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1 INTRODUCTION

THE last decade has witnessed the evolution of Support Vector
Machines (SVMs) as a powerful paradigm for pattern classification
and regression [1], [2], [3], [4]. SVMs emerged from research in
statistical learning theory on how to regulate the trade-off between
structural complexity and empirical risk. One of the most popular
SVM classifiers is the “maximum margin” one that attempts to
reduce generalization error by maximizing the margin between
two disjoint half planes [1], [2], [3], [4]. The resulting optimization
task involves the minimization of a convex quadratic function
subject to linear inequality constraints.

Recently, Mangasarian and Wild [5] proposed a nonparallel
plane classifier for binary data classification, which they termed
the generalized eigenvalue proximal support vector machine
(GEPSVM). In this approach, data points of each class are proximal
to one of two nonparallel planes. The nonparallel planes are
eigenvectors corresponding to the smallest eigenvalues of two
related generalized eigenvalue problems.

In this paper, we propose a new nonparallel plane classifier,
termed as the Twin Support Vector Machine (TWSVM) for binary
data classification. TWSVMs also aim at generating two nonparallel
planes such that each plane is closer to one of the two classes and is
as far as possible from the other. However, the formulation of
TWSVMs is totally different from that of GEPSVMs and is very
much in line with standard SVMs. However, TWSVMs differ from
SVMs in one fundamental way. In TWSVMs, we solve a pair of
quadratic programming problems (QPPs), whereas, in SVMs, we
solve a single QPP. In SVMs, the QPP has all data points in the
constraints, but, in TWSVMs, they are distributed in the sense that
patterns of one class give the constraints of the other QPP and vice
versa. This strategy of solving two smaller sized QPPs, rather than
one large QPP, makes TWSVMs work faster than standard SVMs.

In practice, there are often situations where patterns belonging to
one class play a more significant role in classification. Traditionally,

such problems have been solved by fuzzy SVMs, e.g., Lin and Wang
[6], and fuzzy proximal SVMs [7], where patterns of the more
important class are assigned higher membership values. Our
formulation of TWSVMs can also handle such prefential classifica-
tion problems by solving only one smaller sized SVM.

The paper is organized as follows: Section 2 briefly dwells on
SVMs and also introduces the notation used in the rest of the
paper. Section 3 discusses generalized eigenvalue proximal
support vector machines. Section 4 introduces linear Twin Support
Vector Machines, while, in Section 5, we extend TWSVMs for
nonlinear kernels. Section 6 deals with experimental results and
Section 7 contains concluding remarks.

2 SUPPORT VECTOR MACHINES

Let the patterns to be classified be denoted by a set of m row
vectors Aiði ¼ 1; 2; . . . ;mÞ in the n-dimensional real space Rn,
where Ai ¼ ðAi1; Ai2; . . . ; AinÞT . Also, let yi 2 f1;�1g denote the
class to which the ith pattern belongs. We first consider the case
when the patterns belonging to the two classes are strictly linearly
separable. Then, we need to determine w 2 Rn and b 2 R such that

Aiw � 1� b for yi ¼ 1 and Aiw � �1� b for yi ¼ �1: ð1Þ

The plane described by

wTxþ b ¼ 0 ð2Þ

lies midway between the bounding planes given by

wTxþ b ¼ 1 and wTxþ b ¼ �1; ð3Þ

and separates the two classes from each other with a margin of 1
kwk2

on

each side. In other words, the margin of separation between the two

classes is given by 2
kwk2

. Here, kwk2 denotes theL2 norm of a vectorw.

Data samples which lie on the planes given by (3) are termed as

support vectors. The maximum margin classifier, which is the

standard SVM, is obtained by maximizing this margin and is

equivalent to the following problem

ðSVM1Þ Min
w;b

1

2
wTw

subject to Aiw � 1� b for yi ¼ 1 and Aiw � �1� b
for yi ¼ �1:

ð4Þ

When the two classes are not strictly linearly separable, there will
be an error in satisfying the inequalities (1) for some patterns and
we can modify (1) to

Aiwþ qi � 1� b for yi ¼ 1 and Aiw� qi � �1� b
for yi ¼ �1; qi � 0; i ¼ 1; 2 . . . ; m;

ð5Þ

where qi denotes the error variable associated with the ith data
sample. In this case, the classifier is termed as a “soft margin” one,
and it approximately classifies points into two classes with some
error. The classification of a given test sample x is obtained by
determining the sign of wTxþ b. The soft margin depends on the
value of the nonnegative error variables qi. In this case, one needs
to choose a trade-off between the margin and the error and the
standard SVM formulation for classification of the data points with
a linear kernel is given by

ðSVM2Þ Min
w; b; q

c eT q þ 1

2
wTw

subject to

Aiwþ qi � 1� b for yi ¼ 1;

Aiw� qi � �1� b for yi ¼ �1;

qi � 0; i ¼ 1; 2 . . . ;m:

ð6Þ

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 5, MAY 2007 905

. Jayadeva is with the Department of Electrical Engineering, Indian Institute
of Technology, Hauz-Khas, New-Delhi-110016, India.
E-mail: jayadeva@ee.iitd.ac.in.

. R. Khemchandani and S. Chandra are with the Department of
Mathematics, Indian Institute of Technology, Hauz-Khas, New-Delhi-
110016, India. E-mail: reshmaiitd@gmail.com, chandras@maths.iitd.ac.in.

Manuscript received 2 Dec. 2005; revised 26 May 2006; accepted 26 Sept.
2006; published online 18 Jan. 2007.
Recommended for acceptance by Y. Amit.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0673-1205.
Digital Object Identifier no. 10.1109/TPAMI.2007.1068.

0162-8828/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

 
 

 



Here, c denotes a scalar whose value determines the trade-off; a
larger value of c emphasizes the classification error, while a
smaller one places more importance on the classification margin.

In practice, rather than solving (SVM1) and (SVM2), we solve
their dual problems to get the appropriate hard or soft margin
classifier. The case of nonlinear kernels is handled on lines similar
to linear kernels [8].

3 GENERALIZED EIGENVALUE SUPPORT VECTOR

MACHINE CLASSIFIER

In this section, we give a brief outline of GEPSVMs [5]. Here, data
points belonging to classes 1 and �1 are represented by matrices A
and B, respectively. Let the number of patterns in classes 1 and �1
be given by m1 and m2, respectively. Therefore, the sizes of
matrices A and B are ðm1 � nÞ and ðm2 � nÞ, respectively. The
GEPSVM classifier aims to determine two nonparallel planes

xTwð1Þ þ bð1Þ ¼ 0 and xTwð2Þ þ bð2Þ ¼ 0; ð7Þ

so as to minimize the Euclidean distance of the planes from the
data points of classes 1 and �1, respectively. This leads to the
following optimization problem:

Min
w; b 6¼0

��Awþ eb��2� ��½w; b�T��2

��½Bwþ eb��2� ��½w; b�T��2
; ð8Þ

where e is a vector of ones of appropriate dimension and k � k
denotes the L2 norm. It is implicitly assumed that ðw; bÞ 6¼ 0)
Bwþ eb 6¼ 0 [5]. On simplification, we obtain

Min
w; b 6¼0

kAwþ ebk2� ��Bwþ eb��2
: ð9Þ

The optimization problem (9) can be regularized by introducing a
Tikhonov regularization term [9] as follows:

Min
w; b 6¼0

kAwþ ebk2 þ � ½w; b�T
��� ���2

� �� ��Bwþ eb��2
; ð10Þ

where � > 0. This, in turn, leads to the Rayleigh Quotient of the form

Min
z 6¼0

zTGz
�
zTHz; ð11Þ

where G and H are symmetric matrices in Rðnþ1Þ�ðnþ1Þ defined as

G : ¼ ½A e�T � ½A e� þ � � I for some � > 0;

H : ¼ ½B e�T � ½B e�; and z :¼
�
w; b

�T
:

ð12Þ

Using the well-known properties of the Rayleigh Quotient ([5],
[10]), the solution of (11) is obtained by solving the generalized
eigenvalue problem

Gz ¼ �Hz; z 6¼ 0; ð13Þ

where the global minimum of (11) is achieved at an eigenvector
corresponding to the smallest eigenvalue �min of (13). Therefore,
if z1 denotes the eigenvector corresponding to �min, then
wð1Þ; bð1Þ
� �T¼ z1 determines the plane xTwð1Þ þ bð1Þ ¼ 0 that is close
to data points of class 1. Next, we define another minimization
problem analogous to (8) by interchanging the roles of A and B.
The eigenvector z2 corresponding to the smallest eigenvalue of the
second generalized eigenvalue problem will yield the plane
xTwð2Þ þ bð2Þ ¼ 0, which is close to points of class �1.

4 TWIN SUPPORT VECTOR MACHINES

In this section, we introduce a novel approach to SVM classification
which we have termed as Twin Support Vector Machines
(TWSVMs). As mentioned earlier, TWSVMs are similar to GEPSVMs

in spirit, as they also obtain nonparallel planes around which the data
points of the corresponding class get clustered. However, they are
based on an entirely different formulation. In fact, each of the two
quadratic programming problems in the TWSVM pair has the
formulation of a typical SVM, except that not all patterns appear in
the constraints of either problem at the same time.

The TWSVM classifier is obtained by solving the following pair
of quadratic programming problems

ðTWSVM1Þ Min
wð1Þ ; bð1Þ ; q

1

2
ðAwð1Þ þ e1b

ð1ÞÞT ðAwð1Þ þ e1b
ð1ÞÞþ c1e

T
2 q

subject to � ðBwð1Þ þ e2b
ð1ÞÞ þ q � e2; q � 0; and

ð14Þ

ðTWSVM2Þ Min
wð2Þ ; bð2Þ ; q

1

2
ðBwð2Þ þ e2b

ð2ÞÞT ðBwð2Þ þ e2b
ð2ÞÞþ c2e

T
1 q

subject to ðAwð2Þ þ e1b
ð2ÞÞ þ q � e1; q � 0;

ð15Þ

where c1, c2 > 0 are parameters and e1 and e2 are vectors of ones of
appropriate dimensions.

The algorithm finds two hyperplanes, one for each class, and
classifies points according to which hyperplane a given point is
closest to. The first term in the objective function of (14) or (15) is
the sum of squared distances from the hyperplane to points of one
class. Therefore, minimizing it tends to keep the hyperplane close
to points of one class (say class 1). The constraints require the
hyperplane to be at a distance of at least 1 from points of the other
class (say class �1); a set of error variables is used to measure the
error wherever the hyperplane is closer than this minimum
distance of 1. The second term of the objective function minimizes
the sum of error variables, thus attempting to minimize mis-
classification due to points belonging to class �1.

In a nutshell, TWSVMs are comprised of a pair of quadratic
programming problems such that, in each QPP, the objective
function corresponds to a particular class and the constraints are
determined by patterns of the other class. Thus, TWSVMs give rise
to two smaller sized QPPs. In TWSVM1, patterns of class 1 are
clustered around the plane xTwð1Þ þ bð1Þ ¼ 0. Similarly, in TWSVM2,
patterns of class �1 cluster around the plane xTwð2Þ þ bð2Þ ¼ 0. We
observe that TWSVM is approximately four times faster than the
usual SVM. This is because the complexity of the usual SVM is no
more than m3, and TWSVM solves two problems, namely, (14) and
(15), each of which is roughly of size ðm=2Þ. Thus, the ratio of
runtimes is approximately

ðm3Þ
�

2� m

2

� 	3
� �
 �

¼ 4:

The Lagrangian corresponding to the problem TWSVM1 (14) is
given by

Lðwð1Þ;bð1Þ; q; �; �Þ ¼ 1

2
ðAwð1Þ þ e1b

ð1ÞÞT ðAwð1Þ þ e1b
ð1ÞÞ

þ c1e
T
2 q � �T ð�ðBwð1Þ þ e2b

ð1ÞÞ þ q � e2ÞÞ � �T q;
ð16Þ

where � ¼ ð�1; �2 . . .�m2
ÞT and � ¼ ð�1; �2 . . .�m2

ÞT are the vectors
of Lagrange multipliers. The Karush-Kuhn-Tucker (K.K.T) neces-
sary and sufficient optimality conditions [11] for (TWSVM1) are
given by

AT ðAwð1Þ þ e1b
ð1ÞÞ þBT� ¼ 0; ð17Þ

eT1 ðAwð1Þ þ e1b
ð1ÞÞ þ eT2 � ¼ 0; ð18Þ

c1e2 � �� � ¼ 0; ð19Þ
�ðBwð1Þ þ e2b

ð1ÞÞ þ q � e2; q � 0; ð20Þ
�T ð�ðBwð1Þ þ e2b

ð1ÞÞ þ q � e2Þ ¼ 0; �T q ¼ 0; ð21Þ
� � 0; � � 0: ð22Þ
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Since � � 0, from (19) we have

0 � � � c1: ð23Þ

Next, combining (17) and (18) leads to

½AT eT1 �½A e1�
�
wð1Þ; bð1Þ

�T þ ½BT eT2 �� ¼ 0: ð24Þ

We define

H ¼ ½A e1�; G ¼ ½B e2�; ð25Þ

and the augmented vector u ¼ wð1Þ; bð1Þ
� �T

. With these notations,
(24) may be rewritten as

HTHuþGT� ¼ 0; i:e:; u ¼ �ðHTHÞ�1GT�: ð26Þ

Although HTH is always positive semidefinite, it is possible that it
may not be well conditioned in some situations. On the lines of the
regularization term introduced in Ridge Regression approaches
such as [12], we introduce a regularization term �I, � > 0, to take
care of problems due to possible ill-conditioning of HTH. Here, I is
an identity matrix of appropriate dimensions. Therefore, (26) gets
modified to

u ¼ �ðHTH þ �IÞ�1GT�: ð27Þ

However, in the following, we shall continue to use (26) with the
understanding that, if need be, (27) is to be used for the
determination of u.

Using (16) and the above K.K.T conditions, we obtain the Wolfe
dual [11] of TWSVM1 as follows:

ðDTWSVM1Þ Max
�

eT2 ��
1

2
�TGðHTHÞ�1GT�

subject to 0 � � � c1:
ð28Þ

Similarly, we consider TWSVM2 and obtain its dual as

ðDTWSVM2Þ Max
�

eT1 � �
1

2
�TP ðQTQÞ�1PT�

subject to 0 � � � c2:

ð29Þ

Here, P ¼ ½A e1�, Q ¼ ½B e2�, and the augmented vector
v ¼ wð2Þ; bð2Þ

� �T
, which is given by

v ¼ ðQTQÞ�1PT�: ð30Þ

In the above discussion, the matrices HTH and QTQ are matrices
of size ðnþ 1Þ � ðnþ 1Þ, where, in general, n is much smaller in
comparison to the number of patterns of classes 1 and �1.

Once vectors u and v are known from (26) and (30), the
separating planes

xTwð1Þ þ bð1Þ ¼ 0 and xTwð2Þ þ bð2Þ ¼ 0 ð31Þ

are obtained. A new data sample x 2 Rn is assigned to class
r ðr ¼ 1; 2Þ, depending on which of the two planes given by (31) it
lies closest to, i.e.,

xTwðrÞ þ bðrÞ ¼Min
l¼1;2

jxTwðlÞ þ bðlÞj; ð32Þ

where j � j is the perpendicular distance of point x from the plane
xTwðlÞ þ bðlÞ ¼ 0, l ¼ 1; 2.

From the Karush-Kuhn-Tucker conditions (17), (18), (19), (20),
(21), (22), and (23), we observe that patterns of class �1 for which
0 < �i < c1 ði ¼ 1; 2; . . .m2Þ lie on the hyperplane given by
xTwð1Þ þ bð1Þ ¼ 0. Taking motivation from standard SVMs, we can
define such patterns of class �1 as support vectors of class 1 with

respect to class �1 as they play an important role in determining the
required plane. A similar observation holds for the problem
TWSVM2.

At this stage, we give two simple examples to visually illustrate
TWSVM and GEPSVM. Figs. 1 and 2 illustrate the classifiers
obtained for the two examples by using GEPSVM and TWSVM,
respectively. The data consists of points in R2. Points of class 1 are
represented by a � and those of class �1 by a . The training set
accuracy for TWSVM is 100 percent in both the examples, whereas,
for GEPSVM, it is 70 percent and 61.53 percent, respectively.

5 THE NONLINEAR KERNEL CLASSIFIER

In order to extend our results to nonlinear classifiers, we consider
the following kernel-generated surfaces instead of planes.

KðxT ; CT Þuð1Þ þ bð1Þ ¼ 0; and KðxT ; CT Þuð2Þ þ bð2Þ ¼ 0; ð33Þ

where CT ¼ ½A B�T ; ð34Þ

and K is an appropriately chosen kernel. Note that the planes (31)
can be obtained as a special case of (33), by using a linear kernel
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Fig. 1. (a) GEPSVM Classifier and (b) TWSVM Classifier. Points of class 1 are

represented by a � and those of class �1 by a . Fig. 2. (a) GEPSVM Classifier and (b) TWSVM Classifier. Points of class 1 are

represented by a � and those of class �1 by a .

 
 

 



KðxT ; CT Þ ¼ xTC, and by defining wð1Þ ¼ CTuð1Þ and wð2Þ ¼ CTuð2Þ.
In line with the arguments in Section 4, we construct an optimization
problem KTWSVM1 as follows:

ðKTWSVM1Þ Min
uð1Þ; bð1Þ ; q

1

2
kðKðA;CT Þuð1Þ þ e1b

ð1ÞÞk2 þ c1e
T
2 q

subject to � ðKðB;CT Þuð1Þþe2b
ð1ÞÞ þ q � e2; q � 0;

ð35Þ

where c1 > 0 is a parameter. Next, we define a Lagrangian L as
follows:

Lðuð1Þ; bð1Þ; q; �; �Þ ¼ 1

2
kðKðA;CT Þuð1Þ þ e1b

ð1ÞÞk2

þ c1e
T
2 q � �T ð�ðKðB;CT Þuð1Þ þ e2b

ð1ÞÞ
þ q � e2Þ � �T q:

ð36Þ

We obtain the K.K.T. conditions for (KTWSVM1) as

KðA;CT ÞT ðKðA;CT Þuð1Þ þ e1b
ð1ÞÞ þKðB;CT ÞT� ¼ 0; ð37Þ

eT1 ðKðA;CT Þuð1Þ þ e1b
ð1ÞÞ þ eT2 � ¼ 0; ð38Þ

c1e2 � �� � ¼ 0; ð39Þ
�ðKðB;CT Þuð1Þ þ e2b

ð1ÞÞ þ q � e2; q � 0; ð40Þ
�T ð�ðKðB;CT Þuð1Þ þ e2b

ð1ÞÞ þ q � e2Þ ¼ 0; �T q ¼ 0; ð41Þ
� � 0; � � 0: ð42Þ

Combining (37) and (38), we obtain

�
KðA;CT ÞT eT1

��
KðA;CT Þ e1

��
uð1Þ; bð1Þ

�T þ ½KðB;CT ÞT eT2 �� ¼ 0:

ð43Þ

Let

S ¼
�
KðA;CT Þ e1

�
; R ¼

�
KðB;CT Þ e2

�
;

and the augmented vector z ¼ uð1Þ; bð1Þ
� �T

. Then, (43) can be

rewritten as

STSzþ RT� ¼ 0; i:e:; z ¼ �ðSTSÞ�1RT�: ð44Þ

The Wolfe dual of (KTWSVM1) is given by

ðKDTWSVM1Þ Max
�

eT2 ��
1

2
�TRðSTSÞ�1RT�

subject to 0 � � � c1:
ð45Þ

In a similar manner, by reversing the roles of KðA;CT Þ and
KðB;CT Þ in (35), we obtain the optimization problem (KTWSVM2)
and its dual (KDTWSVM2) for the plane KðxT ; CT Þuð2Þ þ bð2Þ ¼ 0 as
follows:

ðKTWSVM2Þ Min
uð2Þ; bð2Þ ; q

1

2
kðKðB;CT Þuð2Þ þ e2b

ð2ÞÞk2 þ c2e
T
1 q

subject to ðKðA;CT Þuð2Þ þ e1b
ð2ÞÞ þ q � e1; q � 0;

ð46Þ

where c2 > 0 is a parameter.

ðKDTWSVM2Þ Max
�

eT1 � �
1

2
�TLðNTNÞ�1LT�

subject to 0 � � � c2:

ð47Þ

Here, L ¼ ½KðA;CT Þ e1�, N ¼ ½KðB;CT Þ e2�, and the augmented

vector z2 ¼ uð2Þ; bð2Þ
� �T

is given by z2 ¼ ðNTNÞ�1LT�.
Once (KDTWSVM1) and (KDTWSVM2) are solved to obtain the

surfaces (33), a new pattern x 2 Rn is assigned to class 1 or class �1
in a manner similar to the linear case.

In practice, if the number of patterns in classes 1 or �1 is large,
then the rectangular kernel technique [13] can be applied to reduce
the dimensionality of (KTWSVM1) and (KTWSVM2). Further, as in
the linear case, we will introduce a regularization term �I, � > 0,
while inverting ðSTSÞ in (44) and (45). This allows us to use the
Sherman-Morrison-Woodbury formula [14] for matrix inversion
and, hence, we need to invert a matrix of a lower order m1, instead
of order m.

6 EXPERIMENTAL RESULTS

The Twin Support Vector Machine (TWSVM), GEPSVM, and SVM
data classification methods were implemented by using MATLAB 7
[15] running on a PC with an Intel P4 processor (3 GHz) with 1 GB
RAM. The methods were evaluated on data sets from the UCI
Machine Learning Repository [16]. Generalization error was
determined by following the standard tenfold cross-validation
methodology [17].

Table 1 summarizes TWSVM performance on some benchmark
data sets available at the UCI machine learning repository [16]. The
table compares the performance of the TWSVM classifier with that
of SVM [8] and GEPSVM [5]. Optimal values of c1 and c2 were
obtained by using a tuning set comprising of 10 percent of the data
set. Table 2 compares the performance of the TWSVM classifier with
that of SVM [8] and GEPSVM [5] using an RBF kernel. In case of the
RBF kernel, we have employed a rectangular kernel [13] using
80 percent of the data. Table 3 compares the training time for 10-fold,
of Gunn SVM [8] with that of TWSVM. The TWSVM training time
has been determined for two cases: The first when an executable file
is used and, second, when a dynamic linked library (DLL) file is
used. The table indicates that TWSVM is not just effective, but also
almost four times faster than a conventional SVM, because it solves
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TABLE 1
Test Set Accuracy with a Linear Kernel

TABLE 2
Percentage Test Set Accuracy with an RBF Kernel

	 Testing accuracy figures have been obtained from [5].

 
 

 



two quadratic programming problems of a smaller size instead of a

single QPP of a very large size.
The nonparallel plane linear kernel classifier obtained from

TWSVM can also be used to automatically discover a two-

dimensional projection of the given data. Figs. 3 and 4 show two-

dimensional scatter plots of the test data (comprised of 10 percent of

data) for the Australian Credit and Pima Indian data sets,

respectively. The plots have been obtained by plotting points with

coordinates ðci; diÞ, where ci and di are the respective distances of a

test pattern xi from the two hyperplanes given in (31), i.e., ci ¼
jxTi wð1Þ þ bð1Þj and di ¼ jxTi wð2Þ þ bð2Þj. In Figs. 3 and 4, the point xi
has been assigned to class 1 if the value of di is less than ci and vice

versa. In the figures, each sample is plotted as a “o” if its class label is

1, while it is plotted as a “þ” if its class label is�1. Hence, the clusters

of points indicate how well classification criterion is able to

discriminate between the two classes. From Figs. 3 and 4, we

observe that, in the case of the Australian Credit database, the two

classes are well separated, while, in the case of the Pima Indian data

set, the projections of the two classes are less distinct. This is also

borne out by the test set accuracy for the two data sets.

7 CONCLUDING REMARKS

In this paper, we have proposed an SVM approach to data

classification, termed TWSVM. In TWSVMs, we solve two quad-

ratic programming problems of a smaller size instead of a large

sized one as we do in traditional SVMs. This makes TWSVM almost

four times faster than a standard SVM classifier. Furthermore, in

contrast to a single hyperplane as given by traditional SVMs,

TWSVMs yield two nonparallel planes such that each plane is close

to one of the two data sets and is distant from the other data set. In

terms of generalization, TWSVMs compare favorably with SVM

and GEPSVM.
The formulation of TWSVM is also attractive for handling

preferential classification problems that have traditionally been

handled by the FSVM [6] and FPSVM [7] approaches. Here, we

observe that TWSVM requires solving only one quadratic problem

which corresponds to the important class.
When TWSVMs are used with a nonlinear kernel, the two

classification problems require the inversion of matrices of order

ðm1 þ 1Þ and ðm2 þ 1Þ, wherem1 andm2 are the number of patterns

of classes 1 and�1, respectively. In many instances, m1 
 m2 and a

classifier may be obtained very rapidly by solving the smaller

problem. This is particularly interesting for unbalanced data sets,
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TABLE 3
Training Times (in Seconds)

Fig. 3. Two-dimensional projection for test points from the Australian Credit
data set. Fig. 4. Two-dimensional projection for test points from the Pima Indians data set.

 
 

 



e.g., in medical databases, where the number of disease-free
examples may far out-number instances of the other class.

One significant advantage of TWSVM over GEPSVM is its SVM
type formulation, which opens up the possibility of a SMO-type
solution for faster computation. Similarly, the TWSVM approach
may allow for kernel optimization via semidefinite programming
and second order conic programming, as has been demonstrated
by Lanckriet et al. [18] for the standard SVM classifier. These
certainly seem to be promising areas for future research. Another
important line of work that immediately suggests itself is to
analyze the statistical properties of TWSVMs and the extension to
multicategory classification.
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