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The MAC layer for multihop wireless networks has drawn considerable research attention
in the last few years. We focus here on the wireless multihop networks with a convergecast
traffic pattern: the whole traffic is destined to a sink/gateway. We propose first to select a
k-tree core, i.e. a sub-tree of the shortest paths to the sink containing exactly k-leaves. In
particular, these k-tree core nodes are chosen among the nodes that must forward most
traffic. We design C-MAC, an optimized MAC layer for this kind of topology. C-MAC is derived
from the CSMA-CA like approaches and consists in giving a larger priority to the k-tree core
nodes. Moreover, a proper coordination among the k-tree core nodes permits to limit col-
lisions among them. Simulation results show that organizing the transmissions in C-MAC per-
mits to achieve a much larger throughput than the original IEEE 802.11 – like protocol it is
based on. This simple solution can be adapted to most CSMA-CA like protocols, and is par-
ticularly relevant for WSN or WMN in which traffic is mostly destined to the sink/gateway.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction in this kind of networks. With such a probabilistic
Multihop wireless networks are currently very popular
and have been receiving a large attention of the research
community. More specifically, many of these networks
present a convergecast traffic pattern: all the packets are
either destined or sent by the same entity.

Wireless mesh networks permit to offer a wireless con-
nectivity while connecting only a subset of the Access Points
to the wired Internet. Often, all the traffic passes through
these gateways. Besides, wireless sensor networks permit
to instrument distributively an environment for house
automation, smart buildings, sustainable development,
etc. These networks are also often convergecast by nature:
measurements are collected distributively by the sink.

The IEEE 802.11 technology has gained wide popularity
when deployed in the infrastructure mode with an Access
Point providing untethered connectivity to nomadic
devices. The CSMA-CA mechanism has largely proven its
efficiency to distribute the bandwidth among the stations
. All rights reserved.
approach, neither the number of packets nor the number
of stations has to be fixed a priori. Moreover, the exponen-
tial backoff mechanisms allows the network to cope with a
fluctuating number of contenders: the transmission proba-
bility will be self-adjusted. Indeed, if a collision occurs, the
contention window is automatically doubled so that the
traffic pressure is reduced.

However, there is a lot of evidence that the 802.11 MAC
layer is not suitable for multihop wireless networks: the
performance of packet forwarding over multiple hops
quickly degrades with the number of hops due to channel
contention and spatial problems such as hidden, exposed,
masked, and blocked nodes [1–3]. In particular, the chain
topology is very common in multihop: packets have to be
forwarded toward the destination. However, collisions
among the different forwarders can occur, degrading the
end-to-end performances. MAC layers that adopt a similar
approach in WSN (e.g. IEEE 802.15.4) suffer from the same
drawbacks when the load approaches the network
capacity. Besides, the nodes close to the gateway/sink have
often more packets to forward, and a bottleneck quickly
appears around it [4].

http://dx.doi.org/10.1016/j.comnet.2010.10.018
mailto:theoleyre@unistra.fr
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On the opposite side, TDMA scheme permits a fine
scheduling and limits bandwidth wastage. However, it re-
quires a very tight synchronization and does not cope with
variations: TDMA slots are assigned in advance, even when
the traffic load changes frequently. Besides, to compute an
acceptable scheduling while enabling radio reuse requires
a complete knowledge of the radio environment: the sched-
uler must know the sets of links that interfere with each
other. Consequently, one can adopt, e.g. a centralized sched-
uler with SINR constraints [5] or a distributed slot assign-
ment scheme with an a priori knowledge of interferences
[6]. However, to measure the level of interferences among
radio links is a complicated task in multihop networks,
which requires to measure atomically the interferences [7].

We propose here to adopt an innovative solution, mix-
ing the assets of both approaches. In C-MAC (Convergecast-
MAC), most nodes execute the classical CSMA-CA algo-
rithm to transmit their packets. Oppositely, we organize
the transmissions of the most-constrained nodes. Instead
of adopting a TDMA scheme which would require a global
synchronization, we propose distributed MAC reservations,
gateway-oriented: control frames that reserve the medium
propagate from the gateway to the borders of the network,
through the most-constrained nodes.

This approach has the following promising assets:

� C-MAC extends the NAV of IEEE 802.11 by just introducing a
new type of control frame. It is inter-operable with the
classical IEEE 802.11;
� it operates without any synchronization requirement;
� we jointly optimize routing and MAC by constructing a

structure to collect the traffic: a k-tree core;
� we present a multichannel variant to multiplex trans-

missions across different channels. This feature limits
greatly the number of collisions.

2. Preliminaries

We focus in this article on multihop wireless networks
with a convergecast traffic pattern: one single node, i.e. the
gateway, is either the source or the destination of each pack-
et transmission. If the network comprises several gateways,
we will consider individually each gateway and all its asso-
ciated nodes, i.e. we will neglect the impact of nodes with
frequent gateway changes. Moreover, we will focus here
on the MAC layer: the optimal gateway selection, the encap-
sulation scheme, etc. are out of the scope of this article.

2.1. IEEE 802.11 behavior

IEEE 802.11 is widely deployed to provide a wireless access
in hotspots. The CSMA-CA technique it implements is effi-
cient to share the bandwidth among an unknown number
of stations. Thus, we will shortly describe the basic functions
of CSMA-CA protocol, and more particularly of IEEE 802.11
[8], on which we based the protocol presented here.

In IEEE 802.11, each transmitter chooses a random
backoff comprised between 0 and the contention window
value (CW)1. If the medium is idle for more than DIFS time,
1 More precisely, backoff 2 [0..2CW � 1].
it starts to decrement the backoff. As soon as the medium
is detected busy, the backoff is paused and it will be re-decre-
mented when the medium becomes idle (still after the DIFS
time). When the backoff is null, the node starts to transmit
its data frame. The receiver decodes the data frame, waits
for SIFS and sends an acknowledgement. If the source re-
ceives an ack, it considers the frame was correctly received.
Else, it estimates a collision occurred: it doubles the conten-
tion window so that the backoff will probably be larger for
the next retransmission. This exponential backoff helps to
cope with a variable number of transmitters. Finally, when
a node has correctly transmitted a frame, it reinitializes the
contention window to the minimum value. This approach
helps to converge to an accurate contention window value.

IEEE 802.11 is robust to collisions and performs well in
cellular networks. Heusse et al. [9] studied the optimal
contention window value to almost avoid all collisions.
However, IEEE 802.11 performs quite poorly in multihop
[1]. Thus, we aim here at optimizing the IEEE 802.11
approach in networks with a convergecast traffic pattern.

3. C-MAC general description

We are convinced that jointly optimizing the routing
and MAC layers seems a promising way for convergecast
wireless networks. Since all the traffic is destined or gener-
ated by the gateway, we can self-organize the transmissions
to avoid the classical bottleneck around the gateway.

C-MAC uses a reservation-oriented mechanism: a node
becomes privileged during a small duration. We will dis-
tribute this privilege mode only to most-constrained nodes
so that no pair of nodes privileged simultaneously are
interfering with each other.

We focus on convergecast networks, in which the routes
form a tree rooted at the gateway. Thus, C-MAC uses this tree
to distribute the privilege modes: it sends a token, which is
forwarded hop by hop toward the leaves. When a node re-
ceives the token, it becomes privileged during a short time.

We consider now the example illustrated in Fig. 1. Each
node chooses as parent the next hop toward the gateway,
which forms a spanning tree, rooted at the gateway. Be-
sides, we selected in this example three different branches,
starting from the gateway. Each branch is linear: a node has
only one child, except the gateway. Only the nodes of these
branches can become privileged after receiving the token.
When it has finished to transmit its data frames, the node
will then forward the token to its child, toward the leaves.

If the gateway sufficiently inter-spaces the tokens it
generates, we can avoid interferences among privileged
nodes. Indeed, the previous token will have been forwarded
sufficiently far to avoid collisions.

4. Tree construction

C-MAC aims at enabling the most-constrained nodes to
gain a privileged access to the radio medium while limiting
interferences. Thus, a token can be forwarded only to one
node, i.e. along one single branch. Moreover, only the
nodes part of the tree will be able to gain a special access
to the medium. Consequently, we would like to obtain a
tree with the following characteristics:
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� to limit interferences among and inside the branches,
they should be as linear as possible (i.e. we should avoid
zigzag);
� we should bound the number of branches in order to

limit the time a branch has to wait before receiving
the next token;
� we want to minimize the distance of normal nodes to

the tree, i.e. the packets should be forwarded mostly
by the nodes that can become privileged.

The k-tree core structure was originally introduced in
[10] and is particularly convenient for our purpose. Intui-
tively, the k-tree core proposes to extract from a tree the
k leaves that minimize the average distance from a node
to the closest k-tree node.

More formally, l(T) denotes the number of leaves in the
tree T and d(A,B) denotes the distance in hops between
nodes A and B. We also define the distance from one node
N to a set S as the distance from N to the closest node in S:

dðN;SÞ ¼ minM2SðdðN;MÞÞ: ð1Þ

If KT is a set of k-tree core nodes associated to the tree T,
the following definition holds:

KT � T; ð2Þ
lðKTÞ ¼ k; ð3Þ
Objective : min

X

N2T

dðN;KTÞ: ð4Þ

Peng et al. [10] proposes a centralized algorithm to se-
lect a k-tree core from any tree topology. The nodes report
to the root of the tree the most convenient leaves. Intui-
tively, we must select the best k branches to form the k-
tree core. To achieve this objective, each node computes
a metric representing the suitability to select its branch
(from it to the best leaf). This metric is computed from
the leaves to the root. When the root obtained all the met-
rics from its children, the best branch can be selected.
Eventually, this process can be repeated k times although
some optimizations exist to reduce the convergence delay.

We will now explain how we construct such a k-tree
core for C-MAC.

4.1. Approach

In existing approaches, the k-tree core is selected when
the graph is already a tree. We adopt consequently the fol-
lowing heuristic:

1. We construct first the tree of shortest paths towards the
gateway. The k-tree core aims at minimizing the distance
to the tree. Thus, a node chooses preferentially as parent
the node with the largest subtree size if several candi-
dates are available. Intuitively, if this node is chosen as
a k-tree node, it will save more hops for normal nodes;

2. We select then the k leaves that minimize the average
distance to the k-tree core. Besides, we force the root
to be part of the final k-tree core.

We will now detail the construction process.
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4.2. Tree construction
We first construct a self-stabilizing tree as described in
Algorithm 1. All control information is piggybacked in
hello packets. In particular, the gateway sends its hellos
with a strictly increasing sequence number. A node propa-
gates the largest sequence number received from its par-
ent. In this way, we are able to detect tree disconnections
when the sequence number does not increase for a suffi-
ciently long time (Dseqnum seconds). In this case, a node just
re-initializes its parent and its distance to the gateway.

Besides, a node changes its parent when a neighbor an-
nounces a smaller distance to the gateway. The node just
switches its parent and updates both its sequence number
and distance to the gateway.

Several neighbors may announce the same distance to
the gateway. In this case, a node chooses as parent the
node which announces the largest subtree size. This will
optimize later the k-tree core.

Each node updates its subtree-size when it receives an
hello from one of its children: a node simply sums up
the cardinalities of the subtrees of its children.

The reader can note that the tree will be correctly main-
tained, even if one radio link or one node disappears: each
node will monitor the tree connectivity and it will choose
another parent if a starvation in the sequence number is
observed.

The worst case corresponds to a linear topology: during
one hello packet period, only one node is added to the
tree. We denote by D the network diameter, and by n the
number of nodes. The time complexity of Algorithm 1 is
O(D) = O(n).

4.3. k-Tree core selection

We elect the k-tree core as highlighted in Algorithm 2.
Similar to [10], we use the concept of savings. The k-tree-
core must be chosen to minimize the average distance to
the closest node of the core. saving(leaf,root) represents
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Fig. 2. Savings to find a k-tree core.
the number of hops saved if the path (leaf,root) is a core
compared to the average distance to the root. A larger sav-
ing means that we should choose the path (leaf,root): it
will minimize the number of transmissions exterior to
the core.

Let us consider the example illustrated in Fig. 2 to ex-
plain intuitively how to compute savings. When A has to
compute its saving value, it extracts the savings of its chil-
dren B and C. Let us imagine that B has the largest saving. A
will update its own saving to the sum of saving(B,root) and
the size of the subtree rooted at A. Intuitively, if A is chosen
in the core, all its descendants will save one transmission
through the link (A,D).

The reader can consequently remark that this saving va-
lue as introduced in [10] can be computed distributively.

In parallel, each node reports in its hellos the k best
savings to select the best k leaves. More precisely, the sav-
ings are computed as follows (Algorithm 2):

1. A node N orders all the savings announced by its

children;

2. The largest saving value is updated taking into account
the fact that N will become part of the k-tree core;

3. N piggybacks in its hellos this new value accompanied
with the k � 1 other largest values, forwarded as is.

The savings are correctly computed, according to lemma
3.3 in [11].

The root (i.e. the gateway) has to be part of the k-tree
core since it will forward all the traffic in up/download.
Thus, it initiates the creation of k branches by selecting
the k largest savings values among its children. The root
associates to each branch a branch id and the associated
neighbor id. This information is piggybacked in hellos:
each node verifies if it has been selected by its parent. If
this is the case, it extracts the corresponding branch

ids. Then, it chooses the ith largest saving value for the
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ith branch for which it has been selected. The correspond-
ing children are announced and they prolongate the
branches in the same way.

Savings are reported from the leaves to the root while
elected k-tree nodes are reported in the inverse direction.
In the worst case, the tree depth (denoted T) is equal to
the number of nodes (n). Thus, the time complexity for
computing savings and electing k-tree nodes is in
O(T) = O(n).

Fig. 3 illustrates a k-tree core with three branches. Thus,
each node reports the three largest savings. The leaves (e.g.
nodes B or F) report an unique saving of one (themselves).
On the contrary, G has several children. It reports the larg-
est saving (from H) incremented y its subtree size (7 + 6)
and the two other savings from K and M without modifica-
tion. Finally, the root A is able to select the three largest
savings to create the branches. In particular, node G is cho-
sen twice since it announces two of the largest savings. The
k-tree core is then propagated, each node selecting its chil-
dren. In particular, G has been selected for two different
branches and has to select the two largest savings (i.e. cor-
responding to nodes H and K).

4.4. Properties

We can remark that the algorithm is deterministic but
relies on unreliable transmissions. For instance, a node
may have two neighbors, closer to the root and with the
same subtree cardinality. In that case, unreliability for
hello transmissions will conduct the node to choose
pseudo-randomly one of these nodes as parent.

5. C-MAC mechanisms

We propose here to use the tree constructed previously
to regulate the transmissions in the network: we focus on
the k-tree core nodes since they will carry, by construction,
most of the traffic. In particular, we give them a privileged
access to the medium. A reservation mechanism, propa-
gated by the gateway, limits interferences among these
constrained nodes.

5.1. Normal nodes

Any node which is not part of the k-tree core executes
the normal CSMA-CA algorithms, as in IEEE 802.11. Thus,
it has to wait a DIFS before decrementing its backoff. It
may either use a RTS-CTS to limit the hidden terminal
problem if the frames are long or directly transmit them.

We adopt also the exponential backoff algorithm of IEEE

802.11 to cope with different densities. The contention
window is doubled upon a collision to reduce the colli-
sion’s probability.

5.2. Medium access for privileged nodes

The most-constrained nodes become iteratively privi-
leged: they have the largest priority to transmit their
frames. Since we control the number of nodes privileged
simultaneously, we can grant an immediate medium ac-
cess without contention to these nodes.

To be compatible with IEEE 802.11, we re-use the PIFS va-
lue, dedicated originally to the Point-Coordination-Func-
tion of IEEE 802.11 when the Access Point polls the
stations. Thus, a privileged nodes has only to wait for PIFS
after it detects the medium is free. Since all the other nodes
have to wait for DIFS, the privileged node will always win
for the contention. Besides, the privileged node will not
break a transmission since PIFS is superior to SIFS: it will
wait the current exchange among another pair of nodes is
finished.

Let us focus on the example described in Fig. 4. We
assume that two nodes S1 and S2 are backlogged (i.e. they
have a large buffer of data to transmit). When S1 becomes
privileged, it just has to wait PIFS before gaining the med-
ium access. It will eventually send several data frames be-
fore finishing to be privileged, waiting every time PIFS.
When S1 is not privileged anymore, it is authorized to
transmit any data frame. Thus, S2 will be able to sense
an idle medium during DIFS and its backoff: it will then
transmit its data frame. Such a mechanism is efficient
because we choose the most-constrained nodes to be priv-
ileged. Other nodes have less traffic to forward and we do
not need to regulate their transmissions: the IEEE 802.11
mechanism works well.

The reader can note that C-MAC can profitably acknowl-
edge data in bursts when a node is privileged. D1 would
send an ack only after receiving the second data frame.
However, we did not implement this option for the perfor-
mance evaluation to have a fair comparison with IEEE

802.11.

5.3. Privilege forwarding

C-MAC regulates the medium access by focusing only on
most-constrained nodes. These constrained nodes can be-
come privileged to have an exclusive access to the med-
ium. However, we must limit interferences among nodes
becoming privileged simultaneously. Besides, we argue a
TDMA-like approach presents too strong limitations com-
pared to CSMA-CA approaches. Firstly, it requires a fine
grained synchronization and a guard time has to be re-
served to avoid collisions among the different slots. Be-
sides, the scheduling should be derived from the
contention graph, which is usually not trivial to compute.
A TDMA-like approach presents also a low flexibility: the
scheduling has to be entirely recomputed when the traffic
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or the conditions vary. Finally, we aim at keeping the com-
patibility with the classical IEEE 802.11 approach.

Thus, we will use the convergecast nature of the
network: the gateway is the root and can distribute the
bandwidth to its neighbors, and more specifically to its
neighboring branches. Thus, we chose to use a new control
frame we call Clear-To-Receive (CTR). This CTR acts as
a token to become privileged and should reserve the med-
ium for the newly privileged node. Consequently, the CTR

acts like the Clear To Send of IEEE 802.11: destination
has only to wait for PIFS before transmitting its data frame.
Using PIFS instead of SIFS permits to limit collisions with
on-going transmissions while having a larger priority than
other nodes (using DIFS). When the gateway sends a CTR, it
will gain access to the medium and will not release it when
its neighbor become privileged: the medium is not idle for
a duration equal or longer than DIFS.

Besides, this CTR acts as token and is forwarded along
the branches of the k-tree core. A node has to forward
the CTR when it remained privileged for a duration longer
than Tslot. Thus, each CTR constitutes a kind of wave. Each
wave propagates along a branch and dies when it reaches
the leaves of the k-tree core. If the gateway inter-spaces
sufficiently the CTR it generates for each branch, it can
avoid the interferences. Thus, a gateway generates a new
CTR for another branch when the other one is estimated
CTRhop apart (i.e. it has to wait CTRhop � Tslot).

Let us focus on the example in Fig. 5. We reported the
subset of nodes in Fig. 1 that interests us in this example.
We assume that the gateway generates a new CTR for a dif-
ferent branch every two slots. In this case, the CTR is for-
warded along the first branch, and the sink generates a
new CTR after C ends its privileged slot. We did not repre-
sent the ack for a sake of clarity.

Two k-tree core nodes can be privileged simultaneously
if they are sufficiently far from each other (more than two
hops). For instance, D and G can transmit their data frames
to their parent without collision.

We represented possible concurrent transmissions from
non-k tree nodes on the lower part of the figure. A privi-
leged node maintains the reservations made by the CTR:
all the frames are interspaced by either PIFS or SIFS. Thus,
a normal transmission can take place if no other privileged
transmission already reserved the medium. For instance,
the node 5 can send a data frame to its parent 4 during
the privileged slot of B without collision: no signal is
sensed since B is assumed to be out of interference range.

Transmissions are unreliable although a packet loss is
very prejudicial for CTR: the whole privileged slot is condi-
tioned by the correct reception of this packet. Thus, a CTR

must be acknowledged by:

� a data packet from the destination: the next hop has
data packets and starts its transmission because it has
received the CTR;
� a CTR: if the next hop has no data to transmit, it for-

wards without delay the CTR to its own child. Thus, this
implicitly acknowledges the previous transmission.

Collisions may occur between different k-tree nodes if
CTRhops is too small or if two interfering k-tree nodes are
privileged simultaneously. These repeated collisions would
also create hello packet losses, triggering tree and
k-tree core reconfigurations. Meanwhile, a k-tree node
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implements a classical retransmission strategy: it tries to
retransmit its packets long retry times, as in IEEE

802.11. During the first short retry retransmissions,
the k-tree node transmits directly after PIFS, and for the
last retransmissions, it chooses a random backoff after hav-
ing waited PIFS: we would solve contention among k-tree
core nodes. If this is not sufficient, the node drops the pack-
et (either a CTR or a data packet) and consider that the
privileged slot is lost. Thus, one of the two competing k-
tree nodes will win and keep the privilege token/slot. We
limit unfairness because the retransmission mechanism
is based on a pseudo-random strategy.

5.4. CTR self-adaptation

The reader can note that the gateway can regulate the
bandwidth assigned to each branch. Indeed, it can fix a dif-
ferent Tslot value for each branch, reserving de facto a differ-
ent bandwidth for each of them. However, we let an
adaptive algorithm fixing dynamically these values to a fu-
ture work.

In the same way, the gateway could be able to test dif-
ferent values for the CTRhops parameter. After having mea-
sured the achievable throughput, the gateway could be
able to adjust dynamically the value. In particular, when
the CTRhops is too small, many collisions would occur
between k-tree nodes during their privileged time. These
collisions will negatively impact the throughput, and
CTRhops would be re-increased. The AIAD (Additive-Increase
Additive-Decrease) method could be particularly interest-
ing to find dynamically the optimal value.

5.5. Upload/download transmissions

In a convergecast network, the traffic can follow two
directions: in upload (from the nodes to the root) and in
download (from the root to the nodes). C-MAC can deal with
both cases.

Obviously, non-k tree nodes follow the classical IEEE

802.11 approach. Thus, they are able to transmit to their
parent and children in a similar manner, without any
specificity.

For k-tree nodes, C-MAC operates in the following
manner:

upload: this case is illustrated in Fig. 5. Just after hav-
ing received the CTR from its parent, a node
transmits all its buffered packets to its
parent;

download: this case is illustrated in Fig. 6. When node B
receives a CTR, it can transmit its packets to
C. If necessary, B can use an RTS/CTS to avoid
the hidden terminal problem: neighbors of
node C may not be aware of the existence
of a privileged slot. This reservation is then
active for the whole burst. In our case, node
B mixes download (to C) and upload (to A)
directions in the same privileged slot. When
a k-tree node has to forward a packet to a
normal node, it uses the non-privileged
mode: these transmissions are not part of
the k-tree core. For instance, B will send a
data packet to the node 2 using the normal
CSMA-CA mode after having chosen a ran-
dom backoff (with the usual DIFS).

To avoid unfairness, a k-tree node has to share equally
the bandwidth between the up and download directions:
a node should forward roughly as much traffic as it
receives.

5.6. Forwarding delay

For non-k tree nodes, packets are forwarded according
to the classical CSMA-CA mechanism. Thus, the delay re-
mains unchanged compared to IEEE 802.11.

On the contrary, k-tree nodes can only forward packets
after having received a CTR. To avoid any synchronization
requirement, each k-tree node forwards its CTR to its child.
In other words, we create a kind of precedence along the
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tree. Thus, the forwarding delay is different according to
the direction in the k-tree:

download: the privileged slots are directly consecutive.
Thus, a node has to wait at most Tslot (i.e.
the end of its slot) before forwarding the data
packets.
For instance, the node B receives its packets
in the privileged slot of A and forwards them
to C just after that (Fig. 6);

upload: we face an inverse situation. A node receives
the data packets from one child just after
having forwarded to it the CTR. Thus, it has
to wait for the next CTR from its parent. Thus,
it has to wait exactly CTRhops � privileged_
duration � nb_branches.

This buffering delay in upload also exists when a k-tree
node receives a data packet from its children not present in
the k-tree core. In particular, each k-tree node will buffer
all the data packets received between two CTR (i.e.
CTRhops � privileged_duration � nb_branches seconds). As a
side effect, C-MAC is consequently efficient to aggregate the
data packets from its children.

The reader can also remark that the data packets of non-
k tree and k-tree nodes can be aggregated in the same
manner. When a node receives packets from one k-tree
child, it waits for the next CTR before forwarding them.
This gives the occasion to receive the other packets
from its other non-k tree children. In Fig. 5, data packets
from 2 and D can be aggregated for the next transmissions
of C.
Fig. 7. C-MAC behavior
5.7. Multichannel extension

Although C-MAC was not conceived for this specific pur-
pose, it can be very easily adapted to work in a multichan-
nel environment. Indeed, all the transmissions use by
default a common channel (e.g. channel 0) while transmis-
sions of privileged nodes can use different orthogonal
channels. If strictly more than two channels are available,
different channels are used for different branches: CTR

can be generated safely more frequently. The gateway
mentions the channel id used for the privileged transmis-
sions directly in the CTR.

More precisely, the CTR are transmitted over the com-
mon channel. Let us focus on the example described in
Fig. 7. The node A forwards the token by sending a CTR.
It will automatically switch to the privileged channel to re-
ceive frames. The node B first acknowledges the CTR by a
CTR-ACK and then switch to the reserved channel for send-
ing its data frames. The data frame exchange takes place
on this interference-free channel. Thus, the node B can
use safely SIFS for all its transmissions since it is alone to
transmit. Besides, each node maintains a Network Alloca-
tion Vector (NAV) per channel as highlighted in Fig. 7. In
this example, the node C is aware of the ongoing transmis-
sion and will send its data frame to A only when the reser-
vation elapsed, i.e. it extracted the Tslot value from the CTR.

Since the CTR can suffer from collisions or bad trans-
missions, the source of the CTR may retransmit it after
switching back to the common channel. The CTR retrans-
mission process is identical to the single-channel case. This
mechanism maximizes the probability that the token is
correctly forwarded along the branches.
in multichannel.
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The reader can note that the performances of C-MAC will
not improve for more than CTRhop + 1 channels. Indeed,
the gateway may act as a bottleneck since it is blocked
for the whole Tslot duration after sending a CTR (i.e. it can-
not transmit simultaneously two CTR on two different
channels). Moreover, a new CTR can be safely generated
on the same channel when the other one is CTRhop apart.
With the additional common channel, this gives the afore-
mentioned limit. However, we could cope with this partic-
ular situation by having multi-radio gateways. This would
relax this constraint.
Table 1
Simulation parameters – default values.

Bit rate 11 Mbps
Packet reception threshold �86 dBm
Transmit power 5 mW
Frequency 5 Ghz (5180 ? 5805)

RTS/CTS inactive
Packet size 128 bytes

Privileged duration 5 ms
CTR inter-spacing 3 hops
Number of branches for the k-tree core 5
6. Integration

We will now describe how C-MAC can efficiently cohabit
with the other protocols present in the multihop network.

6.1. MAC layer independency

Although we used IEEE 802.11 to explain the C-MAC ap-
proach, the philosophy of C-MAC can be implemented with
many other CSMA-CA approaches. Exhaustivity is impossi-
ble, but we will here describe how C-MAC can cohabit with
various solutions in wireless sensor and mesh networks.

Busy tones can be used to limit the hidden terminal
problem [12]. They permit to notify the transmissions in
the vicinity. C-MAC can be easily adapted to use for instance
busy tones in reception and/or emission.

In WSN, we can also add a preamble [13] before each
transmission to wait for the destination to wake-up. For
k-tree node, a preamble is required to transmit the CTR

or a data packet to one child. Then, other packets can
be transmitted without preamble since the destination will
wait for the end of the privileged slot.

C-MAC would also be useful when only short preambles
are used, such as in Single Channel Polling (SCP) [14]. To
reduce power consumption, nodes agree on a schedule to
wake-up synchronously: shorter preambles are sufficient
to cope with clock drifts. However, the nodes may have
buffered packets when they slept. This would lead to a traf-
fic storm when all nodes wake-up. C-MAC could be imple-
mented when all the nodes are awake to regulate the
transmissions, during the active period.

6.2. Energy consumption

C-MAC was not designed to save energy but rather to opti-
mize the network capacity. Thus, it consumes similar en-
ergy as other CSMA-CA protocols. However, C-MAC can be
easily adapted to be integrated with other solutions saving
energy in WSN.

As highlighted previously, C-MAC can be adapted to work
with various other MAC layers. In particular, the preamble
sampling techniques permit to save energy efficiently.

In the same way, topology control solutions permit to
choose the most accurate neighbors. By choosing to use
the most economical radio links, the network can save en-
ergy globally. Thus, C-MAC can perfectly be executed after a
topology control algorithm has been executed. In this
way, C-MAC would use efficient radio links.
Finally, C-MAC could also use a metric based on energy to
choose the radio links in the tree. In that way, C-MAC would
use only most thrifty transmissions.

7. Performance evaluation

We have simulated C-MAC in OPNET with the parameters
presented in Table 1.

We have compared the performance of our proposal
with the standard IEEE 802.11 DCF, one representative
CSMA-CA protocol. We conjecture that the mechanisms
of C-MAC could be adapted to any CSMA-CA approach, when
the traffic to forward is large (e.g. when nodes wake-up
simultaneously to transmit data frames after a long sleep-
ing duration or after having detected an event).

We did not compare C-MAC with a TDMA-like approach
since such a solution would require a global synchroniza-
tion. Besides, an efficient conflict-free scheduling algorithm
must be implemented to organize the transmissions. This
approach would require to know a priori the conflict-graph
which is practically a difficult problem. However, we plan
to experiment in the future C-MAC and compare it in realistic
conditions to a TDMA-like approach, adopting for instance
the approach described in [15].

We first evaluate the impact of the parameter’s values
in C-MAC in a grid network of 7 � 7 nodes, the sink being lo-
cated at the center of the simulation area. Then, we focused
on random circular topologies of nodes to generalize these
results. Data traffic consists of several constant-bitrate
(CBR) flows, their rate being represented in the figures be-
low as the offered load in packet per second (pps). Each
node transmits a CBR to the central sink, to represent a
convergecast traffic pattern. We focus on the upload direc-
tion since the download direction offers less constraints in
fairness and delay with C-MAC.

We have averaged the results presented below over
several different simulation runs and have plotted the
95% confidence intervals. We have run simulations with
and without the RTS/CTS option and obtained results that
are not significantly different, so we have decided not to
represent them in the figures.

We have evaluated the performance of three MAC lay-
ers according to three metrics:

1. End-to-end delay: the delay between packet generation
and its reception by the final destination;

2. Aggregated throughput: the volume of all received data
in the network per unit time in Mbps;
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3. Jain index defined as:
ð
Pn

i¼1XiÞ2

n
Pn

i¼1X2
i

; ð5Þ

where Xi is the throughput obtained by flow i, measures
throughput fairness of different flows in the network. A
low Jain index means poor fairness;

4. Overhead: the ratio of the volume of control and data
packets transmitted per node and the volume of data
packets received by the sink. The volume is measured
either in number of packets or in bits.

7.1. Tuning C-MAC parameters

First, we measured the influence of the number of
branches in the k-tree core (i.e. the k value) for a grid of
49 nodes. We chose an offered load of 13 pps so that the
network operates in saturation: all the generated packets
cannot be delivered to the sink. We are consequently able
to study the impact of the C-MAC parameters in saturated
mode.

Fig. 8(a) illustrates the throughput for different k values.
When the k-tree has one single branch (i.e. it is a core), the
 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 1  2  3  4  5  6  7  8

Th
ro

ug
hp

ut
 [M

bp
s]

Number of branches
(a) Throughput vs number of branches

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 1  2  3  4  5  6  7  8

D
el

ay
 [m

s]

Number of branches
(b) Delay vs number of branches

Fig. 8. Regular grid of 49 nodes, 13 pps – impact of the number of branches
in the k-tree core.
throughput is minimal: C-MAC does not achieve to balance
the load in the network, and some data packets are
dropped. On the contrary, more branches permit to for-
ward more packets while avoiding collisions. However, it
also increases the delay (Fig. 8(b)). Indeed, the sink gener-
ates a new CTR iteratively for each branch. When a branch
has just forwarded a CTR, it has to wait for the sink to send
a new CTR for all the other branches. On average, a k-tree
core node has to wait longer before having again the right
to be privileged. We consider that five branches constitutes
a good trade-off for the delay and throughput.

Then, we measured the influence of the privileged dura-
tion, i.e. the time between a k-tree core node receives a CTR
and it has to forward it (Fig. 9). A k-tree core node has the
right to send its data frame to its parent only during this
privileged duration. If this duration is too small, the over-
head for forwarding the CTR becomes large. If this duration
is long, the end-to-end delay increases. The throughput
reaches a maximum when the privileged duration is
around 5 ms (Fig. 9(a)). In the same way, the end-to-end
delay reaches a minimum for the same values (Fig. 9(b)).
Moreover, C-MAC is relatively insensitive to a small variation
for this duration (the graphs are in log-scale). We verified
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also that 5 ms constitutes the best privileged duration for
other non-grid networks.

Finally, we measured the influence of the CTR inter-
spacing, the time separating two consecutive CTR gener-
ated by the sink (Fig. 10). The CTR inter-spacing is repre-
sented in hops (the sink has to wait CTRhops � Tslot before
generating a new CTR). If the sink generates too frequently
new CTR, they will surely collide with each other: data
packets will be retransmitted, having a negative impact
on the throughput (Fig. 10(a)). On the contrary, if CTR are
more than six hops apart, bandwidth is wasted, and the
throughput decreases. Besides, we should maintain CTRhops

as low as possible since it has a negative impact on the de-
lay (Fig. 10(b)): it increases the buffering delay, as de-
scribed in Section 5.6. In consequence, we consider that a
CTR interspacing of three hops constitutes a good trade-off.

7.2. Grid network

We first evaluated the robustness of the algorithm
electing the k-tree core. In a grid network, the optimal
assignment would use shortest paths toward the sink
and balance the load among the different branches. Thus,
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Fig. 10. Regular grid of 49 nodes, 13 pps – impact of the CTR interspacing
(hops that separate two consecutive CTR generated by the sink).
we compared the performance of C-MAC with the distributed
algorithm we presented in Section 4 and with a centralized
static k-tree core (we chose statically the k-tree core as
represented in Fig. 11(a)).

We first reported the throughput of C-MAC and IEEE 802.11
in Fig. 12(a). IEEE 802.11 uses the tree to route packets to-
ward the gateway. Since IEEE 802.11 is not route-aware,
its performances are not impacted when it uses a static
or a dynamic routing tree. Besides, we can remark that
the throughput of C-MAC is the same for the centralized and
our distributed k-tree core construction. Thus, our
algorithm seems robust. Finally, we can remark that C-MAC

uses the same routes as IEEE 802.11 but optimizes the
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701 702 703 704 705 706 707
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501

(a) Static centralized assignment with a cross of 4
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Fig. 11. k-Tree core election in a grid of 49 nodes.
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Fig. 12. Regular grid of 49 nodes with a convergecast traffic.
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throughput by reducing the number of collisions and by
giving a privileged access to k-tree core nodes. C-MAC

achieves a gain of almost 100% for the throughput.
Then, we measured the delay (Fig. 12(b)). When CBR

flows are small, C-MAC achieves larger delays than IEEE

802.11: a node in the k-tree core that receives a packet
has to wait for a CTR before being authorized to forward
it. However, the collisions in IEEE 802.11 quickly increase
the congestion when the network is more heavily loaded.
Thus, C-MAC achieves quickly better delays than IEEE 802.11.
We can also remark that the delays are similar whatever
the k-tree core algorithm we used (either static or
distributed).

We plotted the Jain index in Fig. 12(c). IEEE 802.11
quickly saturates and drops many packets, in priority from
sources far from the sinks: the route length being larger,
these packets have a larger chance to be dropped by a for-
warder. On the other side, C-MAC achieves a good fairness for
larger loads. Obviously, when the network saturates, the
packets through shorter routes have a larger probability
to be delivered, and the fairness index decreases.

Finally, we measured the overhead in bits for both C-MAC

and IEEE 802.11 (Fig. 12(d)). We can remark that the over-
heads are similar for low traffic values: the CTR generated
by C-MAC are negligible. In the same way, the additional bits
inserted byC-MAC in the hello packets have a very limited
impact on the global overhead. For a large traffic, long
flows suffer from collisions, decreasing the packet delivery
ratio. Thus, both protocols generate more packets to deli-
ver the same number of data packets to the sink. Mechan-
ically, the global overhead increases.

7.3. Random convergecast networks

We compared the performance of C-MAC and IEEE 802.11 in
a random network (Fig. 13): 60 nodes are randomly located
in a circular area while maintaining an average degree of 8.
Besides, the sink is located in the center of the simulation
area to limit side effects. We keep on using the default val-
ues as mentioned in Table 1. We can remark that C-MAC sup-
ports a larger throughput than IEEE 802.11. While some
packets begin to be dropped with IEEE 802.11 when each
source generates more than 12 pps, C-MAC achieves to trans-
mit almost 17 pps without loss (the gain superior to 40%).
When the load increases further, C-MAC keeps on delivering
more packets than IEEE 802.11. When the network has only
a small amount of packets to forward, IEEE 802.11 presents
a lower delay: k-tree core nodes need to wait for CTR in C-

MAC, increasing the delay. However, when the network be-
gins to be congested, C-MAC achieves a smaller delay than IEEE

802.11: it succeeds to regulate the traffic and limits
retransmissions and collisions. Finally, the reader can ver-
ify that C-MAC presents always a better fairness than IEEE

802.11, whatever the traffic conditions are.
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Fig. 13. Circular Random Network of 60 nodes with a convergecast traffic
and an average degree of 8.
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We also measured the impact of the density (Fig. 14):
we adjust the simulation area to increase the average
degree. Each source generates 20 pps so that congestion
begins to appear in the network. We discard topologies
that are disconnected. When the density is low, the
throughput decreases: routes are longer and some nodes
become disconnected because they only have unreliable
links with their neighbors. C-MAC outperforms IEEE 802.11
for small and average densities. When the network is al-
most single hop, the throughput is maximum, and IEEE

802.11 and C-MAC perform in a similar manner: the k-tree
core is very limited and almost all the nodes transmit their
packets directly to the sink, without CTR. The gain over IEEE

802.11 is equal to 40% for smallest densities and to 16% for
medium densities (avg. degree of 15). Finally, C-MAC and IEEE

802.11 achieve a similar delay since we are in saturated
mode (Fig. 14(b)).

Finally, we measured the overhead for these topologies
(Fig. 15). Firstly, we can remark that C-MAC and IEEE 802.11
achieve more or less the same overhead for a low and a
very large traffic (Fig. 15(a)). We can remark that for a very
low traffic, C-MAC generates slightly more control packets
than IEEE 802.11: in this case the CTR overhead is not en-
ough mutualized and its cost is not negligible. However,
the overhead is not sensitive in this case since the network
capacity is not reached. For CBR flows of about 30 to
50 pps, C-MAC is more efficient than IEEE 802.11 to deliver
packets to the sink/root. This decreases the average num-
ber of data and control packets generated for each deliv-
ered data packet.
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We also plotted the repartition of the overhead for CBR
flows of 20 pps to have a more detailed view of the origin
of control packets (Fig. 15(b). We can remark that hello
packets and CTR-END are negligible. We have also a small
amount of CTR packets for C-MAC (below the ack). Besides,
data constitute the vast majority of transmissions, with
the associated acks. We can conclude that C-MAC presents
an acceptable overhead. We also verified we obtained the
same type of result when we measured the number of
packets without taking into account the packet sizes.
7.4. Multichannel feature

We evaluated in Fig. 16 the multichannel feature of C-

MAC. When more than 1 channel is available, the channel 0
is used by default while the other channels are used for
the k-tree nodes that become privileged. When C-MAC oper-
ates with more than 2 channels, the sink will alternate
the channels it uses for the different branches of the k-tree
core. Thus, the sink can generate CTR more frequently, and
thus increases the network capacity.

We measured first the throughput (Fig. 16(a)). While
the network saturates with one single channel, the multi-
channel version of C-MAC supports a larger load. The gain is
the largest when we have two channels: a k-tree node that
receives a CTR becomes privileged and uses an orthogonal
channel, avoiding entirely the collisions with non-k tree
core nodes. Since CTR seldom suffer from collisions in the
control channel (channel 0), this multichannel mechanism
performs well. The reader can remark that when the num-
ber of channels is almost the number of branches, the fre-
quency of CTR cannot be increased, and the throughput
saturates. Moreover, the gain is reduced because non-k
tree core nodes may start to have difficulties to send their
data packets if the receiver is a k-tree core node, deaf to
transmissions on the channel 0. We can also remark that
using different channels limits the number of retransmis-
sions and transitively the end-to-end delay (Fig. 16(b)).
In conclusion, C-MAC can exploit very efficiently a collection
of orthogonal channels, multiplexing the transmissions
without any need of synchronization or multiradio nodes.
8. Related work

The MAC layer has recently received a large attention
for multihop wireless networks. IEEE 802.11 [8] is the pre-
dominant protocol for hotspots, i.e. single hop wireless
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networks for multimedia. The CSMA-CA mechanism is
flexible and particularly efficient to cope with traffic varia-
tions. However, IEEE 802.11 has been proved to perform
very poorly in multihop [1].

In wireless mesh networks, some researchers have pro-
posed to assign different channels for multi-radio mesh
nodes [16–19]. Raniwala and Chiueh [18] focuses on the
routing metric to construct the tree rooted at the gateway,
and then assigns a channel per link, taking into account the
traffic load. [17] starts from the gateway, assigning the
channels to the most-constrained links. Nguyen and Ngu-
yen [19] extends it to cope with multicast. However, these
approaches require multi-radio capable nodes and color
the radio links in a centralized manner. Kyasanur and Vai-
dya [16] proposes that a subset of interfaces stay static
while the other ones switch from one channel to another.
However, it works only for multiradio nodes. To the best
of our knowledge, no MAC protocol was proposed to cope
with wireless mesh nodes with one single interface, typi-
cally adapted to the convergecast traffic pattern.

In wireless sensor networks, most approaches focused
on energy savings, like [20]. In [21], the PSM mode of IEEE

802.11 is modified to work in WSN. In SMAC, each node
wakes up periodically and publishes this periodicity in its
hellos [22]. A node just has to know this scheduling to
know when to send the frame. Single Channel Polling
(SCP) proposes a global synchronization scheme in which
all the nodes wake-up simultaneously and sense once the
channel [14]. However, contention may be large since a
node wakes up only seldom, leading to collisions and energy
wastage. Kulkarni and Iyer [23] already jointly optimized
the MAC and routing layer. However, it focused on very
low traffic conditions. Since C-MAC could be adapted to work
with CSMA-CA like approaches, we could extend these pro-
tocols to adapt for them the concept of privileges in C-MAC.

Other propositions adopted a TDMA-like approach in
WSN. For instance, [15,24] computes a distributed sched-
uling to assign timeslots to each node. Macedo et al. [6]
adapts the scheduling to interferences measured by the
nodes. Chowdhury et al. [25] proposes to adopt a multi-
channel approach, coloring each radio link to avoid inter-
ferences. However, it uses a dedicated separated low
power radio for transmitting pulses.

WSN present often a convergecast traffic pattern: this
particular property can be used to optimize certain func-
tions. Zhang et al. [26] optimizes the retransmissions when
several bursts of traffic have to arrive to a sink. Voigt et al.
[27] extends DMAC [28], rearranging the slots attributed to
each node. Chen et al. [29] proposes to balance the load for
the convergecast tree, optimizing the routing and not the
MAC layer as C-MAC does. Huang and Zhang [30] focuses also
on controlling the data flows in the routing layer to limit
collisions.

C-MAC uses a k-tree core structure as introduced originally
in [10]. Wang [31] provides a parallelized version of the
algorithm. Then, [11,32] extended it to provide a distrib-
uted version, adapted for routing in ad hoc networks. They
use any spanning-tree before selecting the k-tree core
while we use only shortest paths to the gateway and we
try to create straight branches that forward most traffic. In-
deed, our objective here is different since we focus on reg-
ulating the transmissions at the MAC layer. Wang et al.
[33] proposed to upper bound the k-tree core diameter.
Li et al. [34] uses this k-tree core for multicast. To the best
of our knowledge, the k-tree core structure was never used
before for organizing the transmissions in the MAC layer
although it is particularly adequate.
9. Conclusion & perspectives

In this paper, we studied the wireless multihop net-
works with a convergecast traffic pattern. We proposed
to organize the network into a k-tree core. This structure
coupled with a specific MAC protocol helps to organize
the transmissions and to reduce the collisions. By giving
a different medium access in CSMA-CA to the nodes that
carry most of the traffic, we reduce the number of colli-
sions, which may occur only with nodes with less traffic.
Besides, C-MAC does not need any synchronization mecha-
nism, and is much more flexible than a classical TDMA
scheme. Finally, C-MAC is entirely compatible with IEEE

802.11, i.e. it can cohabit transparently with non-C-MAC en-
abled nodes. We have also shown that C-MAC operates effi-
ciently in multichannel environments and optimizes the
throughput while avoiding the deafness problem. Simula-
tion results demonstrated that C-MAC with a k-tree core out-
performs IEEE 802.11.

One important future research consists in validating C-

MAC in a realistic environment, but it requires to have access
to the IEEE 802.11 firmware to allow a k-tree core node to
use PIFS for its transmissions. Besides, it could be interest-
ing to jointly optimize the routes and the k-tree core struc-
ture. Indeed, C-MAC optimizes the transmissions for a tree of
shortest paths. However, shortest routes could not be the
best solution for balancing the load to reduce contention.
We expect also to compare C-MAC and a TDMA-like ap-
proach in realistic conditions. In particular, TDMA requires
to know exactly the conflict graph and needs to compute a
conflict-free scheduling. We plan to measure the impact of
conflict graph imprecisions, and to verify that C-MAC
achieves similar or better results without synchronization
and without computing a complex and less flexible sched-
uling. Finally, we plan to adapt C-MAC to SCP in order to re-
duce the collisions when all the nodes wake-up
simultaneously. This feature would be particularly accu-
rate in wireless sensor networks for event detection since
the traffic is mostly in bursts in these cases.
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