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PREFACE

The two volumes of the "Fundamentals of Physics"·,
published in two editions, have been translated into Polish
and English and have gained popularity among senior form
students of secondary schools where physics is studied at an
advanced level, among college freshmen and among instruc­
tors and teachers of physics. At the same time, reviews and
numerous letters from readers have stressed the need for a
system of problems adapted to the theoretical material
contained in the book which would enable the reader to
consolidate and to check his knowledge of the material stud­
ied, and to develop skills in the creative application of the
theory to specific physical problems.

,This book offers the reader over 750 problems concerning
the same subject matter as is treated in the two volumes of
the "Fundamentals of Physics". The order of presentation of
the theoretical material is also the same.

~ The availability of a great number of problem books based
on the traditional school physics curriculum prompted us
to enlarge those sections which are absent from traditional
problem books, namely the dynamics of a rotating rigid body,
the elements of the theory of relativity and of quantum and
statistical physics, of solid-state physics, wave optics, atom­
IC and nuclear physics, etc. Problems dealing with astrophys­
ics illustrate the application of the laws of physics to ce­
lestial bodies.
~~,I. The book contains a few problems requiring elementary
skill in differentiating and integrating, as well as some prob­
lems to be solved with the aid of numerical methods, ·which
nowadays are being increasingly used.

• B. M. Yavorsky and A. A. Pinsky. Fundamentals 0/ Physics,
v. I and II, Mir Publishers, Moscow, 1975.



6 Preface

As well as the practice exercises there are some rather
sophisticated problems requiring a deep knowledge of the
theory.

Most of the problems are provided with sufficiently de­
tailed solutions.

Whether a problem book should be provided with detailed
solutions, or only the answers should be supplied, is a con­
troversial question. True, the temptation to look into a
ready-made solution is quite strong. However we hope
that the reader wants to learn to solve the problems himself,
and so he will turn to read the solutions only in extreme
circumstances. On the other hand, having in mind that the
majority of readers will work with the book on their own, we
feel obliged to offer them help when they are unable to cope
with a problem. Note that the solutions provided are not
always the only ones possible. We shall be grateful to any
reader who suggests more elegant or original solutions.

Reference data required for the solution of the problems
is presented in the appendices. They augment the data con­
tained in the corresponding chapters of the series "Funda­
mentals of Physics".

The collection of problems may serve as an aid for students
preparing for examinations in physics. It may be used in
physico-mathematical schools or for extra-curricular work
in physics. The problems will be useful to students studying
to become physics teachers, to students at technical col­
leges, and to physics teachers in schools, technical schools
and secondary vocational schools.

The author expresses his sincere gratitude to Prof.
N. N. Malov and Prof. B. M. Yavorsky and also to Yu.
A. Selesnev, Ya. F. Lerner and M. M. Samokhvalov. Their
valuable remarks enabled the author to make corrections to
the manuscript.

A. A. Pinsky
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SOME PRACTICAL HINTS

1. Before you attempt to solve the problems contained in
some chapter, study the corresponding chapters of the "Fun­
damentals of Physics". Bear in mind that the most frequent
reason that you cannot solve a problem is that your knowl­
edge of the theory is not profound enough or is too formal.

2. Think about assumptions which could simplify the
solution. For instance, when calculating forces in dynamics,
one usually assumes them to be constant, while in the theory
of oscillations they aretaken to be quasi-elastic. Processes
in gases are usually considered to be quasi-static, the ele­
ments of electrical circuits linear, the waves sinusoidal, etc.
When necessary, the violation of these conditions is specially
mentioned; in some cases it is evident from the particulars
of the problem (a solenoid with a ferromagnetic core, a modu­
lated wave, etc.).

3. Try to draw a schematic diagram or a sketch; this al­
ways makes consideration of the problem easier. Sometimes
it pays to show the evolution of one's thinking on the dia­
gram by partitioning it, or by introducing successive sim­
plifications (for instance, when determining' internal forces,
or when designing compound circuits). Remember, a good
diagram is half the success in solving a problem.

4. In most cases the problem should be solved in a gener­
al form with all the relevant quantities denoted by corre­
sponding symbols and the calculations made using symbols.
Don't let it trouble you if some of the quantities are not
specified in the statement of the problem-they will either
cancel out, or their values may be found in the appendices
to this book, or in the "Fundamentals of Physics". Do not
be scared by mathematical operations-the ability to per­
form them freely is an element of the mathematical knowl­
edge indispensible to the student of physics.

Note that it is not always convenient to solve the problem
in a general form. Sometimes the price of generality is an
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excessive volume of calculations. In such cases the problem
should be solved directly with numbers substituted for the
relevant physical quantities.

5. Having obtained the solution in a general form try to
make sure it is a sensible one. To do this, sometimes dimen­
sional analysis may be helpful, sometimes-the analysis
of particular or limiting cases, or a comparison with a sim­
ilar problem already solved is needed. For example, hav­
ing solved a problem in dynamics which takes account of
the forces of friction you may compare the result with that
of a similar problem without friction, a relativistic calcu­
lation can be compared with a similar calculation in New­
tonian mechanics" etc.

6. If the problem contains numerical values the final
answer should be numerical as well. Do not underestimate
calculations. In practice we are always interested in the
numerical values of the quantities sought and only rarely
in their expression in terms of other quantities.

All data, including those derived from the tables, should
be expressed in the same system of units (as a rule, in the
SI system) with the numerical data written in the standard
form, i.e. in the form of a X iOn where 1 -< a < 10. All
values should be specified to the same accuracy.

7. All calculations (including those in the majority of
problems involving the use of numerical methods) should
be performed with the aid of a slide rule, the use of which
guarantees reasonable accuracy. In the cases when the ini­
tial data are specified to two significant digits, the results
of the calculations should be rounded off to the same number
of digits.

<; Only a few problems on the theory of relativity, wave
optics, atomic spectra, etc. involve calculations requiring
an accuracy of four or five digits. For these mathematical
tables should be used.

8. Having obtained an answer compare it with the one
given at the end of the problem book. Do not be disappoint­
ed if your answer does not coincide with the author's. Both
answers might be two different forms of the same expression.
For instance, the expressions

sin a-~ cos a and sin (a.-fP)
sin a+ Jl. cos a, sin (a+ cp)
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coincide if one puts IJ. = tan cp. If you are unable to find
ways of transforming one form of the answer into the other,
make a numerical calculation using both formulas, and if
the results coincide, your solution obviously may be taken
to be correct.

9. After you have obtained the correct answer it is a good
idea to look at the solution offered in the problem book.
Should the solutions turn out to be different, try to find out
which is the best. It will be all to the good if your solution
is simpler, shorter and more elegant than that of the author.
However, one should not preclude the possibility of errors
accidentally compensating each other, so that the answer
obtained is only formally correct. Such an analysis of the
solution is very helpful and instructive.

10. When you are unable to solve the problem right away,
don't hurry to read the solution supplied. Make a new study
of the respective theoretical material, paying attention to
the finer points. Experience shows that a repeated study of
the theory with a definite goal in mind is very effective and
ensures quick success when a second crack at the problem is
attempted.

However, repeated study of the theory still may not help
in solving the problem. This should not be a cause for gloom
and despair. This problem book contains many creative and
difficult problems, and it is not to be wondered at that you
will not be able to cope with them all single-handed. In
such a case try to make a detailed analysis of the solution
supplied by the author. Perhaps after that you will be able
to find a new solution. Experience shows that detailed study
of some of the ready-made solutions is also very instructive
and helps to raise the level of knowledge and to stimulate
creative abilities.

Here's a concrete example of the way the above recommen­
dations should be applied.

Problem. A small mirror with a mass of 9.0 mg is suspend­
ed from a thin quartz filament 4.0 em long. A powerful
laser flash is emitted in a direction perpendicular to the
mirror, so that the system is deflected from the vertical by
a certain angle. Calculate this angle knowing the energy of
the laser flash to be 1.0 X 102 J.

Solution will be performed by stages.
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1. The deflection of the system is caused by the momentum
the light transmits to the mirror upon reflection. Accelerat­
ed to a definite velocity the mirror rises to a definite height.
In this case the kinetic energy of the mirror is transformed
into its potential energy in the gravitational field. Conse­
quently, to solve the problem one must know the expression
for the momentum of the light flash, and the laws of conser­
vation of momentum and of energy.

2. To solve the problem, introduce several simplifying
assumptions. To begin with we shall neglect the mass and

E

YJ\Pc-
E'

let
I
I
I
I
I
I
I
I
I
I
~ f) __"/

1"""""'-'-L...1 _

(t)(a) (b)

Fig. 1.

the elasticity of the filament, the friction at the suspension
and air resistance. Then we shall assume the mirror to be
~! perfect reflector (neglecting the absorption of light). Fi­
nally, because the mirror's velocity is small we shall per­
form all the calculations approximately, using Newtonian
mechanics.

3. It will be helpful to draw a schematic diagram depict­
Uig the dynamics of the process (Fig. 1). Here diagram (a)
shows the state of the system before the light falls on the
llil'fOr, (b) at the moment the light is reflected and (c) the
deflection of the mirror together with the filament by the
angle sought. The stages of the solution are also clear from
the diagrams.

4. Denote the energy of the laser flash bye, its momentum
p = ee/c, the velocity of light by c, the mirror's mass by m,
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its velocity at the moment of recoil by v, the height it rises
by h, the length of the filament by l and the angle of deflec­
tion by a.

It may be seen from the diagram that

h = l-l cos« = l (1-cosa) = 2l sin 2 ~

It follows that in order to find the angle of deflection one
must find the height to which the mirror rises. To do this
use the law of conservation of energy:

1 v~. a v
T mv2= mgh, whence h=-zg and smT= 2ygl

To find the velocity of the mirror make use of the conser­
vation laws at the instant the light is reflected (diagram (b»:

law of conservation of energy: ~ = e' +i- mv2

~ ~'law of conservation of momentum: - = - - + mv
c c

Multiplying the second equality by c and adding it to
the first, we shall eliminate the unknown quantity ~'. We
obtain: 2e = 1/2 mv2 + mvc. Taking account of the fact
that 1/2 mv2 ~ mvc, discard the first term. We obtain ap­
proximately mvc = 2~, whence v = 2~/mc; consequently

. a ~
81n-=---

2 me y gl

5. Dimensional analysis convinces us of the plausibility
of the answer:

[ sin a
2

]= J·s = kJoS22 =1
kg-rn y m.s-2 .m g-rn

i.e. the sine turns out to be dimensionless, which was to be
expected.

6. In the calculations write: out all the data to twosig­
nificant digits expressing them in SI units:

m = 9 .0 mg = 9 .0 X 10-6 kg

g=9.8m/s2
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~ = 1.0 X 102 J

c=3.0 X 108m/s

l :=; 4 .0 em = 4 .0 X 10-2 m

Substitute the numerical values into the final formula:

• ex. ~ 1.0 X 102

Sln-= .=::: -
2 mcygl 9.0xiO-6x3.0X108 Y 9. 8 X 4. 0 X 10- 2

=5.9x10-2

~ = 3°24', ex = 6°48'





PROBLEMS

Part One

MOTION AND FORCES

1. Kinematics of a Particle

t.1. Two particles move along the x-axis uniformly with
speeds VI = 8 mls and V 2 == 4 mise At the initial moment the
·first point was 21 m to the left of the origin and the second
7 m to the right of the origin. When will the first point catch
up with the second? Where will this take place? Plot the
graph of the motion.
1.2. The initial distance between two particles is 300 ID.

-The particles head towards each other at speeds of 1.5 mls
and 3.5 mis, respectively. When will they meet? Where
will the meeting take place? Plot the graph.
1.3. A car left a city travelling uniformly at a speed of
80 km/h. It was followed 1.5 hours later by a motorcycle
"hose speed was 100 km/h, How much time elapsed after the
car left the city before the motorcycle caught up with it?

..Where did this take place? Plot the graph.
1.4. The speed of a swimmer with respect to the water is
v, the speed of the stream is u. In what direction should the
swimmer move to reach the opposite point on the other bank
,of the river? How long will he swim if the width of the river
lis l?
1.5. What should be the angle at which a swimmer should
·&wim to reach point C from point A (Fig. 1.5)1 The speed of
"the swimmer V, the speed of the stream u, and the angle ~
are all known.
~1~6. At what angle to the stream should a swimmer swim
to reach the opposite bank as soon as possible?
2-0360
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Fig. 1.5.

1.7. The speed of a motor launch with respect to the water
is v = 7 mIs, the speed of the stream u = 3 m/s. When the
launch began travelling up-stream, a float was dropped from
it. The launch travelled 4.2 km up-stream, turned about and
caught up with the float.
How long is it before the
launch reaches the float
again?
1.8. A motorcyclist start­
ed up, rode for 20 s with
an acceleration of i.5m/s2 ,

then 2 min at a constant
speed, and, finally, bra­
ked uniformly for 15 s
and stopped. Find the
maximum speed, the de­
celeration during braking
and the distance covered by the motorcyclist (graphically).
1.9. Prove that for a motion with a uniform rectilinear
acceleration

2a (l- lo) = v2 - v~

1.10. A shell leaves the barrel of a gun at a speed of 800 m/s.
The barrel is 2.0 m long. Find the average acceleration.

2. Force

2.1. Find the spring constant k of a system made up of two
springs joined in series.
2.2. Two parallel forces F1 and F 2 acting in the same direc­
tion are applied to a rigid body.

Prove that
(a) the magnitude of the resultant force is equal to the

sum of magnitudes of the forces being added;
(b) the resultant force is parallel to the forces being added

and acts in the same direction;
(c) the resultant force passes through the centre of the

parallel forces, i.e. through the point which divides the dis­
tance between the points of application of both forces into
sections inversely proportional to the magnitude of the
forces.
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2.3. Find the position of the centre of a system of parallel
forces applied to a rigid body.
i 2.4. Find the position of the centre of two unequal antipar­
'allel forces. The distance between the points of application
of the forces F1 and "
F2 is a.
2.5. Find the spring <X2

constant of a system
made up of two springs
joined in parallel.
2.6. A weight of mass
m is suspended from
a cord so that one sec-
tion of it makes an • m
angle (Xl with the ho-
rizontal and the other Fig. 2.6a.

- an angle (X2 (Fig. 2.6a)*. Find the tension of these sec­
tions of the cord.
2.7. A weight of mass m is suspended from a hinged bracket

m

m

Fig. 2.7a. Fig. 2.8a.

(Fig. 2.7a). Find the forces in the rods making up the bracket.
2.8. A weight of mass m hangs from a bracket (Fig. 2.8a);
AB = AC = BC = EC = a; DE = a/2. Find the forces
in the rods.

* Figure numbers correspond to the numbers of problems. Let­
ter "a" implies graphical presentation in the Solutions.
2*
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Fig. 3.2.

-,

o

3. Particle Dynamics

3.1. Find the average pressure of the gases in the barrel
of a gun if the calibre (the diameter) of the bullet is 7.62 mm,
its mass is 9.1 g and the barrel is 610 mm
long. The bullet leaves the barrel at a speed
of 715 m/s. Neglect. friction.
3.2. Two weights with masses m1 and m 2 are
suspended from a thread slung over a pulley
(Fig. 3.2). Find the acceleration of the system
a, the tension of the thread F and the force
Fp acting on the pulley's axis. Neglect the mass
of the thread and of the pulley and friction.
3.3. Two bodies with masses m1 and m 2 >
> m, connected by a thread lie on a smooth
table. A force Q is first applied to the larger m

,

and then to the smaller of the bodies (Fig. 3.3) ..
Is the tension ofJ the thread in both cases
the same?
3.4. A monkey of mass m clings to a rope slung over a fixed
pulley. The opposite end of the rope is tied to a weight of

Q
•

'7////////////7///7/////7///////7///////////a
Fig. 3.3.

Fig. 3.4.

mass M lying on a horizontal plate (Fig. 3.4). Neglecting
friction find the acceleration of both bodies (relative to the
plate) and the tension of the rope for the three cases:
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(1) the monkey does not move with respect to the rope;
(2) the monkey moves upwards with respect to the rope

with acceleration b;
(3) the monkey moves downwards with respect to the rope

with an acceleration b.
3.5. A block of mass M lies on a plane inclined at an angle
a to the horizontal. A weight of mass m is connected to the
block by a thread slung over
a pulley (Fig. 3.5a). Find
the acceleration of the
weight and the tension of
the thread. Friction, the
mass of the pulley and of
the thread are to be neglect-
ed. m
3.6. A rod of mass m 2"' rests
on a wedge of mass ml (Fig.
3.6a). Guides allow the Fig 3.5a.
rod to move only in the direction of the y-axis and the
wedge only in the direction of the z-axis. Find the accel-

Fig. 3.6a

erations of both bodies and the reaction of the wedge. Neg­
lect friction.
3.7. A block of mass m is placed on a wedge of mass M
(Fig. 3.7a). Find the accelerations of the block and the wedge
in the reference system fixed to the table, and the reaction.
Friction is to be neglected.

Analyse the limiting case when the wedge remains station­
ary.
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3.8. Find the period of revolution of a conical simple pen­
dulum whose thread of length 1 makes an angle ex with the
vertical (Fig. 3.8).
3.9. An undeformed spring with the spring constant k has
length Zo. When the system (Fig. 3.9) rotates at an angular

Fig. 3.7a.

velocity 00, the weight with mass m causes an extension of
the spring. Find the length 1 of the rotating spring.

Fig. 3.8.

m

Fig. 3.9.

3.10. A plane flies at a constant speed of 200 mls in a hori­
zontal path with radius of curvature equal to 5 km. What
is its angle of bank?
3.11. A plane flying at a constant speed of 300 mls makes a
wingover* in the vertical plane with the radius 1.3 km ,

* A flight manoeuvre in which a plane is put into a climbing
turn until nearly stalled after which the nose is allowed to fall while
the turn is continued until normal flight is attained in a direction
opposite to that in which the manoeuvre was entered. Also called
a Nesterov loop.
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Find the change in weight in the upper and the lower points
of the loop.
3.12. A particle is thrown with an initial speed Vo at an
angle ex to the horizontal. Find the radius of curvature r
at the highest point of its path, and its ratios to the maximum
height H and to the distance L of the particle's flight.
3.13. The equation for a parabola is of the form x2 = 2py,
where the parameter p > O. Find the radius of curvature of
the parabola at each point.
3.14. Prove that the tangent line to the parabola x2 = 2py
at an arbitrary point makesan angle ex with the x-axis whose

H

x l

Fig. 3.15. Fig. 3.f6.

tangent is equal to the x-coordinate of the point divided by
the parameter p (i.e. tan ex = x/p).
3.t5. The surface of a hill is inclined at an angle a to the
horizontal (Fig. 3.15). A stone is thrown from the summit of
the hill at an initial speed Vo at an angle ~ to the vertical.
How far from the summit will the stone strike the ground?
3.16. A body falls freely from some altitude H Fig. 3.16).
At the moment the first body starts falling another body is
thrown from the Earth's surface, which collides with the
first at an altitude h = H /2. The horizontal distance is l,
Find the initial velocity and the angle at which it was thrown.
3.17. Before the discoveries of Galileo the common opinion
was that the greater the mass of a body is the faster it falls.
Try to prove logically, using the fact of additivity of mass,
t~~t all bodies, independent of their mass, must fall in the
sa~e way. You will be repeating Galileo's reasoning. (Ga­
llleoused reductio ad absurdum).

Ie
}y--------

h
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4. Gravitation. Electrical Forces

4.1. Find the mass of the Earth from its polar radius and
the free fall acceleration at the pole.
4.2. Find the mass of the Earth knowing the orbital period
and the radius of the Moon.
4.3. Find the mass of the Sun knowing the average distance
from the Earth to the Sun (the astronomical unit) and the
orbital period of the Earth.
4.4. Compare the forces with which the Sun and the Earth
act on the Moon.

How can you explain the fact that the Moon is a satellite
of the Earth, although the attraction of the Sun is stronger?
4.5. Find the distance from Venus to the Sun knowing its
orbital period and the orbital period of the Earth. .
4.6. At what altitude above a planet is the acceleration due
to gravity one half of that at its surface?
4.7. Find the acceleration due to gravity on the Venus, on
the Moon and on the Sun.
4.8. What should be the period of rotation of a planet about
its axis for the state of weightlessness to exist on the planet's
equator? Do the calculation for the case of the Earth.
4.9. Two small balls with masses of 0.5 g each hang on
threads 0.8 m long each tied to a common hook. What charge
has been acquired by the system if, as a result, an angle
2a = 12° has been established between the threads?
4.10. Two equal positive charges are placed at two corners
of a square, the other two corners having negative charges of
equal magnitude. Find the field intensity in the centre of
the square in the two cases.
4.11. A charge q is uniformly distributed over the surface
of a ring-shaped conductor of radius a. Find the field inten­
sity on the axis of the conductor at a distance .T, from the
plane of the cond uctor.
4.12. The molecule of water may, as a first approximation,
be considered as a dipole with an electric moment p = 6.1 X
X 10-30 C · m. Estimate the force of attraction between two
water molecules.
4.13. An electric field of intensity E is set up between two
parallel plates of length L. An electron beam enters the field
at an angle rx > 0 to the plates and leaves it at en angle~
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p < 0 (Fig. 4.13). Find the initial velocity of the electrons.
The force of gravity is to be neglected.
4.14. Two plane-parallel plates l = 2 em long serve as the
control electrodes of a cathode-ray tube. The distance from
the control electrodes to the tube's screen is L = 30 em,

L

+ +

-I

Fig. 4.13.

An electron beam enters midway between the plates parallel
to them at a velocity of Vo = 2 X 107 m/s. What is the

+ +

h

Fig. 4.15.

electric field between the electrodes if the beam's displace­
ment on the screen is d == 12 em?
4.15. The length of plane-parallel electrodes is l, the dis­
tance between them is h. An electric field of intensity E
is set up between them. An electron enters the field close to
the lower plate at an initial speed Vo and at an angle e.t to
the plates (Fig. 4.15). What should the field intensity be for
tPe· electron to pass between the electrodes without striking
e~ther of them? For what angles ex is this possible?
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5. Friction

5.1. A stationary body of mass m is slowly lowered on to
a massive platform (M ~ m) moving at a speed Do = 4 mls
(Fig. 5.1). How long will the body slide along the platform
and what distance will it travel during this time? The coef­
ficient of friction is I.t = 0.2.
5.2. Solve Problem 3.4 for conditions when the coefficient
of friction between the weight and the plate is f..l.

~

f 5 lJo
M ..
Fig. 5.1.

5.3. Find the acceleration of the block in Problem 3.5 for
conditions when the coefficient of friction between the block
and the inclined plane is f..L.
5.4. Find the reaction of the wedge in Problem 3.6, if the
coefficient of friction between the wedge and the table is
I.t, the friction between the rod and the wedge being
negligible.
5.5. Find the reaction in Problem 3.7, if the coefficient of
friction between the block and the wedge is f..L. Friction be­
tween the wedge and the table is to be neglected.
5.6. Find the reaction in Problem 3.7, if the coefficient of
friction between the wedge and the table is f..L. Friction be­
tween the block and the wedge is to be neglected.
5.7. A block lies on a wedge with the slope angle a. The
coefficient of static friction between the bar and the wedge is
I.t < tan cx. What should be the acceleration of the wedge to
prevent the bar from sliding down?
5.8. A disk rotates at 70 r.p.m. in a horizontal plane. How
would you place an object on the disk so that it would re­
main on it? The coefficient of static friction between the
object and the disk is f.tst at == 0.44.
5.9. In the motorcycle stunt called "the wall of death"
the track is a vertical cylindrical surface of 18 m diameter.
What should be the minimum speed of the motorcyclist to
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prevent him from sliding down? The coefficient of friction
is f..t -< 0.8. Take the motorcycle to be a point mass.
5.tO. A spherical bowl of radius R rotates about the verti­
cal diameter. The bowl contains a small object whose radius
vector in the course of rotation makes an angle a with the
vertical (Fig. 5.10a). What should be the minimum angular
velocity co of the bowl in order to
prevent the object from sliding
down, if the coefficient of static
friction is fJ-stat?

5.11. A motorcyclist rides at a speed
of 90 km/h. What is the radius of
curvature of the bend the motorcy­
clist can make, if the coefficient of
friction between the rubber tyre and
the asphalt is 0.65? What is the
motorcyclist's inclination to the hor­
izontal?
5.12. A glass ball of 4.0 mm dia­
meter falls in a glycerine solution
(Po = 1.21 X 103 kg/m", 11 =
5.02 X 10-2 Pa -s), The density of the glass is p =
2.53 X 103 kg/m". Find the steady-state speed and the initial
acceleration. Make an approximate estimate of the time in
which the ball attains the steady-state speed, and the
distance the ball travels during this time.
5.t3. With the aid of numerical calculation find the in­
stantaneous values of the acceleration and the speed of the
falling ball in the previous problem and plot the graph.
Choose an interval of time equal to ~t = 0.02 s.
5.14. Estimate the steady-state speed of settling of dust
particles in a room l = 2.8 m high and the time of settling.
The minimum diameter of a dust particle is 2r === 0.06 mm.
The viscosity of air at 20 °C is 11 === 1.8 X 10- 5 Pa -s, the
density of the dust particles is p = 2 X 103 kg/m",
5.15. Estimate the speed at which hail falls if the diameter
01 a hailstone is 2r = 5 mm, and its density is p === 8 X
X 102 kg/m",
5.16. When you have learned to integrate, find the depen­
dence on time of the instantaneous velocity of the ball in
Problem 5.13.
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6. Theory of Relativity

6.1. Making use of the principle of relativity prove that the
lateral dimensions of an object do not change with a change
in the reference frame.
6.2. Estimate the relative error in calculations when the
classical law of addition of velocities is used instead of the
relativistic.
6.3. In a colliding-beam proton accelerator the protons of
both beams meet head on at a speed of O.99000c relative to

V2 v,

""~~~~a"""",\~""",, -X.
Fig. 6.4.

the accelerator. What is the speed of a proton of one beam
relative to that of the other?
6.4. Here's one of the "disproofs" of the relativistic law of
addition of velocities. Suppose two objects initially at the
same point start moving relative to the Earth in opposite
directions (Fig. 6.4). The total distance covered by the objects
is

~l = ~lt - ~12 = vtt1 t - ( - V2~t) = (Vi+V2) ~t

Hence, the speed of approach u = ~l/At = VI + V 2•
We obtained the classical law of addition of velocities

and not the relativistic one. Where lies the error in such
reasoning?
6.5. The velocity of light in a stationary medium is u =
=== cln where c is the velocity of light in vacuum and n is the
refractive index of the material (see §63.1). Find the veloc­
ity of light in the medium moving at a constant speed
relative to the source of light.
6.6. In the Fizeau experiment two light beams travel head
OD, one along a stream of fluid, the other in the opposite
direction (Fig. 6.6). If the length of each tube is l, the veloc­
ity of the fluid v and its refractive index n, what will be
the difference between the travel times of the light beams?
6.7. What will be the distance a pion (pi-meson) travels
before it decays, if its speed is v == O.99c and its intrinsic
lifetime is 'to = 2.6 X 10-8 5? What would be the transit
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distance if there is no relativistic time dilation? The distance
is measured in the laboratory reference frame.
6.8. Find the intrinsic lifetime of a particle if its velocity
is below the light velocity in vacuum by 0.2% and the dis­
tance it travels before decaying is about 300 km.
6.9. At what speed must a particle move for its rest mass to
be trebled?
6.10. Find the expression for the density of a body in an ar­
bitrary inertial frame of reference.
6.t1. At two points of an iner­
tial reference frame separated by
a distance along the x-axis of
l = X 2 - Xl two events take place
simultaneously. Find the time
interval between the events in an
iarbitrary inertial reference frame.
;6."t2. An electron is accelerated
"in an electric field of intensity
E = 3.0 X 106 N/C. Find the
'~peed of the electron after 1.0 ns .
• t, --What would be the speed of
the electron, if its mass is inde-
pendent of speed? Fig. 6.6.
6.13. A force acts on a particle
moving at a relativistic speed in a direction perpendicular
to its path. How will the particle move? Express the force
in terms of -the speed and of the radius of curvature of the
path.
6.t4. When -you have learned to differentiate trigonometric
functions, try to prove that in the relativistic case the for­
mula F = ma does not hold, even if m is taken to be the
relativistic mass.
6.t5. Introduce the following definition: the length of a
moving rod is the product of its speed and the time interval
between the moments when its two ends pass a static clock.
~he proper length is determined in a similar way with the
bid of a clock moving at the same speed along a static rod.
Wind the relation between the length of a moving rod land
itS proper length lo.
1c

..i'



Part Two

CONSERVATION LAWS

7. The Law of Conservation of Momentum. Centre of Mass

7.1. A wooden block of 5.0 kg mass lies on a horizontal
wooden table. A bullet of 9.0 g mass hits the block after
which it moves a distance 25 em across the table before stop­
ping. Find the bullet's speed.
7.2. A railway flatcar whose mass together with the artillery
gun is M moves at a speed V along the x-axis (Fig. 7.2).

Fig. 7.2.

The gun barrel makes an angle ex with this axis. A projectile
of mass m leaves the gun at speed v (relative to the gun)
in the direction of the flatcar's motion. Find the speed of
the flatcar after the gun has been fired. What should the
speed of the flatcar be for it to stop after the firing? Neglect
friction.
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Put M = 10 tons, m = 120 kg, V = 6.0 mis, v = 900 mIs,
(X = 30°.
7.3. The mass of a boat is M = 80 kg, the mass of a boy
is m = 36 kg. The boy moves from the stern to the bows of
the boat. What distance does the boat move, if its length is
l = 2.8 m? At such low speeds the water resistance may be
neglected.
7.4. Find the initial acceleration of a rocket if its initial
mass is 40 metric tons, the exhaust velocity of gases is
4 km/s and the fuel consumption 200 kg/s.
7.5. The initial mass of a missile is M 0 = 160 tons, the
exhaust velocity is 4 km/s. After 90 tons of fuel have burnt
out the first stage with a mass of 30 tons is detached. Next
additional 28 tons of fuel are burnt. What is the final speed
of the second stage?
>. What would be the speed of a single-stage missile with
the same mass of fuel?
7.6. When you have learned to integrate, derive the Tsiol­
kovsky formula.
7.7. Why do astronauts experience an increase in overload
as the spaceship is accelerated? Assume the fuel consumption
to be constant.
7.8. A carriage closed on all sides stands on rails. Can the
.passengers inside the carriage cause an oscillatory motion
of the carriage? Friction with the rails should be neglected .
.The mass of the carriage should be assumed to be commen­
surate with that of the passengers.
7.9. Prove that the centre of mass of a uniform triangular
plate coincides with the point of intersection of its medians.
~7.tO. Find the center of mass of a uniform plate shown in
-Fig. 7.10a.
7.11. Find the center of mass of a plate shown in Fig. 7.11.
.Put R = 5.00 em, r = 3.00 em.
'7.12. Using numerical methods find the center of mass of
.8. semicircle. To facilitate computation put R = 1.00.
·i.13. Using numerical methods find .the center of mass of
a hemisphere.
,7.14. Using numerical methods find the center of mass of
-a right circular cone with the height h = 1 and its genera­
.\rix making an angle (L with the height.
·7.15. Using integral calculus solve the Problems 7.12,
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7.13, and 7.14 analytically.
7.16. The third Kepler law was derived in § 9.4 for the case
of a planet mass being much smaller than that of the Sun,

6

J

Fig. 7.10a. Fig. 7..11.

so that the Sun could be considered to be stationary. Derive
this law for the case of two bodies rotating about their centre
of mass.

8. Total and Kinetic Energy

8.1. Find the rest energy (the proper energy) of an electron,
a proton, and a neutron.
8.2. Find the velocity of a particle whose kinetic energy is
equal to its rest energy.
8.3. Find the kinetic energy and the momentum of an elec­
tron whose speed is O.92c.
8.4. The kinetic energy of a proton is 10 GeV. Find its mo­
mentum and velocity.
8.5. The kinetic energy of electrons in the Kharkov and the
Erevan linear accelerators is 10 MeV. Find the speed of the
electrons.
8.6. What is the error when the classical expression for the
kinetic energy is substituted for the relativistic expression?
Calculate for Ul = O.1c; for U 2 = O.ge and for Us = O.99c.
8.7. The midship section of a launch is S = 4 m", the power
of its engine is P = 300 h.p., the efficiency is II = 25%.
What is the maximum speed of the launch? Put C = 0.5.
8.8. A winch powered by an engine of specified power P
pulls a weight up an inclined plane (see Fig. 3.5a, p. 21).
The plane makes an angle (X with the horizontal, and the
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coefficient of friction is fl. For what angle of inclination will
the speed of the weight be a minimum?
J~.9. A hydraulic monitor emits a jet of water at a speed
.of·100 m/s. The water flow rate is 144 m3/h. Find the power
of its pump if its efficiency is 75%.
8~10. An electron with zero initial velocity is accelerated
in an electric field of intensity E. Find the velocity of the
electron after it has travelled a distance l. Do the calcula­
tions for the classical and for the relativistic case. Show that
"for a weak field the relativistic formula becomes the same
as the classical formula.
'S.11. For an ultra-relativistic particle (pc ~~o) its total
energy may be assumed to be equal to the product of its
momentum and of the velocity of light in vacuum, i.e.
~ = pc. Determine the error arising from this assumption.

9. Uncertainty Relation

9.1. Assuming that in a hydrogen atom the electron rotates
about the nucleus in a circular orbit, estimate the radius of

-this orbit.
9.2. What kinetic energy must an electron have to be able
to penetrate the nucleus? The dimensions of a nucleus are
of the order of 10-15 m.
9.3. Assess the kinetic energy of conduction electrons in
a .metal in which their concentration is of the order of
:f029 m:",

9.4. According to modern ideas, a pulsar is a star made up
'almost entirely of neutrons. * Assuming the mass of the pul­
'sar to be equal to that of the Sun (2 X 1030 kg) and its radius
to be of the order of 10 kID, estimate the kinetic energy of
the neutrons.

10. Elementary Theory of Collisions

10.1. A block with the mass of 2.0 kg lies on a smooth hor­
..izontal table. A bullet with the mass of 9.0 g flying at a

speed of 800 mls at an angle of 300to the horizontal hits the

r * The possibility of such a state of matter was first suggested by
.~ L. D. Landau, Member of the Academy of Sciences of the USSR,
. in 1932. See, for example, the paper "On the sources of stellar energy",

poklady Academii Nauk 88SR, v. 17, p. 301 (1937) (in Russian).

3-0360
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block and sticks in it. What is the speed and the direction
of the resulting motion of the block?

Does the apparent loss of the vertical component of its
momentum contradict the law of conservation of momentum?
10.2. A radon nucleus with an atomic mass of 216 emits an
alpha-particle with an atomic mass 4 and a kinetic energy
8 MeV. What is the energy of the recoil nucleus?
10.3. A smooth ball hits a smooth wall at a certain angle.
The collision is elastic. Prove that the angle of reflection
is equal to the angle of incidence.
10.4. A ball moving parallel to the y-axis undergoes an
elastic collision with a parabolic mirror y2 = 2px. Prove

Fig. 10.7a. Fig. 10.8a.

that no matter where the point of impact lies, it will arrive
at the mirror's focus F. Find the position of the focus.
10.5. Prove that as a result of an elastic collision of two
nonrelativistic particles of equal mass the scattering angle
will be 90°.
10.6. A relativistic proton with kinetic energy K collides
with a stationary proton. Assuming the collision to be elastic
and the energy to be partitioned equally between the parti­
cles, find the scattering angle. Calculate for the cases K =
= 500 MeV and K = 10 GeV.
10.7. A disk of radius r moving on perfectly smooth surface
at a speed v undergoes an elastic collision with an identical
stationary disk. Express the magnitude and the direction
of the velocity of each of the disks after the collision as a
function of the impact parameter d (Fig. 10.7a). Calcula­
tions to be made only for the non relativistic approximation.
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to.8. Solve the previous problem assuming the mass of the
moving disk to be m, and its radius r1 , and the corresponding
magnitudes of the stationary disk to be m2 and r 2 (Fig. iO.8a).
to.9. Calculate the pressure exerted by a flux of particles
striking a wall at an angle ex, to its normal. Consider the case
of elastic collisions. The particle concentration is n.
10.10. Estimate the sail area of a sailing boat moving at a
constant speed in the direction of the wind assuming its
midship section to be So = 1.0 m", the coefficient C = 0.1,
-the boat's speed Vo = 3.0 mIs, and the wind velocity v ==
-= 6.0 m/s.
'10.11. A ball is thrown horizontally at a speed Vo from the
top of a hill whose slope is a (to the horizontal). Assuming
the ball's impact on the hill's surface to be elastic find the
,point where it will hit the hill the second time.

11. Potential Energy. Potential

it.1. Prove that in a uniform field the work is independent
of the path.
t1.2. When you have learned to integrate exponential func­
tions, try to derive formulas (18.6), (18.10), and (18.12).
11.3. Assume the potential energy of an object to be zero
if the object is infinitely distant from the Earth. Write the
expression for the potential energy of the object at an arbit­
rary point above the Earth.
..', What is its potential energy on the Earth's surface?
11.4. Assume the potential energy of an object to be zero
-if the object is on the Earth's surface. Write down the ex­
fression for the potential energy of the object at an arbitrary
point above the Earth.

,~.', What is its potential energy at an infinite distance?
tit.5. Calculate the energy of a dipole. What is the meaning

·'of a minus sign?
11.6. The dipole moment of a hydrogen chloride molecule
!is 3.44 X 10-30 C ·m, the separation of the dipole is 1.01 X
X 10- 10 ID. Estimate the energy liberated in the course of

formation of 1 kg of hydrogen chloride from the starting ma­
~lerials, if the number of molecules in 1 kg is 1.6 X 1026•

~1~.7. Find the potential of the electric field in the first Bohr
orbit of a hydrogen atom (see Problem 9.1).

••
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11.8. Find the sum of the kinetic and the potential energies
of an electron in the first Bohr orbit. Explain the meaning
of the sign of the total energy (see Problem 9.1).
11.9. Find the momentum and the velocity acquired by an
electrically charged particle which has travelled through a
potential difference fP = CPt - <P2. Take the initial velocity
of the particle to be zero. Do the calculation both for the
nonrelativistic and the relativistic cases.
11.10. Find the potential difference for which the error in
the value of the momentum for the previous problem calcu­
lated using the nonrelativistic approximation does not ex­
ceed 5%. Do the calculations both for the electron and for
the proton.
11.11. In the ultra-relativistic case the momentum of a
particle accelerated by a potential difference cp is found with
the aid of the formula p = eelc, this value being expressed
in units of MeVlc, where c is the velocity of light in a vacuum.
Express this unit in the SI system. Find out for what poten­
tial differences the use of this formula leads to an error of
less than 5%. Do the calculations both for the electron and
the proton.

12. The Law of Conservation of Energy in
Newtonian Mechanics

12.1. The ballistic pendulum is a block of 3.0 kg mass sus­
pended from a thread 2.5 m long. A bullet with the mass of
9.0 g hits the block and sticks in it, the result being a de­
flection of the system by an angle of 180 (Fig. 12.1). Find
the bullet '8 speed.
12.2. A body of 5 kg mass is raised vertically to a height
of 10 m by a force of 120 N. Find the final velocity of the
body using two methods: Newton's second law and the law
of conservation of energy. The initial speed is zero.
12.3. Solve Problem 5.1 using the law of conservation of
energy.
12.4. A weight is suspended from a thread of length l. What
is the initial speed that has to be imparted to it at the lowest
point to make it complete a full revolution? The mass of the
thread is to be neglected.
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ii 12.5. Solve the same problem for the case of a weight sus­
;;; pended from a thin rod of negligible mass.

12.6. A weight of mass m hangs on a thread. The thread is
deflected by an angle CXo and let go. Find the tension of the

~~.

thread as a function of the angle cx .
•~,·o 12.7. A small disk of mass m lies on the highest point of a
:;~ sphere of radius R. A slight push makes the disk start slid­

ing down. Find the force of
pressure of the disk on the
sphere as a function of the
angle its radius vector makes
with the vertical. Where does
the disk lose contact with the
sphere? Friction is to be neg-
lected.
12.8. A cyclist rolls down a m v
"devil's loop" track from a ~ u

height H. Find the pressure of .
the cyclist on the track as a FIg. 12.1.
function of the angle the radius vector makes with the ver­
tical. Do the calculations also for the case when the cyclist
rolls down from the minimum height.
12.9. A small object loops a vertical loop in which a sym­
metrical section of'angle 2a has been removed! (Fig. 12.9).
Find the maximum and the minimum heights from whichthe

, object, after loosing contact with the loop at point A and
flying through the air, will reach point B. Find the correspon­
ding angles of the section removed for which this is possible.
12.10. The point of an elliptical orbit closest to the Sun is
called the perihelion, and the point most distant from it is
called aphelion (Fig. 12.10). Denoting the distance from the
perihelion to the Sun by ro, and the velocity of the planet at
the perihelion by Vo, find the radius of curvature of the orbit
at the perihelion and at the aphelion, the distance from the
aphelion to the SUD, and the velocity of the planet at the
aphelion.

Prove that the motion of a planet in an.ulliptical orbit
is only possible, if its total energy is negative.
12.1 t. Prove that if a space vehicle travels along a para­
bolic path with the Earth (or some other planet) at its focus,
the total mechanical energy of the vehicle is zero.
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12.12. Solve Problem 3.6 using the law of conservation of
energy.
12.13. Solve Problem 3.7 using the laws of conservation
of energy and momentum.
12.14. A space vehicle of 1 tonne mass is to take off from the
Moon and fly to the Earth. Find the amount of fuel required.
Compare the result with the amount of fuel needed to send

.§
~
~----~-

~

Fig. 12.9. Fig. 12.10.

an identical vehicle from the Earth. Assume the rocket to be
a single-stage vehicle.
12.15. A star with a mass of more than three times that of
the Sun contracts so much upon cooling that it is not able
to radiate; neither material particles nor light are able to
overcome its gravitational field. Find the radius of such an
object (a "black hole").

13. The Law of Conservation of Energy

13.1. Two identical lumps of ice collide head on. What
must their speed be for their complete sublimation to take
place as a result of an inelastic collision? The initial ternper­
ature is to = - 30°C. Radiative losses are to be neglected.
13.2. A lead bullet penetrates a board, its speed being re­
duced as a result from 400 mls to 200 m/s. What fraction of
the bullet will melt? Neglect the heating of the board. The
initial temperature is about 30°C.
13.3. The intensity of solar radiation reaching the illumi­
nated side of the Earth each second is J = 1.36 kW/m2

•

Find the decrease in the internal energy and the mass of the
Sun per second. How long will it take for the Sun's mass to
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decrease due to radiation by 10%? The volume of the Sun
is to be assumed to remain constant.
13.4. A nonrelativistic particle collides inelastically with
an identical stationary particle. What is the kinetic' energy
of the body thus formed? What happened to the rest of the
kinetic energy?
13.5. A particle with rest mass M 0 splits up into two iden­
tical fragments which fly apart in opposite directions at
speeds of 0.90c. Find the rest mass of each fragment. 0

13.6. A relativistic particle collides inelastically with an
identical stationary particle. What are the internal and the
kinetic energies of the resulting object? The kinetic energy
of the particle before the collision is K = ecp where cp is
the potential of the accelerating electric field. Do the cal­
culations for protons with kinetic energies of 10 GeV and
76 GeV.
i3.7. Find the kinetic energy that must be imparted to a
positron for a proton-antiproton pair to be obtained as a
result of its collision with a stationary electron.
1'3.8. Solve the previous problem assuming the collision
to take place in a colliding-beam accelerator in which the
electrons and positrons meet head on with equal velocities.
13.9. Compare the efficiency of a colliding-beam accelerator
with that of an accelerator in which the particles strike a
target made up of identical stationary particles.
13.10. What should be the energy of a conventional acceler­
ator for it to be able to do the work of a colliding-beam accel­
erator of 200 MeV? Do the calculations both for electrons
and for protons.
c::

14. Rotational Dynamics of a Rigid Body

14.1. A force couple is the term used for a system of two equal
antiparallel forces; the arm of the couple is the shortest dis­
.tance between the forces. Prove that the torque is equal to
the product of the magnitude of the force and the arm no

'.Blatter what is the position of the point with respect to which
-the torque is determined.
,.14.2. Solve Problem 2.2, applying to the system 'two force
.:_uples having torques equal in magnitude and opposite in
-fin.'
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A

Fig. 14.6.

14.3. Find the torque on the shaft of an electric motor of
20 kW power if its rotor turns at 1440 r.p.m,
14.4. The torsion modulus of a spiral
spring is 2 N -m/rad, The spring is tur­
ned 10 times. What is the work done?
14.5. Find the moment of inertia of
a disk about an axis passing through r///'l//.~/fltLl

a point on its circumference perpen- ~~II~~~~dicular to its plane.
14.6. The mass of a disk with a cir­
cular hole cut in it (Fig. 14.6) is m.
Find its moment of inertia about an
axis passing through point A perpen­
dicularly to the disk's plane.
14.7. When you have learned to integrate, derive the
formula for the moment of inertia of a disk.
14.8. Derive, making use of an integral, the formula for the
moment of inertia of a sphere about its diameter.
14.9. Derive, making use of an integral, the formula for the
moment of inertia of a right circular cone about its height.
14.10. Solve Problem 14.8 using numerical methods.

v

Fig. 14.12. Fig. 14.13.

14.11. Solve Problem 14.9 using numerical methods.
14.12. A uniform rod of length l can rotate without friction
about an axis passing through its upper end (Fig. 14.12).
The rod is deflected by an angle ao and let go. Find the speed
of the lower" end of the rod as a function of the angle a.
14.13. A solid cylinder with base radius ]is placed on top
of an inclined plane of length l and slope angle a (Fig. 14.13).



Conservation Laws 41

The cylinder rolls down without slipping. Find the speed of
the centre of mass of the cylinder at the bottom of the plane,
if the coefficient of rolling friction is k. Can rolling friction
be neglected? Do the calculation for the following conditions:
l = 1 m, a = 30°, r = 10 em, k = 5 X 10-4 m.

What would be the speed if, in the absence of friction,
the cylinder slides down?
14.14. Solve Problem 14.13 for a thin-walled solid cylinder
of the same radius and mass.
14.15. A solid flywheel of 20 kg mass and 120 mm radius
revolves at 600 r.p.m. With what force must a brake lining
be pressed against it for the flywheel to
stop in 3 s, if the coefficient of friction
is O.1?
14.16. A flywheel with moment of iner­
tia 0.86 kg -m! and a cylinder of 5 em
radius of negligible mass are fixed to a
common shaft (Fig. 14.16). A thread is
wound around the cylinder, and a weight
of 6.0 kg mass is attached to it. What
time will the weight take to fall 1 m?
What will be its final speed? Assume the
initial speed to be zero.
14.t7. Solve Problem 3.2 assuming the
moment of inertia of the pulley to be I Fig. 14.16.
and its radius to be r.
14.t8. Solve Problem 12.7 assuming a ball of mass m and
of radius r to roll down from the top without slipping.
Neglect energy losses due to rolling friction.
f4.f9. A man stands in the centre of a Zhukovskii turntable
(8 rotating platform with frictionless bearings) and rotates
with it at 30 r.p.m. The moment of inertia of the man's
body with respect to the axis of rotation is about 1.2 kg -m",
the man holds in his outstretched hands two weights of
mass 3 kg each. The distance between the weights is 160 em.
What will be the change in the speed of rotation of the sys­
tem, if the man lets his hands fall so that the distance be-

... tween the weights becomes 40 cm? The moment of inertia
of the turntable is 0.6 kg -m", the change in the moment of
,~rtia of the man's hands and the friction are to be neglect-
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14.20. A man of 80 kg mass is standing on the rim of a
circular platform rotating about its axis. The platform with
the man on it rotates at 12.0 r.p.m. How will the system
rotate, if the man moves to the platform's centre? What
work will the man perform in changing his position? The
mass of the platform is 200 kg and its radius is 1.2 m.
14.21. Suppose the Sun contracts (collapses) to a pulsar.
Estimate the minimum radius of the pulsar and its period of
rotation. The period of revolution of the Sun about its axis
is 25.38 days (1 day = 24 hours).
14.22. Compare the kinetic energies of rotation of the pul­
sar and of the Sun (see Problem 14.21). What is the source
of the increase in kinetic energy?
14.23. An electron has an intrinsic angular momentum
(spin) whose component in an arbitrary direction is one half
of the Planck's constant, i.e. L z = 11,/2 = 5.25 X 10-36 .J •s.
Making use of the fact that the speed of light in vacuum is
the maximum attainable, prove that a model in which the
spin of an electron is due to the rotation about its axis is
not feasible.

15. Non-inertial Frames of Reference and Gravitation

15.1. Solve Problem 5.7 in the frame of reference connected
with the wedge.
15.2. Solve Problem 5.8 in the rotating frame of reference
connected with the disk.
15.3. Solve Problem 5.9 in a rotating frame of reference.
15.4. Solve Problem 3.8 in a rotating frame of reference.
15.5. Solve Problem 3.9 in a rotating frame of reference.
15.6. What is the angular velocity of rotation of a star at
which the matter starts to escape from its equator? In cal­
culating make use of a reference frame fixed to the rotating
star. Compare with Problem 14.21.
15.7. A drop of fat in milk has a diameter of the orderkof
0.02 mm. Estimate the time it takes to separate cream in
a centrifuge at room temperature (t ~ 20 °C), if the depth
of the vessel is 20 em, the rotation radius 80 em and the speed
600 r.p.m. Compare with the time needed to separate cream
in the gravitational field.
15.8. A centrifugal governor is of the form shown in Fig. 15.8.
The mass of each weight is m, the spring constant is k. Will
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Fig~ 15.8.

this device work in conditions of weightlessness? What is
the dependence of the angle a on the speed of rotation of the
system? What is the maximum speed for which the device
is designed if the maximum
contraction of the spring is
10% of its original length?
15.9. Prove that the surface of
a liquid in a rotating vessel
assumes the form of a para bo­
loid of rotation.
15.10. Making use of the prin­
ciple of equivalence explain
the origin of weightlessness
in a spacecraft orbiting the
Earth (or some other planet).
15.11. What should be the
angular velocity of rotation of
a spacecraft about its axis for
the astronaut to feel effects similar to those of the Moon's
gravitational field, where the free fall acceleration is one
sixth of the Earth's? Take the spacecraft's diameter to
be 6 ID.

15.12. In October 1971 an atomic clock was placed on a
"Boeing 747" flying at an altitude of 10 km at a velocity of
1000 km/h eastwards. An identical clock, with time-keep­
ing accuracy of 1 ns (1 nanosecond = 10-9 s) remained on the
Earth. The plane was in flight 60 h, after which a compari­
son was made of the clocks' readings. What was the differ­
ence in the readings of the clocks in the plane and on the
Earth? What were the contributions of the plane's elevation
and its speed of flight?
15.13. Find the gravitational shift in frequency on the Sun,
on a white dwarf, and on a pulsar. Assume the masses of
all three types of stars to be the same and equal to 2 X
X 1030 kg; the radius of the Sun to be 7 X 106 km, of the
white dwarf 103 kID, and of a pulsar 10 krn.
15.14. Our solution of Problem 12.15 was incorrect; we
made use of the formula for the escape velocity derived from
nonrelativistic expressions for the kinetic and the potential
energies. Try to derive a formula for the radius of a black
hole from relativistic considerations.



Part Three

MOLECULAR-KINETIC THEORY OF GASES

16. An Ideal Gas

16.1. Prove that the magnitude of the hydrostatic pressure
is proportional to the height of the column of liquid (or
gas) and is independent of the vessel's shape.
16.2. Making use of the expression for the hydrostatic
pressure, derive an expression for the magnitude of the
Archimedes force.
16.3. What is the value of the unit of pressure 1 mmHg
(torr) on the Moon? On Venus? Use data from Problem 4.7.
16.4. In Stern's experiment (1920)
silver atoms emitted by a heated
filament passed through a slit and
were deposited on the cooled wall
of an outer cylinder (Fig. 16.4).
When the system was rotated. at
high speed there was a deflection
of the slit's image. The apparatus
was first rotated in one direction
and then in the opposite direction,
and the distance between the deflect­
ed images was measured. Find this
distance if the radius of the inter- Fig. 16.4.
nal cylinder is 2.0 em and of the
external one 8.0 em. The speed of rotation is 2700 r.p.m.
and the filament temperature 960°C.

Estimate the errors of measurement, if the width of the
slit is 0.5 mm.
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16.5. At what speed must the rotor of Lammert's machine
rotate for gas molecules with velocities of 700 mls to pass
through the slits? What velocity spread will be recorded in
the experiment? Take the distance between the disks to be
40 em, the angle between the slits to be 20° and the angular
width of the slit to be 2°.

Estimate the error in the experiment.
16.6. The temperature of the Sun's external layer (the pho ...
tosphere) is about 6000 K. Why don't hydrogen atoms, the
main component of the photosphere, leave the Sun's sur­
face?
16.7. The height of the photosphere is much less than the
Sun's radius. Equating gravitational and pressure forces
try to estimate the height of the photosphere assuming it to
be made up entirely of atomic hydrogen.
16.8. The density of the photosphere assessed with the aid
of optical methods is 2 X 10-4 kg/m", Find the average gas
pressure in the photosphere and the mean free path of hydro­
gen atoms.
16.9. Knowing the mass and the radius of the Sun one may
find the average density of the Sun's material. Estimate
·the pressure and the temperature of the gas in the middle of
the radius assuming, for the sake of simplicity, that the
density is constant and that the acceleration due to gravity
at this point is one half its value at the surface. What is
the proton concentration at this point?
16.10. Explain the reason why the Moon cannot retain its
atmosphere. Take into account that during a lunar day its
temperature rises above 100°C.
16.11. A vacuum has been created in a radio tube, i.e. a
state of gas where the mean free path of its particles exceeds
.the characteristic dimensions of the vessel. Assuming the
.tube's length to be 5 em and it to be filled with argon, esti­
mate the density and the pressure of the gas at room temper­
ature (20°C).
16.12. Find the lifting force of a balloon of 2 X 104 rn3

capacity filled with helium at the surface of the Earth and
.at an altitude of 10 km above sea level. The balloon's en-
velope is open underneath. For data on the properties of
the Earth's atmosphere see § 26.10, Table 26.3.



46 Problems

Fig. 16.17.

u

16.13. Find the molecular formula of ammonia, if its den­
sity at the pressure of 780 mmHg and the temperature of
20°C is 0.736 kg/m",
16.14. Dalton's law is formulated as follows: the total pres­
sure of a mixture of ideal gases is equal to the sum of the partial
pressures of these gases. The partial pressure is the pressure
of a given gas as if it alone occupied
the whole vessel. Prove this law.
16.15. A gas container of 20 I capa­
city contains a mixture of 10 g of
hydrogen and 48 g of oxygen. After
the mixture is ignited by a spark
the gas formed is heated to 300 "C,
Find the pressure of the gas.
16.16. Assuming air (M = 29
kg/mole) to be composed mainly
of oxygen and nitrogen, find the percentage composition of
these gases in the atmosphere.
16.17. In 1908-1910 Perrin determined the .Avogadro num­
ber. He did it by observing the distribution of tiny gumboge
gum balls in water with the aid of a short-focus microscope
(Fig. 16.17). By adjusting the focus of the microscope to
observe a definite layer he was able to count the number of
particles in each layer. In one of the experiments the fol­
lowing data were obtained:

Height of the layer above the
tray's bottom, urn 5 35 65 95

Number of particles in the layer 100 47 23 12

Knowing the ball's radius to be 0.212 urn, the density of
gumboge gum to be 1.252 X 103 kg/m", the density of water
at 27°C to be 0.997 X 103 kg/m" find the Avogadro number.
16.18. A gas -rotates in a centrifuge. Taking into account
that the field of centrifugal forces of inertia is equivalent to
a gravitational field, write the expression for the baro­
metric distribution in the centrifuge.
16.19. Centrifuging may be used for the separation of iso­
topes. To do this a mixture of two gases is placed inside a
cylindrical vessel rotating at a high speed. Because of the
action of centrifugal forces, the isotope concentration near
the cylinder wall will be different from that in the centre.
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Compare the concentrations of the light and the heavy ura­
nium isotopes near the centrifuge walls, if the diameter of
the cylinder is 10 em, the rotation speed is 2.0 X ,103 f. p.s.,
the temperature of uranium hexafluoride is 27°C. For con­
centrations in normal conditions see § 25.6.

Find the enrichment factor in the mixture of the heavy
isotope near the walls of the vessel. The term enrichment
factor applies to the quotient obtained by dividing the
concentration ratio during rotation by the initial concen­
tration ratio:

x= (~): (~)
nl nOl

16.20. How many times in succession should the light frac­
tion he separated in the centrifuge to obtain a mixture con­
taining 80% of light uranium isotope?
16.21. We have obtained the barometric, distribution for
the case of an isothermal atmosphere; indeed, in § 26.10 we
assumed the temperature to he the same at every point.
Actually, in the real atmosphere the temperature drops with
altitude. It may be demonstrated that if the decrease in the
'temperature with the altitude is linear, i.e. if T = To (1 ­
- ah), the barometrical formula assumes the form

-L = (~)mg/akTo

Po To
Prove that if a is small this formula reduces to the for­

mula for the barometric distribution in an isothermal at­
mosphere.
16.22. Try to derive the barometrical formula for an atmos­
phere in which the temperature decreases linearly with the
altitude.
16.23. Measurements carried out by the Soviet "Venus"
space-probes with the aid of their landing modules have
shown that from an altitude of 50 km above the surface of
Venus the temperature of the planet's atmosphere changes
linearly as the altitude decreases. Using the data given below
prove that this layer of the atmosphere consists mainly of
carbon dioxide gas.

Altitude above surface h; km 50 42 37 15 0
Pressure p, atm 1 3.3 6 37 90
Temperature t, °C 80 160 200 360 485
T, K 353 433 473 633 758
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t7. The First Law of Thermodynamics

Fig. 17.6.
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17.1. A vessel contains helium, which expands at a constant
pressure when 15 kJ of heat is supplied to it. What will be
the variation of the internal energy of the gas? What is the
work performed in the expansion? )K
17.2. A cylinder contains 0.15 kg of hydrogen. 'The cylinder
is closed by a piston supporting a weight of 74 kg (Fig. 17.2).
What amount of heat should be supplied
to lift the weight by 0.6 m? The process
should be assumed isobaric, the heat capa­
city of the vessel and the external pres-
sure should be neglected.

~t~L~~i~O:;e~~~~i~e:::e:f\eliu~66a~ ·:;:?;XWt~/;~;ff.
17.4. For most diatomic gases at room
temperatures 'V = + 1.40 + 0.01. Find the
specific heat of nitrogen in these conditions.
17.5. A cylindrical vessel of 28 em diameter contains 20 g
of nitrogen compressed by a piston supporting a weight of
75 kg. The temperature of the gas is 17 °C. What work will
the gas do, if it is heated to a
temperature of 250 °C? What p,105Pa
amount of heat should be sup- 8
plied to it? What distance will
the weight be raised? The process
should be assumed isobaric; the 4
heating of the vessel and the
external pressure should be neg-
lected.
17.6. Upon expansion, the pres­
sure of a gas rose linearly (Fig.
17.6). What work did the gas
perform? By how much did its
internal energy increase? What quantity of heat has been
supplied to it? The gas was monoatomic.

What was the molar heat of the gas in this process? Com­
pare with the specific heats at constant pressure and at con-
stant volume. .
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17.7. The initial gas pressure is 6 X 105 Pa and the volume
1 m", Expansion at constant temperature leads to its volume
being increased two-fold. Using numerical methods calculate
the work of expansion of the gas.

Compare with the formula in § 27.6 and estimate the error.
17.8. When you have learned to integrate derive the for­
mula to calculate the work of expansion of a gas at constant
'temperature.
17.9. A gas has been subjected to an isochoric-isobaric cycle
1-2-3-4-1 (Fig. 17.9a). Plot the graph of this cycle in the
p-p, V-T and p-T coordinates.

P
2 V 2 J

~ ~ :::.

~

,

~ .4 I1 ~ ..:: 4
! I

I I I

~ ~ V 7i ~ T

Eig. 17.9a. Fig.~17.10a.

17.10.~ A gas has been subjected to isothermal-isochoric
-cycle 1-2-3-4-1 (Fig. 17.10a). Plot the graph of this cycle
in p-V, p-p, and p-T coordinates.
17.11. When you have learned to integrate derive the Poiss-

r
· on formula for an adiabatic process.
. .~ 17.12. Ex press the relations between the pressure and the
~'" temperature and between the volume and the temperature

in an adiabatic process.
17.13. The initial pressure of air is 4.0 X 105 Pa, the ini­
,tial volume is 2.0 m". The gaswas compressed adiabatically
:80' that its volume decreased ,to a quarter' of its original vol­
ume. Find the final pressure. Compare with the, pressure
-~at would result from a similar compression of the gas at
'a, constant temperature.

, Which process requires the greater work to be performed
in compressing the gas?
6-0360
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17.14. The initial pressure of neon is 2.0 X 106 Pa, the
initial volume is 0.4 m". The gas expanded adiabatically so
that its volume increased three times. Find the final pres­
sure. Compare with the pressure that would result from an
expansion at constant temperature. In which process does
the gas perform more work upon expansion?
17.15. Find the degree of compression of air if its tempera­
ture rises from 15°C to 700°C upon compression. Assume the
compression process to be adiabatic.
17.16. The distance between the atomic centres in a nitro­
gen molecule is 1.094 X 10-10 ID. Find the moment of inertia
of the molecule and the temperature at which molecu­
lar collisions cause the state of the rotational motion to
change.
17.17. The natural frequency of vibrations of a nitrogen
molecule is 4.4 X 1014 rad/s. Find the temperature at which
vibrations of the nitrogen molecules are excited.

18. The Second Law of Thermodynamics

18.1. What is the probability of extracting from a pack
of 36 cards (a normal pack with all the 2'~, 3·s, 4's, and
5"s removed) (a) a spade card; (b) a red card; (c) a queen
of any suit?
18.2. What is the probability of extracting from a pack
of cards (a) a court-card; (b) a red court-card?
18.3. What is the probability of extracting two aces in
succession from a pack as in Problem 18.1 (a) if the ace

~o GTI EE [[J rn°o 0 0 0, 0 0
00 00 00 00

Fig. 18.4.

extracted first is returned to the pack; (b) if the ace extracted
first is not returned?
18.4. Find the mathematical and the thermodynamical prob­
abilities of the five possible distributions of four balls
in two halves of a vessel (Fig. 18.4), assuming them to be
distinguishable.
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18.5. Try to generalize the result of the previous problem
to include the case when one part of the vessel contains k
out of n balls (k ~ n) in conditions when

(a) the probabilities of a ball being in the left-hand and
the right-hand parts of the vessel are different;

(b) the probabilities of a ball being in either part of the
vessel are equal.
18.6. Plot the graphs of the functions C: and C~*. (Choose
the scale of the z-axis so that the graphs can be conveniently
compared. For instance, for n = 6
you can use the scale 1 : 13 mm
and for n=8 the scale 1 : 10 mm.)
"18.7. A vessel of capacity Vo con­
tains n molecules. Calculate the
probability of all the molecules
assembling in a part of the ves-
lsel V < yo.
f8.8. Prove the theorem converse

:00the one of § 28.8: if in the course
"of the heat exchange between two
bodies contained in a closed and an
~adiabatically isolated system the

i; .entropy rises, then the heat tran-
~+:. -sfer will be in the direction from Fig. is.9.
.;~ ·the heated body to the cold one. "
~::: :.t8.9. Figure 18.9 shows the results of a series of observations
.~~ of a migrating Brownian particle. The observations were
~~ ~made at intervals of 30 s, the temperature of water was 25 °C,
~~~' the radius of a Brownian particle is 4.4 X 10-7 ID. Measur­

":~lf.~" :ing the "steps" of the particle in the scale specified, find the
t aquare of the r.ID.S. displacement for a given time, and cal­

<'~ culate the Boltzmann constant and the Avogadro number.
"-t~··The scale is as follows: 1 mm on the graph corresponds to a
:~~;.displacement of 1.25 um,
:.~:·.t~.10. Plot the T-S diagram (i.e. the entropy vs tempera­
;~'~ure dep~ndence) (a) for an adiabatic process; (b) for an
..~t~sothermlc process.
"::,f.;:.----
:'~J> • In this book, as in "Fundamentals of Physics" by B. Yavorsky
":~I~d ~. P.insky, the n~tation C~ is used for (1:), i.e. the number of
.~~,;~blnatlons of k objects from n,
((fA 4*
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18.11. How can you calculate the amount of heat received
(or delivered) by a system, using the T-S diagram?
18.12. Express the amount of heat received by a system in
the course of isothermic expan-
sion in terms of temperature and
entropy. P
18.13. When you have learned
to integrate, calculate the change
in entropy in the course of an
arbitrary quasi-static process.
18.14. Solve the previous prob­
lem for the cases of an isochoric,
an isobaric and an isothermic
process.
18.15. Find the work per cycle
in Problems 17.9 and 17.10.
18.16. Plot the Carnot cycle in the T-S coordinates and
calculate its efficiency.
18.17. Figure 18.17 depicts an idealized cycle of a petrol
internal combustion engine. The segment 1-2 corresponds to
the adiabatic compression of the combustible mixture;
segment 2-3, to the isochoric combustion of fuel in the course
of which the working fluid receives an amount of heat Q;
segment 3-4 corresponds to the adiabatic expansion of the
working fluid; segment 4-1, to the isochoric exhaust of spent
gases. Express the engine's efficiency in terms of the gas
compression ratio x = V2/V1•

18~18. The compression ratio of an automotive petrol.engine
is about 1 :'7. Assuming the Poisson constant for the air­
fuel mixture to be 1.38 find the maximum efficiency of this
engine and compare it with the actual efficiency, which
does not exceed 25%.
18.19. Making use of the results of Problems 17.8 and 18.7
try to find the connection between the entropy and the ther­
modynamical probability.

19. Fundamentals of Fluid Dynamics

19.1. Oil Ilows 'in a .pipeline at a speed of 0.8 m/s. The oil
flow rate is 2 X 103 tons/h. Find the diameter of the pipeline'.
19.2. The internal diameter of a nozzle is 2 em, It emits
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a jet of water at a speed of 18 m/s. Find the excess pressure
in the fire-hose, the diameter of which is 6 em.
19.3. To measure the flow rate in a gas pipeline a narrowing
is made in it arid the pressure difference between the wide and

j the narrow parts of the pipe is measured (Fig. 19.3). Find
the gas flow rate, if its density is 1.4 kg/m", the diameter of
the pipe is 50 mm, .the di­
ameter of the narrowing is

,) 30 mm and the pressure __
;~ difference is 18mmofwater. - -.-.:=

The compressibility of the -0" /0 .............. · ._~
gas is to be neglected.
19.4. Derive the Bernoulli Fig. 19.3.
equation for an incompres-

· sible liquid flowing in an inclined tube of variable cross sec-
· tion in a gravitational field.

19.5. Water flows out of a wide vessel through a small ori­
~.. ' fice, Express the flow velocity as a function of the height of
. the column of liquid.

19.6. Using the Bernoulli equation for a compressible' flow
derive the relation between the velocity of the flow at a
given point and the local sound velocity.
19.7. An explosion creates a shock wave. Find the initial
velocity of the wave front when the air pressure is 200 times
the atmospheric pressure, assuming that the front of the
shock wave may be regarded as a discontinuity in the den-

.' sity. Take into account that at such pressures "l = 1.8.
f·9.8. The volume of air decreased to one third of its original

? value as a result of shock compression. How many times did
the pressure of air and its temperature increase? Compare

· with the variation of these quantities as a result of quasi­
static adiabatic compression.

": 19.9. A jet plane flies at an altitude of 1 km at a speed twice
·:·.L that of sound. How faraway will the plane be from an ob­
~? server when he first hears it coming?
"!!f 19.10. Show that shock compression of a gas causes its en­
f~Y~ tropy to rise.
~~:~19.11. The steam temperature in a boiler is 600°C, the
-(i~~;~·p~essure is 200 ~tm. The steam is ejected from a L~val nozz~e .
.y.Flnd the velocity and the temperature of steam In the crit­
.;:> leal cross section. To avoid the condensation of steam as it
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leaves the nozzle, its temperature should exceed 100°C.
What is the maximum speed at which the steam leaves the
nozzle?
19.12. The velocity of combustion products ejected from the
nozzle of a rocket is 2.0 km/s and the temperature is 600 "C.
Find the temperature in the combustion chamber and the
maximum efficiency. Assume the fuel combustion to be
complete and carbon dioxide to be ejected from the nozzle.
19.13. The initial mass of a rocket is 30 tons, the initial
acceleration is 3g. The rocket has four nozzles each of 20 em
diameter. The remaining data are the same as in the previous
problem. Find the initial fuel consumption (together with
the oxidant), the density and the pressure of the gas ejected
from the nozzle.
19.14. A passenger plane flies at an altitude of 8 km at a
speed of 900 km/h. The speed is measured with the aid of
a Pitot-Prandtl tube. Find the pressure difference in the
differential manometer. For data relating to the atmosphere
see § 26.10, Table 26.3.
19.15. Find the speed of a motor launch, if the water in
the Pitot-Prandtl tube has risen to a height of 1.8 ID.

19.16. What excess pressure should a pump set up in an
oil pipeline, if the distance between the pumping stations
is 50 km? What is the pump's power? The pipeline should
be assumed smooth, and the data of Problem 19.1 should
be used.
19.17. May the continuity equation be used in the analysis
of a pipeline? What about the equation of momenta and the
Bernoulli equation?



Part Four

MOLECULAR FORCES AND STATES
OF AGGREGATION OF MATTER

20. Solids

20.1. An aluminium cube with 1 em edge is subjected to
hydrostatic stress. What force acts on each face if the de­
crease in the volume is 1 percent?
20.2. Hooke's law is valid for the elastic extension (or com­
pression) of a rod. This law may be writt en down, by anal­
ogy with the formula of the previous problem, by substi­
tuting Young's modulus
E for the bulk modulus
K. Write this formula d=J.8m

and express the rigidity
of the rod in terms of its
dimensions.
20.3. A steel cable is
made up of 120 wires
each of 1 mm diameter. Fig. 20.3.
The rope's length is 4 m,
the distance between the suspension points is 3.8 ill (Fig.
20.3). A weight of 1 tonne mass is suspended in the mid­
dle of the rope. What will be the rope's elongation? What
weight will cause the rupture of the rope? The rope is made
of soft steel.
"20.4. Imagine an infinitely long one-dimensional ionic

"_~rystal-a chain of alternating positive and negative ions
with a distance a between them (Fig. 20.4). Find the force
with which one half of the chain acts on an arbitrary ion
and compare the result with the force F 0 acting between the
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two adjacent ions. Calculation accuracy should be better
than 0.001.
20.5. Find the breaking stress of an ionic crystal neglecting
the effect of all the ions except the nearest neighbours. Do
numerical calculations for a sodium chloride crystal in
which the distance between the centres of neighbouring ions
(the lattice constant a) is, according to data obtained with
the aid of X-ray structural analysis, equal to 2.81 A. Do
the same for a lithium fluoride crystal, in which a = 2.01 A.

... 0 o ••••
Fig. 20.4.

20.6. The theoretical values for the rupture strength obtained
in the previous problem exceed by tens of times the rup­
ture strength of good steels and by many thousands. of times
the rupture strength of real ionic crystals. What is the ex­
planation for this?
20.7'. A steel flywheel is made in the shape of a solid ring
of 40 em external and 30 cm internal diameter. What is
its maximum design speed? At what speed will it fly apart?
20.8. What pressure can a spherical steel container with­
stand, if its internal radius is R and the wall thickness is
d? Do calculations for R == 50 em, d == 5 mm.
20.9. Prove that in similar conditions a cylindrical contain­
er will withstand a pressure half as great.
20.10. A copper rod is fixed between two supports. Its tem­
perature was raised by 50°C. What is .the resulting stress
in the rod?
20. t 1. A steel cylinder was cooled in liquid nitrogen (72 K)
and fitted without play into a nickel-chrome steel shell at
room temperature (20°C). The internal radius of the shell
is 25 .mm and the external radius is 35 mID. Neglecting defor­
mation of the cylinder find the stress in the shell and the
nature of its deformation.
20.12. Water penetrated into a crack in a rock and froze
there. What is the resulting pressure?
20.13. To determine the volume expansion coefficient of
kerosene, one end of a V-tube filled with it was held at 10°C,



Molecular Forces and States of Aggregation 57

and the other at 80 °C. The level of liquid in one tube was
280 mm and in the other 300 mm. Find the coefficient.
20.14. What is the number of atoms in an elementary cell
ef a simple cubic lattice?
20.15. What is the number of atoms in an elementary cell
of a face-centered cubic lattice?
20.16. What is the number of atoms in an elementary cell
of a closely packed hexagonal lattice?

21. Liquids

21.1. The viscosity of mercury decreases with the rise in
temperature (Table 21.1a). Check whether relation (34.10)
is valid for mercury. Calculate the activation energy.

Table 21.1a

.. Tempera ture Viscosity n. Temperature t ; Viscosity T},
t , °C mPa·s °c mPa·s

0 1.681 50 1.407
10 1.621 60 1.367
20 1.552 70 1.327
30 1.499 100 1.232
40 1.450

2t.2. To what height will water in a capillary of 0.8 mm
diameter rise? Assume the contact angle to be zero.
2t.3. A capillary of 0.8 mm diameter is immersed in water,
and rises 2 em above the water. To what height will the
water rise in it? How can the result be made consistent with
the result of the previous problem?
21.4. There were 100 droplets of mercury of 1 mm diameter
on a glass plate. Subsequently they merged into one big
drop. How will the energy of the surface layer change? The
process is isothermal.
21.5. To pump liquid out of a vessel which is not wetted by
it into a vessel wetted by it one may make use of surface
tension forces (a capillary pump). What will be the speed of
flow of petrol in a capillary of 2 mm diameter and of 10 em
length? The experiment is conducted in conditions of weight­
lessness.
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21.6. Compare the effectiveness of a capillary pump for
water at low and high temperatures.
21.7. Liquid in a capillary rises to a height h. What column
of liquid will remain in the capillary, if it is filled in a hor-­
izontal position and then
placed in a vertical po­
sition? Assume thecapil­
lary to be sufficiently
long.
21.8. Find the height to
which a liquid rises b et­
ween two long parallel
plates, a distance d apart.
21.9. A drop of water of
0.2 g mass is placed bet- Fig. 21.10.
ween two well cleaned
glass plates, the distance between which is 0.01 cm. Find
the force of attraction between the plates.
21.10. Two soap bubbles with radii of curvature R1 and R 2 ,

where Rcz < R1 are brought 1 into contact as shown in
Fig. 21.10. What is the radius of curvature of the film be...
tween them? What is the contact angle of the films?

22. Vapours

22.1. Making use of Table 35.1 check the validity of the
Mendeleev-Clapeyron equation for the case of saturated
'Yater vapour. Can saturated vapour be assumed to be an
ideal gas?
22.2. Isn't the result of the previous problem in contradic­
tion with the fact that the ideal gas isochore in p-T coordi­
nates is represented by a linear graph, while the iso chore of
saturated vapour is nonlinear (see § 35.3, Fig. 35.2)?
22.3. A cylinder closed by a piston contains 8 g of water
vapour at a temperature of 55°C. The vapour is compressed
isothermally. What will be its volume when dew begins to
appear?
22.4. A cylinder closed by a piston contains 3.5 g of water
and 2.9 g of water vapour at a temperature of 40 °C. The gas
expands isothermally. What will be the volume correspond..
ing to complete evaporation of water?
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22.5. The air temperature is 18°C, the dew point is 7°C.
Find the absolute and the relative humidities of the air.
22.6. During the day the air temperature was 25°C, the
relative humidity was 68%. At night the temperature fell
to 11 "C. Will dew precipitate? If the answer is positive,
what will be the precipitation per cubic metre of air?
22.7. 5 mS of air with a relative humidity of 22% at 15°C
and 3 m3 of air with a relative humidity of 46% at 28°C have
been mixed together. The total volume of the mixture is
8 m", Find the relative humidity of the mixture.
22.8. Making use of the values of the critical parameters of
water (§ 35.5) check whether those parameters satisfy the

_ ideal gas law. Explain the result.
22.9. Table 22.9 contains the values of the density of liquid

Table 22.9

Temperature
t, °C IDensi ty of liquid I

p, kg/m3

Density
of vapour P.

kg/ma
Vapour pressure

p, MPa

0 914 96 3.47
10 856 133 4.48
20 766 190 5.70
25 703 240 6.41
30 598 334 7.16
31 536 392 7.32
31.25 497 422 7.38
31.35 464 464 7.39

carbon dioxide, as well as the pressure and the density of its
saturated vapour. Find the critical parameters of this sub­
stance, Plot the density vs temperature graphs.

23. Phase Transitions

23.1. What amount of work is performed when 1 kg of water
.:~,~. turns into steam at 100°C? How much energy is spent to
~: break the bonds between the molecules?
~~. ~.2. If you sling a thin wire loop around a block of ice and
'i~ attach to it a weight of several kilograms then after some time
~::: the wire will pass through the block of ice, but the block
:~~~. remains intact (Fig. 23.2). Explain this phenomenon.
~J{ 23.3. 0.2 kg of water vapour at 100°C is admitted into a
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mixture consisting of 5 kg of water and 3 kg of ice. What
will happen? Neglect radiative losses.
23.4. Solve Problem 23.3 assuming that 1.1 kg of water
vapour was admitted into the mixture.
23.5. 0.5 kg of ice at -15°C is thrown into a litre of water
at room temperature
(20 °C). What will hap­
pen? Neglect losses.
23.6. Solve Problem
23.5 assuming the
amount of water to
be 31.
23.7. Pure water can
be supercooled down
to -10°C. If a small
ice crystal is thrown .Fig...23.2._
into, it immediately
freezes. What fraction of water will freeze? The system is
adiabatically isolated.'
23.8. Water is boiling in a kettle on an electric hot-plate of
800 W power. Find the steam outflow velocity, if the cross
section ~f the spout is 0.9 cm2 and the pressure at the output
is normal. The efficiency of the hot plate is 72%.
23.9. Ice at 0 °C is enclosed in an adiabatic shell and is com­
pressed to a pressure of 600 atm. It is known thatan increase
in the pressure of 138 atm causes the melting point of ice to
drop by 1 K. Assuming the phase diagram in this _part. to
be linear, find the fraction of the ice that is going to melt.
~3.10. To determine the quality of thermal insulation of a
Dewar vessel, it is filled with ice at 0 °C. 42 g of ice have
melted in 24 h. Usually liquid nitrogen at 78 K is kept in
this flask. Assuming the quantity of heat entering the flask
to be proportional to the difference in the internal and the
external temperatures of the vessel, find the amount of liq­
uid nitrogen that is going to evaporate in 24 h. The. am­
bient temperature is 20°C, the heat of vapourization of Iiq­
uid nitrogen at normal pressure is 1.8 X 106 JIK.
23. t t. The triple point of carbon dioxide (C02) corresponds
to a pressure of 5.18 X 106 Pa and a temperature of 216.5 K.
In what temperature range can liquid carbon dioxide be
obtained? In what conditions does sublimation take place?
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ELECTRODYNAMICS

24. A Field of Fixed Charges in a Vacuum

-24.1. Estimate the upper limit of the error made in calcu­
'Iating the force of interaction between charged spherical
'conductors with the aid of the Coulomb law. The radii of
the spheres are ro, the distance between their centres is r,

'Carry out the calculations for r ~ 20ro•
.24.2. Two electric charges ql = q and q2 = - 2q are placed
at a distance l = 6a apart. Find the locus of points in the
plane of the charges where the field potential is zero.
24.3. Prove that the units of field intensity N/C and VIm
-are identical.
'24.4. An oil droplet of 0.01 mm diameter floats in equilib­
-rium between two horizontal plates the distance between
which is 25 mm. What is the charge of the droplet, if the
equilibrium corresponds to a voltage of 3.6 X 104 V across
the plates?
24.5. In §§ 18.3 and 18.7, 18.8 we have obtained the expres­
'sion for the .potential of the field of a point charge using nu­
'merical methods, When you have learned to differentiate,
prove that formula (18.25) leads to the expression for the
field intensity of a point charge known from the Coulomb
law.
24.6. When you have learned to integrate, derive formula
(18.25) from the familiar expression for the field intensity
of a point charge.
24,.7• .A; charge q is uniformly distributed on a ring-shaped
conductor of radius a. Find the field potential in an arbitrary
point on the conductor's axis a distance x away from the
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plane in which the conductor lies. Using the relation be­
tween the potential and the field intensity, find the field
intensity at this point. Compare with Problem 4.11.
24.8. A dipole is placed in the field of a point charge, the
distance between the dipole and the field source being much
greater than the dipole separation. Find the force acting on
the dipole and the torque, if the dipole is arranged:

(a) perpendicular to the line of force;
(b) in the direction of the line of force.

24.9. Two capacitors with capacitances C1 and C2 are con­
nected in parallel. Find the resultant capacitance.
24.10. The same capacitors are connected in series. Find
the resultant capacitance.
24.11. Several identical capacitors were connected in paral­
lel and charged to a voltage <Po. Subsequently they were re­
connected in series with the aid of a switch. What will be
the voltage across the terminals? Will the energy of the sys­
tem change?
24.12. Draw the diagram of a switch which enables a paral­
lel connection of a capacitor battery to be changed to a se­
ries one and vice versa.
24.13. A sphere carries a uniformly distributed electric
charge. Prove that the field inside the sphere is zero.
24.14. Prove that the field on the surface of a sphere car­
rying a uniformly distributed electric charge is equal to that
which would have been established, if the entire charge
were concentrated in the centre of the sphere.
24.15. Find the electric field at an arbitrary point of a sphere
carrying a charge uniformly distributed over its _volume.
24.16. Find the capacitance of a spherical capacitor. Prove
that for small distances between the spheres the capacitance
may be calculated with the aid of the formula for a plane
capacitor.

Estimate the error made by doing this.
24.17. Suppose that an electron may be considered to be a
ball of radius a carrying an electric charge e uniformly dis­
tributed over its surface. It may be shown that outside this
ball and on its surface the field will be the same as that of an
equal point charge; inside the ball the field is zero. From
these considerations find the energy of the electron's field.
Assuming it to be equal to the electron's rest energy esti-
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mate the radius of this ball (double this quantity is called
the classical radius of the electron).

Compare with Problem 14.23.
24.18. A spherical shell of radius R carries a uniformly dis­

- tributed charge q.. The electrical forces arising cause the ex-

Fig. 24.21.

Fig. 24.20.
)~,

t:
!

, pansion of the shell. Find the mechanical stress in the shell.
.24.19. The radius of a soap bubble is 5 mm. What charge
should be imparted to it to make

.: it begin to swell?
~:'~ _24.20. The lower plate of a plane
.~:. capacitor lies on an insulating plane.
t The upper plate is earthed through
cit scales (Fig. 24.20). The scales are bal­
.~; .anced. What additional weight
l, .should be plac~d on the left-~and
I~:~j pan to maintain the balance, If a
i' I voltage of 5000 V is applied across the plates? The dis­
~?:,tance between the plates is 5 mm and the area of the plates
, -is 80 em",

:'{',,24.21. Two identical capacitors are charged to different po­
;~J~:', tentials !PI and CP2 relative to the negative earthed electrodes.
.f{ .The capacitors are then connected in parallel (Fig. 24.21).
~,(:.Find the potential of the battery after the connection was
t~:~P1ade and the change in the energy of the system.
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25. Dielectrics

25.1. The distance between the plates of a plane capacitor"
is 10 mm, the voltage is 10 kV. A sheet of mica of the same
dimensions as those of the plates is then inserted between
the plates. Find the polarization charge on the surface of the
mica sheet assuming the plates to remain connected to the
power supply.
25.2. Solve Problem 25.1 assuming the capacitor to have
been initially charged and subsequently disconnected before

Fig. 25.4. Fig. 25.5.

the mica sheet is inserted in it.
25.3. Find the capacitance of a capacitor, if it is made up of
120 sheets of paraffined paper 0.1 mm thick, interspaeed
with aluminium foil sheets of
5 em X 3 em dimensions.

In what range of voltages
can such a capacitor work?
25.4. Find the capacitance of
a capaci tor if the area of its
plates is S, the distance between
the plates is do and a dielectric
sheet of the thickness d < do ~
is inserted into the capacitor - d - .
(Fig. "25.4). ~-==--
25.5. Find the capacitance of -- -- -- -- -
a capacitor in which the space Fig. 25.7.
between the plates is partly
filled with a dielectric (Fig. 25.5).
25.6. A water droplet is placed in the field of a point charge
of 10-6 C. How far from the droplet must the charge be for
the electric forces to overcome the force of gravity? The

* In all problems involving plane capacitors fringe effects are
to be ignored.



Electrodynamics 65

radius of the droplet is much less than the distance between
the droplet and the charge.
25.7. A large vessel is filled with a liquid. Two vertical
plates touch the surface of the liquid (Fig. 25.7). The di­
mensions of the plates are a and b, the distance between them
is d. The plates have been charged by applying a voltage fPo
and then disconnected from the voltage source. To what
height will the liquid rise? Ignore capillary· effects.
25.8. Solve Problem 25.7 assuming that the plates remain
connected to the voltage source.
25.9. The electric susceptibility of water vapour is strongly
dependent on temperature:
Temperature t, °C 120 150 180 210
Pre-sure p, mmHg 565 609 653 698
Electric sus-
ceptibility iCe 4.00 X 10-3 3.72 X 10-3 3.49 X 10-3 3.29 X 10-3

Plot a graph and find the temperature dependence of the
electric susceptibility. Calculate the dipole moment of a
molecule of water.
25.10. The dielectric permittivity of gaseous argon at stan­
dard conditions is 1.00054. Find the dipole moment of an
argon atom in an electric field of 10 kV/m. Compare with the
dipole moment of a water molecule.

26. Direct Current

26.1. A circular ring made of copper wire of 0.1 mm dia­
meter and 60 em long is connected as shown in Fig. 26.1.
Find the resistance of the circuit. What should the length
of the shorter section A B = x be for the resistance of the
circuit to be 0.2 ohm?
26.2. Find the resistance of the wire figure shown in
Fig. 26.2a. The wire is uniform, made of aluminium of
0.4 mm diameter. The length of the side of the square is
20 em.
26.3. A five-pointed regular star (Fig. 26.3) has been sol­
dered together from uniform wire. The resistance of the sec­
tion EL is r. Find the resistance of the section FL.
26.4. The wire star of the previous problem is connected to
the circuit at points F and C. Find the equivalent resistance.
26.5. A cube is soldered together irom identical pieces of

~ 5-0360
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wire each of a resistance r, I t is connected to the circuitat
the corners lying on opposite ends of a body diagonal
(Fig. 26.5a). Find the equivalent resistance.
26.6. The instrument used to measure resistance is the
Wheatstone bridge with a slide resistance-a wire of high
resistivity of length L (Fig. 26.6). Here R is a calibrated
resistance, R; the unknown resistance. By moving the slid­
ing contact, the current in the galvanometer is made to

B _---6--r..---....,. f)

Fig. 26.1. Fig. 26.2 a Fig. 26.3.

drop to zero. Making use of this condition (of bridge balance),
find the resistance being measured.
26.7. What is the condition for the error in measuring resis­
tance on a Wheatstone bridge to be a minimum? How can
it be achieved?

7 8

6

I

Fig. 26.5a.

26.8. A current of 100 A flows in a conical copper conductor
with dimensions as shown in Fig. 26.8. Find the current
density and electric field intensity at the end faces of the
conductor.
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26.9. When you have learned to integrate find the resis­
tance of the conductor of the previous problem and the
voltage across it.
26.10. The e.m.I, of one accumulator is e, its internal re­
sistance is r, Find the e.m.f. ~ and the internal resistance

L=20mm

Fig. 28.6. Fig. 26.8.

R, of a battery of n accumulators connected (Fig. 26.10):
(a) in series;
(b) in parallel;
(c) in m series-connected groups of k accumulators, m < n,

k = n/m, where the accumulators are connected in parallel.
26.11. 200 alkaline accumulators are to be charged by a
dynamo generating a voltage of 230 V. The e.m.f. of each

(b)..L I I I I I "+
TIT I I I 91-

Fig. 26.10.

accumulator is 1.4 V, the internal resistance 0.01 ohm, the
charging current 30 A. Suggest the circuit diagram and cal­
culate the resistance of the rheostat.
26.12. A power supply with an e.m.I. ~ and internal resi-
5*
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stance r is connected to a variable resistance II.. Find the
dependence of the total power generated by the supply and
of the power delivered to the external circuit on the load
resistance.
26.13. Determine the load resistance for which the power
delivered to the circuit is a maximum. Graph the dependence
of the power on the load resistance.
26.14. A voltage of 6 V and a current of 0.3 A are required
for the normal filament supply of a radio tube. Draw a dia­
gram of a transformless filament supply of an eight-tube
receiver from 220 V mains. Compare the heat dissipated per
second by the tubes and by the instrument series resistor.
26.15. It is required to convert a galvanometer with a sen­
sitivity of 3.0 X 10-4 A per scale division into a multimeter:
a voltmeter for voltages of 10 V, 100 V and 1000 V and an
ammeter for currents of 100 rnA and 5 A. Draw the circuit
diagram and calculate the resistor block. The scale compris­
es 50 divisions.
26.16. How many 220 V bulbs of 300 W power each may be
inslalled in a building, if the mains voltage is 235 V and
the wiring is done using aluminium wire of 6 mm diameter?
The power line is a two-wire line, and the distance from the
mains terminal to the building is 100 m.
26.17. A hot plate with regulated power is designed for a
voltage of 220 V and has two spiral heater elements of
120 ohm and 60 ohm resistance, respectively. Devise a cir­
cuit diagram which would enable the plate to operate at
three power-outputs: of 400 W, 800 \V and 1200 W.
26.18. Calculate the length of a nichrome spiral for an elec­
tric hot plate capable of heating 21 of water to the boiling
point in 8 min. The initial temperature of water is 20°C,
the efficiency is 60%, the diameter of the wire is 0.8 mrn,
the voltage is 220 V, the resistivity of nichrome is
10-6 ohm -m. Neglect the heat required to heat the kettle.
26.19. The current in a conductor of 40 ohm resistance
increases linearly from 5 A to 25 A in 10 s. How much heat
is liberated in it during this time? Solve the problem using
two methods: (a) numerical calculation; (b) integration.
26.20. When you have learned to integrate, try to derive
a formula for the instantaneous current from a capacitor
discharged through a resistor.
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26.21. The voltage stabilizer S is a device whose idealized
characteristic is depicted in Fig. 26.21. The voltage stabilizer
is connected in series with a normal resistor R to the power
supply whose e.m.f. is ~. Neglecting the internal resistance
of the power supply find the current in the circuit and the
voltage drop across the voltage stabilizer and the resistor.

Fig. 26.21.

o

------f-fo

Fig. 26.22.

26.22. Barretter B is a conductor whose idealized character­
istic is shown in Fig. 26.22. The barretter is connected in
series with a resistor of resistance R to a power supply of
e.m.f. e. Find the current in the circuit and the voltage drop
across the barretter and the resistor. Neglect the internal
resistance of the power supply.

27. A Magnetic Field in a Vacuum

27.1. Here's another paradox from the theory of relativity.
Let a spring be perpendicular to the speed of the reference
frame. Acted upon by the force F 0 the spring extends by a
length 10 == F o/k. As is well known, transition from one
reference frame to another leaves the lateral dimensions
unaltered (see Problem 6.1), therefore 1= los Isn't this
in contradiction with the fact that as a result of such a
transition the lateral force changes in accordance with the
law F == //0 V 1 - V2/C2?
27.2. A proton beam in an accelerator moves at a speed of
O.990c relative to the accelerator. Compare the force of in­
teraction between the protons with the Coulomb force.
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27.3. Making use of the principle of relativity prove that
the intensity of the transverse electric field of moving charges
exceeds that of their Coulomb field.
27.4. A circular coil of 200 mm diameter is made of 100 turns
of thin wire and carries a current of 50 rnA. Find the magnet­
ic field induction in the centre of the coil and on the coil's
axis 100 mm away from its centre.
27.5. A long solenoid is made by closely winding turns of
wire of diameter d (together with insulation) (Fig. 27.5).
The wire carries a current i. Find the magnetic field indue-

.0 .A

l~r
I

Fig. 27.5. Fig. 27.6.

tion in the centre 0 and on the end A of the solenoid. Carry
out the calculation for d = 0.1 mm, i = 5 A.
27.6. Helmholtz coils consist of two thin flat coils placed
as shown in Fig. 27.6. Compare the magnetic field intensi­
ties inthe centre of each coil with that in the midpoint of the
axis and prove that inside the Helmholtz coils the field is
almost uniform. Take the distance between the coils to be
equal to one half of the radius.
27.7. The horizontal component of the Earth's magnetic
field is 16 Aim. Calculate the dimensions of the Helmholtz
coils designed to compensate the Earth's magnetic field, if
the current in a coil is 200 rnA and the number of turns in
each winding is 50.
27.8. A thin ring of 10 em radius carries a uniformly dis­
tributed charge. The ring rotates at a constant speed of
1200 r.p.m. about its axis passing through the centre of the
ring perpendicular to its plane. Find the charge carried by
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the ring, if the magnetic field induction in its centre is
3.8 X 10-8 T.
27.9. A surface charge density of 10-2 C/m 2 has been creal...
ed by friction on a glass disk of h = 5 mm thickness and
R = 50 mm radius. The disk rotates at 1.6 r.p.s. Find the
magnetic field intensity at the centre of the disk.

When you have learned to integrate, find the magnetic
moment and the ratio of the magnetic moment to the angular
momentum.
27.10. A magnetic field is established b.y a circular curren t
i of radius a. Find the magnetic field gradient (I.e. the de­
rivative of the magnetic field induction vector) in the di­
rection of the circular current '8 axis at a point whose dis­
tance from the centre of the turn is x.

28. Charges and Currents in a Magnetic Field

28.1. An alpha-particle moves in a uniform magnetic field
'with an induction of 1.2 tesla (T) in a circle of 49 em radius
in the plane perpendicular to the lines of force. Find the
speed and the kinetic energy of the particle.
28.2. Solve Problem 28.1 for a muon. What are its speed and
kinetic energy?
28.3. A charged particle moving in a uniform magnetic
field penetrates a layer of lead and thereby loses one half
9£ its kinetic energy. flow does the radius of curvature of
its path change? Carry out calculations for both a relativ­
istic and a nonrelativistic particle.
28.4. Find the period of revolution of an electron having
'a kinetic energy of 1.5 MeV in a magnetic field with induc­
tion 0.02 T. The electron moves in a plane perpendicular. to
the lines of force.
28.5. An electron accelerated in an electric field of 20 kV
enters a uniform magnetic field with induction 0.1 T. Its
velocity vector makes an angle of 75° with the magnetic
field vector. Find the shape of the path.
28.6. Show that it makes little sense placing the dees of
a cyclotron into a uniform magnetic field. Specify a rational
shape of the pole pieces capable of focusing a particle beam
in the centre of the does.
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28.7. The electron beam in the device shown in Fig. 28.78
is deflected upwards by a transverse magnetic field. The
field is effective along a length l = 20 mm, the distance of
the deflection system from the screen being L == 175 mm.
The magnetic induction is 10-3 T, the anode voltage is 500 V.
Find the deflection of the
electron beam on the screen.
28.8. What electric field
should be set up in the de­
vice discussed in the pre­
vious problem to return the
electrons to the centre of
the screen?
28.9. In the Dubna heavy- Fig. 28.7a.
ion cyclotron neon ions are
accelerated to an energy of 100MeV. The diameter of the dees is
310 em, the magnetic field induction in the gap is 1.1 T,
the accelerating potential is 300 kV. Find the degree of
ionization of a neon atom, the total number of revolutions
of an ion in the process of its acceleration and the frequency
of the change in polarity of the accelerating field.
28.10. The diameter of the magnet of the Serpukhov syn­
chrotron is 472 m. The protons enter the accelerating cham­
ber with an energy of 100 1\1eV and leave it with an energy
of 76.5 GeV. Find the initial and the final magnetic induc­
tion in the gap and the accelerating field frequencies.
28.11. A uniform electric field of 1 MV1m and a uniform
magnetic field of 10-2 T were set up in some region of space.
The electric field strength vector is perpendicular to the
magnetic induction vector. A muon beam moves in a direc­
tion perpendicular to both vectors and passes without being
deflected by the combined action of both fields. What is. the
velocity of the particles?

Can the charge of the particle and its sign be determined
in this experiment?
28.12. The velocity filter of a mass spectrometer employs an
electric field strength of 1.0 X 102 V1m and a perpendicular
magnetic induction of 2.0 X 10- 2 T. The induction of the
deflecting uniform magnetic field which is perpendicular to
the beam is 9.0 X 10-2 T. Ions with similar charges and
with mass numbers 20 and 22 pass through the filter and
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make a 180° turn in the deflecting field (Fig. 28.12). What
is the distance between the points S1 and S 2?

28.13. In the Bainbridge mass spectrometer (Fig. 28.13)
the distance between the velocity filter (selector) exit and
the entrance slit of the detecting device (collector slit) is
fixed and equal to l == 400 mID. The magnetic induction in
both sections of the device is the same, being equal to
5.00 X 10-2 T. When the electric field in the velocity filter

-,0
-t h. Sf S2

Velocity
filter

Fig. 28.12.

'I.~{ ·t~re oct9
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l----.!J Ion
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Fig. 28.13.

is varied continuously the anode current peaks are observed
at field strengths of 1.20 X 104 Vim and 1.60 X 104 Vim.
Assuming the ions to be singly charged, identify them (i.e.
find the element to which they belong).
28.14. The moving coil of a galvanometer 4 em long and
1.5 em wide, made of 200 turns of thin wire, works in a
magnetic field with induction of 0.1 T. The plane of the
coil is parallel to lines of induction. Find the torque acting
on the coil when a current of 1 rnA flows in it.
28.15. The moving coil of a galvanometer made of 200 turns
of thin wire is suspended from an elastic thread. The area
of the coil is 1 em", it coincides in direction with the lines
of induction of a magnetic field with induction of 15 mT.
When the current of 5.0 flA is passed through the coil it
turns through 15°. By what angle will the coil turn with
a current of 7.5 IlA? What is the torsion modulus of the
thread?
28.16. Find the force of interaction between two current­
carrying coils, the distance between the centres of which is
much greater than their linear dimensions (Fig. 28.16).
28.17. The parameters of two small identical current­
carrying coils are as follows: the radius of winding is 20 mm,
the number of turns is 103 , the current is 0.5 A, the distance
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vB

Fig. 28.f6.

between the coils is 300 mm. What is the force of interaction
between the coils?
28.18. Suppose that an electric charge moves in a magnetic
field in a plane perpendicular to the lines of induction.
Prove that the orbital mag-
netic moment of the circu- a
lating charge is directed fr\-Pm------------8-....Pm
against the field. \J
28.19. "Magnetic mirror" is \_ r -/
the term for the region of
the magnetic field in which
there is an intense concent­
ration of lines of induction (Fig. 28.19a). Suppose a charged
particle approaches a magnetic mirror, as shown in the figure.
What will happen to It? .
28.20. Prove that a charged particle entering a strong uni­
form magnetic field experiences specular reflection, if its
speed is below some limiting
value (the "magnetic mirror"
principle, Fig. 28.20). Find the
kinetic energy of the electrons
which experience specular reflec­
tion, if the electron beam is

Fig. 28.19a. Fig. 28.20.

perpendicular to the "magnetic mirror" . The magnet­
ic field with an induction B = 0.1 T is established in a large
region, the thickness of the "magnetic mirror" is d = 10 em.

29. Magnetic Materials

29.1. A bismuth ball of 5 mm radius is placed in a magnetic
field with an induction 2 X 10-5 T. What is the magnetic
moment of the ball? What is its direction? The magnetic
susceptibility of bismuth is Xnl ==:: - 1.76 X 10-4 •
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29.2. Solve a similar problem for the case of a tungsten ball.
The magnetic susceptibility of tungsten is Xm = 1.76 X
X 10-4 •

29.3. The magnetic moment of a gadolinium atom is
7.95 ~B (IlB is the Bohr magneton). Gadolinium crystallizes
in a face-centered cubic lattice with lattice constant of
3.2 A. Find the saturation magnetization. Take into account
that an elementary cell of a face-centered lattice contains
four atoms (see Problem 20.15).
29.4. The temperature of a paramagnetic material is 30 OCt
the atomic concentration is 1027 ill -3, the atomic magnetic
moment is two Bohr magnetons. Estimate by what number
the number of atoms with magnetic moments oriented in
the direction of the field exceeds the number of atoms with
magnetic moments oriented against the field, if the field
induction is 1.2 T.

How will the result change, if the substance is cooled to
the temperature of liquid nitrogen (-195..8 °C)?
29.5. Find the magnetization of the substance under the
conditions of the previous problem.
29.6. Show, that it is impossible to explain the nature of
ferromagnetism on the basis of the interaction of magnetic
dipoles.
29.7. Estimate the energy of the exchange interaction of
electron spin magnetic moment'S in iron domains.
29.8. Calculate the deflection of the beam of atoms from its
axis in the Stern-Gerlach experiment for the following para­
meters of the apparatus: the length of pole pieces is 3.5 cm ,
the magnetic field gradient is of the order of 102 Tim. In
the experiment silver atoms flying out of a "molecular oven"
at a temperature of 730°C were deflected. The projection of
the magnetic moment of a silver atom on the direction of
the magnetic induction vector is equal to a Bohr magneton.
29.9. The initial magnetization curve of technically pure
iron is shown in Fig. 29.9a. Making use of the graph find the
magnetic permeabilities of this material at magnetic fields
strength of: 50 Aim; 75 Aim; 100 Aim; 200 Aim; 500 Aim;
1000 Aim; 1500 Aim.

Plot the graph of the dependence of the magnetic permeabili­
ty on the magnetic field. Making use of the graph estimate
the field at which the magnetic permeability is at its max-
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imum (~mex), and the approximate value of the latter.
29.10. Table 29.10 gives the coordinates of some of the points
of the asymptotic hysteresis cycle of a ferromagnetic ma­
terial. Plot the hysteresis loop. (The recommended scale
is 10 mm == 100 Aim and 10 mm = 0.20 T.) Find the coer-
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cive force and saturation induction from the gr aph. Calculate
the saturation magnetiza tion and remnant magnetization
Mr.
29.11. For several practical applications the so-called
"dif t i 1" ti hil i I 1 dB d tI eren ra magne ic permea I tty ~l =-= ~ dH an no

the usual magnetic permeability f.1 =:=: B/ftolI is the para­

meter of interest. Here ~~ is the derivative of the field indue-
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Table 29.10

Magnetic induction Magnetic induction

Magnetic B, T Magnetic B, T
ttcld strength

lower I upper
field strength

lower I upperH, Aim
branch of branch of

H, Aim
branch of branch of

the loop the loop the loop the loop

0 -0.23 0.23 500 0.92 1.15
100 0 0.46 600 1.10 1.19
200 0.23 0.69 700 1.20 1.24
:100 0.46 0.92 800 1.26 1.26
1,.00 0.69 1.08

tion with respect to the field intensity, i.e. the slope of the
graph in Fig. 29.9a. For the purpose of practical calcula-

tions one can assume f.t' = ~ ~~ , where IJ.B and IJ.H are

chosen so small that the respective segment of the graph
may be regarded as a straight line. Find the approximate
values of the differential magnetic permeability for the same
values of the magnetic field strength as in Problem 29.9.

30. Electromagnetic Induction

30.1. A plane with a wing span of 18 m flies horizontally at
a speed of 800 km/h. The vertical component of the Earth's
magnetic field strength is about 40 A/m. Find the voltage
across the tips of the wings.

Will a light bulb connected to the wing tips glow?
30.2. A conductor of length 1 and mass m can slide without
friction, but with an ideal electrical contact, along two ver­
tical conductors AB and' CD connected through a capacitor
(Fig. 30.2). Perpendicular to the plane of the figure a uni­
form magnetic field of induction B is set up. Find the voltage
across the capacitor plates as a function of h.
30.3. What will be the motion of the conductor of the pre­
vious problem, if a resistor of resistance R is connected into
the circuit instead of the capacitor? Neglect the resistance of
the conductors.
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30.4. A rod of length l is perpendicular to the lines of induc­
tion of a uniform magnetic field of induction B. The rod re­
volves at an angular speed ro about an axis passing through
the rod '8 end parallel to the lines of
induction. Find the voltage across A _--11 .........--.. _

the rod '8 ends.
30.5. The length of the conductor in
the diagram shown in Fig. 30.5 is l =
= 20 em, its speed is v = 1 mls and
the resistance of the bulb is R = 1
ohm. A magnetic field with induction
B = 0.5 T is set up perpendicular to
the plane of the diagram. What force
should be applied to the conductor to B
make it move at the speed specified?
30.6. A horizontal flat coil of radius
a made of w turns of wire carrying a
current i sets up a magnetic field. A horizontal conducting
ring of radius r is placed at a distance Xo from the centre of
the coil (Fig. 30.6). The ring is dropped. What e.m.f. will
be established in it? Express
the e.m.f. in terms of the speed.
30.7. A magnet was inserted
into a wire ring connected to

Fig. 30.5. Fig. 30.6.

a ballistic galvanometer of 30 ohm resistance, this causing
a 20 division deflection of the galvanometer's pointer. What
magnetic flux passes through the pole piece of the magnet,
if the galvanometer constant is 3 X 10-5 C/div? Neglect the
resistance of the ring and of the leads.
30.8. To find the magnetic field induction in the gap be­
tween the pole pieces of an electromagnet, a coil of 3.2 ern"



Electrodynamics 79

160

Fig. 30.14.

area made of 50 turns of thin wire connected to a ballistic
galvanometer of 100 ohm resistance with a constant of
2 X 10-0 C/div is inserted into it. When the coil is withdrawn
from the field, the galvanometer pointer moves 20 divisions.
What is the field induction?
30.9. A ring is made from a dielectric with polar molecules.
What will happen to the dielectric, if a magnet is inserted
into it?
30.10. A flat circular coil of 10 em radius has 200 turns of
wire. The coil is connected to a capacitor of 20 1iFand placed
in a uniform magnetic field whose in­
duction decreases at a constant rate
of 10-2 ,Tis. Find the capacitor's charge.
The plane of the coil is perpendic­
ular to the lines of induction of the
field.
30.11. An electric motor works from
an accumulator battery with an e.m.f.
of 12 V. With the rotor stalled the
current in the"circuit is 10 A. What is
the motor's power at nominal load, if
the respective current is 3 A?
3tl.12~ 1200 turns of copper wire are
wound onto a cardboard cylinder 60 em
long and 5 em diameter. What is the
inductance of the coil?
30.13. A current of 500 rnA flows in the coil of the previous
problem. When the current is switched off it vanishes after
a time of 10-4 s. Supposing the current to decrease linearly',
find the e.rn.f. of self-induction.
30.14. A core with the shape and dimensions-in millimeters
shown in Fig. 30.14 has been manufactured of a ferromagnet­
ic material whose magnetization curve is shown in Fig. 29.9a
(p. 76). One layer of wire of 0.6 mm diameter (including
insulation) was closely wound on the core. Find the induc­
tance of the coil fora current of 2CO rnA flowing in it. Find
the energy of the magnetic field and the energy density.
30.15. What would be the energy of the magnetic field of
the coil of the previous problem, if its core were of a non­
ferromagnetic material? What is the source of excess energy
in the case of a ferromagnetic core?
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Fig. 30.16.
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30.16. The core and the armature of an electromagnet with
dimensions in millimeters as shown in Fig. 30.16 have been
manufactured from a ferromagnetic material whose proper­
ties have been described in Problem 29.10. What is the force
with which the core attracts the arma-
ture, if the material has been magne-
tized to saturation? What force will
remain active after the current is
switched off?
30.17. A bulb with 1.2 ohm resistance
is connected to an accumulator in se­
ries with a choke. Estimate the in­
ductance of the choke, if the bulb
starts to burn brightly 2.5 s after the
circuit has been closed.
30.18. When you have learned to in­
tegrate, try to analyze the process of
shorting a circuit made up of a coil
and a resistor connected to a power
supply with constant e.m.f., i.e. the dependence of the
current on time. Assume the coil to be without a ferromag­
netic core.
30.19. What time does it take for the current in a circuit
made up of a coil and a resistor to reach 0.9 of its stationary
value?
30.20. According to the formula obtained in Problem 30.18
the stationary value of the current can be reached only after
infinite time. How can this be made consistent with the fact
that actually the stationary value is reached in a finite time?
What are the limits in which the formula obtained in Prob­
lem 30.18 is applicable?

31. Classical Electron Theory

31.1. The coil employed in an experiment similar to that
of Stewart and Tolman has a diameter d = 500 mm and
N == 400 turns of copper wire. The moment the coil stops
it is connected through a pair of sliding contacts to a bal­
listic galvanometer (Fig. 31.1). The total circuit resistance is
R == 50 ohm. The coil is rotated at a constant speed of
n = 6000 r.p.m, and quickly brought to a halt, the charge
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passing through the galvanometer being Q == 1.1 X 10-8 c.
Find the specific charge of the charge carriers in copper.
31.2. A copper disk of ro == 20 em radius revolves in a
vertical plane at 3000 r.p.m. One contact from a sensitive
galvanometer is connected to the disk's axis, the other by
means of a mercury contact to the outer
edge of the disk (Fig. 31.2a). Find the +
voltage.

Will the galvanometer pointer point
in another direction, if the direction of
rotation of the disk is changed?

The Earth's magnetic field is compen­
sated.
3f.3. The dimensions of a copper plate
are as shown in the diagram (Fig. 31.3).
When the longitudinal voltage is L\<p, a
eurrent i flows in the conductor. If a
magnetic field with induction B perpen­
dicular to the plate is established with
the current still flowing, a H all voltage
of d<PH appears between the upper
and the lower faces of the plate. Find ~

\he concentration and the mobility of Fig. 31.1.
conduction electrons in copper, if I =
=.60 mm, h == 20 mm, d == 1.0 mm, ~<p==O.51 mY, ~CPH=
~ ... 55 nY, i == 10 A, B == 0.1 T.

31.4. Calculate the Hall constant for silver knowing its
density and atomic mass.
3t.5. The resistivity of indium arsenide is 2.5 X
'x 10-3 ohm -rn, its Hall constant is 10-2 m3/C. Assuming the
conductivity to be due to carriers of one sign only, find the
-ecncentration .and the mobility of the charge carriers. Com-
pare with Problem 31.3.
3t.6. The safe current in an' insulated aluminium wire of
.1 mm" cross section is 8 A. Find the average drift velocity
of the conduction electrons.
31.7. Find the mean free transit time and the mean free path
o~. the electrons in copper (at room temperature).
\~·!8. The constant of a constantan-copper thermocouple
:-is, 4.3 X 10-2 mVIK. The resistance of the thermocouple is
Q-~5 'ohm, that of the galvanometer 100 ohm. One junction

'-0360
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of the thermocouple is immersediin -melting ice, the. other
in a hot liquid. What is its temperature if the CUrrent' in
the circuit is 56!1A ? .
31.9.. The constant of a thermocouple is·7.6 (lV/K, the tem­
perature of its cold junction is -80°C (dry ice), and that

Jt1-----r
h 1000.........,iJI.

l~_----r
I
I" -I

Fig. 31.2a. Fig. 31.3.

of the hot 327°C (molten lead). What charge will flow through
the thermocouple, if the hot junction absorbs quantity of
heat equal to one joule? The efficiency' of the thermocouple
is 20%.
31.10. The' Debye otemperature for silver is 213 K, the lat­
tice constant is 2 A. Find the velocity of sound.
31.11. Find the heat flux through a copperplate 5 cm thick,
if a temperature difference of 100 K is maintained between
its ends.
31.12. The dimensions of a brick wall of a living room are:
thickness 40 em, width 5 m and height 2.8 m. A temperature
of- 20°C is· maintained inside the room, the temperature
outside being -15°C. How, much heat is lost through this
wall in· 24· hours? -
31.13. 'Find the mean free path of phonons in carbon tetra­
chloride.
31.14. Find the heat conductivity of silver and of mercury"
at room temperature (20°C).

32. Electric Conductivity of Electrolytes

32.1. Find the dissociation coefficient of an aqueous potas­
sium' chloride solution with a concentration of 0.1 g/cm'',
if the' resistivity of this solution at 18°C is 7.36 X
X 10~2 ohm-rn. The mobility of the potassium ions .is
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6.7 .X 10-8 m 2/(V. s), that of the chlorine ions 6.8 X
X 10-8 m2/ (V. s).
32.2. Find the thickness of a nickel layer deposited on an
article with surface area of 1~OO cm2 in the course of a 6-hour.
electrolysis at a current of 10.5 A.
32.3. flow much copper will be deposited from a vitriol
solution in 3 minutes, if the current through the electrolyte
changes in accordance with the law i = 6 - 0.03t? All
quantities are expressed in the SI system.
32.4. An electrolytic bath containing a vitriol solution is
connected to a d.c, power supply with an e.m.f. of 4 V and
an internal resistance of 0.1 ohm. The resistance of the solu­
tion is 0.5 ohm, the polarization e.m.I. is 1.5 V. How much
copper will be deposited in one hour?
32.5. Find the minimum e.m.f, of the power supply at
which the electrolysis of acidified water can take place, if
the combustion of 1 g of hydrogen liberates 1.45 X 102 kJ.
32.6. A 10 flF capacitor is charged to a voltage of 600 V.
Suppose it is discharged through an electrolytic bath con­
taining acidified water. How much hydrogen will be libe­
rated? What energy can be gained by burning this hydrogen?
How can it be made consistent with the energy conserva­
tion law?
32.7. What energy should be spent to fill a balloon with a
lifting force of 3000 N with hydrogen under normal condi­
tions! How much ..will it cost at the price of 4 copecks per
kW. h? Ignore the heating of the solution in the course of
electrolysis.

'33. Electric Current in a Vaeuumand in Gases

33.1. Find the saturation current in a diode with a tungsten
cathode at cathode temperature of 2700 K, if the length of
the cathode filament is 3 em and its diameter is 0.1 mm. The
constant B ~ 6 X 105 A/(m2K2).
33.2. How will the' saturation current" in' a diode with a
caesium-coated tungsten cathode change, if the cathode tem-
perature is raised from 1000 K to 1200 K? "
33.3~· In modern diodes the anode is often brought very close
to the cathode so that" their areas are approximately equal.
Assuming the electrons; to leave the cathode with zero velo-

6*
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city find the force with which they act on the anode. The
current in the tube is isat = 500 rnA, the anode voltage is
CPa = 600 V.
33.4. Compare the emissivities of a caesium-coated tungsten
cathode at 1000 K and that of a pure tungsten cathode at
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Fig. 33.5.
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2700 K. Assume the constant B in the Richardson-Dush­
mann equation to be the same for both cathodes.
33.5. Figure 33.5 depicts the grid characteristics of a triode
plotted at anode voltages of 450 V and 600 V. Find the
triode's internal resistance R i in the linear section of the
characteristic and its amplification factor u, i.e. the ratio
of the change in the anode voltage to the change in the grid
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.voltage which causes a given change in the anode current'.
'33.6. Inside an ionization chamber there are two planar
.alectrodes of 300 cm'' area, 2 em apart. The chamber is
filled with air under normal conditions. At a voltage of
·200 V the current is equal to 1.8 flA which is far below the
saturation value.
Find the ion concentration and the ionization
coefficient of air. The mobilities of the ions are:
b; === 1.37 X 10-4 m2/(V. s), b_ = 1.89 X 10-4 m2/(Y. s).

.. 33.7. Oxygen is ionized by gamma-radiation, the ion con­
: centration being 1015 m -3. Find the conductivity of the gas
; in these conditions. The ion mobilities are: b, === 1.32 X

X 10- 4 m2/(Y . S), b_ === 1.81 X 10-4 m2/(V. s).
33.8. What changes in the current in the range below sat­
uration will take place, if the electrodes of an ionization
chamber are brought closer? How will the saturation current
change? Plot the current-voltage characteristics for some
inter-electrode distance d1 and for d~ < d1" Assume the other
parameters to remain constant.
33.9. The saturation current in an ionization chamber of
0.5 I capacity is 0.02 l-lA. Find the ion generation rate per
second.
33.10. The ionization energy of a hydrogen atom is Cion ==

. = 13.6 eY. Yet the ionization of hydrogen atoms is observed
~. at temperatures for which the average kinetic energy is
Lmuch less. How can this fact be explained?
\33.11. A high-temperature hydrogen plasma with a tempera­
(. ture of 105 K is placed in a magnetic field with induction
',of 0.1 T. Find the cyclotron radii of the ions and electrons
;;·(i.e. the radii of the orbits in which the positive ions and
the electrons move).

;~33.12. Mercury flows at a speed of 20 cmls in a pipe with
,: conducting walls of 5 em diameter. The pipe is in the gap
~;. between the pole pieces of an electromagnet, the magnetic
~fteld in the gap having induction of 0.6 T. Will the magnetic
f:·fteld affect the hydraulic friction coefficient? The conductiv­
~. ity of mercury is 106 ohm -1 • m -1"

r33.13. Estimate the effect of the magnetic field in the COI1­

,~ ditions of the previous problem, if a 30% solution of sulphur­
:,'ie acid flows in the pipe. The conductivity of the solution is
~~ 74 ohm -1 -m -1.
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33.14. Estimate the induction of the magnetic' field of a
pulsar taking into account that for ordinary stars the field
induction is of the order of 10-6 to 10-4 T (see Problem 14.21).
33.15. Find the pressure of a pulsar's magnetic field and
compare it with the pressure of gravitational forces (see
Problem 16.9).



Part Six

VIBRATIONS AND WAVES

34. Harmonic Vibrations

34.1. Harmonic vibrations comply to the law

s = 0.20 cos (300t +2)

.~ Find the amplitude, the frequency, the period and the
initial phase of the vibrations *.
34.2. A particle with a mass of 0.2 kg moves according to
the law

s = 0 .08 cos (20nt + ~ )
Find the velocity of the particle, its acceleration and the
acting force, as well as the amplitudes of the respective quan­
tities.
'4~3. In the conditions of the previous problem find the
kinetic, the potential and the total energy of the oscillator.
34.4. In conditions of the previous problem find the fre­
quency and the period of the variation of kinetic energy.
34.5. A particle vibrates harmonically at a frequency of
0.5 Hz. At the initial moment it is in an equilibrium posi­
tion moving at a speed of 20 cm/s. Write down the equation
of the vibrations.

;,; 34.6. At the initial moment a particle's displacement is
. 4.3 em and its velocity is -3.2 m/s. The particle's mass

is 4 kg and its total energy 79.5 J. Write down the equa~ion

: • Here and below the units used are the 51 units, i.e, the displace­
ment amplitude is expressed in meters, the time in seconds, the
frequency in hertz, the phase in radians.
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of the vibrations and find the distance travelled by the
particle in 0.4 s.
34.7. Add up two vibratory motions analytically and using
a vector diagram:

81 = 3 sin (6t + ~) and 82 = 4 sin (6t - ~ )
Find the amplitude of the velocity of the resulting vibrations.
34.8. Find the resulting amplitude and phase of the vibra­
tions

s=Acoswt+ ~ cos(wt+ ~)+ 1cos(wt+n)+

A ( 3n \+8 cos rot +-2-)

34.9. Beats result from two vibratory motions:

81 = cos 4999nt and 52 = cos 5001nt

Find the period of beat and the "conventional" period of
the almost sinusoidal vibrations.
34.to. A particle oscillates according to the law

s = 4 (cos" O.5t) (sin 1000t)

Expand this motion into a harmonics series and plot its
spectrum.
34. t 1. A particle vibrates according to the law

s == (1 + cos" t + sin1t) sin 500t

Expand this motion into its harmonic components and plot
its spectrum.
34.12. A particle oscillates according to the law

s = (1 + cos2 t + cos" t) sin 500t

Expand this motion into its harmonic components and plot
its spectrum.

35. Free Vibrations

35.1. A weight of mass m is attached to a spring hanging
vertically, which causes an extension 1. Subsequently the
weight is pulled down a little and let go. What is the natural
frequency of the vibrations?
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'35.2. A spherical copper weight of 3.0 em radius submerged
in olive oil hangs from a spring whose elasticity coefficient
'(force constant) is 1.0 X 102 N/m (Fig. 35.2). Find the
natural frequency of the oscillatory system, its Q-factor
and the time the oscillations will take to practically damp
-out.
,35.3. A weight of mass 1 kg attached to a spring with
a force constant of 20 N1m is able to oscillate on a horizontal

Fig. 35.2.

r--fIf'GGGm==tc:=~ ====::D

+-~'
Fig. 35.3.

steel rod (Fig. 35.3). The initial displacement from the posi­
tion of equilibrium is 30 em, Find how many swings the
weight will make before stopping completely. One swing
is the movement from maximum displacement to the equi­
librium position (or back). For numerical calculation put
g = 10 m/52 and coefficient of friction JJ, == 0.05.
35.4. A piston of mass m divides a cylinder containing
gas into two equal parts. Suppose the piston is displaced
to the left to a distance x and let go (Fig. 35.4). Assuming
the process to take place at a constant temperature, find
the frequency of the piston 's oscillations.
35.5. Solve Problem 35.4 assuming that the process is
adiabatic.
35.6. Mercury fills a glass tube (Fig. 35.6) so that the total
column is 20 em long. The tube is then rocked, so that the
mercury begins to oscillate. Find the frequency and the
period of the vibrations.
35.7. A block of solid oak with dimensions 10 em X 20 em X 20
em floats in water (Fig. 35.7). The block is submerged
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a little' and let go. Find the frequency and the period 'of
vibrations.
35.8. A pendulum clock is accurate on the Earth's surface.
How slow will it be, if it is lifted to the hundredth floor
of a sky-scraper? The height of a storey is 3 ID.

35.9. The period of a pendulum whose suspension is sta­
tionary relative to the Earth's surface is 1.50 s. What will
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Fig. 35.7.
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its period be, if it is placed in a car moving horizontally
with an acceleration of 4.9 m/s 2? What will be the change
in the pendulum's angle of
equilibrium?
35.10. A mathematical pen­
dulum 1 m long is deflected
from the vertical by an angle
of 40° and let go. Find the
period of oscillations using
numerical methods.

What will be the error, if in
this case we use the formula
for small oscillations?
35.11. The period of a simple
pendulum for large deflection angles may be determined
from the approximate formula

T=2n V; (1 ++sin2 ~o )

Compare with the result of numerical calculations for the
previous problem.
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35.12. A uniform rod of length l oscillates about an axis
passing through its end.' Find the oscillation period and the
reduced length of this pendulum. .
35.13. A physical pendulum shown in Fig. 35.13 is made
up of a rod 60 cm long with, mass 0..50 kg and a disk of
3.0' em radius with mass 0.60 kg. Find the pe­
riod of this pendulum.
35.14. An oscillatory circuit is made up of a 100
~flF capacitor and a 64 fJ.H coil with resistance
of 1.0 ohm. Find the natural frequency, the pe-,'
riod of oscillations and the Q-factor of the cir-
cuit. .

36. Forced Vibrations. Alternating Current

36.1. An iron ball of 0.8 kg mass hangs on a
spring with a force constant of 103 N/m. An al­
ternating magnetic field acts on the ball with a
sinusoidal force whose amplitude is 2.0 N. The
Q-factor of the system is 30. Find the amplitude Fig. 35. 13.
of forced vibrations for to == roo/2, co = roo, ro =
:;= 2{t)o.
36.2. Plot the resonance curve for the amplitude of the
velocity in the previous problem.
36.3. A weight of 0.5 kg mass is suspended from a spring,
causing it to extend by 5 mm. When the system is dis-

Fig. 36.4.

placed from its equilibrium position and then set free, its
natural vibrations continue for 3.5 s. Find the amplitude
of the system at resonance. What will happen in the case of
resonance?
36.4. A radio receiver receives radio telegraph signals in
Morse code in the form of sinusoidal wave packets (Fig. 3.6.4).
The inductance of the circuit is 100 uH, the capacitance
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Fig. 36.11 a.

is 250 ~JlF and the resistance is 0.2 ohm. Find the interval
between the impulses 't'sp needed to prevent two adjacent
signals from merging.

Assuming the duration of the "dot" signal to be l"dot ==
== 1.51'sp and that of the "dash" 'rdash == 4.51'sp find the
maximum amount of information that can be transmitted
per unit time.
36.5. Derive the expression for the inductive reactance
and for the phase shift in an a.c. circuit containing a coil
of zero resistance.
36.6. Derive the expression for the
capacitive reactance and for the phase
shift in an a.c. circuit containing a
capacitor.
36.7. Plot a vector diagram for a cir­
cuit containing a coil and a resistor
connected in series, and find the im­
pedence of this circuit. Find the
phase shift.
36.8. Do the same for a capacitor connected in series with
a resistor.
36.9. Do the same for a capacitor connected in parallel
with a resistor.
36.10. Express the inductance of a series connected circuit
made up of a resistor, a coil and a ca paci tor in terms of
its Q-factor and the frequency ratio y == 00/000.

36.11. Plot the vector diagram for currents in the circuit
shown in Fig. 36.11a and find the current in the unbranched
section of the circuit. What is the condition for the current
in the unbranched section to be a minimum? What is the
phase shift between the voltage and the current in general,
and at resonance?
36.12. The capacitance in the circuit shown in Fig. 36.113
is 20 flF, the inductance is 0.2 H and the resistance is 5 ohm.
What power is consumed in this circuit, if the voltage
at its terminals is II = 312 cos 314t?
36.13. What is the frequency in the circuit with parameters
as specified in the previous problem when the current in
the unbranched section of the circuit is a minimum? What
power will be consumed, if the voltage amplitude remains
the same?
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36.14. Prove that an electrodynamic wattmeter measures
active power P == IV cos cp in an a.c, circuit.
36.15. The reading of the wattmeter on a panel is power
12 kW. The reading of the voltmeter is voltage 380 V, of
the ammeter, current 36 A. What is the phase shift in the
circuit? What are the impedance and the ohmic resistance
of the load?
36.16. The starting voltage of a neon glow lamp is 80 V,
the quenching potential is 70 V. A voltmeter in an a.c.
circuit measures a voltage of 60 V. Will
the lamp glow in this circuit?
36.17. The breakdown voltage indicated
on. a capacitor is 300 V. Can it be used
in a 220 V a.c, circuit?
36.18. A two-wire power line transmits
100 MW power. Its power factor is 0.87
and its resistance 8 ohm. What is the
transmission voltage, if the power loss
is 2%?
36.19. The primary of an arc welding
transformer has 120 turns ofwire of 20 mm"
cross section; its resistance is 8 X 10-2 Fig. 36.21.
ohm. The current at nominal load is 40 A.
How many turns are there in the secondary and what is the
cross section of the wire in the secondary, if the transforma­
tion ratio is k==220/60?

Assuming the windings to be of a single-layer type, find
the resistance of the secondary.

Neglecting losses due to magnetic reversal and Foucault
currents (i. e. losses in the steel core), find the power loss
due to the heating of the windings and the efficiency of
t.he transformer. The transformer power rating is 8 kW.
96.20. Show that the "losses in the steel core" are practically
equal to the open-circuit power consumption of the transformer.
36.21. Explain, why a copper ring "floats" in air when
an a.c, current is supplied to the winding (Fig. 36.21).
36.22. The primary of a transformer is at a voltage of
220 V drawing a current of 1.5 A. The secondary feeds an
incandescent lamp with a current of 20 A at a voltage of 12 V.
The transformer's efficiency is 91%. Find the power
f4lctor at this load.
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37. Elastic Waves

37.1 ..Compare the velocity of sound in a gas with the root­
mean-square velocity of its molecules. Do the calculations
for a diatomic gas.
37.2. The sound velocity in a duralumin rod is 5.1 X 103 mls
while the density of the material is 2.7 X 103 kg/m", Find
the Young modulus.
37.3. An 'observer at a distance of 800 m from a sound
source heard first the sound signal which travelled through
water and 1.78 s later-the signal which travelled through
air. Find the velocity of sound in water and the compres­
sibility of water. The air temperature is 17°C.
37.4.- The velocity of sound in oxygen in normal 'conditions
is 317.2 m/s. Find the Poisson ratio.
37.5. A wave with a frequency of 440 Hz travels in a cylin­
drical .tube containing' air. The wave intensity is 1.2 X
X 10-2 W/m2 • Find the energy density and the amplitude
of oscillations, .if the air temperature is 27°C and its pres­
sure is 780 mmHg: .
37.6. A sound source of small dimensions radiates waves
at frequency of 500 Hz. The power of the source is 5 W, the
air temperature is 0 °c, the pressure is 1.01 X 105 Pat
What are the amplitudes of the sound wave 10 m and 15 m
away from the source? .Ncglect attenuation.
37.7. Compare the intensity levels of the sound wave in
the previous .problem.·
37.8. The intensity of a sound wave 20 m away from the
sound source is 3.0, nW1m2

• Find the' intensity' of the wave
32 ill away from the source, if the half-thickness for .sound
of this frequency is 120 m,

Compare. the' intensity levels.
37.9. Find the relation between the linear absorption coef­
ficient of .sound wave f.1, and the half-thickness L.
37.10. Sound travels in 'acylindrical tube 80 cm long.
The linear absorption coefficient is 1.2 X 10-2 m -1. Com­
pare the sound intensity levels at the entrance and the exit
of the tube.
37.11. Two tuning forks with natural frequencies of 340 Hz
move relative to a stationary observer. One fork moves away
from the observer, while the other moves towards him at the
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same speed. The observer hears beats of frequency 3 Hz.
Find the speed of the tuning forks assuming the velocity of
sound in air to be 340 m/s.
37.12. Two trains move towards each other at a speed of
80 km/h relative to the Earth's surface. One radiates a
520 Hz signal. What frequency will the observer on the
other train hear?

How will this frequency change when the trains pass one
another? .
37.13. The equation of a plane sound wave is

s = 6.0 X 10-6 cos (1900t+5. 72x)

Find the frequency, the wavelength and the velocity of
the wave. Compare the wavelength with the amplitude of the
oscillations and the wav"e velocity with the amplitude 'of
the velocity of the oscillations.
37.14. Under the conditions of the previous problem, find
the distance between any two nearest points of the wave

~ oscillating in opposite phase. What is the phase shift be­
tween the oscillations of two points 37 em apart in the direc­
tion of the sound ray?
37.15. Find the minimum and the maximum wavelengths

,,'of sound in air that a man is able to hear (see § 58.1). How
will this range change, if the sound travels in water? ..

. 37.16. A ceramic ultrasonic transducer is immersed in castor
', oil. What fraction of the energy is transmitted to -the .oil?

The density of ceramic material is 2.8 X 103 kg/m", the
: velocity of sound in it is 6.2 X 103 m/s. .
. 37.17. Solve Problem 37.16 for a magnetostrictive nickel

:. 'j .·transducer working in water.
.~·?37 .tS.Why when operating in ultrasonic defectoscope is

~. j. care always taken to see that there is a' film of oil between
~:, the transducer and the part under inspection?
~,.:; 37.19. An ultrasonic defectoscope operates at a frequency
~:: .of 1.2 MHz and radiates pulses of the order of 60 periods of
~.,. oscillations. What is the resolution of 'the instrument? We
~: Shall define resolution as the minimum distance of the defectr from ·.the part's. surface .which may be determined: with.
[~. the aid of the Instrument.



96 Problems

38. Interference and Diffraction

Fig. 38.6.

a-
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38.1. Prove that when a wave is reflected by a medium of
higher characteristic acoustic impedance, a standing wave
displacement node is formed at the boundary, and that
when it is reflected by a medium of lower characteristic
acoustic impedance, an antinode is formed.
38.2. A quartz plate (the X-cut) 7 mm thick serves as the
radiating element of an ultrasonic transducer (see § 58.3,
Fig. 58.4). What is the fundamentalop-
erating frequency of the ultrasonic gen­
erator?

Will the transducer's frequency change,
if the air gap is filled with oil?
38.3. A magnetostrictive transducer op­
erates at a frequency of 25 kHz. Find the
thickness of the pack of nickel plates
of the transducer.
38.4. An organ pipe 17 em long open
at one end radiates a tone of 1.5 kHz
at an air temperature of 16°C. What
harmonic is this? What is the funda­
mental frequency of the oscillations?
38.5. Two organ pipes closed at both
ends serve as sound sources, the result­
ing. beat frequency being 2 Hz. The length
of both pipes is 24.0 em, the temperature of air in one tube
is 17 "C. What is the temperature of air in the other?
38.6. To measure the speed of sound in air the apparatus
shown. in Fig. 38.6 is used. A sound source with a frequency
of 1.20 kHz is placed close to the upper end of a narrow
tube. By moving the left-hand vessel we cause the level of
the liquid in the narrow tube to change. Acoustic resonance
is observed when the height of the air column is 6.8 em, 20.6
em and 34.8 em. Find the velocity of sound and estimate
the error of the value obtained.
38.7. The transducer of an ultrasonic defectoscope of 12 mm
diameter operates on a frequency of 1.2 MHz. What is the
angular width of the principal diffraction maximum, if
the ultrasonic wave travels in castor oil?
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38.8. What is the diameter of the transducer of an echo­
sounder operating on a frequency of 50 kHz in sea water, if
the angular width' of the principal maximum is about 60°?

39. Electromagnetic Waves

39.1. Find the wavelengt.hs in air and in transformer oil,
if the transmitter frequency is 60 MHz.
39.2. Find the fundamental frequency radiated by a half­
wave antenna and the frequencies of the harmonics.
39.3. A half-wave antenna 0.5 m long is immersed in ethyl
alcohol. What is the wavelength of the electromagnetic
waves outside the vessel (in air)?
39.4. A plane electromagnetic wave

E, = 200 cos (6.28 X 10Bt + 4 .55x)

is completely absorbed by the surface of an object" perpendic­
ular to the x-axis. In what medium does the wave propagate?
What pressure does it exert on the object? What energy is
absorbed by 1 m2 of the surface per second? .
39.5. The current amplitude in a half-wave antenna is
0.5 A. What is the radiation power? What is the equivalent
resistance of this vibrator? For simplicity of calculations
assume the current to be the same in every' point.
39.6. An electron bunch circulates in the storage ring of a col-

. liding-beam accelerator. The current is 500 rnA, the speed
of the electrons is 0.99 of the speed of light. What is the
power of synchrotron emission?
39.7. An oscillator radiating electromagnetic waves 25 m
long is required to transmit with minimum distortion sound
signals with frequencies "up to 2 kHz. Find the parameters
of the resonant circuit.
39.8. Derive the relation between the frequencies of a wave
in two reference frames (the Doppler effect, see § 59.8)
and the relation between the values of the ·cosines of the
angles the ray makes with the direction of the source's
motion (in both reference frames).
39.9. Try to derive the expression for the relativistic longi­
tudinal Doppler. effect from the principle of relativity' and
the classical Doppler effect, without using the Lorentz trans­
formation.

7-03GO
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39.10. Find the Dopplerbroadening of spectral lines in the
spectrum of a "white dwarf" (surface temperature about
10 000 K). Compare with the gravitational red shift of the
spectral lines, assuming the mass of the "white dwarf" to
be equal to that of the Sun and its radius to be 0.01 of the
Sun's radius.
39.11. The spectrum of excited singly ionized helium atoms
includes a line of 410 nm wavelength. A beam of such ions
leaves a cyclotron with an energy of 40.0 MeV. Find the
Doppler shift of this line, if it is observed at an angle of
30° to the beam's direction.
39.12. The observations of the spectral line of hydrogen
H Ii with a wavelength of 4861.33 1\ in the solar spectrum
lead to the discovery of a difference in the wavelength of
this line on the opposite fringes of the solar disk equal to
0.065 1\. Find the period of rotation of the Sun about its axis.
39.13. In astrophysics frequent use is made of the quantity
Z == (A - Ao)/Ao, equal to the relative variation of a spec­
tral line wavelength. Here "'-0 is the wavelength emitted by
the source and A is the wavelength observed. Express this
quantity in terms of the radial velocity of the source in
the reference frame of the observer.
39.14. The relative variations of spectral line wavelengths
measured for an optical galaxy, for the radiogalaxy 3C295
and for a quasar (quasi-stellar radio source) 3C9 were Zl ==

=== 0.034, Z2 == 0.46 and Z3 == 2. Find the ratios of the radial
velocities of these sources to the velocity of light; find
the velocities of the sources. .
39.15. The Doppler effect made possible the discovery of the
so-called spectroscopic binaries. The spectral lines of these
stars are periodically doubled. This leads to the conclusion
that the source is constituted of two stars revolving about
a common centre of mass. The maximum distance between
the components of a periodically splitting hydrogen line
of 4340.~7 A wavelength in the spectrum of one such star
is 0.53 A. Find the projection of the orbital speeds of the
two stars on the line of sight.
39.16. The maximum relative shift of spectral lines of
a binary star is 2.08 X 10-3 , the' period of line-splitting
being 3 days 2 hours and 46 minutes. Both stars being
identical find their masses and the distance between them.
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40. Interference and Diffraction of Light

40.1. In Young's arrangement (see § 61.5, Fig. 61.5) the
distance between the slits is 1.5 mnl and the distance of the
screen from the slits is 2 Ill. The slits are Illuminated by
a source provided with a red filter (A ::::::: 687 nm). Find the
distance between the interference fringes .

. How will the distance between the fringes change, if the
red filter is replaced by a green one (Iv == 527 nrn)?
40.2. How many interference maxima will be observed, if
Young's arrangement described in the previous problem is
illuminated with white light?
The wavelength limits are Ivr ==
= 690 nm, Ivv == 420 nm. What
is the distance on the screen
between the red and the violet ~
maxima?
40.3. A thin wire of 0.05 mm Fig. 40.3a.
diameter is placed between the
edges of two well-polished planar plates; the opposite
edges of the plates are tightly pressed together (Fig. 40.3a).
Light falls perpendicularly onto the surface. An observer
sees interference fringes on the 10 em long plate, the dis­
tance between them being 0.6 mID. Find the wavelength.
40.4. When the mirror in the Michelson interferometer is
displaced, the interference pattern is shifted py 100 bands.
The light used in the experiment is of 5460 A wavelength.
What is the mirror's displacement?
40.5. Cylindrical tubes 10 em long, each closed at both
ends by transparent plane-parallel plates, were placed in the
path of the two light rays in the Michelson interferometer.
First the tubes were evacuated, then one was filled with
hydrogen, and the interference pattern was observed to shift
by 47.5 fringes. What is the refractive index of hydrogen?
The light in the experiment was of wavelength 590 nm,
40.6. During the quality control of surface finish with
the aid of the Linnik interference microscope, a scratch was
observed on the surface which produced a curvature of 2.3
fringes in the pattern of interference fringes. Green light
of 530 nrn wavelength was used in the test. Find the depth
of the scratch.

7*
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40.7. The yellow sodium line consists of twg components
with the wavelengths of 5890 A and 5896 A. When- the
Michelson interferometer is illuminated with this light and
the mobile mirror is moved, the interference pattern period­
ically vanishes and then appears again. What is the cause
of this phenomenon?
40.8. Green light of 500 nm wavelength falls on a slit 8 um
wide. Find the angles at which the first- and the second-order
minima are observed.
40.9. A diffraction grating has 400 slits per 1 mm. A mono­
chromatic red light of 650 nm wavelength falls on the grating.
What is the angle at which the first-order maximum is vis­
ible? What is the total number of maxima produced by this
grating?
40.10. Find the wavelength of monochromatic light falling
normally on a diffraction grating with a grating constant of
2.20 f.LID, if the angle between the directions of the first­
and the second-order maxima is 15.0°.
40.11. Light of 530 nm wavelength falls on a grating with
a grating constant of 1.50 J.1m, and with a total length of
12.0 mm. Find the angular width of a principal maximum
and- the resolving power of the grating.
40.12. What should be the length of a diffraction grating
with a density of ruling of 3QO slits per 1 D!m to resolve
two spectral lines of 6000.00 A and 6000.50 A wavelength
in the second-order spectrum? What should be the length
in the spectrum of the highest order?
40.13. The grating constant of a diffraction grating is
0.01 mm, the total number of slits is 990. Are we able to
see in the first-order spectrum the two components of thoe
sodium ye!low line doublet with wavelengths of 5890 A
and 5896 A? What is the angular spacing between these
maxima in the second-order spectrum?
40.14. A plane wave falls on a diffraction grating with
a grating constant do at a glancing angle a. Prove that the
resulting diffraction will be the same as when the wave
falls normally on a grating with a grating constant of d =
= do sin t'%.

40.15. A narrow beam of X-rays falls at a glancing angle
of 20° on a diffraction grating with a constant of 2.0 um.
The first diffraction maximum is observed at an angle of
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12' to the direction of the beam. Find the wavelength of
the X-rays.
40.16. A parallel beam of X-rays with a wavelength of
1.47 A falls at a glancing angle of 31°3' on a face of a rocksalt
crystal. Find the spacing between the atomic planes of the
crystal, if the second-order diffraction maximum is observed
at this angle.

41. Dispersion and Absorption of Light

41.1. A proton beam with an-energy of 10.0 GeV enters a Ce­
renkov counter made of rock salt. Find the deflection angle
of the threshold red (0.67 urn) and of the violet (0.40 urn)
rays from the cone axis.
41.2. A beam of relativistic electrons in a Cerenkov counter
filled with water radiates in the violet spectral range inside
a cone with an aperture of 82°20'. Find the kinetic energy
of the electrons.
41.3. Assuming the free electron concentration in a plasma
to be no, find the dependence of the plasma's dielectric
constant on the frequency of an electromagnetic wave, ne­
glecting the interaction of the electromagnetic wave with
the positive ions.
4t.4. Express the group velocity of light in terms of the
velocity of light in a vacuum, the refractive index and the
derivative of the refractive index with respect to frequency.
41.5. Prove that in the normal dispersion range the group
velocity is less than the velocity of light in a vacuum.
41.6. Find in the optical range the refractive index of a plas­
ma and the phase and the group velocities of a wave in
a plasma.
41.7. The phase velocity of light in a plasma exceeds the
velocity of light in a vacuum. Is this not in contradiction
with the fundamental principle of the theory of relativity
that the velocity of light in a vacuum is the maximum pos­
sible velocity?
41.8. Can Cerenkov radiation be induced in a plasma?
41.9. Find the free electron concentration in the ionosphere,
if the refractive index of the ionosphere for radio waves
of 3.0 m wavelength is 0.90.
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41.10. In discussing the action of X-rays of sufficient energy
the bonding energy of the electrons in the lattice can, be
neglected, and the electrons may be considered free. Cal­
culate in this approximation \he refractive index of alu­
minium for X-rays of 0.50 A wavelength.
41. t 1. Find the reflection coefficient for optical waves at
the vacuum-plasma interface. (Take into account that in
the optical range the approximate equality n + 1 ~ 2 is
valid to a high degree of accuracy.)
41.12. Compare the reflection coefficients for red and for
violet light at the air-molten quartz interface. The light is
perpendicular to the interface.
41.13. The distance between the toothed wheel with 720
teeth and the mirror in the Fizeau experiment is 7.0 km.
Two consecutive rotation speeds of the wheel for which the
light disappeared were 283 r.p.s. and 313 r.p.s. Find the
velocity of light.
41.14. Prove that in a plasma the relation uU === c2 holds,
where u is the phase and U the group velocity of an electro­
magnetic wave.
41.15. Find the group and the phase velocitiy of lig~t

in sylvite for the wavelength of 5086 A in the 5461-4861 A
spectral interval.
41.16. Two plates, one 3.8 mm thick and the other 9.0 mm
thick, were manufactured from the same material. The plates
are placed in succession in a narrow beam of monochromatic
light with the result that the first plate transmits 0.84
and the second 0.70 of the light flux. Find the absorption
coefficient and the half-thickness of the material. Neglect
secondary reflections.
41.17. A point light source is in the centre of a spherical
layer of a substance, with an internal radius r1 and an exter­
nal radius r 2 • The refractive index and the absorption coef­
ficient of the substance are known. Find the transmittance
of the layer of substance. Neglect secondary reflec­
tions.
41.18. A light filter 5 mm thick has a variable absorption
coefficient which depends on the wavelength according to
the law f.t ~ ~o + ex (Ao - "-)2, where ex == 5.6 X 1020 m:",
Ao=== 5000 A, fJ-o === 4 m". Find the transmittance of the
filter for the wavelength Ao and its transmission band width
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The transmission band width includes all wavelengths for
~ which the transparency of the 'filter is not less than half of
~. the resonant transparency. Neglect the reflection of light
~~ from the surfaces.
~)·41.19. How many half-thicknesses are there in a plate which
. reduces the intensity of a beam 60 times? .
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Fig. 41.20.

41.20. Figure 41.20 shows the dependence on the wavelength
of the absorption coefficient of lead for gamma-rays from
a radio-active source. What is the maximum half-thickness of
lead for gamma-rays?

42. Polarization of Light

~. 42.1. Natural light falls on a system of two polaroids the
J.. 'angle between whose optical axes is 45°. By how much
.~ will the intensity of the light be reduced? 10% of the light

is lost in each polaroid. Neglect losses due to reflection.
42.2. If a third polaroid with its optical axis at an angle
of a to the optical axis of the analyzer is placed between
two crossed polaroids, the field of view brightens. Find
the intensity of the transmitted light. Neglect losses due
to reflection and absorption. What is the angle ex of maximum
brightness?
42.3. The ordinary and the extraordinary rays are obtained
by decomposition of a given beam of natural light. Will
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there be an interference pattern of minima and maxima,
if both rays are combined?
42.4. Find the thickness of a calcite plate which creates
in yellow light a phase difference of n/2 between the ordinary
and the extraordinary rays of light at a wavelength of 5893 A
(the quarter-wave plate). What will be the phase shift for
violet light (4047 A) passing through this plate?
42.5. To compensate the phase shift introduced bya calcite
quarter-wave plate a quartz quarter-wave plate was placed in
the path of a light beam. Compare the thicknesses of both
plates. The light used in the experiment was in the green
part of the spectrum (5086 A).
42.6. A glucose solution with a concentration of 2.8 X
X 102 kg/m" in a glass tube rotates the polarization plane
of light passing through it by 64°. Another solution in the
same tube rotates the polarization plane by 48°. Find the
concentration of the second solution.
42.7. What must the thickness of a quartz plate placed be­
tween crossed polaroids be to make the field of view turn
red? blue? The polarizer is illuminated with white light.

43. Geometrical Optics

43.1. A. plate of 4.0 em thickness was cut out .of calcite
perpendicular to the optical axis. A narrpw beam of natural
yellow light with a wavelength of 5893 A falls on the plate
at an angle of 60°. Find the spacing between the ordinary
and the extraordinary rays at the point of exit from the
plate to the air.
43.2. A ray of white light falls on a prism of crown glass
perpendicular to its face. Find the angle of refraction of
the prism for which the red rays pass out of it into air while
the violet rays experience total internal reflection.
43.3. The sides of an isosceles right prism are coated with
a reflecting coating.' A ray of light falls on the hypotenuse
at an arbitrary .angle. Prove that the ray leaving the prism
is parallel to the incident ray.
43.4. A point source of light is placed on the bed of a pond
80 cm deep. Find the diameter of the illuminated circle on
the surface of water.
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Fig. 43.10.

~
- ---- -- --

~----

43.5. A prism of flint glass with an angle of refraction of
30° is placed in water. At what angle should a ray of light
fallon the face of the prism so that. inside the prism the ray
is perpendicular to the bisector of the angle of refraction?
Through what angle will the ray turn after passing through
both faces of the prism?
43.6. A lens made of crown glass has a focal power of 8 diop­
ters in air. What will its focal power be in water? In hydro­
gen sulphide (n = 1.63)?
43.7. A system is made up of two thin converging lenses
arranged perpendicularly to their common axis. Where is the
image of the anterior focus
of the left-hand lens? Trace
the rays.
43.8. Prove that the lens
focal power of a system made
up of two tightly packed
thin lenses is equal to the
sum of the focal powers of
each of them.
43.9. What .is the experimental procedure to find the focal
power of a diverging lens?
43.10. A convexo-concave lens of crown glass has the radii
of curvature equal to 1 m and 12 em. What is its focal
power? The lens is placed horizontally and filled with water

,,(Fig. 43.10). How will its focal power change?
::. 43.11. Derive the formula for the focal power of a plano-

convex lens by tracing the rays passing through it.
#43.12. Two thin lenses with focal .lengths of-_u/t-.=- 7 em
I··and /2 == 6 em are placed at a distance d = 3 em apart.
~What is the distance of the focus of the system from the
~~second lens? The system is a centred one.
~43.13. Two thin converging lenses are placed on a common
;:: axis so that the centre of one of them coincides with the
r'l'::.focus of the other. An object is placed at a distance twice
~the focal length from the left-hand lens. Where will its
>image be? What is the lateral magnification? The focal
.power of each lens is Q). .
;<43~14. A converging bundle of light rays in the shape of
ia cone with the vertex angle of 40° falls on a circular dia­
i,phragm of 20em diameter. A lens with a focal power of 5 diop-
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ters is fixed in the diaphragm. What will the new cone angle
be?
43.15. Compare the longitudinal and the lateral magnifica-
tions of a thin lens. Consider the case of small longitudinal
dimensions of the object.
43.16. A ball is placed at a distance double the focal length
from the lens on its axis. What will be the shape of its image?

M
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Fig. 43.19a. Fig. 43.20a.

43.17. Find the magnitude of the chromatic aberrations
of a lens made of flint glass, if the radii of curvature of both
its surfaces are 0.5 m. We define the chromatic aberration
as the difference between the focal lengths for the red and

oA' "A

Fig. 43.22a.

the violet rays. Find the ratio of the chromatic aberration
to the average focal length of the lens. .
43.18. A concave spherical mirror with a radius of curvature
of 0~2· m is filled with water. What is the focal power of
this system?
43.19. A ray of light falls on a concave spherical mirror,
as shown in Fig. 43.19a. Trace the path of the ray further.
43.20. A ray of light falls on a convex mirror, as shown
in Fig. 43.20a. Trace the path of the ray further.
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>4·3~21'. Figure 43.21a shows the optical axis of a lens, the
<point source of Iight A and its- virtual image A'. Trace the
~::tays to find the position of the lens and of its focuses. What
r,· type of lens is it?
f.·,:,4~,.•22. Solve., the problem similar to the previous one using
~FIg. 43.22a.
-43.23. Prove that a parabolic mirror is free from spherical

"liberrations.
~~43.24. Can a 'strictly parallel bundle of light rays be ob­
tained with a parabolic mirror?

44. Optical Instruments

'44.1. A monochromatic light source of 555 nrn wavelength
radiates a total light flux of 1200 Im. What is the radiant
power? What should be the radiant power in order to obtain
the Same light flux at a wavelength of 480 nm? 600 nm?

,44.2. A monochromatic point source of 520 nm wavelength
has a luminous intensity of 20 cd. What are the amplitudes
of the electric field intensity and of magnetic field induction
at a distance of 50 cm from the source?
44.3. A cylindrical hall of diameter D is illuminated by
Ii lam-p fixed at centre of the ceiling. Compare the minimum
illuminance of the wall and of the floor. The height of each
wall is h.
44.4,. A round table of radius r is illuminated by a lamp of
luminous intensity (candlepower) I hanging above its centre.
What should be the height of the lamp above the table for
the illuminance of the table fringe to be maximum? What
is Its value? What is the illuminance at the centre of the
table in these conditions?
44~5. A point light source illuminates a screen, the maximum
illuminance being Eo. How will the illuminance of this point
change' if a large plane ideally reflecting mirror is placed
behind the source half way between the lamp and the screen?
44.6. Street lamps of 10 em diameter and of 1.8 X 105 cd/m''
brightness are suspended at a height of 12 ID, the distance
between them being 40 m. Find the illuminance under each
lamp and midway between them.
44.7. A point light source of 10 cd luminous intensity is
in the centre of a concave mirror with a radius of curvature
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of 40 em and of 20 em diameter. It illuminates a screen
at a distance of 2 m from the source. What is the maximum
illuminance of the screen? How will the illuminance change,
if the mirror is withdrawn?
44.8. A lens of diameter D and a focal length f projects
a small object placed at a great distance from the lens onto
a screen. Show that the illuminance of the image on the
screen will be proportional to the luminance and to the
aperture ratio of the lens. (The aperture ratio is the square
of the ratio of the lens' diameter to its focal length.)
44.9. A screen is 1 m away from a light source. A diverging
lens of -5 diopters focal power is placed between the source
and the screen so that the position of the light source coin­
cides with that of the virtual focus. How will the illuminance
of the screen on the optical axis of the system change?
44.10. The distance of maximum visual activity for a near­
sighted eye is 9 em. What glasses should be worn to correct
the eyesight?
44.11. Show that the estimate of the resolving power of
the eye based on diffraction from a single slit practically
coincides with the minimum angle of view estimated on the
basis of the minimum distance between nearest elements of
the retina. The diameter of the pupil in conditions of good
illuminance is 2-3 mm.
44.12. The length of a microscope tube is 16 em, the focal
power of the objective is 185 diopters and of the eyepiece
50 diopters. Find the angular magnification of the instru­
ment.
44.13. The numerical aperture of a microscope in air is
0.46. What is the minimum .distance this instrument can
resolve?
44.14. A telescope objective of 2 diopters focal power
and of 10 cm diameter is part of a Keplerian telescope whose
magnification is 12. Find the focal power and the diameter
of the eyepiece, as well as the minimum angle this telescope
can resolve.

What are the dimensions of objects on the, SUD this
telescope can resolve?
44.15. Galileo's telescope is a telescopic system in which
a long-focus convex lens serves as the objective, and a short­
focus concave lens serves as the eyepiece. The posterior vir-
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tual focus of the eyepiece coincides with the posterior focus
of the objective. Trace the path of rays in this system and
find the angular magnification.
44.16. Compute the minimum distances between two points
on the Moon and on Mars which can be resolved with the aid
of a reflecting telescope having a mirror of 6 m diameter.
The shortest distance between the Earth and Mars (the
"great opposition") is 5.6 X 1010 m.
44.17. A radio telescope of about half a kilometer diameter
operates in the centimeter wave range of the hydrogen
spectrum (21 em). Estimate its resolving power. Compare
with the resolving power of an optical telescope with a three
meter mirror.
44.18. At present the best sprinters run 100 m in 10 s.
What is the appropriate exposure in making snapshots, if the
blurring on the negative must not exceed x = 0.5 mm? The
snapshots are made at a distance of d.~ 6 ill, the focal power
of the photographic objective is (J) == 20 diopters.
44.19. Landscape shots are made with a camera having an
objective of focal power 7.7 diopters. The camera is focused
on objects 12 m away from it. It is desired to obtain a suffi­
ciently clear image of objects within a distance of 3 m in
front and behind-their blurring on the negative should
not exceed 0.2 mm. What should be the setting (i.e. diameter)
of the diaphragm? What will the aperture of the objective
be at this setting?
44.20. A camera with an objective of 8 diopters focal power
is used to take photographs of an object lying on the bottom
of a pond 1.2 m deep. What is the distance of the film from
the objective lens? The lens is placed close to the surface
of the water.



Part Seven

FUNDAMENTALS OF QUANTUM PHYSICS

45. Photons

45.1. Solar radiation with an intensity of 1.36 kW/m2 per
second falls on the illuminated surface of the Earth. As­
suming the Sun's radiation to be similar to that of an abso­
lute black body, find the temperature of the photosphere.
45.2. The Sun radiates maximum energy at a wavelength
of 470 nm. Assuming the Sun's radiation to be similar to
that of an absolute black body, find the temperature of the
photosphere.
45.3. The surface temperature of "white dwarfs" is of the
order of 104 K. To what spectral band does the maximum
value of their radiation belong?
45.4. The sensitivity of the human eye in darkness is high:
at a wavelength of 555 nm it detects a light signal of no less
than 60 photons per second. What is the wave intensity?
What is the power of the light source, if its distance from
the eye is 10 km? The diameter of the pupil in darkness
is 8 mm.
45.5. Find the threshold frequency of the photoemissive
effect for lithium, zinc, and tungsten.
45.6. Find the maximum kinetic energy and the velocity
of photo-electrons emitted from a metal irradiated with
'V-rays of 0.3 A wavelength.
45.7. Find the cut-off voltage which stops the emission of
electrons from a caesium cathode irradiated with light
of 600 nm wavelength.
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45.8. When a cathode was irradiated with light first of
440 nm wavelength and then of 680 nm, the cut-off voltage
was changed by a factor of 3.3. Find the electron work func­
tion.
45.9. There are types of photographic paper which can be
processed in red light of over 680 nm wavelength. Find the
activation energy of the chemical reaction.
45.10. Find the energy, the mass and the momentum of a pho­
ton of ultraviolet radiation of 280 nm wavelength.
45.11. Find the wavelength of X-ray radiation for which
the photon energy is equal to the intrinsic electron energy.
45.12. A moving source emits photons. Find the expressions
for the energy and the momentum of a photon in the labo­
ratory reference frame.
45.13. Making use of the photon concept compute the light
pressure on a reflecting surface, if the angle of incidence is cx.
45.14. A small ideally absorbing plate of 10 mg mass is
suspended from a practically weightless quartz filament
20 mm long. A light flash from a laser falls on its surface
perpendicularly to it, causing the filament with the plate
to deflect from the vertical by an angle of 0.6°. Estimate
the energy of the laser flash.
45.15. Estimate the dimensions of a particle, if the pres­
sure of the light from the Sun on it compensates the gravita­
tional force. Assume the particle to be an absolute black
body, its density to be 2.0 X 103 kg/m", and the solar con­
stant to be 1.36 kW/m2

•

45.16. What fraction of the photon's energy is transmitted
to the recoil electron in the Compton effect? The energy
of X-ray photons prior to scattering was ~., Do the calcula­
tions for a photon energy of 10 keY and for a scattering
angle of 60°.
45.17. The photon scattering angle in the Compton effect
is 8, the electron recoil angle is ct. Find the energy of photons
prior to scattering. Do the calculations for e == 90°, a == 30°.
45.18. X-rays fallon a layer of substance placed in a Wil­
son chamber. The chamber is in a magnetic field of 0.02 T
induction, and the Compton recoil electrons leave traces
with a 2.4 em radius of curvature. Find the minimum energy
of the X-ray photons at which such recoil electrons may be
formed, and the corresponding wavelength.
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45.19·. Prove that a free electron at rest in a vacuum cannot
absorb a photon.
45.20. Prove that an electron moving uniformly in a straight
line in a vacuum cannot emit a photon.
45.21. A photon of energy e flies through a slit in a non­
transparent screen. Where may it be observed behind the
screen? What is the corresponding probability of detecting
it? The volume of the counter which registers the photon
is Yo, the slit width is D, the counter is a long way from
the screen.
45.22. Will the probability of a photon being detected
behind a screen change, if a second parallel slit is cut in
the screen? If a system of slits is cut?
45.23. A photon passes through a polaroid. What will
happen to it? What are the corresponding probabilities?
45.24. An electron of 5 GeV energy collides head-on with
a photon of visible light (~Ph = 1 eV). Find the energy
of the scattered photon.

46. Elementary Quantum Mechanics

46.1. Express the de Broglie wavelength in terms of the
kinetic energy of a relativistic particle. What is the kinetic
energy for which the nonrelativistic formula leads to an
error of less than 1%?
46.2. Express the de Broglie wavelength in terms of the
accelerating potential for the relativistic and the nonrelativ­
istic cases.
46.3. The aperture of an electron microscope is 0.02, the
accelerating potential is 104 V. Find the dimensions of
details which may be resolved with the aid of this instru­
ment.
46.4. Why is the resolving power of an ion projector by
an order of magnitude higher than that of an electron micro­
scope?
46.5. A parallel electron beam accelerated in an electric
field with a potential difference of 15 V falls on a narrow
rectangular diaphragm 0.08 mm wide. Find the width of the
principal diffraction maximum on a screen placed 60 em
away from the diaphragm.
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46.6. A narrow neutron beam falls on a natural face of an
aluminium single-crystal at a glancing angle of 5°. The
distance between crystallographic planes parallel to the
single-crystal face is 0.20 urn. What is the velocity and
the energy of neutrons for which a first-order maximum is
observe-d in this direction? What is the temperature cor­
responding to this neutron velocity?
46.7. Find the de Broglie wavelength corresponding to the
root-mean-square velocity of hydrogen molecules at room
temperature (200 C).
46.8. An electron is accelerated by a potential difference
of 102 V. Find the group and the phase velocities of. the de
Broglie waves. Do the same for a potential difference of 105 v.
46.9. A particle is in its ground state in a unidimensional
potential well with infinitely high walls. Find the force
with which the particle acts on the walls. Do the calculations
for an electron in a well 10-10 m wide.
46.10. Find the first three energy levels, using the data of
the previous problem.
46.11. The natural vibration frequency of a hydrogen mole­
cule is 1.26 X 1014 Hz. Find the zero-point energy of the
vibrations of the molecule. Can the vibrational degrees of
freedom in the molecule be excited at 600 K?
46.12. Estimate the dimensions of a hydrogen atom in the
nonexcited state, regarding it as an oscillator and assuming
the zero-point energy of oscillations to be equal to the
kinetic energy of the electron on the first orbit.
46.13. Find the probability of an electron tunneling through
a 5 A wide and 0.4 eV high potential barrier, if it is accel­
erated by a field of 0.3 V.
46.14. Estimate the probability of cold electron emission
from a metal, if there is a uniform field of strength E close
to the surface of the metal.
46.15. What is the probability of cold electron emission
from tungsten, if the field strength at the point is 5 X 1010

VIm?

47. Atomic and Molecular Structure

47.i.What is the distance of closest approach of an alpha­
particle to a silver nucleus if the kinetic energy of the alpha­
particle is 0.40 MeV.
8-0360
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47.2. Applying Bohr's theory, find the orbital velocity of
the electron on an arbitrary energy level. Compare the orbital
velocity on the lowest energy level with that of light.
47.3. Calculate the photon energy corresponding to the
first line of the ultraviolet hydrogen series (Lyman-a).
47.4. An electron in an unexcited hydrogen atom acquired
an energy of 12.1 eVe To what energy level did it jump?
How many spectral lines may be emitted in the course of its
transition to lower energy levels? Calculate the correspond-
ing wavelengths. ,
47.5. An electron of a stationary hydrogen atom passes
from the fifth energy level to the fundamental state. What
velocity did the atom acquire as the result of photon emis­
sion? What is the recoil energy?
47.6. Calculate the first Bohr radius of a singly ionized
helium atom. Compare with the first Bohr radius ao of the
hydrogen atom.

Write down the generalized Balmer formula for this ion.
Find the first lines of the series corresponding to the Lyman
and the Balmer series.
47.7. In his first work "On the Structure of Atoms and
Molecules" (1913) Niels Bohr, as a proof of the validity of
his theory, cited the fact that the number of spectral lines
of the Balmer series observed in a gas-discharge tube never
exceeds 12, while 33 lines are seen in the spectra of celestial
bodies. Bohr's explanation was that the diameter of the
hydrogen atom cannot exceed the average interatomic dis­
tance, which depends on the pressure. From these considera­
tions, estimate the .concentration of atoms, the pressure
and the density of hydrogen in a gas-discharge tube and in
a celestial body.
47.8. Find the ionization energy of a doubly ionized lithium
atom.
47.9. Lines of 6877 A, 4989 A and 4548 A are observed
in the visible range of the spectrum of a certain galaxy.
To what substance do they belong? What can you say about
the motion of this galaxy?
47.10. A mesoatom of hydrogen is a hydrogen atom in which
a negative muon with a mass 207 times that of an electron
orbits the nucleus instead of an electron. Find the Bohr
radii and the energy levels of a mesoatom.
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47.11. Write down the Balmer formula for a mesoatom and
find the leading lines corresponding to the leading lines
of . the first three series.
47.12. Positroniurn is the term for a system made up of an
electron and a positron revolving about a common centre of
mass. Find the interparticle distance and the energy of the
positronium in the ground state.
47.13. What will be potential difference between the cathode
and the grid voltage at which there will be a marked drop
in the anode current in the Frank-Hertz experiment, if the
tube is filled with atomic hydrogen?
47.14. Prove that not more than two electrons can occupy
the s-state and not more than six can occupy the p-state.
47.15. Write down the values of all the four quantum
numbers for each electron of the boron and sodium
atoms.
47.16. The atoms of lithium, sodium and potassium each
contain a different number of electrons. Why then are all
these elements monovalent?
47.17. Solve Problem 46.9 assuming the potential well to
contain three bosons. The energy of the system is at its
minimum.
47.18. Solve a similar problem for three fermions.
47.19. An X-ray tube operates at a voltage of 40 kV. Find
the continuous spectrum limit of the X-ray spectrum.
47.20. From what material is the anode of an X-ray tube
made, if the Ka,-line wavelength of the characteristic spec­
trum is 0.76 A?
47.21. What is the minimum voltage applied to an X-ray
tube with a vanadium' cathode for which the lines of the
Ka.-series appear?
47.22. The difference between the nickel Ka-line wave­
length and the continuous spectrum limit of the X-ray
spectrum is 10%. Find the voltage applied to the X-ray tube.
47.23. Find the angular velocity of rotation of a hydrogen
molecule on the first excited rotational level, if the distance
between the centres of its atoms is 0.74 A.
47.24. Suppose a hydrogen molecule passed to the first
vibration-rotational energy level. What spectral line will be
observed when it returns to the ground state?
47.25. The natural angular frequency of vibration of an HF
8·
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molecule is 7.79 X 1014 rad/s. There are 13 rotational levels
between the zero level and the first excitation level. Esti­
mate the distance between the centres of the atoms in this
molecule
47.26. Noticeable dissociation of hydrogen molecu­
les into atoms starts at a temperature of the order of 103 K.
The bond energy for hydrogen is 4.72 eV. Is there any con­
tradiction?
47.27. Why do helium atom and the hydrogen molecule
have such different spectra?
47.28. When Bohr's theory is used to compute the energy
levels in a hydrogen atom, only the Coulomb interaction
between the electron and the proton is taken into account,
the magnetic moments of these particles being ignored.
Assess the resulting error.

How will the energy level pattern change, if, in addition
to the Coulomb interaction, the magnetic interaction
between the electron and the proton is also taken into
account?
47.29. A rigorous quantum-mechanical calculation shows
that in a hydrogen atom a transition between two sublevels
of the fundamental state (see the previous problem) results
in the emission or absorption of photons corresponding to
a wavelength of 21.1 em. Experiment is in excellent agree­
ment with this result (to 11 significant figuresl),

Making use of classical concepts, try to find the wave­
length corresponding to the transition between two sub­
levels of the ground state of a hydrogen atom, and compare
the result with the actual wavelength.
47.30. A substance is illuminated with light from a mer­
cury Iamp. Two nearest companions 0 with wavelengths of
4244 ,\ (red companions) and 3885 f\ (violet companion)
are observed in the combination scattering spectrum. Find
the natural frequency of vibration of the molecules of this
substance.
47.31. Is a laser which emits monochromatiefermions (elec­
trons, neutrinos, etc.) possible?
47.32. The crystal rod of a ruby laser is of 4 mm diameter
and 35 mm long. The laser radiates coherent light with
wavelengths of 6943 A and 6929 A. Find the lowest angular
divergence of its rays.
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48. Quantum Properties of Metals and of Semiconductors

48.1. Find the energy and the momentum of an electron
occupying the Fermi level in aluminium, in sodium and
in copper.
48.2. Calculate the degeneracy temperature for the electron
gas in aluminium, in sodium and in copper.
48.3. Assuming the average energy of electrons to be 3/5 of
the Fermi energy estimate the pressure of the electron gas
in a metal. Do the calculations for aluminium.
48.4. Prove that the pressure and the volume of a degener­
ate electron gas are related by an equation similar to the
Poisson equation, and find the adiabatic index l' === Cp/Cv .
48.5. Matter inside a "white dwarf" is in a state of degen­
eracy, and the dependence of the pressure on the density is
of the form P == A p5j 3 , where P is the pressure and P is the
density. Find the expression for the constant A and show
that the pressure is due to the electron gas, the pressure due
to the heavy particles being negligible.
48.6. Estimate the fraction of electrons in copper which
will rise above the Fermi level when it is heated to 100°C.
48.7. Estimate the specific heat of the electron gas in cop­
per at 100°C, and compare it with the lattice heat capacity.
48.8. Find the mean free path of electrons in copper and
compare it with the interatomic distance.
48.9. A sustained current circulates in a ring-shaped super­
conductor. Assuming the superconductor to be a gigantic
Bohr orbit show that the current and the magnetic nux are
quantized. Take into account the pairing of electrons in
a superconductor.
48.10. Experiments show the electrical conductivity of semi­
conductors to rise drastically with temperature. Assuming
that it is possible to calculate the probability of electron
transition from the valence to the conduction band using the
barometric distribution, derive the formula for the tem­
perature dependence of a semiconductor's conductivity.
48.11. Compare the electrical conductivity of pure ger­
manium at -40°C and + 100 °C. The activation energy for
germanium is 0.72 eVe
48.12. The intrinsic conductivity of germanium at 27°C
is 2.13 ohm -1 -m-1, the mobilities of electrons and holes are
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0.38 and 0.18 m2j(V. s), respectively. Compute the carrier
densities and the Hall coefficient.
48.13. Find the extrinsic conductivity of germanium doped
with indium to a concentration of 2 X 1022 m -3, with anti­
mony to a concentration of 5 X 1021 m".
48.14. Find the internal contact potential difference be­
tween aluminium and copper; between copper and zinc oxide.



Part Eight

NUCLEAR AND ELEl\fENTAHY PARTICLE PHYSICS

49. Nuclear Structure

49.1. What is the difference between the structures of the
light helium isotope nucleus and of the superheavy hydrogen
(tritium) nucleus?
49.2. The atomic mass of natural boron is 10.811. It con­
sists of two isotopes with masses of 10.013 and 11.009.
Find their fractions.
49.3. Asses the radii of the deuterium and the polonium
nuclei and the height of the Coulomb potential barrier of
these nuclei.
49.4. Find the binding energy of the deuterium nucleus and
the specific binding energy (binding energy per nucleon).
49.5. Compare the specific binding energies of tritium and
of the light helium isotope.
49.6. An isotope of radium with mass number 226 undergoes
radioactive transformation to a lead isotope with mass
number 206. How many alpha- and beta-disintegrations
were involved in the process?
49.7. A polonium nucleus transforms into one of lead. Find
the kinetic energy of the alpha-particle and of the recoil
nucleus.
49.8. Can the nuclear reaction 4Be7 -+ 2He4 + 2He3 take
place? Why?
49.9. Can a silicon nucleus transform into an aluminium
nucleus, emitting a proton in the process? Why?
49.10. Can a silicon nucleus transform into a phosphorus
nucleus? What particles would be emitted in the process?
What is their total energy?
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49.11. What energy is required to extract a neutron from
a carbon nucleus with mass number 13?
49.12. What is the probability of alpha-particles with kinet­
ic energy; 5j MeV tunnelling through the potential barrier
of a polonium nucleus?
49.13. How will the radioactivity of a cobalt specimen
change in two years? The half-life is f>.2 years.
49.14. In two days the radioactivity of a radon specimen
decreased to 1/1.45 of its original value. Find its half-life.
49.15. The radioactivity of a uranium specimen with mass
number 238 is 2.5 X 104 S-I, the specimen's mass is 2.0 g.
Find the half-life.
49.16. Find the age of a wooden article, if it is known that
its C14 isotope activity is one third of that of newly cut wood.
49.17. In the investigation of the alpha-decay of polonium,
alpha-particles with energies of 5.30 and 4.50 MeV were
detected. Find the energy of the gamma-rays emitted in the
decay, taking account of the recoil of the nucleus.
49.18. A Fe 57 nucleus emits gamma-rays with an energy
of 14.4 keY. Find the relative variation of the energy of
gamma-photon due to the recoil of the nucleus. Compare this
quantity with the natural width of a spectral line, if the
lifetime of a nucleus in the excited state is 1.4 X 10- 7 s.
49.19. What should be the relative speed of approach of
a source and an absorber consisting of free iron atoms for
the resonance absorption of gamma-rays to take place?
The energy of the photon is specified in the previous prob­
lem.
49.20. Derive the law of radioactive decay on the basis
of the fact that the decay probability for a nucleus is inde­
pendent of the number of nuclei and is proportional to the
period of observation.
49.21. Making use of the uncertainty relation, calcu late
the energy of the localization of a neutron in a nucleus, i.e.
the kinetic energy that a neutron must possess to enter
a nucleus. The dimensions of the nucleus are of the order of
10-14 m.

Isn't there contradiction between this result and the exper­
imental fact that even thermal neutrons with kinetic ener­
gies of the order of 10-2 eV are able to penetrate the nucleus?
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50. Nuclear Reactions

50.1. A uranium U235 nucleus. liberates an energy of 200 MeV
in the process of fission. 1.5 kg of uranium take part in
the reaction during the explosion of a uranium bomb.
What is the mass of an equivalent TNT bomb, if the heat­
ing capacity of TNT is 4.1 l\tIJ /kg?
50.2. Find the energy liberated in the course of the thermo­
nuclear reaction

3Li6+ tH2~ 22He
4

Do the calculations for one nucleus and for one nucleon.
Compare with the energy liberated in the process of fission
of uranium.
50.3. Can the thermonuclear reaction IH2·+ 1H2 -+2J1e4 be
initiated in gaseous deuterium at a temperature of the order
of 108 K?
50.4. A neutral pion decays into two gamma-photons:

nO~')'+')'

Why cannot a single photon be born? What conservation
law is in contradiction with it? What is the energy of the
photon?
50.5. The lifetime of a neutral pion is 8.0 X 10-17 s. What
is the accuracy with which its mass can be deter­
mined?
50.6. A high-energy gamma-photon may turn into an elec­
tron-positron pair in the field of heavy nuclei. What is the
minimum energy of the gamma-photon?
50.7. Prove that a photon in a vacuum, no matter how high
its energy is, cannot transform to an electron-positron
pair.
50.8. A stationary pion decays into a muon and a neutrino:

n+~ ~+ +. V~l

Find the ratio of the energy of the neutrino to the kinetic
energy of the muon.
50.9. A neutron at rest decays. Assuming the resulting
proton to remain at rest, too, find the kinetic energy of the
electron and the energy of the antineutrino.
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50.10. The observation of the tracks of secondary electrons
showed that a neutral pion decayed into two identical
photons. The angle of separation of the photons is 90°.
Find the kinetic energy of the pion and the energy of each
photon.
50.11. Protons accelerated by a potential difference of
6.8 MV bombard a stationary lithium target. The collision
of a proton with a nucleus of Li 7 isotope results in the birth
of two alpha-particles which separate symmetrically with
respect to the direction of the proton beam. Find the kinetic
energy and the separation angle of the alpha-particles.
50.12. An accelerated electron is absorbed by a proton at
rest and a neutron is formed. Write the reaction equation.
Assuming that the resulting neutron remains at rest, cal­
culate the minimum kinetic energy of the electron at which
the reaction is possible.
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1. Kinetics of a Particle
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1.1. The graph is shown in Fig. 1.1. The law of motion is: Xl == -21 +
+ 8t; x 2 == 7 + 4t. ..
1.2. The graph is shown in Fig. 1.2. The law of motion is: Xl = 1.5t;
X 2 == -300 + 3.5t. ;

'1.3. The graph is 'shown in" 'Fig. ~1.3.' The law of motion is: Xl = 80t;
x 2 .'= 120 (t - 1.5).
1.4. \ For the swimmer not to drift
with the stream, the condition -vx++ u = 0 must be satisfied (see Fig.
1.4). Hence the given answer. The
problem Ihas ,a solution for Iv > u.

x,m

o 20 40 60

Fig. 1.1. Fig. 1.2.

1.5. The swimmer swims at an angle a to the y-axis. His speed along
the y-axis is V y = v cos a, along the x-axis Vx == v sin a + u, Hence

A vx v si n a -f-u
tanp=-=-=----

vy v cos ex

The given answer is obtained after some simple transforms.
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The problem has a solution for v .~~ u cos ~.
1.6. The 'speed of the swimmer in the direction of the y-axIS IS a maxi­

mum, if he swims perpendicularly
to the stream. This is obvious, if
we use a reference frame fixed rel­
ative to water,
1.7. First solution. Take a reference
fram e fixed relati ve to the bank.
Moving up-stream at a speed v ­
- u the launch covered a distance l.
Moving down-stream at a speed
v + u it covered a greater dis­
tance, namely l + ut, where ut is

c.km

Fig. 1.3. Fig. 1.4.

the distance covered by the float with respect to the bank. The time
of motion may be found from the equation

I l--L ut
t = -v=u -t- v+u

IJ,m/s

30

20

10

/ \
/

~_._- _. \
V \

20 40 60 80 too 120 140 160 t,s

Fig. 1.8.
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R

Fig. 2.2.

t = 21/(v- u)
Second solution. Take a reference frame fixed with respect to the

water. The speed of the launch in this reference frame is 1), the float
is at rest. Tlie time of motion of the launch is t = 2l'I v, where I' is
the distance covered by the launch with respect to the water in one
direction. It is obvious that

If t
~=-v-=2

Substituting into the previous equality we obtain the same answer.
Evidently, the solution is simpler in a moving reference frame.
1.8. See Fig. 1.8.

2. Force

2.1. The force F causes the extension of the entire system 111 == Elk,
the extensions of the first and the second springs being ~ll == Flk,
and I1l 2 == Flk 2 , respectively. Since dl = dll + 8.12 , it follows that

~=..!..--L-_1_
k », I k 2

2.2. Apply to the body two forces T1 and T2 equal in magnitude and
opposite in direction (Fig. 2.2).

Adding up the forces F1 and T1 and F2 and T2, respectively, we
obtain two forces RI and R2 intersecting in point B. Translate the
forces RI and R 2 to this point and
resol ve them again into the former t t3 T2
components. The forces T1 and T 2 (-t -1
are in equilibrium, but the forces I I \ I
Fi = Pit and F2= F 2 act in the 'It I
same direction and their resultant R" -r. \ Ii f \ 1 ,force R = Fi + F~ = F1 + F 2• 'CR

The position of point 0, the I r: -\ 2I 2 \
centre of parallel forces, may be I I \
found from the similarity of trian- I I \
glas.rFrom the condition !J.A 10B -- II I \
-- ~F;RIB and ~A20B -- !J.F;'R;B / I \ A2 T2
we obtain I 0 -~

~ A/ I
11 OB and 12 OR ~ \ ,

- -- I I \Y-P; Y- F 2 1/ \1
RIt- F. \ 1

from which 11Ft = l2F2' which 1 _1 R
2was required to prove.

2.3. Let the x-axis pass through the
points of application of the forces,
Al and A 2' with the coordinates Xl

and x 2 , the coordinate of the centre
o being Xo. Then II = Xo - Xl' l2 == X 2 - Xo. Substituting this into
the result of the previous problem, we obtain: F1 (xo - Xl) =
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== F2 (X 2 - xo), whence

Solutions

F1x1+F2x 2
.To== F

1
+"P2

The position of the centre of several parallel forces may be found
by using the method of complete induction. "
2.4. Resolve the greater force F1 into two parallel components
(Fig. 2.4), applying the force T2 = -F2 at the point A 2 and the second
force T1 of magnitude TI = F 1 - F 2 at the point C at a distance

Fig. 2.4.

d = aT~/Tl from point AI. Since the forces F2 and T2 are in equilib­
rium, the resultant R == T1; its magnitude is R == TI == FI - F 2•

Fig.2.Hb. Fig. 2.7b.

2.5. Assuming the system to extend without angular deflection we
obtain ~ll = I1l 2 = Sl, The force F = k I1l is resolved into two forces:
F1 == k1 6l and F 2 == k2~l. Since F == F1 + F 2' it follows that
k = », + k 2•

2.6. Using the sine rule, we obtain from Fig. 2.6b
T1 T2 P

sin ~2 = sin 131 = -s-in-{n--(~-=-1-+---=-P~-J-
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rt A:rt
Noting that PI = 2 - aI, P2 = "2 - a 2, we obtain the given

answer.
2.7. The triangle of forces is similar to the bracket is triangle (Fig.2. 7b).
Using the sine theorem, we obtain

F 1 F 2 mg
sin~ == sina=sin[n-(a1-~)]

2.8. Since DC = a -V 3/2 and DE = a/2 it follows that L CDE == 90°.
Resolve the force P = mg into two components in the directions CD
and CE (Fig. 2.8b). We obtain N = 2P, F == P y[ Now resolve

8

FcaVJ/2
D,....-----------,.~-~

E

a/2

A
Fig. 2.8b. Fig. 2.8c.

the force F into components directed along the rods BC and A C
(Fig. 2.8c). Since in this case .the parallelogram of forces is a rhombus
with an apex angle of 60°, it follows that

F ==F == F Pl!3 p
1 2 2 cos 30° 2 Y3/2

3. Particle Dynamics

3.2. Let's direct the y-axis vertically downwards. The equation of
motion may be written as follows:

-F + mIg = -mIa, -F + m2g = m2a
where F is the tension of the string. Solving the system, we obtain
the acceleration and the tension.
3.3. The equations of motions for the case shown in Fig. 3.3 are of
the form

Q - F I = m2a, F I = mla
from which we get

PI == Qml/(ml + m2)
If the force is applied to the smaller body, the string tension would

become
F2 == QmJ(ml + rna) > F1
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~.4. (1) If the monkey is at rest on the rope, the acceleration of both
bodies wi ll be the same, equal to al' The equations of motion are

FI =. AlaI, mg - F1 = mal

where f\ is the tension of the rope.
(2) If the monkey moves upwards with respect to the rope with

an acceleration b, the motion of both bodies wtll be different: the

my

Fig. 3.5b.

weight will move with an acceleration a2 and the monkey with an
acceleration a~ = 02 - b. The equation of motions wi'll assume the
form

F2 -=== Ma z, lng-F2 = mas,

(3) The downward motion of the monkey with respect to the rope
with acceleration b is described by the same equations; one has only
to change the sign of b.

The downward acceleration of the monkey with respect to the rope
cannot exceed the acceleration due to gravity. (\Vhy?) Therefore
a3 ~ 0 and F3 ~ O.
3.5. The forces acting on the weight are the gravitational force mg
and the tension of the thread F (Fig. 3.5b). The equation of motion is

mg - F = ma

Three forces act on the block: the gravitational force M g, the
reaction of the inclined plane Q and the tension of the thread F. The
equation of motion is

F - Mg sin a, = Ma

Hence the answer given follows.
It may be seen that for m > M sin a, the system will be accel­

erated in the direction shown in Fig. 3.5b. For m< M sin a the accel­
era tion will be reversed, and for m = M sin a the system wi ll move
at the constant speed imparted to it initially, or remain at rest.
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Note that Problems 3.2 and 3.4 are particular cases of Problem 3.5.
By setting a = 'Jt/2 we obtain the solution of Problem 3.2, and by
setting a == 0 the first case of Problem 3.4 is obtained.
3.6. Three forces act on the rod: the reaction of the wedge Q, the reac­
tion of the guides F and the gravitational force m2g (Fig. 3.6b). The
equa tion of motion (in the y-direction) is .

-m2g + Q cos a = m2a2

Correspondingly, three forces also act on the wedge: the reaction of
the table N, the gravitational force mIg, and the reaction of the rod Q

F

Fig. 3.Gb.

(Fig.- 3.6c). The equation of motion (in the x-direction) is

-Q sin ex = mlal

To obtain the third equation, we compare the displacements of the
rod ~y = 1/2a2t2 with that of the wedge I1x == 1/2a1t2• Since !1y =
= ~x tan ex it follows that

a 2 = al tan ex.

Then we solve the system of three equations with three unknowns.
3.7. The problem reduces to the solution of a system of four equations:

-Q sin ex == Mb x , -mg + Q cos ex. == may
Q sin a == max,· ay == (-ax + bx) tan ex

The case of a fixed wedge may be considered separately, but it
may also be obtained from the general case, if we put m ~ M. We
obtain

ax=g sin a cos a, ay== -g sin 2 a

a==Va~+a~ =-=gsina, Q=mgcosa
3.9. The elastic force Fe) == k (l - lo) imparts a centripetal accel­
eration to the weight.

9-0360
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3.10. The forces acting on the plane are the force of gravity P
and the lift F perpendicular to the wing's plane. Their resultant R
imparts a centripetal acceleration to the plane (Fig. 3.10). The angle

mg

Fig. 3.7b. Fig. 3.7c.

an = g cos a == gvo/v

The equation for
2 - 2v~ . hx. - - y, I.e. t e

g
figure that

v = y v~+g2t2= Vo Y1+ x 2/ p2 ,

v2 v2 cos2 a
r=_=~o _

an g

2
of bank is ex = arctan~, where r is the radius of curvature of the

gr
path.
3.1 f. The change in weight is determined as the ratio of force of pres­
sure to the gravity force

s, v2 N 2 v2

-=:-+1, --=--1
mg gr mg sr

3.12 The speed at the uppermost
point of the path is v = Vx == vocosa,
the normal acceleration is equal
to the acceleration due to gravity.
We have

3.13. Suppose that an object is
thrown in the direction of the x-axis
at an initial speed Va and that the
force of gravity imparts an ac- .
celeration g in the positive direc- FIg. 3.10
tion of the y-axis to the object
(Fig. 3.13). Then the law of motion will assume the form

x = vot, Y == 1/2 gtt
the path is obtained by eliminating the time:

parameter p = v~/g. It may be seen from the
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5 6 :x3 42

Fig. 3.13

o

y
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8

7

6

5

4

3

2

1

xl=l,

y == It+vot cos ~­
1-2 gt 2

, z:==vot sin ~

When the stone strikes the hill,

xB == b cos a, YB = h - b sin ex,

Substituting this into the law of motion we obtain the result sought.
3.16. The laws of motion of the first and of the second objects are

1
Yl=H-2 gt2

Substituting the results into the expression for the radius of curvature,
we obtain

,.==~=~~-==p(t+~)3/2
an guu p2

3.14. The direction of the speed of a particle is just the direction of
the tangent to its path. It may be seen from Fig. 3.13 that tan a =
= gtlvo. But since t = x/vo, it
follows that

tan a = gx/u5 ==x]p

When you have learned to dif­
ferentiate, you will be able to solve
the problem using the deri vative
in the following way·:

tan a=..!!:1L=~ (~) =
dx dx 2p

2x x
-2j)=P-

3.t5. The law of motion of the
stone is

. f 2
X 2 = vot cos a, Y2= vot SID a-2 gt

When they meet, x = I, y = H/2. It follows that

H . 1 H 1
l=votcosa, T=votslnla-Tgt2 I T==H-2 gt2

After some transforms we obtain the given answer.

• In school mathematics courses the derivative is usually denoted
by a stroke, for instance, a = v', However, this is not always con..
venient, since it is often not clear with respect to which variable the
derivative is taken. For this reason, if y = f (x), we shall denote the

derivative by ~ .

9*
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3.17. Suppose we assume the contrary, namely, that the body with
greater mass falls at a greater speed. Suppose we have two bodies of
different masses. Then the body with the greater mass falls more quick­
ly than the body with the smaller mass. Join both bodies. Since the
mass of the composite body is equal to the sum of the masses being
added, the composite body should fall more quickly than the first.
On the other hand, since the lighter body supposedly has the property
of falling slowly, it should slow down the motion of the composite
body, and the bodies joined together should fall more slowly than
the first body.

The resulting contradiction disproves our assumption. No con­
tradictions arise, if we assume that all bodies independently of their
masses fall in the same way, and experiment shows this to be true.

4. Gravitation. Electrical Forces

4.4. The force ratio sought is

FG) ymM0 ymM(B MG)R$
y-= R2 : R2 M R2 ~ 2

ffi 0 EB EB0

The reason that the Moon is a satellite of the Earth despite the
fact that the Sun's gravitational attraction is twice as strong is found
in the initial conditions, the Moon's initial
coordinate and initial velocity at the time the
Moon found itself in the gravitational fields
of both bodies (see § 8.2).
4.9. Equilibrium will be established, if the
resultant of the electric force F, the force of
gravity P = mg and the tension of the thread T
is zero (Fig. 4.9). Hence F = P tan ct. Substi­
tuting the value of the electric force, we obtain
after some transformations:

Q= 2q= 2 V 4n80mg tana l2 sin" ex q
4.tO. If the charges are placedasinFig. 4.10a,
the field intensity in the centre of the square
will be zero. P

If the charges are placed as in Fig. 4.10b, .
we find the field intensities due to the individual FIg. 4.9.
charges and then add up the field intensity vectors.
4.11. Divide the ~onductor into .segme~ts of such small length that
they may b~ consl.dered to be POII:\ts (FIg. 4.11). Then the projection
of the field intensity set up by a small segment on the axis of sym­
metry of the conductor will be

J1E = I:1qcos ex
x 4neor2

~q.x

43180 (a 2 + x2)3/~
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From considerations of symmetry it is evident that the field is directed
along the axis and that the field intensity is the sum of the projections
of the field intensities set up by the individual segments of the con..
ductor.
4.12. First find the intermolecular distance. The mass of one .cublc
meter of water is 103 kg, a kilomole of water (18 kg) contains 6.0 X
X 10~6 molecules. Theref.ore one cubic meter of water contains N =

Fig. 4.10a. Fig. 4.10b.

6.0 X 1026 X 103/18 = 3.3 X 1028 molecules. Then the distance
between the water molecules is

d = 1/VN= V3.0 X 10- 2 0 = 3.1 X 10-10 ill

The force of interaction is
6p2

F~ 4 ed3= 6.7 X 10- 20 Nneo
4.f3. Since there are no forces in the direction of the x..axis acting
on the electron (we neglect the force of gravity), Vx = const, and the
electron transit time in the field is t = L/VX ' The force acting on the
electron in the direction of the y-axis is F y = -eEl This force imparts
to the electron an acceleration a = -eElm. The projection of the
velocity on the y-axis varies ,vifh time according to the equation
vy = voy+ "u': At the point of the electron's exit from the field we
have

eEL eEL
V x tan ~= V x tan a-----, from which vi (tan a-tan~)=-

mvx m

Since "« = Vo cos (l, we obtain

vg cos2 ex (tan a-tan f3) = eEL/m

4.14. No forces act on the electron in the direction of the x-axis
(Fig. 4.14), and the projection of its velocity on this axis does not
change with time: "« = Vo = const. While the electron moves in the
field, a force F y = -eE acts on it in the direction of the y-axis. This
causes a displacement of the electron

at2 eEl2
h===-=--

2 2mv~
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its speed in the y-direction being

vy == at == eEl/lnvo

The electron leaves the field at an angle determined from the
condition

V y eEL
tan a=--=--2

Vx mvo

its subsequent motion being inertial. As may be seen from the figure,

d=h+Ltana, or d= eEl2 + eElL
2mv~ mvg

from which
mvgd

E= el (L+I/2)

4.15. No forces act on the electron in the x-direction and it moves
along this axis at a constant speed Vx = Vo cos a. In the y-direction
a force F = -eE acts on the elect-
rOD, and ft moves wi th an accelera- ~ f
tion ay = -eElm; its instantaneous
velocity is

. + . eEt"u ==Vo SID ex ayt == Vo SIll ex --;n-
To prevent the electron moving

upwards from striking the upper
plate, a field has to be established
that would in time t1 reduce the
vertical velocity component to zero
and would guarantee the condition
hi < h. But 2a yh1 = -v3 11 (see Prob­
lem 1.9) ; therefore

2 2 • 2

I I --~ DO SIn ex
ay - 2h

1
> 2h

Hence, the first condition may be
written in the form

mv2 sin 2 a Fig. 4.11.
E> 2eh

The time the electron moves upwards is t1 = - Vo sin a. . The
a

time it moves downwards will be the same (prove thisl). YT o prevent
it from striking the lower plate it must be made to travel during
this time a distance in the x-direction exceeding the length of the
plate, i.e. x = 2vxt1 > 1. Hence

- 2V5sin ex cos a. > l
ay



and the second condition assumes the form

E 2mv~ sin a cos a,
< el

+

'---:-------------t-t- cx~~----------- -I
C::::::====:JVy- - - II I

~ I d
I
I

,-,-

Fig. 4.14.

Combining both solutions we obtain the result sought.

5. Friction

5.t. Let us go over to the reference frame connected with the platform,
Here the initial speed of the body is -Vo and the final is zero. We have

T f.1mg O-(-vo) ~
a==m= ---m=J.tg, T= a Itg

a't2 v~
x= -vo't+- 2- = - 2J.1g

5.2. (1) If the monkey is at rest with respect to the rope, the equations
of motion are of the form

FI - flMg = Mai' mg - F1 = mai

whence the answer sought. The solution is meaningful if m > JIM.
When m -< 11M, al = 0 and F1 = mg.

(2) If the monkey move! upwards with respect to the rope with
an acceleration b, the equations of motion assume the form

F9 - J1Mg = Mal' mg - F 2 = m (ai - b)

The solution is meaningful if I-tMg < m (g + b). In the contrary case
a2 = 0, a~ = -b, F 2 = m(g+ b).

(3) If the monkey moves downwards with respect to the rope with
an acceleration b, the sign of b in the equations of motion for the
previous case should be reversed.
5.3. Since the force of sliding friction T is opposite in direction to
that of the block's motion, the result will be essentially dependent
on the initial direction of the block velocity. Consider all the possi ble
cases.
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(1) Let the initial velocity of the weight be directed downwards
(Fig. 5.3a). The equations of motion will be of the form

mg - F = rna

F - T - M g sin ex. == M a, where T == flQ == flMg cos ex.
Hence

a- m-M(sinex.+llcosa.) F- mMg(1+sinex.+f.tcosa.)
-g m+M ,- n~+M

If m > M (sin a + J.1 cos ce), then a > 0 and the speed of the system
increases. If m < M (sin a + f..t cos ex), then a < 0, and the speed

Fig. 5.3a. Fig. 5.3b.

of the system decreases. Lastly, when m = 111 (sin a + Jl cos ex.),
we have a == 0, and the system moves at a constant speed.

(2) Let the initial velocity of the weight be directed upwards
(Fig. 5.3b). Then, as may easily be inferred,

a ;;= m - M (sin a - fl cos a) F ;;= mil!g (1+sin a - J.L cos a)
g m+M' m+M

If m > M (sin a - f..t cos ex), then a > 0, and the speed of the
system decreases. If m < M (sin a - f.t cos a), then a < 0, and
the speed of the system increases. Lastly, if m == M (sin a - f1 cos a),
then a == 0, and the system moves at a constant speed.

(3) Finally, let the system be at rest. Then a force of static fric­
tion will act between the block and the inclined plane, its direction
being dependent on the direction in which the system would move
in the absence of friction. If m > M sin ex, the block in the absence
of friction moves upwards. Therefore the force of static friction is
directed downwards, as in Fig. 5.3a. If m < M sin ex, the block in
the absence of friction moves downwards, and for this reason the
force of static friction is directed upwards, as in Fig. 5.3b.

If one analyses the two preceding cases, one can easily see that
for m > M (sin ex. + Il cos a) the block will move up the inclined
plane with an acceleration; for m < M (sin a - f.L cos ex) it will move
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down the inclined plane with an acceleration; while for

M (sin a - fl cos a) -< m <. M (sin a + f-l cos ex)

the system will remain at rest.
5.4. The equation of motion of the rod will remain unaltered; in the
equation of motion of the wedge one should take into account the
presence of the force of kinetic friction T = f.t (Q cos a + mIg),

N

directed opposite to the acceleration (Fig. 5.4). Thus

-m2g + Q cos a, =' m2ay, -Q sin a + fl (Q cos a + mIg) == mlax

After some transformations, noting that "u = ax tan a, we obtain
mlm2~ (cos a + ~l sin a)

Q= ml cos2 a+ m'2 sin2 a- ~lm2 sin a cos a.,

- m2g+ J1g cot a (m 2 + n~I)_ < 0ax ==--~--.-;------...;;,
ml cot a+ m2 tan a-flm2

-m2 1( tan a+ flR' (m2+ml) < 0
ay == ml cot a+ m2 tan a.,-l-lm2

The solution makes sense when

ml cot a + m2 tan a > fl m2 ' m2 tan ex > fl (mz + ml)

It follows from the second inequality that

tan a > Jl (m2 + mt )
m2

If h h h d J1 (m 2+m1) h 0, on t e ot er an , tan a.~ , t en ax == 0, ay =
m2

and Q - m2g
- cos a.'

5.5. The equations of motion will assume the form (see Fig. 5.5a
and 5.5b)

-Q sin ex + T cos a == Mb x
Q sin ex. - T cos ex = max' -mg + Q cos a + T sin ex = may
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Hence

Solutions

Q== mM~ cos ex.
M +m sin a (sin a -11 cos a)

itt!~ cos ex. (sin a- J.1 cos a)
ax

M +m sin a (sin ex.-J..t cos a)

mg cos ex, (sin a-fA. cos a)
bx = M + m sin a (sin a-I! cos a)

(M +m) g sin a (sin a,-J-t cos a)
ay= M +n~ sin a (sin a-l1 cos a)

The block can either slide down the wedge, or remain stationary.
I t can slide down if sin a, > f1 cos C"L, Le. if tan a > fl. In this case

Fig. 5.5a. Fig. 5.5b.

ax > 0, ay < 0 and bx < O. If, on the other hand, tan C"L ~ f.t, the
block and the wedge will remain stationary.

Note that the solution of Problem 3.7 is obtained automatically
from the solution of this problem, if one puts J.L === o.
5.6. If the wedge moves to the left, the equations of motion assume
the following form:

Q sin a = max' -mg + Q cos a = may, -Q sin ex + T == Mb x

"u === (-ax + bx) tan a, T = fl (Q cos a + Mg)

from which
Mmg (cos a+ J.L sin a)

Q== M +m sin a (sin a-J.l cos a)

Mg sin a (cos a+ f1 sin ex)
a.~== M+msina(sina-J.tcosa)
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a = _ (M + In) g sin a. (sin a-I1 cos a)
Y M +m sin a (sin a- 11 cos a)

b = _ mg (cos a+ 11 sin ex) (sin ex-J1 cos ex.)
x llg M + m sin ex. (sin a-~ cos a)

Since bx -< 0 (explain why), it follows that

& mg (cos a+ f.t sin ex) (sin a-f.1 cos a)
llg ~ M + m sin a (sin a-ll cos a)

Hence after some simple transformations we obtain that our solution
is meaningful in conditions when

msin acos a
f1< M+mcos2a

In this case the expression
. M sin a

SIn a,- J1 cos a > M + 2mcos a

and consequently ay < O! which agrees with the problem's idea.

my

Fig. 5.7a. Fig. 5.7h.

. lnsinacosa
If It turns out that u = M + 2' then bx == 0, i.e,m cos a

the wedge will move on the table at the initial speed Vo (or remain
stationary, if Vo = 0). In this case

. Msina. . (M+m)cosa
slnex-llcosa== M+ 2' cos ce-l-u sin c e- M+ 2m cos a m cos a

from which
Q== mg cos ex

ax=gsinacosa, ay=-gsin
2 a , a= Va~+a~ ==gsina

5.7. Since the block does not slide on the wedge, the direction of ..
the force of kinetic friction is not known. Evidently, if the accelera-
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tion of the wedge is small, the block will slide downwards and the
friction force will be directed as shown in Fig. 5.7a. When the accel­
eration of the block is large, the wedge slides upwards and the direc­
tion of ttle force of friction changes sign (see Fig. 5.7b).

Write down the equations of motion along the coordinate axes
for both cases:
y-axis: Q cos ex + T sin ex, - mg = 0, Q cos ex - T sin ex - mg=O
x-axis: Q sin ex - T cos ex, = mal, Q sin a + T cos ex = ma 2
Noting that T = flQ, we obtain after some transformations:

tan a-~ tanex+f.1
al = g 1+ Il tan a' a2 = g 1- f..l tan ex

Writing Il = tan cp, we obtain g tan (a - cp) ~ a ~ g tan (ex + cp).
5.8. In the case the object doesn't slide off the disk, it will rotate with

Fig. 5.8.

the same angular speed as the disk. The centripetal acceleration is
imparted to the object by the force of static friction (Fig. 5.8). We
have

moo2r ~ ~statmg, whence r ~ Ilstatg/oo2

5.9. The motorcyclist will not slip, if the force of kinetic friction is
equal to the force of gravity acting on him. As the motorcyclist moves
on a round surface, the motorcycle presses against it, and the reaction
imparts to him the centripetal acceleration. The equation of motion
is of the form

T - mg = 0

where the force of friction T = f.lN and the reaction N = mv2/r.

Hence

v ~ V gr/f!

5.10. Since the object is at rest, the direction of the force of friction
is not known. For this reason we shall imagine the angular velocity
to be decreased until the object starts sliding downwards. The force
of friction will then be directed as shown in Fig. 5.10b. The equations
of motion are of the form

N sin ct - T cos a = mm2R sin a
N cos ex + T sin a - mg = 0
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where T = l-ts t a t N. Hence putting f.ts la t == tan cp we obtain after
some simple transformations

Ul = .. ;-g tan (a-rp)
1 V Rsina

Suppose we imagine the angular velocity to be increased, so that
the objoc t starts sliding upwards. Then the direction of the force of

Fig.5.10b. Fig. 5.10c.

friction will change sign (Fig. 5.iDe), and the equations of motion
will assume the form

N sin a+Tcosa= mcu2R sin ex,

N cos a-T sin a-mg=O

T = f!statN = N tan q>

from which we get

(a) = .. /"gtan(a+cp)
2 V R sin a

Thus the body will be in equilibrium if

-,//gtan(a-rp) ~ ~ .. /~tan(a.+rp)
r R sin a -....::: (i) ~ V R sin a

Obviously, if ex -< cp, i.e. if tan ex,.< IJ.sta t, the object will not
slide down, even when the bowl stops rotating.

As a particular case of the solution when static friction is absent
(,...,stat = tan <p == 0) equilibrium will be established when the bowl
rotates at an angular velocity of

000 = Y glR cos a
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5.11. The centripetal acceleration of the motorcyclist is due to the
force of friction, therefore f.tmg = mv2lr. Hence

r .~ v2/ tJ-g

The motorcyclist's angle with the horizontal should be such that
the resultant of the reaction and the force of friction is directed along
his body. Hence, tan a = NIT = 1/~.
5.12. The equation of motion of a ball falling in a liquid is of the
form

1ng-FA-Fres=ma

Since the viscosity of glycerine is high, its Reynolds number is small
and the resistance force may be found with the aid of the Stokes law:
F res = 63tl1rv. Thus

4443 nrSpg- T nr3pog-6n1')rv==T 3tr3pa

(1) To find the stationary speed put the acceleration equal to zero

2r2g (p-Po) 2 X 4 X 10-6 X 9.81 X 1.32 X 103

V= 9'Y) -= 9 X 5.02 X 10- 2

= 0 .227 mls ==23 cm/s
The Reynolds number is

Re = povr = 1.21 X 103 X 2. 3 Xt~O~l X 2 X to-3 0.11
T) 5.02 X -

For such small Reynolds number the Stokes law may be applied.
(2) The initial acceleration may be obtained from the equation

'of motion by putting the speed equal to zero:

(p--Po) g (2.53-1.21) X 9.81 5.1 rnls2
ao= P 2.53

(3) Making the approximation that the average acceleration is
equal to one half of the sum of the initial and final accelerations, we
obtain the time in which a stationary speed is established:

't=_v_~~= O.23X2 9x10-2 s
aav ao 5.1

The displacement corresponding to this time is

aRV •
2 ao't

2 5.1X81Xl0-4 10-2 m--1cm
S=-2-~4= 4

5.13. From the law of motion (see the previous problem) we obtain
the law of the variation of acceleration with speed: •

a = 5.10 - 22.5v

For small time intervals (L\t = 0.02 s)

Vn = Vn - l +an-lilt
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We can now compute Table 5.13 and draw the graph (Fig. 5.13). From
them it may be seen that the stationary speed is v == 0.227 mIs, the
transient period IS T = 0.22 s (compare with the answer to Proh-

0.24

0.20

0.16

0.12

0.04

0.02 0.04 0.06 0.08 O.tO 0.12 0.14 0.16'0.18 0.20 t,s

Fig. 5.13.

lem 5.12, where an approximate solution based on the assumption of
uniformly accelerated motion was discussed).

Table 5.13

nit, a I v, m/s I a, m /a2
" nit, a I v, m/a I a, m/s 2

0 0.00 0.000 5.10 6 0.12 0.220 0.15
1 0.02 0.102 2.80 7 0.14 0.223 0.08
2 0.04 0.158 1.54 8 0.16 0.225 0.04
3 0.06 0.189 0.84 9 0.18 0.226 0.01
4 0.08 0.206 0.47 10 0.20 0.226 0.01
5 0.10 0.215 O~26 11 0.22 0.227 0.00

5.14. The density of the dust particles p is much greater than that
of air Po, therefore the Archimedes force may be neglected. Since the
rate of settling of the dust particles is small, it may be calculated on
(the basis of Stokes' law. We have for the case of stationary speed

2r2pg 2 X 9 X 10-10 X 2 X 103 X 9.81 0.2 tal«
V~~= 9X1.8X10-!
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The Reynolds number is
Re== pour = 1.3XO.2x3x10-5 ~0.4

11 1.8 X 10- 5

and this is still inside the range where Stokes' law may be applied.
The settling time of the dust particles is

't ~ ~=2.8=15s
v 0.2

5.15. Elementary calculations show (see § 11.9 of the "Fundamentals
of Physics") that in this case Stokes' law is inapplicable and that the
force of resistance should be calculated from the formula R =
= 1/2 CSpovl . The stationary speed is

v= "1,1 2mg = 1;/ 8rpg
r CSPo r 3Cpo

dv
5.t6. It follows from the formula a = 7ft = 5.10 - 22.5v (see the

solution of Problem 5.13) that

r dv r - 0 227 (1 -22.51)J 5.10-22.5v J dt, v-. -e

Compare the result obtained with the speed calculated with the
aid of numerical methods.

6. Theory of Relativity

6.1. Suppose that in the course of motion with respect to some frame
of reference the lateral dimensions of a body change, for instance,
become smaller. Let there be a close fit of the rod and the hole in

Fig. 6.1a. Fig. 6.1h. Fig. 6.1c.

the board in some reference frame (Fig. 6.1a). Now fix the reference
frame to. ~he board and let the rod move in it (Fig. 6.1b). Then,
according to our assumption about the decrease in the lateral dimen­
sions, the rod will pass freely through the hole. If we fix the reference
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6.3.

frame to the rod, the dimensions of the hole will, according to our
assumption, decrease, and the rod will be unable to pass through it
(Fig. 6.1c). The resulting contradiction proves the assumption about
the decrease in the lateral dimensions to be wrong. The result follows
from the Lorentz transformations.
6.2. The relative error is

8==.Ucl- U r e l (U+V) (1+ uv/c 2) 1==~

Urel .u+ v c2

o.99000c+().99000c 1 .98000c
II == 1+U. 9tH)UU2 1. tt8Ul0

(
10 X 1()-5)= 1 '1 08\ 1 c == (1-5.05 X 10- 5)c== O.99995c

'" J 0

6.4. The discussion is free from errors, and the value obtained for the
speed of approach u is correct. But this does not disprove the relativ­
istic formula for the addition of velocities, The crux of the matter
is that when talking of velocities being added we do not mean the
addition of these velocities in the given reference [rame, but the cal­
culation of the velocity of the same object in another reference frame.
For example, the velocity with which the right-hand object moves
away from the left-hand object in the reference frame fixed to the
left-hand object is of interest to us. To find it let's use the reference
frame fixed to the left-hand object. We have u' = I1l'/ St'; since in
the new frame of reference both the distance and the course of the
time experience changes. It follows from the Lorentz transformations
that

Hence
, ~l' ~l U VI + V2

11 =1S:t'=~. 1+vlv2/c
2 1+VtV2/C2 '1+V1v2/C2

We have thus obtained the relativistic formula for the addition
of velocities, as was to be expected.
6.5. Suppose a substance approaches the light source with a velocity v.
Then, according to the formula for the addition of velocities, we obtain

, u+v . c/n+v
u == 1-+- uu]c2 1-°r- v/cn

10-0 ~H18
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If the substance moves away from the light source, then

" c/n-v
u = 1-v/cn

6.6. The time the light takes to travel with the fluid stream is

t _~_ 2l (1-v/cn)
l- u" - c/n--v

The time light travels against the stream is

t _ 2l 2l (1 + v/cn)-
2- u' e/n-t.- v

The time difference is

v

T=i t - i 2= {c/n:~-v2 [(1- :n H++v)­
- (1+~) (..!...--v) J== 4lv(1-1/n

2
)

en n (e/n)2 - v2

4lv
Noting that cl n » v we obtain 't = - (n 2 - 1).

c2

l=v't= v'to O.99X3.0x108X2.6X10-8

V 1-V2 / C2 V 1-(LU92

0.99 X 3.0 X 2.6 0.99 X 3.0 X 2.6 5
= 5 m.11 0.01 X 1.99 0 · 1 X 1.41

10 =--: v't o == 0.99 X 3.0 X 108 X 2.6 X 10- 8 = 7.7 m

l V1-v2jc2

6.7.

6.8.

3X105 V 1- U.9982 = 10-3 y O.OO2x1.B98 ==6.3X10-5 s.
U.9H8X 3 X 108 O.UH8

6.10. In the intrinsic reference frame Po == molVo, in all others p =
= ml V; The mass m == . 1no ,the volume

V 1 -V2/C2

V == L\z· ~y. L1x = .1zo·~Yo ·L\xe y 1-v2 jc2 = VoV 1-V2/C~

The density

Po
p= 1-V2 / C2

6. t t. t2 - t l == 0, for in the given reference frame both events takes
place simultaneously. In an arbitrary inertial reference frame

lv
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where v is the velocity of the new reference frame. The sign of the
time interval depends on the sign of the velocity v, i.e. on the direc­
tion of motion of the reference frame.
6.12. The electron velocity may be found from the formula (§13-2)

Lt
u == --;-=======V 1+ b2 t2 j c2

Here b = F/mo == eE/mo. For an electron e = 1.6 X 10-19 C.
m,o === 9.1 'X 10-31 kg. We have

1. 6 X '10-19 X 3.0 X 106

b 5.3 X 101 7 m/s 2 ,
= 9.1 X 10-:n

c

5.3 X 1017 X 10-9

3.0 X 10i
1.76

5.3 X 101 7 X 10-9

1/"1+ 1.762

5.3 X 108

2.0
2.6 X '10 8 Ill;S

I f there is no rela ti vistie mass increase, the electron velocity
reaches the value

eEt
u=--=

lno

1.6 X 10- 19 X 3.0 X 10') X 10- 9

9.1 X 10- 3 1 5.3 X 108 m/s

i.e. the velocity computed with the aid of the formulas of Newtonian
mechanics exceeds the maximum velocity.
6.13. Since the force is perpendicular to the path, the magnitude of
the momentum does not change
(Fig. 6.13), I Pl I == I P2 I = p (see
§§ 16.4 and 18.1). The magnitude
of the momentum's variation is
I ~P I == P I ~cp I· The normal
force is

F ==~==p~=pw=
n!1t ~t

lnv2
'=mw2r~ -­

r

Formally, we have obtained the Fig. 6.13.
same result as in the case of the
nonrelativistic motion of a particle in a circular path (see § 7.2).
However, in the relativistic case the expression for the force contains
the relativistic mass. Thus, in the particular case (the force is per­
pendicular to the path) the relativistic approach produces formally
the same result as the classical approach, although in general the
second law of Newton in the form F = ma is not valid for rela­
tivistic motion.

10 *
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6.14. Consider the case of a constant force acting on the object. In
this case the expression

F == Ina ::_ n10 dv
y 1-V2/c2 at

reduces to the expression

a =~ == b Vi - v~:' c2
dt .

where dv is the time derivative of the velocity, b = Fl m.; is a constant.
dt

It may easily be seen that the equation for the derivative becomes
.d . .ft· btl d d . thi dvan 1 entity, 1 one pu S v == C SIn ~. n ee ,In IS case di =

bt /.. bt dV" 1= b CO! - 1 1 - V2/c2 == cos~; consequently -d. == b y 1 - V2/ C2•
C ' c t

But the result obtained for the velocity is meaningless since after
a finite time interval

rIC rrc1Jl o
t = 2b = ----:xF"

the velocity of the object will be equal to the velocity of light· in
a vacuum, and this is in contradiction with the theory of relativity.
6.15. The length of a rod moving with respect to the reference frame
is l == l'To, where 'to is the time interval between the instants the
front and the tail ends of the rod pass the clock at rest in the reference
frame. On the other hand, the length of a stationary rod is measured
with the aid of moving clocks: 10 ~ VT.

Hence, _~==2!!.== Y1-V 2 / C2 , therefore l==lo Yl-v2/c2 ,
Lo 't '

which is the same result as is given by the Lorentz transformation.

7 . The Law of Conservation of MOlllentunl.· Centre of- Mass

7.1. Take the coordinate axis to coincide with the direction of the
hullet's flight. Let the mass of the bullet be m and the mass of the
block be M. By the law of conservation of momentum mv == (M + m) u,
where v and u are the projections of the velocity of the bullet and of
the block after it is hit by the bullet. A force of friction acts on the
sliding block in the opposite direction to the velocity vector: T =
= -f.1g (M + m). The acceleration of the block is a = T/(Af + m) =
= - f.1g. The block comes to rest after travelling a distance l, therefore
o - u2 = 2al (see Problem 1.9), or u = V2flgl. Hence

''If -i-In ..I--v=.. r 2~gl
m

Substituting numerical values and noting that m ~ M, we obtain
the value of the velocity cited in the answer.
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7.2. We shall solve the problem in the reference frame of the Earth.
The x-projection of the projectile's velocity in this frame, by the
classical formula for the addition of velocities, is u+ v cos Cl. FroID
the law of conservation of momentum it follows

(M + nl-) V == !tlu + m (u + v cos a)

from which
(J! + m) l:" - 1JlF cos a

u ==~--";"'J-l-+-,n---

The flatcar will stop after it fired the round, if its speed prior to

the firing is V = mv cos ex.
M+rn ·

7.3. Using the fact that the centre of. mass remains at rest, we obtain

In (l- x) = Mx

Hence the displacement of the boat cited in the answer,
7.5. (a) Using the Tsiolkovsky formula, we obtain the 'final speed of
the first stage:

VI == 2.3u log (AI0/M 1) == 2.3 X 4 X log (160/70)

Hence VI = 3.3 km/s.
The mass of the second stage is M 02 == 160 - 90 - 30 = 40 tons,

28 tons of which is the mass of the fuel. Note that the Tsiolkovsky
Iermula includes the increase in speed. Since the initial velocity of
the second stage coincides with the final velocity of the first stage,
the Tsiolkovsky formula for the second. stage of the rocket ,,'HI assume
the form .

VZ-VI == 2.31og Jfo~ or V 2 = VI +2.3 X 4 X log (40;12)
It .1.11 2

Hence V2 == 8.1 km/s.
(b) If the rocket is a single-stage rocket, and the amount of fuel

consumed is 90 + 28 == 118 tons, its final mass wtll be 160 - 118 =
= 42 tons and its final speed, according to the Tsiolkovsky formula,

v == 2.3 X 4 X log (160/42) == 5.3 km/s

Evidently, the two-stage rocket is more efficient-for the same
mass of fuel burnt it accelerates the spacecraft to a much greater
speed.
7.6. The equation (15.7) from § 15.5 in differential form is

-m dv == u dm

Integrating, we obtain
1\-1 't

_ r. dIn =-!.. r dv,
l In ul
~lo ~~o

1 v-vo 1 u,
Irorn 'v rich -u-.. = n~
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7.7. As long as the fuel consumption remains constant, the thrust
F .= -I..lu remains constant too. At the same time as the mass of fuel
decreases due to its consumption, the reeker's acceleration increases.
Because of that the overload

N a-t--!!
P--g-

increases, too.
7.8. Yes, they can, for instance, by running periodically from one
end of the car to the other and back.
7.9. Imagine the triangle cut into a large number of strips parallel
to its base (Fig. 7.9). The centre of mass of each strip is at its centre,
all the centres of all the strips lie on the
median, and so the centre of mass of the
triangle also lies on the median. The same
conclusion is valid for the other t\VO me­
dians as well. Therefore the point of inter­
section of the medians is the centre of mass.
7.10. Since the plate is uniform, the mass of
any part of it is proportional to its area.
Moreover, noting that the x-axis, directed as
shown in the figures, is the axis of symmetry
of the plate, we may conclude that the cen­
tre of mass lies on this axis, i.e. that Yc =
Zc = O. Then the solution may be obtained
by t\VO methods.
First method. Imagine the plate cut in t\\70-

into a triangle and a symmetrical remaining Fig 7 9
piece (Fig. 7.10b). The centre of mass of . ..
the triangle lies at a distance of one third
of a median from the origin, i.e ..1:1 = 1, the centre of mass of the
second body lies at its centre of symmetry, i.e. at a distance X 2 = 5

O.-.c~H---o--,,----~

x

Fig. 7.10b.

Ot------o--+-....,;:;....--I---~

s:

Fig. 7.iOc.

from the origin. The masses of those bodies are ml = 6 X 3/2 = 9 f)

and m2 == 6 X f O - 2 X 9 = 42 conventional units. The coordi­
nate of the centre of mass is

9 X 1+42 X 5 = 4 3
51 .
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." Second method, Consider the plate as a sum of two bodies, a rec­
tangle of mass m3 == 60 units and a triangle of negative mass m4 =
= -9 units (Fig. 7.10c). The coordinates of their

. centres of mass are X 3 == 5 and X4 = 9. We have
according to the definition

m3x3+1n4x4 60xS-9X9
«« = 4.3

m3+m4 00-9

Naturally, both methods :produce the same 0 ~++-+-++-+-t-t-~
result. . x
7.12. Divide the radius into 10 equal parts and
find the coordinates of the centres of mass of the
strips (see Fig. 7.12). All of them lie on the
z-axis, their coordinates being shown in the sec-
ond column of Table 7.12. Since we assume the
plate to be uniform, the mass of each strip is Fig. 7.12.
proportional to its area, i.e.

mn CI.. Sn = 21xrn

Table 7.12

n x n
J,2

n

1 0.05 0.0025 0.9975 0.999 0.050 0.050
2 0.15 0.0225 0.9775 0.989 0.148 0.147
:~ 0.25 0.0625 0.9375 0.968 0.2~2 0.234
4 0.35 0.1225 0.8775 0.936 0.328 0.307
5 0.45 0.2025 0.7975 0.89:3 0.402 0.359
6 0.55 0.3025 0.6975 0.835 0.459 0.384
7 0.65 0.4225 0.5775 0.7eO 0.494 0.376
8 0.i5 0.5625 0.4375 0.661 0.496 0.328
9 0.85 0.7225 0.2775 0.526 0.448 0.236

10 0.95 0.g025 0.0975 0.312 0.296 0.093

Total I 3.363 I 2.:314

where ~x=0.1. Now the product of the segments of a chord is equal
to the product of the segments of the diameter, i.e.

r~ == (1-x n) (1+ x l,)::--= 1-x~

To determine the position of the centre of mass compute
S IXl+S2X2+ ••• -1- SlOxlO

xc= 8 1 +82 -+- "•. -+-810

2~.~ ('"tXt + r2x 2 +...+ rio·TIO) 0.4 X 3.363 = 0.428
nj2 n
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Hence, the coordinate of the centre of inertia of a semicircle is Xc =
= O.428R.
7.13. Divide the hemisphere into 10 "slices" ~x == 0.1 thick each.
The mass of a "slice" is propor-
tional to its volume:

R=htana

h

Fig. 7.14.

mn ex: V n = 1tr~~x

The coordinate 0 f the centre
of mass is

V 1X l +V 2X 2+ +V 18 x I O

Xc == V 1 + V 2 + +V 10 =
nL\x (rix i + r§x 2 + ..·-1- 'toxIO) _

2n/3 -

== 0.150 (rlXt + r~x2 + ... + rrOXIO)

Substituting the data contained
in the last column of Table 7.12, we obtain

Xc == 0.150 X 2.514R:::=O.376R
7.I 4. Divide the cone into 10 "slices" ~X == 0.1 thick, as was done in
the. preceding case. The mass of each slice is

mn ex: V n = rt~X· T~ == nxfi tan2 a- L\x
The coordinate of the centre of mass is
.. - VII! +-v2I2+ ••• +V lOXIO _ ftlan 2·CX · ~X (i·~ + i~+ ·.. -r- xfn)

Xc== ·V1 +V2+ ... +V10 -- 1/3ntan2 (X

==0.300 (xf+xl+· .. +xlo)
The results of the computation are combined in Table 7.14. The­

coordinate of the centre of inertia is Xc = 0.3 X 2.5h = 0.i5h.
Table 7.14

n

1 0.05 0.125 X 10-3

2 0.15 3.375 X 10-3
.... 0.25 15.625 X 10-3o

···4 0.35 42.875X 10-3

5 0.45 91.125 X 10- 3

6 0.55 166.375 X·l0-3

7 0.65 274.625X 10- 3

8 0.75 421.875X 10- 3

9 0.85 614.125 X 10-a
10 0.95 857 .375X 10-3



7.15. (a) For a semicircle
R

Xc = Jt~2 J211x dx
o

But from the equation for a circumference x 2 + y2 == R2 it Iollews
that x dx == -y dYe We have

o R
2 r 4 r 4 r y3 JR 4R

Xc ==nR2J (- 2y2 dy) == nR2 J y2 dy ==nR2 L3 0 == 31t ==O.424R
R 0

The numerical computation produced an error of e == (0.428­
- 0.424)/0.424 = 0.94% < 1%

(b) For a hemisphere
R R

3 r 3 r 3 [y4 JR 3R
x C = 2nR3 J 3ly2X~x==.2R3 J. y

3dy=
'2R3 _4o==---g=O.375R.

o 0

The numerical computation produced an error of e =. (0.376 ­
- 0.375)/0.375 < 0.3%

(c) For a cone
h h

x == 3 r 1tX2 tan 2 ex. x dx =~ r x 3 dx ==~~ == 0 .75k
c nh3.tan2a, J _1t3 J h3 4

o 0

The numerical computation gave. the same result ..
7.16. The position of the centre of mass (Fig. 7.16) is determined
rom the condition mirl = m2r20
Denoting rl + r2 · = R we obtain v,
from the fundamental equation of
dynamics:

c
r,m, -------+---tl.m2

Dividing the equality mlvi/rl = Fig.· 7.16.
==m2v~/r2 by mlrl == m2T2 we obtain
v2 v2

-t==~, from which it Inllows that both objects revolve about the
T1 r2
centre of mass with the same period

T ==. 2nr 1 ..= 2.nT2 .

. V1 V 2

.Reduce the iundamental equation of dynamics to the form
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whence

Solutions

•

R2r 1 = ym2T2j4n2, R2r 2 =: "(1n1 T2j4rt2

Adding both equalities, we obtain

R3 = 'Y (ml +m 2 ) T2
4n 2

This is the desired expression for the generalized third Kepler law.

8. Total and Kinetic Energy

8.2. It follows from K == ~o that CS == 2~ 0' or y 1 - v2/c2 == 1/2.
Hence

v= c y3/2= 2.6 X 108 mls
8.3. The electron mass is

m= mo mo 10mo 2. 56mo
1/1- 0 .922 Y1.92XO.08 y15.3

Therefore the total energy is ~ = 2.56~ 0' and the kinetic energy

K == ~-~o= 1.56~o

The momentum is
p == mu= 2.56 X 9.1 X 10-31 X 0.92 X 3.0 X 108 === 6.4 X 10-22 kg -m/s

8.4. The total energy is ~ = K + ~ 0 === 10.94 GeV. The momentum
may be found from the relation

p=~ y~2 -~ij == .-!.-VK(2~o+K)=
c c

3.0; 108 V 10 X 11.88 X 1.62 X 10- 20

10.9 X 1.6 X 10- 10

3.0 X 108 5.8 X 10-18 kg. m/s

If K » ~ 0 one may with sufficient accuracy assume that
K 10 X 1.6 X 10- 1()

P=-c-= 3.0 X 108 5.3 X 10-1 8 kg-rn/s

The error will be
E=={5.8-5.3)/5.8 ~ 5%

The velocity may be found from the relation

p=~=~=~~.!i.-=10.0=O.92
c mc 2 ~ ~ 10.9

8.6. The relative error is

E=Krel-Kcl 1- mgu2

Krel 2 (mcs -« moc
2)



Conservation Laws 155

Denoting ~ == ul c and noting that n'to/n~ = V1- ~~, we obtain

~2 v42 1 ~2 V~(1+V~)
e=1-2(1_l/1_~2) 2(1-1+~2)

=+(1+~2_ V1- t\2)

8.7. v = t/2P'll/CSp.
8.8. As the weight moves along an inclined plane at constant speed,
the power is

P = (F +T) v = lngv (sin a+~ cos ex) == mgu (sin a+tan cp cos a) =

lngv sin (a+ <p)
cos cp

where tan cP == fl. The speed
p cos fP

v==·------.;.....--
mg sin (a+<fJ)

will be at its minimum if sin (a + cp) = 1, i.e. if a + <p == ~ . Hence

n 1
a ==-2 -arctan Il == arctan­

~t

8.10. Noting that K o == 0 we see that the work of the electrical forces
is equal to the ultimate kinetic energy:

K == A == eEL

(1) The nonrelativistic case: 1/2mou2 == eEL, hence

u == 1/2eEl/rno

(2) The relativistic case: If ~~ + p2c2 - <tb 0 == eEL. Hence
2 2 2

JJ2C2 = eEL(2~o+ eEL), or mou c == eEL (2$ I eEL)
t-u 2jc2 OT.

After some simple transformations \ve obtain

c V eEL(2~o + eEL)
u= 'Ho+eEl

(3) If eEl« ~o, then

u= cV2~oeEl Vr
21noc2 eE l - }I/ 2eEl

~o ,n~c~ Ill"

i.e. the nonrelativistic formula is valid.
8.1 f. The absolute error is
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9. Uncertainty Relation

is called the first

9.1. Assuming the electron moves in a circular orbit about the nucleus
(proton), we can write the equation of motion in the form

e2 l11V2

4JtEor~ = -r-

Hence the kinetic energy of the electron is

rnv2 e2

K=--=--
2 8JlEor

But if the electron is localized in a region of characteristic dimension
r, its kinetic energy

Comparing the two expressions, we obtain r >
. 4ne h2

The quantity ao= ~ = 5.24 X 10- 11 m
mt

Bohr radius (see § i .15).

9.2. Let's first estimate the momentum and the velocity of the elec­
tron. We have

r > hl a ~ 10- 1 9 kg-rn/s

From the formula p == moBc ,where ~ == ulc, we obtain
Vl-~2

_~_ .r: == 360
V 1-~2 n!oc

Hence ~ ~ 1, i.e. the electron is an ultra-relativistic one. Its kinetic
energy is

K == pc== 3 X 10-11 J == 200 MeV

9.3. Estimate first the region of localization of the electron, its mo­
mentum and its velocity... We have .

a=n-t/3='V10-29~2X10-10 ID, p>n!a=5xl0-25 kg-rn/s

The velocity may be found in the same way, as was done in the PW·
vious problem:

Since ~ ~ 2 X 10-3, the velocity' of the electron is much lower than
the velocity of light, i.e, the conduction electrons in a metal are non-
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relati vistic particles. Their kinetic energy is
n,2n 2/ 3

K~~- ~ 1.3X 10-19 J~ i ev
9.4. First find the number of neutrons and their concentration:

'N -- 2 X 103 0
_ 1\~ -03 1 44 -3

-- 1.67 X 1U-27 1.2 X 1057
, 11,-- 4j3rrra - X () ill

The region of localization of a neutron is a. = n-1; 3 = 1.5 X 10-15 m.
The momentum of a neutron is p ~ 1Ia ~ 7 X 10-20 kg .m/s; the
relativistic factor is

0.14
7 X .10-20p

V1-~~ moc 1.67x1u-27 x 3LJ x 108

from which it follows that ~ ~ 0.14, i.e. the neutron is a nonrela­
ti vistic particle. I ts kinetic energy is

!l2n2/ 3 o
K~~- ~ 1.3 X 1r,-12J ~ 9l\fpV

10. Elementary Theory of Collisions

oX

A ~:
I
I
I
I,
I
t

I
I

N

F

o

B

to.t. The result is not in contradiction with the law of conservation
of momentum: the vertical component of the momentum is transmitt­
ed to the Earth.
10.3. Direct the x-axis along Y
the wall and the y-axis normal
to j t (see Fig. 10.3). Since the

Fig. 1().~. Fig. 10.4.

wall is smooth, the momentum component along the x-axis will
not change. Assuming the mass of the wall to be infinitely greater
than that of the ball, we find that; the momentum component along

.the y-axis changes sign while its magnitude remains constant (see
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§ 17.3). Thus

Solutions

Hence a' == a (we are not interested in the sign of the angle).
10.~. The ball, after striking the surface of the parabolic mirror at
point M (Fig. 10.4), will be reflected to point F called the focus.
The angle of incidence ex is the angle between the direction of the
velocity of the ball and the normal M N; it is equal to the angle be-

(J..

Fig. 10.5a.

\
\

\ P
Fig. 10.5h.

./
,/

./

tween the tangent ME and the x-axis. According to Problem 3.14,
we have tan a == xlp , where x == OK == MB is the x-coordinate of
the ball before impact. As may be seen from the figure, L Blvl F =

= ~ = 2a - 11/2 and BF = BM tan ~ = x tan ( 2a - ~) =
x2- p2

= -x cot 2a == --.
2p

The focal length
X 2_ p2 p2 =L

j==OF=OB-BF=y- 2p 2p 2

Thus, the focus of a parabola is on its axis of symmetry (the y-axis)
at a distance p/2 from the origin. A particle moving parallel to the
axis of symmetry after an elastic reflection arrives at the focus no
matter at what distance from the axis it was moving.
10.5. In the given reference frame one of the particles is at rest before
the impact, the other moves at a speed v. After the collision their
velocities are VI and v2 , respectively, the scattering angle is a
(Fig. 10.5a). Construct a triangle of momenta (Fig. 10.5b). Taking
account of the fact that the total momentum and the total kinetic
energy are retained after an elastic collision, we obtain

L-...EL 0- p~p2=pf+p~-2PIP2COS~, - 2 -r 22m m m

Hence cos ~ = 0 and a == ~ = 90°.
10.6. Since the energy is equipartitiened between the particles, the
same will happen to the momenta. Consequently, after the collisions
the protons scatter at equal angles to the original direction of the
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proton projectile (see Fig. 10.6). From the laws of conservation of
total momentum and of total kinetic energy we obtain

ex.
2PI cosT= P, 2K 1 =K

From the relation between the energy and the momentum ~2 =

m,p
o

Fig. 10.6.

~5 + p2C2 we obtain, noting that ~ = ~Q + K,

K2+ 2K'Ho== p2 c2 , Ki·+ 2K 1Cfl o= pfc2

Eliminating the momenta and the proton's kinetic energy after
collision, Kh from these equations, we obtain

2 a 2~o+K
cos T= 4~o+K

whence

cos a = 2 cos- -.:x--1
2

K

Note that in the nonrelativistic case, when K '..~ ~ 0, we shall
have cos a ~ 0 and ex. ~ :rr/2 (compare with Problem 10.5).

For K = 500 MeV we obtain, noting that ~ 0 = 938 MeV, (see
Problem 7.1) cos ex = 0.117, a = 0.46n.

For K = 10 GeV we obtain cos a = 0.728, a = O.24n. We see
that as the kinetic energy of the projectile particle rises, the scattering
angle decreases, approaching zero for ultra-relativistic particles
(K ~ ~o). '
10.7. One of the disks is at rest before the impact; after the impact its
velocity will be in the direction of the centre line at the moment
of contact (Fig. 10.7b) for this is the direction in which the force
acted on it. Thus, sin a2 = dl2r, al + (l2 = 1(/2 (see Problem 10.5).

Since the masses of both disks are equal, the triangle of momenta
turns into the triangle of velocities (see figure). We have

. VI = V cos al = v sin a 2 = vd/2r

V2E:::VCOS cx2 = v V 1- d2f4r2
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to.8. Direct tho coordinate axes as shown in Fig. to.8b. The direction
of velocity of the larger disk may be found, as in the previous prob­
lem, from the condition

sin (X2·1= d/(rl + T2)

The remaining three unknowns, the velocities VI and V2 and the
angle aI, will be found if we wri te down the equations for the conser-

y

Fig. 10.7b.

vation of the x- and y-components of the momenta and the equation
for the conservation of kinetic energy

Ply - P2y ==0, PIX 1- P2X == P, K1 + !(2 == K

.or in the form

PI si n at - P2 sin Cl2 ::= 0, PI cos al -+- P2 cos (1,2 = p,

__ p2 p~ p2_1_+__= __
2ml 2m2 2m,!

After some transformations we obtain

2m 2P cos a2
p 2 = ----.:;;

nll + nl 2 '
PI = P V (tnl + f1l 2)2- 4 m ltrl 2 cos 2 (1,2

m1+m 2

sin at == (P2 sin (X2)lpl·

Note that for ml == m2 and rl = r2 we shall arrive at the results
of the previous problem.
10.9. The number of particles striking the wall during the time ~t
(Fig. 10.9) is

N == nuS 1. ~t == noS ~t cos (1,

(see § 17.5). Since only the normal component of the velocity changes
after impact, the force is

2mu cos a
/!it
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The force of pressure is

F = N] = 2nSmv2 cos2 ex.

161

p = 2nmv2 cos2 ex.

10.10. The problem stipulates that the boat moves over water at
a constant speed, and this means that the drag and the force acting
on the sails are equal in magnitude.

To find the formula for the drag of the water compute the Rey­
nolds number Re = PulJolo/110' It is given that Vo = 3 mls and that

o •

o

o. •

v

m '" r-,
--------~'---v.1

Fig. 10.9.

the characteristic dimension is lo ~ 1 m. Thus, Re = 3 X 106, and
so the pressure drag R = CS oPov'512 plays a basic role.

To be definite let us assume that the interaction of the air with
the sails is elastic. Noting also that nm = P is the density of air, we

obtain ~ CSoPov~ = 2pSv2. The area of the sails is

S - CSoPov~ 0.1 X 1.0 X 10S X 9.0 5 m2
- 4pv2 4 Xi. 3 X 36.0

10.11. Arrange the coordinate axes as shown in Fig. 10.11. Then com
ponents of the initial velocity along the axes will be Vox = Vo cos a,
voy = Vo sin a and the acceleration components will be ax = g sin a,
all = -g cos CL. The equation of motion for the first part of the tra­
jectory should be written thus:

Vx = vox+axt= Vo cos a+gt sin ex.

v y = voy+ayt = Vo sin ex.-gt cos ex.

ax t 2 gt 2 sin a.
x=xo+voxt+ -2-=votcosa+ 2

a t2 • gt 2 cos a
Y==Yo+voyt+ +=votslna- 2

t 1-0380
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Since at the point A h the ordinate Yl = 0, it follows that

t _ 2vo tan a x _ 2v~ sin ex
1 - g , 1 - g cos2 ex, ,

vlx=~(1+sin2a), v1y==-vosinacos ex,

The longitudinal velocity component does not change after an
elastic impact, but the lateral component changes sign. Therefore

A ----
I - ................. ,

""-
"",,,

\.A2

~

..-...L-.-------------~....;:lo".~'"x

Fig. 10.11.

for the second part of the trajectory

Vox·==Vtx== ~(1+sin2a)t voy=-v1y==vosinacos ex

The equation of motion, by analogy with. the first case, will he

+ + axt2 2v~ sin ex.+ vot (1+ sin2 a) +gt2 sin ex.x=x v t --=-.....;----
lOX 2 g cos2 ex. cos ex. 2

--l + ay t
2

•Y == Yll- voyt -2-= vot SIn ex,
gt 2 cos a

2

At the point A 2 the ordinate is again zero, i.e. Y2 ~'. 0, therefore
the x-coordinate of the point A 2 is . '. ~

4v2 sin'' a
X 2 = g~OS2 a (1+ sin2 a)

The ratio of displacements is
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11. Potential Energy. Potential

163

11.1. Let the object move in the field from point M to point N
(Fig. 11.1) first along the rectilinear segment M N = t, and then along
the broken line M KN == II + l2t In the first case the work done is

A = Fl cos a = Fd

In the second case the work done is
A = At -t A2 = FIt cos a l +Fl 2 cos a2 ==F (It cos at+ l2 cos cx2) =: Fd

M

N

11.2. (a)

Fig. 11.1

We see that the work done is independent of the path.

F= -kx, A=rF dx= -krx dx= _ k;2 1::=
XI X.l

kx" kx2__1 2.

- 2 2'

(b)

(c)

qQ . qQ •
=4neOrl-~'

r2 ~2

J ) dr ymM \T2A = Fdr= -VmM -=-- =
r 2 r Tt

rt rt

vmM ymM
= -r-

2
-- -r;-.

11.5. In a dipole one point charge is in the field of the other point
charge, therefore

" p2U-qm- qtq2 q_----8-
- t TS - 4:t8od - 4:tE od - 4treada

11*
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where Pe = ,qd is the (dipole moment, d being the separation of the
dipole. The ·minus sign shows that the formation of a dipole from two
charges equal in magnitude but opposite in sign, initially an infinite
distance apart, results in the liberation of energy.
11.6. The energy liberated as the result of the formation of one hydro­
gen chloride molecule is about U = 10.3 X 10-20 J = 0.65 eV. Per
1 kg we obtain 6~ = NU = 1.65 X 106 J. (Actually, the energy
liberated in the process of formation of 1 kg of hydrogen chloride is
2.5 MJ; this means that our rough estimate gave the right order of
magnitude.)

11.8.
mv 2 e2

~ =K+U=-2---4-=-13.6 eVe
n8 0ao

The minus sign means that the formation of a hydrogen atom from
a free proton and an electron is accompanied by the liberation of energy
equal to 13.6 eVe
11.9. (a) Consider the problem using the approximation of Newto­
nian mechanics. Put K o = 0, q>t - q>2 = q>, A == K - K o =
= q (<PI - <PI)·

We have
1

Q<P=T mu2, u=V2qcp/m, p=mu==V2mqq>

(b) In the relativistic case

K=qcp= Y'p2C2_~~ -~o

We obtain

p=-.!.- V q<p (2~o+q<p). U= mue
2 = pe

2 = eY q<p (~o+q<p)
c me2 ~ ~o -t.qcp

In the Newtonian approximation ~ 0 ~ q<p, and the formulas
assume the form

1 -.,-- -.,-- c Y2Ioqq> V 2q<p
P~ - t' 2Ioqq> = t' 2moqq> u= --

c '10 mo
We have of course obtained the same expressions as in (a), for

in that case m = mo-
11.tO. The relative error is

8= Prel-Pcl
Pre}

Hence

1- cV~
V qq> (2~o+qcp)

210 28-e2

q>=-q-. (1.-8)2

48~o
Since 8 ~ it we have q>= ---- •

q
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f .11• The rela ti ve error is

Prel-ecp!C
e==-~-~-

Prel
Hence

1 ... /" eq>
- JI 2~o+ecp

~o (1-e)2
<P=-e-· 2e-82

.!!L
ee

12. The Law of Conservation of Energy
in Newtonian Mechanics

12.1. According to the law of conservation of momentum mv = (M +
+ m) u, according to the law of conservation of energy 1/2 (M + m) u2=
== (M + m) gh, Hence

v= M+m "Ii 2gh M+m"li 2 l(1 )m Y m Y g -cos a

12.2. (a) According to Newton's second law

4= : -g, V=V2ah=Y2h(: -g)
(b) According to the law of conservation of energy the work per­

formed by a force is equal to the change in energy
'mv2

A=~U+K, or Fh=mgh+-
2-

Hence

r F )
v= 1/ 2h (m- g

12.3. Here the work of the force of friction T is equal to the decrease
in kinetic energy. In the reference frame of the platform

mv2 v2

ri-: s, or f.1 mgl == --f" ' whence l=2;g

The braking time is
l 2l Vo't'==-=-=-

Vav Vo l1g
12.4. The speed of the weight at the uppermost point should be such
that the tension of the thread T and the force of gravity impart to
it the necessary centripetal acceleration (see Fig. 12.4):

mg + T = mzrll
To find the minimum speed at the uppermost point, put T = O.
We have
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Taking the potential energy to be zero at point 0 (the axis of rota­
tion) we obtain according to the law of conservation of energy

2 2
mvO l mVmin + l-'2-- mg = 2 mg

Hence Vo > Y 5gl.
12.5. If the weight rotates on a rod, its speed in the uppermost point
may be zero. We obtain according to the law of conservation of energy

mv 2 ---
mgl=T-mgl, whence e, ~ y4gl

12.6. In the direction normal to the velocity the forces acting on the
weight are the tension of the thread T and the component of the force
of gravity, F 2 = mg cos a (Fig. f2.6). Accor­
ding to Newton's second law

T-F2 = mv 2/ l

To find the velocity apply the law of conserva­
tion of energy

mgh o= mgh+mv2/2 0
Hence

2mg
T= mg cos ex +-z- (ho-h)

However, ho = 1 (1 - cos (xo), h = 1 (1-
cos a), therefore ko - h = 1 (cos a - cos ao)· 00
Substituting into the expression for the tension
of the thread we obtain Fig. t2.4.

T = mg (3 cos ex - 2 cos ao)

12.7. According to Newton's third law, the pressure of the washer
against the sphere is equal in magnitude to the reaction. The forces
acting on the object in the direction normal to the velocity vector
are the reaction N and the component of the force of gravity F 2 =
= mg cos a (see Fig. 12.7). According to Newton's second law

F2 - N = mv2/R

To find the velocity apply the law of conservation of energy mgh =
= mv2/2. Since h = R (1 - cos ex), we obtain after some simple trans­
formations

N = mg (3 cos a - 2)

When the washer leaves the sphere it ceases to press against it,.
and the reaction becomes zero. The condition for the loss of contact
is cos ex = 2/3; ex = 48°; h = R13.
12.8. According to Fig. 12.8, we have

N - mg cos a = mv2/ R

To find speed apply the law of conservation of energy:

mgH = mgR (f - cos a) + mv2/2
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N =mg (3cOSa-2+ 2:)
In the highest point of the loop a = n, so

Ntop= mg ( -5+ 2: )
The minimum height is found from the condition N top = 0, there­

fore H mIn = ~ R. In this case

. ex.
N = 3mg (1+QOs a) == 6mg cos2 T

12.9. The object thrown at an initial speed Vo at an angle a to the hori­
zontal must fly through the air a distance A B == L = ~ 2R sin CL.

We know (see § 8.2) that

L= 206sin ex cos ex.
g

2 gR
so V o= cos a

To find the speed Vo apply the
la w of conservation of energy

1
mg H ==mgR (1-1- cos a) +2 mV5

from which k = ~ = 1+cos a +
1

+ 2 cos a ·
For the computation of cos ex. Fig. 12.6.

we obtain an equation
2cos2 a - 2 (k - 1) cos a + 1 = 0

Hence
1

cosa=T(k-1± Y(k-1)2_2 )

Since the number under the root sign must be non-negative, we
obtain k - 1~ Y 2: i.e. k ~ 1 + y2:

On the other hand, 0 < cos a ~ 1, i.e. k - 1 + Y (k - 1)2 - 2 ~
~ 2 and k ~ 2.5. Thus

1 + Y2 ~ k ~ 2.5, I.e, (1 + Y2) R ~ H ~ 2.5R

For the limiting values of the cosines we have

Y2
cosa=T' Le. a1==45°

cos a == {1.5 ± 0.5)/2, cos (X2 = 0.5, cos (1.3 == 1
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Obviously the solution cos a3 = 1 does not satisfy the condition of
the problem, since for as = 0 there will be no cut. So 'the remaining
solution is cos a 2 = 0.5, a 2 = 60°.

Accordingly, for the heights in the range (1 + V2) R ~ H ~
~ 2.5R, corresponding suitable cuts are those with angles of 45° ~
~ ex ~ 60° chosen so as to satit5fy the condition

1
eosex=T (k-1-V k2-2k-1 )

12.10. Denote the radius of curvature in the perihelion by R o, the
kinetic energy of the planet in perihelion by' K0 = mV6/2, and its

hi
I
t---------
I /J
I ~
I F:. ««
I ~~
I / ",
1/"
-Cl /f3/
V

Fig. 12.7. Fig. 12.8.

potential energy U0 = -ymM1ro'
To find the radius of curvature in the perihelion apply Newton's

second law

mv~ ymM from which R
o

== mvar3 = _ 2roKo
tc:: r~ , yMm u,

The radius of curvature at the aphelion is the same as in the peri­
helion since the ellipse is a symmetrical figure. We have, according
to Newton's second law,

mv~ "lmM

~=rr-

The total mechanical energy of the planet, according to the law
of conservation of energy is

W mv~ ymM mv~ ymM
== -2--~=-2--r;-

Eliminating the velocity we obtain

VmMRo ymM VmMRo ymM
2r~ ro 2r~ r«
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Cancelling out "1m, we obtain a quadratic equation

r: (2ro-R o>-2rar~+ Ror~ = 0

The first root of the equation is fa = fo. This means that in this
case the ellipse reduce! to a circle of radius ro- In this case the radius
of curvature is also R 0 = ro, and, consequently, the orbital velocity
is v = Vo = VyM/ro-

The second root of the equation is
roRo roKo

ra :-= 2ro-Ro ---w-
Since the distance from the aphelion to the Sun is a positive quan­

tity we must have W < o. This means that a planet can move in an
elliptical orbit only if the sum of its kinetic and potential energies
(i.e, its total mechanical energy) is negative. In particular in the case

of a circular orbit, W = _ 'Ym
2

M •
ro

12.11. Calculate first the total energy of the spacecraft at the per-

igee (i.e. at the apex of the parabola): W = m2v5 _ ymM. Ac­
ro

"rmM mv2
cording to Newton's second law --2-=-R0 , where Ro is the

To 0

d f h · ymM mv~ro d hra ius 0 curvature at t is point. Hence ---== -R- an t e
ro 0

total energy is W = mv~ (+- ~: ).
But the distance from the focus to the apex is fo = f = p/2 (see

Problem 10.4), and the radius of curvature at this point is R o = p
(see Problem 3.13). Substituting these values we see that the total
energy is zero. In compliance with the law of conservation of energy
it will be zero at any other point of the path as well.
12.12. Let the rod sink by a distance !:J.y. Then the wedge will shift
a distance !:J.x to the left. Evidently !:J.y = !:J.x tan a. Since the motion
takes place with zero initial velocity, it follows that

~x=axt2/2, vx=axt, ~y=ayt2/2, vy=ayt

According to the law of conservation of energy, the decrease in the
potential energy of the rod as it sinks is equal to the increase in the
kinetic energies of the rod and of the wedge:

2 2
!:J. m 2vu + mlvx

m2g Y = -2- -2-

Substituting the values of the displacements and the velocities we
obtain

m2gay=m2at+mla~, ay=axtana
from which we get

a __ m2~ tan a m2g tant a,

x - ml+m2 tan 2 a, ' a!J= ml +m2 tan 2 a
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The reaction is
Q= ~laX = mtm2g cos a

Sill a ml cos2 a+ m2 sin2 ex,

12.13. Applying laws of conservation of energy and momentum, we
obtain

A mvi + mv~ + MV2

mgu Y= - 2- --2- --2-" -MV=mvx

Noting that L\y = ay t2/2, !:J.x = ax t2/2, AX = bt2/2, Vx = axt,
vy = ayt and V = bt, and that !:J.y = (!:J.x - AX) tan a we obtain
after some simple transformations

M R' sin ex. ·cosa .
ax == M +m sin2 ex

i.e. the same result as in Problem 3.7. The value of ay is obtained
from these equations in a similar way. The reaction is obtained from
the condition

Q=ma=m 11 ai+a~

12.14. The escape velocity for the Moon is v=Y2'VM([/R([=

=2.4 km/s, Assuming the exhaust velocity of the gases to be
4 km/s, we obtain with the aid of the Tsiolkovsky formula M ruel =
=0.83 ton. For the Earth the escape velocity is 11.2 km/s, and
the mass of fuel is M ruei = 15.6 tons.
12.15. The star retains material particlesand light in its gravitational
field, if its escape velocity is equal to the velocity of light in a vacuum.
This idea was suggested by Laplace as far back .as 1796. We have

c2 = 2yMIR, R = 2yMlc2 ~ 9 km

13. The Law of Conservation of Energy

13.1. The increase of the internal energy of the system.is at the expense
of the decrease of its kinetic energy. For an inelastic collision of two
identical objects flying head on at equal speeds, AK = 2Ko = mv2 •

The change in the internal energy is

Ai5 0 = 2m (Ct Att + A+ c2 At 2 + L)·

where Ct and C2 are the specific heats of ice and water, respectively,
and •

Att = 0° - (-30°) = 30°C, f:1t 2 = 100° - 0° = 100°C
Hence

v = y2 (Cl ~tl·+ A+ C2 At 2 + L)

13.3. Multiplying the solar constant by the area of a sphere of radius
equal to the astronomical unit, we obtain the total power of solar
radiation p = 4nJR2. The loss of mass per second is ,.... = pIc". The
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Sun will lose ten percent of its 'mass in the time

171

ment is

13.5. Before decaying the particle is at rest and its energy is ~ 0 =
= M oc2• Since it decays into two identical fragments theirtotal energy

2moc2 .

must be ~ = 2mc2 = ,,- , where mo is' the rest mass of a frag-
r 1--~2 -

ment and u = pc is its velocity. It follows from the law of conser-
• 2moc2

vation of energy that ,,_= M oc2 , whence the rest mass of a frag­
y 1-~2

mo=J:.-u, Y1-~2
2

Substituting the speed we obtain the rest mass of the fragment.
13.6. Applying the laws of conservation of momentum and of the
total energy, we obtain

p' = p, ~' = ~ + ~o

where ~ = ~ 0 + K = Vb 0 + etp is the total energy of the particle
before the impact, p is its momentum, and ~' and p' are the total
energy and momentum of the object formed after the inelastic colli­
sion. Eliminating the momentum p' using the relation ~'2 = ~~2 +
+ p'2c2, we obtain for the internal energy of the object formed

~o=Y2~o(~+~.J =y2~o(2~o+e<p)

The kinetic energy of the object formed

K' =~' -~~ = 2~o+ ecp- y2(go (2~o+ ecp)
For a proton (~o = 0.938 GeV) with a kinetic energy of 10 GeV

we obtain
~~==4.7GeV, K'-==7.2GeV

For a proton with a kinetic energy of 76 GeV we obtain the values

~~ = 12.1 GeV, K' = 65.8 GeV

13.7. For a proton-antiproton pair to be born out of a cluster, its
rest energy should be at least twice that of the rest energy of a proton:
~~ :?;- 2 X 0.938 = 1..88 GeV. Noting that the rest energy of an
electron is ~o = 0.511 MeV (see Problem 8.1), we obtain

~~2~~2
eq> ~ ~o -2~o ~ 2~o ==3.46 TeV

At present there are no such accelerators.
13.8. In this case the cluster formed as the result of an inelastic colli­
sion is. at rest, i .8. the entire kinetic energy of the original particles
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has been transformed into the internal energy. The internal energy of
the cluster is ~~ = 2K + 2~~1= 2~~rot, therefore

K ==e<p= ~grot_~~] ==938.3-0.511 = 937.8 MeV~ 1 GeV

Such accelerators do already exist.
13.9. The internal energy of a cluster in a conventional accelerator
with a stationary targst : is ~o = V2~ 0 (2~ 0 + eq» (see Problem
13.6), in a colliding-beam accelerator it is ~~ = 2ecpc + 2~o. Equat­
ing both expressions, we obtain

cp = 2q>c (2 + eCFc/~ 0)

where <p is the accelerating potential in a conventional accelerator,
and CPc is the accelerating potential in a colliding-beam accelerator.

Clearly, for ecpc ~ ~ 0 a colliding-beam accelerator is ineffective
since the accelerating potential of a conventional accelerator is only
four times greater than in the case of a colliding-beam accelerator.
But in the ultra-relativistic case, when ecpc :;p 'f, 0' the colliding-beam
accelera tor is very effective.

14. Rotational Dynamics of a Rigid Body

14.1. From an arbitrary point 0 draw an axis perpendicular to the
plane in which the forces lie (Fig. 14.1). The moment of the force couple

J1i,,
at

Fig. 14.2.

(the torque) is equal to the algebraic sum of the moments of each
force about the axis. We have

M = Fta + F2 (a + d) = Fla + F2a + F2d

However, F1 = F and F" = -F, so M = -Fd. The minus sign
shows that this couple makes a left-hand screw about the axis.
14.2. The solid arrows in Fig. 14.2 show the forces F1 and F2 applied
to a rigid body at points A 1 and A 2' Apply the forces T1 and T 2 at
the same points and the forces Ta and T4 at the point C so that T 1 ==
= Ts = F I and T 2 = T4 = F 2 • The point C is chosen so that Flal =
= F"a l • Show that the new system of six forces is equivalent to the
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old one, i.e, that

(Fit F 2, TI , T2, T3t T,) ,..,., (Fh F2)

Indeed, the system of these forces reduces to the former ~forces F1

and F 2 and to two force couples (TIt T3) and (T 2, T4) whosemoments
are

MI= T1alsina and M 2= -T2a2 sin a
But point C was chosen so that I MIl = 1M 2 I. Therefore these
moments are compensated and do not act on the rigid body.

On the other hand, the system of six forces is equivalent to the
system of forces T3 and T4 t i.e.

(FIt F2t TI , T2, TSt T4) ....., (Ta, ToI)

Indeed, the forces FI and Th as well as F 2 and T2, are compensated,
only the forces T3 and T4 remaining uncompensated.

Hence, the system of forces (FI, F 2) is equivalent to the system
(Ta, T4) t and this gives the solution to the problem.
14.4. The work done in twisting the spring by an angle ex is equiva­
lent to the work done in extending it by a length x, which is expressed
by the formula W = 1/2Fx = 1/2kx2• Therefore the work sought is

W=-!.M(X=~ ja2
2 . 2

Note that the torsion modulus f = MIa is an analogue of the
spring constant k = Fix.
14.7. The differential of mass is equal to the mass of a ring of thick-
ness dr. We have .

dm _2nrdr f hi h d _ 2Mrdr
M - nR2' rom W IC m - R2

The differential of the moment of inertia is equal to the moment of
inertia of this ring:

2Mr3 dr
dl = dm- r2 = -----...-­R2

Hence
R R

1=) dm.r2= ~~ )r3dr= ~~ [r: J: _~~:~ ~R2
o 0

14.8. Divide the sphere into thin disks perpendicular to the axis of
rotation (Fig. 14.8). The differential of mass is

d - Mfir2 dz 3M (R2- 2) d
m _. 4/3nR3 4R3 z Z

since r~ = R~ - Z2. The moment of inertia of such a disk is

r2 dm 3M
d/= -2-= BR3 (R2_ Z2)2dz
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The moment of inertia of the sphere is
R,
\ 3M1=2 J 8RS (R4_2R2z2+ Z4) dz=
o

R R B

= :~ [ R4 Jdz - 2RlI ) zlldz+ 1Z4dzJ=
000

3M [ :3 Z5 JR=-- R 4z - 2R 2-+- =4R32 5 0

= 3M (R&- 2R6 .~ ')=~ MR2
4R3 3 -r 5 5

h

r

z

~--O+----1

d.t-~~~
Z f J---____+_______=__----\

Fig. 14.8. Fig. 14.9.

dni-r 2 3M R2z4 dz
dI=-2-= 2hD

h
3MR2 r.. 3MR2h& O.3MR2

2h6 J z dz = 2h& X 5
o

For a cone (Fig. 14.9)

Mr 2 dz Rz
dm=1/3hR2' r=T'

h
I = r 3MR2z4 dz

J 2hD

o

14.9.

14.10. I t is evident from dimensional considerations that the moment
of inertia of a sphere 'is' I = aMR2, where a is a numerical factor.
For the purpose of numerical calculation put M = 1, R = 1 and
divide the radius into ten equal parts (see Problem 7.12). The mass
of a layer is

where

Ax=O.1,
M 3M 3

P=-y= 4nR8 = 4n
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Hence Amn = 3r~/40. The moment of inertia of a layer is

~l n = ~mnTfi = 3r.~
2 80

The moment of inertia of a sphere is the sum of the moments of
inertia of two hemispheres; for M == 1 and R = 1 we obtain

I=et=2(M1+M2+ ···+M10)= ~ (rt+r~+ ... +10)

Making use of the data given in Table 7.12, write out the value of the
radii raised "to the fourth power in .Table 14.10, and find their sum.

Th · · 3 X 5.333 0 4 . . I I lati · ldIS gives a = 40 =., I.e. numerica ca cu a Ion yie s

the same result as integration.

Table 14.10

n r4
n

1 0.995
2 0.956
3 0.880
4 0.770
5 0.636
6 0.486
7 0.333
8 0.191
9 0.077

10 0.009

Total 5.333

Table 14.11

n

1 0.05 0.06X10-s
2 0.15 0.51 X10-s
3 0.25 3.91 X10- 8

4 0.35 15.OOX 10-3

5 0.45 41.00X10-3

6 0.55 91.60 X 10-3

7 0.65 178.50 X10-3

8 0.75 316.00 X 10-3

9 0.85 521.00 X 1"0-3

10 0.95 815.00X10-s

Total \ 1982.58XiO-s=1.983 ~ 2

Amnr~
Al n = 2

Evidently

Tl 0.05 'iJ 0.15. ..rIo 0.95
R~-h-'R=-h-' ... 'R=-h-

14.11. For a cone we have' from dimensional considerations 1=
= ~MR2 as we had for a sphere, where ~ is a numerical factor. For
the purpose of numerical calculation put M = 1, h = R = 1 and
divide the height into ten "equal parts (see Problem 7.14). We have

3M 3
~mn=nr~~h.p=O.1nrfip, p~--=-

nR 2h n

3~ A 3 « «20' 1= P=20 (r1+ r2+.··+'10)
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For R = h = 1 we obtain Table 14.ff. We have

3
I =~ ==2QX 1.983=O.2975~O.3

The relative error as compared with the precise formula is

- 0.3-0.2975 10001 -0 8%
8- 0.3 X 70 - • 0

14.12. 'Making use of the law of conservation of energy for a rotating
rigid body, let us first express the angular velocity in terms of the
angle. We have

1
where K == T / co', U0 = mgho and U = mgh

The moment of inertia of a rod about an axis passing through one

end is I = AmtA. In the course of oscillations the centre of gravity

of the rod rises to a height

1 1
hO=T l (i-cos (Xo), h=Tl (i-cos a)

Substituting the values obtained into the equation for the energy
balance, we obtain

r a
(0= V +(cos a-cos a o)

the speed of the end of the rod is v = col.
14.13. From the law of conservation of energy

mv 2 1m2
U-Wfr=K, or mg(lsina+rcosa)-Troll= -2- +-2-

The force of rolling friction is T rp'l = kmg cos alr; the moment of
inertia of a solid cylinder is I = 1/2mr2 , and the angular velocity is
(i) == vlr. We have

. lkmg cos ex mv 2 mv t
mg (I SIn a+ r cos ex) - r == -2-+-4-

from which

v = 1/~ (l sin ex + r cos ex lk c~s ex )

In principle the friction may not be neglected since in the absence
of friction the disk will not roll down, but will slide down, and in
this case the kinetic energy of rolling should not be taken into account.
But if the friction is small enough, the work of the force of friction
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may be neglected. The necessary condition for this is

lk
- ~ l tan cx+r

r

177

For the numerical example contained in the problem we have

.!:..!!....- 1 X 5 X 10-
4

= 5 X 10-3 l tan a+ r=V
3
3+0 .1=0.68

T - 10- 1 '

i.e. the work of the force of rolling friction may be neglected in the
calculation.

When the cylinder slides down

mg (l sin 0;+ r cos 0;)=+mo», v= -V 2g (l sin a+ r cos a)

14.14. .. / ( . lk cos a )v= V g lSlncx+rcosa- r ·

14.15. The work of the force of friction is responsible for the loss of
the entire kinetic energy of the flywheel. We have

I w2 mr2w2 J.tNWTt
t1K=-2-=-4-t Wtr=Tl=IlNvavt= 2

Hence

N = 1nrw = rtmrn
21lt Ilt

Try to solve this problem with the aid of the fundamental equation
of rotational dynamics of a rigid body.
14.16. As the weight sinks, its potential energy transforms into the
kinetic energies of the weight and of the rotating flywheel:

1 1
mgh=Tmv2+Tlw2

The flywheel and the cylinder rotate at the same angular velocity
W =. vir, therefore 2mgh = v2 (m + I/r2) . Hence

v- 1/ 2mgh
- r m+I/r2

14.17. Since the pulley rotates with an acceleration, there must be
a torque acting on it due to the difference in the tensions of the left
and the right parts of the rope (see Fig. 14.7). It follows from the
fundamental equation of dynamics that

m2g-T2=m2a, -m1g+T1=mla, M=.::::/t1wjt1t

The torque is M = (T 2 - T1) r, The variation of the angular
velocity is

12-0360
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We have

Hence

migHence

R0 R2
Ta =1

To prevent the escape of matter as the speed of ro- Fig. 14.17.
tation is increased the force of gravity should exceed

4n2mR ymM0the centrifugal force, i.e, moo2R < Fg r · Hence ~ < R2·.

Therefore the second relation sought between the pulsar radius and
i ts period of revolution is of the form

N= ~g (17cosa-10)

14.19. From the law of conservation of momentum 'Ii
(I man+ Ib+ 2mri) WI ==(I man + Ib +2mri) 002

14.21. Applying the law of conservation of
momentum we can find the relation between the
pulsar radius and its period of revolution. We have r;

2 C) 21'[ 2 ') 21'[
10w0=[w, or 5"" MR:~, T

0
= 5"" MR0 T m,

(m'2- rnl) g T _0 2m1rn2g (1+I/2m2r 2)
a= ml+ m2+ I /r2 , 1- ml+m2+ I /r2

T _ 2mln~2g (1+ I/2m1r2)

2- m1+m2+I/r
2

For 1/r2 «. ml + m2 we obtain the answer to Problem 3.2.
14.18. The method of solving the problem is the same as for Prob­
lem 12.7, the only exception being that in this case
one should take into account the kinetic energy of
rota tion of the ball:

R3 yM8
'f2<~

Eliminating the pulsar period from both equations, we obtain

~ 4n2Ra 41(,2 X 74 X 1032

R cr: yM
0 Tev 6.67 X 1U-11 X 2 X 1U30 X 2.22 X 1U12 ~ 15 km

T ~ R2T(:;)/R'0 ~ 10- 3 S
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14.22. The kinetic energy of Sun's rotation is

I Ci/j)~ 4n 2M0R~
K0=-2-= 5T2

o
The kinetic energy of pulsar's rotation is

K=4n2M
8 R 2/5T2

K T2
The ratio of these quantities is ---x-= T~ ~ 2 X 109 •

8
The increase in the kinetic energy of rotation of a star in the process

of its contraction (collapse) is at the expense of the work of gravita­
tional forces.
14.23. The moment of the ball's momentum is L =-= It» ==; mr2 -;- = ~ mvr, where v is the orbital velocity on the equa-

tor. Since v < c, L < ; mer, whence

5L 5n
r '> 2n2c' or r > 4mc==4.8x10-13 m

This dimension does not agree wi th experimental data, according
to which the effective electron radius is two orders of magnitude less.

15. Non-inertial Frames of Reference and Gravitation

15.1. The reference frame fixed to the wedge moves with an acceler­
ation a in the x-direction and therefore is non-inertial. There are
four forces acting on the block: the force of gravity mg, the reaction Q,

mg
Fig. 15.1a.

mg
Fig. 1S.1h.

the friction force T, and the inertial force I = -rna. To solve the prob­
lem one should consider the same two cases as in Problem 5.7 (see
Fig. 15.1a and 15.1b). The block is not accelerated with respect to
the non-inertial frame, and for this reason the sum of the projections
of forces on both coordinate axes is zero. We have for both cases

12*
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y-axis:
Qcos a+T sin a-mg=O, Qcos a-Tsin a-mg=O

z-axls:
-I1-T cos a+ Qsin ct.= 0, -12+T cos a+ Qsin a== 0

The equations obtained are equivalent to the equations of Problem 5.7,
therefore we shall obtain the same answer.
15.2. Four forces act on the body in the rotating coordinate system:
the force of gravity mg, the reaction Q, the centrifugal inertial force

Q

Jef

Q

Fig. 15.2. Fig. 15.3.

mg

mg

Fig. 15.4.

let = mw2r and the force of friction T (Fig. 15.2). To prevent the
disk from sliding the following condition should be satisfied:

I cr ~ T~tat, or nlw2r ~ Ilstatmg

hence r -< f.tstat glro'i..
15.3. The forces acting on the motorcyclist in the rotating reference
frame are mg, Q, T and let (Fig. 15.3).
Evidently

Q = I cr== mw2r,

T ==flQ ==f.tn~w2r = flmv2Jr

The motorcyclist will not slip off the
wall, if T > mg. We have

(!mv2/r > mg ; v ~ VgrIll

15.4. Three forces constituting a
closed triangle act on the weight in
the rotating reference frame (Fig.
15.4). We have
I cr -=mg tan c, or mw2r = mg tan a

Noting that r == 1 sin ct. and ro == 2rr/T, we obtain

/r l
T=2n}/ -cosa

g

15.5. From the condition that the centrifugal force of inertia is equal
to the elastic force, we obtain the same result as in Problem 3.9.
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15.6. The forces acting on material particles on the star's equator

in the rotating reference frame are the force of gravity F = y;;~ and

the centrifugal force of inertia I cf = mCJ)2R. Matter will start to escape,
if I cr .~ F, i.e. CJ) >- 1/ rMtR3.
15.7. The time needed for the oil droplets to rise in the gravitational
field is (see § 11.9)

't' -- 9l1] 9 X o. 2 X 10-
3

9 X t ()3 s == 2 .5 h
-- 2r2g (Pt - p) 2 X 10- 10 X 9.8 X 102

In the centrifuge the part of the gravitational field, in accordance
with the principle of equivalence (§ 24.5), is played by the field of
centrifugal forces of inertia. Consequently, in the above formula one
must simply substitute w2R for g. We obtain

9lTl 9 X 0.2 X 10-3

't ~ 2r2CJ) 2 R (Pt -p) 2 X 10- 10 X 4 X 102 X 11;2 X 0.8 X 102 = 28 s

The centrifuge is (U2R/g = 320 times more efficient.
15.8. When the system is at rest, the spring is undeformed and its
length is maximum, lo == 2a. When the system rotates, the weights
move away from the rotation axis, and the length of the spring becomes
1 = 2a cos a. The change in length is

~ I := lo-1 ==2a (1-cos ex) == 4a sin 2~
2

To relate the deflection angle to the rotation speed, we employ
a rotating reference frame. In compressing the spring, work is per­
formed, equal to

Wei ==~ k {~1)2 == 8ka2 sin2 5!:...2 2
This work was performed by the centrifugal forces of inertia, which
displaced each weight by a distance r = a sin ct.. The work of the
inertial forces is

Wet = 2 X -}- I etr= mw2a2 sin2 a

Equating the two expressions for the work, we obtain

a, ct. "1;- mw2

8ka 2 sin" 2 == m,w2a2 sin2 a whence tan 2 = V 2k

Obviously the governor will work in conditions of weightlessness,
for the presence of gravi ty was mentioned nowhere.

The maximum rotation speed may be found from the condition
!:J.l -< 0.1 X 2a. From this 2a (1 - cos ex) -< O.2a, or 0.9 -< cos a <
< 1. Expressing the cosine in terms of the tangent of half the angle
and substituting the value obtained into the condition of equilibrium,
we obtain

(Omax ~ -V 2k/19m
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15.9. Fix the reference frame to the rotating liquid. Then there will be
three forces acting on every particle: the force of gravity mg, the
reaction of the liquid N and the centrifugal force of inertia let =
= moo2x. (Fig. 15.9). The angle between the reaction and the y-axis
is equal to the angle between the tangent and the x-axis (since the
edges of the angles are mutually perpendicular). We have

tan a= lef = w
2
x

mg g

It was shown in Problem 3.14 that the tangent to a parabola x2 =
= 2py makes an angle of tan a = xl p with the x-axis. Therefore we
may conclude that the surface of a liquid

in a rotating vessel is a paraboloid formed

by the parabola x2 = 2~ y rotating about
ro

the y-axis.
1.5.10. A spacecraft orbiting a planet
forms a non-inertial reference frame
moving with an acceleration g = lef
= yM/R2 directed towards the centre of
the planet. Two forces act on an object
inside the spacecraft: the force of gravi­
ty F = ymM/R2, directed towards the
centre of the planet, and the oppositely 0
directed centrifugal force of inertia let =
= mv2/R. The resultant of these forces Fig. 15.9.
is zero, therefore the object is weightless
with respect to the spacecraft.
15.12. The slowing down of time measured by the "plane" clock is
due to two effects: to the decrease in gravitation and to the speed of
flight. We have

/ 2q> /' v2

t p ] =:: tEarth J. 1---· JI 1--:..;.=::r c2 c2

=tEarth V1- ~;h ·V1- ~:

(cp is the potential of the gravitational field). Since g: ~1 and ~ .-~ 1,
c c

the expression for the time assumes the form

tpi = tEarth ( 1- ~~ ) ( 1- ;c: )=

=tEarth (1-~.-~)
c2 2c 2

The time dilation is

&t= [Earth - tpi = tEarth ( :~ + ~2 )
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Here
eb 9.81 X 104

7== 9.0 X 1016 1.09 X 10-1 2
,

183

0.43 X 10- 12
v2 1012

2c2 == 2 X 3.62 X 106 X 9.0 X 1016

Since tEarth == 2.5 days = 2.5 X 8.64 X 104 s, the time dilation is
~t== 2.5 X 8.64 X 104 X 1.52 X 10-1 2 ==3.3 X 10- 6 s ==33) DS

The effect of the general theory of relativity (of the gravitational
field) turns out to be 2.5 times more pronounced than that of the
special theory (of the speed).

15.13. For the Sun and for the white dwarf i\v = ..9:
2

= V
2

M. For the
vee R

pulsar we can make use of the precise formula

i\v = 1- .. / 1- 2V M
v V c2R

15.14. Light cannot escape from the star's gravitational field, if the
gravitational potential on the surface is so high that 2cp/c2 ~ 1.
Hence the radius of a black hole is R < 2-yM/c2 •

16. An Ideal Gas

16.1. No matter what the shape of the vessel is, one can always imagine
it to be made up of small vertical columns of liquid for which the
formula p = pgh was derived (see Fig. 16.1). But since the pressure

Fig. 16.1. Fig. 16.2.

at all points at a given depth is the same (a corollary of Pascal's
law), to compute the pressure at the depth h one should add up the
pressures of all the upper layers:

P = PI + P2 + Ps + ... = pg (hl + h2 + hs + ...)= pgn
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1=

16.2. One of the possible arguments is as follows. Consider separately
the volume in the liquid which will be filled by the object being
immersed (Fig. 16.2). The volume is acted upon by the forces of hy­
drostatic pressure, indicated by small arrows. The resultant of these
forces is the buoyancy F. Since the liquid is in a state of equilibrium,
F = PI where P, is the weight of the respective volume of the liquid.
It is obvious that if we place the object of interest into the liquid, the
same hydrostatic forces will act on it and, consequently, its buoyancy
will be equal to the weight of the liquid displaced by the object.
16.4. The total displacement of the image is 1 = 2r2 ffi t , where t is
the time of transit of the molecule between the cylinders, I.e. t ==
= (r 2 - 1-1)/0. The root-mean-square velocity of the silver atoms is

1//
1

- 3RT _ 1/'-3 X 8.3 X 1d3 X 1233 _ P"32 /
V -U - J" 108 - o 111 S

Hence

1 == 2ffir2 (r 2 - rl)/v

To assess the error, calculate the width of the undisplaced image
of the slit:

.!!:- =-.= 2 whence a :-:~. Lr 2 = 0.5 X 8 ::::- 2 film
b r1 t r1 2

The broadening of the displaced images is still greater because of
the Maxwell distribution of the molecular velocities. Hence the error
in measurement is tJ. ~~ 2al2 == a, the relati ve error being

E== _~~~=2X100% -==40%
l l 5

This shows that the Stern experiment could produce only qualitati ve
data on the molecular velocities.
t 6.6. The root-mean-square velocity of hydrogen atoms in the photo­
sphere is

v= V3RTIM = 1.2 X 104 mls
The escape velocity is

V= V2'"M--JR,-::-.= 6.1 X 105 mlsr IV ...:J

It may be seen that the root-mean-square velocity is only 1/51 of
the escape velocity. Therefore only a small fraction of the atoms whose
speeds are much greater than the average speed (see § 25.2) can at any
given time escape from the Sun's gravitational field. They create
what is called the solar wind.
16.7. Since the thickness of the photosphere is small, its density,
as well as the acceleration due to gravity, may be assumed constant.
for the photosphere to be in a state of equilibrium the hydrostatic
pressure must be compensated by the gas pressure, i.e. p == pg2h ==
= pRT/1I1, where M is the molar mass of the gas. Hence

h = RT/Mg~-..
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16.9. In this problem, as in Problem 16.7, we shall make use of the
fact that the gas pressure is equal to the hydrostatic pressure, which
may be approximately calculated as follows:

- h - VIt!I";) R,~
P = PG:}51•v = Pl-v 2R~ • -2-

. . _ ]l;lc~ 3M8
where the average density of rna tter IS p -V ==V- === 4nR'a ·

8 0
16.10. At the temperature of 100°C the root-mean-square velocity of
the hydrogen molecules is 2.15 X 103 ral«. The escape velocity for
the Moon is 2.4 km/s (see Problem 12.14). Naturally, the Moon's
gravitational field is unable to retain hydrogen. The root-mean-square
velocities of molecules of other gases are several times smaller. But
in accordance with the Maxwell distribution there is always a con­
siderable fraction of the molecules whose velocity is several times
the average (see § 25.2). Because of this Moon's gravitational field
is also unable to retain other gases, and they disperse in space.
16.12. The atmospheric pressure close to the Earth's surface is, accord­
ing to Table 26.3, equal to 1.01 X 106 Pa, the air density is 1.23 kg/rn"
and the absolute temperature is 288 1<,. The helium pressure inside
the envelope is the same, as the envelope communicates with the
atmosphere. The density of helium in these conditions is PH~ =
== pMIR T == 0.16 kg/m", The lift is equal to the difference between
the Archimedean force and the force of gravity:

}'==(Pat-PHc) V~

16.13. First find the molar mass of ammonia:

M == pR TIp == 17. kg/kmole

Noting that the atomic masses of the elements which make up ammo­
nia are M I == 14 kg/kmole (nitrogen) and M 2 == 1 kg/kmole (hy­
drogen), we obtain the equation

M == xiMI + x2M2' i.e. 17 == 14xl + x2

Its solution in integral numbers is: Xl == 1, x 2 == 3. Hence the mo­
lecular formula of ammonia is NH 3•

16.14. In thermodynamical equilibrium the temperature of all the
components of a mixture of gases is the same. The pressure of the
individual component is

PI = ni kT = N I urtv, P2 = n 2 kT = N 2 «rtv, etc.

The sum of partial pressures is
kT

PI -~ P2+P3+ ·..= (N 1 +N 2 + N 3 + ·..)V

Since the total number of molecules N is the sum of the numbers of
molecules of all the components making up the mixture, N == N 1 +
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+ N 2 + N 3 + ... , the sum of the partial pressures is equal to the
pressure of the gas:
. PI + P2 + P3 + · · . == NkTlv = p
16.15. In the course of the chemical reaction in which water is pro-
duced, 48 g of oxygen react with 6 g of hydrogen. Consequently the
container contains 54 g of water vapour and 4 g of hydrogen. To find
the pressure apply Dalton's law.

16.16. Using Dalton's law one can easily obtain the equation ;;. ==

= M
m

' l -l ':''' . On the other hand, the mass of a gas is the sum of the
t M ?

masses of its components: m = ml + m2. Putting x = m-fm, Y ~
== m2/m, we obtain a system of two equations:

1 x y-=:::-+- 1==x+y
M M 1 M 2 '

Solving this system we find the percentage composition of the gases.
16.17. Small gumboge gum balls take part in random thermal motion,
behaving like gigantic molecules. Therefore their distribution over
height corresponds to the barometric distribution

mg (h2--ht)3.L- kl' I 3.L- O.434ntg(h2-h1)
N

2
- e og N

2
- kT

One should take into account that in addition to the force of gravity,
the particles are acted upon by the Archimedean force. Expressing
the Boltzmann constant in terms of the gas constant and the Avogadro
number, we obtain for the latter

N A == 3RT log (N liN2)
0.434 X 4nr3g (p-Po) (h2-h1)

Substituting the known data, we obtain the working formula

N=5.79x 1022 logh(N11{2)
2- 1

The values obtained for the Avogadro number are: 6.32 X 1026,

5.98 X 1026 and 5.45 X 1026• The average value is 5.92 X 1026 , the
maximum error is 0.3 X 1026• Hence from data obtained in this exper­
iment

N A==(S.9±O .3) X 1026 kmol- l

16.18. To solve the problem one should calculate the potential energy
in the field of centrifugal forces:

t t 1
U == -w === -2 Fl == -2 I cf r == -2 mw 2r2

Substituting it into formula (26.26), we obtain the result sought.
16.19. A gaseous uranium-fluorine compound, uranium hexafluoride
UF6' is used for isotope separation. The molar masses of the compounds
are: M 1 = 349 kg/kmole and M 2 === 352 kg/kmole. Their concentra­
tion ratio prior to the rotation of the vessel is

n02 : nOl == 99.28 : 0.715 === 139 : 1
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During the rotation of the centrifuge, the isotope of greater mass due
to the action of centrifugal forces concentrates near the walls of the
vessel. Using the result obtained in the previous problem, we have"

(
mtW2r2 ) ( M tW2r2 )

nl == nOl exp 2kT == nOl exp 2RT

(
M 2w2r2 )

n2 ==n0 2 exp 2RT

The concentration ratio close to the vessel's walls is

n2 no? [(M2-M1) W2r2
]--=--exp

1'l1 nOt _ 2RT

Taking logarithms, we obtain

1 ( -'2 ) = 1 (~)+ O.434(M2-Mt ) w
2
r

2

og og 'lRTnt nOt ~

= 10 139+0.434 X 3 X 4n 2 X 4 X 106 X 25 X 10- 4

g 2 X 8.3 X 103 X 3 X 102

:--:-": 2.143+ 0.103:-~ 2.246

Hence n2 : nl = 176 : f , The enrichment factor is

X= ( :: ) : ( ::: ) = exp I: (M2-2~~) w
2

r
2

]

The obvious result is log x = 0.103, giving x = 1.27.

mg 1 mgh. mgh.
p akT -cx,h]- kTo -~

16.21. - =-= (1- ah) 0 == [(1- ah) -+ e 0

Po

16.22. The forces acting on a vertical gas column are the force of grav­
ity pg8 dh and force of pressure F = -8 dp . Since these forces are
in equilibrium, pg dh === -dp. We can eliminate the density using

the Mendeleev-Clapeyron equation: p = ~ pR T. From the relation

T = To (1 - ah) we obtain dT = -aTo dh. Hence
dp Mg dT
p= a..RTo·T

Integrating, we obtain
lvl~

In p = aRT0 In T -t.- const

• The exponential function, ex, is usually wri tten in the form
exp x when the power index x is a lengthy expression.
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Since the equation is valid at any point of the gravitational field, we
have on the planet's surface

Mg
In Po= aRT0 In To -1- const

Subtracting this from the preceding equation, we eliminate the inte­
gration constant to obtain

Mg
lnp-Inpo== aRT

o
(ln T-in To)

whence the formula sought for the barometric distribution.
16.23. Find the molar mass of the gas from the barometric distri­
bution:

M === aRTo log (Po/p) where a == To- T === 1 05 X 10- 5 m- I
g log (To/T) , hTo·

Noting that for Venus g = 8.52 m/s2 (see Problem 4.7), we can
obtain the values of the molar mass at four altitudes. The average
value is

.Ill - 40.0+43.2-f-44.4+46.0 43.4 kg/kmole
av- 4

The molar mass of CO2 is 44 kg/krnole. This leads to the conclusion
that the atmosphere of Venus consists mainly of carbon dioxide gas.
Other experimental methods corroborate this conclusion.

17. The First Law of Thermodynamics

17.t. For a!l isobaric process Q: I1U : W = Cmp : Cmv : R. For
a monoatomic gas Cmp : Cmv : R = 5 : 3 : 2.
t 7.2. The work of expansion of a gas is

m
W = mwgh = p (V2- V1) = M R (T2-Tt )

Therofore
I1T = mw ghM/mR

The quantity of heat is obtained from the equation

Q Cm p 7
-W=Jr=2"

(diatomic gasl).
C

17.3. It follows from the relations Cn1p - Cmv = Rand,\, = --..!!1l!.
Cmv

that Cmv = ~1. Hence the molar heat of a mono atomic gas at
y-

constant volume lies wi thin the limits

1.24 X 104 -< Cmv ~ 1.28 X 104 J/(kmole.K)
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Accordingly
2.07 X 104 -< Cmp -< 2.11 X 104 J/(kmole.K)

To obtain the specific heats, divide the molar heats by the molar
mass.
17.4. For diatomic gases in the specified temperature range we have

R <t: ...- R
0.41 ~ mV ~ 0.39

i.e,
2.02 X 104 ~ Cmv ~ 2.13 X 104 J/(kmole·K)

2.85 X 104 ~ Cm p ~ 2.96 X 104 J/(kmole ·K)

17.6. The work W = ~ (P2 + PI) (V 2 - VI)' The change in the inter­

nal energy is

I1U= ; Cmv(T2--Tt)= c~v (P2V2-P 1l \ )

The quantity of heat is Q = I!\U + A.
The molar heat is

W = 0.1 X 41.58 X 105 == 4.16 X 105 J

Using the formula of § 27.6, we have
W == 2.3 X 6 X 106 X 1 X log 2 =

= 2.3 X 6 X 0.301 X 105 == 4.17 X 10i J
The relative error in the numerical calculation is

J ---

p, I0 5Pa

is CmplR = 2.5,

1 11· Vi+1 2

Fig. 17.7.

QRem==: Q
T2-T1 P2V2-PI V l

and its ratio to the gas constant is

em ::= Q =2.06
R P2V2"-P1V1

The corresponding value for a monoa tomic gas
Cmv/R =: 1.5. Clearly

Cmv ~ em ~ Cm p

17.7. Divide the change in volume into 10 6
equal parts so that ~V = 0.1 m", The
element of work along a short path is 0;
Wi == ;; ~V (Fig. 17.7). Therefore the
total work is

W == 8 V (~ + p-;+...+ p~o)
Write the data in the form of a table
(Table 17.7). It follows tha t the work done
by a gas expanding at constant temper-
ature is

e = 0.001 X 1CO% ::= O.2i%
4.17
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n Vi' m3

0 1.0
1 1.1
2 1.2
3 1.3
4 1.4
5 1.5
6 1.6
7 1.7
8 1.8
9 1.9

10 2.0

Solutions

1.05
1.15
1.25
1.35
.1.45
1.55
1.65
1.75
1.85
1.95

Total

Table 17.7

_ PoVo
Pi =~, 105 Pa

l

5.71
5.22
4.80
4.45
4.14
3.87
3.64
3.43
3.24
3.08

41.58

f 7.8. The work done by a gas expanding at constant temperature is
V 2 V 2

J m J dV m V 2 I V 2w= pdV=-RT -=-RTln-=P1V1 TI-
M V M VI VI

V 1 Vi

17.9. The cycles are depicted in Figs. 17.9b, 17.9c, 17.9d.
17.10. The cycles are shown in Figs. 17.10b, 17.10c, 17.10d.

p V P-02 v.P1J 2
~ ~

771
3

2 I I
I I
I I

1 I I
1 ,

PI - 1 V, 1/1 2 I P,
1 / ,4 I.4, I

1/ I f 1// I II I 1/ I

P2 1'1 P T T

Fig. 17.9b. Fig. 17.9c. Fig. 17.9d.

17.11. I t follows from the first law of thermodynamics for an adiabatic
process (Q = 0), that

m
MCmvdT+pdV=O



Molecular-kinetic Theory of Gases 191

Differentiating the Mendeleev-Clapeyron, equation, we obtain

m
pdV+ V dp=MR dT

Eliminating dT from these expressions, we obtain after some trans-

4
p

4
pP 4

~ V P2 P, P J; 72 T

Fig. 17.10b. Fig. 17.10c. Fig. 17.10d.

formations

1'~+!!e.=o
V p

Integrating, we obtain

v p

'V ~ ~+ \ dp =0
• V J p
V o Po

from which

l' In V -1' In Vo+ In p-ln Po== 0, or In (pV'') = In (PoVX)

Therefore, pV" == PoV!.
17.13. From the Poisson equation, we obtain Pad = Po (Vo/V)'V ==
= 4 X 106 X 41 .4 == 42 .4 X '10&. For the case of isothermic compres­
sion we obtain Pisot = 4po, i ,e. a pressure almost twice as small.

The work of adiabatic compression of a gas is

The work of isothermic compression of a gas is

Wlsot= 2.3PtV 1 log (V1/Vcz) = 1.11 X 106 J



192 Solutions

18. The Second Law of Thermodynamics

18.2. (a) There are three court-cards of each suit: the jack, the queen,
the king. Therefore the total number of court-cards is 3 X 4 == 12.

(b) The number of red court-cards is 3 X 2 = 6. One can also
reason as follows. The probability of extracting a red court-card is
the probability of the compound event: extracting a court-card (Wi ===
== 12/36 === 1/3) and extracting a red card (W2 == 1/2). The probability
of a simultaneous realization of two independent events is the product
of their individual probabilities:

111
W=W 1W2 =1" ·2 =ti

18.3. (a) The probability of extracting the first ace is 4/36 == 1/9.
If the extracted ace is returned to the pack and the pack is shuffled
again, the probability of extracting an ace a second time remains
the same. The probability of extracting two aces in succession is
equal to the product of the two equal probabili ties.

(b) If the extracted ace is not returned to the pack, the probability
of extracting the second ace will be 3/35. The probability of extracting
two aces in succession is equal to the product of the probabilities.
18.4. Imagine the balls to be designated by the letters a, b, c, d.
Write out all the possible distributions of the balls in both halves
of the vessel (Table 18.4a). We see that there are altogether 24 ==
== 16 distributions, the first and the fifth of which may be realized
in one way, the second and the fourth in four ways, the third in six
ways. These directly give us the thermodynamic probabilities.

To obtain the mathematical probabilities, divide the values ob­
tainted by the total number of cases.

Use the data obtained to compile Table 18.4b, which shows
the thermodynamic and mathematical probabilities of interest to us.
18.5. (a) Let the probability of finding the given ball in one part of
the vessel be p; then the probability of finding it in the other part
of the vessel is q === 1 - p. The probabili ty of finding k particular
balls in the first part of the vessel is pk; the probability of finding the
rest in the other half is qn-k. Consequently the probability of the event
when k particular balls are found in the first part of the vessel and
n - k are found in the second part of the vessel is pkqn-k. However,
we assume all the balls to be identical, and because of that this result
may be realized in C~ ways-in other words, the thermodynamic prob­
ability W of this state is C;~.

To obtain the mathematical probability w, one should multiply
the number of ways by the probability of a favourable combination;
therefore

Wk == C~ /Jl1q ll -·h === C~ (1- p)n _·Itph

Such a distribution of probabilities is called binomial distribution.
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Table 18.4a

1

Left part

a, b, c, d

Right part

IFirst state

2 a, b, C d
3 a, b, d c Second state4 a, C, d b
5 b, c, d a

6 I a, b c, d
7 a, c b, d
8 a, d b, C Third state9 b, c a, d

10 b, d a, C
11 C, d a, b

12 a b, C J d
13 b a, C, d Fourth state14 c a, b, d
15 d a, h, C

16 a, b, C, d I Fifth state

Table 18.4b

State

First
Second
Third

.Fourth
Fifth

13-0360

Thermodynam ie
probability W

Ci=1
Cl==4
CJ=6
Cf=Cl=4
Ci=C!=1

Mathematical probability 'W

1/16=6%
4/16=1/4=25%
6/16=3/8=38%
4/16=1/4=25%
1/16=6%

100%
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(b) If the probability of finding the ball in both parts of the vessel
is the same, then p =. q = 1/2, and we have

_ k(i.)h (i.)n- h
. _ k(i.)n

Wk-Cn 2 2 -en 2

We have generalized the result of Problem 18.4· for the case of n
balls.
18-.6. See Fig. 18.6. It may be seen from the figure that the probability
of a uniform distribution increases rapidly with n,
t 8.7. First method. Since both parts of the vessel are equivalent (this
is the consequence of the homogeneity and the isotropy of space) the

70

60

50

40

JO

20

10

o~----lL.......-----.L._--L..._~-~--L_~-~--:-3~

oL.....-._..1-----L...--.L....--....L----.4---~k~
1<

Fig. 18.6.

probability of finding a particle inside a volume V < Vo is equal to
the ratio of volumes:

V Vo-V
p== -V ' q= 1-p=

o Vu

In the present problem k = n, i.e. all the molecules are contained
inside V. The answer is obtained from the solution of Problem 18.5.

For a large number of molecules the probability of such an event
is negligible.

.Second method. The problem may be solved without the binomial
distribution, but directly on the basis of the theorem for compound
probability (see problem 18.2). Specifically, the probability of finding
a molecule inside the given volume is p = VI Vo• The probability

. - .
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of finding simultaneously all the n molecules in it is the product of
the individual probabilities: w = pn = (VIVo)n.

18.8. Let !'>.S > 0, then (see § 28.8, Fig. 28.5) - ~ + T~ > 0, there-

"fore ~ >~, whence T1 > T2' Hence the law of entropy increase

leads to the Clausius principle (see §§ 28.9 and 29.5).
18.9. Consider 10successive steps starting with the lower left. Measure
their lengths in millimetres as accurately as possible and transform
them to scale into actual dimensions (see Table 18.9).

Table 18.9

Dimensions in the
figure L i, mm

True dimensions
L i , urn

1 8 10 100
2 4 5 25
3 8 10 100
4 7 8.8 77
5 12 15 225
6 9.5 11.9 142
7 14 17.5 301
8 4 5 25
9 4 5 25

10 3 3.8 14

Hence the square of the r.m.s. displacement is /).2 = 1.04 X
X 10-9 mi. Substituting /).2 and t = 300 s into Einstein's formula,
we obtain

k= 3lTlrL\2 = n X 8.9 X 10-4 X 4.4 X 10-7 X 1.04 X 10-9 = 1 4 10-23 J/K
Tt 300 X 300 · X

The Avogadro number is
R 8.3'X 1f )3

N A = k 1.4 X 10-23 5.9 X 102 6 kmole-1

We would advise the reader to carry out similar calculations using
other parts of the graph and to assess the inherent error in the method.
f8.10. See Figs. 18.10a and 18.10b.

18.11. By definition, !'>.S = ~Q, therefore a small quantity of heat

so = T AS (see Fig. 18.11).
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The total 'quantity of heat in the process is numerically equal to
the area of the curvilinear trapezoid shown in the figure (to the spe­
cified scale). The problem may be solved by numerical methods or
by integration.

18.13. Since dS= 6? and AQ=dU+pdV=;' CmvdT+pdV, it

follows that dS = ;. Cmv ~: +;. R d; . Integrating, we obtain

T1

m J dT m V282-81 = - Cmv-+- R 1n -
M T M VI

1\

For a small temperature range the isochoric heat capacity may be

T

72

I·

s s

Fig. 18.10a.

T
T

i , ,
I 1 I
I I I
I I I II I I
I I I I
I I I

,
I I I I
I I I I.

S, $2 S S, .L1S S2 S

Fig. 18.10b. Fig. 18.11.

assumed to be a constant. In this case

m ( T2 V2 )S2- S1=M Cmv in r;+R In 1';
:f 8. t 4. For an isochoric process

m . T2S2- S 1= - Cmv ln -
M T1

For an isobaric process

S S
m T 2

2- 1=-M Cmpln­T1

For an isothermal process

S m 1 V 22-S1=-R n-
M VI

18.15. (a) W = P2 (V 2 - Vt) - PI (V 2 - VI) = (P2 - PI) (V 2 - VI).

W m T 1 V 2 m V 2 m V 2(b) =-R J n---RT21n-=-R(T1 - T2)ln-ill VI M Vt M Vt •
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Fig. 18,.16.

ni=M Cmv (T3-T2+11-T4 )

The working medium receives heat
in the process of isochoric combustion
of fuel:

18.t 6. Plot the graph of the Carnot cycle in the T-8 variables
(Fig. 18.16).

1] == QI---Q2 T 1 (8 2-81)-T2 (8 2-81) = T 1-T2o. T1 (82-81) T1

18.17. The efficiency of the cycle is TJ = WIQ. Since the work in iso­
choric sections is zero, the useful work is equal to the difference be­
tween the work of adiabatic expan-
sion -and that of adiabatic compres- T Expansion
sion: r, -

Hence

f)=1 T4-11

T3-T2

Making use of the result of Problem 1. 7.12, express the temperatures
in terms of the volumes. We have V~-1 T2 = Vr- 1 T1 and vX- 1 T 3 =
= Vr- 1 T4. Dividing the first equality by the second, we obtain T 2/T 3=

Til T4. Transform the expression for the efficiency and reduce it
to the following form:

11== 1-~ .1-(T1/T4 )

T3 1-(T2/T3)

But the second fraction is, evidently, unity and the first fraction
T4/Ts = (V 2!Vt )'V-1 = xV-I. ,Hence 1') = 1 - XV-I.

18.19. Suppose an ideal gas experiences spontaneous isothermal com­
pression. In the process quantity of heat is liberated to the environ­
ment equal to

m V
QT=WT= - RTln-VM 0

(see Problem 17.8). Therefore the change in the entropy is

QT m V V
6S==S-So=y=}if R In v:':" In V; (~)
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Here N is the number of molecules. Since the compression of the gas
took place at a constant temperature, the energy of molecular motion
does not change, and the change in the entropy is due solely to the
change in the volume. Estimate the probabilities of the initial and
final states. The mathematical probability of a gas occupying the
entire volume Vo is unity because this is a certainty; hence Wo = 1.
The mathematical probability of the gas occupying volume V < V0

was found in Problem 18.7; it is w = (V/Vo)N. The thermodynamic
probabilities of macroscopic states are proportional to their mathe­
matical probabilities:

W w (V)N
Wo=~= 1';

Taking logarithms, we obtain

In~=NIn~ (2)w, Vo

Comparing equalities (1) and (2), we obtain

S - So = kIn W - kin W o

whence the relation between the entropy and the thermodynamic pro­
bability.

19. Fundamentals of Fluid Dynamics

f 9.2. Apply the Bernoulli equation for an incompressible fluid:

1 1
t1p==- 2 pv~ -2" pvl

The velocity of fluid in the fire-hose may be found from the continuity
equation.
19.3. Applying the Bernoulli equation for an incompressible fluid
to both cross sections and expressing the velocity in the narrowing
in terms of the gas velocity in the pipeline, we obtain

I\p= p~2 ( ~44 -1)
where D and d are the diameters of the pipeline and of the narrowing.
The flow rate is

1
Il === pSv =="4 npvD2

and the pressure drop ~p = Pogh, where Po is the density of water.
After some simple transformations we obtain the final expression for
the flow rate.
19.4. Apply the law of conservation of energy in conservati ve systems.
In our case the work of the forces of pressure is accompanied by the



a= 1'0+ 1 ==3.5
Yo-1
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change in the total mechanical energy of the system: W = W 2 ­

- W t = (K2 + U 2) - (K1 + Ut). Consider separately a volume
of liquid V = lISt = l2S 2 (Fig. 19.4); the mass of this volume is
m = pV. The work of the forces of pressure is

W = Fllt - F 212 = PIStll - P2S212 = (PI - P2) V

Substituting the result obtained into the expression for the change
in energy, we obtain

mv2 mv 2

(PI-P2) V==-T+ mgh2 - T-mght

whence
pv~ pv~

PI +T+pgh1 = P2+-2--\- pgh2

19.5.· Suppose that the volume of fluid flowing out through an orifice
during a short time interval is so small that the drop in its level in
the wide section of the vessel can be
neglected. Taking into account that
in our case the pressure drop is deter­
mined entirely by the hydrostatic
pressure, we conclude that the Ber­
noulli equation assumes the form
pgh = pv2/2 from which we get the
Torricelli formula for the velocity of
fluid Oowing out through a small
orifice,
19.6. Making use of formulas (30.9)
and (30.17), we obtain the result Fig. 19.4.
sought.

19.7. The velocity of the shock wave is U=V/ p (~-Po»' Here
Po P-Po .

Po = 1.01 X 10' Pa, Po = 1.29 kg/m", P = 200po. The density at the
front of the shock wave may be found from the Hugoniot equation.
Denoting

a=";- YoPo u> .J!....=200,
V Po' Po

we obtain after some transformations:

/
ay+1 a 2 .. /' 280 ..j-

u= 1 a-1 .y;=a V TI~a y 200

19.9. It is evident from Fig. 19.9 that d =_.h_ = Mh, where M is
SIll a

the Mach number.
19.10. Consider the cycle depicted in Fig. 19.10. Since the gas returns
to the original state, the change in the entropy during the complete
cycle is zero. But during the quasi-static adiabatic expansion of gas
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(section 2-3) its entropy does not change, during the isochoric cooling
of the gas (section 3-1) its entropy decreases. Therefore its entropy
must have increased during the shock compression (section 1-2).
Perform the calculation for the com.pression ratio of the gas x =

= P,/Pi. Putting, as in Problem 19.7, a = '\'-+-1
1

, we obtain with
'\'-

the aid of the Hugoniot and the Poisson equations

P2 ax-1 l!.!. = x'Y. therefore Ps ax -1p;= a-;-' Pi' p;= (a-x) xV

The change in entropy as a result of the shock compression is
equal to the change in entropy as a result of the isochoric cooling,

Fig. 19.9.

p
~ ----------- 2

o,~. I
eS~ I

. ~o.\' I
\..5 I

QU~s I

P.J ~ 3 !
c). I
-fj I

~ t
P, I, I

, I

I I

Fig. 19.10

only with the opposite sign. Making use of the result of Problem 18.14,
we obtain

ASsh= -!lSv=-~ Cmv In !i=!!!:..-Cmv In l!.!.
M r, M PI

m [ ax-1 ]=-Cmvin
M (a-x) xV

19.11. The flow velocity in the critical cross section is equal to the
local velocity of sound; in the boiler the flow velocity is zero. Using
the result of Problem 19.6, we obtain

2 2 2 J/-2-
~-~+~ whence1'-1 - 2 1'-1' vcr=ao 1'+1

To find the velocity of steam leaving the nozzle, we make use of
the Bernoulli equation in the form of (30.8) and obtain v =
= V2cp (To - T).
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19.13. The thrust may be found from Newton's second law: F - mg =
= ma, whence F = 4mg. The consumption of fuel together with the
oxidant is

l! = F/u"= 4mg/u

The density of the gas is found from the continuity equation:

fJ. 16mg
P=-s;;= nD2u2

The pressure is found from the Mendeleev-Clapeyron equation.
19.16. To begin with, find the Reynolds number assuming the char­
acteristic dimension to be equal to the pipeline diameter:

R pvd axto2 x O.8 X 1.1 7x1Q4
e=f1= 10-2

This is much greater than 2320, and therefore the hydraulic friction
coefficient should be determined from the empirical formula

A= ~}16 = 1.94X 10-2 ~ 0.D2
l' Be

This enables us to find the pressure drop in the section using formu­
la (30.32).

To find the power, use formula P = Fv = Sp S».
, Note that this calculation was made for an ideally smooth pipe;

in a real pipe the required pressure drop, and consequently the pump
power, is substantially greater.
19.17. The continuity equation follows from the law of conservation
of mass. Hence it is valid for an arbitrary stationary fluid flow. The
equation of momenta and the Bernoulli equation were derived for
an ideal fluid, i.e. a fluid whose viscosity may be neglected. At the
same time viscosity of fluid plays an important part in pipelines and
the friction forces" cannot be neglected.

20. Solids

20.1. The stress a = FIs, where F is the applied force and S is the
area of the section where this force is distributed. Making use of the
definition of the bulk modulus, we obtain

F=KSe=KS I~I
20.3. The sag in the cable is h = 1/ (l/2)2 - (d/2)2 = 0.625" m, The
force extending the cable is F = mgl/4h = 1.57 X 10f N, the cross­
sectional area of the cable is 1201[D~/4" === 30nD2 === 9.4 X 10-6 m2 •

Hence applying Hooke's law we find the extension of each section of
the cable: '

Fl m~l2

~l= ES = 4ESh
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The force capable of rupturing the cable is found from the break­
ing stress: Fm = omS. The load capable of rupturing the cable Is

M ==: 4crrnSh!gl
20.4. The force sought is of the form

e
2

( 1 1 1 )
F= - 431Eoa2 1-22+32 - 42+ '" =

e2 (3 7 11 )= .- 4neoa2 12.22 + 32.42 + 52.62 + ...
Compute the value of the series in the brackets to three significant

digi ts. To obtain the required accuracy, we may discard all terms
below 0.001, i.e. we may take the sum of
the first ten terms in the series. We obtain

3 -L 7 39
12.22 I 32.42 +... + 192 . 2 1)2

= 0.82128 ~ 0.82

Hence

e2
F==-O.82­

4:rtEoa2

This means that neglecting the interac­
tions with all the ions except the nearest
neighbours results in an error of no greate r
than 20%. .
20.5. For the purposeof calculation consider FIg. 20.5.
a plane wi th ions arranged in staggered rows
(chessboard order) (Fig. 20.5). In this case the breaking stress is om =
==Fon, where Fo == e2/(4nEoa2) is the force of interaction between
neighbouring ions, n == a-2 is the ion concentration per unit area.
Hence

e2
O'm----- 4neoa.4

20.7. 'Ve shall solve the problem in a rotating reference frame. Con­
sider a segment of the flywheel which subtends small angle a at its
centre (Fig. 20.7). The forces acting on this metallic segment are
the centrifugal force of inertia and two elastic forces. The relation
between them follows from the condition for equilibrium: I cf == Ttx.
Here T = eS; where 8 is the cross-sectional area of the flywheel rim,
and o is the stress. The volume of the separated segment is V = 18 =
== a8Rav , where R av == (R + r)/2 is the average radius of the fly­
wheel rim. The centrifugal force of inertia is

I cr== mw2Rav = w2R
av PV ==apSw2R~v

where p is the density of the metal. Substituting into the condition
for equilibrium, we obtain the dependence of the stress in the metal
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on -the speed of rotation:
(J= p(a)2R~v

The speed is safe when the stress does not exceed the elastic limit.
In this case the elastic forces will return the flywheel to its original
state when the speed of rotation is reduced. Therefore the maximum
safe speed of rotation of the flywheel is

,.;-~ 2 li(JE
W = V pRiv = R +rip

The flywheel will fly apart when the stress in it reaches the break­
ing stress, i.e. when

2 .. ;- afw
(Ubr = R+r V-p-

20.8. Imagine a small spherical segment with a radius of the base of
a = R sin ex to be cut out of the sphere (Fig. 20.8). An elementary

T

Fig. 20.7.

lef

elastic force !1T == cr !1S = crd ~l acts on an element of area ~S ==
= d!il on the periphery of this segment. The normal component of
the elementary force is 11 Tn = !!T sin ex. = o d 111 sin cx. Summing over
the complete circumference of the segment, we obtain the total force
of the normal pressure:

Tn = crd ·21ta sin ex = 21tcrRd sin2 a

This force compensates the force of the gaseous pressure F = pS
acting on the segment. For a small angle the segment's area is S =
= na2 = nR2 sin2 cx, and the' force of pressure is F = stpR2 si;n2 Ct.

I t follows from the balance of forces that p = 2crd!R .
20.9. Imagine a small area along a generatrix to be cut out of the
cylindrical surface (Fig. 20.9). Four elastic forces are seen to act on
the area. Two of them are parallel to the generatrix; their normal com­
ponents are zero and so they offer no resistance to the gas pressure
:and should not be taken into account. The remaining two are per­
'pendicular to the generatrices; the sum of their normal components
is the normal force Tn == 2ald sin cx. The force of pressure is ,F =
= pS = 2pal == 2plR sin a,.
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I t follows from the balance of the forces that p = odlR which
was to be proved (compare with Problem 20.8).
20.10. I n the specified temperature range the rela ti ve change in length
is proportional to the change in temperature: B :::::: sui = a6.t. From
Hooke's law 0 = Ee = Eatxt:
20.t1. The problem is solved in the same way as Problem 20.8. Con­
sider a segment of the shell subtending a small angle a and obtain
F = To: where F === 0181 is the
force of pressure of the cylinder 72
on the shell, T = OS2 is the ten­
sile force in the ring. But 8 1 =:

Fig. 20.8. Fig. 20.9.

=hra, 8 2 = hd (Fig. 20.11). The pressure on the shell Is found in
the same way as in Problem 20.10:

E Art
P==(Jl== 18=El--=Elal~t

r

Here E I is' the Young modulus for steel, at is the thermal expansion
coefficient for steel. Hence EIallltrah = 02had, and the stress in
the shell is

(J= E1a 1rL\t /d

20.12. To find the stress, apply Hooke's law: (J == E e = E ~p/p. The
change in the density is found from the data of § 33.5. The stress
appearing in the ice is equal to the pressure it exerts on the rock.
20.13. The condition for the equilibrium of a fluid in communicating
vessels (Fig. 20.13) is PI = P2' or P1h1g = P2h 2g. But P = Po/(1 + ~t),
whence

_h_f h_2_ ~ _ ha-h1

1+~tl - 1+~t2 ' - h1t2-h2t1

20.14. In the simple cubic lattice the atoms occupy the corners of
the cube (Fig. 20.14). There are altogether eight atoms at the eight
corners, but the atom at each corner belongs to the eight cubes sharing
the corner. Therefore there is one atom to each cube.
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20.15. In a face-centered lattice, the atoms occupy positions at the
eight corners and in the six faces (Fig. 20.15). A corner has 1/8 of

Fig. 20.11. Fig. 20.13.

1
an atom, a face 1/2 of an atom. Altogether a cell has 8 X g- + 6 X

t ..
Xy = 4 atoms.

20.16. In a hexagonal lattice three neighbouring atoms are completely
inside the cell (Fig. 20.16). Two atoms at the centres of the bases are

Fig. 20.14 Fig. 20.15. Fig. 20.16.

shared by two cells, and the twelve atoms at the apexes of the prism
are each shared by the six cells adjoining each apex. Hence an ele-

i 1
mentary cell contains 3 X 1 + 2 X "2+ 12 X 6 = 6 atoms.
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21. Liquids

21.1. To check the exponential dependence of viscosity on temperature,
find the dependence of the logarithm of viscosity on the reciprocal
of the temperature. To do this, compile a new table (Table 21.1b)
using the data of Table 21.1a. Using the data of the new table, plot

y=log( 103'1.)
Q220

0200

0./80

0.160

D.HO

0.120

0.100 --

3.503.403.203.002.80
0.080 """----"'''''--'' ---'--__-''''--__--L.- ~

2.60

Fig. 21.1.

a graph on millimetre graph paper (Fig. 21.1). Almost all the points
are seen to fallon the straight line

Y= a+bx, or
b B

log (10311) == a+ 103 - = a+-
'1 T T
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Table 21.1b

T, K I x = 103fT Iy = log (103 TI) II T, K I x = 103fT Iu = log (103T1)

273 3.66 0.226 323 3.10 0.148
283 3.53 0.210 333 3.00 0.136
293 3.41 0.191 343 2.92 0.123
303 3.30 0.176 373 2.68 0.091
313 3.19 0.161

Taking antilogarithms we obtain

10
3

" ==A X 108fT

the distinction from formula (34.10) being only in numerical coeffi­
cients.

To find the activation energy Eo use two points lying on the straight
line:

Xl = 2.75, Yl == 0.100 and X 2 = 3.60, Y2 = 0.213

The temperatures corresponding to these points are Tl = 103/ XI ·=
= 364 K and T 2 == 103/ X 2 = 278 K and the corresponding viscosities
are 111 = 10-3 X 10Yt = 1.26 X 10-3 Pa-s and T}2 == 1.63 X 10-3 Pa -s.

The ratio of the viscosities is

'Il2 : 'Ill= ee.fkT• : E
e•f kT , = exp { Eo ~;1;2T 2) }

Hence we obtain after taking the logarithms

Eo (T t - T 2) = In~
kTIT 2 111

or
kT 1T 2 In ("2/111) 2.3kT1T 2 log (T12/rh )

Eo = -----~......;.....~~

Tt-T2 T1-T2

21.3. Water will start rising and will reach the upper end of the capil­
lary. Here the radius of curvature will decrease until the pressure
of the curved surface becomes equal to the hydrostatic pressure of
the water column. Then the water will stop rising. The condition
for equilibrium is

~p == ~(J cos e = pgh
r

For the contact angle we obtain

cos e= rp~h = 0.544, 8= 570

20
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21.4. The total surface area of all the droplets is 8 0 = 400nT2 =
= 100nd2, their total volume is V0-. == 1001l£t3/6. After the droplets
merge, the volume remains unchanged, but the surface area decreases:
V = nD3/6 == Vo, 8 == 1tD2. From the condition of equality of the
volumes, find the diameter of the large drop:

100nd3
nD3 whence D= dV"100

-6-=-6-'

The surface area of the large drop is 8 == nd2 V104• The decrease
in the surface layer energy corresponding to the decrease in the sur­
face area of ~s == So - S == nd 2 (102 - 104/ 3) is

L\esur=aLlS ~ oL\S=1tod2 (102-104/ 3)

21.5. Two forces act on a fluid in conditions of weightlessness: the
force of surface tension Ssur = 1tad and the Iorce of hydraulic resis-

1 pv2 nd2
tance F res= Ad ·T· T (see § 30.17). Since the velocity

of the fluid is small, for small Reynolds numbers A =

= 6
R4

= 6411
d

• Equating the forces, we obtain after some
e pv

simplifications
v = (1d/8f1l

Compute the velocity to find the Reynolds number,
and make sure that it is much less than 2320.
21.7. When the fluid reaches the lower end of the tube,
a convex meniscus will be formed there with a shape
identical to that of the upper meniscus (Fig. 21.7). The
excess pressure is tlp = 2 X 20/T. But 20/T = pgh,
h-p = pgH, from which H = 2h.
21.9. Suppose the drop spreads evenly and as seen from
above has the shape of a circle of radius R (Fig. 21.9).
The area of this circle is S = vt« == m/pd. The force of Fig. 21.7.
attraction between the plates is F = Sp S; where!1p ==
= 2(1/d is the excess pressure under the curved surface. Therefore

F == 2(Jm/pd2

21.10. The pressures from the left and from the right are equal, i.e.

AP1+L\p=dP2' or ~+ 4cr =~
R 1 R R 2

Here Sp == 40/ R, for the film has two surfaces-the external and
the internal. Hence
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Since at the point of contact of the three films we have a system
of three forces of equal magnitude in equilibrium in a plane, the angle

Ji~----==------

Fig. 21.9.

between the forces is found from the condition that they form a closed
triangle.

22. Vapours

22.2. As distinct from an ideal gas, whose molecular concentration
(and density) does not change in an isochoric process, the molecular
concentration (and density) of a saturated vapour rises with tempera­
ture because of additional evaporation of the liquid.
22.3. The density of saturated vapour at 55°C is 104.3 g/m3 • Therefore
at this temperature 8 g of saturated vapour occupies a volume of

10~.3 = 7.6 X 10-3 rn3 = 7.6 Iitres. In a smaller volume there will

be a precipitation of dew.
22.7. Find first the mass of moisture in each volume of air, i.e. the
absolute humidity of the volumes which are mixed. We have in 5 rnB

of air

ml = /1VI = p~atBlVI = 12.8 X 0.22 X 5= 14.1 g

In 3 rns of air

m2= p~atB2V2=27.2 X 0.46 X 3=37.5 g

Next find the absolute humidity of the mixture:

t = (ml + m2)/ (V1 + V2) = 6.45 g/m8

To find the relative humidity we must find the temperature of
the mixture. Neglecting the vapour mass we may write the equation
of heat balance in the form

POV1Co (t-15)~ POV2Co (28-t)
where the subscripts 0 show that the density and the specific heat
refer to air. We have t = 20 "C. Now it is easy to compute the relative
humidity.

14-0380
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" R' .
2~.8~ 'M PerTer = ~.8 X 107 Pa; at the same time Per= 218 atm =

= 2.2 X 107 Pat
Hence the Mendeleev-Clapeyron equation is inapplicable to the

critical state...1'4Js is because of the large part played in this case by

3031.35 t,Oc25"20

ioq
:0 ~---:--:,--~~------:---...__.....&.._---.............~-~

900

600

500
464
400

300­

200·'

700

800

f ._ .: s . . Fig., 22.9.

molecular interactions, which are neglected in the case of an ideal gas.
22.9. See Fi~., 22,.9.

23. Phase Transitions. ..

23.1. Since evaporation takes place at a constant. pressure, W:::;::
= P (vXap - v~\~), where Vo = tIp is the specific volume, I.e. the
volume of 1 kg of the substance. Hence
':.r1! or .

•• ' ':. n : • W = p (P:ap ~ pil
q

)

The density of steam' at ioo-c may befound from Table 35.1 (see
§l p~:3}.'$iBe~ the. specific volume of vapour is almost· a thousand times
lP:~t~~,:$~.ilJ:th:e::..~e~i~v.olu~e.~f ~ liquid.. it follows with. better
than t % accuracy that W = plPvapo .
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The energy spent on breaking the bonds between the molecules
can be found from the first law of thermodynamics: I!1U = L - W
where L is the specific heat of evaporation,
23.2. Ice melts under the pressure of the wire, and the wire sinks;
the water formed above the wire immediately freezes again. .
23.3. The heat liberated in the processes of condensation of water
vapour and of cooling of water down to the melting point of ice is
Q = ma (L + e~t) = 5.2 X 105 J. This is not enough to melt all
the ice. For this the. required heat is Qm = m2A = 106 J. Therefore
the ice will only partially melt.
23.7. The heat of fusion liberated in the process of freezing of water
will be spent to heat the remaining water to ooe. Let the total mass
of supercooled water be m, the mass of ice formed nlt, the mass of
remaining water m2 = m - m1.. From the heat balance equation we
have ml'" = (m - ml) cSt; whence

x =.!!!:l. = cAt
m A+cf1t

23.8. The outflow velocity is v = pipS, where fJ. is the amount of water

that evaporates per second. Obviously, I.l. = Z= f, where P is

the power of the hot-plate and" is its efficiency. Hence

v = TlPlpLS

23.9. First find the melting point: t = -Aplk = -4.35°e. As the
ice is cooled to this temperature, the heat liberated is Q = mcSt =
= me I t I. This heat will be spent to melt the ice: Qm = m1A. Hence

the fraction of the ice that will melt will be x = :::= cif •
In the calculation assume that the specific heat of ice and the

heat of melting remain constant. .
23.10. The heat flowing to the Dewar vessel is- Q = a (Tal r - T),
where (J, is a certain coefficient, and T is the temperature inside the
Bask. For ice and liquid nitrogen we obtain the ratio

Ql Talr-T1

Q;=Tslr-Ts

But for nitrogen Q2 = m2L, where L is its heat of evaporation, the
respective value for ice being Ql = miA. Hence

mtA Tafr - T l from which m1A(Tal r - T2)
m2L =Talr-Ta ms= L(Tal r - T l )

24. A Field of Fixed Charges in a Vacuum
24.1. It is evident from Fig. 24.1 for the case of charges of different
signs that the actual force of interaction of the charges is greater than
it would have been, if the charges were concentrated in the centres of
the spheres, and less than if the charges were. concentrated at-the

14*
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nearest points of the spheres:

q2 < F < q2
4ne or2 411:80 (r- 2ro)2

The absolute error is less than the difference between the bounding
values, the relative error being less than the ratio of this difference

r

Fig. 24.1.

to the minimum force. Hence,

8 < F2-F1 = rl-(r-2ro) 2 4ro(r-ro>
F1 (r-2ro)2 (r-2ro)2

24.2. Direct the coordinate axes as shown in Fig. 24.2. Let M ba'one
of the points where the potential is zero: I(

q>=q>1-q>2=-q--~=O ·f

4n80r1 411:80' 2

Hence r2 = 2rl.
Substituting rl = V (3a - X)2 + y2 and r2 = V (3a + X)2 ~ y2,

we obtain after some manipulations

(x - 5a)' + y2 = 16a2 I

This is the equation of a circle of radius 4a, with centre at (5a, 0).

r

Fig. 24.2.

24.4. A force of gravity directed downwards and equal to rrig ~
= 1/6nD3pg acts on the droplet. I t is counterbalanced by an. electric
force F = gE = qcp/d (Fig. 24.4). The charge of the droplet IS found
from the balance of forces.
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24.5. In this case equipotential surfaces are spheres with a common
centre at the source, and radii normal to the surfaces. If the potential
is q> = q/4'ItEor, the field strength is

d<p d ( q) qE= -Cir= -a;: 41tBor = 41tB or2

and just this was to be 'proved.

24.6. q>= _ r Edr= __q_ r·~=-q-+const.
J 41tBo J r 2 41tB or

24~7. ·To find the potential, divide the ring into small segments and
add up the potentials of these segments. The field strength is

E=-~=--q_..!!:-. (x2+a2 ) - 1/ 2
dx 411:80 dx

= i.. _q_ (x2 +a2)- 3/2 . 2x = qx
2 4"';80 41tB o Y (x t +a2)3

24.8. (a) It is evident from Fig. 24.8a that in this case a force couple
acts on the dipole. The resultant of the couple is zero. To obtain the
torque, multiply the force by the + + +. +
dipole separation.

(b) It is evident from Fig. 24.8b tF
that in this case two forces act on the
dipole in the direction of the radius
vector, Hence it is clear that in the
lat-ter case the torque is zero, and mg
the' resultant acts in the direction of
the radius to the source. The re-
sultant can be found by two methods. Fig. 24.4.

One may use the Coulomb law:

F=F_+F = - QQ + Qq
+ 4nBo(r-l/2)2 41tBo (r+ lj2)2

2QrQl

+

t:;t
Fig. 24.8b.

o-------.......-----o~......-!~
Q

t F..~_.
0======= ~
Q Fet-

Fig. 24.8a.

Noting that the problem stipulates that I ~ r, we obtain

F= _ 2Qrql = _ 2QPe
4:t80r 4 4n80r3
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c,

+ -

The same result may be obtained from formula (37.15), if the
derivative is substituted for the ratio of increments. We have

F=Pe dE =Pe-!!.. (_Q_) = _ 2QPe
dr dr 4neor2 4aBor3

24.~. ~hen the capacitors are connected in parallel (Fig. 24.9), all
their Interconnected plates have the same potential, therefore qt =
= Ct (cpt - CP2) and q2 = C2 «(j)l - <J>2)' where ql and q2 are the charges

of the respective capacitors.
The charge of the system is q=
= qt + q2 = (C1 + C2) (cpt - CP2)·
On the other hand, q = C (cpt -
- <J>2)' where C is the equiva-
lent capacitance. Hence the for-

'It ~2

+ - + - + -:-

II 0 II
~f Cf " C2

~R
C2

Fig. 24.9. Fig. 24.10.

mula sought.
24.10. When the capacitors are connected in series (Fig. 24.10), their
charges are redistributed so that the charges of all the capacitors are

Fig. 24.11a. Fig. 24.11b.

equal. To make sure that this is so, consider using Fig. 24.10, what
will happen if the system is discharged by shortcircuiting the points
at potentials <PI and CJ'2"

We have lpt - <p' = qlC, <p' - <J>2 = q1C2 • For the system as
a whole, CPt - q>2 = «c. Adaing the two former equations and com­
paring the result with the third, we obtain the formula sought. .
24.1 t. The solution is obvious from Figs. 24.11a and 24.11b, which
give the diagrams of the parallel and series connections of four iden­
tical capacitors. The energy in the case of parallel connection is

W
Cparq>~ar nCo<p~

par = 2 ::= -2-
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and of series connection

W Cser<P~er
ser= 2 -

(Coin) n2(J)~ nCoq>3 W
2 == -2- == par

24.12. A possible circuit diagram is shown in Fig. 24.12 for the case
of a five-capacitor system. It follows from the diagram that a ten­
position switch is required. When the knob "is in the upper position,

--.----t-...-..........-~-_+__4I~-+-__<>+
In parallel

\ \\ \\ \\ \\ \

~~~~~~ In seriesI I r r I I

b--fUUUU~

Fig. 24.12. Fig. 24.14.

the capacitors are connected in parallel; when the knob is in the
lower position, they are connected in series. ,
24.13. Suppose that there is a field inside the sphere. It is obvious
from considerations of symmetry that in this case equipotential
surfaces must be spherical surfaces concentric with the charged sphere.
Accordingly, the lines of force coincide with the radii, Le. they must
either begin or end at the centre of the sphere. This would have been
possible, if there were a positive or a negative charge at the centre
of the sphere. But since there is no charge inside the sphere, the lines
of" force cannot begin or end there. Consequently there is no field
inside the sphere.
24.t4. Construct a second sphere around the sphere under considera­
tion and suppose it carries a charge equal in magnitude, but opposite
in sig-n (Pig. 24.14). According to the result obtained in the previous
problem, the charge of the outer sphere does not create a field inside
it. Therefore the field between the spheres is created only by the charge
of the internal sphere. If there is little difference between the radii
of these spheres (i .e. if R 1 - R <t R), the field in between will be
almost homogeneous, and its strength will be (see § 37.5)

E--!!.--!L- Q
- eo - eoS - 4tteoR2

24.15. Let the volume density of the charge be p = ~= 4~~3' where

R is the radius of the sphere. Choose a point M inside the sphere at



216 Solutions

r

R

pR QEsur = __ = 4 2
3eo rt€oR

This dependence is plotted in Fig. 24.1.5.
24.16. The field potentials on the surfaces
of both spheres are cp = q/(4neoR }, CPt =
=q/(4neoRt }, respectively. The potential
difference is

a distance r < R from its centre and consider a concentric sphere
through it. From the results obtained in Problem 24.13 it is evident
that the spherical layer lying outside point M does not create a field

at this point. The field is created solely by the charge q = { nrp

contained inside the smaller sphere. By the result of the previous
problem, the field at the surface of this
sphere, i.e. at point M, will be

q 4J'trsp pr
E = 4n80r2 - 3 X 41t80 r 2 = 3eo

We see that the field inside the sphere
increases in proportion to the radius; at the
centre its i tensity IS zero, and on the sur­
face it is

Fig. 24.15.
q>-q>l=-q- (~_..!-)= q(R1-R)

4nBo R R 1 41t€oRRt
The capacitance is

C _ q _ 4n8oRR l
q>-q>1 - R1-R

If d = R:i - R ~ R, we obtain the approximation

C = 4nEoR2 = 8 0S
d d

which is the expression for the capacitance of a plane capacitor. The
error is

l)- C~P-CPl _ Rt-R _...!!:-.
- Csp - R - R

24. t 7. A ball of radius a carrying a surface charge may be regarded
as a spherical capacitor whose external sphere is infinitely far away
(i.e, R = a, R1 ~ 00). Making use of the result ,of the previous prob­
lem, we obtain

C = lim 4n8naR 1 = lim 4neoa = 4nBoa
R1 -. 00 R 1 - a R1-' 00 1-(a /R 1)

The energy of the field is

W_~_"",--e_2_
- 2C - 8neoa
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Equating it to the rest energy of an electron ~o = meet, we obtain

4= e
2

=1.4Xl0-1 I) m
8neomec2

As is shown in § 72.5, the term "classical electron radius" usually
applies to a quantity twice as large reI = 2a = 2.8 X 10- 16 m. Com­
paring this result with the result obtained in Problem 14.23 we see
that the latter was two orders of magnitude greater. This implies the
incorrectness of the solutions of the two problems.. Tn modem science
the problem of the dimensions of elementary particles, including the
electron, is far from being solved.
24.18. The mechanical stress is equal to the energy density of the
electric field (see § 37.8). 'Ve have p = Wo = BoE2/2. But we have
already found the field on the surface of a sphere (see Problem 24.14):
E = q/(4neoR2). Hence the result sought.
24. t 9. The electrical forces extending the film must exceed the surface
tension forces:

q2 40
~--,--- ~-
32n2£oR 4 ~ R

24.21. Before the connection is made there is a charge ql = CCPl on
.the first capacitor, and q2 = C<P2 on the second. Aft.er the upper
plates of the capacitors are connected, the charze q = q] + q2 is equi­
partitioned between them. The potential of the unearthed plates is

cp q ql + q2 <1'1 + <1'2
SYS=-C-= 2C 2sys

The energy of the system before the connection is

W=W1+Wa= C:i + Cil

while the energy of the battery is

W _ CSys<P~ys _ 2C (~1 + ~2)2 _ C (<pt+ Cl'2)2
sys - 2 - 2 X 4 - 4

This is less than before the connection. The lost energy is transformed
into other types of energy (heating the conductors, forming a spark,
electromagnetic radiation, etc.).

25. Dielectrics

25.1. If the plates are connected to the power supply all the time, the
charge on the plates, and consequently the electric· field strength,
remain constant. The density of the polarization charge is equal to
the magnitude of the polarization vector of the dielectric:

Opol= p ==Xe80E = (e-i) Bo<r>/tl
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25.2. If the capacitor is disconnected from the source, the quantity
remaining constant is the charge on the plates; the potential and the
field strength change by a factor of 1/8 when the dielectric is inserted
between the plates. Therefore

(J (e -1) 8(,«>
pol = ed

25.3. The aluminium foil sheets are connected alternately to form
a system of capacitors connected in parallel (Fig. 25.3). The number
of capacitors is equal to the
number of dielectric layers.

The breakdown voltage
Is Ubn = EMd, so the work­
ing voltage is chosen to be
1/3 to 1/2 of this.
25.4. The capacitance of a
capacitor will remain un­
changed, if we place a very
thin piece of foil on top of Fig. 25.3.
the insulating layer. For this
reason the capacitance sought should be regarded as made up of
the capacitances of two capacitors connected in series, with capaci­
tances

and

CE 8 ~ SC t = _(;;,_0_ and C
2
= _Ci_O_

d do-d

25.5. Here we have two capacitors connect­
ed in parallel, with capacitances

C _ B081 _ BoS (lo-I)
1-----~-...;...

d a,
C _ eeOS2 _ E80 S l
2--d- - ar;-

25.6. The droplet is polarized in the electric
field and acquires a dipole moment Pe = PV,
where P = 'Xep.oE is the magnitude of the
polarization vector and V is the volume of
the droplet. In a non-uniform field a force

dE
F = Pe dr acts on the droplet. We have

~
"'\\\

" "\ \I I ~ \ \\

I It\ \
I ,/~ \ \

I \ \
I I \

, I \ \
I , \ \

I I + + \ ~, , ~ ,
mg

Fig. 25.6.

This force is directed upwards (Fig. 25.6). The force of gravity mg =
= pVg acts downwards. The problem requires that the magnitude
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of the electric force exceed the magnitude of the force of gravity:

(8--1) VQ2 ~ V from which r ~V(8-1) Q2
8 2 0 ~ p g, ~ 8 2n eor n 8 0pg

25.7. When the liquid flows through a strongly non-uniform electric
field close to the edges of the plates, it is polarized and drawn into
the space between the plates. Since the charge on the plates remains
unchanged in the process, and the capacitance of the capacitor incre­
ases, this is accompanied by a decrease in the energy of the field. This
decrease is compensated by the increase in the potential energy of
the column of liquid held between the plates. From the law of con­
servation of energy

q2 q2 meh.
2Co =W-+-2-

Boab e b
Here Co = T' c = -t [a + (€- - 1) h] (see Problem 25.5), m =
= pbhd. Substituting these values into the first formula we obtain,
after some simplifications,

(B-1) q2=eop ghab2 [a+(e-1) h]

Express the charge on the plates in terms of the potential:

Q=<P6CO = 8o<Po ab/d

After simplifications we obtain a quadratic equation

h2+_a_ h- eoa~~ = 0
e-1 pgd2

Solving it we obtain the height the liquid rises.
25.8. In this case, too, the capacitance of the capacitor increases as
the liquid rises, but the energy of the electric field is not conserved
but increases. Besides, the potential energy of the rising water incre­
ases as well. Is this not in contradiction with the law of conservation
of energy? Of course not. The power supply performs work to raise
the liquid, the increase in the energy of the system being equal to
the work of the power supply in displacing the charges to the capac­
itor plates:

W p•s = ~Wel + ~Wpot

But
wp.s ==~q «p= (C·_Co)~2

AW Ccp2 Cijcp2 AW 1 h 1 bdl 2
L.1 el=T--2-' .:.l pot=T mg =T Pg L

Substituting, we obtain the result sought after some simple trans­
formations.
25.9. To plot the graph it is convenient to use new variables: z =
;: 103/ T, where T is the absolute temperature, and y = 103X

e where
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'Xl' is the electric susceptibility. The respective values are presented
in Fig. 25.9, from which it may be seen that the Debye law is well
satisfied in the experimental range (see § 38.6). Because of this, let
us use Iormula (38.26) to calculate the dipole moment of the water
vapour molecule, and the gas equation to calculate the molecular
concentration.

It is advisable to carry out the computations for all four experi­
mental points and average the results.
25.10. A characteristic feature of the inert gases is their deformation
polarizabiltty. From the formulas of § 38.5 we have 'Xe = na where

!J=10~e

4.2

4.0

3.8

3.6

3.2 x= IOJ1r2.0 2.1 2.2 2.3 2.4 2.5 2.6 I

Fig. 25.9.

n = plk T is the atomic concentration and a is the polarizability of
the atom. The dipole moment of an atom in an electric field is

1
Pe= a80E = - XeEo E

n

The atomic concentration at standard conditions is n = N L (the
Loschmidt number). Hence

x()eOE (8 -1) 80E
Pe= -;;r;:- = N L

Calculations show that even in such strong fields the dipole moment
of an argon atom is six prders of magnitude smaller than that of a
water molecule.

26. Direct Current

26.2. From the symmetry of the circuit it is evident that the poten­
tials of points 2 and 4 are equal, so no current flows through the con­
ductor 2-4 and it may be removed .. This gives the circuit of Fig. 26.!b,
whose resistance is easily found. I~
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Fig. 26.2b.

2r------.",~

1,.....----4

26.3. The resistances of the conductors are proportional to their
lengths:

x = r (1 - cos 36°)

26.4. The problem may be solved- in- stages. First we replace the star
connection by an equivalent resistance shown in Fig. 26.4a, and then
by an equivalent resistance shown in Fig.
26.4b. It is evident from considerations of
symmetry that the potentials of points H
and K are equal and so the connection H K
may be removed. We obtain a circuit whose
resistance is easily found to be a half of the
resistance of either of the two parallel links
of three conductors.
26.5. It is clear from considerations ofsym-
metry that the potentials at points 2, 4 and
5 coincide, I.e, CP2 = <p, = CP5 = cp'. Hence
the potentials at points 6, 8 and 3 coincide
as well: CP6 = CPs = <1'3 = cp". If we shortcir-
cuit the points at equal potential, Le, con­
nect the points by means of conductors of
negligible resistance, -the resistance of the
circuit remains unchanged. The circuit obtained in this way is shown
in Fig. 26.5b. Its resistance is equal to the sum of the resistances of

Fig. 26.4a.

three series-connected sections of three, six, and three parallel­
connected branches -each.
26~~. In a balanced bridge the current flowing through the galvanom­
eter is zero, so eve = q> D. According to Ohm's law for a homogeneous
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section, we have CPA - £Pc = IR; fPc - CPB = IR x ; CPA - CPD =
= iR l = ip1l/S; CPD - <J>B = iR 2 = ip 12/ S• Hence we find the un­
known resistance.

26.7. The relative error is B= i:. +-}+ L h l • where hR is the

error in the value of the calibrating resistance, h is the error in
the position of the slide wire. We have

() ._ hR + hL
-7[" l(L-l)

Hence the error is at its minimum when the expression y = 1 (L - l)
is at its maximum. But

y=lL-l2= ~2 _ ~ +21 ; _l2= ~2 - (l- ; r
is at its maximum when 1 = L12, i.e. when the slide is in the middle
of the scale. This will be the case, if the calibrating resistance is

4

Fig. 26.5b.

chosen as close to the resistance being measured as possible.
26.8. The diameter of an arbitrary cross section of the conductor
a distance x from the minimum cross section is y == a + x (D - a)/l.
The current density and the field strength in an arbitrary cross section
are

1=i.==~ E=p!= 4pi
S ny2 , ny2

26.9. The resistance of the conductor is
l l

R= r pdx =i£. r !!=..
J S n J y!
o 0

Let us change the variables, noting that y = a for z = 0 and y = D
fOT . X = l. Dirfferentia.ting, we obtain

'dy ==dx D-a so ·ds =.!:..!!:lL-
l D-a
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Substituting into the expression for the resistance, we'. obtain

D

R= 4pl f.2JL= 4pl [_~JD_4Pl
n (D-a) J y2 n (D-a) Ya - sial)

a
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26.10. (a) When the cells are connected in series, their e.m.f. and
internal resistances are added.

(b) When the cells are connected in parallel, the e.m.I, remains
unchanged, but the internal conductances are added.

(c.) In a mixed connection we calculate first the e.m.I. and the
internal resistance of a group, and then the same parameters for the
battery as a whole. .
26.1.1 ...,The accumulators should best be connected in series in two
groups 'of 100 cells each, bothgroups being connected in parallel and
the entire battery.connected through
a nheosta t to the terminals-of J a dy­
namo (Fig. 26.11). The e.m.f, of the
battery is:.<t!> = ne/2 = 100 X 1.4:c::
= \,40. V, the internal' '. resistance is
R i = nr/4 = 0.5 ohm. The current
in the circuit is I = 2i = 60 A.
Ohm's law can be written in the fol­
lowing form: L\cp - ~ = I (R + R i ) ,
from which

L\m ~ Fig. 26.1.1.R- "t'- n,
- I

26.13. The power Ptot == ~2/(R + r) is at its maximum in conditions
of short-circuit (R = 0). Tha-shert-circuit power is Psh.C = ~2/r.

The power in the external circuit is at its maximum when R = r,
To check this consider the extremum of the expression

~2 Rr
P ex = -r-· (R+r)2

We have
y = (R+r)2

Rr
R 2 r· R 2 r-+ +-=-- +-.+4=r R r R

=(V ~ -v ~ )2+4

Obviously, 1/= 4 for R = r Isminimum value. In this case the power
in the external circuit is maximum. The corresponding graphs are
shown in Fig. 26.13. . .
26.14. Connect all the .tubes in series (Fig. ,26.14) together with' a se­
ries resistor:' 'R~'~ (U - n L\cp)/I, =',5-73 ohm. The power dissipated
is P = t U = 66 W. The ratio of the power dissipated in the tubes
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to that in the series resistor is

nL\q>

T8T2'TI

R

U-n~qJ

26.15. One possible circuit is that utilizing a five-position switch
(Fig. 26.15). In positions 5 and 4 the instrument is an ammeter with

terminals u+" and A, in the other
three it is a voltmeter with termi­
nals u+" and V.
26.t6. The voltage drop of 40 V
takes place in a two-wire line of

Fig. 26.13. Fig. 26.14.

Rt

V

known parameters, and this makes it possible to find the current
in the circuit. The number of lamps connected in parallel is equal
to the ratio of the current flowing in the
circuit to the current in one lamp.
26.17. The circuit shown in the diagram
of Fig. 26.17 enables anyone of the
three powers desired to be obtained.
26.18. The length of the wire is l =

0".6:rtt"U2d2

- 4pm.c~T •
26.19. (a) Numerical calculation. Compile
Table 26.19 from the available data. The
quantity of heat dissipated in time ~t = Fig 26 15
= 1 s is nQn = ifiR ~t. The quantity of .. ·
heat dissipated during the whole time
is equal to the sum of .the individual quantities .of heat:

~Q=i\Ql+~Q2+ ••• +AQ,=(ilav+ iiav+ ... +i~av)R At=

= 2580 X 40 X 1= 1.03 X 106 J

(b) Integration. The current changes according to the law u =
= 5 + 2t. The quantity of heat is

10 10 10

Q= ) i2R dt=40 I (5+2t)2dt=20 J(5+2t)2d(5+2t)=

o 0 0
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Table 26.19

i. A

225

0 5 6 361 7
2 ~

8 fj4

~1 11 10 100
4 13 12 144

5 15 14 196

6 17 16 256
7 19 18 324

8 21 20 400
9 23 22 484

10 25 24 57G

Total 2580

10

== 20(5 -+ 2t)3 I = 20 (253 - 53) == 20 X 775X 20= 1.03 X 105 J
333

o

We see that the result of the numerical calculation was accurate.
26.20. For this circuit the parameters present in Ohm's law n(j) == iR

"""' /""0--,1 ,......~/ Off

Fig. 26.17.

take the form
A q, __ I' ( f1 f/ ) dq
L.l{P =- l- 1m -- =:::--

C' ~t ...O !1t . dt

The minus sign is due to the decrease in the capacitor's charge in the
process of its discharge. Substituting into the expression for Ohm's
law, we obtain

dt dq

RC if

15-0360
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Integrating, we obtain

Solutions

_t_ == _ In q+ In A
RC

where A is a constant. Noting that for t =:" 0, q ~ qo, we obtain
o = -In qo + In A, from which A === qo. Hence

t
RC == -In q+ln qo

Denoting the time constant (the relaxation time) T = RC, we obtain

In ..!L. == _!...- giv~ng q ==: qoe-t/'t
go 't '

For the current we have

. dq qo -tiT: _. -tIT:
L == - - == - e - foe ,

dt 't
w here i == ~ ==~ == .!!.JL

o 17 RC R

26.21. (a) When the e.m.f. of the battery is less than the breakdown
potential of the voltage stabilizer, its resistance is infinite and the
current in the circuit is zero.

(b) When the e.rn.I. of the battery exceeds the firing potential
of the voltage stabilizer, its "resistance" drops to zero and the current
in the circuit is determined by the resistance of the resistor and the
difference between the. e.rn.I. and the firing potential of the voltage
stabili zer.
26.22. The current in a circuit containing a barretter is determined
by the transconductance of the device and is independent of the
circuit's resistance. However, current flows only if ~ - toR> 0,
i.e, if ~ > ioR. Otherwise the voltage across 'the harretter drops to
zero, and the current through it ceases to flow.

27. Magnetic Field in a Vacuum

27.1. The rigidi ty of the spring is due to the existence of electrical
forces of interaction between the particles of the material. In a moving
reference frame the lateral force decreases and hence the rigidity of
the lateral spring decreases as well: -"- ..

k ..1 :=: kO-l Y1- v2jc2

But if the acting force changes according to the same law as the rigi­
dity (the spring constant) of the spring, the lateral dimension of the
spring remains unchanged in full agreement with the theory of rela­
tivity.
27.3~ Consider the following imaginary experiment. Suppose a current
flows in a conductor from the left to the right (Fig. 27.3a) so that
the electrons move to the left with a certain "velocity v. Let a free
electron move in the same direction wi th the same veloci ty. In the
reference frame xyz of the" conductor there are three forces acting
on the electron: the force of repulsion from the electron cloud, F_,
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the force of attraction to the ionic lattice, F+, and the Lorentz force
Fm acting in the same direction. I t is known from experiment that
the resultant or those three forces acts in the direction of the conductor.

Let us consider the reference frame Xo!loZo of the electrons (Fig.
27.::\h). TJH~ IlIHgl)t..~t i« lieltl here is cx act ly the s.une , but. it does not

Fig. 27.~a.

;:(0)

Fig. 27.~b.

act on a stationary electron. The forces acting- on an electron arc the
force of repulsion from the electron gas, F'?', and the force of attrac­
tion F+O) to the moving ionic lattice. But if in the former reference
frame the electron was attracted to the conductor, in accordance with
the principle of relativity it wi ll be attracted to it in any other refer­
ence frame as well. Therefore F~O) > F~o) and consequently, E~) >
> E(_O). \Ve see that the lateral field intensity of moving charges is
greater than that of stationary charges, i.e. greater than the Coulomb
field.

·27.4. Neglecting the thickness of the wire as compared with the
radius of the coil and the other dimensions, we obtain an expression
for the field induction on the axis:

B~ l-loiwa. 2

2 (a2 -f- h2 ):i / 2

where to is the number of turns, a is the radius of a turn, and h is the
distance from the centre to the point on the axis of the coil where
the field is to be determined.
27.5. The induction of the magnetic field in the centre of a long sole­
noid is B == I-loin == ~toiw/l. If the wire is closely wound (see Fig. 27.5)~
the diameter of the insulated wire is d == ll ur. Hence B == I-loi/d.
At the end of the solenoid the field is twice as weak.
27.6. Making use of the result of Problem 27.4, we obtain for the
field at the centre of the ring

Bc~l-loiWa2(J...+ 1 ):.=J.!oiWa2(1_t__8_)~O.858J.!oiW
2 a3 (a2_~-a2/4)3/~ 2a3 • Y125 a

15*
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The field induction at the midpoint is

B
m

== 2f.to iwa2 _ 0.9131-toiw
2 (a2 + a2 / 16)3/2 a

I t may be seen that with a small error <S the field is almost uniform:

~= Bm-Be =0.913-0.858=6%
Em 0.913

27.8. Putting the speed of rotation in the formula B = f.toqv/4nr2
to be equal to v == ror, we obtain the charge sought.
27.9. Consider the disk to be divided into thin concentric rings. The
area of a typical ring is 118 = 2rtr I1r, where i~r is the thickness of the
ring. The charge of the ring is I1q == 0 ~S == 2Jtorl1r. When rotating,
the charge creates a magnetic field at the centre of the ring with
strength

fj,!l = aq v = aw~r
4nr2 2

The total intensity of the field at the centre is

1 1
H = I1H1 + IiH2+ ...== 2 <TW(L\r1 + I1r2+ ...)=2 o(j)R

where R is the external radius of the disk.
The magnetic moment of the ring is

I1q 1
I1Pm = inr2

::= nr2 T = 2' aq wr2 == nOffir3lir

To find the total magnetic moment of the rotating disk we must add
up all these values. We have

R

Pm= j rn:Jwr3 dr = -} nlJwR4

o
1 1

The moment of momentum L = fro == 2: mR2ffi == 2 :rtffiphR4,

where p is the density of the material. We have

Pm a
Y=2ph

27. to. The magnetic field induction at the point of interest is

3

B==2f-LoPm= f-LoPm (a2+x2) - Y
4rtrS 2n
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dB = l-toPm ~( 2+ 2)-3/'2_
dx 2n dx a x --
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28. Charges and Currents in a Magnetic Field

28.1. The momentum of the particle may be found from the condition
mu 2

R = 2eBu, since an alpha-particle is a doubly ionized helium atom.

Having established the fact that this is a nonrelativistic particle,
\ve find its velocity and kinet~c energy from the equations

u == 2eBR/m and K == 2e2B2R 2/ m

28.2. The momentum of a muon is half that of the alpha-particle
of the previous problem. It may easily be established after calculating

the quantity .1 ~ L = 1.66, that the muon in this problem
y 1-~2 moe

is a relativistic particle. We find ~ = 0.856, from which the velocity
of the particle may be found.

The rest energy of a muon is 207 times that of an electron, i.e.
~o == 207 X 0.511 == 106 MeV (see Problem 8.1). The total energy is

~ = ,1 ~o ,and the kinetic energy is K = ~ - <t'o.
y 1-~2

28.3. Since the charge of the particle and the magnetic field induction
remain unchanged, the radii of the tracks of the particles are propor­
tional to their momenta: R 1/R 2 = Pl/P2. The relation to the kinetic
energy depends on the nature of motion.

(a) Nonrelativistic particles. The momenta of the particle are
proportional to the square roots of their kinetic energies, and there­
fore also proportional to the radii of their tracks.

(b) Relativistic particles. In this case the dependence of the momen­
tum on the kinetic energy of the particle is more complex:

1 --"--
p == - V K (2~o+K)

e

Hence we obtain the desired ratio of the radii of the tracks.
28.4. This is a relativistic electron, since its total energy ~ == (go ++ K = 0.511 + 1.5 = 2.0 MeV is much greater than its rest energy.
We obtain from mu 2/R = euB

T _ 2nR _ 211m _ 23t~
--u--es-e/k2

~8.5. In the field the electron acquires a kinetic energy of 20 keV,
which is much less than its rest energy (511 ke V). Therefore in this
problem it is a nonrelativistic particle. Resolve the electron velocity
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into t\VO components: one along the line of induction, v II == v cos a,
and the other perpendicular to it, vJ_ == v sin ex (Fig. 2H.5). No forces
act on the electron in the longitudinal direction, therefore the electron
will move at a constant speed along the z-axis according to the equa­
tion

Z :::-: Zo -{-- v II t = Zo + vt cos a

In the lateral direction (i.e. in the or!! plane) the electron is acted
upon by the Lorentz force, which makes the projection of its motion
in this plane a circle with radius

Ul,V.l Y2meq> sin a
R :.:.:: -e-B- = ~--el"";"';J--

and with period T = 2Jtm/eB. III space
the electron moves along a helix which
winds around the lines of induction. The
radius of the circle, R, was gi ven above.
The pitch of the helix is

2JtnzlJ cos ex
h=vl1r~~ eB u-:2nRcota

28.6. An ion entering a uniform magnetic
field at an angle to the lines of induction
will move along a helix to one of the poles
of the magnet, and after some time will Fig. 28.5.
strike the dees and leave the bunch. To
prevent losses, the magnetic field should be made slightly nonuni­
form (in the shape of a barrel) (Fig. 28.6). It is easily seen that such
a field focusses the ions, c.oncentrating them in the middle plane.
28.7. The electrons in this problern are nonrelativistic, they enter
the magnetic field at a speed u == V 2ecp/m = 1.33 X 107 m/s. In the
magnetic field they move along an arc of a circle of radius R ==
== umleB (Fig. 28. 7b). The electrons are deflected through an angle
L GCE == a. But the angle L GeE is congruent to the angle L COM
(as angles with mutually perpendicular sides). Therefore

. Me I eEL eBl
SIn a=--.: --= -==.--= ----

OC R III eU y 2m'eecp

As is evident from the figure, GD == GE + ED, or
i-cos ex a

d= L tan a +R (i-cos a):=: L tan a-r-l . ....:.= L tan a+ 1 tan
SID a 2

Knowing the parameters of the device one may easily calculate
the d ispl accmont sought.
28.8. Making usc of the resul t of Problem 4.14 we obt.ain

eEL (. 1) El ( I )
d::·==- 2ecp lJ+T == 2<p £+2
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E == 2(pd
I (L ...j. 1/2)

28.9. First we find the charg-e of tho ion using the condition lnu2/ R =
= quB. \Ve have q = ntu/BR. Taking aCC-OUIlt. of the fact that heavy
ions in the energy range of hundreds of megaelectron-volts move at
nonrelativistic speeds, ''"0 have m == A X 1.66 X 10-27 , where

G

Fig. 28.6.

o
f\,
I
te;'RI \
I "
I 'cI ,

Mr---
N..-II!!:::..---+--------~---

L

Fig. 28.7b.

A ::-:: 20.18 amu is tho atomic mass of neon. The momentum of the
ion is found from its kinetic energy: mu ~ V~. Hence the charge
of the ion

Vr~ V2 X 20.18 X 1.66 X 10- 2 7 X 100 X 1.6 X 10- 13 _

s> BR 1.55 X 1.1 -

=6.6 X 10- 1 9 C

Dividing by the electron charge we find the neon ions to be ionized
quadruply.

The total number of revolutions an ion makes is equal to its kinetic
energy divided by the energy acquired in the process of passing twice
through the accelerating gap:

lV= ~== 100 X 10
6

=42
2qcp 2 X 4 X 300 X 103

The frequency of the change in polarity of the accelerating field is
equal to the circular frequency of the ion: .

n ::-= _u_ =-!l.!!-
2nR 231m

28.10. The magnetic induction is found from the condition

B==L= VK(2~o-1-K)
ell ecR
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and the frequency from the condition

c V1- (e.t;o/'6:)2
11 === 2nR

(see § 41.6). Note that towards the end of the acceleration cycle the
proton's energy is so great that n == c/2rrR approximately.
28. t t. The condition for the balance of forces is eE = euB from which
we get u === R/B. Since the change in the sign of the particle's charge
is accompanied by a simultaneous reversal in the direction of both
the electric and the magnetic forces, the sign of the charge cannot be
established.
28~t2. The distance of interest is equal to the difference in the diarne­
tel's of the ionic orbits ~ ~ 2 (R 2 - R 1)' The speeds of both ions
are identical and are determined by the conditions of their passage
through the velocity filter: u == E/B. The radius of the orbit is R ==
~ mu/qBo = mE/qBBo. Therefore the difference fought is

2E
~=-- (m2-,nt)qBBo

We obtain the difference sought by assuming the ion to be singly
ionized, i.e. by putting q == e.
28.t3. Making use of the result or the previous problem and noting
that R tz:': l12, we obtain the expression lor the ionic mass

el f/2 elB2 4.82 X 104

m t:t: 2E- (kg) == 2 X 1.66 X 10-27 E (amu) = E (amu)

28.14. The magnetic moment of the moving coil is Pm = un S; while
the torque is it! = PmB, since in our problem a == :rr/2.
28.15. A torque M == iol SB acts on the moving coil balanced by
a torque M =- fa due to the elasticity of the twisted thread, where f
is the torsion modulus, Equating, \\'C obtain fa =-~ totSB: from which
we see that, other conditions being equal, the coil's angle of rotation
is proportional to the current.
28.16. It is easily seen that the moving coils hanging freely wi ll
arrange themselves so that their planes wi ll be perpendicular to their

. Thf' f· ··F dB N' hcommon aXIS. e oree 0 interaction IS = Pm dx. oting t at

dB 6f.1oPm.r
a:;-= - 4n (a 2 -1- .r2 ) fi / 2

(see Problem 27.11) and that according to the conditions of the prob­
lem x ~ r ~ Q, we have

dB 61-loPm
-;[i = - 4nr 4

The force of in teraction is

F=Pm dB = _ 6~nPin
ax 4nr4
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I t is quite similar to the force of interaction hetween electric dipoles
(see ~§ 10.4 and 40.6).
28.17. Making use of the resul t of the previous problem, we obtain

F ...- _ Gf.low2i2S2 3nf1.ow2i2a4
-- 4nr4 - 2r4

28.18. The positive charge circulates as shown in Fig. 28.18a. The
direction of the magnetic moment is established with the aid of the
screw driver rule (sec §§ 40.5, 40.6). The direction of circulation of

-... u

Fig. 28.18a. Fig. 28.18b.

a negative charge is the opposite (Fig. 28.18b), but the magnetic
moment is, just the same, directed against the field.
28.19. As was shown above (see Problem 28.5), the particle will move
along a helix winding around the lines of induction. Let us resolve

.Fig. 28.1UL.

the velocity vector into t\VO components: the lateral v-l (the orbital
velocity) and the longitudinal v 1/ (the drift velocity). Since the orbital
moment of the circulating charge is directed against the field, the
magnetic forces tend to push the charge out into the region of the
weak field (compare with §§ 37.4 and 41.10, where the dipole and
magnetic moments are arranged in the direction of the field). vVe see
that as the charge approaches the magnetic mirror, its drift velocity
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decreases, becoming zero in the case of a suffieiently high field gra­
dient (Fig. 28.19b). From this moment it begins to drift in the opposite
direction towards the weaker field (Fig. 28.19c).
28.20. A charged particle entering a magnetic field perpendicularly
to the lines of induction wi ll move along the arc of a circle of radius
R = p/eB, where p is the momentum of the particle. Mirror reflection

~
I

Fig. 28.19c.

takes place if the entire path of the particle happens to lie inside
the field.

Since, according to the conditions of the problem, the electrons
move perpendicularly to the "magnetic mirror", they will be reflected
backwards, provided that the radius of the semicircle is less than

the thickness of the "mirror", Hence e; < d.

The total energy of the electron is ~ =--= l/~5 -t- p2c2 < 1/ ~~+e2B2d2c2~
the kinetic energy is K == ~ - ~o'

Finally, we get

29. Magnetic Materials

29.1. According to the definition of the magnetization vector M,
the magnetic moment of a body in a magnetic field is Pm = M V =-=
== Xm I1V.
29.3. The saturation magnetization is Msat == noPm' where 110 == 4/a'J
is the concentration of the atoms, Prn === 7.95f.lB is the magnet if
momen t 0 f a single atom. Hence M sat == 4 X 7.95~B/a3 •

29.4. Making use of the result of § 38.6, we obtain

«:~l/kT
----=-:::e
e-··'!f. 2/k T

But N] is the number of atoms whose magnetic moments are oriented
along the field, the energy is ~1 = -PmB, N 2 is the number of atoms
whose magnetic moments are oriented against the field, their energy
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is ~2 = PmB. We have

100

2.0

OL..---L.._..1..-.-~_.....L-~':-:-~::--;"7":'

4.0

~--1 . 2PmB
N

2
-- + kT

29.6. Since the Curie point of ferromagnetic materials is of the order
of hundreds of degrees Celsius, the energy of thermal motion is

e~ kT ="-: ! .38 X 10- 23 X 400 ~ 5 X 10-21 .T

The energy of interaction of t\VO magnetic moments is ~m =
= PmB = 2Ilop~/4JTr3. Putting r ~ 1 A, l'm == f.!B, we obtain

ce ~ 4n X 9.28 2 X 10-4 8
__ 2 10-23 J

(!Im-- 2n X 1()7 X 10- 30 --- X

We see that the interaction energy of magnetic moments is by
t\VO orders of magnitude smaller than the energy of thermal motion;
therefore magnetic interaction is incapable of causing spontaneous
magnetization inside a domain.
29.7. The Curie point for iron is 770 DC, the energy of exchange interac­
tion must exceed the energy of thermal motion at temperatures below

flxlO-J

/0.0

110

6.0

Fig. 29.9b.

h= Pml2 dB
2mv2 dz

ut 1/2 rnu2 ::::= 3/2 If;T. Therefore the final resu It is

} ~ + flBl
2 !!.!!.-

t - 6kT dz

the Curie point ee. Hence ~ex > k8c.
~9.8. The force acting on an atom whose magnetic moment is Pm =-..:

,', + . L' dB h dB. h . f ld di ThF - flB IS r :::..: j)md;' \v ere dz IS t e magnetic Ie ( gra ieut, e

~enectian is h =-= afl,/2, where a ~ F/m, t = uV. Substituting, we
phtain
~
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29.9. From the graph 29. Ua we compile the table

JI,
A/m 50 75 100 200 I 500 1000 1500

15.0 X1031!UX 10318.0 X10315 .OX 10312.2X 103\1.2X 10310.8X lOa

The graph for f.1 is given in Fig. 29.9b.
29.10. The right-hand half of the hysteresis loop is plutted using the
data given ill the table; the left-hand half is plotted symmetrically

8,T

1.4

1.2

1.0

0.6

0.4

0.2

Ot--~~............._-_....I....-__---I._--"""""--~

-0.2

Fig. 29.10.

(Fig. 29.10). The coercive force is determined at the point of inter­
section of the graph with the H-axis; saturation induction is the
point where the upper and lower branches of the loop intersect. The
saturation magnetization is

M - Usat II r<oJ Bsat
sat--- - sat ro../--

,to flo

for Bsnt ~ ~loHs:1t. The residual magnetization is M; = Br/flOt where
B; is determined at the point of intersection of the graph with the
B-axis.
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30. Electromagnetic Induction

30.1. The bulb will not glow because the magnetic flux flowing through
the circuit made up of the wings, the wires and the bulb remains
unchanged.
30.3. The forces acting on a falling conductor are the force of gravity
mg directed downwards and the Ampere force F = iBl directed up­
wards. By Ohm's law i == ~/R and the induced e.m.I. is ~ == Blv.

£*

Fig. 30.4a. Fig. 30.4b.

Hence the Ampere force is F = B2t~v/R. The equation of motion
of the conductor is

ln~-F B2 l 2V

a= m =g-~

After a certain moment of time the acceleration becomes zero
and the conductor continues to fall uniformly at a constant speed

. (compare with Problem 5.13).
~30.4. The rod moves perpendicularly to the lines of induction of the
kmagnetic field, and in a small section of it an elementary e.m.I,r&~ = Bv I1x is established, 11.1: being the length of the section and v
t. it s velocity (see Fig. 30.4a). The voltage across the rod is the sum of
~t.he elementary e.m.I. 'so Since v = wx, ~~ = Bwx Sx, The result
f may be found by t\VO methods:
~. (a) By integration. We have
r l

( h<p= JBwx dx = Bw [ .;2 J~=i- Bwl 2

o
(b) Graphically. Plot a graph of the strength of the induced field

:E* = 11~/ ~x = Biax, Since this is a linear function, its graph is
"'of the form shown in Fig. 30.4b. The voltage is numerically equal
to the area under the graph:

~q> ~ lBwl == Rwl
2

2 2
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30.5. The force applied to a conductor moving at a constant speed
is equal in magnitude to the magnetic force. But the current is i =

~ Blv
=.-=- . Hence

R R
F :.:.::..: iBl :::::: B'.!.l2V/R

30.6. Since the ring is small, the field inside it may be assumed to be
uniform and equal to the field on the axis. Therefore the magnetic
flux is

<D -.= BS =~ 2~oPmnr2
4n (a2 '1- :r2) :{ /2

The variable in this case is the coordinate .1: == Xo - pi, where r is
the velocity of fall. The magnitude of the induced e.m. f. is

I~ I =-=-= dcD -= ~loPmr2 d (a 2 _~ x2) - 3/2
dt 2 dt

__2- 2 ( 2 -L 2)--5 / 2 . 2 ..!!:=- _ 3""oPmr2x v
- 4 f.toPm r a I x .r d --- ~ 12

t 2(a2-t-x2)~

30 7 Th . I d f' ~ ~<D cD . .. • 11 th.• e mr nee e.m .. is C!> = - Lit= At ' since initia y e

magnetic flux through the ring is zero. The charg-e 0 flowing through
the circui t is

. ~ (})
q::o: Lf1t=jf .~t===R

It is equal to the galvanometer constant multiplied by the number
of scale divisions: q :::::: C'N,
30.9. A change in magnetic flux is accompanied by an induced electric
field of strength E* = ~/2rtr, where r is the radius of the ring. This
field causes the polarization of the dielectric, i.e. a preferential orien­
tation of its dipoles in the direction of the induced electric field.
30.11. The current in the circuit is I == (~ - ~ Ind)1R, where cg
is the e.m.f. of the accumulator battery, R is the resistance of the
circuit (including the internal resistance of the battery) and (glnd
is the e.m.f. induced in the armature in the course of its rotation.
When the armature is stopped, ~ind = 0 and the current is 10 =
= '1>/R, from which we find the resistance of the circuit. The power
of the motor is -

p'n I~-J2Ro-,I'~(1- :0 )
30.14. To find the number of turns divide the length of the torus'
internal circumference by the wire diameter. We obtain

w =-= «ota = 80rr/0.6 = 420

The magnetic field strength is

H=~~=~=~
1 nDm dD m
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where Dm == 120 mm is twice the distance from the axis of revolution
of the torus to the centre of the genera ting circle,

Knowing the magnetic field strength and making use of the graph
of Fig. 29.9a, we find the induction of the Held. Applying the formula
Wrrt :-: BH/2 we find the energy density, and multiplying this by the
volume of the core we find the total energy of the magnetic field.
The inductance is found using the formula

Wm:"·~ Li2j2

30.15. The energy of' the magnetic field in the absence of the ferro­
magnetic core is W1n ~: 1/2flo1J2V. It is significantly less than the
energy of the magnetic field in the presence of a ferromagnetic core,
despite the fact that the current Ilowing through the winding is the
same in both cases. The explanation is that in the absence of a ferro­
magnetic core the current in the coil attains its stationary value very
quickly and the work performed by the power supply in inducing
the magnetic field is much less than in the presence of such a core.
30.16. In the case of a good contact of the armature with the core,
the force of attraction at one pole is F =-:: zcmS. Therefore the armature
as a whole is attracted with the force F = 2wmS = B2S/~llo where
S ::--: 60 X 60 X 10-6 m2 = 36 X 10-4 n12 is the core cross section
(see Fig. 30.16). Since we assumed the gap between the armature and
the core to be negligible, we may assume the induction of the field
to be the same in the gap as in the core. The magnetic permeability
in the gap, on the other hand, is unity (u == 1).

We have Fsat = B~atS/110 in case of saturation magnetization and
Fr·=:..: eist«, in the case of residual magnetization. The values of
Bsat and B, ale presented in the table following Problem 29.10 (see
also Fig. 29.10).
30.18. Ohm's law should be wri tten in the form ~ + ~L == iR,

where ~ is the e.m.I. of the power supply and li'L = -L ~~ is the

e.m.I. oJ self-induction. Hence
di .

~-L-:= iR
dt

Divide by R and introduce the notation ~/R =-= 11';1' the stationary
current, and L/ R ==- T, the relaxation time. \Ve obtain the equation

di . di .
I I\1-- 't 'dt~--=- i ; or -'tdt = Z - 1M

Multiplying by dt, "'C obtain

-TrJi=--:(i-lM)dt,

Integrating, we obtain

or
di dt

i - J "AT = -- --=r

r di 1 rJ i-l1.1 = --:r J dt ,
t

yielding in (i-1"Ad= --+In C
1:'
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where C is the integration constant. Taking antilogarithms, we obtain

i-1M -til
--C-===e

When t = 0, the current is i (0) =-= 0, so C ::::- -1M. After some simple
transformations we obtain

i = 1M (1_e- t/'t)

The graph of this function is shown in § 43.12, Fig. 43.6.
30.19. According to the result of the previous problem, we have for
t === 0.9/ IV1 an exponential equation

O.g[!vI = 11\1(1- e- f / t ) , or e" tiT: = 0.1

Taking the logarithms, \\'C obtain

- _t_ log e = log 0.1, _..!..- 0.4347.": -1
~ ~

Hence t == 2.3-r.
30.20. The formula obtained in Problem 30.18 is no longer valid when
the difference between the stationary and the instantaneous currents
becomes equal to the thermal current fluctuations. After that a gradual
increase in the current is replaced by the usual thermal fluctuations
of the current around its equilibrium value.

r

Fig. 31.2b.

7'0

L\<p = ~ = \ E* dr
()

The induced e.rn.f. may be found
either graphically (Fig. 31.2b), or by
integration:

31. Classical Electron Theory

31.2. Here the centrifugal force of inertia, I cf === lnw2r, where r is the
distance from the appropriate point of the conductor to the centre
of the disk is the non-electrical force
acting on the di sk. The strength of Eft
this force field is

E* =!.!:l.. = nH.u
2r

e e

TO

mw2 r mw2r5
e J r dr= 2e

o
31.3. The electron concentration may be computed from the expres­
sion for the Hall voltage (see § 44.2) and the electric conductivity
of copper found from the data on the dimensions of the plate, the
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current and the longitudinal voltage. Knowing these quantities,
we may easily find the electron mobility from formula (44.8).
31.4. Since silver is a monovalent element, the electron concentra­
tion in it is equal to the concentration of atoms. The density is p =
== mon, where mo is the mass of the atom. But mo = A/NA, where A
is the atomic mass. Hence n == pN A/A and the Hall constant is

R H == A/epNA

31.9. A thermocouple may be regarded as a heat engine working
in the temperature range from T} to T2' where the indices 1 and 2 re­
fer to the hot and the cold junctions. When a charge passes through
a thermocouple, work is performed equal to W ::-= 'Y)Ql' The transported
charge is

W YJQ1
u»: ~ = a. (T

1-T2
)

31.13. First find the volumetric heat (molar heat capacity). It may
easily be established (for instance, by checking the dimensionality)
that C == pc. From § 45.3 we obtain

A = 3K == 3[(
aC a.pe

32. Electrical Conductivity of Electrolytes

32.1. The electrical conductivity of an electrolyte is l' == qn (b+ +
+ b_) =:-= o..qno tb; + b_), where a is the dissociation coefficient
sought. The charge of a monovalent ion is q == e. The concentration
of the solution is C == mono == Mno/N A, where M is the molar mass
of the dissolved substance. Substituting these values, we obtain

a= Vkl
eCNA (b++b_)

32.2. The mass of material deposited on the cathode is pSd= e~~z ;
the valence of nickel is Z == 2. The remaining information is con­
tained in the statement of the problem and in the tables.
32.3. First find the charge passing through the solution, making use
of the graph in Fig. 32.3. Since the current changes linearly, the
eventual value being i ev == 6 - 0.03 X 180 == 2.4 A, the charge is
easily obtained: q = (io -1- lev) t/2. Incidentally, the same result may
be obtained by integrating the expression

180

q = \ i dt
·0

(cheek this). Then the mass of copper may he found from Faraday's
law.
32.5. The e.rn.f. of the power supply should exceed the e.m.I. of
polarization, which may be found from the specific energy of the

16-0360
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chemical reaction:

Solutions

'AA
~pol=AK=-­

eNAZ

32.6. The capacitor's charge is q = C ~<p, the accumulated energy
1

is Wcap = "2C (~<p)2 = 1.8 J. The amount of hydrogen produced

is m = :~~i ;the quantity of heat liberated in the process of com­

bustion is Q = rnA = 9.1 X 10- 3 J, which is much less than the
energy of the capacitor. Obviously, in the course of the discharge

i,A

6

30 60 90 120 150 180 t.s

Fig. 32.3.

of the capacitor through the electrolyte, part of the energy stored
in it will be liberated in the form of heat, with only a small fraction
being spent on the chemical reaction.
32.7. The lift F =-= (Po - PH) Vg, where Po is the density of air and
PH the density of hydrogen. The mass of hydrogen is

m = pRV = PHF/g (Po - PH).

Applying Faraday's law, we find the charge q passing through the
electrolyte solution. The energy required to produce the hydrogen is

W=q~pol+Q

where Q represents the Joule heat loss. The polarization e.m.f. has
already been found in Problem 32.5.

33. Electric Current in a Vacuum and in Gases

33.1. The calculation is done using the Richardson-Dushmann formu­
la. For the sake of convenience one should first find the logarithm
of the current:

log isat=log n+log d+ log l+log B+2log T-O.434 log Ao/kT
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33.2. According to the Richardson-Dushmann formula we have

x== ~= (Il..)2 exp [ Ao (T 2 -T1 ) J
II T1 kT1T2

For the computation one should find log x,
33.3. The collision of the electrons with the auode is an inelastic
one, and this makes it possible to compute the force using formula
(17.19) from § 17.5. Noting that the current is i == enSv, we obtain

r imo i '/-2-
1 =-e-=---e y ecpm

33.4. The ratio of the saturation currents of the two cathodes is

x==~== (!..L)2 exp (~_~)
i2 T 2 kT 2 kT I

33.5. Calculations should be done for the linear section of the charac­
teristic curve. In. this case a change in the anode voltage ~ua ==
= 150 V, with a constant grid voltage (for instance, with Ug = 0),
causes a change in the anode current of ~ia == 75 rnA. The tube's

internal resistance is R i = ~~a • The tube's amplification factor is
L1~a

V- = ~ga t i.e. V- is the ratio of the change in the anode voltage to the

change i~ the grid voltage which causes a given change in the anode
current. It follows from Fig. 33.5 that a change of anode current
equal to 75 rnA may be obtained either by changing the anode voltage
by ~Ua= 150 V, or by changing the grid voltage by ~Ug == 7.5 v.
Therefore the grid is 20 times more effective in controlling the current
flowing through the tube (on the linear section of its characteristic
curve), i.e. amplification factor I.t == 20.
33.6. Away from the saturation region the current density is a func­
tion of the ion mobility (§ 48.2), from which we get for the ion con­
centration

The concentration of air molecules in normal conditions is equal
to the Loschmidt number (§ 26.9), which gives the ionization coef­
ficient ex. == n]NL.
33.8. Away from the saturation region the current will increase, since
the strength of the electric field increases as the plates are brought
closer together. In conditions of saturation the current will decrease,
since the effective volume of the ionization chamber is smaller. The
current-voltage characteristics are shown in Fig. 33.8.
33.9. The saturation current is isat = ~noeV == veV, where 'V is the
number of ions produced per second per unit volume of the chamber.
33.10. Usually the computations are carried out using the relation
3/2kT = ~lon. This, however, yields too large a value for the tem-

16*
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perature:

o

a,

Fig. 33.8.

T= 2~;~n :::::: 106 K

In fact, ionization takes place at lower temperatures. The reason
is the Maxwellian molecular speed distribution, according to which
in equilibrium conditions there is always a noticeable percentage of
molecules with speeds exceeding
the average. For example, from
Table 25.1 (see § 25.2) it may be i

9
seen that 368 ~ 2.5% of the mole-

cules have a speed more than three
times the average. This means
that their kinetic energy is more
than nine times greater than the
average kinetic energy of the mol­
ecules.
33.11. Thermal motion of ions and
of electrons in a magnetic field
takes the form of motion along arcs
of circles, whose radii may be
computed with the aid of the formula used to compute the radius
of the ionic cyclotron orbit (see § 41.2). We can express the momentum
of the particle in terms of the gas temperature: p == -V 3,nk T which

gives the cyclotron radius R == -V 3mkT .
eB

33.12. First find the Reynolds number:

Re==~=13.6 X 10
3

X 5 X 10-2
X 0.2 8.8 X 10' ~ 2300.

11 1.55 X 10-3

Hence the flow is turbulent and it should be assessed with the aid of
the Stewart number:

N == yB2l = 1.05 X 106 X 0.36 X 5 X 10-2 =7
pv 13.6 X 103 X 0.2

But the Stewart number represents the ratio of the magnetic force
to the resistance of pressure. Hence, in this case the magnetic force
will appreciably affect the coefficient of hydraulic friction.
33.t3.

Re = 1,(.2 X 103
X 5 X 10-2

X 0.2 ==4200 > 2300
2.44 X 10-3

N 73.~ ~20:~~ ~~.~O-2 = 6.5 X 10-3 ~ 1.

33.14. Since the lines of induction are frozen into the plasma, the
magnetic flux will remain unchanged as the star contracts: <I> = <1>0'
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or BR2 = BoR5. Hence we find the magnetic induction of the pulsar.
For data on star radii (prior to contraction), and pulsars, see Prob­
lem 14.21.
33.15. The pressure of the magnetic field is equal to the energy density:

Pm ==Wm = B2/2,...,0

The pressure of the gravitational forces will be assessed in the same
way as in Problem 16.7:

-- 3M yM R 3yM2
Pgrev == pgh=-:-. 4nR3' 2R2 . 2= 16nR4

Substituting the values of the pulsar's mass and radius (see Prob­
lem 14.21) we obtain the value of the pressure exerted by the gravita­
tional forces.

34. Harmonic Vibrations

34.4. The expression for the kinetic energy is transformed as follows:

K = 2.50 cos 2 ( 20m + 3
4
n ) ,= 1.25 [ 1+cos ( 40nt + 3; ) ] =

::= 1.25 (1 +sin 40nt)

The frequency of energy oscillations is VK == 40n/(2n) == 20 Hz,
the period is TK == 0.05 s.
34.5. The law of oscillations is of the form s == A cos (wt + rp).

Since So == 0, it follows that 0 == A cos tp, giving cp == (2k + 1) ~ .

The initial phase is always less than the period of the oscillations
cp <2n. Hence cp == n/2, or cp = 3n/2.

The particle's velocity is v == -Aw sin (wt + rp). The initial
velocity Vo :.= -Aw sin (j) == 0.20 is, according to the statement of
the problem, a positive quantity, and this is possible only if cp =
== 3n/2. Hence, A w == 0.2. But w = 2Jtv = rr rad/s. Hence the
amplitude is A = 0.20/n = 0.064 m. Knowing the amplitude, the
frequency and the initial phase we may easily write down the equation
of the oscillations.
34.6. The equation of the oscillations is of the form s = A cos (wt -I­
+ cp). The total energy is W === mw2A2/2, the velocity is v =
== -A (J) sin (wt + cp). At -the initial point of time

So == A cos cp, lJu :-:::- - Am sin cp, W::-- m(i)2A2J2

.•• Pn 1/ In. S' . 0 I > 0gJVI n~ SI n cp -= - AU) == - "0 2W . ~ HI ce SI n 'P > an ( cos 'P ,

it follows tha t the in it.ial phase rp lies in the in terva I 0 < cp < n/2.

The circular frequency is ro == - Vo cot cp, the ampl itude A ==
• So

= l./ s& -I- (~) 2. The period of oscillations is 50 lOS, so the time of
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0.4 s spans 8 periods. During this time the particle will cover a distance
equal to 32 amplitudes.
34.8. Apply the vector diagram (Fig. 34.8). Here

-./( A)2 (A A)2 . (A/4)-(A/8) 1
B= V A-T + ---8 ; l~Hl<p= A-(A/4) 2

34.10 Carry out the following transformations:

Fig. 34.8.

8=4 cos>y. sin 1000t=2 (1+cos t) sin 1000t=

=2 sin 1000t+2 sin 1000t·cos t-=2 sin 1000t+sin 1001t-sin 999t

The spectrum is shown in Fig. 34.10.

A,m
2

999 1000 100/ w, radts

A,m
30/;6

1/16

496 500 504 fJJ,rad/s

Ing. 34.10. Fig. 34.11.

34.1t. \Ve have

1+cos2 t+sin 4 t = 1++ (l +cos 21)+i- (1- cos 2t)2=

-1

= T (4+ 2 -~ 2 Cos 2t+1-2 cos 2t + C(J~2 2t) .;...:
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1 r· 1 J 1="4 .7+T(1+cos4t) =S(15+cos4t)

Hence it follows

s = ~ (15+cos4t)sin500t=

15 . 5.0 1. .
~8s1n () l+gSlI1500t,cOS4.t==

= ~5 sin 500t + 11
6

sin 504t + 11
G

sin 4961

The spectrum is shown in Fig. 34.11.

A,

30/16

8/16

1/16

496 498 500 502 504 w, rad/s

Fig. 34.12.

34.12. We have
1 1

1+ cos 2 t+cos- t == 1+2" (1-+-cos 2t) +T ('1-+ cos 2t)2 =

1
= T (4+ 2+ 2 cos 2t+ 1+2eos 2t +cos 2 2t) =

1 r 1 -1 1= T 7 -1- 4 cos 2t+2 (1 +- cos 4t) J= 8 (15-1-8 cos 2t +cos ~t)

Hence

s =-~ ~ (15 -r- Rcos 2/-1- r os 4t) sin 500t --,- ~ sin SOOt+ cos 2t sin 5')Ot +

+--} cos 4t·sin500t = ~ sin 500t+ ; sin 502t+ ~ sin498t+

_L t~i sin 504t + t
1
(j sin 496t

The spectrum of the vibrations considered above is shown in Fig. 34.12.
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35. Free Vibrations

35.2. Q = klhwo, where h =:: Ffrl v == 6:rrMl.
35.3". The friction force Ffr == ~mg is independent of the velocity,
and this makes it possible to discuss the problem from the standpoint
of energy. Suppose the weight goes over from the initial state of maxi­
mum deflection from the position of equilibrium, characterized by
the amplitude A 0, to another, similar state with amplitude A 1. Then,
according to the law of conservation of energy,

-} kAij-V-mgAo= ~ kAi+f.lmgAI

from which i t follows that

A -- A _ 2f.lmf!
1- 0 k

The sanle will he true for all the subsequent oscillations, i.e. the
amplitudes will form an arithmetical progression:

A -A _ 2n~mg
n -- 0 k

The pendulum will stop when its amplitude becomes zero. Substitut­

ing An === 0 gives n == 2
k A o

. Since all the amplitudes except the
}J.mg

initial one are passed through twice the number of swings is

N = 2n - 1 == kAo - t
Ilmg

As may be seen, due to friction the mechanic-a} energy rather quickly
transforms into internal energy, and the oscillations cease.
35.4. When the volume of a gas is changed at constant temperature
we have, according to the Boyle-Mal iotte law

PI (d - x) S == P2 (d + x) S == p dS

The force acting on the piston is

2pxSd
F==(PI-P2) S~=..: d2 .- x 2

where V is the volume of one half of the vessel. As can be seen, the
force does not conform to Hooke's law, and the oscillations are not
harmonic. But for small deflections of the piston (when x ~ d), the
force will be quasi-elastic: F == 2pVxld2 , and the oscillations of the
piston will be harmonic. The rigidity of the system is k == Fix ==
== 2p V/d 2 •

35.5. For an adiabatic process we must make use of the Poisson equa­
tion, and of the approximations (for x <t: d)

(d::)" = (1+ ~ i ~ 1- ~ I (d~Xrl' =(1-;r" ~ 1-1- ~r
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For the force we obtain

u

Fig. 35.10.

Ck \
\
\
\
\
\
\

i.e. Fad == yF 1SQt.
35.6. As may be seen from Fig. 35.6 the force which restores the body
to its equilibrium positions is F == pg AV == 2pgSx. Since this force
is proportional to the displacement, the natural frequency of the
vibrations can be found from the formula W o == 1/klm. Here k ==
== FIx == 2pgS, m == pS I.

Hence W o == 1/ 2g/ l.
35.7. The restoring force is F = PogSx, where S == 20 X 20 cm 2 ==
== 4 X 10-2 m", Po is the density of water, and x is the increase in the
depth of immersion. Since the force is
quasi-elastic, the frequency can be obtained
using the familiar formula.
35.8. The period of oscillations of the pen­
dulum at the surface of the Earth is To ==

=2n liZ/go' At an altitude h above the sur-

face of the Earth it is T = 2n l f l/g. We

have L.\TT = 2.., where To = 8.64 X 104 s is
o To

the duration of a complete day and 't is" the
lag of the clock. Hence

't~ 'toL1 T=.-:: 'to (~-1) =-. 'To (y go/g--1)
To To

The acceleration due to gravity at the Earth's surface is go = -v;:
while at an altitude h it is g = (R~~,)2 where R is the radius of the

Earth. After some simple transformations we obtain

35.9. One should find the total acceleration with respect to the Earth:
W = II a2 + g2. Then the period of the pendulum wrll be T ==

== 2n V Z!w.
The equilibrium position will be deflected from the vertical by

an angle rp = arc tall .!!:... •
~

35.10. The part icles velocity at. an arbitrary point on the circle is
(Fig. 35.10)

n :»: V2gh~ V2g1(eosa-cos (Xo)=x y2gl
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where x = l/ cos a - cos 0..0' The body travels along the element
of arc I1s = I Ao.. in time

Put /),,0.. = 3° = 1£/60 radian. Then

/ T 112
~t=21t l -. -1.-­g 2q(),(itv

The period of oscillations is

rT Y2 (1 1 )
T:=:4(6tl+~t2+···)=2nll/ --60 -.-+-+ ...

g llav X2av

Table 35.H)

xa I cos a Icos a - cos aoI
0 45° 0.7071 0.0000 0.0000 0.005 10.50
1 42° 0.7431 0.0360 0.1 ~)O 0.228 4.38
2 39° 0.7771 0.0700 0.265 0.292 3.43
3 36° 0.8090 0.10in 0.318 0.:340 2.94
4 33° 0.8387 0.1316 0.362 0.380 2.63
5 :~oo 0.8660 0.15SU O. :~Dn 0.414 2.42
6 27° 0.8910 0.18:39 0.428 0.441 2.27
7 24° 0.9135 0.2064 0.454 0.456 2.15
8 21° o. 93:~6 0.2265 0.476 0.485 2.06
9 -tHo 0.nS11 0.2440 a.1t84 0.501 1.nU

10 15° O.n65~ 0.2538 0.508 0.510 1.90
11 12° 0.9781 0.2710 0.520 0.525 1.9112 go 0.9877 0.280G 0.530 0.532 1.881:{ ()O 0.9945 0.2874 0.535 0.538 1.8914 ')0

O.U~86 o .2~H5 0.540.J
0.540 1.8515 0 1.0000 0.292') 0.541

Total I 44.23
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Since the formula To == 23t 11 ZIg is used to compute the period of
small oscillations, it follows that T == kTo, where

k= V2 (_1+_1+ ...)
60 Xlav X 2rl V

is the correction factor. Let us compile a table (see Table 35.10) Irom
the computed data. We have

k = V 2" X 44. 23. ~.= 1 .042
60

Hence, the period T == 2nk V' l/g == 2.08 s, the value of To being
To = 23t1/ ZIg == 2.00 s. In this case the relative error due to the
use of the formula for small oscillations will be 4%.
35.13. The moment of inertia about the axis is

1 1
1=3 ml l2+2 ,n2r

2+'fl 2 (l+r)2

The distance between the centre of mass and the axis is

lienee we find the period.

36. Forced Vibrations. Alternating Current

36.1. Away from resonance, A == I (~'M 2) I' at resonance Ares ==
m wo-w

= QA s ta t === QFMlk.
36.2. Since V 1\1 = wA, for co = 0 and for w --~ 00 the ampli tude
of the velocity becomes VM == o. The resonance curve is shown in
Fig. 36.2.
36.3. First \ve find the natural frequency (see Problem 35.1). We have
(J)o = 1/g/A stat. The Q factor is found from the time of damping:
Q ~ wo't ::= 't ~rI g/Astat. lienee we find the amplitude at resonance:

Ares = QAstat ~ l' VgAstat

Clearly, at resonance the system wi ll break down.
36.". To prevent the merging of t\VO successive impulses the Interval
between them should be appreciably longer than the time of damping
of the first impulse and the build-up time of the second. i.e.

'fs p > 2,; ~ 4Q/w o

To find tho maximum volume of information transmit ted per
second, one should take into account that such information should
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Fig. 36.2.

be made up of N 1 dots and N 2 dashes: N == N 1 + N 2' where N is the
amount of information. But usually on the average N1 ~ N 2 ~ N12.
We have

1 S='Nl'tl+N2't2-j-N'tsp~N'tsp(\5+\5+1)=4Ntsp~16N ~

Hence we find the amount of information: N ~ R116L. .
36.5. Let the voltage be u == U M cos wt! . and the current l ==
:::::: ['!ott cos (wt + rp). According to the definltion of the back e.m.I.,

self-induced e.m.I. ~L = -L ~~ , the voltage VI'U
M

drop across the inductive reactance is uL ==
~= - ~ L = L :~ (see § 54.2). Substituting

di :--:._~ -I.Mw sin (wt-1-Cp) we obtain UAI cos wt=
dt
::::::-I~ILw sin (wt + cp). Hence

UM n
XL= 1M =----=Lw, ~=---=-2

36.6. Let the vol tage be U = U1\1 cos wi
and the current i = 1M cos (wi + rp). The
voltage drop across the capacitor is Uc =
:::::: qlC, and the current is

dq du .
i:.:= dt=== C dt= -UMCw SIn rot

Hence 1M cos (wt + cp) = - UI!t!Cw sin wt from which it follows that
UM 1 1t

",Yc=--= 1
M

= Cw' CP=T
36.7. \\Then a coil and a resistor are connected in series, the current
flowing through them is the same, and there is a phase shift between
the voltages. Therefore the vector diagram is plotted with the vector
representing the effective or the amplitude value of the current (see
Fig. 36.7).
36.8. The vector diagram is shown in Fig. 36.8.
36.9. When a capacitor and a resistor are connected in parallel, the
same voltage is applied to them, and there is a phase shift between
the currents. Therefore the vector diagram is plotted with the vector
representing the effective or the amplitude value of the voltage (see
Fig. 36.9).

36.10. III this circuit Z - 1/R2 -+ (Loo - ;00r.Let us take the

resistance from under the square sign and the capacitative reactance
Xc = 1/Cw out of the brackets, we obtain
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The natural frequency is 000 = V lc I Q = ~ V ~= R~ooo I giving

LC = 1/w~, R2C2 == 1/Q2wa. Substituting into the expression for the
impedance, we obtain

Z=R 1/-1+ Q;~a (:;_1)2 =R l/ 1+ ~: (y2_1)2

(J)
where y = ­

(a)o •

36.11. The vector diagram is shown in Fig. 36.11b (see Problem 36.9),
where

Zo== II R2+L2w2 , cos CPo:=7- R/Zo, sin CPo = LwjZo

u
Fig. 3f>.7. Fig. 36.8. Fig. 36.9.

It j s clear from the diagram tha t

12 = I~+Ib-2Iolccosa

but since a == (n/2) - CPo, it follows that

/2 = J~+ I~-2Io1c sin <Po

Substituting the values of the currents and sin CPo, we obtain after
some simple transformations the required effective value of the current
in the unbranched section of the circuit.

. I cos fP UR
From the vector diagram cos cp == 0 I 0 =--~: 1Z2

u
36.12. To find the power we apply the formula P == I U cos cpo Knowing
the amplitude to be UM == 312 V, we must find the effective voltage
and substitute the data into the formulae of the previous problem.
To simplify computations assume n2 == 10.
36.14. An electrodynamic wattmeter has two coils (Fig. 36.14). The
stationary coil wound with thick wire is connected in series with the
load. It sets up a magnetic field whose induction is proportional to
the current:

B<Xi,orB=k1IMCOS(wt+cp)
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The moving coil is connected in parallel with the load, so the magnetic
moment of this coil is proportional to the voltage:

Pm ex: u, or Pm = k2U~1 cos wt

Here k1 and k 2 are proportionality factors. The instantaneous value
of the torque acting on the moving coil is

!tl:.= PmB== k1k2IMUM cos wt·cos (wt+ q»

== k1k21 U [cos cp + cos (2ffit -1- rp)1
The average value of the torque is

M av == k1k21U [cos cp -f- cos (2ffit -~ q» [av ==ktk2lU cos cp

since the average value of the term cos (2wt + cp) is zero. We see that
the average value of the torque acting on the moving part of the
instrument is proportional to the aver-
age power consumed in the circui t, so
the electrodynamic wattmeter measures
the active power. ~

36.16. The glow appears due to the in- e
stantaneous value of the voltage, not to "
the effective value of the voltage mea- ......~
sured by voltmeter. Since the amplitude
of the voltage is UM = U y2 = 85 V,
the lamp will glow for a certain part of U
each period (see Fig.36.16).
36.17. The amplitude of the voltage ex­
ceeds the breakdown voltage.
36.19. If we neglect the phase shift we
may easily find the current in the sec- Fig. 36.11 b.
ondary 1 2 = kl1 , and the number of
turns W 2 = wllk.

Assuming the maximum current density in the wires to be the
same, we find the cross section of the wires to be proportional to the
currents, therefore 8 2 = k81 -

To find the resistance of the secondary we must know the length
of the wire. Note that according to the statement of the problem,
the winding is wound in a single layer, so the lengths of the wires
are proportional to the number of turns:

t; w2 1
7;= WI =k

Since the wires are of the same material, the ratio of their resistances is
R 2 l281 1
1f;= l18 2 =/i,2

This allows us to find the resistance of the secondary.
The copper losses in the windings are Pcopper == IfR l + IiR 2 ,

and the efficiency is

P2 PI-Pcopper
11==1\"= PI
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36.20. In the no-load condition, the secondary does not consume power.
Hence PIlo-load = I;1o-loadr l + P iron where r 1 is the resistance of
-the primary. But the current / no-load of correctly designed: transform­
ers is very small due to the enor-
niOUS inductive reactance, and also
because the resistance of the wind­
ing is small. For this reason the
first term may be neglected in the
power balance and, P no-I and =:

= Plron.
36.21. Consider the high frequency
case when the resistance of a solid
copper or aluminium ring is neg­
ligible compared with its inductive
reactance. Suppose a sinusoidal
current flows in the primary. The
magnetic flux permeating the ring
will also be sinusoidal. The e.m.I,
induced in the ring is proportional Fig. 36.14.
to the time derivative "of the mag-
netic flux with a minus sign. Hence the phase lag of the induced
e.m.f. behind the current in the primary is cp~ = -n/2. The phase

i,sor--~~~~~TrTr

-70

-80
-85

u,v
85
80

Fig. 36.16.

lag of the current oscillations in the ring, as in any other inductive
reactance, wi ll be the same: q>i = -rr/2. Therefore the phase shift
between the currents in the ring and in the primary will be q> =
= <P~ + <Pi ~ -n, i.e. these currents are in opposite phaseS; which

means they flow in opposite directions. Such currents, as is well
known, repel each other. The force of repulsion balances the force
of gravity, with the result that the ring "floats" in the air.
36.22. The secondary feeds a resistive load, so CP2 == o. The power
factor is

cos <PI = PI//lU!
The active power P l is obtained from the efficiency.
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37. Elastic Waves

log 2

Therefore

37.5. First we must find the density of air and the velocity of the
wave u == V yplp at a temperature of 27°C, and then apply the for­
mulas of § 55.3 to calculate the energy and the amplitude of the wave.
37.6. Find the intensity of the wave 1 == PI41tr2 , assuming the source
to be a point source. Then, as in the previous problem, find the ampli­
tude of the wave.
37.7. The intensity levels are connected with the intensities by the
relation

Zl - Z2 = 10 log (11/12 )

But for a point source, by the results of the previous problem, 11/12 ==
= r~/ri. So

:£1 - 2 2 == 20 log (r2/rl)
37.8. For a small (i.e. a point) source, the wave intensity is inversely
proportional to the square of the distance from the source. I f in addi­
tion we take into account the attenuation, one would obtain for the
wave intensities at distances r1 and r2 from the source the expressions

I - I or~ 2-1'I!L I __ lorg 2--T 2/ LI-T' , 2-rr-·
where L is the half-thickness. Hence we ohtain

T 2 - r t

I 2--
_I ==~.2 L
12 rf

The difference in intensity levels is

s: Z -101 11 - 20 1 r2+10(r2-r1 )
1 - 2 - og 7; -_. og~ . L

37.9. The wave intensity is 1 == lo·2- x/ L == loe-~x.

2- x / L = en J.lX

Taking the logarithms, we obtain

;r 1L n2=l.lx

which gives the required relation.
37.11. To solve the problem we should make use of the expression for
the frequency of the signal from a moving source as measured by
a stationary observer:

Vo I v --~
VI =:::: 1+ x anr 2 -- 1- x

where z =: v/u is the ratio of the velocity of the source to the wave
velocity. The beat frequency is equal to the difference in frequencies:

2.x'vn 2vvo
V=V1- V2:-"";: 1-x2 = u(1-v2ju2 )
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We obtain a quadratic equation vx 2 + 2vox - v = 0, which gives

- "0 -f- vVf+V2 ,,~+ ,,2 - "n " v
x =-~ v " ("0 -1- V ,,~ + ,,2) Vo -1- V v~ -t- v2 ~ 2"0

since the beat frequency v is much lower than the natural frequency
of the tuning fork, Vo. Hence

~ ~ ~ from which v ~~
u lVo ' 2"0

37.12. ·\Vhen the source approaches the receiver, the relation

1+ V/u
v="o 1-v/u

holds, where V and v are respectively the speeds of the receiver and
the source relative to the transmitting medium. In the case of the
source moving away from the receiver, the signs in the numerator
and the denominator should be reversed.
37.18. In the presence of an oil film the ultrasonic vibrations enter
the part. In the presence of an air gap between the transducer and
the part, the wave is completely reflected by a layer of air back to the
transducer, and does not enter the part.
37.19. The reflected and the direct pulses can be seen separately only
if there is an interval of more than half the duration of the pulse
between them. This interval wi ll be equal to 't == 30T == 30/". During
this time the wave should twice travel through the thickness of the
metal in the direct and in the reverse directions, i.e. 't == 21/u. Hence
1== 30 u/2v == 15A.

38. Interference and Diffraction

38.1. Let the wave equation in a medium with wave resistance Zl =
= P1U1 be

$1 == Al cos (wt - kx)

The wave is reflected by the medium with wave resistance Z2 =
= P2U2' and the equation of the reflected wave at the boundary is

8ref :=: Aref cos (wt+kx)
But

Zl-Z2
Arel == Al --+-

Zl Z2

Therefore for Z2 > Zl the amplitude of the reflected wave is negative,
i.e, the phase of the wave is reversed. To simplify the computation
put Z2 ~ Zl. We obtain Aref = -At and the equation of the wave
in the first medium in the form

8 == 8t +8ret == Al cos (wt - kx) - Al cos (wt +kx) = 2A1 sin kx sin rot
At the boundary Xo == 0 so So == 0 for any t, Thus, the node of the
standing wave appears here.

17-0360
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Similarly, for Z2 ~ Zl we have A ref = AI' and the equation of
the standing wa ve is

S ::.:.::: ~A 1 COS kx -cos wt

The amplitude at the boundary between the two media (xo = 0)
is 2A 1 , i.c. an antinode appears.
38.2 The wave resistance of quartz is greater than the wave resistance
of air (the lower surface) or of water (the upper surface). Therefore
there will be antinodes at both boundaries (although their amplitudes
wil! be different). lienee it follows that an integral number of half­
waves fits into the plate's thickness: 1 = n'A/2, and this enables the
fundamental frequency and the harmonics to be found.

If the upper surface of the quartz plate is covered by oil, the fre­
quency wi ll remain unchanged, although the power radiated by the
lower and the upper surfaces will be redistri bu ted.
38.5. The beat frequency is equal to the difference in frequencies:

2o(y~-yT;)

'21

or

Hence
T1-T2 lv

YT1+YT2 10

But T1 ~ T 2 == T, therefore sr = 0.2lv Y T.·
38.6. Resonance sets in when an odd number of quarter waves fits
along the air column: 1 == (2n + 1) ').../4. In our case n = 0; 1; 2.
38.7. The first-order interference minimum will be observed for an
auxiliary angle al :.:= rr. In this case the angular width of the prin­
cipal maximum will clearly be

e 2 . Aa1 . U
'V =-= 2 1 = arcsin nD = 2 arcsin vD

39. Electromagnetic Waves

39.2. A standing wave is established along the aerial, as shown in
Fig. 39.2. In the middle of the aerial the current is at its maximum
(current antinode) and at the ends it is at its minimum (nodes), and
since the magnetic field strength is proportional to the current, distri­
bution of the standing wave of the magnetic field vector will be simi­
lar. As to the electric field strength, it forms antinodes at the ends
of the aerial (whyr), and a node in the middle.

Thus 1 = "-./2, whence 'A == 2l.
39.3. According to the theory of forced oscillations, the frequency
of a ",'ave does not change when it crosses a boundary between two
media. The parameters subject to change are the velocity and the

wavelength. \Ve have v = ~ == i: where 'A = 2l is the wavelength
o
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·Fig. 39.2.
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The average value of the energy is equal to one half
of its amplitude value:

W= eE&: "1/ Eo
2c J.lo

In the case of an ideal absorbing surface the pressure is equal to the
average energy density.

The energy absorbed by an area S in time t is

- E~V1St .I-u
'fb ==- wuSt = -2-' JI ~t:

~9.5. The a~plitude of the cur~ent is fAt == e.nSVM where VM == ooA
IS the amplitude of the velocity of the oscIllations of the charge.
The magnitude of the oscillating charge is q == enSl hence 1M ==
== qA ro/ l, The radiation power is '

in the liquid, "-0 is the wavelength in air. Noting that u == ely~
we obtain "'0:= 2l V-e.
39.4. First find the velocity of the wave and the medium in which
it propagates. We have u == oolk == elYe, and the dielec­
tric constant of the material e == e2k2/ 002•

The magnetic permeability of the material is J.l =
= 1.0. Find the amplitude of the magnetic field
strength:

HM==EM Ye€o/llJ.lo

The amplitude of the energy density of the electro­
magnetic wave is

But for a half-wave antenna wl = rrc (see Problem 39.2), so

p = ;2 !!oclL:

The power is P == f2R == I~R/2, so the antenna is equivalent
to a resistance

fi 1t J/ floR=-floc = - -
6 6 eo

39.6. The power of the synchrotron radiation may be found from the
formula

If q2a2p=_t""_o__
12nc

t7*
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Vf y )/2 V

Fig. 39.7.

where vaud is the maximum frequency of
the audio signal which must pass through
the circuit without substantial distortion.
Noting that 'Vaud ~ 2 X 103 Hz, we obtain

RjL?;:; 4n X 103 (ohm-Hr")

The capacitance of the capacitor is C == __1_ . The natural
4n2v2L

frequency of the resonance circuit is Vo == cIA == 1.2 Ox 107 Hz. Hence

Q~ 'VoJvaud

Expressing the Q-factor and the natural
frequency of the circui t in terms of i ts pa­
rameters, we obtain

RjL > 2nvaud

where a is the acceleration and 9 the charge of the bunch. Since a ==
== w2r and the current is I ~ qlT == qw/2n, where T is the period of

- circular motion it follows that q == 2nI/w. Substituting into the
expression for the power, we obtain

p = 41t2~oI2w2r2/(121tc)

But roT == v is the velocity of the electron, therefore

P == 3tJ.1012v2/3c

39.7. The spectrum of a modulated signal is shown in Fig. 39.7. For
there to be no substantial distortion of the signal the half-width of the
resonance curve should not be less than the
half-width of the spectrum of the modulated A.
signal: f!v > VI - V, or 'Vo/Q ~ Vaud' From
this the Q-factor of the resonant circuit is
determined:

1
C = 5.7 X 101DL (F)

If we choose an ohmic resistance of R == 0.1 ohm we obtain
reasonable values for the inductance and the capacita~ce.
39.8. Equation (59.22) follows from the phase invariance (see § 59.8).
Applying the Lorentz transformations, we obtain

cos 6 xo+vto
C Y1-V2Jc2

X(l cos 80

c
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Removing brackets and regrouping the terms, we have

coto (1- v cos 8)+ ~o ( ~ _ cos 8)
Y1-V2/C2 C cY1-V2/C2 C

cozosin 8 COOXocos 80
c == cooto- c

261

Noting that Xo, zo and to are independent variables we see that
equality obtained is possible only if the factors preceding these vari­
abIes are equal. Hence putting ~ == vlc we obtain

(1)(1-~cos 8) _ 00 (cos 8-~) _ ey-- -000 , f-- -ooocos 0' oosin8=coosin80
1-~2 1 1-~2

The first equality is the expression for the Doppler effect. Dividing
the second aquation by the first, we obtain the relation for the cosines:

cos e-~
1 ~ 8 ==cos eo- cos

39.9. Let the source and the observer approach each other at a speed
v == ~c. According to the classical Doppler effect, the frequency of
the approaching source is 00' = 00 0/ (1 - ~), and of the approaching
observer (0" = 000/(1 + ~). Considering the periods, we obtain

T'=To(1-~), Tn=1~~

But we must also take into account the time dilatation. In the
first case (that of the moving source) , To in the formula should be
replaced by the quantity "'I To where "'I is the relativistic factor. In the
second cise (that of the moving observer), the quantity T" should
be replaced by yT". We obtain

T'=I'To(1-~), I'T·=1~P

Since, according to the principle of relativity, T' == Til, we have

y2To (1-~) = To/(1--t- ~)

from which it follows that

1 r1-~ r1+l3
1'= y1-~2' T=ToV 1+~' w=woV 1-P

39. tO. The Doppler broadening is

L\vDnp ~+~==+ .. /' 3RT
v - c - V Mc 2

where M is the molar mass. The gra vi ta tional shift of the spectral
line is

L\vg r nv !.pgrav ym
--v- = -c2- ="7if
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where m and r are the mass and the radius of the star, respectively.
On a "white dwarf" ~Vgrav exceeds L\vDop by about an order of mag­
nitude.
39.11. Since the ions move towards the observer, the wavelength is

A= A f - ~cos ~
o y1-~2

The kinetic energy of an ion is 40.0 MeV, the rest energy is four times
the rest energy of a proton (Problem 8.1). We have

V 222 V 22 CI!
y1-~2== 1_,nuc= 1_E....:-=_f'l-_O

m2c4 ~2 ~

= <tJ.o =3.7284==0.989
~o+K 3.7684

The reciprocal quantity is
1 K

y= ../ 1+ce-==1.01
y 1-~2 00

Hence we obtain the ratio of the ion velocity to the velocity of light:

~= u/c= y 1-0.9892~ YO.01l X 1. 989~ 0.148

I-fence the observed wavelength is

A = 410 (1 - 0.148 cos 8) X 1.01 = 361 nm

39.12. The velocity of rotation of the Sun is much less than the veloc­
ity of light, so' we may use the classical expression for the Doppler
effect. From a surface element moving towards us, Al == Ao (1 - ~),

from the element on the other side of the Sun, A2 == AD (1 + ~).
Therefore

4:rr.A~R(;')
L\A==2~Ao =-.= . -

cTev
where Rev is half the Sun's equatorial diameter. The period of rota­
tion is

41tAORG)

T0 = ~'Ac'

39.15. The shift of the spectral lines is a maximum when one star
moves in its orbit towards us and the other away from us. Since the
orbital velocities of the stars are much less than the velocity of light,
the broadening of the spectral lines may be found from the nonrela­
tivistic Doppler formula:

/)''A == AD (t +~) - Ao"(1-~) == 2Ao~ == 2Aov/c

where v is the projection of the orbital velocity on the line of sight.
39.16. The period of revolution of the stars about their cornmon
centre of mass is twice the period o-f the spectral line broadening.
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Knowing the orbital velocity and period, we may find the radius
of the orbit:

R = «riz«
Then, applying the law of gravitation, we have

1'M2 Mv 2 • Jlf __ 4v2R 2v3T
----- giving .H'
(2R)2 - R l' 111'

40. Interference and Diffraction of Light

40. f. Obviously, the principal (the zero-order) maximum will be
observed in the centre of the interference pattern (Fig. 40.1). Let us
find the coordinate of the m-th maximum, which we shall denote

Z 5
4
3
2
I
o

~-----L------...

Fig. 40.1.

by Zm. This maximum will be observed 'when the propagation differ­
ence is r2 - rl = 2m'A/2.

But r~=£2+(zm- ~ )2, ri=L2+{Zm+ ~ r. Subtract­

ing, we obtain (r2-rt) (r2-rt) = 2zmd, Since d <t L and since in
practice only the interference maxima of low order can be observed
(i.e. Zm ~ L), we may put r2 +r 1 == 2L. Fence

2£ (r2 - rl) == 2zm,d, or mAL = z"~d

Hence we obtain the coordinates of the maximum: Zm == mlcLld,
The separation between successive maxima (or minima) is

Az= ZTrl+l-Z1n == AL/d
40.2. The interference pattern will be blurred if the red maxi­
mum of order m will coincide with the violet maximum of order
(m + 1) : z~ed == z~i;i. Substituting the values, we obtain

" (~ 1) 'l • • m -- Av i 0 I . 1 6 2mAred= m-r I\.vlol gIvIng - , l.e. nt= · <
Ared - 'Av 101

This means that the zero- and the first-order maxima will be clearly
seen together wi th the first- and the second-order minima (black
bands). The second-order maximum will be blurred, the third-order
and the subsequent maxima will not be visible at all. The zero-order
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maximum will be white, while the first-order maximum will be
spectrally coloured, with the red outside and the violet inside and
the other parts of the spectrum in between.

The separation on the screen between the red and the violet bands
is

"03 A b r?-r 1 h
CA •• s may e seen from Fig. 40.3b, -d- ==T. Since we con-

sider here two successive maxima (or minima) and since the light

Fig. 40.3b.

twice covers the distances fl and f 2, the following relations hold:

~
2r2=2(m-~-1)­

2

from which

Iv h
Thus 2d -== T' from which the wavelength of the light can be

found.
40.4. When the mirror is displaced by a half-wave, the pattern shifts
by one band.
40.5. The optical propagation difference is J1::= n 2 l 2 - 11}ll =
= (n - 1) 1. This propagation difference accomodatcs N == 47.5 half­
waves. Hence (n - 1) I == NA/2 and n = 1 + N'A/21.
40.7. The interference pattern will disappear if the maxima or 'one
wavelength coincide with the minima of the other.
40.9. It follows from the condition d sin e == mt, that mkld ~ 1.
Therefore the highest order of the visible maximum is m ~ dlA,
m being the maximum integer. When computing the total number
of visible maxima one should take into account the presence of the
zero-order (the principal) maximum and the symmetry of the inter­
ference pattern about the principal maximum.
40.10. The first-order maximum is visible at an angle 81 , which is
determined from the condition d sin 81 = A. The second-order maxi­
mum is visible at an angle 82 = 81 + 15°, determined from the
condition d sin 82 == 2A. Hence it follows that sin (el-~- 15°) =
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== 2 sin 81 , and this reduces to the equation

sin 15°
tan 81 == 2 150 0.2503-cos

265

Knowing the deflection angle 8t of the first-order maximum, we may
easily compute the wavelength,

40.11. Find the total number of slits: N = ~ = 12·~5~010S = 8000.

Since Nd == 1 is much greater than the wavelength, y == 2Alz, which
gives the angular width of the principal maximum.

To find the resolving power of the grating we should find the
number of maxima that can be obtained with it. We have (see Prob­
lem 40.9)

d 1.50
m ~ r= 530 X 10- 3 2.8, so m= 2

i.e. with this grating only the first- and the second-order spectra may
be observed. The resolving power is A == 'A/6'A == mN.
40.12. The spectral interval that can be resolved is 6.A == A2 - At,
the resolving power is A == 'A1/6'A == mN, from which we may find
the total number of slits. The length of the grating is 1 == Nd ==
== A1dlm 6.A. The highest order of the spectrum is found from the
condition m ~ alA (see Problem 40.9). In our case this is 5.
40. f3. To see these spectral lines separately, we should have a grating
with 3 resolving power

The resolving power of our grating for the first-order spectrum is
A == mN == 990, so the spectral lines wil'l be resolved, but the reso­
lution will be poor. Measurements can be done better from the spect­
rum of higher orders.

The angular distance between the maxima of the second-order
spectrum is found from the conditions d sin 81 == 2A1 and d sin 82 ==
== 2A2 • The computations should be carried out using four- or five­
place sine tables; slide rule accuracy is not enough to solve this prob­
lem.
40.14. Let a parallel heam , that is, a plane wave, fall on the grating
at a glancing angle of o: (Fig. 40.14). The direction of the zero-order
intcrference maximum will obviously be the same, As to the maximum
of order m, its direction will be at a glancing angle ~, so that the
propagation difference is 6. =--: a - b = mk, Noting that a ==
== do cos a, b == do cos ~, where do is the grating constant, we obtain

do (cos a-cos~) = mA

This is just the condition for the interference maxima when the
light rays are incident at an angle to the diffraction grating. Now
let us express the interference condition for the angle 8 equal to the
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deflection angle of the diffraction maximum from the original direc­
tion of the beam. Since ~ = a + a, .it follows that

cos a-cos ~= cos a-cos (a-t-a) == cos a-cos a cos e+sin a sin e
Since the angle 8 is usually very small, cos e ~ 1, and cos a -

Fig. 40.14.

- cos ~ ~ sin a sin 8. The condition for the maximum assumes the
form

do sin ex. sin 8= ml;

I.e. the instrument behaves wi th respect to the inclined beam in the
way it would have done if a grating with constant d == do sin ex were
placed perpendicular to the rays.

41. Dispersion and Absorption of Light

41.1. The condition for Cerenkov radiation which takes account of
dispersion is cos e == cl nu, Since the protons are relativistic, it follows
that

Y - - v-2 y- In2v2c 2 y----P¥ '$0
1--= 1---= 1--=-

c2 m2c4 ~2 ~

Hence
c 1

- = ---;:-===:;::::;:-
V V1- (~0/~)2 11 tc (2~0 -+ K)

where (£0 == 0.939 GeV is the rest energy of the proton (see Prob­
lem 8.1). The refractive indices for these parts of the spectrum are
nl == 1.48 and n 2 == 1.51.

v 1
41.2. The ratio ~._- ---~

-~- » cos B 1.3428 cos 41°10' ·
The kinetic
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U==

K==~-~o==~() ( 1 -1)-V1-~2
41.4. According to the definition, the group velocity is

. 1\0> do> 1
U=== Iirn -=-=.:--

ak-+O Jik dk dk
dO)

B t th b . k 0> nffi Diff .. b .u e wave num er IS == u= -;- . I erentiating, we 0 tain

~=~+~~=~(n+o>~)
do> cedro c dro

Hence

u= c
dn

n-t-w dO)

41.5. In the region of normal dispersion
ex. e2non2 = 1+ ,where (X=--W5- OO 2 eome

The derivative of the refractive index with respect to the frequency
is found by differentiating this equation. We have

dn ex 2ao>
2n 7iW == - (W5- w2r>. (-2w) = (oo5- W2)2

Therefore

dn (J) (X > 0am = n· (W5-0>2)2

i.e. in the region of normal dispersion the derivative of the refractive
index with respect to frequency is everywhere positive.

Now let 000 > 0>. Then n > 1, and it immediately follows from

the formula U == C dn (see the previous problem), that U < c.

n+ro dw
If 000 < 00, then n < 1. Substituting the value of the derivative
into the expression for the group velocity, we obtain

c en en
(X,002 (X,W2 (X,00 2

n+ n2+ 1+ 0n (oo5- W 2) 2 (005- 002) 2 (Wij-W2)2

We see that the number in, the denominator of the fraction exceeds
unity. And since in this case the refractive index is less than unity,
it follows that here too U < c.
41.6. Since the free electron concentration in the plasma is small,
the second term in formula (63.15) at high frequencies is much less
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than unity, and the dielectric constant is close to unity. Applying
the approximate equality 1/1 + x == 1 + x/2 (for x ~ 1), we obtain
the expression for the refractive index.

The group velocity is found by computing the derivative of the
refractive index with respect to frequency:

dn e2 noaw= f orne(i) 3

and by substituting this value into the formula for the group velocity.
Incidentally, it is easier to apply the last formula of the solution
of the previous problem, substituting ro == 0 into it.
41.8. There can be no Cerenkov radiation in a plasma because in
a plasma the phase velocity exceeds the velocity of light in a vacuum,
and because the particles responsible for the Cerenkov radiation must
move with a velocity exceeding the phase velocity of light in the
medium.
41.10. The concentration of the valence electrons in aluminium is
shown in Table 44.1 (§ 44.2). For the refractive index make use of
the result of Problem 41.6.
41.13. The transit time of the light pulse from the toothed wheel
to the mirror and back is 't == 21/c. During this time at n. ::::= 283 r.p.s.
the toothed wheel will turn through k teeth, k == ZT! T1 == Z't1l1'

where z == 720 is the number of teeth on the wheel. In this time the
toothed wheel rotating at n2 ::::= 313 r.p.s. will turn through k + 1
teeth, so k + 1 == z'tn2 • Subtracting, we obtain 1 = Z't (n 2 - nt),
from which

c === 2lz (n 2 - n1)

41.15. Make use of the data in the table of refractive indexes for
various wavelengths, choosing the spectral interval between the
yellow (5461 A) and the blue (4861 .~) parts of the spectrum. Substi­
tuting <0 = 2nc/n"A and k == 2rr/"A into the expression for the group
velocity

we obtain

u === c (nIA] -n2"A2 )

»s»« (At - "A 2)

The phase velocity is u == cl n,
4t.16. Consider the energy balance in the case when light passes
through a plate. Suppose a beam of intensity I o falls normally on the
plate. Part of it will be reflected, the rest, of intensity]' === TI 0'

where T is the transmittance (Fig. 41.16), will enter the plate. Because
of absorption, the intensity of the light which reaches the other face
will be I" == ]'e-tJ,d. Finally, the intensity of light passing out into
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the air will be I == TI II = T2I oe-lJ,d. Hence

I T2/ -Jld 1
1 oe == eJ.L(d2 - dd

T; T2I oe - ,...d ll

The half-thickness is L == (In 2)/~ (see Problem 37.9).
47.17. The transmittance of a material layer is the ratio of the inten­
sity of a beam of light passing through the layer to the intensity

~ ~~ %

10 I' ~ ~ /" I

% ~
~

%

Fig. 41.16. Fig. 41.17.

of the beam entering the layer: k = 1110 (Fig. 41.17). In the figure

r2 4n
I I = T 10 , I" = I I . r~ e -/L(r2

- r.) • I = TI" , T = (n +1)2

Substituting the appropriate data we obtain the result sought.
41.18. Suppose white light of intensity lin == A2 falls on the light
filter. At the resonance wavelength Ao the intensity of the transmitted
light will be 10 = A 2e-J.Lod. The intensity of transmitted light of
other wavelengths will be

1== A2e-Jl.d= A2e- J.L ode - a d(Ao- A)2== Ioe-adOoo-A)'l

Weare interested in the case when

I ~ 10/2, i.e. when e- a d(Ao- i.,)2~ 2- 1

Taking logarithms, we obtain ad (Ao - A)2 ~ In 2, giving Ab =
-./ln2. . 0 .. /ln2= x, ± V ado The WIdth of the spectral Interval IS I:1A ==2 V a:d.

The transmittance at the resonance wavelength is k o = IoIA~ =
= e" .....od•

41.19. From the law of absorption I = I o·2-
d/ L we obtain ~=
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log Z== log 2 ' where z = Toll is the attenuation of the beam of light.

41.20. The maximum half-thickness is L max = In 2 , where ~m1n =
flmln

== 44 ill -1 is the absorption coefficient at the wavelength of 30 X
X 10-3 A.

42. Polarization of Light

42.1. Natural light of intensity [In falls on the polarizer with the
result that the ordinary ray is absorbed completely and 10% of the

M

Nt

Optical axis of
polarizer

N

Fig. 42.2a.

N

Fig. 42.2b.

extraordinary ray is absorbed. Accordingly, the intensity of the
polarized light passing out of the polarizer is [pol == 0.51 1n X 0.9 =
== 0.4511n. In accordance with the Malus law the intensity of light
transmitted by the polarizer will be I = I pol cos2 et. Since 10%
of the light will be absorbed,

1trans = 0.9/po1 cos2 a = 0.9 X 0.451 in cos2 o:
The attenuation of light will be

I in 1 2.5
Z= Itrans = 0.9 X 0.45 X cos2 a= cos2 a

42.2. The electric field vector of the extraordinary ray transmitted
through the polarizer is parallel to the polarizer axis M N (see Fig. 42.2a).
Let us resolve this vector into ordinary ray E.L and extraordinary

./ ray E} with respect to the middle polaroid. This polaroid will transmit
only the extraordinary ray with electric field strength E1 = Epol cos cx.
Similarly, the analyzer will transmit the extraordinary ray, whose
electric field strength is (Fig. 42.2b) E 2 == E1 sin ex = Epol sin a cos cx.
The in tensi ty of the wave is proportional to the square of the field
strength vector. Therefore I == I pol sin2 a cos2 a. Noting that the
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polarizer absorbs half tho intensity of natural light, we obtain

I =-.:.i. 10 sin'' a cos- a==-.i. 10 sin 2 2a
2 8

42.3. The frequencies and phases of the ordinary and extraordinary
rays are identical, but their electric field vectors are mutually per­
pendicular, and hence there is no interference pattern.
42.4. The phase difference between the ordinary and the extraordinary
rays in a direction perpendicular to the optical axis is

2nd 2nd 2nd
~<p=-- ---=-- (no-fie)"'0 x, x,

Putting ~fP = (2m + 1) '1£/2, i.e. equal to that introduced by a quar­
ter-wave plate, we obtain

d= (2m+1) Ao
4 (no-nc>

Knowing the thickness of the plate we find the phase di fference for
the violet light.
42.5. We have ~<p' + ~<p" == 0, or

2nd' ( '_ ')+ 2nd" ( "_ ")-0A\) no ne x, no ne-

Hence it follows

d" n'. -n'
-,= ~ ~
d nO-n(\

where the prime refers to calcite and a double prime to quartz.
42.7. To brighten the field of view between crossed polaroids one
should rotate the plane of oscillations of the light wave by 90°.
We have

90°
d= (2m-1-1) ­

[aJ

43. Geometrical Optics

43.t. The paths of the rays are shown in Fig. 43.1. The separation
of the rays is

x ==0 E cos a == d cos a (tan a e - tan eto)

The angles of refraction may be obtained from the relation

sin a = no sin ao = ne sin ae

43.2. It may easily be seen that the angle of incidence of the ray
on the second face is equal to the prism angle <po The red rays will
pass out of the prism, jf nred sin q> < 1; the violet rays will be totally
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reflected, if nVlol sin q> ~ 1. Hence it follows that

_1_ ~ sin cp < _1_ , 40048' ~ <p < 41°30'
nvlol nred

43.3. The path of the rays is shown in Fig. 43.3. It may easily be

Fig. 43.1. Fig. 43.3.

shown that
(12 = 45° + al a3 == 900

- a2 = 45° - al

a == 45° - a3 == al

Hence a' == Clo.
43.4. The path of the rays is shown in Fig. 65.2 (§ 65.2). Obviously

2d
D== 2d tan allm= ----V n2 - ·1

where d is the depth of the pond.
43.5. The path of the rays is shown in Fig. 43.5. The angle of refraction
of glass is cx,2 = cp/2; the angle of incidence al may be found from the
condition nl sin al == n2 sin a 2 • The ray will be rotated through an
angle e == 2 (al - Cl2) == 2al - cpo
43.7. The path of the rays is shown in Fig. 43.7*.
43.8. Make use of the diagram of the path of rays of the previous
problem and bring the lenses closer together until they are in contact.
Then the point F1 will serve as the object for the system, the point F 2

being its image. Denoting the focal length of the left-hand lens by
al = OFI == 11, the focal length of the right-hand lens by a 2 = OF 2 ==
= 12 , and the focal length of the system by I, we obtain from the
thin lens formula

1 1 1
-r;+t;:=y

* The converging and diverging lenses in the path diagrams
of rays in this section are shown by symbols, as is the usual practice.
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Fig. 43.5.

43.9. Choose a converging lens with a focal power greater than the
magnitude of the focal power of the diverging lens, and using conven­
tional methods find the focal power first of the converging lens and
then of the system as a whole. We
obtain <l>dlv = <l>sys - <Peon.
43.10. First find the focal power
of the glass lens: (1)1 = (n1-1) X

X ( ~l - ~2 ) , where R 1 = 1 ill,

R 2 = 12 em. Then find the focal
power of the plano-co~vex water
lens: <D2 = (n2 - 1)/R2 • FInally

<I> = <P
1
+ $2 = nl -1 nt- n2

R 1 R 2

43.1I. Of course, the required
formula may be obtained from the
general formula by putting one
of the radii of curvature equal to
infinity. But this formula may
also be obtained independently by
using the diagram of Fig. 43.11. Here f = FC ~ FM = h cot cpo
In turn h = R sin cx. For the paraxial ray (h ~ R) we have sin a ~

Fig. 43.7.

~ a, sin ~ ~ ~, tan cp ~ cp. The law of refraction n sin a = sin ~
takes the form na = ~. But ~ = a + cp, where a = u«, cp = hl],
Substituting, we obtain

- h h 1 n-f
na=a+cp, (n-1) cx=<p, (n-1) R=T' <I)=Y=-R-

43.12. The path of the rays is shown in Fig. 43.12. The ray AB parallel
to the optical axis is refracted and travels in the direction BC. Draw
D02 II BC until it intersects with the focal plane of the second lens
at point E. After the ray Be is refracted in the second lens it travels
in the direction CE and intersects the principal optical axis of point F.

18-0360 ~
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Denote the distance F0 2 by x, From the similarity of triangles,
h.C02F ~ b,.EF 2F, b..C0 2F1 ~ b.02F2E, we have

CO2 F2E CO2 F2Ers::: f2- X' ft- d T
Dividing the first equation by the second, we obtain

fl-d __1_2_ giving x /2(It-d)
x - f2- x ' ft+f2- d

43.13. The path of the rays is shown in Fig. 43.13. To find x and h
one should make use of the similarity of triangles.

o

Fig. 43.11.

F

Xf2

(a-f) (a-t-x)

43.14. The path of the rays is shown in Fig. 43.14. We pass the ray
ON " AB through the centre of the lens until it intersects with the
focal plane. In this case the ray AN is the continuation of the ray MA
after its refraction in the lens. The points D and B are conjugate;
for instance B is the virtual image of point D. Hence, denoting OB =

= at OD = a2 we obtain _..!- + .! = ~. But at = R cot a,
" at a2 f

a 2 = R cot ~, where R is the semidiameter of the lens, and we obtain

R
tan ~ = tan a+ -f-

43.15. The lateral magnification is ~= hh' =~= _I_
f

•The lon­
a a-

gitudinal magnification is a=x'/x (see Fig. 43.15). To calculate it,
write the thin lens formula in. the form

_1_+_1_=J... hence a'+x'= I(a-x)
a-x a'+x' f' a-f-x

But a' = af/(a - f); therefore
, t(a-x) at

x = a-f-x a-f
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Hence the longitudinal magnification is
a==~= 12 ~2 (a-f) ~2

x (a-f) (a-I-x) a-f-x 1-x/{a-f)
For small longitudinal dimensions of the body (x ~ a - f) the longi­
tudinal magnification is ex = ~2.

CD ®

A B

D

Fig. 43.12. Fig. 43.13.

43.16. For a = 2/ the lateral magnification is ~ = 1 and the longi­

tudinal magnification is a = 1 1rtt • where r is the radius of the ball.

Fig. 43.14.

B

~--a--~~-

Fig. 43.15.

As can be seen, the longitudinal dimension of the image is greater
than the lateral dimension, so the ball will look like an elongated
rotational ellipsoid.
43.17. The focal length of a lens, both faces of which have identical
radii of curvature, is f == R/2 (n - 1). The chromatic aberration is

R nvlo1- nred
f1 = Ired - !vlo1 ==2' . (nvlo1-1) (nred -1)

The ratio of the chromatic aberration to the average focal length is
A 2 (nv lol - nred)

fay = nvlo1+ nred- 2

18*
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43.t 8. The focal power of the mirror is <PI = 2/R. The focal power
of the plano-convex lens containing water is $2 =:: (n - 1)/R. The
focal power of the system is <I> = <1>1 + 2<D 2' since the light passes
through the water twice, Hence

(1)==2+ 2(n-1)
II R

2n
R

43.19. First solution. Consider a beam of rays parallel to the ray M N.
The beam reflected from the mirror will converge at the secondary

Fig. 43.1gb.

M

lJ

Fig. 43.19c.

focus F', which lies in the focal plane. Drawing the ray DO liMN
parallel to the centre of..the mirror, we find the secondary focus F'.

o

Fig. 43.2Gb. Fig. ~_43. 21b.

The ray N K is the one we are looking for (Fig. 43.19b).
Second solution. Choose an arbitrary point M on the ray M Nand

with the aid of characteristic rays construct its image M'. The required
ray N K passes through this point (see Fig. 43.19c).
43.20. The paths of the rays are shown in Fig. 43.20b.
43.21. The paths of the rays are shown in Fig. 43.21b. First draw
the ray AA' until it intersects with the principal optical axis and
find the centre of the lens C. Since the virtual image is magnified,
the lens is convex. Draw the ray A B parallel to the principal optical
axis. It is refracted by the lens so that it passes through its focus and
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/
/

/

F

A 0:-=--__---1

its continuation passes through the virtual image. The ray A'B inter­
sects the principal optical axis at point F, the focus of the lens.
43.22. The paths of the rays are shown in Fig. 43.22b.
43.23. The problem is solved in exactly the same way as Problem 10.4,
since the law of reflection is the
same in each case. We obtain the
resul t that a parabolic mirror fo­
cuses a beam of any width at its
focal point not only a paraxial
beam. This implies the absence of
spherical aberration.
43.24. Since ideal point sources do
not exist it is impossible to obtain
an ideally parallel beam. But for
practical purposes an almost paral­
lel beam may be obtained. Take
into account the part played by
diffraction as well.

44. Optical Instruments
44.1. At a wavelength of 555 Fig. 43.22b.

nm the luminous flux corresponding
to a radiation power of 1.0 W is 683 lm, Hence we can find the power
of the flux of 1200 1m. To find the power of an identical luminous flux
at other wavelengths the value obtained should be divided by the
relative spectral sensitivity of the human eye also called visibility
factor (see § 66.1, Fig. 66.1).
44.2. To find the amplitude of the electric field strength, we can make
use of the expression for the intensity of a wave (59.8) from § 59.1:
I = Ell = E MHM/2, since a monochromatic wave is a sinusoidal
one. But lLOH2 = EoE2, so the wave intensity is 1= 1/2E~ V eo/flo'
On the other hand, the intensity of the wave is the power per unit
area:

P
[=-42nr

<I>
683K~ X 4nr2

Here I is the luminous intensity and K').. is the relative spectral sensi­
tivity of the human eye.

The magnetic field induction is found from the relation

B = lLo H ::::: f10 E V Eo/l1o = E V Eoflo:= E [c

44.4. The illuminance near the edge of the table is E = I ;: a

(r 2 _:~2P/2 • where h is the elevation of the lamp above the centre

of the table. Let us find the maximum of tho function obtained. The
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condi tion for a maximum is

We have

d

screen~

Fig. 44.5.

3
(r 2 +h2)- S/ 2 _ T h (r2 + h2)- 5/2. 2h -=0

Multiplying by (r2 + h2) 5J2 we obtain -3h2 + r 2 + h2 = 0, so h =
= rlV~ From this we can then find the illuminance at the edge and
at the centre of the table.
44.5. The plane mirror reflects
rays radiated by the lamp in the
direction away from the screen.
The result is the same as if the ·8' S
screen were illuminated by two *_~~__¥I~------41
identical light sources: the lamp 'll\~ ,

and its virtual image (Fig. 44.5). I
We have ~~-E----il-""'--~-------:~

E I I I 5 ~ -- d/2 t--
=-;]2"-- (2d)2 =7; Eo

44.6. The luminous intensity of
the lamp is expressed in terms
of its brightness and the diameter of the sphere: I = BS = rtBD2/4. The
illuminance at the point directly under each lamp is the sum of illu-

screen~

h ~---+------+-------iIIlh'

I
I

~d--~~~

Fig. 44.7. Fig. 44.8.

minances produced by this lamp and by the two adjacent lamps.
The illuminance at the midpoint is the sum of illuminances produced
by two adjacent lamps. The illuminances produced by the other lamps
are very small and can be neglected.
44.7. The maximum illuminance will be at a point on the principal
axis of the optical system (Fig. 44.7). In this case of a sufficiently
narrow beam of light the role of the concave mirror is to double the
luminous flux falling on the screen. Therefore, if the mirror is with­
drawn, the illuminance will decrease by one half.
44.8. If the object is removed far from the lens, its image lies practi­
cally in the focal plane. The magnification is ~ = h'lh = d'ld = -tId.
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14F------L-----~

Fig. 44.9.

The illuminance of the image is equal to the luminous flux <l> == IQ
divided by the area of the image 8' == 'Jth'2/4. Noting that the solid
angle is Q == nD2/4d2 , where D is the diameter of the lens, we obtain

<1> 4:nD2[ D2[d2 [ D2"ri:: 4:nd2h' 2 d2h2 f 2 =Ji2 012
But B == 41/nh 2 is the brightness of the object and R = scB === 41/h!

is its luminance. We have E = :.~: • where D2/j2 is the focal power

of the lens. Note that we have
neglected the light losses
in the lens.
44.9. According to the sign
convention formulated in
§ 65.6, the focal length \f of
diverging lens and the dis­
tance d' from the virtual
image are both negative.
Without the lens the luminous
flux is distributed over an
area So = '1tD~/40 With the
lens the same flux is distrib­
uted over an area S === nD2/4
(Fig. 44.9). ThereforeE/Eo =

. (f)(L-d-d')
=D~/D2.But Do==<pLld andD= -d' , where <pis the lens diame-

57" ~ l'A 555 X 10-9 X 1800 X 3600"
8==[)= 2X10-3

(cf.. § 66.4).

ter. In our problem d;= -I, so -7 + ~ = 7-. i.e. d' = f/2o We have

Do L E L2
[)= 2L+1 and 7;"= (2L+I)2

44.to. For a short-sighted eye ~ + d~ = $', where 11' = 9 em,

d' is the distance between the optical centre of the eye and the retina,
and <1>' is the focal power of the eye. To correct the eye-sight, glasses

with lens power $ should be worn. We have ~ + i, = $' + 11>,

where /). == 25 em. Subtracting the first equality from the second
we find the focal !power of the glasses:

1 1
<D==T-¥

44. t1. From the Rayleigh criterion sin e= 'A/D we obtain for a small
angle

"
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44.15. The paths of the rays are shown in Fig. 44.15. The ray coming
from a distant source at a viewing angle Cto should produce a real
image h in the focal plane of the objective. But the eyepiece (ocular)
is placed in its way, and the ray experiences secondary refraction,
leaving the eyepiece at a viewing angle a. To find this we apply the

Fig. 44.15.

usual rules for constructing a ray falling on the lens at an arbitrary
angle. To find the angular magnification we draw a straight line MN
parallel to the ray and obtain a segment h in the left-hand focal plane
of the eyepiece.

h h
Clearly, tan CXo = I fob I ' tan ex; = 110e I and for small angles

ex. I fob Il'~ a;-== foe

44.18. The ratio of the velocity of the ray across the negative to the
velocity of the runner is the same as the ratio of the dimensions of

.4

Fig. 44.19.

the image to that of the object. Denoting the lateral magnification

by p, we obtain Uneg = pu = U~ = U f= ;d' since when the

focal power of the objective is high the image will lie practically
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I .

Fig. 44.20.

in the focal plane. The exposure time is found by dividing the blurring

of the image by the velocity obtained: 't =~ = x<Dd.
Vneg v

44.19. A schematic diagram of the path of the rays is shown in Fig. 44.19.
Suppose the image of a point A on the negative is sharp. Then the
image on the 'negative of point B which
is closer to the lens will be a small dot
of width x. Let the distance from point
A to the lens be a, and the distance from
poinf,B to the Jens be b.

Then a' = ---.!!:L. and b' = .-!!l...- . Obvi-
a-j b-f

x b'-a' . -.
ously - = b' , where m IS the diame-, T '.

xb'
ter of the dia phragm. Hence cp= b

'
I

-a
_ bx (a- f) bx (a<D-1) ,
-, f(a-b) a-b
44.20. First one should estimate the ap­
parent depth of the pond d1 (Fig. ~44.20).
Evidently

d1 tan a
d1 = l cot B, d= l cot ex and d = tan p

. d sin (J., d
For small angles tan ex ~ SIncx" so d1 = .~ = - . From thesm n

thin lens formula we obtain ;1 + ;, = +. Therefore the re­

quired distance between the objective lens and the film is

d' = df/(d - nf)

45. Photons

45.1. The total energy radiated by the Sun per unit time is N· =
= 4'ItJR2, where J is the solar constant and R is the radius of the
Earth's orbit. The total emissive power of the Sun is

N JR2
ET = 4'ItR2 =~

8 0
where R8 is the Sun's radius. Assuming the Sun to radiate as a black
body, we obtain

ET = aT4, whence T=-f! JR2/ fJR'8

45.4. The intensity of a wave is equal to the energy transmitted through
unit area per unit time. We have

I _ 4Nhv _ 4Nhc
- nD2 - 1t'AD2
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\

m

Fig. 45.14.

a\
\
\
\
\
\
\
\

}S'-:-~__ .......... h

u

where N is the number of photons per unit time and D is the diameter
of the pupil.

The power of the source is P = 4nr2I, where r is the distance from
the source to the eye.
45.6. Since the energy of a gamma-quantum greatly exceeds the work
function, the kinetic energy of a photoelectron will be practically
equal to the energy of the photon, K.= ~ = he/A.
45.7. Emission from the cathode will stop when the cut-off potential
becomes equal to the kinetic energy (in electron-volts):

K hv-Ao he
q>= -e-= e e'A CPo

45.8. Making use of the result of the previous problem, we obtain
he (XAI-A2)

<Po = eA1A2 (x-i)

where x is the ratio of cut-off potentials.
45.12. According to the Doppler effect (see § 59.8), the frequency
of the electromagnetic wave in the laboratory reference frame is

V~
(i) = 000 1- ~ cos e

i~

where (00 is the proper frequency of the wave. But the energy and
the momentum of a photon are proportional to the frequency of .the
wave (S = tu» 'and p:=/iw/e. There-
fore the ratio between the ener-
gies (and the momenta) in the lab­
ora tory and in the source reference
frames will be expressed by the
same formula.
45.13. In the case of normal inci­
dence of photons on the mirror sur­
face, the light pressure is expressed
by the formula p = 2nhv/c = 2w,
where to is the volume energy den­
sity of the incident light. The fac­
tor 2 is due to the reversal of the
momentum of a photon in the act ~
of reflection. When the angle of in- 0 0 0 Q ..
cidence of photons is cx, the normal 0 0 V \
component of the! momentum un-
dergoes a change of sign. The ex­
pression for the light pressure is
p = 2w cos cx.
45.14. The energy of a laser light is (S and its momentum is p ===~~/e.
This momentum is transferred to the system (Fig. 45.14) and by

the law of conservation of momentum mv = p = ~. By the law of
c .

conservation of energy m;2 = mgl (1 - cos a), so v= }-/4glsi~2 ~ .
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The ·..energy of a laser light is

'S= mve= me V 4gl sin 2 ~

45.t5. The force of light pressure on an absolute black spherical
particle of radius r is

FUght = nr2w = nr21[c

where I is the intensity of the electromagnetic wave at the given
point. The gravitational force is

ymMG) 4nypr3M 8
Fgrav == R2 3R2

where R is the distance of the particle from the Sun. I t follows from
the 'equality of forces that

r=31R2/4ypcM0

But I R2 == J R~, where J is the solar constant and R 0 is the distance
from the Earth to the Sun. Hence

r = 31R~/4ypcM8

45.t6. The shift in the wavelength in the Compton effect is t:J.'A =
= 'A' - 'A = 2A.c sin2 (e/2), where 6 is the photon scattering angle.
Substituting ')~ == hc/~ and 'Ae = hlmec, we obtain

he hc 2h. 2 e 1 1 2 sin2 (8/2)
W--w;-= mec Sin "2' or y-y s,

where (go = mec2 is the rest energy of the electron. In the course
of the collision of the photon with the electron the latter acquires
an energy

A~ ==~ -'1>' == 2~2 sin 2(0/2)
~o+ 2~ sin 2 (6/2)

45.17. The problem can be solved with the aid of the laws of conser­
vation of energy and the momentum (Fig. 45.17):

~ph+~o = ~~h+V~3+ p2c2

Iph ~~h I~h--=-- cos e+p cos a, 0=-- sin e-p sin a
c c c

where ~ ph and ~~h are photon energies prior to and after its colli­
sion with the electron, and ~o and p are the rest energy and the momen­
tum of the electron. The unknown quantities ~~h and p can be elimi-
nated. from this system, and we obtain

'S~h == pc sin a/si n e
This gives a system of two equations:

~J +~ _ pcsina+"/~2+ 22
·ph 0 - sin e Y 0 pc,

'S _ pc sin (a+e)
ph - sin e
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Eliminating the momentum p of the recoil electron from this system,
we obtain

~Ph sin a /" ~~h sin2 e
~Ph+~o= sin (a, + 6) + Jt ~t+ sin2(a,+6)

After tedious hut simple transformations, we obtain the desired
expression for the energy of the photon prior to collision.
45.18. Since we are interested in the minimum energy of photons
for which the formation of Compton recoil electrons with the specified

Fig. 45.17.

momentum is possible, we must consider the case of central impact,
as in this case the momentum transmitted from the photon to the
electron is a maximum. From the laws of conservation of energy and
the momentum

~Ph+~o= ~~h+ V~~-r- p2C2,
~Ph ~~h
-;.:.;:;:---+p

c c

we obtain the expression for the photon energy:

1
~Ph=2 (pc-~o+ V~~+ p2c2)

On the other hand, the momentum of the electron may be determined
from the curvature of its track: p = eER (see § 41.2). The photon
energy is

~Ph=+ (er.RR-~o+ lft~+e2c2R2R2)

45.19. Suppose the stationary electron absorbs a photon with energy
~ph and mornentum Pph == ~Ph/C. The laws of conservation of energy
and momentum in this case can be wrlt.ten thus:

~ph
~ph+~o=V~5+p2C2, --~p

C
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Eliminating the energy of a photon we obtain ~o + pc === y ~~+p2e2.
After squaring and gathering like terms we obtain 2pe~o == 0, which
is impossible. This proves that the assumption that the electron
absorbed a photon was false.
45.20. The easiest way to solve the problem is to adopt an inertial
reference frame in which the electron is at rest. I ndeed, if a photon
is in some reference frame, it is also in any other frame, although its
energy and momentum are different in different frames (see Prob­
lem 45.12). Therefore for the purpose of solving the problem one can
choose the reference frame in which the electron is at rest. But the
mass (and the internal energy) of an electron at rest are a minimum.
To emit a photon the electron must spend some of its internal energy,
and its mass must become less than the minimum. Therefore the
emission of a photon by an electron at rest contravenes the law of
conservation of energy. The same conclusion remains valid in any
other inertial reference frame.
45.21. In principle, the photon may be detected at arbitrary points
behind the screen, but with different probabilities. If the counter is
placed a long way from the slit, in a direction making an angle e
with the normal to the screen, the probability of the photon entering
the counter will be proportional to the volume of the counter and
to the intensity of the light wave corresponding to the photon. This
intensity is expressed by the formula

I - I sin
2 a where (1.,= nD sin e

- 0 a,2 ' Iv

(see § 57.9.) Expressing the wavelength in terms of the energy of
a photon we obtain the expression for the probability of detecting
a photon:

cx,='vhere
• 2ex V SIn a,

w 0 a,2 '
'JtD~ sin e

he

45.22. For a system of N slits each of width D spaced at a distance d,
the probability of detecting a photon in a specified region is propor­
tional to the intensity of the respective sinusoidal wave passing
through the diffraction grating. It is substantially different from
the probability of detecting at the same point a photon which had
only one slit to pass through. Using the results of §§ 57.6-57.9, we can
write the probability sought in the form

,-v- V. sin2
(1., sin2 N~

w~ o---·--~-
a,2 sin2 ~

where Vo is the volume of the counter, and the auxiliary angles ex
and ~ are expressed in terms of energy of a photon in the following way:

'!tD~ sin e ~= '!td~ sin e
cx,= he P he

45.23. The photon will either pass through the polaroid, or it will
be absorbed by it. The probability of a photon passing through the
polaroid is wpas = cos~ Cl, while the probability of it being absorbed
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which gives

is Wabs == sin2 a, where a is the angle between the optical axis of the
polaroid and the direction of the electric field vector of the electro­
magnetic wave corresponding to the photon.
45.24. Prior to collision, the electron and the photon fly head-on
towards each other; after collision they will move in the initial direc­
tion of the electron's motion. The laws of conservation of energy
and the momentum will assume the form

hv , hv'
P--c-==P +-c-, ~+hv=~'+hv'

Hence it follows

~+pc=<S'+ p' c+2hv', <S - pc+2hv=~' -p'c

Multiplying, we obtain

~2 _ p2c2+2h" (~+ pc)= ~'2 - p'2 C2 +2hv' (~' - p'c)

But ~~ - p2C2 = ~'~ - p'~c~ = ~~. Hence

hv (~+ pc) == hv' (!' - p'c), or h» (!+pc) ==hv' (~- pc+ 2hv)

Multiplying both sides of the equation by the expression ~ + pc,
we obtain

h" (~+pC)2 == hv' [!~+2h" (~+pc)]

But in the ultra-relativistic case (g ~ pc (see Problem 8.12). Hence

, 4~2h"

hv == ~8+4~hv

46. Elementary Quantum Mechanics

46.1. The kinetic energy of a particle is K = ~-~o= y~g + p2C2_

- ~o from which we obtain for the momentum p = !. y K (2~o +IlK),
c

and for the de Broglie wave

A= !!:.= :=;=::;:h=c==:::::;:~
P YK(~o+K)

For K <{::' ~o, we obtain the nonrelativistic approximation:

At _ he h
nonrel - y 2~oK y 2nl,K

The error due to the substitution of the nonrelativistic formula
for the relativistic one is

6= Anonrel - A
A
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since fJ ~ 1. Hence, the error introduced by the substitution of the
nonrelativistic formula for the relativistic one will be less than 6,
if K ~ 46~o.
46.2. The kinetic energy of the particle is equal to its charge multi­
plied by the accelerating potential: K = erp, Substituting this value
for the kinetic energy into the formulae obtained in the previous
problem, we express the de Broglie wavelength in terms of the ac­
celerating potential.
46.3. We use the expression for the resolving power of a microscope
(§ 66.8), putting sin u == 0.02. We can find the wavelength from the
nonrelativistic formula, since the kinetic energy of the electron of
10 keY is much less than its rest energy which is 510 keY.
46.4. If one assumes the apertures of the electron microscope and
the ion projector to be approximately equal, the difference in the
resolving powers will be determined by the difference in the wave­
length. Assuming the accelerating potentials to be approximately
equal as well, we see that the difference in the wavelengths is due
mainly to the difference in the masses of the accelerated particles,
the mass of the electron being about three orders of magnitude less
than that of the ions.
46.5. The de Broglie wavelength for these electrons is A == hIoJ! 2mecp =
== 12.25/Y15 == 3.2 A. The first-order diffraction minimum is observed
at an angle e such that sin e == AID, where D is the width of the
slit (§ 57.9). Since the angle is very small the width of the principal
maximum is

:£ = 2l tan 6 == 21A/D

46.6. Using the Bragg law for the first-order maximum (see § 62.7),
find the de Broglie wavelength for neutrons: A == 2d sin a, where a
is the glancing angle. From the wavelength we find the kinetic energy
of neutrons (see Problem 46. f), their velocity and the corresponding
ternpera ture:

h
v---- mk:"

h2

T= 3mk).,2

46.7. The root-mean-square momentum of the molecule may be found

from the condition ~ kT = pI/2m, from which Pr.m.s. = Y3mkT

- h h
and the de Broglie wavelength A= y'

Pr.m.s. 3mkT
46.8. (1) At the accelerating potential (J)1 == 102 V the electron is
a nonrelativistic particle. I ts momentum is PI == V 2mecpl and the
velocity is VI == V 2ecpt/m. But the group velocity of the de. Broglie
wave is equal to the particle's velocity: UI = VI. The phase velocity is

c
2 V---mUl==-=C2 --

Vi 2e~1
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(2) At the accelerating potential fP2 == 105 V the electron is a rel­
ativistic particle. Its momentum is found from the condition
V ~5+p2

C
2 == ~ 0 + eq>2' from which it follows that P2==

= ~ V eq>2 (2~o + e«2) • The mass is found from the condition
c

1
m2c2== ~O+eq>2' whence m2==2" (~O+e<p2). The group velocity is

c

U
2
= v

2
= J!L = c ye<P2 (2~O+e<P2)

m2 ~O+e<p2

The phase velocity is

c (~o+ eCV2)

V e<p2 (2~o+erp2)

Note that in this case the energy is conveniently expressed not in
joules, but in kiloelectron-volts, since ~o == 510 keV.
46.9. For a particle in the ground state one de Broglie half-wave fits
into the length of the potential well: L == "A/2. The momentum of the
particle is p == hl"A == h12L. The recoil of the particle from the wall
of the well is perfectly elastic, so the change in its momentum is
Isp == 2p == hIL. The average force of pressure is equal to the product
of the change in the momentum variation and the number of collisions
per unit time:

V p2 h 2

Fav==~P·z== 2p 2L = n~L = 4mL3

p2 n2h2
46.10. The energy of a particle is ~n = 2m = 8mL2' where the quan-

tum number n, according to the conditions of the problem, assumes
the values 1, 2, 3.
46.11. The zero-point energy is ~o == 1/2hv. The energy of the first

excited state is ~1 = }h'V, so the excitation energy is ~~ = ~1 ­

- <t'o == h», The vibrational degrees of freedom will no longer be
excited when the energy of thermal motion becomes less than the

excitation energy. The usual criterion is } kT <::;; h», which yields

the minimum temperature

Tvtb ==2hv/3k == 4 X 103 K

This does not agree with experiment, since the lines of the vibrational
spectrum of hydrogen molecules are observed at lower temperatures.

This is because of the Maxwellian molecular speed distribution
(see § 25.2), which shows that a gas contains molecules whose speeds
are far in excess of the average. For instance, about 2% of the mole­
cules have speeds three times greater than the average. The energy
of such molecules is more than 9 times the average kinetic energy.
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L

46.12. The kinetic energy of an orbiting electron is K ==....!- mev2=
1 2

=="'2 mero2rl
, the zero-point energy is ~o = firo/2. The natural fre-

quency is <0= ]I~eI/me== ]IF/rneA, where F is a quasi-elastic force
and A the amphtude of the oscillator. Assuming the quasi-elastic

Uo---1----
'A

-1-1:-
&F

Fig. 46.14a. Fig. 46.14b.

force to be of the Coulomb type and the amplitude to be equal to
the radius, we obtain

ro==" / e
2

V 4neomer3

Putting K = ~o and substituting the circular frequency, we obtain
after some simple transformations

41tEoli
r= e2me

Despite certain arbitrary assumptions, we have obtained a correct
expression for the first Bohr radius.
46. t3. The probability of tunnelling through a potential barrier is

2L
w=DjDo==e-a , where a=T ]12m (Uo-e<p)

(see § 70.6) .
46. t4. In the absence of an external electric field the electron in a me­
tal is shielded by an infinitely wide potential harrier of height U0

(Fig. 46.14a). In the presence of a strong electric field of intensity E
the potential barrier assumes a triangular shape with height Uo and
width L == ~IE == A aleE (Fig. 46.14b), where A 0 is the work function.
Neglect the shape of the barrier and assume it to be rectangular.
Since the energy of the electrons in the metal is ~F, and their work
function is A o = Uo - ~F (see § 75.3), the parameter a which deter­
mines the probability of the electron tunnelling through the potential
barrier assumes the form

2L ..i 2Ao ..i-a===T y 2m (Uo-~F)= eEIi y 2mAo

tfl-0360
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47. Atomic and Molecular Structure

47. t , The approach distance of an alpha-particle to the nucleus will
be a minimum in the case of a central collision, when the entire kinet­
ic energy of the alpha-particle is transformed into potential energy:

K = U == Z4jZ2e2, where z, and Z2 are the respective atomic num-
n€or

bers.
47.2. \"le obtain the first equation from the condition that the centrip­
etal acceleration is due to the Coulomb force:

n~v2 e2

-r-= 4neor2 '
which gives

The second equation stems from the rule of orbit quantization: mer ==
= nh, Dividing the first equation by the second, we obtain

1 e2

v=-·---n 4neoli

The maximum speed corresponds to the first (principal) energy
level. Its ratio to the speed of light in a vacuum is the fine structure
constant:

1
7.3 X 10-3 = 137

47.4. From the formula ~ = heR (A - ;2) = 13.6( 1 - ,~) , we

obtain the number of the excited level: n = 3. Direct transitions
from the third level to the first, or second, and from the second to
the first level are possible. We obtain three spectral lines.
47.5. The energy of transition from the excited to the ground state
is shared by the photon and the atom: ~ = h» + D, where D ==
= p2/2M is the atom's recoil energy, and p is the momentum due
to the emission of a photon. In accordance with the law of conserva­
tion of momentum, P = Pph = hvlc, Hence D = h2v2/2Mc2 and the
transition energy is

~=hv (1+ 2~~2 )

Solving this quadratic equation, we obtain the expression for the
energy of the photon:

hv == 2(g
1+ V 1+2~/Mc2

Since the transition energy in a hydrogen atom is below 13.6 eV,
and its rest energy is 1 GeV, it follows tha t 2~/M c2 ~ 10- 8, and
so this term in the denominator may be left out without appreciable
loss in accuracy. Since, according to the statement of the problem,
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the transition is from the fifth to the first level, it follows that

(
1 1) 24

~==hcR 12--V = 25 hcI~

24hcR . . 24211, 2R2
Hence h» = 25 ,the recoil energy IS D =-= 2 X 252LV} ,the vo-

. 24hll
locity of the atom IS u= -.­

2J.ilf •

~n-.- _ Z2hcR_ ,47.6. Noting that for a hydrogen-like ion (Q ,,2 we

obtain the generalized Balmer formula

...!.-=Z2R (_1__1 )
Iv m 2 nt.

For hellum (Z == 2) we obtain

.i- =--= 4R (_1__1)
Iv ln2 n 2

The principal line of the Lyman series is the result of the transition
from the second. to the first level (m =: 1, n == 2) and of the Balmer
series (Ha) the result of the transition from the third to the second
level (m = 2, n == 3).
47.7. The diameter of the excited hydrogen atom is d == 2n2ao, where
n is the number of the energy level and ao the Bohr radius. The con­
centration of atoms is

1 1
no ~ -d3 ' or no ~ -86 3n au

Since the Balmer series is exci ted as the result of the transition of an
electron to the second level, the maximum number of the level is two
units more than the maximum number of observed lines, Hence in
a gas-discharge tube n === 14, in a celestial body n == 35.
47.9. The spectral lines in question closely resemble the first three
lines of the Balmer series of the hydrogen spectrum: 6563 A, 4861 A
and 4340 A.. To make sure that they are in fact the lines, find the
ratio of the wavelengths of the galaxy spectrum to the wavelengths
radiated in the laboratory. We shall obtain identical ratios:

Iv 6877 4989 4548 r::

~= 6563 = 4861 = 4340 =1.04a

The red shift is due, obviously, to the motion of the galaxy away
from us (the Doppler effect). \Ve have

A:=AOI/1+~, whence
r 1-~

.. / 1 --1- ~ = 1.045V 1-~

Solving this equation we find the speed at which the galaxy moves
away from us.

19*



292 Solutions

47.10. Since the muon mass is only one ninth the mass of the proton,
we should consider the proton and the muon as revolving about a com­
mon centre of mass (Fig. 47.10). To find the radii, we obtain a system
of equations:

mlVr = m2vi e
2

(1)
'1 r2 41t80a

2

a = Tl + '2 (2)

mlvirl + m2v2T2 = nil (3)

mlTI = m2r2 (4)

It follows from the first and the fourth equations that vl/TI = v21r2'
nn nli

and from the third and the fourth that VI + V2 = -- = -- .
mirt 1n2r2

~VI r2
muon

r,

02i
t>

proton 0

Fig. 47.10.

Hence we obtain the orbital speeds: v\ = nhlanu; V2 = nlilam2. Sub­
stituting this result into the first and the second equations, we obtain
the radii:

2 4nBon2
2 4nBo!i2

rl=n r2=nmle2 , m 2e
2

Hence the Bohr radii of a mesoatom may be obtained:

2 43tB on2 mp+ m"..
an=n 2 .----

e mpmJ.L
The energy of an electron occupying an arbitrary energy level 'is

2 2 2 2 2'
~ _ ml VI + m 2v2 e e e ao

n - 2 2 4n8 oan 8nBoan - 8nBoao .-;;;

~ -ncR..!:2..
an

where ao is the first Bohr radius of the hydrogen atom.
47.12. The solution is similar to that of Problem 47.10. One may make
use of the formula obtained in Problem 47.10, putting ml = m2 = mo.
We have an == n22ao, where ao is the first Bohr radius. The energy
in the ground state (n = 1) assumes the form ~l = -hcR/2.
47.13. The first potential jump takes place when the electron goes
over from the first to the second level:

~(g=hcR (_1__1)
12 22
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47.14. The orbital quantum number corresponding to the s-state
is l = o. Therefore the appropriate magnetic quantum number is also
m = O. Hence the electrons may differ only in their spin projections:
s = 1/2 and s = -1/2. Thus there are two possible sets of quantum
numbers: n, 0, 0, 1/2 and n, 0, 0, -1/2.

The orbital quantum number corresponding to the p-state is
1 = 1. Therefore the magnetic quantum number can assume three
values: m = 1, m = °and m = -1. Since there are two possible
spin projections corresponding to each magnetic number, the pos­
sible sets of quantum numbers are six in all: n, 1, 1, 1/2; n, 1, 1,
-1/2; n, 1, 0, 1/2; n, 1, 0, -1/2; n, 1, -1, 1/2 and n, 1, -1,
-1/2.
47.16. The valency of an element is determined by the number of
electrons occupying the upper partially filled electron level. All
these elements have one electron on this level.
47.17. The Pauli exclusion principle does not hold for bosons. There­
fore in a system in a state of minimum energy, all three particles
will occupy the first energy level. Since in this case their momenta
are equal, the force of pressure turns out to be three times greater.
47.18. Of the three fermions, only two (with opposite spins) can occupy
the lowest energy levels. The third fermion must go over to the second
level, and this will be the state with a minimum energy of the system.
On the second level the length of a potential well holds t\VO half­
waves, i.e, L == A. The particle's momentum turns out to be p =
= hl): == h/ L, i.e, it is twice that of a particle occupying the first
level. The corresponding increase in "force is four times (see Prob­
lem 4u.9). For the resultant we obtain

2h2 4h2 3h2

Fav = 4mLS + 4mL3 = 2mL3

47.19. The shortwave threshold is determined by the kinetic energy
of the electrons bombarding the anti-cathode: hcl]; ~ K. But the
kinetic energy of the electrons is itself determined by the accelerating
potential: K = ecp. Hence

'" >= hclecp
1

47.20. Apply the Moseley la \v in the form r== R (Z - 1)2 X

X ( 112- ;2 ). lIenee it follows

Z=1+V 3~R
Knowing the atomic number, we can easily find the material

of the anti-cathode.
47.21. The wavelength of the Ka-line for vanadium (Z = 23) may
be determined from the Moseley law. This line can be resolved only
if it doesnot lie outside the continuous spectrum, i.e. if Iva. > hclei»,

he 3(Z -1)2hcR
Hence <p > --;r-, or cp > ~ .

e/\,a, {e
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47.22. From the conditions of the problem, (Aa-A)/Aa == O.1. Hence
he

it follows that A==O.9Aa, or he/ecp=O.9Aa,. We have {p== O.geA
a

=

(Z -1)1 heR
1.2e

47.23. The angular momentum of a rotating quantum system, includ-
ing a molecule, is L == V 1 (l + 1) Ii, where 1 == 0, 1, 2, ....
The kinetic energy will accordingly be

Krot ==.!!-= l (l +1) 1i2
2J 2J

where J is the moment of inertia. The kinetic energy in the first excited
state is K 1 == 1l2/J , the angular momentum is L 1 == Ii 11 2 and the
angular velocity is

L 1 21i V2
ffi 1 = 7 = md2

Here d == 0.74 A is the distance between the centres 01 the atoms
in the molecule, and m == 1.67 X 10-27 kg is the mass of hydrogen
atom.
47.24. The energy of the molecule on the first vibration-rotational
level is

<.evib-rot _ <£'vib+ c.erot _ 11m +_!!:.
01 - 00 0 1 -- 2 J

The transition to the zero level results in the radiation of a photon
of energy (gPh == ~fot ==;"2/J. Expressing the photon energy in
terms of its wavelength, ~Ph == 2nnc/A, we obtain

A == 2nJclIi

l ==. 1, 2, .• ., '1:3where

47.25. The diagram of vibration-rotational energy levels is shown
in Fig. 47.25. There are only t\VO purely vibrational levels: ~riib =
== nw/2 and ~rih == 3nw/2, and thirteen intermediate vibration­
rotational levels:

t/; == ~ vib + ~ rot == nw -l- I (l--t-1) 11,2
l 0 l 2' 21 '

It is clear from the diagrarn that the fourteenth vibration-rota­
tional level coincides with the first purely vibrational level:

'{g _ nw L.14x151l2 31lw whence 14x15h2 -::-:noo
14 - 2"1 21 2 21

This makes it possible to determine the molecule's moment of inertia
about its centre of mass: J ~ 105 til t», On the other hand, the moment
of inertia is J == lnn riI -1- mFr~, where r H ~- rF == d is the distanco
sought between the centres of atoms and n~IIrH=lnFrF'But mF = 19mn.

Therefore rH =--= 1nrF ~-= 19d/20. Substituting into the expression for
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the moment of inertia, we obtain

For the distance between the centres we obtain

d= .. /2.1 X 103/l
V 19wmn

Fig. 47.25.

------------ Evibo

____________ Grib
1

---------- '2----------cl

47.27. The spectral lines of a helium atom are due exclusively to the
electronic transitions from one energy level to another. These transi­
tions result in a line spectrum.
In a hydrogen molecule there
is a set of vibrational and ro-
tational levels, in addition to E/4
the electronic levels (see § 74.4). t/2
Because of this the spectrum of
a hydrogen molecule consists -------------
not of isolated lines, but of
bands.
47.28. The orienta tions of the
magnetic moments of the pro­
ton and the electron may be
ei thor parallel, or anti-parallel
to one another. Therefore the
total energy of interaction of the
electron and the proton is

e2 211·uJ!pf.le
~ = ~CouJ ± ~mag= --IJ-- ± 4 3

:incur rtr

(see §§ 40.6,41.10 and Table 10 in the end of the book). The relative
error is

where ao is the Bohr radius.
Every energy level is' seen to split into t\VO sub-levels: the upper

~~ == ~ + I ~m~g I, and the lower ~~ == tb - I ~ mag I, where n
is the number of the level and I 'f!J mag I is the magnitude of the energy
of magnetic interaction. Dashed lines in Fig. 47.28 show the first
three energy levels stemming from Bohr's theory, while the solid
lines show the sub-levels due to magnetic interaction. The diagram
is, of course, not to scale.
47.2!l. The transition from the upper to the lower sub-level of the
ground state in hydrogen results in the emission of a photon with
an energy ~Ph = ~i - (gj = 2 I ~Inag I. The corresponding wave-
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-----c;
-------c;'

61 ----------

length is

'A =....!!:.:- = 431h('a~
t/;ph 4~0f!p!J-e

4n X 6.62 X 10-3 4 X 3.00 X 108 X 5.293 X 10-3 3
- =056 m==56 cm
- 4 X 431 X 10-7 X 1.41 X 10-26 X 9.28 X 10 24 •

It follows that the classical calculation does not produce the
correct wavelength, but the order of magnitude is right.
47.30. The frequency of the nearest red companion in the combination
scattering spectrum is known to be ,,~ed = "0 - flW>vib/h, of the
violet companion "iiOl= "0 + /).~vib/h, C'
where "0 is the frequency of light. But ~J --------- (J,
~~vib = h", where" is the natural fre- c~
quency of vibrations of a molecule. There- E ----------- 2

d 2 [2"fore "re = Vo - V, V1viol = Vo + v,
from which we find the natural frequen-
cy of the molecule to be

"riol_vied
v= 2

C (1 1) Fig. 47.28.
~ 2 ",vior- ",red

1 1

47.31. To make the operation of a laser possible, a mechanism of stim­
ulated emission must be provided which produces absolutely iden­
tical photons. The photons must have identical frequencies (energies),
identical phases and identical spins (i.e. their polarization must be
identical). This is possible only because photons are bosons and there
may be an unlimited number of them in the same quantum state.
Fermions, on the other hand, obey the Pauli principle, which forbids
the presence in a system even of two particles with identical quantum
numbers. Consequently, there can be no induced radiation in a system
made up of fermions. Therefore a laser operating on fermions is not
feasible.
47.32. The lowest angular divergence can be found from the. condition
29 ~ 2'AID.

48. Quantum Properties of Metals and of Semiconductors

48.3. Find the total energy of the electron gas W = i n~F V, where

V is the volume of the metal. Imagine the gas compressed by a small
amoun t dV. This wfll require work against the forces of pressure equal
to ~W = -P dV, where P is the pressure of the electron gas. This
work is equal to the change in the energy of the electron gas ~W =
= dW. To find the differential of energy let us express the electron
gas concentrationIn terms of its ·volume: n == N/V, where N is the
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total number of electrons. We have

w:=l- N~ (2-) 2/3 N2/3V-2/3
5 2m 8rt

Differentiating, we obtain
2 3 h2

( 3 ) 2/3
dW== -3X"5 2m 8'1 N5/3V- 5

/
3 dV ==

2h2
( 3 ) 2/3 2

= - 5m 8n n fJ
/
3 dV = -5 n'fgF dV

The pressure of the electron gas is P = } n~F

48.4. Making use of the result of the previous problem, we obtain

p == 2h
2 (2-) 2/3 N5/3V- 5/ 3

5m 8n
which yields

PV 5j 3 :.::.-: const

The "adiabatic index" is '\' == 5/3.
48.5. The pressure in the "white dwarf" is due to gas consisting of free
electrons and of helium nuclei. These particles are in a degenerate
state, like free electrons in a metal. The mass of an electron is almost
1/8000 the mass of a helium nucleus. Therefore the Fermi energy
of the electron and the pressure of the electron gas are 8000 times grea­
ter than the corresponding quantities for helium. Hence the helium
pressure may be neglected. Making use of the result of the previous
problem for the pressure of the electron gas, we obtain

PV5/3=-.:~ (2-)2/3 N 5/ 3
5me 8n e

There are two electrons to each helium nucleus, so N e == 2Na ::=

= 2M/rna, where AI is the mass of the star, and rna, == 4.002 X 1.66 X
X 10-27 kg is the mass of a helium nucleus.

Hence PV6/ 3 == AM6/3, or P = A p5/ 3 , where

i» ( 3 ) 2/3A= - =3.2x1U6 Pa·rnS·kg5/ 3

s», (ma,/2)6/3 8n

48.6. The number of electrons rising above the Fermi level is es-

timated with the aid of an approximate formula tJ.~!:=::: 2~F
(see § 75.7).
48.7. The specific heat of a kilomole of electron gas is C~ == Rk T/2~F

'(see § 75.8), the lattice heat is c~t = 3R (see § 45.2). We have

C~/C~t == kT/6~F'
48.8. The mean free path is found from the quantum expression for
the electric conductivity: l' = e2n'A/PF (see § 75.9). The Fermi momen­
tum is found from the known concentration of conduction electrons.



298 Solutions

The interatomic distance is found from the concentration of atoms:
d = n"A 1

/
3 = 2.3 A (see § 44.2).

48.9. Let the concentration of pairs in the superconductor be n' == n/2.

Then the current will be i = qn'Sv = 2e i- S 2~e ' where p is the mo­

mentum of the pair. According to Bohr's rule, the angular momentum
is quantized: pr = NIi, where N = 1, 2, 3, ." .. (the principal
quantum number). We have for the current

nS en
i==N-.--

r 2,n e

where S is the conductor's cross section, and r is the radius of the
ring. Clearly the current is quantized: i == N if)' where io is the mini-

nS en
mum current i o == - • -, r 2m2

Since the magnetic flux is proportional to the current, it too turns
out to be quantized:

<D = Li = N Lio = N<P o
where L is the inductance of the ring, and <Po is the minimum magne­
tic flux. Rigorous theory yields <Do = h/2e = 2.07 X 10-1 5 Wb.
48.10. The electric conductivity of electronic (N-type) semiconductors
is proportional to the number of electrons in the conduction hand.
In the assumption that the transition probability of the electron
from the valence to the conduction band can be computed with the

aid of a barometric distribution, we obtain n = Ae-Ii.~/kT, where /),.~
is the forbidden band width (see §§ 26.11, 34.3, 35.1). Hence we obtain
for the electric conductivity

1'= e
2 AA e-h'fJ/hT =Be-~'t5/kT
PF

where B is a constant characteristic of the material (at a specified
temperature).
48.11. The mean free path of the electron is much less dependent
on the temperature than the exponential term, therefore the tempera­
ture dependence of the factor B can be neglected in the first approxi­
mation. We have

e-~ rJ/k T 21!-=__~_
'\'1 e-tltJ/hT1

48.12. In the case of intrinsic conductivity, the electron and the hole
concentrations are equal. Therefore 'V = en ib ; + b_), where b; is
the mobility of holes ann. b: is the mobility of electrons. Hence n ==

'\'
e(b++ b_} .
To find the Hall coefficient, note that the Hall potential difference

of the electron and the hole components are of opposite signs {see
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§ 44.2). \Ve have
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RH=R(-> -R(+> = b_-b+
H H y.

48.13. Since indium is a trivalent element, the indium impurity acts
as an acceptor and produces hole-type conductivity. Knowing the
concentration of holes and their mobility (see Problem 48.12), we
obtain l' = en+b+. Antimony is a pentavalent element, so the anti­
mony impurity acts as a donor. The electric conductivity is l' = en.b.i.

49. Nuclear Structure

49.2. Solve the system of two equations:

10.013 x + 11.009 y == 10.811; x + y = 1

where x and yare the fractions of the light and the heavy isotopes,
respectively.
49.3. The radius of the nucleus can be estimated from the formula
R ~ Ro VA (see § 80.6), where Ro == 1.4 X 10-15 m and A is the
mass number. The height of the Coulomb potential barrier is Uo ==

Ze
2

h Z' h . b== -4R' were IS t e atomic num era
nEo

49.5. The binding energy of the tritium nucleus 11-13 is ~ IH3 ==
== (1.00783 + 2 X 1.00867 - 3.01605) X 931.5 = 8.5 MeV. The bind­
ing energy of the helium nucleus 2He3 is ~2He3 == (2 X 1.00783 +
+ 1.00867 - 3.01603) X 931.5 =7.7 MeV.
49.6. The number of alpha-disintegrations is obtained by dividing
the change in the mass number by 4, which is the mass number of the
alpha-particle. We have

226-206
4

5

After five alpha-disintegrations the decrease in the atomic number
will be 10, and ZR1 - Zph == 88 - 82 = 6. It Iol lows from this
that there are in addition four beta-disintegrations, each of which
results in a unit increase in the atomic number.
49.7. The transition energy is equal to the difference between the
energy of the original nucleus and the rest energy of the reaction
'Products:

~ = [209.93297 - (4.00260 + 205.97446)] X 931.5 = 5.5 MeV
This energy is equal to the sum of kinetic energies of the alpha-particle
and the recoil nucleus (see § 17.2): 0 -== Kry" + Kph and Ka./KPh =

== Mpl/Ma.'
49.8. The sum of the masses in the final stage of the possible reaction
exceeds tho mass of the original nucleus. The reaction is impossible
because it contravenes the law of conservation of energy.
49.9. See the previous problem.
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49. to. The mass of a silicon nucleus exceeds the mass of a phosphorus
nucleus by Sm == 30.97535 - 30.97376 = 0.00159 amu, the corre­
sponding energy being !1~ == 0.00159 X 931.5 = 1.48 MeV. This
exceeds the electron rest energy (0.51 MeV), and therefore beta-decay
is possible:

14Si31~ 15 P 31 + -1eO+ oV°
The total energy of the beta-particle and the antineutrino is

1.48 MeV.
49.11. Let the kinetic energy of the extracted neutron be zero. Then
the work needed to extract a neutron will be equal to the difference
between the total energy of the reaction products and the rest energy
of the original nucleus:

!:Ja'€J == (12.00000 + 1.00867 - 13.00335) X 931.5 = 4.96 MeV

49.12. To evaluate the probability, apply the formula

2R
w=e-a , where a=-/i- V2m(Uo- K )

Here U° is the height of the Coulomb barrier, and K is the kinetic
energy of the alpha-particle. For data on the radius of the polonium
nucleus and on the barrier height see Problem 49.3.
49.13. The activity of the specimen is equal to the number of decays
per unit time: :

dN '
Q == - de 'AN (see § 81.4). The ratio of the activities is

t2- t t

:c=.!l.!.-=.!!...!..= e-A( t 2- t1) ==2 - - T -

Q1 s.
Knowing the half-life, we can easily compute the decrease in the

activity.

49.15. Knowing the activity Q='AN and noting that 'A= 1~2 =
= O.;9~ ,we find the half-life T = O.693N/Q. The number of nuclei

is N = mNAlA, where m is the mass of the specimen, A is the mass
number of the isotope and N A is the Avogadro number. Finally
T ==O.693mNAIAQ.
49.17. We might at first reason that the energy of gamma-photons is
~'\' = 5.30 - 4.50 == 0.80 MeV. However, this estimate is too rough,
since it takes no account of the recoil energy of the nucleus. Certain
problems in nuclear physics demand a much higher accuracy. Consider
the energy level diagram for the case of polonium decay (Fig. 49.17).
The letter Ph* with an asterisk denotes the excited lead nucleus
which emits gamma-photons. The total energy of the transition is
~l = KIa. + R 1 , where KIa. == 5.30 MeV, and R I is the recoil energy
of the nucleus. Since R 1 == 4K1a./206 (see § 17.2), it. follows' .that

~l === 5.30 + (5.30 X 4/206) = 5.40 MeV
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II Pb*____ L... _

P02JO
84

Similarly, the energy liberated in the course of the second transition is
02 = 4.50 + (4.50 X 4/206) == 4.58 MeV

The energy of the gamma-photon is
t5 v = ~1- ~ 2 = 5.40-4.58=.:::0.82 MeV

Note that because the mass of the lead nucleus is large, we can neglect
the recoil energy resulting from the emission of a gamma-photon.
49.18. This problem is similar to
Problem 47.5,~ but because the
energy of the gamma-photon is
much higher than that of an
ul traviolet photon, the recoil is
in this case much greater. Since
the energy of a gamma-photon
is ~'V == 14.4 keY, and the mo­
mentum ispv = ~vlc, the recoil
energy is 'iR = p~/2M =
= ~~/2Mc2 • Therefore the transi­
tion energy is

~=i/;:'V+~R=~V (1+ 2;'I'c2 )
. 82 Pb206

The relative change in energy is .
_ ss; ~y FIg. 49.17.

B- Gv - 2Mc2·
The natural relative line width is 6na t == nl't~v' where 't is the

lifetime of the nucleus in the excited state.
49. t 9. The absorption of a gamma-photon by a free nucleus results
in it acquiring a momentum equal to that 'of the photon and, conse­
quently, a kinetic energy ~R = p~/2M ~ ~~/2Mc2. Therefore the
energy of the absorbed photon is ~~b = ~ + ~R, where ~ = ~v +
+ ~R is the energy of the transition, and ~1' is the energy of the
emitted photons. Hence

~~b= ~i'+2(jh = ~'I' (1+ ;:a )
This distorts the resonance absorption. If we start bringing the source
and the absorbing substance closer together, the gamma-photon's

energy increases because of the Doppler effect: ~~ = ~'I'l/~+: ~
~ 0V (1 + ~). At a certain speed we obtain ~~ = ~~b, and resonance
absorption sets in. We have

~'I' (1+ ;:2 )= ~'I' (1+~), giving ~= ;:2 I and v = ~c= ;~
~9.20. "The decay probability is the ratio of the number of the nuclei

that h~veexperienced decay to the total number of nuclei: w = _ d: .
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dN
It is proportional to the time of observation, w = A dt, i.e. N

-A dt, \\'e have

r dNN ~..- _~ r dt,J flwJ so InN+C:=::-·'At

At the initial point of time t == 0, N == No, so In No + C == 0
and C = -In No. Substituting this into the above formula, we obtain

InN-lnNo=--At, or N=Noe-'At

49.2t. According to § 16.6, the kinetic energy of the neutron is K ~

~ h2/2ma2 ~ 0.2 MeV. It may be seen at first glance that only very
fast neutrons can penetrate the nucleus, but this is in contradiction
with experiment. However, it should be taken into account that in the
nucleus the neutron is not a free particle, but interacts strongly with
the other nucleons (nuclear forces). The mean binding energy per
nucleon (§ 80.4) is known to be several mega-electron-volts, which
greatly exceeds the localization energy calculated above. This enables
all the neutrons, including thermal ones, to penetrate the nucleus.

50. Nuclear Reactions

50. t. The number of the nuclei that took part in the reaction is N =
== mNAIA, where m is the mass of uranium reacted, N A is the Avo­
gadro number, and A the mass number. Multiplying the number of
the nuclei by fj,'e = 200 MeV, we obtain the energy of the explosion:

Dividing by the calorific value of TNT, q, we obtain the TNT
equivalent: mTNT == wt«
50.2. The energy released is found from the masses equation:

/1~ == (6.01513 + 2.01410 - 2 X 4.00260) X 931.5 ~ 22.4 MeV
The energy release per nucleon is 22.4/8 = 2.8 MeV. This is three
times as much as is released in fission of uranium: 2001235 =:: 0.85 MeV
per nucleon.
50.3. To initiate the nuclear reaction, the deuterium nuclei must he
brought together to within the radius of action of nuclear forces.
To do this they must surmount the Coulomb potential harrier (see
Problem 49.3). Take account of the Maxwellian distribution (see
Problems 33.10 and 47.26).
50.4. Let the pi-meson be at rest in some reference frame. Then its
momentum is zero. If a pi-meson decays into two photons, they will
fly in opposite directions, so that in this reference frame the com­
bined momentum will be zero although each photon separately has
momentum. The transformation of a pion into a single photon is
impossible, since it contravenes the law of conservation of momentum.
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L\Vb = (inn - ln~l) X 931.5 =-=

:=140-106=34 l\IeV

The energy of each photon is ~''V = 135/2 = 67.5 l\1eV (see § 83.7).
50.5. From the uncertainty relation for the energy we obtain t!:t.C6' ~
~ hl», where 't is the Iifctime of the particle. The accuracy with which
the mass (and the energy) can be measured is

8.= :1In == t1 ctJ ~ ~
m tJ ~T

50.6. From the law of conservation of energy we obtain for the gamma­
photon e1' ~ 2moc2, where mo is the rest ll18SS of an electron.
50.7. Suppose that the photon produces a pair of particles with iden­
tical momenta (Fig. 50.7). In this ease the laws of conservation of
energy and the momen tum will be wri t­
ten in the form

~ph=2mc2, ~ph/c=2mvcosa

Hence 21nc2 = 2mvc cos Cl, or c = v cos a;
which is impossible.
50.8. Find the total energy released in
the reaction:

The rest energy of a muon is Fig. 50.7.
~Of.L = 106 MeV, the rest mass of a neut-
rino is zero. Assuming the dacaying pion to beat rest, we obtain
that the muon and the neutrino momenta are equal in magnitude
and opposite in direction. We have

Pv== <tb v , pJ.l==~VKJ.I.(2~oJ.t+KJ.1)
C C

which yields

~ V :"= 1/ KJ! (2~oJ.L -]-- KJ!)

But, from the law of conservation of energy ~.'V == il'fD' - KfJ,' so
~0 - KJi = V K~ (20oJ! + K~t). Hence it follows that the kinetic
energy of the muon is

(~~)2

K ~ == 2 ( Vb Of.L -+ ~ tb )
50.9. The decay of a-neutron results in the release of energy

~'/!; = (mn - m,p) X 931.5 = 939.6 - 938.2 == 1.4 MeV
This energy is shared by the electron and the antineutrino: I':i~ =
== ~e + ~--, where the total energy of the electron is the sum of its

v
rest energy ~0 and its kinetic energy K r , i .e. ~e == ~o -t- Ks, In
accordance with the law of conservation of momentum for a proton
at rest

or 'fb v =.i- V~~- t5~
c c
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Substituting the value of the neutrino energy, we obtain after simple
transformations

Li

Fig. 50.11.

p

2Ka, = (NIH-1-l'rfLl-
-2Ma,) X 931.5-t-KH == 24.2 MeV

Since the kinetic energy of the
alpha-particle turns out to be much
lower than its rest energy, the alpha­
particles produced in the reaction
are nonrelativistic. The separation
angle is found from the law of
conservation of momentum

8
PH=:: 2Pa cos 2

But for a nonrelativistic particle
p == V2mK, so

50.10. Let us denote the total energy of the neutral pion by ~n and
its rest energy by ~o == 135 MeV. By the law of conservation of energy
0n == 2~v, where ~v is the pho-
ton energy. From the law of con-
servation of momentum (see Fig.
50.10) we obtain P« == 2pv cos 45°.
Noting that the photon momentum
is Pv == ~vlc and the pion momen- Ji.o

tum is Pn. == ~ -V~~ - e~, we ---<>----~
c

obtain

~~- ~~==4~~ cos 2 45°, or, ~~ ­
- ~~= ~i cos- 45°
It then follows that ~n = ~o -Vi Fig. 50.10.

The kinetic energy of the pion
is Kn. = ~o (V2 -~1) and the photon energy ~s ~v =~o/V2:
50.11. The nuclear reaction takes the form IHI + aLi? == 22He

4 •

The kinetic energy of the alpha-particle is found from the law of
conservation of energy which for
this reaction is of the form

cos~=..!-. .. /' mHKH
2· 2 V m~K~

50.12. The equation of the reaction is of the form _leo + Ipl -+ onl ++ ovo. Since we assume the neutron produced in the reaction to be
at rest, the electron momentum is completely transmitted to the
neutrino. The laws of conservation of energy and the momentum
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will be written in the form

Pe=P'V, ~e+ ~uP= ~on+ ~v

Since the rest mass of a neutrino is zero, its energy is

~v=P'VC=PeC=V~~- ~~e

Hence

305

~e+ ~oP= ~on+ V~:- ~8e

Solving this equation, we obtain for the total energy of an electron

~e = ('iJon - ~ Op)2+ ~~e
2 (~on- ~op)

The kinetic energy of the electron is

K - ~ 'f, - (~on- ~oP- ~oe)2
e- e- oe- 2 (~on- ~op)

Substituting the respective values, we obtain the desired result.



ANSWERS AND HINTS

I, Ktnematies of a Particle

f.f. t == 7 s: x = 35 m, f.2. t = 60 s: x == 90 m.
1.3. t = 7.5 h; x = 600 km. 1.4. sin a == ulv; t = llu cos a.

. n cos ~
1.5. ex = ~ -- arc SID • 1.6. a == n/2.

v
t.7. 35 min. 1.8. 30m/s; -2 mls2 ; 4125 ID.
1.9. Hint. Make use of the definitions of acceleration and average

velocity in the case of motion with constant acceleration.
1.10. 1.6 X 10~ m/s2•

2. Force

k1k2
2.1. k= k

1+k2
• 2.3.

2.4. d = F 2al (Fi - F,J.
PeDs a 2

2.6. TI == . ( + )'SIll al a 2

mg sin ~

2.7. FI == sin (a+~) ,

2.8. »«. mg and 2mg.

F t Xt+F 2X 2 + F Sx 3 + ...
Xo= F1+F2+Fs + ... ·

2.5. k = k1·+ k2•

T = P cos a l

2 sin (a l +cx 2) •

F = mg sin a
2 sin (a+p) •

3. Particle Dynamics

3.1. 8.4 X 107 Pa.

3 2 - m2-ml F- 2mlm2g. • a-g ,- ,
m2+ml m2+ ml

3.3. It is greater in the second case.

F pres = 2F.
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3.4. (1)

(2) m (g+b)
a2 m+M'

m (g-b)
(3) as= m+M '

3 5 - -m- M sin a F
· · a-g m+M '

mMg (1+sin a)
m+M

3.6. a = _g m2
1 m2 tan a +ml cot a '

Q

M sin a cos a
3.7. ax==g M+msin2a '

(M +m) sin2 a
ay=-g M+msin2 a

b = _ m sin a cos ex. •
x g M +msin2a'

mMg
Q== M+msin2cx '

.. /l cos cx lo
3.8. T=2n V-g- . 3.9. l== 1-mro2jk. 3.10. 39°12'.

3.11. In the lower point the overload is 8, in the upper it is 6.
r r 1

3.12. H == 2 cot~ ex.; T ~2 cot a.

r 2 3/2 2 2 • A ( A
313 - (1+ X ) 315 b- voslnpCOSa- p)

• · r-p -2 • •• - 2 •P g cos a,

3.16. Vo== VgH (1+ l2jH2) ; tancx=Hjl.

4. Gravitation. Electrical Forces

4.1. 5.96 X 10~~ kg. 4.2. 6.03 X 1024 kg. 4.3. 1.99 X 1()3o kg.
4.4. The Sun attracts the Moon 2.1 times more strongly than does

the Earth.
4.5. 0.63 astronomical units = 1.08 X 108 km.
4.6. 0.414 of the planet's radius.
4.7. 8.52 mjs2; 1.62 m/s"; 270 mjs2. 4.8. 1 h 25 min.

4.9. 4 X 10-8 C. 4.10. E = 0; E = q V~ .
nBoa

20·
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(3)

4 13 - .. /- eEL cos ~ 4 14 4!) 104 N C· .vo-v mcosasin(a-~)· ...tJX /.

4h mV5 sin" a < E < mV5 sin 2a
4.15. 0 < tan ex < -l- ; 2eh el

5. Friction

5.1. 2 s; 4 m.

5 2 (t) == (m-!J.M) g F == mMg (1+J.1) .
•• at m+M' 1 m+M '

(2) m(g+b)-~Mg F _ mM[g(1+J.1)+b]
a2 === m+M ' 2 - m+M

m (g-b)-J.tMg F _ mM [g (1+~)-b]
a3= m+M ' 3- m+M ·

m-M(sina+~cosex.). .
5.3. a==g m+M · [Hl,nt. In solving the problem

one should take into account the initial velocity of the block.]

mlm2g cos (ex.-cp) t5.4. Q= · q> == arc an u,
ml cos- ex cos <p +m2 sin ex. sin (a-cp) ,

[Hint. The force of sliding friction of the wedge against the
table should be included in the equation of motion of the wedge
(Problem 3.6).]

mMg cos a cos <p
5.5. Q== M cos <p+ 1nsin ex. sin (a-<p)·

5.6. Q= mMg co~ (a~qJ)( • [Hint. See Problems 5.4 and
M cos cp+ m SIn a SIll ex.-cp)

5.5.]
5.7. g tan (a, - cp) ~ a~ g tan (a + <p), where (p == arctan p.. [Hint.

Note that the direction of the force of static friction is not known.]
5.8. At a distance less than 8 cm from the centre of the disk.
5.9. Over 11 m/s.

5 10 .. /' g tan (~-<p) ~ to ~ .. /' g tan ~a+<p) where m==arctan 11..· · V R SIll ex. ~ ~ V R SIn ex. , -r r

[H tnt, Take into account the fact that the direction of the
force of static friction is not known.]

5.1t. 98m; 57°. 5.12. 23 cmls; 5.1 m/s2; 0.09 5; 1 em.
5.f3. Hint. Making use of the results of the previous problem, express

the instantaneous acceleration in terms of the instantaneous
velocity.

5.4. 0.2 m/s; 15 s, 5.15. 11 m/s.
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6. Theory of Relativity

6. f. II into Compare the dimensions of the rod and of the hole which
at rest are precisely the same.

6.2. B = uv/c2• 6.3. 0.99995c.
6.4. Hint. Does the result obtained have the meaning of the law

of addition of velocities?
6.5. Hint. Consider the reference frame fixed to the medium which

moves at a speed u with respect to the source of light.
6.6. Hint. Make use of the results of the previous problem.
6.7. 55 m; 7.7 m. 6.8. 6.3 X 10-5 s. 6.9. 2.83 X 108 m/s.
6.fO. p = pJ(1 - ~2), where ~ = ole,
6.11. Hint. Make use of the Lorentz transformations.
6.12. 2.6 X 108 m/s; 5.3 X 108 m/s.
6. t 3. The particle moves in a circle. The expression for the force

will be formally the same as in Newtonian mechanics.
6.t5. l = lo Vi - ~2.

7. The Law of Conservation of Momentum. Centre of MIlSS

7.1. 670 m/s. 7.2. -3.25 mls; 9.3 m/s. 7.3. 87 em.
7.4. 20 m/s2•

7.5. 8.1 km/s; 5.3 km/s. [Hint. Make use of the Tsiolkovsky formula.]
7.6. Hint. Write equation (15.7) of § 15.5 in differential form' and

integrate it, keeping in mind that the velocity of the exhaust
gases is a constant.

7.7. Hint. Take into account the change in the rocket's mass as the
fuel burns.

7.8. Hint. Make use of the properties of the centre of mass (§ 15.8).
7.10. The centre of mass is at a distance of 4.3 units from the left­

hand edge of the plate.
r 2

7.11. At a distance of x == R + r == 1.13 em to the left of the centre

of the large circle.
7.16. T2/R3 = 4n/y (ml + m2) .

8. Total and Kinetic Energy

8.1. Electron: 8.19 X 10-14 J == 0.511 MeV; proton: 1.504 X
X 10-10 J = 938.3 MeV; neutron: 1.506 X 10-10 J = 939.6 MeV.

8.2. 2.6 X 108 m/s.
8.3. 1.28 X 10-13 J = 0.8 MeV; 6.4 X 10-~~ kg -ttsls.
8.4. 5.8 X 10-18 kg .m/s; u = ~c = O.996c.
8.5. u = ~c = O.976c. 8.6. 0.8%; 69%; 92%.

8.7. 3.8 m/s. 8.8. ct== arctan -.!- . 8.9. 2.7 X 102 kW.
~

8.10. Hint. The work done by the electrical forces is equal to the
change in the kinetic energy.

8. f 1. Less than ~5 [Zpc,
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9. Uncertainty Relation

9.1. Hint. Express the kinetic energy of the electron in terms of the
radius of its orbit; assume the characteristic dimension of the
region of localization to be equal to the radius.

9.2. 200 MeV. 9.3. 1 eVe 9.4. 9 MeV.

10. Elementary Theory of Collisions

to.1. Horizontally at a speed of 3.1 m/s. 10.2. 0.14 MeV.
10.4. The distance from the vertex of the parabolic mirror to the

focus is f = p/2. [Hint. Use the result of Problem 3.14.]
10.6. 83°; 43°.

10.7. V1 == vd/2r; V 2 == v V1-(d2 /4r2 ) ; sin a2 = d/2r; al +a2 == '1t/2;
[Hint. Use the result of Problem 10.5.]

. d 21111V cos (X,2
10.8. slnct2 =- + ; V2= + ;

Tl T2 ml m2

_ ... /" 1 4m1m2 cos2
cx,2

°1-
V V (ml +m2)2 •

[Hint. See solution of the previous problem.]
10•.9. p = 2nmv2 cos2 a. to.10. 5 m2 •

10.t1. The ratio of the distances is l21l1 = 1 + ~2 sin2 a.

11. Potential Energy. Potential

t 1.1• Hint. A field is said to he uniform, if the forces acting on an
object have the same magnitude and the same direction at
all points of the field.

ymM "(mM ymM
11.3. U==--r-=- R+h; Usur-==--R-==-mgR.

"(mMh R "(mM
tt.4. U== R(R+h) ==mgh R+h; Uoo==-R-=mgR.

t1.5. U = -p:/41t8od3 • 11.6. 1.65 MI. 11.7. 27.2 v.

11.8. -13.6 eVe 11.9. p= ,1"2mqq>; p ==..!- V q<p(2~0+q<p) •Y c

11.10_ For the electron 105 V, for the proton 2 X 108 v.
11.11. 1 MeV/e = 5.33 X 10-2~ kg -tol». For the electron 101 V t

for the proton 2 X 1010 V.

12. The Law of Conservation of Energy
in Newtonian Mechanics

12.1. 5.20X 10' ta}«. 12.2. 17 tals: 12.4. V5gl.

12.5. V 4gl. 12.6. mg (3 cos a- 2 cos ao)·



Answers and Hints 311

2
12.7. mg(3cosa-2); <Xref=arccos 3=48°.

12.8. 3mg (1+cos a).

12.9. (1+ V2) R ~ H ~ 2.5R; 45°, 60°.

2 1 Ro
== _ 2roKo ., ToKu • voW

t · o. u0 ra=:- -W-' Va zrz:~ •

12.11. Hint. Use the results of Problems 10.4 and 2.18.
12.12. Hint. Consider the change in the kinetic and potential ener..

gies of the interacting bodies for any possible displacement
(the principle of virtual displacements).

12.13. See Problem 12.12. 12.t4. 0.83 tonne; 15.6 tonnes.
12.15. 9 km.

13. The Law of Conservation of Energy

13.1. 2.5 km/s. 13.2. 89%.
13.3. 3.8 X 1026 W; 4.2 X 109 kg/s; 1.5 X 1012 years = 4.7 X 109 s.
13.4. A half of the initial kinetic energy is transformed into inter-

nal energy.
13.5. O.218Mo• 13.6. (1) 4.7 GeV, 7.2 GeV; (2) 12.1 GeV, 65.8 GeV.
13.7. 3.46. TeV [Hint. Use the results of the previous problem.]
13.8. 1 GeV.
13.9 Hint. Compare the accelerating potentials needed to obtain

the same internal energies of the bunch.
13.10. 157 GeV; 886 MeV.

14. Rotational Dynamics of a Rigid Body

f 4.1. Hint. Draw the axis of rotation perpendicularly to the plane
through an arbitrary point in the plane of the forces. Compute
the moment of each force about this axis and find their sum.

14.3. 1.3X102 N·m. 14.4.4 kJ. 14.5. ~ MR2.

14.6. ~; mR2. [Hint. The cut is considered as a negative mass.]

14.7. Hint. Divide the disk into thin concentric rings.
14.8. O.4MR2.
14.9. 0.3 MR2. [Hint. Divide the body into thin disks perpendicular

to the axis of rotation.]

14.12. V== V3gl (cos a-cos a o). 14.13. 2.7 m/s; 3.4 ta!«.

14.14. 2.3 tal», 14.15. 2.5 X 102 N. 14.16. 3.5 s; 0.58 tal«,

14.18. a ==arccos 0.59 = 54°.
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14.19. 83 r.p.m. 14.20. 21.6 r.p.m.: 380 J.
14.21. 15 km; 10-3 s. 14.22. 3.6 X 1046 J; 1.6 X 1036 J.

15. Non-inertial Frames of Reference and ~Gravitatiol1

15.2. Hint. In a rotating frame of reference a centrifugal force of
inertia acts on a body at rest in this frame, the force being
equal to the product of the mass and the centripetal accel­
eration, taken with the opposite sign: I cr == -mro2r.

15.6. ro~ VVM/R3. 15.7. 28 s.

a .. /" mro2 .. /"2:k
15.8 .. tan 2= V 2k; romax ~ V 19m·

15.9. Hint. Introduce a rotating frame of reference and use the
result of Problem 3.14.

ts.u. 7 r.p.m. 15.12. 330 DS.
15.13. The Sun: 2.1 X 10-6; the white dwarf: 1.5 X 10-3 ; the pul­

sar: 16%.

16. An Ideal Gas

16.3. On the Moon 1 mm Hg = 22.1 Pa; on Venus 1 mm Hg ==
= 116 Pa.

16.4. 5.1 mm; 40% .. t6.5. 5830 r.p.m.; 64 m/s; 9%.
16.6. Hint. Compare the velocity of thermal motion of the hydrogen

atoms with the escape velocity. .
16.7. 180 km [Hint. Use the result of Problem 4.7.]
16.8. 104 Pa; 0.24 mm. t6.9. 6 X 1013 Pa; 6 X 106 K; 1030 m :".
16.fO. See hint for Problem 16.6.
16.t1. 1.3 X 10-6 kg/m"; 0.8 Pa == 6 X 10-s mm Hg.
16.12. 2 X 106 N; 7 X 104 N. 16.13. NH s.
16.t5. 1.2 X 106 Pa. 16.16. 72.5% nitrogen and 27.5% oxygen.
16.17. N A = (5.9 ± 0.3) X 1026 kmole", [Hint. The Brownian

particles behave like gigantic molecules, and the barometric
distribution is valid for them.]

16.18. n == noe 2k'l'.

{
(M2- M t ) ro2r2

}
16.t9. n2:nt=176:1; x=exp 2RT =1.27.

16.20. 20 times. [Hint .. ·See § 27.9.].

16.21. Hint. Note that by definition e= lim (1+x)1/x.
X~O

16.22. Hint. Find the forces acting on a vertical gas column of in­
finitesimal height and integrate the equation obtained.

16.23. Hint. Using the barometric distribution find the molar mass
of the gas.
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17. The First Law of Thermodynamics

313

17.1. By 9 kJ; 6 kJ. 17.2. 1.52:,kJ.
17.3. Helium:

3.10 X 103 ~ <v ~ 3.20 X 103 J/(kg.K); 5.17 X 103 ~ "» ~
~ 5.28 X 103 ]1(kg.K).
Neon:
6.14 X 102 ~ Cv ~ 6.34 X 102 J/(kg.K); 1.03 X 103 ~ cp ~
~ 1.05 X 103 J/(kg .K).

17.4. 7.21 X 102 ~ <v ~ 7.60 X 102 J/(kg.K); 1.02 X 103 ~ cp ~
~ 1.06 X 103 ]1(kg.K).

17.5. 1.38 kJ; 4.83 kJ; 1.9 ID.
17.6. 1.8 X 105 J; 4.8 X 105 J; 6.6 X 105 J; 1.71 kJ/(kmole .K);

Cm " < o; < Cm p •
17.11. Hint. Make use of the first law of thermodynamics for an adia-

batic process and eliminate the temperature with the aid. 'pf
the Mendeleev-Clapeyron equation.

17.12. (plpo)'v-l = (TITofr; (VIVo)'V-l = ToIT.
17.13. 2.8 X 106 Pa; 1.6 X 106 Pa; it is more difficult to compress

the gas adiabatically.
17.14. 3.2 X 104 Pa; 6.7 X 104 Pa. 17.15. VII V 2 = 21.
17.16. 1.4 X 10-46 kg-m-; 6 K. [Hint. See § 27.9.]
17.17. 2.2 X 103 K [Hint. See § 27.9.]

18. The Second Law of Thermodynamics

18.1. 1/4; 1/2; 1/9.18.2.1/3; 1/6. 18.3. 1/81; 1/105.
18.4. 1: 4 : 6 : 4 : 1. 18.7. wn == (VIVo)n.

82

18.11. Q = \ T dS. 18.12. QT = T (8 2 - 8 1 ) .

Sf
m ( T2 I V2 )18.13. 8 2-S1 = M Cmv In r;-+R ny""; ·

18.17. ,,== 1- x,,-l
f8.18. 52%. The fact that the real efficiency is below the ideal is

due to irreversible energy losses (friction, heat exchange with
the environment, etc.).

18.19. 8 = k In W + const.

19. Fundamentals of Fluid Dynamics

19.1. 1.1 ID. 19.2. 1.6 X 105 Pa = 1.58 atm.

9 - nD
2d2

.. ;- 2PPogh -1 7 10-2 k1 .3. f-l--4- V D4_d4 - • x. gis,
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19.4. Hint. Note that in this case the work done by the forces of
pressure is equal to the change in the total mechanical energy

(p + p;2+ pgh = const) .

..r-- v~ -' ar _. v~ a~
19.5. V== Y 2gh. 19.6. T 1- 1'-1 -2+ ')'-1 ·

19.7. 4.7 X 103 m/s.
19.8. plpo = 5.68; TITo= 1.89 (adiabatic compression for a shock);

plpo = 4.67; TITo = 1.56 (adiabatic compression for a quasi­
static process).

19.9. 2 km.

1'+1 .12_1
m 1'-1 P1

19.10. ~SsP== ¥Cmv 1n (1'+1 _12) (12)"1 ·
1'-1 P1 PI

[Hinto Consider a cycle made up of three processes: shock com­
pression, quasi-static adiabatic expansion and isochoric (con­
stant volume) cooling of the gas to its original state (see
§ 30.9).J

19.11. 6.8 X 102 m/s; 1.4 X 10a m/s. 19.12. 3300 K; 73%.
19.13. 588 kg/s; 2.34 kg/m"; 3.86 X 105 Pa = 3.8 atm.
19.14. 1.65 X 104 Pa = 124 mm Hg. 19.15. 6 m/s.
19.16. 2.26 X 105 Pa = 2.2 atm; 172 kW. 19.17. Yes; no; no.

20. Solids

20.1. 7.6X104 N. 20.2. F=ESI-¥-I; k= ~S .
20.3. 3.3 mm; 2.4 tonnes. 20.4. F = 0.82 F o­
20.5. 3.8 X 1010 Pa; 1.4 X 1011 Pa.
20.6. Due to the presence of defects in the crystal lattice.
20.7. 3700 r.p.m; 7500 r.p.m. 20.8. 2.8 X 106 Pa = 28 atm.
20.10. 1.3 X 108 Pa. 20.t1. 1.2 X 109 Pa; the shell suffers plastic

. deformation.
20.12. 2.4 X 108 Pa = 2.4 X 103 atm. 20.13. 1.0 X 10-3 K-1.
20.14. One atom. 20.15. Four atoms. 20.16. Six atoms.

21.1.

21.2.
2t.3.

21.4.

21. Liquids

In the temperature range from 0 "C to 100°C the law is valid;
the activation energy is 80 = 4.2 X 10-~1 J = 2.6 X
X 10-~ eVe
3.7 ern.
Hint. Find the contact angle for the case when water rises
to the upper end of the capillary. .
Energy of 0.12 mJ in the form of heat will be liberated.
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M==O.

21.5. 0.11 m/s.
21.6. Warm water runs more quickly. [lIint. Compare flow rates

at two different temperatures, for instance, at 20 aC and 80 aC.]
21.7. A column of double the height.
21.8. b = 2cr/pgd. [Hint. Compare with the solution of

Problem 20.9.J
21.9. 0.144 N. 21.10. R = R 1R 2/(R1 - R 2) ; 120°.

22. Vapours

22.1. Yes, it may. [Hint. Check several points.]
22.2. Does not contravene. [Hint. Investigate the change in the

density of the saturated vapour caused by the change in the
temperature.]

22.3. Less than 7.6 1. 22.4. More than 125 1. 22.5. 7.8 g/mS; 51%.
22.6. The precipitation will be 5.6 g of dew for every cubic meter

of air.
22.7. 37%. 22.8. Do not satisfy.
22.9. 304.4 K; 7.39 MPa; 464 kg/m".

23. Phase Transitions

23.1. 1.69 X 106 J/kg = 40 kcal/kg; 22.6 X 105 J/kg = 499 kcal/kg.
23.2. Hint. Find the dependence of the melting point of ice on pres-

sure from the phase diagram.
23.3. A mixture of 6.8 kg of water and 1.4 kg of ice is formed.
23.4. Water at 54°C is produced.
23.5. A mixture of 1.2 kg of water and 0.3 kg of ice is produced.
23.6. Water at 4.5°C is produced.
23.7. 11%. 23.8. 4.7 m/s. 23.9. 2.7%. 23.10. 854 g.
23.11. (a) 216.5 K < T < 304.4 K; (b) the pressure is less than

5.18 X 105 Pa; the temperature is below 216.5 K.

24. A Field of Fixed Charges in a Vacuum

24.1. 23%.
24.2. A circle whose centre lies on the straight line connecting the

charges, at a distance 2a to the right of the positive charge.
The radius of the circle is 4a.

24.3. Nvm = C·V = J. 24.4. 3.2 X 10-18 C.

24.7. cp= q •
4neo ya2 +x2

24.8. (a) Fr==O; M= QPe~ (b) Fr==
41tB or

24.9.
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24.10. ~ = C: + :2' 24.11. nCJlo; it will not change.

24.13. Hint. Make use of considerations of symmetry and the fact
that there are no charges inside the sphere.

24.14. Hint. Surround the sphere with another sphere carrying a charge
of opposite sign and make use of the results of § 37.5.

24.15. E1nt = pr/3eo' [Hint. Use the results of the previous problems.]

2L 16 C = 43t80R R t • ~= Rt-R =~"I.. R-R
1

' U R R ·

1.4X10-5 m ,
e2

a-~-­

- 81t80rnec2

e2
24.17. W = 8

1t8 0a

q2
24.18. p = 32n2B

o
R 4 . 24.19. 10- 8 C.

EoS({)2 3 10-3 k24.20. m = 2gd2 = .6 X g.

24.21. CJlbat = ~ (CJlI+CJl2); ~W = 1C «(j>1 - CJl2)2.

25. Dielectrics

25.1. From 4.4 X fO-~ e/m2 to 5.3 X 10-~ elm" depending on the
; value of 8 for mica.

25.2. From 7.4 X 1.0-8 C/m2 to 5.6 X 10-5 e/m2 •

25.3. 0.03 f.1F, breakdown voltage is 4 kV.
880S

25.4. C ==- edo-(e-1) d ·

80S [Io + (e-1) l]
25.5. c-; dl

o

26. Direct Current

26 .t R= 4px (l-x) . 11 em .
• 1. nD2l'

26.2. 26 mohm, 26.3. $=2rsin 18°=0.62r. 26.4. r ,



Answers and Hints 317

r r r 5r
26.5. R = -:3 +a-t-3=6·
26.6. R x = Rll l12 = Rl/(L - l), where L = AR, l = BD.
26.7. In the middle of the slide wire.
26.8. (a) 3.5X 106 A/m2 ; 6.2 X 10-~ VIm; (b) 1.3 X 10~ AIm!;

2.2 X 10-~ VIm.
26.9. 7.4 uohrn; 0.74 mV.
26.10. (a) ~ = net Ri = nr; (b) 'f/; = e; R i = rl n; (c) ~ = me,

R i = mrlk = m2rln.
26.11. 1 ohm. 26.12. Ptot = ~2/(R + r); Pext = ~2RI(R + r)2.
26.13. Hint. Find the extrema of the expressions obtained in

Problem 26.12.
26.14. 14.4 W; 51.6 w.
26.15. 33.3 kohm; 0.3 Mohm; 3 Mohm; 0.181 ohm; 0.036 ohm.
26.16. 31 bulbs.
26.17. Hint. Use a four-position switch which can connect both

windings either independently, or in parallel.
26.18. 9.6 m. 26.19. 0.1 MJ.
26.20. i = ioe-t/T: where 't = R'C•
26.21. (a) If 'Q; < CJ>o, i = 0, CPs = ~, CPR = O.

(b) If 'Q; > <Po, i = (~ - CPo)IR, CPs = CPo, CPR = ~ - CPo·
26.22. i = i o, CJ>R = ioR, CJ>B = ~ - ioR.

27.1.

27.2.

27.3.

27.4.
27.6.
27.7.
27.9.

27.10.

27. Magnetic Field in a Vacuum

Hint. Consider whether or not the spring constant is in­
variant.
F = 0.141Fcou l . [Hint. Use the law of transformation of the
lateral force.]
Hint. Consider the interaction ofa charge moving parallel
to the conductor with the charges in the conductor, making
use of different reference frames.
3.1 X 10-0 T; 1.1 X 10-0 T. 27.5. 6.3 X 10-2 T; 3.1 X 10-2 T.
The field is almost homogeneous, within a relative error of 6%.
The radius of the ring 0.57 m. 27.8. 3.0 X 10-5 c.
2.5 X 10-3 AIm; 4.9 X 10-7 :A·m 2 ; 4.1 X 10-4 C/kg.

dB = _ 6l-loPm.x where r~ y a2+x2 •
dx 4nrf} ,

28. Charges and Currents in a Magnetic Field

28.1. 2.8 X 107 m/s; 16 MeV. 28.2. O.856c = 2.57 X 108 m/s;
99 MeV.

28.3. (a) Nonrelativistic particle: R 1/R 2 === y](JK;.
(b) R I t i " ti ti I R /R .. ;- K 1 (2~o+Kl)

e a Iv18 IC par 1C e: 1 2 = V K2 (2~0 +K2) •
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28.4. ~:7 DS. '. I

28.5. "A helix winding around the lines 'of induction. The radius of
the circle is 23 mm, the pitch is 39 mm,

28.6. Hint. Use the results of the previous problem.
28.7. 51 mm.
28.8. 1.38 X 104 VIm. [Hint. Use the result of Problem 4.14.]
28.9. 4; 42; 3.0 MHz. 28.10. 6.3 X 10-3 T; 87 kHz; 1.1 T; 0.2 MHz.
28.11. 108 m/s; no. 28.12. 2.3 mm.
28.13. 4.02 amu (2He4) and 3.01 amu (2He3, or IH3).
28.14. 1.2 X 10-D N -rn. 28.15. 22.5°; 10-10 N -m/deg = 5.7 X

X 10-9 N -m/rad,

28.16. F= - 6r~~: • 28.17. 2.9X10-. N.

28.18. Hint. Find the orientation of the velocity vector of the cir­
culating charge with respect to the induction vector.

28.19. Hint. Determine how the magnetic field acts on the circulating
charge, if its orbital magnetic moment is directed against
the field.

28.20. Less than 2.5 MeV.

29. Magnetic Materials

29.1. 1.5 X 10-9 A·m2; against the field. 29.2. 1.5 X10-9 A·m2;

along the field. 29.3. 9.0 X 10-9 AIm.
29.4. (a) 1.1 % greater; (b) 4.2% greater.
29.5. 33 AIm; 130 AIm.
29.6. Hint. Compare the energy of thermal motion with the energy

of interaction of two Bohr magnetons, separated by the inter­
atomic distance.

29.7. Above 9.0 X 10-~ eVe [Hint. Estimate the energy of thermal
motion at the Curie temperature.]

29.8. 1.27 X 10-~ m ~ 0.01 mm, 29.9 Ilmax = 9.6 X 103 at H =
= 75 AIm.

29.10. 100 AIm; 1.26 T; 106 AIm; 1.8 X 10~ AIm.
29.11.

00 16.4 X 102 ! 1. 6X 102 1 8X 102

H,
A/m

f-L'

50 75 100 200 500 11000 \1500

4X102 Ito I 5

30. Electromagnetic Induction

30.1.0.2 V; it will not. 30.2. L\q>=~=Bl V2g(H-h).
30.3. It will move downwards at a stationary velocity

Vstat = lngR /B2l 2.
30.4. dcp = Boo1,2/2. 30.5. 0.01 N.
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I q; 1- 3ttJl oiwa2r2v (xo-vt)
30.6. Ul - 5 •

2 [a2+(xO- vt)2] /2

30.7. 1.8 X 10-~ ws. 30.8. 2.5 T.
30.9. The dielectric is polarized. 30.tO. 1.25 flC.
se.u. 25 W. 30.12. 5.9 mHo 30.13. 29.5 V.
30.14. 41 H; 0.82 J; 1.36 X 102 J/m3• 30.t5. 3.1 X 10-~ J/m 3 ; 1.8 X

X 10-6 J.
30.16. 4.5 X 103 N; 1.5 X 102 N. 30.17. 1.5 H.
30.18. i = 1M (1 - e-t/'t), where 1M = ~/R, 't = LIR.
30.19. t = 2.3LIR.

3t. Classical Electron Theory

31.1. ~ = n2~~N = 1. 8 X 1011 C/kg.

31.2. 1.1 X 10-8 V; will not change. 31.3. 1.1 X 1029 m-3; 3.2 X
X 10-3 m2/ (V -s),

31.4. 1.07 X 10-10 mS/C.
31.5. 6.2 X 1020 m -3; 4.0 m2/(V.s). 31.6. 0.24 mm/s.
31.7. 4 X 10-14 s: 400 A. 31.8. 131°C. 3t.9. 65 C.
31.10. 3.6 X 103 m/s. 31.11. 38 kW/m2 • 31.12. 90 MJ.
3t.13. 4 A. 3t.14. 4.1 X 102 W/(m.K); 68 W/(m.K). [Hint. Use the

Wiedemann-Franz law.]

32. Electrical Conductivity of Electrolytes

32.1. 78%. 32.2. 65 urn. 32.3. 200 mg. 32.4. 5 g.
32.5. 1.52 V. 32.6. 6.25 X 10-11 kg; 9.1 X 10-3 J.
32.7. Over 103 kW.h; more than 40 roubles.

33. Electric Current in a Vacuum and in Gases

33.t. 160 rnA. 33.2. Increases 21 times.
33.3. 4.1 X 10-~ N.
33.4. A coated cathode is 3.3 times more efficient.
33.5. 2 kohm; 20. 33.6. 1.15 X 1014 m-3 ; 4.3 X 10-12•

33.7. 5.0 X 10-8 ohm-l·m-l.
33.8. Hint. Consider separately the phenomena that take place

when the current is much less than the saturation current and
when the current is saturated.

33.9. 2.5 X 1014 m-3·s-1 • 33.11. 5.2 mm; 0.12 rom.
33.12. It will. [Hint. Find the Stewart number.]
33.t3. It will not. 33.14. 2.2 X 104 T. 33.15. 4 X 1014 Pa; 3 X

X 10s~ Pat
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34. Harmonic Vibrations

34.1. 20 em; 48 Hz; 2.1 X -10-~ s; 2 rad = 114°39'.

34.2. v = 1.6n cos (20nt+ 3: ); a = 32n2 cos ( 20nt + 5: );
F = 6.4n2 cos (20nt + 5: ) ; 5.0 m/s; 3.2 X 102 m/s2; 64 N.

34.3. K = 2.5 cos 2 ( 20nt + 3: ) ; u = 2.5 cos 2 ( 20nt + 5: ) ;

W==2.5 J.

34.4. 20 Hz; 50 ms. 34.5. s= 0.064 cos ( llt+ 3: ) = 0.064 sin nt.

34.6. 8==0.05 cos (126t+O.53); 1.6 ID. 34.7. 30 ui}«,

3A Y5 1 0
34.8. B== 8 0.84A;cp=arctan2:==O.464rad==26.6 ·

34.9. 0.5 s; 0.4 ms.
34.10. Hint. Write the product of the sinusoidal functions as a sum.

35. Free Vibrations

35.1.000 = yk/m= y gIl. [Hint. The spring constant is k=F/x=
== mg/l.]
35.2. 1.6 Hz; 2.1 X 102;. 21 s.
35.3. 11 swings, i.e. almost 3 complete oscillations. [Hint. Do the

calcula tions using the law of conservation of energy in the
presence of external frict ion.]

35.4. ro~80t== y2pVjmd2. 35.5. CJ)~d== y2ypV/md2=CJ)~iot yy".
35.6. 1.6 Hz; 0.63 s. 35.7. "0= 2~ V :~ = 1.7 Hz; 0.6 s.

35.8. By 4 s. 35.9. 1.42 s; 26c36' . 35.10. 2.08 s. 35.11. e == 1%.
35.12. T == 2n y 2l/3g; L == 2l/3. 35.13. 1.5 s.
35.14. 2.0 MHz; 5.0 X 10-1 s; 800.

36. Forced Vibrations. Alternating Current

36.1. 2.7 mm; 60 mm; 0.7 mm. 36.3. 80 em.

36.4. 'tap == 2QTo == 2 X 10sTo== 2 IDS; not greater than N ==~ =
n 16Q

==125 pulses/so
36.5. Hint. Write the voltage in the form u == UM cos rot, the cur­

rent in the form t = I M cos (rot + cp) and use the data of
§ 54.2 to find the voltage drop across the inductive reactance.



Answers and Hints 321

36.6. Hint. Write the voltage and the current in the same form
as in Problem 36.5. Note that the current is the time derivative
of the charge.

36.7. z= V R2+L2oo2; £P= -arctan (LooIR).

~/ 1 1
36.8. Z == V R2 + C2oo2 ; <p = arctan RCw •

R
36.9. Z== 'Ii ; q>=arctanRCw.

y 1+R2C2W 2

36.10. Z=R 111+ ~: (1'2_1)2,

36.11. The current in the unbranched section of the circuit is

_ .. / R2C 2w2 + (LCoo 2 - 1)2_!!.. ... ;- y2jQ2+<1'2_1)2
I -U V R2+L2w2 - R V 1+Q2y2

It is minimum at resonance (1'= =0 = 1) .
R

cos <p== V(R2+L2w 2) [R2C2W2+(LCw2-1)2J

1
cos <P - --7=:;::::==:;=;-

res- Coo V R2+L2CJ)2

36.12. 61 W. 36.13. 80 Hz; 24 w.
36.14. Hint. Consider the operating principles of the instrument,

and find the parameters which determine the average torque
acting on the moving part of the instrument.

36.t5. 28°40'; 10.5 ohm; 9.3 ohm. 36.16. It will glow.
36.17. It cannot. 36.18. 230 kV.
36.19. 33 turns; 73 mm-; 6 X 10-3 ohm; 260 W; 97%.
36.21. Hint. Use the fact that the ohmic resistance of the solid copper

ring is much less than its inductive reactance.
36.22. cos <p = 0.8; cp = 37°.

37. Elastic Waves

37.1. at;=::; -V1'/3=0.68. 37.2. 7.0 X 1010 Pa.
37.3. 1.4 X 103 tal»; 4.9 X 10--10 Pa-1 • 37.4. 1.42.
37.5. 3.5 X 10-~ J/m3 ; 2.7 J.1m. 37.6. 1.4 J.1m; 0.9 IlID •
37.7. 3.5 dB. 37.8. 1.1 nW/m2 ; 4.4 dB.

In 2 2.3 log 2 0.693
37.9. f.1~--r-= L _..-y-.
37.tO. :£0 - Z == 4.34f.1x = 4.2 X 10-2 dB.
37.1t. 1.5 m/s. 37.12. 593 Hz; 456 Hz.
37.13. 302 Hz; 1.1 m; 332 mls; 'AlA = 1.8 X 105; ulVM = 2.9 X
X 104• 37.14. 0.55 m; 2.1 rad = 121°.

21-0360
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37.15. From 17 TIl to 17 mm; from 70 m to 70 mm.
37.16. 28%. 37.17. 12%.
37.18. Hint. Estimate the value of the reflection coefficient at the

boundary between the supersonic transducer surface and the air.
37.19. About 60 mm.

38. Interference and Diffraction

38.1. Hint. Consider the sign of the amplitude of the reflected wave.
38.2. 0.41 MHz; will not change. 38.3. 9.7 em.
38.4. The third; 0.5 kHz. 38.5. 18.6°C or 15.4°C.
38.6. 330 ± 3 m/s; E = 0.8%. 38.7. 12°. 38.8. 6 em.

39. Electromagnetic Waves

c c
39.1.5 m; 3.4 m. 39.2. vO= 2f ; v=(2n+1)2f.

39.3. 5.1 ID. 39.4. 8 = 4.7 (kerosene); 8.3 X 10-7 Pa; us J.
39.5. 25 W; 197 ohm. 39.6. 97 W. 39.7. R ~ 0.1 ohm; L ~ 8 ~H;

C ~ 22 ·'Il~F.
39.8. Hint. Apply expression (59.22) from § 59.8.
39.9. Hint. Note that the electromagnetic field is not a reference

frame. Hence in electrodynamics the motion of the source and
the motion of the observer are equivalent and the change in
the frequency is the same in each case.

39.10. (6.v/v)DoP == 5 X 10-6; (fj,V/V)grav == 20 X 10-6•

39.11. 42 nm. 39.12. 2.19 X 106 S = 25.3 days.
39.13. When the source moves away from the observer,

z= .. /·1+~_1
V 1-~

and when it approaches,

/1-~
z=1-J; 1+~

where ~ == vic.

39.14. (1) ~ = 0.0334, v= 107 m/s; (2) f} = 0.362, v = 1.1 X 108 ro/s;
(3) ~ = 0.67, v = 2.0 X 108 m/s.

39.15. 18 km/s, 39.16. 1.6 X 103~ kg; 2.7 X 1010 m.

40. Interference and Diffraction of Light

40.1. 0.9 mm; 0.7 mm
40.2. There are three maxima-the zero-order maximum and two

first-order maxima; 0.56 mm.
40.3. 6.0 X 10~ nm. 40.4. 2.73 X 10-~ mm.
40.5. t.00014. 40.6. 0.61 J.LID.
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40.8. 3°35'; 7°11'. [Hint. Use the condition for the minima in the
case of diffraction on a single slit.]

40.9. 15°; there are altogether seven maxima.
40.10. 534 nm, 40.11. 18"; 1.6 X 104• 40.12. 20 mm; 8 mm.
40.13. We shall be able to see them; 25".
40.14. Hint. Consider the condition for the maximum of two adjacent

rays, expressing it in terms of the glancing angles.
40.15. 24 A.
40.16. 2.85 A. [Hint. Apply the Bragg condition.]

41. Dispersion and Absorption of Light

41.1. 49°19'; 50°10'. 41.2. 3.5 MeV.
2

41.3. 8==1- e no 2 • [Hint. One should apply the dispersion law
Bornew

for gases, noting that the natural frequency of oscillations of
a free electron is zero.]

C
41.4. u= dn •

n+w dffi
41.5. Hint. Consider separately the parts of the spectrum for which

n > 1 and n < 1.
e2no41.6. n== 1 2 2 ; U ==cjn; U == en.

Bornew
41.7. The signal travels not at the phase velocity, but at the group

velocity, which is below the limiting velocity.
41.8. It cannot. 41.9. 2.4 X 1013 m-3 •

e2n A,2
41.10. n=1-

8
2

0 2=1-2.3x10-7 •
n Bornec

(
e2no ) 2

41.11. R= 4 2 •
Bornew

41.12. 0.345; 0.361; Rvlo1lRred = 1.05. 41.13. 3.0 X 108 m/s.
41.14. Hint. Use the results of Problem 41.6.
4"1.15. U = 1.9 X 108 rols; u = 2.0 X 108 m/s.
41.16. 35 m-1 ; 2.0 em,

k - ~_ r~. 16n2
-J,t(Ta-TI)

41.17. - 1
0

- r~ (n+"1)4 e •

41.t8. 98%; 10 A. 4t.19. 6 layers. 41.20. 1.6 em.

42. Polarization of Light

42.1. It will be reduced to one fifth of its initial value.

1.2 2 I 1 I · 2 2· 45°~ .. = 2 0 SIn. ex cos. ex, •

42.3. There will be no interference pattern.

21*
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42.4. (2m+ 1) x 0.856 flm; (2m+ 1) X O.78n rad == (2m+ 1) X
X 140°.

42.5. dquartzldcalclte = 19. 42.6. 2.1 X 102 kg/rn",
42.7. (2m+ 1) X 5.19 mm; (2m + 1) X 2.75 mm.

43. Geometrical Optics

43.1. 2.6 mm. 43.2. 41°. 43.4. i.a m. 43.5. 18.7°; 7.4°.
43.6. 2.2 diopters; -1.0 diopter.
43.7. In the posterior focus of the right-hand lens.
43.8. Hint. Bring the lenses in Fig. 43.7 together until they are

in contact.
43.9. Hint. Use the result of the previous problem.
43.10. -3.8 diopters; -1.1 diopters. 43.11. <I> == (n - 1)IR.
43.12. 2.4 em, 43.13. s: = /12; ~ == klH = 1/2. 43.14. 81040'.

43.15. a = p~ (for :;c ~ a - f).
43.16. An elongated ellipsoid of rotation.
43.17. 2.4 cm; 6%. 43.18. 13.3 diopters.
43.19. Hint. See § 65.5, Fig. 65.9.
43.21. A convex lens. 43.22. A concave lens.
43.23. Hint. See Problem 10.4. 43.24. No.

44. Optical Instruments

44.1. 1.76 W; 8.8 W; 2.9 W. 44.2. 11 Vim; 3.7 X 10-8 T.
EWalI D 2/ 0.381 2J

44.3. -E--=-2h' 44.4. Eedge= ..I =--2-; Ecentre==-2 ·
floor 3r2 y 3 r r

44.5. E ==5/4Eo• 44.6. 10 Ix; 2.8.lx.
R D2

44.7. 5.0 lx: 2.5 lx. 44.8. E ==T· f2 .
44.9. It will decrease to 1/3.2.
44.10. -7 diopter glasses.
44.11. 57" ~ l' (see § 66.4). 44.12. 370.
44.t3. 0.6 11m. 44.14. 24 diopters; 8.3 mm; 1.2"; 830 km. 44.15. '\'=

=1 ~:: I·
44.t6. 35 m; 5.2 km, 44.t7. Aradlo = 2.5 X 103

; Aopt = 5.4 X 106•

44.18. Not greater than 6 ms, 44.19. 55 mm; 0.18.
44.20. 14.5 em.

45. Photons

45.1. 5.8 X iOs K. 45.2. 6.16 X 103 K. 45.3. 290 nm.
45.4. 4.3 X 10-13 W/m2 ; 5.4 X 10-4 W. 45.5. 540 nm; 295 nm;

275 nm.
45.6. 41 keY; 1.1 X 108 mls. 45.7. 0.2 v.
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45.8. 1.3 eVe 45.9. 1.g eVe 45.10. 4.4 eV; 7.8 X 10-36 kg; 2.3 X
X 10-2'1 kg-rn/s. 45.11. 2.5 X 10-2 A.

V 1-62 V 1-~2
45.12. ~ ==~0 1 Be; P == Pu 1 ~ e·- cos - cos
45.13. p = 2w cos a, where w is the volumetric density of the energy

of luminous flux.
45.14. 14 J. 45.15. 0.3 urn.

2(g2 sin2 (8/2)
45.16. L\~ == ~o+2(g sin2 (0/2); 1%.

~o cos (a+ 8/2)
45.17. (gPh ==. . (8/2) ; 0.37 MeV.

SIn a Sin

45.18. 83 keV; 0.15 A.
45.19. Hint. Apply the laws of conservation of energy and the mo­

mentum in relativistic form.
45.20. Hint. Use the inertial reference frame in which the electron

is at rest.
45.21. Hint. See § 68.7. 45.22. It will change.
45.24. 370 MeV.

46. Elementary Quantum
Mechanics

46.1. A=== he ; K < O.04(go.
-V K(2~o+K)

he h
46.2. 'A = ; Anonrcl==---V ecp (2~o + ecp) V 2mecp
46.3. 3 A.
46.4. Hint. Compare the de Broglie wavelengths of the electron and

the ion for equal accelerating potential.
46.5. 4.8 urn. 46.6. 1.1 X 10-19 J == 0.68 eV; 1.1 X 104 m/s; 5.4 X

X 103 K. 46.7. 1.5 A.
46.8. (1) U1 == VI == 5.9 X 106 mls == 0.019c; Ul == c21vl = 51c ==

== 1.5 X 1010 m/s.
(2) U2 == V 2 == O.54ge == 1.6 X 108 tul»; U 2 == C2/V

2 :::z i.83c ==
= 5.5 X 109 m/s.

46.9. F == h2/4meL3 = 1.2 X 10-'1 N.
46.10. 38 eV; 1.5 X 102 eV; 3.4 X 103 eVe
46.11. 0.26 eVe They can.
46.12. r = 4nEon2/e2me.
46.13. w == e-1. 6 == 0.2 == 20%.

46.14. a=-V8mA~/eE1i; w=e-a .

46.15. a = 2; w = e-2 = 0.13 = 13%.
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47. Atomic and Molecular Structure

47.t. 3.4 X 10-13 m.
e2 Vt 1

47.2. v=v1/n, where Vl= 4ne
o
Ji ; a==-e-= 137 ·

3 3
47.3. (g= '4 heR ==4" X 13.6 eV = 10.2 ev,
47.4. n= 3; 1025A; 6560 A; 1215A.
47.5. 4.2 tal»; 9.1 X 10- 8 eVe

47.6. rl == ~==0.264 A· -!.~4R (_1 1_)
Z ' Iv m2 n2

1 9 t
Al == 3if ==304.0 A; A2 == 5R = 16401\.

47.7. (a) 1.1 X 1023 m-3 ; 3.5 mmHg; 1.9 X 10-4 kg/m",
(b) 4.6 X 1020 m-3 ; 1.4 X 10-2 mmHg; 7.7 X 10- 7 kg/m",

47.8. ~=Z2hcR=9X13.6=122.4 -v.
47.9. Hydrogen; v=O.0436e= 1.3 X 104 km/s,

"'7 _ 2 4ne on2 • mp+mJL 2 2043 n2ao •
.. .10. an - n e2 mprnJL n ao 1836X 207 186'

heR 1
~n== -- -2- X 186==--2 X 2.53 keY.

n n

1 (1 1) 4 f47.11. r==186R 1ii2-1i2 ; Al= 3X186R =6.541\;

36 f 144
"-2 -== 5 X 186R == 35.31\; A3 == 7 X 186R 1.09 A.

47.12. ai = 2ao = 1.06 A; ~l == -heR/2 == -13.6/2 == -6.8 eVe
47.13. 10.2 V.
47.15. (a) Boron: 1, 0, 0, 1/2; 1, 0, 0, -1/2; 2, 0, 0, 1/2; 2, 0, 0,

--1/2; 2, 1, 0, 1/2.
(b) Sodium: 1, 0, 0, 1/2; 1, 0, 0, -1/2; 2, 0, 0, 112; 2, 0, 0,
-1/2; 2, 1, 0, 1/2; 2, 1, 0, -1/2; 2, 1, 1, 1/2; 2, 1, 1,
-1/2; 2, 1, --1, 1/2; 2, 1, -1, -1/2; 3, 0, 0, 1/2.

47.16. Hint. Find the number of electrons on the upper partially
filled energy level.

47.17. Fav = 3h2/4mL3. 47.18. Fav = 3h2/2mL3.
47.19. 0.31 A. 47.20. Z = 41-niobium. 47.21. Above 5 kV.
47.22. 8.3 kV. 47.23. 3.2 X 1013 rad/s. 47.24. 41 urn.
47.25. 0.95 A. 47.26. There is no contradiction. [Hint. See Problems
33.10 and 46.11.]

2f.tpf.te -8
47.28. 222 == 4 X 10 .

e c ao
47.29. 56 em. 47.30. 3.2 X 1013 Hz. 47.3t. It is not.
47.32.28 = 1.2'.
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48. Quantum Properties of Metals and of Semiconductors

327

48.1. Aluminium: 12.8 eV; 1.9 X 10-2& kg-rn/s;
sodium: 3.1 eV; r9.5 X fO-~~ kg-rn/s: copper: 8.6 eV; 1.6 X
X 10-~' kg -m/s, [Hint. See § 44.2.]

48.2. 9.9 X 104 K; 2.4 X 10' K; 6.6 X 10' K.
48.3. P = 2/5no'f/;F = 1.7 X 1011 Pa, 48.4. PV~j3 == const; 'V = 5/3.

h2

48.5. A== 20m
e

(m
a

I2)6j3 ~3.2X106 Pa·m6.kg6
j3 .

48.6.0.2%.48.7. C;;!=12.5J/(kmole.K); C~/C!;t=5X10-4.
48.8. A==3 X 10a A.; "AId ~ 150.

48.9. i ==N .!!!.-. 2
en , where n is the concentration of electrons;

r me
N ==1. 2, 3, ... ; $= Lt, where L is the inductance of the ring.

48.tO. 1'= Be-!l~/kT. 48.tt. 1'a/Yl= 6.6X 105•

48.12. n = 2.4 X 1019 m-3 ; R H = 9.4 X 10-~ m3/C.
48.13. 5.8 X 102 ohm-1 .m -1 ; 3.0 X 102 ohm-1·rn-I •

48.14. 0.55 V; 8.6 V. [Hint. For the expression for the internal con­
tact potential difference see § 78.1.]

49. Nuclear Structure

49.t. Helium 2He3-two protons, one neutron; tritium IR3-one
proton, two neutrons.

49.2. 20% of the light isotope and 80% of the heavy one.
49.3. Deuterium: R = 1.8 X 10-1~ m; u, = 0.8 MeV.

Polonium: R = 8.3 X 10-15 m; Uo = 14.6 MeV.
49.4. 2.23 MeV; 1.12 MeV per nucleon.
49.5. 2.84 MeV/nucleon; 2.56 MeV/nucleon.
49.6. Five alpha-disintegrations and four beta-disintegrations.
49.7. Ka =.: 4.45 MeV; Kp b = 1.05 MeV.
49.8. It cannot. 49.9. It cannot.
49.10. It can; an electron and an antineutrino; 1.48 MeV.
49.1t. 4.96 MeV.
49.12. w = e-21 = 2.8 X 10-1°.
49.13. Will decrease to 1/1.3 of its value.
49.14. 3.7 days.
49.15. 1.4 X 1017 s = 4 X 109 years.
49.16. 8800 years.
49.17. 0.82 MeV. 49.18. «Srec = ~v/2Mc~ = 1.4 X 10-7; 6nat =

= ld1:~v = 3.2 X 10-13•

49.19. v = ~v l Mc = 81 tal«.
49.20. N = Noe-'A.t. 49.2t. 0.2 MeV.
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50. Nuclear Reactions

50.1. 3 X 107 kg = 30 000 tonnes.
50.2. 22.4 MeV; 2.8 MeV per nucleon.
50.3. They can.
50.4. It contradicts the law of conservation of momentum; 67.5 MeV.
50.5. s = nl'f~ = 6 X 10-8• 50.6. -s, ~ 1.02 MeV.
50.8. KJJ. = 4.1 MeV; Wry = 29.9 MeV; ~ryIKJJ. = 7.3.
50.9. K e = 0.28 MeV; ~ry = 0.61 MeV.
50.10. s; = 5.6 MeV; C~y = 95 MeV. 50.11. 12.1 MeV; 158.4°.
50.12. _teO + Ipl -+ on1+ ovo; 0.24 MeV.



1. Astronomical Data

Equatorial Average
Perioddistance fromhalf-diameter, Mass, kg the Sun, of revolution

106 m 109 m abou t the Sun

The Sun 700 1.98X 103 0 - -
Venus 6.2 4.9X 1024 108.11 227.70 days
The Earth 6.4 5.98X1024: 149.46 365.26 days
Mars 3.4 6.5X1023 227.7 686.98 days
The Moon 1.7 7.4X1022 - -

2. Mechanical Properties of Solids

Permls- Breaking
Bulk Young's sfble stress for

Dens ltv o,Material modulus modulus stress extension
103 kg/rn3

K, 1010 Pa E, 1010 Pa O'per' O"br'
107 Pa 108 Pa

Steel, soft 17 20 14 4-6 7.8
Steel, chrome-

nickel 17 22 30 10-15 7.8
Silver 10.4 8.0 3-8 0.9-1.5 10.5
Aluminium 7.6 7.0 3-8 0.9-1.5 2.7
Copper 14 13 3-t2 1.2-4.0 8.9
Nickel 16 20 8.9
Lead 4.1 1.7 0.2 11.3
Ice (-2°C) 0.28 0.92
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3. Thermal Properties of Solids

Specific heat Specific I Linear
Coefficien tMelting expansion

Material C, kJ/(kg· K) heat of point coefficien t of thermal
(from 0 to fusion A, tro,OC a, x-i conducttvitv

100 0C) 105 J/kg 10-6 K, W/(m·K)

Steel 0.45 2.7 1440 10-11 50-70

Silver 0.23 0.88 980.6 20.5 4.2X102

Aluminium 0.84 4.0 660 27 2 .3X 102

Copper 0.38 2.1 1080 20 3.8X 102

Nickel 0.46 3.0 1453 18 0.9X 102

Lead 0.126 0.45 327 30 35
Ice (-2 °C) 2.1 3.4 0.00 - 2.2

4. Properties of Liquids

Material

Oil

Water

Water (8) °C)

Mercury

Castor oil

H2S04 , 30%

0.8
0.9999
0.9718

13.595
0.95
1.02

1-10 - - - - - -

1.00 72.8 2.1 0.61100 2.28 4.18

0.36 62.8 - - - - -

1 .55 475.0 1 .8 10 356.6 0.25 0.14

986 - - - - - 2.13

2.44 - - - - - 1.4
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5. Properties of Gases
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Effective Viscosity Heat con- S pecific hea t "l= Density
cross 11, J.LPa·s ductivity K, "»:KJ/(kg.K) =2

o, kg/ms
Material section (at stan- 10-2 W/(m.K) (at stan-

G. dard con- (at standard (from 0 to Cv dard con-
10-2 0 m 2 ditions) conditions) 100°C) ditions)

Helium 3.1 18.6 14.15 0.523 1.630 0.1785
Neon 7.0 29.8 4.65 1.05 1.642 0.8999
Nitrogen 10.8 16.6 2.43 1.04 1.401 1.2505

(N 2)

Hydrogen 5.7 8.4 16.84 14.3 1.407 0.0899
(H 2)

Hydrogen* 3.5 - - - 1.667 --
(H)

Oxygen (02) 9.6 19.2 2.44 0.913 1.400 1.4289
Air 10 17.1 2.4 1.01 1.40 1.293
Steam

(100°C) 6.0 12.8 2.6 1.951 1.334 0.598
Carbon dio-

xide (CO2) 16.2 13.8 1.38 0.91 1.300 1.9769
CO2 , 100°C 18.6 0.-90 1.30
CO2 , 300-c 26.7 0.85 1.22
CO2 , 5000 e 0.83 1.20

* Computed with the aid of the formula (1 = 41ta~, where ao = 0.5 A is the Bohr
radius.

6. Electrical Properties of Materials (20 "C)

Material Dielectric constant I Breakdown field
e strength EM' MV/m

Paraffin paper
Mica
Glass
Transformer oil
Ethyl alcohol

2
6-7
4-10
2.2

26

40-60
80-200
20-30
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7. Velocity of Sound (Longitudinal Waves)

Material U, km/s Material U, km/s

Quartz, (X-cut)
Nickel (in a mag­

netic field of
0.3 T induction)

5.72

4.86

Water (17°C)
Sea water
Castor oil

1.407
1.446
1.50

8. Refractive Indexes

Light I
wave-I FIUO-I MOltenl Rock I S"¥l-I WaterI Glass
length rite quartz salt vtte (')O°C) J
A, nm Naci KCI" crown flin t

nfra-red 1256.0 1.4275 - 1.5297 1.4778 1.3210 1.5042 1.6268

{ 670.8 1.4323 1.4561 1.5400 1.4866 1.3308 1.5140 1.6434
ed 656.3 1.4325 1.4564 1.5407 1.4872 1.3311 - -

643.8 1.4327 1.4568 1.5412 1.4877 1.3314 1.5149 1.645:1
range 589.3 1.4339 1.4585 1.5443 1.4904 1.3330 1.5170 1.6499
ellow 546.1 1.4350 1.4602 1.5475 1.4931 1.3345 - -
reen 508.6 1.4362 1.4619 1.5509 1.4961 1.3360 - -
lue 486.1 1.4369 1.4632 1.5534 1.4983 1.3371 1.5230 1.6637

Dark blue 480.0 1.4371 1.4636 1.5541 1.4990 1.3374 - -
iolet 404.7 1.4415 1.4697 1.5665 1.5097 1.3428 1.5318 1.6852

{ 303.4 1.4534 1.4869 1.6085 1.5440 1.3581 1.5552 -
UItraviolet 214.4 1.4846 1.5339 1.7322 1.6618 1.4032 - -

185.2 1.5099 1.5743 1.8933 1.8270 -~ - -

R

o
y
G
B

V

9. Masses of Some Neutral Atoms (amu)

Mass Mass

Hydrogen 1HI

Deuterium IH2

Tritium IH3

Helium 2He3
2He4

Lithium sLi6

sLi1

Berillium 4Be7

4Be9

1.00783
2.01410
3.01605
3.01603
4.00260
6.01513
7.01601
7.01693
9.01219

Carbon 6C10

6
C 12

6
C 13

6
C 14

Aluminium 13A130

Silicon 14Si31
Phosphorus 15P31

Lead 82Pb20G

Polonium 84P0210

10.00168
12.00000
13.00335
14.00324
29.99817
30.97535
30.97376

205.97446
209.98297
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10. Fundamental Physical Constants
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Constant I Notation Value*

'Ac = Ii/mec 2.4263089X 10-1 2 m
IlB= eli/2me 9.274078 X 10-14 J. T-l

1. Magnetic constant
2. Electric constant
3. Velocity of light in a
vacuum

4. Elementary charge
5. Planck's constant

6 . Avogadro number
7. Atomic mass unit
8. Rest mass of:
electron

muon

proton

neutron

9. Specific charge of
electron

10. Faraday number
11. Bydberg's constant
12. Bohr radius
13. Compton wavelength

of electron
14. Bohr magneton
15. Magnetic moment:

electron
proton

16. Gas constant
17. Volume of 1 kilo-

mole of an ideal gas
18. Boltzmann constant
19. Stephan constant
20. Gravitational con- -

stant
21. Energy equivalent

of 1 amu

c
e
h

Ii= h/2n
NA

1 amu

f1e
~lp

R

'Y, G

431 .10-7 G· m-?
8.85418782X10-12 F·m-1

299792458 m S-1

1.6021892X 10-1 9 C
6.626176X10-34 J·s
1.0545887x10-34. J·s
6.0220943X1026 kmole-1

1.6605655 X 10- 27 kg

9.109534 X 10- 31 kg
5.4858026X 10- 4 amu
1.883566 X 10-2 8 kg
0.11342920 amu
1.6726485X 10- 27 kg
1.007276470 aDlU
1 .6749543X 10-27 kg
1.008665012 amu

1.7588047 C·kg-1

9.648456Xf07 C·kmole-1

1.097373143X 10' m-1

0.52917706X10-10 m

9.284832 X 10- 24 J. r-:
1.4106171 X10-26 J .r-i
8.31441X103 J/(kmole·K)

22.41383 ~3·kD10Ie-l

1.380662 X10- 23 J.K-l
5.67032X10-8 W/(m2 .K ' )

6.6720X10-11 N·m2/kg2

931.5016 MeV

* The above constants are trom the paper "Recoffirnended approved val­
ues or fundamental physical constants - 1973" (the periodical "Uspekhi
fizicheskihh nauk", v. 115, No.4, April 1975, pp. 623-633).



TO THE READER

Mir Publishers would be grateful for your
comments on the contents, translation
and design of this book. We would also be
pleased to receive any other suggestions
you may wish to make.
Our address is: Mir Publishers

2 Pervy Rizhsky Pereulok,
1-110, GSP, Moscow, 129820,
USSR

Printed in the Union of Soviet S ocialtst Rep ubltcs



Basic Concepts of Quantum Mechanics

L. TARASOV, Cand.Sc.

This book gives a detailed and systematic exposition
of the fundamentals of non-relativistic quantum mecha­
nics for those who are not acquainted with the subject.
The character of the physics of microparticles and the
problems of the physics of microprocesses (interference
of amplitudes, the principle of superposition, the spe­
cific nature of measuring processes, casuality in quantum
mechanics) are considered on the basis of concepts about
probability amplitudes. Besides, the quantum mechani­
cal systems-microparticles with two basic states-are
analyzed in detail. The apparatus of quantum mechanics
is considered as a synthesis of concepts about physics
and the theory of linear operators. A number of specially
worked out problems and examples have been included
in order to demonstrate the working of the apparatus.
This book is meant for use by students of engineering
and teachers-training institutes. It may also be used
by engineers of different profiles.
Contents. Physics of Micro-particles. Physical Foun da­
tions of Quantum Mechanics. Linear Operators in Quan­
tum Mechanics. Brief Historical Survey.



Handbook of Physics.

B. '..YAVORSKY, D. Sc. and A. DETLAF, Cando Sc.

A companion volume to Vygodsky's Handbook of Higher
Mathematics, designed for use by engineers, technicians,
research workers, students, and teachers of physics.
Includes definitions of basic physical concepts, brief
formulations of physical laws, concise descriptions of
phenomena, tables of physical quantities in various
syetems -o! units, universal physical constants, etc.
This is a third English :edition.
Contents. Physical Basis of Classical Mechanics. Funda­
mentals of Thermodynamics and Molecular Physics.
Fundamentals of Fluid Mechanics. Electricity and Magne­
tism. Wave Phenomena. Atomic and Nuclear Physics.
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