k) = k + j(j - 1)/2, jH (1.3) 

The order of r when 9 is symmetric is q7 = ~(1’ + 1)/2 and [(a]jk = 
C,“=l tjitk,i. 

The conditional distribution of yi given bi is 

N(f# + Bbi + Ozi, xi, zi), A,) 

The density function is 

fylb(~i 1 bi) = (Z-/r)-“- I&l-f exp [-$<yi - fi)‘n;‘(yi - fi)] 

where fi = fi (pi, xi, zi). The density function of bi is 

g(bi) = (271-)-% (@(-3 exp(-ibiiD-‘bi) (1.4 
Therefore, the joint distribution of yi and bi is 

fd~i,bi) = &jdyi 1 bi>g(bi> 
= I{* . exI1 [-k(yi - fi)‘n,‘(yi - fi)] . exp(-$bi*-lbi) 

cr-+n, 1 
where K* = (27r) -2 I&l-i (+1-t, and the unconditional distribution 
of yi is 

h(~i) = 
./ 

‘fy,dyi I b)db)db = 
1 

&,,b(yi,b)db (1.5) 

For a sample of N independent observations, y = (yi, . . ., 
Yg, the likelihood function from the marginal distribution hz(yi) is 
Lz(P, e7, x 1 y) = 
rI,N=, hz(Yi), with log-likelihood 

l~~~z(kW,~,~ 1 y) = f$hz(yi) (1.6) 
i=l 

In general, the integral in (1.5) cannot be computed explicitly. 
However, a satisfactory numerical approximation can be implemented with 
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Gauss-Hermite quadrature, after an appropriate change of variables. Let) 
T-l be the inverse of the square root matrix in (1.2) and set u = 2-*T-l bi 
so that bi= fiT’u, with Jacobian 

dbi 

1-l dU’ 

= 25 p$ 
Then, in terms of the transformed variable, the distribution function in 
( 1.5) becomes 

h(Yi) = I( 
.I 

exp (- ie:Ai’ei) exp( -u’u)du (1.7) 

where ei = yi - fi(pu,Xi, Zi), 

PI, = fl+ B(JZn) + @zi (1.8) 

mcl 

The function under the integral in (1.7) is of the form g(z) = 
exp( -z’z)f* (z), where f* ( ) z is a scalar-valued function of z = (~1, . . . , z,.)‘. 
The Gauss-Hermite quadrature formula to approximate an r-dimensional 
integral of this type by a sum is, using r = 3 for example, 

.I g(z)dz = 
N  
-  

.Iss 
e -Z12e-Z22e-.Z32 

f*(a 7 a, x3& 

where wgk and ugk are, respectively, the quadrature weights and abscissas 
for an approximation with G points. It can be shown (e.g., Krommer & 
Ueberhuber, 1994, sec. 4.2.6, or Stroud & Secrest, 1966, sec. 1) that the 
approximation 

J’ 
e-z2f*(z)ns = 5 wgf*(ug) 

g=l 

is exact if f*(z) is a polynomial of degree 2G - 1. It can also be shown 
(Krommer & Ueberhuber, 1994, sec. 4) that the approximation converges 
to the true integral as the number of quadrature points increases 

G 

lim ‘1;;7w,f*(u,) = e-Z2f*(,+Z 
G-+CQ 

g=l .I 
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Let WC: = wgl . . . wg,. The corresponding approximation to (1.7) is 

h(Yi) = I< 2 . . . 5 WGexp (-+$e+,lei) (1.9) 

The residual vector ei used in (1.9) is a function of flu. in (1.8) with 
abscissas, ugl , . . ., ug, . 

APPROXIMATING THE LIKELIHOOD FUNCTION 
For marginal maximum likelihood estimation of the model, we define the 
log-likelihood as 

ln UP, 4 7, X 1 Y) = ?lnh(y,) (1.10) 
i=l 

with h(yi) given in (1.9). For the Newton-Raphson method, the derivatives 
of the log-likelihood are needed. It is important that (1.10) be defined as 
the objective function rather than (1.6) with (1.7) because the gradient 
vect,ors of (1.6) and (1.10) are not the same. To see this, it is sufficient to 
show only the results pertaining to r. As given in the Appendix, after the 
c*hange of variables, the gradient of (1.6) with respect to tjk = [Tljk is 

8 ln -WA 8,7, A 1 Y) N din hr(Yi) = 
dtjk lx 

i=l &k 

(1.11) 

where 

din hI(Yi) 

dtjk = 

Ii’ 

hI(Yi) ./[ 
u’T-‘&jk(T’)-‘u] exp(-$u’u)naidu - ftr [+dl&jk] 

(1.12) 

with u = (ugl, . . ., ug,)‘, mi = exp(-$e!,Ai’ei), 
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and ?,, = $$$. As with the log-likelihood in (1.6), the integral in (1.12) 
must be computed numerically, again with Gauss quadrature 

dlnh(yi) 
x3 

=A+...? 
WYi) &--1 

WGmi [u’T-~%‘,,u] - tr [T-l$rS] 
y,=l 

(1.13) 
On the other hand, if the log-likelihood is defined by (1.10) rather than 

(1.6), then the corresponding partial derivative is 

a1nw, @,T, A I y> N dln h(yi) = 
dtjk >: 

i=l dtjk 

(1.14) 

where 

(1.15) 

and 

(1.16) 

and where the subscript of the abscissa ugk is associated with one of the 
index variables, gk E (91, . . . , gr). In practice, the difference in values 
obtained from (1.15) and (1.13) will depend on the model and the number 
of quadrature points. 

In summary, because (1.10) with (1.9) is the actual way the function is 
implemented, it follows that the gradient vector must be calculated from 
(l.lO), as is illustrated with the partial derivative of In L(p, 8, r, X 1 Y) 
with respect to r in (1.14) and (1.15). Use of (1.11) with (1.13) does not 
give the proper maximum of the function computed in practice, so that 
gradient methods developed from it may either fail or at least perform 
suboptimally, and the asymptotic covariance matrix of the estimates would 
not, be correct. 

ESTIMATING THE MODEL 

In this section, we present the steps needed to estimate the parameters 
of the model based on the Newton-Raphson algorithm, followed by 
estimation of the individual coefficients. The gradient vector for this 
problem is straightforward to compute. In contrast, elements of the 
Hessian matrix are not only complicated in form but are also relatively 
time-consuming to calculate. Consequently, we propose approximating the 
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Hessian numerically, using the explicit first derivatives (Dennis & Schnabel, 
1983, sec. 5.6). Not only is this much simpler in terms of computer code, 
it is also faster than using the exact matrix of second derivatives. Results 
from the two methods typically agree to five or six significant digits, so 
estimates and standard errors agree well for most practical purposes. 

Parameter Estimation 

The gradient vector of (1.10) with respect to the parameters y = (/3’, 8’, 
T’, A’)’ is composed of the submatrices 

g = fdY) = 
dlnL - = (g&7 & g:7 dd’ a7 

The matrix of the Jacobian of the response function with respect to p,, 
is (1.16). Let the product of weights be WC = wgl . - . wgp . Define rni = 

exP(- $ei’A,‘ei) and the following intermediate quantities 

A.=% 
J dXj 

ai = hilei ci = A’,ai Aj = Ajai ai = B’c~. 

The first section in g is 

WGmici 

Elements of go corresponding to [O], are 

G 

’ ’ * c wGmici[zi]s l<_sjv 
gr=l 

Next, using the identity tjk = 7~) with L defined in (1.3)) the second section 
is [cf. (1.14) and (1.15)] 

where 

dh(yi) - J2K 5 * * * 5 WGlniugk [a,ili]j 
dtjk- 

!91=1 g,=l 

Elements of the last section are 

[gX]j = - f 5 tr (A-l Aj) - $5 * . * 5 
i=l 

2 
91=1 g,=l I 
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where 

s. = bp = 5.. .e WGrni 2 
91=1 gr=l 

The Hessian matrix has components 

(1.17) 

d”lnL 
H(7) = ayay’ = 

HAA 

The finite-difference approximation to H at a particular point y = ye using 
the explicit gradient vector is based on a related matrix, H*(y), that is built 
up column by column. Define the j-th column of this approximation as 

[**wl.j = 
gtY+rljvj) - d-d 

rl, 
3 

where vj is a null vector except for a single value of unity in the 
position, and qj a small constant scaled in terms of parameter Yj: 

j-th 

'7~ = IYjl * eps 

where eps is a machine-dependent constant. For example, on 
microcomputers with 32-bit double precision word, one can set eps = 
1.5~10~~. The matrix actually used in practice is computed from H*(y) in 
a way that insures the final matrix is symmetric 

*t-d = ; [**w + t**(7))‘] 

The Newton-Raphson step from an estimate, y(“), of the parameters at 
the k-th iteration to the next point in the sequence, T(~+‘), is the solution 
of the system of linear equations, 

H(y(“))& = -g(y(“)) 

with upclat]ed parameters 
+‘i+l) = y(“) + & 

The step-halving coefficient, w > 0, is chosen to ensure that In L(y(“+l)) > 
111 L(y(“)). 

Define ;i as the maximizer of (1.10) that is hopefully obtained when the 
iterative process converges. In large samples, the standard error of estimate 
of element [qlj is computed from the corresponding diagonal element of 

t’he approximate Hessian matrix in se[‘;/lj = [H(j)-‘ljj3. These are useful 
for constructing interval estimates and for testing hypotheses about the 
associat]ed narameters. 
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Estimates of Individual Coefficients 

After the maximum likelihood estimate ;i/ has been computed, individual 
coefficients, bi, for the sum in (1.1) are estimated. These are the expected 
values of the conditional distribution, fblv(bil yi) where 

Li = WiI yi) = s b.hl,(b 
From the joint density 

I YiPb 

fy,b(Yi,bi) = .fylb(Yii b,)db,) = fbl&il Yi)hz(Yi) 

the conditional density function of (biJ yi) can be written in terms of the 
density of (yil bi): 

fbly(bil YJ = &b(YiI b,Mbi) 
hZ(Yi) 

This allows the expected value to be written as 

6i = IzZ(yi)-l 

./ 
b .fglb(Yil b).9(b)db 

The integrals are again computed numerically by Gauss-Hermite 
quadrature. In this instance, the individual coefficients are the ratio 

where t, = fiTu, u = (ugl, . . ., ug,)‘, and Si is in (1.17). Some estimators 
proposed in the literature use the posterior mode rather than the expected 
value for I;i. In this implementation, (1.18) is convenient computationally. 
Because of the assumption that bi has a normal distribution, there should 
be little practical difference between the two. 

EXAMPLES 

Two examples are presented in this section. The first includes a 
four-parameter function with one nonlinear coefficient. The second 
example requires three nonlinear random effects plus three parameters for 
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TABLE 1.1 
Bradway and McArdle’s Longitudinal Study 

Occasions 
1 2 3 4 5 6 

Year 1931 1941 1956 1969 1984 1992 
Median Age 4.3 14.1 29.9 42.9 57.7 66.2 
N 74 74 74 56 53 54 
Note. Subjects with at least one measurement on occasion 4 - 6. 

a level-two covariate. Although these are not highly complex nonlinear 
functions compared to some examples that have been reported, the research 
questions are realistic and important in their own contexts. The examples 
show that this approach to nonlinear mixed-effects models is practical. 
Many interesting studies with a repeated measures component can be 
satisfactorily investigated using models that require only three or four 
random effects. 

Data From a Longitudinal Study 

One of the longest running longitudinal studies ever conducted was begun 
by Bradway (Bradway & Thompson, 1962) and extended by McArdle 
(McArdle & Hamagami, 1996). In 1931, 138 children were initially 
administered the Stanford-Binet. They were retested as many as five more 
occasions up to 1992 on both the Stanford-Binet and the Wechsler scales. 
A summary of the study is shown in Table 1.1. Our analysis is based 
cm N = 74 subjects who had at least one score on occasions 4, 5, or 6. 
Thirty of these subjects were measured on all six occasions. The other 44 
cases had one or two missing scores in six different missing data patterns. 
The response variable is a weighted sum of nonverbal items from both 
the Stanford-Binet and Wechsler scales, centered at the mean of the 1931 
sample. Exact age was recorded at each occasion, so values on the predictor 
differ for each person. Records for a random 25% subsample are shown in 
Fig. 1.1. No level-two covariates are included in this analysis. 

As shown in Fig. 1.1, there was an initial rapid growth phase until 
the early teenage years, at which point, performance leveled off. In 
late adulthood, some of the subjects had scores that gradually increased, 
whereas others declined. Although the overall pattern was similar for the 
sample as a whole, individual differences, as always, were a notable feature 
of t,he clat.2 
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FIG. 1.1. Bradway and McArdle data: Measures of nonverbal intelligence 
over the lifespan on 25% of random sample N = 74. 

Many models can be considered for this situation. Functions with 
an asymptote seem inappropriate because the pattern of change was not, 
uniformly increasing or decreasing. It is of interest to formally test whether 
overall improvement versus overall decline characterized the population. 
In an effort to simply describe the data, various two phase models, 
corresponding to the preadult and adult phases, were tried. A satisfactory 
representation was possible with a segmented polynomial (e.g., Cudeck & 
Klebe, in press; Morrell, Pearson, Carter, & Brant, 1995; Seber & Wild, 
1989, chap. 9) 

using xj is age at the j-th occasion of measurement. Two parameters are 
especially interesting in this context. The transition point of the function 
is /3.?. It is the value of X at which the polynomial of the first phase 
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TABLE 1.2 
Maximum Likelihood Estimates 

a? 
j Qj be> bo h 62 b3 
0 81.1 (2.20) bo 76.4 
1 -.141 (0.05) bl -.Oll .026 
2 -.572 (0.04) h .090 .007 .032 
3 18.6 (0.60) bs 3.68 .099 .408 9.99 
Note. 3’ = 77.5 

changes to the linear component of the second. Developmentally, this would 
be interpreted as the age when a qualitative change in rate of cognitive 
growth occurs. The second interesting parameter is pl, the slope of the 
linear phase. It can be used to test whether there is overall improvement 
or decline across the life span. If no random effects are specified for the 
transition point, then the model can be fit by standard maximum likelihood 
for linear models. Because there is variability in the age at which the 
t,ransition occurs, however, it is more reasonable to allow random effects on 
/;13 as well as on the other parameters. Individual coefficients are therefore 
pi = p + bi with p = T = 4. We take <P to be symmetric, but specify 
homogeneous error variances as Ai = $1. 

The model was fit with G = 16 quadrature points. Maximum likelihood 
estimates are shown in Table 1.2. The fitted mean response, f@, z), is 
shown in Fig. 1.2. The estimated transition point for the population was 
i^j3 = 18.6 years, with se@,) = 0.60. After that age there was on average 
a gradual decline in performance of approximately .14 points per year 
(3, = -.141, se(&) = .05). Altl lough the trend decreased overall, a few 
individuals actually exhibited increases, whereas for others, the response 
was essentially constant into old age. Figure 1.3 shows fitted functions for 
a few selected cases. The two individuals in Fig. 1.3(a) had large differences 
in intercept, pi0 (70.8 vs. 91.9); those in Fig. 1.3(b) had large differences 
in slope, @%I (-.32 vs. .04); those in Fig. 1.3(c) had large differences in 
transition age, pi3 (14.1 vs. 23.6). 

In their analyses, McArdle and Hamagami (1996) examined several 
different models. Their best fitting model was a latent curve structure. It 
also showed a slight decline in nonverbal intelligence, but only in the later 
adult years. In addition to differences in the statistical model, McArdle 
and Hamagami used a larger sample of N = 111. Because in our simple 
two-phase model, the linear component was of special interest, and because 
we lacked information regarding the dropout mechanism that resulted 
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FIG. 1.2. Bradway-McArdle data: Sample data with fitted function. 

in a smaller sample at the later measurement occasions, it was thought 
reasonable to require that subjects have at least one score in the last three 
periods. In light of this consideration, and in light of the interpretable and 
stable results, we believe these results are substantively reasonable, at least 
as a preliminary description. 

A Verbal Learning Experiment 

Smith and Klebe (1997) conducted an experiment in which N = 143 college 
students studied a list of 15 words during 10 trial periods. The number of 
items correctly recalled in each trial was recorded. In addition to the free 
recall experiment, a measure of verbal achievement, zi, was obtained as a 
covariate. A 10% random sample of the data are shown in Fig. 1.4. 

A three-parameter logistic response function seems appropriate for these 
data 

(1.19) 



(C) 

Age at Ti%e tf Ttsti& 
70 

FIG. 1.3. Bradway-McArdle data: Fitted individual functions with (a) 
large differences in intercept, (b) large differences in slope, and (c) large 
differences in transition age. 
16 
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FIG. 1.4. Smith and Klebe’s data: Number of words correctly recalled by 
10% of sample, N = 142. 

where x = (0,. . . ,9)’ are the trials. The maximum number correct in this 
experiment is 15, which is the upper bound for the asymptote, ,L$,. If /3,6 
is assumed to have a normal distribution with mean PO, then there may be 
cases for which values of a& > 15 occurs. It is more appropriate to assume 
that individual asymptotes have a skewed distribution and that coefficients 
are restricted to be p10 5 15. This is handled by a transformation of the 
numerator of (1.19) in which 

where the basic parameter pi0 together with pi, and piz have a joint normal 
distribution, but p&(,BiO) is bounded above. 

Two versions of this model were examined. In Model 1, individual 
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coefficients are simply the sum 

wit,h bi - N(0, @). Here, E(Pi) = /?. In Model 2, the covariate, zZ, 
is included at the second level to investigate the effectiveness of verbal 
achievement as a predictor of verbal learning. Let 0 = (&,t9i, 0,)’ so that 

111, : pi = p + bi + 8xi 

with E(/3,) = p + 0~~. It should be noted that (1.19) has only nonlinear 
parameters, and that the first is essentially a transformation of the 
distribution of pi0. The performance of model M2 against NIi gives a 
means of assessing the improvement gained by adding the covariate. In 
each model, the residual structure was Ai = a21. 

The number of quadrature points was G = 14. For the two models, 
the value of (1.10) was In Li = -2441.9 and lnL2 = -2426.7, with a 
difference of -2(ln L 1 - In L2) = 30.4 on degrees of freedom difference, 
elf = 3. At least nominally, the covariate improves performance. Maximum 
likelihood estimates for IM2 are shown in Table 1.3. The largest value of the 
estimated asymptotes in the sample is PI0 = 14.7. The fitted mean curve 
using E(fi(~i, xi, zi)) where 

fi(&, xi, 4 = 15 [ { 1 + exp(-&)} { 1 + exp(/3il - Bi2x))] --I 

is shown in Fig. 1.5. In the second-order model, the covariate 2 is most 
effective as a predictor of /?ze, based on & = .044, se(&) = .006. The 
covariate also predicts Pia, but only weakly so, & = .009, se(&) = .002. 
This suggests that verbal achievement is moderately successful in predicting 
final learning, @IO, and perhaps also rate of learning, piZ. The weight for 
gZ1 011 2, 81, could well be zero. 

DISCUSSION 

Accuracy of the estimates, as well as amount of computer time, are a 
function of the number of quadrature points. In deciding on an appropriate 
number for G, a few different values can be tried and results based on the 
smallest number associated with stable estimates can be reported. For 
example, Model 2 of Example 2 had N = 142, T = 3 random effects, 
cl = 1 covariates, with a total of 13 parameters. Table 1.4 shows values of A 
111 L(y), @, and the required computer time per Newton-Raphson iteration 
for G = 8,10,12,14. The estimates for G = 12 and G = 14 are similar, at, 
least for two significant digits. Computer time essentially doubles for each 
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TABLE 1.3 
Maximum Likelihood Estimates on Recall Data 

55 (se) 

j i3, (4 8j (se) bo h bz 
0 -2.46 (.62) .044 (.006) b. .699 (.08) 
1 1.33 (.54) -.olo (.005) bl -.102 (.04) .186 (.03) 
2 -.208 (.18) .oo9 (.002) bz .048 (.02) -.028 (.Ol) .124 (.02) 
Note. ~5’ = 1.07 (.06) 

TABLE 1.4 
Computer Time and Accuracy of Estimates for Different Values of G 

G Time 1nL b0 i$ 83 
8 4 -2433.9 -2.32 1.57 -.218 

10 8 -2427.8 -2.42 1.48 -.213 
12 14 -2426.1 -2.45 1.40 -.209 
14 23 -2428.3 -2.46 1.33 -.208 

increase in G to an elapsed time of 23 seconds per iteration for G = 14. 
The method can be demanding when G is large, but not prohibitively so. 

This work demonstrates that marginal maximum likelihood estimation 
of t,he nonlinear mixed-effects models can be obtained by a direct 
implementation of the Gauss-Hermite formulas for numerical integration. 
The primary reason for this approach is to ensure that the likelihood 
function and its derivatives are mutually consistent. For any gradient-based 
method of estimation, it is essential that this be so. In addition to this 
important technical consideration, the method is practical. Many nonlinear 
models for repeated measures exist with a small number of random effects. 
With four random effects or fewer, this approach is feasible. 

Much of the literature on multilevel models makes a qualitative 
distinction between linear and nonlinear models. Estimation in the former 
case is straightforward and software is widely available to fit models 
based on maximum likelihood assuming a normal distribution for both the 
residuals and random effects. Maximum likelihood estimation of nonlinear 
models is a much more difficult enterprise, in terms of derivation, compute1 
code, and computational effort in the estimation step. Consequently, a good 
deal of statistical development has been concerned with approximations 
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FIG. 1.5. Smith and Klebe’s data: Sample means and fitted function. 

to the general nonlinear model that result in estimators that are more 
manageable. These approximations work well in a variety of situations (e.g., 
Pinheiro & Bates, 1995; Vonesh & Carter, 1992). Nonetheless, it is more 
atisfying, at least theoretically, to approach mixed-effects models from a 
unified perspective that allows both linear and nonlinear response functions 
to be treated in the same way. To some extent, there is a corresponding 
distinction in the literature on linear versus nonlinear regression. A valuable 
feature of modern approaches to regression is the unified treatment of 
both classes of response function under maximum likelihood. This has 
illuminated a variety of subtle and not so subtle features of the model that! 
would not, be as clearly rendered from a compartmentalized approach. It is 
likely that further study of the mixed-effects model from a single perspective 
would be similarly advantageous. 

Although the approach described here is successful as a method for 
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estimating the nonlinear mixed-effects model, a sobering consideration 
in its use is the computational burden. Research is being conducted to 
investigate ways of reducing the computations. It appears that substantial 

is handled. improvements can be made in the way the numerical integration 
This will speed up the estimation process appreciably. 
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APPENDIX 

In this section, we derive & In hl(yi), which is needed in the partial 
derivatives of (1.6) with respect to elements of r. Define cp as the 
nonduplicated elements of @‘, with 4, = &a. It is convenient to first, 

find & lnhr(yi). From (1.4), 

hl(g(bi)) = -G In (27r) - $ In [+I - $biG-‘bi 

Du Toit (1993, sec. 4) showed that 

i3 In g(bi) 

dVL 
=2 2 

&!<P+iLi@-‘bi - $ 

From (1.5) (cf. Du Toit, 1993, sec. 5), 

d 111 hr (yi) 1 =- 
89, 1x1 (Yi > s 

fy[dYi I b) $I@) db 
L I 

Because & ln g(bi) = g(bi)-‘&g(bi), it follows that 

&l(bi> 
- = g(b) 

d ln g(bi) 

%L 
dp 

L 

(Al) 

W) 

WV 

Substituting (A3) into (A2), 

d 111 111 (yi) 1 
* =- 

dPL hz (Yi> J 
a ;;i”’ &,dyi I b)g(b)a (A4 

and (Al) into (A4) gives 

f%n h&i) 1 

%L - = 2h(Yi) 
b’W1&LW’b 

> 
fiJlb(yi I b)g(b)db 

-itr [Q-‘&L] W) 

Let, I(* = (271-)-W /A,[-+ [+I-$. Substituting fglb(yi 1 bi) and g(b,) 
into (A6) gives 

din h(yi) I<* . 

%L = 2WYi) 
b’iE-1@L9-1b > ( 

exp -$eiA,‘ei) 

exp (-$b’G-’ b) db - itr [+-l&L] w 
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With the change of variables to u = $T-‘bi, (A6) becomes 

dlnh(yi) I< 

%L = 2h(Yi) 
- / [(J5k~)~~~~~~~~~(Jzlru)] exp(+‘u) 

midu - itr [@-‘&L] 

with I{ = 2: I+[$ I(* = (27r)-? [Ail-~ and rni = exp(-~e~A~‘ei). 
Because + depends on T in (1.2), substitution gives 

din h(c) I’ * 
09, = hz(Yi) Jr 

u’T-’ &L (T’)-‘u] exp( - iu’u)midu 

-itr [@-‘4~1 (A7) 

Gauss-Hermite quadrature is used to approximate (A7) as follows: 

8 ln fly 

&L 
M -&- g . .. 5 WGmi [u’T-‘&L(T’)‘u] -itr [a-‘&~] 

MYd gl=l gr=l 

where WG = zugl . . . wgr. Again, substituting for 4e from (1.2) and noting 

that & = ?YjkT’+T’& gives finally 

13 ln /*z (yi > 

dtjk 

E s 5 . . . 5 WGmi [u/T-‘Ykjku] - tr [~-l+jk] 
z gl=l gr=l 
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A key facet of data analysis entails checking the adequacy of models. It 
is important to learn whether one’s results are being strongly influenced 
by one or two cases, whether one’s results might be especially sensitive 
t#o certain modeling choices and assumptions (e.g., choice of link function, 
distributional assumptions regarding random effects), and whether one’s 
model fails to capture important features of t<he data (e.g., nonlinear 
relationships between key predictors and the outcome of interest). 

Normality assumptions are commonly employed in hierarchical modeling 
settings. For example, in the case of two-level hierarchical models (HMs) 
for continuous outcomes, level-l (within-cluster) error terms are typically 
assumed to be normally distributed. At level 2, cluster effects (i.e., random 
effects) are generally assumed to be normally distributed as well. In the case 
of HMs with more than two levels, normality assumptions are also typically 
employed for random effects specified at higher levels of the hierarchy (e.g., 
level 3). 

25 
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It> is widely known that in fitting models under normality assumptions, 
parameter estimates are potentially vulnerable to extreme cases (e.g., 
Mosteller & Tukey, 1977). This problem has stimulated the development, 
and use of an array of robust regression techniques. 

In the case of HMs, some attention has been given to the sensitivity 
of fixed effects estimates to extreme level-2 units. Consider, for 
example, a multisite evaluation st,udy in which treatment and control 
conditions have been implemented in each of a series of sites. Treating 
treatment/control group contrasts as outcomes in a level-2 (between-site) 
model, we might be especially interested in modeling differences in the 
magnitude of treatment/control group contrasts as a function of program 
implementation. A problem, however, is that under normality assumptions 
at level 2, a site at which a program was unusually successful or unsuccessful 
could strongly impact the resulting estimate of the implementation fixed 
effect (e.g., Seltzer, Wong, & Bryk, 1996). As a second example, consider a 
growth modeling study in which children’s rates of change with respect 
t,o a cognitive skill of interest are, in a level-2 (between-child) model, 
modeled as a function of whether or not children have attended preschool. 
Under normality assumptions in the level-2 model, one or two children with 
unusually slow or rapid rates of change could strongly impact the estimation 
of the fixed effect capturing the relationship between preschool and rate of 
change. 

To address problems of this kind, a number of researchers have presented 
strategies for conducting sensitivity analyses under t level-2 assumptions 
((1.6.) Carlin, 1992; Seltzer, 1993). These strategies are based on the scale 
mixture of normals representation of the t (e.g., Dempster, Laird, SC Rubin, 
1980; Lange, Little, & Taylor, 1989; West, 1984). Such analyses can 
1~ carried out fairly readily using Markov Chain Monte Carlo (MCMC) 
techniques (discussed later). When we fix the degrees of freedom parameter 
of the t, distribution (e.g., ~2) at a small value - that is, when heavy tails are 
;~ssu~necl at level 2 - extreme level-2 units are more easily accommodated 
than mlcler normality assumptions. The net effect is that extreme level-2 
tmits will be downweighted in our analyses. Analogous to robust regression 
tc~chniques, ua serves as a tuning parameter. As the value at which we 
fix z/z decreases, the ext,ent to which level-2 outliers will be downweighted 
increases. 

Careful application of HMs also requires that we attend to extreme 
level-1 uiiitls. In a multisite evaluation study, for example, a person in the 
treatment group at a particular site whose outcome score is very extreme 
in relatlion to the other indivicluals in that particular group would be an 
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example of a level-l outlier. In the context of growth modeling applications, 
a time-series observation for an individual that is unusually high or low 
given the overall trend in that person’s data would be considered a level-l 
outlier. 

As Rachman-Moore and Wolfe (1984) pointed out, level-l outliers can 
“sour” summaries of the data for a given cluster, which, in turn, can impact, 
t,he estimation of fixed effects. Consider, for example, the simple one-way 
ANOVA setting with random effects, where individuals are nested in J 
different clusters. In this setting, OLS estimates of the means for the 
clusters (Yj, j = 1, . . . , J) are used in computing the generalized least, 
squares estimate of the grand mean (e.g., Bryk & Raudenbush, 1992, chap 
3). Clearly, an extreme score within a particular cluster can impact t,he 
estimate of the mean for that cluster, which, in turn, can impact the 
estimate of the grand mean. Analogously, level-l outliers can impact 
tlstimates of treatment/control contrasts for particular sites, or estimates 
of growth rates for certain children, which, in t,urn, can result in misleading 
tlstimates of fixed effects of interest. To this end, Seltzer, Novak, Choi 
and Lim (in press) presented a strategy that entails employing the scale 
mixture of normals representation of the t at both levels 1 and 2 of HMs 
(cf. Spiegelhalter, Best, Gilks, & Inskip, 1996). 

Through analyses of the data from a longitudinal study of change in 
toddlers’ request behavior we will (a) further highlight possible problems 
connected with level-l and level-2 outliers, (1~) illustrate the value of 
cbonducting sensitivity analyses under t distributional assumptions at, levels 
1 and 2 of HMs, and (c) illustrate how such analyses can be carried out 
losing t,he software package WinBUGS (Spiegelhalter, Thomas, & Best, 
2OOO), which was developed by statisticians in the MRC Biostatist,ics Unit 
in Cambridge, England. BUGS is a near acronym for Bayesian inference 
using Gibbs sampling. There has been an explosion of interest in Gibbs 
sampling and other MCMC techniques in the last, 10 years in the statistics 
c~ommunity. This is due to the fact that MCMC provides a viable approach 
to stat,istical inference in many complex set)tings. WinBUGS is freely 
available via the web: www.rnrc-l~su.cam.ac.ul~/bugs/welcon~e.shtml, and 
can be used in a large array of modeling settings. Detailed descriptions of 
the BUGS code that we have written for this chapter can be downloadecl 
from the following website: www.gseis.ucla.eclu/f~~culty/pages/seltzer.l~~~~~~l. 

In the following sect,ion, we describe the data set, that we use in 0111 
illustrative examples. This provides a backdrop for a brief discussion of om 
tJstima,tion approach. We then take the reader through a series of cletailecl 
analyses of the dat)a. 
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GROWTH MODEL FOR THE REQUEST 
BEHAVIOR DATA 

When making requests of their caretakers, toddlers often employ hand 
and body movements that partially enact the actions that they want theil 
caretakers to perform. Smiley, Greene, Seltzer, and Choi (2000) referrecl 
to such behavior as enactive gesturing. Smiley et al.‘s interest in enactive 
gesturing stemmed from the potential insight that behaviors of this kind 
can provide regarding the nature of toddlers’ knowledge of self and other. 

In our illustrative examples, we utilize the data from a longitudinal study 
t,hat explored changes in the use of enactive gestures by toddlers (Smiley 
et al., 2000). Our sample consisted of 9 children (5 females and 4 males) 
and t!heir mothers. Mother-child dyads were recruited from a middle class. 
well-educated urban community through newspaper advertisements. The 
dyads were videotaped during the course of their normal daily activities: 
the length of each taping session ranged from 2.5 to 3.5 hours. All of 
the requests initiated by a child during a taping session were subsequently 
classified into various categories (e.g., initiated with enactive gestures: 
initiated without enactive gestures, etc.). The outcome variable of interest 
in our analyses was the percentage of requests that were init,iated using 
enactive gestures (EG). 

Figure 2.1 displays the observed EG trajectories for the children in OLU 

sample. The sample contained EG measures at ages 12, 16, 20, 24, and 
30 mont>hs for children 1 through 8, and EG measures at ages 12, 16, and 
24 months for child 9. At 12 months of age, EG percents ranged from 
50.0 to 93.2, with a mean of 76.1 and a standard deviation of 15.0. The 
general pattern is that EG percents decreased in a fairly linear fashion 
during the 12-- to 24-month age range, and then flattened out after 24 
months. Note that EG values for the sample of children tended to converge 
at the 24.-month time point. This lends some support to prior research that 
suggests that at approximately 24 months, children display behaviors that, 
indicat,c t,hey have begun to construct a notion of self as a psychological 
entity (see Smiley et al., 2000 for a review). 

In addit,ion to coding children’s request behaviors, mother’s responses 
following children’s requests were categorized. Of particular interest in the 
Smiley et, al. study were caretaker responses that referred to children’s 
states, a&ions, or goals, termed “speech about the child” (SPAC). Percents 
of c~arctakcr responses falling into this category were computed at each time 
point,. 

Over the 12- to 20-month age range, mothers differed substantially 
in terms of their levels of SPAC, but seemed to show little systematic 
increase or decrease in their SPAC values over time. One auestion of interest 
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FIG. 2.1. The observed enactive gesturing (EG) trajectories for the 9 
children in our sample. 

investigated by Smiley et al. was the following: How do differences in levels 
of SPAC in this particular period relate to differences in rates of change in 
cnactive gesturing (EG) over the 12- to 24-mont8h age range. To examine 
t,his question, the SPAC values for each caretaker were averaged across the 
12 to 20 month age span. The resulting variable (MSPAC) was employed as 
a level-2 (between-child) predictor in subsequent growth modeling analyses. 

Smiley, Greene, Seltzer, and Choi (2000) modeled EG values across 
the entire age range (i.e., 12-30 months). In doing so, they employed a 
piecewise model for individual growth that captured rate of change during 
the 12 to 24 mont,h age range, status at, 24 months, and rate of change 
in the 24 to 30 month age range. For ease of exposition, we set, aside 
the 30-month EG values and use a simpler model. Note that the following 
results are extremely similar to those reported by Smiley et al. (see Endnotc 
1). Note also that transforming EG values to the logit scale or using an 
arcsin transformation does not alter the pattern of results. 

We now pose the following two-level growth model. We begin by 
specifying a level-l (or within-child) model in which the series of EG 
values for each child in the 12- to 24-month age span is modeled as a 
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linear function of age: 

where r/t, represents the EG percent for child i (i = 1, . . . ,I) at, 
measurement occasion t (t = 1, . . . , Ti), AGEti representIs the age in months 
of child i at measurement occasion t, and 7rii represents the rate of change 
for child % during the 12 to 24 month age range. As noted earlier, 24 months 
is viewed as a pivotal age in the development of autonomy. By virtue of 
centering AGEti around a value of 24, 7r oi represents the EG status of child 
i at 24 months. Initially, we assume that the ~ti (i.e., the level-l residuals) 
are normally distributed with mean 0 and variance IT’. 

We then pose the following level-2 or between-child model: 

The parameter of primary interest in this model is pi,, which captures 
t3he relationship between level of mother’s speech about the child (MSPAC) 
and rate of change in enactive gesturing. The parameter Uii is a random 
effect that captures the deviation of the growth rate for child i from an 
expected value based on his or her caretaker’s MSPAC value [i.e., Ui, = 

~11. - (ijlo + &JJSPACi)]. W e initially assume that the Uii (i = 1, . . . , I) 
are normally distributed with mean 0 and variance 7-11, where 711 represents 
the variance in growth rates across children that, remains after taking into 
account MSPAC. 

In the first equation in the between-child model, ,fJoo represents mean 
EG status at 24 months. Note that preliminary models that we fit to the 
data indicate that the variance in EG status at 24 months across children 
(TOO) is extremely small, which is consistent with the pattern observed in 
Fig. 2.1. As such, as in Smiley et al. (2000), we do not include random 
effects for EG status in our level-2 model; that is, we constrain 700 to ;I 
value of 0. 

ESTIMATION AND INFERENCE 

Fully Bayesian Analysis via MCMC 

Typically, point estimates ancl standard errors for fixed ancl random effects 
in applications of HMs are based on the GLS and shrinkage estimation 
formulae outlined in such sources as Bryk and Raudenbush (1992). In 
these formulae, the variance components in HMs are assumed known. 
From a Bayesian perspective, these formulae correspond to the means and 
standard deviations of the conditional posterior distributions of the fixed 
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and random effects given the data and given the variance components [e.g., 
p(pI1 1 y, 711, c?)]. Iterative techniques such as the EM algorithm or Fisher 
scoring are used to obtain ML estimates of the variance components, and 
t,hese estimates are then substituted into the formulae for the fixed and 
random effects. Such an approach has been termed empirical Bayes (EB) 
(Bryk SC Raudenbush, 1992). Thus, for example, t,he mean and standard 
deviation of the conditional posterior p(pll 1 y, ~11 = 711, 0’ = G”) would 
provide us with a point estimate and standard error for pl1. 

In t,his approach, it can be seen that ML estimates of the variance 
components are essentially treated as the known true values of these 
parameters. This can be problematic in small-sample settings. That is, 
when the number of level-2 units in a sample is small, the EB approach 
can potentially result in underestimates of uncertainty (e.g., standard 
errors that are too small), and point estimates t]hat may constitute poor 
sunlmaries of the data (Draper, 1995; Rubin, 1981; Seltzer et al., 1996). 
(Regarding hypothesis tests and intervals for fixed effects in small-sample 
settings, note that the HLM program performs a correction that tends to 
Ijrovide appropriate rejection rates and levels of coverage provided that 
one’s data are not too unbalanced.) 

In contrast, the fully Bayesian (FB) approach entails basing inferences 
on the marginal posterior distributions of parameters of interest [e.g., 
ll(j?ll 1 y)]. This involves specifying prior distributions for the variance 
components, as well as all other parameters in one’s model. To obtain 
the marginal posterior distribution of a parameter of interest, we integrate 
over all other parameters in the model. Thus, for example, p(pll 1 y) would 
provide a summary of the plausibility of different values for ,0,, given the 
tlata at hand and any available prior information. The mode, median, and 
mean of p(gll I y) would constitute various point estimates for pll, and 
t,he .025 and .975 quantiles of this distribution would provide us with t,hc 
I3ayesian analogue of a 95% confidence interval. 

One of the advantages of the FB approach is t,hat it provides a general 
strategy for drawing inferences concerning a parameter of interest in a 
mamler that takes into account the uncertainty comlected with all ot,hel 
parameters in one’s model. For example, in drawing inferences concerning 
!jll, integrating over 7-11 and c? along with all other unknowns in effect, 
propagates the uncertainty concerning these parameters into p(pI1 I y) 
(Draper, 1995; Rubin, 1981; Seltzer et al., 1996; see, especially, Box si 
Tiao (1973, chap. 2) for a valuable discussion of tIllis concept). 

Calculating marginal posteriors of interest, has heretofore been 
intract,able in all but the simplest HM settings. Markov Chain Monte 
Carlo (MCMC) techniques, such as the Gibbs sampler, now make such an 
;-lpproach extremely viable (see, e.g., Carlin 8~ Louis, 1996; Gelfand, Hills, 
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Racine-Poon, & Smith, 1990; Gelfand & Smith, 1990; Gelman, Carlin, 
Stern, & Rubin, 1995; Gilks, Richardson, & Spiegelhalter, 1996; Seltzer et 
al., 1996; Spiegelhalter, Thomas, et al., 199613, 1996c; Spiegelhalter et al. 
2000; Tanner, 1996; Tanner & Wong, 1987). As detailed in these references, 
MCMC techniques, in effect, provide a means of simulating marginal 
posteriors of interest in high-dimensional modeling settings. Examples of 
numerous applications of MCMC can be found in these references as well. 

In addition to providing a viable strategy in settings in which the 
use of large-sample theory may be problematic, conducting fully Bayesian 
analyses via MCMC techniques places the data analyst in a position 
t,o capitalize on other important aspects of the Bayesian approach. 
In particular, the Bayesian approach encourages us to lay bare key 
assumptions in our models (e.g., distributional assumptions, specifications 
of priors) and to study the sensitivity of our results to sensible alternative 
assumptions. These ideas are extremely well articulated in the work of 
George Box (1979; 1980; see also Box & Tiao, 1973). MCMC greatly 
increases our capacity to put this important set of ideas into practice. In 
particular, we focus on the use of MCMC in conducting sensitivity analyses 
under t distributional assumptions. 

Fitting HMs under t distributional assumptions 

In our analyses, we employ a mixed modeling formulation. Thus, we 
collapse our level-l and level-2 models (Equations 2.1 and 2.2) as follows: 

Iii = &,. + [PI0 + &,MSPACi + Lh](AG& - 24) + cti. (2.3) 

As noted earlier, we initially assume normality at levels 1 and 2: Eti - 
N(0, (T’) and Uli - N(0, 711). By virtue of assuming normality at level 
1, we have 

where 

K - N(pt,, 0’) , (2.4) 

To implement the Gibbs sampler in settings in which we wish to 
employ i: distributional assumptions at one or more levels of the algorithm, 
it, is extremely convenient to work with the scale mixture of normals 
representation of the t. To help grasp the logic of this approach, recall 
that a t- distributed variate with mean 0, scale 1, and degrees of freedom v 
can be expressed as: z / w’i’, where z has a standard normal distribution 
[- Id - iV(O, l)] and w is a &-squared distributed variate divided by 
its degrees of freedom (w - 1:/y). Note t,hat the distribution yz/z/ 
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corresponds to a Gamma distribution with shape parameter v/2 and scale 
parameter u/2 [i.e., Gamma(v/2, v/2)] (see, e.g., Gelman et al., 1995, for 
details concerning the Gamma distribution). 

Building on this logic, if we wish to assume that level-l errors are t 
distributed with mean 0, scale g2, and vi degrees of freedom, N(,+, a2) 
in Equation 2.4 is now replaced by: 

where 
Wti N Gamma(vl/2, ul/2) . (2.7) 

We refer to the Wti as level-l weight parameters. In Equation 2.6, note 
that as wti decreases, the variance of Yti (i.e., c~~/wti) increases. As can 
be seen in the illustrative examples, those level-l observations with small 
weights will, as in a Weighted Least Squares analysis, be downweighted. 

A Gibbs sampling algorithm for models of this kind is detailed in Seltzer 
et al. (in press). Similar to th e weights produced by robust regression 
t8echniques such as biweighting, the algorithm produces estimates of the 
titi. Specifically, the algorithm is likely to generate small values for wt L 
when the distance of Yti from pti is large. 

This strategy can also be easily extended to level 2. Under the 
assumption that the random effects in our model are t distributed with vZ 
degrees of freedom, we would use the scale mixture of normals formulation 
as follows: 

where: 
4i - Gamma(v2/2, ~/a). (2.9) 

In this formulation, the pi constitute level-2 weight parameters. A small 
estimate (e.g., a small posterior mean) for qi would signal a child whose 
rate of change is unusually slow or rapid. 

If we wish to assume heavy tails at levels 1 or 2, we can fix the 
corresponding degrees of freedom parameter (vi ; ~2) at a small value (e.g., 
4). If results obtained under heavy-tailed assumptions differ substantially 
from those obtained under normality, a useful strategy entails fixing degrees 
of freedom parameters along a grid of values (described later). We will also 
see that it is possible to treat vi and u2 as parameters that are estimated 
based on the data at hand and on available prior information. This results 
in estimates for parameters of interest (e.g., fixed effects) that are analogous 
to robust adaptive estimates. 
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Implement at ion 

Deriving the steps of Gibbs sampling algorithms can be a fairly complex 
task. Furthermore, implementing Gibbs sampling algorithms in languages 
such as Fortran can be extremely time-consuming. Fortunately, the 
software package WinBUGS, which we used to conduct the analyses 
presented in this chapter, provides a relatively easy means of implementing 
the Gibbs sampler in a wide range of modeling settings. In addition, 
t,he developers of WinBUGS have made available a comprehensive suite of 
programs for assessing convergence called CODA (Best, Cowles, & Vines, 
1996). Like WinBUGS, CODA is freely available, and can be obtained via 
t,he BUGS website. 

In endnote 3, we discuss the procedures that we used to assess 
convergence, and in endnote 4, we discuss the specification of priors foi 
the variance components and fixed effects in our models. All analyses were 
run on a Pentium II 400mhz PC. To ensure high degrees of accuracy in 
simulating marginal posteriors of interest, all posterior means, standard 
deviations, and intervals reported are based on chains of 40,000 values 
generated by the Gibbs sampler (see endnote 3). For all analyses except 
those in which degrees of freedom parameters were treated as unknowns, 
less than 1 minute of CPU time was required to complete 40,000 iterations 
of the Gibbs sampler; when degrees of freedom parameters were treated as 
unknowns, approximately 4 minutes of CPU time were required. 

ILLUSTRATIVE EXAMPLE 1 

We first, consider the growth model for the enactive gesturing data in which 
normality is assumed at levels 1 and 2 (N/IV) (see Equation 2.3). Note that 
the HLM program (Bryk, Raudenbush, & Congdon, 1996) produces files 
termed residual files that can be used to obtain EB and Least Squares 
(LS) growth parameter estimates for the individuals in a sample (see 
endnote 2). In building HMs and checking their fit, we often find it useful 
to examine plots of the LS estimates produced by HLM versus level-2 
predictor variables. Figure 2.2 displays the LS estimates of the rates of 
change for the 9 children in our sample versus MSPAC. As can be seen, as 
MSPAC increases, the LS estimates of the 7rii become more negative; that, 
is, higher MSPAC values are associated with more rapid rates of decline in 
enactive gesturing. 

We now use WinBUGS to fit the HM specified in Equation 2.3. Note 
that we have centered MSPAC around its grand mean. By virtue of this, 
ij,e represents the mean rate of change in enactive gesturing during the 12- 
to 24-month age range. For Pin, we see in Table 2.1 that the mean of the 
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FIG. 2.2. Illustrative Example 1: Least squares estimates of rates of 
change in enactive gesturing versus level of mother’s speech about the child 
(see endnote 2). 

resulting marginal posterior distribution is equal to a value of -5.23. One 
can interpret marginal posterior means just as one would interpret point 
estimates obtained via programs such as HLM. Thus, this result indicates 
that EG percents are, on average, declining at a rate of approximately 5 f 
points per month during the 12- to 24-month age range. For PO,-, (the fixed 
effect representing mean status at 24 months), the marginal posterior mean 
t#akes on a value of 13.70 percentage points. 

Turning to t,he results for ,/3ii (the fixed effect capturing the relationship 
between MSPAC and rate of change), we see that the mean of the marginal 
posterior distribution takes on a value of -0.082, and that the lower and 
upper boundaries of the 95% interval based on this distribution take on 
values of -0.165 and -0.0003, respectively. It can also be seen that a value 
of 0 lies just above the upper boundary of the 95% interval. Note that 
approximately 2.5% of the marginal posterior for /3ii lies above a value of 



TABLE 2.1 
Example 1: Posterior distributions for mean status at 24 months, mean 
rate, and the fixed effect for MSPAC (mother’s speech about the child) 
under N/N, td/N, Nita, td/td , and ts/td level-l / level-2 distributional 

assumptions. 

Mean SD 95% Interval Prob.> 0 a 

Mean St,atus (2 yrs) 

Pt P,, I Y> N/N 13.70 2.57 (8.68, 18.81) 
Yh,/N 
dN/tq 
Yb/t* 
Yh/f3 

Rate 

13.97 2.43 (9.19, 18.73) 
13.78 2.56 (8.74, 18.87) 
13.93 2.42 (9.09, 18.65) 
13.96 2.42 (9.11, 18.68) 

P-‘(&,l ?dN/N -5.23 0.493 (-6.21, -4.26) 
14M Yh/N -5.21 0.493 (-6.16, -4.26) 
l%P~o 1 Y> N/f4 -5.20 0.505 (-6.21, -4.20) 
f&II Yh/t* -5.20 0.489 (-6.15, -4.25) 
l4%ol Yh/t3 -5.20 0.494 (-6.19, -4.24) 

MSPAC Coeff. 

d& 1 Yy> N/N -0.082 0.042 (-0.165, -0.000) .025 
1011 I Y)t4/1V -0.083 0.043 (-0.169, 0.001) .026 
11(/$ 11 Y> N/t4 -0.088 0.042 (-0.171, -0.005) .020 
I441 I Yb/t4 -0.089 0.042 (-0.172, -0.004) .021 
P-‘(Pll I YL/t3 -0.090 0.043 (-0.174, -0.005) .019 

a. In the case of the MSPAC coefficient, the parameter of primary interest, 
we have included the posterior probability that PI1 takes on values greater 
than 0 (e.g., p(p,, > O( Y)N,N = .025). 

36 
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0 [i.e., p(/?,, > 0 1 y) = 0.02461. To help interpret the value of the posterior 
mean for pl1, consider two children whose mothers differ by 30 percentage 
points in terms of MSPAC, which is similar to the range of MSPAC values 
in our sample. In this case, the expected difference in rates of change 
in enactive gesturing for two such children would be 1 - 0.082 x 301, or 
approximately 2.5 percentage points per month. 

We now reanalyze the data under t4 assumptions at level 1, while 
retaining normality assumptions at level 2 (i.e., t4/N). In growth modeling 
applications, employing heavy-tailed distributional assumptions at level 1 
helps produce robust summaries of the data for each individual in a sample. 
Hence, the ensuing results for pl1, for example, will in effect be based on 

the relationship between an ensemble of robust growth parameter estimates 
for the children in our sample and the predictor MSPAC. 

As can be seen in Table 2.1, the t4/N analysis results in fairly minor 
changes in the results for the fixed effects. In particular, we see that, the 
posterior mean for /311 takes on a slightly larger negative value. It can 
also be seen t,hat there is a slight widening of the 95% interval for ,Bll. 
Although the upper boundary of the interval now includes 0, note that the 
marginal posterior probability that PI1 exceeds 0 is extremely close to the 
value obtained in the N/N analysis (i.e., .026). 

As noted earlier, in employing the scale mixture of normals 
representation of the t at level 1, each observation has a corresponding 
weight parameter (i.e., wti). Similar to the use of robust regression 
t)echniques such as biweighting, where the final values of the weights for 
the observations in a data set can be used to identify outliers, the posterior 
means or medians of the ~ti can be used to help identify extreme level-l 
observations. In the tJ/N analysis, the resulting posterior means of the 
~ti range from 0.59 to 1.22. The smallest posterior mean is associated 
with the 16-month observation for child 1; the posterior means of the 
weight parameters comlected with the 12, 20, and 24 month observations 
in this child’s time series all exceed values of 1 (see Fig. 2.1). Under N/N 
distributional assumptions, the posterior mean of the growth rate for child 1 
(x1 tl)) is -4.46. Downweighting the second observation in this child’s time 
series results in a posterior mean for nl tl) that is slightly more negative 
(-4.55). 

In this application, reanalyzing the data under heavy tails at, level 1 
results in small amounts of change in the summaries of the data for each 
child, and, in turn, little change in the results for the fixed effects. Thus, 
this analysis provides us with a certain amount of comfort. We have some 
assurance that the results concerning the relationship between MSPAC and 
rate of change are not being unduly influenced by one or two extreme 
outcome values. Examples in which level-l outliers impact the results of 
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fixed effects are treated later. 
We now turn our attention to the issue of level 2 outliers and employ t4 

assumptions at level 2. As can be seen in Table 2.1, under N/t4 assumptions 
and t4/t4 assumptions, the posterior mean of @I1 takes on a value that is 
appreciably more negative. In addition, we see a downward shift in the 
95% interval for pl1. To help understand this change, recall that in the 
scale mixture of normals representation of the t at level 2, each level-2 unit 
has a corresponding weight parameter (i.e., pi; see Equations 2.8 and 2.9). 
In the N/t4 analysis, note that the posterior mean of the level-2 weight 
parameter for child 9 takes on a value of 0.84, whereas the posterior means 
of the weight parameters for the other 8 children take on values ranging 
from 0.94 to 1.12. In the plot of LS rate of change estimates versus MSPAC 
values (Fig. 2.2), we see that child 9 deviates somewhat from the overall 
pattern. Specifically, although child 9’s MSPAC value is fairly small, her 
rate of decline in enactive gesturing is fairly steep compared with other 
children with low MSPAC values. Thus, under normality assumptions at 
level 2, child 9, to some extent, pulls the level-2 fit toward her, which, in 
turn, has t,he effect of slightly dampening the magnitude of the posterior 
mean of pl1. Under t4 level-2 assumptions, the pull exerted by child 9 is 
lessened to some extent. 

Employing t3 level-2 assumptions further reduces the influence of child 
9 on the fit. The posterior mean of the level-2 weight parameter for child 
9 drops t,o a value of 0.81 in the t4/t3 analysis, and the posterior mean for 
ijl 1 takes on a value of -0.090. 

The heavy-tailed level-2 analyses point to a somewhat stronger 
relationship between rate of decline in enactive gesturing and MSPAC. 
Practically speaking, however, under both normal and heavy-tailed level-2 
assumptions, the results lead to fairly similar conclusions concerning the 
relationship between mother’s speech about the child and rates of change 
in enactive gesturing. With only 9 children in our sample, the use 
of t assumptions at level 2 provides us with some assurance that our 
inferences concerning /?I 1 are not being unduly influenced by a child whose 
rate of decline is unusually fast or slow. For examples in which level-2 
outliers substantially affect conclusions regarding fixed effects of interest, 
set Seltzer (1993) for a growth modeling application, and Carlin (1992) for 
a met,a-analysis application. 

ILLUSTRATIVE EXAMPLE 2 

Much of the literature on employing t distributional assumptions in HM 
settings has focused on the use of the t at level 2. A Real of this section is 
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TABLE 2.2 
Example 2: Posterior distributions of the fixed effect for mother’s speech 

under N/N, N/tJ, t4/N, and t4/t4 level-l/level-2 distributional 
assumptions. 

MSPA C Coeff. (PI 1 ) Mean SD 95% Interval P(P,l > 01 Y> 
P(Pl1 I h/N -0.057 0.041 (-0.139, 0.023) .076 
I@11 I h/t4 -0.058 0.041 (-0.139, 0.022) .073 
P(Pl1 I dt‘lpv -0.085 0.041 (-0.163, -0.003) .022 
d&l I Yhl/Ll -0.089 0.042 (-0.169, -0.005) .020 

to highlight the important role that the use of t distributional assumptions 
at level 1 can play in sensitivity analysis. In particular, we wish to bring 
to light situations where the impact of level-l outliers on results for fixed 
effects of interest can go undetected when t distributional assumptions are 
employed at level 2, but normality assumptions are retained at level 1. 

To help illustrate this point, we change child 3’s EG value at age 16 
months to a value of 90. Examining child 3’s time series (see Fig. 2.1), 
it can be seen that such an increase will result in a larger negative OLS 
estimate of the rate of change for child 3 - that is, an estimate suggesting 
a steeper rate of decline (cf. Figs. 2.2 and 2.3). 

Under normality assumptions at levels 1 and 2, we see in Table 2.2 
that t,he marginal posterior mean of PI1 (i.e., the MSPAC fixed effect) 
takes on a substantially smaller negative value (-0.057) compared with t,he 
results from the previous set of analyses. In addit,ion, we see that the upper 
boundary of tghe resulting 95%) interval comfortably includes a value of 0; 
more specifically, p(,B,, > 0 1 y) = 0.075. 

This difference in results is readily grasped when we compare Figs. 2.2 
and 2.3. Note that child 3’s MSPAC value is the smallest in the sample. 
Thus, when rate of change is regressed on MSPAC, child 3 will exert an 
appreciable amount of leverage on the resulting fit. In Fig. 2.2, we see t,hat 
child 3 is located in the extreme upper left-hand corner of the plot. In Fig. 
2.3, however, child 3 is now shifted downward. The overall pattern in Fig. 
2.3 suggests that the relationship between rate of change and MSPAC is 
flatter (i.e., less negative) compared with Fig. 2.2. 

When we retain normality assumptions atI level 1 and employ t4 
assumptions at, level 2, we see in Table 2.2 that there is virtually no 

change in the results for pl1. In the N/t4 analysis, the posterior means 
of the level-2 weight parameters range from 0.95 to 1.09. In particular, the 
posterior mean of the weight parameter for child 3 is 1.06. 
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FIG. 2.3. Least squares estimates of rates of change in enactive gesturing 
versus level of mother’s speech about the child for Illustrative Example 2. 

We next employ t4 assumptions at level 1 while retaining normality 
assumptions at level 2. The marginal posterior mean of PI1 now takes on 
an appreciably larger negative value (-0.085), and the upper boundary of 
the 95% interval now lies below a value of 0. In addition, we see that 
p(j& > 0 1 y) = 0.022. 

This change in results stems from the fact that the 16--month observation 
for child 3 is downweighted substantially in this analysis. The posterior 
means of the level-l weight parameters corresponding to the 12-, 16-, 
20-, and 24-month observations for child 3 take on values of 1.00, 0.17, 
0.95, and 1.11, respectively. This weighting scheme essentially returns us 
to a situation where the overall pattern of rate of change versus MSPAC 
resembles that in Fig. 2.2. Hence, the resulting value for the posterior mean 
Of PII in this analysis is extremely similar to the values that we obtained 
in the previous set of analyses (cf. Table 2.1). 

It is also instructive to compare t,he marginal posterior means of the rate 
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of change for child 3 ( rl (3)) obtained in the N/N and tJ/N analyses. In 
the N/N analysis, where each observation receives equal weight, we obtain 
a posterior mean of -4.53. However, in the td/N analysis, the posterior 
rnean takes on a value that is substantially less negative (-3.52). 

Reanalyzing the Data Under Varying Degrees of 
Heavy Tailedness 

When answers that we obtain under heavy-tailed distributional 
assumptions differ appreciably from answers obtained under normality 
assumptions, it is valuable to study how answers change when we vary 
the degree of heavy tailedness. We now continue with our current example 
and illustrate this strategy employing a grid of values for vi. 

In the literature, one finds that degrees of freedom parameters are 
sometimes fixed at values as small as 1. Because t distributions with 2 
degrees of freedom or less have infinite variance, and because assumptions 
of infinite variance at levels 1 or 2 do not seem to be sensible in the context 
of our example, we focus on values of ~1 of 3 or more. In these analyses, 
we fix u2 at a value of 4. 

As can be seen in Table 2.3, the posterior means for ,8i1 under t3 level-l 
assumptions and under normal level-l assumptions differ by approximately 
0.033 points. As vi increases, we see that the posterior mean for PI1 
gradually becomes less negative, and that the upper boundary of the 95% 
credible interval takes on increasingly larger values. Note, however, that 
even when vi is fixed at values of 11, 15, and 20, the results that we 
obtain still differ appreciably from those obtained under level-l normality 
assumptions. 

In this example, we focused on the presence of extreme level-l 
observations nested within level-2 units that are leverage points (i.e., 
level-2 units that take on relatively large or small values in the space of the 
level-2 predictors). Note, however, that the impact of level-l outhers on 
the estimation of fixed effects is decidedly not confined to such situations 
(see, e.g., Seltzer et al., in press). A key point is that estimates of fixed 
effects of interest based on a set of robust summaries of the level-l data can 
differ substantially from estimates based on a set of nonrobust summaries. 

Treating Degrees of Freedom Parameters as Unknowns 

In situations where answers change appreciably across a range of values 
specified for a degrees of freedom parameter, it becomes important to try 
to calculate the marginal posterior distribution of that parameter [e.g., 
p( vi ] y)] . In the context of our current example, this would provide a means 
of assessing the relative plausibility of various values for vi given the data 



TABLE 2.3 
Posterior means, standard deviations and intervals for the MSPAC 

coefficient in Example 2 (a) fixing the degrees of freedom at level-l (vi ) 
along a grid of values, and (b) treating vi as unknown. In the analyses in 
which v1 is treated as unknown, three priors were employed; these three 

analyses reflect increasing amounts of prior probability placed on 
approximate Gaussian tails at level-l (see the text below for details). 

Results for the MSPAC Coeff. (,B,,) 
Mean SD 95% Interval Prob.> 0 

Treating vi fixed 
along a grid of values: 
t3/t4 

b/t4 

b/t4 

t&4 

h5/ t4 
ho/t4 

f30 It4 

*V/t,? 

-0.091 0.041 (-0.171, -0.007) .018 
-0.089 0.042 (-0.169, -0.005) .020 
-0.083 0.041 (-0.162, -0.001) .024 
-0.077 0.042 (-0.158, 0.008) .034 
-0.073 0.042 (-0.155, 0.009) .039 
-0.070 0.041 (-0.152, 0.012) .045 
-0.066 0.042 (-0.147, 0.017) .056 
-0.058 0.041 (-0.139, 0.022) .073 

Treating v 1 
as unknown cL : 
Prior 1 
Prior 2 
Prior 3 

-0.085 0.042 (-0.168, -0.002) .023 
-0.083 0.042 (-0.165, 0.000) .026 
-0.081 0.042 (-0.164, 0.002) .028 

Note. The degrees of freedom at level-2 (~2) is fixed at a value of 4. 
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at hand and based on prior information or beliefs concerning vi. As will be 
seen, the process of using the data and any available prior information to 
estimate vi gives rise to estimates for parameters of interest in HMs (e.g., 
pii) that are analogous to adaptive robust estimates. 

In using BUGS to conduct analyses of this kind, we must treat 
degrees of freedom parameters as discrete variables that take on various 
prespecified values (for alternative strategies, see Seltzer et al., in press, 
and Draper, in press). The values may be equally spaced (e.g., vi = 
3, 4, 5, . . . ) 98, 99, loo), or, the spacing can vary (e.g., 2, 4, 6, 8, 10, 12, 
15, 20, 30, 50; see Spiegelhalter, Thomas, et al., 199613, p. 35). In using 
this approach, however, we have found that the autocorrelation among the 
values generated for degrees of freedom parameters in runs of the Gibbs 
sampler can be quite high. In such situations, the Gibbs sampler can “get 
stuck” for an appreciable number of iterations at the same value for v1 or 
uz (see also Spiegelhalter, Best, et al., 1996a, p. 37). 

This has led us to consider possible reparameterizations. In many 
applications of MCMC, one often encounters parameterizations that involve 
log transformations or reciprocal transformations of various parameters in 
a given model. In the case of degrees of freedom parameters, Gelman 
et! al. (1995), Liu (1995), and Gelman and Meng (1996) employed 
parameterizations that involved the reciprocal of degrees of freedom 
parameters (e.g., l/v). In the case of our HM application, we found that, 
the use of this parameterization in the WinBUGS environment resulted 
in substantial reductions in autocorrelation, thus helping to alleviate the 
kinds of problems previously discussed. The beauty of techniques such as 
the Gibbs sampler is that we can simulate the marginal posterior for vl, 
for example, simply by inverting the values generated for l/vi. 

Thus, in our analyses, we let l/vi take on the following values: .Ol, .02, 
.03, . , . , .31, .32, .33. Note importantly that a value of l/vi = .Ol 
corresponds to a value of vi = 100, and that a value of l/v1 = .33 
corresponds to a value of vi = 3. 

With regard to specifying a prior for l/vi, we are not aware of 
any published or unpublished work on enactive gesturing from which we 
might be able to obtain prior information concerning level-l tail behavior. 
However, more generally, we do know that there is a tendency for data in the 
social and behavioral sciences to be fairly noisy, especially in cases where the 
data are based on observations in field settings (e.g., home environments, 
classrooms). Even in the physical sciences, it is quite common to encounter 
sets of measurements that contain outliers or that exhibit fairly heavy tails 
(see Draper, in press, p. 97; see also Gelman et al., 1995, pp. 16616’7). 

In our analyses, we consider three priors for l/vl. The first prior places 
equal probability on each of the prespecified values for l/vi. Translating 
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back to ~1, this in effect corresponds to placing a fairly high degree of 
prior probability on heavy tails at level 1 [i.e., ~(3 < ~1 < 5) “N .39], 
and a fairly small amount of prior probability on tails that are roughly 
Gaussian [i.e., ~(20 5 ~1 5 100) “N .15]. To see this, note that values for 
l/v1 that range from .21 to .33 (i.e., .21, .22, . . . , .32, .33) correspond to 
values of ~1 that lie between 3 and 5, whereas values for l/v1 that range 
from .Ol to .05 correspond to values of 100, 50, 33.33, 25, and 20 for ~1. 
Thus, when we place equal prior probability on each of the prespecified 
values for l/z+, we are, in fact, placing a large amount of prior probability 
on heavy-tailed level-l assumptions. The second prior (Prior 2) that we 
employ in effect places approximately equal amounts of prior probability 
on heavy level-l tails and roughly Gaussian tails Cp(3 < ~1 < 5) = .24; 
p(20 5 u1 5 100) z .25]. The third prior (Prior 3) places a prior probability 
of .375 on approximately Gaussian tails and a prior probability of .225 on 
heavy tails. 

In an analysis based on our first prior (Prior l), the resulting posterior 
mean for p1 1 is -0.085, which lies between the values that we obtained 
with v1 fixed at values of 4 and 7, respectively (see Table 2.3 and Fig. 
2.4). We also see that the upper boundary of the 95% interval lies below a 
value of 0. Using Priors 2 and 3, we see that as we increase the amount of 
prior probability placed on roughly Gaussian tails, the posterior mean for 
d,, takes on slightly less negative values, and the upper boundary of the 
95% interval includes values slightly larger than 0. Note that the marginal 
posterior probability that PI1 exceeds 0 [i.e., p(p,, > 0 ( y)] differs by an 
extremely small amount across the three analyses. 

This pattern of results can be readily grasped by considering the 
following. The top half of Table 2.3 reports the results that we obtain for /?I 1 
when we condition on a series of different values for ~1 [e.g., p(p,, 1 y, ~1 = 
3), 24% I Y, ~1 = 4), etc.]- When ~1 is treated as an unknown, the 
resulting marginal posterior distribution of PI1 [p(,B,, 1 y)] can be viewed as 
a weighted average of a set of conditional posteriors for p,, (i.e., conditional 
on different possible values for ~1) where weights are supplied by p( ~1 1 y) . 
Note that under Priors 1, 2 and 3, ~(3 < ~1 < 7 ( y) takes on values of 
.71, .61, and .58, respectively, whereas ~(20 <_ ~1 5 100 1 y), for example, 
takes on values of .05, .08, and .16. Thus, in all three analyses, extremely 
large amounts of weight are placed on conditional posteriors for pzl t,hat 
are conditional on fairly small values of ~1. 

Even with only 35 level-l observations, the data in this example are 
fairly informative regarding tail behavior at level 1. As the number of 
level-l observations in a data set increase, inferences concerning ~1 will 
tend to be increasingly insensitive to choice of priors for ~1. 

One can also treat u2 as an unknown in HM analyses. When the 
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FIG. 2.4. Illustrative Example 2: Marginal posterior distribution of 
the MSPAC fixed effect under (a) N/t4 assumptions (solid line); (b) ts/tA 
assumptions (dashed line); and (c) t/t4 assumptions (dotted line) where 
the degrees of freedom at level 1 is treated as unknown. For (c) we employ 
a prior that places approximately equal amounts of prior probability on 
heavy level-l tails and roughly Gaussian tails. 

number of level-2 units in an application is small, however, the data will 
tend to provide very little information regarding level-2 tail behavior, and 
inferences may be highly sensitive to choice of prior for ~2. 

DISCUSSION 

A key aim of this chapter is to illustrate the value of conducting sensitivity 
analyses via the use of t distributional assumptions at levels 1 and 2 of 
HMs. Our strategy is based on the scale mixture of normals representation 
of the t. A strategy of this kind can help us identify extreme level-l and 
level-2 units, and study the sensitivity of inferences concerning fixed and 
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random effects of interest to such units. 
Examining the posterior means of the level-l and level-2 weight 

parameters in this formulation provides a useful supplement to available 
diagnostics for identifying outliers in HM settings (e.g., inspecting plots of 
residuals). In general, in conducting analyses under normality assumptions, 
fitted surfaces can be pulled substantially toward extreme cases; as Hogg 
(1979) notes, outliers may be masked in plots of residuals in such situations. 

For HM settings in which vectors of level-l parameters are assumed 
to vary across level-2 units (e.g., initial status and individual growth rate 
parameters in growth modeling appplications; site means and treatment 
effects in multisite evaluation studies), Seltzer et al. (1996) illustrated 
the use of multivariate t (MVT) distributional assumptions at level 2 (see 
also, Wakefield, Smith, Racine-Poon, & Gelfand, 1994). Although one can 
specify MVN distributional assumptions in WinBUGS, MVT assumptions 
cannot as of yet be specified. However, in those situations in which the 
same set of predictors is specified in each level-2 equation, we have found 
that the use of univariate t assumptions in each equation often yields results 
that, are similar to those obtained under MVT assumptions. 

When different predictor sets are used in t,he level-2 equations in an 
HM, Bryk and Raudenbush (1992) warned that mispecification in one 
equation can distort estimates in another equation. The use of univariate 
t distributions at level-2, which in essence sets level-2 covariance terms 
to 0, provides us with a specification check akin to the specification check 
outlined by Bryk and Raudenbush (1992, p. 216). 

One ca,n easily specify HMs consisting of three or more levels in 
WinBUGS, and t distributional assumptions can be employed at any level 
using the scale mixture of normals approach outlined in this chapter. 
WinBUGS also enables one to employ an array of link functions at, level 1 
(e.g., logit, probit, log, complementary log-log). 

In this chapter, we focus on level-l units that t,ake on unusually large or 
small values with respect t)o Y, and on level-2 units that are extreme with 
respect to level-l parameters that are treated as random (e.g., individuals 
with unusually rapid or slow rates of change; sites at which an intervention 
has been unusually successful). Drawing sound inferences, particularly in 
small -sample settings, of course requires more than attending to level--l and 
level-2 outliers. For example, as is well known, cases that are extreme in 
the space of the predictors in a model can exert a high degree of influence 
on one’s results. Thus, a strategy that we recommend, particularly in 
small-sample settings, entails sequentially setting aside one level-2 unit at 
a time from one’s sample, refitting one’s model, and examining changes in 
results for parameters of interest. 

Another important approach to model checking is posterior predictive 
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model checking, which is discussed in detail in Rubin (1981, 1984), 
Gelman et al. (1995), Belin and Rubin (1995), and Gelman and Meng 
(1996). Posterior predictive model checking, which can be implemented 
quite naturally using MCMC, provides a means of identifying important 
discrepancies between the data one is analyzing and one’s model. Finally 
Gelfand, Dey, and Chang (1992) presented a cross-validation approach 
that combined the logic of “leave-one-out analyses” with that of posterior 
predictive model checking (see also Draper, 1998). 
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ENDNOTES 

1. Smiley et al. also included children’s mean length utterance, which 
is a time-varying covariate, in their level-l model. This covariate was 
not statistically significant, and results concerning the relationship between 
MSPAC and children’s rates of change in enactive gesturing were extremely 
similar whether one included this covariate in the analysis or not. 

2. In the case of HMs in which none of the level-2 variances is constrained 
to be 0, least squares (LS) estimates of individual growth parameters can be 
obtained simply by regressing the set of outcome values for a person on the 
set, of level-l predictor values for that person. However, when, for example, 
the variance connected with a particular facet of growth is constrained to 
be 0, or when the level-l model contains a time-varying covariate that) is 
treated as fixed, computing LS estimates of individual growth parameters 
~JeCOmeS more complex. In such cases, we find it extremely convenient to 
obt,ain LS estimates using residual files produced by the HLM program. In 
the case of our model, for exasple,_HLM computes a fitted value of the 
growth rat f e or each child (i.e., PI0 + PI1 MSPAC~), and an EB (shrinkage) 
&imate (UTi) and an LS estimate (!?li) of the random effect for each child. 
Adding the EB estimates of the random effects t,o the corresponding fitted 
values yields EB estimates of the 7rli for the children in our sample, and 
adding the LS estimates of the random effects to the fitted values yields LS 
estimates of the i~~li. 

3. The Gibbs sampler, in effect, walks through or traverses the joint, 
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posterior distribution of all unknowns in one’s model (see, e.g., Gelman, 
Bois, & Jiang, 1996). The relative frequency with which the Gibbs sampler 
visits various regions of the joint posterior is proportional to the joint 
posterior density of each region. One thing that is important to attend 
to in working with the Gibbs sampler is that in some cases, the values 
sampled in successive iterations for particular parameters may be highly 
correlated. In extreme cases, the Gibbs sampler may become “stuck” for a 
number of iterations in certain regions of the parameter space. 

To help diagnose possible problems, it is important to run multiple 
sequences (chains) of the Gibbs sampler (see Gelman & Rubin, 1992). 
Thus, for each analysis, we ran two chains of the Gibbs sampler using 
different starting values for l/7 11 and l/g2 and using different seeds. (Note 
that in WinBUGS, we work with reciprocals of variance components, i.e., 
precisions.) For one set of starting values, we used the reciprocals of the 
REML estimates for ~11 and o2 that we obtained using the HLM program. 
The second set of starting values was based on results from the first chain; 
specifically, we inverted the .025 quantiles of the marginal posteriors for 
Y-~ 1 and 0’. After a “burn-in” or “warm-up” period of 2,000 iterations, 
we ran each chain for an additional M = 40,000 iterations. Setting aside 
the results from the burn-in period, we then compared results (e.g., the 
empirical distributions for all parameters in the model) across the two 
chains. For each analysis, the chains that we ran yielded highly similar 
results. In addition, we assessed convergence through the use of trace 
plots and autocorrelation function plots, which can be obatined in both 
WinBUGS and CODA, and through the use of a diagnostic procedure 
developed by Raftery and Lewis (1996)) which is available in CODA. For 
KK~ analysis, the marginal posteriors that we report are based on deviates 
generated in the first chain of M = 40,000 iterations. 

4. In each of our analyses we placed diffuse priors on the fixed effects. In 
particular, for each fixed effect, we specified a normal prior with extremely 
small precision. In settings in which our samples consist of small numbers 
of level-2 units, care must be used in specifying priors for level-2 variance 
components. For example, certain choices can result in intervals for fixed 
effects that are too liberal with respect to coverage, and other choices can 
result, in intervals that are too conservative. In this chapter, we use a 
st,rategy discussed and illustrated in papers by Seltzer et al. (1996, in press); 
t,he results of a simulation study reported in Seltzer et al. (in press) indicate 
that this approach tends to produce intervals for fixed effects with good 
coverage properties. This strategy involves the use of data-based priors for 
the variance components. The basic idea is to specify priors for the variance 
components that are fairly diffuse, but with modes approximately equal to 
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REML estimates of the variance components. 
In all analyses, we placed gamma priors on l/a2 and l/711. The 

gamma distribution has two parameters: Gamma(a, b), where a is a shape 
parameter and b is an inverse scale parameter. Following the approach 
discussed in Seltzer et al. (1996, in press), we set a equal to a value of 1.5 
in all of our analyses. In terms of priors for l/711, under the assumption 
of normality at level 2, b was set to the following value: b = ?11 x (a + l), 
where ?I1 is the REML estimate of 711. Under t level-2 assumptions with 
u2 fixed at a particular value, we employed three different values for b 
as a kind of sensitivity analysis: (a) the value of b used under normality 
assumptions at level 2, which we refer to as bN; (b) btr = [ (~2 -2)/v2] x b&r; 
and (c) btzz = (bN + btz)/2. Little material difference was found in our 
results for parameters of interest under these three different choices for b. 
The results that we present in the chapter are based on btzz. In terms of 
priors for l/a2, we used a similar procedure in specifying values for b, with 
the REML estimate of 0’ (i.e., Z2) replacing 711, and v1 replacing ~2. 
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Methodologies for the analysis of two-level structural equation models 
(SEM for simplicity) have been proposed by a number of authors. These 
methodologies are usually suitable for some specific formulation of two-level 
SEM. Goldstein and McDonald (1988) proposed a general model for 
analysis of multilevel data that includes two-level SEM as its special case. 
McDonald and Goldstein (1989) proposed a general treatment for maximum 
likelihood (ML) analysis of two-level SEM. The importance of ML lies in 
it,s asymptotic optimality, that is, an estimator with the smallest standard 
error, meeting the Cram&-Rao lower bound. For an unbalanced design 
of a sample, McDonald and Goldstein’s (1989) algorithm seems to be 
computationally burdensome because a large number of inverse matrices 
have to be computed to obtain the maximum likelihood estimates (MLE) 
of model parameters. Muth6n (1994) summarized the techniques in several 
papers in which he developed the so-called MUML analysis for two-level 
SEM. He implemented a pseudobalanced solution for unbalanced sample 
designs. MUML analysis of two-level SEM is a kind of approximate ML 
analysis (Hox, 2000), Raudenbush (1995) used a balanced complete dat,a 
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routine to show how ML analysis on two-level SEM with unbalanced designs 
can be done by available software. Lee (1990) proposed a simple formulation 
of two-level SEM and obtained general asymptotic properties of MLE fol 
model parameters. Lee and Poon (1998) proposed a treatment for exact 
ML analysis of two-level SEM via EM type algorithms. An advantage of 
Lee and Poon’s (1998) method is that it is applicable to arbitrary (balanced 
and unbalanced) sample designs and their algorithm turns out to converge 
fast. 

The purpose of this chapter is to generalize Lee and Poon’s (1998) 
model and their treatment for two-level SEM without a mean structure 
to the case with both mean and covariance structures and to provide a nex 
computational approach to the estimation of parameters. The two-level 
SEM is defined by (Lee, 1990; Lee & Poon, 1998) as 

xgi = vg + vgi, (3.1) 

where x,+ is a vector of responses (observable random vector) from 
individual i (level-l unit) nested in group g (level-2 unit). For example, x~, 
may denote the measures of a student’s achievements for several courses. 
A random sample of different students from different schools constitutes 
a random sample of two-level data, {xgi : i = 1, . . . , N,; y = 1, . . . . G} 7 
say, that is, randomly choosing N = Cy=, NY level-l units (students) from 
G randomly selected level-2 units (schools). In order to develop the ML 
analysis for Equation 3.1 with both mean and covariance structures via an 
EM algorithm, the following assumptions are necessary: 

1. {v, : g = l,...,G} are i.i.d. (independently identically distributed) 
latent random vectors (p x 1) varying only at level 2, and vy has a normal 
distribution Np(~, ZB) with CB > 0 (positive definite); 

2. for each fixed g, {v,i : i = 1,. . . , NII} are i.i.d. latent, random vectors 
(1, x 1) varying only at level 1, and vyi - N,(O, Xc,w) with X,W > 0 (X:9L$- 
may be different for g = 1, . . . , G); 

3. for each fixed g, vug and vyi (Z = 1,. . . , Ng) are ullcorrelated (i.e., 
independent in the normal case); 

4. for different level-2 indices g1 # 92, { vyli : i = 1, . . . , Ngl } ant1 
iv 921 : i = l,...,N,,) are assumed to be independent. Lee 
and Peon’s (1998) treatment of ML analysis for Equation 3.1 is suitable 
for the case without a mean structure, that is, in assumption 1 where 
p = 0, or vy - N,,(O, X=,). When 1-1 # 0 and the components of p can be 
considered as free parameters, p could be estimated by the overall sample 
mean: Z = h cz=, cz1 xgi. In t,his case, Lee and Poon’s (1998) method 
for ML analysis of Equat,ion 3.1 could still be approximately carried out 
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based on the centered two-level data 

- 
Xgi - X : i = l,...,N,; y= l,...,G. (3.2) 

The mean and covariance structures for Equation 3.1 are defined as 

CL = Pm x:B = c,(e), +v = ‘c,w(6), (3.3) 
where 0 = (01,. . . ,0,)’ (‘r x 1) is a parameter vector consisting of all 
interesting free parameters in Equation 3.1. For the mean and covariance 
structure (3.3), an ML analysis for Equation 3.1 based on the centered 
data (Equation 3.2) completely ignores the mean structure in Equation 
3.3. This may bring about inaccuracy for the MLE of the parameter 
vector 0 or it may result in poor model fit relative to degrees of freedom. 
Furthermore, smaller standard errors could be obtained for covariance 
structure parameters when a mean structure is imposed (Yung & Bentler, 
1999). Therefore, particular methods for ML analysis of Equation 3.1 with 
mean and covariance structure (3.3) are necessary. 

Equation 3.1 is a simple formulation of two-level SEM. It covers several 
interesting two-level mean and covariance structure models. For example, 
a t(wo-level factor analysis model can be defined by (Muthen, 1994): 

(3.4) 

where ygi is a vector of response, v is a vector of intercepts, egi is a vector 
of residuals, (Y is the overall expectation (grand mean), qBg is a random 
factor component capturing level-2 (e.g., organizational) effects, and vwgi 
is a random factor component varying over individual levels (level 1) within 
their organizations. Let 'Vy = V -k lh •k AqBI, and Vgi = ATjwgi $ C'gi 

in Equation 3.4. Then Equation 3.4 has the form of Equation 3.1 with 
p = E(v,) = v +A(;Y and E(v,~) = 0 [assuming E(qBg) = 0, E(rlwgi) = 0 
and E(e,i) = O]. It is noted that 1-1 = E(v,) = v + Acv involves parameters 
from tjhe matrix of factor loadings A. Therefore, Equation 3.4 can be 
formulated as Equation 3.1 with mean and covariance structure (3.3). In 
addition to two-level factor analysis models, a variety of other two-level 
SEM like those studied by Heck and Thomas (2000, chaps. 6-7) can also 
IX formulated as Equation 3.1 with mean and covariance structure (3.3). 

The main idea for deriving the ML analysis of Equation 3.1 via an 
EM algorithm is to formulate it as a missing data problem . Section 2 
presents the details for deriving the EM algorithm. Section 3 gives some 
simplified formulas for computing the asymptotic standard errors of the 
MLE of model parameters and the chi-squared statistic for testing model 
fit. An ML analysis on a practical data set is demonstrated in Section 4 by 
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the proposed algorithm. Some concluding remarks on the convergence of 
the proposed EM gradient algorithm and its possible further improvement, 
are given in the last section. 

SECTION 2: THE EM GRADIENT ALGORITHM 

Let {xgi : i = 1,. . . , N,; g = 1,. . . , G} be a set of response vectors (p x 1 
random vectors) from Equation 3.1 and 

and 

To formulate Equation 3.1 as a missing data problem, we consider the y. 
in Equation 3.5 as the complete data from level-2 unit (group) g with i 
missing value (random vector) wg. For the purpose of deriving the EM 
algorithm for computing the MLE of the model parameter vector 8 (T x l), 
we use an arbitrarily specified value of 8, say, 8*, to express the -2 log IL;rL 
function, say, I(y, O*), of the complete data {y, : g = 1. . . , G}. Under the 
assumptions 1 through 4 in Section 1, Z(y, e*) can be written (except for 
an additive constant) as: 

qy, e*) = -2 log fva 

(3.7) 
where JJ* = p(O*), X$, = C,W (O*), Xc,* = XB(O*) and the notation “tr” 
denotes the “trace” of a matrix. The EM algorithm requires computation 
of the E-step function 

we*w = E{~Y, e*)b, 01, (3.8) 

where both 8* and 8 are any two specified values of the same parameter 
vector 8. See Dempster, Laird, and Rubin (1977) for the principle of the 
EM algorithm. 
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Simplification of the E-step 

The E-step function defined by Equation 3.8 requires computation of the 
conditional expectation 

a, def E(w,lz, 0) = E(w,lz,, 0) = p + agO, 

cg def E(w,w;lz, e> = E(w,w$lz,, e> 

= & - N,&$,-%B + a,C&, 

(3.9) 

udef,, where the sign - means “defined as” and 

ago = L~g~B~g-l(~g - p), c, = c,w + N,Cg. (3.10) 

Then we can write Equation 3.8 as 

M(e*le) = 5 Ng [log IX,&/ + tr(Xi$S,,,] 
g=l (3.11) 

+G log1 2; ) + tr(X 
[ -;-lsB)], 

where the terms with the sign “*” imply that they depend on 8*, those 
terms without the sign “*” imply that they are independent of 8*, and 

1 
a=- 

G c a,’ 
g=l 

SB = ; ccg, 

g=l 

a 

> 1 ’ 

(3.12) 

S gw = $XbXg - %,a$ - a,%$ -I- C,. 
Y 

When there is only one within covariance matrix, that is, Xgw G XW 
for g = l,... , G, computation of the terms in Equation 3.12 can be 
substantially simplified. Let 

Xw = CC’ and CwlT=~(Cp’)’ = EAE’ (3.13) 

be the Cholesky decomposition of CW and the eigenvector-eigenvalue 
decomposition of C-lI=~(C-l)‘, respectively, where C is a lower triangular 
matrix, E is an orthogonal matrix, and 

A =diag(Sr,...,b,), (3.14) 
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is a diagonal matrix whose diagonal elements can be arranged as 61 2 . . . 2 
S, > 0 without loss of generality. By Equations 3.13 and 3.14, the inverse 
matrix Ng XyF1 in Equations 3.9 and 3.10 can be expressed as 

N&-’ = NJ& + N&E,)-’ = T’D,T, (3.15) 

with 

T = (CE)-l, 1 +Ni s , . . . , 1 +Ni s . 
9 1 9P > 

(3.16) 

Let 

4 = D,T(z, - p), a0 = ; &,,, 
g=l 

B = 
“N 

{ x $@, - /-ddb)(TCH), 
rj=l 

(3.17) 

where ago is given by Equation 3.10. Then in the case X:g~ = X W, the 
E-step function Equation 3.11 reduces to 

M(O*(O) = N [ log /X$1 + tr(XF’S,)] 

+G log 1 %I, I + tr(C 
[ -;-‘SB)] 7 

(3.18) 

and the terms in Equation 3.12 reduce to 

cz = H-~O, a0 = (TQ)’ 
($2 > 

d 9 ’ 
g=l 

SB = & + ii@' + pli& + EB 

+(Tx~)'($ed~d: - $&lg)(~xBJ 
g=l g=l 

SW = 
1 c: 

(3.19) 

E E NAw 
g=l 

+(T&#( 5 zdgd; - 5 !$D,)(TCB); 
g=l g=l 

and Z is the overall sample mean as in Equation 3.2. 
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The M-step 

By the principle of the EM algorithm, the M-step is to minimize the E-step 
function hil(8’10) given by Equation 3.11 or Equation 3.18 (for the case 
c gw G Xw) with regard to 0* for each fixed 0. As pointed out by Lee 
and Poon (1998), Lange’s (1995a) EM gradient algorithm is a convenient 
way to realize the M-step that converges to a local maximum of the ML 
function fast. The idea of the EM gradient algorithm is that for each 8 = 8, 
at the i-th iteration (0, corresponds to the starting value of 0), it is only 
necessary to find a value of 0* = 0i+l, such that 

wei+ 16) L wwd. (3.20) 

This can be achieved by using the gradient direction of IM(0*[0) at each 
fixed 8. From the simple E-step function Equation 3.11, it is easy to obtain: 

= c Izr,A,w(x$ @ ~$)ve@,w - S,W) (3.21) 
fJ=l 

+G ii~ (iii’ C3 iiil)ve,CC, - SB), 

where the sign “vet” denotes the vectorization of a matrix by st,aclting its 

columns successively, “8” denotes the Kronecker product of matrices, CB 
is defined in Equation 3.12 with 8* = 8, and the matrices of derivatives 

In t,he case X:ym/ z ZW (A,w = Aw), Equation 3.21 reduces to 

dlQww = NAw&? 63 Ei’)vec(Cw - sw) 

+G ;i~ (5;’ GI Gi’)vec(CB - SB). 

The Fisher information matrix can also be easily obtained: 

(3.22) 

(3.23) 

(3.24) 
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In the case C,W E Zw, Equation 3.24 reduces to 

The updating process of the EM gradient algorithm for obtaining the MLE 
of 8 is given by 

8 i+1 = qi - d(ei)-ldlOM(eipi), (3.26) 

where 0 < Q 5 1 is an adjusting constant, and Oi denotes the value of 8 at, 
t,he i-th iteration. 

SECTION 3: STANDARD ERROR AND 
TEST OF MODEL FIT 

Asymptotic properties of the MLE of the model parameter vector 0 
from Equation 3.1 with zero mean structure (i.e., ~1 = 0) were studied 
by Lee (1990). In the case that Equation 3.1 has both mean and 
covariance structures (Equation 3.3)) approximate standard errors of model 
parameters can be obtained from the asymptotic normality of the MLE of 
0. Hoadley (1971) gave some general results on the asymptotic normality 
of MLE for the case of independent nonidentically distributed (i.n.i.d. for 
simplicity) samples with some mild regularity conditions imposed on t,he 
underlying distribution. The MLE of 0, say, 6, minimizes the -2 1ognilL 
function, say, f(O), of the i.n.i.d. sample { xg : 9 = 1, . . . , G} defined in 
Equation 3.5. Under the assumptions 1 through 4 in Section 1, f(f3) is 
given by 

f(0) = &Ng - 1) {log(E,w/ + tr(I&&%J) 
g=l 

+ 5 {log [C,/ + tr(E,‘U,)} + 5 N$-[~,‘V&)], 

(3.27) 

g=l g=l 

where 

s, = 1 
N, 

NY - 1 E&i - %J)(X,i - %J’, 
i=l (3.28) 

It can be verified that f(e) satisfies the regularity conditions in Theorem i? 
of Hoadley (1971). Thus, we have 
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Theorem 1. The MLE 8 that minimizes f(0) given by Equation 3.27 has 
t,he asymptotic normal distribution 

G1’2(8 - 0) -% N(0,21F1(0)), G + co, (3.29) 

where the sign “q” means “converge in distribution,” and the matrix I’(0) 
is approximately given by 

1 G = - 
CO Ng - l)A,w@$ @ ~$JA;w (3.30) 

G 
g=l 

where the terms A,w (defined in Equation 3.22), AB, and A, are matrices 
of derivatives, and 

A B = d(vecCd’ , 
de 

A 
9 

= a(vec’,)’ 
de = A,w A =i!!k +N+B, cL de . 

(3.31) 
By Theorem 1, the asymptotic standard errors of the components of the 

MLE b can be approximately computed from the corresponding diagonal 
components of the matrix 

g(e)-‘. (3.32) 

In the case LXgw S CW, a simplified formula for computing matrix 
(Equation 3.30) can be provided by using the decompositions in Equations 
3.13 and 3.15: 

r(e) = (g - l)Aw(Z%;’ @ z$)A&, (3.33) 

+ Aw(T @ T)D@)[A,(T @T)]’ 

+ Aw(T CXJ T)D(“)[Au(T 8 T)1’ 

+ {A&f’ m T)DC2)[AB(T m T)1’}’ 

+ AB(T @ T)D(“)[AB(T o T)1’ 

+ WJ)fi(A,,T)‘, 
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where 

D(1) = l 
G 

E c 
Ng-2Dg 8 D 9, Dc3) = $~D,oD,_ 

g=l g=l 

D(2) = I 
G 

G c Ng-‘D, 8 D 9, 
jj = $Dg. 

g=l g=l 

(3.34) 
Then I’(e) can be computed by substituting 8 for 8 in Equation 3.33. 

It can be verified that D(l), DC”), and Dc3) are still diagonal matrices 
with their diagonal elements given by 

D(“)(k) = $5 Ng-‘~~g,I(k-l),p]+ldg,k--p[(k--l),plr (3.35) 
g=l 

Dc3)(k) = $ 5 dg,,(~-l)lp,+ldg,~--p[(k--l),pl~ 
g=l 

for I; = 1,. . . ,p2, where d,,j = NY/(1 + N,Sj) is the j-th diagonal 
component of D, and the sign [e] denotes the integer part of a real number 
(e.g., [2.9] = 2 and [3.1] = 3). 

A test of model fit can be constructed using standard ML theory. The 
asymptotic chi-squared statistic for testing model fit is given by 

y; = f(8) - f(&) 4 x2(m) (G + co), (3.36) 

where 8 denotes the MLE of 8 in the structured case Equation 3.3, (the A 
null hypothesis), 8, denotes the MLE of OS, which is the model parameter 
vector in the unstructured (or saturated) case (the alternative hypothesis): 

8, = (vecsElw)‘, . . . 
[ 

, (vecsE:cw)‘, (vecsZ:B)‘, d] ‘, (3.37) 

where the sign “vets” operated on a symmetric matrix constitutes a colunm 
vector stacked by the nonduplicated elements in the symmetric matrix. In 
the saturated case, all nonduplicated elements in Cg, Zgw (9 = 1,. . . , G) 
and the components in p = (/dl,. . . , pP)’ are free model parameters. 
Therefore, the number of degrees of freedom (df) m in Equation 3.36 is 
given by 

I71 = 
C 

(G + l)p(p + 1)/2 + p - I., if Xgw’s are mutually distinguished, 
p” f 2p - T, if X,w f CW, 

(3.38) 
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where T is the number of free parameters in the structured case (Equation 
3.3). 

Computation of 8, for the saturated model can be carried out by the 
following iteration process. In the E-step function Equation 3.11 or 3.18. 
we can consider 0* and 8 as any two specified values of 8, because either 
Equation is true for any structured case specified by Equation 3.3 and when 
the parameter 8 in Equation 3.3 takes the form of 6,, the model defined by 
Equation 3.1 becomes saturated. At the i-th itera.tion (i = 0 corresponds 
to the case of starting values), let S,w(i), Sg(i), p(i), and a(i) be the 
values of S, W, Sg, ~1, and zi, respectively; at the (i + 1)-th iteration, let 
S,w(i + l), Sg(i + l), ~(i + l), and a(i + 1) be the values of Ssw, Sg, ~1, 
and si, respectively. Because S,w(i+l), S~(i+l), p(i+l), and ti(i+l) are 
supposed to minimize the E-step function in equation 11 at the (i + 1)-th 
iteration in the saturatecl case, we can obtain 

Egw(i + 1) = S,,(i), 
xB(i + 1) = s&i) - iz(i)a(i)‘, (3.39) 

= ii(i). 

The updating process 
criterion is reached. 

Equation 3.39 can stop when some given convergence 

In the case Z3,w z Z:w, a simplified formula for computing f(f3) given 
by Equation 3.27 can also be provided by using the decompositions in 
Equations 3.13 and 3.15. It turns out that 

f(e) = NloglCwl+tr[JZ-, Sw]+~~log(l+N&)+~~ 17zz6,, 
y=l i=l g=l i=l 9 2 

(3.40) 
where the &i’s are given in Equation 3.14, and 

SW= &(‘s, - +Ivgl~g)xg, 
g=l 9 

(cg1, . . . , cgp)’ def T@, - p), 

(3.41) 

where p = ~(0) given by Equation 3.3 in computing f(b) for the structured 
case and p = (pl, . . . , pP) ’ in computing f(8,) for the saturated case. I,vy 
is an Ng x Ng identity matrix, lo, is 

11 NY x 1 vector of ones, and X, and T are defined in Equations 3.6 and 
3.16, respectively. 
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SECTION 4: AN EXAMPLE 

The two-level “Alcohol Use Data” were collected and analyzed by Duncan 
et al. (1998) by using the technique of longitudinal latent variable modeling. 
The data are from responses regarding use of four types of alcohol by 
siblings (individuals or level-l units) of at least 11 years of age in G = 435 
families (groups or level-2 units). That is, we have p = 4 observable 
variables. There are five distinct cluster (family or group) sizes (i.e., the 
Ng, .y = L...,G) ranging from 2 to 6 members. The total sample size 
(total number of individuals) is N = C,“=, Ns = 1204. The complete 
data set is stored in a data file “duna.dat” in Mplus (Muthbn & Muthkn, 
1998) examples website: (http:// www.statmodel.com/mplus/examples/)~ 
In this section, we carry out t,he ML analysis on this data set by using 
the EM gradient algorithm developed in Section 2. Standard errors of the 
estimates of model parameters and the chi-squared test of model fit derived 
from Section 3 are also provided. In order to compare the results of our 
ML analysis with those provided by Mplus, we set up the same model 
with a mean structure and ran Mplus for the same data set. A two-level 
confirmatory factor analysis model is set up for both the ML analysis and 
t,he MUML analysis. We consider the case C, w f JZw. Because the 
algorithm in Section 2 has been coded in EQS (Bentler, 2002)) we just, 
present, the model by EQS commands: 

within: 171 = 1Fl + OF2 + El, between: VI = lFl+ OF2 + El, 
VZ = IF1 + lF2 + E2, V2 = IF1 + IF2 + E2, 
V3 = lFl+ *F2 + E3, IT, = lFl+ *F2 + E3, 
Vi = lFl+ *F2 + E4, V, = 1Fl + *F2 + E4. 

(3.42) 
This implies that both the within and the between models have the same 
structure. They are confirmatory factor analysis models with two factors. 
In Equation 3.42, the sign “*” before the factor F2 stands for an unknown 
factor loading parameter, and the constants “1” and “0” before Fl and F2 
for fixed factor loadings, El, E2, E3, E4 are uncorrelated residual variables 
with zero means and unknown variances. The assumptions 1 through 4 in 
Section 1 are imposed on Equation 3.42. This equation implies that the 
within and between covariance matrices are given by 

where 
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(3.45) 

Assume that the two factors Fl and F2 in the between model in Equation 
3.42 have unknown nonzero means: 

JqFl) = Pl, E(F2) = P2, (3.46) 

while the two factors in the within model in Equation 3.42 have zero 
Then we can consider that Equation 3.42 has a mean structure 

means. 

Based on this mean structure and the covariance structure specified by 
Equations 3.43 through 3.45, we can easily obtain the matrices of derivatives 

AW and aB in implementing the EM gradient algorithm in Section 2. 
Starting values for the model parameters 0i, tii (i = 1, . . . ,9), pl, and p2 
need to be given in carrying out the iteration process defined by Equation 
3.26. Theoretically, the convergence of the EM algorithm does not depend 
on the choice of starting values of model parameters. A good choice of a 
set of starting values may result in fast convergence of an EM algorithm. 
Because we do not know the possible true values of the model parameters, 
we choose a set of randomly generated starting values: (a) 81 and 02 are 
chosen as two random numbers in (0,l); (b) 03 and 04 as two random 
numbers in (0.5,1.5); (c) 8 5 as a random number in (0,0.5); (d) 196 to 09 as 
random numbers in (0.2,1.2); (e) pl and p2 as random numbers in (0,2). 
The starting values of & through & are chosen in exactly the same way 
a~ for 01 through 6’ 9. In computing the MLE of 8, = {vecsCw, vecsxB, p} 
[p = (!A~, /h2, p3, pLq)‘] for the saturated model, we choose the starting values 

for CW, CB, and ~1 as EW = EB =SW /(N - G) and ~1 = Z:, where 

SW is defined in Equation 3.41, and 2 is the overall sample mean from 
t&he data. In principle, the constant a in controlling the step length in 
the iteration process Equation 3.26 can be selected dynamically. That is, 
in each iteration, a could be chosen as the largest value (0 < cy 5 1) 
that would reduce Equation 3.20 and keep all covariance matrices positive 
definite. In this example, we tried cy z 1 in all iterations and it turns out, 
that the algorithm is convergent in the sense that the Root Mean Square 
Error (RMSE for simplicity) converges to zero. The RMSE was used by 
Lee and Poon (1998) as a criterion for convergence of the EM algorit,hm. 



66 BENTLER AND LIANC: 

Let 6i (T x 1) denote the value of 8 (T x 1) at the i-th iteration. The RMSE 
between two consecutive iterations is defined by 

{ 
l/2 RMSE(B) = ++1 - &II2 , 1 

where the sign II . I( stands for the Euclidean norm of a vector. For the 

(3.48) 

data set duna.dat in Equation 3.42, we choose the convergence criterion 
for the EM gradient algorithm as RMSE 5 10m6 (the same as for Mp1~). 
The algorithm converges after 246 iterations and it took approximately 1; 
minutes of CPU time on a Pent&m II PC to obtain the ML results. The 
RMSE from the updating process Equation 3.26 is actually already less than 
10V4 after 45 iterations. This implies that the algorithm converges very fast, 
in the sense that the RMSE cannot be improved much after 45 iterations. 
The ML results and those provided by running Mplus for Equation 3.42 
with fixed intercepts of 0 for the between model and unknown means for 
the two factors are presented in Table 3.1. The standard errors for the 
MLE of model parameters (by the ML analysis) are computed from the 
square roots of the asymptotic covariance matrix given by Equation 3.32. 
The chi-square is computed by Equation 3.36 and the degress of freedom 
for the ML analysis is computed by Equation 3.38. From Table 3.1, we 
can see that all ML results are close to the corresponding MUML results. 
But the standard errors provided by the ML analysis are generally a little 
bit smaller than those corresponding standard errors provided by MUML 
analysis. For this data set with an unbalanced design, the cluster sizes range 
from 2 to 6. Mplus carries out the MUML analysis by using the average 
cluster size s = (1v” - CF=, IZi,“)/[N(G - l)] = 2.767 as the common 
cluster size. According to Muthkn (1991, 1994), Hox (1993), and McDonald 
(1994)) the pseudobalanced estimates providecl by MUML analysis usually 
give good a pproximation to the full ML estimates. Our full ML analysis on 
the “Alcohol Use Data” is consistent with this observation. 

CONCLUDING REMARKS 

The mean and covariance structure model considered in this chapter is 
a small extension to the covariance structure model studied by Lee and 
Poon (1998). The EM gradient algorithm in this chapter was developed 
with t,he same technique as that used by Lee and Poon (1998). In the 
case of only one within covariance matrix, the utilization of the Cholesky 
decomposition and the eigenvector-eigenvalue decomposition in simplifying 
the computation of the E-step function in Section 2 greatly reduces the 
computational burden by avoiding the computation of a large number of 
inverse matrices. Therefore, the algorithm developed in this chapter is still 
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TABLE 3.1 
ML and MUML Estimates, Standard Errors, and Tests 

01 f32 03 04 05 ‘96 07 

ML 1.722 1.874 0.663 0.111 -.Oll 0.188 0.244 
MUML 1.739 1.868 0.663 0.108 -.Oll 0.187 0.247 
S.E.(ML) 0.180 0.215 0.053 0.034 0.028 0.042 0.016 
S.E.(MUML) 0.213 0.245 0.053 0.038 0.031 0.052 0.024 

63 09 $1 42 $3 $4 4% 
ML 0.122 0.356 1.767 3.624 0.285 0.004 -.035 
MUML 0.117 0.361 1.755 3.575 0.287 0.005 -.035 
S.E.(ML) 0.022 0.031 0.393 0.912 0.046 0.005 0.014 
S.E.(MUML) 0.029 0.042 0.415 1.030 0.044 0.006 0.015 

46 $7 43 49 Pl 
ML 0.055 0.022 0.043 0.073 1.978 0!29 
MUML 0.058 0.020 0.046 0.067 2.003 0.076 
S.E.(ML) 0.020 0.012 0.012 0.028 0.039 0.024 
S.E.(MUML) 0.026 0.014 0.016 0.037 0.038 0.026 
----------_ ----- ----- _---- __-_- -_--- ----- ----- 
ML chi-square= 6.311 df= 4 p-value= 0.1771 
MUML chi-square= 6.237 elf= 4 p-value= 0.1817 

Note. In the Table 3.1, S.E.(ML) stands for standard error from ML 
analysis: S.E.(MUML) stands for standard error from MUML analysis. 

an improvement over that of Lee and Poon (1998), even in the case of the 
only covariance structure (cl = 0) for Equation 3.1. It can be easily verified 
t,hat the E-step function (Equation 3.11 or 3.18) reduces to that derived by 
Lee and Poon (1998) when no mean structure is involved in Equation 3.1. 

As pointed out in Section 1, Equation 3.1 covers several interesting 
mean and covariance structure models. In ML analysis of two-level factor 
analysis models, it is meaningful to hypothesize that the factors have 
unknown nonzero means. Such rnodels can be formulated as Equation 
3.1 with both mean and covariance structures. Ignorance of such a mean 
structure may result in poor model fit by the chi-square test and less 
accurate (larger standard error) estimates (Yung & Bentler, 1999). The 
models considered in Muthkn (1994) and some latent growth models studied 
later by Muthkn (1997) can also be formulated as Equation 3.1 with both 
mean and covariance structures when some latent variables have unknown 
nonzero means. Therefore, the method for ML analysis of two-level SEM 
developed in this chapter is applicable to a wide range of two-level latent. 
variable models. A noticeable feature of the algorithm in this chapter is that, 
it, avoids using the average group sample size to approximate the diverse 
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group sample sizes in unbalanced sample designs that was suggested by 
Muthbn (1994, 1997). 

Finally, we point out the fact that the EM gradient algorithm is at 
least locally convergent in the sense that the series {0i} generated from the 
M-step Equation 3.26 converges to a stationery point. This point must give 
a, local minimum of the -2 1ogML function (Equation 3.27) because the 
E-step function (Equation 3.11 or 3.18) always decreases along its gradient 
direction. The local convergence of general EM gradient algorithm was also 
discussed by Lange (1995a). Boyles (1983) and Wu (1983) studied some 
general conditions on the convergence of EM algorithms. It is noted that the 
EM gradient algorithm is not the only one to minimize the E-step function 
(Equation 3.11 or 3.18). Some existing accelerating EM algorithms, such 
as t)hose proposed by Lange (199513) and Jamshidian and Jennrich (1997), 
could also be employed. Further, the constant a for controlling the step 
length in the M-step defined by Equation 3.26 could be chosen dynamically 
at each iteration to improve the convergence of the EM gradient algorithm. 
This means that 0 < Q 5 1 can be chosen as large as possible while 
ensuring Equation 3.20 and keeping the estimated covariance matrices 
positive definite at each iteration. 
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This chapter outlines how growth mixture modeling can be used to study 
achievement and learning progress. The work is motivated by a study 
of reading development among children from kindergarten to first grade. 
Section 1 presents the data and the substantive problem. Section 2 discusses 
random coefficient growth modeling. Section 3 presents how random 
coefficient growth modeling in a latent variable framework can be used 
to relate the growth factors of two growth processes. Section 4 extends the 
latent variable framework so that multiple classes of development can be 
studied. 



SECTION 1: THE SUBSTANTIVE PROBLEM 

The reading study 

The research questions originated from the study entitled “Detecting 
Reading Problems by Modeling Individual Growth” (Francis, 1996), also 
referred to as the EARS study (Early Assessment of Reading Skills). 
EARS collected data in a modified longitudinal time-sequential design 
involving about 1,000 children. The children were measured four times 
a year from kindergarten to grade two. In grades one and two, 
measures included spelling, word recognition, and reading comprehension. 
In kindergarten, skills that are considered precursor skills to reading 
development were measured, such as alphabetic awareness, orthographic 
and phonemic awareness, and visual motor integration. Standardized 
reading comprehension tests were administered at the end of first and 
second grade. The background variables gender, SES, and ethnicity were 
collected. 

Francis (1996) focused on the early detection and identification of 
reading-disabled children. In this context, he formulated three research 
hypotheses; (1) kindergarten children will differ in their growth and 
development in precursor skills; (2) the rate of development of the precursor 
skills will relate to the rate of development and the level of attainment 
of reading and spelling skills, and individual growth rates in reading and 
spelling skills will predict performance on standardized tests of reading and 
spelling; (3) the use of growth rates for skills and precursors will allow for 
earlier identification of children at risk for poor academic outcomes and 
lead to more stable predictions regarding future academic performance. 

General issues 

Conventional growth modeling of individual differences in development can, 
in principle, use growth trajectory features such as the rate of learning 
as statistically based measures of progress. There is a general problem, 
however, of measuring and modeling student progress over an extended 
period of time. As the EARS study illustrates, the underlying construct 
under study in a developmental process is changing and evolving due to 
maturation of subjects. Reading skills are relevant in first grade but not in 
kindergarten. In kindergarten, reading precursor skills are of interest, but, 
lose their relevance in first grade. 

This exposes the Achilles heel of growth modeling, namely the 
assumption that the outcome variable has a constant scale or metric and a 
st)able meaning over time. If it does not, conventional growth modeling 
is not meaningful. Item response theory offers a limited solution to 
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this problem by allowing the formation of scale scores based on different 
test forms that change over time but that  have overlapping items. But 
constructs of interest in a longitudinal study are naturally changing and 
evolving over time in more fundamental ways and to capture this, a more 
radical solution is necessary. 

Changing meaning of the outcome does not make growth modeling 
impossible. Instead, conventional growth modeling needs to be developed 
methodologically to  suit the research problem. Developmental processes 
that evolve over time need to  be studied in the context of multistage 
growth and multiple processes. There is a need to investigate modeling 
methodology that can describe how one growth process leads into the next 
process. It is of interest to see how relationships between trajectories of 
early growth processes relate to failure or success in later growth processes. 

The solution proposed in this chapter is essentially to turn the 
problem into an opportunity. Different developmental phases have different 
expressions of a construct and should not be forced onto the same scale. 
Instead, a multistage analysis approach should be taken where the different 
phases are viewed as sequential processes, one leading to  another, and are 
analyzed jointly. This study focuses on how an early process influences a 
later process as exemplified by how the development of phonemic awareness 
during kindergarten influences the development of word recognition in first 
grade. Our special focus is on modeling that provides a prediction of 
first-grade development by kindergarten development. 

SECTION 2: GROWTH MODELING 
Research hypotheses regarding achievement and learning are often 
formulated in terms of individual development over time and tested using 
repeated measurements on groups of individuals. With a developmental 
perspective, the interest is not so much in the level of a certain outcome 
at  a particular time point as it is in the growth trajectory across multiple 
time points. Learning outcomes typically show natural systematic growth 
over time. There may be an initial phase of rapid increase followed by a 
later phase of leveling out. The starting level, the rate of increase, and the 
leveling out are of interest in studying learning theories. The focus is on 
characterizing the individual variation in development and describing it in 
terms of its antecedents and consequences. 

Standard statistical techniques for repeated measures data use random 
coefficient modeling to describe individual differences in development. This 
is carried out using software such as BMDP5V, SAS PROC MIXED, and 
MIXOR using the mixed linear model (Jennrich & Schluchter, 1986; Laird 
SC Ware, 1982; Lindstrom & Bates, 1988), or MLn and HLM drawing 
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on hierarchical linear (multilevel) modeling (Bryk & Raudenbush, 1992; 
Goldstein, 1995). From a modeling point of view, these approaches 
are essentially the same. Although it is possible to model multivariate 
outcomes using these techniques (see, MacCallum, Kim, Malarkey, & 
Kiecolt-Glaser, 1997; Thum, 1997), applications typically focus on 
longitudinal development of a univariate outcome variable. Antecedents 
of individual variation are modeled as time-invariant covariates whereas 
t,ime-specific antecedents are modeled as time-varying covariates. 

Developmental theories can be better modeled if the analysis 
methodology can allow trajectory shapes to be of primary focus rather 
than measurements at specific time points. This means that analysis 
methodology is needed to describe trajectory shapes not only as outcomes, 
but] also as predictors, as mediators, and, in intervention studies, as 
the performance of a control group to which the trajectories of the 
intervention group are compared. Multiple processes, each with its own set 
of trajectories, for which the interplay and dependencies of the processes 
are of key interest should also be allowed. The trajectories should be able 
t,o have multiple indicators at each time point to reduce measurement error 
influence and to capture several aspects of the developing construct. 

Given this broader research perspective, it is advantageous to perform 
repeated measures analysis in a more general framework than in t,he 
mixed linear model or multilevel model. Latent variable structural 
equation modeling offers such a general framework. Although repeated 
measures analysis of a single outcome variable is obtained as a special 
case of latent variable structural equation modeling, the generalizations 
discussed earlier are possible in the latent variable structural equation 
modeling framework. This is because the random coefficients are 
represented as latent variables where the latent variables can have regression 
relations among themselves and where the latent variables can also 
represent constructs as outcomes that have multiple indicators. Using 
psychometric growth modeling introduced by Meredith and Tisak (1990) 
as a starting point, Muthkn and Curran (1997) gave an overview of 
latent variable work related to longitudinal modeling as well as mixed 
linear modeling and hierarchical linear modeling work and provided an 
up-to-date account of the potential of latent variable techniques for 
longitudinal data suitable for developmental studies. As pointed out 
in Muth6n and Curran (1997), once the mixed linear model is put 
into the latent variable structural equation modeling framework, many 
general forms of longitudinal analysis are possible, including mediational 
variables influencing the developmental process; ultimate (distal) outcome 
variables influenced by the developmental process; multiple developmental 
processes for more than one outcome variable; sequential-cohort and 
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treatment-control multiple-population studies; and longitudinal analysis 
for latent variable constructs in the traditional psychometric sense of factor 
analytic measurement models for multiple indicators. The latent variable 
framework also accommodates missing data (Arminger & Sobel, 1990; 
Muthen, Kaplan, Sr; Hollis, 1987), categorical and other nonnormal variable 
outcomes (Muthen, 1984, 1996), and techniques for clustered (multilevel) 
dat,a (Muthen, 1994, 1997; Muthen & Satorra, 1995). 

SECTION 3: MULTISTAGE GROWTH 
MODELING OF READING SKILLS 

DEVELOPMENT USING A CONVENTIONAL 
LATENT VARIABLE FRAMEWORK 

A first attempt at multistage modeling of sequential processes uses the 
conventional latent variable framework for growth modeling. It is suitable 
for relating multiple outcome variables to each other. The case of a single 
outcome variable is discussed first. 
Growth modeling with a single outcome variable 

Consider a certain outcome variable yj that is measured repeatedly. For 
individual i at time t, we may formulate the following linear growth model 
for this outcome variable: 

Yijt = rlijl + (at - ao) Qj2 + cijt; t = 1,2, . . . ) T. (44 

Here, qijk (k = 1,2) are latent variables, or growth factors, representing 
the random coefficients of the growth process, the individually varying 
intercepts and slopes, respectively. Furthermore, at denotes a time-related 
variable such as age, a0 is an anchor point (such as mean age), and Eijt is a 
residual. The model may be elaborated by adding time-varying covariates 
to Equation 4.1 representing educational inputs or other factors influencing 
the learning at different, time points. 

The modeling in Equation 4.1 can be used to address the first research 
hypothesis of Francis (1996): Kindergarten children will differ in their 
growth and development in precursor skills. The amount of variation in 
development is captured by the variance of the growth factors qijl and 
11~~~. This variation can be explained by background variables observed for 
the children, such as gender, SES, and ethnicity. A child’s developmental 
status at a given time is of interest when transitioning to a new phase of 
learning. Here, developmental status refers to the value predicted by t,he 
growth curve, not including the time-specific term eijt in Equation 4.1. 
For instance, if a0 represents the end of kindergarten, lliji represents the 
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developmental status at that time. The child’s progress over time adds 
further useful information. A measure of progress is obtained by qija, 
the linear growth rate for individual i. This describes how the individual 
reached the kindergarten endpoint. A child may have been close to that 
level throughout the year or may have experienced rapid growth up to that 
level. Given an estimated growth model for a sample of individuals, a 
specific individual’s status and growth rate may be estimated by Bayesian 
methods; in psychometrics, this is termed factor score estimation. This 
describes the essence of how conventional growth modeling can be used to 
study progress. 

Growth modeling with multiple processes 

The novel growth modeling feature to be considered is relating the random 
coefficients of the later process to those of the earlier process. This addresses 
the second research hypothesis of Francis (1996): The rate of development 
of the precursor skills will relate to the rate of development and the level 
of attainment of reading and spelling skills, and individual growth rates in 
reading and spelling skills will predict performance on standardized tests 
of reading and spelling. 

Phonemic awareness can be taken as an example of a precursor 
skill. Consider the influence of phonemic awareness on first-grade word 
recognition. Using the subscripts p and w to replace the generic j 
subscript in the growth model of Equation 4.1, these outcome variables 
will be denoted gipt and giurt with the corresponding subscripts for the 7 
factors. The intercept and slope equations for the growth coefficients of the 
first-grade process regressed on those of the kindergarten process may then 
be written as, 

r7iuJl = Qil + P 11 Tip1 + PI2 rlip2 + Gil 7 (4.2) 

11iw2 = cy2 + P 21 Vipl + P22 Vip2 + Ci2. (4.3) 
Here, the /3 coefficients represent the strength of the dependencies on 
past performance and acquired skills in transitioning to a new skill. It is 
assumed that phonemic awareness development predicts word recognition 
development, emphasizing the importance of the p transition parameters. 

As an additional sequential link, the standardized reading and spelling 
test scores at the end of first grade can be regressed on the growth 
coefficients of the first-grade process. Letting the reading and spelling scores 
be denoted yr and gsr respectively, 

YS = &.9 + PSI ‘liwl + Ps2 rliw2 + <is- (4.5) 
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Products of /3 coefficients in Equations 4.2, 4.3, 4.4, and 4.5 translate 
progress on precursor skills into predictions of ultimate outcomes on the 
standardized reading and spelling tests. Background characteristics of the 
child may have an influence on the dependent variables in all four of these 
equations. 

Assembling the observed variables into the vector yi = &,I,. . . , ?&pT, 
Yiwl, *. . , ?.&zuT, yir, yis)’ and considering the latent variable vector vi = 
hip1 ) r7ip2 7 r7iw17 rliw27 Yir7 yis)‘, Equation 4.1 may be fitted into the 
measurement part of a structural equation model, 

yi=u+Ahi+Kxi+~i. (4.6) 

Equations 4.2 through 4.5 may be fitted into the structural part of a 
structural equation model, 

vi =~+B~i+rxif~i~ (4.7) 

where x represents background variables. The model may be estimated 
by maximum likelihood under normality assumptions using standard 
structural equation modeling software (Muthhn & Curran, 1997). 

Results 

The growth model in Equations 4.1, 4.2 and 4.3 was applied to the 
growth processes of kindergarten phonemic awareness and first-grade word 
recognition. Linear growth was found to hold for both processes. A 
sample of n = 410 children had complete data on the four kindergarten 
measures and the four first-grade measures and the analyses are based 
on these children. To capture the phonemic awareness level at exit from 
kindergarten, the intercept factor was defined at time point 4. Similarly, the 
word recognition intercept factor was defined at time point 4 in first-grade. 

The maximum-likelihood estimates of the mean of the phonemic 
awareness slope factor was 0.21. The variance of the intercept and slope 
factors was 0.64 and 0.02. Both values were significantly different from 
zero. Their relative size showed the typical feature of a much higher level 
variation than of a growth rate variation. The correlation between the 
intercept and slope was high, 0.72. The estimates of the four @ coefficients 
in the growth factor Equations 4.2 and 4.3 are given in Table 4.1. 

This indicates that for word recognition level at the end of first grade, 
represented by the W intercept, the phonemic awareness level at the end of 
kindergarten (P intercept) is important whereas the kindergarten growth 
rate (P slope) is insignificant. The amount of variation in the W intercept 
accounted for by the kindergarten growth factors was 42%. The first-grade 
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TABLE 4.1 
Estimates of the Relations Between the First-Grade and Kindergarten 

Growth Factors 

Dependent Variable 
W intercept 

Unstandardized 

Standardized 
W slope 

Unstandardized 

Standardized 

P Intercept P Slope 

0.79 (0.07) -0.41 (0.40) 

0.70 -0.07 

-0.05 (0.02) 0.32 (0.11) 

-0.24 0.30 
Note. Standard errors are in parentheses. 

growth rate (W slope) was best predicted by the kindergarten slope (P 
slope). In this case, however, only 4% of the variation was accounted for. 

SECTION 4: MODELING WITH MULTIPLE 
TRAJECTORY CLASSES 

This section describes shortcomings in the analysis of sequential processes 
using growth modeling in a conventional latent variable framework. An 
alternative, extended growth model analyzed in a more general latent, 
variable framework is presented. 
Shortcomings of the growth model 

The growth model allows for individual differences in development. In 
this way, the estimated model gives not only an estimated mean curve, 
but also estimates the variation in individual curves as a function of the 
growth factors. This model allows curves for different individuals to be 
very different. Nevertheless, the model is restrictive in that it does not 
recognize that the sample of children may be heterogeneous so that different 
subgroups may follow different models. This restriction is particularly 
limiting when attempting to predict a later process from an earlier process. 

The use of growth factors as predictors is complicated by the fact that, 
the meaning of a growth factor may be different at different levels of 
another growth factor. Consider for example the hypothesis that a high 
kindergarten phonemic awareness intercept and slope interact to influence 
good first-grade word recognition development. The intercept is defined 
at the kindergarten exit point so that a high positive slope value means 
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that the child has been at considerably lower levels earlier in kindergarten. 
This rapid growth can in principle be either good or bad. The rapid 
growth ma y b e good because the child shows potential for rapid learning 
that may carry over to first grade. For example, a low starting point in 
kindergarten may be due to detrimental home circumstances but the child 
grows because his or her aptitude for reading is good. The rapid growth 
may be bad because the child has not been at the kindergarten exit level 
for long and therefore may have had limited learning opportunities during 
kindergarten. It is conceivable that these two alternatives have different 
plausibility at different kindergarten exit levels. If this is the case, the 
influence of the interaction between kindergarten intercept and slope is not) 
monotonic and needs a special modeling approach. An approach of this 
t,ype is now presented. 

Growth mixture modeling 

The latent variable model in Equations 4.6 and 4.7 are now modified 
drawing on the growth mixture model of Muthkn, Shedden, and Spisic 
(2000). This builds on a latent variable structural equation model 
generalized to 1’ classes of a finite mixture. The heterogeneity of the 
growth is captured by a categorical latent variable c; = (~1,. . . , cil,-)‘, 
where ~‘ik = 1 if individual i falls in class k and zero otherwise. The 
modeling and estimation is presented first, followed by the application t,o 
the reading skills development. 

Modeling and Estimation 

For each class Ic, continuous outcome variables y are assumed normally 
distributed, conditional on covariates x, related as follows: 

Yik=uk+Akrlik+KkXik+~ik, (4.8) 

qik = ak + Bk qik + rk xik + <ik* (4.9) 

The covariance matrices @I, = v(eik) and \kx, = V(~ik) are ah0 allowed 
to vary across the K classes. Here, ak contains the intercepts for 
q for latent class k. The different (uk values are used to represent 
different trajectory shapes for the different classes. This is a finite 
mixture model similar to what was proposed by Verbeke and LeSaffre 
(1996). To understand membership composition for the different trajectory 
classes, it is useful to relate the probability of class membership to 
background variables. As in Muthhn and Shedden (1999), a further 
component is therefore added to the model, where c is related to x 
t,hrough a multinomial logistic regression model for unordered polytomous 



80 MUTHtiN ET AL. 

response. Defining Xik = P(cil, = l(xi), the K-dimensional vector 
fli = (%l, ri2 7 ’ * * 7 WC)‘, and the K - 1 dimensional vector Zogit (ni) 

= (log [m /WC], log [7b2/7w], - * . , log [7ri,~-r/~i~])‘, this model part is 
expressed as 

logit (xi) = ac + lYc xi, (4.10) 

where a, is a K - 1 dimensional parameter vector and rC is a (K - 1) x q 
parameter matrix. 

Maximum-likelihood estimation under normality assumptions can be 
carried out using the EM algorithm. In the EM algorithm, data are 
considered missing on the latent categorical variable ci. The complete-data 
likelihood of the EM algorithm for the model in Equations 4.8, 4.9, and 
4.10 considers 

WI [YIv4 (4.11) 

where [z] denotes a density or probability distribution. The first term of 
Equation 4.11 corresponds to a, multinomial regression with a multinomial 
latent categorical dependent variable determined by Equation 4.10, whereas 
the second term corresponds to a multivariate normal distribution, 
f(yik]xi) = N(&k, ck) derived from Equations 4.8 and 4.9. The E and M 
steps of the algorithm are discussed in Muthen, Shedden, and Spisic (2000). 
A useful side product of the analysis is estimates of posterior probabilities 
for each individual’s class membership, 

pik = p(cil, = lly,, xi) x p(cik = II&> f(y,klxi). (4.12) 

An individual may be classified into the class for which he or she has the 
highest posterior probability. 

In the context of growth modeling, the finite mixture model is referred 
to as a growth mixture model. Mixture modeling can be viewed as a 
form of cluster analysis. Many researchers have attempted to cluster 
longitudinal measures to capture different classes of trajectories by various 
ad hoc methods. The present method is a rigorous parametric approach: 
for related mixture approaches to clustering, see, McLachlan and Basford 
(1988). In the present study, a”confirmatory” clustering approach is used, 
where parameter restrictions are imposed based on a priori hypotheses 
about growth. Different prespecified growth shapes can be captured by 
letting some of the parameters of (Y,+ be fixed. The growth mixture modeling 
results shown later were obtained using the new latent variable modeling 
software Mplus (Muthen & Muthen, 1998). Input specifications for the 
analyses can be obtained from the first author. 

The posterior probability computations shown in Equation 4.12 can 
be used to derive the most likely class membership for a given individual 
observation vector (yi, xi). A typical use is where the estimated model is 
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taken as given and a new individual from the same population is observed. 
Here, the estimated model is used as a measurement instrument in the sense 
that an observation vector is translated into a class membership statement. 
The Mplus program can be used for such posterior probability calculations 
holding all model parameters fixed at the estimated values and doing only 
one E step. Because the estimated model is still valid for a subset of the 
outcome variables in yi, posterior probabilities can also be computed using 
a subset of the repeated measures on yi up to a certain time point. This 
responds to questions of how early a useful classification can be obtained. 

The growth mixture modeling approach also provides a way to study 
early indications of problematic development. As an example, it is of 
interest to be able to identify students who are likely to belong to Class 1. 
The estimated posterior probabilities obtained by Equation 4.12 provides a 
classification of each individual into the class with the highest probability. 
This is of interest when using the estimated model to classify a new student 
as early as possible. In this case, the parameters of the estimated model are 
tJaken as given and only the posterior probabilities are estimated. Although 
the model is estimated from all the y and x variables, the estimation 
of the posterior probabilities can be done using only a subset of early 
measurements. This is a useful approach to identify children who are ate 
risk for reading failure as early as possible. Muthbn, Francis, and Boscardin 
(1999) provides an analysis of this kind. 

Application to reading skills development 

Applied to the prediction of first-grade word recognition growth using 
kindergarten phonemic awareness growth, yi = (yiPI, . . . , yiP4, yivrl, . . . , 
.viw4, ylT, YJ and vi = (v zpl Y Vip2 > r7iwl7 lliw2 7 ‘Ir 7 V.9 1’. Here, the modeling 
includes the standardized reading and spelling test scores yyr and yS at the 
end of first grade. These scores are included in the model as two further q 
variables qr and qS that are perfectly measured by corresponding y variables 
(G = &Es = 0). To illustrate the use of covariates x in Equation 4.10, a 
measure of letters, name, and sounds skills obtained at the beginning of 
kindergarten is used. This serves as a proxy for home literacy support and 
early instruction and is a rudimentary early indicator of both automation of 
t,he symbol recognition process needed for deciphering print into language 
and, in the case of letter sounds, of phonemic awareness/grapho-phonemic 
awareness. 

In Equation 4.9, the first two elements of CK~ contain the means of the 
phonemic awareness intercept and slope and the next two elements contain 
the means of the word recognition intercept and slope. The trajectory 
classes are obtained by fixing the cyk mean of the kindergarten phonemic 
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awareness intercept and slope to different values. Four classes are chosen 
to represent variation in both intercept and slope values for phonemic 
awareness development; they are described later. The latent class variable is 
a predictor of first-grade development of word recognition. This is expressed 
by Equation 4.9 where the six vectors (Y~C capture the across-class differences 
in means. The estimated values of the word recognition intercept and slope 
means in CK~ are of primary interest in the analysis. Given the high number 
of classes, it is assumed that relatively little within-class variation remains 
in these growth factors. The variation is instead represented by the latent 
classes. For simplicity, the latent class variable is therefore taken as the only 
predictor of first-grade development of word recognition with corresponding 
zero elements of B in Equation 4.9 in the present analysis. The qr and 
17~ variables are specified to be predicted by the latent class variable in 
the sense that their means are allowed to vary across classes, and they 
will also be predicted by the intercept factors for phonemic awareness and 
word recognition with corresponding nonzero elements in B. The model 
is shown in path diagram form in the bottom part of Fig. 4.1, where, 
as a comparison, the top part represents the conventional growth model 
estimated in Section 3. 

The four prespecified trajectory classes for phonemic awareness are 
shown in the left-hand panel of Fig. 4.2. Each line is plotted at the mean 
values of the phonemic awareness intercept and slope for the class. Each 
class allows variation around t)his line as a function of variation in t,he 
intercept and slope. The classes represent three different mean values at, 
the exit of kindergarten. These values are determined from the mean and 
variance of the growth intercept in a single-class analysis of these data, 
where the intercept is defined at the end of kindergarten. The values arc 
the mean and plus and minus one standard deviation away from the mean 
of the intercept growth factor. The slopes for all classes except Class 1 are 
the average values given that intercept value. Classes 1 and 2 differ only 
in the growth slope, where Class 1 has zero growth. Class 1 is of special 
interest, given that it shows failure in reading precursor development. It is 
also of interest to contrast Class 1 with Class 2. The choice of four classes 
is not, based on model fit criteria but on the degree of separation of classes 
that) is of substantive interest and that can be supported by the analysis. In 
earlier analyses, six classes were used but two classes gave zero class counts 
when analyzing the full model. 

It is of interest to be able to identify students who are likely to belong 
to the different classes. The estimated posterior probabilities obtained by 
Equation 4.12 provides a classificat,ion of each individual into the class with 
the highest, probability. In this case, the parameters of the estimated model 
are taken as given and only the posterior probabilities are estimated. 
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FIG. 4.1. Path diagrams for conventional growth modeling and growth 
mixture modeling. 

Kindergarten: Grade 1: 
Phonemic Awareness Word Recognition 

PI P2 P3 P4 Wl w2 w3 w4 

Kindergarten: 
Phonemic Awareness 

Grade 1: 
Word Recognition 

Growth mixture results 

Growth mixture analysis was applied to the same sample as in the previous 
example, except it was reduced to n = 409 due to the inclusion of the 
covariate. In the analysis, initial specifications of class-invariant parameters 
were relaxed stepwise to see if a solution could be found with a significantly 
better fit. Here, fit was evaluated by a log likelihood ratio chi-square 
statistic obtained for nested models. Growth factor variances for the 
kindergarten phonemic awareness intercept and slope were found to be 
class varying with a particularly large intercept variance for Class 4. The 
residual variances for the standardized reading and spelling test scores were 
also found to be class varying. 

Table 4.2 shows the prespecified means for the phonemic awareness 
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FIG. 4.2. Estimated mean trajectories for growth mixture model, 

Kindergarten Growth (Four Classes) 
Phonemic Awareness 

T 
I 1 I 

1 2 3 4 
Time Point 

First Grade Growth (Four Clssses) 
Word Recognition 

Time Point 

Class 1 Class 2 CIass 3 Class 4 
COUIltS 86 (.21) 28 (.07) 200 (.49) 95 (.23) 

intercept and slope for the four classes and also the estimated class 
probabilities. It is seen that Class 1, showing no kindergarten growth 
and a low level at exit from kindergarten, contains 21% of the children. 
Class 2, showing rapid kindergarten growth but the same low level at 
exit from kindergarten contains 7% of the children. Class 3 and Class 
4 contain children with average level and above average level at exit from 
kindergarten, respectively, with 49% and 23%. 

Table 4.3 shows the estimated word recognition intercept and slope 
means for the four classes. The corresponding estimated trajectories are 
shown in the right-hand part of Fig. 4.2. 

Table 4.3 and Fig. 4.2 show that children in Class 1 continue to 
do poorly during first grade in terms of word recognition development. 
Children in Class 1 do better than children in Class 2. This responds to 
the earlier discussion about whether rapid growth up to a certain level is 
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TABLE 4.2 
Fixed Values for the kindergarten Phonemic Awareness Intercept and 

Slope Means and the Estimated Class Probabilities. 

Intercept Slope Probability 

Class 1 -1.40 0.00 .21 

Class 2 -1.40 0.20 .07 

Class 3 -0.59 0.32 .49 

Class 4 0.20 0.43 .23 

TABLE 4.3 
Estimated Values for the First-Grade Word Recognition Intercept and 

Slope Means 

Intercept Slone 

Class 1 -1.33 (.13) 0.10 (.05) 

Class 2 -0.41 (.20) 0.41 (.04) 

Class 3 -0.12 (.06) 0.38 (.02) 

Class 4 0.95 (.06) 0.26 (.02) 
Note. Standard errors are in parentheses. 

better than having been at that level longer. These results indicate that at, 
this kindergarten exit level, rapid growth is preferable for good first-grade 
development of word recognition. Children in Class 3 and Class 4 continue 
to do well in first grade. 

The standardized reading test score was found significantly related 
to the word recognition intercept and slope, but not to the phonemic 
awareness intercept or slope. The standardized spelling test score was 
found significantly related to the phonemic awareness intercept and the 
word recognition intercept. As expected, the estimated means of the two 
test scores were in increasing order for Class 1, Class 2, Class 3, and Class 
4. For both of the two test scores, the Class 1 mean was estimated at8 
approximately one standard deviation below the overall mean. 

The estimated multinomial regression of the latent class variable on the 
letters, sounds, and names covariate is summarized in Fig. 4.3. The mean 
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FIG. 4.3. Letters and sounds as a predictor of class membership. 
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and variance of this covariate are 0.27 and 0.16, respectively. The figure 
shows that for students who have covariate values lower than one standard 
deviation below the mean, Class 1 membership is most likely. For increasing 
covariate values Class 3 and Class 4, respectively, become more likely. 

CONCLUSIONS 

The general growth mixture modeling approach was found to be a useful 
tool for studying the relationship between two sequential processes. It 
avoided the complexity of predicting growth in the later process by the 
growth fact ors of the earlier process. Instead, a latent class variable with 
classes corresponding to prespecified growth shapes was used to predict 
growth in the later process. 

Application to predicting first-grade word recognition development 
by kindergarten phonemic awareness development resulted in several 
interesting findings. In particular, we found that among children with 
low phonemic awareness scores at the end of kindergarten, those who had 
shown little growth during kindergarten continued to do poorly in t,erms 
of word recognition during first grade. An estimated 21% of the children 
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in this sample showed this type of development. The children who had 
started out lower but had grown rapidly up to this low phonemic awareness 
level at the end of kindergarten performed significantly better in terms of 
word recognition during first grade. An estimated 7% showed this type of 
development. 

The results from the growth mixture analysis may be contrasted wit,11 
t,hose of the conventional, single-class analysis in Section 3. In the 
single-class analysis, the slope of the phonemic awareness development was 
not found to be a significant predictor of the word recognition intercept, 
at exit from first-grade. In contrast, the growth mixture analysis showed 
that the phonemic awareness slope is an important determinant of word 
recognition level at exit from first-grade as illustrated by comparing word 
recognition development for Class 1 and Class 2. 

The growth mixture modeling approach also provides a way to study 
early indications of problematic development. For example, it is of interest 
to be able to identify students who are likely to belong to Class 1. The 
estimated posterior probabilities provide a classification of each individual 
into the class with the highest probability. This is of interest when using 
t,he estimated model to classify a new student as early as possible. In this 
case, t,he parameters of the estimated model are taken as given and only 
t,he posterior probabilities are estimated. Although the model is estimated 
from all the observed variables, the estimation of t,he posterior probabilities 
can be done using only a subset of early measurements. This is a useful 
approach t,o identify children who are at risk for reading failure as early as 
possible. Muthkn et al. (1999) provides an analysis of this kind. 

The line of research described here has important implications for 
preventive interventions and choice of treatment; in other words, different 
methods of teaching reading. Children belonging to different trajectory 
classes may respond differently to a given treatment and the modeling can 
be used to better assess treatment-aptitude interactions. The modeling 
can also be used to design different treatments for children belonging to 
different, trajectory classes. 
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Multilevel Models for Met al Analysis 

Joop J. Hox Edith D. de Leeuw 
Utrecht University, Utrecht Method&A, Amsterdam 

Meta-analysis concerns the statistical integration of a large number of 
results from empirical studies (cf. Glass, 1976). The goal is to summarize 
the results of a collection of independently conducted studies on one specific 
research question. For instance, the research question might be: What 
is the effect of social skills training on socially anxious children? In a 
meta-analysis, one would collect reports of experiments concerning this 
question, explicitly code the reported outcomes, and integrate the outcomes 
statistically into a combined “super outcome”. Often the focus is not on 
integrating or summarizing the outcomes, but on more detailed questions 
about variations in the outcomes, such as: What is the effect of different 
durations for the training sessions ? Are there differences between different 
t,raining methods? In these cases, t,he meta-analyst not only examines the 
overall study outcomes, but also codes study characteristics. These study 
characteristics, for example design features or type of subjects sampled, arc 
potential explanatory variables to explain differences in the study outcomes. 

The core of meta-analysis is tIllat st,atistical analyses are carried out 
on the published results of a collection of empirical studies on a specific 
research question. A very general model for meta-analysis is the random 
effects model (Hedges SC Olkin, 1985). In this model, the focus is on 

analyzing the size of the effects found in the different studies, not, on 

&ablishing the statistical significance of a combined outcome. The random 
effects model assumes that study outcomes vary not only because of 

90 
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random sampling effects (variations within each study), but also because 
of real differences between the studies. For instance, study outcomes 
can vary because different studies employ different sampling methods, use 
different experimental manipulations, or measure the effects with different 
instruments. The random effects model is used to decompose the variance of 
the study outcomes into a part that is the result of sampling variation, and 
a part that reflects real differences between the studies. Hedges and Olkin 
(1985) gave procedures that can be used to decompose the total variance 
of the study outcomes into random sampling variance and systematic 
between-study variance, and to test the significance of the between-study 
variance. If the between-study variance is large and significant, the stud) 
outcomes are heterogeneous. In that case, the usual procedure is to form 
clusters of studies that differ in their outcomes, but that are homogeneous 
within the clusters. These clusters can be constructed a priori, based on 
available study characteristics; they can also be constructed a posteriori, 
based on a cluster analysis of the reported outcomes. The goal is to identify 
study characterist#ics that explain differences between the study outcomes. 
\:ariables that affect the study outcomes are in fact moderator variables. 
that, is, variables t]hat, interact with the independent variable. 

Met,a-analysis can be viewecl as a special case of multilevel analysis. 
We have a hierarchical data set, with subjects within studies at the first, 
level, and studies at the second level. If the raw data of all the studies was 
available, we could carry out a standard multilevel analysis, predicting tht* 
outcome variable using the available individual and study-level explanatoq 
variables. III our example, we would have one outcome variable, for instanctl 
the result on a test measuring social skill, and one explanatory variable. 
which is a dummy variable that indicat,es whet,her the subject is in the 
tlxperimental or the control group. On the individual level, WC have a 
linear regression model that relates the outcome to the grouping variable. 
The general multilevel regression model assumes that each study has it>s 
own regression model. In particular, the intervention effect (e.g., tlitl 
regression coefficient for the grouping variable in each study) is allowed to 
vary across studies. Standard multilevel analysis can be used to estimate 
the mean and variance of the intervention effects across the studies. If thcb 
intervention effects vary substantially and significantly across studies, we 
have heterogeneous results. In that case, we can study further the variation 
of intervention effects across studies by examining study-level regression 
models tIllat attempt to explain the study-specific intervention effects with 
the available study characteristics as explanatory variables. 

These analyses can be carried out using standard multilevel regression 
methods (cf. Bryk & R,audenbush, 1992; Goldstein, 1995; Hox, 1995: 
Snijders & Bosker, 1999) and standard multilevel software. A special 
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complication is that in meta-analysis we usually do not have access to the 
original raw data. Instead, we have the published results in the form of 
p-values, means, standard deviations, or correlation coefficients. Classical 
meta-analysis has developed a large variety of methods to integrate these 
statistics into one overall outcome. Hunter and Schmidt (1990) discussed 
these methods in detail, and Hedges and Olkin (1985) discussed the 
statistical models used. 

Nevertheless, it is possible to carry out a multilevel meta-analysis on 
the data that are usually available in meta-analysis. Raudenbush and 
Bryk (Bryk & Raudenbush, 1992; Raudenbush & Bryk, 1985) presented the 
random effects model for meta-analysis as a special case of the multilevel 
regression model. The analysis is performed on sufficient statistics instead 
of raw data, and as a result, some specific restrictions must be imposed 
on the model. Analytic procedures for the standard multilevel software 
HLM and MlwiN are given in the Appendix. The major advantage of using 
multilevel analysis instead of classical meta-analysis methods is flexibility. 
In multilevel meta-analysis, it is simple to include study characteristics as 
explanatory variables in the model. If we have hypotheses about study 
characteristics that influence the outcomes, we can code these and include 
t,hem on a priori grounds in the analysis. Alternatively, after we have 
concluded that the study outcomes are heterogeneous, we can explore the 
available study variables in an at,tempt to explain the heterogeneity. 

THE MODEL 

III a typical meta-analysis, the studies usually employ different instruments 
and use different statistical tests. To make the outcomes comparable, the 
study results must be transformed into a standardized measure of the effect, 
such as a correlation coefficient or the standardized difference between two 
means, cZ. The general model for the study outcomes is 

dj = Sj + ej. (5.1) 

In Equation 5.1, dj is the outcome of study j (j=l,. . . ,J), Sj is the 
population value of this outcome, and ej is the sampling error for this 
stjudy. It is assumed that the ej have a normal distribution with a 
known variance oj2. If the sample sizes of the individual studies arc 
not too small, for instance 20 (Hedges & Olkin, 1985) to 30 (Bryk 8: 
Raudenbush, 1992), the assumption that the sampling distribution of the 
outcomes is normal is usually reasonable. Most classical meta-analysis 
methods also assume normality (cf., Hedges & Olkin, 1985). The variance 
of t,he sampling distribution is often known from statistical theory; in some: 
cases. a transformation is needed to achieve normality and lmown sampling 
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TABLE 5.1 
Effect Measures and Their Sampling Variance 

Measure Estimator Transformation Sampling variance 

g=s - 
Means 

St. Dev. s 
Correlation T 

Proportion p 

s* = LN(s) + $df ;df 

l/b - 3) 

l/bP(l-P)l 

variance. Table 5.1 lists some common effect size measures; if needed, t,he 
normalizing transformation; and the corresponding sampling variance. 

When using the sample mean as the effect measure, we should make 
sure that the outcomes are comparable across studies. If different outcome 
measures are used, the measures might be scaled in different units. Without 
some kind of standardization, comparing those outcomes is like comparing 
apples and oranges, or rather, like comparing pounds and kilograms. 

In Table 5.1, y is the effect size proposed by Glass (1976). The 
t,ransformation of s to s* for the standard deviation is proposed by Bryk 
and Raudenbush (1992). The transformation for the correlation T is 
t.he familiar Fisher-Z transformation, and for the proportion, the logit. 
Usually, if a confidence interval is constructed for the transformed variable, 
the endpoints are translated back to the original estimator. For a more 
extended list of effect size measures and their sampling variance, see 
Rosenthal (1994) and Cornell and Mulrow (1999). 

Equation 5.1 shows that the parameters Sj, t,he study outcomes, are 
assumed to vary across the studies. The variation of Sj is assumed to 
follow the regression model 

Sj = 70 + Ylzlj + Y2Z2j + . . . + ypZpj + Uj, (5.2) 
where Z1. . . 2, are st,udy characteristics, 71. . . yp are the regression 
coefficients, and uj is the residual error term, which is assumed to have a 
normal distribution with variance a,“. In meta-analysis, there are typically 
two kinds of study characteristics that can be used as explanatory variables 
in the regression model; methodological characteristics like study size, 
methodological quality, and reliability of instruments, and variables that, 
are of theoretical interest, such as the type and intensity of intervention, or 
tluration of the intervention. 
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By substituting Equation 5.2 into Equation 5.1 we get the complete 
model 

(5.3) 

If we have no explanatory variables, the model reduces to 

dj = ~0 + uj.j + e3. (5.4) 

Equation 5.4, which in multilevel analysis is often denoted as the 
“intercept only” or “null” model (cf., Bryk & Raudenbush, 1992)) is 
equivalent to the random effects model for meta-analysis described by 
Hedges and Olkin (1985). Hedges and Olkin described a one-step weighted 
least, squares procedure for estimating the model parameters. Multilevel 
analysis programs typically use iterative maximum likelihood estimation, 
which, in general, is more efficient (Raudenbush, 1994). In practice, bot,h 
models usually produce very similar parameter estimates. 

In Equation 5.4, the intercept yo is the estimate for the mean outcome 
(T across all studies. The variance of the outcomes (6,) across studies, 0~~2’ 
indicates how much the studies’ outcomes vary. Thus, to test if the study 
outcomes are homogeneous is equivalent to testing the null hypothesis that 

OLL ’ is equal to zero. If the test of alL 2 is significant, the study outcomes are 
heterogeneous. 

Note that Equation 5.4 contains two residual error terms; tl,j and eJ. 
The variance of the uj, alL2, represents the true variation between the 
studies, which is estimated in the meta-analysis, and which we woulcl like 
to explain using the available study characteristics. The ej represents the 
differences between the studies that are the result of sampling variation. 
The sampling variance of the studies, oeJ2, is determined fully by t,he 
within-study variation and sample size, and assumed known from the 
study’s publications. Consequently, the sampling variance, calculated from 
t,he published results, is part of the data to be input in the program 
(software implementations for multilevel meta-analysis are discussed in 
an appenclix to this chapter). Because the o,,‘) are directly input, as 
known data, there is no assumption that they are homogeneous, t,h;tt, 
is, that all 0e ‘, are equal. 3 Typically, G,~, which is the (weighted) 
average sampling variance, is estimated by subtracting olL2 from the tot;\1 
variance between studies. The proportion of between-study variance is 
estimated by the intraclass correlation, which can be estimated using the 
intercept-only (null) model as p = G,,~/( (Jam+ oc2). The proportion of 
systematic between-study variance can be used as an additional indicator 
of the degree of heterogeneity of the study outcomes. This is analogous to 
using the proportion of explained variance in standard regression models to 
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indicate the importance of specific predictor variables. Hunter and Schmidt 
(1990) pointed out that with a large number of studies, the power of the 
significance test is high, and small variances will become significant. When 
t,he number of studies is small, lack of significance for ou2 does not imply 
that the outcomes are homogeneous. Hunter and Schmidt (1990) proposed 
a 25%) rule of thumb; that is, if the between-study variance is 25% or more 
of the total variance, it is interesting enough to merit exploration. In our 
terminology, if the intraclass correlation p is 0.25 or higher, the variance 
between studies is deemed large enough to attempt to model it using the 
available study characteristics. 

The general Equation 5.3 includes study characteristics ZPj to explain 
differences in the studies’ outcomes. In Equation 5.3, o-U2 is the residual 
between-study variance after the explanatory variables are included in the 
model. The statistical test on ou2 now tests whether the explanatory 
variables in the model explain all the variation in the studies’ outcomes, or if 
there is still unexplained between-study variance left in the outcomes. The 
difference between the between-studies variance (T,,~ in the null model and 
in the model that includes the explanatory variables Z,j, can be interpreted 
as the amount of variance explained by the explanatory variables, that is. 
by the study characteristics included in Equation 5.3. 

The multilevel meta-analysis model given by Equation 5.3 is similar to 
the general model for fixed effects as described by Hedges and Olkin (1985, 
chap. 8). In our notation, their model is given by 

(5.5) 

Compared to Equation 5.3, Equation 5.5 lacks the study-level residual 
(=rror term uj. Thus, the general model for fixed effects described by 
Hedges and Olkin is a special case of the multilevel meta-analysis model. 
Omitting the study-level residual error term PLY implies tthe assumption 
t,hat the explanatory variables in the model explain all of the variance 
across the studies. There are situations, for instance when we limit our 
statistical generalization to the set of studies aft hand, where the fixed 
effects model is appropriate (Hedges & Vevea, 1998). If this is the case, we 
clan model differences between studies using fixed effects (Overton, 1998). 
Alternatively, we may find empirically that the studies are homogeneous, 
meaning that the estimate for the between-study variance g1h’2 is small and 
insignificant. 

However, in general, we do want to generalize beyond the specific set of 
studies at, hand, and experience shows that usually we cannot explain all 
ljetween-study variance, just as in ordinary multiple regression analysis, 
we seldom find a multiple correlation coefficient, equal to one. Hunter 
and Schmidt (1990) assunled t,hat between-studies het,erogeneity is partly 
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due to a large number of possible artifacts in the meta-analysis. An 
example of such an artifact is the (usually untestable) assumption of a 
normal distribution for the sampling errors ej. However, unless the sample 
size is very small in some studies, the normality assumption for ej is 
usually reasonable by central limit theorem. Other artifacts that may 
cause variation between the studies are the correctness of the statistical 
assumptions made in the original analyses, differences in the reliability of 
t,he instruments used in different studies, coder unreliability in coding study 
characteristics, and so forth. It is unlikely that the available study-level 
variables cover all of these artifacts. Generally, the amount of detail in 
the input for the meta-analysis, which are the research reports, papers, 
and articles, is not enough to cover all of these study characteristics. 
Therefore, to some extent, heterogeneous results are to be expected. It 
is this reasoning that led Hunter and Schmidt to their rule of thumb that 
t#he between-study variance in the null model should be larger than 25% 
of the tote1 variance. The same reasoning led us to the conclusion that, in 
general, random effects models, such as multilevel regression models, should 
be used in meta-analysis. 

Overton (1998) examined the differences between fixed and random 
effects models for meta-analysis using simulation. He found, not 
surprisingly, that fixed effects models perform best when data are generat,ed 
following a fixed model, and random effects models perform best when data 
are generated following a random model. Because the fixed effects model 
is a special case of the random effects model, t,he best analysis strategy 
appears to be to begin by estimating a random effects model. If t,he 
between-study variance o,,’ turns out to be insignificant and negligible 
in size, the between-study variance can be fixed at, zero, which effectively 
turns the multilevel analysis into a fixed effects analysis. 

EXAMPLE AND COMPARISON WITH CLASSICAL 
META-ANALYSIS 

In this section, we analyze an example data set using classical 
meta-analysis methods as implemented in the program META by Schwarzer 
(1989). This program is based on methods and procedures described by 
R,osenthal (1984), Hunter and Schmidt (1990), and Hedges and Olk& 
(1985). Th e ( constructed) data set consists of 20 st,udies that compare 
an experimental group and a control gr0up.l 

‘The example data were constructed using a regression model like Equation 5.4 with 
a single explanatory variable “duration in weeks”, which was simulated from a normal 
distribution (p = 6, IJ = 2.5). The population effect size b for each study was predicted 
using a regression slope of 0.15 for the duration with mean outcome 0.6 across all studies. 
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If we compare the means of an experimental and a control group, an 
appropriate outcome measure is the standardized difference between the 
experimental and the control group, originally proposed by Glass (1976) 
and defined by Hedges and Olkin as g = (YE - yc) /s, where s is the 
pooled standard deviation of the two groups. Because g is not an unbiased 
estimator of the population effect S = (/+,Q~)/o, Hedges and Olkin 
preferred a corrected effect measure d: d = {l-3/[4(nE+nc)-9]}g. The 
sampling variance of the effect estimator d is equal to (no + nc) / (nuns) + 
d2/ [2 (733 + IZC)] (Hedges & Olkin, 1985, p. 86). 

Table 5.2 lists both g and d for all 20 studies. With commonly used 
sample sizes, the difference between the two is very small. Table 5.2 also 
presents the sampling variance of c![var(d)], the one-sided p-value of the t 
test for the difference between the two means (p), the number of cases 
in the experimental (neZP) and control group(ncon), and the reliability 
(rZi) of the outcome measure used in the study. The example data set 
contains one study-level explanatory variable, the duration in number of 
weeks of the experimental intervention. It is plausible to assume that longer 
interventions lead to a larger effect. In Table 5.2, the studies are presented 
in increasing order of their effect sizes (9, d). 

CLASSICAL META-ANALYSIS 

Classical meta-analysis contains a variety of approaches that complement 
each other. An old approach is to combine the p values of the studies 
into one overall p value for the collection of studies. Several formulas 
are available for combining p-values. A popular procedure is the so-called 
Stouffer method (see Rosenthal, 1984). Each individual p is converted to the 
corresponding standard normal 2 score. The 2 scores are then combined 
using 2 = (C Zi) / fi, w lere 1 Zj is the 2 score of study j, and Ic is the 
number of studies. For our example, the Stouffer method gives a combined 
2 of 7.73, which is highly significant (p < 0.001). 

The combined p value gives us proof that an effect exists, but no 
information on the size of the experimental effect. The next step in classical 
meta-analysis is to combine the effect sizes of the studies into one overall 
effect size, and to establish the significance or a confidence interval for 
t,he combined effect. Considering the possibility that the effects may differ 
across the studies, the random effects model is used to combine the studies. 

The sample sizes for the experimental and control group were generated independently 
from a normal distribution (CL = 30, u = lo), and the reliability was randomly chosen 
from the values 0.9 and 0.75. The reliability was used to attenuate the effect size 6, and 
finally, the observed effect size g was simulated by adding to 6, a random residual drawn 
from a normal distribution with mean 
the experimental and control groups. 

0 and variance determined by the sample sizes of 
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TABLE 5.2 
Example Results From Twenty Studies 

Study Duration g d vww P %ip %0n rii 

1 3 .268 .264 .086 .810 r)9 
2 1 .235 .230 .106 .756 
3 2 .168 .166 .055 .243 
4 4 .176 .173 .084 .279 
r 

z 
3 .228 .225 .071 .204 
6 .295 .291 .078 .155 

7 7 .312 .309 .051 .093 
8 9 .442 .435 .093 .085 
9 3 .488 .476 .149 .116 
10 6 .628 .617 .095 .030 
11 6 .660 .651 .llO .032 
12 7 .725 .718 .054 .003 
13 9 .751 .740 .081 .009 
14 5 .756 .745 .084 .009 
15 6 .768 .758 .087 .OlO 
16 5 .938 .922 .103 .005 
17 5 .955 .938 .113 .006 
18 7 .976 .962 .083 .002 
19 9 1.541 1.522 .lOO .OOOl 

18 
33 
26 
29 
30 
37 
35 
22 
18 
44 
41 
22 
25 
42 
17 
14 
28 
50 
31 20 9 1.877 1.844 .141 .00005 31 

24 
20 
41 
22 
28 
23 
43 
16 
10 
28 
12 
38 
33 
26 
17 
29 
31 
26 
16 
14 

.90 

.75 

.75 
.90 
.75 
.75 
.90 
.90 
.75 
.75 
75 

:90 
.75 
.90 
.90 
.90 
.75 
.90 
.90 
.75 

A meta-analysis of the effect sizes in Table 5.2, using the random effects 
model, estimates the overall effect as 6 = 0.58, with a standard error of 0.11. 
This gives us a 2 value of 5.27 (11 < 0.001). The 95% confidence interval 
for the overall effect size is 0.36 < S < 0.80. The usual significance test, 
of the variance is a chi-square test on the residuals, which for our example 
data leads to x2(19) = 48.9, p < 0.001. As this is clearly significant, we 
have heterogeneous outcomes. This means that the overall effect 0.58 is 
not the estimate of a fixed population value, but a (weighted) average of 
the distribution of effects in the population. 

The between-study variance CY?~ 2 is estimated as 0.17 and the proportion 
of between-study variance as 0.65. This is much larger than the 0.25 
threshold that Hunter and Schmidt (1990) recommended for examining 
differences between studies. The usual approach in classical meta-analysis 
is to divide the studies into clusters that have different average effect sizes, 
while being internally homogeneous. A unidimensional cluster analysis of 
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the study outcomes can be used to form such groups. In our example, a 
cluster analysis produces three clusters. The first cluster consists of Studies 
1 and 2, the second cluster consists of Studies 3 through 18, and the third 
cluster consists of Studies 19 and 20. For a post hoc interpretation of the 
clusters, we must examine how the clusters differ. If we look at the mean 
duration of the experiment in the three clusters, we find that this is 2 
weeks in the first cluster, 6 weeks in the second, and 9 weeks in the third. 
Apparently, the duration of the experimental intervention indeed affects 
the study outcome. 

Because we have the hypothesis that the duration of the experimental 
intervention is related to the outcome, we can also form a priori clusters 
based on this variable. We distinguish two a priori clusters; the first, 
consists of the 9 studies that have a duration of 5 weeks or less, and 
the second consists of the 11 studies that have a duration of 6 weeks or 
more. The overall outcome in the first cluster is 0.33 (SE = 0.15, p = 
O.Ol), and in the second cluster, 0.77 (SE = 0.15, p < 0.001). Studies 
with a longer duration have larger effect sizes. In both clusters, the 
null-hypothesis of homogeneous outcomes is rejected. The proportion of 
between-study variance is estimated as 0.61, y’(lO)= 22.35, p = 0.01 in 
the first cluster, and 0.69, x2(8) = 16.72, p = 0.03 in the second cluster. 
We can perform a formal test for the difference between the two outcomes. 
Completely analogous to analysis of variance, where the total variance is 
partitioned into a between-groups variance and a within-groups variance, we 
can partition the total chi-square into a between-clusters chi-square and a 
within-clusters chi-square (Cooper, 1998; Hedges & Olkin, 1985). The total 
&i-square is the chi-square for the between-study variance for all 20 studies, 
which is x2( 19) = 48.85, p < .OOl. The within-clusters chi-square is given by 
the sum of the chi-squares for the variance within the two clusters, x2 (18) = 
39.07, I:, < 0.003. The between-clusters chi-square is found by subtracting 
the within-clusters chi-square from the total chi-square; x”(l)= 9.78, p < 
= 0.002. The between-clusters chi-square is highly significant (p <0.002). 
The conclusion seems warranted that duration of experimental intervention 
has an effect on the outcome. However, the within-clusters chi-square was 
also significant. The fact that we still have significant heterogeneity in the 
t,wo clusters indicates that we have not explained all systematic differences 
l)et,ween the studies. 

MULTILEVEL META-ANALYSIS 

A multilevel meta-analysis of the 20 studies using the empty intercept-only 
model produces virtually the same results as the classical meta-analysis 
reported earlier. The intercept, which in the absence of other explanatory 
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TABLE 5.3 
Results of Random Effects Model and Multilevel Regression Analyses on 

Example Data 

Model 

intercept 

Classical Multilevel Null Multilevel 
Random Model Using Duration 
Efiec ts 
6 = 0.58 (.ll) y. = 0.58 (.ll) y. = 0.57 (.08) 

duration 
parameter .17 .14 

yd4= 0.14 (.03) 

variance (7,2 
I-, value x2 test” p < ,001 p < .OOl p = .09 

aChi-square test on residuals, cf. Hedges & Olkin, 1985, and Bryk & 
Raudenbush, 1992. 

variables is the overall outcome that classical meta-analysis indicates by S, 
is estimated as y0=0.58, with a standard error of 0.11 (p < 0.001). The 
null hypothesis of homogeneous outcomes is rejected, but the between-study 
variance is estimated a bit lower than in the classical meta-analysis. The 
between-study variance gu2 is estimated as 0.14, and the proportion of 
between-study variance is 0.61. This still is much larger than 0.25, the 
lower limit for examining differences between studies (Hunter & Schmidt, 
1990). 

The power of multilevel meta-analysis becomes apparent when we 
attempt to model the differences in the study outcomes. We simply include 
the duration of the experimental intervention as an explanatory variable in 
the model. The multilevel meta-analysis model can be written as 

dj = y. + y1 Durationlj + uj + ej (5.6) 

The advantage of directly including duration as an explanatory variable 
is that we do not have to dichotomize or discretize it, as we were forced to 
do in the clustering approach. The results of the multilevel meta-analysis 
are summarized in Table 5.3. This table presents the results for both the 
empty (null) model and the model that includes duration, in addition to the 
results obtained by the classical (random effects) meta-analysis method. 

After including duration as an explanatory variable in the model, the 
residual between-study variance is no longer significant. The regression 
coefficient for duration is 0.14 (p < O.OOl), which means that for each 
additional week, the expected gain in study outcome is 0.14. The 
explanatory variable duration is centered on its overall mean, and as a 
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result, the intercept remains essentially unchanged from one model to the 
next, and it reflects the expected outcome of the average study. The residual 
variance in the model is 0.04, which is not significant. If we compare this 
with the between-study variance of 0.14 in the null model, we conclude that, 
71% of the between-studies variance can be explained by including duration 
as the explanatory variable in the model. 

Because the study outcome depends in part on the duration of the 
experiment, reporting an overall outcome does not convey all the relevant 
information. We could report the expected outcomes for different durations 
( i.e., report the dose-response curve), or calculate which duration is 
minimally needed to obtain a significant outcome. This is easily done 
by centering the explanatory variable on different values. For instance, 
if we center the duration around 2 weeks, the intercept can be interpreted 
as the expected outcome at 2 weeks. Some multilevel analysis programs 
can produce predicted values with their expected error variances for 
various levels of the explanatory variables (such as various durations in 
this example), which is also useful to describe the expected outcome for 
experiments with a different duration. Figure 5.1 presents the predicted 
outcome for our example data for different durations, with the limits of 
the 95% confidence interval. From the predicted outcome in Fig. 5.1, it is 
obvious that for low durations negative outcomes are common. Only when 
the duration of the intervention is at least 4 weeks is the outcome clearly 
positive. 

CORRECTING FOR ARTIFACTS 

Hunter and Schmidt (1990, 1994) have advocated to correct study-outcomes 
for a variety of artifacts. For instance, a common correction is to correct the 
outcome d for the attenuation that results from unreliability of the measure 
used. The correction simply divides the outcome measure by the square 
root of the reliability, for instance d* = d/6, after which the analysis is 
carried out as usual. This is the same correction as the classical correction 
for attenuation of the correlation coefficient in psychometric theory (cf. 
Nunnally & Bernstein, 1994). Hunter and Schmidt (1994) described 
many other corrections, for instance a correction for the attenuation due 
to imperfect validity of the outcome measure, corrections for estimated 
methodological quality, and so on. However, directly applying corrections 
t,o the outcome variable results in methodological and statistical problems. 
,4 methodological problem is that the majority of these corrections result 
in larger effect sizes. For instance, if the studies use instruments with a 
low reliability, the corrected effect size is much larger than the original 
effect size. Because these large effects have in fact not, been observed, 
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FIG. 5.1. Predicted values for outcome d and 95% interval limits. 

automatically carrying out such corrections is controversial. For instance, 
Schwarzer (1989) advised to always report the original values with the 
corrected results. A major statistical problem with all these corrections 
is that their effect on the statistical model is completely unknown. For 
instance, if the reported reliability is biased, so will be the corrected 
outcome. If the values used to correct the outcomes are subject to sampling 
error, and they usually are, the sampling variance of the outcome measure 
becomes larger. And if many corrections are performed, their cumulative 
effect on the bias and sampling variance of the outcome measures is totally 
unclear. 

A different and better approach to correct for artifacts is to include 
them as covariates in the multilevel regression analysis. This is not always 
optimal; for instance, the attenuation correction follows a multiplicative 
model, and regression analysis is additive and linear. However, in many 
cases, adding corrections as explanatory variables to the regression equation 
produces a reasonable approximation, and when the relationship is not 
linear, we can always include quadratic or cubic trends in the analysis. For 
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instance, if the range of reliabilities is not extreme, a linear model for the 
correction is an acceptable approximation. The advantage of this approach 
is that the effect of measurement unreliability on the study outcomes is 
estimated based on the available data instead of on a priori corrections. 
An additional advantage is that we can test whether the correction has a 
significant contribution to the regression equation. Lastly, if we suspec? 
that a certain covariate has an effect on the variability of the outcomes, 
we can include it only in the random part of the model, where it affects 
the between-study variance, but not the average outcome. This models 
heteroscedasticity at the study level. For instance, it is reasonable to 
assume that quality of the experimental design used in a study does not 
necessarily bias the results, but could result in a larger variability of the 
outcomes. The result would be a larger variance for the residual errors uj for 
studies with a poor experimental design. Of course, some covariates might 
affect both the average outcome and the study-level variance. Models where 
the residual error variances are a function of other variables were discussed 
by Goldstein (1995) under the heading “complex variance structures.” 
Although Goldstein did not discuss their application to multilevel data, 
this is a straightforward extension of his exposition. 

A variation on correcting for artifacts is controlling for the effect of 
sample size. An important problem in meta-analysis is the so-called 
file drawer problem. The data for a meta-analysis are the results from 
previously published studies. Studies that find significant results may have 
a larger probability to be published. As a result, a sample of published 
st)udies can be biased in the direction of reporting large effects. In classical 
meta-analysis, one way is to carry out a fail-safe analysis (Greenhouse 
&Z Iyengar, 1994). This answers the question of how many unpublished 
insignificant papers must lie in various researchers file drawers to render 
tlhe combined results of the available studies insignificant. If the fail safe 
number is high, we assmne it is unlikely that the file drawer problem affects 
our analysis. A different approach to the file drawer problem is drawing 
a funnel plot. The funnel plot is a plot of the effect size versus the total 
sample size (cf. Light & Pillemer, 1984, Light, Singer & Willet, 1994). If 
the sample of available studies is “well-behaved” this plot should have the 
shape of a funnel. The outcomes from smaller studies are more variable. 
but estimate the same underlying population parameter. If large effects 
are found predominantly in smaller studies, this indicates the possibility 
of publication bias, and the possibility of many other insignificant small 
studies remaining unpublished in file drawers. 

A problem with the funnel plot is, that we do not know if the smaller 
studies have different study characteristics too. For instance, small-scale 
studies could also more often have a short duration. Because the funnel 
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plot is based on observed outcomes, part of the variability in the plot could 
be due to explanatory study-level variables. In fact, it would be more 
appropriate to use a funnel plot after removing the covariate elects. An 
alternative to the funnel plot is to investigate the effect of the study size 
directly by including the total sample size of a study as explanatory variable 
in a multilevel meta-analysis. This allows a formal statistical test, and 
other study characteristics can be controlled simply by adding these to the 
explanatory variables. 

We illustrate those procedures by correcting our example data for 
reliability of the measure and for total sample size. Table 5.2 has an entry 
for reliability (rii). These fictitious data on the effect of social skill training 
assume that two different instruments were used to measure the outcome 
of interest; some studies used one instrument, some studies used another 
instrument. These instruments, in this example, tests for social anxiety in 
children, differ in their reliability as reported in the test manual. If we use 
classical psychometric methods to correct for attenuation by unreliability, 
followed by classical meta-analysis using the random effects model, the 
combined effect size is estimated as 0.64 instead of the value of 0.58 found 
earlier. The between-study variance is estimated as 0.23 instead of the 
earlier value of 0.17. The effect of sample size is more difficult to analyze 
in classical meta-analysis. A funnel plot indicates a well-behaving sample 
of studies. 

The funnel plot shows virtually no relationship between study outcome 
and total sample size. We can test this more formally by including total 
sample size as a covariate in the regression model. If we include the sample 
size and the reliability as explanatory variables in the regression model, we 
obtain the results presented in Table 5.4. 

The first model in Table 5.4 is the empty intercept-only model presented 
earlier. Model 2 includes the total sample size, centered on its mean of 
54.1, as a predictor, and Model 3 the reliability of the outcome measure, 
centered on the value 1.0, which represents perfect reliability. Model 4 
includes the duration of the experiment, centered on its mean of 5.6. 
Model 5 includes all available predictors. Both the univariate and the 
simultaneous analysis show that only duration has a significant effect on 
t’he study outcome. Differences in measurement reliability and study size 
pose no major threats to our substantive conclusion about the effect of 
duration. If reliability is centered on the value 1, the intercept is estimated 
as 0.67, which is close to the value of 0.64 estimated in the previous section 
using the classic attenuation correction on the outcomes. However, the 
large standard error for the reliability slope suggests that this correction is 
not necessary. Because there is no relation between the study size and the 
reported outcome, the existence of a file drawer problem related to sample 
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FIG. 5.2. Funnel plot of study outcome against total sample size. 

size is unlikely. 
The last Model 5 that includes all predictor variables simultaneously 

is instructive. The (insignificant) regression coefficient for reliability is 
negative. This is counterintuitive. This is also in the opposite direction of 
the regression coefficient in Model 3 with reliability as the only predictor. 
This is a so-called repressor effect caused by the correlations (from 0.25 
to 0.33) between the predictor variables. In meta-analysis, because the 
number of available studies is often small, such effects are likely to occur if 
we include too many explanatory study-level variables. We conclude that 
there is an effect of the duration of the treatment on the outcome, and that 
a bias due to a file drawer problem or differential reliability of the outcome 
measure is unlikely. 

CONCLUSION AND DISCUSSION 

The application of multilevel analysis methods in meta-analysis has the 
advantage that study characteristics can be included in the analysis as 
potential explanations of the variability of the studies’ outcomes. The 
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TABLE 5.4 
Results of Multilevel Regression Including Artifacts as Covariates, all 

Covariates Centered 

Model 1 2 3 4 5 
Predictor: Intercept 1 plus 1 plus 1 plus 1 plus all 

only N tot reliab. duration predictors 
Intercept .58 (.ll) .58 (.ll) .67 (.28) .57 (.08) .49 (.22) 
N tot .OOl (.Ol) -.004 (.Ol) 
Reliability .51 (1.48) -.52 (1.18) 
Duration .14 (.03) .15 (.04) 

Parameters 
Variance 
0; .14 .16 .16 .04 .05 
y2 test 
p value p <.OOl p <.OOl p <.OOl p=.o9 p=.o7 

study characteristics can be theoretically important constructs, or they 
can be covariates intended to correct for possible artifacts. Significance 
tests of the regression coefficients and predictions can be used to assess the 
effect? of study characteristics. The residual study-level variance can be 
tested for significance to assess whether the study variables explain all the 
between-study variance. A comparison of the variance in the empty (null) 
model and in the final model informs us how much variance between study 
outcomes is explained by our model. 

Multilevel regression analysis assumes that all relations are additive 
and linear. An additional assumption is that the distribution of the 
outcomes is normal (most classical meta-analysis methods require the 
same assumption). If these assumptions are violated, transforming the 
outcome measure can be helpful (cf. Bryk & Raudenbush, 1992; Hedges 
& Olkin, 1985). In practice, we usually have unexplained between-study 
variance, as violations of assumptions in the original analyses that produced 
the published outcome measures tend to lead to increased variability of 
the outcomes. For this reason, we should preferably use models that 
include between-studies variance, such as random effects meta-analysis and 
rnultilevel models. Hunter and Schmidt (1994) considered a between-study 
variance of up to 25% of the total variance to be uninteresting. In their 
view, a larger amount of between study variance cannot be attributed to 
various artifacts, and should be further investigated. Following this line of 
reasoning, we argue that when we add explanatory variables to a model. 
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obtaining a residual variance of less than 25% of the total variance is a sign 
that our model is reasonably complete. 

An interesting extension of the multilevel regression model discussed 
here is allowing for more than two levels. For instance, we may have a 
situation where there are several outcome measures for each study. The 
approach in classical meta-analysis is to either combine these into one single 
outcome per study, or to carry out separate meta-analyses for each different 
outcome (Gleser & Olkin, 1994). In a multilevel model, it is possible to 
specify a multivariate outcome model. When all studies report all available 
outcome measures, the multivariate multilevel model is a straightforward 
extension of the univariate model (cf. Raudenbush & Bryk, 1985). When 
some studies do not report on all available outcomes, we have a missing 
data problem. This extension leads to a more complicated model, which 
still can be estimated using standard multilevel software. For details, see 
Iialaian and Raudenbush (1996) and Goldstein (1995). A related extension 
arises when we have summary data for some studies, whereas we have access 
to the raw data for others. Goldstein and Yang (2000) showed that such 
clata can be combined in a single model, using standard multilevel analysis 
software. This allows more refined analyses, using all available data. 

The program HLM (Bryk, Raudenbush & Congdon, 1994; Raudenbush, 
Bryk, Cheong & Congdon, 2000) has a built-in provision for meta-analysis 
that is restricted to two-levels. If we need three levels, we can use 
t,he st)andard HLM/3L software, using an adapted program setup. The 
software MLn/MlwiN (Rasbash & Woodhouse, 1995) can also be used for 
meta-analysis, again with an adapted setup. Ways of tweaking standard 
multilevel software for meta-analysis are discussed in the Appendix. 

There are some minor differences between the programs. HLM uses 
by default an estimator based on restricted maximum likelihood (RML), 
whereas MlwiN by default uses full maximum likelihood (FML, called IGLS 
in MLwiN). Because RML is theoretically better, especially in situations 
where we have small samples and are interested in the variances, for 
meta-analysis we should prefer RML (called RIGLS in MlwiN). The results 
reported earlier were computed using RML. If FML is used, the differences 
turn out to be small. 

An important difference between HLM and MLwiN is the test used to 
assess the significance of the variances. HLM by default uses a variance test 
based on a chi-square test of the residuals (Bryk & Raudenbush, 1992). 
MlwiN estimates a standard error for each variance, which can be used 
for a Z-test of the variance. In meta-analysis applications, this Z-test is 
problematic. It is based on the assumption of normality; variances have 
a chi-square distribution. Especially with small sample sizes and small 
variances, the Z-test may be inaccurate. An additional advantage of the 
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chi-square test on the residuals is that for the null model it is equivalent 
to the chi-square variance test in classical meta-analysis (Hedges & Olkin, 
1985). The variance tests reported earlier used the chi-square test on the 
residuals. MLwiN does not offer this test, but it can be produced using the 
MLwiN macro language. 

For estimating complex models, Bayesian procedures are promising and 
coming into use. These use computer-intensive methods such as Markov 
Chain Monte Carlo (MCMC) methods to estimate the parameters and their 
sampling distributions. These methods are attractive for meta-analysis 
(DuMouchel 1994), because they are less sensitive to the problems that 
arise when we model small variances in small samples. Bayesian models 
can be extended by including a prior distribution. This prior distribution 
reflects a priori beliefs about the likelihood of publication bias. In principle, 
this is an elegant method to investigate the effect of publication bias. An 
example of such an analysis is found in Tweedie, Scott, Biggerstaff, and 
Mengersen (1994). Present multilevel software cannot analyze such models, 
and more complicated software is needed, such as the general Bayesian 
modeling program BUGS (Spiegelhalter, 1994). 

APPENDIX 

Software issues 

The simplest program for multilevel meta-analysis is VKHLM, which comes 
with HLM 2.0 (Bryk et al., 1994) as a separate program, and is built into 
HLM as an option in later versions. HLM expects for each study a row of 
data containing a study ID, an outcome measure, its sampling variance. 
followed by the explanatory variables. If the null model is specified, the 
results from HLM are close to the classical meta-analysis results produced 
by Schwarzer’s program META, provided one realizes that META reads 
effect sizes g and transforms these automatically into 8s. 
L Using MLn or MLwiN is more complicated. The data structure is 
analogous to HLM: We need a study ID, the effect size, its standard error 
(the square root of the sampling variance), the regression constant (HLM 
includes this automatically), and the explanatory variables. To set up the 
analysis, we distinguish two levels: The outcomes are the first level, and the 
studies the second. Usually we have one outcome per study, so there is no 
real nesting. The predictor sampling error is included only in the random 
part on level 1, with a coefficient fixed at 1 (MLwiN uses the command 
RCON for this). The regression constant is included in the fixed part, 
and in the random part at level 2. Explanatory variables are included in 
t,he fixed part only. MLwiN does not produce the chi-square test on the 
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variances. The formula for the chi-square test is 

x2 = c [ (dj - q /SE (dj)] 2, 
the sum of the squared residuals divided by their sampling variances. The 
degrees of freedom are given by df = J - p - 1, where J is the number of 
studies, and p the number of explanatory variables in the model. Assuming 
that the outcomes are denoted by d, and the standard errors by sed, the 
sequence of MLwiN commands for computing the chi-square is: PRED 
C50; CALC CEiO=[(d-C5O)/sed]^2; SUM c50 to Bl; CPRO Bl df This 
code assumes that the spreadsheet column C50 is unused. 

If we need more than two levels in HLM, we must use HLM/3L, which 
does not include the VKHLM option. For HLM/3L, we also need a special 
setup. In this case, we include the standard errors as a weighting variable 
at the lowest level. We must instruct the program not to normalize the 
weights, which is the default option, and constrain the lowest level variance 
to be equal to 1. 

To apply multilevel models in meta-analysis in other software, this 
software must have options to set up a model using constraints as specified 
for MLwiN or for HLM/3L. This means that it must be possible to have 
a complex lower level variance structure, as in MLwiN, or to constrain the 
lowest level variance to 1 and to add a weight variable, as in HLM/3L. 
These options are available in the multilevel options in Lisrel 8.3 (du Toit, 
du Toit, Jiireskog, & S&born, 1999) and in the multilevel analysis program 
aML (Lillard St- Panis, 2000), but these programs do not include the 
recommended RML estimation. So far, commonly available public domain 
software for multilevel analysis, such as MixReg (Hedeker & Gibbons, 1996) 
does not offer the necessary options. 

For classical meta-analysis, the program META (Schwarzer , 
1989) is freely available from the Internet location 
http://userpage.fu-berlin.de/health/meta.htm. It comes with a program 
manual that also explains the basic elements of meta-analysis. The” 
program MetaWin (Rosenberg, Adams & Gurevitch (2000) contains a 
limited weighted least squares regression option. As indicated earlier, the 
iterated maximum likelihood methods employed in multilevel analysis is 
generally more efficient. 
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The major interest in intervention trials is often the estimation of 
intervention effects for individuals who actually receive the intervention. 
However, some percentage of noncompliance is usually unavoidable in 
intervention trials when dealing with human participants. In addition, it is 
not easy to control compliance behavior of individuals who may decide not 
to participate even with highly attractive incentives. Noncompliance is a 
major threat to obtaining power to detect intervention effects (Jo, 2002), 
and may bias the estimation of intervention effects if not handled carefully 
in the statistical analysis. 

ITT (intent to treat) analysis is a standard way to estimate 
intervention effects in randomized experimental designs in the presence 
of noncompliance. In this method, average outcomes are compared by 
randomized groups, ignoring the existence of noncompliance. Because 
the standard ITT analysis often underestimates intervention effects in the 
presence of noncompliance, the possibility of estimating intervention effects 
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only for the individuals who actually receive the intervention has been 
explored using CACE (complier average causal effect) estimation (Angrist, 
Imbens, & Rubin, 1996; Bloom, 1984; Imbens & Rubin, 1997; Little & 
Yau, 1998). In CACE approaches, compliers and noncompliers are allowed 
to be different in various aspects and are best thought of as belonging to 
different subpopulations. For example, people with higher motivation or a 
special interest in the intervention will be more likely to comply with the 
intervention. 

In the CACE estimation method, the causal effect of intervention is 
usually defined based on a single outcome observed after intervention, 
treating the baseline measure as one of the covariates (i.e., ANCOVA 
approach). However, when an intervention study is focused on the 
long-term effect of the intervention, the outcome is often measured several 
times at specific intervals. In this case, considering the longitudinal nature 
of intervention studies, it is also possible, and perhaps more natural, to 
define the intervention effect based on a trend or a growth trajectory of 
individuals. This study demonstrates CACE estimation based on latent 
t,rajectories over time in a growth mixture modeling framework. 

One advantage of using a growth modeling framework is that the first, 
time point measure is considered as one of the outcome measures instead 
of as one of the covariates. This parameterization adds more flexibility in 
the interpretation of the results because initial status and growth rate of 
outcome measures are separated. For example, the influence of background 
variables can be estimated separately for initial status and growth rate of 
tJhe outcome measure. 

Another advantage of this model is that it utilizes not only covariate but 
also trajectory information, which often improves precision in estimating 
the compliance type of individuals. Including growth process in the 
estimation of CACE utilizes the idea of a general latent variable modeling 
framework where both categorical and continuous latent variables are 
incorporated (Muthkn, 2001a; Muthkn, 2001b, Muthkn & Muthkn, 
1998-2001). That is, latent variables that represent growth trajectories 
are continuous as in conventional structural equation models, whereas 
t,he latent variable that represents compliance status is categorical. To 
differentiate growth modeling with both categorical and continuous latent) 
variables from traditional growth modeling, the former will be called 
“growth mixture modeling” in this study. This study focuses specifically 
on random coefficient growth mixture modeling where individual variation 
is allowed within each class or compliance status. In contrast, individual 
variation is not allowed within each growth trajectory class in a group-based 
modeling approach (Nagin, 1999). 

This study also explores the possibility of using exploratory growth 
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mixture analysis as a data mining tool that precedes growth mixture 
CACE analysis. Growth mixture CACE analysis is considered confirmatory 
because compliance type is known for individuals who are assigned to the 
intervention condition. In exploratory growth mixture analysis, individuals 
are classified into several classes without observed class information 
(training data), and efficiency of classification can often be improved by 
utilizing the fact that certain trends are present in longitudinal data 
(Muthen, Brown, Khoo, Yang, & Jo, 1997; Muthen et al., in press; Muthen 
& Shedden, 1999). When the intervention condition includes many sessions, 
or doses, one needs to determine the appropriate cutpoints that separate 
individuals into different classes based on level of compliance. Exploratory 
growth mixture analysis can be useful in determining cutpoints at the 
planning stage of growth mixture CACE analysis. 

This chapter is organized as follows. Section 1 describes the estimation 
method using the ML-EM algorithm and defines model assumptions in the 
estimation of CACE in this study. Section 2 demonstrates the efficiency of 
CACE estimation in growth mixture modeling through simulation studies. 
Section 3 demonstrates how exploratory and confirmatory growth mixture 
analyses can be used in studying unknown subpopulations using the Johns 
Hopkins Preventive Intervention Study in Baltimore Public Schools as an 
example. Section 4 concludes with discussion. 

ESTIMATING DIFFERENTIAL EFFECTS OF 
INTERVENTIONS 

Model assumptions 

The CACE models used in this study are based on statistical assumptions 
in line with Rubin’s causal model. In Rubin’s causal model approach, 
the possibility of statistical causal inference is built based on the effect of 
treatment, assignment at the individual level (Holland, 1986; Rubin, 1974, 
1978, 1980). Stable unit treatment value (SUTVA) implies that potential 
outcomes for each person are unrelated to the treatment status of other 
individuals (Rubin, 1978, 1980, 1990). 

SUTVA and randomization in the study provide a statistical means of 
causal inference at the population level. Based on these assumptions, four 
types of subpopulations can be defined by classifying the potential behavior 
t,ypes of the subjects. Angrist et al. (1996) labeled the four categories as 
complier, never-taker, defier, and always-taker based on assignment and 
receipt of treatment. Compliers are subjects who do what they are assigned 
to do. Never-takers are subject,s who do not receive the treatment even if 
they are assigned to the treatment condition. Defiers are the subjects who 
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do the opposite of what they are assigned to do. Always-takers are the 
subjects who always receive the treatment no matter which condition they 
are assigned. Among these four kinds of possible compliance types, the 
current study assumes only two types of compliance and eliminates the 
possibility of defiers and always-takers. The assumption of monotonicity 
(Imbens & Angrist, 1994) excludes the possibility of having defiers. In 
addition, the current study assumes that there are no always-takers, which 
is the case when study participants are prohibited from receiving a different 
intervention condition than the one to which they were assigned as in the 
real data examples shown in later sections. However, unlike monotonicity, 
t)he assumption of having no always-takers is not critical in estimating the 
CACE and can be relaxed depending on the situation. 

Unlike ITT analysis, CACE analysis involves methodological 
complexities due to the missingness of compliance information among 
control condition individuals. In conventional CACE approaches, it is 
assumed that the outcome is independent of the treatment assignment, 
for never-takers and always-takers (the exclusion restriction assumption, 
Angrist et al., 1996). This assumption plays a critical role in simplifying 
methodological difficulties involved in CACE approaches. Under this 
assumption, treatment effects are estimated for compliers, but are fixed 
at, zero for the rest. However, this assumption can be unrealistic in some 
situations (Hirano, Imbens, Rubin, & Zhou, 2000; Jo, in press-a, b). In the 
.Johns Hopkins Preventive Intervention Study example shown in this study, 
it, seems more reasonable to dichotomize individuals as low compliers and 
high compliers than as never-takers and compliers. In this case, it is possible 
that the intervention might have a weaker impact on low compliers, but it 
could not be guaranteed that the intervention has no effect at all, because 
low compliers were also exposed to the intervention. 

Growth mixture CACE modeling using ML-EM estimation 
method 

This study focuses on average causal effect estimation in the random 
coefficient growth mixture modeling framework. In this study, CACE 
estimation is used to refer to a more general method that differentiates 
average causal effect at varying levels of compliance, although the CACE 
method usually means causal effect estimation that is limited only t,o 
compliers. 

In growth mixture analysis, the observed outcome variable can be 
expressed in terms of continuous latent variables that capture growth 
trajectories over time. Consider a single outcome variable y for individual 
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i at time point t, 
Yit = Iik xzt + Sik A% + fit, (64 

where latent categorical variable c has K levels of compliance status (k = 
1, 2, . ..) 10. Compliance status c is observed in the intervention group and 
latent (missing) in the control group. Variable ci = (cii , ci2, . . . . cik) has 
a multinomial distribution, where cik = 1 if individual i belongs to class 
k and zero otherwise. The categorical latent variable approach may also 
be referred to as finite mixture modeling where sampling units consist of 
subpopulations that might have separate distributions and different model 
parameters (McLachlan & Peel, 2000; Titterington, Smith, & Makov, 1985). 
In finite mixture modeling, the number of mixture components is assumed 
to be known and fixed. For example, K = 2 in simulation studies and real 
data examples shown in later sections. Here, Iik and sik are individually 
varying continuous latent variables representing initial level of outcome and 
growth rat e s ope) ( 1 respectively. The time scores for the initial status (XZ~) 
are equal across all time points (usually fixed at 1.0) because initial status 
does not change over time. The time scores for the growth rate (AS,) are 
0, 1, 2,.. .) T, representing linear growth over time, which may be fixed at, 
different values depending on the distance between the measuring points. 
And hit represents a normally distributed residual at time point t with zero 
mean and variance ot2. 

Individual variation in growth parameters Iik and sil, within compliance 
class k can be expressed as 

Iik = Ik+yZ,xi+~Zik, (6.2) 

sik = Sk -f-ysz xi+TZk zi+~sik~ (6.3) 

where II, and Sk represent intercept parameters of initial status and Slope 

for each compliance class k; x represents a vector of observed covariates, and 
yzX and ysa: are regression coefficient parameters. And ~zil, and ~Sik are 
normally distributed residuals with zero means and variances $)Ik, $)sk, and 
a covariance $ZSk. The Zi is a binary variable that represents intervention 
assignment, where Zi = 1 if individual i is assigned to the intervention 
condition and zero if individual i is assigned to the control condition. Based 
on randomization, growth rate (slope) is regressed on Zi, but initial status 
is not regressed on zi. The yzk represents a mean shift in the slope when 
subject i belongs to the intervention condition, and is allowed to vary across 
different compliance status. In this study, intervention effect is defined as 
t,he difference between intervention and control conditions in the outcome 
measure at the final time point. Based on Equations 6.1, 6.2 and 6.3, the 
avera,ge causal effect (ACE) of an intervention assignment can be defined 
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at compliance level Ic at the last time point (i.e., Xst = T) as 

ACEI, = YZk X T. P-w 

The class probability ri is allowed to vary as a function of covariates. 
When background variables are available, the multinomial logit model of 
7ri with a vector of covariates x is decribed as 

zogit(7ri) = p() + p1 xi, VW 

where xi is a Zc dimensional VeCtOr (?ril, 7rip, . . . . nil{)', rik = P(Cil; = 

1 1 xi), and logit = [&(w/w& Zog(m/~izc), .-, Zog(qzc&w)]'. 
The PO are K - 1 dimensional logit intercepts, and pi are multinomial logit 
regression coefficient parameters. The multinomial logit regression also 
provides information about the characteristics of individuals with different 
compliance levels. 

CACE analyses reported in this study were carried out by the MpZus 
program (Muthen & Muthen, 1998-2001) using maximum likelihood 
est,imation via the EM algorithm (Dempster, Laird, & Rubin, 1977; Little St 
Rubin, 1987; McLachlan & Krishnan, 1997; Tanner, 1996). In the ML-EM 
method, the unknown compliance status (c) is handled as missing data. 

Consider 
components 

the sampling distribution of y and x from the mixture of Ic 

g(y, X 1 8, n) = 5 nkf(y, x 1 h->, 

k=l 

(W 

where y and x represent observed data, 8 represents model parameters, 
and n!, represents the proportion of the population from component k with 
xF=, rk = 1. The probability 7t is the parameter that determines the 
distribution of c. The observed-data log likelihood is 

LogL = 2 zog(yi 1 Xi). 
i=l 

(6.7) 

Given the formulation of the proposed growth mixture CACE model, the 
complete-data log likelihood can be written as 

LogL, = 

where 

k PO9ki I Xi> + ZO9bi I Ci,Xi> + ~09(Yi I Vi)], 
i=l 

2 ZOg(Ci 1 Xi) = 2 5 cik log Tik. 

i=l ix1 k=l 

(6.8) 

(6.9) 
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In Equations 6.8 and 6.9, c represents categorical latent compliance class, 
and 77 represents continuous latent growth factors (i.e., I and S). 

Maximum likelihood estimation using the EM algorithm considers 
complete-data log likelihood shown in Equation 6.8. The E step computes 
the expected values of the complete data-sufficient statistics, given data and 
current parameter estimates. Compliance status c is considered as missing 
data in this step. The conditional distribution of c, given the observed data 
and the current value of model parameter estimates 8, is given by 

f(c 1 Y, x, 6) = fi f(Ci I Yi, xi, 0). (6.10) 
i=l 

The E step applies to both confirmatory (i.e., CACE) and exploratory 
growth mi x t ure analyses, but the difference is that growth mixture CACE 
analysis uses information about already-known class membership (i.e., 
compliance status) in the intervention condition. Therefore, the first step 
of the implentation is easily modified with a known value of the indicator 
Cik. 

The M step computes t8he complete data ML estimates with complet,e 
dat,a-sufficient statistics replaced by their estimates from the E step. This 
procedure continues until it) reaches optimal stat,us. The M step maximizes 

with respect to model parameters. The &k is the posterior class probability 
of individual i, conditioning on observed data and model parameters, where 
rib = P(Cik 1 Xi). 

The identifiability and precision of mixture and growth mixture models 
used for CACE analyses in this study are based on observed compliance 
class membership in the intervention condition (training data) and various 
sources of auxilliary information such as from covariates and growth 
trajectories. For more details about identifiability and efficiency of extended 
CACE models, see Jo (in press-a). Parametric standard errors are 
computed from the information matrix of the ML estimator using both the 
first,- and the second-order derivatives under the assumption of normally 
distributed outcomes. For more details about estimation procedures in 
growth mixture modeling, see Muthen & Muthkn (199%2001), Muth& & 
Shedden (1999)) and Muthkn et al. (in press). 
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CACE ESTIMATION USING THE OBSERVED AND 
LATENT VARIABLES: SIMULATION STUDIES 

In longitudinal intervention studies, the effect of the intervention can be 
defined as the difference between the intervention and the control group 
in the observed outcome measured at the last time point, conditioning on 
the outcome measured at the first time point (ANCOVA approach). An 
alternative is to define the intervention effect based on latent variables 
that capture growth trajectories of individuals (growth model approach) as 
described in the previous section. This section demonstrates the quality of 
average causal effect estimates based on observed variable (ANCOVA) and 
latent variable (growth model) approaches. The simulation studies shown 
in this section assume that there are two underlying subpopulations with 
different compliance behaviors (K = 2). One subpopulation consists of 
individuals who would show a high level of compliance if assigned to the 
intervention condition (high compliers). The other subpopulation consists 
of individuals who would show a low level of compliance if assigned to the 
intervention condition (low compliers). The ratio of high and low compliers 
is 50:50, and the ratio of individuals assigned to the intervention and control 
conditions is 50:50. It is assumed that the intervention assignment is binary 
(intervention condition if 2 = 1, control condition if 2 = 0) and has 
differential effects on high compliers and low compliers. The true parameter 
values, effect size, and sample size are chosen based on t,he Johns Hopkins 
Public School Preventive Intervention Study example that is shown in a 
later section. Covariates are not included in this setting. 

The true initial status mean (Ih) and the true mean growth rate (St,) 
for high compliers are 

The true initial status mean (I[) and the true mean growth rate (Sl) for 
low compliers are 

( 4 ) = ( ii:;: ) . 

The true additional growth rates for high compliers (yZh) and low 
compliers (yZl) when they are assigned to the intervention condition are 
TZh = 0.20, yzl = -0.10, where the positive value of TZh represents a 
desirable effect of the intervention for high compliers, and the negative 
value of yzl represents a negative effect of the intervention for low compliers, 
assuming that positive growth of the outcome is desirable. 
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The true initial status variance is the same for high compliers and low 
compliers ($J~~ = $11 = 0.64), and the true growth rate residual variance 
is the same for high compliers and low compliers (tiSh = qSl = 0.0625). 
The true residual covariance between initial status and growth rate is zero 
for both high compliers and low compliers (G1sh = qISl = 0), but is not 
fixed at zero in the analyses. Both variances and covariances are assumed 
to be equal across high and low compliers in the analyses. However, in real 
data examples shown in a later section, both variances and covariances are 
allowed to vary across high and low compliers. 

It is assumed in the simulation setting that the outcome is measured 
four times with equal distances and has a linear trend over time. The 
initial status does not change over time. Given that, the fixed time scores 
for initial status and growth rate used in both data generation and growth 
mixture CACE analyses are 

1 0 

( h, kst ) = ; ; - 

i i 1 3 

The true 
measures are 

residual variances and covariances of observed out come 

where true residual covariances are zero, and are also assumed to be zero 
in the analyses. The true residual variances of outcome measures result in 
R2 of 0.64 at the first time point, and 0.55 at the last time point. 

The model used for data generation and the CACE analysis using the 
latent variable approach can be described as 

Yit = Iik AIt + sik ASt + tit, (6.12) 

Iik = Ik + <Iik, (6.13) 

sik = Sk +yzk zi +cSik, (6.14) 

where the assignment of an intervention has a differential effect t-d On the 
growth rate of high compliers and low compliers. According to Equation 
6.4, yzk can be translated into the intervention effect at the last time point 
(i.e., yzk x 3). 
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Given that K = 2 and there are no covariates, the multinomial logit 
model can be simplified as 

P(i E h) = rhi, 

P(i E 1) = 1 - nhi = rli, 

logit(nhi) = [30, (6.15) 

where rhi denotes the probability of being a high complier, Eli denotes the 
probability of being a low complier, and PO represents a logit intercept that 
determines the ratio of high and low compliers. The true logit intercept is 
0.0 (i.e., 50:50). 

The model used for the CACE analysis based only on the observed 
variables (ANCOVA approach) can be expressed as 

!/id = Qk + AZ yjil + rZk Zi + Ei4, (6.16) 

where the differential effect of intervention (rzk) is defined based on the 
outcome measured at the last time point (yi4) conditioning on the outcome 
measured at the first time point (yil). Here, the baseline outcome measure 
(yil) is considered as a covariate. 

In the ANCOVA approach, the baseline outcome measure (yil) is also 
used as a predictor of compliance. Treating yil as a covariate, the logit 
model can be described as 

P(i E h ( Yil) = rhi, 
P(i E I 1 yil) = 1 - ‘Khi = rli, 

lOgit(nhi) = PO + p, yli, (6.17) 

where the logit coefficient p1 shows the level of association between the 
baseline outcome measure and compliance behavior. 

The simulation results presented in Table 6.1 are based on 500 
replications with a sample size of 300. Coverage is defined as the proportion 
of replications out of 500 replications where the true intervention effects 
for high and low compliers are covered by the 95% confidence intervals 
of intervention effect estimates. Power is defined as the proportion of 
replications out of 500 replications where the intervention effect estimate is 
significantly different from zero (cu = .05). 

It is demonstrated in Table 6.1 that both the ANCOVA and growth 
model approaches provide average intervention effect estimates with 
reasonable quality, considering that compliance information is missing for 
50% of individuals (i.e., control condition individuals) and the sample size 
is fairly small (i.e., JJ = 300). Simulation results show that the quality 



TABLE 6.1 

CACE Analyses Using the Observed and Latent Variable Approaches: The 

Quality of Average Intervention Effect Estimates at the Last Time Point 

Intervention Eflect 

High Complier ( I’z~ ) 

Low Complier (Pzl) 

Coverage (High Complier) 

Coverage (Low Complier) 

Power (High Complier) 

Power (Low Complier) 

Intervention Eflect 

High Complier (yZh x 3) 

Low Complier (yzl x 3 ) 

Coverage (High Complier) 

Coverage (Low Complier) 

Power (High Complier) 

Power (Low Complier) 

Observed Variable (ANCOVA) Approach 

True Value Avg Estimate Avg SE 

0.60 0.604 0.292 

-0.30 -0.280 0.291 

0.930 

0.932 

0.560 

0.226 

Latent Variable (Growth Model) Approach 

True Value Avg Estimate Avg SE 

0.60 0.606 0.259 

-0.30 -0.286 0.260 

0.940 

0.938 

0.657 

0.248 

122 
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of estimates is close between the two models in terms of point estimates 
and standard errors, implying comparability of the two models. The 
growth mod e approach, however, shows slightly better point estimates and 1 
standard errors than the ANCOVA approach. Although the gap between 
the two approaches in point estimates and standard errors is not dramatic, 
it still results in a noticeable difference between the two methods in terms 
of statistical power to detect intervention effects (e.g., 0.657 vs. 0.560 for 
high compliers). In the ANCOVA approach, only the outcome measures at 
t,he first (91) and the last time point (ye) are considered, and the outcome 
measures in between (y/2, ~3) are ignored. The loss in information may lead 
to a lower precision in the ANCOVA approach. 

It, has been demonstrated in previous research that average causal effects 
of interventions can be identified for more than one subpopulation with a 
satisfactory level of accuracy based on auxiliary information from covariates 
(Jo, in press-a). Simulation results shown in Table 6.1 show that growth 
trajectories (in a latent variable form) can provide auxiliary information 
tflmt can be used for the same purpose. It is also shown that the growth 
model approach may improve precision of average causal effect estimates 
by handling measurement errors and by utilizing trajectory information. 

THE JOHNS HOPKINS PUBLIC SCHOOL 
PREVENTIVE INTERVENTION STUDY 

The Johns Hopkins Public School Preventive Intervention Study was 
conclucted by the Johns Hopkins University Preventive Intervention 
Research Center (JHU PIRC) in 1993 to 1994 (Ialongo et al., 1999). Based 
on the life course/social field framework as described by Iiellam and Rebok 
(1992), the Johns Hopkins PIRC preventive trial focused on successful 
adaptation to first grade as a means of improving social adaptational 
status over the life course. The study was designed to improve academic 
achievement and to reduce early behavioral problems of school children. 
Teachers and first-grade children were randomly assigned to intervention 
conditions. The control condition and the family-school partnership 
mtervention condition are compared in this example. In the intervention 
condition, parents were asked to implement 66 take-home activities related 
to literacy and matdhematics over a 6 month period. The intervention was 
provided over the first-grade school year (1993--1994), following a pretest 
assessment] in the early fall. The intervention impact was assessed in the 
spring of first (6 months from the pretest) and second (18 months from the 
pretest,) grades. In the spring of first, grade, 91.3% completed assessments, 
and in the spring of second grade, 88.5% completed assessments. 

A total sample size of 333 was analyzed after listwise deletion of 
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cases that had missingness in covariates and outcome variables. The 
two major outcome measures in the JHU PIRC preventive trial were 
academic achievement (CTBS mathematics and reading test scores) and 
the TOGA-R score (Teacher Observation of Classroom Adaptation-Revised; 
Werthamer-Larsson, Kellam, & Wheeler, 1991). The TOCA-R is designed 
to assess each child’s adequacy of performance on the core tasks in t,he 
classroom as rated by the teacher. Among various outcome measures, 
readiness to learn (or work) assessed in the spring of the second grade (18 
months from the pretest) is used as the outcome in this example. In the 
JHU PIRC preventive trial, readiness to learn does not represent acquisition 
of prerequisite knowledge or skills, but rather, being ready to exert effort 
to reach academic excellence. The readiness to learn scale ranges from 1 to 
6, and consists of TOCA-R items that measure whether a child completes 
assignments, puts forth effort, and works hard. Table 6.2 shows the sample 
statistics for the variables used in the analyses of this study. 

Intent to treat analysis using the ANCOVA approach 

Standard ITT analysis provides an overall average intervention effect 
estimate by comparing the outcome based on assignment of intervention, 
but8 ignoring the aspect of the receipt of the intervention. That is. it 
assumes that children of parents with a low compliance rate receive the same 
effects from the intervention as children of parents with a high compliance 
rate. Table 6.3 shows the results from the JHU PIRC preventive trial data 
analysis using the ITT analysis. In this analysis, the overall effect of the 
intervention is estimated based on the outcome measured at the last time 
point, (Ready3). The outcome measured at the first time point (Readyl) is 
used as one of the covariates, and the outcome measured at the second time 
point (Ready2) is not considered in the analysis (ANCOVA approach). 

There is a positive effect of the intervention on the level of children’s 
readiness to learn (intervention effect = 0.316, effect size = 0.212). The 
efiect size of the intervention was calculated by dividing the outcome 
difference in the intervention and the control condition means by the square 
root of the variance pooled across the control and intervention groups. 
In t,he ITT analysis, baseline readiness to learn (Readyl) and free lunch 
program were found to be significant predictors of the level of readiness to 
learn. Children had a higher level of readiness at tXhe last time point if their 
baseline readiness level was higher, and a lower level of readiness if their 
SES background level was low. 



TABLE 6.2 

*Johns Hopkins PIRC: Sample Statistics (N=333) 

Variable Mean SD Description 

z 0.52 0.50 

Ready1 

Ready2 

Ready3 4.33 1.49 

Male 0.49 0.50 

Lunch 0.60 0.49 

Unemployed 0.14 0.34 

Married 0.47 0.50 

Limited Health 0.10 0.30 

Health 3.83 1.03 

Age 

4.59 1.32 

4.48 1.39 

2.97 1.42 Parent’s age in 5-year brackets 

Intervention assignment (0 = control, 1 = in- 

tervention) 

TOCA mean readiness at the pretest 

TOCA mean readiness 6 months from the 

pretest 

TOCA mean readiness 18 months from the 

pretest 

Student’s gender (0 = female, 1 = male) 

Free lunch program (0 = no, 1 = yes) 

Parent’s employment status (0 = no, 1 = yes) 

Parent’s marital status (0 = no, 1 = yes) 

Parent limited by health problem (0 = no, 1 

= yes) 

Parent’s overall health (1 = poor, 5 = excel- 

lent) 

125 
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TABLE 6.3 

Johns Hopkins PIRC: Intent to Treat Analysis 

Parameter Estimate SE 

Intervention effect 

Ready3 Regressed on Covariates 

Ready1 

Male 

Free Lunch 

Unemployed 

Married 

Limited Health 

Health 

A fY 

Intercept 

02 

0.316 

0.505 0.060 

-0.243 0.143 

-0.410 0.156 

-0.348 0.236 

-0.288 0.147 

-0.074 0.236 

-0.062 0.077 

-0.037 0.050 

2.742 0.503 

1.636 0.112 

0.147 

CACE analysis using the ANCOVA approach 

In t)he ITT analysis, intervention effect may be underestimated for high 
compliers due to the inclusion of low compliers who might not have been 
exposed enough to benefit from the intervention. In this situation, the 
possible bias can be avoided by taking into account the difference between 
the two subpopulations in the analysis. Table 6.4 shows the results from 
the CACE analysis, where the differential effect of intervention is estimated 
for high compliers and low compliers. As in t]he ITT analysis, intervention 
effect is estimated based only on observed variables (ANCOVA approach). 
The same set of covariates used in the ITT analysis are used as predictors of 
the outcome, and also as predictors of compliance. The model used for this 
CACE analysis is the same as the model described in Equations 6.16 and 
6.1$, with the exception that more covariates are included in this example 
in addition to the baseline outcome measure. 

Table 6.4 shows that the intervention had a positive impact on the 



TABLE 6.4 

*Johns Hopkins PIRC: CACE Analysis Using the Observed Variable (ANCOVA) 

Approach 

Parameter Estimate SE 

Intervention Effect 

High Complier (Tz~) 

Low Complier (rzl) 

Ready3 Regressed on Covariates 

Ready0 

Male 

Free Lunch 

Unemployed 

Married 

Limited Health 

Health 

AiF 
High Comp Intercept (cyh) 

Low Comp Intercept (~1) 

c$ 

c Regressed on Covariates (High vs. 

Ready0 

Male 

Free Lunch 

Unemployed 

Married 

Limited Health 

Health 

Age 

Logit Intercept (8,) 

0.477 

-0.103 

0.524 

-0.246 

-0.419 

-0.355 

-0.276 

-0.078 

-0.059 

-0.048 

2.523 

3.093 

1.606 

Low Compliers) 

0.376 

-0.021 

-0.235 

-0.162 

0.095 

-0.266 

0.009 

-0.221 

0.059 

0.221 

0.530 

0.060 

0.145 

0.157 

0.238 

0.147 

0.243 

0.079 

0.051 

0.523 

0.723 

0.118 

0.130 

0.350 

0.385 

0.492 

0.347 

0.720 

0.191 

0.109 

1.116 

137 
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level of readiness for children with parents with a high compliance rate 
(intervention effect = 0.477, effect size = 0.320), and the magnitude of the 
effect was larger than that of the overall effect in the ITT method. It also 
shows a slightly negative effect of the intervention for children of parents 
with a low compliance rate, but the magnitude of the effect is very small 
and insignificant (intervention effect = -0.103, effect size = -0.069). Effect 
size was calculated based on a pooled standard deviation as in the ITT 
analysis. This approach was chosen for easier comparison across different 
estimation methods. In this analysis, baseline readiness to learn (Readyl) 
and free lunch program were found to be significant predictors of the level 
of readiness to learn. Children had a higher level of readiness at the 
last time point if their baseline readiness level was higher, and a lower 
level of readiness if their SES background level was low. Initial level of 
child’s readiness and parent’s age were found to be significant predictors of 
parent’s compliance behavior. Parents complied more if the child’s baseline 
readiness level was higher. Younger parents also complied more. 

For the CACE analysis shown in Table 6.4, individuals were 
dichotomized into either the low or the high complier category based on 
the level of completeness in home learning activities. For easier comparison, 
the same cutpoint is used as that in the CACE analysis using the latent 
variable approach that is shown in a later section. For illustration purposes, 
compliance was dichotomized in this example; but note that sensitivity of 
the CACE estimate to different thresholds needs to be carefully examined 
in practice (West & Sagarin, 2000). The following section shows how the 
cutpoint was decided in this study for CACE analyses. 

Exploratory growth mixture analysis 

This section examines the possibility of using exploratory growth mixture 
analysis as a data-mining tool that precedes CACE analysis using mixture 
and growth mixture models. In randomized intervention trials, the 
intervention condition often includes many sessions, or doses. One way 
t,o model compliance behavior in this situation is to treat compliance as a 
continuous variable. Holland (1988) proposed ALICE (additive linearly 
constant effects) model, where the effect of intervention is estimated 
based on continuous compliance. The ALICE model requires several 
strong assumptions, which often limits the applicability of the model in 
practice. For example, it is assumed in the ALICE model that the effect of 
intervention linearly increases as the level of compliance increases. In the 
.JHU PIRC preventive trial, there is a large variation in completed number 
of intervention activities (range 0 to 66), and children may not get any 
benefit from the intervention unless parents complete a sufficient number 
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of activities. Over reporting of compliance level is also expected, because 
parents self-report their level of completion in intervention activities. In this 
situation, the intervention may not show any desirable effects unless parents 
report a quite high level of compliance. Another way to model compliance 
behavior in this situation is to use the dose-response curve approach (Efron 
& Feldman, 1991), where the effect of intervention can be estimated 
without assuming a linear relationship between intervention effects and 
compliance. However, this approach requires successful double- blind 
experiments, which are not often applicable especially in psychosocial 
intervention trials. The third way to model compliance behavior in this 
situation is to treat compliance as a categorical variable without assuming 
linearity. The difficulty of this approach is in deciding the appropriate 
number of categories and thresholds that separate individuals into different 
compliance categories. 

The current study takes the third approach in analyzing the Johns 
Hopkins PIRC preventive trial data, and shows that exploratory growth 
mixture analysis can be useful in determining cutpoints at the planning 
stage of CACE analysis. To estimate the differential effect of the 
intervention for those who completed enough activities and for those 
who did not, the compliance measure is dichotomized in this example. 
Exploratory growth mixture analysis is conducted for control group 
individuals, which provides the information about the trajectory shape and 
the proportion of subgroups in the absence of intervention (Muthen et al., in 
press). The confirmatory mixture analysis (i.e., CACE analysis) following 
the exploratory analysis is based on the idea that subpopulations that are 
already different in the absence of intervention will be more likely to differ 
in terms of compliance behavior. Consequently, it is also expected that the 
effect of intervention will differ for these heterogeneous subpopulations. 

The model used for exploratory growth mixture analysis is the same as 
the model described in Equations 6.1, 6.2, 6.3, and 6.5 except that 7Zk Zi is 
removed from Equation 6.2 in the exploratory analysis. The same covariates 
used in CACE analyses in the previous section and in the following section 
are used in the exploratory growth mixture analysis. However, note that 
the model used for exploratory analysis is significantly different from the 
model used for mixture and growth mixture CACE analyses because the 
intervention group is not included in the model and potential level of 
compliance is not considered in estimating class membership of individuals. 
Figure 6.1 shows estimated trajectories suggested by two-class exploratory 
growth mixture analysis for the control group. 

Figure 6.1 shows that the level of readiness decreases over time for the 
majority of children (69.2%)) whose baseline readiness level is high. It also 
shows that the level of readiness increases over time for the other class 
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FIG. 6.1. Estimated mean curves of readiness to learn in the control group 
using exploratory growth mixture analysis. 

of children (30.8%)) whose baseline readiness level is low. Based on the 
proportion of subpopulations from the exploratory analysis, parents who 
completed 35 or more of the take-home learning activities were categorized 
as high compliers (71% of parents), and parents who completed fewer than 
35 take-home learning activities were categorized as low compliers (29% of 
parents). Four parents did not comply at all and were included in the low 
complier category in this example. Parents in the control condition could 
not be dichotomized because their compliance information was missing. 
Figure 6.2 shows observed mean curves of readiness to learn based on this 
dichotomization. 

CACE analysis using the growth model approach 

This section demonstrates the estimation of intervention effects using the 
growth mixture modeling approach, where the effect of intervention is 
defined based on a trend or a growth trajectory of individuals. The growth 
mixture model used for CACE analysis is the same as the model described 
in Equations 6.1, 6.2, 6.3, and 6.5. The same covariates used in the 
CACE analysis using the ANCOVA approach and the exploratory growth 
mixture analysis are used. Based on exploratory growth mixture analysis 
of the control group and observed mean curves shown in Figure 6.2, linear 
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FIG. 6.2. Observed mean curves of readiness to learn. 

trajectory was found to be appropriate for the CACE analysis using growth 
model approach. In the JHU PIRC preventive trial example, the outcome 
was measured in fall of the first grade, spring of the first grade, and spring of 
the second grade (Readyl, Ready2, Ready3). Given the distances between 
t,ime points, the time scores used to capture a linear trend over time are 
0, 1, and 3. Therefore, the average causal effect of intervention assignment 
at the last time point is defined as 7Zh x 3 for high compliers and yzl x 3 
for low compliers (see Equation 6.4). Table 6.5 shows t)he results from the 
CACE analysis using the growth model approach. 

Table 6.5 shows that the intervention had a positive impact on readiness 
of children if parents showed a high compliance rate (intervention effect = 
0.477, effect size = 0.320). For children with highly complying parents, 
the level of readiness to learn decreases significantly less compared to 
that of control condition children with parents who could have been high 
compliers if they have had been assigned to the intervention condition. The 
intervention effect for high compliers in the CACE analysis using the growth 
model approach has the same magnitude as in the CACE analysis using the 
ANCOVA approach (see Table 6.4), but the confidence interval is slightly 
tighter than in the CACE analysis using the ANCOVA approach. Table 
6.5 also shows a slightly negative but insignificant effect of the intervention 
for children of parents with a low compliance rate (intervention effect, = 



TABLE 6.5 
-Johns Hopkins PIRC: CACE Analysis Using the Latent Variable (Growth 

Model) Approach 

Parameter Estimate SE 

Intervention Effect 
High Complier (7Zh x 3) 0.477 
Low Complier (yzl x 3) -0.150 

Initial Status Regressed on Covariates 
Male -0.259 
Free Lunch -0.244 
Unemployed -0.068 
Married 0.076 
Limited Health 0.368 
Health 0.041 
,4ge 0.058 
High Comp Intercept (Ih) 4.682 
Low Comp Intercept (Il) 3.908 

4l’ I h 0.936 
4’11 1.608 
Growth Rate Regressed on Covariates 
Male -0.033 
Free Lunch -0.092 
Unemployed -0.108 
Married -0.105 
Limited Health -0.093 
Health -0.025 
Age -0.026 
High Comp Intercept (Sh) 0.118 
Low Comp Intercept (Sl) 0.424 
ksh 0.064 
4 Sl 0.151 
4 ISh -0.048 
$1 IS1 -0.227 
q2 0.444 
fJ22 0.708 
cJs2 0.717 
c Regressed on Covariates (High vs. Low Compliers) 
Male -0.175 
Free Lunch -0.388 
Unemployed -0.217 
Married 0.102 
Limited Health 0.042 
Health 0.029 
Age -0.205 
Logit Intercept (PO) 1.774 

0.186 
0.393 

0.134 
0.146 
0.200 
0.138 
0.254 
0.078 
0.047 
0.420 
0.427 
0.139 
0.253 

0.054 
0.057 
0.091 
0.055 
0.101 
0.031 
0.019 
0.158 
0.208 
0.037 
0.055 
0.051 
0.106 
0.118 
0.080 
0.216 

0.324 
0.352 
0.457 
0.331 
0.621 
0.171 
0.106 
0.874 

132 
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-0.150, effect size = -0.101). 
The parameterization used in the growth model approach adds more 

flexibility in the interpretation of the CACE analysis than that used in 
the ANCOVA approach because initial status (I) and growth rate (S) 
are separated. For example, the influence of background variables can be 
estimated separately for initial level of readiness and change of readiness. 
In the CACE analysis using the ANCOVA approach, child’s gender and 
free lunch program were found to be significant predictors of the outcome. 
However, these variables are not significant predictors when initial status 
(I) and growth rate (S) are separated as shown in Table 6.5. It also shows 
in CACE analysis using the growth model approach that low compliers have 
more variation in initial status and growth rate conditioning on covariates. 
In the high compliance category, initial status and growth rate show very 
low correlation conditioning on covariates ($‘ISh = -0.048). However, in 
the low compliance category, initial status and growth rate are negatively 
correlated conditioning on covariates (Glrsl = -0.227). In addition to 
flexibility in modeling, another advantage of the growth model approach is 
t,hat it utilizes not only covariates but also trajectory information to identify 
class membership and to increase efficiency in estimating the differential 
effect of intervention. 

Figure 6.3 shows estimated mean readiness curves over time based on 
results in Table 6.5. Estimated mean outcomes can be calculated using 
Equations 6.1, 6.2 and 6.3 and weighted covariate means based on posterior 
class probability of each individual. This figure shows how readiness to learn 
changed over time depending on parents’ compliance level and intervention 
assignment. It shows that highly complying parents’ children had a higher 
level of readiness at the first grade, but the level could decrease to a point 
even lower than that of less involved parents’ children by the second grade 
unless the intervention was given. 

By comparing the mean trajectories of the control group in Fig. 6.3 to 
those in Fig. 6.1, it can be learned how closely subpopulations derived by 
exploratory and confirmatory growth mixture analyses are related. Mean 
trajectories in Figs. 6.1 and 6.3 show similarity in the sense that the level of 
readiness decreases over time for the majority of children (those with high 
baseline readiness), and the level of readiness increases over time for the 
other class of children (those with low baseline readiness). Mean trajectories 
in Figs. 6.1 and 6.3 also show discrepancy in the sense that trajectories in 
Fig. 6.1 have a larger difference at the initial point and a smaller difference 
at the last time point than those in Fig. 6.3. The disagreement is not 
surprising because the model used for exploratory analysis does not consider 
potential level of compliance, whereas CACE (confirmatory) analysis does. 
However, information from exploratory analysis is still valuable in deciding 
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FIG. 6.3. Estimated mean curves of readiness to learn: CACE analysis 
using the growth model approach. 

the cutpoint that is essential for CACE analysis, given that there are no 
established methods that can determine an optimal cutpoint. Without, 
information from exploratory growth mixture analysis, one may simply 
choose to categorize 50% of individuals into the high complier category 
and 50% of individuals into the low complier category. In the JHU PIRC 
preventive trial example, the CACE analysis based on the cutpoint from 
exploratory growth mixture analysis was found to be substantially better 
t,han the CACE analysis based on the simple categorization (i.e., 50:50) in 
terms of model fit, precision of intervention effect estimates, and precision 
in classification of individuals into different compliance categories. 

CONCLUSION 

This study demonstrated the estimation of differential average intervention 
effects at varying levels of compliance in a growth mixture modeling 
framework, where the effect of the intervention is defined based on a trend 
or a growth trajectory of individuals. It was demonstrated in simulation 
studies that the quality of intervention effect estimates in ANCOVA and 
growth model approaches is very close, implying comparability of the two 
approaches. The growth model approach, however, showed slightly better 
point, estimates and standard errors than did the ANCOVA approach. 
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Although the gap between the two approaches in point estimates and 
standard errors was not dramatic, it still resulted in a noticeable difference 
between the two methods in terms of statistical power to detect intervention 
effects. In the growth model approach, precision of average causal effect 
estimates can be improved by handling measurement errors and by utilizing 
trajectory information. In contrast, the ANCOVA approach only considers 
the outcome measured at the first and the last time point, and ignores the 
outcome measured in between. The loss in information may lead to lower 
precision in the ANCOVA approach. 

In the JHU PIRC preventive trial example shown in this study, the 
differential effect of intervention was estimated through CACE analysis 
using ANCOVA and growth model approaches. CACE analyses using 
ANCOVA and growth mixture approaches showed a larger effect of 
intervention for high compliers compared to the overall effect in the ITT 
method. The results were also compared between CACE analyses using 
the ANCOVA and growth model approaches. In line with simulation study 
results, it was shown in this example that ANCOVA and growth model 
approaches have close intervention effect estimates, but CACE analysis 
using the growth model approach showed a slightly tighter confidenctl 
interval than CACE analysis using the ANCOVA approach. It was also 
demonstrated that the parameterization of the growth model approach adcls 
more flexibility in modeling and provides richer information than that of 
the ANCOVA approach. 

In the JHU PIRC preventive trial example shown in this study, 
individuals were classified into two groups, and CACE models wercl 
identified based on various covariates and growth trajectories. Thtl 
exclusion restriction could not be assumed in this example, because low 
compliers were also exposed to the intervention. The intervention might, 
have had a weaker impact on low compliers, but it cannot be guaranteed 
that the intervention had no effect at all. Without assuming the exclusion 
restriction, the identifiability and the quality of CACE estimation relies on 
auxiliary information (Hirano et al., 2000; Jo, in press-a). Given that, it, 
is desirable to use multiple sources of information to improve accuracy and 
c#iciency in the estimation. In the JHU PIRC preventive trial example 
shown in this study, not only covariate information but also trajectory 
information was used to identify class membership and to increase efficiency 
in the estimation of differential intervention effects. Although previous 
research showed that it is possible to identify CACE models without 
assuming the exclusion restriction based on auxiliary information, very 
little is known about how this method should be applied in practice. Marc 
research is needed in this area to explore what kind of information and 
modeling approaches are more efficient and how stability of models should 
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be checked in extended versions of CACE models. 
This study also examined the possibility of using exploratory growth 

mixture analysis as a data-mining tool that precedes CACE analyses. 
The confirmatory mixture analysis (i.e., CACE analysis) following the 
exploratory mixture analysis is based on the idea that subpopulations that 
are already different in the absence of intervention will be more likely 
to differ in compliance behavior. How closely subpopulations derived by 
exploratory growth mixture analyses are related to subpopulations derived 
by CACE analysis varies in different situations. When the intervention 
condition includes many sessions, as in the JHU PIRC preventive trial, how 
individuals are categorized into different compliance classes is critical for 
CACE analysis. However, little is known about how to determine optimal 
cutpoints and number of cutpoints. Given that, exploratory growth mixture 
analysis can be useful at the planning stage of CACE analysis in the sense 
that it provides information about subpopulations that are heterogeneous 
in the absence of the intervention. Further research is needed in this area 
to establish a systematic 
mixture analyses. 

way of connecting exploratory and confirmatory 
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Multilevel models are useful in analyzing repeated measures data from 
behavioral research studies. Such studies often follow a cohort of individuals 
over time, resulting in repeated measurements on individuals. A cohort 
design may result in increased statistical power to detect effects of interest 
in a given set of participants (Maxwell, 1998) and allows examination of 
change in the study outcome over time, thus providing more complete 
modeling of human behavior (Bryk & Raudenbush, 1992). 

Repeated measurements within an individual are generally correlated. 
This correlation is sometimes called intraclass correlation (ICC). Such 
repeated measures data can be thought of as a special case of “nesting” 
of observations within individuals, resulting in a positive ICC. Multilevel 
models may be used to analyze data in the presence of intraclass correlation. 
Although statistical procedures for the analysis of repeated measures data 
such as ANOVA have been in existence for some time, most such procedures 
require regular, balanced measurement occasions. A multilevel model 
does not require this restrictive pattern and provides statistically efficient 
parameter estimation for any pattern of measurements (Goldstein, 1995). 
This is particularly useful in the analysis of data resulting from behavioral 
interventions. 

It is also common in follow-up studies for the repeated measurements 
to be obtained at irregular intervals, either by design or due to missing of 
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planned data collection. Data are particularly likely to be missing when 
the period of data collection extends over several years. Multilevel models 
are flexible enough to deal with such missingness of data without resorting 
to a listwise deletion or casewise deletion of records as may be required by 
standard analysis of variance techniques such as repeated measures ANOVA 
or ANCOVA (Bryk & Raudenbush, 1992; Goldstein, 1995). Deletion of 
data to achieve patterns that can be analyzed by standard techniques 
can lead to substantial loss of information and can introduce bias into 
the analysis. Supplementing data by imputation or other data modeling 
techniques to achieve desired patterns may also result in a biased analysis. 
Even the most computationally sophisticated and elegant of such techniques 
requires additional, and usually unverifiable, assumptions regarding the 
nature of the missing observations (Graham & Schafer, in press). 

Multilevel models can be effectively used almost without regard to the 
patterns of missingness, provided data are missing at random, that is, that 
missingness is not related to the variables being measured. Caution in 
interpretation is advised if missingness is associated with the magnitude of 
the outcome variable or a predictor variable, or if data are missing due to 
other nonrandom causes. 

MULTILEVEL REPEATED MEASURES MODEL 

Consider a data set with n repeated observations taken on m students. 
Let i = 1, 2, . . . n denote the occasion of observation and j = 1, 2, . . . m 
denote the student. The n repeated measurements taken on the jth student 
are likely to be correlated, thus violating the assumption of independence 
between observations. This type of repeated measures data can be modeled 
using a multilevel model in which the level of nesting occurs within the 
individual. 

Let yij denote the ith observation on the jth student for a normally 
distributed dependent variable. The variance in yij can be thought of as 
being partitioned into two parts, variation that occurs between repeated 
measurements but within a student and variation that occurs between 
st,udents. The following simple two-level multilevel model with a random 
intercept only expresses the dependent variable yij as a function of a single 
linear predictor 

!Jij = P,j + p1 aj 2. +(uj+eij) (7.1) 
where uz~j denotes the random error associated with the student level 
variation, and eij denotes the random error associated with the variation 
between repeated measurements for each student. In this model, the 
slope is not allowed to be random. Here, /3ej and pi are unknown 
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parameters denoting the mean and intercept, respectively, of the simple 
linear two-level model. Each of the error terms is assumed to be identically 
and independently normally distributed with mean 0 and variances equal 
to oU2 and ae2 at the student and occasion levels, respectively. It should 
be noted that methods exist for modeling more complex error distributions 
(see Goldstein, 1995), however, such models are beyond the scope of this 
chapter. In this model, the dependent variable y;j is expressed as a linear 
function of an intercept pOi and a single independent variable xij that, 
varies both by student and by repeated measurement. In this model, only 
the intercept is allowed to be random at the student level. This means that 
the trajectory of the repeated measurements for each student is assumed 
to have the same slope, PI, but the intercept, poj, is allowed to vary from 
student to student. Inclusion of a random intercept into the model makes it 
appropriate for modeling correlated data such as repeated measurements. 
By including a random intercept, both the variance between students as 
well as the variance between repeated observations is estimated. If the 
intercept were to be fixed, not allowed to be random, the multilevel model 
would be reduced to a simple least squares regression model in which all 
observations are assumed to be independent. Statistical models that assume 
independence of observations fail to take into account the correlations 
induced by grouping, or in this case repeated observations, often resulting 
in an underestimation of the standard error of the parameter estimates 
a,nd provide inefficient estimates of the parameters of interest (Goldstein. 
1995; Murray, 1998). Such inappropriate statistical inferences could have 
profound influence on scientific conclusions and on social and behavioral 
science policy (Rooney & Murray, 1996). 

Independent (predictor) variables, which vary only from student to 
student, remaining constant between measurement occasions, may also be 
entered into the model. For example, gender and ethnicity remain constant 
between measurement occasions but vary from student to student. 

In repeated measures studies, time is usually of particular importance. 
The model can be easily extended to include a measure of time as well as 
other relevant covariates. Let tij denote the time, on some appropriate 
scale, of the ith measurement on the jth student. Let xlj, . . . ,zPj, p = 
I, 2, . . . s where s is the number of independent variables, such as sex or 
race, that vary at the student level. The dependent variable can then be 
expressed as a function of time as well as of the additional covariates in t,he 
following way. 

The regression coefficients p2, . . . pP+lmeasure the average linear 
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relationships between the independent variables ~:lj , . . . CC~~ and the 
dependent variable. Here, the regression parameter p1 measures the change 
in the dependent variable yij per unit change in time, tij. 

In Equation 7.2 time is expressed as a continuous measure. The model 
can also be set up to incorporate a discrete measure of time. Let tij take 
on four discrete values (0, 1, 2, 3) denoting the baseline, first, second, 
and third follow-up occasions. Using the baseline as the referent category, 
indicator variables can be created in the following way to reflect the four 
measurement occasions. 

tlij = 1 if tij = 1; 0 otherwise 
tzij = 1 if tij = 2; 0 otherwise 
t3ij = 1 if tij = 3; 0 otherwise. 

The model in Equation 7.2 can then be rewritten to incorporate the 
discrete time measurement as follows 

Yij = Boj + Pl tlij +P2t2ij + P3t3ij (7.3) 
+ /3q Xlj + Pg X2j + * * ’ BP+3 Xpj + (uj + eij) - 

Here the estimated coefficients ,B1, p2, and p3 measure the relationship 
between the follow-up occasion and the dependent variable relative to the 
first measurement. For example, suppose we are modeling four repeated 
observations of percent body fat taken on students in a fitness program. A 
negative value for p1 would indicate that the average percent body fat of the 
st,udents was lower at second follow-up observation than at the first. This 
type of modeling, which incorporates a discrete measure of time, closely 
parallels the repeated measures ANOVA model. 

Such multilevel modeling provides a flexible method for analysis of 
repeated measures data in that no assumptions are made regarding the 
timing between observations nor the number of observations per individual. 
Further, multilevel models can be extended to encompass more complex 
data structures, such as repeated measurements taken on students nested 
within schools (Goldstein, 1995). 

Multilevel repeated measures models can also be fitted when the 
dependent variable has a distribution other than normal, such as binomial 
or Poisson. There are several estimation algorithms in common use for 
fitting such nonlinear random effects models. One such estimation method, 
known as penalized quasi-likelihood (PQL), provides relatively unbiased 
parameter estimates for many of the multilevel models commonly used 
(Goldstein & Rasbash, 1996). It should be noted that PQL estimation 
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methods are computationally intensive and sometimes fail to converge 
(Goldstein, 1995). In some cases, marginal quasi-likelihood (MQL) 
estimation can be used, which is less computationally intensive. However, 
caution should be exercised when using MQL as, under some conditions, 
it produces biased parameter estimates (Rodrigues & Goldman, 1995). 
In practice, often MQL can be used initially to generate reasonable 
starting values and the model will then converge using PQL. Software for 
fitting multilevel models has become increasingly more available. Some 
of the software packages currently available include, MLwiN (Multilevel 
Models Project - Woodhouse, Rasbash, Goldstein, Yang & Plewis, 
1996b), SAS PROC MIXED (SAS Institute, Inc., 2002), MIXREG and 
MIXOR (Hedeker and Gibbons, 1996), VACRL (Longford,l988), BUGS 
(Spiegelhalter, Thomas, Best, & Gilks, 1995), MLA (Busing & Van der 
Leeden, 1994) and HLM (Bryk, Raudenbush, Seltzer, & Congdon, 1988). 

EXAMPLE 1 

The Safer Choices study was an evaluation of a theory-based 
multicomponent HIV/STD and pregnancy prevention program designed to 
reduce sexual risk-taking behavior among high school students. The Safer 
Choices intervention was designed to reduce such behaviors by changing 
theory-derived psychosocial determinants of sexual behavior (Bandura, 
1986; Bartholomew, Parcel, & Kok, 1998; Basen-Engquist et al., 1999; 
Basen-Engquist & Parcel, 1992; Fishbein, Middlestadt, & Hitchcock, 1994). 
The evaluation of this project consisted of both a cohort assessed over 4 
years and three successive cross-sectional samples on the key hypothesized 
behaviors of influence and psychosocial mediators of behavior change. 

The Safer Choices intervention was implemented during the 1993 to 1994 
and 1994 to 1995 school years. The evaluation utilized a randomized trial 
involving 20 schools-10 schools in southeast Texas and 10 in northern 
California. Within each site, 5 of the schools were randomly assigned 
to the multiple component program (Safer Choices); the remaining half 
were assigned to the comparison program (a standard knowledge-based 
curriculum). To assess the effectiveness of the intervention, cohort data 
were collected at all 20 schools on a cohort of 3,869 students who were 
followed for 2 years. The data included one baseline measure taken prior 
to the intervention, and follow-up measures taken at 7, 19, and 31 months 
postintervention. Because randomization occurred at the school level and 
the repeated observation was the unit of analysis, data were clustered both 
within schools and within students. 

Multilevel modeling procedures were used to assess the average 
intervention effect in the cohort sample across time. Three-level models 
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were used, where level-l was the repeated measurement, level-2 the student, 
and level-3 the school. This type of modeling allowed estimation of the 
intervention effect over time and also allowed retention of students with 
incomplete follow-up information in the cohort. 

The model described in this example was used to evaluate the impact 
of Safer Choices intervention on the condom self-efficacy outcome. The 
measure of condom self-efficacy was defined to be the average of three 
Likert-type items (“totally sure” to “not sure at all”) expressing the 
respondents’ confidence that they could use a condom correctly and 
explain to their partner how to use a condom correctly (Chronbach’s 
ct = .61). By averaging the items, the scale took on a continuous 
range of values from 1, being the lowest score, to 3, being the highest. 
This variable was approximately normally distributed in this sample. 
Additional psychometric and validation findings based on confirmatory 
factor analyses concerning this and all other psychosocial scales are 
available in Basen-Engquist Parcel, and Kok, 1998; Basen-Engquist et al. 
(1999). 

The model used to evaluate the intervention’s impact on this outcome 
measure included the participants’ baseline responses on the outcome to 
adjust for imbalances between the intervention and control condition at 
baseline, group assignment (intervention or control), location (Texas or 
California), measurement occasion (first, second, or third follow-up), and 
a set of outcome-specific covariates. Outcome-specific covariates were 
included in the initial model if they were judged a priori to be both plausibly 
related to the outcome under consideration, and were unevenly distributed 
among the intervention and control conditions. They were retained in the 
final model if they remained statistically significant in the final stage of 
multilevel modeling. 

First, consider a simple multilevel model with the repeated observation 
as the unit of analysis. For simplicity, we first consider only the 
independent variables measuring the baseline measure of the outcome, 
follow-up observation number, and treatment condition. Because primary 
interest was in the impact of the intervention, the baseline measurement was 
used for the purposes of adjusting for differences in the dependent measure 
that, existed prior to implementation of the intervention. Therefore, it was 
included in the model as an independent variable. The baseline measure 
was not centered. A three-level model that allows the intercept for each 
school to be expressed as the sum of the average intercept (over all students 
and all schools) and two random deviations, one that varies within students 
and one that varies only between schools, can be expressed as follows. Let 
yijk denote the condom self-efficacy score at, the ith observation on the 
“” J student in the lath school. For observations within the ith student,, t,he 
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model is expressed as 

Yijk = pojk f Plxlijk + P2xZijk + P323ijk + P4x4k + &ijk, (7.4) 

where: 
zlijk = baseline score for the jth student 
X‘J,jk = 1 if it is the 2nd follow-up for jth student; 0 otherwise 
ZQijk = 1 if it is the 3rd follow-up for the jth student; 0 otherwise 
~4k = 1 if the school is in the treatment group; 0 otherwise 

and 
A o j k  = mean score for first follow-up for the ijth student 
/Y1 = effect of baseline score 
fiz = effect of 2nd follow-up 
p3 = effect of 3rd follow-up 
p4 = intervention effect (mean across time and over all schools) 
The predictors denoted by the x’s are indicators of student or school 

characteristics and the ,0’s are unknown regression coefficients to be 
estimated from the data. It is assumed, subject to verification, that the 
random variables &ijk are independently distributed as N (0, ae2). This 
part of the model is simply a multiple linear regression model conditioned on 
being restricted to observations within the jkthstudent. Now, the intercept 
can be allowed to vary over students by writing 

where B,j denotes the school mean of all the student means for the 
Icthschool, a o j A : )  and ujk is the random deviation of the jth student’s 
mean within the kth school. By assumption, again subject to verification, 
the level-2 random variable ujk follows the distribution N (0, at) 
independently of the &ijk’s of level-l. Similarly, the intercept can be allowed 
to vary over schools by expressing the intercept p,jk as a function of the 
mean of all the school means, /3,, and a random deviation of the kth school’s 
mean, ‘11k. This is expressed in the following way: 

rSjok = i&, +‘uk. (7.6) 

By assumption, again subject to verification, the level-3 random variable 
ZJ~ is assumed to follow the distribution N(O,o,‘) independently of the 
llgk and &ijk’s of level-2 and level-l. These level-l, level-2, and level-3 
componentzs may be combined to form the complete three-level model: 

!/ilk = Polk +Plxlijk +P* J: 2 2ijk +P3-%.3ijk +pq*x4k + (vk + ujk + Eijk) 3 (7-T) 
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TABLE 7.1 
Impact of Intervention on Condom Self-Efficacy 

Fixed 
Intercept (/3ojk) 
Baseline Score (PI) 
2nd Follow-up (,&) 
3’d Follow-up (p3) 
Group Assignment (,04) 
Random 
rs: (variation between schools) 
0: (variation between students) 
o&2 (variation between observations) 

Estimate (SE) 

1.29 (0.03) 
0.44 (0.01) 
0.07 (0.009) 
0.14 (0.009) 
0.16 (0.02) 

0.001 (0.001) 
0.085 (0.003) 
0.129 (0.002) 

subject to the distributional assumptions mentioned earlier. Fitting t,he 
model involves estimating the unknown p’s and the unknown variances gV3, 
go2 and 0,‘. The intervention’s overall effectiveness across time, students, 
and schools can be determined by testing the statistical hypothesis that 
41 equals zero. This model can easily be extended by designating the 
group coefficient to be random at level-3. This allows the impact of the 
intervention to differ from school to school (Raudenbush, 1997). Although 
this model could provide useful information regarding the population under 
consideration, it was not appropriate in the overall evaluation of the 
intervention effect in this study. This modeling approach made it) possible 
to t*est the impact of the intervention with test statistics corrected for the 
clustering of observations within students and students within schools. The 
parameter estimates resulting from estimation of the model specified in 
Equation 7.7 are presented in Table 7.1. A complete analysis of the cohort 
data, including a multilevel analysis of all psychosocial, behavioral, and 
demographic variables are presented in Coyle et al. (1999) and Coyle et al. 
(in press). 

Of primary interest in Table 7.1 is the estimate of pq, 0.16, and its 
estimated standard error, 0.02. Recall from the model that pq is the 
coefficient to the indicator variable of group assignment. The group 
assigmnent variable was coded 1 for intervention and 0 for control. Under 
this parameterization, /?, can be interpreted as the average intervention 
effect across the three study observations after adjusting for other covariates 
in the model. Condom self-efficacy was scored on a scale of 1 to 
3. Therefore, an effect of 0.16 indicates that, the average adjusted 
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mean self-efficacy score across time in the intervention group was 0.16 
higher in the intervention group than in the control group. Under the 
distributional assumptions mentioned earlier, the ratio of the estimate of 
p4 to its standard error approximately follows a Student’s t-distribution 
with degrees of freedom approximately equal to the number of observations 
minus the number of parameters estimated in the model. This permits 
us to test the hypothesis that pq = 0, or, equivalently, to determine the 
associated p value. Such tests of the model’s coefficients are called Wuld 
tests, after their originator, and make use of the properties of maximum 
likelihood estimation. Even when the underlying assumptions of normal&y 
are violated, such tests may still be useful, because the ratio will follow the 
normal distribution approximately, provided there is a fairly large number 
of observations. Because the sample size for this study is very large, the 
degrees of freedom for the t statistic is vary large, and its distribution 
under the null hypothesis is approximately N(O,l). The ratio is 8.00 and 
the p value as determined by reference to the standard normal distribution 
is less than 0.001. This leads to the conclusion that the intervention had 
a statistically significant effect on the average condom self-efficacy score 
across the three follow-up observations. Similar inspection of the other 
parameter estimates in Table 7.1 shows that the effect of baseline score, 
and indicator variables for the second follow-up, and third follow-up are all 
significantly related to the dependant variable as well. 

The intraclass correlation (ICC) is the proportion of the total variance 
that occurs between observations within a level of clustering. The ICC t,hat, 
expresses the strength of the positive correlation between the responses of 
students within the same school (level 3) is thus (Rauclenbush, 1997): 

(7.8) 

For condom use efficacy, the ICC3 for students within the same school 
is estimated as ICC3 = 0.001 / (0.001 +0.085 + 0.129) = 0.005, suggesting 
a small, but still possibly important, influence of the clustering. The ICC 
that expresses the strength of the positive correlation between the repeated 
observations within the same student is defined as 

(7.9) 

For the same outcome, the ICC for repeated observations within the 
same student is estimated as ICC2 = 0.085 / (0.001 +0.085 + 0.128) = 
0.40. As would be expected, there is a high degree of intraclass correlation 
among repeated observations within the same student. It is often found that 
in cases where the intraclass correlation between repeated measures is high. 
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TABLE 7.2 
Repeated Measures Data Structure FOR ANOVA 

Student Baseline GPA 1st GPA 2nd GPA 3rd GPA 4th 
Follow-up Follow-up Follow-up Follow-up 

1 3.2 3.5 3.8 3.2 3.3 
2 2.9 2.5 2.8 3.0 * 

3 4.0 3.9 * 3.8 3.8 
4 3.1 3.3 3.6 3.5 3.6 
5 2.3 * 2.6 * 2.4 
6 3.5 3.6 3.2 * 3.3 
7 3.8 3.7 3.9 3.8 3.6 
8 2.7 2.6 2.5 2.6 2.5 

t,he majority of the variation present in the sample occurs at a higher level, 
such as the student or school level (Goldstein, 1995). The model expressed 
in Equation 7.7 can easily be extended to include covariates measured at 
the school, student, or observation level. Additionally, group assignment, 
by time interaction terms can be added to explore whether the intervention 
had a differential impact at each follow-up observation. 

MISSING OBSERVATIONS 

One advantage of using a multilevel model for analysis of repeated 
measures data is the ability to use incomplete cases or mistimed follow-up 
measurements in the analysis. Although statistical procedures such as 
ANOVA may be used to analyze some repeated measures data, the 
multilevel models analysis uses maximum likelihood rather than leastJ 
squares methods for estimating the unknown coefficients of the model and 
thus may be used even for unbalanced designs or for irregularly spaced 
observations (Goldstein, 1995). This feature is particularly useful in the 
analysis of data resulting from behavioral interventions. 

Consider the repeated measures data presented in Table 7.2 that 
represent the self-reported grade point average of 8 students observed at. 
baseline and on four subsequent occasions at 6-month intervals. 

As often occurs, complete information is not available on all students 
for all observation times. In a repeated measures ANOVA model, a missing 
data point) requires that either the data from the individual’s entire record 
be omitted or the missing information imputed. Deletion of entire records 
from the analysis can result in a sizable loss of information. For the 
data represented in Table 7.2, only 4 of the 8 students have complete 
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TABLE 7.3 
Repeated Measures Data Structure MLM 

Student Follow-up GPA Baseline 
1 1 3.5 3.2 
1 2 3.8 3.2 
1 3 3.2 3.2 
1 4 3.3 3.2 
2 1 2.5 2.9 
2 2 2.8 2.9 
2 3 3.0 2.9 
2 4 * 2.9 
3 1 3.9 4.0 
3 2 * 4.0 
3 3 3.8 4.0 
3 4 3.8 4.0 
4 1 3.3 3.1 
4 2 3.6 3.1 
4 3 3.5 3.1 
4 4 3.6 3.1 

s 1 2.6 2.7 
8 2 2.5 2.7 
8 3 2.6 2.7 
8 4 2.5 2.7 

information. Deletion of the other students in the sample could result, 
in possibly biased results. Although several methods of imputation exist to 
deal with missing data points, most require assumptions that are difficult 
to verify and produce distributional effects on the estimates that may be 
difficult to ascertain. 

In an MLM approach to analyzing such repeated measures data, we are 
not limited to using data only from subjects with complete information. In 
a multilevel data structure, listwise deletion of missing values occurs at the 
observation level rather than at the individual record level. The multilevel 
analysis utilizes the data in the format expressed in Table 7.3, rather than 
the structure shown in Table 7.2. 

In this format, all of an individual’s available information is retained in 
the analysis. For example, student #2 would contribute to the estimation 
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TABLE 7.4 
Safer Choices Attrition Rate 

Sample Size % of Initial Cohort 
Baseline cohort 
1st Follow-up 
2nd Follow-up 
3rd Follow-up 

3,869 
3,677 95% 
3,212 83% 
3,058 79% 

Complete follow-up information 2,788 
2 follow-up observations 561 
1 follow-up observation 447 
No follow-up information 73 

72% 
14% 
12% 
2% 

of the average GPA in the sample at the first, second, and third follow-up, 
but would not contribute any information to the estimation of the average 
GPA at the fourth follow-up. 

Although this approach to missing observations is useful and helps 
to minimize bias resulting from lost observations, it is only valid under 
t,he assumption that the observations are missing at random. Under this 
assumption, the power of the statistical tests may be improved because 
observations are utilized that may have otherwise been discarded. It should 
be noted, however, that a multilevel analysis does not offer a solution to 
the bias and lack of power that can occur when a great many observations 
are missing from the sample nor is it a substitute for proper study design 
and effective retention of study subjects. 

EXAMPLE 2 

Consider the Safer Choices study from Example 1. Table 7.4 summarizes 
tJhe attrition patterns and rates for the study from the baseline measure to 
the 31-month follow-up. 

A total of 3,677 of the 3,869 students (95%) in the cohort were surveyed 
at first follow-up. Although extensive follow-up protocols were in place, 
the retention rate dropped to 83% (3,212) at the 19-month followup and 
t,o 79% (3,058) by the final 31-month observation. Of the 3,869 students 
randomized into the study, complete information was obtained on 2,788 
(72%) of the subjects. An additional 561 (14%) of the sample had two 
of the three follow-up observations with 447 (12%) providing information 
from only one of the followup periods. If the analysis were to be conducted 
on only those individuals with complete information, 1,081 (28%) of the 
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students in the cohort would be eliminated entirely. By using an MLM 
approach, 1,008 (26%) students with partial information were utilized in 
the analysis contributing information to the estimation of the regression 
parameters at the time points for which they provided data. 

To illustrate how the use of partial information can impact estimation 
of the regression parameters, consider the outcome measure of condom 
self-efficacy as discussed in Example 1. The results presented in Table 
7.1 reflect the inclusion of students with incomplete information into 
the analysis. More specifically, this analysis reflects the inclusion of 
3,532 observations at the 7-month follow-up; 3,097 observations at the 
19-month follow-up, and 2,978 observations at the 31-month follow-up. 
Next, consider the same analysis conducted on only those students with 
observations at all three follow-up periods. Excluding students with 
incomplete data results in a sample size of 2,664 students and 7,992 
observations. The model specified in Equation 7.7 was fit to the data 
set after a listwise deletion of all students who did not have follow-up 
information at all three time points. A comparison of the results from 
the original analysis that included students wit(h incomplete information 
and one that did not can be found in Table 7.5. 

Excluding cases with incomplete follow-up information resulted in slight 
changes in the parameter estimates and their standard errors. For the 
coefficients measuring the relationship between the dependant variable and 
the timing of the follow-up (Time2, Time3) the estimates remained the 
same (pz = 0.07, ps = 0.14), 1 lowever, the standard error for both increased 
slightly from 0.009 in the analysis that included students with incomplet,e 
follow-up to 0.01 in the analysis that was conducted only on students with 
complete data. The standard errors remained the same for all other fixed 
pararneters in the model, however the estimates of these parameters did 
change somewhat. The effect of the baseline score, PI, increased slightly 
from 0.45 to 0.44 whereas the estimated average intercept for the model, p,, 
increased from 1.29 to 1.25. Of the most importance perhaps is the observed 
change in the estimated effect of the treatment group assignment, /?4, which 
increased from 0.16 to 0.19, whereas the estimate of the standard error 
remained the same in both analyses. This change in estimated treatment 
effect did not result in a change in the test; however, had the effect been 
marginal, the change in the regression coefficient could have led to a false 
positive result, that is, rejection of the null hypothesis when it was, in fact, 
true. 
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TABLE 7.5 
Comparison of Including and Excluding Incomplete Data 
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Partial Data Complete Data 

Total number of students 
Included 
3,719 

Only 
2,664 

Number of 1st follow-up 3,532 2,664 
observations 
Number of 2nd follow-up 3,097 2,664 
observations 
Number of 3rd follow-up 2,978 2,664 
observations 
MODEL Estimate (SE) Estimate (SE) 
Fixed : 
Intercept (pOjrz) 1.29 (0.03) 1.25 (0.03) 
Baseline score (PI) 0.44 (0.01) 0.45 (0.01) 
2nd follow-up (/3~) 0.07 (0.009) 0.07 (0.01) 
3rd follow-up (,03) 0.14 (0.009) 0.14 (0.01) 
Group assignment (PA) 0.16 (0.02) 0.19 (0.02) 
Random: 
a~’ (variation between 0.001 (0.001) 0.001 (0.001) 
schools) 
0 112 (variation between 0.085 (0.003) 0.086 (0.004) 
students) 
OE’ (variation between 0.129 (0.002) 0.126 (0.002) 
observations) 

SUMMARY 

Application of multilevel models to the analysis of repeated measures cohort8 
data provides flexibility both in their ability to model a wide range of 
distributions and study designs and for dealing with missing data. Cohort 
st)udies that follow individuals over an extended period of time, such as 
t,he Safer Choices study described in this chapter, are often plagued with 
missing or incomplete follow-up information on study subjects. A multilevel 
modeling approach provides an alternative to such analytic techniques as a 
repeated measures analysis of variance, which require a, listwise deletion of 
individuals with incomplete information. Data from the Safer Choices study 
were used to illustrate how multilevel modeling procedures can be used to 
assess the across-time intervention effect in a repeated measures cohort 
st,ucly design. This modeling technique utilized data from students in the 
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cohort with incomplete follow-up information, thus allowing all students to 
be included in the analysis. 

It should also be noted that multilevel models are related to many other 
modeling approaches typically employed in behavioral and psychological 
research, such as structural equation modeling (Kaplan & Elliot, 1997; 
Muthkn, 1994), proportional hazards regression (Carvajal et al., in press; 
Goldstein 1995), mediational analysis (Krull & MacKinnon, in press), and 
probit, multinomial, logistic, or Poisson models (Gibbons & Hedeker 1997; 
Goldstein 1995). However, MLMs may not be ideal for all study designs 
where nonindependence in the data may be encountered. 
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Many students experience the beginning of their studies at university as a 
time that greatly challenges their adaptation skills and ability to cope with 
stress. Most freshmen have to manage in a completely new environment, 
stay for the first time in a place that is away from their parents, create new 
social contacts, and adapt to a new learning approach. A large number 
of students experience this transitory period as a kind of crisis that can 
be handled more or less successfully. In a longitudinal study about the 
effects of strain and resources on the health of students (N = 1,384) during 
the first year of studies, we have found that: (1) good social relationships 
among students studying within the same subject area constituted a central 
protective factor for their health, and that (2) the existence of social 
resources varied significantly depending on the area of study (Bachmann, 
Berta, Eggli, & Hornung, 1999). The social networks among students in 
the social sciences and arts were smaller, and they reported less satisfaction 
with their support in comparison to those studying natural and technical 
sciences. 

The finding that social resources are an important contribution to tJhe 
protection of health in stressful situations is not a new fact. The importance 
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of social resources for health related behavior, the ability to cope with crises, 
the general health status, and even life expectancy have been established in 
a large number of studies (reviewed in Leppin & Schwarzer, 1990). What 
is particularly interesting, however, is the extent to which this importam 
health resource developed depending on the subject studied. 

With respect to this finding, two fundamental questions can be asked: 
(1) Is the observed phenomenon due to a selection effect, that is, that. 
before their studies, the students already had different dispositions toward 
the creation of social contacts, such that the differences between areas 
of study were a consequence of selection at the moment of choosing a 
major (compositional effect); or (2) were the areas of study linked to 
different contextual conditions, thus having a more or less inductive effect, 
on t,he creation of social contacts and reciprocal support among students 
(contextual effect). 

The following question addresses the compositional effect: Do students 
of philosophy have so few contacts because they have a particularly 
low social competence? Whereas the following question addresses the 
contextual effect: Are the larger social networks found at technical studies 
due t,o the fact that, because of a comparatively higher number of required 
lectures, students have to spend more time together? 

During the last decade, a new concept the transactional or ecological 
model of social resources (Hobfoll & Freedy, 1990; Hornung & Gutscher, 
1994; Vaux, 1990), was developed within the area of theory and research 
aboutt resources relevant to health. This new concept was based on a 
transactional process with reference to origin, maintenance, and use of 
social resources. According to this approach, social resources are defined as 
multidimensional with structural, functional, and evaluative components. 
The structural component describes the social network with its number 
and type of existing relationships, the functional component describes 
the expected or received social support, and the evaluative component 
represents the evaluation, that is, the degree of satisfaction with the social 
net,work and its support. 

In a transactional approach, social support is defined as a constant 
dynamic process between an individual and his or her social environment,. 
The creation, use, and maintenance of social resources requires an active 
interaction of the individual with his or her environment (Vaux, 1990). 
If we base our approach on this model, the differences observed between 
the groups of subjects studied should be due to both the compositional 
effect (i.e., depending on the area of study, the characteristics of the future 
students were already different before they started mliversity studies). 
and the contextual effect (i.e., the characteristics of the areas of study 
are different and thus have an influence on the development of social 
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relationships among the students). Finally, the transactional theory 
includes the assumption that these two levels (individual and context) have 
a reciprocal effect on each other. We could not test the assumption of 
reciprocity due to a lack of time series data. 

According to the literature, the following characteristics of an individual 
are considered crucial for building and maintaining satisfactory and 
helpful social relationships; personal characteristics such as self-esteem, 
self-efficacy, empathy, network orientation (e.g., self-disclosure, family 
attachment) as well as gender and age (Barrera, & Baca, 1990; Burda, 
Vaux, & Schill, 1984; Hansson, Jones, & Carpenter, 1984; Lakey, McCabe, 
Fisicaro, & Drew, 1996; Tolsdorf, 1976). On the contextual level, the 
following factors are discussed; cultural values, architectural aspect of the 
environment, spatial and temporal availability of personal contacts, social 
density as well as semiprivate spaces (e.g., Fleming, Baum, & Singer, 1985). 
To date, there are only a few studies that explicitly focus their analysis of 
(-ontext on universities (e.g., Hays & Oxley, 1986; Lakey, 1989; Moos, 1979; 
Per1 & Trickett, 1988). Unfortunately, the validity of these studies is often 
affected by the small sample size as well as by a certain arbitrary selection 
of indicators to measure context. However, the literature about questions 
of social climate and learning culture at universities allows us to develop the 
hypothesis that, along with the learning culture, the architectural form of 
campus rooms, the number of students, and the gender distribution within 
an area of study also play an important role (Huber, 1991). 

The questions discussed in this study were based on a hierarchical 
structure; that means we analyzed units grouped at different levels. On 
the first level, each student was recorded with his or her individual 
characteristics. On t,he second level, we recorded the context, which 
was understood in terms of characteristics relevant, to the area of study. 
In accordance with geographical and social psychological literature on 
the relationship of place and health, the term “context” or “contextual 
variable” is used here for the characteristics of the area of study 
( “true” ecological variables independent of subjects’ perceptions as well 
as aggregated subject-level variables like average perceived academic 
1)ressure). 

In order to analyze these hierarchically structured data appropriately, 
we used multilevel modeling (Bryk & Raudenbush, 1992; Goldstein, 1995). 
This statistical method has been used mainly for research on education, 
for example, to examine the influence of individual, class, and school 
characteristics on achievement of pupils (Goldstein, 1987). It, has also been 
utilized to analyze the importance of individual characteristics with regard 
t,o regional patterns in health related behavior, as well as voting behavior 
(Dlmcan, Jones, & Moon, 1998). However, it has rarely been used for the 
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analysis of social relationships. Exceptions are studies on different kinds 
of social networks (e.g., Snijders, Spreen, & Zwaagstra, 1995) as well as 
on attachment change in newlyweds (Davila, Karney, & Bradbury, 1999). 
Because the current study of the development of social resources using 
multilevel modeling cannot rely on existing empirical knowledge, it contains 
a certain heuristic element. 

Questions of the present study 

This chapter investigates the conditions of the development of social 
resources in a new social environment; in this case, the start of university 
studies. In the latest research on relationships, creation and use of social 
resources is conceptualized as a transactional process between individuals 
and their environment. As analyses have shown so far (Bachmann, 1998)) 
students at the two universities (University of Zurich and Federal Institute 
of Technology) involved in this study differed significantly, depending on 
the area of study, in terms of number and type of contacts they created 
with their classmates during the first year of studies. 

Therefore, the following questions are placed at the center of these 
analyses: 
1. Which individual predictors promote the creation of social resources in 
the areas of study (level l)? 
3 Y. Can differences between the areas of study be noticed even when 
the personal characteristics of the students (compositional effect) are 
statistically controlled (level 2)? 
3. Which aspects of the context -- here the area of study - can possibly 
explain the residual group level variance (level 2)? 

METHOD 

Procedure 

A longitudinal study of the first year of studies was carried out and 
data were collected at two points in time; before the start of studies 
(first questionnaire) and again, 10 months later (second questionnaire) 
to assess changes that might have occurred during the course of time. 
Every incoming student of the two universities in Zurich (University of 
Zurich and the Federal Institute of Technology, Zurich) was first surveyed 
a few weeks before the start of the 1994 autumn term. (Student contact, 
information was obtained from registration information at the universities.) 
The students were given a self-administered questionnaire, that they were 
a.sked to complete anonymously. However, they were asked to add a 
personal code to the questionnaire so that the subsequent questionnaire 
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could be linked to the first one. The second survey, also using a written 
questionnaire, was administered in the summer of 1995, a few weeks before 
the end of the first year. 

Sampling and sample 

Of the 4,247 students who registered in 1994 for studies at the two 
universities in Zurich, 3,066 (72%) completed and returned the first 
questionnaire. The second questionnaire was answered by 1,992 students, 
resulting in an overall response rate of 47%. In 1,382 cases, the individual 
code could be linked, resulting in a participation rate of 33%. This sample 
was found to be representative of the university population in terms of age, 
gender, and areas of study. This data set is described in detail by Bachmann 
et al. (1999). A few participants had to be excluded for methodical reasons, 
because their area of study did not have enough units at level 1 to be 
included in multilevel analyses. This left us with 1,318 people (level 1) 
nested within 32 different areas of study (level 2). Per subject, the number 
of students surveyed ranged from 7 to 143, depending on the number of 
st)udents enrolled in an area. In simulation studies, a sufficient number 
of units on level 2 was found to be more relevant than on level 1. When 
the number of groups was large enough, the estimation of the parameters 
were sufficiently reliable, even when groups of only 10 students were present 
(Kreft, 1996). 

The study sample was 55% male and 45% female. At the time of the 
study, the average age of participants was 21.5 years, with a range from a 
minimum 18 years to a maximum of 65 years. Women comprised 55% of 
the sample at the University of Zurich and 31% of the sample at the Federal 
Institute of Technology. 

Operationalization 

The individual and contextual characteristics that have been identified in 
the literature as having an influence on the creation and availability of 
social nets and resources were mentioned earlier. Table 8.1 shows the four 
response variables that encompass different parameters of social resources, 
as well as the individual and contextual or group-level predictors. 

The response variables were gathered toward the end of the academic 
year, which constituted the second point of measurement. Three items 
describe the structural dimensions of social resources, that is, the number 
of superficial and close relationship networks within an area of study. A 
further variable, describing the degree of satisfaction with the support 
received from fellow students within the same area of study was also 
included. The predictors were assigned to t,he individual (level 1) or the 



TABLE 8.1 
Response Variables, Individual and Contextual Predictors 

Kind of 
Variables Names Operationalization 
Level 1 
R,esponses: superficial relationships N of fellow students the focal per- 

son had a conversation with during 
the last 2 weeks 

companionship N of fellow students with whom 
the focal person has spent his spare 
time with 

close relations N of fellow students with whom the 
focal person has had a confidential 
talk 

social support satisfac- perceived satisfaction of focal per- 
tion son with support received from and 

relationships with fellow students 
(6 items, Sommer & Fydrich, 1991) 

Level 1 
Predictors: gender: female (FEM) variable with contrast coding 

(O=male; l=female) 
age (AGE) years of age 
empathy (EMP) 6 items, range l-5, Becker (1989) 
self-esteem (SEST) 4 items, range l-5, Rosenberg 

(1979) 
network-orientation 10 items, range l-5, Rijhrle (1994) 
(including family 
attachment (FAM); 
self-disclosure (DISC), 
readiness to create 
contact (CONT), 
readiness to search for 
help (HELP) 

Level 2 
Predictors: size of area (SIZE) 

time spend together in 
the courses (TIME) 
gender distribution 
(GD) * sex 

perceived academic 
pressure (PRESS) 

N of students enrolled in an area of 
study 
N of required lessons in an area of 
study 
proportion of male students en- 
rolled in an area of study (2 inter- 
action parameters*sex) 
mean of perceived academic pres- 
sure in an area of study (range l-4, 
with 1 = deep pressure) 
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contextual area (level 2). Individual predictors were recorded at the first 
measuring point so that the student’s characteristics could be registered 
before the start of their studies. As mentioned earlier, in research literature, 
a multitude of personal characteristics are discussed as connected with 
social relationships. The seven predictors included in this study have shown 
c*onsistent effects on the development of social resources (Bachmann, 1998; 
Hansson et al., 1984; Lakey et al., 1996). For pragmatic reasons, neither the 
architectural-spatial conditions (e.g., availability of semiprivate learning 
spaces) nor the structure of the courses (e.g., proportion of group exercises 
vs. lectures) could be recorded within the framework of the present study. 
However, it was possible to include the following contextual conditions that 
;Lre more easily recorded and that, according to the literature, are relevant> 
to the questions raised in this study: The number of students enrolled in 
XI area of study, which varied from less than 20 who were majoring in 
philosophy and theology to nearly 500 in the “mass” majors such as law; 
The number of required lectures, which represented the amount of time 
st,udents had to spend together in the courses, with values ranging from 7 
hours per week in t,he social science and arts, to 40 hours in architecture; 
Gender distribution with percentage of male students comprising anywhere 
from 12% to 96% of a subgroup; The overall perceptions of academic 
ljressure or fear of being excluded from a chosen major because of failing 
the examinations. This was measured by a scale ranging from 1-4, where 
1 represented low pressure and 4 represented high pressure. Higher values 
were found in computer sciences and medicine with 3.3 and particularly low 
values in theology and sociology with 1.3. For more detailed informations 
about the context characteristics of the 32 areas of study, see Table 8.2. 

Because data (Turner, 1994) suggested that a high proportion of male 
students has a different impact on the social resources of female students 
than on those of other male students, we included gender distribution 
in t)he equation as two separate interaction parameters for each gender. 
Furthermore, it is worthwhile noting that three of the contextual predictors 
were objective parameters provided by the university administration (i.e., 
number of people enrolled in a particular area of study, the required number 
of courses within a major, and gender distribution). In contrast, collective 
IJerception of academic pressure was used as an aggregate value: the mean 
of perceived academic pressure within an area of study among the students 
slirveyed. 

Statistical procedures 

The comparison of individual effects (level 1) with the environmental 
influence of the areas of study (level 2) required a method that 



TABLE 8.2 
Contextual Characteristics of the 32 Areas of Study 

Area of Studv N Sample Size Time GD Press 
‘l’heology 7 18 
Philosophy 9 19 
Psychology 60 137 
Education 11 32 
Sociology 22 49 
German 45 113 
French 18 34 
English 35 84 
History 41 129 
Ethnology 11 41 
Law 143 497 
Economy 93 319 
Medicine 114 353 
Veterinary Medicine 24 60 
ChemistryU 10 21 
Geology 26 77 
BiologyU 41 89 
Architecture 70 285 
Process Engineering 29 116 
Mechanical Engineering 50 174 
Electrical Engineering 36 185 
Computer Science 33 119 
ChemistryT 24 59 
Pharmacy 32 71 
Forest Sciences 15 53 
Agricultural Sciences 25 94 
Civil Engineering 22 79 
Mathematics 46 171 
BiologyT 36 103 
Environmental Sciences 36 79 
Earth Sciences 20 53 
Physical Education 35 136 

10 44 1.29 
9 63 1.67 
9 21 3.37 

14 28 1.27 
9 49 1.77 
8 37 1.49 
8 23 1.72 
9 30 1.43 
7 75 1.76 

12 12 1.36 
16 51 3.12 
22 81 2.91 
25 53 3.32 
26 20 3.54 
19 62 2.30 
20 77 2.08 
25 47 2.39 
40 60 2.99 
25 87 2.55 
29 96 3.30 
27 96 3.11 
24 94 3.33 
29 87 3.00 
31 16 3.16 
31 85 2.73 
32 53 2.64 
23 83 2.14 
25 85 2.85 
30 54 2.92 
26 68 2.06 
24 75 2.40 
20 59 2.74 

Note. Study areas existing at both universities are specified 
with U (University) and T (Federal Institute for Technology) 
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simultaneously handled both levels of factors. The best suited method 
for such a purpose was multilevel modeling (for an introduction to the 
methodological principles of multilevel modeling, see the other chapters 
in this volume). The analyses were carried out using the statistical 
program MLn (Rasbash, Yang, Woodhouse, & Goldstein, 1995). For the 
sake of simplicity, only linear functions were postulated. To make the 
interpretation of the intercept easier, the predictors on level 1 were centered 
around the mean of the whole sample. In this way, the intercept could 
be interpreted as the predicted value of a student with average personal 
characteristics (e.g., student at average age instead of student at age 0, 
which would be outside the range of the observed values). For parameter 
estimation in model construction, we used the “iterative generalized least 
squares” (IGLS) method, an adequate procedure for continuosly distributed 
response variables when the residuals have normal distributions (Goldstein, 
1986; Goldstein, 1995, p. 22). As Raudenbush (1994), showed IGLS 
is formally equivalent to the procedure VARCL developed by Longford 
(1987). In a converging model, the parameter estimations are equivalent 
to the maximum likelihood criteria (Goldstein, 1995, p. 22). The fit check 
of a model is made by comparing the likelihood ratios (-2 log-likelihood) 
of a simpler and a more complex model. If the sample is large enough, 
the differences of likelihoods between the models have an approximate 
clistribution of x2. The differences in the number of parameters within 
each of the two models represent the degrees of freedom when checking the 
significance of the fit improvement provided by the more complex model 
(Duncan et al., 1995, p. 68; Goldstein, 1995, p. 32). Testing for the 
significance of single fixed and random parameters is made by a comparison 
between the parameter estimation and the standard error. The reader can 
use the following rule of thumb as a rough guideline: A parameter reaches a 
significant explanatory value (p = .05) when the variance shown is twice as 
large as the standard error. Testing for significance is made with a x2 test. 
For each of the four response variables, we proceeded to form our model in 
the following way. 

First, we tested a simple Model A with random intercept on level 2. 
-411 the relevant individual characteristics were included in this model. The 
first, thing we saw on level 1 of the model (variance among the individuals), 
was which individual properties influence the response variable. On level 
2 (variance between areas of study), the intercept was allowed to vary. 
This made it possible to find out if there was a contextual effect when the 
individual characteristics of the students were controlled. By proceeding in 
this manner, we could compare the compositional and the contextual effect. 

The next step (Model B) was an attempt to explain the significant, 
variances between the areas of study by contextual variables. The effect 
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of the different contextual variables (level 2) was analyzed by stepwise 
inclusion in the equation and was tested by calculating the likelihood ratio 
test criterion (referring to  a x 2  Table) to see if they significantly improved 
the explanatory value of the model. 

The two statistical models used, simple random intercept models 
without and with independent contextual variables, could be described 
by tjwo equations with the two levels i (individual) and j (area of study) 
explaining, for example, social support satisfaction by level 1 predictors age 
and self-esteem, and by level 2 predictor size of area of study (number of 
students enrolled in an area). Equation 8.1 represents Model A without 
contextual variables: 

yij = PoXozj + PIXlij + PZX’Lij + (pOj + ‘ z j )  

where YzJ = satisfaction with social support for student i in area j ,  XozJ = 
base category (a set of l’s) ,  and X1 = age (centered around mean), X 2  = 
self-esteem (centered around mean). 

The fixed parameters could be interpreted as; Po = the satisfaction with 
social support for individuals of average age and self-esteem, P 1  = linear 
increase of satisfaction with age, and P2 = linear increase of satisfaction 
with self-esteem. 

The random terms were; E , ~  = residual value of the individual i within 
the area J (residuals on cZJ  level l),  poJ = differential intercept of area j 
(residuals on level 2). 

The between-individuals and between-areas differences were estimated 
11s t,he following variance terms; oe2 = level 1 variance (between 
individuals), and 02 = level 2 variance (between areas). 

In Model B represented in Equation 8.2 we included contextual 
predictors (e.g., size of area of study): 

YiJ = PoXoij + P1Xlij + p2X2ij + y l ~ l j  + (poj + ‘ij) (8.2) 

where y1 = linear relationship between area differences and contextual 
variable w l j ,  where w l j  is the contextual variable (size of area). 

RESULTS 
Before presenting the multivariate analyses, the descriptive measures of the 
response variables are briefly discussed (see Table 8.3). They describe the 
size of the social networks and social support satisfaction that emerged 
during the first year of studies. On average, students declared having a 
superficial contact with 11 fellow students, having already spent their spare 
t>iine with about six students and having talked about personal, intimate 
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TABLE 8.3 
Descriptive Measures of the Response Variables at Level 1 

Response Variables N Mean SD Median Min. Max. 

Superficial relationships 1290 10.7 8.9 9 0 45 
Companionship 1290 6.2 6.8 4 0 35 
Close relationships 1290 3.2 2.9 2 0 15 
Social support 1300 3.07 0.52 3.2 1.2 4 
satisfaction 

t,opics with three students. With a mean of about 3 (on a scale ranging 
from 1 to 4), they reported quite a high degree of satisfaction with the 
social support they received. 

We used IGLS as the estimation procedure to analyze these data. In 
t,he following, we present the four multivariate models. In the first stage, 
however, they were a calculated only with the individual predictors and a 
random intercept ( Model A). If a significant effect was observed on level 
2, we explained this variance between the areas of study by contextual 
predictors in a second model ( B). 

Superficial relationships 

The left half of Table 8.4 displays the results of the analysis of the 
development of the network constituted by superficial relationships. The 
multivariate model with individual predictors and random intercept (Model 
A) shows that the average student (male, 21 years old,“average” personal 
characteristics) engaged in superficial relationship with 10 other students. 
Gender and age effects were noticeable with women having approximately 
two people more in their network, which was a significant difference. The 
older the students were, the fewer superficial relationships they had (with 
other students). We also found a tenuous link to self-esteem and family 
attachment . The remaining variance between the areas of study was 
highly significant, with an intra-area correlation (IAC) of 28%. In order to 
visualize the differences between the areas of study, we show the differential 
intercepts of Model A in Fig. 8.1. 

Students majoring in physical education had the largest network of 
superficial contact persons (10 + 17 = 27), whereas those majoring in 
philosophy and sociology had the smallest network (10 - 5 = 5 persons). 
Because the subject of sports showed an exceptionally high value, we 
checked whether the results of this model were distorted by this outlier 
unit. For this purpose, a further model was calculated to study the effect 



TABLE 8.4 
Multilevel Estimates for Models of Superficial Relations and Companionship 

Szlperficial Relationships 
Model A Model B 

Parameter Estimate (SE) Estimate (SE) 
Fixed effects 
Level 1 
Intercept 9.66 
FEM 1.88 (0.50) 
AGE -0.18 (0.06) 
EMP 0.81 (0.70) 
SEST 0.80 (0.41) 
FAM 0.98 (0.42) 
DISC -0.18 (0.44) 
CONT 0.65 (0.43) 
HELP -0.20 (0.37) 
Level 2 
SIZE 
TIME 
GD*M 
GD*F 
PRESS 
Random effects variance 
Level 1 aa, 56.56 (2.32) 
Level 2 02, 21.88 (6.02) 
IAC 0.28 

11.08 
-2.76 
-0.18 
0.88 
0.81 
0.95 

-0.13 
0.69 

-0.23 

0.00 
0.30 

-0.02 
0.07 

-0.35 

56.07 
13.66 
0.08 

(1.54) 
(0.06) 
(0.70) 
(0.41) 
(0.42) 
(0.44) 
(0.43) 
(0.37) 

(0.01) 
(0.09) 
(0.03) 
(0.03) 
(1.59) 

(2.30) 
(3.94) 

Companionship 
Fixed effects 
Level 1 
Intercept 5.92 5.85 
FEM 0.62 (0.40) 0.72 
AGE -0.26 (0.05) -0.26 
EMP 0.32 (0.57) 0.38 
SEST 0.38 (0.33) 0.37 
FAM 0.39 (0.34) 0.36 
DISC 0.64 (0.36) 0.68 
CONT 0.46 (0.35) 0.45 
HELP -0.05 (0.30) -0.03 
Level 2 
SIZE 0.00 
TIME 0.20 
GD*M -0.01 
GD*F 0.03 
PRESS -0.79 
Random effects variance 
Level 1 a& 37.3 (1.53) 37.31 
Level 2 a$ 6.59 (2.00) 3.83 
IAC 0.15 0.09 

(0.40) 
(0.05) 
(0.57) 
(0.33) 
(0.34) 
(0.35) 
(0.35) 
(0.30) 

(0.00) 
(0.05) 
(0.02) 
(0.02) 
(0.87) 

(1.53) 
1.29 
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FIG. 8.1. Superficial relationships (residuals on level 2). 

of removing the unit of physical education students from level 2 variation by 
fitting a separate constant (a dummy variable with 1 = physical education 
as major; 0 = other students) in the fixed part of the Model A. The variance 
on level 2 was indeed clearly reduced [oPo2 = 9.81 (3.04), x2 = 10.7, 
p = .OOl; intraarea correlation= 0.151, but still significant. The fixed 
parameters were only very slightly changed. Thus, based on these results, 
the students of physical education were reintegrated into the model. 

In a second stage, we tried to explain the variance on level 2 by 
contextual predictors. As Model B shows, through this method, the 
variance between the areas of study was clearly reduced to 8%. The 
amount of time students spend together in the classroom has a strong 
positive effect on the creation of superficial relationships. Including this 
parameter produced a likelihood ratio test criterion of -11 (df = 2), which 
was significant. Neither the size of the area of study (number of students), 
nor the collective perceptions of academic pressure had any influence on 
the development of these social resources. 
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FIG. 8.2. Companionship (residuals on level 2). 

Companionship 

On average, the students spent their spare time with six different people 
within their area of study (see right half of Table 8.4). The older the 
student, the fewer the relationships in which he or she engaged during 
the first year of studies. No further significant relationship to individual 
predictors was observed. The contextual effect was also significant in the 
field of companionship. With 15%, however, the proportion of variance on 
level 2 (between areas) was clearly smaller than in superficial relationships. 
Figure 8.2 shows the 32 differential intercepts of the areas of study. 
In this model, physical education again created the largest network (15 
people). Students in environmental sciences, agricultural sciences, civil 
engineering, and architecture also had large networks. The areas of study 
with particularly small networks were in the field of arts and social sciences, 
especially history, philosophy, psychology, English, and French. 

Because the differential intercept of the physical education student 
group was very large, we proceeded the same way as with superficial 
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relationships, and checked to what extent this group influenced the results 
of the model. By fitting a separate constant for this group, the level 2 
variance was reduced [gpO 2 = 4.38 (1.4), x2 = 9.28, p = .002], but still 
remained significant. The intraarea correlation was reduced from 0.15 to 
0.11. The fixed parameters were unchanged, so that again, this group could 
be reintegrated in the normal sample. 

Including the contextual variables in Model B reduced the level 2 
variance from 15% to 9.3%. In this model too, the time spent togethel 
in the classroom had an influence on the development of social resources. 
The likelihood ratio test criterion was - 14 (df = 1)) which was highly 
significant. Neither the number of students in a particular area of study, 
nor gender distribution within a study area, nor the collective perceptions 
of academic pressure on the part of the students had any influence on the 
size of companionship networks created within an area of study. 

Close relationships 

As Table 8.5 shows (in its left half), the size of close relationship networks 
that are created during studies can only be predicted on the individual 
level ( Model A) by self-disclosure. This result is not surprising, as it 
appears plausible that this personal characteristic is a prerequisite condition 
t,o building close and trustful relationships. What might be surprising, 
however, is the absence of gender effect, although the literature gives 
11s clear indications that women have better networks, particularly with 
respect to intimate relationships (e.g., Bell, 1991; Cramer, Riley, & Iiiger, 
1991). 

In this model, too, the contextual effect was significant but clear13 
weaker than with the two looser forms of networks. Intraarea correlation 
(IAC) of this model accounted for only 5.7% of the total variance. The 
residual values of the single areas of study can be found in Fig. 8.3. 

History students had the smallest networks, which consisted of two 
people. They were followed by students with other majors in the arts 
and social sciences; philosophy, German, sociology, and psychology. Again, 
we found the largest networks among physical education majors (with a 
rate of 4.4 persons). This was also the case with students majoring in 
pharmacy, agricultural sciences, forest sciences, and veterinary medicine. 
As the physical education majors had a very high residual value again, WC 
checked the particular effect of this group on the validity of this model. 
When this group was removed from the level 2 variance and integrated 
as a fixed parameter into the model, as expectfed, the group-level variance 
dropped, opO 2 = 0.35 (0.15), but remained significant (x2 = 5.24, p = .021). 
An important aspect is that the results were unchanged with respect, to the 



TABLE 8.5 
Multilevel Estimates for Models of Close Relationships and Support Satisfaction 

Close Relationships 
Model A Model B 

Parameter Estimate (SE) Estimate (SE) 
Fixed effects 
Level 1 
Intercept 3.09 4.11 
FEM 0.32 (0.19) -0.50 (0.55) 
AGE -0.03 (0.02) -0.03 (0.02) 
EMP 0.40 (0.26) 0.44 (0.27) 
SEST 0.21 (0.15) 0.21 (0.15) 
FAM 0.04 (0.15) 0.04 (0.16) 
DISC 0.37 (0.17) 0.39 (0.17) 
CONT 0.01 (0.14) 0.01 (0.16) 
HELP 0.01 (0.14) 0.01 (0.14) 
Level 2 
SIZE 0.00 (0.00) 
TIME 0.08 (0.02) 
GD*M -0.02 (0.01) 
GD*F 0.00 (0.01) 
PRESS 0.26 (0.27) 
R,andom effects variance 
Level 1 crz, 8.19 (0.33) 8.15 (0.33) 
Level 2 a& 0.50 (0.19) 0.21 (0.11) 
IAC 0.06 0.025 

Social Support Satisfaction 
Fixed effects 
Level 1 
Intercept 3.05 3.09 
FEM 0.08 (0.03) 0.09 (0.03) 
AGE 0.00 (0.00) 0.00 (0.00) 
EMP 0.11 (0.04) 0.12 (0.04) 
SEST 0.05 (0.03) 0.05 (0.03) 
FAM 0.09 (0.03) 0.09 (0.03) 
DISC -0.02 (0.03) -0.02 (0.03) 
CONT 0.16 (0.03) 0.16 (0.03) 
HELP 0.06 (0.02) 0.06 (0.02) 
Level 2 
SIZE 0.00 (0.00) 
TIME 0.01 (0.00) 
GD*M 0.00 (0.00) 
GD*F 0.00 (0.00) 
PRESS 0.04 (0.04) 
Random effects variance 
Level 1 aa, 0.23 (0.01) 0.23 (0.01) 
Level 2 02, 0.01 (0.00) 0.01 (0.00) 
IAC 0.04 0.025 

172 



THE DEVELOPMENT OF SOCIAL RESOURCES 173 

MathematicsT 
Economv 

Sciences 
istryU 

Electical Eng 
Ethnoloo 

Differential Intercepts 

JC 

FIG. 8.3. Close relationships (residuals on level 2) 

fixed parameters. 
Model B reveals the following relationships: The time students had 

to spend together reduced the level 2 variance by more than half. The 
likelihood ratio test criterion was -17 (df = l), and this was highly 
significant. Gender distribution within the area of study had an influence 
only on male students: The higher the proportion of male students in an 
area of study, the smaller their network of closer relationships. In contrast, 
no equivalent contrary effect could be observed among female students in 
such a situation. When these two interaction terms were included, the fit 
of the model changed only slightly. The likelihood ratio test criterion was 
-6 (df = 2). The two contextual variables time and proportion of males 
allowed us to almost completely explain the remaining variance between the 
areas of study. The intraarea correlation of 2.5% was no longer significant,. 

Satisfaction with social support 

Satisfaction with social support is the result of a subjective comparison 
between available resources and one’s needs in this regard. It is another 
aspect of social resources that might be more closely related to personal 
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characteristics, expectations, and so forth, than the structural parameters 
presented so far, that is, the number of relationships. In Model A (see 
Table 8.5, right half), we found that satisfaction with social support was 
actually more influenced by individual factors. Nevertheless, in the model 
with individual predictors and random intercept, this dimension of social 
resources also showed a substantial contextual effect, which constituted 
4.2% of the total variance. We found five individual characteristics 
presenting a relationship to the response variable: Women were more 
satisfied with the social support they received than were the men; the 
stronger the empathy, family attachment, readiness to engage in conta&. 
and readiness to seek other people’s help, the greater was the resulting 
satisfaction with support from fellow students. The differential intercepts 
on level 2 of this model are shown in Fig. 8.4: The subjects with the lowest 
satisfaction were again from the area of arts and social sciences (philosophy, 
history, German, sociology) with the exception of architecture students who 
also reported a low degree of satisfaction. The highest degree of satisfaction 
was found in physical education, computer science, agricultural sciences, 
environmental engineering, and forest sciences. 

Model B had only one additional predictor that made a significant 
contribution. Again, the contextual characteristic that influenced 
satisfaction was the subject’s required number of courses: The more hours 
a week students had to spend together, the higher the satisfaction with 
social support (likelihood ratio test criterion was -11, df = 1). By t,his 
contextual effect, group-level variance was reduced t’o 2.5%. 

DISCUSSION 

In this study about the development of four different dimensions of social 
resources during university studies, we found consistent contextual effects 
t,hat go beyond the compositional characteristics. Students who were in the 
arts or social sciences - regardless of age, gender, self-esteem, empathy, 
or readiness to engage in social contact - had more difficulties building a 
social network big enough to satisfy their needs. The variance between the 
areas of study changed depending on the dimension of resources: The size 
of rather superficial relationship networks was more strongly influenced 
by the context, than was the size of closer relationship networks. A 
sufficient number of superficial contacts has been shown to be particularly 
important for coping with daily hassles as well as for developing a feeling 
of integration and identification toward a social group (Bachmann et al., 
1999; Rook, 1987). The individual predictors we have examined in our 
study do not show a consistent effect through all four models; depending 
on the kind of relationship or the resource dimension, we found different 
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FIG. 8.4. Satisfaction with social support (residuals on level 2) 

personal characteristics to be relevant for building social contacts. Age 
had an important influence on rather superficial relationship networks; 
the older the student, the smaller the network. However, older students 
were not less happy with their relationships and the support they received, 
which indicates that these smaller networks did meet their needs. Our 
findings regarding gender in the university setting suggest it to be lower 
in importance in comparison to what has been previously reported in the 
literature. Female students, however, clearly reported a higher degree of 
satisfaction with their relationships and the support received than did male 
students. The stepwise inclusion of contextual variables in the models 
allowed a substantial reduction of variance between the areas of study. By 
this, we were able to show that the level 2 variance noticed in the simpler 
model is indeed due to the ecological conditions. In particular, the time 
t,hat students spend together in the classroom can explain a significant part 
of the variance between the areas of study and it is the only predictor at 
all that shows a consistent effect on all four dimensions of social resources. 
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A possible explanation for this result could be found in the fact that a 
certain amount of required courses per subject were necessary to generate 
a kind of belongingness among the students. We also found, in certain 
cases, an effect produced by gender distribution within the areas of study: 
The higher the proportion of males within a subject area, the larger the 
number of superficial relationships of female students, and the smaller the 
number of close relationships of male students. 

The explorative nature of this study carries a certain number of 
theoretical and methodological problems. For pragmatic reasons, we had to 
limit the choice of contextual predictors to those that were easily accessible. 
We believe that by having done so, essential contextual characteristics, 
such as the architectural environment, were disregarded. The dynamic 
interaction process between the individual and his or her context, as it, 
is postulated in the transactional theory, could only be represented as a 
simplified model. In order to analyze transactional processes in a more 
appropriate way, it would be necessary to choose a design that contains 
much more than two points of measurement, and that is one that allows 
the modeling of feedback loops between an individual and his or her context 
(cross-level transactions). In this study, we could only analyze the effect of 
personal characteristics measured before the beginning of the studies on the 
outcome of size and quality of social resources after 10 months of studies 
in a specific context. This research design did not allow the analysis of the 
reciprocal effect (influence of the context on the personal characteristics of 
the students). 

Finally, we have to address the problem of dealing with very different 
numbers of units per subject area. In multilevel analysis, a small number 
of level 1 units in a level 2 unit is regarded as a relative lack of information 
about this special group so that the best estimate of the predicted residual 
should be close to the overall population value (under the assumption that, 
this group belongs to a population of units). As the number of level 1 units 
in a group decreases, the “shrinkage factor” (ranging from 0 to 1) becomes 
closer to zero (Goldstein, 1995, p. 24) so that the predicted residual value 
gets closer to the grand mean. Thus, the particularities of the smaller 
areas of study were systematically brought into approximation to those of 
the large areas of study. 

Despite these problems, which indicate where future studies could be 
improved, the results presented in this study also demonstrate that the 
use of multilevel modeling is an appropriate statistical method to analyze 
how resources originate in a determined context, which is a question of 
increasing importance in the health sciences. The method allows new and 
very promising insights about the interaction of an individual and his or 
her context. Furthermore, practical implications for prevention and health 
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promotion in university settings can also be derived from the results we 
obtained. Social resources can be promoted through the structuring of 
t,ime that students spend together in the classroom: Students from areas 
of study with a smaller number of commonly required courses had smaller 
social networks; they were less satisfied with the support they received and 
therefore were more prone to experience stress in this transitional phase. 

SUMMARY 

In this study, we analyzed personal and contextual determinants of 
the development of social resources among students in the first year of 
their university studies. According to the ecological approach, social 
resources are defined as multidimensional constructs that are determined 
by transactions between a person and his or her environment, and 
occurring within a specific ecological context. Therefore, according to this 
conceptualization, it is necessary to consider both the individual and his 
or her specific context; it is also important to simultaneously analyze the 
effect of individual and contextual variables in one model. The following 
three questions were answered in the present chapter: 1. Which personal 
characteristics are crucial in the formation of different social resource 
dimensions? 

2. Does context exert an effect that transcends the influence of personal 
qualities? 

3. If yes, can the level 2 variance be explained by context-related 
variables? 

Level 1 predictors consisted of gender, age, self-esteem, empathy, and 
network, orientation. Level 2 predictors consisted of the size, time spent 
together, gender distribution and perceived academic pressure in the area 
of study. Response variables were comprised of the number of superficial 
relationships, companionship, and close relationships, as well as perceived 
satisfaction with social support. We tested four different multilevel models 
to explain the formation of the different dimensions of social resources in 
;z sample of 1,318 students (level l), nested within 32 areas of study (level 
2). Depending on the resource dimension, we found different personal 
characteristics to be relevant for building social contacts. A significant 
coontextual effect was observed in all four models. The largest group-level 
(affect was seen within networks consisting of superficial relationships. A 
c*onsiderable part of the variance between the study areas was explained by 
the number of required lessons (i.e., time spent together in the classroom). 
This predictor was the only one to have a consistent effect on all four 
dimensions of social resources. Gender distribution in an area was found to 
ha.ve an effect on the development of both superficial and close networks. 
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Contrary to the subjective perception of students and the assumptions 
of student counselors, the size of the student group as well as perceived 
academic pressure seem not to have any substantial influence on the 
development of social resources among students. 
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Ordered Category Responses and 
Random Effects in Multilevel and 

Other Complex Structures 
Antony Fielding 

University of Birmingham, United Kingdom 

Many response variables in multilevel models are ordered categories. 
Although those used here are school grades, other examples arise in diverse 
application areas. Rating scales provide important examples. When 
number labels are attached to the categories, it is only their ordering that 
has any substantive meaning. However, in practice, it is quite common to 
apply arbitrary scores to the responses and model them as if they were 
interval scales with higher measurement properties. There are obvious 
practical advantages in this in that methodology for linear multilevel models 
is more widely known and software more accessible. 

However, apart from the arbitrariness of the implicit scaling 
assumptions, many objections to this practice from statistical and 
substantive viewpoints arise in the literature. These are reviewed in 
Fielding (1999, 2000). Questions arise as to the wisdom of assuming that 
effects operate linearly and additively on a chosen scale rather than on some 
other arbitrarily chosen one. Also, even if the scale of a continuous variable 
lmderlying the ordered data could be satisfactorily chosen, there is still the 
fact of grouping the data. It is well known that grouping of responses leads 
to biased and poor estimation of regression parameters in standard single 
level models (Stewart, 1983). Simulations of multilevel models by Fielding 
(2000) have also shown tJhat the impact of grouping on variance component 
estimates may be even more problematic. 

181 
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The methodological developments and applications discussed seek 
alternatives to multilevel models based on scores. They focus on models 
that directly deal with grouped ordered responses and do not assume a 
higher level of measurement than their operational construction allows. 
The models are also extended from multilevel structures to more complex 
structures involving cross-classified and weighted random effects. They 
form part of the family of generalized linear mixed models (GLMMs). They 
extend the construction of generalized linear models for ordered responses 
(h~cCullagh & NeIder, 1989) by the incorporation of random effects. 

MODELING ORDERED RESPONSES IN 
MULTILEVEL HIERARCHIES 

A two level example: Progress in primary schools 

To assist teachers in meeting learning needs, baseline testing of children 
entering primary school has been set up in Local Education Authorities 
(LEAS) in England and Wales. Progress can be traced through to statutory 
Key Stage 1 (KSl) tests taken 2 years later. The data used here is two 
level with 4,444 children in 114 schools from one large LEA. The response 
modeled is a national KS1 reading test with a grading of levels into six 
ordered cat,egories. 

In developing a multilevel model, there may be a variety of analytical 
aims to meet substantive interest in educational progress. Adjusted 
outcomes controlling for prior ability of intake are of interest in assessing 
progress. Other individual and school characteristics, although often 
correlated with ability, may have a net effect on progress and are of interest. 
Model results may also inform target setting based on known individual 
characteristics at baseline. As shown later, when ordered category models 
are used, predictions can be made of probabilities or “chances” of achieving 
certain KS1 levels, given individual profiles. The estimation of school effect#s 
on progress through well-specified multilevel models, controlling for relevant 
variables, also establishes a sound methodological basis for “value added” 
indicators. These aims provide background motivation for the methodology 
and example to be discussed. 

The response variable has three levels with a fine grading of KS1 level 
2. Sample distribution details are given in rows 1 to 4 of Table 9.1. 
Seven baseline teacher-assessed test variables in spelling, reading, writing, 
number, algebra, shape and space, and handling data are used as initial 
ability controls. These have a 4-point categorized scale. After investigation, 
however, it was found satisfactory to enter them into models as equal 
interval scales; standardized with mean zero and unit variance. Table 9.2 
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TABLE 9.1 
Distribution of Response and Approximate Marginal Expectations From 

Various Models 

Level of KS1 Reading 0 1 2c 2b 2a 3 
1 Category number 1 2 3 4 5 6 
2 Sample frequency 160 871 786 738 532 1357 
3 Sample % 3.6 19.6 17.7 16.6 12.0 30.5 
4 Cumulative % 3.6 23.2 40.9 57.5 69.5 100.0 

Model predictions 
5 AL cumulative. % 2.8 20.7 39.5 57.9 71.0 100.0 
6 AL % 2.8 17.9 18.8 18.4 13.1 29.0 
7 AP cumulative. % 2.2 20.6 39.5 57.6 70.6 100.0 
8 AP % 2.2 18.4 18.9 18.1 13.0 29.4 
9 BL cum. % at means of 1.3 15.7 38.4 63.2 78.9 100 

effect variables 
10 BL % at means 1.3 14.4 22.7 24.8 15.7 21.1 

gives defin’ t * 1 ions and summary measures of these and other explanatory 
variables used. 

The basic two level model formulation for ordered responses 

Taking advantage of the order of the response categories it is convenient to 
model the cumulative probabilities yijcs) (s = 1, 2, . . . , 5) for the ith child in 
the jth school achieving at least category s on the response. By definition, 
%j (6) = 1 and is not explicitly considered. An observed response category 
can be converted into a multivariate set of binary indicators, and these can 
also be cumulated to form a vector yij ={Yij(l)l?/ij(;?),~ij(s),~ij(a),Yij(s)} 

with E(Yij)= {~ij(~) J Y~~(ZJ T ~ij(s) > ~ij(4) y ~ij(s) 1. For many situations, 
conditional on the probabilities, yij will be multinomial and have a 
variance-covariance matrix with elements yijcs) (l-yijcs,,) for s 5 s’. An 
cxtramultinomial variation parameter 4 multiplying this matrix will also 
be introduced to allow for possible misspecification of the probabilities. It, 
is worth noting at this stage that multinomial variation depends directly 
on expected values (probabilities). There is no separate estimable variance 
parameter akin to the individual disturbance in continuous variable 
multilevel models. This fact of inseparability of parametric specifications of 
expectations and variances is often a source of some confusion in empirical 
work. 

Completing a basic multilevel model requires specification of the ~~~(~)in 



TABLE 9.2 
Definitions of Variables and Summary Statistics in the Models of Table 9.3 

Variable 
Level 1: Pupil 
Gender 
Free 
school meals 
Nursery 

Description and summary statistics 

Centred Age 

Ethnic-Language 
dummies 

EthLang2 
EthLang3 

1 = male (50.3%); 0 = female (49.7%) 
1, Eligible for free school meals (38.3%); 0, Not 
eligible (61.7%) 
1, previous nursery education (66.5%); 0, Others 
(33.5%) 
Age in months centred on 86 months at KS1 testing 
(SD = 3.5) 
14 compound categories formed from 10 ethnic 
groups and 12 first languages Base for dummies 
is White all languages ( 59.0%). Only 0.3% of 
children were White with languages other than 
English 
1 = Afro-Caribbean-English ( 7.1%); 0 = Others 
1 = Afro-Caribbean-not English ( 0.4%); 0 = 
Others 

EthLang4 

Et hLang5 
EthLang6 
EthLang7 
EthLang8 

EthLang9 
EthLanglO 
EthLangll 
EthLang12 
EthLang13 
EthLangl4 

1 = Other ethnic groups-English ( 5.1%); 0 = 
Others 
1 = Pakistani-not English ( 16.0%); 0 = Others 
1 = Indian-Hindi (0.1%); 0 = Others 
1 = Indian-Punjabi (5.8%); 0 = Others 
1 = Indian-other languages not English (1.0%); 0 
= Others 
1 = Bangladeshi-not English (4.0%); 0 = Others 
1 = Arabic-not English (0.5%); 0 = Others 
1 = Chinese-not English (0.2%); 0 = Others 
1 = Vietnamese-not English (0.2%); 0 = Others 
1 = Mixed race-not English (0.5%); 0 = Others 
1 = Other ethnic groups-not English (0.2%); 0 = 
Others 

Level 2: School 
Baseline Average of 7 percentages of children at or above 
aggregate level 2 on baselines 
FSM context Percentage of chldren eligible for free school meals 

184 
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terms of fixed and higher level random effects. The probabilities are 
constrained to lie between zero and one. Usually, through a link function, 
they will be monotonically transformed to aijcs) = F-l yijcs) so that, 

( > 
Yij(s) = F h(s)) and cuij($)range along the whole real line. The latter can 
then be formed as a linear predictor (LP) in unconstrained ways familiar 
in continuous variable linear multilevel models. Because yijcs) 5 yij(s,) fol 
s < s/=1,2, . . . , 5, certain forms of both the LP and F(or its inverse the 
link F-l) are indicated. Any suitable choice of F will be a distribution 
function of some continuous random variable. A LP of form, 

is suitable for the example. The x variables are explanatory variables. The 
random school effect ujis usually assumed N N (0, gu2). The minus sign 
in the LP is for interpretational convenience because a positive effect on 
?,j(s)is a negative effect on the ordered response and vice versa. Because, 

L 

CD eXeij + ‘Uj (9.2) e=i 
is invariant for specific observations, the 0, demarcate the cumulative 
probabilities for that individual. If 6 < 8. < 0 < 19 < 8 l- 2- 3- 4- 57 as is necessary, 
t,hen since F-l is nondecreasing in its argument, then so will be yijcsJ with 
s as required. For identification purposes, the x should not include an 
explicit intercept variable because this will be aliased with the set of OS. 

Two forms of the link function, probit and logit will be used. These 
arise as inverses of respectively the standard normal and standard logistic 
forms for F. Other links have been suggested, and in some areas, the use of 
t,he complementary log-log is useful (Goldstein, 1995). The logit link gives 

(9.3) 

so that effects in the LP operate on a log-odds scale. Alternatively, the 
useful proportional odds property of this model is shown by 

Yij( s) 
[ 1 1 - Yij(s) = exp(& - EP (,1, e*Qi.i +%)I 

= exp(%,)exp(- 

( 

2BfXfij +U,j ). 

) 
(9.4) 

f=l 
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As the values of variables or effects change in the LP, and affect the 
whole response distribution yijcS), the effect on the set of odds across s is 
proportional. Differences of log odds and odds ratios for any pair of s and 
s’ are constant across observations. Odds ratios for pairs of observations 
are also constant across the five values of s. These facts mean some 
useful interpretations of parameter estimates in the ordered logit model 
are possible. Later, in Table 9.3, for instance, a base logit model (BL) 
yields a 0.8 estimate of the baseline number test coefficient that is the 
net effect on log odds. A standard deviation increase in number (ceteris 
paribus) shifts the entire response distribution upward in such a way that, 
the set of five log-odds are all decreased by 0.8. The odds themselves in 
the set change proportionately. A decrease of a standard deviation unit1 
in number multiplies each by exp(0.8) = 2.23. Odds ratios for pairs of 
categories remain unaffected. Changes in the school random effects also 
operate in this way. 

This model presented so far is very basic. However, the methodology can 
be extended quite readily in ways familiar in general multilevel modelling. 
More levels can be introduced into the LP. The regression coefficients 
can also be regarded as random effects at any level and so on. In some 
sit,uations, there are also advantages in allowing the 19, to randomly vary 
over schools separately instead of being consistently shifted by the single 
random intercept uj, or to allow the 0, to interact with explanatory 
variables (Hedeker & Mermelstein, 1998; Yang, 2000; Yang, Fielding, & 
Goldstein, in press-a). In logit models in these cases, odds are no longer 
proportionally changing. 

It is sometimes useful, both conceptually and for results interpretation, 
to postulate the existence of an unmeasured and unobservable continuous 
latent variable (Iv) underlying the response categories. Contiguous intervals 
on this variable formed by unknown cutpoints { -00, &, 02, 63, t34, OS, +oo} 
may be supposed to form the observed categories. It may be further 
supposed that this IV follows a standard continuous response multilevel 
model 

The intercept fixed coefficient may be taken as zero because the location 
of the Iv is arbitrary. An observation in category s or below occurs when 
1~ < 0,. The scale of the Iv is arbitrary and may be fixed by specifying 
a priori the variance of the level 1 disturbance eij. Then, if eij -N(O,l), 
and with R-‘denoting the inverse of the normal distribution function, the 
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probit model 

for the cumulative probabilities ensues. The ordered logit model follows 
if eijhas a standard logistic with variance 7r”/3. Fixing the scale of the 
unmeasured Iv in these convenient ways resolves the unidentified nature 
of its variance with only ordered categories observed. The assumption of 
an underlying latent variable is not unduly restrictive and no measurement8 
scale is being imposed. It is arbitrary up to any order preserving monotonic 
transformation. The distributional assumptions merely postulate the 
existence of a variable governed by the assumed multilevel model by which 
the ordered category models may be interpreted. 

Choices of link function can be the subject of some debate (see Fielding. 
1999). Often, although not always, the probit and logit give similar results. 
This is mainly due to the close affinity between the standard normal and 
logistic distributions, except for discrepancies in the tails. However, in 
comparing results, it must be recognized that effects, and hence, parameter 
values are on different scales implicit in the difference between the ZU 
variances of unity and x2/3. 

Similarly model developments with the same type of model are subject 
to implicit scale differences. If, for instance, in an ordered probit model 
we introduce some additional explanatory effects, we might expect the 
residual variability of the response at the lowest level to change. However, 
in operation, the response is effectively restandardized. This may be seen 
through the Iv that is resealed to always have the same standard level 1 
variance as the model develops. Model parameter values including higher 
level variances will also be resealed appropriately in addition to any other 
real changes consequent to the extra model features. The two types of 
change are not easily separable from explicit, model results, which give 
sizes of effects on the link scale rather than on the response directsly. 
In the logit model, for instance, although changes in effects on log-odds 
are easy to see, this is not so for the response itself. In standard lineal 
multilevel applications, it is often of interest to see how variance components 
change at various levels with the introduction of further covariates. It is 
unfortunate that in empirical work, such interpretations that ignore the 
implicit, response scale changes are often carried over to GLMMs. The 
later results section 
of scale change. 

outlines an approximate way of handling this matte1 
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MODEL ESTIMATION 

FIELDING 

Many procedures based on likelihood estimation have been suggested (e.g., 
Anderson & Aitken, 1985; Ezzett & Whitehead, 1991; Harville & Mee, 1984; 
Jansen, 1990). Most are computationally intensive and as a result, there is 
a limit to the scope and available software. There is free software MIXOR 
(Hedeker & Gibbons, 1996) available for some situations. The widely used 
software HLM (Bryk & Raudenbush, 1992) also contains some facilities 
for GLMMs. Aitkin (1999) developed the theory of a general maximum 
likelihood approach implemented in the GLIM4 software but his examples 
were for binary responses and practical applications on ordered category 
models have remained relatively untested. 

Examples here use the widely available MlwiN software (Rasbash et 
al., 1999) built around Goldstein’s (1995) multilevel iterative generalized 
least squares (IGLS). Extensive and flexible macro commands and facilities 
adapt this to a wide range of complex models. For the ordered category 
models discussed here the macros MULTICAT (Yang et al., 1998) are 
under continuous development. Goldstein (1995) gave detailed theory of 
the iterative method. A brief description of the stages is in order here. 
The elements of the response cumulative indicator vector may be written 
!/tj(s) = Yij(s) +c& (s = 1, 2, . . f ) 5). An extra level below the observation 
level is created with these five elements as units. This specifically caters t,o 
the conditional covariance structure of these elements that are updated at 
each iteration by the latest, estimates of Yij(s). The functions 

(9.6) 

being t,he conditional expectations of y, are approximated at each stage 
of an iterative process by a Taylor Series linearization using the lat#est 
parameter estimates. By these means, each step casts the structure into 
the form of a standard multilevel linear model then estimable by IGLS. 
There are choices. The linearization may be around the fixed part only 
in which case it becomes equivalent to marginal quasi-likelihood (MQL). 
Inclusion of first or second order terms in the expansion yield alternatively 
MQLl or MQL2. Expansion may also use estimates of random effects tij in 
which case they penalized (predictive) quasi-likelihood referred to as PQLl 
or PQL2. Accumulating evidence has suggested a preference for PQL2, on 
which all results in this chapter are based. However, there may sometimes 
bc computational and convergence problems increasing in complexity when 
moving from MQLl to PQL2. Marginal likelihood is often satisfactory and 
certainly involves fewer computational problems and time. 
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The MULTICAT macros also estimate an extramultinomial parameter 
that can be constrained to unity for imposed multinomial variation. The 
provenance of extra multinomial variation is usually sought in missing levels 
or relevant explanatory variables in the model. Evidence has suggested that 
if the parameter is made free in operation, then this leads to improved model 
estimation (Yang, 1997). Sparse data is also sometimes a reason claimed for 
estimates of the parameter different from unity (Fielding & Yang, in press; 
Wright, 1997). The behavior is an underresearched area so the context 
must be carefully considered. In the examples to follow, the parameter is 
left free and its estimated values barely commented on. 

THE PRIMARY SCHOOL PROGRESS RESULTS 

Results of model fitting are given in Tables 9.3 and 9.4. AL (logit) 
and AP (probit) are base models exhibiting uncontrolled raw variation 
in outcome between schools and between children. They establish a 
framework for model development. Using the inverse of the link function 
and substituting estimates of 8,, approximate estimates of the marginal 
population probabilities for AL amd AP are given in rows 5 to 8 of Table 
9.1. The approximation is governed by expectations of nonlinear functions 
of random variables being only approximately the same as the function 
of the expectations. Without school random effects, both models would be 
simple reparameterizations of marginal category probabilities. Both models 
give similar results and are close to the empirical one. The largest, although 
still a minor difference, is as might be expected in the very small, lowest 
KS1 level. The models AL and AP give almost identical results and the 
different set of estimates of 19, are brought ahnost exactly into line once a 
scale factor of n/d is applied. From the implicit Iv level 1 variance in each 
case, the school contribution to overall response variability is estimated to 
he almost the same at 15.0% and 16.3010, respectively. 

Explanatory models are now developed. Logit model BL and probit BP 
introduce baseline tests. Using similar comparative criteria as before, they 
give similar results. Thus, the rest of the results use only the logit. CL 
uses a range of pupil variables except baseline tests. DL adds these back in. 
Vtoclel EL introduces some of the school context variables found relevant, 
and interesting. It must not be supposed that these model developments 
were uninformed by substantive and statistical evaluative criteria. Indeed, 
investigations were quite extensive. Lil~elilioocl calculations and hence 
deviances are unreliable in MlwiN generalized procedures, although for 
heuristic purposes, they are presented for the models in Table 9.3. For 
formal evaluation of various model developments, Wald tests of parameters, 
subsets of them, or contrasts were used (Goldstein, 1995). Bv these means, 
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the possibility of baseline coefficients randomly varying across schools 
and a wide range of interaction effects were found to be insignificant. 
Polynomial terms in baselines that take up ceiling and floor effects in points 
scored models (Fielding, 1999) were also not significant. Main effects that, 
were not statistically significant are presented in Table 9.3. The size of 
coefficients, even when small relative to their estimated precision, are often 
of substantive interest. Thus, for instance, the nursery variable that was 
significant in model CL was not so in DL and EL. This highlights the feature 
t)hat a net influence on raw performance ceases to have a real influence on 
progress when baseline control is exercised. 

Some general comments about the interpretation of the results will now 
be made before focusing on two specific practical analytical uses. Because 
baseline variables are standardized, the most important of them is seen to 
be number. Fixed effect coefficients can be interpreted directly on the scale 
of the link transformed cumulative probabilities. However, for instance, the 
number coefficient of 0.8 in logit BL can also be interpreted as a net change 
in the standard scaled IV for that particular model. The Yij(s) themselves 
are nonlinear functions and such marginal net effects on them depend on 
values taken by all variables and on random effects in the model. For 
summary purposes, partial derivatives of the yijcs) evaluated at the means 
of these values are often useful. Differencing these yield summary effects on 
the category probabilities summing to unity. For baseline number, these are 
estimated sequentially as -0.010, -0.096, -0.083, 0.003, 0.053. They show 
t)he obvious effect of baseline number test score increases on shifting the 
response variable upwards. Rows 9 to 10 of Table 9.1 show the estimated 
probabilities from model BL at the similar mean points and school effect of 
zero. The greater concentration in the middle categories show the response 
variability reduction consequent to the introduction of baseline controls. 

The school random effect is also additive on the link or Iv scale. In a 
particular model and akin to variance component analysis, it is useful to 
examine the school variance as percentage of total residual variance using 
t,he standardized Iv variance at child level 1. These are presented below the 
school variance estimates in Table 9.3. Results for BL and BP are similar 
and demonstrate that school variation relative t,o individual variation is 
great,er on adjustment for baseline ability than for the raw performance in 
,4L and AP. 

With these ideas fixed, it is of obvious interest to interpret changes in the 
models as more effects are introduced across the results in Tables 9.3 and 
9.4. As previously discussed, due to artificial implicit scale change effects 
on parameters, regardless of other real changes, some extra investigation 
is required. For example, as we move from base model AL to introducing 
baseline controls in BL, we not,e from the estimated distributions in Table 



TABLE 9.3 
Parameter Estimates for Two-Level Ordered Category Models for KS1 

Reading Test 

Model AL Model AP Model BL Model BP 
Fixed Paramters 
$(l) -3.56 (0.11) -2.00 (0.06) -4.35 (0.14) -2.46 (0.08) 
(p -1.34 (0.08) -0.82 (0.05) -1.68 (0.12) -1.00 (0.06) 
o(3) -0.43 (0.08) -0.27 (0.05) -0.47 (0.11) -0.28 (0.06) 
Q(4) 0.32 (0.08) 0.19 (0.05) 0.54 (0.11) 0.30 (0.08) 
($5) 0.90 (0.08) 0.54 (0.05) 1.32 (0.11) 0.76 (0.06) 
Baseline tests 
Spelling 0.21 (0.04) 0.12 (0.03) 
Reading 0.35 (0.04) 0.20 (0.03) 
Writing 0.21 (0.04) 0.13 (0.03) 
Number 0.80 (0.04) 0.46 (0.03) 
Algebra 0.32 (0.04) 0.18 (0.03) 
Shape & space 0.02 (0.04) 0.01 (0.03) 
Handling data 0.28 (0.04) 0.16 (0.03) 

Random parameters 
School variance: 6: 

0.581 (0.086) 0.201 (0.031) 1.233 (0.177) 0.387 (0.058) 
School % of residual variance 
in bv model 15.0 16.3 27.2 27.9 
Approximate reduction in level 1 logistic latent variance 
from model AL - - 72% - 

Approximate resealed school variance using AL model 
logistic CMS scale 0.581 - 0.880 - 

Extra- 
multinomial 4 0.968 (0.010) 0.988 (0.009) 0.956 (0.009) 1.091 (0.008) 
-2 log-likelihood 7680.70 7168.52 -3045.71 -3279.30 

Note. Estimated standard errors in parentheses; an extra-multinomial parameter 
4 has been fitted. 



TABLE 9.4 
Continuation of Table 9.3 Parameter Estimates for Further Two-Level Ordered 

Category Models for KS1 Reading Test 

Fixed parameters 
($‘) 
fp) 
(j(3) 

e(4) 

$(“) 

Baseline tests 
Spelling 
Reading 
Writing 
Number 
Algebra 
Shape and space 
Handling data 
Gender 
Free school meals 
Nursery 
Centred age 
EthLang2 
EthLang3 
EthLang4 
EthLang5 
EthLang6 
EthLang7 
EthLang8 
EthLang9 
EthLanglO 
EthLangll 
EthLang12 
EthLangl3 
EthLangl4 
Baseline aggregate 
Free school meals context 
Random parameters 
School variance: 6-2 

Model CL Model DL Model EL 

-4.54 (0.12) -4.90 ( 0.16) 
-2.22 (0.09) -2.20 ( 0.13) 
-1.24 (0.09) -0.97 ( 0.13) 
-.04 (0.09) 0.06 ( 0.13) 
0.61 (0.09) 0.85 ( 0.13) 

-4.96 ( 0.14) 
-2.27 ( 0.11) 
-1.03 ( 0.11) 
-0.01 ( 0.10) 
0.79 ( 0.10) 

-0.61 (0.05) 
-0.71 (0.06) 
0.23 (0.06) 
0.10 (0.07) 

-0.01 (0.12) 
0.14 (0.44) 
0.27 (0.13) 

-1.10 (0.11) 
0.51 (0.85) 

-0.44 (0.14) 
-0.06 (0.27) 
-1.28 (0.17) 
-1.09 (0.41) 
0.55 (0.62) 
2.02 (1.05) 

-0.34 (0.39) 
0.43 (0.65) 

0.21 ( 0.04) 
0.35 ( 0.04) 
0.15 ( 0.04) 
0.80 ( 0.04) 
0.30 ( 0.04) 
0.02 ( 0.04) 
0.28 ( 0.04) 

-0.46 ( 0.06) 
-0.41 ( 0.06) 
-0.08 ( 0.07) 
0.01 ( 0.01) 

-0.09 ( 0.12) 
0.15 ( 0.49) 
0.22 ( 0.13) 

-0.25 ( 0.13) 
1.12 ( 0.87) 
0.07 ( 0.15) 

-0.08 ( 0.29) 
-0.29 ( 0.19) 
-0.26 ( 0.42) 
1.09 ( 0.67) 
2.78 ( 1.04) 
0.24 ( 0.40) 
0.04 ( 0.68) 

0.20 ( 0.04) 
0.36 ( 0.04) 
0.17 ( 0.04) 
0.79 ( 0.04) 
0.30 ( 0.04) 
0.04 ( 0.04) 
0.29 ( 0.04) 

-0.45 ( 0.06) 
-0.39 ( 0.06) 
-0.08 ( 0.07) 
0.01 ( 0.01) 

-0.10 ( 0.12) 
0.21 ( 0.48) 
0.21 ( 0.13) 

-0.28 ( 0.12) 
1.15 ( 0.86) 
0.04 ( 0.14) 

-0.12 ( 0.29) 
-0.29 ( 0.18) 
-0.32 ( 0.41) 
1.11 ( 0.68) 
2.69 ( 1.04) 
0.22 ( 0.40) 
0.02 ( 0.69) 
0.83 ( 0.09) 
0.38 ( 0.06) 

0.301 (0.052) 1.112 (0.161) 0.522 (0.08) 
School % of residual var in Iv model 8.4 25.2 13.7 
Approx reduction in lev 1 logistic la- 75% 69% 68% 
tent var from model AL 
Approx resealed School var us’ing 0.216 0.764 0.355 
AL model logistic CMS scale 
Extra-multinomial 4 0.960 (0.009) 0.952 (0.012) 0.943 (0.009) 
-2 log-likelihood -1034.20 -4070.51 -4504.31 
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9.1 that level 1 response variability has reduced considerably. This is not 
explicit in Table 9.3 results where the underlying response variable has 
effectively been resealed (by restandardizing the level 1 response variance). 
This impacts on all parameter estimates and in particular the school 
variance & U2. How much of the change in the latter is due to the scale 
change and how much is due to a real change consequent to the baseline 
controls is not apparent (although the change in the school variances of 
log-odds is real enough). 

Changes in the a~,) as the model develops are instructive in 
understanding the implicit response scale changes. They account for the 
proportionality of the odds or on the Iv interpretation represent cut points. 
Suppose the unlikely event that introduction of extra variables and effects 
into a model did not affect level 1 response variability and hence the scale. 
Naturally, as usual, there might be changes in existing effect parameters and 
the school variability. The latter changes would affect the variability in the 
locations of the conditional level 1 response distributions in model-specified 
ways. However, the spread within these distributions would be invariant. 
The relationships between the set of cumulative odds for a given distribution 
as reflected by the relative sizes of the 8c,)would not be expected to change 
much. Thus, the latent variable cut point parameters should stay roughly 
the same, apart from a possible constant additive intercept change due to 
the introduction of an explanatory variable with a nonzero mean. Thus, we 
might conclude that apart from such a constant shift, if any changes in the 
a(,)w noted, these arise largely as a result of resealing the Iv as a result 
of a change in the level 1 variance and were otherwise ruled out. Because 
i-he introduced variables in BL all have mean zero, a direct comparison 
may be made between its jc,)and those of AL. A stretching of the set of 
values is apparent, indicative of a reduction in level 1 response variability 
previously noted from Table 9.1. The factors by which the a,,, are inflated 
t,hus provide a rough indication of the extent of resealing required in the Iv 
as a result of restandardization following a real change in level 1 residual 
dispersion. 

It, should be clear that in order to separate out meaningful changes 
in parameter values from scale changes, some clearer handle on the level 1 
change is required. The relationship to cut point parameter changes gives a 
hint of how this might be done. An approximate method has been devised, 
full details of which are provided by Fielding and Yang (in press). The key 
is an attempt to keep the scale of the underlying variable unchanged as the 
model develops away from the base. From cut point estimates for model AL 
and the fitted distribution in Table 9.1, we can construct logistic conditional 
mean scores (CMS) for the categories (Fielding, 1997). The variance of 
the fitt,ed response distribution using these can then be found (which, clue 
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to grouping effects, will usually be a little below the theoretical 7r”/3). 
For these common CMS scores, and thus using the same scale, the level 1 
variance can be calculated from the cut points and a fitted conditional level 
1 distribution for further developments of the base model. The reductions 
in this common scale level 1 variance for the various logit models are given 
in Table 9.3. Model BL variance is 72% that of AL, implying a level 1 
variance reduction of 28%. To account for the resealing, this factor may 
be applied to the school estimated variance to yield 0.880. The increase in 
school variance in the controlled model over the base performance model 
(0.58) is not uncommon in primary school research. However, it is not as 
large as may seem from the unscaled estimate. Estimates of the scaled 
variances for other models are given in Table 9.4. It is also possible to put, 
other parameter estimates on a common footing for comparative purposes 
by using a square root factor mutiplier. Applied to cut point estimates, it 
brings them as expected almost into line in most cases. 

This discussion has used the example to illustrate points of model 
interpretation. There is much detailed substantive content in the results 
pertinent to a debate on educational issues. Only brief comments are 
made here. Baseline assessments and individual background variables are 
closely associated so model CL controls for the latter separately. Many 
ethnic-language dummies represent small groups, are estimated imprecisely, 
and are not statistically significant. However, there is evidence that fairly 
large groups of non-English speaking Pakistani and Bangladeshi children 
are disadvantaged. A net gender gap is evident in favor of girls. Their 
odds of getting below each grade are about half [exp(-061)] those of 
boys. Performance is worse for free school meals children and better if 
they have had nursery education. The resealed school variance shows a 
considerable reduction over the base for CL, unlike that for BL. Further, 
this reduction is greater than for pupil variance. Thus, although the 
socioeconomic characteristics are closely related to baseline scores, they 
operate quite differently and thus, cannot be taken as proxy, as is sometimes 
done. Catchment area characteristics of schools may make them moor 
internally homogenious on these factors than on ability. The importance of 
recognizing the multilevel structure is thus again emphasized here. Model 
DL with both sets of factors has a similar level 1 variance and hence, 
scaling to BL, so parameter estimates are directly comparable. Baseline 
test coefficients are very similar and it appears t,hat baseline net effects are 
largely uIlaffected by extra controls. These extra background variables do 
have a highly significant effect on progress, even when initial ability has 
been controlled, (Wald x2 is 148.4 on 17 df). Girls also progress more 
t,han boys. This is in contrast to an opposite result noted by Fielding 
(1999) for mathematics KSl. Free school meals is related to progress 
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TABLE 9.5 
“Chances” Distributions: Predicted Percentage Distributions Over KS1 
Reading Levels for Some Combinations of Baseline Assessment Levels 

KS1 Reading Level 0 1 2C 2B 2A 3 
Empirical overall percent 3.6 19.6 17.7 16.6 12.0 30.5 
Baselines at level 1 
Number at level 0 8.5 38.9 21.2 15.4 7.7 8.3 
Number at level 1 3.2 25.6 21.2 17.6 12.6 19.8 
Number at level 2 1.1 12.3 17.8 17.6 13.6 37.4 
Baselines at level 2 
Number at, level 0 1.1 12.6 18.0 17.6 13.6 36.9 
Number at, level 1 0.4 5.0 10.1 15.2 13.7 55.5 
Number at level 2 0.1 1.8 4.3 8.6 11.1 74.1 

net of ability but the same cannot be said of nursery education. Again, 
most ethnic-language effects are not statistically discernible. However, the 
effects of some of them on attainment levels does not seem to carry over for 
adjusted levels of progress. Model EL has two school context effects that 
explain a significant extra amount of school variation (resealed variance 
is half that of model DL). Regardless of their individual characteristics, 
pupils appear to make more progress when their peer group in school is 
more advantaged. A general conclusion of these results is the separate and 
differently operating contributions of prior ability and other characteristics, 
which the multilevel analysis brings out. These facts have often been 
ignored in policy-related research where, in the absence of prior ability 
measures, correlated background factors have been used as proxies. 

Two particular analytical uses of these types of model are now 

briefly outlined. The Value Added National Project (Fitz-Gibbon, 1997) 
recommended using “chances” of achieving levels for students with different 
profiles as a useful way of making predictions. This is difficult when points 
scores are used. Ordered category models provide a direct way of doing 
so because the focus is on the entire distribution over discrete categories. 
For illustration, Table 9.5 presents “chances” based on a “value added” 
model BL. They might be used when it is desired to adjust for prior 
ability measures only. Adjustments for expectations of nonlinear functions 
suggested by Hedeker and Gibbons (1994) and by Goldstein (1995, p. 79) 
are made before converting the fitted LP for sets of covariate values to 
predictions of probabilities. The top of four baseline levels is very rare with 
no more than 2.2% in the data for any test. Thus, the illustrations set all 
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the baseline variables except number at either level 1 or 2. The important 
influence of number can be seen by allowing it to vary. Such distributions, 
perhaps with more detailed profiles, when converted to graphical displays, 
provide a readily understood motivational device. However, they are based 
on point estimates of model parameters. For any detailed inferences, the 
uncertainty of estimates should be recognized and confidence bands for the 
distributions provided. It should also be recognised that a school effect 
could be included in the profile and will alter the predictions. These fitted 
“chances” are averaged over schools. Generally, a pupil may be expected 
to do better or worse than a similarly profiled pupil if a different school is 
attended. 

A second application of the model uses the MULTICAT estimation of 
the school residuals uj and their standard errors. The residuals in models 
with control variables may be used to derive value-added measures although 
we have a preference for the term “adjusted school effects.” The details of 
the controls to be used and the mechanism by which they operate are an 
area of vigorous debate in the school effectiveness literature. A model for 
outcome responses is often likened to an economics production function 
(Woodhouse & Yang, 2001). The role of a school effect is seen as adding 
to the raw material characterized by other variables in the model. The 
model adjusts by controlling for this input quality. Official sources often 
eschew the use of control using socioeconomic characteristics, which, given 
the earlier results, may surely be contentious. However, for illustration, Fig. 
9.1 shows the estimated school effects (residuals) for model BL using only 
initial ability as controls. Uncertainty must be recognized in these estimates 
(Goldstein & Spiegelhalter, 1996). Thus, as suggested by Goldstein and 
Healy (1995), they are surrounded by the 1.4 standard errors giving overall 
95%) confidence intervals for sets of such comparisons. These caterpillar 
diagrams have become very familiar in school research but have, as yet, to 
make inroads into official publication. They can be routinely implemented 
in the graphics windows of MlwiN. The scale is that of a logistic variable 
and could be converted to standard deviation units of outcome on division 
by r/\/5. Schools and others are used to standardized scores, so fairly 
easy interpretation of such diagrams should be possible. Scales can also be 
converted to KS level units if required. The overlap between school bands 
as also noted in many other published contexts, means that it is difficult, 
to discriminate between the effectiveness of the majority of schools. For 
screening purposes, there are some obviously extreme schools at either end. 
These arouse interest and could be subject to further scrutiny. A few of 
t,he schools at the top end, for instance, are particularly advantaged in the 
context effects and socioeconomic variables. These have not been controlled 
in the graphed results. The diagnosis and analysis of outliers is aided by the 
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rank of school 

FIG. 9.1. School estimated residual effects for model BL in rank order; 
Bands are residual +/- 1.4 estimated standard errors 

methodological developments of Langford and Lewis (1998) implemented 
in the graphical interface of MlwiN. 

CROSS-CLASSIFIED AND WEIGHTED RANDOM 
EFFECTS IN MULTILEVEL ORDERED 

CATEGORY RESPONSE MODELS 

Structures, data, and models 

At any level in a model, there may be additional hierarchies of units that 
cut across existing ones and that contribute effects to random variation. 
The first example to be discussed recognizes the continuity of school effects. 
The data is available with the MlwiN software. The response, attainment of 
3,435 children around 16 years old in 19 secondary schools in Fife Scotland. 
is graded into 10 ordered categories. The children are also nested in 148 
primary schools they previously attended before transfer at around 11 years 
of age and that may also exert an effect. Thus, children are lodged in a 
cross-classification of primary and secondary school at level 2. As a point, 
of comparison, the example has been analyzed using continuous response 
models and grade level scores (l-10) in the MlwiN user guide (Rasbash et 
al., 1999). Here, ordered category models are used, and in investigation, 
a preference for the probit link emerged. Thus, the model for cumulative 
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grade probabilities is of the form 

O-l Wl,j,)(S) I ] = 0s - (~Pereiwd +uj, +uj2) , 
e=i 

s = 1,2, . . . ,9. The ji and j, indices range over secondary and primary 
schools respectively, which have separate additive random effects at level 
2. For inference purposes, these are assumed as usual to be normally and 
independently distributed with variances CT,~ 2 and aUZ2 to be estimated. 
Level 1 observations, indexed by i, are lodged within cells (ji, j2) of the 
level 2 crossing. More generally, in such models, there may be many ways 
of crossing, crossings at many levels, and random regression coefficients. 
The range of complex possibilities was reviewed in Goldstein (1995). 
Applications with cross-classified effects in continuous response models were 
discussed in Goldstein and Sammons (1997), Raudenbush (1993), and for 
binary responses in Yang, Goldstein, and Heath(2000). 

The second example to be analyzed uses a subset of data drawn from 
a study of effectiveness in further education colleges in England and Wales 
(Belfield, Fielding, & Thomas, 1996). Level one in the structure is entries 
to subject,s at, the General Certificate of Education Advanced Level with 
six ordered grades. The 3,717 entries are nested within 1,522 students 
and further within 317 subject teaching groups. There is thus a crossing 
of student and group at level 2. The desirability of disentangling their 
separate random effects is discussed in Fielding and Yang (in press). There 
the desirability of unpicking separate teacher effects is also raised. If only 
one of t!he 145 teachers taught groups, many of whom taught more than 
one group, a three-way classification at level 2 would be formed. However, 
it is the norm that groups are taught by several teachers. Weighted random 
t,eacher effects handle this. Logit models of the form 

53 

+ C Pezei(.b ,j2) + uj~ + uj2 + C wi(jl ,j,)j3UJ3 , 

j,=l 

where (s = 1, 2, . . . , 5) are used. The ji and j2 index students and 
groups. Teacher effects are denoted by uj, with variance oU32. Weighted 
contributions across all teachers are formed, with weights, wicj, ,j2)j3, being 
the proportion of a teaching group timetable taught by teachers. The sum 
ranges over all 5s teachers but for each observation, only a few weights will 
be nonzero. 
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Model estimation 

Theory and methods for recasting cross-classified and weighted random 
models for continuous response models into hierarchical form have been 
discussed fully by Raudenbush (1993) and by Goldstein (1987, 1995). 
A range of commands that can do this and that can be incorporated 
into macros is available in MlwiN. The User Guide (Rasbash et al.. 
1999) discusses example setups. In the previous examples, the crossings 
take place in the LP at levels above the observation and thus these 
reformulations can carry over quite readily into GLMMs for ordered 
responses. Quasi-likelihood estimation as previously discussed can then 
be carried out. For technical reasons due to the necessity for imposing 
prior constraints on variance parameters, the standard ordered response 
procedures in MULTICAT cannot be directly employed. A stand-alone 
macro ORDCAT that overcomes this has been written.’ 

Attainment in Scottish secondary schools 

For the example results, a value added analysis using only a single 
explanatory variable is used; STVRQ is a standardized score on a verbal 
reasoning test taken before entry to secondary school. With the number 
of categories as large as 10 a linear analysis using points scored responses 
may be a useful preliminary in model investigations. Two scoring schemes 
are used in results presented before the probit model in Table 9.6; equal 
intervals scaled to have mean zero and unit variance on the data and 
standard normal scores. In all models, polynomial terms in STVRQ were 
also tried. These and the possibility of a STVRQ coefficient random at the 
secondary level proved uninteresting. For comparative purposes, in Table 
9.7, the probit model has also been resealed to have level 1 Iv variance, the 
same as the normal scores model. 

Broad patterns of major significant effects would emerge from a variety 
of model types even if some assumed features were doubtful (Ezzett & 
Whitehead, 1991). With as many as 10 categories, it is seen that the 
scored analyses and the probit model give much the same impression. For 
more detailed analyses, such as estimation of school effects or predicting 
grade distributions, the less restrictive probit or other GLMMs would 
usually be preferred. Broadly, the results confirm other work (Goldstein 
S;: Sammons, 1997) on the importance of primary school attended on 
secondary school performance and progress. In all base performance models 

1 ORDCAT and accompanying documentation is available from the author’s web page, 
www.bham.ac.uk/economics/staff/tony.htm., which also has a range of relevant discus- 
sion papers. Macros are in a continuous state of development and the latest forthcoming 
version (Yang et al., 1998) will incoporate the present procedures. 
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TABLE 9.6 
Parameter Estimates in Cross-Classified Models using points scores for 

Attainment in lo-Point Categories for 16-Year-Old Children in Secondary 
Schools in Fife, Scotland 

Equal Interval Standardized Conditional 
Standardized Mean Normal 

Responses Scores 
Variance With Control Variance With Control 

Components Components 
Fixed Effects 
Intercept -0.057 (0.052) -0.065 (0.022) -0.054 (0.056) -0.015 (0.022) 
STVRQ 0.696 (0.021) 0.689 (0.012) 

Random Effect 
Variance 
Secondary 
Schools 0.037 (0.014) 0.001 (0.003) 0.035 (0.017) 0.001 (0.002) 

Primary 
Schools 0.120 (0.021) 0.029 (0.006) 0.121 (0.021) 0.032 (0.007) 

Pupils 0.867 (0.021) 0.455 (0.011) 0.867 (0.021) 0.460 (0.011) 
Note. Estimated standard errors in parentheses. 

without STVRQ control, it is seen that primary school variance is over three 
times that of secondary schools. When STVRQ, which may be considered a 
primary school outcome, is controlled along with other net primary school 
effects, the secondary school contribution to secondary school progress 
becomes quite small. Goldstein (1995) discussed how such results should 
be interpreted with care due to the larger number of primary schools whose 
effects are averaged within secondary schools. Nevertheless, the importance 
of continuity of educational effects emerges. 

The probit and scoring models differ somewhat in detail of parameter 
estimates whereas these can be compared. Using the same approximate 
method as before but with normal CMS, a Iv resealing of the variance 
components by 58% may be applied to the probit model with STVRQ 
control. It may be noted that this contrasts with the slightly smaller 
53% reduction in level 1 variance in both points models. After scaling 
the 75% reduction of primary school variance from 0.1555 to 0.0305, after 
introduction of STVRQ may be compared with 80% for the equal interval 



TABLE 9.7 
Parameter Estimates in Cross-Classified Models using Ordered Category 

Probit Models for Attainment in IO-Point Categories for 16-Year-Old 
Children in Secondary Schools in Fife, Scotland 

Fixed Effets 

Without With Resealed’ 
STVRQ STVRQ Without With 
Control Control Control Control 

01 -2.074 (0.081) -2.893 (0.079) -1.931 
02 -0.796 (0.066) -1.240 (0.045) -0.741 
f33 -0.382 (0.065) -0.647 (0.042) -0.376 
04 -0.188 (0.065) -0.264 (0.040) -0.110 
05 0.120 (0.065) 0.087 (0.039) 0.112 
43 0.313 (0.065) 0.374 (0.040) 0.291 
@i 0.505 (0.065) 0.658 (0.041) 0.470 
08 0.715 (0.066) 0.965 (0.043) 0.660 
%I 1.021 (0.067) 1.396 (0.046) 0.950 

STVRQ 1.112 (0.029) 

Random Effect 
Variance 
Secondary 
Schools 0.045 (0.021) 0.003 (0.006) 0.039 

Primary 
Schools 0.156 (0.027) 0.053 (0.016) 0.135 

After Resealing 
by x = 58% 

Secondary 
Schools 0.002 

Primary 
Schools 0.031 

Extra- 
multinomial 4 0.970 (0.008) 1.174 (0.012) 

-1.962 
-0.841 
-0.439 
-0.179 
0.059 
0.254 
0.446 
0.665 
0.945 

0.745 

0.001 

0.024 

Note. Estimated standard errors in parentheses. 
’ The resealing is to have the same level 1 Iv variance as variance estimated 
in parallel Normal Scores points model in Table 9.6 
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model and 73% for the normal scores model. The resealing of the probit, 
results to the level 1 variances of the normal points model on the right-hand 
side of Table 9.7 shows that there may be a considerable difference in 
the estimated marginal net impact of initial ability on the response. The 
probit model estimate of 1.212 for the STVRQ parameter is approximated 
t#o 0.75 on a comparable scale to the smaller estimates of 0.69 for the 
&andard points models. This would make a substantial difference to chance 
predictions that could be carried out as for the previous examples. 

Group student and teacher effects on GCE advanced level 

The first two columns of Table 9.8 present estimates for a base and 
elaborated hierarchical logit model of entries within teaching groups. 
Although useful as a point of comparison, they ignore lack of independence 
of the entries across groups due to shared and unmeasured student effects. 
Also, they do not attempt to disentangle group and teacher effects. The 
results for comparable models, which incorporate crossed student effects 
and weighted teacher effects, are given in the second two columns. 

The same set of explanatory variables and effects is used in each case, 
although, as usual, they ensue from fairly deep model investigation using 
available data. Details of the variables are fairly explicit in the legend 
and body of Table 9.8. Subjects are dummy variables related to a Social 
Science base. The base for Institition dummies is a medium sized Further 
Education College. FEC, TC, SFC, denotes Further Education, Tertiary 
and Sixth Form Colleges. Although the main objective of this example is to 
discuss the elaboration of random effects, some brief comment may be made 
on important fixed effects. The main effect is a measure of students’ prior 
attainment STGC, a standardized average of grade points on a number 
of General Certificate of Secondary Education subjects taken by students 
usually just before they embark on the Advanced Levels. A quadratic term 
is also required for this, which may reflect the marked skewness of STGC 
t,o a ceiling. It may be noted that girls seem to have worse net performance 
and hence progress when prior ability and other factors are controlled. By 
cont(rast, although not illustrated here, girls have higher unadjusted raw 
performance. Also, the significant negative interaction between STGC and 
gender indicate that lower ability girls make more progress than similar boys 
but vice versa at higher ability levels. The results indicate some subject, 
group differences as found in other research but these are not elaborated 
here. The six colleges in the data represented by dummy fixed effects in the 
model cover a range of types and sizes. Some net differences between the 
colleges are evident, but there are too few to facilitate generalizations. They 
have been included in the model as relevant block adjustment controls. 
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The change in the student variable fixed parameter estimates after 
student and teacher effects are introduced is in line with change of cut point 
estimates and seems indicative of resealing only. However, there are some 
uneven changes in subject and college dummies, which are not consonant 
with scale changes alone. Many explanations not fully explored here may be 
suggested and are capable of being fully investigated. Clustering of certain 
types of student in certain subjects or colleges may have been confounded 
before control of unmeasured student effects was exercised. Types of teacher 
may also be inextricably bound up with these factors that are specifically 
separated when there are controls for teacher effects. There is much 
complexity of interest here that could possibly be unraveled by much deeper 
investigation of the nature of the educational process. The changes in 
standard error estimates with more detailed variance specification, although 
not large, may also be noted. 

The variance component estimates across the four models in Table 9.8 
raise relevant issues. In the teaching group only models A and B, a 12~ 
scaling reveals that the covariates reduce entry variance by 30% from that 
of the base model The reduction in group variance will be similar as is 
seen by the similar percentages of residual variance attributable to groups 
(17.7 and 18.2) before and after covariate control. In Model C with the 
introduction of student and teacher effects into the base model, the relative 
contribution of groups is much reduced. Some of this may be taken up 1~~ 
t,he common influence of student effects. Residual entry variation is still 
79% of the total, much of which may be explained by considerable variation 
of grades within students, and that detail is often lost when aggregate 
student performances are the focus of enquiry. The teacher variation 
separate from group variation and relative to it is seen to be considerable. 
It must be noted though that the teacher variance contribution to an entry 
observation is not conventionally additive. Denoting the variance parameter 
cst,imate as f?T ’ the contribution will be , 
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For instance, in Model D introducing the covariates, where cr2 = 0.4521, a 
group with three equally weighted teachers will contribute 0.151. However, 
this is still larger than the group variance of 0.128. Introduction of 
covariates impacts more on reducing group and student variance although 
Iv resealing results are not displayed here. The teacher variation is now 
relatively more important ( 11% vs. 8.4%). There is much more detail 
that could be further investigated. However, the model’s ability to isolate 
teacher effects suggests the broad and important conclusion that teachers 
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do matter. The methodological tools available form an opportunity to 
investigate this if more data was available. Some conventional teacher 
characteristics, such as age, gender, training, educational levels, and length 
of service are available in the data but do not on investigation appear to 
explain much teacher variation. 

The role of extramultinomial variation 

An extramultinomial parameter has been used but so far barely commented 
on. Simulations with multinomial structures have indicated that estimation 
of all model parameters may be improved, if it is left unconstrained 
(Fielding & Yang, in press; Yang, 1997). Wright (1997) also showed that for 
sparse, unbalanced, but multinomial structures, an estimate a bit different 
from unity often emerges. For these reasons we recommend it usually be 
let free. The provenance of extravariation is often discussed in terms of 
misspecified probabilities in controlled experimental designs (e.g., Williams, 
1982). For models of complex multilevel survey data that can only ever be 
approximations, the issue is not so clear cut and misspecification can occur 
in a variety of ways that are complicated to unravel. This is beyond the 
present chapter. Most estimates in the results are not too different from 
unity. 

CONCLUDING REMARKS 

The examples discussed have shown the potentiality of ordinal GLMMs 
for fairly complex structures. It is known that the quasi-likelihood 
procedures used can be biased but Yang (1997) has shown that PQL2 
estimation is satisfactory for many situations. Bias reduction bootstrapping 
procedures according to Kuk (1995) may be used although they are often 
computationally intensive and thus practically infeasible. They have been 
applied to the PQL2 results of Table 9.3 where it is found that bias is 
minimal. 

As research develops, there is clearly room for improved methods of 
est,imation. A promising approach adapts PQL2 for cross-classified models 
by data augmentation and has been applied to binary responses by Clayton 
and Rasbash (1999). This also incorporates the Bayesian approaches of 
Monte Carlo Markov Chain (MCMC) estimation. An approach under 
current investigation that promises unbiased estimation casts the ordered 
category models into a standard linear form for the Iv and simulates this 
variable at each stage of a standard multilevel estimation. The current 
estimation procedures available in MlwiN seem satisfactory for the moment 
but these sorts of ongoing methodological investigation will add to the 



TABLE 9.8 
Parameter Estimates for Cross-Classified and Weighted Random Effects 

Models for Performance in Subjects at General Certificate of Education at 
Advanced Level in Six Colleges for Postcompulsory School-Aged Students 

-1.57 ( 0.28) 
-0.51 ( 0.28) 
0.53 ( 0.28) 
1.58 ( 0.28) 
3.20 ( 0.29) 
1.32 ( 0.05) 
0.27 ( 0.02) 

-0.14 ( 0.07) 
-0.20 ( 0.06) 

Model A Model B Model C Model D 

Fixed effects 

01 -1.67 ( 0.07) -1.54 ( 0.28) -1.66 ( 0.08) 
02 -0.73 ( 0.06) -0.47 ( 0.28) -0.72 ( 0.08) 
6)s 0.17 ( 0.06) 0.59 ( 0.28) 0.19 ( 0.08) 
H4 1.08 ( 0.06) 1.67 ( 0.28) 1.09 ( 0.08) 
05 2.48 ( 0.08) 3.32 ( 0.29) 2.48 ( 0.09) 
STGC 1.33 ( 0.05) 
STGC squared 0.27 ( 0.02) 
Female gender -0.12 ( 0.05) 
Interaction of STGC and -0.18 ( 0.06) 
gender 
SUBJECTS: 
Art, Design & Tech. -0.08 (0.20) 
Mathematics -0.40 ( 0.17) 
Sciences -0.38 ( 0.16) 
Humanities 0.12 ( 0.16) 
Languages -0.49 ( 0.23) 
General studies -0.52 ( 0.40) 
COLLEGES: 
Large FEC 0.16 ( 0.29) 
Medium-sized TC 0.99 ( 0.30) 
Small SFC 0.85 ( 0.31) 
Medium-sized SFC -0.12 ( 0.29) 
Large SFC 0.58 ( 0.26) 
Random Effects 
Variance 
Teaching groups 0.708(0.079) 0.731(0.081) 0.215(0.071) 
‘7;) of III residual 17.7 18.2 5.2 
variance 
Students 0.279(0.116) 
‘%I of 111 residual variance 6.7 
Teachers 0.349(0.162) 
% of Iv residual variance 8.4 

-0.05 ( 0.21) 
-0.17 ( 0.24) 
-0.41 ( 0.18) 
0.13 ( 0.18) 

-0.27 ( 0.26) 
-0.44 ( 0.38) 

0.34 ( 0.39) 
0.89 ( 0.31) 
0.70 ( 0.34) 

-0.59 ( 0.34) 
0.33 ( 0.29) 

0.128(0.061) 
3.1 

0.241(0.113) 
5.9 

0.452 (0.158) 
11.0 

Extra- 
multinomial 0.953 (0.010) 0.955 (0.010) 0.955 (0.010) 0.971 (0.010) 
Note. Estimated standard errors in parentheses. 
Note. The response is the 6 pt graded result of a subject entry. There are 3717 
entries within 317 subject teaching groups from 1522 students and 145 teachers. 
The base for Subject Group dummies is Social Sciences. The base for Institution 
dummies is medium sized Further Education College: FEC, TC, SFC denotes 
Further Education, Tertiary and Sixth Form Colleges. 

205 
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armory of tools for complex model structures, 
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Bootstrapping the Effect of 
Measurement Errors on Apparent 
Aggregated Group-Level Effects 

Dougal Hutchison 
National Foundation for Educational Research in England and Wales 

In much social research, the observations are treated as if they were made 
without error. Yet, it is widely accepted that this assumption does not hold 
universally (Woodhouse, Yang, Goldstein, Rasbash, & Pan, 1996). It has 
been shown that taking account of measurement error in the analysis of 
educational effects can change and indeed reverse conclusions (Goldstein, 
1979). However, such studies are based on single-level regression models. 
Most educational research data has a hierarchical structure and, is most 
appropriately analyzed by multilevel models. 

A two-level linear model for the true or “latent” values x:ij and yij is 
given by 

yij = Xij/J + Wij (10.1) 

where wij is the sum of two uncorrelated random variables, one for each 
level, each assumed to have zero mean and constant variance in a variance 
components model. 

The true or latent values xij and yij in Equation 10.1 are observed with 
measurement error giving observed values Xij and Yij where 
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Yij = YiJ + qii = Xijfi + eij; eii = ulii + qii; E(q) = E(m) = 0 (10.2) 

and 7ni.j and qij are measurement errors, uncorrelated with the true or 
latent value. If one attempts to estimate the parameters p of this equation 
on observed data, then one is not in fact estimating Equation 10.1, but, a 
different equation 

Yii = Xii7 + Eii (10.3) 

where y is the OLS regression coefficient of Yij on Xij, and Eij is the 
observed residual, and the resultant estimates y are biased for /3 (see, e.g., 
Woodhouse et al., 1996). 

Woodhouse et al. (1996) provided a corrected estimate for ,8 when error 
variances and covariances are known. Their formulae are described in the 
following section. 

MEASUREMENT ERROR IN LEVEL-TWO 
AGGREGATED VARIABLES 

Where there is a level-2 variable that is the mean of a level-l variable, 

and the estimated level-l reliability ’ of Xiii is given by 

PlPl) = &, 

then the measurement error variance of the aggregated variable X,i is given 
l)Y 

(10.4) 

where ‘T(K) is the level-l variation in Xii], and o1 ‘(m) is the level-l 
measurement error variation in Xiij (Woodhouse et al., 1996). The 
covariance between level-l and level-2 errors is given by 

‘Level-l reliability coefficients are quoted because the development in Woodhouse et 
al. (1996) is in these terms. Level-l coefficients are not quite the same as the usual 
reliability figures quoted. 
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These formulae for level-2 measurement error are used in the results 
described here. 
Application of measurement error models in the present 
study 

This chapter investigates the effect of measurement error in the continuous 
variables in the model. Space does not permit the description of 
measurement error (misclassification) in categorical variables. This is 
considered elsewhere (Hutchison, 1998). The original intention was to 
look also at the effect of measurement error in the dependent variable, 
but preliminary analyses showed that, for the models considered here, and 
a fairly wide range of variation, adjusting for measurement error in the 
dependent variable had minimal effect on the fixed coefficients. For this 
reason, this question is not considered any further. 

Analyses were carried out using MLn (Rasbash & Woodhouse, 1995) to 
look at the effect of adjusting for measurement error on the models. The 
MLn program does not presently provide likelihood ratio estimates for the 
errors-in-variables case, so the standard errors provided by the program 
were used instead. To verify the program standard errors for coefficients, 
bootstrap analyses were also carried out. A brief description of the 
bootstrap and how the bootstrap may be combined with errors-in-variables 
models, is now given. 

Bootstrapping and errors-in-variables models 

ils far as the author is aware there are currently (January, 2000) 
no published articles combining bootstrapping, measurement error, and 
multilevel models. Examples combining two of these are Haukka (1995; 
errors and bootstrap), Waclawiw and Liang (1994), Carpenter, Goldstein, 
and Rabash (1999), Meijer, van der Leeden, and Busing, (1995; multilevel 
and bootstrap), Woodhouse et al., (1996), and Goldstein (1995; multilevel 
and errors in variables). 

Some discussion about how bootstrapping may be achieved in a model 
t,hat is both multilevel and has errors in variables is therefore in order. 
Emphasising first the errors-in-variables aspect, the model can be written, 
as in Equations 10.1 and 10.2 above 

‘;j = ‘Yij + qi.) = XijP + eij; eij = ‘UJij + qij; E(q) I E(m) = 0 (10.6) 
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Both the bootstrap and errors-in-variables approaches depend on 
the conceptualization of random variables. Before applying bootstrap 
techniques to errors-in-variables models, we should investigate the 
following: (a) Th e extent to which the different conceptualizations of 
random elements in the two approaches are compatible, and (b) the extent 
to which both bootstrap and errors-in-variables procedures can be applied 
at the same time to the multilevel model. 

RANDOM ELEMENTS IN BOOTSTRAP 
AND ERRORS-IN-VARIABLES 

Random elements in the bootstrap 

Applied to regression, bootstrapping can arise under two main different 
paradigms, depending on assumptions about the regressor variables 
(Mooney & Duval, 1993) 

In the classic case, the resampling residuals model, the regressor 
variables are treated as fixed (see e.g., Draper & Smith, 1981), and t,he 
resampling applies to the stochastic portion of the model, that is, the 
residuals comparing the actual and fitted data. There are two subcases 
of the way in which this is implemented, namely by direct resampling of 
t,he residuals, and by sampling from the parametric distribution assumed by 
the model. This latter is sometimes referred to as the parametric bootstrap. 

Mooney and Duval (1993) argued that in much social science analysis, 
resampling units, Y, X may be the most appropriate. x, m, and e are 
in effect resampled with each unit, and it is assumed that the sampling 
distribution of m and e are representative of their modeling distributions. 
This is sometimes described as the nonparametric bootstrap. As discussed 
later, there can be a variety of models under the general description of 
nonparametric. 

Random elements in the errors-in-variables model 

Fuller (1987) described two main approaches, the structural and functional 
models, clepending on the assumptions made about the latent variables. 
1. In the functional approach, it is assumed that t,he latent variables x are 
fixed. 

2. Conversely in the structural model, the x and m are assumed to be 
independent drawings from N{O, orE2}, iV{O, o,,~} distributions. It is also 
assumed t,hat the e = w + q vector is independent of the vector x. Since 
11~ and x and e are considered as drawings from normal distributions, they 
also follow normal distributions. 
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Assumptions 1 and 2 here parallel the two bootstrap cases, except 
that here, the latent variables x are considered, rather than the observed 
variables X as before. 

Note that the parallel is not exact for units resampling. In an actual 
structural model, the three elements x, u, and e are in effect sampled 
independently, so that sampling the same unit twice would give the same 
.E, but different values of u and e. In a bootstrap resampling, picking the 
same unit twice gives the same value of u and e as well as of x. 

IMPLEMENTING THE BOOTSTRAP ON ERRORS- 
IN-VARIABLES IN A MULTILEVEL MODEL 

The next stage is to determine how bootstrapping procedures can be 
applied to the problem in hand, and a number of possible approaches are 
discussed later. The resampling residuals model is treated first, and then 
1 he resampling units. 

Resampling residuals 

This approach to bootstrapping regression estimates values p of /3 and 
the residuals rij (or their distribution) from the original data. Given an 
estimate ~ij of ~ij (described later) for each case in each resample, it then 
adds resampled residuals 7.ij* from the original regression to the fitted pij = 
E (xjJ&) to give Yij *, where Yij * = <;j + rij* = gij$ + rij*. The 
corresponding value of p* is then estimated by regression of Yij * on &j. 
In addition, when treating errors-in-variables models, random terms from 
the _X error distributions are added to the estimated independent variables 
after generating Yij * but before running the regression. In the development 
here, only a single independent variable measured with error is used. 

The estimated value X of x in the bootstrapping makes little difference 
in practice (Hutchison, 1998), so a simple assumption, setting 2 = X, the 
observed value, was used. 

Parametric Bootstrap. The bootstrapping is carried out, as follows. 
For given proposed values of z+, xj, namely ?ij, ij, Y” is then simulated 
given t,he estimated Yzj * = &j@ + rP * where rP * is a sum of two random 
error terms, one for each level. This is carried out using the command 
SIMU in Min. A term 7)21ij is selected from the posited distribution of 
!V(O, o,,,: )and is added to Zij, to give X,, * . Similarly, a term 172~ is selected 
from N(0, a,:) and added to give Xj * if this term is included in the 
quation. Then p* is estimated in the usual way by multilevel regression - 
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of Y * on the independent variables x correcting for measurement error. 
This process is replicated a number of times to give a distribution for ,@*. 

Conditional Semiparametric Model (CSP). An alternative70 
sampling residuals from a hypothesised distribution (for example, the 
normal) is to resample from estimated residuals in the analysis. Starting 
again with the one-level model, the observed residuals are estimated as 

K -j?i = Yi -Xi/3 

= Yi - x$ - m$. (10.7) 

The variance of these observed residuals is given by V (oh) z a2 +P20&, 
treating fi as fixed = /3 as is usual in this approach (Mooney & Duval, 1993). 

To get unbiased residuals, one can deflate the observed residuals by a 
factor 

(02+O--20;J. 

The situation for two-level residuals is more complicated. In outline, 
one subtracts predicted from actual values of Y for each case to give the 
observed residual, and estimates level-l and level-2 residuals from this. The 
intuitive procedure, to take level-2 predicted residuals as the mean of the 
observed raw residuals for each level-2 unit, and the level-l residuals as 
the difference between the observed raw and level-2 residuals, would be 
expected to give biased results for level-l and level-2 variances because 
of variance migration. Variance migration (Hutchison, 1998) occurs when 
the observed variation at one level contains elements from another level. 
Preliminary analyses (not shown here) on the no errors-in-variables case 
confirmed this. 

The observed residuals were modified to allow for this bias. The first 
stage was to estimate the variance of the observed residuals. A simple 
two-level model, with two predictor variables, xij, Pi, where pj is the true 
mean of xzj in the jth level-2 unit, is given by 

(10.8) 
where 2:i.j is measured with error by Xij such that Xij = xij + naij, and 
lLj is measured by Xj, where Xj, = nj’ C Xij where the sum is taken over 

i 
the observed cases in the ith level-2 unit. 

h 

rij were estimated as iij = Yij - Yij. (10.9) 

Level-2 observed residuals ?j are given by 
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-1 ij = nj 
c 

Fij , 

and level-l observed residuals T”ij are given by 
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(10.10) 

(10.11) 

v (L2) = (pl + 82)21zj-1 (1 - pi) a,2 (X) 

+ p2 

2 Ni - ni 
----n .-lplcr2 
Ni-1 ’ 

(X) 

+ 0: +nj-la2 (10.12) 

where 0 ,1” (X) is the within level-2 units variance of X, and pi is the within 
level-2 units reliability of X (Woodhouse et al., 1996). 

The variances of level-2, and to a lesser extent of level 1, and the 
observed residuals differ between level-2 units. They are made equal by 

deflating by the factors [&‘/If (Ll)] ’ and [Cu2/V (L2)] ’ to give shrunken 
level-l and level-2 residuals f&j and fij respectively, where 

1 1 

Irl,j = 
T 

Because the fij are in the nature of regression predictions, they do not 
have the appropriate variance, so their variance was increased by adding a 
random term w, ‘u N N(0,0V2) , where oV2 = A4uz(O,~,~ - V(i&)), where 
cru2 is the level-2 variance estimated by the program, so that ~j * = cj + uj. 
Another possibility (Carpenter et al., 1999) would be to inflate the partially 
adjusted l-2 residuals by the ratio w. 

Similarly, level-l augmented resid;als were estimated as ezj* = Gij + Oij) 

where eij is the partially adjusted residual, and o - N(0, go2) where a,2 = 
Mas[O, CT-” - V(Cii)], where e2 is estimated from the program, to give the 
appropriate level-l variance. 

Resampling units 

Simple Random Resampling (SRR) 
The standard nonparametric bootstrap involves resampling the 

individual population elements using simple random sampling with 
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replacement and estimating the beta coefficients for each resample (Mooney 
& Duval, 1993). 

The simple random resample approach is suspect from a statististical 
perspective. A simple random sample from an infinite population does 
not reproduce the population structure, in particular the arrangement of 
pupils within schools. If there are an infinite number of schools, then 
a simple random sample will give a zero possibility of two pupils being 
drawn from the same school, whereas the multilevel model generally has 
substantial grouping of pupils within schools. Hutchison (1998) showed that 
this approach again gives biased estimates because of variance migration. 
A different nonparametric resampling approach, which takes account of the 
hierarchical structure, is described in the next section. 
Two-stage random resampling (TSRR) A4 schools are resampled with equal 
probability with replacement from the population of A.4 schools in the study. 
Each school hit is treated separately. Within each selected school j, nj 
pupils are resampled. This gives equal probability of selection for each 
pupil in the population, and preserves the school size for each selected 
school, although it does give a variable number of pupils in each resample, 
because some samples will pick more larger schools, and some samples more 
smaller ones. 

Two possible methods allowing for variance migration were considered: 
1. Mean group scores were defined as the original mean of the pupils 

in that, school and individual scores were defined as the sum of the original 
group mean, and the deviation of the selected score from the selected group 
mean. Then level-2 variance is equal to that of the population alL2 + ?zjl,’ 
and the estimate Ap(e) is unbiased for 0’ in the jth group. 

2. Rather thai adjust the data collection step, an alternative is to 
adjust the measurement error correction procedure. A two-stage resample 
is taken, resampling with replacement first schools and pupils within them. 
b is estimated from this. This method is the one used in this chapter, and 
is now described. Level 1 is considered first. 

Level 1. For measurement error, as in Equation 10.1, the X value in 
each resampled case consists of a true component and a measurement) error 
component, 

Xij = xi.j + miJ, 

so that picking a case involves picking a pair consisting of true score and 
measurement error. Provided that there is no level-2 component in ?7lij, 
then the error realizations can be treated as exchangeable, and in the cases 
picked, can be expected to have a distribution of an SRS resampling. So 

d = (I-p)V(X) 
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= (1 -P1wdX) 
where pi is the within level-l reliability. 
For residuals, the bootstrapping procedure involves resampling from the 
observed within-group residuals. Their expected variance for the jth level-2 
unit is 

q-1 2 
-0 7 

% 

so resampling with replacement from these gives an observed level-l 
variance of 

The observed level-l residual from the jth group is thus effectively 
resampled from a sample with variance 

nj - 1 
-0 

2 
Ilj * 

This bias is corrected by adjusting the value of the level-l variance 
estimated by the bootstrap procedure by multiplying by l/ (5). Level 
2. For measurement error, if X,j is the observed resampled mean of the jth 
level-2 unit in the TSRR procedure, and Xj is the mean of the jth l-2 unit 
in the original sample, then 

x,j - f!Lj = (X,j - Xj) + (Xj - r’“J 
XI T2 + Tl 

where pj is the true mean value of zij, the true value corresponding to the 
observed Xij. Tl is the original measurement error. T2 is the additional 
measurement error arising from the bootstrapping procedure. 

V(T2) = V(Xtj -Xj) 
= njl YV,, (X,) . 

Similarly, there is also an additional level-l-level-2 covariance term. 

-gy-l 2 
nj -0 

nj nz 

For residuals, the observed level-2 residual variance, in addition to the 
original l-2 variance, also contains an extra term 
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The correction terms contain elements such as the true residual variance, 
which are the eventual outcome of the procedures. In mathematical terms 
b’ = f (Y, X, E) where p+ = (,!?, ou2, a2) is the multilevel model solution, 
allowing for measurement error E, and E = g (X, /3’) is a function of X 
and Bf . 

An iterative procedure was used to provide a solution for ,@. First, 
the estimated variances were corrected using the uncorrected estimates, 
and then the process was repeated using these updated estimates until it 
converged. Thus, /3,’ = f (X, 0) where 0 is the zero matrix. 

Ei+l = 9 (x7 Pi’) 

bi+l = f (“7 Pi+) 

There was little difference between the first and second stage estimates, 
so only one iteration was used. 
Nonparametric maximum likelihood model (NPMLE) 

We attempted to devise a method to deal directly with two-level 
measurement error within a nonparametric framework. In the event this did 
not prove possible because random parts of the model arise in two different 
ways; (a) by sampling without replacement from a finite population (l-2 
Sampling error) or (b) by taking a realization of a random quantity, that 
is, effectively with replacement sampling (l-l measurement error and model 
error term). 

These types of random elements have to be generated in different ways, 
ancl unit resampling methods which treat all elements equally do not do 
this. One could alter the details of the error-correction procedure to cope 
with this, but the conceptual simplicity of the method would be lost. 
Level-2 units resampling 

The final units resampling method involves resampling entire level-2 
units intact. For each replication, j level-2 units were selected with 
replacement from the existing sample with equal probability. This is 
described as level-2 only resampling. 

Bias-correction methods 

A general approach is to use the bias-correction method based on that of 
Kuk (1995). The procedure was as follows. 
Stage 1. A first estimate of ,/3, PO, was obtained from the program MLn. 
Stage 2. A realization Yij, * was obtained using SIMU in MLn and PO. 
Stage 3. Random error was added to the independent score variables using 

t,he formulae in Woodhouse et al. (1996), quoted earlier. 
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Stage 4. Coefficient pi, is estimated by regressing the outcome Yij, * on 
the resultant X -variables, correcting for measurement error. 

Stage 5. Stages 2 through 4 are repeated a large number of times, in this 
example 500, and the mean & of the PlnL estimated. The difference is 
then used as the next estimate of the bias and applied to the original 
ijre to give the next estimate ,/3r 

PI = PO - <a’, - PO) 

Stage 6. The process of Step 5 is then repeated, starting with pi, to give 
further estimates p2, ,f?s, and so forth, until it converges to a value 0,. 

Convergence of the bootstrapping procedure was investigated 
graphically in each application to ascertain how many iterations were 
required. It was found that only one iteration was required to produce 
convergence, subsequent iterations being in the nature of oscillations. For 
t,his reason, the standard error is taken directly from the bootstrapping 
procedure. 

The investigation 

In all, six approaches to estimating the effect of measurement error on the 
results were used, and the results are now described. These were: 

Program- the values estimated by the MLn program (program), 
and then Resampling residuals - the parametric bootstrap on observed 
S (parametric observed); conditional semiparametric (CSP), then Re- 
sampling units - a two-stage random resampling bootstrap (TSRR); 
resampling entire level-2 units (level-2 only), then Bias-correction meth- 
o$s - a bias-correction method based on that of Kuk (1995). In each case, 
rcsampling is with replacement. 

DATA 

The data came from a longitudinal study of school effectiveness in teaching 
reading in one Outer London Local Education Authority (LEA). Pupils 
were tested in 1988 and 1990 on the Southgate reading test (Hagley, 
1987). Additional pupil- and school-level information was collected from 
schools. Complete information was available on 1,700 pupils (see Hutchison, 
1998). Pupil-level variables to be included in the model were 1988 score, 
(Sscore88), sex, and free school meals. The aim of the research was t,o 
investigate the two school-level aggregated group-level variables (AGLEs) 
pupil turnover and mean school 1988 score. The outcome variable was 1990 
score (Sscore90). 
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RESULTS 

The program MLn used to estimate the error-corrected results was a beta 
version, and it was decided to use bootstrap procedures to verify or calibrate 
the results from it in two ways. 
Bias Correction. In the first, a random error quantity was added to the 
z-variables used, data generated, and the error-correction MLn procedure 
was applied to estimate p ‘. The rationale for this was that if the mean of 
t,he bootstrap results for b’ were not different from the original estimate, 
then it would seem reasonable that the MLn error-correction procedure was 
unbiased. 
Estimation of Standard Error. 

In the second verification procedure, the standard errors of the b’ 
bootstrap estimates were determined and compared with those from the 
program. In the end, it turned out that different bootstrap procedures gave 
different outcomes. An important feature of this chapter is the comparison 
of types of bootstrap techniques for multilevel techniques in general and 
especially for errors-in-variables. 

Three representative values of level-l reliability in (Sscore@), 1.00,0.95, 
and 0.90, were investigated. It was assumed here that the other independent] 
variables were measured without error at this stage. In order that the total 
effect of measurement error could be assessed, the first analyses in each set, 
(reliabilitv 1 .OO) did not allow for level-2 sampling error in mean Sscore88. ” 

AGLEs, measurement error, and bootstrapping 

This section deals with the question of aggregated group-level effects 
( AGLEs) and measurement error. Results are bootstrapped to compare 
with the program results. It was found elsewhere that a simple random 
resampling method was flawed in its applicat,ion t,o this problem, and is 
excluded. 

Estimates of the values of level-l and level-2 error for a range of values 
of pl, within-school reliability of 1988 Standardized Score, were fed into the 
equation in the program MLn (Rasbash & Woodhouse, 1995). Results fol 
the program and bootstrap methods are shown in Tables 10.1 to 10.6. The 
last, column in each table, labeled Mean%?, shows the effect of the mean 
score. If this was statistically significant, then there was a statistical13 
significant AGLE for the 1988 Standardized Score. 

Level-l fixed coefficients 
Starting with level-l fixed coefficients, it can be seen for the three values 

of the reliability coefficient considered, the results for coefficients for sex, 
free school meals, and score88 were substantially, although not identically, 
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TABLE 10.1 
Program Multilevel Analysis: AGLEs 1990 Reading Score by 1988 

Reliability 

Fixed Coefficients and Standard Errors 
Rho Sex Free Shore88 Pupil Mean88 

School Turnover 
Meals 

1.00 -1.34 -2.37 0.79 -10.01 0.00 
(0.37) (0.84) (0.014) (4.40) (0.062) 

0.95 -1.46 -2.18 0.83 -9.65 -0.03 
(0.37) (0.85) (0.016) (4.48) (0.067) 

0.90 -1.60 -1.97 0.88 -9.27 -0.07 
(0.38) (0.86) (0.017) (4.51) (0.069) 

Random Coefficients and Standard Errors 
Level-2 Level- 1 

1.00 2.38 56.59 
(0.87) (2.0) 

0.95 2.40 51.10 
(0.87) (2.0) 

0.90 2.44 45.00 
(0.88) WV 

Note. Standard Errors in parentheses 

equal for the various methods. All lie within 0.25 SE of the program 
result. For all bootstrap techniques, with increasing measurement error, 
t,he sex coefficient increased in magnitude, becoming increasingly negative 
with decreasing reliability. Conversely, the coefficient of free school meals 
become less negative, although with a blip in TSRR. The coefficient of 
Sscore88 increased with decreasing reliability. 

The standard errors of level-l coefficients were relatively unaffected by 
the introduction of measurement error with relatively small increases as 
error variances themselves increased, although there was an increase of 
the order of 20% in those of Sscore88. Sex coefficients were statistically 
significant at the .05 level. Free school meals coefficients were statist,ically 
significant for all analyses except TSRR and level-2, only because of the 
higher standard error obtained in these methods. The Sscore88 coefficients 
were statistically significant for all methods and all reliabilities. 
Level-2 fixed coeficients 
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TABLE 10.2 
Parametric Bootstrap Multilevel Analysis: AGLEs 1990 Reading Score by 

1988 Reliability 

Fixed Coefficients and Standard Errors 
Rho Sex Free Sscore88Pupil Mean88 Number 

School Turnover Converged 
Meals (of 500) 

1.00 -1.32 -2.37 0.79 -10.12 0.00 499 
(0.36) (0.87) (0.014) (4.27) (0.061) 

0.95 -1.46 -2.12 0.83 -9.11 -0.03 500 
(0.38) (0.90) (0.014) (4.23) (0.062) 

0.90 -1.59 -1.91 0.88 -8.71 -0.06 500 
(0.38) (0.90) (0.015) (4.25) (0.064) 

Random Coefficients and Standard Errors 
Level-2 Level- 1 

1.00 2.19 56.49 
(0.86) ( 1.9) 

0.95 2.22 51.05 
(0.85) (2.1) 

0.90 2.26 44.91 
(0.85) (24 

Note. Standard Errors in parentheses 

Among level-2 coefficients pupil turnover coefficients became less 
negat,ive with decreasing reliability whereas the coefficients of mean 
Sscore88 decreased, becoming negative. Standard errors differed mainly 
between residuals and units resampling. 

Although the pupil turnover coefficients became smaller, they remained 
statistically significant (greater than twice their standard errors) for the 
program, residuals resampling, and bias-correction methods. Because of 
the larger st,andard errors, none of the pupil turnover coefficients were 
statistically significant for the TSRR. The coefficient of mean Sscore88 
went effectively from zero to negative: None of the values was statistically 
significant at the .05 level. 
Random Effects 

Results for level-2 variances were less consistent between methods in that 
the between-method differences were a larger proportion of the program 
value. All the bootstrap methods except the bias correction gave smaller 
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TABLE 10.3 
Conditional Semi Parametric Multilevel Analysis: AGLEs 1990 Reading 

Score by 1988 Reliability 

Fixed Coefficients and Standard Errors 
Rho Sex Free Sscore88Pupil Mean88 Number 

School Turnover Converged 
Meals (of 500) 

1.00 -1.31 -2.32 0.79 -10.19 0.00 500 
(0.37) (0.82) (0.015) (4.28) (0.063) 

0.95 -1.44 -2.12 0.83 -9.73 -0.03 499 
(0.36) (0.84) (0.016) (4.40) (0.065) 

0.90 -1.58 -1.91 0.88 -9.21 -0.06 499 
(0.36) (0.85) (0.016) (4.46) (0.065) 

Random Coefficients and Standard Errors 
Level-2 Level- 1 

1.00 2.10 56.52 
(0.82) (2.2) 

0.95 2.11 51.06 
(0.85) (2.2) 

0.90 2.15 44.93 
(0.88) (2.2) 

Note. Standard Errors in parentheses 

estimators for level-2 variance than did the program. Standard errors were 
comparable between methods, except that the TSRR results were clearly 
larger. Level-l random coefficients all reduced substantially with decreasing 
reliability. Results were fairly close for all methods. Standard errors 
were larger for the two-stage resampling method, but all were statistically 
significant. 

Comparing methods, it can be seen that TSRR, as employed in this 
section, by adjusting the level-l and level-2 error corrections, has as many 
as 10% of the replications failing to converge satisfactorily. For this reason, 
it seems that other methods would be preferable. 

Fixed coefficients are comparable between methods. Level-2 coefficients, 
especially pupil turnover, are apparently more variable between methods, 
but these coefficients are, in any case, less well determined because they 
are based on the relatively smaller number of level-2 units instead of those 
at, level-l. 
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TABLE 10.4 
Two-stage Non Parametric Bootstrap Multilevel Analysis: AGLEs 1990 

Reading Score by 1988 Reliability 

Fixed Coefficients and Standard Errors 
Rho Sex Free Sscore88Pupil Mean88 Number 

School Turnover Converged 
Meals (of 500) 

1.00 -1.29 -2.18 0.79 -11.05 0.00 493 
(0.50) (1.56) (0.024) (5.76) (0.098) 

0.95 -1.42 -2.00 0.83 -10.43 -0.03 467 
(0.50) (1.57) (0.025) (5.74) (0.098) 

0.90 -1.56 -2.14 0.88 -9.44 -0.06 451 
(0.51) (1.58) (0.027) (5.61) (0.107) 

Random Coefficients and Standard Errors 
Level-2 Level- 1 

1.00 1.61 55.78 
(0.99) (3.8) 

0.95 1.85 50.38 
(1.03) (3.8) 

0.90 2.04 44.73 
(1.15) (3.8) 

Note. Standard Errors in parentheses 

COMPARING METHODS 

Level-l variances are comparable between methods. In comparison to their 
size, level-2 variances are more variable between methods, with the TSRR 
especially different. The standard errors for all coefficients are comparable 
for all methods except TSRR, which are of the order of 50% larger in some 
instances, except for l-2. Level-2 only is intermediate. It seems that the 
sampling of units rather than residuals gives greater variation in comparison 
with other methods. 

Standard errors are comparable for level-l coefficients for the program 
and resampling residuals methods (parametric and CSP), whereas the units 
resampling (two-stage) has substantially larger standard errors. Level-2 
only is intermediate, with standard errors being substantially larger for 
free school meals and Sscore88. Level-2 only results are comparable with 
the rest for sex, pupil turnover, mean88, and level-2 random coefficients. 

Only one correction step is reqiired for the bias-correction method for 
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TABLE 10.5 
Level-2 Units Resampling Multilevel Analysis: AGLEs 1990 Reading 

Score by 1988 Reliability 

Fixed Coefficients and Standard Errors 
Rho Sex Free Sscore88Pupil Mean88 Number 

School Turnover Converged 
Meals (of 500) 

1.00 -1.34 -2.36 0.79 -9.66 0.01 499 
(0.36) (1.24) (0.018) (4.65) (0.069) 

0.95 -1.47 -2.13 0.83 -9.46 -0.02 495 
(0.39) (1.30) (0.019) (4.59) (0.063) 

0.90 -1.61 -1.91 0.88 -9.10 -0.06 491 
(0.40) (1.32) (0.020) (4.63) (0.064) 

Random Coefficients and Standard Errors 
Level-2 Level- 1 

1.00 2.24 55.88 
(0.92) (2.9) 

0.95 2.20 50.65 
(0.97) (34 

0.90 2.23 44.54 
(0.97) (3.1) 

Note. Standard Errors in parentheses 

all the values of measurement error considered here. 

CONCLUSIONS 

Two main topics have been considered here: First, the effect of 
measurement error in scores as independent variables, and secondly, the 
possibilities of bootstrapping errors-in-measurement multilevel models. 
The original aim of bootstrapping the results was as a verification or 
calibration of the MLn results for bias and variation. However, it was 
found that different bootstrap results in fact give different outcomes, and 
an important feature of this chapter is thus a comparison of a variety of 
bootstrapping approaches. 

Methodological findings 
The standard deviations and biases of the coefficients were investigated 

by using bootstrap techniques. Perhaps one of the most important findings 
is that to refer to the bootstrap is to risk prompting a misleading inference, 
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TABLE 10.6 
Bias-Correction: 1 Iteration Multilevel Analysis: AGLEs 1990 Reading 

Score by 1988 Reliability 

Fixed Coefficients and Standard Errors 
Rho Sex Free Sscore88Pupil Mean88 Number 

School Turnover Converged 
Meals (of 500) 

1.00 -1.35 -2.38 0.79 -9.89 0.00 500 
(0.36) (0.87) (0.014) (4.27) (0.061) 

0.95 -1.46 -2.24 0.83 -10.18 -0.03 500 
(0.38) (0.90) (0.014) (4.23) (0.062) 

0.90 -1.60 -2.02 0.88 -9.83 -0.07 499 
(0.38) (0.90) (0.015) (4.25) (0.064) 

Random Coefficients and Standard Errors 
Level-2 Level- 1 

1.00 2.58 56.68 
(0.86) w 

0.95 2.58 51.16 
(0.85) (2-l) 

0.90 2.62 45.09 
(0.85) (2.1) 

Note. Standard Errors in parentheses 

as different bootstrap methods gave different results. Methods based on 
units bootstrapping and residuals bootstrapping are considered in turn. 

In the units bootstrap, the random aspects of the model, namely the 
measurement error and the residuals, are incorporated into the observed 
data, and in resampling the units, one is at the same time creating a model 
distribution of the random aspects. Because the random elements come 
packaged with the fixed elements in a units bootstrap, this means that 
any relationship between the fixed and random elements exhibited in the 
original sample will also be shown in the bootstrap. 

Two units resampling methods were tried, two stage (TSRR), and level-2 
only. (A simple random resampling procedure was tried elsewhere, and 
found to give biased results.) The possibility of using a units resampling 
method to mimic the within-level-2 sampling that is part of level-2 error 
variance was considered, but was found not to be feasible. 

Two residuals resampling methods were also investigated. These were 
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a parametric (residuals) bootstrap, and a procedure using the observed 
residuals. In general, all bootstrapping procedures tend to give comparable 
results for the fixed coefficients. However, the position is more complex for 
the random coefficients. 

The results for all the residuals resampling methods were found to be 
quite close to those of the program. In general, this is rather encouraging, 
because the CSP did not rely on assumptions of normality in its residuals 
in its resampling. Among the units resampling methods, a level-2 only 
resampling was quite successful. Other units approaches were biased, 
and required procedures to correct for this. There is a tendency for 
units resampling to give higher values of standard errors than residuals 
resampling methods. 

Rather than ad hoc attempts at allowing for biases in the bootstrapping 
procedures, a more general process may be preferable, and one based on 
that associated with Kuk (1995) was used. It was found that at most, one 
iteration was required for convergence. 

Because the cases where the estimates from the various bootstrap 
procedures differ from the model and each other tend to be explicable in 
terms of specific biasing features of the process, t,his is rather encouraging 
about the values of the coefficients and their standard errors provided by 
the program MIA. Among the bootstrapping procedures investigated, 
the parametric, the level-2 only and the bias-correction procedures were 
particularly successful and simple to implement. 

Substantive findings 
Apparent group-level effects of a variable can disappear when allowance 

is made for measurement error in that variable. However, allowing 
for measurement error in a variable can have wide-ranging effects, also 
substantially reducing apparent, group-level effects in other variables. 

Footnote 

An alternative strategy, in which schools are selected with probability 
proportional to size, was considered, but not chosen because it would have 
given a set of pseudo-schools all of equal size, which seemed to be getting 
away from the structure of the data. 
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The treatment of outliers has a long history. Many of the most influential 
statisticians have made contributions to the detection and treatment of 
outliers in data, their work spanning over a century, often devoting 
substantial portions of their career to this study (details can be found in 
excellent reviews of this field; Barnett & Lewis, 1994; Hawkins, 1980). 
More recently, multilevel modelling methods have been used to diagnose 
outliers with theoretical work on diagnostics in multilevel models with 
particular application to the detection of outliers (Hilden-Milton, 1995; 
Hodges, 1998), and a number of practical procedures for dealing with 
outliers, applied to cross-sectional educational data (Langford & Lewis, 
1998). However, although there have been many recent examples of the 
application of multilevel and related growth models to longitudinal data, 
both on physical attributes and psychological processes, with both single 
and multivariate dependent variables (Goldstein, 1989, 1995; Hoeksma & 
van der Boek, 1993; Longford, 1993; Rogosa & Saner, 1995; Sayer & Willett, 
1998; Ware, 1985), and although longitudinal missing data has received 
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some attention (Diggle, 1994; Diggle & Kenward, 1998; Goldstein, 1995), 
to our knowledge no application of multilevel modeling methods has been 
made to the detection of outliers in longitudinal data. 

Standard statistics texts on outliers provide us with the following 
definitions of outlier. Hawkins (1980, p. 1) gave an “intuitive” definition 
as “...a11 observation that deviates so much from other observations as 
to arouse suspicion that it was generated by a different mechanism.” 
Barnett and Lewis (1994, p. 7) provided the more formal definition 
as “an observation (or a subset of observations) which appears to be 
inconsistent with the remainder of that set of data.” Coining the concept 
of discordancy, they stated “. . . an observation is discordant when it! 
is statistically unreasonable (as indicated through a statistical testing 
procedure) on the basis of a prescribed probability model for the data.” 
The definitions of Hawkins and of Barnett and Lewis are related in the 
equivalence of the prescribed probability model (Barnett & Lewis) and the 
generating mechanism (Hawkins). The necessarily subjective nature of the 
outlier detection process is indicated through the use of the words “to arouse 
suspicion” and “appears to be inconsistent .” The dependence of the outlier 
on the supposed generating mechanism or probability model for the data is 
illustrated by the following. Consider the maximum of a positively skewed 
distribution. If the generating mechanism is the log-normal distribution. 
such an observation may well be consistent with the generating mechanism. 
However, if the supposed generating mechanism operates in a way such as to 
give rise to a normal distribution, it is likely to be considered as discordant 
and an outlier. The issue to which this chapter is addressed is the effect, of 
t,he outlier(s) on the elicitation from the data of the generating mechanism 
and the minimization of this effect. 

In multilevel data, we have the complication that outliers may occur 
at more t(han one level.’ For example, in data on progress of pupils 
in schools, particular schools may achieve substantially above or below 
expectation given intake characteristics. Alternatively, particular pupils 
may be recorded as making particularly good or bad progress. Errors of 
measurement, or testing of a particular pupil will distort the estimate of the 

‘Let us consider repeated measures data on individuals. It, is standard practice to 
consider the repeated measures, at level 1, as nested within the individuals, at level 2. 
Outliers at a higher level in the data may result from a particular “rogue” interviewer OI 
observer who misread instructions or to an overall misreporting by a measuring instru- 
ment and may be best detected through the inclusion of interviewer as a random factor 
at the level above the individual in a three-level model. At the lowest level, outliers 
may result from a particular mispositioning or misreading of the measuring instrument 
or from a transcription error in the recording procedure. The general overestimation of 
a quantity, say height, by a particular interviewer may be counteracted by a particular 
observation that is underrecorded, possibly by a misreading of a scale. 
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effect of the particular school of which he or she is a part. Conversely, a 
crude model for pupil progress that contains no information on the school 
could lead to progress of particular pupils being inappropriately considered 
as outliers when the school is over or underperforming. Similarly, for growth 
data, an individual with greater than expected estimated growth over a 
particular follow-up period may be either the result of a real difference in 
growth, possibly due to either delayed maturation or greater achieved adult 
height, or as a result of an incorrectly recorded observation, particularly 
near one of the extremes of the age range considered. 

Any procedure for the detection and subsequent deletion of outliers 
in multilevel data therefore needs to take the multiplicity of levels at 
which they might occur into account. Given the reasonable restriction 
to a procedure that operates at one or more levels sequentially, what, 
temporal priority should be given to the level at which outliers are screened? 
Langford and Lewis (1998), on cross-sectional data on schools, argued for 
priority at the “higher” school level for the following reasons; 
1. Researchers are often most interested in the higher level of aggregation. 
2. “If discrepancies can be found in higher level structures these are more 

likely to be indicative of serious problems than a few outlying points 
in lower levels are” (p. 124). 

For the longitudinal data examined here, we argue for priority at the 
level of wave or occasion of measurement within the individual. This is for 
the following reasons: 
1. An outlier at a specific wave distorts estimates of the individual level 

parameters. 
2. The multilevel models allow for differences between individuals over all 

waves. Given a reasonable model for the data, this generally precludes 
the incorrect attribution of differences between individuals to specific 
waves. Thus, outliers detected at specific waves are normally correctly 
attributable to the wave in question. 

3. Individuals are generally measured at different waves by different 
observers or interviewers - thus any errors of measurement, including 
those related to a particular interviewer (Ecob & Jamieson, 1992) are 
likely to be occasion specific. 

4. Longitudinal data typically have few observations within each individual, 
thus increasing the potential for outlying observations at particular 
waves to have effects on estimates of residuals corresponding to 
particular individual level parameters (e.g., mean, slope). In contrast, 
cross-sectional data typically have a larger number of individuals 
in each higher level unit (e.g., school). The effect of an incorrect 
observation on the estimate for the higher level unit is therefore smaller. 

In choosing to opt for the lowest level as priority, we concur with Raab anal 
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Parpia in the discussion in Langford and Lewis (1998). 
The problem with detecting outliers or discordant observations through 

fitting a statistical model to the whole data is that these discordant 
observations, when not correctly modeled, influence the choice of the model 
used to detect them. In this chapter, we aim to get around this problem 
through an iterative method of detecting outliers in longitudinal data 
comprising repeated measures on individuals over time using multilevel 
models. This is based on the supposition that the outlier - often an 
incorrect observation - will distort a statistical model fitted to the data. 
This will, in turn, have effects on the evaluation through the residuals from 
tfihe fitting of the model, of the correctness, or otherwise of the remaining 
observations. By iterating, the identification of the error-prone observations 
is improved (see Anscombe, 1960). 

How does a multilevel approach to screening for outliers compare with 
a naive screening method? A nai’ve method would screen separately 
for outliers at each wave. This would take no account of legitimate 
differences between individuals, an individual toward the top end of the 
height distribution giving rise to outliers at each wave, all detected by the 
naive method. Note also that the naive method also would not detect or 
eliminate an observation that is not extreme on a given wave, even when 
it) is the result of an (say downward) error for a particular wave of an 
individual with generally high values. However, by allowing for individual 
differences through incorporating a random error at the individual level 
in a multilevel model, extreme individuals no longer give rise to extreme 
observations at the level of the wave within the individual. Thus, the 
proposed multilevel method only eliminates the observation when extreme 
at a particular wave or waves - if extreme at all waves this contributes 
to the error at the individual level and may be separately modeled by 
a dummy variable corresponding to the individual or deleted at a later 
stage (the naive method makes no such distinction between the waves 
and the individual, and eliminates these observations in all cases). The 
identification, and possible deletion from the data, of extreme individuals 
thus follows a process of identification of extreme observations at particular 
waves relative to the observations for an individual overall. The major 
difference between the two methods is one of philosophy - screening on 
the basis of the multilevel model allows estimation and screening to be 
integrated in the same procedure. Better detectability of outliers (bot#h of 
sensitivity and selectivity) should result. 

Our method for the outlier detection is assessed on two datasets. The 
first dataset comprises heights of a cohort of 15-year-olds (males and 
females) subsequently followed up at ages 16, 18, and 23 from a study 
examining the social patterning of health over time [West of Scotland 
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twenty-07 study (Macintyre et al., 1989)]. On this data we: 
1. examine the sensitivity of the parameters estimated from the model to 

the particular value of a tuning parameter, the cut-off above which 
observations are temporally eliminated at each iteration. 

2. assess (for females only) the ability of the procedure to recover the 
original model when the heights of a random subset of the data on a 
particular wave are perturbed by a fixed amount. 

The second dataset (Kenward, 1987) is of the weight of calves on 11 
occasions for two groups comprising different treatments, the experimental 
treatment being assessed for its influence on weight gain in comparison to a 
control treatment. This data illustrates the applicability of the method 
to data collected on a larger number of occasions. For this data, we 
compare the relative effect of the iterative residual deletion procedure 
and the misspecification of the multilevel model through the unnecessary 
simplification of either or both the random and fixed parts. 

For both data sets, these models allow for nonlinear relationships of the 
rneasure to the wave or occasion at which it was measured. Polynomial 
rnodels used here have been found to be useful ways of representing this 
data (Goldstein, 1989). The models include separate terms for powers (e.g., 
quadratic, cubic) of the difference of the age or occasion from a specified 
age or occasion. They have advantages over nonlinear (for example, 
exponential) models in that these models are linear in the parameters and 
so can be estimated using the standard multilevel modeling methods. 

Finally, we note that the outlier detection and deletion methods were 
used on the height data as part of the cleaning process, whereas we make 
the assumption that the calf data has already been cleaned. We would 
t,herefore expect a larger proportion of the height data to be identified as 
outliers. 

THE PROPOSED METHOD 

The proposed procedure for detection and subsequent deletion of outliers 
involves an iterative application of empirical Bayesian estimates using a 
multilevel model (Goldstein, 1995). These models are fitted with waves 
nested within the individual and allow in principle for a range of individually 
specific random parameters (for intercept, slope, etc). These random 
parameters can be allowed to vary by further factors (e.g., social groups). 
An incorrect observation will distort a model fitted to the whole data 
thereby biasing the evaluation of the correctness or otherwise of the 
remaining observations. By iterating, we can improve on the identification 
of the error-prone observations. 

The iterative process proceeds as follows. First a model is fitted to 
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the whole data. Then, observations that are judged to be outliers, based 
on residuals above a specified criterion or cutoff, are temporally deleted 
from the data set and the model refitted. The complete data is then 
examined in the context of the updated model and large residuals again 
temporally deleted, and the model again refitted. This procedure repeats 
until convergence. This is achieved when the set of data points judged to be 
outliers does not change between iterations. By definition, the parameter 
estimates will have then also converged. Only residuals at the lowest, 
level are evaluated in this procedure. However, this method can be easily 
extended to examine residuals at higher levels (individuals and above). 

Models 

The multilevel models used in this chapter are of the form 

where i clenotes the wave or occasion within the individual and j the 
individual. The explanatory variables xij . . . xkj include variables specific 
t,o the individual such as polynomial terms in age or occasion, sex, and 
treatments where relevant, as well as possibly wave or occasion specific 
variables (for example, dummy variable to denote self-report). For the 
intercept to have meaningful interpretation and better computation, all 
terms involving age or occasion need to be centered by subtracting a 
particular value before raising it to the required power. For the calf data, 
for example, measured in occasions, 5 is subtracted from all terms so that 
the intercept refers to the weight at occasion 5. This also means that 
the estimated effect of the difference between treatment groups is at this 
occasion. The height data are centered at the average age at first wave. 

In this model, only the individual level intercept, term (Boj) varies 
randomly, as follows: 

Boj = PO +uOj. (11.2) 

For this “simple random structure” model (used in one of the calf data 
models), all random errors are assumed to be normally distributed and to 
have zero expectation, and to (co)vary as follows; 

VUT(eij) = 0: (constant across waves) 
VUr.(Uoj) = 0-f 

COZJ(eij, eik) = 0 for individuals j, k, j # k 

Cou(eii,, ei2j > = 0 for waves il, i2,ii # i2 
COU(Uj,eii) = 0 
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Further models tested allow the first of these assumptions to be relaxed, 
allowing variation, or heterogeneity, of errors by wave; thus, Vur(eij) =oei3. 
This occurs, for example, when self-reported height, on wave 2 only, is 
biased in relation to measured height, this bias varying randomly according 
to the individual. Heterogeneity of variance is also found for the calf data. 
t,he variance varying according to the square of the occasion. The fourth 
assumption would be reasonable when waves or occasions are reasonably 
far apart in time. If not, the covariance can be modeled as having one of a 
variety of autocorrelation structures (Goldstein, 1995, pp. 91-92). 

Multilevel models can be further generalized to allow any of the 
coefficients (e.g., al) to vary according to the individual (becoming plJ) 
with 

(11.3) 

When coefficients /3” 
lr/,+lj uk2j at the md::1Jd’u . . . 

rijk2j vary in this way, the corresponding errors 
al level will then generally covary as follows: 

C0v(u)+j, 714 = oklk22. (11.4) 

It is empirically more likely that the polynomial coefficients of lowel 
degree (i.e., linear) will be found to vary than those of higher degree (i.e., 
quadratic). This variation can in turn, of course, be related to further 
characteristics of individuals (for example, social class, if measured). Such 
variation occurs in the random coefficient models used in the calf data. 

Multilevel models are particularly appropriate for longitudinal data (as 
with the height data) with attrition over waves and with the times of 
measurement varying within the specific wave, as they are efficient, making 
use of all the available data. When data is missing, the assumption that it is 
“missing at random” is necessary for the resulting estimates to be unbiased. 
When it! is considered that the missingness of the data may be related to 
the (hypothetical) dependent variable value (informative dropout), then 
parameter estimates from such procedures will be biased and other methods 
should be used (Diggle & Menward, 1994; Diggle, 1998). 

Debates regarding the usefulness of polynomial models and alternatives 
can be found in Royston and Altman (1994). A possible improvement 
to the standard polynomial modeling procedures is the grafted polynomial 
multilevel model, which fits separate polynomial models to different sections 
(sets of waves) of the data, constraining the manner and rates of change of 
the different polynomials at the graft points to be equal. An application of 
such a model to growth data was given by Pan, Goldstein, and Di (1992). 
All analyses were carried out using MlwiN (Rasbash et, al., 2000). 
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RESULTS 

Height data 

This data set came from the youngest cohort of the West of Scotland 
twenty-07 study-health in the community (Macintyre et al., 1989), and 
was comprised of measurements of height at four waves at ages 15, 16, 
18, and 23. Respondents were randomly allocated to interviewers (trained 
nurses) in a constrained random fashion allowing each to interview in 
particular areas (see Ecob & Jamieson, 1992 for details). Measurement was 
obtained from a portable stadiometer in the person’s own home for waves 
1, 3, and 4. For wave 2, a postal survey replaced the interview. A physical 
measure of height was therefore not possible and a self-report was used as 
a proxy. Interviews on a given wave were spread over a period that varied 
according to the wave, being larger in the final wave (a spread of around 
6 months) than in the earlier waves (spread of 3-4 months). The date of 
interview was recorded and used to calculate age at interview, measured in 
months. Some attrition was present in this data, waves 1 through 4 having 
respectively 950, 794, 897, and 670 observations. Note in particular the 
additional nonresponse at wave 2 due to the postal survey. 

For this data set, males and females were modeled separately. Age at, 
interview (centered at 15 years, 8 months) and date of birth were included 
in all models. Any bias in height caused by the self-report in relation to 
the measured height (there is some evidence from other sources that people 
overreport their own height) was allowed for by including a dummy variable 
to represent the difference between self-report and hypothetical measured 
report. This difference was allowed to vary randomly by individual, 
such random variation being found for females but not for males (with 
variance 1.97 estimated with standard error of 0.57). Table 11.1 shows the 
correlations of the height measures across waves, separately for males and 
females. The correlations for females were similar across waves and were 
higher than for males in the earlier waves. This reflects the greater degree 
to which the females attained their adult height at these ages. 

Table 11.2 shows, separately for males and females, estimates for the 
fixed part (only) for the original model and the final model, after deletion 
of outliers. The coefficient of date of birth (not shown) failed to reach 
statistical significance, indicating that the variation with age between waves 
corresponds to that within. In this table, the effects of varying the cut-off 
criterion are shown. Starting with the females, the effect of the deletion of 
outliers is to increase the linear coefficient of age and, to a larger extent 
in absolute terms, the quadratic coefficient for age. The percent increase 
in the estimate of rate of change of height with age at 15 years for t,he 
t,hree cut-off values of 2, 3, and 4 standard deviations was 36%, 15%, and 
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TABLE 11.1 
Correlations of Heights Across Waves, by Gender 

Wave 1 Wave 2 Wave 3 
Males 
Wave 2 
Wave 3 
Wave 4 
Females 
Wave 2 
Wave 3 
Wave 4 

0.81 
0.76 0.83 
0.70 0.81 0.90 

0.89 
0.87 0.88 
0.91 0.91 0.90 

Note. Only data that was common across all waves is included in these 
correlations. This restriction is not necessary for the multilevel modeling, 
which uses all available data. 

15%, respectively. The estimate of the dummy variable for wave 2 was 
reduced. For males, in contrast, the effect of deletion of outliers was to 
decrease both linear and quadratic coefficients of age; the percent decrease 
for the three cut-off values 2, 3, and 4 standard deviations was 19%, S%, 
and 5%, respectively. The estimate of the dummy variable for wave 2 was 
again reduced but by a lesser amount than for females. Note the much 
larger coefficient of age for males, consistent with their later maturity than 
females, and also the larger estimate of the self-report dummy variable for 
males. 

The fitted data (excluding the dummy variable for wave 2) for females 
is shown in Fig. 11.1. The plots are for ages in the range of 180 to 260 
months, which comprise 80% of the data. 

The basic model is shown by the continuous line and that corresponding 
to the 4, 3, and 2 standard deviation cutoffs by dashed lines of 
correspondingly shorter lengths. 

The fitted curves after the deletion of outliers are generally above the 
original for waves 2 and 3, but below for wave 1. The curves for the cutoffs 
of 3 and 4 standard deviations are similar and less different from the original 
curve than is that for the cutoff of 2 standard deviations. 

For males, corresponding plots are shown in Fig. 11.2. Here, the fitted 
curves after the deletion of outliers are generally above the original for wave 
1 but below for wave 3 and show differences in the direction opposite to 
the females. Again, the curves corresponding to the cutoffs of 3 and 4 
standard deviations are more similar to each other (and to the original) 



238 ECOBANDDER 

TABLE 11.2 
Height Data Showing the Effect of Variation in Cut-off Criterion for 

Nonperturbed Data 

Original Model 
Criterion (SD) Age A!le Wave 2 No. of 
by Sex (Linear) (Quadratic) Dummy Iterations 

“lo+ Variable 
Males 
2 0.170 (0.008) -12.00 (0.79) 2.50 (0.20) 3 
3 “ “ “ “ “ ‘6 1 
4 “ “ “ 6‘ “ C‘ 4 
Females 
2 0.019 (0.006) -1.02 (0.52) 1.03 (0.13) 3 
3 “ “ “ ‘6 <‘ “ 2 
4 G‘ “ ‘C “ “ 6‘ 2 

Final Model 
Males 
2 0.138 (0.006) -9.80 (0.54) 2.29 (0.14) 3 
3 0.155 (0.007) -11.00 (0.65) 2.37 (0.16) 1 
4 0.162 (0.007) -11.48 (0.71) 2.49 (0.18) 4 
Females 
2 0.026 (0.004) -1.81 (0.36) 0.65 (0.09) 3 
3 0.022 (0.004) 71.34 (0.41) 0.80 (0.10) 2 
4 0.022 (0.005) -1.35 (0.44) 0.87 (0.11) 2 
Note. Standard errors are in parentheses. 

than is that corresponding to 2 standard deviations. Note that the rate of 
change of height with age at age 15 from the original model is estimated at8 
2.0 centimeters per year for males and 0.23 centimeters per year for females. 

At higher ages (not shown), although the mean fitted values in the fourth 
wave are above the third wave for both sexes, the curves show a down turn 
within t,he fourth wave. This probably results from the global nature of the 
fit of the polynomial modeling methods and is exacerbated by the much 
larger gap between the third and fourth waves (average age difference, 5 
years 7 months) than between the previous waves (1 year 3 months and 1 
year 5 months on average between waves 1 and 2 and between waves 2 and 
3 respectively). Grafted polynomial fitting (mentioned earlier) would be a 
possible solution to this problem. 

The apparent reduction in fitted height at the higher ages, particularly 
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FIG. 11.1. Height data for females: Comparison of plots for original 
model and model after residual deletion using three alternative cutoffs -- 
nonperturbed data. 

for males, probably results from the global nature of the fit of the 
polynomial modeling methods, the pattern of change within wave 4 being 
largely determined by the fitting of the polynomial at the earlier waves 
comprising the majority of the data, and of the variation in the dependent 
variable. Alternative methods of modeling this data were mentioned earlier. 
This particular problem in fitting is exacerbated by there being a much 
larger age gap between the 3rd and 4th waves (average age difference 
between waves 1 and 2 and between waves 2 and 3 is 1 year 3 months 
and 1 year 5 months, respectively) than in previous waves (1 year 3 months 
and 1 year 5 months average age difference between waves 1 and 2 and 
between waves 2 and 3 respectively).2 

As expected, the random variance at level 1 is reduced after iteration 
but the variance at level 2 is little affected (tables available from authors). 
A greater percentage of the data is eliminated toward the bottom end of 

2Ranges of ag es (in years and months) are, in waves 1 to 4 respectively, 15.0-16.10. 
16.7--17.10. 17.11-19.4. 23.4-25.7. 
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FIG. 11.2. Height data for males: Comparison of plots for original 
model and model after residual deletion using three alternative cutoffs - 
nonperturbed data. 

the distribution of level 1 residuals for males but this is similar at both 
extremes for females. The percent eliminated, except for the cutoff of 2 
standard deviations, is markedly larger than the percent estimated on the 
assumption of a normal distribution, consistent with the marked negative 
skewness of residuals at level 1. If this is not taken into account, standard 
errors of estimates of model parameters will be overestimated. This is 
indicated in Table 11.2, the final model giving lower standard errors even 
though the size of the sample on which the model was estimated, is reduced. 

Table 11.3 shows the skewness and kurtosis of the original data by wave 
for each sex. The values are relatively small and variable between waves. 
However (Table 11.4), the skewness and kurtosis of the residuals from the 
original model tends to be much larger. Note in particular the much larger 
values of kurtosis for males at wave 2 and for females at wave 3, indicating 
some obvious data inaccuracies not so easily detectable through the plots 
of original data by wave and sex. 

This data (for females only) is now modified by perturbing a percentage 
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TABLE 11.3 
Skewness and Kurtosis Measures by Wave - Height Data 

Wave 1 2 3 4 
Males 

Skewness -0.03 -0.26 0.16 0.16 
Kurtosis 0.59 0.79-0.30-0.08 
Females 

Skewness 0.12 0.13-0.04 0.08 
Kurtosis 0.17 0.29 0.29 0.39 

241 

Note. The skewness and kurtosis measures used are the measures yl, yz 
being ratios of cummulants raised to appropriate powers for invariance to 
the scale measurement of the data (Kendall & Stuart, 1969). 

of the observations at a particular wave, increasing these by a fixed amount, 
(either 1 or 2 within wave standard deviations).3 The parameters of the 
resulting final models are then compared to the original models both on the 
complete perturbed data and on the data before perturbation in relation 
to the “no error” model shown at the bottom of the table. A measure 
of the success of the method is the ability to reproduce estimates for 
final models that are similar to those on the unperturbed data. This 
would relate to the sensitivity and selectivity with which the perturbed 
observations are eliminated (i.e., what proportion of perturbed observations 
are correctly eliminated and what proportion of nonperturbed observations 
are incorrectly eliminated). In practice, the success would depend on the 
percentage of observations perturbed, the amount of perturbation, and the 
proportion of observations deleted from the data (via the tuning parameter) 
at each iteration of the method. 

Tables 11.5 and 11.6 show, for females only, the effects on the parameter 
estimates in the fixed part of the model of a range of possible perturbations 
to the data. In all these analyses, the cutoff is fixed at 3 standard deviations. 
Perturbations vary according to the wave for which the data is perturbed 
(waves 1 to 4), the percentage perturbed on the particular wave (l%, 5%), 
and the amount of perturbation (1, 2 standard deviations respectively for 
Tables 11.5 and 11.6). 

Let us consider first data for which 5% of observations on height are 
perturbed with 1 standard deviation added (bottom section, Table 11.5). 
The effect of the perturbation varies as expected according to the wave 

“This is a special case of a contaminating distribution considered by Dixon (1950). 
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TABLE 11.4 
Skewness, Kurtosis and Standard Deviations From Original Model by 

Wave (Height Data) 

Wave 1 2 3 
Males 

4 Overall 

Skewness-l.31 -1.87 0.25 0.75 -0.79 
Kurtosis 2.8715.11 1.76 4.98 5.32 

SD 3.00 2.31 2.21 2.52 
Females 

Skewness 0.10 1.00 -3.56 -0.23 -0.72 
Kurtosis 5.14 3.47 34.35 5.39 13.56 

SD 1.06 1.97 1.83 1.58 

-- at wave 1, perturbation substantially reduces the linear and quadratic 
terms in age. In contrast, at wave 3, both linear and quadratic terms are 
increased in absolute value. The dummy variable coefficient is also affected, 
being increased as expected when perturbation is on wave 2 and reduced 
when on waves 1 and 3. Final estimates after deletion of large residuals 
gives, in absolute terms, generally larger linear and quadratic age terms 
with values usually nearer (although not when perturbation is at wave 3) 
the final estimates for the unperturbed (no error) data. When 1% of the 
data is perturbed in the same way, biases in estimates are substantially 
lower but in the same direction as for the 5% perturbation, and these are 
reduced for perturbations at all waves (relative to the no error model) in the 
final models. In particular, the linear coefficient of age and the coefficient 
of the wave 2 dummy variable are very similar in all final models. 

Data for perturbation of 2 standard deviations according to the same 
scheme are shown in Table 11.6. The greater size of perturbation allows the 
method to more effectively discriminate and thus eliminate the perturbed 
data. Although the original model for perturbed data is further from that 
for the no error data as expected, the final models are generally more similar 
t,o each other and to the nonperturbed data model - for example, biases 
in all parameters shown when 1% of observations are perturbed have been 
almost completely eliminated. In all cases, the number of iterations is three 
or lower. Plots of the effect of perturbation of 5% of the data at 2 standard 
deviations at wave 3 are shown in Fig. 11.3. 

Here, t,he long dashed line - generally the lowest in the plots - 
represents the original data before deletion of high residuals, and the> 
c*ontinuous line represents the original data after residual deletion. Thrl 



TABLE 11.5 
Height, Data for Females; l%, 5% Observations Perturbed Upward on One 

Wave by 1 .OO SDS 

1% Observations Perturbed 
Model Original Final 
Wavea Age Age Wave 2Age Age Wave 2 

(Linear) (Quadra&Dummy (Linear) (QuadratiqDummy 
*1 o-4 Variable “1 o-4 Variable 

1 0.016 -0.80 1.00 0.020 -1.26 0.79 
(0.006) (0.53) (0.13) (0.004) (0.41) (0.10) 

2 0.018 -1.00 1.11 0.022 -1.35 0.83 
(0.006) (0.53) (0.13) (0.004) (0.41) (0.10) 

3 0.020 -1.12 1.03 0.022 -1.38 0.79 
(0.006) (0.52) (0.13) (0.004) (0.41) (0.10) 

4 0.018 -0.89 1.04 0.022 -1.27 0.80 
(0.006) (0.53) (0.13) (0.004) (0.41) (0.10) 

No 0.019 -1.02 1.03 0.022 -1.34 0.80 
error (0.006) (0.52) (0.13) (0.004) (0.41) (0.10) 
5% Observations Perturbed 
Model Original Final 
Wavea Age Age Wave 2Age Age Wave 2 

(Lanear) (Quadratic,Dummy (Linear) (Quadraticpummy 
‘1 o-4 Variable “1 o-4 Variable 

1 0.001 -0.07 0.85 0.011 -0.50 0.70 
(0.006) (0.58) (0.14) (0.005) (0.44) (0.11) 

2 0.018 -1.00 1.36 0.021 -1.19 1.00 
(0.006) (0.56) (0.13) (0.005) (0.43) (0.11) 

3 0.030 -2.14 0.88 0.031 -2.26 0.68 
(0.006) (0.54) (0.13) (0.005) (0.43) (0.11) 

4 0.017 -0.58 1.04 0.021 -0.99 0.85 
(0.006) (0.54) (0.13) (0.005) (0.43) (0.10) 

No 0.019 -1.02 1.03 0.022 -1.34 0.80 
error (0.006) (0.52) (0.13) (0.005) (0.41) (0.10) 
n wave on which perturbed observations are added 
Note. Standard errors in parentheses. 
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FIG. 11.3. Height data for females: Comparison of plots for original model 
and for model after residual deletion for a) 5% of data perturbed at wave 
3 upward by 2 standard deviations and b) for nonperturbed data. 

corresponding shorter dashed lines represent the data after perturbation, 
before (shortest, dashes) and after (intermediate length dashes) residual 
deletion. The effect of deletion of residuals for the perturbed data is thus 
in this case to bring the relationship in line with the non-perturbed data. 
Calf data 
This data set was originally analysed by Kenward (1987). It comprised 
weights of 60 young calves each measured on 11 occasions4 throughout the 
grazing season at 2-week intervals (except the last occasion being one week 
further). The data was based on two treatments (A, B) of 30 calves, the 
alternative treatments being to counteract the debilitating effects on growth 
of roundworm larvae, found in feces of infected cattle, which deprives 

40ccasion is used as the explanatory variable in all analyses. These are, in fact, 
equidistantly spaced, 14 days apart, except for a final measurement occasion 17 days 
after the penultimate occasion. Unlike the height data, there was no variation between 
subjects in t,he precise times of measurement within occasion. As the occasions are close 
in time, a rnore appropriate model would allow for autocorrelation of errors over time. 



TABLE 11.6 
Height Data for Females; 1% and 5% Observations Perturbed Upward on 

One Wave by 2.00 SDS 

1% Observations Perturbed 
Model Original Final 
Wavea Age A!le Wave 2Age Age Wave 2 

(Linear) (QuadratiqDummy (Linear) (Quadratic,Dummy 
‘1 o-4 Variable *1 o-4 Variable 

1 0.013 -0.59 0.97 0.022 -1.36 0.82 
(0.006) (0.55) (0.13) (0.004) (0.41) (0.10) 

2 0.018 -0.97 1.19 0.022 -1.35 0.80 
(0.006) (0.55) (0.13) (0.004) (0.41) (0.10) 

3 0.020 -1.21 1.02 0.022 -1.34 0.80 
(0.006) (0.53) (0.13) (0.004) (0.41) (0.10) 

4 0.018 -0.76 1.05 0.022 -1.35 0.83 
(0.006) (0.55) (0.13) (0.004) (0.41) (0.10) 

No 0.019 -1.02 1.03 0.022 -1.34 0.80 
error (0.006) (0.52) (0.13) (0.004) (0.41) (0.10) 
5% Observations Perturbed 
Model Original Final 
Wavea Age 4e Wave 2Age ALIe Wave 2 

(Linear) (Q d t ’ JI ua ra zc ummy (Linear) (QuadraticJhmmy 
“1 o-4 Variable “1 o-4 Variable 

1 -0.016 +1.56 0.67 0.021 -1.42 0.87 
(0.007) (0.65) (0.16) (0.005) (0.46) (0.11) 

2 0.018 -0.97 1.68 0.022 -1.30 0.80 
(0.007) (0.63) (0.16) (0.005) (0.44) (0.10) 

3 0.041 -3.25 0.72 0.022 -1.42 0.80 
(0.007) (0.61) (0.15) (0.005) (0.44) (0.11) 

4 0.016 -0.15 1.05 0.024 -1.51 0.86 
(0.007) (0.60) (0.15) (0.005) (0.43) (0.10) 

No 0.019 -1.02 1.03 0.022 -1.34 0.80 
error (0.006) (0.52) (0.13) (0.004) (0.40) (0.10) 
a wave on which perturbed observations are added 
Note. Standard errors in parentheses. 
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the animal of nutrients and lowers resistance to other diseases, impeding 
growth. Interest lies in comparing the two treatments over time. The 
models suggested by Kenward (1987) allowed for local variations in the 
rate of change of weight over time in both groups by allowing correlations 
of errors only within a specified range of occasions (an antedependence 
structure). However, we fit standard polynomial growth models with errors 
assumed independent across occasions, modeling growth by including terms 
for occasion up to the quintic and allowing these to interact with the dummy 
variable indicating treatment group (A vs. B). In practice, only terms up 
t,o and including a cubic were found to interact in this way. We make no 

claim here that polynomial models have comparable value to the locally 
fitted models used in Kenward’s analysis. Rather, this data was used as 
an illustration of the effects of the iterative residual detection and deletion 
method in the context of polynomial growth models on the estimate of thtl 
difference between treatment groups at one point in time (occasion 5) and 
a comparison of this to the effect of unnecessarily simplifying the model. 

Four models were fitted to this data involving all combinations of “full” 
and “restricted” fixed part and “simple” and “complex” random part. The 
“full fixed” model included all polynomial terms in occasion up to the 
cluintic term and interactions of treatment with terms up to and including 
t,he cubic (higher powers were tested in each case and found not to reach 
st,atist$cal significance). The “restricted fixed” model restricted terms t,o 
the linear and quadratic terms and interactions of these with treatment 
group. The “complex random” model included a random coefficient for 
the linear term in occasion and allowed for the error variance to vary by 
occasion according to the square of the occasion (after previous inspection 
of residuals from a simple model). The “simple random” model restricted 
thrl error variance for the linear term in occasion at the individual level 
to be zero and restricted the error variance within the individual to be 
const,ant across occasions. 

The basic model was the full fixed, complex random model and was first 
fit,tecl to the data, and the effect on all parameters in the model of iterative 
deletion of large residuals is shown. Then, comparisons were made of the 
coefficient of the treatment contrast (A vs. B), designated by (‘Group” 
across the four possible models, both before and after the iterative detection 
and deletion of large residuals. The cutoff for deletion of large residuals was 
set at 3 st,andard deviations throughout. 

Table 11.7 shows the basic polynomial model fitted to this data set,. 
The data was centered on occasion 5 so that the estimate of the effect of 
treatment contrast was for this occasion. 

The iterative residual detection and deletion method converged in all 
cases in 2 iterations. The effect, of iterative deletion of large standardized 



TABLE 11.7 
Calf Data: Basic Polynomial Model Showing Estimates and Standard 

Errors (in Brackets) 

Random Original Model After Residual 
Between Individual Deletion 
Constant*constant 106.10 (21.00) 111.00 (21.70) 
Occasion*constantJ -1.38 ( 2.57) -0.97 ( 2.51) 
Occasion*occasion 3.10 ( 0.62) 2.89 ( 0.57) 
Within individual; 
Constant*constant 15.3 ( 2.1) 13.5 ( 1.8) 
Occasion2 *occasion2 0.389 (0.062) 0.315 (0.053) 
Fixed 
Constant 191.70 (5.20) 192.70 (5.10) 
Treatment group (A vs. B) 3.57 (3.42) 3.64 (3.45) 
Occasion; linear 16.50 (0.91) 16.27 (0.86) 
Occasion; quadratic -1.55 (0.13) -1.54 (0.12) 
Occasion; cubic (*lo-“) -4.53 (3.87) -3.97 (3.57) 
Occasion; quartic (*lo-“) 7.69 (6.82) 7.60 (6.37) 
Occasion; quintic (* 10w2) -1.05 (1.42) -1.01 (1.32) 
Group*occasion; linear -1.17 (0.56) -1.02 (0.53) 
Group*occasion; quadratic -0.24 (0.06) -0.24 (0.06) 
Group*occasion; cubic ( *10V2) 6.04 (1 .Sl) 4.24 (1.70) 
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TABLE 11.8 
Calf Data: Comparison of Models, Estimate of Coefficient of Treatment 

Group Indicator and Characteristics of Residuals 

Estimate ofEstimate ofSD ’ Kurtosis c 
Treatment Treatment 
Group a Group b 

Full fixed 
Simple random 3.95 (3.76) 3.92 (3.71) 7.80 1.49 
Complex random 3.57 (3.42) 3.64 (3.45) 2.65 0.62 
Restricted fixed 
Simple random 2.38 (3.74) 3.04 (3.73) 8.85 2.19 
Complex random 2.56 (3.44) 3.13 (3.46) 6.14 1.09 
a Estimate of treatment group indicator in original model. 
b Estimate of treatment group indicator after residual deletion. 
’ SD and kurtosis of the residuals. 

residuals is to reduce most of the coefficients in the model and their 
standard errors. The small reduction in the within-individual random errors 
indicated that few outliers were deleted. However, the effect of treatment 
contrast, measured at the 5th occasion, increased slightly. 

Table 11.8 compares the coefficients for treatment contrast at the 5th 
occasion for the original model and, after residual deletion, for a range of 
models that differ according to whether the fixed part was full or restricted 
and according to whether the random part was complex or simple. 

The difference in this coefficient before and after iterative residual 
deletion was small in the models with full fixed part but, in the models 
with restricted fixed part, there was substantial increase despite the fact 
that terms in occasion above the quadratic - apart from the interaction 
with group - failed to reach statistical significance. The deletion of large 
residuals in the inappropriate restricted fixed model had the effect of moving 
the coefficient of treatment group toward the value for the full fixed models. 
The change to the fixed part of the model affects the size of the coefficient 
of treatment group more than does the change of the random part from 
simple to complex. Note that the residuals had large standard deviations 
in the models with simple random components and in the restricted fixed 
model, an indication that these models are not fitting the data adequately. 
Moreover, the standardized kurtosis of the residuals in the simple random 
models was high and over twice the value, in both full fixed and restricted 
fixed models compared to the complex random models. The greater effect, 
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of iterative residual deletion in the restricted fixed models than in the full 
fixed models is an indication that more large residuals are being deleted in 
tJhe former case - probably due to fitting an inappropriately simple model 
to the data. 

Although the within-occasion distribution (not shown here) generally 
was found to have negative kurtosis, especially at the earlier occasions, the 
kurtosis of the residuals was slightly positive in all models, an indication 
t,hat some outliers may be present in the data. Deletion of extreme residuals 
would have been primarily at the later occasions and, for example, for the 
complex random, full fixed model, they are more than expected on the 
assumption of a normal distribution (1.1% vs. 0.26%). The question of 
model choice for this data set thus appears to be perhaps more crucial than 
t,he implementation of the procedure for detection and deletion of large 
residuals. 

DISCUSSION 

The method presented here for the iterative deletion of outliers using 
multilevel models has always been found to converge in few iterations for the 
reasonably simple models used. The effect of varying the tuning parameter, 
the cut-off point for the temporary deletion of residuals, is to vary the final 
model, the differences between the original and final models being larger 
when the tuning parameter is lower. 

On data comprising repeated measures on height, this method is able 
to retrieve parameter estimates of a model fitted to data using the value 
of the tuning parameter in the middle of the range examined when varying 
proportions of the data are perturbed on each occasion in turn and by 
varying amounts, particularly when the proportion of observations so 
perturbed does not exceed 1%. 

Analysis of another data set (on growth in calves) suggests that the 
choice of fitted model is crucial, determining the extent of change of 
parameter estimate with iteration, although this method appears to offer 
some protection from the biasing effect on key parameters of an overly 
simplistic model. In this data, the fixed part was found to best be modeled 
by polynomials that involve at least a cubic term with the random part, 
heteroscedastic, the error variance increasing with occasion, and with tJhe 
coefficient for the linear growth term varying randomly by the individual. 
For the best model (full fixed, complex random), little change in the 
parameters, and in particular of the estimate of the effect of treatment 
group atj occasion 5, is found as a result of the iterative deletion of 
large residuals. For the worst model (restricted fixed, simple random), 
ii, substantial change in these estimates is found. Thus, the change in 
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parameter estimates over the iteration process provides information on the 
adequacy of the original model fitted as well as on the presence or otherwise 
of genuine outliers. Information on the distributional characteristics of the 
residuals provides additional useful information on the adequacy of the 
model, this being shown in the case of the worst model by the large standard 
deviation and kurtosis of residuals. 

We now examine the decision on the value for the tuning parameter, 
discuss possible alterations and improvements to the iterative process, and 
illustrate the importance of the choice of the original model. 

A comparison of the alternative values of the tuning parameter for 
models for the height data has shown some sensitivity of parameters of the 
final model to the value chosen. Choosing values that are too low artificially 
and unnecessarily eliminates much of the true variation in the data unless 
a substantial portion of the data are outliers. Yet, if too large a value is 
chosen, real outliers are likely to contaminate the model fitted. One solution 
to the choice of cut-off value would be to chose it on empirical grounds 
through examination of the distribution of the residuals from the original 
model. This could be done based on a plot of the proportion of residuals at 
or above the to-be-set value against the corresponding estimated proportion 
from a normal distribution, a cut-off point being chosen when the ratio of 
the former to the latter shows a marked increase. The appropriate choice of 
this value may result from further experience of the use of this procedure. 

The iterative process may be improved by, rather than deleting supposed 
outlying observations, replacing, these with estimates from the model, 
ideally with the incorporation of a random error set through the estimate 
of the residual standard errors at each level in the model (Goldstein, 1995). 
This is in the same spirit as the model-based imputation procedures of 
R,ubin (1987) and has the advantage of allowing subsequent analyses, and 
in particular cross-sectional analyses, to be on the complete set of cases, 
thus avoiding any unrepresentativeness due to particular characteristics of 
outliers deleted. 

Further improvements to the iterative method could be: 1. To 
differentially weight observations according to their residuals from the 
current model5 (instead of deleting those above the cut-off value). 

2. To consider residuals at more than one level in combination (at present, 
only residuals at the lowest level are considered for reasons given 
earlier). This is possible through a nested iterative procedure that> 
starts with the deletion of large residuals at the lowest level, then 
cycles up the hierarchy of levels, eliminating large residuals at each of 
these levels in turn. At each stage, residuals at lower levels would be 

“This method can be traced back to Glaisher (1872), who 
procedure for estimating weights using Bayesian principles. 

considered an iterative 
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reestimated and eliminated when above the specified cut-off value. An 
alternative is to use a dummy variable to represent any unit at higher 
levels with a particularly high residual, thus retaining them in the data 
set but eliminating their influence on the parameter estimates in the 
model. 

3. To explicitly consider the influence (see Chatterjee & Hadi, 1986) of the 
data points on the model parameter estimates, possibly in addition to 
their residuals, as a criterion for deletion. This would give priority to 
deletion of observations with high residuals at extreme occasions6 . 

There is clearly scope for substantial complexity in the models used, 
both in the fixed and random parts. However, when the number of 
waves or occasions of measurement of the data is small (4 for the height 
data) models with complex random components are sometimes found to 
result in lack of convergence7 (sometimes through oscillation between 
alternative estimates), although it is possible for the height data to include 
a random component at the individual level for the difference between the 
self-reported and the measured height. Such a random component was 
found for females but not for males, this being reflected in heterogeneous 
variance between waves. For the calf data (with 11 measurement occasions), 
it< was possible to allow the linear growth parameter to be random at the 
individual level (thus extending the analysis of Kenward) and to allow for 
polynomial terms of high degree (up to quintic), and in addition, to allow 
for heterogeneous (increasing) variance across occasions. 

Fitting too constrained a model runs the risk of eliminating, as a 
supposed outlier, valid values on individuals with unusual patterns of 
growth. For example, an observation on an early wave for an individual 
who is a late developer may be detected as an outlier in an inappropriate 
model in which the linear growth parameter is constrained to equality across 
individuals. We would suggest that such models be as complex as are 
supported by the data and result in reasonable convergence behavior over 
the iterative process. The distribution of residuals (both nonnormality 
and variance) and their change with increases in model complexity are 
indeed indications of the adequacy of the model fitted (assuming the true 
errors are normally distributed). Such an iterative procedure should in 

GNote that outliers may not be influential. Moreover, influential observations may not 
be outliers, as with the observation having the maximum z value in a linear regression, 
which has high influence on the regression coefficient even if the value of y is as predicted! 

7Although models on height data that allowed for random slope at the individual level 
were found for males but not for females, giving a coefficient of 0.00091(0.00019). After 
iterative deletion of residuals with the 3 standard deviation cutoff, the random compo- 
nent, for slope was no longer statistically significant (coefficient 0.000037, SE 0.000071), 
suggesting that in this case, the random slope was an artifact of the presence of outliers 
in the original data. 
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no cases be used to justify fitting an overly simple model to the data - 
rather, it may suggest particular ways in which the model could be extended 
to accommodate particular subsets of observations that are generated by 
different mechanisms (in Hawkins’s sense). 

The models used can easily be extended to include units at a higher 
level than at the individual. In particular, allowing for random variation 
by interviewer at a level above the individual allows the identification of 
“rogue” interviewers through extreme residuals at this level. Interviewer 
bias is estimated by interviewer posterior means, possibly adjusted for 
socioeconomic variables, and can be modeled as varying over the position 
in the sequence of interviews, allowing for systematic interviewer drift over 
time. Although devised to be appropriate, particularly to longitudinal 
data, this method, appropriately modified, can be used with data of other 
types, for example cross-sectional hierarchical data sets. In these cases, 
t,he iterative method can easily be adapted to screen observations at higher 
levels as a priority, as when interest is in the identification of outlying units 
at these levels (for example, schools or interviewers). 

Further examination of this method of iterative detection and deletion of 
large residuals is desirable using data with varying degrees of missingness at 
particular waves, varying attrition, and varying degrees of change over time 
and of model complexity. However, this investigation has suggested that 
on two data sets, changes in parameter estimates result, and that a model 
fitted to original data can be effectively retrieved when a particular pattern 
of perturbation is added to the data. Although neither of the data sets used 
here are psychological in nature, the methods here should apply to data in 
the form of scales of measurement constructed in order to be normally 
distributed, or that can be rendered so by a suitable transformation. 
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Estimating Interdependent Effects 
Among Multilevel Composite Variables 
in Psychosocial Research: An Example 

of the Application of Multilevel 
Structural Equation Modeling 

Kenneth J. Rowe 
Australian Council for Educational Research 

The purpose of this chapter is to demonstrate data analytic techniques 
designed to account for the measurement, distributional, and hierarchically 
structured properties of data obtained in organizational psychological 
research. Whereas there is an abundance of literature advocating what 
should or should not be done in analyzing psychosocial data to address 
specific research questions, there is all too little that provides practical, 
illustrative examples. Notable exceptions for applications in structural 
equation modeling include the texts by Cuttance and Ecob (1987), 
Marcoulides and Schumacker (1996), and by Schumacker and Lomax 
(1996). For applications in multilevel analysis, the texts by Bryk and 
Raudenbush (1992); Goldstein (1987, 1995); Hox (1994); Kreft and de 
Leeuw (1998) ; and the users’ guides by du Toit and du Toit (1999), 
Goldstein et al. (1998) and Rasbash et al. (2000a) are useful, as are 
tJhe workshop manuals by du Toit, du Toit, and Cudeck (1999), and by 
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Rowe (1999a, 1999b, 2001). Thus, using a data set designed to explain 
variation in teachers’ cognitive/affective constructions of their roles and 
perceptions of their work environments, this chapter illustrates the use of 
one-factor, congeneric measurement models to obtain maximally reliable 
composite variables, and the utility of multilevel analytic techniques in 
fitting regression and structural equation models to estimate the magnitude 
of the interdependent effects among those variables. 

Following suggestions by Cuttance and Ecob (1987), Goldstein (1987, 
1995)) Kaplan and (1997a, 1997b), McArdle and Hamagami (1996), and 
Raudenbush (1995), the chapter demonstrates one approach to combining 
the analytic approaches of multilevel analysis and structural equation 
modeling. Specifically, the approach uses multivariate, multilevel analysis 
to “purge” variance-covariance matrices of the effects of nonindependence 
among variables, and then employing these matrices as input to fitting 
multiple-group structural equation models. Applications of this approach 
have been demonstrated by Rowe (1999a, 199913, 2001)) Rowe and Hill 
(1998)) and by Rowe and Rowe (1999). 

An Annotated Example 

As part of a study of teacher and school effectiveness, the data presented 
here were obtained from 3,242 teachers, drawn from a cluster-designed, 
stratified sample of 145 elementary schools and secondary colleges, 
subsequently referred to as Teucher Type (TTYPE) and coded 1 for 
teachers in elementary schools and 0 for secondary schools. The gender 
composition (TSEX) consisted of 2,115 females and 1,127 males (coded 1 
for female and 0 for male). For specific details of this larger study, see Hill, 
Holmes-Smith, and Rowe (1993); Hill and Rowe (1996, 1998); R.owe, Hill, 
and Holmes-Smith (1995); and Rowe and Hill (1998). 

Teachers were asked to provide indications of perceptions of their work 
environments by responding to a 57-item School Organizational Health 
Questionnaire (SOHQ) developed by Hart and colleagues (Hart, 1994; Hart, 
Wearing, Conn, Carter, & Dingle, 2000). The items, each measured on 
5-point, Likert-type, ordinal scales (i.e., strongly disagree to strongly agree), 
relate to 12 latent domains of interest to organizational psychologists. For 
the purposes of the illustrations presented here, only 5 of these domains were 
used, namely, morale, leadership support, peer support, goal congruence, 
and professional development. The definitions and item content for each 
of these 5 constructs are available from the author upon request. Ill 
particular, the related analyses focused on the measurement of these latent 
constructs as composite variables, as well as the simultaneous estimation 
of the magnitude of their interdependent effects. 
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FIG. 12.1. One factor, congeneric measurement model for morale. 

Construct measurement, reliability and distributional properties 

Confirmatory factor analysis (CFA) was employed to compute composite 
scores for each of the five work environment scales using LISREL 8.30 
(Jiireskog & Sorbom, 2000a) under a weighted least squares method of 
parameter estimation and a listwise method for deleting missing data 
(n = 3,033). These were obtained from fitting one-factor congeneric 
measurement models to the constituent ordinal-scaled, item data, based on 
a scaled covariance matrix (and its asymptotic estimates) of the polychoric 
correlations using PRELIS 2.30 (Joreskog & S&born, 2OOOb). Composite 
scores computed by this method are single indices of their constituent items, 
each of which is weighted for its relative contribution to the composite. 

Unlike traditional unit-weighted methods for computing composites, the 
use of factor score regression weights obtained from CFA one-factor models 
minimizes measurement error in the items contributing to each scale, 
thus increasing the reliability (and validity) of the computed scale scores. 
An alternative approach, using correspondence analysis, was described by 
Healy and Goldstein (1976). For explanatory research applications, the 
use of maximally reliable composite scores is crucial in fitting both single 
and multilevel regression models (Bryk & Raudenbush, 1992; Goldstein, 
1995), as well as in fitting structural equation models (Arbuckle & Wothke, 
1999; Joreskog, Sorbom, du Toit, & du Toit, 1999; McDonald, 1985, 1994: 
Steiger, 1999). 

The one-factor, congeneric measurement model (i.e., LISREL submodel 
1) is illustrated diagrammatically in Fig. 12.1. 

In matrix format, Equation 12.1 shows the regression of zi on f, where 
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t,he elements X,i are the partial regression coefficients of II in the regression 
of 5i on tl, namely: 

x11 

x21 

: I 

x31 Kl 

x41 

x51 

61 

62 

s3 

64 

65 

(12.1) 

(12.2) 

The assumed model implies that the covariance matrix of the observed 
indicators (zi) is of the form: 

c = A,& + 06 (12.3) 

where 0~ is a diagonal matrix with elements 06i indicating the variances of 
Si (i = 1, 2, 3, 4, 5). 

From the parameters of Equation 12.3 the reliability (rC) of a composite 
(<,) is given as 

(12.4) 

where w, is a vector of factor score (FS) regression weights that maximize 
the reliability of the composite. Factor score regression coefficients (FS) 
represent the estimated bivariate regression of the factor (t) on all the 
observed indicator variables, given by FS = A’C-’ , where A is the estimated 
factor pattern matrix and C is the estimated covariance matrix of the 
observed indicators (see Jijreskog & S&born, 1989, p. 93; Lawley &- 
Maxwell, 1971, p. 109). Factor score estimates (ti) may be computed 
for any individual i with observed scores xi, using the simple product: El 
= FS xi. 

For specific details of these well established but all too rarely usecl 
procedures, see Alwin and Jackson (1980), Fleishman and Benson (1987), 
Jiireskog (1971, 1990, 1994), Werts, Rock, Linn, and Jiireskog (1978). 
Further details including the rationale for this approach to computing 
composite variables and their reliabilities have more recently been outlined 
and demonstrated by Holmes-Smith and Rowe (1994), McDonald (1996), 
Rowe and Hill (1998), and by Rowe and Rowe (1999). For the present case, 
the relevant PRELIS and LISREL files for estimating the parameters of the 
composite variable morale are available from the author upon request. 

From Equations 12.1 and 12.3 the item factor score regression 
coefficients for each composite, and the reliability coefficients for the 
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composite scores from Equation 12.4 were computed and are presented in 
Table 12.1. For comparative purposes, the traditional lower bound estimate 
of reliability for each composite, namely, Cronbach’s (1951) standardized 
item alpha (a), is given in the final column of Table 12.1. 

A proportionally weighted scale score for the composite variable morale 
t]hat t,akes into account the individual and joint measurement error of the 
indicators mol , mo2, mo3, mod, and mo5, was computed as a continuous 
variable for each case as follows (e.g., using SPSS format nomenclature): 

compute MORALE = 
(mo~*0.127)+(mo2*0.186)+(mo~*0.185)+(mo~*0.299)+(~o~*O.~O3), 

where mol , m02, mo3, ‘mo4, and mo5 are the raw score ratings 
made by each respondent on the five indicator items, respectively. This 
process ensures that the estimation of the scale/composite variable morale 
(adjusted for measurement error) is proportionally weighted by the actual 
contribution made by each indicator. Note that these proportionally 
weighted FS regression coefficients add to 1; hence, the scale/composit,e 
score will range from a minimum of 1 to a maximum of 5. This means that 
the composite variable morale (ICI) and the associated scales (lc2, tc3, 
(E,,f, <,5), as given in Table 12.1, have the advantage of all being measured 
in the same metric. The computed scale/composite score for morale (and 
similarly in the case for each construct) may now be used in explanatory 
analyses, namely, in fitting structural equation models and multilevel 
models. 

Before doing so, however, it is important to examine the distribut,ional 
properties of the continuous variables to be used in subsequent explanatory 
modeling. For such purposes, PRELIS gives a detailed summary of the 
descriptive parameters (i.e., first-, second-, and third-order moments) and 
provides both univariate and multivariate tests of zero skewness and zero 
kurtosis. For the present case, the computed estimates are summarized in 
the upper and middle sections of Table 12.2. 

Because the relevant estimates (as given in the middle section of Table 
12.2) indicated that all five variables were significantly nonnormal, the raw 
composite scale scores were recomputed as normal scores. This can bt 
easily and efficiently clone using MLn or MLwiN (Rasbash, Woodhouse. 
Yang, & Goldst>ein, 1996, Rasbash, Browne, Healy, Carneron, & Charlton. 
2OOOb), which use a method of restoring (via the NSCOR command) t,hat 
assigns expectecl values from the standard normal distribution according to 
the ranks of the original scores in the form of normal equivalent deviates 
(NED). The obtained normalized estimates given in the lower port,ion of 
Table 12.2 are the ones used for explanatory modeling here. 



TABLE 12.1 
Composite Scale Parameters 

Scale IF TDb Item WeighU rc xc 0, ad 
mol mo2 mo3 mo4 mo5 

lrl - Morale .140 .206 .205 ,330 .224 .884 
3,173 3,l .127 .186 .185 .299 .203 .902 .942 .096 

lsl ls2 ls3 ls4 ls5 
[,g - Leadership .149 .069 .367 .285 .216 .880 

support 3,162 - .137 .064 .338 .262 .199 .930 .948 .068 
psl ps2 ps3 ps4 ps5 

lc3 - Peer Support 4,l .133 .246 .118 .174 .448 ,845 
3181 5,l .119 .220 .105 .155 .401 .900 .942 .099 

gel gc2 gc3 gc4 gc5 
tc4 - Goal 3,2 .296 .096 .174 .286 .303 .815 

congruence 3,174 4,l .256 .083 .151 .248 ,262 .871 .924 .126 
pdl pd2 pd3 pd4 pd5 

cc5 - Professional 5,2 .312 .374 .179 .121 .216 .801 
develoument 3.170 2.1 .259 .311 .149 .101 .180 .890 .940 .109 

Note. The rc is the composite scale reliability coefficient calculated from the 
maximally weighted factor score regression coefficients obtained from fitting one- 
factor congeneric measurement models to the constituent scale items, given by: 

rc = 
to:, (C - 6,) WC 

w:. I&u, 
1 

where wc is the vector of factor score regression weights. A, = a,& is the> 
estimate of that part of the variance in the vector of indicator variables (g) that 
is explained by the latent or composite variable e,. The standard deviation es- 
timates (a,) are given in Table 12.2 (normal scores). e>, = a:(1 - rc) is the 
estimate of the remaining variance in the indicator variables not explained by 
the composite variable - i.e., measurement error variance. The variance variance 
estimates (~2) are the diagonals of the variance-covariance matrix given in Table 
12.2 (Normal Scores). 
c( N= the number of cases with complete data. 
’ TD(Os )= indicates correlated error variance estimates, computed on substan- 
tive grounds. 
’ The second row for each scale shows the proportionally weighted FS regression 
coefficients. 
’ Cronbach’s standardized item alpha. 

260 



TABLE 12.2 
Descriptive Estimates for Five Work Enviornment Scales (N = 3,033) 

Means, Standard Deviations, Variances” -Covariancesb, and 
Correlations” (Raw Scores): 

Mean SD Morale Leadsup Peersup Goalcon Profdev 
Morale 3.356 0.847 0.7180 0.669 0.684 0.766 0.562 
Leadsup 3.478 0.942 0.5337 0.8878 0.581 0.655 0.568 
Peersup 3.619 0.761 0.4410 0.4162 0.5786 0.635 0.579 
Goalcon 3.573 0.727 0.4722 0.4491 0.3511 0.5289 0.555 
Profdev 3.212 0.838 0.3390 0.4488 0.3693 0.3383 0.7021 

Univariate and Multivariate Tests of Normality (Raw Scores): 
Skewness Kurtosis Sk. & Kurtosis 

Est. z-score p Est. z-score p X2 p-value 

Morale -0.379 -4.426 <.OOl -0.260 -2.903 0.002 28.02 <.OOl 
Leadsup -0.501 -4.943 <.OOl -0.211 -2.349 0.009 29.95 <.OOl 
Peersup -0.436 -4.687 <.OOl 0.006 0.092 0.463 21.98 <.OOl 
Goalcon -0.319 -4.115 <.OOl 0.037 0.441 0.329 17.13 <.OOl 
Profdev -0.199 -3.264 0.001 -0.393 -4.404 <.OOl 30.07 <.OOl 
Multivariate 19.020 <.OOl 17.290 <.OOl 660.7 <.OOl 

Means, Standard Deviations, Variancesa -Covariances” and 
Correlations” (Normal Scores): 

Mean SD Morale Leadsup Peersup Goalcon Profdev 
Morale -0.002 0.992 0.9836 0.678 0.700 0.7x9 0.574 
Leadsup -0.004 0.983 0.6611 0.9662 0.604 0.662 0.578 
Peersup -0.002 0.993 0.6878 0.5891 0.9858 0.647 0.586 
Goalcon -0.004 0.990 0.7590 0.6434 0.6354 0.9792 0.561 
Profdev -0.001 0.996 0.5645 0.5663 0.5794 0.5527 0.9923 
(’ Variance estimates, in bold type, on the diagonal. 
” Covariance estimates, in normal type, below the diagonal. 
’ Correlations, in italics, above the diagonal. 



262 ROWE 

EXPLAINING VARIATION 

To explain variation in teachers’ morale scores, several models are fitted to 
the data. For the purpose of evaluating the obtained parameter estimates, 
three models are fitted, namely; (a) multilevel variance components models 
for each of the five composite constructs using iterative generalized least 
squares estimation (IGLS, which is maximum likelihood under normality; 
see Goldstein, 1986; Goldstein & Rasbash, 1992); (b) a multilevel regression 
model, under IGLS with morale as the response variable and the related 
constructs as explanatory variables; and (c) a two-level structural equation 
model using maximum likelihood estimation on the separate teacher-level 
and school-level covariance matrices, simultaneously. To assist presentation 
and interpretation of the results, specifications for the models and their 
solutions are given first, followed by comments. 

MODEL 1: FITTING SIMPLE, TWO-LEVEL, 
VARIANCE COMPONENTS MODELS 

,411 initial step in any explanatory modeling of data is to determine 
the proportion of variance in both response and explanatory variables 
t,hat may be due to the data structure. In the present case, we have 
data for 3,242 teachers clustered in 145 primary and secondary schools. 
Under such circumstances, the fitting of single-level regression models, or 
structural equation models of the LISREL kind, are inappropriate because 
such models assume that there is random variation among teachers, and 
that sample variables, regardless of level, are normal and independently 
distributed (NID). That is, because these models assume single-level data, 
t,heir use can only be justified if t,he intraclass (intragroup) correlation 
estimate (p - Ao) is negligible. If p is substantially different from 
zero, fitting any single-level model not only violates t,he assumptions of 
independence, but gives rise to problems affecting validity of statistical 
conclusions, such as misestimated parameters and their standard errors, 
and an increased likelihood of generating Type I errors. 

Thus, to determine the proportion of variance in each of the teacher 
work environment scales clue to between-school differences, simple two-level 
variance components (VC) models are fitted. Using the subscript, i to refer 
to the> teacher and the subscript j for the school, this model may be written 
as : 

Yij = B&o) + boj + Gj), (12.5) 

where, yig is the morale score (for example) for teacher i in school d, do, 
is t,he mean morale score for teachers in the sample of schools (intercept). 
The (X0) term is a vector of unities that operate as indicators to define 
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the data structure, uoj is a residual that varies randomly between schools, 
and eij is a random variable (assumed to have a mean of zero) representing 
the sum of all other influences on y+. The term poj constitutes the fixed 
part of the model; uoj and eij form the random part of the model. The 
distribution assumptions for the random coefficients are: 

UOj - NID(0, ouo2), where alLo is the variance of the level-2 
(school) residuals uoj, 

ezj - NID(0, gp2), that is, ae2 is the variance of the level-l (teacher) 
residuals e,j, 

uO~ and eij are normal and independent (NID) , 

and the intraschool correlation is given by p = ~,02/(~,02 + 0,‘). This 
csorrelation provides an estimate of the proportion of the total variance 
in teachers’ morale scores that is due to variation between schools. To 
determine the extent to which schools differ in their mean levels of morale, 
the ratio of the eUo2 estimate to its standard error [.&(~,,,“)] can be 
referred to the usual Gaussian distribution (t-value). The upper section 
of Table 12.3 summarizes the results of fitting VC models to each of 
the variables of interest and the lower section of Table 12.3 provides 
the same estimates adjusted for the effect of teacher type (TTYPE) and 
teacher gender (TSEX). To fit these models, we used the multilevel analysis 
program MLwiN (Rasbash et al., 2000b). It should be noted that previous 
MANOVA analyses of these data indicated that the interaction effect’ of 
TTYPE and TSEX was not8 significant (Rowe, 1995). 

COMMENT 

From Table 12.3, the significant fixed effect of TTYPE on each of the 
c*omposite variables indicates that teachers in elementary schools have more 
positive perceptions of their work environments than their counterparts in 
secondary schools. Of special interest from the random parts of the models 
is that the proportion of between-school residual variance for each of the 
variables is statistically significant. That is, the ratio of the parameter 
&imat,es to their respective standard errors are all greater than 1.96 
(i.r>., t!he critical t-value under the normal distribution at the p < 0.05 
(1 level), indicat,ing that teachers’ perceptions of their work environments 
are significantly influenced by the contexts (schools) in which they work. 
Again, it is important to stress that under such circumstances, multilevel 
analyses are essential if correct statistical and substantive conclusions are 
to be drawn from any subsequent explanatory modeling procedures. 



TABLE 12.3 
Variance Components for Five Variables Showing Proportions of 

Between-Schools and Within-Teachers Residual Variance: Parameter Estimates 
and Standard Errors in Parentheses (3,033 Teachers in 145 Schools)” 

Base Variance Components Models 

Response Fixed Random Residual Variance 
Variables Sch. Intercepts Between-Schools Within Teachers Total 

poj (SJ3 OUO 2 (SE) % ae2 (SE) % 2 
Morale 0.179 (.052) 0.336 (.046) 34.2 0.647 (.017) 65.8 0:‘&3 
Leadsup 0.154 (.047) 0.259 (.037) 25.8 0.743 (.020) 74.2 1.002 
Peersup 0.134 (.045) 0.239 (.035) 23.3 0.787 (.021) 76.7 1.026 
Goalcon 0.167 (0.46) 0.251 (.036) 25.6 0.730 (.019) 74.4 0.981 
Profdev 0.168 (045) 0.232 (.034) 23.4 0.761 (.020) 76.6 0.993 

Fixed 
Variable Sch. Intcpt TTYPe TSex 

PO, (SE) Pl (SW Pa (SE) 
Morale’ -.17 (.070) 0.60 (.079) -0.07 (.033) 
Leadsup -.lO (.OSS) 0.48 (.041) -0.09 (.035) 
Peersup -.23 (.064) 0.49 (.034) 0.06 (.036)* 
Goalcon -.20 (.062) 0.55 (.031) 0.07 (.035)’ 
Profdev -.27 (.057) 0.59 (.037) 0.07 (.035)’ 

Random (Residual Variance) 
Variable Between Schools Within Teachers 

Morale’ 
GIL0 

2 
(SE) % G2 (SE) % 

0.23 (.033) 26.3 0.65 (.017) 73.7 
Leadsup 0.20 (.029) 21.1 0.74 (.020) 78.9 
Peersup 0.16 (.025) 16.8 0.79 (.021) 83.2 
Goalcon 0.15 (.024) 17.0 0.73 (.019) 83.0 
Profdev 0.12 (.020) 13.3 0.76 (.020) 86.7 
” Sample size with complete data and 2 5 teachers within each school. 
’ The log likelihood deviance estimate [-2*log(lh)] for the fitted model for morale 
= 7609.9. 
* Not statistically significant at the p < 0.05 level by univariate two-tailed test. 
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MODEL 2: FITTING A CONDITIONAL, 
MULTILEVEL REGRESSION MODEL 

To estimate the proportion of variance in morale due to the effects of 
the related variables of interest and allowing for the structure of the data, 
a conditional multilevel regression model was fitted to the total teacher 
data. For this model, morale (Yij) for teacher i in school j was used as 
the response variable, and TSEX (X,,j), TTYPE (X,,j), leadsup (Xs,j), 
peersup (XJ,~), goalcon (X,,j), and profdev (X,,j) were fitted as level-l 
explanatory variables. For school j, a linear relationship between these 
variables can be written as: 

yij = pOj(XO) + Pljxlij + BzjXZij + bsjX3i.j 

+ 84jx4ij + p5jx5ij + b6jxSij + UOj + eij (12.6) 

It should be noted that estimation of the variance in y;lj given by 
Equation 12.6 is conditional on the linear combination of the fitted 
explanatory variables (Xs). Suppose, say, that the scale for each of X3, X4, 
X5, and X6 is chosen so that 0 (zero) represents average leadsup, peersup, 
and so forth. The intercept Poj in this within-school relationship is the 
average change in morale (Yij) for each unit of change in the six explanatory 
variables (Xl, X2, X3, X4, X5, and X6) jointly. For notational consistency, 
t)he intercept is written as X0 ( = 1). The residual term uoj varies randomly 
between schools and eij is also a random variable - assumed to have a 
mean of zero - that represents the sum of all level-l (teacher) influences 
on Yij, other than those of the fitted explanatory variables. Because Boj, 
!3lj) Pzj, P3j 7 P$j 7 Psj, and b6j in general can and do vary across schools, 
these coefficients are treated as random variables at level 2 (school). 

For illustrative purposes, say we also wish to estimate the effect of 
school average goal congruence, over and above its effect at the individual 
teacher level goalcon (X,ij). We can do this by fitting avgoal (Zlj) as a 
contextual variable where each teacher within a given school is assigned 
their respective within-school mean score for goal congruence. Thus, a 
between-school model for Boj and Plj (say) in terms of Z,j can be written 
X5: 

BOj = PO + POlzlj +uOj- (12.7) 

The coefficient PO is the mean morale for average scores on X3, X4, 
X5 and X6 in schools for which Zlj (avgoal) = 0, and PO1 is the average 
effect of Zlj on mean morale for teachers experiencing average leadsup 
(Xsij), peersup (Xdij), goalcon (Xsij), and profdev (x6ij). In general, yol 
represents the rate of change of the group mean of the response variable 
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r/ij with Zlj. Likewise, PO1 is the average effect of X3, X4, X5, and X6 
on morale (Yij) in schools with high avgoal (Z,,), and ylz is the average 
increment to this slope attributable to differences in Z,j. The random 
variables uoj and UI~ represent the influences on the ,0’s not accounted 
for by Z,j. Note, however, that unless our research questions specify such 
analyses, we are not required to model both poj and plj as functions of 
Z,j. For the purposes of this chapter, the simpler two-level model is fitted: 

yij = BOj(xO) + BljXlij + PzjX2ij + P3jX3ij 

+ D4jX4i.i + PsjXSij + /J,jXsij + 701 Zlj + ‘Uoj + eij. (12.8) 

From this model, we are interested in estimating the magnitude of the 
effect of school average goal congruence, (avgoal, Zlj), over and above that 
which operates at the individual teacher level, namely, goalcon (X5,,). 

The parameter estimates (p’s, y, uoj, and eij) for the solution to the 
multilevel regression model specified by Equation 12.8, under iterative 
generalized least squares (IGLS) estimation, are given in Table 12.4. For 
comparative purposes, the ordinary least, squares (OLS) estimates are also 
provided. It is important to note, however, that the OLS solution to 
the teacher-level regression model given in Table 12.4, like all single-level 
outcomes of fitting the general linear model, provides only for random 
variation between teachers (level-l units). That is, the grouping of teachers 
into schools is ignored (it! is assumed that uoj does not exist, or that its 
vasiance (T,~ ’ - 0 and the data are treated as a single sample of Cn, - ) 
observations on the Y, X, and 2 variables (see Draper & Smith, 1981: 
Mardia, Kent, & Bibby, 1979; Rowe, 1989). 
Comment 

The results presented Table 12.4 indicate that the seven explanatory 
variables accounted for approximately 71% of the variance in morale. The 
log-likelihood statistic for the model was -2log(lh) = 4,568.0, indicating 
a significant reduction in deviance units (p < 0.0001) from the base 
variance components model given in Table 12.3 (i.e., 7,609.g) due to the 
fitted variables. Peer support, (peersup) and goal congruence (goalcon) 
constit,ut,ed the major explanatory variables at the teacher level, and school 
average goal congruence (avgoal) had a large and significant effect on 
accounting for variation in morale, over and above that at the individual 
teacher level. 

A comparison of the multilevel (IGLS) and ordinary least squares (OLS) 
parameter estimates given in Ta.ble 12.4 indicate similar magnitudes at the 
teacher level (as expected), but the OLS estimate for avgoal is artificially 
inflated over the IGLS estimate (yloLs = 0.326, cf. ylzc~~s = 0.249), and 



TABLE 12.4 
Variation in 3,033 Teachers’ Morale Scores in 145 Schools, Showing 

Unstandardized and Standardized IGLS and OLS Solutions; Fitted Estimates 
With Standard Errors in Parentheses 

Explanatory Multilevel Model Single-Level Model 
Variables IGLS Standardized OLS Standardized 

Est. (SE) Estimate Est. (SE) Estimate 
Fixed: 
Constant (p,, X0): 0.028 (.034) -0.099 0.061 (.019)* -0.001 
Teacher Level: 
XI TTyw (PI) 0.060 (.044) 0.031 0.011 (.025) 0.008 
-Yz TSex (pZ) -0.098 (.020) -0.050 -0.098 (.021) -0.050 
AYs Leadsup (p3) 0.187 (.015) 0.188 0.185 (.014) 0.188 
X.1 Peersup (p4) 0.253 (.014) 0.248 0.252 (.014) 0.248 
X5 Goalcon (0,) 0.373 (.015) 0.369 0.375 (.015) 0.370 
Xc Profdev (/3s) 0.044 (.013) 0.041 0.044 (.013) 0.040 
School Level: 
21 Avgoal (rI> 0.249 (.043) 0.041 0.326 (.025) 0.182 
Random: 
CT;, (Var of Sch. 0.038 (.006) 
Intercepts) 
0% (Teacher-level 0.249 (.007) 
Variance) 
%I of Variance 70.8 71.0 
explained” : 
-2log(lh) 4568.0 
” This is calculated from the difference between the total number of units of 
variation for morale from the variance components model (as given in Table 12.3; 
that is, 0.336 + 0.647 = 0.983) and the sum of the residual school and teacher-level 
variance, from the fitted multilevel regression model above (i.e., O-038+ 0.249), 
divided by 0.983. That is, [(0.983-0.287)/0.983] x 100 = 70.8 per cent. 
* Statistically significant beyond the p <0.05 Q level by univariate two-tailed test; 
that is, the parameter estimate is greater than twice its standard error. 
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its standard error is almost half of that obtained from the IGLS solution 
(i.e., 0.025 and 0.043, respectively). It should be noted that the shortened 
confidence intervals for avgoal from the OLS solution could lead to the 
mistaken conclusion that avgoal has greater explanatory power than it 
actually has. In instances where the parameter estimates for such higher 
level variables have borderline significance from fitting single-level models. 
Type I errors are frequent, and the related statistical conclusion validity 
becomes particularly problematic (Aitkin, Anderson, & Hinde, 1981; Rowe. 
1992). 

STRENGTHS AND LIMITATIONS OF 
MULTILEVEL AND 

STRUCTURAL EQUATION MODELS 

The results of fitting conditional multilevel regression models of the 
kind illustrated by Equations 12.7 through 12.12 and summarized in Table 
12.4, however, do not provide information about the magnitude of the 
interdependent effects among the constructs. Although it is possible to 
include interaction terms as fixed effects in models of the kind specified 
by Equation 12.8, for example, researchers typically confine their modeling 
applications to the specification of a limited number of response variables 
(usually only one) as has been done so far here. Moreover, because the 
multilevel models fitted here are mere extensions of the general linear model 
(Y = /3X + E), which specifies Y (response or dependent variable) to 
be a simple linear sum of the effects (,Q of the fitted explanatory (or 
independent) variables (X), they make no allowance for examining the 
structure of the covariance matrix (C) among the X and Y variables. Under 
such circumstances, it is not possible to estimate jointly the direct, indirect, 
and total effects operating among the X and Y variables. Nevertheless, it is 
possible to estimate such effects simultaneously within a structural equation 
modeling framework. 

Fitting unconditional structural equation models (SEMs) has two key 
advantages. First, they provide a means of estimating the magnitude of 
direct, indirect, and total effects among variables jointly. Second, they 
can account for measurement error in both the observed and the latent 
variables. However, there are major limitations and disadvantages when 
t,he data are multilevel or hierarchically structured as we have here. The 
use of SEM approaches assumes that the sample variables, regardless of 
level, are independently distributed in a multivariate population. That 
is, unconditional SEM models assume single-level data and can only 
be fitted justifiably if the intraclass (intragroup) correlations (p - rho) 
are not significantly different from zero. If the p’s are significantly 
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different from zero, fitting any single-level model not only violates the 
assumptions of independence but also gives rise to several problems 
affecting statistical conclusion validity, including misestimated parameters 
and their standard errors, with important ramifications for the substantive 
interpretation of findings. Short of applying procedures for purging 
computed variance-covariance matrices of the assumptions of independence 
(demonstrated here), there is no simple adjustment of the structural 
modeling framework that can be made in order to deal with nonindependent 
observations in hierarchically structured data (Cuttance, 1987, chap. 13). 

Although it is possible to  model a few groups separately in a multisample 
analysis, such an approach becomes intractable with more than a small 
number of groups (i.e., a maximum of 10 in LISREL 8; Joreskog & Sorbom, 
2000a). In the present case, we have data from more than 3000 teachers 
that  are clustered within 145 schools. In the event that solutions were 
possible, the outputs from multiple-group analyses of this magnitude using 
SEM or MANOVA, for example, would be uninterpretable! Further, the 
crucial drawback of fitting single-level SEM models to multilevel data is 
t,liat they do not allow for reliable modeling of substantive relationships 
across levels (e.g., school effects on teachers, or vice versa). Moreover, such 
models typically lack power due to  the smaller number of observations in 
the higher level units. 

Estimating the variance-covariance matrices at each level 

To illustrate one approach to  solving the above-mentioned problem, 
a multivariate, multilevel model was fitted to  the five composite 
work environment variables to  estimate the variance-covariance matrices 
(adjusted for TTYPE and TSEX) for the school and teacher levels. 
Following procedures outlined and suggested by several authors (du Toit 
lk du Toit, 1999; Goldstein, 1995, chap. 4; McDonald & Goldstein, 
1989; M u t h h ,  1994; Raudenbush, 1995), the purpose of this approach 
was to  partition the variances and covariances among the five composites 
into separate school- and teacher-level variance-covariance matrices, as a 
prelude to  fitting an explanatory two-level (teacher and school) structural 
equation model. 

To define the five-variate multivariate model for our present case, schools 
were treated as level-3 units, individual teachers as level-2 units, and the 
within-teacher measurements on the five composite variables as level-1 
units. It should be noted that in this case, level-1 variation is not specified 
because (‘ ... level 1 exists solely to define the multivariate structure” 
(Goldstein, 1995, p. 70). This yielded 15,165 measurements (i.e., 3,033 x 
5 variables) clustered with 3,033 teachers and 145 schools. Thus, teachers’ 
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scores on the five composite variables (yijk) may be written as in Equation 
12.9 where the variables (yi) are regarded as the level-l structure, grouped 
within teachers (j - level 2), with teachers grouped within schools (Ic -- 
level 3): 

Yijk = (&‘jkxljk + &#bjk) + /&jkylijk 

+ 82jkY2ijk + PQjkY3ijk + P4jkY4ijk + @5jky!jijk, (12.9) 

in which ?jlijk, yzijk, . . . y5ijk are the dummy indicators (0, 1) of the scores 
on each of the five variables for teacher j in school /c; zljk and x2jk are 
dummy explanatory variables for TTYPE (1 = primary; 0 = secondary), 
and TSEX (1 = female; 0 = male), respectively; and PTjk is the coefficient8 
for the fixed effect of TTYPE, PCjk is the corresponding coefficient for the 
effect of TSEX. PI, Pa, . . . ps are fixed parameters defining the adjusted 
means (intercepts) of the five variables over all schools. 

The set of five equations for the intercepts that model variation around 
the means (PI, pa, . . . ps) of the five composite response variables (morale, 
. . . profdev) adjusted for the effects of the fixed explanatory variables 
TTYPE (“crjk) and TSEX (x2jk) may be written as: 

yljk = @1 + ulk + uljk 

BZjk = Pa f %?k + u2jk 

B3jk: = P3 + V3k + u3jk 

p4j.k = @4 + v4k + u’4jk 

/15jk = P5 + v5k + ‘ZL5jk. (12.10) 

ill which 2/lk, v2k . . . ?&k are the random terms required to estimate the 
residual variation at the school level (level 3), and uljk, u2jk, . . . u5jk are 
the random terms from which estimates of the residual variation at the 
teacher level (level 2) may be obtained. 

Of particular interest in our present case, Vrk, VZk, . . .v51, are the 
residuals representing the unique contribution of the schools (Ic) above 
that explained by their means (/?s), and uljk, U‘Jjk , . . . u5jk are residual 
terms representing the unique contribution of teacher j in school k. These 
equations may be estimated jointly to obtain estimates of the variances and 
covariances among the five variables (adjusted for TTYPE and TSEX ) at 
the school level and at the teacher level, as well as their intercorrelations. 
Note that the level-2 and level-3 residual variances and covariances 
among the five work environment variables are the between-teacher and 
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between-school variances, respectively - purged of the effects of TTYPE 
and TSEX. 

These variances and covariances among the residual terms at the school 
level (&) and at the teacher level (at,) may be written (in lower triangular 
matrix format) for the random part of the model, as: 

o,11 
2 

gv21 u,,223 

02, = 0~31 0,132 ov332 

ov41 0~42 (TV43 Ov44 
2 

gv51 0~52 f7v53 Qv54 (TV55 
2 

(12.11) 

u 2 
IL11 

au21 au22 
2 

0,~ = 0~131 02~32 ou332 (12.12) 

~u41 0~42 OIL43 (-Tu44 
2 

ou51 0~52 gu53 Qu54 Ou55 
2 

. 

Note again the distributional assumptions for z’lk, 2)2k, . . . u5k N 
N(0, &,), and for uljk, uz.jk, . . . u5jk N N(0, 0,). Specific details of 
multivariate multilevel model specifications and related applications are 
given by Goldstein (1995), Rasbash et al. (2000a), and Woodhouse (1996). 

The results of partitioning the relevant variance-covariance and 
product-moment inter correlation estimates into their between-school and 
within-teacher components are given in Table 12.5. Specific details of 
t,he relevant MLn/MLwiN macro and output is available from the author, 
together with the equivalent batch file for processing by PRELIS 2.30. 

Comment 

The results in Table 12.5 raise several points. First, consistent with the 
earlier results from fitting the variance components models for each of the 
five composites (see Table 12.3), the findings related to the fixed parameters 
indicate that the overall effect of TTYPE was significant but TSEX was 
not. That is, independent of Teacher Gender, teachers in elementary scl~ools 
indicated significantly more positive perceptions of their work environments 
than their counterparts in secondary schools. 

Second, from the random part of the model, note that the magnitudes 
of the variance-covariance estimates at the teacher level are consistently 



TABLE 12.5 
Summary of Results From Fitting Three-Level Multivariate Model: Parameter 
Estimates (and Standard Errors) for Fixed Part, Lower Triangular Matrices of 

Residual Variance-Covariance Estimates at the School Level and at the Teacher 
Level (in Bold)” for 3,033 Teachers in 145 Schools” 

Fixed Parameters Estimates(SE) 
Teacher Type (TTYPE) 0.517 (.058)* 
Teacher Gender (TSEX) 0.009 (.028) 
Random: 
Composite 
Morale 

Leadsup 

Peersup 

Goalcon 

Profdev 

Morale Leadsup Peersup Goalcon Profdev 
0.2307 0.694 0.801 0.921 0.688 

0.6471 0.642 0.651 0.705 0.500 
0.1456 0.1909 0.562 0.678 0.486 
0.4456 0.7443 0.585 0.625 0.567 
0.1500 0.0957 0.1520 0.811 0.700 
0.4652 0.4481 0.7892 0.583 0.525 
0.1714 0.1148 0.1225 0.1502 0.677 
0.4852 0.4815 0.4426 0.7315 0.490 
0.1162 0.0746 0.0959 0.0922 0.1235 
0.3515 0.4274 0.4077 0.3661 0.7629 

Note: Correlation estimates (in italics) are given above the diagonal. Correlations 
at the teacher-level are in bold italics and those at the school level are in normal 
italics. 
a Residual variance estimates are given on the diagonal and covariances below 
the diagonal. Teacher-level variance and covariance estimates are presented in 
bold type, and school-level convariances in normal type. 
’ Sample size with complete data and 2 5 teachers within each school. 

373 
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larger than those at the school level. This finding is also commensurate 
with the results obtained from the fitted variance components models for 
each of the composite constructs given in Table 12.3. Third, the lack of 
systematic variation in the magnitudes of the product-moment correlation 
estimates at the teacher and school levels should be noted. 

Fourth, the data shown in Table 12.5 raise the crucial question of what 
covariance matrices should be analyzed. If the research questions relate 
to teachers, then the teacher-level matrices should be analyzed if correct 
parameter estimates, standard errors, and model-fit statistics are to be 
obtained. A similar point is relevant if research questions are focused on 
relationships at the school level. Finally, and above all, the data presented 
in Table 12.5 underscore the point that fitting structural equation models 
to omnibus correlation or variance-covariance matrices that have not been 
adjusted for the inherent hierarchical structure of the data increases the 
risk of yielding misleading results at best, and meaningless results at worst. 

MODEL 3: FITTING A MULTILEVEL 
STRUCTURAL EQUATION MODEL 

From the literature related to teacher stress and quality of work life 
(e.g., Brenner, Sgrbom, & Wallius, 1985; Cooper & Payne, 1992; Hart 
et al., 2000; Kyriacou & Pratt, 1985; McCormick & Solman, 1992), the 
proposed recursive model shown in Fig. 12.2 was tested simultaneously for 
fit, to the data at the teacher- and school-levels. 

This unconditional model posits significant direct effects on teachers’ 
morale (morale) from leadership support (leadsup), peer support (peersup), 
and goal congruence (goalcon), and indirect effects from professional 
development (profdev), mediated by profdev, peersup, and goalcon. 
Moreover, there are indirect effects from goalcon on morale, mediated by 
peersup. In testing the data/model fit for the teacher and school levels, 
the LISREL method for submodel 3b can be used (see Jijreskog & Sgrbom, 
1989, pp.189-190). This is the most general of all covariance structure 
models. Its notable feature is that it contains only y (observed) and 11 
(latent) variables. In the two-level case, the structural relations among the 
latent or composite variables (q) for teacher i in school j, may be written 
its: 

~ij = Bijqij + Cij (12.13) 

where Bij is the matrix of effect relationships among the composite 
constructs (rlij) at the teacher level (i) and at the school level (j); ~ij 
is the vector of prediction residuals in the structural equations at the two 
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r 1 ij 

FIG. 12.2. Recursive, two-level SEM for teachers’ morale. 

levels, and !Pij is the 
single-level situation, 
is given by: 

variance-covariances among the Cij ‘s. In the typical 
the measurement model for the observed yi variables 

yi = A& - B$‘& + Ei (12.14) 

where A,i is a matrix of factor coefficient loadings of yi on vi, and pi is a 
vector of measurement errors for the yi variables. The covariance matrix 
of y/i is written as: 

ci = A,& - BJ’QJ& - B;)-lA;i + c&i (12.15) 

where !Pi is the variance-covariances among the ci’s, and O,i is the 
covariances among the .zi’s. 

In the present case, however, the yi variables are composites such that 
y, and Q are declared to be equivalent (i.e., yi 5 vi). Moreover, for the 
two-level case, ye E qij, where the parameters from the measurement, 
model in Equations 12.14 and 12.15, namely A,i and 0,i at the teacher 
level, were constrained to be invariant at the school level (i.e., A,j z 
A+, and O,j E O,i). Such an approach is important to ensure that 
the composite constructs have equivalent meanings and interpretations at 
the two levels. 
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There are several advantages of using the sub-model described by 
Equation 12.13. First, it may be preferred because it has only two 
parameter matrices to be estimated, namely, &j, and 9ij. Of greater 
importance, there are strong substantive grounds for treating both 
observed (y) and latent variables (q) as endogenous. Influenced by recent 
developments in chaos theory, there is a growing body of opinion from 
within modern systems theory (Simon, 1993) suggesting that all elements 
within psychosocial systems are endogenous, including a person’s gender, 
socioeconomic status, and so on. In fact, psychosocial theorists and 
researchers are finding increasing difficulty in justifying the nomination 
of certain variables as independent or exogenous. Besides, once either an 
observed (z) or composite variable (I,) has been declared as independent or 
(‘xogenous, one can neither estimate the regression effects among them, nor 
estimate path coefficients from endogenous (1)) to exogenous (cc) constructs 
-- - by definition ! For substantive research applications in the use of such 

models, see Rowe and Rowe (1992a, 199213, 1999). 
Under a maximum likelihood method of estimation, the model shown in 

Fig. 12.2, and specified by Equation 12.13, was fitted simultaneously to the 
school- and teacher-level variance-covariance matrices given in Table 12.5. 
The values of A, and 0, for each composite construct were fixed to be 
those obtained from fitting the relevant one-factor congeneric measurement 
models for the total teacher sample, specified by Equations 12.1 and 12.3 
and tabulated in the labeled columns of Table 12.1. The relevant LISREL 
8.30 input file is available from the author. 

To assist< interpretation of the obtained parameter estimates from the 
fitted model, the completely standardized solution is presented in Fig. 12.3. 
with the school-level estimates in normal type and those for the teacher-level 
in bold type. For completeness, the standardized direct, indirect, and total 
effect, estimates at the school and teacher levels, are presented in Table 12.6. 
From Fig. 12.3, all parameter estimates with one exception are statistically 
significant by univariate two-tailed tests. In the interests of conserving 
space, further details regarding the solution to this model may be obtained 
by requesting the relevant LISREL file available from the author. 

Comment 

The solution to Model 3 (fitted simultaneously at the school and teacher 
levels) summarized in Fig. 12.3 and Table 12.6 indicate that the obtained 
goodness-of-fit indices of the model to the data are excellent. A substantive 
interpretation of the solution suggests at least two notable features of the 
fitted multilevel, structural equation model. First, the direct effects of 
goal congruence (goalcon) on morale (morale) and peer support (peersup), 
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Model Goodness-of-fit Indices: x2(2) = 3.351,~ = 0.187 
RMSEA x0.020; SRMR= 0.010 
GFI= 0.991; PNFI=O.lOO 
NFI= 1.00; CFI= 1.00 
IFi= 1.00; RF1 =0.996 

FIG. 12.3. Common metric completely standardized solution to fitted 
multilevel, structural equation model for morale, showing direct effects and 
residual variances at the school level (normal type) and teacher level (bold 
type) 
Nate: All recorded path coefficients (except those indicated by *) are 
significant beyond the p < 0.05 0 level, by univariate two-tailed tests. 
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TABLE 12.6 
Solution to Fitted Multilevel Structural Equation Model Showing Standardized 

Direct, Indirect, and Total Effects at the School Level (above) and Teacher 
Level (below) 

Leadership Support on 
Morale 

Peer support 

Goal congruence 

Professional development 

Direct Effect Indirect Effect Total Effects 

.125 .569 .694 

.161 .569 .730 
.009* .553 .562 
.227 .429 .656 
.457 .221 .678 
.591 .130 .721 
.486 - .486 
.643 - .643 

Peer Support on 
Morale 

Direct Effect 
.155 
.288 

Indirect Eflect Total E$ects 
- .155 
- .288 

Goal Congruence on 
Morale 

Peer support 

Direct EJec t 
.710 
.526 
.616 
.382 

Indirect Effect 
.096 
,110 

- 
- 

Total E$ects 
8.06 
.636 
.616 
.382 

Prof ‘1 Development on Direct Effect Indirect Eflec t Total Effects 
Morale - .410 .410 

- .197 .197 
Peer support .279 .280 .559 

.239 .077 .316 
Goal congruence .455 - .455 

.202 - .202 
* Not statistically significant at the p < 0.05 Q level by univariate two-tailed test. 
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and professional development (profdev) on peer support (peersup) and goal 
congruence (goalcon) are notably stronger at the school level than at the 
teacher level. In fact, at the school level, the magnitudes of the total 
effect estimates of professional development (profdev) on morale and goal 
congruence are more than twice those at the teacher level. Second, the 
salient feature of the solution is that valuable information at both the 
teacher and school levels can be obtained by accounting for the hierarchical 
structure of the data. Furthermore, the evidence from the index of the root 
mean square error of approximation (RMSEA) suggest a high likelihood in 
t,he stability of these interdependent effects in accounting for variation in 
teachers’ morale across additional samples of teachers drawn from similar 
populations. 

CONCLUDING COMMENTS 

Using a hierarchically structured data set designed to explain variation 
in teachers’ cognitive/affective constructions of their roles and perceptions 
of their work environments, the key purpose of this chapter is to draw 
attention to the importance of accounting for the measurement and 
distributional characteristics of data typically obtained in psychosocial/ 
organizational psychological research, and especially their inherent 
hierarchical structure. Consistent with this aim, the chapter demonstrates 
the utility of fitting one-factor congeneric measurement models to obtain 
maximally reliable latent constructs (or composite variables). Following 
an examination of their distributional properties, the chapter illustrates 
how such compositjes may be used in fitting both single-level and multilevel 
structural equation models to explain variation in response and explanatory 
variables of interest. 

Given the fundamental and enduring contribution of psychosocial 
inquiry that variations in human cognition, affect, and behavior contribute 
to and, in turn, are influenced by organizational/contextual factors, 
it is inappropriate that empirical researchers in the field continue to 
apply single-level data-analytic methodologies that fail to account for 
the inherent clustered or hierarchical structure of the data typically 
obtained. In so doing, substantively important information related to 
human functioning within social and organizational contexts is not only 
being denied explication but is being ignored. Moreover, in the absenccl 
of the application of analytic methods capable of modeling the structural 
characteristics of t,he data, claims to knowledge are at best tentative and 
at, worst spurious. 
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Design Issues in Multilevel Studies 
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Statistical techniques for the analysis of nested data structures are 
increasing in popularity (Bryk & Raudenbush, 1992; Goldstein, 1995; Kreft 
5i de Leeuw, 1998; Little, Schnabel, & Baumert, 2000). These techniques, 
which we refer to as multilevel modeling (MLM), have been proposed as 
a general data-analytic strategy for the exploration of longitudinal data, 
the effects of community-based interventions, the outcomes of clinical 
trials, effect sizes in meta-analysis, school effectiveness research, and family 
process or couples research. 

The current popularity of MLM strategies derives in part from 
their ability to overcome the limitations of traditional approaches (e.g., 
mixed-effects ANOVA) used in the analysis of nested data structures 
(Searle, 1987; Zucker, 1990). Although statistical and computational 
advances in MLM are occurring rapidly (see, for example, the chapters in 
the present volume), limited attention has been paid to the many complex 
design issues that are inherent in multilevel studies. The goal of this chapter 
is to raise and discuss several of these design issues. 

The following discussion is divided into three sections. In the first, we 
examine sample design issues in multilevel studies. Here we emphasize 
t!he importance of representative sampling and how the choice of sampling 
plan depends on the study purpose. We also discuss optimal design, the 
choice of estimand (house vs. senate model), and cohort versus repeated 
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cross-sectional sampling in longitudinal studies. In the second section, 
we examine experimental design issues. These topics include the level of 
randomization, split plot designs, and factorial designs. Finally, in t,he third 
section, we discuss the estimation of power. 

SAMPLE DESIGN FOR MULTILEVEL STUDIES 

Multilevel studies impose important challenges in the sample design. Most 
multilevel studies are multi-stage in nature: We sample school districts, 
then sample schools within the sampled school districts, then sample 
classrooms within the sampled schools, then sample students within the 
sampled classrooms. In order to make valid inference about the target 
populations of interest - all school districts in the United States, all public 
~~l~oo1~, all classrooms, all students, the sample needs to be designed and 
recruited meticulously to guarantee appropriate representation at all levels. 

We strongly urge investigators conducting multilevel studies to use the 
I)& efforts possible to obtain representative samples at all levels in order 
to maximize the validity of the findings. For an example of such a study. 
we refer readers to Frankel et al. (1999) for a description of the HIV cost 
and services utilization study, a three-level study with HIV patients in care 
nested in providers, and providers nested in geographical locales, to provide 
a nationally representative sample of those patients. 

It, is understandable that rigorous probability sampling might be 
impractical or prohibitively costly for many multilevel studies, therefore the 
investigator might need to resort to a less representative sampling method 
such as yuota sampling or convenience sampling. We urge the investigators 
for those studies to clarify the sampling method used, and to discuss the 
implications on the external validity of the study. 

The appropriate sample design depends on the purpose of the study. 
Although we made a general recommendation that investigators should 
make an effort to obtain a representative sample at all levels, there are 
exceptions to this recommendation for multilevel studies focused on the 
group level. Consider, for example, a two-level study of patients nested 
in providers. If t<he focus of the study is on patient outcomes, we should 
attempt to obt)ain a representative sample on both the provider level and the 
paCent’ level. If the focus of the st8udy is on providers’ skill, t,he role of the 
patients might, be analogous to test items in a skill test. More specifically, 
the patlients’ outcomes are used as gauges for their providers’ skills. For this 
type of study, it would still be important to obtain a representative sample 
of providers, but it might be more appropriate to take a “standardized 
sample” of patients across providers with similar compositions in terms 
of patient characteristics, analogous to the use of standardized tests. For 
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example, if one provider usually sees patients with less severe conditions, 
the average outcomes for his patients might overstate his skill. Instead, we 
should oversample his patients with more severe conditions, so that he is 
compared to other providers on more comparable “test items” .I 

SAMPLE ALLOCATION ACROSS LEVELS 

An important decision in designing multilevel studies is how to allocate 
the sample across levels: Should we take more schools and fewer students 
in each sampled school, or vice versa? We need to balance between 
two counterbalancing factors. On the one hand, the possible presence of 
intracluster correlation usually indicates that for the same total sample 
size of individuals, it is better to spread them across as many groups as 
possible to reduce the design effect due to clustering. In other words, we 
should use small cluster sizes. On the other hand, for the same total sample 
size of individuals, the cost of the study usually increases with the number 
of groups: There is usually some cost to recruit each school and obtain 
school-level measures, in addition to the cost to recruit and measure the 
students. Therefore, it is better to use large cluster sizes, to take as many 
st,udents as possible in the same school to spread out the school level costs. 
The challenge to the multilevel study is therefore how to balance between 
the two opposing forces. 

Snijders and Bosker (1993) provided equations for computing the 
optimal number of groups and subjects within groups to achieve desired 
st,andard errors for t,he subject- and group-level coefficients in MLM. For 
a two-level study, let us assume that the study cost is linear in both the 
number of groups, k, and the number individuals per group, n, 

TotalCost = k * (cg + c, * VL), (13.1) 

where cg denotes the cost, for recruiting each group, and cs denotes the cost 
for recruiting each individual subject after having recruited the group. We 
need to determine the optimal cluster size, n, and the optimal number of 
groups, I;. 

The optimal sample allocation for estimating the population mean is 
achieved by setting the cluster size as 

‘The heterogeneity in patient composition can be handled through case mix adjust- 
m(Jnt, such as the use of standardized mortality rate that adjusts the mortality rate by 
patient age, gender, and maybe other demographic characteristics. This is necessary 
when the sample of patients available from each provider is not standardized. The use 
of a standardized sample of patients can reduce or eliminate the need to adjust for case 
mix in the analysis stage, and can also improve the precision and power for the analysis. 
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n(optima1) = J 
((1 - d/P> 

kIIcs> ’ 
(13.2) 

where p denotes the intracluster correlation coefficient (Cochran, 1977; 
Snijders & Bosker, 1993). The optimal cluster size given in Equation 13.2 
is optimal in the sense of minimizing the standard error for the estimated 
population mean under a fixed total cost; it is also optimal in the sense 
of minimizing the total cost under the constraint of a fixed, prespecified 
standard error. 

The optimal group size in Equation 13.2 does not depend on the number 
of groups, Ic, thus the two components of the design (n and k) can be 
determined separately. This is a convenient feature for planning a study. 
The investigator can first assess the optimal group size (assuming that he 
has data or prior knowledge to assess the relative cost ratio cs/cs, and the 
intraclass correlation p), then conduct power calculations to determine the 
number of groups. 

It should be noted, though, that Equation 13.2 depends on the 
assumption in Equation 13.1 that the cost per group and the cost 
per subject are both constant. If those assumptions are not met, the 
optimal group size might vary with the number of groups. This makes 
it more difficult to design the study, such as to conduct the power 
calculations if both the number of groups and the group size need to be 
considered simultaneously. Furthermore, Equation 13.2 also assumes that, 
the intracluster correlation coefficient stays constant across groups. For 
intervention studies, one of the by-products of the intervention might be to 
increase the similarity of subjects within groups in the treatment condition 
relative to controls, thus the intracluster correlation coefficient might differ 
across groups, further complicating the design of the study. 

R,audenbush (1997) considered the effects of subject-level covariates in 
the context of optimal design in MLM contexts. As he pointed out, optimal 
designs for clustered sampling depend on the intraclass correlation, and the 
cost] of sampling at the various levels (see Equation 13.1). He also pointed 
out that in many studies, there are covariates available that can be included 
in the model to decrease between-group variation. The optimal cluster size 
‘II is larger and the corresponding k is smaller when covariates are used 
than when covariates are not used. Further extensions of those results t,o 
three-level models and logistic regression are given in Moerbeek (2000). 

Extending this line of research, Raudenbush and Liu (2000) developed 
effect size indices for treatment effects and treatment-by-site variance terms. 
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In turn, they described how optimal allocation of resources between persons 
and sites depends on whether the researcher is interested in estimating main 
effects or moderator effects. 

CHOICE OF ESTIMAND: 
SENATE MODEL VS. HOUSE MODEL 

An important question that deserves careful consideration in multilevel 
studies is what estimand we should attempt to estimate. Let us consider 
one of the most prominent multilevel designs that was established more 
than 200 years ago, the design of the U.S. Congress. We have individuals 
nested in states in this multilevel design problem. It is intriguing that our 
founding fathers adopted two distinct designs, the Senate and the House 
of Representatives. The Senate provides an unweighted average across the 
states. The House provides a weighted average across the states, weighted 
by each state’s population. The two designs each address a different 
question: The Senate is meant to represent the states’ interests, the House 
is meant to represent the interests of the general population. As history 
has shown, the two interests very often converge, but they do diverge on 
many important occasions. 

The same distinction between the Senate model and the House 
model deserves to be considered in many multilevel studies. The usual 
specification of multilevel models implicitly assumes the Senate model: The 
group level model usually models the groups as exchangeable entities (after 
controlling for group level fixed effects). For example, in a study of students 
nested in states, we might examine the impact of school funding mechanism 
on st<udent outcomes, such as whether states with a centralized funding 
mechanism have better student outcomes. However, states vary in size. If 
we average state-level outcomes across all states, the influence of each state 
would be the same irrespective of the number of students in each state. 
Whereas this Senate model characterization of states might be appropriate 
for certain research questions focused on states, it is inappropriate for many 
research questions that are focused on students. Therefore, it is important 
to entertain the House model as an alternative to the Senate model in 
many multilevel studies, and weight the states by the enrolhnent in t,he 
group-level analyses. 

More specifically, the question is what estimand should we attempt t,o 
&imate? Consider the scenario that we have a complete census of all 
st)ates with centralized funding, all students in those states, and all of their 
outcomes. Let Yij denote the outcome for the j-th student in the i-th state, 
17’i denote the total number of students in the i-th state, and pi denote the 
clxnected outcome for the i-th state, 
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pi = E(xjli) = CjYij/Ni. (13.3) 

The usual specification for the group level model, 

p = E(pi) = &pi/K, (13.4) 

where K denotes the number of states with centralized funding, p9 specifies 
the unweighted mean across states as the estimand, implicitly following the 
Senate model. However, if the objective of the study is to improve student 
outcomes, it would be more appropriate to specify the weighted mean across 
states as the estimand, following the House model: 

p* = E*(pi) = .&(NipJ/&Ni (13.5) 

where E* denotes taking the expectation across the states weighted by the 
total number of students in each state. 

COHORT DESIGNS VERSUS REPEATED 
CROSS-SECTIONAL DESIGNS 

In any relatively long-term study, a researcher has the option of selecting a 
cohort design, where individuals are followed across the study period, or a 
repeated cross-sectional design, where new individuals are sampled at each 
study measurement point. For simplicity of discussion, we are ignoring the 
possibility of mixtures of these two extremes. 

For the same number of measurements,” cohort studies are usually more 
precise than repeated cross-sectional studies for estimating changes over 
time because they control for individual-level effects through comparisons 
of repeated observations on the same individuals. On the other hand, 
repeated cross-sectional studies are usually more precise for estimating 
mean levels (e.g., the prevalence of a rare disease) because they include 
more individuals, thus reducing the sampling error on the individual level. 

The cost for the two types of designs usually differ. With the cohort 
design, the initial recruitment cost incurs only once for each individual. 
With the repeated cross-sectional design, the initial recruitment cost incurs 
in every wave. Cohort designs, on the other hand, require costs of tracking 
individuals and are subject to attrition and bias (see Little, Lindenberger, 
& Maier, 2000). As time goes by, the cohort sample may become less 
representative of the target population. Compton, California, was once 
predominantly African American but now has a large Latin0 population. 
It provides an excellent example. For this reason, some cohort studies 
replenish the sample to include new members in the target population. 

‘Counting individuals 
lnea411ren1entS nhtnind 

in cohort studies multiple times by the number of repeated 
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On the other hand, the cross-sectional design may have exactly the 
opposite problem, namely, successive samples may differ significantly on 
important covariates. The choice of longitudinal sampling design is a 
complex choice. Feldman and McKinlay (1994) present a statistical 
framework for balancing the issues of sample size, precision, and bias in 
deciding between these competing designs. As pointed out in Murray et 
al. (1994, p. 496), to determine the relative efficiency of a cohort versus 
a cross-sectional design, researchers need estimates of relevant parameters 
such as variance components and autocorrelations. 

EXPERIMENTAL DESIGN FOR MULTILEVEL 
STUDIES 

A major application of multilevel modeling is in the evaluation of social, 
psychological, or educational interventions, such as multi-site randomized 
trials with patients nested in sites. The sample design issues discussed 
in the previous section also apply to experimental studies: In order for 
the experimental studies to be generalizable to the target population of 
interest, it is essential that the sample on which the experimental study 
is conducted be representative of the target population. In addition, 
tlxperimental studies impose additional design issues. 

Level of Randomization 

Unlike single-level studies, multilevel studies often offer a choice of which 
level should be used to randomize the experimental treatments. Should we 
randomize at the school level, assigning all classrooms and students in the 
same school to the same treatment? Should we randomize at the classroom 
level, assigning some classrooms in each school to each treatment condition, 
but holding all students in the same classroom to the same treatment 
cxondition? Or should we randomize at the student level, assigning some 
st,udents in each classroom to each treatment condition? 

It should be noted that some treatment conditions are delivered at 
a group level, which prohibits the experimental assignment from being 
randomized at a lower level. For example, if we study the effect of a 
t,raining program for teachers, it is usually anticipated that the impact of 
the treatment will influence all students in the classrooms of the teachers 
who received the training. Therefore, we cannot randomize the treatment 
at the student level - it is practically impossible, and rather unethical, to 
ask the teacher to apply the skills learned from the training program only 
on some students in her classroom, ancl withhold the skills from the other 
stlldent3. 
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In terms of statistical precision, it is usually advantageous to randomize 
at the lowest level possible, to reduce the design effect due to clustering. 
For the training program discussed earlier, this would imply randomizing 
at the classroom level. If the study is conducted in multiple schools, this 
design will allow us to minimize the design effect due to clustering at the 
school level. The main effects of schools is cancelled out when we compare 
classrooms assigned to the training program versus classrooms assigned not, 
to receive the training program. 

However, contamination might be a concern under this design. Although 
the teachers are randomized to the training programs, it is conceivable 
that they might share the skills they learned from the program, thus 
exposing the teachers assigned not to receive the training program (and 
their students) to the training program indirectly. If such contamination 
occurs, the intervention effect would be underestimated. 

If contamination is a major concern, an alternative design is to 
randomize at a higher level, say, at the school level, to reduce the likelihood 
or the level of contamination. However, the investigator needs to balance 
the trade-off between contamination and the clustering effect: Randomizing 
at, the school level can reduce the power and precision of the study, for the 
same sample size at each level, due to the clustering effect at the school 
level. 

The same sample allocation issues discussed earlier also apply to 
experimental studies. We refer interested readers to Raudenbush (1997). 
Raudenbush and Liu (2000), and Moerbeek (2000) for detailed discussions. 

Split Plot Design and Factorial Design 

We assumed implicitly in the previous section that the experimental study 
has to randomize at a single level. For many multilevel experimental 
studies, there is a potential to use the split plot design and randomize 
various components of the intervention at different levels. For example. 
consider a hypothetical intervention that includes both a training program 
for teachers and an individual tutoring program for students to be delivered 
by “big brothers” and “big sisters” from upper grade classes. Because 
the training program is delivered at the classroom level, it appears that, 
we have to randomize the intervention at the classroom level (or a higher 
level, if contamination is a concern). However, an alternative t,hat might 
provide more useful information is to use a split plot design and randomize 
the training program at the classroom level, and randomize the tutoring 
program at the student level. (We assume here that the tutoring program 
and the teacher training program are not directly related; in particular, a 
student can participate in the tutoring program whether or not her teacher 
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participated in the training program.) This design allows us to estimate 
t,he effects separately for the two program components, and the interaction 
between them. Furthermore, randomizing the tutoring program at the 
individual level provides better precision for estimating the main effect of 
the tutoring program. 

The split plot design is an example of a factorial experiment that 
tests multiple intervention components within the same study. Those 
experimental designs are used less often in behavioral intervention studies 
(whether single level or multilevel) than in agricultural and engineering 
studies. We believe there is a promising potential and that factorial 
experimental designs should be applied more broadly in behavioral 
intervention studies, especially for multilevel studies, many of which involve 
multifaceted interventions at multiple levels. 

The experimental design commonly used in behavioral intervention 
studies can be characterized as a “kitchen sink design.” That is, we 
usually include all promising intervention components into the intervention, 
and compare with a control condition that excludes all intervention 
components. Such a kitchen sink design might be optimally powered3 for 
a first-generation study to prove the concept for the study. However, the 
study finding is usually limited to whether the intervention (as a bundle) 
is effective; beyond this basic question, we know very little about, which 
intervention components are essential, which can be eliminated, and how 
the components work together. Therefore, we believe it is important for 
investigators to move beyond the first-generation kitchen sink design and 
use factorial experimental designs to “tease apart” the effects of various 
intervention components. 

Power Analysis for Multilevel Studies 

In most multisite trials, groups (e.g., classrooms, clinics), not individuals, 
are randomly assigned to treatments. This design usually leads to a 
(*lustering effect - a positive intraclass coefficient that typically lowers 
power. Numerous researchers have shown that ignoring clustering can lead 
to serious errors in interpreting the results of statistical significance tests. 
Specifically, when there is non-independence among observations that is 

“As noted earlier, the power and precision might be reduced due to clustering if the 
bundled intervention has to be delivered at a higher level. It is possible that the power 
and precision might be higher for a stripped down intervention that can be delivered at 
a lower level. For example, for the same sample size at all levels, the power and precision 
might be higher for testing the tutoring program alone at the student level than testing 
the tutoring program and the teacher training program jointly at the classroom level. 
In other words, the kitchen sink design might not be optimally powered even for a first- 
generation study. 
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not accounted for in the model, then standard errors can be seriously 
underestimated and the Type I error rate is thus inflated (Aitkin, Anderson, 
& Hinde, 1981; Barcikowski, 1981; Blair, Higgins, Topping, & Mortimer, 
1983). 

Consider the linear random effects model shown in Equation 13.6. In 
this model, Yij is the dependent variable score of subject j in group i, p is 
t,he grand mean, CQ is the group effect, and &ij is the subject error. 

Yij =/i+Qj +&ij. (13.6) 

The variances of the group and individual effects can be symbolized 
by aa and oE2, respectively. Given this formulation, then the intraclass 
correlation is p = ga2 / (oa2 + gE2). 

To explain the effects of clustering more fully, we need to introduce 
t,he concept of the design effect (DE) or the variance inflation factor 
(Kish, 1965). The design effect is shown in Equation 13.7. The term 
in the numerator indicates the real error variance and the term in the 
denominator, fs2/n, 

DE = Var(ji)/(a2/n) (13.7) 

represents the least squares estimate of the error variance. This ratio can 
be approximated by Equation 8 where m* is the “typical” cluster (group) 
size. 

1 + (m* - 1)p. (13.8) 

Clearly, if p is zero (no clustering effect), then there is no design 
effect and all estimates of error variance are appropriate. However, as p 
goes toward 1.0, then DE becomes large and the degree of overestimated 
precision becomes substantial. It, is also clear from Equation 13.8 thatJ as 
the group sizes increase, the effects of clustering also increase. Finally, the 
design effect will be increased to t,he degree to which there is not an equal 
number of subjects per group. 

To illustrate the effects of clustering, consider a simple experiment where 
there are 10 groups, 5 of which have been assigned to a treatment condition 
and 5 to a control condition. Assume also that there are 20 subjects per 
group, so th, t t 1 e o a sample size is 200 subjects (100 treatment and 100 
control). Because of clustering effect, we can no longer use the nominal 
sample size in our power computation for testing a treatment versus control 
difference, rather we need to consider the “effective” sample size given the 
design effect defined as the nominal sample size divided by the design effect. 

For example, if p = 0.05, then the design effect is 1.95, and the effective 
sample size is 100/1.95 = 51.28 subjects per treatment conditions; if p 
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= 0.10, then the design effect is 2.90, and the effective sample size is 
100/2.90 = 34.48 subjects per treatment conditions. Thus, in the presence 
of clustering effect, subjects do not provide unique information. In turn, 
t,he effective sample size can be significantly lower than the nominal sample 
size. This negatively impacts our power to detect the treatment versus 
control group difference. 

Power issues in MLM are complex due to the intraclass correlation. If 
the intraclass correlation is zero, then we could use the standard power 
analysis methods based on single-level models. However, with nested 
designs, clustering is the rule, not the exception. Barcikowski (1981) 
provided tables that detail how the power of testing group-level mean 
differences is affected by clustering and the combination of the number 
of groups and the number of persons per group. Brown and Liao (1999) 
provided a reference to online power calculators for three-level models 
in school-based research, and for latent growth modeling. Muthkn and 
Curran (1997) and Hedeker, Gibbons, and Waternaux (1999, p. 90) 
also provided resources and programs for computing power in longitudinal 
designs. Finally, Raudenbush and Liu (2000) cited an optimal design 
(see following discussion) power calculation software package available from 
Raudenbush. 

The new power calculators are a great addition to the applied 
researcher’s repertoire. Nevertheless, power questions in multilevel designs 
remain unwieldy and underresearched, especially under conditions of a 
small number of persons within groups and under different estimation 
methods (e.g., empirical Bayes). The chief problem, however, is the inherent 
complexity of multilevel studies. In any reasonably complex model, a 
researcher may be interested in the power to detect moderator or mediator 
effects (Krull & MacKinnon, 2001), the size of variance components 
( Raudenbush & Liu, 2000)) or the impact of individual-level (time-varying) 
or group-level (time-invariant) covariates. Kreft and de Leeuw (1998, 
pp. 119-126) reviewed some of these complexities and observed that few 
empirical investigations of these issues are published studies. 

A further complexity with any power or optimal design analyses is 
the effects of covariates. As is well known in ordinary regression, the 
power to detect an effect (e.g., a partial r) can be raised considerably 
by including the proper covariates into the model. The situation is even 
more challenging in multilevel level modeling contexts because there are 
t,ypically potential covariates at more than one level (e.g., subject and 
group level, or time-varying and time-invariant covariates in longitudinal 
st,udies). Determining the precise impact of a covariate on power a priori is 
c*omplicated in multilevel studies because it depends on a number of factors, 
including how much within and between variance a covariate accounts for 
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(Raudenbush & Liu, 2000). 

REISE AND DUAN 

SUMMARY 

It can be said that an analysis is only as good as the data collected. Garbage 
in, garbage out; the most elegant analysis cannot make up for the flaws in 
the study design. This rubric is especially true in multilevel studies where 
researchers need to consider sampling, power, and external validity issues 
at multiple levels of inference, and must confront the problem of clustering. 
Compared to single-level designs, MLM calls for more decisions and more 
care in the design. These decisions need to be informed. 

Perhaps the prevailing theme of this chapter is that new tools are 
being developed that allow researchers to make more informed decisions. 
Given the often tremendous costs of multilevel studies, these new tools 
are most welcome. For example, in the context of optimal design and 
power calculation, we cited recently developed computer programs. There 
is no longer any excuse for the usual practice of treating a multilevel study 
as if it were a single-level study for purposes of estimating power. For 
another example, in considering the choice between a cross-sectional or 
cohort design, we cited new statistical developments that allow researchers 
t)o more precisely define the relative advantages of each. 
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