Chapter 4
Thermodynamics and Statistical Physics

4.1 Basic Concepts and Formulae

Kinetic theory of gases

Pressure
1 2
p=zp =V > 4.1)
Root-mean-square velocity
Vims = /3P /p 4.2)

Average speed
8kT 8RT
<ve=,— =, /—" (4.4)
Tm M

Most probable speed

2kT 2RT
I TV M 4

where m is the mass of the molecule, M is the molar weight, p the gas density,
k = 1.38 x 1072*/K, the Boltzmann constant, R = 8.31 J/mol-K, is the universal
gas constant, and K is the Kelvin (absolute) temperature.

Vp 1<V > Vg i V2 V8/m: V3 4.6)
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The Maxwell distribution

m \3/2 )
dv = 4 < > 2 —mv-/2kT d 4.7
Nw)dv 7 kT voe v “4.7)

N(v)dv
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<
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Fig. 4.1 The Maxwell distribution

Flux
1 o .
## = -n < v > (number of molecules striking unit area per second)  (4.8)

where 7 is the number of molecules per unit volume.

Mean free path (M.F.P)
. 1
- 27ne?

where n is the number of molecules per unit volume and o is the diameter of the
molecule.

A 4.9)

Collision frequency

= 4.10
f . (4.10)
Viscosity of gas (1)
1
17:5,0)»<v> 4.11)
Thermal conductivity (K)
K =1C, (4.12)

where C,, is the specific heat at constant volume.
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Coefficient of diffusion (D)

(4.13)

Clausius Clepeyron equation

dp L

T yr— (4.14)

where v| and v, are the initial and final specific volumes (volume per unit mass) and
L is the latent heat.

Vander Waal’s equation

<P + %) (V —b) = RT (for one mole of gas) (4.15)

The Stefan-Boltzmann law
E=0oT* (4.16)

If a blackbody at absolute temperature 7' be surrounded by another blackbody at
absolute temperature Ty, the amount of energy E lost per second per square metre
of the former is

E=0(T*-Ty) 4.17)

where o = 5.67 x 108 W/m?.K* is known as Stefan-Boltzmann constant.

Maxwell’s thermodynamic relations

. . aS P
Firstrelation: | — ) ={ — (4.18)
aVv /), aT /,
aS aVv
Second relation: { — | =—| — 4.19)
aP J aT /
oT

Fourth relation:

|
|
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Third relation: <
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Thermodynamical potentials

(1) Internal energy (U)
(ii) Free energy (F)
(iii) Gibb’s function (G)
(iv) Enthalpy (H)

H=U+ PV 4.22)
aU
— =C 4.23
< 5T ) ) v (4.23)
IHN o (4.24)
s ) p
dH
— ) =V (4.25)
oP /g
dH
— =C 4.26
<8T )P P (4.26)
The Joule-Kelvin effect
T(3%),—V]AP
AT = 7 (57) ] 4.27)
Cp
Black body radiation
Padiatio = = (4.28)
3
where u is the radiation density
Wein’s displacement law
AmT =029 cm - K 4.29)
Planck’s radiation law
8 hvidv
8mhe 1
urdh = = ) (4.31)
2wkt
_ - Tk 4.32
7T 15 (432
A
AS = TQ (4.33)

AS = kIn(AW) (4.34)
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where W is the number of accessible states.
Probability for finding a particle in the nth state at temperature 7

o~ En/ KT
Stirling’s approximation
n!=+2xnn"e™" (4.36)

4.2 Problems

4.2.1 Kinetic Theory of Gases

4.1

42

43

4.4

4.5

4.6

4.7

4.8

4.9

Derive the formula for the velocity distribution of gas molecules of mass m at
Kelvin temperature 7T'.

Assuming that low energy neutrons are in thermal equilibrium with the sur-
roundings without absorption and that the Maxwellian distribution for veloci-
ties is valid, deduce their energy distribution.

In Problem 4.1 show that the average speed of gas molecule < v >=

8kT [rm.

Show that for Maxwellian distribution of velocities of gas molecules, the root
mean square of speed < v? >!2= (3kT/m)'/?

(a) Show that in Problem 4.1 the most probable speed of the gas molecules
v, = 2kT/m)'/?
(b) Show that the ratio v, 1< v >:< p? 2. \/E: 8/ : ﬁ
Estimate the rms velocity of hydrogen molecules at NT P and at 127°C
[Sri Venkateswara University 2001]

Find the rms speed for molecules of a gas with density of 0.3 g/ of a pressure
of 300 mm of mercury.
[Nagarjuna University 2004]

The Maxwell’s distribution for velocities of molecules is given by N(v)dv =
2w N(m/2mkT)3/*v? exp(—mv? /2kT)dv

Calculate the value of < 1/v >

The Maxwell’s distribution of velocities is given in Problem 4.8. Show that the

probability distribution of molecular velocities in terms of the most probable
velocity between « and « + d« is given by
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4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20
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4N 2
N(a)da = —a?e ™ da
NZ 3

where, o = v/v, and v, = (2kT/m)'/%.

Calculate the fraction of the oxygen molecule with velocities between 199 m/s
and 201 m/s at 27°C

Assuming that the hydrogen molecules have a root-mean-square speed of
1,270 m/s at 300 K, calculate the rms at 600 K.

Clausius had assumed that all molecules move with velocity v with respect
to the container. Under this assumption show that the mean relative velocity
< Vel > of one molecule with another is given by < vy >= 4v/3.

Estimate the temperature at which the root-mean-square of nitrogen molecule
in earth’s atmosphere equals the escape velocity from earth’s gravitational
field. Take the mass of nitrogen molecule = 23.24 amu, and radius of
earth = 6,400 km.

Calculate the fraction of gas molecules which have the mean-free-path in the
range A to 2X.

If p is the density, < v > the mean speed and X the mean free path of the
gas molecules, then show that the coefficient of viscosity is given by n = %,0
< V> A

At STP, the rms velocity of the molecules of a gas is 10° cm/s. The molecular
density is 3 x 10%° m™> and the diameter (o) of the molecule 2.5 x 10~'"m
Find the mean-free-path and the collision frequency.

[Nagarjuna University 2000]

When a gas expands adiabatically its volume is doubled while its Kelvin tem-
perature is decreased by a factor of 1.32. Calculate the number of degrees of
freedom for the gas molecules.

What is the temperature at which an ideal gas whose molecules have an aver-
age kinetic energy of 1eV?

(a) If y is the ratio of the specific heats and n is the degrees of freedom then
show that for a perfect gas
y=1+2/n

(b) Calculate y for monatomic and diatomic molecules without vibration.

If K is the thermal conductivity, 5 the coefficient of viscosity, C, the specific
heat at constant volume and y the ratio of specific heats then show that for the
general case of any molecule

K _1(9 5)
nC, 4"
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4.2.2 Maxwell’s Thermodynamic Relations

4.21 Obtain Maxwell’s Thermodynamic Relations
as aP
@ () =(5
A aT J,
s v
® (=5) = (5=
aP ) aT J p

4.22 Obtain Maxwell’s thermodynamic relation.

(). (),

4.23 Obtain Maxwell’s thermodynamic relation.

().~ (5),

4.24 Using Maxwell’s thermodynamic relations deduce Clausius Clapeyron equa-
tion

(7)o~ 70
aT saturation T(VZ_ 1)1)

where p refers to the saturation vapor pressure, L is the latent heat, T the
temperature, v; and v, are the specific volumes (volume per unit mass) of the
liquid and vapor, respectively.

4.25 Calculate the latent heat of vaporization of water from the following data:
T =3732K, v, = lem?, v, = 1, 674cm’, dp/dT = 2.71 cm of mercury
K—l

4.26 Using the thermodynamic relation
as _(ap
av ), \ar/,’
derive the Stefan-Boltzmann law of radiation.

4.27 Use the thermodynamic relations to show that for an ideal gas
Cp—Cy=R.

4.28 For an imperfect gas, Vander Waal’s equation is obeyed
a
<P+W>(V—b)=RT

with the approximation b/ V <« 1, show that

Cr—Cy=Rr(1+-22
PV RTV
4.29 If E is the isothermal bulk modulus, « the coefficient of volume expansion
then show that

Cp — Cy = TEQ?V
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4.30

431

432

4.33

4.34

4.35

4.36

4.37

4.38

4.39

4.40

441
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Obtain the following 7'ds equation
Tds = CvdT + TO[ETdV

where E; = =V (g—C)T is the isothermal elasticity and ¢ = %(g—;)l,
is the volume coefficient of expansion, S is the entropy and 7' the Kelvin

temperature.

Obtain the equation
Tds =CpdT — TVadp

Obtain the equation

oT oT
Tds =C —_— dP +C — dv
: V(@P)V * P(@V)P

Obtain the formula for the Joule-Thompson effect
[T (@V/dT)p — V]IAP
Cp

AT =

(a) Show that for a perfect gas governed by the equation of state PV = RT
the Joule-Thompson effect does not take place.

(b) Show that for an imperfect gas governed by the equation of state <P + %)
(V —b) = RT, the Joule-Thompson effect is given by

1 2a
AT =— | — —b |} AP.
Cp \ RT

Explain graphically the condition for realizing cooling in the Joule-Thompson
effect using the concept of the inversion temperature.

Prove that for any substance the ratio of the adiabatic and isothermal elastici-
ties is equal to the ratio of the two specific heats.

Prove that the ratio of the adiabatic to the isobaric pressure coefficient of
expansion is 1/(1 — y).

Show that the ratio of the adiabatic to the isochoric pressure coefficient is
y/(y = D.

If U is the internal energy then show that for an ideal gas (3U/aV); = 0.
[Nagarjuna University 2004]

Find the change in boiling point when the pressure on water at 100°C is
increased by 2 atmospheres. (L = 540 Calg™', volume of 1g of steam =
1,677 cc)

[Nagarjuna University 2000]

If 1 g of water freezes into ice, the change in its specific volume is 0.091 cc
Calculate the pressure required to be applied to freeze 10 g of water at —1°C.
[Sri Venkateswara University 1999]
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4.42 Calculate the change of melting point of naphthalene per atmospheric change
of pressure, given melting point = 80°C, latent heat = 35.5 cal/g, density of
solid = 1.145 g/cc and density of liquid = 0.981 g/cc

[University of Calcutta]

4.43 The total energy of blackbody radiation in a cavity of volume V at temperature
T is given by u = aV T*, where a = 4o /c is a constant.

(a) Obtain an expression for the entropy S in terms of 7', V and a.
(b) Using the expression for the free energy F, show that the pressure P = %u

4.44 Given that the specific heat of Copper is 387 J/kg K~!, calculate the atomic
mass of Copper in amu using Dulong Petit law.

4.2.3 Statistical Distributions

4.45 Calculate the ratio of the number of molecules in the lowest two rotational
states in a gas of H, at S0K (take inter atomic distance = 1.05 A°)
[University of Cambridge, Tripos 2004]

4.46 Consider a photon gas in equilibrium contained in a cubical box of volume
V = a*. Calculate the number of allowed normal modes of frequency  in the
interval do.

4.47 Show that for very large numbers, the Stirling’s approximation gives

n! = 2xnn"e™”

4.48 Show that the rotational level with the highest population is given by
VIkT 1
h 2

4.49 Assuming that the moment of inertia of the H, molecule is 4.64 x 10~ kg-m?,
find the relative population of the J = 0, 1, 2 and 3 rotational states at 400 K.

Jmax(pop) =

4.50 In Problem 4.49, at what temperature would the population for the rotational
states J = 2 and J = 3 be equal.

4.51 Calculate the relative numbers of hydrogen atoms in the chromosphere with
the principal quantum numbers n = 1, 2, 3 and 4 at temperature 6,000 K.

4.52 Calculate the probability that an allowed state is occupied if it lies above the
Fermi level by kT, by 5kT, by 10kT.

4.53 If n is the number of conduction electrons per unit volume and m the electron
mass then show that the Fermi energy is given by the expression

n? (3n\*?
EE)
8m \
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4.54

4.55

4.56

4.57

4.58

4.59
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The probability for occupying the Fermi level Pr = 1/2. If the probability for
occupying a level A E above Er is P, and that for a level AE below Ef is P_,
then show that for % <« 1, Pgis the mean of P, and P_

Find the number of ways in which two particles can be distributed in six states

if

(a) the particles are distinguishable

(b) the particles are indistinguishable and obey Bose-FEinstein statistics

(c) the particles are indistinguishable and only one particle can occupy any
one state.

From observations on the intensities of lines in the optical spectrum of nitro-
gen in a flame the population of various vibrationally excited molecules rela-
tive to the ground state is found as follows:

v 0 1 2 3
N,/Noy 1.000 0.210 0.043 0.009

Show that the gas is in thermodynamic equilibrium in the flame and calcu-
late the temperature of the gas (68, = 3,350 K)

How much heat (in eV) must be added to a system at 27°C for the number of
accessible states to increase by a factor of 103?

The counting rate of Alpha particles from a certain radioactive source shows
a normal distribution with a mean value of 10* per second and a standard

deviation of 100 per second. What percentage of counts will have values
(a) between 9,900 and 10,100

(b) between 9,800 and 10,200
(¢) between 9,700 and 10,300

A system has non-degenerate energy levels with energy £ = (n + %) how,
where Ao = 8.625x 105 eV,andn =0, 1, 2, 3... Calculate the probability
that the system is in the n = 10 state if it is in contact with a heat bath at room
temperature (7 = 300 K). What will be the probability for the limiting cases
of very low temperature and very high temperature?

Derive Boltzmann’s formula for the probability of atoms in thermal equilib-
rium occupying a state E at absolute temperature 7.

4.2.4 Blackbody Radiation

4.61

A wire of length 1 m and radius 1 mm is heated via an electric current to pro-
duce 1kW of radiant power. Treating the wire as a perfect blackbody and
ignoring any end effects, calculate the temperature of the wire.

[University of London]
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4.62

4.63

4.64

4.65

4.66

4.67

4.68

4.69

4.70

4.71

When the sun is directly overhead, the thermal energy incident on the earth is
1.4 kWm™2. Assuming that the sun behaves like a perfect blackbody of radius
7 x 10° km, which is 1.5 x 10® km from the earth show that the total intensity
of radiation emitted from the sun is 6.4 x 107 Wm™2 and hence estimate the
sun’s temperature.

[University of London]

If u is the energy density of radiation then show that the radiation pressure is
given by Pg = u/3.

If the temperature difference between the source and surroundings is small
then show that the Stefan’s law reduces to Newton’s law of cooling.

The pressure inside the sun is estimated to be of the order of 400 million atmo-
spheres. Estimate the temperature corresponding to such a pressure assuming
it to result from the radiation.

The mass of the sun is 2 x 10°° Kg, its radius 7 x 10® m and its effective
surface temperature 5,700 K.

(a) Calculate the mass of the sun lost per second by radiation.

(b) Calculate the time necessary for the mass of the sun to diminish by 1%.

Compare the rate of fall of temperature of two solid spheres of the same
material and similar surfaces, where the radius of one surface is four times
of the other and when the Kelvin temperature of the large sphere is twice that
of the small one (Assume that the temperature of the spheres is so high that
absorption from the surroundings may be ignored).

[University of London]

A cavity radiator has its maximum spectral radiance at a wavelength of 1.0 pm

in the infrared region of the spectrum. The temperature of the body is now

increased so that the radiant intensity of the body is doubled.

(a) What is the new temperature?

(b) At what wavelength will the spectral radiance have its maximum value?
(Wien’s constant b = 2.897 x 1073 m-K)

In the quantum theory of blackbody radiation Planck assumed that the oscil-
lators are allowed to have energy, 0, ¢, 2¢... Show that the mean energy of
the oscillator is &€ = ¢/[exp(s/kT) — 1] where ¢ = hv

Planck’s formula for the blackbody radiation is

8mhe 1
wyddh = — =~
(a) Show that for long wavelengths and high temperatures it reduces to
Rayleigh-Jeans law.

(b) Show that for short wavelengths it reduces to Wien’s distribution law

Starting from Planck’s formula for blackbody radiation deduce Wien’s dis-

placement law and calculate Wien’s constant b, assuming the values of 4, ¢
and k.
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Using Planck’s formula for blackbody radiation show that Stefan’s constant
2 7k* % o
0=——>=567x107"W.m“.K
15 h3¢?
A blackbody has its cavity of cubical shape. Determine the number of modes
of vibration per unit volume in the wavelength region 4,990-5,010 A°.
[Osmania University 2004]

A cavity kept at 4,000 K has a circular aperture 5.0 mm diameter. Calculate (a)
the power radiated in the visible region (0.4—0.7 wm) from the aperture (b) the
number of photons emitted per second in the visible region

Planck’s formula for the black body radiation is
8mhe 1
wdh = — o

Express this formula in terms of frequency.

Estimate the temperature Ty of the earth, assuming that it is in radiation
equilibrium with the sun (assume the radius of sun Ry = 7 X 10% m, the
earth-sun distance r = 1.5 x 10'! m, the temperature of solar surface 7, =
5,800 K)

Calculate the solar constant, that is the radiation power received by 1 m?
of earth’s surface. (Assume the sun’s radius Ry, = 7 x 10® m, the earth-
sun distance r = 1.5 x 10" m, the earth’s radius Rg = 6.4 x 10° m,
sun’s surface temperature, 7, = 5,800 K and Stefan-Boltzmann constant
o=157x 10‘8¥ — K.

A nuclear bomb at the instant of explosion may be approximated to a black-
body of radius 0.3 m with a surface temperature of 107 K. Show that the bomb
emits a power of 6.4 x 1020 W.

4.3 Solutions

4.3.1 Kinetic Theory of Gases

4.1

Consider a two-body collision between two similar gas molecules of initial
velocity v; and v,. After the collision, let the final velocities be v3 and vy.
The probability for the occurrence of such a collision will be proportional to
the number of molecules per unit volume having these velocities, that is to
the product f(v;)f(v,). Thus the number of each collisions per unit volume
per unit time is ¢ f(v;) f(v2) where c¢ is a constant. Similarly, the number of
inverse collisions per unit volume per unit time is ¢’ f(v3) f(v4) where ¢’ is
also a constant. Since the gas is in equilibrium and the velocity distribution is
unchanged by collisions, these two rates must be equal. Further in the centre



4.3 Solutions 259

of mass these two collisions appear to be equivalent so that ¢/ = ¢. We can

then write

Ff) = fva)f(va)

orln f(vy) + In f(v2) = In f(v3) + In f(vy) (D
Since kinetic energy is conserved

v12+v§=v§+vf 2)

Equations (1) and (2) are satisfied if
In f(v) oc V2 3)
orf(v) = Aexp(—avz) “)

where A and « are constants. The negative sign is essential to ensure that no
molecule can have infinite energy.

Let N(v)dv be the number of molecules per unit volume with speeds v to
+dv, irrespective of direction. As the velocity distribution is assumed to be
spherically symmetrical, N(v)dv is equal to the number of velocity vectors
whose tips end up in the volume of the shell defined by the radii v and +dv,

so that

N()dv = 4nv2f(v)dv (®)]
Using (4) in (5)

Nw)dv = 47 AvZexp(—av?) (6)

We can now determine A and «. If N is the total number of molecules per
unit volume,

N = / ¥ N )
0

Using (6) in (7)
N =47 A /OO vZexp(—av?) dv = 4w A(1/4)(mr fa*) /2
0
or N = A(yr/oc)3/2 (8)

If E is the total kinetic energy of the molecules per unit volume

1 < 4o Am [, )
E = —m/ V" N(v)dv = / V' exp(—av)dv
2 Jo 0
or E = BmA/4) (x> Jad)/? 9)

where gamma functions have been used for the evaluation of the two integrals.
Further,
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42

43

4.4
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E =3NkT/2 (10)
Combining (8), (9) and (10)
~ (11)
o =—
2kT
and A = N(a/7)*?* = N(m/27kT)*? (12)
Using (11) and (12) in (5)
N()dv = 471N(m/2nkT)3/2vzexp(—mv2/2kT)dv
N®)dv = 4x N(m/2xkT)/*v?exp(—mv? /2kT)dv (D)
Put E = %mvz, dE = mvdv )
Use (2) in (1) and simplify to obtain
2nNE'? E
N(EYE = ——— —— | dE
(£) (TkT)/? eXp< kT)
The average speed
= pN(v)dv 3/2 [
<V == fo+ =47 <2nn11<T> /0 v exp(—mv?/2kT)dv (D)
where we have used the Maxwellian distribution
Puto = — 2
= kT @
T ey ! 3
that it = —
so tha /0 Ve v 77 (3
Combining (1), (2) and (3)
8kT\'?  [8RT
- <—) _ 2R )
Tm M

where m is the mass of the molecule, M is the molecular weight and R the gas

constant.

5 ST VAN (v)dy 4 < m

3/2 oo
< P >= > / v exp(—mvz/ZkT)dv
N 2nkT 0

with o = m and x = av?; dx = 2ovdy
2kT

o 1 o 3
The integral, I = / e dy — / ¥} dx = el
0 0

T 2a52 8572
3/2 kT
Therefore, < v? >= 47 < m > 3T = 3_
27 kT 8 (i)5/2 m
2%T

< v? >12= BkT/m)'/?



4.3 Solutions
4.5 (a) v, is found by maximizing the Maxwellian distribution.

d%[vz exp(—mv?/2kT)] =0
exp(—mvz/kT)[2v — mv3/kT] =0
whence v =v, = kT /m)'/?
(b) v, i< v >1< v? S22 2kT/m)'? 2 8KT frm)'? - BkT /m)'/?

ANy

m 1.67 x 10-27

46 <v? =P <3/<T)‘/2 <3 x 1.38 x 1072 x 273)1/2
B < > =\ — =
= 2,601 m/s at N.T.P

2 1 <3><1.38><10—23><400

172
< vt >t = 6 < 107 ) = 3,149 m/s at 127°C.

0 0.3

172 7 1.013 x 105\ '?
b7 i <3_p) _ <3 x (300/760) x 1.013 x 10 ) P

1 1 =1
48 < — >= — —N()dv
v NJo v

—1/00141\/('”)3/22 (—mv?/2kT) d
=N/ v.n kT v-exp(—mv~/ v

Set mv?/2kT = x;vdv = kT dx/m
[oe]

1
< - >= (2m/nkT)1/2/exp(—x) dx = @m/mkT)'/?
vV
0

49 N(v)dv = 4 N(m /2w kT)**v? exp(—mv? /2kT)dv
v, = kT /m)"/?
Letv/v, = a;dv = v,da
Use (2) and (3) in (1)
4N, 5
N(o)da = — a” exp(—a”)da

T

4.10 Fraction
Fe N(;})dv — 4 [%]3/2 2 exp(—mvz/2kT)d”
V= M =200m/s

dv =201 — 199 =2m/s

261
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2% 1.67x 10727\
f=4n< 32 x 1.67 x 10 ) (200)2

2 x 1.38 x 1023 x 300
32 x 1.67 x 10727 x 200>
exp| — X (2)
2 x 1.38 x 10723 x 300

=229 x 1073
3kT\ 72
< (BT
m

Vs (600 K) = [1ms (300 K)](600/300)'/2

= 1270 x +/2 = 1,796 m/s
Relative velocity vy of one molecule and another making an angle 6 is
Vel = (V2 + 12 — 2(v)(v) cos )/ = 2vsin(6/2)

Now, all the direction of velocities v are equally probable. The probability
f(©) that v lies within an element of solid angle between ¢ and 6 + dé is given
by

1
f(0) =2msinfdb f4n = 3 sinfdo

Vel 1S Obtained by integrating over f(6) in the angular interval O to 7.

T T 0 1
< Vel >= / Veel f(6) = / 2usin | — — sinfdé
0 0 2 2
T o 0 T 0 0
= 21)/ sin? | = | cos =d9 = 4v/ sin? =d(sin= | = 4v/3
0 2 2 0 2 2

ve = 2gR)"?; vims = kT /m)'/?

Vrms = Ve
_ 2mgR 2% (2x23.24 x 10777)(9.8)(6.37 x 10°)
T3k 3 x 1.38 x 10-23
=14x10°K

Fraction of gas molecules that do not undergo collisions after path length x
is exp(—x /). Therefore the fraction of molecules that has free path values
between A to 24 is

f =exp(=i/L) —exp(=24/A)
= exp(—1) — exp(~2)
=0.37-0.14 = 0.23

Consider a volume element dV = 2mr?sinfdddr located on a layer at a
height z = rcosé. If mu is the momentum of a molecule at the XY-plane
at z = 0, then its value at dV will be mu + (d%mu) rcos8 (Fig. 4.2). At an
identical layer below the reference plane dA, the momentum would be
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d
mu — <—mu) rcosd
dz

Let dn be the number of molecules with velocity between v and v + dv
per unit volume. The number of molecules with velocity v and v + dv in the
volume element dv is dndv. Molecules within the volume element undergo
collisions and are scattered in various directions.

Fig. 4.2 Transport of
momentum of gas molecules

Number of collisions that occur in dV in time dt will be %%dr. The fac-
tor % is introduced to avoid counting each collision twice, since the collision
between molecules 1 and 2 and that between 2 and 1 is same.

Each collision results in two new paths for the scattered molecules. Hence
the number of molecules that are scattered in various directions from this vol-
ume element dV in time dr will be 2 x %%dr x dndV or 7 dtdndV.

Now the solid angle subtended by dA of the reference plane at dV is
dAcost/r.

Assuming the scattering to be isotropic the number of molecules moving
downward toward dA is

v dtdndVdA cos 0

A 4r?

vdrdn(27rr? sin6dgdr)dA cos 8
or

rdmr?
vdrdndA sin 6 cos 0
2

Transport of momentum downward from molecules in the upper hemi-

sphere through dA in time df is

or
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dAdt /2 dm
P_ / vdn/ et ar / siné cos 9 <mu +r cos@d—) do
z

The factor e’/ is included to ensure that the molecule in traversing the
distance r toward dA does not get scattered and prevented from reaching dA.

Similarly, transport of momentum upward, from molecules in the lower
hemisphere through dA in time dr is

dAdt 7/2 d
= / vdn/ ’/’\dr/ sinf cos 0 < mu —rcos@di) do
z

Hence net momentum transfer to the reference plane through an area dA in

time dr is
dAdr md /2
P=P —P, = 0 m u/ dn/ re"/’\dr/ cos? 8 sin Hd6
dAdr du
=——m—n<v>
A dz 3

= ﬂdAdtd—u)»n <V >
3 dz

(the first integral gives n < v >, the second one A” and the third one a factor
1/3)
Momentum transported per second is force

A du
F=—-dAn <v >m—

3 dz
The viscous force is

d A d
ndA—u =—-dAn < v > m—u

dz 3 dz

or =-mn<v>AiA=Zp<V>A
=3 3/0
where mn = p = density of molecules.

1
V2rno? 27 x 3 x 105 x (2.5 x 10-10)2
=12x10"m

v 1, 000
f= L 1.2x 1077

4.16 1 =

=833 x 10°s7!

_ _ w\"' T
417 v/ = vk <72) - ?‘
1 2

or2''=132, y=14

Number of degrees of freedom,

2 2
f:—: :5
y—1 14-1
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4.18

4.19

4.20

leV =kT
1 1. 1071
v LoxI0 T soux
k 1.38 x 10-23J/K
(a) For a perfect gas at temperature 7', the kinetic energy from translation

motion

lm<1)2>-i—lm<v2>-|—lm<v2>=éE H

2 * 2 J 2 ¢ 2 Ny
where R is the gas constant and Ny is Avagadro’s number. The energy of
the 3 degrees of freedom of translation is therefore on the average equal to
%R T /Ny for each molecule. Using this result together with the principle of
the equipartition of energy, it is concluded that in a system at temperature T
each degree of freedom contributes, %N% T to the total energy.

If each molecule has n degrees of freedom, the total internal energy U of a
gram-molecule of a perfect gas at temperature 7',

1
U= -nRT 2
ik 2

The molecular heat at constant volume C is equal to (3—U)v, and is therefore

) aT
given by

1
C,=-nR 3
ik 3)
For a perfect gas
C,—C.=R @)
(n+2)R
Therefore C, = C, + R = B — &)
C 2
andy = L =1+= (6)
C, n

(b) For monatomic molecule n = 3, for translation (rotation and vibration are
absent), y = 1.667.

For diatomic molecule n = 5 (3 from translation and only 2 from rotation
as the rotation about an axis joining the centres of atoms does not contribute)
andy =14
If vibration is included then n = 7 and y = 1.286

According to Chapman and Enskog

— —

K=—|-—7F+—7 1
m |:2 dr + dr M

where E, is the translational energy and E the energy of other types.

If B denotes the number of degrees of freedom of the molecule due to causes

other than translation, the total number of degrees of freedom of the molecule

will be 3 + 8.
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From the law of equipartition of energy we have

dE dE'
L ék; i ék )
dr 2 dr 2

Hence,
K 53 Blk
n_[22+2}m )

We can express the result in terms of C,, and y. From the law of equiparti-
tion of energy
B+p) k. 5+8)

C, = .
2

3

C
whencey = — =14+ ——

5—-3y

= )

or B =

Furthermore

k

L = 5
m(y — 1) ©)
Combining (3), (4) and (5)

K _1(9 5
nC, 4

4.3.2 Maxwell’s Thermodynamic Relations

421 Let f(x,y)=0 (1)

0x

Equation of state can be written as f(P, V, T) = 0. By first law of thermody-
namics

dQ = dU +dw 3)

df=<%) dx+<3—f) dy=0 2)
y Y/«

By second law of thermodynamics
dQ = Tds “)
for infinitesimal reversible process

dW = pdv &)
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Therefore,
dU =Tds — PdV (6)

where U is the internal energy, Q the heat absorbed, W the work done by the
system, S the entropy, P the pressure and 7' the Kelvin temperature.
Let the independent variables be called x and y. Then

U=Ux,y);V=Vkxy);S=S8x,y) (7

Now,

af = <ﬁ) dx + <%) dy (8)
ax/, ay /.

Therefore

aU = <8—U) ax + <8—U) dy ©)
ax /, ay /.

dVv = <8—V) dx + <8—V) dy (10)
ax /, ay /.

ds = <§) dx + <§) dy (11)
ax/, ay /.

Eliminating internal energy U and substituting (9), (10) and (11) in (6)

9 9 9 9
<—U) dx + <—U) dy=T [<—S) dx + <—S) dy:|
ax /, Iy /., ax /, ay /.
9 9
—P |:<—V) dx + <—V) dy:| (12)
ax /, ay /.
Equating the coefficients of dx and dy
aU aS A%
() () ()
ax y ax y ax y
aU aS av
— ) =T|— ) —P|— (14)
9y / 9y / 0y /

Differentiating (13) with respect to y with x fixed, and differentiating (14)
with respect to x with y fixed
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a [oU as a (oS
HE ()(-) { (%)) &
ay \ dx X ax
a [dV
N 8y ax /,

= (5).], - ( )( ) {a@i)xk w
(), ). (@)

Since the order of differentiation is immaterial, dU being a perfect differ-

ential, the left hand sides of (15) and (16) are equal. Further, since dS and dV
are perfect differentials.

(5] =15,

and

HIREGN X

Using (15), (16), (17), and (18),

()62, - () () - (0. 3),

Equation (19) can be written in the form of determinants
<8P) <8P) <8T) <8T)
ax ay |\ ox ay
<av) <av) = <as> <as> (20)
ax ay ax /), \dy/,

(a) Let the temperature and volume be independent variables. Put x = T and
y = V in (20). Then

() - (), () ~(2) =

Since T and V are independent, we find

<as> <ap)
2Y (& 2D
av ), —\ar /),
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(b) Let the temperature and pressure be independent variables. Put x = 7" and
y = P in (20).

TN _ (P _ . (3TN _(2P\ _,

(), = (5). = (5).=(50),-
(),
aP ), T ),

4.22 In Problem 4.21 let the entropy and volume be independent variables. Put
x =sand y =V inEq. (19)

SN _ (VN . (S (VY _, (T __ (%P
5),-(5).= 5).- ().~ (), =),
(23)

4.23 Let the entropy and pressure be independent variables. Putx = sandy = p
in Eq. (19) of Problem 4.21.

(&),-().~

Therefore,

my (W y
().~ (5), o

4.24 Consider Maxwell’s relation (21) of Problem 4.21

as aP
(), =(7) W
T |4

Multiply both sides by T,

<8S) <8P)

(2} —r (L 2)

av ), T ),

or <@) =T<8—P) 3)
v ), T )\

which means that the latent heat of isothermal expansion is equal to the prod-
uct of the absolute temperature and the rate of increase of pressure with tem-
perature at constant volume. Apply (3) to the phase transition of a substance.
Consider a vessel containing a liquid in equilibrium with its vapor. The pres-
sure is due to the saturated vapor pressure which is a function of temperature
only and is independent of the volume of liquid and vapor present. If the vessel
is allowed to expand at constant temperature the vapor pressure would remain
constant. However, some liquid of mass 8m would evaporate to fill the extra
space with vapor. If L is the latent heat absorbed per unit mass,
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4.25

4.26
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8Q = Ldm “)

If v; and v, are the specific volumes (volumes per unit mass) of the liquid and
vapor respectively

v = (v, — v)dm (@)
Using (4) and (5) in (3)

L T P 6
v—v <ﬁ)v ©

Here, various thermodynamic quantities refer to a mixture of the liquid and
vapor in equilibrium. In this case

aP\ [V
aT V_ aT sat

since the pressure is due to the saturated vapor and is therefore independent of
V, being only a function of 7. Thus (6) can be written as

or L (Clapeyron’s equation) ™
—_— = apeyron s equatuon
0T )~ T(n—vy) - peYORSE

L=T( )dP
=T —v)—
2 Va7

271 .
=3732(1L,674 — ) x ( S ) x 1013 x 10

=2.255x 10erg g!

=2.255]/¢g
2.255 539.5 cal/
= —— =15395¢ca
418 £
as aP
(w),= (&) ®
V)r aT )y
Substitute
dU + pPdV
as = YAV )
T
in (1)
aU aP
WY _r (2P _p (3)
A oT /,
If u is the energy density and P the total pressure, (g—g) = u and the total

pressure P = u/3, since the radiation is diffuse. Hence (3) reduces to
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T du u du +4dT 0
= - — — or —_— E—
“T3r 3 W T
Integrating,

Inu=4InT +Ina =InaT*
where In a is the constant of integration. Thus,

u=arl*

427 S=f(T,V)
where T and V are independent variables.

d d
ds = o3 dT + 25 dv
aT /), aVv ),
<BS) _<BS) +<8S) <8V)
ar /, aT /), aV ) \oT /),
Multiplying out by 7' and re-arranging
as as N Vv
(), (), =7 (), ()
ar /, aT aV ) \aT ),
Now,
d d
T —S =C,, T —S =C,
ar /, aT /),

and from Maxwell’s relation,

), = (%),

Therefore,

c Co—T oP VvV |
PG = (ﬁl(ﬁl =

For one mole of a perfect gas, PV = RT. Therefore

P R v R
— ) =—ad | — ) =—
ar ),V T ), P

It follows that

C,—C,=RT
P+ V —b)=RT
4.28 < +V2>( —b)= (1)
Neglecting b in comparison with V,
RT a
P=——-—— 2)

Vv V2
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3P\ R 3
(ﬁ)v—v )

Re-writing (1)
a
PV + — =RT
+ 14
Differentiating V with respect to 7', keeping P fixed
% a (dV
Pl—) ——=l—=—=) =R
aT ), V2\aT /),

or

A% R
(),
P —a/V
Now,
P A%
C,—C,=T\|—= — (@)
aT J, \aT
(By Problem 4.27)
Using (3) and (4) in (5)
R’T P V2
c,—C, (PHA/VD) R +2a/PV?)

TVP_—a/Vvy) (P —a/V?)
_z{1 2a
N < + RTV)

4.29 If f(x,y, z) = 0, then it can be shown that

).(2),G),=
ay ). \odz /), \ox/,

Thus, if f(P,V,T)=0
(), Gr), (), = ®
oV S \oT Jp,\aP ),
<8P) <8P) <8V)
or |l — | =—|— — 2)
aT /, aV ), \aT Jp
o (21), (), (1)
oT ) p aT J,\dP /;

But

C Cy=T 8—P 8—V 4
o= (), (), ®
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4.30

Use (2) and (3) in (4)

ooy =1 (22} (Y 5
re=r (i), (57), ®

v IP\?
er-e=1(55), (57), ©

Equation (5) can be written in terms of the bulk modulus E at constant tem-
perature and the coefficient of volume expansion .

< aP ) 1 <8V)
E=—\—=); a=—=\|— @)
ov/iv vV \aoT

C,—C,=TEd*V ®)

Taking 7" and V as independent variables
§S=fT,V)

9 9
as= (BN ar+7(22) av
aT ), v ),

Multiplying by T,

35S 35S
TdS=T(-— ) dT+T(-=) dv

aT ), av ),
—cpar+ 1 (2 av
- v/,

35S P
But () =(=
av ), ~\aT ),
P
TdS:CVdT+T<—) v
\4

oT
Also,

(7). =~ () (&),

aP\ [V
S TdS =CydT —T | — | (=) dv
av )\ar /,

Introducing relations ¢ = %(8 V/oT)p and Ey = —V (9 P/3V)r for volume
coefficient of expansion and isothermal elasticity
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Taking T and P as independent variables
S= (T, P)

3 3
ds = —S dT + —S dP
aT ) p aP )
as a
or7dS=T\|\—) dT +T —S dP
aT ) aP ),
S
=CpdT +T (| — dP
ral <8P)T

orTdS =Cpdl — T | — ) dP
oT J p

=CpdT — TVadP

Taking P and V as independent variables,

<85)
aV /p

9
as= () ap+
aP ),
9 9
ras=7(22) ap+7 () av
aP /), v/,
3S\ (aT S\ [oT
=T(—=) (=) dP+T{=) (=) av
aT ), \3P /), AT ) p \3V J»
T T
=Cy(=) dP+Cr( =) av
(an), 2 ver(3),

In the Joule-Thompson effect heat does not enter the expanding gas, that is
A Q = 0. The net work done by the external forces on a unit mass of the gas
is (P V) — P,V,), where Py and P, refer to higher and lower pressure across
the plug respectively.

AW =PV, — PV,

If the internal energy of unit mass is U; and U, before and after the gas
passes through the plug

AU =U—-U,

By the first law of Thermodynamics
AQ=0=AW+ AU

oo U—-U =PV, —-PV,

or A(U+PV)=0

or AH=0
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where H is the enthalpy
S TAS+ VAP =0
But by Problem 4.31

v
TAS=CpAT —T(—) AP
aT ),

A%
.'.CPAT+[V—T<—) }Apzo
aT ) ,

4.34 (a) For perfect gas
PV =RT

A%
Pl— =R
oT J p
aVv
orT | — -V =
oT / p

.. AT = 0 by Problem 4.31
(b) For imperfect gas
a
<P+W>(V—b)=RT

PV =RT - +bP+ab
or = - = —
14 V2

aV a 3V 2ab (3V
P|— =R+—=—) —— | —
oT ) p VZA\aT /, V3 A\arT /,

Re-arranging

<av) 3 R 3 R
i), TP k(D)

Multiplying both numerator and denominator of RHS by (V — b)/R

AN 2a 1!
T<W)P _(V—b)[l ~ 2V =D }

2a
RTV3

=<V—b>[1+ (v—b)z}
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2a
=(V-b — by
V=b+ 5V —b)
(YY) vy Chev
aT / » "~ RT B

Using this in the expression for Joule-Thompson effect (Problem 4.31),

1 2a
AT = — | — —b) AP
C, \RT

4.35 The equation of state for an imperfect gas is
a

It can be shown that

1 2a
AT = — | — —>b Ap
C, \ RT

If T < 2a/bR, AT /Ap is positive and there will be cooling.

IfT > 2a/bR, AT /A p will be negative and the gas is heated on undergo-
ing Joule—Kelvin expansion.

If T =2a/bR, AT /A p = 0, there is neither heating nor cooling.

The temperature given by 7; = % is called the temperature of inversion
since on passing through this temperature the Joule-Kelvin effect changes its

sign. Figure 4.3 shows the required curve.

Fig. 4.3 Joule-Thompson
effect

T | Cooling

Heating

p ——>

4.36 By definition

ey (PPN g _ (2P
T av ), T v /g
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OP/3V) oT

B eprpvys S<W)s

Er  @P/3V)y 39S
(@P/38S)r <W)T

as
B @T/3V)s <ﬁ)7 _(@P/3S)v(dV/aT)p

aS) T @V/aS)p(@P/AT)y
T

(@T/aP)g <W

from the relations given in Problems 4.21 and 4.22

CEs _ @8/3T)p _ @Q/3T)p _ Cp _ y
Er - (3S/3T)  (3Q/dT)y  Cy

437 @V/oT)s 1 B 1
ST @V QT/AVISGV/IT)e (3P (3V
as J, \oT Jp
where we have used Eq. (23) of Problem 4.22.
Writing
AP\ _(BP\ (T _ (@P/iT)y
<as)v N <8T)V<8S)V ©(3S/3T)y
@V/aT)s (9S/9T)y _ (3§/9T)y
@V/aT)p  @P/AT)v(@V/aT)p  —(Cp —Cy)/T
(by Eq. (4.1) of Problem 4.27
T(@@S/0T)y Cy 1
—(Cp—=Cy)  —(Cp—Cv) 11—y
438 @P/3T)s 1 . 1
T @P/3T)y  (BT/3P)s(@P/3T)y [V (s
as/p\aoT /,
B 1 B (@S/3T)p
NOANCAY AN AR
(5), &), ), (), aram
_T@S/T)e _ Cp y

T (Cr—Cy) (Cr—Cy) y-—1

where we have used Eq. (4.24) of Problem 4.22 and the relation

35S
CP - T <_)
T ) »

277
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4.39 By Maxwell’s first equation

) = (2 (1)
(), =),
dS:w )

using (2) in (1)

(), =7 () -

For perfect gases,

RT
P=—
%

U RT
—) =——-P=0
W), Vv

Thus, temperature remaining constant, the internal energy of an ideal gas
is independent of the volume.

P L

4.40 ar —T(vz o)

T
dT = — (v, — v{)dP
2 (v2 —vp)

_373(1677 — D2 x 10°)

=55.1°C
546 x 4.2 x 107

1
441 vi=1 cm3; vy, = —— = 10.981 cm’

= 0.091
4P — Ldr 80 x 4.2 x 107 x 1
T T(n—vi)  (—14273)(10.981 — 1.0)
10%dynes
= 1.238 x —— = 1.24 atm
cm

P, =P +dP =1.0+1.24 =2.24 atm

1 1

=—=——=0.873cm’
44z m= =15 cm’/g

! ! 1.019 cm?/

VW=—=——=1. cm

2=, T 00981 &
T — T (v, —v)dP
L

(804 273)(1.019 — 0.873)(1.0 x 10°)
- 35.5 x 4.2 x 107
=0.0346°C
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4.43 (a) Use the relation

dU = Tds — PdV (1)
Here,

dV = 0(." V = constant) and

U=aVT* (2)

dU = 4aVT3dT = Tds

ds 2
— =4aVT
ar /.,

: _ 4, 73
Integrating § = 3aT”V A |
bF=U—-TS=aVT*— 3aT“v = —gaVT“

oF | R 1
p=—|— =—-al” = -u
ov), 3 3

4.44 According to Dulong-Petit’s law the molar specific heats of all substances,
with a few exceptions like carbon, have values close to 6 cal/mol°C~!. The

specific heat of Cu is % = % = 0.0926cal/gK~!. Therefore, the atomic
mass of Cu = —2— = 64.79 amu.

0.0926

4.3.3 Statistical Distributions

4.45 Probability for the rotational state to be found with quantum number J is given
by the Boltzmann’s law.

P(E) « (2J + Dyexp[—J(J + DB /2IokT

where [ is the moment of inertia of the molecule, k£ is Boltzmann’s constant,
and T the Kelvin temperature. The two lowest states have / = 0and J = 1

1
Ip = M(@r/2)? + M(r/2)? = EMr2, where M = 938 MeV/c?
21y = Mr? =938 x (1.05 x 1071%)?/¢?

he = 197.3MeV — 107 P m
50

kKT =138x 1072 x ——— =43.125 x 107'°
1.6 x 10-13
h? H2c? (197.3)* x 10730
200kT ~— Mc2r2kT ~ 938 x (1.05 x 10~10)2 x 43.125 x 10-10
J(J + DR?
For J = 1, % =1x(1+41)x0.8728 = 1.7457

For J =0, P(Ey) « 1.0
ForJ =1, P(E;) x (2x 1+ 1)exp(—1.7457) = 0.52
o P(Ey): P(Ey)::1:0.52
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4.46

4.47

4.48
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For stationary waves, in the x-direction
k.a =n,m
orny =kya/m
dn, = (a/7)dk,
Similar expressions are obtained for y and z directions.
dn =dn.dn,dn,
= (a/m)’dk
However only the first octant of number space is physically meaningful.
Therefore
dn = (1/8)(a/7)*d*k

Taking into account the two possible polarizations

2V 2V
dn = Pk = —— Axk>dk
(2m)3 83
Butk = £ dk = dw/c
C
Valdw
codn = g

nl=nn—1mn-—-2)...43)?2)
Take the natural logarithm of n!
Inn!=In2+mIn3+nd+---+In(n—2)+1In(n —1)+1Inn

=3 _Inn

:/ Inn dn
1

=nlnn—n+1
~nlnn—n

where we have neglected 1 for n >> 1
P(E) — (2J + l)e—J(J-Fl)hz/ZikT
The maximum value of p(E) is found by setting dp(E)/dJ =0

5 (2J + 1)’ o~ U+DR2IKT _
210kT

Since the exponential factor will be zero only for J = oo,

22
NRCTES I
210kT

Solving for J, we get

VIokT 1

Jmax = .

h 2
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4.49

4.50

451

4.52

4.53

—J0 2

P(Es) = Q) + e Tt
B2 (1.055 x 10732
The fact = = 86.9
O Ik T 2x464x 10 x 138 x 1023 ]

p(Ep) =1
p(E]) — 36—2><86.9/400 — 1.942
P(EZ) — 56—6><86.9/400 — 1.358
p(ES) — 76—12><86.9/400 =0.516
P(Ez) — 56—6><86.9/T — 56‘_521'4/T (1)

p(ES) — 76—12><86.9/T — 76—1042.8/T

Equating p(E») and p(E3) and solving for 7', we find 7 = 1,549 K

For Boltzmann statistics p(E) o e £/¥T" Therefore,

p(E) _ o (En—En/KT

P(E1)

In hydrogen atom, if the ground state energy E; = 0,then E, = 10.2,
E; =12.09 and E4 = 12.75 eV

The factor kT = 8.625 x 107 x 6, 000 = 0.5175

P(Ez)/P(El) — 6_10'2/0'5175 =275 % 10_9

P(E4)/P(E1) — 6—12.75/0.5175 = 1.99 x 10—11

Thus P(E;): P(E»): P(E3):1:2.8x107°:1.4x10719:2.0 x 10~
This then means that the hydrogen atoms in the chromospheres are predomi-
nantly in the ground state.

1

p(E) = e(E—Ep)/kT | |

1
For E — Ep = kT, p(E) = —— = 0.269
e+1

For E — Ep = 5kT, p(E) = =6.69 x 1073

eS+1

1 —5

For the conduction electrons, the number of states per unit volume with energy
in the range E and E+dE, can be written as n( E)dE where n(E) is the density
of states. Now, for a free electron gas

8v2xm?
n(E)=\/_h+mEl/2
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Let P(E) be the probability function which gives the probability of the state
at the energy E to be occupied. At 7 = 0 all states below a certain energy are
filled (P = 1) and all states above that energy are vacant (P = 0). The highest
occupied state under the given conditions is called the Fermi energy.

The product of the density n(E) of available states and the probability P(E)
that those states are occupied, gives the density of occupied states ny(E);
that is

no(E) = n(E)P(E)

The total number of occupied states per unit volume is given by

Ep
n:/ no(E)dE
0

8 2 3/2 Ep
— f#/ El/zd(E)
h 0
N 8\/§nm3/2 %ES/Z
o 3F

R (3n\*?
or EF=8—m ;

1 1 1 1
44 P = i 1 T e 1 oy AJKT — (= A2KT)
P = %(1 + AJ2KT)
P AP
T2

=1/2=Ps

4.55 (a) For n states, the number of ways is N = n?. Therefore, for n = 6 states
N =36
(b) For n states the number of ways is N = n*>—(n— 1)orn®> —n+1. Therefore,
forn =6, N =31
(c) For n states, N = n> —n + 1 — n or n*> — 2n + 1. Therefore for n = 6,
N =125

4.56 If the gas is in equilibrium, the number of particles in a vibrational state is

hv 0
N, = Nyexp T = Ny exp -7

The ratios, No/N; = 4.7619, N; /N, = 4.8837, N,/N; = 4.7778, are seen
to be constant at 4.8078. Thus the ratio N,,/N,.,; is constant equal to 4.81,

showing the gas to be in equilibrium at a temperature
T =3,350/(In4.81) ~ 2,130 K

457 AS = kIn(AW)
But AS = AQ/T
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or AQ =TAS =kTInAW
= (1.38 x 1072*)(300) In 10®
=7.626 x 1072°] = 0.477 eV

4.58 The Gaussian (normal) distribution is

() = — et
o2

where p is the mean and o is the standard deviation. The probability is found
from

puto

(a)P(M—0<x<M+0)=/ f(x)dx

n—o

i —iop
Letting z = =

1
P(-l<z<1)= /¢(z)dz
—1

1
=2 / ¢(z)dz (from symmetry)
0

=2 x 0.3413 = 0.6826 (from tables)
or 68.26%(shown shaded under the curve, Fig 4.4)

|
U360 20 peo U MO g HF30 X —s

3 2 101 2 3 77—

Fig. 4.4

(b) Similarly
Pl —20) < x < pu+20) =0.9544 or 95.44%
(c) P(u—30) <x < (u+30)=0.9973 or 99.73%

(r+4)ne
P s

!n+% ) o

oo
anoe kT

o~ (n+3)Rw/kT

459 P(n,T) =

e 1w/ kT E’cio_lenhw/kT
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e—nhw/kT e—nhw/kT
o /KT 1
TR T—T
1 — e~ hw/kT

— e—nhw/kT (ehw/kT _ 1)

s
Substitute n = 10, h_a) = 8.625 x 10 =
kT (138 x 10-3/1.6 x 10-19)

P(10,300) = 3.2 x 1073

In the limit 7 — O, the state n = 0 alone is populated so that n = 10 state is
unpopulated.

In the limit 7 — oo, probability for n = 10 again goes to zero, as higher
states which are numerous, are likely to be populated.

1.0

Consider a collection of N molecules of a large number of energy states,
E,, E,, E5 etc such that there are N; molecules in state £y, N> in E> and
so on. The nature of energy is immaterial. The number of ways in which N
molecules can be accommodated in various states is given by

N!

W=——
NN ...

ey
The underlying idea is that the state of the system would be state if W is a
maximum.

Taking logs on both sides and applying Stirling’s approximation In W =
NInN — N — ENl IIIN[ + EN,

ZNII]N—EN[IIIN[ (2)
because TN, = N (3)
YN,E; =FE (Y]

If the system is in a state of maximum thermodynamic probability, the varia-
tion of W with respect to change in N; is zero, that is

T8N; =0 @)
SESN; =0 (6)
(1 +1nN;))8N; =0 (7

We now use the Lagrange method of undetermined multipliers. Multiplying
(5) by « and (6) by 8 and adding to (7), we get

{1 +1InN;,)+o + BE;}SN; =0 (3
Therefore
InN; +14+a+BE =0 9)

or N; = Ce PEi (10)
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Where C = constant which can be determined as follows.
EN; =N = Cxe FE
N

OI’CZW

Equation (10) then becomes

Ne PE
= Te P
The denominator in (13)
Z =Yxe Ph
Is known as the partition function. It can be shown that the quantity
g 1
kT

where k is the Boltzmann constant and T is the absolute temperature.

o =—=
V4

4.3.4 Blackbody Radiation

4.61

4.62

4.63

Electric power = power radiated

W=0oT*A
A=27rl =27 x 107 x 1.0 = 6.283 x 10°m?
1/4 1 1/4
O LA 000 —1,294K
GA 5.67 x 1078 x 6.283 x 103

285

(1)
12)

(13)

(14)

15)

(16)

The Solar constant S is the heat energy received by 1 m? of earth’s surface per
second. If R is the radius of the sun and r the earth-sun distance, then the total
intensity of radiation emitted from the sun will be o 7* W m~2 and from the
sun’s surface o T*#.4m R?. The radiation received per second per m” of earth’s

surface will be

4 47 R?
S=o0T".
47 r?
Solving,
2 1.5 x 10%\2
oT =8 —1400( 22"} =643 % 10'Wm™2
R2 7 % 105
o (643 107\ /643 x 107 \"* S 800K
- o T\ 5.67 x 108 o

Using the analogy between radiation (photon gas) and gas molecules, the pho-
tons move in a cavity at random in all directions, rebounding elastically from

the walls of the cavity. The pressure exerted by an ideal photon gas is
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2
= — vV
4 3,0< >

where p is the mass density. In the case of photon gas, the speed of all photons
is identical being equal to c. Furthermore, from Einstein’s relation

u = pc*

where u is the energy density. Replacing < v> > by ¢?
I 5 u

Prad = §IOC - g

4.64 Let T and Ty be the Kelvin temperatures of the body and the surroundings.
Then, by Stefan—Boltzmann law, the rate of loss of heat per unit area of the
body is

dg
E:O’(TAt—T(;t)

=o(T — To)(T + To)(T? + )
If (T — Ty) be small, (T ~ Ty), and

do 3

— =o(T — Ty) x 4T,

dr o 0) 0

Since Tj is constant,

dr .

Fm x (T — Ty); (Newton’s law of cooling).

4.65 The energy density # and pressure p of radiation are related by

u

r=3

Furthermore, u = 40 T*/c
Eliminating u,

o (3ep\"t _ (3x3x10 x4 x 108 x 103 x 10\
4o 4% 5.67 % 10-5

4.66 (a) Power, P = 6 AT* = 47 R?>c T*
= 47 (7 x 10%)%(5.67 x 107%)(5,700)*
=3.68 x 102°W

3.68 x 10%°

(3 x 108)2
(b) Time taken for the mass of sun (M) to decrease by 1% is

Mass lost per second, m = P /c* = =4.1 x 10°kg/s

M 1 2x10% 1

I =— X — = X
100 = m 100~ 4.1 x 10°
_ 4.88x10'8

315 x 107

=488 x 10'%5

=1.55 x 10'! years
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4.67 Power radiated, P = 0 AT* = 4w R?*6 T*

P, R3 T}  (4R)* QT
P RT R T
P . sz/dt . mzs(dT/dt)z

Furth LENS _
HIHETOTe, 5 = 40, /dt ~ mys@T/dr),

where s is the specific heat
Butm, « R} and m; R}

= 256

_(dT/dn), P, R} 256 4
dTydry PUR; 4
4.68 (a) 1,,.T = b
b 2.897x 1073
T:—:M=2,897K
A 1 x10-6
P T
pTE

New temperature, 7, = T} X 21/4 = 2,897 x 1.189 = 3,445K

(b) The wavelength at which the radiation has maximum intensity

2.897 x 1072
= 2 T .84 % 105 = 0.84pum
3445
4.69 The mean value € is determined from:;
00 —pBne d *
€ = n:gon G_;ne =" n e—ﬂne
e dg =
= —iln(l + e Pe e 2Pe + )
dp
d 1
=——In—
dg 1 —eF<
where we have used the formula for the sum of terms of an infinite geometric
series.
_ eefs € kT
e_l—e_ﬂe_eﬂe—l (:3_/ )
8w he 1 ,
470 @) udr = 5 ghe/AkT ld)» (Planck’s formula) (D)

For long wavelengths (low frequencies) and high temperatures the ratio
/\’}(—CT <« 1 so that we can expand the exponential in (1) and retain only the
first two terms

8mhe 87kT

& = = i
O Sl he/skT +.. ) —1] A

writing A = 5 dA = —5dv

U2
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8mv?
U, =

kT (Rayleigh-Jeans law)

(b) If hv/kT > 1i.e hc/AkT > 1 then we can ignore 1 in the denominator
in comparison with the exponential term in Planck’s formula
udh = ¢ e Mg, (Wien’s distribution law)
where the constants, ¢; = 87 hc and ¢, = hc

8mhe 1

uda = 5 oAk ld)» (Planck’s formula)

The wavelength A,, corresponding to the maximum of the distribution curve
is obtained from the condition

dI/t)L -0
dr )

Differentiating and writing hc/kT X, = 8, gives

e P+ é —1=0

This is g transcental equation and has the solution

B =4.9651, so that

49651k

Thus, the constant
_ 6.626068 x 1073* x 2.99792 x 108
© 4.9651 x 1.38065 x 10-23

a value which is in excellent agreement with the experiment.

T b = constant.

=2.8978 x 107> m-K

By definition
u:/uvdv=aT4 (1)
Inserting Planck’s formula in (1)

. 8mh (% vidy 8mk*T* /"O x3dx
u=al" = — =

3 Jy ek B Jy e —1
where x = hv/kT
8mk*

[oe]
a=h3_c3/0 B re F 4. e L)

Now, fooo e dx = %, and 2?;1714 = g—;
A87k* =* 8 @kt
TR 90 T 15 3¢
ac 2 okt

4 15 32
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2 (3.14159)°(1.38065)* x 10~
T 15 (6.626068 x 10-34)3(2.99792 x 108)2
=5.67 x 107 ¥W-m—2-K~*

a value which is in excellent agreement with the experiment.

4.73 Number of modes per m? in the frequency interval dv is

8rvidy
But, d
by 4
v=Sidv=—a = 4,990+ 5,010 _ 5,000 A°
A A2

dr = 5,010 — 4,990 = 20 A°
8xdi 8w x 20 x 10-10

-~ N= = =8.038 x 10'7/m’
2 (5 x 1077y} x 107 /m
8mhcAdi
Mean wavelength 4 = 0.55 pm = 5.5 x 10 'm. (1)

dr=(0.7-04) pm=3x 10'm
A=ar’ =725 x107%? = 1.96 x 10°m?

he (6.63 x 10734)(3 x 10%)
AT (5.5 x 1077)(1.38 x 10-23)(4,000)
Using the above values in (2) we find

P = AE;dx = 0.84 x 107°W = 0.84 pW.

=6.55

he  6.63 x 1073 x 3 x 108
(b) hv = TC - XS - 1;_7 X _3.616x 107"

Number of photons emitted per second

P
n=o== 0.84 x 1076/3.616 x 10712 = 2.32 x 10'%/s
vV

8mhc 1
475 mdh = —— s 4 ey)

Puti =c/v (2)
c
and d) = — <§> dv 3)

in the RHS of (1) and simplify
8w hv?

= BT _ l)dv )

u,dv
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The negative sign in (3) is omitted because as A increases v decreases.

Power radiated from the sun = o x (surface area) x T
P, = c4x R*T?
Power received by the earth,
7 R?
S Apr2?

Pg

The factor 7 R? represents the effective (projected) area of the earth on
which the sun’s radiation is incident at a distance » from the sun. The factor
47r? is the surface area of a sphere scooped with the centre on the sun. Thus
7 R?/47r? is the fraction of the radiation intercepted by the earth’s surface
area.

Now power radiated by earth,

Py = o4n RET,
For radiation equilibrium, power radiated by the earth=power received by

the earth.

2
2 i 24 TRE
o4n Ry Ty = o4n R T, .—47”2

R\ 7x 108 7?
Tp=T, ) =5800|-—F-
orie =4 <2r) |:2><1.5><10“i|
=280K="7°C
Note that the calculations are approximate in that the earth and sun are not

black bodies and that the contribution of heat from the interior of the earth has
not been taken into account.

Power radiated by the sun, P; = o4n RS2 TS4
Power received by 1 m? of earth’s surface,
o4 RIT!
4mr?
~ (5.7 x 107#)(7 x 10%)*(5,800)*
o (1.5 x 1012
= 1,400 W/m?

P =d4nricT?
= 47(0.3)%(5.67 x 107%)(10")*
=64 x 10°W



