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2D Range trees

Degenerate cases
Range queries

Database queries

A database query may ask for
all employees with age
between a1 and a2, and salary
between s1 and s2

date of birth

salary

19,500,000 19,559,999

G. Ometer
born: Aug 16, 1954
salary: $3,500
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2D Range trees

Degenerate cases
Range queries

Result

Theorem: A set of n points on the real line can be
preprocessed in O(n logn) time into a data structure of O(n)
size so that any 1D range [counting] query can be answered in
O(logn [+k]) time
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2D Range trees

Degenerate cases
Range queries

Result

Theorem: A set of n points in the plane can be preprocessed
in O(n logn) time into a data structure of O(n) size so that
any 2D range query can be answered in O(

√
n+ k) time,

where k is the number of answers reported

For range counting queries, we need O(
√

n) time
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Faster queries

Can we achieve O(logn [+k]) query time?
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Degenerate cases
Range queries

Faster queries

If the corners of the query rectangle fall in specific cells of the
grid, the answer is fixed (even for lower left and upper right
corner)
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2D Range trees

Degenerate cases
Range queries

Faster queries

Build a tree so that the leaves correspond to the different
possible query rectangle types (corners in same cells of grid),
and with each leaf, store all answers (points) [or: the count]

Build a tree on the different x-coordinates (to search with left
side of R), in each of the leaves, build a tree on the different
x-coordinates (to search with the right side of R), in each of
the leaves, . . .
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Faster queries

n

n

n

n
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2D Range trees

Degenerate cases
Range queries

Faster queries

Question: What are the storage requirements of this
structure, and what is the query time?
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Introduction
2D Range trees

Degenerate cases
Range queries

Faster queries

Recall the 1D range tree and range query:

Two search paths (grey nodes)

Subtrees in between have answers exclusively (black)
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Degenerate cases
Range queries

Example 1D range query

A 1-dimensional range query with [25, 90]

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49
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Degenerate cases
Range queries

Example 1D range query

A 1-dimensional range query with [61, 90]

3 10 19 23 30 37 59 62 70 80

893 19

10

30 59 70

62

93

89

8023

49

93 97

37

49

split node
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Degenerate cases
Range queries

Examining 1D range queries

Observation: Ignoring the search path leaves, all answers are
jointly represented by the highest nodes strictly between the
two search paths

Question: How many highest nodes between the search
paths can there be?
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2D Range trees

Degenerate cases
Range queries

Examining 1D range queries

For any 1D range query, we can identify O(logn) nodes that
together represent all answers to a 1D range query
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2D Range trees

Degenerate cases
Range queries

Toward 2D range queries

For any 2d range query, we can identify O(logn) nodes that
together represent all points that have a correct first
coordinate
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Range queries

Toward 2D range queries

(3, 8)(1, 5) (4, 2) (5, 9) (6, 7) (8, 1)(7, 3) (9, 4)

Computational Geometry Lecture 8: Range trees



Introduction
2D Range trees

Degenerate cases
Range queries

Toward 2D range queries
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Introduction
2D Range trees

Degenerate cases
Range queries

Toward 2D range queries

(3, 8)(1, 5) (4, 2) (5, 9) (6, 7) (8, 1)(7, 3) (9, 4)

data structure
for searching on
y-coordinate
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Degenerate cases
Range queries

Toward 2D range queries

(3, 8)(1, 5) (4, 2) (5, 9) (6, 7) (8, 1)(7, 3) (9, 4)

(3, 8)

(1, 5)

(4, 2)

(5, 9)

(6, 7)

(8, 1)

(7, 3)

(9, 4)
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Introduction
2D Range trees

Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

2D range trees

Every internal node stores a whole tree in an associated
structure, on y-coordinate

Question: How much storage does this take?
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Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

Storage of2D range trees

To analyze storage, two arguments can be used:

By level: On each level, any point is stored exactly once.
So all associated trees on one level together have O(n)
size

By point: For any point, it is stored in the associated
structures of its search path. So it is stored in O(logn) of
them
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Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

Construction algorithm

Algorithm Build2DRangeTree(P)
1. Construct the associated structure: Build a binary search

tree Tassoc on the set Py of y-coordinates in P
2. if P contains only one point
3. then Create a leaf ν storing this point, and make

Tassoc the associated structure of ν .
4. else Split P into Pleft and Pright, the subsets ≤ and >

the median x-coordinate xmid
5. νleft ← Build2DRangeTree(Pleft)
6. νright ← Build2DRangeTree(Pright)
7. Create a node ν storing xmid, make νleft the left

child of ν , make νright the right child of ν , and
make Tassoc the associated structure of ν

8. return ν
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Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

Efficiency of construction

The construction algorithm takes O(n log2 n) time

T(1) = O(1)

T(n) = 2 ·T(n/2)+O(n logn)

which solves to O(n log2 n) time
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Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

Efficiency of construction

Suppose we pre-sort P on y-coordinate, and whenever we split
P into Pleft and Pright, we keep the y-order in both subsets

For a sorted set, the associated structure can be built in linear
time
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2D Range trees

Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

Efficiency of construction

The adapted construction algorithm takes O(n logn) time

T(1) = O(1)

T(n) = 2 ·T(n/2)+O(n)

which solves to O(n logn) time
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Construction
Querying
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Fractional cascading

2D range queries

How are queries performed and why are they correct?

Are we sure that each answer is found?

Are we sure that the same point is found only once?
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2D range queries

ν

µ µ′ p

p

p

p
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Query algorithm

Algorithm 2DRangeQuery(T, [x : x′]× [y : y′])
1. νsplit ←FindSplitNode(T,x,x′)
2. if νsplit is a leaf
3. then report the point stored at νsplit, if an answer
4. else ν ← lc(νsplit)
5. while ν is not a leaf
6. do if x≤ xν

7. then 1DRangeQ(Tassoc(rc(ν)), [y : y′])
8. ν ← lc(ν)
9. else ν ← rc(ν)
10. Check if the point stored at ν must be reported.
11. Similarly, follow the path from rc(νsplit) to x′ . . .
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Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

2D range query time

Question: How much time does a 2D range query take?

Subquestions: In how many associated structures do we
search? How much time does each such search take?
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2D range queries

ν

µ µ′
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Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

2D range query efficiency

We search in O(logn) associated structures to perform a 1D
range query; at most two per level of the main tree

The query time is O(logn)×O(logm+ k′), or

∑
ν

O(lognν + kν)

where ∑kν = k the number of points reported
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Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

2D range query efficiency

Use the concept of grey and black nodes again:
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Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

2D range query efficiency

The number of grey nodes is O(log2 n)

The number of black nodes is O(k) if k points are reported

The query time is O(log2 n+ k), where k is the size of the
output

Computational Geometry Lecture 8: Range trees
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Degenerate cases

Construction
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Higher dimensions
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Result

Theorem: A set of n points in the plane can be preprocessed
in O(n logn) time into a data structure of O(n logn) size so
that any 2D range query can be answered in O(log2 n+ k)
time, where k is the number of answers reported

Recall that a kd-tree has O(n) size and answers queries in
O(
√

n+ k) time
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Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

Efficiency

n logn log2 n
√

n

16 4 16 4
64 6 36 8

256 8 64 16
1024 10 100 32
4096 12 144 64

16384 14 196 128
65536 16 256 256

1M 20 400 1K
16M 24 576 4K
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2D Range trees

Degenerate cases

Construction
Querying
Higher dimensions
Fractional cascading

2D range query efficiency

Question: How about range counting queries?
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Higher dimensional range trees

A d-dimensional range tree has
a main tree which is a
one-dimensional balanced
binary search tree on the first
coordinate, where every node
has a pointer to an associated
structure that is a
(d−1)-dimensional range tree
on the other coordinates
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Fractional cascading

Storage

S1(n) = O(n) for all n

Sd(1) = O(1) for all d

Sd(n)≤ 2 ·Sd(n/2)+Sd−1(n) for d ≥ 2

This solves to Sd(n) = O(n logd n)
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Construction
Querying
Higher dimensions
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Query time

The number of grey nodes Gd(n) satisfies:

G1(n) = O(logn) for all n

Gd(1) = O(1) for all d

Gd(n)≤ 2 · logn+2 · logn ·Gd−1(n) for d ≥ 2

This solves to Gd(n) = O(logd n)

Computational Geometry Lecture 8: Range trees
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Degenerate cases

Construction
Querying
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Fractional cascading

Result

Theorem: A set of n points in the plane can be preprocessed
in O(n logd−1 n) time into a data structure of O(n logd−1 n)
size so that any d-dimensional range query can be answered in
O(logd n+k) time, where k is the number of answers reported

Recall that a kd-tree has O(n) size and answers queries in
O(n1−1/d + k) time
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Construction
Querying
Higher dimensions
Fractional cascading

Comparison for d = 4

n logn log4 n n3/4

1024 10 10,000 181
65,536 16 65,536 4096

1M 20 160,000 32,768
1G 30 810,000 5,931,641
1T 40 2,560,000 1G
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Construction
Querying
Higher dimensions
Fractional cascading

Improving the query time

We can improve the query time of a 2D range tree from
O(log2 n) to O(logn) by a technique called fractional
cascading

This automatically lowers the query time in d dimensions to
O(logd−1 n) time

Computational Geometry Lecture 8: Range trees
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Improving the query time

The idea illustrated best by a different query problem:

Suppose that we have a collection of sets S1, . . . ,Sm, where
|S1|= n and where Si+1 ⊆ Si

We want a data structure that can report for a query
number x, the smallest value ≥ x in all sets S1, . . . ,Sm

Computational Geometry Lecture 8: Range trees
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Improving the query time

1 2 3 5 8 13 21 34 55

1 3 5 8 13 21 34 55

1 3 13 34 55

3 34 55

21

S1

S2

S3

S4
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Improving the query time

Suppose that we have a collection of sets S1, . . . ,Sm, where
|S1|= n and where Si+1 ⊆ Si

We want a data structure that can report for a query
number x, the smallest value ≥ x in all sets S1, . . . ,Sm

This query problem can be solved in O(logn+m) time instead
of O(m · logn) time
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Construction
Querying
Higher dimensions
Fractional cascading

Improving the query time

Can we do something similar for m 1-dimensional range
queries on m sets S1, . . . ,Sm?

We hope to get a query time of O(logn+m+ k) with k the
total number of points reported
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Improving the query time

1 2 3 5 8 13 21 34 55

1 3 5 8 13 21 34 55

1 3 13 34 55

3 34 55
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Improving the query time

1 2 3 5 8 13 21 34 55

1 3 5 8 13 21 34 55

1 3 13 34 55

3 34 55
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Improving the query time

1 2 3 5 8 13 21 34 55

1 3 5 8 13 21 34 55

1 3 13 34 55

3 34 55

21

[6,35]

S1

S2

S3

S4
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Fractional cascading

Now we do “the same” on the associated structures of a
2-dimensional range tree

Note that in every associated structure, we search with the
same values y and y′

Replace all associated structure except for the root by a
linked list

For every list element (and leaf of the associated
structure of the root), store two pointers to the
appropriate list elements in the lists of the left child and
of the right child
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Fractional cascading
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Fractional cascading

(2, 19)

(5, 80)

(7, 10)

(8, 37)

(12, 3)

(15, 99)

(17, 62) (21, 49)

(33, 30)

(41, 95)

(52, 23)

(58, 59)

(67, 89)

(93, 70)

2

5 7 8 12 15

17

21 33 41 52

58

67

17

8

155

7 12 21 41

33

52

58 67

932
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Fractional cascading

3 99

10 19 37 80

30 4962

3 10 19 23 30 37 49 59 62 70 80 89 95 99

89705923 9530 49803 9962371910

3 9962 89705923 9530 49

897023 9510 3719 80

70892395371019

59

4980 3 3099
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Fractional cascading

(2, 19)

(5, 80)

(7, 10)

(8, 37)

(12, 3)

(15, 99)

(17, 62) (21, 49)

(33, 30)

(41, 95)

(52, 23)

(58, 59)

(67, 89)

(93, 70)

2

5 7 8 12 15

17

21 33 41 52

58

67

17

8

155

7 12 21 41

33

52

58 67

932

[4, 58]× [19, 65]
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Fractional cascading

Instead of doing a 1D range query on the associated structure
of some node ν , we find the leaf where the search to y would
end in O(1) time via the direct pointer in the associated
structure in the parent of ν

The number of grey nodes reduces to O(logn)
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Construction
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Result

Theorem: A set of n points in the plane can be preprocessed
in O(n logd−1 n) time into a data structure of O(n logd−1 n)
size so that any d-dimensional range query can be answered in
O(logd−1 n+ k) time, where k is the number of answers
reported

Recall that a kd-tree has O(n) size and answers queries in
O(n1−1/d + k) time
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Degenerate cases

Both for kd-trees and for range
trees we have to take care of
multiple points with the same
x- or y-coordinate
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Degenerate cases

Both for kd-trees and for range
trees we have to take care of
multiple points with the same
x- or y-coordinate
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Degenerate cases

Treat a point p = (px,py) with two reals as coordinates as a
point with two composite numbers as coordinates

A composite number is a pair of reals, denoted (a|b)

We let (a|b) < (c|d) iff a < c or ( a = c and b < d ); this
defines a total order on composite numbers
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Degenerate cases

The point p = (px,py) becomes ((px|py) , (py|px)). Then no
two points have the same first or second coordinate

The median x-coordinate or y-coordinate is a composite
number

The query range [x : x′]× [y : y′] becomes

[(x|−∞) : (x′|+∞)]× [(y|−∞) : (y′|+∞)]

We have (px,py) ∈ [x : x′]× [y : y′] iff

((px|py) , (py|px)) ∈ [(x|−∞) : (x′|+∞)]× [(y|−∞) : (y′|+∞)]

Computational Geometry Lecture 8: Range trees
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