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A Creed for Modeling

To make sense of an observation, everybody needs a model …
whether he or she knows it or not.

It is difficult to imagine another method
that so effectively fosters clear thinking about a

system than the use of a model written in the language of algebra.

v



Foreword

The title of Marc Kéry’s book, Introduction to WinBUGS for Ecologists,
provides some good hints about its content. From this title, we might
guess that the book focuses on a piece of software, WinBUGS, that the
treatment will not presuppose extensive knowledge of this software,
and that the focus will be on the kinds of questions and inference pro-
blems that are faced by scientists who do ecology. So why WinBUGS
and why ecologists? Of course, the most basic answer to this question is
that Marc Kéry is an ecologist who has found WinBUGS to be extremely
useful in his own work. But the important question then becomes, “Is
Marc correct that WinBUGS can become an important tool for other eco-
logists?” The ultimate utility of this book will depend on the answer to this
question, so I will try to develop a response here.

WinBUGS is a flexible, user-friendly software package that permits
Bayesian inference from data, based on user-defined statistical models.
Because the models must be completely specified by the user, WinBUGS
may not be viewed by some as being as user-friendly as older statistical
software packages that provide classical inference via methods such as
maximum likelihood. So why should an ecologist invest the extra time
and effort to learn WinBUGS? I can think of at least two reasons. The
first is that all inference is based on underlying models (a basic constraint
of the human condition). In the case of ecological data, the models repre-
sent caricatures of the processes that underlie both the data collection
methods and the dynamics of ecological interest. I confess to knowing
from personal experience that it is possible to obtain and “interpret”
results of analyses from a standard statistical software package, without
properly understanding the underlying model(s) on which inference was
based. In contrast, having to specify a model in WinBUGS insures a basic
understanding that need not accompany use of many common statistical
software packages. So the necessity of specifying models, and thus of
thinking clearly about underlying sampling and ecological processes, pro-
vide a good reason for ecologists to learn and use WinBUGS.

A second reason is that ecological data are typically generated by multi-
ple processes, each of which induces variation. Frequently, such multiple
sources of variation do not correspond closely to models available in more
classical statistical software packages. Through my career as a quantitative
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ecologist, hundreds of field ecologists have brought me data sets asking
for “standard” analyses, suggesting that I must have seen many similar
data sets and that analysis of their data should thus be relatively quick
and easy. However, despite these claims, I can’t recall ever having seen
a data set for which a standard, off-the-shelf analysis was strictly appro-
priate. There are always aspects of either the studied system or, more typi-
cally, the data collection process that requires nonstandard models. It
was noted above that most ecological data sets are generated by at least
two classes of process: ecological and sampling. The ecological process
generates the true patterns that our studies are designed to investigate,
and conditional on this truth, the sampling process generates the data
that we actually obtain. The data are thus generated by multiple processes
that are best viewed and modeled as hierarchical. Indeed, hierarchical
models appropriate for such data are readily constructed in WinBUGS,
and hierarchical Bayes provides a natural approach to inference for such
data. Relative ease of implementation for complex hierarchical models is a
compelling reason for ecologists to become proficient with WinBUGS.

For many problems, use of WinBUGS to implement a complex model
can result in substantial savings of time and effort. I am always impressed
by the small amount of WinBUGS code needed to provide inference
for capture–recapture models that are represented by extremely
complicated-looking likelihood functions. However, even more important
than problems that can be solved more easily using WinBUGS than using
traditional likelihood approaches are the problems that biologists would
be unable to solve using these traditional approaches. For example,
natural variation among individual organisms of a species will always
exist for any characteristic under investigation. Such variation is pervasive
and provides the raw material for Darwinian evolution by natural selec-
tion, the central guiding paradigm of all biological sciences. Even within
groups of animals defined by age, sex, size, and other relevant covariates,
ecologists still expect variation among individuals in virtually any attri-
bute of interest. In capture–recapture modeling, for example, we would
like to develop models capable of accounting for variation in capture
probabilities and survival probabilities among individuals within any
defined demographic group. However, in the absence of individual
covariates, it is simply not possible to estimate a separate capture and sur-
vival probability for each individual animal. But we can consider a distri-
bution of such probabilities across individuals and attempt to estimate
characteristics of that distribution. In WinBUGS, we can develop hierarch-
ical models in which among-individual variation is treated as a random
effect, with this portion of the inference problem becoming one of estimat-
ing the parameters of the distributions that describe this individual varia-
tion. In contrast, I (and most ecologists) would not know how to begin to
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construct even moderately complex capture–recapture models with
random individual effects using a likelihood framework. So WinBUGS
provides access to models and inferences that would be otherwise unap-
proachable for most ecological scientists.

I conclude that WinBUGS, specifically, and hierarchical Bayesian ana-
lysis, generally, are probably very good things for ecologists to learn.
However, we should still ask whether the book’s contents and Marc’s
tutorial writing style are likely to provide readers with an adequate under-
standing of this material. My answer to this question is a resounding
“Yes!” I especially like Marc’s use of simulation to develop the data sets
used in exercises and analyses throughout the book, as this approach
effectively exploits the close connection between data analysis and genera-
tion. Statistical models are intended to be simplified representations of the
processes that generate real data, and the repeated interplay between
simulation and analysis provides an extremely effective means of teaching
the ability to develop such models and understand the inferences that they
produce.

Finally, I like the selection of models that are explored in this book. The
bulk of the book focuses on general model classes that are used frequently
by ecologists, as well as by scientists in other disciplines: linear models,
generalized linear models, linear mixed models, and generalized linear
mixed models. The learn-by-example approach of simulating data sets
and analyzing them using both WinBUGS and classical approaches imple-
mented in R provide an effective way not only to teach WinBUGS but also
to provide a general understanding of these widely used classes of statis-
tical model. The two chapters dealing with specific classes of ecological
models, site occupancy models, and binomial mixture abundance models
then provide the reader with an appreciation of the need to model both
sampling and ecological processes in order to obtain reasonable inferences
using data produced by actual ecological sampling. Indeed, it is in the
development and application of models tailored to deal with specific eco-
logical sampling methods that the power and utility of WinBUGS are most
readily demonstrated.

However, I believe that the book, Introduction to WinBUGS for Ecologists,
is far too modest and does not capture the central reasons why ecologists
should read this book and work through the associated examples and
exercises. Most important, I believe that the ecologist who gives this
book a serious read will emerge with a good understanding of statistical
models as abstract representations of the various processes that give rise
to a data set. Such an understanding is basic to the development of infer-
ence models tailored to specific sampling and ecological scenarios. A bene-
fit that will accompany this general understanding is specific insights into
major classes of statistical models that are used in ecology and other areas
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of science. In addition, the tutorial development of models and analyses in
WinBUGS and R should leave the reader with the ability to implement
both standard and tailored models. I believe that it would be hard to over-
state the value of adding to an ecologist’s toolbox this ability to develop
and then implement models tailored to specific studies.

Jim Nichols
Patuxent Wildlife Research Center, Laurel, MD
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Preface

This book is a gentle introduction to applied Bayesian modeling for
ecologists using the highly acclaimed, free WinBUGS software, as run
from program R. The bulk of the book is formed by a very detailed yet,
I hope, enjoyable tutorial consisting of commented example analyses.
These form a progression from the trivially simple to the moderately com-
plex and cover linear, generalized linear (GLM), mixed, and generalized
linear mixed models (GLMMs). Along the way, a comprehensive and lar-
gely nonmathematical overview is given of these important model classes,
which represent the core of modern applied statistics and are those which
ecologists use most in their work. I provide complete R and WinBUGS
code for all analyses; this allows you to follow them step-by-step and in
the desired pace. Being an ecologist myself and having collaborated with
many ecologist colleagues, I am convinced that the large majority of us
best understands more complex statistical methods by first executing
worked examples step-by-step and then by modifying these template
analyses to fit their own data.

All analyses with WinBUGS are directly compared with analyses of the
same data using standard R functions such as lm(), glm(), and lmer().
Hence, I would hope that this book will appeal to most ecologists regard-
less of whether they ultimately choose a Bayesian or a classical mode of
inference for their analyses. In addition, the comparison of classical and
Bayesian analyses should help demystify the Bayesian approach to statis-
tical modeling. A key feature of this book is that all data sets are simulated
(=“assembled”) before analysis (=“disassembly”) and that fully commen-
ted R code is provided for both. Data simulation, along with the powerful,
yet intuitive model specification language in WinBUGS, represents a
unique way to truly understand that core of applied statistics in much
of ecology and other quantitative sciences, generalized linear models
(GLMs) and mixed models.

This book traces my own journey as a quantitative ecologist toward an
understanding of WinBUGS for Bayesian statistical modeling and of
GLMs and mixed models. Both the simulation of data sets and model fit-
ting in WinBUGS have been crucial for my own advancement in these
respects. The book grew out of the documentation for a 1-week course
that I teach at the graduate school for life sciences at the University of
Zürich, Switzerland, and elsewhere to similar audiences. Therefore, the
typical readership would be expected to be advanced undergraduate,
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graduate students, and researchers in ecology and other quantitative
sciences. To maximize your benefits, you should have some basic knowl-
edge in R computing and statistics at the level of the linear model (LM)
(i.e., analysis of variance and regression).

After three introductory chapters, normal LMs are dealt with in
Chapters 4–11. In Chapter 9 and especially Chapter 12, they are general-
ized to contain more than a single stochastic process, i.e., to the (normal)
linear mixed model (LMM). Chapter 13 introduces the GLM, i.e., the
extension of the normal LM to allow error distributions other than the
normal. Chapters 13–15 feature Poisson GLMs and Chapters 17–18 bino-
mial GLMs. Finally, the GLM, too, is generalized to contain additional
sources of random variation to become a GLMM in Chapter 16 for a Pois-
son example and in Chapter 19 for a binomial example. I strongly believe
that this step-up approach, where the simplest of all LMs, that “of the
mean” (Chapter 4), is made progressively more complex until we have
a GLMM, helps you to get a synthetic understanding of these model
classes, which have such a huge importance for applied statistics in ecol-
ogy and elsewhere.

The final two main chapters go one step further and showcase two
fairly novel and nonstandard versions of a GLMM. The first is the site-
occupancy model for species distributions (Chapter 20; MacKenzie et al.,
2002, 2003, 2006), and the second is the binomial (or N-) mixture model for
estimation and modeling of abundance (Chapter 21; Royle, 2004). These
models allow one to make inference about two pivotal quantities in
ecology: distribution and abundance of a species (Krebs, 2001). Impor-
tantly, these models fully account for the imperfect detection of occupied
sites and individuals, respectively. Arguably, imperfect detection is a hall-
mark of all ecological field studies. Hence, these models are extremely use-
ful for ecologists but owing to their relative novelty are not yet widely
known. Also, they are not usually described within the GLM framework,
but I believe that recognizing how they fit into the larger picture of linear
models is illuminating. The Bayesian analysis of these two models offers
clear benefits over that by maximum likelihood, for instance, in the ease
with which finite-sample inference is obtained (Royle and Kéry, 2007), but
also just heuristically, since these models are easier to understand when fit
in WinBUGS.

Owing to its gentle tutorial style, this book should be excellent to teach
yourself. I hope that you can learn much about Bayesian analysis using
WinBUGS and about linear statistical models and their generalizations
by simply reading it. However, the most effective way to do this obviously
is by sitting at a computer and working through all examples, as well as
by solving the exercises. Fairly often, I just give the code required to pro-
duce a certain output but do not show the actual result, so to fully grasp
what is happening, it is best to execute all code.
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If the book is used in a classroom setting and plenty of time is given to
the solving of exercises, then up to two weeks might be required to cover
all material. Alternatively, some chapters may be skipped or left for the
students to go through for themselves. Chapters 1–5, inclusive, contain
key material. If you already have experience with Bayesian inference,
you may skip Chapters 1–2. If you understand well (generalized) linear
models, you may also skip Chapter 6 and just skim Chapters 7–11 to
see whether you can easily follow. Chapters 9 and 12 are the key chapters
for your understanding of mixed models, whether LMM or GLMM, and
should not be skipped. The same goes for Chapter 13, which introduces
GLMs. The next Chapters (14–19) are examples of (mixed) GLMs and may
be sampled selectively as desired. There is some redundancy in content,
e.g., between the following pairs of chapters, which illustrate the same
kind of model for a Poisson and a binomial response: 13/17, 15/18, and
16/19. Finally, Chapters 20 and 21 are somewhat more specialized and
may not have the same importance for all readers (though I find them
to be the most fascinating models in the whole book).

As much as I believe in the great benefits of data simulation for your
understanding of a model, data assembly at the start of each chapter
may be skipped. You can download all data sets from the book Web site
or simply execute the R code to generate your own data sets and only go to
the line-by-line mode of study where the analysis begins. Similarly, com-
parison of the Bayesian solutions with the maximum likelihood estimates
can be dropped by simply fitting the models inWinBUGS and not in R also.

All R and WinBUGS code in this book can be downloaded from
the book Web site at http://www.mbr-pwrc.usgs.gov/software/kerybook/
maintained by Jim Hines at the Patuxent Wildlife Research Center. The
Web site also contains some bonus material: a list of WinBUGS tricks,
an Errata page, solutions to exercises, a text file containing all the code
shown in the book, as well as the actual data sets that were used to pro-
duce the output shown in the book. It also contains a real data set (the
Swiss hare data) we deal with extensively in the exercises. The Swiss
hare data contain replicated counts of Brown hares (Lepus europaeus: see
Chapter 13) conducted over 17 years (1992–2008) at 56 sites in eight
regions of Switzerland. Replicated means that each year two counts
were conducted during a 2-week period. Sites vary in area and elevation
and belong to two types of habitat (arable and grassland): hence, there are
both continuous and discrete explanatory variables. Unbounded counts
may be modeled as Poisson random variables with log(area) as an offset,
but we can also treat the observed density (i.e., the ratio of a count to area)
as a normal or the incidence of a density exceeding some threshold as a
binomial random variable. Hence, you can practice with all models shown
in this book and meet many features of genuine data sets such as missing
values and other nuisances of real life.
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WinBUGS (Gilks et al., 1994; Spiegelhalter et al., 2003; Lunn et al., 2009)
is a general-purpose software program to fit statistical models under the
Bayesian approach to statistics. That is, statistical inference is based on
the posterior distribution, which expresses all that is known about the
parameters of a statistical model, given the data and existing knowledge.
In recent years, the Bayesian paradigm has gained tremendous momentum
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in statistics and its applications, including ecology, so it is natural towonder
about the reasons for this.

1.1 ADVANTAGES OF THE BAYESIAN APPROACH
TO STATISTICS

Key assets of the Bayesian approach and of the associated computa-
tional methods include the following:

1.1.1 Numerical Tractability

Many statistical models are currently too complex to be fitted using
classical statistical methods, but they can be fitted using Bayesian compu-
tational methods (Link et al., 2002). However, it may be reassuring that, in
many cases, Bayesian inference gives answers that numerically closely
match those obtained by classical methods.

1.1.2 Absence of Asymptotics

Asymptotically, that is, for a “large” sample, classical inference based
on maximum likelihood (ML) is unbiased, i.e., in the long run right on
target. However, for finite sample sizes, i.e., for your data set, ML may
well be biased (Le Cam, 1990). Similarly, standard errors and confidence
intervals are valid only for “large” samples. Statisticians never say what
“large” exactly means, but you can be assured that typical ecological data
sets aren’t large. In contrast, Bayesian inference is exact for any sample
size. This issue is not widely understood by ecological practitioners of sta-
tistics but may be particularly interesting for ecologists since our data sets
are typically small to very small.

1.1.3 Ease of Error Propagation

In classical statistics, computing the uncertainty of functions of random
variables such as parameters is not straightforward and involves approxi-
mations such as the delta method (Williams et al., 2002). For instance,
consider obtaining an estimate for a population growth rate (r̂) that is
composed of two estimates of population size in subsequent years
(N̂1, N̂2). We have N̂1 and N̂2 and we want r̂: what should we do? Getting
the point estimate of r̂ is easy, but what about its standard error? In a
Bayesian analysis with Markov chain Monte Carlo, estimating such, and
much more complex, derived quantities including their uncertainty is
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trivial once we have a random sample from the posterior distribution of
their constituent parts, such as N̂1 and N̂2 in our example.

1.1.4 Formal Framework for Combining Information

By basing inference on both what we knew before (the prior) and what
we see now (the data at hand), and using solely the laws of probability for
that combination, Bayesian statistics provides a formal mechanism for
introducing external knowledge into an analysis. This may greatly
increase the precision of the estimates (McCarthy and Masters, 2005);
some parameters may only become estimable through precisely this com-
bination of information.

Using existing information also appears a very sensible thing to do: after
all, only rarely don’t we know anything at all about the likely magnitude of
an estimated parameter. For instance, when estimating the annual survival
rate in a population of some large bird species such as a condor, we would
be rather surprised to find it to be less than, say, 0.9. Values of less than, say,
0.5 would appear downright impossible. However, in classical statistics, by
not using any existing information, we effectively say that the survival rate
in that population could be just as well 0.1 as 0.9, or even 0 or 1. This is not
really a sensible attitude since every population ecologists knows very well
a priori that no condor population would ever survive for very long with a
survival rate of 0.1. In classical statistics, we always feign total ignorance
about the system under study when we analyze it.

However, within some limits, it is also possible to specify ignorance in a
Bayesian analysis. That is, also under the Bayesian paradigm, we can base
our inference on the observed data alone and thereby obtain inferences
that are typically very similar numerically to those obtained in a classical
analysis.

1.1.5 Intuitive Appeal

The interpretation of probability in the Bayesian paradigm is much more
intuitive than in the classical statistical framework; in particular, we directly
calculate the probability that a parameter has a certain value rather than the
probability of obtaining a certain kind of data set, given some Null hypo-
thesis. Hence, popular statements such as “I am 99% sure that …” are only
possible in a Bayesian mode of inference, but they are impossible in princi-
ple under the classical mode of inference. This is because, in the Bayesian
approach, a probability statement is made about a parameter, whereas in
the classical approach, it is about a data set.

Furthermore, by drawing conclusions based on a combination of what
we knew before (the prior, or the “experience” part of learning) and what
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we see now (the likelihood, or the “current observation” part of learning),
Bayesian statistics represent a mathematical formalization of the learning
process, i.e., of how we all deal with and process information in science
as well as in our daily life.

1.1.6 Coherence and Intellectual Beauty

The entire Bayesian theory of statistics is based on just three axioms of
probability (Lindley, 1983, 2006). This contrasts with classical statistics
that Bayesians are so fond to criticize for being a patchwork of theory
and ad hoc amendments containing plenty of internal contradictions.

1.2 SO WHY THEN ISN’T EVERYONE A BAYESIAN?

Given all the advantages of the Bayesian approach to statistics just men-
tioned, it may come as a surprise that currently almost all ecologists still
use classical statistics. Why is this?

Of course, there is some resistance to the Bayesian philosophy with
its perceived subjectivity of prior choice and the challenge of avoiding
to, unknowingly, inject information into an analysis via the priors, see
Chapter 2. However, arguably, the lack of a much more widespread adop-
tion of Bayesian methods in ecology has mostly practical reasons.

First, a Bayesian treatment shines most for complex models, which may
not even be fit in a frequentist mode of inference (Link et al., 2002). Hence,
until very recently, most applications of Bayesian statistics featured rather
complex statistical models. These are neither the easiest to understand in
the first place, nor may they be relevant to the majority of ecologists.
Second, typical introductory books on Bayesian statistics are written in
what is fairly heavy mathematics to most ecologists. Hence, getting to the
entry point of the Bayesian world of statistics has been very difficult for
many ecologists. Third, Bayesian philosophy and computational methods
are not usually taught at universities. Finally, and perhaps most impor-
tantly, the practical implementation of a Bayesian analysis has typically
involved custom-written code in general-purpose computer languages
such as Fortran or C++. Therefore, for someone lacking a solid knowledge
in statistics and computing, Bayesian analyses were essentially out of reach.

1.3 WinBUGS

This last point has radically changed with the advent of WinBUGS
(Lunn et al., 2009). Arguably, WinBUGS is the only software that allows
an average numerate ecologist to conduct his own Bayesian analyses of

1. INTRODUCTION4



realistically complex, customized statistical models. By customized I mean
that one is not constrained to run only those models that a program lets
you select by clicking on a button. However, although WinBUGS has been
and is increasingly being used in ecology, the paucity of really accessible
and attractive introductions to WinBUGS for ecologists is a surprise (but
see McCarthy, 2007). I believe that this is the main reason for why Win-
BUGS isn’t even more widely used in ecology.

1.4 WHY THIS BOOK?

This book aims at filling this gap by gently introducing ecologists to
WinBUGS for exactly those methods they use most often, i.e., the linear,
generalized linear, linear mixed, and generalized linear mixed model
(GLMM). Table 1.1 shows how the three latter model classes are all gen-
eralizations of the simple Normal linear model (LM) in the top left cell of
the body of the table. They extend the Normal model to contain either
more than a single random process (represented by the residual in the
Normal LM) and/or to exponential family distributions other than
the Normal, e.g., Poisson and Binomial. Alternatively, starting from the
GLMM in the bottom right cell, the other three model classes can be
viewed as special cases obtained by imposing restrictions on a general
GLMM.

These four model classes form the core of modern applied statistics.
However, even though many ecologists will have applied them often
using click-and-point programs or even statistics packages with a pro-
gramming language such as GenStat, R, or SAS, I dare express doubts
whether they all really always understand the models they have fitted.
Having to specify a model in the elementary way that one has to in Win-
BUGS will prove to greatly enhance your understanding of these models,
whether you fit them by some sort of likelihood analysis (e.g., ML or
restricted maximum likelihood [REML]) or in a Bayesian analysis.

Apart from the gentle and nonmathematical presentation by examples,
the unique selling points of this book, which distinguish it from others, are

TABLE 1.1 Classification of Some Core Models Used for Applied
Statistical Analysis

Single Random Process
Two or More Random
Processes

Normal response Linear model (LM) Linear mixed model (LMM)

Exponential family response Generalized linear model
(GLM)

Generalized linear mixed
model (GLMM)
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the full integration of all WinBUGS analyses into program R, the parallel
presentation of classical and Bayesian analyses of all models and the use of
simulated data sets. Next, I briefly expand on each of these points.

1.4.1 This Is Also an R Book

One key feature of this book as an introduction to WinBUGS is that we
conduct all analyses in WinBUGS fully integrated within program R
(R Development Core Team, 2007). R has become the lingua franca of mod-
ern statistical computing and conducting your Bayesian analysis in
WinBUGS from within an R session has great practical benefits. Moreover,
we also see how to conduct all analyses using common R functions such as
lm(), glm(), and glmer(). This has the added bonus that this book will
be useful to you even if you only want to learn to understand and fit the
models in Table 1 in a classical statistical setting.

1.4.2 Juxtaposition of Classical and Bayesian Analyses

Another key feature is the juxtaposition of analyses using the classical
methods provided for in program R (mostly ML) and the analyses of the
same models in a Bayesian mode of inference using WinBUGS. Thus, with
the exception of Chapters 20 and 21, we fit every model in both the clas-
sical and the Bayesian mode of inference. I have two reasons for creating
parallel examples. First, this should increase your confidence into the
“new” (Bayesian) solutions since with vague priors they give numerically
very similar answers as the “old” solutions (e.g., ML). Second, the analysis
of a single model by both classical and Bayesian methods should help to
demystify Bayesian analysis. One sometimes reads statements like “we
used a Bayesian model,” or “perhaps a Bayesian model should be tried
on this difficult problem.” This is nonsense! Since any model exists inde-
pendently of the method we choose to analyze it. For instance, the linear
regression model is not Bayesian or non-Bayesian; rather, this model may
be analyzed in a Bayesian or in a frequentist mode of inference. Even that
class of models which has come to be seen as almost synonymous with
Bayesian inference, hierarchical models which specify a hierarchy of sto-
chastic processes, is not intrinsically Bayesian; rather, hierarchical models
can be analyzed by frequentist (de Valpine and Hastings, 2002; Lee et al.,
2006; de Valpine, 2009; Ponciano et al., 2009) or by Bayesian methods
(Link and Sauer, 2002; Sauer and Link, 2002; Wikle, 2003; Clark et al.,
2005). Indeed, many statisticians now use the two modes of inference
quite opportunistically (Royle and Dorazio, 2006, 2008). Thus, the juxta-
position of classical and Bayesian analysis of the same models should
make it very clear that a model is one thing and its analysis another
and that there really is no such thing as a “Bayesian model.”
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1.4.3 The Power of Simulating Data

A third key feature of this book is the use of simulated data sets
throughout (except for one data set used repeatedly in the exercises). At
first, this may seem artificial, and I have no doubts that some readers may
be disinterested in an analysis when a problem is perceived as “unreal.”
However, I would claim that several very important benefits accrue from
the use of simulated data sets, especially in an introductory book:

1. For simulated data, truth is known. That is, estimates obtained in the
analysis of a model can be compared with what we know they should
be in the long-run average.

2. When coding an analysis in WinBUGS, especially in more complex
cases but even for simpler ones, it is very easy to make mistakes.
Ensuring that an analysis recovers estimates that resemble the known
input values used to generate a data set can be an important check that
it has been coded correctly.

3. It has been said that one of the most difficult, but absolutely necessary
statistical concepts to grasp is that of the sampling variation of an
estimator. For nonstatisticians, I don’t see any other way to grasp the
meaning of sampling variation other than literally experiencing it by
repeatedly simulating data under the same model, analyzing them, and
seeing how estimates differ randomly from one sample to the next: this
variation is exactly what the standard error of an estimate quantifies. In
real life, one typically only ever observes a single realization (i.e., data
set) from the stochastic system about which one wants to make an
inference in a statistical analysis. Hence, for ecologists it may be hard to
make the connection with the concept of repeated samples from a
system, when all we have is a single data set (and related to that, to
understand the difference between a standard deviation and a standard
error).

4. Simulating data can be used to study the long-run average
characteristics of estimates, given a certain kind of data set, by
repeating the same data generation-data analysis cycle many times. In
this way, the (frequentist) operating characteristics of an estimator
(bias, or “is it on target on average?”; efficiency, or “how far away from
the target is the individual estimate on average?”) can be studied by
packaging both the simulation and the analysis into a loop and
comparing the distribution of the resulting estimates to the known
truth. Further, required sample sizes to obtain a desired level of
precision can be investigated, as can issues of parameter estimability.
All this can be done for exactly the specifications of one’s data set, e.g.,
replicate data sets can be generated and analyzed with sample size and
parameter values identical to those in one’s real data set to get an
impression, say, of the precision of the estimates that one is likely to
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obtain. This is also the idea behind posterior predictive checks of
goodness-of-fit, where the “natural” lack of fit for a model is studied
using ideal data sets and then compared with the lack of fit observed
for the actual data set (see Section 8.4.2).

5. Simulated data sets can be used to study effects of assumption
violations. All models embody a set of assumptions that will be
violated to some degree. Whether this has serious consequences for
those estimates one is particularly interested in, can be studied using
simulation.

6. Finally, and perhaps most importantly, I would claim that the ultimate
proof that one has really understood the analysis of a statistical model
is when one is able to simulate a data set under that very model.
Analyzing data is a little like fixing a motorbike but in reverse: it
consists of breaking a data set into its parts (e.g., covariate effects and
variances), whereas fixing a bike means putting all the parts of a bike
into the right place. One way to convince yourself that you really
understand how a bike works is to first dismantle and then reassemble
it again to a functioning vehicle. Similarly, for data analysis, by first
assembling a data set and then breaking it apart into recognizable parts
by analyzing it, you can prove to yourself that you really understand
the analysis.

In summary, I believe that the value of simulation for analysis and
understanding of complex stochastic systems can hardly be overstated.
On a personal note, what has helped me most to understand nonnormal
GLMs or mixed models, apart from having to specify them in the intuitive
BUGS language, was to simulate the associated data sets in program R,
which is great for simulating data.

Finally, I hope that the slightly artificial flavor of my data sets is more
than made up for by their nice ecological setting and the attractive organ-
isms we pretend to be studying. I imagine that many ecologists will by far
prefer learning about new statistical methods using artificial ecological data
sets than using real, but “boring” data sets from the political, social,
economical, or medical sciences, as one has to do in many excellent intro-
ductory books.

1.5 WHAT THIS BOOK IS NOT ABOUT: THEORY OF
BAYESIAN STATISTICS AND COMPUTATION

The theory of Bayesian inference is treated only very cursorily in this
book (see Chapter 2). Other authors have done this admirably, and
I refer you to them. Texts that should be accessible to ecologists include
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Ellison (1996), Wade (2000), Link et al. (2002), Bernardo (2003), Brooks
(2003), Gelman et al. (2004), Woodworth (2004), McCarthy (2007), Royle
and Dorazio (2008), King et al. (2009), and Link and Barker (2010).

Furthermore, I don’t dwell on explaining Markov chain Monte Carlo
(MCMC) or Gibbs sampling, the computational methods most frequently
used to fit models in the Bayesian framework. Arguably, a deep under-
standing of the details of MCMC is not required for an ecologist to con-
duct an adequate Bayesian analysis using WinBUGS. After all, very few
ecologists who nowadays fit a GLM or a mixed model understand the
(possibly restricted) likelihood function or the algorithms used to find
its maximum. (Or can you explain the Newton–Raphson algorithm?
And how about iteratively reweighted least squares?) Rather, by using
WinBUGS we are going to experience some of the key features of
MCMC. This includes the chain’s initial transient behavior, the resultant
need for visual or numerical assessment of convergence that leads to dis-
carding of initial (“burn-in”) parts of a chain, and the fact that successive
iterations are not independent. If you want to read more on Bayesian com-
putation, most of the above references may serve as an entry point to a
rich literature.

1.6 FURTHER READING

If you seriously consider going Bayesian for your statistical modeling,
you will probably want to purchase more than a single book. McCarthy
(2007) is an accessible introduction to WinBUGS for beginners, although it
presents WinBUGS only as a standalone application (i.e., not run from R)
and the coverage of model classes dealt with is somewhat more limited.
Gelman and Hill (2007) is an excellent textbook on linear, generalized, and
mixed (generalized) linear models fit in both the classical and the Bayesian
mode of inference and using both R and WinBUGS. Thus, its concept is
somewhat similar to that of this book, though it does not feature the rig-
orous juxtaposition of both kinds of analysis. All examples are from the
social and political sciences, which will perhaps not particularly interest
an ecologist. However, the book contains a wealth of information that
should be digestible for the audience of this book, as does Gelman et al.
(2004). Ntzoufras (2009) is a new and comprehensive introduction to Win-
BUGS focusing on GLMs. It is very useful, but has a higher mathematical
level and uses WinBUGS as a standalone application only. Woodworth
(2004) is an entry-level introduction to Bayesian inference and also has
some WinBUGS code examples.

Link and Barker (2010) is an excellent textbook on Bayesian inference
specifically for ecologists and featuring numerous WinBUGS examples.
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As an introduction to Bayesianism written mostly in everyday language,
Lindley, an influential Bayesian thinker, has written a delightful book,
where he argues, among others, that probability is the extension of logic to
all events, both certain (like classical logic) and uncertain (Lindley, 2006,
p. 66). His book is not about practical aspects of Bayesian analysis, but
very informative, quite amusing and above all, written in an accessible
way.

In this book, we run WinBUGS from within program R; hence, some
knowledge of R is required. Your level of knowledge of R only needs to
be minimal and any simple introduction to R would probably suffice to
enable you to use this book. I like Dalgaard (2001) as a very accessible
introduction that focuses mostly on linear models, and at a slightly
higher level, featuring mostly GLMs, Crawley (2005) and Aitkin et al.
(2009). More comprehensive R books will also contain everything
required, e.g., Venables and Ripley (2002), Clark (2007), and Bolker
(2008).

This book barely touches some of the statistical models that one
would perhaps particularly expect to see in a statistics book for ecolo-
gists, namely, Chapters 20 and 21. I say nothing on such core topics in
ecological statistics such as the estimation of population density, survi-
val and other vital rates, or community parameters (Buckland et al.,
2001; Borchers et al., 2002; Williams et al., 2002). This is intentional. I
hope that my book lays the groundwork for a much better understand-
ing of statistical modeling using WinBUGS. This will allow you to better
tackle more complex and specialized analyses, including those featured
in books like Royle and Dorazio (2008), King et al. (2009), and Link and
Barker (2010).

Free documentation for WinBUGS abounds, see http://www.mrc-bsu
.cam.ac.uk/bugs/winbugs/contents.shtml. The manual comes along with
the program; within WinBUGS go Help > User Manual or press F1 and
then scroll down. Recently, an open-source version of BUGS has been
developed under the name of OpenBugs, see http://mathstat.helsinki
.fi/openbugs/, and the latest release contains a set of ecological example
analyses including those featured in Chapters 20 and 21. WinBUGS can
be run in combination with other programs such as R, GenStat, Matlab,
SAS; see the main WinBUGS Web site. There is even an Excel front-end
(see http://www.axrf86.dsl.pipex.com/) that allows you to fit a wide range
of complex models without even knowing the BUGS language. However,
most serious WinBUGS users I know run it from R (see Chapter 5). It turns
out that one of the main challenges for the budding WinBUGS program-
mer is to really understand the linear model (see Chapter 6). One particu-
larly good introduction to the linear model in the context of survival and
population estimation is Chapter 6 in Evan Cooch’s Gentle introduction to
MARK (see http://www.phidot.org/software/mark/docs/book/pdf/chap6.pdf).
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1.7 SUMMARY

This book attempts the following:

1. demystify Bayesian analyses by showing their application in the most
widely used general-purpose Bayesian software WinBUGS, in a gentle
tutorial-like style and in parallel with classical analyses using program
R, for a large set of ecological problems that range from very simple to
moderately complex;

2. enhance your understanding of the core of modern applied statistics:
linear, generalized linear, linear mixed, and generalized linear mixed
models and features common to all of them, such as statistical
distributions and the design matrix;

3. demonstrate the great value of simulation; and
4. thereby building a solid grounding of the use of WinBUGS (and R) for

relatively simple models, so you can tackle more complex ones, and to
help free the modeler in you.
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This is a practical book that does not cover the theory of Bayesian analy-
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which are all specifically aimed at ecologists. In this chapter, I will first
motivate a statistical view of ecology and the world at large and define a
statistical model, then, contrast classical and Bayesian statistics, briefly
touch upon Bayesian computation, sketch the steps of a typical Bayesian
analysis, and finally, end with a brief pointer to special topics illustrated
in this book.

2.1 PROBABILITY THEORY AND STATISTICS

Both probability theory and statistics are sciences that deal with uncer-
tainty. Their subject is the description of stochastic systems, i.e., systems
that are not fully predictable but include random processes that add a
degree of chance and therefore, uncertainty in their outcome. Stochastic
systems are ubiquitous in nature; hence, probability and statistics are
important not only in science but also to understand all facets of life.

Indeed, stochastic systems are everywhere! They may be the weather
(“will it rain tomorrow?”), politics (“will my party win?”), life (“will she
marry me?”), sports (“will my football team win?”), an exam (“will I
pass?”), the sex of an offspring (“will I have a daughter?”), body size of
an organism, and many, many more. Indeed, it is hard to imagine anything
observable in the world that is not at least in part affected by chance, i.e.,
at least partly unpredictable. For such observables or data, probability and
statistics offer the only adequate framework for rigorous description, ana-
lysis, and prediction (Lindley, 2006).

To formally interpret any observation, we always need a model, i.e., an
abstract description of how we believe our observations are a result of
observable and unobservable quantities. The latter are called parameters,
and one main aim of analyzing the model is to obtain numerical estimates
for them. A model is always an abstraction and thus strictly always
wrong. However, according to one of the most famous sayings in statis-
tics, some models are useful and our goal must be to search for them. Use-
ful models provide greater insights into a stochastic system that may
otherwise be too complex to understand or to predict.

Both probability theory and statistics deal with the characteristics of a sto-
chastic system (described by the parameters of a model) and its outcomes
(the observed data), but these two fields represent different perspectives
on stochastic systems. Probability theory specifies parameters and a
model and then examines a variable outcome, whereas statistics takes the
data, assumes a model, and then tries to infer the system properties, given
the model. Parameters are key descriptors of the stochastic system about
which one wants to learn something. Hence, statistics deals with making
inferences (i.e., probabilistic conclusions about system components param-
eters) based on a model and the observed outcome of a stochastic system.
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2.2 TWO VIEWS OF STATISTICS: CLASSICAL
AND BAYESIAN

In statistics, there are two main views about how one should learn
about the parameter values in a stochastic system: classical (also called
conventional or frequentist) and Bayesian statistics. Although practical
applications of Bayesian statistics in ecology have greatly increased only
in recent years, Bayesian statistics is, in fact, very old and was the domi-
nating school of statistics for a long time. Indeed, the foundations of
Bayesian statistics, the use of conditional probability for inference embo-
died in Bayes rule, were laid as early as 1763 by Thomas Bayes, an English
minister and mathematician. In contrast, the foundations of classical
statistics were not really laid until the first half of the twentieth century.
So what are the differences?

Both classical and Bayesian statistics view data as the observed realiza-
tions of stochastic systems that contain one or several random processes.
However, in classical statistics, the quantities used to describe these ran-
dom processes (parameters) are fixed and unknown constants, whereas in
Bayesian statistics, parameters are themselves viewed as unobserved rea-
lizations of random processes. In classical statistics, uncertainty is evalu-
ated and described in terms of the frequency of hypothetical replicates,
although these inferences are typically only described from knowledge
of a single data set. Therefore, classical statistics is also called frequentist
statistics. In Bayesian statistics, uncertainty is evaluated using the posterior
distribution of a parameter, which is the conditional probability distribu-
tion of all unknown quantities (e.g., the parameters), given the data, the
model, and what we knew about these quantities before conducting the
analysis.

In other words, classical and Bayesian statistics differ in their definition
of probability. In classical statistics, probability is the relative frequency of
a feature of observed data. In contrast, in Bayesian statistics, probability is
used to express one’s uncertainty about the likely magnitude of a param-
eter; no hypothetical replication of the data set is required.

Under Bayesian inference, we fundamentally distinguish observable
quantities x from unobservable quantities θ. Observables x are the data,
whereas unobservables θ can be statistical parameters, missing data, mismea-
sured data, or future outcomes of the modeled system (predictions); they are
all treated as random variables, i.e., quantities that can only be determined
probabilistically. Because parameters θ are random variables under the
Bayesian paradigm, we can make probabilistic statements about them, e.g.,
say things like “the probability that this population is in decline is 24%.” In
contrast, under the classical view of statistics, such statements are impossible
in principle because parameters are fixed and only the data are random.
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Central to both modes of inference is the sampling distribution pðx jθÞ
of the data x as a function of a model with its parameters θ. For instance,
the sampling distribution for the total number of heads among 10 flips of a
fair coin is the Binomial distribution with p = 0.5 and trial size N = 10. This
is the distribution used to describe the effects of chance on the outcome of
the random variable (here, sum of heads). In much of classical statistics,
the likelihood function pðx jθÞ is used as a basis for inference. The likeli-
hood function is the same as the sampling distribution of the observed
data x, but “read in the opposite direction”: That value θ̂, which yields
the maximum of the likelihood function for the observed data x is taken
as the best estimate for θ and is called the maximum likelihood estimate
(MLE) of the parameter θ. That is, much of classical inference is based
on the estimation of a single point that corresponds to the maximum of
a function. Note that θ can be a scalar or a vector.

The basis for Bayesian inference is Bayes rule, also called Bayes’ theo-
rem, which is a simple result of conditional probability. Bayes rule
describes the relationship between the two conditional probabilities
pðA jBÞ and pðB jAÞ, where j is read as “given”:

p A jBð Þ = pðB jAÞpðAÞ
pðBÞ :

This equation is an undisputed fact and can be proven from simple
axioms of probability. However, what used to be more controversial,
and partly still is (e.g., Dennis, 1996; de Valpine, 2009; Lele and Dennis,
2009; Ponciano et al., 2009), is how Bayes used his rule. He used it to derive
the probability of the parameters θ, given the data x, that is, the posterior
distribution pðθ jxÞ:

p θ jxð Þ = pðx jθÞpðθÞ
pðxÞ :

We see that the posterior distribution pðθ jxÞ is proportional to the product
of the likelihood function pðx jθÞ and the prior distribution of the param-
eter p(θ). To make this product a genuine probability distribution function,
with an integral equal to 1, a normalizing constant p(x) is needed as
a denominator; this is the probability of observing one’s particular data
set x. Ignoring the denominator (which is just a constant and does not
involve the unknowns θ), Bayes, rule as applied in Bayesian statistics
can be paraphrased as

Posterior distribution / Likelihood×Prior distribution,

where ! reads as “is proportional to.” Thus, Bayesian inference works by
using the laws of probability to combine the information about parameter
θ contained in the observed data x, as quantified in the likelihood function
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pðx jθÞ, with what is known or assumed about the parameter before the
data are collected or analyzed, i.e., the prior distribution p(θ). This results
in a rigorous mathematical statement about the probability of parameter θ,
given the data, the posterior distribution pðθ jxÞ. Hence, while classical sta-
tistics works by estimating a single point for a parameter (which is an
unknown constant), Bayesian statistics makes inference about an entire
distribution instead, because parameters are random variables described
by a statistical distribution.

A prior distribution does not necessarily imply a temporal priority,
instead, it simply represents a specific assumption about a model param-
eter. Bayes rule tells us how to combine such an assumption about
a parameter with our current observations into a logical, quantitative con-
clusion. The latter is represented by the posterior distribution of the
parameter.

I find it hard not to be impressed by the application of Bayes rule to
statistical inference, because it so perfectly mimics the way in which we learn
in everyday life! In our guts, we always weigh any observation we make,
or new information we get, with what we know to be the case or believe to
know. For instance, if someone tells me that he went to the zoo and saw an
elephant that stood 5 m tall, I believe this information and find the obser-
vation remarkable. However, if someone claimed that he just saw an ele-
phant that stood 10 m tall, I don’t believe him. This shows that human
psychology works exactly as Bayes rule applied to statistical inference:
we always weigh new information by its prior probability in drawing
our conclusions (here, “Oh, that’s amazing!” or “You must be mad!”).
An elephant height of 10 m has a prior probability close to zero to me,
hence, I am not all too impressed by this claim (except as to find it outra-
geous). Note, however, that I am not particularly knowledgeable about ele-
phants. Perhaps someone with more specialist knowledge about
pachyderms would already have serious doubts about the former claim
(I haven’t checked). This is the reason for why many Bayesians emphasize
that all probability is subjective, or personal: it depends on what we knew
before observing a datum (Lindley, 2006). It is easy to find plenty more
examples of where we naturally think according to Bayes rule.

Inference in Bayesian statistics is a simple probability calculation, and
one of the things Bayesians are most proud of is the parsimony and inter-
nal logic of their framework for inference. Thus, the entire Bayesian theory
for inference can be derived using just three axioms of probability (Lindley,
1983, 2006). Bayes rule can be deduced from them, and the entire frame-
work for Bayesian statistics, such as estimation, prediction, hypothesis test-
ing, is based on just these three premises. In contrast, classical statistics lacks
such an internally coherent body of theory.

However, the requirement to determine a prior probability p(θ) for
model parameters (“prior belief”) has caused fierce opposition to the
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Bayesian paradigm because this was (and partly still is) seen to bring into
science an unwanted subjective element. However, as we shall see, it is
easy to exaggerate this issue, for several reasons. First, objective science
or statistics is an illusion anyway: there are always decisions to be
made, e.g., what questions to ask, what factor levels to study, whether
to transform a response, and literally myriads more. Each one of these
decisions may have an effect on the outcome of a study. Second, it is pos-
sible to use the Bayesian machinery for inference (Bayes rule and Markov
chain Monte Carlo [MCMC] computing algorithms, see later) with
so-called flat priors (also vague, diffuse, uninformative, minimally infor-
mative, or low-information priors). Such priors represent our ignorance
about a parameter or our wish to let inference, i.e., the posterior distribu-
tion, be dominated by the observed data. Actually, this is exactly what we
do throughout this book. Third, the prior is seen by some statisticians as a
strength rather than a weakness of the Bayesian framework (Link and
Barker, 2010): it lets one formally examine the effect on one’s conclusions
of different assumptions about the parameters. Also, anybody using infor-
mative priors must say so and justify this choice. When the choice of priors
is suspected to have an undue influence on the posterior distribution, it is
good practice to conduct a sensitivity analysis to see how much one’s
conclusions are changed when a different set of priors is used.

Nevertheless, it is fair to say that there can be challenges involving the
priors. First, one possible problem is that priors are not invariant to trans-
formation of parameters. A prior that is uninformative for θ may well
be informative for a one-to-one transformation g(θ) of θ, such as logðθÞ
or 1/θ. Hence, it is possible to introduce information into an analysis with-
out intending to do so. Especially in complex models and these are the
ones where a Bayesian treatment and the Bayesian model fitting algo-
rithms offer most rewards it is quite possible that one unknowingly
introduces unwanted information by the choice of ostensibly vague priors.
Hence, for more complex models, a sensitivity analysis of priors is even
more useful. Still, these challenges are not seen as insurmountable by
many statisticians, and Bayesian statistics has now very much entered
the mainstream of statistical science. This can be seen immediately
when browsing journals such as Biometrics, Biometrika, or the Journal of
the American Statistical Association, which contain both frequentist and
Bayesian work. Many statisticians now use Bayesian and classical
statistics alike, and some believe that in the future, we will see some
kind of merging of the paradigms (e.g., Little, 2006).

Finally, in view of the profound philosophical difference between the
two paradigms for statistical inference, it is remarkable how little param-
eter estimates actually differ numerically in practical applications
when vague priors are used in a Bayesian analysis. We shall see this in
almost every example in this book. Indeed, MLEs are an approximation to
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the mode of the posterior distribution of a parameter when vague priors are
assumed. This is one of the reasons for the ironic claim made by I. J. Good
“People who don’t know they are Bayesians are called non-Bayesians.”

2.3 THE IMPORTANCE OF MODERN ALGORITHMS
AND COMPUTERS

FOR BAYESIAN STATISTICS

For most modeling applications, the denominator in Bayes rule, p(x),
contains high-dimensional integrals which are analytically intractable.
Historically, they had to be solved by more or less adequate numerical
approximations. Often, they could not be solved at all. Ironically therefore,
for a long time Bayesians thought that they had the better solutions in
principle than classical statisticians but unfortunately could not practically
apply them to any except very simple problems for want of a method to
solve their equations.

A dramatic change of this situation came with the advent of simulation-
based approaches like MCMC and related techniques that draw samples
from the posterior distribution (see for instance the article entitled “Bayesian
statistics without tears” by Smith and Gelfand, 1992). These techniques cir-
cumvent the need for actually computing the normalizing constant in
Bayes rule. This, along with the ever-increasing computer power which
is required for these highly iterative techniques, made the Bayesian revo-
lution in statistics possible (Brooks, 2003).

It seems fair to say that the ease with which difficult computational
problems are solved by MCMC algorithms is one of the main reasons
for the recent upsurge of Bayesian statistics in ecology, rather than the
ability to conduct an inference without pretending one is completely
stupid (i.e., has no prior knowledge about the analyzed system). Indeed,
so far there are only few articles in ecological journals that have actually
used this asset of Bayesian statistics, i.e., have formally injected prior
knowledge into their Bayesian analyses. They include Martin et al.
(2005); McCarthy and Masters (2005); Mazzetta et al. (2007); and Swain
et al. (2009). Nevertheless, it is likely that analyses with informative priors
will become more common in the future.

2.4 MARKOV CHAIN MONTE CARLO (MCMC)
AND GIBBS SAMPLING

MCMC is a set of techniques to simulate draws from the posterior distri-
bution pðθ jxÞ given a model, a likelihood pðx jθÞ, and data x, using depen-
dent sequences of random variables. That is, MCMC yields a sample from
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the posterior distribution of a parameter. MCMC was developed in 1953
by the physicists Metropolis et al., and later generalized by Hastings
(1970), so one of the main MCMC algorithms is called the Metropolis
Hastings algorithm. Many different flavors of MCMC are available now.
One of the most widely used MCMC techniques is Gibbs sampling
(Geman and Geman, 1984). It is based on the idea that to solve a large
problem, instead of trying to do all at once, it is more efficient to break the
problem down into smaller subunits and solve each one in turn. Here is a
sketch of how Gibbs sampling works taken from a course taught in 2005
by Nicky Best and Sylvia Richardson at Imperial College in London.

Let our data be x and our vector of unknowns θ consist of k subcompo-
nents θ = ðθ1, θ2, …, θkÞ, hence we want to estimate k parameters.

1. Choose starting (initial) values θð0Þ1 , θð0Þ2 , …, θð0Þk

2. Sample θð1Þ1 from pðθ1 jθð0Þ2 , θð0Þ3 , …, θð0Þk , xÞ
Sample θð1Þ2 from pðθ2 jθð1Þ1 , θð0Þ3 , …, θð0Þk , xÞ
…………

Sample θð1Þk from pðθk jθð1Þ1 , θð1Þ2 , …, θð1Þk 1, xÞ
3. Repeat step 2 many times (e.g. 100s, 1000s)

eventually obtain a sample from pðθ jxÞ
Step 2 is called an update or iteration of the Gibbs sampler and after con-
vergence is reached, it leads to one draw (=sample) consisting of k values
from the joint posterior distribution pðθ jxÞ. The conditional distributions
in this step are called “full conditionals” as they condition on all other
parameters. The sequence of random draws for each of k parameter result-
ing from step 3 forms a Markov chain.

So far, a very simplistic summary of a Bayesian statistical analysis as
illustrated in this book would go as follows:

1. We use a degree-of-belief definition of probability rather than a
definition of probability based on the frequency of events among
hypothetical replicates.

2. We use probability distributions to summarize our beliefs or our
knowledge (or lack thereof) about each model parameter and apply
Bayes rule to update that knowledge with observed data to obtain the
posterior distribution of every unknown in our model. The posterior
distribution quantifies all our knowledge about these unknowns given
the data, our model, and prior assumptions. All statistical inference is
based on the posterior distribution.

3. However, posterior distributions are virtually impossible to compute
analytically in all but the simplest cases; hence, we use simulation
(MCMC) to draw series of dependent samples from the posterior
distribution and base our inference on that sample.
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How do we construct such a Gibbs sampler or other MCMC algorithm?
I am told by statistician colleagues that this is surprisingly easy (but that
the art consisted of constructing an efficient sampler). However, for most
ecologists, this will arguably be prohibitively complicated. And this is
where WinBUGS comes in: WinBUGS constructs an MCMC algorithm
for us for the model specified and our data set and conducts the iterative
simulations for as long as we desire and have time to wait. Essentially,
WinBUGS is an MCMC blackbox (J. A. Royle, pers. comm.).

2.5 WHAT COMES AFTER MCMC?

Once we are done with MCMC, we have a series of random numbers
from the joint posterior distribution pðθ jxÞ that may look like this for a
two-parameter model such as the model of the mean in Chapters 4 and
5 (showing only the first six draws):

μ : 4:28, 6:09, 7:37, 6:10, 4:72, 6:67, …
σ2 : 10:98, 11:23, 15:26, 9:17, 14:82, 18:19, …

Now what should we do with these numbers?
Essentially, we have to make sure that these numbers come from a sta-

tionary distribution, i.e., that the Markov chain that produced them was at
an equilibrium. If that is the case, then this is our estimate of the posterior
distribution. Also, these numbers should not be influenced by our choice
of initial parameter values supplied to start the Markov chains (the initial
values); remember that successive values are correlated. This is called con-
vergence monitoring. Once we are satisfied, we can summarize our sam-
ples to estimate any desired feature of the posterior distribution we like,
for instance, the mean, median, or mode as a measure of central tendency
as a Bayesian point estimate or the standard deviation of the posterior dis-
tribution as a Bayesian measure of the uncertainty of a parameter estimate.
Then, we can compute the posterior distribution for derived variables. For
instance, if parameter γ is the ratio of α and β and we are interested in γ, we
can simply divide α by β for each iteration in the Markov chain to obtain a
sample of γ and then summarize that for inference about γ. We can also
compute inferences for very complicated functions of parameters, such as
the probability that γ exceeds some threshold value. Next, we briefly
expand on each of these topics.

2.5.1 Convergence Monitoring

The first step in making an inference from an MCMC analysis is to
ensure that an equilibrium distribution has indeed been reached by the
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Markov chain, i.e., that the chain has converged. For each parameter, we
started the chain at an arbitrary point (the initial value or init chosen for
each parameter), and because successive draws are dependent on the pre-
vious values of each parameter, the actual values chosen for the inits will
be noticeable for a while. Therefore, only after a while is the chain inde-
pendent of the values with which it was started. These first draws ought
to be discarded as a burn-in as they are unrepresentative of the equilibrium
distribution of the Markov chain.

There are several ways to check for convergence. Most methods use at
least two parallel chains, but another possibility is to compare successive
sections of a single long chain. The simplest method is just to inspect plots
of the chains visually: they should look like nice oscillograms around a
horizontal line without any trend. Visual checks are routinely used to con-
firm convergence. For example, Fig. 2.1 shows the time-series plot for five
parallel Markov chains for a parameter in a dynamic occupancy model
(MacKenzie et al., 2003) fitted to 16 years worth of Swiss wallcreeper
data (see Chapter 8). Convergence seems to be achieved after about
60 iterations.

Another, more formal check for convergence is based on the Gelman
Rubin (or Brooks Gelman Rubin) statistic (Gelman et al., 2004), called
Rhat when using WinBUGS from R via R2WinBUGS (see Chapter 5).
It compares between- and within-chain variance in an analysis of variance
fashion. Values near 1 indicate likely convergence, and 1.1 is considered
by some as an acceptable threshold (Gelman et al., 2004; Gelman and Hill,
2007). With this approach, it is important to start the parallel chains at
different selected or at random places.

Convergence monitoring may be a thorny issue and there are horror
stories about how difficult it can be to make sure that convergence has
actually been achieved. I have repeatedly found cases where Rhat
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FIGURE 2.1 Time series plot of five Markov chains for an occupancy parameter in a
dynamic occupancy model fitted to Swiss wallcreeper data using WinBUGS (from Kéry
et al., 2010a). Typically, the chains of all parameters do not converge equally rapidly.
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erroneously indicated convergence; see Chapters 11 and 21 for examples.
However, it is also easy to exaggerate this challenge, and with modern
computing power, many models can be run for 100 000 iterations or
more. Insuring convergence in MCMC analyses is in a sense akin to mak-
ing sure that the global maximum in a likelihood function has been found
in classical statistical analyses. In both, it can be difficult to determine that
the desired goals have been achieved.

2.5.2 Summarizing the Posterior for Inference

Again, the aim of a Bayesian analysis is not the estimate of a single point,
as the maximum of the likelihood function in classical statistics, but the
estimate of an entire distribution. That means that every unknown (e.g.,
parameter, function of parameters, prediction, residual) has an entire dis-
tribution. This usually appears a bit odd at first. The posterior can be sum-
marized graphically, e.g., using a histogram or a kernel-smoother.
Alternatively, we can use mean, median, or mode as a measure of central
tendency of a parameter (i.e., as a point estimate) and the standard devia-
tion of the posterior as a measure of the uncertainty in the estimate, i.e., as
the standard error of a parameter estimate. (Beware of challenging cases
such as estimating a parameter that represents a standard deviation, e.g.,
the square root of a variance component. We will obtain the posterior dis-
tribution of that standard deviation, which will itself have a standard
deviation that is used as the standard error of the estimate of the standard
deviation … simple, eh?). Finally, the Bayesian analog to a 95% confidence
interval is called a (Bayesian) credible interval (CRI) and is any region of
the posterior containing 95% of the area under the curve. There is more
than one such region, and one particular CRI is the highest-posterior den-
sity interval (HPDI). However, in this book, we will only consider 95%
CRIs bounded by the 2.5 and the 97.5 percentile points of the posterior
sample of a parameter.

2.5.3 Computing Functions of Parameters

As mentioned earlier, one of the greatest features of the Bayesian mode
of inference using MCMC is the ease with which any function of model
parameters can be computed along with their standard errors exactly,
while fully accounting for all the uncertainty involved in computing this func-
tion and without the need for any approximations such as the delta
method (Powell, 2007). To get a posterior sample for a population
growth rate r from two estimates of population size, N1 and N2, we simply
compute the ratio of the two at every iteration of the Markov chain and
summarize the resulting posterior sample for inference about r.
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2.5.4 Forming Predictions

Predictions are expected values of the response for future samples or
of hypothetical values of the explanatory variables of a model, or more
generally, of any unobserved quantity. Predictions are very important
for (a) presentation of results from an analysis and (b) to even understand
what a model tells us. For example, the biological meaning of an
interaction or a polynomial term can be difficult to determine from a set
of parameter estimates. Because predictions are functions of parameters
and of data (values of covariate), their posterior distributions can again
be used for inference with the mean and the 95% CRIs often used as the
predicted values along with a 95% prediction interval.

2.6 SOME SHARED CHALLENGES IN THE
BAYESIAN AND THE CLASSICAL

ANALYSIS OF A STATISTICAL MODEL

Other, much more general and also more difficult topics in a Bayesian
analysis include model criticism (checking whether the chosen model is
adequate for a data set), hypothesis testing and model selection, and
checking parameter identifiability (e.g., making sure that there are enough
data to actually estimate a parameter). These topics are also challenging in
classical statistics, although they are frequently neglected.

2.6.1 Checking Model Adequacy

In models with a single error term (e.g., linear model [LM] and general-
ized linear model [GLM]), the usual residual diagnostics can be applied,
e.g., plots of residuals vs. fitted values, histograms of the residuals, and so
on, can be produced. We will see some examples of this in this book. In
hierarchical models (i.e., models that include random effects other than
residuals), checking model adequacy is more difficult and may have to
involve (internal) cross-validation, validation against external data, or
posterior predictive checks, see Gelman et al. (1996, 2004). We will see sev-
eral examples for posterior predictive checks, including computation of
the Bayesian p-value, which is not about hypothesis testing as in
a classical analysis, but a measure of how well a model fits a given data
set, i.e., a measure for goodness-of-fit.

2.6.2 Hypothesis Tests and Model Selection

As for classical statistics with a confidence interval, in the Bayesian
paradigm, hypothesis tests can be conducted based on a CRI: if it overlaps
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zero, then the evidence for an effect of that parameter is ambiguous. In
addition, we can make direct probability statements about the magnitude
of a parameter as mentioned above.

To measure the evidence for a single or a collection of effects in the
model, we can use an idea described by Kuo and Mallick (1998) and
also Dellaportas et al. (2002): premultiply each regression parameter
with a binary indicator w and give w a Bernoulli(p = 0.5) prior. The poste-
rior of w will then measure the probability that the associated effect
belongs in the model; see Royle (2008) for an example of this. Based on
the MCMC output from such a model run, model-averaged parameter
estimates can also be produced. It must be noted, though, that implement-
ing this feature greatly slows down MCMC samplers.

For model selection in nonhierarchical models, that is, models with a
single random component, e.g., LMs and GLMs, there is a Bayesian analog
to the Akaike’s information criterion (AIC) called the DIC (deviance infor-
mation criterion; Spiegelhalter et al., 2002). Similar to the AIC, the DIC is
computed as the sum of the deviance plus twice the effective number of
parameters (called pD) and expresses the trade-off between the fit of a
model and the variance of (i.e., uncertainty around) its estimates. All
else being equal, a more complex model fits better than a simpler one
but has less precise parameter estimates, so the best choice will be some
intermediate degree of model complexity.

The DIC as computed by WinBUGS seems to work well for nonhie-
rarchical models, but unfortunately, for models more complex than
GLMs, especially hierarchical models (e.g., linear mixed models and gen-
eralized linear mixed models), the DIC needs to be computed in a different
and more complicated manner; see Millar (2009). Thus, in this book, we
are not going to pay special attention to the DIC, nor to the estimate of the
effective number of parameters (pD). However, you are invited to observe,
for any of the models analyzed, whether pD or the DIC score computed
make sense or not, for instance, when you add or drop a covariate or
change other parts of a model.

There are other ways to decide on how much complexity is warranted
in a model, one of which goes under the name reversible-jump (or RJ-)
MCMC (King et al., 2009; Ntzoufras, 2009). Simple versions of RJ-MCMC
can be implemented in WinBUGS, see http://www.winbugs-development.
org.uk/.

No doubt the lack of a semiautomated way of conducting model selec-
tion or model averaging (except for RJ-MCMC) will come as a disappoint-
ment to many readers. After all, many ecologists have come to think that
the problem of model selection has been solved and that this solution has
a name, AIC (see extensive review by Burnham and Anderson, 2002).
However, this rosy impression is probably too optimistic as argued, for
instance, by Link and Barker (2006). It is perhaps instructive for an
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ecologist to browse through Kadane and Lazar (2004); this article pub-
lished in one of the premier statistical research journals reviews model
selection and clearly shows that in the field of statistics (as opposed to
parts of ecology), the challenge of model selection is not yet viewed as
having been solved.

2.6.3 Parameter Identifiability

A parameter can be loosely said to be identifiable when there is enough
information in the data to determine its value unambiguously. This has
nothing to do with the precision of the estimate. For instance, in the equa-
tion a + b = 7, no parameter is estimable, and we would need an additional
equation in a and/or b to be able to determine the values of the two
parameters, i.e., to make them estimable.

Strictly speaking, parameter identifiability is not an issue in the
Bayesian framework because, in principle, we can always compute a pos-
terior distribution for a parameter. At worst, the posterior will be the same
as the prior, but then we haven’t learned anything about that parameter.
A common check for identifiability is therefore to compare the prior and
the posterior distribution of a parameter: if the two coincide approxi-
mately, there does not seem to be any information in the data about
that parameter. Assessing parameter identifiability is another difficult

TABLE 2.1 Examples for the Illustration of Some Important Special Topics

Topic Location (Chapters)

Importance of detection probability when analyzing
counts

13, 16, 16E, 17, 18, 20, and 21

Random effects/hierarchical models/mixed models 9, 12, 16, 19, 20, and 21

Computing residuals 7, 8, 13, 18, and 20

Posterior predictive checks, including Bayesian p value 8, 13, 18, 20, and 21

Forming predictions 8, 10, 13, 15, 20, and 21

Prior sensitivity 5E, 20, and 21

Nonconvergence or convergence wrongly indicated 11 and 21

Missing values 4E and 8E

Standardization of covariates 11

Use of simulation for assessment of bias (or estimability)
in an estimator

10

E denotes the exercises at the end of each chapter.
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topic in the Bayesian world, and one where more research is needed, but
the same state of affairs exists also for any complex statistical model ana-
lyzed by classical methods (see for instance Dennis et al., 2006).
In WinBUGS, nonconvergence may not only indicate lack of identifiability
of one or more parameters but also other problems. Perhaps one of the
simplest ways of finding out whether a parameter is indeed identifiable
is by simulation: we simulate a data set and see whether we are able to
recover parameter values that resemble those used to generate the data.
To distinguish sampling and estimation error from lack of estimability,
simulations will have to be repeated many, e.g., 10 or 100, times.

2.7 POINTER TO SPECIAL TOPICS IN THIS BOOK

In this book, we learn extensively by example. Hence, Table 2.1.
lists some special topics and shows where examples for them may be
found.

2.8 SUMMARY

I have given a very brief introduction to Bayesian statistics and how it
is conducted in practice using simulation-based methods (e.g., MCMC,
Gibbs sampling). This chapter and indeed the whole book is
notmeant to deal with the theory of Bayesian statistics and the associated
computational methods in any exhaustive way. Rather, books like King
et al. (2009) and Link and Barker (2010) should be consulted for that.

EXERCISE
1. Bayes rule in classical statistics: Not every application of Bayes rule makes a

probability calculation Bayesian as shown next in a classical example from
medical testing. An important issue in medical testing is the probability that
one actually has a disease (denoted “D”), given that one gets a positive test
result, denoted “+” (which, depending on the test, in common language
may be very negative, just think about an AIDS test). This probability is
pðD j +Þ. With only three pieces of information that are often known for
diagnostic tests and a given population, we can use Bayes rule to compute
pðD j +Þ. We simply need to know the sensitivity of the diagnostic test,
denoted pð+ jDÞ, its specificity pð− jnot DÞ, and the general prevalence, or
incidence, of the disease in the study population, p(D). Note that sensitivity
and specificity are the two possible kinds of diagnostic error.
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Compute the probability of having the disease, given that you got a
positive test result. Assume the following values: sensitivity = 0.99,

specificity = 0.95, and prevalence = 5%. Start with p D j+ð Þ = pð+jDÞpðDÞ
pð+Þ and

note that a positive test result, which has probability p(+), can be obtained
in two ways: either one has the disease (with probability p(D)) or one does
not have it (with probability p(not D)). Does the result surprise you?
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3.1 WHAT IS WinBUGS?

The BUGS language and program was developed by epidemiologists in
Cambridge, UK in the 1990s (Gilks et al., 1994; Lunn et al., 2009). The acro-
nym stands for Bayesian analysis Using Gibbs Sampling. In later years, a
Windows version called WinBUGS was developed (Spiegelhalter et al.,
2003). Despite imperfections, (Win)BUGS is a groundbreaking program;
for the first time, it has made really flexible and powerful Bayesian statis-
tical modeling available to a large range of users, especially for users who
lack the experience in statistics and computing to fit such fully custom
models by maximizing their likelihood in a frequentist mode of inference.
(Although no doubt some statisticians may deplore this because it may
also lead to misuse; Lunn et al., 2009.)

WinBUGS lets one specify almost arbitrarily complex statistical
models using a fairly simple model definition language that describes
the stochastic and deterministic “local” relationships among all observable
and unobservable quantities in a fully specified statistical model. These
statistical models contain prior distributions for all top-level quantities,
i.e., quantities that do not depend on other quantities. From this, WinBUGS
determines the so-called full conditional distributions and then constructs
a Gibbs or other MCMC sampler and uses it to produce the desired number
of random samples from the joint posterior distribution.

Introduction to WinBUGS for Ecologists
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To let an ecologist really grasp what WinBUGS has brought us, it is
instructive to compare the code (say in program R) required to find the
maximum likelihood estimates (MLEs) of a custom model using numerical
optimization with the code to specify the same model in WinBUGS: the
difference is dramatic! With the former, some ugly likelihood expression
appears at some point. In contrast, in WinBUGS, the likelihood of a model
is specified implicitly as a series of deterministic and stochastic relation-
ships; the latter types of relationships are specified as the statistical distri-
butions assumed for all random quantities in the model.

WinBUGS is a fairly slow program; for large problems, it may fail to
provide posterior samples of reasonable size within practical time limits.
Custom-written samplers in more general programming languages such
as Fortran or C++, or even R, can easily beat WinBUGS in terms of
speed (Brooks, 2003), and often do so by a large margin. However, for
many ecologists, writing their own samplers is simply not an option,
and this makes WinBUGS so unique.

3.2 RUNNING WinBUGS FROM R

In contrast to most other WinBUGS introductions (e.g., McCarthy, 2007;
Ntzoufras, 2009), all examples in this book will be analyzed withWinBUGS
run fromwithin programRbyuse of the R2WinBUGSpackage (Sturtz et al.,
2005). R has become the lingua franca of statistical computing and conduct-
ing a Bayesian analysis in WinBUGS directly from within one’s normal
computing environment is a great advantage. In addition, the steps before
and after an analysis in WinBUGS are greatly facilitated in R, e.g., data
preparation as well as computations on the Markov chain Monte Carlo
(MCMC) output and the presentation of results in graphs and tables.

Importantly, after conducting an analysis in WinBUGS, R2WinBUGS
will import back into R the results of the Bayesian analysis, which essen-
tially consist of the Markov chains for each monitored parameter. Hence,
these results must be saved before exiting the program, otherwise all
results will be lost! (Although the coda files are saved into the working
directory, see 5.3.) This would not be dramatic for most examples in this
book, but can be very annoying if you have just run a model for 7 days.

3.3 WinBUGS FREES THE MODELER IN YOU

Fitting statistical models in WinBUGS opens up a new world of mode-
ling freedom to many ecologists. In my experience, writing WinBUGS
code, or understanding and tailoring to one’s own needs WinBUGS
code written by others, is much more within the reach of typical ecologists

3. WinBUGS30



than writing or adapting a similar analysis in some software that explicitly
maximizes a likelihood function for the same problem. The simple
pseudo-code model specification in WinBUGS is just wonderful. Thus,
in theory, and often also in practice, WinBUGS really frees your creativity
as a modeler and allows you to fit realistically complex models to obser-
vations from your study system.

However, it has been said (by Box or Cox, I believe) that statistical
modeling is as much an art as a science. This applies particularly to
modeling in WinBUGS, where for more complex problems, a lot of art
(and patience!) may often be required to get an analysis running.WinBUGS
is great when it works, but on the other hand, there are many things
that may go wrong (e.g., traps, nonconvergence) without any obvious
error in one’s programming. For instance, cryptic error messages such
as “trap 66” can make one feel really miserable. Of course, as usual,
experience helps a great deal, so in an appendix on the book Web site I
provide a list of tips that hopefully allow you to love WinBUGS more
unconditionally (see Appendix—A list of WinBUGS tricks). I would
suggest you skim over them now and then refresh your memory from
time to time later.

3.4 SOME TECHNICALITIES AND CONVENTIONS

As a typographical convention in this book, WinBUGS and R code is
shown in Courier font, like this. When part of the output was removed
for the sake of clarity, I denote this by [ ... ]. When starting a new R
session, it is useful or even obligate to set a few options, e.g., choose a
working directory (where WinBUGS will save the files she creates, such
as those containing the Markov chain values), load the R2WinBUGS pack-
age and tell R where the WinBUGS program is located. Each step may have
to be adapted to your particular case. You can set the R working directory
by issuing a command such as setwd("C:\"). The R2WinBUGS function
bugs(), which we use all the time to call WinBUGS from within R, has an
argument called bugs.directory that defaults to "C:/Program Files/
WinBUGS14/" (though this is not the case under Windows VISTA). This
is fine for most Anglosaxon computers but will have to be adapted for
other language locales. Most recent versions of the bugs() function have
another option called working.directory that partly overrides the global
R setting from setwd(). It is best set to set working.directory = getwd().

To conduct the analyses in this book, you will need to load some
R packages, most notably R2WinBUGS, but sometimes also lme4,
MASS, or lattice. At the beginning of every session, execute library
("R2WinBUGS") and do the same for other required packages. One
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useful R feature is a simple text file called Rsite.profile, which sits in
C:\Program Files\R\R 2.8.1\etc., and contains global R settings.
For instance, you could add the following lines:

library("R2WinBUGS")
library("lme4")
bd < "C:/Program files/WinBUGS14/"

This causes R to load the packages R2WinBUGS and lme4 whenever
it is started and to have an object called bd that contains the usual
WinBUGS address. We could add the option bugs.directory = bd
whenever calling the bugs() function, and when running an analysis on
a German-language locale, redefine bd appropriately.

In all analyses, I have striven for a consistent presentation. First, we
write into the R working directory a text file containing the WinBUGS
model description. After that, the other components required for the ana-
lysis are written into R objects: data, initial values, a list of parameters to
be estimated and MCMC settings. Finally, these objects are sent to Win-
BUGS by the R2WinBUGS workhorse function bugs(). Within the Win-
BUGS model description, I have also sought consistency of layout by
grouping as far as possible statements defining priors, the likelihood
and derived quantities. This is not required; indeed, within some limits
(e.g., putting code inside or outside of loops or pairs of braces), WinBUGS
code lines may be swapped freely. This is not commonly the case with
other programming languages.

When conducting a WinBUGS analysis from R, the WinBUGS model
description, i.e., the text file that contains the model definition in the
BUGS language, could be written in any text editor and then saved into
the R working directory. However, I find it useful to use for that the
sink() function and keep both WinBUGS and R code in the same file.
However, you must not get confused about which code is R and which
is WinBUGS: put simply, everything inside of the pair of sink() calls
and inside the paired curly braces after the key word model will be
WinBUGS code. The book Web site contains a text file with all the code
shown in this book, and copying and pasting the code into an open
R window works well. However, when using the popular R editor
Tinn-R, a correct WinBUGS model description file will not always be
produced when using sink(), so the WinBUGS trick list on the book
Web site shows an alternative that works when using Tinn-R.

All analyses have been tested out with R 2.8.1 and WinBUGS 1.4.3.
I would hope that some backwards compatibility is present. Also, most
or all of the WinBUGS code should work fine in OpenBugs, but I have
not verified this.
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4.1 INTRODUCTION

To familiarize ourselves with WinBUGS and key features of a Bayesian
analysis in practice (such as prior, likelihood, Markov chain Monte Carlo
(MCMC) settings, initial values, updates, convergence, etc.), we will first
run an analysis directly within WinBUGS of what is perhaps the simplest
of all models—the “model of the mean.” That is, we estimate the mean of a
Normal population from a sample of measurements taken in that popula-
tion. Our first example will deal with body mass of male peregrines
(Fig. 4.1).

As an aside, this example emphasizes that even something that most
people would not think of as a model—taking a simple average—in fact
already implies a model that may be more or less adequate in any given
case and is thus not as innocuous as many would think. For instance,
using a simple average to express the central tendency of a skewed popu-
lation is not very useful, and the “model of the mean” is then not ade-
quate. Taking an average over nonindependent measurements, such as
the diameter of each of several flowers measured within each of a sample
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of plants, is also not such a good idea since the “model of the mean”
underlying that average does not account for dependencies among mea-
surements (as would, for instance, a mixed model). Finally, the computa-
tion and usual interpretation of a standard error for the population mean
(as SD(x)/sqrt(n(x))) is implicitly based on a “model of the mean”
where each measurement is independent and the population distribution
reasonably close to a Normal or at least symmetric.

4.2 SETTING UP THE ANALYSIS

To open WinBUGS, we click on its bug-like icon. WinBUGS uses files in
its own ODC format. To create an ODC file, you can either modify an
existing ODC file (e.g., one of the examples contained in the WinBUGS
help: go to Help > Examples vol I and II) or write a program in a text
editor such as Word, save it as a text file (with ending .txt) and read it
into WinBUGS and save it as an ODC document. Within WinBUGS, these
files can be edited in content and format.

Here, we open the file called "The model of the (normal) mean.odc"
(from the book Web site) via File > Open. We see something like at the top
of the next page.

FIGURE 4.1 Male peregrine falcon (Falco peregrinus) wintering in the French
Mediterranean, Sète, 2008. (Photo: J. M. Delaunay)
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Note that we have two data sets available on the body mass of male
peregrines. Both were created by using program R to produce random
Normal numbers with specified values for the mean and the standard
deviation. One data set contains 10 observations and the other contains
1000 (scroll down to see them). Male peregrines in Western Europe
weigh on average about 600 g and Monneret (2006) gives a weight
range of 500–680 g. Hence, the assumption of a Normal distribution of
body mass implies a standard deviation of about 30 g.

To run a Bayesian analysis of the “model of the mean” for one of these
data sets, we have to tell WinBUGS what the model is, what data to use,
provide initial values from where to start the Markov chains and set some
MCMC features, e.g., say how many Markov chains we want, how many
draws from the posterior distribution we would like to have, how many
draws WinBUGS should discard as a burn-in at the start and perhaps by
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how much we want to thin the resulting chain to save disk space and
reduce autocorrelation among repeated draws.

First, we have to tell WinBUGS what the model is. We select Model >
Specification, which causes the model Specification Tool window to pop
up. Then, we put the cursor somewhere on the word “model” or indeed
anywhere within the model definition in the ODC document and
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press “check model,” whereupon, if the model is syntactically correct,
WinBUGS responds in the bottom left corner:

Next, we load the data. We start with analysis of the data set number 1,
which comprises 10 measurements, mark the entire word “list” in the data
statement and press “load data”, whereupon WinBUGS responds in the
bottom left corner “data loaded.”

Then, we select the number of parallel Markov chains that WinBUGS
should “prepare” (i.e., compile), here, 3. This needs to be done before the
“compile” button is pressed! Then press the “compile” button.

WinBUGS replies (in the bottom left corner) that the model is compiled.
We still need to provide the starting values. One after another, mark the
word “list” in that part of the program where the initial values are defined
and then press “load inits.” After you have done this once for each chain,
the model is initialized and ready to run.

It is possible to let WinBUGS select the initial values by itself by instead
pressing the “gen inits” button. This works often, and may be necessary
for some parameters in more complex models, but in general, it is prefer-
able to explicitly specify inits for as many parameters as possible.

Next, we choose Inference > Samples to tell WinBUGS what kind
of inference we want for which parameter, which incidentally is called
a node by WinBUGS. This makes the “Sample Monitor Tool” pop up
(see top of p. 38).
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We write into the blank space next to the word “node” the names of
those parameters whose posterior distributions we want to estimate by
sampling them and press the “set” button. This button only becomes
black, i.e., activated, once the correct name of a parameter from the pre-
viously defined model has been entered.

For models with many parameters, this can be tedious because we have
to enter manually all of their names (correctly!). Moreover, every time we
want to rerun the model, we have to repeat this whole procedure.

Once we have entered all parameters whose Markov chains we want to
keep track of, i.e., for which we want to save the values and get estimates,
we type an asterisk into the blank space to the right of the word “node.”
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This tells WinBUGS that it should save the simulated draws from the pos-
terior distributions of all the parameters whose names we have entered
previously. On typing the asterisk, a few further buttons become acti-
vated, among them “trace” and “history” (see top of this page).

We select “trace,”which will provide us with a moving time-series plot of
the posterior draws for each selected parameter. (The button “history” pro-
duces a static graph of all draws up to the particular draw at which the his-
tory button is pushed.) Another window pops up that has an empty graph
for every selected parameter. There are several other settings in this
window that could be changed, perhaps only at later stages of the analysis.
An important one is the “beg” and the “end” setting. Together, they define
which draws should be used when summarizing the inference about each
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parameter, for instance when pressing the “density” or the “stats” buttons
(see later). Changing the “beg” setting to, say, 100, specifies a burn-in of 100.
This means that the first 100 draws from each Markov chain are discarded
as not representative of the stationary distribution of the chain (i.e., the
posterior distribution of the parameters in the model).

Now we are ready to start our simulation, i.e., start the Markov chains
at their specified initial values and let the chains evolve for the requested
number of times. To do this, we select Model > Update which makes a
third window pop open, the “Update Tool.”

4.3 STARTING THE MCMC BLACKBOX

We choose the default 1000 updates, but change the “refresh” setting
to 1 or 10, which gives a more smoothly moving dynamic trace of the
Markov chains. Then, we press the “update” button and off we go. The
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MCMC blackbox WinBUGS (Andy Royle, pers. comm.) draws samples
from the posterior distributions of all monitored parameters. One contin-
uous stream for each chain (here, 3) appears and represents the sampled
values for each monitored parameter. Also, note that WinBUGS explains
what it is doing at the bottom left corner, i.e., WinBUGS says that it is
updating (=drawing samples from the posterior distribution).

Once the specified number of iterations (=updates, =draws) have been
completed, WinBUGS stops and says that (on my laptop) the “updates
took 62 s.”

4.4 SUMMARIZING THE RESULTS

From each Markov chain, we now have a sample of 1000 random
draws from the joint posterior distribution of the two parameters in the
model. For inference about the mass of male peregrines, we can summar-
ize these samples numerically or we can graph them, either in one dimen-
sion (for each parameter singly) or in two, to look at correlations among
two parameters. If we wanted more samples, i.e., longer Markov chains,
we could just press the “update” button again and would get another
1000 draws added. For now, let’s be happy with a sample of 1000
(which is by far enough for this simple model and the small data set)
and proceed with the inference about the parameters.

First we should check whether the Markov chains have indeed reached
a stable equilibrium distribution, i.e., have converged. This can be done
visually or by inspecting the Brooks–Gelman–Rubin (BGR) diagnostic
statistic that WinBUGS displays on pressing the “bgr diag” button in
the Sample Monitor Tool. The BGR statistic (graphed by the red line) is
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an analysis of variance (ANOVA)-type diagnostic that compares within-
and among-chain variance. Values around 1 indicate convergence, with
1.1 considered as acceptable limit by Gelman and Hill (2007). Numerical
summaries of the BGR statistic for successive sections of the chains can be
obtained by first double-clicking on a BGR plot and then holding the
CTRL key and clicking on the plot once again.

According to this diagnostic, the chains converge to a stationary
distribution almost instantly; thus, we may well use all 3*1000 iterations
for inference about the parameters. In contrast, for more complex models,
nonzero burn-in lengths are always needed. For instance, for some com-
plex models, some statisticians may use chains one million iterations long
and routinely discard the first half of every chain as a burn-in.

Once we are satisfied that we have a valid sample from the posterior
distribution of the parameters of the model of the mean and based on the
observed 10 values of male peregrine body mass, we can use these draws
to make an inference. Inference means to draw a probabilistic conclusion
about the population from which these 10 peregrines came. Because we
have created both this population and the samples from it, we know of
course that the true population mean and standard deviations are 600
and 30 g, respectively.

We close some windows and press the “history,” “density,” “stats,”
and the “auto cor” buttons, which produces the following graphical dis-
play of information (after some rearranging of the pop-up windows):
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Visual inspection of the time series plot produced by “history” again
suggests that the Markov chains have converged. Then, we obtain a
kernel-smoothed histogram estimate of the posterior distributions of
both parameters. The posterior of the mean looks symmetrical, while
that for the standard deviation is fairly skewed. The node statistics give
the formal parameter estimates. As a Bayesian point estimate, typically
the posterior mean or the posterior median (or sometimes also the
mode) is reported, while the posterior standard deviation is used as a stan-
dard error of the parameter estimate. The range between the 2.5th and
97.5th percentiles represents a 95% Bayesian confidence interval and is
called a credible interval.

The autocorrelation function is depicted last. For this simple model, the
chains are hardly autocorrelated at all. This is good as our posterior
sample contains more information about the parameters than when suc-
cessive draws are correlated. In more complex models, we will frequently
find considerable autocorrelation between consecutive draws in a chain,
and then it may be useful to thin the chains to get more approximately
independent draws, i.e., more “concentrated” information. Note that a
very high autocorrelation may also mean that a parameter is not identifi-
able in the model, i.e., not estimable, or that there are other structural pro-
blems with a model.

You should note two things about Bayesian credible intervals: First,
though in practice, most nonstatisticians will not make a distinction
between a Bayesian credible interval and a frequentist confidence interval,
and indeed, for large samples sizes and vague priors, the two will typically
be very similar numerically, there is in fact a major conceptual difference
between them (see Chapter 2). Second, there are different ways inwhich the
posterior distribution of a parameter may be summarized by a Bayesian
credible interval. One is the highest posterior density interval (HPDI),
which denotes the limits of the narrowest segment of the posterior distribu-
tion containing 95% of its total mass. HPDIs are not computed by Win-
BUGS (nor by R2WinBUGS, see later), but can be obtained using the
function HPDinterval() in the R package coda.

One should also keep an eye on the Monte Carlo (MC) error under
node statistics. The MC error quantifies the variability in the estimates
that is due to Markov chain variability, which is the sampling error in
the simulation-based solution for Bayes rule for our problem. MC error
should be small. According to one rule of thumb, it should be <5% of
the posterior standard deviation for a parameter.

One possible summary from our Bayesian analysis of the model of the
mean adopted for the body mass of male peregrines would be that mean
body mass is estimated at 604.8 g (SE: 12.62, 95%; CI: 579.2–629.1 g) and
that the standard deviation of the body mass of male peregrines is 39.06 g
(SE: 10.99, 95%; CI: 23.77–66.24 g). (Note how variance parameters are
typically estimated much less precisely than are means.)
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There is other summary information from WinBUGS that we can exam-
ine; for instance, Inference > Compare or Inference > Correlation allows us
to plot parameter estimates or to see how they are related across two or
more parameters. Let’s have a look at whether the estimates of the mean
body mass and its standard deviation are correlated: Choose Inference >
Correlation, type the names of the two parameters (nodes) and we see that
the estimates of the two parameters are not correlated at all.

4.5 SUMMARY

We have conducted our first Bayesian analysis of the simplest statistical
model, the “model of the mean.”We see that WinBUGS is a very powerful
software to fit models in a Bayesian mode of inference using MCMC and
that a lot can be achieved using simple click and point techniques.

EXERCISES
1. Save your file under another name, e.g., test.odc. Then try out a few

things that can go wrong.

• create a typo in one of the node names of the model and WinBUGS
complains “made use of undefined node.”
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• select extremely diffuse priors and see whether WinBUGS gets caught in
a trap.

• select initial values outside of the range of a (uniform) prior and
WinBUGS will crash.

• add data to the data set (e.g., silly.dat = c(0,1,2)) and WinBUGS
will say “undefined variable.”

• try out other typos in model, inits or data, e.g., an o (‘oh’) instead of a
zero.

• See how WinBUGS deals with missing responses: turn the second
element of the mass vector (in the smaller data set, but it doesn’t really
matter) into a missing value (NA). On loading the inits, you will now see
that WinBUGS says (in its bottom left corner) that for every chain, there
are still uninitialized variables. By this, it means the second element of
mass, as we shall see. Continue (press the “gen inits” button) and then
request a sample for both population.mean and mass in the Sample
Monitor Tool. Request the Trace to be displayed and you will see that we
get one for the node population.mean and another one for mass[2]. We
see that this missing value is automatically imputed (estimated). The
imputed value in this example is the same as the population mean,
except that its uncertainty is much larger. Adding missing response
values to the data set is one of the easiest ways in which predictions can
be obtained in WinBUGS.
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5.1 INTRODUCTION

In Chapter 4, it has become clear that as soon as you want to use
WinBUGS more frequently, pointing and clicking is a pain and it is
much more convenient to run the analyses by using a programming lang-
uage. In program R, we can use the add-on package R2WinBUGS (Sturtz
et al., 2005) to communicate with WinBUGS, so WinBUGS analyses can be
run directly from R (also see package BRugs, not featured here, in connec-
tion with OpenBugs). The ingredients of an entire analysis are specified in
R and sent to WinBUGS, then WinBUGS runs the desired number of
updates, and the results, essentially just a long stream of random draws
from the posterior distribution for each monitored parameter, along with
an index showing which value of that stream belongs to which parameter,
are sent back to R for convenient summary and further analysis. This is
how we will be using WinBUGS from now on (so I will assume that
you have R installed on your computer).

Any WinBUGS run produces a text file called “codaX.txt” for each
chain X requested along with another text file called “codaIndex.txt.”
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When requesting three chains, we get coda1.txt, coda2.txt,
coda3.txt, and the index file. They contain all sampled values of the
Markov chains (MCs) and can be read into R using facilities provided
by the R packages coda or boa and then analyzed further. Indeed, some-
times, for big models, the R object produced by R2WinBUGS may be too
big for one’s computer to swallow, although it may still be possible to read
in the coda files. Doing this and using coda or boa for analyzing, the
Markov chain Monte Carlo (MCMC) output may then be one’s only
way of obtaining inferences.

As an example for how to use WinBUGS in combination with R
through R2WinBUGS, we rerun the model of the mean, this time for a
custom-drawn sample of male peregrines. This is the first time where
we use R code to simulate our data set and then analyze it in WinBUGS
as well as by using the conventional facilities in R.

First, we assemble our data set, i.e., simulate a sample of male peregrine
body mass measurements. Second, we use R to analyze the model of
the mean for this sample in the frequentist mode of inference. Third, we
use WinBUGS called from R to conduct the same analysis in a Bayesian
mode of inference. Remember, analyzing data is like repairing motorcycles.
Thus, analyzing the data set means breaking it apart into those pieces that
we had used earlier to build it up. In real life, of course, nature assembles
the data sets for us and we have to infer truth (i.e., nature's assembly rules).

5.2 DATA GENERATION

First, we create our data:

# Generate two samples of body mass measurements of male peregrines

y10 <- rnorm(n 10, mean 600, sd 30) # Sample of 10 birds

y1000 <- rnorm(n 1000, mean 600, sd 30) # Sample of 1000 birds

# Plot data

xlim c(450, 750)

par(mfrow c(2,1))

hist(y10, col 'grey ', xlim xlim, main 'Body mass (g) of 10 male peregrines')

hist(y1000, col = 'grey', xlim = xlim, main = ' Body mass (g) of
1000 male peregrines')

Here, and indeed in all further examples, it is extremely instructive to exe-
cute the previous set of statements repeatedly to experience sampling
error—the variation in one’s data that stems from the fact that only part
but not the whole of a variable population has been measured. Sampling
error, or sampling variance, is something absolutely central to statistics,
yet it is among the most difficult concepts for ecologists to grasp,
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especially, since in practice we only ever observe a single sample from the
distribution that characterizes that variation! It is astonishing to observe
how different repeated realizations from the exact same random process
can be, here, the sampling of 10 or 1000 male peregrines from an assumed
infinite population of male peregrines. Also surprising is, how far from
normal the distribution in the smaller sample may look.

After playing around a while, we keep one pair of samples and go on.
Note that unless you set a so-called seed for the random-number generator
in R (for details, type ?set.seed), you will have a different sample from
me (i.e., this book) and therefore also get slightly different output in the
ensuing analyses (although you can download the exact data sets analy-
zed for the book from the Web site).

5.3 ANALYSIS USING R

We can conduct a quick classic analysis of this model using the linear
regression facilities in R on the larger sample.

summary(lm(y1000 ~ 1))
> summary(lm(y1000 ~ 1))

[ ...]

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 599.664 1.008 594.6 <2e 16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 31.89 on 999 degrees of freedom

We recognize well the estimates of the population mean (599.664) and
population standard deviation (SD), which is called the residual standard
error (31.89). Now let’s do the same analysis in WinBUGS.

5.4 ANALYSIS USING WinBUGS

Remember that you always need to load the R2WinBUGS package first,
although we won’t show this again from now on. Also, we need to set the
R working directory.

library(R2WinBUGS) # Load the R2WinBUGS library

setwd("F:/ WinBUGS book/Simple Normal mean model in WinBUGS") # wd

# Save BUGS description of the model to working directory

sink("model.txt")
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cat("

model {

# Priors

population.mean ~ dunif(0,5000) # Normal parameterized by precision

precision <- 1 / population.variance # Precision 1/variance

population.variance <- population.sd * population.sd

population.sd ~ dunif(0,100)

# Likelihood

for(i in 1:nobs){

mass[i] ~ dnorm(population.mean, precision)

}

}

",fill TRUE)

sink()

This last bit of code writes into the R working directory a text file named
“model.txt” containing the WinBUGS description of the model. We can
see this when we look at the Windows Explorer after execution of this set
of statements.

Next, we need to package the data that WinBUGS uses in the analysis.
We do this by creating a bundle that contains both the data themselves
and a count of the number of data points.

# Package all the stuff to be handed over to WinBUGS
# Bundle data
win.data < list(mass = y1000, nobs = length(y1000))
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Then, we define a function that creates random starting values, the inits
function. We could also explicitly supply these initial values for each
Markov chain requested, as we did in the previous chapter. However,
this is less flexible, since we would need to explicitly specify one set of
inits for each chain. If we wanted five chains instead of three, we would
have to add two sets of inits. In contrast, a function will simply be executed
two more times.

# Function to generate starting values
inits < function()
list(population.mean = rnorm(1,600),population.sd = runif(1,1,30))

As a reminder, if you are unsure what an R function such as rnorm() or
runif() means, just type ?rnorm or ?runif in the R console. We also have
to tell WinBUGS for which parameters it should save the posterior draws.
Let’s say we want to keep the variance also.

# Parameters to be monitored (= to estimate)
params < c("population.mean", "population.sd", "population.variance")

Then, the MCMC settings need to be selected.

# MCMC settings
nc < 3 # Number of chains
ni < 1000 # Number of draws from posterior (for each chain)
nb < 1 # Number of draws to discard as burn in
nt < 1 # Thinning rate

Finally, the function bugs() is called to perform the analysis in WinBUGS
and put its results into an R object called out:

# Start Gibbs sampler: Run model in WinBUGS and save results in object called out

out <- bugs(data win.data, inits inits, parameters.to.save params, model.file

"model.txt", n.thin nt, n.chains nc, n.burnin nb, n.iter ni, debug

TRUE, DIC TRUE, working.directory getwd())

During execution of the program inWinBUGS, the Rwindow is frozen. Once
the requested number of draws from the posterior has been produced, Win-
BUGS presents a graphical (the “history”) and numerical summary of those
parameters for which monitoring (i.e., estimation) was requested. On exit-
ing WinBUGS, we have the results in various formats in our working direc-
tory (e.g., coda1.txt, coda2.txt, coda3.txt, log.odc, and log.txt) as
well as in the R workspace a new object named out, a summary of which
can be obtained by just typing its name (i.e., out). Note that setting debug =
FALSE would cause WinBUGS to exit automatically after completion of the
requested number of draws. This is important for instance when running
repeated simulations. Otherwise, keepingWinBUGS open after the required
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number of draws have been taken from the posterior (i.e., setting debug =
TRUE) allows you to use WinBUGS for additional analyses, for instance, to
make plots.

Now look at the R workspace and note the new object called out:

ls()
> ls()
[1] "inits" "nb" "nc" "ni" "nt" "out" "params"
[8] "win.data" "xlim" "y10" "y1000"

We look at a summary of the Bayesian analysis:

out # Produces a summary of the object

> out

Inference for Bugs model at "model.txt", fit using WinBUGS,

3 chains, each with 1000 iterations (first 1 discarded)

n.sims 2997 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

population.mean 599.7 1.0 597.7 598.9 599.6 600.4 601.7 1.0 3000

population.sd 32.0 1.8 30.6 31.4 31.9 32.4 33.4 1.1 3000

population.variance 1027.0 173.7 934.6 988.7 1019.0 1050.0 1116.0 1.1 3000

deviance 9765.1 33.4 9762.0 9762.0 9763.0 9764.0 9769.0 1.1 1500
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For each parameter, n.eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor (at convergence, Rhat 1).

DIC info (using the rule, pD Dbar Dhat)

pD 3.5 and DIC 9768.6

DIC is an estimate of expected predictive error (lower deviance is better).

Actually, object out contains a lot more information, which we can see by
listing all the objects contained within out by typing names(out).

> names(out)
[1] "n.chains" "n.iter" "n.burnin" "n.thin"
[5] "n.keep" "n.sims" "sims.array" "sims.list"
[9] "sims.matrix" "summary" "mean" "sd"

[13] "median" "root.short" "long.short" "dimension.short"
[17] "indexes.short" "last.values" "isDIC" "DICbyR"
[21] "pD" "DIC" "model.file" "program"

You can look into any of these objects by typing their name, which will
usually print their full content, or by applying some summarizing function
such as names() or str() on them. (Again, when not sure what an R func-
tion does, just type ?names or ?str into your R console.) You can also look
deeper; note some degree of redundancy among sims.array, sims.list,
and sims.matrix:

str(out)

> str(out)

List of 24

$ n.chains : num 3

$ n.iter : num 1000

$ n.burnin : num 1

$ n.thin : num 1

$ n.keep : num 999

$ n.sims : num 2997

$ sims.array : num [1:999, 1:3, 1:4] 600 601 600 599 599 ...

..- attr(*, "dimnames") List of 3

.. ..$ : NULL

.. ..$ : NULL

.. ..$ : chr [1:4] "population.mean" "population.sd" "population.variance"

"deviance"

$ sims.list :List of 4

..$ population.mean : num [1:2997] 600 600 601 601 600 ...

..$ population.sd : num [1:2997] 31.8 32.8 31.6 32 31.8 ...

..$ population.variance: num [1:2997] 1013 1076 1000 1027 1011 ...

..$ deviance : num [1:2997] 9762 9763 9764 9763 9762 ...

$ sims.matrix : num [1:2997, 1:4] 600 600 601 601 600 ...
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..- attr(*, "dimnames") List of 2

.. ..$ : NULL

.. ..$ : chr [1:4] "population.mean" "population.sd" "population.variance"

"deviance"

$ summary : num [1:4, 1:9] 599.66 32 1027.02 9765.13 1.04 ...

..- attr(*, "dimnames") List of 2

.. ..$ : chr [1:4] "population.mean" "population.sd" "population.variance"

"deviance"

.. ..$ : chr [1:9] "mean" "sd" "2.5%" "25%" ...

$ mean :List of 4

..$ population.mean : num 600

..$ population.sd : num 32

..$ population.variance: num 1027

..$ deviance : num 9765

$ sd :List of 4

..$ population.mean : num 1.04

..$ population.sd : num 1.78

..$ population.variance: num 174

..$ deviance : num 33.4

$ median :List of 4

..$ population.mean : num 600

..$ population.sd : num 31.9

..$ population.variance: num 1019

..$ deviance : num 9763

[ ... ]

Object out contains all the information contained in the coda files that
WinBUGS produced plus some processed items such as summaries like
mean values of all monitored parameters, the Brooks–Gelman–Rubin
(BGR) convergence diagnostic called Rhat, and an effective sample size
that corrects for the degree of autocorrelation within the chains (more
autocorrelation means smaller effective sample size). We can now apply
standard R commands to get what we want from this raw output of our
Bayesian analysis of the model of the mean.

For a quick check whether any of the parameters has a BGR diagnostic
greater than 1.1 (i.e., has Markov chains that have not converged), you can
type this:

hist(out$summary[,8]) # Rhat values in the eighth column of the summary

which(out$summary[,8] > 1.1) # None in this case

For trace plots for the entire chains, do

par(mfrow = c(3,1))
matplot(out$sims.array[1:999,1:3,1], type = "l")
matplot(out$sims.array[,,2] , type = "l")
matplot(out$sims.array[,,3] , type = "l")
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… or just for the start of the chains to see how rapidly they converge …

par(mfrow = c(3,1))
matplot(out$sims.array[1:20,1:3,1], type = "l")
matplot(out$sims.array[1:20,,2] , type = "l")
matplot(out$sims.array[1:20,,3] , type = "l")

We can also produce graphical summaries, e.g., histograms of the poster-
ior distributions for each parameter:

par(mfrow = c(3,1))
hist(out$sims.list$population.mean, col = "grey")
hist(out$sims.list$population.sd, col = "blue")
hist(out$sims.list$population.variance, col = "green")

… or plot the (lack of ) correlation between two parameters:

par(mfrow = c(1,1))
plot(out$sims.list$population.mean, out$sims.list$population.sd)

or

pairs(cbind(out$sims.list$population.mean, out$sims.list$population.sd,

out$sims.list$population.variance))

Numerical summaries of the posterior distribution can also be obtained,
with the standard deviation requested separately:

summary(out$sims.list$population.mean)
summary(out$sims.list$population.sd)
sd(out$sims.list$population.mean)
sd(out$sims.list$population.sd)

Now compare this again with the classical analysis using maximum like-
lihood and the R function lm(). The results are almost indistinguishable.

summary(lm(y1000 ~ 1))

To summarize, after using R2WinBUGS, the R workspace contains all the
results from your Bayesian analysis (the coda files contain them as well
but in a less accessible format). If you want to keep these results, you
must save the R workspace or save them in an external file.

5.5 SUMMARY

We have repeated the analysis of the model of the mean from the pre-
vious chapter by calling WinBUGS from within program R using the
R2WinBUGS interface package. This is virtually always the most efficient
mode of running analyses in WinBUGS and is the way in which we will
use WinBUGS in the remainder of this book. We have also seen that a
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Bayesian analysis with vague priors yields almost identical estimates as a
classical analysis, something that we will see many more times.

EXERCISES
1. Informative priors: The analysis just presented uses vague priors, i.e., the

effect of the prior on the posterior distribution is minimal. As we have just
seen, Bayesian analyses with such priors typically yield estimates very
similar numerically to those obtained using maximum likelihood.

To see how the posterior distribution is influenced by both prior and
likelihood, assume that we knew that the average body mass of male
peregrines in populations like the one we sampled lay between 500 and
590 g. We can then formally incorporate this information into the analysis
by means of the prior distribution. Hint: Change some code bits as follows,
and let WinBUGS generate initial values automatically:

# Priors

population.mean ~ dunif(500, 590) # Mean mass must lie between 500 and 590

...

Rerun the analysis (again, with the prior for the population.sd
slightly changed) and see how the parameter estimates and their
uncertainty change under this prior. Is this a bad thing? You may want to
experiment with other limits for the uniform prior on the sd, for instance,
set it at (0,10). Run the model and inspect the posterior distributions.

2. Run the model for the small and large data set and compare posterior
means and SDs. Explain the differences.

3. Run the analysis for the larger data set for a long time, and from time to
time, draw a density plot (in WinBUGS) or inspect the stats, for instance,
after 10, 100, 1000, and 10 000 iterations: see how increasing length of
Markov chains leads to improved estimates. Look at the MC error (in the
WinBUGS output, hence you have to set default = TRUE) and at the
values of the BGR statistic (=Rhat). Explain what you see.

4. CompareMCerror andposterior SDanddistinguish these things conceptually.
See how they change in Markov chains of different lengths (as in Exercise 3).

5. Derived quantities: Estimate the coefficient of variation (CV = SD/mean) of
body mass in that peregrine population. Report a point estimate (with SE)
of that CV and also draw a picture of its posterior distribution.

6. Swiss hare data: Fit the model of the mean to mean.density and report the
mean, the SE of the mean, and a 95% credible interval for mean hare density.
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6.1 INTRODUCTION

All models in this book explain the variation in an observed response as
being composed of a deterministic and a stochastic part. Thus, the concept
of these models is this:

response = deterministic part + stochastic part

The deterministic part is also called the systematic part and the stochas-
tic the random part of a model. It is the presence of the stochastic part
that makes a model a statistical, rather than simply a mathematical
model. For the description of the stochastic part of the model, we use
a statistical distribution. In order to choose the “right” distribution, we
need to know the typical sampling situation that leads to one rather than
another distribution. Sampling situation means how the studied objects
were chosen and how and what characteristic was measured. The quan-
tity measured or otherwise assessed, the variation of which one wants to
explain, is the response. In this chapter, we briefly review four of the
most common statistical distributions that are used to capture the varia-
bility in a response: the normal, the uniform, the binomial, and the Pois-
son. These are virtually all the distributions that you need to know for
this book. In addition, they are also those that underlie a vast range of
statistical techniques that ecologists commonly employ.

Linear models are so called because they assume that the mean
(i.e., the expected) response can be treated as the result of explanatory
variables whose effects add together. Effects are additive regardless of
whether the explanatory variables are continuous (covariates, regres-
sors) or discrete (factors). To be able to specify how exactly we think
the explanatory variables affect the response, we need to understand
the so-called linear predictor of the model, the design matrix, and differ-
ent parameterizations of a linear model. It is the design matrix along
with the observed values of the covariates that makes up the determinis-
tic part of a linear statistical model. They combine to form the linear pre-
dictor, i.e., the expected response, which is the value of the response that
we would expect to observe in the absence of a stochastic component in
the studied system.

In programs such as R or GenStat, the specification of the design
matrix, and hence the linear predictor, just “happens” internally without
us having to know how exactly this works. All we type is a formula to
describe the linear model as in response ~ effect1 + effect2. In contrast
and unfortunately (or actually, fortunately!), using WinBUGS requires us
to know exactly what kind of linear model we want to fit because we have
to describe this model at a very elementary level. Therefore, in this
chapter, we review some of the basics of linear models. I expect them to
be useful also for your general understanding of linear statistical models,
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whether analyzed in a Bayesian or frequentist mode of inference. We deal
first with distributions (the stochastic part of a model) and then with the
design matrix and the linear predictor (the deterministic part).

6.2 STOCHASTIC PART OF LINEAR MODELS:
STATISTICAL DISTRIBUTIONS

Parametric statistical modeling means describing a caricature of the
“machine” that plausibly could have produced the numbers we observe.
The machine is nature, and nature is stochastic, i.e., nature is never fully
predictable. An element of chance in the observed outcome of something,
e.g., body mass, does not mean that the outcome has no reason for hap-
pening. There is always a reason; we simply don’t know it. Chance just
means that there are a few or many unrecognized factors that affect the
outcome, but we either don’t know or haven’t measured them, or that
we don’t fully understand the relationship between these factors and an
outcome. Things whose outcome is affected by chance and thus are only
predictable up to a certain degree are called random variables. At some
level, almost anything in nature is best thought of as a random variable.

However, random variables are seldom totally unpredictable; instead,
the combined effect of all the unmeasured factors can often reasonably well
be described by a mathematical abstraction: a probability distribution.
A probability distribution assigns to each possible realization (value or
event) of a random variable a probability of occurrence. To be a proper
probability distribution, that description must be complete, i.e., all possi-
ble realizations must be described so that the sum of their probabilities of
occurring is equal to 1.

The types of events vary greatly and may be binary like a coin flip
(heads/tail), a survival event (dead/survived), or sex (male/female).
They may be categorical like hair color (brown/blonde/red/white/
gray), nationality (Swiss/French/Italian), or geographical location. (Note
that a binary random variable is just a special case of a categorical one.)
They may be counts, like the number of birds in a sampling quadrat, the
number of people in a park or pub, or the number of boys in a school class
(Note the slight difference in this last kind of count?). Or they can be mea-
surements, like body mass, wing length, or diameter of a tree.

Probability distributions are themselves governed (described) by one or
a few parameters, and their actual form depends on the particular values
of these parameters. A probability distribution can be described using a
formula, a table, or a picture. Statisticians usually prefer formulae and
ecologists pictures. The advantage of a formula is that it is completely gen-
eral, while a picture can only ever show how a distribution looks like for
particular parameter values. Depending on these values, different
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distributions can yield very similar pictures or same distributions can look
very different. Nevertheless, there are some typical features of many
distributions, and it may be worthwhile to describe these, so you have a
better chance of recognizing a distribution when you meet it.

Of the four distributions we encounter in this book, two are discrete
and have non-negative values, i.e., they can only take on integer values
from 0, 1, and upwards. They are the binomial distribution and the
Poisson distribution. Then, we have two continuous distributions,
i.e., that can take on any value, within measuring accuracy. One is the
famous normal distribution, which is defined on the entire real line
(from −∞ to ∞), and the other is the uniform distribution, which is usually
defined between its lower and upper limits.

Sometimes, people are astonished at how modelers know how
to choose the right kind of distribution for describing their random
variables. It is true that there is some arbitrary element involved and,
often, there is more than a single distribution that could be used to
describe the output of the machine that produced our observations.
However, very frequently the circumstances of the data and how these
were collected quite firmly point to one rather than another distribution
as the most appropriate description of the number-generating machine
and therefore also of the random variability in the output of that
machine, the response.

Here, I describe circumstances in which each distribution would arise
during sampling and then provide a pictorial example for each. I also give
few lines of R code that are required to create random samples from each
distribution and then plot them in a histogram for checking how selected
parameter values influence the shape of a distribution. You can play
around with different parameter values and so get a feel for how the
distributions change as parameters are varied.

Among the four distributions (normal, uniform, Poisson, and binomial),
one big divide is whether your response (i.e., the data) is discrete or con-
tinuous. Counts are discrete and point to the two latter distributions,
while measurements are continuous and point to the two former distribu-
tions. In practice, there is some overlap. Since measurement accuracy is
finite, every continuous random variable is recorded in a discrete way.
However, this is usually of no consequence. On the other hand, under
certain circumstances (e.g., large sample sizes, many observed unique
values), the two discrete distributions can often be well approximated
by a normal distribution. For instance, large counts in practice are often
modeled as coming from a normal distribution.

What follows are brief vignettes of the four distributions we use
throughout this book. Further features of these and many other distribu-
tions for selected parameter values can be studied in R (type ?rnorm,
?runif, ?rpois, or ?rbinom to find out more).
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6.2.1 Normal Distribution

Sampling situation: Measurements are taken, which are affected by a
large number of effects that act in an additive way.
Classical examples: They include body size and other linear
measurements. In WinBUGS, they are also used to specify ignorance in
priors when the precision is small (meaning the variance large).
Varieties: When effects are multiplicative instead of additive, we get the
log-normal distribution. A log-normal random variable can be
transformed into a normal one by log-transforming it.
Typical picture: It is the Gaussian bell curve, i.e., symmetrical, single
hump, more or less long tails. In small samples, it can look remarkably
irregular, e.g., skewed.
Mathematical description: It includes two parameters, the mean (location)
and standard deviation (spread, average deviation from the mean) or,
equivalently, the variance (squared standard deviation). In WinBUGS,
spread is specified as precision = 1/variance.
Specification in WinBUGS:

x ~ dnorm(mean, tau) # note tau = 1/variance

R code to draw n random number with specified parameter(s) and plot a
histogram (see Fig. 6.1):

n < 100000 # Sample size
mu < mean < 600 # Body mass of male peregrines
sd < st.dev < 30 # SD of body mass of male peregrines
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FIGURE 6.1 Sample histogram of normal distribution.
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sample < rnorm(n = n, mean = mu, sd = sd)
print(sample, dig = 4)
hist(sample, col = "grey")

Mean and standard deviation:

EðyÞ = μ mean
sdðyÞ = σ sd

6.2.2 Continuous Uniform Distribution

Sampling situation: Measurements are taken, which are all equally likely
to occur in a certain range of values.
Classical examples: In WinBUGS, this distribution is typically used to
specify ignorance in a prior (as an alternative to a “flat” normal).
Varieties: The distribution can be discrete uniform, e.g., the result of
rolling a die with the response being anything from 1 to 6.
Typical picture: It is a rectangle shape (with variation due to
sampling variability).
Mathematical description: It includes two parameters, lower (a) and
upper limits (b).
Specification in WinBUGS:

x ~ dunif(lower, upper)

R code to draw n random number with specified parameter(s) and plot
histogram (see Fig. 6.2):

n < 100000 # Sample size
a < lower.limit < 0 #
b < upper.limit < 10 #

sample < runif(n = n, min = a, max = b)
print(sample, dig = 3)
hist(sample, col = "grey")

Mean and standard deviation:

EðyÞ = ða + bÞ/2 mean

sdðyÞ = ðb− aÞ2/12
q

sd

6.2.3 Binomial Distribution: The “Coin-Flip Distribution”

Sampling situation: When N available things all have the same
probability p of being in a certain state (e.g., being counted, or having
a certain attribute, like being male or dead), then the number x that is
actually counted in that sample, or has that attribute, is binomially
distributed.
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Classical examples: Number of males in a clutch, school class, or herd
of size N; number of times heads shows up among N flips of a coin;
number of times you get a six among N = 10 rolls of a die; and the
number of animals among those N present that you actually detect.
Varieties: The Bernoulli distribution corresponds to a single coin flip
and has only a single parameter, p. Actually, a binomial is the sum of
N Bernoullis (or coin flips).
Typical picture: It varies a lot but strictly speaking always discrete.
Normally, it is skewed, but skewness depends on the actual values of
the parameters. The binomial distribution is symmetrical for p = 0.5.
Mathematical description: It includes one or two parameters, the
probability of being chosen or having a certain trait (male, dead), often
called success probability p, and the “binomial total” N, which is the
sample or trial “size.” N represents a ceiling to a binomial count; this
is an important distinction to the similar Poisson distribution. Usually,
N is observed and therefore not a parameter (but see Chapter 21). Aim
of modeling is typically estimation and modeling of p (but sometimes
also of N; see Chapter 21).
Important feature: The binomial comes with a “built-in” variance equal
to N � p � ð1− pÞ, i.e., the variance is a function of the mean, which is
N � p. See also Fig. 6.3.
Specification in WinBUGS:

x ~ dbin(p, N) # Note order of parameters !
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FIGURE 6.2 Sample histogram of uniform distribution.
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Bernoulli:
x ~ dbern(p)

R code to draw n random number with specified parameter(s) and plot
histogram (Fig. 6.3):

n < 100000 # Sample size
N < 16 # Number of individuals that flip the coin
p < 0.8 # Probability of being counted (seen), dead or a male

sample < rbinom(n = n, size = N, prob = p)
print(sample, dig = 3)
hist(sample, col = "grey")

Extra comment: This picture can be thought to give the frequency with
which we count 4, 5, 6, …, 16 greenfinches in a monitoring plot that has
a population of N = 16 individuals and where each greenfinch has a prob-
ability of being seen (= counted) of exactly p = 0.8. It is important, though
not sufficiently widely recognized among ornithologists, to note that
there is variation in bird counts even under constant conditions,
i.e., when N and p are constant (Kéry and Schmidt, 2008).

Mean and standard deviation:

EðyÞ = N � p mean
sdðyÞ = N � p � ð1− pÞp

sd

Mean and standard deviation for the Bernoulli are p and p � ð1− pÞp
,

respectively.
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FIGURE 6.3 Sample histogram of binomial distribution with N=16 and p=0.8.
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6.2.4 Poisson Distribution

Sampling situation: When things (e.g., birds, cars, or erythrocytes) are
randomly distributed in one or two (or more) dimensions and we
randomly place a “counting window” along that dimension or in that
space and record the number of things, then that number is Poisson
distributed.
Classical examples: Number of passing cars during 10-min counts at a
street corner; number of birds that fly by you at a migration site, annual
number of Prussian soldiers kicked to death by a horse; number of car
accidents per day, month, or year, and number of birds or hares per
sample quadrat.
Varieties: None really. But the Poisson is an approximation to the
binomial when N is large and p is small and can itself be
approximated by the normal when the average count, λ, is large,
e.g., greater than 10. The negative binomial distribution is an
overdispersed version of the Poisson and can be derived by
assuming that the Poisson mean, λ, is itself a random variable with
another distribution, the gamma. Therefore, it is also referred to as
a Poisson–gamma mixture.
Typical picture: It varies a lot but strictly speaking always discrete. It is
skewed normally, but skewness depends on the value of lambda.
Mathematical description: It includes a single parameter called λ, which is
equal to the mean (= expectation, average count, intensity), as well as
the variance (i.e., variance = mean). That is, as for the binomial
distribution, the variance is not a free parameter but is a function of the
mean.
Important feature: As for the binomial, values from a Poisson
distribution are non-negative integers that come with a built-in
variance.
Specification in WinBUGS:

x ~ dpois(lambda)

R code to draw n random number with specified parameter(s) and plot
histogram (see Fig. 6.4):

n < 100000 # Sample size

lambda < 5 # Average # individuals per sample, density

sample < rpois(n n, lambda lambda)

print(sample, dig 3)

par(mfrow c(2,1))

hist(sample, col "grey", main "Default histogram")

plot(table(sample), main "A better graph", lwd 3, ylab "Frequency")
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Mean and standard deviation:

EðyÞ = λ mean
sdðyÞ = λ

p
sd

6.3 DETERMINISTIC PART OF LINEAR MODELS:
LINEAR PREDICTOR AND

DESIGN MATRICES

Linear models describe the expected response as a linear combination
of the effects of discrete or continuous explanatory variables. That is, they
directly specify the relationship between the response and one or more
explanatory variables. I note, in passing, that it is this linear (additive)
relationship that makes a statistical model linear, not that a picture of it
is a straight line. Most statistically linear models describe relationships
that are represented by curvilinear graphs of some kind. Thus, one must
differentiate between linear statistical models and linear models that also
imply straight-line relationships.

Most ecologists have become accustomed to using a simple formula
language when specifying linear models in statistical software. For
instance, to specify a two-way analysis of variance (ANOVA) with inter-
action in R, we just type y ~ A*B as an argument of the functions lm() or
glm(). Many of us don’t know exactly what typing y ~ A*B causes R to do
internally, and this may not be fatal. However, to fit a linear model in
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FIGURE 6.4 Sample histogram of Poisson distribution. The lower graph is better since it
shows the discrete nature of a Poisson random variable.
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WinBUGS, you must know exactly what this and other model descriptions
mean and how they can be adapted to match your hypotheses! Therefore,
I next present a short guide to the so-called design matrix of a linear or
generalized linear model (GLM). We will see how the same linear
model can be described in different ways; the different forms of the asso-
ciated design matrices are called parameterizations of a model.

The material in the rest of this chapter may be seen by some as a nui-
sance. It may look difficult at first and indeed may not be totally necessary
when fitting linear models using one of the widely known stats packages.
For better or worse, in order to use WinBUGS, you must understand this
material. However, understanding design matrices will greatly increase
your grasp of statistical models in general. In particular, you will greatly
benefit from this understanding when you use other software to conduct
more specialist analyses that ecologists typically conduct. For instance,
you need to understand the design matrix when you use program
MARK (White and Burnham, 1999) to fit any of a very large range of
capture–recapture types of models (for instance, most of those described
by Williams et al., 2002). Thus, time invested to understand this material is
time well spent for most ecologists!

For each element of the response vector, the design matrix n index indi-
cates which effect is present for categorical (= discrete) explanatory vari-
ables and what “amount” of an effect is present in the case of continuous
explanatory variables. The design matrix contains as many columns as the
fitted model has parameters, and when matrix-multiplied with the param-
eter vector, it yields the linear predictor, another vector. The linear predictor
contains the expected value of the response (on the link scale), given the
values of all explanatory variables in the model. Expected value means
the response that would be observed when all random variation is averaged
out. For a fuller understanding of some of this GLM jargon, you may need
to jump to Chapter 13 (and back again). However, this is not required for an
understanding of this chapter.

In the remainder of this chapter, we look at a progression of typical lin-
ear models (e.g., t-test, simple linear regression, one-way ANOVA, and
analysis of covariance (ANCOVA)). We see how to specify them in R
and then find out what R does internally when we do this. We look at
how to write these models algebraically and what system of equations
they imply. We see different ways of writing what is essentially the
same model (i.e., different parameterizations of a model) and how these
affect the interpretation of the model parameters. Only understanding all
the above allows us to specify these linear models in WinBUGS (though,
notably, none of this has anything to do with Bayesian statistics).

For most nonstatisticians, it is usually much easier to understand some-
thing with the aid of a numerical example. So to study the design matrices
for these linear models, we introduce a toy data set consisting of just six
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data points (Table 6.1). Let’s imagine that we measured body mass (mass,
in units of 10 g; a continuous response variable) of six snakes in three
populations (pop), two regions (region), and three habitat types (hab).
These three discrete explanatory variables are factors with 3, 2, and 3
levels, respectively. We also measured a continuous explanatory variable
for each snake, snout–vent length (svl).

Here is the R code for setting up these variables:

mass < c(6, 8, 5, 7, 9, 11)
pop < factor(c(1,1,2,2,3,3))
region < factor(c(1,1,1,1,2,2))
hab < factor(c(1,2,3,1,2,3))
svl < c(40, 45, 39, 50, 52, 57)

We use factor() to tell R that the numbers in this variable are
just names that lack any quantitative meaning. Next, we use the R func-
tions lm() or glm() to specify different linear models for these data and
inspect what this exactly means in terms of the design matrix.

6.3.1 The Model of the Mean

What if we just wanted to fit a common mean to the mass of all six
snakes? That is, we want to fit a linear model with an intercept only
(see Chapters 4 and 5). In R, this is done simply by issuing the command:

lm(mass ~ 1)

The 1 implies a covariate with a single value of one for every snake.
One way to write this model algebraically is this:

massi = μ + εi

That is, we imagine that the mass measured for snake i is composed
of an overall mean, μ, plus an individual deviation from that mean

TABLE 6.1 Our Toy Data Set for Six Snakes

mass pop region hab svl

6 1 1 1 40

8 1 1 2 45

5 2 1 3 39

7 2 1 1 50

9 3 2 2 52

11 3 2 3 57
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called εi. Of course, the latter is the residual for snake i. If we want to
estimate the mean within a linear statistical model as above, then we also
need an assumption about these residuals, for instance εi ∼Normalð0, σ2Þ.
That is, we assume that the residuals are normally distributed around μ
with a variance of σ2.

Let’s look at the design matrix of that model using the function model.
matrix(). We see that it consists just of a vector of ones and that this
vector is termed the intercept by R.

model.matrix(mass ~ 1)

In the rest of this book, we make extensive use of this very useful
R function, model.matrix(). Next, we consider in more detail some less
trivial linear statistical models.

6.3.2 t-Test

When we are interested in the effect of a single, binary explanatory
variable such as region on a continuous response such as mass, we can
conduct a t-test (see Chapter 7). Here is the specification of a t-test as a
linear model in R:

lm(mass ~ region)

Some might wonder now: “But where is the p-value?” However, the
most important thing in the linear model underlying a t-test is not the
p-value but the vector of parameter estimates. R is a respectable statistics
program and thus presents the most important things first. But of course,
there are several ways the p-value might be obtained, for instance, by
summary(lm(mass ~ region)).

In the methods section of a research paper, you would not describe
your model with the R description above; rather, you could describe it
algebraically. Of course, for such a simple model as that underlying the
t-test, you would simply mention that you used a t-test, but for the sake
of getting some mental exercise, let’s do it now in a more general way.
One way of describing the linear model that relates snake mass to region
is with the following statement:

massi = α + β � regioni + εi

This means that the mass of snake i is made up of the sum of three com-
ponents: a constant α, the product of another constant (β) with the value
of the indicator for the region in which snake i was caught, and a third
term εi that is specific to each snake i. The last term, εi, is the residual,
and to make this mathematical model a statistical model, we need some
assumption about how these residuals vary among individuals. One of the
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simplest assumptions about these unexplained, snake-specific contribu-
tions to mass is that they follow a normal distribution centered on zero
and with a spread (standard deviation or variance) that we are going to
estimate. We can write this as follows:

εi ∼Normalð0, σ2Þ
This way of writing the linear model underlying a t-test immediately clari-
fies a widespread confusion about what exactly needs to be normally dis-
tributed in normal linear models: it is the residuals and not the raw
response. Thus, if you are concerned about the normality or not of a
response variable, you must first fit a linear model and only then inspect
the residual distribution.

A second and equivalent way to write the linear model for the t-test
algebraically is this:

massi ∼Normalðα + β � regioni, σ
2Þ

This way to write down the model resembles more the way in which we
specify it in WinBUGS, as we will see. It clarifies that the mean response is
not the same for each snake. Moreover, in this way to write the model,
α + β � regioni represents the deterministic part of the model and
Normalð:::, σ2Þ its stochastic part.

Finally, we might also write this model like this: massi = μi + εi, which
again says that the mass of snake i is the sum of a systematic effect, embo-
died by the mean or expected mass μi, and a random effect εi. The expected
mass of snake i, μi, consists of α + β � regioni. This is called the linear pre-
dictor of the model, and the residuals are assumed to follow a normal dis-
tribution centered on the value of the linear predictor, as before.

Regardless of how we describe the model, we must know what the
two-level variable named region actually looks like in the analysis of
the linear model underlying the t-test. When we define region to be a
factor and then fit its effect, what R does internally is to convert it into
a design matrix with two columns, one containing only ones (correspond-
ing to the intercept) and the other being a single indicator or dummy vari-
able. That is a variable containing just ones and zeroes that indicates
which snake was caught in the region indicated in R’s name for that col-
umn in the design matrix.

We can look at this using the function model.matrix():

model.matrix(~region)

> model.matrix(~region)
(Intercept) region2
1 1 0
2 1 0
3 1 0
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4 1 0
5 1 1
6 1 1
[...]

(This is what the R default treatment contrasts yield; type ?model.
matrix to find out what other contrasts are possible in R.) Therefore,
the indicator variable named region2 contains a one for those snakes in
region 2.

Fitting the model underlying the t-test to our six data points with
region defined in this way implies a system of equations, and it is very
instructive to write it down:

6 = α � 1 + β � 0 + ε1
8 = α � 1 + β � 0 + ε2
5 = α � 1 + β � 0 + ε3
7 = α � 1 + β � 0 + ε4
9 = α � 1 + β � 1 + ε5

11 = α � 1 + β � 1 + ε6

Here, one sees why the intercept is often represented by a 1: it is always
present and identical for all the values of the response variable. To get a
solution for this system of equations, i.e., to obtain values for the
unknowns α and β that are “good” in some way, we need to define
some criterion for dealing with the residuals εi. Usually, in this system
of equations, the unknowns α and β are chosen such that the sum of the
squared residuals is minimal. This is called the least-squares method, and
for normal GLMs (again, see Chapter 13), the resulting parameter esti-
mates for α and β are equivalent to those obtained using the more general
maximum likelihood method.

A more concise way of writing the same system of equations is using
vectors and matrices:
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0
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β

� �
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ε6

0
BBBBBB@

1
CCCCCCA

We see again that the response is made up of the value of the linear
predictor plus the vector of residuals. The linear predictor consists of
the product of the design matrix (also called model matrix or X matrix)
and the parameter vector. In a sense, the design matrix contains the
“weights” with which α and β enter the linear predictor for each snake i.
The linear predictor, i.e., the result of that matrix multiplication, is another
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vector containing the expected value of the response, given the covariates,
for each snake i.

What is the interpretation of these parameters? This is a crucial topic
and one that depends entirely on the way in which the design matrix is
specified for a model. It is clear from looking at the extended version of the
system of equations above (or the matrix version as well) that α must
represent the expected mass of a snake in region 1 and β is the difference
in the expected mass of a snake in region 2 compared with that of a snake
in region 1. Thus, region 1 serves as a baseline or reference level and in the
model becomes represented by the intercept parameter, and the effect of
region 2 is parameterized as a difference from that baseline. Let’s look
again at an analysis of this model parameterization in R:

lm(mass ~ region)
> lm(mass ~ region)

Call:
lm(formula = mass ~ region)

Coefficients:
(Intercept) region2

6.5 3.5

We recognize the value of the intercept as the mean mass of snakes in
region 1 and the parameter called region2 as the difference between
the mass in region 2 and that in region 1, i.e., the effect of region 2, or
here the effect of region. Hence, we may call this an effects parameterization
of the t-test model. Actually, in the output, R labels the parameter for
region 2 by the name of its column in the design matrix and that may
be slightly misleading.

Importantly, this is not the only way in which a linear model represent-
ing a t-test for a difference between the two regions might be specified.
Another way how to set up the equations, which is equivalent to the
one above and is called a reparameterization of that model, is this:
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What do the parameters α and β mean now? The interpretation of α has
not changed; it is the expected mass of a snake in region 1. However, the
interpretation of parameter β is different, since now it is the expected body
mass of a snake in region 2. Thus, in this parameterization of the linear
model underlying the t-test, the parameters directly represent the group
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means, and we may call this a means parameterization of the model. This
model can be fitted in R by removing the intercept:

model.matrix(~region 1)
> model.matrix(~region 1)

region1 region2
1 1 0
2 1 0
3 1 0
4 1 0
5 0 1
6 0 1
[ ... ]

lm(mass~region 1)
> lm(mass~region 1)

Call:
lm(formula = mass ~ region 1)

Coefficients:
region1 region2

6.5 10.0

Why would we want to use these different parameterizations of the same
model? The answer is that they serve different aims: the effects parameter-
ization is more useful for testing for a difference between the means in the
two regions; this is equivalent to testing whether the effect of region 2, i.e.,
parameter b, is equal to zero. In contrast, for a summary of the analysis,
we might prefer the means parameterization and directly report the esti-
mated expected mass of snakes for each region. However, the two models
are equivalent; for instance, the sum of the two effects in the former
parameterization is equal to the value of the second parameter in the latter
parameterization, i.e., 6.5 + 3.5 = 10.

6.3.3 Simple Linear Regression

To examine the relationship between a continuous response (mass) and
a continuous explanatory variable such as svl, we would specify a simple
linear regression in R (see also Chapter 8):

lm(mass ~ svl)

This model is written algebraically in the same way as that underlying
the t-test:

massi = α + β � svli + εi
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and

εi ∼Normalð0, σ2Þ
Or like this:

massi ∼Normalðα + β � svli, σ2Þ
The only difference to the t-test lies in the contents of the explanatory
variable, svl, which may contain any real number rather than just the
two values of 0 and 1. Here, svl contains the lengths for each of the six
snakes. We inspect the design matrix that R builds on issuing the above
call to lm():

model.matrix(~svl)
> model.matrix(~svl)
(Intercept) svl

1 1 40
2 1 45
3 1 39
4 1 50
5 1 52
6 1 57
[]

Thus, fitting this simple linear regression model to our six data points
implies solving the following system of equations:

6 = α + β � 40 + ε1
8 = α + β � 45 + ε2
5 = α + β � 39 + ε3
7 = α + β � 50 + ε4
9 = α + β � 52 + ε5
11 = α + β � 57 + ε6

Again, a more concise way of writing the same equations is by using
vectors and a matrix:
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The design matrix contains an intercept and another column with
the values of the covariate svl. The interpretation of the parameters
α and β is thus that of a baseline, representing the expected value of the
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response (mass) at a covariate value of svl = 0, and a difference or an effect,
representing the change in mass for each unit change in svl. Equivalently,
this effect is the slope of the regression of mass on svl or the effect of svl.

Let’s look at an analysis of this model in R:

lm(mass~svl)
> lm(mass~svl)

Call:
lm(formula = mass ~ svl)

Coefficients:
(Intercept) svl

5.5588 0.2804

The intercept is biologically nonsense; it says that a snake of zero length
weighs −5.6 mass units! This illustrates that a linear model can only ever be a
useful characterization of a biological relationship over a restricted range of
the explanatory variables. To give the intercept a more sensible interpretation,
the model could be reparameterized by transforming svl to svl mean(svl).
Fitting this centered version of svl will cause the intercept to become the
expected mass of a snake at the average of the observed size distribution.

Again, this is not the onlyway to specify a linear regressionofmass on svl,
and we could again remove the intercept as in the t-test. However, remov-
ing the intercept is not just a reparameterization of the same model; instead,
it changes the model and forces the regression line to go through the origin.
The design matrix then contains just the values of the covariate svl:

model.matrix(~svl 1)
> model.matrix(~svl 1)
svl

1 40
2 45
3 39
4 50
5 52
6 57
[ ... ]

lm(mass~svl 1)
> lm(mass~svl 1)

Call:
lm(formula = mass ~ svl 1)

Coefficients:
svl

0.1647

6.3 DETERMINISTIC PART OF LINEAR MODELS 75



We see that the estimated slope is less than before, which makes sense,
since previously the estimate of the intercept was negative and now it is
forced to be zero. In most instances, the no-intercept model is not very
sensible, and we should have strong reasons for forcing the intercept of
a linear regression to be zero. Also, the lower limit of the observed
range of the covariate should be close to, or include, zero.

6.3.4 One-Way Analysis of Variance

To examine the relationship between mass and pop, a factor with three
levels, we would specify a one-way ANOVA in R:

lm(mass ~ pop)

There are different equivalent ways in which to write this model
algebraically; see also Chapter 9. Here, we focus on the effects and the
means parameterizations and show how their design matrices look. For
the mass of individual i in population j, one way to write the model is
like this:

massi = α + βjðiÞ � popi + εi

and

εi ∼Normalð0, σ2Þ
Another way to specify the same model is this:

massi ∼Normalðα + βjðiÞ � popi, σ
2Þ

This parameterization means to set up the design matrix in an effects
format, i.e., with an intercept α, representing the mean for population 1,
plus indicators for every population except the first one, representing the
differences between the means in these populations and the means in the
reference population. (The choice of reference is arbitrary and has no influ-
ence on inference.). For n populations, there are n− 1 βj parameters, which
are indexed by factor level j.

An algebraic description of the means parameterization of the one-way
ANOVA would be this:

yi = αjðiÞ � popi + εi

and

εi ∼Normalð0, σ2Þ
Here, the design matrix is set up to indicate each individual population,
and the parameters αj represent the mean body mass of snakes in each
population j.
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We look at the two design matrices associated with the two
parameterizations.

First, the effects parameterization, which is the default in R:

model.matrix(~pop)

> model.matrix(~pop)
(Intercept) pop2 pop3

1 1 0 0
2 1 0 0
3 1 1 0
4 1 1 0
5 1 0 1
6 1 0 1
[ ... ]

Second, themeans parameterization, which is specified in R by removing
the intercept:

model.matrix(~pop 1)
> model.matrix(~pop 1)

pop1 pop2 pop3
1 1 0 0
2 1 0 0
3 0 1 0
4 0 1 0
5 0 0 1
6 0 0 1
[ ... ]

Again, the interpretation of the first parameter of the model is the same
for both parameterizations: it is the mean body mass in population 1.
However, while in the effects parameterization, the parameters 2 and 3
correspond to differences in the means (above), and they represent the
actual expected body mass for snakes in each of the three populations
in the means parameterization (below). Also note how the first parameter
changes names when going from the former to the latter parameterization
of the one-way ANOVA.

Here is the matrix–vector description of the effects ANOVA model
applied to our toy snake data set:
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And here is the means parameterization:
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Again, we see clearly that the interpretation of the first parameter in the
model is not affected by the parameterization chosen, but those for the
second and third are.

Let’s fit the two versions of the ANOVA in R, first the effects and then
the means model:

lm(mass~pop) # Effects parameterization (R default)
> lm(mass~pop)

Call:
lm(formula = mass ~ pop)

Coefficients:
(Intercept) pop2 pop3

7 1 3
lm(mass~pop 1) # Means parameterization
> lm(mass~pop 1)

Call:
lm(formula = mass ~ pop 1)

Coefficients:
pop1 pop2 pop3

7 6 10

Each parameterization is better suited to a different aim: the effects
model is better for testing for differences and the means model is better
for presentation.

6.3.5 Two-Way Analysis of Variance

A two-way or two-factor ANOVA serves to examine the relationship
between a continuous response, such as mass, and two discrete explana-
tory variables, such as population (region) and habitat (hab), in our
example (see also Chapter 10). Importantly, there are two different ways
in which to combine the effects of two explanatory variables: additive
(also called main effects) and multiplicative (also called interaction
effects). In addition, there is the possibility to specify these models using
an effects parameterization or a means parameterization. We consider
each one in turn.
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To specify a main-effects ANOVA with region and hab in R, we would
write

lm(mass ~ region + hab)
> lm(mass ~ region + hab)

Call:
lm(formula = mass ~ region + hab)

Coefficients:
(Intercept) region2 hab2 hab3

6.50 3.50 0.25 0.25

To avoid overparameterization (i.e., trying to estimate more parameters
than the available data allow us to do), we need to arbitrarily set to
zero the effects of one level for each factor. The effects of the remaining
levels then get the interpretation of differences relative to the base level.
It does not matter which level is used as a baseline or reference, but often
stats programs use the first or the last level of each factor. R sets the effects
of the first level to zero.

In our snake toy data set, for the mass of individual i in region j and
habitat k, we can write this model as follows:

massi = α + βjðiÞ � regioni + δkðiÞ � habi + εi

and

εi ∼Normalð0, σ2Þ
Here, α is the expected mass of a snake in habitat 1 and region 1. There is
only one parameter βj, so the subscript could as well be dropped. It spe-
cifies the difference in the expected mass between snakes in region 2 and
snakes in region 1. We need two parameters δk to specify the differences in
the expected mass for snakes in habitats 2 and 3, respectively, relative to
those in habitat 1.

We look at the design matrix

model.matrix(~region + hab)

> model.matrix(~region + hab)
(Intercept) region2 hab2 hab3

1 1 0 0 0
2 1 0 1 0
3 1 0 0 1
4 1 0 0 0
5 1 1 1 0
6 1 1 0 1
[ ... ]
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Hence, the implied system of equations that the software solves for us is
this:

6
8
5
7
9
11

0
BBBBBB@

1
CCCCCCA

=

1 0 0 0
1 0 1 0
1 0 0 1
1 0 0 0
1 1 1 0
1 1 0 1

0
BBBBBB@

1
CCCCCCA

�
α
β2
δ2
δ3

0
BB@

1
CCA +

ε1
ε2
ε3
ε4
ε5
ε6

0
BBBBBB@

1
CCCCCCA

Interestingly, there is no way to specify the main-effects model in a means
parameterization.

Next, consider the model with interactive effects, which lets the effect of
one factor level depend on the level of the other factor. The default effects
parameterization is written like this in R:

lm(mass ~ region * hab)
> lm(mass ~ region * hab)

Call:
lm(formula = mass ~ region * hab)

Coefficients:
(Intercept) region2 hab2 hab3 region2:hab2 region2:hab3
6.5 6.0 1.5 1.5 5.0 NA

We see that one parameter is not estimable. The reason for this is that in
the 2-by-3 table of effects of region crossed with habitat, we lack snake
observations for habitat 1 in region 2.

Algebraically, we assume that the mass of individual i in region j and
habitat k can be broken down as follows:

massi = α + βjðiÞ � regioni + δkðiÞ � habi + γjkðiÞ � regioni � habi + εi

with

εi ∼Normalð0, σ2Þ:
In this equation, the meanings of parameters α, βj, and δk remain as

before, i.e., they specify the main effects of the levels for the habitat and
region factors. The new coefficients, γjk, of which there are two, specify the
interaction effects between these two factors.

Here is the design matrix for this model:

model.matrix(~region * hab)

> model.matrix(~region * hab)
(Intercept) region2 hab2 hab3 region2:hab2 region2:hab3

1 1 0 0 0 0 0
2 1 0 1 0 0 0
3 1 0 0 1 0 0
4 1 0 0 0 0 0
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5 1 1 1 0 1 0
6 1 1 0 1 0 1
[...]

And here is, therefore, the system of equations that needs to be solved
to get the parameter estimates for this model:
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Finally, the means parameterization of the interaction model:

lm(mass ~ region * hab 1 region hab)
> lm(mass ~ region * hab 1 region hab)

Call:
lm(formula = mass ~ region * hab 1 region hab)

Coefficients:
reg1:hab1 reg2:hab1 reg1:hab2 reg2:hab2 reg1:hab3 reg2:hab3
6.5 NA 8.0 9.0 5.0 11.0

(I slightly edited the output so it fits a single line.)
We see again that in the interactivemodel,wehave no information to esti-

mate the expected bodymass of snakes in habitat of type 1 in region 2, since
no snakeswere examined for that combination of factor levels (called a cell in
the cross-classification of the two factors). In the additive model, the infor-
mation for that cell in the table comes from the other cells in the table, but
in the interactive model, each cell mean is estimated independently.

This model can be written algebraically like this:

massi = αjkðiÞ � regioni � habi + εi
and

εi ∼Normalð0, σ2Þ
There are six elements in the vector αjk, corresponding to the six ways in
which the levels of the two factors region and habitat can be combined.
Also note that regioni � habi implies six columns in the design matrix. Now
look at the design matrix (again, slightly edited for an improved
presentation):

model.matrix(~ region * hab 1 region hab)

> model.matrix(~ region * hab 1 region hab)
reg1:hab1 reg2:hab1 reg1:hab2 reg2:hab2 reg1:hab3 reg2:hab3

1 1 0 0 0 0 0
2 0 0 1 0 0 0
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3 0 0 0 0 1 0
4 1 0 0 0 0 0
5 0 0 0 1 0 0
6 0 0 0 0 0 1
[ ... ]

And the system of equations:
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We see clearly the lack of information about effect α21, which is the
expected mass of a snake in region 2 and habitat 1, represented by the
second column in the design matrix containing all zeroes.

6.3.6 Analysis of Covariance

When we are interested in the effects on mass of both a factor (= discrete
explanatory variable, e.g., pop) and a continuous covariate like svl, we
could specify an ANCOVA model (see also Chapter 11). There are two
ways in which we might like to specify that model. First, we may think
that the relationship between mass and svl is the same in all populations,
or worded in another way, that the mass differences among populations
do not depend on the length of the snake. In statistical terms, this would
be represented by a main-effects model. Second if we admitted that the
mass–length relationship might differ among populations or that the dif-
ferences in mass among populations might depend on the length of a
snake, we would fit an interaction-effects model. (Note that here “effects”
has a slightly different meaning from that when used as effects parameter-
ization vs. means parameterization.) To specify these two versions of an
ANCOVA in R, we write this:

lm(mass ~ pop + svl) # Additive model

lm(mass ~ pop * svl) # Interactive model

lm(mass ~ pop + svl + pop:svl) # Same, R's way of specifying the interaction term

Here’s the additive model algebraically in the effects parameterization:

massi = α + βjðiÞ � popi + δ � svli + εi,

with

εi ∼Normalð0, σ2Þ
This model says that the mass of snake i in population j is made up of
a constant α plus the effects βj when in populations 2 and 3 plus a constant
δ times svl plus the residual. In the effects parameterization, α is the
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intercept for population 1 and vector βj has two elements, one for popula-
tion 2 and another one for population 3, being the differences of the inter-
cepts in these populations and the intercept in population 1. Finally, δ is
the common slope of the mass–length relationship in all three populations.

The means parameterization of the same model is this:

massi = αjðiÞ � popi + δ � svli + εi,

with

εi ∼Normalð0, σ2Þ
All that changes is that now the vector αj has three elements representing
the intercepts in each population.

The effects parameterization of the interaction-effects model is written
like this:

massi = α + βjðiÞ � popi + δ � svli + γjðiÞ � svli � popi + εi

and

εi ∼Normalð0, σ2Þ
In this model, α is the intercept for population 1 and vector βj has two
elements, representing the difference in the intercept between population 1
and populations 2 and 3, respectively. Parameter δ is the slope of the mass–
length relationship in the first population. Vector γj has two elements
corresponding to the difference in the slope between population 1 and
populations 2 and 3, respectively.

The means parameterization of the same model is probably easier to
understand and is written like this:

massi = αjðiÞ � popi + δjðiÞ � svli + εi

and

εi ∼Normalð0, σ2Þ
The only change relative to the main-effects model is that we added a sub-
script j to the effect δ of svl, meaning that we now estimate three slopes δ,
one for each population, instead of a single one that is common to snakes
from all three populations.

Let’s now look at the design matrices of both the effects and the mean
parameterizations of both the main- and interaction-effects models. Here
is the design matrix of the main-effects ANCOVA model using the
R default, the effects parameterization (I do hope that this terminology
is not too confusing here …):

model.matrix(lm(mass ~ pop + svl)) # Additive model

> model.matrix(lm(mass ~ pop + svl))
(Intercept) pop2 pop3 svl

1 1 0 0 40
2 1 0 0 45
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3 1 1 0 39
4 1 1 0 50
5 1 0 1 52
6 1 0 1 57
[ ... ]

The first parameter, the intercept, signifies the expected mass in popula-
tion 1 at the point where the value of the covariate is equal to zero, i.e., for a
snake of length zero. That is, therefore, the intercept of the regressionmodel.
The parameters associated with the design matrix columns named pop2
and pop3 quantify the difference in the intercept between these popula-
tions and population 1. The parameter associated with the last column
in the design matrix measures the common slope of mass on svl for
snakes in all three populations.

And here is the design matrix of the interaction-effects ANCOVA
model using the R default, the effects parameterization:

model.matrix(lm(mass ~ pop * svl)) # Interactive model

> model.matrix(lm(mass ~ pop * svl))
(Intercept) pop2 pop3 svl pop2:svl pop3:svl

1 1 0 0 40 0 0
2 1 0 0 45 0 0
3 1 1 0 39 39 0
4 1 1 0 50 50 0
5 1 0 1 52 0 52
6 1 0 1 57 0 57
[ ... ]

The parameters associated with the first three columns in this design
matrix signify the population 1 intercept and the effects of populations
2 and 3, respectively, i.e., the difference in intercepts. The parameter asso-
ciated with the fourth column, svl, is the slope of the mass–length regres-
sion in the first population, and the parameters associated with the last
two columns are the differences between the slopes in populations 2
and 3 relative to the slope in population 1.

Now let’s see the main-effects model using the means parameterization:

model.matrix(lm(mass ~ pop + svl 1)) # Additive model

> model.matrix(lm(mass ~ pop + svl 1))
pop1 pop2 pop3 svl

1 1 0 0 40
2 1 0 0 45
3 0 1 0 39
4 0 1 0 50
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5 0 0 1 52
6 0 0 1 57
[ ... ]

The parameters associated with the first three columns in the design
matrix now directly represent the intercepts for each population, while
that associated with the fourth column denotes the common slope of the
mass svl relationship.

And finally, let’s formulate the interaction-effects model using the
means parameterization.

model.matrix(lm(mass ~ (pop * svl 1 svl))) # Interactive model

> model.matrix(lm(mass ~ pop * svl 1))
pop1 pop2 pop3 pop1:svl pop2:svl pop3:svl

1 1 0 0 40 0 0
2 1 0 0 45 0 0
3 0 1 0 0 39 0
4 0 1 0 0 50 0
5 0 0 1 0 0 52
6 0 0 1 0 0 57
[ ... ]

This parameterization of the ANCOVA model with interaction between
population and svl contains parameters that have the direct interpretation
as intercepts and slopes of the three mass svl relationships (one in each
population). We will see this below, where we will also see that in R we
can directly fit in an lm() function an object that is a design matrix.

Here is the matrix–vector description of the main-effects ANCOVA
model with effects parameterization applied to our snake data set:
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And here is the means parameterization of the main-effects ANCOVA:
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Here is the effects parameterization of the interactive model:
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And finally the means parameterization of the same model:
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Now let’s use R to fit the main-effects and the interaction-effects models
using both the effects parameterization and the means parameterization.
First, R’s default effects parameterization of the main-effects model:

lm(mass ~ pop + svl)
> lm(mass ~ pop + svl)

Call:
lm(formula = mass ~ pop + svl)

Coefficients:
(Intercept) pop2 pop3 svl

3.43860 1.49123 0.05263 0.24561

So, the intercept is the expected mass of a snake in population 1 that has
svl equal to zero. Pop2 and pop3 are the differences in the intercept
between populations 2 and 3 compared with that in population 1, and
the parameter named svl measures the slope of the mass svl relationship
common to snakes in all populations.

It is instructive to plot the estimates of the relationships for each
population under this model (Fig. 6.5).

fm < lm(mass ~ pop + svl) # Refit model
plot(svl,mass,col=c(rep("red", 2), rep("blue", 2), rep("green", 2)))
abline(fm$coef[1], fm$coef[4], col = "red")
abline(fm$coef[1]+ fm$coef[2], fm$coef[4], col = "blue")
abline(fm$coef[1]+ fm$coef[3], fm$coef[4], col = "green")

Thismodel assumes that the mass svl relationship differs among popu-
lations only in the average level. What we see then is that population 1
(red) hardly differs from population 3 (green), but that snakes in
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population 2 (blue) weigh less at a given length than do snakes in
population 1 or 3.

Next, the interaction-effects models using the R default effects
parameterization:

lm(mass ~ pop * svl)
> lm(mass ~ pop * svl)

Call:
lm(formula = mass ~ pop * svl)

Coefficients:
(Intercept) pop2 pop3 svl pop2:svl pop3:svl

1.000e+01 7.909e+00 1.800e+00 4.000e 01 2.182e 01 6.232e 17

The first and the fourth parameters describe intercept and slope of the
relationship between mass and svl in the first population, while the
remainder refer to intercept and slope differences between the other two
populations and those of the baseline population. Note that the last
parameter estimate should in fact be zero but is not due to rounding error.

We plot the estimated relationships also under the interaction model
(Fig. 6.6):

fm < lm(mass ~ pop * svl) # Refit model
plot(svl, mass, col c(rep("red", 2), rep("blue", 2), rep("green", 2)))

abline(fm$coef[1], fm$coef[4], col = "red")
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FIGURE 6.5 The main effects ANCOVA model.
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abline(fm$coef[1]+ fm$coef[2], fm$coef[4] + fm$coef[5], col = "blue")
abline(fm$coef[1]+ fm$coef[3], fm$coef[4] + fm$coef[6], col = "green")

As an aside, this is not a useful statistical model, since it has an R2 = 1,
but the example does serve to illustrate the two kinds of assumptions
about homogeneity or not of slopes that one may examine in an ANCOVA
model.

Next, we try the means parameterizations of both the main-effects
model and the interaction-effects model. First the main-effects model:

lm(mass ~ pop + svl 1)
> lm(mass ~ pop + svl 1)

Call:
lm(formula = mass ~ pop + svl 1)

Coefficients:
pop1 pop2 pop3 svl

3.4386 4.9298 3.3860 0.2456

This gives us the estimates of each individual slope plus the slope esti-
mate common to all three populations.

What about the interaction-effects model?

lm(mass ~ pop * svl 1 svl)
> lm(mass ~ pop * svl 1 svl)
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FIGURE 6.6 The interaction effects ANCOVA model.
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Call:
lm(formula = mass ~ pop * svl 1 svl)

Coefficients:
pop1 pop2 pop3 pop1:svl pop2:svl pop3:svl

10.0000 2.0909 11.8000 0.4000 0.1818 0.4000

These estimates have direct interpretations as the intercept and the
slope of the three regressions of mass on svl.

6.4 SUMMARY

We have briefly reviewed the two key components of linear statistical
models: statistical distributions and the linear predictor, which is repre-
sented by the product of the design matrix and the parameter vector.
Understanding both is essential for applied statistics. But while sometimes
one may get away in R or other useful stats packages with not exactly
knowing what parameterization of a model is fit by the software and
what the parameters effectively mean, this is not the case when using Win-
BUGS. In WinBUGS, we have to specify all columns of the design matrix
and thus must know exactly what parameterization of a model we want to
fit and how this is done. The linear models in this chapter were presented
in a progression from simple to complex. Chapters 7–11 follow that struc-
ture and show how to fit these same models in WinBUGS and also in R for
normal responses, i.e., for normal linear models, to which ANOVA,
regression, and related methods all belong.

EXERCISE
1. Fitting a design matrix: The interaction-effects ANCOVA wasn’t a useful

statistical model for the toy snake data set, since six fitted parameters
perfectly explain six observations and we can’t estimate anymore the
variability in the system. Use lm() to fit a custom-built design matrix, i.e.,
the design matrix of an ANCOVA with partial interaction effects, where the
slopes of the mass length relationship are the same in population 1 and
population 3. Build this design matrix in R, call it X, and fit the model by
directly specifying X as the explanatory variable in function lm().
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One of the most commonly used linear models is that underlying the
simple t-test. Actually, almost as with the computation of the arithmetic
mean, many people wouldn’t even think of a t-test as being a form of lin-
ear model. The t-test comes in two flavors; one for the case with equal
variances and another for unequal variances. We will look at both in
this chapter.
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7.1 t-TEST WITH EQUAL VARIANCES

7.1.1 Introduction

The model underlying the t-test with equal variances states that:

yi = α + β � xi + εi
εi ∼Normal ð0, σ2Þ

Here, a response yi is a measurement on a continuous scale taken on indi-
viduals i, which belong to either of two groups, and xi is an indicator or
dummy variable for group 2. (See Chapter 6 for different parameterizations
of this model.) This simple t-test model has three parameters, the mean α for
group 1, the difference in the means between groups 1 and 2 (β) and the
variance σ2 of the normal distribution from which the residuals εi are
assumed to have come from.

7.1.2 Data Generation

We first simulate data under this model and for a motivating example
return to peregrine falcons. We imagine that we had measured male and
female wingspan and are interested in a sex difference in size. For Western
Europe, Monneret et al. (2006) gives the range of male and female wing-
span as 70–85 cm and 95–115 cm, respectively. Assuming normal distribu-
tions for wingspan, this implies means and standard deviations of about
77.5 and 2.5 cm for males and 105 and 3 cm for females.

n1 < 60 # Number of females

n2 < 40 # Number of males

mu1 < 105 # Population mean of females

mu2 < 77.5 # Population mean of males

sigma < 2.75 # Average population SD of both

n < n1+n2 # Total sample size

y1 < rnorm(n1, mu1, sigma) # Data for females

y2 < rnorm(n2, mu2, sigma) # Date for males

y < c(y1, y2) # Aggregate both data sets

x < rep(c(0,1), c(n1, n2)) # Indicator for male

boxplot (y ~ x, col "grey", xlab "Male", ylab "Wingspan (cm)", las 1)

The manner in which we just generated this data set (Fig. 7.1) corresponds
in a way to a means parameterization of the linear model of the t-test.
Here is a different way to generate a set of the same kind of data. Perhaps
it lets one see more clearly the principle of an effects parameterization of
the linear model:

n < n1+n2 # Total sample size

alpha < mu1 # Mean for females serves as the intercept
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beta < mu2 mu1 # Beta is the difference male female

E.y < alpha + beta*x # Expectation

y.obs < rnorm(n n, mean E.y, sd sigma) # Add random variation

boxplot(y.obs ~ x, col "grey", xlab "Male", ylab "Wingspan (cm)", las 1)

An important aside (again): To get a feel for the effect of chance, or tech-
nically, for sampling variance (= sampling error), you can repeatedly exe-
cute one of the previous sets of commands and observe how different
repeated realizations of the same random process are.

7.1.3 Analysis Using R

There is an R function called t.test(), but we will use the linear model
function lm() instead to fit the t-test with equal variances for both groups.

fit1 < lm(y ~ x) # Analysis of first data set
fit2 < lm(y.obs ~ x) # Analysis of second data set
summary(fit1)
summary(fit2)

> fit1 < lm(y ~ x)
> fit2 < lm(y.obs ~ x)
> summary(fit1)

[...]
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FIGURE 7.1 A boxplot of the generated data set on wingspan of female and male
peregrines when the residual variance is constant (0 females, 1 males).
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 104.6452 0.3592 291.37 <2e 16 ***
x 26.5737 0.5679 46.80 <2e 16 ***
[...]
Residual standard error: 2.782 on 98 degrees of freedom
Multiple R squared: 0.9572, Adjusted R squared: 0.9567
F statistic: 2190 on 1 and 98 DF, p value: < 2.2e 16

> summary(fit2)

[...]

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 105.1785 0.3621 290.45 <2e 16 ***
x 27.6985 0.5726 48.38 <2e 16 ***
[...]
Residual standard error: 2.805 on 98 degrees of freedom
Multiple R squared: 0.9598, Adjusted R squared: 0.9594
F statistic: 2340 on 1 and 98 DF, p value: < 2.2e 16

The difference between the two analyses is because of sampling variance,
i.e., the fact that two different samples from the same population were
taken. You may use anova() for an analysis of variance (ANOVA) table
of this model:

anova(fit1)
anova(fit2)

Just for fun check the designmatrices for the twomodels (they are the same):

model.matrix(fit1)
model.matrix(fit2)

7.1.4 Analysis Using WinBUGS

Here’s the Bayesian analysis of the first data set (and don’t forget to
load package R2WinBUGS). We need to specify the model first. As an
extra, we also compute the residuals.

# Define BUGS model

sink("ttest.txt")

cat("

model {

# Priors

mu1 ~ dnorm (0,0.001) # Precision 1/variance
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delta ~ dnorm (0,0.001) # Large variance Small precision

tau < 1/ (sigma * sigma)

sigma ~ dunif(0, 10)

# Likelihood

for (i in 1:n) {

y[i] ~ dnorm(mu[i], tau)

mu[i] < mu1 + delta *x[i]

residual[i] < y[i] mu[i] # Define residuals

}

# Derived quantities: one of the greatest things about a Bayesian analysis

mu2 <– mu1 + delta # Difference in wingspan

}

",fill TRUE)

sink()

Then, we provide the data, a function to generate inits, a list of parameters
we want WinBUGS to keep track of, and specify the Markov chain Monte
Carlo (MCMC) settings, after which, we use the function bugs() to run
the analysis. Note the use of lognormal (instead of normal) random num-
bers as initial values for the positive-valued standard deviation sigma.

# Bundle data

win.data < list("x", "y", "n")

# Inits function

inits< function(){list(mu1 rnorm(1), delta rnorm(1), sigma rlnorm(1))}

# Parameters to estimate

params < c("mu1","mu2", "delta", "sigma", "residual")

# MCMC settings

nc < 3 # Number of chains

ni < 1000 # Number of draws from posterior for each chain

nb < 1 # Number of draws to discard as burn in

nt < 1 # Thinning rate

# Start Gibbs sampler

out < bugs(data win.data, inits inits, parameters params, model

"ttest.txt", n.thin nt, n.chains nc, n.burnin nb, n.iter ni, debug TRUE,

working.directory getwd())

print(out, dig 3)

> print(out, dig 3)

Inference for Bugs model at "ttest.txt", fit using WinBUGS,

3 chains, each with 1000 iterations (first 1 discarded)

n.sims 2997 iterations saved
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mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

mu1 104.638 0.367 103.900 104.400 104.600 104.900 105.400 1.001 2100

mu2 78.070 0.448 77.200 77.770 78.080 78.370 78.950 1.001 3000

delta 26.568 0.577 27.680 26.960 26.560 26.190 25.410 1.001 3000

sigma 2.820 0.205 2.471 2.672 2.808 2.950 3.250 1.001 2400

residual[1] 2.671 0.366 3.411 2.911 2.669 2.430 1.937 1.001 2200

[ ...]

residual[100] 4.579 0.449 3.701 4.279 4.573 4.875 5.443 1.001 3000

deviance 489.489 2.579 486.600 487.700 488.800 490.600 496.300 1.001 3000

[ ...]

DIC info (using the rule, pD Dbar Dhat)

pD 3.0 and DIC 492.5

DIC is an estimate of expected predictive error (lower deviance is better).

>

Comparing the inference from WinBUGS with that using frequentist
statistics, we see that the means estimates are almost identical, but that
the residual standard deviation estimate is slightly larger in WinBUGS.
This last point is general. In later chapters, we will often see that estimates
of variances are greater in a Bayesian than in a frequentist analysis. Presum-
ably, the difference will be greatest with smaller sample sizes. This is an
indication of the approximate and asymptotic nature of frequentist infer-
ence that may differ from the exact inference under the Bayesian paradigm.

One of the nicest things about a Bayesian analysis is that parameters
that are functions of primary parameters and their uncertainty (e.g., stan-
dard errors or credible intervals) can very easily be obtained using the
MCMC posterior samples. Thus, in the above model code, the primary
parameters are the female mean and the male–female difference, but we
just added a line that computes the mean for males at every iteration, and
we directly obtain samples from the posterior distributions of not only the
female mean wingspan and the sex difference, but also directly of the
mean male wingspan. In a frequentist mode of inference, this would
require application of the delta method which is more complicated and
also makes more assumptions. In the Bayesian analysis, estimation error
is automatically propagated into functions of parameters.

Here are two further comments about model assessment. First, we see
that the effective number of parameters estimated is 3.0, which is right
because we are estimating one variance and two means. And second,
before making an inference about the wingspan in this peregrine popula-
tion, we should really check whether the model is adequate. Of course, the
check of model adequacy is somewhat contrived because we use exclu-
sively simulated and therefore, in a sense, perfect data sets. However, it
is important to practice, so we will check the residuals here.
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One of the first things to notice about the residuals, which is a little
strange at first, is that each one has a distribution. This makes sense,
because in a Bayesian analysis, every unknown has a posterior distribu-
tion representing our uncertainty about the magnitude of that unknown.
Here, we plot the residuals against the order in which individuals were
present in the data set and then produce a boxplot for male and female
residuals to get a feel whether the distributions of residuals for the two
groups are similar.

plot(1:100, out$mean$residual)

abline(h 0)

boxplot(out$mean$residual ~ x, col "grey", xlab "Male", ylab "Wingspan

residuals (cm)", las 1)

abline(h 0)

No violation of the model assumption of homoscedasticity is apparent
from these residual checks.

7.2 t-TEST WITH UNEQUAL VARIANCES

7.2.1 Introduction

The previous analysis assumed that interindividual variation in wing-
span is identical for male and female peregrines. This may well not be the
case and it may be better to use a model that can accommodate possibly
different variances. Our model then becomes as follows:

yi = α + β � xi + εi
εi ∼Normalð0, σ21Þ for xi = 0 ðfemalesÞ
εi ∼Normalð0, σ22Þ for xi = 1 ðmalesÞ

7.2.2 Data Generation

We first simulate data under the heterogeneous groups model (Fig. 7.2).

n1 < 60 # Number of females

n2 < 40 # Number of males

mu1 < 105 # Population mean for females

mu2 < 77.5 # Population mean for males

sigma1 < 3 # Population SD for females

sigma2 < 2.5 # Population SD for males

n < n1+n2 # Total sample size

y1 < rnorm(n1, mu1, sigma1) # Data for females
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y2 <– rnorm(n2, mu2, sigma2) # Data for males

y <– c(y1, y2) # Aggregate both data sets

x <– rep(c(0,1), c(n1, n2)) # Indicator for male

boxplot(y ~ x, col "grey", xlab "Male", ylab "Wingspan (cm)", las 1)

7.2.3 Analysis Using R

A frequentist analysis, using the Welch test to allow for unequal var-
iances, is easy. R defaults to heterogeneous variances when calling the
t-test function:

t.test(y ~ x)
> t.test(y ~ x)

Welch Two Sample t test

data: y by x
t = 46.7144, df = 88.497, p value < 2.2e 16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
25.93319 28.23750
sample estimates:
mean in group 0 mean in group 1

104.67641 77.59106
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FIGURE 7.2 A boxplot of the generated data set on wingspan of female and male
peregrines when the residuals depend on sex (0 females, 1 males).
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7.2.4 Analysis Using WinBUGS

Now here is the Bayesian analysis.

# Define BUGS model

sink("h.ttest.txt")

cat("

model {

# Priors

mu1 ~ dnorm(0,0.001)

mu2 ~ dnorm(0,0.001)

tau1 < 1 / ( sigma1 * sigma1)

sigma1 ~ dunif(0, 1000) # Note: Large var. Small precision

tau2 < 1 / ( sigma2 * sigma2)

sigma2 ~ dunif(0, 1000)

# Likelihood

for (i in 1:n1) {

y1[i] ~ dnorm(mu1, tau1)

}

for (i in 1:n2) {

y2[i] ~ dnorm(mu2, tau2)

}

# Derived quantities

delta < mu2 mu1

}

",fill TRUE)

sink()

# Bundle data

win.data < list("y1", "y2", "n1", "n2")

# Inits function

inits < function(){ list(mu1 rnorm(1), mu2 rnorm(1), sigma1 rlnorm(1), sigma2

rlnorm(1))}

# Parameters to estimate

params < c("mu1","mu2", "delta", "sigma1", "sigma2")

# MCMC settings

nc < 3 # Number of chains

ni < 2000 # Number of draws from posterior for each chain

nb < 500 # Number of draws to discard as burn in

nt < 1 # Thinning rate
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# Unleash Gibbs sampler

out < bugs(data win.data, inits inits, parameters params, model

"h.ttest.txt", n.thin nt, n.chains nc, n.burnin nb, n.iter ni, debug

TRUE)

print(out, dig 3)

> print(out, dig 3)

Inference for Bugs model at "h.ttest.txt", fit using WinBUGS,

3 chains, each with 2000 iterations (first 500 discarded)

n.sims 4500 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

mu1 104.667 0.400 103.900 104.400 104.700 104.900 105.400 1.001 4500

mu2 77.573 0.444 76.705 77.270 77.570 77.870 78.460 1.001 2700

delta 27.093 0.592 28.250 27.490 27.090 26.700 25.890 1.001 4500

sigma1 3.053 0.292 2.545 2.848 3.029 3.236 3.688 1.001 4500

sigma2 2.825 0.328 2.269 2.592 2.795 3.025 3.540 1.001 4500

deviance 497.784 2.882 494.200 495.600 497.200 499.300 504.952 1.001 4500

[ ... ]

DIC info (using the rule, pD Dbar Dhat)

pD 3.9 and DIC 501.7

DIC is an estimate of expected predictive error (lower deviance is better).

The complication of sex-dependent variances is trivial to deal with in the
Bayesian framework. To formally test whether the two variances really dif-
fer, one could reparameterize themodel such that the variance for one group
is expressed as the variance of the other plus some constant to be estimated.
Actually, this could also be done “outside” of WinBUGS in R by forming the
difference, for each draw in the Markov chain, between sigma1 and
sigma2. If the credible interval for that parameter covers zero, then that
would be taken as lack of evidence for different variances. This is an impor-
tant idea; that derived variables with their full posterior uncertainty can
also be computed outside of WinBUGS in R if posterior samples of all of
their components are available. This is often easier than putting the added
code into the WinBUGS model description.

7.3 SUMMARY AND A COMMENT ON THE
MODELING OF VARIANCES

We have used WinBUGS to conduct the most widely used statistical test,
the t-test. The version of that test with unequal variances is the only place in
this book where we explicitly model the variance (except for the modeling
of variances by variance components; see Chapters 9, 12, 16, 19, 20, and 21).
This chapter shows that not only the mean but also the variance may be
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modeled. In classical statistics, variance modeling may be rather hard and
fairly obscure in its application to an ecologist. In contrast in WinBUGS, the
modeling of variances, e.g., as a function of some covariate, could be simply
undertaken by use of a log link function; see Lee and Nelder (2006) and Lee
et al. (2006) for (frequentist) examples of such models and Exercise 4
(below) for a Bayesian example. Variance modeling, either for the residuals
or for random effects, may be required to adequately characterize the sto-
chastic system components when inference is focusing on the mean struc-
ture. Alternatively, one may focus on a relation between an explanatory
variable and a variance, for instance, to test a hypothesis that some condi-
tions increase the variance in some trait.

EXERCISES
1. Comparing variances: See whether you can adapt the WinBUGS code directly

to test for equal variances of wingspan. Try a solution using the quantities
monitored in the previous analysis.

2. Assumption violations: Use simulation to study the effects of heterogeneous
variances on the inference by a t-test that assumes homogeneous variances.
Assemble data with different SD for males and females, but a common
mean, and analyze them in WinBUGS assuming a common dispersion. See
what kind of bias is introduced.

3. Swiss hare data 1: Use WinBUGS to fit a t-test to the mean.density in arable
and grassland sites. Repeat that assuming unequal variances. Test for a
difference of the variance.

4. Swiss hare data 2: Use WinBUGS to fit a t-test to the mean.density in arable
and grassland sites and introduce a log-linear regression of the variance on
elevation.
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8.1 INTRODUCTION

We have seen in Chapter 6 that the linear model underlying the simple
normal linear regression is the same as that for the t-test:

yi = α + β � xi + εi
εi ∼Normal ð0, σ2Þ

The only difference is that the variable xi doesn’t just take on two possible
values to indicate membership to one of two groups; rather, it is a mea-
surement that can take on any possible value, within some bounds and up
to measurement accuracy. The geometric representation of this model is a
straight line, with α being the intercept and β the slope.

As a motivating example for a linear regression analysis, we take a Swiss
survey of the wallcreeper (Fig. 8.1), a spectacular little cliff-inhabiting bird
that appears to have declined greatly in Switzerland in recent years.
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Assume that we had data on the proportion of sample quadrats in which
the species was observed in Switzerland for the years 1990–2005 and that
we were willing to assume that the random deviations about a linear time
trend were normally distributed. This is for illustration only; usually, we
would use logistic regression (Chapters 17–19) or a site-occupancy model
(see Chapter 20) to make inference about such data that have to do with
the distribution of a species and represent a proportion (i.e., number sites
occupied/number sites surveyed).

Importantly, in this chapter, we will also introduce posterior predictive
model checking, including the Bayesian p-value (Gelman et al., 1996;
Gelman and Hill, 2007, Chapter 24). This is a very general concept for
checking the goodness-of-fit of a model analysed using simulation techni-
ques like MCMC.

8.2 DATA GENERATION

We generate simple linear regression data (see later Fig. 8.4):

n <- 16 # Number of years

a 40 # Intercept

b −1.5 # Slope

sigma2 25 # Residual variance

FIGURE 8.1 Wallcreeper (Tichodroma muraria), Switzerland, 1989. (Photo E. Hüttenmoser)
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x <- 1:16 # Values of covariate year

eps <- rnorm(n, mean 0, sd sqrt(sigma2))

y <- a + b*x + eps # Assemble data set

plot((x+1989), y, xlab "Year", las 1, ylab "Prop. occupied (%)", cex 1.2)

8.3 ANALYSIS USING R

Here is a classical analysis using the linear regression facility in R. The
function I(.) makes it more straightforward to plot the results:

print(summary(lm(y ~ I(x+1989))))
abline(lm(y~ I(x+1989)), col = "blue", lwd = 2)

8.4 ANALYSIS USING WinBUGS

Next, we conduct a Bayesian analysis of the same model, which will
also include a posterior predictive check plus a Bayesian p-value (Gelman
et al., 1996) to assess the adequacy of the model for our data set. (Hint:
If you don’t understand some WinBUGS expressions, such as pow() or
step(), open the WinBUGS manual under the Help menu, and in the
contents go to Model Specification > Logical nodes.)

8.4.1 Fitting the Model

# Write model

sink("linreg.txt")

cat("

model {

# Priors

alpha ~ dnorm(0,0.001)

beta ~ dnorm(0,0.001)

sigma ~ dunif(0, 100)

# Likelihood

for (i in 1:n) {

y[i] ~ dnorm(mu[i], tau)

mu[i] <- alpha + beta*x[i]

}

# Derived quantities

tau <- 1/ (sigma * sigma)

p.decline <- 1-step(beta) # Probability of decline
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# Assess model fit using a sums-of-squares-type discrepancy

for (i in 1:n) {

residual[i] <- y[i]-mu[i] # Residuals for observed data

predicted[i] <- mu[i] # Predicted values

sq[i] <- pow(residual[i], 2) # Squared residuals for observed data

# Generate replicate data and compute fit stats for them

y.new[i] ~ dnorm(mu[i], tau) # one new data set at each MCMC iteration

sq.new[i] <- pow(y.new[i]-predicted[i], 2) # Squared residuals for new data

}

fit <- sum(sq[]) # Sum of squared residuals for actual data set

fit.new <- sum(sq.new[]) # Sum of squared residuals for new data set

test <- step(fit.new - fit) # Test whether new data set more extreme

bpvalue <- mean(test) # Bayesian p-value

}

",fill TRUE)

sink()

# Bundle data

win.data <- list("x","y", "n")

# Inits function

inits <- function(){ list(alpha rnorm(1), beta rnorm(1), sigma rlnorm(1))}

# Parameters to estimate

params <- c("alpha","beta", "p.decline", "sigma", "fit", "fit.new", "bpvalue",

"residual", "predicted")

# MCMC settings

nc 3 ; ni 1200 ; nb 200 ; nt 1

# Start Gibbs sampler

out <- bugs(data win.data, inits inits, parameters params, model

"linreg.txt", n.thin nt, n.chains nc, n.burnin nb, n.iter ni, debug TRUE)

print(out, dig 3)

8.4.2 Goodness-of-Fit Assessment in Bayesian Analyses

In the WinBUGS code, there are two components included to assess the
goodness-of-fit of our model. First, there are two lines that compute
residuals and predicted values under the model. And second, there
is code to compute a Bayesian p-value, i.e., a posterior predictive check
(Gelman et al., 1996, 2004; Gelman and Hill, 2007). As an instructive
example, we will assess the adequacy of the model using a traditional resi-
dual check and then using posterior predictive distributions, including a
Bayesian p-value, as an overall measure of fit for a chosen fit criterion.
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Residual Plots

One commonly produced graphical check of the residuals of a linear
model is a plot of the residuals against the predicted values. Under the nor-
mal linear regression model, residuals are assumed to be a random sample
from one single normal distribution. There should be no visible structure in
the residuals. In particular, the scatterplot of the residuals should not have
the shape of a fan which would indicate that the variance is not constant
but is larger, or smaller, for larger responses. We check this first and find
no sign of a violation of the homoscedasticity assumption (Fig. 8.2).

plot(out$mean$predicted, out$mean$residual, main "Residuals vs. predicted

values", las 1, xlab "Predicted values", ylab "Residuals")

abline(h 0)

Posterior Predictive Distributions and Bayesian p-Values
The use of posterior predictive distributions is a very general way of

assessing the fit of a model when using MCMC model fitting techniques
(Gelman et al., 1996; Gelman and Hill, 2007). The idea of a posterior pre-
dictive check is to compare the lack of fit of the model for the actual data
set with the lack of fit of the model when fitted to replicated, “ideal” data
sets. Ideal means that a data set conforms exactly to the assumptions made
by the model and is generated under the parameter estimates obtained
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FIGURE 8.2 Residual plot for the linear regression analysis for trend in the Swiss
wallcreeper distribution.
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from the analysis of the actual data set. In contrast to a frequentist analy-
sis, where the solution of a model consists in a single value for each para-
meter, we estimate a distribution in a Bayesian analysis; hence, any
lack-of-fit statistic will also have a distribution.

To obtain such perfect data sets, at each MCMC iteration one replicate
data set is assembled under the same model that we fit to the actual data
set and using the values of all parameters from the current MCMC itera-
tion. A discrepancy measure chosen to embody a certain kind of lack of fit
is computed for both that perfect data set and for the actual data set.
Therefore, at the end of an MCMC run for n chains of length m, we
have n*m draws from the posterior predictive distribution of the discre-
pancy measure applied to the actual data set as well as for the discrepancy
measure applied to a perfect data set.

What does “discrepancy measure” mean and how is it chosen? The dis-
crepancy measure can be chosen to assess particular features of the model.
Often, some global measure of lack of fit will be selected, e.g., a sums of
squares-type of discrepancy as we do here, or a Chi-squared-type discre-
pancy (see Chapter 21 for another example in a more complex hierarchical
model). However, entirely different measures may also be chosen; for
instance, a discrepancy measure that quantifies the incidence or magni-
tude of extreme values to assess the adequacy of the model for outliers;
see Gelman et al. (1996) for examples.

One of the best ways to assess model adequacy based on posterior
predictive distributions is graphically, in a plot of the lack of fit for the
ideal data vs. the lack of fit for the actual data (Fig. 8.3). If the model
fits the data, then about half of the points should lie above and half
of them below a 1:1 line. Alternatively, a numerical summary, called a
Bayesian p-value, can be computed that quantifies the proportion of
times when the discrepancy measure for the perfect data sets is greater
than the discrepancy measure computed for the actual data set. A fitting
model has a Bayesian p-value near 0.5, and values close to 0 or close
to 1 suggest doubtful fit of the model.

lim <- c(0, 3200)

plot(out$sims.list$fit, out$sims.list$fit.new, main "Graphical posterior

predictive check", las 1, xlab "SSQ for actual data set", ylab "SSQ for ideal

(new) data sets", xlim lim, ylim lim)

abline(0, 1)

mean(out$sims.list$fit.new > out$sims.list$fit) # Bayesian p-value

> mean(out$sims.list$fit.new > out$sims.list$fit)

[1] 0.547

The graphical posterior predictive check and the numerical Bayesian
p-value concur in suggesting that our fitted model is adequate for the
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wallcreeper data, something that will hardly come as a surprise with these
simulated data.

Some statisticians don’t like posterior predictive checks because they
use the data twice: first, to generate the replicate data and second to
compare them with these replicates. Model fit assessments based on
posterior predictive checks are somewhat too liberal, and posterior predic-
tive checks should not be used for model selection; see Chapter 10 in
Ntzoufras (2009) for alternatives.

8.4.3 Forming Predictions

Predictions are expected values of the response variable at some
hypothetical values of one or more explanatory variables. Forming predic-
tions is extremely important in applied statistical modeling for two reasons.
First, predictions, especially when represented as a graph, are one of the
best ways of communicating what can be learned from a model. Second,
especially for more complex models, for instance, when there are polyno-
mial terms or interactions and also for Poisson or binomial models
(see Chapters 13–21), predictions may be the only way to understand
what a model is telling us. Of course, for the simple normal straight-line
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FIGURE 8.3 Graphical posterior predictive check (PPC) of the model adequacy for the
wallcreeper analysis plotting predictive vs. realized sums of squares discrepancies. The
Bayesian p value is equal to the proportion of plot symbols above the 1:1 line. Note that
the truncation on the left is due to the hard minimum provided by the least squares estimate.
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model in this chapter, we can simply look at magnitude and sign of the
slope estimate to understand what the model is telling us about the popu-
lation trend in Swiss wallcreepers. However, as an exercise, we next plot
the estimated trend line from the classical (maximum likelihood [ML]) and
the Bayesian (MCMC) fit of the linear regression model:

plot((x+1989), y, xlab "Year", las 1, ylab "Prop. occupied (%)", cex 1.2)

abline(lm(y~ I(x+1989)), col "blue", lwd 2)

pred.y <- out$mean$alpha + out$mean$beta * x

points(1990:2005, pred.y, type "l", col "red", lwd 2)

text(1994, 20, labels "blue – ML; red - MCMC", cex 1.2)

Given the small sample size, we get remarkably similar and indeed
virtually identical inferences under the two paradigms (Fig. 8.4).

We can also easily calculate a 95% uncertainty interval by simulation.
There are two kinds of such an uncertainty interval, one for the actual data
set (called a credible interval) and another for a new data set sampled
from the same population (called a prediction interval). Because there is
more uncertainty about the line when adding the variability due to the
new sample, the latter is wider than the former. Here, we give an example
of a credible interval. To produce the interval, we compute the expected
response for each of the 3000 elements of our posterior sample of the inter-
cept α and the slope β, and at each point along the x-axis (i.e., for each of
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FIGURE 8.4 Observed and predicted change in the distribution of Swiss wallcreepers
(blue maximum likelihood, red Bayesian).
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the 16 years). Then, we use the 2.5th and 97.5th percentiles of each poster-
ior distribution as our bounds of the credible interval.

We set up an R data structure to hold the predictions, fill them, then
determine the appropriate percentile points and produce a plot (Fig. 8.5):

predictions <- array(dim c(length(x), length(out$sims.list$alpha)))

for(i in 1:length(x)){

predictions[i,] <- out$sims.list$alpha + out$sims.list$beta*i

}

LPB <- apply(predictions, 1, quantile, probs 0.025) # Lower bound

UPB <- apply(predictions, 1, quantile, probs 0.975) # Upper bound

plot((x+1989), y, xlab "Year", las 1, ylab "Prop. occupied (%)", cex 1.2)

points(1990:2005, out$mean$alpha + out$mean$beta * x, type "l", col "black",

lwd 2)

points(1990:2005, LPB, type "l", col "grey", lwd 2)

points(1990:2005, UPB, type "l", col "grey", lwd 2)

8.4.4 Interpretation of Confidence vs. Credible Intervals

Consider the frequentist inference about the slope parameter; −1.763,
SE 0.241. A quick and dirty frequentist 95% confidence interval is
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FIGURE 8.5 Predicted wallcreeper trend (black line) with 95% credible interval
(grey lines).
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provided by −1.763 ± 2*0.241 = (−2.245, −1.281). This means that if we
took, for example, 100 replicate sample observations of 16 annual surveys
each in the same Swiss wallcreeper population and 100 times estimated an
annual trend with associated 95% CI using linear regression, then on aver-
age we would expect 95 intervals would indeed contain the true value of
the population trend. We cannot make any direct probability statement
about the trend itself; the true value of the trend is either in or out of
our single interval, but there is no probability associated with this. In
particular, it is wrong to say that the population trend of the
wallcreeper lies between −2.245 and −1.281 with a probability of 95%.
The probability statement in the 95% CI refers to the reliability of the
tool, i.e., computation of the confidence interval, and not to the parameter
for which a CI is constructed.

In contrast, the posterior probability in a Bayesian analysis measures
our degree of belief about the likely magnitude of a parameter, given
the model, the observed data, and our priors. Hence, we can make direct
probability statements about a parameter using its posterior distribution.
Let’s do this here for the slope parameter, which represents the population
trend of the wallcreeper in Switzerland (Fig. 8.6).

hist(out$sims.list$beta, main "", col "grey", xlab "Trend estimate", xlim

c(-4, 0))

abline(v 0, col "black", lwd 2)
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FIGURE 8.6 Posterior distribution of the distributional trend in Swiss wallcreepers. The
value of zero (representing no trend) is shown as a black vertical line.
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We see clearly that values representing no decline or an increase, i.e.,
values of the slope of 0 and larger have no mass at all under this posterior
distribution. We can thus say that the probability of a stable or increasing
wallcreeper population is essentially nil. Such a statement is exactly what
most users of statistics, such as politicians, would like to have, rather than
the somewhat contorted statement about a population trend as based on
the frequentist confidence interval.

8.5 SUMMARY

We have used WinBUGS to fit a linear regression, the algebraic model
and the WinBUGS code for which is essentially identical to that for the
t-test. We have also introduced posterior predictive distributions along
with the Bayesian p-value as a very general and flexible way of assessing
goodness-of-fit of a model analyzed using MCMC.

EXERCISES
1. Toy problem: Assume you examined five frogs that weighed 10, 20, 23, 32,

and 35 g and had lengths of 5, 7, 10, 12, and 15 units. Write out the linear
regression model using vectors and matrices and the set of equations
implied. Conduct a normal linear regression analysis for this data set using
R and WinBUGS.

2. Prediction: One way of forming predictions in WinBUGS is by specifying
them as additional (derived) variables in the model. Another way is to form
them outside of WinBUGS in R, if Markov chains for all the required
ingredients are available. The third and perhaps the simplest way is by
adding to the data set missing values (NAs) in the response and the desired
levels of the explanatory variables in the model. In a Bayesian analysis,
missing values are treated exactly like parameters, i.e., WinBUGS will draw
samples for each missing value as part of the model fitting. The resulting
posterior predictive distribution can then be summarized for inference in
the usual way. Try this for the frog data set and predict mass at length 16,
17, 18, 19, and 20 units.

3. Swiss hare data: Fit a normal linear regression analysis for mean.density
on year for grassland areas. Hint: You must first select the data for grassland
areas and then aggregate over sites to obtain mean annual density in
grassland. Does a linear trend adequately capture the variability in the
data?
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9.1 INTRODUCTION: FIXED AND
RANDOM EFFECTS

Analysis of variance (ANOVA) is the generalization of a t-test to more
than two groups. There are different kinds of ANOVA: one-way, with
just a single factor, and two- or multiway, with two or more factors,
and main- and interaction-effects models (see Chapter 10). Here, we
present a one-way ANOVA and introduce the concept of random effects
along the way. In random-effects models, a set of effects (e.g., group
means) is constrained to come from some distribution, which is most
often a normal, although it may be a Bernoulli (see Chapter 20), a Poisson
(see Chapter 21) or yet another distribution. In this chapter, we will first
generate and analyze a fixed-effects and then a random-effects ANOVA
data set. In Chapters 12, 16, and 19–21, we will focus on mixed models,
i.e., those containing both fixed and random effects. As a motivating
example for this chapter, we assume that we measured snout–vent length
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(SVL) in five populations of Smooth snakes (Fig. 9.1) and were interested
in whether populations differ.

The one-way ANOVA can be parameterized in various ways (see
Section 6.3.4). We adopt a means parameterization of the linear model
for the fixed-effects, one-way ANOVA:

yi = αjðiÞ + εi
εi ∼Normal ð0,σ2Þ

Here, yi is the observed SVL of Smooth snake i in population j, αj(i) is the
expected SVL of a snake in population j, and residual εi is the random SVL
deviation of snake i from its population mean αj(i). It is assumed to be nor-
mally distributed around zero with constant variance σ 2.

Without any further assumption, the population means αj(i) are simply
some unknown constants that are estimated in a fixed-effects ANOVA. If,
however, we add a distributional assumption about the population means
αj(i), we obtain a random-effects ANOVA:

yi = αjðiÞ + εi
εi ∼ Normal ð0,σ2Þ
αjðiÞ ∼ Normal ðμ,τ2Þ

The interpretation of αj(i) and εi as population mean SVL and residual,
respectively, is unchanged. But now, the αj(i) parameters are no longer
assumed to be independent; rather, they come from a second normal

FIGURE 9.1 Smooth snake (Coronella austriaca), France, 2006. (Photo C. Berney)
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distribution with mean μ and variance τ2. The latter are also called hyper-
parameters, because they are one level higher than the parameters αj(i) that
they govern.

Thus, the models for the fixed- and random-effects ANOVA differ only
subtly; so how do we know when to apply which one in practice? Unfor-
tunately, there are fairly differing views on this decision, see Gelman and
Hill (2007, p. 245). The traditional view goes about as follows. When you
have a particular interest in the studied factor levels and/or when you
have included (nearly) all conceivable levels in a study, the associated fac-
tor should be viewed as having fixed effects. You estimate the effects of
each level but are not interested in the variance among levels, except as
part of an ANOVA table to construct an F-test statistic for that factor.
Importantly, you cannot generalize to factor levels that you did not
study. In contrast, you consider a factor as random when you don’t
have a particular interest in the levels that actually appear in your
study and/or when these levels form a sample from a (much) larger set
of possible levels that you could have included in your study. Typically,
you want to generalize to this larger population and are more interested
in the variation among the factor levels in that population, although you
may still want to estimate the effects of the levels actually observed in
your study. Thus, typical fixed-effects factors would be sex or cereal vari-
ety in an agricultural experiment. Typical random-effects factors might be
time (e.g., year, month, or day) or location, such as experimental blocks or
other spatial units on which repeated measurements are taken.

It has been argued (e.g., Robinson, 1991), that it doesn’t make sense to
claim that you studied only a sample of effects and then estimate them
anyway, and that a more natural distinction between fixed and random
effects is simply based on the question of whether they could plausibly
have come from some distribution of effects. Such random effects are gen-
erated by the same homogeneous, stochastic process and statisticians also
say they are exchangeable, which in common language means that they are
similar, but not identical. This similarity is because of the common
stochastic process that generated them and thus creates a stochastic
relationship among the effects of the levels of a random-effects factor.
In contrast, when factor levels are modeled as fixed they are considered
unrelated or independent.

Why should one make distributional assumptions about a set of
effects in a model, i.e., go from a fixed-effects ANOVA to the corre-
sponding random-effects ANOVA? There are three reasons: extrapola-
tion of inference to a wider population, improved accounting for
system uncertainty, and efficiency of estimation. First, viewing the
studied effects as a random sample from some population enables
one to extrapolate to that population. This generalization can only be
achieved by modeling the process that generates the realized values of
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the random effects (i.e., by assuming a normal distribution for the αj(i)
above). Second, declaring factor effects as random acknowledges that
when repeating our study, we obtain a different set of effects, so the
resulting parameter estimates will differ from those in our current
study. Random-effects modeling properly accounts for this added uncer-
tainty in our inference about the analyzed system. Third, when making a
random-effects assumption about a factor, these effects are no longer
estimated independently; instead, estimates are influenced by each
other and therefore are dependent. Specifically, individual estimates
are “pulled in” toward the common mean μ, i.e., they are closer to μ
than the corresponding fixed-effects estimates. This is why random-
effects estimators are said to be “shrinkage estimators”. Estimates that
are more imprecise and are based on a smaller sample size are shrunk
more. When effects are indeed exchangeable, shrinkage results in
better estimates (e.g., with smaller prediction error) than the estimates
obtained from a fixed-effects analysis. This is why one also says that
a random-effects analysis “borrows strength”.

Random-effects modeling can also be viewed as a compromise between
assuming no effects and fully independent effects of the levels of a factor.
When assuming a factor has no effect, you pool its effects, whereas when
assuming it has fixed effects, you treat all effects as completely indepen-
dent instead. When assuming a factor has random effects, you pool effects
only partially, and the degree of pooling is based on the amount of
information that you have about the effect of each level. According to
this view, you might always want to assume all factors as random and
let the data determine the degree of pooling; see Gelman (2005) and
Gelman and Hill (2007).

Recently, statisticians seem to prefer the view of random-effects factors
as those, whose effects result from a common stochastic process, with the
resulting benefits of the ability to extrapolate, more honest accounting for
uncertainty and shrinkage estimation. For instance, Sauer and Link (2002)
assessed population trends in a large numbers of bird species and showed
how imprecise estimates for species with little information borrowed
strength from the “ensemble” (the group of species) and got pulled
toward the group mean, and this yielded better predictions. Similarly,
Welham et al. (2004) analyzed a huge wheat variety testing experiment
and treated variety as random. Again, they found that this gave better pre-
dictions of future yield than treating variety as fixed.

Next, we generate one data set under a fixed-effects design and another
under a random-effects design. We do this in a very “linear model” fash-
ion, i.e., by first specifying a design matrix and choosing parameter values.
For the fixed-effects analysis, we will arbitrarily select these values,
whereas for the random-effects analysis, we will draw them from a nor-
mal distribution with specified hyperparameters. Then, we multiply the
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design matrix by the parameter vector to obtain the linear predictor, to
which we add residuals to obtain the actual measurements.

9.2 FIXED-EFFECTS ANOVA

9.2.1 Data Generation

We assume five groups with 10 snakes measured in each with SVL
averages of 50, 40, 45, 55, and 60. This corresponds to a baseline popula-
tion mean of 50 and effects of populations 2–5 of −10, −5, 5, and 10. We
choose a residual standard deviation of SVL of 3 and assemble everything
(Fig. 9.2). (Note that %*% denotes matrix multiplication in the R code
below.)

ngroups < 5 # Number of populations

nsample < 10 # Number of snakes in each

pop.means < c(50, 40, 45, 55, 60) # Population mean SVL

sigma < 3 # Residual sd

n < ngroups * nsample # Total number of data points

eps < rnorm(n, 0, sigma) # Residuals

x < rep(1:5, rep(nsample, ngroups)) # Indicator for population

means < rep(pop.means, rep(nsample, ngroups))

X < as.matrix(model.matrix(~ as.factor(x) 1)) # Create design matrix

Population
1

35

S
V

L

40

45

50

55

60

65

2 3 4 5

FIGURE 9.2 Snout vent length (SVL) of Smooth snakes in five populations simulated
under a fixed effects model.
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X # Inspect that

y < as.numeric(X %*% as.matrix(pop.means) + eps)

# assemble NOTE: as.numeric ESSENTIAL for WinBUGS

boxplot(y~x, col "grey", xlab "Population", ylab "SVL", main "", las 1)

9.2.2 Maximum Likelihood Analysis Using R

print(anova(lm(y~as.factor(x))))
cat("\n")
print(summary(lm(y~as.factor(x)))$coeff, dig = 3)
cat("Sigma: ", summary(lm(y~as.factor(x)))$sigma, "\n")

> print(summary(lm(y~as.factor(x)))$coeff, dig = 3)
Estimate Std. Error t value Pr(>|t|)

(Intercept) 48.84 0.864 56.51 1.96e 43
as.factor(x)2 9.48 1.222 7.75 7.89e 10
as.factor(x)3 4.54 1.222 3.71 5.67e 04
as.factor(x)4 4.76 1.222 3.90 3.20e 04
as.factor(x)5 11.25 1.222 9.20 6.56e 12
> cat("Sigma: ", summary(lm(y~as.factor(x)))$sigma, "\n")
Sigma: 2.733362

Remembering that R fits an effects parameterization, we recognize
fairly well the input values of the analysis.

9.2.3 Bayesian Analysis Using WinBUGS

We fit a means parameterization of the model and obtain effects esti-
mates (i.e., population differences) as derived quantities. Note WinBUGS’
elegant double-indexing (alpha[x[i]]) to specify the expected SVL of
snake i according to the i-th value of the population index x. We also
add two lines to show how custom hypotheses can easily be tested as
derived quantities. Test 1 examines whether snakes in populations 2
and 3 have the same size as those in populations 4 and 5. Test 2 checks
whether the size difference between snakes in populations 5 and 1 is twice
that between populations 4 and 1.

# Write model

sink("anova.txt")

cat("

model {

# Priors

for (i in 1:5){ # Implicitly define alpha as a vector

alpha[i] ~ dnorm(0, 0.001)

}

sigma ~ dunif(0, 100)
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# Likelihood

for (i in 1:50) {

y[i] ~ dnorm(mean[i], tau)

mean[i] <- alpha[x[i]]

}

# Derived quantities

tau <- 1 / ( sigma * sigma)

effe2 <- alpha[2] - alpha[1]

effe3 <- alpha[3] - alpha[1]

effe4 <- alpha[4] - alpha[1]

effe5 <- alpha[5] - alpha[1]

# Custom hypothesis test / Define your own contrasts

test1 <- (effe2+effe3) - (effe4+effe5) # Equals zero when 2+3 4+5

test2 <- effe5 - 2 * effe4 # Equals zero when effe5 2*effe4

}

",fill TRUE)

sink()

# Bundle data

win.data <- list("y", "x")

# Inits function

inits <- function(){ list(alpha rnorm(5, mean mean(y)), sigma rlnorm(1) )}

# Parameters to estimate

params <- c("alpha", "sigma", "effe2", "effe3", "effe4", "effe5", "test1", "test2")

# MCMC settings

ni <- 1200

nb <- 200

nt <- 2

nc <- 3

# Start Gibbs sampling

out <- bugs(win.data, inits, params, "anova.txt", n.thin nt, n.chains nc,

n.burnin nb, n.iter ni, debug TRUE)

# Inspect estimates

print(out, dig 3)

> print(out, dig 3)

Inference for Bugs model at "anova.txt", fit using WinBUGS,

3 chains, each with 1200 iterations (first 200 discarded), n.thin 2

n.sims 1500 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

alpha[1] 48.837 0.877 47.049 48.240 48.840 49.420 50.636 1.011 180

alpha[2] 39.354 0.888 37.595 38.770 39.350 39.990 41.080 1.000 1500
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alpha[3] 44.315 0.867 42.710 43.720 44.290 44.910 46.016 1.002 1500

alpha[4] 53.580 0.886 51.759 53.020 53.565 54.150 55.356 1.001 1500

alpha[5] 60.019 0.882 58.285 59.430 60.030 60.590 61.750 1.001 1500

sigma 2.811 0.303 2.296 2.594 2.777 3.015 3.451 1.002 1200

effe2 −9.482 1.273 −12.040 −10.320 −9.456 −8.665 −7.046 1.003 590

effe3 −4.521 1.275 −7.079 −5.356 −4.548 −3.677 −2.037 1.006 360

effe4 4.744 1.241 2.325 3.944 4.768 5.514 7.205 1.004 470

effe5 11.182 1.239 8.767 10.390 11.180 12.002 13.615 1.002 810

test1 −29.929 1.764 −33.425 −31.100 −29.900 −28.800 −26.415 1.000 1500

test2 1.694 2.158 −2.670 0.319 1.644 3.139 6.016 1.002 940

deviance 243.557 3.671 238.500 240.800 242.800 245.600 252.452 1.005 580

[ ... ]

DIC info (using the rule, pD Dbar-Dhat)

pD 5.8 and DIC 249.3

DIC is an estimate of expected predictive error (lower deviance is better).

As an aside, the effective number of parameters, pD, is estimated quite
correctly as we have five group means and one variance parameter.
Comparison with the maximum likelihood solutions (see Section 9.2.2)
shows how with vague priors, a Bayesian analysis yields numerically
virtually identical inferences as a frequentist analysis. However, one of
the most compelling things about a Bayesian analysis conducted using
Markov chain Monte Carlo methods is the ease with which derived
quantities can be estimated and custom tests conducted. In the above
WinBUGS model code, we see how easily such custom contrasts (com-
parisons) can be estimated with full error propagation from all the
involved random quantities. Of course, for a simple model such as a
one-way ANOVA, this can also be done fairly easily in standard stats
packages. However, in WinBUGS, this is equally simple for any kind
of parameter, e.g., for variances (see Chapter 7), and in any model type,
e.g., mixed models, generalized linear models (GLMs), or generalized
linear mixed models (GLMMs).

9.3 RANDOM-EFFECTS ANOVA

9.3.1 Data Generation

For our second data set, we assume that population SVL means come
from a normal distribution with selected hyperparameters. The code is
only slightly different from the previous data-generating code. First, we
choose the two sample sizes; the number of populations and that of snakes
examined in each. As always, we generate balanced data for convenience
only. The methods to “decompose” a data set in R and WinBUGS work
just as well for unbalanced data.
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npop < 10 # Number of populations: now choose 10 rather than 5

nsample < 12 # Number of snakes in each

n < npop * nsample # Total number of data points

We choose the hyperparameters of the normal distribution from which the
random population means are thought to come from and use rnorm() to
draw one realization from that distribution for each population. Then, we
select the residual standard deviation and draw residuals.

pop.grand.mean < 50 # Grand mean SVL
pop.sd < 5 # sd of population effects about mean
pop.means < rnorm(n = npop, mean = pop.grand.mean, sd = pop.sd)
sigma < 3 # Residual sd
eps < rnorm(n, 0, sigma) # Draw residuals

We build the design matrix, expand the population effects to the chosen
(larger) sample size, use matrix multiplication to assemble our data set
and have a look at what we’ve created (Fig. 9.3):

x <- rep(1:npop, rep(nsample, npop))

X <- as.matrix(model.matrix(~ as.factor(x) −1))

y <- as.numeric(X %*% as.matrix(pop.means) + eps) # as.numeric is ESSENTIAL

boxplot(y ~ x, col "grey", xlab "Population", ylab "SVL", main "", las 1)

# Plot of generated data

abline(h pop.grand.mean)
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FIGURE 9.3 Simulated snout vent length (SVL) of Smooth snakes in 10 populations. We
can’t tell from this graph that the population effects are random now rather than fixed as in
Fig. 9.2. The horizontal line shows the grand mean.
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9.3.2 Restricted Maximum Likelihood Analysis Using R

The functions contained in the R package lme4 allow one to fit, using
approximate methods (Gelman and Hill, 2007), a wide range of linear,
nonlinear, and generalized linear mixed models. We use this package
for fitting a random-effects ANOVA by restricted maximum likelihood
(REML). lme4 requires package Matrix, which we need to download
and install in case we haven’t done so already.

library('lme4') # Load lme4

pop < as.factor(x) # Define x as a factor and call it pop

lme.fit < lmer(y ~ 1 + 1 | pop, REML = TRUE)
lme.fit # Inspect results
ranef(lme.fit) # Print random effects

> lme.fit# Inspect results
Linear mixed model fit by REML
Formula: y ~ 1 + 1 | pop

AIC BIC logLik deviance REMLdev
630.1 638.5 312.1 626.3 624.1

Random effects:
Groups Name Variance Std.Dev.
pop (Intercept) 13.1244 3.6228
Residual 8.5172 2.9184

Number of obs: 120, groups: pop, 10

Fixed effects:
Estimate Std. Error t value

(Intercept) 50.318 1.176 42.78
> ranef(lme.fit)# Print random effects
$pop

(Intercept)
1 1.0784560
2 2.2585587
3 6.5857470
4 0.5906953
5 6.2970554
6 3.3997612
7 1.9525175
8 1.0407413
9 0.9989122
10 2.2336038
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9.3.3 Bayesian Analysis Using WinBUGS

Now, WinBUGS. Note that adopting a common prior distribution for
the 10 population means represents the random-effects assumption in this
model.

sink("re.anova.txt")

cat("

model {

# Priors and some derived things

for (i in 1:npop){

pop.mean[i] ~ dnorm(mu, tau.group) # Prior for population means

effe[i] <- pop.mean[i] – mu # Population effects as derived quant’s

}

mu ~ dnorm(0,0.001) # Hyperprior for grand mean svl

sigma.group ~ dunif(0, 10) # Hyperprior for sd of population effects

sigma.res ~ dunif(0, 10) # Prior for residual sd

# Likelihood

for (i in 1:n) {

y[i] ~ dnorm(mean[i], tau.res)

mean[i] <- pop.mean[x[i]]

}

# Derived quantities

tau.group <- 1 / (sigma.group * sigma.group)

tau.res <- 1 / (sigma.res * sigma.res)

}

",fill TRUE)

sink()

# Bundle data

win.data <- list(y y, x x, npop npop, n n)

# Inits function

inits <- function(){ list(mu runif(1, 0, 100), sigma.group rlnorm(1), sigma.res

rlnorm(1) )}

# Params to estimate

parameters <- c("mu", "pop.mean", "effe", "sigma.group", "sigma.res")

# MCMC settings

ni <- 1200

nb <- 200

nt <- 2

nc <- 3
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# Start WinBUGS

out <- bugs(win.data, inits, parameters, "re.anova.txt", n.thin nt, n.chains nc,

n.burnin nb, n.iter ni, debug TRUE)

# Inspect estimates

print(out, dig 3)

Inference for Bugs model at "re.anova.txt", fit using WinBUGS,

3 chains, each with 1200 iterations (first 200 discarded), n.thin 2

n.sims 1500 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

mu 50.199 1.438 47.309 49.337 50.195 51.070 53.076 1.002 1500

pop.mean[1] 49.247 0.834 47.589 48.670 49.250 49.810 50.875 1.001 1500

pop.mean[2] 48.054 0.852 46.405 47.490 48.020 48.640 49.655 1.001 1500

pop.mean[3] 56.933 0.871 55.275 56.340 56.950 57.520 58.590 1.001 1500

pop.mean[4] 49.724 0.839 48.100 49.180 49.710 50.290 51.290 1.001 1500

pop.mean[5] 43.962 0.847 42.290 43.380 43.980 44.540 45.510 1.001 1500

pop.mean[6] 53.705 0.849 52.070 53.120 53.685 54.300 55.370 1.000 1500

pop.mean[7] 48.349 0.799 46.715 47.800 48.360 48.920 49.875 1.001 1500

pop.mean[8] 49.289 0.829 47.650 48.720 49.310 49.842 50.846 1.003 1000

pop.mean[9] 51.267 0.844 49.650 50.700 51.240 51.860 52.920 1.001 1500

pop.mean[10] 52.567 0.806 51.020 52.000 52.580 53.130 54.115 1.004 540

effe[1] −0.952 1.589 −4.156 −1.990 −0.926 0.095 2.189 1.001 1500

effe[2] −2.145 1.631 −5.513 −3.197 −2.126 −1.113 1.171 1.002 1200

effe[3] 6.734 1.639 3.558 5.680 6.781 7.736 10.055 1.001 1500

effe[4] −0.475 1.617 −3.716 −1.461 −0.493 0.532 2.744 1.001 1500

effe[5] −6.237 1.628 −9.426 −7.231 −6.255 −5.202 −3.169 1.001 1500

effe[6] 3.506 1.616 0.458 2.490 3.435 4.542 6.749 1.001 1500

effe[7] −1.850 1.576 −5.136 −2.832 −1.858 −0.832 1.124 1.000 1500

effe[8] −0.910 1.611 −4.105 −1.940 −0.898 0.074 2.352 1.003 1300

effe[9] 1.067 1.622 −1.975 −0.008 1.096 2.121 4.104 1.001 1500

effe[10] 2.368 1.582 −0.729 1.342 2.383 3.392 5.595 1.001 1500

sigma.group 4.287 1.254 2.546 3.380 4.036 4.941 7.305 1.002 1400

sigma.res 2.946 0.199 2.584 2.804 2.931 3.077 3.376 1.000 1500

deviance 598.756 5.010 591.347 595.200 597.900 601.600 610.210 1.005 590

[ ... ]

DIC info (using the rule, pD Dbar-Dhat)

pD 10.6 and DIC 609.3

DIC is an estimate of expected predictive error (lower deviance is better).

On comparing the inference using REML in lme4 (see Section 9.3.2) with
our Bayesian analysis, we find similar, but not identical, results of the two
analyses. For instance, the among-population SVL variation (sigma.
group), is estimated better in the Bayesian analysis (remember that truth
is 5). The classical analysis, using lmer(), appears to be more biased and
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does not give a standard error of the estimated random-effects standard
deviation. This illustrates that lmer() may yield more biased estimates for
small samples, i.e., when there are few levels only (Gelman and Hill,
2007). However, it has to be said that estimation of a between-group var-
iance is always difficult when there are few levels and/or that variance is
small (Lambert et al., 2005).

9.4 SUMMARY

We have introduced fixed (independent) and random (dependent) factor
effects and fitted the corresponding one-way ANOVA models using Win-
BUGS and R, using lme4. We found that the WinBUGS solution is presum-
ably less biased for the random-effects variance than the solution by lme4
when sample sizes are small.

EXERCISES
1. Convert the ANOVA to an ANCOVA (analysis of covariance): Within the

fixed-effects ANOVA, add the effect on SVL of a continuous measure of
habitat quality that varies by individual snake (perhaps individuals in
better habitat are larger and more competitive). You may either recreate a
new data set that contains such an effect or simply create a habitat covariate
(e.g., by drawing random numbers) and add it as a covariate into the
previous analysis.

2. Watch shrinkage happen: Population mean estimates under the random-
effects ANOVA are shrunk toward the grand mean when compared with
those under a fixed-effects model. First, watch this shrinkage by fitting a
fixed-effects ANOVA to the random-effects data simulated in Section 9.3.1.
Second, discard the data from 8 out of 10 snakes in one population and see
what happens to the estimate of that population mean.

3. Swiss hare data: Compare mean observed population density among all
surveyed sites when treating years as replicates. Do this once assuming that
these populations corresponded to fixed effects; then repeat the analysis
assuming they are random effects.
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10.1 INTRODUCTION: MAIN AND
INTERACTION EFFECTS

We now extend the one-way analysis of variance (ANOVA) model by
adding another factor and arrive at a two-way ANOVA. We only consider
fixed effects here. There are two ways in which the effects of two factors
A and B can be combined, and the associated models are called main-
effects and interaction-effects model. In the main-effects model, the effects
of A and B are additive, i.e., the effect of one level of factor A, say a1, does
not depend on whether it is assessed at one level of B, say b1, or at another,
say b2. In contrast, with an interaction between A and B, some or all effects
depend on some or all of each other and the effect of a1 may not be iden-
tical when assessed at b1 or at b2. Interaction is symmetric, so the effect
of b1 will in general also not be the same whether assessed at a1 or at a2.
However, the interaction model is still linear, since effects are simply
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added together, only with an additional set of effects: those for the com-
bination of each level of two or more factors. When factors are considered
fixed, then depending on the model, not all effects will be estimable, see
later (10.5.1). In contrast, in a random-effects model with interaction, all
effects will in general be estimable.

In Chapter 6 we already saw the linear models for the two-way
ANOVA with interaction. In short, the effects parameterization for a
model with two factors A (with j levels) and B (with k levels) is this:

yi = α + βjðiÞ � Ai + δkðiÞ � Bi + γjkðiÞ � Ai � Bi + εi,

while the means parameterization is this:

yi = αjkðiÞ � Ai � Bi + εi

In both cases, we need to assume a distribution for the residuals to com-
plete the model description:

εi ∼Normal ð0, σ2Þ:
We will use the beautiful mourning cloak (Fig. 10.1) as an illustration for
this chapter and assume that we measured wing length of butterflies
in each of three elevation classes in five different populations and that
the effects of these factors interact. Table 10.1 shows the meaning of the
coefficients in the linear model for the effects parameterization.

FIGURE 10.1 Mourning cloak (Nymphalis antiopa), Switzerland, 2006. (Photo: T. Marent)
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If the population factor has n.pop levels and the elevation factor
n.elev levels, we have one intercept, n.pop 1 = 4 effects for the popula-
tion factor, n.elev 1 = 2 effects for the elevation factor and (n.pop 1)*
(n.elev 1) = 8 effects for the interaction between population and eleva-
tion. This adds up to the 15 degrees of freedom that it will cost us to fit this
model to a data set that contains observations in every cell (combination of
levels) in the cross-classification of population and elevation.

10.2 DATA GENERATION

We assume five populations with 12 butterflies were measured in each
and that of these 12, four butterflies were studied at each of three elevation
classes (low, medium, high). Wing length differs with elevation, perhaps
because butterflies hatch at different size at different elevation or because
of different size-dependent predation owing to different bird communities
at different elevations. Furthermore, the relationship between wing length
and elevation class is not homogeneous among the five studied popula-
tions so there is a population-elevation interaction. Residual wing length
standard deviation will be 3.

# Choose sample size

n.pop <- 5

n.elev <- 3

nsample <- 12

n <- n.pop * nsample

# Create factor levels

pop <- gl(n n.pop, k nsample, length n)

elev <- gl(n n.elev, k nsample / n.elev, length n)

# Choose effects

baseline <- 40 # Intercept

pop.effects <- c(-10, −5, 5, 10) # Population effects

elev.effects <- c(5, 10) # Elev effects

TABLE 10.1 The 15 Parameters Estimated in the Effects Parameterization of a
Two-Way ANOVA with Interaction for the Mourning Cloak Example.

Intercept Elevation2 Elevation3

pop2 pop2.elevation2 pop2.elevation3

pop3 pop3.elevation2 pop3.elevation3

pop4 pop4.elevation2 pop4.elevation3

pop5 pop5.elevation2 pop5.elevation3
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interaction.effects <- c(−2, 3, 0, 4, 4, 0, 3, −2) # Interaction effects

all.effects <- c(baseline, pop.effects, elev.effects, interaction.effects)

sigma <- 3

eps <- rnorm(n, 0, sigma) # Residuals

X <- as.matrix(model.matrix(~ pop*elev) ) # Create design matrix

X # Have a look at that

Use matrix multiplication to assemble all components for the final wing
length measurements y which we inspect in a grouped boxplot (Fig. 10.2).

wing <- as.numeric(as.matrix(X) %*% as.matrix(all.effects) + eps)

# NOTE: as.numeric is ESSENTIAL for WinBUGS later

boxplot(wing ~ elev*pop, col "grey", xlab "Elevation-by-Population", ylab

"Wing length", main "Simulated data set", las 1, ylim c(20, 70)) # Plot of

generated data

abline(h 40)

We have generated data for which the wing length–elevation relationship
varies considerably among the five populations. This can also be nicely
seen in a useful conditioning plot, which can be drawn using the function
xyplot() in the lattice package. The data can be viewed in two ways; both
plots show that the effects of population and elevation are not
independent.
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FIGURE 10.2 Mean wing length of mourning cloaks at each of three elevations and in
each of five populations. Boxplots are ordered first by elevation and second by population
and their identity is recognizable from the tick labels on the x axis. For instance, the boxplot
labelled 3.2 on the x axis shows the mean wing length in population 2 at elevation 3.
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library("lattice") # Load the lattice library

xyplot(wing ~ elev | pop, ylab "Wing length", xlab "Elevation", main

"Population specific relationship between wing and elevation class")

xyplot(wing ~ pop | elev, ylab "Wing length", xlab "Population", main

"Elevation specific relationship between wing and population")

10.3 ASIDE: USING SIMULATION TO ASSESS BIAS
AND PRECISION OF AN ESTIMATOR

Let’s quickly compare our parameter estimates with what we put into
the data:

lm(wing ~ pop*elev)

all.effects

> lm(wing ~ pop*elev)

Call:

lm(formula wing ~ pop * elev)

Coefficients:

(Intercept) pop2 pop3 pop4 pop5 elev2

38.859 8.543 4.793 4.702 13.410 6.437

elev3 pop2:elev2 pop3:elev2 pop4:elev2 pop5:elev2 pop2:elev3

11.213 1.284 1.530 0.332 1.857 1.359

pop3:elev3 pop4:elev3 pop5:elev3

1.820 2.835 6.609

> all.effects

[1] 40 5 10 10 5 5 10 2 3 0 4 4 0 3 2

The coefficient estimates don’t necessarily resemble very much the param-
eters from which we simulated these data; after all, our sample size is
rather small. So, to reassure ourselves that these differences are simply
due to sampling variation, we repeat this data generation-analysis cycle
1000 times and average over the random sampling variation to convince
ourselves that the estimators from the linear model are indeed unbiased.
Simulations of this kind can be done easily in R, and this is one of the great
strengths of R.

n.iter <- 1000 # Desired number of iterations

estimates <- array(dim c(n.iter, length(all.effects))) # Data structure to

hold results

for(i in 1:n.iter) { # Run simulation n.iter times

print(i) # Optional

eps <- rnorm(n, 0, sigma) # Residuals
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y <- as.numeric(as.matrix(X) %*% as.matrix(all.effects) + eps) # Assemble data

fit.model <- lm(y ~ pop*elev) # Break down data

estimates[i,] <- fit.model$coefficients # Save estimates of coefs.

}

Compare the input (i.e., the chosen effects) and the output when averaged
over sampling variation:

print(apply(estimates, 2, mean), dig 2)

all.effects

> print(apply(estimates, 2, mean), dig 2)

[1] 40.0102 −10.0452 −5.0717 4.9687 9.9524 5.0417 10.0419 −1.9761

[9] 2.9493 −0.0226 4.0031 3.9407 −0.0039 3.0234 −1.9838

> all.effects

[1] 40 −10 −5 5 10 5 10 −2 3 0 4 4 0 3 −2

These are much closer to our input parameters. Depending on the number
of iterations, we can get arbitrarily close to the input. Alternatively, we
could increase the sample size from 12 to 12000, and we would get
estimates that are still closer to the input values.

10.4 ANALYSIS USING R

We continue with the analysis of our data set and use R to fit the
main-effects model first.

mainfit < lm(wing ~ elev + pop)
mainfit

> mainfit
[ ... ]
Coefficients:
(Intercept) elev2 elev3 pop2

38.736 6.924 11.095 8.518
pop3 pop4 pop5

3.676 5.757 11.826

Then, we fit the means parameterization of the interaction model.

intfit < lm(wing ~ elev*pop 1 pop elev)
intfit

> intfit < lm(wing ~ elev*pop 1 pop elev)
> intfit
[ ... ]
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Coefficients:
elev1:pop1 elev2:pop1 elev3:pop1

38.86 45.30 50.07
elev1:pop2 elev2:pop2 elev3:pop2

30.32 35.47 42.89
elev1:pop3 elev2:pop3 elev3:pop3

34.07 42.03 47.10
elev1:pop4 elev2:pop4 elev3:pop4

43.56 50.33 57.61
elev1:pop5 elev2:pop5 elev3:pop5

52.27 60.56 56.87

10.5 ANALYSIS USING WinBUGS

10.5.1 Main-Effects ANOVA Using WinBUGS

We fit the main-effects model in the effects parameterization because
I find that easier to code. One minor feature in this analysis is the way
in which we specify the priors for the elements of the parameter vectors:
instead of looping over each of them, we now write them all out, since we
have to set to zero the first (or another) level of each factor to make this
fixed-effects model identifiable.

# Define model

sink("2w.anova.txt")

cat("

model {

# Priors

alpha ~ dnorm(0, 0.001) # Intercept

beta.pop[1] <- 0 # set to zero effect of 1st level

beta.pop[2] ~ dnorm(0, 0.001)

beta.pop[3] ~ dnorm(0, 0.001)

beta.pop[4] ~ dnorm(0, 0.001)

beta.pop[5] ~ dnorm(0, 0.001)

beta.elev[1] <- 0 # ditto

beta.elev[2] ~ dnorm(0, 0.001)

beta.elev[3] ~ dnorm(0, 0.001)

sigma ~ dunif(0, 100)

# Likelihood

for (i in 1:n) {

wing[i] ~ dnorm(mean[i], tau)

mean[i] <- alpha + beta.pop[pop[i]] + beta.elev[elev[i]]

}
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# Derived quantities

tau <- 1 / ( sigma * sigma)

}

",fill TRUE)

sink()

# Bundle data

win.data <- list(wing wing, elev as.numeric(elev), pop as.numeric(pop), n

length(wing))

# Inits function

inits <- function(){ list(alpha rnorm(1), sigma rlnorm(1) )}

# Parameters to estimate

params <- c("alpha", "beta.pop", "beta.elev", "sigma")

# MCMC settings

ni <- 1200

nb <- 200

nt <- 2

nc <- 3

# Start Gibbs sampling

out <- bugs(win.data, inits, params, "2w.anova.txt", n.thin nt, n.chains nc,

n.burnin nb, n.iter ni, debug TRUE)

# Print estimates

print(out, dig 3)

> print(out, dig 3)

Inference for Bugs model at "2w.anova.txt", fit using WinBUGS,

3 chains, each with 1200 iterations (first 200 discarded), n.thin 2

n.sims 1500 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

alpha 38.701 1.216 36.355 37.870 38.760 39.510 40.945 1.006 680

beta.pop[2] 8.447 1.476 11.325 9.492 8.442 7.428 5.547 1.001 1500

beta.pop[3] 3.567 1.458 6.360 4.512 3.586 2.664 0.670 1.001 1500

beta.pop[4] 5.820 1.470 3.040 4.825 5.871 6.788 8.713 1.003 780

beta.pop[5] 11.841 1.454 9.090 10.850 11.860 12.770 14.725 1.001 1500

beta.elev[2] 6.901 1.156 4.714 6.106 6.923 7.671 9.184 1.004 560

beta.elev[3] 11.077 1.119 8.988 10.300 11.040 11.850 13.220 1.002 970

sigma 3.561 0.360 2.954 3.306 3.538 3.788 4.323 1.000 1500

deviance 320.983 4.308 314.900 317.900 320.400 323.200 331.600 1.001 1500

[ ... ]

DIC info (using the rule, pD Dbar–Dhat)

pD 7.8 and DIC 328.8

DIC is an estimate of expected predictive error (lower deviance is better).
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We get estimates that are fairly similar with the MLEs above. To see the
estimate of the residual, you can type summary(mainfit).

10.5.2 Interaction-Effects ANOVA Using WinBUGS

We will specify the means parameterization for ease of coding and
show how parameters in WinBUGS can be arrays with two (or more)
dimensions. This is handy when organizing an analysis.

# Write model

sink("2w2.anova.txt")

cat("

model {

# Priors

for (i in 1:n.pop){

for(j in 1:n.elev) {

group.mean[i,j] ~ dnorm(0, 0.0001)

}

}

sigma ~ dunif(0, 100)

# Likelihood

for (i in 1:n) {

wing[i] ~ dnorm(mean[i], tau)

mean[i] < group.mean[pop[i], elev[i]]

}

# Derived quantities

tau < 1 / ( sigma * sigma)

}

",fill TRUE)

sink()

# Bundle data

win.data < list(wing wing, elev as.numeric(elev), pop as.numeric(pop), n

length(wing), n.elev length(unique(elev)), n.pop length(unique(pop)))

# Inits function

inits < function(){list(sigma rlnorm(1) )}

# Parameters to estimate

params < c("group.mean", "sigma")

# MCMC settings

ni < 1200

nb < 200

nt < 2

nc < 3
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# Start Gibbs sampling

out < bugs(win.data, inits, params, "2w2.anova.txt", n.thin nt, n.chains nc,

n.burnin nb, n.iter ni, debug TRUE)

# Print estimates

print(out, dig 3)

> print(out, dig 3)

Inference for Bugs model at "2w2.anova.txt", fit using WinBUGS,

3 chains, each with 1200 iterations (first 200 discarded), n.thin 2

n.sims 1500 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

group.mean[1,1] 38.864 1.644 35.500 37.790 38.885 39.982 42.040 1.001 1500

group.mean[1,2] 45.263 1.600 42.135 44.187 45.250 46.300 48.506 1.000 1500

group.mean[1,3] 50.062 1.645 46.784 48.987 50.080 51.110 53.330 1.000 1500

group.mean[2,1] 30.330 1.589 27.150 29.297 30.320 31.370 33.495 1.000 1500

group.mean[2,2] 35.405 1.637 32.284 34.340 35.390 36.532 38.495 1.004 720

group.mean[2,3] 42.905 1.564 39.708 41.865 42.930 43.950 45.850 1.003 780

group.mean[3,1] 34.071 1.634 30.975 32.977 34.065 35.120 37.346 1.002 1500

group.mean[3,2] 41.932 1.609 38.714 40.897 41.940 43.010 45.041 1.001 1500

group.mean[3,3] 47.077 1.628 43.855 46.017 47.040 48.160 50.290 1.004 500

group.mean[4,1] 43.508 1.663 40.345 42.370 43.440 44.580 46.895 1.001 1500

group.mean[4,2] 50.403 1.635 47.239 49.310 50.365 51.520 53.590 1.004 540

group.mean[4,3] 57.630 1.617 54.525 56.570 57.640 58.720 60.770 1.002 1500

group.mean[5,1] 52.246 1.608 49.054 51.177 52.260 53.350 55.411 1.002 1100

group.mean[5,2] 60.538 1.606 57.384 59.457 60.580 61.630 63.625 1.000 1500

group.mean[5,3] 56.893 1.621 53.670 55.877 56.870 57.962 60.095 1.002 1300

sigma 3.227 0.358 2.617 2.980 3.193 3.447 4.014 1.001 1500

deviance 309.326 6.734 299.100 304.500 308.350 313.000 324.952 1.001 1500

[...]

DIC info (using the rule, pD Dbar Dhat)

pD 15.7 and DIC 325.1

DIC is an estimate of expected predictive error (lower deviance is better).

We find the usual similarity between the Bayes and the maximum likeli-
hood solution above (do summary(intfit)) and note in passing that the
estimated number of parameters (pD) is pretty close to what we would
expect it to be.

10.5.3 Forming Predictions

Let’s present the Bayesian inference for the interaction-effects model in
a graph showing the predicted response, analogous to least-square means
in a classical analysis, for each combination of elevation and population
(Fig. 10.3). This plot corresponds to the boxplot of the data set (Fig. 10.2);
or selects the order of the predictions to match that in Fig. 10.2.
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or < c(1,4,7,10,13,2,5,8,11,14,3,6,9,12,15)

plot(or, out$mean$group.mean, xlab "Elev by Population", las 1, ylab

"Predicted wing length", cex 1.5, ylim c(20, 70))

segments(or, out$mean$group.mean, or, out$mean$group.mean + out$sd$group.mean,

col "black", lwd 1)

segments(or, out$mean$group.mean, or, out$mean$group.mean out$sd$group.mean,

col "black", lwd 1)

abline(h 40)

10.6 SUMMARY

We have introduced the concepts of main and interaction effects and
used R and WinBUGS to fit the corresponding two-way ANOVA models.
In an aside, we have illustrated R’s flexibility to conduct simulations to
verify the effects of sampling variation on the parameter estimates.

EXERCISES
1. Toy snake example: Fit a two-way ANOVA with interaction to the toy

example of Chapter 6 and see what happens to the nonidentifiable
parameter.

2. Swiss hare data: Fit anANOVAmodel tomean hare density to decidewhether
the effect of grassland and arable land use is the same in all regions. Regions
and land use are somewhat confounded, but we ignore this here.
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FIGURE 10.3 Predicted wing length of mourning cloaks for each elevation population
combination. Error bars are 1 SE.
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11.1 INTRODUCTION

The “model of the mean,” t-test, simple linear regression, and analysis of
variance (ANOVA) are all just special cases of a very general and powerful
statistical model, the general linear model (≠ GLM!; see Chapter 13). This
model expresses a continuous response as a linear combination of the
effects of discrete and/or continuous explanatory variables plus a single
random contribution from a normal distribution, whose variance is esti-
mated along with the coefficients of all discrete and continuous
covariates and possible interactions.

Before this was widely recognized, people used to make a rather sharp
and artificial distinction between linear models that contain categorical
explanatory variables only and were called t-test or ANOVA models
and those that contain continuous covariates only and were called regres-
sion models. Models that contained both types of explanatory variables
were usually treated as ANOVAs with typically a single continuous cov-
ariate to correct for preexisting variation among experimental units. These
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models were called analysis of covariance (ANCOVA) models and that’s
why I use this term here.

Nowadays, in many practical applications, we typically have several
explanatory variables of both types. In addition, we want to fit both
main effects of these covariates and some or all their pairwise or
even higher-order interactions. As an example, we here consider an
ANCOVA model with an interaction between a discrete and a continuous
covariate. We saw how to fit interactions between two discrete covariates
in Chapter 10. Interactions between two continuous covariates are easy
to fit: simply fit one additional covariate whose values are obtained by
multiplication of the two main covariates.

In this chapter, we consider the relationship between body mass and
body length of the asp viper (Fig. 11.1) in three populations: Pyrenees,
Massif Central, and the Jura mountains. We are particularly interested
in population-specific differences of the mass–length relationship, i.e., in
the interaction between length and population. The means parameteriza-
tion of the model we will fit can be written as (see Section 6.3.6)

yi = αjðiÞ + βjðiÞ � xi + εi
and

εi ∼Normalð0, σ2Þ,

FIGURE 11.1 Male asp viper (Vipera aspis), Switzerland, 2007. (Photo T. Ott)
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where yi is the body mass of individual i, αj(i) and βj(i) are the intercept and
the slope, respectively, of the mass–length relationship in population j, xi
is the body length of snake i, and as usual, εi describes the combined
effects of all unmeasured influences on the body mass of snake i and is
assumed to behave like a normal random variable whose variance σ 2

we estimate.
The effects parameterization of the same model is this:

yi = αPyr + β1 � xMCðiÞ + β2 � xJuraðiÞ + β3 � xbodyðiÞ + β4 � xbodyðiÞ � xMCðiÞ
+ β5 � xbodyðiÞ � xJuraðiÞ + εi

In addition to yi and εi that are as before, αPyr is the expected mass of
snakes in the Pyrenees, β1 is the difference between the expected mass
of snakes in the Massif Central and that in the Pyrenees, and xMC(i) is
the indicator for snakes caught in the Massif Central. β2 is the difference
between the expected mass in the Jura and that in the Pyrenees, xJura(i) is
the indicator for snakes in the Jura, β3 is the slope of the regression of body
mass on body length xbody in the Pyrenees, β4 is the difference in that slope
between the Massif Central and the Pyrenees, and β5 is the difference of
slopes between the Jura and the Pyrenees. Thus, snakes in the Pyrenees act
as baseline with which snakes from the Massif Central and the Jura are
compared, but as usual, this choice has no effect on inference.

11.2 DATA GENERATION

As always, we assume a balanced design simply for convenience of
data generation.

n.groups < 3
n.sample < 10
n < n.groups * n.sample # Total number of data points
x < rep(1:n.groups, rep(n.sample, n.groups)) # Indicator for
population
pop < factor(x, labels = c("Pyrenees", "Massif Central", "Jura"))
length < runif(n, 45, 70) # Obs. body length (cm) is rarely less
than 45

We build the design matrix of an interactive combination of length and
population, inspect that, and select the parameter values, i.e., choose
values for αPyr, β1, β2, β3, β4, and β5.

Xmat < model.matrix(~ pop*length)
print(Xmat, dig = 2)
beta.vec < c( 250, 150, 200, 6, 3, 4)
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Next, we build up the body mass measurements yi by adding the residual
to the value of the linear predictor, with residuals drawn from an appro-
priate zero-mean normal distribution. The value of the linear predictor is
obtained by matrix multiplication of the design matrix (Xmat) and the
parameter vector (beta.vec). Our vipers are probably all too fat, but
that doesn’t really matter for our purposes.

lin.pred <– Xmat[,] %*% beta.vec # Value of lin.predictor

eps <– rnorm(n n, mean 0, sd 10) # residuals

mass <– lin.pred + eps # response lin.pred + residual

hist(mass) # Inspect what we've created

matplot(cbind(length[1:10], length[11:20], length[21:30]), cbind(mass[1:10],

mass[11:20], mass[21:30]), ylim c(0, max(mass)), ylab "Body mass (g)", xlab

"Body length (cm)", col c("Red","Green","Blue"), pch c("P","M","J"), las 1,

cex 1.2, cex.lab 1.5)

We have created a data set in which vipers from the Pyrenees have
the steepest slope between mass and length, followed by those from the
Massif Central and finally those in the Jura mountains (Fig. 11.2). Now
let’s disassemble these data.
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FIGURE 11.2 Simulated data set showing body mass versus length of 10 asp vipers in
each of three populations (P Pyrenees, M Massif Central, and J Jura).
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11.3 ANALYSIS USING R

The code for an analysis in R is very parsimonious indeed:

summary(lm(mass ~ pop * length))

> summary(lm(mass ~ pop * length))

[...]

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 246.6623 24.8588 9.923 5.72e 10 ***

popMassif Central 197.5543 37.8767 5.216 2.41e 05 ***

popJura 241.5563 39.1405 6.172 2.24e 06 ***

length 5.9623 0.4323 13.792 6.66e 13 ***

popMassif Central:length 3.8041 0.6631 5.737 6.52e 06 ***

popJura:length 4.7114 0.6595 7.144 2.20e 07 ***

[...]

Residual standard error: 10.01 on 24 degrees of freedom

Multiple R squared: 0.9114, Adjusted R squared: 0.8929

F statistic: 49.37 on 5 and 24 DF, p value: 7.48e 12

These coefficients can directly be compared with the beta vector since we
simulated the data exactly in the default effects format of a linear model
specified in R. The residual standard deviation is called residual standard
error by R.

beta.vec
cat("And the residual SD was 10 \n")

> beta.vec
[1] 250 150 200 6 3 4
> cat("And the residual SD was 10 \n")
And the residual SD was 10

11.4 ANALYSIS USING WinBUGS
(AND A CAUTIONARY TALE
ABOUT THE IMPORTANCE OF

COVARIATE STANDARDIZATION)

In WinBUGS, I find it much easier to fit the means parameterization of
the model, i.e., to specify three separate linear regressions for each moun-
tain range. The effects (i.e., differences of intercept or slopes with reference
to the Pyrenees) are trivially easy to recover as derived parameters by just
adding a few WinBUGS code lines. This allows for better comparison
between input and output values.
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# Define model

sink("lm.txt")

cat("

model {

# Priors

for (i in 1:n.group){

alpha[i] ~ dnorm(0, 0.001) # Intercepts

beta[i] ~ dnorm(0, 0.001) # Slopes

}

sigma ~ dunif(0, 100) # Residual standard deviation

tau <– 1 / ( sigma * sigma)

# Likelihood

for (i in 1:n) {

mass[i] ~ dnorm(mu[i], tau)

mu[i] <– alpha[pop[i]] + beta[pop[i]]* length[i]

}

# Derived quantities

# Define effects relative to baseline level

a.effe2 <– alpha[2] − alpha[1] # Intercept Massif Central vs. Pyr.

a.effe3 <– alpha[3] − alpha[1] # Intercept Jura vs. Pyr.

b.effe2 <– beta[2] − beta[1] # Slope Massif Central vs. Pyr.

b.effe3 <– beta[3] − beta[1] # Slope Jura vs. Pyr.

# Custom tests

test1 <– beta[3] − beta[2] # Slope Jura vs. Massif Central

}

",fill TRUE)

sink()

# Bundle data

win.data <– list(mass as.numeric(mass), pop as.numeric(pop), length length,

n.group max(as.numeric(pop)), n n)

# Inits function

inits <– function(){ list(alpha rnorm(n.group, 0, 2), beta rnorm(n.groups, 1,

1), sigma rlnorm(1))}

# Parameters to estimate

parameters <– c("alpha", "beta", "sigma", "a.effe2", "a.effe3", "b.effe2",

"b.effe3", "test1")

# MCMC settings

ni <– 1200

nb <– 200

nt <– 2

nc <– 3
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# Start Markov chains

out <– bugs(win.data, inits, parameters, "lm.txt", n.thin nt, n.chains nc,

n.burnin nb, n.iter ni, debug TRUE)

This is a simple model that converges rapidly. We inspect the results and
compare them with the “truth” in the data-generating random process as
well as with the inference from R …

print(out, dig 3) # Bayesian analysis

beta.vec # Truth in the data generating process

summary(lm(mass ~ pop * length)) # The ML solution again

… and are perplexed! WinBUGS claims that the Markov chains have
converged (see Rhat values), but we get totally different estimates from
what we should! Remember that alpha[1] and beta[1] in WinBUGS cor-
respond to the intercept and the length main effect in the analysis in R
and a.effe2, a.effe3. b.effe2, b.effe3 to the remaining terms of the
analysis in R.

> print(out, dig 3)# Bayesian analysis

Inference for Bugs model at "lm.txt", fit using WinBUGS,

3 chains, each with 1200 iterations (first 200 discarded), n.thin 2

n.sims 1500 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

alpha[1] 100.524 31.918 162.910 122.400 100.600 79.105 38.406 1.002 1500

alpha[2] 16.420 26.238 65.813 34.060 16.670 1.595 34.926 1.000 1500

alpha[3] 2.613 26.127 51.847 20.862 2.920 15.893 47.693 1.001 1500

beta[1] 3.442 0.557 2.336 3.066 3.443 3.813 4.540 1.002 1500

beta[2] 1.586 0.464 0.669 1.272 1.588 1.896 2.467 1.000 1500

beta[3] 1.205 0.438 0.367 0.885 1.207 1.503 2.059 1.002 1500

sigma 15.841 3.089 10.669 13.650 15.525 17.637 22.610 1.001 1500

a.effe2 84.103 38.764 6.313 57.752 84.620 110.300 160.082 1.002 1500

a.effe3 97.911 41.127 16.015 70.735 97.855 126.200 175.105 1.001 1500

b.effe2 1.856 0.684 3.178 2.327 1.856 1.401 0.479 1.002 1500

b.effe3 2.237 0.708 3.574 2.716 2.253 1.777 0.820 1.001 1500

test1 0.381 0.633 1.608 0.782 0.396 0.032 0.866 1.001 1500

deviance 249.071 8.258 232.847 243.300 249.000 254.800 264.552 1.000 1500

[ ... ]

> beta.vec # Truth in the data generating process

[1] 250 150 200 6 3 4

So lm() is able to recover the right parameter values, up to sampling and
estimation error, but WinBUGS is not. Why is this?

The problem turns out to reside in the lack of standardization of the
covariate length. In WinBUGS, it is always advantageous to scale
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covariates so that their extremes are not too far away from zero; otherwise,
there may be nonconvergence or other problems. And the ugly thing here
is that from looking at the convergence diagnostics (Rhat), we would
never have guessed that there was a problem!

This example illustrates how useful it is to check the consistency of one’s
inference fromWinBUGS with other sources, e.g., estimates from a simpler,
but similar model run in WinBUGS or maximum likelihood estimates from
another software. Know thy model! Alternatively, we could also have
plotted the estimated regression lines into the observed data and would
have seen easily that something was wrong.

As a quick check that lack of standardization was indeed the problem,
we repeat both the maximum likelihood and the Bayesian analysis using a
normalized version of the length covariate. This is simple; we just need to
redefine the length covariate in the data list we pass to WinBUGS and can
rerun the same code as before.

# Data passed to WinBUGS

win.data <– list(mass as.numeric(mass), pop as.numeric(pop), length

as.numeric(scale(length)), n.group max(as.numeric(pop)), n n)

# Start Markov chains

out <– bugs(win.data, inits, parameters, "lm.txt", n.thin nt, n.chains nc,

n.burnin nb, n.iter ni, debug FALSE)

...

# Inspect results

print(out, dig 3)

> print(out, dig 3)

[ ... ]

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

alpha[1] 97.796 3.406 90.679 95.820 97.905 100.100 104.252 1.004 1500

alpha[2] 74.952 3.504 67.864 72.690 75.030 77.292 81.580 1.004 1200

alpha[3] 66.535 3.653 59.009 64.060 66.660 68.995 73.265 1.007 350

beta[1] 41.243 3.158 34.829 39.150 41.215 43.332 47.316 1.005 870

beta[2] 14.486 3.763 7.318 11.947 14.570 16.920 22.112 1.002 1500

beta[3] 8.868 3.820 1.635 6.401 8.803 11.322 16.816 1.000 1500

sigma 10.587 1.678 7.937 9.380 10.370 11.510 14.516 1.005 630

a.effe2 −22.844 4.756 −31.771 −25.962 −22.815 −19.718 −13.498 1.003 1200

a.effe3 −31.262 5.000 −41.826 −34.470 −31.260 −28.050 −21.384 1.005 400

b.effe2 −26.757 4.802 −36.065 −30.032 −26.800 −23.620 −16.660 1.002 1500

b.effe3 −32.375 4.907 −41.445 −35.853 −32.350 −29.345 −22.162 1.001 1500

test1 −5.618 5.334 −16.024 −9.007 −5.836 −2.101 5.108 1.001 1500

deviance 225.218 4.558 218.700 221.900 224.500 227.800 235.500 1.009 270

[ ... ]
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Compare with MLEs (R output slightly edited):

print(lm(mass ~ pop * as.numeric(scale(length)))$coefficients, dig 4)

...

> print(lm(mass ~ pop * as.numeric(scale(length)))$coefficients, dig 4)

(Intercept) popMassif Central

98.94 −22.95

popJura as.numeric(scale(length))

−31.54 41.78

popMassif Central:as.numeric(scale(length)) popJura:as.numeric(scale(length))

−26.66 −33.01

Indeed, we now get consistent estimates in both analyses. Hence, pre-
viously the scale of the covariate didn’t allow WinBUGS to converge,
even though the Rhat values reported did indicate convergence. As
a cautionary principle, we might therefore always consider to transform
all covariates for WinBUGS, even if that slightly complicates presentation
of results afterwards (for instance, in graphics). Transforming can mean
centering, i.e., subtracting the mean, which changes the intercept only,
but not the slope. Transforming can also mean normalizing, i.e., subtract-
ing the mean and dividing the result by the standard deviation of the
original covariate values. This changes both the intercept and the slope
relative to an analysis with the original covariate. In the above case,
centering will also work (want to try this out?).

11.5 SUMMARY

In a key chapter for your understanding of the modeling of grouped
data, we have looked at the general linear model, or ANCOVA, in R
and WinBUGS. We have focused on a model with one discrete and one
continuous predictor and their interaction. Understanding ANCOVA is
an important intermediate step to understanding the linear-mixed
model in the next chapter.

EXERCISES
1. Probability of a parameter: What is the probability that the slope of the mass

length relationship of asp vipers is inferior in the Jura than in the Massif
Central? Produce a graphical and a numerical answer.

2. Related models: Adapt the code to fit two variations of the model:
• Fit different intercepts but a common slope
• Fit the same intercept and the same slope
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3. Quadratic effects: Add a quadratic term to the mass length relationship,
i.e., fit the model pop + (length + length^2). You do not need to
reassemble a data set that contains an effect of length squared, but you can
simply take the data set we have already created in this chapter.

4. Swiss hare data: Fit an ANCOVA (pop * year, with year as a continuous
explanatory variable) to the mean density. Also compute residuals and plot
them to check for outliers.
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12.1 INTRODUCTION

Mixed-effects or mixed models contain factors, or more generally
covariates, with both fixed and random effects. During the last 15 years
or so, the use of mixed models has greatly increased in statistical appli-
cations in ecology and related disciplines (Pinheiro and Bates, 2000;
McCulloch and Searle, 2001; Lee et al., 2006; Littell et al., 2008). As
explained in Chapter 9, there may be at least three benefits to assuming
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a set of parameters constitutes a random sample from some distribution,
whose hyperparameters are then estimated as the main structural param-
eters of a model: increased scope of the inference, more honest accounting
for system uncertainty, and efficiency of estimation.

In Chapter 9, we met a one-way analysis of variance model that, apart
from an overall mean, contained only random effects and could be called a
variance-components model. It could also be called a mixed model if the
overall mean, the intercept, is viewed as a fixed effect, but this terminol-
ogy is not standard. Here, we consider a classic mixed model that arises as
a direct generalization of the analysis of covariance (ANCOVA) model in
Chapter 11. We modify our asp viper (Fig. 12.1) data set from there just a
bit and assume we now have measurements from a much larger number
of populations, say, 56. A random-effects factor need not possess that
many levels (some statisticians even fit a two-level factor such as sex as
random; see Gelman, 2005), but one rarely sees fewer than, say, 5–10 or
so parameters fitted as random effects. Estimating a variance with so few
values, which are moreover unobserved, will not result in very precise
and perhaps biased estimates (see also Lambert et al., 2005).

We resimulate some asp viper data using R code fairly similar to that
in the previous chapter. However, we now constrain the values for at
least one set of effects (intercepts and/or slopes) to come from a normal

FIGURE 12.1 Gravid female asp viper (Vipera aspis), France, 2008. (Photo T. Ott)
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distribution: this is what the random-effects assumption means. There are
at least three sets of assumptions that one may make about the random
effects for the intercept and/or the slope of regression lines that are fitted
to grouped (here, population-specific) data:

1. Only intercepts are random, but slopes are identical for all groups.
2. Both intercepts and slopes are random, but they are independent.
3. Both intercepts and slopes are random, and there is a correlation

between them.

(An additional case, where slopes are random and intercepts are fixed,
is not a sensible model in most circumstances.) Model No. 1 is often called
a random-intercepts model, and both models No. 2 and 3 are also called
random-coefficients models. Model No. 3 is the default in R’s function
lmer() in package lme4 when fitting a random-coefficients model.

We now first generate a random-coefficients data set under model
No. 2, where both intercepts and slopes are uncorrelated random effects.
We then fit both a random-intercepts (No. 1) and a random-coefficients
model without correlation (No. 2) to these data (see Sections 12.2–12.4).
Then, we generate a second data set that includes a correlation between
random intercepts and random slopes and adopt the random-coefficients
model with correlation between intercepts and slopes (No. 3) to analyze it
(see Section 12.5).

This is a key chapter for your understanding of mixed models, and
I expect its contents to be helpful for the general understanding of
mixed models to many ecologists. A close examination of how such
data can be assembled (i.e., simulated) will be an invaluable help for
understanding how analogous data sets are broken down (i.e., analyzed)
using mixed models. Indeed, I believe that very few strategies can be more
effective to understand this type of mixed model than the combination of
simulating data sets and describing the models fitted in WinBUGS syntax.

Here is one way in which to write the random-coefficients model
without correlation between the random effects for mass yi of snake i in
population j:

yi = αjðiÞ + βjðiÞ � xi + εi

αj ∼Normalðμα, σ2αÞ # Random effects for intercepts
βj ∼Normalðμβ, σ2βÞ # Random effects for slopes

εi ∼Normalð0, σ2Þ # Residual “random” effects

Exactly as in the ANCOVA model in Chapter 11, mass yi is related to body
length xi of snake i by a straight-line relationship with population-specific
values for intercept αj and slope βj. (These regression parameters vary by
individual i according to their membership to population j.) However,
both αj and βj are now assumed to come from an independent normal dis-
tribution, with means μα and μβ and variances of σ2α and σ2β, respectively.
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The residuals εi for snake i are assumed to come from another independent
normal distribution with variance σ2.

12.2 DATA GENERATION

As always, we assume a balanced design for simple convenience,
though that is not required to conduct mixed model analyses using
restricted maximum likelihood (REML) in R or a Bayesian analysis in
WinBUGS. Indeed, the flexibility with unbalanced data sets was one of
the main reasons why REML-based mixed model estimation became so
much more popular than estimation based on sums of squares decompo-
sitions (Littell et al., 2008).

n.groups < 56 # Number of populations
n.sample < 10 # Number of vipers in each pop
n < n.groups * n.sample # Total number of data points
pop < gl(n = n.groups, k = n.sample) # Indicator for population

We directly normalize covariate length to avoid trouble with WinBUGS.

# Body length (cm)
original.length < runif(n, 45, 70)
mn < mean(original.length)
sd < sd(original.length)
cat("Mean and sd used to normalise.original length:", mn, sd, "\n\n")
length < (original.length mn) / sd
hist(length, col = "grey")

We build a design matrix without intercept.

Xmat < model.matrix(~pop*length 1 length)
print(Xmat[1:21,], dig = 2) # Print top 21 rows

Next, we choose parameter values, but this time, we need to constrain
them, i.e., both values for the intercepts and those for the slopes will be
drawn from two normal distributions for whom we specify four hyper-
parameters, i.e., two means (corresponding to μα and μβ) and two standard
deviations (SDs) (corresponding to the square root of σ2α and σ2β). As resi-
dual variation, we use a mean-zero normal distribution with SD of 30.

intercept.mean <– 230 # mu alpha

intercept.sd <– 20 # sigma alpha

slope.mean <– 60 # mu beta

slope.sd <– 30 # sigma beta

intercept.effects<–rnorm(n n.groups, mean intercept.mean, sd intercept.sd)

slope.effects <– rnorm(n n.groups, mean slope.mean, sd slope.sd)

all.effects <– c(intercept.effects, slope.effects) # Put them all together
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We assemble the measurements yi as before.

lin.pred < Xmat[,] %*% all.effects # Value of lin.predictor

eps < rnorm(n n, mean 0, sd 30) # residuals

mass < lin.pred + eps # response lin.pred + residual

hist(mass, col "grey") # Inspect what we've created

We produce a trellis graph of the relationships in all ngroup populations
(Fig. 12.2). Depending on the particular realization of the simulated sto-
chastic system, we generally have quite a few fatties and may even
have a few negative masses, but this doesn’t really matter for our analysis.

library("lattice")
xyplot(mass ~ length | pop)
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FIGURE 12.2 Trellis plot of the mass length relationships in 56 asp viper populations
(length has been standardized).
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We can detect straight-line relationships between mass and length that
differ among the 56 populations. What we can’t see is the random-effects
assumption built into the data set. That is, we are unable to distinguish a
simple ANCOVA data set as in Chapter 11 from a mixed model data set as
in this chapter.

12.3 ANALYSIS UNDER A RANDOM-INTERCEPTS
MODEL

12.3.1 REML Analysis Using R

We first assume that the slope of the mass–length relationship is iden-
tical in all populations and that only the intercepts differ randomly from
one population to another.

library('lme4')
lme.fit1 < lmer(mass ~ length + (1 | pop), REML = TRUE)
lme.fit1
> lme.fit1
Linear mixed model fit by REML
Formula: mass ~ length + (1 | pop)

AIC BIC logLik deviance REMLdev
5873 5890 2932 5872 5865

Random effects:
Groups Name Variance Std.Dev.
pop (Intercept) 260.60 16.143
Residual 1930.94 43.942
Number of obs: 560, groups: pop, 56

Fixed effects:
Estimate Std. Error t value

(Intercept) 226.527 2.846 79.59
length 59.647 1.916 31.13

Correlation of Fixed Effects:
(Intr)

length 0.000

12.3.2 Bayesian Analysis Using WinBUGS

In our Bayesian analysis of the random-intercepts model, we use a sui-
tably wide uniform distribution as a prior for the standard deviation of the
random-effects distribution (Gelman, 2006).
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# Write model

sink("lme.model1.txt")

cat("

model {

# Priors

for (i in 1:ngroups){

alpha[i] ~ dnorm(mu.int, tau.int) # Random intercepts

}

mu.int ~ dnorm(0, 0.001) # Mean hyperparameter for random intercepts

tau.int < 1 / (sigma.int * sigma.int)

sigma.int ~ dunif(0, 100) # SD hyperparameter for random intercepts

beta ~ dnorm(0, 0.001) # Common slope

tau < 1 / ( sigma * sigma) # Residual precision

sigma ~ dunif(0, 100) # Residual standard deviation

# Likelihood

for (i in 1:n) {

mass[i] ~ dnorm(mu[i], tau) # The random variable

mu[i] < alpha[pop[i]] + beta* length[i] # Expectation

}

}

",fill TRUE)

sink()

# Bundle data

win.data < list(mass as.numeric(mass), pop as.numeric(pop), length length,

ngroups max(as.numeric(pop)), n n)

# Inits function

inits < function(){list(alpha rnorm(n.groups, 0, 2), beta rnorm(1, 1, 1),

mu.int rnorm(1, 0, 1), sigma.int rlnorm(1), sigma rlnorm(1))}

# Parameters to estimate

parameters < c("alpha", "beta", "mu.int", "sigma.int", "sigma")

# MCMC settings

ni < 2000

nb < 500

nt < 2

nc < 3

# Start Gibbs sampling

out < bugs(win.data, inits, parameters, "lme.model1.txt", n.thin nt, n.chains nc,

n.burnin nb, n.iter ni, debug TRUE)
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# Inspect results

print(out, dig 3)

> print(out, dig 3)

Inference for Bugs model at "lme.model.txt", fit using WinBUGS,

3 chains, each with 2000 iterations (first 500 discarded), n.thin 2

n.sims 2250 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

[...]

beta 59.348 1.948 55.457 58.030 59.33 60.700 62.978 1.002 1300

mu.int 224.606 2.925 218.600 222.700 224.70 226.600 230.077 1.001 2200

sigma.int 16.507 2.760 11.582 14.580 16.42 18.230 22.356 1.012 180

sigma 44.120 1.409 41.570 43.150 44.08 45.040 46.958 1.002 1600

[...]

# Compare with input values

intercept.mean ; slope.mean ; intercept.sd ; slope.sd ; sd(eps)

> intercept.mean ; slope.mean ; intercept.sd ; slope.sd ; sd(eps)

[1] 230

[1] 60

[1] 20

[1] 30

[1] 29.86372

As usual with vague priors, the two analyses yield rather comparable
results. Interestingly, the residual standard deviation in both is estimated
too high. This is because we simulated the data to contain random varia-
tion among the slopes, but we did not fit this model, so this variation is
unaccounted for and gets absorbed in the residual.

12.4 ANALYSIS UNDER A RANDOM-COEFFICIENTS
MODEL WITHOUT CORRELATION BETWEEN

INTERCEPT AND SLOPE

12.4.1 REML Analysis Using R

Next, we assume that both slopes and intercepts of the mass–length rela-
tionship differ among populations in the fashion of two independent ran-
domvariables, i.e.,we assume the absence of a correlation between intercept
and slope. Thus, we will analyze the data under the same model that we
used to generate our data set.

library('lme4')
lme.fit2 < lmer(mass ~ length + (1 | pop) + ( 0+ length | pop))
lme.fit2

> lme.fit2
Linear mixed model fit by REML
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Formula: mass ~ length + (1 | pop) + (0 + length | pop)
AIC BIC logLik deviance REMLdev

5598 5619 2794 5596 5588
Random effects:

Groups Name Variance Std.Dev.
pop (Intercept) 274.37 16.564
pop length 1012.49 31.820
Residual 875.96 29.597

Number of obs: 560, groups: pop, 56

Fixed effects:
Estimate Std. Error t value

(Intercept) 228.698 2.579 88.68
length 59.774 4.461 13.40

Correlation of Fixed Effects:
(Intr)

length 0.002

12.4.2 Bayesian Analysis Using WinBUGS

Finally, here is the Bayesian analysis of the simple random-coefficients
model:

# Define model

sink("lme.model2.txt")

cat("

model {

# Priors

for (i in 1:ngroups){

alpha[i] ~ dnorm(mu.int, tau.int) # Random intercepts

beta[i] ~ dnorm(mu.slope, tau.slope) # Random slopes

}

mu.int ~ dnorm(0, 0.001) # Mean hyperparameter for random intercepts

tau.int <– 1 / (sigma.int * sigma.int)

sigma.int ~ dunif(0, 100) # SD hyperparameter for random intercepts

mu.slope ~ dnorm(0, 0.001) # Mean hyperparameter for random slopes

tau.slope <– 1 / (sigma.slope * sigma.slope)

sigma.slope ~ dunif(0, 100) # SD hyperparameter for slopes

tau <– 1 / ( sigma * sigma) # Residual precision

sigma ~ dunif(0, 100) # Residual standard deviation

# Likelihood

for (i in 1:n) {
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mass[i] ~ dnorm(mu[i], tau)

mu[i] <– alpha[pop[i]] + beta[pop[i]]* length[i]

}

}

",fill TRUE)

sink()

# Bundle data

win.data <– list(mass as.numeric(mass), pop as.numeric(pop), length length,

ngroups max(as.numeric(pop)), n n)

# Inits function

inits <– function(){ list(alpha rnorm(n.groups, 0, 2), beta rnorm(n.groups,

10, 2), mu.int rnorm(1, 0, 1), sigma.int rlnorm(1), mu.slope rnorm(1, 0, 1),

sigma.slope rlnorm(1), sigma rlnorm(1))}

# Parameters to estimate

parameters <– c("alpha", "beta", "mu.int", "sigma.int", "mu.slope", "sigma.

slope", "sigma")

# MCMC settings

ni <– 2000

nb <– 500

nt <– 2

nc <– 3

# Start Gibbs sampling

out <– bugs(win.data, inits, parameters, "lme.model2.txt", n.thin nt, n.chains nc,

n.burnin nb, n.iter ni, debug TRUE)

This is still a relatively simple model that converges rapidly.

print(out, dig 2)

> print(out, dig 2)

Inference for Bugs model at "lme.model2.txt", fit using WinBUGS,

3 chains, each with 2000 iterations (first 500 discarded), n.thin 2

n.sims 2250 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

[...]

mu.int 227.22 2.68 221.90 225.50 227.20 229.00 232.40 1.00 1400

sigma.int 17.05 2.29 12.96 15.41 16.94 18.52 21.80 1.00 2200

mu.slope 58.49 4.57 49.48 55.37 58.49 61.59 66.96 1.00 2200

sigma.slope 32.48 3.39 26.50 30.16 32.24 34.63 39.74 1.00 2200

sigma 29.67 1.01 27.77 28.95 29.65 30.34 31.66 1.00 2200

[...]

>
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# Compare with input values

> intercept.mean ; slope.mean ; intercept.sd ; slope.sd ; sd(eps)

[1] 230

[1] 60

[1] 20

[1] 30

[1] 29.86372

The two sets of numbers agree rather nicely, as do the solutions obtained
by lmer() and the input values. I emphasize again that using simulated
data and successfully recovering the input values gives one the confi-
dence that the analysis in WinBUGS has probably been specified
correctly. For more complex models, this is helpful, since it’s so easy to
make mistakes!

Finally, we note that the realized values of the intercept and slope ran-
dom effects are estimated and are returned by typing ranef(lme.fit2)
for the analysis in R. They are also contained in the WinBUGS output that
we get by typing print(out, dig = 2).

12.5 THE RANDOM-COEFFICIENTS MODEL
WITH CORRELATION BETWEEN

INTERCEPT AND SLOPE

12.5.1 Introduction

The random-coefficients model with correlation is a simple extension of
the previous model. The mass yi of snake i in population j is assumed to be
described by the following relations:

yi = αjðiÞ + βjðiÞ � xi + εi
ðαj, βjÞ∼MVNðμ,SÞ # Bivariate normal random effects

μ = ðμα, μβÞ # Mean vector

S =
σ2α σαβ
σαβ σ2β

 !
# Variance�covariance matrix

εi ∼Normalð0, σ2Þ # Residual “random” effects

As before, the mass yi of snake i in population j is related to its body length
xi by a straight-line relationship with population-specific values for inter-
cept αj and slope βj. But now, pairs of αj and βj from the same population
are assumed to come from a multivariate normal distribution (actually,
here, a bivariate normal) with mean vector μ and variance–covariance
matrix S. The latter contains the variances of the intercept (σ2α) and the
slope (σ2β) in the diagonal and the covariance between αj and βj (σαβ) in
the off-diagonals. As before, the residuals εi for snake i are assumed to
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come from an independent (univariate) normal distribution with variance
σ2. The interpretation of the covariance is such that positive values indicate
a steeper mass–length relationship for snakes with a greater mass.

12.5.2 Data Generation

We generate data under the random-coefficients model.

n.groups < 56
n.sample < 10
n < n.groups * n.sample
pop < gl(n = n.groups, k = n.sample)

We generate the covariate length.

original.length < runif(n, 45, 70) # Body length (cm)
mn < mean(original.length)
sd < sd(original.length)
cat("Mean and sd used to normalise.original length:", mn, sd, "\n\n")
length < (original.length mn) / sd
hist(length, col = "grey")

We build the same design matrix as before.

Xmat < model.matrix(~pop*length 1 length)
print(Xmat[1:21,], dig = 2) # Print top 21 rows

We choose the parameter values, i.e., the population-specific intercepts
and slopes from a bivariate normal distribution (available in the R pack-
age MASS) whose hyperparameters (two means and the four cells of the
variance–covariancematrix)weneed to specify.Weuse again as residual var-
iation a mean-zero normal distribution with SD of 30.

library(MASS) # Load MASS

?mvrnorm # Calls help file

intercept.mean <– 230 # Values for five hyperparameters

intercept.sd <– 20

slope.mean <– 60

slope.sd <– 30

intercept.slope.covariance <– 10

mu.vector <– c(intercept.mean, slope.mean)

var.cova.matrix <– matrix(c(intercept.sd^2,intercept.slope.covariance,

intercept.slope.covariance, slope.sd^2),2,2)

effects <– mvrnorm(n n.groups, mu mu.vector, Sigma var.cova.matrix)

effects # Look at what we've created

apply(effects, 2, mean)

var(effects)
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intercept.effects <– effects[,1]

slope.effects <– effects[,2]

all.effects <– c(intercept.effects, slope.effects) # Put them all together

Assemble the measurements yi.

lin.pred < Xmat[,] %*% all.effects # Value of lin.predictor

eps < rnorm(n n, mean 0, sd 30) # residuals

mass < lin.pred + eps # response lin.pred + residual

hist(mass, col "grey") # Inspect what we've created

Again, negative masses are possible for some realizations of the data set.
We look at the simulated data set:

library("lattice")
xyplot(mass ~ length | pop)

Now, we analyze this second data set allowing for a nonzero covariance
between intercept and slope effects.

12.5.3 REML Analysis Using R

The model with an intercept–slope correlation is the default when spe-
cifying a random-coefficients model in R using function lmer().

library('lme4')
lme.fit3 < lmer(mass ~ length + (length | pop))
lme.fit3
> lme.fit3
Linear mixed model fit by REML
Formula: mass ~ length + (length | pop)
AIC BIC logLik deviance REMLdev
5624 5650 2806 5620 5612
Random effects:
Groups Name Variance Std.Dev. Corr
pop (Intercept) 255.86 15.996

length 652.01 25.534 0.333
Residual 979.29 31.294
Number of obs: 560, groups: pop, 56

Fixed effects:
Estimate Std. Error t value

(Intercept) 233.342 2.554 91.38
length 68.811 3.698 18.61

Correlation of Fixed Effects:
(Intr)

length 0.254
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12.5.4 Bayesian Analysis Using WinBUGS

Here is one way in which to specify a Bayesian analysis of the random-
coefficients model with correlation. For a different and more general way
to allow for correlation among two or more sets of random effects in a
model, see Gelman and Hill (2007, p. 376–377).

# Define model

sink("lme.model3.txt")

cat("

model {

# Priors

for (i in 1:ngroups){

alpha[i] <– B[i,1]

beta[i] <– B[i,2]

B[i,1:2] ~ dmnorm(B.hat[i,], Tau.B[,])

B.hat[i,1] <– mu.int

B.hat[i,2] <– mu.slope

}

mu.int ~ dnorm(0, 0.001) # Hyperpriors for random intercepts

mu.slope ~ dnorm(0, 0.001) # Hyperpriors for random slopes

Tau.B[1:2,1:2] <– inverse(Sigma.B[,])

Sigma.B[1,1] <– pow(sigma.int,2)

sigma.int ~ dunif(0, 100) # SD of intercepts

Sigma.B[2,2] <– pow(sigma.slope,2)

sigma.slope ~ dunif(0, 100) # SD of slopes

Sigma.B[1,2] <– rho*sigma.int*sigma.slope

Sigma.B[2,1] <– Sigma.B[1,2]

rho ~ dunif(−1,1)

covariance <– Sigma.B[1,2]

tau <– 1 / ( sigma * sigma) # Residual

sigma ~ dunif(0, 100) # Residual standard deviation

# Likelihood

for (i in 1:n) {

mass[i] ~ dnorm(mu[i], tau) # The "residual" random variable

mu[i] <– alpha[pop[i]] + beta[pop[i]]* length[i] # Expectation

}

}

",fill TRUE)

sink()

# Bundle data

win.data <– list(mass as.numeric(mass), pop as.numeric(pop), length length,

ngroups max(as.numeric(pop)), n n)
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# Inits function

inits <– function(){ list(mu.int rnorm(1, 0, 1), sigma.int rlnorm(1), mu.slope

rnorm(1, 0, 1), sigma.slope rlnorm(1), rho runif(1, −1, 1), sigma

rlnorm(1))}

# Parameters to estimate

parameters <– c("alpha", "beta", "mu.int", "sigma.int", "mu.slope", "sigma.slope",

"rho", "covariance", "sigma")

# MCMC settings

ni <– 2000

nb <– 500

nt <– 2

nc <– 3

# Start Gibbs sampler

out <– bugs(win.data, inits, parameters, "lme.model3.txt", n.thin nt, n.chains nc,

n.burnin nb, n.iter ni, debug TRUE)

We inspect the results and compare them with the frequentist analysis in
Section 12.5.3 and find the usual comforting agreement between the two
approaches (note rho in the Bayesian analysis has to be compared with
Corr in the frequentist analysis).

print(out, dig = 2) # Bayesian analysis
lme.fit3 # Frequentist analysis

As usual, the approximate solution given by lmer() comes reasonably
close to the exact solution from the Bayesian analysis (Gelman and Hill,
2007). Even though convergence is achieved fairly rapidly in the latter, it
often takes much longer to obtain the exact Bayesian solution in a mixed
model analysis. So there is a price to pay for enjoying the advantages of
the Bayesian analysis, and this price can be fairly high when using Win-
BUGS to fit more complex models.

For some realizations of the data set, the covariance may be estimated
at a negative value, even though we’ve built the data with a positive cov-
ariance in the parent (statistical) population of intercepts and slopes. This
is a reflection of both sampling variation and estimation error. Also look at
how imprecise the estimate for the covariance is; covariances are even
harder to estimate than variances. R doesn’t return a standard error for
that estimate.

12.6 SUMMARY

We have introduced the classic mixed ANCOVA model with random
intercepts, random slopes, and the possibility of an intercept–slope covar-
iance. Understanding the material presented in this chapter is essential for
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a thorough understanding of much of the current mixed modeling in
ecology. The ideas presented here appear over and over again, in later
chapters of this book, as well as in the applied work of many quantitative
ecologists.

EXERCISES
1. Specification of fixed- and random-effects in WinBUGS: The WinBUGS model

description for the random-intercepts, random-slope model (i.e., the second
one we fit in this chapter) is very similar to the fixed-effects “version” of the
same model, i.e., the one we fitted in Chapter 11. Without looking at the
WinBUGS model description in that chapter, take the linear mixed model
description for WinBUGS from the current chapter and change it back to a
fixed-effects ANCOVA with population-specific intercepts and slopes, i.e.,
corresponding to what you would fit in R as lm(mass ~ pop*length).

2. Swiss hare data: Fit a random-coefficients regression without intercept slope
correlation to mean density (i.e., ~ population * year, with year
continuous).
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13.1 INTRODUCTION

The unification of a large number of statistical methods such as
regression, analysis of variance (ANOVA), and analysis of covariance
(ANCOVA) under the umbrella of the general linear model was a big
advancement for applied statistics. However, even more significant was
the unification of an even wider range of statistical methods within the
class of the generalized linear model or GLM in 1972 by Nelder and Wedder-
burn (also see McCullagh and Nelder, 1989). They showed that a large
number of techniques previously thought of as representing quite separate
types of analyses, including logistic regression, multinomial regression,
Chi-square tests, log-linear models, as well as the general linear model,
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could all be represented as special cases of a generalized version of a linear
model. In that way, much of what was well understood for the linear
model could be carried over to that much larger class of models.

The two main ideas of the GLM are that, first, a transformation of the
expectation of the response E(y) is expressed as a linear combination of cov-
ariate effects rather than the expected (mean) response itself. And second,
for the random part of the model, distributions other than the normal can be
chosen, e.g., Poisson or binomial.

Formally, a GLM is described by the following three components:

1. a statistical distribution is used to describe the random variation in the
response y; this is the stochastic part of the system description,

2. a so-called link function g, that is applied to the expectation of the
response E(y), and

3. a linear predictor, which is a linear combination of covariate effects that
are thought to make up g(E(y)); this is the systematic or deterministic
part of the system description.

Binomial, Poisson, and normal are probably the three most widely used
statistical distributions in a GLM (see Chapter 6). The former two are
distributions for non-negative, discrete responses and therefore suitable
to describe counts. The normal is the most widely used distribution for
continuous responses such as measurements. The three most widely
used link functions are the identity, logit(=log(odds)=log(x/(1 x))),
and the log. For various reasons, one link function is typically advanta-
geous, although not obligate, for each of these distributions. For instance,
the normal distribution combined with an identity link yields the general
linear model; the Poisson with a log link yields a log-linear model; and the
binomial with a logit link yields a logistic regression. Hence, all the normal
linear models seen in Chapters 4–11 are simply special cases of a GLM.

In the next nine chapters, we will go through a progression from simple
to more complex models for Poisson and binomial responses. As for normal
linear models, we begin again with what might be called a “Poisson t-test”
in the sense that it consists of a comparison of two groups. To better see the
analogy with the normal linear model, we start by writing the model for the
normal two-group comparison (see Chapter 7) in GLM format:

1. Distribution: yi ∼Normal ðμi, σ2Þ
2. Link function: identity, i.e., μi = EðyiÞ = linear predictor
3. Linear predictor: α + β � xi

Next, we generalize this model to count data. The inferential situation
considered is that of counts (C) of Brown hares (Fig. 13.1) in a sample of
10 arable and 10 grassland study areas. We wonder whether hare density
depends on land-use.
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The typical distribution assumed for such counts is a Poisson, which
applies when counted things are distributed independently and randomly
and samples of equal size are taken randomly. Then, the number of hares
counted per study area (C) will be described by a Poisson. The Poisson has
a single parameter, the expected count λ, that is often called the intensity
and here represents the mean hare density. In contrast to the normal, the
Poisson variance is not a free parameter but is equal to the mean λ. For a
Poisson-distributed random variable C, we write C∼PoissonðλÞ.

If hare density depends on land-use, i.e., is different in arable and grass-
land areas, the assumption of a constant mean density across all 20 study
areas is not realistic. And in a “Poisson t-test” we are specifically inter-
ested in whether hare density differs between grassland and arable
areas. Therefore, here is a model for hare count Ci in area i:

1. Distribution: Ci ∼PoissonðλiÞ
2. Link function: log, i.e., logðλiÞ = logðEðCiÞÞ = linear predictor
3. Linear predictor: α + β � xi

In words, hare count Ci in area i is distributed as a Poisson random
variable with mean EðCiÞ = λi. The log-transformation of λi is assumed to
be a linear function α + β � xi, where α and β are unknown constants and xi
is the value of an area-specific covariate. If xi is an indicator for arable
areas, then α becomes the mean hare density on a log-scale in grassland
areas and β, again on a log-scale, is the difference in mean density between
the two land-use types.

FIGURE 13.1 Brown hare (Lepus europaeus), Germany, 2008. (Photo N. Zbinden)
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13.2 AN IMPORTANT BUT OFTEN FORGOTTEN
ISSUE WITH COUNT DATA

Whenever we interpret λ as the mean hare density, we make the implicit
assumption that every individual hare is indeed seen, i.e., that detection prob-
ability ( p) is equal to 1. This is not very likely for hares nor indeed for any
wild animal because typically some individuals are overlooked (Yoccoz
et al., 2001; Kéry, 2002; Williams et al., 2002; Kéry and Juillerat, 2004;
Schmidt, 2005, 2008). Alternatively, we may assume that the proportion of
hares overlooked per area is the same, on average, in both land-use types. In
that case, counts are considered just an index to absolute density, i.e., a mea-
sure for relative density, and what we model as the Poisson parameter λi is in
reality the product between absolute hare density and the proportion p of
hares seen. Only by making the assumption that p is identical, on average,
in both land-use types may we validly interpret a mean difference between
counts in arable and grassland areas as an indication of a difference in true
hare density. See Chapters 20 and 21 for more on this important topic, the
distinction between the imperfectly observed true state and the observed
data, or, between the ecological and the observation processes underlying
ecological field data.

13.3 DATA GENERATION

For now, we simulate and analyze hare counts under the assumption
that detectability is perfect. First we need an indicator for land-use:

n.sites < 10
x < gl(n = 2, k = n.sites, labels = c("grassland", "arable"))
n < 2*n.sites

Let the mean hare density in grassland and arable areas be 2 and 5 hares,
respectively. Then, α = logð2Þ = 0:69 and logð5Þ = α + β, thus, β = logð5Þ –
logð2Þ = 0:92. Therefore, the expected density λi is given by:

lambda <– exp(0.69 + 0.92*(as.numeric(x)–1)) # x has levels 1 and 2, not 0 and 1

We add the noise that comes from a Poisson distribution and inspect the
hare counts we’ve thus generated (Fig. 13.2):

C < rpois(n n, lambda lambda) # Add Poisson noise

aggregate(C, by list(x), FUN mean) # The observed means

boxplot(C ~ x, col "grey", xlab "Land use", ylab "Hare count", las 1)

Again, we can get a feel for the strong effects of chance (sampling varia-
tion) by repeatedly generating hare counts and observing by how much
they vary from one sample of 20 counts to another sample of 20 counts.
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13.4 ANALYSIS USING R

We fit the “Poisson t-test” using the R function glm(..., family=
poisson). To test whether mean density in grassland differs from that
in arable areas, we use the t-test provided by the function summary() or
a likelihood ratio test from anova(). There is no big difference here in
terms of the inferences.

poisson.t.test <– glm(C ~ x, family poisson) # Fit the model

summary(poisson.t.test) # t–Test

anova(poisson.t.test, test "Chisq") # Likelihood ratio test (LRT)

13.5 ANALYSIS USING WinBUGS

Let’s now fit the “Poisson t-test” in WinBUGS. To do this, we will take
the code from the normal t-test (Chapter 7) and adapt it to the Poisson
GLM case. In addition, we will do two more things in the WinBUGS
program below:

1. compute Pearson residuals to assess model fit and
2. conduct a posterior predictive check including a Bayesian p-value as

we did for normal linear regression in Chapter 8 (and will do for a
“generalized” Poisson regression in Chapter 21).
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FIGURE 13.2 Relationship between hare count and land use.
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# Define model

sink("Poisson.t.test.txt")

cat("

model {

# Priors

alpha ~ dnorm(0,0.001)

beta ~ dnorm(0,0.001)

# Likelihood

for (i in 1:n) {

C[i] ~ dpois(lambda[i])

log(lambda[i]) <– alpha + beta *x[i]

# Fit assessments

Presi[i] <– (C[i] – lambda[i]) / sqrt(lambda[i]) # Pearson residuals

C.new[i] ~ dpois(lambda[i]) # Replicate data set

Presi.new[i] <– (C.new[i] – lambda[i]) / sqrt(lambda[i]) # Pearson resi

D[i] <– pow(Presi[i], 2)

D.new[i] <– pow(Presi.new[i], 2)

}

# Add up discrepancy measures

fit <– sum(D[])

fit.new <– sum(D.new[])

}

",fill TRUE)

sink()

# Bundle data

win.data <– list(C C, x as.numeric(x)–1, n length(x))

# Inits function

inits <– function(){ list(alpha rlnorm(1), beta rlnorm(1))}

# Parameters to estimate

params <– c("lambda","alpha", "beta", "Presi", "fit", "fit.new")

# MCMC settings

nc <– 3

ni <– 3000

nb <– 1000

nt <– 2

# Start Gibbs sampler

out <- bugs(data win.data, inits inits, parameters.to.save params,

model.file "Poisson.t.test.txt", n.thin nt, n.chains nc, n.burnin nb, n.iter ni,

debug TRUE)
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13.5.1 Check of Markov Chain Monte Carlo Convergence
and Model Adequacy

The first two things to do before even looking at the estimates of a
model fitted using MCMC should really be to check (1) that the Markov
chains have converged and (2) that the fitted model is adequate for the
data set. We do both here in an exemplary manner.

Convergence—Again, we can assess convergence by graphical means
(typically directly within WinBUGS) or using a numerical summary, the
Brooks–Gelman–Rubin statistic, which R2WinBUGS calls Rhat. Rhat is
about 1 at convergence, with 1.1 often taken an acceptable threshold.
We will look at the Rhat values first.

print(out, dig = 3)

If we briefly look at the second to last column in the table, we see that the
chains for all parameters seem to have converged admirably. For larger
models with many more parameters, a summary of this summary table
may be useful. For instance, we may ask which (if any) parameters
have a value of Rhat greater than 1.1. Or we can draw a histogram of
the Rhat values.

which(out$summary[,8] > 1.1) # which value in the 8th column is > 1.1 ?
> which(out$summary[,8] > 1.1)
named integer(0) # So here we have none

hist(out$summary[,8], col = "grey", main = "Rhat values")

So, as expected in this simple model fitted to a “good” data set, there is no
problem with convergence.

Residuals and posterior predictive check—We do the analogous to
what we did in the normal linear regression example in Chapter 8. That
is, we plot the residuals first and then plot the two fit statistics (for the
actual data set and for the perfect, new, data sets) against each other
and compute the Bayesian p-value as a numerical summary of overall
lack of fit. The fit statistic for the new data sets represents, in a way, the
reference distribution for the chosen test statistic, here, the sum of squared
Pearson residuals.

For GLMs other than the normal linear model, the variability of the
response depends on the mean response. To get residuals with approxi-
mately constant variance, Pearson residuals are often computed. They
are obtained by dividing the raw residuals ðyi − �yÞ by the standard devia-
tion of y; see also WinBUGS code above.

plot(out$mean$Presi, las = 1)
abline(h = 0)
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There is no obvious sign of lack of fit for any particular data point
(Fig. 13.3). Next, we conduct a posterior predictive check (Fig. 13.4):

plot(out$sims.list$fit, out$sims.list$fit.new, main "Posterior predictive check

\nfor sum of squared Pearson residuals", xlab "Discrepancy measure for actual data set",

ylab "Discrepancy measure for perfect data sets")

abline(0,1, lwd 2, col "black")

Of course, this looks perfect and computation of the Bayesian p-value
(below) confirms this impression. Here, we compute the Bayesian
p-value outside WinBUGS in R. This is easier, but of course, we need
to have saved the Markov chains for both fit and fit.new.

mean(out$sims.list$fit.new > out$sims.list$fit)
> mean(out$sims.list$fit.new > out$sims.list$fit)
[1] 0.624

13.5.2 Inference Under the Model

Now that we are convinced that the model is adequate for these data,
we inspect the estimates and compare them with what we put into the
data set, as well as what the frequentist analysis in R tells us.

print(out, dig = 3)

A comparison of the Bayesian solution with the input values that were used
for generating thedata set (α = 0.69, β = 0.92) and the solution given by glm()
shows a reasonably decent consistency (in view of the small sample size).
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FIGURE 13.3 Pearson residuals for the hare counts.
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summary(poisson.t.test)

So is there a difference in hare density according to land-use? Let’s look at
the posterior distribution of the coefficient for arable (Fig. 13.5).

hist(out$sims.list$beta, col "grey", las 1, xlab "Coefficient for arable",

main "")

The posterior distribution does not overlap zero, so arable sites really do
appear to have a different hare density than grassland sites. The same con-
clusion is arrived at when looking at the 95% credible interval of β in the
summary of the analysis mentioned earlier: (0.64–1.72).

Finally, we will form predictions for presentation. Predictions are the
expected values of the response under certain conditions, such as for particu-
lar covariate values.Wehave seen earlier that predictions are a valuablemeans
for synthesizing the information that a model extracts from a data set. In
a Bayesian analysis, forming predictions is easy. Predictions are just another
form of unobservables, such as parameters ormissing values. Therefore, we
can base inference about predictions on their posterior distributions.

To summarize what we have learned about the differences in hare den-
sities in grassland and arable study areas, we plot the posterior distribu-
tions of the expected hare counts (λ) for both habitat types (Fig. 13.6). We
obtain the expected hare counts by exponentiating parameter α and α + β,
respectively.
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par(mfrow c(2,1))

hist(exp(out$sims.list$alpha), main "Grassland study areas", col "grey", xlab

"", xlim c(0,10), breaks 20)

hist(exp(out$sims.list$alpha + out$sims.list$beta), main "Arable study areas",

col "grey", xlab "Expected hare count", xlim c(0,10), breaks 20)

20
0

100

Fr
eq

ue
nc

y 250

4 6

Grassland

Arable

8 10

Fr
eq

ue
nc

y

Expected hare count

0

100

250

20 4 6 8 10
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13.6 SUMMARY

We have introduced the generalized linear model, or GLM, where
effects of covariates are linear in the transformed expectation of a
response, which may come from a distribution other than the normal.
The GLM is another key concept that appears over and over again in mod-
ern applied statistics in empirical sciences such as ecology. Therefore, we
will deepen our understanding of this essential model class in subsequent
chapters. Furthermore, we will combine the GLM and the mixed model to
arrive at the most complex model considered in this book, the generalized
linear mixed model, in Chapters 16 and 19–21.

EXERCISES
1. Predictions: Within the WinBUGS code, add a line that directly computes

the mean hare density in arable areas.
2. Derived quantities: Summarize the posterior distribution for the difference

in mean hare density in grassland and arable areas.
3. Zeroes (migrating raptors): This fine example is borrowed from Bernardo

(2003). It beautifully illustrates the power of Bayesian inference based on
the posterior distribution of the unobservables (parameters, etc.).
Ornithologists frequently count migrating birds of prey at places where
they concentrate in spring or autumn, e.g., along coasts, mountain ridges,
or on isthmuses. Assume that at a certain place, one rare raptor species had
not been seen during 10 consecutive days. What is the probability that we
see at least one on day 11? What is the probability that we see two or more?
In your solution, make explicit your reasoning for using the particular
statistical model you choose and discuss a few of its assumptions that may
not hold in reality (e.g., serial independence, constancy of rates).

4. Zeroes (contrast estimate): Assume that no hare was ever observed in
grassland areas, i.e., that the counts in all 10 grassland areas were zero. Try
to fit the Poisson t-test using R and using WinBUGS.

5. Swiss hare data: Compare mean counts (not density) in arable and in
grassland areas in one selected year (e.g., 2000; take the smallest counts
when there is more than one per year). When taking these counts as
observations from an identical Poisson distribution, is there anything that
strikes you as inadequate?
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Two features specific to nonnormal generalized linear models (GLMs)
are overdispersion and offsets. Zero-inflation can be called a specific form
of overdispersion: there are more zeroes than expected. Here, we briefly
deal with each of them in the context of the hare counts example.
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14.1 OVERDISPERSION

14.1.1 Introduction

In both distributions commonly used to model counts (Poisson and
binomial), the dispersion (the variability in the counts) is not a free param-
eter but instead is a function of the mean. The variance is equal to the mean
(λ) for the Poisson and equal to the mean (N * p) times 1 − p for the bino-
mial distribution (see Chapters 17–19). This means that for a Poisson or
binomial random variable, the models for the counts come with a “built-in” varia-
bility and the magnitude of that variability is known. In an analysis of
deviance conducted in a classical statistical analysis of the model, the
residual deviance of the model will be about the same magnitude as the
residual degrees of freedom, i.e., the mean deviance ratio (= residual
deviance/residual df) is about 1.

However, in real life, count data are almost always more variable than
expected under the Poisson or binomial models. This is called overdisper-
sion or extra-Poisson or extra-binomial variation and means that the resi-
dual variation is larger than prescribed by a Poisson or binomial.
Overdispersion can occur because there are hidden correlations that
have not been included in the model, e.g., when individuals in family
groups are assumed to be independent, or when important covariates
have not been included. When overdispersion is not modeled, tests and
confidence intervals will be overconfident (although means won’t nor-
mally be biased). Therefore, overdispersion should be tested and
corrected for when necessary.

The simplest way to correct for overdispersion in a classical analysis is
by the quasi-likelihood (McCullagh and Nelder, 1989) and by using
family=quasipoisson (or quasibinomial) in the R function glm().
Using WinBUGS, there are several ways in which one can account for
overdispersion. One is to specify a distribution that is overdispersed rela-
tive to the Poisson, such as the negative binomial. Another solution, and
the one we illustrate here, is to add into the linear predictor for the Poisson
intensity a normally distributed random effect. Technically, this model is
then a Poisson generalized linear mixed model (GLMM; see Chapter 16
for a more formal introduction). It is sometimes called a Poisson-lognormal
model (Millar 2009).

14.1.2 Data Generation

We generate a slightly modified hare count data set, where in addition
to the land-use difference in mean density, there is also a normally distrib-
uted site-specific effect in the linear predictor. For illustrative purposes, we
also generate a sister data set without overdispersion.
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n.site <– 10

x <– gl(n 2, k n.site, labels c("grassland", "arable"))

eps <– rnorm(2*n.site, mean 0, sd 0.5) # Normal random effect

lambda.OD <– exp(0.69 +(0.92*(as.numeric(x)−1) + eps) )

lambda.Poisson <– exp(0.69 +(0.92*(as.numeric(x)−1)) ) # For comparison

We add the noise that comes from a Poisson and inspect the hare counts
we’ve generated (Fig. 14.1):

C.OD <– rpois(n 2*n.site, lambda lambda.OD)

C.Poisson <– rpois(n 2*n.site, lambda lambda.Poisson)

par(mfrow c(1,2))

boxplot(C.OD ~ x, col "grey", xlab "Land-use", main "With OD", ylab "Hare

count", las 1, ylim c(0, max(C.OD)))

boxplot(C.Poisson ~ x, col "grey", xlab "Land-use", main "Without OD", ylab

"Hare count", las 1, ylim c(0, max(C.OD)) )

14.1.3 Analysis Using R

We conduct a classical analysis of the overdispersed data once without
and then with correction for overdispersion (using glm(, family =
quasi...)).

glm.fit.no.OD < glm(C.OD ~ x, family = poisson)
glm.fit.with.OD < glm(C.OD ~ x, family = quasipoisson)
summary(glm.fit.no.OD)
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FIGURE 14.1 Hare counts by land use with and without overdispersion (OD).
Overdispersion was caused by site specific differences in hare density.
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summary(glm.fit.with.OD)
anova(glm.fit.no.OD, test = "Chisq")
anova(glm.fit.with.OD, test = "F")

> summary(glm.fit.no.OD)

Call:
glm(formula = C.OD ~ x, family = poisson)

[ ... ]

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.9933 0.1925 5.161 2.46e 07 ***
xarable 0.7646 0.2330 3.282 0.00103 **

[ ... ]

(Dispersion parameter for poisson family taken to be 1)

[ ... ]

> summary(glm.fit.with.OD)

Call:
glm(formula = C.OD ~ x, family = quasipoisson)

[ ... ]

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.9933 0.2596 3.826 0.00124 **
xarable 0.7646 0.3143 2.433 0.02563 *

[ ... ]

(Dispersion parameter for quasipoisson family taken to be 1.819569)

Null deviance: 44.198 on 19 degrees of freedom
Residual deviance: 32.627 on 18 degrees of freedom
[ ... ]

> anova(glm.fit.no.OD, test = "Chisq")
Analysis of Deviance Table

Model: poisson, link: log

[ ... ]

Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL 19 44.198
x 1 11.571 18 32.627 0.001
> anova(glm.fit.with.OD, test = "F")
Analysis of Deviance Table
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Model: quasipoisson, link: log

[ ... ]

Df Deviance Resid. Df Resid. Dev F Pr(>F)
NULL 19 44.198
x 1 11.571 18 32.627 6.3591 0.02132 *

Thus, the parameter estimates don’t change when accounting for overdisper-
sion, but tests and standard errors do.

14.1.4 Analysis Using WinBUGS

In WinBUGS, it is easy to get from the simple Poisson t-test with homo-
geneous (Poisson) variance in the last chapter to the overdispersed Pois-
son t-test represented by the Poisson-lognormal model.

# Define model

sink("Poisson.OD.t.test.txt")

cat("

model {

# Priors

alpha ~ dnorm(0,0.001)

beta ~ dnorm(0,0.001)

sigma ~ dunif(0, 10)

tau <– 1 / (sigma * sigma)

# Likelihood

for (i in 1:n) {

C.OD[i] ~ dpois(lambda[i])

log(lambda[i]) <– alpha + beta *x[i] + eps[i]

eps[i] ~ dnorm(0, tau)

}

}

",fill TRUE)

sink()

# Bundle data

win.data <– list(C.OD C.OD, x as.numeric(x)−1, n length(x))

# Inits function

inits <– function(){ list(alpha rlnorm(1), beta rlnorm(1), sigma rlnorm(1))}

# Parameters to estimate

params <– c("lambda","alpha", "beta", "sigma")

Note that as soon as we start estimating variances (here, of the overdisper-
sion effects eps), we need longer chains.
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# MCMC settings

nc <– 3 # Number of chains

ni <– 3000 # Number of draws from posterior per chain

nb <– 1000 # Number of draws to discard as burn-in

nt <– 5 # Thinning rate

# Start Gibbs sampling

out <– bugs(data win.data, inits inits, parameters.to.save params,

model.file "Poisson.OD.t.test.txt", n.thin nt, n.chains nc, n.burnin nb, n.iter ni,

debug TRUE)

print(out, dig 3)

14.2 ZERO-INFLATION

14.2.1 Introduction

Zero-inflation can be called a specific form of overdispersion and is fre-
quently found in count data. It means that there are more zeroes than
expected under the assumed (e.g., Poisson or binomial) distribution. In
the context of our hare counts, a typical explanation for excess zeroes is
that some sites are simply not suitable for hares, such as paved parking
lots, roof tops, or lakes; hence, resulting counts must be zeroes. In the
remaining suitable sites, counts vary according to the assumed distribu-
tion. Thus, we may imagine a sequential genesis of zero-inflated counts:
first, Nature determines whether a site may be occupied at all, and second,
she selects the counts for those that are habitable in principle. Regression
models that account for this kind of overdispersion are often called zero-
inflated Poisson (ZIP) or zero-inflated binomial (ZIB) models.

A ZIP model for count Ci at site i can be written algebraically like this:

wi ∼BernoulliðψiÞ Suitability of a site (14.1)
Ci ∼Poissonðwi � λiÞ Observed counts (14.2)

For each site i, Nature flips a coin that lands heads (i.e., wi = 1) with
probability ψi. We can’t observe wi perfectly, i.e., it is a latent or random
effect. Only for sites with wi = 1, Nature then rolls her Poisson (λi) die to
determine the count Ci at that site. For sites with wi = 0, the Poisson mean
is 0 × λi = 0 and the corresponding Poisson die produces zero counts only.

We see that a ZIP model simply represents a set of two coupled GLMs:
the logistic regression describes the suitability in principle of a site while
the Poisson regression describes the variation of counts among suitable
sites, i.e., those with wi = 1. All the usual GLM features apply, and in par-
ticular, both the Bernoulli and the Poisson parameter can be expressed as a
function of covariates on the link scale. These covariates may or may not
be the same for both regressions.
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I make four notes on the ZIP model in our context of hare counts: First,
the model allows for two entirely different kinds of zero counts; those
coming from the Bernoulli and those from the Poisson process. The former
are zero counts at unsuitable sites while the latter are due to Poisson
chance, i.e., for them, Nature’s Poisson die happened to yield a zero.
The actual distribution of an organism, i.e., the proportion of sites
that is occupied (has nonzero counts), is a function of both processes.
Hence, it would be wrong to say that Eqn. 14.1 describes the distribution
and Eqn. 14.2 the abundance.

Second, the above ZIP model is a hierarchical, or random-effects, model
with binary instead of normal random effects. It is an example of the kind
of nonstandard GLMMs that are featured extensively in Chapters 20
and 21. There, we will see the site-occupancy species distribution model,
another kind of zero-inflated GLM, but one where a Bernoulli or binomial
distribution is zero-inflated with another Bernoulli, so we get a zero-
inflated binomial (ZIB) model.

Third, some authors advocate ZIP models widely for inference about
count data (Martin et al., 2005; Joseph et al., 2009). However, on ecological
grounds, they appear most adequate in situations where unknown envir-
onmental covariates determine the suitability of a site. If covariates are
known and have been measured, they are probably best added to the lin-
ear model for the Poisson mean. Distribution, or occurrence, is fundamen-
tally a function of abundance, i.e., a species occurs at all sites where
abundance is greater than zero. It appears contrived to model distribution
completely separately from abundance.

Fourth, there is a variant of a ZIP model called the hurdle model
(Zeileis et al., 2008), where the first step in the hierarchical genesis of the
counts is assumed to be the same as in a ZIP model, i.e., wi ~ Bernoulli(ψi). But
then, counts at suitable sites (i.e., with wi = 1) are modeled as coming from a
zero-truncated Poisson distribution, i.e., a Poisson for values excluding zero.
Hurdles (thresholds) other than zero are also possible. Superficially, this
model may appear “better” than a ZIP model because it only allows one
kind of zero: that coming from the Bernoulli process. However, it posits
that all sites that are suitable in principle will be occupied and have a count
greater than 0. This is not sensible biologically because, in reality, a suita-
ble site may well be unoccupied as a result of local extinction, dispersal
limitation, or some other reason.

14.2.2 Data Generation

We generate the simplest kind of zero-inflated count data for our (Pois-
son) hare example. We assume different densities in arable and grassland
areas and a constant zero inflation, i.e., a single value of ψ for all sites,
regardless of land-use or other environmental covariates.
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psi < 0.8
n.site < 20
x < gl(n = 2, k = n.site, labels = c("grassland", "arable"))

For each site, we flip a coin to determine its suitability and store the result
in the latent state wi.

w < rbinom(n = 2*n.site, size = 1, prob = psi)

We assume identical effects of arable and grass as before and generate
expected counts at suitable sites as before.

lambda < exp(0.69 +(0.92*(as.numeric(x) 1)) )

We then add up (actually, multiply) the effects of both processes
(Bernoulli and Poisson) and inspect the counts we’ve generated. Note
how all counts at unsuitable sites (with wi = 0) are zero.

C < rpois(n = 2*n.site, lambda = w *lambda)
cbind(x, w, C)

14.2.3 Analysis Using R

A wide range of ZIP and related models can be fitted in R using the
function zeroinfl() in package pscl; see, for instance, Zeileis et al.
(2008). We load that package and fit the simplest possible ZIP model.

library(pscl)
fm < zeroinfl(C ~ x | 1, dist = "poisson")

summary(fm)
> summary(fm)

Call:
zeroinfl(formula = C ~ x | 1, dist = "poisson")

Count model coefficients (poisson with log link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.7441 0.1773 4.197 2.71e 05 ***
xarable 0.8820 0.2095 4.209 2.56e 05 ***

Zero inflation model coefficients (binomial with logit link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.6786 0.4943 3.396 0.000684 ***

Signif. codes: 0'***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Number of iterations in BFGS optimization: 8
Log likelihood: 78.4 on 3 Df

14. OVERDISPERSION, ZERO-INFLATION, AND OFFSETS IN THE GLM186



Because of sampling and estimation error, the coefficients for the
count model (corresponding to Eqn. 14.2) may not always be very close to
the input values. Also note that what pscl calls the coefficient in the zero-
inflation model corresponds to 1 − ψ in Eqn. 14.1. Typing plogis
( 1.6786) in R convinces us that the function is doing what it should do.

14.2.4 Analysis Using WinBUGS

Next, the solution in WinBUGS. As always, the elementary manner of
model specification using the BUGS language makes it very clear what
model is fitted. To make the parameter estimates directly comparable,
we also add a line that computes the logit of the zero-inflation parameter
in R from the parameter ψ that we use here.

# Define model

sink("ZIP.txt")

cat("

model {

# Priors

psi ~ dunif(0,1)

alpha ~ dnorm(0,0.001)

beta ~ dnorm(0,0.001)

# Likelihood

for (i in 1:n) {

w[i] ~ dbern(psi)

C[i] ~ dpois(eff.lambda[i])

eff.lambda[i] <– w[i]*lambda[i]

log(lambda[i]) <– alpha + beta *x[i]

}

# Derived quantity

R.lpsi <– logit(1-psi)

}

",fill TRUE)

sink()

# Bundle data

win.data <– list(C C, x as.numeric(x)−1, n length(x))

# Inits function

inits <– function(){ list(alpha rlnorm(1), beta rlnorm(1), w rep(1, 2*n.site))}

We will also estimate the latent state wi, i.e., the intrinsic suitability for
brown hares at each site.
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# Parameters to estimate

params < c("lambda","alpha", "beta", "w", "psi", "R.lpsi")

# MCMC settings (need fairly long chains)

nc < 3 # Number of chains

ni < 50000 # Number of draws from posterior per chain

nb < 10000 # Number of draws to discard as burn in

nt < 4 # Thinning rate

# Start WinBUGS

out < bugs(data win.data, inits inits, parameters.to.save params,

model.file "ZIP.txt", n.thin nt,n.chains nc,n.burnin nb, n.iter ni, debug TRUE)

print(out, dig 3)

> print(out, dig 3)

Inference for Bugs model at "ZIP.txt", fit using WinBUGS,

3 chains, each with 50000 iterations (first 10000 discarded), n.thin 4

n.sims 30000 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

[ ...]

alpha 0.733 0.175 0.384 0.617 0.736 0.853 1.066 1.001 11000

beta 0.884 0.208 0.479 0.744 0.883 1.024 1.300 1.001 30000

[ ...]

psi 0.827 0.064 0.689 0.786 0.831 0.873 0.936 1.001 30000

R.lpsi 1.635 0.484 2.684 1.931 1.596 1.302 0.795 1.001 30000

We find pretty similar estimates between R and WinBUGS.

14.3 OFFSETS

14.3.1 Introduction

In a Poisson GLM, we assume that the expected counts are adequately
described by the effect of the covariates in the model. However, fre-
quently, we have that the “counting window” is not constant, e.g., that
study areas don’t have the same size or, in temporal samples, that the
duration of counting periods differ. To account for this known component
of variation in the conditional Poisson mean, we define the log of the size
of the “counting window” (study area size, count duration) as an offset.
Effectively, we then model density as a response.

Let’s consider this for the hare counts using algebra. The Poisson GLM
is Ci ~ Poisson(λi), i.e., hare counts Ci are conditionally distributed as Pois-
son with expected count λi. When study areas differ in size, we have Ci ~
Poisson (Ai * λi), where Ai is the area of study area i. Therefore, the linear
predictor becomes log(Ai * λi) = log(Ai) + log(λi). If we also wish to model a
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covariate x into the mean, we get log(Ai * λi) = log(Ai) + α + β * xi. This is
equivalent to forcing the coefficient of log(area) to be equal to 1. That is,
we effectively fit the model log(Ai * λi) = β0 * log(Ai) + α + β * xi with β0 = 1.
The offset compensates for the additional and known variation in the
response resulting from differing study area size.

14.3.2 Data Generation

n.site < 10
A < runif(n = 2*n.site, 2,5) # Areas range in size from 2 to 5 km2
x < gl(n = 2, k = n.site, labels = c("grassland", "arable"))
linear.predictor < log(A) + 0.69 +(0.92*(as.numeric(x) 1))
lambda < exp(linear.predictor)
C < rpois(n = 2*n.site, lambda = lambda) # Add Poisson noise

14.3.3 Analysis Using R

We use R for an analysis with and without consideration of the differ-
ing areas.

glm.fit.no.offset < glm(C ~ x, family = poisson)
glm.fit.with.offset < glm(C ~ x, family = poisson, offset = log(A))
summary(glm.fit.no.offset)
summary(glm.fit.with.offset)
anova(glm.fit.with.offset, test = "Chisq") # LRT

Comparing the residual deviance of the two models makes clear that
specification of an offset represents a sort of correction for a systematic
kind of overdispersion.

14.3.4 Analysis Using WinBUGS

Note how simple it is in WinBUGS to jump from one kind of analysis
for the hare counts to another.

# Define model

sink("Offset.txt")

cat("

model {

# Priors

alpha ~ dnorm(0,0.001)

beta ~ dnorm(0,0.001)

# Likelihood

for (i in 1:n) {
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C[i] ~ dpois(lambda[i])

log(lambda[i]) <– 1 * logA[i] + alpha + beta *x[i] # Note offset

}

}

",fill TRUE)

sink()

# Bundle data

win.data <– list(C C, x as.numeric(x)−1, logA log(A), n length(x))

# Inits function

inits <– function(){ list(alpha rlnorm(1), beta rlnorm(1))}

# Parameters to estimate

params <– c("lambda","alpha", "beta")

# MCMC settings

nc <– 3 # Number of chains

ni <– 1100 # Number of draws from posterior

nb <– 100 # Number of draws to discard as burn-in

nt <– 2 # Thinning rate

# Start Gibbs sampling

out <– bugs(data win.data, inits inits, parameters.to.save params,

model.file "Offset.txt", n.thin nt,n.chains nc,n.burnin nb, n.iter ni, debug

TRUE)

print(out, dig 3)

14.4 SUMMARY

Overdispersion, zero-inflation, and offsets are important GLM topics.
The specification of the associated models in WinBUGS is fairly easy
and clarifies the actual meaning of these three topics. This is not usually
the case when fitting these models in a canned routine in R or another
software. Thus, this is another example of where the simple model speci-
fication in the BUGS language enforces an understanding of the fitted
model that is easily lost in other stats packages.

EXERCISES
1. Estimating a coefficient for an offset covariate: Forcing the coefficient of area to

be 1 implies the assumption that hare density is unaffected by area.
However, we can also estimate a coefficient for log(area) rather than
setting it to 1. For instance, in real life, density may well differ between
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large and small areas, perhaps because predator density is also related to
area. This hypothesis could be tested by fitting a coefficient for log(area)
and seeing whether it differs from 1. Adapt the WinBUGS code to achieve
this. A Bayesian analysis is extremely suited for this type of question (i.e., to
test whether a parameter has a value other than what it is expected to be
under a certain hypothesis).

2. Swiss hare data: Fit a model that contains both overdispersion, modeled as
log-normal random effect, and an offset of log(area), when estimating
the difference in mean density between arable and grassland study areas in
one year, e.g., 2000 (use a single count per year and area). In a variant of
that analysis, estimate the coefficient of log(area) to test whether hare
density depends on area.
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15.1 INTRODUCTION

We may call a Poisson analysis of covariance (ANCOVA) a Poisson
regression with both discrete and continuous covariates. In most practical
applications, Poisson models will have several covariates and of both
types. Therefore, here we look at this important variety of a generalized
linear model (GLM). To stress the similarity with the normal linear case,
we only slightly alter the inferential setting sketched in Chapter 11. We
assume that instead of measuring body mass in asp vipers in three popu-
lations in the Pyrenees, Massif Central, and the Jura mountains, leading to
a normal model, we had instead assessed ectoparasite load in a dragonfly,
the Sombre Goldenring (Fig. 15.1), leading to a Poisson model. We are par-
ticularly interested in whether there are more or less little red mites on
dragonflies of different size (expressed as wing length) and whether this
relationship differs among the three mountain ranges. (Actually, dragon-
flies don’t vary that much in body size, but let’s assume there is sufficient
variation to make such a study worthwhile.)

Introduction to WinBUGS for Ecologists
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We will fit the following model to mite count Ci on individual i:

1. Distribution: Ci ~ Poisson(λi)
2. Link function: log, i.e., log(λi) = log(E(Ci)) = linear predictor
3. Lin. predictor: logðλiÞ = αPyr + β1 � xMC + β2 � xJura + β3 � xwing + β4�

xwing � xMC + β5 � xwing � xJura
Note the great similarity between this model and the one we fitted to the
mass of asps in Chapter 11. Apart from the link function, the main other
difference is simply that for this model we don’t have a dispersion term;
the Poisson already comes with a built-in variability. We could model
overdispersion in mite counts by using a Poisson-lognormal formulation
as in the previous chapter, but we omit such added complexity here.

15.2 DATA GENERATION

We assemble the data set.

n.groups < 3

n.sample < 100

n < n.groups * n.sample

FIGURE 15.1 Sombre Goldenring (Cordulegaster bidentata), Switzerland, 1995. (Photo
F. Labhardt)
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x < rep(1:n.groups, rep(n.sample, n.groups)) # Population indicator

pop < factor(x, labels c("Pyrenees", "Massif Central", "Jura"))

length < runif(n, 4.5, 7.0) # Wing length (cm)
length < length mean(length) # Centre by subtracting the mean

We build the design matrix of an interactive combination of length
and population:

Xmat < model.matrix(~ pop*length)
print(Xmat, dig = 2)

Select the parameter values, i.e., choose values for αPyr, β1, β2, β3, β4, β5

beta.vec < c( 2, 1, 2, 5, 2, 7)

Here’s the recipe for assembling the mite counts in three steps:

1. we add up all components of the linear model to get the linear
predictor, which is the expected mite count on a (natural) log scale,

2. we exponentiate to get the actual value of the expected mite
count, and

3. we add Poisson noise.

We again obtain the value of the linear predictor by matrix multiplication
of the design matrix (Xmat) and the parameter vector (beta.vec) (As in
the viper example, don’t be too harsh on me in case we achieve unnatural
levels of parasitation …):

lin.pred <– Xmat[,] %*% beta.vec # Value of lin.predictor

lambda <– exp(lin.pred) # Poisson mean

C <– rpois(n n, lambda lambda) # Add Poisson noise

# Inspect what we've created

par(mfrow c(2,1))

hist(C, col "grey", breaks 30, xlab "Parasite load", main "", las 1)

plot(length, C, pch rep(c("P","M","J"), each n.sample), las 1, col

rep(c("Red","Green","Blue"), each n.sample), ylab "Parasite load", xlab "Wing

length", cex 1.2)

par(mfrow c(1,1))

We have created a data set where parasite load increases with wing length
in the South (Pyrenees, Massif Central) but decreases in the North (Jura
mountains); see Fig. 15.2.
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15.3 ANALYSIS USING R

Again, the R code to fit the model is very parsimonious and the
estimates resemble the input values reasonably well (coefficients can be
compared directly with beta.vec). Obviously, with larger sample sizes
the correspondence would be better still (you could try that out, e.g., by
setting n.sample = 1000).

summary(glm(C ~ pop * length, family poisson))

beta.vec

> summary(glm(C ~ pop * length, family poisson))

Call:

glm(formula C ~ pop * length, family poisson)

Deviance Residuals:

Min 1Q Median 3Q Max

−2.1471 −0.6680 −0.1961 0.2141 2.8843
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FIGURE 15.2 Top: Frequency distribution of ectoparasite load in Sombre Goldenrings.
Bottom: Relationship between parasite load and wing length (deviation from mean, in cm)
in three mountain ranges (P Pyrenees, M Massif Central, J Jura mountains).
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) −1.8540 0.2554 −7.260 3.87e–13 ***

popMassif Central 0.6386 0.3463 1.844 0.0652 .

popJura 1.8046 0.2851 6.330 2.46e–10 ***

length 4.8199 0.2505 19.244 < 2e–16 ***

popMassif Central:length −1.6938 0.3516 −4.817 1.46e–06 ***

popJura:length −6.9059 0.2859 −24.156 < 2e–16 ***

–––

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2402.99 on 299 degrees of freedom

Residual deviance: 205.35 on 294 degrees of freedom

AIC: 684.25

Number of Fisher Scoring iterations: 5

> beta.vec

[1] −2 1 2 5 −2 −7

Don’t forget that the difference between the coefficients and the beta
vector is due to the combined effect of sampling and estimation error.
The former means that due to natural variation, 300 dragonflies sampled
from large populations can not possibly represent the population values
perfectly.

15.4 ANALYSIS USING WinBUGS

15.4.1 Fitting the Model

We simply adapt the code for the normal linear case (Chapter 11) to the
Poisson case and again fit a reparameterized model with three separate
log-linear regressions.

# Define model

sink("glm.txt")

cat("

model {

# Priors

for (i in 1:n.groups){

alpha[i] ~ dnorm(0, 0.01) # Intercepts

beta[i] ~ dnorm(0, 0.01) # Slopes

}
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# Likelihood

for (i in 1:n) {

C[i] ~ dpois(lambda[i]) # The random variable

lambda[i] < exp(alpha[pop[i]] + beta[pop[i]]* length[i])

} # Note double indexing: alpha[pop[i]]

# Derived quantities

# Recover effects relative to baseline level (no. 1)

a.effe2 < alpha[2] alpha[1] # Intercept Massif Central vs. Pyr.

a.effe3 < alpha[3] alpha[1] # Intercept Jura vs. Pyr.

b.effe2 < beta[2] beta[1] # Slope Massif Central vs. Pyr.

b.effe3 < beta[3] beta[1] # Slope Jura vs. Pyr.

# Custom test

test1 < beta[3] beta[2] # Slope Jura vs. Massif Central

}

",fill TRUE)

sink()

# Bundle data

win.data < list(C C, pop as.numeric(pop), n.groups n.groups, length

length, n n)

# Inits function

inits < function(){list(alpha rlnorm(n.groups,3,1), beta rlnorm(n.groups,2,1))}

# Parameters to estimate

params < c("alpha", "beta", "a.effe2", "a.effe3", "b.effe2", "b.effe3", "test1")

# MCMC settings

ni < 4500

nb < 1500

nt < 5

nc < 3

# Start Gibbs sampling

out < bugs(data win.data, inits inits, parameters.to.save params, model.file

"glm.txt", n.thin nt, n.chains nc, n.burnin nb, n.iter ni, debug TRUE)

This is still a simple model that converges fairly rapidly. We inspect the
results and compare them with “truth” in the data-generating random
process, as well as with the inference from R’s function glm().

print(out, dig 3) # Bayesian analysis

beta.vec # Truth in data–generating process

print(glm(C ~ pop * length, family poisson)$coef, dig 4) # The ML solution
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Remember that alpha[1] and beta[1] in WinBUGS correspond to
the intercept and the length main effect in the analysis in R and
a.effe2, a.effe3. b.effe2, b.effe3 to the remaining terms of the ana-
lysis in R. To ease comparison, these terms are shown in boldface.

> print(out, dig 3) # Bayesian analysis

Inference for Bugs model at "glm.txt", fit using WinBUGS,

3 chains, each with 4500 iterations (first 1500 discarded), n.thin 5

n.sims 1800 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

alpha[1] −1.844 0.261 −2.384 −2.016 −1.852 −1.666 −1.360 1.017 120

alpha[2] 1.252 0.233 1.744 1.399 1.235 1.089 0.821 1.016 130

alpha[3] 0.050 0.130 0.321 0.136 0.046 0.037 0.186 1.002 1400

beta[1] 4.808 0.258 4.329 4.628 4.809 4.974 5.329 1.015 140

beta[2] 3.159 0.245 2.712 2.987 3.141 3.322 3.661 1.015 140

beta[3] 2.087 0.141 2.367 2.176 2.083 1.987 1.811 1.002 940

a.effe2 0.592 0.344 −0.063 0.356 0.590 0.825 1.264 1.005 440

a.effe3 1.793 0.291 1.231 1.597 1.793 1.989 2.371 1.015 140

b.effe2 −1.649 0.352 −2.324 −1.887 −1.647 −1.403 −0.970 1.004 530

b.effe3 −6.895 0.296 −7.470 −7.092 −6.891 −6.690 −6.336 1.011 190

test1 5.246 0.282 5.823 5.439 5.240 5.044 4.720 1.015 140

deviance 678.382 3.450 673.597 675.800 677.800 680.200 686.202 1.003 1200

For each parameter, n.eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor (at convergence, Rhat 1).

DIC info (using the rule, pD Dbar Dhat)

pD 6.1 and DIC 684.5

DIC is an estimate of expected predictive error (lower deviance is better).

> beta.vec# Truth in data generating process

[1] 2 1 2 5 2 7

> print(glm(C ~ pop * length, family poisson)$coef, dig 4) # The ML solution

(Intercept) popMassif Central popJura

1.8540 0.6386 1.8046

length popMassif Central:length popJura:length

4.8199 1.6938 6.9059

As expected, we find fairly concurrent estimates between the two modes
of inference.

15.4.2 Forming Predictions

Finally, let’s summarize our main findings from the analysis in a graph.
We illustrate the posterior distribution of the relationship between
mite load and wing length for each of the three study areas. To do that,

15.4 ANALYSIS USING WinBUGS 199



we predict mite load for 100 dragonflies in each of the three mountain
ranges and plot these estimates along with their uncertainty. We compute
the predicted relationship between mite count and wing-length for a
sample of 100 of all Markov chain Monte Carlo (MCMC) draws of the
involved parameters and plot that (Fig. 15.3).

# Create a vector with 100 wing lengths

original.wlength < sort(runif(100, 4.5, 7.0))

wlength < original.wlength 5.75 # 5.75 is approximate mean (correct would be

that from the original data really)

# Create matrices to contain prediction for each winglength and MCMC iteration

sel.sample < sample(1:1800, size 100)

mite.load.Pyr < mite.load.MC < mite.load.Ju < array(dim c(100, 100))

# Fill in these vectors: this is clumsy, but it works

for(i in 1:100) {

for(j in 1:100) {

mite.load.Pyr[i,j] < exp(out$sims.list$alpha[sel.sample[j],1] +

out$sims.list$beta[sel.sample[j],1] * wlength[i])

mite.load.MC[i,j] < exp(out$sims.list$alpha[sel.sample[j],2] +

out$sims.list$beta[sel.sample[j],2] * wlength[i])

mite.load.Ju[i,j] < exp(out$sims.list$alpha[sel.sample[j],3] +

out$sims.list$beta[sel.sample[j],3] * wlength[i])
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FIGURE 15.3 Predicted relationship between mite load and the size of a dragonfly in
three mountain ranges: Pyrenees (red), Massif Central (green), and Jura mountains (blue).
Shaded grey lines illustrate the uncertainty in these relationships based on a random
sample of 100 from the posterior distribution and colored lines represent posterior means.

15. POISSON ANCOVA200



}

}

matplot(original.wlength, mite.load.Pyr, col "grey", type "l", las 1, ylab

"Expected mite load", xlab "Wing length (cm)")

for(j in 1:100){

points(original.wlength, mite.load.MC[,j], col "grey", type "l")

points(original.wlength, mite.load.Ju[,j], col "grey", type "l")

}

points(original.wlength, exp(out$mean$alpha[1] + out$mean$beta[1] * wlength), col

"red", type "l", lwd 2)

points(original.wlength, exp(out$mean$alpha[2] + out$mean$beta[2] * wlength), col

"green", type "l", lwd 2)

points(original.wlength, exp(out$mean$alpha[3] + out$mean$beta[3] * wlength), col

"blue", type "l", lwd 2)

I find this a rather nice plot, but if an editor asks for conventional 95%
credible intervals instead, you can give the results of this code:

LCB.Pyr < apply(mite.load.Pyr, 1, quantile, prob 0.025)

UCB.Pyr < apply(mite.load.Pyr, 1, quantile, prob 0.975)

LCB.MC < apply(mite.load.MC, 1, quantile, prob 0.025)

UCB.MC < apply(mite.load.MC, 1, quantile, prob 0.975)

LCB.Ju < apply(mite.load.Ju, 1, quantile, prob 0.025)

UCB.Ju < apply(mite.load.Ju, 1, quantile, prob 0.975)

mean.rel < cbind(exp(out$mean$alpha[1] + out$mean$beta[1] * wlength),

exp(out$mean$alpha[2] + out$mean$beta[2] * wlength), exp(out$mean$alpha[3] +

out$mean$beta[3] * wlength))

covar < cbind(original.wlength, original.wlength, original.wlength)

matplot(original.wlength, mean.rel, col c("red", "green", "blue"), type "l",

lty 1, lwd 2, las 1, ylab "Expected mite load", xlab "Wing length (cm)")

points(original.wlength, LCB.Pyr, col "grey", type "l", lwd 1)

points(original.wlength, UCB.Pyr, col "grey", type "l", lwd 1)

points(original.wlength, LCB.MC, col "grey", type "l", lwd 1)

points(original.wlength, UCB.MC, col "grey", type "l", lwd 1)

points(original.wlength, LCB.Ju, col "grey", type "l", lwd 1)

points(original.wlength, UCB.Ju, col "grey", type "l", lwd 1)

15.5 SUMMARY

We have generalized the general linear model from the normal to the
Poisson case to model the effects on grouped counts of a continuous
covariate. The changes involved in doing so in WinBUGS were minor,

15.5 SUMMARY 201



and the inclusion of further covariates is straightforward. The Poisson
ANCOVA is an important intermediate step for your understanding of
the Poisson generalized linear mixed model.

EXERCISES
1. Multiple Poisson regression: Invent a new covariate called xnonsense, for

instance, and fit this model: yi = αj + βj � xwing + δ � xnonsense. You can simply
create values for xnonsense by sampling a normal or uniform random
variable; you don’t need to assemble a new data set.

2. Polynomial Poisson regression: In addition to the linear effect (on a log-scale)
of wing length, check for a quadratic effect also. You may or may not
reassemble the data to include that effect.

3. Swiss hare data: Take a single count per year and site and fit a Poisson
ANCOVA to the counts by expressing counts as a function of site and year.
You may ignore the variable site area or incorporate this source of variation
by fitting an offset.
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16.1 INTRODUCTION

The Poisson generalized linear mixed model (GLMM) is an extension of
the Poisson generalized linear model (GLM) to include at least one addi-
tional source of random variation over and above the random variation
intrinsic to a Poisson distribution. Here, we adopt a Poisson GLMM to
analyze a set of long-term population surveys of Red-backed shrikes
(Fig. 16.1).

We assume that pair counts over 30 years were available in each of
16 shrike populations (again, the balanced design is for convenience
only). Our intent is to model population trends. First, we write down
the random-coefficients model without correlation between the intercepts
and slopes. This model is very similar to that for the normal linear case
that we examined extensively in Chapter 12. Thanks to how we specify
models in the BUGS language, this similarity is more evident than when
fitting the model with a canned routine such as in R.

Introduction to WinBUGS for Ecologists
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We model Ci, the number pairs of Red-backed shrikes counted in year i
in study area j:

1. Distribution: Ci ~ Poisson(λi)
2. Link function: log, i.e., log(λi) = log(E(Ci)) = linear predictor
3. Linear predictor: αjðiÞ + βjðiÞ � xi
4. Submodel for parameters/distribution of random effects:

αj ∼Normal ðμα, σ2αÞ
βj ∼Normal ðμβ, σ2βÞ

So the GLMM is just the same as a simple GLM, but with the added
submodels for the log-linear intercept and slope parameters that we use
to describe the population trends. We don’t add a year-specific “residual”
to the linear predictor. This could be done to account for random year
effects and would be a first step towards modeling serial autocorrelation,
e.g., by imposing an autoregressive structure on successive random year
effects (Littell et al., 2008), but we omit this added complexity here. Also,
we don’t model a correlation between intercepts and slopes.

In conducting this analysis, we implicitly make one of two assumptions.
Either we assume that we find all shrike pairs in every year and study area
or we assume that at least the proportion of pairs overlooked does not vary
among years or study areas in a systematic way, i.e., that there is no time

FIGURE 16.1 MaleRed backedshrike (Lanius collurio), Switzerland, 2004. (Photo A. Saunier)
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trend in detection probability. Otherwise, the interpretation of these data
would be difficult or impossible. For an alternative protocol for data collec-
tion and associated analysis method that doesn’t require these potentially
restrictive assumptions, see the binomial mixture model in Chapter 21.

16.2 DATA GENERATION

We generate data under the random-coefficients model without corre-
lation between the intercepts and slopes.

n.groups < 16
n.years < 30
n < n.groups * n.years
pop < gl(n = n.groups, k = n.years)

We standardize the year covariate to a range from zero to one.

original.year < rep(1:n.years, n.groups)
year < (original.year 1)/29

We build a design matrix without the intercept.

Xmat < model.matrix(~pop*year 1 year)
print(Xmat[1:91,], dig = 2) # Print top 91 rows

Next, we draw the intercept and slope parameter values from their normal
distributions, whose hyperparameters we need to select.

intercept.mean <– 3 # Choose values for the hyperparams

intercept.sd <– 1

slope.mean <– –2

slope.sd <– 0.6

intercept.effects<–rnorm(n n.groups, mean intercept.mean, sd intercept.sd)

slope.effects <– rnorm(n n.groups, mean slope.mean, sd slope.sd)

all.effects <– c(intercept.effects, slope.effects) # Put them all together

We assemble the counts Ci by first computing the linear predictor, then
exponentiating it and finally adding Poisson noise. Then, we look at the
data.

lin.pred <– Xmat[,] %*% all.effects # Value of lin.predictor

C <– rpois(n n, lambda exp(lin.pred)) # Exponentiate and add Poisson noise

hist(C, col "grey") # Inspect what we've created

We use a lattice graph to plot the shrike counts against time for each
population (Fig. 16.2).

library("lattice")

xyplot(C ~ original.year | pop, ylab "Red-backed shrike counts", xlab "Year")
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16.3 ANALYSIS UNDER A RANDOM-COEFFICIENTS
MODEL

We could analyze the shrike counts under the assumption that all
shrike populations have the same trend, but at different levels, corre-
sponding to a random-intercepts model, as we did for the normal case
(see Section 12.3). However, we only show here the analysis under the
random-coefficients model. We assume that each population has a specific
trend, i.e., that both slopes and intercepts are independent random vari-
ables governed by common hyperparameters.
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FIGURE 16.2 Trellis plot of pair counts in 16 populations of Red backed shrikes over 30
years.
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16.3.1 Analysis Using R

library('lme4')

glmm.fit < glmer(C ~ year + (1 | pop) + ( 0+ year | pop), family poisson)

glmm.fit # Inspect results

> glmm.fit# Inspect results

Generalized linear mixed model fit by the Laplace approximation

Formula: C ~ year + (1 | pop) + (0 + year | pop)

AIC BIC logLik deviance

602.7 619.3 297.3 594.7

Random effects:

Groups Name Variance Std.Dev.

pop (Intercept) 0.67721 0.82293

pop year 0.13311 0.36484

Number of obs: 480, groups: pop, 16

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.2406 0.2071 15.65 <2e 16 ***

year 1.8233 0.1055 17.28 <2e 16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:

(Intr)

year 0.044

16.3.2 Analysis Using WinBUGS

# Define model

sink("glmm.txt")

cat("

model {

# Priors

for (i in 1:n.groups){

alpha[i] ~ dnorm(mu.int, tau.int) # Intercepts

beta[i] ~ dnorm(mu.beta, tau.beta) # Slopes

}

mu.int ~ dnorm(0, 0.001) # Hyperparameter for random intercepts

tau.int <– 1 / (sigma.int * sigma.int)

sigma.int ~ dunif(0, 10)
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mu.beta ~ dnorm(0, 0.001) # Hyperparameter for random slopes

tau.beta <– 1 / (sigma.beta * sigma.beta)

sigma.beta ~ dunif(0, 10)

# Poisson likelihood

for (i in 1:n) {

C[i] ~ dpois(lambda[i])

lambda[i] <– exp(alpha[pop[i]] + beta[pop[i]]* year[i])

}

}

",fill TRUE)

sink()

# Bundle data

win.data <– list(C C, pop as.numeric(pop), year year, n.groups n.groups, n

n)

# Inits function

inits <– function(){ list(alpha rnorm(n.groups, 0, 2), beta rnorm(n.groups, 0,

2), mu.int rnorm(1, 0, 1), sigma.int rlnorm(1), mu.beta rnorm(1, 0, 1),

sigma.beta rlnorm(1))}

# Parameters to estimate

parameters <– c("alpha", "beta", "mu.int", "sigma.int", "mu.beta", "sigma.beta")

# MCMC settings

ni <– 2000

nb <– 500

nt <– 2

nc < 3

# Start Gibbs sampling

out <– bugs(win.data, inits, parameters, "glmm.txt", n.thin nt, n.chains nc,

n.burnin nb, n.iter ni, debug TRUE)

This GLMM converges easily.

print(out, dig 2)

> print(out, dig 2)

Inference for Bugs model at "glmm.txt", fit using WinBUGS,

3 chains, each with 2000 iterations (first 500 discarded), n.thin 2

n.sims = 2250 iterations saved
mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

[ ... ]

mu.int 3.24 0.24 2.77 3.08 3.23 3.40 3.75 1.00 2200

sigma.int 0.94 0.20 0.64 0.79 0.91 1.04 1.44 1.01 280

mu.beta 1.83 0.12 2.08 1.90 1.82 1.74 1.60 1.00 870

sigma.beta 0.41 0.10 0.25 0.34 0.40 0.47 0.65 1.00 970

[ ... ]
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DIC info (using the rule, pD var(deviance)/2)

pD 31.7 and DIC 2478.9

DIC is an estimate of expected predictive error (lower deviance is better).

# Compare with input values

intercept.mean ; intercept.sd ; slope.mean ; slope.sd

> intercept.mean ; intercept.sd ; slope.mean ; slope.sd

[1] 3

[1] 1

[1] 2

[1] 0.6

>

This comparison looks good.

16.4 SUMMARY

We have seen how the concept of random effects, which we first met in
Chapters 9 and 12 for the normal linear case, can be carried over fairly
smoothly to the non-normal case. Both frequentist and Bayesian analyses
are fairly straightforward, but the model fitted in WinBUGS appears more
transparent.

EXERCISES
1. Swiss hare data 1: Fit the random-coefficient Poisson regression to the counts

without regard to land use. Take a single count per site and year. Don’t
forget to account for variable area by inclusion of an offset.

2. Swiss hare data 2: Now add a separate pair of hyperparameters (for intercept
and slope) for arable and grassland areas; this should definitely get you
published somewhere really nice. You could also add other explanatory
variables, such as an index for fox abundance if you had that. Do not forget
that you are not modeling hare abundance, just the expected hare counts.
Nobody really knows what this means, but expected counts presumably
represent an unknown, and you hope, constant, proportion of the true
number of hares out there.
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17.1 INTRODUCTION

The next three chapters deal with another common kind of count data,
where we want to estimate a binomial proportion. The associated models
are often called logistic regressions. The crucial difference between bino-
mial and Poisson randomvariables is the presence of a ceiling in the former:
binomial counts cannot be greater than some upper limit. Therefore, we
model bounded counts, where the bound is provided by trial size N. It
makes sense to express a count relative to that bound, and this yields a
proportion. In contrast, Poisson counts lack an upper limit, at least in
principle.

Modeling a binomial random variable in essence means modeling a
series of coin flips. We count the number of heads among the total number
of coin flips (N) and from this want to estimate the general tendency of the
coin to show heads. That is, we want to estimate Pr(heads). Data coming
from coin flip-like processes are ubiquitous in nature and include survival
or the occurrence of an organism. In coin flips, the binomial distribution
describes the number of times r a coin shows heads among a number of
N flips, where the coin has Pr(heads) = p. We also write r ~ Binomial (N, p).
A special case of the binomial distribution with N = 1, corresponding to

Introduction to WinBUGS for Ecologists
DOI: 10.1016/B978-0-12-378605-0.00017-X © 2010 Elsevier Inc. All rights reserved.211



a single flip of the coin, is called the Bernoulli distribution. It has just a
single parameter p.

As our inferential setting of this chapter, we consider a plant inventory
on calcareous grasslands in the Jura mountains. A total of 50 sites were
visited by experienced botanists who recorded whether they saw a species
or not. The Cross-leaved gentian (Fig. 17.1) was found at 13 sites and the
Chiltern gentian (see Chapter 20) at 29 sites. We wonder whether this is
enough evidence, given the variation inherent in binomial sampling, to
claim that the Cross-leaved gentian has a more restricted distribution in
the Jura mountains.

This type of data is often called “presence–absence data.” It is more
accurate to call it “detection–nondetection data,” since the number of
sites at which a species is detected depends on two entirely different things:
first, the number of sites where a species is actually present and second, the
ease with which a species is detected at an occupied site. Without a special
kind of data (see Chapter 20), we have no way of distinguishing between
the two components of “presence–absence.” All we can do is hope, pray,
or claim either that both gentian species are found at every occupied site
or else that their probability to be overlooked is identical. For now, we
assume that every individual present is detected, i.e., that every occupied
site is observed as such. Given such data, our question can be framed

FIGURE 17.1 Cross leaved gentian (Gentiana cruciata), Spanish Pyrenees, 2006. (Photo
M. Kéry)
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statistically by what can be called a binomial version of the t-test, i.e.
a logistic regression that contrasts two groups. For gentian species i,
let Ci be the number of sites it was detected. A simple model for Ci is this:

1. (Statistical) Distribution: Ci ~ Binomial (N, pi)

2. Link function: logit, i.e., logitðpiÞ = log
pi

1− pi

� �
= linear predictor

3. Linear predictor: α + β * xi

If x is an indicator for the Chiltern gentian, then α can be interpreted as
a logit-scale parameter for the probability of occurrence of the Cross-
leaved gentian in the Jura mountains and β is the difference, on a logit-
scale, between the probability of occurrence of the Chiltern gentian and
that of the Cross-leaved gentian.

17.2 DATA GENERATION

We simulate the data from a binomial process whose parameters were
defined such that the sample data approximately match those in our
example. Note that our modeled response simply consists of two
numbers.

N <– 50 # Binomial total (Number of coin flips)

p.cr <– 13/50 # Success probability Cross-leaved

p.ch <– 29/50 # Success probability Chiltern gentian

C.cr <– rbinom(1, 50, prob p.cr) ; C.cr # Add Binomial noise

C.ch <– rbinom(1, 50, prob p.ch) ; C.ch # Add Binomial noise

C <– c(C.cr, C.ch)

species <– factor(c(0,1), labels c("Cross-leaved gentian","Chiltern gentian"))

17.3 ANALYSIS USING R

A binomial t-test in R suggests a significant difference in the perceived
distribution of the Cross-leaved gentian and the Chiltern gentian.

summary(glm(cbind(C, N - C) ~ species, family binomial))

predict(glm(cbind(C, N - C) ~ species, family binomial), type "response")

> summary(glm(cbind(C, N - C) ~ species, family binomial))

Call:

glm(formula cbind(C, N - C) ~ species, family binomial)

[ ... ]
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.0460 0.3224 -3.244 0.00118 **

speciesChiltern gentian 1.3687 0.4313 3.173 0.00151 **

- - -

[ ... ]

> predict(glm(cbind(C, N - C) ~ species, family binomial), type "response")

1 2

0.26 0.58

17.4 ANALYSIS USING WinBUGS

# Define model

sink("Binomial.t.test.txt")

cat("

model {

# Priors

alpha ~ dnorm(0,0.01)

beta ~ dnorm(0,0.01)

# Likelihood

for (i in 1:n) {

C[i] ~ dbin(p[i], N) # Note p before N

logit(p[i]) <– alpha + beta *species[i]

}

# Derived quantities

Occ.cross <– exp(alpha) / (1 + exp(alpha))

Occ.chiltern <– exp(alpha + beta) / (1 + exp(alpha + beta))

Occ.Diff <– Occ.chiltern - Occ.cross # Test quantity

}

",fill TRUE)

sink()

# Bundle data

win.data <– list(C C, N 50, species c(0,1), n length(C))

# Inits function

inits <– function(){ list(alpha rlnorm(1), beta rlnorm(1))}

# Parameters to estimate

params <– c("alpha", "beta", "Occ.cross", "Occ.chiltern", "Occ.Diff")
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# MCMC settings

nc <– 3

ni <– 1200

nb <– 200

nt <– 2

# Start Gibbs sampling

out <– bugs(data win.data, inits inits, parameters.to.save params,

model.file "Binomial.t.test.txt", n.thin nt, n.chains nc, n.burnin nb, n.iter ni,

debug TRUE)

print(out, dig 3)

> print(out, dig 3)

Inference for Bugs model at "Binomial.t.test.txt", fit using WinBUGS,

3 chains, each with 1200 iterations (first 200 discarded), n.thin 2

n.sims 1500 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

alpha −1.047 0.333 −1.710 −1.273 −1.034 −0.810 −0.441 1.007 290

beta 1.362 0.449 0.520 1.059 1.375 1.657 2.278 1.007 300

Occ.cross 0.265 0.063 0.153 0.219 0.262 0.308 0.392 1.007 290

Occ.chiltern 0.577 0.069 0.438 0.530 0.580 0.626 0.701 1.003 960

Occ.Diff 0.312 0.095 0.124 0.251 0.318 0.376 0.485 1.006 340

[ ... ]
DIC info (using the rule, pD Dbar-Dhat)

pD 2.1 and DIC 12.6

Next, we plot the posterior distribution of the (biological) distributions
of the two species and their difference, as perceived from the detection–
nondetection data (Fig. 17.2):

par(mfrow c(3,1))

hist(out$sims.list$Occ.cross, col "grey", xlim c(0,1), main "", xlab

"Occupancy Cross-leaved", breaks 30)

abline(v out$mean$Occ.cross, lwd 3, col "red")

hist(out$sims.list$Occ.chiltern, col "grey", xlim c(0,1), main "", xlab

"Occupancy Chiltern", breaks 30)

abline(v out$mean$Occ.chiltern, lwd 3, col "red")

hist(out$sims.list$Occ.Diff, col "grey", xlim c(0,1), main "", xlab

"Difference in occupancy", breaks 30)

abline(v 0, lwd 3, col "red")

The posterior distribution of the difference barely overlaps zero
(Fig. 17.2, bottom), and the 95% credible interval is (0.015, 0.485). There-
fore, we can say that the Chiltern gentian is found at significantly more
sites than the Cross-leaved gentian. This is not equivalent to saying that
the Chiltern gentian was more widespread in the Jura mountains than is
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the Cross-leaved gentian, only that it is detected at more sites. Whether it
also means the former depends on whether the assumption of perfect or at
least of constant detection probability holds (MacKenzie and Kendall,
2002; Kéry and Schmidt, 2008).

17.5 SUMMARY

As for all generalized linear models, a binomial t-test in WinBUGS is a
fairly trivial generalization of the corresponding normal response model.
We have seen another example of the ease with which, in Markov chain
Monte Carlo-based statistical inference, we can compute derived param-
eters exactly, i.e., without any approximations, and with full error
propagation.
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EXERCISES
1. Binomial and Bernoulli: Try to formulate the same problem using a Bernoulli

distribution. You will need to simulate, not the aggregate number of sites at
which each gentian species was found, but rather the detected occupancy
status of each individual site. Adapt the code for analysis. In WinBUGS,
you can directly specify a Bernoulli by dbern(p). (As usual, when you’re
unsure, go to the WinBUGS manual: Help > User Manual and then scroll
down.)

2. Swiss hare data: Model the probability of occurrence of a “large” count in
arable and grassland areas. Select a useful threshold to call a count “large.”
Are large counts more common in arable areas?
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18.1 INTRODUCTION

We can specify a binomial analysis of covariance (ANCOVA) by
adding discrete and continuous covariates to the linear predictor of a bino-
mial generalized linear model (GLM). Once again, to stress the structural
similarity with the normal linear model in Chapter 11, we modify the asp
viper example just slightly. Instead of modeling a continuous measure-
ment such as body mass in Chapter 11, we model a count governed by
an underlying probability; specifically, we model the proportion of
black individuals in adder populations. The adder has an all-black and
a zigzag morph, where females are brown and males are gray (Fig. 18.1).

It has been hypothesized that the black color confers a thermal advan-
tage, and therefore, the proportion of black individuals should be greater in
cooler or wetter habitats. We simulate data that bear on this question and
“study,” by simulation, 10 adder populations each in the Jura mountains,
the Black Forest, and the Alps. We capture a number of snakes in these
populations and record the proportion of black adders. Then, we relate
these proportions to the mountain range and to a combined index of low
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temperature, wetness, and northerliness of the site. Our expectation will of
course be that there are relatively more black adders at cool and wet sites.
As always, a count is the result of a true number (here, of black and zigzag
adders) and a detection probability. Hence, in the following analyses, we
make the implicit assumption that the detectability of black and zigzag
adders neither differs between each other nor among populations.

We model the number of black adders Ci among Ni captured animals in
population i. Here is the description of the model.

1. Distribution: Ci ~ Binomial(pi, Ni)

2. Link function: logit, i.e., logitðpiÞ = log
pi

1− pi

� �
= linear predictor

3. Linear predictor: αJura + β1 * xBlackF + β2 * xAlps + β3 * xwet + β4 *
xwet * xBlackF + β5 * xwet * xAlps

Note that the number of animals captured, Ni, is not a parameter of the
binomial distribution in this example but is known (in contrast to the
model of Chapter 21 where Ni will be estimated). The link function is
the logit, as is customary for a binomial distribution, though other links
are possible (e.g., the complementary log–log, which is asymmetrical; see
GLM textbooks such as McCullagh and Nelder, 1989). Finally, the linear

FIGURE 18.1 Male adder (Vipera berus) of the zigzag morph, Germany, 2007. (Photo T. Ott)
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predictor is made up of an intercept αJura for the expected proportion, on
the logit scale, of black adders in the Jura and parameters β1 and β2 for
the difference in the intercept between Black Forest and the Jura and the
Alps and the Jura, respectively. The parameters β3, β4, and β5 specify the
slope of the (logit-linear) relationship between the proportion of black
adders and the wetness indicator of a site in the Jura and the difference
from β3 of these slopes in the Black Forest and the Alps, respectively.

18.2 DATA GENERATION

n.groups < 3
n.sample < 10
n < n.groups * n.sample
x < rep(1:n.groups, rep(n.sample, n.groups))
pop < factor(x, labels = c("Jura", "Black Forest", "Alps"))

We construct a continuous wetness index: 0 denotes wet sites lacking sun
and 1 is the converse. For ease of presentation, we sort this covariate; this
has no effect on the analysis.

wetness.Jura < sort(runif(n.sample, 0, 1))
wetness.BlackF < sort(runif(n.sample, 0, 1))
wetness.Alps < sort(runif(n.sample, 0, 1))
wetness < c(wetness.Jura, wetness.BlackF, wetness.Alps)

We also need the number of adders examined in each population (Ni), i.e.,
the binomial totals, also called sample or trial size of the binomial distri-
bution. We assume that the total number of snakes examined in each
population is a random variable drawn from a uniform distribution, but
this is not essential.

N < round(runif(n, 10, 50) ) # Get discrete Uniform values

We build the design matrix of an interactive combination of population
and wetness.

Xmat < model.matrix(~ pop*wetness)
print(Xmat, dig = 2)

Select the parameter values, i.e., choose values for αJura, β1, β2, β3, β4, and β5.

beta.vec < c( 4, 1, 2, 6, 2, 5)

We assemble the number of black adders captured in each population in
three steps:

1. We add up all components of the linear model to get the value of
the linear predictor,
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2. We apply the inverse logit transformation to get the expected proportion
(pi) of black adders in each population (Fig. 18.2; top), and finally,

3. We add binomial noise, i.e., use pi and Ni to draw binomial random
numbers representing the count of black adders in each sample of Ni

snakes (Fig. 18.2; bottom).

The value of the linear predictor is again obtained by matrix multiplica-
tion of the design matrix (Xmat) and the parameter vector (beta.vec).
(For ecological purists the usual reality disclaimer applies again.).

lin.pred < Xmat[,] %*% beta.vec # Value of lin.predictor

exp.p < exp(lin.pred) / (1 + exp(lin.pred)) # Expected proportion

C < rbinom(n n, size N, prob exp.p) # Add binomial noise

hist(C) # Inspect what we've created

par(mfrow c(2,1))

matplot(cbind(wetness[1:10], wetness[11:20], wetness[21:30]), cbind(exp.p[1:10],

exp.p[11:20], exp.p[21:30]), ylab "Expected black", xlab "", col

c("red","green","blue"), pch c("J","B","A"), lty "solid", type "b", las 1,

cex 1.2, main "", lwd 1)
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matplot(cbind(wetness[1:10], wetness[11:20], wetness[21:30]),

cbind(C[1:10]/N[1:10], C[11:20]/N[11:20], C[21:30]/N[21:30]), ylab "Observed

black", xlab "Wetness index", col c("red","green","blue"), pch

c("J","B","A"), las 1, cex 1.2, main "")

par(mfrow c(1,1))

Hence, the proportion of black adders increases with wetness most
steeply in the Black Forest, less so in the Jura, and hardly at all in the
Alps (Fig. 18.2).

18.3 ANALYSIS USING R

As usual, the analysis in R is concise.

summary(glm(cbind(C, N C) ~ pop * wetness, family binomial))

beta.vec

> summary(glm(cbind(C, N C) ~ pop * wetness, family binomial))

Call:

glm(formula cbind(C, N C) ~ pop * wetness, family binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

1.8911 0.5785 0.1309 0.8162 1.8866

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.7255 0.3905 9.541 < 2e 16 ***

popBlack Forest 0.1342 0.5894 0.228 0.81990

popAlps 1.5118 0.4946 3.057 0.00224 **

wetness 5.5286 0.7215 7.663 1.81e 14 ***

popBlack Forest:wetness 3.6046 1.3070 2.758 0.00582 **

popAlps:wetness 4.3748 0.8607 5.083 3.72e 07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 374.63 on 29 degrees of freedom

Residual deviance: 26.41 on 24 degrees of freedom

AIC: 123.75

Number of Fisher Scoring iterations: 4

> print(beta.vec)

[1] 4 1 2 6 2 5

>

Owing to the small sample size, we observe only a moderate correspon-
dence with the input values.
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18.4 ANALYSIS USING WinBUGS

In the following WinBUGS code, we add a few lines to compute
Pearson residuals. For a binomial response, these can be computed as
ðCi −NipiÞ/ Nipið1− piÞ

p
, where Ci is the binomial count for unit i and Ni

and pi are the trial size and success probability of the associated binomial
distributions. The Pearson residual has the form of a raw residual divided
by the standard deviation of unit i.

# Define model

sink("glm.txt")

cat("

model {

# Priors

for (i in 1:n.groups){

alpha[i] ~ dnorm(0, 0.01) # Intercepts

beta[i] ~ dnorm(0, 0.01) # Slopes

}

# Likelihood

for (i in 1:n) {

C[i] ~ dbin(p[i], N[i])

logit(p[i]) <– alpha[pop[i]] + beta[pop[i]]* wetness[i] # Baseline Jura

# Fit assessments: Pearson residuals and posterior predictive check

Presi[i] <– (C[i]−N[i]*p[i]) / sqrt(N[i]*p[i]*(1−p[i])) # Pearson resi

C.new[i] ~ dbin(p[i], N[i]) # Create replicate data set

Presi.new[i] <– (C.new[i]−N[i]*p[i]) / sqrt(N[i]*p[i]*(1−p[i]))

D[i] <– pow(Presi[i], 2) # Squared Pearson residuals

D.new[i] <– pow(Presi.new[i], 2)

}

# Derived quantities

# Recover the effects relative to baseline level (no. 1)

a.effe2 <– alpha[2] – alpha[1] # Intercept Black Forest vs. Jura

a.effe3 <– alpha[3] – alpha[1] # Intercept Alps vs. Jura

b.effe2 <– beta[2] – beta[1] # Slope Black Forest vs. Jura

b.effe3 <– beta[3] – beta[1] # Slope Alps vs. Jura

# Custom tests

test1 <– beta[3] – beta[2] # Difference slope Alps -Black Forest

# Add up discrepancy measures

fit <– sum(D[])

fit.new <– sum(D.new[])

}
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",fill TRUE)

sink()

# Bundle data

win.data <– list(C C, N N, pop as.numeric(pop), n.groups n.groups, wetness

wetness, n n)

# Inits function

inits <– function(){ list(alpha rlnorm(n.groups, 3, 1), beta rlnorm(n.groups,

2, 1))} # Note log-normal inits here

# Parameters to estimate

params <– c("alpha", "beta", "a.effe2", "a.effe3", "b.effe2", "b.effe3", "test1",

"Presi", "fit", "fit.new")

# MCMC settings

ni <– 1500

nb <– 500

nt <– 5

nc <– 3

# Start Gibbs sampler

out <– bugs(data win.data, inits inits, parameters.to.save params, model.file

"glm.txt", n.thin nt, n.chains nc, n.burnin nb, n.iter ni, debug TRUE)

The model converges rapidly. To practice good statistical behavior, we
now first assess model fit before rushing on to inspect the parameter esti-
mates (or indulge in some activity related to significance testing). After all,
only when a model adequately reproduces the salient features in the data
set should we believe what it says about the parameters. We first plot the
Pearson residuals and, naturally, find no obvious remaining pattern
related to order or wetness of a site (Fig. 18.3).

par(mfrow = c(1,2), cex = 1.5)
plot(out$mean$Presi, ylab = "Residual", las = 1)
abline(h = 0)
plot(wetness, out$mean$Presi, ylab = "Residual", las = 1)
abline(h = 0)

Next, we conduct a posterior predictive check for overall goodness of fit of
the model (Fig. 18.4). Remember that our discrepancy measure is the sum
of squared Pearson residuals.

plot(out$sims.list$fit, out$sims.list$fit.new, main "", xlab "Discrepancy

actual data", ylab "Discrepancy ideal data")

abline(0,1, lwd 2, col "black")
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Of course, this looks good and so does the Bayesian p-value.

mean(out$sims.list$fit.new > out$sims.list$fit)
> mean(out$sims.list$fit.new > out$sims.list$fit)
[1] 0.52

Hence, we feel justified in comparing the results of the Bayesian analysis
with the truth from the data-generating random process and with the fre-
quentist inference from R’s function glm().

print(out, dig 3) # Bayesian analysis

beta.vec # Truth in data generation

print(glm(cbind(C, N C) ~ pop * wetness, family binomial)$coef, dig 4)

# The ML solution

We get rather similar estimates. Parameters in the output of the Bayesian
analysis printed in boldface correspond to the quantities used for data
generation and also to those of the model parameterization in the
frequentist analysis in R.

> print(out, dig 3) # Bayesian analysis

Inference for Bugs model at "glm.txt", fit using WinBUGS,

3 chains, each with 1500 iterations (first 500 discarded), n.thin 5

n.sims 600 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

alpha[1] −3.797 0.383 −4.514 −4.056 −3.782 −3.518 −3.048 1.009 190

alpha[2] −3.591 0.421 −4.408 −3.896 −3.580 −3.302 −2.825 1.002 600

alpha[3] −2.225 0.301 −2.837 −2.422 −2.235 −2.021 −1.651 1.031 68

beta[1] 5.655 0.701 4.372 5.164 5.632 6.131 7.004 1.009 200

beta[2] 9.139 1.086 7.148 8.362 9.102 9.927 11.300 1.000 600

beta[3] 1.162 0.477 0.180 0.843 1.192 1.476 2.086 1.034 60

a.effe2 0.207 0.597 −0.972 −0.190 0.201 0.631 1.289 1.012 200

a.effe3 1.572 0.480 0.639 1.256 1.559 1.894 2.536 1.018 110

b.effe2 3.484 1.337 0.960 2.543 3.490 4.472 6.148 1.009 360

b.effe3 −4.492 0.832 −6.134 −5.000 −4.471 −3.916 −3.022 1.012 150

test1 −7.977 1.164 −10.501 −8.788 −7.897 −7.218 −5.741 1.007 280

Presi[1] −1.109 0.185 −1.520 −1.235 −1.103 −0.979 −0.805 1.009 190

[ ... ]

DIC info (using the rule, pD Dbar-Dhat)

pD 6.0 and DIC 123.8

DIC is an estimate of expected predictive error (lower deviance is better).

> beta.vec # Truth in data-generation

[1] −4 1 2 6 2 −5
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> print(glm(cbind(C, N–C) ~ pop * wetness, family binomial)$coef, dig 4)

# The ML solution

(Intercept) popBlack Forest popAlps

3.7255 0.1342 1.5118

wetness popBlack Forest:wetness popAlps:wetness

5.5286 3.6046 −4.3748

18.5 SUMMARY

Moving from the normal and the Poisson to a binomial ANCOVA
involves only minor changes in the code of WinBUGS (and also R).
Similarly, the concepts of residuals and posterior predictive distributions
carry over to this class of models. We see examples for both.

EXERCISES
1. Multiple binomial regression: Create another habitat variable X and, using the

data set created in this chapter, use WinBUGS to fit the following model
prop.black ~ pop*wet + X + wet:X. That is, add the main effect of X
plus the interaction between wet and X.

2. Swiss hare data: Model the probability of a “large” count as a function of
land use and year (continuous), i.e., fit the following model:

large.pop ~ land use * year

You may choose a threshold of about 5. You may also want to check for
nonlinearity (on the scale of the logit link) by adding a quadratic effect
of year.
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19.1 INTRODUCTION

As in a Poisson generalized linear mixed model (GLMM), we can also
add into a binomial generalized linear model (GLM) random variation
beyond what is stipulated by the binomial distribution. We show this for a
slight modification of the Red-backed shrike example from Chapter 16.
Instead of counting the number of pairs, which naturally leads to the adop-
tion of a Poisson model, we now study the reproductive success (success or
failure) of its much rarer cousin, the woodchat shrike (Fig. 19.1). We exam-
ine the relationship between precipitation during the breeding season and
reproductive success; wet springs are likely to depress the proportion of suc-
cessful nests. We assemble data from 16 populations studied over 10 years.

First, we write down the random-coefficients model (without intercept-
slope correlation) for a binomial response. We model Ci, the number of
successful pairs among Ni studied pairs in year i and study area j:

1. Distribution: Ci ~ Binomial (pi, Ni)

2. Link function: logit, i.e., logitðpiÞ = log
pi

1− pi

� �
= linear predictor

Introduction to WinBUGS for Ecologists
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3. Linear predictor: αj(i) + βj(i) * xi
4. Submodel for parameters: αj ∼Normalðμα, σ2αÞ

βj ∼Normalðμβ, σ2βÞ
Except for a different distribution and link function, the additional kind

of data provided by the binomial totals Ni, and a different interpretation
and indexing of the covariate, this model looks exactly like the Poisson
GLMM in Chapter 16! The linear predictor, αj(i) + βj(i) * xi, specifies a
population-specific, logit-linear relationship between breeding success and
precipitation. Furthermore, populations are assumed to be related in the
sense that both intercepts (αj) and slopes (βj) of those relationships come
from two normal distributions whose hyperparameters we estimate.

19.2 DATA GENERATION

We generate data under the random-coefficients model, i.e., with both
αj and βj assumed independent and random effects. We assume no
correlation.

n.groups < 16
n.years < 10
n < n.groups * n.years
pop < gl(n = n.groups, k = n.years)

FIGURE 19.1 Woodchat shrike (Lanius senator), Catalonia, 2008. (Photo J. Rojals)
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We create a uniform covariate as an index to spring precipitation: 0
denotes little rain and 1 much.

prec < runif(n, 0, 1)

Ni, the binomial total, is the number of nesting attempts surveyed in year i.

N < round(runif(n, 10, 50) )

We build the design matrix as before.

Xmat < model.matrix(~pop*prec 1 prec)
print(Xmat[1:91,], dig = 2) # Print top 91 rows

Next, we choose the parameter values from their respective normal
distributions, but first, we need to select the associated hyperparameters.

intercept.mean <– 1 # Select hyperparams

intercept.sd <– 1

slope.mean <– −2

slope.sd <– 1

intercept.effects<–rnorm(n n.groups, mean intercept.mean, sd intercept.sd)

slope.effects <– rnorm(n n.groups, mean slope.mean, sd slope.sd)

all.effects <– c(intercept.effects, slope.effects) # Put them all together

We assemble the counts Ci by first computing the value of the
linear predictor, then applying the inverse-logit transformation, and
finally integrating binomial noise (where we need Ni).

lin.pred < Xmat %*% all.effects # Value of lin.predictor

exp.p < exp(lin.pred) / (1 + exp(lin.pred)) # Expected proportion

For each population, we plot the expected (Fig. 19.2) and the observed
breeding success (Fig. 19.3) of woodchat shrikes against standardized
spring precipitation using a Trellis plot.

library("lattice")

xyplot(exp.p ~ prec | pop, ylab "Expected woodchat shrike breeding success ",

xlab "Spring precipitation index", main "Expected breeding success")

C <– rbinom(n n, size N, prob exp.p) # Add binomial variation

xyplot(C/N ~ prec | pop, ylab "Realized woodchat shrike breeding success", xlab

"Spring precipitation index", main "Realized breeding success")

19.3 ANALYSIS UNDER
A RANDOM-COEFFICIENTS MODEL

We could assume that all shrike populations have the same relation-
ship between breeding success and standardized spring precipitation,
but at different levels, corresponding to a random-intercepts model
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(see Section 12.3). However, we directly adopt the random coefficients
model without correlation instead. This means assuming that every shrike
population has a specific response to precipitation but that both intercept
and slope are “similar” among populations.

19.3.1 Analysis Using R

library('lme4')

glmm.fit <– glmer(cbind(C, N–C) ~ prec + (1 | pop) + ( 0+ prec | pop), family

binomial)

glmm.fit

> glmm.fit

Generalized linear mixed model fit by the Laplace approximation

Formula: cbind(C, N – C) ~ prec + (1 | pop) + (0 + prec | pop)
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FIGURE 19.2 Trellis plot of the relationship between spring precipitation (standardized)
and expected breeding success of woodchat shrikes in 16 populations over 10 years.
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AIC BIC logLik deviance

229.3 241.6 −110.6 221.3

Random effects:

Groups Name Variance Std.Dev.

pop (Intercept) 0.38785 0.62277

pop prec 0.53258 0.72978

Number of obs: 160, groups: pop, 16

Fixed effects:

Estimate Std.Error z value Pr(>|z|)

(Intercept) 0.8006 0.1690 4.738 2.16e–06 ***

prec −2.1290 0.2173 −9.796 < 2e–16 ***

–––

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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FIGURE 19.3 Trellis plot of the relationship between spring precipitation (standardized)
and the realized breeding success of woodchat shrikes in 16 populations over 10 years. The
difference between this and the previous plot is due to binomial sampling variation.
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Correlation of Fixed Effects:

(Intr)

prec −0.182

19.3.2 Analysis Using WinBUGS

# Define model

sink("glmm.txt")

cat("

model {

# Priors

for (i in 1:n.groups){

alpha[i] ~ dnorm(mu.int, tau.int) # Intercepts

beta[i] ~ dnorm(mu.beta, tau.beta) # Slopes

}

mu.int ~ dnorm(0, 0.001) # Hyperparameter for random intercepts

tau.int <– 1 / (sigma.int * sigma.int)

sigma.int ~ dunif(0, 10)

mu.beta ~ dnorm(0, 0.001 # Hyperparameter for random slopes

tau.beta <– 1 / (sigma.beta * sigma.beta)

sigma.beta ~ dunif(0, 10)

# Binomial likelihood

for (i in 1:n) {

C[i] ~ dbin(p[i], N[i])

logit(p[i]) <– alpha[pop[i]] + beta[pop[i]]* prec[i]

}

}

",fill TRUE)

sink()

# Bundle data

win.data <– list(C C, N N, pop as.numeric(pop), prec prec, n.groups

n.groups, n n)

# Inits function

inits <– function(){ list(alpha rnorm(n.groups, 0, 2), beta rnorm(n.groups, 1,

1), mu.int rnorm(1, 0, 1), mu.beta rnorm(1, 0, 1))}

# Parameters to estimate

params <– c("alpha", "beta", "mu.int", "sigma.int", "mu.beta", "sigma.beta")
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# MCMC settings

ni <– 2000

nb <– 500

nt <– 2

nc <– 3

# Start Gibbs sampling

out <– bugs(win.data, inits, params, "glmm.txt", n.thin nt, n.chains nc,

n.burnin nb, n.iter ni, debug TRUE)

This standard GLMM converges nicely.

print(out, dig 2)

> print(out, dig 2)

Inference for Bugs model at "glmm.txt", fit using WinBUGS,

3 chains, each with 2000 iterations (first 500 discarded), n.thin 2

n.sims 2250 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

[ ... ]

mu.int 0.80 0.19 0.44 0.68 0.80 0.92 1.17 1.00 2200

sigma.int 0.70 0.16 0.45 0.59 0.68 0.79 1.08 1.00 1600

mu.beta 2.13 0.25 2.64 2.28 2.12 1.97 1.64 1.00 2200

sigma.beta 0.84 0.23 0.48 0.67 0.81 0.96 1.38 1.00 1100

[ ... ]

DIC info (using the rule, pD var(deviance)/2)

pD 32.8 and DIC 748.4

DIC is an estimate of expected predictive error (lower deviance is better).

>

# Compare with input values
intercept.mean ; intercept.sd ; slope.mean ; slope.sd
> intercept.mean ; intercept.sd ; slope.mean ; slope.sd
[1] 1
[1] 1
[1] 2
[1] 1
>

This seems to work, too. As is typical, the estimates of random-effects
variances are greater in the Bayesian approach, presumably since inference
is exact and incorporates all uncertainty in the modeled system. In contrast,
the approach in lmer() or glmer() is approximate and may underesti-
mate these variances (Gelman and Hill, 2007).
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19.4 SUMMARY

As for the Poisson case, the introduction of random effects into a bino-
mial GLM in WinBUGS is particularly straightforward and transparent.
Fitting the resulting binomial GLMM in WinBUGS is very helpful for
your general understanding of this class of models.

EXERCISES
1. Predictions: Produce a plot of the mean expected response of breeding

success to the spring precipitation index. Try to overlay these estimates on
the observed data.

2. Fixed and random, shrinkage: Fit a fixed-effects binomial analysis of
covariance (ANCOVA) model to the data set we just assembled and
compare the estimates of the population-specific intercepts and slopes
under the fixed- and the random-effects models.
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20.1 INTRODUCTION

We have now seen a wide range of random-effects (also called mixed or
hierarchical) models, including the normal, Poisson, and binomial general-
ized linear models (GLMs) with random effects. This means that some
parameters are themselves represented as realizations from a random
process. With the exception of the zero-inflated models in chapter 14,
we have used a normal (or a multivariate normal) distribution as our
sole description of this additional random component. However, nothing
constrains us to use the normal distribution only and sometimes, other
distributions will be appropriate for some parameters. The next two
chapters illustrate two cases with discrete random effects that are assumed
to be drawn from a Bernoulli or a Poisson distribution. Importantly, these
effects have a precise biological meaning in these models: they correspond
to the true, but imperfectly observed, state of occurrence (Chapter 20) or of
abundance (Chapter 21).

Introduction to WinBUGS for Ecologists
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The modeling of animal and plant distributions is an important and
active area of ecological research and applications. The most frequently
applied method is a binomial GLM, or logistic regression (see Chapters
17–19), where the probability that an organism is found is modeled
from what typically, and misleadingly, are called “presence–absence”
data. These are binary indicators for whether a species was found (1) or
not (0) in a spatial sample unit, and the effect of covariates is modeled
through the logit link function. There are many variants of this approach,
but the basic principle is often the same: so-called “presence–absence”
data are directly modeled as coming from a Bernoulli distribution and
the Bernoulli parameter is interpreted as the probability of occurrence.

However, a fundamental and extremely widely overlooked issue in
almost all species distribution models is that detectability (p) of most
species is imperfect—typically, a species will not always be detected
where it occurs (MacKenzie and Kendall, 2002; Pellet and Schmidt,
2005; Kéry and Schmidt, 2008; Kéry et al., 2010b). In other words, detec-
tion probability is typically less than one (p < 1). This basic fact is very
well known to field naturalists and reasonably understood for animals,
and it even applies to populations of immobile organisms such as plants
(Kéry, 2004; Kéry et al., 2006). However, it seems to have been overlooked
by most professional ecologists dealing with distributional data (Araujo
and Guisan, 2006; Elith et al., 2006).

As a consequence, virtually no study generated by current species
distribution modelers actually models the true occurrence of a species as
pretended or believed. Rather, the product of the two probabilities of
occurrence and detection of a species is modeled. For noteworthy excep-
tions, see Gelfand et al. (2005), Royle et al. (2005), Latimer et al. (2006), and
Altwegg et al. (2008), also see Royle et al. (2007), and Webster et al. (2008).

The widespread confusion about what is actually being modeled in
most species distribution models has three main consequences (MacKenzie
et al., 2002; Tyre et al., 2003; Gu and Swihart, 2004; MacKenzie, 2006;
MacKenzie et al., 2006; Kéry and Schmidt, 2008; Royle and Dorazio,
2008; Kéry et al., 2010b):

1. species distributions will be underestimated whenever p < 1,
2. estimates of covariate relationships will be biased toward zero

whenever p < 1, and
3. the factors that affect the difficulty with which a species is found

may end up in predictive models of species occurrence.

The first is easy to understand, but the second has not been widely
recognized, although Tyre et al. (2003), Gu and Swihart (2004), and
MacKenzie et al. (2006, pp. 34–35) described this effect already a few
years ago. Interestingly, and in contrast to a naïve analysis of count data
in the presence of imperfect detection (cf. simple Poisson regression exam-
ples in Chapters 13–16), in distribution modeling, even a constant p < 1 will
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bias low the slope estimate of the relationship between occurrence probabil-
ity and a covariate. Presumably, this includes also a time covariate, i.e., situa-
tions where changes in distribution over time are modeled. As an example
for the third effect, if a species has a higher probability to be found near
roads, perhaps, because near roads, more people are likely to stumble upon
it, thenobviously roads or habitat types associatedwith roadswill showupas
important for that species, unlessdetection probability is accounted for.As an
extreme example, when a species distribution map is constructed from road-
kill records, then no matter how much roads might actually be avoided by
that species in reality, the resulting distribution map will emphasize the
great positive effect of roads on the distribution of the species!

In contrast, a novel class of models with the rather peculiar name
“site-occupancy models” (MacKenzie et al., 2002, 2003, 2006; Tyre et al.
2003) is able to estimate the true distribution of animals or plants free of
any distorting effects of the difficulty with which they are found. This
chapter deals with these models and shows how to fit them using
WinBUGS.

As a motivating example, we consider an inventory of the beautiful
Chiltern gentian (Fig. 20.1) conducted in 150 calcareous grasslands in

FIGURE 20.1 Chiltern gentian (Gentianella germanica), Slovenia, 2007. (Photo: M. Vogrin)
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the Jura mountains. Our aim is to estimate the proportion or number
of occupied sites and to identify environmental factors related to the
occurrence of the gentian. Interestingly, Gentianella germanica is a typical
plant of nutrient-poor sites, which are thus a priori often rather dry.
However, within the class of nutrient-poor grasslands, it preferentially
occurs on wetter sites. However, these sites often have a higher and denser
vegetation cover, so the rather small gentian (5–40 cm height) may more
frequently be overlooked at these better sites (we ignore here the fact that
better sites may hold larger populations). This effect could mask its
preference for wetter sites. None of the currently widespread methods
for distribution modeling such as GLM, generalized additive models
(GAM), or boosted regression trees (Elith et al., 2006) are able to tease
apart the effects of a covariate that influences both the occurrence of a
species and the ease with which it is found (i.e. detection probability).

We will use site-occupancy models (MacKenzie et al., 2002, 2003, 2006)
to separately estimate the gentian’s probability of occurrence (called occu-
pancy or species distribution) and its probability to be detected at occupied
sites (detectionprobability), alongwith covariate effects on either occurrence
or detection. It may be claimed that site-occupancymodels are currently the
only genuine distribution models available. All other widespread distribu-
tion modeling approaches confound occurrence and detection and only
estimate the apparent occurrence, or more explicitly, the combination of the
probability of occurrence and the probability of detection, given the occurrence.

The price to be paid for this improved inference is a sort of repeated-
measures design, i.e., at least some sites need to be visited twice or
preferably more frequently. This field protocol may be called a metapopu-
lation design because the same quantity (occurrence) is assessed at many
spatial replicates (Royle, 2004b; Royle and Dorazio, 2006). It is from the
pattern of detection or nondetection at multiply visited sites that we obtain
the information about detection probability, separate from occurrence
probability. See MacKenzie and Royle (2005), MacKenzie et al. (2006),
and Bailey et al. (2007) for design considerations relevant to this model.

A balanced design, i.e., an equal number of visits to all sites, is not
essential for site-occupancy models; it simply makes things easier to simu-
late and present. (See Chapter 21 for an alternative, “vertical” data format,
which is more convenient for the analysis of unbalanced metapopulation
data.) Therefore, in our inventory of G. germanica, we assume that each site
is visited three times by an independent botanist, and every time she notes
whether at least one plant of G. germanica is detected or not. The result of
these surveys may be summarized in a binary string, such as 010 for a site,
where a gentian is detected during the second, but not during the first or
third surveys. Generally, for a species surveyed T times at each of R sites,
survey results are summarized in an R-by-T matrix containing a 1 when
the species is detected at site i during survey j and a 0 when it is not.
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The genesis, and therefore the analysis, of detection/nondetection
observation yij at site i during survey j is naturally described by a hierarch-
ical, or state-space, model that contains one submodel for the only par-
tially observed true state (occurrence, the result of the biological
process), and another submodel for the actual observations. The actual
observations result from both the particular realization of the biological
process and of the observation process.

zi ∼BernoulliðψÞ Biological process yields true state
yij ∼Bernoulliðzi � pijÞ Observation process yields observations

Hence, true occurrence zi of G. germanica at site i is a Bernoulli random
variable governed by the parameter ψ (occurrence probability), which is
exactly the parameter that most distribution modelers wish they were
modeling. The actual gentian observation yij, detection or not at site i dur-
ing survey j (or “presence–absence” datum yij), is another Bernoulli ran-
dom variable with a success rate that is the product of the actual
occurrence of G. germanica at that site, zi, and detection probability pij at
site i during survey j. Hence, at a site where the gentian doesn’t occur,
z = 0, and y must be 0. Conversely, at an occupied site, we have z = 1,
and G. germanica is detected with probability pij. That is, in the site-occu-
pancy model, the detection probability is expressed conditional on occur-
rence, and the two parameters ψ and p are separately estimable if
replicate visits are available.

One way to look at this model in terms of the GLM framework, that
features so prominently in this book, is as a hierarchical, coupled logistic
regression. One logistic regression describes true occurrence, and the
other describes detection, given that the species does occur. Another
description of the model is as a nonstandard binomial GLMM with a
binary distribution for the random effects—occupied or not occupied—
instead of the normal distributions that we assumed in the “standard”
binomial GLMM in Chapter 19 as well as most other mixed models in
previous chapters.

The above equations describe just the simplest kind of a site-occupancy
model; they can readily be extended to more complex cases. First, the abil-
ity to model covariate effects is crucial; indeed, covariates can easily be
modeled into both the occurrence (ψ) and the detection (p) part of the
model in a simple GLM fashion. That is, we can add to the model a
statement like this:

logitðψiÞ = α + β �xi,

where xi is the value of some occurrence-relevant covariate measured at
site i, and α and β are parameters. The same can be done for the observa-
tion model also, i.e., the logit transformation of the detection parameter
can be modeled by either a site covariate (xi) or a survey covariate (xij).
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We could also model the effects of many explanatory variables, of poly-
nomial terms or even of splines.

Second, the model, as hitherto described, assumes a so-called closed
population, i.e., a site is assumed to be either occupied or not occupied
over the entire survey period. For plant surveys conducted during a
single season, this may be a sensible assumption. But as soon as surveys
are extended over several growing seasons, or the framework is applied
to more short-lived or mobile organisms, such as most animals, occupancy
status may change within the survey period. Indeed, colonization/extinc-
tion dynamics may be a research focus as in metapopulation studies
(Hanski, 1998). The solution then is to collect data according to the robust
design, where two or more surveys are conducted within a short time
period (called a “season”), when the population can be assumed closed
(Williams et al., 2002). This is repeated over multiple seasons between
which the population may change. For such data, there is a dynamic
formulation of the simple site-occupancy model described here to analyze
occupancy, colonization, and extinction rates corrected for imperfect
detection and to estimate covariate effects on each of these parameters,
see MacKenzie et al. (2003, 2006), and Royle and Kéry (2007). In our
case, however, we will simulate and analyze data only from a single
season and assume a closed population.

20.2 DATA GENERATION

We now simulate the data for our inventory of G. germanica. We assume
that the 150 sites visited form a sample of a larger number of calcareous
grasslands in the Jura. The study objective is to use these data to learn
about all calcareous grassland sites in the Jura and to see whether site
humidity affects the distribution of G. germanica.

n.site < 150 # 150 sites visited

We create an arbitrary continuous index for soil humidity, where −1
means dry and 1 means wet, and sort the data for convenient presentation
of the results.

humidity < sort(runif(n = n.site, min = 1, max =1))

Next, we create the positive true relationship between occurrence
probability of G. germanica and soil humidity (Fig. 20.2). We do this by
a logit-linear regression as customary for binomial responses. We choose
the intercept and the slope for this relationship so that about 50% of all
sites end up being occupied by the gentian.

alpha.occ <– 0 # Logit-linear intercept for humidity on occurrence

beta.occ <– 3 # Logit-linear slope for humidity on occurrence
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occ.prob <– exp(alpha.occ + beta.occ * humidity) / (1 + exp(alpha.occ + beta.occ

* humidity))

plot(humidity, occ.prob, ylim c(0,1), xlab "Humidity index", ylab

"Occurrence probability", main "", las 1)

true.presence <– rbinom(n n.site, size 1, prob occ.prob)

true.presence # Look at the true occupancy state of each site

sum(true.presence) # Among the 150 visited sites

> true.presence <– rbinom(n n.site, size 1, prob occ.prob)

> true.presence # Look at the true occupancy state of each site

[1] 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
[36] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0
[71] 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 0 1
[106] 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[141] 0 1 1 1 1 1 1 1 0 1
> sum(true.presence)# Among the 150 visited sites
[1] 75

This is the true state of the gentian system we are studying, i.e., the
realization of the stochastic biological process we’re interested in. This
state is only imperfectly observable in nature, even for plant populations
(Kéry et al., 2006). However, it is what we would like to observe and
what we would like to relate to habitat variables such as humidity in
our distribution model for G. germanica.
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FIGURE 20.2 The unobserved true relationship between humidity and occurrence
probability of the Chiltern gentian.
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Unfortunately, we only observe a degraded image of that true state of
nature, where the degradation is because of the fact that G. germanica
may be overlooked and particularly so at the wetter sites with higher
vegetation. So, next we simulate this effect to obtain our actual “presence–
absence” observations. After simulating the biological process (which
resulted in 150 realizations of true occurrence zi), we now model the obser-
vation process that resides between the true biological process (“truth”)
and our observations (Fig. 20.3).

alpha.p <– 0 # Logit-linear intercept for humidity on detection

beta.p <– −5 # Logit-linear slope for humidity on detection

det.prob <– exp(alpha.p + beta.p * humidity) / (1 + exp(alpha.p + beta.p *

humidity))

plot(humidity, det.prob, ylim c(0,1), main "", xlab "Humidity index", ylab

"Detection probability", las 1)

Assuming no false-positive errors, i.e., that no other species is erroneously
identified as G. germanica, the Chiltern gentian can only be detected at sites
where it occurs. Hence, the effective detection probability is the product of
true occurrence (zi) and this detection probability (det.prob):

eff.det.prob < true.presence * det.prob

Importantly, this effective detection probability or apparent occurrence
probability is precisely the quantity modeled by conventional species dis-
tribution models (e.g., Elith et al., 2006)! Its expectation is the product of
occurrence probability and detection probability, i.e., ψ × p.
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FIGURE 20.3 Relationship between site humidity and detection probability in the
Chiltern gentian.
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We store the results of each survey, 1 (gentian detected) or 0 (no gentian
detected), in an n.site-by-3 matrix and fill it by simulating coin-flips
(i.e., drawing Bernoulli trials) with the detection probabilities just
computed. We note that this is the first time in the book that we use a
two-dimensional array for our data. As a consequence, we will see a
double for loop in the BUGS code to analyse these data.

R < n.site
T < 3
y < array(dim = c(R, T))

# Simulate results of first through last surveys
for(i in 1:T){

y[,i] < rbinom(n = n.site, size = 1, prob = eff.det.prob)
}

Hence, y now contains the results of our simulated surveys to find
G. germanica at 150 sites.

y # Look at the data

sum(apply(y, 1, sum) > 0) # Apparent distribution among 150 visited sites

> y# Look at the detection/nondetection data

[,1] [,2] [,3]

[1,] 0 0 0

[2,] 0 0 0

[ ... ]

[149,] 0 0 0

[150,] 0 0 0

> sum(apply(y, 1, sum) > 0)# Apparent distribution

[1] 31

On average (if we simulate this stochastic system many times) our para-
meter values yield about 42% detected gentian populations. Let’s see
what a naïve analysis of these observations would tell us about
the relationship between humidity and the occurrence of G. germanica.
(I call this analysis naïve because it omits an important system
component, the observation process. The simplest way to analyze this rela-
tionship is by a logistic regression of an indicator for “ever detected” (here
called obs) on humidity.

obs <– as.numeric(apply(y, 1, sum) > 0)

naive.analysis <– glm(obs ~ humidity, family binomial)

summary(naive.analysis)

lin.pred <– naive.analysis$coefficients[1] + naive.analysis$coefficients[2] *

humidity

plot(humidity, exp(lin.pred) / (1 + exp(lin.pred)), ylim c(0,1), main "",

xlab "Humidity index", ylab "Predicted probability of occurrence", las 1)
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We see that in a naïve analysis, the gentian’s preference for wetter sites
is totally masked (Fig. 20.4; although in different realizations of the
data-generating process, you might also find significant positive or even
negative slopes for humidity). Let’s see whether a site-occupancy model
can do better.

20.3 ANALYSIS USING WinBUGS

A variety of site-occupancy models (e.g., with covariates, for single
or multiple seasons, single or multiple species) may be fitted using maxi-
mum likelihood in the free Windows-based programs MARK (see http://
welcome.warnercnr.colostate.edu/~gwhite/mark/mark.htm) and PRESENCE
(see http://www.mbr-pwrc.usgs.gov/software/doc/presence/presence.html).
R code for obtaining maximum likelihood estimates (MLEs) can be
found in the Web appendix of the book by Royle and Dorazio (2008).
Furthermore, there is a new R package called unmarked which allows
to fit these models using maximum likelihood (Fiske and Chandler,
2010). Hence, here we will directly use WinBUGS to fit the site-occupancy
model in a Bayesian mode of inference.

As an added feature, we will perform a posterior predictive check
based on the sum of absolute residuals. The resulting Bayesian p-value
allows us to judge whether the assumed model is appropriate for our
data set (based on the selected discrepancy measure).
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FIGURE 20.4 A naïve analysis of the apparent relationship between occurrence of the
Chiltern gentian and humidity. This conventional species distribution model ignores
detection probability.
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# Define model

sink("model.txt")

cat("

model {

# Priors

alpha.occ ~ dunif(−10, 10) # Set A of priors

beta.occ ~ dunif(−10, 10)

alpha.p ~ dunif(−10, 10)

beta.p ~ dunif(−10, 10)

# alpha.occ ~ dnorm(0, 0.01) # Set B of priors

# beta.occ ~ dnorm(0, 0.01)

# alpha.p ~ dnorm(0, 0.01)

# beta.p ~ dnorm(0, 0.01)

# Likelihood

for (i in 1:R) { #start initial loop over the R sites

# True state model for the partially observed true state

z[i] ~ dbern(psi[i]) # True occupancy z at site i

logit(psi[i]) <– alpha.occ + beta.occ * humidity[i]

for (j in 1:T) { # start a second loop over the T replicates

# Observation model for the actual observations

y[i,j] ~ dbern(eff.p[i,j]) # Detection-nondetection at i and j

eff.p[i,j] <– z[i] * p[i,j]

logit(p[i,j]) <– alpha.p + beta.p * humidity[i]

# Computation of fit statistic (for Bayesian p-value)

Presi[i,j] <– abs(y[i,j]-p[i,j]) # Absolute residual

y.new[i,j]~dbern(eff.p[i,j])

Presi.new[i,j] <– abs(y.new[i,j]-p[i,j])

}

}

fit <– sum(Presi[,])# Discrepancy for actual data set

fit.new <– sum(Presi.new[,]) # Discrepancy for replicate data set

# Derived quantities

occ.fs <– sum(z[]) # Number of occupied sites among 150

}

",fill TRUE)

sink()

# Bundle data

win.data <– list(y y, humidity humidity, R dim(y)[1], T dim(y)[2])

# Inits function

zst <– apply(y, 1, max) #Good starting values for latent states essential !

inits <– function(){list(z zst, alpha.occ runif(1, −5, 5), beta.occ runif(1,

−5, 5), alpha.p runif(1, −5, 5), beta.p runif(1, −5, 5))}
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# Parameters to estimate

params <– c("alpha.occ","beta.occ", "alpha.p", "beta.p", "occ.fs", "fit",

"fit.new")

# MCMC settings

nc <– 3

nb <– 2000

ni <– 12000

nt <– 5

# Start Gibbs sampler

out <– bugs(win.data, inits, params, "model.txt", n.chains nc, n.iter ni, n.burn

nb, n.thin nt, debug TRUE)

Before inspecting the parameter estimates, we first check the adequacy of
the model for our data set using a posterior predictive check (Fig. 20.5).

plot(out$sims.list$fit, out$sims.list$fit.new, main "", xlab "Discrepancy for

actual data set", ylab "Discrepancy for perfect data sets", las 1)

abline(0,1, lwd 2)

We then compute a Bayesian p-value based on the posterior predictive
distributions of our discrepancy measures. In our graph, this corresponds
to the proportion of points above the line and for an adequate model, it
should be around 0.5 and not approach too much either toward 0 or 1.
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FIGURE 20.5 Posterior predictive check of the adequacy of the site occupancy model for
the gentian data based on the sum of absolute residuals. A well fitting model has an even
number of circles on either side of the 1:1 line.
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mean(out$sims.list$fit.new > out$sims.list$fit)
> mean(out$sims.list$fit.new > out$sims.list$fit)
[1] 0.3688333

The model seems to fit well, so we compare the known true values from
the data-generating process with what the site-occupancy analysis has
recovered.

cat("\n *** Known truth ***\n\n")

alpha.occ ; beta.occ ; alpha.p ; beta.p

sum(true.presence) # True number of occupied sites, to be compared with occ.fs

sum(apply(y, 1, sum) > 0) # Apparent number of occupied sites

cat("\n *** Our estimate of truth *** \n\n")

print(out, dig 3)

> cat("\n *** Known truth ***\n\n")

*** Known truth ***

> alpha.occ ; beta.occ ; alpha.p ; beta.p

[1] 0

[1] 3

[1] 0

[1] −5

> sum(true.presence) # True number of occupied sites, to be compared with occ.fs

[1] 75

> sum(apply(y, 1, sum) > 0) # Apparent number of occupied sites

[1] 31

> cat("\n *** Our estimate of truth *** \n\n")

*** Our estimate of truth ***

> print(out, dig 3)

Inference for Bugs model at "model.txt", fit using WinBUGS,

3 chains, each with 12000 iterations (first 2000 discarded), n.thin 5

n.sims 6000 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

alpha.occ 0.445 0.466 −0.417 0.127 0.427 0.744 1.394 1.001 3900

beta.occ 3.737 1.094 1.769 2.971 3.673 4.444 6.043 1.002 2600

alpha.p −0.255 0.259 −0.767 −0.432 −0.256 −0.084 0.256 1.001 6000

beta.p −5.514 0.817 −7.237 −6.030 −5.484 −4.955 −3.988 1.001 6000

occ.fs 76.752 5.812 62.000 74.000 78.000 81.000 85.000 1.001 5800

fit 218.370 6.399 204.297 214.500 218.800 222.600 229.900 1.001 6000

fit.new 217.376 7.246 201.900 212.900 217.700 222.200 230.600 1.001 6000

[ ... ]
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Thus, the site-occupancy species distribution model succeeds well in
recovering the true relationships between humidity and occurrence and
detection probability, respectively, which we built into the data. Particu-
larly impressive is its ability to estimate the true number of occupied sites:
gentians were only detected at 31 of the known 75 sites where they actu-
ally occurred, and the site-occupancy model estimates this number at 76.7,
with a 95% credible interval of 62–85. (Note that when analyzing my
simulated data set from the book website you will get slightly different
results because of Monte Carlo sampling error.)

Finally, we will graphically compare the results from the naïve and the
site-occupancy analysis with truth by plotting the true and estimated
relationships between occurrence probability of the Chiltern gentian and
site humidity (Fig. 20.6). This plot shows the mean predictions under the
models; credible intervals could be added if we wished so.

plot(humidity, exp(lin.pred) / (1 + exp(lin.pred)), ylim c(0,1), main "",

ylab "Occurrence probability", xlab "Humidity index", type "l", lwd 2,

col "red", las 1)

points(humidity, occ.prob, ylim c(0,1), type "l", lwd 2, col "black")

lin.pred2 < out$mean$alpha.occ + out$mean$beta.occ * humidity
points(humidity, exp(lin.pred2) / (1 + exp(lin.pred2)), ylim c(0,1), type

"l", lwd 2, col "blue")
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FIGURE 20.6 Comparison of true and estimated relationship between occurrence
probability and humidity in the Chiltern gentian (G. germanica) under a site occupancy
model (dashed line) and under the naïve approach that ignores detection probability
(dotted line). Truth is shown in solid line.
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It is evident from Fig. 20.6 that nonaccounting for detection in species
distribution models may lead one spectacularly astray. However, some
might argue that we have simulated a pathological case, and that one would
rarely find such a situation in nature. This may be true. But, we don’t know
until we have conducted the right analysis. And, we know that even a con-
stant detection probability <1 not only biases the apparent distribution in
conventional models but also biases low the strength of covariate relation-
ships. Also, given suitable data, the site-occupancy distribution model
can correct for that. This should make it a serious candidate for species dis-
tribution modeling when replicate observations are available from at least
some sites.

In practice, this very positive conclusion about the model and its imple-
mentation in WinBUGS needs to be moderated somewhat. Performance of
the model will be inferior with smaller samples (e.g., with fewer sites, a
smaller proportion of occupied sites or lower detection probability, or
fewer replicate visits) and presumably also in the presence of important
unmeasured covariates. On the application side, it must be said that
WinBUGS can be painful when fitting these slightly more complex models.
For instance, it is essential to provide adequate starting values, in particu-
lar, for the latent state (occupancy, the code bit z = zst). There may also be
prior sensitivity. For instance, altering the set B prior precision from 0.01
to 0.001 may cause WinBUGS to issue one of its dreaded trap messages
(e.g., TRAP 66 (postcondition violated)). Sometimes, they are produced
even with uniform or normal(0, 0.01) priors. Many other seemingly
innocent modeling choices may influence success or failure when fitting
a particular model to a given data set.

Hence, for suitable data, site-occupancy models in WinBUGS are great,
but a comprehensive analysis of a more complex model may have to be
accompanied by a few simulations to check the quality of the inference for
the particular case. In addition, sometimes youmust be prepared to do quite
some amount of painstaking trial and error until the codeworks. But then, to
a large part, this applies quite generally for more complex models, not just
site-occupancy models and not just to models fitted using WinBUGS.

20.4 SUMMARY

The site-occupancy model is an extended logistic regression that can
estimate true occurrence probability (ψ) and the factors affecting it,
while correcting for imperfect detection. The extension is represented by
the model component for detection probability (p): conventional logistic
regression is a special case, when p = 1. Site-occupancy models are the
only current framework for inference about species distributions that
model true rather than apparent distributions; the latter is the product
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of occurrence and detection probability (i.e., ψ × p). Our example shows
that not accounting for detection probability may lead to spectacularly
wrong inferences about the distribution of a species under a conventional,
naïve modeling approach. In contrast, the site-occupancy model applied
to replicated “presence–absence” data was better able to estimate the
true system state (site occupancy and covariate relationship).

EXERCISES
1. Prior sensitivity: Conduct a simple prior sensitivity analysis. Compare the

inference under the normal and the uniform sets of priors. Plot a
histogram of the posterior draws for each of the four primary model
parameters to see whether the uniform (−10, 10) priors were not too
restrictive to be uninformative.

2. Site and survey covariates: We have fitted a site covariate, i.e., one that varied
among sites but not among surveys. Incorporate a survey covariate into
simulation and analysis code, i.e., one that varies by individual survey. An
example might be an inventory conducted by different people with
differing and known experience. Experience could be rated on a continuous
scale from 0 to 1 and more than one person would be sent to each site.
Hint: A sampling covariate has the same 2-D-format as the observed
detection/nondetection data.

3. Swiss hare data: Collapse the hare counts of one particular year (e.g., 2000) to
binary data where a 1 indicates the observation of a “large population”
(say, a count ≥10). Estimate the proportion of sites inhabited by a large
population, i.e., one capable of producing a count ≥10. A site-occupancy
model will correct for the fact that a “large population”may appear small, i.
e., produce a count ≥10, or is missed altogether. You may fit a site covariate
such as elevation on the occurrence probability of “large” populations
(i.e., on ψ).

4. Simulation study: Extend the simulation in this chapter to see under which
conditions the site-occupancy model is superior in performance to a
binomial GLM. Things to vary might be the number of sites (e.g., 20, 50,
150, 500), number of replicate visits (e.g., 2, 3, 5, 10), true average
occupancy, and true average detection probability. This is a larger project
that could be part of a thesis.
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21.1 INTRODUCTION

Ecology has been defined as the study of distribution and abundance
(Andrewartha and Birch, 1954; Krebs, 2001). However, in nature, neither
of them can usually be observed without error, and methods may need to
be applied to infer the true states of distribution and abundance from
imperfect observations. In Chapter 20, we met a protocol, which we
called a metapopulation design, where the same quantity was assessed in
a similar way across R sites and T temporal replicates. We saw that
such a metapopulation design enables the application of site-occupancy
models, a kind of nonstandard generalized linear mixed model (GLMM)
with binary random effects, to estimate true species distribution free of the
distorting effects of detection probability. Temporal replicate observations
in a closed system allowed us to resolve the confounding between
occurrence and detection.

This chapter features another nonstandard GLMM where the random
effects distribution is different from normal, namely Poisson. As for the
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site-occupancy model, the random effects in this model have a precise
biological meaning, which is local population size in this case. Thus,
this model estimates abundance corrected for imperfect detection
from temporally and spatially replicated counts, rather than occurrence
from detection/nondetection observations as does the site-occupancy
model in Chapter 20.

Our ecological motivation in this chapter is that of Dutch sand lizards
(Lacerta agilis), one of the most widespread reptiles in large parts of
Western Europe (Fig. 21.1). For more than a decade, The Netherlands
have had a rather interesting reptile-monitoring program where volun-
teers walk transects of about 2 km length repeatedly during spring and
count all reptiles they see (Kéry et al., 2009). We will generate and
analyze data in the format collected in this scheme.

FIGURE 21.1 Pair of sand lizards (Lacerta agilis), Switzerland, 2006. (Photo: T. Ott)
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The typical question in monitoring programs is always “are things
getting better or worse?,” i.e., is there a trend over time in abundance
(or distribution)? The usual type of analysis to answer this question for
counts used to be linear regression, but since generalized linear models
(GLMs) have become fashionable, some sort of Poisson regression has
become the method of choice for the analysis of count data. And, as for
other ecological analyses, random effects have become popular and thus,
nowadays, inference from many time-series of animal count data is often
based on variants of Poisson mixed models (e.g., Link and Sauer, 2002;
Ver Hoef and Jansen, 2007).

When repeated counts are available, often only the maximum count is
analyzed, although this approach simply throws out valuable informa-
tion. In this chapter, we make full use of replicated counts and adopt
the binomial mixture model (also called the N-mixture model) of Royle
(2004a) to estimate true abundance, corrected for imperfect detection
(also see Dodd and Dorazio 2004; Royle, 2004b; Kéry et al., 2005; Royle
et al., 2005; Dorazio, 2007; Kéry, 2008; Wenger and Freeman, 2008; Joseph
et al., 2009). For simplicity, we will consider only data from a single
year, and hence, we assume population closure, but the model can also
be fitted to multiyear data and a trend in abundance can be estimated
directly (Royle and Dorazio, 2008, p. 4–7; Kéry and Royle, 2009; Kéry
et al., 2010).

First, the model: we assume that a count yij at site i and made during
survey j comes from a two-stage stochastic process. The first stochastic
process is the biological process that distributes the animals among the
sites. This process generates the site-specific abundance that we would
like to model directly but cannot because we hardly ever see all indivi-
duals. The standard statistical model for such data is the Poisson distribu-
tion, governed by the intensity (density) parameter λ, which is typically
conditional on a few habitat covariates. The result of this first stochastic
process is the local, site-specific abundance Ni. Given that true state Ni,
the second stochastic process is the observation process which, together
with Ni, determines the data actually observed, i.e., the counts yij. A nat-
ural model for the observation process in the presence of imperfect detec-
tion is the binomial distribution; given that there are Ni sand lizards
present and that each has a probability of pij to be observed at site i dur-
ing replicate survey j, the number of lizards actually observed is binomi-
ally distributed. Two important consequences are that (1) we typically
observe fewer than Ni lizards, and (2) the counts yij will vary automati-
cally from survey to survey even under identical conditions (Kéry and
Schmidt, 2008). Three important assumptions of the binomial mixture
model are that of population closure, independent and identical detection
probability for all individuals at site i and during survey j, except insofar
as differences among sites or surveys are modeled by covariates, and
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absence of double counts and other false positive errors. The effects of
violations of these assumptions are still being investigated (e.g., Joseph
et al., 2009).

In summary, the binomial mixture model to estimate abundance from
temporally and spatially replicated counts can be written succinctly in just
two lines:

Ni ∼Poisson ðλÞ Biological process yields true state
yij ∼Binomial ðNi, pijÞ Observation process yields observations

It is fascinating to note the similarity of this hierarchical model (Royle and
Dorazio, 2006, 2008) for abundance and that for occurrence, the site-occu-
pancy model from Chapter 20. Recognizing that in the site-occupancy
model, the observation process may also be described by a binomial distri-
bution (rather than by a Bernoulli), the sole thing that changes when we go
from the modeling of occurrence to that of abundance is the distribution
used to model the biological process, a Poisson instead of a Bernoulli. The
binomial mixture model can be described as a binomial GLMMwith a dis-
crete (Poisson-distributed) random effect or alternatively, as a logistic
regression for the count observations coupled with a Poisson regression
for the imperfectly observed abundances.

Furthermore, as in the site-occupancy model, covariate effects can be
modeled into the Poisson parameter λ via a log link function and into
the binomial success rate p via the logit link. We can add to the model
expressions such as logðλiÞ = α + β � xi and logitðpijÞ = α + β � xij, where xi
and xij are the values of a site-covariate measured at site i (xi) or of a sur-
vey-covariate measured at site i during survey j (xij). Of course, more than
a single covariate could be fitted and the covariates for detection can be of
both types.

Before we embark on our usual simulation-analysis exercise, we make
two important observations on the abundance parameter of the binomial
mixture model. First, even when correcting for imperfect detection (pij),
the interpretation of the abundance parameter Ni is not what we might
want it to be: the number of individuals that permanently reside within
a well-defined plot of land. The reason for why this is not so is that ani-
mals move around, so the effective sampling area will be greater than the
nominal sampling area. Hence, the estimate of Ni refers to a larger area,
and we don’t exactly know the size of it. The magnitude of this discre-
pancy depends on two things: the typical dispersal distances of the
study species and the time frame of the repeated surveys. The discrepancy
will be greater for greater dispersal and a longer total survey period. If we
want to circumvent this difficulty, other sampling and analysis protocols
must be used such as distance sampling (Buckland et al., 2001) or, more
recently, spatial capture–recapture methods (Efford, 2004; Borchers and

21. NONSTANDARD GLMMs 2256



Efford, 2008; Royle and Dorazio, 2008; Royle and Young, 2008; Efford
et al., 2009; Royle et al., 2009).

Second, when animals move through the sampling area randomly, thus
in effect violating the closure assumption, it appears that the estimate of Ni

does not refer to the number of animals that permanently reside within the
sample area, but to the number of animals that ever use an area during
the entire sampling period (Joseph et al., 2009). This reasoning is analo-
gous to the reasoning about the interpretation of the occupancy parameter
in site-occupancy models in the face of temporary emigration (MacKenzie
et al., 2006). In effect, it again makes the effective sampling area larger
than the nominal sampling area.

These issues are not a fault of the binomial mixture model; rather, even
in the absence of a formal framework for interpreting a count in the light
of both the biological and the observation process, we never know exactly
with which area the count is associated. Nor do we know by how much
movement inflates our counts relative to the number of individuals that
permanently reside within the area. Thus, a binomial mixture model
solves the problem of imperfect detection when interpreting (i.e., analyz-
ing) counts, but the issue of how exactly abundance should be interpreted
may still remain a challenge.

21.2 DATA GENERATION

In this example of the analysis of data collected from a metapopulation
design, we will choose a different format from that in Chapter 20. Instead
of a rectangular or horizontal format (remember the data matrix yij in the
site-occupancy analysis), we will assemble and analyze the data in a ver-
tical format and use a population index covariate to keep track, for each
count, of the population it was made in. This format is more convenient
when there are many missing values, i.e., in unbalanced designs, where
the number of replicate surveys is variable among sites. (It is fairly easy
to formulate the site-occupancy model in this format also and the code in
the current chapter may be used as a template. For an example of Win-
BUGS code for the binomial mixture model in horizontal format, see
Kéry, 2008.) Also note the similarity of this to traditional (normal)
repeated measures analysis of variance analysis, where some statistics
packages allow the replicate observations to be stored in parallel columns
(the horizontal format) and others prefer the observations in a single col-
umn (the vertical format) with an additional covariate that indexes “sub-
jects.” This reiterates the fact that both site-occupancy and binomial
mixture models are a kind of repeated-measures analysis.

To simulate our data, we assume that we surveyed 200 sites. We choose
a site covariate affecting the abundance of sand lizards and also their
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detection probability. We take vegetation cover this time and assume that
lizard abundance is highest at medium values: too open is bad, but too
dense vegetation is also bad.Wewillmodel this as a quadratic effect of vege-
tation density on abundance.

n.site < 200
vege < sort(runif(n = n.site, min = 1.5, max =1.5))

We construct the relationship between vegetation density and abundance
(Fig. 21.2).

alpha.lam <– 2 # Intercept

beta1.lam <– 2 # Linear effect of vegetation

beta2.lam <– −2 # Quadratic effect of vegetation

lam <– exp(alpha.lam + beta1.lam * vege + beta2.lam * (vege^2))

par(mfrow c(2,1))

plot(vege, lam, main "", xlab "", ylab "Expected abundance", las 1)

N <– rpois(n n.site, lambda lam)

table(N) # Distribution of abundances across sites

sum(N > 0) / n.site # Empirical occupancy

> table(N)# Distribution of abundances across sites

N
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FIGURE 21.2 Expected (top) and realized relationship (bottom) between sand lizard
abundance and vegetation cover. The expected abundance is shown as a black line in the
bottom panel and is the same as the realized abundance minus Poisson variability.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 19 20 21

57 12 11 7 7 16 8 13 14 12 9 9 7 4 5 3 2 2 1 1

> sum(N > 0) / n.site # Empirical occupancy

[1] 0.715

plot(vege, N, main "", xlab "Vegetation cover", ylab "Realized abundance")

points(vege, lam, type "l", lwd 2)

This concludes our description of the biological process: we have a ran-
dom process that distributes the sand lizards across sites, and we assume
that the result of this stochastic process at site i can be approximated by a
conditional Poisson distribution, with rate parameter λi, that itself depends
on vegetation density xi in a quadratic fashion.

Next, we need to simulate the observation process, i.e., something like a
“machine” that maps abundance Ni onto lizard counts yij. We assume that
the observation process is also affected by vegetation density: denser vege-
tation reduces the detection probability (Fig. 21.3 upper panel). I note in
passing that in the binomial mixture model, detection probability is
defined per individual animal, whereas in the occupancy model, it refers
to the probability to detect at least one among the Ni animals or plants
present at a site. In fact, there is a precise mathematical relationship
between the two kinds of detection probability, which we do not show
here (see Royle and Nichols, 2003; Dorazio, 2007).
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FIGURE 21.3 The relationship between vegetation cover and detection probability (top)
and the expected sand lizard counts (=apparent abundance; bottom). Truth is shown as a
black line in the bottom panel.
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par(mfrow c(2,1))

alpha.p <– 1 # Intercept

beta.p <– −4 # Linear effect of vegetation

det.prob <– exp(alpha.p + beta.p * vege) / (1 + exp(alpha.p + beta.p * vege))

plot(vege, det.prob, ylim c(0,1), main "", xlab "", ylab "Detection

probability")

Now for fun, let’s see the expected lizard count at each site in relation to
vegetation cover. The expected count at site i is given by the product of
abundance Ni and detection probability at that site pi. And let’s put it all
together and inspect the truth also.

expected.count < N * det.prob

plot(vege, expected.count, main "", xlab "Vegetation cover", ylab "Apparent

abundance", ylim c(0, max(N)), las 1)

points(vege, lam, type "l", col "black", lwd 2) # Truth

A conventional analysis would use some sort of Poisson regression
and model the expected count or apparent abundance. This is the bell-
shaped cloud in the lower panel of Fig. 21.3, where abundance and detec-
tion are confounded. Thus, compared with the truth represented by the
black line, a conventional analysis will underestimate average abundance
and (in our case) estimate maximum abundance at too low of a value of
vegetation cover. This is because the Poisson regression does not model
abundance but rather the product of expected abundance with detection
probability. This is hardly ever made explicit by authors and apparently
often not even recognized.

Now let’s simulate three replicate counts at each site and look at the
data.

R < n.site
T < 3 # Number of replicate counts at each site
y < array(dim = c(R, T))

for(j in 1:T){
y[,j] < rbinom(n = n.site, size = N, prob = det.prob)

}
y

A species (occurrence) distribution is fundamentally the same as an abun-
dance distribution, but with much reduced information: a species occurs
at all sites where abundance N > 0 (Royle et al., 2005; Dorazio, 2007).
Hence, any model of abundance is also a model of species distribution.
It is seldom useful to think of distribution as something separate from
abundance.
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sum(apply(y, 1, sum) > 0) # Apparent distribution (proportion occupied sites)

sum(N > 0) # True occupancy

> sum(apply(y, 1, sum) > 0)

[1] 126

> sum(N > 0)

[1] 143

Now stack the replicated counts on top of each other for a vertical data
format (i.e., convert the matrix to a vector)

C < c(y)

We also need a site index and a vegetation covariate that have the same
length as the variable C (for the observation model, i.e., to model p; see
WinBUGS code in section 21.3.). We will denote them by a p suffix in
the variable name.

site 1:R # ‘Short’ version of site covariate

site.p < rep(site, T) # ‘Long’ version of site covariate

vege.p < rep(vege, T) # ‘Long’ version of vegetation covariate

cbind(C, site.p, vege.p) # Check that all went right

Here is a quick and dirty conventional analysis of the maximum counts
assuming a Poisson distribution for the max(count) (A slightly better
alternative would, perhaps, be to assume a normal distribution for the
mean of the counts.):

max.count < apply(y, 1, max)

naive.analysis < glm(max.count ~ vege + I(vege^2), family poisson)

summary(naive.analysis)

lin.pred < naive.analysis$coefficients[1] + naive.analysis$coefficients[2] *

vege + naive.analysis$coefficients[3] * (vege*vege)

We compare truth and the naïve analysis in a graph (Fig. 21.4):

par(mfrow c(1,1))

plot(vege, max.count, main "", xlab "Vegetation cover", ylab "Abundance or

count", ylim c(0,max(N)), las 1)

points(vege, lam, type "l", col "black", lwd 2)

points(vege, exp(lin.pred), type "l", col "red", lwd 2)

Clearly, the predictions under the naïve analysis yield a biased picture of
the relationship between abundance and vegetation cover because sand
lizards are easier to see in more open vegetation.
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21.3 ANALYSIS USING WinBUGS

Now let’s see how the binomial mixture model can do better. As for the
site-occupancy model, a variety of binomial mixture models can be fitted
using maximum likelihood in the free Windows programs MARK and
PRESENCE. R code for obtaining maximum likelihood estimates under
the model can be found in Kéry et al. (2005), Royle and Dorazio (2008)
and its Web appendix, and Wenger and Freeman (2008). Furthermore,
the model can be fitted using functions in the new R package unmarked
(Fiske and Chandler, 2010). We show a Bayesian solution here.

# Define model

sink("BinMix.txt")

cat("

model {

# Priors

alpha.lam ~ dnorm(0, 0.1)

beta1.lam ~ dnorm(0, 0.1)

beta2.lam ~ dnorm(0, 0.1)

alpha.p ~ dnorm(0, 0.1)

beta.p ~ dnorm(0, 0.1)
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FIGURE 21.4 Relationship between abundance of Dutch sand lizards and vegetation
cover as inferred by a naïve analysis not accounting for detection probability. Circles show
the maximum count at each site and the black solid line the predicted relationship under the
naïve model. Truth is a dashed line.
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# Likelihood

# Biological model for true abundance

for (i in 1:R) { # Loop over R sites

N[i] ~ dpois(lambda[i])

log(lambda[i]) < alpha.lam + beta1.lam * vege[i] + beta2.lam * vege2[i]

}

# Observation model for replicated counts

for (i in 1:n) { # Loop over all n observations

C[i] ~ dbin(p[i], N[site.p[i]])

logit(p[i]) < alpha.p + beta.p * vege.p[i]

}

# Derived quantities

totalN < sum(N[]) # Estimate total population size across all sites

}

",fill TRUE)

sink()

# Bundle data

R dim(y)[1]

n dim(y)[1] * dim(y)[2]

vege2 (vege * vege)

win.data < list(R R, vege vege, vege2 vege2, n n, C C, site.p

site.p, vege.p vege.p)

As for the site-occupancy model, clever starting values for the latent states
(the Ni’s) are essential. We use the maximum count at each site as a first
guess of what N might be and add 1 to avoid zeros. WinBUGS cannot use
zeroes for the N value for the binomial and will crash if you initialize the
model with zeroes.

# Inits function

Nst < apply(y, 1, max) + 1

inits < function(){list(N Nst, alpha.lam rnorm(1, 0, 1), beta1.lam rnorm(1, 0,

1), beta2.lam rnorm(1, 0, 1), alpha.p rnorm(1, 0, 1), beta.p rnorm(1, 0, 1))}

# Parameters to estimate

params < c("N", "totalN", "alpha.lam", "beta1.lam", "beta2.lam", "alpha.p",

"beta.p")

# MCMC settings

nc < 3

nb < 200

ni < 1200

nt < 5
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# Start Gibbs sampler

out < bugs(win.data, inits, params, "BinMix.txt", n.chains nc, n.iter ni, n.burn

nb, n.thin nt, debug TRUE)

Here is a first note on the practical implementation of such slightly
more complex models in WinBUGS: This code works fine and appears
to converge surprisingly quickly for our data set. But as an illustration
of how “difficult” WinBUGS can sometimes be, try widening the range
of the priors by increasing some or all of the precisions from 0.1 to 0.01:
WinBUGS will crash. Many modeling choices that are not wrong, but
simply not chosen in an optimal manner, can throw you off the track in
your attempts to exploit the great modeling freedom that WinBUGS gives
you in principle. It is true that with experience, the reasons for many
crashes can be diagnosed, but for a beginner, they may represent major
stumbling blocks.

Let’s now compare the known true values with what the analysis has
recovered.

cat("\n *** Our estimate of truth *** \n\n")

print(out, dig 2)

cat("\n *** Compare with known truth ***\n\n")

alpha.lam ; beta1.lam ; beta2.lam ; alpha.p ; beta.p

sum(N) # True total population size across all sites

sum(apply(y, 1, max)) # Sum of site max counts

> cat("\n *** Our estimate of truth *** \n\n")

*** Our estimate of truth ***

> print(out, dig 2)

Inference for Bugs model at "BinMix.txt", fit using WinBUGS,

3 chains, each with 1200 iterations (first 200 discarded), n.thin 5

n.sims 600 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rha n.eff

[ ... ]

totalN 957.01 160.99 683.95 836.00 948.00 1066.00 1282.22 1.01 310

alpha.lam 2.47 0.18 2.11 2.35 2.48 2.59 2.80 1.00 340

beta1.lam 0.71 0.23 0.27 0.54 0.72 0.85 1.17 1.01 480

beta2.lam 2.81 0.23 3.25 2.97 2.80 2.65 2.33 1.02 150

alpha.p 0.14 3.16 5.80 2.10 0.06 2.57 6.32 1.00 600

beta.p 0.14 2.95 5.95 2.15 0.17 1.96 5.76 1.00 600

deviance 5844.93 4799.46 1385.70 2547.73 4475.00 7278.66 18910.75 1.00 600

[ ... ]

>

> cat("\n *** Compare with known truth ***\n\n")
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*** Compare with known truth ***

> alpha.lam ; beta1.lam ; beta2.lam ; alpha.p ; beta.p

[1] 2

[1] 2

[1] 2

[1] 1

[1] 4

> sum(N) # True total population size across all sites

[1] 1073

> sum(apply(y, 1, max))# Sum of site max counts

[1] 481

With truth being 1073 sand lizards, the estimate of total N (957 lizards)
appears decent with respect to the sum of the max counts across all 200
sites, which was only 481. However, there is a slight correspondence for
the coefficients in the biological process model (alpha.lam, beta1.lam,
beta2.lam), but no similarity at all for the coefficients in the observation
process model … That is disappointing! What has happened? Note again
that WinBUGS claims that the chains have converged.

Seeing these results for the first time, I couldn’t believe that this would go
wrong because I knew that these parameters should all be identifiable (and
were so for an only slightly different model in Kéry, 2008). I tried out sev-
eral things to see whether I could get a better result; I increased sample sizes
(e.g., to R = 2000 and T = 10), dropped the quadratic term in the biological
process model, but none of those helped. In the end, I tried out an alterna-
tive set of uniform priors instead of the fairly uninformative normals used
previously. I also avoided the WinBUGS logit and defined that function
myself (see WinBUGS tricks in the Web appendix). And this worked!

That is, I fitted the following version of the model, where I also added
code to assess model goodness of fit using a posterior predictive check
for a Chi-square discrepancy measure. Convergence in a binomial
mixture model is attained notoriously much more slowly than, say, in a
site-occupancy model. Therefore, I ran considerably longer chains.

# Define model with new uniform priors

sink("BinMix.txt")

cat("

model {

# Priors (new)

alpha.lam ~ dunif( 10, 10)

beta1.lam ~ dunif( 10, 10)

beta2.lam ~ dunif( 10, 10)

alpha.p ~ dunif( 10, 10)

beta.p ~ dunif( 10, 10)
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# Likelihood

# Biological model for true abundance

for (i in 1:R) {

N[i] ~ dpois(lambda[i])

log(lambda[i]) < alpha.lam + beta1.lam * vege[i] + beta2.lam * vege2[i]

}

# Observation model for replicated counts

for (i in 1:n) {

C[i] ~ dbin(p[i], N[site.p[i]])

lp[i] < alpha.p + beta.p * vege.p[i]

p[i] < exp(lp[i])/(1+exp(lp[i]))

}

# Derived quantities

totalN < sum(N[])

# Assess model fit using Chisquare discrepancy

for (i in 1:n) {

# Compute fit statistic for observed data

eval[i]< p[i]*N[site.p[i]]

E[i] < pow((C[i] eval[i]),2) / (eval[i] + 0.5)

# Generate replicate data and compute fit stats for them

C.new[i] ~ dbin(p[i], N[site.p[i]])

E.new[i] < pow((C.new[i] eval[i]),2) / (eval[i] + 0.5)

}

fit < sum(E[])

fit.new < sum(E.new[])

}

",fill TRUE)

sink()

# Parameters to estimate

params < c("N", "totalN", "alpha.lam", "beta1.lam", "beta2.lam", "alpha.p",

"beta.p", "fit", "fit.new")

# MCMC settings

nc < 3

nb < 10000

ni < 60000

nt < 50 # Takes about 20 mins on my laptop

# Start Gibbs sampler

out < bugs(win.data, inits, params, "BinMix.txt", n.chains nc, n.iter ni, n.burn

nb, n.thin nt, debug TRUE)
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Because convergence in Bayesian analyses of binomial mixture models
may be hard to achieve, we first check whether this run has converged.
We find that the specifications of this Markov chain Monte Carlo
(MCMC) run seem to have been long enough. The Markov chains of all
primary, structural model parameters seem to have converged, only those
for some latent (local abundance Ni) parameters have not converged. Their
convergence is of lesser concern, unless of course the chains for local abun-
dance of your favorite population happened not to converge.

print(out, dig = 3)
which(out$summary[,8] > 1.1)

Next, we check whether the uniform prior on beta.p was not too restric-
tive by producing a histogram of the posterior (the posterior of this para-
meter seemed to come closest to the bounds of the uniform prior).
However, there is no indication for any mass being piled up toward one
of the bounds (Fig. 21.5), and therefore, we conclude that there was no
undue influence of this prior on our inference.

hist(out$sims.list$beta.p, col = "grey", main = "", xlab = "")

Next, we check the adequacy of the model for the data set first using
a posterior predictive check, before inspecting the parameter estimates
(Fig. 21.6):

plot(out$sims.list$fit, out$sims.list$fit.new, main "", xlab "Discrepancy

measure for actual data set", ylab "Discrepancy measure for perfect data sets")

abline(0,1, lwd 2, col "black")
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FIGURE 21.5 Posterior distribution of the slope estimate of sand lizard detection
probability on vegetation cover (beta.p).
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mean(out$sims.list$fit.new > out$sims.list$fit)

> mean(out$sims.list$fit.new > out$sims.list$fit)

[1] 0.1906667

Both the graphical check and the Bayesian p-value, indicate an adequate
model for our data set, so we inspect the parameter estimates and com-
pare them with truth in the data-generating process.

cat("\n *** Our estimate of truth *** \n\n")

print(out, dig 2)

cat("\n *** Compare with known truth ***\n\n")

alpha.lam ; beta1.lam ; beta2.lam ; alpha.p ; beta.p

sum(N) # True total population size across all sites

sum(apply(y, 1, max)) # Sum of site max counts

> cat("\n *** Our estimate of truth *** \n\n")

*** Our estimate of truth ***

> print(out, dig 2)

Inference for Bugs model at "BinMix.txt", fit using WinBUGS,

3 chains, each with 60000 iterations (first 10000 discarded), n.thin 50

n.sims 3000 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

N[1] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1

[ ... ]
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FIGURE 21.6 Posterior predictive check of the binomial mixture model using a
Chi square discrepancy.
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N[200] 2.26 3.07 0.00 0.00 1.00 3.00 11.00 1.03 290

totalN 1014.12 268.27 683.00 822.00 942.00 1136.25 1741.17 1.02 160

alpha.lam 1.96 0.07 1.82 1.91 1.96 2.00 2.10 1.00 1300

beta1.lam 1.81 0.26 1.34 1.62 1.79 1.99 2.36 1.01 190

beta2.lam 1.99 0.33 2.64 2.22 1.99 1.76 1.35 1.01 280

alpha.p 1.12 0.17 0.78 1.02 1.13 1.24 1.44 1.01 310

beta.p 3.94 0.49 4.94 4.28 3.92 3.59 3.02 1.01 260

fit 153.07 10.64 133.10 145.70 152.70 160.10 175.10 1.00 550

fit.new 139.98 16.73 110.60 128.00 139.10 150.60 176.20 1.01 290

[ ... ]

DIC info (using the rule, pD var(deviance)/2)

pD 209.2 and DIC 1161.9

DIC is an estimate of expected predictive error (lower deviance is better).

>

> cat("\n *** Compare with known truth ***\n\n")

*** Compare with known truth ***

> alpha.lam ; beta1.lam ; beta2.lam ; alpha.p ; beta.p

[1] 2

[1] 2

[1] 2

[1] 1

[1] 4

> sum(N) # True total population size across all sites

[1] 1073

> sum(apply(y, 1, max))# Sum of site max counts

[1] 481

Our model recovered adequate parameter estimates for the covariate
relationships and estimated a total population size across all 200 sites of
1014 sand lizards (95% CI: 683–1741). As a comparison, truth was 1073
lizards, and the sum of the max counts, a conventional estimate of total
population size, was only 481.

Figure 21.7 gives a graphical comparison between the parameter
estimates under the binomial mixture model and the values of the asso-
ciated data-generating parameters. It shows again that the model does a
good job at estimating abundance.

par(mfrow c(3,2))

hist(out$sims.list$alpha.lam, col "grey", main "alpha.lam", xlab "")

abline(v alpha.lam, lwd 3, col "black")

hist(out$sims.list$beta1.lam, col "grey", main "beta1.lam", xlab "")
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abline(v beta1.lam, lwd 3, col "black")

hist(out$sims.list$beta2.lam, col "grey", main "beta2.lam", xlab "")

abline(v beta2.lam, lwd 3, col "black")

hist(out$sims.list$alpha.p, col "grey", main "alpha.p", xlab "")

abline(v alpha.p, lwd 3, col "black")

hist(out$sims.list$beta.p, col "grey", main "beta.p", xlab "")

abline(v beta.p, lwd 3, col "black")

hist(out$sims.list$totalN, col "grey", , main "Total N", xlab "")

abline(v sum(N), lwd 3, col "black")

Here is a second note on the practical implementation of such slightly
more complex models in WinBUGS: We saw that a relatively slight change
(here, in the priors) had a very large effect on the inference. This could also
be called an example of prior sensitivity of the inference. It is definitely a
good idea to check the Bayesian analysis of more complex models by
exploring “neighboring model regions.” Vary the likelihood (e.g., the cov-
ariates that are in or not), priors, model parameterization or other things
slightly and see whether your inference is robust.
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FIGURE 21.7 Comparison of estimates under the binomial mixture model (posterior
distributions) and truth in the data generating algorithm (black line) for six estimands.
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In our case, we now get rather decent estimates fairly close to the
known truth. Hence, we illustrate a few further inferences that can be
made under the model by looking at a few further posterior distributions.
In Fig. 21.7, we have seen those for some primary parameters of the
model. One of the most interesting things in the binomial mixture
model is that site-specific estimates, Ni, can be obtained. Let’s now have
a look at these estimates of local abundance for a random sample of sites
(Fig. 21.8).

sel < sort(sample(1:200, size 4))

sel

par(mfrow c(2,2))

hist(out$sims.list$N[,sel[1]], col "grey", xlim c(Nst[sel[1]] 1,

max(out$sims.list$N[,sel[1]])), main "Site 48", xlab "")

abline(v Nst[sel[1]] 1, lwd 3, col "red")
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FIGURE 21.8 Comparison of estimates of local abundance (Ni) under the binomial
mixture model (posterior distributions) and the maximum count (black line) at a sample of
four sites.
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hist(out$sims.list$N[,sel[2]], col "grey", xlim c(Nst[sel[2]] 1,

max(out$sims.list$N[,sel[2]])), main "Site 95", xlab "")

abline(v Nst[sel[2]] 1, lwd 3, col "red")

hist(out$sims.list$N[,sel[3]], col "grey", xlim c(Nst[sel[3]] 1,

max(out$sims.list$N[,sel[3]])), main "Site 134", xlab "")

abline(v Nst[sel[3]] 1, lwd 3, col "red")

hist(out$sims.list$N[,sel[4]], col "grey", xlim c(Nst[sel[4]] 1,

max(out$sims.list$N[,sel[4]])) , main "Site 137", xlab "")

abline(v Nst[sel[4]] 1, lwd 3, col "red")

> sel

[1] 48 95 134 137

The posterior distributions show the likely size of the local populations
(Ni) of sand lizards at sites number 48, 95, 134, and 137. We can compare
this to the observed data at these sites:

y[sel,]
> y[sel,]

[,1] [,2] [,3]
[1,] 3 3 3
[2,] 6 7 9
[3,] 7 7 3
[4,] 1 3 2

And since we know truth, why not have a look at it? Here are the true
population sizes at these sites:

N[sel]
> N[sel]
[1] 3 9 21 8

Compare this with the estimates of these local Ni:

print(out$mean$N[sel], dig = 3)
> print(out$mean$N[sel], dig = 3)
[1] 3.00 9.34 15.31 9.31

Finally, Fig. 21.9 shows a comparison of the relationship between sand
lizard abundance and vegetation cover using a naïve analysis and
under the binomial mixture model.

par(mfrow c(1,1))

plot(vege, N, main "", xlab "Vegetation cover", ylab "Abundance", las 1,

ylim c(0,max(N)))
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points(sort(vege), lam[order(vege)], type "l", col "black", lwd 2)

points(vege, exp(lin.pred), type "l", col "red", lwd 2)

BinMix.pred <– exp(out$mean$alpha.lam + out$mean$beta1.lam * vege +

out$mean$beta2.lam * (vege*vege))

points(vege, BinMix.pred, type "l", col "blue", lwd 2)

21.4 SUMMARY

Binomial mixture modeling in metapopulation designs offers great
opportunities for the estimation of animal or plant abundance corrected
for imperfect detection probability (p). Essentially, the model is simply a
generalized version of the familiar Poisson regression model that accom-
modates imperfect detection; when p = 1, we are back to a classical
Poisson generalized linear model. However, it is more complex than a
simpler Poisson regression and even more so than a conventional hier-
archical Poisson regression or GLMM (see Chapter 16). There are many
ways in which the practical implementation in WinBUGS may fail, and
a lot of trial and error and model checking may be required. Nevertheless,
if replicate count data are available from a number of sites, you should
absolutely try out this new and exciting model.
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FIGURE 21.9 Comparison of the estimated abundance vegetation relationship in Dutch
sand lizards under a naïve approach that ignores imperfect detection (red) with that under
the binomial mixture model (blue). Truth is shown in black: circles are the realized
abundances at each site (Ni) and the black line is their expectation (as in Fig. 21.1).
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EXERCISES
1. Survey covariates: In metapopulation designs, we frequently have

detection-relevant covariates that vary by site and survey (i.e., survey
covariates). For our Dutch sand lizards, one such covariate is ambient
temperature (Kéry et al., 2009): presumably, lizard activity depends on the
temperature and this affects their detection probability. Modify the data
generation code as well as the WinBUGS model to include the effects of a
temperature covariate.

2. Prior sensitivity: Play around with prior settings in the last model we ran.
Change the uniform distributions to have a very wide range and see
whether the model converges. Conversely, set the range very narrow and
see whether the inference is affected, i.e., whether the parameter estimates
are changed.

3. Swiss hare data: Fit the binomial mixture model to the hare data from a
single year (e.g., 2000) and see whether there is a difference in the
probability of detection in grassland and arable areas. By what proportion
will mean or max counts underestimate true population size?

4. Simulation exercise: The binomial mixture model was described in 2004
(Royle, 2004a) and so is still fairly young. Five years later, it had been
applied in hardly more than 10 publications, and much remains to be found
out about the model that can be tackled by simulation studies. For instance,
doing a simulation study (vary R, T, covariate effects, and other things) for
models with covariates similar as what was suggested for the site-
occupancy model (Exercise 4 in Chapter 20) might be worthwhile. This is
another serious study that could easily yield a decent article or thesis
chapter.
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C H A P T E R

22
Conclusions

Now that you are through, it is perhaps worth looking back and seeing
where you have come. I hope that you have achieved four things. First,
you have achieved some practical understanding for how Bayesian infer-
ence with vague priors works and why Bayesian inference is simply so
useful (Link and Barker, 2010). Second, you have gained plenty of practice
with WinBUGS, the most widely used general-purpose Bayesian software.
Third, I imagine that many of you have obtained a much deeper under-
standing for what you have been doing for years: fitting linear, general-
ized linear, and mixed models. In addition to the insights provided by the
simulation of data sets, it is the natural way of model specification in the
BUGS language that makes WinBUGS uniquely suitable to really under-
stand these models. So, funny perhaps for a book about applied Bayesian
modeling, I think that one of its greatest benefits for you may be some-
thing more general: an improved understanding for linear models and
their extensions.

Finally, and fourth, I hope you have gained a taste for modern statisti-
cal modeling. In statistics classes at university, many ecologists have only
seen a sad caricature of statistics. We were taught to think in terms of a
decision tree for black-box procedures. The tree started with a question
like “Are the data normally distributed?” and its terminal branches pre-
scribed a t-test or a Kruskal–Wallis test or an analysis of covariance with
homogeneous slopes (or else we were in deep trouble …). And then, a
p-value popped up somewhere, and if it was <0.05, life was good. This
is a terrible way of doing statistics, boring and devoid of any creative
energy. It also does great injustice to the inspiring activity of trying to
make sense of incomplete and imperfect observations made in a noisy
world. Perhaps it should come as no surprise that many “sensible” people
hate and distrust statistics.

To me, collaborating with some statistician colleagues, and especially
starting to use WinBUGS, has been an eye-opener. I have come to see
data analysis as equivalent with the creation of a statistical model that
attempts to emulate the main features of the stochastic process that

Introduction to WinBUGS for Ecologists
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could conceivably have generated our data. We then study features of our
statistical model representation of that part of the world we are interested
in, such as body mass of peregrines, snout-vent length of snakes, popula-
tion size of lizards, or the distribution of a plant. By doing so, we hope to
learn something about that world, something that may be hidden under-
neath the tangle of detail, distortion, and noise that is a hallmark of most
data sets.

Many modern statisticians build their models in an organic way, with-
out ever thinking about that old decision tree that many of us ecologists
have come to learn by heart. They choose their ingredients from a vast
array and assemble their models in a modular way: take a little of this
distribution and add a little of that feature to the linear predictor. This
is a much more creative and inspiring act than simply working our way
along the branches of that old tree. And one that likely leads to much
improved inference and mechanistic insight, since the model can be
adapted to the particular situation at hand rather than the converse,
with us having to shoehorn reality into the conceptual box provided by
our statistics program. Thus, modern statistical analysis means to build
one’s own custom models.

Unfortunately, I doubt whether most ecologists will ever be sufficiently
numerate to fit their custom models by maximum likelihood, at least, if
they have to specify themselves the likelihood of their model in an explicit
way. This is where WinBUGS comes in. It is the only software I know that
allows the average, somewhat numerate ecologist to conduct his or her
own creative statistical modeling. Therefore, again, I believe that Win-
BUGS has the potential to free the statistical modeler in us. Even without
the benefits of the Bayesian paradigm of statistical inference, this would be
enough for me to recommend WinBUGS to any ambitious quantitative
ecologist.

Where will you go from here? I hope that my book enables you to better
tackle more advanced books on ecological modeling, such as by Royle and
Dorazio (2008), King et al. (2009), or Link and Barker (2010). Much of this
advanced modeling is based on the powerful notion of hierarchical models
(HMs; e.g., Royle and Dorazio, 2006, 2008). HMs describe observed data
as the result of a series of linked stochastic processes, whose outcomes
may be observed or unobserved, i.e., latent. HMs are very powerful to
understand and predict complex ecological systems. They can be fitted
also using frequentist methods (e.g., Lee et al., 2006; Ponciano et al.,
2009), but their implementation in WinBUGS is much more straightfor-
ward and arguably easier to understand for an ecologist. The reason for
this is that in the BUGS language, a complex model is naturally broken
apart into hierarchically linked submodels. Indeed, in this book, we
have seen many instances of HMs: all the models containing random
effects and more particularly the site-occupancy and binomial mixture
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models for inference about metapopulation distribution and abundance
(Chapters 20 and 21). In these final chapters, we have just about reached
the level of modeling where the book by Royle and Dorazio (2008) starts.

Another direction that you may want to explore is nonlinear models
and especially nonlinear mixed models (Pinheiro and Bates, 2000).
In this book, we have exclusively adopted linear statistical models,
but there is no reason to restrict the deterministic part of our system
description to be additive. Nonlinear models may be more realistic repre-
sentations of a study system and may yield better predictions, especially
outside of the observed range of covariates.

Finally, I have no doubts that many Bayesians would accuse me of
being Bayesian only in a purely opportunistic way. In this book, we
have used the Bayesian computing machinery as a handy way of fitting
sometimes complex models without ever really taking advantage of that
true hallmark of Bayesian inference: the ability to formally combine the
information contained in the data with all available knowledge about
the study system. That is, we don’t really use informative priors. This is
true, and I believe that much can be gained by not feigning ignorance
about the system analyzed in the way that inference by maximum likeli-
hood or Bayesian analysis with vague priors does. Indeed, especially with
the small data sets that are so typical for ecology, much may be gained in
terms of precision of the estimates and parameter estimability when infor-
mative priors are used. It seems likely that in the future, we will increas-
ingly see Bayesian analyses with informative priors.

PerhapsWinBUGSmay not allow you to go all the way there. WinBUGS
may be too slow for your data set, you may never get convergence, be
caught in a trap, or just lose the patience when WinBUGS behaves
just like a 15-year old. Also, new programs are likely to be developed
and improved in the future, such as OpenBugs (http://mathstat.helsinki.fi/
openbugs/), AD Model Builder (http://admb-foundation.org/), JAGS (http://
www-fis.iarc.fr/~martyn/software/jags/), PyMC (http://code.google.com/p/
pymc/), among others, and they may eventually be even more accessible
to ecologists than WinBUGS is now and offer greater computing power.
Or, you may learn how to code your own Markov chain Monte Carlo
samplers and perhaps use a general programming language such as
Fortran or C++, which may speed up your Bayesian computations by
orders of magnitude relative to what you can achieve in WinBUGS. But
even then, I believe that for many of you, WinBUGS will have achieved
one important thing: it will have changed forever the way in which you
think about, and conduct, statistical modeling.
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A P P E N D I X

A List of WinBUGS Tricks

I provide here a list of tips that hopefully allow you to love WinBUGS
more unconditionally. I would suggest you skim over the list now and
then refer back to it later as necessary.

1. Do read the manual: WinBUGS may not have the best documentation
available for a software, but its manual is nevertheless very useful. Be
sure to at least skim over most of it once when you start getting into
WinBUGS (i.e., now for many of you), so you may remember that the
manual has something to say about a particular topic when you need
it. Don’t forget the sections entitled “Tricks: Advanced Use of the
BUGS Language” and “Tips and Troubleshooting.”

2. How to begin: When starting a new analysis, always start from a
template of a similar analysis. Only ever try to write an analysis from
scratch if you want to test yourself.

3. Initial values 1: The wise choice of inits can be the key to success or
failure of an analysis in WinBUGS, although we don’t see this so much
in the fairly simple models in this book (the nonstandard generalized
linear mixed models in Chapters 20 and 21 are an exception). With
more complex models, WinBUGS needs to start the Markov chains not
too far away from their stationary distribution or it will crash or not
even start to update. Of course, the requirement to start the chains
close to the solution goes counter the requirement to start them at
dispersed places to assess convergence, so some reasonable
intermediate choice is important.

4. Initial values 2: Inits must not be outside of the possible range of a
parameter. For instance, negative inits for a parameter that has prior
mass only for positive values (such as a variance) will cause WinBUGS
to crash and so do inits outside of the range of a uniform prior.

5. Be ignorant, but not too ignorant: When you want your Bayesian inference
to be dominated by your data and choose priors intended to be vague,
don’t specify too much ignorance, otherwise traps may result or
convergence may not be achieved. For instance, don’t specify the limits
of a uniform prior or the variance of a normal prior to be too wide.
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6. Missing values (NAs): NAs are not an issue in this book, since they
do not occur in our “perfect” data sets. However, in your real-world
data sets, there will always be NAs. In WinBUGS, NAs are dealt
with less automatically than in conventional stats programs with
which you are likely familiar; hence, it is important to know how to
deal with them: briefly, missing responses (i.e., missing y s) are no
problem, but NAs in the explanatory variables (the x s) need
attention. A missing response is simply estimated, and indeed, adding
missing responses for selected covariate values is one of the simplest
ways to form predictions for desired values of explanatory variables.
On the other hand, a missing explanatory variable must either be
replaced with some number, e.g., the mean observed value for that
variable, or else given some prior distribution. In general, the former
is easier and should not pose a problem unless the number of missing
x s is large.

7. Think in a box (and know your box): When coding an analysis in
WinBUGS, you often have to deal with data that come in arrays that
have more than one dimension. For instance, when analysing animal
counts from different sites, over several years, and taken at various
months in a year, it may be useful to format them into a three-
dimensional array. Some covariates of such an analysis will then have
two or even three dimensions, too. Obviously, you must then be
absolutely clear about the dimensions of theses “boxes” in which your
data are and not get confused by the indexing of the data. In my
experience, knowing how to format data into such arrays and then not
getting lost is one of the most difficult things to learn about the routine
use of WinBUGS.

8. Know your box (2): In “serious” analyses, your modeling often
requires the data to be formatted in some multidimensional array. For
instance, for a multispecies version of a site-occupancy model (see
Chapter 20), you have at least three dimensions corresponding to
species (i), site (j), and replicate survey (k). It appears that how you
build your array and, especially, how you loop over that array in
the definition of the likelihood can make a huge difference in terms of
the speed with which your Markov chains in WinBUGS evolve. It
appears that you should loop over the longest dimension first and over
the shortest last. For instance, if you have data from 450 sites, 100
species, and for two surveys each, then it appears best to format the
data as y[j, i, k] and then loop over sites (j) first, then over species (i),
and finally over replicate surveys (k).

9. Don’t define things twice: Every parameter in WinBUGS can only be
defined once. For instance, writing y ~ dnorm(mu, tau) and then
adding y[3] < 5 will cause an error. There is a single exception to
this rule, and that is the transformation of the response by some

A LIST OF WinBUGS TRICKS280



function such as the log() or abs(). So to conduct an analysis of a
log-transformed response, you may write y < log(y) and then
y ~ dnorm(mu, tau). Beware of inadvertently defining quantities
multiple times when erroneously putting them within a loop that they
don’t belong.

10. logit function: In more complex models, I have fairly often experienced
problems when using WinBUGS’ own logit function, for instance,
with achieving convergence (Actually, problems may arise even with
fairly simple models.). Therefore, it is often better to specify that
transformation explicitly by logit.p[i] < log(p[i] / (1 – p[i])),
p[i] < exp(logit.p[i]) / (1 + exp(logit.p[i])) or p[i] < 1 /
(1 + exp( logit.p[i])).

11. Stabilized logit: To avoid numerical overflow or underflow, you
may “stabilize” the logit function by excluding extreme values
(B. Wintle, pers. comm.). Here’s a sketch of how to do that. The Gibbs
sampling will typically get slower, but at least WinBUGS will be
less likely to crash:

logit(psi.lim[i]) < lpsi.lim[i]
lpsi.lim[i] < min(999, max( 999, lpsi[i]))
lpsi[i] < alpha.occ + beta.occ * something[i]

12. Truncated normals: Similarly, in log- or logit-normal mixtures (which
we see when introducing a normal random effect into the linear
predictor of a Poisson or binomial generalized linear model), you may
want to truncate the zero-mean normal distribution, e.g., at ±20 (Kéry
and Royle, 2009).

13. Tinn-R special: Tinn-R is a popular R editor. Users of Tinn-R 2.0 (or
newer) may have problems writing the text file containing the BUGS
model description with the sink() function; Tinn-R adds to that file
some gibberish that will cause WinBUGS to crash. You must then use
an alternative way of writing the model file. As an example, here is a
workaround for the BUGS description of the model of the mean in
chapter 5 that should be compatible with Tinn-R (thanks to Wesley
Hochachka):

modelFilename = 'model.txt'
cat("
model of the mean {

# Priors
population.mean ~ dunif(0,5000)
precision < 1 / population.variance
population.variance < population.sd * population.sd
population.sd ~ dunif(0,100)
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# Likelihood
for(i in 1:nobs){

mass[i] ~ dnorm(population.mean, precision)
}
}
",fill=TRUE, file=modelFilename)

An alternative solution is given by Jérôme Guélat: The “R send”
functions available in Tinn-R allow sending commands into R.
However the “(echo=TRUE)” versions of these functions should not be
used when sending the sink() function and its content into R. For
example: one should use “R send: selection” instead of “R send:
selection (echo=TRUE)”.

14. Trial runs first: Run very short chains first, e.g., of length 12 with a
burnin of 2, just to confirm that there are no coding or other errors.
Only when you are satisfied that your code works and your model
does what it should, increase the chain length to get a production run.

15. Use of native WinBUGS: A key feature of this book is that we run
WinBUGS exclusively from within program R. I believe that this is
much more efficient than running native WinBUGS. However, with
some complex models and/or large sets, WinBUGS will be extremely
slow. This may be the one exception where it is perhaps more
efficient to run WinBUGS natively. You may still prepare the analysis
in R as shown in this book, but only request WinBUGS to run
very short Markov chains. When you set the option DEBUG = TRUE
in the function bugs(), then WinBUGS stays open after the
requested number of iterations have been conducted. Then, you can
request more iterations to be executed directly in WinBUGS (i.e.,
using the Update Tool; see Chapter 4). You can then incrementally
increase the total chain length and monitor convergence as you go.
Once convergence has been achieved, do the required additional
number of iterations and save them into coda files. You must do
this later, since when exiting WinBUGS, the bugs() function only
imports back into R the (small) number of iterations that you originally
requested. When you have your valuable samples of your complex
model’s posterior distribution in coda files, use facilities provided
by R packages boa or coda to import them into R and process
them (e.g., compute Brooks–Gelman–Rubin convergence tests or
posterior summaries for inference about the parameters).

16. Be flexible in your modeling: Try out different priors, e.g., for parameters
representing probabilities try a uniform(0,1), a flat normal for the logit
transform, or a Beta(1,1). Sometimes, and for no obvious reason, one
may work while another doesn’t. Similarly, WinBUGS is very sensitive
to changes in the parameterization of a model. Sometimes, one way of
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writing the model may work and the other doesn’t, for unknown
reasons, or one works much faster than the other (which, usually, is
mostly an issue for more complex models than most of those featured
in this book).

17. Scale continuous covariates: Scaling continuous covariates, so that their
range does not extend too far away on either side of zero, can greatly
improve mixing of the chains and often only make convergence
possible (see, e.g., Section 11.4. in this book).

18. WinBUGS hangs after compiling: Try a restart, and if that doesn’t
work, find better starting values (this is an important tip from the
manual).

19. Debugging a WinBUGS analysis 1: If something went wrong, you
need to attentively read through the entire WinBUGS log file from the
top to identify the first thing that went wrong. Other errors may
follow, but they may not be the actual cause of the failure.

20. Debugging a WinBUGS analysis 2: When something doesn’t work,
the simplest and best advice (see also Gelman and Hill, 2007) is to go
back to a simpler version of the same model, or to a similar model, that
did work, and then incrementally increase the complexity of that
model until you arrive at the desired model. That is, from less complex
models sneak up on the model you want. Indeed, when using
WinBUGS, you learn to always start from the simplest version of a
problem and gradually build in more complexity until you are at the
level of complexity that you require.

21. DIC problems: Surprisingly, sometimes when getting a trap
(including one with the very informative title “NIL dereference
(read)”), setting the argument DIC = FALSE in the bugs() function
has helped.

22. R2WinBUGS chokes: Sometimes the R object created by R2WinBUGS
is too big for one’s computer. Then, use BOA or CODA to read in
the coda files directly, and use their facilities to produce your
inference in this way (e.g., convergence diagnostics and posterior
summaries).

23. Identifiability/estimability of parameters: To see whether two or more
parameters are difficult to estimate separately, you can plot the values
of their Markov chains against each other.

24. Check of model adequacy: Do residual analysis, posterior predictive
checks, and cross-validation to see whether your model appears to be
an adequate representation of the main features in the data.

25. Predictions: They are a very important part of inference: i.e., the
estimation of unobserved or future data. One particularly useful way
to examine predictions is to estimate what a response would look like
for a chosen combination of values of the explanatory variables. The
generation and examination of such predicted values is an important
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method to understand complex models (for instance, to see what a
particular interaction means) and also needed to illustrate the results
of an analysis, e.g., as a figure in a paper.

26. Sensitivity analysis for priors: Consider assessing prior sensitivity, i.e.,
repeat your analyses, or those for key models, with different prior
specifications and see whether your inference is robust in this respect.
If it is not, then not all is lost, but you must report on that in the
methods section of your paper.

27. Have a healthy distrust in your solutions: Always inspect your inference,
e.g., plot predictions against observed values for quantities that can be
observed, to make sure that the WinBUGS solution is sensible. Also
watch out for unexplained differences in parameter estimates between
neighboring models, e.g., those that differ by only one covariate or
some other rather minor model characteristic. This can be an indication
that something went wrong or that there are estimability problems
with the model for your data set.

28. NAs and NaNs: When dealing with data in multidimensional arrays, a
very useful R package is ‘reshape’. The newer versions the reshape
package in R 2.9 use an NaN to fill in NAs. This makes WinBUGS very
unhappy—you must have NA, not NaN. In general, this is probably
good to know about BUGS and newer versions of other packages may
be doing the same thing. So, if you use the melt/cast functions in
reshape to organize data, then you will need to update your code in
the newer R versions by adding “fill=NA real ”. Example: Ymat=cast
(data.melt, SppCode~JulianDate~GridCellID, fun.aggregate=mean,
fill=NA real ) (tipp from Beth Gardner).

29. Long Windows addresses: WinBUGS doesn’t like too long Windows
addresses (C:\My harddisk\Important stuff\Less important stuff\…)
for its working directory. Hence, you should not bury your WinBUGS
analyses too much down in a tree hierarchy.

30. VISTA problems: Windows VISTA has caused all sorts of “challenges”
in workshops taught using this book—be prepared! One problem
was that the default BUGS directory is not the same as that stated
in section 3.4 of the book.
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probability distributions and, 59

Random coefficients model
for binomial mixed effects model,

229 230, 231 235
for mixed model ANCOVA, 153
for mixed model ANCOVA with slope/

intercept correlation, 161 165
for mixed model ANCOVA without

slope/intercept correlation,
158 161

for Poisson GLMM, 206 209
for Poisson mixed effects model,

See for Poisson GLMM
Swiss hare data, 166

Random effects
in Bayesian analysis, 235
definition of, 115
ZIP, 185

Random intercepts model
for mixed model ANCOVA,

Bayesian analysis with
WinBUGS, 156 158

for mixed model ANCOVA,
REML analysis with R, 156

Raptor, 177
Red backed shrike, 203 204, 204f,

229 236, 230f
Refresh setting, 40
Regression. See also Linear regression

linear, 73 76
logistic, 104, 167, 251
logit linear, 242 243
multinomial, 167
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Regression. (Cont.)
multiple binomial, 228
Poisson, 202
ZIP, 184

REML. See restricted maximum likelihood
Reparameterization, 72
Repeated measurement, 240, 257
Replicate counts, 255, 260
Reptiles, 254
Residual(s), 24. See also Pearson residual

assumptions, 69 70
linear predictor and, 70
PPC for, 173 174
raw, 224
t test, checking, 97

Residual plot, of linear regression, 107, 107f
Residual standard error, 49
Restricted maximum likelihood (REML), 5

mixed model, 154
mixed model ANCOVA analysis

using R and, 156
random effects one way ANOVA

using R and, 124
Reversible jump (MCMC), 25
Rhat, 22, 54, 148

convergence and, 173
R squared, 94, 145

S
Sample Monitor Tool, 37, 41
Sampling error

exercise, 93
MCMC, 250
statistics and understanding, 48 49
understanding, 7

Sampling variance. See Sampling error
Sand lizard, 254 274, 254f
SAS (program), 5, 10
Scale reduction factor, 199
Scope (of inference), 152
SD. See Standard deviation
Sex, 59, 92
Shrinkage estimators, 118

fixed/random, 236
Simulated data sets, 7 8
Simulation, 27. See also specific simulations
Site covariate, 252
Site occupancy model, 104, 237, 239

binomial mixture model compared to,
256, 259

confusions with, 238 239
covariates, 241 242

data generation, 242 246
detection probability, 241, 250 251, 250f
dynamic, 22, 242
naïve analysis, 246, 246f
posterior predictive check, 246
probability of occurrence, 240
starting values, 263
Swiss hare data, 252
truth, 251 252
WinBUGS analysis, 246 251

Slope
random coefficients mixed model

ANCOVA, with correlation of
intercept and, 161 165

random coefficients mixed model
ANCOVA, without correlation of
intercept and, 158 161

Slovenia, 239
Smooth snake, 116, 116f
Snake, 142, 142f, 219 228, 220f

data set for, 67 68, 68t
smooth, 116, 116f

Snout vent length (SVL), 115 116
Software. See specific software
Sombre goldenring, 193 194, 194f
Splines, 242
Standard deviation (SD), 7, 42, 49

for Bernoulli distribution, 64
residual, 123

Standard error, 7
Standardization, covariate, 147 149
Starting value

random, 51
for site occupancy model, 263

State space (model), 241
Statistical analysis, 5, 5t
Statisticians, 275 276
Statistics. See also Bayesian (approach to

statistics)
Bayesian v. classical, 6, 15 19
creativity and, 275
definition/use of, 14
sampling error and, 48 49

Stochastic systems, 7
binomial mixture model and, 255
deterministic systems compared to, 58
in life, 14

Straight line relationships, 66, 156
Structural

model parameters, 152, 266
model parts, 25
model problems, 43
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Survey covariate, 252, 273 274
Survival, 10, 59, 211 212
SVL. See Snout vent length
Swiss hare data, 56

ANCOVA, 150
Binomial ANCOVA, 228
binomial mixture model, 274
linear regression, 113
one way ANOVA, 127
overdispersion, 191
Poisson ANCOVA, 202
Poisson distribution, 177
Poisson GLMM, 209
random coefficients model, 166
site occupancy model, 252
t test, 101
two way ANOVA, 139

T
Tichodroma muraria, 104f
Transect, 254
Transformation, covariate, 149
Treatment contrasts, 71
Trellis plot, 206f, 232 233f

constructing, 155, 155f
Trends, population, 109, 112 113, 119, 203
True state, 242 244, 253

partially observed, 247
T test, 69 73

binomial, 213 216
data generation, 92 93, 97 98
effects parameterization, 92 93
with equal variances, 92 97
as LM, 91
LM of linear regression compared to, 103
means parameterization, 92
model adequacy, 96
Poisson distribution, 168 169
residuals, 97
Swiss hare data, 101
with unequal variances, 97 100

Tutorial, WinBUGS, 11

U
Unbalanced data, 257
Unbiased, 2, 133
Uncertainty interval, 110
Unequal variances, 97 100
Uniform distribution, 58

continuous, 62
picture, 63f

Uninformative prior, 18

V
Vague prior, 18 19, 158, 277

Bayesian approach with,
55 56, 275

Variance(s). See also specific variances
Bayesian compared to

frequentist, 96
chain, 22
comparing, 101
modeling, 100 101
t test and equal, 92 97
t test and unequal, 97 100

Variance component, 51
Variance components model, 152
Variance covariance matrix, 162
Vegetation, 257 262

covariable, 261
Vipera aspis, 142f, 152f
Vipera berus, 220f

W
Wallcreeper, 103 104, 104f
Website

for book, 31 32, 34, 49, 250
for WinBUGS, 10

Welch test, 98
WinBUGS

advantages, 4 5
ANCOVA, 145 149
Binomial ANCOVA, 224 228
binomial distribution, 63 64
binomial mixture model, 262 273
covariate standardization, 147 149
crash, 45, 263 264
creativity, 30 31
as eye opener, 275
fixed effects, 166
fixed effects one way ANOVA,

120 122
freedom of, 30 31
Gibbs sampling, 21
interaction effects two way ANOVA,

137 138
linear regression analysis, 105 113
literature on, 9 10
main effects two way ANOVA,

135 137
mixed model ANCOVA, 156 158
normal distribution, 61 62
overdispersion, 183 184
Poisson ANCOVA, 197 201
Poisson distribution, 171 177
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WinBUGS (Cont.)
Poisson distribution, 65
Poisson GLMM, 207 209
power of, 29
practical implementation of complex

models in, 263 264, 270 271
R integrated with, 6
R2WinBUGS, 49 55
random effects in, 166
random effects one way ANOVA,

125 127
site occupancy model, 246 251
technicalities, 31 32
t test analysis, 94 97
tutorial, 11
website for, 10
ZIP model, 187 188

Within chain variance, 22
Woodchat shrike, 229 236, 230f
Working directory, 31 32

setting R, 49 51
Workspace, R, 51 52, 55

X
X matrix, 71

Z
Zeroes, 177

avoiding, 263
Zeroinfl(), 186
Zero inflated binomial (ZIB), 184
Zero inflated Poisson (ZIP)

counts, 185
data generation, 185 186
hurdle model compared to, 185
R analysis, 186 187
random effects, 185
WinBUGS analysis, 187 188

Zero inflation
definition, 184
as overdispersion, 179

Zero truncated, Poisson distribution, 185
ZIB. See zero inflated binomial
Zigzag adders, 219 228, 220f
ZIP. See zero inflated Poisson
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