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The Lambda-Iteration Method

� The solution to the optimal dispatch can be approached by 
graphical methods
� plot the incremental cost characteristics for each generator

� the operating points must have minimum cost and satisfy load
� that is, find an incremental cost rate, λ that meets the demand PR

� graphically:
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The Lambda-Iteration Method

� An iterative process
� assume an incremental cost 

rate λ and find the sum of the 
power outputs for this rate
� the first estimate will be 

incorrect

� if the total power output is too 
low, increase the λ value, or if 
too high, decrease the λ value
� with two solutions, a closer 

value of total power can be 
extrapolated or interpolated

� the steps are repeated until the 
desired output is reached  
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The Lambda-Iteration Method

� This procedure can be adopted for 
a computer implementation
� the implementation of the power 

output calculation is rather 
independent of the solution method
� each generator output could be 

solved by a different method
� as an iterative procedure, a stopping 

criterion must be established
� two general stopping rules are 

appropriate for this application
� total output power is within a 

specified tolerance of the load demand

� iteration loop count exceeds 
a maximum value
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The Lambda-Iteration Method

� Example
� consider the use of cubic functions to represent the input-

output characteristics of generating plants

� for three generating units, find the optimum schedule for a 
2500 MW load demand using the lambda-iteration method 
� generator characteristics:

� assume that the fuel cost to be $1/MBtu

� set the value of λ on the second iteration at 10% above or below 
the starting value depending on the sign of the error

( ) ( ) MWin MBtu/h 32 PDPCPBPAH +++=

Unit 1 749.55 6.95 9.68×10-4 1.27×10-7 320 800
Unit 2 1285.0 7.051 7.375×10-4 6.453×10-8 300 1200
Unit 3 1531.0 6.531 1.04×10-3 9.98 ×10-8 275 1100

A B C D Pmax Pmin
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The Lambda-Iteration Method

� Example
� initial iteration: λstart= 8.0

� incremental cost functions

� find the roots of the three incremental cost functions at λ = 8.0
� P1 = (–5575.6, 494.3), P2 = (–8215.9, 596.7), P3 = (–7593.4, 646.2)

� use only the positive values within the range of the generator upper 
and lower output limits

� calculate the error

� with a positive error, set second λ at 10% above λstart: λ[2] = 8.8
( ) ( ) ( ) MW/h9.7622.6467.5963.4942500 =−−−=e
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The Lambda-Iteration Method

� Example
� second iteration: λ[2] = 8.8

� find the roots of the three incremental cost functions at λ = 8.8
� P1 = (–5904, 822.5), P2 = (–8662, 1043.0), P3 = (–7906, 958.6)

� calculate the error

� error out of tolerance

� project λ

� continue with third iteration
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The Lambda-Iteration Method

� Example
� results of all iterations

� Issues
� under some initial starting points, the lambda-iteration 

approach exhibits an oscillatory behavior, resulting in a non-
converging solution
� try the example again with a starting point of λstart= 10.0

1 8.0 1737.2 494.3 596.7 646.2
2 8.8 2824.1 822.5 1043.0 958.6
3 8.5615 2510.2 728.1 914.3 867.8
4 8.5537 2499.9 725.0 910.1 864.8

Iteration λλλλ Total Generation P1 P2 P3
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The Gradient Method

� Suppose that the cost function is more complex

� example:

� the lambda search technique requires the solution of the 
generator output power for a given incremental cost
� possible with a quadratic function or piecewise linear function

� hard for complicated functions; we need a more basic method

� The gradient search method uses the principle that the 
minimum is found by taking steps in a downward direction
� from any starting point, x[0], one 

finds the direction of steepest 
descent by computing the 
negative gradient of F at x[0]:
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The Gradient Method

� to move in the direction of maximum descent from x[0] to x[1]:

� α is a scalar that when properly selected guarantees that the 
process converges

� the best value of α must be determined by experiment

� for the economic dispatch 
problem, the gradient 
technique is applied directly 
to the Lagrange function

� the gradient function is:

� this formulation does not 
enforce the constraint function
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The Gradient Method

� Example
� solve the economic dispatch for a total load of 800 MW using 

these generator cost functions

� use α = 100% and starting from

� λ is initially set to the average of the incremental costs of the
generators at their starting generation values:
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% Example 3E
gendata = [ 1683  23.76  0.004686

930  23.55  0.00582
234  23.70  0.01446 ];

power = [ 300, 200, 300 ];
alpha = 1.00, Pload = 800;
% find lambda0
n = length( gendata );
lambda0 = 0;
for i = 1 : n

lambda0 = lambda0 + gendata(i,2) + 2 * gendata(i,3) *  power(i);
end
lambda0 = lambda0 / 3
clear x0
x0 = power, x0(n+1) = lambda0;
% calculate the gradient
for kk = 1 : 10

disp(kk)
clear  gradient 
gradient = [];
Pgen = 0, cost = 0;
for i = 1 : n

gradient(i) = gendata(i,2) + 2 * gendata(i,3) * x0(i)  - x0(n+1);
Pgen = Pgen + x0(i);
cost = cost + gendata(i,1) + gendata(i,2) * x0(i) + ge ndata(i,3) * x0(i) * x0(i);

end
gradient(n+1) = Pload - Pgen;
disp( [x0, Pgen, cost/1000] )
x1 = x0 - gradient * alpha;
x0 = x1;

end

The Gradient Method

� Example
� Matlab program to perform the

gradient search method
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The Gradient Method

� Example
� the progress of the gradient search is shown in the table below

� note that there is no convergence to a solution

1 28.28 800.0 300.0 200.0 300.0 23,751
2 28.28 800.0 301.7 202.4 295.9 23,726
3 28.28 800.1 303.4 204.8 291.9 23,704
4 28.35 800.2 305.1 207.1 288.1 23,685
5 28.57 800.7 306.8 209.5 284.4 23,676
6 29.23 801.8 308.7 212.1 281.0 23,687
7 31.06 805.0 311.3 215.3 278.4 23,757
8 36.08 813.7 315.7 220.3 277.7 23,983
9 49.79 837.4 325.1 230.3 282.1 24,632
10 87.19 901.9 348.0 253.8 300.0 26,449

Iteration λλλλ Total Generation P1 P2 P3 Cost
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The Gradient Method

� A simple variation
� realize that one of the generators is always a dependent 

variable and remove it from the problem
� for example, picking P3, then

� then the total cost function becomes

� this function stands by itself as a function of two variables with 
no load-generation balance constraint
� the cost can be minimized 

by a gradient method such as:

� note that the gradient goes to zero
when the incremental cost at generator 3 
is equal to that at generators 1 and 2
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The Gradient Method

� A simple variation
� the gradient steps are performed in like manner as before

and

� Example
� rework the previous example with the reduced gradient

� α is set to 20.00

α⋅∇−= Cxx ]0[]1[

�
�

�
�
�

�=
2

1

P

P
x

( ) ( )( )
( ) ( )( ) ��

�
�
�

�

−−−−+
−−−−+

=

�
�
�
�

�

�

�
�
�
�

�

�

−

−
=∇

212

211

2

3

2

2

1

3

1

1

80001446.0270.2300582.0255.23

80001446.0270.23004686.0276.23

d

d

d

d
d
d

d
d

PPP

PPP

P

F

P

F
P

F

P

F

C



© 2002, 2004 Florida State University EEL 6266 Power System Operation and Control 16

% Example 3F
gendata = [ 1683  23.76  0.004686

930  23.55  0.00582
234  23.70  0.01446 ];

power = [ 300, 200, 300 ];
alpha = 20.00;
Pload = 800;
% form lambda0
n = length( gendata );
clear x0
x0 = power(1:n-1);
% calculate the gradient
for kk = 1 : 10

disp(kk)
clear  gradient 
gradient = [];
Pn = Pload;
for i = 1 : n - 1

Pn = Pn - x0(i);
end
cost = gendata(n,1) + gendata(n,2) * Pn + gendata(n,3) * Pn * Pn;
for i = 1 : n - 1

gradient(i) = gendata(i,2) + 2 * gendata(i,3) * x0(i)  - gendata(n,2) - 2 * gendata(n,3) * Pn;
cost = cost + gendata(i,1) + gendata(i,2) * x0(i) + ge ndata(i,3) * x0(i) * x0(i);

end
disp( [x0, Pn, 800, cost/1000] )
x1 = x0 - gradient * alpha;
x0 = x1;

end   

The Gradient Method

� Example
� Matlab program to perform the

simplified gradient search method
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The Gradient Method

� Example
� the progress of the simplified gradient search is shown in the 

table below

� note that there is a solution convergence by the 6th iteration

1 800.0 300.0 200.0 300.0 23,751
2 800.0 416.1 330.0 54.0 23,269
3 800.0 368.1 287.4 144.5 23,204
4 800.0 381.5 307.1 111.4 23,194
5 800.0 373.3 303.0 123.7 23,193
6 800.0 373.6 307.0 119.3 23,192
7 800.0 371.4 307.6 121.0 23,192
8 800.0 370.6 309.0 120.4 23,192
9 800.0 369.6 309.7 120.7 23,192
10 800.0 368.9 310.4 120.6 23,192

Iteration Total Generation P1 P2 P3 Cost
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Newton’s Method

� The solution process can be taken one step further
� observe that the aim is to always drive the gradient to zero

� since this is just a vector function, Newton’s method finds the 
correction that exactly drives the gradient to zero

� Review of Newton’s method
� suppose it is desired to drive the function g(x) to zero

� the first two terms of the Taylor’s series suggest the following

� the objective function g(x) is defined as:

� then the Jacobian is: 
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Newton’s Method

� the adjustment at each iteration step is

� if the function g is the gradient vector ∇Lx, then

� For economic dispatch problems:

and

� note that in general, one Newton step solves for a correction that 
is closer to the minimum than would the gradient method
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Newton’s Method

� Example
� solve the previous economic dispatch problem example using 

the Newton’s method
� the gradient function is the same 

as in the first example
� let the initial value of 

λ be equal to zero

� the Hessian matrix 
takes the following form:

� the initial generation values
are also the same as in the 
first example 
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% Example 3G
gendata = [ 1683  23.76  0.004686

930  23.55  0.00582
234  23.70  0.01446 ];

power = [ 300, 200, 300 ];
Pload = 800;
% form H
n = length( gendata );
H = zeros(n+1,n+1);
for i = 1 : n

H(i,i) = gendata(i,3) * 2;
H(i,n+1) = -1, H(n+1,i) = -1; end

x0 = zeros(n+1,1);
x0(1:n,1) = transpose( power );
% calculate the gradient and Hessian matrices
for kk = 1 : 10

disp(kk)
gradient = zeros(n+1,1);
gradient(n+1,1) = Pload;
for i = 1 : n

gradient(i,1) = gendata(i,2) + 2 * gendata(i,3) * x0( i,1) - x0(n+1,1);
gradient(n+1,1) = gradient(n+1,1) - x0(i,1); end

dx = H \ gradient;
cost = 0;
for i = 1 : n

cost = cost + gendata(i,1) + gendata(i,2) * x0(i) + ge ndata(i,3) * x0(i) * x0(i); end
disp( [x0', cost/1000] )
x0 = x0 - dx;

end   

Newton’s Method

� Example
� Matlab program to perform the

Newton’s method
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Newton’s Method

� Example
� the progress of the gradient search is shown in the table below

� note the quick convergence to a solution

� compare with the solution of the previous example

1 0.00 800.0 300.0 200.0 300.0 23,751
2 27.19 800.0 366.3 313.0 120.7 23,192
3 27.19 800.0 366.3 313.0 120.7 23,192
4 27.19 800.0 366.3 313.0 120.7 23,192

Iteration λλλλ Total Generation P1 P2 P3 Cost


