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Abstract

Using proprietary data on all credit default swap (CDS) transactions in
the U.S. from 2010 to 2014, I show that a firm’s CDS spreads are driven
by capital fluctuations of that firm’s net protection sellers. Capital fluctu-
ations of sellers account for 10 percent of the time-series variation in spread
changes, a significant amount given that observable firm and macroeconomic
factors account for less than 16 percent of variation during this span. Sell-
ers of protection are also highly concentrated, with five sellers responsible
for nearly half of net selling. This concentration leads to market fragility —
losses at the largest sellers have an outsized impact on CDS pricing. These
findings suggest a high degree of short-run market segmentation, and sup-
port theories where capital market frictions play a first-order role in deter-
mining market prices.
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1 Introduction

A core assumption in neoclassical asset pricing theories is that capital can always
flow frictionlessly to investment opportunities. For many asset classes, however,
there are barriers to capital entry because investment requires specialized knowl-
edge and technology, or capital itself may be scarce due to agency problems.
For instance, financial institutions that participate in derivatives markets must
have access to a steady source of funding, employ traders that have the requi-
site knowledge to properly evaluate risk, and possess the trading technology to
execute and process trades.

Even within these financial institutions, internal capital market frictions can
play a considerable role in impeding the flow of investment resources in the short
run. Many financial institutions are active in a number of different asset classes,
but trading desks within these institutions often focus on a specific market or a
specific firm within a market. In turn, specialized trading desks are allocated a
pool of capital to finance trading activity, but this capital is not easily replenished
on short notice due to, for instance, agency problems within the firm.

In the presence of these capital market frictions, asset prices may behave quite
differently than what neoclassical theory would predict, at least at high frequen-
cies. Instead of price dynamics depending solely on exposure to fundamental
risk factors, price movements can also reflect changes in the capital position of a
small subset of trading desks in the market.

The spirit of this idea is at the heart of theories of limits to arbitrage (Shleifer
and Vishny (1997); Kyle and Xiong (2001)), slow moving capital (Duffie (2010)),
and financial intermediary-based asset pricing (He and Krishnamurthy (2013)).
A major challenge for these models though is on the empirical side. Identifying
the causal impact that limited capital has on asset price behavior requires de-
tailed knowledge of market participants and their portfolio positions. Moreover,
without granular data, it is difficult to know the degree to which markets are
segmented. In the absence of such data, much of the existing empirical work in
the field has linked high level measures of capital, such as financial intermediary
leverage, to asset price dynamics (Gabaix et al. (2007) and Adrian et al. (2014)).1

1Other examples include Froot and O’Connell (2008), Mitchell, Pedersen, and Pulvino (2007),
Coval and Stafford (2007), He, Kelly, and Manela (2015), and Chen, Joslin, and Ni (2014b).
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In this paper, I take steps to overcome these hurdles using a proprietary dataset
of credit default swap (CDS) positions that covers the entire U.S. market from
2010 to 2014.2 I begin by showing that net buyers and net sellers of CDS pro-
tection are both highly concentrated, with sellers twice as concentrated as buy-
ers. The top five sellers account for nearly half of all net selling — 50 percent
of net selling is in the hands of less than 0.1 percent of the total number of CDS
traders. Because limited capital is most likely to impact pricing in concentrated
asset classes that require specialization, CDS markets (and derivative markets in
general) are therefore an especially attractive venue to test how capital market
frictions impact pricing.

To properly identify the causal link between capital and price dynamics, I ex-
amine how the CDS spread of a firm responds when that firm’s default insurance
providers suffer capital losses on their positions taken on unrelated firms.3 I find
that changes in seller capital account for a substantial amount of CDS spread
movements. Capital fluctuations for protection sellers account for nearly 10 per-
cent of the variation in weekly CDS spread movements. To put this in perspec-
tive, observable firm-level and macroeconomic factors explain only 16 percent of
spread variation over the same time period.

Intuitively, capital losses raise the effective risk aversion of sellers, thereby in-
creasing the premium they require for bearing default risk. When a firm’s sellers
experience a one billion dollar capital loss (roughly 1.4 standard deviations), the
level of CDS spreads rises by 3.1 percent per week. This elasticity is economically
large, as the standard deviation of weekly spread movements is 6 percent for the
average firm in my sample. Moreover, these results suggest that CDS markets
are partially segmented at the firm level. Put differently, in the short run, one
can view the CDS market for a particular firm as a standalone market, thereby
implying a fairly high degree of capital market frictions. Consistent with a story

2In a CDS contract, the buyer of insurance pays a premium to a seller for protection against
corporate default. The buyer and seller in the swap are called “counterparties.” The insurance
contract covers the default of an underlying firm, or “reference entity.”

3As an example of my strategy, I examine how seller losses on positions taken outside of the
auto industry impact changes in the CDS spread for Ford Motor Company. Importantly, I also
control for a large number of reference entity characteristics and macroeconomic variables that
may drive movements in CDS spreads. In my most stringent tests, I also use an industry-by-time
fixed effect to compare, for instance, the spread response of Ford relative to GM when Ford’s
sellers experience larger losses (from outside the auto industry) than GM’s sellers.
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of slow moving capital, I also find that the impact of seller losses on CDS spreads
dissipates fairly quickly and is reversed after about 8 weeks.

Next, I show that institutional-level measures of capital constraints — namely
financial leverage — have negligible explanatory power for high-frequency CDS
spread dynamics. Instead, it is the specialized capital of the CDS desks at the
largest sellers that is important for explaining weekly changes in CDS spreads.
This finding supports the view that internal capital market frictions within finan-
cial institutions play a key role in preventing capital from flowing into the market
at shorter horizons.

In a segmented market like CDS, it is also natural to think that price dynamics
might depend on the types of active financial institutions in the market at a given
point in time. Indeed, a notable trend in the data is that the since the 2008 finan-
cial crisis, hedge funds and asset managers have steadily replaced dealers (e.g.
financial intermediaries) as the largest net sellers of CDS protection. Motivated
by this trend, I also test whether capital losses impact prices differently depend-
ing on whether dealers or hedge funds have a large market share. My results
suggest that capital market frictions are larger for hedge funds than dealers, as
evidenced by the fact that losses at hedge funds have a stronger impact on prices
than do losses at dealers. This is an important result given that friction-based
asset pricing models that utilize a representative investor would not predict the
heterogeneity of market participants to play a first-order role in pricing.

Another aspect of the market structure that I examine is the extent to which
the concentration of net sellers generates fragility, a particularly relevant question
given the high level of concentration in CDS markets. High concentration creates
fragility because an idiosyncratic capital shock to a large seller can have a sizable
impact on the total amount of risk bearing capital in the market. In line with this
thinking, I show that capital losses at sellers with a large market share have more
of a pricing impact than losses at sellers with a small market share. This find-
ing also implies that the distribution of risk bearing capital within a segmented
market is an important consideration for pricing.

One limitation of my analysis is that I do not observe market players’ holding
of underlying bonds. This is primarily an issue for net buyers of credit protec-
tion, who typically use CDS to hedge an underlying corporate bond portfolio.
Thus, losses at the CDS desk for net buyers may be offset by gains in their cor-
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porate bond portfolio. This is less likely to be the case for the CDS desks at large
net sellers because directly hedging a sold CDS position requires costly shorting
of the underlying bond. Furthermore, net sellers are much more concentrated
than buyers, so their risk bearing capacity should have a greater influence on
CDS pricing. As expected, I find little evidence of a relationship between credit
spreads and buyer capital movements.

Finally, to reinforce the causal link between capital and pricing, I use the 2011
Japanese tsunami to study how an exogenous shock to seller risk bearing capac-
ity affected CDS spreads on U.S. firms. To trace out the impact of the tsunami, I
exploit the fact that U.S. counterparties had large and heterogenous CDS expo-
sures to Japanese firms prior to the tsunami. I then compare U.S. firms whose
sellers had large Japanese CDS exposures to U.S. firms whose sellers had low
Japanese exposure. Firms whose primary protection sellers were highly exposed
to Japan saw their CDS spreads rise 2.5 percent in the week after the tsunami,
relative to reference entities whose main sellers had very low exposure to Japan.
In addition, I find no evidence of buyers transmitting the shock of the tsunami to
U.S. reference entities. To emphasize the importance of concentrated positions, I
make use of the fact that one counterparty had a particularly outsized exposure
to Japanese firms. I then compare U.S. firms based only on this counterparty’s
share of their selling (or buying). I show that U.S. firms where this counterparty
had a larger share of selling also experienced larger spread increases after the
tsunami struck.

The remainder of the paper proceeds as follows. Section 2 gives a brief de-
scription of the data and methods used in this paper, with details found in a
separate Data Appendix. Section 3 presents the main stylized facts that form the
basis of the rest of the paper. Section 4 establishes how seller capital losses impact
CDS pricing, the degree of segmentation in the market, and the role of internal
capital market frictions in preventing capital from flowing into the CDS market.
Section 5 demonstrates how institution type and concentration augment the link
between capital and pricing. Section 6 provides more empirical support of my
main results by using the 2011 Japanese tsunami as an exogenous shock to the
risk bearing capacity of CDS market participants. Finally, Section 7 concludes.
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2 Data Description

The primary data I work with comes from the DTCC, who provides trade pro-
cessing services for every major dealer in the credit default swap market. I have
access to two complementary subsets of the DTCC’s database: transactions and
positions. Transactions represent flows in CDS, and positions represent stocks. In
practice, computing positions from transactions is quite complicated and is done
using the DTCC’s own internal algorithms.

For both transactions and positions, I observe full information on the coun-
terparties in the trade, the pricing terms, the swap type, the notional amount, the
initiation date, and so forth. Within the DTCC’s trade repository data, I am privy
to any transaction or position that meets one of two conditions: (i) the underly-
ing reference entity is a U.S. firm or (ii) at least one of the counterparties in the
swap is registered in the U.S.. In addition, my cut of the DTCC data includes all
North American index CDS transactions and positions (i.e. any where the ref-
erence entity is in the “CDX.NA.” family). Taken together, my data effectively
covers the entire CDS market for all U.S. firms. The data begins in 2010 and is
updated continuously on a weekly basis. I truncate my analysis in June 2014.

In addition, I merge my transaction and position data with Markit and Moody’s
expected default frequency (EDF) database. Markit reports a daily CDS spread
term structure for a large number of reference entities. Markit CDS spreads rep-
resent a composite spread that is computed using quotes and transaction infor-
mation from 30 major market participants. Moody’s EDF is a standard database
of expected firm default probabilities that is derived from structural models of
credit risk (Merton (1974)).

The DTCC dataset contains over 40 million index positions and 600 million
single name positions. To be precise as possible, I document each step of my
data processing in a separate Data Appendix. When necessary, I also provide
additional detail about the underlying data in the empirical analyses contained
in the main text.

The Treatment of Index Swaps Index swaps constitute nearly half the gross
notional of the entire CDS market, so accounting for exposures via index swaps
is crucial for understanding true credit risk exposures. CDS index products con-
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tain a basket of single name swaps. For example, suppose a trader sells $100 of
notional on an index swap that contains 100 different single names. Like a single
name swap, if one of the names defaults, the trader must pay out up to $1 in
notional to the buyer of the index swap, depending on the recovery rate of the
underlying bond. After this payment, there are 99 names in the index remain-
ing. Writing $100 in protection via an index is therefore equivalent to writing
100 different single name swaps, each worth $1 in notional. When considering
the amount of credit risk exposure to a single reference entity, I am careful to ac-
count for exposures via single name swaps and index swaps. Full details of this
procedure are contained in the Data Appendix, Section 1.3.

3 How Is Credit Risk Shared in the CDS Market?

In this section, I document four facts that form the basis of main empirical analy-
ses: (i) the U.S. CDS market is large in terms of net notional credit risk transferred,
with a conservative lower bound of around $1 trillion; (ii) net sellers and buyers
of CDS protection are very concentrated, with sellers more concentrated than
buyers; (iii) the identities of the largest buyers and sellers is persistent through
time; and (iv) dealers were the primary net sellers of protection until 2012, after
which hedge funds have become the largest net sellers.

To establish these facts I will repeatedly use the following notation. r defines
the underlying firm on which a credit default swap is written. c represents a
counterparty (e.g. each transaction has two counterparties, the buyer and seller).4

NS(c, r, t) denotes the net amount of protection sold by c on reference entity r as
of date t. Positive values of NS indicate a net selling position and negative values
indicate a net buying position. For instance, if trader c sells $100 of protection
on reference entity r in one trade, and buys $25 protection on r in a different
trade, then NS(c, r, t) = $75. Lastly, Ct is the set of all counterparties with open
positions on date t, and Rt is the set of reference entities traded in the CDS market
as of date t.

4I define c at the financial institution level, which inherently assumes that CDS trading within
an institution is to some extent coordinated. When a majority of CDS trading at an institution is
done at through one desk, as it often is, then this is a reasonable assumption.
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3.1 The Size of the CDS Market

To quantify the size of the CDS market, I consider two alternative measures. The
first measure is the gross notional size of the market, which is just the sum of the
notional amount of all outstanding positions. Gross notional is thus a measure
of volume, but importantly, it does not speak to the net amount of credit risk
transfer for a given reference entity or for the entire market.

The second measure of market size that I use is the net notional outstanding
of all positions. I define the net notional amount of credit risk outstanding for a
given reference entity as:

NO(r, t) :=

X

c2Ct

max (NS(c, r, t), 0) (1)

NO(r, t) is analogous to the face value of debt outstanding in bond markets — it
captures the net amount of protection sold (or equivalently bought) on a particu-
lar reference entity. I then measure the total net outstanding for the whole market
by summing NO(r, t) over all reference entities:

NO(t) :=

X

r2Rt

NO(r, t) (2)

Panels A and B in Figure 1 plot the gross notional outstanding and the net no-
tional outstanding of the entire U.S. CDS market through time. Both measures
provide a conservative lower bound on the size of the U.S. market because I only
include reference entities that I can definitively classify as being based in the
United States. The Data Appendix contains details of this classification proce-
dure, and the Online Appendix provides less conservative bounds for the net
outstanding in the market.

According to both measures, the size of the CDS market has steadily declined
since the beginning of 2010. In January 2010, the gross notional size of the U.S.
market was roughly $17 trillion, but by May 2014 had fallen nearly 24 percent to
$13 trillion.5 Similarly, the net notional outstanding of the CDS market declined

5These statistics roughly accord with aggregate data provided by the Bank for International
Settlements (BIS): http://www.bis.org/publ/qtrpdf/r_qt1512_charts.pdf. The gross notional
that I report is slightly less than the BIS’s estimate, which is not surprising since I focus only
on the U.S. CDS market. The net notional outstanding is new to this paper, given that one must

http://www.bis.org/publ/qtrpdf/r_qt1512_charts.pdf
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about 38 percent over this same time period. The average net notional outstand-
ing in the market is about $1 trillion for the entire sample.

Despite the downward trend in the size of the CDS market, the overall amount
of notional credit risk transferred is still large. As a rough comparison of mag-
nitude, the face value of debt outstanding in U.S. corporate bond markets is ap-
proximately $9 trillion. Conservatively speaking, the size of the CDS market is
thus about one-ninth of the size of the corporate bond market.

3.2 Concentration of Net Buyers and Sellers of Protection

3.2.1 Notional Concentration

In this subsection, I develop a simple measure of concentration for the CDS mar-
ket. In the Online Appendix, I explore a number of complimentary measures that
all deliver a similar set of implications. To quantify the concentration of net buy-
ers and sellers of a given reference entity r, I use the following measure of market
share for each counterparty and reference entity:

MS(c, r, t) :=

NS(c, r, t)

NO(r, t)
(3)

MS(c, r, t) measures counterparty c’s share of net selling in reference entity r.
Positive market shares indicate that c is a net seller of r, and negative market
shares indicate that c is a net buyer. For instance, if MS(c, r, t) = 0.2, then c is
responsible for 20% of the total net notional protection sold on r.

Next, to compute an aggregate market share measure for each counterparty, I
take a size-weighted average across all reference entities:

MS(c, t) : =

X

r2Rt

!rt ⇥ MS(c, r, t)

!rt := NO(r, t)/
X

r2Rt

NO(c, r, t) (4)

where I use a size-weighted average instead of an equal-weighted average to
offset the influence of extremely small reference entities that typically have only
one net buyer and one net seller.

net single name exposures against index exposures in order to compute this statistic.
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MS(c, t) is a parsimonious measure of the importance of c as a seller in the
aggregate economy. If c is a seller in the largest reference entities, then MS(c, t)

will be large and positive. Similarly, if c is a buyer in the largest reference entities,
then MS(c, t) will be very negative. Notice, though, if a counterparty offsets net
positions across reference entities (i.e. sells in one name, and buys in another),
then its aggregate share will tend towards zero.

In turn, I define the top five aggregate sellers at each point in time as the
traders with the largest MS(c, t). The top five buyers are the five counterparties
with the most negative MS(c, t). Panel A of Figure 2 plots the total share of the
top five sellers and buyers, respectively, through time. For illustration, I have
converted the market share of buyers to a positive number because, again, my
definition assigns negative shares to net buyers.

Net sellers of CDS are highly concentrated. According to my definition of
market share, the top five sellers account for 50 percent of all protection sold. Put
differently, because there are about 1700 counterparties in the market, 50 percent
of all selling is in the hands of less than 0.1 percent of potential counterparties.
Buyers are also concentrated, albeit only half as concentrated as sellers. The top
five buyers are responsible for roughly 20-25 percent of net buying in the aggre-
gate. In addition, the share of the top five sellers and top five buyers is relatively
constant throughout my sample period.

The identities of the top five buyers and sellers are also persistent through
time. Panel B of Figure 2 plots, for both buyers and sellers, the count of top five
counterparties that remains the same from time t�1 to t. For example, in week t, I
count the number of top five sellers who were also in the top five in the previous
week. On average, 94 percent of the top five buyers and 96 percent of the top
five sellers remain constant from week to week. Thus, not only are CDS markets
highly concentrated with a handful of buyers and sellers, but this organizational
feature of the market is also fairly static through time.

3.2.2 Market Beta Concentration

An alternative way to quantify concentration is in terms of risk exposure. In
turn, a natural risk factor to consider is exposure to market risk, as measured by
a traditional CAPM beta. More specifically, for each counterparty c, I compute
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the dollar value of their CAPM beta via the following time-series regression:

�Vct = a + �cRetMkt
t

where �Vct is the dollar change in the market value of c’s portfolio from week
t�1 to t, and RetMkt

t is the excess return of the CRSP value-weighted stock market
index over the same horizon. I provide additional details of how I compute �Vct

for each counterparty in Section 4. There are of course many other potential
risk factors that a counterparty might be exposed to, but I focus exposure to the
aggregate market as a first pass.

If �c > 0, it means that counterparty c is in some sense selling insurance on
the market — if the market crashes, then these counterparties will incur losses. I
denote this group of counterparties as “sellers”. Conversely, if �c < 0, it means
that counterparty c is buying protection against a market downturn, and I denote
this group of counterparties as “buyers”. To quantify the concentration of sellers,
I then compute a weight ws

ct = �c/
P

i2sellers �i for each counterparty. The weights
for buyers, wb

ct, are computed in an analogous fashion.
Based on this simple measure, the concentration of sellers is striking. The top

five sellers by ws
ct account for nearly 75 percent of all market risk exposure. The

concentration of buyers is also high, though not nearly as large as the concen-
tration of sellers. According to wb

ct, the top five buyers account for roughly 23
percent of protection bought against the aggregate stock market. Both of these
findings echo the level of concentration found when looking at net notional expo-
sures, though sellers are certainly more concentrated by this market-risk-based
metric.

3.3 Who Are the Big Players in the Market?

Given the size and concentration of the CDS market, it is natural to ask: who
are the major buyers and sellers of credit protection? I answer this question by
assigning every counterparty in my dataset to one of the types listed in Table
3 of the Online Appendix. Examples of types are commercial banks, insurance
companies, dealers, etc.

Next, for each reference entity and date, I compute the proportion of net buy-
ing and selling done by each type according to the measure in Section 3.2.1. For
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instance, I compute what proportion of GE’s net outstanding is sold by insurance
companies. The computation is analogous to calculating the market share of an
individual counterparty in a reference entity, except I do so for a counterparty
type. Finally, I create an aggregate index of the proportion bought and sold by
each type y, which I denote by PB(y, t) and P S(y, t), respectively. Each aggregate
index is simply type y’s size-weighted average market share across all reference
entities. More details of these computations are also contained in the Online Ap-
pendix.

Panel A and Panel B of Figure 3 plot PB(y, t) and P S(y, t), respectively, for
dealers and hedge funds/asset managers (HFAMs) through time. I focus on
these two counterparty types because they are by far the largest two types for
both buyers and sellers. As seen in Panel A of Figure 3, dealers have consistently
purchased approximately 55 percent of protection, with the most of the remain-
ing buying going to HFAMs.

The aggregate proportion of selling by counterparty types appears in Panel
B of Figure 3. In contrast to buyers, the composition of sellers has dramatically
changed since 2010. At the beginning of the sample, dealers accounted for 80
percent of all protection sold in U.S. CDS markets, with this share heavily skewed
towards less than five dealers (approximately 50 percent of aggregate selling).
Nonetheless, the total proportion sold by dealers has declined by almost half,
with dealers accounting for almost 40 percent of total selling by the end of the
sample. The 40 percent can be further decomposed as follows: less than five
dealers account for 26 percent of all total selling, with other dealers accounting
for the remaining 14 percent. Instead, HFAMs have grown into a much larger
role in providing default insurance for the U.S. market. More specifically, less
than five HFAMs account for nearly 30 percent of all net selling of protection as
of the first quarter of 2014.

Why Are Markets So Concentrated? Intuitively, concentration develops nat-
urally in any market with high fixed entry costs. CDS markets are costly to
enter for a few reasons. First, trading CDS requires back-office processing of
trades and risk management to manage existing positions. To this point, many
smaller hedge funds will pay their dealer an additional fee in return for the
dealer handling the oversight of trades. Moreover, establishing a CDS desk re-
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quires substantial information acquisition (Merton (1987)), not only in terms of
hiring traders and managers with expertise in credit risk, but also specifically in
credit derivatives. Second, CDS trading is similar to banking in the sense that
relationships are “sticky” (Chodorow-Reich (2014)). For example, in the Online
Appendix I show that the average non-dealer trades with only three counterpar-
ties. In lieu of the costs of building new trading relationships, it is no surprise
that trading activity in all over-the-counter markets is dominated by a handful
of dealers who can use their existing relationships from many lines of business.
Third, operating a CDS desk is costly from a funding standpoint. Since the 2007-
09 crisis, it has been common practice for CDS positions to be marked-to-market
every day. Consequently, CDS desks need a stable source of funding in order to
survive daily fluctuations in mark-to-market values. There are large economies
to scale in terms of funding, and as a result, large dealers and hedge funds natu-
rally emerge as key players in the market.

Of course, there are a multitude of additional reasons why CDS markets are
concentrated. The purpose of this paper is not to answer this question, but rather
to understand how limited capital in the market ultimately affects pricing in CDS.
Nonetheless, my findings do shed some light on the question of concentration.
For instance, because I find that HFAMs have become a dominant seller of CDS
protection, it is unlikely that relationships play a first order role in concentration;
if relationships were primarily driving concentration, dealers would always be
the largest net buyers and sellers. On the other hand, the fact that limited capital
does seem to impact prices suggests that funding frictions may be important for
explaining the concentration of the CDS market. While concentration is certainly
an interesting and important topic, further inquiry is outside of the scope of this
paper.

4 The Impact of Seller Capital on CDS Spreads

As just discussed, CDS markets — and derivative markets in general — require
stable funding, specific trading technology, and expertise. For these reasons, it
is also natural to expect the capital of CDS market participants to play a first-
order role in CDS pricing. The argument is a straightforward application of asset
pricing theories with capital market frictions (e.g. Shleifer and Vishny (1997)
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and Duffie and Strulovici (2012)). These theories predict that when there are
impediments to investment capital flowing into an asset market, shocks to capital
of a small subset of agents play an important role in asset price dynamics. In this
section, I provide direct empirical evidence of this phenomenon in the context of
CDS markets.

Measuring Capital

I define the risk bearing capital of a given counterparty as the capital available to
CDS traders for the purposes of initiating and maintaining new investments. At
the trading desk, capital is required to initiate new trades because of initial mar-
gin payments and upfront payments that make the swap NPV zero. Maintain-
ing an existing trade requires capital to make payments on net bought positions,
variation margin payments, and in the case of net sellers, potential default pay-
ments. I measure changes in risk bearing capital using changes in the mark-to-
market value of each counterparty’s CDS positions, which captures CDS profits
and losses (P&L).

I focus on the risk bearing capital of CDS traders, as opposed to the entire
trading entity, for a few important reasons. From an institutional perspective, it
is reasonable to view CDS trader-specific capital as the correct state variable for
pricing. Trading desks at large dealers and hedge funds are subject to risk limits
(e.g. value-at-risk), which may tighten with prolonged losses. Poor portfolio
performance also means CDS traders have less capital to make variation margin
payments on mark-to-market losses.6

This argument relies heavily on the existence of internal capital market fric-
tions, at least in the short run. For example, if the CDS desk at a hedge fund
suffers significant losses, it is not easy (or even optimal) to transfer capital from
another desk to the CDS desk. Mitchell, Pedersen, and Pulvino (2007) provide
evidence consistent with this story by showing that information barriers within
a firm can lead to capital constraints for specific trading desks who have experi-
enced mark-to-market losses. In Section 4.2, I show that a similar mechanism is

6Another potential channel for losses to affect pricing follows from Froot, Arabadjis, Cates,
and Lawrence (2011), who demonstrate that loss aversion for institutional investors affects future
trading. Froot and O’Connell (2008) also develop a model where costly external financing of
intermediaries leads to above-fair pricing of catastrophe insurance.
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at play in CDS markets.
It is also important to recognize that for net protection buyers, the capital of

the CDS desk alone is not likely to capture the true dynamics of risk bearing
capital. This is because net buyers often purchase CDS protection to hedge un-
derlying corporate bond positions. However, the wealth of the CDS desk should
capture the risk bearing capital of large protection sellers because it is unlikely
their positions are hedged with other securities. Ultimately, this issue can be re-
solved empirically. If the P&L of the CDS trading desk tracks changes in risk
bearing capital well, then P&L should also help explain price movements. Con-
sistent with this reasoning, I find that seller capital, not buyer capital, impacts
prices.

The final reason I use P&L as a measure of risk bearing capital is practical.
Recent empirical research on limited intermediary risk bearing capacity has used
leverage as a measure of risk bearing capacity (e.g. Adrian and Boyarchenko
(2013)). The theoretical underpinnings of this work suggest leverage is a sensible
metric because it is a proxy for the wealth available for bearing risk. In some
sense, I have a more direct measure of this wealth because I have proprietary
data on actual positional holdings, which means I can compute the dollar value of
each counterparty’s CDS portfolio. Moreover, I find that hedge funds are a large
player in CDS, but leverage measures for these entities are either non-existent or
poorly measured.

Computing the mark-to-market value of each counterparty’s CDS portfolio is
itself a computationally challenging task. It requires me to mark over 600 million
CDS positions to market for each day in my sample period. To keep the problem
manageable, I choose the simplest possible methodology, with the details found
in Section 3 of the Data Appendix.

4.1 Capital Fluctuations and CDS Pricing

In any theory of slow moving capital, it is critical to define the level of segmen-
tation. Segmentation may occur at an asset class level, like equities versus fixed
income, or could be more granular, such as within an industry. Most models then
imply that asset prices within a segment are driven by the total capital of market
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participants in that same segment.7

With this in mind, I examine how CDS spreads for a particular reference entity
respond to changes in the capital of net buyers and sellers of that same reference
entity (e.g. what happens to Ford’s CDS spreads when Ford’s net buyers and
sellers lose capital). Thus, my empirical approach implicitly tests whether CDS
markets are segmented at the reference entity level, at least in the short run.

A major hurdle in explaining movements of CDS spreads with changes in
capital is reverse causality. That is, are capital fluctuations (i.e. mark-to-market
changes) causing CDS spread movements or vice versa? One way to circumvent
this issue is by testing whether losses in one part of a sellers’ portfolio influ-
ence pricing of other, unrelated portions of their portfolio. My strategy is similar
in spirit to Froot and O’Connell (2008), who show that losses to a large seller
of catastrophe reinsurance has a spillover effect onto the pricing of other unre-
lated insurance contracts. Their identification technique examines, for example,
whether a hurricane in Florida causes prices to rise for freeze damage insurance
in New England.

The following regression, run at a weekly frequency, implements a similar
concept in the context of CDS markets:

� log (CDSrt) = ar + �
0

1

�Zrt + �
0

2

�Xt + ⇣sOCF s
rt + ⇣bOCF b

rt + "rt (5)

where CDSrt is the 5-year CDS spread of reference entity r at time t. The most im-
portant variables in regression (5) are the OCF measures, which stand for “out-
side capital fluctuations”.8 For example, OCF s

rt captures the total capital fluctua-
tions of r’s net sellers, with the caveat that these fluctuations are due to changes
in the market value of positions on reference entities outside of r’s industry. Formally,
OCF s

rt is computed as:
OCF s

rt =

X

c2Sr,t�1

�Vc,�r,t

where Vc,�r,t is the mark-to-market value of counterparty c’s portfolio for all ref-
7If markets are not fully segmented, then this argument holds over a certain time horizon.

Over longer time horizons, capital will slowly move between partially segmented markets. See
Duffie (2010) for a more detailed discussion.

8Because I run the regression in log-differences, I interpret the OCF variables as impacting
the risk premium embedded in the spread, as opposed to actual default risk. See Appendix A.1
for a more detailed discussion.
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erence entities outside of the same industry as r and Sr,t�1

is the set of net sellers
of protection on r at time t � 1. OCF b

rt is the same variable, but for r’s net buyers
of protection.

I obtain CDS spreads from the data vendor Markit, and defer further details
of the underlying data to the Data Appendix. ar is a reference entity fixed effect
that absorbs any time invariant firm characteristics, though my results are nearly
identical if I do not include a reference entity fixed effect. Zrt is a vector con-
taining the log of Moody’s 5-year expected default frequency (EDF) and Markit’s
expected loss-given-default (LGD); I choose these firm-level controls based on
reduced form models of credit risk. In some versions of regression (5), Zrt also
includes the log-CDS spread implied by options markets and the at-the-money
implied volatility of options. To compute an option-implied CDS spread for refer-
ence entity r, I translate the price of out-of-the-money put options to CDS spreads
using the methodology of Carr and Wu (2011). The details of this procedure are
contained in Appendix A.2. The important advantage of using firm controls that
derive from options markets is they control for a large number of unobservable
firm-level and macroeconomic factors that may drive credit spreads.

Xt is a set of observable macroeconomic variables that may also cause CDS
spread movements. I choose these controls based on theoretical models of credit
risk and previous research on credit spread variation (e.g. e.g. Collin-Dufresne
et al. (2001)). These variables are the log earning-to-price ratio for the S&P 500,
VIX, TED, CFNAI, 10 year Treasury yield, 10-year-minus-2-year Treasury yield,
and the CBOE Option Skew index. After first differencing these aforementioned
controls, I also include the excess market return of the CRSP value-weighted in-
dex.9 In my most stringent tests, I replace the vector Xt with an industry-by-time
fixed effect to ensure that the point estimates in the regression are not biased by
any unobservable industry factors at a given point in time. For each reference
entity, I use the definition of industry as provided by Markit. Table 1 contains the
results of regression (5).

Column (1) of Table 1 provides a benchmark in terms of how much CDS
spread variation is explained by traditional firm and macroeconomic risk fac-
tors. The R2 from column (1) indicates traditional credit spread determinants

9I include S&P 500 returns in order to account for higher frequency (weekly) equity move-
ments. The earnings-to-price ratio is monthly and taken from Robert Shiller’s website.
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only capture 15.7 percent of spread variation on their own. The relatively low R2

in the regression echoes previous research (e.g. Collin-Dufresne et al. (2001)) on
the determinants of credit spread changes.

Column (2) adds the outside capital variables to the baseline regression with
firm and macroeconomic controls. As is clear from the point estimates and their
standard errors, outside capital fluctuations for sellers are an important determi-
nant of spread changes.10 A $1 billion capital loss to net sellers on positions from
outside of r’s industry results in an increase of 3.1 percent in the level of r’s CDS
spread. To put this in perspective, the standard deviation of spread movements
across all firms in my sample is about 6 percent and the standard deviation of
OCF s

rt is $730 million. In many respects, this is a lower bound on the effect of
seller capital losses on prices because I exclude losses coming from positions on
firms in r’s industry for the purpose of identification.

Column (2) also indicates that capital fluctuations help explain an additional
9.5 percent of spread variation, which is large given that observable macroeco-
nomic and firm fundamentals explain only 15.7 percent on their own. Another
way to view the incremental R2 in column (3) versus column (1) is that capital
fluctuations for sellers of CDS protection can explain about one-tenth of the vari-
ation in CDS spreads. Because CDS spreads are anchored to corporate credit risk,
these results are also in line with previous studies that link financial-intermediary
activity to corporate bond pricing (e.g. Green, Hollifield, and Schurhoff (2007),
Newman and Rierson (2004)).11

In most asset pricing theories with capital market frictions, risk premiums
interact non-linearly with capital. To test this in the data, the specification in
Column (3) of Table 1 interacts outside capital fluctuations for sellers with three
different dummy variables that indicate whether OCF s

rt is in a given tercile. This
specification allows for capital to differentially impact spreads based on loss size.

10I double cluster all standard errors by time and by top two sellers (alphabetized). Clustering
by top sellers accounts for the fact that sellers may be common across reference entities, thereby
generating correlation in the OCF s

rt measures. My results are robust to the choice of clustering
by two sellers (e.g. versus top five sellers). The conclusions are also unchanged when clustering
by reference entity, which makes sense given spread changes are not that autocorrelated.

11In the Online Appendix, I provide some evidence that movements in CDS spreads translate
to movements in actual bond yields, as opposed to just changes in the CDS-bond basis (though
this is likely to depend on my post-crisis sample). This evidence is consistent with the idea that a
large number of bond market investors are long-term holders of the bond, whereas CDS market
participants are more active and therefore serve as the marginal pricer of credit risk.
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As is clear from the point estimates, there is a highly non-linear relationship be-
tween risk premiums and capital. Unsurprisingly, large losses for protection sell-
ers have the biggest impact on spread changes. It is also important to recognize
markets have been relatively calm during the sample period of 2010 to 2014. One
can imagine that during a period of extreme market stress, like those seen during
the financial crisis, the impact of seller losses on CDS pricing would be further
amplified.

Columns (4) and (5) represent my most fundamental evidence that seller capi-
tal losses are an key determinant of CDS spread movements. Column (4) removes
macroeconomic controls from the regression and replaces them with an industry-
by-time fixed effect to absorb any unobservable characteristics common to the
cross section of firms within each industry at each point in time. Importantly,
the point estimate on OCF s

rt remains relatively unchanged in magnitude and sta-
tistically significant. Because one might still be concerned that I am omitting
important firm-level characteristics, column (5) adds both option-implied CDS
spreads and at-the-money volatilities to the regression. The sample size in this
specification is cut in half because of an imperfect match between CDS data and
options prices. Still, the key message is that, even after incorporating informa-
tion on the firm implied by options markets, the effect of seller losses on spread
movements is statistically significant and about 2.3 to 2.5 percent in magnitude.
In contrast, the impact of buyer capital on CDS spread dynamics appears to be
negligible.

The fixed-effects specification in columns (4) and (5) also speak to the degree
of segmentation in the CDS market. To see why, suppose that CDS markets were
segmented across industries. This might occur because market participants spe-
cialize in certain industries, making it difficult for capital to move across indus-
tries on short notice. In this case, the relevant state variable for pricing the CDS of
a given firm would be the capital of all market participants in that firm’s indus-
try. In turn, including an industry-by-time fixed effect in the regression would
account for any industry-wide movements in capital, and should therefore drive
out the explanatory power of the OCF variables for pricing. Thus, the fact that
capital changes for sellers of a specific reference entity explain spread movements
in the presence of industry-by-time fixed effects suggests that CDS markets are
at least partially segmented at the reference entity level.
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Based on these results, what would one have to believe to invalidate identifi-
cation in this setup? Consider the example of Ford. The exclusion restriction for
the regression would be violated if OCF s

rt captures some factor that drives Ford’s
CDS spread, but in a way that is: (i) not common to the auto-industry, as ruled
out by the industry-by-time fixed effect; (ii) not better captured by Ford’s own
equity price (an input to the EDF) or; (iii) Ford’s own option prices. In my view,
this alternative seems implausible.12

The final thing to note from this exercise is that, relative to seller capital, buyer
capital appears to play much less of a role in explaining weekly CDS spread
movements. In almost all specifications, the coefficient on buyer capital is sta-
tistically indistinguishable from zero and generally very small in economic mag-
nitude. The sign of the coefficient on buyer capital is positive, indicating that
gains at the CDS desks of buyers lead to price increases. This finding is con-
sistent with the notion that buyers of protection largely use CDS to hedge an
underlying corporate bond position, but also do not fully hedge. Hence, gains at
the CDS desks of large buyers are more than offset by losses on their bond port-
folio, and in turn, lead to an increased demand for CDS protection. However,
like in the market for catastrophe insurance (Froot and O’Connell (1999)), these
demand shocks are less important than supply shocks for understanding CDS
price movements over this time period and at a weekly frequency.

4.2 Internal Capital Markets

As previously discussed, my use of CDS trader capital inherently assumes that
the trading organizations in the CDS market (e.g. hedge funds or dealers) face
internal capital constraints, at least in the short run. In the absence of internal
capital market frictions, losses at the CDS desk of a large dealer or hedge fund
could be replenished by instantaneously transferring capital from other segments
of the firm that are not capital constrained. In turn, the overall capital position of
the trading firm would be the relevant state variable for pricing, as opposed to
the capital of CDS traders in particular.

To determine the importance of CDS desk capital versus overall firm capital,
12Implicit in this argument is that changes in Ford’s CDS spread do not drive OCF s

rt, which is
reasonable given: (i) that OCF s

rt is constructed using positions outside of the auto-industry and
(ii) that the total position in Ford is extremely small relative to the entire CDS portfolio.
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I include the change in the average market leverage ratio (book debt to mar-
ket equity) of both sellers and buyers in the baseline regression (5). Increased
market leverage is meant to proxy for increased capital constraints for the entire
trading organization.13 Columns (6) and (7) of Table 1 demonstrate the impor-
tance of internal capital market frictions within trading organizations. In column
(6), I exclude my measure of CDS-trader capital and replace it with changes in
buyer and seller leverage. At a weekly frequency, changes in market leverage do
have statistically significant explanatory power for changes in CDS spreads, but
the magnitude of the effect is fairly small. The standard deviation of leverage
changes for net sellers is around 3, indicating that a one standard deviation in-
crease in seller leverage only raises CDS spreads by about 0.27 percent. In column
(7), I include both my OCF measure and changes in leverage. In this case, the
point estimates on seller leverage shrinks by a factor of two. More importantly,
the inclusion of leverage does not alter the response of CDS spreads to changes
in seller capital, as measured by OCF s

rt. The last thing to note from column (7)
is the interaction term between changes in seller leverage and the CDS-desk spe-
cific capital. Though imprecisely measured, the negative sign of the interaction
term accords with intuition — losses at the CDS desks of sellers have a larger
impact on spreads when they coincide with firm-wide capital constraints also
tightening.

To summarize, there are two main takeaways from Table 1. First, CDS mar-
kets are partially segmented at the reference entity level, so in the short run, one
can view the CDS market for a particular reference entity as its own standalone
market. In turn, each reference entity’s CDS spreads are driven by the capital
of its net sellers. Second, the pertinent measure of capital for net sellers is the
capital of the CDS desk, as opposed to just the overall capital of the firm. This
finding indicates the presence of nontrivial capital market frictions inside of large
financial institutions.

13Obviously I can only compute this measure for dealers. As shown in Section 3.3, dealers are
the primary net sellers of protection in the market from 2010 to 2012. When I run the analysis
using this window, the results are qualitatively very similar.
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4.3 Horizon Dependence

I have argued that the primary economic mechanism driving these results de-
rives from asset pricing theories with limited investment capital. A signature
prediction of these theories is that, given time, capital is able to flow into the
market and thus any pricing effects should disappear over longer horizons. To
evaluate this prediction, I run the following regression for various horizons h:

log

✓
CDSr,t+h�1

CDSr,t�1

◆
= ar +�

0

1

�Zrt(h)+�
0

2

�Xt(h)� ⇣s(h)⇥OCF s
rt + ⇣b(h)⇥OCF b

rt

where �Zrt(h) = Zr,t+h�1

�Zr,t�1

and �Xt(h) = Xt+h�1

�Xt�1

. Note that the sign
of ⇣s(h) in the above regression means that it represents the effect of seller capital
losses on CDS spreads from t � 1 to t + h � 1. The regressions from the previous
subsection were run for h = 1. If the effect of seller losses on CDS pricing decays
with time, then ⇣s(h) should tend towards zero as h increases. Furthermore, the
regression is run without industry-by-time fixed effects because I want to identify
the time-series impact of the OCF variables.

Akin to an impulse response function, Figure 4 plots the point estimate of
⇣s(h) along with 95 percent confidence bands for various horizons h. Consistent
with idea that the price impact of seller losses reverses as capital flows into the
market, ⇣s(h) declines as h increases, with a half life of about two weeks. As
illustrated by the 95 percent confidence bands in Figure 4, the pricing effects of
seller capital losses are fully undone after about 8 weeks.

It is not surprising that the pricing effects die out rather quickly because seg-
mentation at the reference entity level is a fairly extreme form of capital market
segmentation; hence, one would not expect it to persist for long periods. More-
over, it seems reasonable that internal capital market frictions at large financial
institutions are resolved over short horizons as well. This interpretation is also
consistent with He, Kelly, and Manela (2015), who show that at a quarterly fre-
quency, the leverage of primary dealers can explain CDS returns. Importantly,
they measure capital at the holding company level, thereby implying that at a
quarterly frequency external capital market frictions are an important compo-
nent to pricing. Their findings, combined with the pattern of decay that I’ve
documented, suggest that short-run price dynamics are influenced by internal
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capital market frictions and segmentation at the reference entity level, whereas
external capital market frictions are more relevant for long-run dynamics.

5 Market Structure and Pricing

Given the detailed nature of my data, I am also able to investigate two additional
channels through which the structure of the CDS market may interact with pric-
ing. The first feature of the CDS market that I explore is whether heterogeneity
in the types of active financial institutions impacts pricing. This channel is im-
portant because, in the wake of the 2008 financial crisis, hedge funds and asset
managers (HFAMs) have steadily replaced dealers as the primary providers of
default insurance (Section 3.3). The second aspect that I examine is concentra-
tion, which is particularly relevant given that CDS markets are dominated by a
handful of key players (Section 3.2).

5.1 Heterogenous Institutions and Pricing

To test whether the type of institution that is actively selling protection in the
CDS market affects pricing, I estimate the following variant of regression (5):

� log (CDSrt) = ar + ait + �
0

1

�Zrt + ⇣sOCF s
rt + ⇣s,HFOCF s

rt ⇥ HFSs
r,t�1

+⇣HFHFSs
r,t�1

+ ⇣bOCF b
rt

where HFSs
r,t�1

is the share of net selling in r by hedge funds and asset managers
at time t � 1. ar and ait are reference entity and industry-by-time fixed effects,
respectively. Zrt is the base set of reference entity specific controls used in Section
4. The interesting feature of this regression is the interaction term between OCF s

rt

and HFSs
r,t�1

, which measures whether capital fluctuations have a differential
impact on pricing when hedge funds are responsible for more selling.

Column (1) of Table 2 indicates that seller capital losses have a larger impact
on spreads if sellers are HFAMs. The interaction term between HFAM share and
seller capital is significantly negative and fairly large in magnitude. For example,
from 2010 to 2014, the share of selling by HFAMs moved from roughly 15 percent
to 55 percent. In turn, the interaction term implies that the impact of a $1bn seller
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capital loss on spreads has changed from 2.31 to 3.47 percent over this same time
period. One way to rationalize this finding is that HFAMs have a higher shadow
cost of capital than dealers, who were the primary provider of credit insurance
at the beginning of the sample. This interpretation seems reasonable given that,
relative to dealers, hedge funds are more specialized and generally have a smaller
capital base; thus, they are more likely to face external capital market frictions.

5.2 Why Does Concentration Matter?

My findings thus far suggest that the total capital of all sellers in a reference entity
is important for explaining price dynamics. However, consider the following
thought experiment: hold the total level of risk bearing capital fixed, but vary
the distribution of capital within natural sellers of protection. In this case, it is
not obvious from theory whether the level of risk premiums should change, even
if all of the capital was allocated to a small set of traders. My next task is to argue
why concentration, or the distribution of risk bearing capital, is also important
for pricing.

At least one reason to care about concentration is fragility. If CDS markets
are dominated by a handful of important sellers, then a capital shock to one of
these key players will have a sizable effect on the total amount of risk bearing
capital, and presumably, prices. A similar concept for macroeconomic growth
has been studied recently by Gabaix (2011) and Kelly, Lustig, and Van Nieuwer-
burgh (2014).

To operationalize this idea in the data, I first compute the following share-
weighted version of my buyer and seller capital variables:

SWA-OCF s
rt :=

X

c2Sr,t�1

MS(c, r, t � 1) ⇥ �Vc,�r,t

where again, MS(c, r, t) is the market share of net selling by counterparty c in
reference entity r at time t. �Vc,�r,t is the change in capital for counterparty c,
and is the same variable that I used in Section 4. SWA-OCF b

rt is the analogous
measure, constructed for net buyers of reference entity r. Finally, I also construct
equal-weighted counterparts for all of these measures, and these are denoted by
EWA-OCF .
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Table 2 presents the results of running variants of the following regression
specification:

� log (CDSrt) = ar + ait + �
0

1

�Zrt + ⇣sSW-OCF s
rt + ⇣bSW-OCF b

rt

In column (2), I only include the share-weighted capital measures in the regres-
sion. Consistent with my findings in Section 4, when the share-weighted capital
of sellers decreases, spreads rise. In column (3), I replace the share-weighted cap-
ital measures with their equal-weighted counterparts. In this case, both the buyer
and seller estimates are measured precisely, as indicated by their standard errors.
However, the magnitude of both capital measures is quite small, and the sign
for seller capital flips. For instance, a one-standard deviation decrease in equal-
weighted average seller capital lowers spreads by only 0.33 percent. The more
salient takeaway from Table 2 is found in column (4), which includes both the
share-weighted and equal-weighted capital measures. When both measures are
included in the regression, the share-weighted capital of sellers is the dominant
explanatory force. In terms of absolute magnitude, the impact of a one-standard
deviation move in share-weighted capital has nearly three times the impact of a
one-standard deviation move in equal-weighted seller capital. In addition, the
point estimate on share-weighted seller capital is relatively unaffected by the in-
clusion of equal-weighed seller capital. If the distribution of capital was irrele-
vant for pricing, one would not expect the distinction between share-weighted
and equal-weighted capital to be as important.

A natural way to interpret these results is that not all seller losses are equal —
a capital loss at a large player has a bigger impact on spreads than a capital loss
at a smaller player. Though this is perhaps not so surprising, it also highlights
the fragility of the CDS market. Because there are only a handful of large sellers
of default insurance, their capital position has an outsized impact on the pricing
of corporate credit risk.
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6 Robustness: The 2011 Japanese Tsunami as a Natu-
ral Experiment

I now turn to a natural experiment that will further establish a causal link be-
tween capital losses and CDS pricing. The event I focus on is the Japanese tsunami
of March 2011, which was the result of a magnitude 9.0 earthquake off the coast
of Tohoku. The tsunami occurred on a Friday, and had a significant impact on
the risk of the country as a whole. For example, Japan’s sovereign CDS spread
increased by nearly 50 percent from 80 to 115 basis points on the following Mon-
day. The Online Appendix contains additional background information on the
tsunami, and its after-effects.

6.1 U.S. Reference Entity Exposure to Japan via Sellers and Buy-
ers

To clarify the logic of my approach, suppose Hedge Fund A had sold a great
deal of CDS protection on Japanese firms, but Hedge Fund B had not. After
the tsunami, capital losses accrue to Hedge Fund A because the Japanese firms
they have written protection on are now fundamentally more risky; however, the
same does not hold true for Hedge Fund B. My hypothesized mechanism then
suggests the U.S. firms for whom Hedge Fund A is large seller will experience
increases in their CDS risk premiums. On the other hand, U.S. firms where Hedge
Fund B is a large seller will not see their spreads rise.

In the Online Appendix, I verify that U.S. counterparties had large CDS ex-
posures to Japanese firms. I also show that the tsunami caused non-negligible
mark-to-market losses for many U.S. counterparties. This is crucial, since my
econometric approach requires the shock of the tsunami to materially affect the
risk bearing capacity of large players in the U.S. market.
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6.1.1 Measurement

To formalize the preceding thought experiment, I construct measures of how ex-
posed a U.S. reference entity r was to the tsunami through its sellers and buyers:

�S,r :=

X

c2S(r)


NS(c, r)

NO(r)

�
⇥ NS(c, Japan)

�B,r :=

X

c2B(r)


�NS(c, r)

NO(r)

�
⇥ NS(c, Japan) (6)

All of my measures are computed as of March 11, 2011, so I omit time dependen-
cies for brevity. Here, NS(c, Japan) is the net amount sold by counterparty c on
Japanese firms. S(r) and B(r) are the set of sellers and buyers, respectively, of ref-
erence entity r. �S,r is the weighted average exposure of r’s sellers to Japan. The
term in brackets is the weight, and is the proportion of total net outstanding for
r that is sold by c. �B,r carries the same intuition for buyers, and is the weighted
average exposure of r’s buyers to Japan. The negative sign in the definition of
�B,r is just to make sure the weights are positive and sum to 1. When referring to
both �B,r and �S,r in tandem, I will often just abbreviate using �.

In the absence of identification issues, we would then expect firms with high
levels of �S,r to experience a rise in their risk premiums. The sellers of “high
�S,r” reference entities experience adverse shocks to risk bearing capacity from
the tsunami, and in turn increase the premium they require for selling CDS on
U.S. reference entities.14

6.2 Transmission of the Japanese Tsunami to U.S. CDS Spreads

To tease out my main hypothesis, I estimate variants of the following cross-
sectional regression:

� log(CDSr,1) = a + �
1

�S,r + �
2

�B,r + �0Xr + "r (7)
14I am able to categorize the shock of the tsunami as a negative shock to sellers since, as I

argued earlier, sellers of CDS protection are unlikely to be hedged in their position. The effect
of the tsunami to large buyers CDS on Japanese firms is less clear. Indeed, the rise in Japanese-
related risks that accompanied the tsunami would positively impact buyers’ CDS portfolios, but
if they owned Japanese bonds then this effect would be offset.
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where Xr is a vector of observable reference entity characteristics that I will dis-
cuss shortly. � log(CDSr,1) is the log-change in r’s CDS spread in the week fol-
lowing the tsunami. To reiterate, I consider only U.S. reference entities. There
are certainly identification issues with attributing changes in CDS spreads after
the tsunami with high levels of �, as the regression (7) would suggest. One obvi-
ous example is that sellers with large Japanese exposures also specialize in U.S.
reference entities that are fundamentally linked to the Japanese economy. In Sec-
tion 5 of Online Appendix, I fully frame the identification issues and rule out this
“specialization” hypothesis for both buyers and sellers of U.S. reference entities.

Xr controls for changes in observable reference entity fundamentals follow-
ing the tsunami, I use the change in Moody’s 5-year EDF, the change in Markit’s
LGD, and the equity return of the firm. Including the equity return of the firm is
compelling from the perspective of structural models of credit, where any shock
to credit spreads is the same as a shock to equity. In many ways, including the eq-
uity return of each reference entity allows me to dramatically reduce the number
of necessary control variables, since any residual changes in CDS spreads must
be driven by something independent of equity market movements.

Because certain industries may have been more exposed to Japanese firms, Xr

also contains a fixed effect corresponding to each reference entity’s NAICS code.
I also include level of CDS spreads for each reference entity on 3/11/2011 to al-
low for the possibility that � captures sellers/buyers who specialize in riskier
credits. Finally, I include the 90-day running volatility of each reference entity’s
CDS spread (in log-changes); this allows for the possibility that reference enti-
ties who experienced large spread movements post-tsunami are those that have
larger volatility. Table 3 summarizes the results of running variations of regres-
sion (7).

Consistent with the results in Section 4, there is no evidence of a transmission
channel via buyers of CDS. Indeed, the coefficient on �B,r is small and insignifi-
cant in all specifications.

The coefficient on �S,r indicates a strong, positive effect of seller exposure to
Japan and subsequent U.S. CDS spread movements. Column (1) estimates a bi-
variate specification, and columns (3)-(5) sequentially add other control variables
and industry fixed effects. As expected, the coefficient on �S,r remains stable
throughout. Interestingly, including an industry fixed effect in the regression has
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a negligible effect on the point estimate of �S,r. This is because the regression
(with full controls) also includes each firm’s own equity return; thus, any infor-
mation contained in the industry fixed effect is subsumed by the more granular
information contained in individual equity returns.

To get a sense of magnitude, consider a U.S. reference entity whose sellers
were in the 90th percentile in terms of their exposure to Japanese firms. Similarly,
consider a U.S. reference entity whose sellers were in the 10th percentile. Firms
in the 90th percentile saw their spread levels increase 2.5 percent, relative to the
10th percentile, in the week following the tsunami.15

As a placebo test, in columns (8) and (9) of Table 3, I replace CDS spread
changes as the dependent variable in the regression with each firm’s equity re-
turn in the week following the tsunami. The logic behind this placebo test is
twofold. First, the equity holders for reference r are probably different than r’s
CDS sellers. Second, the capital market frictions that I have documented in CDS
markets are much less likely to appear in equity markets because, presumably,
capital can flow much faster to investment opportunities in equities. Thus, one
would not expect losses in the CDS market to necessarily impact equity market
pricing. Consistent with this intuition, columns (8) and (9) indicate that whether
or not a reference entity’s CDS sellers were exposed to Japan has no explana-
tory power for equity returns after the tsunami — the transmission mechanism
appears to be specific to the CDS market.

6.3 Isolating Concentration

�S,r and �B,r are useful because they simultaneously capture if a reference entity’s
major sellers were also faced with a capital shock from the tsunami. For this
reason, though, they do not allow us to separate the importance of concentration
versus total capital losses for a reference entity’s spread movements. A simple
example illustrates the distinction. Consider two reference entities, rA and rB,
who have the same two sellers S

1

and S
2

. S
1

’s share of selling in firm rA is 90
percent, which means that S

2

’s share is 10 percent. Conversely, S
1

and S
2

have
an equal share of selling in rB. Finally, suppose S

1

had net exposure of 100 to
15i.e. � log(CDSr290,1) � � log(CDSr210,1) = 0.025 where, for instance, � log(CDSr290,1) is

the log-CDS spread change for firms in the 90th percentile.
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Japanese firms and S
2

had exposure of 10. In this example, the total exposure
of rA and rB’s sellers is the same since they have the same two sellers. Still, we
might expect that rA will be more sensitive to the shock of the tsunami because
its primary seller had large exposure to Japanese firms.

I flesh this thought experiment out in the data in two ways. To start, I con-
struct alternative versions of �S,r (�B,r) by taking simple averages of seller (buyer)
exposures to Japan:

�

avg
S,r :=

X

c2S(r)


1

kS(r)k

�
⇥ NS(c, Japan)

�

avg
B,r :=

X

c2B(r)


1

kB(r)k

�
⇥ NS(c, Japan)

where the k·k operator denotes the size of a set. �

avg
S,r ignores any possible concen-

tration and allows me to compare two reference entities that were, on average,
similarly exposed to Japan through their sellers.

Column (5) in Table 3 suggests that reference entities whose sellers had higher
average exposure to Japan did indeed see their spreads rise very slightly, but the
standard error of the point estimate on �

avg
S,r is relatively large. Column (6) in-

cludes all � variables, both equal and share-weighted versions, in the regression.
Even after controlling for the average exposure of each reference entity’s sellers
to Japan, the point estimate on �S,r is still economically large and statistically sig-
nificant. These results highlight that it is critical to consider the combined effect
of concentration and capital losses when explaining spread dynamics.

As a second way to reinforce the importance of concentration, I take advan-
tage of the fact that there was one seller in particular who had an extremely large
exposure to Japanese firms just prior to the tsunami (see the Online Appendix). I
denote this seller by the index J . The regression I estimate is then:

� log(CDSr,1) = a + ⌘J!J,r + �0Xr + "r

where !J,r is the share of J in the net selling of r and Xr is the same set of ref-
erence entity controls used throughout this section. Fixing the seller and only
varying J ’s share across reference entities allows me to focus on how concen-
tration interacts with pricing. In addition, in Section 5 of the Online Appendix
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I verify that !J,r is once again not just a proxy for reference entities with high
fundamental exposure to the Japanese economy.

Table 4 collects the results of this regression. As the these results show, refer-
ence entities where J had a larger share of selling also experienced larger spread
increases after the tsunami hit. To give an economic sense of magnitude, I com-
pare reference entities where J had a high share (90th percentile of !J,r) to refer-
ence entities where J had a low share (10th percentile of !j,r). High !J,r firms saw
their CDS spread levels increase by 2 percent following the tsunami, relative to
low !J,r firms. These results further highlight why the distribution of exposures
– in addition to the level — is important for price dynamics

7 Conclusion

This paper uses detailed data on CDS transactions to study the behavior of asset
prices when capital cannot flow frictionlessly to investment opportunities. My
evidence strongly suggests that the capital of a small set of concentrated CDS
protection sellers plays a significant role in determining CDS price dynamics.
More specifically, I show that a firm’s short run CDS spread fluctuations are par-
tially driven by the capital of the CDS desks at financial institutions who provide
default insurance on the firm. These findings imply that the CDS market for a
given name is segmented in the short run. More broadly, my findings are consis-
tent with a cascading model of capital markets where the depth of segmentation
increases at shorter horizons.

In addition, my results suggest that internal capital market frictions at finan-
cial institutions — whether due to agency issues, optimal risk management, or
simple lack of capital — can act as an additional layer of segmentation in markets
where outside capital is slow to enter.16 In this sense, one can view the trading
desks at large financial institutions as individual silos whose capital base is not
instantaneously integrated with the larger firm. These types of segmentation is-
sues are most likely to impact pricing in asset classes where investment activity
requires stable funding, specific trading technology, and expertise.

I also document additional ways in which the structure of the CDS market
16See the Online Appendix for a deeper discussion of why capital may be slow moving.
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impact CDS pricing. A defining feature of the CDS market is that net sellers
of protection are highly concentrated. This concentration leads to fragility, as
evidenced by the fact that capital losses at large sellers have a bigger impact on
the market than losses at smaller sellers. Another way to frame this finding is
that, in markets with segmentation, the distribution of risk bearing capital is an
important consideration for pricing.

Heterogeneity in the type of financial institution that acts as a net seller of
protection is a key determinant of spread dynamics as well. A striking trend in
the data is that dealers have been replaced as the primary sellers of protections
by hedge funds and asset managers. A likely explanation for this pattern is that
new regulation has made it less profitable (or even possible) for dealers to ulti-
mately bear credit risk via CDS. Still, the evidence in this paper indicates that
capital losses at hedge funds and asset managers have a stronger impact on pric-
ing than losses at dealers. Put differently, a potential unintended consequence
of post-crisis regulation is that CDS prices are now even more influenced by the
capital positions of a few players in the market, as opposed to fundamental risk
exposures.
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Figure 1: Notional Size of the U.S. CDS Market
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Notes: This figure plots the gross notional (Panel A) and net notional (Panel B) size of the U.S. CDS market. At each point
in time, gross notional size is computed by adding the notional size of all positions written on U.S. reference entities. To
determine total net notional size, I compute the net notional size for each U.S. reference entity, then sum over all reference
entities. All computations account for positions that derive from index swaps. The Data Appendix contains details for
the process through which I classify U.S. reference entities. Data is weekly and spans January 2010 to May 2014.
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Figure 2: Aggregate Share and Persistence of Top Five Net Sellers and Buyers

Panel A (Aggregate Market Share):
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Notes: Panel A plots the aggregate share of the top five sellers and buyers of CDS protection through time. The share
of a single counterparty c in a given reference entity is the proportion of net selling by c in that reference entity. The
aggregate share of net selling by c is the size-weighted average share across all reference entities. The top five sellers are
those with the largest aggregate share, and the top five buyers are those with the most negative aggregate share. I convert
the market share of buyers to a positive number because my definition assigns negative shares to net buyers. Panel B
plots the persistence of the aggregate share of the top five sellers and buyers of CDS protection through time. For week t,
I count the number of the top five buyers who are also in the top five in week t � 1. I do the same for the persistence of
top sellers. Data is weekly and spans January 2010 to May 2014.
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Figure 3: Aggregate Share of Net Buying and Net Selling by Counterparty Type

Panel A (Share of Buying):
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Notes: This figure plots the aggregate proportion of net buying (Panel A) and net selling (Panel B) by dealers and hedge
funds/asset managers. For each reference entity, I compute the proportion of net buying and selling by each counterparty
type. To aggregate, I compute the size-weighted average of the proportion bought by each type across reference entities.
Data is weekly and spans January 2010 to May 2014.
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Figure 4: The Impact of Capital on CDS Spreads Over Different Horizons
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Notes: This figure plots ⇣b(h) from the following regression: log
�
CDSr,t+h�1

�
� log (CDSr,t�1) = ar +�

0
1�Zrt(h) +

�
0
2�Xt(h) � ⇣s(h) ⇥ OCF s

rt + ⇣b(h) ⇥ OCF b
rt. CDSrt is the 5-year CDS spread of reference entity r at time t, where

the document clause of the contract is detailed in Data Appendix. OCF s
rt measures the change from t � 1 to t in capital

($bn) of r’s net sellers, where capital is measured as the mark-to-market value of CDS positions coming from positions
outside of r’s industry. OCF b

rt is the same variable, except for r’s net buyers. The industry for each reference entity
is defined by Markit. ar is a reference entity fixed effect. Zrt contains Moody’s 5-year expected default frequency and
Markit’s estimate of loss-given-default, respectively. Xt includes the log equity-to-price ratio for the S&P 500, VIX, TED,
CFNAI, 10 year Treasury yield, 10-year-minus-2-year Treasury yield, and the CBOE Option Skew index. Along the x-axis,
I vary the horizon from h = 1, 3, 6, 9, 12. Note that because of the sign of ⇣b(h) in the regression, ⇣b(h) represents the
response of CDS spreads to a billion dollar loss for large sellers. Standard errors are double-clustered by the top two
sellers (alphabetized) and time, and are used to plot the confidence bands in the plot. Data is weekly and regressions are
run over the period March 2010 to May 2014.
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Table 1: The Impact of Capital Fluctuations on CDS Spreads

Dep. Variable � log(CDSrt)⇥100

(1) (2) (3) (4) (5) (6) (7)

OCFs
rt ($bn) -3.10 -2.54 -2.34 -2.44

(0.28) (0.25) (0.27) (0.26)

OCFb
rt($bn) 0.13 0.13 0.04 0.05 0.13

(0.33) (0.28) (0.34) (0.35) (0.34)

OCFs
rt ⇥ 1OCFs

rt2btm tercile -3.57

(0.31)

OCFs
rt ⇥ 1OCFs

rt2mid tercile -2.73

(0.57)

OCFs
rt ⇥ 1OCFs

rt2top tercile -2.58

(0.27)

� (Leveragesrt) 0.09 0.05

(0.04) (0.02)

�

�
Leveragebrt

�
0.04 0.13

(0.02) (0.34)

� (Leveragesrt) ⇥ OCFs
rt -0.02

(0.01)

� log (EDF and LGD)rt X X X X X X X
� Macro Variablest X X X
Ref. Entity FE X X X X X X X
Industry⇥Time FE X X X X
�Option-Based Measuresrt X
Adj. R2(%) 15.7 25.2 25.4 35.3 46.1 32.2 35.4

N 62,476 62,476 62,476 64,222 24,420 64,006 64,006

Notes: This table presents coefficients from regressions relating weekly (log) changes in CDS spreads to contemporaneous
changes in capital for net sellers and net buyers in the CDS market. CDSrt is the 5-year CDS spread of reference entity
r at time t, where the document clause of the contract is detailed in Data Appendix. Log-changes in CDS spreads are
expressed in percentage terms. OCF s

rt measures the change from t � 1 to t in capital ($bn) of r’s net sellers, where
capital is measured as the mark-to-market value of CDS positions coming from positions outside of r’s industry. OCF b

rt
is the same variable, except for r’s net buyers. EDF and LGD are the (log) change in Moody’s 5-year expected default
frequency and Markit’s estimate of loss-given-default, respectively. Macroeconomic controls include the log equity-to-
price ratio for the S&P 500, VIX, TED, CFNAI, 10 year Treasury yield, 10-year-minus-2-year Treasury yield, and the CBOE
Option Skew index. The option based measures for each reference entity are: (i) the log of the option-implied CDS spread
computed from option prices according to Carr and Wu (2011), and (ii) the implied volatility of at-the-money options.
Leveragest is the share-weighted average market value of leverage for r’s net sellers (if available), and Leveragebt is the
same for buyers. Industries for reference entities are defined according to Markit. Data spans March 2010 to May 2014.
All standard errors are listed below point estimates and are double-clustered by the top two sellers (alphabetized) and
time. Point estimates that are different from zero with 5% statistical significance are indicated in bold. The Adj. R2 is
computed within each reference entity group.
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Table 2: How Seller Type and Concentration Impact CDS Spread Movements

Dep. Variable � log(CDSrt) ⇥ 100

(1) (2) (3) (4)
OCF s

rt ($bn) -1.88
(0.33)

OCF b
rt ($bn) -0.19

(0.35)
OCFs

rt ⇥ HFSs
r,t�1

-2.89
(0.59)

SWA-OCFs
rt -1.48 -1.66

(0.12) (0.11)
SWA-OCFb

rt -0.01 -0.09
(0.05) (0.06)

EWA-OCFs
rt 0.33 0.61

(0.11) (0.07)
EWA-OCFb

rt 0.33 0.19
(0.10) (0.07)

Controls X X X X
Adj. R2(%) 35.7 34.4 32.3 35.1
N 64,222 64,222 64,222 64,222

Notes: This table presents coefficients from regressions relating weekly (log) changes in CDS spreads to contemporaneous
changes in capital for net sellers and net buyers in the CDS market. CDSrt is the 5-year CDS spread of reference entity
r at time t, where the document clause of the contract is detailed in Data Appendix. Log-changes in CDS spreads are
expressed in percentage terms. OCF s

rt measures the change from t�1 to t in capital ($bn) of r’s net sellers, where capital
is measured as the mark-to-market value of CDS positions coming from positions outside of r’s industry. OCF b

rt is the
same variable, except for r’s net buyers. HFSs

r,t�1 is the share of r’s net selling by hedge funds and asset managers at
time t � 1. SWA-OCF s

rt is the share-weighted average of the change in capital (excluding r’s industry) for r’s sellers,
and SWA-OCF b

rt is the same variable, defined for r’s buyers. EWA-OCF s
rt and EWA-OCF b

rt are computed analogously,
but instead use equal-weighted averages. All capital measures are standardized to have a mean zero and variance of one.
Controls include: (i) the (log) change in Moody’s 5-year expected default frequency and Markit’s estimate of loss-given-
default; (ii) industry-by-time fixed effects; and (iii) reference entity fixed effects. Industries for each reference entities are
defined according to Markit. Data spans March 2010 to May 2014. All standard errors are listed below point estimates
and are double-clustered by the top two sellers (alphabetized) and time. Point estimates that are different from zero with
5% statistical significance are indicated in bold. The Adj. R2 is computed within each reference entity group.
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Table 3: Transmission of Japanese Tsunami to U.S. CDS Markets

Dependent Variable � log(CDSr,1) ⇥ 100 Retequityr,1 ⇥ 100

(1) (2) (3) (4) (5) (6) (7) (8) (9)
�S,r 3.23 3.35 3.44 3.00 3.07 -0.57 0.92

(1.00) (1.00) (0.94) (1.37) (1.27) (0.83) (0.84)
�B,r 0.47 0.94 0.62 0.37 1.11 0.23 0.37

(1.04) (1.06) (0.88) (1.10) (0.89) (0.67) (0.59)
�

avg
S,r 0.81 -0.77

(3.43) (3.46)
�

avg
B,r -1.33 -1.47

(1.38) (1.27)
Control Variables X X X X X
Industry FE X X X X
Total N 288 288 288 288 288 288 288 288 288
Adj. R2 (%) 2.3 0.0 2.4 23.2 20.4 17.5 21.0 0.0 13.7

Notes: The table presents results from the regression: � log(CDSr,1) = a+�1�S,r+�2�B,r+�0Xr+"r . The dependent
variable is the change in CDS spread for U.S. reference entities from March 11, 2011 to March 18, 2011. �S,r and �B,r

are the share-weighted average CDS exposure of r’s net sellers and buyers, respectively, to Japanese firms. Exposure
is defined as the net amount of protection sold on Japanese firms ($1 bn), meaning the units of �S,r and �B,r are in
billions of dollar notional. The control variables are (for each reference entity r): the change in the 5-year Moody’s
expected default frequency (EDF), the change in Markit’s loss-given-default, the weekly equity return, the 90-day trailing
correlation of (changes in) r’s CDS spread with the country of Japan’s CDS spread, the 90-day trailing volatility of r’s
CDS spread, a fixed effect based on the NAICS code of each reference entity, and the level of the CDS spread for r on the
day of the tsunami. In column (9), I exclude the change in 5-year Moody’s EDF as a control because it effectively reflects
equity returns. Bolded variables indicate statistical significance at the 5 percent level. Standard errors are clustered within
each industry group and reported below point estimates. When industry fixed effects are included with the controls, the
reported R2 is within each industry group.
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Table 4: Concentrated Exposures and Japanese Tsunami Transmission

Dependent Variable � log(CDSr,1)

(1)
!J,r 8.55

(3.00)
Control Variables Yes
Total N 175
Adj. R2 24.4%

Notes: The table presents results from the regression: � log(CDSr,1) = a + ⌘J!J,r + �0Xr + "r . The dependent
variable is the change in CDS spread for U.S. reference entities from March 11, 2011 to March 18, 2011. !J,r is the share
of counterparty J in the net selling of reference entity r. J is the counterparty who had the largest exposure to Japanese
firms prior to the tsunami. The regression includes only reference entities for which !J,r 6= 0. The control variables are
(for each reference entity r): the change in the 5-year Moody’s expected default frequency, the change in Markit’s loss-
given-default, the weekly equity return, the 90-day trailing correlation of (changes in) r’s CDS spread with the country
of Japan’s CDS spread, the 90-day trailing volatility of r’s CDS spread, a fixed effect based on NAICS industry code, and
the level of the CDS spread for r on the day of the tsunami. Bolded point estimates represent statistical significance at
a 5 percent level. Standard errors are clustered within each industry group and reported below the point estimate. The
reported R2 is within each industry group.
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A Appendix: Additional Computations

A.1 Motivating the Benchmark Regression from Reduced Form
Models of Credit Risk

It is standard practice in reduced-form credit risk modeling to view default events as the
arrival of a Poisson process.17 The Poisson arrival rate is most often called the default
intensity or the default arrival rate. I denote this variable by �M

rt , where the superscript
M 2 {Q,P} defines either the risk-neutral measure, Q, or the physical measure, P. For
illustration, I assume that at each point in time the default intensity is constant for the
remaining life of the CDS position. In this case, the CDS spread of a given reference
entity can be decomposed as:

CDSrt(⌧) =

�Q
rt(⌧)

�P
rt(⌧)

⇥ LGDQ
rt ⇥ �P

rt(⌧) (8)

where LGDQ
rt is the loss given default under the risk-neutral measure. The ratio, ⇧rt :=

�Q
rt(⌧)/�P

rt(⌧), can be interpreted as the default premium for reference entity r. It quanti-
fies the risk-reward tradeoff for bearing r’s default risk.18

Taking the log of both sides of Equation (8) gives:

log (CDSrt) = log

⇣
LGDQ

rt

⌘
+ log

⇣
�P
rt

⌘
+ log (⇧rt) (9)

where I have omitted the functional dependence of variables on the time to maturity. To
make Equation (9) empirically operational I need to have estimates of �P

rt and LGDQ
rt.

Like in Berndt, Douglas, Duffie, Ferguson, and Schranz (2008), I proxy for �P
rt using

Moody’s 5-year annualized EDF.19

Analogously, I obtain separate estimates of LGDQ
rt from Markit and Moody’s. Denote

the choice of proxy for LGDQ
rt by ]LGD

Q
rt. It is enough to assume that the true LGD is a

scalar multiple ⌘r of the proxy, so LGDQ
rt = ⌘r ]LGD

Q
rt. In logs, this means:

log

⇣
LGDQ

rt

⌘
= log(⌘r) + log

✓
]LGD

Q
rt

◆
(10)

When might this assumption be reasonable? For instance, the Moody’s estimate of LGD

17I use the term reduced-form in the spirit of the work by Jarrow and Turnbull (1995), Duffie
(1996), and Duffie and Singleton (1999). The popular alternative to this approach are so-called
structural models of credit, a la Merton (1974).

18Driessen (2002) and Berndt, Douglas, Duffie, Ferguson, and Schranz (2008) provide evidence
that, on average, ⇧rt ⇡ 1.9. In other words, for every unit of actual default risk taken, the seller
of protection must be compensated as if she is taking roughly double that amount of default risk.

19Moody’s uses observed equity values and volatility to solve for an implicit asset value pro-
cess. Using observed leverage, they translate this to a distance-to-default measure as in Merton
(1974). Finally, distance-to-default is mapped to a P-likelihood of default using realized default
rates.
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is at the sectoral level. Assuming LGDQ
rt = ⌘r ]LGD

Q
rt then means a firm’s LGD is a time-

invariant scalar transformation of the sectoral LGD. In other words, time-variation in
reference entity LGD is common within a sector, which seems plausible.20

Substituting Equation (9) into Equation (10) yields:

log (CDSrt) = log(⌘r) + log

✓
]LGD

Q
rt

◆
+ log

⇣
�P
rt

⌘
+ log (⇧rt) (11)

Equation (11) is a panel regression, in logs, of CDS spreads on a reference entity
fixed effect, plus proxies for the risk-neutral LGD and the physical default intensity. The
reference entity fixed effects absorbs the firm-specific component of LGD, ⌘r. After con-
trolling for firm specific variables, Equation (11) suggests the additional control variables
that enter the regression capture the default risk premium for reference entity r, ⇧rt.

This interpretation rests crucially on the link between CDS and bond markets. It
could very well be the case that fluctuations in CDS spreads are not accompanied by
variation in bond yields. That is, if I observe CDS spreads changing, it may be the CDS-
bond basis — loosely speaking the difference between CDS spreads and bond spreads
— is actually what is moving around. In theory, the CDS-bond basis should be zero, but
there is a substantial amount of empirical evidence to suggest that this is not always the
case.21 In the Online Appendix, I use actual bond yields to confirm my results do indeed
pertain to the default risk premiums, as opposed to the CDS-bond basis.

A.2 Option Implied CDS Spreads
This section describes how I use American option prices to compute an implied CDS
spread. For a complete theoretical treatment of this procedure, see Carr and Wu (2013),
henceforth CW. In the interest of space, I present only the relevant formulas and data
descriptors used in the main text.

To start, Carr and Wu (2013) define what they call a “unit recovery claim” that pays
a dollar if there is a default event prior to an option’s expiration, and zero otherwise.
CW assume that there exists a default corridor [A,B] that the underlying equity price
can never enter. If the equity price hits the level B, there is a default and the stock price
immediately jumps to a level that is bounded above by A. In their empirical work, they
set A = 0, which means that the equity value drops to zero upon default. I continue with
this assumption for the remainder of my treatment.

Under this assumption, CW show that, regardless of the underlying asset process,
there is a robust link between the unit recovery claim and CDS spreads on the underlying

20When ]LGD
Q
rt comes from Markit, ]LGD

Q
rt is provided for each reference entity (as opposed to

each sector). In this case, the assumption says the Markit’s estimate of LGD is potentially biased
in a time-invariant way. For example, if ⌘r = 1.1, then I am assuming Markit’s LGD for r are
always 10% higher than reality. Of course, nothing in my approach restricts ⌘r from being one.

21For example, Bai and Collin-Dufresne (2013).
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firm. The unit recovery claim is defined as follows:

UO
(t, T ) =

Pt(K2

, T ) � P (K
1

, T )

K
2

� K
1

(12)

where A  K
1

< K
2

 B. It is easy to see that, under the assumptions of the default
corridor, this pays one dollar if there is default and zero otherwise.

Next, CW show that under the assumption of a constant arrival rate and constant
interest rate, the CDS spread of a firm is related to the price of the unit recovery claim in
the following manner:

UO
(t, T ) = ⇠k ⇥ 1 � exp (�(r + ⇠k)(T � t))

r(t, T ) + ⇠k
(13)

where ⇠ = 1/(1 � R), R is the recovery of the bond upon default, k is the CDS spread,
and r(t, T ) is the continously compounded interest rate between t and T . Here, T is
meant to capture the expiration of both the CDS contract and the option contract. For my
purposes, I will always set T � t = 5.

Equation (13) provides a simple way to recover a CDS spread implied by option
prices. Using observed option prices, one first computes the value of the unit recovery
claim. A simple numerical inversion then delivers the implied CDS spread.

To implement this procedure in practice, I merge my panel of CDS spreads with
American option prices from OptionsMetrics using 6 digit CUSIPs. Furthermore, since I
follow CW in assuming A = 0, the unit recovery claim is simple the price of a deep out of
the money put option, divided by its own strike price. I use a set of filters on the options
data that is similar to CW: (i) I take the option price to be the midpoint of the bid and
offer; (ii) I consider options whose bid is strictly positive; (iii) I consider options whose
open interest is strictly positive; (iv) the maturity of the option must be greater than 365
days; (iv) I use the put option that satisfies all of the preceding qualities, and that has the
delta closest to 0 and less than -0.15.

Naturally, there is a maturity mismatch in using options that might have an expi-
ration of 2 years to compute an implied CDS spread of 5 years. There is no real way
to avoid this bias. See CW for a richer discussion. Like with other portions of the pa-
per, the riskfree rate is obtained from interpolating the USD swap rate curve. Finally, I
use the Markit reported recovery rate, which has the added advantage of maintaining
consistency with the benchmark panel regression in the main text.
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