

TASK REPORT

Solving the economic dispatch problem for units with tabular

data by curve fitting and curve-based methods and comparing

the results with the result of the dynamic programming method.

Course: Power System Operation and Control

Lecturer: Prof. Taher

Student: Hamed Najafi

November 2022

Contents:

I. Introducing Problem

II. Solving Problem by Dynamic Programming

III. Fitting curve on data

IV. Solving by Lagrange method

V. Solving by Newton method

VI. Solving by Interior-point method

VII. Solving by Lambda Iteration method

VIII. Drawing total cost function surface and finding minimum point on the cost surface

IX. Conclusion

The order of the contents is in accordance with the steps that I personally went through while

solving and investigating this problem.

Page | 1

I. Introducing Problem

Problem: Three thermal units with the following specifications are available to supply a

power system:

Unit number Pmin(MW) Pmax(MW)

1 100 500

2 100 500

3 200 1000

Fi:Cost of unit i ($/h)

Pi(MW) F1 F2 F3

0 ∞ ∞ ∞

100 500 400 ∞

200 950 1000 1020

300 1400 1440 1450

400 1840 1800 1900

500 2320 2400 2350

600 ∞ ∞ 2800

700 ∞ ∞ 3240

800 ∞ ∞ 3680

900 ∞ ∞ 4130

1000 ∞ ∞ 4570

Assumptions:

1. All units are committed

2. Power system is lossless

3. Total Load Demand = 800 MW

So, the form of our problem can be shown as below:

Min
𝑃1,𝑃2,𝑃3

[𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛] = 𝐹𝑡𝑜𝑡𝑎𝑙 =∑𝑓𝑖(𝑃𝑖)

3

𝑖=1

Such that

{

100 ≤ 𝑃1 ≤ 500
100 ≤ 𝑃2 ≤ 500
200 ≤ 𝑃3 ≤ 1000
𝑃1 + 𝑃2 + 𝑃3 = 800

𝑓𝑖 𝑎𝑛𝑑 𝑃𝑖 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑟𝑒 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑏𝑜𝑣𝑒 𝑡𝑎𝑏𝑙𝑒

Page | 2

II. Solving Problem by Dynamic Programming

Since there are three units, there are two steps:

Step1: 𝑓2(D) = min
{𝑃2}

{𝐹1(𝐷 − 𝑃2) + 𝐹2(𝑃2)}

 𝐹1(𝐷 − 𝑃2) + 𝐹2(𝑃2) Optimum values

Dj / P2: 0 100 200 300 400 500 600 700 800 900 1000 𝑓2(𝐷𝑗) P2* P1*

0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 0

100 ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ∞ 0 100

200 ‘’ 900 ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ 900 100 100

300 ‘’ 1350 1500 ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ 1350 100 200

400 ‘’ 1800 1950 1940 ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ 1800 100 300

500 ‘’ 2240 2400 2390 2300 ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ 2240 100 400
600 ‘’ 2720 2840 2840 2750 2900 ‘’ ‘’ ‘’ ‘’ ‘’ 2720 100 500

700 ‘’ ∞ 3320 3280 3200 3350 ‘’ ‘’ ‘’ ‘’ ‘’ 3200 400 300

800 ‘’ ‘’ ∞ 3760 3640 3800 ‘’ ‘’ ‘’ ‘’ ‘’ 3640 400 400

900 ‘’ ‘’ ‘’ ∞ 4120 4240 ‘’ ‘’ ‘’ ‘’ ‘’ 4120 400 500

1000 ‘’ ‘’ ‘’ ‘’ ∞ 4720 ‘’ ‘’ ‘’ ‘’ ‘’ 4720 500 500

Step2: 𝑓3(D) = min
{𝑃3}

{𝑓2(𝐷 − 𝑃3) + 𝐹3(𝑃3)}

 𝑓2(𝐷 − 𝑃3) + 𝐹3(𝑃3) Optimum values

Dj / P3: 0 100 200 300 400 500 600 700 800 900 1000 𝑓3(𝐷𝑗) P3*

0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0

100 ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ 0

200 ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ 0

300 ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ 0

400 ‘’ ‘’ 1920 ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ 1920 200

500 ‘’ ‘’ 2370 2350 ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ 2350 300

600 ‘’ ‘’ 2820 2800 2800 ‘’ ‘’ ‘’ ‘’ ‘’ ‘’ 2800 300

700 ‘’ ‘’ 3260 3250 3250 3250 ‘’ ‘’ ‘’ ‘’ ‘’ 3250 300

800 ‘’ ‘’ 3740 3690 3700 3700 3700 ‘’ ‘’ ‘’ ‘’ 3690 300
900 ‘’ ‘’ 4220 4170 4140 4150 4150 4140 ‘’ ‘’ ‘’ 4140 400

1000 ‘’ ‘’ 4660 4650 4620 4590 4600 4590 4580 ‘’ ‘’ 4580 800

Result:

Optimum operating point: {P1 = 400, P2 = 100, P3 = 300, Ftotal = 3690}

And for future discussions, we will also bold four other nearby points:

Point A: {P1 = 500, P2 = 100, P3 = 200, Ftotal = 3740}

Point B: {P1 = 300, P2 = 100, P3 = 400, Ftotal = 3700}

Point C: {P1 = 200, P2 = 100, P3 = 500, Ftotal = 3700}

Point D: {P1 = 100, P2 = 100, P3 = 600, Ftotal = 3700}

Page | 3

III. Fitting Curve on data

1. Fitting 2nd degree polynomial equations to the given data:

500

950

1400

1840

2320y = 0.0004x2 + 4.3157x + 68

0

500

1,000

1,500

2,000

2,500

0 100 200 300 400 500 600

C
o

st
 (

$
/h

)

Power (MW)

Unit 1 Data

400

1000

1440

1800

2400

y = -0.0006x2 + 5.1429x - 72

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600

C
o

st
 (

$
/h

)

Power (MW)

Unit 2 Data

1020

1450

1900

2350

2800

3240

3680

4130

4570

y = -1E-05x2 + 4.46x + 121.48

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 200 400 600 800 1000 1200

C
o

st
 (

$
/h

)

Power (MW)

Unit 3 Data

Page | 4

2. Fitting 3rd degree polynomial equations to the given data:

500

950

1400

1840

2320

y = 3E-06x3 - 0.0026x2 + 5.1024x + 12

0

500

1,000

1,500

2,000

2,500

0 100 200 300 400 500 600

C
o

st
 (

$
/h

)

Power (MW)

Unit 1 Data

400

1000

1440

1800

2400

y = 3E-05x3 - 0.0306x2 + 13.01x - 632

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600

C
o

st
 (

$
/h

)

Power (MW)

Unit 2 Data

1020

1450

1900

2350

2800

3240

3680

4130

4570

y = -2E-07x3 + 0.0003x2 + 4.29x + 147.14

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 200 400 600 800 1000 1200

C
o

st
 (

$
/h

)

Power (MW)

Unit 3 Data

Page | 5

IV. Solving by Lagrange method using 2nd degree polynomial functions

Using Lagrange method, we can continue:

% p1,p2,p3,L are symbolic variables and f1,f2,f3,df1,df2,df3,P1,P2,P3 are symbolic functions and …

 … L1,Ftot,Ftot_min are numerical variables

f1(p1) = 0.0003571.*p1.^2 + 4.316.*p1 + 68; % Definition of Cost functions : fi(Pi)

f2(p2) = -0.0005714.*p2.^2 + 5.143.*p2 - 72; % ”

f3(p3) = (-9.74e-06).*p3.^2 + 4.46.*p3 + 121.5; %”

df1=diff(f1,p1); % Evaluating Incremental Cost functions : f’i=λi(Pi)

df2=diff(f2,p2); % “

df3=diff(f3,p3); % “

P1(L)=(L-df1(0))/(df1(1)-df1(0)); % Evaluating Power of units as function of λ: Pi(λi)

P2(L)=(L-df2(0))/(df2(1)-df2(0)); % “

P3(L)=(L-df3(0))/(df3(1)-df3(0)); % “

L1=eval(solve(P1+P2+P3-800)); % Obtaining the equal incremental cost

p1_final=eval(P1(L1)) % Evaluating P1 using found λ

p2_final=eval(P2(L1)) % Evaluating P2 using found λ

p3_final=eval(P3(L1)) % Evaluating P3 using found λ

Ftot=eval(f1(p1_final)+f2(p2_final)+f3(p3_final)) % Evaluating Total Cost

eval(f1(0)+f2(0)+f3(800)) % Evaluating total cost of an arbitrary point

ftot_min=eval(f1(187.5)+f2(100)+f3(512.5)) % Evaluating total cost of an arbitrary point

Results:

p1_final = 201.6043

p2_final = 597.6673 Out of limit !

p3_final = 0.7284 Out of limit !

L1 = 4.4600 % (==>λ1= λ2= λ3= 4.4600)

Ftot =

 3.8751e+03

 Evaluating Ftot=f1(0) + f2(0) + f3(800) =

 3.6793e+03

 Evaluating ftot_min= eval(f1(187.5) + f2(100) + f3(512.5)) = ftot_min =

 3.7311e+03

P2 and P3 are out of limits so we should fix them on their bounds.

Page | 6

So, we consider p2_final=P2max=500 and p3_final=P3min=200 then p1_final=100

If we assume λstd = λ1 new = f’1(P1=100) = 4.3874 and after calculations we have

λ2 new = f’2(P2=500) = 4.5716 and λ3 new = f’3(P3=200) = 4.4561

So, λ3 new =λ3|P3min > λstd shows unit three can be fixed on the minimum (200 MW).

However, λ2 new =λ2|P2max > λstd shows unit two is more expensive than unit one and it

shouldn’t be fixed on the maximum.

Therefore, we fix P3=200 MW and try to economically dispatch 600 MW of Load between

unit one and two.

L2=eval(solve(P1+P2+200-800));

p1_final_2=eval(P1(L2))

p2_final_2=eval(P2(L2))

Ftot=eval(f1(p1_final_2)+f2(p2_final_2)+f3(200))

Results:

p1_final_2 = -329.7247 Out of limit !

p2_final_2 = 929.7247 Out of limit !

Ftot = 3.9125e+03

This result is surprising. we continue with other methods and other aspects of the problem.

Page | 7

V. Solving by Newton method

By considering mentioned 2nd degree polynomial fitted equations we can write:

gendata = [68 4.316 0.0003571 % Introducing equations coefficients

 - 72 5.143 -0.0005714 %”

 121.5 4.46 (-9.74e-06)]; %”

power = [800/3 800/3 800/3]; % Initial guess for powers

Pload = 800; % Total Load demand

n = length(gendata);

H = zeros(n+1,n+1); % Forming Hessian Matrix

for i = 1 : n %”

H(i,i) = gendata(i,3) * 2; %”

H(i,n+1) = -1; %”

H(n+1,i) = -1; %”

end

H % Display Hessian Matrix

x0 = zeros(n+1,1); % Forming Powers and Lambda vector

x0(1:n,1) = transpose(power); %”

x0(n+1,1)=(4.5065+4.8383+4.4548)/n; %”

for kk = 1 : 3 % Forming Lagrange function gradient vector(∇L)
disp(kk) % “

gradient = zeros(n+1,1); %”

gradient(n+1,1) = Pload;

 for i = 1 : n

 gradient(i,1) = gendata(i,2) + 2 * gendata(i,3) * x0(i,1) - x0(n+1,1) ;

 gradient(n+1,1) = gradient(n+1,1) - x0(i,1);

 end

dx =- H \ gradient; % Calculating Δx vector

cost = 0;

 for i = 1 : n % Calculating total cost

 cost = cost + gendata(i,1) + gendata(i,2) * x0(i) + gendata(i,3) * x0(i) * x0(i);

 end

disp([x0', cost/1000])

x0 = x0 + dx; % Updating x vector

end

Result:

H =

 0.0007 0 0 -1.0000

 0 -0.0011 0 -1.0000

 0 0 -0.0000 -1.0000

 -1.0000 -1.0000 -1.0000 0

 1 → 266.6667 266.6667 266.6667 4.5999 3.8133

 2 → 201.6043 597.6673 0.7284 4.4600 3.8751

 3 → 201.6043 597.6673 0.7284 4.4600 3.8751

 P1 P2 P3 λ Ft

=> It is exactly the same as the results of the previous section.

Page | 8

VI. Solving by Interior-point method

The following in chart results appeared after using 2nd and 3rd degree polynomial fitted

equations, using the provided MATLAB function for finding minimum of constrained

nonlinear multivariable function (fmincon) by its default algorithm (interior-point method),

and taking into account four different initial guesses for power generation of each unit.

*DO: means Dynamic Optimization results.

Page | 9

P0_1 P0_2 P0_3 P0_4 P0_1 P0_2 P0_3 P0_4

2nd Order DO(Table) 3rd order

P3 500 500 500 500 300 306.773 370.5921 370.5921 306.773

P2 100 100 100 100 100 393.227 100 100 393.227

P1 200 200 200 200 400 100 329.4079 329.4079 100

f_t 3731.135 3731.135 3731.135 3731.135 3690 3769.687 3691.9096 3691.9096 3769.687

f_t(|DO) 3746.74 3746.74 3746.74 3746.74 3690 3696.94 3696.94 3696.94 3696.94

200 200 200 200

400

100

329.4 329.4

100

500 500 500 500

300 306.773
370.5921 370.5921

306.773

3570

3580

3590

3600

3610

3620

3630

3640

3650

3660

3670

3680

3690

3700

3710

3720

3730

3740

3750

3760

3770

3780

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

P0_3=[400,100,300] P0_2=[500,200,100] P0_3=[400,100,300] P0_2=[500,200,100]

P0_4=[800/3,800/3,800/3] P0_4=[800/3,800/3,800/3] P0_1=[100,500,200] P0_1=[100,500,200]

P0_i=[P0_1, P0_2, P0_3]

Page | 10

When compared to the previous results, the result for 2nd degree equations appears to be more

correct and accurate, especially when compared to Figure 1 (on Page 7), and interestingly,

this result is exactly the same as point C in the dynamic programming results (on Page 2), but

the difference in total costs (3700-3731.135=-31.135) is due to curve fitting error. As a matter

of fact, this is the first reliable feasible solution so far.

For 3rd degree equations it seems that the resulting surface is curved in space and has local

minimum points. Points earned from P0_2 and P0_3 are very close to the point B in the

dynamic programming results (on Page 2).

Page | 11

VII. Solving by Lambda Iteration method

We will only discuss 3rd degree equations from now on.

There were three difficulties in implementing the Lambda Iteration method. The first was to

calculate Pi from λi because each equation has two different roots. The second was the initial

guess for λ, which is critical in order to avoid divergence (it needs to be within one decimal

number of the final value). The last one was the value of Δλ when updating, for the same reason

as before.

After some trial and error, it was determined that the lower roots should be used as a solution

set for the first one. For the second one, previous section results were helpful, and for the last

one, we couldn't use 10% of present value in the first iteration, so 0.1% of present value was

used instead, and for other iterations, two methods of linear spotting and binary search were

tested, and the binary search method was unable to even start the loop because of inappropriate

initial guess for λ leads to complex roots for equations at the very first step and broke the loop.

Results:

Iteration λ Total Generation (MW) P1 P2 P3

1 4.46 854.5569075 189.3935 216.4619 448.7015

2 4.45554 829.2814891 192.4328 216.7121 420.1366

3 4.450373 805.4855273 196.123 217.0029 392.3597

4 4.449182 800.588886 197.0024 217.07 386.5165

5 4.449039 800.0125246 197.1089 217.0781 385.8255

6 4.449036 800.000029 197.1112 217.0783 385.8105

Ftotal = 3.8710e+03

This result is also unsatisfactory because it costs more than all four points obtained using the

previous methodology (interior-point method, on Page 9) At least, the calculated powers are

within their allowed ranges, and f1(400) + f2(100) + f3(300) = 3.6971e+03 would be the total

cost of dynamic programming result if we wanted to compare this result with the dynamic

programming result. that is less expensive, but if we figure out the incremental unit costs for

D.P. results, we find:

λ1=F’1(400) = 4.5881

λ2=F’2(100) = 7.8952

λ3=F’3(300) = 4.4273

Incremental costs of units are neither equal nor close to each other.

Figures below show the incremental cost functions and their value for the result of dynamic

programming method.

Page | 12

Figure 1: Incremental cost of unit 1

Figure 2: Incremental cost of unit 2

Figure 3: Incremental cost of unit 3

Page | 13

These final three figures demonstrate three ideas: 1. Units 1 and 2 have incremental cost

functions that are convex, but unit 3 has cost function that is concave. 2. It was incorrect for

us to use our adopted approach of using just lower roots of 2nd degree equations (derivation of

3rd degree cost functions) in our computations (in Figure 1 the lower power for the same value

of λ1 is about 130 MW that is ignored). 3. We do not have equal incremental costs at the optimal

point (which was known before by calculations).

Page | 14

VIII. Drawing total cost function surface

After going through all the mentioned steps, drawing could be a saving idea in order to better

understand the behavior of the objective function and find the optimal point.

Notice that the total generation cost (𝑓𝑡 = ∑ 𝑓𝑖(𝑃𝑖)
3
𝑖=1) is a function of three variables, and

drawing its characteristics in three dimensions is impossible. To reduce the problem's

dimensions, we can consider the generation of the third unit as a variable that is dependent on

the generation of units one and two via the power balance constraint.

So, for all drawings of total cost in this report we consider:

P1 = independent var. between 100 and 500 (100 ≤ 𝑃1 ≤ 500)

P2 = independent var. between 100 and 500 (100 ≤ 𝑃2 ≤ 500)

P3 = 800 – (P1 + P2) (𝑃1 + 𝑃2 + 𝑃3 = 800)

(P1 + P2) can’t be greater than 600 (that implies “200 ≤ 𝑃3”)

So 𝐹𝑡(𝑃1, 𝑃2) = 𝑓1(𝑃1) + 𝑓2(𝑃2) + 𝑓3(800 − (𝑃1 + 𝑃2))

Now the total generation cost (objective function) is a function of two variables and can be

drawn in a three-dimensional figure.

As the first drawing of objective function, we use 2nd degree cost equations:

The code below generates plot of the total cost curve according to the power of unit one and

two:

figure

x=0:10:800; % Defining of power production points from 0 to 800 MW with a step of 10

[X, Y]=meshgrid(x,x); % Generating a mesh Grid of P1(:X) and P2(:Y)

z=800-(X+Y); % Obtaining P3(:z) points for each (P1,P2) point on the mesh

w2nd=eval(f1(X)+f2(Y)+f3(z)); % Evaluating total generation cost for each (P1,P2) point on the mesh

mesh=X+Y; % defining a variable containing sum of (P1,P2)

X(mesh>800) =NaN; % Removing Point of P1 which cause (P1+P2)>800

Y(mesh>800) =NaN; % Removing Point of P2 which cause (P1+P2)>800

X(X<100) =NaN; % Removing Points due to Boundary Constraints

Y(Y<100) =NaN; % “

X(X>500) =NaN; % “

Y(Y>500) =NaN; % “

X(mesh>600) =NaN; % “

Y(mesh>600) =NaN; % “

s2=surf(X, Y,w2nd); % Generating Plot

xlabel('P1 (MW)'); % Labeling

ylabel('P2 (MW)'); % “

zlabel("f1(P1) +f2(P2) +f3(800-(P1+P2)) - 2nd Degree"); % “

axis vis3d;

hold on;

plot3(187.5,100, f1(187.5) + f2(100) + f3(512.5),'d') % Highlighting an arbitrary point that has a low cost

Result is shown in Figure 4 on the next page.

Page | 15

With this result, all of failed attempts to finding an optimal minimum point make sense and

the arbitrary point plotted by a diamond could be compared to results of all of 2nd degree total

cost function minimizations at former steps.

Figure 4 shows that with the mentioned 2nd degree polynomial fitted equations, our

minimization problem, actually, is a search for a minimum point on a piece of a whole surface

with no bottom point where the gradient reaches zero. As a result, the Lagrange method and

all other zero-gradient-based methods will be unappliable.

By replacing 3rd degree cost equations in the above code, the surface changes into the next

plot.

Result is on the next page.

Figure 4: Total cost surface obtained from 2nd degree equations

P1=187.5

P2=100

P3=512.5

Ft= 3.7311e+03

Page | 16

This result is surprising too however may justify the former results. To clear doubts we can

draw total cost real values specified by problem’s tables with condition which in P1 is

constantly equal to 100 MW and P2 varies from 100 to 500 MW (and P3=800-P1-P2) then we

see:

Figure 5: Total cost surface obtained from 3rd degree equations

Figure 6: Total cost real values by considering constant value of P1 at 100 MW

Page | 17

Figure 6 demonstrates that Figure 5 is not out of normal or unacceptable, and if it was looking

like anything other than the curve produced by the intersection of Figure 5's surface with the

P1=100 plane, there would be cause for concern and further examination.

Because of considerable difference between Figure 5 and Figure 6 (existing a local minimum

near the points where P2=400) it would be informative to draw total cost functions obtained

from 2nd and 3rd degree equations (with former conditions) in the Figure 6 plot and perform a

comparison.

Figure 7, while confirming the previous three-dimensional drawings (both Figure 4 and

Figure 5), justifies the previous results (such as the absence of a global minimum point with a

zero gradient) and also shows that the 3rd degree equations are closer to reality, and the reason

for having a local minimum in the 3rd degree surface as opposed to the 2nd degree equations is

that the 2nd degree equations are unable to have the required curvature, which causes a lot of

error (see Figure 7, where P2=400) and the local minimum point (close to P2=400) is exactly

the point where the Lambda-Iteration method trapped in twice (see Page 9).

Figure 7: Total cost real values and 2nd degree and 3rd degree values by
considering constant value of P1 at 100 MW

Page | 18

Figure 8 demonstrates real values of total cost.

By searching for a minimum value in the cost surface matrix it will be found that the minimum

point (including powers as components) on the 3rd degree total cost surface is

P1=100, P2=100, P3=600, Ft=3.6897e+03

That power components are equal to Point D on Page 2, and total cost calculated by 3rd degree

equations for optimal point resulting from dynamic programming method is Ft=3.6969e+03.

Its difference from the real value (3690) and the difference between the last found minimum

cost and its real value for same power components (3700) are due to curve fitting error.

Figure 8: Total cost real values

Page | 19

IX. Conclusion

It was anticipated that after using a dynamic programming methodology, we would perform

straightforward curve fitting procedures and use an equation-based method to arrive at results

and numbers that were same or almost so. However, the results were not even close, and using

other methods did not help. As a result, the only option left was to draw the objective function

in order to determine why our findings deviate from the objective result and to identify the

optimal point and to find a justification for that odd behavior. Drawn shapes were also

unexpected and required additional research and study that was conducted and mentioned.

After all it could be said that this problem has a different nature from the other problems that

we have encountered so far, and feasible solutions surface has no bottom point where the

gradient reaches zero. As a result, the conventional methods are ineffective, and it appears that

the only option available to us is to numerically calculate the total cost surface (or space) for

various amounts of possible points (P1, P2, ..., Pn-1) and find the minimum point in resulting

(n-1)-dimensional matrix that obtains corresponding points too (as done for previous page).

End of Report

