EEL 6266 Power System Operation and Control

Chapter 3 Numerical Methods for Economic Dispatch

- The solution to the optimal dispatch can be approached by graphical methods
 - plot the incremental cost characteristics for each generator
 - the operating points must have minimum cost and satisfy load
 - that is, find an incremental cost rate, λ that meets the demand P_R
 - graphically:

- An iterative process
 - assume an incremental cost rate λ and find the sum of the power outputs for this rate
 - the first estimate will be incorrect
 - if the total power output is too low, increase the λ value, or if too high, decrease the λ value
 - with two solutions, a closer value of total power can be extrapolated or interpolated
 - the steps are repeated until the desired output is reached

Lambda projection

- This procedure can be adopted for a computer implementation
 - the implementation of the power output calculation is rather independent of the solution method
 - each generator output could be solved by a different method
 - as an iterative procedure, a stopping criterion must be established
 - two general stopping rules are appropriate for this application
 - total output power is within a specified tolerance of the load demand
 - iteration loop count exceeds a maximum value

- Example
 - consider the use of cubic functions to represent the inputoutput characteristics of generating plants H (MBtu/h) = A + BP + CP² + DP³ (P in MW)
 - for three generating units, find the optimum schedule for a 2500 MW load demand using the lambda-iteration method
 - generator characteristics:

	Α	В	С	D	P _{max}	P _{min}
Unit 1	749.55	6.95	9.68×10 ⁻⁴	1.27×10 ⁻⁷	320	800
Unit 2	1285.0	7.051	7.375×10 ⁻⁴	6.453×10 ⁻⁸	300	1200
Unit 3	1531.0	6.531	1.04×10 ⁻³	9.98 ×10 ⁻⁸	275	1100

- assume that the fuel cost to be \$1/MBtu
- set the value of λ on the second iteration at 10% above or below the starting value depending on the sign of the error

- Example
 - initial iteration: $\lambda_{\text{start}} = 8.0$
 - incremental cost functions
 - $\lambda = dF_1/dP_1 = 6.95 + 2(9.68 \times 10^{-4})P_1 + 3(1.27 \times 10^{-7})P_1^2$ $\lambda = dF_2/dP_2 = 7.051 + 2(7.375 \times 10^{-4})P_2 + 3(6.453 \times 10^{-8})P_2^2$ $\lambda = dF_3/dP_3 = 6.531 + 2(1.04 \times 10^{-3})P_3 + 3(9.98 \times 10^{-8})P_3^2$
 - find the roots of the three incremental cost functions at $\lambda = 8.0$
 - $P_1 = (-5575.6, 494.3), P_2 = (-8215.9, 596.7), P_3 = (-7593.4, 646.2)$
 - use only the positive values within the range of the generator upper and lower output limits
 - calculate the error

e = 2500 - (494.3) - (596.7) - (646.2) = 762.9 MW/h

• with a positive error, set second λ at 10% above λ_{start} : $\lambda^{[2]} = 8.8$

- Example
 - second iteration: $\lambda^{[2]} = 8.8$
 - find the roots of the three incremental cost functions at $\lambda = 8.8$
 - $P_1 = (-5904, 822.5), P_2 = (-8662, 1043.0), P_3 = (-7906, 958.6)$
 - calculate the error

$$e = 2500 - (822.5) - (1043) - (958.6) = -324.0 \text{ MW/h}$$

- error out of tolerance
- project λ

$$\lambda^{[3]} = \frac{\lambda^{[2]} - \lambda^{[1]}}{e^{[1]} - e^{[2]}} \left(e^{[2]} \right) + \lambda^{[2]} = \frac{8.8 - 8.0}{762.9 + 324.0} \left(-324.0 \right) + 8.8 = 8.5615$$

• continue with third iteration

• Example

results of all iterations

Iteration	λ.	Total Generation	P ₁	P ₂	P ₃
1	8.0	1737.2	494.3	596.7	646.2
2	8.8	2824.1	822.5	1043.0	958.6
3	8.561	5 2510.2	728.1	914.3	867.8
4	8.553	7 2499.9	725.0	910.1	864.8

- Issues
 - under some initial starting points, the lambda-iteration approach exhibits an oscillatory behavior, resulting in a nonconverging solution
 - try the example again with a starting point of $\lambda_{start} = 10.0$

- Suppose that the cost function is more complex
 - example: $F(P) = a_0 + a_1 P + a_2 P^{2.5} + a_3 e^{\frac{P a_4}{a_5}}$
 - the lambda search technique requires the solution of the generator output power for a given incremental cost
 - possible with a quadratic function or piecewise linear function
 - hard for complicated functions; we need a more basic method
- The gradient search method uses the principle that the minimum is found by taking steps in a downward direction
 - from any starting point, x^[0], one finds the direction of steepest descent by computing the negative gradient of *F* at x^[0]: −∇*F*(x^[0]

$$\nabla F(x^{[0]}) = -\begin{bmatrix} \frac{\partial F}{dx_1} \\ \vdots \\ \frac{\partial F}{dx_n} \end{bmatrix}$$

- to move in the direction of maximum descent from $x^{[0]}$ to $x^{[1]}$: $x^{[1]} = x^{[0]} - \alpha \nabla f(x^{[0]})$
 - α is a scalar that when properly selected guarantees that the process converges
 - the best value of α must be determined by experiment
- for the economic dispatch $L = \sum_{i=1}^{N} F_i(P_i) + \lambda \left(P_{load} - \sum_{i=1}^{N} P_i \right)$ problem, the gradient technique is applied directly to the Lagrange function • the gradient function is: $\nabla L = \begin{bmatrix} \partial L/\partial P_1 \\ \vdots \\ \partial L/\partial P_N \\ \partial L/\partial \lambda \end{bmatrix} = \begin{bmatrix} (d/dP_1)F_1(P_1) - \lambda \\ \vdots \\ (d/dP_N)F_N(P_N) - \lambda \\ P_{load} - \sum_{i=1}^N P_i \end{bmatrix}$
- - this formulation does not enforce the constraint function

- Example
 - solve the economic dispatch for a total load of 800 MW using these generator cost functions

 $F_1(P_1) = 1683 + 23.76P_1 + 0.004686P_1^2$

 $F_2(P_2) = 930 + 23.55P_2 + 0.00582P_2^2$

 $F_3(P_3) = 234 + 23.70P_3 + 0.01446P_3^2$

• use $\alpha = 100\%$ and starting from

 $P_1^{[0]} = 300 \text{ MW}, P_2^{[0]} = 200 \text{ MW}, \text{ and } P_3^{[0]} = 300 \text{ MW}$

• λ is initially set to the average of the incremental costs of the generators at their starting generation values:

$$\mathcal{X}^{[0]} = \frac{1}{3} \sum_{i=1}^{3} \frac{\mathrm{d}}{\mathrm{d}P_{1}} F_{i} \left(P_{i}^{[0]} \right) = \frac{1}{3} \begin{bmatrix} 23.76 + 0.009372(300) + \\ 23.55 + 0.01164(200) + \\ 23.70 + 0.02892(300) \end{bmatrix} = 28.27$$

```
• Example
% Example 3E
gendata = [ 1683 23.76 0.004686
            930 23.55 0.00582

    Matlab program to perform the

            234 23.70 0.01446 ];
power = [ 300, 200, 300 ];
                                                gradient search method
alpha = 1.00, Pload = 800;
% find lambda0
n = length( gendata );
lambda0 = 0;
for i = 1 : n
   lambda0 = lambda0 + gendata(i,2) + 2 * gendata(i,3) * power(i);
end
lambda0 = lambda0 / 3
clear x0
x0 = power, x0(n+1) = lambda0;
% calculate the gradient
for kk = 1 : 10
   disp(kk)
   clear gradient
   gradient = [];
   Pgen = 0, cost = 0;
   for i = 1 : n
     gradient(i) = gendata(i,2) + 2 * gendata(i,3) * x0(i) - x0(n+1);
     Pgen = Pgen + x0(i);
     cost = cost + qendata(i,1) + qendata(i,2) * x0(i) + qendata(i,3) * x0(i) * x0(i);
   end
   gradient(n+1) = Pload - Pgen;
   disp( [x0, Pgen, cost/1000] )
  x1 = x0 - gradient * alpha;
  x0 = x1i
end
```

• Example

the progress of the gradient search is shown in the table below

Iteration	λ	Total Generation	P ₁	P ₂	P ₃	Cost
1	28.28	800.0	300.0	200.0	300.0	23,751
2	28.28	800.0	301.7	202.4	295.9	23,726
3	28.28	800.1	303.4	204.8	291.9	23,704
4	28.35	800.2	305.1	207.1	288.1	23,685
5	28.57	800.7	306.8	209.5	284.4	23,676
6	29.23	801.8	308.7	212.1	281.0	23,687
7	31.06	805.0	311.3	215.3	278.4	23,757
8	36.08	813.7	315.7	220.3	277.7	23,983
9	49.79	837.4	325.1	230.3	282.1	24,632
10	87.19	901.9	348.0	253.8	300.0	26,449

note that there is no convergence to a solution

- A simple variation
 - realize that one of the generators is always a dependent variable and remove it from the problem
 - for example, picking P_3 , then $P_3 = 800 P_1 P_2$
 - then the total cost function becomes $C = F_1(P_1) + F_2(P_2) + F_3(800 - P_1 - P_2)$
 - this function stands by itself as a function of two variables with no load-generation balance constraint $\begin{bmatrix} d \\ d \end{bmatrix} \begin{bmatrix} dE \\ dE \end{bmatrix} \begin{bmatrix} dE \\ dE \end{bmatrix}$
 - the cost can be minimized by a gradient method such as:

$$\nabla C = \begin{bmatrix} \frac{\mathrm{d}}{\mathrm{d}P_1} C \\ \frac{\mathrm{d}}{\mathrm{d}P_2} C \end{bmatrix} = \begin{bmatrix} \frac{\mathrm{d}F_1}{\mathrm{d}P_1} - \frac{\mathrm{d}F_3}{\mathrm{d}P_1} \\ \frac{\mathrm{d}F_2}{\mathrm{d}P_2} - \frac{\mathrm{d}F_3}{\mathrm{d}P_2} \end{bmatrix}$$

 note that the gradient goes to zero when the incremental cost at generator 3 is equal to that at generators 1 and 2

- A simple variation
 - the gradient steps are performed in like manner as before $x^{[1]} = x^{[0]} \nabla C \cdot \alpha$

and

$$x = \begin{bmatrix} P_1 \\ P_2 \end{bmatrix}$$

- Example
 - rework the previous example with the reduced gradient

$$\nabla C = \begin{bmatrix} \frac{\mathrm{d}F_1}{\mathrm{d}P_1} - \frac{\mathrm{d}F_3}{\mathrm{d}P_1} \\ \frac{\mathrm{d}F_2}{\mathrm{d}P_2} - \frac{\mathrm{d}F_3}{\mathrm{d}P_2} \end{bmatrix} = \begin{bmatrix} 23.76 + 2(0.004686)P_1 - 23.70 - 2(0.01446)(800 - P_1 - P_2) \\ 23.55 + 2(0.00582)P_2 - 23.70 - 2(0.01446)(800 - P_1 - P_2) \end{bmatrix}$$

• α is set to 20.00

```
• Example
% Example 3F
gendata = [ 1683 23.76 0.004686

    Matlab program to perform the

            930 23.55 0.00582
            234 23.70 0.01446 ];
                                                  simplified gradient search method
power = [ 300, 200, 300 ];
alpha = 20.00;
Pload = 800;
% form lambda0
n = length( gendata );
clear x0
x0 = power(1:n-1);
% calculate the gradient
for kk = 1 : 10
   disp(kk)
   clear gradient
   gradient = [];
   Pn = Pload;
   for i = 1 : n - 1
     Pn = Pn - x0(i);
   end
  cost = gendata(n,1) + gendata(n,2) * Pn + gendata(n,3) * Pn * Pn;
   for i = 1 : n - 1
     gradient(i) = gendata(i,2) + 2 * gendata(i,3) * x0(i) - gendata(n,2) - 2 * gendata(n,3) * Pn;
      cost = cost + gendata(i,1) + gendata(i,2) * x0(i) + gendata(i,3) * x0(i) * x0(i);
   end
  disp( [x0, Pn, 800, cost/1000] )
   x1 = x0 - gradient * alpha;
  x0 = x1;
```

```
end
```

• Example

 the progress of the simplified gradient search is shown in the table below

Iteration	Total Generation	P ₁	P ₂	P ₃	Cost
1	800.0	300.0	200.0	300.0	23,751
2	800.0	416.1	330.0	54.0	23,269
3	800.0	368.1	287.4	144.5	23,204
4	800.0	381.5	307.1	111.4	23,194
5	800.0	373.3	303.0	123.7	23,193
6	800.0	373.6	307.0	119.3	23,192
7	800.0	371.4	307.6	121.0	23,192
8	800.0	370.6	309.0	120.4	23,192
9	800.0	369.6	309.7	120.7	23,192
10	800.0	368.9	310.4	120.6	23,192

note that there is a solution convergence by the 6th iteration

- The solution process can be taken one step further
 - observe that the aim is to always drive the gradient to zero

 $\nabla L_{r} = 0$

- since this is just a vector function, Newton's method finds the correction that exactly drives the gradient to zero
- Review of Newton's method
 - suppose it is desired to drive the function g(x) to zero
 - the first two terms of the Taylor's series suggest the following $g(x + \Delta x) = g(x) + [g'(x)]\Delta x = 0$ • the objective function g(x) is defined as: $g(x) = \begin{bmatrix} g_1(x_1, \dots, x_n) \\ \vdots \\ g_n(x_1, \dots, x_n) \end{bmatrix}$

blands:

$$g'(x) = \begin{bmatrix} \frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_n}{\partial x_1} & \cdots & \frac{\partial g_n}{\partial x_n} \end{bmatrix}$$

- the adjustment at each iteration step is $\Delta x = -[g'(x)]^{-1}g(x)$
- if the function g is the gradient vector ∇L_x , then

$$\Delta x = -\left[\frac{\partial}{\partial x}\nabla L_x\right]^{-1}\Delta L$$

• For economic dispatch problems: $L = \sum_{i=1}^{N} F_i(P_i) + \lambda \left(P_{load} - \sum_{i=1}^{N} P_i \right)$

and
$$\frac{\partial}{\partial x} \nabla L_x = \begin{vmatrix} \overline{dx_1^2} & \overline{dx_1 dx_2} & \cdots \\ \frac{d^2 L}{dx_2 dx_1} & \frac{d^2 L}{dx_2^2} & \cdots \\ \frac{d^2 L}{d\lambda dx_1} & \frac{d^2 L}{d\lambda dx_2} & \cdots \end{vmatrix}$$

• note that in general, one Newton step solves for a correction that is closer to the minimum than would the gradient method

- Example
 - solve the previous economic dispatch problem example using the Newton's method
 - the gradient function is the same as in the first example
 - let the initial value of
 λ be equal to zero
 - the Hessian matrix takes the following form:

$$[H] = \begin{bmatrix} \frac{d^2 F_1}{dP_1^2} & 0 & 0 & -1 \\ 0 & \frac{d^2 F_2}{dP_2^2} & 0 & -1 \\ 0 & 0 & \frac{d^2 F_3}{dP_2^2} & -1 \\ -1 & -1 & -1 & 0 \end{bmatrix}$$

• the initial generation values are also the same as in the first example

```
Example
                                          % Example 3G
gendata = [ 1683 23.76 0.004686

    Matlab program to perform the

             930 23.55 0.00582
             234 23.70 0.01446 ];
                                                  Newton's method
power = [ 300, 200, 300 ];
Pload = 800;
% form H
n = length( gendata );
H = zeros(n+1,n+1);
for i = 1 : n
   H(i,i) = qendata(i,3) * 2;
  H(i,n+1) = -1, H(n+1,i) = -1; end
x0 = zeros(n+1,1);
x0(1:n,1) = transpose(power);
% calculate the gradient and Hessian matrices
for kk = 1 : 10
   disp(kk)
   gradient = zeros(n+1,1);
   qradient(n+1,1) = Pload;
   for i = 1 : n
      gradient(i,1) = gendata(i,2) + 2 * gendata(i,3) * x0(i,1) - x0(n+1,1);
      gradient(n+1,1) = gradient(n+1,1) - x0(i,1); end
   dx = H \setminus qradient;
   cost = 0;
   for i = 1 : n
     cost = cost + gendata(i,1) + gendata(i,2) * x0(i) + gendata(i,3) * x0(i) * x0(i); end
   disp( [x0', cost/1000] )
   x0 = x0 - dxi
end
```

- Example
 - the progress of the gradient search is shown in the table below

Iteration	λ	Total Generation	P ₁	P ₂	P ₃	Cost
1	0.00	800.0	300.0	200.0	300.0	23,751
2	27.19	800.0	366.3	313.0	120.7	23,192
3	27.19	800.0	366.3	313.0	120.7	23,192
4	27.19	800.0	366.3	313.0	120.7	23,192

- note the quick convergence to a solution
- compare with the solution of the previous example