
Sven O. Krumke

Integer Programming
Polyhedra and Algorithms

Draft: January 4, 2006

0 1 2 3 4 5

0

1

2

3

4

5 S

G

shrink S

shrink S̄ = V \ S

GS

S

GS̄

S

V \ S

ii

These course notes are based on my lectures
»Integer Programming: Polyhedral Theory«
and »Integer Programming: Algorithms« at
the University of Kaiserslautern.

I would be happy to receive feedback, in
particular suggestions for improvement and
notificiations of typos and other errors.

Sven O. Krumkekrumke�mathematik.uni-kl.de

Contents

1 Introduction 1

1.1 Integer Linear Programs . 1

1.2 Notes of Caution . 4

1.3 Examples . 5

1.4 Literature . 10

1.5 Acknowledgements . 10

2 Basics 11

2.1 Notation . 11

2.2 Convex Hulls . 11

2.3 Polyhedra and Formulations . 13

2.4 Linear Programming . 15

2.5 Agenda . 16

I Polyhedral Theory 17

3 Polyhedra and Integer Programs 19

3.1 Valid Inequalities and Faces of Polyhedra . 19

3.2 Dimension . 22

3.3 Extreme Points . 29

3.4 Facets . 34

3.5 Minkowski’s Theorem . 38

3.6 Most IPs are Linear Programs . 42

4 Integrality of Polyhedra 47

4.1 Equivalent Definitions of Integrality . 48

4.2 Matchings and Integral Polyhedra I . 49

4.3 Total Unimodularity . 50

4.4 Conditions for Total Unimodularity . 52

4.5 Applications of Unimodularity: Network Flows . 54

4.6 Matchings and Integral Polyhedra II . 57

4.7 Total Dual Integrality . 61

4.8 Submodularity and Matroids . 64

iv

II Algorithms 69

5 Basics about Problems and Complexity 71
5.1 Encoding Schemes, Problems and Instances . 71
5.2 The Classes P and NP . 73
5.3 The Complexity of Integer Programming . 76
5.4 Optimization and Separation . 77

6 Relaxations and Bounds 81
6.1 Optimality and Relaxations . 81
6.2 Combinatorial Relaxations . 84
6.3 Lagrangian Relaxation . 88
6.4 Duality . 94

7 Dynamic Programming 97
7.1 Shortest Paths Revisited . 97
7.2 Knapsack Problems . 99
7.3 Problems on Trees . 101

8 Branch and Bound 103
8.1 Divide and Conquer . 103
8.2 Pruning Enumeration Trees . 103
8.3 LP-Based Branch and Bound: An Example . 106
8.4 Techniques for LP-based Branch and Bound . 109

9 Cutting Planes 115
9.1 Cutting-Plane Proofs . 115
9.2 A Geometric Approach to Cutting Planes: The ChvÃ¡tal Rank 121
9.3 Cutting-Plane Algorithms . 123
9.4 Gomory’s Cutting-Plane Algorithm . 125
9.5 Mixed Integer Cuts . 131
9.6 Structured Inequalities . 133

10 Column Generation 145
10.1 Dantzig-Wolfe Decomposition . 145
10.2 Dantzig-Wolfe Reformulation of Integer Programs 148

11 More About Lagrangean Duality 157
11.1 Convexity and Subgradient Optimization . 157
11.2 Subgradient Optimization for the Lagrangean Dual 160
11.3 Lagrangean Heuristics and Variable Fixing . 162

A Notation 165
A.1 Basics . 165
A.2 Sets and Multisets . 165
A.3 Analysis and Linear Algebra . 166
A.4 Growth of Functions . 166
A.5 Particular Functions . 166
A.6 Probability Theory . 167
A.7 Graph Theory . 167
A.8 Theory of Computation . 169

v

B Symbols 171

Bibliography 173

Introduction

Linear Programs can be used to model a large number of problems arising in
practice. A standard form of a Linear Program is

(LP) max cT x(1.1a)

Ax ≤ b(1.1b)

x ≥ 0,(1.1c)

where c ∈ Rn, b ∈ Rm are given vectors and A ∈ Rm×n is a matrix. The focus
of these lecture notes is to study extensions of Linear Programs where we are
given additional integrality conditions on all or some of the variables.

Problems with integrality constraints on the variables arise in a variety of ap-
plications. For instance, if we want to place facilities, it makes sense to require
the number of facilites to be an integer (it is not clear what it means to build
2.28 fire stations). Also, frequently, one can model decisions as 0-1-variables:
the variable is zero if we make a negative decision and one otherwise.

1.1 Integer Linear Programs

We first state the general form of a Mixed Integer Program as it will be used
throughout these notes:

Definition 1.1 (Mixed Integer Linear Program (MIP))
A Mixed Integer Linear Program (MIP) is given by vectors c ∈ Rn, b ∈ Rm, a
matrix A ∈ Rm×n and a number p ∈ {0, . . . , n}. The goal of the problem is to find a
vector x ∈ Rn solving the following optimization problem:

(MIP) max cT x(1.2a)

Ax ≤ b(1.2b)

x ≥ 0(1.2c)

x ∈ Zp × Rn−p.(1.2d)

If p = 0, then then there are no integrality constraints at all, so we obtain the Linear
Program (1.1). On the other hand, if p = n, then all variables are required to be
integral. In this case, we speak of an Integer Linear Program (IP): we note again for
later reference:

(IP) max cT x(1.3a)

Ax ≤ b(1.3b)

x ≥ 0(1.3c)

x ∈ Zn(1.3d)

2 Introduction

If in an (IP) all variables are restricted to values from the set B = {0, 1}, we have a
0-1-Integer Linear Program or Binary Linear Integer Program:

(BIP) max cT x(1.4a)

Ax ≤ b(1.4b)

x ≥ 0(1.4c)

x ∈ Bn(1.4d)

Most of the time we will be concerned with Integer Programs (IP) and Binary
Integer Programs (BIP).

Example 1.2
Consider the following Integer Linear Program:

max x + y(1.5a)

2y − 3x ≤ 2(1.5b)

x + y ≤ 5(1.5c)

1 ≤ x ≤ 3(1.5d)

1 ≤ y ≤ 3(1.5e)

x, y ∈ Z(1.5f)

The feasible region S of the problem is depicted in Figure 1.1. It consists of the
integral points emphasized in red, namely

S = {(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2), (2, 3)}.

0 1 2 3 4 5

0

1

2

3

4

5

b b b

b b b

b

Figure 1.1: Example of the feasible region of an integer program.

⊳

Example 1.3 (Knapsack Problem)
A climber is preparing for an expedition to Mount Optimization. His equip-
ment consists of n items, where each item i has a profit pi ∈ Z+ and a
weight wi ∈ Z+. The climber knows that he will be able to carry items of

1.2 Notes of Caution 3

total weight at most b ∈ Z+. He would like to pack his knapsack in such a
way that he gets the largest possible profit without exceeding the weight limit.

We can formulate the KNAPSACK problem as a (BIP). Define a decision vari-
able xi, i = 1, . . . , n with the following meaning:

xi =

{
1 if item i gets packed into the knapsack
0 otherwise

Then, KNAPSACK becomes the (BIP)

max
n∑

i=1

pixi(1.6a)

n∑

i=1

wixi ≤ b(1.6b)

x ∈ Bn(1.6c)

⊳

In the preceeding example we have essentially identified a subset of the pos-
sible items with a 0-1-vector. Given a ground set E, we can associate with each
subset F ⊆ E an incidence vector χF ∈ RF by setting

χF
e =

{
1 if e ∈ F

0 if e /∈ F.

Then, we can identify the vector χF with the set F and vice versa. We will see
numerous examples of this identification in the rest of these lecture notes. This
identification appears frequently in the context of combinatorial optimization
problems.

Definition 1.4 (Combinatorial Optimization Problem)
A combinatorial optimization problem is given by a finite ground set N, a weight
function c : N→ R and a family F ⊆ 2N of feasible subsets of N. The goal is to solve

(1.7) (COP) min






∑

j∈S

cj : S ∈ F





.

Thus, we can write KNAPSACK also as (COP) by using:

N := {1, . . . , n}

F :=

{

S ⊆ N :
∑

i∈S

wi ≤ b

}

,

and c(i) := −wi. We will see later that there is a close connection between
combinatorial optimization problems (as stated in (1.7)) and Integer Linear
Programs.

4 Introduction

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

y =
√

2xx = 1

y = 0

Figure 1.2: An IP without optimal solution.

1.2 Notes of Caution

Integer Linear Programs are qualitatively different from Linear Programs in a
number of aspects. Recall that from the Fundamental Theorem of Linear Pro-
gramming we know that, if the Linear Program (1.1) is feasible and bounded,
it has an optimal solution.

Now, consider the following Integer Linear Program:

max −
√

2x + y(1.8a)

−
√

2x + y ≤ 0(1.8b)

x ≥ 1(1.8c)

y ≥ 0(1.8d)

x, y ∈ Z(1.8e)

The feasible region S of the IP (1.8) is depicted in Figure 1.2. The set of feasible
solutions is nonempty (for instance (1, 0) is a feasible point) and by the con-
straint −

√
2x+y ≤ 0 the objective is also bounded from above on S. However,

the IP does not have an optimal solution!

To see this, observe that from the constraint −
√

2x + y ≤ 0 we have y/x ≤
√

2

and, since we know that
√

2 is irrational, −
√

2x + y < 0 for any x, y ∈ Z. On
the other hand, for integral x, the function −

√
2x+ ⌊

√
2x⌋ gets arbitrarily close

to 0.

Remark 1.5 An IP with irrational input data can be feasible and bounded but
may still not have an optimal solution.

1.3 Examples 5

The reason why the IP (1.8) does not have an optimal solution lies in the fact
that we have used irrational data to specify the problem. We will see later that
under the assumption of rational data any feasible and bounded MIP must
have an optimal solution. We stress again that for standard Linear Programs
no assumption about the input data is needed.

At first sight it might sound like a reasonable idea to simply drop the inte-
grality constraints in an IP and to “round the corresponding” solution. But, in
general, this is not a good idea for the following reasons:

• The rounded solution may be infeasible (see Figure 1.3(a)), or

• the rounded solution may be feasible but far from the optimum solution
(see Figure 1.3(b)).

x∗

cT x

(a)

x∗

cT x

(b)

Figure 1.3: Simply rounding a solution of the LP-relaxation to an IP may give
infeasible or very bad solutions.

1.3 Examples

In this section we give various examples of integer programming problems.

Example 1.6 (Assignment Problem)
Suppose that we are given n tasks and n people which are available for car-
rying out the tasks. Each person can carry out exactly one job, and there is a
cost cij if person i serves job j. How should we assign the jobs to the persons
in order to minimize the overall cost?

We first introduce binary decision variables xij with the following meaning:

xij =

{
1 if person i carrys out job j

0 otherwise.

Given such a binary vector x, the number of persons assigned to job j is ex-
actly

∑n

i=1 xij. Thus, the requirement that each job gets served by exactly one
person can be enforced by the following constraint:

n∑

i=1

xij = 1, for j = 1, . . . , n.

Similarly, we can ensure that each person does exactly one job by having the
following constraint:

n∑

j=1

xij = 1, for i = 1, . . . , n.

6 Introduction

We obtain the following BIP:

min
n∑

i=1

n∑

j=1

cijxij

n∑

i=1

xij = 1 for j = 1, . . . , n

n∑

j=1

xij = 1 for i = 1, . . . , n

x ∈ Bn2

⊳

Example 1.7 (Uncapacitated Facility Location Problem)
In the uncapacitated facility location problem (UFL) we are given a set of potential
depots M = {1, . . . , m} and a set N = {1, . . . , n} of clients. Opening a depot at
site j involves a fixed cost fj. Serving client i by a depot at location j costs cij

units of money. The goal of the UFL is to decide at which positions to open
depots and how to serve all clients such as to minimize the overall cost.

We can model the cost cij which arises if client i is served by a facility at j with
the help of binary variables xij similar to the assignment problem:

xij =

{
1 if client i is served by a facility at j

0 otherwise.

The fixed cost fj which arises if we open a facility at j can be handled by binary
variables yj where

yj =

{
1 if a facility at j is opened
0 otherwise.

Following the ideas of the assignment problem, we obtain the following BIP:

min
m∑

j=1

fjyj +

m∑

j=1

n∑

i=1

cijxij(1.9a)

m∑

j=1

xij = 1 for i = 1, . . . , n(1.9b)

x ∈ Bnm, y ∈ Bm(1.9c)

As in the assignment problem, constraint (1.9b) enforces that each client is
served. But our formulation is not complete yet! The current constraints allow
a client i to be served by a facility at j which is not opened, that is, where
yj = 0. How can we ensure that clients are only served by open facilities?

One option is to add the nm constraints xij ≤ yj for all i, j to (1.9). Then, if
yj = 0, we must have xij = 0 for all i. This is what we want. Hence, the UFL

1.3 Examples 7

can be formulated as follows:

min
m∑

j=1

fjyj +

m∑

j=1

n∑

i=1

cijxij(1.10a)

m∑

j=1

xij = 1 for i = 1, . . . , n(1.10b)

xij ≤ yj for i = 1, . . . , n and j = 1, . . . , m(1.10c)

x ∈ Bnm, y ∈ Bm(1.10d)

A potential drawback of the formulation (1.10) is that it contains a large num-
ber of constraints. We can formulate the condition that clients are served only
by open facilities in another way. Observe that

∑n
i=1 xij is the number of

clients assigned to facility j. Since this number is an integer between 0 and n,
the condition

∑n

i=1 xij ≤ nyj can also be used to prohibit clients being served
by a facility which is not open. If yj = 0, then

∑n
i=1 xij must also be zero. If

yj = 1, we have the constraint
∑n

i=1 xij ≤ n which is always satisfied since
there is a total of n clients. This gives us the alternative formulation of the
UFL:

min
m∑

j=1

fjyj +

m∑

j=1

n∑

i=1

cijxij(1.11a)

m∑

j=1

xij = 1 for i = 1, . . . , n(1.11b)

n∑

i=1

xij ≤ nyj for j = 1, . . . , m(1.11c)

x ∈ Bnm, y ∈ Bm(1.11d)

Are there any differences between the two formulations as far as solvability is
concerned? We will explore this question later in greater detail. ⊳

Example 1.8 (Traveling Salesman Problem)
In the traveling salesman problem (TSP) a salesman must visit each of n given
cities V = {1, . . . , n} exactly once and then return to his starting point. The
distance between city i and j is cij. The salesman wants to find a tour of
minimum length.

The TSP can be modeled as a graph problem by considering a complete di-
rected graph G = (V, A), that is, a graph with A = V × V , and assigning a cost
c(i, j) to every arc a = (i, j). A tour is then a cycle in G which touches every
node in V exactly once.

We formulate the TSP as a BIP. We have binary variables xij with the following
meaning:

xij =

{
1 if the salesman goes from city i directly to city j

0 otherwise.

Then, the total length of the tour taken by the salesman is
∑

i,j cijxij. In a
feasible tour, the salesman enters each city exactly once and also leaves each

8 Introduction

city exactly once. Thus, we have the constraints:
∑

j:j6=i

xji = 1 for i = 1, . . . , n

∑

j:j6=i

xij = 1 for i = 1, . . . , n.

However, the constraints specified so far do not ensure that a binary solution
forms indeed a tour.

2

1 4 5

3

Figure 1.4: Subtours are possible in the TSP if no additional constraints are
added.

Consider the situation depicted in Figure 1.4. We are given five cities and for
each city there is exactly one incoming and one outgoing arc. However, the
solution is not a tour but a collection of directed cycles called subtours.

To elminimate subtours we have to add more constraints. One possible way of
doing so is to use the so-called subtour elimination constraints. The underlying
idea is as follows. Let ∅ 6= S ⊂ V be a subset of the cities. A feasible tour
(on the whole set of cities) must leave S for some vertex outside of S. Hence,
the number of arcs that have both endpoints in S can be at most |S| − 1. On
the other hand, a subtour which is a directed cycle for a set ∅ 6= S ⊂ V , has
exactly |S| arcs with both endpoints in S. We obtain the following BIP for the
TSP:

min
n∑

i=1

n∑

j=1

cijxij(1.12a)

∑

j:j6=i

xij = 1 for i = 1, . . . , n(1.12b)

∑

i:i6=j

xij = 1 for j = 1, . . . , n(1.12c)

∑

i∈S

∑

j∈S

xij ≤ |S| − 1 for all ∅ ⊂ S ⊂ V.(1.12d)

x ∈ Bn(n−1)(1.12e)

As mentioned before, the constraints (1.12d) are called subtour elimination con-
straints. ⊳

Example 1.9 (Set-Covering, Set-Packing and Set-Partitioning Problem)
Let U be a finite ground set and F ⊆ 2U be a collection of subsets of U. There
is a cost/benefit cf associated with every set f ∈ F. In the the set covering

1.3 Examples 9

(set packing, set partitioning) problem we wish to find a subcollection of the
sets in F such that each element in U is covered at least once (at most once,
exactly once). The goal in the set covering and set partitioning problem is to
minimize the cost of the chosen sets, whereas in the set packing problem we
wish to maximize the benefit.

We can formulate each of these problems as a BIP by the following approach.
We choose binary variables yf, f ∈ F with the meaning that

xf =

{
1 if set f is chosen to be in the selection
0 otherwise.

Let A = (auf) be the |U|×|F|-matrix which reflects the element-set containment
relations, that is

auf :=

{
1 if element u is contained in set f

0 otherwise.

Then, the constraint that every element is covered at least once (at most once,
exactly once) can be expressed by the linear constraints Ax ≥ 1 (Ax ≤ 1,
Ax = 1), where 1 = (1, . . . , 1) ∈ RU is the vector consisting of all ones. ⊳

Example 1.10 (Minimum Spanning Tree Problem)
A spanning tree in an undirected graph G = (V, E) is a subgraph T = (V, F)

of G which is connected and does not contain cycles. Given a cost function
c : E→ R+ on the edges of G the minimum spanning tree problem (MST-Problem)
asks to find a spanning tree T of minimum weight c(F).

We choose binary indicator variables xe for the edges in E with the meaning
that xe = 1 if and only if e is included in the spanning tree. The objective
function

∑
e∈E cexe is now clear. But how can we formulate the requirement

that the set of edges chosen forms a spanning tree?

A cut in an undirected graph G is a partition S∪ S̄ = V , S∩ S̄ = ∅ of the vertex
set. We denote by δ(S) the set of edges in the cut, that is, the set of edges which
have exactly one endpoint in S. It is easy to see that a subset F ⊆ E of the edges
forms a connected spanning subgraph (V, F) if and only if F ∩ δ(S) 6= ∅ for all
subsets S with ∅ ⊂ S ⊂ V . Hence, we can formulate the requirement that the
subset of edges chosen forms a connected spanning subgraph by having the
constraint

∑
e∈δ(S) xe ≥ 1 for each such subset. This gives the following BIP:

min
∑

e∈E

cexe(1.13a)

∑

e∈δ(S)

xe ≥ 1 for all ∅ ⊂ S ⊂ V(1.13b)

x ∈ BE(1.13c)

How do we incorporate the requirement that the edge set chosen should be
without cycles? The answer is that we do not need to, as far as optimality is
concerned! The reason behind that is the following: if χF is a feasible solution
for (1.13) and F contains a cycle, we can remove one edge e from the cycle and
F \ {e} is still feasible. Since c is nonnegative, the vector χF\{e} is a feasible
solution for (1.13) of cost at most that of χF. ⊳

10 Introduction

1.4 Literature

These notes are a revised version of [Kru04], which followed more closely
the book by Laurence Wolsey [Wol98]. Classical books about Linear and
Integer Programming are the books of George Nemhauser and Laurence
Wolsey [NW99] and Alexander Schrijver [Sch86]. You can also find a lot
of useful stuff in the books [CC+98, Sch03, GLS88] which are mainly about
combinatorial optimization. Section 5.3 discusses issues of complexity. A
classical book about the theory of computation is the book by Garey and
Johnson [GJ79]. More books from this area are [Pap94, BDG88, BDG90].

1.5 Acknowledgements

I wish to thank all students of the lecture »Optimization II: Integer Program-
ming« at the Technical University of Kaiserslautern (winter semester 2003/04)
for their comments and questions. Particular thanks go to all students who
actively reported typos and provided constructive criticism: Robert Dorbritz,
Ulrich Dürholz, Tatjana Kowalew, Erika Lind, Wiredu Sampson and Phillip
Süß. Needless to say, all remaining errors and typos are solely my faults!

Basics

In this chapter we introduce some of the basic concepts that will be useful for
the study of integer programming problems.

2.1 Notation

Let A ∈ Rm×n be a matrix with row index set M = {1, . . . , m} and column
index set N = {1, . . . , n}. We write

A = (aij)i=1,...,m
j=1,...,n

A·,j =







a1j

...
amj






: jth column of A

Ai,· = (ai1, . . . , an1) : ith row of A.

For subsets I ⊆ M and J ⊆ N we denote by

AI,J := (aij)i∈I
j∈J

the submatrix of A formed by the corresponding indices. We also set

A·,J := AM,J

AI,· := AI,N.

For a subset X ⊆ Rn we denote by

lin(X) := { x =

k∑

i=1

λivi : λi ∈ R and v1, . . . , vk ∈ X }

the linear hull of X.

2.2 Convex Hulls

Definition 2.1 (Convex Hull)
Given a set X ⊆ Rn, the convex hull of X, denoted by conv(X) is defined to be the
set of all convex combinations of vectors from X, that is,

conv(X) := { x =

k∑

i=1

λivi : λi ≥ 0,

k∑

i=1

λi = 1 and v1, . . . , vk ∈ X }

12 Basics

Suppose that X ⊆ Rn is some set, for instance X is the set of incidence vectors
of all spanning trees of a given graph (cf. Example 1.10). Suppose that we wish
to find a vector x ∈ X maximizing cTx.

If x =
∑k

i=1 λivi ∈ conv(X) is a convex combination of the vectors v1, . . . , vk,
then

cT x =

k∑

i=1

λic
T vi ≤ max{cTvi : i = 1, . . . , k}.

Hence, we have that

max{ cT x : x ∈ X } = max{ cTx : x ∈ conv(X) }

for any set X ⊆ Rn.

Observation 2.2 Let X ⊆ Rn be any set and c ∈ Rn be any vector. Then

(2.1) max{ cTx : x ∈ X } = max{ cTx : x ∈ conv(X) }.

Proof: See above. 2

Observation 2.2 may seem of little use, since we have replaced a discrete finite
problem (left hand side of (2.1) by a continuous one (right hand side of (2.1)).
However, in many cases conv(X) has a nice structure that we can exploit in
order to solve the problem. It turns out that “most of the time” conv(X) is a
polyhedron { x : Ax ≤ b } (see Section 2.3) and that the problem max{ cTx : x ∈
conv(X) } is a Linear Program.

Example 2.3
We return to the IP given in Example 1.2:

max x + y

2y − 3x ≤ 2

x + y ≤ 5

1 ≤ x ≤ 3

1 ≤ y ≤ 3

x, y ∈ Z

We have already noted that the set X of feasible solutions for the IP is

X = {(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2), (2, 3)}.

Observe that the constraint y ≤ 3 is actually superfluous, but that is not our
main concern right now. What is more important is the fact that we obtain the
same feasible set if we add the constraint x − y ≥ −1 as shown in Figure 2.1.
Moreover, we have that the convex hull conv(X) of all feasible solutions for
the IP is described by the following inequalities:

2y − 3x ≤ 2

x + y ≤ 5

−x + y ≤ 1

1 ≤ x ≤ 3

1 ≤ y ≤ 3

2.3 Polyhedra and Formulations 13

0 1 2 3 4 5

0

1

2

3

4

5

b b b

b b b

b

Figure 2.1: The addition of a the new constraint x − y ≥ −1 (shown as the red
line) leads to the same set feasible set.

Observation 2.2 now implies that instead of solving the original IP we can also
solve the Linear Program

max x + y

2y − 3x ≤ 2

x + y ≤ 5

−x + y ≤ 1

1 ≤ x ≤ 3

1 ≤ y ≤ 3

that is, a standard Linear Program without integrality constraints. ⊳

In the above example we reduced the solution of an IP to solving a standard
Linear Program. We will see later that in principle this reduction is always
possible (provided the data of the IP is rational). However, there is a catch!
The mentioned reduction might lead to an exponential increase in the problem
size. Sometimes we might still overcome this problem (see Section 5.4).

2.3 Polyhedra and Formulations

Definition 2.4 (Polyhedron, polytope)
A polyhedron is a subset of Rn described by a finite set of linear inequalities, that is,
a polyhedron is of the form

(2.2) P(A, b) := { x ∈ Rn : Ax ≤ b },

where A is an m×n-matrix and b ∈ Rm is a vector. The polyhedron P is a rational
polyhedron if A and b can be chosen to be rational. A bounded polyhedron is called
polytope.

In Section 1.3 we have seen a number of examples of Integer Linear Programs
and we have spoken rather informally of a formulation of a problem. We now
formalize the term formulation:

14 Basics

Definition 2.5 (Formulation)
A polyhedron P ⊆ Rn is a formulation for a set X ⊆ Zp ×Rn−p, if X = P ∩ (Zp ×
Rn−p).

It is clear, that in general there is an infinite number of formulations for a set X.
This naturally raises the question about “good” and “not so good” formula-
tions.

We start with an easy example which provides the intuition how to judge for-
mulations. Consider again the set X = {(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2), (2, 3)} ⊂
R2 from Examples 1.2 and 2.3. Figure 2.2 shows our known two formula-
tions P1 and P2 together with a third one P3.

P1 =






(

x

y

)

:

2y − 3x ≤ 2

x + y ≤ 5

1 ≤ x ≤ 3

1 ≤ y ≤ 3






P2 =






(

x

y

)

:

2y − 3x ≤ 2

x + y ≤ 5

−x + y ≤ 1

1 ≤ x ≤ 3

1 ≤ y ≤ 3






0 1 2 3 4 5

0

1

2

3

4

5

b b b

b b b

b

Figure 2.2: Different formulations for the integral set X =

{(1, 1), (2, 1), (3, 1), (1, 2), (2, 2), (3, 2), (2, 3)}

Intuitively, we would rate P2 much higher than P1 or P3. In fact, P2 is an
ideal formulation since, as we have seen in Example 2.3 we can simply solve a
Linear Program over P2, the optimal solution will be an extreme point which
is a point from X.

Definition 2.6 (Better and ideal formulations)
Given a set X ⊆ Rn and two formulations P1 and P2 for X, we say that P1 is better
than P2, if P1 ⊂ P2.

A formulation P for X is called ideal, if P = conv(X).

We will see later that the above definition is one of the keys to solving IPs.

2.4 Linear Programming 15

Example 2.7
In Example 1.7 we have seen two possibilities to formulate the Uncapacitated
Facility Location Problem (UFL):

min
n∑

j=1

fjyj +

m∑

j=1

n∑

i=1

cijxij min
n∑

j=1

fjyj +

m∑

j=1

n∑

i=1

cijxij

x ∈ P1 x ∈ P2

x ∈ Bnm, y ∈ Bm x ∈ Bnm, y ∈ Bm,

where

P1 =

{(
x

y

)

:

∑m

j=1 xij = 1 for i = 1, . . . , n

xij ≤ yj for i = 1, . . . , n and j = 1, . . . , m

}

P2 =

{(
x

y

)

:

∑m
j=1 xij = 1 for i = 1, . . . , n∑n

i=1 xij ≤ nyj for j = 1, . . . , m

}

We claim that P1 is a better formulation than P2. If x ∈ P1, then xij ≤ yj for all
i and j. Summing these constraints over i gives us

∑n

i=1 xij ≤ nyj, so x ∈ P2.
Hence we have P1 ⊆ P2. We now show that P1 6= P2 thus proving that P1 is a
better formulation.

We assume for simplicity that n/m = k is an integer. The argument can be
extended to the case that m does not divide n by some technicalities. We
partition the clients into m groups, each of which contains exactly k clients.
The first group will be served by a (fractional) facility at y1, the second group
by a (fractional) facility at y2 and so on. More precisely, we set

xij = 1 for i = k(j − 1) + 1, . . . , k(j − 1) + k and j = 1, . . . , m

and xij = 0 otherwise. We also set yj = k/n for j = 1, . . . , m.

Fix j. By construction
∑n

i=1 xij = k = n k
n

= nyj. Hence, the point (x, y) just
constructed is contained in P2. On the other hand, (x, y) /∈ P1. ⊳

2.4 Linear Programming

We briefly recall the following fundamental results from Linear Programming
which we will use in these notes. For proofs, we refer to standard books about
Linear Programming such as [Sch86, Chv83].

Theorem 2.8 (Duality Theorem of Linear Programming) Let A be an m × n-
matrix, b ∈ Rm and c ∈ Rn. Define the polyhedra P = {x : Ax ≤ b} and Q ={
y : ATy = c, y ≥ 0

}
.

(i) If x ∈ P and y ∈ Q then cT x ≤ bTy. (weak duality)

(ii) In fact, we have

(2.3) max{ cTx : x ∈ P } = min{ bTy : y ∈ Q },

provided that both sets P and Q are nonempty. (strong duality) 2

16 Basics

Theorem 2.9 (Complementary Slackness Theorem) Let x∗ be a feasible solu-
tion of max{ cT x : Ax ≤ b } and y∗ be a feasible solution of min{ bTy : ATy =

c, y ≥ 0 }. Then x∗ and y∗ are optimal solutions for the maximization problem and
minimization problem, respectively, if and only if they satisfy the complementary
slackness conditions:

(2.4) for each i = 1, . . . , m, either y∗
i = 0 or Ai,·x

∗
i = bi.

2

Theorem 2.10 (Farkas’ Lemma) The set {x : Ax = b, x ≥ 0} is nonempty if and
only if there is no vector y such that ATy ≥ 0 and bTy < 0. 2

2.5 Agenda

These lecture notes are consist of two main parts. The goal of Part I are as
follows:

1. Prove that for any rational polyhedron P(A, b) = {x : Ax ≤ b} and X =

P ∩ Zn the set conv(X) is again a rational polyhedron.

2. Use the fact max
{
cTx : x ∈ X

}
= max

{
cT x : x ∈ conv(X)

}
(see Obser-

vation 2.2) and 1 to show that the latter problem can be solved by means
of Linear Programming by showing that an optimum solution will al-
ways be found at an extreme point of the polyhedron conv(X) (which
we show to be a point in X).

3. Give tools to derive good formulations.

Part I

Polyhedral Theory

Polyhedra and Integer
Programs

3.1 Valid Inequalities and Faces of Polyhedra

Definition 3.1 (Valid Inequality)
Let w ∈ Rn and t ∈ R. We say that the inequality wT x ≤ t is valid for a set S ⊆ Rn

if
S ⊆ { x : wT x ≤ t }.

We usually write briefly
(

w
t

)

for the inequality wT x ≤ t. The set

Sγ :=

{(
w

t

)

: wT x ≤ t is valid for S

}

is called γ-polar of S.

Definition 3.2 (Face)
Let P ⊆ Rn be a polyhedron. The set F ⊆ P is called a face of P, if there is a be a valid
inequality

(

w
t

)

for P such that

F =
{
x ∈ P : wT x = t

}
.

If F 6= ∅ we say that
(

w
t

)

supports the face F and call
{
x : wT x = t

}
the correspond-

ing supporting hyperplane. If F 6= ∅ and F 6= P, then we call F a nontrivial or
proper face.

Observe that any face of P(A, b) has the form

F =
{
x : Ax ≤ b, wTx ≤ t, −wTx ≤ −t

}

which shows that any face of a polyhedron is again a polyhedron.

Example 3.3
We consider the polyhedron P ⊆ R2, which is defined by the inequalities

x1 + x2 ≤ 2(3.1a)

x1 ≤ 1(3.1b)

x1, x2 ≥ 0.(3.1c)

20 Polyhedra and Integer Programs

1 2 3

1

2

3

P

F2

F1

x1 + x2 = 2

2x1 + x2 = 3

3x1 + x2 = 4

x1 = 5/2

Figure 3.1: Polyhedron for Example 3.3

We have P = P(A, b) with

A =









1 1

1 0

−1 0

0 −1









und b =









2

1

0

0









.

The line segment F1 from
(

0
2

)

to
(

1
1

)

is a face of P, since x1 + x2 ≤ 2 is a valid
inequality and

F1 = P ∩
{
x ∈ R2 : x1 + x2 = 2

}
.

The singleton F2 = {
(

1
1

)

} is another face of P, since

F2 = P ∩
{
x ∈ R2 : 2x1 + x2 = 3

}

F2 = P ∩
{
x ∈ R2 : 3x1 + x2 = 4

}
.

Both inequalities 2x1 + x2 ≤ 3 and 3x1 + x2 ≤ 4 induce the same face of P. In
particular, this shows that the same face can be induced by completely differ-
ent inequalities.

The inequalities x1 + x2 ≤ 2, 2x1 + x2 ≤ 3 and 3x1 + x2 ≤ 4 induce nonempty
faces of P. They support P In contrast, the valid inequality x1 ≤ 5/2 has

F3 = P ∩
{
x ∈ R2 : x1 = 5/2

}
= ∅,

and thus x1 = 5/2 is not a supporting hyperplane of P. ⊳

Remark 3.4 (i) Any polyhedron P ⊆ Rn is a face of itself, since P = P ∩{
x ∈ Rn : 0T x = 0

}
.

3.1 Valid Inequalities and Faces of Polyhedra 21

(ii) ∅ is a face of any polyhedron P ⊆ Rn, since ∅ = P∩
{
x ∈ Rn : 0Tx = 1

}
.

(iii) If F = P ∩
{
x ∈ Rn : cT x = γ

}
is a nontrivial face of P ⊆ Rn, then c 6= 0,

since otherwise we are either in case (i) or (ii) above.

Let us consider Example 3.3 once more. Face F1 can be obtained by turning
inequality (3.1a)) into an equality: machen:

F1 =





x ∈ R2 :

x1 + x2 = 2

x1 ≤ 1

x1, x2 ≥ 0






Likewise F2 can be obtained by making (3.1a) and (3.1b) equalities

F2 =





x ∈ R2 :

x1 + x2 = 2

x1 = 1

x1, x2 ≥ 0






Let P = P(A, b) ⊆ Rn be a polyhedron and M be the index set of the rows
of A. For a subset I ⊆ M we consider the set

(3.2) fa(I) := {x ∈ P : AI,·x = bI} .

Since any x ∈ P satisfies AI,·x ≤ bI, we get by summing up the rows of (3.2)
for

cT :=
∑

i∈I

AI,· and γ :=
∑

i∈I

bi

a valid inequality cTx ≤ γ for P. For all x ∈ P \ fa(I) there is at least one i ∈ I,
such that Ai,·x < bi. Thus cT x < γ for all x ∈ P \ F and

fa(I) =
{
x ∈ P : cT x = γ

}

is a face of P.

Definition 3.5 (Face induced by index set)
The set fa(I) defined in (3.2) is called the face of P induced by I.

In Example 3.3 we have F1 = fa({1}) and F2 = fa({1, 2}). The following theorem
shows that in fact all faces of a polyhedron can be obtained this way.

Theorem 3.6 Let P = P(A, b) ⊆ Rn be a nonempty polyhedron and M be the
index set of the rows of A. The set F ⊆ Rn with F 6= ∅ is a face of P if and only if
F = fa(I) = {x ∈ P : AI,·x = bI} for a subset I ⊆ M.

Proof: We have already seen that fa(I) is a face of P for any I ⊆ M. Assume
conversely that F = P ∩

{
x ∈ Rn : cT x = t

}
is a face of P. Then, F is precisely

the set of optimal solutions of the Linear Program

(3.3) max
{
cT x : Ax ≤ b

}
.

(here we need the assumption that P 6= ∅). By the Duality Theorem of Linear
Programming (Theorem 2.8), the dual Linear Program for (3.3)

min
{
bTy : ATy = c, y ≥ 0

}

also has an optimal solution y∗ which satisfies bT y∗ = t. Let I := {i : y∗
i > 0}.

The by complementary slackness (Theorem 2.9) the optimal solutions of (3.3)
are precisely those x ∈ P with Ai,·x = bi for i ∈ I. This gives us F = fa(I). 2

22 Polyhedra and Integer Programs

This result implies the following consequence:

Corollary 3.7 Every polyhedron has only a finite number of faces.

Proof: There is only a finite number of subsets I ⊆ M = {1, . . . , m}. 2

We can also look at the binding equations for subsets of polyhedra.

Definition 3.8 (Equality set) Let P = P(A, b) ⊆ Rn be a polyhedron. For S ⊆ P

we call
eq(S) := {i ∈ M : Ai,·x = bi for all x ∈ S} ,

the equality set of S.

Clearly, for subsets S, S ′ of a polyhedron P = P(A, b) with S ⊆ S ′ we have
eq(S) ⊇ eq(S ′). Thus, if S ⊆ P is a nonempty subset of S, then any face F of P

which contains S must satisfy eq(F) ⊆ eq(S). On the other hand, fa(eq(S)) is a
face of P containing S. Thus, we have the following observation:

Observation 3.9 Let P = P(A, b) ⊆ Rn be a polyhedron and S ⊆ P be a nonempty
subset of P. The smallest face of P which contains S is fa(eq(S)).

Corollary 3.10 (i) The polyhedron P = P(A, b) does not have any proper face
if and only if eq(P) = M, that is, if and only if P is an affine subspace P =

{x : Ax = b}.

(ii) If Ax̄ < b, then x̄ is not contained in any proper face of P.

Proof:

(i) Immediately from the characterization of faces in Theorem 3.6.

(ii) If Ax̄ < b, then eq({x̄}) = ∅ and fa(∅) = P.

2

3.2 Dimension

Intuitively the notion of dimension seems clear by considering the degrees of
freedom we have in moving within a given polyhedron (cf. Figure 3.2).

Definition 3.11 (Affine Combination, affine independence, affine hull)
An affine combination of the vectors v1, . . . , vk ∈ Rn is a linear combination x =
∑k

i=1 λiv
i such that

∑k

i=1 λi = 1.

Given a set X ⊆ Rn, the affine hull of X, denoted by aff(X) is defined to be the set of
all affine combinations of vectors from X, that is

aff(X) := { x =

k∑

i=1

λivi :

k∑

i=1

λi = 1 and v1, . . . , vk ∈ X }

The vectors v1, . . . , vk ∈ Rn are called affinely independent, if
∑k

i=1 λiv
i = 0 and

∑k

i=1 λi = 0 implies that λ1 = λ2 = · · · = λk = 0.

3.2 Dimension 23

1 2 3 4 5 6

1

2

3

4

5

6

P2
P1

P0

(a) Polyhedra in R
2

x y

z

b

b b

Q1

Q2

Q3

Q0

(b) Polyhedra in R
3

Figure 3.2: Examples of polyhedra with various dimensions

Lemma 3.12 The following statements are equivalent

(i) The vectors v1, . . . , vk ∈ Rn are affinely independent.

(ii) The vectors v2 − v1, . . . , vk − v1 ∈ Rn are linearly independent.

(iii) The vectors
(

v1

1

)

, . . . ,
(

vk

1

)

∈ Rn+1 are linearly independent.

Proof:

(i)⇔(ii) If
∑k

i=2 λi(v
i − v1) = 0 and we set λ1 := −

∑k

i=2 λi, this gives us
∑k

i=1 λiv
i = 0 and

∑k

i=1 λi = 0. Thus, from the affine independence it
follows that λ1 = · · · = λk = 0.

Assume conversely that v2 − v1, . . . , vk − v1 are linearly independent
and
∑k

i=1 λiv
i = 0 with

∑k

i=1 λi = 0. Then λ1 = −
∑k

i=2 λi which gives
∑k

i=2 λi(v
i − v1) = 0. The linear independence of v2 − v1, . . . , vk − v1

implies λ2 = · · · = λk = 0 which in turn also gives λ1 = 0.

(ii)⇔(iii) This follows immediately from

k∑

i=1

λi

(

vi

1

)

= 0⇔

{ ∑k
i=1 λiv

i = 0∑k
i=1 λi = 0

}

2

Definition 3.13 (Dimension of a polyhedron, full-dimensional polyhedron)
The dimension dim P of a polyhedron P ⊆ Rn is one less than the maximum number
of affinely independent vectors in P. We set dim ∅ = −1. If dim P = n, then we call
P full-dimensional.

Example 3.14
Consider the polyhedron P ⊆ R2 defined by the following inequalities (see

24 Polyhedra and Integer Programs

Figure 3.3):

x ≤ 2(3.4a)

x + y ≤ 4(3.4b)

x + 2y ≤ 10(3.4c)

x + 2y ≤ 6(3.4d)

x + y ≥ 2(3.4e)

x, y ≥ 0(3.4f)

1 2 3 4 5

1

2

3

4

5

(2, 2)

Figure 3.3: A fulldimensional polyhedron in R2.

The polyhedron P is full dimensional, since (2, 0), (1, 1) and (2, 2) are three
affinely independent vectors. ⊳

Example 3.15
A stable set (or independent set) in an undirected graph G = (V, E) is a subset
S ⊆ V of the vertices such that none of the vertices in S are joined by an edge.
We can formulate the problem of finding a stable set of maximum cardinality
as an IP:

max
∑

v∈V

xv(3.5a)

xu + xv ≤ 1 for all edges (u, v) ∈ E(3.5b)

xv ≥ 0 for all vertices v ∈ V(3.5c)

xv ≤ 1 for all vertices v ∈ V(3.5d)

xv ∈ Z for all vertices v ∈ V(3.5e)

Let P be the polytope determined by the inequalities in (3.5). We claim
that P is full dimensional. To see this, consider the n unit vectors ei =

(0, . . . , 1, 0, . . . , 0)T , i = 1, . . . , n and e0 := (0, . . . , 0)T . Then e0, e1, . . . , en

are affinely independent and thus dim P = n. ⊳

Definition 3.16 (Inner point, interior point)
The vector x̄ ∈ P = P(A, b) is called an inner point, if it is not contained in any
proper face of P. We call x̄ ∈ P an interior point, if Ax̄ < b.

3.2 Dimension 25

By Corollary 3.10(ii) an interior point x̄ is not contained in any proper face.

Lemma 3.17 Let F be a face of the polyhedron P(A, b) and x̄ ∈ F. Then x̄ is an inner
point of F if and only if eq({x̄}) = eq(F).

Proof: Let G be an inclusionwise smallest face of F containing x̄. Then, x̄ is
an inner point of F if and only if F = G. By Observation 3.9 we have G =

fa(eq({x̄})). And thus, x̄ is an inner point of F if and only if fa(eq({x̄})) = F as
claimed. 2

Thus, Definition 3.16 can be restated equivalently as: x̄ ∈ P = P(A, b) is an
innner point of P if eq({x̄}) = eq(P).

Lemma 3.18 Let P = P(A, b) be a nonempty polyhedron. Then, the set of inner
points of P is nonempty.

Proof: Let M = {1, . . . , m} be the index set of the rows of A, I := eq(P) and
J := M\I. If J = ∅, that is, if I = M, then by Corollary 3.10(i) the polyhedron P

does not have any proper face and any point in P is an inner point.

If J 6= ∅, then for any j ∈ J we can find an xj ∈ P such that Axj ≤ b and
Aj,·x

j < bj. Since P is convex, the vector y, defined as

y :=
1

|J|

∑

j∈J

xj

(which is a convex combination of the xj, j ∈ J) is contained in P. Then, AJ,·y <

bJ and AI,·y = bI. So, eq({y}) = eq(P) and the claim follows. 2

Theorem 3.19 (Dimension Theorem) Let F 6= ∅ be a face of the polyhedron
P(A, b) ⊆ Rn. Then we have

dim F = n − rank Aeq(F),·.

Proof: By Linear Algebra we know that

dim Rn = n = rank Aeq(F),· + dim kern Aeq(F),·.

Thus, the theorem follows, if we can show that dim kern(Aeq(F),·) = dim F. We
abbreviate I := eq(F) and set r := dim kern AI,·, s := dim F.

“r ≥ s”: Select s + 1 affinely independent vectors x0, x1, . . . , xs ∈ F. Then, by
Lemma 3.12 x1 − x0, . . . , xs − x0 are linearly independent vectors and
AI,·(x

j − x0) = bI − bI = 0 for j = 1, . . . , s. Thus, the dimension of
kern AI,· is at least s.

“s ≥ r”: Since we have assumed that F 6= ∅, we have s = dim F ≥ 0. Thus, in
the sequel we can assume that r ≥ 0 since otherwise there is nothing left
to prove.

By Lemma 3.18 there exists an inner point x̄ of F which by Lemma 3.17
satisfies eq({x̄}) = eq(F) = I. Thus, for J := M \ I we have

AI,·x̄ = bI and AJ,·x̄ < bJ.

26 Polyhedra and Integer Programs

Let {x1, . . . , xr} be a basis of kern AI,·. Then, since AJ,·x̄ < bJ we can find
ε > 0 such that AJ,·(x̄+εxk) < bJ and AI,·(x̄+εxk) = bI for k = 1, . . . , r.
Thus, x̄ + εxk ∈ F for k = 1, . . . , r.

The vectors εx1, . . . , εxr are linearly independent and, by Lemma 3.12
x̄, εx1 + x̄, . . . , εxr + x̄ form a set of r+1 affinely independent vectors in F

which implies dim F ≥ r.

2

Corollary 3.20 Let P = P(A, b) ⊆ Rn be a nonempty polyhedron. Then:

(i) dim P = n − rank Aeq(P),·

(ii) P is full dimensional if eq(P) = ∅.

(iii) P is full dimensional if and only if P contains an interior point.

(iv) If F is a proper face of P, then dim F ≤ dim P − 1.

2

Proof:

(i) Use Theorem 3.19 with F = P.

(ii) Immediate from (i).

(iii) P has an interior point if and only if eq(P) = ∅.

(iv) Let I := eq(P) and j ∈ eq(F) \ I and J := eq(P) ∪ {j}. We show that Aj,· is
linearly independent of the rows in AI,·. This shows that rank Aeq(F),· ≥
rank AJ,· > rank AI,· and by the Dimension Theorem we have dim F ≤
dim P − 1.

Assume that Aj,· =
∑

i∈I λiAi,·. Take x̄ ∈ F arbitrary, then

bj = Aj,·x̄ =
∑

i∈I

λiAi,· =
∑

i∈I

λibi.

Since j /∈ eq(P), there is x ∈ P such that Aj,·x < bj. But by the above we
have

bj > Aj,·x =
∑

i∈I

λiAi,·x =
∑

i∈I

λibi = bj,

which is a contradiction.

2

Example 3.21
Let G = (V, R) be a directed graph and s, t ∈ V be two distinct vertices. We
call a subset A ⊆ R of the arcs of R an s-t-connector if the subgraph (V, A)

contains an s-t-path. It is easy to see that A is an s-t-connector if and only
if A ∩ δ+(S) 6= ∅ for each s-t-cut (S, T), that is for each partition V = S ∪ T ,
S ∩ T = ∅ of the vertex set V such that s ∈ S and t ∈ T (cf. [KN05, Satz 3.19]).
Here, we denote by δ+(S) the subset of the arcs (u, v) ∈ R such that u ∈ S and
v ∈ T .

3.2 Dimension 27

Thus, the s-t-connectors are precisely the solutions of the following system:

∑

r∈δ+(S)

xr ≥ 1 for all s-t-cuts (S, T)(3.6a)

xr ≤ 1 for all arcs r ∈ R(3.6b)

xr ≥ 0 for all arcs r ∈ R(3.6c)

xr ∈ Z for all arcs r ∈ R.(3.6d)

Let P be the polyhedron determined by the inequalities in (3.6). It can be
shown (we will do this later, but you can also find a proof in [Sch03]) that P is
in fact the convex hull of the s-t-connectors in G. For the moment, we will not
need this result.

Let R ′ ⊆ R be the set of arcs r ∈ R such that there is an s-t-path in G−r (that is,
there is an s-t-path which does not use r). We claim that dim P = |R ′|. By the
Dimension Theorem this is equivalent to showing that rank Aeq(P),· = |R|−|R ′|.

None of the inequalities xr ≥ 0 is in eq(P), since any superset of an s-t-
connector is again an s-t-connector, so it can not be the case that χA

r = 0 for
all s-t-connectors A with incidence vector χA ∈ RR (which are a subset of P).
Thus we note:

• None of the inequalities xr ≥ 0 is in eq(P).

Now consider the inequalities xr ≤ 1. If r /∈ R ′, then any s-t-path must use r,
so we find an (S, T)-cut with δ+(S) = {r} (choose S to be all vertices reachable
from s in G − r and T := V \ S). By (3.6a) we have

∑
r∈δ+(S) xr ≥ 1 for all

x ∈ P. Since δ+(S) = {r}, we have xr = 1 for any x ∈ P. On the other hand, if
r ∈ R ′, there is an s-t-path which misses r and thus there is an s-t-connector A

(formed by the arc set of this path) with χA
r = 0. Thus, we have

• The inequality xr ≤ 1 is in eq(P) if and only if r ∈ R \ R ′.

Finally, let us look at the inequalities (3.6a). Assume that that there exists and
s-t-cut (S, T) such that

∑
r∈δ+(S) xr = 1 for all x ∈ P. Then, this equality

must also hold for all incidence vectors of s-t-connectors. Then, it follows that
|δ+(S)| = 1 (since any superset of an s-t-connector is again an s-t-connector).
This implies that r ∈ R \ R ′. Conversely, as we have seen above, if |δ+(S)| = 1

for an s-t-cut, the corresponding inequality (3.6a) must hold with equality.

• The inequality
∑

r∈δ+(S) xr ≥ 1 is in eq(P) if and only if δ+(S) = {r} for
some r ∈ R \ R ′ in which case it collapses to xr ≥ 1.

Thus, the rows corresponding to the inequalities xr ≤ 1, r ∈ R \ R ′ are a max-
imum size set of linearly vectors with indices in eq(P). Thus, rank Aeq(P),· =

|R \ R ′| = |R| − |R ′| as needed. ⊳

We derive another important consequence of the Dimesion Theorem about the
facial structure of polyhedra:

Theorem 3.22 (Hoffman and Kruskal) Let P = P(A, b) ⊆ Rn be a polyhedron.
Then a nonempty set F ⊆ P is an inclusionwise minimal face of P if and only if
F = {x : AI,·x = bI} for some index set I ⊆ M and rank AI,· = rank A.

28 Polyhedra and Integer Programs

Proof: “⇒”: Let F be a minimal nonempty face of P. Then, by Theorem 3.6
and Observation 3.9 we have F = fa(I), where I = eq(F). Thus, for J := M \ I

we have

(3.7) F = {x : AI,·x = bI, AJ,·x ≤ bJ} .

We claim that F = G, where

(3.8) G = {x : AI,·x = bI} .

By (3.7) we have F ⊆ G. Suppose that there exists y ∈ G \ F. Then, there exists
j ∈ J

(3.9) AI,·y = bI, Aj,·y > bj.

Let x̄ be any inner point of F which exists by Lemma 3.18. We consider for
τ ∈ R the point

z(τ) = x̄ + τ(y − x̄) = (1 − τ)x̄ + τy.

Observe that AI,·z(τ) = (1 − τ)AI,·x̄ + τAI,·y = (1 − τ)bI + τbI = bI, since
x̄ ∈ F and y satisfies (3.9). Moreover, AJ,·z(0) = AJ,·x̄ < bJ, since J ⊆ M \ I.

Since Aj,·y > bj we can find τ ∈ R and j0 ∈ J such that Aj0,·z(τ) = bj0
and

AJ,·z(τ) ≤ bJ. Then, τ 6= 0 and

F ′ := {x ∈ P : AI,·x = bI, Aj0,·x = bj0
}

is a face which is properly contained in F (note that x̄ ∈ F \ F ′). This contra-
dicts the choice of F as inclusionwise minimal. Hence, we have that F can be
represented as (3.8).

It remains to prove that rank AI,· = rank A. If rank AI,· < rank A, then there
exists an index j ∈ J = M \ I, such that Aj,· is not a linear combination of the
rows in AI,·. Then, we can find a vector w 6= 0 such that AI,·w = 0 and Aj,·w >

0. For θ > 0 appropriately chosen the vector y := x̄ + θw satifies (3.9) and as
above we can construct a proper face F ′ of F contradicting the minimality of F.

“⇐”: If F = {x : AI,· = bI}, then F is an affine subspace and Corollary 3.10(i)
shows that F does not have any proper face. By assumption F ⊆ P and thus
F = {x : AI,· = bI, AJ,·x ≤ bJ} is a minimal face of P. 2

Corollary 3.23 All minimal nonempty faces of a polyhedron P = P(A, b) have the
same dimension, namely n − rank A. 2

Corollary 3.24 Let P = P(A, b) ⊆ Rn be a nonempty polyhedron and rank(A) =

n − k. Then P has a face of dimension k and does not have a proper face of lower
dimension.

Proof: Let F be any nonempty face of P. Then, rank Aeq(F),· ≤ rank A = n − k

and thus by the Dimension Theorem (Theorem 3.19) it follows that dim(F) ≥
n − (n − k) = k. Thus, any nonempty face of P has dimension at least k.

On the other hand, by Corollary 3.23 any inclusionwise minimal nonempty
face of P has dimension n− rank A = n−(n−k) = k. Thus, P has in fact faces
of dimension k. 2

There will be certain types of faces which are of particular interest:

3.3 Extreme Points 29

• extreme points (vertices),

• extreme rays, and

• facets.

In the next section we discuss extreme points and their meaning for optimiza-
tion. Section 3.4 deals with facets and their importance in describing polyhe-
dra by means of inequalities. Section 3.5 shows how we can describe polyhe-
dra by their extreme points and extreme rays. The two descriptions of poly-
hedra will be important later on.

3.3 Extreme Points

Definition 3.25 (Extreme point, pointed polyhedron)
The point x̄ ∈ P = P(A, b) is called an extreme point of P, if x̄ = λx + (1 − λ)y for
some x, y ∈ P and 0 < λ < 1 implies that x = y = x̄.

A polyhedron P = P(A, b) is pointed, if it has at least one extreme point.

Example 3.26
Consider the polyhedron from Example 3.14. The point (2, 2) is an extreme
point of the polyhedron. ⊳

Theorem 3.27 (Characterization of extreme points) Let P = P(A, b) ⊆ Rn be
a polyhedron and x̄ ∈ P. Then, the following statements are equivalent:

(i) {x̄} is a zero-dimensional face of P.

(ii) There exists a vector c ∈ Rn such that x̄ is the unique optimal solution of the
Linear Program max

{
cT x : x ∈ P

}
.

(iii) x̄ is an extreme point of P.

(iv) rank Aeq({x̄}),· = n.

Proof: “(i)⇒(ii)”: Since {x̄} is a face of P, there exists a valid inequality wT x ≤ t

such that {x} =
{
x ∈ P : wT x = t

}
. Thus, x̄ is the unique optimum of the Linear

Program with objective c := w.

“(ii)⇒(iii)”: Let x̄ be the unique optimum solution of max
{
cT x : x ∈ P

}
. If

x̄ = λx + (1 − λ)y for some x, y ∈ P and 0 < λ < 1, then we have

cT x̄ = λcT x + (1 − λ)cT y ≤ λcT x̄ + (1 − λ)cT x̄ = cT x̄.

Thus, we can conclude that cT x̄ = cT x = cT y which contradicts the unique-
ness of x̄ as optimal solution.

“(iii)⇒(iv)”: Let I := eq({x}). If rank AI,· < n, there exists y ∈ Rn \ {0} such
that AI,·y = 0. Then, for sufficiently small ε > 0 we have x := x̄ + εy ∈ P and
y := x̄ − εy ∈ P (since Aj,·x̄ < bj for all j /∈ I). But then, x̄ = 1

2
x + 1

2
y which

contradicts the assumption that x̄ is an extreme point.

“(iv)⇒(i)”: Let I := eq({x̄}). By (iv), the system AI,·x = bI has a unique solu-
tion which must be x̄ (since AI,·x̄ = bI by construction of I). Hence

{x̄} = {x : AI,·x = bI} = {x ∈ P : AI,·x = bI}

and by Theorem 3.6 {x̄} is a zero-dimensional face of P. 2

30 Polyhedra and Integer Programs

The result of the previous theorem has interesting consequences for optimiza-
tion. Consider the Linear Program

max
{
cTx : x ∈ P

}
,(3.10)

where P is a pointed polyhedron (that is, it has extreme points). Since by
Corollary 3.23 on page 28 all minimal proper faces of P have the same dimen-
sion, it follows that the minimal proper faces of P are of the form {x̄}, where x̄

is an extreme point of P. Suppose that P 6= ∅ and cT x is bounded on P. We
know that there exists an optimal solution x∗ ∈ P. The set of optimal solutions
of (3.10) is a face

F =
{
x ∈ P : cTx = cT x∗

}

which contains a minimal nonempty face F ′ ⊆ F. Thus, we have the following
corollary:

Corollary 3.28 If the polyhedron P is pointed and the Linear Program (3.10) has
optimal solutions, it has an optimal solution which is also an extreme point of P.

Another important consequence of the characterization of extreme points in
Theorem 3.27 on the previous page is the following:

Corollary 3.29 Every polyhedron has only a finite number of extreme points.

Proof: By the preceeding theorem, every extreme point is a face. By Corol-
lary 3.7, there is only a finite number of faces. 2

Let us now return to the Linear Program (3.10) which we assume to have an
optimal solution. We also assume that P is pointed, so that the assumptions of
Corollary 3.28 are satisfied. By the Theorem of Hoffman and Kruskal (Theo-
rem 3.22 on page 27) every extreme point x̄ of is the solution of a subsystem

AI,·x = bI, where rank AI,· = n.

Thus, we could obtain an optimal solution of (3.10) by “brute force”, if we
simply consider all subsets I ⊆ M with |I| = n, test if rank AI,· = n (this can
be done by Gaussian elimination) and solve AI,·x = bI. We then choose the
best of the feasible solutions obtained this way. This gives us a finite algorithm
for (3.10). Of course, the Simplex Method provides a more sophisticated way
to or solving (3.10).

Let us now derive conditions which ensure that a given polyhedron is pointed.

Corollary 3.30 A nonempty polyhedron P = P(A, b) ⊆ Rn is pointed if and only if
rank A = n.

Proof: By Corollary 3.23 the minimal nonempty faces of P are of dimension 0

if and only if rank A = n. 2

Corollary 3.31 Any nonempty polytope is pointed.

Proof: Let P = P(A, b) and x̄ ∈ P be arbitrary. By Corollary 3.30 it suffices to
show that rank A = n. If rank A < n, then we can find y ∈ Rn with y 6= 0

such that Ay = 0. But then x + θy ∈ P for all θ ∈ R which contradicts the
assumption that P is bounded. 2

3.3 Extreme Points 31

Corollary 3.32 Any nonempty polyhedron P ⊆ Rn
+ is pointed.

Proof: If P = P(A, b) ⊆ Rn
+, we can write P alternatively as

P =

{
x :

(

A

−I

)

x ≤
(

b

0

)}
= P(Ā, b̄).

Since rank Ā = rank
(

A

−I

)

= n, we see again that the minimal faces of P are

extreme points. 2

On the other hand, Theorem 3.27(ii) is is a formal statement of the intuition
that by optimizing with the help of a suitable vector over a polyhedron we
can “single out” every extreme point. We now derive a stronger result for
rational polyhedra:

Theorem 3.33 Let P = P(A, b) be a rational polyhedron and let x̄ ∈ P be an extreme
point of P. There exists an integral vector c ∈ Zn such that x̄ is the unique solution
of max

{
cTx : x ∈ P

}
.

Proof: Let I := eq({x̄}) and M := {1, . . . , m} be the index set of the rows of A.
Consider the vector c̄ =

∑
i∈M Ai,·. Since all the Ai,· are rational, we can find a

θ > 0 such that c := θc̄ ∈ Zn is integral. Since fa(I) = {x̄} (cf. Observation 3.9),
for every x ∈ P with x 6= x̄ there is at least one i ∈ I such that Ai,·x < bi. Thus,
for all x ∈ P \ {x̄} we have

cTx = θ
∑

i∈M

AT
i,·x < θ

∑

i∈M

bi = θcT x0.

This proves the claim. 2

Consider the polyhedron

P=(A, b) := {x : Ax = b, x ≥ 0} ,

where A is an m × n matrix. A basis of A is an index set B ⊆ {1, . . . , n} with
|B| = m such that the square matrix A·,B formed by the columns from B is
nonsingular. The basic solution corresponding to B is the vector (xB, xN) with
xB = A−1

·,Bb, xN = 0. The basic solution is called feasible, if it is contained
in P=(A, b).

The following theorem is a well-known result from Linear Programming:

Theorem 3.34 Let P = P=(A, b) = {x : Ax = b, x ≥ 0} and x̄ ∈ P, where A is an
m × n matrix of rank m. Then, x̄ is an extreme point of P if and only if x̄ is a basic
feasible solution for some basis B.

Proof: Suppose that x̄ is a basic solution for B and x̄ = λx + (1 − λ)y for some
x, y ∈ P. It follows that xN = yN = 0. Thus xB = yb = A−1

·,Bb = x̄. Thus, x̄ is
an extreme point of P.

Assume now conversely that x̄ is an extreme point of P. Let B := {i : vi > 0}.
We claim that the matrix A·,B consists of linearly independent colums. Indeed,
if A·,ByB = 0 for some yB 6= 0, then for small ε > 0 we have xB ± εyB ≥ 0.
Hence, if we set N := {1, . . . , m} \ B and y = (yB, yB) we have x̄ ± εy ∈ P

32 Polyhedra and Integer Programs

and hence we can write x as a convex combination x = 1
2
(x̄ + εy) + 1

2
(x̄ − εy)

contradicting the fact that x̄ is an extreme point.

Since AB has linearly independent columns, it follows that |B| ≤ m. Since
rank A = m we can augment B to a basis B ′. Then, x̄ is the basic solution
for B ′. 2

We close this section by deriving structural results for polytopes. We need one
auxiliary result:

Lemma 3.35 Let X ⊂ Rn be a finite set and v ∈ Rn \ conv(X). There exists an
inequality that separates v from conv(X), that is, there exist w ∈ Rn and t ∈ R such
that wT x ≤ t for all x ∈ conv(X) and wT v > t.

Proof: Let X = {x1, . . . , xk}. Since v /∈ conv(X), the system

k∑

i=1

λkxk = v

k∑

i=1

λk = 1

λi ≥ 0 for i = 1, . . . , k

does not have a solution. By Farkas’ Lemma (Theorem 2.10 on page 16), there
exists a vector

(

y
z

)

∈ Rn+1 such that

yTxi + z ≤ 0, for i = 1, . . . , k

yTv + z > 0.

If we choose w := −y and t := −z we have wTxi ≤ t for i = 1, . . . , k.

If x =
∑k

i=1 λixi is a convex combination of the xi, then as in Section 2.2 we
have:

wT x =

k∑

i=1

λiw
T xi ≤ max{wT xi : i = 1, . . . , k} ≤ t.

Thus, wT x ≤ t for all x ∈ conv(X). 2

Theorem 3.36 A polytope is equal to the convex hull of its extreme points.

Proof: The claim is trivial, if the polytope is empty. Thus, let P = P(A, b)

be a nonempty polytope. Let X = {x1, . . . , xk} be the extreme points of P

(which exist by Corollary 3.31 on page 30 and whose number is finite by Corol-
lary 3.29). Since P is convex and x1, . . . , xk ∈ P, we have conv(X) ⊆ P. We
must show that conv(X) = P. Assume that there exists v ∈ P \ conv(X). Then,
by Lemma (3.35) we can find an inequality wT x ≤ t such that wT x ≤ t for
all x ∈ conv(X) but wTv > t. Since P is bounded and nonempty, the Linear
Program max

{
wT x : x ∈ P

}
has a finite solution value t∗ ∈ R. Since v ∈ P

we have t∗ > t. Thus, none of the extreme points of P is an optimal solution,
which is impossible by Corollary 3.28 on page 30. 2

Theorem 3.37 A set P ⊆ Rn is a polytope if and only if P = conv(X) for a finite
set X ⊆ Rn.

3.3 Extreme Points 33

Proof: By Theorem 3.36 for any polytope P, we have P = conv(X), where
X is the finite set of extreme points. Thus, we only need to prove the other
direction.

Let X = {x1, . . . , xk} ⊆ Rn be a finite set and P = conv(X). We define the set
Q ⊆ Rn+1 by

Q :=

{(
a

t

)

: a ∈ [−1, 1]n, t ∈ [−1, 1], aT x ≤ t for all x ∈ X.

}

Since Q is bounded by construction, Q is a polytope. Let A := {
(

a1

t1

)

, . . . ,
(

ap

tp

)

}

be the set of extreme points of Q. By Theorem 3.36 we have Q = conv(A). Set

P ′ :=
{
x ∈ Rn : aT

j x ≤ tj, j = 1, . . . , p
}

.

We show that P = P ′ which completes the proof.

“P ⊆ P ′”: Let x̄ ∈ P = conv(X), x̄ =
∑k

i=1 λixi be a convex combination of the
points in X. Fix j ∈ {1, . . . , p}. Since

(

aj

tj

)

∈ Q we have aT
j xi ≤ tj for all i and

thus

aT
j x̄ =

k∑

i=1

λi aT
j xi
︸ ︷︷ ︸
≤tj

≤
k∑

i=1

λitj = tj.

So aT
t x̄ ≤ tj for all j and x̄ ∈ P ′. This shows P ⊆ P ′.

“P ′ ⊆ P”: Assume that there exists a vector v ∈ P ′ \ P. Then, by Lemma 3.35
there exists an inequality wTx ≤ t such that wT x ≤ t for all x ∈ P but wT v > t.
Let θ > 0 be such that w̄ := w/θ ∈ [−1, 1]n and t̄ := t/θ ∈ [−1, 1]. Then, still
w̄T v > t and w̄T x ≤ t̄ for all x ∈ P, and thus

(

w̄
t̄

)

∈ Q.

Since Q is the convex hull of its extreme points, we can represent
(

w̄
t̄

)

as a
convex combination

(

w̄
t̄

)

=
∑p

j=1 λj

(

aj

tj

)

of the the extreme points of Q. Since

v ∈ P ′ we have aT
j ≤ tj for all j. This gives us

w̄T v =

p∑

j=1

λja
T
j v ≤

p∑

j=1

λjtj = t,

which is a contradiction to the assumption that w̄T v > t. 2

Example 3.38
As an application of Theorem 3.37 we consider the so-called stable-set polytope
STAB(G), which is defined as the convex hull of the incidence vectors of stable
sets in an undirected graph G (cf. Example 3.15):
(3.11)

STAB(G) = conv(
{
x ∈ BV : x is an incidence vector of a stable set in G

}
).

By Theorem 3.37, STAB(G) is a polytope whose extreme points are all (inci-
dence vectors of) stable sets in G.

The n unit vectors ei = (0, . . . , 1, 0, . . . , 0)T , i = 1, . . . , n and the vector e0 :=

(0, . . . , 0)T are all contained in STAB(G). Thus, dim STAB(G) = n and the
polytope is full-dimensional. ⊳

The result of Theorem 3.37 is one of the major driving forces behind polyhe-
dral combinatorics. Let X ⊆ Rn be a nonempty finite set, for instance, let X be
the set of incidence vectors of stable sets of a given graph G as in the above

34 Polyhedra and Integer Programs

example. Then, by the preceeding theorem we can represent conv(X) as a
pointed polytope:

conv(X) = P = P(A, b) = {x : Ax ≤ b} .

Since P is bounded and nonempty, for any given c ∈ Rn the Linear Program

(3.12) max
{
cT x : x ∈ P

}
= max

{
cT x : x ∈ conv(X)

}

has a finite value which by Observation 2.2 coincides with max
{
cT x : x ∈ X

}
.

By Corollary 3.28 an optimal solution of (3.12) will always be obtained at an
extreme point of P, which must be a point in X itself. So, if we solve the Linear
Program (3.12) we can also solve the problem of maximizing cT x over the
discrete set X.

3.4 Facets

In the preceeding section we proved that for a finite set X ⊆ Rn its convex hull
conv(X) is always a polytope and thus has a representation

conv(X) = P(A, b) = {x : Ax ≤ b} .

This motivates the questions which inequalities are actually needed in order
to describe a polytope, or more general, to describe a polyhedron.

Definition 3.39 (Facet)
A nontrivial face F of the polyhedron P = P(A, b) is called a facet of P, if F is not
strictly contained in any proper face of P.

Example 3.40
Consider again the polyhedron from Example 3.14. The inequality x ≤ 3 is
valid for P. Of course, also all inequalities from (3.4) are also valid. Moreover,
the inequality x + 2y ≤ 6 defines a facet, since (3, 3) and (2, 2) are affinely
independent. On the other hand, the inequality x + y ≤ 4 defines a face that
consists only of the point (2, 2). ⊳

Theorem 3.41 (Characterization of facets) Let P = P(A, b) ⊆ Rn be a polyhe-
dron and F be a face of P. Then, the following statements are equivalent:

(i) F is a facet of P.

(ii) rank Aeq(F),· = rank Aeq(P),· + 1

(iii) dim F = dim P − 1.

Proof: The equivalence of (ii) and (iii) is an immediate consequence of the
Dimension Theorem (Theorem 3.19).

“(i)⇒(iii)”: Suppose that F is a facet but k = dim F < dim P − 1. By the equiv-
alence of (ii) and (iii) we have rank AI,· > Aeq(P),· + 1, where I = eq(F). Chose
i ∈ I such that for J := I \ {i} we have rank AJ,· = rank AI,· − 1. Then fa(J) is a
face which contains F and which has dimension k + 1 ≤ dim P − 1. So fa(J) is
a proper face of P containing F which contradicts the maximality of F.

“(iii)⇒(i)”: Suppose that G is any proper face of P which strictly contains F.
Then F is a proper face of G and by Corollary 3.20(iv) applied to F and P ′ =

G we get dim F ≤ dim G − 1 which together with dim F = dim P − 1 gives
dim G = dim P. But then, again by Corollary 3.20(iv), G can not be a proper
face of P. 2

3.4 Facets 35

Example 3.42
As an application of Theorem 3.41 we consider again the stable-set polytope,
which we have seen to bee full-dimensional in Example 3.38.

For any v ∈ V , the inequality xv ≥ 0 defines a facet of STAB(G), since the
n−1 unit vectors with ones at places other than position v and the zero vector
form a set of n affinely independent vectors from STAB(G) which all satisfy
the inequality as equality. ⊳

As a consequence of the previous theorem we show that for any facet of a
polyhedron P = P(A, b) there is at least one inequality in Ax ≤ b inducing the
facet:

Corollary 3.43 Let P = P(A, b) ⊆ Rn be a polyhedron and F be a facet of P. Then,
there exists an j ∈ M \ eq(P) such that

(3.13) F = {x ∈ P : Aj,·x = bj} .

Proof: Let I = eq(P). Choose any j ∈ eq(F)\I and set J := I∪{j}. Still J ⊆ eq(F),
since I ⊆ eq(F) and j ∈ eq(F). Thus, F ⊆ fa(J) ⊂ P (we have fa(J) 6= P since
any inner point x̄ of P has Aj,·x̄ < bj since j ∈ eq(F) \ I) and by the maximality
of F we have F = fa(J). So,

F = fa(J) = {x ∈ P : AJ,·x ≤ bJ}

= {x ∈ P : AI,·x = bI, Aj,·x = bj}

= {x ∈ P : Aj,·x = bj} ,

where the last equality follows from I = eq(P). 2

The above corollary shows that, if for a polyhedron P we know A and b such
that P = P(A, b), then all facets of P are of the form (3.13).

Definition 3.44 (Redundant constraint, irredundant system)
Let P = P(A, b) be a polyhedron and I = eq(P). The constraint Ai,· ≤ bi is called
redundant with respect to Ax ≤ b, if P(A, b) = P(AM\{i},·, bM\{i}), that is, if we
can remove the inequality without changing the solution set.

We call Ax ≤ b irredundant or minimal, if it does not contain a redundant con-
straint.

Observe that removing a redundant constraint may make other redundant
constraints irredundant.

The following theorem shows that in order to describe a polyhedron we need
an inequality for each of its facets and that, conversely, a list of all facet defin-
ing inequalities suffices.

Theorem 3.45 (Facets are necessary and sufficient to describe a polyhedron)
Let P = P(A, b) be a polyhedron with equality set I = eq(P) and J := M \ I. Sup-
pose that no inequality in AJ,·x ≤ bJ is redundant. Then, there is a one-to-one
correspondence between the facets of P and the inequalities in AJ,·x ≤ bJ:

For each row Aj,· of AJ,· the inequality Aj,·x ≤ bj defines a distinct facet of P.
Conversely, for each facet F of P there exists exactly one inequality in AJ,·x ≤ bJ

which induces F.

36 Polyhedra and Integer Programs

Proof: Let F be a facet of P. Then, by Corollary 3.43 on the previous page there
exists j ∈ J such that

(3.14) F = {x ∈ P : Aj,·x = bj} .

Thus, each facet is represented by an inequality in AJ,·x ≤ bJ.

Moreover, if F1 and F2 are facets induced by rows j1 ∈ J and j2 ∈ J with
j1 6= j2, then we must have F1 6= F2, since eq(Fi) = eq(P) ∪ {ji} for i = 1, 2 by
Corollary 3.43. Thus, each facet is induced by exactly one row of AJ,·.

Conversely, consider any inequality Aj,·x ≤ bj where j ∈ J. We must show
that the face F given in (3.14) is a facet. Clearly, F 6= P, since j ∈ eq(F) \ eq(P).
So dim F ≤ dim P − 1. We are done, if we can show that eq(F) = eq(P) ∪ {j},
since then rank Aeq(F),· ≤ Aeq(P),· + 1 which gives dim F ≥ dim P − 1 and
Theorem 3.41 proves that F is a facet.

Take any inner point x̄ of P. This point satisfies

AI,·x̄ = bI and AJ,·x̄ < bI.

Let J ′ := J\ {j}. Since Aj,·x ≤ bj is not redundant in Ax ≤ b, there exists y such
that

AI,·y = bI, AJ ′,·y ≤ bJ ′ and Aj,·y > bj.

Consider z = λy + (1 − λ)x̄. Then for an appropriate choice of λ ∈ (0, 1) we
have

AI,·z = bI, AJ ′,·z < bJ ′ , and Aj,·z = bj.

Thus, z ∈ F and eq(F) = eq(P) ∪ {j} as required. 2

Corollary 3.46 Each face of a polyhedron P, except for P itself, is the intersection of
facets of P.

Proof: Let K := eq(P). By Theorem 3.6, for each face F, there is an I ⊆ M such
that

F = {x ∈ P : AI,·x = bI} =
{
x ∈ P : AI\K,·x = bI\K

}

=
⋂

j∈I\K

{x ∈ P : Aj,·x = bj} ,

where by Theorem 3.45 on the preceding page each of the sets in the intersec-
tion above defines a facet. 2

Corollary 3.47 Any defining system for a polyhedron must contain a distinct facet-
inducing inequality for each of its facets. 2

Lemma 3.48 Let P = P(A, b) with I = eq(P) and let F =
{
x ∈ P : wT x = t

}
be a

proper face of P. Then, the following statements are equivalent:

(i) F is a facet of P.

(ii) If cTx = γ for all x ∈ F, then cT is a linear combination of wT and the rows
in AI,·.

3.4 Facets 37

Proof: “(i)⇒(ii)”: We can write F =
{
x ∈ P : wTx = t, cTx = γ

}
, so we have

for J := eq(F) by Theorem 3.41 and the Dimension Theorem

dim P = n − rank AI,· = 1 + dim F ≤ n − rank





AI,·

wT

cT



 .

Thus

rank





AI,·

wT

cT



 ≤ rank AI,· + 1.

Since F is a proper face, we have rank
(

AI,·

wT

)

= rank AI,· + 1 which means

that rank





AI,·

wT

cT



 = rank
(

AI,·

wT

)

. So, c is a linear combination of wT and

the vectors in AI,·.

“(ii)⇒(i)”: Let J = eq(F). By assumption, rank AJ,· = rank
(

AI,·

wT

)

= rank AI,·+

1. So dim F = dim P − 1 by the Dimension Theorem and by Theorem 3.41 we
get that F is a facet. 2

Suppose that the polyhedron P = P(A, b) is of full dimension. Then, for I :=

eq(P) we have rank AI,· = 0 and we obtain the following corollary:

Corollary 3.49 Let P = P(A, b) be full-dimensional let F =
{
x ∈ P : wT x = t

}
be

a proper face of P. Then, the following statements are equivalent:

(i) F is a facet of P.

(ii) If cT x = γ for all x ∈ F, then
(

c
γ

)

is a scalar multiple of
(

w
t

)

.

Proof: The fact that (ii) implies (i) is trivial. Conversely, if F is a facet, then
by Lemma 3.48 above, cT is a “linear combination” of wT , that is, c = λw

is a scalar multiple of w. Now, since for all x ∈ F we have wT x = t and
γ = cT x = λwT x = λt, the claim follows. 2

Example 3.50
In Example 3.42 we saw that each inequality xv ≥ 0 defines a facet of the stable
set polytope STAB(G). We now use Corollary 3.49 to provide an alternative
proof.

Let F = {x ∈ STAB(G) : xv = 0}. We want to prove that F is a facet of STAB(G).
Assume that cT x = γ for all x ∈ F. Since (0, . . . , 0)T ∈ F, we conclude
that γ = 0. Using the n − 1 unit vectors with ones at position other than
at v we obtain that cu = 0 for all u 6= v. Thus, cT = (0, . . . , λ, 0, . . . , 0)T =

λ(0, . . . , 1, 0, . . . , 0)T and by Corollary 3.49, F is a facet. ⊳

Corollary 3.51 A full-dimensional polyhedron has a unique (up to positive scalar
multiples) irredundant defining system.

Proof: Let Ax ≤ b be an irredundant defining system. Since P is full-
dimensional, we have Aeq(P),· = 0. By Theorem 3.45 there is a one-to-one
correspondence between the inequalities in Ax ≤ b and the facets of P. By
Corollary 3.49 two valid inequalities for P which induce the same facet are
scalar multiples of each other. 2

38 Polyhedra and Integer Programs

3.5 Minkowski’s Theorem

In the previous section we have learned that each polyhedron can be repre-
sented by its facets. In this section we learn another representation of a poly-
hedron which is via its extreme points and extreme rays.

Definition 3.52 (Characteristic cone, (extreme) ray)
Let P be a polyhedron. Then, its characteristic cone or recession cone char. cone(P)

is defined to be:

char. cone(P) := {r : x + r ∈ P for all x ∈ P} .

We call any r ∈ char. cone(P) a ray of P. A ray r of P is called an extreme ray if there
do not exist rays r1, r2 of P, r1 6= θr2 for any θ ∈ R+ such that r = λr1 + (1 − λ)r2

for some λ ∈ [0, 1].

In other words, char. cone(P) is the set of all directions y in which we can go
from all x ∈ P without leaving P. This justifies the name “ray” for all vectors
in char. cone(P). Since P 6= 0 implies that 0 ∈ char. cone(P) and P = ∅ implies
char. cone(P) = ∅, we have that char. cone(P) = ∅ if and only if P 6= ∅.

Lemma 3.53 Let P = P(A, b) be a nonempty polyhedron. Then

char. cone(P) = {x : Ax ≤ 0} .

Proof: If Ay ≤ 0, then for all x ∈ P we have A(x + y) = Ax + Ay ≤ Ax ≤ b, so
x + y ∈ P. Thus y ∈ char. cone(P).

Conversely, if y ∈ char. cone(P) we have Ai,·y ≤ 0 if there exists an x ∈ P

such that Ai,·x = bi. Let J := {j : Aj,·x < bj for all x ∈ P} be the set of all other
indices. We are done, if we can show that AJ,·y ≤ 0J.

If Aj,·y > 0 for some j ∈ J, take an interior point x̄ ∈ P and consider z = x̄+λy

for λ ≥ 0. Then, by choosing λ > 0 appropriately, we can find j ′ ∈ J such
that Aj ′,·z = bj ′ , AJ,·z ≤ bJ and AI,·z ≤ bI which contradicts the fact that
j ′ ∈ J. 2

The characteristic cone of a polyhedron P(A, b) is itself a polyhedron char. cone(P) =

P(A, 0), albeit a very special one. For instance, char. cone(P) has at most one
extreme point, namely the vector 0. To see this, assume that r 6= 0 is an ex-
treme point of char. cone(P). Then, Ar ≤ 0 and from r 6= 0 we have we have
r 6= 1

2
r ∈ char. cone(P) and r 6= 3

2
r ∈ char. cone(P). But then r = 1

2
(1

2
r)+ 1

2
(3

2
r)

is a convex combination of two distinct points in char. cone(P) contradicting
the assumption that r an extreme point of char. cone(P).

Together with Corollary 3.30 on page 30 we have:

Observation 3.54 Let P = P(A, b) 6= ∅. Then, 0 ∈ char. cone(P) and 0 is the
only potential extreme point of char. cone(P). The zero vector is an extreme point
of char. cone(P) if and only if rank A = n.

Theorem 3.55 (Characterization of extreme rays) points] Let P = P(A, b) ⊆
Rn be a nonempty polyhedron. Then, the following statements are equivalent:

(i) r is an extreme ray of P.

3.5 Minkowski’s Theorem 39

(ii) {θr : θ ∈ R+} is a one-dimensional face of char. cone(P) = {x : Ax ≤ 0}.

(iii) r ∈ char. cone(P) \ {0} and for I := {i : Ai,·r = 0} we have rank AI,· = n − 1.

Proof: Let I := {i : Ai,·r = 0}.

“(i)⇒(ii)”: Let F be the smallest face of char. cone(P) containing the set {θr : θ ∈ R+}.
By Observation 3.9 on page 22 we have

F = {x ∈ char. cone(P) : AI,·x = 0I}

and eq(F) = I. If dim F > 1, then the Dimension Theorem tells us that
rank AI,· < n − 1. Thus, the solution set of AI,·x = 0I contains a vector r1

which is linearly independent from r. For sufficently small ε > 0 we have
r± εr1 ∈ char. cone(P), since AI,·r = 0I, AI,·r

1 = 0I and AM\I,·r < 0. But then
r = 1

2
(r + εr1) + 1

2
(r − εr1) contradicting the fact that r is an extreme ray.

So dim F = 1. Since r 6= 0, the unbounded set {θr : θ ∈ R+} which is contained
in F has also dimension 1, thence F = {θr : θ ∈ R+} is a one-dimensional face
of char. cone(P).

“(ii)⇒(iii)”: The Dimension Theorem applied to char. cone(P) implies that
rank AI,· = n − 1. Since {θr : θ ∈ R+} has dimension 1 it follows that r 6= 0.

“(iii)⇒(i)”: By Linear Algebra, the solution set of AI,·x = 0I is one-dimensional.
Since AI,·r = 0I and r 6= 0, for any y with AI,·y = 0I we have y = θr for some
θ ∈ R.

Suppose that r = λr1 + (1 − λ)r2 for some r1, r2 ∈ char. cone(P). Then

0I = AI,·r = λ AI,·r
1

︸ ︷︷ ︸
≤0I

+(1 − λ)AI,·r
2

︸ ︷︷ ︸
≤0I

≤ 0I

implies that AI,·r
j = 0 for j = 1, 2. So rj = θjrj for appropriate scalars, and

both rays r1 and r2 must be scalar multiples of each other. 2

Corollary 3.56 Every polyhedron has only a finite number of extreme rays.

Proof: By the preceeding theorem, every extreme point is a face. By Corol-
lary 3.7, there is only a finite number of faces. 2

Combining this result with Corollary 3.29 on page 30 we have:

Corollary 3.57 Every polyhedron has only a finite number of extreme points and
rays.

Consider once more the Linear Program

max
{
cT x : x ∈ P

}
,(3.15)

where P is a pointed polyhedron. We showed in Corollary 3.28 on page 30,
that if the Linear Program (3.10) has optimal solutions, it has an optimal so-
lution which is also an extreme point of P. What happens, if the Linear Pro-
gram (3.15) is unbounded?

Theorem 3.58 Let P = P(A, b) be a pointed nonempty polyhedron.

(i) If the Linear Program (3.15) has optimal solutions, it has an optimal solution
which is also an extreme point of P.

40 Polyhedra and Integer Programs

(ii) If the Linear Program (3.15) is unbounded, then there exists an extreme ray r

of P such that cT r > 0.

Proof: Statement (i) is a restatement of Corollary 3.28 on page 30. So, we only
need to prove (ii). By the Duality Theorem of Linear Programming (Theo-
rem 2.8 on page 15) the set

{
y : AT y = c, y ≥ 0

}

(which is the feasible set for the dual to (3.10)) must be empty. By Farkas’
Lemma (Theorem 2.10 on page 16), there exists r such that Ar ≥ 0 and cT r < 0.
Let r ′ := −r, then Ar ′ ≤ 0 and cT r ′ > 0. In particular, r is a ray of P.

We now consider the Linear Program

(3.16) max
{
cTx : Ax ≤ 0, cT x ≤ 1

}
= max

{
cT x : x ∈ P ′

}
.

Since rank A = n, it follows that P ′ is pointed. Moreover, P ′ 6= ∅ since
r ′/cT r ′ ∈ P. Finally, the constraint cTx ≤ 1 ensures that (3.16) is bounded.
In fact, the optimum value of (3.16) is 1, since this value is achieved for the
vector r ′/cT r ′.

By (i) an optimal solution of (3.16) is attained at an extreme point of P ′ ⊆
char. cone(P), say at r∗ ∈ char. cone(P). So

(3.17) cT r∗ = 1.

Let I = {i : Ai,·r
∗ = 0}. By the Dimension Theorem we have rank

(

AI,·

cT

)

= n

(since {r∗} is a zero-dimensional face of the polyhedron P ′ by Theorem 3.27 on
page 29).

If rank AI,· = n − 1, then by Theorem 3.55 on page 38 we have that r∗ is
an extreme ray of P as needed. If rank AI,· = n, then r∗ 6= 0 is an extreme
point of char. cone(P) by Theorem 3.27 on page 29 which is a contradiction to
Observation 3.54 on page 38. 2

The following theorem states a fundamental result on the representation of
polyhedra:

Theorem 3.59 (Minkowski’s Theorem) Let P = P(A, b) be nonempty and rank(A) =

n (observe that by Corollary 3.30 on page 30 this implies that the polyhedron P is
pointed). Then
(3.18)

P =





x ∈ Rn : x =

∑

k∈K

λkxk +
∑

j∈J

µjr
j,
∑

k∈K

λk = 1, λk ≥ 0 for k ∈ K, µj ≥ 0 for j ∈ J





,

where xk, k ∈ K are the extreme points of P and rj, j ∈ J are the extreme rays of P.

Proof: Let Q be the set on the right hand side of (3.18). Since xk ∈ P for k ∈ K

and P is convex, we have that any convex combination x =
∑

k∈K λkxk of the
extreme points of P is also in P. Moreover, since the rj are rays of P, we have
that x +

∑
j∈J µjr

j ∈ P for any µj ≥ 0. Thus, Q ⊆ P.

3.5 Minkowski’s Theorem 41

Assume for the sake of a contradiction that there exists v ∈ P \ Q. By assump-
tion, there is no λ, µ solving the following linear system:

∑

k∈K

λkxk +
∑

j∈J

µjr
j = v(3.19a)

−
∑

k∈K

λk = −1(3.19b)

λ, µ ≥ 0(3.19c)

We can write the solution set of (3.19) in the form
{

x : Ā
(

λ
µ

)

= b̄,
(

λ
µ

)

≥ 0
}

,
where

Ā =

(

x1 x2 . . . r1 r2 . . .

−1 −1 . . . 0 0 . . .

)

, b̄ =

(

v

−1

)

By Farkas’ Lemma (see Theorem 2.10 on page 16), there exists (y, t) ∈ Rn+1

such that ĀT
(

y
t

)

≤ 0 and b̄T
(

y
t

)

> 0. This is equivalent to:

yT xk − t ≤ 0 for all k ∈ K(3.20a)

yT rj ≤ 0 for all j ∈ J(3.20b)

yTv − t > 0.(3.20c)

Consider the Linear Program

(3.21) max
{
yTx : x ∈ P

}
.

Recall that, since rank A = n we have that P is pointed.

If (3.21) has an optimal solution, then by Theorem 3.58 on page 39(i) there
exists an optimal solution of (3.21) which is also an extreme point. However,
yT xk ≤ t and yT v > t for the vector v ∈ P \ Q by (3.20a) and (3.20c)which is a
contradiction to this fact.

On the other hand, if (3.21) is unbounded, then by Theorem 3.58 on page 39(ii),
there must be an extreme ray rj with yT rj > 0 which is a contradiction
to (3.20b). 2

The above theorem tells us that we can represent each polyhedron by its ex-
treme points and extreme rays.

Now let P = P(A, b) be a rational pointed polyhedron where A and b are al-
ready choosen to have rational entries. By Theorem 3.27 the extreme points
of P are the 0-dimensional faces. By the Theorem of Hoffmann and Kruskal
(Theorem 3.22 on page 27) each extreme point {x̄} is the unique solution of a
subsystem AI,·x = bI. Since A and b are rational, it follows that each extreme
point has also rational entries (Gaussian elimination applied to the linear sys-
tem AI,·x = bI does not leave the rationals). Similarly, by Theorem 3.55 an
extreme ray r is determined by a system AI,·r = 0, where rank A = n − 1. So
again, r must be rational. This gives us the following observation:

Observation 3.60 The extreme points and extreme rays of a rational polyhedron are
rational vectors.

42 Polyhedra and Integer Programs

3.6 Most IPs are Linear Programs

This section is dedicated to establishing the important fact that if

X = {x ∈ R : Ax ≤ b, x ≥ 0} ∩ Zn

is nonempty, then conv(X) is a rational polyhedron. In order to do so, we need
a few auxiliary results.

Consider the two Linear Programs

max
{
cTx : x ∈ P

}
min
{
bTy : y ∈ Q

}

P = {x ∈ Rn : Ax ≤ b} Q =
{
y ∈ Rm : ATy = c, y ≥ 0

}
.

Observe that Q is pointed (see Corollary 3.32 on page 31). From Linear Pro-
gramming duality we know that if P and Q are nonempty, then the maximum
and the minimum both exist and their values coincide.

Lemma 3.61 Let P and Q be defined as above. Then P 6= ∅ if and only if bTvt ≥ 0

for all t ∈ T , where vt, t ∈ T are the extreme rays of Q.

Proof: We have

P = {x : Ax ≤ b} = ∅ ⇐⇒
{
(x+, x−, s) ∈ R2n+m

+ : Ax+ − Ax− + s = b
}

= ∅.

By Farkas’ Lemma (Theorem 2.10 on page 16) the set on the right hand side

above is nonempty, if and only if for all y such that





AT

−AT

I



y ≥ 0 we have

bT y ≥ 0. In other words, P 6= ∅ if and only if for all y ≥ 0 such that ATy = 0

we have bT y ≥ 0.

Observe that

char. cone(Q) =





y :





AT

−AT

−I



y ≤ 0





=
{
y : ATy = 0, y ≥ 0

}
.

So we have that P 6= ∅ if and only if bTv ≥ 0 for all v ∈ char. cone(Q).

In particular, if P 6= ∅, then bTv ≥ 0 for all extreme rays v of Q (since each
extreme ray of Q is a vector in char. cone(Q)). Conversely, since any ray
in char. cone(Q) is a convex combination of extreme rays, the condition bTv ≥
0 for all extreme rays v of Q implies that bTv ≥ 0 for all v ∈ char. cone(Q)

which implies that P 6= ∅. 2

Definition 3.62 (Projection of a polyhedron)
Given a polyhedron Q ⊆ Rn+k we define the projection of Q onto the subspace Rn

as:
proj

x
Q := { x ∈ Rn : (x, w) ∈ Q for some w ∈ Rk }.

Theorem 3.63 Let P = {(x, y) ∈ Rn × Rp : Ax + Gy ≤ b} and vt, t ∈ T be the
extreme rays of Q =

{
y ∈ Rm

+ : GTy = 0
}

. Then

proj
x
(P) =

{
x ∈ Rn : (vt)T (b − Ax) ≥ 0 for all t ∈ T

}

3.6 Most IPs are Linear Programs 43

Proof: We have that proj
x
(P) =

⋃

x∈Rn:Mx 6=∅
{x} where

(3.22) Mx := {y ∈ Rp : Gy ≤ b − Ax} .

We apply Lemma 3.61 to the polyhedron Mx from (3.22). The lemma shows
that Mx 6= ∅ if and only if (vt)T (b − Ax) ≥ 0 for all extreme rays vt of Q ={
v ∈ Rm

+ : GTv = 0
}

. Hence, we have

proj
x
(P) =

{
x ∈ Rn : (vt)T (b − Ax) ≥ 0 for all t ∈ T

}

as claimed. 2

We immediately obtain the following corollary:

Corollary 3.64 The projection of a polyhedron is a polyhedron.

Another important consequence of Theorem 3.63 is the following converse of
Minkowski’s Theorem:

Theorem 3.65 (Weyl’s Theorem) If A is a rational m1 ×n matrix, B is a rational
m2 × n matrix and

P =

{

x ∈ Rn
+ : x = ATy + BT z,

m1∑

k=1

yk = 1, y ∈ R
m1
+ , z ∈ R

m2
+

}

,

then P is a rational polyhedron.

Proof: Observe that P = proj
x

Q, where

Q =

{

(x, y, z) ∈ Rn × R
m1
+ × R

m2
+ : x − ATy − BT z = 0,

m1∑

k=1

yk = 1

}

.

We now apply Theorem 3.63 to get another description of P = proj
x

Q. Ob-
serve that we can write Q =

{
(x, ȳ) : Āx + Ḡȳ ≤ b̄

}
, where Ā, Ḡ are rational

matrices, b̄ is a rational vector and ȳ = (y, z) ∈ Rm1 × Rm2 . By Theorem 3.63
we have

(3.23) proj
x

Q =
{
x ∈ Rn : (vt)T (b̄ − Āx) ≥ 0 for all t ∈ T

}
,

where vt are the finitely many extreme rays of the rational polyhedron
{
ȳ : GT ȳ = 0

}
.

Since all of the extreme rays have rational coordinates it follows that (3.23) is
a rational polyhedron. 2

Suppose now that we are given P = {x ∈ Rn : Ax ≤ b, x ≥ 0}, where A, b are
integral and let X = P ∩ Zn. If P is bounded, then X contains a finite number
of points, say X = {a1, . . . , ak}. We already know by Theorem 3.37 on page 32
that conv(X) is a polytope. We now know more!

Any point v in conv(X) is of the form v =
∑k

i=1 yia
i with yi ≥ 0 and

∑k

i=1 yi = 1. Thus, if AT is the matrix whose columns are the ai, then conv(X)

is of the form

conv(X) =

{

x ∈ Rn
+ : x = ATy,

k∑

i=1

yi = 1, y ∈ Rk
+

}

.

44 Polyhedra and Integer Programs

Thus, by Weyl’s theorem conv(X) is a rational polyhedron . In the remainder
of this section we are going to show the analogous result, when X contains
an infinite number of points. The idea behind the proof is to find a finite set
Q ⊆ X and to show that every point in X can be generated by taking a point
in Q plus a nonnegative integer linear combination of the extreme rays of P.

Lemma 3.66 Let P = P(A, b) 6= ∅ and X = P ∩ Zn where A, b are integral. There
exists a finite set of points ql ∈ X, l ∈ L and a finite set of rays rj, j ∈ J of P such that

X =





x ∈ Rn

+ : x = ql +
∑

j∈J

βjr
j, l ∈ L, β ∈ Z

j
+






Proof: Let xk, k ∈ K be the extreme points and rj, j ∈ J be the extreme rays of P.
Since P is a rational polyhedron, all of these vectors have rational coordinates.
By Minkowski’s Theorem we have:

P =





x ∈ Rn

+ : x =
∑

k∈K

λkxk +
∑

j∈J

µjr
j,
∑

k∈K

λk = 1, λk ≥ 0 for k ∈ K, µj ≥ 0 for j ∈ J





,

Thus, without loss of generality we can assume that the rj have integral en-
tries. We define the set Q ⊆ S by

Q =





x ∈ Zn

+ : x =
∑

k∈K

λkxk +
∑

j∈J

µjr
j,
∑

k∈K

λk = 1, λk ≥ 0 for k ∈ K, 0 ≤ µj < 1 for j ∈ J





.

Then, Q is a finite set, since Q is bounded and contains only integral points.
Suppose that Q =

{
ql : l ∈ L

}
⊂ Zn. Observe that we can write any point xi ∈

P as

xi =





∑

k∈K

λkxk +
∑

j∈J

(µj − ⌊µj⌋)rj





︸ ︷︷ ︸
=:qli∈Q if xi ∈ Z

n

+
∑

j∈J

⌊µj⌋rj,(3.24)

where
∑

k∈K λk = 1, λk ≥ 0 for k ∈ K and µj ≥ 0 for j ∈ J. Hence, xi ∈ X if
any only xi ∈ Zn

+ and xi is of the form (3.24). Observe that, if xi ∈ Zn, then
the first term in (3.24) is a point qli ∈ Q (it is integral, since the second term∑

j∈J⌊µj⌋rj is integral). Hence, we have have

xi = qli +
∑

j∈J

βi
jr

j, βi
j = ⌊µi

j⌋ for j ∈ J(3.25)

where βj = ⌊µj⌋ is integral. Thus,

X =





x ∈ Zn

+ : x = q +
∑

j∈J

βjr
j, β ∈ Zl

+, and q ∈ L






=





x ∈ Rn

+ : x = q +
∑

j∈J

βjr
j, β ∈ Zl

+, and q ∈ L





,

where the equality of the two sets follows from the fact that we use only inte-
gral linear combinations of integral vectors. This shows the claim. 2

3.6 Most IPs are Linear Programs 45

We are now ready to establish the main result of this chapter.

Theorem 3.67 (Most IPs are LPs) Let P =
{
x ∈ Rn

+ : Ax ≤ b
}

with integral A

and b and X = P ∩ Zn. Then conv(X) is a rational polyhedron.

Proof: In the proof of the previous lemma we have shown that any point xi ∈
X can be written in the form (3.25). Thus, any point x ∈ conv(X) can be written
as a convex combination of points of the form (3.25):

x =
∑

i∈I

λix
i

=
∑

i∈I

λi



qli +
∑

j∈J

βjr
j





=
∑

l∈L

(

∑

i∈I:li=l

λi

)

ql +
∑

j∈J

(

∑

i∈I

λiβ
i
j

)

rj

=
∑

l∈L

αlq
l +
∑

j∈J

βjr
j,

where αl =
∑

i∈I:li=l λi and βj =
∑

i∈I λiβ
i
j. Observe that

∑

l∈L

αl =
∑

i∈I

λi = 1

and
βj =

∑

i∈I

λi︸︷︷︸
≥0

βi
j︸︷︷︸

≥0

≥ 0.

This shows that

conv(X) =





x ∈ Rn : x =

∑

l∈L

αlq
l +
∑

j∈J

βjr
j,
∑

l∈L

αl = 1, αl, βj ≥ 0 for l ∈ L, j ∈ J





,

where the ql and the rj are all integral. By Weyl’s Theorem, it now follows
that conv(X) is a rational polyhedron. 2

It should be noted that the above result can be extended rather easily to mixed
integer programs. Moreover, as a byproduct of the proof we obtain the follow-
ing observation:

Observation 3.68 Let P =
{
x ∈ Rn

+ : Ax ≤ b
}

with integral A and b and X =

P ∩ Zn. If X 6= ∅, then the extreme rays of P and conv(X) coincide.

Theorem 3.69 Let P =
{
x ∈ Rn

+ : Ax ≤ b
}

and X = P ∩ Zn where X 6= ∅. Let
c ∈ Rn be arbitrary. We consider the two optimization problems:

(IP) zIP = max
{
cT x : x ∈ X

}

(LP) zLP = max
{
cT x : x ∈ conv(X)

}
.

Then, the following statements hold:

(i) The objective value of IP is bounded from above if and only if the objective value
of LP is bounded from above.

46 Polyhedra and Integer Programs

(ii) If LP has a bounded optimal value, then it has an optimal solution (namely, an
extreme point of conv(X)), that is an optimal solution to IP.

(iii) If x∗ is an optimal solution to IP, then x∗ is also an optimal solution to LP.

Proof: Since X ⊆ conv(X) it trivially follows that zIP ≥ zIP.

(i) If zIP = +∞ it follows that zLP = +∞. on the other hand, if zLP = +∞,
there is an integral extreme point x0 ∈ conv(X) and an integral extreme
ray r of conv(X) such that cT x0 +µr ∈ conv(X) for all µ ≥ 0 and cT r > 0.
Thus, x0 + µr ∈ X for all µ ∈ N. Thus, we also have zIP = +∞.

(ii) By Theorem 3.67 we know that conv(X) is a rational polyhedron. Hence,
if LP has an optimal solution, there exists also an optimal solution which
is an extreme point of conv(X), say x0. But then x0 ∈ X and zIP ≥ cT x0 =

zLP ≥ zIP. Hence, x0 is also an optimal solution for IP.

(iii) Since x∗ ∈ X ⊆ conv(X), the point x∗ is also feasible for LP. The claim
now follow from (ii).

2

Theorems 3.67 and 3.69 are particularly interesting in conjunction with the
polynomial time equivalence of the separation and optimization (see Theo-
rem 5.24 on page 78 later on). A general method for showing that an Integer
Linear Program max

{
cT x : x ∈ X

}
with X = P(A, b) ∩ Zn can be solved in

polynomial time is as follows:

1. Find a description of conv(X), that is, conv(X) = P ′ = {x : A ′x ≤ b ′}.

2. Give a polynomial time separation algorithm for P ′.

3. Apply Theorem 5.24.

Although this procedure does usually not yield algorithms that appear to be
the most efficient in practice, the equivalence of optimization and separation
should be viewed as a guide for searching for more efficient algorithms. In
fact, for the vast majority of problems that were first shown to be solvable in
polynomial time by the method outlined above, later algorithms were devel-
oped that are faster both in theory and practice.

Integrality of Polyhedra

In this chapter we study properties of polyhedra P which ensure that the Lin-
ear Program max

{
cT x : x ∈ P

}
has optimal integral solutions.

Definition 4.1 (Integral Polyhedron)
A polyhedron P is called integral if every face of P contains an integral point.

Informally speaking, if we are optimizing over an integral polyhedron we get
integrality for free: the set of optimal solutions of z = max

{
cT x : x ∈ P

}
is a

face F =
{
x ∈ P : cT x = z

}
of P, and, if each face contains an integral point,

then there is also an optimal solution which is also integral. In other words,
for integral polyhedra we have

(4.1) max
{
cT x : x ∈ P

}
= max

{
cT x : x ∈ P ∩ Zn

}
.

Thus, the IP on the right hand side of (4.1) can be solved by solving the Linear
Program on the left hand side of (4.1).

A large part of the study of polyhedral methods for combinatorial optimiza-
tion problems was motivated by a theorem of Edmonds on matchings in
graphs. A matching in an undirected graph G = (V, E) is a set M ⊆ E of
edges such that none of the edges in M share a common endpoint. Given a
matching M we say that a vertex v ∈ V is M-covered if some edge in M is
incident with v. Otherwise, we call v M-exposed. Observe that the number of
M-exposed nodes is precisely |V | − 2|M|. We define:

(4.2) PM(G) :=
{
χM ∈ BE : M is a perfect matching in G

}

to be the set of incidence vectors of perfect matchings in G.

We will show in the next section that a polyhedron P is integral if and only if
P = conv(P ∩ Zn). Edmonds’ Theorem can be stated as follows:

Theorem 4.2 (Perfect Matching Polytope Theorem) For any graph G = (V, E),
the convex hull conv(PM(G)) of the perfect matchings in G is identical to the set of
solutions of the following linear system:

x(δ(v)) = 1 for all v ∈ V(4.3a)

x(δ(S)) ≥ 1 for all S ⊆ V , |S| ≥ 3 odd(4.3b)

xe ≥ 0 for all e ∈ E.(4.3c)

Proof: See Theorem 4.23 on page 59. 2

48 Integrality of Polyhedra

Observe that any integral solution of (4.3) is a perfect matching. Thus, if P

denotes the polyhedron defined by (4.3), then by the equivalence shown in the
next section the Perfect Matching Polytope Theorem states that P is integral
and P = conv(PM(G)). Edmond’s results is very strong, since it gives us an
explicit description of conv(PM(G)).

4.1 Equivalent Definitions of Integrality

We are now going to give some equivalent definitions of integrality which will
turn out to be quite useful later.

Theorem 4.3 Let P = P(A, b) be a pointed rational polyhedron. Then, the following
statements are equivalent:

(i) P is an integral polyhedron.

(ii) The LP max
{
cT x : x ∈ P

}
has an optimal integral solution for all c ∈ Rn

where the value is finite.

(iii) The LP max
{
cT x : x ∈ P

}
has an optimal integral solution for all c ∈ Zn

where the value is finite.

(iv) The value zLP = max
{
cT x : x ∈ P

}
is integral for all c ∈ Zn where the value

is finite.

(v) P = conv(P ∩ Zn).

Proof: We first show the equivalence of statements (i)-(iv):

(i)⇒(ii) The set of optimal solutions of the LP is a face of P. Since every face
contains an integral point, there is an integral optimal solution.

(ii)⇒(iii) trivial.

(iii)⇒(iv) trivial.

(iv)⇒(i) Suppose that (i) is false and let x0 be an extreme point which by
assumption is not integral, say component x0

j is fractional. By Theo-
rem 3.33 there exists a vector c ∈ Zn such that x0 is the unique solution
of max

{
cT x : x ∈ P

}
. Since x0 is the unique solution, we can find a large

ω ∈ N such that x0 is also optimal for the objective vector c̄ := c + 1
ω

ej,
where ej is the jth unit vector. Clearly, x0 must then also be optimal for
the objective vector c̃ := ωc̄ = ωc + ej. Now we have

c̃T x0 − ωcT x0 = (ωcT x0 + eT
j x0) − ωcT x0 = eT

j x0 = x0
j .

Hence, at least one of the two values c̃T x0 and cT x0 must be fractional,
which contradicts (iv).

We complete the proof of the theorem by showing two implications:

(i)⇒(v) Since P is convex, we have conv(P∩Zn) ⊆ P. Thus, the claim follows
if we can show that P ⊆ conv(P ∩ Zn). Let v ∈ P, then v =

∑
k∈K λkxk +∑

j∈J µjr
j, where the xk are the extreme points of P and the rj are the

extreme rays of P. By (i) every xk is integral, thus
∑

k∈K λkxk ∈ conv(P∩
Zn). Since by Observation 3.68 the extreme rays of P and conv(P ∩ Zn)

are the same, we get that v ∈ conv(P ∩ Zn).

4.2 Matchings and Integral Polyhedra I 49

(v)⇒(iv) Let c ∈ Zn be an integral vector. Since by assumption conv(P ∩
Zn) = P, the LP max

{
cT x : x ∈ P

}
has an optimal solution in P ∩ Zn (If

x =
∑

i xi ∈ conv(P ∩ Zn) is a convex combination of points in P ∩ Zn,
then cT x ≤ maxi cT xi (cf. Observation 2.2)). Thus, the LP has an integral
value for every integral c ∈ Zn where the value is finite.

This shows the theorem. 2

Recall that each minimal nonempty face of P(A, b) is an extreme point if and
only if rank(A) = n (Corollary 3.23 on page 28). Thus, we have the following
result:

Observation 4.4 A nonempty polyhedron P = P(A, b) with rank(A) = n is inte-
gral if and only if all of its extreme points are integral. 2

Moreover, if P(A, b) ⊆ Rn
+ is nonempty, then rank(A) = n. Hence, we also

have the following corollary:

Corollary 4.5 A nonempty polyhedron P ⊆ Rn
+ is integral if and only if all of its

extreme points are integral. 2

4.2 Matchings and Integral Polyhedra I

As mentioned before, a lot of the interest about integral polyhedra and their
applications in combinatorial optimization was fueled by results on the match-
ing polytope. As a warmup we are going to prove a weaker form of the perfect
matching polytope due to Birkhoff.

A graph G = (V, E) is called bipartite, if there is a partition V = A∪B, A∩B = ∅

of the vertex set such that every edge e is of the form e = (a, b) with a ∈ A

and b ∈ B.

Lemma 4.6 A graph G = (V, E) is bipartite if and only if it does not contain an odd
cycle.

Proof: Let G = (V, E) be bipartite with bipartition V = A ∪ B. Assume for the
sake of a contradiction that C = (v1, v2, . . . , v2k−1, v2k = v1) is an odd cycle
in G. We can assume that v1 ∈ A. Then (v1, v2) ∈ E implies that v2 ∈ B. Now
(v2, v3) ∈ E implies v3 ∈ A. Continuing we get that v2i−1 ∈ A and v2i ∈ B

for i = 1, 2, But since v1 = v2k we have v1 ∈ A ∩ B = ∅, which is a
contradiction.

Assume conversely that G = (V, E) does not contain an odd cycle. Since it suf-
fices to show that any connected component of G is bipartite, we can assume
without loss of generality that G is connected.

Choose r ∈ V arbitrary. Since G is connected, the shortest path distances
from v to all v ∈ V are finite. We let

A = {v ∈ V : d(v) is even}

B = {v ∈ V : d(v) is odd}

This gives us a partition of V with r ∈ A. We claim that all edges are between
A and B. Let (u, v) ∈ E and suppose that u, v ∈ A. Clearly, |d(u) − d(v)| ≤ 1

50 Integrality of Polyhedra

which gives us that d(u) = d(v) = 2k. Let p = r, v1, . . . , v2k = v and q =

r, u1, . . . , u2k = u be shortest paths from r to v and u, respectively. The paths
might share some common parts. Let vi and uj be maximal with the prop-
erty that vi = uj and the paths vi+1, . . . , v and uj+1, . . . , u are node disjoint.
Observe that we must have that i = j since otherwise one of the paths could
not be shortest. But then vi, vi+1, . . . , v2k = v, u = u2k, u2k−1, . . . , ui = vi is a
cycle of odd length, which is a contradiction. 2

Theorem 4.7 (Birkhoff’s Theorem) Let G be a bipartite graph. Then, conv(PM(G)) =

P, where P is the polytope described by the following linear system:

x(δ(v)) = 1 for all v ∈ V(4.4a)

xe ≥ 0 for all e ∈ E.(4.4b)

In particular, P is integral.

Proof: Clearly conv(PM(G)) ⊆ P. To show that conv(PM(G)) = P let x be any
extreme point of P. Assume for the sake of a contradiction that x is fractional.
Define Ẽ := {e ∈ E : 0 < xe < 1} to be set of “fractional edges”. Since x(δ(v)) =

1 for any v ∈ V , we can conclude that any vertex that has an edge from Ẽ

incident with it, in fact is incident to at least two such edges from Ẽ. Thus, Ẽ

contains an even cycle C (by Lemma 4.6 the graph G does not contain any odd
cycle). Let y be a vector which is alternatingly ±1 for the edges in C and zero
for all other edges. For small ε > 0 we have x ± εy ∈ P. But then, x can not be
an extreme point. 2

Observe that we can view the assignment problem (see Example 1.6 on page 5)
as the problem of finding a minimum cost perfect matching on a complete bi-
partite graph. Thus, Birkhoff’s theorem shows that we can solve the assign-
ment problem by solving a Linear Program.

Remark 4.8 The concept of total unimodularity derived in the next section
will enable us to give an alternative proof of Birkhoff’s Theorem.

4.3 Total Unimodularity

Proving that a given polyhedron is integral is usually a difficult task. In this
section we derive some conditions under which the polyhedron

P=(A, b) = {x : Ax = b, x ≥ 0}

is integral for every integral right hand side b.

As a motivation for the following definition of total unimodularity, consider
the Linear Program

(LP) max
{
cT x : Ax = b, x ≥ 0

}
,(4.5)

where rank A = m. From Linear Programming theory, we know that if (4.5)
has a feasible (optimal) solution, it also has a feasible (optimal) basic solution,
that is, a solution of the form x = (xB, xN), where xB = A−1

·,Bb and xN = 0

and A·,B is an m × m nonsingular submatrix of A indexed by the columns in
B ⊆ {1, . . . , n}, |B| = m. Here, N = {1, . . . , n} \ B.

4.3 Total Unimodularity 51

Given such a basic solution x = (xB, xN) we have by Cramer’s rule:

xi =
det(Bi)

det(AB)
for i ∈ B,

where Bi is the matrix obtained from AB by replacing the ith column by the
vector b. Hence, we conclude that if det(AB) = ±1, then each entry of xB will
be integral (provided b is integral as well).

Definition 4.9 (Unimodular matrix, total unimodular matrix)
Let A be an m × n-matrix with full row rank. The matrix A is called unimodular
if all entries of A are integral and each nonsingular m × m-submatrix of A has de-
terminant ±1. The matrix A is called totally unimodular, if each square submatrix
of A has determinant ±1 or 0.

Since every entry of a matrix forms itself a square submatrix, it follows that
for a totally unimodular matrix A every entry must be either ±1 or 0.

Observation 4.10 (i) A is totally unimodular, if and only if AT is totally uni-
modular.

(ii) A is totally unimodular, if and only if (A, I) is unimodular.

(iii) A is totally unimodular, if and only if









A

−A

I

−I









is totally unimodular.

We now show that a Linear Program with a (totally) unimodular matrix has
always an integral optimal solution provided the optimum is finite. Thus, by
Theorem 4.3 we get that the corresponding polyhedron must be integral.

Theorem 4.11 Let A be an m×n matrix with integer entries and linearly indepen-
dent rows. The polyhedron {x ∈ Rn : Ax = b, x ≥ 0} is integral for all b ∈ Zm if
and only if A is unimodular.

Proof: Suppose that A is unimodular and b ∈ Zm be an integral vector. By
Corollary 4.5 it suffices to show that all extreme points of {x : Ax = b, x ≥ 0}

are integral. Let x̄ be such an extreme point. Since A has full row rank, there
exists a basis B ⊆ {1, . . . , n}, |B| = m such that x̄B = A−1

·,Bb and x̄N = 0. Since A

is unimodular, we have det(A·,B) = ±1 and by Cramer’s rule we can conclude
that x̄ is integral.

Assume conversely that {x : Ax = b, x ≥ 0} is integral for every integral vec-
tor b. Let B be a basis of A. We must show that det(A·,B) = ±1. Let x̄ be
the extreme point corresponding to the basis B. By assumption x̄B = A−1

·,Bb

is integral for all integral b. In particular we can choose b to be the unit vec-
tors ei = (0, . . . , 1, 0, . . . , 0). Then, we get that A−1

·,B must be integral. Thus,
it follows that det(A−1

·,B) = 1/ det(A·,B) is integral. On the other hand, also
det(A·,B) is also integral by the integrality of A. Hence, det(A·,B) = ±1 as
required. 2

We use the result of the previous theorem to show the corresponding result
for the polyhedron {x : Ax ≤ b, x ≥ 0}.

52 Integrality of Polyhedra

Corollary 4.12 (Integrality-Theorem of Hoffmann and Kruskal) Let A be an
m × n matrix with integer entries. The matrix A is totally unimodular if and only if
the polyhedron {x : Ax ≤ b, x ≥ 0} is integral for all b ∈ Zm.

Proof: From Observation 4.10 we know that A is totally unimodular if and
only if (A, I) is unimodular. Moreover, the polyhedron {x : Ax ≤ b, x ≥ 0} is
integral if and only if the polyhedron {z : (A, I)z = b, z ≥ 0} is integral. The
result now follows from Theorem 4.11. 2

The Integrality-Theorem of Hoffmann and Kruskal in conjunction with Ob-
servation 4.10 yields more characterizations of totally unimodular matrices.

Corollary 4.13 Let A be an integral matrix. Then the following statements hold:

(a) A is totally unimodular, if and only if the polyhedron {x : a ≤ Ax ≤ b, l ≤ x ≤ u}

is integral for all integral a, b, l, u.

(b) A is totally unimodular, if and only if the polyhedron {x : Ax = b, 0 ≤ x ≤ u}

is integral for all integral b, u.

2

4.4 Conditions for Total Unimodularity

In this section we derive sufficient conditions for a matrix to be totally uni-
modular.

Theorem 4.14 Let A be any m× n matrix with entries taken from {0, +1, −1} with
the property that any column contains at most two nonzero entries. Suppose also
that there exists a partition M1 ∪ M2 = {1, . . . , m} of the rows of A such that every
column j with two nonzero entries satisfies:

∑
i∈M1

aij =
∑

i∈M2
aij. Then, A is

totally unimodular.

Proof: Suppose for the sake of a contradiction that A is not totally unimodular.
Let B be a smallest square submatrix such that det(B) /∈ {0, +1, −1}. Obviously,
B can not contain any column with at most one nonzero entry, since otherwise
B would not be smallest. Thus, any column of B contains exactly two nonzero
entries. By the assumptions of the theorem, adding the rows in B that are
in M1 and subtracting those that are in M2 gives the zero vector, thus det(B) =

0, a contradiction! 2

Example 4.15
Consider the LP-relaxation of the assignment problem.

min
n∑

i=1

n∑

j=1

cijxij(4.6a)

n∑

i=1

xij = 1 for j = 1, . . . , n(4.6b)

n∑

j=1

xij = 1 for i = 1, . . . , n(4.6c)

0 ≤ x ≤ 1,(4.6d)

4.4 Conditions for Total Unimodularity 53

We can write the constraints (4.6b) and (4.6c) as Ax = 1, where A is the node-
edge incidence matrix of the complete bipartite graph G = (V, E) (Figure 4.1
shows the situation for n = 3). The rows of A correspond to the vertices and
the columns to the edges. The row corresponding to edge (u, v) has exactly
two ones, one at the row for u and one at the row for v. The fact that G is
bipartite V = A ∪ B, gives us a partition A ∪ B of the rows such that the
conditions of Theorem 4.14 are satisfied. Hence, A is totally unimodular.

















1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

















·





























x11 ′

x12 ′

x13 ′

x21 ′

x22 ′

x23 ′

x31 ′

x32 ′

x33 ′





























=

















1

1

1

1

1

1

















(a) Constraint system

1 1 ′

2 2 ′

3 3 ′

(b) Complete bipar-
tite graph

Figure 4.1: The matrix of the assignment problem as the node-edge incidence
matrix of a complete bipartite graph.

⊳

We derive some other useful consequences of Theorem 4.14:

Theorem 4.16 Let A be any m×n matrix with entries taken from {0, +1, −1} with
the property that any column contains at most one +1 and at most one −1. Then A

is totally unimodular.

Proof: First, assume that A contains exactly two nonzero entries per column.
The fact that A is totally unimodular for this case follows from Theorem 4.14
with M1 = {1, . . . , m} and M2 = ∅. For the general case, observe that a
column with at most one nonzero from {−1, +1} can not destroy unimodu-
larity, since we can develop the determinant (of a square submatrix) by that
column. 2

The node-arc incidence matrix of a directed network G = (V, A) is the n × m-
Matrix M(A) = (mxy) such that

mxy =






+1 if a = (i, j) and x = j

−1 if a = (i, j) and y = i

0 otherwise

The minimum cost flow problem can be stated as the following Linear Pro-
gram:

min
∑

(i,j)∈A

c(i, j)x(i, j)(4.7a)

∑

j:(j,i)∈A

x(j, i) −
∑

j:(i,j)∈A

x(i, j) = b(i) for all i ∈ V(4.7b)

0 ≤ x(i, j) ≤ u(i, j) for all (i, j) ∈ A(4.7c)

54 Integrality of Polyhedra

By using the node-arc incidence matrix M = M(A), we can rewrite (4.7) as:

min
{
cT x : Mx = b, 0 ≤ x ≤ u

}
,(4.8)

where b is the vector of all required demands.

Corollary 4.17 The node-arc incidence matrix of a directed network is totally uni-
modular.

Proof: The claim follows immediately from Theorem 4.16 and Corollary 4.13. 2

We close this section by one more sufficient condition for total unimodularity.

Theorem 4.18 (Consecutive ones Theorem) Let A be any m × n-matrix with
entries from {0, 1} and the property that the rows of A can be permutated in such a
way that all 1s appear consecutively. Then, A is totally unimodular.

Proof: Let B be a square submatrix of A. Without loss of generality we can
assume that the rows of A (and thus also of B) are already permuted in such
a way that the ones appear consecutively. Let bT

1 , . . . , bT
k be the rows of B.

Consider the matrix B ′ with rows bT
1 − bT

2 , bT
2 − bT

3 , . . . , bT
k−1 − bT

k , bk. The
determinant of B ′ is the same as of B.

Any column of B ′ contains at most two nonzero entries, one of which is a −1

(one before the row where the ones in this column start) and a +1 (at the row
where the ones in this column end). By Theorem 4.16, B ′ is totally unimodular,
in particular det(B ′) = det(B) ∈ {0, +1, −1}. 2

4.5 Applications of Unimodularity: Network Flows

We have seen above that if M is the node-arc incidence matrix of a directed
graph, then the polyhedron {x : Mx = b, 0 ≤ x ≤ u} is integral for all integral
b and u. In particular, for integral b and u we have strong duality between
the IP

max
{
cTx : Mx = b, 0 ≤ x ≤ u, x ∈ Zn

}
(4.9)

and the dual of the LP-relaxation

min
{
bTz + uTy : MTz + y ≥ c, y ≥ 0

}
.(4.10)

Moreover, if the vector c is integral, then by total unimodularity the LP (4.10)
has always an integral optimal solution value.

4.5.1 The Max-Flow-Min-Cut-Theorem

As an application of the strong duality of the problems (4.9) and (4.10) we will
establish the Max-Flow-Min-Cut-Theorem.

Definition 4.19 (Cut in a directed graph, forward and backward part)
Let G = (V, A) be a directed graph and S ∪ T = V a partition of the node set V . We
call (S, T) the cut induced by S and T . We also denote by

δ+(S := { (i, j) ∈ A : i ∈ S und j ∈ T }

δ−(S) := { (j, i) ∈ A : j ∈ T und i ∈ S }

4.5 Applications of Unimodularity: Network Flows 55

the forward part and the backward part of the cut. The cut (S, T) is an (s, t)-cut
if s ∈ S and t ∈ T .

If u : A→ R0≥0 is a capacity function defined on the arcs of the network G = (V, A)

and (S, T) is a cut, then the capacity of the cut is defined to be the sum of the
capacities of its forward part:

u(δ+(S)) :=
∑

(u,v)∈(S,T)

u(u, v).

Figure 4.2 shows an example of a cut and its forward and backward part.

2 3

1 4

5 6

s t

(a) An (s,t)-cut (S,T) in a directed
graph. The arcs in δ+(S) ∪ δ−(S) are
shown as dashed arcs.

2 3

1 4

5 6

s t

(b) The forward part δ+(S) of the cut:
Arcs in δ+(S) are shown as dashed arcs.

2 3

1 4

5 6

s t

(c) The backward part δ−(S) of the cut:
arcs in δ−(S) are shown as dashed arcs.

Figure 4.2: A cut (S, T) in a directed graph and its forward part δ+(S) and
backward part δ−(S).

Let f be an (s, t)-flow and [S, T] be an (s, t)-cut in G. For a node i ∈ V we
define by

(4.11) excessf(i) :=
∑

a∈δ−(v)

f(a) −
∑

a∈δ+(v)

f(a)

56 Integrality of Polyhedra

the excess of i with respect to f. The first term in (4.11) corresponds to the
inflow into i, the second term is the outflow out of i. Then we have:

val(f) = −excessf(s) = −
∑

i∈S

excessf(i)

=
∑

i∈S





∑

(i,j)∈A

f(i, j) −
∑

(j,i)∈A

f(j, i)



 .(4.12)

If for an arc (x, y) both nodes x and y are contained in S, then the term f(x, y)

appears twice in the sum (4.12), once with a positive and once with a negative
sign. Hence, (4.12) reduces to

(4.13) val(f) =
∑

a∈δ+(S)

f(a) −
∑

(a)∈δ−(S)

f(a).

Using that f is feasible, that is, 0 ≤ f(i, j) ≤ u(i, j) for all arcs (i, j), we get
from (4.13):

val(f) =
∑

(a)∈δ+(S)

f(a) −
∑

a∈δ−(S)

f(a) ≤
∑

a∈δ+(S)

u(a) = u(δ+(S)).

Thus, the value val(f) of the flow is bounded from above by the capac-
ity u(δ+(S))) of the cut. We have proved the following lemma:

Lemma 4.20 Let f be an (s, t)-flow and [S, T] an (s, t)-cut. Then:

val(f) ≤ u(δ+(S)).

Since f and [S, T] are arbitrary we deduce that:

(4.14) max
f is an (s, t)-flow in G

val(f) ≤ min
(S, T) is an (s, t)-cut in G

u(δ+(S)).

2

We are now ready to prove the famous Max-Flow-Min-Cut-Theorem of Ford
and Fulkerson:

Theorem 4.21 (Max-Flow-Min-Cut-Theorem) Let G = (V, A) be a network with
capacities u : A→ R+, then the value of a maximum (s, t)-flow equals the minimum
capacity of an (s, t)-cut.

Proof: We add a backward arc (t, s) to G. Call the resulting graph G ′ = (V, A ′),
where A ′ = A ∪ {(t, s)}. Then, we can write the maximum problem as the
Linear Program

(4.15) z = max {xts : Mx = 0, 0 ≤ x ≤ u} ,

where M is the node-arc incidence matrix of G ′ and u(t, s) = +∞. We know
that M is totally unimodular from Corollary 4.17. So, (4.15) has an optimal
integral solution value for all integral capacities u. By Linear Programming
duality we have:

max {xts : Mx = 0, 0 ≤ x ≤ u} = min
{
uT y : MTz + y ≥ χ(t,s), y ≥ 0

}
,

4.6 Matchings and Integral Polyhedra II 57

where χ(t,s) is the vector in RA which has a one at entry (t, s) and zero at all
other entries. We unfold the dual which gives:

w = min
∑

(i,j)∈A

uijyij(4.16a)

zi − zj + yij ≥ 0 for all (i, j) ∈ A(4.16b)

zt − zs ≥ 1(4.16c)

yij ≥ 0 for all (i, j) ∈ A(4.16d)

There are various ways to see that (4.16) has an optimum solution which is
also integral, for instance:

• The constraint matrix of (4.16) is of the form (MT I) and, from the total
unimodularity of M it follows that (MT I) is also totally unimodular. In
particular, (4.16) has an integral optimal solution for every integral right
hand side (and our right hand side is integral!).

• The polyhedron of the LP (4.15) is integral by total unimodularity. Thus,
it has an optimum integer value for all integral capacities (the objective
is also integral). Hence, by LP-duality (4.16) has an optimum integral
value for all integral objectives (which are the capacities). Hence, by
Theorem 4.3 the polyhedron of (4.16) is integral and has an optimum
integer solution.

Let (y∗, z∗) be such an integral optimal solution of (4.16). Observe that replac-
ing z∗ by z∗ − α for some α ∈ R does not change anything, so we may assume
without loss of generality that z∗s = 0.

Since (y∗, z∗) is integral, the sets S and T defined by

S := {v ∈ V : z∗v ≤ 0}

T := {v ∈ V : z∗v ≥ 1}

induce an (S, T)-cut. Then,

w =
∑

(i,j)∈A

uijy
∗
ij ≥

∑

(i,j)∈δ+(S)

uijy
∗
ij ≥

∑

(i,j)∈δ+(S)

uij(z∗j︸︷︷︸
≥1

− z∗i︸︷︷︸
≤0

) ≥ u(δ(S)).

Thus, the optimum value w of the dual (4.16) which by strong duality equals
the maximum flow value is at least the capacity u(δ+(S)) of the cut (S, T). By
Lemma 4.20 it now follows that (S, T) must be a minimum cut and the claim
of the theorem is proved. 2

4.6 Matchings and Integral Polyhedra II

Birkhoff’s theorem provided a complete description of conv(PM(G)) in the
case where the graph G = (V, E) was bipartite. In general, the conditions in
(4.4) do not suffice to ensure integrality of every extreme point of the corre-
sponding polytope. Let FPM(G) (the fractional matching polytope) denote the
polytope defined by (4.4). Consider the case where the graph G contains an
odd cycle of length 3 (cf. Figure 4.3).

The vector x̃ with x̃e1
= x̃e2

= x̃e3
= x̃e5

= x̃e6
= x̃e7

= 1/2 and x̃e4
= 0 is

contained in FPM(G). However, x̃ is not a convex combination of incidence

58 Integrality of Polyhedra

5 6

4

2

1 3

x̃e7
= 1/2 x̃e6

= 1/2

x̃e5
= 1/2

x̃e1
= 1/2 x̃e2

= 1/2

x̃e3
= 1/2

x̃e4
= 0

Figure 4.3: In an odd cycle, the blossom inequalities are necessary to ensure
integrality of all extreme points.

vectors of perfect matchings of G, since {e3, e4, e5} is the only perfect matching
in G. However, the fractional matching polytope FPM(G) still has an interest-
ing structure, as the following theorem shows:

Theorem 4.22 (Fractional Matching Polytope Theorem) Let G = (V, E) be a
graph and x ∈ FPM(G). Then, x is an extreme point of FPM(G) if and only if
xe ∈ {0, 1/2, 1} for all e ∈ E and the edges e for which xe = 1/2 form node disjoint
odd cycles.

Proof: Suppose that x̃ is a half-integral solution satisfying the conditions
stated in the theorem. Define the vector w ∈ Rn by we = −1 if x̃e = 0

and we = 0 if x̃e > 0. Consider the face F =
{
x ∈ FPM(G) : wT x = 0

}
. Clearly,

x̃ ∈ F. We claim that F = {x̃} which shows that x̃ is an extreme point.

For every x ∈ F we have

0 = wT x = −
∑

e∈E:x̃e=0

xe︸︷︷︸
≥0

.

Thus xe = 0 for all edges such that x̃e = 0. Now consider an edge e where
x̃e = 1/2. By assumption, this edge lies on an odd cycle C. It is now easy to
see that the values of x on the cycle must be alternatingly θ and 1 − θ since
x(δ(v)) = 1 for all v ∈ V (see Figure 4.4). The only chance that x ∈ FPM(G) is
θ = 1/2 and thus x = x̃.

1

5 2

4 3

x̃12 = 1/2, x12 = θ

x̃23 = 1/2, x12 = 1 − θ

x̃23 = 1/2, x12 = θ

x̃45 = 1/2, x12 = 1 − θ

x̃51 = 1/2, x12 = θ

Figure 4.4: If x̃ satisfies the conditions of Theorem 4.22 it is the only member
of the face F =

{
x ∈ FPM(G) : wT x = 0

}
.

4.6 Matchings and Integral Polyhedra II 59

Assume conversely that x̃ is an extreme point of FPM(G). We first show that
x̃ is half-integral. By Theorem 3.33 there is an integral vector c such that x̃ is
the unique solution of max

{
cTx : x ∈ FPM(G)

}
.

Construct a bipartite graph H = (VH, EH) from G by replacing each node
v ∈ V by two nodes v ′, v ′′ and replacing each edge e = (u, v) by two edges
e ′ = (u ′, v ′′) and e ′′ = (v ′, u ′′) (see Figure 4.5 for an illustration). We extend
the weight function c : E→ R to EH by setting c(u ′, v ′′) = c(v ′, u ′′) = c(u, v).

4

2

1 3

x̃e1
= 1/2 x̃e2

= 1/2

x̃e3
= 1/2

x̃e4
= 0

(a) The original graph G.

1 ′ 1 ′′

2 ′ 2 ′′

3 ′ 3 ′′

4 ′ 4 ′′

(b) The bipartite graph H.

Figure 4.5: Construction of the bipartite graph G in the proof of Theorem 4.22.

Observe that, if x ∈ FPM(G), then x ′ defined by x ′
u ′,v ′′ := x ′

v ′,u ′′ := xuv is
a vector in FPM(H) of twice the objective function value of x. Conversely, if
x ′ ∈ FPM(H), then xuv = 1

2
(x ′

u ′v ′′ +x ′
u ′′v ′) is a vector in FPM(G) of half of the

objective function value of x ′.

By Birkhoff’s Theorem (Theorem 4.7 on page 50), the problem

max
{
cT xH : xH ∈ FPM(H)

}

has an integral optimal solution x∗
H. Using the correspondence xuv = 1

2
(x∗

u ′v ′′+

x∗
u ′′v ′) we obtain a half-integral optimal solution to

max
{
cT x : x ∈ FPM(G)

}
.

Since x̃ was the unique optimal solution to this problem, it follows that x̃ must
be half-integral.

If x̃ is half-integral, it follows that the edges {e : x̃e = 1/2} must form node
disjoint cycles (every node that meets a half-integral edge, meets exactly two
of them). As in the proof of Birkhoff’s Theorem, none of these cycles can be
even, since otherwise x̃ is no extreme point. 2

With the help of the previous result, we can now prove the Perfect Matching
Polytope Theorem, which we restate here for convenience.

Theorem 4.23 (Perfect Matching Polytope Theorem) For any graph G = (V, E),
the convex hull conv(PM(G)) of the perfect matchings in G is identical to the set of
solutions of the following linear system:

x(δ(v)) = 1 for all v ∈ V(4.17a)

x(δ(S)) ≥ 1 for all S ⊆ V , |S| ≥ 3 odd(4.17b)

xe ≥ 0 for all e ∈ E.(4.17c)

60 Integrality of Polyhedra

The inequalities (4.17b) are called blossom inequalities.

Proof: We show the claim by induction on the number |V | of vertices of the
graph G = (V, E). If |V | = 2, then the claim is trivial. So, assume that |V | > 2

and the claim holds for all graphs with fewer vertices.

Let P be the polyhedron defined by the inequalities (4.17) and let x ′ ∈ P be any
extreme point of P. Since conv(PM(G)) ⊆ P, the claim of the theorem follows
if we can show that x ′ ∈ PM(G). Since {x ′} is a minimal face of conv(PM(G)),
by Theorem 3.6 there exist a subset E ′ ⊆ E of the edges and a family S ′ of odd
subsets S ⊆ V such that x ′ is the unique solution to:

x(δ(v)) = 1 for all v ∈ V(4.18a)

x(δ(S)) = 1 for all S ∈ S ′(4.18b)

xe = 0 for all e ∈ E ′.(4.18c)

Case 1: S ′ = ∅.
In this case, x ′ is a vertex of FPM(G). By Theorem 4.22, x ′ is half-integral
and the fractional edges form node-disjoint odd cycles. On the other hand, x ′

satisfies the blossom inequalities (4.17b) which is a contradiction.

Case 2: S ′ 6= ∅.
Fix S ∈ S ′, by definition we have x ′(δ(S)) = 1. Notice that |S| is odd. The
complement S̄ := V \ S need not be of odd cardinality, but observe that, if S̄ is
of odd cardinality, then G does not contain a perfect matching (since the total
number of vertices is odd in this case). Let GS and GS̄ be the graphs obtained
from G by shrinking S and S̄ = V \ S to a single node (see Figure 4.6). Let
xS and xS̄ be the restriction of x ′ to the edges of GS and GS̄, respectively. By
construction, xi(δ(S)) = xi(δ(S̄) = 1 for i = S, S̄.

S

G

shrink S

shrink S̄ = V \ S

GS

S

GS̄

S

V \ S

Figure 4.6: Graphs GS and GS̄ obtained from G by shrinking the odd set S and
V \ S in the proof of Theorem 4.23.

It is easy to see that xS and xS̄ satisfy the constraints (4.17) with respect
to GS and GS̄, respectively. Thus, by the induction hypothesis, we have

4.7 Total Dual Integrality 61

xi ∈ conv(PM(Gi)) for i = S, S̄. Hence, we can write xi as convex combi-
nations of perfect matchings of Gi:

xS =
1

k

k∑

j=1

χMS
j(4.19)

xS̄ =
1

k

k∑

j=1

χMS̄
j(4.20)

Here, we have assumed without loss of generality that in both convex com-
binations the number of vectors used is the same, namely k. Also, we have
assumed a special form of the convex combination which can be justified as
follows: x ′ is an extreme point of P and thus is rational. This implies that
xi, i = S, S̄ are also rational. Since all λj are rational, any convex combination∑

j λjy
j can be written by using common denominator k as

∑
j

µj

k
yj, where all

µj are integral. Repeating vector yj exactly µj times, we get the form 1
k

∑
j zj.

For e ∈ δ(S) the number of j such that e ∈ MS
j is kxS

e = kx ′
e = kxS̄

e . This is
the same number of j such that e ∈ MS̄

j . Again: for every e ∈ δ(S) the number
of j such that e ∈ MS

j is the same as the number of j with e ∈ MS̄
j . Thus, we

can order the Mi
j so that MS

j and MS̄
j share an edge in δ(S) (any Mi

j, i = S, S̄

has exactly one edge from δ(S)). Then, Mj := MS
j ∪ MS̄

j is a perfect matching
of G since every vertex in G is matched and no vertex has more than one edge
incident with it.

Let Mj := MS
j ∪ MS̄

j . Then we have:

(4.21) x ′ =
1

k

k∑

i=1

χMj .

Since Mj is a perfect matching of G we see from (4.21) that x ′ is a convex
combination of perfect matchings of G. Since x ′ is an extreme point, it follows
that x ′ must be a perfect matching itself. 2

4.7 Total Dual Integrality

Another concept for proving integrality of a polyhedron is that of total dual
integrality.

Definition 4.24 (Totally dual integral system)
A rational linear system Ax ≤ b is totally dual integral (TDI), if for each integral
vector c such that

zLP = max
{
cTx : Ax ≤ b

}

is finite, the dual
min
{
bTy : ATy = c, y ≥ 0

}

has an integral optimal solution.

Theorem 4.25 If Ax ≤ b is TDI and b is integral, then the polyhedron P =

{x : Ax ≤ b} is integral.

62 Integrality of Polyhedra

Proof: If Ax ≤ b is TDI and b is integral, then the dual Linear Program

min
{
bTy : ATy = c, y ≥ 0

}

has an optimal integral objective value if it is finite (the optimal vector y∗ is
integral and b is integral by assumption, so bTy∗ is also integral). By LP-
duality, we see that the value

zLP = max
{
cT x : Ax ≤ b

}

is integral for all c ∈ Zn where the value is finite. By Theorem 4.3(iv), the
polyhedron P is integral. 2

Example 4.26
Let G = (A ∪ B, E) be a complete bipartite graph. Suppose we wish to solve a
generalized form of STABLESET on G in which we are allowed to pick a vertex
more than once. Given weights cab for the edges (a, b) we want to solve the
following Linear Program:

max
∑

v∈V

wvxv(4.22a)

xa + xb ≤ cab for all (a, b) ∈ E(4.22b)

We claim that the system of ineqalities xa + xb ≤ cab (a, b) ∈ A is TDI. The
dual of (4.22) is given by:

min
∑

(a,b)∈E

cabyab(4.23a)

∑

b∈B

xab = wa for all a ∈ A(4.23b)

∑

a∈a

xab = wb for all b ∈ B(4.23c)

yab ≥ 0 for all (a, b) ∈ A.(4.23d)

The constraint matrix of (4.23) is the constraint matrix of the assignment
problem, which we have already shown to be totally unimodular (see Ex-
ample 4.15). Thus, if the weight vector w is integral, then the dual (4.23) has
an optimal integral solution (if it is feasible). ⊳

It should be noted that the condition “and b is integral” in the previous the-
orem is crucial. It can be shown that for any rational system Ax ≤ b there
is an integer ω such that (1/ω)Ax ≤ (1/ω)b is TDI. Hence, the fact that a
system is TDI does not yet tell us anything useful about the structure of the
corresponding polyhedron.

We have seen that if we find a TDI system with integral right hand side, then
the corresponding polyhedron is integral. The next theorem shows that the
converse is also true: if our polyhedron is integral, then we can also find a TDI
system with integral right hand side defining it.

Theorem 4.27 Let P be a rational polyhedron. Then, there exists a TDI system Ax ≤
b with A integral such that P = P(A, b). Moreover, if P is an integral polyhedron,
then b can be chosen to be integral.

4.7 Total Dual Integrality 63

Proof: Let P = {x ∈ Rn : Mx ≤ d} be a rational polyhedron. If P = ∅, then the
claim is trivial. Thus, we assume from now on that P is nonempty. Since we
can scale the rows of M by multiplying with arbitrary scalars, we can assume
without loss of generality that M has integer entries. We also assume that the
system Mx ≤ d does not contain any redundant rows. Thus, for any row mT

i

of M there is an x ∈ P with mT
i x = di.

Let S =
{
s ∈ Zn : s = MTy, 0 ≤ y ≤ 1

}
be the set of integral vectors which

can be written as nonnegative linear combinations of the rows of M where no
coefficient is larger than one. Since y comes from a bounded domain and S

contains only integral points, it follows that S is finite. For s ∈ S we define

z(s) := max
{
sTx : x ∈ P

}
.

Observe that, if s ∈ S, say s =
∑m

i=1 yimi, and x ∈ P, then mT
i x ≤ di which

means yim
T
i x ≤ yidi for i = 1, . . . , m, from which we get that

sTx =

m∑

i=1

yim
T
i x ≤

m∑

i=1

yidi ≤
m∑

i=1

|di|.

Thus, sTx is bounded on P and z(s) < +∞ for all s ∈ S. Moreover, the in-
equality sT x ≤ z(s) is valid for P. We define the system Ax ≤ b to consist of
all inequalities sTx ≤ z(s) with s ∈ S.

Every row mT
i of M is a vector in S (by assumption M is integral and mT

i is
a degenerated linear combination of the rows, namely with coefficient one for
itself and zero for all other rows). Since mT

i x ≤ di for all x ∈ P, the inequality
mT

i x ≤ di is contained in Ax ≤ b. Furthermore, since we have only added
valid inequalities to the system, it follows that

(4.24) P = {x : Ax ≤ b} .

If P is integral, then by Theorem 4.3 the value z(s) is integral for each s ∈ S,
so the system Ax ≤ b has an integral right hand side. The only thing that
remains to show is that Ax ≤ b is TDI.

Let c be an integral vector such that zLP = max
{
cT x : Ax ≤ b

}
is finite. We

have to construct an optimal integral solution to the dual

(4.25) min
{
bTy : AT y = c, y ≥ 0

}
.

We have

zLP = max
{
cTx : Ax ≤ b

}

= max
{
cTx : x ∈ P

}
(by (4.24))

= max
{
cTx : Mx ≤ d

}

= min
{
dTy : MTy = c, y ≥ 0

}
(by LP-duality).(4.26)

Let y∗ be an optimal solution for the problem in (4.26) and consider the vector
s̄ = MT (y∗ − ⌊y∗⌋). Observe that y − ⌊y∗⌋ has entries in [0, 1]. Morever s̄ is
integral, since s̄ = MTy∗ − MT ⌊y∗⌋ = c − MT ⌊y∗⌋ and c, MT and ⌊y∗⌋ are all
integral. Thus, s̄ ∈ S. Now,

z(s̄) = max
{
s̄Tx : x ∈ P

}

= min
{
dTy : MTy = s̄, y ≥ 0

}
(by LP-duality).(4.27)

64 Integrality of Polyhedra

The vector y∗ − ⌊y∗⌋ is feasible for (4.27) by construction. If v is feasible
for (4.27), then v+⌊y∗⌋ is feasible for (4.26). Thus, it follows easily that y−⌊y∗⌋
is optimal for (4.27). Thus, z(s̄) = dT (y∗ − ⌊y∗⌋), or

(4.28) zLP = dTy∗ = z(s̄) + dT ⌊y∗⌋.

Consider the integral vector ȳ defined as ⌊y∗⌋ for the dual variables corre-
sponding to rows in M, one for the dual variable corresponding to the con-
straint s̄Tx ≤ z(s̄) and zero everywhere else. Clearly, ȳ ≥ 0. Moreover,

AT ȳ =
∑

s∈S

ȳss = MT ⌊y∗⌋ + 1 · s̄ = MT ⌊y∗⌋ + MT (y∗ − ⌊y∗⌋) = MTy∗ = c.

Hence, ȳ is feasible for (4.25). Furthermore,

bT ȳ = z(s̄) + dT ⌊y∗⌋ (4.28)
= zLP.

Thus, ȳ is an optimal integral solution for the dual (4.25). 2

4.8 Submodularity and Matroids

In this section we apply our results about TDI systems to prove integrality for
a class of important polyhedra.

Definition 4.28 (Submodular function)
Let N be a finite set. A function f : 2N → R is called submodular, if

(4.29) f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B) for all A, B ⊆ N.

The function is called nondecreasing if

(4.30) f(A) ≤ f(B) for all A, B ⊆ N with A ⊆ B.

Usually we will not be given f “explicitly”, that is, by a listing of all the 2|N|

pairs (N, f(N)). Rather, we will have access to f via an “oracle”, that is, given
N we can compute f(N) by a call to the oracle.

Example 4.29
(i) The function f(A) = |A| is nondecreasing and submodular.

(ii) Let G = (V, E) be an undirected graph with edge weights u : E → R+.
The function f : 2V → R+ defined by f(A) :=

∑
e∈δ(A) u(e) is submodu-

lar but not necessarily nondecreasing.

⊳

Definition 4.30 (Submodular polyhedron, submodular optimization problem)
Let f be submodular and nondecreasing. The submodular polyhedron associated
with f is

(4.31) P(f) :=





x ∈ Rn

+ :
∑

j∈S

xj ≤ f(S) for all S ⊆ N.






The submodular optimization problem is to optimize a linear objective function
over P(f):

max
{
cT x : x ∈ P(f)

}
.

4.8 Submodularity and Matroids 65

Observe that by the polynomial time equivalence of optimization and sepa-
ration (see Section 5.4) we can solve the submodular optimization problem
in polynomial time if we can solve the corresponding separation problem in
polynomial time: We index the polyhedra by the finite sets N, and it is easy to
see that this class is proper.

We now consider the simple Greedy algorithm for the submodular optimiza-
tion problem described in Algorithm 4.1. The surprising result proved in the
following theorem is that the Greedy algorithm in fact solves the submodular
optimization problem. But the result is even stronger:

Algorithm 4.1 Greedy algorithm for the submodular optimization problem.

GREEDY-SUBMODULAR

1 Sort the variables such that c1 ≥ c2 ≥ · · · ≥ ck > 0 ≥ ck+1 ≥ · · · ≥ cn.
2 Set xi := f(Si) − f(Si−1) for i = 1, . . . , k and xi = 0 for i = k + 1, . . . , n,

where Si = {1, . . . , i} and S0 = ∅.

Theorem 4.31 Let f be a submodular and nondecreasing function, c : N → R be an
arbitrary weight vector.

(i) The Greedy algorithm solves the submodular optimization problem for maxi-
mizing cTx over P(f).

(ii) The system (4.31) is TDI.

(iii) For integral valued f, the polyhedron P(f) is integral.

Proof:

(i) Since f is nondecreasing, we have xi = f(Si) − f(Si−1) ≥ 0 for i =

1, . . . , k. Let S ⊆ N. We have to show that
∑

j∈S xj ≤ f(S). By the
submodularity of f we have for j ∈ S:

f(

=A︷ ︸︸ ︷
Sj ∩ S) + f(

=B︷︸︸︷
Sj−1) ≥ f(

=A∪B︷︸︸︷
Sj) + f(

=A∩B︷ ︸︸ ︷
Sj−1 ∩ S)

⇔f(Sj) − f(Sj−1) ≤ f(Sj ∩ S) − f(Sj−1 ∩ S)(4.32)

Thus,
∑

j∈S

xj =
∑

j∈S∩Sk

(

f(Sj) − f(Sj−1)
)

≤
∑

j∈S∩Sk

(

f(Sj ∩ S) − f(Sj−1 ∩ S)
)

(by (4.32))

≤
∑

j∈Sk

(

f(Sj ∩ S) − f(Sj−1 ∩ S)
)

(f nondecreasing)

= f(Sk ∩ S) − f(∅)

≤ f(S).

Thus, the vector x computed by the Greedy algorithm is in fact contained
in P(f). Its solution value is

(4.33) cT x =

k∑

i=1

ci

(

f(Si) − f(Si−1)
)

.

66 Integrality of Polyhedra

We now consider the Linear Programming dual of the submodular opti-
mization problem:

wD = min
∑

S⊆N

f(S)yS

∑

S:j∈S

yS ≥ cj for all j ∈ N

yS ≥ 0 for all S ⊆ N.

If we can show that cT x = wD, then it follows that x is optimal. Con-
struct a vector y by ySi = ci − ci+1 for i = 1, . . . , k − 1, ySk = ck and
yS = 0 for all other sets S ⊆ N. Since we have sorted the sets such
that c1 ≥ c2 ≥ ck > 0 ≥ ck+1 ≥ · · · ≥ cn, it follows that y has only
nonnegative entries.

For j = 1, . . . , k we have

∑

S:j∈S

yS ≥
k∑

i=j

ySi =

k−1∑

i=j

(ci − ci+1) + ck = cj.

On the other hand, for j = k + 1, . . . , n

∑

S:j∈S

yS ≥ 0 ≥ cj.

Hence, y is feasible for the dual. The objective function value for y is:

∑

S⊆N

f(S)yS =

k∑

i=1

f(Si)ySi =

k−1∑

i=1

f(Si)(ci − ci+1) + f(Sk)ck

=

k∑

i=1

(f(Si) − f(Si−1)ci

= cT x,

where the last equality stems from (4.33). Thus, y must be optimal for
the dual and x optimal for the primal.

(ii) The proof of statement (ii) follows from the observation that, if c is inte-
gral, then the optimal vector y constructed is integral.

(iii) Follows from (ii) and Theorem 4.25.

2

An important class of submodular optimization problems are induced by spe-
cial submodular functions, namely the rank functions of matroids.

Definition 4.32 (Independence system, matroid)
Let N be a finite set and I ⊆ 2N. The pair (N, I) is called an independence system,
if A ∈ I and B ⊆ A implies that B ∈ I. The sets in I are called independent sets.

The independence system is a matroid if for each A ∈ I and B ∈ I with |B| > |A|

there exists a ∈ B \ A with A ∪ {a} ∈ I.

Given a matroid (N, I), its rank function r : 2N → N is defined by

r(A) := max {|I| : I ⊆ A and I ∈ I} .

4.8 Submodularity and Matroids 67

Observe that r(A) ≤ |A| for any A ⊂ N and r(A) = |A| if any only if A ∈ I.
Thus, we could alternatively specify a matroid (N, I) also by (N, r).

Lemma 4.33 The rank function of a matroid is submodular and nondecreasing.

Proof: The fact that r is nondecreasing is trivial. Let A, B ⊆ N. We must prove
that

r(A) + r(B) ≥ r(A ∪ B) + r(A ∩ B).

Let X ⊆ A ∪ B with |X| = r(A ∪ B) and Y ⊆ A ∩ B with |Y| = r(A ∩ B). Let
X ′ := Y. Since X ′ is independent and X is independent, if |X ′| < |X| we can
add an element from X to X ′ without loosing independence. Continuing this
procedure, we find X ′ with |X ′| = |X| and Y ⊆ X ′ by construction. Hence, we
can assume that Y ⊆ X. Now,

r(A) + r(B) ≥ |X ∩ A| + |X ∩ B|

= |X ∩ (A ∩ B)| + |X ∩ (A ∪ B)|

≥ |Y| + |X|

= r(A ∩ B) + r(A ∪ B).

This shows the claim. 2

Example 4.34 (Matric matroid)
Let A be an m×n-matrix with columns a1, . . . , an. Set N := {1, . . . , n} and the
family I by the condition that S ∈ I if and only if the vectors {ai : i ∈ S} are
linearly independent. Then (N, I) is an independendence system. By Steinitz’
Theorem (basis exchange) from Linear algebra, we know that (N, I) is in fact
also a matroid. ⊳

Example 4.35
Let E = {1, 3, 5, 9, 11} and F :=

{
A ⊆ E :

∑
e∈A e ≤ 20

}
. Then, (E,F) is an

independence system but not a matroid.

The fact that (E,F) is an independence system follows from the property that,
if B ⊆ A ∈ F , then

∑
e∈B e ≤∑e∈A e ≤ 20.

Now consider B := {9, 11} ∈ F and A := {1, 3, 5, 9} ∈ F where |B| < |A|.
However, there is no element in A \ B that can be added to B without losing
independence. ⊳

Definition 4.36 (Tree, forest)
Let G = (V, E) a graph. A forest in G is a subgraph (V, E ′) which does not contain
a cycle. A tree is a forest which is connected (i.e., which contains a path between any
two vertices).

Example 4.37 (Graphic matroid)
Let G = (V, E) be a graph. We consider the pair (E,F), where

F := {T ⊆ E : (V, T) is a forest} .

Clearly, (E,F) is an independence system, since by deleting edges from a for-
est, we obtain again a forest. We show that the system is also a matroid. If
(V, T) is a forest, then it follow easily by induction on |T | that (V, T) has ex-
actly |V | − |T | connected components. Let A ∈ I and B ∈ I with |B| > |A|.
Let C1, . . . , Ck be the connected components of (V, A) where k = |V | − |A|.
Since (V, B) has fewer connected components, there must be an edge e ∈ B\A

whose endpoints are in different components of (V, A). Thus A ∪ {e} is also a
forest. ⊳

68 Integrality of Polyhedra

Lemma 4.38 Let G = (V, E) be a graph and (N, I) be the associated graphic matroid.
Then the rank function r is given by r(A) = |V | − comp(V, A), where comp(V, A)

denotes the number of connected components of the graph (V, A).

Proof: Let A ⊆ E. It is easy to see that in a matroid all maximal indepen-
dent subsets of A have the same cardinality. Let C1, . . . , Ck be the connected
components of (V, A). For i = 1, . . . , k we can find a spanning tree of Ci. The
union of these spanning trees is a forest with

∑k

i=1(|Ci| − 1) = |V | − k edges,
all of which are in A. Thus, r(A) ≥ |V | − k.

Assume now that F ⊆ A is an independent set. Then, F can contain only edges
of the components C1, . . . , Ck. Since F is a forest, the restriction of F to any Ci

is also a forest, which implies that |F∩Ci| ≤ |Ci|−1. Thus, we have |F| ≤ |V |−k

and hence r(A) ≤ |V | − k. 2

Definition 4.39 (Matroid optimization problem)
Given a matroid (N, I) and a weight function c : N→ R, the matroid optimization
problem is to find a set A ∈ I maximizing c(A) =

∑
a∈A c(a).

By Lemma 4.33 the polyhedron

P(N, I) :=





x ∈ Rn

+ :
∑

j∈S

xj ≤ r(S) for all S ⊆ N






is a submodular polyhedron. Moreover, by the integrality of the rank function
and Theorem 4.31(iii) P(N, I) is integral. Finally, since r({j}) ≤ 1 for all j ∈ N,
it follows that 0 ≤ x ≤ 1 for all x ∈ P(N, I). Thus, in fact we have:

(4.34) P(N, I) = conv









x ∈ Bn :

∑

j∈S

xj ≤ r(S) for all S ⊆ N.










With (4.34) it is easy to see that the matroid optimization problem reduces to
the submodular optimization problem. By Theorem 4.31(i) the Greedy algo-
rithm finds an optimal (integral) solution and thus solves the matroid opti-
mization problem.

It is worthwhile to have a closer look at the Greedy algorithm in the special
case of a submodular polyhedron induced by a matroid. Let again be Si =

{1, . . . , i}, S0 = ∅. Since r(Si) − r(Si−1) ∈ {0, 1} and the algorithm works as
follows:

1. Sort the variables such that c1 ≥ c2 ≥ · · · ≥ ck > 0 ≥ ck+1 ≥ · · · ≥ cn.

2. Start with S = ∅.

3. For i = 1, . . . , k, if S ∪ {i} ∈ I, then set S := S ∪ {i}.

Part II

Algorithms

Basics about Problems and
Complexity

5.1 Encoding Schemes, Problems and Instances

We briefly review the basics from the theory of computation as far as they are
relevant in our context. Details can be found for instance in the book of Garey
and Johnson [GJ79].

Informally, a decision problem is a problem that can be answered by “yes”
or ”no”. As an example consider the problem of asking whether a given
graph G = (V, E) has a Hamiltonian Tour. Such a problem is characterized
by the inputs for which the answer is “yes”. To make this statement more for-
mal we need to define exactly what we mean by “input”, in particular if we
speak about complexity in a few moments.

2

1 4

3

Figure 5.1: Example of an undirected graph.

Let Σ be a finite set of cardinality at least two. The set Σ is called the alphabet.
By Σ∗ we denote the set of all finite strings with letters from Σ. The size |x| of
a string x ∈ Σ∗ is defined to be the number of characters in it. For example,
the undirected graph depicted in Figure 5.1 can be encoded as the following
string over an appropriate alphabet which contains all the necessary letters:

({001, 010, 011, 100}, {(001, 010), (001, 011), (010, 011), (011, 100)})

Here, we have encoded the vertices as binary numbers.

A (decision) problem is a subset Π ⊆ Σ∗. To decide Π means, given x ∈ Σ∗ to
decide whether x ∈ Π or not. The string x is called the input of the problem.

72 Basics about Problems and Complexity

One speaks of an instance of the problem if one asks for a concrete input x

whether x belongs to Π or not.

Example 5.1 (Stable Set Problem)
A stable set (or independent set) in an undirected graph G = (V, E) is a subset
S ⊆ V of the vertices such that none of the vertices in S are joined by an edge.
The set of instances of the stable set problem (STABLESET) consists of all words
(a, b) such that:

• a encodes an undirected graph G = (V, E)

• b encodes an integer k with 0 ≤ k ≤ |V |

• G contains a stable set of size at least k.

Alternatively we could also say that an instance of STABLESET is given by an
undirected graph G(V, E) and an integer k and the problem is to decide wether
G has a stable set of size at least k. ⊳

Classical complexity theory expresses the running time of an algorithm in
terms of the size of the input, which is intended to measure the amount of
data necessary to describe an instance of a problem. Naturally, there are many
ways to encode a problem as words over an alphabet Σ. We assume the fol-
lowing standard encoding:

• Integers are encoded in binary. The standard binary representation of an
integer n uses ⌈log

2
n⌉ + 1 bits. We need an additional bit to encode the

sign. Hence, the encoding length of an integer n is 〈n〉 = ⌈log
2
n⌉ + 2.

• Any rational number r has a unique representation r = p/q where p ∈ Z,
q ∈ N and p and q do not have a common divisor other than 1. The
encoding length of r is 〈r〉 := 〈p〉 + 〈q〉.

• The encoding length of a vector x = (x1, . . . , xn)T ∈ Qn is
∑n

i=1〈xi〉.
• The encoding length of a matrix A = (aij) ∈ Qm×n is

∑
i,j〈aij〉.

• Graphs are encoded by means of their adjacency matrices, incidence ma-
trices or adjacency lists.

The adjacency matrix of a graph G = (V, E) with n := |V | nodes is the
n × n matrix A(G) ∈ Bn×n with aij = 1 if (vi, vj) ∈ E and aij = 0

if (vi, vj) /∈ E. The incidence matrix of G is the m × n matrix I(G) with
rows corresponding to the vertices of G and columns representing the
arcs/edges of G. The column corresponding to arc (vi, vj) has a −1 at
row i and a +1 at row j. All other entries are zero. Since we have already
specified the encoding lengths of matrices, the size of a graph encoding
is now defined if one of the matrix represenations is used.

The adjacency list representation consists of the number n of vertices and
the number m of edges plus a vector Adj of n lists, one for each vertex.
The list Adj[u] contains all v ∈ V such that (u, v) ∈ E. Figure 5.2 shows
an example of such a representation for a directed graph. The size of the
adjacency list representation of a graph is 〈n〉+ 〈m〉+m+n for directed
graphs and 〈n〉 + 〈m〉 + 2m + n for undirected graphs.

One might wonder why we have allowed different types of encodings
for graphs. The answer is that for the question of polynomial time solv-
ability it does in fact not matter which representation we use, since they
are all polynomially related in size.

5.2 The Classes P and NP 73

2 4

1 6

3 5

7

4

1

1

5

2

v Adj[v]

1 2 7 3 4

2 4 1 5 1

3 5 5

4 5 2

5 NULL
6 NULL

Figure 5.2: Adjacency list representation of a directed graph.

Example 5.2
An instance (G = (V, E), k) of STABLESET has size 〈n〉 + 〈m〉 + n + 2m + 〈k〉 if
we use the adjacency list representation. ⊳

Example 5.3
Suppose we are given a MIP

(MIP) max cT x

Ax ≤ b

x ≥ 0

x ∈ Zp × Rn−p.

where all data A, b, c is integral. Then, the encoding size of an instance of
the decision version of the MIP which asks whether there exists a feasible
solution x with cT x ≥ k is given by

〈A〉 + 〈b〉 + 〈c〉 + 〈k〉 + n + p.

⊳

The running time of an algorithm on a specific input is defined to be the sum
of times taken by each instruction executed. The worst case time complexity
or simply time complexity of an algorithm is the function T(n) which is the
maximum running time taken over all inputs of size n (cf. [AHU74, GJ79,
GLS88]). An algorithm is a polynomial time algorithm if T(n) ≤ p(n) for some
polynomial p.

5.2 The Classes P and NP

Definition 5.4 (Complexity Class P)
The class P consists of all problems which can be decided in polynomial time on a
deterministic Turing machine.

74 Basics about Problems and Complexity

Example 5.5
The decision version of the maximum flow problem, that is, decide whether
the following IP has a solution of value greater than a given flow value F,

max
∑

(i,t)∈A

f(i, t) −
∑

(t,j)∈A

f(t, j)

∑

(j,i)∈A

f(j, i) −
∑

(i,j)∈A

f(i, j) = 0 for all i ∈ V \ {s, t}

0 ≤ f(i, j) ≤ u(i, j) for all (i, j) ∈ A

is in P, since for instance the Edmonds-Karp-Algorithm solves it in time O(nm2)

which is polynomial in the input size.1 ⊳

Definition 5.6 (Complexity Class NP)
The class NP consists of all problems Π ⊆ Σ∗ such that there is a problem Π ′ ∈ P and
a polynomial p such that for each x ∈ Σ∗ the following property holds:

x ∈ Π if and only if there exists y ∈ Σ∗ with |y| ≤ p(|x|) and (x, y) ∈ Π ′.

The word y is called a certificate for x.

It is clear from the definition of NP and P that P ⊆ NP.

Example 5.7 (Stable Set Problem (continued))
STABLESET is in NP, since if a graph G = (V, E) has a stable set S of size k we
can simply use S as a certificate. Clearly it can be checked in polynomial time
that S is in fact a stable set in G of size at least k. ⊳

To obtain a classification of “easy” and “difficult” problems we introduce the
concept of a polynomial time reduction:

Definition 5.8 (Polynomial Time Reduction)
A polynomial time reduction of a problem Π to a problem Π ′ is a polynomial time
computable function f with the property that x ∈ Π if and only if f(x) ∈ Π ′.

We say that Π is polynomial time reducible to Π ′ if there exists a polynomial time
reduction from Π to Π. In this case we write Π ∝ Π ′.

Intuitively, if Π ∝ Π ′, then Π could be called “easier” than Π ′, since we can re-
duce the solvability of Π to that of Π ′. In fact, we have the following important
observation:

Observation 5.9 If Π ∝ Π ′ and Π ′ ∈ P, then Π ∈ P.

Definition 5.10 (Vertex Cover)
Let G = (V, E) be an undirected graph. A vertex cover in G is a subset C ⊆ V of the
vertices of G such that for each edge e ∈ M at least one endpoint is in C.

1There are actually faster algorithms such as the FIFO-Preflow-Push Algorithm of Goldberg

and Tarjan which runs in time O(n3). This time can even be reduced to O

“

nmlog n2

m

”

by the

use of sophisticated data structures.

5.2 The Classes P and NP 75

Example 5.11
An instance of the vertex cover problem (VC) consists of a graph G and an in-
teger k. The question posed is whether there exists a vertex cover of size at
most k in G.

We claim that VC ∝ STABLESET. To see this observe that C is a vertex cover
in G if and only if V \C is a stable set. This immediately leads to a polynomial
time reduction. ⊳

Example 5.12
A clique C in a graph G = (V, E) is a subset of the nodes such that every pair of
nodes in C is connected by an edge. The clique problem (CLIQUE) asks whether
a given graph G contains a clique of size at least a given number k.

Since C is a clique in G if and only if C is a stable set in the complement
graph Ḡ, a polynomial time reduction from CLIQUE to STABLESET is obtained
by computing Ḡ. ⊳

We are now ready to define “hard” problems:

Definition 5.13 (NP-complete problem)
A problem Π ′ ∈ NP is called NP-complete if Π ∝ Π ′ for every problem Π ∈ NP.

By the fact that the composition of polynomial time reductions is again a poly-
nomial time reduction, we have the following useful observation:

Observation 5.14 Suppose that Π is NP-complete. Let Π ′ ∈ NP with the property
that Π ∝ Π ′. Then, Π ′ is also NP-complete.

From Observation 5.9 we also have the following important fact:

Observation 5.15 Suppose that Π is NP-complete and also Π ∈ P. Then, P = NP.

Most problems encountered in these lecture notes are optimization problems
rather than decision problems. Clearly, to any minimization problem (max-
imization problem) we can associate a corresponding decision problem that
asks whether there exists a feasible solution of cost at most (at least) a given
value.

Definition 5.16 (NP-hard optimiziation problem)
An optimization problem whose corresponding decision problem is NP-complete is
called NP-hard.

Definition 5.13 raises the question whether there exist NP-complete prob-
lems. This question was settled in the affirmative in the seminal work by
Cook [Coo71] and Karp [Kar72]. An instance of the Satisfiability Problem (SAT)
is given by a finite number n of Boolean variables X1, . . . , Xn and a finite
number m of clauses

Cj = Li1
∨ Li2

∨ · · · ∨ Lij
,

where Lil
∈ {Xil

, X̄il
} is a literal, that is, a variable or its negation. Given an

instance of SAT the question posed is whether there exists an assignment of
truth values to the variables such that all clauses are satisfied.

Theorem 5.17 (Cook [Coo71]) SAT is NP-complete.

76 Basics about Problems and Complexity

Karp [Kar72] showed a number of elementary graph problems to be NP-
complete, among them STABLESET, CLIQUE, VC and the TSP. Since then
the list of NP-complete problems has been growing enormously (see the book
Garey and Johnson [GJ79] for an extensive list of NP-complete problems).

Theorem 5.18 (Karp [Kar72]) The following problems are all NP-complete:

• STABLESET

• CLIQUE

• VC

• TSP

• KNAPSACK

2

We have already remarked above that P ⊆ NP. By Observation 5.15 we would
have P = NP if we find a polynomial time algorithm for a single NP-complete
problem. Despite great efforts to date no one has succeeded in doing so. It
is widely believed that NP-completeness, or, more general, NP-hardness of a
problem is a certificate of intractability.

5.3 The Complexity of Integer Programming

We now consider the complexity of Integer Linear Programming. To this end
we first address the case of binary variables.

(BIP) max cT x

Ax ≤ b

x ≥ 0

x ∈ Bn

Theorem 5.19 Binary Integer Programming (BIP) is NP-hard.

Proof: In order to show that the decision version of BIP (here also called BIP
for simplicity) is NP-complete we have to prove two things:

1. BIP is in NP.

2. There is an NP-complete problem Π such that Π is polynomial time red-
ucable to BIP.

The fact that BIP is contained in NP is easy to see. Suppose that the in-
stance (A, b, c, k) has a feasible solution x∗ with cT x ≥ k. The encoding size
of x∗ ∈ Bn is n (since x∗ is a binary vector with n entries). Since we can
check in polynomial time that in fact x∗ is a feasible solution by checking all
the contraints and the objective function value, this gives us a certificate that
(A, b, c, k) is a “yes”-instance.

In order to prove the completeness of BIP, we reduce the satisfiability problem
SAT to BIP. Suppose that we are given an instance (X1, . . . , Xn, C1, . . . , Cm) of

5.4 Optimization and Separation 77

SAT. For a clause Cj we denote by C+
j and C−

j the index sets of positive and
negative literals in Cj, respectively. We now formulate the following BIP:

max 0
∑

i∈C+

j

xi +
∑

i∈C−

j

(1 − xi) ≥ 1(5.1)

xi ∈ {0, 1} for i = 1, . . . , n

It is easy to see that the BIP can be set up in polynomial time given the instance
of SAT. Consider a clause Cj. If we have a truth assignment to the variables
in Cj that satisfies Cj, then the corresponding setting of binary values to the
variables in the BIP will satisfy the constraint (5.1) and vice versa. Hence it
follows that the BIP has a feasible solution if and only if the given instance of
SAT is satisfiable. 2

Integer Linear Programming and Mixed Integer Programming are generaliza-
tions of Binary Integer Programming. Hence, Binary Integer Programming
can be reduced to both problems in polynomial time. Can we conclude now
that both IP and MIP are NP-complete? We can not, since we still have to
show that in case of a “yes”-instance there exists a certificate of polynomial
size. This was not a problem for the BIP since the certificate just involved
n binary values, but for general IP and MIP we have to bound the entries of
a solution vector x by a polynomial in 〈A〉, 〈b〉 and 〈c〉. This is somewhat
technical and we refer the reader to [Sch86, NW99].

Theorem 5.20 Solving MIP and IP is NP-hard. 2

Thus, solving general Integer Linear Programs is a hard job. Nevertheless,
proving a problem to be hard does not make the problem disappear. Thus, in
the remainder of these notes we seek to explore the structure of specific prob-
lems which sometimes makes it possible to solve them in polynomial time or
at least much more efficiently than brute-force enumeration.

5.4 Optimization and Separation

We have seen a number of problems which had an exponential number of
constraints (e.g. the formulation of the TSP in Example 1.8, the formulation of
the minimum spanning tree problem in Example 1.10). Having such a large
number of constraints in a Linear Programming problem does not defeat the
existence of a polynomial time algorithm, at least not if we do not write down
the LP explicitly. We will now make this statement precise.

To this end, we need a framework for describing linear systems that may be
very large (relative to the size of the combinatorial problem that we want to
solve). For instance, we do not want to list all the 2n inequalities for the LP-
relaxation of the MST-problem.

Definition 5.21 (Separation problem over an implicitly given polyhedron)
Given a bounded rational polyhedron P ⊂ Rn and a rational vector v ∈ Rn, either
conclude that v ∈ P or, if not, find a rational vector w ∈ Rn such that wT x < wT v

for all x ∈ P.

78 Basics about Problems and Complexity

Definition 5.22 (Optimization problem over an implicitly given polyhedron)
Given a bounded rational polyhedron P ⊂ Rn and a rational objective vector c, either
find x∗ ∈ P maximizing cT x over P or conclude that P is empty.

A famous theorem of Grötschel, Lovász and Schrijver [GLS88] says that the
separation problem is polynomial time solvable if and only if the correspond-
ing optimization problem is. To make this statement more precise, we need a
bit of notation.

We consider classes of polyhedra P = {Po : o ∈ O}, where O is some collection
of objects. For instance, O can be the collection of all graphs, and for a fixed
o ∈ O, Po is the convex hull of all incidence vectors of spanning trees of o.
The class P of polyhedra is called proper, if for each o ∈ O we can compute
in polynomial time (with respect to the size of o) positive integers no and so

such that Po ⊂ Rno and Po can be described by a linear system of inequalities
each of which has encoding size at most so.

Example 5.23
We consider the LP-relaxation of the IP-formulation for the MST-problem from
Example 1.10, that is, the LP obtained by dropping the integrality constraints:

min
∑

e∈E

cexe(5.2a)

∑

e∈δ(S)

xe ≥ 1 for all ∅ ⊂ S ⊂ V(5.2b)

0 ≤ x ≤ 1(5.2c)

The class of polyhedra associated with (5.2) MST-problem is proper. Given the
graph (object) o = G = (V, E), the dimension where the polytope Po lives in
is m = |E|, the number of edges of G. Clearly, m can be computed in polyno-
mial time. Moreover each of the inequalities (5.2b) has encoding size at most
m + 1, since we need to specify at most m variables to sum up. Each of the
inequalities (5.2c) has also size at most m + 1. ⊳

We say that the separation problem is polynomial time solvable for a proper class
of polyhedra P , if there exists an algorithm that solves the separation problem
for each Po ∈ P in time polynomial in the size of o and the given rational
vector v ∈ Rno . The optimiziation problem over P is polynomial time solvable,
if there exists a polynomial time algorithm for solving any instance (Po, c) of
the optimization problem, where o ∈ O and c is a rational vector in Rno .

The exact statement of the theorem of Grötschel, Lovász and Schrijver [GLS88]
is as follows:

Theorem 5.24 For any proper class of polyhedra, the optimization problem is poly-
nomial time solvable if and only if the separation problem is polynomial time solvable.

The proof is beyond the scope of these lecture notes, and we refer the reader
to [GLS88, NW99] for details. We close this section with an example to give a
flavor of the application of this result.

Example 5.25
Consider again the LP-relaxation of the IP-formulation for the MST-problem.
We have already seen that the class of polytopes associate with this problem

5.4 Optimization and Separation 79

is proper. We show that we can solve the separation problem in polynomial
time. To this end, let v ∈ RE be a vector. We have to check whether x ∈ Po and
if not, find a violated inequality.

As a first step, we check the 2n constraints 0 ≤ ve ≤ 1 for all e ∈ E. Clearly, we
can do this in polynomial time. If we find a violated inequality, we are already
done. The more difficult part is to check the 2n −2 constraints

∑
e∈δ(S) ve ≥ 1.

Consider the graph G = (V, E) with edge weights given by v, that is, edge e has
weight ve. Then, the constraints

∑
e∈δ(S) ve ≥ 1 for ∅ ⊂ S ⊂ V say that with

respect to this weighing, G must not have a cut of weight less than 1. Thus,
we solve a minimum cut problem in G with edge weights v. If the minimum
cut has weight at least 1, we know that v satisfies all constraints. In the other
case, if S is one side of the minimum cut, which has weight less than 1, then∑

e∈δ(S) ve ≥ 1 is a violated inequality. Since we can solve the minimum
cut problem in polynomial time, we can now solve the separation problem in
polynomial time, too.

By the result in Theorem 5.24, it now follows that we can solve the optimiza-
tion problem (5.2) in polynomial time. ⊳

Relaxations and Bounds

6.1 Optimality and Relaxations

Suppose that we are given an IP

z = max
{
cTx : x ∈ X

}
,

where X = {x : Ax ≤ b, x ∈ Zn} and a vector x∗ ∈ X which is a candidate for
optimality. Is there a way we can prove that x∗ is optimal? In the realm of
Linear Programming the Duality Theorem provides a nice characterization of
optimality. Similarly, the concept of complementary slackness is useful for
(continuous) Linear Programs.

Unfortunately, there a no such nice characterizations of optimality for Integer
Linear Programs. However, there is a simple concept that sometimes suffices
to prove optimality, namely the concept of bounding with the help of upper
and lower bounds. If we are given a lower bound z ≤ z and an upper bound
z ≤ z̄ and we know that z̄ − z ≤ ε for some ε > 0, then we have enclosed the
optimal function value within an accuracy of ε. Moreover, if z̄ = z, then we
have found an optimal solution.

In particular, consider the case mentioned at the beginning of this section, we
had a candidate x∗ for optimality. Then, z = cT x∗ is a lower bound for the
optimal solution value z. If we are able to find an upper bound z̄ such that
cT x∗ = z̄, we have shown that x∗ is an optimal solution.

In the case of maximization (minimization) problems lower (upper) bounds
are usually called primal bounds, whereas upper (lower) bounds are referred to
as dual bounds.

In the sequel we consider the case of a maximization problem

max
{
cTx : x ∈ X ⊆ Rn

}
,

the case of a minimization problem is analogous.

Primal bounds Every feasible solution x ∈ X provides a lower bound z = cT x

for the optimal objective function value z. This is the only known way to
establish primal bounds and the reason behind the name: every primal
bound goes with a feasible solution for the (primal) problem.

Sometimes, it is hard to find a feasible solution. However, sometimes
we can find a feasible solution (and thus a lower bound) almost trivially.
For instance, in the traveling salesman problem (see Example 1.8), any
permutation of the cities gives a feasible solution.

82 Relaxations and Bounds

Dual bounds In order to find upper bounds one usually replaces the opti-
mization problem by a simpler problem, whose optimization value is at
least as large as z. For the “easier” problem one either optimizes over a
larger set or one replaces the objective function by a version with larger
value everywhere.

The most useful concept for proving dual bounds is that of a relaxation:

Definition 6.1 (Relaxation)
Consider the following two optimization problems:

(IP) z = max
{
cT x : x ∈ X ⊆ Rn

}

(RP) zRP = max {f(x) : x ∈ T ⊆ Rn}

The problem RP is called a relaxation of IP if X ⊆ T and f(x) ≥ cT x for all x ∈ X.

Clearly, if RP is a relaxation of IP, then zRP ≥ z. We collect this property and a
few more easy but useful observations:

Observation 6.2 Let RP be a relaxation of IP. Then, the following properties hold:

(i) zRP ≥ z

(ii) If RP is infeasible, then IP is also infeasible.

(iii) Suppose that x∗ is a feasible solution to RP. If x∗ ∈ X and f(x∗) = cT x∗, then
x∗ is also optimal for IP.

One of the most useful relaxations of integer programs are the linear program-
ming relaxations:

Definition 6.3 (Linear Programming relaxation)
The Linear Programming relaxation of the IP max

{
cT x : x ∈ P ∩ Z

}
with for-

mulation P = {x : Ax ≤ b} is the Linear Program zLP = max
{
cTx : x ∈ P

}
.

Example 6.4
Consider the following slight modification of the IP from Example 1.2 (the
only modification is in the objective function):

z = max − 2x1 + 5x2

2x2 − 3x1 ≤ 2

x1 + x2 ≤ 5

1 ≤ x1 ≤ 3

1 ≤ x2 ≤ 3

x1, x2 ∈ Z

A primal bound is obtained by observing that (2, 3) is feasible for the IP which
gives z = −2 · 2 + 5 · 3 = 11 ≤ z. We obtain a dual bound by solving the LP
relaxation. This relaxation has an optimal solution (4/3, 3) with value zLP =

37/3. Hence, we have an upper bound z̄ = 37/3 ≥ z. But we can improve this
upper bound slightly. Observe that for integral x1, x2 the objective function
value is also integral. Hence, if z ≤ 37/3 we also have z ≤ ⌊37/3⌋ = 12 (in fact
we have z = 11). ⊳

6.1 Optimality and Relaxations 83

0 1 2 3 4 5

0

1

2

3

4

5

b b b

b b b

b

Figure 6.1: Feasible region for the LP-relaxation in Example 6.4 and feasible
set of the IP.

Example 6.5 (Knapsack Problem)
Consider the Linear Programming relaxation of the Knapsack Problem (KNAPSACK)
from Example 1.3.

max
n∑

i=1

cixi

n∑

i=1

aixi ≤ b

0 ≤ xi ≤ 1 for i = 1, . . . , n.

In this relaxation we are not required to either pack an item i or not pack it,
but we are allowed to pack an arbitrary fraction 0 ≤ xi ≤ 1 of the item into
the knapsack. Although we could solve the LP-relaxation by standard Linear
Programming methods, this is in fact overkill! Suppose that we sort the items
into nonincreasing order according to their “bang-for-the-buck-ratio” ci/ai.
Without loss of generality we assume now that c1/a1 ≥ c2/a2 ≥ · · · ≥ cn/an.
Let i0 be the largest index such that

∑i0

i=1 ai ≤ b. We pack all items 1, . . . , i0
completely (xi = 1 for i = 1, . . . , i0) and fill the remaining empty space s =

b −
∑i0

i=1 ai with s/ai0+1 units of item i0 + 1 (xi0+1 = s/ai0+1). All other
items stay completely out of the knapsack. It is easy to see that this in fact
yields an optimal (fractional) packing. ⊳

We turn to the relation between formulations and the quality of Linear Pro-
gramming relaxations:

Lemma 6.6 Let P1 and P2 be formulations for the set X ⊆ Rn, where P1 is bet-
ter than P2. Consider the integer program zIP = max

{
cT x : x ∈ X

}
and denote by

zLP
i = max

{
cT x : x ∈ Pi

}
for i = 1, 2 the values of the associated Linear Program-

ming relaxations. Then we have

zIP ≤ zLP
1 ≤ zLP

2

for all vectors c ∈ Rn.

84 Relaxations and Bounds

Proof: The result immediately follows from the fact that X ⊆ P1 ⊆ P2. 2

Example 6.7
By using the formulation given in Example 6.4 we obtained an upper bound
of 12 for the optimal value of the IP. If we use the ideal formulation

z = max 2x1 + 5x2

x1 + x2 ≤ 5

− x1 + x2 ≤ 1

1 ≤ x1 ≤ 3

1 ≤ x2 ≤ 3

x1, x2 ∈ Z

then we obtain the optimal solution for the relaxation (2, 3) with objective
function value 11. Thus, (2, 3) is an optimal solution for the original IP. ⊳

6.2 Combinatorial Relaxations

Sometimes the relaxation of a problem is a combinatorial optimization prob-
lem. In this case we speak of a combinatorial relaxation. We have already seen an
example of such a problem in Example 6.5, where the LP-relaxation of KNAP-
SACK turned out to be solvable by combinatorial methods. Combinatorial
relaxations are particularly nice if we can solve them in polynomial time.

Example 6.8 (Traveling Salesman Problem)
Consider the TSP from Example 1.8.

min
n∑

i=1

n∑

j=1

cijxij

∑

j:j6=i

xij = 1 for i = 1, . . . , n

∑

i:i6=j

xij = 1 for j = 1, . . . , n

∑

i∈S

∑

j∈S

xij ≤ |S| − 1 for all ∅ ⊂ S ⊂ V.(6.1)

x ∈ Bn(n−1)

Observe that if we drop the subtour elimination constraints (6.1) we have in
fact an assignment problem. An assignment in a directed graph G = (V, A) is a
subset T ⊆ A of the arcs such that for each vertex v ∈ V we have either exactly
one outgoing arc or exactly one incoming arc. If we interprete the TSP in the
graph theoretic setting as we already did in Example 1.8 we get:

zTSP = min
T⊆A






∑

(i,j)∈T

cij : T forms a tour






≥ min
T⊆A






∑

(i,j)∈T

cij : T forms an assignment






⊳

6.2 Combinatorial Relaxations 85

Assignments in directed graphs are an analogon to matchings in undirected
graphs. Matchings will play an important role througout our lecture notes,
one reason being that a theorem by Edmonds about perfect matching polyhe-
dra sparked the interest in polyhedral combinatorics.

Definition 6.9 (Matching, perfect matching)
Let G = (V, E) be an undirected graph. A matching in G is a subset M ⊆ E of
the edges of G such that no two edges in M share an endpoint. A matching is called
perfect, if for each v ∈ V there is one edge in M that is incident to v.

We remark here that we can decide in polynomial time whether a given graph
has a perfect matching. We can also compute a perfect matching of minimum
weight in polynomial time.

Example 6.10 (Symmetric Traveling Salesman Problem)
If in the TSP all distances are symmetric, that is cij = cji for all i, j, one speaks
of a symmetric traveling salesman problem. This problem is best modelled on a
complete undirected graph G = (V, E). Each tour corresponds to a Hamilto-
nian cycle in G, that is, a cycle which touches each vertex exactly once.

Observe that every TSP-tour (i.e., a Hamiltonian cycle) also contains a span-
ning tree: If we remove one edge of the tour we obtain a path, a somewhat
degenerated spanning tree. Hence, the problem of finding a minimum span-
ning tree in G = (V, E) with edge weights cij is a relaxation of the symmetric
TSP:

zTSP ≥ zMST .

Recall that a minimum spanning tree can be computed in polynomial time for
instance by Kruskal’s algorithm. ⊳

The relaxation in the previous example can actually be used to prove an im-
proved lower bound on the length of the optimal TSP-tour. Suppose that we
are given an instance of the symmetric TSP where the distances satisfy the
triangle inequality, that is, we have

cij ≤ cik + ckj for all i, j, k.

Let T be a minimum spanning tree in G = (V, E) and let O denote the subset of
the vertices which have an odd degree in T . Observe that O contains an even
number of vertices, since the sum of all degrees in T sums up to 2(n−1) which
is even. Build a complete auxiliary graph H = (O, EO) where the weight of
an edge (u, v) coincides with the corresponding edgeweight in G. Since H

contains an even number of vertices and is complete, there exists a perfect
matching M in H. We can compute a perfect matching with minimum weight
in H in polynomial time.

Lemma 6.11 The total weight c(M) =
∑

e∈M ce of the minimum weight perfect
matching in H is at most 1/2zTSP .

Proof: Let O = (v1, . . . , v2k) be the sequence of odd degree vertices in T in the
order as they are visited by the optimum TSP-tour T∗. Consider the following
two perfect matchings in H:

M1 = {(v1, v2), (v3, v4), . . . , (v2k−1, v2k)}

M2 = {(v2, v3), (v4, v5), . . . , (v2k, v1)}

86 Relaxations and Bounds

Figure 6.2 shows an illustration of the matchings M1 and M2. By the triangle
inequality we have c(T∗) ≥ c(M1) + c(M2), so that at least one of the two
matchings has weight at most 1/2c(T∗). Thus, the minimum weight perfect
matching must have weight at most 1/2c(T∗). 2

v1 v2 v13 v14

v8 v9 v10 v3

v7 v11 v4

v15 v6 v5

(a) The TSP-tour.

v1 v2

v8 v3

v7 v4

v6 v5

(b) The two matchings

Figure 6.2: The two matchings constructed in Lemma 6.11 from the optimal
TSP-tour. Matching M1 contains all the solid edges, M2 all the dashed ones.

Consider the graph Ḡ = (V, T ∪ M) obtained by adding the edges of the min-
imum weight perfect matching M to the spanning tree T (see Figure 6.3(c)).
Then, by construction any node in Ḡ has even degree. Since Ḡ is also con-
nected (by the fact that it contains a spanning tree), it follows that Ḡ is Eule-
rian (see e.g. [Har72, AMO93]), that is, it contains a cycle W which traverses
every edge exactly once. We have that

(6.2) c(W) =
∑

w∈W

c(e) = c(T) + c(M) ≤ zTSP +
1

2
zTSP =

3

2
zTSP .

In other words, 2
3
c(W) ≤ zTSP is a lower bound for the optimal TSP-tour.

Moreover, we can convert the cycle W into a feasible tour T ′ by “shortcut-
ting” the Eulerian cycle: we start to follow W at node 1. If we have reached
some node i, we continue to the first subsequent node in W which we have
not visited yet. Due to the triangle inequality, the tour obtained this way has

6.2 Combinatorial Relaxations 87

weight at most that of W which by (6.2) is at most 3/2zTSP . The algorithm we
just described is known as Christofides’ algorithm. Figure 6.3 shows an example
of the execution. Let T ′ be the tour found by the algorithm. By (6.2) we know
that

2

3
c(T ′) ≤ zTSP ≤ c(T ′).

We summarize our results:

Theorem 6.12 Given any instance of the symmetric TSP with triangle inequality,
Christofides’ algorithm returns a tour of length at most 3/2zTSP . 2

1 2 3

4

5

6 7

8
(a) The minimum spanning tree T.

1 2 3

4

5

6 7

8
(b) The mimimum weight perfect
matching M on the vertices in T with
odd degree.

1 2 3

4

5

6 7

8
(c) The Eulerian graph Ḡ = (V,T∪M).

1 2 3

4

5

6 7

8
(d) The approximate tour T ′ obtained
by shortcutting.

Figure 6.3: Example of the execution of Christofides’ algorithm for the sym-
metric TSP with triangle inequality.

Christofides’ algorithm falls in the class of approximation algorithms. Those are
algorithms with provable worst-case performance guarantees.

Example 6.13 (1-Tree relaxation for the symmetric TSP)
Another relaxation of the symmetric TSP is obtained by the following obser-
vation: Every tour consists of two edges incident to node 1 and a path through
nodes {2, . . . , n} (in some order). Observe that every path is also a tree. Call a
subgraph T of G = (V, E) a 1-tree, if T consists of two edges incident on node 1

88 Relaxations and Bounds

and the edges of a tree on nodes {2, . . . , n}. We get:

zTSP = min

{
∑

e∈T

ce : T is a tour

}

≥ min

{
∑

e∈T

ce : T is a 1-tree

}

(6.3)

=: z1-Tree

The problem in (6.3) is called the 1-tree relaxation of the (symmetric) TSP. Ob-
serve that we can find an optimal 1-tree easily in polynomial time: Let e, f ∈ E

with e 6= f be the two lightest edges incident with 1 and let H = G \ {1} be
the graph obtained from G by removing vertex 1. Then, the weight of an op-
timal 1-tree is ce + cf + MST(H), where MST(H) is the weight of a minimum
spanning tree in H. ⊳

6.3 Lagrangian Relaxation

The shortest path problem consists of finding a path of minimum weight be-
tween given vertices s and t in a directed (or undirected) graph G. Here, we
consider the directed version, that is, we are given a directed graph G = (V, A)

with arc weights c : A → R+. We set up binary variables x(i, j) for (i, j) ∈ A

where x(i, j) = 1 if the path from s to t uses arc (i, j). Then, the shortest path
problem (which is a special case of the minimum cost flow problem) can be
written as the following IP:

min
∑

(i,j)∈A

c(i, j)x(i, j)

∑

j:(j,i)∈A

x(j, i) −
∑

j:(i,j)∈A

x(i, j) =






1 if i = t

−1 if i = s

0 otherwise
(6.4)

x ∈ BA

The mass balance constraints (6.4) ensure that any feasible solution contains a
path from s to t. Now, the shortest path problem can be solved very efficiently
by combinatorial algorithms. For instance, Dijkstra’s algorithm implemented
with Fibonacci-heaps runs in time O(m+n log n), where n = |V | and m = |A|.
In other words, the above IP is “easy” to solve.

Now, consider the addition of the following constraint to the IP: in addition
to the arc weights c : A → R+ we are also given a second set of arc costs
d : A → R+. Given a budget B we wish to find a shortest (s, t)-path with
respect to the c-weights subject to the constraint that the d-cost of the path
is at most B. This problem is known as the resource constrained shortest path
problem (RCSP).

Lemma 6.14 The RCSP is NP-hard to solve.

Proof: We show the claim by providing a polynomial time reduction from
KNAPSACK, which is known to be NP-complete to solve. Given an instance
of KNAPSACK with items {1, . . . , n} we construct a directed acyclic graph for

6.3 Lagrangian Relaxation 89

the RCSP as depicted in Figure 6.4. Let Z := max{ci : i = 1, . . . , n}. For each
i = 1, . . . , n there are two arcs ending at node i. One represents the action that
item i is packed and has c-weight Z − ci ≥ 0 and d-weight ai. The other arc
corresponds to the case when item i is not packed into the knapsack and has
c-weight Z and d-weight 0. We set the budget in the RCSP to be D := b, where
b is the bound specified in the instance of KNAPSACK. It is now easy to see
that there is a path P from s to t of c-weight at most nZ − u and d-weight at
most b, if and only if we can pack items of profit at least u into the knapsack
of size b.

s 1 2 3 n t

Figure 6.4: Graph used in the proof of NP-completeness of the RCSP

2

Apparently, the addition of the constraint
∑

(i,j)∈A d(i, j)x(i, j) ≤ B makes our
life much harder! Essentially, we are in the situation, where we are given an
integer program of the following form:

z = max cT x(6.5a)

Dx ≤ d(6.5b)

x ∈ X,(6.5c)

with X = {Ax ≤ b, x ∈ Zn} and Dx ≤ d are some “complicating constraints”
(D is a k × n matrix and d ∈ Rk).

Of course, we can easily obtain a relaxation of (6.5) by simply dropping the
complicating constraints Dx ≤ d. However, this might give us very bad
bounds. Consider for instance the RCSP depicted in Figure 6.5. If we respect
the budget constraint

∑
a∈A daxa ≤ B, then the length of the shortest path

from s to t is Ω. Dropping the constraint allows the shortest path consisting
of arc a1 which has length 1.

s t

ca1
= 1, da1

= B + 1

ca2
= Ω, da2

= 1

Figure 6.5: A simple RCSP where dropping the constraint
∑

a∈A daxa ≤ B

leads to a weak lower bound.

An alternative to dropping the constraints is to incorporate them into the ob-
jective function with the help of Lagrange multipliers:

90 Relaxations and Bounds

Definition 6.15 (Langrangean Relaxation)
For a vector u ∈ Rm

+ the Lagrangean relaxation IP(u) for the IP (6.5) is defined as
the following optimization problem:

IP(u) z(u) = max cT x + uT (d − Dx)(6.6a)

x ∈ X(6.6b)

We note that there is no “unique” Lagrangean relaxation, since we are free
to include or exclude some constraints by the definition of the set X. The
relaxation IP(u) as defined above is usually called the relaxation obtained by
relaxing the constraints Dx ≤ d. The vector u ≥ 0 is referred to as the price, dual
variable or Lagrangian multiplier associated with the constraints Dx ≤ d.

Lemma 6.16 For any u ≥ 0, the problem IP(u) is a relaxation of the IP (6.5).

Proof: The fact that any feasible solution to the IP is also feasible to IP(u)

is trivial: X ⊇ {x : Dx ≤ d, x ∈ X}. If x is feasible for the IP, then Dx ≤ d or
d−Dx ≥ 0. Since u ≥ 0 we have uT (d−Dx) ≥ 0 and thus cT x+uT (d−Dx) ≥
cT x as required. 2

Consider again the RCSP. What happens, if we relax the budget constraint∑
(i,j)∈A d(i, j)x(i, j) ≤ B? For u ∈ R+ the Lagrangean relaxation is

min
∑

(i,j)∈A

c(i, j)x(i, j) + u





∑

(i,j)∈A

d(i, j)x(i, j) − B





∑

j:(j,i)∈A

x(j, i) −
∑

j:(i,j)∈A

x(i, j) =






1 if i = t

−1 if i = s

0 otherwise

x ∈ BA.

If we rearrange the terms in the objective function, we obtain

∑

(i,j)∈A

(c(i, j) + ud(i, j))x(i, j) − uB.

In other words, IP(u) asks for a path P from s to t minimizing
∑

a∈P(ca +

uda) − uB. If u ≥ 0 is fixed, this is the same as minimizing
∑

a∈P(ca + uda).
Hence, IP(u) is a (standard) shortest path problem with weights (c + ud) on
the arcs.

We have seen that IP(u) is a relaxation of IP for every u ≥ 0, in particular
z(u) ≥ zIP. In order to get the best upper bound for zIP we can optimize
over u, that is, we solve the Lagrangean Dual Problem:

(6.7) (LD) wLD = min {z(u) : u ≥ 0} .

Lemma 6.17 Let u ≥ 0 and x(u) be an optimal solution for IP(u). Suppose that the
following two conditions hold:

(i) Dx(u) ≤ d (that is, x is feasible for IP);

(ii) (Dx(u))i = di if ui > 0 (that is, x is complementary to u).

6.3 Lagrangian Relaxation 91

Then, x(u) is an optimal solution for the original IP.

Proof: Since x(u) is feasible for IP, we have cT x(u) ≤ z. On the other hand

z ≤ cTx(u) + uT (d − Dx(u)) (by Lemma 6.16)

= cT x(u) +

m∑

i=1

ui(Dx(u) − d)i︸ ︷︷ ︸
=0

(by assumption (ii))

= cT x(u).

Thus, cT x(u) = z and x(u) is optimal as claimed. 2

Observe that if we dualize some equality constraints Dx = d, then the La-
grange multiplier u is unrestricted in sign. In this case, the Lagrangean dual
becomes:

(6.8) (LD) wLD = min {z(u) : u ∈ Rm} .

Moreover, in this case, assumption (ii) of Lemma 6.17 is automatically satis-
fied. Hence, if x(u) is feasible for the IP, then x(u) is also optimal.

What kind of bounds can we expect from LD? The following theorem ad-
dresses this question:

Theorem 6.18 Let X = {x : Ax ≤ b, x ∈ Zn} where A and b are rational, and let z

denote the optimal value of the IP (6.5):

z = max
{
cT x : Dx ≤ x, x ∈ X

}

Then for the value of the Lagrangean dual as defined in (6.8) we have:

wLD = max
{
cTx : Dx ≤ d, x ∈ conv(X)

}
≥ z.

Proof: We have:

wLD = min {z(u) : u ≥ 0}

= min
u≥0

max
{
cT x + uT (d − Dx) : x ∈ X

}

= min
u≥0

max
{
(c − DTu)T x + uT d : x ∈ X

}

= min
u≥0

max
{
cT x + uT (d − Dx) : x ∈ conv(X)

}
,

where the last equality follows from the fact that the objective function is lin-
ear. If X = ∅, then conv(X) = ∅ and wLD = −∞ since the inner maximum is
taken over the empty set for every u. Since z = −∞, the result holds in this
case.

If X 6= ∅ by Theorem 3.67 conv(X) is a rational polyhedron. Let xk, k ∈ K be
the extreme points and rj, j ∈ J be the extreme rays of conv(X). Fix u ≥ 0. We
have

z(u) = max
{
cT x + uT (d − Dx) : x ∈ conv(X)

}

=

{
+∞ if (cT − uT D)rj > 0 for some j ∈ J

cT xk + uT (d − Dxk) for some k ∈ K otherwise.

92 Relaxations and Bounds

Since for the minimization of z(u) it suffices to consider the case of finite z(u),
we have

wLD = min
u≥0:(cT −uT D)rj≤0 for j ∈ J

max
k∈K

cT xk + uT (d − Dxk)

We can restate the last problem as follows:

wLD = min t(6.9a)

t + (Dxk − d)T u ≥ cT xk for k ∈ K(6.9b)

(Drj)T u ≥ cT rj for j ∈ J(6.9c)

u ∈ Rm
+ , t ∈ R(6.9d)

Observe that the problem (6.9) is a Linear Program. Hence by Linear Program-
ming duality (cf. Theorem 2.8) we get:

wLD = max
∑

k∈K

αkcT xk +
∑

j∈J

βjc
T rj

∑

k∈K

αk = 1

∑

k∈K

αk(Dxk − d) +
∑

j∈J

βjr
j ≤ 0

αk, βj ≥ 0, for k ∈ K, j ∈ J

Rearranging terms this leads to:

wLD = max cT





∑

k∈K

αkxk +
∑

j∈J

βjr
j





∑

k∈K

αk = 1

D





∑

k∈K

αkxk +
∑

j∈J

βjr
j



 ≤ d(
∑

k∈K

αk)

αk, βj ≥ 0, for k ∈ K, j ∈ J

Since any point of the form
∑

k∈K αkxk+
∑

j∈J βjr
j is in conv(X) (cf. Minkowski’s

Theorem), this gives us:

wLD = max
{
cT x : x ∈ conv(X), Dx ≤ d

}
.

This completes the proof. 2

Theorem 6.18 tells us exactly how strong the Langrangean dual is. Under
some circumstances, the bounds provided are no better than that of the LP-
relaxation: More precisely, if conv(X) = {x : Ax ≤ b}, then by Theorem 6.18:
wLD = max

{
cT x : Ax ≤ b, Dx ≤ d

}
and wLD is exactly the value of the LP-

relaxation of (6.5):

zLP = max
{
cT x : Ax ≤ b, Dx ≤ d

}

However, since

conv(X) = conv {x ∈ Zn : Ax ≤ b} ⊆ {x ∈ Rn : Ax ≤ b} ,

6.3 Lagrangian Relaxation 93

we always have
z ≤ wLD ≤ zLP,

and in most cases we will have wLD < zLP. In Chapter 11 we will learn more
about Lagrangean duality. In particular, we will be concerned with the ques-
tion how to solve the Lagrangean dual.

Example 6.19 (Lagrangean relaxation for the symmetric TSP)
The symmetric TSP can be restated as the following Integer Linear Program:

zTSP = min
∑

e∈E

cexe(6.10a)

∑

e∈δ(i)

xe = 2, for all i ∈ V(6.10b)

∑

e∈E(S)

xe ≤ |S| − 1, for all 2 ≤ |S| ≤ |V | − 1(6.10c)

x ∈ BE(6.10d)

Here δ(i) denotes the set of edges incident with node i and E(S) is the set of
edges that have both endpoints in S.

Let x be any feasible solution to the LP-relaxation of (6.10). Let S ⊂ V with
2 ≤ |S| ≤ |V | − 1 and S̄ = V \ S. We denote by (S, S̄) the set of edges which
have one endpoint in S and the other one in S̄. Due to the constraints (6.10b)
we have:

|S| =
1

2

∑

i∈S

∑

j∈δ(i)

xe.

Hence,

|S| −
∑

e∈E(S)

xe =
1

2

∑

i∈S

∑

j∈δ(i)

xe −
∑

e∈E(S)

xe

=
1

2

∑

e∈(S,S̄)

xe.(6.11)

By the analogous calculation we get

|S̄| −
∑

e∈E(S̄)

xe =
1

2

∑

e∈(S,S̄)

xe.(6.12)

From (6.11) and (6.12) we conclude that
∑

e∈E(S) xe ≤ |S| − 1 if and only if
∑

e∈E(S̄) xe ≤ |S̄| − 1. This calculation shows that in fact half of the subtour
elimination constraints (6.10b) are redundant. As a consequence, we can drop
all subtour constraints with 1 ∈ S. This gives us the equivalent integer pro-
gram:

zTSP = min
∑

e∈E

cexe(6.13a)

∑

e∈δ(i)

xe = 2, for all i ∈ V(6.13b)

∑

e∈E(S)

xe ≤ |S| − 1, for all 2 ≤ |S| ≤ |V | − 1, 1 /∈ S(6.13c)

x ∈ BE(6.13d)

94 Relaxations and Bounds

If we sum up all the constraints (6.13b) we get 2
∑

e∈E xe = 2n, since every
edge is counted exactly twice. Now comes our Lagrangean relaxation: We du-
alize all degree constraints (6.13b) in (6.13) but leave the degree constraint for
node 1. We also add the constraint

∑
e∈E xe = n. This gives us the following

relaxation:

z(u) = min
∑

(i,j)∈E

(cij − ui − uj)xe + 2
∑

i∈V

ui(6.14a)

∑

e∈δ(1)

xe = 2(6.14b)

∑

e∈E(S)

xe ≤ |S| − 1, for all 2 ≤ |S| ≤ |V | − 1, 1 /∈ S(6.14c)

∑

e∈E

xe = n(6.14d)

x ∈ BE(6.14e)

Let us have a closer look at the relaxation (6.14). Every feasible solution T has
two edges incident with node 1 by constraint (6.14b). By constraint (6.14d),
the solution must consist of exactly n edges and hence has a cycle. By con-
straints (6.14c), T can not contain a cycle that does not contain node 1. Thus,
if we remove one edge incident to 1, then T is cycle free and must contain a
spanning tree on the vertices {2, . . . , n}. To summarize, the feasible solutions
for (6.14) are exactly the 1-trees. We have already seen in Example 6.13 that
we can compute a minimum weight 1-tree in polynomial time. Hence, the
relaxation (6.14) is particularly interesting. ⊳

6.4 Duality

As mentioned at the beginning of Chapter 6, for Linear Programs the Dual-
ity Theorem is a convenient way of proving optimality or, more general, for
proving upper and lower bounds for an optimization problem. We are now
going to introduce the concept of duality in a more general sense.

Definition 6.20 ((Weak) dual pair of optimization problems)
The two optimization problems:

(IP) z = max {c(x) : x ∈ X}

(D) w = min {ω(y) : y ∈ Y}

for a (weak-) dual pair, if c(x) ≤ ω(y) for all x ∈ X and all y ∈ Y. If z = w, then
we say that the problem form a strong-dual pair.

By the Duality Theorem of Linear Programming, the both problems

(P) max{ cT x : x ∈ Ax ≤ b }

(D) min{ bTy : y ∈ Q }

form a strong-dual pair.

6.4 Duality 95

Example 6.21 (Matching and vertex cover)
Given an undirected graph G = (V, E), the following two problems form a
weak-dual pair:

max {|M| : M ⊆ E is a matching in G}

min {|C| : C ⊆ V is a vertex cover in G}

In fact, let M ⊆ E be a matching in G and C ⊆ V a vertex cover. Since M

is a matching, the edges in M do not share a common endpoint. Thus, since
C must contain at least one endpoint for each e ∈ M (and all of the 2|M|

endpoints are different as we have just seen), we get that |C| ≥ |M|.

Do the two problems form a strong-dual pair? The answer is no: Figure 6.6
shows an example of a graph, where the maximum size matching has cardi-
nality 1, but the minimum vertex cover has size 2. After a moment’s thought,
it would be very surprising if the two problems formed a strong-dual pair:
the vertex-cover problem is NP-hard to solve, whereas the matching problem
is solvable in polynomial time. ⊳

2

1 3

e1 e2

e3

Figure 6.6: A graph where the maximum matching has size 1, but the mini-
mum vertex cover has size 2.

Lemma 6.22 The Integer Linear Program max
{
cT x : Ax ≤ b, x ∈ Zn

}
and the

Linear Program min
{
bTy : AT y ≥ c, y ∈ Rm

+

}
form a weak dual pair. Moreover,

also the two Integer Linear Programs

max
{
cT x : Ax ≤ b, x ∈ Zn

}

min
{
bTy : ATy ≥ c, y ∈ Zm

+

}

form a weak dual pair.

Proof: We have

max
{
cT x : Ax ≤ b, x ∈ Zn

}
≤ max

{
cTx : Ax ≤ b, x ∈ Rn

}

= min
{
bTy : ATy ≥ c, y ∈ Rm

+

}

≤ min
{
bTy : AT y ≥ c, y ∈ Zm

+

}
,

where the equality follows from the Duality Theorem of Linear Program-
ming. 2

Example 6.23 (Matching and vertex cover (continued))
We formulate the maximum cardinality matching problem as an integer pro-
gram:

z = max
∑

e∈E

xe(6.15)

∑

e:e∈δ(v)

xe ≤ 1, for all v ∈ V(6.16)

x ∈ BE(6.17)

96 Relaxations and Bounds

Let zLP be the value of the LP-relaxation of (6.15) obtained by dropping the
integrality constraints. The dual of the LP-relaxation is

wLP = min
∑

v∈V

yv(6.18)

xu + xv ≥ 1, for all e = (u, v) ∈ E(6.19)

x ≥ 0.(6.20)

If we put integrality constraints on (6.18) we obtain the vertex cover problem.
Let w denote the optimal value of this problem. We then have z ≤ zLP =

wLP ≤ w. This is an alternative proof for the fact that the matching problem
and the vertex cover problem form a weakly dual pair.

Consider again the graph depicted in Figure 6.6. We have already seen that
for this graph z = 1 and w = 2. Moreover, the Linear Programming relaxation
is

maxxe1
+ xe2

+ xe3

xe1
+ xe2

≤ 1

xe1
+ xe3

≤ 1

xe2
+ xe3

≤ 1

xe1
, xe2

, xe3
≥ 0

The vector xe1
= xe2

= xe3
= 1/2 is feasible for this relaxation with objective

function value 3/2. The dual of the LP is

miny1 + y2 + y3

y1 + y2 ≥ 1

y2 + y3 ≥ 1

y1 + y3 ≥ 1

y1, y2, y3 ≥ 0

so that y1 = y2 = y3 = 1/2 is feasible for the dual. Hence we have zLP =

wLP = 3/2. ⊳

Dynamic Programming

7.1 Shortest Paths Revisited

Suppose that we are given a directed graph G = (V, A) with arc lengths
c : A → R+ and we wish to compute a shortest paths from a distinguished
source node s to all other vertices v ∈ V . Let d(v) denote the shortest path
distance from s to v with respect to c.

Suppose the shortest path from s to v passes through some intermediate
node u (see Figure 7.1 for an illustration). What can we say about the paths Psu

and Puv from s to u and from u to v? Clearly, Psu must be a shortest (s, u)-
path since otherwise we could replace it by a shorter one which together with
Puv would form a shorter path from s to v. The same arguments show that
Puv must be a shortest (u, v)-path.

The above observations are known as the Bellman principle of optimality: any
subpath (any partial solution) of a shortest path (of an optimal solution) must
be a shortest path (an optimal solution of a subproblem) itself.

Let v ∈ V \ {s}. If we apply the Bellman principle to all predecessors u of v,
that is, to all u such that (u, v) ∈ A we get the following recurrences for the
shortest path distances:

(7.1) d(v) = min
u:(u,v)∈A

d(u) + c(u, v).

Equation (7.1) states that, if we know the shortest path distance d(u) from s

to all predecessors u of v, then we can easily compute the shortest path dis-
tance d(v). Unfortunately, it may be the case that in order to compute d(u) we

s

u

v

Figure 7.1: A shortest path from s to v that passes through the intermediate
node u. The subpath from s to u must be a shortest (s, u)-path.

98 Dynamic Programming

also need d(v), because v in turn is a predecessor of u. So, for general graphs,
(7.1) does not yet give us a method for solving the shortest path problem.

There is, however, one important class of graphs, where (7.1) can be used such
as to obtain a very efficient algorithm.

Definition 7.1 (Directed acyclic graph (DAG))
A directed acyclic graph (DAG) is a graph that does not contain a directed cycle.

DAGs allow a special ordering of the vertices defined below:

Definition 7.2 (Topological sorting)
Let G = (V, A) be a directed graph. A bijection f : V → {1, . . . , n} is called a topo-
logical sorting of G if for all (u, v) ∈ A we have f(u) < f(v).

The proof of the following fact is left as an exercise:

Theorem 7.3 Let G = (V, A) be a directed graph. Then, G has a topological sorting
if and only if G is acyclic. If G is acyclic, the topological sorting can be computed in
linear time.

Proof: Exercise. 2

Suppose that G is a DAG and that f is a topological sorting (which by the
previous theorem can be obtained in linear time O(n + m), where n = |V |

and m = |A|). For the sake of a simpler notation we assume that the vertices
are already numbered v1, . . . , vn according to the topological sorting, that is,
f(vi) = i. We can now use (7.1) by computing d(vi) = 0 in order of increas-
ing i = 1, . . . , n. In order to compute d(vi) we need values d(vj) where j < i

and these have already been computed. Thus, in case of a DAG (7.1) leads to
an algorithm which can be seen to run in total time O(n + m).

In our algorithm above we have calculated the solution value of a problem re-
cursively from the optimal values of slightly different problems. This method
is known as dynamic programming. We will see in this chapter that this method
can be used to obtain optimal solutions to many problems. As a first step we
go back to the shortest path problem but we now consider the case of general
graphs. As we have already remarked above, the recursion (7.1) is not directly
useful in this case. We need to somehow enforce an ordering on the vertices
such as to get a usable recursion.

Let dk(v) be the length of a shortest path from s to v using at most k arcs.
Then, we have

(7.2) dk(v) = min
{

dk−1(v), min
u:(u,v)∈A

dk−1(u) + c(u, v)

}
.

Now, the recurrence (7.2) gives us a way to compute the shortest path dis-
tances in time O((n + m)m). We first compute d1(v) for all v which is easy.
Once we know all values dk−1, we can use (7.2) to compute dk(v) for all v ∈ V

in time O(n+m) (every arc has to be considered exactly once). Since the range
of k is from 1 to n−1 (every path with at least n arcs contains a cycle and thus
can not be shortest), we get the promised running time of O(n(n + m)) =

O(n2 + nm).

The general tune of a dynamic programming algorithm is the following: We
compute a solution value recursively from the values of modified problems.

7.2 Knapsack Problems 99

The problems that we compute solutions for are referred to as states, the or-
dering in which we compute these are usually called stages. We can imagine
a dynamic programming algorithm as filling in the values in a table which is
indexed by the states. In a stage we compute one table entry from other table
entries which have been computed earlier.

7.2 Knapsack Problems

Consider the KNAPSACK problem (see Example 1.3 on page 2):

z = max
n∑

i=1

cixi(7.3a)

n∑

i=1

aixi ≤ b(7.3b)

x ∈ Bn(7.3c)

Let us set up a dynamic programming algorithm for KNAPSACK. The states
are subproblems Pk(λ) of the form

(Pk(λ)) fk(λ) = max
k∑

i=1

cixi(7.4a)

k∑

i=1

aixi ≤ λ(7.4b)

x ∈ Bk(7.4c)

More verbosely, the problem Pk(λ) consists of getting the maximum profit
from items 1, . . . , k where the size of the knapsack is λ. We have z = fn(b),
thus we get the optimal value once all fk(λ) for k = 1, . . . , n, λ = 0, . . . , b are
known.

We need a recursion to calculate the fk(λ). Consider an optimal solution x∗

for Pk(λ).

• If it does not use item k, then it (x∗
1, . . . , x∗

k−1) is an optimal solution
for Pk−1(λ), that is, fk(λ) = fk−1(λ).

• If the solution uses k, then it uses weight at most λ − ak from items
1, . . . , k − 1. By the arguments used for the shortest path problem, we
get that (x∗

1, . . . , x∗
k−1) must be an optimal solution for Pk−1(λ−ak), that

is, fk(λ) = fk−1(λ − ak) + ck.

Combining the above two cases yiels the recursion:

(7.5) fk(λ) = max {fk−1(λ), fk−1(λ − ak) + ck} .

Thus, once we know all values fk−1 we can compute each value fk(λ) in con-
stant time by just inspecting two states. Figure 7.2 illustrates the computation
of the values fk(λ) is they are imagined to be stored in a b × n-table. The kth
column of the table is computed with the help of the entries in the (k − 1)st
column.

100 Dynamic Programming

1 2 k − 1 k

fk−1(λ − ak)

fk−1(λ)fk(λ)

Figure 7.2: Computation of the values fk(λ) in the dynamic programming
algorithm for KNAPSACK.

The recursion (7.5) gives a dynamic programming algorithm for KNAPSACK

which runs in total time O(nb) (it is easy to actually set the binary variables
according to the results of the recusion). Observe that this running time is
not polynomial, since the encoding length of an instance of KNAPSACK is only
O(n + n log amax + n log cmax + log b).

Let us now consider a generalized version of KNAPSACK, where we are al-
lowed to pack more than one copy of an item. The Integer Knapsack Problem
(INTEGERKNAPSACK) is:

z = max
n∑

i=1

cixi(7.6a)

n∑

i=1

aixi ≤ b(7.6b)

x ∈ Zn
+(7.6c)

Analogous to KNAPSACK we can define

(Pk(λ)) gk(λ) = max
k∑

i=1

cixi(7.7a)

k∑

i=1

aixi ≤ λ(7.7b)

x ∈ Zk
+(7.7c)

As before, gn(b) gives us the optimal solution for the whole problem. We
need a recursion to compute the gk(λ), k = 1, . . . , n, λ = 0, . . . , b.

Let x∗ be an optimal solution for Pk(λ). Suppose that x∗
k = t for some integer

t ∈ Z+. Then, x∗ uses space at most λ − tak for the items 1, . . . , k − 1. It
follows that (x∗

1, . . . , x∗
k−1) must be an optimal solution for Pk(λ − tak). These

observations give us the following recursion:

(7.8) gk(λ) = max
t=0,...,⌊λ/ak⌋

{ckt + gk−1(λ − tak)} .

Notice that ⌊λ/ak⌋ ≤ b, since ak is an integer. Thus (7.8) shows how to com-
pute gk(λ) in time O(b). This yields an overall time of O(nb2) for the nb val-
ues gk(λ).

Let us now be a bit smarter and get a dynamic programming algorithm with
a better running time. The key is to accomplish the computation of gk(λ) by

7.3 Problems on Trees 101

inspecting only a constant (namely two) previously computed values instead
of Θ(b) as in (7.8).

Again, let x∗ be an optimal solution for Pk(λ).

• If x∗
k = 0, then gk(λ) = gk−1(λ).

• If x∗
k = t + 1 for some t ∈ Z+, then (x∗

1, . . . , x∗
k − 1) must be an optimal

solution for Pk(λ − ak).

The above two cases can be combined into the new recursion

(7.9) gk(λ) = max {gk−1(λ), gk(λ − ak) + ck} .

Observe that the recursion allows us to compute all gk(λ) if we compute them
in the order k = 1, . . . , n and λ = 0, . . . , b. The total running time is O(nb)

which is the same as for KNAPSACK.

7.3 Problems on Trees

Problems defined on tree structures are natural candidates for dynamic pro-
gramming algorithms. Suppose that we are given a tree T = (V, E) with root r

(cf. Figure 7.3). The ubiquitous theme for applying dynamic programming al-
gorithms on tree structured problems is to solve the problem on T by solving
problems on Tvi

, i = 1, . . . , k, where vi are the children of r and Tvi
is the

subtree of T rooted at vi.

r

v1 v2 · · · vk

Figure 7.3: Recursive solution of a problem on a rooted tree.

We illustrate the construction by considering a specific problem. Suppose that
we are given a tree T = (V, E) with root r profits/costs p : V → R for the
vertices. The goal is to find a (possibly empty) subtree T ′ rooted at r (which
may correspond to some distribution center) such as to maximize the profit,
that is, maximize

f(T ′) :=
∑

v∈V(T ′)

p(v)

For a node v ∈ V let g(v) denote the optimal net profit of a subtree of Tv (the
subtree rooted at v). Thus, the optimal solution (value) is obtained from g(r).

We now show how to build a recursion in order to compute g(v) for all ver-
tices v ∈ V . The recursion scheme is typical for dynamic programming algo-
rithms on trees. We compute the values g(v) “bottom up” starting from the
leaves. If v is a leaf, then

(7.10) g(v) = max {0, p(v)} .

Suppose now that v has the children v1, . . . , vk and that we have already com-
puted g(vi), i = 1, . . . , k. Any subtree T ′ of Tv is composed of (possibly empty)

102 Dynamic Programming

subtrees of Tvi
. Consider an optimal subtree T∗ of Tv. Any subtree of Tvi

in-
cluded in T∗ must be an optimal subtree of Tvi

(by Bellman’s principle). Thus,
we get

(7.11) g(v) = max

{

0, p(v) +

k∑

i=1

g(vi)

}

,

where the 0 in the maximum covers the case that the optimal subtree of Tv is
empty. Equations (7.10) and (7.11) now give us a way to compute all the g(v)

in time O(n), where n = |V | is the number of vertices in T .

We now consider a generalization of the problem. In addition to the prof-
its/costs on the vertices, we are also given costs c : E → R+ on the edges (the
vertices correspond to customers which may be connected by a network that
has to be built at some cost). The problem is now to select a subtree which
maximizes the net profit:

h(T ′) :=
∑

v∈V(T ′)

p(v) −
∑

e∈E(T ′)

c(e).

Again, we define h(v) to be the optimal profit obtainable in the subtree rooted
at v ∈ V . The problem once more easy for the leaves:

(7.12) h(v) = max {0, p(v)} .

Now consider a non-leaf v with children v1, . . . , vk. An optimal subtree T∗

of Tv is once more composed of optimal subtrees of the Tvi
. But now the sub-

tree Tvi
may only be nonempty if the edge (v, vi) is contained in T∗. This gives

us the recursion:

(7.13) h(v) = max

{

0, max
x∈Bk

k∑

i=1

(h(vi) − c(v, vi))xi

}

.

Here, xi ∈ B is a decision variable which indicates whether we should include
the optimal subtree of Tvi

in the solution for Tv. It seems like (7.13) forces us
to evaluate 2k values in order to compute h(v), if v has k children. However,
the problem

max
x∈Bk

k∑

i=1

(h(vi) − c(v, vi))xi

can be solved easily in time O(k): Set xi = 1, if h(vi) − c(v, vi) > 0 and
xi = 0 otherwise. Let deg+

(v) denote the number of children of v in T . Then,∑
v∈V deg+

(v) = n − 1, since every edge is counted exactly once. Thus, the
dynamic programming algorithm for the generalized problem runs in time
O(n

∑
v∈V deg+

(v)) = O(n2).

Branch and Bound

8.1 Divide and Conquer

Suppose that we would like to solve the problem

z = max
{
cT x : x ∈ S

}
.

If the above problem is hard to solve, we might try to break it into smaller
problems which are easier to solve.

Observation 8.1 If S = S1∪· · ·∪Sk and zi = max
{
cT x : x ∈ Si

}
for i = 1, . . . , k

then z = max
{
zi : i = 1, . . . , k

}
.

Although Observation 8.1 is (almost) trivial, it is the key to branch and bound
methods which turn out to be effective for many integer programming prob-
lems.

The recursive decomposition of S into smaller problems can be represented
by an enumeration tree. Suppose that S ⊆ B3. We first divide S into S0 and S1,
where

S0 = {x ∈ S : x1 = 0}

S1 = {x ∈ S : x1 = 1}

The sets S0 and S1 will be recursively divided into smaller sets as shown in
the enumeration tree in Figure 8.1.

As a second example consider the tours of a TSP on four cities. Let S denote
the set of all tours. We first divide S into three pieces, S12, S13 and S14, where
S1i ⊂ S is the set of all tours which from city 1 go directly to city i. Set S1i

in turn is divided into two pieces S1i,ij, j 6= 1, i, where S1i,ij is the set of all
tours in Si1 which leave city i for city j. The recursive division is depicted in
the enumeration tree in Figure 8.2. The leaves of the tree correspond to the
(4 − 1)! = 3! = 6 possible permutations of {1, . . . , 4} which have 1 at the first
place.

8.2 Pruning Enumeration Trees

It is clear that a complete enumeration soon becomes hopeless even for prob-
lems of medium size. For instance, in the TSP the complete enumeration tree

104 Branch and Bound

S

S0

x1 = 0

S00

x2 = 0

S000

x3 = 0

S001

x3 = 1

S01

x2 = 1

S010

x3 = 0

S011

x3 = 1

S1

x1 = 1

S10

x2 = 0

S100

x3 = 0

S101

x3 = 1

S11

x2 = 1

S110

x3 = 0

S111

x3 = 1

Figure 8.1: Enumeration tree for a set S ⊆ B4.

S

S12

S12,23 S12,24

S13

S13,32 S13,34

S14

S14,42 S14,43

Figure 8.2: Enumeration tree for the TSP on four cities.

8.2 Pruning Enumeration Trees 105

would have (n − 1)! leaves and thus for n = 60 would be larger than the
estimated number of atoms in the universe1.

The key to efficient algorithms is to “cut off useless parts” of an enumeration
tree. This is where bounds (cf. Chapter 6) come in. The overall scheme ob-
tained is also referred to as implicit enumeration, since most of the time not all
of the enumeration tree is completely unfolded.

Observation 8.2 Let S = S1∪. . . Sk and zi = max
{
cT x : x ∈ Si

}
for i = 1, . . . , k

then z = max
{
zi : i = 1, . . . , k

}
. Suppose that we are given zi and z̄i for i =

1, . . . , k with
zi ≤ zi ≤ z̄i for i = 1, . . . , k.

Then for z = max
{
cT x : x ∈ S

}
it is true that:

max
{

zi : i = 1, . . . , k
}
≤ z ≤ max

{
z̄i : i = 1, . . . , k

}

The above observation enables us to deduce rules how to prune the enumeration
tree.

Observation 8.3 (Pruning by optimality) If zi = z̄i for some i, then the optimal
solution value for the ith subproblem zi = max

{
cT x : x ∈ Si

}
is known and there is

no need to subdivide Si into smaller pieces.

As an example consider the situation depicted in Figure 8.3. The set S is di-
vided into S1 and S2 with the upper and lower bounds as shown.

S

S1 S2

z = 10

z̄ = 30

z1 = 20

z̄1 = 20

z2 = 15

z̄2 = 25

→ S

S1 S2

z = 20

z̄ = 25

z2 = 15

z̄2 = 25

Figure 8.3: Pruning by optimality.

Since z1 = z̄1, there is no need to further explore the branch rooted at S1. So,
this branch can be pruned by optimality. Moreover, Observation 8.2 allows us
to get new lower and upper bounds for z as shown in the figure.

Observation 8.4 (Pruning by bound) If z̄i < zj for some i 6= j, then the optimal
solution value for the ith subproblem zi = max

{
cTx : x ∈ Si

}
can never be an opti-

mal solution of the whole problem. Thus, there is no need to subdivide Si into smaller
pieces.

Consider the example in Figure 8.4. Since z̄1 = 20 < 21 = z2, we can conclude
that the branch rooted at S1 does not contain an optimal solution: any solution
in this branch has objective function value at most 20, whereas the branch
rooted at S2 contains solutions of value at least 21. Again, we can stop to
explore the branch rooted at S1.

We list one more generic reason which makes the exploration of a branch un-
necessary.

Observation 8.5 (Pruning by infeasibility) If Si = ∅, then there is no need to
subdivide Si into smaller pieces, either.

1The estimated number of atoms in the universe is 1080 .

106 Branch and Bound

S

S1 S2

z = 10

z̄ = 30

z1 = 15

z̄1 = 20

z2 = 21

z̄2 = 25

→ S

S1 S2

z = 21

z̄ = 25

z2 = 21

z̄2 = 25

Figure 8.4: Pruning by bound.

The next section will make clear how the case of infeasibility can occur in
a branch and bound system. We close this section by showing an example
where no pruning is possible. Consider the partial enumeration tree in Fig-
ure 8.5, where again we have divided the set S into the sets S1 and S2 with the
bounds as shown.

S

S1 S2

z = 10

z̄ = 30

z1 = 15

z̄1 = 20

z2 = 17

z̄2 = 25

→ S

S1 S2

z = 17

z̄ = 25

z1 = 15

z̄1 = 20

z2 = 17

z̄2 = 25

Figure 8.5: No pruning possible.

Although the lower and upper bounds for the subproblems allow us to get
better bounds for the whole problem, we still have to explore both subtrees.

8.3 LP-Based Branch and Bound: An Example

The most common way to solve integer programs is to use an implicit enu-
meration scheme based on Linear Programming. Lower bounds are provided
by LP-relaxations and branching is done by adding new constraints. We illus-
trate this procedure for a small example. Figure 8.6 shows the evolution of the
corresponding branch-and-bound-tree.

Consider the integer program

z = max 4x1 − x2(8.1a)

3x1 − 2x2 + x3 = 14(8.1b)

x2 + x4 = 3(8.1c)

2x1 − 2x2 + x5 = 3(8.1d)

x ∈ Z5
+(8.1e)

Bounding The first step is to get upper and lower bounds for the optimal
value z. An upper bound is obtained by solving the LP-relaxation of (8.1).
This LP has the optimal solution x̃ = (4.5, 3, 6.5, 0, 0). Hence, we get the upper
bound z̄ = 15. Since we do not have any feasible solution yet, by convention
we use z = −∞ as a lower bound.

Branching In the current situation (see Figure 8.6(a)) we have z < z̄, so we
have to branch, that is, we have to split the feasible region S. A common way
to achieve this is to take an integer variable xj that is basic but not integral and

8.3 LP-Based Branch and Bound: An Example 107

S
z = −∞

z̄ = 15

(a) Initial tree

S

S1

x1 ≤ 4

S2

x1 ≥ 5

z = −∞

z̄ =

Pruned by infeasibility

(b) Node S2 is pruned by infea-
sibility.

S

S1

x1 ≤ 4

S2

x1 ≥ 5

z = −∞

z̄ = 13.5

z1 = −∞

z̄1 = 13.5
Pruned by infeasibility

(c) After the LP-relaxation of S2

is solved, we get a new upper
bound.

S

S1

x1 ≤ 4

S11

x2 ≤ 2

S12

x2 ≥ 3

S2

x1 ≥ 5

z = −∞

z̄ = 13.5

z1 = −∞

z̄1 = 13.5
Pruned by infeasibility

(d) Branching on variable x2

leads to two new subproblems.

S

S1

x1 ≤ 4

S11

x2 ≤ 2

S12

x2 ≥ 3

S2

x1 ≥ 5

z = 13

z̄ = 13.5

z1 = 13

z̄1 = 13.5

z12 = 13

z̄12 = 13

Pruned by infeasibility

Pruned by optimality

(e) Problem S12 has an inte-
gral optimal solution, so we can
prune it by optimality. This
also gives the first finite lower
bound.

S

S1

x1 ≤ 4

S11

x2 ≤ 2

S12

x2 ≥ 3

S2

x1 ≥ 5

z = 13

z̄ = 13.5

z1 = 13

z̄1 = 13.5

z12 = 13

z̄12 = 13

z11 = −∞

z̄11 = 12

Pruned by infeasibility

Pruned by optimalityPruned by bound

(f) Problem S11 can be pruned
by bound, since z̄11 = 12 <

13 = z.

Figure 8.6: Evolution of the branch-and-bound-tree for the example. The ac-
tive nodes are shown in white.

108 Branch and Bound

set:

S1 = S ∩ {x : xj ≤ ⌊x̃j⌋}
S2 = S ∩ {x : xj ≥ ⌈x̃j⌉}

Clearly, S = S1 ∪ S2 and S1 ∩ S2 = ∅. Observe that due to the above choice
of branching, the current optimal basic solution x̃ is not feasible for either
subproblem. If there is no degeneracy (i.e., multiple optimal LP solutions),
then we get max

{
z̄1, z̄2

}
< z̄, which means that our upper bound decreases

(improves).

In the concrete example we choose variable x1 where x̃1 = 4.5 and set S1 =

S ∩ {x : x1 ≤ 4} and S2 = S ∩ {x : x1 ≥ 5}.

Choosing an active node The list of active problems (nodes) to be examined
is now S1, S2. Suppose we choose S2 to be explored. Again, the first step is to
obtain an upper bound by solving the LP-relaxation:

z = max 4x1 − x2(8.2a)

3x1 − 2x2 + x3 = 14(8.2b)

x2 + x4 = 3(8.2c)

2x1 − 2x2 + x5 = 3(8.2d)

x1 ≥ 5(8.2e)

x ≥ 0(8.2f)

It turns out that (8.2) is infeasible, so S2 can be pruned by infeasibility (see
Figure 8.6(b)).

Choosing an active node The only active node at the moment is S1. So, we
choose S1 to be explored. We obtain an upper bound z̄1 by solving the LP-
relaxation

z = max 4x1 − x2(8.3a)

3x1 − 2x2 + x3 = 14(8.3b)

x2 + x4 = 3(8.3c)

2x1 − 2x2 + x5 = 3(8.3d)

x1 ≤ 4(8.3e)

x ≥ 0.(8.3f)

An optimal solution for (8.3) is x̃2 = (4, 2.5, 7, 4, 0) with objective function
value 13.5. This allows us to update our bounds as shown in Figure 8.6(c).

This time we choose to branch on variable x2, since x̃2
2 = 2.5. The two subprob-

lems are defined on the sets S11 = S1 ∩ {x : x2 ≤ 2} and S12 = S1 ∩ {x : x2 ≥ 3},
see Figure 8.6(d).

8.4 Techniques for LP-based Branch and Bound 109

Choosing an active node The list of active nodes is S12 and S22. We choose S22

and solve the LP-relaxation

z = max 4x1 − x2(8.4a)

3x1 − 2x2 + x3 = 14(8.4b)

x2 + x4 = 3(8.4c)

2x1 − 2x2 + x5 = 3(8.4d)

x1 ≤ 4(8.4e)

x2 ≥ 3(8.4f)

x ≥ 0.(8.4g)

An optimal solution of (8.4) is x̃12 = (4, 3, 8, 1, 0) with objective function
value 13. As the solution is integer, we can prune S12 by optimality. Moreover,
we can also update our bounds as shown in Figure 8.6(e).

Choosing an active node At the moment we only have one active node: S11.
The corresponding LP-relaxation is

z = max 4x1 − x2(8.5a)

3x1 − 2x2 + x3 = 14(8.5b)

x2 + x4 = 3(8.5c)

2x1 − 2x2 + x5 = 3(8.5d)

x1 ≤ 4(8.5e)

x2 ≤ 2(8.5f)

x ≥ 0,(8.5g)

which has x̃11 = (3.5, 2, 7.5, 1, 0) as an optimal solution. Hence, z̄11 = 12

which is strictly smaller than z = 13. This means that S11 can be pruned by
bound.

8.4 Techniques for LP-based Branch and Bound

The previous section contained an example for an execution of an LP-based
branch and bound algorithm. While the basic outline of such an algorithm
should be clear, there are a few issues that need to be taken into account in
order to obtain the best possible efficiency.

8.4.1 Reoptimization

Consider the situation in the example from the previous section when we
wanted to explore node S1. We had already solved the initial LP for S.
The only difference between LP(S) and LP(S1) is the presence of the con-
straint x1 ≤ 4 in LP(S1). How can we solve LP(S1) without starting from
scratch?

The problem LP(S) is of the form max
{
cT x : Ax = b, x ≥ 0

}
. An optimal basis

for this LP is B = {x1, x2, x3} with solution x∗
B = (4.5, 3, 6.5) and x∗

N = (0, 0).
We can parametrize any solution x = (xB, xN) for LP(S) by the nonbasic vari-
ables:

xB := A−1
B b − A−1

B ANxN = x∗
B − A−1

B ANxN

110 Branch and Bound

Let ĀN := A−1
B AN, c̄T

N := cT
BA−1

B AN − cN and b̄ := A−1
B b. Multiplying the

constraints Ax = b by A−1
B gives the optimal basis representation of the LP:

max cT
Bx∗

B − c̄T
NxN(8.6a)

xB + ĀNxN = b̄(8.6b)

x ≥ 0(8.6c)

Recall that a basis B is called dual feasible, if c̄N ≥ 0. The optimal primal
basis is also dual feasible. We refer to [Sch86, NW99] for details on Linear
Programming.

In the branch and bound scheme, we add a new constraint xi ≤ t (or xi ≥
t) for some basic variable xi ∈ B. Let us make this constraint an equality
constraint by adding a slack variable s ≥ 0. The new constraints are xi +s = t,
s ≥ 0. By (8.6) we can express xi in terms of the nonbasic variables: xi =

(b̄ − ĀNxN)i. Hence xi + s = t becomes

(−ĀNxN)i + s = t − b̄i.

Adding this constraint to (8.6) gives us the following new LP that we must
solve:

max cT
Bx∗

B − c̄T
NxN(8.7a)

xB + ĀNxN = b̄(8.7b)

(−ĀNxN)i + s = t − b̄i(8.7c)

x ≥ 0, s ≥ 0(8.7d)

The set B∪ {s} forms a dual feasible basis for (8.7), so we can start to solve (8.7)
by the dual Simplex method starting with the situation as given.

Let us illustrate the method for the concrete sitation of our example. We have

AB =





3 −2 1

0 1 0

2 −2 0





A−1
B =





0 1 1/2

0 1 0

1 −1 −3/2





and thus (8.6) amounts to

max 15 − 3x4 − 2x5

x1 +x4 +1
2
x5 = 9

2

x2 +x4 = 3

x3 −x4 −3
2
x5 = 13

2

x1, x2, x3, x4, x5 ≥ 0

If we add a slack variable s, then the new constraint x1 ≤ 4 becomes x1+s = 4,
s ≥ 0. Since x1 = 9

2
− x4 − 1

2
x5, we can rewrite this constraint in terms of the

nonbasic variables as:

(8.8) −x4 −
1

2
x5 + s = −

1

2
.

8.4 Techniques for LP-based Branch and Bound 111

This gives us the dual feasible representation of LP(S1):

max 15 − 3x4 − 2x5

x1 +x4 +1
2
x5 = 9

2

x2 +x4 = 3

x3 −x4 −3
2
x5 = 13

2

−x4 −1
2
x5 +s = −1

2

x1, x2, x3, x4, x5, s ≥ 0

We can now do dual Simplex pivots to find the optimal solution of LP(S1).

8.4.2 Other Issues

Storing the tree In practice we do not need to store the whole branch and
bound tree. It suffices to store the active nodes.

Bounding Upper bounds are obtained by means of the LP-relaxations. Cutting-
planes (see the following chapter) can be used to strengthen bounds.
Lower bounds can be obtained by means of heuristics and approxima-
tion algorithms.

Branching In our example we branched on a variable that was fractional in
the optimal solution for the LP-relaxation. In general, there will be more
than one such variable. A choice that has proved to be efficient in prac-
tice is to branch on the most fractional variable, that is, to choose a variable
which maximizes maxj min {fj, 1 − fj}, where fj = xj − ⌊xj⌋. There are
other rules based on estimating the cost of a variable to become integer.
We refer to [NW99] for more details.

Choosing an active node In our example we just chose an arbitrary active
node to be explored. In practice there are two antagonistic arguments
how to choose an active node:

• The tree can only be pruned significantly if there is a good primal
feasible solution available which gives a good lower bound. This
suggests to apply a depth-first search strategy. Doing so, in each step
a single new constraint is added and we can reoptimize easily as
shown in Section 8.4.1.

• On the other hand, one would like to minimize the total number of
nodes evaluated in the tree. This suggests to choose an active node
with the best upper bound. Such a strategy is known as best-first
search.

In practice, one usually employs a mixture of depth-first search and best-
first search. After an initial depth-first search which leads to a feasible
solution one switches to a combined best-first and depth-first strategy.

Preprocessing An important technique for obtaining efficient algorithms is to
use preprocessing which includes

• tightening of bounds (e.g. by cutting-planes, see the following
chapter)

• removing of redundant variables

• variable fixing

112 Branch and Bound

We demonstrate preprocessing techniques for a small example. Consider the
LP

max 2x1 + x2 − x3

5x1 − 2x2 + 8x3 ≤ 15

8x1 + 3x2 − x3 ≥ 9

x1 + x2 + x3 ≤ 6

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 1

1 ≤ x3

Tightening of constraints

Suppose we take the first constraint and isolate variable x1. Then we get

5x1 ≤ 15 + 2x2 − 8x3

≤ 15 + 2 · 1 − 8 · 1
= 9,

where we have used the bounds on the variables x2 and x3. This gives us the
bound

x1 ≤ 9

5
.

Similarly, taking the first constraint and isolating variable x3 results in:

8x3 ≤ 15 + 2x2 − 5x1

≤ 15 + 2 · 1 − 5 · 0
= 17.

Our new bound for x3 is:

x3 ≤ 17

8
.

By similar operations we get the new bound

x1 ≥ 7

8

and now using all the new bounds for x3 in the first inequality gives:

x3 ≤ 101

64
.

Plugging the new bounds into the third constraint gives:

x1 + x2 + x3 ≤ 9

5
+ 1 +

101

64
< 6.

So, the third constraint is superfluous and can be dropped. Our LP has re-
duced to the following problem:

max 2x1 + x2 − x3

5x1 − 2x2 + 8x3 ≤ 15

8x1 + 3x2 − x3 ≥ 9

7

8
≤ x1 ≤ 9

5

0 ≤ x2 ≤ 1

1 ≤ x3 ≤ 101

64

8.4 Techniques for LP-based Branch and Bound 113

Variable Fixing

Consider variable x2. Increasing variable x2 makes all constraints less tight.
Since x2 has a positive coefficient in the objective function it will be as large as
possible in an optimal solution, that is, it will be equal to its upper bound of 1:

x2 = 1.

The same conclusion could be obtained by considering the LP dual. One can
see that the dual variable corresponding to the constraint x2 ≤ 1 must be pos-
itive in order to achieve feasibility. By complementary slackness this means
that x2 = 1 in any optimal solution.

Decreasing the value of x3 makes all constraints less tight, too. The coefficient
of x3 in the objective is negative, so x3 can be set to its lower bound.

After all the preprocessing, our initial problem has reduced to the following
simple LP:

max 2x1

7

8
≤ x1 ≤ 9

5

We formalize the ideas from our example above:

Observation 8.6 Consider the set

S =





x : a0x0 +

n∑

j=1

ajxj ≤ b, lj ≤ xj ≤ uj, for j = 1, . . . , n





.

The following statements hold:

Bounds on variables If a0 > 0, then

x0 ≤



b −
∑

j:aj>0

ajlj −
∑

j:aj<0

ajuj



 /a0.

and, if a0 < 0, then

x0 ≥



b −
∑

j:aj>0

ajlj −
∑

j:aj<0

ajuj



 /a0.

Redundancy The constraint a0x0 +
∑n

j=1 ajxj ≤ b is redundant, if
∑

j:aj>0

ajuj +
∑

j:aj<0

ajlj ≤ b.

Infeasibility The set S is empty, if
∑

j:aj>0

ajlj +
∑

j:aj<0

ajuj > b.

Variable Fixing For a maximization problem of the form max
{
cT x : Ax ≤ b, l ≤ x ≤ u

}
,

if aij ≥ 0 for all i = 1, . . . , m and cj < 0, then xj = lj in an optimal solution.
Conversely, if aij ≤ 0 for all i = 1, . . . , m and cj > 0, then xj = uj in an
optimal solution.

114 Branch and Bound

For integer programming problems, the preprocessing can go further. If xj ∈ Z

and the bounds lj ≤ xj ≤ uj are not integer, then we can tighten them to

⌈lj⌉xj ≤ ⌊uj⌋.

We will explore this fact in greater depth in the following chapter on cutting-
planes.

Cutting Planes

Let P =
{
x ∈ Rn

+ : Ax ≤ b
}

be a ratioinal polyhedron and PI = conv(P ∩ Zn).
We have seen in Section 3.6 that PI is a rational polyhedron and that we can
solve the integer program

(9.1) max
{
cT x : x ∈ P ∩ Zn

}

by solving the Linear Program

(9.2) max
{
cTx : x ∈ PI

}
.

In this chapter we will be concerned with the question how to find a linear
description of PI (or an adequate superset of PI) which enables us to solve (9.2)
and (9.1).

Recall that by Theorem 3.45 on page 35 in order to describe a polyhedron we
need exactly its facets.

9.1 Cutting-Plane Proofs

Suppose that we are about to solve an integer program

max
{
cT x : Ax ≤ b, x ∈ Zn

}
.

Let P = {x ∈ Rn : Ax ≤ b} and X = P ∩ Zn. If we want to establish optimality
of a solution (or at least provide an upper bound) this task is equivalent to
proving that cT x ≤ t is valid for all points in X. Without the integrality con-
straints we could prove the validity of the inequality by means of a variant of
Farkas’ Lemma (cf. Theorem 2.10):

Lemma 9.1 (Farkas’ Lemma (Variant)) Let P = {x ∈ Rn : Ax ≤ b} 6= ∅. The
following statements are equivalent:

(i) The inequality cT x ≤ t is valid for P.

(iii) There exists y ≥ 0 such that ATy = c and bTy ≤ t.

Proof: By Linear Programming duality, max
{
cT x : x ∈ P

}
≤ t if and only if

min
{
bTy : ATy = c, y ≥ 0

}
≤ t. So, cT x ≤ t is valid for P 6= ∅ if and only if

there exists y ≥ 0 such that ATy = c and bTy ≤ t. 2

116 Cutting Planes

As a consequence of the above lemma, if an inequality cT x ≤ t is valid for P =

{x : Ax ≤ b}, then we can derive the validity of the inequality. Namely, we can
find y ≥ 0 such that for c = ATy and t ′ = yT b the inequality cT x ≤ t ′ is valid
for P and t ′ ≤ t. This clearly implies that cT x ≤ t is valid.

How can we prove validity in the presence of integrality constraints? Let us
start with an example. Consider the following linear system

2x1 + 3x2 ≤ 27(9.3a)

2x1 − 2x2 ≤ 7(9.3b)

−6x1 − 2x2 ≤ −9(9.3c)

−2x1 − 6x2 ≤ −11(9.3d)

−6x1 + 8x2 ≤ 21(9.3e)

Figure 9.1 shows the polytope P defined by the inequalities in (9.3) together
with the convex hull of the points from X = P ∩ Z2.

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

Figure 9.1: Example of a polytope and its integer hull.

As can be seen from Figure 9.1, the inequality x2 ≤ 5 is valid for X = P ∩ Z2.
However, we can not use Farkas’ Lemma to prove this fact from the linear
system (9.3), since the point (9/2, 6) ∈ P has second coordinate 6.

Suppose we multiply the last inequality (9.3e) of the system (9.3) by 1/2. This
gives us the valid inequality

(9.4) −3x1 + 4x2 ≤ 21/2.

For any integral vector (x1, x2) ∈ X the left hand side of (9.4) will be integral,
so we can round down the right hand side of (9.4) to obtain the valid inequal-
ity (for X):

(9.5) −3x1 + 4x2 ≤ 10.

9.1 Cutting-Plane Proofs 117

We now multiply the first inequality (9.3a) by 3 and (9.5) by 2 and add those
inequalities. This gives us a new valid inequality:

17x2 ≤ 101.

Dividing this inequality by 17 and rounding down the resulting right hand
side gives us the valid inequality x2 ≤ 5.

The procedure used in the example above is called a cutting plane proof. Sup-
pose that our system Ax ≤ b is formed by the inequalities

(9.6) aT
i x ≤ bi, i = 1, . . . , m

and let P = {x : Ax ≤ b}. Let y ∈ Rm
+ and set

c := (ATy) =

m∑

i=1

yiai

t := bTy =

m∑

i=1

yibi.

As we have already seen, every point in P satisfies cT x ≤ t. But we can say
more. If c is integral, then for every integral vector in P the quantity cT x is
integral, so it satisfies the stronger inequality

(9.7) cTx ≤ ⌊t⌋.

The inequality (9.7) is called a Gomory-ChvÃ¡tal cutting plane. The term “cut-
ting plane” stems from the fact that (9.7) cuts off part of the polyhedron P but
not any of the integral vectors in P.

Definition 9.2 (Cutting-Plane Proof)
Let Ax ≤ b be a system of linear inequalities and cTx ≤ t be an inequality. A
sequence of linear inequalities

cT
1x ≤ t1, cT

2x ≤ t2, . . . , cT
kx ≤ tk

is called a cutting-plane proof of cTx ≤ t (from Ax ≤ b), if each of the vectors
c1, . . . , ck is integral, ck = c, tk = t, and if for each i = 1, . . . , k the following
statement holds: cT

i x ≤ t ′i is a nonnegative linear combination of the inequalities
Ax ≤ b, cT

1x ≤ t1, . . . , cT
i−1x ≤ ti−1 for some t ′i with ⌊t ′i⌋ ≤ ti.

Clearly, if cT x ≤ t has a cutting-plane proof from Ax ≤ b, then cT x ≤ t is
valid for each integral solution of Ax ≤ b. Moreover, a cutting plane proof is
a clean way to show that the inequality cT x ≤ t is valid for all integral vectors
in a polyhedron.

Example 9.3 (Matching Polytope)
The matching polytope M(G) of a graph G = (V, E) is defined as the convex
hull of all incidence vectors of matchings in G. It is equal to the set of solutions
of

x(δ(v)) ≤ 1 for all v ∈ V

x ∈ BE

Alternatively, if we let P denote the polytope obtained by replacing x ∈ BE by
0 ≤ x, then M(G) = PI.

118 Cutting Planes

Let T ⊆ V be a set of nodes of odd cardinality. As the edges of a matching
do not share an endpoint, the number of edges of a matching having both
endpoints in T is at most |T |−1

2
. Thus,

(9.8) x(γ(T)) ≤ |T | − 1

2

is a valid inequality for M(G) = PI. Here, γ(T) denotes the set of edges which
have both endpoints in T . We now give a cutting-plane proof of (9.8).

For v ∈ T take the inequality x(δ(v)) ≤ 1 with weight 1/2 and sum up the
resulting |T | inequalities. This gives:

(9.9) x(γ(E)) +
1

2
x(δ(E)) ≤ |T |

2
.

For each e ∈ δ(E) we take the inequality −xe ≤ 0 with weight 1/2 and add it
to (9.9). This gives us:

(9.10) x(γ(E)) ≤ |T |

2
.

Rounding down the right hand side of (9.10) yields the desired result (9.8). ⊳

In the sequel we are going to show that cutting-plane proofs are always pos-
sible, provided P is a polytope.

Theorem 9.4 Let P = {x : Ax ≤ b} be a rational polytope and let cT x ≤ t be a valid
inequality for X = P ∩ Zn, where c is integral. Then, there exists a cutting-plane
proof of cT x ≤ t ′ from Ax ≤ b for some t ′ ≤ t.

We will prove Theorem 9.4 by means of a special case (Theorem 9.6). We need
another useful equivalent form of Farkas’ Lemma:

Theorem 9.5 (Farkas’ Lemma for inequalities) The sytem Ax ≤ b has a solu-
tion x if and only if there is no vector y ≥ 0 such that yT A = 0 and yT b < 0.

Proof: See standard textbooks about Linear Programming, e.g. [Sch86]. 2

From this variant of Farkas’ Lemma we see that P = {x : Ax ≤ b} is empty if
and only if we can derive a contradiction 0T x ≤ −1 from the system Ax ≤ b

by means of taking a nonnegative linear combination of the inequalities. The
following theorem gives the analogous statement for integral systems:

Theorem 9.6 Let P = {x : Ax ≤ b} be a rational polytope and X = P∩Zn be empty:
X = ∅. Then there exists a cutting-plane proof of 0T x ≤ −1 from Ax ≤ b.

Before we embark upon the proofs (with the help of a technical lemma) let us
derive another look at Gomory-ChvÃ¡tal cutting-planes. By Farkas’ Lemma,
we can derive any valid inequality cT x ≤ t (or a stronger version) for a
polytope P = {x : Ax ≤ b} by using a nonnegative linear combination of the
inequalities. In view of this fact, we can define Gomory-ChvÃ¡tal cutting-
planes also directly in terms of the polyhedron P: we just take a valid inequal-
ity cT x ≤ t for P with c integral which induces a nonempty face and round
down t to obtain the cutting plane cT x ≤ ⌊t⌋.

The proof of Theorems 9.4 and 9.6 is via induction on the dimension of the
polytope. The following lemma allows us to translate a cutting-plane proof
on a face F to a proof on the entire polytope P.

9.1 Cutting-Plane Proofs 119

Lemma 9.7 Let P = {x : Ax ≤ b} be a rational polytope and F be a face of P. If
cT x ≤ ⌊t⌋ is a Gomory-ChvÃ¡tal cutting-plane for F, then there exists a Gomory-
ChvÃ¡tal cutting-plane c̄Tx ≤ ⌊t̄⌋ for P such that

(9.11) F ∩
{
x : c̄T x ≤ ⌊t̄⌋

}
= F ∩

{
x : cT x ≤ ⌊t⌋

}
.

Proof: By Theorem 3.6 we can write P = {x : A ′x ≤ b ′, A ′′x ≤ b ′} and F =

{x : A ′x ≤ b ′, A ′′x = b ′′}, where A ′′ and b ′′ are integral. Let t∗ = max
{
cTx : x ∈ F

}
.

Since cT x ≤ t is valid for F we must have t ≥ t∗. So, the following system
does not have a solution:

A ′x ≤ b ′

A ′′x ≤ b ′′

−A ′′x ≤ −b ′′

cT x > t

By the Farkas’ Lemma there exist vectors y ′ ≥ 0, y ′′ such that

(y ′)TA ′ + (y ′′)T A ′′ = cT

(y ′)Tb ′ + (y ′′)T b ′′ = t.

This looks like a Gomory-ChvÃ¡tal cutting-plane cT x ≤ ⌊t∗⌋ for P with the
exception that y ′′ is not necessarily nonnegative. However, the vector y ′′ −

⌊y ′′⌋ is nonnegative and it turns out that replacing y ′′ by this vector will work.
Let

c̄T := (y ′)TA ′ + (y ′′ − ⌊y ′′⌋)T A ′′ = c − (⌊y ′′⌋)T A ′′

t̄ := (y ′)Tb ′ + (y ′′ − ⌊y ′′⌋)T b ′′ = t − (⌊y ′′⌋)T b ′′.

Observe that c̄ is integral, since c is integral, A ′′ is integral and ⌊y ′′⌋ is inte-
gral. The inequality c̄T x ≤ t̄ is a valid inequality for P, since we have taken a
nonnegative linear combination of the constraints. Now, we have

(9.12) ⌊t⌋ = ⌊y ′ + (⌊y ′′⌋)Tb ′′⌋ = ⌊t̄⌋ + (⌊y ′′⌋)T b ′′,

where the last equality follows from the fact that ⌊y ′′⌋ and b ′′ are integral.
This gives us:

F ∩
{
x : c̄T x ≤ ⌊t̄⌋

}

=F ∩
{
x : c̄T x ≤ ⌊t̄⌋, A ′′x = b ′′

}

=F ∩
{
x : c̄T x ≤ ⌊t̄⌋, (⌊y ′′⌋)T A ′′x = (⌊y ′′⌋)Tb ′′

}

=F ∩
{
x : cT x ≤ ⌊t̄⌋ + (⌊y ′′⌋)Tb ′′, (⌊y ′′⌋)TA ′′x = (⌊y ′′⌋)T b ′′

}

=F ∩
{
x : cT x ≤ ⌊t⌋

}
.

This completes the proof. 2

Proof of Theorem 9.6 We use induction on the dimension of P. If dim(P) = 0,
then the claim obviously holds. So, let us assume that dim(P) ≥ 1 and that the
claim holds for all polytopes of smaller dimension.

Let cT x ≤ δ with c integral be an inequality which induces a proper face of P.
Then, by Farkas’ Lemma, we can derive the inequality cT x ≤ δ from Ax ≤ b

and cT x ≤ ⌊δ⌋ is a Gomory-ChvÃ¡tal cutting-plane for P. Let

P̄ :=
{
x ∈ P : cTx ≤ ⌊δ⌋

}

120 Cutting Planes

be the polytope obtained from P by applying the Gomory-ChvÃ¡tal cut cT x ≤
⌊δ⌋.

Case 1: P̄ = ∅:

By Farkas’ Lemma we can derive the inequality 0T x ≤ −1 from the inequality
system Ax ≤ b, cTx ≤ ⌊δ⌋ which defines P̄. Since cT x ≤ ⌊δ⌋ was a Gomory-
ChvÃ¡tal cutting-plane for P (and thus was derived itself from Ax ≤ b) this
means, we can derive the contradiction from Ax ≤ b.

Case 2: P̄ 6= ∅:

Define the face F of P̄ by

F :=
{
x ∈ P̄ : cT x = ⌊δ⌋

}
=
{
x ∈ P : cTx = ⌊δ⌋

}
.

If δ is integral, then F is a proper face of P, so dim(F) < dim(P) in this case. If
δ is not integral, then P contains points which do not satisfy cT x = ⌊δ⌋ and so
also in this case we have dim(F) < dim(P).

By the induction hypothesis, there is a cutting-plane proof of 0T x ≤ −1 for F,
that is, from the system Ax ≤ b, cTx = ⌊δ⌋. By Lemma 9.7 there is a cutting-
plane proof from Ax ≤ b, cT x ≤ ⌊δ⌋ for an inequality wT x ≤ d such that

∅ = F ∩
{
x : 0T x ≤ −1

}
= F ∩

{
x : wT x ≤ ⌊d⌋

}
.

We have

(9.13) ∅ = F ∩
{
x : wTx ≤ ⌊d⌋

}
= P̄ ∩

{
x : cTx = ⌊δ⌋, wTx ≤ ⌊d⌋

}
.

Let us restate our result so far: We have shown that there is a cutting plane
proof from Ax ≤ b, cT x ≤ ⌊δ⌋ for an inequality wTx ≤ d which satisfies (9.13).

Thus, the following linear system does not have a solution:

Ax ≤ b(9.14a)

cT x ≤ ⌊δ⌋(9.14b)

−cT x ≤ −⌊δ⌋(9.14c)

wT x ≤ ⌊d⌋.(9.14d)

By Farkas’ Lemma for inequalities there exist y, λ1, λ2, µ ≥ 0 such that

yTA + λ1cT − λ2cT + µwT = 0(9.15a)

yT b + λ1⌊δ⌋ − λ2⌊δ⌋ + µ⌊d⌋ < 0.(9.15b)

If λ2 = 0, then (9.15) means that already the system obtained from (9.15) by
dropping cT x ≥ ⌊δ⌋ does not have a solution, that is

∅ =
{
x : Ax ≤ b, cT x ≤ ⌊δ⌋, wTx ≤ ⌊d⌋

}
.

So, by Farkas’ Lemma we can derive 0T x ≤ −1 from this system which con-
sists completely of Gomory-ChvÃ¡tal cutting-planes for P.

So, it suffices to handle the case that lambda2 > 0. In this case, we can divide
both lines in (9.15) by λ2 and get that there exist y ′ ≥ 0, λ ′ ≥ 0 and µ ≥ 0 such
that

(y ′)T A + (λ ′)cT + (µ ′)wT = cT(9.16a)

(y ′)Tb + (λ ′)⌊δ⌋ + (µ ′)⌊d⌋ = θ < ⌊δ⌋.(9.16b)

9.2 A Geometric Approach to Cutting Planes: The ChvÃ¡tal Rank 121

Now, (9.16) states that we can derive an inequality cTx ≤ θ from Ax ≤ b,
cT x ≤ ⌊δ⌋, wTx ≤ ⌊d⌋ with θ < ⌊d⌋. Since all the inequalities in the system
were Gomory-ChvÃ¡tal cutting-planes this implies that

(9.17) cT x ≤ ⌊δ⌋− τ for some τ ∈ Z, τ ≥ 1

is a Gomory-ChvÃ¡tal cutting-plane for P.

Since P is bounded, the value z = min
{
cT x : x ∈ P

}
is finite. If we continue as

above, starting with P̄ =
{
x ∈ P : cT x ≤ ⌊δ⌋ − τ

}
, at some point we will obtain

a cutting-plane proof of some cT x ≤ t where t < z so that P ∩
{
x : cT x ≤ t

}
=

∅. Then, by Farkas’ Lemma we will be able to derive 0T x ≤ −1 from Ax ≤ b,
cT x ≤ t. 2

Proof of Theorem 9.4 Case 1: P ∩ Zn = ∅

By Theorem 9.6 there is a cutting-plane proof of 0T x ≤ −1 from Ax ≤ b.
Since P is bounded, ℓ := max

{
cT x : x ∈ P

}
is finite. By Farkas’ Lemma, we

can derive cT x ≤ ℓ and thus we have the Gomory-ChvÃ¡tal cutting plane
cT x ≤ ⌊ℓ⌋. Adding an appropriate multiple of 0Tx ≤ −1 to cT x ≤ ⌊ℓ⌋ gives an
inequality cT x ≤ t ′ for some t ′ ≤ t which yields the required cutting-plane
proof.

Case 2: P ∩ Zn 6= ∅

Again, let ℓ := max
{
cT x : x ∈ P

}
which is finite, and define P̄ :=

{
x ∈ P : cT x ≤ ⌊ℓ⌋

}
,

that is, P̄ is the polytope obtained by applying the Gomory-ChvÃ¡tal cutting-
plane cT x ≤ ⌊ℓ⌋ to P.

If ⌊ℓ⌋ ≤ t we already have a cutting-plane proof of an inequality with the
desired properties. So, assume that ⌊ℓ⌋ > t. Consider the face

F =
{
x ∈ P̄ : cT x = ⌊ℓ⌋

}

of P̄. Since cTx ≤ t is valid for all integral points in P and by assumption
t < ⌊ℓ⌋, the face F can not contain any integral point. By Theorem 9.6 there
is a cutting-plane proof of 0T x ≤ −1 from Ax ≤ b, cT x = ⌊ℓ⌋. We now use
Lemma 9.7 as in the proof of Theorem 9.6. The lemma shows that there exists
a cutting plane proof of some inequality wT x ≤ ⌊d⌋ from Ax ≤ b, cT x ≤ ⌊ℓ⌋
such that P̄ ∩

{
x : cT x = ⌊ℓ⌋, wTx ≤ ⌊d⌋

}
= ∅.

By using the same arguments as in the proof of Theorem 9.6 it follows that
there is a cutting-plane proof of an inequality cT x ≤ ⌊ℓ⌋ − τ for some τ ∈ Z,
τ ≥ 1 from Ax ≤ b. Contiuning this way, we finally get an inequality cT x ≤ t ′

with t ′ ≤ t. 2

9.2 A Geometric Approach to Cutting Planes: The
ChvÃ¡tal Rank

Let P = {x : Ax ≤ b} be a rational polyhedron and PI := conv(P ∩ Zn). Sup-
pose we want to find a linear description of PI. One approach is to add valid
inequalities step by step, obtaining tighter and tighter approximations of PI.

We have already seen that, if cTx ≤ δ is a valid inequality for P with c integral,
then cT x ≤ ⌊δ⌋ is valid for PI. If cT x = δ was a supporting hyperplane of P,

122 Cutting Planes

that is, P ∩
{
x : cTx = δ

}
is a proper face of P, then cTx ≤ ⌊δ⌋ is a Gomory-

ChvÃ¡tal cutting-plane. Otherwise, the inequality cT x ≤ δ is dominated by
that of a supporting hyperplane. Anyway, we have

(9.18) PI ⊆
{
x ∈ Rn : cT x ≤ ⌊δ⌋

}

for any valid inequality cT x ≤ δ for P where c is integral. This suggests to take
the intersection of all sets of the form (9.18) as an approximation to P.

Definition 9.8 Let P be a rational polyhedron. Then, P ′ is defined as

(9.19) P ′ :=
⋂

c is integral
and

cT x ≤ δ is valid for P

{
x ∈ Rn : cT x ≤ ⌊δ⌋

}
.

Observe that (9.19) is the same as taking the intersection over all Gomory-
ChvÃ¡tal cutting-planes for P. It is not a priori clear that P ′ is a polyhedron,
since there is an infinite number of cuts.

Theorem 9.9 Let P be a rational polyhedron. Then P ′ as defined in (9.19) is also a
rational polyhedron.

Proof: If P = ∅ the claim is trivial. So let P 6= ∅. By Theorem 4.27 there is a
TDI-system Ax ≤ b with integral A such that P = {x : Ax ≤ b}. We claim that

(9.20) P ′ = {x ∈ Rn : Ax ≤ ⌊b⌋} .

From this the claim follows, since the set on the right hand side of (9.20) is a
rational polyhedron (A and ⌊b⌋ are integral, and there are only finitely many
constraints).

Since every row aT
i x ≤ bi of Ax ≤ b is a valid inequality for P it follows that

P ′ ⊆ {x ∈ Rn : Ax ≤ ⌊b⌋}. So, it suffices to show that the set on the right hand
side of (9.20) is contained in P ′.

Let cTx = δ be a supporting hyperplane of P with c integral, P ⊆
{
x : cT x ≤ δ

}
.

By Linear Programming duality we have

(9.21) δ = max
{
cT x : x ∈ P

}
= min

{
bT y : ATy = c, y ≥ 0

}
.

Since the system Ax ≤ b is TDI and c is integral, the minimization problem
in (9.21) has an optimal solution y∗ which is integral.

Let x ∈ {x : Ax ≤ ⌊b⌋}.

cT x = (ATy∗)Tx (since y∗ is feasible for the problem in (9.21))

= (y∗)T (Ax)

≤ (y∗)T ⌊b⌋ (since Ax ≤ ⌊b⌋ and y∗ ≥ 0)

= ⌊(y∗)T ⌊b⌋⌋ (since y∗ and ⌊b⌋ are integral)

≤ ⌊(y∗)T b⌋ (since ⌊b⌋ ≤ b and y∗ ≥ 0)

= ⌊δ⌋ (by the optimality of y∗ for (9.21)).

Thus, we have
{x : Ax ≤ ⌊b⌋} ⊆

{
x : cTx ≤ ⌊δ⌋

}
.

9.3 Cutting-Plane Algorithms 123

Since cT x = δ was an arbitrary supporting hyperplane, we get that

{x : Ax ≤ ⌊b⌋} ⊆
⋂

c,δ

{
x : cTx ≤ ⌊δ⌋

}
= P ′

as required. 2

We have obtained P ′ from P by taking all Gomory-ChvÃ¡tal cuts for P as a first
wave. Given that P ′ is a rational polyhedron, we can take as a second wave all
Gomory-ChvÃ¡tal cuts for P ′. Continuing this procedure gives us better and
better approximations of PI. We let

P(0) := P

P(i) :=
(

P(i−1)
) ′

for i ≥ 1.

This gives us a sequence of polyhedra

P = P(0) ⊃ P(1) ⊃ P(2) ⊃ · · · ⊃ PI,

which are generated by the waves of cuts.

We know that PI is a rational polyhedron (given that P is one) and by The-
orem 9.4 every valid inequality for PI will be generated by the waves of
Gomory-ChvÃ¡tal cuts. Thus, we can restate the result Theorem 9.4 in terms
of the polyhedra P(i) as follows:

Theorem 9.10 Let P be a rational polytope. Then we have P(k) = PI for some k ∈
N. 2

Definition 9.11 (ChvÃ¡tal rank)
Let P be a rational polytope. The ChvÃ¡tal rank of P is defined to be the smallest
integer k such that P(k) = PI.

9.3 Cutting-Plane Algorithms

Cutting-plane proofs are usually employed to prove the validity of some
classes of inequalities. These valid inequalities can then be used in a cutting-
plane algorithm.

Suppose that we want to solve the integer program

z∗ = max
{
cT x : x ∈ P ∩ Zn

}

and that we know a family F of valid inequalities for PI = conv(P ∩ Zn).
Usually, F will not contain a complete description of PI since either such a de-
scription is not known or we do not know how to separate over F efficiently.
The general idea of a cutting-plane algorithm is as follows:

• We find an optimal solution x∗ for the Linear Program max
{
cT x : x ∈ P

}
.

This can be done by any Linear Programming algorithm (possibly a
solver that is available only as a black-bock).

• If x∗ is integral, we already have an optimal solution to the IP and we
can terminate.

124 Cutting Planes

• Otherwise, we search our family (or families) of valid inequalities for
inequalities which are violated by x∗, that is, wTx∗ > d where wT x ≤ d

is valid for PI.

• We add the inequalities found to our LP-relaxation and resolve to find a
new optimal solution x∗∗ of the improved formulation. This procedure
is contiued.

• If we are fortunate (or if F contains a complete description of PI), we
terminate with an optimal integral solution. We say “fortunate”, since
if F is not a complete description of PI, this depends on the objective
function and our family F .

• If we are not so lucky, we still have gained something. Namely, we have
found a new formulation for our initial problem which is better than
the original one (since we have cut off some non-integral points). The
formulation obtained upon termination gives an upper bound z̄ for the
optimal objective function value z∗ which is no worse than the initial one
(and usually is much better). We can now use z̄ in a branch and bound
algorithm.

Algorithm 9.1 gives a generic cutting-plane algorithm along the lines of the
above discussion. The technique of using improved upper bounds from a
cutting-plane algorithm in a branch and bound system is usually referred to
as branch-and-cut (cf. the comments about preprocessing in Section 8.4.2).

Algorithm 9.1 Generic cutting-plane algorithm

GENERIC-CUTTING-PLANE
Input: An integer program max

{
cTx : x ∈ P, x ∈ Zn

}
; a family F of

valid inequalities for PI = conv(P ∩ Zn)
1 repeat
2 Solve the Linear Program max

{
cT x : x ∈ P

}
. Let x∗ be an optimal solu-

tion.
3 if x∗ is integral then
4 An optimal solution to the integer program has been found. stop.
5 else
6 Solve the separation problem for F , that is, try to find an inequality

wTx ≤ d in F such that wT x∗ > d.
7 if such an inequality wTx ≤ d cutting off x∗ was found then
8 Add the inequality to the system, that is, set P := P∩

{
x : wTx ≤ d

}
.

9 else
10 We do not have an optimal solution yet. However, we have a better

formulation for the original problem. stop.
11 end if
12 end if
13 until forever

It is clear that the efficiency of a cutting-plane algorithm depends on the avail-
ability of constraints that give good upper bounds. In view of Theorem 3.45
the only inequalities (or cuts) we need are those that induce facets. Thus, one
is usually interested in finding (by means of mathematical methods) as many
facet-inducing inequalities as possible.

9.4 Gomory’s Cutting-Plane Algorithm 125

9.4 Gomory’s Cutting-Plane Algorithm

In this section we assume that the integer program which we want to solve is
given in the following form:

maxcT x(9.22a)

Ax = b(9.22b)

x ≥ 0(9.22c)

x ∈ Zn(9.22d)

where A is an integral m × n-matrix and b is an integral vector in Zm. As
usual we let P = {x ∈ Rn : Ax = b, x ≥ 0} and PI = conv(P ∩ Zn).

Any integer program with rational data can be brought into this form by el-
ementary transformations (see textbooks about Linear Programming [Sch86,
Lue84, NW99] where those methods are used for Linear Programs): if xj is
not sign restricted, we replace xj by two new variables xj = x+

j − x−
j where

x+
j , x−

j ≥ 0. Any inequality aT
i x ≤ bi can be transformed into an equality by

introducing a slack variable s ≥ 0 which yields aT
i x + s = bi. Since A and b

are integral, the new slack variable will also be an integral variable.

Suppose that we solve the LP-relaxation

max cT x(9.23a)

Ax = b(9.23b)

x ≥ 0(9.23c)

of (9.22) by means of the Simplex method.1

Recall that a basis for (9.23) is an index set B ⊆ 1, . . . , n with |B| = m such
that the corresponding submatrix AB of A is nonsingular. The basis is termed
feasible if xB := A−1

B b ≥ 0. Clearly, in this case (xB, xN) with xN := 0 is
a feasible solution of (9.23). It is a well known fact that (9.23) has an optimal
solution if and only if there is an optimal basic solution [Lue84, CC+98, Sch86].

Suppose that we are given an optimal basis B and a corresponding optimal
basic solution x∗ for (9.23). As in Section 8.4.1 we can parametrize x∗ by the
nonbasic variables:

x∗
B = A−1

B b − A−1
B ANx∗

N =: b̄ − ĀNx∗
Nx∗

N(9.24)

x∗
N = 0.(9.25)

This gives the equivalent statement of the problem (9.23) in the basis represen-
tation:

max cT
Bx∗

B − c̄T
NxN(9.26a)

xB + ĀNxN = b̄(9.26b)

x ≥ 0(9.26c)

If x∗ is integral, then x∗ is an optimal solution for our integer program (9.22).
Otherwise, there is a basic variable x∗

i which has a fractional value, that is,
x∗

i = b̄i /∈ Z. We will now use the equation in (9.24) which defines x∗
i to derive

a valid inequality for PI. We will then show that the inequality derived is in
fact a Gomory-ChvÃ¡tal cutting-plane.

1Basically, one could also use an interior point method. The key point is that in the sequel we
need an optimal basis.

126 Cutting Planes

Let Ā = (ālk). Any feasible solution x of the integer program (9.22) satis-
fies (9.24). So, we have

xi = b̄i −
∑

j∈N

āijxj ∈ Z(9.27)

−⌊b̄i⌋ ∈ Z(9.28)
∑

j∈N

⌊āij⌋xj ∈ Z.(9.29)

Adding (9.27), (9.28) and (9.29) results in:

(9.30) (b̄i − ⌊b̄i⌋)︸ ︷︷ ︸
∈(0,1)

−
∑

j∈N

(āij − ⌊āij⌋)xj

︸ ︷︷ ︸
≥0

∈ Z.

Since 0 < (b̄i − ⌊b̄i⌋) < 1 and
∑

j∈N(āij − ⌊āij⌋)xj ≥ 0, the value on the left
hand side of (9.30) can only be integral, if it is nonpositive, that is, we must
have

(b̄i − ⌊b̄i⌋) −
∑

j∈N

(āij − ⌊āij⌋)xj ≤ 0

for every x ∈ PI. Thus, the following inequality is valid for PI:

(9.31)
∑

j∈N

(āij − ⌊āij⌋)xj ≥ (b̄i − ⌊b̄i⌋).

Moreover, the inequality (9.31) is violated by the current basic solution x∗,
since x∗

N = 0 (which means that the left hand side of (9.31) is zero) and x∗
i =

b̄i /∈ Z, so that (b̄i − ⌊b̄i⌋) = (x∗
i − ⌊x∗

i⌋) > 0.

As promised, we are now going to show that (9.31) is in fact a Gomory-
ChvÃ¡tal cutting-plane. By (9.24) the inequality

(9.32) xi +
∑

j∈N

āijxj ≤ b̄i

is valid for P. Since P ⊆ Rn
+, we have

∑
j∈N⌊āij⌋xj ≤ ∑j∈N āijxj and the

inequality

(9.33) xi +
∑

j∈N

⌊āij⌋xj ≤ b̄i

must also be valid for P. In fact, since the basic solution x∗ for the basis B

satisfies (9.32) and (9.33) with equality, the inequalities (9.32) and (9.33) both
induce supporting hyperplanes. Observe that all coefficients in (9.33) are inte-
gral. Thus,

(9.34) xi +
∑

j∈N

⌊āij⌋xj ≤ ⌊b̄i⌋,

is a Gomory-ChvÃ¡tal cutting-plane. Â We can now use (9.24) to rewrite (9.34),
that is, to eliminate xi (this corresponds to taking a nonnegative linear com-
bination of (9.34) and the appropriate inequality stemming from the equal-
ity (9.24)). This yields (9.31), so (9.31) is (a scalar multiple of) a Gomory-
ChvÃ¡tal cutting-plane. It is important to notice that the difference between

9.4 Gomory’s Cutting-Plane Algorithm 127

the left-hand side and the right-hand side of the Gomory-ChvÃ¡tal cutting-
plane (9.34), hence also of (9.31) is integral, when x is integral. Thus, if (9.31)
is rewritten using a slack variable s ≥ 0 as

(9.35)
∑

j∈N

(āij − ⌊āij⌋)xj − s = (b̄i − ⌊b̄i⌋),

then this slack variable s will also be a nonnegative integer variable. Gomory’s
cutting plane algorithm is summarized in Algorithm 9.2.

Algorithm 9.2 Gomory’s cutting-plane algorithm

GOMORY-CUTTING-PLANE
Input: An integer program max

{
cT x : Ax = b, x ≥ 0, x ∈ Zn

}

1 repeat
2 Solve the current LP-relaxation max

{
cT x : Ax = b, x ≥ 0

}
. Let x∗ be an

optimal basic solution.
3 if x∗ is integral then
4 An optimal solution to the integer program has been found. stop.
5 else
6 Choose one of the basis integer variables which is fractional in the

optimal LP-solution, say xi = b̄i. This variable is parametrized as
follows:

xi = b̄i −
∑

j∈N

āijxj

7 Generate the Gomory-ChvÃ¡tal cut
∑

j∈N

(āij − ⌊āij⌋)xj ≥ (b̄i − ⌊b̄i⌋)

and add it to the LP-formulation by means of a new nonnegative in-
teger slack variable s:

∑

j∈N

(āij − ⌊āij⌋)xj − s = (b̄i − ⌊b̄i⌋)

s ≥ 0

s ∈ Z

8 end if
9 until forever

Example 9.12
We consider the following integer program:

max 4x1 −x2

7x1 −2x2 ≤ 14

x2 ≤ 3

2x1 −2x2 ≤ 3

x1, x2 ≥ 0

x1, x2 ∈ Z

The feasible points and the polyhedron P described by the inequalities above
are depicted in Figure 9.2 (a).

128 Cutting Planes

0 1 2 3 4

0

1

2

3

4

(a) Inequalities leading to the polytope
shown with thick lines together with the
convex hull of the integral points.

0 1 2 3 4

0

1

2

3

4

(b) The first cut produced by Gomory’s
algorithm is x1 ≤ 2 (shown in red)

0 1 2 3 4

0

1

2

3

4

(c) The next cut produced is x1 −x2 ≤ 1

(shown in red). After this cut the algo-
rithm terminates with the optimum solu-
tion (2,1).

Figure 9.2: Example problem for Gomory’s algorithm. Thick solid lines indi-
cate the polytope described by the inequalities, the pink shaded region is the
convex hull of the integral points (red) which are feasible.

9.4 Gomory’s Cutting-Plane Algorithm 129

Adding slack variables gives the following LP-problem:

max 4x1 −x2

7x1 −2x2 +x3 = 14

x2 +x4 = 3

2x1 −2x2 +x5 = 3

x1, x2, x3, x4, x5 ≥ 0

x1, x2, x3, x4, x5 ∈ Z

An optimal basis for the corresponding LP-relaxation is B = {1, 2, 5} with

AB =





7 −2 0

0 1 0

2 −2 1



 x∗
B =













20/7

3

0

0

23/7













The optimal basis representation (9.26) is given by:

max 59/7 −4/7x3 −1/7x4

x1 +1/7x3 +2/7x4 = 20/7

x2 +x4 = 3

−2/7x3 +10/7x4 +x5 = 23/7

(9.36a)

x1, x2, x3, x4, x5 ≥ 0(9.36b)

x1, x2, x3, x4, x5 ∈ Z(9.36c)

The variable x∗
1 is fractional, x∗

1 = 20/7. From the first line of (9.36) we have:

x1 +
1

7
x3 +

2

7
x4 =

20

7
.

The Gomory-ChvÃ¡tal cut (9.31) generated for x1 is

(
1

7
− ⌊1

7
⌋)x3 + (

2

7
− ⌊2

7
⌋)x4 ≥ (

20

7
− ⌊20

7
⌋)

⇔
1

7
x3 +

2

7
x4 ≥ 6

7

Thus, the following new constraint will be added to the LP-formulation:

1

7
x3 +

2

7
x4 − s =

6

7
,

where s ≥ 0, s ∈ Z is a new integer nonnegative slack variable. Before we
continue, let us look at the inequality in terms of the original variables, that
is, without the slack variables. We have x3 = 14 − 7x1 + 2x2 and x4 = 3 − x2.
Substituting we get the cutting-plane

1

7
(14 − 7x1 + 2x2) +

2

7
(3 − x2) ≥ 6

7

⇔x1 ≤ 2.

The cutting-plane x1 ≤ 2 is shown in Figure 9.2(b).

130 Cutting Planes

Reoptimization of the new LP leads to the following optimal basis representa-
tion:

max 15/2 −1/5x5 −3s

x1 +s = 2

x2 −1/2x5 +s = 1/2

x3 −x5 −s = 1

x4 +1/2x5 +6s = 5/2

x1, x2, x3, x4, x5, s ≥ 0

x1, x2, x3, x4, x5, s ∈ Z

The optimal solution x∗ = (2, 1
2
, 1, 5

2
, 0) is still fractional. We choose basic

variable x2 which is fractional to generate a new cut. We have

x2 −
1

2
x5 + s =

1

2
,

and so the new cut is

(−
1

2
− ⌊−1

2
⌋)x5 ≥ (

1

2
− ⌊1

2
⌋)

⇔
1

2
x5 ≥ 1

2

(observe that (−1
2

− ⌊−1
2
⌋) = 1

2
, since ⌊−1

2
⌋ = −1). We introduce a new slack

variable t ≥ 0, t ∈ Z and add the following constraint:

1

2
x5 − t =

1

2
.

Again, we can translate the new cut 1
2
x5 ≥ 1

2
in terms of the original variables.

It amounts to

1

2
(2x1 − 2x2) ≥ 1

2

⇔x1 − x2 ≤ 1.

The new cutting-plane x1 − x2 ≤ 1 is shown in Figure 9.2(c).

After reoptimization we obtain the following situation:

max 7 −3s −t

x1 +s = 2

x2 +s −t = 1

x3 −5s −2t = 2

x4 +6s +t = 2

x5 −t = 1

x1, x2, x3, x4, x5, s, t ≥ 0

x1, x2, x3, x4, x5, s, t ∈ Z

The optimal basic solution is integral, thus it is also an optimal solution for
the original integer program: (x1, x2) = (2, 1) constitutes an optimal solution
of our original integer program. ⊳

One can show that Gomory’s cutting-plane algorithm always terminates after
a finite number of steps, provided the cuts are chosen appropriately. The proof
of the following theorem is beyond the scope of these lecture notes. We refer
the reader to [Sch86, NW99].

9.5 Mixed Integer Cuts 131

Theorem 9.13 Suppose that Gomory’s algorithm is implemented in the following
way:

(i) We use the lexicographic Simplex algorithm for solving the LPs.

(ii) We always derive the Gomory-ChvÃ¡tal cut from the first Simplex row in which
the basic variable is fractional.

Then, Gomory’s cutting-plane algorithm terminates after a finite number of steps with
an optimal integer solution. 2

9.5 Mixed Integer Cuts

In this section we consider the situation of mixed integer programs

(MIP) max cT x(9.37a)

Ax = b(9.37b)

x ≥ 0(9.37c)

x ∈ Zp × Rn−p.(9.37d)

In this case, the approach taken so far does not work: In a nutshell, the basis
of the Gomory-ChvÃ¡tal cuts was the fact that, if X = {y ∈ Z : y ≤ b}, then
y ≤ ⌊b⌋ is valid for X. More precisely, we saw that all Gomory-ChvÃ¡tal cuts
for PI = P ∩ Zn are of the form cT x ≤ ⌊δ⌋ where cT x ≤ δ is a supporting
hyperplane of P with integral c. If x is not required to be integral, we may not
round down the right hand side of cT x ≤ δ to obtain a valid inequality for PI.

The approach taken in Gomory’s cutting-plane algorithm from Section 9.4
does not work either, since for instance

1

3
+

1

3
x1 − 2x2 ∈ Z

with x1 ∈ Z+ and x2 ∈ R+ has a larger solution set than

1

3
+

1

3
x1 ∈ Z.

Thus, we can not derive the validity of (9.31) (since we can not assume that the
coefficients of the fractional variables are nonnegative) which forms the basis
of Gomory’s algorithm.

The key to obtaining cuts for mixed integer programs is the following disjunc-
tive argument:

Lemma 9.14 Let P1 and P2 be polyhedra in Rn
+ and (a(i))T x ≤ αi be valid for Pi,

i = 1, 2. Then, for any vector c ∈ Rn satisfying c ≤ min(a(1), a(2)) componentwise
and δ ≥ max(α1, α2) the inequality

cT x ≤ δ

is valid for X = P1 ∪ P2 and conv(X).

Proof: Let x ∈ X, then x ∈ P1 or x ∈ P2. If x ∈ Pi, then

cT x =

n∑

j=1

cjxj ≤
n∑

j=1

a
(i)

j xj ≤ αi ≤ δ,

where the first inequality follows from c ≤ a(i) and x ≥ 0. 2

132 Cutting Planes

Let us go back to the situation in Gomory’s algorithm. We solve the LP-
relaxation

(LP) max cT x(9.38a)

Ax = b(9.38b)

x ≥ 0(9.38c)

of (9.37) and obtain an optimal basic solution x∗. As in Section 9.4 we parametrize
the solutions of (9.38) by means of the nonbasic variables:

x∗
B = A−1

B b − A−1
B ANx∗

N =: b̄ − ĀNx∗
N

Let xi be an integer variable. Then, any feasible solution to the MIP (9.37)
satisfies:

(9.39) b̄i −
∑

j∈N

āijxj ∈ Z,

since the quantity on the left hand side of (9.39) is the value of variable xi. Let
N+ := {j ∈ N : āij ≥ 0}, N− := N \ N+. Also, for a shorter notation we set
f0 := (b̄i − ⌊b̄i⌋) ∈ [0, 1). Equation (9.39) is equivalent to

(9.40)
∑

j∈N

āijxj = f0 + k for some k ∈ Z.

If, k ≥ 0, then the quantity on the left hand side of (9.40) is at least f0, if k ≤ −1,
then it is at most f0 − 1. Accordingly, we distinguish between two cases:

Case 1:
∑

j∈N āijxj ≥ f0 ≥ 0: In this case, we get from
∑

j∈N+ āijxj ≥
∑

j∈N āijxj

the inequality:

(9.41)
∑

j∈N+

āijxj ≥ f0.

Case 2:
∑

j∈N āijxj ≤ f0 − 1 < 0: Then,
∑

j∈N− āijxj ≤ ∑j∈N āijxj ≤ f0 − 1

which is equivalent to

(9.42) −
f0

1 − f0

∑

j∈N−

āijxj ≥ f0.

We split PI into two parts, PI = P1 ∪ P2, where

P1 := PI ∩





x :
∑

j∈N

āijxj ≥ 0






P2 := PI ∩





x :
∑

j∈N

āijxj < 0





.

Inequality (9.41) is valid for P1, while inequality (9.42) is valid for P2. We
apply Lemma 9.14 to get an inequality πTx ≥ π0. If j ∈ N+, the coefficient
for xj is πj = max {āij, 0} = āij. If j ∈ N−, the coefficient for xj is πj =

max
{
0, − f0

1−f0
āij

}
= − f0

1−f0
āij. Thus, we obtain the following inequality

which is valid for PI:

(9.43)
∑

j∈N+

āijxj −
f0

1 − f0

∑

j∈N−

āijxj ≥ f0.

9.6 Structured Inequalities 133

We can strengthen (9.43) by the following technique: The derivation of (9.43)
remains valid even if we add integer multiples of integer variables to the left
hand side of (9.40): if π is an integral vector, then

(9.40’)
∑

j:xj is an integer variable

πjxj +
∑

j∈N

āijxj = f0 + k for some k ∈ Z.

Thus, we can achieve that every integer variable is in one of the two sets M+ =

{j : āij + πj ≥ 0} or M− := {j : āij + πj < 0}. If j ∈ M+, then the coefficient πj

of xj in the new version πTx ≥ π0 of (9.43) is āij+πj, so the best we can achieve
is πj = fj := (āij − ⌊āij⌋). If j ∈ M−, then the coefficient πj is − f0

1−f0
(āij + πj)

and the smallest value we can achieve is − f0

1−f0
(fj−1) =

f0(1−fj)

1−f0
. In summary,

the smallest coefficient we can achieve for an integer variable is

(9.44) min
(

fj,
f0(1 − fj)

1 − f0

)

.

The minimum in (9.44) is fj if and only if fj ≤ f0. This leads to Gomory’s mixed
integer cut:

∑

j:fj≤f0

xj integer variable

fjxj +
∑

j:fj>f0

j: xj integer variable

f0(1 − fj)

1 − f0

xj.

+
∑

j∈N+

xj no integer variable

āijxj −
f0

1 − f0

∑

j∈N−

xj no integer variable

āijxj ≥ f0.

(9.45)

Similar to Theorem 9.13 it can be shown that an appropriate choice of cutting-
planes (9.45) leads to an algorithm which solves the MIP (9.37) in a finite num-
ber of steps.

9.6 Structured Inequalities

In the previous sections of this chapter we have derived valid inequalities for
general integer and mixed-integer programs. Sometimes focussing on a single
constraint (or a small subset of the constraints) can reveal that a particular
problem has a useful “local structure”. In this section we will explore such
local structures in order to derive strong inequalities.

9.6.1 Knapsack and Cover Inequalities

We consider the 0/1-Knapsack polytope

PKNAPSACK := PKNAPSACK (N, a, b) := conv





x ∈ BN :

∑

j∈N

ajxj ≤ b






which we have seen a couple of times in these lecture notes (for instance in
Example 1.3). Here, the ai are nonnegative coefficients and b ≥ 0. We use
the general index set N instead of N = {1, . . . , n} to emphasize that a knap-
sack constraint

∑
j∈N ajxj ≤ b might occur as a constraint in a larger integer

program and might not involve all variables.

134 Cutting Planes

In all what follows, we assume that aj ≤ b for j ∈ N since aj > b implies that
xj = 0 for all x ∈ PKNAPSACK (N, a, b). Under this assumption PKNAPSACK (N, a, b)

is full-dimensional, since χ∅ and χ{j} (j ∈ N) form a set of n + 1 affinely
independent vectors in PKNAPSACK (N, a, b).

Each inequality xj ≥ 0 for j ∈ N is valid for PKNAPSACK (N, a, b). Moreover,
each of these nonnegativity constraints defines a facet of PKNAPSACK (N, a, b),
since χ∅ and χ{i} (i ∈ N \ {j}) form a set of n affinely independent vectors that
satisfy the inequality at equality. In the sequel we will search for more facets
of PKNAPSACK (N, a, b) and, less ambitious, for more valid inequalities.

Definition 9.15 (Cover, minimal cover)
A set C ⊆ N is called a cover, if

∑

j∈C

aj > b.

The cover is called a minimal cover, if C \ {j} is not a cover for all j ∈ C.

Each cover C gives us a valid inequality
∑

j∈C xj ≤ |C| − 1 for PKNAPSACK (if
you do not see this immediately, the proof will be given in the following the-
orem). It turns out that this inequality is quite strong, provided that the cover
is minimal.

Example 9.16
Consider the knapsack set

X =
{
x ∈ B7 : 11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19

}

Three covers are C1 = {1, 2, 6}, C2 = {3, 4, 5, 6} and C3 = {1, 2, 5, 6} so we have
the cover inequalities:

x1 +x2 +x6 ≤ 2

x3 +x4 +x5 +x6 ≤ 3

x1 +x2 +x5 +x6 ≤ 3

The cover C3 is not minimal, since C1 ⊂ C3 is also a cover. ⊳

Theorem 9.17 Let C ⊆ N be a cover. Then, the cover inequality
∑

j∈C

xj ≤ |C| − 1

is valid for PKNAPSACK (N, a, b). Moreover, if C is minimal, then the cover inequality
defines a facet of PKNAPSACK (C, a, b).

Proof: By Observation 2.2 it suffices to show that the inequality is valid for the
knapsack set

X :=





x ∈ BN :

∑

j∈N

ajxj ≤ b





.

Suppose that x ∈ X does not satisfy the cover inequality. We have that x = χS

is the incidence vector of a set S ⊆ N. By assumption we have

|C| − 1 <
∑

j∈C

xj =
∑

j∈C∩S

xj︸︷︷︸
=1

= |C ∩ S|.

9.6 Structured Inequalities 135

So |C ∩ S| = |C| and consequently C ⊆ S. Thus,
∑

j∈N

ajxj ≥
∑

j∈C

ajxj =
∑

j∈C∩S

aj =
∑

j∈C

aj > b,

which contradicts the fact that x ∈ X.

It remains to show that the cover inequality defines a facet of PKNAPSACK (C, a, b),
if the cover is minimal. Suppose that there is a facet-defining inequality
cT x ≤ δ such that





x ∈ PKNAPSACK (C, a, b) :

∑

j∈C

xj = |C| − 1






⊆ Fc :=
{
x ∈ PKNAPSACK (C, a, b) : cTx = δ

}
.

(9.46)

We will show that cTx ≤ δ is a nonnegative scalar multiple of the cover in-
equality.

For i ∈ C consider the set Ci := C \ {i}. Since, C is minimal, Ci is not a cover.
Consequently, each of the |C| incidence vectors χCi ∈ BC is contained in the
set on the left hand side of (9.46), so χCi ∈ Fc for i ∈ C. Thus, for i 6= j we
have

0 = cT χCi − cT χCj = cT (χCi − χCj) = ci − cj.

Hence we have ci = γ for i ∈ C and cT x ≤ δ is of the form

(9.47) γ
∑

j∈C

xj ≤ δ.

Fix i ∈ C. Then, by (9.47) we have

cT χCi = γ
∑

j∈Ci

xj = δ

and by (9.46) we have ∑

j∈Ci

xj = |C| − 1,

so δ = γ(|C| − 1) and cT x ≤ δ must be a nonnegative scalar multiple of the
cover inequality. 2

The proof technique above is a general tool to show that an inequality defines
a facet of a full-dimensional polyhedron:

Observation 9.18 (Proof technique 1 for facets) Suppose that P = conv(X) ⊆
Rn is a full dimensional polyhedron and πTx ≤ π0 is a valid inequality for P. In order
to show that πTx ≤ π0 defines a facet of P, it suffices to accomplish the following steps:

(i) Select t ≥ n points x1, . . . , xt ∈ X with πTxi = π0 and suppose that all these
points lie on a generic hyperplane cT x = δ.

(ii) Solve the linear equation system

(9.48)
n∑

j=1

cjx
i
j = δ for i = 1, . . . , t

in the n + 1 unknowns (c, δ).

136 Cutting Planes

(iii) If the only solution of (9.48) is (c, δ) = γ(π, π0) for some γ 6= 0, then the
inequality πTx ≤ π0 defines a faceet of P.

In the proof of Theorem 9.17 we were dealing with a polytope PKNAPSACK (C, a, b) ⊂
RC and we choose |C| points χCi (i ∈ C) satisfying the cover inequality with
equality.

Let us return to the cover inequalities. We have shown that for a minimal
cover C the cover inequality

∑
j∈C xj ≤ |C|−1 defines a facet of PKNAPSACK (C, a, b).

However, this does not necessarily mean that the inequality is also facet-
defining for PKNAPSACK (N, a, b). Observe that there is a simple way to strengthen
the basic cover inequalities:

Lemma 9.19 Let C be a cover for X =
{
x ∈ BN :

∑
j∈N ajxj ≤ b

}
. We define the

extended cover E(C) by

E(C) := C ∪ {j ∈ N : aj ≥ ai for all i ∈ C} .

The extended cover inequality

∑

j∈E(C)

xj ≤ |C| − 1

is valid for PKNAPSACK (N, a, b).

Proof: Along the same lines as the validity of the cover inequality in Theo-
rem 9.17. 2

Example 9.20 (Continued)
In the knapsack set of Example 9.16 the extended cover inequality for C =

{3, 4, 5, 6} is
x3 + x4 + x5 + x6 ≤ 3.

So, the cover inequality x3 + x4 + x5 + x6 ≤ 3 is dominated by the extended
cover inequality. On the other hand, the extended cover inequality in turn is
dominatd by the inequality 2x1 + x2 + x3 + x4 + x5 + x6 ≤ 3, so it can not be
facet-defining (cf. Theorem 3.45). ⊳

We have just seen that even extended cover inequalities might not give us a
facet of the knapsack polytope. Nevertheless, under some circumstances they
are facet-defining:

Theorem 9.21 Let a1 ≥ a2 ≥ · · · ≥ an and C = {j1, . . . , jr} with j1 < j2 < · · · <

jr be a minimal cover. Suppose that at least one of the following conditions is satisfied:

(i) C = N

(ii) E(C) = N and (C \ {j1, j2}) ∪ {1} is not a cover.

(iii) C = E(C) and (C \ {j1}) ∪ {p} is a cover, where p = min {j : j ∈ N \ E(C)}.

(iv) C ⊂ E(C) ⊂ N and (C \ {j1, j2})∪ {1} is a cover and (C \ {j1})∪ {p} is a cover,
where p = min {j : j ∈ N \ E(C)}.

9.6 Structured Inequalities 137

Proof: We construct n affinely independent vectors in X that satisfy the ex-
tended cover inequality at equality. Then, it follows that the proper face in-
duced by the inequality has dimension at least n − 1, which means that is
constitutes a facet.

We use the incidence vectors of the following subsets of N:

1. the |C| sets Ci := C \ {ji} for ji ∈ C.

2. the |E(C) \ C| sets C ′
k := (C \ {j1, j2}) ∪ {k} for k ∈ E(C) \ C. Observe that

|C ′
k ∩E(C)| = |C|−1 and that C ′

k is not a cover by the assumptions of the
theorem.

3. the |N \ E(C)| sets C̄j := C \ {j1}∪ {j} for j ∈ N \ E(C); again |E(C) ∩ C̄j| =

|C| − 1 and C̄j is not a cover by the assumptions of the theorem.

It is straightforward to verify that the n vectors constructed above are in fact
affinely independent. 2

On the way to proving Theorem 9.21 we saw another technique to prove that
an inequality is facet defining, which for obvious reasons is called the direct
method:

Observation 9.22 (Proof technique 2 for facets) In order to show that πTx ≤ π0

defines a facet of P, it suffices to present dim(P) − 1 affinely independent vectors in P

that satisfy πTx = π0 at equality.

Usually we are in the situation that P = conv(X) and we will be able to exploit
the combinatorial structure of X. Let us diverge for a moment and illustrate
this one more time for the matching polytope.

Example 9.23
Let G = (V, E) be an undirected graph and M(G) be the convex hull of the
incidence vectors of all matchings of G. Then, all vectors in M(G) satisfy the
following inequalities:

x(δ(v)) ≤ 1 for all v ∈ V(9.49a)

x(γ(T)) ≤ |T | − 1

2
for all T ⊆ V , |T | ≥ 3 odd(9.49b)

xe ≥ 0 for all e ∈ E.(9.49c)

Inequalities (9.49a) and (9.49c) are obvious and the inequalities (9.49b) have
been shown to be valid in Example 9.3.

The polytope M(G) is clearly full-dimensional. Moreover, each inequality
xe ′ ≥ 0 defines a facet of M(G). To see this, take the |E| incidence vectors
of the matchings ∅ and {e} where e ∈ E \ {e ′} which are clearly independent
and satisfy the inequality at equality. ⊳

9.6.2 Lifting of Cover Inequalities

We return from our short excursion to matchings to the extended cover in-
equalities. In Example 9.20 we saw that the extended cover inequality x1+x2+

x3+x4+x5+x6 ≤ 3 is dominated by the inequality 2x1+x2+x3+x4+x5+x6 ≤
3. How could we possibly derive the latter inequality?

138 Cutting Planes

Consider the cover inequality for the cover C = {3, 4, 5, 6}

x3 + x4 + x5 + x6 ≤ 3

which is valid for our knapsack set

X =
{
x ∈ B7 : 11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 + x7 ≤ 19

}

from Example 9.16. We may also say that the cover inequality is valid for the
set

X ′ :=
{
x ∈ B4 : 6x3 + 5x4 + 5x5 + 4x6 ≤ 19

}
,

which is formed by the variables in C. Since the cover is minimal, by The-
orem 9.17 the cover inequality defines a facet of conv(X ′), so it is as strong
as possible. We would like to transfer the inequality and its strength to the
higher dimensional set conv(X).

As a first step, let us determine the coefficients β1 such that the inequality

(9.50) β1x1 + x3 + x4 + x5 + x6 ≤ 3

is valid for

X ′′ :=
{
x ∈ B5 : 11x1 + 6x3 + 5x4 + 5x5 + 4x6 ≤ 19

}
.

In a second step, we will choose β1 as large as possible, making the inequality
as strong as possible.

For all x ∈ X ′′ with x1 = 0, the inequality (9.50) is valid for all values of β1. If
x1 = 1, then (9.50) is valid if and only if

β1 + x3 + x4 + x5 + x6 ≤ 3

is valid for all x ∈ B4 satisfying

6x3 + 5x4 + 5x5 + 4x6 ≤ 19 − 11 = 8.

Thus, (9.50) is valid if and only if

β1 + max
{
x3 + x4 + x5 + x6 : x ∈ B4 and 6x3 + 5x4 + 5x5 + 4x6 ≤ 8

}
≤ 3.

This is equivalent to saying that β1 ≤ 3 − z1, where

(9.51) z1 = max
{
x3 + x4 + x5 + x6 : x ∈ B4 and 6x3 + 5x4 + 5x5 + 4x6 ≤ 8

}

The problem in (9.51) is itself a KNAPSACK problem. However, the objective
function is particularly simple and in our example we can see easily that z1 =

1 (we have z1 ≥ 2 since (1, 0, 0, 0) is feasible for the problem; on the other hand
not two items fit into the knapsack of size 8). Thus, (9.50) is valid for all values
β ≤ 3 − 1 = 2. Setting β1 = 2 gives the strongest inequality.

The technique that we have seen above is called lifting: we “lift” a lower-
dimensional (facet-defining) inequality to a higher-dimensional polyhedron.
The fact that this lifting is possible gives another justification for studying
“local structures” in integer programs such as knapsack inequalities.

In our example we have lifted the cover inequality one dimension. In order to
lift the inequality to the whole polyhedron, we need to solve a more general
problem. Namely, we wish to find the best possible values βj for j ∈ N \ C

such that the inequality
∑

j∈N\C

βjxj +
∑

j∈C

xj ≤ |C| − 1

is valid for X =
{
x ∈ BN :

∑
j∈N ajxj ≤ b

}
. The procedure in Algorithm 9.3

accomplishes this task.

9.6 Structured Inequalities 139

Algorithm 9.3 Algorithm to lift cover inequalities.

LIFT-COVER
Input: The data N, a, b for a knapsack set

X =
{
x ∈ BN :

∑
j∈N ajxj ≤ b

}
, a minimal cover C

Output: Values βj for j ∈ N \ C such that
∑

j∈N\C

βjxj +
∑

j∈C

xj ≤ |C| − 1

is valid for X

1 Let j1, . . . , jr be an ordering of N \ C.
2 for t = 1, . . . , r do
3 The valid inequality

t−1∑

i=1

βji
xji

+
∑

j∈C

xj ≤ |C| − 1

has been obtained so far.
4 To calculate the largest value βjt

for which

βjt
xjt

+

t−1∑

i=1

βji
xji

+
∑

j∈C

xj ≤ |C| − 1

is valid, solve the following KNAPSACK problem:

zt = max
t−1∑

i=1

βji
xji

+
∑

j∈C

xj

t−1∑

i=1

aji
xji

+
∑

j∈C

ajxj ≤ b − ajt

x ∈ B|C|+t−1

5 Set βjt
:= |C| − 1 − zt.

6 end for

140 Cutting Planes

Example 9.24 (Continued)
We return to the knapsack set of Example 9.16 and 9.20. Take the minimal
cover C = {3, 4, 5, 6}

x3 + x4 + x5 + x6 ≤ 3

and set j1 = 1, j2 = 2 and j3 = 7. We have already calculated the value β1 = 2.
For βj2

= β2, the coefficient for x2 in the lifted inequality we need to solve the
following instance of KNAPSACK:

z2 = max 2x1 + x3 + x4 + x6 + x6

11x1 + 6x3 + 5x4 + 5x5 + 4x6 ≤ 19 − 6 = 13

x ∈ B5

It is easy to see that z2 = 2, so we have βj2
= β2 = 3 − 2 = 1.

Finally, for βj3
= β7, we must solve

z7 = max 2x1 + x2 + x3 + x4 + x6 + x6 + x7

11x1 + 6x2 + 6x3 + 5x4 + 5x5 + 4x6 ≤ 19 − 1 = 18

x ∈ B6

Here, the problem gets a little bit more involved. It can be seen that z7 = 3,
so the coefficient β7 for x7 in the lifted cover inequality is β7 = 3 − 3 = 0. We
finish with the inequality:

2x1 + x2 + x3 + x4 + x5 + x6 ≤ 3.

⊳

We prove that the lifting technique in a more general setting provides us with
a tool to derive facet-defining inequalities:

Theorem 9.25 Suppose that X ⊆ Bn and let Xδ = X ∩ {x ∈ Bn : x1 = δ} for δ ∈
{0, 1}.

(i) Suppose that the inequality

(9.52)
n∑

j=2

πjxj ≤ π0

is valid for X0. If X1 = ∅, then x1 ≤ 0 is valid for X. If X1 6= ∅, then the
inequality

(9.53) β1x1 +

n∑

j=2

πjxj ≤ π0

is valid for X if β1 ≤ π0 − z, where

z = max

{
n∑

i=2

πjxj : x ∈ X1

}

.

Moreover, if β1 = π0 − z and (9.52) defines a face of dimension k of conv(X0),
then the lifted inequality (9.53) defines a face of dimension k+1 of conv(X). In
particular, if (9.52) is facet-defining for conv(X0), then (9.53) is facet-defining
for conv(X).

9.6 Structured Inequalities 141

(ii) Suppose that the inequality (9.52) is valid for X1. If X0 = ∅, then x1 ≥ 1 is
valid for X. If X0 6= ∅, then

(9.54) γ1x1 +

n∑

j=2

πjxj ≤ π0 + γ1

is valid for X if γ1 ≥ z ′ − π0, where

z ′ = max

{
n∑

i=2

πjxj : x ∈ X0

}

.

Moreover, if γ1 = π0 −z ′ and (9.52) defines a face of dimension k of conv(X1),
then the lifted inequality (9.54) defines a face of dimension k+1 of conv(X). In
particular, if (9.52) is facet-defining for conv(X1), then (9.53) is facet-defining
for conv(X).

Proof: We only prove the first part of the theorem. The second part can be
proved along the same lines.

We first show that the lifted inequality (9.53) is valid for X for all β1 ≤ π0 − z.
We have X = X0 ∪ X1. If x ∈ X0, then

β1x1 +

n∑

j=2

πjxj =

n∑

j=2

πjxj ≤ π0.

If x ∈ X1, then

β1x1 +

n∑

j=2

πjxj = β1 +

n∑

j=2

πjxj ≤ β1 + z ≤ (π0 − z) + z = π0

by definition of z. Thus, the validity follows.

If (9.52) defines a k-dimensional face of conv(X0), then there are k + 1 affinely
independent vectors x̄i, i = 1, . . . , k+1 that satisfy (9.52) at equality. Everyone
of those vectors has x1 = 0 and also satisfies (9.53) at equality. Choose x∗ ∈ X1

such that z =
∑n

j=2 πjx
∗
j . If β1 = π0 − z, then x∗ satsifies (9.53) also at equality.

Moreover, x∗ must be affinely independent from all the vectors x̄i, since the
first component of x∗ is 1 while all the vectors x̄i have first component 0. Thus,
we have found k + 2 affinely independent vectors satisfying (9.53) at equality
and it follows that the face induced has dimension k + 1. 2

Theorem 9.25 can be used iteratively as in our lifting procedure (Algorithm 9.3):
Given N1 ⊂ N = {1, . . . , n} and an inequality

∑
j∈N1

πjxj ≤ π0 which is valid
for

X ∩ {x ∈ Bn : xj = 0 for j ∈ N \ N1}

we can lift one variable at a time to obtain a valid inequality

(9.55)
∑

j∈N\N1

βjxj +
∑

j∈N1

xj ≤ |C| − 1

for X. The coefficients βj in (9.55) are independent of the order in which the
variables are lifted. The corresponding lifting procedure is a straightforward
generalization of our lifting procedure for the cover inequalities. From Theo-
rem 9.25 we obtain the following corollary:

Corollary 9.26 Let C be a minimal cover for X =
{
x ∈ BN :

∑
j∈N ajxj ≤ b

}
. The

lifting procedure in Algorithm 9.3 determines a facet-defining inequality for conv(X). 2

142 Cutting Planes

9.6.3 The Set-Packing Polytope

Integer and mixed integer programs often contain inequalities that have all
coefficients from B = {0, 1}. In particular, many applications require logical
inequalities of the form

∑
j∈N xj ≤ 1 (packing constraint: at most one of the js

is chosen) or
∑

j∈N xj ≥ 1 (covering constraint: at least one of the js is picked).
This motivates the study of packing, covering problems, cf. Example 1.9 on
page 8:

Definition 9.27 (Set-Packing Polytope and Set Covering Polytope)
Let A ∈ Bm×n be an m × n-matrix with entries from B = {0, 1} and c ∈ Rn. The
integer problems

max
{
cT x : Ax ≤ 1, x ∈ Bn

}

max
{
cT x : Ax ≥ 1, x ∈ Bn

}

max
{
cT x : Ax = 1, x ∈ Bn

}

are called the set-packing problem, the set-covering problem and the set-covering
partitioning problem, respectively.

In this section we restrict ourselves to the set-packing problem and the set-
packing polytope:

PPACKING (A) := conv {x ∈ Bn : Ax ≤ 1} .

For the set-packing problem, there is a nice graph-theoretic interpretation of
feasible solutions. Given the matrix A, define an undirected graph G(A) as
follows: the vertices of G(A) correspond to the columns of A. There is an edge
between i and j if there is a common nonzero entry in columns i and j. The
graph G(A) is called the conflict graph or intersection graph.

Obviously, each feasible binary vector for the set-packing problem corre-
sponds to a stable set in G(A). Conversely, each stable set in G(A) gives a
feasible solution for the set-packing problem. Thus, we have a one-to-one
correspondence and it follows that

PPACKING (A) = conv {x ∈ Bn : xi + xj ≤ 1 for all (i, j) ∈ G(A)} .

In other words, PPACKING (A) is the stable-set polytope STAB(G(A)) of G(A). If
G is a graph, then incidence vectors of the n + 1 sets ∅ and {v}, where v ∈ V

are all affinely independent and contained in STAB(G) whence STAB(G) has
full dimension.

We know from Theorem 4.14 that the node-edge incidende matrix of a bi-
partite graph is totally unimodular (see also Example 4.15). Thus, if G(A) is
bipartite, then by the Theorem of Hoffmann and Kruskal (Corollary 4.12 on
page 52) we have that PPACKING (A) is completely described by the linear sys-
tem:

xi + xj ≤ 1 for all (i, j) ∈ G(A)(9.56a)

x ≥ 0.(9.56b)

We also know that for a general graph, the system (9.56) does not suffice to
describe the convex hull of its stable sets, here PPACKING (A). A graph is bipartite
if and only if it does not contain an odd cycle (see Lemma 4.6). Odd cycles
gives us new valid inequalities:

9.6 Structured Inequalities 143

Theorem 9.28 Let C be an odd cycle in G. The odd-cycle inequality

∑

i∈C

xi ≤
|C| − 1

2

is valid for STAB(G). The above inequality defines a facet of STAB(V(C), E(C)) if
and only if C is an odd hole, that is, a cycle without chords.

Proof: Any stable set x can contain at most every second vertex from C, thus
x(C) ≤ (|C| − 1)/2 since |C| is odd. So, the odd-cycle inequality is valid
for STAB(G).

Suppose the C is an odd hole with V(C) = {0, 1, . . . , k − 1}, k ∈ N even and let
cT x ≤ δ be a facet-defining inequality with

FC =

{

x ∈ STAB(V(C), E(C)) :
∑

i∈C

xi =
|C| − 1

2

}

⊆ Fc =
{
x ∈ STAB(V(C), E(C)) : cTx = δ

}

0

1
2

3

4

5
6

(a) The stable set S1 =

{i+2,i+4,...,i−3,i} in the odd cy-
cle C.

0

1
2

3

4

5
6

(b) The stable set S2 =

{i+2,i+4,...,i−3,i−1} in the odd
cycle C.

Figure 9.3: Construction of the stable sets S1 and S2 in the proof of Theo-
rem 9.28: Here, node i = 0 is the anchor point of the stable sets. The stable
sets are indicated by the black nodes.

Fix i ∈ C and consider the two stable sets

S1 = {i + 2, i + 4, . . . , i − 3, i}

S2 = {i + 2, i + 4, . . . , i − 3, i − 1}

where all indices are taken modulo k (see Figure 9.3 for an illustration). Then,
χSi ∈ FC ⊆ Fc, so we have

0 = cT χS1 − cT χS2 = cT (χS1 − χS2) = ci − ci−1.

Since we can choose i ∈ C arbitrarily, this implies that ci = γ for all i ∈ C

for some γ ∈ R. As in the proof of Theorem 9.17 on page 134 we can now
conclude that cTx ≤ δ is a positive scalar multiple of the odd-hole inequality
(observe that we used proof technique 1 for facets).

144 Cutting Planes

0

1
2

3

4

5
6

Figure 9.4: If C is an odd cycle with choords, then there is an odd hole H

contained in C (indicated by the thick lines).

Finally, suppose that C is a cycle with at least one chord. We can find an odd
hole H that is contained in C (see Figure 9.4). There are |C| − |H| vertices in
C \ H, and we can find (|C| − |H|)/2 edges (ik, vk) ∈ C where both endpoints
are in C \ H. Consider the following valid inequalities:

∑

i∈H

xi ≤
|H| − 1

2

xik
+ xjk

≤ 1 for k = 1, . . . ,
|C| − |H|

2
.

Summing up those inequalities yields
∑

i∈C xi ≤ |C|−1

2
, which is the odd-

cycle inequality for C. Hence, C is redundant and can not induce a facet
of STAB(V(C), E(C)). This completes the proof. 2

The final class of inequalities we consider here are the so-called clique-inequalities:

Theorem 9.29 Let Q be a clique in G. The clique inequality

∑

i∈Q

xi ≤ 1

is valid for STAB(G). The above inequality defines a facet of STAB(G) if and only if
Q is a maximal clique, that is, a clique which is maximal with respect to inclusion.

Proof: The validity of the inequality is immediate. Assume that Q is maximal.
We find n affinely independent vectors that satisfy x(Q) = 1. For v ∈ Q, we
take the incidence vector of {v}. For u /∈ Q, we choose a node v ∈ Q which is
adjacent to u. Such a node exists, since Q is maximal. We add the incidence
vector of {u, v} to our set. In total we have n vectors which satisfy x(Q) ≤ 1

with equality. They are clearly affinely independent.

Assume conversely that Q is not maximal. So, there is a clique Q ′ ⊃ Q, Q ′ 6=
Q. The clique inequality x(Q ′) ≤ 1 dominates x(Q) ≤ 1, so x(Q) ≤ 1 is
not necessary in the description of STAB(G) and x(Q) ≤ 1 can not define a
facet. 2

Column Generation

One of the recurring ideas in optimization is that of decomposition. The idea of a
decomposition method is to remove some of the variables from a problem and
handle them in a master problem. The resulting subproblems are often easier
and more efficient to solve. The decomosition method iterates back and forth
between the master problem and the subproblem(s), exchanging information
in order to solve the overall problem to optimality.

10.1 Dantzig-Wolfe Decomposition

We start with the Dantzig-Wolfe Decomposition for Linear Programs. Sup-
pose that we are given the following Linear Program:

max cTx(10.1a)

A1x ≤ b1(10.1b)

A2x ≤ b2(10.1c)

where Ai is an mi × n-matrix. Consider the polyhedron

P2 =
{
x : A2x ≤ b2

}
.

From Minkowski’s Theorem (Theorem 3.59 on page 40) we know that any
point x ∈ P2 is of the form

(10.2) x =
∑

k∈K

λkxk +
∑

j∈J

µjr
j

with
∑

k∈K λk = 1, λk ≥ 0 for k ∈ K, µj ≥ 0 for j ∈ J. The vectors xk and rj are
the extreme points and extreme rays of P2. Using (10.2) in (10.1) yields:

max cT





∑

k∈K

λkxk +
∑

j∈J

µjr
j



(10.3a)

A1





∑

k∈K

λkxk +
∑

j∈J

µjr
j



 ≤ b1(10.3b)

∑

k∈K

λk = 1(10.3c)

λ ∈ RK
+, µ ∈ RJ

+(10.3d)

146 Column Generation

Rearranging terms, we see that (10.3) is equivalent to the following Linear
Program:

max
∑

k∈K

(cT xk)λk +
∑

j∈J

(cT µj)r
j(10.4a)

∑

k∈K

(A1xk)λk +
∑

j∈J

(A1rj)µj ≤ b1(10.4b)

∑

k∈K

λk = 1(10.4c)

λ ∈ RK
+, µ ∈ RJ

+(10.4d)

Let us compare the initial formulation (10.1) and the equivalent one (10.4):

Formulation number of variables number of constraints
(10.1) n m1 + m2

(10.4) |K| + |J| m1

In the transition from (10.1) to (10.4) we have decreased the number of con-
tstraints by m2, but we have increased the number of variables from n to
|K| + |J| which is usually much larger than n (as an example that |K| + |J|

can be exponentially larger than n consider the unit cube {x ∈ Rn : 0 ≤ x ≤ 1}

which has 2n constraints and 2n extreme points). Thus, the reformulation may
seem like a bad move. The crucial point is that we can still apply the Simplex
method to (10.4) without actually writing down the huge formulation.

Let us abbreviate (10.4) (after the introduction of slack variables) by

(10.5) max
{
wT η : Dη = b, η ≥ 0

}
,

where D ∈ R(m1+1)×(|K|+|J|), d ∈ Rm1+1.

The Simplex method iterates from basis to basis in order to find an optimal
solution. A basis of (10.5) is a set B ⊆ {1, . . . , |K| + |J|} with |B| = m1 + 1 such
that the corresponding square submatrix DB of B is nonsingular. Observe that
such a basis is smaller (namely by m2 variables) than a basis of the original
formulation (10.1). In particular, the matrix DB ∈ R(m1+1)×(m1+1) is much
smaller than a basic matrix for (10.1) which is an (m1 + m2) × (m1 + m2)-
matrix. In any basic solution ηB := D−1

B d of (10.5) and ηN := 0 only a very
small number of variables (m1 + 1 out of |K| + |J|) can be nonzero.

It is easy to see that a basic solution (ηB, ηN) of (10.5) is optimal if and only if
the vector y defined by yT DB = wT

B satisfies wN −yT DN ≤ 0. We only outline
the basics and refer to standard textbooks on Linear Programming for details,
e.g. [Lue84, CC+98]. The key observation is that in the Simplex method the
only operation that uses all columns of the system (10.5) is this pricing oper-
ation, which checks whether the reduced costs of the nonbasic variables are
nonnegative.

10.1.1 A Quick Review of Simplex Pricing

Recall that the Linear Programming dual to (10.5) is given by:

(10.6) min
{
bT y : DTy ≥ w

}
.

The pricing step works as follows. Given a basis B and correspondig basic
solution η = (ηB, ηN) = (D−1

B d, 0) the Simplex method solves yT DB = wT
B to

10.1 Dantzig-Wolfe Decomposition 147

obtain y. If wN − yT DN ≤ 0, then y is feasible for the dual (10.6) and we have
an optimal solution for (10.5), since

wT η = wT
BηB = yT DBηB = yT b = bTy,

and for any pair (η ′, y ′) of feasible solutions for (P) and (D), respectively, we
have

wT η ≤ (DTy ′)T η ′ = (y ′)TDη ′ = bT y ′.

If on the other hand, wi − dT
i y > 0 for some i ∈ N, we can improve the

solution by adding variable ηi to the basis and throwing out another index.
We first express the new variable in terms of the old basis, that is, we solve
DBz = di. Let η(ε) be defined by ηB(ε) := ηB − εz, ηi(ε) := ε and zero for all
other variables. Then,

wT
Bη(ε) = wT

B(ηB − εz) + wiε

= wT
BηB + ε(wi − wT

Bz)

= wT
BηB + ε(wi − yT DBz)

= wT
BηB + ε (wi − yTdi)︸ ︷︷ ︸

>0

Thus, for ε > 0 the new solution η(ε) is better than the old one η. The Simplex
method now chooses the largest possible value of ε, such that η(ε) is feasible,
that is η(ε) ≥ 0. This operation will make one of the old basic variables j in B

become zero. The selection of j is usually called the ratio test, since j is any
index in B such that zj > 0 and j minimizes the ratio ηi/zi over all i ∈ B

having zi > 0.

10.1.2 Pricing in the Dantzig-Wolfe Decomposition

In our particular situation we do not want to explicitly iterate over all entries
of the vector wN − yT DN in order to check for nonnegativity. Rather, the
pricing can be accomplished by solving the following Linear Program:

ζ = max (cT − ȳT A1)x − ym1+1(10.7a)

A2x ≤ b2(10.7b)

where ȳ is the vector composed of the first m1 components of y and y satisfies
yT DB = wB. The following cases can occur:

Case 1: We have ζ > 0 in (10.7).

Then, the problem (10.7) has an optimal solution x∗ with (cT −ȳTA1)x∗ >

ȳm1+1. In this case, x∗ = xk for some k ∈ K is an extreme point. Let Dk,·

be the kth row of D. The reduced cost of xk is given by

wk − ȳTD·,k = cTxk − ȳT

(

A1xk

1

)

= cT xk − ȳT A1xk − ȳm1+1 > 0.

Thus, xk will be the variable entering the basis in the Simplex step (or in
other words,

(

A1xk

1

)

will be the column entering the Simplex tableau).

Case 2: The problem (10.7) is unbounded.

148 Column Generation

Then, there is an extreme ray rj for some j ∈ J with (cT − ȳT A1)rj > 0.
The reduced cost of rj is given by

w|K|+j − ȳT D·,|K|+j = cT rj − ȳT

(

A1rj

0

)

= cT rj − ȳTA1rj > 0.

So, rj will be the variable entering the basis, or
(

A1rj

0

)

will be the column
entering the Simplex tableau.

Case 3: We have ζ < 0 in (10.7).

Then, the problem (10.7) has an optimal solution x∗ with (cT −ȳTA1)x∗ ≤
ȳm1+1. By the same arguments as in Case 1 and Case 2 it follows that
wi − ȳTD·,i ≤ 0 for all i ∈ K ∪ J which shows that the current basic
solution is an optimal solution solution of (10.4).

We have decomposed the original problem (10.1) into two problems: the mas-
ter problem (10.4) and the pricing problem (10.7). The method works with a
feasible solution for the master problem (10.4) and generates columns of the
constraint matrix on demand. Thus, the method is also called column generation
method.

10.2 Dantzig-Wolfe Reformulation of Integer Pro-
grams

We now turn to integer programs. Decomposition methods are particularly
promising if the solution set of the IP which we want to solve has a “decom-
posable structure”. In particular, we will be interested in integer programs
where the constraints take on the following form:

(10.8)

A1x1 +A2x2 + . . . Akxk = b

D1x1 ≤ d1

D2x2 ≤ d2

. . .
...

...
DKxK ≤ dK

If the IP has the form above, then the sets

Xk =
{
xk ∈ Z

nk
+ : Dkxk ≤ dk

}

are independent except for the linking constraint
∑K

k=1 Akxk = b. Our integer
program which we want to solve is:

(10.9) z = max

{
K∑

k=1

(ck)T xk :

K∑

k=1

Akxk = b, xk ∈ Xk for k = 1, . . . , k

}

.

In the sequel we assume that each set Xk contains a large but finite number of
points:

(10.10) Xk =
{
xk,t : t = 1, . . . , Tk

}
.

An extension of the method also works for unbounded sets Xk but the presen-
tation is even more technical since we also need to handle extreme rays. In the

10.2 Dantzig-Wolfe Reformulation of Integer Programs 149

Dantzig-Wolfe decomposition in Section 10.1 we reformulated the problem to
be solved by writing every point as a convex combination of its extreme points
(in case of bounded sets there are no extreme rays). We will adopt this idea to
the integer case.

Using (10.10) we can write:

Xk =

{

xk ∈ Rnk : xk =

Tk∑

t=1

λk,tx
k,t,

Tk∑

t=1

λk,t = 1, λt,k ∈ {0, 1} for t = 1, . . . , Tk

}

.

Substituting into (10.9) gives an equivalent integer program, the IP master prob-
lem:

(IPM) z = max
K∑

k=1

Tk∑

t=1

((ck)Txk,t)λk,t

(10.11a)

K∑

k=1

Tk∑

t=1

(Akxk,t)λk,t = b(10.11b)

Tk∑

t=1

λk,t = 1 for k = 1, . . . , K(10.11c)

λk,t ∈ {0, 1} for k = 1, . . . , K and t = 1, . . . , Tk(10.11d)

10.2.1 Solving the Master Linear Program

In order to solve the IP master problem (10.11) we first solve its Linear Pro-
gramming relaxation which is given by

(LPM) zLPM = max
K∑

k=1

Tk∑

t=1

((ck)T xk,t)λk,t

(10.12a)

K∑

k=1

Tk∑

t=1

(Akxk,t)λk,t = b(10.12b)

Tk∑

t=1

λk,t = 1 for k = 1, . . . , K(10.12c)

λk,t ≥ 0 for k = 1, . . . , K and t = 1, . . . , Tk(10.12d)

The method to solve (10.12) is the same we used for the reformulation in Sec-
tion 10.1: a column generation technique allows us to solve (10.12) without
writing down the whole Linear Program at once. We always work with a
small subset of the columns.

Observe that (10.12) has a column





ckx

Akx

ek



 with ek =





















0
...
1

0
...
0





















← k

150 Column Generation

for every x ∈ Xk. The constraint matrix of (10.12) is of the form:




















A1x1,1 . . . A1x1,T1 A2x2,1 . . . A2x2,T2 AKxK,1 . . . AKx1,TK

1 . . . 1

1 . . . 1

. . .
. . .

1 . . . 1





















,

while the right hand side has the form

b̄ =

(

b

1

)

.

Let πi, i = 1, . . . , m be the dual variables associated with the linking con-
straints (10.12b) and µk, k = 1, . . . , K be the dual variables corresponding
to the constraints (10.12c). Constraints (10.12c) are also called convexity con-
straints. The Linear Programming dual of (10.1) is given by:

(DLPM) min
m∑

i=1

πi +

K∑

k=1

µk

(10.13a)

πT (Akxk) + µk ≥ ck for all xk ∈ Xk, k = 1, . . . , K(10.13b)

Suppose that we have a subset of the columns which contains at least one
column for each k = 1, . . . , K such that the following Restricted Linear Program-
ming Master Problem is feasible:

(RLPM) z̄RLPM = max c̄T λ̄(10.14a)

Āλ̄ = b̄(10.14b)

λ̄ ≥ 0(10.14c)

The matrix Ā is a submatrix of the constraint matrix, λ̄ denotes the restricted
set of variables and c̄ is the corresponding restriction of the cost vector to those
variables. Let λ̄∗ be an optimal solution of (10.14) and (π, µ) ∈ Rm × RK be
a corresponding dual solution (which is optimal for the Linear Programming
dual to (10.14)).

Clearly, any feasible solution to the (RLPM) (10.14) is feasible for (LPM) (10.12),
so we get

z̄RLPM = c̄T λ̄∗ =

m∑

i=1

πibi +

K∑

k=1

µk ≤ zLPM ≤ z.

The pricing step is essentially the same as in Section 10.1. We need to check
whether for each x ∈ Xk the reduced cost is nonpositive, that is whether
(ck)T x − πTAkx − µk ≤ 0 (equivalently, this means to check whether (π, µ)

is feasible for the Linear Programming dual (DLPM) (10.13) of (LPM) (10.12)).
Instead of going through the reduced costs one by one, we solve K optimiza-
tion problems. While in Section 10.1.2 the corresponding optimization prob-
lem was a Linear Program (10.7), here we have to solve an integer program for
each k = 1, . . . , K:

ζk = max ((ck)T x − πTAk)x − µk(10.15a)

x ∈ Xk =
{
xk ∈ Z

nk
+ : Dkxk ≤ dk

}
(10.15b)

10.2 Dantzig-Wolfe Reformulation of Integer Programs 151

Two cases can occur, ζk ≤ 0 and ζk > 0 (the case that (10.15) is unbounded is
impossible since we have assumed that Xk is a bounded set).

Case 1: ζk > 0 for some k ∈ {1, . . . , K}

Let x̃k be the optimal solution of (10.15) for this value of k. As in Sec-
tion 10.1.2 it follows that x̃k is an extreme point of Xk, say x̃k = xk,t. The
column corresponding to the variable xk,t has a positive reduced price.

We introduce a new column





ckxt,k

Akxt,k

ek



. This leads to a new Restricted

Linear Programming Master Problem which can be reoptimized easily
by Simplex steps.

Case 2: ζk ≤ 0 for k = 1, . . . , K

In this case, the dual solution (π, µ) which we obtained for the dual of
(RLPM) (10.14) is also feasible for the Linear Programming dual (DLPM)
(10.13) of (LPM) (10.12) and we have

z̄LPM ≤
m∑

i=1

πibi +

K∑

k=1

µk = c̄T λ̄∗ = z̄RLPM ≤ z̄LPM.

Thus λ̄∗ is optimal for (LPM) (10.12) and we can terminate.

We can derive an upper bound for zLPM during the run of the algorithm by
using Linear Programming duality. By definition, we have

ζk ≥ ((ck)T − πTAk)xk − µk for all xk ∈ K, k = 1, . . . , K.

Let ζ = (ζ1, . . . , ζK). Then, it follows that (π, µ + ζ) is feasible for the dual
(DLPM) (10.13). Thus, by Linear Programming duality we get

(10.16) zLPM ≤
m∑

i=1

πibi +

K∑

k=1

µk +

K∑

k=1

ζk.

Finally, we note that there is an alternative stopping criterion to the one we
have already derived in Case 2 above. Let (x̄1, . . . , x̄K) be the K solutions
of (10.15), so that ζk = ((ck)T x̄k − πTAk)xk − µk. Then

K∑

k=1

(ck)T x̄k =

K∑

k=1

πTAkxk +

K∑

k=1

µk +

K∑

k=1

ζk.(10.17)

So, if (x̄1, . . . , x̄K) satisfies the linking constraint
∑K

k=1 Akxk = b, then we get
from (10.17) that

K∑

k=1

(ck)T x̄k = πTb +

K∑

k=1

µk +

K∑

k=1

ζk.(10.18)

The quantity on the right hand side of (10.18) is exactly the upper bound (10.16)
for the optimal value zLPM of the Linear Programming Master. Thus, we can
conclude that (x̄1, . . . , x̄K) is optimal for (LPM).

152 Column Generation

10.2.2 Strength of the Master Linear Program and Relations to
Lagrangean Duality

We first investigate what kind of bounds the Master Linear Program will pro-
vide us with.

Theorem 10.1 The optimal value zLPM of the Master Linear Program (10.12) satis-
fies:

zLPM = max

{
K∑

k=1

(ck)T xk :

K∑

k=1

Akxk = b, xk ∈ conv(Xk) for k = 1, . . . , K

}

.

Proof: We obtain the Master Linear Program (10.12) by substituting xk =
∑Tk

t=1 λk,tx
k,t,
∑Tk

t=1 λk,t = 1 and λt,k ≥ 0 for t = 1, . . . , Tk. This is equiv-
alent to substituting xk ∈ conv(Xk). 2

The form of the integer program (10.9) under study suggests an alternative
approach to solving the problem. We could dualize the linking constraints to
obtain the Lagrangean dual (see Section 6.3)

wLD = min
u∈Rm

L(u),

where

L(u) = max

{
K∑

k=1

(ck)T xk + uT (b − Akxk) : xk ∈ Xk k = 1, . . . , K

}

= max

{
K∑

k=1

((ck)T − uTAk)xk + uT b) : xk ∈ Xk k = 1, . . . , K

}

Observe that the calculation of L(u) decomposes automatically into K inde-
pendent subproblems:

L(u) = uT b +

K∑

k=1

max
{
((ck)T − uT Ak)xk : xk ∈ Xk

}
.

Theorem 6.18 tells us that

wLD = max

{
K∑

k=1

((ck)T − uT Ak)xk + uTb) : xk ∈ conv(Xk) k = 1, . . . , K

}

.

Comparing this result with Theorem 10.1 gives us the following corollary:

Corollary 10.2 The value of the Linear Programming Master and the Lagrangean
dual obtained by dualizing the linking constraints coincide:

zLPM = wLD.

2

10.2 Dantzig-Wolfe Reformulation of Integer Programs 153

10.2.3 Getting an Integral Solution

We have shown how to solve the Linear Programming Master and also shown
that it provides the same bounds as a Lagrangean dual. If at the end of the col-
umn generation process the optimal solution λ̄∗ of (LPM) (10.12) is integral,
we have an optimal solution for the integer program (10.11) which was our
original problem. However, if λ̄∗ is fractional, then (10.11) is not yet solved.
We know that zLPM = wLD ≥ z. This gives us at least an upper bound for
the optimal value and suggests using this bound in a branch-and-bound algo-
rithm.

Recall that in Section 9.3 we combined a branch-and-bound algorithm with
a cutting-plane approach. The result was a branch-and-cut algorithm. Simi-
larly, we will now combine branch-and-bound methods and column gener-
ation which gives us what is known as a branch-and-price algorithm. In this
section we restrict the presentation to 0-1-problems (“binary problems”).

The integer program which we want to solve is:

(10.19) z = max

{
K∑

k=1

(ck)T xk :

K∑

k=1

Akxk = b, xk ∈ Xk for k = 1, . . . , k

}

,

where

Xk =
{
xk ∈ B

nk
+ : Dkxk ≤ dk

}

for k = 1, . . . , K. As in Section 10.2 we reformulate the problem. Observe that
in the binary case each set Xk is automatically bounded, Xk =

{
xk,t : t = 1, . . . , Tk

}
.

so that

Xk =

{

xk ∈ Rnk : xk =

Tk∑

t=1

λk,tx
k,t,

Tk∑

t=1

λk,t = 1, λt,k ∈ {0, 1} for t = 1, . . . , Tk

}

.

and substituting into (10.19) gives the IP master problem:

(IPM) z = max
K∑

k=1

Tk∑

t=1

((ck)Txk,t)λk,t

(10.20a)

K∑

k=1

Tk∑

t=1

(Akxk,t)λk,t = b(10.20b)

Tk∑

t=1

λk,t = 1 for k = 1, . . . , K(10.20c)

λk,t ∈ {0, 1} for k = 1, . . . , K and t = 1, . . . , Tk(10.20d)

Let λ̄ be an optimal solution to the LP-relaxation of (10.20), so that zLPM =

154 Column Generation

∑K

k=1

∑Tk

t=1((ck)T xk,t)λ̄k,t, where

(LPM) zLPM = max
K∑

k=1

Tk∑

t=1

((ck)Txk,t)λk,t

(10.21a)

K∑

k=1

Tk∑

t=1

(Akxk,t)λk,t = b(10.21b)

Tk∑

t=1

λk,t = 1 for k = 1, . . . , K(10.21c)

λk,t ≥ 0 for k = 1, . . . , K and t = 1, . . . , Tk(10.21d)

Let x̄k =
∑Tk

t=1 λ̄k,tx
k,t and x̄ = (x̄1, . . . , x̄k). Since all the xk,t ∈ Xk are

different binary vectors, it follows that x̄k ∈ Bnk if and only if all λ̄k,t are
integers.

So, if λ̄ is integral, then x̄ is an optimal solution for (10.19). Otherwise, there
is k0 such that x̄k0 /∈ Bnk0 , i.e, there is t0 such that x̄k0

t0
/∈ B. So, like in

the branch-and-bound scheme in Chapter 8 we can branch on the fractional
variable x̄k0

t0
: We split the feasible set S of all feasible solutions into S = S0∪S1,

where

S0 = S ∩
{

x : xk0

j0
= 0
}

S1 = S ∩
{

x : xk0

j0
= 1
}

.

This is illustrated in Figure 10.1(a). We could also branch on the column vari-
ables and split S into S = S ′

0 ∪ S ′
1 where

S ′
0 = S ∩

{
λ : λk1,t1 = 0

}

S ′
1 = S ∩

{
λ : λk1,t1 = 1

}
,

where λk1

t1
is a fractional varialbe in the optimal solution λ̄ of the Linear Pro-

gramming Master (see Figure 10.1(b)). However, branching on the column
variables leads to a highly unbalanced tree for the following reason: the
branch with λk1,t1

= 0 exludes just one column, namely the t1th feasible
solution of the k1st subproblem. Hence, usually branching on the original
variables is more desirable, since it leads to more balanced enumeration trees.

S

S0

xk
t = 0

S1

xk
t = 1

(a) Branching on the original variables

S

S ′
0

λk
t = 0

S ′
1

λk
t = 1

(b) Branching on the column variables

Figure 10.1: Branching for 0-1 column generation.

We return to the situation where we branch on an original variable xk0

j0
. We

10.2 Dantzig-Wolfe Reformulation of Integer Programs 155

have

xk0

j0
=

Tk0∑

t=1

λk0,tx
k0,t
j0

.

Recall that xk0,t
j0

∈ B, since each vector xk0,t ∈ Bnk0 .

If we require that xk0

j0
= 0, this implies that λk0,t = 0 for all t with xk0,t

j0
> 0.

Put in Similarly, if we require that xk0

j0
= 1, this implies that λk0,t = 0 for all t

with xk0,t
j0

> 0.

In summary, if we require in the process of branching that xk0

j0
= δ for some

fixed δ ∈ {0, 1}, then λk0,t > 0 only for those t such that xk0,t
j = δ. Thus, the

Master Problem at node Sδ = S0 = S ∩
{

x : xk0

j0
= δ
}

is given by:

(IPM)(Sδ) max
∑

k6=k0

Tk∑

t=1

((ck)T xk,t)λk,t +
∑

t:x
k0,t

j0
=δ

((ck0)Txk0,t)λk0,t

(10.22a)

∑

k6=k0

Tk∑

t=1

(Akxk,t)λk,t +
∑

t:x
k0,t

j0
=δ

(Ak0xk0,t)λk0,t = b(10.22b)

Tk∑

t=1

λk,t = 1 for k 6= k0(10.22c)

λk,t ∈ {0, 1} for k = 1, . . . , K and t = 1, . . . , Tk(10.22d)

The new problems (10.22) have the same form as the original Master Prob-
lem (10.20). The only difference is that some columns, namely all those where
xk0,t

j0
6= δ, are excluded. This means in particular that for k 6= k0 each sub-

problem

ζk = max ((ck)Tx − πTAk)x − µk(10.23a)

x ∈ Xk =
{
xk ∈ B

nk
+ : Dkxk ≤ dk

}
(10.23b)

remains unchanged. For k = k0 and δ = {0, 1} the k0th subproblem is

ζk0
= max ((ck0)T x − πTAk0)x − µk0

(10.24a)

x ∈ Xk ∩ {x : xj = δ} .(10.24b)

More About Lagrangean
Duality

Consider the integer program:

z = max
{
cT x : Dx ≤ d, x ∈ X

}
(11.1)

with

(11.2) X = {Ax ≤ b, x ∈ Zn}

and Dx ≤ d are some “complicating constraints” (D is a k × n matrix and
d ∈ Rk). In Section 6.3 we introduced the Lagrangean Relaxation

IP(u) z(u) = max
{
cT x + uT (d − Dx) : x ∈ X

}
(11.3)

for fixed u ≥ 0 and showed that IP(u) is a relaxation for (11.1) (Lemma 6.16).
We then considered the Lagrangean Dual for (11.1)

(11.4) (LD) wLD = min {z(u) : u ≥ 0} .

Clerly, wLD ≥ z, and Theorem 6.18 gave us precise information about the
relation between wLD and z, namely,

wLD = max
{
cT x : Dx ≤ d, x ∈ conv(X)

}
.

In this chapter we will learn more about Lagrangean duality. We will investi-
gate how we can use information from a Lagrangean Relaxation to determine
values for the variables in the original problem (variable fixing) and we will
also sketch how to actually solve the Lagrangean Dual.

11.1 Convexity and Subgradient Optimization

In the proof of Theorem 6.18 we derived two Linear Programming formula-
tion for solving the Lagrangean dual (11.4):

wLD = min t(11.5a)

t + (Dxk − d)T u ≥ cTxk for k ∈ K(11.5b)

(Drj)T u ≥ cT rj for j ∈ J(11.5c)

u ∈ Rm
+ , t ∈ R(11.5d)

158 More About Lagrangean Duality

and

wLD = max cT





∑

k∈K

αkxk +
∑

j∈J

βjr
j



(11.6a)

∑

k∈K

αk = 1(11.6b)

D





∑

k∈K

αkxk +
∑

j∈J

βjr
j



 ≤ d(
∑

k∈K

αk)(11.6c)

αk, βj ≥ 0, for k ∈ K, j ∈ J.(11.6d)

Here, xk, k ∈ K are the extreme points and rj, j ∈ J are the extreme rays
of conv(X), where X is defined in (11.2). Formulation (11.5) contains a huge
number of constraints, so a practially efficient solution method will have to
use a cutting-plane algorithm. Formulation (11.6) contains a huge number of
constraints, in fact, it is a Dantzig-Wolfe reformulation and we may solve it by
column generation (see Chapter 10).

In this section we describe an alternative approach to solve the Lagrangean
dual. This approach is comparatively simple, easy to implement and exploits
the fact that the function z(u), defined in (11.3) is convex and piecewise linear
(we will prove this fact in a minute).

Definition 11.1 (Convex Function)
A function f : Rn → R is convex, if

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

for all x, y ∈ Rn and all λ ∈ [0, 1].

The definition above simply states that for any point λx + (1 − λ)y on the
segment joining x and y the function value f(λx + (1 − λ)y) lies below the
segment connecting f(x) and f(y). Figure 11.1 provides an illustration for the
one-dimensional case.

x

y
(

λx+(1−λ)y

λf(x)+(1−λ)f(y)

)

(

λx+(1−λ)y

f(λx+(1−λ)y)

)

Figure 11.1: A convex function.

11.1 Convexity and Subgradient Optimization 159

Convex functions have a the nice property that local minimal are also global
minima:

Definition 11.2 (Local and global minimum)
The point x∗ ∈ Rn is a local minimum of f : Rn → R if there is δ > 0 such that
f(x) ≥ f(x∗) for all ‖x−x∗‖ ≤ δ. The point x∗ is a global minimum if f(x) ≥ f(x∗)

for all x ∈ Rn.

Lemma 11.3 Let x∗ be a local minimum of the convex function f : Rn → R. Then,
x∗ is also a global minimum.

Proof: Let δ > 0 be such that f(x) ≥ f(x∗) for all ‖x − x∗‖ ≤ δ. Suppose that
x̄ ∈ Rn with f(x̄) < f(x∗). Let y := x∗ + δ(x̄− x∗)/‖x̄− x∗‖. Then, ‖y− x∗‖ = δ.

f(y) = f((1 −
δ

‖x̄ − x̄∗‖)x∗ +
δ

‖x̄ − x̄∗‖ x̄)

≤ (1 −
δ

‖x̄ − x̄∗‖)f(x∗) +
δ

‖x̄ − x̄∗‖ f(x̄)

< (1 −
δ

‖x̄ − x̄∗‖)f(x∗) +
δ

‖x̄ − x̄∗‖ f(x∗)

= f(x∗).

This contradicts the fact that x∗ is a local minimum. 2

It can be shown that a differentiable function f : Rn → R is convex if and only
if

f(x) ≥ f(x∗) + ∇f(x∗)(x − x∗)

for all x, x∗ ∈ Rn, see e.g. [Lue84]. Here, ∇f(x∗) is the gradient of f at x∗.
So x∗ is a local (and by Lemma 11.3 also a global) minimizer of a convex dif-
ferentiable function f : Rn → R if and only if ∇f(x∗) = 0. The notion of a
subgradient is meant as an extension to the nondifferentiable (and possibly
non-smooth) case:

Definition 11.4 (Subgradient, subdifferential)
Let f : Rn → R be convex. The vector s ∈ Rn is a subgradient of f at x∗ if

f(x) ≥ f(x∗) + sT (x − x∗)

for all x ∈ Rn. The subdifferential ∂f(x) of f at x is the set of all subgradients of f

at x.

Lemma 11.5 Let f : Rn → R be convex. Then, x∗ is an optimal solution of min {f(x) : x ∈ Rn}

if and only if 0 ∈ ∂f(x∗).

Proof: We have

0 ∈ ∂f(x∗)⇔ f(x) ≥ f(x∗) + 0T (x − x∗) for all x ∈ Rn

⇔ f(x) ≥ f(x∗) for all x ∈ Rn

2

160 More About Lagrangean Duality

Algorithm 11.1 Subgradient algorithm for minimizing a convex function
f : Rn → R.
SUBGRADIENT-ALG(f)

1 Choose a starting point x0 ∈ Rn and set k := 0.
2 Choose any subgradient s ∈ ∂f(xk).
3 while s 6= 0 do
4 Set xk+1 := xk − θks for some θk > 0.
5 Set k = k + 1.
6 end while
7 xk−1 is an optimal solution. stop.

The subgradient algorithm (see Algorithm 11.1) is designed to solve problems
of the form

min {f(x) : x ∈ Rn} ,

where f is convex. At any step, it chooses an arbitrary subgradient and moves
into that direction. Of course, the question arises how to get a subgradient,
which subgradient to choose and how to select the steplengths θk.

We will not elaborate on this in the general setting and restrict ourselves to the
special case of the Lagrangean dual.

11.2 Subgradient Optimization for the Lagrangean
Dual

Before we start to apply subgradient descent methods to the Lagrangean dual,
we will first prove that the function we wish to minimize actually possesses
the desired structural properties.

Lemma 11.6 Let f1, . . . , fm : Rn → R be convex functions and

f(x) = max {fi(x) : i = 1, . . . , m}

be the pointwise maximum of the fi. Then, f is convex.

Proof: Let x, y ∈ Rn and λ ∈ [0, 1]. For i = 1, . . . , m we have from the convex-
ity of fi

fi(λx + (1 − λ)y) ≤ λfi(x) + (1 − λ)fi(y).

Thus,

f(λx + (1 − λ)y) = max {fi(λx + (1 − λ)y) : i = 1, . . . , m}

≤ max {λfi(x) + (1 − λ)fi(y) : i = 1, . . . , m}

≤ λ max {fi(x) : i = 1, . . . , m} + (1 − λ) max {fi(y) : i = 1, . . . , m}

= λf(x) + (1 − λ)f(y).

Thus, f is convex. 2

Theorem 11.7 The function z(u) defined in (11.3) is piecewise linear and convex on
the domain over which it is finite.

11.2 Subgradient Optimization for the Lagrangean Dual 161

Proof: Let xk, k ∈ K be the extreme points and rj, j ∈ J be the extreme rays
of conv(X). Fix u ≥ 0. We have (see also Theorem 6.18):

z(u) = max
{
cT x + uT (d − Dx) : x ∈ conv(X)

}

=

{
+∞ if (cT − uT D)rj > 0 for some j ∈ J

cT xk + uT (d − Dxk) for some k ∈ K otherwise.

So, z(u) is finite if and only if u is contained in the polyhedron

Q :=
{
y ∈ Rm

+ : uT Drj ≥ cT rj for all j ∈ J
}

If u ∈ Q, then

z(u) = uTd + max
{
(cT − uTD)xk : k ∈ K

}

is the maximum of a finite set of affine functions fk(u) = uT d+(cT −uT D)xk,
(k ∈ K). Since affine functions are convex, the convexity of z(u) follows from
Lemma 11.6. 2

The above theorem shows that the function occuring in the Lagrangean dual
is a particular convex function: it is piecewise linear. This property enables us
to derive subgradients easily:

Lemma 11.8 Let ū ≥ 0 and x(ū) be an optimal solution of the Lagrangean relaxation
IP(ū) given in (11.3). Then, the vector d − Dx(ū) is a subgradient of z(u) at ū.

Proof: For any u ≥ 0 we have

z(u) = max
{
cTx + uT (d − Dx) : x ∈ X

}

≥ cTx(ū) + uT (d − Dx(ū)

= cT x(u) + ūT (d − Dx(ū)) + (u − ū)T (d − Dx(ū))

= z(u) + (u − ū)T (d − Dx(ū))

= z(u) + (d − Dx(ū))T (u − ū)

This proves the claim. 2

Algorithm 11.2 Subgradient algorithm for solving the Lagrangean dual.

SUBGRADIENT-LD
1 Choose a starting dual vector u0 ∈ Rn

+ and set k := 0.
2 repeat
3 Solve the Lagrangean Problem:

IP(ut) z(uk) = max
{
cT x + (uk)T (d − Dx) : x ∈ X

}

and let x(uk) be its optimal solution.
4 Set s := d−Dx(uk), then st is a subgradient of z(u) at uk (Lemma 11.8).
5 Set uk+1 := max{uk − θks, 0} for some θk > 0.
6 Set k := k + 1.
7 until s = 0

8 uk−1 is an optimal solution. stop.

We state the following theorem without proof:

162 More About Lagrangean Duality

Theorem 11.9 Let θt be the sequence of set lengths chosen by Algorithm 11.2.

(i) If limk→∞ θk = 0 and
∑∞

k=0 θk =∞, then limk→∞ z(uk) = wLD.

(ii) If θk = θ0ρk for some 0 < ρ < 1, then limk→∞ z(uk) = wLD if θ0 and ρ are
sufficiently large.

(i) If w̄ ≥ wLD and θk = εk
z(uk)−w̄

‖d−Dx(uk)‖ with 0 < εk < 2, then limk→∞ z(uk) =

wLD, or the algorithm finds uk with w̄ ≥ z(uk) ≥ wLD for some finite k.

2

11.3 Lagrangean Heuristics and Variable Fixing

Suppose that we solve the Lagrangean dual by some algorithm, e.g. by the
subgradient method described in the previous section. It makes sense to hope
that once the multipliers uk approach the optimal solution (of the dual), we
may possibly extract some information about the original IP (11.1). In partic-
ular, we would hope that x(uk), the optimal solution of the problem 11.3 is
«close » to an optimal solution of (11.1).

In this section we examine this idea for a particular example, the set-covering
problem (see also Example 1.9 on page 8). In this problem we are given a
finite ground set U and a collection F ⊆ 2N of subsets of N. There is a cost cf

associated with every set f ∈ F. We wish to find a subcollection of the sets in F

of minimum cost such that each element in U is covered at least once:

(11.7) min

{
∑

f∈F

cfxf :
∑

f∈F

aifxf ≥ 1 for i ∈ N, x ∈ BF

}

.

Here, as in Example 1.9 on page 8)

aif :=

{
1 if element i is contained in set f

0 otherwise.

Let us consider the Lagrangean relaxation of (11.7) where we dualize all cov-
ering constraints. For u ≥ 0 we have:

z(u) = min

{
∑

f∈F

cfxf +
∑

i∈N

ui

(

1 −
∑

f∈F

aifxf

)

, x ∈ BF

}

= min

{
∑

i∈N

ui +
∑

f∈F

(

cf −
∑

i∈N

uiaif

)

xf : x ∈ BF

}

(11.8)

Observe that the problem (11.8) is trivial to solve. Let

F+ :=

{

f ∈ F : cf −
∑

i∈N

uiaif > 0

}

F− :=

{

f ∈ F : cf −
∑

i∈N

uiaif < 0

}

F0 :=

{

f ∈ F : cf −
∑

i∈N

uiaif = 0

}

11.3 Lagrangean Heuristics and Variable Fixing 163

We set xf = 1 if f ∈ F− and xf := 0 if f ∈ F+ ∪ F0. otherwise. So, given u ≥ 0,
we can easily calculate x(u) and the corresponding optimal value z(u).

Given x(u) ∈ BF, we can use this vector to obtain a feasible solution xH

of (11.7): We drop all rows i ∈ N where
∑

f ∈ Faifxf ≥ 1 and solve the re-
maining smaller set-covering problem by a greedy-heuristic (always choose a
set such that the ratio of the cost over the number of elements newly covered
is minimized). If y∗ is the heuristic solution, then xH := x(u) + y∗ is a feasible
solution to (11.7).

Once we are given xH we can use the dual information in the multipliers u for
variable fixing. Suppose that x̄ is a feasible solution for (11.7) with cT x̄ < cT xH.
Since we are dealing with a relaxation, we have

(11.9)
∑

i∈N

ui +
∑

f∈F

(

cf −
∑

i∈N

uiaif

)

x̄f ≤ cT x < cTxH.

Let f ∈ F+ and suppose that
∑

i∈N ui +
∑

f∈F−

(

cf −
∑

i∈N uiaif

)

≥ cT xH.
Then, (11.9) can only hold if x̄f = 0.

Similarly, let f ∈ F− and suppose that
∑

i∈N ui+
∑

f∈F−\{f}

(

cf −
∑

i∈N uiaif

)

≥
cT xH. Then, for (11.9) to hold we must have x̄f = 1.

Notation

This chapter is intended mainly as a reference for the notation used in these
lecture notes and the foundations this work relies on. We assume that the
reader is familiar with elementary graph theory, graph algorithmic concepts,
and combinatorial optimization as well as with basic results from complexity
theory. For detailed reviews we refer the reader to monographs and textbooks
which are listed at the end of this chapter.

A.1 Basics

By R (Q, Z, N) we denote the set of real (rational, integral, natural) numbers.
The set N of natural numbers does not contain zero. R+

0 (Q+
0 , Z+

0) denotes the
nonnegative real (rational, integral) numbers.

The rounding of real numbers x ∈ R+ is denoted by the notation ⌊x⌋ :=

max{ n ∈ N ∪ {0} : n ≤ x } and ⌈x⌉ := min{ n ∈ N : n ≥ x }.

By 2S we denote the power set of a set S, which is the set of all subsets of set S

(including the empty set ∅ and S itself).

A.2 Sets and Multisets

A multiset Y over a ground set U, denoted by Y < U, can be defined as a
mapping Y : U→ N, where for u ∈ U the number Y(u) denotes the multiplicity
of u in Y. We write u ∈ Y if Y(u) ≥ 1. If Y < U then X < Y denotes a multiset
over the ground set { u ∈ U : Y(u) > 0 }.

If Y < U and Z < U are multisets over the same ground set U, then we denote
by Y +Z their multiset union, by Y −Z their multiset difference and by Y∩Z their
multiset intersection, defined for u ∈ U by

(Y + Z)(u) = Y(u) + Z(u)

(Y − Z)(u) = max{Y(u) − Z(u), 0}

(Y ∩ Z)(u) = min{Y(u), Z(u)}.

The multiset Y < U is a subset of the multiset Z < U, denoted by Y ⊆ Z,
if Y(u) ≤ Z(u) for all u ∈ U. For a weight function c : U → R the weight
of a multiset Y < U is defined by c(Y) :=

∑
u∈U c(u)Y(u). We denote the

cardinality of a multiset Y < U by |Y| :=
∑

u∈U Y(u).

Any (standard) set can be viewed as a multiset with elements of multiplicity 0

and 1. If X and Y are two standard sets with X ⊆ Y and X 6= Y, then X is a proper

166 Notation

subset of Y, denoted by X ⊂ Y. Two subsets X1 ⊆ Y, X2 ⊆ Y of a standard set Y

form a partition of Y, if Y = X1 ∪ X2 and X1 ∩ X2 = ∅.

A.3 Analysis and Linear Algebra

Reference books: [Rud76]

A metric space (X, d) consists of a nonempty set X and a distance function or
metric d : X × X→ R+ which satisfies the following three conditions:

(i) d(x, y) > 0 if x 6= y; d(x, x) = 0;

(ii) d(x, y) = d(y, x);

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all z ∈ X.

Inequality (iii) is called the triangle inequality. An example of a metric space
is the set Rp endowed with the Euclidean metric which for vectors x =

(x1, . . . , xp) ∈ Rp and y = (y1, . . . , yp) ∈ Rp is defined by

d(x, y) :=

(

p∑

i=1

(xi − yi)
2

)1/2

.

This metric space is usually referred to as the Euclidean space.

A path in a metric space (X, d) is a continuous function γ : [0, 1] → X. The
path γ is called rectifiable, if for all dissections 0 = t0 < t1 < · · · < tk = 1 of
the interval [0, 1] the sum

k∑

i=1

d(γ(ti), γ(ti−1))

is bounded from above. The supremum of the sums, taken over all dissections,
is then referred to as the length of the path γ.

A.4 Growth of Functions

Reference books: [CLR90, AHU74]

Let g be a function from N to N. The set O(g(n)) contains all those functions
f : N → N with the property that there exist constants c > 0 and n0 ∈ N

such that f(n) ≤ c · g(n) for all n ≥ n0. A function f belongs to the set
Ω(g(n)), if and only if g(n) ∈ O(f(n)). The notation f(n) ∈ Θ(g(n)) means
that f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)). Finally, we write f(n) ∈ o(g(n)), if
lim

n→∞
f(n)/g(n) = 0.

A.5 Particular Functions

We use log
a

to denote the logarithm function to the basis of a. We omit the
basis in the case of a = 2 for the sake of convenience. By ln n we denote the
natural logarithm of a positive number n, that is, ln n := log

e
n.

A.6 Probability Theory 167

A.6 Probability Theory

Reference books: [Fel68, Fel71, MR95]

A probability space (Ω, F, Pr) consists of a σ-field (Ω, F) with a probability mea-
sure Pr defined on it. When specifying a probability space, F may be omitted
which means that the σ-field referred to is (Ω, 2Ω).

In this thesis we are mainly concerned with the case that Ω is either the the
set of real numbers R or an interval contained in R. In this context a density
function is a non-negative function p : R → R+ whose integral, extended over
the real numbers, is unity, that is

∫+∞
−∞ p(x)dx = 1. The density corresponds to

the probability measure Pr, which satisfies

Pr [] x ∈ (−∞, t] =

∫ t

−∞
p(x)dx.

A.7 Graph Theory

Reference books: [Har72, AMO93]

A mixed graph G = (V, E, R) consists of a set V of vertices (or nodes), a set E of
undirected edges, and a multiset R of directed arcs. We usually denote by n :=

|V |, mE := |E| and mR := |R| the number of vertices, edges and arcs, in G

respectively. Throughout the thesis we assume that V , E, and R are all finite.
If R = ∅, we briefly write G = (V, E) and call G an undirected graph (or simply
graph) with vertex set V and edge set E. If E = ∅, we refer to G = (V, R) as a
directed graph with vertex set V and arc (multi-) set R.

168 Notation

Each undirected edge is an unordered pair [u, v] of distinct vertices u 6= v. The
edge [u, v] is said to be incident to the vertices u and v. Each arc is an ordered
pair (u, v) of vertices which is incident to both u and v. We refer to vertex u as
the source of arc (u, v) and to vertex v as its target. The arc (u, v) emanates from
vertex u and terminates at vertex v. An arc (u, v) is incident to both vertices u

and v. The arc (u, v) is an outgoing arc of node u and an incoming arc of vertex v.
We call two vertices adjacent, if there is an edge or an arc which is incident with
both of them.

Two arcs are called parallel arcs if they refer to copies of the same element (u, v)

in the multiset R. Arcs (u, v) and (v, u) are termed anti-parallel or inverse. We
write (u, v)−1 := (v, u) to denote an inverse arc to (u, v). For a set R of arcs we
denote by R−1 the set R−1 := { r−1 : r ∈ R }.

Let G = (V, E, R) be a mixed graph. A graph H = (VH, EH, RH) is a subgraph
of G if VH ⊆ V , EH ⊆ E and RH ⊆ R. For a multiset X < E + R we denote
by G[X] the subgraph of G induced by X, that is, the subgraph of G consisting of
the arcs and edges in X together with their incident vertices. A subgraph of G

induced by vertex set X ⊆ V is a subgraph with node set X and containing all
those edges and arcs from G which have both endpoints in X.

For v ∈ V we let Rv be the set of arcs in R emanating from v. The outdegree of
a vertex v in G, denoted by deg+

G
(v), equals the number of arcs in G leaving v.

Similarly, the indegree deg−
G

(v) is defined to be the number of arcs entering v.
If X < R, we briefly write deg+

X
(v) and deg−

X
(v) instead of deg+

G[X]
(v) and

deg−

G[X]
(v). The degree of a vertex v in an undirected graph G = (V, E) is de-

fined to be the number of edges incident with v.

A subset C of the vertices of an undirected graph G = (V, E) such that every
pair of vertices is adjacent is called a clique of size |C| in the graph G. A graph G

whose vertex set forms a clique is said to be a complete graph.

A path P in an undirected graph G = (V, E) is defined to be an alternating
sequence p = (v1, e1, v2, . . . , ek, vk+1) of nodes vi ∈ V and edges ei ∈ E,
where for each triple (vi, ei, vi+1) we have ei = (vi, vi+1). We use equivalently
the alternative notation P = (v1, v2, . . . , vk+1) and P = (e1, e2, . . . , ek) when
the meaning is clear. For directed graphs G = (V, R), edges are replaced by
arcs, and we require ri = (vi, vi+1) and ri ∈ R ∪ R−1 for each triple. If the
stronger condition ri ∈ R holds, the path is called directed.

For mixed graphs, we define a walk which traverses arbitrarily edges and di-
rected arcs. An oriented walk is a “directed version” of a walk in the sense that
for any two consecutive vertices vi and vi+1 we require that either xi is an
undirected edge [vi, vi+1] between vi and vi+1 or a directed arc (vi, vi+1) from
vi to vi+1.

If all nodes of the path or walk are pairwise different (without considering the
pair v1, vk+1), the path or walk is called simple. A path or walk with coincident
start and endpoint is closed. A closed and simple path or walk is a cycle. An
Eulerian cycle in a directed graph G = (V, R) is a directed cycle which contains
(traverses) every arc from R exactly once. The directed graph G is called Eu-
lerian if it contains an Eulerian cycle. A Hamiltonian path Hamiltonian cycle) is
a simple path (cycle) which touches every vertex in a directed (or undirected)
graph.

A mixed graph G = (V, E, R) is connected (strongly connected), if for every pair
of vertices u, v ∈ V with u 6= v there is an walk (oriented walk) from u to v

in G. A (strongly) connected subgraph of G which is maximal with respect to
set inclusion is called (strongly) connected component of G.

A.8 Theory of Computation 169

A tree is a connected graph that contains no cycle. A node in a tree is called
a leaf if its degree equals 1, and an inner node otherwise. A spanning tree of a
graph G is a tree which has the same vertex set as G.

A Steiner tree with respect to a subset K of the vertices of an undirected
graph G, is a tree which is a subgraph of G and whose vertex set includes K.
The vertices in K are called terminals.

A directed in-tree rooted at o ∈ V is a subgraph of a directed graph H = (V, A)

which is a tree and which has the property that for each v ∈ V it contains a
directed path from v to o.

Additional definitions to the basic ones presented above will be given in the
respective contexts.

A.8 Theory of Computation

Reference books: [GJ79, Pap94, GLS88, CLR90]

Model of Computation

The Turing machine [GJ79] is the classical model of computation that was used
to define the computational complexity of algorithms. However, for practical
purposes it is fairly more convenient to use a different model. In the random
access machine or RAM model [Pap94, MR95] we have a machine which con-
sists of an infinite array of registers, each capable of containing an arbitrarily
large integer, possibly negative. The machine is capable of performing the
following types of operations involving registers and main memory: input-
output operations, memory-register transfers, indirect addressing, arithmetic
operations and branching. The arithmetic operations permitted are addition,
subtraction, multiplication and division of numbers. Moreover, the RAM can
compare two numbers and evaluate the square root of a positive number.

There are two types of RAM models used in literature. In the log-cost RAM
the execution time of each instruction takes time proportional to the encoding
length, i.e. proportional to the logarithm of the size of its operands, whereas
in the unit-cost RAM each instruction can be accomplished in one time step. A
log-cost RAM is equivalent to the Turing machine under a polynomial time
simulation [Pap94]. In contrast, in general there is no polynomial simula-
tion for a unit-cost RAM, since in this model we can compute large integers
too quickly by using multiplication. However, if the encoding lengths of the
operands occurring during the run of an algorithm on a unit-cost RAM are
bounded by a polynomial in the encoding length of the input, a polynomial
time algorithm on the unit-cost RAM will transform into a polynomial time
algorithm on a Turing machine [GLS88, Pap94]. This argument remains valid
in the case of nondeterministic programs.

For convenience, we will use the general unit-cost RAM to analyze the run-
ning time of our algorithms. This does not change the essence of our results,
because the algorithms in which we are interested involve only operations on
numbers that are not significantly larger than those in the input.

170 Notation

Computational Complexity

Classical complexity theory expresses the running time of an algorithm in
terms of the “size” of the input, which is intended to measure the amount
of data necessary to describe an instance of a problem. The running time of an
algorithm on a specific input is defined to be the sum of times taken by each
instruction executed. The worst case time complexity or simply time complexity of
an algorithm is the function T(n) which is the maximum running time taken
over all inputs of size n (cf. [AHU74, GJ79, GLS88]).

An alphabet Σ is a nonempty set of characters. By Σ∗ we denote the set of all
strings over Σ including the empty word. We will assume that every prob-
lem Π has an (encoding independent) associated function length : DΠ → N,
which is polynomially related to the input lengths that would result from a
“reasonable encoding scheme”. Here, DΠ ⊆ Σ∗ is the set of instances of the
problem Π, expressed as words over the alphabet Σ. For a more formal treat-
ment of the input length and also of the notion of a “reasonable encoding
scheme” we refer to [GJ79].

A decision problem is a problem where each instance has only one of two out-
comes from the set {yes, no}. For a nondecreasing function f : N → N the de-
terministic time complexity class DTIME(f(n)) consists of the decision problems
for which there exists a deterministic Turing machine deciding the problem in
O(f(n)) time. Its nondeterministic counterpart NTIME(f(n)) is defined analo-
gously. The most important complexity classes with respect to this thesis are

P :=

∞
⋃

k=1

DTIME(nk) and NP :=

∞
⋃

k=1

NTIME(nk) .

Suppose we are given two decision problems Π and Π ′. A polynomial time
transformation is an algorithm t which, given an encoded instance I of Π, pro-
duces in polynomial time an encoded instance t(I) of Π ′ such that the follow-
ing holds: For every instance I of Π, the answer to Π is “yes” if and only if the
answer to the transformation t(I) (as an instance of Π ′) is “yes”. A decision
problem Π is called NP-complete if Π ∈ NP and every other decision problem
in NP can be transformed to Π in polynomial time.

To tackle also optimization problems rather than just decision problems it is
useful to extend the notion of a transformation between problems. Informally,
a polynomial time Turing reduction (or just Turing reduction) from a problem Π

to a problem Π ′ is an algorithm ALG, which solves Π by using a hypothetical
subroutine ALG’ for solving Π ′ such that if ALG’ were a polynomial time al-
gorithm for Π ′, then ALG would be a polynomial time algorithm for Π. More
precisely, a polynomial time Turing reduction from Π to Π ′ is a deterministic
polynomial time oracle Turing machine (with oracle Π ′) solving Π.

An optimization problem Π is called NP-hard (“at least as difficult as any prob-
lem in NP”), if there is an NP-complete decision problem Π ′ such that Π ′ can
be Turing reduced to Π. Results from complexity theory (see e.g. [GJ79]) show
that such an NP-hard optimization problem can not be solved in polynomial
time unless P = NP.

Symbols

∅ the empty set
Z the set of integers, that is, Z = {. . . , −2, −1, 0, 1, 2, . . . }

Z+ the set of nonnegative integers Z+ = {0, 1, 2, . . . }

N the set of natural numbers, N = Z+

Q the set of rational numbers
Q+ the set of nonnegative rational numbers
R the set of real numbers
R+ the set of nonnegative real numbers
2A the set of subsets of the set A

|A| the cardinality of the (multi-) set A

A ⊆ B A is a (not necessarily proper) subset of B

A ⊂ B A is a proper (multi-) subset of B

Y < U Y is a multiset over the ground set U

f(n) ∈ O(g(n)) f grows at most as fast as g (see page 166)
f(n) ∈ Ω(g(n)) f grows at least as fast as g (see page 166)
f(n) ∈ Θ(g(n)) f grows exactly as fast as g (see page 166)
f(n) ∈ o(g(n)) f grows more slowly than g (see page 166)
log

a
logarithm to the basis of a

log logarithm to the basis of 2

ln natural logarithm (basis e)
G = (V, E) undirected graph with vertex set V and edge set E

G = (V, A) directed graph with vertex set V and edge set E

δ(S) set of edges that have exactly one endpoint in S

x(S) x(S) =
∑

s∈S xs

Bibliography

[Ada96] S. Adams, The Dilbert principle, HarperCollins, New York, 1996.

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The design and analysis of computer algo-
rithms, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1974.

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Networks flows, Prentice Hall, Englewood
Cliffs, New Jersey, 1993.

[BDG88] J. L. Balcázar, J. Díaz, and J. Gabarró, Structural complexity I, EATCS monographs on
theoretical computer science, Springer, 1988.

[BDG90] J. L. Balcázar, J. Díaz, and J. Gabarró, Structural complexity II, EATCS monographs on
theoretical computer science, Springer, 1990.

[CC+98] W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver, Combinatorial op-
timization, Wiley Interscience Series in Discrete Mathematics and Optimization, John
Wiley & Sons, 1998.

[Chv83] V. Chvátal, Linear programming, W. H. Freeman and Company, 1983.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to algorithms, MIT Press,
1990.

[Coo71] S. A. Cook, The complexity of theorem-proving procedures, Proceedings of the 3rd Annual
ACM Symposium on the Theory of Computing, 1971, pp. 151–158.

[Fel68] W. Feller, An introduction to probability theory and its applications, 3 ed., vol. 1, John
Wiley & Sons, Inc., 1968.

[Fel71] W. Feller, An introduction to probability theory and its applications, 2 ed., vol. 2, John
Wiley & Sons, Inc., 1971.

[GJ79] M. R. Garey and D. S. Johnson, Computers and intractability (a guide to the theory of
NP-completeness), W.H. Freeman and Company, New York, 1979.

[GLS88] M. Grötschel, L. Lovász, and A. Schrijver, Geometric algorithms and combinatorial opti-
mization, Springer-Verlag, Berlin Heidelberg, 1988.

[Har72] F. Harary, Graph theory, Addison-Wesley Publishing Company, Inc., 1972.

[Kar72] R. M. Karp, Reducibility among combinatorial problems, Complexity of Computer Com-
putations (R. E. Miller and J. W. Thatcher, eds.), Plenum Press, New York, 1972,
pp. 85–103.

[KN05] S. O. Krumke and H. Noltemeier, Graphentheorische Konzepte und Algorithmen, B.G.
Teubner, 2005 (ngerman).

174 BIBLIOGRAPHY

[Kru04] S. O. Krumke, Integer programming, Lecture notes,http://www.mathematik.uni-kl.de/~krumke, 2004.

[Lue84] D. G. Luenberger, Linear and nonlinear programming, 2 ed., Addison-Wesley, 1984.

[MR95] R. Motwani and P. Raghavan, Randomized algorithms, Cambridge University Press,
1995.

[NW99] G. L. Nemhauser and L. A. Wolsey, Integer and combinatorial optimization, Wiley-
Interscience series in discrete mathematics and optimization, John Wiley & Sons,
1999.

[Pap94] C. M. Papadimitriou, Computational complexity, Addison-Wesley Publishing Com-
pany, Inc., Reading, Massachusetts, 1994.

[Rud76] W. Rudin, Principles of mathematical analysis, 3 ed., McGraw Hill, 1976.

[Sch86] A. Schrijver, Theory of linear and integer programming, John Wiley & Sons, 1986.

[Sch03] A. Schrijver, Combinatorial optimization: Polyhedra and efficiency, Springer, 2003.

[Wol98] L. A. Wolsey, Integer programming, Wiley-Interscience series in discrete mathematics
and optimization, John Wiley & Sons, 1998.

http://www.mathematik.uni-kl.de/~krumke

	Introduction
	Integer Linear Programs
	Notes of Caution
	Examples
	Literature
	Acknowledgements
	Basics
	Notation
	Convex Hulls
	Polyhedra and Formulations
	Linear Programming
	Agenda
	I Polyhedral Theory
	Polyhedra and Integer Programs
	Valid Inequalities and Faces of Polyhedra
	Dimension
	Extreme Points
	Facets
	Minkowski's Theorem
	Most IPs are Linear Programs
	Integrality of Polyhedra
	Equivalent Definitions of Integrality
	Matchings and Integral Polyhedra I
	Total Unimodularity
	Conditions for Total Unimodularity
	Applications of Unimodularity: Network Flows
	Matchings and Integral Polyhedra II
	Total Dual Integrality
	Submodularity and Matroids
	II Algorithms
	Notation
	Basics
	Sets and Multisets
	Analysis and Linear Algebra
	Growth of Functions
	Particular Functions
	Probability Theory
	Graph Theory
	Theory of Computation
	Symbols
	Bibliography

