
Springer Texts in Statistics

Advisors:
George Casella Stephen Fienberg Ingram Olkin



Brian S. Everitt

An R and S-PLUS®

Companion to Multivariate
Analysis

With 59 Figures



Brian Sidney Everitt, BSc, MSc
Emeritus Professor, King’s College, London, UK

Editorial Board

George Casella
Biometrics Unit
Cornell University
Ithaca, NY 14853-7801
USA

Stephen Fienberg
Department of Statistics
Carnegie Mellon University
Pittsburgh, PA 15213-3890
USA

Ingram Olkin
Department of Statistics
Stanford University
Stanford, CA 94305
USA

British Library Cataloguing in Publication Data
Everitt, Brian

An R and S-PLUS® companion to multivariate analysis.
(Springer texts in statistics)
1. S-PLUS (Computer file) 2. Multivariate analysis-Computer programs. 3. Multivariate analysis-Data
processing
I. Title
519.5′35′0285

ISBN 1852338822

Library of Congress Cataloging-in-Publication Data
Everitt, Brian.

An R and S-PLUS® companion to multivariate analysis/Brian S. Everitt.
p. cm.—(Springer texts in statistics)

Includes bibliographical references and index.
ISBN 1-85233-882-2 (alk. paper)

1. Multivariate analysis. 2. S-Plus. 3. R (Computer program language) I. Title. II. Series.

QA278.E926 2004
519.5′35—dc22 2004054963

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted
under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or
transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in
the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright
Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

ISBN 1-85233-882-2
Springer Science+Business Media
springeronline.com

© Springer-Verlag London Limited 2005

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Whilst we have made considerable efforts to contact all holders of copyright material contained in this
book, we have failed to locate some of them. Should holders wish to contact the Publisher, we will be
happy to come to some arrangement with them.

Printed in the United States of America
Typeset by Techset Composition Limited
12/3830-543210 Printed on acid-free paper SPIN 10969380



To my dear daughters, Joanna and Rachel



Preface

The majority of data sets collected by researchers in all disciplines are multivariate.
In a few cases it may be sensible to isolate each variable and study it separately, but
in most cases all the variables need to be examined simultaneously in order to fully
grasp the structure and key features of the data. For this purpose, one or another
method of multivariate analysis might be most helpful, and it is with such methods
that this book is largely concerned.

Multivariate analysis includes methods both for describing and exploring such
data and for making formal inferences about them. The aim of all the techniques
is, in a general sense, to display or extract the signal in the data in the presence of
noise, and to find out what the data show us in the midst of their apparent chaos.

The computations involved in applying most multivariate techniques are con-
siderable, and their routine use requires a suitable software package. In addition,
most analyses of multivariate data should involve the construction of appropriate
graphs and diagrams and this will also need to be carried out by the same package. R
and S-PLUS® are statistical computing environments, incorporating implementa-
tions of the S programming language. Both are powerful, flexible, and, in addition,
have excellent graphical facilities. It is for these reasons that they appear in this
book. R is available free through the Internet under the General Public License; see
R Development Core Team (2004), R: A Language and Environment for Statisti-
cal Computing, R Foundation for Statistical Computing, Vienna, Austria, or visit
their website www.R-project.org. S-PLUS is a registered trademark of Insightful
Corporation, www.insightful.com. It is distributed in the United Kingdom by

Insightful Limited
5th Floor
Network House
Basing View
Basingstoke
Hampshire
RG21 4HG

Tel: +44 (0) 1256 339800
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viii Preface

Fax: +44 (0) 1256 339839
info.uk@insightful.com

and in the United States by

Insightful Corporation
1700 Westlake Avenue North
Suite 500
Seattle, WA 98109-3044

Tel: (206) 283-8802
Fax: (206) 283-8691
info@insightful.com

We assume that readers have had some experience using either R or S-PLUS,
although they are not assumed to be experts. If, however, they require to learn more
about either program, we recommend Dalgaard (2002) for R and Krause and Olson
(2002) for S-PLUS. An appendix very briefly describes some of the main features
of the packages, but is intended primarily as nothing more than an aide memoire.
One of the most powerful features of both R and S-PLUS (particularly the former)
is the increasing number of functions being written and made available by the user
community. In R, for example, CRAN (Comprehensive RArchive Network) collects
libraries of functions for a vast variety of applications. Details of the libraries that
can be used within R can be found by typing in help.start(). Additional
libraries can be accessed by clicking on Packages followed by Load package and
then selecting from the list presented.

In this book we concentrate on what might be termed the “core” multivari-
ate methodology, although mention will be made of recent developments where
these are considered relevant and useful. Some basic theory is given for each tech-
nique described but not the complete theoretical details; this theory is separated
out into “displays.” Suitable R and S-PLUS code (which is often identical) is given
for each application. All data sets and code used in the book can be found at
http://biostatistics.iop.kcl.ac.uk/publications/everitt/. In addition, this site con-
tains the code for a number of functions written by the author and used at a number
of places in the book. These can no doubt be greatly improved! After the data files
have been downloaded by the reader, they can be read using the source function

R: name<-source("path")$value

For example,

huswif<-source("c:\\allwork\\rsplus\\chap1huswif.dat")$value

S-PLUS: name<-source("path")

For example,

huswif<-source("c:\\allwork\\rsplus\\chap1huswif.dat")



Preface ix

Since the output from S-PLUS and R is not their most compelling or attractive
feature, such output has often been edited in the text and the results then displayed
in a different form from this output to make them more readable; on a few occasions,
however, the exact output itself is given. In one or two places the “click-and-point”
features of the S-PLUS GUI are illustrated.

This book is aimed at students in applied statistics courses at both the under-
graduate and postgraduate levels. It is also hoped that many applied statisticians
dealing with multivariate data will find something of interest.

Since this book contains the word “companion” in the title, prospective read-
ers may legitimately ask “companion to what?” The answer is, to a multivariate
analysis textbook that covers the theory of each method in more detail but does not
incorporate the use of any specific software. Some examples are Mardia, Kent, and
Bibby (1979), Everitt and Dunn (2002), and Johnson and Wichern (2003).

I am very grateful to Dr. Torsten Hothorn for his advice about using R and for
pointing out errors in my initial code. Any errors that remain, of course, are entirely
due to me.

Finally I would like to thank my secretary, Harriet Meteyard, who, as always,
provided both expertise and support during the writing of this book.

London, UK Brian S. Everitt
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1
Multivariate Data and Multivariate
Analysis

1.1 Introduction

Multivariate data arise when researchers measure several variables on each “unit”
in their sample. The majority of data sets collected by researchers in all disciplines
are multivariate. Although in some cases it may make sense to isolate each variable
and study it separately, in the main it does not. In most instances the variables are
related in such a way that when analyzed in isolation they may often fail to reveal
the full structure of the data. With the great majority of multivariate data sets, all the
variables need to be examined simultaneously in order to uncover the patterns and
key features in the data. Hence the need for the collection of multivariate analysis
techniques with which this book is concerned.

Multivariate analysis includes methods that are largely descriptive and others that
are primarily inferential. The aim of all the procedures, in a very general sense, is to
display or extract any “signal” in the data in the presence of noise, and to discover
what the data has to tell us.

1.2 Types of Data

Most multivariate data sets have a common form, and consist of a data matrix, the
rows of which contain the units in the sample, and the columns of which refer to
the variables measured on each unit. Symbolically a set of multivariate data can be
represented by the matrix, X, given by

X =
⎡
⎢⎣

x11 x12 · · · x1q

...
. . .

xn1 xn2 · · · xnq

⎤
⎥⎦

where n is the number of units in the sample, q is the number of variables measured
on each unit, and xij denotes the value of the j th variable for the ith unit.

The units in a multivariate data set will often be individual people, for example,
patients in a medical investigation, or subjects in a market research study. But they

1



2 1. Multivariate Data and Multivariate Analysis

can also be skulls, pottery, countries, products, to name only four possibilities. In
all cases the units are often referred to simply as “individuals,” a term we shall
generally adopt in this book.

A hypothetical example of a multivariate data matrix is given in Table 1.1. Here
n = 10, q = 7, and, for example, x33 = 135. These data illustrate that the variables
that make up a set of multivariate data will not necessarily all be of the same type.
Four levels of measurement are often distinguished;

• Nominal—Unordered categorical variables. Examples include treatment alloca-
tion, the sex of the respondent, hair color, presence or absence of depression, and
so on.

• Ordinal—Where there is an ordering but no implication of equal distance between
the different points of the scale. Examples include social class and self-perception
of health (each coded from I to V, say), and educational level (e.g., no schooling,
primary, secondary, or tertiary education).

• Interval—Where there are equal differences between successive points on the
scale, but the position of zero is arbitrary. The classic example is the measurement
of temperature using the Celsius or Fahrenheit scales.

• Ratio—The highest level of measurement, where one can investigate the relative
magnitude of scores as well as the differences between them. The position of zero
is fixed. The classic example is the absolute measure of temperature (in Kelvin,
for example) but other common examples include age (or any other time from a
fixed event), weight and length.

The qualitative information in Table 1.1 could have been presented in terms of
numerical codes (as often would be the case in a multivariate data set) such that
sex = 1 for males and sex = 2 for females, for example, or health = 5 when very
good and health = 1 for very poor, and so on. But it is vital that both the user and
consumer of these data appreciate that the same numerical codes (1, say) will often
convey completely different information.

In many statistical textbooks discussion of different types of measurements is
often followed by recommendations as to which statistical techniques are suitable

Table 1.1 Hypothetical Set of Multivariate Data

Individual Sex Age (yr) IQ Depression Health Weight (lb)

1 Male 21 120 Yes Very good 150
2 Male 43 NK No Very good 160
3 Male 22 135 No Average 135
4 Male 86 150 No Very poor 140
5 Male 60 92 Yes Good 110
6 Female 16 130 Yes Good 110
7 Female NK 150 Yes Very good 120
8 Female 43 NK Yes Average 120
9 Female 22 84 No Average 105

10 Female 80 70 No Good 100

NOTE: NK = not known.



1.2 Types of Data 3

for each type; for example, analyses of nominal data should be limited to summary
statistics such as the number of cases, the mode, and so on. And in the analysis of
ordinal data, means and standard deviations are not really suitable. ButVelleman and
Wilkinson (1993) make the important point that restricting the choice of statistical
methods in this way may be a dangerous practice for data analysis; the measurement
taxonomy described is often too strict to apply to real-world data. This is not the
place for a detailed discussion of measurement, but we take a fairly pragmatic
approach to such problems. For example, we will often not agonize over treating
variables such as a measure of depression, anxiety, or intelligence as if they were
interval-scaled, although strictly they fit into the ordinal category described above.

Table 1.1 also illustrates one of the problems often faced by statisticians under-
taking statistical analysis in general, and multivariate analysis in particular, namely
the presence of missing values in the data, that is, observations and measure-
ments that should have been recorded, but, for one reason or another, were not.
Often when faced with missing values, practitioners simply resort to analyzing
only complete cases, since this is what most statistical software packages do auto-
matically. In a multivariate analysis, they would, for example, omit any case with a
missing value on any of the variables. When the incomplete cases comprise only a
small fraction of all cases (say, 5 percent or less) then case deletion may be a per-
fectly reasonable solution to the missing data problem. But in multivariate data sets
in particular, where missing values can occur on any of the variables, the incomplete
cases may often be a substantial portion of the entire dataset. If so, omitting them
may cause large amounts of information to be discarded, which would clearly be
very inefficient.

But the main problem with complete-case analysis is that it can lead to a serious
bias in both estimation and inference unless the missing data are missing completely
at random (see Chapter 9 and Little and Rubin, 1987, for more details). In other
words, complete-case analysis implicitly assumes that the discarded cases are like
a random subsample. So at the very least complete-case analysis leads to a loss,
and perhaps a substantial loss in power, but worse, analyses based on just complete
cases might in some cases be misleading.

So what can be done? One answer is to consider some form of imputation, the
practice of “filling in” missing data with plausible values.At one level this will solve
the missing-data problem and enable the investigator to progress normally. But from
a statistical viewpoint careful consideration needs to be given to the method used
for imputation; otherwise it may cause more problems than it solves. For example,
imputing an observed variable mean for a variable’s missing values preserves the
observed sample means, but distorts the covariance structure, biasing estimated
variances and covariances toward zero. On the other hand imputing predicted values
from regression models tends to inflate observed correlations, biasing them away
from zero. And treating imputed data as if they were “real” in estimation and
inference can lead to misleading standard errors and p-values, since they fail to
reflect the uncertainty due to the missing data.

The most appropriate way to deal with missing values is a procedure suggested
by Rubin (1987), known as multiple imputation. This is a Monte Carlo technique
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in which the missing values are replaced by m > 1 simulated versions, where m
is typically small (say 3–10). Each of the simulated complete datasets is analyzed
by the method appropriate for the investigation at hand, and the results are later
combined to produce estimates and confidence intervals that incorporate missing-
data uncertainty. Details are given in Rubin (1987) and more concisely in Schafer
(1999). An S-PLUS� library for multiple imputation is available; see Schimert
et al. (2000). The greatest virtues of multiple imputation are its simplicity and its
generality. The user may analyze the data by virtually any technique that would
be appropriate if the data were complete. However, one should always bear in
mind that the imputed values are not real measurements. We do not get something
for nothing! And if there is a substantial proportion of the individuals with large
amounts of missing data one should clearly question whether any form of statistical
analysis is viable.

1.3 Summary Statistics for Multivariate Data

In order to summarize a multivariate data set we need to produce summaries for
each of the variables separately and also to summarize the relationships between
the variables. For the former we generally use means and variances (assuming that
we are dealing with continuous variables), and for the latter we usually take pairs
of variables at a time and look at their covariances or correlations. Population and
sample versions of all of these quantities are now defined.

1.3.1 Means
For q variables, the population mean vector is usually represented as µ′ = [µ1,

µ2, . . . , µq ], where
µi = E(xi)

is the population mean (or expected value as denoted by the E operator in the above)
of the ith variable. An estimate of µ′, based on n, q-dimensional observations, is
x̄′ = [x̄1, x̄2, . . . , x̄q ], where x̄i is the sample mean of the variable xi .

To illustrate the calculation of a mean vector we shall use the data shown in
Table 1.2, which shows the heights (millimeters) and ages (years) of both partners
in a sample of 10 married couples. We assume that the data are available as the
data.frame huswif with variables labelled as shown in Table 1.2. The mean vector
for these data can be found directly in R with the mean function and in S-PLUS by
using the apply function combined with the mean function;

R: mean(huswif)

S-PLUS: apply(huswif,2,mean)
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Table 1.2 Heights and Ages of Husband and Wife in 10 Married Couples

Husband age
Husband Husband Wife Wife at first
age (Hage) height (Hheight) age (Wage) height (Wheight) marriage (Hagefm)

49 1809 43 1590 25
25 1841 28 1560 19
40 1659 30 1620 38
52 1779 57 1540 26
58 1616 52 1420 30
32 1695 27 1660 23
43 1730 52 1610 33
47 1740 43 1580 26
31 1685 23 1610 26
26 1735 25 1590 23

The values that result are:

Hage Hheight Wage Wheight Hagefm

40.3 1728.9 38.0 1578.0 26.9

1.3.2 Variances
The vector of population variances can be represented by σ′ = [σ 2

1 , σ 2
2 , . . . , σ 2

q ],
where

σ 2
i = E(xi − µi)

2.

An estimate of σ′ based on n, q-dimensional observations is s′ = [s2
1 , s2

2 , . . . , s2
q ],

where s2
i is the sample variance of xi .

We can get the variances for the variables in the husbands and wives data set by
using the sd function directly in R and again using the apply function combined
with the var function in S-PLUS:

R: sd(huswif)ˆ2

S-PLUS: apply(huswif,2,var)

to give

Hage Hheight Wage Wheight Hagefm

130.23 4706.99 164.67 4173.33 29.88

1.3.3 Covariances
The population covariance of two variables, xi and xj , is defined by

Cov(xi, xj ) = E(xi − µi)(xj − µj ).
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If i = j , we note that the covariance of the variable with itself is simply its variance,
and therefore there is no need to define variances and covariances independently in
the multivariate case. The covariance of xi and xj is usually denoted by σij (so the
variance of the variable xi is often denoted by σii rather than σ 2

i ).
With q variables, x1, x2, . . . , xq , there are q variances and q(q − 1)/2 covari-

ances. In general these quantities are arranged in a q × q symmetric matrix, �,
where

� =

⎛
⎜⎜⎜⎝

σ11 σ12 · · · σ1q

σ21 σ22 · · · σ2q

...
...

...
...

σq1 σq2 · · · σqq

⎞
⎟⎟⎟⎠.

Note that σij = σji . This matrix is generally known as the variance–covariance
matrix or simply the covariance matrix. The matrix � is estimated by the matrix
S, given by

S = 1

n − 1

n∑
i=1

(xi − x̄)(xi − x̄)′

where x′
i = [xi1, xi2, . . . , xiq ] is the vector of observations for the ith individual.

The diagonal of S contains the variances of each variable.
The covariance matrix for the data in Table 1.2 is obtained using the var function

in both R and S-PLUS,
var(huswif)

to give the following matrix of variances (on the main diagonal) and covariances
(the off diagonal elements).

Hage Hheight Wage Wheight Hagefm

Hage 130.23 −192.19 128.56 −436.00 28.03
Hheight −192.19 4706.99 25.89 876.44 −229.34
Wage 128.56 25.89 164.67 −456.67 21.67
Wheight −436.00 876.44 −456.67 4173.33 −8.00
Hagefm 28.03 −229.34 21.67 −8.00 29.88

1.3.4 Correlations
The covariance is often difficult to interpret because it depends on the units in which
the two variables are measured; consequently, it is often standardized by dividing
by the product of the standard deviations of the two variables to give a quantity
called the correlation coefficient, ρij, where

ρij = σij√
σiiσjj

.

The correlation coefficient lies between −1 and +1 and gives a measure of the
linear relationship of the variables xi and xj . It is positive if high values of xi are
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associated with high values of xj and negative if high values of xi are associated
with low values of xj . With q variables there are q(q − 1)/2 distinct correlations
which may be arranged in a q × q matrix whose diagonal elements are unity.

For sample data, the correlation matrix contains the usual estimates of the ρ’s,
namely Pearson’s correlation coefficient, and is generally denoted by R. The matrix
may be written in terms of the sample covariance matrix S as follows,

R = D−1/2SD−1/2

where D−1/2 = diag(1/si).
In most situations we will be dealing with covariance and correlation matrices

of full rank, q, so that both matrices will be nonsingular (i.e., invertible).
The correlation matrix for the four variables in Table 1.2 is obtained by using the

function cor in both R and S-PLUS,

cor(huswif)

to give

Hage Hheight Wage Wheight Hagefm

Hage 1.00 −0.25 0.88 −0.59 0.45
Hheight −0.25 1.00 0.03 0.20 −0.61
Wage 0.88 0.03 1.00 −0.55 0.31
Wheight −0.59 0.20 −0.55 1.00 −0.02
Hagefm 0.45 −0.61 0.31 −0.02 1.00

1.3.5 Distances
The concept of distance between observations is of considerable importance for
some multivariate techniques. The most common measure used in Euclidean dis-
tance, which for two rows, say row i and row j, of the multivariate data matrix, X,
is defined as

dij =
[

q∑
k=1

(xik − xjk)
2

]1/2

.

We can use the dist function in both R and S-PLUS to calculate these distances
for the data in Table 1.2,

dis<-dist(huswif)

This can be converted into the required distance matrix by using the function
dist2full given in help(dist):

dist2full<-function(dis) {
n<-attr(dis,"Size")
full<-matrix(0,n,n)
full[lower.tri(full)]<-dis
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full+t(full)
}
dis.matrix<-dist2full(dis)
round(dis.matrix,digits=2)

The resulting distance matrix is

numeric matrix: 10 rows, 10 columns.

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0.00 52.55 154.33 60.05 257.56 135.81 82.60 69.76 128.46 79.58

[2,] 52.55 0.00 193.17 76.57 268.35 177.15 126.16 106.58 164.15 110.28

[3,] 154.33 193.17 0.00 147.71 206.69 56.52 75.23 92.32 32.40 84.39

[4,] 60.05 76.57 147.71 0.00 202.60 150.88 86.35 57.81 123.83 78.39

[5,] 257.56 268.35 206.69 202.60 0.00 255.33 222.10 202.96 206.03 211.81

[6,] 135.81 177.15 56.52 150.88 255.33 0.00 67.61 94.42 51.24 80.87

[7,] 82.60 126.16 75.23 86.35 222.10 67.61 0.00 33.85 55.31 39.28

[8,] 69.76 106.58 92.32 57.81 202.96 94.42 33.85 0.00 67.68 29.98

[9,] 128.46 164.15 32.40 123.83 206.03 51.24 55.31 67.68 0.00 54.20

[10,] 79.58 110.28 84.39 78.39 211.81 80.87 39.28 29.98 54.20 0.00

But this calculation of the distances ignores the fact that the variables in the data
set are on different scales, and changing the scales will change the elements of the
distance matrix without preserving the rank order of pairwise distances. It makes
more sense to calculate the distances after some form of standardization. Here we
shall divide each variable by its standard deviation. The necessary R code is

#find standard deviations of variables

std<-sd(huswif)
#use sweep function to divide columns of data matrix
#by the appropriate standard deviation
huswif.std<-sweep(huswif,2,std,FUN=’’/’’)
dis<-dist(huswif.std)
dis.matrix<-dist2full(dis)
round(dis.matrix,digits=2)

(In S-PLUS std will have to be calculated using apply and var.)
The result is the matrix given below

numeric matrix: 10 rows, 10 columns.
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0.00 2.73 3.51 1.44 4.10 2.80 2.08 1.05 2.88 2.71
[2,] 2.73 0.00 4.66 3.64 5.60 2.80 3.97 3.00 2.80 1.79
[3,] 3.51 4.66 0.00 3.87 4.19 2.96 2.22 2.83 2.43 3.26
[4,] 1.44 3.64 3.87 0.00 3.17 3.71 2.02 1.45 3.67 3.57
[5,] 4.10 5.60 4.19 3.17 0.00 5.07 3.67 3.37 4.57 4.89
[6,] 2.80 2.80 2.96 3.71 5.07 0.00 2.99 2.36 1.01 1.35
[7,] 2.08 3.97 2.22 2.02 3.67 2.99 0.00 1.58 2.88 3.18
[8,] 1.05 3.00 2.83 1.45 3.37 2.36 1.58 0.00 2.29 2.38
[9,] 2.88 2.80 2.43 3.67 4.57 1.01 2.88 2.29 0.00 1.07
[10,] 2.71 1.79 3.26 3.57 4.89 1.35 3.18 2.38 1.07 0.00
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In essence, in the previous section var and cor have computed similarities between
variables, and taking 1-cor(huswif), for example, would give a measure of dis-
tance between the variables. More will be said about similarities and distances in
Chapter 5.

1.4 The Multivariate Normal Distribution

Just as the normal distribution dominates univariate techniques, the multivariate
normal distribution often plays an important role in some multivariate procedures.
The distribution is defined explicitly in, for example, Mardia et al. (1979) and
is assumed by techniques such as multivariate analysis of variance (MANOVA);
see Chapter 7. In practice some departure from this assumption is not generally
regarded as particularly serious, but it may, on occasions, be worthwhile undertak-
ing some test of the assumption. One relatively simple possibility is to use a prob-
ability plotting technique. Such plots are commonly applied in univariate analysis
and involve ordering the observations and then plotting them against the appro-
priate values of an assumed cumulative distribution function. Details are given in
Display 1.1

Display 1.1
Probability Plotting

• There are two basic types of plot for comparing two probability distributions,
the probability–probability plot and the quantile–quantile plot. The diagram
below may be used for describing each type.



10 1. Multivariate Data and Multivariate Analysis

• A plot of points whose coordinates are the cumulative probabilities
(px(q), py(q)) for different values of q is a probability–probability plot,
while a plot of the points whose coordinates are the quantiles (qx(p), qy(p))

for different values of p is a quantile–quantile plot.
• An example, a quantile–quantile plot for investigating the assumption that a

set of data is from a normal distribution would involve plotting the ordered
sample values y(1), y(2), K, y(n) against the quantiles of a standard normal
distribution, �−1[p(i)], where usually

pi = i − 1
2

n
and �(x) =

∫ x

−∞
1√
2π

e− 1
2 u2

du.

• This is usually known as a normal probability plot.

For multivariate data such plots may be used to examine each variable separately,
although marginal normality does not necessarily imply that the variables follow
a multivariate normal distribution. Alternatively (or additionally), the multivariate
observation might be converted to a single number in some way before plotting.
For example, in the specific case of assessing a data set for multivariate normality,
each q-dimensional observation xi , could be converted into a generalized distance
(essentially Mahalanobis distance—see Everitt and Dunn, 2001), d2

i giving a mea-
sure of the distance of the particular observation from the mean vector of the com-
plete sample, x̄; d2

i is calculated as

d2
i = (xi − x̄)′S−1(xi − x̄),

where S is the sample covariance matrix. This distance measure takes into account
the different variances of the variables and the covariances of pairs of variables.
If the observations do arise from a multivariate normal distribution, then these
distances have, approximately, a chi-squared distribution with q degrees of free-
dom. So, plotting the ordered distances against the corresponding quantiles of
the appropriate chi-square distribution should lead to a straight line through the
origin.

First, let us consider some probability plots of a set of multivariate data con-
structed to have a multivariate normal distribution. We shall first use the R function
mvrnorm (the MASS library will need to be loaded to make the function avail-
able) and the S-PLUS function rmvnorm to create 200 bivariate observation with
correlation coefficient 0.5;

R:
#load MASS library
library(MASS)
#set seed for random number generation to get the same plots
set.seed(1203)
X<-mvrnorm(200,mu=c(0,0),Sigma=matrix(c(1,0.5,0.5,1.0),ncol=2))
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S-PLUS:
set.seed(1203)
X<-rmvnorm(200,rho=0.5,d=2)

(The data generated by R and S-PLUS will not be the same. The results below are
those obtained from the data generated by R.)

The probability plots for the individual variables are obtained using the following
R and S-PLUS code:

#set up plotting area to take two side-by-side plots
par(mfrow=c(1,2))
qqnorm(X[,1],ylab="Ordered observations")
qqline(X[,1])
qqnorm(X[,2],ylab="Ordered observations")
qqline(X[,2])

Figure 1.1 Probability plots for both variables in a generated set of bivariate data with
n = 200 and a correlation of 0.5.
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#qqnorm produces the required plot and qqline the line
#corresponding to a normal distribution

The resulting plots are shown in Figure 1.1. Neither probability plot gives any
indication of a departure from linearity as we would expect.

The chi-square plot for both variables simultaneously can be found using the
function chisplot given on the website mentioned in the preface. The required
code is

par(mfrow=c(1,1))
chisplot(X)

Here the result appears in Figure 1.2. The plot is approximately linear, although
some points do depart a little from the line.

If we now transform the previously generated data by simply taking the log of the
absolute values of the generated data and then redo the previous plots, the results
are shown in Figures 1.3 and 1.4. In each plot, there is a very clear departure from
linearity, indicating the non-normality of the data.

Figure 1.2 Chi-square probability plot of generated bivariate data.
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Figure 1.3 Probability plots of each variable in the transformed bivariate data.

1.5 The Aims of Multivariate Analysis

It is helpful to recognize that the analysis of data involves two separate stages. The
first, particularly in new areas of research, involves data exploration in an attempt to
recognize any nonrandom pattern or structure requiring explanation. At this stage,
finding the question is often of more interest than seeking the subsequent answer.
The aim of this part of the analysis being to generate possible interesting hypotheses
for further study. (This activity is now often described as data mining.) Here,
formal models designed to yield specific answers to rigidly defined questions are
not required. Instead, methods are sought that allow possibly unanticipated patterns
in the data to be detected, opening up a wide range of competing explanations. Such
techniques are generally characterized by their emphasis on the importance of visual
displays and graphical representations and by the lack of any associated stochastic
model, so that questions of the statistical significance of the results are hardly ever
of much importance.
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Figure 1.4 Chi-square plot of generated bivariate data after transformation.

A confirmatory analysis becomes possible after a research worker has some well-
defined hypothesis in mind. It is here that some type of statistical significance test
might be considered. Such tests are well known and, although their misuse has often
brought them into some disrepute, they remain of considerable importance.

In this text, Chapters 2–6 describe techniques that are primarily exploratory,
and Chapters 7–9 techniques that are largely confirmatory, but this division should
not be regarded as much more than a convenient arrangement of the material to
be presented, since any sensible investigator will realize the need for exploratory
and confirmatory techniques, and many methods will often be useful in both roles.
Perhaps attempts to rigidly divide data analysis into exploratory and confirmatory
parts have been misplaced, and what is really important is that research workers
should have a flexible and pragmatic approach to the analysis of their data, with
sufficient expertise to enable them to choose the appropriate analytical tool and use
it correctly. The choice of tool, of course, depends on the aims or purpose of the
analysis.

Most of this text is written from the point of view that there are no rules or laws
of scientific inference—that is, “anything goes” (Feyerabend, 1975). This implies
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that we see both exploratory and confirmatory methods as two sides of the same
coin. We see both methods as essentially tools for data exploration rather than as
formal decision-making procedures. For this reason we do not stress the values of
significance levels, but merely use them as criteria to guide a modelling process
(using the term “modelling” as a method or methods of describing the structure of
a data set). We believe that in scientific research it is the skillful interpretation of
evidence and subsequent development of hunches that are important, rather than a
rigid adherence to a formal set of decision rules associated with significance tests
(or any other criteria, for that matter). One aspect of the scientific method, however,
which we do not discuss in any detail, but which is the vital component in testing
the theories that come out of our data analyses, is replication. It is clearly unsafe
to search for a pattern in a given data set and to “confirm” the existence of such a
pattern using the same data set. We need to validate our conclusions using further
data. At this point our subsequent analysis might become truly confirmatory.

1.6 Summary

Most data collected in the social sciences and other disciplines are multivariate.
To fully understand most such data sets the variables need to be analyzed simul-
taneously. The remainder of this book is concerned with methods that have been
developed to make this possible, and to help discover any patterns or structure in
the data that may have important implications in uncovering the data’s message.
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Looking at Multivariate Data

2.1 Introduction

Most of the chapters in this book are concerned with methods for the analysis of
multivariate data, which are based on relatively complex mathematics. This chapter,
however, is not. Here we look at some relatively simple graphical procedures and
there is no better software for producing graphs than R and S-PLUS®.

According to Chambers et al. (1983) “there is no statistical tool that is as powerful
as a well-chosen graph.” Certainly graphical presentation has a number of advan-
tages over tabular displays of numerical results, not the least of which is creating
interest and attracting the attention of the viewer. Graphs are very popular. It has
been estimated that between 900 billion (9 × 1011) and 2 trillion (2 × 1012) images
of statistical graphics are printed each year. Perhaps one of the main reasons for such
popularity is that graphical presentation of data often provides the vehicle for discov-
ering the unexpected; the human visual system is very powerful in detecting patterns,
although the following caveat from the late Carl Sagan should be kept in mind.

Humans are good at discerning subtle patterns that are really there, but equally so at
imagining them when they are altogether absent.

During the last two decades a wide variety of new methods for displaying data
graphically have been developed. These will hunt for special effects in data, indicate
outliers, identify patterns, diagnose models and generally search for novel and
perhaps unexpected phenomena. Large numbers of graphs may be required, and
computers are generally needed to generate them for the same reasons they are
used for numerical analyses, namely, they are fast and they are accurate.

So, because the machine is doing the work, the question is no longer “Shall we
plot?” but rather “What shall we plot?” There are many exciting possibilities includ-
ing, dynamic graphics (see Cleveland and McGill, 1987), but graphical exploration
of data usually begins with some simpler, well-known methods. Univariate marginal
views of multivariate data might, for example, be obtained using histograms, stem-
and-leaf plots, or box plots. More important for exploring multivariate data are
plots that allow the relationships between variables to be assessed. Consequently
we begin our discussion of graphics with the ubiquitous scatterplot.

16
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2.2 Scatterplots and Beyond

The simple xy scatterplot has been in used since at least the eighteenth century and
has many virtues. Indeed, according to Tufte (1983):

The relational graphic—in its barest form the scatterplot and its variants—is the greatest
of all graphical designs. It links at least two variables, encouraging and even imploring
the viewer to assess the possible causal relationship between the plotted variables.
It confronts causal theories that x causes y with empirical evidence as to the actual
relationship between x and y.

To illustrate the use of the scatterplot and the other techniques to be discussed
in subsequent sections we shall use the data shown in Table 2.1. These data give

Table 2.1 Air Pollution Data for Regions in the United States

Region Rainfall Educ Popden Nonwhite NOX SO2 Mortality

AkronOH 36 11.4 3243 8.8 15 59 921.9

AlbanyNY 35 11.0 4281 3.5 10 39 997.9

AllenPA 44 9.8 4260 0.8 6 33 962.4

AtlantGA 47 11.1 3125 27.1 8 24 982.3

BaltimMD 43 9.6 6441 24.4 38 206 1071.0

BirmhmAL 53 10.2 3325 38.5 32 72 1030.0

BostonMA 43 12.1 4679 3.5 32 62 934.7

BridgeCT 45 10.6 2140 5.3 4 4 899.5

BufaloNY 36 10.5 6582 8.1 12 37 1002.0

CantonOH 36 10.7 4213 6.7 7 20 912.3

ChatagTN 52 9.6 2302 22.2 8 27 1018.0

ChicagIL 33 10.9 6122 16.3 63 278 1025.0

CinnciOH 40 10.2 4101 13.0 26 146 970.5

ClevelOH 35 11.1 3042 14.7 21 64 986.0

ColombOH 37 11.9 4259 13.1 9 15 958.8

DallasTX 35 11.8 1441 14.8 1 1 860.1

DaytonOH 36 11.4 4029 12.4 4 16 936.2

DenverCO 15 12.2 4824 4.7 8 28 871.8

DetrotMI 31 10.8 4834 15.8 35 124 959.2

FlintMI 30 10.8 3694 13.1 4 11 941.2

FtwortTX 31 11.4 1844 11.5 1 1 891.7

GrndraMI 31 10.9 3226 5.1 3 10 871.3

GrnborNC 42 10.4 2269 22.7 3 5 971.1

HartfdCT 43 11.5 2909 7.2 3 10 887.5

(Continued)
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Table 2.1 (Continued)

Region Rainfall Educ Popden Nonwhite NOX SO2 Mortality

HoustnTX 46 11.4 2647 21.0 5 1 952.5

IndianIN 39 11.4 4412 15.6 7 33 968.7

KansasMO 35 12.0 3262 12.6 4 4 919.7

LancasPA 43 9.5 3214 2.9 7 32 844.1

LosangCA 11 12.1 4700 7.8 319 130 861.8

LouisvKY 30 9.9 4474 13.1 37 193 989.3

MemphsTN 50 10.4 3497 36.7 18 34 1006.0

MiamiFL 60 11.5 4657 13.5 1 1 861.4

MilwauWI 30 11.1 2934 5.8 23 125 929.2

MinnplMN 25 12.1 2095 2.0 11 26 857.6

NashvlTN 45 10.1 2082 21.0 14 78 961.0

NewhvnCT 46 11.3 3327 8.8 3 8 923.2

NeworlLA 54 9.7 3172 31.4 17 1 1113.0

NewyrkNY 42 10.7 7462 11.3 26 108 994.6

PhiladPA 42 10.5 6092 17.5 32 161 1015.0

PittsbPA 36 10.6 3437 8.1 59 263 991.3

PortldOR 37 12.0 3387 3.6 21 44 894.0

ProvdcRI 42 10.1 3508 2.2 4 18 938.5

ReadngPA 41 9.6 4843 2.7 11 89 946.2

RichmdVA 44 11.0 3768 28.6 9 48 1026.0

RochtrNY 32 11.1 4355 5.0 4 18 874.3

StLousMO 34 9.7 5160 17.2 15 68 953.6

SandigCA 10 12.1 3033 5.9 66 20 839.7

SanFranCA 18 12.2 4253 13.7 171 86 911.7

SanJosCA 13 12.2 2702 3.0 32 3 790.7

SeatleWA 35 12.2 3626 5.7 7 20 899.3

SpringMA 45 11.1 1883 3.4 4 20 904.2

SyracuNY 38 11.4 4923 3.8 5 25 950.7

ToledoOH 31 10.7 3249 9.5 7 25 972.5

UticaNY 40 10.3 1671 2.5 2 11 912.2

WashDC 41 12.3 5308 25.9 28 102 968.8

WichtaKS 28 12.1 3665 7.5 2 1 823.8

WilmtnDE 45 11.3 3152 12.1 11 42 1004.0

WorctrMA 45 11.1 3678 1.0 3 8 895.7

YorkPA 42 9.0 9699 4.8 8 49 911.8

YoungsOH 38 10.7 3451 11.7 13 39 954.4

Data assumed available as dataframe airpoll with variable names as indicated.
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information on 60 U.S. metropolitan areas (McDonald and Schwing, 1973;
Henderson and Velleman, 1981). For each area the following variables have been
recorded:

1. Rainfall: mean annual precipitation in inches
2. Education: median school years completed for those over 25 in 1960
3. Popden: population/mile2 in urbanized area in 1960
4. Nonwhite: percentage of urban area population that is nonwhite
5. NOX: relative pollution potential of oxides of nitrogen
6. SO2: relative pollution potential of sulphur dioxide
7. Mortality: total age-adjusted mortality rate, expressed as deaths per 100,000

One of the questions about these data might be “How is sulphur dioxide pollution
related to mortality?” A first step in answering the question would be to examine a
scatterplot of the two variables. Here, in fact, we will produce four versions of the
basic scatterplot using the following R and S-PLUS code (we assume that the data
are available as the data frame airpoll with variable names as above):

attach(airpoll)
#set up plotting area to take four graphs
par(mfrow=c(2,2,))
par(pty="s")
plot(SO2,Mortality,pch=1,lwd=2)
title("(a)",lwd=2)
plot(SO2,Mortality,pch=1,lwd=2)
#add regression line
abline(lm(Mortality∼SO2),lwd=2)
title("(b)",lwd=2)
#jitter data
airpoll1<-jitter(cbind(SO2,Mortality))
plot(airpoll1[,1],airpoll1[,2],xlab="SO2",ylab="Mortality",

pch=1,lwd=2)
title("(c)",lwd=2)
plot(SO2,Mortality,pch=1,lwd=2)
#add rug plots
rug(jitter(SO2),side=1)
rug(jitter(Mortality),side=2)
title("(d)",lwd=2)

Figure 2.1(a) shows the scatterplot of Mortality against SO2. Figure 2.1(b) shows
the same scatterplot with the addition of the simple linear regression fit of Mortality
on SO2. Both plots suggest a possible link between increasing sulphur dioxide level
and increasing mortality.

Although not a real problem here, scatterplots in which there are many points
often suffer from overplotting. The problem can be overcome, partially at least,
by “jittering” the data, that is, adding a small amount of noise to each observation
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Figure 2.1 (a) Scatterplot for Mortality against SO2; (b) scatterplot of Mortality against
SO2 with added linear regression fit; (c) jittered scatterplot of Mortality against SO2;
(d) scatterplot of Mortality against SO2 with information about marginal distributions
of the two variables added.

before plotting (see Chambers et al., 1983, for details). Figure 2.1(c) shows the
scatterplot in Figure 2.1(a) after jittering. Finally, in Figure 2.1(d), the bivariate
scatter of the two variables is framed with a display of the marginal distribution
of each variable. Plotting marginal and joint distributions together is usually good
data analysis practice.

With these data it might be useful to label the scatterplot with the names of
the regions involved. These names are rather long, and if used as they are would
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lead to a rather “messy” plot; consequently we shall use the R and S-PLUS function
abbreviate to shorten them before plotting using the code:

names<-abbreviate(row.names(airpoll))
plot(SO2,Mortality,lwd=2,type="n")
text(SO2,Mortality,labels=names,lwd=2)

Figure 2.2 highlights some regions with odd combinations of pollution and
mortality values. For example, nwLA has almost zero SO2 value, but very high
mortality. Perhaps this is a garden suburb where people go to retire?

In Figure 2.1(b) a simple linear regression fit was added to the Mortality/SO2
scatterplot. This addition is often very useful for assessing the relationship between
the two variables more accurately. Even more useful is to add both the linear regres-
sion fit and a locally weighted regression or lowest fit to the scatterplot. Such fits
are described in detail in Cleveland (1979), but essentially they are designed to
use the data themselves to suggest the type of fit needed. The model assumed
is that

yi = g(xi) + εi,

where g is a “smooth” function and the εi are random variables with zero mean and
constant variance. Fitted values, ŷi , are used to estimate g(xi) at each xi by fitting
polynomials using weighted least squares, with large weights for points close to

Figure 2.2 Scatterplot of mortality against SO2 with points labeled by region name.
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xi and small weights otherwise. The degree of “smoothness” of the fitted curve
can be controlled by a particular parameter during the fitting process. Examining
a scatterplot that includes a locally weighted regression fit can often be a useful
antidote to the thoughtless fitting of straight lines with least squares.

To illustrate the use of lowest fits we return to the air pollution data and again
concentrate on the two variables, SO2 and Mortality. The following R and S-PLUS
code produces a scatterplot with some information about marginal distributions that
also includes both a linear regression and a locally weighted regression fit:

#set up plotting area for scatterplot
par(fig=c(0,0.7,0,0.7))
plot(SO2,Mortality,lwd=2)
#add regression line
abline(lm(Mortality∼SO2),lwd=2)
#add locally weighted regression fit
lines(lowess(SO2,Mortality),lwd=2)
#set up plotting area for histogram
par(fig=c(0,0.7,0.65,1),new=TRUE)
hist(SO2,lwd=2)
#set up plotting area for boxplot
par(fig=c(0.65,1,0,0.7),new=TRUE)
boxplot(Mortality,lwd=2)

The resulting diagram is shown in Figure 2.3. Here, apart from a small “wobble”
for sulphur dioxide values 0 to 100, the linear fit and the locally weighted fit are
very similar.

2.2.1 The Convex Hull of Bivariate Data
Scatterplots are often used in association with the calculation of the correlation
coefficient of two variables. Outliers, for example, can often considerably distort
the value of a correlation coefficient, and a scatterplot may help to identify the
offending observations, which might then be excluded from the calculation.Another
approach that allows robust estimation of the correlation is convex hull trimming.
The convex hull of a set of bivariate observations consists of the vertices of the
smallest convex polyhedron in variable space within which, or on which, all data
points lie. Removal of the points lying on the convex hull can eliminate isolated
outliers without disturbing the general shape of the bivariate distribution. A robust
estimate of the correlation coefficient results from using the remaining observations.

Let’s see how the convex hull approach works with our Mortality/SO2 scatter-
plot. We can calculate the correlation coefficient of the two variables using all the
observations from the R and S-PLUS instruction:

cor(SO2, Mortality)

giving a value of 0.426.
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Figure 2.3 Scatterplot of mortality against SO2 with added linear regression and locally
weighted regression fits and marginal distribution information.

Now we can find the convex hull of the data and, for interest, show it on a
scatterplot of the two variables using the following R and S-PLUS code:

#find points defining convex hull
hull<-chull(SO2,Mortality)
plot(SO2,Mortality,pch=1)
#plot and shade convex hull
polygon(SO2[hull],Mortality[hull],density=15,angle=30)

The result is shown in Figure 2.4.
To calculate the correlation coefficient after removal of the points defining the

convex hull requires the instruction

cor(SO2[-hull],Mortality[-hull])

The resulting value of the correlation is now 0.438. In this case the change in
the correlation after removal of the points defining the convex hull is very small,
surprisingly small, given that some of the defining observations are relatively remote
from the body of the data.

2.2.2 The Chiplot
Although the scatterplot is a primary data-analytic tool for assessing the relationship
between a pair of continuous variables, it is often difficult to judge whether or not
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Figure 2.4 Scatterplot of mortality against SO2 showing convex hull of the data.

the variables are independent.A random scatter of points may be hard for the human
eye to judge. Consequently, it is often helpful to augment the scatterplot with an
auxiliary display in which independence is itself manifested in a characteristic
manner. The chi-plot suggested by Fisher and Switzer (1985, 2001) is designed to
address the problem. The essentials of this type of plot are described in Display 2.1.

Display 2.1
The Chi-Plot

• A chi-plot is a scatterplot of the pairs

(λi, χi), |λ2| < 4

{
1

n − 1
− 1

2

}2

,

where

χi = (Hi − FiGi)/{Fi(1 − Fi)Gi(1 − Gi)}1/2

λi = 4Si max

{(
Fi − 1

2

)2

,

(
Gi − 1

2

)2
}
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and

Hi =
∑
j �=i

I (xj ≤ xi, yj ≤ yi)/(n − 1)

Fi =
∑
j �=i

I (xj ≤ xi)/(n − 1)

Gi =
∑
j �=i

I (yj ≤ yi)/(n − 1)

Si = sign

{(
Fi − 1

2

)(
Gi − 1

2

)}

where sign (x) is +1 if x is positive, 0 if x is zero, and −1 if x is negative;
I (A) is the indicator function for the event A, that is, if A is true I (A) = 1,

if A is not true, I (A) = 0.
• When the two variables are independent, the points in a chi-plot will be

scattered about a central region. When they are related, the points will tend
to lie outside this central region. See the example in the text.

An R and S-PLUS function for producing chi-plots, the chiplot is given on the
website mentioned in the Preface. To illustrate the chi-plot we shall apply it to the
Mortality and SO2 variables of the air pollution data using the code

chiplot(SO2,Mortality,vlabs=c("SO2","Mortality"))

The result is Figure 2.5 which shows the scatterplot of Mortality plotted against
SO2 alongside the corresponding chi-plot. Departure from independence is indi-
cated in the latter by a lack of points in the horizontal band indicated on the plot.
Here there is a clear departure since there are very few of the observations in this
region.

2.2.3 The Bivariate Boxplot
A further helpful enhancement to the scatterplot is often provided by the two-
dimensional analogue of the boxplot for univariate data, known as the bivarate
boxplot (Goldberg and Iglewicz, 1992). This type of boxplot may be useful in indi-
cating the distributional properties of the data and in identifying possible outliers.
The bivariate boxplot is based on calculating “robust” measures of location, scale,
and correlation. It consists essentially of a pair of concentric ellipses, one of which
(the “hinge”) includes 50% of the data and the other (called the “fence”) which
delineates potential troublesome outliers. In addition, resistant regression lines of
both y on x and x on y are shown, with their intersection showing the bivari-
ate location estimator. The acute angle between the regression lines will be small
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Figure 2.5 Chi-plot of Mortality and SO2.

for a large absolute value of correlations and large for a small one. Details of the
construction of a bivarate boxplot are as given in Display 2.2:

Display 2.2
Constructing a Bivariate Boxplot

• The bivariate boxplot is the two-dimensional analogue of the familiar boxplot
for univariate data and consists of a pair of concentric ellipses, the “hinge”
and the “fence.”

• To draw the elliptical fence and hinge, location (T ∗
x , T ∗

y ), scale (S∗
x , S∗

y ),
and correlation (R∗) estimators are needed, in addition to a constant D

that regulates the distance of the fence from the hinge. In general D = 7
is recommended since this corresponds to an approximate 99% confidence
bound on a single observation.

• In general, robust estimators of location, scale, and correlation are recom-
mended since they are better at handling data with outliers or with density
or shape differing moderately from the elliptical bivariate normal. Goldberg
and Iglewicz (1992) discuss a number of possibilities.
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• To draw the bivariate boxplot, first calculate the median Em and the maximum
Emax of the standardized errors, Ei , which are essentially the generalized
distances of each point from the centre (T ∗

x , T ∗
y ). Specifically, the Ei are

defined by

Ei =
√

X2
si + Y 2

si − 2R∗XsiYsi

1 − R∗2 ,

where Xsi = (Xi − T ∗
x )/S∗

x is the standardized Xi value and Ysi is similarly
defined.

• Then
Em = median {Ei : i = 1, 2, K, n}

and
Emax = maximum {Ei : E2

i < DE2
m}.

• To draw the hinge, let

R1 = Em

√
1 + R∗

2
, R2 = Em

√
1 − R∗

2
.

• For θ = 0 to 360 in steps of 2, 3, 4, or 5 degrees, let

	1 = R1 cos θ,

	2 = R2 sin θ,

X = T ∗
x + (	1 + 	2)S

∗
x ,

Y = T ∗
y + (	1 − 	2)S

∗
y .

• Finally, plot X, Y .

To illustrate the use of a bivariate boxplot we shall again use the SO2 and Mortality
scatterplot. An R and S-PLUS function, bivbox, for constructing and plotting the
boxplot is given on the website (see Preface) and can be used as follows,

bivbox(cbind(SO2,Mortality),xlab="SO2",ylab="Mortality"))

to give the diagram shown in Figure 2.6.
In Figure 2.6 robust estimators of scale and location have been used and the

diagram suggests that there are five outliers in the data. To use the nonrobust
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Figure 2.6 Bivariate boxplot of SO2 and Mortality (robust estimators of location, scale,
and correlation).

Figure 2.7 Bivariate boxplot of SO2 and Mortality (nonrobust estimators).
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estimators, that is, the usual means, variances, and correlation coefficient, the
necessary code is

bivbox(cbind(SO2,Mortality),xlab="SO2",ylab="Mortality",
method="O")

The resulting diagram is shown in Figure 2.7. Now only three outliers are
identified. In general the use of the robust estimator version of the bivbox function
is recommended.

2.3 Estimating Bivariate Densities

Often the aim in examining scatterplots is to identify regions where there are high
or low densities of observations, “clusters,” or to spot outliers. But humans are not
particularly good at visually examining point density, and it is often a very helpful
aid to add some type of bivariate density estimate to the scatterplot. In general
a nonparametric estimate is most useful since we are unlikely, in most cases, to
want to assume some particular parametric form such as the bivariate normality.
There is now a considerable literature on density estimation; see, for example,
Silverman (1986) and Wand and Jones (1995). Basically, density estimates are
“smoothed” two-dimensional histograms. A brief summary of the mathematics of
bivariate density estimation is given in Display 2.3.

Display 2.3
Estimating Bivariate Densities

• The data set whose underlying density is to be estimated is X1, X2, L, Xn.
• The bivariate kernel density estimator with kernel K and window width h is

defined by

f̂ (x) = 1

nh2

n∑
i=1

K

{
1

h
(x − Xi )

}
.

• The kernel function K(x) is a function, defined for bivariate x, satisfying∫
K(x)dx = 1.

• Usually K(x) will be a radially symmetric unimodal probability density
function, for example, the standard bivariate normal density function:

K(x) = 1

2π
exp

(
−1

2
x′x

)
.
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Let us look at a simple two-dimensional histogram of the Mortality/SO2 obser-
vations found and then displayed as a perspective plot by using the S-PLUS code

h2d<-hist2d(SO2,Mortality)
persp(h2d,xlab="SO2",ylab="Mortality",zlab="Frequency")

The result is shown in Figure 2.8. The density estimate given by the histogram
is really too rough to be useful. (The function hist2d appears to be unavailable in
R, but this is of little consequence since, in practice, unsmoothed two-dimensional
histograms are of little use.)

Now we can use the R and S-PLUS function bivden given on the website to
find a smoother estimate of the bivariate density of Mortality and SO2 and to then
display the estimated density as both a contour and perspective plot. The necessary
code is

#get bivariate density estimates using a normal kernel
den1<-bivden(SO2,Mortality)
#construct a perspective plot of the density values
persp(den1$seqx,den1$seqy,den1$den,xlab="SO2",

ylab="Mortality",
zlab="Density",lwd=2)
#
plot(SO2,Mortality)
#add a contour plot of the density values to the scatterplot
contour(den1$seqx,den1$seqy,den1$den,lwd=2,nlevels=20,add=T)
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Figure 2.8 Two-dimensional histogram of Mortality and SO2.
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Figure 2.9 Perspective plot of estimated bivariate density of Mortality and SO2.

Figure 2.10 Contour plot of estimated bivariate density of Mortality and SO2.
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The results are shown in Figures 2.9 and 2.10. Both plots give a clear indication
of the skewness in the bivariate density of the two variables. (The diagrams shown
result from using S-PLUS; those from R are a little different.)

In R the bkde2D function from the KernSmooth library might also be used to
provide bivariate density estimates; see Exercise 2.7.

2.4 Representing Other Variables on a Scatterplot

The scatterplot can only display two variables. But there have been a number of
suggestions as to how extra variables may be included. In this section we shall
illustrate one of these, the bubbleplot, in which three variables are displayed. Two
variables are used to form the scatterplot itself, and then the values of the third vari-
able are represented by circles with radii proportional to these values and centered
on the appropriate point in the scatterplot. To illustrate the bubbleplot we shall use
the three variables, SO2, Rainfall, and Mortality from the air pollution data. The R
and S-PLUS code needed to produce the required bubble plot is

plot(SO2,Mortality,pch=1,lwd=2,ylim=c(700,1200),
xlim=c(-5,300))

#add circles to scatterplot
symbols(SO2,Mortality,circles=Rainfall,inches=0.4,add=TRUE,

lwd=2)

Figure 2.11 Bubbleplot of Mortality and SO2 with Rainfall represented by radii of circles.
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The resulting diagram is shown in Figure 2.11. Two particular observations to
note are the one with high mortality and rainfall but very low sulphur dioxide level
(NworlLA) and the one with relatively low mortality and low rainfall but moderate
sulphur dioxide level (losangCA).

2.5 The Scatterplot Matrix

There are seven variables in the air pollution data which between them generate 21
possible scatterplots, and it is very important that the separate plots are presented
in the best way to an in overall comprehension and understanding of the data. The
scatterplot matrix is intended to accomplish this objective.

A scatterplot matrix is defined as a square, symmetric grid of bivariate scatterplots.
The grid has q rows and columns, each one corresponding to a different variable.
Each of the grid’s cells shows a scatterplot of two variables. Variable j is plotted
against variable i in the ij th cell, and the same variables appear in cell ji with the
x- and y-axes of the scatterplots interchanged. The reason for including both the
upper and lower triangles of the grid, despite the seeming redundancy, is that it
enables a row and a column to be visually scanned to see one variable against all oth-
ers, with the scales for the one variable lined up along the horizontal or the vertical.

To produce the basic scatterplot matrix of the air pollution variable we can use
the pairs function in both R and S-PLUS

pairs(airpoll)

The result is Figure 2.12. The plot highlights that many pairs of variables in the
air pollution data appear to be related in a relatively complex fashion, and that there
are some potentially troublesome outliers in the data.

Rather than having variable labels on the main diagonal as in Figure 2.10, we
may like to have some graphical representation of the marginal distribution of the
corresponding variable, for example, a histogram. And here is a convenient point
in the discussion to illustrate briefly the “click-and-point” features of the S-PLUS
GUI since these can be useful in some situations, although for serious work the
command line approach used up to now, and in most of the remainder of the book,
is to be recommended. So to construct the required plot:

• Click on Graph in the toolbar;
• Select 2D plot;
• In Axes Type highlight Matrix;
• Click OK;
• In Scatterplot Matrix Dialogue select airpoll as data set;
• Highlight all variables names in x-column slot;
• Check Line/Histogram tab;
• Check Draw Histogram;
• Click on OK.

The resulting diagram appears in Figure 2.13.
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Figure 2.12 Scatterplot matrix of air pollution data.
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Figure 2.13 Scatterplot matrix of air pollution data showing histograms of each variable on
the main diagonal.
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Figure 2.14 Scatterplot matrix of air pollution data showing linear and locally weighted
regression fits on each panel.

Previously in this chapter we looked at a variety of ways in which individual
scatterplots can be enhanced to make them more useful. These enhancements can,
of course, also be used on each panel of a scatterplot matrix. For example, we can
add linear and locally weighted regression fits to the air pollution diagram using
the following code in either R or S-PLUS

pairs(airpoll,panel=function(x,y) {abline(lsfit(x,y)$coef,
lwd=2)

lines(lowess(x,y),lty=2,
lwd=2)

points(x,y)})

to give Figure 2.14. Other possibilities for enhancing the panels of a scatterplot
matrix are considered in the exercises.

2.6 Three-Dimensional Plots

In S-PLUS there are a variety of three-dimensional plots that can often be usefully
applied to multivariate data. We will illustrate some of the possibilities using once
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Figure 2.15 Three-dimensional plot of SO2, NOX, and Mortality.

again the air pollution data. To begin we will construct a simple three-dimensional
plot of SO2, NOX, and Mortality again using the S-PLUS GUI:

• Click Graph on the tool bar;
• Select 3D;
• In Insert Graph Dialogue, choose 3D Scatter, and click OK;
• In the 3D Line/Scatterplot [1] dialogue select Data Set airpoll;
• Select SO2 for x Column, NOX for y Column, and Mortality for z;
• Click OK.

Mortality appears to increase rapidly with increasing NOX values but more modestly
with increasing levels of SO2. (A similar diagram can be found using the cloud
function in S-PLUS and in R where it is available in the lattice library.)

Often it is easier to see what is happening in such a plot if lines are used to
join drop-line plot. Such a plot is obtained using the instructions above but in
Insert Graph dialogue, choose 3D Scatter with Drop Line. The result is shown
in Figure 2.16
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Figure 2.16 Three-dimensional drop line plot of SO2, NOX, and Mortality.
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2.7 Conditioning Plots and Trellis Graphics

The conditioning plot or coplot is a potentially powerful visualization tool for
studying the bivariate relationship of a pair of variables conditional on the values
of one or more other variables. Such plots can often highlight the presence of
interactions between the variables where the degree and/or direction of the bivariate
relationship differs in the different levels of the third variable.

To illustrate we will construct a coplot of Mortality against SO2 conditioned on
population density (Popden) for the air pollution data. We need the R and S-PLUS
function coplot

coplot(Mortality∼SO2|Popden)

The resulting plot is shown in Figure 2.17. In this diagram, the panel at the
top is known as the given panel; the panels below are dependence panels. Each
rectangle in the given panel specifies a range of values of population density. On a
corresponding dependence panel, Mortality is plotted against SO2 for those regions
with population densities within one of the intervals in the given panel. To match
the latter to the dependence panels, these panels need to be examined from left to
right in the bottom row and then again left to right in subsequent rows.

Figure 2.17 Coplot of SO2 and Mortality conditional on population density.
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There are relatively few observations in each panel on which to draw conclusions
about possible differences in the relationship of SO2 and Mortality at different levels
of population density although there do appear to be some differences. In such cases
it is often helpful to enhance the coplot dependence panels in some way. Here we
add a locally weighted regression fit using the R and S-PLUS code:

coplot(Mortality∼SO2|Popden,panel=function(x,y,col,pch)
panel.smooth(x,y,span=1))

The result is shown in Figure 2.18. This plot suggests that the relationship between
mortality and sulphur dioxide for lower levels of population density is more complex
than at higher levels, although the number of points on which this claim is made is
rather small.

Conditional graphical displays are simple examples of a more general scheme
known as trellis graphics (Becker and Cleveland, 1994). This is an approach to
examining high-dimensional structure in data by means of one-, two-, and three-
dimensional graphs. The problem addressed is how observations of one or more
variables depend on the observations of the other variables. The essential feature
of this approach is the multiple conditioning that allows some type of plot to be
displayed for different values of a given variable (or variables). The aim is to help in

Figure 2.18 Coplot of SO2 and Mortality conditional on population density with added
locally weighted regression fit.
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understanding both the structure of the data and how well proposed models describe
the structure. An excellent recent example of the application of trellis graphics is
given in Verbyla et al. (1999). To illustrate the possibilities we shall construct a
three-dimensional plot of SO2, NOX, and Mortality conditional on Popden. The
necessary “click-and-point” steps are:

• Click on Data in the tool bar;
• In Select Data box choose airpoll;
• Click OK;

• Click on 3D plots button, , to get 3D plot palette;
• Highlight NOX in spreadsheet and then ctrl click on SO2, Mortality, and Popden;

• Turn conditioning button on;
• Choose Drop line scatter from 3D palette.

The resulting diagram is shown in Figure 2.19.
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Figure 2.19 Three-dimensional plot for NOX, SO2, and Mortality conditional on Popden.
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2.8 Summary

Plotting multivariate data is an essential first step in trying to understand their
message. The possibilities are almost limitless with software such as R and S-PLUS
and readers are encouraged to explore more fully what is available. The methods
covered in this chapter provide just some basic ideas for taking an initial look at
multivariate data.

Exercises
2.1 The bubbleplot makes it possible to accommodate three variable values on a

scatterplot. More than three variables can be accommodated by using what
might be termed a star plot in which the extra variables are represented by the
lengths of the sides of a “star.” Construct such a plot for all seven variables in
the air pollution data using say Rainfall and SO2 to form the basic scatterplot.
(Use the symbols function.)

2.2 Construct a scatterplot matrix of the air pollution data in which each panel
shows a bivariate density estimate of the pair of variables.

2.3 Construct a trellis graphic showing a scatterplot of SO2 and Mortality condi-
tioned on both rainfall and population density.

2.4 Construct a three-dimensional plot of Rainfall, SO2, and Mortality showing
the estimated regression surface of Mortality on the other two variables.

2.5 Construct a three-dimensional plot of SO2, NOX, and Rainfall in which the
observations are labelled by an abbreviated form of the region name.

2.6 Investigate the use of the chiplot function on all pairs of variables in the air
pollution data.

2.7 Investigate the use of the bkde2D function in the KernSmooth library of R to
calculate the bivariate density of SO2 and Mortality in the air pollution data.
Use the wireframe function available in the lattice library in R to construct
a perspective plot of the estimated density.

2.8 Produce a similar diagram to that given in Figure 2.19 using the cloud
function.
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Principal Components Analysis

3.1 Introduction

The basic aim of principal components analysis is to describe the variation in a
set of correlated variables, x1, x2, . . . , xq , in terms of a new set of uncorrelated
variables, y1, y2, . . . , yq , each of which is a linear combination of the x variables.
The new variables are derived in decreasing order of “importance” in the sense
that y1 accounts for as much of the variation in the original data amongst all linear
combinations of x1, x2, . . . , xq . Then y2 is chosen to account for as much as possible
of the remaining variation, subject to being uncorrelated with y1, and so on. The
new variables defined by this process, y1, y2, . . . , yq , are the principal components.

The general hope of principal components analysis is that the first few com-
ponents will account for a substantial proportion of the variation in the original
variables, x1, x2, . . . , xq , and can, consequently, be used to provide a convenient
lower-dimensional summary of these variables that might prove useful for a variety
of reasons. Consider, for example, a set of data consisting of examination scores for
several different subjects for each of a number of students. One question of interest
might be how best to construct an informative index of overall examination perfor-
mance. One obvious possibility would be the mean score for each student, although
if the possible or observed range of examination scores varied from subject to sub-
ject, it might be more sensible to weight the scores in some way before calculating
the average, or alternatively standardize the results for the separate examinations
before attempting to combine them. In this way it might be possible to spread the
students out further and so obtain a better ranking. The same result could often be
achieved by applying principal components to the observed examination results and
using the student’s scores on the first principal component to provide a measure of
examination success that maximally discriminated between them.

A further possible application for principal components analysis arises in the field
of economics, where complex data are often summarized by some kind of index
number, for example, indices of prices, wage rates, cost of living, and so on. When
assessing changes in prices over time, the economist will wish to allow for the fact
that prices of some commodities are more variable than others, or that the prices of
some of the commodities are considered more important than others; in each case

41
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the index will need to be weighted accordingly. In such examples, the first principal
component can often satisfy the investigators requirements.

But it is not always the first principal component that is of most interest to a
researcher. A taxonomist, for example, when investigating variation in morpholog-
ical measurements on animals for which all the pairwise correlations are likely to
be positive, will often be more concerned with the second and subsequent compo-
nents since these might provide a convenient description of aspects of an animal’s
“shape”; the latter will often be of more interest to the researcher than aspects of an
animal’s “size” which here, because of the positive correlations, will be reflected
in the first principal component. For essentially the same reasons, the first principal
component derived from say clinical psychiatric scores on patients may only pro-
vide an index of the severity of symptoms, and it is the remaining components that
will give the psychiatrist important information about the “pattern” of symptoms.

In some applications, the principal components may be an end in themselves
and might be amenable to interpretation in a similar fashion as the factors in an
exploratory factor analysis (see Chapter 4). More often they are obtained for use
as a means of constructing an informative graphical representation of the data (see
later in the chapter), or as input to some other analysis. One example of the latter is
provided by regression analysis. Principal components may be useful here when:

• There are too many explanatory variables relative to the number of observations.
• The explanatory variables are highly correlated.

Both situations lead to problems when applying regression techniques, problems
that may be overcome by replacing the original explanatory variables with the first
few principal component variables derived from them. An example will be given
later and other applications of the technique are described in Rencher (1995).

A further example of when the results from a principal components analysis may
be useful in the application of multivariate analysis of variance (see Chapter 7) is
when there are too many original variables to ensure that the technique can be used
with reasonable power. In such cases the first few principal components might be
used to provide a smaller number of variables for analysis.

3.2 Algebraic Basics of Principal Components

The first principal component of the observations is that linear combination of
the original variables whose sample variance is greatest amongst all possible such
linear combinations. The second principal component is defined as that linear com-
bination of the original variables that accounts for a maximal proportion of the
remaining variance subject to being uncorrelated with the first principal compo-
nent. Subsequent components are defined similarly. The question now arises as to
how the coefficients specifying the linear combinations of the original variables
defining each component are found. The algebra of sample principal components
is summarized in Display 3.1.
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Display 3.1
Algebraic Basis of Principal Components Analysis

• The first principal component of the observations, y1, is the linear combination

y1 = a11x1 + a12x2 + · · · + a1qxq

whose sample variance is greatest among all such linear combinations.
• Since the variance of y1 could be increased without limit simply by increasing

the coefficients a11, a12, . . . , a1q (which we will write as the vector a1), a
restriction must be placed on these coefficients.As we shall see later, a sensible
constraint is to require that the sum of squares of the coefficients, a′

1a1 should
take the value one, although other constraints are possible.

• The second principal component y2 is the linear combination

y2 = a21x1 + a22x2 + · · · + a2qxq

i.e., y2 = a′
2x where a′

2 = [a21, a22, . . . , a2q ] and x′ = [x1, x2, . . . , xq ].
which has the greatest variance subject to the following two conditions:

a′
2a2 = 1,

a′
2a1 = 0.

The second condition ensures that y1 and y2 are uncorrelated.
• Similarly, the j th principal component is that linear combination yj = a′

j x
which has the greatest variance subject to the conditions

a′
j aj = 1,

a′
j ai = 0 (i < j).

• To find the coefficients defining the first principal component we need to
choose the elements of the vector a1 so as to maximize the variance of y1
subject to the constraint a′

1a1 = 1.
• To maximize a function of several variables subject to one or more constraints,

the method of Lagrange multipliers is used. This leads to the solution that
a1 is the eigenvector of the sample covariance matrix, S, corresponding to its
largest eigenvalue. Full details are given in Morrison (1990), and an example
with q = 2 appears in Subsection 3.2.4.

• The other components are derived in similar fashion, with aj being the eigen-
vector of S associated with its j th largest eigenvalue.

• If the eigenvalues of S are λ1, λ2, . . . , λq , then since a′
iai = 1, the variance

of the ith principal component is given by λi .
• The total variance of the q principal components will equal the total variance

of the original variables so that
q∑

i=1

λi = s2
1 + s2

2 + · · · + s2
q
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where s2
i is the sample variance of xi . We can write this more concisely as

q∑
i=1

λi = trace(S).

• Consequently, the j th principal component accounts for a proportion Pj of
the total variation of the original data, where

Pj = λj

trace(S)
.

• The first m principal components, where m < q account for a proportion P (m)

of the total variation in the original data, where

P (m) =
∑m

i=1 λi

trace(S)

In geometrical terms it is easy to show that the first principal component defines
the line of best fit (in the least squares sense) to the q-dimensional observations
in the sample. These observations may therefore be represented in one dimen-
sion by taking their projection onto this line, that is, finding their first principal
component score. If the observations happen to be collinear in q dimensions, this
representation would account completely for the variation in the data and the sample
covariance matrix would have only one nonzero eigenvalue. In practice, of course,
such collinearity is extremely unlikely, and an improved representation would be
given by projecting the q-dimensional observations onto the space of the best fit,
this being defined by the first two principal components. Similarly, the first m com-
ponents give the best fit in m dimensions. If the observations fit exactly into a space
of m-dimensions, it would be indicated by the presence of q-m zero eigenvalues of
the covariance matrix. This would imply the presence of q-m linear relationships
between the variables. Such constraints are sometimes referred to as structural
relationships.

The account of principal components given in Display 3.1 is in terms of the
eigenvalues and eigenvectors of the covariance matrix, S. In practice, however,
it is far more usual to extract the components from the correlation matrix, R.
The reasons are not difficult to identify. If we imagine a set of multivariate data
where the variables x1, x2, . . . , xq are of completely different types, for exam-
ple, length, temperature, blood pressure, anxiety rating, etc., then the structure
of the principal components derived from the covariance matrix will depend on
the essentially arbitrary choice of choice of units of measurement; for example,
changing lengths from centimeters to inches will alter the derived components.



3.2 Algebraic Basics of Principal Components 45

Additionally if there are large differences between the variances of the original
variables, those whose variances are largest will tend to dominate the early com-
ponents; an example illustrating this problem is given in Jolliffe (2002). Extracting
the components as the eigenvectors of R, which is equivalent to calculating the
principal components from the original variables after each has been standardized
to have unit variance, overcomes these problems. It should be noted, however,
that there is rarely any simple correspondence between the components derived
from S and those derived from R. And choosing to work with R rather than with
S involves a definite but possibly arbitrary decision to make variables “equally
important.”

The correlations or covariances between the original variables and the derived
components are often useful in interpreting a principal components analysis. They
can be obtained as shown in Display 3.2.

Display 3.2
Correlations and Covariances of Variables and Components

• The covariance of variable i with component j is given by

Cov(xi, yj ) = λjaji .

• The correlation of variable xi with component yj is therefore

rxi ,yj
= λjaji√

Var(xi)Var(yj )

= λjaji

si
√

λj

= aji

√
λj

si
.

• If the components are extracted from the correlation matrix rather than the
covariance matrix, then

rxi ,yi
= aji

√
λj ,

since in this case the standard deviation, si , is unity.

3.2.1 Rescaling Principal Components
It is often useful to rescale principal components so that the coefficients that define
them are analogous in some respects to the factor loadings in exploratory factor
analysis (see Chapter 4). Again the necessary algebra is relatively simple and is
outlined in Display 3.3.
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Display 3.3
Rescaling Principal Components

• Let the vectors a1, a2, . . . , aq , which define the principal components, be
used to form a q × q matrix, A = [a1, . . . , aq ].

• Arrange the eigenvalues λ1, . . . , λq along the main diagonal of a diagonal
matrix, 
.

• Then it can be shown that the covariance matrix of the observed variables
x1, x2, . . . , xq is given by

S = A�A′.

(We are assuming here that a1, a2, . . . , aq have been derived from S rather
than from R.)

• Rescaling the vectors a1, a2, . . . , aq so that the sum of squares of their ele-

ments is equal to the corresponding eigenvalue, i.e., calculating a∗
i = λ

1/2
i ai ,

allows S to may be written more simply as

S = A∗(A∗)′

where A∗ = [a∗
1, . . . , a∗

q ].
• In the case where components arise from a correlation matrix this rescaling

leads to coefficients that are the correlations between the components and
the original variables (see Display 3.2). The rescaled coefficients are analo-
gous to factor loadings as we shall see in the next chapter. It is often these
rescaled coefficients that are presented as the results of a principal components
analysis.

• If the matrixA∗ is formed from say the first m components rather than from all
q, then A∗(A∗)′ gives the predicted value of S based on these m components.

3.2.2 Choosing the Number of Components
As described earlier, principal components analysis is seen to be a technique for
transforming a set of observed variables into a new set of variables that are uncorre-
lated with one another. The variation in the original q variables is only completely
accounted for by all q principal components. The usefulness of these transformed
variables, however, stems from their property of accounting for the variance in
decreasing proportions. The first component, for example, accounts for the max-
imum amount of variation possible for any linear combination of the original
variables. But how useful is this artificial variation constructed from the observed
variables? To answer this question we would first need to know the proportion of the
total variance of the original variables for which it accounted. If, for example, 80%
of the variation in a multivariate data set involving six variables could be accounted
for by a simple weighted average of the variable values, then almost all the variation
can be expressed along a single continuum rather than in six-dimensional space.
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The principal components analysis would have provided a highly parsimonious
summary (reducing the dimensionality of the data from six to one) that might be
useful in later analysis.

So the question we need to ask is how many components are needed to provide
an adequate summary of a given data set? A number of informal and more formal
techniques are available. Here we shall concentrate on the former; examples of the
use of formal inferential methods are given in Jolliffe (2002) and Rencher (1995).

The most common of the relatively ad hoc procedures that have been suggested
are the following:

• Retain just enough components to explain some specified, large percentage of
the total variation of the original variables. Values between 70% and 90% are
usually suggested, although smaller values might be appropriate as q or n, the
sample size, increases.

• Exclude those principal components whose eigenvalues are less than the average,∑q
i=1 λi/q. Since

∑q
i λi = trace(S) the average eigenvalue is also the average

variance of the original variables. This method then retains those components
that account for more variance than the average for the variables.

• When the components are extracted from the correlation matrix, trace(R) = q,
and the average is therefore one; components with eigenvalues less than one
are therefore excluded. This rule was originally suggested by Kaiser (1958), but
Jolliffe (1972), on the basis of a number of simulation studies, proposed that a
more appropriate procedure would be to exclude components extracted from a
correlation matrix whose associated eigenvalues are less than 0.7.

• Cattell (1965) suggests examination of the plot of the λi against i, the so-called
scree diagram. The number of components selected is the value of i correspond-
ing to an “elbow” in the curve, this point being considered to be where “large”
eigenvalues cease and “small” eigenvalues begin. A modification described by
Jolliffe (1986) is the log-eigenvalue diagram consisting of a plot of log(λi)

against i.

3.2.3 Calculating Principal Component Scores
If we decide that we need say m principal components to adequately represent our
data (using one or other of the methods described in the previous subsection), then
we will generally wish to calculate the scores on each of these components for each
individual in our sample. If, for example, we have derived the components from the
covariance matrix, S, then the m principal component scores for individual i with
original q × 1 vector of variable values xi , are obtained as

yi1 = a′
1xi

yi2 = a′
2xi

...

yim = a′
mxi
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If the components are derived from the correlation matrix, then xi would contain
individual i’s standardized scores for each variable.

The principal component scores calculated as above have variances equal to λj

for j = 1, . . . , m. Many investigators might prefer to have scores with means zero
and variances equal to unity. Such scores can be found as follows:

z = �−1
m A′

mx

where �m is an m × m diagonal matrix with λ1, λ2, . . . , λm on the main diagonal,
Am = [a1, . . . , am], and x is the q × 1 vector of standardized scores.

We should note here that the first m principal component scores are the same
whether we retain all possible q components or just the first m. As we shall see in
the next chapter, this is not the case with the calculation of factor scores.

3.2.4 Principal Components of Bivariate Data with
Correlation Coefficient r

Before we move on to look at some practical examples of the application of prin-
cipal components analysis it will be helpful to look in a little more detail at the
mathematics of the method in one very simple case. This we do in Display 3.4 for
bivariate data where the variables have correlation coefficient r .

Display 3.4
Principal Components of Bivariate Data with Correlation r

• Suppose we have just two variables, x1 and x2, measured on a sample of
individuals, with sample correlation matrix given by

R =
(

1.0 r

r 1.0

)
.

• In order to find the principal components of the data r we need to find the
eigenvalues and eigenvectors of R.

• The eigenvalues are roots of the equation

|R − λI| = 0.

• This leads to a quadratic equation in λ,

(1 − λ)2 − r2 = 0,

giving eigenvalues λ1 = 1 + r , λ2 = 1 − r . Note that the sum of the eigen-
values is 2, equal to trace (R).

• The eigenvector corresponding to λ1 is obtained by solving the equation

Ra1 = λ1a1
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• This leads to the equations

a11 + ra12 = (1 + r)a11, ra11 + a12 = (1 + r)a12.

• The two equations are identical and both reduce to a11 = a12.
• If we now introduce the normalization constraint, a′

1a1 = 1 we find
that

a11 = a12 = 1√
2
.

• Similarly, we find the second eigenvector to be given by a21 = 1/
√

2 and
a22 = −1/

√
2.

• The two principal components are then given by

y1 = 1√
2
(x1 + x2), y2 = 1√

2
(x1 − x2).

• Notice that if r < 0 the order of the eigenvalues and hence of the princi-
pal components is reversed; if r = 0 the eigenvalues are both equal to 1
and any two solutions at right angles could be chosen to represent the two
components.

• Two further points:

1. There is an arbitrary sign in the choice of the elements of ai ; it is customary
to choose ai1 to be positive.

2. The components do not depend on r , although the proportion of variance
explained by each does change with r . As r tends to 1 the proportion of
variance accounted for by y1, namely (1 + r)/2, also tends to one.

• When r = 1, the points all line on a straight line and the variation in the data
is unidimensional.

3.3 An Example of Principal Components Analysis:
Air Pollution in U.S. Cities

To illustrate a number of aspects of principal components analysis we shall apply
the technique to the data shown in Table 3.1, which is again concerned with air
pollution in the United States. For 41 cities in the United States the following seven
variables were recorded:

SO2: Sulphur dioxide content of air in micrograms per cubic meter
Temp: Average annual temperature in ◦F

Manuf : Number of manufacturing enterprises employing 20 or more workers
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Table 3.1 Air Pollution in U.S. Cities. From Biometry, 2/E, Robert R. Sokal and F. James
Rohlf. Copyright © 1969, 1981 by W.H. Freeman and Company. Used with permission.

City SO2 Temp Manuf Pop Wind Precip Days

Phoenix 10 70.3 213 582 6.0 7.05 36

Little Rock 13 61.0 91 132 8.2 48.52 100

San Francisco 12 56.7 453 716 8.7 20.66 67

Denver 17 51.9 454 515 9.0 12.95 86

Hartford 56 49.1 412 158 9.0 43.37 127

Wilmington 36 54.0 80 80 9.0 40.25 114

Washington 29 57.3 434 757 9.3 38.89 111

Jacksonville 14 68.4 136 529 8.8 54.47 116

Miami 10 75.5 207 335 9.0 59.80 128

Atlanta 24 61.5 368 497 9.1 48.34 115

Chicago 110 50.6 3344 3369 10.4 34.44 122

Indianapolis 28 52.3 361 746 9.7 38.74 121

Des Moines 17 49.0 104 201 11.2 30.85 103

Wichita 8 56.6 125 277 12.7 30.58 82

Louisville 30 55.6 291 593 8.3 43.11 123

New Orleans 9 68.3 204 361 8.4 56.77 113

Baltimore 47 55.0 625 905 9.6 41.31 111

Detroit 35 49.9 1064 1513 10.1 30.96 129

Minneapolis 29 43.5 699 744 10.6 25.94 137

Kansas 14 54.5 381 507 10.0 37.00 99

St Louis 56 55.9 775 622 9.5 35.89 105

Omaha 14 51.5 181 347 10.9 30.18 98

Albuquerque 11 56.8 46 244 8.9 7.77 58

Albany 46 47.6 44 116 8.8 33.36 135

Buffalo 11 47.1 391 463 12.4 36.11 166

Cincinnati 23 54.0 462 453 7.1 39.04 132

Cleveland 65 49.7 1007 751 10.9 34.99 155

Columbus 26 51.5 266 540 8.6 37.01 134

Philadelphia 69 54.6 1692 1950 9.6 39.93 115

Pittsburgh 61 50.4 347 520 9.4 36.22 147

Providence 94 50.0 343 179 10.6 42.75 125

Memphis 10 61.6 337 624 9.2 49.10 105

Nashville 18 59.4 275 448 7.9 46.00 119

Dallas 9 66.2 641 844 10.9 35.94 78

Houston 10 68.9 721 1233 10.8 48.19 103

(Continued)
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Table 3.1 (Continued)

City SO2 Temp Manuf Pop Wind Precip Days

Salt Lake City 28 51.0 137 176 8.7 15.17 89

Norfolk 31 59.3 96 308 10.6 44.68 116

Richmond 26 57.8 197 299 7.6 42.59 115

Seattle 29 51.1 379 531 9.4 38.79 164

Charleston 31 55.2 35 71 6.5 40.75 148

Milwaukee 16 45.7 569 717 11.8 29.07 123

Data assumed to be available as data frame usair.dat with variable names as specified in the table.

Pop: Population size (1970 census) in thousands
Wind: Average annual wind speed in miles per hour

Precip: Average annual precipitation in inches
Days: Average number of days with precipitation per year

The data were originally collected to investigate the determinants of pollution pre-
sumably by regressing SO2 on the other six variables. Here, however, we shall
examine how principal components analysis can be used to explore various aspects
of the data, before looking at how such an analysis can also be used to address the
determinants of pollution question.

To begin we shall ignore the SO2 variable and concentrate on the others, two
of which relate to human ecology ( Pop, Manuf ) and four to climate (Temp, Wind,
Precip, Days). A case can be made to use negative temperature values in subsequent
analyses, since then all six variables are such that high values represent a less
attractive environment. This is, of course, a personal view, but as we shall see later,
the simple transformation of Temp does aid interpretation.

Prior to undertaking a principal components analysis (or any other analysis) on a
set of multivariate data, it is usually imperative to graph the data in some way so as
to gain an insight into its overall structure and/or any “peculiarities” that may have
an impact on the analysis. Here it is useful to construct a scatterplot matrix of the
six variables, with histograms for each variable on the main diagonal. How to do
this using the S-PLUS GUI (assuming the dataframe usair.dat has already been
attached) has already been described in Chapter 2 (see Section 2.5). The diagram
that results is shown in Figure 3.1.

A clear message from Figure 3.1 is that there is at least one city, and probably
more than one, that should be considered an outlier. On the Manuf variable, for
example, Chicago with a value of 3344 has about twice as many manufacturing
enterprises employing 20 or more workers than has the city with the second highest
number (Philadelphia). We shall return to this potential problem later in the chapter,
but for the moment we shall carry on with a principal components analysis of the
data for all 41 cities.

For the data in Table 3.1 it seems necessary to extract the principal components
from the correlation rather than the covariance matrix, since the six variables to be
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Figure 3.1 Scatterplot matrix of six variables in the air pollution data.

used are on very different scales. The correlation matrix and the principal compo-
nents of the data can be obtained in R and S-PLUS® using the following command
line code;

cor(usair.dat[,-1])
usair.pc<-princomp(usair.dat[,-1],cor=TRUE)
summary(usair.pc,loadings=TRUE)

The resulting output is shown in Table 3.2. (This output results from using S-PLUS;
with R the signs of the coefficients of the first principal component are reversed.)
One thing to note about the correlations is the very high value for Manuf and Pop,
a finding returned to in Exercise 3.8. From Table 3.2 we see that the first three
components all have variances (eigenvalues) greater than one and together account
for almost 85% of the variance of the original variables. Scores on these three
components might be used to summarize the data in further analyses with little loss
of information. We shall illustrate this possibility later.

Most users of principal components analysis search for an interpretation of the
derived coefficients that allow them to be “labelled” in some sense. This requires
examining the coefficients defining each component (in Table 3.2 these are scaled
so that their sums of squares equal unity—“blanks” indicate near-zero values), we
see that the first component might be regarded as some index of “quality of life”
with high values indicating a relatively poor environment (in the author’s terms at
least). The second component is largely concerned with a city’s rainfall, having
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Table 3.2 S-PLUS Results from the Principal Components Analysis of the Air Pollution
Data

Neg temp Manuf Pop Wind Precip Days

Neg temp 1.000 0.190 0.063 0.350 −0.386 0.430
Manuf 0.190 1.000 0.955 0.238 −0.032 0.132
Pop 0.0627 0.955 1.000 0.213 −0.026 0.042
Wind 0.350 0.238 0.213 1.000 −0.013 0.164
Precip −0.386 −0.032 −0.026 −0.013 1.000 0.496
Days 0.430 0.132 0.042 0.164 0.496 1.000

Importance of components:
Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6

Standard deviation 1.482 1.225 1.181 0.872 0.338 0.186
Proportion of variance 0.366 0.250 0.232 0.127 0.019 0.006
Cumulative proportion 0.366 0.616 0.848 0.975 0.994 1.000

Loadings:
Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6

Neg temp 0.330 0.128 0.672 −0.306 0.558 0.136
Manuf 0.612 −0.168 −0.273 −0.137 0.102 −0.703
Pop 0.578 −0.222 −0.350 — — 0.695
Wind 0.354 0.131 0.297 0.869 −0.113 —
Precip — 0.623 −0.505 0.171 0.568 —
Days 0.238 0.708 — −0.311 −0.580 —

high coefficients for Precip and Days, and might be labeled as the “wet weather”
component. Component three is essentially a contrast between Precip and Neg temp,
and will separate cities having high temperatures and high rainfall from those that
are colder but drier. A suitable label might be simply “climate type.”

Attempting to label components in this way is not without its critics; the following
quotation from Marriott (1974) should act as a salutary warning about the dangers
of overinterpretation.

It must be emphasized that no mathematical method is, or could be, designed to give
physically meaningful results. If a mathematical expression of this sort has an obvious
physical meaning, it must be attributed to a lucky change, or to the fact that the data
have a strongly marked structure that shows up in analysis. Even in the latter case,
quite small sampling fluctuations can upset the interpretation; for example, the first two
principal components may appear in reverse order, or may become confused altogether.
Reification then requires considerable skill and experience if it is to give a true picture
of the physical meaning of the data.

Even if we do not care to label the three components they can still be used as
the basis of various graphical displays of the cities. In fact, this is often the most
useful aspect of a principal components analysis because regarding the principal
components analysis as a means to providing an informative view of multivariate
data has the advantage of making it less urgent or tempting to try to interpret and
label the components. The first few component scores provide a low-dimensional
“map” of the observations in which the Euclidean distances between the points
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representing the individuals best approximate in some sense the Euclidean distances
between the individuals based on the original variables. We shall return to this point
in Chapter 5.

So we will begin by looking at the scatterplot of the first two principal components
created using the following R and S-PLUS commands;

#choose square plotting area and make limits on both the x
#and y axes the same
#
par(pty="s")
plot(usair.pc$scores[,1],usair.pc$scores[,2],
ylim=range(usair.pc$scores[,1]),
xlab="PC1",ylab="PC2",type="n",lwd=2)
#
#now add abbreviated city names
#
text(usair.pc$scores[,1],usair.pc$scores[,2],
labels=abbreviate(row.names(usair.dat)),cex=0.7,lwd=2)

The resulting diagram is given in Figure 3.2. Similar diagrams for components
1 and 3 and 2 and 3 are given in Figures 3.3 and 3.4. (These diagrams are from the
S-PLUS results.) The plots again demonstrate clearly that Chicago is an outlier and
suggest that Phoenix and Philadelphia may also be suspects in this respect. Phoenix
appears to offer the best quality of life (on the limited basis on the six variables
recorded), and Buffalo is a city to avoid if you prefer a drier environment. We leave
further interpretation to readers.

We can also construct a three-dimensional plot of the cities using these three
component scores. The initial step is to construct a new data frame containing the
first three principal component scores and the city names using

usair1.dat <- data.frame(cities=row.names(usair.dat),
usair.dat, usair.pc$scores[,1:3])

attach(usair1.dat)

We shall now use the S-PLUS GUI to construct a drop-line three-dimensional
plot of the data. Details of how to construct such a plot were given in Chapter 2,
but it may be helpful to go through them again here;

• Click Graph on the tool bar;
• Select 3D;
• In Insert Graph dialogue, choose 3D Scatter with drop line (x, y), and click

OK;
• In the 3D Line/Scatter Plot [1] dialogue select Data Set usair.dat;
• Select Comp 1 for x Column, Comp 2 for y Column, Comp 3 for z Column and

Cities for w Column;
• Check Symbol tab;
• Check Use Text as Symbol button;
• Specify text to use as w Column;
• Change Font to bold and Height to 0.15, click OK
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Figure 3.2 Scatterplot of the air pollution data in the space of the first two principal
components.

The resulting diagram is shown in Figure 3.5. Again the problem with Chicago is
very clear.

We will now use the three component scores for each city to investigate perhaps
the prime question for these data, namely what characteristics of a city are predictive
of its level of sulfur dioxide pollution? It may first be helpful to have a record of
the component scores found from

usair.pc$scores[,1:3]

The scores are shown in Table 3.3. Before undertaking a formal regression anal-
ysis of the data we might look at SO2 plotted against each of the three principal
component scores. We can construct these plots in both R and S-PLUS as follows:

par(mfrow=c(1,3))
plot(usair.pc$scores[,1],SO2,xlab="PC1")
plot(usair.pc$scores[,2],SO2,xlab="PC2")
plot(usair.pc$scores[,3],SO2,xlab="PC3")

The plots are shown in Figure 3.6.
Interpretation of the plots is somewhat hampered by the presence of the outliers

such as Chicago, but it does appear that pollution is related to the first principal
component score but not, perhaps, to the other two. We can examine this more
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Figure 3.3 Scatterplot of the air pollution data in the space of the first and third principal
components.

formally by regressing sulphur dioxide concentration on the first three principal
components scores. The necessary R and S-PLUS command is;

summary(lm(SO2 ∼ usair.pc$scores[, 1] + usair.pc$scores[, 2] +

usair.pc$scores[, 3]))

The resulting output is shown in Table 3.4. Clearly pollution is predicted only by the
first principal component score. As “quality of life”—as measured by the human
ecology and climate variable—gets worse (i.e., first PC score increases), pollution
also tends to increase. (Note that because we are using principal component scores
as explanatory variables in this regression the correlations of coefficients are all
zero.)

Now we need to consider what to do about the obvious outliers in the data such
as Chicago. The simplest approach would be to remove the relevant cities and
then repeat the analyses above. The problem with such an approach is deciding
when to stop removing cities, and we shall leave that as an exercise for the reader
(see Exercise 3.7). Here we shall use a different approach that involves what is
known as the minimum volume ellipsoid, a robust estimator of the correlation matrix
of the data proposed by Rousseeuw (1985) and described in less technical terms
in Rousseeuw and van Zomeren (1990). The essential feature of the estimator is
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Figure 3.4 Scatterplot of the air pollution data in the space of the second and third
principal components.

Figure 3.5 Drop line plot of air pollution data in the space of the first three principal
components.
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Table 3.3 First Three Principal Components Scores
for Each City in the Air Pollution Data Set

City Comp 1 Comp 2 Comp 3

Phoenix −2.440 −4.191 −0.942

Little Rock −1.612 0.342 −0.840

San Francisco −0.502 −2.255 0.227

Denver −0.207 −1.963 1.266

Hartford −0.219 0.976 0.595

Wilmington −0.996 0.501 0.433

Washington −0.023 −0.055 −0.354

Jacksonville −1.228 0.849 −1.876

Miami −1.533 1.405 −2.607

Atlanta −0.599 0.587 −0.995

Chicago 6.514 −1.668 −2.286

Indianapolis 0.308 0.360 0.285

Des Moines −0.132 −0.061 1.650

Wichita −0.197 −0.676 1.131

Louisville −0.424 0.541 −0.374

New Orleans −1.454 0.901 −1.992

Baltimore 0.509 0.029 −0.364

Detroit 2.167 −0.271 0.147

Minneapolis 1.500 0.247 1.751

Kansas −0.131 −0.252 0.275

St Louis 0.286 −0.384 −0.156

Omaha −0.134 −0.385 1.236

Albuquerque −1.417 −2.866 1.275

Albany −0.539 0.792 1.363

Buffalo 1.391 1.880 1.776

Cincinnati −0.508 0.486 −0.266

Cleveland 1.766 1.039 0.747

Columbus −0.119 0.640 0.423

Philadelphia 2.797 −0.658 −1.415

Pittsburgh 0.322 1.027 0.748

Providence 0.070 10.34 0.888

Memphis −0.578 0.325 −1.115

Nashville −0.910 0.543 −0.859

Dallas −0.007 −1.212 −0.998

Houston 0.508 −0.113 −1.994

(Continued)
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Table 3.3 (Continued)

City Comp 1 Comp 2 Comp 3

Salt Lake City −0.912 −1.547 1.565

Norfolk −0.589 0.752 −0.061

Richmond −1.172 0.335 −0.509

Seattle 0.482 1.597 0.609

Charleston −1.430 1.211 −0.079

Milwaukee 1.391 0.158 1.691

selecting a covariance matrix (C) and mean vector (M) such that the determinant
of C is minimized subject to the number of observations for which

(xi − M)′C−1(xi − M) ≤ a2

is greater than or equal to h where h is the integer part of (n + q + 1)/2. The
number a2 is a fixed constant, usually chosen as χ2

q,0.50, when we expect the

Figure 3.6 Plots of sulphur dioxide concentration against first three principal component
scores.
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Table 3.4 Results of Regressing Sulphur Dioxide Concentration on First Three Principal
Component Scores

Residuals:
Min 1Q Median 3Q Max

−36.42 −10.98 −3.184 12.09 61.27

Coefficients:
Value Std error t value Pr (?|t |)

(Intercept) 30.0488 2.9072 10.3360 0.0000
usair.pc$scores[, 1] 9.9420 1.9617 5.0679 0.0000
usair.pc$scores[, 2] 2.2396 2.3738 0.9435 0.3516
usair.pc$scores[, 3] −0.3750 2.4617 −0.1523 0.8798

Residual standard error: 18.62 on 37 degrees of freedom
Multiple R-squared: 0.4182
F-statistic: 8.866 on 3 and 37 degrees of freedom, the p-value is 0.0001473

Correlation of coefficients:
(Intercept) usair.pc$scores[, 1] usair.pc$scores[, 2]

usair.pc$scores[, 1] 0
usair.pc$scores[, 2] 0 0
usair.pc$scores[, 3] 0 0 0

majority of the data to come from a normal distribution. The estimator has a
high breakdown point, but is computationally expensive; see Rousseeuw and van
Zomren (1990) for further details.

The necessary R and S-PLUS function to apply this estimator is cov.mve (in R
the lqs library needs to be loaded to make the function available). The following code
applies the function and then uses principal components on the robustly estimated
correlation matrix:

#in R load lqs library
library(lqs)
usair.mve<-cov.mve(usair.dat[,-1],cor=TRUE)
usair.mve$cor
usair.pc1<-princomp(usair.dat[,-1],covlist=usair.mve,cor=TRUE)
summary(usair.pc1,loadings=T)

The resulting correlation matrix and principal components are shown in Table 3.5.
(Different estimates will result each time this code is used.)

Although the pattern of correlations in Table 3.5 is largely similar to that seen
in Table 3.2, there are a number of individual correlation coefficients that differ
considerably in the two correlation matrices; for example, those for Precip and Neg
temp (−0.386 in Table 3.2 and −0.898 in Table 3.5), and Wind and Precip (−0.013
in Table 3.2 and −0.475 in Table 3.5). The effect on the principal components anal-
ysis of these differences is, however, considerable. The first component now has a
considerable negative coefficient for Precip and the second component is consider-
ably different from that in Table 3.2. Labelling the coefficients is not straightfoward
(at least for the author) but again it might be of interest to regress sulphur dioxide
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Table 3.5 Correlation Matrix and Principal Components from Using a Robust Estimator

Neg temp Manuf Pop Wind Precip Days

Neg temp 1.000 0.247 0.034 0.339 −0.898 0.393
Manuf 0.247 1.000 0.842 0.292 −0.310 0.213
Pop 0.034 0.842 1.000 0.243 −0.151 0.049
Wind 0.339 0.292 0.243 1.000 −0.475 −0.109
Precip −0.898 −0.310 −0.151 −0.475 1.000 −0.138
Days 0.393 0.213 0.049 −0.109 −0.138 1.000

Importance of components:
Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6

Standard deviation 1.620 1.240 1.066 0.719 0.360 0.234
Proportion of variance 0.437 0.256 0.189 0.086 0.216 0.009
Cumulative proportion 0.437 0.694 0.883 0.969 0.991 1.000

Loadings:
Comp 1 Comp 2 Comp 3 Comp 4 Comp 5 Comp 6

Neg temp 0.485 −0.455 — −0.226 — 0.706
Manuf 0.447 0.495 −0.151 — 0.723 —
Pop 0.351 0.627 — −0.137 −0.670 0.113
Wind 0.370 — 0.561 0.739 — —
Precip −0.512 0.354 −0.164 0.347 0.119 0.671
Days 0.205 −0.168 −0.791 0.504 −0.122 −0.188

concentration on the first two or three principal component scores of this second
analysis; see Exercise 3.8.

3.4 Summary

Principal components analysis is among the oldest of multivariate techniques
having been introduced originally by Pearson (1901) and independently by
Hotelling (1933). It remains, however, one of the most widely employed meth-
ods of multivariate analysis, useful both for providing a convenient method of
displaying multivariate data in a lower-dimensional space and for possibly sim-
plifying other analyses of the data. Modern competitors to principal components
analysis that may offer more powerful analyses of complex multivariate data are
projection pursuit (Jones and Sibson, 1987), and independent components anal-
ysis (Hyvarinen et al., 2001). The former is a technique for finding “interesting”
directions in multidimensional data sets; a brief account of the method is given in
Everitt and Dunn (2001). The later is a statistical and computational technique for
revealing hidden factors that underlie sets of random variables, measurements, or
signals. An R implementation of both is described on the Internet at

http://CRAN.R-project.org/
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Exercises
3.1 Suppose that x′ = [x1, x2] is such that x2 = 1 − x1 and x1 = 1 with proba-

bility p and x1 = 0 with probability q = 1 − p. Find the covariance matrix
of x and its eigenvalues and eigenvectors.

3.2 The eigenvectors of a covariance matrix, S, scaled so that their sums of squares
are equal to the corresponding eigenvalue, are c1, c2, . . . , cp. Show that

S = c1c′
1 + c2c′

2 + · · · + cpc′
p.

3.3 If the eigenvalues of S are λ1, λ2, . . . , λp show that if the coefficients defining
the principal components are scaled so that a′

iai = 1, then the variance of the
ith principal component is λi .

3.4 If two variables, X and Y , have covariance matrix S given by

S =
(

a b

c d

)
,

show that if c �= 0 then the first principal component is√
c2

c2 + (V1 − a)2 X + c

|c|

√
(V1 − a)2

c2 + (V1 − a)2 Y,

where V1 is the variance explained by the first principal component. What is
the value of V1?

3.5 Use S-PLUS or R to find the principal components of the following correlation
matrix calculated from measurements of seven physical characteristics in each
of 3000 convicted criminals:

R =

1
2
3
4
5
6
7

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1.00
0.402 1.00
0.396 0.618 1.00
0.301 0.150 0.321 1.00
0.305 0.135 0.289 0.846 1.00
0.339 0.206 0.363 0.759 0.797 1.00
0.340 0.183 0.345 0.661 0.800 0.736 1.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Variables:

1. Head length
2. Head breadth
3. Face breadth
4. Left finger length
5. Left forearm length
6. Left foot length
7. Height

How would you interpret the derived components?
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3.6 The data in Table 3.6 show the nutritional content of different foodstuffs
(the quantity involved is always three ounces). Use S-PLUS or R to create
a scatterplot matrix of the data labeling the foodstuffs appropriately in each
panel. On the basis of this diagram undertake what you think is an appropriate
principal components analysis and try to interpret your results.

3.7 As described in the text, the air pollution data in Table 3.1 suffers from contain-
ing one or perhaps more than one outlier. Investigate this potential problem in
more detail and try to reach a conclusion as to how many cities’ observations

Table 3.6 Contents of Foodstuffs. From Clustering Algorithms, Hartigan, J.A.,
1975, John Wiley & Sons, Inc. Reprinted with kind permission of J.A. Hartigan.

Energy Protein Fat Calcium Iron

BB Beef, braised 340 20 28 9 2.6

HR Hamburger 245 21 17 9 2.7

BR Beef roast 420 15 39 7 2.0

BS Beef, steak 375 19 32 9 2.5

BC Beef, canned 180 22 10 17 3.7

CB Chicken, broiled 115 20 3 8 1.4

CC Chicken, canned 170 25 7 12 1.5

BH Beef, heart 160 26 5 14 5.9

LL Lamb leg, roast 265 20 20 9 2.6

LS Lamb shoulder, roast 300 18 25 9 2.3

HS Smoked ham 340 20 28 9 2.5

PR Pork roast 340 19 29 9 2.5

PS Pork simmered 355 19 30 9 2.4

BT Beef tongue 205 18 14 7 2.5

VC Veal cutlet 185 23 9 9 2.7

FB Bluefish, baked 135 22 4 25 0.6

AR Clams, raw 70 11 1 82 6.0

AC Clams, canned 45 7 1 74 5.4

TC Crabmeat, canned 90 14 2 38 0.8

HF Haddock, fried 135 16 5 15 0.5

MB Mackerel, broiled 200 19 13 5 1.0

MC Mackerel, canned 155 16 9 157 1.8

PF Perch, fried 195 16 11 14 1.3

SC Salmon, canned 120 17 5 159 0.7

DC Sardines, canned 180 22 9 367 2.5

UC Tuna, canned 170 25 7 7 1.2

RC Shrimp, canned 110 23 1 98 2.6
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might need to be dropped before applying principal components analysis.
Then undertake the analysis on the reduced data set and compare the results
from those given in the text derived from using a robust estimate of the cor-
relation matrix.

3.8 Investigate the use of the principal component scores associated with the
analysis using the robust estimator of the correlation matrix as explanatory
variables in a regression with sulphur dioxide concentration as dependent
variable. Compare the results both with those given in Table 3.4 and those
obtained in Exercise 3.7.

3.9 Investigate the use of multiple regression on the air pollution data using the
human ecology and climate variables to predict sulphur dioxide pollution,
keeping in mind the possible problem of the large correlation between at least
two of the predictors. Do the conclusions match up to those given in the text
from using principal component scores as explanatory variables?



4
Exploratory Factor Analysis

4.1 Introduction

In many areas of psychology and other disciplines in the behavioural sciences, it is
often not possible to measure directly the concepts of primary interest. Two obvious
examples are intelligence and social class. In such cases the researcher is forced to
examine the concepts indirectly by collecting information on variables that can be
measured or observed directly, and which can also realistically be assumed to be
indicators, in some sense, of the concepts of real interest. The psychologist who is
interested in an individual’s “intelligence,” for example, may record examination
scores in a variety of different subjects in the expectation that these scores are
related in some way to what is widely regarded as “intelligence.” And a sociologist,
say, concerned with people’s “social class,” might pose questions about a person’s
occupation, educational background, home ownership, etc., on the assumption that
these do reflect the concept he or she is really interested in.

Both “intelligence” and “social class” are what are generally referred to as latent
variables; i.e., concepts that cannot be measured directly but can be assumed to
relate to a number of measurable or manifest variables. The method of analysis
most generally used to help uncover the relationships between the assumed latent
variables and the manifest variables is exploratory factor analysis. The model on
which the method is based is essentially that of multiple regression, except now the
manifest variables are regressed on the unobservable latent variables (often referred
to in this context as common factors), so that direct estimation of the corresponding
regression coefficients ( factor loadings) is not possible.

4.2 The Factor Analysis Model

The basis of factor analysis is a regression model linking the manifest variables to a
set of unobserved (and unobservable) latent variables. In essence the model assumes
that the observed relationships between the manifest variables (as measured by their
covariances or correlations) are a result of the relationships of these variables to the
latent variables.

65
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(Since it is the covariances or correlations of the manifest variables that that are
central to factor analysis we can, in the description of the mathematics of the method
given in Display 4.1, assume that the manifest variables all have zero mean.)

Display 4.1
Mathematics of the Factor Analysis Model

• We assume that we have a set of observed or manifest variables, x′ =
[x1, x2, . . . , xq ], assumed to be linked to a smaller number of unobserved
latent variables, f1, f2, . . . , fk where k < q, by a regression model of the
form

x1 = λ11f1 + λ12f2 + · · · + λ1kfk + u1,

x2 = λ21f1 + λ22f2 + · · · + λ2kfk + u2,

...

xq = λq1f1 + λq2f2 + · · · + λqkfk + uq.

• The λij ’s are weights showing how each xi depends on the common factors.
• The λij ’s are used in the interpretation of the factors, i.e., larger values relate

a factor to the corresponding observed variables and from these we infer a
meaningful description of each factor.

• The equations above may be written more concisely as

x = 
f + u,

where


 =
⎛
⎜⎝

λ11 L λ1k

...
...

...

λq1 L λqk

⎞
⎟⎠ , f =

⎛
⎜⎝

f1
...

fk

⎞
⎟⎠ , u =

⎛
⎜⎝

u1
...

uq

⎞
⎟⎠ .

• We assume that the “residual” terms u1, . . . , uq are uncorrelated with each
other and with the factors f1, . . . , fk . The elements of u are specific to each
xi and hence are known as specific variates.

• The two assumptions above imply that, given the values of the factors, the
manifest variables are independent, that is, the correlations of the observed
variables arise from their relationships with the factors. In factor analysis the
regression coefficients in 
 are more usually known as factor loadings.

• Since the factors are unobserved we can fix their location and scale arbitrarily.
We shall assume they occur in standardized form with mean zero and stan-
dard deviation one. We shall also assume, initially at least, that the factors
are uncorrelated with one another, in which case the factor loadings are the
correlations of the manifest variables and the factors.
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• With these additional assumptions about the factors, the factor analysis model
implies that the variance of variable xi , σ 2

i , is given by

σ 2
i =

k∑
j=1

λ2
ij + ψi,

where ψi is the variance of ui .
• So the factor analysis model implies that the variance of each observed vari-

able can be split into two parts. The first, h2
i , given by

h2
i =

k∑
j=1

λ2
ij ,

is known as the communality of the variable and represents the variance shared
with the other variables via the common factors. The second part, ψi , is called
the specific or unique variance, and relates to the variability in xi not shared
with other variables.

• In addition, the factor model leads to the following expression for the covari-
ance of variables xi and xj :

σij =
k∑

l=1

λilλjl .

• The covariances are not dependent on the specific variates in any way; the
common factors above account for the relationships between the manifest
variables.

• So the factor analysis model implies that the population covariance matrix,
�, of the observed variables has the form

� = ��′ + �,

where
� = diag(ψi).

• The converse also holds: If � can be decomposed into the form given above,
then the k-factor model holds for x.

• In practice, � will be estimated by the sample covariance matrix S (alterna-
tively, the model will be applied to the correlation matrix R), and we will
need to obtain estimates of � and � so that the observed covariance matrix
takes the form required by the model (see later in the chapter for an account
of estimation methods).

• We will also need to determine the value of k, the number of factors, so that
the model provides an adequate fit to S or R.
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To apply the factor analysis model outlined in Display 4.1 to a sample of multi-
variate observations we need to estimate the parameters of the model in some way.
The estimation problem in factor analysis is essentially that of finding �̂ and �̂ for
which

S ≈ �̂�̂
′ + �̂.

(If the xis are standardized, then S is replaced by R.)
There are two main methods of estimation leading to what are known as principal

factor analysis and maximum likelihood factor analysis, both of which are now
briefly described.

4.2.1 Principal Factor Analysis
Principal factor analysis is an eigenvalue and eigenvector technique similar in many
respects to principal components analysis (see Chapter 3), but operating not directly
on S (or R), but on what is known as the reduced covariance matrix, S∗, defined as

S∗ = S − �̂,

where �̂ is a diagonal matrix containing estimates of the ψi .
The diagonal elements of S∗ contain estimated communalities—the parts of the

variance of each observed variable that can be explained by the common factors.
Unlike principal components analysis, factor analysis does not try to account for all
observed variance only that shared through the common factors. Of more concern in
factor analysis is to account for the covariances or correlations between the manifest
variables.

To calculate S∗ (or with R replacing S, R∗) we need values for the communalities.
Clearly we cannot calculate them on the basis of factor loadings as described in
Display 4.1 since these loadings still have to be estimated. To get round this seem-
ingly “chicken and egg” situation we need to find a sensible way of finding initial
values for the communalities that does not depend on knowing the factor loadings.
When the factor analysis is based on the correlation matrix of the manifest variables
two frequently used methods are the following:

• Take the communality of a variable xi as the square of the multiple correlation
coefficient of xi with the other observed variables.

• Take the communality of xi as the largest of the absolute values of the correlation
coefficients between xi and one of the other variables.

Each of these possibilities will lead to higher values for the initial communality
when xi is highly correlated with at least some of the other manifest variables,
which is essentially what is required.

Given initial communality values, a principal components analysis is performed
on S∗, and the first k eigenvectors used to provide the estimates of the loadings in the
k-factor model. The estimation process can stop here or the loadings obtained at this
stage (λ̂ij ) can provide revised communality estimates calculated as

∑k
j=1 λ̂2

ij . The
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procedure is then repeated until some convergence criterion is satisfied. Difficulties
can sometimes arise with this iterative approach if at any time a communality
estimate exceeds the variance of the corresponding manifest variable, resulting in
a negative estimate of the variable’s specific variance. Such a result is known as a
Heywood case (Heywood, 1931) and is clearly unacceptable since we cannot have
a negative specific variance.

4.2.2 Maximum Likelihood Factor Analysis
Maximum likelihood is regarded, by statisticians at least, as perhaps the most
respectable method of estimating the parameters in the factor analysis model. The
essence of this approach is to define a type of “distance” measure, F , between the
observed covariance matrix and the predicted value of this matrix from the factor
analysis model. The measure F is defined as

F = ln|��′ + �| + trace(S|��′ + �|−1) − ln|S| − q.

The function F takes the value zero if ��′ + � is equal to S and values greater than
zero otherwise. Estimates of the loadings and the specific variances are found by
minimizing F ; details are given in Lawley and Maxwell (1971), Mardia et al. (1979),
and Everitt (1984, 1987).

Minimizing F is equivalent to maximizing L, the likelihood function for the
k-factor model, under the assumption of multivariate normality of the data, since L

equals − 1
2nF plus a function of the observations. As with iterated principal factor

analysis, the maximum likelihood approach can also experience difficulties with
Heywood cases.

4.3 Estimating the Numbers of Factors

The decision over how many factors, k, are needed to give an adequate representation
of the observed covariances or correlations is generally critical when fitting an
exploratory factor analysis model. A k and k + 1 solution will often produce quite
different factors and factor loadings for all factors, unlike a principal component
analysis in which the first k components will be identical in each solution. And as
pointed out by Jolliffe (1989), with too few factors there will be too many high
loadings, and with too many factors, factors may be fragmented and difficult to
interpret convincingly.

Choosing k might be done by examining solutions corresponding to different
values of k and deciding subjectively which can be given the most convincing
interpretation. Another possibility is to use the scree diagram approach described
in Chapter 3, although the usefulness of this rule is not so clear in factor analy-
sis since the eigenvalues represent variances of principal components not factors.
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An advantage of the maximum likelihood approach is that it has an associated
formal hypothesis testing procedure for the number of factors. The test statistic is

U = n′ min(F ),

where n′ = n + 1 − 1
6 (2q + 5) − 2

3k. If k common factors are adequate to account
for the observed covariances or correlations of the manifest variables, then U has,
asymptotically, a chi-squared distribution with ν degrees of freedom, where

ν = 1

2
(q − k)2 − 1

2
(q + k).

In most exploratory studies k cannot be specified in advance and so a sequen-
tial procedure is used. Starting with some small value for k (usually k = 1), the
parameters in the corresponding factor analysis model are estimated by maximum
likelihood. If U is not significant the current value of k is accepted, otherwise k is
increased by one and the process repeated. If at any stage the degrees of freedom
of the test become zero, then either no nontrivial solution is appropriate or alterna-
tively the factor model itself with its assumption of linearity between observed and
latent variables is questionable.

4.4 A Simple Example of Factor Analysis

The estimation procedures outlined in the previous section are needed in practical
applications of factor analysis where invariably there are fewer parameters in the
model than there are independent elements in S or R from which these parameters
are to be estimated. Consequently the fitted model represents a genuinely parsimo-
nious description of the data. But it is of some interest to consider a simple example
in which the number of parameters is equal to the number of independent elements
in R so that an exact solution is possible.

Spearman (1904) considered a sample of children’s examination marks in three
subjects—Classics (x1), French (x2), and English (x3)—from which he calculated
the following correlation matrix for a sample of children:

R =
Classics
French
English

⎛
⎝1.00

0.83 1.00
0.78 0.67 1.00

⎞
⎠.

If we assume a single factor, then the appropriate factor analysis model is

x1 = λ1f + u1,

x2 = λ2f + u2,

x3 = λ3f + u3.

In this example the common factor, f , might be equated with intelligence or
general intellectual ability, and the specific variates, u1, u2, u3 will have small
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variances if their associated observed variable is closely related to f . Here the
number of parameters in the model (6) is equal to the number of independent
elements in R, and so by equating elements of the observed correlation matrix to
the corresponding values predicted by the single-factor model we will be able to
find estimates of λ1, λ2, λ3, ψ1, ψ2, and ψ3 such that the model fits exactly. The six
equations derived from the matrix equality implied by the factor analysis model,
namely

R =
⎡
⎣λ1

λ2
λ3

⎤
⎦[

λ1 λ2 λ3
] +

⎡
⎣ψ1 0 0

0 ψ2 0
0 0 ψ3

⎤
⎦

are

λ̂1λ2 = 0.83,

λ̂1λ3 = 0.78,

λ̂1λ4 = 0.67,

ψ̂1 = 1.0 − λ̂2
1,

ψ̂2 = 1.0 − λ̂2
2,

ψ̂3 = 1.0 − λ̂2
3.

The solutions of these equations are

λ̂1 = 0.99, λ̂2 = 0.84, λ̂3 = 0.79,

ψ̂1 = 0.02, ψ̂2 = 0.30, ψ̂3 = 0.38.

Suppose now that the observed correlations had been

R =
Classics
French
English

⎛
⎝1.00

0.84 1.00
0.60 0.35 1.00

⎞
⎠ .

In this case the solution for the parameters of a single factor model is

λ̂1 = 1.2, λ̂2 = 0.7, λ̂3 = 0.5,

ψ̂1 = −0.44, ψ̂2 = 0.51, ψ̂3 = 0.75.

Clearly this solution is unacceptable because of the negative estimate for the first
specific variance.

4.5 Factor Rotation

Until now we have ignored one problematic feature of the factor analysis model,
namely that as formulated in Display 4.1, there is no unique solution for the factor
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loading matrix. We can see that this is so by introducing an orthogonal matrix M of
order k × k, and rewriting the basic regression equation linking the observed and
latent variables as

x = (�M)(M′f) + u.

This “new” model satisfies all the requirements of a k-factor model as previously
outlined with new factors f∗ = M′f and the new factor loadings �M. This model
implies that the covariance matrix of the observed variables is

� = (�M)(�M)′ + �,

which, since MM′ = I, reduces to � = ��′ + � as before. Consequently factors f
with loadings � and factors f∗ with loadings �M are, for any orthogonal matrix M,
equivalent for explaining the covariance matrix of the observed variables. Essen-
tially then there are an infinite number of solutions to the factor analysis model as
previously formulated.

The problem is generally solved by introducing some constraints in the original
model. One possibility is to require the matrix G given by

G = �′�−1�

to be diagonal, with its element arranged in descending order of magnitude. Such
a requirement sets the first factor to have maximal contribution to the common
variance of the observed variables, the second has maximal contribution to this
variance subject to being uncorrelated with the first, and so on (cf. principal com-
ponents analysis in Chapter 3).

The constraints on the factor loadings imposed by a condition such as that given
above need to be introduced to make the parameter estimates in the factor analysis
model unique. These conditions lead to orthogonal factors that are arranged in
descending order of importance and enable an initial factor analysis solution to be
found. The properties are not, however, inherent in the factor model, and merely
considering such a solution may lead to difficulties of interpretation. For example,
two consequences of these properties of a factor solution are as follows:

• The factorial complexity of variables is likely to be greater than one regardless of
the underlying true model; consequently variables may have substantial loadings
on more than one factor.

• Except for the first factor, the remaining factors are often bipolar, that is, they
have a mixture of positive and negative loadings.

It may be that a more interpretable solution can be achieved using the equivalent
model with loadings �∗ = �M for some particular orthogonal matrix, M. Such a
process is generally known as factor rotation, but before we consider how to choose
M, that is, how to “rotate” the factors, we need to address the question “Is factor
rotation an acceptable process?”

Certainly in the past, factor analysis has been the subject of severe criticism
because of the possibility of rotating factors. Critics have suggested that this appar-
ently allows the investigator to impose on the data whatever type of solution they
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are looking for. Some have even gone so far as to suggest that factor analysis has
become popular in some areas precisely because it does enable users to impose
their preconceived ideas of the structure behind the observed correlations (Blackith
and Reyment, 1971). But, on the whole, such suspicions are not justified and factor
rotation can be a useful procedure for simplifying an exploratory factor analysis.
Factor rotation merely allows the fitted factor analysis model to be described as
simply as possible; rotation does not alter the overall structure of a solution but
only how the solution is described.

Rotation is a process by which a solution is made more interpretable without
changing its underlying mathematical properties. Initial factor solutions with vari-
ables loading on several factors and with bipolar factors can be difficult to interpret.
Interpretation is more straightforward if each variable is highly loaded on at most
one factor, and if all factor loadings are either large and positive, or near zero, with
few intermediate values. The variables are thus split into disjoint sets, each of which
is associated with a single factor. This aim is essentially what Thurstone (1931)
referred to as simple structure. In more detail such structure has the following
properties:

• Each row or the factor-loading matrix should contain at least one zero.
• Each column of the loading matrix should contain at least k zeros.
• Every pair of columns of the loading matrix should contain several variables

whose loadings vanish in one column but not in the other.
• If the number of factors is four or more, every pair of columns should contain a

large number of variables with zero loadings in both columns.
• Conversely for every pair of columns of the loading matrix only a small number

of variables should have nonzero loadings in both columns.

When simple structure is achieved the observed variables will fall into mutually
exclusive groups whose loadings are high on single factors, perhaps moderate to
low on a few factors, and of negligible size on the remaining factors.

The search for simple structure or something close to it begins after an initial
factoring has determined the number of common factors necessary and the com-
munalties of each observed variable. The factor loadings are then transformed by
post multiplication by a suitably chosen orthogonal matrix. Such a transformation
is equivalent to a rigid rotation of the axes of the originally identified factor space.
For a two-factor model the process of rotation can be performed graphically. As an
example, consider the following correlation matrix for six school subjects:

R =

French
English
History

Arithmetic
Algebra

Geometry

⎛
⎜⎜⎜⎜⎜⎝

1.00
0.44 1.00
0.41 0.35 1.00
0.29 0.35 0.16 1.00
0.33 0.32 0.19 0.59 1.00
0.25 0.33 0.18 0.47 0.46 1.00

⎞
⎟⎟⎟⎟⎟⎠.

The initial factor loadings are plotted in Figure 4.1. By referring each variable to the
new axes shown, which correspond to a rotation of the original axes through about
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Figure 4.1 Plot of factor loadings showing a rotation of original axis.

40 degrees, a new set of loadings that give an improved description of the fitted
model can be obtained. The two sets of loadings are given explicitly in Table 4.1

When there are more than two factors, more formal methods of rotation are
needed. And during the rotation phase we might choose to abandon one of the
assumptions made previously, namely that factors are orthogonal, that is, indepen-
dent (the condition was assumed initially simply for convenience in describing the
factor analysis model). Consequently two types of rotation are possible:

• Orthogonal rotation: methods restrict the rotated factors to being uncorrelated.
• Oblique rotation: methods allow correlated factors.

So the first question that needs to be considered when rotating factors is whether
or not we should use an orthogonal or oblique rotation?As for many questions posed

Table 4.1 Two-Factor Solution for Correlations of
Six School Subjects

Unrotated loadings Rotated loadings

Variable 1 2 1 2

French 0.55 0.43 0.20 0.62
English 0.57 0.29 0.30 0.52
History 0.39 0.45 0.05 0.55
Arithmetic 0.74 −0.27 0.75 0.15
Algebra 0.72 −0.21 0.65 0.18
Geometry 0.59 −0.13 0.50 0.20
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in data analysis, there is no universal answer to this question. There are advantages
and disadvantages to using either type of rotation procedure. As a general rule,
if a researcher is primarily concerned with getting results that “best fit” his/her
data, then the researcher should rotate the factors obliquely. If, on the other hand,
the researcher is more interested in the generalizability of his/her results, then
orthogonal rotation is probably to be preferred.

One major advantage of an orthogonal rotation is simplicity since the loadings
represent correlations between factors and manifest variables. This is not the case
with an oblique rotation because of the correlations between the factors. Here there
are two parts of the solution to consider:

• Factor pattern coefficients: regression coefficients that multiply with factors to
produce measured variables according to the common factor model.

• Factor structure coefficients: correlation coefficients between manifest variables
and the factors.

Additionally there is a matrix of factor correlations to consider. In many cases
where these correlations are relatively small, researchers may prefer to return to an
orthogonal solution.

There are a variety of rotation techniques although only relatively few are in
general use. For orthogonal rotation the two most commonly used techniques are
know as varimax and quartimax:

• Varimax rotation: originally proposed by Kaiser (1958), this has as its rationale
the aim of factors with a few large loadings and as many near-zero loadings as
possible. This is achieved by iterative maximization of a quadratic function of
the loadings; details are given in Marda et al. (1979). This produces factors that
have high correlations with one small set of variables and little or no correlation
with other sets. There is a tendency for any general factor to disappear because
the factor variance is redistributed.

• Quartimax rotation: originally suggested by Carroll (1953) this approach forces
a given variable to correlate highly on one factor and either not at all or very low
on other factors. Far less popular than varimax.

For oblique rotation the two methods most often used are oblimin and promax.

• Oblimin rotation: invented by Jennrich and Sampson (1966) this method attempts
to find simple structure with regard to the factor pattern matrix through a param-
eter that is used to control the degree of correlation between the factors. Fixing
a value for this parameter is not straightforward, but Lackey and Sullivan (2003)
suggest that values between about −0.5 and 0.5 are sensible for many applica-
tions.

• Promax rotation: a method due to Hendrickson and White (1964) that operates
by raising the loadings in an orthogonal solution (generally a varimax rotation)
to some power. The goal is to obtain a solution that provides the best structure
using the lowest possible power loadings and the lowest correlation between the
factors.
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As mentioned earlier, factor rotation is often regarded as controversial since it
apparently allows the investigator to impose on the data whatever type of solution
is required. But this is clearly not the case since although the axes may be rotated
about their origin, or may be allowed to become oblique, the distribution of the
points will remain invariant. Rotation is simply a procedure that allows new axes to
be chosen so that the positions of the points can be described as simply as possible.

It should be noted that rotation techniques are also often applied to the results from
a principal components analysis in the hope that it will aid in their interpretability.
Although in some cases this may be acceptable, it does have several disadvantages
which are listed by Jolliffe (1989). The main problem is that the defining property
of principal components, namely that of accounting for maximal proportions of the
total variation in the observed variables, is lost after rotation.

4.6 Estimating Factor Scores

In most applications an exploratory factor analysis will consist of the estimation
of the parameters in the model and the rotation of the factors, followed by an
(often heroic) attempt to interpret the fitted model. There are occasions, however,
when the investigator would like to find factor scores for each individual in the
sample. Such scores, like those derived in a principal components analysis (see
Chapter 3), might be useful in a variety of ways. But the calculation of factor scores
is not as straightforward as the calculation of principal components scores. In the
original equation defining the factor analysis model, the variables are expressed in
terms of the factors, whereas to calculate scores we require the relationship to be
in the opposite direction. Bartholomew (1987) makes the point that to talk about
“estimating” factor score is essentially misleading since they are random variables,
and the issue is really one of prediction.

But if we make the assumption of normality, the conditional distribution of f
given x can be found. It is

N[�′�−1x, (�′�−1� + I)−1].

Consequently, one plausible way of calculating factor scores would be to use the
sample version of the mean of this distribution, namely

f̂ = �̂′S−1x,

where the vector of scores for an individual, x, is assumed to have mean zero, that
is, sample means for each variable have already been subtracted. Other possible
methods for deriving factor scores are described in Rencher (1995). In many respects
the most damaging problem with factor analysis is not the rotational indeterminacy
of the loadings, but the indeterminacy of the factor scores.



4.7 Two Examples of Exploratory Factor Analysis 77

4.7 Two Examples of Exploratory Factor Analysis

4.7.1 Expectations of Life
The data in Table 4.2 show life expectancy in years by country, age, and sex. The
data come from Keyfitz and Flieger (1971) and relate to life expectancies in the
1960s.

We will use the formal test for number of factors incorporated into the maximum
likelihood approach. We can apply this test to the data, assumed to be contained in
the dataframe life with the country names labelling the rows and variables names
as given in parentheses in Table 4.2, using the following R and S-PLUS code:

life.fa1<-factanal(life,factors=1,method="mle")
life.fa1
life.fa2<-factanal(life,factors=2,method="mle")
life.fa2
life.fa3<-factanal(life,factors=3,method="mle")
life.fa3

The results from the test are shown in Table 4.3. These results indicate that a
three-factor solution is adequate for the data, although it has to be remembered that
with only 31 countries, use of an asymptotic test result may be rather suspect. (The
numerical results from R and S-PLUS® may differ a little.)

To find the details of the three-factor solution given by maximum likelihood we
use the single R instruction

life.fa3

(In S-PLUS summary(life.fa3) is needed.)
The results, shown in Table 4.4, correspond to a varimax-rotated solution (the

default for the factanal function). For interest we might also compare this with
results from the quartimax rotation technique. The necessary S-PLUS code to find
this solution is

life.fa3<-factanal(life,factors=3,method="mle",
rotation="quartimax")summary(life.fa3)

(R does not have the quartimax option in factanal.) The results are shown in
Table 4.5.

The first two factors from both varimax and quartimax are similar. The first factor
is dominated by life expectancy at birth for both males and females and the second
reflects life expectancies at older ages. The third factor from the varimax rotation
has its highest loadings for the life expectancies of men aged 50 and 75.

If using S-PLUS the estimated factor scores are already available in
life.fa3$scores. In R the scores have to be requested as follows;

scores<-factanal(life,factors=3,method="mle",
scores="regression")$scores
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Table 4.2 Life Expectancies for Different Countries by Age and Sex

Male Female

0 25 50 75 0 25 50 75
Age (m0) (m25) (m50) (m75) (w0) (w25) (w50) (w75)

Algeria 63 51 30 13 67 54 34 15

Cameroon 34 29 13 5 38 32 17 6

Madagascar 38 30 17 7 38 34 20 7

Mauritius 59 42 20 6 64 46 25 8

Reunion 56 38 18 7 62 46 25 10

Seychelles 62 44 24 7 69 50 28 14

South Africa (B) 50 39 20 7 55 43 23 8

South Africa (W) 65 44 22 7 72 50 27 9

Tunisia 56 46 24 11 63 54 33 19

Canada 69 47 24 8 75 53 29 10

Cost Rica 65 48 26 9 68 50 27 10

Dominican Republic 64 50 28 11 66 51 29 11

El Salvador 56 44 25 10 61 48 27 12

Greenland 60 44 22 6 65 45 25 9

Grenada 61 45 22 8 65 49 27 10

Guatemala 49 40 22 9 51 41 23 8

Honduras 59 42 22 6 61 43 22 7

Jamaica 63 44 23 8 67 48 26 9

Mexico 59 44 24 8 63 46 25 8

Nicaragua 65 48 28 14 68 51 29 13

Panama 65 48 26 9 67 49 27 10

Trinidad (62) 64 63 21 7 68 47 25 9

Trinidad (67) 64 43 21 6 68 47 24 8

United States (66) 67 45 23 8 74 51 28 10

United States (NW66) 61 40 21 10 67 46 25 11

United States (W66) 68 46 23 8 75 52 29 10

United States (67) 67 45 23 8 74 51 28 10

Argentina 65 46 24 9 71 51 28 10

Chile 59 43 23 10 66 49 27 12

Colombia 58 44 24 9 62 47 25 10

Ecuador 57 46 28 9 60 49 28 11
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Table 4.3 Results from Test for Number of Factors on
the Data in Table 4.2 Using R

1. Test of the hypothesis that one factor is sufficient
versus the alternative that more are required:

The chi square statistic is 163.11 on 20 degrees of freedom.
The p-value is <0.0001.

2. Test of the hypothesis that two factors are sufficient
versus the alternative that more are required:

The chi square statistic is 45.24 on 13 degrees of freedom.
The p-value is <0.0001.

3. Test of the hypothesis that three factors are sufficient
versus the alternative that more are required:

The chi square statistic is 6.73 on 7 degrees of freedom.
The p-value is 0.458.

Table 4.4 Maximum Likelihood Three-Factor Solution for Life Expectancy Data After
Varimax Rotation Using R

Importance of factors:
Factor 1 Factor 2 Factor 3

SS loadings 3.38 2.08 1.64
Proportion Var 0.42 0.26 0.21
Cumulative Var 0.42 0.68 0.89

The degrees of freedom for the model is 7.

Uniquenesses:
M0 M25 M50 M75 W0 W25 W50 W75

0.005 0.362 0.066 0.288 0.005 0.011 0.020 0.146

Loadings:
Factor 1 Factor 2 Factor 3 Communality

M0 0.97 0.12 0.23 0.9999
M25 0.65 0.17 0.44 0.6491
M50 0.43 0.35 0.79 0.9018
M75 — 0.53 0.66 0.7077
W0 0.97 0.22 — 0.9951
W25 0.76 0.56 0.31 0.9890
W50 0.54 0.73 0.40 0.9793
W75 0.16 0.87 0.28 0.8513

The factor scores are shown in Table 4.6 (again the scores from R and S-PLUS
may differ a little). We can use the scores to provide a 3-D plot of the data by first
creating a new dataframe

#if using S-PLUS we need scores<-life.fa3$scores
lifex<-data.frame(life,scores)
attach(lifex)
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Table 4.5 Three-Factor Solution for Life Expectancy Data After Quartimax Rotation
Using S-PLUS

Factor 1 Factor 2 Factor 3

SS loadings 4.57 2.13 0.37
Proportion Var 0.57 0.26 0.04
Cumulative Var 0.57 0.84 0.88

The degrees of freedom for the model is 7.

Uniquenesses:
M0 M25 M50 M75 W0 W25 W50 W75

0.0000876 0.3508347 0.09818739 0.2923066 0.004925743 0.01100307 0.02074596 0.1486658

Loadings:
Factor 1 Factor 2 Factor 3 Communality

M0 0.99 — — 0.9999
M25 0.76 0.18 0.21 0.6491
M50 0.66 0.57 0.37 0.9018
M75 0.33 0.74 0.23 0.7077
W0 0.98 — −0.16 0.9951
W25 0.90 0.39 −0.14 0.9890
W50 0.74 0.65 −0.14 0.9793
W75 0.37 0.80 −0.28 0.8513

Table 4.6 Factor Scores from the Three-Factor Solution
for the Life Expectancy Data

Factor 1 Factor 2 Factor 3

Algeria −0.26 1.92 1.96

Cameroon −2.84 −0.69 −1.98

Madagascar −2.82 −1.03 0.29

Mauritius 0.15 −0.36 −0.77

Reunion −0.19 0.35 −1.39

Seychelles 0.38 0.90 −0.71

South Africa (B) −1.07 0.06 −0.87

South Africa (W) 0.95 0.12 −1.02

Tunisia −0.87 3.52 −0.21

Canada 1.27 0.26 −0.22

Cost Rica 0.52 −0.52 1.06

Dominican Republic 0.11 −0.01 1.94

El Salvador −0.64 0.82 0.25

Greenland 0.24 −0.67 −0.45

Grenada 0.15 0.11 0.08

Guatemala −1.48 −0.64 0.62

Honduras 0.07 −1.93 0.38

(Continued)
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Table 4.6 (Continued)

Jamaica 0.48 −0.58 0.17

Mexico −0.07 −0.60 0.26

Nicaragua 0.28 0.08 1.77

Panama 0.47 −0.84 1.43

Trinidad (62) 0.72 −1.07 −0.00

Trinidad (67) 0.82 −1.24 −0.36

United States (66) 1.14 0.20 −0.75

United States (NW66) 0.41 −0.39 −0.74

United States (W66) 1.23 0.40 −0.68

United States (67) 1.14 0.20 −0.75

Argentina 0.73 0.31 −0.21

Chile −0.02 0.91 −0.73

Colombia −0.26 −0.19 0.28

Ecuador −0.75 0.62 1.36

and then using the S-PLUS GUI as described in Chapter 2. The resulting diagram
is shown in Figure 4.2.

Ordering along the first axis reflects life expectancy at birth ranging from
Cameroon and Madagascar to countries such as the United States. And on the
third axis Algeria is prominent because it has high life expectancy amongst men at
higher ages with Cameroon at the lower end of the scale with a low life expectancy
for men over 50.

Algeria

Cameroon

Madagascar

Mauritius
Reunion

Seychelles

South Africa(C)

South Africa(W)

Tunisia

Canada

Costa Rica

Dominican Rep
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Honduras

Jamaica
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Trinidad (67)
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Figure 4.2 Plot of three-factor scores for life expectancy data.
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4.7.2 Drug Usage by American College Students
The majority of adult and adolescent Americans regularly use psychoactive sub-
stances during an increasing proportion of their lifetime. Various forms of licit and
illicit psychoactive substances use are prevalent, suggesting that patterns of psy-
choactive substance taking are a major part of the individual’s behavioural reper-
tory and have pervasive implications for the performance of other behaviors. In an
investigation of these phenomena, Huba et al. (1981) collected data on drug usage
rates for 1634 students in the seventh to ninth grades in 11 schools in the greater
metropolitan area of LosAngeles. Each participant completed a questionnaire about
the number of times a particular substance had ever been used. The substances asked
about were as follows:

X1. cigarettes
X2. beer
X3. wine
X4. liquor
X5. cocaine
X6. tranquillizers
X7. drug store medications used to get high
X8. heroin and other opiates
X9. marijuana

X10. hashish
X11. inhalants (glue, gasoline, etc.)
X12. hallucinogenics (LSD, mescaline, etc.)
X13. amphetamine, stimulants

Responses were recorded on a five-point scale;

1. never tried
2. only once
3. a few times
4. many times
5. regularly

The correlations between the usage rates of the 13 substances are shown in Table 4.7.
We first try to determine the number of factors using the maximum likelihood test.
Here the S-PLUS code needs to accommodate the use of the correlation matrix
rather than the raw data. We assume the correlation matrix is available as the data
frame druguse.cor. The R code for finding the results of the test for number of
factors here is

R
druguse.fa<-lapply(1:6,function(nf)
factanal(covmat=druguse.cor,factors=nf,method="mle",
n.obs=1634)
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Table 4.7 Correlation Matrix for Drug Usage Data

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

X1 1

X2 0.447 1

X3 0.442 0.619 1

X4 0.435 0.604 0.583 1

X5 0.114 0.068 0.053 0.115 1

X6 0.203 0.146 0.139 0.258 0.349 1

X7 0.091 0.103 0.110 0.122 0.209 0.221 1

X8 0.082 0.063 0.066 0.097 0.321 0.355 0.201 1

X9 0.513 0.445 0.365 0.482 0.186 0.315 0.150 0.154 1

X10 0.304 0.318 0.240 0.368 0.303 0.377 0.163 0.219 0.534 1

X11 0.245 0.203 0.183 0.255 0.272 0.323 0.310 0.288 0.301 0.302 1

X12 0.101 0.088 0.074 0.139 0.279 0.367 0.232 0.320 0.204 0.368 0.304 1

X13 0.245 0.199 0.184 0.293 0.278 0.545 0.232 0.314 0.394 0.467 0.392 0.511 1

The S-PLUS code here is a little different

S-PLUS
druguse.list<-list(cov=druguse.cor,center=rep(0,13),
n.obs=1634)

druguse.fa<-lapply(1:6,function(nf)
factanal(covlist=druguse.list,factors=nf,method=”mle”))

The results from the test of number of factors are shown in Table 4.8. The test
suggests that a six-factor model is needed. The results from the six-factor varimax
solution are obtained from

R: druguse.fa[[6]]

S-PLUS: summary(druguse.fa[[6]])

and are shown in Table 4.9. The first factor involves cigarettes, beer, wine, liquor,
and marijuana and we might label it “social/soft drug usage.” The second factor
has high loadings on cocaine, tranquillizers, and heroin. The obvious label for the
factor is “hard drug usage.” Factor three is essentially simply amphetamine use,
and factor four is hashish use. We will not try to interpret the last two factors even
though the formal test for number of factors indicated that a six-factor solution
was necessary. It may be that we should not take the results of the formal test too
literally. Rather, it may be a better strategy to consider the value of k indicated by
the test to be an upper bound on the number of factors with practical importance.
Certainly a six-factor solution for a data set with only 13 manifest variables might
be regarded as not entirely satisfactory, and clearly we would have some difficulties
interpreting all the factors.



84 4. Exploratory Factor Analysis

Table 4.8 Results of Formal Test for Number of
Factors on Drug Usage Data from R

1. Test of the hypothesis that one factor is sufficient
versus the alternative that more are required:

The chi square statistic is 2278.25 on 65 degrees of freedom.
The p-value is <0.00001.

2. Test of the hypothesis that two factor is sufficient
versus the alternative that more are required:

The chi square statistic is 477.37 on 53 degrees of freedom.
The p-value is <0.00001.

3. Test of the hypothesis that three factors are sufficient
versus the alternative that more are required:

The chi square statistic is 231.95 on 42 degrees of freedom.
The p-value is <0.00001.

4. Test of the hypothesis that four factors are sufficient
versus the alternative that more are required:

The chi square statistic is 113.42 on 32 degrees of freedom.
The p-value is <0.00001.

5. Test of the hypothesis that five factors are sufficient
versus the alternative that more are required:

The chi square statistic is 60.57 on 23 degrees of freedom.
The p-value is <0.00001.

6. Test of the hypothesis that six factors are sufficient
versus the alternative that more are required:

The chi square statistic is 23.97 on 15 degrees of freedom.
The p-value is 0.066.

One of the problems is that with the large sample size in this example, even small
discrepancies between the correlation matrix predicted by a proposed model and
the observed correlation matrix may lead to rejection of the model. One way to
investigate this possibility is to simply look at the differences between the observed
and predicted correlations. We shall do this first for the six-factor model using the
following R and S-PLUS code:

pred<-druguse.fa[[6]]$loadings%*%t(druguse.fa[[6]]
$loadings)+

diag(druguse.fa[[6]]$uniquenesses)
druguse.cor-pred

The resulting matrix of differences is shown in Table 4.10. The differences are all
very small, underlining that the six-factor model does describe the data very well.

Now let us look at the corresponding matrices for the three- and four-factor
solutions found in a similar way; see Table 4.11. Again in both cases the residuals
are all relatively small, suggesting perhaps that use of the formal test for number of
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Table 4.9 Maximum Likelihood of Six-Factor Solution for Drug Usage Data—Varimax
Rotation

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

SS loadings 2.30 1.43 1.13 0.95 0.68 0.61
Proportion Var 0.18 0.11 0.09 0.07 0.05 0.05
Cumulative Var 0.80 0.29 0.37 0.45 0.50 0.55

The degrees of freedom for the model is 15.

Uniquenesses:
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

0.560 0.368 0.374 0.411 0.681 0.526 0.748 0.665 0.324 0.025 0.597 0.630 4r-010

Loadings:
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

X1 0.49 — — — 0.41 —
X2 0.78 — — 0.10 0.11 —
X3 0.79 — — — — —
X4 0.72 0.12 0.10 0.12 0.16 —
X5 — 0.52 — 0.13 — 0.16
X6 0.13 0.56 0.32 0.10 0.14 —
X7 — 0.24 — — — 0.42
X8 — 0.54 0.10 — — 0.19
X9 0.43 0.16 0.15 0.26 0.60 0.10
X10 0.24 0.28 0.19 0.87 0.20 —
X11 0.17 0.32 0.16 — 0.15 0.47
X12 — 0.39 0.34 0.19 — 0.26
X13 0.15 0.34 0.89 0.14 0.14 0.17

factors leads, in this case, to overfitting. The three-factor model appears to provide
a perfectly adequate fit for these data.

4.8 Comparison of Factor Analysis and Principal
Components Analysis

Factor analysis, like principal components analysis, is an attempt to explain a set of
multivariate data using a smaller number of dimensions than one begins with, but
the procedures used to achieve this goal are essentially quite different in the two
approaches. Some differences between the two are as follows:

• Factor analysis tries to explain the covariances or correlations of the observed
variables by means of a few common factors. Principal components analysis is
primarily concerned with explaining the variance of the observed variables.

• If the number of retained components is increased, say, from m to m + 1, the first
m components are unchanged. This is not the case in factor analysis, where there
can be substantial changes in all factors if the number of factors is unchanged.

• The calculation of principal component scores is straightforward. The calculation
of factor scores is more complex, and a variety of methods have been suggested.
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• There is usually no relationship between the principal components of the sample
correlation matrix and the sample covariance matrix. For maximum likelihood
factor analysis, however, the results of analyzing either matrix are essentially
equivalent (this is not true of principal factor analysis).

Despite these differences, the results from both types of analysis are frequently
very similar. Certainly if the specific variances are small we would expect both
forms of analysis to give similar results. However, if the specific variances are large
they will be absorbed into all the principal components, both retained and rejected,
whereas factor analysis makes special provision for them.

Lastly, it should be remembered that both principal components analysis and
factor analysis are similar in one important respect—they are both pointless if the
observed variables are almost uncorrelated. In this case factor analysis has nothing
to explain and principal components analysis will simply lead to components which
are similar to the original variables.

4.9 Confirmatory Factor Analysis

The methods described in this chapter have been those of exploratory factor anal-
ysis. In such models no constraints are placed on which of the manifest variables
load on the common factors. But there is an alternative approach known as confir-
matory factor analysis in which specific constraints are introduced, for example,
that particular manifest variables are related to only one of the common factors
with their loadings on other factors set a priori to be zero. These constraints may be
suggested by theoretical considerations or perhaps from earlier exploratory factor
analyses on similar data sets. Fitting confirmatory factor analysis models requires
specialized software and readers are referred to Dunn et al. (1993) and Muthen and
Muthen (1998).

4.10 Summary

Factor analysis has probably attracted more critical comments than any other sta-
tistical technique. Hills (1977), for example, has gone so far as to suggest that
factor analysis is not worth the time necessary to understand it and carry it out. And
Chatfield and Collins (1980) recommend that factor analysis should not be used in
most practical situations. The reasons that these authors and others are so openly
sceptical about factor analysis arises firstly from the central role of latent variables
in the factor analysis model and secondly from the lack of uniqueness of the factor
loadings in the model that gives rise to the possibility of rotating factors. It certainly
is the case that since the common factors cannot be measured or observed, the exis-
tence of these hypothetical variables is open to question. A factor is a construct
operationally defined by its factor loadings, and overly enthusiastic reification is
not to be recommended.
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It is the case that given one factor-loading matrix, there are an infinite num-
ber of factor-loading matrices that could equally well (or equally badly) account
for the variances and covariances of the manifest variables. Rotation methods are
designed to find an easily interpretable solution from among this infinitely large set
of alternatives by finding a solution that exhibits the best simple structure.

Factor analysis can be a useful tool for investigating particular features of the
structure of multivariate data. Of course, like many models used in data analysis, the
one used in factor analysis may be only a very idealized approximation to the truth.
Such an approximation may, however, prove a valuable starting point for further
investigations.

Exercises
4.1 Show how the result � = ��′ + � arises from the assumptions of uncor-

related factors, independence of the specific variates, and independence of
common factors and specific variances. What form does � take if the factors
are allowed to be correlated?

4.2 Show that the communalities in a factor analysis model are unaffected by the
transformation �∗ = �M.

4.3 Give a formula for the proportion of variance explained by the j th factor
estimated by the principal factor approach.

4.4 Apply the factor analysis model separately to the life expectancies of men and
women and compare the results.

4.5 Apply principal factor analysis to the drug usage data and compare the results
with those given in the text from maximum likelihood factor analysis. Inves-
tigate the use of oblique rotation for these data.

4.6 The correlation matrix given below arises from the scores of 220 boys in six
school subjects: (1) French, (2) English, (3) history, (4) arithmetic, (5) algebra,
and (6) geometry. The two-factor solution from a maximum likelihood factor
analysis is shown in Table 4.12. By plotting the derived loadings, find an

Table 4.12 Maximum Likelihood Factor Analysis for
School Subjects Data

Factor loadings

Subject F1 F2 Communality

1. French 0.55 0.43 0.49
2. English 0.57 0.29 0.41
3. History 0.39 0.45 0.36
4. Arithmetic 0.74 −0.27 0.62
5. Algebra 0.72 −0.21 0.57
6. Geometry 0.60 −0.13 0.37
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orthogonal rotation that allows easier interpretation of the results.

R =

French
English
History

Arithmetic
Algebra

Geometry

⎛
⎜⎜⎜⎜⎜⎝

1.00
0.44 1.00
0.41 0.35 1.00
0.29 0.35 0.16 1.00
0.33 0.32 0.19 0.59 1.00
0.25 0.33 0.18 0.47 0.46 1.00

⎞
⎟⎟⎟⎟⎟⎠.

4.7 The matrix below shows the correlations between ratings on nine statements
about pain made by 123 people suffering from extreme pain. Each statement
was scored on a scale from 1 to 6 ranging from agreement to disagreement.
The nine pain statements were as follows:

1. Whether or not I am in pain in the future depends on the skills of the
doctors.

2. Whenever I am in pain, it is usually because of something I have done or
not done.

3. Whether or not I am in pain depends on what the doctors do for me.
4. I cannot get any help for my pain unless I go to seek medical advice.
5. When I am in pain I know that it is because I have not been taking proper

exercise or eating the right food.
6. People’s pain results from their own carelessness.
7. I am directly responsible for my pain.
8. Relief from pain is chiefly controlled by the doctors.
9. People who are never in pain are just plain lucky.

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.00
−0.04 1.00

0.61 −0.07 1.00
0.45 −0.12 0.59 1.00
0.03 0.49 0.03 −0.08 1.00

− 0.29 0.43 −0.13 −0.21 0.47 1.00
− 0.30 0.30 −0.24 −0.19 0.41 0.63 1.00

0.45 − 0.31 0.59 0.63 −0.14 −0.13 −0.26 1.00
0.30 − 0.17 0.32 0.37 −0.24 −0.15 −0.29 0.40 1.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(a) Perform a principal components analysis on these data and examine
the associated scree plot to decide on the appropriate number of com-
ponents.

(b) Apply maximum likelihood factor analysis and use the test described
in the chapter to select the necessary number of common factors.

(c) Rotate the factor solution selected using both an orthogonal and an
oblique procedure, and interpret the results.



5
Multidimensional Scaling and
Correspondence Analysis

5.1 Introduction

In Chapter 3 we noted in passing that one of the most useful ways of using prin-
cipal component analysis was to obtain a low-dimensional “map” of the data that
preserved as far as possible the Euclidean distances between the observations in
the space of the original q variables. In this chapter we will make this aspect of
principal component analysis more explicit and also introduce some other, more
direct methods, which aim to produce similar maps of data that have a differ-
ent form from the usual multivariate data matrix, X. We will consider two such
techniques The first, multidimensional scaling, is used, essentially, to represent an
observed proximity matrix geometrically. Proximity matrices arise either directly
from experiments in which subjects are asked to assess the similarity of pairs of
stimuli, or indirectly; as a measure of the correlation, covariance, or distance of
the pair of stimuli derived from the raw profile data, that is, the variable values
in X.

An example of the former is shown in Table 5.1. Here, judgements about
various brands of cola made by two subjects using a visual analogue scale with
anchor points “same” (having a score of 0) and “different” (having a score of
100). In this example, the resulting rating for a pair of colas is a dissimilarity—
low values indicate that the two colas are regarded as more alike than high values,
and vice versa. A similarity measure would have been obtained had the anchor
points been reversed, although similarities are often scaled to lie in the inter-
val [0, 1]. An example of a proximity matrix arising from the basic data matrix
is shown in Table 5.2. Here, the Euclidean distances between a number of pairs
of countries have been calculated from the birth and death rates of each
country.

The second technique that will be described in this chapter is correspondence
analysis, which is essentially an approach to displaying the associations among a
set of categorical variables in a type of scatterplot or map, thus allowing a visual
examination of any structure or pattern in the data. Table 5.3, for example, shows a
cross classification of 538 cancer patients by histological type, and by their response

91
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Table 5.1 Dissimilarity Data for All Pairs of 10 Colas for Two Subjects

Subject 1:
Cola number

1 2 3 4 5 6 7 8 9 10

1 0
2 16 0
3 81 47 0
4 56 32 71 0
5 87 68 44 71 0
6 60 35 21 98 34 0
7 84 94 98 57 99 99 0
8 50 87 79 73 19 92 45 0
9 99 25 53 98 52 17 99 84 0

10 16 92 90 83 79 44 24 18 98 0

Subject 2:
Cola number

1 2 3 4 5 6 7 8 9 10

1 0
2 20 0
3 75 35 0
4 60 31 80 0
5 80 70 37 70 0
6 55 40 20 89 30 0
7 80 90 90 55 87 88 0
8 45 80 77 75 25 86 40 0
9 87 35 50 88 60 10 98 83 0

10 12 90 96 89 75 40 27 14 90 0

Table 5.2 Euclidean Distance Matrix Based on Birth and Death Rates for Five Countries

(1) Raw data
Country Birth rate Death rate

Algeria 36.4 14.6
France 18.2 11.7
Hungary 13.1 9.9
Poland 19.0 7.5
New Zealand 25.5 8.8

(2) Euclidean distance matrix
Algeria France Hungary Poland New Zealand

Algeria 0.00
France 18.43 0.00
Hungary 23.76 5.41 0.00
Poland 18.79 4.28 6.37 0.00
New Zealand 12.34 7.85 12.45 6.63 0.00
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Table 5.3 Hodgkin’s Disease

Response

Histological type Positive Partial None Total

LP 74 18 12 104
NS 68 16 12 96
MC 154 54 58 266
LD 18 10 44 72
Total 314 98 126 538

to treatment three months after it had begun. A correspondence analysis of these
data will be described later.

5.2 Multidimensional Scaling (MDS)

There are many methods of multidimensional scaling, and most of them are
described in detail in Everitt and Rabe-Hesketh (1997). Here we shall concentrate
on just one method, classical multidimensional scaling. Firstly, like all MDS tech-
niques, classical scaling seeks to represent a proximity matrix by a simple geomet-
rical model or map. Such a model is characterized by a set of points x1, x2, . . . , xn,
in q dimensions, each point representing one of the stimuli of interest, and a mea-
sure of the distance between pairs of points. The objective of MDS is to determine
both the dimensionality, q, of the model, and the n, q-dimensional coordinates,
x1, x2, . . . , xn so that the model gives a “good” fit for the observed proximities. Fit
will often be judged by some numerical index that measures how well the prox-
imities and the distances in the geometrical model match. In essence this simply
means that the larger an observed dissimilarity between two stimuli (or the smaller
their similarity), the further apart should be the points representing them in the final
geometrical model.

The question now arises as to how we estimate q, and the coordinate values
x1, x2, . . . , xn, from the observed proximity matrix? Classical scaling provides an
answer to this question based on the work of Young and Householder (1938). To
begin we must note that there is no unique set of coordinate values that give rise
to these distances, since they are unchanged by shifting the whole configuration of
points from one place to another, or by rotation or reflection of the configuration. In
other words, we cannot uniquely determine either the location or the orientation of
the configuration. The location problem is usually overcome by placing the mean
vector of the configuration at the origin. The orientation problem means that any
configuration derived can be subjected to an arbitrary orthogonal transformation.
Such transformations can often be used to facilitate the interpretation of solutions
as will be seen later.

The essential mathematical details of classical multidimensional scaling are
given in Display 5.1.
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Display 5.1
Mathematical Details of Classical Multidimensional Scaling

• To begin our account of the method we shall assume that the proximity matrix
we are dealing with is a matrix of Euclidean distances derived from a raw
data matrix, X.

• In Chapter 1, we saw how to calculate Euclidean distances from X. Multidi-
mensional scaling is essentially concerned with the reverse problem: Given
the distances (arrayed in the n × n matrix, D) how do we find X?

• To begin, define an n × n matrix B as follows

B = XX′ (a)

• The elements of B are given by

bij =
q∑

k=1

xikxjk. (b)

• It is easy to see that the squared Euclidean distances between the rows of X
can be written in terms of the elements of B as

d2
ij = bii + bjj − 2bij . (c)

• If the b’s could be found in terms of the d’s in the equation above, then the
required coordinate value could be derived by factoring B as in (a).

• No unique solution exists unless a location constraint is introduced. Usually
the center of the points x̄ is set at the origin, so that

∑n
i=1 xik = 0 for all k.

• These constraints and the relationship given in (b) imply that the sum of the
terms in any row of B must be zero.

• Consequently, summing the relationship given in (c) over i, over j , and finally
over both i and j , leads to the following series of equations:

n∑
i=1

d2
ij = T + nbjj ,

n∑
i=1

d2
ij = nbii + T ,

n∑
i=1

n∑
j=1

d2
ij = 2nT ,

where T = ∑n
i=1 bii is the trace of the matrix B.

• The elements of B can now be found in terms of squared Euclidean distances as

bij = −1

2

[
d2
ij − d2

i. − d2
.j + d2

..

]
,
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where

d2
i. = 1

n

n∑
j=1

d2
ij ,

d2
.j = 1

n

n∑
i=1

d2
ij ,

d2
.. = 1

n2

n∑
i=1

n∑
j=1

d2
ij.

• Having now derived the elements of B in terms of Euclidean distances, it
remains to factor it to give the coordinate values.

• In terms of its singular value decomposition B can be written as

B = V�V′,

where � = diag[λ1, . . . , λn] is the diagonal matrix of eigenvalues of B and
V = [V1, . . . , Vn], the corresponding matrix of eigenvectors, normalized so
that the sum of squares of their elements is unity, that is, V′

iVi = 1. The
eigenvalues are assumed labeled such that λ1 ≥ λ2 ≥ · · · ≥ λn.

• When D arises from an n × q matrix of full rank, then the rank of B is q, so
that the last n − q of its eigenvalues will be zero.

• So B can be written as
B = V1�1V′

1,

where V1 contains the first q eigenvectors and �1 the q nonzero eigenvalues.
• The required coordinate values are thus

X = V1�
1/2
1

where 

1/2
1 = diag[λ1/2

1 , . . . , λ
1/2
p ].

• The best fitting k-dimensional representation is given by the k eigenvectors
of B corresponding to the k largest eigenvalues.

• The adequacy of the k-dimensional representation can be judged by the size
of the criterion

Pk =
∑k

i=1 λi∑n−1
i=1 λi

.

• Values of Pk of the order of 0.8 suggest a reasonable fit.
• When the observed dissimilarity matrix is not Euclidean, the matrix B is not

positive-definite.
• In such cases some of the eigenvalues of B will be negative; correspondingly,

some coordinate values will be complex numbers.
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• If, however, B has only a small number of small negative eigenvalues, a
useful representation of the proximity matrix may still be possible using the
eigenvectors associated with the k largest positive eigenvalues.

• The adequacy of the resulting solution might be assessed using one of the
following two criteria suggested by Mardia et al. (1979)

P
(1)
k =

∑k
i=1 |λi |∑n
i=1 |λi |

P
(2)
k =

∑k
i=1 λ2

i∑n
i=1 λ2

i

• Alternatively, Sibson (1979) recommends the following:

1. Trace criterion: Choose the number of coordinates so that the sum of
their positive eigenvalues is approximately equal to the sum of all the
eigenvalues.

2. Magnitude criterion: Accept as genuinely positive only those eigenvalues
whose magnitude substantially exceeds that of the largest negative
eigenvalue.

5.2.1 Examples of Classical Multidimensional Scaling
For our first example we will use the small set of multivariate data shown inTable 5.4,
and the associated matrix of Euclidean distances will be our proximity matrix. To
apply classical scaling to this matrix in R and S-PLUS® we can use the dist
function to calculate the Euclidean distances combined with thecmdscale function
to do the scaling

cmdscale(dist(x),k=5)

Here the five-dimensional solution (see Table 5.5) achieves complete recovery of
the observed distance matrix. We can see this by comparing the original distances
with those calculated from the scaling solution coordinates using the following R
and S-PLUS code:

dist(x)- dist(cmdscale(dist(x), k=5)

The result is essentially a matrix of zeros.
The best fit in lower numbers of dimensions uses the coordinate values from the

scaling solution in order from one to five. In fact, when the proximity matrix contains
Euclidean distances derived from the raw data matrix, X, classical scaling can be
shown to be equivalent to principal component analysis (see Chapter 3), with the
derived coordinate values corresponding to the scores on the principal components
derived from the covariance matrix. One result of this duality is the classical MDS
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Table 5.4 Multivariate Data and Associated Euclidean Distances

(1) Data

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 4 4 6 1
5 1 1 7 3
6 2 0 2 6
1 1 1 0 3
4 7 3 6 2
2 2 5 1 0
0 4 1 1 1
0 6 4 3 5
7 6 5 1 4
2 1 4 3 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2) Euclidean distances

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.00
5.20 0.00
8.37 6.08 0.00
7.87 8.06 6.32 0.00
3.46 6.56 8.37 9.27 0.00
5.66 8.42 8.83 5.29 7.87 0.00
6.56 8.60 8.19 3.87 7.42 5.00 0.00
6.16 8.89 8.37 6.93 6.00 7.07 5.70 0.00
7.42 9.05 6.86 8.89 6.56 7.55 8.83 7.42 0.00
4.36 6.16 7.68 4.80 7.14 2.64 5.10 6.71 8.00 0.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is often referred to as principal coordinates analysis (see Gower, 1966). The low-
dimensional representation achieved by classical MDS for Euclidean distances (and
that produced by principal component analysis) is such that the function φ given by

φ =
n∑
r,s

(d2
rs − d̂2

rs)

is minimized. In this expression, drs is the Euclidean distance between observations
r and s in the original q-dimensional space, and d̂rs is the corresponding distance in

Table 5.5 Five-Dimensional Solution from Classical
MDS Applied to the Distance Matrix in Table 5.4

1 2 3 4 5

1 1.60 2.38 2.23 −0.37 0.12
2 2.82 −2.31 3.95 0.34 0.33
3 1.69 −5.14 −1.29 0.65 −0.05
4 −3.95 −2.43 −0.38 0.69 0.03
5 3.60 2.78 0.26 1.08 −1.26
6 −2.95 1.35 0.19 −2.82 0.12
7 −3.47 0.76 −0.30 1.64 −1.94
8 −0.35 2.31 −2.22 2.92 2.00
9 2.94 −0.01 −4.31 −2.51 −0.19

10 −1.93 0.33 1.87 −1.62 0.90
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k-dimensional space (k < q) chosen for the classical scaling solution (equivalently
the first k components).

Now let us look at an example involving distances that are not Euclidean and for
this we shall use the data shown in Table 5.6 giving the airline distances between
10 U.S. cities and available as the dataframe airline.dist. These distances are
not Euclidean since they relate essentially to journeys along the surface of a sphere.
To apply classical scaling to these distances and to see the eigenvalues we can use
the following R and S-PLUS code:

airline.mds<-cmdscale(airline.dist, k=9, eig=T)
airline.mds$eig

The eigenvalues are shown in Table 5.7. Some are negative for these
non-Euclidean distances (and there are some small differences between R and S-
PLUS after the fourth eigenvalue). We will assess how many coordinates we need
to adequately represent the observed distance matrix using the criterion, P

(1)
k in

Display 5.1. The values of the criterion calculated from the eigenvalues in Table 5.7
for the one-dimensional and two-dimensional solutions are

P
(1)
1 = 0.74, P

(2)
1 = 0.93,

P
(1)
2 = 0.91, P

(1)
2 = 0.99.

These values suggest that the first two coordinates will give an adequate represen-
tation of the observed distances.

The plot of the two-dimensional coordinate values is obtained using

#
par(pty="s")
#use same limits for x and y axes
#
plot(airline.mds$points[,1],airline.mds$points[,2],
type="n",xlab="Coordinate 1",ylab="Coordinate 2",
xlim=c(-2000,1500), ylim=c(-2000,1500))

Table 5.6 Airline Distances Between 10 U.S. Cities

Atla Chic Denv Hous LA Mia NY SF Seat Wash

Atlanta — 587 1212 701 1936 604 748 2139 218 543
Chicago 587 — 920 940 1745 1188 713 1858 1737 597
Denver 1212 920 — 879 831 1726 1631 949 1021 1494
Houston 701 940 879 — 1374 968 1420 1645 1891 1220
Los Angeles 1936 1745 831 1374 — 2338 2451 347 959 2300
Miami 604 1188 1726 968 2338 — 1092 2594 2734 923
New York 748 713 1631 1420 2451 1092 — 2571 2408 205
San Francisco 2139 1858 949 1645 347 2594 2571 — 678 2442
Seattle 218 1737 1021 1891 959 2734 2408 678 — 2329
Wash. D.C 543 597 1494 1220 2300 923 205 2442 2329 —

In dataframe airline.dist
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Table 5.7 Eigenvalues and Eigenvectors Arising from Classical
Multidimensional Scaling Applied to Distance in Table 5.6

Eigenvalues City 1 2

9.21 × 106 Atlanta 434.76 −724.22
2.20 × 106 Chicago 412.61 −55.04
1.08 × 106 Denver −468.20 180.66
3.32 × 103 Houston 175.58 515.22
3.86 × 102 Los Angeles −1206.68 465.64

−3.26 × 10−1 Miami 1161.69 477.98
−9.30 ×10 New York 1115.56 −199.79
−2.17 × 103 San Francisco −1422.69 308.66
−9.09 × 103 Seattle −1221.54 −887.20
−1.72 × 106 Wash. D.C 1018.90 −81.90

text(airline.mds$points[,1],airline.mds$points[,2],
labels=row.names(airline.dist))

and is shown in Figure 5.1. (The coordinates obtained from R may have different
signs in which case some small amendments to the above code will be needed to
get the same diagram as Figure 5.1.)

Our last example of the use of classical multidimensional scaling will involve
the data shown in Table 5.8. These data show four measurements on male Egyptian
skulls from five epochs. The measurements are

MB: Maximum breadth
BH: Basibregmatic height

Figure 5.1 Two-dimensional classical MDS solution for airline distances from S-PLUS.
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Table 5.8 Contents of Skull Dataframe. From The
Ancient Races of the Thebaid, Arthur Thomson &
R. Randall-Maciver (1905). By permission of Oxford
University Press

EPOCH MB BH BL NH

1 c4000BC 131 138 89 49
2 c4000BC 125 131 92 48
3 c4000BC 131 132 99 50
4 c4000BC 119 132 96 44
5 c4000BC 136 143 100 54
6 c4000BC 138 137 89 56
7 c4000BC 139 130 108 48
8 c4000BC 125 136 93 48
9 c4000BC 131 134 102 51

10 c4000BC 134 134 99 51
11 c4000BC 129 138 95 50
12 c4000BC 134 121 95 53
13 c4000BC 126 129 109 51
14 c4000BC 132 136 100 50
15 c4000BC 141 140 100 51
16 c4000BC 131 134 97 54
17 c4000BC 135 137 103 50
18 c4000BC 132 133 93 53
19 c4000BC 139 136 96 50
20 c4000BC 132 131 101 49
21 c4000BC 126 133 102 51
22 c4000BC 135 135 103 47
23 c4000BC 134 124 93 53
24 c4000BC 128 134 103 50
25 c4000BC 130 130 104 49
26 c4000BC 138 135 100 55
27 c4000BC 128 132 93 53
28 c4000BC 127 129 106 48
29 c4000BC 131 136 114 54
30 c4000BC 124 138 101 46
31 c3300BC 124 138 101 48
32 c3300BC 133 134 97 48
33 c3300BC 138 134 98 45
34 c3300BC 148 129 104 51
35 c3300BC 126 124 95 45
36 c3300BC 135 136 98 52
37 c3300BC 132 145 100 54
38 c3300BC 133 130 102 48
39 c3300BC 131 134 96 50
40 c3300BC 133 125 94 46
41 c3300BC 133 136 103 53
42 c3300BC 131 139 98 51
43 c3300BC 131 136 99 56
44 c3300BC 138 134 98 49
45 c3300BC 130 136 104 53
46 c3300BC 131 128 98 45
47 c3300BC 138 129 107 53
48 c3300BC 123 131 101 51
49 c3300BC 130 129 105 47
50 c3300BC 134 130 93 54
51 c3300BC 137 136 106 49
52 c3300BC 126 131 100 48
53 c3300BC 135 136 97 52

(Continued)
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Table 5.8 (Continued)

EPOCH MB BH BL NH

54 c3300BC 129 126 91 50
55 c3300BC 134 139 101 49
56 c3300BC 131 134 90 53
57 c3300BC 132 130 104 50
58 c3300BC 130 132 93 52
59 c3300BC 135 132 98 54
60 c3300BC 130 128 101 51
61 c1850BC 137 141 96 52
62 c1850BC 129 133 93 47
63 c1850BC 132 138 87 48
64 c1850BC 130 134 106 50
65 c1850BC 134 134 96 45
66 c1850BC 140 133 98 50
67 c1850BC 138 138 95 47
68 c1850BC 136 145 99 55
69 c1850BC 136 131 92 46
70 c1850BC 126 136 95 56
71 c1850BC 137 129 100 53
72 c1850BC 137 139 97 50
73 c1850BC 136 126 101 50
74 c1850BC 137 133 90 49
75 c1850BC 129 142 104 47
76 c1850BC 135 138 102 55
77 c1850BC 129 135 92 50
78 c1850BC 134 125 90 60
79 c1850BC 138 134 96 51
80 c1850BC 136 135 94 53
81 c1850BC 132 130 91 52
82 c1850BC 133 131 100 50
83 c1850BC 138 137 94 51
84 c1850BC 130 127 99 45
85 c1850BC 136 133 91 49
86 c1850BC 134 123 95 52
87 c1850BC 136 137 101 54
88 c1850BC 133 131 96 49
89 c1850BC 138 133 100 55
90 c1850BC 138 133 91 46
91 c200BC 137 134 107 54
92 c200BC 141 128 95 53
93 c200BC 141 130 87 49
94 c200BC 135 131 99 51
95 c200BC 133 120 91 46
96 c200BC 131 135 90 50
97 c200BC 140 137 94 60
98 c200BC 139 130 90 48
99 c200BC 140 134 90 51

100 c200BC 138 140 100 52
101 c200BC 132 133 90 53
102 c200BC 134 134 97 54
103 c200BC 135 135 99 50
104 c200BC 133 136 95 52
105 c200BC 136 130 99 55
106 c200BC 134 137 93 52
107 c200BC 131 141 99 55
108 c200BC 129 135 95 47
109 c200BC 136 128 93 54
110 c200BC 131 125 88 48

(Continued)
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Table 5.8 (Continued)

EPOCH MB BH BL NH

111 c200BC 139 130 94 53
112 c200BC 144 124 86 50
113 c200BC 141 131 97 53
114 c200BC 130 131 98 53
115 c200BC 133 128 92 51
116 c200BC 138 126 97 54
117 c200BC 131 142 95 53
118 c200BC 136 138 94 55
119 c200BC 132 136 92 52
120 c200BC 135 130 100 51
121 cAD150 137 123 91 50
122 cAD150 136 131 95 49
123 cAD150 128 126 91 57
124 cAD150 130 134 92 52
125 cAD150 138 127 86 47
126 cAD150 126 138 101 52
127 cAD150 136 138 97 58
128 cAD150 126 126 92 45
129 cAD150 132 132 99 55
130 cAD150 139 135 92 54
131 cAD150 143 120 95 51
132 cAD150 141 136 101 54
133 cAD150 135 135 95 56
134 cAD150 137 134 93 53
135 cAD150 142 135 96 52
136 cAD150 139 134 95 47
137 cAD150 138 125 99 51
138 cAD150 137 135 96 54
139 cAD150 133 125 92 50
140 cAD150 145 129 89 47
141 cAD150 138 136 92 46
142 cAD150 131 129 97 44
143 cAD150 143 126 88 54
144 cAD150 134 124 91 55
145 cAD150 132 127 97 52
146 cAD150 137 125 85 57
147 cAD150 129 128 81 52
148 cAD150 140 135 103 48
149 cAD150 147 129 87 48
150 cAD150 136 133 97 51

BL: Basialiveolar length
NH: Nasal height

We shall calculate Mahalanobis generalized distances (see Chapter 1) between
each pair of epochs using the mahalanobis function, and apply classical scaling to
the resulting distance matrix. In this calculation we shall use the following estimate
of the assumed common covariance matrix S,

S = 29S1 + 29S2 + 29S3 + 29S4 + 29S5

149
,

where S1, S2, . . . , S5 are the covariance matrices of the data in each epoch. We
shall then use the first two coordinate values to provide a map of the data showing
the relationships between epochs. The necessary R and S-PLUS code is
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labs<-rep(1:5,rep(30,5))
centers<-matrix(0,nrow=5,ncol=4)
S<-matrix(0,nrow=4,ncol=4)
#
for(i in 1:5) {

centers[i,]<-apply(skulls[labs==i,-1],2,mean)
S<-S+29*var(skulls[,-1])

}
#
S<-S/145
#
mahal<-matrix(0,5,5)
#
for(i in 1:5) {

mahal[i,]<-mahalanobis(centers,centers[i,],S)
}
#
win.graph()
par(pty="s")
coords<-cmdscale(mahal)
#set up plotting area
xlim<-c(-1.5,1.5)
plot(coords,xlab="C1",ylab="C2",type="n",xlim=xlim,

ylim=xlim,lwd=2)
text(coords,labels=c("c4000BC","c3300BC","c1850BC","c200BC",

"cAD150"),lwd=3)

The resulting plot is shown in Figure 5.2.

Figure 5.2 Two-dimensional solution from classical multidimensional scaling applied to
the Mahalanobis distances between epochs for the skull data.
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The scaling solution for the skulls data is essentially unidimensional, with this
single-dimension time ordering the five epochs. There appears to be a change in the
“shape” of the skulls over time with maximum breadth increasing and basialiveolar
length decreasing.

5.3 Correspondence Analysis

Correspondence analysis has a relatively long history (see de Leeuw, 1985), but for a
long period was only routinely used in France, largely due to the almost evangelical
efforts of Benzécri (1992). But nowadays the method is used more widely and is
often applied to supplement say a standard chi-squared test of independence for
two categorical variables forming a contingency table.

Mathematically, correspondence analysis can be regarded as either:

• A method for decomposing the chi-squared statistic used to test for independence
in a contingency table into components corresponding to different dimensions of
the heterogeneity between its columns; or

• A method for simultaneously assigning a scale to rows and a separate scale to
columns so as to maximize the correlation between the two scales.

Quintessentially however, correspondence analysis is a technique for displaying
multivariate (most often bivariate) categorical data graphically, by deriving coordi-
nates to represent the categories of both the row and column variables, which may
then be plotted so as to display the pattern of association between the variables
graphically.

In essence, correspondence analysis is nothing more than the application of clas-
sical multidimensional scaling to a specific type of distance suitable for categorical
data, namely what is known as the chi-squared distance. Such distances are defined
in Display 5.2. (A detailed account of correspondence analysis in which its simi-
larity to principal components analysis is stressed is given in Greenacre, 1992.)

Display 5.2
Chi-Squared Distance

• The general contingency table in which there are r rows and c columns can
be written as

1 2
1 n11 n12

Rows 2 n21
...

r nr1
n.1

Columns
c

n1c n1,

nrc nr.

n.c N

using an obvious dot notation.
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• From this we can construct tables of column proportions and row proportions
given by

(a) Column proportions

1 c

1 p11 = n11/n1 · · · p1c = n1c/n1.

2
...

r pr1 = nr1/nr. prc = nrc/nr.

(b) Row proportions

1 c

1 p11 = n11/n.1 · · · p1c = n1c/n.1
2
...

r pr1 = nr1/n.1 prc = nrc/n.1

• The chi-squared distance between columns i and j is now defined as

d
(cols)
ij =

r∑
k=1

1

pk.

(pki − pkj )
2

where
pk. = nk.

N

The chi-square distance is seen to be a weighted Euclidean distance based on
column proportions. It will be zero if the two columns have the same values
for these proportions. It can also be seen from the weighting factors 1/pk. that
rare categories of the column variable have a greater influence on the distance
than common ones.

• A similar distance measure can be defined for rows i and j as

d
(rows)
ij =

c∑
k=1

1

p.k

(pik − pjk)
2

where
p.k = n.k

N

• A correspondence analysis results from applying classical MDS to each
distance matrix in turn and plotting say the first two coordinates for column
categories and those for row categories on the same diagram, suitably labelled
to differentiate the points representing row categories from those representing
column categories.
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• An explanation of how to interpret the derived coordinates is simplified by
considering only a one-dimensional solution.

• When the coordinates for both row and columns category are large and pos-
itive (or both large and negative), it indicates a positive association between
row i and column j ; nij is greater than expected under the assumption of
independence.

• Similarly, when the coordinates are both large in absolute values but have
different signs, the corresponding row and column have a negative association;
nij is less than expected under independence.

• Finally, when the product of the coordinates is near zero, the association
between the row and column the column is low; nij is close to the value
expected under independence.

As a simple introductory example, consider the data shown in Table 5.9 concerned
with the influence of a girl’s age on her relationship with her boyfriend. In this table
each of 139 girls has been classified into one of three groups:

• No boyfriend;
• Boyfriend/no sexual intercourse;
• Boyfriend/sexual intercourse.

In addition, the age of each girl was recorded and used to divide the girls into five
age groups. The calculation of the chi-squared distance measure can be illustrated
using the proportions of girls in age groups 1 and 2 for each relationship type from
Table 5.9:

Chi-squared distance =
√

(0.68 − 0.64)2

0.55
+ (0.26 − 0.27)2

0.24
+ (0.06 − 0.09)2

0.21

= 0.09.

Table 5.9 The Influence of Age on Relationships with Boyfriends

Age group

1(AG1) 2(AG2) 3(AG3) 4(AG4) 5(AG5)

No boyfriend (nbf) 21 21 14 13 8
(row percentage) (68) (64) (58) (42) (40)

Boyfriend/no sexual intercourse (bfns) 8 9 6 8 2
(row percentage) (26) (27) (25) (26) (10)

Boyfriend/sexual intercourse (bfs) 2 3 4 10 10
(row percentage) (6) (9) (17) (32) (50)

Totals 31 33 24 31 20

NOTE: Age groups: (1) less than 16, (2) 16–17, (3) 17–18, (4) 18–19, (5) 19–20.
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This is similar to ordinary Euclidean distance but differs in the division of each
term by the corresponding average proportion. In this way the chi-squared distance
measure compensates for the different levels of occurrence of the categories. (More
formally, the choice of the chi-squared distance for measuring interprofile similarity
can be justified as a way of standardizing variables under a multinomial or Poisson
distributional assumption; see Greenacre, 1992.)

The complete set of chi-squared distances for all pairs of age groups can be
arranged into the following matrix:

dcols =

⎛
⎜⎜⎜⎝

1 2 3 4 5
age group1 0.00 0.09 0.26 0.66 1.07
age group2 0.09 0.00 0.19 0.59 1.01
age group3 0.26 0.19 0.00 0.41 0.83
age group4 0.66 0.59 0.41 0.00 0.51
age group5 1.07 1.01 0.83 0.51 0.00

⎞
⎟⎟⎟⎠

The corresponding matrix for rows is

drows =
⎛
⎝

1 2 3
No boyfriend 0.00 0.21 0.93
Boyfriend/no sex 0.21 0.00 0.93
Boyfriend/sex 0.93 0.93 0.00

⎞
⎠

Applying classical MDS to each of these distance matrices gives the two-
dimensional coordinates shown in Table 5.10. Plotting those with suitable labels
and with the axes suitably scaled to reflect the greater variation on dimension one
than on dimension two is achieved using the R and S-PLUS code:

r1<-cmdscale(dcols,eig=T)
c1<-cmdscale(drows,eig=T)
par(pty="s")
plot(r1$points,xlim=range(r1$points[,1],c1$points[,1]),

ylim=range(r1$points[,1],c1$points[,1]),type="n",
xlab="Coordinate 1",ylab="Coordinate 2",lwd=2)

Table 5.10 Derived Correspondence Analysis Coordinates for
Table 5.9

x y

No boyfriend −0.304 −0.102
Boyfriend/no sexual intercourse −0.312 0.101
Boyfriend/sexual intercourse 0.617 0.000
Age group 1 −0.402 0.062
Age group 2 −0.340 0.004
Age group 3 −0.153 −0.003
Age group 4 0.225 −0.152
Age group 5 0.671 0.089
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text(r1$points,labels=c("AG1","AG2","AG3","AG4","AG5"),lwd=2)
text(c1$points,labels=c("nobf","bfns","bfs"),lwd=4)
abline(h=0,lty=2)
abline(v=0,lty=2)

to give Figure 5.3.
The points representing the age groups in Figure 5.4 give a two-dimensional

representation of this distance, with the Euclidean distance between two points
representing the chi-squared distance between the corresponding age groups. (This
is similar for the points representing each type of relationship.) For a contingency
table with I rows and J columns, it can be shown that the chi-squared distances can
be represented exactly in min{I − 1, J − 1} dimensions; here since I = 3 and J =
5, this means that the Euclidean distances in Figure 5.4 will equal the corresponding
chi-squared distances. For example, the correspondence analysis coordinates for age
groups 1 and 2 taken from Table 5.10 are

Age group x y

1 −0.403 0.062
2 −0.339 0.004

Figure 5.3 Classical multidimensional scaling of data in Table 5.9.
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The corresponding Euclidean distance is calculated as√
(−0.403 − 0.339)2 + (0.062 − 0.004)2 = 0.09

which agrees with the chi-squared distance between the two age groups calculated
earlier.

When both I and J are greater than 3, an exact two-dimensional representation of
the chi-squared distances is not possible. In such cases the derived two-dimensional
coordinates will give only an approximate representation, and so the question of
the adequacy of the fit will need to be addressed. In some of these cases more than
two dimensions may be required to given an acceptable fit.

A correspondence analysis is interpreted by examining the positions of the row
categories and the column categories as reflected by their respective coordinate
values. The values of the coordinates reflect associations between the categories
of the row variable and those of the column variable. If we assume that a two-
dimensional solution provides an adequate fit, then row points that are close together
indicate row categories that have similar profiles (conditional distributions) across
the columns. Column points that are close together indicate columns with similar
profiles (conditional distributions) down the rows. Finally, row points that are close
to column points represent combinations that occur more frequently than would be
expected under an independence model, that is, one in which the categories of the
row variable are unrelated to the categories of the column variable.

Let’s now look at two further examples of the application of correspondence
analysis.

5.3.1 Smoking and Motherhood
Table 5.11 shows a set of frequency data first reported by Wermuth (1976). The data
show the distribution of birth outcomes by age of mother, length of gestation, and
whether or not the mother smoked during the prenatal period. We shall consider
the data as a two-dimensional contingency table with four row categories and four
column categories.

Table 5.11 Smoking and Motherhood

Premature Full term

Died in 1st year Alive at year 1 Died in 1st year Alive at year 1
(pd) (pa) (ftd) (fta)

Young mothers
Nonsmokers (YN) 50 315 24 4012
Smokers (YS) 9 40 6 459

Older mothers
Nonsmokers (ONS) 41 147 14 1594
Smokers (YS) 4 11 1 124
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The obvious question of interest for the data in Table 5.11 is whether or not a
mother’s smoking puts a newborn baby at risk. However, several other questions
might also be of interest. Are smokers more likely to have premature babies? Are
older mothers more likely to have premature babies? And how does smoking affect
premature babies?

The chi-squared statistic for testing the independence of the two variables forming
Table 5.11 takes the value 19.11 with 9 degrees of freedom; the associated p-value is
0.024. So it appears that “type” of mother is related to what happens to the newborn
baby. We shall now examine how the results from a correspondence analysis can
shed a little more light on this rather general finding. The relevant chi-squared
distance matrices for these data are:

dcols =

⎛
⎜⎜⎜⎝

1 2 3 4

1 0.00 0.30 0.27 0.37

2 0.30 0.00 0.23 0.07

3 0.27 0.23 0.00 0.28

4 0.37 0.07 0.28 0.00

⎞
⎟⎟⎟⎠

Figure 5.4 Two-dimensional solution for classical MDS applied to the motherhood and
smoking data in Table 5.11.
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drows =

⎛
⎜⎜⎜⎝

1 2 3 4

1 0.00 0.10 0.11 0.15

2 0.10 0.00 0.07 0.11

3 0.11 0.07 0.00 0.05

4 0.15 0.11 0.05 0.00

⎞
⎟⎟⎟⎠

Applying classical MDS and plotting the two-dimensional solution as above gives
Figure 5.4. This diagram suggests that young mothers who smoke tend to have more
full-term babies who then die in their first year, and older mothers who smoke have
rather more than expected premature babies who die in the first year. It does appear
that smoking is a risk factor for death in the first year of the baby’s life, and that age
is associated with length of gestation, with older mothers delivering more premature
babies.

5.3.2 Hodgkin’s Disease
The data shown in Table 5.3 were recorded during a study of Hodgkin’s disease, a
cancer of the lymph nodes; the study is described in Hancock et al. (1979). Each
of 538 patients with the disease was classified by histological type, and by their
response to treatment three months after it had begun. The histological classifica-
tion is:

• lymphocyte predominance (LP),
• nodular sclerosis (NS),
• mixed cellularity (MC),
• lymphocyte depletion (LD).

The key question is, “What, if any, is the relationship between histological type and
response to treatment?”

Here the chi-squared statistic takes the value 75.89 with 6 degrees of freedom. The
associated p-value is very small. Clearly histological classification and response
to treatment are related, but can correspondence analysis help in uncovering more
about this association?

In this example the two-dimensional solution from applying classical MDS to
the chi-squared distances gives a perfect fit. The resulting scatterplot is shown in
Figure 5.5. The positions of the points representing histological classification and
response to treatment in this diagram imply the following:

• Lymphocyte depletion tends to result in no response to treatment.
• Nodular sclerosis and lymphocyte predominance are associated with a positive

response to treatment.
• Mixed cellularity tends to result in a partial response to treatment.
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Figure 5.5 Classical MDS two-dimensional solution for Hodgkin’s disease data.

5.4 Summary

Multidimensional scaling and correspondence analysis both aim to help in the
understanding of particular types of data by displaying the data graphically. Multi-
dimensional scaling applied to proximity matrices is often useful in uncovering the
dimensions on which similarity judgments are made, and correspondence analysis
often allows more insight into the pattern of relationships in a contingency table
then a simple chi-squared test.

Exercises
5.1 What is mean by the horseshoe effect in multidimensional scaling solutions?

(See Everitt and Rabe-Hesketh, 1997.) Create a similarity matrix as follows:

sij = 9 if i = j,

= 8 if 1 ≤ |i − j | ≤ 3,

...

= 1 if 2 ≤ |i − j | ≤ 2,

= 0 if |i − j | > 25.
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Table 5.12 Dissimilarity Matrix for a Set of Eight Legal Offenses

Offense 1 2 3 4 5 6 7 8

1 0
2 21.1 0
3 71.2 54.1 0
4 36.4 36.4 36.4 0
5 52.1 54.1 52.1 0.7 0
6 89.9 75.2 36.4 54.1 53.0 0
7 53.0 73.0 75.2 52.1 36.4 88.3 0
8 90.1 93.2 71.2 63.4 52.1 36.4 73.0 0

Offenses: (1) assault and battery, (2) rape, (3) embezzlement, (4) perjury, (5) libel, (6) burglary,
(7) prostitution, (8) receiving stolen goods.

Convert the resulting similarities into dissimilarities using δij =√
sii + sjj − 2sij and find the two-dimensional configuration given by

classical multidimensional scaling. The configuration should clearly show
the horseshoe effect.

5.2 Show that classical multidimensional scaling applied to Euclidean distances
calculated from a multivariate data matrix X is equivalent to principal compo-
nents analysis, with the derived coordinate values corresponding to the scores
on the principal components found from the covariance matrix of X.

5.3 Write an S-PLUS (or R) function to calculate the chi-squared distance matrices
for both rows and columns in a two-dimensional contingency table.

5.4 Table 5.12 summarizes data collected during a survey in which subjects were
asked to compare a set of eight legal offenses, and to say for each one how
unlike it was, in terms of seriousness, from the others. Each entry in the table
shows the percentage of respondents who judged that the two offenses are
very dissimilar. Find a two-dimensional scaling solution and try to interpret
the dimensions underlying the subjects’ judgements.

5.5 The data shown in Table 5.13 given the hair and eye color of a large number
of people. Find the two-dimensional correspondence analysis solution for the
data and plot the results.

Table 5.13 Hair Color and Eye Color of a Sample of
Individuals

Hair color

Eye color Fair Red Medium Dark Black

Light 688 116 584 188 4
Blue 326 38 241 110 3
Medium 343 84 909 412 26
Dark 98 48 403 681 81
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Table 5.14 Suicides by Method, Sex, and Age

Year

1970 1971 1972 1973 1974 1975 1976 1977

Shooting 15 15 31 17 42 49 38 27
Stabbing 95 113 94 125 124 126 148 127
Blunt instrument 23 16 34 34 35 33 41 41
Poison 9 4 8 3 5 3 1 4
Manual violence 47 60 54 70 69 66 70 60
Strangulation 43 45 43 53 51 63 47 51
Smothering/drowning 26 16 20 24 15 15 15 15

5.6 The data in Table 5.14 shows the methods by which victims of persons con-
victed for murder were killed between 1970 and 1977. How many dimensions
would be needed for an exact correspondence analysis solution for these data?
Use the first three correspondence analysis coordinates to plot a 3 × 3 scat-
terplot matrix (see Chapter 1). Interpret the results.
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Cluster Analysis

6.1 Introduction

Cluster analysis is a generic term for a wide range of numerical methods for examin-
ing multivariate data with a view to uncovering or discovering groups or clusters of
observations that are homogeneous and separated from other groups. In medicine,
for example, discovering that a sample of patients with measurements on a vari-
ety of characteristics and symptoms actually consists of a small number of groups
within which these characteristics are relatively similar, and between which they
are different, might have important implications both in terms of future treatment
and for investigating the aetiology of a condition. More recently cluster analysis
techniques have been applied to microarray data (Alon et al., 1999) and image
analysis (Everitt and Bullmore, 1999).

Clustering techniques essentially try to formalize what human observers do so
well in two or three dimensions. Consider, for example, the scatterplot shown in Fig-
ure 6.1. The conclusion that there are two natural groups or clusters of dots is reached
with no conscious effort or thought. Clusters are identified by the assessment of the
relative distances between points and, in this example, the relative homogeneity of
each cluster and the degree of their separation makes the task relatively simple.

Detailed accounts of clustering techniques are available in Everitt et al. (2001)
and Gordon (1999). Here we concentrate on three types of clustering procedures.

• Agglomerative hierarchical methods;
• K-means type methods;
• Classification maximum likelihood methods.

6.2 Agglomerative Hierarchical Clustering

In a hierarchical classification the data are not partitioned into a particular number
of classes or clusters at a single step. Instead the classification consists of a series
of partitions that may run from a single “cluster” containing all individuals, to n

clusters each containing a single individual. Agglomerative hierarchical clustering

115
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Figure 6.1 Bivariate data showing the presence of three clusters.

techniques produce partitions by a series of successive fusions of the n individuals
into groups. Once made, however, such fusions are irreversible, so that when an
agglomerative algorithm has placed two individuals in the same group, they cannot
subsequently appear in different groups. Since all agglomerative hierarchical tech-
niques ultimately reduce the data to a single cluster containing all the individuals,
the investigator seeking the solution with the “best” fitting number of clusters will
need to decide which division to choose. The problem of deciding on the “correct”
number of clusters will be taken up later.

An agglomerative hierarchical clustering procedure produces a series of partitions
of the data, Pn, Pn−1, . . . , P1. The first, Pn, consists of n single-member clusters,
and the last, P1, consists of a single group containing all n individuals. The basis
operation of all methods is similar:

(START) Clusters C1, C2, . . . , Cn each containing a single individual.
(1) Find the nearest pair of distinct clusters, say Ci and Cj , merge Ci and

Cj , delete Cj and decrease the number of clusters by one.
(2) If number of clusters equals one then stop, else return to 1.

At each stage in the process the methods fuse individuals or groups of individuals
which are closest (or most similar). The methods begin with an interindividual
distance matrix (e.g., one containing Euclidean distances as defined in Chapter 1),
but as groups are formed, distance between an individual and a group containing
several individuals or between two groups of individuals will need to be calculated.
How such distances are defined leads to a variety of different techniques; see the
next subsection.
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Figure 6.2 Example of a dendrogram. From Finding Groups in Data: Introduction to
Cluster Analysis, Kaufman and Rousseeuw. Copyright © 1990. Reprinted with permission
of John Wiley & Sons, Inc.

Hierarchic classifications may be represented by a two-dimensional diagram
known as a dendrogram, which illustrates the fusions made a each stage of the
analysis. An example of such a diagram is given in Figure 6.2. The structure of
Figure 6.2 resembles an evolutionary tree (see Figure 6.3), and it is in biological
applications that hierarchical classifications are most relevant and most justified

Figure 6.3 Evolutionary tree. From Finding Groups in Data: Introduction to Cluster
Analysis, Kaufman and Rousseeuw. Copyright © 1990. Reprinted with permission of John
Wiley & Sons, Inc.
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(although this type of clustering has also been used in many other areas). According
to Rohlf (1970), a biologist, “all things being equal,” aims for a system of nested
clusters. Hawkins et al. (1982), however, issue the following caveat: “users should
be very wary of using hierarchic methods if they are not clearly necessary.”

6.2.1 Measuring Intercluster Dissimilarity
Agglomerative hierarchical clustering techniques differ primarily in how they mea-
sure the distances between or similarity of two clusters (where a cluster may, at
times, consist of only a single individual). Two simple intergroup measures are

dAB = min
i∈A
i∈B

(dij ),

dAB = max
i∈A
i∈B

(dij ),

where dAB is the distance between two clusters A and B, and dij is the distance
between individuals i and j . This could be Euclidean distance (see Chapter 1) or
one of a variety of other distance measures; see Everitt et al., 2001, for details.

The first intergroup dissimilarity measure above is the basis of single linkage
clustering, the second that of complete linkage clustering. Both these techniques
have the desirable property that they are invariant under monotone transformations
of the original interindividual dissimilarities or distances.

A further possibility for measuring intercluster distance or dissimilarity is

dAB = 1

nAnB

∑
i∈A

∑
i∈B

dij ,

where nA and nB are the number of individuals in clusters A and B. This measure
is the basis of a commonly used procedure known as group average clustering. All
three intergroup measures described here are illustrated in Figure 6.4.

To illustrate the use of single linkage, complete linkage, and group average clus-
tering we shall apply each method to the life expectancy data from the previous
chapter (see Table 4.2). Here we assume that the eight life expectancies for each
country are contained in the data frame life (see Chapter 4). The following R
and S-PLUS code will calculate the Euclidean distance matrix for the countries,
apply each of the clustering methods mentioned above, and then plot the resulting
dendrograms, labelled with the country name:

R

#set up plotting area to take three side-by-side plots
country<-row.names(life)
par(mfrow=c(1,3))
#use dist to get Euclidean distance matrix, hclust to
#apply single linkage and plclust to plot dendrogram
plclust(hclust(dist(life),method="single"),

labels=country,ylab="Distance")
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title("(a) Single linkage")
plclust(hclust(dist(life),method="complete"),

labels=country,ylab="Distance")
title("(b) Complete linkage")
plclust(hclust(dist(life),method="average"),

labels=country,ylab="Distance")
title("(c) Average linkage")

S-PLUS

country<-row.names(life)
par(mfrow=c(1,3))
plclust(hclust(dist(life),method="connected"),

labels=country,ylab="Distance")
title("(a) Single linkage")
plclust(hclust(dist(life),method="compact"),

labels=country,ylab="Distance")
title("(b) Complete linkage")
plclust(hclust(dist(life),method="average"),

labels=country,ylab="Distance")
title("(c) Average linkage")

The resulting diagram is shown in Figure 6.5.

Figure 6.4 Intercluster distance measures.
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There are differences and similarities between the three dendrograms. Here we
shall concentrate on the results given by complete linkage and we will examine the
clustering found by “cutting” the complete linkage dendrogram at height 21 using
the following R and S-PLUS® code:

R

four<-cutree(hclust(dist(life),method="complete"),h=21)

S-PLUS

four<-cutree(hclust(dist(life),method="compact"),h=21)

The resulting clusters in terms of country labels can be found from

#
country.clus<-lapply(1:5,function(nc)country[four==nc])
country.clus

The results from S-PLUS are shown in Table 6.1. (The group order differs in
R, although the groups are the same.)

The means for the countries in each cluster can be found as follows:

country.mean<-lapply(1:5,function(nc)
apply(life[four==nc,],2,mean))

country.mean

The results for the S-PLUS order of clusters are shown in Table 6.2. The
S-PLUS clusters can be shown on a scatterplot matrix of the data using

pairs(life,panel=function(x,y) text(x,y,four))

The resulting plot is shown in Figure 6.6. This diagram suggests that the evidence
for five distinct clusters in the data is not convincing.

Table 6.1 Clustering Solution from
Complete Linkage

Cluster 1
South Africa (W), Canada, Trinidad (62), USA (66)
USA (W66), USA (67), Argentina
Cluster 2
Algeria, Tunisia, Costa Rica, Dominican Republic
El Salvador, Nicaragua, Panama, Ecuador
Cluster 3
Mauritius, Reunion, Seychelles, Greenland
Grenada, Honduras, Jamaica, Mexico
Trinidad (67), USA (NW66), Chile, Columbia
Cluster 4
Cameroon, Madagascar
Cluster 5
South Africa (C), Guatemala
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Table 6.2 Mean Life Expectancies for the Five Clusters from Complete Linkage

m0 m25 m50 m75 w0 w25 w50 w75

Cluster 1 66.4 48.0 22.9 7.9 72.7 50.7 27.7 9.7
Cluster 2 61.4 47.6 26.9 10.8 65.0 50.8 29.3 12.6
Cluster 3 60.1 42.8 22.0 7.6 64.9 46.8 25.3 9.7
Cluster 4 36.0 29.5 15.0 6.0 38.0 33.0 18.5 6.5
Cluster 5 49.5 39.5 21.0 8.0 53.0 42.0 23.0 8.0

Figure 6.6 Scatterplot of life expectancy data showing five cluster solution from complete
linkage.

6.3 K-Means Clustering

The k-means clustering technique seeks to partition a set of data into a specified
number of groups, k, by minimizing some numerical criterion, low values of which
are considered indicative of a “good” solution. The most commonly used approach,
for example, is to try to find the partition of the n individuals into k groups, which
minimizes the within-group sum of squares over all variables. The problem then
appears relatively simple; namely, consider every possible partition of the n individ-
uals into k groups, and select the one with the lowest within-groupsum of squares.
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Unfortunately, the problem in practice is not so straightforward. The numbers
involved are so vast that complete enumeration of every possible partition remains
impossible even with the fastest computer. To illustrate the scale of the problem:

n k Number of possible partitions

15 3 2, 375, 101
20 4 45, 232, 115, 901
25 8 690, 223, 721, 118, 368, 580
100 5 1068

The impracticability of examining every possible partition has led to the develop-
ment of algorithms designed to search for the minimum values of the clustering cri-
terion by rearranging existing partitions and keeping the new one only if it provides
an improvement. Such algorithms do not, of course, guarantee finding the global
minimum of the criterion. The essential steps in these algorithms are as follows:

1. Find some initial partition of the individuals into the required number of groups.
(Such an initial partition could be provided by a solution from one of the
hierarchical clustering techniques described in the previous section.)

2. Calculate the change in the clustering criterion produced by “moving” each
individual from its own to another cluster.

3. Make the change that leads to the greatest improvement in the value of the
clustering criterion.

4. Repeat steps (2) and (3) until no move of an individual causes the clustering
criterion to improve.

To illustrate the k-means approach with minimization of the within-clusters sum
of squares criterion we shall apply it to the data shown in Table 6.3 which shows
the chemical composition of 48 specimens of Romano-British pottery, determined
by atomic absorption spectrophotometry, for nine oxides (Tubb et al., 1980).

Because the variables are on very different scales they will need to be standardized
in some way before applying k-means clustering. In what follows we will divide
each variable’s values by the range of the variable. Assuming that the data are
contained in a matrix pottery.data, this standardization can be applied in R
and S-PLUS as follows:

rge<-apply(pottery.data,2,max)-apply(pottery.data,2,min)
pottery.dat<-sweep(pottery.data,2,rge,FUN="/")

The k-means approach can be used to partition the states into a prespecified
number of clusters set by the investigator. In practice, solutions for a range of
values for number of groups are found, but the question remains as to the “optimal”
number of clusters for the data. A number of suggestions have been made as to how
to tackle this question (see Everitt et al., 2001), but none is completely satisfactory.
Here, we shall examine the value of the within-group sum of squares associated
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Table 6.3 Results of Chemical Analyses of Romano British Pottery from Tubb et al. (1980)
reprinted by kind permission of Blackwell Publishing

No Kiln Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 MnO BaO

1 1 18.8 9.52 2.00 0.79 0.40 3.20 1.01 0.077 0.015

2 1 16.9 7.33 1.65 0.84 0.40 3.05 0.99 0.067 0.018

3 1 18.2 7.64 1.82 0.77 0.40 3.07 0.98 0.087 0.014

4 1 16.9 7.29 1.56 0.76 0.40 3.05 1.00 0.063 0.019

5 1 17.8 7.24 1.83 0.92 0.43 3.12 0.93 0.061 0.019

6 1 18.8 7.45 2.06 0.87 0.25 3.26 0.98 0.072 0.017

7 1 16.5 7.05 1.81 1.73 0.33 3.20 0.95 0.066 0.019

8 1 18.0 7.42 2.06 1.00 0.28 3.37 0.96 0.072 0.017

9 1 15.8 7.15 1.62 0.71 0.38 3.25 0.93 0.062 0.017

10 1 14.6 6.87 1.67 0.76 0.33 3.06 0.91 0.055 0.012

11 1 13.7 5.83 1.50 0.66 0.13 2.25 0.75 0.034 0.012

12 1 14.6 6.76 1.63 1.48 0.20 3.02 0.87 0.055 0.016

13 1 14.8 7.07 1.62 1.44 0.24 3.03 0.86 0.080 0.016

14 1 17.1 7.79 1.99 0.83 0.46 3.13 0.93 0.090 0.020

15 1 16.8 7.86 1.86 0.84 0.46 2.93 0.94 0.94 0.20

16 1 15.8 7.65 1.94 0.81 0.83 3.33 0.96 0.112 0.019

17 1 18.6 7.85 2.33 0.87 0.39 3.17 0.98 0.081 0.018

18 1 16.9 7.87 1.83 1.31 0.53 3.09 0.95 0.092 0.023

19 1 18.9 7.58 2.05 0.83 0.13 3.29 0.98 0.072 0.015

20 1 18.0 7.50 1.94 0.69 0.12 3.14 0.93 0.035 0.017

21 1 17.8 7.28 1.92 0.81 0.18 3.15 0.90 0.067 0.017

22 2 14.4 7.00 4.30 0.15 0.51 4.25 0.79 0.160 0.019

23 2 13.8 7.08 3.43 0.12 0.17 4.14 0.77 0.144 0.020

24 2 14.6 7.09 3.88 0.13 0.20 4.36 0.81 0.124 0.019

25 2 11.5 6.37 5.64 0.16 0.14 3.89 0.69 0.087 0.009

26 2 13.8 7.06 5.34 0.20 0.20 4.31 0.71 0.101 0.021

27 2 10.9 6.26 3.47 0.17 0.22 3.40 0.66 0.109 0.010

28 2 10.1 4.26 4.26 0.20 0.18 3.32 0.59 0.149 0.017

29 2 11.6 5.78 5.91 0.18 0.16 3.70 0.65 0.082 0.015

30 2 11.1 5.49 4.52 0.29 0.30 4.03 0.63 0.080 0.016

31 2 13.4 6.92 7.23 0.28 0.20 4.54 0.69 0.163 0.017

32 2 12.4 6.13 5.69 0.22 0.54 4.65 0.70 0.159 0.015

33 2 13.1 6.64 5.51 0.31 0.24 4.89 0.72 0.094 0.017

34 3 11.6 5.39 3.77 0.29 0.06 4.51 0.56 0.110 0.015

35 3 11.8 5.44 3.94 0.30 0.04 4.64 0.59 0.085 0.013

(Continued)
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Table 6.3 (Continued)

No Kiln Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 MnO BaO

36 4 18.3 1.28 0.67 0.03 0.03 1.96 0.65 0.001 0.014

37 4 15.8 2.39 0.63 0.01 0.04 1.94 1.29 0.001 0.014

38 4 18.0 1.50 0.67 0.01 0.06 2.11 0.92 0.001 0.016

39 4 18.0 1.88 0.68 0.01 0.04 2.00 1.11 0.006 0.022

41 4 20.8 1.51 0.72 0.07 0.10 2.37 1.26 0.002 0.016

42 5 17.7 1.12 0.56 0.06 0.06 2.06 0.79 0.001 0.013

43 5 18.3 1.14 0.67 0.06 0.05 2.11 0.89 0.006 0.019

44 5 16.7 0.92 0.53 0.01 0.05 1.76 0.91 0.004 0.013

45 5 14.8 2.74 0.67 0.03 0.05 2.15 1.34 0.003 0.015

46 5 19.1 1.64 0.60 0.10 0.03 1.75 1.04 0.007 0.018

with solutions for a range of values of k, the number of groups. As k increases this
value will necessarily decrease but some “sharp” change may be indicative of the
best solution. To obtain a plot of the within-group sum of squares for the one to six
group solutions we can use the following R and S-PLUS code:

n<-length(pottery.dat[,1])
#find within group ss for all the data
wss1<-(n-1)*sum(apply(pottery.dat,2,var))
wss<-numeric(0)
#calculate within group ss for 2 to 6 group partitions given

by k-means clustering
for(i in 2:6) {

W<-sum(kmeans(pottery.dat,i)$withinss)
wss<-c(wss,W)

}
wss<-c(wss1,wss)
plot(1:6,wss,type="l",xlab="Number of groups",

ylab="Within groups sum of squares",lwd=2)

The resulting diagram is shown in Figure 6.7. The plot suggests looking at the
two- or three-cluster solution. Details of the latter can be obtained using

pottery.kmean <- kmeans(pottery.dat, 3)
pottery.kmean

The output is shown in Table 6.4. The means from the code above are for the
standardized data; to get the cluster means for the raw data we can use

lapply(1:3,function(nc)
apply(pottery.dat[pottery.kmeans$cluster==nc,],2,mean))
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Figure 6.7 Plot of within-cluster sum of squares against number of clusters.

These means are also shown in Table 6.4. The means of each of the nine variables
for each of the three clusters show that:

• Cluster three is characterized by a high aluminium oxide value and low iron oxide
and calcium oxide values.

• Cluster two has a very high manganese oxide value and a high potassium
oxide value.

• Cluster one has high calcium oxide value.

In addition to the chemical composition of the pots, the kiln site at which the
pottery was found is known for these data (see Table 6.3). An archaeologist might
be interested in assessing whether there is any association between the site and the
distinct compositional groups found by the cluster analysis. To look at this we can
cross-tabulate the kiln site against cluster label as follows:

table(kiln,pottery.kmean$cluster)

The resulting cross classification is shown in Table 6.5. Cluster 1 contains all 21
pots from kiln number one, cluster 2 contains pots from kilns 2 and 3, and cluster
3 pots from kilns 4 and 5. In fact, the five kiln sites are from three different regions
defined by 1, (2, 3), (4, 5), so the clusters actually correspond to pots from three
different regions.



6.3 K-Means Clustering 127

Ta
bl

e
6.

4
D

et
ai

ls
of

T
hr

ee
-G

ro
up

So
lu

tio
n

fo
r

th
e

Po
tte

ry
D

at
a

M
ea

ns
fo

r
st

an
da

rd
iz

ed
da

ta
C
e
n
t
e
r
s
:

A
L
2
O
3

F
E
2
O
3

M
G
O

C
A
O

N
A
2
O

K
2
O

T
I
O
2

M
N
O

B
A
O

[
1
,
]

1
.
5
8
1
2

0
.
8
6
3
7
9

0
.
2
7
4
9
8
2

0
.
5
4
5
9
5
8

0
.
4
3
2
1
4

0
.
9
8
8
1
7

1
.
2
0
2
0
8

0
.
4
3
9
1
5
3

1
.
2
2
4
5

[
2
,
]

1
.
1
6
2
2

0
.
7
2
1
8
4

0
.
7
1
3
1
1
3

0
.
1
2
4
5
8
5

0
.
2
8
2
1
4

1
.
3
3
3
7
1

0
.
8
7
5
4
6

0
.
7
2
6
1
9
0

1
.
1
3
7
8

[
3
,
]

1
.
6
5
8
9

0
.
1
8
7
4
4

0
.
0
9
5
5
2
2

0
.
0
2
2
6
7
4

0
.
0
6
3
7
5

0
.
6
4
3
6
3

1
.
3
0
7
6
9

0
.
0
1
9
7
5
3

1
.
1
4
2
9

C
l
u
s
t
e
r
i
n
g
v
e
c
t
o
r
:

[
1
]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
3

[
3
8
]
3
3
3
3
3
3
3
3

W
i
t
h
i
n
c
l
u
s
t
e
r
s
u
m
o
f
s
q
u
a
r
e
s
:

[
1
]
3
.
1
6
4
4
2
.
8
7
4
8
1
.
4
6
6
7

C
l
u
s
t
e
r
s
i
z
e
s
:

[
1
]
2
1
1
4
1
0

M
ea

ns
fo

r
or

ig
in

al
da

ta
[
[
1
]
]
:

A
L
2
O
3

F
E
2
O
3

M
G
O

C
A
O

N
A
2
O

K
2
O

T
I
O
2

M
N
O

B
A
O

1
6
.
9
1
9
0
5

7
.
4
2
8
5
7
1

1
.
8
4
2
3
8
1

0
.
9
3
9
0
4
7
6

0
.
3
4
5
7
1
4
3

3
.
1
0
2
8
5
7

0
.
9
3
7
6
1
9

0
.
0
7
1
1
4
2
8
6

0
.
0
1
7
1
4
2
8
6

[
[
2
]
]
:

A
L
2
O
3

F
E
2
O
3

M
G
O

C
A
O

N
A
2
O

K
2
O

T
I
O
2

M
N
O

B
A
O

1
2
.
4
3
5
7
1

6
.
2
0
7
8
5
7

4
.
7
7
7
8
5
7

0
.
2
1
4
2
8
5
7

0
.
2
2
5
7
1
4
3

4
.
1
8
7
8
5
7

0
.
6
8
2
8
5
7
1

0
.
1
1
7
6
4
2
9

0
.
0
1
5
9
2
8
5
7

[
[
3
]
]
:

A
L
2
O
3

F
E
2
O
3

M
G
O

C
A
O

N
A
2
O

K
2
O

T
I
O
2

M
N
O

B
A
O

1
7
.
7
5

1
.
6
1
2

0
.
6
4

0
.
0
3
9

0
.
0
5
1

2
.
0
2
1

1
.
0
2

0
.
0
0
3
2

0
.
0
1
6



128 6. Cluster Analysis

Table 6.5 Cross-Tabulation of
Cluster Label and Kiln

1 2 3

1 21 0 0
2 0 12 0
3 0 2 0
4 0 0 5
5 0 0 5

6.4 Model-Based Clustering

The agglomerative hierarchical and k-means clustering methods described in the
previous two sections are based largely in heuristic but intuitively reasonable pro-
cedures. But they are not based on formal models—those making problems such
as deciding on a particular method, estimating the number of clusters, etc., par-
ticularly difficult. And, of course, without a reasonable model, formal inference is
precluded. In practice, these may not be insurmountable objections to the use of the
techniques since cluster analysis is essentially an “exploratory” tool. But model-
based cluster methods do have some advantages, and a variety of possibilities have
been proposed. The most successful approach has been that proposed by Scott
and Symons (1971) and extended by Banfield and Raftery (1993) and Fraley and
Raftery (2002), in which it is assumed that the population from the population from
which the observations arise consists of c subpopulations, each corresponding to
a cluster, and that the density of a q-dimensional observation from the j th sub-
population is fj (x, θj ) for some unknown vector of parameters, θj . They also
introduce a vector γ′ = [γ1, . . . , γn], where γi = k if xi is from the kth subpopula-
tion; the γi label the subpopulation of each observation. The clustering problem now
becomes that of choosing θ = (θ1, θ2, . . . , θc) and γ to maximize the likelihood
function associated with such assumptions. This classification maximum likelihood
procedure is described briefly in Display 6.1.

Display 6.1
Classification Maximum Likelihood

• Assume the population consists of c subpopulations, each corresponding to
a cluster of observations, and that the density function of a q-dimensional
observation from the j th subpopulation is fi(x; θj ) for some unknown vector
of parameters, θj .

• Also, assume that γ′ = [γ1, . . . , γn] gives the labels of the subpopulation to
which each observation belongs. So γi = j if xi is from the j th population.
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• The clustering problem becomes that of choosing θ′ = [θ1, θ2, . . . , θc] and γ

to maximize the likelihood

L(θ, γ) =
n∏

i=1

fγi
(xi; θγi

)

• If fj (x; θj ) is taken as a multivariate normal density with mean vector µj

and covariance matrix �j this likelihood has the form

L(θ; γ) = const
c∏

k=1

∏
i∈Ek

|�k|1/2 exp

{
−1

2
(xi − µk)

′ ∑−1

k
(xi − µk)

}

where Ej = {i : γi = j}.
• The maximum likelihood estimator of µj is x̄j = n−1

j �i∈Ej
xi where nj is the

number of elements in Ej . Replacing µj in (2) with this maximum likelihood
estimator yields the following log-likelihood:

l(θ, γ ) = const − 1

2

c∑
i=1

trace(Wj�
−1
j + n log |�j |)

where Wj is the p × p matrix of sums of squares and cross-products of the
variables for subpopulation j .

• Banfield and Raftery (1992) demonstrate the following:

1. If �k = σ 2I (k = 1, 2, . . . , c), then the likelihood is maximized by choos-
ing γ to minimize trace (W), where W = �c

k=1Wk, that is, minimization
of the written group sum of squares. Use of this criterion in a cluster
analysis will tend to produce spherical clusters of largely equal sizes.

2. If �k = �(k = 1, 2, . . . , c), then the likelihood is maximized by choosing
γ to minimize |W|, a clustering criterion discussed by Friedman and Rubin
(1967) and Mariott (1982). Use of this criterion in a cluster analysis will
tend to produce clusters with the same elliptical slope.

3. If �k is not constrained, the likelihood is maximized by choosing γ to
minimize �c

k=1nk log |Wk/nk|.
• Banfield and Raftery (1992) also consider criteria that allow the shape of

clusters to be less constrained than with the minimization of trace (W) and
|W| criteria, but which remain more parsimonious then the completely uncon-
strained model. For example, constraining clusters to be spherical but not to
have the same volume, or constraining clusters to have diagonal covariance
matrices but allowing their shapes, sizes, and orientations to vary.
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• The EM algorithm (see Dempster et al., 1977), is used for the maximum
likelihood estimation; details are given in Fraley and Raftery (2002).

• Model selection is a combination of choosing the appropriate clustering
model and the optimal number of clusters. A Bayesian approach is used (see
Fraley and Raftery, 2002), using what is known as the Bayesian Information
Criterion (BIC).

To illustrate this approach to clustering, we shall apply it to the data shown in
Table 6.6. These data, taken with permission from Mayor and Frei (2003) give
the values of three variables for the exoplanets discovered up to October 2002 (an
exoplanet is a planet located outside the solar system). We assume the data are
available as the data frame planet.dat.

R and S-PLUS functions for model-based clustering are available at
http://www.stat.washington.edu/mclust. In R, the package can be installed from
CRAN and then loaded in the usual way. Here we use the Mclust function since
this selects both the most appropriate model for the data and the optimal number
of groups based on the values of the BIC (see Display 6.1) computed over several
models and a range of values for number of groups. The necessary code is

library(mclust)
planet.clus<-Mclust(planet.dat)

We can first examine a plot of BIC values using

plot(planet.clus,planet.dat)

and selecting the BIC option (option number 1). The resulting diagram is shown in
Figure 6.8. In this diagram the numbers refer to different model assumptions about
the shape of clusters:

1. Spherical, equal volume;
2. Spherical, unequal volume;
3. Diagonal equal volume, equal shape;
4. Diagonal varying volume, varying shape;
5. Ellipsoidal, equal volume, shape and orientation;
6. Ellipsoidal, varying volume, shape and orientation.

The BIC selects model 4 and three clusters as the best solution. This solution can
be shown graphically on scatterplot matrix of the three variables constructed by
using
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Table 6.6 Data on Exoplanets, from Mayor et al.
(2003), reprinted by kind permission of Cambridge
University Press

Mass (in Jupiter mass) Period (in Earth days) Eccentricity

0.12 4.95 0

0.197 3.971 0

0.21 44.28 0.34

0.22 75.8 0.28

0.23 6.403 0.08

0.25 3.024 0.02

0.34 2.985 0.08

0.4 10.901 0.498

0.42 3.5097 0

0.47 4.229 0

0.48 3.487 0.05

0.48 22.09 0.3

0.54 3.097 0.01

0.56 30.12 0.27

0.68 4.617 0.02

0.685 3.524 0

0.76 2594 0.1

0.77 14.31 0.27

0.81 828.95 0.04

0.88 221.6 0.54

0.88 2518 0.6

0.89 64.62 0.13

0.9 1136 0.33

0.93 3.092 0

0.93 14.66 0.03

0.99 39.81 0.07

0.99 500.73 0.1

0.99 872.3 0.28

1 337.11 0.38

1 264.9 0.38

1.01 540.4 0.52

1.01 1942 0.4

1.02 10.72 0.044

1.05 119.6 0.35

(Continued)
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Table 6.6 (Continued)

Mass (in Jupiter mass) Period (in Earth days) Eccentricity

1.12 500 0.23

1.13 154.8 0.31

1.15 2614 0

1.23 1326 0.14

1.24 391 0.4

1.24 435.6 0.45

1.282 7.1262 0.134

1.42 426 0.02

1.55 51.61 0.649

1.56 1444.5 0.2

1.58 260 0.24

1.63 444.6 0.41

1.64 406.0 0.53

1.65 401.1 0.36

1.68 796.7 0.68

1.76 903 0.2

1.83 454 0.2

1.89 61.02 0.1

1.9 6.276 0.15

1.99 743 0.62

2.05 241.3 0.24

0.05 1119 0.17

2.08 228.52 0.304

2.24 311.3 0.22

2.54 1089 0.06

2.54 627.34 0.06

2.55 2185 0.18

2.63 414 0.21

2.84 250.5 0.19

2.94 229.9 0.35

3.03 186.9 0.41

3.32 267.2 0.23

3.36 1098 0.22

3.37 133.71 0.511

3.44 1112 0.52

3.55 18.2 0.01

(Continued)
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Table 6.6 (Continued)

Mass (in Jupiter mass) Period (in Earth days) Eccentricity

3.81 340 0.36

3.9 111.81 0.927

4 15.78 0.046

4 5360 0.16

4.12 1209.9 0.65

4.14 3.313 0.02

4.27 1764 0.353

4.29 1308.5 0.31

4.5 951 0.45

4.8 1237 0.515

5.18 576 0.71

5.7 383 0.07

6.08 1074 .011

6.292 71.487 0.1243

7.17 256 0.7

7.39 1582 0.478

7.42 116.7 0.4

7.5 2300 0.395

7.7 58.116 0.529

7.95 1620 0.22

8 1558 0.314

8.64 550.65 0.71

9.7 653.22 0.41

10 3030 0.56

10.37 2115.2 0.62

10.96 84.03 0.33

11.3 2189 0.34

11.98 1209 0.37

14.4 8.428 0.277

16.9 1739.5 0.228

17.5 256.03 0.429

plot(planet.clus,planet.dat)

and selecting the pairs option (option number 2). The plot is shown in Figure 6.9.
Mean vectors of the three clusters can be found from

planet.clus$mu
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Figure 6.8 Plot of BIC values for a variety of models and a range of number of clusters.

and these are shown in Table 6.7. Cluster 1 consists of the “small” exoplanets (but
still, on average, with a mass greater than Jupiter), with very short periods and
eccentricities. The second cluster consists of large planets with very long periods
and large eccentricities. The third cluster contains planets approximately the same
mass as Jupiter, but with moderate periods and eccentricities.

6.5 Summary

Cluster analysis techniques provide a rich source of possible stategies for exploring
complex multivariate data. They have been used widely in medical investigations;
examples include Everitt et al. (1971) and Wastell and Gray (1987). Increasingly,
model-based techniques such as finite mixture densities (see Everitt et al., 2001)
and classification maximum likelihood, as described in this chapter, are superseding
older methods, such as the single linkage, complete linkage, and average linkage
methods described in Section 6.2. Two recent references are Fraley and Raftery
(1998, 1999).



6.5 Summary 135

Figure 6.9 Scatterplot matrix of planets data showing three cluster solution from Mclust.

Table 6.7 Means for the Three-Group Solution for the
Exoplanets Data

Mass Period Eccentricity

Cluster 1: n = 19 1.16 6.45 0.035
Cluster 2: n = 41 5.81 1263.01 0.363
Cluster 3: n = 15 1.54 303.82 0.308

Exercises
6.1 Show that the intercluster distances used by single linkage, complete linkage,

and group average clustering satisfy the following formula:

dk(ij) = αidki + αjdkj + γ |dki − dkj |,
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where

αi = αj , γ = −1

2
(single linkage),

αi = αj , γ = 1

2
(complete linkage),

ai = ni

ni + nj

, αj = nj

ni + nj

, γ = 0 (group average).

(dk(ij) is the distance between a group k and a group (ij) formed by the fusion
of groups i and j , and dij is the distance between groups i and j ; ni and nj

are the number of observations in groups i and j .)
6.2 Ward (1963) proposed an agglomerative hierarchical clustering procedure in

which, at each step, the union of every possible pair of clusters is considered
and the two clusters whose fusion results in the minimum increase in an error
sum-of-squares criterion, ESS, are combined. For a single variable, ESS for a
group with n individuals is simply ESS = ∑n

i=1(xi − x̄)2.

(a) If ten individuals with variable values {2, 6, 5, 6, 2, 2, 2, 0, 0, 0}
are considered as a single group, calculate ESS. If the individuals are
grouped into two groups with individuals 1, 5, 6, 7, 8, 9, 10 in one
group and individuals 2, 3, 4 in the other, what does ESS become?

(b) Can you fit Ward’s method into the general equation given in
Exercise 5.1?

6.3 Reanalyze the pottery data using Mclust. To what model in Mclust does
the k-mean approach approximate?

6.4 Construct a three-dimensional drop-line scatterplot of the planets data in
which the points are labelled with a suitable cluster label.

6.5 Reanalyze the life expectancy data by clustering the countries on the basis
on differences between the life expectancies of men and women at corres-
ponding ages.
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Grouped Multivariate Data: Multivariate
Analysis of Variance and Discriminant
Function Analysis

7.1 Introduction

Investigators in many disciplines frequently collect multivariate data on samples
from different populations. In Chapter 5, for example, a set of data was introduced
in which an archaeologist had made four measurements on Egyptian skulls from
five different epochs. A variety of questions might be asked about such data and,
correspondingly, there are a variety of (overlapping) approaches to their analysis.
In many examples the prime interest will be in assessing whether the populations
involved have different mean vectors on the measurements taken. For this, mul-
tivariate analogues of the familiar univariate t-test, Hotelling’s T2, or analysis of
variance, multivariate analysis of variance, are available. A further question that
is often of interest for grouped multivariate data is whether or not it is possible
to use the measurements made to construct a classification rule derived from the
original observations (the training set) that will allow new individuals having the
same set of measurements, but no group label, to be allocated to a group in such
a way that misclassifications are minimized. The relevant technique is now some
form of discriminant function analysis.

In the next section we consider both the inference and classification questions
for the two-group situation, and then in Section 7.3 move on to discuss data sets
where there are more than two groups.

7.2 Two Groups: Hotellings T 2 Test and Fisher’s Linear
Discriminant Function Analysis

7.2.1 Hotellings T 2 Test
The data shown in Table 7.1 were originally collected by Colonel L.A. Waddell
in southeastern and eastern Tibet. According to Morant (1923), the data consist of
two groups of skulls: group one (type I), skulls 1–17, found in graves in Sikkim
and neighboring areas of Tibet; group two (type II) consisting of the remaining 15
skulls picked up on battlefield in the Lhasa district and believed to be those of native

137
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Table 7.1 Tibetan Skull Data (all measurements in mm). From Morant, G.M.,
A First Study of the Tibetan Skull, in Biometrika, Vol. 14, 1923, pp 193–260, by
permission of the Biometrika Trustees

Obs Length Breadth Height Fheight Fbreadth Type

1 190.5 152.5 145.0 73.5 136.5 1

2 172.5 132.0 125.5 63.0 121.0 1

3 167.0 130.0 125.5 69.5 119.5 1

4 169.5 150.5 133.5 64.5 128.0 1

5 175.0 138.5 126.0 77.5 135.5 1

6 177.5 142.5 142.5 71.5 131.0 1

7 179.5 142.5 127.5 70.5 134.5 1

8 179.5 138.0 133.5 73.5 132.5 1

9 173.5 135.5 130.5 70.0 133.5 1

10 162.5 139.0 131.0 62.0 126.0 1

11 178.5 135.0 136.0 71.0 124.0 1

12 171.5 148.5 132.5 65.0 146.5 1

13 180.5 139.0 132.0 74.5 134.5 1

14 183.0 149.0 121.5 76.5 142.0 1

15 169.5 130.0 131.0 68.0 119.0 1

16 172.0 140.0 136.0 70.5 133.5 1

17 170.0 126.5 134.5 66.0 118.5 1

18 182.5 136.0 138.5 76.0 134.0 2

19 179.5 135.0 128.5 74.0 132.0 2

20 191.0 140.5 140.5 72.5 131.5 2

21 184.5 141.5 134.5 76.5 141.5 2

22 181.0 142.0 132.5 79.0 136.5 2

23 173.5 136.5 126.0 71.5 136.5 2

24 188.5 130.0 143.0 79.5 136.0 2

25 175.0 153.0 130.0 76.0 134.0 2

27 200.0 139.5 143.5 82.5 146.0 2

28 185.0 134.5 140.0 81.5 137.0 2

29 174.5 143.5 132.5 74.0 136.5 2

30 195.5 144.0 138.5 78.5 144.0 2

31 197.0 131.5 135.0 80.5 139.0 2

32 182.5 131.0 135.0 68.5 136.0 2

In dataframe Tibet.

soldiers from the eastern province of Khans. These skulls were of particular interest
since it was thought at the time that Tibetans from Khans might be survivors of a
particular fundamental human type, unrelated to the Mongolian and Indian types
that surrounded them.
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On each of the 32 skulls the following five measurements, all in millimeters,
were recorded:

x1: greatest length of skull (length),
x2: greatest horizontal breadth of skull (breadth),
x3: height of skull (height),
x4: upper face height (fheight),
x5: face breadth, between outermost points of cheek bones (fbreadth).

We assume the data are available as the dataframe Tibet.
The first task to carry out on these data is to test the hypothesis that the five-

dimensional mean vectors of skull measurements are the same in the two populations
from which the samples arise. For this we will use the multivariate analogue of
Student’s independent samples t-test, known as Hotelling’s T 2 test, a test described
in Display 7.1.

Display 7.1
Hotelling’s T2 Test

• If there are q variables, the null hypothesis is that the means of the variables in
the first population equal the means of the variables in the second population.

• If µ1 and µ2 are the mean vectors of the two populations the null hypothesis
can be written as

H0: µ1 = µ2.

• The test statistic T 2 is defined as

T 2 = n1n2

n1 + n2
D2,

where n1 and n2 are the sample sizes in each group and D2 is the generalized
distance introduced in Chapter 1, namely

D2 = (x̄1 − x̄2)
′S−1(x̄1 − x̄2),

where x̄1 and x̄2 are the two sample mean vectors and S is the estimate of the
assumed common covariance matrix of the two populations, calculated from
the two sample covariance matrix, S1 and S2 as

S = (n1 − 1)S1 + (n2 − 1)S2

n1 + n2 − 2
.

• Note that the form of the test statistic in the multivariate case is very similar
to that for the univariate independent samples t-test, involving a difference
between “means” (here mean vectors), and an assumed common “variance”
(here a covariance matrix).
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• Under H0 (and when the assumptions given below hold), the statistic F given
by

F = (n1 + n2 − q − 1)T 2

(n1 + n2 − 2)q

has a Fisher’s F -distribution with q and n1 + n2 − q − 1 degrees of freedom.
• The T 2 test is based on the following assumptions:

1. In each population the variables have a multivariate normal distribution.
2. The two populations have the same covariance matrix.
3. The observations are independent.

As an exercise we will apply Hotelling’s T 2 test to the skull data using the
following R and S-PLUS® code, although we could also use the manova function
as we shall see later:

attach(Tibet)
m1<-apply(Tibet[Type==1,-6],2,mean)
m2<-apply(Tibet[Type==2,-6],2,mean)
l1<-length(Type[Type==1])
l2<-length(Type[Type==2])
x1<-Tibet[Type==1,-6]
x2<-Tibet[Type==2,-6]
S123<-((l1-1)*var(x1)+(l2-1)*var(x2))/(l1+l2-2)
T2<-t(m1-m2)%*%solve(S123)%*%(m1-m2)
Fstat<-(l1+l2-5-1)*T2/(l1+l2-2)*5
pvalue<-1-pf(Fstat,5,26)

Hotelling’s T 2 takes the value 3.50 with the corresponding F statistic being 15.17
with 5 and 26 degrees of freedom. The associated p-value is very small, and we
can conclude that there is strong evidence that the mean vectors of the two groups
differ.

It might be thought that the results of Hotelling’s T 2 test would simply reflect
those that would be obtained using a series of univariate t-tests, in the sense that
if no significant differences are found by the separate t-tests, then the T 2 test will
inevitably lead to acceptance of the null hypothesis that the population mean vectors
are equal. And, on the other hand, if any significant difference is found when using
the t-tests on the individual variables, then the T 2 statistic must also lead to a
significant result. But these speculations are not correct (if they were, the T 2 test
would be a waste of time). It is entirely possible to find no significant difference
for each separate t-test, but a significant result for the T 2 test, and vice versa.
An illustration of how this can happen in the case of two variables is shown in
Display 7.2.
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Display 7.2
Univariate and Multivariate Tests for Equality of Means for Two Variables

• Suppose we have a sample of n observations on two variables, x1 and x2 and
we wish to test whether the population means of the two variables µ1 and µ2
are both zero.

• Assume the mean and standard deviation of the x1 observations are x̄1 and s1,
respectively, and of the x2 observations, x̄2 and s2.

• If we test separately whether each mean takes the value zero, then we would
use two t tests. For example, to test µ1 = 0 against µ1 �= 0 the appropriate
test statistic is

t = x̄1 − 0

s1
√

n
.

• The hypothesis µ1 = 0 would be rejected at the α percent level of significance
if t < −t

100
(

1− 1
2 α

) or t > t
100

(
1− 1

2 α
); that is, if x̄1 fell outside the interval[

−s1t100
(

1− 1
2 α

)/√
n

]
where t

100
(

1− 1
2 α

) is the 100
(
1 − 1

2α
)

percent point of

the t distribution with n − 1 degrees of freedom. Thus the hypothesis would
not be rejected if x̄1 fell within this interval.

• Similarly, the hypothesis µ2 = 0 for the variable x2 would not be rejected if
the mean, x̄2, of the x2 observations fell within a corresponding interval with
s2 substituted for s1.

• The multivariate hypothesis [µ1, µ2] = [0, 0] would therefore not be rejected
if both these conditions were satisfied.

• If we were to plot the point (x̄1, x̄2) against rectangular axes, the area within
which the point could like and the multivariate hypothesis not rejected is given
by the rectangle ABCD of the diagram below, where AB and DC are of length
2s1t100

(
1− 1

2 α
)√n while AD and BC are of length 2s2t100

(
1− 1

2 α
)√n.



142 7. Grouped Multivariate Data

• Thus, a sample that gave the means (x̄1, x̄2) represented by the point P would
lead to acceptance of the multivariate hypothesis.

• Suppose, however, that the variables x1 and x2 are moderately highly corre-
lated. Then all points (x1, x2) and hence (x̄1, x̄2) should lie reasonably close
to the straight line MN through the origin marked on the diagram.

• Hence samples consistent with the multivariate hypothesis should be repre-
sented by points (x̄1, x̄2) that lie within a region encompassing the line MN.
When we take account of the nature of the variation of bivariate normal sam-
ples that include correlation, this region can be shown to be an ellipse such
as that marked on the diagram. The point P is not consistent with this region
and, in fact, should be rejected for this sample.

• Thus, the inference drawn from the two separate univariate tests conflicts with
the one drawn from a single multivariate test, and it is the wrong inference.

• A sample giving the (x̄1, x̄2) values represented by point Q would give the
other type of mistake, where the application of two separate univariate tests
leads to the rejection of the null hypothesis, but the correct multivariate infer-
ence is that the hypothesis should not be rejected. (This explanation is taken
with permission from Krzanowski, 1988.)

Having produced evidence that the mean vectors of skull types I and II are not
the same, we can move on to the classification aspect of grouped multivariate data.

7.2.2 Fisher’s Linear Discriminant Function
Suppose a further skull is uncovered whose origin is unknown, that is, we do not
know if it is type I or type II. How might we use the original data to construct a
classification rule that will allow the new skull to be classified as type I or II based
on the same five measurements taken on the skulls in Table 7.1? The answer was
provided by Fisher (1936) who approached the problem by seeking a linear function
of the observed variables that provides maximal separation, in a particular sense,
between the two groups. Details of Fisher’s linear discriminant function are given
in Display 7.3.

Display 7.3
Fisher’s Linear Discriminant Function

• The aim is to find a way of classifying observations into one of two known
groups using a set of variables, x1, x2, . . . , xq :

• Fisher’s idea was to find a linear function z of the variables. x1, x2, . . . , xq ;

z = a1x1 + a2x2 + · · · + aqxq,

such that the ratio of the between-group variance of z to its within-group
variance is maximized.
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• The coefficients a′ = [a1, . . . , aq ] have therefore to be chosen so that V , given
by

V = a′Ba
a′Sa

,

is maximized, where S is the pooled within-group covariance matrix, and B
is the covariance matrix of group means; explicitly,

S = 1

n − 2

2∑
i=1

ni∑
j=1

(xij − x̄j )(xij − x̄j )
′,

B =
2∑

i=1

ni(x̄i − x̄)(x̄i − x̄)′,

where x′
ij = [xij1, xij2, . . . , xijq ] represents the set of q variable values for

the j th individual in group i, x̄j is the mean vector of the j th group, and x̄
is the mean vector of all observations. The number of observations in each
group is n1 and n2, with n = n1 + n2.

• The vector a that maximizes V is given by the solution of

(B − λS)a = 0.

• In the two-group situation, the single solution can be shown to be

a = S−1(x̄1 − x̄2).

• The allocation rule is now to allocate an individual with discriminate score
z to group 1 if z > (z̄1 + z̄2)/2, where z̄1 and z̄2 are the mean discriminant
scores in each group. (We are assuming that the groups are labelled such that
z̄1 > z̄2.)

• Fisher’s discriminant function also arises from assuming that the observations
in group one have a multivariate normal distribution with mean vector µ1 and
covariance matrix � and those in group two have a multivariate distribution
with mean vector µ2 and, again, covariance matrix �, and assuming that an
individual with vector of scores x is allocated to group one if

MVN(x, µ1, �) > MVN(x, µ2, �),

where MVN is shorthand for the multivariate normal density function.
• Substituting sample values for population rules leads to the same allocation

rule as that given above.
• The above is only valid if the prior probabilities of being in each group are

assumed to be the same.
• When the prior probabilities are not equal the classification rule changes; for

details, see Everitt and Dunn (2001).
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The description given in Display 7.3 can be translated into R and S-PLUS code
as follows:

m1<-apply(Tibet[Type==1,-6],2,mean)
m2<-apply(Tibet[Type==2,-6],2,mean)
l1<-length(Type[Type==1])
l2<-length(Type[Type==2])
x1<-Tibet[Type==1,-6]
x2<-Tibet[Type==2,-6]
S123<-((l1-1)*var(x1)+(l2-1)*var(x2))/(l1+l2-2)
a<-solve(S123)%*%(m1-m2)
z12<-(m1%*%a+m2%*%a)/2

This leads to the vector of discriminant function coefficients (a in Display 7.3) being

a′ = [−0.0893, 0.156, 0.005, −0.177, −0.177]
and the threshold value being −30.363. The resulting classification rule becomes:
classify to type I if −0.0893 × length + 0.15 × Breadth + 0.005 × fheight −0.177
× fbreadth > −30.363 and Type II otherwise. The same results can be obtained
using the discrim function in S-PLUS:

dis<-discrim(Type∼Length+Breadth+Height+Fheight+Fbreadth,
data=Tibet,

family=Classical("homoscedastic"),prior="uniform")
dis

This gives the results shown in Table 7.2. The results given previously are found
from Table 7.2 by simply subtracting the two sets of linear coefficients to give
the vector of discriminant function coefficients and the two constants to give the
threshold value:

const<-coef(dis)$constants
const[2]-const[1]
coefs<-coef(dis)$linear.coefficients
coefs[,1]-coefs[,2]

By loading the MASS library in both R and S-PLUS, Fisher’s linear discriminant
analysis can be applied using the lda function as

library(MASS)
dis<-lda(Type∼Length+Breadth+Height+Fheight+Fbreadth,

data=Tibet,prior=c(0.5,0.5))

Suppose now we have the following observations on two new skulls:

Length Breadth Height Fheight Fbreadth

Skull 1: 171.0 140.5 127.0 69.5 137.0
Skull 2: 179.0 132.0 140.0 72.0 138.5
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Table 7.2 Results from discrim on Tibetan Skull Data

Group means:
Length Breadth Height Fheight Fbreadth N Priors

1 174.82 139.35 132.00 69.824 130.35 17 0.5
2 185.73 138.73 134.77 76.467 137.50 15 0.5

Covariance Structure: homoscedastic
Length Breadth Height Fheight Fbreadth

Length 59.013 9.008 17.219 20.120 20.110
Breadth 48.261 1.077 4.339 30.046
Height 36.198 4.838 4.108
Fheight 18.307 12.985

Fbreadth 43.696

Constants:
1 2

−514.9 −545.48
Linear Coefficients:

X1 X2
Length 1.4683 1.5576
Breadth 2.3611 2.2053
Height 2.7522 2.7470
Fheight 0.7753 0.9525

Fbreadth 0.1948 0.3722

and wish to classify them to be type I or type II. We can calculate each skull’s
discriminant score as follows;

Skull 1: −0.0893 × 171.0 + 0.156 × 140.5 + 0.005 × 127.0 − 0.177 × 69.5 −
0.177 × 137.0 = −29.27

Skull 2: −0.893 × 179.0 + 0.156 × 132.0 + 0.005 × 140.0 − 0.177 × 72.0 −
0.177 × 138.5 = −31.95

Comparing each score to the threshold value of −30.363 leads to classifying skull
1 as type I and skull 2 as type II. We can use the predict function applied to the
object dis to do the same thing:

newdata<-rbind(c(171,140.5,127.0,69.5,137.0),c(179.0,132.0,
140.0,72.0,138.5))

dimnames(newdata)<-list(NULL,c("Length","Breadth","Height",
"Fheight","Fbreadth"))

newdata<-data.frame(newdata)
predict(dis,newdata=newdata)

to give the following classification probabilities:

Skull 1 Skull 2

Prob(Type I): 0.77695 0.22305
Prob(Type II): 0.19284 0.80716

Fisher’s linear discriminant function is optimal when the data arise from popula-
tions having multivariate normal distributions with the same covariance matrices.
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When the distributions are clearly non-normal an alternative approach is logistic
discrimination (see, e.g., Anderson, 1972), although the results of both this and
Fisher’s method are likely to be very similar in most cases. When the two covari-
ance matrices are thought to be unequal, then the linear discriminant function is no
longer optimal and a quadratic version may be needed. Details are given in Everitt
and Dunn (2001).

The quadratic discriminant function has the advantage of increased flexibility
compared to the linear version. There is, however, a penalty involved in the form of
potential overfitting, making the derived function poor at classifying new observa-
tions. Friedman (1989) attempts to find a compromise between the data variability of
quadratic discrimination and the possible bias of linear discrimination by adopting
a weighted sum of the two called regularized discriminant analysis.

7.2.3 Assessing the Performance of a Discriminant Function
How might we evaluate the performance of a discriminant function? One obvious
approach would be to apply the function to the data from which it was derived
and calculate the misclassification rate (this approach is known as the “plug-in”
estimate). We can do this for the Tibetan skull data in R and S-PLUS by again using
the predict function as follows:

group<-predict(dis,method="plug-in")$class
#in S-PLUS use predict(dis,method="plug-in")$group
table(group,Type)

leading to the following counts of correct and incorrect classifications:

Correct group

Allocated 1 2
1 14 3
2 3 12

The misclassification rate is 19%. This technique has the advantage of being
extremely simple. Unfortunately, however, it generally provides a very poor esti-
mate of the actual misclassification rate. In most cases the estimate obtained in this
way will be highly optimistic. An improved estimate of the misclassification rate
of a discriminant function may be obtained in a variety of ways (see Hand, 1998,
for details). The most commonly used of the alternatives available is the so-called
“leaving-one-out method,” in which the discriminant function is derived from just
n − 1 members of the sample and then used to classify the member not included.
The process is carried out n times, leaving out each sample member in turn. We
will illustrate the use of this approach later in the chapter.



7.3 More Than Two Groups 147

7.3 More Than Two Groups: Multivariate Analysis of
Variance (MANOVA) and Classification Functions

7.3.1 Multivariate Analysis of Variance
MANOVA is an extension of univariate analysis of variance procedures to multidi-
mensional observations. Details of the technique for a one-way design are given in
Display 7.3.

Display 7.3
Multivariate Analysis of Variance

• We assume we have multivariate observations for a number of individuals
from m different populations where m � 2 and there are ni observations
from population i.

• The linear model for observation xijk , the j th observation on variable k in
group i, k = 1, . . . , q, j = 1, . . . , ni, i = 1, . . . , m is

xijk = µk + αik + εijk,

where µk is a general effect for the kth variable, αik is the effect of group i

on the kth variable, and εijk is a random disturbance term.
• The vector εij = [εij1, . . . , εijq ] is assumed to have a multivariate normal

distribution with null mean vector and covariance matrix, �, assumed to be
the same in all m populations. The εij of different individuals are assumed to
be independent of one another.

• The hypothesis of equal mean vectors in the m populations can be written as

H0: αik = 0, i = 1, . . . , m, k = 1, . . . , q.

The multivariate analysis of variance is based on two matrices, H and E, the
elements of which are defined as follows:

hrs =
k∑

i=1

ni(x̄ir − x̄r )(x̄is − x̄s), r, s = 1, . . . , q,

ers =
k∑

i=1

ni∑
j=1

(x̄ijr − x̄ir )(x̄ijs − x̄is), r, s = 1, . . . , q,

where x̄ir is the mean of variable r in group i, and x̄r is the grand mean of
variable r .

• The diagonal elements of H and E are, respectively, the between-groups sum
of squares for each variable, and the within-group sum of squares for the
variable.
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• The off-diagonal elements of H and E are the corresponding sums of cross-
products for pairs of variables.

• In the multivariate situation when m > 2 there is no single test statistic that is
always the most powerful for detecting all types of departures from the null
hypothesis of the mean vectors of the populations.

• A number of different test statistics have been proposed that may lead to dif-
ferent conclusions when used in the same data set, although on most occasions
they will not.

• The following are the principal test statistics for the multivariate analysis of
variance

(a) Wilks’ determinantal ratio


 = |E|
|H + E|

(b) Roy’s greatest root
Here the criterion is the largest eigenvalue of E−1H

(c) Lawley–Hotelling trace

t = trace(E−1H).

(d) Pillai trace
ν = trace[H(H + E)−1].

• Each test statistic can be converted into an approximate F -statistic that
allows associated p-values to be calculated. For details see Tabachnick and
Fidell (2000).

• When there are only two groups all four test criteria above are equivalent and
lead to the same F value as Hotelling’s T2 as given in Display 7.1.

We will illustrate the application of MANOVA using the data on skull measure-
ments in different epochs met in Chapter 5 (see Table 5.8). We can apply a one-way
MANOVA to these data and get values for each of the four test statistics described
in Display 7.3 using the following R and S-PLUS code:

R

attach(skulls)

skulls.manova < −manova(cbind(MB,BH,BL,NH)∼EPOCH)

summary(skulls.manova,test = "Pillai")
summary(skulls.manova,test = "Wilks")
summary(skulls.manova,test = "Hotelling")
summary(skulls.manova,test = "Roy")
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S-PLUS

attach(skulls)

skulls.manova < −manova(cbind(MB,BH,BL,NH)∼EPOCH)

summary(skulls.manova,test = "pillai")
summary(skulls.manova,test = "wilks")
summary(skulls.manova,test = "hotelling− lawley")
summary(skulls.manova,test = "roylargest")

The results are shown in Table 7.3. There is very strong evidence that the mean
vectors of the five epochs differ.

The tests applied in MANOVA assume multivariate normality for the error terms
in the corresponding model (see Display 7.3). An informal assessment of this
assumption can be made using the chi-square plot described in Chapter 1 applied
to the residuals from fitting the one-way MANOVA model; note that the residu-
als in this case are each four-dimensional vectors. The required R and S-PLUS
instruction is

chisplot(residuals(skulls.manova))

This gives the diagram shown in Figure 7.1. There is no evidence of a departure
from multivariate normality.

7.3.2 Classification Functions and Canonical Variates
When there is an interest in classification of multivariate observations where
there are more than two groups, a series of classification functions can be derived
based on the two-group approach described in Section 7.2. Details are given in
Display 7.4 for the three group situation.

Table 7.3 Multivariate Analysis of Variance Results for Egyptian
Skull Data

Df Pillai Trace approx. F num df den df P-value
EPOCH 4 0.35 3.51 16 580 0

Residuals 145
Df Wilks Lambda approx. F num df den df P-value

EPOCH 4 0.66 3.9 16 434.45 0
Residuals 145

Df Hotelling-Lawley approx. F num df den df P-value
EPOCH 4 0.48 4.23 16 562 0

Residuals 145
Df Roy Largest approx. F num df den df P-value

EPOCH 4 0.43 15.41 4 145 0
Residuals 145
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Figure 7.1 Chi-square plot of residuals from fitting one-way MANOVA model to Egyptian
skull data.

Display 7.4
Classification Functions for Three Groups

• When more than two groups are involved, the rule for allocating to two mul-
tivariate normal distributions with the same covariance matrix can be applied
to each pair of groups in turn to derive a series of classification functions.

• For three groups, for example, the sample versions of the functions would be:

h12(x) = (x̄1 − x̄2)
′S−1

[
x − 1

2
(x̄1 + x̄2)

]
,

h13(x) = (x̄1 − x̄3)
′S−1

[
x − 1

2
(x̄1 + x̄3)

]
,

h23(x) = (x̄2 − x̄3)
′S−1

[
x − 1

2
(x̄2 + x̄3)

]
,

where S is the pooled within-groups covariance matrix calculated over all
three groups.
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• The classification rule now becomes:

Allocate to G1 if h12(x) > 0 and h13(x) > 0;
Allocate to G2 if h12(x) < 0 and h23(x) > 0;
Allocate to G3 if h13(x) < 0 and h23(x) < 0.

The classification functions allow observations to be classified optimally, but
interest may also lie in identifying the dimensions of the multivariate space of
the observed variables that are of most importance in distinguishing between the
groups. For two groups the single dimension is given by Fisher’s linear discriminant
function, which, as described in Display 7.3, arises as the single solution of the
equation

(B − λS)a = 0.

When there are more than two groups however, this equation will have more
then one solution, reflecting the fact that more than one direction is needed to
describe the differences between the mean vectors of the groups. With g groups
and q variables there will be min(q, g − 1) solutions. These best separating dimen-
sions are known as canonical variates. We can find them and the relevant
classification for the Egyptian skull data by again using the discrim function (or
alternatively the lda function although the options and output are not quite so
comprehensive):

dis<-discrim(EPOCH∼MB+BH+BL+NH,data=skulls,family=Canonical
("homoscedastic"))

dis
summary(dis)

An edited version of the results is shown in Table 7.4. To form the classification
functions described in Display 7.4 we need to look at the “linear coefficients” and
the “constants” in this table. For example, the classification function for epochs,
c4000BC, and c3300BC, can be found as

const <- coef(dis)$constants
t12<-const[2] - const[1]
coefs <- coef(dis)$linear.coefficients
h12<-coefs[, 1] - coefs[, 2]

This gives the necessary vector of constants and threshold to form the first of the
required classification functions; similarly, the remaining classification functions,
h13,h14,. . .,h45, and thresholds, t12,t13,. . .,t45, can be found. They may
then be applied to the four measurements on a new skull as indicated by the rule in
Display 7.4 extended in an obvious way to the five-group situation, to classify the
skull into one of the five epochs (see Exercise 7.4).
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Table 7.4 Edited Results from Applying the discrim Function to the Egyptian Skull Data

Group means:
MB BH BL NH N Priors

c4000BC 131.37 133.60 99.167 50.533 30 0.2
c3300BC 132.37 132.70 99.067 50.233 30 0.2
c1850BC 134.47 133.80 96.033 50.567 30 0.2
c200BC 135.50 132.30 94.533 51.967 30 0.2
cAD150 136.17 130.33 93.500 51.367 30 0.2

Covariance Structure: homoscedastic
MB BH BL NH

MB 21.111 0.037 0.079 2.009
BH 23.485 5.200 2.845
BL 24.179 1.133
NH 10.153

Canonical Coefficients:
dim1 dim2 dim3 dim4

MB 0.126676 0.038738 −0.092768 −0.14883986
BH −0.037032 0.210098 0.024568 0.00042008
BL −0.145125 −0.068114 −0.014749 −0.13250077
NH 0.082851 −0.077293 0.294589 −0.06685888
Singular Values:
dim1 dim2 dim3 dim4

3.9255 1.189 0.75451 0.27062

Constants:
c4000BC c3300BC c1850BC c200BC cAD150
−914.53 −915.35 −925.34 −923.42 −914.12
Linear Coefficients:

c4000BC c3300BC c1850BC c200BC cAD150
MB 6.0012 6.0515 6.1507 6.1850 6.2209
BH 4.7674 4.7316 4.8090 4.7380 4.6650
BL 2.9569 2.9617 2.8189 2.7647 2.7395
NH 2.1238 2.0938 2.1013 2.2583 2.2154

Plug-in classification table:
c4000BC c3300BC c1850BC c200BC cAD150 Error Posterior.Error

c4000BC 12 8 4 4 2 0.60000 0.60390
c3300BC 10 8 5 4 3 0.73333 0.68144
c1850BC 4 4 15 2 5 0.50000 0.62486
c200BC 3 3 7 5 12 0.83333 0.73753
cAD150 2 4 4 9 11 0.63333 0.51736

Overall 0.66000 0.63302
(from=rows,to=columns)

Rule Mean Square Error: 0.71928
(conditioned on the training data)

Cross-validation table:
c4000BC c3300BC c1850BC c200BC cAD150 Error Posterior.Error

c4000BC 9 10 5 4 2 0.70000 0.61844
c3300BC 11 7 5 4 3 0.76667 0.65822
c1850BC 6 4 12 2 6 0.60000 0.64549
c200BC 3 3 7 5 12 0.83333 0.72218
cAD150 2 4 4 10 10 0.66667 0.52258

Overall 0.71333 0.63338
(from=rows,to=columns)
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The coefficients defining the canonical variates are to found under “canonical
coefficients” in Table 7.4. Here, with five groups and four variables, there are four
such variates. To see how the canonical variates discriminate between the groups,
it is often useful to plot the group canonical variate means. For example, we can
plot the means for the first two canonical variates as

dsfs1<-c(0.13,-0.04,-0.15,0.08)%*%t(skulls[,-1])
dsfs2<-c(0.04,0.21,-0.068,-0.08)%*%t(skulls[,-1])
m1<-

c(mean(dsfs1[1:30]),mean(dsfs1[31:60]),mean(dsfs1[61:90]),
mean(dsfs1[91:120]),mean(dsfs1[121:150]))

m2<-
c(mean(dsfs2[1:30]),mean(dsfs2[31:60]),mean(dsfs2[61:90]),
mean(dsfs2[91:120]),mean(dsfs2[121:150]))

plot(m1,m2,type="n",xlab="CV1",ylab="CV2",xlim=c(0.5,3))
text(m1,m2,labels=c("c4000BC","c3300BC","c1850BC","c200BC",

"cAD150"))

The result is shown in Figure 7.2. The first canonical variate separates the two
earliest epochs from the other three and the second separates c1850BC from the
remaining four.

The “plug-in” estimate of the misclassification rate is shown in Table 7.4. Also
shown is the more realistic “leave-out-one” or “cross-validation” estimate. There is
a considerable amount of misclassification particularly for c200BC and cAD150.

Figure 7.2 Epoch means for the first two canonical variates.
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Table 7.5 SIDS data

Group HR BW Factor68 Gesage

1 115.6 3060 0.291 39

1 108.2 3570 0.277 40

1 114.2 3950 0.390 41

1 118.8 3480 0.339 40

1 76.9 3370 0.248 39

1 132.6 3260 0.342 40

1 107.7 4420 0.310 42

1 118.2 3560 0.220 40

1 126.6 3290 0.233 38

1 138.0 3010 0.309 40

1 127.0 3180 0.355 40

1 127.7 3950 0.309 40

1 106.8 3400 0.250 40

1 142.1 2410 0.368 38

1 91.5 2890 0.223 42

1 151.1 4030 0.364 40

1 127.1 3770 0.335 42

1 134.3 2680 0.356 40

1 114.9 3370 0.374 41

1 118.1 3370 0.152 40

1 122.0 3270 0.356 40

1 167.0 3520 0.394 41

1 107.9 3340 0.250 41

1 134.6 3940 0.422 41

1 137.7 3350 0.409 40

1 112.8 3350 0.241 39

1 131.3 3000 0.312 40

1 132.7 3960 0.196 40

1 148.1 3490 0.266 40

1 118.9 2640 0.310 39

1 133.7 3630 0.351 40

1 141.0 2680 0.420 38

1 134.1 3580 0.366 40

1 135.5 3800 0.503 39

1 148.6 3350 0.272 40

1 147.9 3030 0.291 40

(Continued)
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Table 7.6 (Continued)

Group HR BW Factor68 Gesage

1 162.0 3940 0.308 42

1 146.8 4080 0.235 40

1 131.7 3520 0.287 40

1 149.0 3630 0.456 40

1 114.1 3290 0.284 40

1 129.2 3180 0.239 40

1 144.2 3580 0.191 40

1 148.1 3060 0.334 40

1 108.2 3000 0.321 37

1 131.1 4310 0.450 40

1 129.7 3975 0.244 40

1 142.0 3000 0.173 40

1 145.5 3940 0.304 41

2 139.7 3740 0.409 40

2 121.3 3005 0.626 38

2 131.4 4790 0.383 40

2 152.8 1890 0.432 38

2 125.6 2920 0.347 40

2 139.5 2810 0.493 39

2 117.2 3490 0.521 38

2 131.5 3030 0.343 37

2 137.3 2000 0.359 41

2 140.9 3770 0.349 40

2 139.5 2350 0.279 40

2 128.4 2780 0.409 39

2 154.2 2980 0.388 40

2 140.7 2120 0.372 38

2 105.5 2700 0.314 39

2 121.7 3060 0.405 41

7.4 Summary

Grouped multivariate data occur frequently in practice. The appropriate method of
analysis depends on the question of most interest to the investigator. Hotelling’s T 2

and MANOVA are used to assess formal hypothesis about population mean vectors.
Where there is evidence of a difference then the construction of a classification rule
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is often (but not always) of interest. A range of other discriminant procedures are
available in the MASS library, and readers are encouraged to investigate.

Exercises
7.1 In a two-group discriminant situation, if members of one group have ay-value

of −1 and those of the other group a value of 1, show that the coefficients
in a regression of y on x1, x2, . . . , xq are proportional to S−1(x̄1 − x̄2), the
coefficients of Fisher’s linear discriminant function.

7.2 In the two-group discrimination problem, suppose that

fi(x) =
(

n

x

)
px

i (1 − pi)
n−x, 0 < pi < 1, i = 1, 2,

where p1 and p2 are known. If π1 and π2 are the prior probabilities of the
two groups, devise the classification rule using the approach described in
Display 7.3.

7.3 The data shown in Table 7.5 were collected by Spicer et al. (1987) in an
investigation of sudden infant death syndrome (SIDS). The two groups here
consist of 16 SIDS victims and 49 controls. The Factor68 variable arises from
spectral analysis of 24 hour recordings of electrocardiograms and respiratory
movements made on each child. All the infants have a gestational age of 37
weeks or more and were regarded as full term.

(i) Construct Fisher’s linear discriminant function using only the Fac-
tor68 and Birthweight variables. Show the derived discriminant func-
tion on a scatterplot of the data.

(ii) Construct the discriminant function based on all four variables and
find an appropriate estimate of the misclassification rate.

(iii) How would you incorporate prior probabilities into your discriminant
function?

7.4 Find all the classification functions for the Egyptian skull data and use them
to allocate a new skull with the following measurements:

MB: 133.0
BH: 130.0
BL: 95.0
NH: 50.0



8
Multiple Regression and Canonical
Correlation

8.1 Introduction

In this chapter we discuss two related but separate techniques, multiple regression
and canonical correlation. The first of these is not strictly a multivariate procedure;
the reasons for including it in this book are that it provides some useful basic mate-
rial both for the discussion of canonical correlation in this chapter and modelling
longitudinal data in Chapter 9.

8.2 Multiple Regression

Multiple linear regression represents a generalization, to more than a single explana-
tory variable, of the simple linear regression model met in all introductory statistics
courses. The method is used to investigate the relationship between a dependent vari-
able, y, and a number of explanatory variables x1, x2, . . . , xq . Details of the model,
including the estimation of its parameters by least squares and the calculation of
standard errors are given in Display 8.1. Note in particular that the explanatory vari-
ables are, strictly, not regarded as random variables at all so that multiple regression
is essentially a univariate technique with the only random variable involved being
the response, y. Often the technique is referred to as being multivariable to properly
distinguish it from genuinely multivariate procedures.

As an example of the application of multiple regression we can apply it to the
air pollution data introduced in Chapter 3 (see Table 3.1), with SO2 level as the
dependent variable and the remaining variables being explanatory. The model can
be applied in R and S-PLUS® and the results summarized using

attach(usair.dat)
usair.fit<-lm(SO2∼Neg.Temp + Manuf + Pop + Wind +

Precip + Days)
summary(usair.fit)

157
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Display 8.1
Multiple Regression Model

• The multiple linear regression model for a response variable y with observed
values y1, y2, . . . , yn and q explanatory variables, x1, x2, . . . , xq , with
observed values xi1, xi2, . . . , xiq for i = 1, 2, . . . , n, is

yi = β0 + β1xi1 + β2xi2 + · · · + βqxiq + εi .

• The regression coefficients β1, β2, . . . , βq give the amount of change in the
response variable associated with a unit change in the corresponding explana-
tory variable, conditional on the other explanatory variables in the model
remaining unchanged.

• The explanatory variables are strictly assumed to be fixed; that is, they are
not random variables. In practice, where this is rarely the case, the results
from a multiple regression analysis are interpreted as being conditional on
the observed values of the explanatory variables.

• The residual terms in the model, εi, i = 1, . . . , n, are assumed to have a
normal distribution with mean zero and variance σ 2. This implies that, for
given values of the explanatory variables, the response variable is normally
distributed with a mean that is a linear function of the explanatory variables
and a variance that is not dependent on these variables. Consequently an
equivalent way of writing the multiple regression model is as y ∼ N(µ, σ 2)

where µ = β0 + β1x1 + · · · + βqxq .
• The “linear” in multiple linear regression refers to the parameters rather than

the explanatory variables, so the model remains linear if, for example, a
quadratic term for one of these variables is included. (An example of a non-
linear model is y = β1e

β2xi1 + β3e
β4xi2 + εi .)

• The aim of multiple regression is to arrive at a set of values for the regression
coefficients that makes the values of the response variable predicted from the
model as close as possible to the observed values.

• The least-squares procedure is used to estimate the parameters in the multiple
regression model.

• The resulting estimators are most conveniently written with the help of some
matrices and vectors. By introducing a vector y′ = [y1, y2, . . . , yn] and an
n × (q + 1) matrix X given by

X =

⎛
⎜⎜⎜⎝

1 x11 x12 . . . x1q

1 x21 x22 . . . x2q

...
...

...
...

...

1 xn1 xn2 . . . xnq

⎞
⎟⎟⎟⎠ ,

we can write the multiple regression model for the n observations
concisely as

y = Xβ + ε,

where ε′ = [ε1, ε2, . . . , εn] and β′ = [β0, β1, . . . , βq ].
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• The least-squares estimators of the parameters in the multiple regression
model are given by the set of equations

β̂ = (X′X)−1X′y.

• More details of the least-squares estimation process are given in Rawlings
et al. (1998).

• The variation in the response variable can be partitioned into a part due
to regression on the explanatory variables and a residual as for simple
linear regression. The can be arranged in an analysis of variance table as
follows:

Source DF SS MS F

Regression q RGSS RGSS/q RGMS/RSMS
Residual n − q − 1 RSS RSS/n − q − 1

• The residual mean square s2 is an estimator of σ 2.
• The covariance matrix of the parameter estimates in the multiple regression

model is estimated from

S
β̂

= s2(X′X)−1.

The diagonal elements of this matrix give the variances of the estimated
regression coefficients and the off-diagonal elements their covariances.

• A measure of the fit of the model is provided by the multiple correlation
coefficient, R, defined as the correlation between the observed values of
the response variable, y1, K, yn, and the values predicted by the fitted model,
that is,

ŷi = β̂0 + β̂1xi1 + · · · + β̂qxiq

• The value of R2 gives the proportion of variability in the response variable
accounted for by the explanatory variables.

The results are shown in Table 8.1. The F statistic for testing the hypothesis that
all six regression coefficients in the model are zero is 11.48 with 6 and 34 degrees
of freedom. The associated p-value is very small and the hypothesis should clearly
be rejected. The t-statistics suggest that Manuf and Pop are the most important
predictors of sulphur dioxide level. The square of the multiple correlation coefficient
is 0.67 showing that 67% of the variation in SO2 level is accounted for by the six
explanatory variables.

When applying multiple regression in practice, of course, analysis would
continue to try to identify a more parsimonious model, followed by examination
of residuals from the final model to check assumptions. We shall not do this since
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Table 8.1 Results of Multiple Regression Applied to Air Pollution Data

Covariate Estimated regression coefficient Standard error t-value p

(Intercept) 111.7285 47.3181 2.3612 0.0241
Neg. temp 1.2679 0.6212 2.0412 0.0491
Manuf 0.0649 0.0159 4.1222 0.0002
Pop −0.0393 0.0151 −2.5955 0.0138
Wind −3.1814 1.8150 −1.7528 0.0887
Precip 0.5124 0.3628 1.4124 0.1669
Days −0.0521 0.1620 −0.3213 0.7500

Residual standard error: 14.64 on 34 degrees of freedom.
Multiple R-squared: 0.6695.
F -statistic: 11.48 on 6 and 34 degrees of freedom, the p-value is 5.419e − 007.

here we are largely interested in the univariate multiple regression model merely as a
convenient stepping stone to discuss a number of multivariate procedures beginning
with canonical correlation analysis.

8.3 Canonical Correlations

Multiple regression is concerned with the relationship between a single variable y

and a set of variables x1, x2, . . . , xq . Canonical correlation analysis extends this
idea to investigating the relationship between two sets of variables, each contain-
ing more than a single member. For example, in psychology an investigator may
measure a set of aptitude variables and a set of achievement variables on a sample
of students. In marketing, a similar example might involve a set of price indices
and a set of prediction indices. The objective of canonical correlation analysis is
to find linear functions of one set of variables that maximally correlate with linear
functions of the other set of variables. In many circumstances one set will contain
multiple dependent variables and the other multiple independent or explanatory
variables and then canonical correlation analysis might be seen as a way of predict-
ing multiple dependent variables from multiple independent variables. Extraction
of the coefficients that define the required linear functions has similarities to the
process of finding principal components as described in Chapter 3. Some of the
steps are described in Display 8.2.

To begin we shall illustrate the application of canonical correlation analysis on a
data set reported over 80 years ago by Frets (1921). The data are given in Table 8.2
and give head measurements (in millimeters) for each of the first two adult sons
in 25 families. Here the family is the “individual” in our data set and the four
head measurements are the variables. The question that was of interest to Frets was
whether there is a relationship between the head measurements for pairs of sons?
We shall address this question by using canonical correlation analysis.

Here we shall develop the canonical correlation analysis from first principles as
detailed in Display 8.2. Assuming the head measurements data are contained in the



8.3 Canonical Correlations 161

Display 8.2
Canonical Correlation Analysis (CCA)

• The purpose of canonical correlation analysis is to characterize the inde-
pendent statistical relationships that exist between two sets of variables,
x′ = [x1, x2, . . . , xq1

] and y′ = [y1, y2, . . . , yq2
].

• The overall (q1 + q2) × (q1 + q2) correlation matrix contains all the informa-
tion on associations between pairs of variables in the two sets, but attempting
to extract from this matrix some idea of the association between the two sets of
variables is not straightforward. This is because the correlations between the
two sets may not have a consistent pattern; and these between-set correlations
need to be adjusted in some way for the within-set correlations.

• The question is “How do we quantify the association between the two sets of
variables x and y?”

• The approach adopted in CCA is to take the association between x and y to be
the largest correlation between two single variables u1 and v1 derived from x
and y, with u1 being a linear combination of x1, x2, . . . , xq1

and v1 being a
linear combination of y1, y2, . . . , yq2

.
• But often a single pair of variables, (u1, v1) is not sufficient to quantify the

association between the x and y variables, and we may need to consider
some or all of s pairs (u1, v1), (u2, v2), . . . , (us, vs) to do this, where s =
min(q1, q2).

• Each ui is a linear combination of the variables in x, ui = a′
ix, and each

vi is a linear combination of the variables y, vi = biy, with the coeffi-
cients (ai , bi )(i = 1, . . . , s) being chosen so that the ui and vi satisfy the
following:

(1) The ui are mutually uncorrelated, i.e., cov(ui, uj ) = 0 for i �= j .
(2) The vi are mutually uncorrelated, i.e., cov(vi, vj ) = 0 for i �= j .
(3) The correlation between ui and vi is Ri for i = 1, . . . , s, where R1 >

R2 > · · · > Rs .
(4) The ui are uncorrelated with all vj except vi , i.e., cov (ui, vj ) = 0 for

i �= j .

• The linear combinations ui and vi are often referred to as canonical variates,
a name used previously in Chapter 7 in the context of multiple discriminant
function analysis. In fact there is a link between the two techniques. If we
perform a canonical correlation analysis with the data X defining one set of
variables and a matrix of group indicators, G, as the other we obtain the linear
discriminant functions. Details are given in Mardia et al. (1979).

• The vectors ai and bi i = 1, . . . , s, which define the required linear combi-
nations of the x and y variables, are found as the eigenvectors of matrices
E1(q1 × q1) (the ai ) and E2(q2 × q2) (the bi ) defined as

E1 = R−1
11 R12R−1

22 R21, E2 = R−1
22 R21R−1

11 R12,
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where R11 is the correlation matrix of the variables in x, R22 is the correl-
ation matrix of the variables in y, and R12(= R21) the q1 × q2 matrix of
correlations across the two sets of variables.

• The canonical correlations R1, R2, . . . , Rs are obtained as the square roots
of the nonzero eigenvalues of either E1 or E2.

• The s canonical correlations R1, R2, . . . , Rs express the association between
the x and y variables after removal of the within-set correlation.

• More details of the calculations involved and the theory behind canonical
correlation analysis are given in Krzanowski (1988).

• Inspection of the coefficients of each original variable in each canonical vari-
ate can provide an interpretation of the canonical variate in much the same
way as interpreting principal components (see Chapter 3). Such interpretation
of the canonical variates may help to describe just how the two sets of original
variables are related (see Krzanowski 2004).

• In practice, interpretation of canonical variates can be difficult because of the
possibly very different variances and covariances among the original vari-
ables in the two sets, which affects the sizes of the coefficients in the canon-
ical variates. Unfortunately there is no convenient normalization to place all
coefficients on an equal footing (see Krzanowski, 2004).

• In part this problem can be dealt with by restricting interpretation to the
standardized coefficients, that is, the coefficients that are appropriate when
the original variables have been standardized.

data frame, headsize, the necessary R and S-PLUS code is:

headsize.std<-sweep(headsize,2,
sqrt(apply(headsize,2,var)),FUN="/")

#standardize head measurements by
#dividing by the appropriate standard deviation
#
#
headsize1<-headsize.std[,1:2]
headsize2<-headsize.std[,3:4]
#
#find all the matrices necessary for calculating the
#canonical variates and canonical correlations
#
R11<-cor(headsize1)
R22<-cor(headsize2)
R12<-c(cor(headsize1[,1],headsize2[,1]),cor(headsize1[,1],

headsize2[,2]),
cor(headsize1[,2],headsize2[,1]),cor(headsize1[,2],

headsize2[,2]))
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Table 8.2 Head Sizes in Pairs of Sons (mm)

x1 x2 x3 x4

191 155 179 145
195 149 201 152
181 148 185 149
183 153 188 149
176 144 171 142
208 157 192 152
189 150 190 149
197 159 189 152
188 152 197 159
192 150 187 151
179 158 186 148
183 147 174 147
174 150 185 152
190 159 195 157
188 151 187 158
163 137 161 130
195 155 183 158
186 153 173 148
181 145 182 146
175 140 165 137
192 154 185 152
174 143 178 147
176 139 176 143
197 167 200 158
190 163 187 150

x1 = head length of first son; x2 = head breadth of
first son; x3 = head length of second son; x4 = head
breadth of second son.

#
R12<-matrix(R12,ncol=2,byrow=T)
R21<-t(R12)
#
#see display 8.2 for relevant equations
E1<-solve(R11)%*%R12%*%solve(R22)%*%R21
E2<-solve(R22)%*%R21%*%solve(R11)%*%R12
#
E1
E2
#
eigen(E1)
eigen(E2)

The results are shown in Table 8.3. Here the four linear functions are found to be

u1 = 0.69x1 + 0.72x2, v1 = 0.74x1 + 0.67x2,

u2 = 0.71x1 − 0.71x2, v2 = 0.70x1 − 0.71x2.
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Table 8.3 Canonical Correlation Analysis Results on Headsize Data

E1 =
[

0.306 0.305
0.314 0.319

]

E2 =
[

0.330 0.324
0.295 0.295

]

Eigenvalues of E1 and E2 are 0.62 and 0.0029, giving the canonical correlations as√
0.6215 = 0.7885 and

√
0.0029 = 0.0537 The respective eigenvectors are;

a′
1 = [0.695, 0.719],

a′
2 = [0.709, −0.705],

b′
1 = [0.742, 0.670],

b′
2 = [0.705, 0.711].

The first canonical variate for both first and second sons is simply a weighted sum
of the two head measurements and might be labelled “girth”; these two variates
have a correlation of 0.79. Each second canonical variate is a weighted difference
of the two head measurements and can be interpreted roughly as head “shape”; here
the correlation is 0.05. (Girth and shape are defined to be uncorrelated within first
and second sons, and also between first and second sons.)

Figure 8.1 Scatterplots of girth and shape for first and second sons.
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In this example it is clear that the association between the two head measurements
of first and second sons is almost entirely expressed through the “girth” variables
with the two “shape” variables being almost uncorrelated. The association between
the two sets of measurements is essentially one-dimensional. A scatterplot of girth
for first and second sons and a similar plot for shape reinforce this conclusion. The
plots are both shown in Figure 8.1 which is obtained as follows;

girth1<-0.69*headsize.std[,1]+0.72*headsize.std[,2]
girth2<-0.74*headsize.std[,3]+0.67*headsize.std[,4]
shape1<-0.71*headsize.std[,1]-0.71*headsize.std[,2]
shape2<-0.70*headsize.std[,3]-0.71*headsize.std[,4]
#
cor(girth1,girth2)
cor(shape1,shape2)
#
par(mfrow=c(1,2))
plot(girth1,girth2)
plot(shape1,shape2)

The correlations between girth for first and second sons and similarly for shape
calculated by this code are included to show that they give the same values (apart
from rounding differences) as the canonical correlation analysis.

We can now move on to a more substantial example taken from Afifi et al. (2004),
and also discussed by Krazanowski (2004). The data for this example arise from
a study of depression amongst 294 respondents in Los Angeles. The two sets of
variables of interest were “health variables,” namely the CESD (the sum of 20
separate numerical scales measuring different aspects of depression) and a measure
of general health and “personal” variables, of which there were four, gender, age,
income and educational level (numerically, coded from the lowest “less than high
school,” to the highest, “finished doctorate”).The sample correlation matrix between
these variables is given in Table 8.4. Here the maximum number of canonical variate
pairs is 2, and they can be found using the following R and S-PLUS code:

r22<-matrix(c(1.0,0.044,-0.106,-0.180,0.044,1.0,-0.208,
-0.192,-0.106,-0.208,1.0,0.492,-0.180,-0.192,0.492,1.0),
ncol=4,byrow=T)

r11<-matrix(c(1.0,0.212,0.212,1.0),ncol=2,byrow=2)

Table 8.4 Sample Correlation Matrix for the Six Variables in the Los Angeles
Depression Study

CESD Health Gender Age Education Income

CESD 1.0 0.121 0.124 −0.164 −0.101 −0.158
Health 0.212 1.0 0.098 0.308 −0.270 −0.183
Gender 0.124 0.098 1.0 0.044 −0.106 −0.180
Age −0.164 0.308 0.044 1.0 −0.208 −0.192
Education −0.101 −0.270 −0.106 −0.208 1.0 0.492
Income −0.158 −0.183 −0.180 −0.192 0.492 1.0
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r12<-matrix(c(0.124,-0.164,-0.101,-0.158,0.098,0.308,
-0.270,-0.183),ncol=4,byrow=T)

r21<-t(r12)
#
E1<-solve(r11)%*%r12%*%solve(r22)%*%r21
E2<-solve(r22)%*%r21%*%solve(r11)%*%r12
#
E1
E2
#
eigen(E1)
eigen(E2)

The results are shown in Table 8.5. The first canonical correlation is 0.409 which
if tested as outlined in Exercise 8.3 and has an associated p-value that is very
small. There is strong evidence that the first canonical correlation is significant.
The corresponding variates, in terms of standardized original variables, are

u1 = 0.461 CESD − 0.900 Health,

v1 = 0.024 Gender + 0.885 Age − 0.402 Education + 0.126 Income.

High coefficients correspond to CESD (positively) and health (negatively) for
the perceived health variables, and to age (positively) and education (negatively)

Table 8.5 Canonical Variates and Correlation for Los Angeles
Depression Study Variables

eigen(R1)

$values:

[1] 0.16763669 0.06806171

$vectors:

numeric matrix: 2 rows, 2 columns.

[,1] [,2]

[1,] 0.4610975 -0.9476307

[2,] -0.8998655 -0.3193681

eigen(R2)

$values:

[1] 1.676367e-001 6.806171e-002 -1.734723e-018 0.000000e+000

$vectors:

numeric matrix: 4 rows, 4 columns.

[,1] [,2] [,3] [,4]

[1,] 0.02424121 0.6197600 -0.03291919 -0.9378101

[2,] 0.88498865 -0.6301703 -0.16889507 -0.1840554

[3,] -0.40155454 -0.6503368 -0.53979845 -0.3193533

[4,] 0.12576714 -0.8208262 0.49453453 -0.3408145

sqrt(eigen(R1)$values)

[1] 0.4094346 0.2608864
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for the personal variables. It appears that relatively older and medicated people tend
to have a lower depression score, but perceive their health as relatively poor, while
relatively younger but educated people have the opposite health perception. (I am
grateful to Krzanowski, 2004, for this interpretation.)

The second canonical correlation is 0.261 which is again significant (see Exercise
8.3 and 8.4). The corresponding canonical variates are

u2 = 0.95 CESD − 0.32 Health,

v2 = 0.620 Gender − 0.630 Age − 0.650 Education − 0.821 Income.

Since the higher value of the gender variable is for females, the interpretation here
is that relatively young, poor, and uneducated females are associated with higher
depression scores and, to a lesser extent, with poor perceived health (again this
interpretation is due to Krzanowski, 2004).

8.4 Summary

Canonical correlation analysis has the reputation of being the most difficult mul-
tivariate technique to interpret. In many respects it is a well earned reputation!
Certainly one has to know the variables involved very well to have any hope
of extracting a convincing explanation. But in some circumstances (the heads
measurement data is an example), CCA does provide a useful description of the
association between two sets of variables.

Exercises
8.1 If x is a q1-dimensional vector and y a q2-dimensional vector, show that they

linear combinations a′x and b′y have correlation

p(a, b) = a′�12b
(a′�11ab′�22b)1/2 ,

where �11 is the covariance matrix of the x variables, �22 the corresponding
matrix for the y variables, and �12 the covariances across the two sets of
variables.

8.2 Table 8.6 contains data from O’Sullivan and Mahon (1966) (data also given
in Rencher, 1995), giving measurements on blood glucose for 52 women. The
y’s represent fasting glucose measurements on three occasions and the x’s are
glucose measurements one hour after sugar intake. Investigate the relationship
between the two sets of variables using canonical correlation analysis.

8.3 Not all canonical correlations may be statistically significant. An approximate
test proposed by Bartlett (1947) can be used to determine how many significant
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Table 8.6 Blood Glucose Measurements on Three
Occasions. From Methods of Multivariate Analysis,
Rencher, A.C. Copyright © 1995. Reprinted with
permission of John Wiley & Sons, Inc.

Fasting One hour after sugar intake

y1 y2 y3 x1 x2 x3

60 69 62 97 69 98

56 53 84 103 78 107

80 69 76 66 99 130

55 80 90 80 85 114

62 75 68 116 130 91

74 64 70 109 101 103

64 71 66 77 102 130

73 70 64 115 110 109

68 67 75 76 85 119

69 82 74 72 133 127

60 67 61 130 134 121

70 74 78 150 158 100

66 74 78 150 131 142

83 70 74 99 98 105

68 66 90 119 85 109

78 63 75 164 98 138

103 77 77 160 117 121

77 68 74 144 71 153

66 77 68 77 82 89

70 70 72 114 93 122

75 65 71 77 70 109

91 74 93 118 115 150

66 75 73 170 147 121

75 82 76 153 132 115

74 71 66 413 105 100

76 70 64 114 113 129

74 90 86 73 106 116

74 77 80 116 81 77

67 71 69 63 87 70

78 75 80 105 132 80

64 66 71 86 94 133

67 71 69 63 87 70

(Continued)
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Table 8.6 (Continued)

Fasting One hour after sugar intake

78 75 80 105 132 80

64 66 71 83 94 133

67 71 69 63 87 70

78 75 80 105 132 80

64 66 71 83 94 133

71 80 76 81 87 86

63 75 73 120 89 59

90 103 74 107 109 101

60 76 61 99 111 98

48 77 75 113 124 97

66 93 97 136 112 122

74 70 76 109 88 105

60 74 71 72 90 71

63 75 66 130 101 90

66 80 86 130 117 144

77 67 74 83 92 107

70 67 100 150 142 146

73 76 81 119 120 119

78 90 77 122 155 149

73 68 90 102 90 122

72 83 68 104 69 96

65 60 70 119 94 89

52 70 76 92 94 100

NOTE: Measurements are in mg/100 ml.

relationships exist. The test statistic for testing that at least one canonical
correlation is significant is

�2
0 = −

{
n − 1

2
(q1 + q2 + 1)

} s∑
i=1

log(1 − λi)

where the λi are the eigenvalues of E1 and E2. Under the null hypothesis that
all correlations are zero �2

0 has a chi-square distribution with q1 × q2 degrees
of freedom. Write R and S-PLUS code to apply this test to the headsize data
and to the depression data.
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8.4 If the test in the previous exercise is significant, then the largest canonical
correlation is removed and the residual is tested for significance using

φ2
1 = −

{
n − 1

2
(q1 + q2+)

} s∑
i=2

log(1 − λi).

Under the hypothesis that all but the largest canonical correlation is zero
φ2

1 has a chi-square distribution with (q1 − 1)(q2 − 1) degrees of freedom.
Amend the function written for Exercise 8.3 to include this further test and
then extend it to test for the significance of all the canonical correlations in
both the headsize and depression data sets.



9
Analysis of Repeated Measures Data

9.1 Introduction

The multivariate data sets considered in previous chapters have involved measure-
ments or observations on a number of different variables for each object or indi-
vidual in the study. In this chapter, however, we will consider multivariate data of
a different nature, namely that resulting from the repeated measurements of the
same variable on each unit in the sample. Examples of such data are common in
many disciplines. Often the repeated measurements arise from the passing of time
(longitudinal data) but this is not always so. The two data sets in Tables 9.1 and 9.2
illustrate both possibilities. The first, taken from Crowder (1998), gives the loads
required to produce slippage x of a timber specimen in a clamp. There are eight
specimens, each with 15 repeated measurements. The second data set in Table 9.2
reported in Zerbe (1979) and also given in Davis (2002), consists of plasma inor-
ganic phosphate measurements obtained from 13 control and 20 obese patients 0,
0.5, 1, 1.5, 2, and 3 hours after an oral glucose challenge.

The distinguishing feature of a repeated measures study is that the response vari-
able of interest and a set of explanatory variables are measured several times on
each individual in the study. The main objective in such a study is to character-
ize change in the repeated values of the response variable and to determine the
explanatory variables most associated with any change. Because several observa-
tions of the response variable are made on the same individual, it is likely that the
measurements will be correlated rather than independent, even after conditioning
on the explanatory variables. Consequently repeated measures data require special
methods of analysis, and models for such data need to include parameters linking
the explanatory variables to the repeated measurements, parameters analogous to
those in the usual multiple regression model (see Chapter 8), and, in addition param-
eters that account for the correlational structure of the repeated measurements. It
is the former parameters that are generally of most interest, with the latter often
being regarded as nuisance parameters. But providing an adequate model for the
correlational structure of the repeated measures is necessary to avoid misleading
inferences about the parameters that are of most importance to the researcher.

171
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Table 9.2 Plasma Inorganic Phosphate Levels from 33 Subjects. From
Statistical Methods for the Analysis of Repeated Measurements,
Davis, C.F., 2002. Copyright Springer-Verlag New York Inc. Reprinted
with permission.

Hours after glucose challenge

Group control ID 0 0.5 1 1.5 2 3 4 5

1 4.3 3.3 3.0 2.6 2.2 2.5 3.4 4.4

2 3.7 2.6 2.6 1.9 2.9 3.2 3.1 3.9

3 4.0 4.1 3.1 2.3 2.9 3.1 3.9 4.0

4 3.6 3.0 2.2 2.8 2.9 3.9 3.8 4.0

5 4.1 3.8 2.1 3.0 3.6 3.4 3.6 3.7

6 3.8 2.2 2.0 2.6 3.8 3.6 3.0 3.5

7 3.8 3.0 2.4 2.5 3.1 3.4 3.5 3.7

8 4.4 3.9 2.8 2.1 3.6 3.8 4.0 3.9

9 5.0 4.0 3.4 3.4 3.3 3.6 4.0 4.3

10 3.7 3.1 2.9 2.2 1.5 2.3 2.7 2.8

11 3.7 2.6 2.6 2.3 2.9 2.2 3.1 3.9

12 4.4 3.7 3.1 3.2 3.7 4.3 3.9 4.8

13 4.7 3.1 3.2 3.3 3.2 4.2 3.7 4.3

14 4.3 3.3 3.0 2.6 2.2 2.5 2.4 3.4

15 5.0 4.9 4.1 3.7 3.7 4.1 4.7 4.9

16 4.6 4.4 3.9 3.9 3.7 4.2 4.8 5.0

17 4.3 3.9 3.1 3.1 3.1 3.1 3.6 4.0

18 3.1 3.1 3.3 2.6 2.6 1.9 2.3 2.7

19 4.8 5.0 2.9 2.8 2.2 3.1 3.5 3.6

20 3.7 3.1 3.3 2.8 2.9 3.6 4.3 4.4

Obese 21 5.4 4.7 3.9 4.1 2.8 3.7 3.5 3.7

22 3.0 2.5 2.3 2.2 2.1 2.6 3.2 3.5

23 4.9 5.0 4.1 3.7 3.7 4.1 4.7 4.9

24 4.8 4.3 4.7 4.6 4.7 3.7 3.6 3.9

25 4.4 4.2 4.2 3.4 3.5 3.4 3.8 4.0

26 4.9 4.3 4.0 4.0 3.3 4.1 4.2 4.3

27 5.1 4.1 4.6 4.1 3.4 4.2 4.4 4.9

28 4.8 4.6 4.6 4.4 4.1 4.0 3.8 3.8

29 4.2 3.5 3.8 3.6 3.3 3.1 3.5 3.9

30 6.6 6.1 5.2 4.1 4.3 3.8 4.2 4.8

31 3.6 3.4 3.1 2.8 2.1 2.4 2.5 3.5

32 4.5 4.0 3.7 3.3 2.4 2.3 3.1 3.3

33 4.6 4.4 3.8 3.8 3.8 3.6 3.8 3.8
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Over the last decade methodology for the analysis of repeated measures data has
been the subject of much research and development, and there are now a variety of
powerful techniques available. A comprehensive account of these methods is given
in Diggle et al. (2002) and Davis (2002). Here we will concentrate on a single class
of methods, linear mixed effects models.

9.2 Linear Mixed Effects Models for Repeated Measures Data

Linear mixed effects models for repeated measures data formalize the sensible idea
that an individual’s pattern of responses is likely to depend on many characteristics
of that individual, including some that are unobserved. These unobserved variables
are then included in the model as random variables, that is, random effects. The
essential feature of the model is that correlation amongst the repeated measurements
on the same unit arises from stored, unobserved variables. Conditional on the values
of the random effects, the repeated measurements are assumed to be independent,
the so-called local independence assumption.

Linear mixed effects models are introduced in Display 9.1 in the context of
the timber slippage data in Table 9.1 by describing two commonly used models,
the random intercept and random intercept and slope models.

Display 9.1
Two Simple Linear Mixed Effects Models

• Let yij represent the load in specimen i needed to produce a slippage of xj ,
with i = 1, . . . , 8 and j = 1, . . . , 15. A possible model for the yij might be

yij = β0 + β1xj + ui + εij (A)

• Here the total residual that would be present in the usual linear regression
model has been partitioned into a subject-specific random component ui ,
which is constant over time plus a residual εij , which varies randomly over
time. The ui are assumed to be normally distributed with zero mean and
variance σ 2

u . Similarly the εij are assumed to be normally distributed with
zero mean and variance σ 2. The ui and the εij are assumed to be independent
of each other and of the xj .

• The model in (A) is known as a random intercept model, the ui being the
random intercepts. The repeated measurements for a specimen vary about
that specimen’s own regression line which can differ in intercept but not in
slope from the regression lines of other specimens. The random effects model
possible heterogeneity in the intercepts of the individuals.

• In this model slippage has a fixed effect.
• The random intercept model implies that the total variance of each repeated

measurement is
Var

(
ui + εij

) = σ 2
u + σ 2.
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• Due to this decomposition of the total residual variance into a between-subject
component, σ 2

u , and a within-subject component, σ 2, the model is sometimes
referred to as a variance component model.

• The covariance between the total residuals at two slippage levels j and j ′ in
the same specimen i is

Cov
(
ui + εij , ui + εij ′

) = σ 2
u .

• Note that these covariances are induced by the shared random intercept; for
specimens with ui > 0, the total residuals will tend to be greater than the
mean, for specimens with ui < 0 they will tend to be less than the mean.

• It follows from the two relations above that the residual correlations are given
by

Cor(ui + εij , ui + εij ′) = σ 2
u

σ 2
u + σ 2 .

• This is an intraclass correlation interpreted as the proportion of the total
residual variance that is due to residual variability between subjects.

• A random intercept model constrains the variance of each repeated measure
to be the same and the covariance between any pair of measurements to be
equal. This is usually called the compound symmetry structure.

• These constraints are often not realistic for repeated measures data. For exam-
ple, for longitudinal data it is more common for measures taken closer to each
other in time to be more highly correlated than those taken further apart. In
addition the variances of the later repeated measures are often greater than
those taken earlier.

• Consequently for many such data sets the random intercept model will not do
justice to the observed pattern of covariances between the repeated measures.
A model that allows a more realistic structure for the covariances is one that
allows heterogeneity in both slopes and intercepts, the random slope and
intercept model.

• In this model there are two types of random effects, the first modelling
heterogeneity in intercepts, ui1, and the second modelling heterogeneity in
slopes, ui2.

• Explicitly the model is

yij = β0 + β1xj + ui1 + ui2xj + εij , (B)

where the parameters are not, of course, the same as in (A).
• The two random effects are assumed to have a bivariate normal distribution

with zero means for both variables, variances σ 2
u1

, σ 2
u2

and covariance σu1u2
.

• With this model the total residual is ui1 + ui2xj + εij with variance

Var(ui1 + ui2xj + εij ) = σ 2
u1

+ 2σu1u2
xj + σ 2

u2
x2
j + σ 2,

which is no longer constant for different values of xj .
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• Similarly the covariance between two total residuals of the same individual

Cov(ui1 + xjui2 + εij , ui1 + ui2xj ′ + εij ′)

= σ 2
u1

+ σu1u2(xj + xj ′) + σ 2
u2

xjxj ′

is not constrained to be the same for all pairs j and j ′.
• Linear mixed-effects models can be estimated by maximum likelihood. How-

ever, this method tends to underestimate the variance components.A modified
version of maximum likelihood, known as restricted maximum likelihood, is
therefore often recommended; this provides consistent estimates of the vari-
ance components. Details are given in Diggle et al. (2002) and Longford
(1993).

• It should also be noted that re-estimating the models after adding or subtract-
ing a constant from xj (e.g., its mean), will lead to different variance and
covariance estimates, but will not affect fixed effects.

• Competing linear mixed-effects models can be compared using a likelihood
ratio test. If, however, the models have been estimated by restricted maximum
likelihood this test can only be used if both models have the same set of fixed
effects (see Longford, 1993).

Assuming that the data is available as shown in Table 9.1 as the matrix timber,
we first need to rearrange it into what is known as the long form before we can
apply the lme function that fits linear mixed effects models. This simply means
that the repeated measurements are arranged “vertically” rather than horizontally
as in Table 9.1. Suitable R and S-PLUS® code to make this rearrangement is

x<-c(0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.2,1.4,
1.6,1.8)

#
slippage<-rep(x,8)
loads<-as.vector(t(timber))
specimen<-rep(1:8,rep(15,8))
#
timber.dat<-data.frame(specimen,slippage,loads)
#

The rearranged data (timber.dat) are shown in Table 9.3. We can now fit the two
models (A) and (B) as described in Display 9.1 and test one against the other using
the lme function (in R the nlme library will first need to be loaded);

#in R use library(nlme)
attach(timber.dat)
#random intercept model
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Table 9.3 Timber Data in “Long” Form

Observation Specimen Slippage Load

1 1 0.0 0.00

2 1 0.1 2.38

3 1 0.2 4.34

4 1 0.3 6.64

5 1 0.4 8.05

6 1 0.5 9.78

7 1 0.6 10.97

8 1 0.7 12.05

9 1 0.8 12.98

10 1 0.9 13.94

11 1 1.0 14.74

12 1 1.2 16.13

13 1 1.4 17.98

14 1 1.6 19.52

15 1 1.8 19.97

16 2 0.0 0.00

17 2 0.1 2.69

18 2 0.2 4.75

19 2 0.3 7.04

20 2 0.4 9.20

21 2 0.5 10.94

22 2 0.6 12.23

23 2 0.7 13.19

24 2 0.8 14.08

25 2 0.9 14.66

26 2 1.0 15.37

27 2 1.2 16.89

28 2 1.4 17.78

29 2 1.6 18.41

30 2 1.8 18.97

31 3 0.0 0.00

32 3 0.1 2.85

33 3 0.2 4.89

34 3 0.3 6.61

35 3 0.4 8.09

36 3 0.5 9.72

(Continued)
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Table 9.3 (Continued)

Observation Specimen Slippage Load

37 3 0.6 11.03

38 3 0.7 12.14

39 3 0.8 13.18

40 3 0.9 14.12

41 3 1.0 15.09

42 3 1.2 16.68

43 3 1.4 17.94

44 3 1.6 18.22

45 3 1.8 19.40

46 4 0.0 0.00

47 4 0.1 2.46

48 4 0.2 4.28

49 4 0.3 5.88

50 4 0.4 7.43

51 4 0.5 8.32

52 4 0.6 9.92

53 4 0.7 11.10

54 4 0.8 12.23

55 4 0.9 13.24

56 4 1.0 14.19

57 4 1.2 16.07

58 4 1.4 17.43

59 4 1.6 18.36

60 4 1.8 18.93

61 5 0.0 0.00

62 5 0.1 2.97

63 5 0.2 4.68

64 5 0.3 6.66

65 5 0.4 8.11

66 5 0.5 9.64

67 5 0.6 11.06

68 5 0.7 12.25

69 5 0.8 13.35

70 5 0.9 14.54

71 5 1.0 15.53

72 5 1.2 17.38

(Continued)
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Table 9.3 (Continued)

Observation Specimen Slippage Load

73 5 1.4 18.76

74 5 1.6 19.81

75 5 1.8 20.62

76 6 0.0 0.00

77 6 0.1 3.96

78 6 0.2 6.46

79 6 0.3 8.14

80 6 0.4 9.35

81 6 0.5 10.72

82 6 0.6 11.84

83 6 0.7 12.85

84 6 0.8 13.83

85 6 0.9 14.85

86 6 1.0 15.79

87 6 1.2 17.39

88 6 1.4 18.44

89 6 1.6 19.46

90 6 1.8 20.05

91 7 0.0 0.00

92 7 0.1 3.17

93 7 0.2 5.33

94 7 0.3 7.14

95 7 0.4 8.29

96 7 0.5 9.86

97 7 0.6 11.07

98 7 0.7 12.13

99 7 0.8 13.15

100 7 0.9 14.09

101 7 1.0 15.11

102 7 1.2 16.69

103 7 1.4 17.69

104 7 1.6 18.71

105 7 1.8 19.54

106 8 0.0 0.00

107 8 0.1 3.36

108 8 0.2 5.45

(Continued)
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Table 9.3 (Continued)

Observation Specimen Slippage Load

109 8 0.3 7.08

110 8 0.4 8.32

111 8 0.5 9.91

112 8 0.6 11.06

113 8 0.7 12.21

114 8 0.8 13.16

115 8 0.9 14.05

116 8 1.0 14.96

117 8 1.2 16.24

118 8 1.4 17.34

119 8 1.6 18.23

120 8 1.8 18.87

timber.lme<-
lme(loads∼slippage,random=∼1|specimen,data=timber.dat,
method="ML")

#random intercept and slope model
timber.lme1<-

lme(loads∼slippage,random=∼slippage|specimen,data
=timber.dat, method="ML")

#compare two models
anova(timber.lme,timber.lme1)

The p-value associated with the likelihood ratio test is very small indicating that
the random intercept and slope model is to be preferred over the simpler random
intercept model for these data. The results from this model found from

summary(timber.lme1)

are shown in Table 9.4. The regression coefficient for slippage is highly significant.
We can find the predicted values under this model and then plot them alongside a
plot of the raw data using the following R and S-PLUS code:

predictions<-matrix(predict(timber.lme1),ncol=15,byrow=T)
par(mfrow=c(1,2))
matplot(x,t(timber),type="l",col=1,xlab="Slippage",

ylab="Load",lty=1,

Table 9.4 Results of Random Intercept and Slope Model for the Timber Data

Effect Estimated reg coeff SE DF t-value p-value

Intercept 3.52 0.26 111 13.30 <0.0001
Slippage 10.37 0.28 111 36.59 <0.0001

σ̂u1 = 0.042, σ̂u2 = 0.014, σ̂ = 1.64.



9.2 Linear Mixed Effects Models for Repeated Measures Data 181

ylim=c(0,25))
title("(a)")
matplot(x,t(predictions),type="l",col=1,xlab="Slippage",

ylab="Load",lty=1,
ylim=c(0,25))
title("(b)")

The resulting plot is shown in Figure 9.1 Clearly the fit is not good. In fact, under
the random intercept and slope model the predicted values for each specimen are
almost identical, reflecting the fact that the estimated variances of both random
effects are essentially zero.

The plot of the observed values in Figure 9.1 shows that a quadratic term in
slippage is essential in any model for these data. Including this as a fixed effect, the
required model is

yij = β0 + β1xj + β2x
2
j + ui1 + ui2xj + εij . (9.1)

The necessary R and S-PLUS code to fit this model and test it against the previous
random intercept and slope model is

timber.lme2<-lme(loads∼slippage+I(slippage*slippage),
random=∼slippage|specimen,data=timber.dat,method="ML")
anova(timber.lme1,timber.lme2)

Figure 9.1 Observed timber data (a) and predicted values from random intercept and slope
model (b).
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Table 9.5 Results of Random Intercept and Slope Model with a Fixed Quadratic
Effect for Slippage for Timber Data

Effect Estimated reg coeff Sd S.E DF t-value p-value

Intercept 0.94 0.21 110 4.52 <0.0001
Slippage 19.89 0.33 110 61.11 <0.0001
Slippage2 −5.43 0.17 110 −32.62 <0.0001

σ̂u1 = 0.049, σ̂u2 = 0.032, σ̂ = 0.50.

The p-value from the likelihood ratio test is less than 0.0001 indicating that the
model that includes a quadratic term does provide a much improved fit. The results
from this model are shown in Table 9.5. Both the linear and quadratic effects of
slippage are highly significant.

We can now produce a similar plot to that in Figure 9.1 but showing the predicted
values from the model in (9.1). The code is similar to that given above and so is not
repeated again here. The resulting plot is shown in Figure 9.2. Clearly the model
describes the data more satisfactorily although there remains an obvious problem
which is taken up in Exercise 9.1.

Now we can move on to consider the data in Table 9.2, which we assume are
available as the matrix plasma. Here we will begin by plotting the data so that we

Figure 9.2 Observed timber data (a) and predicted values from random intercept and slope
model that includes a quadratic effect for slippage (b).
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get some ideas as to what form of linear mixed effect model might be appropriate.
First we plot the raw data separately for the control and the obese groups using the
following code:

par(mfrow=c(1,2))
matplot(matrix(c(0.0,0.5,1.0,1.5,2.0,2.5,3.0,4.0),ncol=1),
t(plasma[1:13,]),type="l",col=1,lty=1,
xlab="Time (hours after oral glucose challenge)",

ylab="Plasma inorganic phosphate",ylim=c(1,7))
title("Control")
matplot(matrix(c(0.0,0.5,1.0,1.5,2.0,2.5,3.0,4.0),ncol=1),
t(plasma[14:33,]),type="l",col=1,lty=1,
xlab="Time (hours after glucose challenge)",ylab="Plasma

inorganic phosphate",ylim=c(1,7))
title("Obese")

This gives Figure 9.3. The profiles in both groups show some curvature, suggesting
that a quadratic effect of time may be needed in any model. There also appears to
be some difference in the shape of the curves in the two groups, suggesting perhaps
the need to consider a group × time interaction.

Next we plot the scatterplot matrices of the repeated measurements for the two
groups using;

pairs(plasma[1:13,])
pairs(plasma[14:33,])

Figure 9.3 Glucose challenge data for control and obese groups.
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The results are shown in Figures 9.4 and 9.5. Both plots indicate that the correla-
tions of pairs of measurements made at different times differ so that the compound
symmetry structure for these correlations is unlikely to be appropriate.

On the basis of the plots in Figure 9.3–9.5 we will begin by fitting the model in
(9.1) with the addition, in this case, of an extra covariate, namely a dummy variable
coding the group, control or obese, to which a subject belongs. We first need to put
the data into the long form and combine with the appropriate group coding, subject
number, and time. The necessary R and S-PLUS code for this is:

#
group<-rep(c(0,1),c(104,160))
#
time<-c(0.0,0.5,1.0,1.5,2.0,3.0,4.0,5.0)
time<-rep(time,33)
#
subject<-rep(1:33,rep(8,33))
plasma.dat<-cbind(subject,time,group,as.vector(t(plasma)))
dimnames(plasma.dat)<-list(NULL,c("Subject","Time","Group",

"Plasma"))
plasma.df<-as.data.frame(plasma.dat)
plasma.df$Group<-factor(plasma.df$Group,levels=c(0,1),

labels=c("Control","Obese"))
attach(plasma.df)

Figure 9.4 Scatterplot matrix for control group in Table 9.2.
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Figure 9.5 Scatterplot matrix for obese group in Table 9.2.

The first part of the rearranged data is shown in Table 9.6. We can fit the required
model using

plasma.lme1<-lme(Plasma∼Time+I(Time*Time)+Group,random
=∼Time|Subject,

data=plasma.df,method="ML")
summary(plasma.lme1)

The results are shown in Table 9.7. The regression coefficients for linear and
quadratic time are both highly significant. The group effect just fails to reach
significance at the 5% level. A confidence interval for the group effect is obtained
from 0.38 ± 2.04 × 0.19 giving [−0.001, 0.767]. (In S-PLUS the group effect and
its standard error will be half those given in R corresponding to the group levels being
coded by default as −1 and 1. This can be changed by use of thecontr.treatment
function.)

Here to demonstrate what happens if we make a very misleading assumption
about the correlational structure of the repeated measurements, we will compare the
results in Table 9.7 with those obtained if we assume that the repeated measurements
are independent. The independence model can be fitted in the usual way with the
lm function (see Chapter 8):

summary(lm(Plasma∼Time+I(Time*Time)+Group,data=plasma.df))
The results are shown in Table 9.8. We see that under the independence assumption
the standard error for the group effect is about one-half of that given in Table 9.7 and
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Table 9.6 Part of Glucose Challenge Data in “Long” Form

Subject Time Group Plasma

1 1 0.0 Control 4.3
2 1 0.5 Control 3.3
3 1 1.0 Control 3.0
4 1 1.5 Control 2.6
5 1 2.0 Control 2.2
6 1 3.0 Control 2.5
7 1 4.0 Control 3.4
8 1 5.0 Control 4.4
9 2 0.0 Control 3.7

10 2 0.5 Control 2.6
11 2 1.0 Control 2.6
12 2 1.5 Control 1.9
13 2 2.0 Control 2.9
14 2 3.0 Control 3.2
15 2 4.0 Control 3.1
16 2 5.0 Control 3.9
17 3 0.0 Control 4.0
18 3 0.5 Control 4.1
19 3 1.0 Control 3.1
20 3 1.5 Control 2.3

if used would lead to the claim of strong evidence of a difference between control
and obese patients.

We will now plot the predicted values from the fitted linear mixed effects model
for each group using

predictions<-matrix(predict(plasma.lme1),ncol=8,byrow=T)
par(mfrow=c(1,2))
matplot(matrix(c(0.0,0.5,1,1.5,2,3,4,5),ncol=1),
t(predictions[1:13,]),type="l",lty=1,col=1,
xlab="Time (hours after glucose challenge)",ylab="Plasma

inorganic phosphate",ylim=c(1,7))
title("Control")
matplot(matrix(c(0.0,0.5,1,1.5,2,3,4,5),ncol=1),

Table 9.7 Results from Random Slope and Intercept Model with Fixed
Quadratic Time Effect Fitted to Glucose Challenge Data

Effect Estimated reg coeff SE DF t-value p-value

Intercept 3.95 0.17 229 23.74 <0.0001
Time −0.83 0.06 229 −13.34 <0.0001
Time2 0.16 0.01 229 14.47 <0.0001
Group 0.38 0.19 31 2.03 0.051

σ̂u1 = 0.61, σ̂u2 = 0.12, σ̂ = 0.42.
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Table 9.8 Results from Independence Model Fitted to Glucose
Challenge Data

Effect Estimated reg coeff Sd S.E t-value p-value

Intercept 3.91 0.11 36.25 <0.0001
Time −0.83 0.10 −8.65 <0.0001
Time2 0.16 0.02 8.80 <0.0001
Group 0.46 0.09 5.24 <0.0001

t(predictions[14:33,]),type="l",lty=1,col=1,
xlab="Time (hours after glucose challenge)",ylab="Plasma

inorganic phosphate",ylim=c(1,7))
title("Obese")

This gives Figure 9.6. We can see that the model has captured the profiles of the
control group relatively well but not those of the obese group. We need to consider
a further model that contains a group × time interaction.

The required model can be fitted and tested against the previous model using

Figure 9.6 Fitted values from random intercept and slope model with fixed quadratic effect
for glucose challenge data.
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plasma.lme2<-lme(Plasma∼Time*Group+I(Time*Time),random
=∼Time|Subject,

data=plasma.df,method="ML")
#
anova(plasma.lme1,plasma.lme2)

The p-value associated with the likelihood ratio test is 0.0011, indicating that the
model containing the interaction term is to be preferred. The results for this model
are given in Table 9.9. The interaction effect is highly significant. The fitted values
from this model are shown in Figure 9.7 (the code is very similar to that given for
producing Figure 9.6). The plot shows that the new model has produced predicted
values that more accurately reflect the raw data plotted in Figure 9.3. The predicted
profiles for the obese group are “flatter” as required.

We can check the assumptions of the final model fitted to the glucose challenge
data, that is, the normality of the random effect terms and the residuals by first using
the random.effects function to predict the former and the resid function to
calculate the differences between the observed data values and the fitted values, and
then using normal probability plots on each. How the random effects are predicted
is explained briefly in Display 9.2. The necessary R and S-PLUS code to obtain the
effects, residuals and plots is as follows:

res.int<-random.effects(plasma.lme2)[,1]
res.int
res.slope<-random.effects(plasma.lme2)[,2]
par(mfrow=c(1,3))
qqnorm(res.int,ylab="Estimated random intercepts",

main="Random intercepts")
qqnorm(res.slope,ylab="Estimated random slopes",

main="Random slopes")
resids<-resid(plasma.lme2)
qqnorm(resids,ylab="Estimated residuals",main="Residuals")

The resulting plot is shown in Figure 9.8. The plot of the residuals is linear as
required, but there is some slight deviation from linearity for each of the predicted
random effects.

Table 9.9 Results from Random Intercept Slope and Model with Quadratic Time
Effect and Group × Time Interaction Fitted to Glucose Challenge Data

Effect Estimated reg coeff SE DF t-value p-value

Intercept 3.70 0.18 228 20.71 <0.0001
Time −0.73 0.07 228 −10.90 <0.0001
Time2 0.16 0.01 228 14.44 <0.0001
Group 0.81 0.22 31 3.60 0.0011
Group × time −0.16 0.05 228 −3.51 0.0005

σ̂u1 = 0.57, σ̂u2 = 0.09, σ̂ = 0.42.
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Figure 9.7 Fitted values from random intercept and slope model with fixed quadratic effect
and group × time interaction for glucose challenge data.

Display 9.2
Prediction of Random Effects

• The random effects are not estimated as part of the model. However, having
estimated the model, we can predict the values of the random effects.

• According to Bayes theorem, the posterior probability of the random effects
is given by

Pr(u|y, x) = f (y|u, x)g(u),

where f (y|u, x) is the conditional density of the responses given the random
effects and covariates (a product of normal densities) and g(u) is the prior
density of the random effects (multivariate normal). The means of this poste-
rior distribution can be used as estimates of the random effects and are known
as empirical Bayes estimates.
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• The empirical Bayes estimator is also known as a shrinkage estimator because
the predicted random effects are smaller in absolute value than their fixed-
effect counterparts.

• Best linear unbiased predictions (BLUPs) are linear combinations of the
responses that are unbiased estimators of the random effects and minimize
the mean square error.

9.3 Dropouts in Longitudinal Data

A problem that frequently occurs when collecting longitudinal data is that some
of the intended measurements are, for one reason or another, not made. In clinical
trials, for example, some patients may miss one or more protocol scheduled visits
after treatment has begun and so fail to have the required outcome measure taken.
There will be other patients who do not complete the intended follow-up for some
reason and drop out of the study before the end date specified in the protocol. Both
situations result in missing values of the outcome measure. In the first case these
are intermittent, but dropping out of the study implies that once an observation at
a particular time point is missing so are all the remaining planned observations.

Figure 9.8 Probability plots of predicted random intercepts, random slopes, and residuals
for final model fitted to glucose challenge data.
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Many studies will contain missing values of both types, although in practice it is
dropouts that cause most problems when turning to analyzing the resulting data set.

An example of a set of longitudinal data in which a number of patients have
dropped out is given in Table 9.10. These data are essentially a subset of those
collected in a clinical trial that is described in detail in Proudfoot et al. (2003).
The trial was designed to assess the effectiveness of an interactive program using
multimedia techniques for the delivery of cognitive behavioral therapy for depressed
patients and known as Beating the Blues (BtB). In a randomized controlled trial of
the program, patients with depression recruited in primary care were randomized to
either the BtB program, or to Treatment as Usual (TAU). The outcome measure used
in the trial was the Beck Depression Inventory II (Beck et al., 1996) with higher
values indicating more depression. Measurements of this variable were made on
five occasions, one prior to the start of treatment and at two monthly intervals after
treatment began. In addition whether or not a participant in the trial was already
taking antidepressant medication was noted along with the length of time they had
been depressed.

To begin we shall graph the data here by plotting the boxplots of each of the
five repeated measures separately for each treatment group. Assuming the data are
available as the data frame btb.data the necessary code is

par(mfrow=c(2,1))
boxplot(btb.data[Treatment=="TAU",4],btb.data

[Treatment=="TAU",5],btb.data[Treatment=="TAU",6],
btb.data[Treatment=="TAU",7],btb.data[Treatment=="TAU",8],

names=c("BDIpre","BDI2m","BDI4m","BDI6m",
"BDI8m"),ylab="BDI",xlab="Visit",col=1)
title("TAU")
boxplot(btb.data[Treatment=="BtheB",4],btb.data

[Treatment=="BtheB",5],btb.data[Treatment=="BtheB",6],
btb.data[Treatment=="BtheB",7],btb.data

[Treatment=="BtheB",8],names=c("BDIpre","BDI2m","BDI4m",
"BDI6m","BDI8m"),ylab="BDI",xlab="Visit",col=1)
title("BtheB")

The resulting diagram is shown in Figure 9.9.
Figure 9.9 shows that there is decline in BDI values in both groups with perhaps

the values in the BtheB group being lower at each postrandomization visit. We shall
fit both random intercept and random intercept and slope models to the data includ-
ing the pre-BDI values, treatment group, drugs, and length as fixed-effect covariates.
First we need to rearrange the data into the long form using the following code:

n<-length(btb.data[,1])
#
BDI<-as.vector(t(btb.data[,c(5,6,7,8)]))
#
treat<-rep(btb.data[,3],rep(4,n))
subject<-rep(1:n,rep(4,n))
preBDI<-rep(btb.data[,4],rep(4,n))
drug<-rep(btb.data[,1],rep(4,n))
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Table 9.10 Subset of Data from the Original BtB Trial

Sub DRUG Duration Treatment BDIpre BDI2m BDI3m BDI5m BDI8m

1 n >6 m TAU 29 2 2 NA NA

2 y >6 m BtheB 32 16 24 17 20

3 y <6 m TAU 25 20 NA NA NA

4 n >6 m BtheB 21 17 16 10 9

5 y >6 m BtheB 26 23 NA NA NA

6 y <6 m BtheB 7 0 0 0 0

7 y <6 m TAU 17 7 7 3 7

8 n >6 m TAU 20 20 21 19 13

9 y <6 m BtheB 18 13 14 20 11

10 y >6 m BtheB 20 5 5 8 12

11 n >6 m TAU 30 32 24 12 2

12 y <6 m BtheB 49 35 NA NA NA

13 n >6 m TAU 26 27 23 NA NA

14 y >6 m TAU 30 26 36 27 22

15 y >6 m BtheB 23 13 13 12 23

16 n <6 m TAU 16 13 3 2 0

17 n >6 m BtheB 30 30 29 NA NA

18 n <6 m BtheB 13 8 8 7 6

19 n >6 m TAU 37 30 33 31 22

20 y <6 m BtheB 35 12 10 8 10

21 n >6 m BtheB 21 6 NA NA NA

22 n <6 m TAU 26 17 17 20 12

23 n >6 m TAU 29 22 10 NA NA

24 n >6 m TAU 20 21 NA NA NA

25 n >6 m TAU 33 23 NA NA NA

26 n >6 m BtheB 19 12 13 NA NA

27 y <6 m TAU 12 15 NA NA NA

28 y >6 m TAU 47 36 49 34 NA

29 y >6 m BtheB 36 6 0 0 2

30 n <6 m BtheB 10 8 6 3 3

31 n <6 m TAU 27 7 15 16 0

32 n <6 m BtheB 18 10 10 6 8

33 y <6 m BtheB 11 8 3 2 15

34 y <6 m BtheB 6 7 NA NA NA

35 y >6 m BtheB 44 24 20 29 14

36 n <6 m TAU 38 38 NA NA NA

(Continued)
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Table 9.10 (Continued)

Sub DRUG Duration Treatment BDIpre BDI2m BDI3m BDI5m BDI8m

37 n <6 m TAU 21 14 20 1 8

38 y >6 m TAU 34 17 8 9 13

39 y <6 m BtheB 9 7 1 NA NA

40 y >6 m TAU 38 27 19 20 30

41 y <6 m BtheB 46 40 NA NA NA

42 n <6 m TAU 20 19 18 19 18

43 y >6 m TAU 17 29 2 0 0

44 n >6 m BtheB 18 20 NA NA NA

45 y >6 m BtheB 42 1 8 10 6

46 n <6 m BtheB 30 30 NA NA NA

47 y <6 m BtheB 33 27 16 30 15

48 n <6 m BtheB 12 1 0 0 NA

49 y <6 m BtheB 2 5 NA NA NA

50 n >6 m TAU 36 42 49 47 40

51 n <6 m TAU 35 30 NA NA NA

52 n <6 m BtheB 23 20 NA NA NA

53 n >6 m TAU 31 48 38 38 37

54 y <6 m BtheB 8 5 7 NA NA

55 y <6 m TAU 23 21 26 NA NA

56 y <6 m BtheB 7 7 5 4 0

57 n <6 m TAU 14 13 14 NA NA

58 n <6 m TAU 40 36 33 NA NA

59 y <6 m BtheB 23 30 NA NA NA

60 n >6 m BtheB 14 3 NA NA NA

61 n >6 m TAU 22 20 16 24 16

62 n >6 m TAU 23 23 15 25 17

63 n <6 m TAU 15 7 13 13 NA

64 n >6 m TAU 8 12 11 26 NA

65 n >6 m BtheB 12 18 NA NA NA

66 n >6 m TAU 7 6 2 1 NA

67 y <6 m TAU 17 9 3 1 0

68 y <6 m BtheB 33 18 16 NA NA

69 n <6 m TAU 27 20 NA NA NA

70 n <6 m BtheB 27 30 NA NA NA

71 n <6 m BtheB 9 6 10 1 0

72 n >6 m BtheB 40 30 12 NA NA

(Continued)
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Table 9.10 (Continued)

Sub DRUG Duration Treatment BDIpre BDI2m BDI3m BDI5m BDI8m

73 n >6 m TAU 11 8 7 NA NA

74 n <6 m TAU 9 8 NA NA NA

75 n >6 m TAU 14 22 21 24 19

76 y >6 m BtheB 28 9 20 18 13

77 n >6 m BtheB 15 9 13 14 10

78 y >6 m BtheB 22 10 5 5 12

79 n <6 m TAU 23 9 NA NA NA

80 n >6 m TAU 21 22 24 23 22

81 n >6 m TAU 27 31 28 22 14

82 y >6 m BtheB 14 15 NA NA NA

83 n >6 m TAU 10 13 12 8 20

84 y <6 m TAU 21 9 6 7 1

85 y >6 m BtheB 46 36 53 NA NA

86 n >6 m BtheB 36 14 7 15 15

87 y >6 m BtheB 23 17 NA NA NA

88 y >6 m TAU 35 0 6 0 1

89 y <6 m BtheB 33 13 13 10 8

90 n <6 m BtheB 19 4 27 1 2

91 n <6 m TAU 16 NA NA NA NA

92 y <6 m BtheB 30 26 28 NA NA

93 y <6 m BtheB 17 8 7 12 NA

94 n >6 m BtheB 19 4 3 3 3

95 n >6 m BtheB 16 11 4 2 3

96 y >6 m BtheB 16 16 10 10 8

97 y <6 m TAU 28 NA NA NA NA

98 n >6 m BtheB 11 22 9 11 11

99 n <6 m TAU 13 5 5 0 6

100 y <6 m TAU 43 NA NA NA NA

length<-rep(btb.data[,2],rep(4,n))
time<-rep(c(2,4,6,8),n)
#
#
btb.bdi<-data.frame(subject,treat,drug,length,preBDI,

time,BDI)
#
attach(btb.bdi)
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Figure 9.9 Boxplots for the repeated measures by treatment group for the BtheB data.

The resulting data frame btb.bdi contains a number of missing values and in
applying the lme function these will need to be dropped. But notice it is only the
missing values that are removed, not participants that have at least one missing
value. All the available data is used in the model fitting process. We can fit the two
models and test which is most appropriate using

btbbdi.fit1 <- lme(BDI ∼ preBDI + time + treat + drug
+ length, method = "ML", random

= ∼ 1 | subject, data= btb.bdi, na.action = na.omit)
btbbdi.fit2 <- lme(BDI ∼ preBDI + time + treat + drug

+ length, method = "ML", random
= ∼ time | subject,data = btb.bdi, na.action = na.omit)
anova(btbbdi.fit1, btbbdi.fit2)

This results in

Model df AIC BIC logLik Test L.Ratio p-value
btbbdi.fit1 1 8 1886.624 1915.702 −935.3121
btbbdi.fit2 2 10 1889.808 1926.156 −934.9040 1 vs 2 0.8160734 0.665

Clearly the simpler random intercept model is adequate for these data. The results
from this model can be found using

summary(btbbdi.fit1)

and they are given in Table 9.11. Only time and the pre-BDI regression coefficients
are significantly different from zero. In particular there is no occurring evidence of
a treatment effect.
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Table 9.11 Results from Random Intercept Model
Fitted to BtheB Data

Effect Estimated reg coeff SE DF t-value p-value

Intercept 5.94 2.10 182 2.27 0.0986
Pre BDI 0.64 0.08 92 8.14 <.0001
Time −0.72 0.15 182 −4.86 <.0001
Treatment −2.37 1.68 92 −1.41 0.1616
Drug −2.80 1.74 92 −1.61 0.1110
Duration 0.26 1.65 92 0.16 0.8769

σ̂u1 = 6.95, σ̂ = 5.01.

We now need to consider briefly how the dropouts may affect the analyses
reported above. To understand the problems that patients dropping out can cause
for the analysis of data from a longitudinal trial we need to consider a classifica-
tion of dropout mechanisms first introduced by Rubin (1976). The type of mech-
anism involved has implications for which approaches to analysis are suitable and
which are not. Rubin’s suggested classification involves three types of dropout
mechanism:

• Dropout completely at random (DCAR): Here the probability that a patient drops
out does not depend on either the observed or missing values of the response.
Consequently the observed (nonmissing) values effectively constitute a simple
random sample of the values for all subjects. Possible examples include missing
laboratory measurements because of a dropped testtube (if it was not dropped
because of the knowledge of any measurement), the accidental death of a par-
ticipant in a study, or a participant moving to another area. Intermittent missing
values in a longitudinal data set, whereby a patient misses a clinic visit for transi-
tory reasons (“went shopping instead” or the like) can reasonably be assumed to
be DCAR. Completely random dropout causes the least problem for data analysis,
but it is a strong assumption.

• Dropout at random (DAR): The dropout-at-random mechanism occurs when
the probability of dropping out depends on the outcome measures that have
been observed in the past, but given this information is conditionally indepen-
dent of all the future (unrecorded) values of the outcome variable following
dropout. Here “missingness” depends only on the observed data with the dis-
tribution of future values for a subject who drops out at a particular time being
the same as the distribution of the future values of a subject who remains in
at that time, if they have the same covariates and the same past history of out-
come up to and including the specific time point. Murray and Findlay (1988)
provide an example of this type of missing value from a study of hypertensive
drugs in which the outcome measure was diastolic blood pressure. The pro-
tocol of the study specified that the participant was to be removed from the
study when his/her blood pressure got too large. Here blood pressure at the
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time of dropout was observed before the participant dropped out, so although
the dropout mechanism is not DCAR since it depends on the values of blood
pressure, it is DAR, because dropout depends only on the observed part of the
data. A further example of a DAR mechanism is provided by Heitjan (1997),
and involves a study in which the response measure is body mass index (BMI).
Suppose that the measure is missing because subjects who had high body mass
index values at earlier visits avoided being measured at later visits out of embar-
rassment, regardless of whether they had gained or lost weight in the intervening
period. The missing values here are DAR but not DCAR; consequently methods
applied to the data that assumed the latter might give misleading results (see later
discussion).

• Nonignorable (sometimes referred to as informative): The final type of dropout
mechanism is one where the probability of dropping out depends on the
unrecorded missing values—observations are likely to be missing when the
outcome values that would have been observed had the patient not dropped
out, are systematically higher or lower than usual (corresponding perhaps to
their condition becoming worse or improving). A nonmedical example is when
individuals with lower income levels or very high incomes are less likely to
provide their personal income in an interview. In a medical setting possible
examples are a participant dropping out of a longitudinal study when his/her
blood pressure became too high and this value was not observed, or when
their pain become intolerable and we did not record the associated pain value.
For the BDI example introduced above, if subjects were more likely to avoid
being measured if they had put on extra weight since the last visit, then the
data are nonignorably missing. Dealing with data containing missing values
that result from this type of dropout mechanism is difficult. The correct anal-
yses for such data must estimate the dependence of the missingness proba-
bility on the missing values. Models and software that attempt this are avail-
able (see, e.g., Diggle and Kenward, 1994) but their use is not routine and, in
addition, it must be remembered that the associated parameter estimates can be
unreliable.

Under what type of dropout mechanism are the mixed effects models considered
in this chapter valid? The good news is that such models can be shown to give valid
results under the relatively weak assumption that the dropout mechanism is DAR
(see Carpenter et al., 2002). When the missing values are thought to be informative,
any analysis is potentially problematical. But Diggle and Kenward (1994) have
developed a modeling framework for longitudinal data with informative dropouts,
in which random or completely random dropout mechanisms are also included as
explicit models.

The essential feature of the procedure is a logistic regression model for the proba-
bility of dropping out, in which the explanatory variables can include previous values
of the response variable, and, in addition, the unobserved value at dropout as a latent
variable (i.e., an unobserved variable). In other words, the dropout probability is
allowed to depend on both the observed measurement history and the unobserved
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value at dropout. This allows both a formal assessment of the type of dropout mech-
anism in the data, and the estimation of effects of interest, for example, treatment
effects under different assumption about the dropout mechanism. A full account
technical account of the model is given in Diggle and Kenward (1994) and a detailed
example that uses the approach is described in Carpenter et al. (2002).

One of the problems for an investigator struggling to identify the dropout mech-
anism in a data set is that there are no routine methods to help, although a number
of largely ad hoc graphical procedures can be used as described in Diggle (1998),
Everitt (2002), and Carpenter (2002). Exercise 9.4 considers one of these.

9.4 Summary

Linear mixed effects models are extremely useful for modelling longitudinal data
in particular and repeated measures data more generally. The models allow the
correlations between the repeated measurements to be accounted for so that cor-
rect inferences can be drawn about the effects of covariates of interest on the
repeated response values. In this chapter we have concentrated on responses that are
continuous and conditional on the explanatory variables and random effects have
a normal distribution. But random effects models can also be applied to nonnormal
responses, for example, binary variables; see, for example, Everitt (2002).

The lack of independence of repeated measures data is what makes the modelling
of such data a challenge. But even when only a single measurement of a response
is involved, correlation can, in some circumstances, occur between the response
values of different individuals and cause similar problems. As an example consider
a randomized clinical trial in which subjects are recruited at multiple study centers.
The multicenter design can help to provide adequate sample sizes and enhance the
generalizability of the results. However factors that vary by center, including patient
characteristics and medical practice patterns, may exert a sufficiently powerful effect
to make inferences that ignore the “clustering” seriously misleading. Consequently
it may be necessary to incorporate random effects for centers into the analysis.

Exercises
9.1 The final model fitted to the timber data did not constrain the fitted curves to

go through the origin although this is clearly necessary. Fit an amended model
where this constraint is satisfied and plot the new predicted values.

9.2 Investigate a further model for the glucose challenge data that allow a random
quadratic effect.

9.3 Fit an independence model to the BtheB data and compare the estimated
treatment effect confidence interval with that from the random intercept model
described in the text.

9.4 Investigate whether there is any evidence of an interaction between treatment
and time for the Beat the Blues data.
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9.5 One very simple procedure for assessing the dropout mechanism suggested in
Carpenter et al. (2002) involves plotting the observations for each treatment
group, at each time point, differentiating between two categories of patients;
those who do and those who do not attend their next scheduled visit. Any
clear difference between the distributions of values for these two categories
indicates that dropout is not completely at random. Produce such a plot for
the Beat the Blues data.



Appendix
An Aide Memoir for R and S-PLUS®

1. Elementary Commands

Elementary commands consist of either expressions or assignments. For example,
typing the expression

> 42 + 8

in the Commands window and pressing Return will produce the following
output:

[1] 50

In the remainder of this chapter, we will show the command (preceded by the prompt
>) and the output as they would appear in the Commands window together like
this:

> 42 + 8
[1] 50

Instead of just evaluating an expression, we can assign the value to a scalar using
the syntax scalar <- expression

> x <- 42 + 8

Longer commands can be split over several lines by pressing Return before the
command is complete. To indicate waiting for completion of a command, a “+”
occurs instead of the > prompt. For illustration, we break the line in the assignment
above:

> x<-
+ 48+8

200
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2. Vectors

A commonly used type of R and S-PLUS® object is a vector.Vectors may be created
in several ways of which the most common is via the concentrate command,c, which
combines all values given as arguments to the function into a vector. For example,

>x<-c(1, 2, 3,4)
>x
[1] 1 2 3 4

Here, the first command creates a vector and the second command, x, a short-form
for print(x), causes the contents of the vector to be printed. (Note that R and
S-PLUS are case sensitive, and so, for example, x and X are different objects.)
The number of elements of a vector can be determined using the length()
function:

>length(x)
[1] 4

The c function can also be used to combine strings which are denoted by enclosing
them in “.” For example,

>names <-c ("Brian", "Sophia", "Harry")
>names
[1] "Brian" "Sophia" "Harry"

The c() function also works with a mixture of numeric and string values, but in
this case, all elements in the resulting vector will be converted to strings as in the
following.

> mix <-c(names, 55, 33)
> mix
[1] "Brian" "Sophia" "Harry" "55" "33"

Vectors consisting of regular sequences of numbers can be created using the
seq() function. The general syntax of this function is seq(lower, upper,
increment). Some examples are given below:

>seq (1, 5, 1)
[1] 1 2 3 4 5
>seq (2, 20, 2)
[1] 2 4 6 8 10 12 14 16 18 20
>x <-c(seq(1, 5, 1), seq (4, 20, 4))
>x
[1] 1 2 3 4 5 4 8 12 16 20

When the increment argument is one it can be left out of the command. The same
applies to the lower value. More information about the seq function and all other
R and S-PLUS functions can be found using the help facilities, e.g.,

>help(seq)

shows the following information:
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Sequences with increments of one can also be obtained using the syntax first:
last, for example,

>1:5
[1] 1 2 3 4 5

A further useful function for creating vectors with regular patterns is the rep func-
tion, with general form rep(pattern, number of times). For example,

>rep(10, 5)
[1] 10 10 10 10 10
>rep (1:3, 3)
[1] 1 2 3 1 2 3 1 2 3
> x <- rep(seq(5), 2)
> x
[1] 1 2 3 4 5 1 2 3 4 5

The second argument of rep can also be a vector of the same length as the first
argument to indicate how often each element of the first argument is to be repeated
as shown in the following;

> x <- rep(seq (3), c(1, 2, 3))
> x
[1] 1 2 2 3 3 3

Increasingly complex vectors can be built by repeated use of the rep function

> x <- rep (seq (3), rep (3, 3))
> x
[1] 1 1 1 2 2 2 3 3 3



2. Vectors 203

We can access a particular element of a vector by giving the required position in
square brackets- here are two examples

> x <- 1:5
> x[3]
[1] 3

>x[c(1, 4)]
[1] 1 4

A vector containing several elements of another vector can be obtained by giving a
vector of required positions in square brackets:

> x[c(1, 3)]
[1] 1 3
> x[1:3]
[1] 1 2 3

We can carry out any of the arithmetic operations described in Table A.1 between
two scalars, a vector and a scalar or two vectors. An arithmetic operation between
two vectors returns a vector whose elements are the results of applying the operation
to the corresponding elements of the original vectors. Some examples follow:

> x<- 1:3
> x+2
[1] 3 4 5

>x + x
[1] 2 4 6
> x* x
[1] 1 4 9

We can also apply mathematical functions such as the square root or logarithm, or
the others listed in Table A.2, to vectors. The functions are simply applied to each
element of the vector. For example,

> x <- 1:3
> sqrt (x*x)
[1] 1 2 3

Table A.1 Arithmetic Operators

Operator Meaning Expression Result

+ Plus 2 + 3 5
− Minus 5 − 2 3
∗ Times 5 ∗ 2 10
/ Divided by 10/2 5
∧ Power 2 ∧ 3 8



204 Appendix: An Aide Memoir for R and S-PLUS

Table A.2 Common Functions

S-PLUS function Meaning

sqrt () Square root
log () Natural logarithm
log10 () Logarithm base 10
exp () Exponential
abs () Absolute value
round () Round to nearest integer
ceiling () Round up
floor () Round down
sin (), cos (), tan () sine, cosine, tangent
asin (), acos (), atan () arc sine, arc cosine, arc tangent

3. Matrices

Matrix objects are frequently needed in R and S-PLUS and can be created by the
use of the matrix function. The general syntax is

matrix (data, nrow, ncol, byrow = F)

The last argument specifies whether the matrix is to be filled row by row or column
by column and takes on a logical value. The expression byrow=F indicates that F
(false) is the default value. An example follows;

> x <-c(1, 2, 3)
> y <-c(4, 5, 6)
> xy <- matrix (c(x, y), nrow =2)
> xy

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

Here the number of columns is not specified and so is determined by simple division:

> xy <-matrix (c(x, y), nrow = 2, byrow =T)
xy

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

Here the matrix, is filled row-wise instead of by columns by setting the byrow
argument to T for True. A square bracket with two numbers separated by a comma
is used to refer to an element of a matrix. The first number specifies the row, and
the second specifies the column.

>xy [1, 3]
[1] 3

The [i,] and [,j] nomenclature is used to refer to complete rows or columns
of a matrix and can be used to extract particular rows or columns as shown in the
following examples;
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> xy [1,]
[1] 1 2 3
> xy [,2]
[1] 2 5

>xy [, c(1, 3)]

[,1] [,2]
[1,] 1 3
[2,] 4 6

As with vectors, arithmetic operations operate element by element when applied to
matrices, for example;

> xy* xy

[,1] [,2] [,3]
[1,] 1 4 9
[2,] 16 25 36
Matrix multiplication is performed using the %∗% operation as here

> xy %*% t(xy)

[,1] [,2]
[1,] 14 32
[2,] 32 77

Here the matrix xy is multiplied by its transpose (obtained using the t () function).
An attempt to apply matrix multiplication to xy by xy would, of course, result in
an error message. It is usually extremely helpful to attach names to the rows and
columns to a matrix. This can be done using the dimension() function. We shall
illustrate this in Section 5 after we have covered list objects.

As with vectors, matrices can be formed from numeric and string objects, but in
the resulting matrix, all elements will be strings as illustrated below:

> Mix <- matrix(c(names, 55, 32, 30), nrow = 2
+ byrow = T)
> Mix

[,1] [,2] [,3]
[1,] "Brian" "Sophia" "Harry"
[2,] "55" "32" "30"

Higher dimensional matrices with up to eight dimensions can be defined using the
array() function.

4. Logical Expressions

So far, we have mentioned values of type numeric or character (string). When a
numeric value is missing, it is of type NA. (Complex numbers are also available.)
Another type in R and S-PLUS is logical. There are two logical values, T (true) and
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Table A.3 Logical Operators

Operator Meaning

< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
!= Not equal to
& And
| Or
! not

F (false), and a number of logical operations that are extremely useful when making
comparisons and choosing particular elements from vectors and matrices.

The symbols used for the logical operations are listed in Table A.3. We can use
a logical expression to assign a logical value (T or F) to x:

> x <-3 = = 4
> x
[1] F
> x <-3 < 4
> x
[1] T
> x < - 3 = = 4 & 3 < 4
> x
[1] F
> x < - 3 = = 4 | 3 < 4
> x
[1] T

In addition to logical operators, there are also logical functions. Some examples are
given below:

> is.numeric (3)
[1] T
> is.character (3)
[1] F
> is.character ("3")
[1] T
> 1/0
[1] Inf
>is.numeric (1/0)
[1] T
>is.infinite (1/0)
[1] T

Logical operators or functions operate on elements of vectors and matrices in the
same say as arithmetic operators:

> is.na(c(1, 0, NA, 1))
[1] F F T F
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> ! is.na (c(1, 0, NA, 1))
[1] T T F T
> x <- seq(20)
> x <10
[1] T T T T T T T T T F F F F F F F F F F F

A logical vector can be used to extract a subset of elements from another vector as
follows:

> x[x <10]
[1] 1 2 3 4 5 6 7 8 9

Here, the elements of the vector less than 10 are selected as the values corresponding
to T in the vector x < 10. We can also select element in x depending on the values
in another vector y :

> x <-seq(50)
> y <- c(rep(0, 10), rep(1, 40))
> x[y = =0]
[1] 1 2 3 4 5 6 7 8 9 10

5. List Objects

List objects allow any other R or S-PLUS objects to be linked together. For
example,

>x<-seq(10)
>y<- matrix(seq(10), nrow = 5
>xylist<-list (x,y)
>xylist
[[1]]:
[1] 1 2 3 4 5 6 7 8 9 10

[[2]]:

[,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10

Note the elements of the list are referred to by a double square brackets notation;
so we can print the first component of the list using

>xylist[[1]]
[1] 1 2 3 4 5 6 7 8 9 10

The components of the list can also be given names and later referred using the
list$name notation,
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>xylist <-list (X=x, Y=y)
>xylist$X
[1] 1 2 3 4 5 6 7 8 9 10

List objects can, of course, include other list objects

>newlist<-list(xy=xylist, z=rep(0,10))
>newlist$xy
$X
[1] 1 2 3 4 5 6 7 8 9 10

$Y:

[,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10

>newlist$z
[1] 0 0 0 0 0 0 0 0 0 0

The rows and columns of a matrix can be named using the dimnames() function
and a list object

>x<-matrix(seq(12), nrow=4)
> dimnames(x)<-list(c("R1","R","R3","R4"),
+c("C1", "C2", "C3"))
>x

C1 C2 C3
R1 1 5 9
R2 2 6 10
R3 3 7 11
R4 4 8 12

The names can be created more efficiently by using the paste() function, which
combines different strings and numbers into a single string

> dimnames(x)<-list(paste("row", seq (4)),
+paste ("col", seq(3)))
>x

col 1 col 2 col 3
row1 1 5 9
row2 2 6 10
row3 3 7 11
row4 4 8 12

Having named the rows and columns, we can, if required, refer to elements of the
matrix using these names,

>x["row 1", "col 3"]
[1] 9
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6. Data Frames

Data sets in R and S-PLUS are usually stored as matrices, which we have already
met, or as data frames, which we shall describe here.

Data frames can bind vectors of different types together (e.g., numeric and char-
acter), retaining the correct type of each vector. In other respects, a data frame is
like a matrix so that each vector should have the same number of elements. The
syntax for creating a data frame is data.frame(vector1,vector 2, . . .), and
an example of how a small data frame can be created is as follows:

>height<-c(50, 70, 45, 80, 100)
>weight<-c(120, 140, 100, 200, 190)
>age<-c(20, 40, 41, 31, 33)
>names<-c("Bob", "Ted", "Alice", "Mary", "Sue")
sex<-c("Male", "Male", "Female", "Female")
>data<-data.frame(names, sex, height, weight, age)
>data

names sex height weight age

1 Bob Male 50 120 20

2 Ted Male 70 140 40

3 Alice Female 45 100 41

4 Mary Female 80 200 31

5 Sue Female 100 190 33

Particular parts of a data frame can be extracted in the same way as for matrices

>data[,c(1,2,5)]

names sex age

1 Bob Male 20

2 Ted Male 40

3 Ali Female 41

4 Mary Female 31

5 Sue Female 33

Column names can also be used

>data[,"age"]
[1] 20 40 41 31 33

Variables can also be accessed as in lists:

>data$age
[1] 20 40 41 31 33

It is, however, more convenient to “attach” a data frame and work with the column
names directly, for example,
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>attach (data)
>age
[1] 20 40 41 31 33

Note that the attach() command places the data frame in the 2nd position in the
search path. If we assign a value to age, for example,

>age <-10
>age
[1] 10

This creates a new object in the first position of the search path that “masks” the
age variable of the data frame. Variables can be removed from the first position in
the search path using the rm() function:

>rm(age)

To change the value of age within the data frame, use the syntax

>data$age<-c(20, 30, 45, 32, 32)
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Bayes theorem, 189
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chi-squared test, 104
distance in, 104–108
plots of, 10–11, 23–25, 149
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classification maximum likelihood methods,
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cognitive behavioral therapy, 191
common factors, 65–68
communality, of variables, 67–68
complete-case analysis, 3
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compound symmetry structure, 175
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confirmatory factor analysis, 88
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covariances, 3, 5–6, 43–46, 69, 143.
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assessment of, 146
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plug-in estimates, 146
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covariance matrix and, 69
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non-Euclidean, 98
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in longitudinal data, 190–198
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economic theory, 41
Egyptian skull data, 137, 151
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EM algorithm, 130
equal mean vectors, hypothesis of, 147
error sum-of-squares criterion (ESS), 136
Euclidean distances, 7, 91, 94, 105, 108
evolutionary trees, 117
exoplanet analysis, 130
expected value, defined, 4
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factor analysis

common factors, 65–68
communalities and, 68
criticism of, 72, 88
degrees of freedom, 70
deriving factor scores, 76
examples of, 70–76
factor loadings, 66
factor rotation, 71–76

interpretation and, 73
iterative approach, 69
k-factor model, 67, 69
latent variables, 65
manifest variables, 65, 68
mathematics of, 66
maximum likelihood approach, 69
numbers of factors, 69
oblimin rotation, 75
oblique rotation, 74
orthogonal rotation, 74
principal components analysis, 68, 85–88
promax rotation, 75
quartimax rotation, 75
rotational indeterminacy, 76
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varimax rotation, 75

fence, elliptical, 25–26
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Fisher linear discriminant function,
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graphical procedures, 16–40
bivariate boxplots, 25–29
chiplots, 23–25
clusters and, 29–32
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outliers. See outliers
scatterplots. See scatterplots

group average clustering, 118–119
grouped multivariate data, 137–156

Fisher linear discriminant, 142–146
Hotelling T2 test, 137–142
MANOVA and, 147–149
t tests, 137, 139, 141
two-group analysis, 137–146, 149

head measurements, 162–164
Heywood case, 69
hierarchical classification, 115.
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horseshoe effect, 112
Hottelling T2 test, 137–142
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imputation, 3–4
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See specific tests
independent components analysis, 61
intelligence, estimate of, 70–71
interpretation, 53, 55, 73
intraclass correlation, 175

jittering, 19–20
Jolliffe rule, 47

k-means clustering, 123–128
Kaiser rule, 47

labelling, of components, 53
Lagrange multipliers, 43
latent variables, 65, 197
Lawley-Hotelling trace, 148
leave-one-out method, 146, 153
life expectancies, 77
linear discriminant function, 142–146
linear mixed effects models, 174–190
linear regression, 19–21
local independence assumption, 174
locally weighted regression, 21
log-eigenvalue diagram, 47
logistic discrimination, 146
long form, 176
longitudinal data, 171, 190–198
low-dimensional representation, 97
lowest fit, 21

Mahalanobis distances, 102
manifest variables, 65
MANOVA technique, 147–149
map, 91. See also scatterplot
maximum likelihood approach, 69,

70, 77
MDS. See multidimensional scaling
means, defined, 4
medical studies, 134
minimum volume ellipsoid, 56
missing-data problem, 3
model-based clustering, 128–134
modelling process, 15
Monte Carlo method, 4
multicenter design, 198
multidimensional scaling (MDS),

93–104, 94

classical, 96–104
examples of, 96–104
horseshoe effect, 112
mathematical methods, 94
principal components and, 113

multiple correlation coefficient, 159
multiple regression, 157–160
multivariate analysis, 9

aims of, 13–15
complete cases, 3
example of, 2
F-statistics, 148
graphical procedures, 16–40
grouped multivariate data, 137–156
MANOVA technique, 147–149
missing-data problem, 3
multivariable methods, 157
multivariate data, 1–15
normal distribution, 9–13
normality and, 9–13, 149
summary statistics for, 4–9
test statistics for, 148
See also specific topics

noise, 1, 19
non-linear models, 158
non-normal distributions, 146
normal distributions, 9–13
normal probability plot, 10
normality, assumption of, 76
normalization constraint, 49

oblimin rotation, 75
ordinal data, 2
outliers, 29, 51

correlation coefficient and, 22
fence ellipse, 25
hinge ellipse, 25
minimum volume ellipsoid, 56
robust estimators and, 25–26
scatterplots and, 22

Pearson coefficient, 7
Pillai trace, 148
plug-in estimates, 146
point density, 29
polynomial fitting, 21
pottery, analysis of, 123–124
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principal components analysis, 41–64, 97
air pollution studies, 49–61
algebraic basics of, 42–49
application of, 41, 48–49
basic aim of, 41
of bivariate data, 48–49
calculating, 47–48
correspondence analysis, 104
factor analysis, 68, 85–88
introduction of, 61
Lagrange multipliers, 43
modern competitors to, 61
multidimensional scaling, 113
number of components, 46–47
rescaling, 45–46
rotation techniques, 76

probability plotting, 9–10
probability-probability plot, 9–10
projection pursuit method, 61
promax rotation, 75
proximity matrix, 91

quadratic discrimination function, 146
quadratic maximization, 75
quantile-quantile plot, 9–10
quartimax rotation, 75–77

random effects, 189
random intercept model, 174–175
random scatter, 24
ranking, 41
regularized discriminant analysis, 146
reification, 53
repeated measures data, 171–199
restricted maximum likelihood, 176
robust estimation, 22, 25–26
rotation techniques, 75
Roy greatest root, 148
R statistical software

bivbox function, 27
bivden function, 30
bkde2D function, 32, 40
chiplot function, 23–25, 149
coplot function, 37
cor function, 7
cov.mve function, 60
data frames in, 208–210
discrim function, 151
dist function, 7, 96

elementary commands, 200
graphical procedures, 16
KernSmooth library, 32, 40
lattice library, 36
lda function, 144
list objects in, 207
lme function, 176
logical expressions, 205–207
lqs library, 60
MASS library, 144
matrices in, 203–205
mvrnorm function, 10
pairs function, 33
predict function, 146
random.effects function, 187
rep function, 202
resid function, 187
strings in, 201
vectors in, 201
wireframe function, 40
See also specific functions, topics

Sagan, Carl, 16
scatterplots, 91

chi-plots and, 24
continuous variables and, 23
convex hull, 22–23
density estimates and, 29–30
extra variables, 32–33
jittering and, 20
lowest fit, 21
maps and, 91–92
matrix for, 17–29, 33–35
outliers, 22
polynomial fitting and, 21
representing variables, 32–33
xy scatterplots, 17–29

scientific method, 14–15
Scott-Simon approach, 128
scree diagram, 47, 69
similarity measure, 91
simple structure, 73
single linkage, 118, 134
skulls, study of, 99, 137, 146
smoking, studies of, 109–111
smooth functions, 21–22
specific variance, 66–67
S-PLUS statistical software

apply function, 4, 5
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bivbox function, 27
bivden function, 30
chiplot function, 25, 149
click-and-point features, 33
cloud function, 36
coplot function, 37
cor function, 7
cov.mve function, 60
data frames in, 208–210
discrim function in, 144
dist function, 7, 96
elementary commands, 200
graphical procedures, 16
group effect in, 185
lda function, 144, 151
list objects in, 207
lme function, 176
logical expressions, 205–207
MASS library, 144
matrices in, 203–205
mean function, 4
pairs function, 33
predict function, 146
random.effects function, 187
rep function, 202
resid function, 187

rmvnorm function, 10
strings in, 201
var function, 5
vectors in, 201
See also specific functions, topics

stem-and-leaf plots, 16
structural relationships, 44
Student t-test, 137, 139
sum of squares constraint, 43

t tests, 137, 139, 141. See also Hotelling T2

test
three-dimensional plots, 35–36
trace, minimization of, 130
trellis graphics, 37–39
two-group analysis, 137–146, 148, 149

unique variance, 67

variance, analysis of, 5, 66–67, 137–156. See
specific methods, tests

variance component model, 175
variance-covariance matrix, 6
varimax rotation, 75–77

Wilks determinantal ratio, 148
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