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Excel workbooks powered by Visual Basic macros to teach the core con-
cepts of econometrics without advanced mathematics. These materials enable
Monte Carlo simulations to be run by students with a click of a button. The
fundamental teaching strategy is to use clear language and take advantage of
recent developments in computer technology to create concrete, visual expla-
nations of difficult, abstract ideas. Intelligent repetition of concrete examples
effectively conveys the properties of the ordinary least squares (OLS) esti-
mator and the nature of heteroskedasticity and autocorrelation. Coverage
includes omitted variables, binary response models, basic time series methods,
and an introduction to simultaneous equations. The authors teach students
how to construct their own real-world data sets drawn from the Internet,
which they can analyze with Excel or with other econometric software. The
Excel add-ins included with this book allow students to draw histograms, find
P-values of various test statistics (including Durbin–Watson), obtain robust
standard errors, and construct their own Monte Carlo and bootstrap simula-
tions. For more, visit www.wabash.edu/econometrics.
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Preface

“I hear and I forget. I see and I remember. I do and I understand.”
Confucius1

The Purpose of This Book

We wrote this book to help you understand econometrics. This book is quite
different from the textbooks you are used to. Our fundamental strategy is to
use clear language and take advantage of recent developments in computers
to create concrete, visual explanations of difficult, abstract ideas.

Instead of passively reading, you will be using the accompanying Microsoft
Excel workbooks to create a variety of graphs and other output while you
interact with this book. Active learning is, of course, the goal of the Excel
files. You will work through a series of questions, discovering patterns in the
data or illustrating a particular property. Often, we will ask you to create
your own version of what is on the printed page. This is made easy by the
many buttons and other enhancements we have incorporated in the Excel
workbooks.

You may be worried that learning econometrics will be a long, hard jour-
ney through a series of boring and extremely puzzling mathematical formulas.
We will not deny that acquiring econometrics skills and knowledge takes real
effort – you must carefully work through every Excel workbook and pay
attention to detail – but introductory econometrics has little to do with com-
plicated mathematics, nor need it be boring. In fact, the core of econometrics
relies on logic and common sense. The methods presented in this book can
be used to help answer questions about the value of education, the presence
of discrimination, the effects of speed limits, and much more.

1 This quote is frequently attributed to Confucius, but it is not in the Analects (a collection of excerpts
and sayings), which were compiled by his followers after his death.

xvii
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xviii Preface

Our Goals

This book embodies a new approach to teaching introductory econometrics.
Our approach is dictated by our beliefs regarding the purposes of a first course
in undergraduate econometrics and the most important concepts that belong
in that course; our frustrations with the traditional equation-laden, proof-
oriented presentation of econometrics; and our experience with computer
simulation as a tool that can overcome many of the limitations of traditional
textbooks.

In terms of a student’s educational development, there are short- and long-
term reasons for including an introductory econometrics course in the under-
graduate economics curriculum. Three major short-term goals for such a
course stand out. A fundamental purpose of a first course in econometrics
is to enable students to become intelligent readers of others’ econometric
analyses. To do so, they need to be able to interpret coefficient estimates and
functional forms; understand simple inferential statistics, including the sam-
pling distribution; and go beyond accepting all results at face value. A more
ambitious introductory course should teach students to conduct creditable
elementary econometric research. Students should be able to gather and
document data, choose appropriate functional forms, run and interpret mul-
tiple regressions, conduct hypothesis tests and construct confidence intervals,
and describe the major limitations of their analyses. Finally, an introductory
course should prepare some students to take a second course in economet-
rics. Students who will take a second course ought to come to appreciate the
method of least squares, the logic of the Gauss–Markov theorem, and the
distinction between finite sample and asymptotic results.

In the long term, the learning that students carry with them throughout
their lives should include two basic lessons: First, economic data should be
interpreted as the outcome of a data-generation process in which chance plays
a crucial role; second, because they typically deal with observational stud-
ies instead of controlled experiments, economists must always worry about
whether the models they estimate and, more generally, the explanations they
give for economic phenomena, are subject to confounding by omitted vari-
ables. Only a few students will go on to conduct econometric research in their
future careers, but they all will benefit from these two fundamental ideas as
workers and citizens who must evaluate the claims of business leaders, social
scientists, and politicians.

An econometrics course that aims to teach these short- and long-term
lessons must impart a very sophisticated message, which in its essence is
something as follows: The data we observe must be interpreted as being
produced by some data-generation process. Modeling that process requires
both economic and statistical theory. To recover the parameters of the model,
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we use estimators. Every estimator has important properties relating to its
accuracy (bias or consistency) and precision (standard error). Depending on
what we know or conjecture about the data-generation process, we will want
to use different estimators. Given the nonexperimental character of our data,
we must always be on guard for the effects of omitted variables.

How do we convey this complicated message? Many textbooks employ
mathematical formalism to teach the numerous abstract concepts in the basic
story. The resulting mass of equations and theorems intimidates students,
and, worse yet, hides the truly essential and genuinely difficult core logic of
econometrics. In the traditional classroom format of a lecture accompanied
by chalkboard or overhead projector, students lapse into desperate attempts
at passive memorization. Furthermore, there is pressure to cram the course
and textbook with as many of the results of modern econometric research as
possible.

Our approach differs from that of the traditional textbook in three aspects:
we emphasize concrete examples rather than equations to exemplify abstract
concepts, active learning by using computers rather than passively reading
a book, and a focus on a few key ideas rather than an attempt to cover the
whole waterfront. We wholeheartedly agree with Peter Kennedy and Michael
Murray, critics of the traditional approach, who have argued, first, that the
crucial concept in introductory econometrics (and statistics) is that of the
sampling distribution and, second, that students can only learn that concept
by actively grappling with it.2 On the basis of our teaching experience, we
give a second crucial abstraction almost as much prominence as the sampling
distribution: the way in which a multiple regression summarizes the rela-
tionship between a dependent variable and several independent variables,
including especially the notion of ceteris paribus.

All of these pedagogical considerations led to our choice of Microsoft Excel
as the central vehicle to teach econometrics. We use Excel’s underlying pro-
gramming language, Visual Basic, to create buttons and other tools to tailor
the environment for the student. The key advantages of computer-based
instruction are dynamic visualization and interesting repetition. A printed
textbook may contain outstanding graphics, but on the page all charts and
tables are of necessity static. In contrast, using Excel, a student can instantly
redraw charts and tables after changing a parameter or taking another sample.
Students can toggle through different charts depicting the same data set or go
back and forth through a complicated exposition. The ability of spreadsheets
to convey interesting repetition greatly increases the effectiveness of specific,
concrete examples designed to illustrate general, abstract ideas. Students are
able to associate the specific numbers on the screen with the abstract symbols

2 Kennedy (1998) and Murray (1999a).
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in equations and can see the workings of the general claim when the asserted
result is shown to hold over and over again in specific examples.

The advantages of Excel and Visual Basic are perhaps best displayed in the
numerous Monte Carlo simulations we use to approximate sampling distri-
butions throughout the book. Visual Basic obtains the samples, computes the
estimates, and draws the histograms. Students are invited to make compar-
isons by altering the parameters of the data-generation process or directly
racing two estimators against each other.3 We are under no illusions that
students will immediately understand the sampling distribution. Thus, we
employ Monte Carlo simulation whenever it is relevant and ask students to
view the outcomes of Monte Carlo experiments from a variety of angles.
Because it is easier to understand, we have used the fixed-X-in-repeated-
sampling assumption in almost all of our Monte Carlo simulations. We also,
however, demonstrate other, more realistic sampling schemes.

We also use Excel to compute regression estimates in numerous examples.
Although Excel has been rightly criticized for its sloppy statistical algorithms,
it is adequate for the relatively straightforward computations required in an
introductory course. Where Excel is lacking, we have written add-ins – for
example to draw histograms, compute Durbin–Watson statistics and robust
standard errors, and obtain nonlinear least squares and maximum likelihood
estimates in Probit and Logit models. We do not recommend Excel as a
statistical analysis package; we use it instead as a teaching tool.

To sum up, our primary goal in writing this book was to bridge the gap
between the traditional, formal presentation of econometrics and the abilities
of the typical undergraduate student. Today’s student is, on the one hand,
uncomfortable with mathematical formalism, and, on the other, adept at
visually oriented use of computers.

We take advantage of modern computing technology to teach introduc-
tory econometrics more effectively. The basic Microsoft Excel spreadsheet,
as familiar to the student as pencil and paper, is augmented and enhanced by
powerful macros, buttons, and links that easily facilitate complicated compu-
tations and simulations. Monte Carlo simulation is the perfect tool for convey-
ing the fundamental concept in econometrics – the sampling distribution – to
the modern audience. It produces concrete, visual output and permits explo-
ration of the properties of estimators without sophisticated mathematics.

It is ironic that simulation- and computer-intensive numerical techniques
figure prominently in frontier research in econometric theory, whereas the
teaching of econometrics languishes in old-style, chalk-and-talk memoriza-
tion and proof methods. Our goal is to bring the benefits of the computer
revolution to the undergraduate econometrics textbook and classroom.

3 See Murray (1999b).
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Content and Level of Presentation

This book is divided into two parts: descriptive data analysis and inferential
econometrics. The first part is devoted to methods of summarizing bivariate
and multivariate data. We use the correlation coefficient and PivotTables
to set up regression as an analogue to the average. Additional chapters on
functional form, dummy variables, and multiple regression round out the first
part.

In the second part of the book, we focus on the effects of chance in esti-
mation and the interpretation of regression output. We begin with a chapter
dedicated solely to Monte Carlo simulation. Throughout the second part of
the book, we emphasize modeling the data-generation process. We explain
the sampling distribution of the OLS estimator with Monte Carlo simulation
to support the proof of the Gauss–Markov theorem. We also employ Monte
Carlo simulation to demonstrate the effects of elementary violations of the
classical linear model, including omitted variable bias, heteroskedasticity, and
autocorrelation. Every chapter contains both contrived and real-world exam-
ples and data. Finally, we provide introductions to binary response (dummy
dependent variable) models, forecasting, simultaneous equations models, and
bootstrapping.

Although the entire book is essentially a study of regression analysis, our
two-part organization enables us to emphasize that regression can be used
to describe and summarize data without using any of its inferential machin-
ery. When we turn to regression for inference, we are able to highlight the
importance of chance in the process that generated the data.

Because we expect students to obtain and analyze data, we include detailed
instructions on how to access a variety of data sets online. For example, the
CPS.doc file (in the Basic Tools\InternetData folder) explains exactly how a
student can extract data from the Current Population Survey (CPS) available
at <ferret.bls.census.gov>. In addition, we include practical explanations of
how to recode variables and construct an hourly wage variable. The CPS is an
outstanding source and has provided the raw data for many excellent student
papers.

Another advantage of online data resources is the ability to access the
latest figures. Web links are included in our Excel files, and thus updating
data is easy. Many of the workbooks have links to a variety of data sources.
Online data resources have transformed our teaching and enabled students
to access high-quality, timely data.

In presenting the material, we focus on getting a few key ideas exactly
right and explaining these concepts as simply as possible. Instead of concisely
writing a result in terse mathematical notation, we walk you through the
commonsense logic behind the formula. We also repeat the same idea. Often,
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we will use hypothetical data to demonstrate a point and then use an example
from the real world to show how it has been applied.

To read this book and use our materials, you need a working knowledge of
elementary statistics. You should understand the standard deviation (SD)
and be able to read a histogram. You should be familiar with the stan-
dard error (SE) of the sample average. To help those in need of a little
brushing up, we have included a chapter that reviews inferential statistics
and the explicit modeling of a data-generation process. Finally, this book
will make more sense if you have had at least an introductory economics
course.

Of course, you also have to know how to use Excel and work with files on
a computer. You do not need to be an expert, but we expect you to be able to
create formulas and make a chart. Our materials will introduce you to much
more advanced uses of Excel, and it is fair to say that, by working through
this book, you will become a more sophisticated user of Excel.

Conclusion

The installed base of Microsoft Excel (and Office) is staggering. At any given
time, many different versions of Excel are in use. Exactly counting all of
the versions in use, legally purchased, and pirated is impossible. Table 1
shows the Gartner Group’s estimate of the breakdown of Windows Office
versions in use in 2001.

The materials in this book require Excel 97 (or greater). Each version will
have differences in functionality and, especially, display, but the files packaged
in this book should work with versions of Excel from 97 to 2003.

� To determine the version of Excel you are using, execute Help: About Microsoft
Excel.

� To find the previous versions of Excel, visit <www.microsoft.com/office/previous/
excel/default.asp>.

� To find the latest version of Excel, go to <office.microsoft.com/home/>.
� To compare versions of Office products, see <www.microsoft.com/office/editions/

prodinfo/compare.mspx>.
� To search Microsoft’s extensive Knowledge Base for questions about Excel, visit

<support.microsoft.com/> and click on the Search the Knowledge Base link.

Office 95 10%
Office 97 55%
Office 2000 35%

Yearly Upgrade 15%

Table 1. Estimated Microsoft Office
installed base in 2001.
Source: www.infotechtrends.com/
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The introduction of Lotus’s spreadsheet solver in 1-2-3/G motivated the other spread-
sheet vendors to develop or acquire solvers of their own. In 1990 – well before the
launch of Windows 3.0 – Frontline won a competition among third-party Solver
developers to create a Solver on an OEM basis for Microsoft Excel 3.0.

Frontline Systems Company History
<www.solver.com/>

0.1. Conventions and Organization of Files

To gain the full benefit of this book, you must have access to the accompanying
Excel workbooks. We make constant reference to a variety of objects in Excel,
and you must actively work with Excel while reading this book. Because
changing parameters and seeing the results are so crucial to our approach,
we have adopted several conventions that will help you navigate through our
materials.

In this book, a figure refers to a variety of graphics, including charts and
pictures of portions of a sheet. We often display a chart or range of cells
in a figure in the printed book, but we want you to look at the live version
on your computer screen. Thus, in addition to a caption, many figures have a
source line indicating their location in the Excel workbook. We follow Excel’s
naming convention for workbooks and sheets: [workbookname]sheetname.
For example, if the source says, “[SimEq.xls]Data,” then you know the figure
can be found in the SimEq.xls workbook in the Data sheet. We will always
italicize sheet names in the printed text to help you locate the proper sheet
in a workbook. We might also refer to cell C7 in the Female sheet of the
PairedXYBootstrap.xls workbook as [PairedXYBootstrap]Female!$C$7.

You may need to adjust your display or the objects in Excel. Use the Zoom
button to magnify the display. You can also right-click objects such as buttons
( Why Bias? ) or scroll bars ( ) to select and move them. Once you
open a workbook, you can save it to another location or name (by executing

1
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Figure 0.1.1. Organization of the CD-ROM.

File: Save As . . . ) and make whatever changes you wish. This is the same as
underlining or writing in a conventional printed book.

In addition to the Excel workbooks associated with the printed book, we
also provide important additional materials with this book. Figure 0.1.1 shows
the contents of all of the materials included in the CD-ROM. The Chapters
folder contains the book itself with the accompanying workbooks always
located in an ExcelFiles folder.

The Chapters and Answers folders are paired with each other. For example,
in Chapter 5 on interpreting regression, there are several Excel workbooks.
Some of the workbooks have questions, which are always located in the
workbook’s Q&A sheet. The corresponding answers can be found in the
Chapter 5 folder in the Answers folder. We think of the Q&A material in
the Excel workbooks as self-study questions.

The book itself has other questions that we call Exercises. Readers do
not have easy access to the answers to the exercise questions. To see these
answers, you must register online as an instructor at <www.wabash.edu/
econometrics>.

In addition to the Chapters and Answers folder, the Basic Tools folder
contains software and additional material. The ExcelAddIns folder contains
various supplementary programs that we have written for teaching and learn-
ing econometrics. Figure 0.1.2 lists the add-ins available with this book.

Each add-in folder has the add-in itself (with filename extension.xla) and a
document with instructions on installing and using the software. As you work

Figure 0.1.2. Available Excel add-ins.
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Figure 0.1.3. Internet data sources.

through the chapters in the book, you will have the opportunity to use these
materials.

The HowTo folder in Basic Tools has a series of files that explain how to do a
particular task in econometrics. For example, the DeltaMethod.xls workbook
explains how to use the delta method to find the SE of an elasticity.

Figure 0.1.3 displays the contents of the InternetData folder. As you can
see, we explain how to access, download, and import data from a variety of
online sources. Each folder has detailed instructions and offers at least one
example.

Finally, the RandomNumber folder (the last folder in Basic Tools in
Figure 0.1.1) has extensive documentation on random number generation.
Although this may seem an arcane, unimportant topic, we believe the increas-
ing reliance on simulation means that every student of econometrics should
understand the principles behind the creation of “random numbers” by a
computer. Chapter 9 offers the basic explanation, and the RandomNumber
folder provides more in-depth coverage.

Much of the value of this book lies in the Excel workbooks and additional
materials. We hope you will read the book carefully and access the computer
files as directed.

0.2. Preparing and Working with Microsoft Excel®

A working knowledge of Microsoft Excel is a prerequisite for this book. In
other words, you must be able to open Excel files, write formulas that add
cells together, create charts, and save files. As you will see, however, Excel is
much more than a simple adding machine. It can be used to solve nonlinear
optimization problems, run Monte Carlo simulations, and perform multi-
ple regression analysis. In addition, we have packaged several add-ins with
this book. They will provide additional features and functionality. Specific
instructions for each add-in are provided as they are used.

In the next section, we provide a little background on Excel and explain
how to configure your computer properly to enable you to work with the
materials in this book.



P1: JZZ
0521843197c00 CB962B/Barretto 0 521 84319 7 November 6, 2005 13:8

4 User Guide

A Brief History of Microsoft Excel

The first spreadsheet on a personal computer was called VisiCalc (short for
“visible calculator”) and was created by Daniel Bricklin and Bob Frankston in
1978. Bricklin, a Harvard Business School student, was looking for an easier
way to conduct a case study. He envisioned “an electronic blackboard and
electronic chalk in a classroom.”1 He recruited Frankston to help him write
the code. VisiCalc was an instant success and was one of the first “killer apps.”

By the early 1980s, Lotus 1-2-3 was the leading spreadsheet. Lotus had
bought and then discontinued VisiCalc. Borland’s Quattro Pro was another
well-known product at that time.

In 1985, Microsoft Corporation came up with Excel for the Macintosh
computer. This product was remarkable for its use of pull-down menus and a
point-and-click device called a mouse. Other spreadsheets used a command
line interface that required knowledge of cryptic DOS commands. “There is
some controversy about whether a graphical version of Microsoft Excel was
released in a DOS version. Microsoft documents show the launch of Excel
2.0 for MS-DOS version 3.0 on 10/31/87.”2

When Microsoft named its spreadsheet software “Excel,” it apparently did
not know that Manufacturers Hanover Trust already had an automated bank-
ing program called Excel. As part of the settlement for trademark infringe-
ment, Microsoft agreed to refer always to its product as Microsoft Excel. In
promotional materials, on its Web site, and even on the Windows Task Bar,
Microsoft always calls its flagship spreadsheet program “Microsoft Excel.”

The rest of the 1980s were marked by intense competition. Lotus 1-2-3,
Quattro Pro, and Microsoft Excel battled for dominance. Microsoft’s spread-
sheet software pulled away from its competitors in the 1990s, and the product
was marketed as part of a family of “office tools” that included Microsoft
Word and PowerPoint.

Check Google results for entries related to “spreadsheet excel history” to
learn much more about the fascinating history of how Excel came to be the
dominant spreadsheet.

Excel Versions and Your Version

As Microsoft included new features and enhancements in Excel over the
years, they released newer versions of the software. Excel 3.0, launched
in 1990, featured the idea of many sheets in a workbook. Two years later,
Microsoft gained market share with the release of Excel 4.0 along with

1 <www.bricklin.com/history/sai.htm>.
2 <dssresources.com/history/sshistory.html>.
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Windows 3.1 – Microsoft’s first graphical user interface (GUI) operating sys-
tem for the PC. In December 1993, Microsoft’s dominance was solidified
with the release of Excel 5.0 because it was powered by Visual Basic instead
of its own macro language (called Excel 4 Macro Language). Excel 7.0 for
Windows95 debuted in July 1995. With Excel 8.0, in 1997, Microsoft changed
the version pattern, for marketing purposes, to the year of release, calling
the product Excel 97. Thus, Excel 2000 is Excel 9.0, Excel 2002 is 10.0, and
in October 2003, Microsoft released Excel 2003 (Excel 11.0). As you would
expect, Excel 2003 has new bells and whistles along with fixes and modifi-
cations of existing code, which includes a new set of algorithms for many
statistical functions.

In addition to “major upgrades” that merit an entirely new version number,
Microsoft occasionally releases slightly different versions to different market
segments. For example, ExcelXP is actually a member of the Excel 10.0 family.
You may also see references to Excel as Standard, Business, or Professional
Editions.

Excel for the Apple Macintosh has a similar version history with new
releases every few years, but you should be aware that Windows Excel and
Mac Excel are not identical software and that there can be serious cross-
platform compatibility problems. Our materials work with newer versions
of Mac Excel, but buttons and dialog boxes may not display optimally. Mac
Excel users should make sure to run Solver before using add-ins that require
Solver.

Non–English-language versions of Excel should be fully functional with
our materials (which have been tested with Spanish Excel). Excel (and other
Office software) has several hundred different language versions, but it is
only the front end that is in a different language. The Visual Basic engine
that drives Excel is the same across all languages, and thus our workbooks
and add-ins will work with foreign language versions of Excel. Of course, our
text, buttons, and dialog boxes will be in English.

You can check the actual version of Excel on your machine by executing
Help: About Microsoft Excel. Visit <office.microsoft.com/officeupdate/> to
obtain the latest security patches and updates for your version.

Excel 97 (or Mac Excel 2001) or greater is required to use the materials
in this book. Your screen may sometimes look a little different than the
screenshots in the book, but the basic functionality will be the same.

Properly Configuring Excel

To make sure that Excel is able to access and run the Visual Basic macros in
the workbooks, security must be properly set.
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Figure 0.2.1. Accessing security options.

Step 1: From Excel, execute Tools: Macro: Security (see Figure 0.2.1).
At the Security Level tab, make sure that High is not selected (as shown
in Figure 0.2.2). Medium will always give you a warning that the file you are
about to open has macros, and then you can decide whether to run the macros
(or open the file). Low is (quite reasonably) not recommended because Excel
will automatically run all macros with no warning or prompt. Figure 0.2.2
shows the display from an older version of Excel. An additional option, Very
High, is included in Excel 2003. Click the Trusted Sources tab and, as shown
in Figure 0.2.3, make certain both boxes are checked to ensure that installed
add-ins will have access to your Visual Basic Projects (i.e., your workbooks).

Figure 0.2.2. Setting security level.
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Figure 0.2.3. Setting trusted sources.

Security need be set only once because Excel will remember your settings.
With Excel’s security correctly configured, you are ready to open the Excel
workbooks on the CD and install add-ins as needed.

Step 2: From Excel, execute File: Open in order to open a workbook.
When opening a workbook from the CD, always click the “Enable Macros”
option (see Figure 0.2.4). For workbooks not included with this book, do not
click Enable Macros unless you are completely confident that the workbook
is safe.

Figure 0.2.4. Opening a workbook with macros.
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When you open a file from the CD, it will be read-only. Execute File: Save
As and navigate to a folder on your hard drive or network space to save
your work. You may drag the contents of this CD onto your hard drive and
change the Attributes setting (by right-clicking on the file and choosing
Properties) and checking off the Read-Only option.

Excel on a Macintosh

Macintosh users know that there can be problems working with Windows
files, and Microsoft Excel does have some cross-platform compatibility issues.
Fortunately, when opening our Windows-created workbooks, the content
remains true. The display in Mac Excel, however, may not be optimal. Mac
users may notice imperfections (such as cutting off text in buttons). We rec-
ommend adjusting the Zoom in Mac Excel to improve the display.

In addition, we have noticed that Solver in Mac Excel can be somewhat
temperamental. Make sure you run Excel’s Solver before attempting to open
a workbook that uses Solver. If you have trouble opening a workbook (e.g.,
you get an error message that says, “Can’t find project or library”), always
try the following simple fix: quit Excel, open it, run Solver, and then open the
workbook.

Troubleshooting

We guarantee that, at some point, something will go wrong while you are
working with our materials. Your computer may freeze up or you will not be
able to perform a particular task. The first step to overcoming difficulties is
simply to start over. Often closing a workbook and reopening it is sufficient,
but you may have to quit Excel or restart your computer.

Figure 0.2.5. Error message example.
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Figure 0.2.6. Debugging in Visual Basic.

We also suggest that you revisit the instructions and read carefully to make
sure you are following each step closely. For example, in newer versions of
Excel, you need to run Solver before accessing macros that use Solver. The
instructions point this out, but it is easy to overlook this step.

An error message like that shown in Figure 0.2.5 may appear. If you click
the End button, the message will disappear and you will return to where you
were working in Excel. Clicking the Debug button takes you to Visual Basic
and highlights the offending line of code, as displayed in Figure 0.2.6.

In some cases, you may be able to determine how to fix the error. In
Figure 0.2.6, an attempt to take the log of a negative number has triggered
an error in the subroutine named test.

We do not expect our readers to be proficient Visual Basic programmers,
but with a little ingenuity you may be able to diagnose and correct the problem
quickly. If not, we welcome your feedback, and we will try to fix problems
associated with our workbooks.

We will keep an updated set of the latest versions of our workbooks and
add-ins on the Web at <www.wabash.edu/econometrics>. If you have per-
sistent problems with a workbook or add-in, please check the Web site to see
if we have an updated, corrected version online.
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Introduction

We find that a 10-percent permanent increase in the price of cigarettes reduces current
consumption by 4 percent in the short run and by 7.5 percent in the long run.

Gary Becker, Michael Grossman, and Kevin Murphy1

1.1. Definition of Econometrics

In this chapter we discuss the contents of this book, including the basic ideas
we attempt to convey and the tools of analysis used. We begin with our defi-
nition of the subject: Econometrics is the application of statistical techniques
and analyses to the study of problems and issues in economics.

The term econometrics was coined in 1926 by Ragnar A. K. Frisch, a Nor-
wegian economist who shared the first Nobel Prize in Economics in 1969 with
another econometrics pioneer, Jan Tinbergen.2 Although many economists
had used data and made calculations long before 1926, Frisch felt he needed
a new word to describe how he interpreted and used data in economics.

Today, econometrics is a broad area of study within economics. The field
changes constantly as new tools and techniques are added. Its center, how-
ever, contains a stable set of fundamental ideas and principles. This book is
about the core of econometrics. We will explain the basic logic and method
of econometrics, concentrating on getting the core ideas exactly right.

We divide the study of econometrics in this book into the following two
fundamental parts:

Part 1. Description
Part 2. Inference

In each part, regression analysis will be the primary tool. By showing regres-
sion again and again in a variety of contexts, we reinforce the idea that it is

1 Becker, Grossman, and Murphy, (1994, p. 396).
2 A good source for more on the life and work of Frisch is Bjerkholt (1995). By the way, Frisch also came

up with another common term – macroeconomics. “Polypoly,” however, never quite caught on. For more
on the history of empirical analysis in economics, see <cepa.newschool.edu/het/schools/metric.htm>.

10
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a powerful, flexible method that defines much of econometrics. At the same
time, however, we describe the conditions that must be met for its proper
use and the situations in which regression analysis may lead to disastrously
erroneous conclusions if these conditions are not met.

In addition to regression analysis, we will use Monte Carlo simulation
throughout the second part of the book to model the role of chance in the
data generation process. The Monte Carlo method is an integral part of our
teaching approach, which emphasizes concrete, visual understanding.

Section 1.2 uses the example of the study of the demand for cigarettes to
illustrate the goals and methods of econometric analysis and how regression
fits into this enterprise. We will further discuss the concept of Monte Carlo
analysis in Chapter 9, the first chapter of Part 2 of the book.

1.2. Regression Analysis

Workbook: Cig.xls

We illustrate our discussion of the methods and goals of econometrics with a
rich, complicated example. It will serve as a vehicle to demonstrate the uses of
regression analysis and the difficulties inherent in quantitative analysis. Our
aim is to provide an overview of how regression can be used, while introducing
fundamental concepts that will be explained in greater detail throughout this
book.

Economists, policymakers, health professionals, cigarette manufacturers,
and citizens are all interested in the demand for cigarettes. Cigarettes were
one of the major consumer product success stories of the first half of the
twentieth century. Adult per capita consumption exploded, starting at under
3 packs per adult per year in 1900, rising to 33 packs in 1920, tripling to 99
packs in 1940, and finally peaking at 217 packs per adult in 1963. Since then,
cigarette consumption has collapsed almost as dramatically as it rose. Per
capita adult consumption fell to 107 packs per person in 1999. Figure 1.2.1
tells the story for the entire century.

As the source information in Figure 1.2.1 indicates, the data underly-
ing the graph are available in the Cig.xls workbook in the HistoricalData
sheet. The workbook can be found in the Chapters \ Ch01Introduction folder
of the CD-ROM or the <www.wabash.edu/econometrics> Web site. Open
up the workbook now. Upon opening the workbook you should be given a
warning that it contains macros and therefore possibly viruses, as shown in
Figure 1.2.2.3

3 The User Guide explains how to configure Excel properly to use the materials in this book. Security
must be set to Medium, and you should click Enable Macros when opening our workbooks.
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Figure 1.2.1. U.S. per capita consumption of cigarettes for persons
18 and over, 1900–1999.
Source: [Cig.xls] Historical Data.

We refer you to the Cig.xls Excel workbook at various points through-
out this chapter. Notice that the Cig.xls workbook, like many of our work-
books, has extensive documentation, including clickable Web links. Think
of the Excel workbooks as an extension of this printed book and do
not hesitate to make notes, create charts, or otherwise modify the work-
books.

Even with the post-1960s collapse in per capita consumption, cigarettes
have remained a very lucrative business. In the 1996 fiscal year, for example,
consumers paid about $47 billion for 21.6 billion packs of cigarettes. Of that
revenue, $5.2 billion went to federal taxes, $7.8 billion to state taxes, and
perhaps $6.5 billion to profits for manufacturers.4 Cigarettes, of course, are
known to be addictive and damaging to people’s health. The large increase in
cigarette consumption led to millions of premature deaths, and the decline in
consumption since the 1960s has undoubtedly reversed this trend. The cost to
society of the health effects of smoking is staggering: A responsible estimate
of the sum of the current medical costs of treating smoking-related illnesses
and the lost earnings due to illness and death is $100 billion per year.5

This history and current reality make questions like the following very
much worth asking: What will happen to sales of cigarettes if taxes on

4 The Tax Burden on Tobacco, 1999. Price of cigarettes used in this computation is the nationwide average
for January 1, 1996, on p. 269; tax collections are from pp. 5 and 8. Profit estimate of 30 cents per pack
is from Harris (1998), p. 2.

5 Chaloupka and Warner (2000).
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Figure 1.2.2. Message displayed when opening Cig.xls.

cigarettes are increased? How will adolescents change their smoking behav-
ior if prices rise? What is the incidence of cigarette taxes? How will the effects
of the cigarette tax increase differ between the short run and the long run?
Econometric analysis can throw considerable light on these and many other
questions.

In this section we show how the techniques of bivariate and multiple regres-
sion can be used to study the demand for cigarettes. Various research designs
are discussed that can be used to examine this question. The aim of our dis-
cussion is to present general ideas and methods used throughout this book;
details follow in later chapters.

A persistent theme of this book is that successful econometric analysis
depends on economic and statistical theory as well as a careful reading
of the data. Each element is considered in turn. Economic theory con-
tributes the basic concept of a demand curve, which shows how the quan-
tity demanded for cigarettes varies as the price of cigarettes changes if
other factors are held constant. The demand curve provides a framework
for statistical analysis by suggesting which factors affect demand and there-
fore posing questions that analysis must answer. Two crucial questions ask
how responsive quantity demanded is to changes in the price of cigarettes
and to the income of consumers. To fix ideas, let us suppose that quantity
demanded falls as price rises and rises as income increases. If that is the
case, then we might have market demand curves that look like those of
Figure 1.2.3.

We have drawn curves in which a one-pack-per-person-per-year increase
in quantity is associated with a 2-cent-per-pack decrease in price; the slope
of both demand curves is –2. In this hypothetical diagram, the demand curve
shifts to the right as per capita income rises. Specifically, a $5,000-increase in
per capita income results in an increase in quantity demanded of 25 packs
per person per year ceteris paribus. This shows up as a horizontal shift of
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Figure 1.2.3. Hypothetical demand curves for cigarettes.
Source: [Cig.xls]HypotheticalData.

25 packs per person per year. For example, the two points highlighted in
Figure 1.2.3 show how – when price is held constant at 200 cents per pack –
quantity demanded rises from 125 to 150 packs per person per year when
income rises by $5,000.

Econometricians modify this diagram in one significant respect – they
reverse the axes. The reason is that the scientific and statistical convention
is to draw the variable causing changes, the “independent” variable, on the
x-axis, and the variable responding to changes, the “dependent” variable, on
the y-axis. Economists believe that quantity demanded responds to changes
in price, not the other way around. The conventional diagram of introductory
economics classes, however, puts quantity demanded on the x-axis and price
on the y-axis. In Figure 1.2.4, we redraw the data to reflect standard scientific
practice.

Notice that the mathematical slope has changed. Before it was −2; now it
is –0.5. Furthermore, shifts in the demand curve due to changes in income
are read as vertical, not horizontal shifts. The two points we singled out in
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Figure 1.2.4. Demand curves redrawn to reflect standard practice.
Source: [Cig.xls]HypotheticalData.
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Figure 1.2.3 are once again highlighted in this figure. They show that at a
price of 200 cents per pack, the quantity demanded is 125 packs per person
per year when per capita income is $15,000, and 150 packs per person per
year when per capita income is $20,000. To review this discussion of demand
curves, go to HypotheticalData in Cig.xls. Click on the buttons on the sheet
to see the effects of price decreases and income increases.

Economists’ standard instrument for measuring the responsiveness of
behavior to changes in the environment is the concept of elasticity. Elasticity
is the percentage change in an endogenous variable (e.g., quantity demanded)
divided by the percentage change in an exogenous variable (e.g., price) with
other factors held constant.

In this book we compute the point elasticity as follows, taking the price
elasticity as an example and using obvious symbols:

Price Elasticity of Demand = %�Quantity Demanded
%�Price

=
�Q/

Q
�P/

P

= �Q
�P

· P
Q

.

The expression on the left, the change in Q over the change in P, is the
slope of the demand curve when drawn in the standard scientific way. Thus,
the elasticity at the point Q = 200 packs per person per year and P = 125
cents on the Low Income Demand Curve is

Price Elasticity of Demand = �Q
�P

· P
Q

= −0.5 · 125
200

= −0.625.

We repeat that the example above is entirely hypothetical. It is certainly
possible that, as in this example, the quantity demanded of cigarettes does not
change very much when price rises. After all, cigarettes are addictive. Further-
more, it is by no means guaranteed that cigarettes are a normal good. Econo-
metric analysis aims to estimate the responsiveness of quantity demanded to
price and income.

With the demand curve as our foundation in economic theory, we turn
now to statistical considerations. Much of this book is devoted to a careful
exposition of the statistical issues we must deal with when trying to estimate
the demand curve. Two crucial ideas must constantly be borne in mind as
we proceed. These are issues of design and the role of chance. This section
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covers the design of econometric studies; we defer study of the role of chance
to Part 2 of this book.

All econometric studies rely on the method of comparison. The basic
comparison in our example is how quantity demanded changes as the price
changes. The design of a study refers to the way in which the data are gathered
and which variables are employed in the study. Thus, the design dictates the
way the comparison is undertaken. In principle, the best way to determine
how quantity demanded for cigarettes changes as the price changes is to run
a controlled experiment.

There are two major types of controlled experiments: field experiments and
laboratory experiments. In field experiments, subjects are observed in their
everyday lives, but the experimenter manipulates some part of his or her
environment. In laboratory experiments, subjects are placed in an artificial
environment under the complete control of the experimenter. Let us consider
a possible field experimental design to learn more about the demand for
cigarettes.

Divide a group of subjects into control and treatment groups using some
method of random assignment. The control group can buy cigarettes at the
normal retail price. The treatment group must pay a higher price designed
to simulate a tax increase. Compare the behavior of the two groups to see
if the price of cigarettes makes a difference in the amount of cigarettes they
buy. Ideally, one would be able to identify two points on the demand curve
by looking at the behavior of two groups facing two different prices.

Several obvious problems are inherent in this design. How can experi-
menters enforce the higher price for cigarettes? They typically cannot and
so in such experiments it is common to give subjects in the treatment group a
better deal than they can get on their own. The assumption is that decreases
in price will produce effects opposite to those of price increases, and thus little
is lost by cutting the price rather than raising it. But if the treatment group is
allowed to pay a lower price, subjects may decide to resell the cigarettes they
get through the experiment. Furthermore, because the experiment cannot
last forever and cigarettes are easily stored, heavy smokers in the treatment
group would have an incentive to stock up on the lower priced cigarettes.
Both of these objections suggest that the treatment group’s response will not
be the same as it would be with an actual change in price. Finally, any exper-
iment that might encourage people to smoke could be ethically suspect. For
these reasons and others, to our knowledge there have been no studies that
follow a design similar to the one we just outlined.

There have, however, been laboratory experimental studies that attempted
to model the effect of price on the demand for cigarettes.6 Behavioral

6 See Bickel and Madden (1999).
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Figure 1.2.5. Classification of experimental design schemes.

economists have used one-pack-or-more-per-day smokers as subjects. Sub-
jects “paid” for cigarettes by pulling and resetting a plunger before being
allowed a puff from a cigarette. The quantity demanded is the number of
puffs; the price is the number of required pulls on the plunger. In these
experiments, quantity demanded falls as price rises.

Although laboratory experiments therefore help to confirm a basic finding
in research on the demand for cigarettes, they have severe limitations. It is not
easy to translate results on effort exerted in a laboratory to obtain another
puff into estimates of the slope or elasticity of a real-world demand curve.
Laboratory subjects are not entirely representative of the population because
ethical considerations preclude using teenagers and alcoholics as subjects, and
it is difficult to induce high-income people to participate in experiments. Also,
these experiments tell us nothing about the effect of changes in price on the
decision to start or stop smoking. Figure 1.2.5 summarizes the different types
of experimental designs.

If one cannot conduct a controlled experiment, the alternative is to do an
observational study. In such a study, the researcher looks for something in
the actual economic environment that causes the variable of interest, here
the price of cigarettes, to vary across subjects. Two possible directions are
variation over time, which provokes time series studies, and variation across
individual entities at the same point in time, which leads to cross-sectional
studies. Economists who study cigarettes are fortunate because there has
been substantial variation in the price of cigarettes in both dimensions. In
fact, many studies use a hybrid approach, called a panel study (also known as
a longitudinal study), in which many different consuming units are followed
over time. Figure 1.2.6 classifies the different types of observational studies.

Because observational studies dominate empirical economic research, we
consider an example involving cigarettes in some detail. We have chosen a
cross-sectional study using data collected by each state on total cigarette sales.
Residents of different states pay different prices for cigarettes largely owing
to differing state taxes on cigarettes. We can think of each state as if it were
a separate treatment group in our study.
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Figure 1.2.6. Different types of observational studies.

This type of study is called an aggregate-level cross-sectional study. It is
conducted at the aggregate level because, rather than looking at individuals,
we are examining the behavior of aggregates, or groups of individuals. The
study is cross-sectional because the data are a slice of information gathered
at one point in time across many different units of observation.

Our cross section focuses on the year 1960. (We will tell you later why we
chose such old data.) We have data on the quantity and price of cigarettes
in each state and the District of Columbia in fiscal year 1960. The quantity
variable, Q per capita, is the number of cigarettes sold per capita in packs
per fiscal year in each state. Price, P, is the average retail price per pack in
January 1960 in each state (and the District of Columbia, which we will treat
as a state).7 The price is a weighted average price per pack in current cents,
using national weights for the type of cigarette purchase (carton, single pack,
and machine). The price variable includes all federal, state, and municipal
excise and sales taxes imposed on cigarettes. We used per capita figures to
adjust for the great dependency of total sales figures for a given state on its
population. Figure 1.2.7 shows the data.

Notice that data on quantity are missing for four states: Colorado, North
Carolina, Oregon, and Virginia. Because these states did not collect a tobacco
tax back in 1960, there was no need for them to gather data on cigarette sales.
A common problem in observational studies is missing data. Figure 1.2.8,
which is a scatter plot of the data, gives an immediate visual summary.

Each point in the scatter plot represents a single state. Each point can be
regarded as if it were the outcome of a different experimental treatment –
namely, the quantity consumed on average by a group facing a particular
price for cigarettes. We have provided summary statistics for the data and
emphasized the meaning of the diagram by highlighting two rather different
states. Utah had P = 26.3 cents per pack in 1960, which was just a shade over
the average P in the data set, and yet it had sales of only 69 packs per person

7 The fiscal year 1960 began July 1, 1959, and ended June 30, 1960. The January 1960 price fell right in the
middle of this period.
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State Q p.c. State P Q p.c. State P Q p.c.
AL 28.4 87.2 KY 23.9 113. 6 ND 26.6 97. 6
AK 27.9 118.8 LA 30.2 108. 3 OH 25.9 127. 1
AZ 23.7 127.7 ME 25.9 141. 8 OK 26.1 112. 9

AR 27.2 89.2 MD 25 125. 6 OR 20.7 N/A
CA 25.4 142 MA 27.7 131. 1 PA 26.8 119. 2

CO 21.5 N/A MI 26.5 125. 6 RI 26 143. 3

CT 24.3 153.7 MN 26.7 106. 6 SC 26.4 86. 7
DE 24.5 159.9 MS 27. 3 8 4 SD 27.2 101
DC 22.2 186.7 MO 23.3 134 TN 26.1 98. 7
FL 25.8 138.9 MT 30.7 115. 7 T X 28.7 105. 3

GA 27.2 101.2 NE 25.3 111. 9 UT 26. 3 6 9
HI 27.9 71.3 NV 25.5 199. 3 V T 27.5 122. 8
ID 26.3 100.2 NH 23.9 190. 2 V A 2 1 N/A
IL 26.4 134.6 NJ 26.2 141. 1 WA 28.6 103. 4

IN 24 128.8 NM 26.4 105 WV 26.8 106
IA 26 107.6 NY 25.6 145 WI 25.9 112. 8
KS 24.6 106.7 NC 20.9 N/A WY 25.6 129. 5  

P

Figure 1.2.7. State-level average prices and per capita quantities
sold of cigarettes, 1960.
Source: [Cig.xls]1960Analysis.

per year, which is very far below average. At the opposite extreme, Nevadans
(and people visiting Nevada) paid on average 25.5 cents per pack but bought
199.3 packs per person in 1960.

We would like to interpret the data as if they were a series of points on
a single demand curve, or, more generally, a series of points on parallel
demand curves. Economic theory tells us that observed prices and quantities

New Hampshire

Nevada

Utah

50

70

90

110

130

150

170

190

210

22 24 26 28 30 32

Price (cents/pack)

Q
ua

nt
ity

 p
er

 c
ap

ita
 (

pa
ck

s/
pe

rs
on

/y
ea

r)

P Q p.c.
Average 26.2 120.6
SD 1.7 27.7
Max 30.7 199.3
Min 20.7 69
r −0.53

Figure 1.2.8. Scatter plot of per capita cigarette sales versus average price per pack
in 47 States, 1960.
Source: [Cig.xls]1960Analysis.
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S1 S2 S3 S4

P

Q

Figure 1.2.9. Assumptions about supply and demand that justify our interpretation
of the state-level data on cigarette prices and quantities.

are equilibrium values resulting from the intersection of supply and demand
curves. To justify our interpretation, we make two assumptions. First, we
assume that the supply curves for different states are all perfectly elastic. In
other words, we assume that each state’s residents could buy as much as they
wished at the observed price. Supply curves shift across states because of dif-
ferences in shipping costs and state tax rates. Second, we assume that chance
factors other than price cause the demand curve to shift from one state to
another but that the shifted demand curves all share the same slope with
respect to price. Figure 1.2.9 illustrates these two assumptions about supply
and demand.

As you look at Figure 1.2.9, note that, because the axes have been reversed,
perfectly elastic supply curves show up as vertical lines. Furthermore, you
should convince yourself that if the demand curves did not shift, that is,
if there were only one demand curve, then all the observed price–quantity
combinations would lie on the single demand curve. It is clear from the figure
that the observed price–quantity combinations conform more or less to a
common demand curve.

Both of the assumptions we have just adopted may be misleading simplifi-
cations. Econometricians have made considerable progress in working with
more general models that do not require such restrictive assumptions. For
example, Chapter 24 describes techniques that allow us to dispense with the
first assumption by taking into account the simultaneous determination of
price and quantity.

The general shape of the scatter diagram and the negative correlation coef-
ficient suggest a negative relationship between price and quantity – people in
states with higher prices buy fewer cigarettes. But the correlation coefficient
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Predicted Q per capita = 353 - 8.86P

Figure 1.2.10. Regression of per capita sales on average price, 1960.
Source: [Cig.xls]1960Analysis.

does not tell us how much difference higher prices make. A regression line is
one approach to answering this question. The regression line delineates the
average value of the dependent variable associated with a given value of the
independent variable. In Figure 1.2.10, we add a regression line to the graph.

The regression summarizes the data into a single, simple equation. All the
points do not lie on the line, but the line clearly captures the general trend.
The equation for the regression line is

Predicted Q per capita = 353 − 8.86 · P.

This regression is called a bivariate regression because it is an equation sum-
marizing the relationship between two variables, Price and Quantity.

Quantity per capita is just the total quantity divided by the number of
people in the population. Thus, to obtain the demand curve for the United
States as a whole, simply multiply per capita demand by the population. There
were about 179 million people in the United States in 1960. Thus,

Predicted Q for United States = 179 million × (Predicted Q per capita)

= 179 million × (353 − 8.86 · P)

= 63.2 billion − 1.59 billion · P.

Our regression analysis says that, across states in 1960, a one-cent-per-pack
increase in the price of cigarettes was associated with an 8.86- pack-per-year
decrease in per capita cigarette sales, which translates into a 1.59-billion-
pack-per-year decrease in national cigarette sales.
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Regression analysis can be employed either for description or inference. As
description, the regression line concisely summarizes the observed relation-
ship between per capita sales and average price across states. As inference,
under appropriate assumptions, the regression line estimates a market-level
per capita demand curve in which changes in price cause changes in quantity
demanded. For this interpretation to be valid, we must regard the observed
prices and quantities for each state as if they were the outcomes of individual
trials of a controlled experiment. The failure of the points to fall exactly on
the regression line would then reflect the influence of chance factors.

If it is possible to interpret our data as if they came from a carefully con-
trolled experiment, then we have tentative answers to at least some of the
questions one can ask about how taxes would affect cigarette smoking. For
example, we can say that a rise in the cigarette tax that had the effect of
increasing prices by one cent per pack (in 1960 prices) would reduce con-
sumption by 8.86 packs per capita per year.

Is the estimated effect of price on quantity demanded large or small?
According to the equation, a 5-cent increase in 1960 dollars (about a one-fifth
increase in price) would reduce cigarette consumption by 44 packs per person
per year, which is a very large effect because average consumption is about
121 packs per person per year. Another way to think about the responsiveness
of quantity demanded to price is to work out the price elasticity of demand,
which in this case can be estimated as about −1.9. Roughly speaking, this
says that a 1-percent increase in price will lead to a −1.9-percent decrease in
quantity demanded.8

We repeat that inference depends on claiming that the data are like the
results from a controlled experiment. Perhaps we are not justified in mak-
ing this leap. Observational studies suffer from two important difficulties
that impair the analogy to controlled experiments. First, the relationship we
observe may be a confounded version of the relationship we would like to
study. Perhaps the differences in per capita cigarette sales between states
are not due to differences in prices but rather to differences in other factors.
Those other differences may be confounding the comparison we would like
to make. Second, the variables used may not be the ones we would really like
to measure. We examine each of these issues in turn.

Income is an important confounding variable in our analysis of cigarette
consumption. It turns out that, in 1960, cigarettes were apparently a normal
good, and thus people in higher per capita income states purchased more than
people in lower per capita income states. It was also the case that prices in
higher income states tended to be lower. In our regression we attributed the

8 We are computing the point elasticity at the mean values of price and quantity demanded. The compu-
tation is in Cig.xls.
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Figure 1.2.11. How changes in income confound the effect of price
on quantity demanded.
Source: [Cig.xls]1960Analysis.

entire decrease in cigarette consumption as we moved from states with high
income and low prices to states with low income and high prices to the change
in prices. Part of the drop in cigarette consumption, however, was due to the
fall in income, not the rise in prices. (We focused on 1960 because the con-
founding was most obvious then; cigarettes may well no longer be a normal
good.)

Another look at the demand curves we drew in Figure 1.2.4 may clarify
matters. In Figure 1.2.11, three different curves have been drawn. The two
parallel curves are very similar to the curves drawn in Figure 1.2.4. They are
demand curves corresponding to two different levels of per capita income.
The third line shows how the bivariate analysis exemplified by the regression
of quantity per capita on price is subject to confounding. Suppose that we
observed only two states. One of them, State A, has a high per capita income
(that is why it is on the upper demand curve) and a low price (24 cents per
pack). The second state, State B, has a low per capita income – hence, it is
located on the lower demand curve – and a high price for cigarettes (32 cents
a pack).

A bivariate analysis focusing on the relationship between price and quan-
tity alone would attribute the entire difference in quantity demanded between
States A and B to the difference in price alone. In our example, a price increase
of 8 cents is associated with a drop in quantity demanded of 82 packs per
person per year. The slope of the line connecting points A and B is therefore
about –10.2. In this example, however, the 82-pack-per-person difference
in quantity demanded is actually the sum of two separate effects. If price
is held constant, the $1,000 difference in per capita income reduces quan-
tity demanded by about 35 packs per person per year. If income is held
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constant, the 8-cents-per-pack difference in cigarette prices reduces quantity
demanded by about 47 packs per person per year.

A bivariate regression analysis alone cannot disentangle the separate
effects of price and income on quantity demanded. The key weapon in the
arsenal of econometricians is multiple regression analysis. By including a third
variable into the regression model – namely per capita personal income –
economists hope to remove confounding.

A multiple regression equation that attempts to control for the confound-
ing created by income gives this result:

Predicted Q per capita = 198 − 5.81P + 0.035 Income per capita.

This equation can be interpreted as follows. With income per capita held con-
stant, a one-cent per pack increase in price was associated with a 5.81-pack-
per-person-per-year decrease in cigarette sales. With price held constant, a
$100 increase in income per capita was associated with a 3.5-pack-per-person-
per-year increase in cigarette sales. (Average per capita income was about
$2100 in 1960.) Figure 1.2.11 and the numbers in our example of States A and
B are based on the estimates from the regression of quantity per capita on
price and income per capita. These results seem to show that a naive model in
which price is regarded as the sole determinant of the quantity demanded of
cigarettes substantially overestimates the reaction of consumers to changes
in cigarette prices. The bivariate analysis estimates the price elasticity of
demand as −1.9, whereas the multivariate analysis estimates price elasticity
of demand as −1.3.

We cannot, however, be certain that including income in a regression equa-
tion will eliminate all sources of confounding. It is entirely possible that other
variables are causing systematically incorrect estimates of the impact of price
and income on the demand for cigarettes. (That of course is the reason why
controlled experiments with random assignment are generally preferred to
observational studies; the random assignment controls for confounding.) Fur-
thermore, we have implicitly assumed that differences in supply have nothing
to do with changes in demand. It is entirely possible, however, that states in
which cigarette demand is lower are also ones that choose to impose higher
taxes on cigarettes. Let us leave aside all these concerns for now. Is anything
else potentially wrong with our analysis? Unfortunately, the answer is yes.9

Thus far, we have overlooked that the dependent variable employed sales
per capita, is not exactly the one we want. In fact, we would like to use
consumption per capita. The difference is important because there are large
incentives for smuggling. Evidence of smuggling is apparent in the data for

9 Although we highlight only two problems with the analysis, there are other difficulties. Most important,
perhaps, is our using aggregate-level data to look at individuals’ behavior.
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New Hampshire. A quick look at Figure 1.2.10 shows that New Hampshire is
well above the regression line. People in the Granite State seem to buy many
more cigarettes than would be predicted from the regression line. Figure 1.2.7
throws more light on the issue. The price of cigarettes in New Hampshire was
14 percent lower than that in Massachusetts, giving smugglers ample oppor-
tunity to make profits by buying in bulk in New Hampshire and transporting
the cigarettes to sell from the back of trucks in Massachusetts. The upshot is
that consumption per capita in New Hampshire was probably considerably
below the 190.2 packs per year recorded for sales, whereas consumption in
Massachusetts was higher than 131.1 packs.

These discrepancies highlight the problem posed by proxy variables (i.e.,
variables that are stand-ins for the actually desired variable). Because of
smuggling, there is almost certainly a definite pattern to the discrepancies –
that is, consumption is underreported in high-price states and overreported
in low-price states. Consequently, consumption appears to fall more with an
increase in price than it actually does, and thus our estimate of the slope of
the demand curve is probably overstated. Several studies of cigarette demand
have attempted to adjust for smuggling.10

This concludes our introductory discussion of the estimation of the demand
for cigarettes. If we have obtained a satisfactory estimate of the effect of price
on quantity demanded, what do we do with it? Our result – that quantity
demanded of cigarettes falls as price rises – has two principal uses. First, it
supports economists’ emphasis on price as a determinant of human behav-
ior. Many people claim that, because of the addictive properties of nicotine,
smokers do not respond to changes in price. This is not the case. Second,
our estimate can be used to forecast future consumption of cigarettes under
alternative scenarios about the level of taxes and other government policies.

Here is a quick tour of how forecasting works. We will confine ourselves
to a very simple forecast based on the bivariate regression. Forecasting is
essentially extrapolating. Recall that the bivariate regression results were as
follows:

Predicted Q per capita = 353 − 8.86 · P.

At the 1960 average price of 26.2 cents per pack, predicted Q per capita is
120.6 packs per person per year. Suppose Congress decided to enact a 5-cent-
per-pack cigarette tax increase effective in 1961. How would consumption
have been affected? Assume that the tax increase translated one-for-one
into a price increase. (This is a controversial issue, for some economists claim
that, because the cigarette industry is oligopolistic, price rises will exceed
the tax increases.) Forecast per capita quantity demanded is then obtained

10 See Chaloupka and Warner (2000) for references.
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Figure 1.2.12. Forecasting 1961 quantity demanded using the
bivariate regression equation.
Source: [Cig.xls]1960Analysis.

by simply substituting the new price of 31.2 cents per pack (i.e., 26.2 plus
5 cents) into Predicted Q per capita:

Predicted Q per capita = 353 − 8.86 · (31.2)
Predicted Q per capita = 76.3.

Figure 1.2.12 illustrates forecasts for 5- and 10-cent increases in price.
Our forecasting procedure relies on the inferential assumption that the data

for each individual state represent one trial of an experiment. The regression
line summarizes all the different trials. Our best guess as to what would
happen were we to conduct another experiment – for instance by setting
the price at 31.2 cents – would be that quantity demanded would fall on the
regression line at the point vertically above 31.2 cents on the x-axis (i.e., at
the dot marked “5-cent increase”). Of course, it would be surprising if actual
quantity demanded were exactly as predicted because chance factors will
likely cause some deviation from the forecast just as none of the observations
for the states in 1960 fell exactly on the regression line.

Figure 1.2.12 highlights an important problem with simple extrapolation:
carried far enough, it produces absurd results. Extend the line to a price of
40 cents, and quantity demanded becomes negative, which is an impossible
outcome. This in turn points to two flaws in our procedure. First, we have
assumed that a straight line best describes the data. Second, we have no evi-
dence on how consumers behave under extreme conditions. Common sense
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tells us that quantity demanded will fall considerably if cigarette prices are
nearly doubled, but not to zero. We will return to these issues.

Summary

Much ground has been covered in this section, all of which will be consid-
ered more carefully later in this book. The main points include the following.
Empirical researchers in economics must use economic theory to frame their
research questions, and they must carefully consider the design of their stud-
ies. Although it is sometimes possible to conduct field or laboratory experi-
ments, observational studies dominate econometric practice. The technique
of regression is a key tool for dealing with observational studies for two rea-
sons. First, it can be used to describe the impact of independent variables
on dependent variables. Second, it can be used to address the problem of
confounding. There are many possible designs for observational studies. We
distinguished between cross-sectional and time-series studies and between
studies based on aggregate-level data versus those based on individual-level
data. We noted that economists must often use proxy variables, that is, vari-
ables that are not exactly the ones they want but that may be decent stand-ins
for the desired variables. Finally, we gave a simple example of forecasting.

Thus far, we have slighted the role of chance in econometric analyses.
Twice it has been noted that the observed data points do not all fall on
the regression line. In other words the postulated demand curve does not
completely determine the observed values of quantity demanded. The same
phenomenon will recur in virtually all applications of regression analysis.
Just as we drew on the established economic model of demand to come up
with a regression equation, econometricians draw on a model of chance to
complete the description of the process that generated the data. Much more
is presented on this topic in Part 2.

The cigarette example made clear that estimating a demand curve is hard
work. Simply fitting a line through a cloud of price and quantity points is
a flawed procedure. We highlighted three reasons why this is poor practice.
First, if both price and quantity are dependent variables, determined by the
interaction of supply and demand, then the observed points do not lie on a
single demand curve. We were forced to apply the restrictive assumptions of
perfectly elastic supply curves and chance demand shocks in order to continue
with our single equation analysis. Next, we explained the pervasive role of
confounding in observational studies. If income is correlated with price and
we leave income out of the regression, we end up with a biased estimate of
the effect of price on quantity. Of course, including income does not protect
us from the confounding effects of other omitted variables. The cigarette
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example also illustrated the issue of imperfect data. Since there is no data on
actual consumption, we are forced to use sales data, even though we know
that in some states, this is a problem.

Econometricians do the best they can under difficult conditions. You will
learn, as you work through this book, that quantitative analysis can be frus-
trating and inconclusive. That does not mean, however, that we shouldn’t
bother. It means that we need to honestly, explicitly state the restrictive
assumptions we are forced to make and properly weight these assumptions
in evaluating the conclusions drawn from the data.

1.3. Conclusion

In Part 1 of this book you will learn exactly what regression is and how it can be
used to describe and summarize data. Section 1.2 offers an example to explain
why regression is so important: It is economists’ main tool for analyzing data
from observational studies. In Part 2, we will turn to inference. At that point,
we will ask you to make an imaginative leap. We hope that you come to
understand that regression estimates are random variables (i.e., numbers
that bounce around).

Your intuition should tell you that there is only one regression line that
best summarizes the data and that intuition is correct. But you should also
see that, though we computed a slope of – 8.86 in the bivariate regression of
quantity per capita on price, if we were to examine data from another year,
a different slope would be obtained. This would happen even if cigarette
demand had not changed at all and the prices in every state had not changed.
Why? The cause is the inherent variability in human behavior. In some states,
cigarettes might suddenly drop out of fashion among young adults; in others,
rising unemployment and divorce might drive people to smoke and drink. An
omniscient being might be able to pinpoint the exact reasons for the variation
in the regression slope, but econometricians regard that variation as being
due to chance.

We conclude this introduction by summarizing the main ideas students
are expected to learn from this book. We realize that most students will not
follow the path chosen by their professors to go on to make the study of
economics or econometrics the focus of their career. The vast majority of
readers of this book will never be required to deal with the most esoteric
concepts presented in the following chapters. We believe nevertheless that
an introduction to econometrics is a valuable learning experience. We hope
that you will learn the following fundamental ideas in econometrics:

� There are many ways to summarize the same set of data. Tools like regression
summarize data more compactly than tools like cross-tabs (known as PivotTables
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in Excel). Every summary is a compromise between giving all the details and giving
a quick, compact description.

� How to interpret a regression. What the slope coefficients mean; what units are
they measured in; how to change your interpretation if a nonlinear functional form
is used in the regression equation; how to determine relevant elasticities; how
multiple regression coefficients control for the presence of other variables besides
the one of immediate interest; the meaning of confounding.

� That the data in your sample could have been different. If you take a second
sample, you will get a different estimate of the average wage of the population or
the support for a political candidate. This lesson has extremely wide applications.

� That without a convincing model of the data generation process, it is impossible to
draw inferences about the population from your sample.

� The meaning of statistical inference: the concepts of population and sample, pop-
ulation parameter, and sample statistic. The ideas behind hypothesis tests and
confidence intervals.

� The difference between statistical significance and practical importance.
� How Monte Carlo analysis sheds light on the concepts of the probability histogram

and the standard error of an estimator.
� Important cases in which the standard model of the data generation process does

not apply and what can be done in such situations to rescue statistical inference.

Some of these concepts are essential knowledge for anyone who deals with
data in the social sciences. Thus, this book should play an important role in
your economics curriculum in college. Some of these concepts will be applied
repeatedly in your future careers. In other cases, you may not use the concept
itself, but you will use related ideas; your having learned the concept will
enable you to appreciate those ideas better. For example, you may never use
Monte Carlo analysis again to think about a probability histogram. However,
you may well use simulation in business or scientific applications.

1.4. Exercises

All of these exercises are based on material in Section 1.2.

1. Using the bivariate regression results forecast the impact of a 5-cent increase
in price on quantity demanded. Assume prices start at 26 cents per pack and
per capita income is $2,500 per person. To find out how much quantity demand
changes owing to a price increase, do you need to know what price and per capita
income you are starting from? Why or why not?

2. Assume that it is 1961 and Congress is for some bizarre reason considering a
50-cent cigarette tax. You are armed with the multiple regression analysis that
includes price and income per capita as independent variables. Is it reasonable
to use these results to forecast the response of smokers to such a tax increase?
Why or why not?

3. Consider the research design of cross-sectional aggregate data based on state
level sales and prices for 1960. Also assume (as the data appeared to show) that
cigarettes are a normal good. Suppose, however, that states with higher per capita
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income had higher prices rather than lower prices for cigarettes. How would that
difference affect the bivariate regression of quantity sold per capita on average
price? In your answer, draw a diagram similar to that of Figure 1.2.6.

4. There is a big difference between the Centers for Disease Control (CDC) fig-
ures for tobacco consumption, which underlie Figure 1.2.1, and the Tax Burden
on Tobacco figures, which underpin Figure 1.2.7. For example the CDC figures
show consumption of 208.6 packs per year in 1960, whereas the average value
in Figure 1.2.7. for the year 1960 was 120.6 packs per year. What is going on?
There are several reasons for the discrepancy. Name the one or two reasons that
in your judgment are most important.

5. Suppose that supply curves are perfectly elastic and all demand curves are parallel
but that states with lower demand for cigarettes are ones in which taxes are higher
and therefore where supply is shifted to the right (with Price on the x-axis).
Explain, using a supply and demand diagram, how this would cause the scatter of
points and the regression line to give a misleading impression of the true shape of
the demand curve.
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2

Correlation

The invalid assumption that correlation implies cause is probably among the two or
three most serious and common errors of human reasoning.

Stephen Jay Gould1

2.1. Introduction

This chapter begins the study of describing data that contain more than one
variable. We will see how the correlation coefficient and scatter plot can be
used to describe bivariate data.

Not only will you learn the meaning and usefulness of the correlation
coefficient, but, just as important, we will stress that there are times when the
correlation coefficient is a poor summary and should not be used. There is
no such thing as a perfect summary measure of data.

In addition, we emphasize that correlation merely indicates the level of
linear association between two variables and should never be used to infer
causation. It is tempting to suppose that a high correlation implies some kind
of causal connection, but this is wrong.

Although much of this material may be familiar to students of statistics,
we conclude the chapter with a discussion of ecological correlation, which is
often omitted from introductory statistics courses. We show that the corre-
lation coefficient based on individual level data may be markedly different
when computed with grouped data. In economics, this is called the aggrega-
tion problem, and it merits attention.

2.2. Correlation Basics

Workbook: Correlation.xls

The basic message of this section is that a good, standard method for describ-
ing the relationship between two variables is to present a bivariate scatter

1 Gould (1996, p. 272).

33
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diagram accompanied by summary statistics: the standard deviation (SD)
and average of the two variables, the correlation coefficient, and the number
of observations. To make this point, we first review the use of descriptive
statistics in the univariate (single-variable) case and then develop analogies
between the univariate and bivariate frameworks. The same example is used
throughout the chapter to illustrate the use of the correlation coefficient and
other summary statistics.

Many high school students in the United States take the Scholastic Apti-
tude Test, or SAT, as part of the college application process. For many years,
the exam was composed of a series of multiple choice questions organized
in two sections, Verbal and Math.2 Scores ranged from 200 to 800 on each
section.

One question that has been asked about the SAT is the degree of associ-
ation between the Verbal and Math portions of the exam. In other words,
do students who do well on the Math part also do well on the Verbal? You
might think so, but perhaps people who are good at one thing, like English
or reading, may not be so good at another, like mathematics.

Let us take a look at some SAT data to see how we can measure the degree
of association between two variables. We will quickly review the univariate
summary statistics and then focus on the correlation coefficient r as a measure
of the linear association.

The Excel workbook Correlation.xls contains data on 527 applicants to
Wabash College, a small liberal arts college in Indiana, from one year in the
early 1990s. Open this workbook now and go to the SATHist sheet.

Univariate Analysis: Average, SD, and Histogram

When describing a list of numbers, the average and SD are usually the best
descriptive statistics to present. The average provides information on the
center of the list, and the SD communicates the spread in the numbers.

If the data are approximately normally distributed, one can use the aver-
age and SD to recreate a mind’s eye histogram of the data. For example,
suppose the data roughly follow the normal curve, the average is 18, and
the SD is 2, as shown in Figure 2.2.1. Then roughly two-thirds of the num-
bers fall in the range from 16 to 20 (the average − 1 SD to the average
+ 1 SD), and about 95 percent of the numbers fall around 14 to 22 (average
± 2 SDs).

Notice that one does not need to provide the histogram. The average and
SD can be used to recreate the histogram easily and to approximate the
number of observations that fall in particular ranges.

2 Beginning in 2005, the SAT included a written portion. For more, see <www.collegeboard.com/>.
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values of a
variable

average
18

20 221614

SD
 2

Figure 2.2.1. A mind’s eye histogram.

The sheet SATHist reports that the average Verbal score of the 527 appli-
cants was about 510 with an SD of roughly 90. Armed with that information,
can you guess what the histogram of the list of 527 Verbal scores looks like?
Draw a rough picture of the histogram. The same question can be asked for
the Math scores, which had an average of around 595 and an SD of roughly
90. In the SATHist sheet, you can scroll down to row 37 to see the actual
histograms. How did you do?

Although the average and SD are powerful descriptive statistics, they are
inappropriate in some cases. Skewed distributions (with long left- or right-
hand tails), truncated distributions, the presence of outliers, and other situa-
tions arise in which the average and SD alone can be quite misleading.

The usual strategy when the average and SD poorly represent the list of
numbers is to provide additional descriptive statistics (such as the median
and percentile information) along with the average and SD. If an accurate
description is especially needed, a histogram of the values of the variable is
an excellent solution. In fact, we recommend use of the histogram to describe
univariate data whenever there is enough space.

Even though the average, SD, and a histogram are excellent summary
measures, it should be obvious that these univariate tools are never going
to indicate the degree of association between two variables because by their
very nature, univariate descriptors are about a single variable. To measure
association, we need bivariate tools.

Bivariate Analysis: The Scatter Diagram (or Plot)
and Correlation Coefficient

The sheet SATScatter contains a scatter diagram or plot of the Verbal and
Math data. It was created by making an XYScatter chart. The choice to place
the Verbal variable on the x-axis and Math on the y-axis is arbitrary – we
could just as well have reversed them. In addition to the averages and SDs,
we report the correlation coefficient r. In this case, r = 0.55. This section will
explain how this number is calculated and what it means.
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The correlation coefficient is a summary statistic that measures the degree
of clustering in the scatter diagram.

� The absolute value of the correlation coefficient tells us how tightly the data are
clustered around the line.

� The sign of the correlation coefficient reveals whether there is a positive or negative
linear association between the two variables

� The correlation coefficient always has a value between –1 and 1.

Take a quick look at the sheet Extreme. It contains three examples. The first
is called perfect positive correlation (r = +1), the second is perfect negative
correlation (r = −1), and the last is no correlation (r = 0).

Obviously, the Verbal and Math SAT data (in the sheet SATScatter) are
not tightly clustered on a straight line. This fact is reflected by the correlation
coefficient value of 0.55. But this raises a question: What is the line around
which the correlation coefficient is measuring the degree of clustering? The
answer is the SD Line.

The SD line passes through the point of averages and has a slope of
SD of y
SD of x

if r > 0 or − SD of y
SD of x

if r < 0.

Note that the sign of r indicates whether the SD Line is positively (r > 0) or
negatively (r < 0) sloped.

In the SATScatter sheet, click on the SDLine button. This line is created by
moving one SD Verbal to the right and one SD Math up from the point of
averages. The point of averages can be seen by clicking on the Average button.
It is the very center of the cloud as measured by the average value of the
x and y values. Click on the Both button to combine the SD Line and the
point of averages with the cloud of points. The SD Line orients the cloud,
and r measures the degree of clustering around the SD Line. The tighter the
clustering, the closer the absolute value of r is to 1.

The correlation coefficient says nothing about the numerical value of the
slope of the SD line (around which the strength of clustering is being mea-
sured), nor does “tight” clustering occur until around 0.9 or more. Correlation
coefficients of 0.5 or 0.6 reflect broad dispersion around the SD line. The Math
and Verbal correlation coefficient is 0.55, and the data are clearly not tightly
clustered.

You can see these attributes for yourself by going to the Patterns sheet.
Change cell B3 to 0.95 and click the Generate Y button to see how the data
are much more tightly clustered. Experiment with other values (such as 0.99,
−0.5, and −0.99) to see how the correlation coefficient and the graph are
related.

Click on the sheet Corr to see how the correlation coefficient is actually
calculated. The Computing r button will take you to another sheet that shows you
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Figure 2.2.2. A mind’s eye scatter diagram.

how r is numerically computed. Return to the Corr sheet and click on the
Understanding

Correlation button to walk through a demonstration of how each data point
affects the correlation coefficient.

If the scatter plot is approximately football shaped, it is easy to recreate a
scatter diagram for the variables. One needs the average and SD for both vari-
ables and the correlation coefficient between the two variables. For example,
suppose you are given the following:

Average X = 100; SD of X = 10
Average Y = 200; SD of Y = 20
r= 0.8.

You use the averages to plot the point of averages (x = 100, y = 200) and
the SDs to plot the SD line and therefore orient the cloud. In this case, the
line has a slope of 2 because the SD of Y is twice the SD of X. Finally, r
indicates the strength of clustering around the SD line and whether the line
is positively or negatively sloped. Figure 2.2.2 shows a good mind’s eye rough
sketch of the scatter diagram given the summary statistics.

Notice that, just as in the univariate case, you do not need to provide the
graph for a “well-behaved” relationship. The average and SD of each variable
combined with the correlation coefficient can be used to recreate the scatter
diagram easily and to approximate the number of observations that fall in
particular ranges.

Let us look at a real-world example. We obtained the yearly data from
the Penn World tables for the country of Costa Rica for the period 1950–
1992.3 The consumption share of gross domestic product (GDP), or C/GDP,
averaged 68 percent with an SD of 4 percent. The investment share of GDP
(I/GDP) averaged 16 percent with an SD of 3 percent. The correlation coef-
ficient was −0.7. Create a mind’s eye scatter diagram using this information.

3 See Basic Tools\Internet Data\Penn World Tables for more on how to access this excellent data source.
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The CRExample sheet contains the actual scatter plot and correlation coef-
ficient. How did you do? Check your scatter diagram against the one in the
Excel workbook to make sure that

� it is oriented correctly,
� the point of averages is correct, and
� the SD line is correct.

Be sure you understand that each point corresponds to a different year in the
data set. That is, the label we give to each observation is a year (e.g., 1975).

Given our emphasis on the similarities between the histogram in the uni-
variate case and the scatter diagram in the bivariate case, you might conclude
that these are analogous graphs. In fact, they are not. They are not on the
same level. Consider the four different panels in Figure 2.2.3. All four are
created from the same underlying data in the SATHist sheet.

A scatter plot does not provide information on the number of observations
at a particular coordinate. In the top right panel of Figure 2.2.3, there is no
way to tell the difference between a point with a single observation and one
with many repeated observations.

Unlike a histogram, a scatter diagram may be misleading if many values are
repeated because it does not tell you how many dots are superimposed over
each other. One way of getting around this problem is to put the number of
repeated values next to each dot on the scatter diagram. Sometimes, however,
as in the Verbal/Math SAT scatter, this is impractical.

Summary

In this section, we introduced the scatter diagram and correlation coefficient
as two basic ways of describing the relationship between two variables.

We have emphasized that univariate data are summarized and described
by the average, SD, and histogram. Bivariate data can be summarized by each
variable’s univariate summary statistics and by two methods that emphasize
the relationship between the two variables: the scatter diagram and the cor-
relation coefficient r.

The correlation coefficient is a standardized measure of clustering around
a line; r ranges from −1 to +1. Here are some guidelines for interpreting the
value of the correlation coefficient:

� r close to −1 means that the data cloud exhibits a tight cluster around the negatively
sloped SD line;

� r is close to 0 when the data cloud is a formless blob;
� r close to +1 means the data cloud is an upward-sloping, cigar-shaped cloud;
� |r| around 0.5 shows a definite pattern, albeit with substantial spread around the

SD line (remember that r = 0.55 for the Math and Verbal SAT); and
� |r| above 0.9 is a rather tight cloud.
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Finally, the SD line is the line around which the points cluster (where the
degree of clustering is measured by the correlation coefficient). The SD line
goes through all of the points that are an equal number of SDs away from
the average for both variables. The absolute value of the slope of the SD line
is (SD of y)/(SD of x).

Although it is a powerful descriptor, r is not without its limitations. The next
section is devoted to exploring the weaknesses of the correlation coefficient
as a summary measure of bivariate data.

2.3. Correlation Dangers

Workbook: Correlation.xls

The previous section showed how the correlation coefficient r can be used to
summarize a bivariate relationship. This section turns the tables and focuses
on the limitations of the correlation coefficient. Unfortunately, as a gen-
eral rule, there is no such thing as a perfect descriptive statistic, and r is no
exception.

We begin by noting that one problem with the correlation coefficient is
that it is not as intuitively understood as the average. Three things to keep in
mind about the correlation coefficient are

(1) Twice the r does not mean twice as much clustering.
(2) r = 0.60 does not mean that 60 percent of the points are tightly clustered.
(3) r says absolutely nothing about the value of the slope of the relationship; r is a

measure of the tightness of clustering around a line that may have any slope.

Misunderstanding aside, two principal dangers are associated with the cor-
relation coefficient. Because it is a measure of linear association only, it will
poorly describe nonlinear relationships. In addition, it is often misinterpreted
as indicating causation.

The Correlation Coefficient as a Poor Descriptor of the Data

We will make the shortcomings of the correlation coefficient clear by working
with the Patterns sheet in Correlation.xls. When you open the Patterns sheet,
it should look like Figure 2.3.1.

The Parameters box allows you to set the average and SD of the y vari-
able and the degree of correlation between the x and y variables. For now,
make sure that r is 0, the Average of y is 20 and its SD is 20, and that the
three buttons appear as in Figure 2.3.1. If not, hit the Reset button. Next,
click on the Generate Y button several times to see patterns consistent with no
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Demonstrating Correlation

r 0
Avg Y 20
SDY 20

X
Average 24.5 20
SD 14.4
r

X
0 34.28
1 34.27
2 −24.23

Parameters

Descriptive Statistics

0.000
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View Misleading r Reset

Cycle through r

Generate Y

20

Y

Y

2

1

Figure 2.3.1. Understanding how r can be misleading.
Source: [Correlation.xls]Patterns

correlation. The x values stay fixed, and so the average x value remains con-
stant at 24.5. The vertical pink line records this average. Meanwhile, the y
values bounce around, but the average y line does not change and the spread
of the y’s remains the same.

Click on the Cycle through r button and watch how the scatter plot changes.
The average and SD for both x and y stay constant, but the shape of the cloud
changes. The Descriptive Statistics box records the average and SD of the
data. If you manually change one or more of the parameters in the Parameters
box but do not hit the Generate Y button, then the Descriptive Statistics will be
different from the parameter values. Once you hit the Generate Y button, a new
data set will be drawn that conforms to the parameter values in cells B3
to B5.

Next, click on the View Misleading r button. Several new options will appear. We
will explore each one in turn.

Click the Cycle through r button until the correlation coefficient equals 0.8.
Select the Linear, Homoskedastic radio button if it is not already selected.
Click on the Generate Y button a couple of times again to see a typical “well-
behaved,” pattern. The term Homoskedastic means that the spread of the y
variable remains constant as the x values change.

Now, select the Linear, Heteroskedastic radio button. Heteroskedasticity
means that the spread of y varies as x changes. Click on the Generate Y button
several times. You will observe the first problem with the correlation coeffi-
cient as a descriptive statistic: The correlation coefficient does not warn you
about changes in the vertical spread of the data.

We have rigged the linear heteroskedasticity option so that the vertical
spread of the points in the scatter plot is much greater for large values of
x than it is for small x. Yet, the average of the y values and the correlation
coefficient is exactly what it was before, 20 and 0.8, respectively.
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Figure 2.3.2. Two data sets with the same summary statistics.
Source: [Correlation.xls]Patterns.

Next, choose the Nonlinear Deterministic radio button. Click Generate Y . A
pretty curve results. You clearly see a second shortcoming of r: the correlation
coefficient does not warn you of deterministic patterns in the data.

Now, steadily change the value of r, using the Cycle through r button. Next,
change the value of the (somewhat mysterious) Free parameter (in cell E16)
from 0.5 to 50 and watch for a different set of pretty curves as you repeatedly
click the Cycle through r button. This should prove the point that, corresponding
to every possible value of r (except –1 and 1), there is an infinite number of
different deterministic patterns that the data might take for the same given
average values of x and y. (You should think about why r = 1 and r = −1 are
exceptions to this rule.)

Finally, choose the Nonlinear radio button and set the Free and Nonlinear
parameters both to 2. Click on the Generate Y button and then cycle through the
r’s. You will see deterministic patterns with a small amount of noise. There
are many real data sets that look more or less like these pictures.

In Figure 2.3.2, we display two data sets, both of which share exactly the
same summary statistics in terms of averages of x (24.5) and y (20), SDs for
x (14.4) and y (20), and correlation coefficients (−0.5); yet there is a very big
difference between the two.

Our mind’s eye reconstruction, given the summary statistics, would proba-
bly give us a picture like the scatter plot on the left in Figure 2.3.2. Providing
only the summary statistics (without the scatter diagram) for data represented
by the right-hand graph would be misleading. The reader would be left with
an incorrect impression about the data without the scatter diagram.

Do not rely on the average or the correlation coefficient (or any other
descriptive statistic) as a foolproof means of communicating information.
Judgment is needed when the data are not represented accurately by a single
statistic. In such cases, a graphical display may well be required.

If the data are truly continuous, measured precisely, and far enough apart
from each other, plotting values in a scatter diagram is an excellent way to
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display the relationship between two variables visually. Annotate the graphic
display with carefully labeled axes, source information, and descriptive statis-
tics (the average and SD of each variable along with the correlation coeffi-
cient) and you will have an outstanding display of the information.

Association Is Not Causation

A second problem with the correlation coefficient involves its interpretation.
A high correlation coefficient means that two variables are highly associated,
but association is not the same as causation.

This issue is a persistent problem in empirical analysis in the social sciences.
Often the investigator will plot two variables and use the tight relationship
obtained to draw absolutely ridiculous or completely erroneous conclusions.
Because we so often confuse association and causation, it is extremely easy
to be convinced that a tight relationship between two variables means that
one is causing the other. This is simply not true.

The fundamental reason that association is mistaken for causation lies in
the notion of confounding. A prototypical example of confounding involves
three variables: x, y, and z. Typically, z is a third confounding variable that
is causing or driving both x and y, and thus a simple plot or correlation of x
and y will make it seem like x causes y when, in fact, x and y are caused by
the underlying missing z. The problem with observational studies is that the
confounding z variable is often deeply hidden in such subtle ways that the
investigator is unaware confounding is present.

Examples of misinterpreting correlation as causation abound. Do private
schools cause better students? A quick look at the data shows that students
from private schools do better on SATs and in college than those from public
schools – there is a correlation between type of school (the x variable) and
educational success (the y variable). Private schools would have you believe
that they are responsible for this. Some reflection on the matter should con-
vince you that there are other differences that may be responsible for the
observed correlation. Candidates for the z or confounding variable include
parental support, family income, nutrition, and student motivation. This is
not to say that private schools do not matter – they may, in fact, have a posi-
tive effect on their students’ education. The point is that a correlation of type
of schooling and educational success should not lead one to conclude that
type of schooling causes educational success. It does not matter how tight
the relationship is; even if r = 0.99, such a conclusion would be unwarranted.
To determine if private schools really do cause better student performance
would take much more work than a high correlation coefficient.

No matter how tight the relationship between two variables, the cor-
relation coefficient alone can never prove causation. The correlation
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coefficient can only tell you about linear association. Association, however,
is not causation.

Summary

The correlation coefficient can fail as a summary of a bivariate relationship
if the data exhibit nonlinearity, heteroskedasticity, or other patterns in which
the cloud is not nicely distributed around the SD line. A second potential
problem with the correlation coefficient lies in its interpretation. It is easy to
confuse a degree of linear association with causation. This is a mistake.

The next section shows a more subtle way in which the correlation coeffi-
cient can be misleading.

2.4. Ecological Correlation

Workbooks: EcolCorr.xls; EcolCorrCPS.xls

The previous section warned that the correlation coefficient is not a perfect
statistic. Including a scatter diagram along with r and the basic summary
statistics (average and SD of x and y) is good practice. The scatter diagram
is a must if r alone will mislead the reader.

This section extends the idea that r may be misleading by exploring an
important issue in using correlation to describe empirical data. Ecologi-
cal correlation is the practice of using a correlation coefficient based on
grouped or aggregated data. The difficulty with ecological correlation is
that researchers often are interested in correlation at the individual level
but must instead content themselves with exploring correlation at the group
level. Ecological correlations are typically, though not always, bigger in abso-
lute value than individual-level correlations. Researchers can thus be fooled
into thinking they have found something important when the correlation
they are really interested in is much smaller. Sometimes the problem is even
worse: The ecological correlation is of opposite sign to the individual-level
correlation.

Statisticians refer to any incorrect inference about individual behavior from
grouped data as the ecological fallacy. Economists call this same phenomenon
the aggregation problem. Although this section will focus on the effects of
grouping on the correlation coefficient, aggregating data can cause problems
for other descriptive statistics and strategies for summarizing data.4 Because
much social science data comes in grouped form, the aggregation problem

4 For example, Simpson’s paradox occurs when the averages of subgroups show a different result than
average of the entire group. The Example sheet of EcolCorr.xls has more on Simpson’s paradox.
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is extremely common. It is hard to spot, however, and even more difficult to
correct or work around.

A good example of the motivations that lead economists to use grouped
data is the analysis of cigarette demand discussed in the previous chapter.
Because states tax cigarette sales, state-level data on cigarette purchases are
readily available. Average prices are easy to obtain for the same reason. Good
individual-level data is much harder to find. It is much more expensive to
gather data on individual consumption of cigarettes. Surveys require trained
workers and a good deal of planning for usable data to be obtained. For
surveys in general, individuals do not necessarily tell the truth, nor do they
always remember exactly what they did. In the case of cigarettes, people may
not wish to reveal their vices, though they probably have a good idea of how
many cigarettes they consume because consumption is a habitual action. Thus,
given that it is much more difficult to obtain individual data, which can be less
reliable, until recently almost all papers on the demand for cigarettes in the
economics literature have used state or national data on cigarette purchases.5

The problem is that these researchers are really interested in the behavior of
individuals, not groups.

Why should we worry? For example, suppose that the demand for cigarettes
does depend on price. If the price of cigarettes is higher on average in
California than it is in North Carolina, will that not mean that people in
California smoke less on average than individuals in North Carolina? Would
we not be able to see the results of individual behavior in the aggregate data?
The answer is in general yes, but the strength of the association between price
and quantity will usually be overstated at the aggregate level; sometimes the
aggregate results will give a completely misleading picture of the story at
the individual level. Applying a group-level correlation coefficient to draw
conclusions about individual-level data exposes researchers to the ecologi-
cal fallacy. We will demonstrate the ecological fallacy by first looking at a
hypothetical example and then examining real data.

A Hypothetical Example

Grouping removes individual variation because a single number, usually the
average, is used to represent the entire group. This typically results in a group-
level r that is greater than the individual-level r. The problem arises when
we make a judgment about individual-level correlation based on group-level
data. Usually, the correlation at the individual level seems to be much stronger
than it actually is when the group-level correlation is used as an estimate of

5 See the references at the end of the first chapter for important articles on the demand for cigarettes.
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Figure 2.4.1. Individual- and group-level correlation.
Source: [EcolCorr.xls]Example.

the individual-level correlation. Although this is difficult to understand in the
abstract, it is rather easy to see with a simple numerical demonstration.

Open the Excel workbook called EcolCorr.xls. The Example sheet contains
the data used to generate Figure 2.4.1. There are seven students, each at three
different high schools (Athens, Britain, and Carthage). They have just taken
the SAT. We want to know the correlation between the Math and Verbal
SAT scores. We can look at the data at two levels: individual and high school.
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At the group level, the correlation coefficient is 0.938. There appears to be
a strong association between Math and Verbal SAT scores. But, in fact, the
association between Math and Verbal SAT using the individual-level data is
only 0.513.

Why is the group-level r so much greater? The scatter diagrams reveal the
answer. The individual variation in the bottom scatter diagram weakens the
association between Math and Verbal SAT. When the data are viewed at
the high-school level, we group the seven students in each high school into
a single number, the average. The three group-level observations exhibit a
much higher correlation.

Of course, this could be an artifact of the particular 21 pairs of Math and
Verbal SAT scores in this example. The Live sheet in the EcolCorr.xls work-
book allows you to generate your own set of observations. Hit F9 to have the
21 students take the SAT again. Every time you hit F9, the SAT is retaken and
the average score for each high school is recalculated. You can then compare
the group- and individual-level correlation coefficients. If both graphs do not
fit on your screen, use Excel’s Zoom tool to shrink the display. The parameter
in cell B1, Rand factor, is not an important parameter. It just ensures that
the SAT scores stay between 200 and 800.

As you hit F9 and examine the results, you should notice that the group-
level r is almost always higher than its corresponding individual-level cor-
relation coefficient. Keep your eye on the graphs as well. Do you see how
the grouped scatter plot removes the individual variation? That is why the
correlation coefficient at the group level is so much higher. If you look closely
at the formulas generating the data in the Live sheet, you will discover how
we ensure that the Carthage High School students will score on average
higher than the Britain and Athens students and how we build in a correla-
tion between the Verbal and Math scores. Because the data are generated
using random numbers, the extent to which the group-level r diverges from
the individual-level r will vary in every case.

Here is the lesson: Beware of correlation coefficients based on grouped
data! Unfortunately, caveats are hard to follow. You need considerable prac-
tice in the form of many different examples before you can spot the danger
yourself. Try to remember that the use of averages (or any other constructed
measure) might paint a very misleading picture of what is really going on at
the disaggregated level.

There is one important exception: the investigator may really be interested
in the group level. If so, the correlation coefficient based on grouped data
is correct. Note once again that the danger lies in making statements or
drawing inferences about individual behavior from grouped data. If you really
want to make inferences about the behavior of aggregates, grouped data are
appropriate.
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Educ Age Earnings
Educ 1
Age −0.17 1
Earnings 0.63 −0.30 1

Correlation Table

State-Level Averages, March 2002
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Figure 2.4.2. Group-level correlation analysis.
Source: [EcolCorrCPS.xls]State.

An Actual Example

Let us now consider an actual example of ecological correlation. The Current
Population Survey collects data on a wide array of variables via a monthly
survey. In March, the survey is augmented with a series of economic and
financial questions. We obtained data from the March 2002 Current Pop-
ulation Survey on 23,187 people between the ages of 30 and 60.6 Open
the EcolCorrCPS.xls workbook to access the data (The file CPS.doc in the
Basic Tools/InternetData folder explains how to access the CPS online,
download data, and import it into Excel. We discuss CPS data in detail in
Chapter 3.)

We have information on each person’s age, education, and annual earn-
ings for the year 2001. We are interested in the association between pairs of
these variables. You might expect a strong association between earnings and
education, but what about age and earnings or age and education?

At the group level, in this case the state level, the data show the expected
strong positive correlation between education and earnings and a neg-
ative correlation between age and earnings. The results in Figure 2.4.2

6 Actually, we obtained data on 92,400 people between the ages of 30 and 60 and then took an approximate
25 percent sample, resulting in the 23,187 observations in the data set. More details are in the Intro and
Codebook sheets of the file, EcolCorrCPS.xls.
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Educ Age Earnings
Educ 1
Age 0.003 1
Earnings 0.336 0.040 1

Correlation Table

Individual Data, March 2002
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Figure 2.4.3. Individual-level correlation analysis.
Source: [EcolCorrCPS.xls]Individual.

present a correlation matrix and a scatter diagram of the age and earnings
variables.

The results for the Age and Earnings variables are curious and thought
provoking. The graph in Figure 2.4.2 and the fact that r = – 0.30 point to
a negative relationship between age and earnings. Is a powerful force at
work here? It looks like older people earn less. Perhaps, but remember that
the correlation coefficient is based on grouped data. The 51 observations
represent the average age and average earnings in each state (and the District
of Columbia). Grouping data by using the average, as we learned in the
hypothetical example in the previous section, may mislead us. In this case, we
have the underlying observations, and thus we can find the individual-level
correlation coefficients.

When we calculate the individual-level correlation between personal earn-
ings, age, and education, the results are markedly different. Figure 2.4.3 shows
the same variables as Figure 2.4.2 except that we now use the individual-level
data. The positive association between education and earnings is still present,
but it is weaker. The negative association between age and earnings has com-
pletely disappeared.

Figure 2.4.3 is ugly and hard to read. Note that, although there are
23,187 people in the data set, 23,187 dots are not in the scatter plot. Many
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of the dots in the graph stand for numerous individual observations.7 The
correlation coefficient helps us to make sense of what is going on. For the
people aged 30 to 60 that were sampled in the March 2002 survey, there is a
definite positive association between earnings and education, but there is no
strong association between age and earnings or age and education.

Summary

So which level of analysis is correct? It depends on the question you want to
answer. Economists typically are interested in how personal characteristics
(e.g., age and education) affect earnings. Thus, the individual level of data is
the appropriate one to use. The danger posed by ecological correlation is that
researchers will use the aggregate data to reach conclusions about questions
at the individual level. In our example incorporating actual data, concluding
that age and earnings were strongly negatively associated at the individual
level based on a group-level r of – 0.3 would be quite wrong.

Unfortunately, many times (as in the cigarette example we cited at the
beginning of this section) group-level data are the only data available. The
choice then is to proceed with caution or not to proceed at all. When the for-
mer path is taken, conclusions should be presented carefully and the reader
should be told that the ecological fallacy or aggregation problem is a concern.

2.5. Conclusion

The correlation coefficient r is a commonly used measure of linear association
between two variables. Often, reporting the averages and SDs of the two
variables along with r is enough to enable the reader to create a rough, mind’s
eye representation of the scatter diagram.

In many cases, the bivariate data will exhibit a nonlinear association or het-
eroskedasticity, contain an unusual number of extreme values, or have a pecu-
liar characteristic that cannot be captured by the averages, SDs, and correla-
tion coefficient alone. Providing the scatter diagram is then recommended.

Good econometric practice also requires vigilance with respect to the
process that generated the data. Ecological correlation, also known as the
aggregation problem, is a common concern in the social sciences because we
often do not have data at the individual level. Unfortunately, by aggregating

7 Notice as well that the earnings variable is “top-coded.” For confidentiality purposes, earnings
above $150,000 are replaced by values between $270,000 and $361,000, which represent the aver-
age values of earnings for those who earned more than $150,000 in different demographic groups.
(See <www.bls.census.gov/cps/ads/2002/sfiledif.htm.>) Earnings include income from self-employment,
which sometimes can be a loss. Losses greater than $9,999 were apparently “bottom coded.”
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individual units into groups, the loss of dispersion within the group tends to
generate a stronger correlation at the group level compared with the indi-
vidual level. The lesson to avoid the ecological fallacy is complicated by two
factors. First, it may be difficult to see that the data are, in fact, grouped. In
addition, grouping individual observations into categories is not always a bad
idea.

The correlation coefficient can be a powerful statistic for summarizing
bivariate data, but its limitations force us to use additional techniques. The
next chapter explains how the data can be tabulated in a variety of ways and
provides the foundation for regression analysis.

2.6. Exercises

Click the
Data for

Exercises button near cell J1 of the SATHist sheet in the Correlation.xls
workbook.

1. Provide a conventional description of the data, including averages and SDs for
the two variables, the correlation coefficient, and a scatter diagram.

2. Is the scatter diagram needed for effective description in this case? Why or why
not?

3. Is the correlation coefficient an appropriate summary statistic in this case?
Explain.

4. Compute r on a subset of the data for Verbal scores between 400 and 600, inclu-
sive. Report your answer.

5. Compare the correlation coefficient of the 44-observation data set to the r = 0.55
value from the original 527-observation data set. Given that the former data were
created from the latter, why are we not getting the same correlation coefficient?
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PivotTables

Not everything that can be counted counts; and not everything that counts can be
counted.

Albert Einstein1

3.1. Introduction

This chapter focuses on summarizing and describing patterns in data via
tables. Tables efficiently convey basic summary information such as counts
and averages. Tables can also be a powerful device with which to explore
complicated relationships in data. Thus, the work on tables in this chapter
will enable you to understand the concepts of the conditional average and
regression analysis better. Tables make clear that a particular value can be
viewed as the result of a conjunction of conditions or categories. That is a
crucial aspect of regression analysis.

A powerful way to tabulate data is Excel’s PivotTable feature. A PivotTable
enables the user to try a variety of different views of the data. PivotTables,
combined with Excel’s formatting and charting, facilitate effective and clear
data description.

3.2. The Basic PivotTable

Workbooks: IndianaFTWorkers.xls; Histogram.xla(Excel add-in)

Open the Excel file called IndianaFTWorkers.xls (available in the folder Basic
Tools\InternetData\CPS) to begin learning about PivotTables and tabula-
tion. The file contains information on 598 people from the March 1999 Cur-
rent Population Survey (CPS). The Doc sheet describes how the data were

1 Einstein had this saying on a sign hanging in his office at Princeton. See “Some Quotable Quotes for
Statistics” at <www.ewartshaw.co.uk/>.

53
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Table 3.2.1. Univariate Summary Statistics for Indiana March 1999 CPS

Usual Hours Worked Age Total Personal Income

Mean 42.5 Mean 41.0 Mean $37,174
Median 40 Median 41 Median $30,000
Mode 40 Mode 42 Mode $15,000
SD 14.0 SD 10.9 SD $33,560
Range 144.0 Range 67 Range $324,731
Minimum 0 Minimum 18 Minimum –
Maximum 144 Maximum 85 Maximum $324,731
Sum 25398 Sum 24494 Sum $22,229,813
Count 598 Count 598 Count 598

Education Total % of Total

No HS Gra 60 10.0
HS Grad 233 39.0
Some Coll 174 29.1
Coll Grad 131 21.9

Total 598 100.0

Race Total % of Total

AsianPI 1 0.2
Black 31 5.2
IndEsk 7 1.2
White 559 93.5

Total 598 100.0

Sex Total % of Total

Female 258 43.1
Male 340 56.9

Total 598 100.0

Source: [IndianaFTWorkers.xls]DescStat.

Histogram of Usual Hours Worked

0 50 100

Figure 3.2.1. Usual hours worked histogram.
Source: [IndianaFTWorkers.xls]Histogram.
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Figure 3.2.2. PivotTable Wizard Step 2.

obtained, and the file CPS.doc in the same folder contains detailed instruc-
tions on downloading data from the CPS.

We do not approach the data in a vacuum. Prior questions guide our explo-
ration of the data. For example, we might want to find out if more education
is associated with higher income and, if so, how much more. Additionally, we
might want to look for evidence of income disparities between whites and
blacks or men and women.

We begin our analysis of the data by reporting univariate summary
statistics using the Data Analysis Excel add-in. The DescStat sheet in the
IndianaFTWorkers.xls workbook explains how to use the Data Analysis tool
to get univariate summary statistics like those in Table 3.2.1.

Another way to get univariate summary statistics is by using the Histogram
add-in included in the BasicTools\ExcelAddins\Histogram folder.2 In the
case of Usual Hours Worked, a histogram greatly helps in summarizing the
data. Usual Hours Worked looks to be a problem. The minimum is zero, even
though these are full-time workers. The maximum is 144 hours, or 6 full days
of nonstop work. Neither of these two extreme values makes much sense for
the usual hours of a full-time worker. Puzzling values are a common part of
analyzing real-world data. (Apparently, some people are on call all the time,
which is their justification for saying they work 24 hours a day.)

Let us explore the Usual Hours Worked variable further with a one-
dimensional PivotTable. Execute Data: PivotTable Report.3 In the first step
of the PivotTable and PivotChart Wizard, select the Microsoft Excel list or
database option and then click Next. In step 2, you should see a screen like
Figure 3.2.2.

By clicking on the icon, you can collapse the Wizard display to find the
range you wish to select more easily. Select the data range Data: G4:O602
(or whatever range contains your data). Step 3 is the heart of the PivotTable
feature. It is depicted in Figure 3.2.3. Choose New Worksheet as the place

2 See Histogram.doc in Basic Tools\ExcelAddIns\Histogram for instructions on installing and loading
the Histogram add-in.

3 The PivotTable interface we describe is that for Excel 2000. It should be easy to figure out the appropriate
moves in other versions (e.g., Excel 97 or more recent versions).
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Figure 3.2.3. PivotTable Wizard Step 3.

you want to put the PivotTable. Then click on the Layout button. You will
see something like Figure 3.2.4.

The basic idea is to drag the variable or field buttons to the row, column,
or data areas. In the data area, you determine the operation you want done.
Once the PivotTable is created, you return to this step each time you want to
reorganize the data.

To continue, click on the Usual Hours Worked field button and drag it to
the row area. Then click on the Usual Hours Worked field button again and
drag it to the data area. Double click on the “Sum of Usual Hours Worked”
tile that appears and change it so that it is summarized by the Count (instead
of the Sum). The PivotTable settings should now look like Figure 3.2.5. Notice
for future reference that there are two types of counts to choose from: Count
and Count Nums. The former counts all observations; the latter counts just
those observations with numerical values.

Figure 3.2.4. PivotTable Wizard – Layout.
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Figure 3.2.5. PivotTable Wizard – Final layout for Usual Hours Worked.

Click OK when you are ready, and then click Finish. The beginning of your
PivotTable on the newly created worksheet should look like Figure 3.2.6.

You should rename the sheet created by the PivotTable to keep the work-
book well organized and easy to understand. You may also see the PivotTable
toolbar, which looks like Figure 3.2.7.

This toolbar can be dragged and parked with the other Excel menus at
the top of the display. The toolbar changes appearance when you select any
cell inside the PivotTable itself, as shown in Figure 3.2.8. In Excel 2003, a
PivotTable Field List appears.

You can drag variables from the toolbar into the PivotTable row or col-
umn areas and thereby add more information to the table. One of the more
important icons in the display is the exclamation point, , which refreshes
the PivotTable if you change the underlying data.

Figure 3.2.6. Frequency Table of Usual Hours Worked.



P1: irk
0521843197c03 CB962B/Barretto 0 521 84319 7 November 7, 2005 17:1

58 PivotTables

Figure 3.2.7. PivotTable toolbar.

Excel’s PivotTable can create a variety of different tables. We will concen-
trate on just two of the many different types of tables: (1) Frequency tables
that show counts and (2) Crosstabs that contain conditional averages. Each
type has a dimensional attribute. Figure 3.2.6 displays a one-dimensional fre-
quency table analogous to a histogram.

The tabulation of the number of people for a given value of usual hours
worked reveals that there are 33 people who answered yes when asked if
they are full-time workers working 35 or more hours per week but are also
reported as having a usual workload of 0 hours. In addition, there are three
people who report that they usually work 102 hours or more per week.

A nice feature of the PivotTable is that values can be hidden while the data
set continues to be explored. To illustrate this procedure, click on the down
arrow in the right-hand edge of the Usual Hours Worked tile (in cell B4 in
Figure 3.2.6). This brings you to a window in which you can determine via a
check box which values of observations are to be included or removed from
the table, as shown in Figure 3.2.9.

Click on the 0, 102, 120, and 144 values, thereby deselecting them. Click
OK. The PivotTable is recreated without the corresponding observations.
Note that there are now only 562 values. PivotTable computations are based
on only the remaining observations.

Note also that the hidden observations have not been deleted but merely
temporarily removed. Another analysis based on the same data set would
contain all 598 observations. Whether these observations should be per-
manently removed from the underlying data set is a difficult question that
depends on the objective of the analysis. The point here is that PivotTables
allow you to view the data with and without observations selected according
to their value for a variable of interest.

Figure 3.2.8. Active PivotTable toolbar.
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Figure 3.2.9. Choosing values to display
in a PivotTable.

Summary

This introduction to the basics of PivotTables has demonstrated how to
explore a single variable with a PivotTable and how to hide values. Of course,
this merely scratches the surface of what you can do with PivotTables. The
next section focuses on creating two-dimensional tables or crosstabs.

3.3. The Crosstab and Conditional Average

Workbook: IndianaFTWorkers.xls

Continuing with the Excel file called IndianaFTWorkers.xls, which you have
now augmented with a PivotTable sheet as described in the previous section,
we demonstrate how to create a crosstab (which is short for crosstabulation)
and is also known as a contingency or cross-classification table. Unlike a
frequency table, which shows the distribution of counts, a crosstab displays
conditional information. By including another dimension to the table and
tabulating the averages in various subgroups, the crosstab can quickly sum-
marize and reveal patterns in the data.

Begin by clicking on any cell in the PivotTable. Execute View: Toolbars:
PivotTable if the PivotTable toolbar is not visible. Click on the PivotTable
Wizard button ( ) or click on the PivotTable pull-down menu and select
the PivotTable Wizard to return to Step 3 of the PivotTable Wizard. Click
on Layout. Note that, when you select a cell in the PivotTable, a right click
accesses a pop-up menu.

We want to explore the relationship between Education and Total Per-
sonal Income via a table. Remove the Usual Hours Worked tiles by click-
ing and dragging them away. Move the Education General field button (let
your cursor rest over an Education field button to see the full name) to the
Row area and put Average of Total Personal Income in the Data area as in
Figure 3.3.1.
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Figure 3.3.1. PivotTable layout for education and total personal income.

Click OK and then Click Finish. You have a one-dimensional crosstabu-
lation depicting the relationship between education and income. The Pivot-
Table sheet explains how to format the cells. Click and drag to reorganize the
groups in order of ascending education in order to create Figure 3.3.2. Instead
of showing how many people are in each group, the PivotTable reports the
average total personal income for each educational group.

This crosstab or contingency table displays the conditional average. For
each educational category, the PivotTable reports the average total personal
income of the individuals with that level of education. The Grand Total is the
overall average. As expected, as education increases, so does average total
personal income.

To see how many people are in each group, return to the PivotTable Wizard
and add the Count of Total Personal Income to the data area. The PivotTable

Figure 3.3.2. Income as a function of Education crosstab.
Source: [IndianaFTWorkers.xls]PivotTable.
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Figure 3.3.3. Income as a function of Race crosstab.
Source: [IndianaFTWorkers.xls]PivotTable.

is recreated and the counts are added, but the counts are formatted as dollars.
To remedy the formatting problem, select a cell in the data area of the
PivotTable report that contains one of the counts. On the PivotTable toolbar,
click Field Settings, which is this icon: . Click Number. In the Category
list, click the format category you want, which in this case is Number, and
then choose zero decimal places. Click OK twice. Note that there are 598
total observations. We are working with the entire data set (without hiding
the Usual Hours Worked = 0 values).

Continue exploring the data by making one-dimensional crosstabs of the
average of Total Personal Income by Sex and Race. We chose to hide the
AsianPI and IndEsk categories in Figure 3.3.3 but used the entire data set in
Figure 3.3.4. Your results should be similar to these figures.

Note that Figures 3.3.3 and 3.3.4 mix frequency and average information.
Both PivotTables report conditional averages. That is, the tables report aver-
age values given Race (black or white) or Sex (female or male). The totals
are overall averages and overall counts.

Before we begin to explore the relationship between total personal income
and race and sex, note the seeming error in the race table. If African-
Americans have, on average, a total personal income of $30,228 and whites
come in at $37,303, how can the overall average be $36,931? After all, the
average of $30,228 and $37,303 is about $33,765. The answer is contained in
the count information. There are many more whites than blacks. The Pivot-
Table is correctly computing the overall average as a weighted average. The
basic idea is captured by Figure 3.3.5.

Figure 3.3.4. Income as a function of Sex crosstab.
Source: [IndianaFTWorkers.xls]PivotTable.
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Average Total Personal Income by Race

$0

$5,000

$10,000

$15,000

$20,000

$25,000

$30,000

$35,000

$40,000

0% 100%

559 
White 
Obs

31 
Black 
Obs

$33,765 
Simple 
Average

$36,931 
Weighted 
Average

$37,303 Average White

$30, 228 Average Black

94.75% of obs are White

Figure 3.3.5. Understanding the weighted average.
Source: [IndianaFTWorkers.xls]WeightAvg.

Notice that Excel’s PivotTable is correctly using a weighted aver-
age in its Average of Total Personal Income. The sheet WeightAvg in
IndianaFTWorkers.xls explains the concept and calculation in more detail.

Wage or income discrimination occurs when otherwise identical workers
are paid different amounts. To explore the evidence for income discrimi-
nation, we can create a crosstab. The simple comparison of average of total
personal income against sex or race suffers from potential confounding. After
all, perhaps the difference in incomes is due to some hidden factor that hap-
pens to be correlated with race or sex.

A PivotTable can help analyze additional factors by creating an additional
dimension in the table. Return to the PivotTable sheet and Step 3 of the
PivotTable Wizard. Make a PivotTable with Race in the row area, Education
in the column area, and Average of Total Personal Income in the data area.
Our table is Figure 3.3.6.

Average of Total Personal 
Income

Education 
General 

Race

First to 
Eighth 
Grade

Some High 
School

High 
School 
Grad

Some 
College

College 
Grad

Post 
Graduate 

Study Grand Total
Black $8,921 $27,770 $33,268 $27,097 $62,500 $30,228
White $21,037 $26,947 $28,662 $34,502 $61,974 $61,254 $37,303
Grand Total $21,037 $25,821 $28,624 $34,416 $60,138 $61,302 $36,931

Categories

Figure 3.3.6. Income as a function of education and race.
Source: [IndianaFTWorkers.xls]PivotTable.
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Figure 3.3.6 is a two-dimensional crosstab (or contingency table). Each
cell in the interior represents the average of Total Personal Income for
given combinations of categories. Note how the Grand Total row and column
represent the one-dimensional view. By comparing more similar people, or
more homogeneous groups, one obtains a better analysis. The conditional
average reported in each cell is now a combination of two categories: race
and education.

Figure 3.3.6 should pique your curiosity. It shows that African-Americans
in Indiana from the March 1999 CPS sample had about $7,000 less income
on average than whites. The table contains two possible explanations. First,
notice that African-Americans and whites in the Some High School and
College Grad categories have the greatest differences in average income. We
could then argue that wage gaps in these categories largely account for the
observed $7,000 gap in the overall average. A second consideration, however,
concerns the frequency distribution across the groups. Perhaps there are rela-
tively more African-Americans in the lower educated groups, whereas whites
are concentrated in the higher education groups. The table does not provide
enough information to determine an answer. You can, however, use Excel’s
PivotTable feature to add a count and percent of row information, as we did
in Figure 3.3.7.

As you do this, you are using PivotTables as a dynamic data exploration
tool. The easy movement of variables and quick retabulation of data is a
powerful feature of Excel’s PivotTable.

Notice that adding variables to the table makes it messier and harder to
read. The low counts for Black should make us wary. We simply have too few
observations to reach any definite conclusions. Furthermore, notice that we
know nothing about the kinds of jobs these workers are doing nor about any
other dimensions on which workers might differ. We cannot conclude that
blacks are suffering from income discrimination absent much more informa-
tion on these workers and their jobs.

Return to the PivotTable Wizard and add Sex to the table into the columns
section. Once one starts to consider more than two variables, tables become
particularly difficult to interpret. This is one of the reasons researchers use
multiple regression analysis. For one- or two-way presentations of relation-
ships, however, tables are a good initial step.

The last feature of Excel’s PivotTable is the ability to group numerical val-
ues. Create a one-dimensional PivotTable of Age and Usual Hours Worked.
The table is too long. Right-click on the Age tile in the table and select the
Grouping option. Go ahead and group the ages by 10-year categories. The
table is now easier to read. Get a count on each category. It would prob-
ably make sense to hide the last two categories. Our table is presented in
Figure 3.3.8.



P1: irk
0521843197c03 CB962B/Barretto 0 521 84319 7 November 7, 2005 17:1

E
du

ca
tio

n 
G

en
er

al
 

C
at

eg
or

ie
s

R
ac

e
D

at
a

F
irs

t t
o 

E
ig

ht
h

G
ra

de
S

om
e 

H
ig

h
S

ch
oo

l
H

ig
h 

S
ch

oo
l

G
ra

d
S

om
e 

C
ol

le
ge

C
ol

le
ge

 G
ra

d
P

os
t-

G
ra

du
at

e
S

tu
dy

G
ra

nd
 T

ot
al

B
la

ck
A

ve
ra

ge
 o

f T
ot

al
 P

er
so

na
l I

nc
om

e
 

 
$8

,9
21

$2
7,

77
0

$3
3,

26
8

$2
7,

09
7

$6
2,

50
0

$3
0,

22
8

C
ou

nt
 o

f T
ot

al
 P

er
so

na
l I

nc
om

e
3

10
12

4
2

31
P

er
ce

nt
 o

f R
ow

0.
00

%
9.

68
%

32
.2

6%
38

.7
1%

12
.9

0%
6.

45
%

10
0.

00
%

W
hi

te
A

ve
ra

ge
 o

f T
ot

al
 P

er
so

na
l I

nc
om

e
$2

1,
03

7
$2

6,
94

7
$2

8,
66

2
$3

4,
50

2
$6

1,
97

4
$6

1,
25

4
$3

7,
30

3
C

ou
nt

 o
f T

ot
al

 P
er

so
na

l I
nc

om
e

8
4

5
22

3
16

1
72

50
55

9
P

er
ce

nt
 o

f R
ow

 
1.

43
%

8.
05

%
39

.8
9%

28
.8

0%
12

.8
8%

8.
94

%
10

0.
00

%
T

ot
al

 A
ve

ra
ge

 o
f T

ot
al

 P
er

so
na

l I
nc

om
e

$2
1,

03
7

$2
5,

82
1

$2
8,

62
4

$3
4,

41
6

$6
0,

13
8

$6
1,

30
2

$3
6,

93
1

T
ot

al
 C

ou
nt

 o
f T

ot
al

 P
er

so
na

l I
nc

om
e

8
4

8
23

3
17

3
76

52
59

0
T

ot
al

 P
er

ce
nt

 o
f R

ow
1.

36
%

8.
14

%
39

.4
9%

29
.3

2%
12

.8
8%

8.
81

%
A

Z
Z

Fi
gu

re
3.

3.
7.

In
co

m
e

as
a

fu
nc

ti
on

of
ed

uc
at

io
n

an
d

ra
ce

w
it

h
co

un
ts

an
d

pe
rc

en
ta

ge
s.

So
ur

ce
:[

In
di

an
aF

T
W

or
ke

rs
.x

ls
]P

iv
ot

Ta
bl

e.

64



P1: irk
0521843197c03 CB962B/Barretto 0 521 84319 7 November 7, 2005 17:1

PivotTables and the Conditional Mean Function 65

Figure 3.3.8. Usual hours worked as a function of age in groups.
Source: [IndianaFTWorkers.xls]PivotTable.

Summary

PivotTables are a powerful way to analyze data. They help indicate patterns
and relationships, but they can get messy when more than two or three vari-
ables are considered. Using PivotTables to display the conditional average
can be an excellent way to summarize the data and highlight a relationship
in the data.

3.4. PivotTables and the Conditional Mean Function

Workbook: EastNorthCentralFTWorkers.xls

The information in data sets must be summarized in order to perform descrip-
tion and analysis. So far in this chapter, we have looked at an example of a data
set from a recent year of the March CPS and used various tables to summa-
rize the data via Excel’s Data Analysis: Descriptive Statistics and PivotTable
features.

In this section, we will consider a similar but larger data set. As in the
previous Section, we will use Excel’s PivotTable for data exploration. In
addition, we will utilize the PivotTable to introduce the conditional mean
function. This will lay the foundation for understanding regression analysis.

A New Data Set

The workbook EastNorthCentralFTWorkers.xls contains information on the
following variables for the full-time workers in the March 1999 Current Pop-
ulation Survey sample who lived in the five East North Central states:

Usual Hours Worked
Education
Yearly Earnings
Race
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Illinois Average of Yearly Earnings 37,328$   
Count of State 2064

Indiana Average of Yearly Earnings 33,124$   
Count of State 598

Michigan Average of Yearly Earnings 39,317$   
Count of State 1489

Wisconsin Average of Yearly Earnings 34,497$   
Count of State 630

Ohio Average of Yearly Earnings 40,051$   
Count of State 1585

Total Average of Yearly Earnings 37,796$   
Total Count of State 6366

Figure 3.4.1. Average yearly earnings by state with counts.
Source: [EastNorthCentralFTWorkers.xls]Tables.

Sex
Usual Weekly Earnings
State
Month in Sample

See the Intro sheet to learn how to get more information on the data sets and
how they were constructed. We are interested in describing the yearly earn-
ings of the 6,366 workers in the data set. In fact, yearly earnings will become
the dependent variable in our analysis, and we will identify explanatory, or
independent, variables that may determine yearly earnings. Figure 3.4.1 is
one quick summary of the data.

In Figure 3.4.1, the Count of State values indicate how many observations
there were for each state. For example, there were 1,585 full-time workers in
the sample in Ohio, and their average yearly earnings were $40,051. It should
be obvious from what we did in the previous section that Figure 3.4.1 is just
one of the many possible tables we can produce from this data set.

Figure 3.4.2. The Count Nums summary option.
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Figure 3.4.3. Frequency distribution of yearly earnings for
different levels of education.
Source: [EastNorthCentralFTWorkers.xls]Tables.

There is another variable in the data set that measures income – namely,
Usual Weekly Earnings. In the Current Population Survey, households are
surveyed for a total of 8 months. Questions pertaining to Usual Weekly Earn-
ings are asked only of people in households that are in their fourth and
eighth months of being in the survey. Thus, there are numerous missing val-
ues (indicated by a “.” in the workbook) for this variable. To count the number
of observations with nonmissing values, one needs to use the Count Nums
option, as illustrated in Figure 3.4.2.

Rather than exploring differences in annual or weekly earnings across
states, we will examine the association between yearly earnings of full-time
workers and their education in these five Midwestern states in March 1999.
First, let us look at a frequency table in which earnings levels have been
grouped, as depicted in Figure 3.4.3.

Here is an example of how to read this table: 358 people in the data set had
completed 12 years of education and earned between $40,000 and $59,999.
Grouping values helps create tables that are easy to read. To group, select
the variable to be grouped (by clicking on its label on the worksheet) and
right-click. Select Group and Outline and choose the desired ranges.

You can practice grouping by creating a PivotTable of Yearly Earnings by
Sex. From the Data sheet, create a PivotTable for which the layout looks like
Figure 3.4.4. After you have created the PivotTable, right-click the Yearly
Earnings variable and group the values in ranges of 20,000. There are few
values beyond 100,000; therefore group them into one category. If you cannot
figure out how to do this, go to the Grouping sheet for instructions.

Figure 3.4.4. Grouping practice layout.
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Figure 3.4.5. Average yearly earnings for yearly earnings intervals by education.
Source: [EastNorthCentralFTWorkers.xls]Tables.

Next, look at Figure 3.4.5, which shows average yearly earnings for different
levels of education and different intervals of Yearly Earnings. For the group
that had 12 years of education and earned between $40,000 and $59,999,
average yearly earnings were $46,957. We would fully expect these people
to earn on average something in the $40s or $50s, though it is somewhat
surprising that the average is only $46,957 (instead of closer to $50,000).

Finally, Figure 3.4.6 is a collapsed version of Figure 3.4.5. Figure 3.4.6 is
just the extreme right- and left-hand columns of Figure 3.4.5. The values in
this table can be computed from Figures 3.4.3 and 3.4.5. The overall (“Total”)
average yearly earnings by education level are weighted averages of the aver-
age earnings in Figure 3.4.5.

Figure 3.4.6 takes information on all 6,366 people in the sample and col-
lapses it into 10 pairs of numbers and an overall average (“Grand Total”)
figure. This table provides a powerful way of thinking about the relationship
between yearly earnings and education in our sample. It can be used to answer
the following question: Given that a particular observation has a certain
value of Education, what is the value of Yearly Earnings we expect to see for
that observation? Questions of this type are fundamental to the empirical
analysis of multivariate data sets.

Average of Yearly Earnings

Education Total
8 17,662$ 

9 24,044$ 
10 20,386$ 

11 19,976$ 
11.5 20,851$ 

12 27,934$ 

13 33,888$ 
14 35,687$ 
16 48,907$ 

18 76,187$ 
Grand Total 37,796$

Figure 3.4.6. Average yearly earnings by education.
Source: [EastNorthCentralFTWorkers.xls]Tables.
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Figure 3.4.6 reports a value of Yearly Earnings we expect to find for people
at each level of education. This value is the average level of Yearly Earnings
for all people in the data set who have the given level of education. The
technical name for the information in the table is the conditional mean
function. To understand this concept, look at each word in turn. Function
says we are going from one variable – Education – and moving to a second
variable – Yearly Earnings. Mean signifies we are looking at averages. Con-
ditional denotes that we are reporting the mean level of Yearly Earnings
conditional on the level of Education.

The conditional mean function is one way of answering the general ques-
tion, Given that a particular observation has a certain value of the “indepen-
dent” variable, what is the value of the “dependent” variable that we expect to
observe for that observation? Of course, not every observation will have the
same yearly earnings given a level of education. There is dispersion around
the conditional average. The conditional mean function, however, gives us
a measure of the center of the values of yearly earnings for a given level of
education.

If the average is a poor measure of the center, another statistic may be more
appropriate. For example, instead of using the average of yearly earnings for
each education level, we could have reported the median. Tables published
by the U.S. Census and Bureau of Labor Statistics from data from the Cur-
rent Population Survey very often do exactly that – their tables report the
conditional median function. This makes sense because yearly earnings tend
to have long right-hand tails in their distribution, and this property holds also
for yearly earnings conditional on education.

Summary

The crosstab of average income as a function of education is an example of the
conditional mean function. This is an important building block in understand-
ing regression as a data summary tool. We will soon show that the conditional
mean function is one step away from the regression line. Before we can do
that, however, the next chapter will explain exactly how the regression is
calculated.

3.5. Conclusion

This part of the book is about developing tools to describe data and the rela-
tionship between variables. Recall that the average and standard deviation of
a list are key summary statistics in the univariate (single variable) case. With
two variables, the correlation coefficient can be quite useful. This chapter
showed how tables may be used to summarize data.

Tables can be simple frequency counts or more sophisticated compressions
of the data. A crosstab displays the conditional average or, more technically,
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the conditional mean function. By viewing the average of one variable given
a value of another variable, the reader quickly picks up information about
the relationship between the two variables.

Excel’s PivotTable feature makes creating crosstabs and exploring data
with tables easy. By moving tiles in and out of the table and enabling the
display of a variety of queries (e.g., average, count, or SD), one can generate
interesting and sophisticated tables.

Finally, this chapter has emphasized that summarizing the relationship
between two variables is often guided by answering the question, Given
that a particular observation has a certain value of the independent variable,
what is the value of the dependent variable we expect to observe for that
observation?

Chapter 4 introduces the least squares regression line and explains how it
is computed, and Chapter 5 shows how the regression line answers the same
basic question emphasized in this chapter.

3.6. Exercises

1. Many college seniors interested in law school anxiously scan a special kind of
crosstab called the law school admissions grid. The grid shows, for a particular
school and year of application, the fraction of students admitted according to the
range of college cumulative GPA and LSAT score that they fall into. The upper-
left-hand corner of such a grid is shown below.

LSAT Scores

GPA 175–180 170–174

3.75–4.00 92% 85%
3.50–3.74 83% 84%
. . .

Draw a picture of what the spreadsheet table containing the original data set
used to construct the law school admissions grid looks like. Give a few rows and
the relevant columns (variables).

2. (Hypothetical.) Fill in the missing cells in the table below on the body weights of
students at a small university.

Average Weight Number of Observations

Males 182
Females 135
Total 153.8 3000

3. Using Figure 3.4.3, what can you determine about the median yearly earnings for
people with 8 years of education as compared with the median yearly earnings of
people with 18 years of education for the people in the sample of full-time workers
in Midwestern states? Explain your answer.
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Percent under—
Cumulative 
Percentage

4′8′′ -
-
-
-

4′9′′
4′10′′
4′11′′
5′. . 0.1
5′1′′ 0.1

0.55′2′′
5′3′′ 1.3
5′4′′ 3.4
5′5′′ 6.9
5′6′′ 11.7
5′7′′ 20.8
5′8′′ 32.0
5′9′′ 46.3
5′10′′ 58.7
5′11′′ 70.1
6′ 81.2
6′1′′ 87.4
6′2′′ 94.7
6′3′′ 97.9

Figure 3.6.1. Cumulative height distribution of
men 20–29.
Source: U.S. Census Bureau, Statistical Abstract
of the United States: 2002, Table 189.4

4. (A followup to Question 3.) You should have found that the two medians are well
below the averages even if their precise value is unknown. Explain why median
yearly earnings are below average yearly earnings in the East North Central full-
time workers data set.

5. The data in Figure 3.6.1 on the Cumulative Percent Distribution of the Population
of Young Men Aged 20–29 in the United States comes from the U.S. National
Center for Health Statistics. It is based on unpublished sample survey data col-
lected between 1988 and 1994. Convert the data in this table into a tabulation of
the percentage distribution of height to the nearest inch. As an example of how
to read Figure 3.6.1, the figure 3.4 in the 5′4′′ row means that 3.4 percent of the
males in the sample had a height below 5 feet 4 inches.

References

Tabulation has a long history in statistics. Early practitioners include Adolphe
Quetelet in the 1820s and Francis Galton starting in the 1860s, though useful tables
were constructed as long ago as the 1690s by Edmond Halley. Galton’s work with
crosstabs led directly to regression, the topic considered in the next two chapters. A
major breakthrough occurred in the 1890s when Herman Hollerith perfected
electronic means of cross-tabulating data for the U.S. Census. See Stigler, S.M.
(1986) The History of Statistics: The Measurement of Uncertainty before 1900
(Cambridge, MA: The Belknap Press of Haward University Press). Goldberger
discusses the conditional mean function in his two textbooks; his discussion
inspired ours. See Chapter 5 References for citations to the two books.

4 Available at <www.census.gov/prod/www/statistical-abstract-03.html>.
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Computing the OLS Regression Line

Of all the principles which can be proposed for that purpose, I think there is none
more general, more exact, and more easy of application, that of which we made use
in the preceding researches, and which consists of rendering the sum of squares of
the errors a minimum.

Adrien-Marie Legendre1

4.1. Introduction

Chapters 4 and 5 introduce the concept of regression, the fundamental ana-
lytical tool of econometrics. The regression line summarizes the relationship
between two variables. Chapter 4 covers the mechanics of regression. We
discuss the theory behind fitting a line, present an algebraic exposition of the
ordinary least squares (OLS) regression coefficients, and show several ways
to have Excel report regression results. We note that OLS is not the only way
to fit a regression line. Chapter 5 focuses on interpreting what OLS regres-
sion does and the results it produces. Of course, these two chapters are only
an introduction to regression analysis. The remainder of this book is dedi-
cated to ever more powerful and sophisticated applications of the method of
regression.

4.2. Fitting the Ordinary Least Squares Regression Line

Workbook: Reg.xls

In this section, we use an artificial data set to demonstrate how the OLS
(also abbreviated LS) regression line summarizes a bivariate scatter plot. We
will describe the optimization problem behind the OLS regression proce-
dure and show that OLS is only one of many varieties of regression analysis.

1 See the references at the end of this chapter for the source of this quotation and suggestions for further
reading on the history of the least squares method.

72
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intercept 0
slope 0

X Y Predicted Y Residuals

1 87 0 87
2 133 0 133
3 115 0 115
4 90 0 90
5 183 0 183
6 95 0 95
7 95 0 95
8 226 0 226
9 92 0 92
10 154 0 154
11 180 0 180
12 212 0 212
13 174 0 174
14 203 0 203

Fitting a Line by Eye
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Figure 4.2.1. An artificial data set.
Source: [Reg.xls]ByEye.

We emphasize throughout the book that there are many possible ways to
summarize the relationship between variables.

Figure 4.2.1 contains a table and a scatter plot of the 14 points in the data
set. We want to draw a straight line summarizing the relationship between
X and Y. The simplest way to draw such a line is to use one’s own judgment
(i.e., to draw “by eye”). For the data above, go ahead and roughly draw in
a straight line you think best fits the data – whatever you think that means.
Write down the approximate value of your line’s intercept and slope.

Next, open the Excel workbook Reg.xls to try out the values of your line
of “best fit.” The first sheet, called ByEye, permits experimentation with
different values for the intercept and slope variables. Input your intercept and
slope choices in cells B3 and B4. Excel immediately updates the chart. (Hit
F9 to recalculate the workbook manually if the chart does not automatically
refresh.) The red line shows how the intercept and slope you have chosen fit
the data. You might experiment somewhat in an effort to find the best-fitting
line.

Figure 4.2.2 is one possible graph you might draw. Figure 4.2.2 contains
much information. The regression line captures the upward-sloping rela-
tionship between the X ’s and the Y’s. The line goes more or less through
the middle of the data cloud. The equation of the proposed regression
line is

Predicted Y = 50 + 10 X.
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intercept 50
slope 10

X Y Predicted Y Residuals

1 87 60 27
2 133 70 63
3 115 80 35
4 90 90 0
5 183 100 83
6 95 110 -15
7 95 120 -25
8 226 130 96
9 92 140    -48
10 154 150 4
11 180 160 20
12 212 170 42
13 174 180 -6
14 203 190 13

Fitting a Line by Eye 
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Figure 4.2.2. A by-eye regression line.
Source: [Reg.xls]ByEye.

The intercept of this proposed regression line is 50; this is where the line
cuts the y-axis. It is the value of Predicted Y we would obtain if we were
to substitute a value of 0 for X. The slope of the regression line is 10. The
slope tells us that, for every one-unit increase in X, the value of Predicted Y
rises by 10. The proposed regression line passes through all the points whose
coordinate pairs are given by the values in the first and third columns of the
table in Figure 4.2.2.

Perhaps most important, the proposed regression line tells us the predicted
value of Y for a given value of X. In other words, the graph is read by taking
any given X, moving vertically up to the line, and then moving horizontally
to the y-axis and reading off the value as our prediction of Y for that given X.

You may think that your by-eye regression line is better than the one
displayed in Figure 4.2.2, but how could you determine whether it really is?
And, what is the OLS regression line? To answer these questions, we need
to learn about residuals.

The Residual

The predicted value of Y given X is the value of Y that lies on the regression
line for that given value of X. One finds the predicted value by plugging the
value of X into the equation of the regression line. Using the equation and the
specific values of Intercept and Slope for our by-eye regression line, you can
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Regression
Line

Residual

Actual
Value

Predicted
Value

X

Y

Figure 4.2.3. A positive residual.

compute that when X is 5, Predicted Y is 100. (Verify this by looking at the
table and graph in Figure 4.2.2.) The actual value of Y in our data set, however,
is 183, and so we are off by 83. Eighty-three is the value of the residual
associated with the data point (10, 183) and our by-eye regression line. In
general, the vertical distance of the actual observed Y from its predicted Y
value is called the residual:

Residual = Actual value of Y − Predicted value of Y.

Every observation (or point in the scatter diagram) has a residual. We can
also consider all of the residuals together as a list of numbers and chart them,
creating a residual plot.

Residuals can be either positive or negative (the residual is zero only when
predicted equals actual Y ). Figures 4.2.3 and 4.2.4 depict the positive and
negative residual cases, respectively.

Each observation has an actual (or observed) value of Y and X, a predicted
value of Y given X, and a residual. The units of the residual are the same as
the units of the Y variable. Because the residual is always the difference
between the actual value of Y and its predicted value, a positive residual
means that the actual (or observed) value of Y is above its predicted value.
Whenever actual Y less predicted Y is negative, that observation’s residual is
negative.

Let us observe residuals in our example on the minSSR sheet in Reg.xls.
This sheet contains two new columns, one that computes the residuals and a

Regression 
Line

Residual 

Actual Value

Predicted 
Value 

Y 

X 

Figure 4.2.4. A negative residual.
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intercept 145.6
slope 0 SSR 33,241

X Predicted Y Residuals
Squared 

Residuals

1 87 145.6 -58.6 3434
2 133 145.6 -12.6 159
3 115 145.6 -30.6 936
4 90 145.6 -55.6 3091
5 183 145.6 37.4 1399
6 95 145.6 -50.6 2560
7 95 145.6 -50.6 2560
8 226 145.6 80.4 6464
9 92 145.6 -53.6 2872.96
10 154 145.6 8.4 71
11 180 145.6 34.4 1183
12 212 145.6 66.4 4409
13 174 145.6 28.4 807
14 203 145.6 57.4 3295

Average 145.6 145.6 0.0 2,374

Fitting a Line by min SSR by Eye
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Figure 4.2.5. The Average Y line.
Source: [Reg.xls]minSSR.

second that squares those residuals. The sheet initially displays a horizontal
line whose y-intercept is equal to the average value of Y in the data set. Thus,
the value of the Intercept is 145.6 and the Slope is 0. Figure 4.2.5 shows the
data, scatter diagram, and residual plot. We call this line the Average Y line
because, no matter what X is, Predicted Y equals the average value of Y in
the data set. Take a look at the residual in the table and residual plot.

The residuals are sometimes positive, sometimes negative, but in this case
they average out to zero. That is not a coincidence. Look at the bottom
row of the table. Just as each individual residual is the difference between
Y and predicted Y, the average of the residuals is the difference between
the average Y (145.6) and the average of the Predicted Y’s (also 145.6). We
hope this reasoning is intuitively attractive; using mathematical tools to be
introduced in Section 4.3, it is very easy to make the argument rigorous. A
regression line in which the residuals average to zero is appealing because
that means on average Predicted Y is correct.

Although the Average Y regression line is on average right, it suffers from
a systematic flaw. When X is small, this regression line tends to overpredict Y;
when X is large, the average Y line tends to underpredict Y. This is obvious
both from the scatter plot with the regression line superimposed and the
residual plot in Figure 4.2.5.

At this point, we have several contenders for the line of best fit. In addi-
tion to your suggested line, we have Predicted Y = 50 + 10X and Predicted
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Y = 145.6 (the line of Average Y). We need a way to judge and evaluate the
how well these lines fit the data.

The Sum of Squared Residuals

The most commonly used criterion for best fit focuses on the sum of squared
residuals or SSR. Every possible contender (including your line fitted by eye)
has a value for the sum of squared residuals.2 This sum is found by determining
the residual for each observation, squaring each residual, and then adding up
the values of all of the squared residuals.

In the Reg.xls workbook, go to the minSSR sheet and enter the values for
your line of best fit in cells B3 and B4. One of the important advantages of
a spreadsheet is that you can see exactly how a number is computed. Click
on cells in the table (e.g., C6, D6, and E6) to see how a squared residual
is calculated. To facilitate your understanding of the table, the cells have
been named in the relevant columns. You can more closely examine the
computations by clicking in the formula bar on the spreadsheet. The formulas
in cells D6 and E6 show how the residual and squared residual for each
observation are computed.

The reason the residuals are squared is to prevent the negative residuals
(that lie below the regression line) from canceling out the positive residuals.3

Observations far off the line are being poorly predicted – it does not matter if
they are above (positive) or below (negative) the line. Squaring makes sure
that negative residuals are properly accounted for in fitting the line.

Cell E4 in the minSSR sheet sums the squared residuals. This cell represents
our measure of fit. The lower the number, the better the fit. Try to see if you
can improve your line of best fit by eye by keeping track of the SSR. Adjust
your intercept and slope values in cells B3 and B4 so that you improve the
fit. You are trying to minimize, or make as small as possible, the SSR.

It is important that you recognize that the line changes as the intercept and
slope change, resulting in a new SSR. The idea behind the actual fitting of
the least squares regression line is that it is the line with the SSR-minimizing
intercept and slope combination.

Minimizing the SSR Using Excel’s Solver

Sophisticated Excel users will recall that Excel contains a powerful numerical
optimization algorithm called the Solver add-in. (If Solver is not available on

2 The sole exception would be a completely vertical line.
3 This is nothing new. In calculating the SD, we find the root-mean squared deviations from the mean.



P1: irk
0521843197c04 CB962B/Barretto 0 521 84319 7 November 6, 2005 14:58

78 Computing the OLS Regression Line

Figure 4.2.6. Using Solver to find the regression line.
Source: [Reg.xls]Solver.

the Tools menu, execute Tools: Add-ins and select the Solver add-in. If it
is not listed, you must install it from your Office CD.) Click on the sheet
called Solver in Reg.xls and use Excel to solve the optimization problem by
executing Tools: Solver. The Solver dialog box has been preconfigured for
you, as shown in Figure 4.2.6

The Target Cell, E4, contains the SSR. The radio button indicates
we wish to minimize this sum. Excel will attempt to do so by changing the
named cells “intercept” and “slope.” Hit the button, and you will
obtain an answer very close to the exact least squares solution.4 How does
the fitted line look now?

Another View of the Least Squares Optimization Problem

We further underscore the fact that the OLS regression line chooses the
intercept and slope combination that minimizes the SSR by having you take
a look at the sheet called Table in Reg.xls. The table displays the SSR for
different regression lines with varying combinations of slope and intercept.

4 It will be close but not exactly the answer. Solver stops when it gets “close enough” to the solution. In
the next chapter we will discuss a method that produces the exact solution (within limits of computer
precision).
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Slope
Intercept 0 1

0 329,956 296,974
20 254,033 225,251

Figure 4.2.7. A portion of the Table sheet.
Source: [Reg.xls]Table.

The table makes clear that there are many possible combinations of intercept
and slope. Each intercept–slope pair yields a sum of squared residuals. The
upper-left-hand corner of the table is reproduced in Figure 4.2.7.

The entry for Slope = 0 and Intercept = 20 tells us that the SSR for that
combination is 254,033. The combination of intercept and slope that yields the
smallest number in the interior of the table is the optimal least squares solu-
tion. Click on the Take me to

the chart button in the table to see a three-dimensional (3D)
representation of the problem. The graph is reproduced in Figure 4.2.8. See-
ing the SSR in three dimensions makes a striking impression. The 3D graph
makes clear the optimization problem of minimizing the SSR by choosing an
intercept and a slope.

The MoreSSR sheet in the Reg.xls workbook offers a set of controls that
you can adjust, and the effect of these controls can then be seen on the SSR 3D
graph. Figure 4.2.9 shows how the sheet is organized. The spread controller
adjusts the amount of variability in Y. When the spread controller is drawn all
the way to the left, there is no variability in Y and the data lie on the line. The
SD X controller allows you to adjust the spread of the X variable from a low
spread of 1-unit increments in X to a high spread of 10-unit increments. When
you change the SD X controller, it may appear that nothing has happened,
but the x-axis scale reveals that the SD of X does affect the problem. Finally,
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Figure 4.2.8. The SSR surface.
Source: [Reg.xls]3DView.
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Figure 4.2.9. The SSR surface.
Source: [Reg.xls]3DView.

you can determine the number of data points by setting the Number Obs
controller.

The scatter diagram updates immediately when you change one of the
slider controls, but the 3D chart does not. To update the 3D chart, you must
click the Generate and

Update 3D Chart button to refresh the chart and display the 3D graph
given the controller settings.

Explore a variety of combinations. What happens when the spread con-
troller is low and the SD X and Number Obs is high? With the spread and SD
controllers set in the middle, compare the results of the highest and lowest
values of the number of observations. What do you see?

Clearly, the shape of the SSR objective function depends on the data.
The dispersion of the Y values, spread of the X values, and the number of
observations affect the clarity of the minimum. It is easier to find the minimum
when the SSR function forms a sharply descending bowl than when it has a
gradual descent and a flat bottom.

In fact, there is a pathological case, called perfect multicollinearity, in which
a unique minimum does not exist, and therefore a regression line of best fit,
defined as the line that minimizes the SSR, cannot be found. We discuss this
case in Chapter 7.
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Other Objective Functions

The conventional way to fit a regression line is to choose the intercept and
slope that minimize the SSR. This is often called Least Squares or Ordinary
Least Squares (OLS). There are, however, many other ways to fit a line. First,
there are many different objective functions to use when fitting a line. With
the standard minimize-the-SSR objective, residuals are squared because devi-
ations from the line in positive or negative vertical directions mean the same
thing. But the absolute value function also eliminates the importance of the
sign. Minimizing the sum of the absolute values of the residuals (instead of
the sum of the squared residuals) is called least absolute deviation or LAD.
Another approach, called orthogonal regression, minimizes not the vertical
distance of the residuals but the distance at a right angle to the regression line.

A third alternative approach to fitting the line accepts the squaring of
vertical deviations from the line as the basis of the objective function but
changes the recipe applied to the squared residuals. Instead of summing the
squared residuals, this method finds the median of the squared residuals. The
least median of squares, or LMS, approach to fitting a line is said to be a
robust regression technique because it is not as sensitive to outliers as the
conventional least squares approach.

Least absolute deviation, orthogonal regression, and LMS are only three
examples of the many sophisticated techniques that have been implemented
in fitting a regression line. Although these methods are beyond the scope of
this book, you should understand that any line of “best fit” is determined
according to a particular objective function.

Because there are different objective functions when fitting a line, you
might wonder why minimizing the SSR is the most commonly used. This
is an excellent question with a complicated answer that we cannot provide
at this time. In the second part of this book, after we understand the role of
chance in the data generation process, we will be able to explain the desirable
properties of a line fit by minimizing the SSR.

Summary

Although there are many ways to fit a regression line, the LS or OLS algorithm
chooses the intercept and slope that together minimize the SSR. The resulting
line is said to be the “best linear fit” for the data.

Although this section used Excel’s Solver to fit the OLS line in order to
demonstrate the optimization problem that OLS solves, in practice no one
computes regression lines that way. Instead, there are analytical solutions for
the OLS line. In the next two sections we will discuss the formulas for the
OLS regression line and ways to compute the slope and intercept in Excel.
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4.3. Least Squares Formulas

Workbook: Reg.xls

The previous section showed that the OLS regression line is based on solving
an optimization problem. We used Excel’s Solver to find a numerical approx-
imation to the optimal intercept and slope, but this is not the usual way to
obtain the regression coefficients. Because an analytical solution to the min-
imization problem exists, it is simply a matter of applying a formula for the
OLS solution to a particular data set. In this section we present mathematical
notation for general representations of the OLS solutions and the formulas
for the OLS intercept and slope. We show how to derive the formulas in an
appendix to this chapter.

Notation

We first present the standard algebraic notation for the OLS model. We use
the data in the minSSR sheet reproduced in Figure 4.3.1 as an example. There
are n observations in the data set, and thus n = 14 in our example. Each row
is an observation. Observations are labeled or indexed by a subscript.

The data in our example are X1 = 1, X2 = 2, and X3 = 3, whereas Y1 = 87.3,
Y2 = 133.4, and Y3 = 115.4. To refer to an observation in general, with-
out specifying which one it is, we use the subscript i. Thus (Xi, Yi) are the

intercept 0
slope 10

X Y Predicted Y Residuals

1 87 10 77
2 133 20 113
3 115 30 85
4 90 40 50
5 183 50 133
6 95 60 35
7 95 70 25
8 226 80 146
9 92 90 2
10 154 100 54
11 180 110 70
12 212 120 92
13 174 130 44
14 203 140 63

Fitting a Line by Eye  
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Figure 4.3.1. Table and graph of data points and fitted line.
Source: [Reg.xls]minSSR.
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coordinates of the ith observation. In this special example, the X values are
the same as the index, and so Xi = i.

The intercept and slope coefficients for a regression line are designated
with a letter b. Subscripts identify the coefficient: the intercept is b0, and the
slope is b1. (Notice that the subscripts in this case index regression coefficients,
not observations.) Thus, the general equation for Predicted Y given X is

Predicted Yi = b0 + b1 Xi .

The residual is defined as the actual minus the predicted value:

Residuali = Yi − Predicted Yi = Yi − (b0 + b1 Xi ) .

For now, we will designate the OLS coefficients by a special superscript:
bOLS

0 and bOLS
1 . To better understand what is going on, let us make the con-

nections between the table in the Excel sheet and the abstract symbols. We
set the values of b0 and b1 to 0 and 10, respectively, in the minSSR sheet and
obtained Figure 4.3.1.

The choices of the intercept b0 = 0 and slope b1 = 10 are clearly not
optimal – that is, they are not the best possible choices of intercept and
slope. The fitted line you see in Figure 4.3.1 is not the OLS regression line.
When working with the minSSR sheet, if at any time you want to see the
symbols corresponding to a portion of the table, select the cell or cells you
are interested in and click the Show Symbols button. To clear the symbols, click
the Clear Symbols button.

The Predicted Y column contains values of b0 + b1 Xi for each i. Thus, in
the ninth row, i = 9, we have a predicted Y of b0 + b1 X9 = 0 + 10 · 9 = 90.

The fitted line passes through all the predicted Y’s, which are not separately
identified in Figure 4.3.1. The residuals are formed by subtracting the Pre-
dicted Y for each Xi from the actual corresponding Yi. For example, because
Y9 = 92 and X9 = 9, the ninth residual is 92 − (0 + 10 · 9) = 2.0. In the graph
in Figure 4.3.1, the ninth data point stands out because it is by far the closest
point to the regression line. The tiny residual shows up as a slight vertical
distance between the ninth data point and the regression line.

Each squared residual is displayed in column E. The ith squared residual
is [Yi − (b0 + b1 Xi )]2. Thus, the ninth squared residual is

[Y9 − (b0 + b1 X9)]2 = [92 − (0 + 10 · 9)]2 = 4.0.

In our abstract notation, the SSR becomes
∑n

i=1 [Yi − (b0 + b1 Xi )]2. The cap-
ital sigma, �, tells us that we are going to sum all the terms immediately to
the right (the squared residuals); the i = 1 underneath the sigma says that
each term is indexed by i and that we are starting with 1, and the n on top of
the sigma signifies that there are n terms in total.
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The OLS Formulas

Having developed the needed notation, we can now state the optimization
problem. We want to find that combination of b0 and b1 that minimizes the
sum of squared residuals:

∑n
i=1 [Yi − (b0 + b1 Xi )]2. We show how to solve

this problem in the chapter appendix. For now, we simply give the formulas
containing the solution.

The formulas for the OLS slope and intercept, b0 and b1, can be written in
many ways, but we prefer the following:

bOLS
1 =

n∑
i=1

wi · Yi

bOLS
0 = Ȳ − bOLS

1 X̄,

where the weights are given by

wi = (Xi − X̄ )∑n
i=1 (Xi − X̄ )2

, i = 1, . . . , n.

The formula for b1 says that the OLS slope is computed as a weighted sum
of the Yi’s. The weight (wi) for each observation is the deviation of the corre-
sponding value of X from the average value of all n X ’s divided by the sum of
the squared X deviations. We can immediately see that X values farther from
the average X have a greater weight. The OLS intercept is determined by
solving for the Y-intercept using a point-slope approach in which the regres-
sion line goes through the point of averages. In the appendix we show how
to derive these formulas using calculus.

Summary

Although the previous section showed how Excel’s Solver can be used to find
the least squares solution, this section has presented the formulas associated
with the optimal solution. These formulas are used by computer software to
report the coefficients for the OLS regression line. The next section explains
the various ways Excel can be used to fit a regression line.

4.4. Fitting the Regression Line in Practice

Workbook: Reg.xls

The previous sections have shown that the regression line is based on solving
an optimization problem. We used Excel’s Solver and an analytical approach
employing calculus and algebra to find the optimal intercept and slope. Of
course, with modern statistical software, the user need not manually compute
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Figure 4.4.1. Adding a trendline to a scatter plot.

the optimal coefficients. A few clicks here and there are usually all that is
required to generate a wealth of regression results.

Although Excel is not a full-fledged statistical package, it does offer sev-
eral ways to run a regression. The FourWays sheet in Reg.xls explains four
different methods and invites you to apply each of them.

The first and easiest way to fit a line is to create a scatter plot and then add
what Excel calls a Trendline (see the FourWays sheet starting at row 12) by
right-clicking on the plotted points and selecting the Add Trendline option.
Figure 4.4.1 displays the “Add Trendline” dialog box in Excel.

Clicking the Options tab provides a variety of choices. Displaying the equa-
tion on the chart places a y = mx + b text box on the chart. Unfortunately,
displaying the equation with the variable names y and x is a poor default.
You can (and should), however, edit the text box to provide more informa-
tion about the variables

Although the Trendline approach is easy and fast, it is limited to bivariate
regression. If more than one X variable is included, then Trendline cannot be
used.

A second way to obtain regression results from Excel is to use the Data
Analysis add-in. Execute Tools: Data Analysis and select the Regression
option (see the FourWays sheet starting at row 43). Input the necessary
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Figure 4.4.2. Data analysis: regression input.

information and click OK. Figure 4.4.2 displays a typical Data Analysis:
Regression input.

Excel creates a new sheet with basic regression information, like the inter-
cept and slope, and generates additional output that does not make much
sense right now. The next chapter explains a few of these numbers, whereas
others are explained in later chapters. A sample of the output reported is
depicted in Figure 4.4.3.

In versions before Excel 2003, the Data Analysis: Regression approach has
a known bug. Checking the Constant is Zero box generates incorrect results.
This box should never be checked. Unless you are working with Excel 2003 or
later, if you need to run a regression through the origin, forcing the intercept
to be zero, you need to use another method.

One disadvantage of the Data Analysis: Regression approach is that it does
not dynamically update the results if the underlying data change. Click on
individual cells in the results to see that all of the cells are text and numbers –
no formulas.

A third, and more powerful, way to run a regression in Excel is to use
the LINEST array function (see the FourWays sheet starting at row 81). In
Excel, arrays span more than one cell, and the results are put down in more
than one cell. Because LINEST is a formula, Excel will update the results
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SUMMARY OUTPUT

Regression Statistics
Multiple R 0.622631494
R Square 0.387669977
Adjusted R Square 0.336642476
Standard Error 41.19700068
Observations 14

ANOVA

df SS MS F Significance F
Regression 1 12894.04136 12894.04 7.597275 0.017397527
Residual 12 20366.31438 1697.193
Total 13 33260.35574

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 89.11337376 23.25647567 3.831766 0.002388 38.44186708 139.7848804
x 7.528419813 2.731334549 2.756316 0.017398 1.577353157 13.47948647

Figure 4.4.3. Sample data analysis: regression output.

after every recalculation. Unfortunately, LINEST is much more difficult to
work with than the user-friendly interface of the Data Analysis: Regression
approach.

The LINEST function has four parameters, each separated by a comma.
The formula to be entered into an appropriate cell range is “=LINEST(Y
value cell range, X value cell range, TRUE (or 1) to include an intercept in
the regression or FALSE (or 0) if you want the line to go through the origin,
TRUE (or 1) to report other regression results besides the slope and intercept
or FALSE (or 0) to suppress additional regression output).” An example of
the function (in cell range A148:C152 of the FourWays sheet) looks like this:
=LINEST(E121:E140,B121:C140,1,1).

To use LINEST, you must select the appropriate cell range in which to
place the output. The number of columns selected should equal the number
of coefficients to be estimated. The number of rows to select depends on the
output you want. If you just want the regression equation coefficients, the
selected range should contain only one row. If you would like the full set of
regression results, then the range must be five rows deep. Figure 4.4.4 shows
two possibilities.

1 x 4 range selected

5 x 2 range selected

Figure 4.4.4. Possible LINEST output ranges.
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Figure 4.4.5. LINEST error message.

With the appropriate cell range selected, you are ready to type in the
LINEST function and input the necessary information. Type “=LINEST(”
and then select the cell range with the y data. Then type a comma and select
the x data. After selecting the cell range with the x data and typing in the 0
(FALSE) or 1 (TRUE) intercept and statistics options, finish the formula by
closing the parentheses, but do not do anything else just yet.

The last step is to hit the keyboard combination Ctrl-Shift-Enter. This is
the way all array functions are entered in Excel. The results are displayed
throughout the cells that contain the LINEST array function. Once the
LINEST array formula is entered, all of the cells in the range have the same
formula within a pair of curly brackets, { }.

Because LINEST is an array formula that spans several cells, you cannot
edit the formula by working with a single cell and hitting Enter. If you want
to change the array formula, you must type in the change, and then press
Ctrl-Shift-Enter. Failure to correctly edit the array formula can be quite frus-
trating because Excel will continue to flash the dialog box depicted in Figure
4.4.5. If this happens, remember that you need to enter the Ctrl-Shift-Enter
combination to actually enter the formula. You can always hit the aptly named
escape, ESC, key to get out of a cell.

Having correctly entered the LINEST function, you must now interpret
the output. Unlike the Data Analysis: Regression approach, LINEST has
no descriptive titles whatsoever. The user simply has to know the format of
the output. Figure 4.4.6 displays two examples of the results that make the
organization of the LINEST output clear.

b1 b0 b3 b2 b1 b0

SE(b1) SE(b0) SE(b2) SE(b1) SE(b0)

R2 RMSE R2 RMSE #N/A #N/A
F F df #N/A #N/A

RegSS SSR RegSS SSR #N/A #N/A

Y Y = b0 + b1X  = b0 + b1X1 + b2X2 + b3 X3

SE(b3)

df

Figure 4.4.6. LINEST output organization.
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On the left of Figure 4.4.6 is the output arrangement of a bivariate regres-
sion, and a multiple regression is depicted on the right. Both show all of the
statistics reported. Notice that the coefficients are reported in “backwards”
order. Although we have yet to explain some of the displayed statistics, they
are standard regression output and will be covered in later chapters. The
output itself might look like Figure 4.4.7.

You interpret the output in Figure 4.4.7 by matching the cells to the organi-
zational map in Figure 4.4.6. For example, the number 17 is the df (or degrees
of freedom) in the regression. The #N/A indicates that no value is available.

If the same output is provided by the Data Analysis: Regression approach,
why use the more difficult LINEST strategy? The primary advantage of
LINEST is that it is a formula that is recalculated if the underlying cells
change. Thus, unlike Data Analysis: Regression, which has dead output, the
LINEST output dynamically updates if the Y or X cell ranges are changed.

The final way to run a regression with Excel is even more primitive, and
powerful, than LINEST. Excel has a series of linear algebra array functions
that can be used to compute the coefficient vector via matrix algebra. This
approach is beyond the level of this introductory econometrics book, but the
interested reader may explore this advanced strategy beginning in row 159
of the FourWays sheet.5

With four ways to run a regression in Excel, which method is best? The
answer depends on the type of regression, output needed, and whether the
data will be changed. For a bivariate regression without the full set of sta-
tistical output, the Trendline method is quick and easy. The Data Analysis:
Regression add-in provides a simple user interface and a full set of regression
results for multiple regression. If the underlying data are going to be changed
or you would like to display the results immediately next to the data in com-
pact fashion, LINEST can be a good approach. Because of its array function
nature and raw output, LINEST can be difficult to master. Finally, the matrix
algebra approach is even more complicated to implement than LINEST but
permits sophisticated calculations such as generalized least squares. Iron-
ically, the simplest method, using the Trendline, is the only one that can
handle missing data. If one of the values is replaced with a “.” indicating

10.011404 5.045904 99.04957
0.0100483 0.050703 0.654067
0.9999843 1.282514 #N/A
541082.06 17 #N/A
1779989.2 27.96232 #N/A Figure 4.4.7. A possible LINEST output.

5 In Visual Basic macros in Excel workbooks, we employ both of the two final approaches, LINEST and
matrix algebra, to run regressions; however, these operate behind the scenes. The OLS Regression add-
in, introduced in Chapter 19, uses Excel’s matrix capabilities for advanced regression procedures. It is
yet another way to run a regression in Excel.
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a missing value, all the other methods will fail, but the Trendline method will
still produce a regression line based on the remaining observations.

Summary

This section demonstrated a variety of ways to run a regression in Excel.
LINEST is our usual method. Remember to hit the ESC key if you have
trouble editing LINEST or any other array function.

Finally, note that we employ Excel as a teaching tool and do not recommend
its use for serious work in econometrics. Excel can usually (not always!) be
relied on to provide correct results for simple analyses such as would be found
in the typical term paper in introductory econometrics classes. To be assured
of accuracy, however, it is best to use a specialized software package.

4.5. Conclusion

This chapter has introduced the regression line and focused on the compu-
tation of the OLS regression line. Although regression is understood geo-
metrically as a fitted line, the theoretical foundation of OLS regression is
the idea that the coefficients of the line are computed as the solution to an
optimization problem. If the objective function of the optimization problem
is to minimize the SSR, then the OLS line is the result. To actually fit a line to
data, computer software relies on formulas that can be derived via calculus
from the minimize-SSR problem. Excel, although not a full-fledged statistical
package, offers rudimentary regression capabilities.

This chapter has shown how to obtain a fitted line. In the process, you have
seen a bewildering array of information such as R2 values, SEs, and much
more. This has made clear that there is much more to regression analysis than
simply fitting a line. The next chapter is the beginning of our explanation
of regression output. The first step is to understand how to interpret the
regression line.

4.6. Exercises

1. For one observation, X = 5 and Y = 10 and Predicted Y is 8. For another observa-
tion, X = 9 and Y = 17 and Predicted Y is 16. Both Predicted Y ’s are on the same
regression line. Find the Intercept (b0) and Slope (b1) and the residuals.

2. Suppose that Joe proposes a zero-sum-of-residuals regression line. Joe says, “Just
pick the unique straight line that produces a sum of residuals equal to zero.”
Susan says, “That is guaranteed to be the average Y line.” What is wrong with
Joe’s reasoning? What is wrong with Susan’s reasoning?

3. The formula for the OLS slope is sometimes written as follows:

bOLS
1 =

∑n
i=1 xi yi∑n
i=1 x2

i

,
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where yi = Yi − Ȳ, i = 1, . . . , n, and xi = Xi − X̄, i = 1, . . . , n. This is in fact com-
pletely equivalent to our formula

bOLS
1 =

n∑
i=1

wi · Yi ,

where

wi = (Xi − X̄ )∑n
i=1 (Xi − X̄ )2

, i = 1, . . . , n.

Show this using algebra. (See Q&A #3 in the Reg.xls workbook for a concrete
version of the same problem.)

4. The one case in which the formula for the bivariate OLS regression line does not
work arises when all of the X’s take on the same value. Explain what goes wrong
mathematically.

5. Recall that the formula for the OLS intercept is bOLS
0 = Ȳ − bOLS

1 X̄.
Show that the formula for bOLS

0 guarantees that the point of averages is on the
regression line no matter what the formula is for the OLS slope bOLS

1 .
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Appendix: Deriving the Least Squares Formulas

In this appendix we derive the OLS formulas for the intercept and slope using
calculus.

The Optimization Problem in Abstract Notation

Choosing an intercept and slope to minimize the SSR can be written in
mathematical form as follows:

min
b0,b1

n∑
i=1

[Yi − (b0 + b1 Xi )]2
.
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Many readers will find the preceding expression intimidating. To understand what
it means, start by noting that b0 and b1 are choice variables. The goal is to find the
unique combination of these two variables that minimizes the sum of the n terms.
Those solutions will be bOLS

0 and bOLS
1 . This way of stating the problem is just an

abstract version of what you have already seen in the minSSR sheet of Reg.xls. The
abstract expression is perfectly general – it applies to any number of data points,
any values of X ’s and Y’s, and any intercept and slope.

To solve the optimization problem, minb0,b1

∑n
i=1 [Yi − (b0 + b1 Xi )]2, first take

derivatives with respect to both of the choice variables:

∂

∂b0

[
n∑

i=1

(Yi − b0 − b1 Xi )2

]
= −2

n∑
i=1

(Yi − b0 − b1 Xi )

∂

∂b1

[
n∑

i=1

(Yi − b0 − b1 Xi )2

]
= −2

n∑
i=1

(Yi − b0 − b1 Xi )Xi .

Then set the derivatives equal to zero:

−2
n∑

i=1

(Yi − b∗
0 − b∗

1 Xi ) = 0

−2
n∑

i=1

(Yi − b∗
0 − b∗

1 Xi )Xi = 0.

The asterisks (∗) in this second set of equations indicate that b∗
0 and b∗

1 are the
optimal values of the slope and intercept, respectively.6 Dividing each equation by
–2 and rearranging terms, we obtain the following equations:

n∑
i=1

Yi = nb∗
0 + b∗

1

n∑
i=1

Xi

n∑
i=1

Yi Xi = b∗
0

n∑
i=1

Xi + b∗
1

n∑
i=1

X2
i .

We need to solve these two equations for b∗
0 and b∗

1, the intercept and slope,
respectively, of the least squares regression line. Despite their seeming complexity,
we have two equations in two unknowns. We begin by solving for b∗

0 using the first
equation:

b∗
0 =

∑n
i=1 Yi − b∗

1

∑n
i=1 Xi

n

=
∑n

i=1 Yi

n
− b∗

1

∑n
i=1 Xi

n

= Ȳ − b∗
1 X̄.

Here X̄is the average value of the Xi’s in the data set, and Ȳ is the average
value of the Yi’s in the data set. Next, substitute for b∗

0 in the second equation and

6 We will not bother to examine the second-order conditions to be sure that we are finding a minimum,
but they can be shown to be satisfied.
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solve for b∗
1:

n∑
i=1

Yi Xi = (Ȳ − b∗
1 X̄ ) ·

n∑
i=1

Xi + b∗
1

n∑
i=1

X2
i

b∗
1 ·

(
n∑

i=1

X2
i − X̄

n∑
i=1

Xi

)
=

n∑
i=1

Yi Xi − Ȳ ·
n∑

i=1

Xi

b∗
1 =

∑n
i=1 Yi Xi − Ȳ · ∑n

i=1 Xi∑n
i=1 X2

i − X̄
∑n

i=1 Xi
.

This not-too-appealing formula can be written in several equivalent ways. The way
we prefer to think about the OLS regression formula is to regard the OLS slope, b1,
as a weighted average of the Y’s. That is, we write the OLS formulas for slope and
intercept as

bOLS
1 =

n∑
i=1

wi · Yi

bOLS
0 = Ȳ − bOLS

1 X̄,

where the weights are given by

wi = (Xi − X̄ )∑n
i=1 (Xi − X̄ )2

, i = 1, . . . , n.

We will use this expression in the next chapter when we take a closer look at the
properties of the OLS regression method.

To see where we get the formula for the slope, you need to realize that both the
numerator and denominator in the equation

b∗
1 =

∑n
i=1 Yi Xi − Ȳ · ∑n

i=1 Xi∑n
i=1 X2

i − X̄
∑n

i=1 Xi

can be rewritten. Take a look at the numerator
∑n

i=1 Yi Xi − Ȳ · ∑n
i=1 Xi . Replace Ȳ

with 1
n · ∑n

i=1 Yi . We then have the following expression for the numerator:

n∑
i=1

Yi Xi −
(

1
n

·
n∑

i=1

Yi

)
n∑

i=1

Xi .

The three terms after the minus sign can be interchanged. Move the sum
∑n

i=1 Xi to
the second position, recognizing that X̄ = 1

n

∑n
i=1 Xi , and we end up with the

numerator rewritten as

n∑
i=1

Yi Xi − X̄
n∑

i=1

Yi .
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In this expression, each Yi term is multiplied by Xi − X̄, and so we can write the
numerator as

n∑
i=1

Yi (Xi − X̄ ).

Now let us tackle the denominator
∑n

i=1 X2
i − X̄

∑n
i=1 Xi . We can show that this

is equivalent to
∑n

i=1 (Xi − X̄ )2 simply by expanding the latter expression:
n∑

i=1

(Xi − X̄ )2 =
n∑

i=1

(
X2

i − 2Xi X̄ + X̄2)

=
n∑

i=1

X2
i − 2

n∑
i=1

Xi X̄ + nX̄2

=
n∑

i=1

X2
i − 2X̄

n∑
i=1

Xi + nX̄2

=
n∑

i=1

X2
i − 2X̄

n∑
i=1

Xi + X̄ · nX̄

=
n∑

i=1

X2
i − 2X̄

n∑
i=1

Xi + X̄ ·
n∑

i=1

Xi

=
n∑

i=1

X2
i − X̄

n∑
i=1

Xi .

Notice that in going from the first line to the second we use the fact that each of the
n terms in the summation has an X̄2 in it, and this leads to the nX̄2 term. Farther
down, we make use of the fact that nX̄ = ∑n

i=1 Xi . Finally, put the numerator and
denominator together, and we end up with∑n

i=1 Yi Xi − Ȳ · ∑n
i=1 Xi∑n

i=1 X2
i − X̄

∑n
i=1 Xi

=
n∑

i=1

[
(Xi − X̄ )∑n

i=1 (Xi − X̄ )2

]
Yi ,

which is what we wanted to show because the portion in the brackets is just wi.
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Interpreting OLS Regression

When Mid-Parents are taller than mediocrity, their Children tend to be shorter than
they. When Mid-Parents are shorter than mediocrity, their Children tend to be taller
than they.

Francis Galton1

5.1. Introduction

In the previous chapter, we introduced the OLS regression line. This chap-
ter is about interpreting regression in several different senses of the word.
Section 5.2 interprets what regression does by exploring the way in which it
compresses information about a scatter diagram. We then go on to compare
the regression line to the SD line. Another interpretation, in Section 5.3, takes
advantage of regression’s historical roots. We show how regression was first
used and point out that there are in fact two regression lines for summarizing
the relationship between two variables. Section 5.4 examines regression from
another angle, interpreting the regression slope as a weighted sum of the Y
values. This will make clear that regression coefficients are closely related to
the sum (and average). Next, Sections 5.5 and 5.6, demonstrate how to inter-
pret the output from a regression, including the residuals and two new statis-
tics called the RMSE and R2. We show how regression output can be used to
reveal important characteristics about the underlying data. Finally, Sec-
tion 5.7, examines some of the limitations of regression analysis as a descrip-
tive tool. Regression is not always appropriate and may mislead the reader.

5.2. Regression as Double Compression

Workbooks: DoubleCompression.xls; EastNorthCentralFTWorkers.xls

Regression answers a question about the relationship and movement between
variables. Given a value of X, the regression line predicts Y. This section shows

1 Galton (1886, Plate IX after p. 248).
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how the prediction from the regression line can be understood as a double
compression of the data.

In the first compression, the scatter diagram is replaced by the conditional
mean function (discussed in Section 3.4). The conditional mean function
(CMF for short) corresponds directly to a table showing the average of a
variable at different levels of a second variable. Its graphical representation
is the graph of averages. The second compression linearizes the CMF. In other
words, the regression line smoothes out the squiggly relationship generated
by plotting the conditional average of Y given X.

Let us examine each of the two steps in the double compression with an
actual numerical example. Open the file called DoubleCompression.xls and
note we are using the SAT example from the chapter on correlation. In
addition to the univariate statistics, we report the correlation coefficient r. The
correlation coefficient, however, does not reveal much about the movement
of the two variables. Indeed, because r is positive, a higher than average
Verbal score indicates a higher than average Math score is likely, but how
much higher the Math score will be is unclear. The correlation coefficient
does not help you answer that question.

First Compression

The first compression generates the CMF. Click on the VerticalStrip sheet to
see what this means. The idea is that, within each category or range of the
X variable, Verbal SAT, a vertical strip can be created. The average value
of Y, Math SAT, given X, Verbal SAT, can then be computed. Click on the
scroll bar to see this. If you place the cursor over an observation and leave it
there for a moment, the Excel will report the value of predicted Math SAT.
Figure 5.2.1 depicts one such point.

The example shows that when the Verbal SAT score is in a range around
470, the average Math SAT score is about 560. In fact, because SAT scores
are reported in intervals of 10, the SAT range around 470 includes only
individuals who scored 470 on the SAT. You can inspect the observations
within each vertical strip by looking at columns J and K of the VerticalStrip
sheet.

After playing with this example for a while, click on the Accordion sheet.
The idea here is that the first compression of regression is like an expanding
accordion. Start with No

Intervals , which is like a completely compacted accordion.
This situation says, predict the Math SAT score of a person in the data set
given no information about that person’s Verbal SAT score. The best pre-
diction you can make in this case is the average Math SAT score for all the
people in the data set.
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Figure 5.2.1. A point on the CMF (or graph of averages).
Source: [DoubleCompression.xls]VerticalStrip.

Now, click on the
Two

Intervals button. The accordion has been slightly pulled
apart. If you know whether a student has a high or low Verbal SAT, you can
use this information to predict that student’s Verbal SAT better.

Clicking on the
Four

Intervals button provides even more information. When you
click on the Many

Intervals button, the accordion is almost fully opened – nearly
every possible Verbal score is represented on the graph.2 This is the graph
of averages or CMF, as shown in Figure 5.2.2. Notice how the relationship
between the two variables is emphasized. Individual variation (above and
below the average) is hidden. Each point tells you the typical Math SAT
given a particular Verbal SAT.

The graph of averages can be used as follows: Suppose you know that a
particular individual in the data set has a Verbal SAT score of 430. Starting
from 430 on the x-axis, travel straight up to find that the corresponding point
has coordinates (430,495.9). The 495.9 is derived from the Verbal SAT = 430
vertical strip. It tells you that the average Math SAT score of all the people in
the applicant pool who received a 430 on the Verbal SAT was 495.9. You
could use this fact to make a prediction of the individual’s Math SAT –
495.9 – based on your knowledge that this person received a Verbal SAT
score of 430.

2 To make the picture prettier, we have hidden some of the really low and high Verbal SAT scores.
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Many Intervals: The Graph of Averages

250

350

450

550

650

750

250 350 450 550 650 750
Verbal

M
at

h

Figure 5.2.2. Average Math SAT given Verbal SAT.
Source: [DoubleCompression.xls]Accordion.

The graph of averages is the graphical equivalent of the PivotTable in the
AccordionPivot sheet, only part of which is displayed Figure 5.2.3.

Note that, because Verbal SAT scores in this data set are reported to the
nearest 10, the range 345–354 actually contains only people with scores of
350 on the Verbal SAT. The graph of averages conveys the same information
by plotting a point with x-coordinate 350 and y-coordinate 568.33.

So far, we have taken roughly 500 observations on Verbal and Math SAT
and summarized them with 35 points. This is a large compression of the data;
however, one more compression is required before we have a regression line.

Second Compression

The graph of averages, which is obtained by a first compression of the data
(hiding the individual points), is not yet the regression line. To obtain the
regression line, we perform a second compression, linearizing the graph of
averages. Click on the

Regression Line 
w/ Averages button in the Accordion sheet to see how

this works.
The graph in Figure 5.2.4 should make it clear that the regression line is a

smoothed linear version of the graph of averages. The process of smoothing
the graph of averages is the second compression. This line can be represented
by the following simple single equation:

Predicted Math SAT = 318 + 0.54 Verbal SAT.

Average of Math
Verbal Total
345–354 568.33
355–364 537.78
365–374 502.00
375–384 531.11
385–394 512.00

Figure 5.2.3. Average Math SAT given Verbal SAT –
The PivotTable.
Source: [DoubleCompression.xls]AccordionPivot.
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Regression Line with Graph of Averages
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Figure 5.2.4. The second compression.
Source: [DoubleCompression.xls]Accordion.

This equation should be read as follows: Given a particular Verbal SAT
score, multiply it by 0.54 and add 318. The result is the predicted Math SAT
score. The regression line takes about 500 observations and summarizes them
with just two numbers: the slope and intercept of the line. Algebraically, 318
is the y-axis intercept of the line and 0.54 is the slope of the line.

The benefit from regression can be great. In one quick look, hundreds of
observations are summarized by a line or by the corresponding single, simple
linear equation. Given Verbal SAT, the predicted Math SAT is easily com-
puted. No recourse to a complicated table is needed. This makes regression
a powerful descriptive tool.

As with every summary, the gain in brevity comes at a cost. In this case, the
second compression hides the movement in the squiggly graph of averages.
Not only are the individual observations hidden, but so too are the average-
Y-given-X summaries. Regression is a severe double compression of the data.

Yearly Earnings Regressed on Education

Here is another example of how regression can be used to summarize data
based on the EastNorthCentralFTWorkers.xls data set.3 We are interested in
answering the following question: Given that a particular observation has a
particular value of the independent variable, Education, what is the value of
the dependent variable, Yearly Earnings, that we expect to observe for that
observation? Figure 5.2.5 presents the vertical strips/PivotTable method of
summarizing the data and answering the question.

We can use this table to make predictions of an individual’s yearly earnings
based on what we know about his or her level of education. For example, if
we know that the person has 12 years of education, we can use the average

3 Data for this example come from the Regression sheet in the file, which is contained in
Ch03PivotTables \ ExcelFiles folder. To view the data, you must unhide the Regression sheet.
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Figure 5.2.5. Average yearly earnings by education level.
Source: [EastNorthCentralFTWorkers.xls]Regression.

yearly earnings of all those in the data set with 12 years of education as our
prediction of the yearly earnings of such a person. In this case, that prediction
would be $27,934.

Regression provides another way of summarizing the data. Here is the
equation we obtain for our regression with the yearly earnings data:

Predicted Yearly Earnings = −47325 + 6310 · Education.

Figure 5.2.6 shows the scatter plot, the regression line, and the graph of
averages. Almost all the data points are plotted here, though we cut off some
of the really high-earnings people. Thus, there are about 6,200 dots, but they
blur into each other. You see vertical strips because Education comes in dis-
crete jumps. The squiggly line is the graph of averages, which corresponds to

Yearly Earnings by Education: Regression Line and 
Conditional Mean Function

Regression Line: y = 6310x − 47325

$-

$30,000

$60,000

$90,000

$120,000

$150,000

8 10 12 14 16 18

Education

Figure 5.2.6. Regression of yearly earnings on education.
Source: [EastNorthCentralFTWorkers.xls]Regression.
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Slope Intercept
6310 −47325

Education

Predicted 
Yearly 
Earnings

Average 
Yearly 
Earnings

8 $    $ 17,662 
9 $   9,465 $ 24,044

10 $ 15,775 $ 20,386
11 $ 22,085 $ 19,976 

11.5 $ 25,240 $ 20,851 
12 $ 28,395 $ 27,934
13 $ 34,705 $ 33,888
14 $ 41,015 $ 35,687 
16 $ 53,635 $ 48,907
18 $ 66,255 $ 76,187

3,155

Figure 5.2.7. Predicted yearly earnings at different
education levels via regression.
Source: [EastNorthCentralFTWorkers.xls]
Regression.

the table in Figure 5.2.5. The straight line is the regression line. The fig-
ure shows that the regression line approximates the graph of averages.
Figure 5.2.7 displays this approximation in tabular form. By simply evaluating
the line at the given values of Education, the table of conditional averages
can be approximated as it is in Figure 5.2.7.

Because the CMF and regression lines do not give the same predicted Y
(Yearly Earnings) given a value of X (Education), how do we decide which
one to use? Economists typically prefer regression. It provides an instant read
on the relationship between the two variables via a single, simple equation.
Not only is the CMF harder to appreciate, but economists often believe that
the underlying relationship is a smooth function better approximated by the
straight regression line than the meandering line of the CMF.4

Regression versus the SD Line

Having explored the connection between the CMF and the regression line, we
need to clear up a potential confusion over another pair of lines – the regres-
sion and SD lines. In a Chapter 2, we introduced the correlation coefficient
as a summary measure of the association between two variables. We saw
that the points cluster around the SD line (with slope SDY/SDX). Could the
regression and SD lines be the same?

They could for a special case, but they are almost always different. It turns
out that the SD line fails miserably as a predictor of y given x. If we were
to use points on the SD line as predictors of the value of the dependent
variable given particular values of the independent variable, we would make
systematic mistakes.

4 Careful observers will question how well the regression does at summarizing the relationship for lower
levels of education.
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Given this x, what 
is the typical y?

x

y SD line

Figure 5.2.8. Poor prediction with the SD line.

Figure 5.2.8 shows why the SD line does not accurately report the typical
value of Y given the value of X. You would not choose the point on the SD
line. Instead your prediction would be below the SD line somewhere in the
middle of the points in the vertical strip. Using the value of Y from the SD
line leads to poor performance in predicting Y because most of the points,
including the average Y given that X, are below the SD line.

A numerical example based on the SAT data will demonstrate this concept.
The SD Line overpredicts above the average Verbal SAT and underpredicts
below the average Verbal SAT. Figure 5.2.9 presents this example (scroll
down to row 50 in the SATData sheet to see the figure).

Notice that both the SD line and the regression line go through the point
of averages, and thus at the average level of the X variable both give the same
answer to our question about predicting the Math SAT value for a person
having a particular Verbal SAT score.

But what accounts for the difference in the two lines when we are not
at the average X? It is a mathematical fact that the slope of the regression
line is simply the correlation coefficient r multiplied by the slope of the SD
line. This explains the conditions under which the two are the same: |r| = 1
and r = 0. Whenever 0 < r < 1, as in the SAT example, the regression line
will have a smaller slope (and a flatter shape) than the SD line because
the SD line’s slope is being multiplied by a positive number smaller than 1.
You can work out the relationship between the two lines for r between −1
and 0.

Of course, by far the usual case is a nonperfect and nonzero correlation
coefficient. Then the extent to which the SD line and the regression line
diverge from one another is dictated by the value of the correlation coeffi-
cient. The bigger in absolute value the correlation coefficient, the tighter the
clustering of the data around the SD line and the closer the SD and regression
lines are to each other.

Finally, we point out that the mathematical fact that the slope of the regres-
sion line is equal to r SDY

SDX
means that the SD line and the correlation coefficient

together provide a handy way to compute the regression line. Thus, suppose
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Slope Intercept
Reg Line 0.539465 318.9403
SD Line 0.977853 94.59735

Reg Line SD Line

Verbal
SAT

Pred 
Math SAT

Pred 
Math SAT

350 508 437
450 562 535
550 616 632
650 670 730
750 724 828

Comparing the Regression and SD Lines
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SD Line

Reg Line

Figure 5.2.9. Regression and SD lines with SAT data.
Source: [DoubleCompression.xls]SATData.

you have the five basic bivariate summary statistics (averages and SDs of X
and Y along with r). You can then create a mind’s eye scatter diagram of the
cloud of points, SD line, and even the regression line. It is also immediately
obvious that the slope of the regression line will have the same sign as the
correlation coefficient.

Summary

In Chapter 4, we saw that the OLS regression line is computed as the solution
to an optimization problem (i.e., as the choice of intercept and slope that
minimize the sum of squared residuals). This section has pointed out that
a fitted regression line can also be interpreted as a double compression of
the data. The double compression proceeds by first generating the graph
of averages or conditional mean function and then linearizing that graph.
The regression line thereby provides a quick and concise summary of the
relationship between two variables.
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5.3. Galton and Two Regression Lines

Workbook: TwoRegressionLines.xls

This section discusses some of the work of Francis Galton (1822–1911), the
British polymath who discovered regression in the 1870s and 1880s. Galton
hoped to discover universal laws of heredity. He was specifically interested in
the extent to which children inherit characteristics of their parents. A crucial
data set, for example, contained data on parents’ heights and their sons’
heights. Galton came up with the regression line as a way of summarizing the
average height of children born to parents of differing heights.5 In the course
of his research, he obtained three key insights regarding regression:

1. For many data sets, the graph of averages can be well approximated by a straight
line, the regression line.

2. The regression line always has a slope less than or equal to (in absolute value) the
slope of the SD line.

3. There are in fact two regression lines as determined by the variable you are trying
to predict.

We have already discussed the first two points in the previous section. Galton
chose the term regression because the slope of the regression line is always
shallower than that of the SD line. He found that sons of taller-than-average
parents tended to be shorter than their parents (and, thus, closer to the mean),
whereas sons of shorter-than-average parents tended to be taller than their
parents (and, once again, closer to the mean). Thus, there was a tendency
for children to revert to the average or mean. Eventually, Galton changed
reversion to regression, and the latter name stuck.

Galton’s third insight, the phenomenon of two regression lines, is a strik-
ing fact that at first seems counterintuitive. In theoretical discussions, a single
line generally summarizes the relationship between two variables. In basic
economics, supply and demand are good examples. The ceteris paribus rela-
tionship between price and quantity demanded is a single line. It does not
matter which variable goes on the x-axis, for the same line describes the
theoretical relationship. (Of course, one must be careful about the slope and
y-intercept.) With regression lines, however, it is not possible to solve simply
for X in terms of Y – there really are two separate regression lines.

The key to understanding that there are indeed two lines is to realize that
each line is the answer to a different question. The Excel file TwoRegression-
Lines.xls gives an illustration, using the SAT data set. The SATData sheet
contains the data, the Verbal and Math SAT scores for 527 applicants to

5 Galton used the average of the parents’ heights. It is of interest to note that Galton experimented with
other means of central tendency besides averages (e.g., the median).
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Graphs of Averages: Verbal on X-Axis
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Figure 5.3.1. Two graphs of averages for the SAT data.
Source: [TwoRegressionLines.xls]PivotTables.

Wabash College and shows a scatter plot with Verbal scores arbitrarily dis-
played on the x-axis and Math scores on the y-axis. Go to the PivotTables
sheet, which displays two pivot tables. The left table shows the average val-
ues of Math at different levels of Verbal. The graphical analogue of this table
is the pink graph of averages. This first pivot table answers the question,
Given that a student’s Verbal score is such and such, what Math score do we
predict for that student? The second pivot table answers a different, though
related, question: Given that a student’s Math score is such and such, what
Verbal score do we predict for that student?

Take a moment to read the last two sentences again carefully. The two
questions are different because they start from different places. Figure 5.3.1
shows the two graphs of averages.

The squares are the answers to the question, Starting from the Verbal score,
what Math score do we anticipate? The squares are the averages inside verti-
cal strips. This is the graph of averages presented in the previous section. The
diamonds are the answers to the question that begins instead from the differ-
ent Math scores and answers with the expected Verbal score. The diamonds
are the averages of horizontal strips because the Math scores are plotted
on the y-axis. The button beneath the graph is a toggle that will switch the
axes.

So far, only the graphs of averages have been displayed. The TwoLines
sheet illustrates the two regression lines that summarize their respective
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Scatter Plot and Two Regression Lines: Verbal 
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Scatter Plot and Two Regression Lines: Math 

on X-Axis

200

300

400

500

600

700

800

200 300 400 500 600 700 800

Math

V
er

b
al

Figure 5.3.2. The two regression lines plotted both ways.
Source: [TwoRegressionLines.xls]TwoLines.

graphs of averages. The two buttons below the graph toggle. One controls
the axes and the other switches the display from the regression lines super-
imposed on the original scatter plot to the graph of averages. Figure 5.3.2
displays the two scatter plots.

Notice that in each case the regression line describing how the predicted
value of the y-axis variable varies as the x-axis variable changes is the shal-
lower line. The other regression line, the one that describes how the predicted
value of the x-axis variable varies as the y-axis variable changes, is the steeper
line. You should be able to convince yourself that, in each case, the shallower
line is a much better approximation to the graph of averages (based on vertical
strips) than the other line would be. However, the very same line, when trans-
posed to the other graph as a result of the switch in axes, becomes the steeper
line and does a poor job of predicting the y-variable based on the x-variable.
The two lines agree only at the point of averages for the entire data set.

Understanding that there are two regression lines requires the ability to
interpret regression as a conditional average. Because regression answers
the question Given X, what is predicted Y? a regression line cannot be alge-
braically manipulated to solve for x in terms of y. For example, Predicted
Math = 318.9 + 0.5395 Verbal cannot be used to predict Verbal given Math.
Solving for Verbal yields – 591.2 + 1.8537 Predicted Math, and this is not the
same as the regression line Predicted Verbal = 176.1 + 0.5642 Math (see cell
H28 in the TwoLines sheet for the calculations). Note that the variable names
are not the same – Verbal is not Predicted Verbal and Math is not Predicted
Math. This is merely another way of saying that there are two regression lines,
which means that you cannot simply flip the axes from a single equation to
shift from using X to predict Y to using Y to predict X.

Finally, the SDLine sheet shows the SD line and its relation to the two
regression lines and the scatter plot. Each regression line is shallower than
the SD line; this is the regression effect noted by Galton. Therefore, the
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SD line is an inferior predictor of SAT scores. The slope of the regression
line is the correlation coefficient multiplied by the slope of the SD line. The
mathematical slope of the SD line in turn depends on which variable is on
the x-axis. When Verbal is on the x-axis,

Slope of SD Line = SD(Math)
SD(Verbal)

= 87.2
89.1

= 0.98,

and, when Math is on the x-axis,

Slope of SD Line = SD(Verbal)
SD(Math)

= 89.1
87.2

= 1.02.

The toggle button can be used to switch the axes. Notice that when you
click on the toggle button, the SD line seems to shift as do the two regression
lines and the points in the scatter plot. In both graphs, however, they are
depicting exactly the same points with the coordinates reversed. For example,
the point Verbal = 400, Math = 450 is displayed with coordinates (400,450)
on one graph and coordinates (450,400) on the other.

All of these ideas are perfectly general. Galton’s insight about the two
regression lines applies to all data sets in which there is less than perfect
correlation between the two variables. Only when |r| = 1, signifying perfect
positive or perfect negative correlation, do the two regression lines and the
SD line all coincide.

Summary

We conclude this section with a note on terminology. When one refers to a
regression of Y on X, X is the variable we are starting with and Y is the variable
being predicted. Thus, the regression of Math on Verbal treats Verbal as the
X-variable and Math as the Y-variable. The regression line in this case would
be read from a given Verbal score vertically up to the line and horizontally
over to the predicted Math score.

Galton would say that predicting Math from a given Verbal score demon-
strates regression to the mean because higher than average Verbal scores are
associated with higher Math scores, but not by as much as the SD line would
predict. Someone who is 89 points (one SD) above the mean in Verbal score is
only predicted to be 0.55 × 87 (r × SDMath) or 48 points above the mean Math
score. This is the regression to the mean effect that gave regression its name.

5.4. Properties of the Sample Average and the Regression Line

Workbook: OLSFormula.xls

The previous sections interpreted regression as a double compression of the
data. The least squares regression line is an example of an estimator – that
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Y i

Sample 
Average 

w i

 Sample 
Average 

w iY i

97.70 0.1 9.770
108.65 0.1 10.865
108.66 0.1 10.866
97.63 0.1 9.763

100.69 0.1 10.069
96.10 0.1 9.610
87.30 0.1 8.730

101.76 0.1 10.176
99.30 0.1 9.930
96.13 0.1 9.613

993.92 1 99.392

Figure 5.4.1. The sample average is a weighted
sum.
Source: [OLSFormula.xls]SampleAveIsOLS.

is, a recipe for describing data. In this section we will interpret least squares
estimators in general as weighted sums of the data. We begin with a simpler
statistic computed from sample data, the sample average. Like the regres-
sion line, the sample average is a least squares estimator. Furthermore, both
the sample average and the regression line are weighted sums of the data.
This section concludes by demonstrating some general properties of the OLS
regression line with a simple data set.

The Sample Average

We first show, by example, that the sample average is a weighted sum and that
it is the least squares estimator of central tendency. Open the suggestively
titled sheet SampleAveIsOLS in OLSFormula.xls. Begin by looking at the
first three columns in the table shown in Figure 5.4.1.

The Yi column displays the 10 observed values in the data set. The sum
of the 10 observations is, in this specific case, 993.92. With 10 observations,
the average is 99.392, the number in bold in the lower right-hand corner. The
general recipe for the sample average with n observations is, of course

Sample Average =
∑n

i=1 Yi

n
.

The symbol
∑n

i=1 indicates that we are summing up all n of the terms to the
right (the Yi’s).

Via the auditing arrows, however, Figure 5.4.1 invites us to think about the
computation of the average in a slightly different way. Take each observation
(Yi), multiply it by a weight (wi), and sum up the products (the wiYi’s). In the
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Figure 5.4.2. Computing the sample average residual.
Source: [OLSFormula.xls]SampleAveIsOLS.

specific case at hand,

Sample Average = 0.1 · 97.70 + 0.1 · 108.65 + · · · + 0.1 · 96.13

= 9.770 + 10.865 + · · · + 9.613

= 99.392.

More generally, the sample average can be represented as follows:

Sample Average = w1 · Y1 + w2 · Y2 + · · · + wn · Yn

=
n∑

i=1

wi Yi ,

where the wi’s are all equal to 1
n . Note, for future reference, that the weights

sum to 1.
If this exposition seems overly pedantic, we assure you that there are good

reasons for the detailed approach. First, we want to show that most of the
important recipes for summarizing data amount to weighted sums of the data.
Second, the fact that the sample average and regression slope are weighted
sums will come in very handy when we come to statistical inference.

Next, we show that the sample average is that recipe for summarizing the
central tendency that produces the smallest sum of squared residuals (i.e.,
that the sample average is the least squares measure of central tendency).
We show this first by example. Figure 5.4.2 demonstrates how the residuals
for the sample average are computed. Notice from the formula bar that we use
named cells to make it easier to understand the Excel formulas. The first resid-
ual is the observed value, 97.7, less the Sample Average, 99.392, or −1.692.
This residual is squared, and the result is put in Column E. All the residuals
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and their squares are computed in the same way. The squared residuals are
summed, and that sum goes into cell E2, which is labeled “SSR for Average”
(where SSR stands for sum of squared residuals). The “SSR for Median”
is computed in a similar fashion in columns H, I, and J and displayed in
cell E3.

This worksheet demonstrates two important related facts:

1. The Average SSR is never greater than the Median SSR.6

2. More generally, the Sample Average is the least squares recipe for a measure of
central tendency – that is, the SSR produced by the sample average is the minimum
possible SSR for an estimator of central tendency.

The first fact is just a consequence of the second; we chose the Median to com-
pare with the Average because it is the most important alternative estimator
of central tendency.

We will use Solver to demonstrate by example that the average yields the
lowest possible sum of squared residuals. Solver can quickly find that estimate
of central tendency that minimizes the SSR. Our objective is to show that the
OLS estimate is the same as the Sample Average estimate.

We will have Solver begin with an estimate of 100 in cell C4.7 The resid-
uals based on this estimate are displayed in the Solver Residuals column of
the table (column F). The formula for each of these residuals reads “=Yi-
SolverEstimate.” Notice that if the Solver Estimate is 100, the Solver Resid-
uals sum to −6.08. This is not an accident, for the sum of the observations
(the sum of the 10 Y’s) is 993.92 and the sum of the Solver Estimates (10 each
equal to 100) is 1,000. Now activate Solver by executing Tools: Solver. Solver
should already be set up as shown in Figure 5.4.3. In this example, the initial
value of Solver Estimate is set at 100.00. With this value, it is easy to see that
the residuals for the first two observations will be −2.300 and 8.650, respec-
tively. In this initial setup, the Solver SSR is 356.266, the value in cell G16,
which is the sum of the squared Solver residuals. Solver will systematically
change the value of Solver Estimate to minimize the SSR. We ran Solver and
obtained the results shown in Figure 5.4.4.

You can try this yourself. Click on the Draw Another
Data Set button and then run

Solver. You will find that the Sample Average estimate corresponds to the
minimum SSR estimate found by Solver. Of course, another name for the
minimum-SSR estimate is the OLS estimate. This demonstration does not
prove conclusively that the Sample Average is the OLS recipe for measuring
central tendency. In the appendix to this chapter we use calculus to prove that
the estimator of central tendency minimizing the SSR is the Sample Average.

6 The two are only equal when the median equals the average.
7 If there is a different value in cell C4, change it to 100.
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Figure 5.4.3. Solver set up to find the minimum SSR estimate of central tendency.
Source: [OLSFormula.xls]SampleAveIsOLS.

The Regression Line

So far we have shown that the Sample Average, an estimator of the central
tendency of a single variable, is a weighted sum and the least squares estimator
of central tendency. We turn now to the regression line, which is an estimator
of the relationship between two variables. Here are the formulas for the Slope
and Intercept of the regression line from Section 4.3:

bOLS
1 =

n∑
i=1

wi · Yi

bOLS
0 = Ȳ − bOLS

1 X̄,

where the weights are given by

wi = (Xi − X̄)∑n
i=1 (Xi − X̄)2

, i = 1, . . . , n

Sample 
Average 99.392  SSR for Average
Median 98.500 SSR for Median 360.526
Solver
Estimate 99.392 Solver SSR

Summary of Three Measures of Central Tendency

352.569

352.569

Figure 5.4.4. The minimum SSR estimate
is the sample average estimate.
Source: [OLSFormula.xls]
SampleAveIsOLS.
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Mean X 30.00 Slope 16.00
Mean Y 560.00 Intercept 80.00
Denominator 1000 n 5

i X i Y i X i-Mean(X ) (X i-Mean(X ))2 w i w iY i

1 10 300 −20 400 −0.02 −6.00
2 20 400 −10 100 −0.01 −4.00
3 30 500 0 0 0.00 0.00
4 40 600 10 100 0.01 6.00
5 50 1000 20 400 0.02 20.00

Sum 150.00 2800 0.00 1000.00 0.00 16.00

Figure 5.4.5. Computing the OLS slope and intercept in a simple example.
Source: [OLSFormula.xls]Example.

in which n is the number of observations, X̄ is the average value of the Xi’s
in the data set, and Ȳ is the average value of the Yi’s in the data set. We see
immediately that the OLS Slope (bOLS

1 ) is a weighted sum of the Yi’s and the
weights are a complicated function of the Xi’s. We have demonstrated that
these formulas produce the least squares estimator of the regression line.

We will now use another simple data set to help you better understand the
formulas for the OLS slope and OLS intercept. Go to the Example sheet in
OLSFormula.xls. This sheet conveys the following lessons:

� The OLS regression line goes through the point of averages.
� The OLS slope is a weighted sum of the Y’s.
� The weights get bigger in absolute value the farther away an observation is from

the average value of X.
� The weights sum to zero.
� A change in the Y value of an observation has a predictable effect on the OLS

slope and intercept.

The Example sheet contains the table displayed in Figure 5.4.5. This example
presents five observations. The table shows the steps involved in constructing
the weights. First, each observation’s deviation from the mean of the X’s is
calculated. These computations are in the Xi – Mean(X) column. For example,
the first observation, with an X value of 10, has a deviation of – 20 from the
mean of 30 for the X values. (Note that we are using Mean(X) instead of X̄
because of the difficulty in writing the latter symbol in Excel.) Next these
deviations are squared, and the resulting squared deviations are summed.
The first observation’s squared X deviation is 400. The sum of the squared X
deviations is 1,000. This sum of squared deviations goes into the denominator
of each observation’s weight wi.

The weight for the first observation is – 0.02, which is –20 (the X deviation
for that observation) divided by 1,000 (the sum of squared X deviations). The
weights get bigger in absolute value as the X values of the observation move
farther from the center of the X’s. Finally, each observation’s contribution
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Figure 5.4.6. Simple example showing regression line, observations,
and point of averages.
Source: [OLSFormula.xls]Example.

to the slope is the product of its Y value and its weight. The sum of the
wiYi terms is the Slope, which in this case is 16. Notice that the weights
sum to zero and that the regression line goes through the point of averages.
These facts are always true when OLS is used to find the regression line and
are a consequence of the mathematics behind the underlying optimization
problem.

The OLS Intercept is the value of the Y-intercept for a line that has the
computed Slope and passes through the point of averages. The coordinates
of the latter are (30, 560), the Mean X and Mean Y. Figure 5.4.6 shows the
regression line and point of averages.

In the Example worksheet you will see a second table and graph immedi-
ately below the first table and graph. You can use this second table to change
the Y values of the five observations in order to see how the OLS regression
line shifts as the observations move around.

The Q&A sheet contains suggested exercises designed to give you geomet-
ric and algebraic intuition. We have put buttons on the Example sheet to help
you answer those questions.

Summary

In this section we have compared the mathematical algorithms for computing
the Sample Average and the OLS regression slope. It is important to see that
there are both similarities and differences in the weighted averages used to
compute these statistics. Both the Sample Average and regression slope are
weighted averages of the Y values, but the weights are constant and sum to
one for the Sample Average while they are varying and sum to zero for the
regression slope.



P1: irk
0521843197c05 CB962B/Barretto 0 521 84319 7 November 7, 2005 17:29

114 Interpreting OLS Regression

We now have three different ways of looking at the OLS regression line: as
the solution to an optimization problem, as a double compression of the data,
and as a weighted average of the data. In Part 2 of this book we demonstrate
that the weighted average perspective is very useful for working out the
inferential properties of the OLS method.

5.5. Residuals and the Root-Mean-Square Error

Workbooks: ResidualPlot.xls; RMSE.xls

Thus far in this chapter we have viewed OLS regression from two
perspectives: as a method, given an X value, to predict Y and as a weighted
average of the data. We next examine graphical and numerical ways to eval-
uate how the OLS regression summarizes the data. This section concentrates
on descriptions of the residuals. Section 5.6 covers a single, very commonly
used statistic R2, which purports to describe how well the OLS regression fits
the data.

Residual Output

We return to the familiar Math and Verbal SAT data from 527 recent appli-
cants to Wabash College. The Excel workbook ResidualPlot.xls has the data
and the results from a regression of Math on Verbal via the Data Analysis:
Regression approach. The Data sheet shows how selecting the four choices
in the Residuals section of the Regression dialog box generates information
about the residuals from the regression.

In Section 4.2 we defined the residual as Actual Y – Predicted Y. The
predicted value of Y given X is the value of Y that lies on the regression line
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Figure 5.5.1. Scatter plot of Verbal and Math SAT with the Predicted
Math SAT regression line.
Source: [ResidualPlot.xls]Output.
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Figure 5.5.2. Residual plot from the regression of Math on Verbal
SAT in Figure 5.5.1.
Source: [ResidualPlot.xls]Output.

vertically above the given value of X. Algebraically, you find the predicted
value of Y by plugging the value of X into the equation for the regression
line. The distance of the actual observed Y from its predicted Y value is called
the residual. In general, the residuals are nonzero – not all points lie on the
regression line. We can use the resulting pattern of residuals as a diagnostic
device.

In Figure 5.5.1, which shows the scatter plot of the SAT data and the Pre-
dicted Math SAT regression line, the vast majority of the points are off the
regression line. Positive residuals lie above the regression line, whereas nega-
tive residuals correspond to those Math scores that fall below the regression
line. In Figure 5.5.2 we have drawn a residual plot for the data in which the
residuals are graphed as a function of the X variable, Verbal SAT. In the
residual plot of Figure 5.5.2,

� The average of the residuals is zero. This is always true.8
� There are just about as many residuals above zero (underprediction) as below zero

(overprediction). This is not always the case.
� The size of the residual does not seem to be systematically related to the value of the

x-variable. In other words, the spreads of the residuals in vertical strips for a given
Verbal score are about the same. This is the desired attribute of homoskedasticity
(as opposed to heteroskedasticity). Again, this is not always the case.

The residuals should not display a discernible pattern. If there is a pattern,
then it is possible that linear regression is an inappropriate method of describ-
ing what is going on in your data.

To make clear exactly what the residual plot shows, examine a single point
in the data set. One individual scored 370 on the verbal and 750 on the Math.

8 True, that is, whenever the regression contains an intercept term.
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Locate this individual on the scatter diagram in Figure 5.5.1. Calculate the
residual associated with this observation:

First, substitute the value of X into the regression equation:
Predicted Math = 319 + 0.54 × [370].
Compute predicted Y:
Predicted Math = 519.

The residual is easily found by applying its definition:

Residual = Actual value − Predicted value

= 750 − 519

= 231.

Of course, computer software can rapidly do this calculation for each obser-
vation. For example, if you use the Regression tool in Excel’s Data Analysis
add-in, you can request a report of the residuals and a residuals plot (as in
the Output sheet of ResidualPlot.xls).

One can see that the regression line is doing a poor job of predicting this
particular observation. It is unexpected, given the other observations in the
data set, that a student with a 370 Verbal score would do so well on Math.
You should now locate this point on the residuals plot in Figure 5.5.2 and
circle it.

Figure 5.5.3 shows that, given a Verbal score of 370, the regression line
greatly underpredicts, by 231 points, the y-coordinate in the observation (370,
750), which stands for this particular student’s Math score. The regression line
is a measure of the center of a vertical strip (for the entire cloud) given a value
of X. It is not surprising that some points may be far off the regression line.
In this case, there are a few students who do much better on the Math SAT
than would be predicted by their score on the Verbal SAT.

The Root-Mean-Squared Error (RMSE)

For a single list of numbers, the center is often measured by the average (or
mean). The spread in the list is usually represented by the standard devia-
tion (SD). We have shown how the bivariate regression line is a conditional
average: it tells us, given X, what is the average Y. We need a way to indicate
spread around the regression line that is analogous to the SD.

The root-mean-square error (RMSE) measures the dispersion of the data
around the regression line. You can think of the RMSE as the typical vertical
distance of an observation from the regression line – in other words a measure
of the typical size of the residuals. It is a single number that measures spread
just as the standard deviation measures spread for univariate data.
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The point (370,231) on the residual plot.

Figure 5.5.3. Identifying a particular residual.
Source: [ResidualPlot.xls]Output.

Calculating the RMSE

To understand how the RMSE is computed, all you have to do is to look care-
fully at the name and to remember how the standard deviation is computed.

� Root-Mean-Squared is a conventional method used for computing the average
size of a deviation. For example, “Root-mean-squared deviations from the mean”
describes the method for calculating the standard deviation of a list of numbers.
You read it backwards to find the method: SQUARE the differences between each
value and the mean, take the MEAN, and then take the ROOT.

� Error is the difference between the actual and predicted value of y.

Of course, we have been calling the difference between the actual and
predicted values of Y residuals, and so the correct name for the size of the
typical residual should be root-mean-squared residual. Unfortunately, by
historical accident, this concept is called root-mean-squared error. The use
of Error in place of Residual is a source of serious confusion for anyone
trying to understand regression analysis. Error is an important concept in
inferential statistics and econometrics that is different from the residual.
We will be discussing error in later chapters of this book. Keeping residual
and error straight requires concentration, and the RMSE misnomer makes
things worse. In addition, the RMSE is also known as the Standard Error
of the Regression and the Standard Error of the Estimate. You might see this
terminology in the economics literature or reported by software, but we will
use the RMSE throughout this book.

The close tie between the SD and RMSE is evident in the calculation and
use of these statistics. Both rely on root-mean-square computations and both
are used to measure spread. Furthermore, like the SD (which has the same
units as the list of numbers), the RMSE has the same units as the dependent
variable.
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Although there are a variety of shortcuts for calculating the RMSE,9 we
will rely on the computer to compute the RMSE easily. The Computation
sheet in the Excel workbook RMSE.xls has a simple numerical example of
how the RMSE is actually calculated. You can change the spread parameter
(cell B2) to see how that affects the dispersion of the five observations around
the regression line and the resulting value of RMSE. The sheet also explains
a subtle difference in the way most statistical packages compute the RMSE,
adjusting it for degrees of freedom.10 This is analogous to the difference
between the calculations of the SD of a sample versus the SD of a population.
With large data sets, this distinction is not important.

Interpreting the RMSE

The RMSE is essentially the SD of the residuals – a measure of the dispersion
in the residuals. We can take advantage of the fact that what we are doing
has a direct parallel with the univariate case. The RMSE plays the same role
and is used in the same way as the SD. The RMSE conveys the likely size
of the typical residual off the line. Thus, the RMSE can be thought of as a
measure of the vertical spread of the observations around the regression line.
It even turns out that the same rough approximation used in connection with
the SD for lists of numbers also applies for the RMSE. Figure 5.5.4 shows an
example in which the rule of thumb that 68 percent of the observations fall
within ± 1 SD roughly holds: 10 of the 14 observations fall in the ± 1 RMSE
band.

Similarly, the rule that about 95 percent of the values fall within ± 2 RMSE,
also applies to many data sets. Of course, there are data sets for which the
approximation does not hold.

Example: Wabash College SAT Scores

We can demonstrate the interpretation of the RMSE by returning to the
Wabash College Math and Verbal SAT scores data set. For the Wabash Col-
lege SAT data, the RMSE is about 73 Math points.

In the data set, approximately 69 percent of the points are within ±1 RMSE
from the regression line. Approximately 94 percent of the points are within
2 RMSEs from the regression line. The rule of thumb works very well for the
Wabash College SAT data.

9 One useful shortcut is that the RMSE = √
1 − r2 × SD of the Y’s.

10 In regression, the number of degrees of freedom is the number of observations less the number of
coefficients being estimated.
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Figure 5.5.4. Applying the ± 1 SD rule of thumb to a bivariate regression.

Why does our approximation work for the SAT data? To answer this ques-
tion, let us make sure we understand what we mean when we talk about the
distribution of the residuals. Figure 5.5.6 shows three views of the residuals.

In Figure 5.5.6 the top diagram shows a scatter plot of the data and the
regression line. The middle diagram reveals the scatter plot of the residuals.
The two share the same x-axis, but for each point on the residual plot, the
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A Summary of the SAT Data

Average(Verbal) = 511.75
SD(Verbal) = 89.13
Average(Math) = 595.01
SD(Math) = 87.15
r = 0.55
N = 527
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Figure 5.5.5. The RMSE in the Math on Verbal regression.
Source: [RMSE.xls]Accordion.
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Histogram of Residuals for Math on Verbal SAT
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Residuals versus Verbal SAT
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Figure 5.5.6. Understanding the RMSE.
Source: [RMSE.xls]Pictures.

y-value no longer measures the Math SAT score; instead the vertical distance
between the Math SAT score and the score predicted by the regression equa-
tion is measured. For example, the person with the lowest verbal score had
a Verbal SAT of 300 and a Math SAT of 610. This observation can easily be
located on both of the two top diagrams. It is a point northwest of most of the
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Histogram of Residuals for Math on Verbal SAT
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Figure 5.5.7. Another view of the relation between the residuals and their histogram.
Source: [RMSE.xls]Pictures.

rest of the data. The coordinates of this observation on the middle diagram
are Verbal SAT of 300 and residual of 129.2. You can also find this individual
in the SATData sheet in the RMSE.xls workbook. Because the data have
been sorted, it is the first observation.

The histogram, to drive home exactly what it is showing us, is displayed
once again in Figure 5.5.7 tipped on its side to facilitate comparison with the
scatter plot of residuals.

One thing to note about the residual plot is that some of the points in the
scatter plot stand for many observations. For example, there are five people
in the data set who scored 500 on the Verbal SAT and 600 on the Math SAT.
Every one of them has a predicted score of 588.7 on the Math SAT and
therefore a positive residual of 11.3. The center of the histogram is tall in
part because many of the points represent more than person in the data set.
There are simply more people with residuals close to zero than people with
residuals far away from zero.

The histogram of the residuals bears more than a passing resemblance to
the normal curve. The rule of thumb for the RMSE depends on the fact
that many histograms for residuals look like normal curves. Also note that a
spread of 73 is very plausible for this histogram.

A final way to grasp the concept of the RMSE is to consider an extension
of the intervals idea of Section 5.2. The sheet Accordion in the RMSE.xls
workbook provides not only the average in an interval but also the SD
within an interval. Compare the displays produced by the Many

Intervals and RegressionLine
w/ +/- 1 RMSE

buttons.
Just as the regression line is a linearization of the graph of averages, the

RMSE is an overall single measure of spread across all of the intervals. The
sheet PivotTable makes clear that, for this data set, computing a weighted
average of the SDs in each interval comes fairly close to the RMSE.
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Summary

Here is the regression equation that describes the Math and Verbal SAT
scores and the RMSE:

Predicted Math = 319 + 0.54 Verbal
RMSE = 73.

Suppose that you are asked to predict the Math score of a student who
earned a 500 on the Verbal part of the exam. You should calculate and report
the Predicted Math score of 580 (= 319 + 0.54 × 500) along with the RMSE
of 73. The RMSE tells the reader that there is considerable spread around
that predicted score, which is valuable information.

The RMSE is the SD of a particular list of numbers – namely the residuals
in a regression. The RMSE provides information on the size of the typical
residual. As such, it is ideal for improving the information conveyed by the
regression line.

Just as a summary of a univariate list of numbers should always include at
least the average and SD, a bivariate summary should include the five basic
summary statistics (average X and Y, SD of X and Y, and r), the regression
equation, and the RMSE. This will enable the reader to reconstruct the scat-
ter plot. Of course, if the resulting reconstruction misses crucial details of the
scatter plot, then the summary information is misleading and should be aug-
mented by the scatter diagram. Section 5.7, presents several cases in which
the summary is misleading.

5.6. R-Squared (R2)

Workbook: RSquared.xls

Suppose you had information on Math SAT scores for a group of students.
You pick one of the students at random and want to guess his or her Math SAT
score. The best guess you could come up with would be to use the average
Math SAT score for the group, which is 595. How far off would the typical
guess be? The answer is given by the SD of the Math SAT scores.

Now suppose you had additional information – namely, each student’s
Verbal SAT score. You now are to guess a random student’s score not only
knowing that he or she comes from the group of 527 students with average
Math SAT score of 595, but also this student’s Verbal score. Our work in
previous sections has made clear that the best guess of the Math SAT score
given a Verbal SAT score would be to use the regression line of Math SAT
score on Verbal SAT score for the group. How far off is your guess likely to
be? The answer is given by the RMSE.



P1: irk
0521843197c05 CB962B/Barretto 0 521 84319 7 November 7, 2005 17:29

R-Squared (R2) 123

Mean Math SAT versus Regression Line

250

350

450

550

650

750

250 350 450 550 650 750

Verbal

M
at

h

Figure 5.6.1. Two ways to predict Math SAT.

You might want to know how much better your guess would become when
you had made use of the additional information. This section explains the
R-Squared (R2) statistic.11 It measures the improvement in prediction accu-
racy gained by using the regression line instead of the average value of the
dependent variable.

After providing some intuition behind the concept of R2, this section will
show how the statistic is actually computed. We conclude the presentation of
R2 with a warning on the misuse of this common statistic.

The Logic of R2: The Guessing Game

Because R2 is concerned with measuring the improvement in prediction, we
first need to come up with a procedure to quantify how good the predictions
are.

Imagine that every time you make a guess you are penalized for guessing
incorrectly. The size of the penalty is the square of the difference between
your guess and the actual Math score of the student. How big is the penalty
likely to be? If you use the mean Math SAT score as your guess every time,
then the penalty will on average be the square of the SD of the Math scores.
If you use the regression line, then the penalty will on average be the square
of the RMSE of the regression.

The GuessingGame sheet in the RSquared.xls workbook puts the ideas
in this section to work. Play a few times and see if you can do better than

11 The R2 statistic is sometimes called the coefficient of determination.
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guessing the average Math SAT or the Predicted Math SAT from the regres-
sion equation.

R2 is a statistic that answers the question of how much better the regression
predicts each Y value than the process of using the average alone, which is the
simplest possible way to predict the value of Y. In other words, the R2 statistic
is a way of computing how much better the regression is at the guessing game
we have just described. In essence, R2 measures the percentage improvement
in prediction over just using the average Y. A quick presentation of the
accounting of the sums of squares in regression will make the computation
of R2 clear.

Computing R2

If we subtract the average Y from each Y and square the resulting deviations
from the average, the result is called the total sum of squares (TSS). The
formula for the TSS is

TSS =
n∑

i=1

(Yi − Ȳ)2,

where i indexes observations and n denotes the number of observations. This
is a measure of the total variation in the Y values. With regression, we can
compute the sum of squared residuals (SSR). The SSR is the variation left
unexplained by regression. The amount left over, total variation minus SSR,
must be the explained variation. The explained variation is also known as
the regression sum of squares (abbreviated RegSS in our workbooks) or the
explained sum of squares (ESS). The accounting identity being used here is

Total Variation = Explained Variation + Unexplained Variation.

SSR is the unexplained variation by regression. The smaller the SSR, the
better the performance of the regression.

The most direct and clear definition of R2 is that it is the ratio of the
explained variation (which can be found by computing the total varia-
tion minus the SSR) to the total variation. The Computation sheet in the
Rsquared.xls workbook presents an example. Change cell B2 to see how
more variation in Y affects R2. The formula for R2 is

R2 = TSS − SSR
TSS

= 1 − SSR
TSS

.

It should be clear that R2 ranges from 0 to 1. At one extreme, if regres-
sion offers absolutely no improvement in predicting Y compared with
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using the average Y, then R2 is 0. The scatter plot would be the ultimate
formless blob with no correlation whatsoever between X and Y. On the other
hand, if regression has 0 SSR, then R2 is 1. In this case, the points would all
lie on the line.12

Could it be a simple coincidence that the correlation coefficient is the letter
r and the measure of prediction improvement via regression is capital letter
R2, or is there a tie between these two concepts? It turns out that in a bivariate
regression the two are easily related. The square of the correlation coefficient
is the R2 statistic!

The Use and Misuse of R2

The R2 statistic is often provided as a quick summary measure of the regres-
sion. It is true that, as R2 approaches 1, the regression better explains the
variation. This statistic, however, is somewhat controversial. Many authors, in
our opinion, put too much emphasis on getting high R2’s as an important goal
of empirical analysis. We are skeptical of using R2 as a tool to judge empirical
work. One reason is that R2 is guaranteed to improve if more independent
variables are added to the regression (Chapter 7 explains regression with
more than one X variable). The push to maximize R2 leads some researchers
to throw the kitchen sink into their models. When we turn to regression for
inference, we will see that this is a bad strategy.

Many software packages (including Excel’s Data Analysis: Regression add-
in) report an Adjusted R2 statistic designed to penalize the addition of vari-
ables. Although the adjustment is potentially useful, we believe it is better to
understand that R2 is not a perfect statistic and should thus not be used to
reach immediate conclusions about a particular regression model.

Summary

The R2 statistic is a measure of the improvement in prediction provided
by regression compared with predicting with average Y alone. It is a com-
monly used descriptive statistic. Excel’s Trendline, for example, offers R2 as
an option (but not RMSE). Although it serves a useful purpose as an indicator

12 There is one exception to this logic: the case in which the regression does not include an intercept
term – that is, where

Predicted Y = Slope · X

instead of

Predicted Y = Intercept + Slope · X.

The ZeroIntercept sheet demonstrates why the standard formula for R2 is inappropriate in this case
and presents the alternative used by Excel 2003.
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of the predictive performance of the regression line versus simply using aver-
age Y to predict Y, R2 should never be interpreted as a definitive measure of
a regression’s validity.

The next section addresses the limitations of regression as a data-
summarizing strategy. It will be clear that, for some data sets, irrespective
of the value of R2, regression is simply inappropriate or at best inadequate.

5.7. Limitations of Data Description with Regression

Workbooks: Anscombe.xls; IMRGDPReg.xls;
SameRegLineDifferentData.xls; HourlyEarnings.xls

This section offers several examples of data sets for which linear regression is
inappropriate. Scatter plots with regression lines, plots of residuals, and anal-
yses of the RMSE are used to understand the limitations of linear regression
better. We discuss two main problems when using linear regression to describe
the relationship between two variables: nonlinearity and heteroskedasticity.

Example 1: The Anscombe Data

Clear examples of nonlinearity can be found in four well-known data sets
produced by Anscombe. They are artificial and have been used to test the
accuracy of regression algorithms. They also have special characteristics that
are rather remarkable. These four data sets are displayed in Figure 5.7.1.
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Figure 5.7.1. Four Anscombe data sets.
Source: [Anscombe.xls]Data.
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Table 5.7.1. Your Estimates

Data Set Intercept by Eye Slope by Eye

x1−y1
x2−y2
x3−y3
x4−y4

By eye, fit regression lines to each of the four data sets. The x- and y-axes
are similarly scaled, and thus you should be able to read off approximate
intercept and slope coefficients for each of the four graphs and report them
in Table 5.7.1.

Now open the Anscombe.xls workbook and fit the regression line to each
of the four data sets. In the Options tab of the Add Trendline dialog box,
make sure you select the options displayed in Figure 5.7.2.

How did you do? Were you able to see that the four data sets have the
same regression line? That is remarkable, is it not?

Obviously a linear regression line does not do justice to the curvilinear
relationship between x2 and y2 in the Anscombe example. A completely
vertical line would summarize all but one point in the graph of y4 versus x4;
whether the vertical line would be better than the regression line depends
on where we think the anomalous point came from. For both the graphs of
(x3, y3) and (x4, y4) it seems in each case that if we could somehow separate
the outlier (by identifying what went wrong when it was measured or why it
is so odd), then a regression line that fits the remaining points well would be
better than the simple regression line.

Anscombe’s data sets are prepared so that not only are the regression lines
the same, but numerous other summary statistics are also almost exactly the
same, as shown in Figures 5.7.3 and 5.7.4.

Anscombe wanted to show that summary measures (both univariate and
bivariate, including regression) might be flawed and misleading. His four-
data–set example is a good way to remember that scatter diagrams can reveal
what is obscured by summary statistics.

Example 2: Nonlinearity in the Real World

Although Anscombe’s x2−y2 data set is an obvious example of the inappro-
priateness of regression when the data exhibit a marked nonlinear pattern,

Figure 5.7.2. Adding a trendline
to Anscombe data.
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Summary Statistics

N 11 11 11 11 11 11 11 11
mean 9.00 7.50 9.00 7.50091 9.00 7.50 9.00 7.50
SD 3.16 1.94 3.16 1.94 3.16 1.94 3.16 1.94
r 0.82 0.82 0.82 0.82  

Figure 5.7.3. Univariate summary statistics from Anscombe data sets.
Source: [Anscombe.xls]Data.

it is an artificial example. There are many real-world data sets in which non-
linearity is present. In such cases, a straight line summary is misleading.

Figure 5.7.5 shows the residuals from a regression of infant mortality on
GDP per capita. The residuals show a marked pattern. Contrast this figure
with the residual plot for the regression of Math on Verbal SAT scores. The
data are contained in the workbook IMRGDPReg.xls.

Notice that, below a per capita GDP of 2,500 dollars per year, the residuals
seem to be scattered more or less equally above and below zero. However,
for higher income countries, especially those with per capita GDP’s above
5,000 dollars a year, there is a definite pattern: the higher the per capita
GDP, the greater the residual. Figure 5.7.6 displays the scatter plot and linear
regression line for the same data.

It is easy to see that the regression line does not very accurately depict the
relationship between the two variables, which appears to be nonlinear. The
regression of IMR on GDP is an inappropriate tool for describing the rela-
tionship between the variables. Clearly, using the regression line to describe
this scatter diagram is a mistake because much information is lost by trying
to describe this relationship as a linear one. Here are two lessons from this
example:

� Nonlinear scatterplots should not be summarized with a regression line. Predictions
made from a regression equation will be systematically off (higher in one part of
the line and lower elsewhere).

� Nonlinearity can often be diagnosed by looking at a plot of residuals. The residuals
should show no discernible pattern. If they do, regression may be inappropriate.

slope intercept 0.50 3 0.50 3 0.50 3 0.50 3
SE SE 0.12 1.12 0.12 1.13 0.12 1.12 0.12 1.12

R
2

RMSE 0.67 1.24 0.67 1.24 0.67 1.24 0.67 1.24
F df 17.99 9 17.97 9 17.97 9 18.00 9

RegSS SSR 27.51 13.76 27.50 13.78 27.47 13.76 27.49 13.74

LINEST OUTPUT x1-y1 x2-y2 x3-y3 x4-y4

 

Figure 5.7.4. Regression results from Anscombe data sets.
Source: [Anscombe.xls]Data.
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1998 IMR and 1992 Per Capita Real GDP Residuals
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Figure 5.7.5. Residuals from a regression of infant mortality rates on GDP per capita
in U.S. dollars, selected countries, 1990s.
Source: [IMRGDPReg.xls]

Example 3: A New Pattern in the Residuals

Regression may also be misleading if the scatter plot exhibits a hornlike
pattern. We demonstrate this point by contrasting two very similar data sets.

1998 IMR and 1992 Real GDP
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Figure 5.7.6. Regression of infant mortality rates on GDP per capita in U.S. dollars,
selected countries, 1990s.
Source: [IMRGDPReg.xls]
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Figure 5.7.7. Homoskedasticity in the SAT example.
Source: [SameRegLineDifferentData.xls]SAT.

The first is our familiar SAT example illustrated on this occasion in the Excel
workbook SameRegLineDifferentData.xls.

Upon opening the workbook and going to the SAT worksheet, you should
see the chart in Figure 5.7.7. If the scatter plot does not look like this figure,
click on the Restore SAT Data button.

When all the vertical strips in a scatter diagram show similar amounts
of spread, then the diagram is said to be homoskedastic. The scatter plot
for the regression of the SAT Math score on the SAT Verbal score, shown
in Figure 5.7.7, exhibits a homoskedastic pattern. In this case the RMSE
does a good job of summarizing the typical residual for all values of the
independent variable. The spread in the two vertical strips is just about the
same.

If the vertical strips do NOT show the same amount of spread around the
regression line, then the residuals are said to be heteroskedastic. To illustrate
heteroskedasticity, we constructed a fanciful example in which the Verbal
scores are the same as before but the Math scores have been deliberately
chosen in such a way that, though their average and SD are the same as in the
original data, something is amiss. We obtained a picture like Figure 5.7.8 and
statistics like those in Figure 5.7.9 by selecting the Linear, Heteroscedastic option
and clicking on the Generate Y button.

The regression line in this case is exactly the same as for the actual data, the
R-square is the same, and the RMSE is the same. In fact, all summary statistics
are identical – they are given in Figure 5.7.9. What is wrong? Although linear
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Figure 5.7.8. Heteroskedasticity in a contrived SAT example.
Source: [SameRegLineDifferentData.xls]SAT.

regression gives exactly the same results with this new data set, we have built
in heteroskedasticity: the spread of the residuals rises as Verbal score rises.
We have drawn in red vertical strips to highlight the difference between the
actual homoskedastic data and the artificial heteroskedastic data. Of course,
an infinite number of data sets exist that would produce exactly the same
regression line. Every time you click on the Generate Y button, another data
set will be obtained that shares exactly the same summary statistics. To see
especially wild examples, click the Nonlinear, Deterministic radio button and then
generate a new set of Y’s. You can generate different patterns by using the
nonlinear slide control.

Example 4: Heteroskedasticity in Earnings Data

To illustrate a typical real-world case of heteroskedasticity, we went back
to the EastNorthCentralFTWorkers.xls database and created a new vari-
able called Hourly Wage, which is defined as Usual Weekly Earnings

X Y
Average 511.7 595.0
SD 89.0 87.2
Corr(X,Y)

Descriptive Statistics

0.55  

slope 0.53947 318.94 intercept
SE(slope) 0.03559 18.4892 SE(int)
R2 0.30435 72.7582 RMSE
F 229.695 525 df
Reg SS 1215950 2779225 SSR

LINEST output

 

Figure 5.7.9. Summary statistics for both SAT data sets.
Source: [SameRegLineDifferentData.xls]SAT.
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Figure 5.7.10. Excel’s report of regression of
hourly wage ($ per hour) on education (years).
Source: [HourlyEarning.xls]
HourlyWagebyEduc.

Hourly Earnings on Education
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Figure 5.7.11. Regression of hourly earnings on education from HourlyEarnings.xls
and corresponding residuals plot.
Source: [HourlyEarning.xls]HourlyWagebyEduc and [HourlyEarning.xls]Residuals.
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divided by Usual Weekly Hours. The workbook HourlyEarnings.xls con-
tains the revised data set and shows the results from a regression of Usual
Weekly Earnings on Education. Figure 5.7.10 is a picture of the regression
output.

The estimates for slope and intercept are given in the estimate line. They
tell us that, for each additional year of education, predicted Hourly Wage rises
by $1.92 per hour. According to the RMSE, the size of the typical residual is
$9.01. You could use this information to recreate the scatter diagram of the
data.

Scatter diagrams of the data and residuals are depicted in Figure 5.7.11.
Look at the residual plot on the bottom first. Notice that the spread of the
residuals increases as education rises. This is an example of heteroskedasticity.
You can see the same pattern in the scatter diagram with the regression line
in the top half of Figure 5.7.11.

By examining the residual plot and scatterplot, you can see that the
RMSE is not a good summary description of the size of a typical residual.
The typical size of a residual depends on the value of education. You can-
not use a global measure of dispersion around the regression line because
the dispersion varies along the line. Once again, we are dealing with het-
eroskedasticity, though it is not as noticeable as it was in the contrived SAT
example.

The heteroskedastic pattern is confirmed by a closer look at the verti-
cal strips (that is, the observations within a single education level). In Fig-
ure 5.7.12, we calculated the means of the residuals for different values of the
X variable (education). If the data were homoskedastic, one would expect
the SD of the residuals to be similar across different values of the variable
education.

Yet another way to see the inappropriateness of the RMSE as a means
of summarizing the spread of the residuals is to examine a histogram of the
residuals within two different education levels as in Figure 5.7.13. The lesson
is that, with a heteroskedastic scatter plot, the RMSE does not provide a
good idea of what the typical residual looks like.

Summary

The regression line can be a powerful tool for describing a bivariate relation-
ship. Often the scatter diagram, regression line, and RMSE can adequately
and succinctly provide a great deal of information about the relationship
between the variables.

At times, however, linear regression is inappropriate or incomplete as a
descriptive tool. For example, when the relationship is nonlinear, simple



P1: irk
0521843197c05 CB962B/Barretto 0 521 84319 7 November 7, 2005 17:29

134 Interpreting OLS Regression

Education Data Total
8 StdDev of Residuals $3.97

Average of Residuals $3.83
9 StdDev of Residuals $4.90

Average of Residuals $2.29
10 StdDev of Residuals $2.95

Average of Residuals -$1.14
11 StdDev of Residuals $10.71

Average of Residuals $1.22
11.5 StdDev of Residuals $6.12

Average of Residuals -$1.78
12 StdDev of Residuals $7.02

Average of Residuals -$0.09
13 StdDev of Residuals $8.34

Average of Residuals -$0.20
14 StdDev of Residuals $7.60

Average of Residuals -$1.19
16 StdDev of Residuals $10.92

Average of Residuals -$0.27
18 StdDev of Residuals $14.02

Average of Residuals $1.37
20 StdDev of Residuals $7.82

Average of Residuals $0.20
Total StdDev of Residuals $9.00
Total Average of Residuals $0.00

Figure 5.7.12. Summary statistics for vertical strips of residuals.
Source: [HourlyEarning.xls]Residuals.

linear regression does not accurately represent the relationship between
the variables. When the residuals exhibit heteroskedasticity, the RMSE
does not correctly summarize the spread of the data around the regression
line.

Residuals of Hourly Earnings for 12 and 18 Years of Education

−$40 −$20 $0 $20 $40 $60

$/hr

12 Years

18 Years 

Figure 5.7.13. Histograms of residuals in hourly earnings on education regression.
Source: [HourlyEarnings.xls]Residuals.
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5.8. Conclusion

This chapter has introduced several fundamental ideas:

1. Regression is a simplified conditional mean function and therefore an extremely
compact summary of the relationship between two variables.

2. Regressions produce intercept and slope coefficients that summarize the relation-
ship between the y and x variables. Using the slope and intercept, given a value
of the x variable, one can predict the y variable’s value.

3. For any bivariate data set, there are two regression lines determined by which
variable is treated as the X variable and which as the Y variable.

4. The OLS regression slope is a weighted average of the values of the Y variable.
5. The RMSE and R2 are additional summary statistics for OLS regressions and are

helpful for evaluating regression results.

In this chapter we have emphasized visualizing the data. For example, it
is extremely helpful to think about regression as proceeding by dividing the
data into vertical strips, finding the points of averages, and then fitting a line
to those points.

The last section showed that fitting a straight line to a nonlinear pat-
tern is a big mistake. But if the straight-line regressions produced so far
are obviously flawed when the data are nonlinear, how do we deal with
curvilinear relationships between variables? Is regression worthless in such
cases?

The answer is a resounding no. The next chapter will show that regres-
sion is, in fact, powerful and flexible. Through differing manipulations and
transformations, regression can handle a variety of patterns in the data.

5.9. Exercises

1. A student scored 660 on the Verbal SAT and 800 on the Math SAT. Use the
regression results from Section 5.3 to answer these questions.
a) What were his or her Predicted Math SAT from the bivariate regression of

Math SAT on Verbal SAT and the corresponding Residual?
b) What were his or her Predicted Verbal SAT from the bivariate regression of

Verbal SAT on Math SAT and the corresponding Residual?
2. Despite the positive correlation coefficient between A and B, the regression of A

on B has a negative slope. Could this situation occur? Explain why or why not.
3. In an analysis of the SAT data, 1,000 is mistakenly added to every math score.

For example, a Math score of 650 becomes 1650. What impact will this have on
the slope coefficient in a bivariate regression of Math SAT on Verbal SAT as
compared with the slope coefficient from the same biavariate regression using the
original correct data? What impact will this mistake have on the slope coefficient
in the regression of Verbal SAT on Math SAT? Explain your reasoning. (Hint:
Think about how the graph of averages is affected.)

4. If the slope in a bivariate regression is zero, what is the value of the R2?
5. If the RMSE in a bivariate regression is zero and the slope is not zero, what is the

value of the R2?
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Appendix: Proof that the Sample Average is a Least
Squares Estimator

This appendix proves that the sample average is the least squares estimator of
central tendency of a univariate data set. Suppose c is an estimate of central
tendency for n observations, each called Yi. Then the sum of squared
residuals is

SSR =
n∑

i=1

(c − Yi )2.

The optimization problem is

Min
c

SSR =
n∑

i=1

(c − Yi )
2
.

To find the solution, differentiate with respect to c and set the derivative equal to
zero. After some algebra we will find that the estimate that minimizes the sum of
squared residuals is the sample average. First take the derivative of the sum of
squared residuals with respect to c:

∂SSR
∂c

=
n∑

i=1

2(c − Yi ).

In this case it is very easy to show that the second-order condition for a minimum is
satisfied. The second derivative is clearly greater than zero:

∂2SSR
∂c2

=
n∑

i=1

2

= 2n > 0.
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Next set the first derivative equal to zero and solve for c∗, the SSR-minimizing
estimator of central tendency:

n∑
i=1

2(c∗ − Yi ) = 0

2
n∑

i=1

(c∗ − Yi ) = 0

n∑
i=1

c∗−
n∑

i=1

Yi = 0

n · c∗ =
n∑

i=1

Yi

c∗ =
∑n

i=1 Yi

n
.

This is the sample average.
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6

Functional Form of the Regression

This result can be summarized in the following statement: Annual earnings corre-
sponding to various levels of training differing by the same amount (d) differ, not by
an additive constant, but by a multiplicative factor (k).

Jacob Mincer1

6.1. Introduction

This chapter shows that the technique of linear regression is an extremely flex-
ible method for describing data. That flexibility derives from the possibility of
being able to replace the variables in the regression equation with functions
of the original variables. As examples, instead of fitting the equation

Predicted Y = a + bX,

we can fit

Predicted Y = a + bX2,

or

Predicted ln Y = a + bX,

where ln stands for the natural log function. Applying polynomials, multiply-
ing or dividing variables by each other, applying logarithms and exponentials,
and taking reciprocals are just a few of the variable transformations available
to generate nonlinear fits.

Even though variables may be transformed so that the equation is non-
linear in the original units of the variables, as long as the equation remains
in the form of an intercept plus a slope multiplying a (possibly transformed)
X variable, it remains a linear regression. In other words, linear regression
means linear in the parameters, not the variables. For example, Predicted

1 Mincer (1958, p. 285).

138
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Y = 1/a + b2X is a nonlinear regression model because the parameters them-
selves enter into the equation in a nonlinear way. This model cannot be fit
using the usual least squares intercept and slope formulas. We will review
a specific kind of nonlinear regression model in Chapter 22 but otherwise
confine ourselves to linear regression in this book.

This chapter begins with an example of a famous nonlinear equation from
the physical sciences. The example will allow us to explore theoretical and
practical reasons for using different functional forms. Next, we return to the
infant mortality and GDP per capita data set to demonstrate the double-log
and reciprocal specifications. The fourth section is devoted to the semilog
functional form, which has dominated empirical work in labor economics
since it was introduced in the late 1950s. Finally, we explain how elasticities
are computed from fitted lines and show how the functional form impacts the
elasticity. The appendix to this chapter contains a catalog of functional forms
commonly used by economists listing advantages and disadvantages of each
specification.

6.2. Understanding Functional Form via an Econometric Fable

Workbook: Galileo.xls

In this section we peek into the laboratory of Galileo Galilei, a famous Italian
scientist who was interested in how objects fall to Earth. The year is 1610.
The story told here is an econometric fantasy. In fact, Galileo did solve this
problem but in a much more clever way than in our story.

Galileo had made careful measurements from the leaning tower of Pisa of
the distance traveled by a ball dropped from the top of the tower. He wanted
to determine how the distance the ball falls depends on the amount of time it
falls. He used a good flash camera and accurate (though not perfect) devices
for measuring time and distance. Figure 6.2.1 is a schematic representation
of what is going on.

The DataGeneration sheet in the Galileo.xls workbook brings Figure 6.2.1
to life and explains how each observation (as a time and distance traveled pair
of numbers) is created. Use the Get an

Observation
 button to create five observations

for Time = 1, 2, 3, 4, and 5. In other words, as you are prompted for the time
elapsed from when the ball dropped, enter a “1” for the first observation, a
“2” for the second observation, and so on.

Suppose that Galileo gathered 40 observations on Time and Distance, pro-
ceeding in tenth of a second intervals. The data are available in the OurData
sheet. You can create your own data set by clicking on the

Get 40
Observations button.

Galileo then ran a regression on the data. We say, “he regressed distance
on time.” Galileo used Excel’s LINEST function to obtain the results in
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Figure 6.2.1. The data generation process: One observation in Galileo’s data.

Figure 6.2.2. Written as a regression equation, Galileo’s fitted line looks like
this:

Predicted Distance = −124.82 + 96.83 × Time
(ft) (ft) (ft/s) (s)

In this equation, the units are below each variable and coefficient. At first
blush, the descriptive regression appears to fit the data well. The RMSE
is acceptably small: a little less than 20 ft with an average Distance of about
170 ft. The R2 is a very high 0.97. The slope coefficient represents how fast Pre-
dicted Distance changes as Time changes. On the basis of this work, Galileo
might conclude that a good description of the relationship between Time and
Distance Traveled is that objects fall to the earth at roughly 97 ft/s.

In fact, Galileo abandoned the idea that distance traveled is a linear func-
tion of time. Galileo had some theoretical reasons for believing that bodies
accelerate as they fall toward the Earth. This suggested that the relationship
between time and distance is nonlinear. He thought the relationship might
look more like a parabola. Galileo also thought he had better take a look at
the data to see whether a linear functional form made sense. He plotted the
residuals from the regression of distance on time and obtained the results in
Figure 6.2.3.

slope 96.83 −124.82 intercept

R2 0.97 19.40 RMSE
38 df

499719 14299 SSR

Regression Results

Predicted Distance = b0 + b1Time

Reg SS

Figure 6.2.2. Galileo’s regression
of distance on time.
Source: [Galileo.xls]OurData.
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Figure 6.2.3. Residuals from regression of distance on time.
Source: [Galileo.xls]OurData.

Immediately, Galileo knew that the linear model was not a good description
of the data. A pattern in the residual plot is a signal that something is wrong.
He turned to the scatter diagram in Figure 6.2.4 of the original data for
additional confirmation.

The fitted regression line is plotted as well as the actual data. Clearly, the
data do not really follow a straight line. They follow some sort of curve, as
Galileo’s theory suggested.

It was back to the computer for Galileo. For both theoretical reasons and
on the basis of analyzing the data, he changed the functional form of his
descriptive model. The functional form is nothing more than the hypothesized
way in which the variables are related to each other. The first equation was a
linear functional form, so-called because it assumed time and distance to be
linearly related. Galileo instead decided to estimate a nonlinear relationship
between distance and time, using the following equation (with units given
below):

Predicted Distance = Intercept + Slope × Time2

(ft) (ft) (ft/s2) (s2)

The nonlinear equation can be estimated via linear regression because it is
linear in the parameters Intercept and Slope. It will result in a straight line fit
between the variables Predicted Distance and Time2. When the coefficients

Scatter Diagram w/ Regression Line
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Figure 6.2.4. Regression of distance on time.
Source: [Galileo.xls]OurData.
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slope 15.86 1.784 intercept
SE 0.085967 1.101256 SE
R2 0.9989 3.88 RMSE

F 34056.76 38 df
Reg SS 513445 573 SSR

Regression Results

Predicted Distance = b0 + b1Time2

Scatter Diagram w/ Regression Line
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Figure 6.2.5. Regression of distance on time squared.
Source: [Galileo.xls]OurData.

are used in a graph of Predicted Distance and Time (not Time2), the relation-
ship will be nonlinear.

To use the quadratic functional form, we must transform the Time variable
into Time2. To do this in Excel, Galileo creates a new variable, Time Squared.
Thus, if a single observation previously contained the two variable values:
Distance=22.85 and Time=1.10, now this observation contains an additional
variable, Time Squared = 1.21. See column Q in the OurData sheet.

When Galileo ran this regression in Excel, he obtained the results in
Figure 6.2.5. This new nonlinear functional form is a much more satisfac-
tory description of the data. The graph in Figure 6.2.5 makes clear that the fit
is obviously better. The coefficient on the squared term is the estimated rate
of acceleration.2

You might be wondering exactly what is nonlinear about Figure 6.2.5. It
appears that the 40 observations have a strong linear relationship. In fact,
they do. Distance and Time2 are linearly related – that is why the linear
regression summarizes the data so well. The nonlinear relationship is between
Distance and Time (not Time2). If we use the regression coefficients to com-
pute Predicted Distance and then plot the predicted and observed values

2 For calculus students: The derivative of Predicted D = 1.78 + 15.86 × T 2 with respect to T is 2 × 15.86 T
ft/s, where d Predicted D/dT is velocity, which is an increasing function of time. The second derivative,
31.72 ft/s2, is the rate of acceleration. Your physics book will tell you this constant is 32 ft/s2. Galileo’s
data suffered from measurement error. (We should know because we cooked the data!)



P1: irk
0521843197c06 CB962B/Barretto 0 521 84319 7 November 7, 2005 21:30

Understanding Functional Form via an Econometric Fable 143

Quadratic Model Predicted Values and 
Observed Values
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Figure 6.2.6. Predicted distance as a function of time.
Source: [Galileo.xls]OurData.

of distance against Time (not Time2) on the x-axis, we obtain the nonlinear
pattern displayed in Figure 6.2.6.

How is a linear regression able to generate a curve? This is possible because
the linear regression works with nonlinear transformations of the variables
and then employs the fitted intercept and slope coefficients in predicting the
dependent variable (in this case, Distance). When the predicted Y variable
values are plotted against the X variable in its original (untransformed) units,
the relationship becomes nonlinear.

Not only does the curve fit the data well, but Figure 6.2.7 reveals that the
residual plot also looks like the formless blob it is supposed to. Unlike the
residual plot in Figure 6.2.3, there is no obvious pattern in this graph. Notice
that the residuals are computed and graphed against the Time variable in this
case.

The RMSE (about 3.9 ft for the quadratic model versus 19.4 ft for the
linear model) and the scatter plots tell us that the nonlinear model does a

Residual Plot
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Figure 6.2.7. Plot of residuals from distance on time squared.
Source: [Galileo.xls]OurData.
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much better job of describing the data than the linear model. Notice also
that the intercept coefficient is also much more plausible with the quadratic
functional form. Finally, Galileo noted that the quadratic regression does
a much better job of predicting “out of sample” than the linear regression
model (by extrapolating either to times shorter than 1 s or to times longer
than 5 s).

Summary

In the first equation, Galileo assumed a linear relationship existed between
Time and Distance. In the new transformed equation, he assumed a linear
relationship between Distance and Time2, but that implied a nonlinear rela-
tionship between Distance and Time. Galileo used linear regression of Dis-
tance on Time2 to generate a nonlinear fit of Distance on Time. This strategy,
applying linear regression to nonlinear transformations of variables, makes
linear regression extremely flexible.

Our econometric fable is almost at an end, but a few points need to be
emphasized. In this example, we have hinted at one way to model the data
generation process. We argued that the data do not fit exactly on a mathe-
matical curve because Galileo’s measuring devices are not perfect. Galileo’s
measurements are subject to error. This idea will be further pursued when
we consider inference in the second part of this book.

Second, we can improve on our model. Our estimate of the intercept term
is still unsatisfactory. We know that the ball does not really start out 1.8 ft
on its way at time 0. The improvement is to impose the requirement on the
regression that the intercept be exactly zero. This will make our predictions
more plausible at the cost of an RMSE which is slightly higher than it was
in the unrestricted regression.3 Scroll to column AK of the OurData sheet in
Galileo.xls to see the results of the restricted model.

Finally, Galileo’s quadratic functional form is just one of many nonlinear
transformations. The next section offers two other examples of nonlinear
functional forms.

6.3. Exploring Two Other Functional Forms

Workbook: IMRGDPFunForm.xls

This section examines a real data set that has been seen before – the World
Health Organization data on infant mortality rates and per capita GDP in

3 We follow up on this idea in Chapter 17, which covers ways to test claims about the true value of
parameters in models of the data generation process.
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different countries – and applies two new functional forms to describing the
relationship between the two variables.

As we work through these transformations, we continue the key idea of this
chapter: linear regression is extremely flexible and can be used to describe
nonlinear relationships. This seeming contradiction is possible because the
word “linear” in linear regression refers to linearity in the parameters.
Although the regression line is a straight line when drawn in the coordi-
nates of the transformed variables, this is no longer true when we graph the
regression line in terms of the original units of the data.

The AlternativeModels sheet in the IMRGDPFunForm.xls workbook con-
tains a data set with observations on Infant Mortality Rate (IMR) in 1998
and GDP Per Capita in 1992 in 87 different countries. We fit three different
regression models to the data:

The Linear Functional Form

Model 1 : Predicted IMRi = b0 + b1 · GDPpci , i = 1, . . . , 87.

The Reciprocal (or Inverse) Functional Form

Model 2 : Predicted IMRi = b0 + b1 · 1
GDPpci

, i = 1, . . . , 87.

The Double-Log Functional Form

Model 3 : Predicted ln(IMRi ) = b0 + b1 · ln(GDPpci ) , i = 1, . . . , 87.

Proceed to the AlternativeModels sheet in the IMRGDPFunForm.xls
workbook to see how the data are transformed to fit the reciprocal and dou-
ble log models. Click on cell I20, for example, to see that 1/GDPpc is one
divided by cell B20 (which is GDPpc). Similarly, cells in column M and N
(M20 and N20, for example) use Excel’s LN function to take the natural log
of the IMR and GDP per capita values.

Once the data are transformed, the usual least squares fitted line is found.
In terms of the transformed data, the linear regression produces straight lines
like those displayed in Figure 6.3.1. We used Excel’s Trendline to fit the line
but edited the y = mx + b display in the chart on the right. This is good
practice.

To see the fit of the regression on the original data, simply take the Predicted
Y values and plot them against the X values instead of the transformed X
values. In the case of the double log model, because the Predicted IMR units
are the natural log of the original data, transforming back to the original Y
values by taking the antilog is also required. Column P (click on cell P20, for
example) shows how the formula EXP is used to calculate ePredicted IMR to



P1: irk
0521843197c06 CB962B/Barretto 0 521 84319 7 November 7, 2005 21:30

146 Functional Form of the Regression

Predicted IMR = 57532 1/GDPpc + 12.744 

R2 = 0.7444
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Figure 6.3.1. Linear regression on transformed data.
Source: [IMRGDPFunForm.xls]AlternativeModels.

compute IMR in its original units. Figure 6.3.2 shows how the two nonlinear
models fit the data.

The primary purpose of this chapter is to convey the important idea that
nonlinear transformations of the X and Y variables make linear regression
extremely flexible. This means that linear regression can be used to summarize
a very wide variety of nonlinear relationships between variables effectively.

Of course, once we admit the possibility of many curved fits, deciding on
the best summary becomes difficult. In the IMR–GDP per capita example,
most would agree that the reciprocal and double log models are vastly supe-
rior to the linear model, but how do we choose between the two curved
fits?

One inappropriate approach is simply to compare the R2 statistics. R2 mea-
sures how much of the total variation in the dependent variable is explained
by the regression. This means that the dependent variable must be the same
when comparing the R2’s from two different regressions. Because the dou-
ble log model has transformed the dependent variable, the R2 of the double
log model, 0.88, cannot be compared with the R2’s of the linear or reciprocal
models, 0.54 and 0.74, respectively. Similarly, the RMSEs cannot be compared
because the vertical scale is different.

We can, however, compute the residuals and squared residuals from the
double log model in the original units of the dependent variable (i.e., after
taking the antilog of Predicted lnIMR). Columns Q and R (click on cells Q20
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Figure 6.3.2. Two nonlinear regressions plotted against original variables.
Source: [IMRGDPFunForm.xls]AlternativeModels.
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Model RMSE SSR

Linear 26.77 62,354

Reciprocal 19.96 34,677

Double Log 21.35 39,658

Comparing the Three Models

Figure 6.3.3. Residual performance
measures.
Source: [IMRGDPFunForm.xls]Alternative
Models.

and R20, for example) show the calculation. Figure 6.3.3 displays the results
once we have the residuals and squared residuals in the original units of the
dependent variable.

It looks like the reciprocal model wins on the basis of a smaller spread in
the residuals and smaller sum of squared residuals, but the residuals plots in
Figure 6.3.4 reveal more information.

The reciprocal model overestimates all of the high-income countries,
whereas the double log model is dead on for those richer countries (a char-
acteristic you may have noticed from the regression fit chart in Figure 6.3.2).

There are no clear recipes for deciding which summary is the best. From
this example we can state without any doubt that the linear model is a
poor summary of the data. Furthermore, we can see that the reciprocal
and double log models are much better summaries than the linear model.
Unfortunately, although the curved fits do a much better job of summa-
rizing the IMR and GDP per capita data, there does not appear to be
a clear victor between the reciprocal and double log models in this case.
Economists might prefer the double log model because of a special feature
of that model: along the regression line, a constant percentage change in
the X variable always translates into a constant percentage change in the
Predicted Y variable with the constant of proportionality equal to the slope
coefficient.

Sometimes, a strong theoretical framework, such as the one Galileo had,
enables identification of the correct best-functional form. Usually, however,
econometricians have theories with qualitative predictions that do not point
to a particular functional form. We will continue to stress that theory and
data must be combined to produce quality econometric analysis.
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Figure 6.3.4. Residual plots.
Source: [IMRGDPFunForm.xls]AlternativeModels.
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Summary

Although the first two sections of this chapter have introduced you to three
nonlinear functional forms, that does not begin to exhaust the possibilities.
The next section demostrates a common nonlinear functional form in labor
economics.

6.4. The Earnings Function

Workbook: SemiLogEarningsFn.xls

This section introduces the semilog functional form

Predicted lnY = a + bX,

where ln stands for the natural log function. Unlike the double-log specifica-
tion, where we transform both X and Y by taking natural logs, the semilog
form applies the natural log only to the dependent variable.4

The semilog functional form is extremely common in labor economics. An
earnings function is an equation that explains wage, salary, or other remu-
neration as a function of relevant factors such as education, experience, and
demographic characteristics. Typically, economists have data on some mea-
sure of earnings that we regress on a variety of independent variables. We
routinely take the natural log of the measure of earnings before running the
regression. There are strong theoretical reasons for the use of the semilog
functional form in the case of the earnings function.

This section is organized in two parts. First, we will explain the theoretical
underpinnings of the use of the natural log of earnings. We then apply the
theory to an example using data from the Current Population Survey.

Human Capital Theory

Why do some jobs pay more than others? Anyone who has taken an intro-
ductory economics course knows the answer: supply and demand. Higher
paying jobs must have some combination of greater demand or lesser supply
than lower paying jobs.

Let us take this simple truth and make it a little more rigorous. Economists
argue that, in equilibrium, the gap, or difference in pay between two jobs,
must be such that the next entrant into the labor market would be indifferent

4 Because we are applying the ln transformation to the dependent variable, this is sometimes called a
log-linear functional form. If we take the natural log of the X variable and not the Y variable, we would
have another version of the semilog functional form called the lin-log model.
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Figure 6.4.1. The two-job-choice model.
Source: [SemiLogEarningsFn.xls]TwoJobsModel.

between the two jobs. If not, people would flood into the more attractive job,
reducing its pay, and avoid the less attractive job, increasing its salary and
pushing the difference in pay toward equilibrium. Although labor markets
equilibrate slowly, to demonstrate the logic behind the semilog functional
form we will build a model that assumes that we are in equilibrium.

Notwithstanding that there are many sources of differences between jobs,
let us concentrate on just one: training. No one would disagree that jobs
that require more training should pay more. After all, when someone is busy
training (going to medical school, for example), he or she is foregoing income
from working at a job that does not require as much training. Clearly, we have
to compensate doctors for the opportunity cost of training in order to entice
people to become doctors.

Open the SemiLogEarningsFn.xls workbook and proceed to the TwoJob-
sModel sheet. A part of this sheet is reproduced in Figure 6.4.1. It depicts
a person deciding between two jobs that require different years of training.
The person can count on a working life of 41 years, and the pay received in
each year is discounted by 7 percent per year. Job 2 requires 2 more years of
training than Job 1, but it pays $4,000 more per year.

On your screen, to the right of this information, the sheet displays the earn-
ings streams from the two jobs. Notice how we have simplified by assuming
constant annual earnings. In other words, if the worker chooses Job 1, he or
she will make $30,000 per year for 40 years, or $1.2 million over his or her
entire lifetime. Scroll down to cell J61 to see the sum of the total dollars
received over time.5 To the right, in cell L61, you can see that Job 2 yields
$1,292,000 because it pays $34,000 per year for 38 years. Notice that the differ-
ence between jobs is $92,000 and not $160,000 ($4,000 per year times 40 years)

5 You might notice that the top nine rows remain visible while you scroll down. We did this by using
Excel’s Freeze Pane feature (available under the Window menu). This enables the user to see the labels
when the data set is bigger than the screen.
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because Job 2 requires 3 years of training. Scroll back to see (in cells L10:L12)
that there are no earnings for the first 3 years for Job 2.

Of course, comparing the total dollars earned is pretty silly because a dollar
today is worth more than a dollar tomorrow. With a dollar today, you could
invest it and, as long as the interest rate was positive, it would return more
than a dollar tomorrow. Using this logic, we compute the present value (PV)
of future payments. In other words, we ask how much would be needed today
to become a given amount in the future. Columns K and M show the present
values of the annual salaries for the two jobs. Consider Year 20, for example.
The present value of $30,000 at a 7-percent discount rate is $7,753. Click on
cell K30 to see the formula. The idea is that if you had $7,753 right now and
invested it at a 7-percent interest rate, it would grow to $30,000 in 20 years.
You can change the discount rate in cell B11. Try 10 and 2 percent. The higher
the discount rate, the lower the present value because it takes less money right
now to become the target amount in the future. Click the Reset button before
proceeding.

By enabling dollars received at different points in time to be valued at the
same moment in time, present value ensures that we are making the correct
comparison of the pay differential between the two jobs. Instead of saying,
“Job 2 is worth $1.292 million and provides $92,000 more than Job 1,” we say,
“Job 2 has a present value of $391,805 at a discount rate of 7 percent and this
is $8,146 less than Job 1’s present value.”

It is decision time. If all else is equal, should the worker choose Job 1 or
Job 2? Job 2 does indeed pay more, but is the differential high enough? The
negative net present value (NPV) computed in column O tells you that the
PV of Job 1 is greater than the PV of Job 2. Thus, $4,000 extra per year is not
enough to compensate for the lost 2 years of income due to training. A quick
look at the earnings stream data shows that $4,000 far in the future really
is not that much money in present-value terms and that those 2 lost years
of income occur early on. On the basis of present values, this worker would
choose Job 1 over Job 2.

In addition to comparing the present values of two income streams and
choosing the bigger one, there is a second way to make this decision. We
could compute the internal rate of return (IRR) generated by the $4,000
pay differential. Column N shows the difference between the Job 1 and Job 2
earnings streams. Cell F15 uses Excel’s IRR function to compute the discount
rate that sets the net present value equal to zero. You can confirm this by
simply copying cell F15 and then clicking on cell B11 and executing Edit:
Paste Special: Values. Click the Reset button before proceeding.

Once we have the IRR, the decision is easy: If IRR > r, then take Job 2.
In this case, the IRR is 5.69 percent, which is less than the 7-percent discount
rate, and thus the worker would not choose Job 2. For simple projects, with
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Figure 6.4.2. Using Solver to find the equilibrium pay gap.

upfront costs and future returns, the IRR method is reliable and always agrees
with the NPV approach. For more complicated projects, the IRR method may
fail, and so NPV is preferred. We explain the IRR method because, when we
apply the semilog functional form to an earnings function we are actually
estimating the internal rate of return to schooling.

Now that we know that $4,000 is not enough and that the worker will choose
Job 1, we know that this will push the differential higher. Although the process
would include Job 1’s salary falling (as people entered that occupation) and
Job 2’s pay rising (as workers retired and no one entered), we will simplify the
story somewhat by focusing only on Job 2’s pay. We need to find that dollar
gap that, for the project of choosing Job 2 over Job 1, makes the NPV =
0 and the IRR = r. Although we could hunt and peck, entering trial values
in cell E12 by hand, this is clearly a job for Excel’s Solver.

Execute Tools: Solver and you will see the dialog box displayed in Fig-
ure 6.4.2. We will have Solver change cell E12 (named a0 Job2, the annual
earnings from Job 2) so that cell F13 (named NPV) is set equal to zero.

Click Solve and then OK to place Solver’s answer in the sheet. The equilib-
rium difference in annual pay is $4,707. This sets the present values of both
streams equal to each other and the IRR equal to the 7-percent discount
rate. If all else is equal, a worker facing these two jobs would be indiffer-
ent between them. Job 2 does indeed pay more, but it has higher training
requirements that exactly cancel out the higher pay.

We know the equilibrium pay differential when Job 2 requires 3 years of
training. But what would be the equilibrium pay differential for jobs that
required even more training? Change cell D12 from 3 to 4. We are back to
the situation in which the differential is too low. We need to run Solver to
find the equilibrium gap for this new Job 2 that requires 4 years of training.
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Required 
Training

Job 2 
Salary

Ratio 
Job1/Job2

3     $34,707 116%
4     $37,353 125%
5     $40,218 134%
6     $43,325 144%
7     $46,695 156%
8 $50,356 168%
9     $54,338 181%

10 $58,674 196%
11 $63,403 211%
12 $68,567 229%
13 $74,216 247%
14 $80,407 268%
15 $87,207 291%

Job 2 Salary as a Function of Required Training
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Figure 6.4.3. Job 2’s equilibrium salary as a function of training.
Source: [SemiLogEarningsFn.xls]Job2(n).

After doing so, we see that the equilibrium difference in annual earnings has
grown to $7,353.

We are now ready to make the leap that will explain why the semilog
functional form is routinely applied to the dependent variable in an earnings
function regression. By exploring the relationship of the equilibrium gap as
a function of n, we can immediately see that differences in pay for jobs with
differing required training are not linear. Proceed to the Job2(n) sheet, a
portion of which is displayed in Figure 6.4.3, for a clear demonstration of this
point.

The first two observations confirm our earlier work for the equilibrium
salary for Job 2 when the required training was 3 and 4 years, respectively.
We simply applied the same method, using Solver to find the equilibrium
Job 2 salary, for various years of training.

Figure 6.4.3 shows that the salary differentials for jobs with differing train-
ing requirements are not constant. In fact, Jacob Mincer’s brilliant insight
was to realize this and, furthermore, to see that the function is following an
exponential path. This is the heart of the matter: Equilibrium pay differen-
tials for jobs with differing levels of training are constant multiples of each
other.

The next and last step to the semilog functional form is trivial. By taking
the natural log of the Job 2 equilibrium salaries, we linearize the exponential
curve, as Figure 6.4.4 shows.

You might notice that the slope coefficient is 7.7 percent, which is a little off
from the 7-percent discount rate in the model. This is because the earnings
stream has a finite length. The longer the working life of the individual, the
closer the slope coefficient will get to the discount rate. The Q&A sheet has
a question that invites you to confirm this result by changing cell A11 in the
TwoJobsModel sheet and running Solver for several values of n.
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Figure 6.4.4. Linearizing via the natural log transformation.
Source: [SemiLogEarningsFn.xls]Job2(n).

By working through a numerical example, we have shown that salary
depends on years of training or schooling in an exponential way. By tak-
ing the natural log of the dependent variable, we convert the curve into a
line. This is the theoretical explanation for why earnings functions utilize the
semilog functional form. We conclude this section by providing a real-world
example of this approach.

The Earnings Function in Practice

Proceed to the EducWageData sheet in the SemiLogEarningsFn.xls work-
book. The data are in columns A and B. If we regress Wage on Education,
we obtain the results shown in Figure 6.4.5.

Wage is measured in $/hr and Education in years of schooling, and so we
interpret the 1.65 slope coefficient as telling us that wages rise by $1.65 an
hour for every additional year of schooling.

But our theoretical argument tells us that wages do not rise at a constant
linear rate. In fact, we have strong theoretical reasons for believing that the
difference in wages for those with higher levels of training (or schooling) is a
nearly constant percentage or multiple. Thus, we are in the same position as

Regression Results
Wage = b0 + b1Education

slope 1.65 −7.13 intercept

R2 0.20 7.63 RMSE
1139 df

Reg SS 16,133 66,251 SSR

Figure 6.4.5. The linear model.
Source: [SemiLogEarningsFn.xls]
EducWageData.
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Regression Results
ln Wage = b0 + b1Education

slope 0.102 1.22 intercept
SE 0.01 0.09 SE
R2 0.20 0.47 RMSE
F 282.5196 1139 df

Reg SS 61 247 SSR

Figure 6.4.6. The semilog model.
Source: [SemiLogEarningsFn.xls]
EducWageData.

in the second section of this chapter in which Galileo had strong theoretical
reasons to believe that the functional form is not linear.

Because our theory explains that the relationship between earnings and
training is exponential, it also supplies the needed transformation. By taking
the natural log of the wage, we can linearize a function we believe to be
exponential. Figure 6.4.6 shows the OLS estimates for the semilog functional
form.

Before doing anything else, it is important to be certain we understand how
to interpret the slope coefficient. We cannot say that wage rises by 10.2 cents
an hour for every year of schooling. That would be absurd. In a 2,000-hour
work year, would one more year of college give about $200 more income?
That makes no sense. If we take the derivative of the fitted line, we can see
what is going on:

d ln Wage
dEduc

= 0.102.

The coefficient is telling us not the change in the wage but the change in the
natural log of the wage as Education changes. The change in the natural log is
approximately equal to the percentage change. Thus, we interpret the slope
coefficient in a semilog functional form as giving the percentage change in
the wage given an additional year of schooling. For this data set, one more
year of Education increases the wage by about 10.2 percent. Because the
average wage in the data set is $16.85, an additional year of schooling from
the average level of schooling will raise the wage by approximately $1.68 per
hour. An extra year of schooling, from the average level of schooling, in this
data set gives about $3,360 more per year. That is reasonable.

Just as we did with the other functional forms in this chapter, we can predict
the wage using the semilog model by transforming the data back into their
original units. Column T in the EducWageData sheet shows that we can pre-
dict the wage given a particular value of Education by taking the antilog,
e(1.22+0.102Educ).6 Figure 6.4.7 shows the nonlinear relationship between

6 In the second part of this book, we show how, in some cases, a correction is applied to this computation.
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Educ Pred Wage

10 9.39

11 10.39
12 11.51
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14 14.11
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18 21.22

Predicted Wage as a Function of Education
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Figure 6.4.7. Predicted wage from the semilog model.
Source: [SemiLogEarningsFn.xls]EducWageData

Predicted Wage and Education that resulted from the linear regression of
ln Wage on Education.

Summary

This section has explained why the semilog functional form is standard oper-
ating procedure in regressions based on earnings functions. Although our
two-job example made the theoretical argument clear, you should know there
are some complications to the story. Jobs are different in many more ways
than simply the amount of training required, and it is a source of debate
among labor economists if we should interpret the world as being at, or even
near, equilibrium. Evidence for these complications is provided by the regres-
sion results of the semilog functional form. Unlike the theoretical example,
in which we obtained a perfect fit after applying the natural log transfor-
mation, the R2 of 0.2 tells us that other factors besides education influence
wages.

Later chapters demonstrate that labor economists improve the explanation
of the variation in observed salaries by including more explanatory variables
in the regression. The second part of this book also shows that there is a
second reason for using the semilog functional form on earnings data – it
reduces heteroskedasticity.

6.5. Elasticity

This section reviews the concept of elasticity and shows how the functional
form of the regression affects elasticity. We show how elasticity is computed
at a point or a finite distance from one point to another and offer a few
examples.
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Reviewing the Concept of Elasticity

Elasticity is a fundamental concept in economics used to express the sensitiv-
ity of the response of one variable given a change in another. Elasticity is the
percentage change in the dependent variable (Y) given a percentage change
in the independent variable (X) with other variables held constant.

The computed value of a measured elasticity depends on the size of the
change in the X variable. We will use the following formula when we are
considering a discrete change in the X variable:

%�Y
%�X

=
change in Y

initial Y
change in X

initial X

= change in Y
change in X

· X
Y

.

Economists sometimes use an arc, or midpoint, elasticity in which the
change in the variables is measured relative to the average value of X and
the average value of Y over the range under consideration as opposed to the
initial values of X and Y, respectively.

Elasticities are more commonly computed and reported as point elas-
ticities. Instead of considering a discrete change in X, infinitesimally small
changes are used. In this case, the concept of elasticity can be expressed via
the derivative:

lim
�X→0

%�Y
%�X

= lim
�X→0

�Y
Y

�X
X

= lim
�X→0

�Y
�X

· X
Y

= dY
dX

· X
Y

.

We proceed by demonstrating these formulas with a concrete example and
then discussing why economists focus on the ratio of percentage changes.

Suppose you are interested in the responsiveness of Y given changes in X.
You fit a line to a scatter diagram and obtain an equation of the fitted line in
the usual form, Y = mX + b. How can this equation be used to compute the
X elasticity of Y? You have several options.

Because elasticity changes along a straight line (with a nonzero intercept),
you must decide the value of X to be used as your reference point. Typically,
but not always, the average X is used.7 Once you have determined the value
of X to be used, you can compute an elasticity with a discrete change in X or
via the derivative.

To use the discrete change approach, you need to consider two separate
points on the fitted line – for instance, Y = 0.33X + 3. Then, when X is 3, Y
is 4, and when X is 6, Y is 5. Thus, when X moves from 3 to 6, Y goes from
4 to 5. The change in Y is 1 (= 5 – 4), and the percentage change in Y is
25 percent (because 1/4 = 0.25 or 25 percent). Similarly, the change in X is

7 In our introduction to regression in Chapter 1, we computed the price elasticity of demand at the average
price.
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3 (= 6 – 3), and the percentage change in X is 100 percent (= 3/3 = 1 =
100 percent). The X elasticity of Y from X = 3 to 6 is then 25%/100%
or 0.25.

Instead of moving from one X value to another, you could measure the
elasticity at a single point. To do this, we examine a change in X that is
infinitesimally small. We use the derivative to find the change in Y for a given
infinitesimally small change in X:

%�Y
%�X

= dY
dX

· X
Y

,

where dY/dX is simply the slope of the function at the point (X,Y). For Y =
0.33X + 3, dY/dX is 0.33; thus, the point X elasticity of Y at X = 3 is simply
0.33 times 3 divided by 4, or 0.25.

The derivative approach, computing a point elasticity, is a shortcut. It is a
way of calculating the percentage change in Y for a given percentage change
in X without having to evaluate Y at the initial X, then evaluating Y at a new
value of X, and then calculating percentage changes of Y and X.

The two approaches give the same answer in this case because the slope
is constant. If the relationship is nonlinear, an elasticity at a point will differ
from one based on a movement from one point to another on the curve.

The idea behind elasticity is to use percentage changes as a measure of
responsiveness because we get a relative unitless measure of the sensitivity
of one variable as another changes. In the example above, we could simply say
that Y responds 1 unit as X increases 3 units but that measure is dependent on
the units of Y and X. If X is measured in pounds, we could switch to ounces
and say, “As X increases 48 units (ounces), Y increases 1 unit.” Unlike the
simple change, percentage changes remove the effect of scale. The percentage
change in X from 3 to 6 (pounds) or 48 to 96 (ounces) or 0.0015 to 0.0030
(tons) is 100 percent. The scale used does not matter. This is a powerful,
desirable property.

In our experience, we have found that many students have great difficulty
appreciating that elasticity is a “local phenomenon” – to speak of an entire
curve as having a certain elasticity is usually wrong (“usually” because some
curves do have constant elasticities!). When you think of elasticity, think of
it as representing the responsiveness of Y at a particular X value.

For example, consider the equation Y = 100 – 5X. You want to measure
the elasticity at X = 10 (which implies Y = 50). Because the elasticity is being
measured at a point, you use the derivative approach

%�Y
%�X

= dY
dX

· X
Y

= −5 · 10
50

= −1·
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At the coordinate (10, 50), the X elasticity of Y is −1 (which is said to be
unit elastic). We interpret this number by saying that a 1 percent change in
X causes a 1 percent change in Y in the opposite direction.

You can check this for yourself by noting that a 1-percent increase in
X from X = 10 to X = 10.1 leads to a movement in Y from 50 to 49.5
(= 100 − 5 × 10.1). Notice that the movement from 50 to 49.5 is −1 per-
cent [= (49.5 – 50)/50].

On the other hand, the X elasticity of Y at X = 15 (which implies Y = 25)
is

dY
dX

· X
Y

= −5 · 15
25

= −3.

At X = 15, an infinitesimally small percentage increase in X will lead to
threefold percentage decreases in Y.

Thus, in summary, elasticity depends on the value of X; it is a local phe-
nomenon. The elasticity is always calculated as the percentage change in the
Y variable caused by a given percentage change in the X variable. In practice,
using the derivative approach, this reduces to the formula

%�Y
%�X

= dY
dX

· X
Y

.

Calculating the elasticity of a point on a line is simple: multiply the slope
of the line times the ratio of the coordinates of the point. Given an esti-
mated regression equation, the elasticity at a particular X (which is often
chosen to be the average X) can be computed using the formula immediately
above.

Although the formulas make this clear, we point out another common
confusion: Elasticity is not the same as the slope. The slope is simply dY/dX,
and the elasticity is dY/dX times X/Y. Thus, elasticity cannot be the slope
because it contains the slope and then something more. Slope is just the
rate of change, whereas elasticity is based on the percentage change. Do not
confuse these two different ways of measuring change.

Elasticity with Different Functional Forms

Having reviewed the concept of elasticity, we are ready to tie it to the main
topic of this chapter, the functional form of the regression. We have seen
how elasticity is computed with the standard linear model, but what happens
when other functional forms are chosen?

The general answer is that we simply apply the basic formula. For exam-
ple, in Section 6.2, we have the nonlinear fit, Predicted Distance = 1.784 +
15.86 Time2. We would compute the Time elasticity of Predicted Distance at
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Time = 3 by applying the usual elasticity formula:

%�Y
%�X

= dY
dX

· X
Y

= 31.72X · X
Y

= 31.72 (3) · 3
144.164

= 0.22.

In the case of the Double Log specification, we obtain a neat result. Recall
from Section 6.3 that we obtained Predicted ln IMR = 10.704 – 0.9192ln
GDPpc. The change in the natural log is approximately equal to the percent-
age change

d ln Y
d ln X

≈ %�Y
%�X

.

Thus, in the case of the Double Log functional form, the estimated slope
coefficient, in the IMR example, −0.9, is interpreted as an elasticity. Further-
more, in the case of the Double Log transformation, the elasticity is constant
all along the fitted curve.

The fact that the slope coefficient immediately displays the elasticity and
that the Double Log functional form imposes a constant elasticity on the
relationship helps explain why you will see many applications of the Double
Log functional form.

Summary

Elasticity is a fundamental concept in economics. Econometricians often use
regression coefficients to compute elasticities or apply a particular functional
form to estimate an elasticity.

6.6. Conclusion

One would think, because it is linear regression, that curvilinear relationships
would render linear regression useless. In fact, because linear refers to lin-
earity in the parameters, a wide variety of nonlinear transformations of the
variables enable linear regression to produce an infinite array of nonlinear
fits. Linear regression is extremely flexible.

This raises a new question, How do we decide which nonlinear transfor-
mation or curve to use? Here are some general pointers:

� When choosing functional forms for the relationship between two variables, it is
important to consider theory and data.

� The linear model is a good place to start.
� The scatter plot of the data and the residuals as well as the RMSE and SSR (used

correctly) will tell you how well a particular functional form fits the data.
� You cannot compare R2’s across functional forms that transform the dependent

variable (such as linear versus log linear models).
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� A variety of functional forms might be considered if the linear model does not
work very well.

� You need to think about appropriate functional forms for the relationships between
variables before running a regression. You should pay attention to what other
researchers have done with similar data.

� Calculating slopes and elasticities is the same in every case. Compute dY/dX and
(dY/dX)(X/Y) and evaluate them at the average X and average Y or a particular
value of X and corresponding predicted Y that is of interest. It is especially easy to
compute the elasticity with the Double Log functional form.

6.7. Exercises

1. Open the Galileo.xls workbook and go to the Q&A sheet. This data set was con-
structed with a different gravitational constant. It appears our fictional Galileo
has traveled to another, bigger planet. Use the data set to answer the following
questions:
a. Run regressions for the linear and quadratic models. Report your results in the

standard Predicted Y = b + mX format.
b. Is the quadratic model still better? Explain why.
c. For the quadratic model, compute the derivative of Predicted Distance with

respect to Time.
2. Use the results of the reciprocal and double log models in Section 6.3 to compute

the Per Capita GDP elasticity of IMR at a Per Capita GDP of $2,500.
HINT: For the reciprocal model, apply the point elasticity formula to the equation
of the fitted line.

3. Open the SemiLogEarningsFn.xls workbook. Click the Reset button to return the
sheet to its default values. Change the length of working life L (in cell A11 of the
TwoJobsModel sheet) to 31 and answer the questions below.
a. Because L fell from 41 to 31 years, what will happen to the present values of

the earnings streams from the two jobs? Why does this happen?
b. Why does the PV of the Job 2 earnings stream fall by more than the PV of Job

1’s earnings stream?
c. Run Solver to create a data set of four observations that tracks Job 2’s equilib-

rium salary for n = 3, 6, 9, and 12.
In other words, create a data set similar to the Job2(n) sheet.

d. Draw a chart of Job 2’s salary as a function of n.
e. Create a new variable, ln Job 2 Salary, which takes the natural log of the Job 2

salary at each value of n. Draw a chart of ln Job 2’s salary as a function of n.
f. Use the data set to estimate the rate of return to training. Report your regression

results and calculations in coming up with your answer.
g. In the book, we estimated the rate of return to training as 7.7 percent per year

even though the true IRR is 7 percent per year. Your answer (from the previous
question) is even farther away from 7 percent. What is going on?

References

On the argument that earnings across jobs are driven to equilibrium by the forces
of supply and demand, one need look no further than Adam Smith:
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The whole of the advantages and disadvantages of the different employments of labour and
stock must, in the same neighbourhood, be either perfectly equal or continually tending to
equality. If in the same neighbourhood, there was any employment evidently either more or
less advantageous than the rest, so many people would crowd into it in the one case, and so
many would desert it in the other, that its advantages would soon return to the level of other
employments. This at least would be the case in a society where things were left to follow
their natural course, where there was perfect liberty, and where every man was perfectly free
both to chuse what occupation he thought proper, and to change it as often as he thought
proper. Every man’s interest would prompt him to seek the advantageous, and to shun the
disadvantageous employment.

This is the first paragraph of Book I, Chapter X of Adam Smith, An Inquiry into the
Nature and Causes of the Wealth of Nations, 1776. An excellent online source is
<www.econlib.org/library/Smith/smWN.html>.
Jacob Mincer is the person responsible for the application of the semilog functional
form to the earnings function. In a classic paper, published in 1958, which was a
part of his doctoral dissertation, Mincer showed that salary differences in jobs with
different amounts of training or schooling would be multiplicative instead of
additive. Rosen’s tribute in the 1992 Journal of Economic Perspectives is an
accessible account of Mincer’s contributions to economics.
Mincer, J. (1958). “Investment in Human Capital and Personal Income

Distribution,” The Journal of Political Economy 66(4): 281–302.
Rosen, Sherwin (1992). “Distinguished Fellow: Mincering Labor Economics,” The

Journal of Economic Perspectives, 6(2): 157–170.

Appendix: A Catalog of Functional Forms

Workbook: FuncFormCatalog.xls

This appendix presents a catalog of functional forms that can be used to model
relationships between variables. Each functional form has its own advantages and
disadvantages. Here are things you want to look for:

1. How do you interpret the coefficients? For example, in the linear form, one of
the parameters is an intercept, which you can usually ignore, and the other is a
slope, which tells you very simply how the dependent variable changes as the
independent variable changes. Recall that this is merely a summary of a
particular data set. Only with a model for the data generating process can you
begin to attach causation to an interpretation of the regression results.

2. Are the variables restricted in the value they can take? For some functional
forms it makes no sense to have a negative dependent variable.

3. How flexible is the functional form? This depends in part on the answer to the
previous question but also has to do with other aspects of the shape of the
function. For example, in the linear form, values of X and Y are unrestricted but
the slope of the regression line is constant.

4. Does the functional form imply a constant elasticity or changing elasticity when
the regression is used to characterize how one variable responds when another
changes? This question is only valid when a model of the data generating process
has been employed.
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5. What are typical applications of the functional form in papers written by
economists? This will help you in trying to decide whether a functional form is
appropriate for your problem.

The remainder of this appendix presents a catalog of different functional forms
that have wide applications in the social sciences. For each functional form, we
describe its characteristics in terms of slope and elasticity, any restrictions on the
values that the independent and dependent variables can take, and types of
applications in which it has proved useful.

The Excel workbook FuncFormCatalog.xls demonstrates each one of the
functional forms described below.

The Linear Form
Predicted Y = b0 + b1X

� Constant slope;
� Changing elasticity of Y with respect to X (if b0 is not equal to zero);
� X and Y are unrestricted in the values they can take;
� Flexible to the extent that the slope can take on any value;
� A good starting point.

The Double-Log Form
Predicted ln Y = b0 + b1ln X

Note: ln denotes the natural log, which is preferred by economists over the
logarithm to the base 10.
� Changing slope between Y and X;
� Constant elasticity approximately equal to b1

8;
� Neither X nor Y can be negative;
� Quite flexible – it can describe many shapes;
� Applications for demand curves, production functions, cost functions. For

production functions, this form produces sensible isoquants.
� Note that an equivalent way of writing the same model by taking the antilog is

Predicted Y = exp (b0) Xb1 .

Semilog: Log-Linear or Log-Lin
Predicted ln Y = b0 + b1X

� Y cannot be negative;
� Changing slope;
� Changing elasticity;
� When X is time, this is a constant-growth-rate model;
� This functional form is very frequently used in models for wages; if X is

education, then b1 is the rate of return to education (the percentage change in
wages from one more year of education)

� In its equivalent nonlinear form, we have9

8 The approximation is based on the fact that dlnY/dlnX = b1 and dlnY/dlnX is approximately equal to
%�Y/%�X.

9 When we turn to inferential statistics, it will become apparent that there is an additional correction
factor that must be applied to compute Predicted Y.
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Predicted Y = exp (b0) exp (b1X) .

Semilog: Lin-Log

Predicted Y = b0 + b1ln X

� X cannot be negative;
� Changing slope;
� Changing elasticity;
� The semilog form has applications to consumption functions because, if b1 is

greater than 0, Y (consumption) increases at a decreasing rate as X (income)
increases.

Note that there are two kinds of semilog functional forms, depending on whether
the ln transformation is applied to the X or the Y variable.

The Polynomial Form

Predicted Y = b0 + b1X + b2X2

� One can add terms of higher degree (X3, for example) or omit particular terms;
� Changing slope;
� Changing elasticity;
� Flexibility;
� Applications to wages as a function of experience; with X as experience, negative

b2 means that human capital eventually depreciates as one stays longer in the job.

The Reciprocal (or Inverse) Form

Predicted Y = b0 + b1
1
X

� Changing slope;
� Changing elasticity;
� Sometimes used without an intercept (b0) term.



P1: JZZ
0521843197c07 CB962B/Barretto 0 521 84319 7 November 7, 2005 17:43

7

Multiple Regression

As early as 1897 Mr. G. U. Yule, then my assistant, made an attempt in this direction.
He fitted a line or plane by the method of least squares to a swarm of points, and
this has been extended later to n-variates and is one of the best ways of reaching the
multiple regression equations . . .

Karl Pearson1

7.1. Introduction

This chapter introduces the concept of multiple regression, which in many
ways is similar to bivariate regression. Both methods produce conditional
predictions, though multiple regression employs more than one independent
X variable to predict the value of the Y variable. Just as before, the predicted
value of the dependent variable is expressed in a simple equation, and in the
case of least squares regression the RMSE summarizes the likely size of the
residual and the R2 statistic measures the fraction of total variation, which is
explained by the regression. Once again, the OLS regression coefficients are
those that minimize the SSR.

Multiple regression introduces some new issues, however. Some of the
complications are purely mathematical. Although it is relatively easy to move
back and forth between the algebraic expression and the pictorial (geometric)
representation of the regression line in the bivariate case, most people have
difficulty translating the algebraic formulation for a multiple regression into
its geometric representation as a plane (in trivariate regression) or hyper-
plane (when there are more than two independent variables). Furthermore,
the formulas for the OLS regression coefficients become very unwieldy (we
discuss them in the appendix of this chapter).

To help you deal with the additional complexities of multiple regression,
we will try to keep you focused on the main issues. The central goal is still

1 Pearson (1920), p. 45. Yule was the first to apply multiple regression to social science problems and to
emphasize that multiple regression makes it possible to control for confounding factors.

164
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doing a good job of conditional prediction of values of the Y variable based on
our knowledge of values of the X variables. Just as with bivariate regression,
multiple regression can again be interpreted as a compression of a (more
complicated) graph of averages. The OLS regression coefficients are still
weighted sums of the Y variable. Finally, running a multiple regression on a
computer is no more difficult than running a bivariate regression.

In addition to the more involved mathematics, multiple regression high-
lights two important conceptual issues: confounding and multicollinearity.
Confounding is so important that it was already introduced in Chapter 1. We
suggest that you reread the discussion of separating out the influence of price
and income in the demand for cigarettes in Section 1.2.

This chapter makes extensive use of a single artificial example with data
on the demand for heating oil. Section 7.2 explains how least squares
multiple regression is the solution to the familiar optimization problem
of minimizing the SSR, where the Predicted Y variable is now based on
more than one X variable. Section 7.3 comes back to the artificial exam-
ple to explain the concept of confounding. Section 7.4 treats multicollinear-
ity, which is a technical issue you need to be aware of when running
your own regressions. The appendix shows how all OLS regression coef-
ficients can be obtained from an analytic formula, which we go on to
derive in the trivariate case. The appendix also states the omitted variable
rule, which is a simple mathematical relationship explaining the magnitude
of confounding.

7.2. Introducing Multiple Regression

Workbook: MultiReg.xls

This section begins with a general discussion of the mathematical problem of
fitting a (hyper)plane to a multivariate data set. We introduce some terminol-
ogy and attempt to help you to visualize the regression plane. A hypothetical
data set is then presented concerning the demand for heating oil. The data
set is designed especially to make specific points about multiple regression.
Four different least squares methods are explored to summarize the relation-
ship between the dependent variable and the independent variables in the
data set.

Terminology and Visualization

Multiple regression means that a single dependent variable is regressed on
more than one independent variable. Often, econometricians refer to a mul-
tiple regression equation just as regression or regression analysis. In addition



P1: JZZ
0521843197c07 CB962B/Barretto 0 521 84319 7 November 7, 2005 17:43

166 Multiple Regression

to multiple, you will also see multivariate used as an adjective to describe
regression equation systems with more than one independent variable.

When doing regressions, it is important to keep dependent and indepen-
dent variables distinct. In the bivariate case, we had one dependent variable
(Y), and one independent variable (X). In the multivariate case, there are
more than one independent variables. They are labeled X1, X2, X3, and so on
in this discussion to emphasize that they are all independent variables.

In the bivariate case, we calculated a regression line in two-dimensional
space. The line was represented by

Predicted Y = b0 + b1 · X.

Here, the b0 coefficient is the Y-intercept and the b1 coefficient is the slope,
which tells us how fast Predicted Y on the regression line changes as X
changes. In the trivariate case, we will calculate a regression plane in three-
dimensional space. The equation for the regression plane is

Predicted Y = b0 + b1 · X1 + b2 · X2.

The b0 coefficient is still the Y-intercept, but now there are two slopes,
b1 and b2, each of which tells how Predicted Y changes as the respective X
variable changes with the value of the other variable held constant.

In multiple regression, the definition of the residual does not change. It
remains the difference between the actual value and the predicted value. For
example, for the trivariate case,

Residual = Actual Y − Predicted Y

= Actual Y − (b0 + b1 X1 + b2 X2).

In the trivariate, three-dimensional case, we can visualize the residual as
a vertical distance as we did in the bivariate situation. Now, however, the
residual is the vertical distance between the actual value and the regression
plane, as in Figure 7.2.1.

X1 

X2 

Y 

Actual Y

Residual {

Figure 7.2.1. Trivariate regression plane.
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Students often have considerable difficulty with the concept of a regression
plane. Several conceptual leaps need to be made to appreciate the plane fully:

� It is easy to appreciate that an extra dimension is required when we add an inde-
pendent variable.

� It is harder to see how one graphs a predicted value: First locate the X1 and X2

coordinates to map out the values of the two independent variables being used to
predict Y and then move straight up to the height of the predicted Y value.

� It is harder still to understand that the collection of predicted values will all fit into
a single plane.

� The hardest task is to visualize exactly what the plane will look like given the
regression slopes.

The key to making this last conceptual leap is to realize that the regression
slope of an independent variable tells whether the plane slopes upward or
downward and how steeply it does so in the direction of that independent
variable. For example, in Figure 7.2.1, travel in the plane is in the direction
of increasing X1, moving parallel to the X1 axis. You are moving out of the
page, and the value of X2 is being held constant. Note that you are not moving
upward – that is, the value of Y is not changing. Thus, the slope associated
with X1 (b1) is in this case zero. Now move in the plane in the direction
of increasing X2, traveling parallel to the X2 axis. You are moving left to
right, and the value of X1 is being held constant. Note that the value of Y is
increasing. Thus, in this case, the slope associated with X2 (b2) is positive.

Computer graphics make it easier to visualize data plotted in three dimen-
sions. Provided that you have Java enabled to work with your Web browser,
you will be able to spin a 3D object and see the plane clearly.

From your browser, execute File: Open, navigate to the 3DScatterPlot
folder in this chapter’s Excel files folder, and open the file ScatterPlot.htm.
If you prefer, you can navigate to the folder and simply double click on the
ScatterPlot.htm file. You should see a 200-observation data set displayed in
your browser that looks like the graph on the left in Figure 7.2.2. The X1-,
X2-, and Y-axes are all perpendicular to each other; the Y-axis is the vertical
axis when you open up the file. Use the mouse to spin the data set. As you
spin the data, you can better appreciate that each observation lives in three-
dimensional space and has associated with it X1-, X2-, and Y-coordinates.
Spin the plot until you clearly see the points line up in a plane. If you do not
like where you are, you can always click your browser’s Refresh button to
return to the original position.

You should be able to see that what first looked like a formless cloud of
points becomes a well-defined pattern of points clustered around a plane.
Figure 7.2.2 shows the beginning and (one possible) end of this transforma-
tion. Your final placement need not be exactly like the graph on the right of
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Figure 7.2.2. A three-dimensional swarm of points.
Source: 3DScatterPlot.htm.2

Figure 7.2.2, but you should be able to discern a clear pattern. Put another
way, from the right perspective it is possible to appreciate that, in this spe-
cially constructed example, all the points fit into a fairly thin slab in space.
The trivariate regression takes that slab and compresses it into a plane. The
equation for the plane that best summarizes the data in 3DScatterPlot.htm
is

Predicted Y = −0.001 + 0.005X1 + 0.998X2.

The regression plane in this example is very similar to the one of Fig-
ure 7.2.1 because changes in X1 have almost no effect on the predicted value
of Y, whereas Predicted Y is a positive function of X2. In this example the
residuals are relatively small, and the regression plane does an excellent job
of predicting the value of Y based on the values of X1 and X2; the RMSE is
0.06 and the R2 is .99.

Example: The Demand for Heating Oil

Next we introduce a hypothetical data set designed to illustrate important
issues in multiple regression. Open the MultiReg.xls workbook in order to
follow the presentation below.

Our purely fictional and quite unrealistic data pertain to the consumption
of heating oil during the winter months for 24 towns in northern Canada.
We have information on the average quantity of heating oil consumed per

2 We thank our colleague Bob Foote for giving us this example. Foote used the software packages
Mathematica and LiveGraphics3D to create the Web page. For more on LiveGraphics3D, go to
<www.vis.informatik.uni-stuttgart.de/∼kraus/LiveGraphics3D>.



P1: JZZ
0521843197c07 CB962B/Barretto 0 521 84319 7 November 7, 2005 17:43

Introducing Multiple Regression 169

Table 7.2.1. Hypothetical Heating Oil Data Set

Observation
number

Price of heating oil
(cents/gallon)

Income per
household
(thousands of
dollars/year)

Quantity
Demanded per
household
(hundreds of
gallons/month)

1 50 9 7.1
2 50 9 5.7
3 50 10 10.3
4 50 10 11.8
5 50 11 11.9
6 50 11 13.9
7 60 11 5.7
8 60 11 6.6
9 60 12 11.5

10 60 12 12.6
11 60 13 16.8
12 60 13 14.4
13 70 13 13.2
14 70 13 9.7
15 70 14 16.0
16 70 14 9.3
17 70 15 19.0
18 70 15 21.5
19 80 15 11.3
20 80 15 15.6
21 80 16 15.6
22 80 16 15.8
23 80 17 21.7
24 80 17 20.9

Source: [Multireg.xls]DemandCurve.

household (in hundreds of gallons per month) in each town. We also have
information on the price of heating oil (in cents per gallon) and per household
income (in thousands of dollars per year). The price varies across towns owing
to differing tax rates. This means that the supply curve is shifted upward in
towns with higher taxes. As we did in the cigarette example of Chapter 1, let
us assume that supply is perfectly elastic in every town.

Thus, in two towns in which the price of heating oil is different but per
household income is the same, the difference in quantity consumed mainly
results from movements along a single demand curve. In two towns in which
the price of heating oil is the same but per household income differs, the
difference in quantity consumed mainly results from a shift in the demand
curve. The data are contained in Table 7.2.1.
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b0 (Intercept) 13.246

b1 (Price) 0.000

b2 (Income) 0.000

Sum of 
Squared 
Residuals 514.7

Regression Coefficients

Figure 7.2.3. The univariate prediction
of quantity demanded.
Source: [Multireg.xls]MinSSR.

Univariate, Bivariate, and Multivariate Least Squares Regressions

There are four different ways to use least squares techniques to summarize
the relationship between the dependent variable, Quantity Demanded, and
the independent variables, Price and Income:

1. Use Average Quantity Demanded to Predict Quantity Demanded for every
observation.

2. Use a regression of Quantity Demanded on Price to predict Quantity Demanded.
3. Use a regression of Quantity Demanded on Income to predict Quantity

Demanded.
4. Use a regression of Quantity Demanded on both Price and Income to predict

Quantity Demanded.

To compare these four procedures, go to the MinSSR sheet of Multireg.xls.
Cells A8 through D33 contain a table with the data. Regression coefficients
can be chosen in cells B3 through B5. Using these regression coefficients, we
can compute Predicted Quantity Demanded as follows:

Predicted Quantity Demanded = b0 + b1Price + b2 Income.

Armed with Predicted Quantity Demanded (recorded in column D), we
can obtain the Residuals and the Squared Residuals (see columns E and F).
We report the resulting SSR in cell B6. Let us consider the four methods of
predicting Quantity Demanded in turn.

1. Use Average Quantity Demanded to Predict Quantity Demanded
for Every Observation

Click on the Average Y button. This will generate the output in Figure 7.2.3.
The button sets b0 equal to 13.246 (the average value of Y in the data set)

and the coefficients b1 and b2 equal to zero. The algebraic equation for the
Average Quantity Demanded method of predicting Quantity Demanded is
thus very simple:

Predicted Quantity Demanded = 13.246.

As demonstrated in Section 5.4, the average value of the dependent vari-
able is the least squares estimate of the center of the data set. In other words,
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of all estimates for Quantity Demanded that are just a single number, the
Average Quantity Demanded is the one that has the smallest SSR. Holding
the values of b1 and b2 constant at 0, type in any value for b0 other than the
Sample Average and you will increase the SSR.

2. Regress Quantity Demanded on Price to Predict Quantity Demanded

Click on the
Bivariate  Regression of 

QD on Price button. This fits a least squares regression line
corresponding to the following equation:

Predicted Quantity Demanded = −2.105 + 0.236 Price.

As you can see, the SSR falls to 347.4. This bivariate regression line gener-
ates a better fit (i.e., does a better job of predicting Quantity Demanded than
the univariate average method). There is no surprise here: As economists,
we believe that price has something to do with quantity demanded, and so
knowing the price helps us to predict how much a consumer will buy.3 The
DemandCurve sheet contains the output from Excel’s LINEST function for
this regression. From that source, we learn that the R2 is about 0.3 and the
RMSE is about 4.

3. Regress Quantity Demanded on Income to Predict Quantity Demanded

Click on the
Bivariate  Regression of 

QD on Income button. This fits a least squares regression line
corresponding to the following equation:

Predicted Quantity Demanded = −6.531 + 1.521 Income.

As you can see, the SSR falls to 199.9, which is an even better fit than that
produced by the regression of Quantity Demanded on Price. The Demand-
Curve sheet tells us that in this case R2 is about 0.6 and the RMSE is about 3.
In terms of predictive power, this regression does a better job than the other
bivariate regression. There is no economic reason why basing our prediction
of Quantity Demanded on Income should do better than basing the predic-
tion on Price, and fortunately there is no reason why we need choose between
the two bivariate regressions.

4. Regress Quantity Demanded on Both Price and Income to Predict
Quantity Demanded

Our economic intuition tells us that the Quantity Demanded of heating oil is
probably related to both the Price and to per household Income. A trivariate
least squares regression summarizes this more complicated relationship by

3 You may be puzzled by the increase in Predicted Quantity Demanded as Price rises. We rigged the data
set so that this would happen and will explain what is going on in Section 7.3.
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Figure 7.2.4. Running Solver.
Source: [Multireg.xls]MinSSR.

fitting a plane to the data. We want to find coefficients b0, b1, and now b2 in
this equation for a plane:

Predicted Quantity Demanded = b0 + b1Price + b2 Income,

where b0, b1, and b2 are chosen to minimize the SSR. Up to now, we have
restricted the predicted values of Quantity Demanded to fall on a single line
by zeroing out one or two of the preceding coefficients.

Multiple least squares regression does exactly the same thing as bivari-
ate least squares regression: find the combination of parameter values that
minimizes the SSR. Figure 7.2.4 shows the setup of the optimization prob-
lem as presented in the MinSSR sheet: This sheet starts with the coefficient
values for the intercept and two slopes, b0, b1, and b2. These are used to com-
pute Predicted Y for each observation. In this example, each parameter has
been set equal to 1. Thus, for the first observation (listed at the bottom of
Figure 7.2.4),

Predicted Quantity Demanded1 = b0 + b1 · Price1 + b2 · Income1

= 1 + 1 · 50 + 1 · 9

= 60.

Note that the “1” subscripts on Predicted Quantity Demanded, Price, and
Income tell us we are dealing with the first observation. Because the observed
value of Quantity Demanded is 7.1, the first residual is –52.9 and the first
squared residual is about 2,798. The objective function computed in the Target
Cell of Solver is the sum of the squared residuals for all 24 observations. Solver
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Minimizing SSR in a Multiple Regression
Slope2 (b2) Slope1 (b1) Intercept (b0)

b0 (Intercep) −2.105 Coefficients 4.075 −0.579 −2.105

b1 (Price) −0.579

b2 (Income) 4.075 R2
0.841 1.972 RMSE

Sum of 
Squared 
Residuals 81.7 21 /A df

Reg SS 433.014 81.666 #N/A SSR

Results of Trivariate LinEst
Regression Coefficients

Bivariate Regression of 
Q  on Price D 

Bivariate  Regression of 
Q  on Income D 

Average Y

Figure 7.2.5. Solver’s solution compared with LINEST.
Source: [Multireg.xls]MinSSR.

will choose values of b0, b1, and b2 to minimize this sum. Run Solver and you
will obtain results given in Figure 7.2.5

We generally use LINEST to fit a multiple regression in Excel.4 The syntax
is very similar to the bivariate case. To see the regression results for the
heating oil example, go to the array in cells G3 through I7 in the MinSSR
sheet in Multireg.xls. This array contains the function

{= LINEST(C10:C33,A10:B33,1,1)}.
The braces indicate that this is an array function with results contained

in a rectangular bank of cells (an array), not a single cell. The Y data are
located in cells C10 through C33; the X values are contained in two columns,
A and B, in rows 10 through 33. The last two arguments (the 1’s) indicate
that an intercept is to be included in the model and that additional statistics
besides the slope and intercept coefficients should be presented in the result
array.

The notations on the cells bordering the array label the statistics. The slope
coefficients are in reverse order across the top beneath the labels. The R2

and regression sum of squares (Reg SS) are to the right of their respective
labels, whereas the RMSE, degrees of freedom, and SSR are two cells to
the left of their respective labels. The resulting regression equation could be
written:

Predicted Quantity Demanded = −2.1 − 0.58 · Price + 4.1 · Income

RMSE = 1.97

R2 = 0.841.

Both the RMSE and R2 statistics tell us that the multiple regression does
a better job predicting the dependent variable than the other methods. This

4 You can also use the Data Analysis:Regression tool. The only difference is that you now select two or
more columns of data for the X Range. See the DataAnalysis sheet in Multireg.xls for an example.
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is not surprising because all four methods minimize the SSR and the trivari-
ate regression makes use of more information in doing so than the other
methods.

Summary

This section has emphasized the similarities between multivariate least
squares regression and bivariate least squares regression. For both types
of regression, the OLS regression coefficients are those that minimize the
SSR; the predicted value of the dependent variable is expressed in a sim-
ple equation; the RMSE summarizes the likely size of the residual; and the
R2 statistic measures the fraction of total variation explained by the regres-
sion. Because it makes use of more information, the trivariate regression
does a better job than the bivariate regressions in predicting the dependent
variable. It is more difficult to visualize multiple regression than bivariate
regression. To gain more understanding of exactly what multiple regression
accomplishes, we take a closer look at how multiple regression makes condi-
tional predictions of the value of the dependent variable.

7.3. Improving Description via Multiple Regression

Workbook: MultiReg.xls

In this section we tackle the key conceptual difference between bivariate
and multiple regression, using our artificial data set to exemplify the points
we wish to make. We stress that the truly new feature of multiple regres-
sion is that the regression coefficients show how the predicted value of the
dependent variable changes as a single independent variable changes with
the other independent variables included in the regression held constant.
Crosstabs are another way to make conditional predictions; we explore the
close relationship between crosstabs and multiple regression.

A simple example conveys three basic lessons.

Lesson 1: You can improve your prediction of Y if you use more information. We
have already seen that using one piece of information (a single X variable)
improves our prediction. In the same way, using two pieces of information
instead of one yields an even better prediction.

Lesson 2: Confounding may mislead us. A bivariate analysis may lead us to think
that there is a certain relationship between two variables with the other
variables held constant. It may be, however, that a multiple regression
analysis, taking into account movements in a third variable, gives us a
different picture of the relationship between the first two variables.
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Price 
(cents 
/gal.)

Income 
($1000s/
person)

QD (100s 
gals.

/Month)

Mean 65.00 13.00 13.25

SD 11.42 2.43 4.73

Summary Statistics

Figure 7.3.1. Means and SDs for each variable in hypothetical data set.
Source: [Multireg.xls]DemandCurve.

Lesson 3: We can correct (or “control for”) confounding in two ways:
� Comparing smaller, more homogenous groups.
� Statistically controlling for confounding using multiple regression to

hold other variables constant.

In sum, using multiple regression gives a more precise prediction of the
independent variable because it uses more information. In addition, multiple
regression produces a more refined description of the relationship between a
particular independent variable and the dependent variable because it con-
trols for the confounding influence of other included independent variables.

We now return to our heating oil example, using the Excel workbook
MultiReg.xls.

Predicting Quantity Demanded Using Univariate and
Bivariate Approaches

We want to summarize and describe this data set. The univariate and bivariate
approaches to analyzing data are reviewed as preparation for explaining the
multivariate method of analysis. First, we report the means and standard
deviations for each variable in Figure 7.3.1.

Predicting Demand in the Univariate Case

In the absence of any information on price and quantity, our best guess of
the demand for hearing oil is simply the average quantity demanded. The SD
tells us how far this guess is likely to be off. From Figure 7.3.1, if we had to
predict the quantity demanded of heating oil, our best guess would be about
1,325 gallons per month give or take roughly 470 gallons per month.

Bivariate Cases

Given information on either price or income, we can form a better guess of
the quantity demanded of heating oil. This can be done via a PivotTable and
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Q=f(Income): An Engel Curve?

y  = 1.52x  − 6.53
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Figure 7.3.2. Bivariate regression of quantity demanded on income.
Source: [Multireg.xls]DemandCurve.

the graph of averages or, in more compressed form, a bivariate regression.
For now, we concentrate on bivariate regression. Given the value of some
independent variable, the bivariate regression line tells us the best guess of
the quantity demanded of heating oil. The RMSE tells us how far off this
guess is likely to be. The DemandCurve sheet uses LINEST and the trend
line feature to run bivariate regressions of Quantity Demanded (QD) on
Income and Quantity Demanded on Price.

Income

If we know per household income, we can predict the quantity demanded
of heating oil. We get the regression line and use it to predict the Quantity
Demanded of heating oil given Income.

The regression result is

Predicted Quantity Demanded = −6.53 + 1.52 Income

RMSE = 3.01.

If per capita income is $15,000 per year, the predicted quantity demanded of
heating oil is about 16.29 hundreds of gallons per month give or take about
300 gallons per month. This prediction is better than in the univariate case
because the spread around the prediction is a little lower.

Price

If we know the price of heating oil, we can predict the Quantity Demanded of
heating oil given its Price. The results are shown in Figure 7.3.3. The regression
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Q=f(P): A Demand Curve?

y = 0.24x − 2.11
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Figure 7.3.3. Bivariate regression of quantity demanded on income.
Source: [Multireg.xls]DemandCurve.

result is

Predicted Quantity Demanded = −2.11 + 0.24 Price

RMSE = 3.97.

The regression of quantity demanded on income is consistent with eco-
nomic theory. If heating oil is a normal good, the people should buy more of
it. It makes sense that heating oil would be a normal good – richer people
generally live in larger dwellings. The regression of quantity demanded on
price, however, is inconsistent with economic theory because, if the price of
heating oil rises and the demand curve slopes downward, then people ought
to buy less heating oil, not more.

Using the information from an independent variable in a bivariate regres-
sion allows us to improve our prediction of the quantity demanded of heating
oil. With either Price or Income as an independent variable, we obtain a lower
spread around our prediction (RMSE) than when we use just the average of
the quantity demanded of heating oil and its SD.

Unfortunately, the bivariate regressions may be misleading because of con-
founding. This is true of both of the bivariate regressions. In the case of Price
as an independent variable, the presence of confounding is obvious because
we are getting an upward-sloping relationship between Price and the Quan-
tity Demanded of heating oil. Our understanding of the relationship between
Income and the Quantity Demanded of heating oil is also confounded. In this
case we will see that the confounding is merely a matter of magnitude, not sign.

Ways to Deal with Confounding

The relationship between price and quantity demanded does not fit our eco-
nomic theory because the relationship is confounded by income. Somehow,
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Figure 7.3.4. PivotTable showing average quantity demanded
at different income levels.
Source: [Multireg.xls]PivotTable.

the Price coefficient is being calculated as a mixture of Price and Income.
There are two ways to understand and deal with this confounding: using
either smaller, more homogenous groups or multiple regression.

Both strategies use essentially the same method: they hold one variable
(e.g., income) constant while analyzing the relationship between the other
two variables (price and the quantity demanded of heating oil).

Controlling for Confounding: Smaller, More Homogenous Groups

One way of looking at the relationship between price and quantity demanded,
with income held constant, is to break up the data into smaller, more homo-
geneous groups. Let us look at the data with PivotTables to see how this
strategy works.

We begin with the graph of averages of quantity demanded for different
levels of income in Figure 7.3.4. The 24 original data points have been com-
pressed into 8 points. This figure corresponds to the bivariate regression of
Quantity Demanded on Income, which summarizes the relationship between
the two variables with two parameters, a slope and intercept in the equation
Predicted Quantity Demanded = −6.53 + 1.52 Income. A second PivotTable
(in Figure 7.3.5) shows average Quantity Demanded at each of the four levels
of Price in the data set.

The graph in Figure 7.3.5 portrays an upward-sloping relationship between
price and quantity demanded. The bivariate regression of the previous sec-
tion, Predicted Quantity Demanded = −2.11 + 0.24 Price, is a perfectly
straight-line further compression of this graph of averages.
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Figure 7.3.5. PivotTable showing average quantity demanded
at different price levels.
Source: [Multireg.xls]PivotTable.

Each of the two bivariate approaches to the data summarizes too much,
thereby hiding important patterns. The strategy of working with smaller,
more homogeneous groups splits data into groups that have the same level
of one variable, and thus the manner in which quantity demanded varies as
the second variable changes can be isolated. To see how this approach works,
we need to create an expanded PivotTable, as in Figure 7.3.6.

Notice how the bottom row and right-most column, Grand Totals, in
the expanded PivotTable are equivalent to the respective bivariate Pivot-
Tables. The crosstab reveals important phenomena obscured by the bivariate
summaries.

To implement the homogeneous groups strategy, read either vertically or
horizontally within the table. Let us start by making vertical comparisons. At
an income value of 11, a price increase from 50 to 60 corresponds to a decrease
in average quantity demanded from 12.9 to 6.15. We can also investigate
the impact of price increases, holding income constant for two other sets of
towns. In each of these three cases, holding income constant, price increases
of 10 cents per gallon correspond to roughly 400- to 700-gallon decreases in

Figure 7.3.6. Crosstab of average quantity demanded given income and price.
Source: [Multireg.xls]PivotTable.
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Figure 7.3.7. Quantity demanded versus price and income as summarized by
crosstab: a three-dimensional graph of averages.
Source: [Multireg.xls]PivotTable.

average quantity demanded. Similarly, to analyze how quantity demanded
changes as income rises, with price held constant read horizontally across
the crosstab. For each of the four price levels (50, 60, 70, and 80 cents per
gallon), income increases of $2,000 correspond to increases of roughly 650 to
900 gallons of average quantity demanded.

A graphic version of the crosstab conveys the same relationships. Fig-
ure 7.3.7 is a translation of the information in the crosstab of Figure 7.3.6; it
is the best Excel can do at drawing a three-dimensional graph of averages.
The height of each column tells the average Quantity Demanded for observa-
tions with the given Price/Income combination. If there is only a footprint but
no column, there are no observations for the particular Price/Income com-
bination (and no entry in the PivotTable). Just like the crosstab, the graph
can be read in two directions. The negative relationship between Quantity
Demanded and Price, with Income held constant, can be observed in the
three pairs of darker columns marching across the page. The positive rela-
tionship between Quantity Demanded and Income, with Price held constant,
is visible in the four triplets of upward-progressing columns marching into
the page.
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Average of Quantity 
Demanded Income
Price 9 10 11 12 13 14 15 16 17 Grand Total

50 6.4 11.1 12.9 10.1
60 6.15 12.1 15.6 11.3
70 11.5 12.7 20.3 14.8
80 13.5 15.7 21.3 16.8

Grand Total 6.4 11.1 9.5 12.1 13.5 12.7 16.9 15.7 21.3 13.2  

Figure 7.3.8. Crosstab of average quantity demanded given income and price.
Source: [Multireg.xls]PivotTable.

Pause for a moment to think about the difference between the bivariate
and trivariate PivotTable/graph of averages approaches. Let us look at what
each says about the relationship between Quantity Demanded and Price.
The bivariate graph of averages shows Quantity Demanded rising as Price
rises with a slope of roughly 0.24 hundred gallons per month per cent per
gallon. The trivariate crosstab shows, with Income held constant, Quantity
Demanded falling as Price rises with a slope of around –0.55 hundred gallons
per month per cent per gallon. That is a big difference! What is going on?
Take a look at the crosstab again in Figure 7.3.8.

We have circled the Price = 50 and the Price = 80 observations in the
interior and margins of the table to emphasize that, in the bivariate analysis,
when Quantity Demanded is compared at two different prices, we are not
holding Income constant. In fact, Income is much higher for the high Price
observations. The bivariate approach ignores this variation in Income when
making the comparison. All that the bivariate graph of averages shows us is
that the average Quantity Demanded was higher when Price was higher. It
hides the fact that Income has changed.

The sheet DemandCurve in the MultiReg.xls workbook makes this same
point in a slightly different way. Scroll over to column T and use the color
coding to pick out points with the same level of income. You can discern three
separate sets of points and therefore three demand curves. We compute slopes
for the three curves by running three regressions on four data points each (see
cells W22, W28, and W34).5 The units on the slopes are hundreds of gallons
of heating oil per month per cent per gallon. The analogous procedure, in
which price is held constant, can be found starting in column AC.

Holding income constant via smaller, more homogeneous groups reveals
that the relationship between price and quantity demanded, with income
held constant, is negative instead of positive. Conditioned on price alone,
the average quantity demanded does indeed rise as price rises, but that is

5 We use the Excel function SLOPE (Y values, X values) to compute the regression slope.
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because income is also changing. Once we remove the effect of income, the
expected downward-sloping relationship emerges. The homogenous-group
approach also more subtly corrects the bivariate analysis of the quantity
demanded–income relationship. The bivariate regression slope is about 1.5,
whereas the slopes of the four separate regressions for constant price levels
range from 3.25 to 4.725.

Controlling for Confounding: Multiple Regression

Multiple regression is a statistical technique that follows the more homo-
geneous-group approach by applying a second compression to the multi-
variate graph of averages. As already noted, when we run the trivariate least
squares regression of Quantity Demanded on Price and Income, the resulting
regression equation is

Predicted Quantity Demanded = −2.1 − 0.58 · Price + 4.1 · Income

RMSE = 1.97

R2 = 0.841.

The multiple regression results imply that
� If income is held constant, a 1-cent-per-gallon increase in the price of heating oil

is associated with a decrease in quantity demanded of roughly 58 gallons.
� If price is held constant, a $1,000 increase in per capita income is associated with

an increase in quantity demanded of roughly 410 gallons.

In addition, notice that, by using two independent variables instead of one,
we have improved the accuracy of our prediction. The likely size of the error
of our predicted quantity demanded is the RMSE, which has dropped from
4.0 and 3.0 in the bivariate regressions to 2.0 in the multiple regression.

Multiple regression is similar, but not identical, to the homogeneous-
groups approach. The multiple regression coefficients are close to the aver-
ages of the slopes in the smaller, more homogeneous groups. For example,
the slope for price is –0.58, whereas the slopes within constant income groups
vary between –0.415 and –0.68 (see column W in the DemandCurve sheet).
The slope for income is 4.08, whereas the slopes within constant price groups
vary between 3.25 and 4.725 (see column AF in the DemandCurve sheet).
As will be seen in more detail in the next section, the multiple regression
makes use of all the data points, but in our analysis of the smaller, more
homogenous groups that held income constant we left out some of the data.

Just as was the case with bivariate regression, multiple regression can
be considered a second compression of the data. The first compression
groups the data in the crosstab of average quantity demanded by income and
price; visually this resulted in a series of vertical pillars in the 3D graph of
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Figure 7.3.7. In the second compression, the regression further smooths the
predicted values of the Y variable by putting them into a single plane.

Confounding

It is very important to be clear on one point: Multiple regression does not nec-
essarily solve the problem of confounding. Just because we have controlled
for the influence of income in describing the relationship between quantity
demanded and price does not mean that all confounding has been removed.
Why not? The reason is we have not held everything else constant. For exam-
ple, our data do not include average winter temperatures, which presumably
have a big influence on the quantity demanded of heating oil. It may well
be the case that lower temperatures were accompanied by higher prices. Our
regression, which does not include temperatures, would then tend to attribute
the influence of temperature variation to variations in price.

The lesson is that multiple regression coefficients should always be inter-
preted as the effect of X on Y, with the other X’s included in the regression
held constant but with the left-out X’s not necessarily held constant.

To drive home the point about confounding, we have drawn on your knowl-
edge of basic economic theory. You know that demand curves have a down-
ward slope, and so something must be wrong with the bivariate analysis. The
multivariate analysis leads to a more theoretically satisfying summary of the
data. However, we must caution you not to conclude that the multivariate
analysis is automatically better in every case for three reasons. First, a bivari-
ate analysis might answer the question you are asking. If all you know is the
price of heating oil, the bivariate regression line is what you require to predict
the quantity demanded. Second, the multivariate analysis may be confounded
by a left-out variable, just as was true for the bivariate relationship. Third, the
functional form in the multivariate analysis may be inappropriate (this will
be an ongoing theme, for we continue our exploration of different functional
forms in Chapter 8).

There is a great temptation to believe that adding more variables makes a
regression better. Very often, however, what is needed instead is more careful
consideration of the data generating process. Economic theory should be
one’s guide in determining what variables belong in a regression and whether
the tools being used are appropriate.

Summary

In introducing multiple regression, we chose to stress the notion of con-
founding. We did so because researchers usually turn to multiple regression
to avoid confounding; moreover, the concept of confounding highlights the
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holding-other-things-constant way in which multiple regression coefficients
must be interpreted.

Multiple regression allows us to control for the influence of confound-
ing variables (i.e., variables that may mislead us about the true relationship
between the dependent variable and the independent variable in question).
We interpret the slope coefficient as the change in the dependent variable
associated with a one-unit change in the independent variable in question
with the other included independent variables held constant.

To remove the effects of confounding variables, you need not run separate
regressions on smaller, more homogenous groups. Instead, simply include
the variable as part of a multiple regression to control for confounding
statistically.

To understand the coefficients, remind yourself that multiple regression is
an extension of the way the bivariate regression line compresses the graph
of averages into a line. In a similar fashion, a crosstab is compressed into a
single equation that represents how the variables in the data set are related.
In the trivariate case, this equation can be visualized as a plane; with more
than two independent variables, it becomes much harder for most people to
visualize the relationship between the variables.

Remember that your multiple regression will only control for the effects of
included variables. That is different from the economic theorist’s usual ceteris
paribus, or everything-else-held-constant, assumption.

The sheet Conversation in the MutiReg.xls workbook tries to tackle the
confusing results generated in this section. There are two important issues:
the relationship between the bivariate and multiple regression coefficients
and the way to think about how multiple regression handles confounding.

7.4. Multicollinearity

Workbook: Multicollinearity.xls

This section deals with an important practical issue in multiple regression
analysis: multicollinearity. We will tackle this subject by examining made-
up data from the heating oil example. Multicollinearity comes in two forms:
perfect, in which there is an exact mathematical relationship (e.g., perfect
correlation) between the independent variables, and near, in which there is
almost an exact mathematical relationship between the independent vari-
ables. We will mainly discuss the case of perfect multicollinearity in as much
as its consequences are easier to understand than those of the more common
situation of near multicollinearity and because you need to be warned about
perfect multicollinearity when you start to run regressions.
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Change b1 and then use Solver to find a least squares solution

b0 (Intercept)

b1 (Price) 1

b2 (Income) −4.273 SSR 27.109

Price of 
Heating Oil

Income 
Per 

Capita

Quantity
Demanded of 
Heating Oil

Predicted 
Y Residual

Squared 
Residual

50 10 10.3 10.68
10.68

−0.38 0.14
50 10 11.8 1.12 1.25
60 12 11.5 12.13 −0.63 0.40
60 12 12.6 12.13

70 14 16.0 13.59 2.41 5.81

70 14 9.3 13.59 −4.29 18.40
80 16 15.6 15.04 0.56 0.31
80 16 15.8 15.04 0.76 0.57

3.405

0.47 0.22

Figure 7.4.1. Multiple regression with perfect multicollinearity.
Source: [Multicollinearity.xls]Example1.

A Heating Oil Example

An altered version of the heating oil example should give you valuable intu-
ition about multicollinearity. Go to the Example1 sheet in Multicollinear-
ity.xls. You will find a small data set accompanied by two bivariate analyses.
A careful comparison of the two bivariate analyses ought to tip you off that
something strange is going on. Many of the summary statistics are identical:
the estimates of the intercept coefficient are both 3.405; the SSR and Reg SS
and therefore the R2 are all the same. Furthermore, the value of the slope
coefficient in the Quantity Demanded on Income regression is exactly five
times that of the slope coefficient in the Quantity Demanded on Price regres-
sion. Looking back at the data table, note that in every observation the value
of Price is always exactly five times that of Income.

Scroll right to reach a crosstab of the data set and a scatter diagram of Price
and Income in the data set. Note from both the table and the scatter plot that
Price and Income always move in lockstep. It is impossible to execute the
smaller, more homogeneous groups strategy because we can never hold one
variable constant and watch what happens as the other variable changes. At
every level of Price, there is just one value of Income and vice versa.

Because multiple regression is a smoothed version of the graph of aver-
ages (and thus the crosstab) and the crosstab has essentially collapsed, we
have good reason to suspect that regression will run into problems. Scroll
right until the material in Figure 7.4.1 appears on your screen. This will
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b0 (Intercept) 3.405155

b1 (Price) 2

b2 (Income) −9.27251Figure 7.4.2. Solver’s new solution.
Source: [Multicollinearity.xls]Example1.

show you exactly how multiple regression analysis fails in the face of perfect
multicollinearity.

In Figure 7.4.1, the top left corner shows that we have used Solver to find
a set of coefficients that minimize the SSR for this data set. In general, the
consequence of perfect multicollinearity is that there are an infinite number
of possible solutions to the problem of finding the coefficients that produce
the minimum SSR. In this case, all the solutions share the same SSR of about
27.109 and the same intercept coefficient (roughly 3.405). There are, however,
an infinite number of combinations of b1 and b2 that produce these outcomes.

To see that this is indeed the case, change the value of b1 from 1 to 2 and
then run Solver. We are trying to minimize the SSR (located in cell AB5) by
changing the values of b0 (the intercept, located in cell X3) and b2 (the slope
on Income in cell X5). Solver should quickly find the solution depicted in
Figure 7.4.2.

Notice that b0 has not changed and that b2 has decreased by 5 in value.
Change b1 to 0 and run Solver again. Now you will have exactly repro-
duced the bivariate regression of Quantity Demanded on Income: Quantity
Demanded no longer depends on Price and the value of b1, and the Income
slope is the same as the corresponding slope in the bivariate regression.

To gain further insight into multicollinearity, turn to the Table sheet in
Multicollinearity.xls. Figure 7.4.3 shows a 3D graph of the SSR.

−2

0

2 4 6

11

−14 0

500,000

1,000,000

1,500,000

2,000,000

2,500,000

b1 Price 

b2 

Income

Figure 7.4.3. Sums of squared residuals for different values of b1 and b2 in the
Example1 case of perfect multicollinearity.
Source: [Multicollinearity.xls]Table.
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11 6 −4 −9 −14 −19 −24 −29
−2 27 34,827 139,227

1
313,227 556,827 870,027 1,252,827 1,705,227 2,227,227

−1 34,827 27 34,827 139,227 313,227 556,827 870,027 1,252,827 1,705,227
0 139,227 34,827 27 34,827 139,227 313,227 556,827 870,027 1,252,827
1 313,227 139,227 34,827 27 34,827 139,227 313,227 556,827 870,027
2 556,827 313,227 139,227 34,827 27 34,827 139,227 313,227 556,827
3 870,027 556,827 313,227 139,227 34,827 27 34,827 139,227 313,227
4 1,252,827 870,027 556,827 313,227 139,227 34,827 27 34,827 139,227
5 1,705,227 1,252,827 870,027 556,827 313,227 139,227 34,827 27 34,827
6 2,227,227 1,705,227 1,252,827 870,027 556,827 313,227 139,227 34,827 27

Figure 7.4.4. Sums of squared residuals for different values of b1 and b2 in the
Example1 case of perfect multicollinearity.
Source: [Multicollinearity.xls]Table.

Figure 7.4.3 depicts the values of the SSR for different combinations of b1

and b2. The key feature of this figure is the crease running down the middle of
the surface. Everywhere along this crease, the value of the SSR is the same,
– 27.11, which is the lowest achievable value. The table that produced the
graph is in Figure 7.4.4.

The diagonal of Figure 7.4.4 shows several pairs of (b1, b2) combinations
that reach the minimum attainable value for the SSR. These combinations
clearly form a line. In the case of perfect multicollinearity, there is no unique
solution to the optimization problem of minimizing the sum of squared
residuals. For this specific case, any combination of b1 and b2 on the line
b1 = 0.7275 − 5 · b2 will minimize the SSR for this data set.

Note importantly that no matter which least squares solution you find, the
Predicted Y values will be the same. This is a general feature of multicollinear-
ity in regression: If all you care about is predicting Y, then any one of the
solutions will work and multicollinearity is not really a problem. If, on the
other hand, you are interested in the regression coefficients, multicollinearity
poses a serious problem.

This particular case of multicollinearity arises because, for every observa-
tion, Price and Income are related by an exact formula:

Income = 0.2 · Price.

More generally, whenever there is an exact linear relationship between two
or more independent variables, perfect multicollinearity is present and there
is no unique set of OLS regression coefficients.

When confronted with multicollinearity, Excel’s multiple regression tools,
the LINEST array function and the Data Analysis: Regression tool, will
behave differently as determined by the version being used. In Excel 2003,
both regression tools will “zero out” one of the variables – that is, set the
value of its slope coefficient to zero and proceed to estimate the regression of
the remaining variables. The careful student will realize that multicollinearity
is present because of the zero slope. In addition, the estimate of the Standard
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Error (to be discussed in Part 2 of this book) is also zero, which suggests
that something is amiss. In previous versions of Excel, the regression tools
sometimes failed completely when confronted with a perfectly multicollinear
set of X variables and in the process reported an array of #VALUE!’s instead
of numbers (see copies of output in the Example1 sheet).6

A second example shows that multicollinearity can arise from more
complicated linear relationships between explanatory variables.7 Go to the
Example2 sheet. In this case, Price and Income are related by a slightly more
involved formula:

Income = 0.2 · Price − 1.

As in the first example, both bivariate regressions succeed in obtaining
the minimum possible SSR. Unlike the first example, it is not the case that
every solution to the least squares problem serves up the same value for the
intercept coefficient. Scroll right through the sheet to column W, where you
will find the material in Figure 7.4.5.

Two very different solutions to the problem of minimizing the sum of
squared residuals are displayed. Solver has found that, when b1 is set to 4, an
intercept of –26.5 and a slope on income of –18.7 minimize the SSR. In the
2003 version of Excel, LINEST has found an entirely different set of param-
eters that attain the same minimum value for the SSR. The LINEST function
does not warn the user of the existence of other solutions (nor for that matter
does the DataAnalysis:Regression tool which is based on LINEST). How-
ever, LINEST has zeroed out b2; the 0 value for the Standard Error of b2

is also a tip-off that Income has been dropped from the regression owing to
multicollinearity. The Example2 sheet shows how previous versions of Excel
dealt with this form of multicollinearity.

Of course, these are just two of the infinite number of possible solutions
to this optimization problem. Change the value of b1 in cell X4 to 3 (or any
other number that suits your fancy) and use Solver, and another solution
will result. Note that the Predicted Y’s will not change. We should note that
perfect multicollinearity arises when there is any exact linear relationship
between explanatory variables.

For example, labor economists often argue that workers’ wages depend
on age, years of education, and experience in the labor force. Experience is
often estimated by constructing a variable as follows:

Experience = Age − Education − 6.

6 Unfortunately, Excel 2003 is unable to handle multicollinearity with large data sets. In experiments, we
discovered that when there are 2,120 observations or more, LINEST no longer drops a variable from
the regression in cases of multicollinearity.

7 In this example, multicollinearity is a problem only if an intercept is included.
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Change b1 and then use Solver to find a least squares solution

b0 (Intercept) −26.507

b1 (Price) 4.000

b2 (Income) −18.678 SSR 27.119

Price of 
Heating Oil

Income Per 
Capita

Quantity
Demanded of 
Heating Oil Predicted Y Residual

Squared 
Residual

50 9
50 9

7.1 5.40 1.70 2.91
5.7 5.40 0.30 0.09

60 11 5.7 8.04 −2.34 5.48

60 11 6.6 8.04 −1.44 2.07

70 13 13.2 10.68 2.52 6.33
70 13 9.7 10.68 −0.98 0.97
80 15 11.3 13.33 −2.03 4.12
80 15 15.6 13.33 2.27 5.15

LINEST

Intercept
Coefficients 0.000 0.265 −7.830
Estimated SE 0.000 0.067 4.434
R2 0.721 2.126 RMSE

15.47878754 6 df
Total SS 69.960 27.119 SSR

b2 b1

Figure 7.4.5. Two OLS solutions.
Source: [Multicollinearity.xls]Example2.

For this equation it is assumed that education begins at age 6 and that the
worker has been in the labor force ever since ending his or her education
(e.g., a 25-year-old with a high school education is assumed to have 7 years of
labor force experience). Unfortunately, if an intercept term is included in the
regression, the exact relationship between the three variables induces perfect
multicollinearity. The practical, though imperfect, solution is to include only
two of the three variables in the regression.

Near-Perfect Multicollinearity

The last example of this section involves a case of near-perfect multicollinear-
ity, which is a situation much more common in practical work than the case of
perfect multicollinearity. Open the NearMulti sheet in Multicollinearity.xls.
The data table and OLS solution are displayed in Figure 7.4.6.

We have highlighted the Income value for the last observation, which is the
only difference between this data set and that of the first example (compare
with Figure 7.4.1). The very slight difference in Income for one observation
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b0 (Intercept) 4.3925

b1 (Price) −2.1856

b2 (Income) 11.5686

Price Income Y Fitted Y Residuals
Squared 

Residuals
50 10 10.3 10.8 −0.5 0.2
50 10 11.8 10.8 1.0 1.0
60 12 11.5 12.1 −0.6 0.3
60 12 12.6 12.1 0.5 0.3
70 14 16.0 13.4 2.6 7.0
70 14 9.3 13.4 −4.1 16.5
80 16 15.6 14.6 1.0 0.9
80 16.1 15.8 15.8 0.0 0.0

SSR 26.232

Figure 7.4.6. Near-perfect multicollinearity.
Source: [Multicollinearity.xls]NearMulti.

guarantees that there is a unique solution to the problem of minimizing
the SSR – that is, a unique set of least squares regression coefficients. The
important things to note in this example are the graph of the sums of squared
residuals for different (b1, b2) combinations and the corresponding table in
Figure 7.4.7.

b2 (Income)

b1 (Price) 22 17 12 7 −3 −8
−4.2 27 34,747 139,228 313,469 557,470 871,232 1,254,755
−3.2 34,987 26 34,827 139,388 313,709 557,791 871,634
−2.2 139,546 34,906 26 34,907 139,549 558,113
−1.2 313,705 139,385 34,826 26 34,988 139,710
−0.2 557,464 313,464 139,225 27 35,069 139,872

0.8 557,144 313,224 139,065 28 35,151
1.8 870,423 556,823 312,984 138,906 30

22171272−3−8

−4

0 0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

b1 Price

b2 Income

 
870,824

1,253,783
34,667

34,746

313,951
314,192

34,588

2

Figure 7.4.7. The SSR near-perfect multicollinearity.
Source: [Multicollinearity.xls]NearMulti.
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The graph and the table look very much like those in the case of perfect
multicollinearity. All the (b1, b2) combinations in the crease of the graph are
almost as good as the actual solution. There is really very little difference in
how well these combinations fit the data, and so the other solutions might be
regarded as being just as plausible as the least squares solution.

Once again, if the goal is simply to predict Quantity Demanded, near-
perfect multicollinearity does not pose a real problem. If the goal, however,
is to disentangle the separate influences of Price and Income on Quantity
Demanded, near-perfect multicollinearity is almost as damaging as perfect
multicollinearity. Many different descriptions of the data are almost equally
valid, and thus it is hard to choose between them. The issue of multicollinear-
ity is addressed again in Chapter 17.

Summary

Perfect and near-perfect multicollinearity pose difficulties for the ordinary
least squares algorithm. Perfect multicollinearity arises when a linear func-
tion exactly summarizes the relationship between one or more explanatory
variables. In this case, there is no unique solution to the problem of predicting
the dependent variable. In Chapter 17, we will discuss the implications of near
multicollinearity in an inferential setting.

7.5. Conclusion

For simplicity’s sake all the examples in this chapter have referred to trivari-
ate regression. All the ideas, however, apply to regression with any number
of independent variables. The crucial concept in multiple regression is the
idea of seeing how the dependent variable changes as one independent vari-
able changes with other included independent variables held constant. With
an understanding of this basic concept, you can properly interpret multi-
ple regression results and will have some chance of visualizing the trivariate
regression plane.

In attempting to understand multiple regression, all of the intuition you
have developed for appreciating bivariate regression can be drawn upon.
Multiple regression is once again a smoothed version of a graph of averages;
the OLS parameters are obtained by minimizing the distance (as measured
by the SSR) between the actual and predicted Y values. A simple equation
allows you to compute predicted Y based on the values of that observation’s
independent variables.

A central concept of this book is that of confounding. Multiple regression
is an important tool because it allows us to control for confounding variables
and thus gives a more refined answer to the question, What is the relationship
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between X and Y ceteris paribus? Although multiple regression will help us
obtain a clearer picture by removing the influence of included confounding
variables, we will never be able to truly hold everything else constant. Thus,
multiple regression provides a better, but not perfect, picture of the relation-
ship between a dependent variable and two or more independent variables.

7.6. Exercises

1. Suppose that growing corn requires only two inputs: land and labor. A researcher
obtains data on 100 farms of varying sizes located on roughly equally fertile land.
In a bivariate regression of corn output on land (measured in acres), the slope is
40 bushels per acre. How do you think the coefficient on land will change when
the researcher runs a trivariate regression, including hours of labor, as a second
regressor? Will the coefficient increase or decrease? Explain your answer.

2. A researcher investigating the production function for corn is interested in the
question of whether this production function exhibits constant returns to scale.
(Constant returns to scale means that if we multiply the amount of all inputs by
the same constant factor s, then output will increase by that same multiplicative
factor s.) The researcher wants to choose between two different functional forms:

(1) Corn Output = b0 + b1 · Land + b2 · Labor,

and

(2) Ln Corn Output = g0 + g1 · Ln Land + g2 · Ln Labor.

Comment on the different implications each functional form has for returns to
scale.
HINT: Experiment, using Excel to implement the two functional forms.

3. Figure 7.6.1 is a PivotTable of the residuals from the bivariate regression of Quan-
tity Demanded on Price from the Heating Oil example of Section 7.3. The equation
for the bivariate regression is

Predicted Quantity Demanded = −2.105 + 0.236 Price.

Explain the pattern that you observe in the table as you move from left to right.
4. In Figure 7.6.2, the interior of the table and the heights of the bars indicate the

value of a variable Z as a function of variables X and Y. All of the points in the
table and in the corresponding bar graph lie in a single plane. What is the equation
for the plane?

5. In Figure 7.6.3, the interior of the table and the heights of the bars indicate the
value of a variable Z as a function of variables X and Y. Write down the equations
for three different planes that could fit the data in Figure 7.6.3. What phenomenon
does this example illustrate?

Average of Residuals Income
Price 109 11 12 13 14 15 16 17 Grand Total

50 −3.303333

−3.303333

1.347 3.197 0.41333333
60 −5.92 −0.01 3.535
70 −2.98 −1.78 5.823 0.35666667
80 −3.34 4.512 0.02833333

Grand Total 1.347 −1.36 −0.01 0.279 −1.78 1.243 −1.09
−1.09

4.512 0.00000

−0.7983333

Figure 7.6.1. PivotTable of bivariate residuals.
Source: [MultiReg.xls]Residuals.
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X/Y 10 20 30 40 50
10 120 140 160 180 200
20 100 120 140 160 180
30 80 100 120 140 160
40 60 80 100 120 140
50 40 60 80 100 120

10
2030

40
50

10
20

30

40

50

0

50

100

150

200

Figure 7.6.2. Three-dimensional data that lie in a plane.

X/Y 10 20 30 40 50
10 200
20 160
30 120
40 80
50 40

10
2030

40
50

10
20

30

40

50

0

50

100

150

200

Figure 7.6.3. Three-dimensional data that lie in an infinite number of planes.
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Appendix: The Multivariate Least Squares Formula
and the Omitted Variable Rule

In this appendix we derive the least squares estimates more formally using calculus
and algebra. We point out that the multivariate OLS estimator is a weighted sum of
the Y values, though that weighted sum is considerably more complicated than was
the case for the bivariate regression. Finally, we look at the algebraic connection
between bivariate and multiple regression coefficients, which is summarized by the
omitted variable rule.

Using Calculus and Algebra to Obtain the OLS Formulas

Excel does not use an optimization routine to find the OLS coefficients in multiple
regression. Instead, all regression software relies on analytic formulas. In the next
few pages, which are based on Goldberger (1998, pp. 90–93), we show how the
formulas are obtained in the trivariate case. Previously, we saw that the bivariate
regression line is found by minimizing the SSR. The multiple regression coefficients
are found the same way; there are just more choice variables. In the trivariate case,
the regression chooses the values of the intercept and slopes that minimize the SSR.

Recall that bivariate regression solves the following optimization problem:

min
b0,b1

n∑
i=1

(Yi − b0 − b1 Xi )2.

Trivariate regression solves this problem:

min
b0,b1,b2

n∑
i=1

(Yi − b0 − b1 X1i − b2 X2i )2.

Notice the subtle but important difference in the way the X variables are labeled.
There are two independent variables, and thus X1i means the ith observation on the
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X1 variable. The mathematical solution to this trivariate problem is very similar to
that for the bivariate case. We begin by taking derivatives with respect to all three
choice variables:

∂

∂b0

[
n∑

i=1

(Yi − b0 − b1 X1i − b2 X2i )2

]
= −2

n∑
i=1

(Yi − b0 − b1 X1i − b2 X2i )

∂

∂b1

[
n∑

i=1

(Yi − b0 − b1 X1i − b2 X2ii )
2

]
= −2

n∑
i=1

(Yi − b0 − b1 X1i − b2 X2i )X1i

∂

∂b2

[
n∑

i=1

(Yi − b0 − b1 X1i − b2 X2ii )
2

]
= −2

n∑
i=1

(Yi − b0 − b1 X1i − b2 X2i )X2i .

Then we set the derivatives equal to zero:

−2
n∑

i=1
(Yi − b∗

0 − b∗
1 X1i − b∗

2 X2i ) = 0

−2
n∑

i=1
(Yi − b∗

0 − b∗
1 X1i − b∗

2 X2i )X1i = 0

−2
n∑

i=1
(Yi − b∗

0 − b∗
1 X1i − b∗

2 X2i )X2i = 0.

The asterisks (*) indicate that b∗
0, b∗

1, and b∗
2 are the optimal values of the intercept

and slopes, respectively. Dividing each equation by –2 and rearranging terms, we
obtain

n∑
i=1

Yi = nb∗
0 + b∗

1

n∑
i=1

X1i + b∗
2

n∑
i=1

X2i

n∑
i=1

Yi X1i = b∗
0

n∑
i=1

X1i + b∗
1

n∑
i=1

X2
1i + b∗

2

n∑
i=1

X1i X2i

n∑
i=1

Yi X2i = b∗
0

n∑
i=1

X2i + b∗
1

n∑
i=1

X1i X2i + b∗
2

n∑
i=1

X2
2i .

These equations can be solved to find an analytical solution for the intercept and
the two slopes, b∗

0, b∗
1, and b∗

2 . As you can see, the notation becomes rather
daunting. The path to a solution, however, is fairly straightforward. Use the first
equation to solve for b∗

1; then, substitute the result into the other two equations.
Solve for b∗

1, substitute again, and then find b∗
2 as a function of the various sums of

X’s and Y’s; then, use the result to solve for b∗
1 and b∗

0.
The final result involves sums of squared terms and sums of cross products. We

need some notation to make the result comprehensible. Define a series of
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(empirical) variances and covariances:

s11 =
∑n

i=1

(
X1i − X̄1

)2

n

s22 =
∑n

i=1

(
X2i − X̄2

)2

n

s12 =
∑n

i=1

(
X1i − X̄1

) (
X2i − X̄2

)
n

s1y =
∑n

i=1

(
X1i − X̄1

) (
Yi − Ȳ

)
n

s2y =
∑n

i=1

(
X2i − X̄1

) (
Yi − Ȳ

)
n

D = s11s22 − s2
12.

We have seen these quantities before in slight disguise. The bar above a variable
indicates a sample average. The sample variances s11 and s22 are simply the squares
of the standard deviations of X1 and X2, respectively. The covariances s12, s1y, and
s2y tell us how the X’s “covary” with each other and with the Y variable. The
covariances appear in the formula for the correlation coefficient. For example, a
little algebra will convince you that the correlation between X1and X2 can be
written as

r12 = s12√
s11 · √

s22
.

The least squares regression coefficients are given by these equations:

b1 = s22s1y − s12s2y

D

b2 = s11s2y − s12s1y

D
b0 = Ȳ − b1 X̄1 − b2 X̄2.

You should take away the following from these equations. First, as was the case
with bivariate regression, the OLS coefficients are weighted sums of the Y values.
Second, things can go awry if D equals zero. This will happen whenever there is
perfect positive or negative correlation between the X variables, which you can
check by working out what happens when the correlation between X1 and X2 is 1 or
–1, making use of the formulas for r12 and D just presented. We discussed this
possibility in Section 7.4.

The Omitted Variable Rule Relating Bivariate and Multiple
Regression Coefficients

There is one important general consequence of all this algebra. It can be shown that
if we run two regressions,

Multivariate : Predicted Yi = c0 + c1 · X1i + c2 · X2i and

Bivariate : Predicted Yi = b0 + b1 · X1i ,
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in which the Yi’s and the X1i’s are the same in both, and then run a third, auxiliary,
regression,

Predicted X2i = d0 + d1 · X1i ,

the coefficients must have the following relationship,

b1 = c1 + d1 · c2.

In other words, the slope coefficient on X1 in the bivariate regression reflects both
the direct contribution of X1 in the multiple regression (c1) and the indirect
contribution of X2 (the product d1 · c2). The coefficient c2 tells how much Y
depends on X2, whereas the coefficient d1 reveals how X2 changes as X1 changes.
An example of this omitted variable rule is discussed in the Conversation sheet in
the MutiReg.xls workbook

Summary

This appendix has demonstrated that the OLS multiple regression plane is the
solution to a familiar optimization problem – that of minimizing the SSR. That
optimization problem has an analytic solution in which the regression coefficients
are weighted sums of the Y values. The omitted variable rule shows how one can
relate bivariate to multiple regression coefficients via an auxiliary regression.
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Dummy Variables

The dummy variable is a simple and useful method of introducing into a regression
analysis information contained in variables that are not conventionally measured on a
numerical scale, e.g., race, sex, region, occupation, etc. The technique itself is not new
but, so far as I am aware, there has never been any exposition of the procedure. As a
consequence students and researchers trying to use dummy variables are sometimes
frustrated in their first attempts.

Daniel B. Suits1

8.1. Introduction

Dummy variables (also known as binary, indicator, dichotomous, discrete, or
categorical variables) are a way of incorporating qualitative information into
regression analysis. Qualitative data, unlike continuous data, tell us simply
whether the individual observation belongs to a particular category. We stress
understanding dummy variables in this book because there are numerous
social science applications in which dummy variables play an important role.
For example, any regression analysis involving information such as race, mari-
tal status, political party, age group, or region of residence would use dummy
variables. You are quite likely to encounter dummy variables in empirical
papers and to use them in your own work.

This chapter first defines dummy variables, then examines them in a
bivariate regression setting, and finally considers them in a multiple regres-
sion setting. We stress the interpretation of coefficient estimates in models
using dummy variables; discussion of issues related to inference is deferred
until the second part of this book.

Dummy variables are another way in which the flexibility of regression
can be demonstrated. By incorporating dummy variables with a variety

1 Suits (1957, p. 548).

198
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of functional forms, linear regression allows for sophisticated modeling
of data.

8.2. Defining and Using Dummy Variables

Workbook: Female.xls

A dummy variable is an indicator variable that reveals (indicates) whether
an observation possesses a certain characteristic. The value of the dummy
variable is 1 if the observation possesses the characteristic and 0 if it does
not.

For example, Female is a dummy variable if it is defined like this:

Female = 1 if the individual is a female

= 0 if the individual is a male.

In this case, the unit of observation is the individual and the other variables
in the data set will contain other information on each individual.

Open the Female.xls workbook and proceed to the Data sheet. The first
five columns contain the original variable names and data used by the CPS.
PESEX takes on the value of 1 for males and 2 for females. Column F contains
a dummy variable recode for the variable Female. The formula used in cell
F2 is “=IF(C2=2,1,0).” If C2 has a PESEX value of 2, then F2 will have a
value of 1 (which means the observation is female); otherwise, F2 = 0.

Here is another example of a dummy variable:

Large City = 1 if the city has one million or more inhabitants

= 0 if the city has fewer than one million inhabitants.

Here the unit of observation is cities, and the other variables in the data set
will contain other information on the cities.

Some dummy variables (e.g., Large City) correspond to continuous vari-
ables. For other dummy variables, like Female, no underlying continuous vari-
able exists. Dummy variables are often called qualitative variables because
they reveal qualitative information about the observation.

We suggest naming dummy variables for the characteristic indicated if the
value of the variable is 1. Sometimes dummy variables are named after the
characteristic itself as follows:

Sex = 1 if the individual is a female

= 0 if the individual is a male.

We think that Female is a more informative name for this variable.
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A data set might contain dummy variables such as Nonwhite, Hispanic,
Female, and Married. Although coded as 0 or 1, dummy variables are so
named because the numbers “0” and “1” by themselves are meaningless.
Rather, they are stand-ins, or “dummies” that merely indicate the presence
or absence of some underlying characteristic. The word “qualitative” is often
associated with dummy variables, but this adjective has a broader meaning.
A crucial feature of dummy variables, as opposed to qualitative variables in
general, is that they can only take on two values, 0 or 1. The following variable
is a qualitative variable:

Race = 1 if individual is white

= 2 if the individual is black

= 3 if the individual is of Asian descent

= 4 if the individual belongs to a different race.

In this case the variable Race reveals qualitative information about the
individual, but it is not a dummy variable. Note that it would be easy to
create dummy variables by using the categorical Race variable. For example,
we could define four new dummy variables, one for each category:

White = 1 if Race = 1

= 0 if Race not = 1,

Black = 1 if Race = 2

= 0 if Race not = 2,

Asian = 1 if Race = 3

= 0 if Race not = 3,

Other = 1 if Race = 4

= 0 if Race not = 4.

Using Dummy Variables in a Regression

Once the dummy variables have been created, one would expect simply to
put them all into the regression equation. This is a big mistake. If both Female
and Male or all four of the racial dummies are included in a regression with an
intercept term, perfect multicollinearity will have been introduced into the
regression. For example, if both Male and Female are included in a regression,
there is an exact linear relationship between those two variables: Male =
1 – Female. This is perfect multicollinearity.

If the regression has an intercept term, there is no determinate solution to
the least squares optimization problem. Your regression software will com-
plain. You may get an error message or a display that certain parameters have
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b3 b2 b1 b0

0.95733711  −7.898E+12  −7.898E+12  7.8982E+12
0.04046112  7.6067E+12 7.6067E+12  7.6067E+12

R2 0.07960924  7.00604713      #N/A              #N/A        RMSE

246.280209       8542      #N/A              #N/A         df
Reg SS 36265.7679  419281.477   #N/A              #N/A        SSR

Predicted Wage = b0 + b1Female + b2Male + b3Education

Figure 8.2.1. Excel’s LINEST with both Female and Male included.
Source: [FemaleA.xls]Data.

been dropped from the regression. In Excel, the behavior depends on your
version. You may see a coefficient that is zeroed out, or LINEST may display
#NUM values. The worst behavior by Excel is that it may report a solution,
although you can usually tell that it is wrong. Figure 8.2.1, from the answer
key file for Female.xls, shows an example of this.

The most common way to avoid blowing up the regression is simply to drop
one of the dummy variables arbitrarily from the regression.2 In the case of
the gender category, we would include either Male or Female, but not both.
For the race variable, we would drop one of the categories and include the
other three in the regression. The variable omitted is called the base case.
The next section will show that which variable is omitted is irrelevant.

We conclude this section with another example. Suppose you have data on
sales and one of the variables, called Season, takes on four values: Winter,
Spring, Summer, and Fall. The Season variable cannot be included directly
in a regression. It is nonnumerical.

This information, however, can be included in a regression by the method
of dummy variables. Four dummy variables are created to indicate the four
seasons, and each one is named for its season. All four are not included in
the regression. Instead, one of them is dropped. Your base case might be
Winter and, therefore, you would include only the three dummy variables
Spring, Summer, and Fall in the regression. If all three dummies equal zero
for a particular observation, then we know we are dealing with a Winter
observation.

Summary

Having defined dummy variables and explained how qualitative information
can be incorporated in a regression via dummy variables, we are ready to

2 Another approach is to suppress the intercept. We do not use this strategy in this book, but you may
see regression results in which all of the dummy variables are included. If there is no intercept term,
the least squares fit can be obtained. Both approaches work because we are imposing an additional
constraint (the coefficient on the omitted category is set equal to 0 or the intercept is set equal to 0).
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show how dummy variables are used to allow regression greater flexibility
in describing a data set. The next section focuses on a few basic properties
of dummy variables, and then the rest of the chapter demonstrates dummy
variables in regression with several examples.

8.3. Properties of Dummy Variables

Workbook: Female.xls

That dummy variables take on a value of 1 if the individual observation pos-
sesses the characteristic and 0 if the individual observation does not possess
the characteristic gives dummy variables very useful mathematical properties.
Here are three of the most important:

1. The average value of a dummy variable tells what fraction of all observations in
the sample possesses the characteristic in question.

2. In a regression model with a dummy variable,

Predicted Y = b0 + b1 · Dummy Variable,

the b1 coefficient tells you the difference in the average Y between those observa-
tions for which Dummy Variable = 1 and those for which Dummy Variable = 0.

3. It does not matter which category you omit as the base case. The fitted coefficients
will, of course, be different, but the interpretation of the data is the same.

There are other helpful rules for using and interpreting dummy variables
in regressions – See HowToUseDummyVariables.doc in the BasicTools \
HowTo folder. Let us consider each of these three properties more carefully.

1. Averages of dummy variables equal the percentage of all observations
sharing the characteristic.

Here is an explanation of this fact via a hypothetical example. Suppose that
in a data set of 500 adults, 210 are men. Then, if there is a dummy variable
Male, 210 observations have Male = 1, and 290 observations have
Male = 0. The sum of Male therefore is 210 · 1 + 290 · 0 = 210. Thus,
average value of Male is 210/500, or 0.42 or 42 percent. But this is exactly the
calculation needed to find the percentage of males in the sample.

2. In a bivariate regression with a dummy variable, the b1 coefficient tells
you the difference in the averages of the dependent variable between those
observations that share the characteristic and those that do not.

This requires somewhat more explanation, but it should make sense if you
recall the interpretation of regression as a double compression and visualize
how regression with a dummy variable can be seen as partitioning the data
into two vertical strips. Suppose we had a data set of 478 workers, 276 of
which are between 25 and 29 years old, whereas the rest are 45–49 years of
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Figure 8.3.1. Regression of hourly
wage on Exp High.
Source: [Female.xls] Exp Dummy.

age. Suppose we wanted to compare the average wage of the 25–29 year old
workers to the average wage of 45–49 year olds.

An obvious approach is simply to compute the average wage of each group.
It turns out the average wage of the young workers is $9.89 per hour. The
older workers earn $12.98 per hour on average.

Another alternative, however, that will demonstrate how the coefficient of
the dummy variable can be interpreted is to run a regression of wage on a
dummy variable. The dummy variable is defined as

Exp High = 1 if the worker is aged 45–49

= 0 if the worker is not aged 45–49.

The idea is that there are two types of workers in the data set: experienced
workers and inexperienced workers. The dummy variable Exp High tells us
which group an individual worker belongs to.

Now let us run the following regression:

Predicted Wage = b0 + b1 · Exp High.

The results are

Predicted Wage = 9.89 + 3.09 · Exp High.

Figure 8.3.1 is a picture of the scatter plot and the regression line in which
we have cut off a few of the really high-wage workers to make the line easier
to see. The crucial features of the graph are these:

1. The Y-axis measures the hourly wage.
2. The X-axis measures the dummy variable. That variable has only two possible

values, 0 and 1. Hence, the scatter diagram is composed of two vertical strips.
3. The regression line connects the two points of averages of the two vertical strips.

That is, when Exp High = 0, the regression line reaches a vertical height of
$9.89 per hour, which is the average wage of 25–29 year olds; when Exp High = 1,
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the regression line reaches a vertical height of $12.98 per hour, which is the average
wage of 45–49 year olds.

4. Therefore, the value of the b1 coefficient in the regression is $3.09 per hour. This
slope is simply the rise ($12.99 per hour – $9.89 per hour) over the run (1 – 0).
Note that dummy variables are unitless.

5. The RMSE of this regression measures the average spread of the vertical dis-
tances around the two predicted values in the regression. That RMSE is in essence
a weighted average of the standard deviations of the hourly wage for the two
separate groups, inexperienced and experienced workers.

6. Although the regression line has been drawn in, it does not make any sense to
predict the wage for a value of Exp High = 0.5. The only two possible values of
Exp High are 0 and 1, and thus these are the only values we would use as given in
order to predict the wage.

The final property of dummy variables in regression may seem like magic,
but remember that if you have two categories, not being in one means you
are in the other. This mirror reasoning will be used when we explain the third
property of dummy variables.

3. Which category is omitted as the base case is irrelevant because the final
interpretation of the data remains the same.

We proceed by example. Here are two regression results using the same
data. The only difference is that we omitted Female in one regression and
Male in the other:

Predicted Wage = 10.99 − 2.03Female

Predicted Wage = 8.96 + 2.03Male.

The coefficients are obviously different, but regardless of whether we use
the first or the second fitted line, we say the same thing: males, on average,
earn $2.03 more per hour than females in this data set. We can also use the
first equation to say the males earn, on average, $10.99 per hour because they
are the base case in the first equation. The second equation yields the same
number, albeit in a slightly different way: we add 8.96 and 2.03 to get 10.99. Of
course, the same holds true for the average Female wage. It is $8.96 per hour
no matter if you use the first or second fitted line.

The first equation says that being female lowers your average wage, com-
pared with males, by $2.03 per hour. The second equation says that being
male raises your average wage, compared with females, by $2.03 per hour.
This makes clear that the dummy variable dropped from the regression is not
really excluded from the analysis at all. Instead, the included dummy variable
coefficient is measured relative to the base case. This is why it is absolutely
arbitrary which category is dropped from the regression.
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Summary

This section demonstrated how dummy variables can be used in a regression
to incorporate qualitative characteristics. Remember to leave out a base case
to avoid perfect multicollinearity.

The next section extends our analysis of dummy variables by considering
a multiple regression example. We show that there is no problem mixing
conventional variables measured on a numerical scale with dummy variables.

8.4. Dummy Variables as Intercept Shifters

Workbook: Female.xls

This section shows how dummy variables are used in multiple regression via
another example. Suppose we are interested in studying labor discrimination
against women. We want to know if women are disadvantaged in the labor
market in the United States today. One way in which discrimination might
manifest itself is in lower earnings for women.

We begin our empirical work by getting data from the February 1994
Current Population Survey. The Excel workbook Female.xls has data on
8,456 people. For this section, we concentrate on the following variables:

Education = highest grade completed; in years (via the numerical Education
recode)

Female = 1 if female; otherwise 0 (the dummy variable)
Wage = reported hourly wage; in $/hr (the computation of this variable is explained

in the CPS folder)

Cell D13 in the PivotTables sheet of Female.xls shows that the average
wage of women is $2.03 per hour less than that of men in the data set. This
“raw differential” can also be found via regression. The Data sheet has the
data that were used by the PivotTables sheet.

The regression, Predicted Wagei = b0 + b1 · Femalei, i = 1, . . . 8,456, yields
the results displayed in Figure 8.4.1.

As was shown in the previous section, the slope of a bivariate regression
with a dummy variable is the same as the differential between the two groups.

b1 −2.03 10.99 b0

R2 0.019 7.231 RMSE
8544 df

Reg SS 8781 446766 SSR

Predicted Wage = b0 + b1Female

Figure 8.4.1. Regression of wage on Female.
Source: [Female.xls]Data.
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b2 b1 b0

−2.263 0.956 −0.858

R2 0.079 7.006 #N/A RMSE
8543 #N/A df

Reg SS 36213 419334 #N/A SSR

Predicted Wage = b0 + b1Education + b2Female

Figure 8.4.2. Regression of wage on Education and Female.
Source: [Female.xls]Data.

In this case, the negative $2.03 per hour slope coefficient means that, on
average, women in the data set earned $2.03 per hour less than men.

There are two possible reasons we would not conclude, from these results,
that gender wage discrimination existed in the United States in 1994:

1. The presence of confounding variables in the analysis. What if there are other
variables correlated with gender that explain the wage differential? Suppose, for
example, that women have less education than men. The bivariate regression is
picking up the correlation between education and wage and making it seem like
gender is the causal factor.

2. Because the data are but a sample of the population, the observed wage differential
could be due to chance. Perhaps in this sample we just happened to draw many
low-wage women and high-wage men. This issue is important but will be postponed
until the second part of this book.

In an effort to improve our empirical analysis, we attempt to control sta-
tistically for the confounding effect of education. We estimate Model 2:

Predicted Wagei = b0 + b1 · Educationi + b2 · Femalei.

Figure 8.4.2 contains the regression results for Model 2.
Let us interpret these results. For males, we do not need to worry about

the b2 coefficient because for males, Female = 0. Therefore, the regression
equation for males is

Predicted WageM = −0.858 + 0.956 Education.

Thus, if you are male with 10 years of education, the predicted wage is

= −0.858 + 0.956 · 10,

= $8.70/hr.

For females, we know that the Female variable has to equal 1. Thus, the
regression equation for females is

Predicted WageF = −0.857 + 0.956 Education − 2.263.
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Average of HrlyWage Female

Education F-M Differential

8 7.83$   6.14$     (1.69)$            
9 9.30$   5.89$     (3.41)$            

10 7.71$   5.58$     (2.13)$            
11 7.88$   6.48$     (1.40)$            

11.5 7.83$   7.38$     (0.45)$            
12 11.14$ 8.46$     (2.68)$            
13 11.14$ 8.85$     (2.28)$            
14 12.69$ 11.05$   (1.64)$            
16 13.75$ 12.55$   (1.20)$            
18 17.94$ 16.67$   (1.28)$            

Grand Total 10.99$ 8.96$     (2.03)$            

Predicted Wage from Regression of Wage on Education and Female
Education

8 6.79$   4.53$     (2.26)$            
9 7.75$   5.48$     (2.26)$            

10 8.70$   6.44$     (2.26)$            
11 9.66$   7.40$     (2.26)$            

11.5 10.14$ 7.87$     (2.26)$            
12 10.62$ 8.35$     (2.26)$            
13 11.57$ 9.31$     (2.26)$            
14 12.53$ 10.27$   (2.26)$            
16 14.44$ 12.18$   (2.26)$            
18 16.35$ 14.09$   (2.26)$            

Male and Female Graphs of Averages
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Figure 8.4.3. Comparing the graph of averages and regression.
Source: [Female.xls]PivotTables.

We can simply add the two constants to obtain

= −3.12 + 0.956 Education.

Thus, if you are female with 10 years of education, the predicted wage is

= −3.12 + 0.956 · 10,

= $6.44/hr.

Comparing the male and female regression equations shows that one way
of interpreting the regression equation with a dummy variable is to think
of the dummy variable as an intercept shifter. The base case, male, is the
one without the presence of the dummy variable. If the dummy variable
value is 1, which means the observation is a female, the only difference is
that the intercept shifts by the amount of coefficient on the dummy variable.
Figure 8.4.3 shows this interpretation. The thicker line, which is the regression
equation for females, is shifted down relative to the thinner line.

By including a dummy variable, a single regression equation is flexible
enough to incorporate qualitative information such as gender. We could
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continue this approach, adding dummy variables for other qualitative char-
acteristics, to allow the regression equation to paint a fuller description of
the data.

It is important to note that, given this specification of the model, an extra
year of education is assumed to increase a male’s wage and a female’s wage
by the same amount. According to our results, a year of education increases
everyone’s hourly wage by $0.956 per hour. In other words, the two lines
relating education to wages for males and females are parallel, as shown in
Figure 8.4.3.

This is an important restriction for our regression model – one that may
not be borne out by the data. Fortunately, dummy variables can be used to
estimate more flexible functional forms. That is the subject of the next section.

Summary

The simplest use of a dummy variable in a regression is an intercept shifter.
The coefficient on the dummy variable is added to the intercept if the obser-
vation has the given characteristic. The next section demonstrates a more
sophisticated application of dummy variables in regression analysis.

8.5. Dummy Variable Interaction Terms

Workbook: Female.xls

Section 8.2 showed how regression analysis easily incorporates qualitative
data into the regression equation via a dummy variable. The example in
Section 8.3 showed how including a dummy variable allows the regression
to fit different intercepts for each qualitative characteristic. But what if the
relationship is more complicated than that? What if the effect of being female
is not a one-time negative number tacked on to your base wage but instead
depends on the amount of education? The idea here is that discrimination
works in various ways. One way is through lower wages for women across
the board, but another way is through lower wages for women versus men as
education increases.

If an additional year of education matters more to a male than to a female
in terms of increased wages, we might illustrate this possibility as Figure 8.5.1.
Note that the slopes of the two regression lines are different as well as the
intercepts. The slope of the male line is steeper than that of the female line,
meaning that an additional year of education is associated with a higher
increase in the average male’s hourly wage than his female counterpart. Of
course, this is only one possibility, for the slope on Education for Females
may be larger. The point is that we need to allow for the greater flexibility of
nonparallel lines.
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Education in years  

Wage ($/hr) 
Male 

Female 

Figure 8.5.1. Different slopes on Education.

A simple dummy variable in a regression equation cannot capture such a
sophisticated different-slopes story. But regression analysis is nothing if not
an extremely flexible tool. How can we allow for different slopes as well as
different intercepts in a regression with a dummy variable? We can relax (that
is, drop) the assumption of parallel slopes or equal returns to education for
men and women by introducing a new variable, called an interaction term,
defined as follows:

Female · Education =
{

0 if the person is Male
Education if the person is Female.

The interaction term is a new variable that is the product of the value of the
dummy variable, Female, and the number of years of education. We would
say that the variables Female and Education are interacted with each other
to produce the new variable.

The new, expanded model with the interaction term is then

Predicted Wagei = b0 + b1 · Educationi + b2 · Femalei

+ b3 · Female · Educationi.

The results are reported in Figure 8.5.2. We interpret the coefficient estimates
in this model in the same way as the previous section. The basic strategy is to
predict the wage for males and females.

Suppose that you want to predict the hourly wage for a male. We know
the value of the dummy variable Female is 0. Therefore, the male regression

b3 b2 b1 b0

0.161 −4.278 0.881 0.076

R2 0.080 7.005 #N/A #N/A
8542 #N/A #N/A df

Reg SS 36406 419141 #N/A #N/A SSR

Predicted Wage = b0 + b1Education + b2Female + b3Female*Education

 

RMSE

Figure 8.5.2. Wage regression including interaction terms.
Source: [Female.xls]Data.
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equation is easy to produce because the Female and Female·Education terms
simply drop out.

Predicted WageM = 0.076 + 0.881Education

Thus, if you are male with 10 years of education, the predicted wage is

= 0.076 + 0.881 · 10

= $8.88/hr.

For females, the regression equation can be found by substituting a “1” for
the Female variable and then combining like terms:

Predicted WageF = 0.076 + 0.881Education − 4.278 + 0.161Education

= −4.202 + 1.042Education.

Thus, if you are female with 10 years of education, the predicted wage is

= −4.202 + 1.042 · 10

= $6.22/hr.

Because the value of the variable Female is 1, both the intercept and the
slope terms change in the female equation relative to the male equation.
The Female dummy variable acts like an intercept shifter, and the Female·
Education interaction term allows the slopes to be different.

We can interpret the coefficient on the interaction term, b3, as being the
adjustment to the slope attached to the education variable because of being
female. Thus, to obtain an estimate of how much wage would go up with
an additional year of education for a male, you look only at b1, the slope
coefficient for education. For females in this data set, however, the effect of
an additional year of education is the sum of b1 and b3.

In this data set, an additional year of education is worth more to females
because b3 is greater than 0. An additional year of education is worth about
$0.88 per hour to males but $1.04 per hour to females. Figure 8.5.3 shows how
the addition of the Female · Education interaction term to the regression
equation affects the Predicted Wage as a function of Education fitted lines.

Summary

This section has shown that including an interaction term in a linear regres-
sion with a dummy variable allows for more flexible modeling and summa-
rizing of the data. The slope is allowed to vary as determined by whether the
observation has or does not have a particular characteristic.

It is important to realize that the approach to interpreting an interaction
term is the same as in the simple dummy variable case. We create two separate
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Predicted Wage from Regression of Wage on Education, Female, and Female Education (Interaction Term)
0 1 F-M Differential

8 7.12$   4.13$     (2.99)$            
9 8.00$   5.17$     (2.83)$            

10 8.88$   6.22$     (2.67)$            
11 9.76$   7.26$     (2.51)$            

11.5 10.20$ 7.78$     (2.43)$            
12 10.65$ 8.30$     (2.35)$            
13 11.53$ 9.34$     (2.19)$            
14 12.41$ 10.38$   (2.02)$            
16 14.17$ 12.47$   (1.70)$            
18 15.93$ 14.55$   (1.38)$            

Male and Female Regression Lines
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Figure 8.5.3. Graphical interpretation of the interaction term.
Source: [Female.xls]PivotTables.

equations based on whether the dummy variable is present (1) or not (0). Then
we predict the dependent variable in the two equations.

Finally, we point out that economists routinely use the semilog functional
form when working with earnings as the dependent variable.3 In this section,
we have used the wage in its original units as the dependent variable to
facilitate the explanation of dummy variables. Of course, dummy variables
can be used with a variety of functional forms.

8.6. Conclusion

This chapter introduced so-called dummy variables and showed how they
can be used in a regression equation. Dummy variables are commonly used
to include qualitative information in regression analysis.

We have stressed that you should choose the name of your 0–1 variable
with some care. The best approach is to set the name equal to the observation
having the characteristic. For example, Rookie (if the player is in his or her
first year) and Retired (if the person is retired) are good names, whereas
Gender and Ethnic are not.

In a regression with an intercept, it is mandatory that one of the categories
be omitted from the regression, and this is called the base case. If all of the
categories are included, your software will complain.

Including a single dummy variable acts as an intercept shifter, but dummy
variables can also be multiplied against continuous variables to allow the
slope to vary across the categories represented by the dummy variables. This
ability to generate different lines of best fit for subcategories of the data is a
powerful feature of dummy variables.

3 See Chapter 6 for an explanation of why the natural log transformation is so common.
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Whether a regression has a dummy variable as a simple intercept shifter
or more complicated interaction terms, the procedure for interpreting the
model and results is the same: create a predicted dependent variable for each
category of the dummy variable.

The last several chapters have delivered an important message: Linear
regression is remarkably flexible and can be used to describe a wide variety
of nonlinear relationships in the data. Do not be misled by the word linear in
linear regression, which refers to linearity in the parameters.

With this chapter, we end our presentation of regression as description.
In the first eight chapters of this book, we have seen how regression lines
are computed and interpreted. We have provided a variety of examples to
show how regression can describe a data set. We now turn to the second
fundamental use of regression analysis – inference.

8.7. Exercises

Copy the Data sheet in the Female.xls workbook.

1. Create the dummy variable UNION, using the CPS variable PEERNLAB. Fill
your formula down.

2. Compute the average of the UNION dummy variable and interpret the result.
3. Regress Wage on UNION and Education. Report your results and interpret the

coefficient on UNION.
4. Create a new dependent variable, ln Wage. Regress ln Wage on UNION and

Education. Report your results and interpret the coefficient on UNION.
HINT: See HowToUseDummyXVariables.doc (in Basic Tools\HowTo) on how
to interpret dummy variables in a semilog functional form regression.

5A. Add an Education*UNION interaction term to your semilog earnings function.
Report your results.

5B. Use the regression results to create a graph that compares the predicted wages
of Union and Nonunion members as a function of Education.

References
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Monte Carlo Simulation

Anyone who considers arithmetical methods of producing random digits is, of course,
in a state of sin.

John von Neumann1

The one thing about Monte Carlo is that it never gives an exact answer.
Stanislaw Ulam2

9.1. Introduction

The chapters in the first part of this book make clear that regression analysis
can be used to describe data. The remainder of this book is dedicated to
understanding regression as a tool for drawing inferences about how variables
are related to each other. The central idea in inferential statistics is that the
data we observe are just one sample from a larger population. The goal
of inference is to determine what evidence the sample provides about the
relationship between variables in the population.

This chapter explains how we will use the computer to draw random sam-
ples to evaluate the performance of a variety of sample-based statistics. We
will review basic theory behind random number generation with computers,
offer a simple example of Monte Carlo simulation, and introduce a Monte
Carlo simulation Excel add-in.

Like regression analysis, Monte Carlo simulation is a general term that has
many meanings. The word “simulation” signifies that we build an artificial
model of a real system to study and understand the system. The “Monte
Carlo” part of the name alludes to the randomness inherent in the analysis:

The name “Monte Carlo” was coined by [physicist Nicholas] Metropolis (inspired
by [Stanislaw] Ulam’s interest in poker) during the Manhattan Project of World

1 von Neumann (1951).
2 Ulam (1991, p. 199).

215
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War II, because of the similarity of statistical simulation to games of chance, and
because the capital of Monaco was a center for gambling and similar pursuits. Monte
Carlo is now used routinely in many diverse fields, from the simulation of complex
physical phenomena such as radiation transport in the earth’s atmosphere and the
simulation of the esoteric subnuclear processes in high energy physics experiments,
to the mundane, such as the simulation of a Bingo game or the outcome of Monty
Hall’s vexing offer to the contestant in “Let’s Make a Deal.”

(Drakos, 1995)

Monte Carlo simulation is a method of analysis based on artificially recre-
ating a chance process (usually with a computer), running it many times, and
directly observing the results.

We will use Monte Carlo simulation to understand the properties of differ-
ent statistics computed from sample data. In other words, we will test-drive
estimators, figuring out how different recipes perform under different cir-
cumstances. Our procedure is quite simple: In each case we will set up an
artificial environment in which the values of important parameters and the
nature of the chance process are specified; then the computer will run the
chance process over and over; finally the computer will display the results of
the experiment.

The next section explains the fundamental principles behind random
number generation, which is the engine that drives a Monte Carlo simula-
tion. Section 9.3 is a practical guide to generating random numbers in Excel.
Section 9.4 demonstrates Monte Carlo via a simple example, and the last
section introduces an Excel add-in that can be used to run a Monte Carlo
simulation in any Excel workbook.

9.2. Random Number Generation Theory

Workbook: RNGTheory.xls

Because Monte Carlo simulation is based on repeatedly sampling from a
chance process, it stands to reason that random numbers are a crucial part
of the procedure. This section will briefly explain the theoretical principles
behind random number generation.

We begin with a simple but important claim: Excel, like all other computer
software, cannot draw a true sequence of random numbers. At best, Excel’s
random draws can mimic the behavior of truly random draws, but true ran-
domness is unattainable. The inability of computer software to generate truly
random numbers results from a computer program’s having to follow a deter-
ministic algorithm to produce its output. If the previous number and the algo-
rithm are known, so is the next number. Because the essence of randomness
is that you do not know what is going to happen next, numbers produced by
computer software are not genuinely random. Thus, Monte Carlo simulation
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Figure 9.2.1. An LCG demonstration.
Source: [RNGTheory.xls]LCG.

with Excel is based on pseudorandom number generation. Throughout
this book, when we say random number, we actually mean pseudorandom
number.

The random number recipe used by all versions of Excel before Excel 2003
is called a linear congruential generator (LCG).3 Starting from an initial value,
called the seed, the LCG simply puts a number through a formula

NextNumber = (B · PreviousNumber + A) Mod m,

to generate the next number. In the formula above Mod means Modulus.
The expression x Mod y yields the remainder when a number x is divided by
another number y.

To see the simple logic behind this algorithm, go to the LCG sheet in
RNGTheory.xls. Figure 9.2.1 is a picture of a portion of the LCG sheet. Start-
ing from a seed of 0.5 and A = 100, B = 3, and m = 5, the next number is 1.5
(cell E7). The steps in the calculation are (1) 3 × 0.5 = 1.5, (2) 1.5 + 100 =
101.5, (3) 101.5 Mod 5 = 1.5. The output of the Excel function MOD(x, y) is
x Mod y.

The LCG (3 · PreviousNumber + 100) Mod 5 is an unsatisfactory random
number generator (RNG). After all, we will see 1.5 followed by 4.5, 3.5, 0.5
(the first number), and then the numbers simply repeat themselves. One way
to judge a random number generator is by its period or the number of values
generated before returning to the first value and recycling through the list.

3 As part of a massive revision of statistical functions, Excel 2003 uses a new algorithm to generate
Uniform(0,1) random numbers. Unfortunately, as of this writing, the new algorithm has a problem and
can give negative numbers. A patch is available from Microsoft at <office.microsoft.com>. As this
section will explain, we recommend using our own built-in random number generator. Execute Help:
About Microsoft Excel to see what version of Excel you are using. See the Basic Tools/RandomNumber
folder for more information about Excel 2003’s random number generator.
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By changing the parameters, A, B, and m, you change the performance of
the generator. For example, set m = 7 (in cell B4). The generated sequence
of numbers changes and the period lengthens to 6. The period, however, is a
simple, and potentially misleading attribute of a random number generator.
There are many other desirable attributes in a random number generator,
and many different tests have been devised to judge randomness.

We are now ready to examine Excel’s random number function, RAND
as implemented in versions prior to Excel 2003. Click the ShowRAND button to
see the Excel LCG. For the LCG used by RAND, Microsoft programmers
chose A = 0.211327, B = 9821, and m = 1. The numbers generated are always
between 0 and 1. Excel’s RAND function simulates a uniform distribution
on the interval from 0 to 1 (known as the Uniform(0,1) distribution). The
idea is that we are drawing random numbers from the interval 0 to 1 with
every number equally likely to be chosen.4 This is not as limiting as you might
think. For example, we can obtain numbers uniformly distributed between 0
and 10 by multiplying the original numbers by 10. In addition, we can add
50 to make them range from 50 to 60. In fact, starting from numbers drawn
from the Uniform(0,1) distribution, it is possible to generate numbers that
are random draws from almost any desired statistical distribution.

You will not see a repetition in the 15 numbers generated in column E – the
Excel RAND function has an extremely long period.5 However, it is shown
below that, its long period notwithstanding, Excel’s RAND is not a good
random number generator. Visual Basic, the programming language behind
Excel, has its own LCG random number algorithm called Rnd. It is preferable
to Excel’s RAND. Rnd uses B = 1,140,671,485, A = 12,820,163, and m = 224.
Its period is 16,777,216 (224), but, like Excel’s RAND, it is still a fairly crude
RNG.

The problem with both RAND and Rnd is that the sequences of num-
bers they produce have too much structure, meaning they are not “random
enough” when seen from certain perspectives. Figure 9.2.2 offers a simple
example of the undesirable structure embedded in RAND and Rnd. The
three graphs in Figure 9.2.2 were created by trapping the next number in the
sequence whenever the previous number fell between 0.7 and 0.7001. Each
graph has 1,000 data points. Excel’s RAND function graph is the least ran-
dom of the three. Whenever a number between 0.7 and 0.7001 is visited, the
next number is guaranteed to lie on one of the two lines in the graph. That is
not very random. Visual Basic’s Rnd fills the graph, but the points are still too

4 Well, not every number. Because it uses binary arithmetic and has finite memory, Excel can only recog-
nize 254 points on the number line between 0 and 1.

5 In fact, because of complicated floating-point precision issues, Excel’s RAND function does not exactly
repeat itself after 1,000,000, the period for the LCG 9821*x−1 + 0.211327. For more on this issue, see
the information in the BasicTools/RandomNumber folder.
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Excel's RAND - pre Excel 2003
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Figure 9.2.2. Comparing three random number generators.
Source: [RNGTheory.xls]Graphs.

systematic – they fall on straight lines. The bottom graph looks like the best
of the three: there does not appear to be a systematic relationship between
successive numbers in the sequence.

The bottom graph in Figure 9.2.2 is derived from an implementation of
a random number algorithm based on a fast multiple recursive generator
(FMRG) (Deng and Lin 2000). Multiple recursive generators are like LCGs
in that they use the previous output to generate the next number, but instead
of using just the previous number like an LCG, an MRG uses a linear com-
bination of the past k random numbers generated.

xi = (a1xi−1 + . . . + akxi−k) mod m

The formula above says that the ith number in the sequence is a linear
combination of the previous k numbers. As with an LCG, the parameter
choices (the a’s and m) in an MRG are critical components of the quality
of the random numbers generated. Our implementation of the MRG is the
simplest one available (hence the F as in fast in FMRG) based on using only
the last two random numbers generated (k = 2) and choosing the a1 and a2

coefficients from a special list of numbers. Deng and Lin, the developers of
FMRG, report the period as 4,611,686,014,132,420,608. You will probably not
revisit the same number.
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Figure 9.2.2 might appear to paint FMRG as a perfect random number
generator. This is not true. Although FMRG is better than RAND and Rnd,
it too will exhibit structure when examined under higher magnification. The
details of our implementation of Deng and Lin’s FMRG are beyond the
scope of this book, but additional information and complete documentation
are available in the Basic Tools/RandomNumber folder.

Summary

This section has provided a basic review of the principles of random num-
ber generation and highlighted an important fact: Not all random number
generators are the same. A Monte Carlo simulation based on a poor random
number generator is a poor Monte Carlo simulation. The hidden structure in
the pseudorandom sequence may completely invalidate the simulation.

The linear congruential random number generators employed by Excel
(the RAND function in versions before Excel 2003) and Visual Basic (Rnd)
are relatively unsophisticated and exhibit too much structure when successive
pairs are plotted. This book will use a more sophisticated random number
generator that has an extremely long period and possesses other desirable
properties.

This is not to say that the FMRG generator in our RANDOM function
is ideal or perfect. It turns out that random number generation is a com-
plex, difficult task. There are many other generators out there (with such
colorful names as the Mersenne Twister) and a great deal of debate in the
computational science community about the best ones. If you are inter-
ested in the details of our random number generator or want references
for a more in-depth study of random number theory, please see the Basic
Tools/RandomNumber folder.

You should never trust a Monte Carlo simulation without knowing the ran-
dom number generator used. You should always report the random number
generator used in a simulation. We recommend avoiding Excel’s RAND
unless the application is rudimentary or a simple demonstration. The next
section explains how to use RANDOM, the random number generator sup-
plied with this book.

9.3. Random Number Generation in Practice

Workbook: RNGPractice.xls

Although previous section focused on the theory behind random number
generation, this section will provide a guide to the practical issues of how
to actually get Excel to provide random numbers. In addition to reviewing
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RAND NORMINV(RAND(),0,1)
Uniform Normal

Average 0.50019275828668 0.00288489306875
SD 0.29027807011725 1.00048089727527
Max 0.99953004104712 3.30795409112160 Note how draws near 0 or 1 are
Min 0.00059867432756 −3.23954051612582 translated into numbers like −3.7 or +4.2

1000 Draws from a Uniform Distribution

0

50

100

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

1000 Draws from a Normal Distribution

0

40

80

120

160

−3 −2 −1 0 1 2 3

Figure 9.3.1. Output from RAND and NORMINV(RAND(),0,1).
Source: [RNGPractice.xls]NormalRand.

the different formulas available for uniform and normal distributions, this
section also reviews how Excel calculates cells.

Before explaining the options available, we warn against generating ran-
dom numbers with the Data Analysis add-in provided with many versions of
Microsoft Excel. Regrettably, not only does the add-in simply provide “dead”
values that do not change when the sheet is calculated, but the properties of
the random number generator are bad. The Data Analysis add-in should
never be used to generate random numbers.

To generate uniformly distributed random numbers with Excel, use either
Excel’s RAND function or, if the functions packaged with this book are
available, use the RANDOM function. Both functions require formulas that
use parentheses without any arguments: = RAND() and = RANDOM().

Open the RNGPractice.xls workbook and go to the Uniform sheet. Exam-
ine the formulas and results in columns A and E. Hit F9 to draw more random
numbers. (If it takes a long time for the sheet to draw new random numbers,
hit the

Recalculate this
Sheet Only button instead. There are thousands of cells containing

random numbers in the workbook, and every time you hit F9, the workbook
must compute formulas to replace every one of them.)

As with the uniform case, there are two ways to obtain normally dis-
tributed random numbers. The first approach uses intrinsic Excel func-
tions RAND and NORMINV. The NormalRand sheet uses the formula
“= NORMINV(RAND(), 0, 1)” to draw 1,000 random numbers from a
normal distribution with mean zero and standard deviation one. Hit F9 to
draw another 1,000 numbers. The summary statistics and histogram (see
Figure 9.3.1) show that NORMINV is working as advertised.
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Output = −0.201

−4 −3 −2 −1 0 1 2 3 4

Input = 0.42

0 0.4 0.6 0.80.2 1

Figure 9.3.2. Converting from uniformly distributed random variables to normally
distributed random variables.
Source: [RNGPractice.xls]UniformToNormal.

The UniformToNormal sheet explains how the NORMINV function maps
numbers that are uniformly distributed into normally distributed numbers. It
begins by taking a random number from the Uniform(0,1) distribution – for
example, 0.42. Figure 9.3.2 shows that when we graph 0.42 on the Uni-
form(0,1) distribution, we see that 42 percent of the area under the entire
curve lies between 0 and 0.42. We want to translate that number into
a normally distributed random number. This is done as follows. Moving
down to the Standard Normal curve (with mean 0 and SD 1), we find
that value of x such that 42 percent of the area under the standard nor-
mal distribution lies between negative infinity and x. This turns out to
be −0.201. That is what NORMINV does: given inputs, 0.42 for the area
under the curve, 0 for the mean of the normal distribution, and 1 for the
SD, NORMINV(0.42,0,1) yields a value of −0.201. Each time you hit F9,
the UniformtoNormal sheet will draw another uniformly distributed ran-
dom number and show how that number is converted into a normally
distributed random number. The sheet also explains how to obtain num-
bers that follow a normal distribution other than the Standard Normal
distribution.

The NormalRand sheet uses the NORMINV and RAND functions to
generate normally distributed random variables. Although all seems well,
our review of the theory behind random number generation in the previous
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section explained that RAND is not a great random number generator. In
addition, it turns out that NORMINV in versions before Excel 2002 has a rare
but serious problem. It can return the nonsensical value of minus 500,000 (or
500,000) whenever the first argument, y, is too close to 0 (or 1). NORMINV
fails to report the error value #NUM (an indication that the computation
is invalid) for values very close to 0 or 1. More modern versions of Excel
have partially corrected the badly erroneous results, but testing has shown
NORMINV still has problems in Excel 2002 (and XP).6

We therefore recommend using the second approach to generating nor-
mally distributed random numbers: the NORMALRANDOM function
included with this book. The sheet NormalRandom shows how to use the for-
mula, “=NORMALRANDOM(mean, SD)” to draw 1,000 numbers quickly
and correctly from a normal distribution with given mean and SD.7

Although the results of the two sheets are superficially quite simi-
lar, remember that RANDOM and NORMALRANDOM are superior
to Excel’s intrinsic, analogous functions. Of course, you must have these
functions properly installed on the computer you are using. Our work-
books come fully prepared with these functions, but you cannot simply
type =RANDOM() on a blank spreadsheet because Excel may not have
access to the function. You must either open a workbook with the func-
tion available or install one of the add-ins packaged with this book (such
as the Monte Carlo Simulation add-in described later in this chapter). If
=RANDOM() is entered in a cell and Excel displays #NAME?, then the
function is not available. Finally, because RAND is a core Excel func-
tion, it is somewhat faster than RANDOM and NORMALRANDOM.8

We believe the trade-off of lower speed for computational superiority is
worth it.

You should be aware that if RANDOM or NORMALRANDOM is used
on a computer with our software properly installed and you then try to open
the workbook from a different computer, an update links notification will be
received, as shown in Figure 9.3.3.

If you click the Don’t Update button, when the workbook calculates,
cells using the RANDOM or NORMALRANDOM functions will display
a #NAME? error. If the Update button is clicked, it is possible to change
the source to an add-in on the computer you are currently using that has the
functions available.

6 See articles listed in Section 9.8 for more details.
7 NORMALRANDOM does not make use of the inverse cumulative function. See the Basic

Tools/RandomNumber folder for more details on the Box–Muller algorithm used by our function.
8 Testing has shown that NORMALRANDOM is quite a bit faster than NORMINV(RAND()).
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Figure 9.3.3. Update links notification.

We end this section with a brief review of calculation issues in Excel. You
may have noticed, as determined by the speed of your computer, that Excel
pauses for a few seconds when you hit F9 in the RNGPractice.xls workbook.
This is because thousands of cells are being recalculated.

Excel’s default calculation setting is to recalculate every cell with a formula
in every open workbook automatically whenever any cell is modified. Excel
reports its progress in the status bar at the bottom left-hand corner of the
screen. Automatic recalculation can be quite cumbersome and tedious when
you have a large spreadsheet with many formulas because it is necessary to
wait for Excel to finish recalculating after every new entry or change in a cell.

In many of our workbooks, we change the calculation setting to manual by
executing Tools: Options and clicking on the Calculation tab (displayed in
Figure 9.3.4). Try this now in the RNGPractice.xls workbook. After changing

Figure 9.3.4. Controlling calculation.
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the calculation setting to manual, enter a number in a blank cell and hit
enter. Notice that the sheet does not recalculate and Excel displays the word
“Calculate” in the status bar (on the bottom of your screen). This is the sig-
nal that the spreadsheet has been altered but the cells have not been recom-
puted and updated. You can continue to make changes and new entries in
cells without pausing for recalculation because Excel is set to manual calcu-
lation. You can force calculation when in the manual calculation mode by
hitting F9.

Manual calculation is a useful feature with large spreadsheets. Remem-
ber that the values displayed in the cells may be wrong, however, when the
“Calculation” signal is displayed because the cells have yet to be recalculated.

Summary

This section has shown how to get uniformly and normally distributed ran-
dom numbers from Excel. The Excel functions RAND and NORMINV can
be used for this purpose. This book also provides software with our own func-
tions, RANDOM and NORMALRANDOM, that we recommend and have
used under a wide variety of applications.

When a spreadsheet is populated with many thousands of cells with for-
mulas, automatic recalculation can really slow you down. Change the setting
to manual calculation and use F9 to recalculate as needed.

Having reviewed the theory of random number generation in the previous
section and covered how to generate random numbers within Excel in this
section, we now turn to the heart of this chapter: Monte Carlo simulation.

9.4. Monte Carlo Simulation: An Example

Workbook: MonteCarlo.xls

This section presents a concrete example of how Monte Carlo simulation can
be used. Suppose we know that Larry Bird, the legendary basketball player,
is a 90-percent free-throw shooter. That is, the chance of his making any given
free throw is 90 percent regardless of whether he made or missed his previous
free throw.9

Suppose further that we want to know how well the sample percentage will
perform as an estimator of Bird’s free-throw accuracy if we have a sample
of 100 free throws. Put another way, assume we have Bird, whom we know
is truly a 90-percent free-throw shooter, take 100 free-throw attempts. What

9 According to the Web site <www.larrybird.com/stats.html> Bird’s lifetime NBA free-throw percentage
was 88.6 percent in the regular season (3,960 made out of 4,471 attempts) and 89.0 percent in the playoffs
(901 out of 1012).
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percentage of the 100 attempts will he be likely to hit? We know that we
should see something around 90 percent because that is his true long-run
performance. However, because chance plays a role in free-throw shooting,
we may well get something different from 90 percent.

Now, the possibilities are anywhere from 0 to 100 percent, but what are the
likely or typical results? Is it plausible that we could see him make only 72
out of 100 attempts for a sample percentage of 72 percent? Is making every
shot (100 straight free throws), giving him a 100-percent sample percent-
age, something that we might see every once in a while? Or, are results like
72 and 100 percent so extremely rare as not to be worth worrying about?

In statistics, “rare” and “likely” are important words, whereas “possible” is
not too interesting.10 If results like 72 percent were quite common, we would
conclude that a single sample percentage of made shots out of 100 free throws
would be a bad way to gauge Bird’s true skill. After all, if we did not know
his true percentage and had only one sample with which to guess his true, but
unknown, shooting percentage, we might get a result like 72 percent and be
way off. If, on the other hand, we consistently get a sample percentage within,
for instance, 1 percentage point of 90 percent, then it could be argued that
the sample percentage of made shots out of 100 free throws is a good gauge
of Bird’s true skill.

What we are trying to do, of course, is to evaluate the likely size of the spread
in the sample percentage of a sample of 100 free throws. Each free throw has
some chance built into it, and thus the sample percentage of 100 free throws
also has a chance component. We need to figure out how much variation
there is in the sample percentage of 100 free throws. In other words, we need
to find the SE (standard error) of the sample percentage. A small SE of the
sample percentage is good – it means that the observed sample percentages
are unlikely to stray far from 90 percent.

There are two routes to figuring out the variation in the sample percentage.
The first is statistical theory.11 The second route is the Monte Carlo approach,
which entails producing a simulation of the data generation process, gener-
ating a series of replications of that process, and analyzing the results of the
experiment. This section shows how to implement this strategy.

The OneFreeThrow sheet in the MonteCarlo.xls workbook explains how
to use the RANDOM() and IF functions to simulate the result from a single
free throw. If the random number drawn is below 0.9, the free throw is made;
otherwise, it is missed. Excel registers a “1” for a hit and “0” for a miss.

10 It is “possible” that a 90-percent free-throw shooter would miss 100 in a row. The likelihood of this
outcome, 0.1100, is so remote that we ignore it completely. The chances of making every shot are not
so great either – 0.9100 = 0.00266 percent.

11 We review exactly how statistical theory can be used to solve this problem in the next chapter.
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To simulate Bird’s shooting 100 free throws is simple: just repeat the for-
mula in 100 cells as we show in the sheet called Sample. Call the results from
100 “shots” a single repetition of the simulation. The key information from a
single repetition would be the sample percentage of 1’s. You should press F9
per the instructions in the Sample sheet to make sure you understand that
the sample percentage of 100 attempts varies; press F9 again and again and
watch how the sample percentage bounces around. Sometimes Larry does
exceptionally well, maybe 94 or 95 percent, but every once in a while he does
quite badly – well, never as poorly as Shaq,12 for instance. Badly for Larry
is 85 percent, and below 80 percent is really rare. You might repeatedly press
F9 for 20 minutes and not see 79 percent.

Now that you understand how the success or failure of a single free throw
is determined via the RANDOM function and IF statement and how we
calculate the sample percentage from 100 free throws, we can turn to actually
creating and interpreting Monte Carlo simulation results.

To figure out the spread of the sample percentage in the Larry Bird exam-
ple, we simply conduct many repetitions and examine the resulting empirical
histogram of the results. Let us say we perform 1,000 repetitions. Now we
have 1,000 sample percentages. We can find the mean of these sample per-
centages and their SD (standard deviation). You are guaranteed to get an
average close to 0.90 (90 percent). The question is, How much spread is there
in the 1,000 sample percentages? The SD of the 1,000 sample percentages is
a Monte Carlo–generated approximation to the true, exact SE of the sample
percentage. Similarly, the empirical histogram of the 1,000 sample percent-
ages approximates the exact probability histogram (or sampling distribution).

Monte Carlo simulation will always be an approximation to the exact truth
because the exact truth in a sampling context is based on an infinite number
of repetitions. One thousand repetitions will usually generate a fairly good
approximation, but 10,000 would be even closer to the truth. No finite number
of repetitions, no matter how large, will give the exact answer. Monte Carlo
simulation cannot be used to obtain the exact right answer, but it can give an
increasingly good approximation as the number of repetitions rises.

We ran a Monte Carlo analysis of the sample percentage of 100 attempts
with our simulated Larry Bird shooting free throws. Figure 9.4.1 shows the
results.

The bars in the histogram show how many samples of 100 free throws
made a particular percentage. Of the 10,000 repetitions of 100 free throws,
the lowest sample percentage was 79 percent and the highest was 99 percent.
In almost 1,400 samples, the computer simulation of Larry Bird made exactly
90 out of 100 free-throw attempts. The mean of the 10,000 sample percentages

12 Shaquille O’Neal is a tremendously gifted 7-foot-1-inch athlete in the NBA.
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Empirical Histogram for 10,000 Repetitions
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Figure 9.4.1. Monte Carlo simulation of percentage made.
Source: [MonteCarlo.xls]MCSim.

was 89.99 percent with a standard deviation of 2.995 percent. This analysis
says that the likely size of chance error for the sample percentage of 100 free
throws is about 3 percentage points. Thus, we should not be surprised to find
that Larry Bird sinks 87 or 93 percent of his free throws when he makes 100
attempts. It would be very surprising, however, if he hit all 100, or if he hit
only 80 out of 100, because these values are more than 3 standard deviations
away; in most cases that means such outcomes are rare indeed.

Now it is your turn. From the Samples sheet, click on the Run Monte Carlo 
Simulation button.

A new sheet appears in the workbook called MCSim, and you are looking at
the results of a previous Monte Carlo simulation of the sample percentage
of 100 free throws. There is one extremely important difference between
Figure 9.4.1 and the graph on the MCSim sheet, for the former is “dead”
and the latter is “alive.” That is, the graph on the Excel sheet will change as
the values in column B change. That means you can run your own Monte
Carlo simulation as many times as you wish. Simply click on the Run Monte Carlo 

Simulation

button.
A dialog box like the one in Figure 9.4.2 will appear. After clicking the OK

button, you will be able to watch the progress of the simulation. So, how did
your simulation turn out? Is your histogram similar to ours?

A more subtle implication of the Monte Carlo analysis just performed is
that the empirical histogram of the Monte Carlo simulation for Larry Bird
appears slightly skewed to the left, which you can see by looking closely at
Figure 9.4.1. This is not an accident of our particular run. Look at your sim-
ulation results carefully. Is the left tail a little longer than the right? Is the
histogram symmetrical around the expected value of 90 percent? In other
words, is the fraction of samples with 91 percent made free throws roughly
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Figure 9.4.2. Running a Monte Carlo
simulation.
Source: [MonteCarlo.xls]MCSim.

equal to the fraction of samples with 89 percent? How about the fraction
of samples with 88 percent free throws made versus that for 92 percent?
Two points can be made here. First, it is not possible to do better than
100 percent, whereas 79 percent and below are possible outcomes. Second,
statistical theory tells us that, although the histogram of the sample per-
centage of 100 free throws ought to follow the normal distribution approx-
imately, it will not be distributed exactly normally. This point is discussed
in Chapter 10, in greater depth. For now, we remind you that the central
limit theorem tells us that the sampling distribution of the sample percentage
comes to resemble the normal distribution more closely as the sample size
increases.

Let us summarize the Larry Bird free-throw shooting example. We wanted
to know how much spread there was in the sample percentage. Instead of tra-
ditional analytical methods based on the theory of probability and statistics,
we adopted the Monte Carlo simulation strategy. We resampled repeatedly
and thereby obtained an approximation to the SE of the sample percent-
age of 100 attempts. Our run gave us a value of about 3 percent. What did
you get? The formula for the SE of the sample percentage gives us precisely
3 percent.13 It is, of course, no accident that Monte Carlo experiments yield
results close to the standard formulas of statistical theory.

13 The appropriate formula is

SE for sample percentage =
√

Probability of 1 × Probability of 0√
Sample size

.
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If Monte Carlo simulation will simply reproduce already known answers,
why bother? First, it enables you to see clearly the source of chance error
and variation in a problem. Formulas often make it difficult to see what is
really going on. Although some people quickly understand and accept the
notion of randomness and variation, we believe most people learn much bet-
ter when they actually see variation. We believe many more people will really
understand when they hit F9 to draw another sample and see that sample per-
centage bouncing around. By hitting F9, you are doing and understanding
instead of passively reading or listening.

Second, Monte Carlo simulation focuses your attention on the details of
the data generation process. The method requires that you set up and imple-
ment a chance process. This requires careful thought about the source of the
randomness and how it is to be modeled.

Finally, Monte Carlo techniques drive home the concept of the SE, which is
surely one of the most difficult ideas in statistics and econometrics for begin-
ning students. The SE measures the spread of outcomes of chance processes.
Visually, it is the spread of the probability histogram of the different outcomes
of the chance process. The Monte Carlo method allows us to approximate
the probability histogram and therefore the SE just by running numerous
repetitions of the same data generation process.

Although our primary purpose in using Monte Carlo is to teach you econo-
metrics, we also would like to point out that there are many random variable
problems with no analytical solution. That is, traditional statistical theory
cannot solve them. This happens in econometrics often when small sample
sizes are under consideration. The advent of extremely fast computers has
opened a new avenue for solving these problems. Thus, it is not merely a
question of a neat alternative to a tried and true approach – Monte Carlo
methods offer approximate solutions to previously impossible problems.

To see another example of the Monte Carlo method, click on the Streak Finder

button (on the Sample sheet near cell D17) a few times. Each time, the longest
run of consecutive free throws made in one set of 100 attempts is reported
(see Figure 9.4.3).

Streaks in sports are the subject of much debate. Although no one disputes
that streaks occur, there is an argument over whether observed streaks are
caused by something other than chance.14 The streaks exhibited by our virtual
Larry Bird are due to chance alone because we draw random numbers to
determine if a free throw is made.

There is variation in the longest streak of free throws made in each sample
of 100 attempts. What is the average longest streak in 100 free throws? What
is the spread in the distribution of the maximum streaks? What does the

14 See the Hot Hand in Sports Web page: <www.hs.ttu.edu/hdfs3390/hothand.htm>.
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Figure 9.4.3. Maximum streak report.
Source: [MonteCarlo.xls]Sample.

sampling distribution of the maximum streak look like? As before, we forego
analytical solutions to these questions in favor of Monte Carlo analysis.15

Click on the Monte Carlo Simulation
Max Streak button (on the Sample sheet near cell D22) to

see a demonstration of how a Monte Carlo simulation can be used for approxi-
mate determination of the average and spread of the Max Streak sampling dis-
tribution. As before, a new sheet, this time named Streak, appears in the work-
book with results from 1,000 repetitions available for your inspection. Notice
that Max Streak is not normally distributed – it has a long right-hand tail.

You might want to try your own Monte Carlo analysis by clicking the
Run Monte Carlo 

Simulation button. Once again, the dialog box will describe the simulation
and the progress bar will keep you updated on where the simulation stands.
The progress bar is more useful this time because the simulation takes longer
(calculating the longest streak in a stretch of 100 free throws is much harder
than calculating the percentage made). You can do other work while the
simulation is running, but this may slow down the simulation itself (after all,
your computer will be busy doing other tasks instead of grinding out the
next repetition). If your screen saver comes on, this will also slow down the
simulation. You can interrupt the simulation by pressing the Esc (escape) key
on the upper left-hand corner of your keyboard. Excel will prompt you with a
dialog box, and you can click the End button to stop the simulation. Of course,
if you happen to be running on the latest-generation chip, these suggestions
are moot because the simulation will fly through 10,000 repetitions.

Summary

The free-throw shooting example in this section demonstrates how Monte
Carlo simulation works. We will use Monte Carlo analysis repeatedly to

15 For an analytical approximation to the exact distribution of the maximum streak problem, see William
Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd edition, revised printing,
New York: John Wiley and Sons, p.325. Our Monte Carlo results agree with Feller’s approximation.
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examine the properties of statistical estimators and to explain a variety of
ideas and concepts in econometrics.

With the computer generating random numbers, it will be fast and easy
to draw many random samples and then examine the resulting distribution.
This will provide a visual, concrete demonstration of difficult, abstract ideas.
In addition, with Excel, you will be able to run your own simulations and
compare your results to ours. If a point is unclear, you can always run the
simulation again.

9.5. The Monte Carlo Simulation Add-In

Workbooks: MonteCarlo.xls; MCSim.xla (Excel add-in);
MCSimSolver.xla (Excel add-in)

The previous section introduced Monte Carlo simulation using a workbook
that was especially designed for that purpose. This section shows how to use
an Excel add-in packaged with this book that will enable you to run a Monte
Carlo simulation from any Excel workbook. The add-in allows you to easily
and quickly run Monte Carlos of your own models and chance processes.

The first step is to install the Monte Carlo simulation add-in. The software
is in the Basic Tools/ExcelAddIns/MCSim folder. Open the MCSim.doc file
in that folder for instructions on how to install the add-in. Having installed
the MCSim.xla file, open the MonteCarlo.xls workbook (from the previous
section) to test drive the Monte Carlo Simulation add-in. Go to the Sample
sheet (because this is where the free-throw shooting chance process is imple-
mented in Excel) and execute Tools: MCSim . . . to get the dialog box shown
in Figure 9.5.1.

Enter cell B1 (which is the sample percentage) and click the Proceed but-
ton; the MCSim add-in will then go to work. It simply recalculates the sheet for
as many repetitions as requested and keeps track of the value of cell B1. When
finished, it adds a worksheet to the workbook displaying the first 100 repeti-
tions along with summary statistics and a histogram of the complete results
(see Figure 9.5.2).

Comparing the results of the Monte Carlo Simulation add-in to the Monte
Carlo built into the workbook shows the same substantive results, but the
display in the workbook is more readable. The Monte Carlo Simulation add-
in does not recognize that the sample percentage from 100 free-throws is not
a continuous number (0.91 and 0.92 are possible, but 0.915 is not) because it
is built for any chance process. Thus, in many of our workbooks that feature
Monte Carlo simulation, we will include the simulation in the workbook and
tailor it to the specific problem at hand.

The Monte Carlo Simulation add-in is ideal, however, for exploring prob-
lems in greater detail or running Monte Carlos on your own chance processes.
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Figure 9.5.1. Preparing to run a Monte Carlo simulation.

For example, in the free-throw shooting model, you might wonder what hap-
pens to the spread in the sample percentage as the number of free throws
changes. There is no way to explore this question in the MonteCarlo.xls work-
book because we did not build in this option. You can easily, however, modify
the sheet and use the MCSim add-in to explore this question.

To see how the SE of the sample percentage varies as the sample size
changes, create a new cell in the Sample sheet that computes the sample per-
centage of a different number of free throws. In cell C1 of the Sample sheet,
we entered the formula, “=AVERAGE(B4:B53)” to obtain the sample per-
centage of 50 free throws. Now, run the Monte Carlo Simulation add-in using
cell C1. You should see that the SD of the 1,000 repetitions (which is our
approximation to the true standard error) is larger and the histogram is more
spread out and looks even less normally distributed.

You might worry about the bounce in the standard deviation. Remember
that a Monte Carlo is never going to give the true, exact answer because that
would require an infinite number of repetitions. To obtain a closer approxi-
mation to the exact SE of the sample percentage, however, you can increase
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Average 0.900
SD 0.0316
Max 0.990
Min 0.790

Summary Statistics Notes

Histogram of Sample!$B$1

0.789 0.839 0.889 0.939 0.989

Figure 9.5.2. Results from the Monte Carlo Simulation add-in.
Source: [MonteCarlo.xls].

the number of repetitions. We also recommend that you get in the habit of
running and rerunning Monte Carlos if you have doubts about the results.
After all, you are just a few clicks away and the computer never gets tired.

You can modify the sheet to explore the sample percentage made of
200 free throws. Simply extend the formula in cell B103 (search for “fill down”
in Excel’s Help if you do not know how to do this) to cell B203; then find
the average of the cells from B4 to B203. Run the Monte Carlo Simulation
add-in to see the effect on the standard error. Note that you can compare two
cells and the results will be displayed on the same histogram. Run a Monte
Carlo that compares the sample percentage of 100 free throws to the sample
percentage of 50 free throws.

The pattern is clear: As n (the number of free throws) increases, the SE
of the sample percentage falls. In other words, the sampling distribution
becomes more tightly concentrated around the true shooting percentage.
You have demonstrated that the sample percentage is a consistent estimator
of Larry Bird’s true shooting percentage, which is an important property of
the sample percentage in this chance process. (We study consistency in more
depth in Chapter 15.)

Summary

Many of our workbooks will have Monte Carlo simulations that are config-
ured especially for the chance process being discussed. By clicking a button,
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you can display the results. The Monte Carlo Simulation add-in is a more
flexible, general tool. It permits resampling from any chance process that has
been modeled in an Excel workbook. Use it to explore advanced ideas and
to analyze your own problems via the Monte Carlo method.

Once you use Monte Carlo methods on your own models, you may find
a second Monte Carlo add-in that is part of this book especially helpful.
The Monte Carlo Simulation with Solver add-in uses a special, non-volatile
cell formula, RANDOMNV(), to draw random numbers. After loading the
MCSimSolver.xla add-in, you can enter RANDOMNV() as part of a cell
formula. Use RANDOMNV() instead of RAND() or RANDOM() as you
implement the optimization problem on a worksheet.

The volatility of RAND() and RANDOM() works in our favor when doing
conventional Monte Carlo simulation (with MCSim.xla) because we can eas-
ily recalculate the sheet, then track the results. However, a Monte Carlo based
on running Solver each repetition (e.g., to find a nonlinear least squares fit as
discussed in Chapter 22) cannot be implemented with volatile random num-
ber formulas because each time Solver puts down a trial solution, the sheet
recalculates and gets a new random number. For more information on this
advanced Monte Carlo simulation tool, please open the MCSimSolver.doc
file in the Basic Tools \ ExcelAddIns \ MCSim folder.

9.6. Conclusion

Random number generation is the heart and soul of Monte Carlo simulation.
This chapter has briefly reviewed the theory behind the generation of pseu-
dorandom numbers via linear congruential generators and explained how to
obtain random numbers on a spreadsheet with either Excel’s own RAND
function or the RANDOM function packaged with this book.

Once random numbers are generated on a sheet, it is a short jump to a
full-fledged Monte Carlo simulation. By repeatedly resampling and keeping
track of the results, we create a concrete, visual representation of sample-
based statistics. Our workbooks in the book may have built-in Monte Carlos,
or we may use the Monte Carlo Simulation add-in that was introduced in
the previous section. We hope the latter will stimulate your creativity and
encourage you to model chance processes in a wide a variety of applications.

Econometricians have known that Monte Carlo simulation is an effective
way to teach sophisticated concepts involving chance, but actually running
a resampling procedure requires writing code, including loops, and storing
results. We have completely removed this barrier in our materials. This book
will use Monte Carlo methods extensively to race estimators and learn sophis-
ticated concepts that once were accessible only through advanced mathemat-
ical means.
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9.7. Exercises

1. Change the setup in the Sample sheet of MonteCarlo.xls to simulate the free-
throw shooting behavior of Shaquille O’Neal, who shoots 50 percent from the
free-throw line. Run a 1,000-repetition Monte Carlo simulation of 100 free
throws by O’Neal. Of course he will make fewer free throws on average than
Bird, but what happens to the spread in the number of free throws made per
100 attempts?

2. Change the setup in the Sample sheet of MonteCarlo.xls to simulate a more
complicated process. On the very first shot that a player takes, he or she has
an 80-percent chance of hitting the free throw. On every subsequent shot, the
chances of hitting depend on what happened on the previous attempt. In taking
a given shot, if the player missed the previous time, his or her chances of hitting
are 70 percent; if the player hit, his or her chances are 90 percent. Run a 1,000-
repetition Monte Carlo simulation of 100 such free-throw attempts. What are
the Monte Carlo estimates of the expected percentage of free throws made and
the SE of the percentage of free throws made?

3. Open the EcolCorr.xls workbook used (in Chapter 2) and run a Monte Carlo
simulation (from the Live sheet) with 10,000 repetitions that tracks both the
individual- and group-level correlation coefficients. Take a picture of your
results. Copy and paste the picture in your Word document. Comment on your
results.

4A. How do the average and SD reported by the Monte Carlo simulation relate to
the expected value and SE?

4B. As the number of repetitions increases, what happens to the expected value and
SE?

5A. Use the Record All Selected Cells option and run another 10,000-repetition
Monte Carlo. In your 10,000 samples, how many times was the group-level r
negative? HINT: Use an IF statement like this: =IF(D3 < 0,1,0), then add the
entire column. (Do not forget to hit F9 to calculate the sheet if needed.)

If individual-level r > 0 and group-level r < 0, then you have an example of
the worst form of the ecological fallacy – association reversal.

5B. It is also possible to obtain a negative individual-level r with a positive group-
level r. Use your Monte Carlo results to demonstrate this. HINT: Use the IF
statement method used in part A.
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Review of Statistical Inference

One famous difficulty in teaching elementary statistics is getting across the idea that
the sample average is a random variable. Randomness, after all, is quite a compli-
cated idea. It is easily overwhelmed, either by the definiteness of the data, or by the
arithmetic needed to calculate the average.

David Freedman, Robert Pisani, and Roger Purves1

10.1. Introduction

The goal of statistical inference is to use sample data to estimate a parameter
(a statistic about the population) or determine whether to believe a claim
that has been made about the population. We never actually observe the
parameter we are interested in; instead we use an estimate of the parameter
based on data from a sample. The sample estimate is almost always different
from the claimed value of the parameter. There are then two possibilities: the
difference (between the estimate and the claim) may be real or it may be due
to chance. Thus, the fundamental question of statistical inference becomes,
Is the difference real or due to chance?

To answer the fundamental question, we require a model for the data
generation process, or DGP. The DGP describes how each observation in the
data set was produced. It usually contains a description of the chance process
at work. Given a DGP and certain parameter values, we can calculate the
probability of observing particular ranges of outcomes.

In this chapter, we try to clarify these complicated issues by reviewing basic
concepts of inference from introductory statistics. Our approach is some-
what unusual in that we downplay the mathematical formalism and instead
emphasize the logic of statistical inference. We borrow the extremely useful
metaphor of a box model from Freedman, Pisani, and Purves (1998). The

1 Freedman et al. (1998b, p. 20).

238
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box model is a way of concretely representing a random variable. In this
chapter, we will distinguish between two basic types of box models – we call
them coin-flip and polling box models. Though these models differ in impor-
tant respects, it turns out that we can answer the fundamental question of
inference in the same way with both models.

In subsequent chapters, we will develop additional box models that are
designed to handle the more complicated situations arising when one exam-
ines data from observational studies. We will, however, be able to use the
basic strategy outlined in this chapter to answer the question of whether the
difference is real or due to chance.

The next section introduces the box model as a metaphor for handling
chance processes. Sections 10.3 and 10.4 introduce the two fundamental box
models and demonstrate how they work. We then present a review of hypoth-
esis testing and follow up with the concept of a consistent estimator. Finally,
we explain the algebra of expectations – a set of rules that are useful for
computing the expected value and standard deviation of random variables.

We will call on the box model metaphor over and over again throughout
the rest of this book. We will almost always employ Monte Carlo analysis to
demonstrate properties of the various box models. On occasion, we will make
use of results from the algebra of expectations to provide an alternative, more
rigorous derivation of these properties.

Although the experienced statistics student may wish to skip this review
chapter, we recommend a quick perusal of the material if only to ensure that
the box model metaphor makes sense. Of course, every student can benefit
from a detailed review to sharpen the crucial skills and concepts learned in
an introductory statistics course.

10.2. Introducing Box Models for Chance Processes

A powerful way of explaining the elements of a process that contains chance
as a driving force is a box model, which is nothing more than a visual descrip-
tion of the data generation process at work. Figure 10.2.1 shows a box model
for the sum of 10 rolls from a single die. After each roll of the die, the number
of spots on the side of the die facing up are counted.

As you can see, the actual act of tossing a die 10 times and recording the
results of each roll is represented by drawing at random from a box with tick-
ets representive the outcomes of the 6 different possible rolls. There is 1 ticket
for each outcome because they are equally likely. The arrow symbolizes a toss
of the die. We always include the number of draws from the box, whether it
is with or without replacement, and a description of what is done with results
of the sample. “With replacement” means that after a ticket is drawn from
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10 draws with replacement

Sum the 10 realized rolls

These six possibilities from

one die are represented by
the tickets in the box:

1 2 3 4 5 6

1 1 1 1 1 1

3 1 3+ + +. . .

Figure 10.2.1. Box model for the sum of 10 rolls of a die.

the box, it is returned. Thus, the contents of the box are the same for every
draw.

Given this simple data generation process, there are obvious conclusions
you can immediately see. For example, the lowest possible sum is 10 and the
highest is 60. It can also be easily imagined that there will be variation in
the outcome. Repeat the experiment – that is, roll the die 10 times and sum
the results; you might get 40 one time and 36 the next time. Statistical theory
provides formulas for describing the distribution of the outcomes. The next
section explains this in more detail.

The box model has several outstanding benefits:

� It forces an explicit model of the data generation process.
� It makes the underlying similarities between seemingly different phenomena clear.
� It facilitates understanding of sophisticated statistical concepts without quantita-

tive jargon or symbols.

In short, the box model is a great way to learn about probability. We owe
the box model metaphor to Freedman, Pisani, and Purves (1998). We will use
it extensively throughout the rest of this book.

To build a box model, we follow a simple recipe composed of five questions.
We used this recipe to construct the box model in Figure 10.2.1. Below each
question, we report the answer as it applies to the example of the sum of
10 rolls of a single die.

� What numbers go into the box?

The numbers one through six because these are the six different possible
results.

� How many of each kind?
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One of each kind because each result is equally likely.

� How many draws?

Ten draws because that is how many times you roll the die.

� Are they drawn with or without replacement?

With replacement because, when you pick up the die to roll it, all six pos-
sibilities are always available.

� What is done with the tickets after they are drawn from the box?

We sum them because that was the original description of the chance
process.

Here are general principles that go into constructing the box:

� The different types of tickets in the box correspond to the different possible out-
comes in an individual realization of the data generation process.

� The chance of drawing any particular type of ticket from the box must equal the
chance of obtaining the corresponding outcome in an individual realization of the
data generation process.

� The number of draws from the box equals the number of realizations in the data
generation process under consideration.

There are two ways of determining the properties of a data generation
process. The first relies on statistical theory and uses formulas and formal
mathematics. We offer a taste of this approach at the end of this chapter.
The second approach, Monte Carlo simulation, was explained in the previ-
ous chapter. It relies on an artificial recreation of the DGP and then uses
computers for resampling. This is our main tool in exploring the properties
of a DGP.

Summary

A data generation process can be described by an appropriately configured
box model. Put another way, a sample is like the draws from an appropriately
configured box. Although not all chance processes can be represented with
a box model, many important chance processes can be so represented. As
determined by the chance process, creating the box model by answering the
five questions in the box model recipe may or may not be easy. Box models
can become rather sophisticated.

In the next two sections, we review two generic types of box models com-
monly discussed in introductory statistics courses. In the next few chapters
of this book, we introduce additional box models.
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10.3. The Coin-Flip Box Model

Workbook: BoxModel.xls

This section applies the box model metaphor to a basic chance process we
call the coin-flip box model. After making the box model, we will implement
it in Excel and use Monte Carlo simulation to examine the properties of the
data generation process. We proceed by example.

Making a Coin-Flip Box Model

A coin is flipped 100 times. How many heads can we expect to get? How
much spread will there be in the outcomes?
The box model recipe can easily be applied to this problem.

� What numbers are on the tickets in the box?
We use “1” for heads and “0” for tails. Rather than “H” and “T” because letters
cannot be added. Heads is 1 (instead of tails) because the question asks about the
number of heads we expect to get in 100 flips.

� How many tickets of each kind?
One of each. There is a 50-percent chance of getting heads.

� How many draws from the box?
One hundred. One hundred flips of the coin is like 100 draws from the box.

� Are the draws with or without replacement?
Because the chances of obtaining heads or tails stay constant, the contents of the
box stay constant after each draw; hence, the draws are with replacement.

� What is done to the tickets after they are drawn from the box?
We add up the numbers on the tickets to obtain the number of heads.

The box model for the data generation process of the number of heads in
100 flips of a coin looks like Figure 10.3.1. The box model says that the
100 coin flips can be interpreted as if they were 100 draws with replacement
from a box with 2 tickets in it. One ticket is a 0, the other a 1. Because the
draws are made with replacement, the contents of the box are the same every
time a ticket is removed from the box. After the 100 draws, we add up the
numbers on the tickets. The coin is never anywhere near a box and there are no
tickets, but that does not matter. The data generation process at work can be

1

100 draws
 with
replacement0

11

1 + 0 + 1 +1 + 1 + 0 + ... + 1

Figure 10.3.1. Box model for sum of 100 coin flips.
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1 

1+0+0+1+1+1+0+1+0+ . . . +1 

100 draws
with
replacement0

1 1 

AREA 1: 
THE BOX 

AREA 3: THE
SAMPLE sample sum = 47

AREA 2: THE
PROBABILITY
HISTOGRAM

sample
sumEV = 50

SE = 5

EV = average of box × # of draws 

SE = SD of box × Sqrt(# of draws) 

average of box = 0.5 
SD of box = 0.5 

Figure 10.3.2. Three conceptual areas for the box model.

modeled as Figure 10.3.1 describes it, and the outcome can be interpreted as
the sum of 100 draws from the box.

We can analyze this chance process by recognizing that there are three
separate conceptual areas associated with the box model:

� Area 1. The box itself. Sometimes, this is also called the population.
� Area 2. The probability histogram of the sample statistic. This is also called the

sampling distribution. Unlike a regular (or empirical) histogram that describes
data, the probability histogram represents chance.

� Area 3. A single set of outcomes of the data generation process. This is called
the sample. In the 100 coin-flip data generation process, with our sample of 100
individual outcomes, perhaps we got a total of 47 (or maybe 52). This sample sum
is an example of a sample statistic.

It is obvious that we will usually get around 50 heads when we set the data
generation process running. That is, 50 is the expected value of the sum of
the draws for this chance process. Much less obvious is that the spread of the
sample sums around the expected value, called the standard error (or SE), is
five heads.

These two statements, about the expected value and SE, are statements
about the probability histogram for the infinite number of outcomes that
would be generated if the data generation process were repeated forever
(i.e., if we took an infinite number of repetitions). The center and spread of
this special long-run histogram are found by applying probability theory to
the random process. A more elaborate picture of what is going on looks like
Figure 10.3.2.
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Many fundamental ideas in statistical inference are captured in Fig-
ure 10.3.2. In addition to the box itself and the sample, we have added another
area: the probability histogram. It represents the distribution of the sample
sum.

An extremely important concept is that the sample sum is, in fact, a ran-
dom variable. If repeated, the data generation process will produce a new
(and probably different) sample sum because a whole new set of individual
outcomes will be generated. Thus, even though a particular sample sum (for
instance, 47) may be realized, we understand that there is variability in the
sample sum.

The center of the sample sum’s distribution is called the expected value
(or EV) of the sample sum. It can be calculated by taking the average of
the box multiplied by the number of draws. In our coin-flipping example, we
have 0.5 × 100 = 50 heads. The spread of the distribution of the sample sum
is captured by its SD. Because we are dealing with a sampling distribution (a
probability histogram for a sample statistic), it is given the special name SE.
Basic statistical theory tells us that the SE of the sample sum of 100 draws
can be found by multiplying the SD of the box times the square root of the
number of draws (or 0.5 · √

100 = 5 in our example).2

Every statistics student struggles mightily with the SD versus the SE. The
SD is used to describe the spread of a list of numbers (whether that list
consists of tickets in the box or observations in the sample). The SE, on the
other hand, is only about the spread of the sampling distribution. The SE is
a type of SD, but it is the SD of a very special list – the list of the possible
outcomes of the chance process, a list depicted as the sampling distribution.

Monte Carlo Simulation of the Coin-Flip Box Model

Open the BoxModel.xls workbook to see how the coin-flip box model can
be implemented in Excel. Click on the Make a Box

Model button to display the Ticket
Creator form (as shown in Figure 10.3.3). The number of tickets is already
set to 2, as desired, and we want to draw tickets with replacement, which
is already specified. For the number of tickets, you can type in any integer
between 2 and 10, inclusive. A box with only one type of ticket is trivial (you
will always obtain whatever is on that ticket), whereas we set 10 as an upper
limit owing to space limitations.

Next click the OK button. A second tab, Types of Tickets, appears in the
form. It allows you to indicate what number should be on each type of ticket
and how many there should be of each type. Fill in a “1” and a “0” for the

2 The SD of the box is computed by taking the root-mean-square deviation of the value of each ticket
from the average of the box. In the next subsection we will show how the computation is made.
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Figure 10.3.3. Ticket creator form.
Source: [BoxModel.xls]Setup

numbers on the tickets. (The program will only accept integer values for the
numbers on the tickets; if you had typed in 1.1 and 0.234, you would still get
tickets with values 1 and 0 on them.) Next, specify that there is one of each
type of ticket. Figure 10.3.4 shows what the screen should look like.

Click the OK button; a new screen will pop up asking you to indicate the
quantity of draws from the box and whether you are summing or averaging
the results. Enter “100” for the number of draws and leave the option button
for Sum selected. The screen should look like Figure 10.3.5.

Click OK and observe in Figure 10.3.6 that two areas of the original Setup
worksheet now describe the box model. Cells shaded in yellow describe the

Figure 10.3.4. Ticket creator with types of tickets for coin-flip box model.
Source: [BoxModel.xls]Setup.
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Figure 10.3.5. The number of draws and type of statistic choices.
Source: [BoxModel.xls]Setup.

contents of the box. Several rows below, summary statistics describe the con-
tents of the box: In this case, the average and the standard deviation of the
box are both 0.5.

The cell range I1 through M15 in BoxModel.xls contains the computation
of the SD of the box. Note that the SD of the box is based on a weighted
sum of the squared deviations of each ticket from the average of the box. The
weights are the probabilities of obtaining each type of ticket, i.e. the number
of tickets of that type divided by the total number of tickets in the box.

The space between the two displays allows room for up to 10 different
types of tickets. Green-shaded cells show what is done with the tickets in the
box. We are going to take 100 draws with replacement and sum them. We
have answered all five questions in the box model recipe and are ready to
explore the properties of the coin-flip box model.

The Draw a Sample
from the Box button does exactly that: Click it to see that it takes you to

the Sample worksheet and displays the outcome a single sample. Figure 10.3.7
is one potential sample. Yours is probably different.

Number of Types
Number on Ticket How Many Tickets

0
1 1

1

2

Average 0.500
SD 0.500

Number of Draws 100
Statistic Sum
Draws With Replacement

The Contents of the Box

Draws from the Box

Figure 10.3.6. The coin-flip box model
implemented.
Source: [BoxModel.xls]Setup.
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Figure 10.3.7. One sample from a coin-flip box.
Source: [BoxModel.xls]Sample.

The empirical histogram displayed shows that, in the sample drawn in
Figure 10.3.7, the number of 0’s drawn slightly exceeded the number of 1’s. In
fact, the sample sum displayed in the top center is 48. You can draw repeated
samples by clicking the Draw a Sample

from the Box button (in the Sample sheet) again and
again. The sample sum will bounce around, usually falling in the 45 to 55
range. To get a better idea of the chances of obtaining particular outcomes,
click the Return to Setup

Sheet button.
The probability histogram tells you the exact, long-run probability of

obtaining a particular outcome to a chance process. Suppose we want to
know the chances of obtaining exactly the expected value – a sample sum
of 50. On the Setup sheet, hit the Draw Probability

Histogram button. You will get a chart
that looks like Figure 10.3.8. Notice that the probability histogram strongly
resembles the normal curve. This diagram shows that 50 outcomes is the
most likely outcome. To see the exact probability of this outcome, click the
Show ProbHist Sheet button, which takes you to a new sheet called ProbHist.

If you scroll down to cells A48:B54, you will see that the probability of
obtaining a sum of exactly 50 is 7.96 percent. This is an exact result to two
decimal places. If we took an infinite number of sets of 100 draws, we would
find that 7.96 percent of the sets summed exactly to 50.

In addition to the exact probability histogram, the BoxModel.xls workbook
allows you to run Monte Carlo simulations. Let us draw 10,000 samples from
this box and look at the results. To do so, return to the Setup sheet and click
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Probability Histogram for Sum of 100 Draws from Box
Containing 2 Tickets

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98
Sum

Figure 10.3.8. Probability histogram for the coin-flip box model.
Source: [BoxModel.xls]Setup.

on the Run Monte Carlo
Experiment button. An hourglass appears, and a short time later (how

short depends on your computer), you are taken to the MonteCarloResults
worksheet. There is much information on this sheet. Begin with the upper-
left-hand corner shown in Figure 10.3.9.

The yellow (bottom) section of Figure 10.3.9 shows the contents of the
box, and the green (middle) section tells what is done with the draws from
the box. The blue (top) section summarizes the Monte Carlo results. In this
case, we ran 10,000 repetitions of the chance process. The average of the
10,000 sample sums was 50.002, whereas the spread (SD) of the sample sums
was about 4.964. You will obtain different results, but they should be pretty
similar. Finally, the sample sums from the first 100 repetitions are displayed
in the lower left beneath the yellow box with the contents of the box (you
will need to scroll down to see all of them).

More information on the outcome of the Monte Carlo experiment is
contained in the middle of the worksheet. The histogram on top shows
the distribution of the 10,000 sample sums. The table below the histogram
gives the exact number of repetitions that produced each of the possible
sample sums.

Number of Types
Number on Ticket How Many Tickets

1 1
1

2

0

The Contents of the Box

Monte Carlo Experiment Results
Number of Repetitions =10,000

Average of the Sample Sums = 50.002
SD of the Sample Sums = 4.964

Draws Are with Replacement
Statistic = Sum

Number of Draws = 100
Draws from the Box

Figure 10.3.9. Monte Carlo results for coin-
flip box model.
Source: [BoxModel.xls]MonteCarloResults.
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The probability histogram gives the long-run chances of obtaining given
outcomes of the chance process. The Monte Carlo experiment approximates
the long-run probability distribution. How well does the Monte Carlo exper-
iment conform to the probability histogram? To find out, click on the

Show Data from
Probability Histogram button. With 10,000 repetitions, the Monte Carlo does pretty
well.

The probability histogram shows the exact long-run probability of obtain-
ing a given result from the chance process. As the number of repetitions in
the Monte Carlo experiment is increased, the empirical histogram showing
the results of the experiment comes to resemble the probability histogram
more and more closely. To put it loosely, the more repetitions, the closer we
are to the long run.

There are two more important points to make about this example before
we move on to the next box model. First, the spread of the Monte Carlo
sample sums is measured by the empirical SD. The SE is the standard
deviation of the probability histogram and is approximated by the empirical
SD; the approximation improves as the number of repetitions in the Monte
Carlo simulation increases.

The second point relates to the shape of the probability histogram. Using
BoxModel.xls, you can demonstrate to yourself that, as the number of draws
increases, the probability histogram converges toward a normal curve (as
shown on the right). To see this in the context of our example, go back
to the Setup sheet and take a shortcut to setting up a new DGP. Change
cell D2, which currently lists the number of draws as 100 to 4 and then
click on the Draw Probability

Histogram button. Repeat this process, changing the number of
draws to 10 and then 100. The resulting probability histograms are shown in
Figure 10.3.10. It is easy to see that the probability histogram is converging
toward a normal curve as the number of draws from the box increases. Notice
that the expected value of the data generation process rises from 2 to 5 to 50
as we increase the number of draws from 4 to 10 to 100. This is a reminder
that the probability histogram is a function of the number of draws.

Summary

This section introduced the coin flip model, which can be adapted to a variety
of situations that may initially seem quite far-removed from a coin flip. By
exploring how the coin flip model works, we gain general insight because all
box models, no matter how complicated the data generation process, are orga-
nized similarly. There are three conceptual areas: the box itself (sometimes
called the population), the sample of draws from the box, and the probabil-
ity histogram or sampling distribution for sample statistics created from the
sample draws. The center of the probability histogram is the expected value;
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Probability Histogram for Sum of 4 Draws from Box Containing 
2 Tickets

0 1 2 3 4

Sum

Probability Histogram for Sum of 10 Draws from Box Containing 
2 Tickets

0 1 2 3 4 5 6 7 8 9 10

Sum

Probability Histogram for Sum of 100 Draws from Box 
Containing 2 Tickets 

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98

Sum

Figure 10.3.10. Convergence to the normal curve.

its spread is called the SE of the sample statistic. This section also showed
that Monte Carlo simulation can be used to approximate the probability
histogram.

In the specific case of recipes based on summing the draws (as in the coin
flip model), we demonstrated the convergence of the probability histogram
toward the normal curve as the number of draws increases. This is an impor-
tant result.

The next section covers a different type of box model, one with an actual,
finite population. Fortunately, much of the work in this section carries over
to this new box model.
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10.4. The Polling Box Model

Workbook: PresidentialHeights.xls

Unlike the coin-flip box model, in the polling box model the contents of
the box represent an actual population. In a poll, the box represents poten-
tial voters with the tickets registering who they would vote for. The polling
box model is useful in social science applications in which researchers wish
to know about the characteristics of a population. We will begin with an
artificial example in which the characteristics of the population are actually
known.

Suppose we were interested in the trivial question of the average height of
U.S. presidents through the year 2005 and we are about to obtain a random
sample of 10 presidents’ heights. What can we say about the types of samples
we could get? What are the expected value and the SE? To answer these
questions, we model the data generation process.

Open the PresidentialHeights.xls workbook and proceed to the Setup
sheet. Column B contains the heights of the 43 presidents of the United
States in inches (to the nearest half inch). These 43 values will serve as our
population. We are interested in the sampling distribution of the sample aver-
age under a variety of sampling schemes including the following: if we sample
with or without replacement, the number of draws (or size of the sample),
and if we decide to take a shortcut and use consecutive presidential heights
to construct the sample.

When sampling without replacement, the box model looks like Fig-
ure 10.4.1. The box contains 43 tickets, but the summary of the population in
the Setup sheet makes clear that there are only 17 unique values. For example,
8 Presidents were 73 inches tall. Each ticket is stamped with the president’s
height. We will draw out 10 tickets, without replacement, and average the
10 observations. This completes our description of the box model.

Figure 10.4.1 adds population statistics and shows a single sample outcome.
It also includes the probability histogram of the sample average. Each time
we sample, we will get a different sample average. The probability histogram
tells us the chances of getting a particular result. For example, we might want
to know the chances of getting a sample average that is 72 inches or higher.

Make sure the controls in the Setup sheet are set to take 10 draws without
replacement and click the Draw Sample button. You will be taken to a new sheet
called Sample, where your sample will be displayed. In the Sample sheet,
click the Draw Sample button a few times to see that the sample average bounces
around, because a new set of presidents is being included in each new sample.

We are interested in the expected value and SE of the sample average.
Although, in principle, we could find the exact probability histogram using
analytical methods, we will proceed with the Monte Carlo approach. We
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average = 70.69 
SD = 2.75  

10 draws without 

replacement 
 43 tickets 

average of draws = 70.1 inches 

SD of the sample list = 2.94 inches 

+ + + 
 

10 

69  

71 72 68 

AREA 2: THE
PROBABILITY
HISTOGRAM

sample 
average 

SE = 1.5 

EV = 70.7 

SD of box 
SE =

AREA 3: THE
SAMPLE

AREA 1: 
THE BOX

72  
71 

 × CF

Sqrt(# of draws) 

Figure 10.4.1. Box model for presidential heights.

could write down the sample average every time we click the button, but why
not let the computer keep track of this for us?

Verify that the Setup sheet options are “without replacement” and “10
draws,” then go to the MonteCarloResults sheet. We ran a 10,000 repetition
Monte Carlo by clicking the Run Monte Carlo 

Simulation button and got the results shown in
Figure 10.4.2.

Average 70.67
SD 2.72
No. Tickets 43

Monte Carlo Experiment Results

Number of Repetitions =10,000

Average of the Sample Averages = 70.68

SD of the Sample Averages = 0.770

Number of Draws = 10

Statistic = Average

Draws from the Box

Draws Are without Replacement

The Contents of the Box

Figure 10.4.2. Monte Carlo results.
Source: [PresidentialHeights.xls]
MontecarloResults.
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Your results should be similar. Notice that the average of the 10,000 rep-
etitions is close to the expected value (the average of the 43 presidential
heights) and the SD of 0.77 approximates the exact SE of the sample average
(computed in cell H28).

An alternative approach would have been to use the standard formula for
the SE of the sample average, derived from statistical theory. Knowing the
SD of the box, one could compute the SE of the sample average as

SD(Box)√
n

= 2.72√
10

= 0.86.3

This is quite different from the Monte Carlo result. Something is wrong. In
fact, it is our analytical work. The formula is good only for sampling with
replacement or when the sample is very small compared with the size of
the population. Neither of those conditions is met here. We need to use the
correction factor (CF in Figure 10.4.1) to compute the SE correctly. The CF
is based on the fraction of tickets taken out of the box:

CF =
√

PopulationSize − SampleSize
PopulationSize

.

Once we multiply the SE with replacement by the CF (as shown in cells
H25:I28 of the MonteCarloResults sheet), we obtain 0.75, which agrees much
better with our Monte Carlo approach.

With the Monte Carlo results, we can directly answer the question regard-
ing the chances of obtaining a sample average that is 72 inches or greater. The
documentation at the top of the frequency table says that the right endpoint
is not included; thus, simply scroll down column E until you find the cell that
says 72.0 to 72.1. Add up all of the repetitions for which the sample average
is 72.0 or greater. In our Monte Carlo simulation, there are 464 out of 10,000
repetitions with an average of 72.0 or greater, and so we would approximate
the chances of this happening as about 4.6 percent.

The conventional statistical approach would be to use the normal approx-
imation to compute the relevant area. See the appendix to this chapter for a
refresher lesson on the mechanics of the normal curve. We would find that
72 inches is (72 – 70.67)/0.273 = 1.76 standard units. The area under the nor-
mal curve from 1.76 standard units to positive infinity is about 3.9 percent.

Note that neither the Monte Carlo approximation nor the calculation using
the normal curve is exactly right. The former suffers from the fact that we
did not run an infinite number of repetitions, whereas the latter is using the

3 We do not use n−1 because we know the SD of the box. If we estimated the population SD with the
sample SD, then we would use n−1.
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normal curve as a rough stand-in for the true probability histogram (that is
not exactly normally distributed).

Finally, return to the Sample sheet and click the Draw Several 
At Once button. Enter 5

(the default) when prompted. This sampling scheme is a little more compli-
cated than taking 10 individual tickets from the box. It takes a random number
from 1 to 43 but then includes in the sample the next 4 presidential heights
(in the chronological order in which they served). To see what is going on,
compare the presidents in your sample with the list in the Setup sheet. If the
first President is near the end (for instance Clinton, #42), then the list wraps
around, taking George W. Bush (#43), George Washington (#1), John Adams
(#2), and Thomas Jefferson (#3). Note that this is sampling with replacement
because you can get multiple observations of the same president. For exam-
ple, if the next draw was Washington, we would repeat Washington, Adams,
and Jefferson. Two batches of five in a row will give us a total of 10 draws.

What effect does this sampling scheme have on the sampling distribution
of the sample average? We will use the Monte Carlo technique to answer
this formidable question. Before running a Monte Carlo, however, click the
Take a Picture 
of the Results button to compare the consecutive draws scheme to the simpler 10

draws without replacement scheme. Click the Run Monte Carlo Simulation
Consecutive Draws button and

run a Monte Carlo with the same number of repetitions as before. What do
you get?

Our results show that this sampling scheme is apparently unbiased (because
the average of the sample averages is very close to the population average),
but the SE, 0.87, is higher than the “without replacement scheme.” The SE
is quite close, however, to the simple random sample with replacement SE.
What happens when we take longer sets of consecutive draws? This is left to
the reader as an exercise in the Q&A sheet.

Why would we explore the properties of such a crazy sampling scheme?
Well, consider the Current Population Survey (CPS) – a household is chosen
at random, but the individuals in the household are all surveyed. This is called
cluster sampling. If we are interested in, for example, educational attainment,
it matters that the husbands and wives in a given household are included
together in the sample. The SE from this type of sampling is different than a
sample where individuals are drawn.

The presidential heights example is unrealistic in that we know the popu-
lation average and SD. Let us explore a second example of the polling box
model that will demonstrate the typical situation encountered by the social
scientist.

Suppose we were interested in knowing the average weight of adults (those
people 18 years of age and older) in the United States. We do not have the
weight of every single adult in the United States, but suppose we did have a
simple random sample of the weight of 400 adults.
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We are now firmly in the land of inference. We cannot compute the sum
of the weights divided by the number of people because we do not have that
information. Instead, we have limited information about a sample of people
from which we will infer a corresponding value for the population.

This example seems far removed from flipping coins or rolling a die, but it
is not. This problem shares a crucial similarity with flipping coins and rolling
dice – chance is present in the observed outcome. In this case, chance is working
at the level of the particular 400 individuals who were randomly chosen to
be in the sample.

The word “simple” in the phrase “simple random sample” does not mean
“easy.” In fact, simple random samples are extremely difficult to come by.
For example, it is almost impossible to obtain a simple random sample of
400 adults from the U.S. population. The word “simple” means that each
individual had an exactly equal chance of being chosen. If we assigned a
number to every single adult and then drew 400 numbers out of the 190 million
or so numbers in that list in such a way that each number had an equal chance
of being selected, then we would have a simple random sample. No such
numbering system exists – even Social Security numbers would not work
because not every adult in the United States has a Social Security number!

But if we had such a precious sample, we would be in position to answer the
question about the average weight in the United States. We would calculate
the sample average and use it as our estimate of the population average.
We would next immediately embark on a procedure to determine the SE of
the sample average. Although the sample average seems to be a fixed number,
we would interpret it as a random variable. It is simply one realization of the
chance process. If we drew another sample of 400, we would almost surely get
a different group of 400 people and, thus, a different sample average. How
much spread is there likely to be in the sample average? That is exactly what
the SE would tell us.

The box model for this example looks like Figure 10.4.3.
The box model in the figure is a pictorial representation of the problem

faced by the investigator trying to infer the average weight of the 190 million
adults in the United States from a simple random sample of 400 adults.

If we had the list of 190 million weights, we would have the population and
there would be no need to do any estimating. But if we only have a simple
random sample of 400 weights (that is Area 3: The Sample), we are forced
to guess the population parameter. We use the sample average as our best
estimate of the population average.

We know the sample average has a probability histogram (or sampling
distribution) and we would like to include a measure of the variability by cal-
culating the SE of the sample average. Unfortunately, we cannot reconstruct
the true probability histogram for two reasons. First, and more important, we
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average = ? 
SD = ?  
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Figure 10.4.3. Polling box model for average weight of adult Americans.

do not know the true expected value (i.e., the population average). Thus, we
do not know the center of the histogram. Second, we do not know the true
SE because the SD of the population is unknown.

In the same way we estimated the population average with the sample
average, we estimate the SD of the box with the SD of the sample. Given
the hypothetical results in Figure 10.4.3 on the sample average and standard
deviation, we would infer that the average weight in the population of U.S.
adults is around 150 pounds give or take 1.5 pounds. We cannot give a definite
answer because we know that our sample is subject to chance error from
the sampling procedure. We know that our estimate is likely to be off from
the truth because of chance error. A good estimate of the likely size of that
chance error is 1.5 pounds.

Notice that we sampled without replacement yet ignored the correction fac-
tor. In the first example, with presidential heights, we had to use the correction
factor. This is not an important issue in this example because the population
is so large relative to the sample that no correction factor is needed. After
all, 190 million minus 400 is almost 190 million, and when this is divided by
190 million and then we take the square root, we get almost 1.
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Summary

This section has shown how statisticians work with a data generation process
built on drawing a sample from an actual population. Although seemingly
quite removed from coin flipping or dice, the underlying framework for the
analysis remains the same. With a proper box model of the data generating
process, we are able to organize the chance process and truly understand that
sample statistics are random variables with their own probability histograms.
The next section reviews how sample data can be used to test claims about
population parameters.

10.5. Hypothesis Testing

Workbook: PValue.xla (Excel add-in)

This section reviews the structure and logic of a statistical procedure known
as hypothesis testing or a test of significance. The two basic procedures of
statistical inference are hypothesis tests and confidence intervals. Both are
explained in greater detail in Chapter 16, but hypotheses tests are so misused
and confusing that they deserve a little extra attention. We will introduce
an Excel add-in called the P Value Calculator that allows a variety of sta-
tistical tests to be run and conclude by alerting you to common mistakes in
interpreting the results of a hypothesis test.

We return to the Larry Bird basketball shooting example of Section 9.4.
Suppose someone made a claim that Bird’s true free-throw percentage is
80 percent. We take a sample of 200 free-throws and find that he makes 180
out of the 200 attempts. How do we use this evidence to evaluate the claim
about Bird’s true free-throw shooting prowess?

The basic question in inferential statistics is, Is the difference real or due
to chance? In a hypothesis test, the difference referred to is the difference
between the claimed value for a parameter (about the population) and the
observed value (from the sample). From our work in this and the previous
chapter we know that the observed value, whether it is a sample average
or sum, is subject to chance error. If we can apply a box model to the data
generation process, then we can approximate the likely size of the chance
error. Once we know the likely size of the chance error, as summarized by
the appropriate SE, we have a measuring stick to use to decide whether
the difference is big enough that we can rule out the role of chance as an
explanation for the observed difference.

Hypothesis tests contain one more element. In addition to the claimed
value for a parameter called the null hypothesis, there is a second hypoth-
esis, called the alternative hypothesis, which contradicts the null. Alterna-
tive hypotheses come in two varieties: the first says that null is false, and
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the second says in which direction it is false. In our case, the first type of
alternative hypothesis would say that Bird’s true shooting percentage is not
80 percent. This formulation allows evidence against the claim to come from
either direction – much higher or lower observed sample percentages would
be evidence against the claim. Therefore, this alternative hypothesis leads
to a two-tailed test. The second type of alternative would say either that his
true shooting percentage is greater than 80 percent or that it is less than 80
percent. This is called a one-tailed test because evidence against the null can
come from only one direction.

In the free-throw prowess case, the claimed parameter value is a free-
throw shooting percentage of 80 percent. A coin-flip box model can be used
to describe the data generation process. The box contains four 1’s and one 0
(reflecting the claimed shooting percentage). We take 200 draws with replace-
ment and compute the sample average. We can multiply by 100 to get the
sample percentage.

Once we have the box model, we need to figure out the shape of the prob-
ability histogram (or sampling distribution). Our Monte Carlo experiments
and work with BoxModel.xls have shown that sums and averages of draws
from a box converge toward the normal curve as the sample size increases
regardless of the distribution of the box itself. This remarkable property of
sample sums and averages is known as the central limit theorem. It allows us
to substitute the normal curve as an approximation to the exact probability
histogram.

The claim, or null hypothesis, fixes the center of the sampling distribution
(in this case, at 80 percent), but we still need to figure out the variability in
the sample percentage. There are two ways to determine the value of the SE
of the sample percentage. The first is via Monte Carlo simulation as discussed
for this example in Section 9.4. The second is to use analytical methods, which
we describe here. The SE of the sample average is given by the formula:

SE of the Sample Average = SD(Box)√
n

.

For our case, under the null hypothesis, the SD of the box works out to 0.4.
With the SD of the box in hand we can compute the SE of the sample average
to be about 0.0283 or about 2.8 percentage points.

We now have the shape of the probability histogram (obtained by relying
on the central limit theorem), its center (as given by the null hypothesis),
and its spread (which in this case we do not have to estimate because the
null hypothesis implies a particularly configured box). We are ready to actu-
ally conduct the hypothesis test. We are trying to determine whether the
difference between the claimed value and the observed value could be due
to chance. We construct a test statistic, which in this case is called a z-statistic,
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as follows:

z-statistic = Observed Value − Value Claimed under the Null
SE (Sample Statistic)

.

In our example, the test statistic works out to

z-statistic = 0.90 − 0.80
0.028

= 3.57.

The point of the z-statistic is to standardize the measured difference
between the observed and claimed values so that we can use the standard
normal curve (with mean 0 and SD 1) to approximate the chances of obtain-
ing a result as extreme or one more extreme than the observed result. The
area under the normal curve corresponding to the more extreme results is
known as the probability value or P-value. It is also called the significance
level.

Conventional practice is to reject the null hypothesis if the computed
P-value is less than 5 percent; sometimes researchers use a tighter 1-percent
standard. In our example, the P-value works out to considerably less than
1 percent, and so we would reject the null hypothesis. In other words, on the
basis of the evidence in the sample (180 free-throws made out of 200), we
do not believe that the free-throw shooter is actually merely an 80-percent
free-throw shooter and that this result was just bad luck on this sample.

Of course, the null could be true, but the chances of getting a result like
90 percent out of 200 free throws (or one even more extreme) from a four 1’s
and one 0 box are so low that we reject the claim that the box is configured
that way. The z-statistic is said to be statistically significant because it is far
enough away from 80 percent that we reject the null hypothesis.

We recommend installing and using our P Value Calculator add-in on this
problem to generate a graph that will help you understand the logic of the
hypothesis test. The add-in is available in the Basic Tools folder of the CD-
ROM. Full installation instructions are available in the same folder.

Once the PValue.xla file is installed, execute Tools: PValues and select the
Normal distribution. After clicking OK, fill in the Input tab so that it looks
like Figure 10.5.1. Click the Next button to see the Results tab. Check the
Show Picture box and click Finish. A picture, like Figure 10.5.2, is pasted on
your Excel spreadsheet with the results of the test.

The results (shown in Figure 10.5.2) show that making 180 out 200 free
throws, in standard units, is quite far from the center of the distribution on
the assumption the null (80%) is true. We have strong evidence against the
null, and therefore we do not believe it.
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Figure 10.5.1. Using the P Value Calculator add-in.

Although this example looks simple, hypothesis testing is a fragile proce-
dure. It is easy to make a variety of mistakes. Here are just a few.

Statistical inference, as exemplified by hypothesis testing, boils down to
determining what the claim is about the data generating process, deciding
on a box model that describes the data generating process, figuring out the
shape of the sampling distribution, obtaining a measure of the likely size
of chance error, deciding on a critical level of significance, and determining

Normal Distribution

observed value 90 z stat 3.57142857 
hypothesized value 80

28
P Value    0.036% 

SE
2tails for test

Given Results

0%

25%

50%

−4 −3 −2 −1 0 1 2 43
standard units

Figure 10.5.2. Results from the P Value Calculator add-in.
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the probability of obtaining the observed result or one more extreme under
the assumption that the null hypothesis is true. The process breaks down
if the analogy between the data generating process and the box model is
poor. In that case the machinery we have developed for determining the
likely size of chance error does not work. A good example is the cluster
sampling scheme for presidential heights in the previous section. There, the
analogy between the data generation process and drawing rickets at random
with replacement from a polling box simply does not apply (the problem is
that the draws are not independent of each other) and the SE computed via
the conventional formula is wrong. Even worse are samples of convenience.
It is absolutely wrong to apply the sophisticated method of a hypothesis test
to a nonrandom sample.

Another difficulty involves determining the shape of the probability his-
togram. We often rely on the central limit theorem. The bigger the sample
size (the number of draws), the more the probability histogram of the sample
sum or sample average converges to the normal curve. With the additional
assumption that the box is normally distributed, then the distribution of the
z-statistic is called Student’s t distribution.4 Other sample statistics (such as
sums of squares) are known to have other distributions. You have to use the
right distribution for the particular sample statistic you are working with in
order to get the hypothesis test right.

The final obstacle to successful hypothesis testing involves the interpre-
tation of the results. There are two common pitfalls. First, it is simply false
that the P-value tells you the chances the null is true. In fact, the P-value is
built on the assumption that the null is true. The P-value tells you the chances,
if it is assumed the null is true, of getting a particular result or one more
extreme. Second, even if the result is statistically significant, this says nothing
about the practical importance of the result. Statistical significance is merely
a statement that chance alone is not a good explanation for the observed dif-
ference. Because the SE and P-value depend on the sample size, even small
observed differences can be “statistically significant” when the sample size
is large. To test the practical importance of a result, apply it to the entire
population and determine what that means.

Summary

The fundamental similarity between the coin-flip and polling box models
means that the same basic hypothesis testing procedures can be used for
problems involving polling box models as are used for problems involving

4 The t-distribution is explained in detail in Chapter 16 . As n increases, the t-distribution converges
rapidly to the normal distribution.
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coin-flip box models. In fact, we will use the same procedures on other box
models in this book.

The next section presents one final concept from the world of statistical
theory. We point out that some sample statistics are not centered on their
population analogues, but they get closer as the sample size increases. This is
a desirable attribute.

10.6. Consistent Estimators

Workbook: Consistency.xls

In our discussions of the coin-flip and polling box models, the sample average
was an unbiased estimator of the average of the box because the expected
value of the sample average equaled the average of the box. “Unbiasedness”
is a very desirable property for an estimator, but there are many situations
in which it cannot be achieved. Thus, there may be no estimator that gives
unbiased estimates of a given parameter. In that case the fallback is to search
for a consistent estimator of the parameter in question. This section explains
consistency via a simple example.

A consistent estimator of a parameter is one whose sampling distribution
becomes ever more tightly concentrated around the true parameter value as
the sample size increases.5 Consistency is known as a large-sample or asymp-
totic property. It describes what happens as the sample size grows without
limit. The opposite concept is an exact finite-sample (small-sample) property.
For example, in the polling box model, the fact that the sample average is an
unbiased estimator of the average of the box is an exact finite-sample result.

Our example of a biased but consistent estimator is the following. We use
a box model in which the box contains an infinite number of tickets that
are normally distributed and have a specified average and SD. A Y denotes
the realized outcomes. The parameter we wish to estimate is the cube of the
average of the box. Our estimator of this parameter will be the cube of the
Sample Average (Sample Average3). It is very easy to demonstrate that
the Sample Average3 is a biased estimator of the cubed average of the box
but that this bias disappears as the sample size increases.

Open the Consistency.xls file and go to the Sample sheet. Figure 10.6.1
displays a portion of that worksheet. The parameters of the data generation
process are in the upper-left-hand corner. We have set both the average of
the box and the SD to 5. Note that the values of the Cube of the Average

5 This is a rough definition. For more rigorous treatment of this concept in terms of probability limits, see,
for example, Amemiya (1994), p. 132, or Goldberger (1998), pp. 48–49, which contains a nice example.
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Average of the box 5.00 Sample Average 0.69

SD of the box 5.00 Sample SD 5.67
Cube of the 
Average of the box 125.00 Sample Average3 0.34
Reciprocal of the 
Average of the box 0.20 1/Sample Average 1.44

Sample Size (n) 10
Observation Y

1
2
3 4.16

Population Parameters Sample Statistics

8.43
4.50

Figure 10.6.1. Setup for example of blased but consistent estimators.
Source: [Consistency.xls]Sample.

of the box and the Reciprocal of the Average of the box are determined by
the value you choose for the Average of the box. In column B, starting with
cell B8, we draw a sample of normally distributed random variables obeying
these parameters.

The sheet is set up so that you can draw samples of size 1 up to 200. You
can control the sample size by changing the number in cell E6. The sheet
opens with n = 10, and so only 10 observations are drawn in each sample.
We compute the Sample Average in cell E2, the Sample SD in cell E3, and
two statistics based on the Sample Average, its cube (Sample Average3) and
its reciprocal (1/Sample Average) in cells E4 and E5, respectively. Every-
thing we say in this section about the consistency properties of the Sample
Average3 estimator pertains as well to the 1/Sample Average estimator of the
Reciprocal of the Average of the box.

To demonstrate the consistency of the Sample Average3 estimator, we used
the Monte Carlo simulation add-in (described in Chapter 9) to run 3 Monte
Carlo analyses of 10,000 repetitions each for sample sizes 10, 50, and 100. The
results for each individual Monte Carlo simulation are in the Ycubedn = 10,
Ycubedn = 50, and Ycubedn = 200 sheets, respectively. We summarize the
results in Figure 10.6.2.

The Monte Carlo results show that, as the sample size (n) increases, the
center of the sampling distribution moves closer to the true parameter value,
125, and the spread of the sampling distribution becomes smaller and smaller.
This is evidence that Sample Average3 is a consistent estimator of the Average
of the box.

Here is the intuition behind this result. When the sample size is small,
there is considerable bounce in the sample average that is magnified when the
sample average is cubed. You can see this by setting cell E6 to 10 and hitting
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Comparison of Monte Carlo Results for Sample Average3

n 50 200

Ave Estimate 161.7 131.8 127.6

SD Estimate 141.4 54.6 26.9

See Ycubedn=10, Ycubedn=50, and Ycubedn=200 sheets.  

10

Figure 10.6.2. Demonstrating consistency via Monte Carlo simulation.
Source: [Consistency.xls]Sample.

the F9 key repeatedly. Watch cell E4. It bounces wildly. A sample average of
7 becomes a Sample Average3 of 343. That is very far away from 125. If you
look at the Monte Carlo approximation to the sampling distribution in the
Ycubedn = 10 sheet, it will have a long right-hand tail. This is what is causing
the small sample bias. The sampling distribution is not centered at 125.

As the sample size increases, however, the sample average estimates are
concentrated ever more tightly around the true value of average of the box;
in other words, the spread of the sampling distribution for both the sample
average and the sample average cubed decreases with increasing sample size.
Return to the Sample sheet, set cell E6 to 10, and hit the F9 key a few times.
You will not obtain huge values of Sample Average3 because the sample
average remains fairly close to 5. The closer the Sample Average is to 5,
the closer the Sample Average3 is to 125; hence, the smaller the bias and the
smaller the spread of the Sample Average3 sampling distribution. See the
Ycubedn = 200 sheet to confirm that the expected value of Sample Average3

(as approximated by the average of 10,000 repetitions of the data generation
process) is much closer to 125. The bias is much smaller and the sampling
distribution is much closer to the normal curve.

Summary

This section has demonstrated that a sample statistic may be biased but con-
sistent. This means that the statistic is not centered on the true population
parameter (a bad thing), but that the center of its sampling distribution gets
closer to the true population parameter as the sample size increases and its
spread gets smaller.

The final section in this chapter covers the same concepts we have reviewed
in previous sections but in a more sophisticated language called the algebra
of expectations. This language can be used to derive analytical formulas for
expected values and SEs of sample statistics.
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10.7. The Algebra of Expectations

Workbook: AlgebraofExpectations.xls

This section provides a more formal exposition of the fundamental concepts
presented in this chapter. Previous sections relied, per our teaching philos-
ophy, on Monte Carlo simulation to demonstrate properties of coin-flip and
polling box models. We want you to be aware that there is another approach
to determining the expected value or SE of a sample statistic. This alterna-
tive to Monte Carlo remains the conventional way students learn about the
properties of chance processes. We proceed in two steps: First we define and
apply the concept of the expectations (or expected value) operator E() and
then we demonstrate a few simple properties of this operator, which we call
the algebra of expectations.

Introducing the Expectations Operator E( )

In mathematics, an operator is an action. You are familiar with the arith-
metic operators: addition, subtraction, multiplication, and division. Like
these operators, the expectations operator is applied to an expression (which
goes between the brackets) and outputs a result called the expected value.
Although the expectations operator can be applied to a constant (the result
is then simply the constant), we are usually interested in taking the expected
value of an expression that involves a random variable.

A random variable is a number determined by a chance process. You do
not know the realized value of the random variable until you run the chance
process. There are two kinds of random variables, discrete and continuous.
We will work with discrete random variables, which are random variables that
can take on a countable number of different values. A very simple example
of a discrete random variable is a flip of a fair coin. In this case, there are only
two possible outcomes, heads and tails. Let us assign a value of 0 to tails and
1 to heads.

To describe the coin flip process more formally, we can define a random
variable we will call X. This random variable can take on the values:

x1 = 1, which indicates that the coin flip turned up heads, and

x2 = 0, which indicates that the coin flip turned up tails.

We use capital letters for random variables and corresponding small letters
for possible values of the random variable.

Associated with a random variable is its probability density function, or pdf.
The probability density function tells you the probability of a given outcome.
In the case of a fair coin, the probability that the coin will turn up heads,
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xi P(X = x i)

0 0.50

1 0.50

Figure 10.7.1. Probability density function for
coin-flip random variable.
Source: [AlgebraofExpectations.xls]CoinFlip.

denoted P(X = x1), is one-half; similarly P(X = x2) is also one-half. We will
usually shorten such expressions to P(x1) and P(x2). The pdf for any random
variable has two important properties: the probability of any outcome is
greater than or equal to zero, and the sum of the probabilities of all possible
outcomes is one.

The pdf for a discrete random variable can be represented in tabular form
by listing the possible outcomes and their respective probabilities of occur-
ring. Open the Excel workbook AlgebraOfExpectations.xls and go to the
CoinFlip sheet to follow the exposition. The pdf of the coin flip random vari-
able looks like Figure 10.7.1 copied from cells A3 to C5 in the CoinFlip sheet.

Figure 10.7.1 corresponds to the contents of the box in the coin-flip example
of Section 10.3. The main difference is that, whereas the pdf specifies the
probabilities of obtaining different outcomes, the box model represents the
probabilities via the relative proportions of tickets in the box. A box with
64 total tickets, 32 1’s and 32 0’s, represents the coin-flip random variable
equally well as the box with just two tickets, though the latter is preferred on
the grounds of simplicity.

The pdf can also be represented graphically via a probability histogram,
which shows the chances of particular events occurring. In the case of the
coin flip, the probability histogram looks like Figure 10.7.2.

It is easy to confuse probability and empirical histograms. One way to
understand the difference is to focus on what exactly is being displayed.
Figure 10.7.2 is a probability histogram because it shows the chances of each
outcome. Empirical histograms plot the frequencies of numbers in a list.

Probability Histogram

−1 0 1 2

Figure 10.7.2. Probability histogram for coin-flip random variable.
Source: [AlgebraofExpectations.xls]CoinFlip.
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Just about every random variable can be characterized by two numbers: its
expected value and its standard deviation.6 The expected value of a random
variable is the average value that we expect to observe over the long run.
The expected value of the coin-flip random variable is, fairly obviously, 0.5.
Half the time we will get a 1, and half the time a 0 will result; the average of 0
and 1 is 0.5. In terms of the probability histogram, the expected value is the
center of histogram.

More formally, the expected value is a probability-weighted sum of the out-
comes for the random variable. The expectations operator is a shorthand way
to represent this computation. In other words, when we apply the expectations
operator E(), we find the expected value of a random variable by taking each
outcome, multiplying it by the probability of that outcome’s occurring, and
summing up the result. Here is the algebra for the coin-flip random variable:

E (X) = P (x1) · x1 + P (x2) · x2

= 1
2

· 0 + 1
2

· 1

= 1
2
.

The expression E(X) = 1
2 means that the expected value of X is 1

2 . Notice that
the expected value in this case is equal to neither one of the two potential
outcomes.

In general, when Y is a random variable having n possible outcomes, y1

through yn, we compute the expected value E(Y) via the following formula:

E(Y ) =
n∑

i=1

P(yi ) · yi .

The capital sigma summation symbol is a mathematical operator that you
have seen before. It means that we sum up terms that all look like the expres-
sion to the symbol’s right. The letter i is an index, which in this case runs from
1 to n. Each yi is one of the possible values that the random variable Y can
take on. The summation above means that

n∑
i=1

P (yi ) · yi = P (y1) · y1 + P (y2) · y2 + · · · + P (yn) · yn.

In addition to the center of the pdf given by the expected value of X,
we are often interested in the variability of X as measured by the SD or
variance. Figure 10.7.3 (cells F2:J7 in the CoinFlip sheet) gives the details of
the computation for the coin-flip example. By convention, V(X) stands for

6 Perhaps the most famous exception is the Cauchy distribution, which has neither an expected value nor
an SD.
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Deviation 
from 

Expected
Value

Deviation 
Squared Weighted Sum

xi P(X=xi) xi − E(X ) P(X =xi) * (xi − E(X ))2

0 0.90 −0.10 0.01 0.009
1 0.10 0.90 0.81 0.081

E(X ) 0.10 V (X ) 0.09
SD (X ) 0.30

Variance and SD 
Computation

(xi − E(X ))2

Figure 10.7.3. Computing of the variance and SD of the coin-flip random variable.
Source: [AlgebraofExpectations.xls]CoinFlip

variance and SD(X ) for standard deviation. Click on the cells in the F2:J7
range to see the formulas used.

Once again, the expectations operator can be used as a shorthand way to
represent the computations needed to determine the variance and SD. The
variance of a random variable X (denoted V(X)) is defined as the expected
value of the squared deviation from the expected value:

V (X) = E[(X − E (X))2].

The standard deviation (SD) of a random variable X is the square root of its
variance:

SD(X) =
√

V (X) =
√

E[(X − E (X))2].

More specifically, the variance of a discrete random variable is computed as
a probability-weighted sum of the squared deviations:

V (X) =
n∑

i=1

(xi − E (X))2 · P (xi ).

The standard deviation of a discrete random variable is simply the square
root of the preceding sum:

SD(X) =
√√√√ n∑

i=1

(xi − E (X))2 · P (xi ). (10.2.6)

The algebraic version of the variance computation in Figure 10.7.3 is

V (X) =
n∑

i=1

(xi − E (X))2 · P (xi )

= (0 − 0.5)2 · 0.5 + (1 − 0.5)2 · 0.5

= 0.25 · 0.5 + 0.25 · 0.5

= 0.25.
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Simulation X

Average Value 0.484 xi

Empirical 
Frequency

Probability 
Histogram

SD 0.500 0
1

516 0.500
Observation 484 0.500

Detailed Results for 1000-Repetition 
Monte Carlo

 

Figure 10.7.4. Results for 1,000-repetition Monte Carlo of coin-flip random variable.
Source: [AlgebraofExpectations.xls]CoinFlip.

SD(X) =
√

V (X)

=
√

0.25

= 0.5.

Click on the Run Simulation button (in the CoinFlip sheet) to observe the result
of a 1,000-repetition Monte Carlo experiment in which we simulate 1,000
realizations of the coin-flip random variable. You can change the pdf by
altering the numbers in blue. We ran one such simulation and obtained the
results given in Figure 10.7.4.

In this experiment, we figuratively flipped the coin 1,000 times. The first 100
repetitions of the Monte Carlo simulation are listed in the table on the left side
of the sheet. Overall, we obtained 516 tails and 484 heads. The average value
was 516 multiplied by 0 plus 484 multiplied by 1 divided by 1,000, or 0.484.
The empirical SD of these 1,000 numbers was, to 3 decimal places, 0.500. The
results are also depicted in an empirical histogram, which looks very much
like the probability histogram. The Monte Carlo simulation thus provides
intuitive support for the concepts of expected value and SD of a random
variable. The expected value is the long-run average value for outcomes of
the random variable, and the SD is the long-run spread of the outcomes. The
empirical histogram generated by the Monte Carlo is not exactly the same
as the probability histogram because we did not run an infinite number of
repetitions. The probability histogram gives the exact long-run chances of
particular outcomes, whereas the Monte Carlo simulation approximates the
probability histogram.

Now go ahead and create a new random variable, a seriously unfair coin, by
changing P(X = x1) to 0.90 (in cell B4). The worksheet immediately computes
the expected value and SD of this new random variable: 0.1 and 0.3, respec-
tively.7 Notice that the probability histogram also reflects the new pdf. Click
on the Run Simulation button. The empirical average and SD produced by the
Monte Carlo simulation should be very close, though not exactly identical,
to the computed expected value and SD of the random variable.

7 If the sheet does not automatically recalculate, execute Tools: Options, click on the Calculation tab and
make sure the Automatic Calculation choice is selected.
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x i P (xi) xiP(xi)

1 1/6 0.17

2 1/6 0.33
3 1/6 0.50
4 1/6 0.67
5 1/6 0.83
6 1/6 1.00

3.50

E(X )

E (X )  

Figure 10.7.5. Computing the expected value of
the fair die random variable.
Source: [AlgebraofExpectations.xls]Dice.

The Algebra of Expectations

The algebra of expectations largely consists of several convenient formulas
for working with the expected value, variance, and standard deviation of
random variables. The formulas depend on properties of the expectations
operator. We will develop these formulas and demonstrate the properties of
E() in the context of a slightly more complicated example than the coin-flip
box model.

Suppose you have been given the opportunity to roll a fair die and be paid
$1 for every spot that comes up. Figure 10.7.5 (also available in the Dice sheet)
lists the six possible outcomes from a roll of one die, the probability of each
outcome, and multiplies each outcome by its corresponding probability.

Now suppose that, instead of making $1 per spot, you will make $10
per spot. Simply multiply every outcome by 10 to create a new random
variable, which is 10X. Rather than changing these cells, replacing 1 with
10, 2 with 20, and so on, examine cells EZ: G11, which reflect this new
payoff. The new random variable and its expected value is displayed in
Figure 10.7.6.

Note that each original xi has been multiplied by the constant k, which in
this case is 10. In the language of random variables, a constant is a value that
is always the same in every realization of the chance process. The result is not
unexpected: multiplying every outcome by 10 – in other words multiplying the
original random variable by 10 – leads to a tenfold increase in the expected
value. More generally, if we multiply the original random variable X by a

k 10

kxi P(xi) (kxi)P(xi)

10 1/6 1.67
20 1/6 3.33
30 1/6 5.00
40 1/6 6.67
50 1/6 8.33
60 1/6 10.00

35.00E (kX )

E (kX )

Figure 10.7.6. $10-per-spot fair die random
variable.
Source: [AlgebraofExpectations.xls]Dice.
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a 40

a + kxi P(xi) (a+kxi )P(x i)

−30 1/6 −5.00
−20 1/6 −3.33
−10 1/6 −1.67

0 1/6 0.00
10 1/6 1.67
20 1/6 3.33

−5.00E (a+kX )

E (a+kX )

Figure 10.7.7. Paying to play the die game
random variable.
Source: [AlgebraofExpectations.xls]Dice.

constant k, the expected value of the new random variable increases k-fold:

E (kX) = kE (X) .

This is one of the basic properties of the expectations operator. You can
demonstrate this property in the Dice sheet by choosing various values of k
in cell F3.

As you doubtless know, most gambling games do not make money for the
players. Let us make the game more realistic and charge you $40 per roll of
the die. The new random variable would be −40 + 10X. The expected value
computation is contained in Figure 10.7.7 (reproduced from cell range I2:K11
in the Dice sheet).

The expected value in the bottom right-hand corner of the figure tells
you that the game has become a losing proposition on average. The results
obtained in this example obviously generalize. If you add a constant to a ran-
dom variable, the expected value of the result is the constant plus the expected
value of the random variable. More formally, if a and k are constants, then

E (a + kX) = a + kE (X) .

You can use the Dice sheet to demonstrate this fact by changing the values
in cells F3 and J3 and noting the results.

We will now demonstrate similar rules for the Variance and SD of a random
variable. First, let us review the computation of the variance as applied to the
die random variable. The variance is computed as a weighted sum for which
the weights are the probabilities of the different outcomes. In the case of the
fair die, we have

V (X) =
n∑

i=1

(xi − E (X))2 · P (X = xi )

=
n∑

i=1

(xi − 3.5)2 · 1
6

= (1 − 3.5)2 · 1
6

+ (2 − 3.5)2 · 1
6

+ · · · + (6 − 3.5)2 · 1
6

= 2.92.



P1: PJU
0521843197c10 CB962B/Barretto 0 521 84319 7 November 7, 2005 18:3

272 Review of Statistical Inference

X

Deviation from
EV

Deviation
Squared

Weighted
Sum

xi P (xi) xi − E(X ) (xi − (EX ))2 (xi − E(X ))2

P (xi ) *   

1 1/6 −2.50 6.25 1.04
2 1/6 −1.50 2.25 0.38
3 1/6 −0.50 0.25 0.04
4 1/6 0.50 0.25 0.04
5 1/6 1.50 2.25 0.38
6 1/6 2.50 6.25 1.04

E (X ) 3 1/2 V (X ) 2.92
SD (X ) 1.71  

Figure 10.7.8. Computing the variance and SD of the fair die random variable.
Source: [AlgebraofExpectations.xls]Dice.

This computation is done explicitly in the Dice worksheet. Figure 10.7.8
shows the calculations.

The rule for determining the variance and SD of a random variable equal
to another random variable plus a constant is quite simple. If a is a constant,

V (a + X) = V (X) ; SD(a + X) = SD(X) .

In words, if you add a constant to a random variable, its variance and SD do
not change. This makes sense because, when a constant is added to a random
variable, every outcome and the expected value are increased by the value of
the constant. The deviations are therefore unchanged, and thus the SD and
Variance are unaffected.

Next, consider multiplying a random variable by a constant. If k is a con-
stant and X is a random variable:

V (kX) = k2V (X) ; SD(kX) = kSD(X) .

In words, if you multiply a random variable by a constant, its Variance is
multiplied by the square of that constant, whereas its SD is multiplied by
the constant. The key to understanding this fact is to realize that the original
deviations have been increased k-fold and the squared deviations have been
magnified k2-fold.

The Dice sheet has tables that can be used to demonstrate easily that adding
a constant does not affect the variance or the SD of a random variable, but
multiplying by a constant will change both the variance and SD.

We can use the tool of Monte Carlo simulation to provide experimental
support for these simple rules for computing expected values, SDs, and Vari-
ances. Click on the View Simulation button in the Dice sheet. You will be taken
to a table and a histogram that show the result of 1,000 repetitions of the
composite random variables we have created.
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Simulation X kX a + kX
Average Value $3.59 $35.90 −$4.10

SD $1.71 $17.11 $17.11

Figure 10.7.9. Monte Carlo experiment results for die random variables.
Source: [AlgebraofExpectations.xls]Dice.

Every time you click on the
Run 1,000 Repetition

Simulation button, the computer simulates
1,000 rolls of a die and records the outcomes. Each experiment will produce
slightly different results. The summary for the experiment we ran looks like
Figure 10.7.9.

In our simulation of 1,000 plays, the average dollar value of the spots on one
roll of the die was $3.59, the average value of 10 times the spots was $35.90,
and the average value of our “winnings” in 1,000 plays of paying $40 for the
privilege of receiving $10 times the number of spots on the die was negative
$4.10. The respective expected values for X, kX, and a + kX are $3.50, $35.00,
and –$5.00. The average in the Monte Carlo experiment measures the center
of the distribution of the random variable by brute force repetition of a finite
number of plays and is, therefore, only an approximation to the expected
value. One thousand repetitions is enough to obtain a good but not perfect
approximation.

Similarly the SDs of the 1,000 outcomes are very close to the SDs we
computed for the random variables X, kX, and a + kX. We computed the
long-run spread of X to be 1.71, and the spread of the 1,000 simulated values
of X was 1.71. Be clear on the difference between the two types of SDs
mentioned in the previous sentence. The term SD(X) is an expected value
and thus is the exact value of the spread of the random variable, whereas
the SD in the Monte Carlo experiment is the SD of a list of 1,000 numbers
produced by simulating the random variable 1,000 times. The latter SD is an
approximation of the former SD (the former SD is known as an SE when the
random variable in question is a sample statistic). In our case, the approxi-
mation was very close (differing beyond two decimal places), but that is not
always so.

The histogram of the Monte Carlo simulation results depicted in Fig-
ure 10.7.10 summarizes the outcome of the experiment in more detail. Fig-
ure 10.7.10 displays an empirical histogram corresponding to the random
variable called X. The histogram for kX looks exactly like the one above
except that the outcomes are multiplied by 10; the histogram for a + kX
(the outcomes of the more realistic gambling game) is then just shifted left
by 40. In contrast, the probability histogram depicting the pdf for X (shown
in Figure 10.7.11) is completely even.
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Empirical Histogram

0 1 2 3 4 5 6 7

Number of Spots on Die

Figure 10.7.10. Empirical histogram of Monte Carlo simulation
for die random variable.
Source: [AlgebraofExpectations.xls]Dice.

With a fair die, each outcome is equally likely to occur. As the number of
repetitions in a Monte Carlo simulation of the die rolls rises, the empirical
histogram comes to look increasingly like the probability histogram.

We conclude this section by applying the E() operator and the proper-
ties of the expectations operator to more complicated random variables –
namely, sums and averages of random variables. These general results are
stated without proof.

Suppose that X and Y are two random variables and a and b two constants.
Then,

E (X + Y ) = E (X) + E (Y )

E (aX + bY ) = aE (X) + bE (Y ) .

Probability Histogram

0 1 2 3 4 5 6 7

Number of Spots on Die

Figure 10.7.11. Probability histogram for die random variable.
Source: [AlgebraofExpectations.xls]Dice.
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More generally, for random variables X1, X2, and so on up to Xn and constants
w1 up to wn,

E

[
n∑

i=1

wi Xi

]
=

n∑
i=1

wi E (Xi ).

In words, the expected value of a weighted sum of random variables is the
weighted sum of their respective expected values. Because of this property,
E() is said to be a linear operator. Loosely speaking, the expectations oper-
ator can be carried through the expression. The square and natural log are
examples of nonlinear operators. After all, (2 + 3)2 does not equal 22 + 32

and ln(100+100) is not equivalent to ln(100) + ln(100).
We now turn to formulas for the variance of sums of random variables.

Although the formulas for the expected values listed above apply to all ran-
dom variables, independent or not, the variance depends on whether the
random variables are independent. If not, the formula for the variance is
more complicated. Here are facts about the variance and SD for sums and
weighted sums of independent random variables. We stress that these facts
apply only to independent random variables.

V (X + Y ) = V (X) + V (Y )

V (a X + bY ) = a2V (X) + b2V (Y ) .

More generally, for mutually independent random variables X1 to Xn and
constants w1 to wn,

V

[
n∑

i=1

wi Xi

]
=

n∑
i=1

w2
i V (Xi ).

and

SD

[
n∑

i=1

wi Xi

]
=

√√√√ n∑
i=1

w2
i V(Xi ).

We can apply these facts about the expected value of a weighted sum of
random variables and the variance of a weighted sum of random variables
to a situation we have already studied: repeated draws with replacement
from a box. Each draw from the box is the realization of a random variable.
Making the draws with replacement means that we are always drawing from
the same box, and so the random variables have the same distribution (in the
standard terminology, they are identically distributed). Because the draws are
with replacement and each time a draw is made every ticket is equally likely
to come out of the box, the draws are independent. In looking at the draws
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from the box, we are considering either a sum (with weights wi all equal to
1) or an average (with weights wi all equal to 1/n) of random variables.

In this very important special case, the results (for the Sample Average)
translate to

E(Sample Average) = E

(
n∑

i=1

1
n

Xi

)

=
n∑

i=1

1
n

E (Xi )

= n
n

Average of the Box

= Average of the Box.

This result relies on the expected value of each and every draw from the box,
or E(Xi ) for the ith draw from the box, being the average of the contents of
the box. As for the SD of the average of independent draws from the same
box,

V

[
n∑

i=1

1
n

Xi

]
=

n∑
i=1

1
n2

V (Xi )

= 1
n

V (Box)

= 1
n

SD(Box)2
.

The second line follows from the variances being all equal to each other
because the draws are from the same box. Taking the square root, we arrive
at

SD

[
n∑

i=1

1
n

Xi

]
= SD(Box)√

n
,

or, put in more familiar language, the SD of the Sample Average is the SD
of the box divided by the square root of the number of draws.

Summary

This concludes our presentation of the expectations operator and the algebra
of expectations. We will occasionally use E() in the rest of this book, but our
primary mode of exposition will be Monte Carlo simulation. The algebra
of expectations is used to derive formulas or analytical expressions for the
expected value and SD of a data generation process. The Monte Carlo method
can demonstrate, but never prove, that a result is true.
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10.8. Conclusion

This chapter has served as a quick review of statistical inference but also as an
introduction to one of the basic metaphors of this book, the box model. We use
box models to clarify our thinking about the data generation process. A great
danger in econometrics is the failure to explicitly model the way in which
the data were generated. Absent careful work at this initial, crucial stage,
subsequent analyses, no matter how much time they take or sophisticated
they appear, are worthless.

This chapter has also developed an algebraic framework usable for working
out the expected values of sample statistics. This framework, called the alge-
bra of expectations, can be extremely useful. You should think of the algebra
of expectations as a complementary tool to the Monte Carlo simulation skills
you will develop through the rest of this book. You can use the algebra of
expectations to work out the expected value or SD of a statistic of interest
and Monte Carlo simulation to check your work. Alternatively, you can use
Monte Carlo simulation to clarify your view of the data generating process
and to suggest results that should be provable via the algebra of expectations.

With Chapter 9’s explanation of Monte Carlo simulation and this chapter’s
review of statistical inference, we are ready to embark on the study of regres-
sion for inference. We will develop a series of box models to firmly ground
the DGP that underlies the probabilistic interpretation of regression.

10.9. Exercises

Use the BoxModel.xls workbook to analyze the properties of a five-sided die. Unlike
a conventional six-sided die, the five-sided die has five faces, with 1, 2, 3, 4, and 5
dots. Suppose we throw it 25 times and average the 25 throws.

1. Draw the box model for this DGP.
2. Properly configure BoxModel.xls to represent this DGP. What does BoxModel.xls

display as the average and SD of the box?
3. What are the exact chances of getting an average of 3.6 or more? Describe your

procedure.
4. Does Monte Carlo simulation give similar results? Describe your procedure.
5. If the DGP changes so that we take 100 draws instead of 25 draws, what happens

to the chances of getting an average of 3.6 or more? Describe your procedure.
HINT: You can directly change the Setup sheet in BoxModel.xls.

6. Return to the Setup sheet and click the Draw a Sample
from the Box button. Suppose you did not

know the contents of the box. With your sample, test the claim that the average
of the box is 3.6. Describe your procedure.

7. Open the Consistency.xls workbook. Is eSampleAverage an unbiased estimator of
eAverageBox? If not, is eSampleAverage a consistent estimator of eAverageBox? Describe
your procedure.

8. In a new workbook, we drew a standard normal random variable (average 0 and
SD 1) in cells A1 and A2 and added them together in cell A3. Then we ran a
1,000-repetition Monte Carlo and got the results in Figure 10.9.1.
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Average −0.008 Average 0.021
SD 1.0092 SD 1.3976
Max 3.619 Max 4.225
Min −4.046 Min −4.449

Sheet1!$A$1 Sheet1!$A$3 Notes

Histogram of Sheet1!$A$1 and Sheet1!$A$3

−4.5 −2.5 −0.5 1.5 3.5

Sheet1!$A$1

Sheet1!$A$3

Figure 10.9.1. Monte Carlo simulation of adding two normal RVs.

Use the algebra of expectations to show that the Monte Carlo results for the aver-
age and SD for cell A3, the sum of the two standard normally distributed random
variables, are reasonable.
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Appendix: The Normal Approximation

The normal approximation is used to compute an estimate of a particular area
under distributions which more or less resemble the normal curve. For example,
many biological characteristics like height and weight have histograms for the
general population which look a lot like the normal curve. The method can thus be
used to find quick, roughly accurate answers to questions about how many people
fall into certain height or weight categories.
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Center (Average or EV) 202 Upper cutoff in SUs −1.024
Spread (SD or SE) 41 Lower cutoff in SUs Minus Infinity
Upper Cutoff in actual units 160 Area 15.28%
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Figure 10.A.1. Applying the Normal Approximation.
Source: [BoxModel.xls]NormalApprox.

Consider the following example: one wishes to know the fraction of the adult
male U.S. population which has a serum total cholesterol level below 160
milligrams per deciliter of blood. Cholesterol levels are pretty much normally
distributed, so the normal approximation should be reasonably accurate.

Here is the procedure for using the normal approximation: First, one identifies
the interval of interest. Second, one converts the interval in question into standard
units. Standard units measure how far a particular value is from the average in
terms of standard deviations. The mean total cholesterol level for adult males is 202
and the SD is 41.8 Thus, a male with an actual level of 243 has a cholesterol level of
1 in terms of standard units while a male whose cholesterol level is –2 in standard
units has an actual level of 120. Finally, one finds the area under the standard
normal curve (with mean 0 and SD 1) for the interval in question. This is the
approximate fraction of the population which falls into that interval.

Let us apply the normal approximation to this example. A serum total cholesterol
level of 160 converts to about –1 in terms of standard units. The area beneath the
normal curve from negative infinity to –1 is about 16 percent. The National Center
for Health Statistics reports that a level of 160 was in fact the 15th percentile for the
sample. The normal approximation works quite well in this particular case.

In this book, the normal approximation proves useful in answering questions
about sampling distributions. The central limit theorem says that the sampling
distribution (or probability histogram) for many sample statistics approaches the
normal curve as the sample size increases. The normal approximation is used to

8 These are figures derived from a survey conducted between 1988 and 1994 of 6587 males, ages 20 to 74
years old by the National Center for Health Statistics. The survey is the National Health and Nutrition
Examination Survey. See www.cdc.gov/nchs/about/major/nhanes/datatblelink.htm.
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estimate P-values for observed sample statistics. The P-value is the area under the
sampling distribution for the null hypothesis corresponding to results as extreme as
or more extreme than the one observed in the sample.

The NormalApprox sheet in BoxModel.xls can be used to implement the normal
approximation. Figure 10.A.1 below shows how this sheet can be filled in to work
the example in this appendix. The P Value Calculator add-In (introduced in
Section 10.5) can also be used to apply the normal approximation.
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The Measurement Box Model

It has generally been customary certainly to regard as an axiom the hypothesis that
if any quantity has been determined by several direct observations, made under the
same circumstances and with equal care, the arithmetical mean of the observed values
affords the most probable value. . . .

Carl Friedrich Gauss1

11.1. Introduction

Regression is the dominant method of empirical analysis in economics. It has
two basic applications: description and inference. The first eight chapters of
this book use regression for description. Chapters 9 and 10 introduce and
review tools for making statistical inference. We are now ready to see how
regression is used when the data are a sample from a population.

The next few chapters prepare the ground for the study of regression as a
tool for inference and forecasting. Inference in general means reasoning from
factual knowledge or evidence. In statistics, we have a sample drawn from a
population and use the sample to infer something about the population.

For example, suppose we have data on 1,178 people in the United States
in 1989 selected at random from the adult working population. We have the
level of experience and the wages of these people. Part 1 discusses the use
of regression to provide a summary of the bivariate wage-experience data.
Statistical inference aims at a much more ambitious goal. Instead of simply
describing the relationship for those 1,178 people, we wish to discover the
relationship between wage and experience for all of the adult workers in the
United States. Our aim is to make educated guesses about the population
based on information gathered from the sample.

Throughout our study of regression applied to inferential questions, we
will emphasize the importance that chance and sampling error play in our
educated guesses, which we will call estimates. Although the details require

1 Gauss (1857, Article 177), cited by Lee (n.d., p. 96).

281
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concentration and effort, the main idea – that an estimate based on a partic-
ular sample is likely to be off the true, unknown, population value – is not
difficult to grasp.

We stress the importance of understanding the role of chance in an infer-
ential setting because regression for inference requires an explicit model of
the chance process. We do not want the student to memorize a list of rules
that must be met or, worse, assumed. Instead, our goal is true understanding
of different models of chance and their implications for regression analysis in
an inferential setting. Thus, much of the presentation in the rest of the book
is built on the idea of sampling and sampling error. Although proceeding
with caution over some difficult terrain, we do count on prior knowledge of
elementary statistical inference.

In this chapter we discuss a simple model for the data generation process
first used by astronomers as a way of using combining measurements of celes-
tial bodies to estimate their true orbits. The problem these scientists faced
was that, despite strong theoretical evidence that planets ought to orbit along
smooth curves, their measurements did not all fit on a single curve. They real-
ized that the data resulted from imperfect measurements of the exact location
of the planets. The scientists’ task was somehow to reconcile the data to come
up with a single best estimate of the true orbit. In this endeavor astronomers
realized that, in general, it was a good practice to make use of all the obser-
vations. The question was how. The solution ultimately depended on arriving
at a satisfactory model of the data generation process.

We begin with this model in a book dedicated to econometrics because it
serves as an easily understandable bridge from the data generation processes
of basic statistics (what we have called the coin-flip and polling box mod-
els) to the classical econometric model of Chapter 13. Sections 11.2 through
11.5 discuss a univariate problem in which we measure a single quantity
repeatedly. We will show how the basic models of the data generating pro-
cess reviewed in Chapter 10 can be modified to work out the properties of
the sample average in this measurement problem. In Section 11.6, a crucial
conceptual leap is made by extending the measurement box model to the
problem of the relationship between two variables estimated via a bivariate
regression.

Chapters 11 through 13 present three different descriptions of the data gen-
eration process. In Chapter 13, we point out that, mathematically speaking,
the measurement box model of this chapter and the classical econometric
model of Chapter 13 are identical. Why do we distinguish between them?
We do so because we wish to stress that one must have a coherent, plausible
explanation for the data generation process before one proceeds to statistical
inference. The measurement box model of this chapter assigns very different
roles to chance error than does the classical econometric model.
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This chapter also demonstrates two complementary approaches applied
throughout the rest of the book: the box model, which facilitates compre-
hension of the data generating process, and Monte Carlo simulation, which
enables us to approximate the distribution of estimates obtained according
to a specified data generating process.

11.2. Introducing the Problem

We will start with a hypothetical example designed to illustrate the problem
of estimating a physical quantity using more than one measurement. Suppose
you wanted to know the distance between two mountain peaks because such
knowledge was extremely important to you. Each mountain reached a sharp
point in the horizon. You took a picture of the two peaks and then ingeniously
used geometry to calculate angles and so forth and eventually came up with
an answer of 107.23 miles.

The answer seemed reasonable and everything was OK, but then a nagging
doubt occurred: 107.23 miles seemed fairly precise (given the two decimal
points), but that is equal to 566,174.4 feet, which, in turn, is equal to 6,794,092.8
inches. Thinking about the distance in millions of inches made you doubt
your measurement. Surely, you thought, the measured distance could not
have been that precise.

Figuring that there is only one way to find out, you measured again. You
took another picture, carefully measured the distance on the photo with a
fancy image scanner hooked to a computer, applied the same complicated
geometric algorithm, and got . . . 106.41 miles.

“What will I do now?” you pondered. Having little else to do and a large
quantity of film available, you decided to measure again and again and again!
All told, you measured that distance 25 times. You did exactly the same thing
every time, taking care to record each step accurately in a log book and
double check your calculations. Not once did you obtain exactly the same
measurement. Figure 11.2.2 contains the data you collected.

We are facing a problem of statistical inference. We do not know the true,
exact distance between the mountain peaks. It exists, but our measuring

Peak A Peak B

Distance Measured = 107.23 miles

Figure 11.2.1. A distance measuring problem.
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Observation Distance Measured (miles)
1 107.23
2 106.41
3 105.97
4 106.13
5 108.35
6 105.60
7 105.55
8 105.64
9 106.80

10 105.57
11 108.77
12 108.56
13 108.65
14 105.99
15 105.48
16 106.83
17 107.12
18 105.51
19 106.19
20 106.71
21 106.59
22 107.71
23 106.82
24 106.18
25 105.95  

Figure 11.2.2. Hypothetical distance measurements.

strategy is imperfect. The best we can do is use the data in the figure to
infer an answer.

The first thing we have to do is figure out why the numbers are different.
It is not that the mountains are moving. They may be on shifting, tectonic
plates, but that could not possibly account for variation in the observed dis-
tances of a mile or so. Neither is it a case of mistake – like writing down the
numbers incorrectly. The spread in the observed distances is being caused
by the measuring strategy itself. Even when applied perfectly, there is ran-
domness in the measurement process. This is a general property of measure-
ment. The variation in observed measures has come to be called measurement
error.

The Idea of Measurement Error

Sometimes, when you measure something, you can get an exact answer like
the number of eggs in a carton or the number of days a person is out of work.
Other times, however, you are measuring quantitative, continuous variables
like your height or weight for which an exact answer is simply impossible.
You cannot just say, “I am precisely 6 feet tall” because that is not exactly
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right. No one is exactly 6 feet tall as in

6.0000000000. . . .

If we very, very carefully tried to measure height, say to five decimal places,
by using special equipment, we would come up with a slightly different num-
ber for each measurement such as

6.00134, 6.00146, 6.00121, 6.00130, and so on.

Measurement error is pure chance error, which cannot be removed. The
wind, air pressure, and dust generate extremely small random variations that
give ever so slightly different answers. Clearly, more accurate devices can
reduce measurement error, but it is impossible to eliminate measurement
error entirely.

We must emphasize: in this context, measurement error does not mean
there is a mistake in the measuring process. Measurement error does not
refer to poor coding, a misreading, or various other “silly mistakes.” In most
situations, even if you measure as carefully as possible, you will still obtain dif-
ferent results each time the measurement is made. All of your measurements
will still be different from the truly, perfectly, ideally exact answer.2

Summary

Once we realize that our measurements contain a component driven by pure
chance, we are led to modeling the chance process generating the observed
data. We are about to see that the situation just described has much in com-
mon with other chance processes such as coin flipping, free-throw shooting,
games with dice, and polling voters. All of these situations are characterized
by a common core idea of the role of chance in generating the observed
outcome.

What we have to do to interpret the distance data as generated by a chance
process is to model the chance process at work explicitly. For that, we need a
box model. This is the topic of the next section.

11.3. The Measurement Box Model

Box models are visual analogies that help us understand the chance process
at work. We must understand the way the data are generated before we

2 In this chapter we discuss errors in measuring the dependent variable. Econometricians more commonly
use the term “measurement error” when referring to errors in measuring independent variables. This
situation, which is also called “errors-in-variables,” results in complications that are beyond the scope
of this book.
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0 1 

Average = 0.5 
SD = 0.5 

0 1 0 0

Coin-Flip Box Model 

Draws with 
Replacement 

? 
? 

Average = ? 
SD = ? 

4

Polling Box Model

Draws 
without 
Replacement 

?

? 

190 million tickets 

3 7 2

Figure 11.3.1. The coin-flip and polling box models.

can begin to apply the logic of statistical inference. Without a box model of
the chance process that generated the data, you cannot use the methods of
inference described in this chapter. Inferential analysis should always begin
with an explicit statement of the chance process you assert generated your
data.

Chapter 10 reviews two basic types of box models used to describe different
data generation processes, which we summarize in Figure 11.3.1.3 Both of the
box models in Figure 11.3.1 assert that chance is at work in the observed
results. Because chance is also at work via the idea of measurement error in
our problem of measuring the distance between two peaks, we should be able
to model the process – just like we have modeled other chance processes.

A Box Model for Measurement Error

The new box model is associated with Carl Friedrich Gauss (German, rhymes
with “house,” 1777–1855), who tackled the problem of how to combine astro-
nomical measurements to obtain good estimates of the orbits of celestial

3 We recommend a review of the issues underlying these box models because we are about to introduce
a new box model. There are essential similarities we consider extremely helpful in understanding the
material that follows.
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bodies. We will describe the model in words and then draw a picture of what
is going on before turning to a more mathematical presentation. Our idea
is that the words and picture will help you develop intuition about the mea-
surement box model that will enhance your understanding of the material.

Having decided that chance is at work in the observed measurements, what
do we have to do to link this idea to a box model? We have to be able to say
that the measurements are like draws from a certain kind of box. If it is
possible to say this, then it is possible to perform statistical inference based
on the specific box model to which we have made the analogy. Without a box
model, this is not possible.

Here is how the measurement error model can be applied to this situation.
Each observation (distance measured in miles in our example) is equal to the
true distance plus a number written on a ticket that was drawn at random
with replacement from the error box. Thus, the observed distance is actually
a composite number because it is made up of two parts: the true distance plus
the random draw. The data are interpreted as follows:

Measurement#1 = True Distance + 1st Draw from Error Box
Measurement#2 = True Distance + 2nd Draw from Error Box

. . .

Measurement#25 = True Distance + 25th Draw from Error Box

The box, from which a random draw is being taken each time we measure,
has the following characteristics:

� an unknown, possibly infinite number of tickets;
� the average of the tickets is zero; and
� the SD of the box is unknown.

Note that each measurement has exactly the same true distance compo-
nent. Yet the observed measurements are different because each measure-
ment has a different random draw value added to the same true distance
value.

The sheet Measuring in the Measure.xls workbook enables you to disentan-
gle the true distance and random draw values. Click on the Take a

Measurement button
a few times. Excel takes a random draw each time you measure and adds it
to the true distance to generate the observed distance. This is the heart of
the measurement box model. If necessary it is possible to click on the Reset

button to clear out all the measurements and start again.

The Measurement Box Model in a Picture

Figure 11.3.2 captures the essential features of the measurement box model.
Each measurement is like taking a draw from the box and adding it to the
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A possibly infinite 
bnumber of tickets with 

different values. 

ERROR BOX 

observed measurement  = exact value + 

observed measurement  = exact value + 

1 1 

observed measurement  = exact value + 
22 

n n 

SAMPLE 

Average of the box = 0

NOTE: Tickets are drawn with replacement.

Figure 11.3.2. The measurement box model.

true, exact value. We assume the average of the box is zero and that each
draw is independent of every other draw. Violations of these assumptions
are discussed in Chapters 18, 19, and 20. Finally, note that no assumption is
made about the exact distribution of the errors. In other words, the histogram
of the box contents could have many different shapes so long as the average
of the box is zero.4 More detailed comments about the assumptions can be
found in the pages that follow.

Although the average of the box producing the errors is zero, the sample
average of the errors actually drawn is almost certainly not zero. The smaller
in absolute value the sample average of the errors, the closer our estimate is
to the true parameter.

The Measurement Box Model in Equation Form

More formally, the measurement box model is represented like this:

yi = µ + εi , i = 1, . . . , n,

E (εi ) = 0, i = 1, . . . , n

SD[εi ] = σ , i = 1, . . . , n

εi is distributed independently of ε j , ∀i, j, i 	= j,

where
µ is the true, unknown, exact distance between two mountain peaks,
yi is the ith observation (measurement),
εi is the ith measurement error, and
σ is some nonnegative constant.

4 One technical point: We must also assume that the fourth moment of the error distribution is finite. The
fourth moment of a random variable is the expected value of the fourth power of the random variable.
In practice this means we are ruling out error term distributions like the Cauchy, which has no expected
value and no variance.
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We can see each yi, but we do not know µ, σ , or each individual value of εi .
The εi ’s are like tickets drawn from the box. There are n observations in total
corresponding to the n draws from the box. The number of measurements (n)
tells us the number of draws from the box. The first equation, yi = µ + εi ,

i = 1, . . . , n, tells us that each observation is the sum of the true distance
plus a random variable. The second equation, E (εi ) = 0, i = 1, . . . , n, tells
us that the expected value of the random variable is zero. The third equation
tells us that each and every error term has the same spread (SD, i.e., the
errors are homoskedastic). The fourth equation (or rather statement) says
that the error terms are independent of one another. Putting the first two
equations together, recognizing that the true distance is a constant and taking
expectations, we arrive at

E (yi ) = µ, i = 1, . . . , n,

or, in words, the expected value of each observation is the true distance. In
plain English, the measuring device is on average right. The first equation
plus the statement about independence of the error terms tell us that the
measurements themselves are independent of one another.

Now, we do not presume to know the actual contents of the box containing
the errors, and so we do not know how big the errors might be in absolute
size. Obviously, the more precise the measuring device, the smaller in absolute
value the numbers on the tickets will be (i.e., the smaller σ will be). When it
is assumed, however, that the process that generated our observations is like
drawing tickets from a measurement box, we are making some very important
assumptions about the data generating process:

� We assume that the measurement process is unbiased when we say that the average
of the box is zero. (In equation form, unbiased means E (yi ) = µ, i = 1, . . . , n.)

� We assume that each measurement is independent of every other measurement
when we say that we are drawing with replacement from the box.

� We assume that all measurements are alike in the sense that each measurement
faces the same array of possible errors when we say that we are drawing from the
same box every time. (In statistical jargon, the errors are identically distributed;
they all have the same expected value and the same SD.)

If these three assumptions do not hold, the statistical results that follow
in the next two sections are wrong. Computer software may give you an SE,
but it will not be valid. All is not lost, however. It may be possible to come
up with a more complicated box model of the data generation process and to
compute SEs based on the new model. In fact, violations of these assumptions
are an important part of econometrics and are discussed in Chapters 18, 19,
and 20.
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Comparing the Measurement and Chapter 10 Box Models

We should take a moment to stress the differences between the measurement
box model and the two standard box models of basic statistics. In the box
models of Chapter 10, the tickets are observable once they are drawn. In the
measurement box model, they are not.

We assume that the average of the box is zero for the measurement box.
In the two earlier box models, the average of the box may be unknown
and not necessarily zero. There may be an infinite number of tickets in the
measurement box. In previous box models, the number of tickets in the box is
simply the possible outcomes of a game (like two for coin flipping) or the size
of the population from which the sample is drawn. In previous box models,
we often want to estimate the average of the box. With the measurement box,
it is assumed the average is zero and we instead want to estimate something
else: a parameter such, as the distance between two objects.

Notice as well the philosophical difference between the measurement
model and the polling model. In the latter we are interested in the pop-
ulation average, but we recognize that individuals differ from one another.
Some people are taller, and some people shorter. In the measurement model,
on the other hand, we believe that all observations measure the same value;
the reason they differ is related to the measurement process.

Although it is important to distinguish the measurement box model from
other box models, do not forget that all box models share a crucial common
bond – chance is at work in generating the observed outcome. This common
bond does not merely allow us to organize the world in a convenient fashion,
but it facilitates the application of basic ideas of statistical inference to any
data that are generated via a chance process.

Summary

Having established a box model for the observed distances, we are ready to
make inferences about the true, exact distance between the two peaks. We
will follow two routes to statistical inference, using Monte Carlo simulation
in Section 11.4 and statistical theory in Section 11.5.

11.4. Monte Carlo Simulation

Workbook: Measure.xls

We are interested in the true, exact distance between the two mountain peaks,
but we can only get an estimate from our sample. Because the data can be
modeled as if they resulted from a simple random sample of measurement
errors, we will be able to apply the methods of statistical inference. On the
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assumption that our measurement of the distance between two peaks was
unbiased (so that the errors in the box average to zero), the observed distances
in our sample are a composite number of true distance plus draw from the
error box:

Individual Measurement = True Distance + Chance Error.

The bad news is that we can not get rid of the chance error component
of measurement error. In other words, it is not possible to solve for the true
distance as follows:

True Distance = Individual Measurement − Chance Error.

The reason for this is that the chance error of any individual measurement
is unknown. But what we can do is take many measurements and use the
distribution of individual measurements to make a good guess about the true
distance and the spread of observed sample average values. Thus although
the components of an individual measurement cannot be disentangled, we
can apply the box model to make inferences about the exact value of the
unknown parameter and the variation in potential parameter estimates.

Monte Carlo Simulation

In this section Monte Carlo simulation is used to drive home the point that the
sample average has a distribution (the probability histogram for the sample
average) and to show how that distribution depends on the basic parameters
of the model. The Excel workbook Measure.xls shows how. As you explore
the sheet called LiveSample, click on the cells in the Measured Distance
column to see the cell formulas.5 Notice how the measurement box model is
being applied. Hit F9 a few times to draw a new sample of 25 measurements.

Notice that the sample average changes every time you hit F9. Chance is
involved in determining the sample average. The average bounces around the
true, exact value. What we need is a measure of this variation in the sample
average, which is called the SE of the sample average.

Click on the Show Monte
Carlo Simulation button to take many samples, calculate their aver-

age, and get an approximation of the SE of the sample average by calculating
the SD of the sample averages. It is an SD, not an SE, because it is based
on a finite number of sample averages. The true SE of the sample average
is based on an infinite number of samples. Figure 11.4.1 shows the output of
one Monte Carlo experiment with 1,000 repetitions.

5 In this workbook the errors are normally distributed. One of Gauss’s contributions was to point out
that the distribution of the tickets in the error box is immaterial so long as the mean was zero. Thus, we
could have used the uniform distribution, for example, and nothing essential would change. More on
this is presented in Chapter 14.
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Summary Statistics
Average 107.162
SD 0.8218

Max 108.867 True Distance 107.1165

Min 105.090 SD Errors 4

Empirical Histogram for 1000 Repetitions
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Figure 11.4.1. The Monte Carlo approximation to the probability histogram in the
distance between two peaks measurement problem.
Source: [Measure.xls]LiveSample.

The True Distance and the precision of the measuring instrument, both of
which would be unknown to our scientists, are given in the upper right in red
on the Excel sheet. The Average is the average of the 1,000 separate estimates
of the distance between the two peaks. Each estimate is the sample average
of 25 individual measurements. The SD is the Monte Carlo approximation to
the exact SE of the sample average.

As you work with the Monte Carlo simulation, keep in mind that it cannot
be used to actually estimate the true distance between the two mountain
peaks. Instead, Monte Carlo simulation is a kind of testing ground. Assuming
you know the true distance, you can see the kinds of sample results obtained
and, of utmost importance, the variability of the sample results.

You can run interesting experiments by changing the precision of the
measuring instrument in cell D16 of the LiveSample sheet and then rerun-
ning the Monte Carlo simulation. Qualitatively speaking, how does the spread
of the empirical histogram pictured in Figure 11.4.1 depend on the precision
of the measuring instrument?

Summary

By running Monte Carlo simulations, you should be able to convince yourself,
first, that the sample average obtained from a single sample is likely to be a
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good estimate of the True Distance and, second, that the typical discrepancy
between the sample average obtained and the True Distance depends directly
on the spread of the tickets in the error box. In more precise statistical terms,
the Expected Value of the sample average is the True Distance, and the SE
of the sample average depends directly on the SD of the error box. It is to
the SE of the sample average that we now turn.

11.5. Applying the Box Model

Workbook: Measure.xls

In the previous section we used Monte Carlo simulation to get a better feel
for how the measurement box model works. We saw how Monte Carlo sim-
ulation, or drawing many, many samples from a known box, allows us to
approximate the probability histogram for the sample averages. In practical
applications, however, the key parameters employed to produce the Monte
Carlo simulation are unknown – that is, the exact value of the thing we are try-
ing to measure and the SD of the box representing the measurement errors.
These parameters allow us to construct the probability histogram via statisti-
cal theory or to approximate it via Monte Carlo simulation. Without knowl-
edge of the true parameter values, it would seem that statistical inference
based on data from a single sample cannot accomplish very much.

Given the measurement box model for the data generation process, how-
ever, it turns out that a great deal can be said about the true value we are
trying to measure. To appreciate why, we need to understand the three areas
of this box model, as shown in Figure 11.5.1.

The Measure.xls workbook demonstrates these three areas. The LiveSam-
ple sheet shows both Area 1, the assumptions about the error box, and the
data generating process, as captured in the Excel formulas that generate each
observation, and Area 3, a single sample.6 The MCSim sheet approximates
the probability histogram for the sample average, that is, Area 2.

Statistical theory tells us that the Expected Value of the sample average,
the center of the probability histogram, is the exact value (true distance) we
are trying to measure. Statistical theory also says that

SE(Sample Average) = SD(Box)√
n

,

where n is the number of observations. Measure.xls can be used to obtain
suggestive evidence in support of both propositions.

6 The formula is “=ROUND(True Distance+NORMALRANDOM(0,Error SD),2).” This says that
each observation is the sum of the true distance plus a normally distributed random variable that
averages 0 and has a given SD. The resulting sum is rounded to two decimal places.
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An INFINITE number  
of tickets with  
different values 
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average EV = exact value

SE for sample 
average 

Figure 11.5.1. The three areas of the measurement box model.

This reasoning says that a plausible estimate of the True Distance is just
the sample average. We still seem at a loss, however, in trying to determine
how far away our sample average is likely to be from the exact value we are
trying to measure. We need to know the spread of the error box in order to
make this calculation, but the errors are not observed.

A crucial insight of statistical inference is that we can make do with using
the SD of the measurements in the sample to estimate the SD of the errors
in the box. Students often ask, “But how can one know the spread of the
chance error when it cannot even be seen?” The answer is that the spread
of the measurements is used to reveal the spread of the chance errors. The
key is that we apply a property of the SD of a list of numbers: subtracting the
same number from each number in the list, in this case an unknown exact
value, leaves the SD unchanged. For a demonstration of this property in the
context of this measurement problem, go to the EstimatingSDBox sheet of
Measure.xls.

Let us apply this thinking to our concrete example of the distance between
two mountain peaks. One simple random sample, if explicitly tied to a box
model, can be used to make inferences about an unknown population param-
eter. In Figure 11.5.2, we estimate the true distance between the two peaks.
It is important when applying this procedure to keep in mind that the point
estimate itself is not the only important piece of information needed – we
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Observation
Distance Measured 

(miles) APPLYING THE BOX MODEL
1 107.23
2 106.41 106.652 sample average
3 105.97 1.043 sample SD
4 106.13
5 108.35 0.209 estimated SE of the sample average
6 105.60
7 105.55
8 105.64 The estimate for the true distance is the sample average,
9 106.80 106.652 miles.

10 105.57 The typical discrepancy between this estimate and the 
11 108.77 unobserved true distance is
12 108.56 0.209 miles.
13 108.65
14 105.99
15 105.48
16 106.83
17 107.12
18 105.51
19 106.19
20 106.71
21 106.59
22 107.71
23 106.82
24 106.18
25 105.95

Figure 11.5.2. Estimating the true distance and the SE based on a single sample.
Source: [Measure.xls]DeadSample.

also need to know the spread in the estimate (i.e., the SE of the sample aver-
age). To find this SE we need to know the SD of the box (i.e., the precision
of the measuring instrument). We do not observe the SD of the box, but it
is possible to estimate it via the SD of the measurements. Armed with an
estimated SD of the box, we can estimate the SE of the sample average via
the standard formula. In the data described by Figure 11.5.2, the sample SD
was 1.02. Therefore, the estimated SE of the sample average is 1.043√

25
∼= 0.209.

This SE can be estimated only if the box model is specified and its conditions
are met.

Summary

We conclude this section by discussing what could cause statistical inference
to fail in the context of the measurement box model. Statistical inference can
break down

� If the measurement process is biased. If did not notice that your ruler had the first
inch snapped off so that when you read off 4 1

8 inches it was actually 3 1
8 inches, that

would be bias.
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� If the errors are not independent of one another. This is called autocorrelation or
serial correlation. If you used a machine to read off the distance from the photo and
it somehow kept the last measurement in memory, the next measurement would
depend on the previous measurement.

� If the measurements are not all alike – that is, we were not always drawing from
the same box and thus the errors are not identically distributed. This condition is
known as heteroskedasticity.

Here is an example of heteroskedasticity: If you ran out of film on the tenth
measurement and substituted a high-powered laser beam device to measure
the peaks, you would not want simply to mix the observations together – the
more precise laser beam observations should carry more weight.

We explore all of these problems in later chapters. In all three cases the
box model does not apply, and inference using computed estimates and SEs
gives incorrect answers.7 The computer program used to analyze your data
is unable to catch these violations of the measurement box model. The com-
puter software assumes the data do not violate the requirements. Human
judgment is required to determine how the data were generated before the
data are submitted to the computer. This is worth remembering.

11.6. Hooke’s Law

Workbook: HookesLaw.xls

In this section, we take an important step by extending the measurement
model to cover the case of bivariate regression. Our fictional example comes
from the world of physics. Robert Hooke (1653–1703, British) hypothesized
that the “stretchiness” of a spring is proportional to the load placed on it.
Expressed as an equation, Hooke’s law relates the length of a spring to the
load placed on it like this:

Length of spring (in cm) = Length with no load on it (in cm) + m · Weight
of the load (in kg), where m is a constant of proportionality measured in
cm/kg known as the spring constant. Let us accept this as true – that is, it is
absolutely true that the springiness of a spring is proportional to the weight
placed on it.8

Every spring has an intrinsic value of m. Now, suppose you were asked to
estimate the constant of proportionality for a particular spring. You enter the
laboratory and are given a spring of some unknown springiness, some weights,

7 There is one exception to this statement: heteroskedasticity in the univariate case (see Section 19.2).
However, in the bivariate and multivariate cases, heteroskedasticity does impair inference.

8 Actually, for you physics experts out there, Hooke’s law is merely a linear approximation that works
well within certain bounds. Physicists also point out that Hooke’s law can be applied to any object.
Hanging a board in the air and placing a weight at the bottom “stretches” the board (albeit not much!)
and puts “stress” (vertical pressure) and “strain” (horizontal pressure) on the board.
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Special, heavy-duty 

scientific table

yardarm-like  
device spring with a 

weight on it

other weights  
ready to go 

metric
ruler

Value of weight is 
known exactly  

Figure 11.6.1. Experimental apparatus for testing Hooke’s law.

and a ruler. Your job is to figure out the springiness of that particular spring.
It has a constant of proportionality but its value is unknown. You proceed
by hanging the spring from a small yardarm-type lab device and placing a
weight on it, as in Figure 11.6.1.

You carefully measure and record the length of the spring with different
weights (of known values) on the end of the spring. Obviously, when a weight
is placed on the spring, it stretches. Thus, you end up with a measurement of
the length of the spring for each given weight. When measuring the different
lengths of the spring with the differing weights, you are careful to prevent
one measurement from influencing another and ensure that the measuring
process used is the same for every weight.

To analyze the data and arrive at an estimate of the springiness of our
apparatus, we need a model of the data generation process. We will adapt the
measurement box model to this new situation. The data generation process
looks like Figure 11.6.2.

Observed length1 = Intercept + Slope⋅Weight1  +  

Observed length2 = Intercept + Slope⋅Weigh t2 +  

Observed lengthn = Intercept + Slope⋅Weightn  +  

Gaussian Error Box 
 

Average = 0 
SD = ? 

1

2

n

Figure 11.6.2. Box model for Hooke’s law experiment.
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As before, the errors are independent and identically distributed. They
have an average of zero and an unknown SD. Their being identically dis-
tributed implies that the errors are independent of the weights. In plain
English, this independence assumption says that a heavier than average
weight does not mean, for example, that the measurement error is more likely
to be positive, nor does a heavier than average weight mean that the spread
of the measurement error increases. We highlight the independence of the
error terms and the X variables because this turns out to be a very important
assumption in models of data generation processes.

You can see a virtual version of the problem by exploring the sheet called
OneObs in the HookesLaw.xls workbook. Do this now. Follow the instruc-
tions in the OneObs sheet to get a complete understanding of the concept
that there is one, unchanging true length of the spring determined by the
intercept and slope parameters.

By convention, econometricians represent the parameters with Greek
letters:

True Length of Springi = β0 + β1Weighti , i = 1, . . . , n.

The “i” subscript indexes observations. There are n observations. The
OneObs sheet uses color as a guide. Red text means the number cannot be
seen in real-world situations. But just because a variable cannot be directly
observed does not mean it is unimportant or irrelevant. In fact, we know
there is a true length built on the unknown intercept and slope we are trying
to estimate.

The OneObs sheet also drives home the point that the observed length
of the spring is different from the true length of the spring. The reason for
this discrepancy is measurement error. Every time the spring is measured, an
error resulting from that particular measurement is added to its true length.
Thus, if we denote the error for the ith measurement by εi ,

Observed Length of Springi = True Lengthi + εi .

This formulation highlights the similarity between the more complicated
bivariate model of this section and the univariate measurement error model
considered in earlier sections of this chapter. Equivalently,

Observed Length of Springi = β0 + β1Weighti + εi .

Click the Get One
Measurement button several times to build a data set. Each time you

click the button, think about the data generation process. The crucial concept
is that the observed length of the spring is composed of a fixed component
(Intercept + Slope · Weight) plus an error term. Proceed to the OneSample
sheet to see a data set with 100 observations. Each observation was generated
as before. Figure 11.6.3 shows the generation of one sample.
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Intercept 1.235
Slope 0.2

WeightStep ββββ1 SDBox b1 RMSE

1 0.2 10 0.191 9.084
Weight True Length Error Observed Length

0 1.235 23.615 24.850
1 1.435 6.922 8.357
2 1.635 −0.740 0.895
3 1.835 −2.139 −0.305
4 2.035 −11.262 −9.228
5 2.235 −3.003 −0.769
6 2.435 6.632 9.067
7 2.635 −1.683 0.952
8 2.835 9.042 11.877
9 3.035 −2.558 0.477

10 3.235 2.906 6.140
11 3.435 3.339 6.774
12 3.635 1.742 5.377

Parameters
length of spring in cm with no weight on it

constant of proportionality in cm/kg

Estimating  the Constant of Proportionality

y = 0.191x + 0.746
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Figure 11.6.3. One sample.
Source: [HookesLaw.xls]OneSample.

Hitting F9 recalculates the entire workbook and draws 100 new observa-
tions in a flash. The fundamental idea demonstrated in this sheet is that the
estimated slope is a random variable. Click the

Get One
Sample button (or simply hit

the F9 key) and watch the dots, black line, and the m and b values in the
y = mx + b trend line display bounce around. The red line, however, stays
perfectly still because it is based on the fixed parameters, not the estimated
coefficients. The distinction between the bouncing behavior of the sample
and the fixed red line is a crucial concept.

It is clear that the dots are dancing on the screen because they contain
measurement error (via the data generation process explained in detail in
the OneObs sheet). Because the fitted black line is based on the sample data,
its intercept and slope will also be bouncing. The red line, however, contains
no measurement error at all. It is a fixed, unchanging truth that we are trying
to discern.

In inferential analysis, it is important to keep straight what is a parameter
and what is an estimate. Econometricians use Greek letters to represent
parameters and unobservable variables (in this chapter, we have seen µ, β, ε,
and σ ). We will use lowercase English alphabet letters to designate estimated
parameters. For example, we use the symbol b1 to designate our estimate of
β1. Many econometricians use hats (“circumflexes”) to indicate an estimate
of a parameter; thus, β̂1 would indicate the estimated value of β1.

We present estimates of the regression slope, b1, and the RMSE. It should
be obvious that the slope estimate is fluctuating around the true value of the
spring constant, which in this example is 0.2. The RMSE oscillates around
the true value of the SD of the measurement box, which is 10 in this case.

The MCSim sheet drives home the notion that the estimated slope, b1, is
a random variable by running a Monte Carlo simulation. In each repetition,
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Average 0.2019 Slope 0.2

SD 0.0336 Intercept

Max 0.2983 SDBox 10

Min 0.1007 Exact SE Slope 0.0346

Population ParametersSample Slope Summary Statistics

Empirical Histogram for 1000 Repetitions
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Figure 11.6.4. Monte Carlo simulation of the estimated slope.
Source: [HookesLaw.xls]MCSim.

100 observations are taken and a least squares line is fitted to the data. The
estimated slope for each of the first 100 repetitions is recorded in column
B. The sheet provides summary statistics and an empirical histogram of the
1,000 estimated slopes, as shown in Figure 11.6.4. The empirical histogram
is an approximation to the probability histogram or sampling distribution of
the slope estimate.

The Monte Carlo simulation makes clear that the estimated slope is a ran-
dom variable. The good news is that it is apparently centered on the true, exact
constant of proportionality, which suggests we have an unbiased estimator.
The SD of the 1,000 estimated slopes, in this case .0336 is an approximation
to the exact SE of the estimated slope, which is 0.0346 in this example. (The
exact SE can be computed analytically, which is how the Exact SE Slope is
being calculated in cell H7.) We explain the concepts of bias and the exact
SE in detail in Chapter 14.

Summary

We used Hooke’s law to show how the measurement box model can be applied
in the context of a bivariate regression. The sample coefficients b0 and b1 from
a regression of observed length of spring on weight are random variables
with a probability histogram (or sampling distribution). The parameters β0

and β1 can be estimated from the sample data. The measurement error box
model as applied to bivariate regression looks very similar to the box model
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as applied to univariate measurement. An important refinement arises from
the presence of an independent variable: As noted, a crucial assumption is
that the error terms are independent of the X variables.

11.7. Conclusion

The measurement box model described in this chapter was originally devel-
oped to handle the problem of modeling the data generating process for astro-
nomical observations. Astronomy and economics may seem to be only dis-
tantly related fields. Nonetheless, the measurement box model is very closely
related to the classical econometric model, which, as its name implies, has
been the standard model for the data generating process for economic vari-
ables. The mathematical features of the measurement model – errors that are
mean zero and are independently and identically distributed and observed
values that are the sum of the error term and functions that are linear in the
parameters of one or more independent variables – are shared by the classical
econometric model. In Chapter 14 we will see that these common features
imply that, for both models, the ordinary least squares estimator has certain
optimal properties.

The difference between the measurement model and the classical econo-
metric model has to do with the explanation of the data generating process.
In the measurement model, the only reason univariate data differ from one
another and the only reason bivariate data do not all lie on the same single
regression line is the imperfection of the measurement process. In the classi-
cal econometric model there are other, more complicated, reasons for these
discrepancies.

Although the measurement model provides concepts and intuition that will
serve us well, we are not ready to jump into the classical econometric model.
Chapter 12 considers an alternative means of describing the data generating
process for economic variables. That chapter continues to use the basic box
model metaphor, but the interpretation of the box contents is different.

11.8. Exercises

1. In this book we develop two different languages for describing data generation
processes. The first uses the box model metaphor, whereas the second employs
formal mathematical symbols. What box model concepts correspond to each of
these formal mathematical symbols, statements, and equations?

a. εi
b. σ
c. E(εi ) = 0, i = 1, . . . , n
d. SD(εi ) = σ, i = 1, . . . , n
e. εi is distributed independently of ε j , ∀i, j, i 	= j.
f. yi = µ + εi , i = 1, . . . , n.
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Summary Statistics
Average 105.035
SD 0.8127
Max 107.630
Min 102.597

Figure 11.8.1. Results from Monte Carlo experiment.
Source: [Measure.xls]MCSim.

2. Suppose that the measuring device described in Sections 11.2 to 11.5 was sys-
tematically biased – in particular that the measurements on average were 0.5 km
too big but all the other assumptions about the box model still held true. How
would Figure 11.5.1, which shows the three areas of the measurement box model,
change?

3. In the univariate measurement model described in Measure.xls, the residual is
defined as the difference between the individual measurement and the sample
average. No matter how many times you make 25 new measurements, in the
LiveSample sheet you will notice that the residuals always average to zero (see
cell E21). Why does this happen? The answer requires a little algebra.

4. Suppose you obtained the data in Figure 11.8.1 from the Measure.xls workbook.
Note that the true distance is not revealed. You are told that in the Monte Carlo
experiment there were 1,000 repetitions. In each repetition, 25 measurements
were taken of the unknown distance. You are asked to give your best estimate
of the true distance. What will it be and why?

5. Reconsider the hypothetical Galileo story of Section 6.2. Write down a measure-
ment box model of the data generation process for Galileo’s data on time and
distance of a falling object.
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Comparing Two Populations

Never will we know if the value of a statistic for a particular set of data is correct.
David Salsburg1

12.1. Introduction

In this brief chapter, we introduce yet another data generation process called
the two box model. We will see how the sample average difference is dis-
tributed through Monte Carlo simulation and analytical methods.

The two box model is an extension of the polling box model (explained in
detail in Chapter 10) and provides further practice with inferential methods.
Although the rapidly expanding list of box models may seem daunting, do
not despair. The same basic principles about variability of sample statistics
and understanding the sampling distribution underlie all data generation
processes.

Our approach in presenting the various box models is meant to illustrate
the point that a properly configured box model can represent a wide variety
of chance processes. We are also slowly building toward the box model that
underlies regression analysis in an inferential setting.

Section 12.2 introduces the two box model, and Section 12.3 offers a Monte
Carlo simulation to explore the sampling distribution of the same average dif-
ference. Section 12.4 presents a real-world application of the two box model.

12.2. Two Boxes

The two box model is essentially two polling box models combined. Instead
of estimating a parameter or testing a hypothesis about a single population –
for instance, the average wage of California residents – we are interested in

1 Salsburg (2001, p. 66).

303
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Figure 12.2.1. A picture of the two box model.

a comparison of two populations (e.g., the difference in the average wages of
California and Nevada residents).

If we want to estimate the difference in average wages between men and
women or test whether men have higher wages than women, the two box
model might apply. Another example would be to estimate the difference
in average SAT scores between the 1985 and 1995 test-taking cohorts2 or
determine whether students’ scores on the SAT are statistically significantly
different between 1985 and 1995 (on the assumption that the test has not
changed in difficulty or scoring during that time).

Notice how these examples focus on estimating the difference in population
averages or testing a hypothesis about the difference. In either case, the SE
of the difference of the sample average will play a prominent role. We need
a box model as well as data to obtain an estimate of the SE of the difference.
Without a box model, we cannot obtain the SE.

A Two Box Model for Comparing Populations

Because we are comparing two different populations, we have two different
boxes. Sample A is drawn from Box A, and Sample B is drawn from Box B.
For the methods of this section to apply, the samples must be simple random
samples that are independent of one another. They may be drawn without
replacement, but we will assume that the number of tickets is large relative
to the number of draws and thus that no correction factor is needed.

The two box model is depicted in Figure 12.2.1. Each box has a large, but
finite, number of tickets representing each person in the population. There
is a fixed, unknown average of each box and, therefore, a fixed, unknown
difference of the population averages. This, of course, is what we are trying
to estimate or infer. In addition, each box has a fixed, unknown standard
deviation.

We will use Sample A to calculate the sample average of A and do the
same for B. The difference between the two sample averages is our estimate
of the difference between the two population averages. Chance or sampling

2 In economics and demographics, a cohort is a group of people who all enter the scene at the same point
in time.
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error is in a realized sample average because not all of the tickets are drawn.
Draw another sample and it will have a different set of tickets and thus a
different sample average. Because the sample averages are random variables,
the difference of the sample averages is also a random variable.

We need a new SE, the SE of the difference of the sample averages, to
provide a give or take number on our estimate of the difference between the
two population averages. To test a hypothesis about the difference between
the population averages, this SE is also required to construct a z-statistic
and get the P-value for a hypothesis test. The calculation of the SE is a little
different than in the one-box case, but otherwise the process is the same.

Getting the SE of the Difference

We construct the SE of each sample average, SEA for sample A and SEB

for sample B, as discussed in Section 10.4 (estimating the SD of each box, if
necessary). Then, the SE of the difference of the sample averages is a function
of SEA and SEB, following a square-root law, like this:

SEDifference =
√

SE2
A + SE2

B.

This formula assumes that the samples are independent, simple random sam-
ples. If the samples are dependent or are not simple random samples, the SE
will not be correct, and analyses that use the SE (such as hypothesis testing)
will not be reliable.3

Once we have the SE of the difference of the sample averages, we can use
it as the give or take number on our estimate, generate confidence intervals,
and run hypothesis tests. We can find the z-statistic, in the usual way, like
this:

z = observed difference − hypothesized difference
SE of the difference

.

The P-value is the probability of drawing a sample that has this z-statistic, or
one more extreme, if the null hypothesis is true. In large samples, the P-value
can be computed using the normal distribution.

Summary

This section introduced the two box model and presented a formula for the SE
of the difference of the sample average. The next section presents an example

3 The formula for the SE of the difference of the sample averages can be derived via the algebra of
expectations. Apply the rule for the variance and SD of a sum of independent random variables as
shown in Section 10.7.
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of the two box model in Excel that provides a concrete demonstration of how
the samples are generated. It makes clear that the difference of the sample
averages is a random variable with a sampling distribution.

12.3. Monte Carlo Simulation of a Two Box Model

Workbook: TwoBoxModel.xls

In this section we explore the sampling properties of the two box model. We
focus on explicitly demonstrating the data generation process and empha-
size the variability of the difference of the sample averages. When you draw
two simple random samples from two separate populations and compare the
sample averages, it is possible to create an estimate of the difference of the
population averages.

Unfortunately, because you do not have the population averages them-
selves, it is not possible to use the observed sample difference to make a
definitive statement about the difference of the averages in the population.
The difference of the sample averages is a good guess, but it has an inherent
variability captured by the SE of the difference. This fundamental lesson is
the heart of the TwoBoxModel.xls workbook.

Setting Up The Two Box Model

Go to the HighSchool sheet in the TwoBoxModel.xls workbook. Click the
Make a Box Model button and provide the necessary information. The first time

you create a box model, make the population small – for example, 100.
Choose the default log normal distribution because wage distributions usually
have long right-hand tails. Make the average wage in the population $10 per
hour and the SD $5 per hour. A population histogram appears. Set the sample
size at 25. The resulting parameters should look like Figure 12.3.1.

Clicking the Draw a Sample One
Ticket at a Time button takes one draw, without replacement, from

the population. The chosen observation is then reported, its cell is colored
green in column A, and the value is written in column J. Scroll down (if

Parameters
Number Tickets

100
Average of the Box
$   10.00

SD
$     5.00

Number of Draws
25

Distribution of Box
Log Normal

Figure 12.3.1. Parameter settings for the two
box model simulation.
Source: [TwoBoxModel.xls]HighSchool.
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Parameters
Number Tickets

100
Average of the Box
$   15.00

SD
$   10.00

Number of Draws
25

Distribution of Box
Log Normal

Figure 12.3.2. Parameter settings for the two
box model simulation.
Source: [TwoBoxModel.xls]College.

needed) until you spot the observation that was drawn. It is now out of the
population and cannot be drawn again. Click the Draw a Sample One

Ticket at a Time button a few
times until you get the idea of how the sample is being generated. When you
tire of drawing tickets one at a time, click the Cancel button on the message
box.

Clicking the Draw a Sample button takes an entire sample, drawn without
replacement, from the population and places it in column J (and column
A of the Difference sheet). The sample average and SD are reported in cells
G11 and G13. The correction factor (which is increasingly important as the
number of draws approaches the total number of tickets in the population) is
displayed in cell G23. The estimated (using the sample SD) and exact (using
the population SD) standard errors of the sample average are reported in
cells G25 and G26.

Click the Draw a Sample button several times. Note that the tickets in the popu-
lation and parameters (in red) remain fixed, whereas the sample itself and all
statistics based on the sample vary. The exact SE remains constant (because
the SD of the box does not change), but the estimated SE bounces (because
it is based on a bouncing sample SD).

Proceed to the College sheet and click on the Make a Box Model button. Create
a box model with the parameters shown in Figure 12.3.2. As with the High-
School sheet, you can create a sample one draw at a time or generate an entire
sample by simply clicking the Draw a Sample button. The sample is displayed in
column J and column B of the Difference sheet.

The Difference sheet shows the observed High School and College wages.
Confirm that column A in the Difference sheet is identical to column J in
the HighSchool sheet. Column B, of course, is a copy of the College sam-
ple. The Difference sheet displays the average and SD for each group and
the difference of the sample averages. We obtained the results reported
in Figure 12.3.3. Your results will be different because you have different
samples.

The difference of the sample averages of $1.40 per hour is an estimate of
the difference of the true or population average, which we know is $5 per
hour. The estimate is off the true value because of sampling or chance error.



P1: JZZ
0521843197c12 CB962B/Barretto 0 521 84319 7 November 6, 2005 17:28

308 Comparing Two Populations

Sample 
Average

Sample
SD

High School 12.10$      5.17$        
College 13.50$      9.26$        

Difference (C-HS) 1.40$        

Figure 12.3.3. High school and college
sample outcomes.
Source: [TwoBox.xls]Difference.

There are a few more high-wage high schoolers and a few more low-wage
college grads in these two particular samples than one might have expected.

Of course, the presence of chance error in the sample flows into the sample
averages and the difference of the sample averages. Thus, the difference of
the sample average is a random variable with a sampling distribution.

Monte Carlo Simulation

Click the Draw a Sample
 from Each Box button in the Difference sheet to see the difference of

the sample averages (in cell E4) bounce around. There is no doubt about it –
each set of new samples pulled from the high school and college populations
generates new sample averages and a new difference of the sample average.
We could build up an approximation to the probability histogram of the
difference of the sample average by tracking each cell E4 result after drawing
new samples, but that would be slow and tedious.

Proceed to the MCSim sheet to see a much faster and easier approach.
Each repetition consists of drawing a high school and college sample and
then computing the difference of the averages of the two sample groups.
With many repetitions, an approximation to the sampling distribution or
probability histogram of the difference of the sample averages emerges.

Run your own Monte Carlo simulation by clicking on the Run Monte Carlo
Simulation but-

ton and compare your results to those reported in Figure 12.3.4. Notice that
the average of 10,000 differences of the sample averages, 4.994, is close to the
difference of the population averages, 5.00. This suggests that the sampling
distribution is unbiased – that is, it is centered on the true population differ-
ence. The SD of the 10,000 differences, 1.932, is also a good approximation of
the exact SE of the difference of the sample averages, 1.946. The latter was
computed using the square-root formula and the known population SDs. The
Monte Carlo results support the formula for the exact SE of the difference
of sample average.

That the sampling distribution is approximately normal even though the
populations are log normally distributed demonstrates the central limit the-
orem. Finally, note that the minimum difference in 10,000 repetitions was
−$1.64 per hour. For that particular realization of the chance process, the
high school average wage was actually greater than the college average. The
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Population Parameters

Sample Average Difference Summary Statistics Difference College High School
Average 4.994 5.000$       15.00$       10.00$       
SD 1.932 Exact SE Diff 1.94626985 SD of the Box 10.00$       5.00$        
Max Population Size 100 100
Min −1.640 Distribution of the Box Log Normal Log Normal

Sample Size 25 25
Empirical Histogram for 10,000 Repetitions

0

200

400

600

800

1,000

1,200

−5 0 5 10 15

Difference of the sample averages

12.880

Figure 12.3.4. Two box Monte Carlo simulation results.
Source: [TwoBoxModel.xls]MCSim.

empirical histogram shows that there were a few samples in which the differ-
ence of the sample averages was negative.

Summary

This section has demonstrated a two box model by using a fictional scenario
in which we sampled from artificial high school and college populations. We
showed that the difference of the sample averages is a random variable and
verified the formula for calculating the SE (the square root of sum of the
squared individual sample SEs).

The TwoBoxModel.xls workbook allows for experimentation. Explore how
the SE of the difference changes as the number of draws increases or the
underlying SDs of the boxes change. Try changing the population distribu-
tions to see how the sampling distribution is affected.

The next section uses a real-world example to illustrate the two box model.
We will not know the true parameters, and thus they will need to be estimated.
It will not be possible to take repeated samples, but we know the one sample
we have is a single outcome from the random process that generated the data.

12.4. A Real Example: Education and Wages

Workbook: CPS90Workers.xls

This section explores an actual example of the two box model. We will
use samples from two populations to make inferences about the difference
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between the two population averages. This example will be used to show the
logical order involved in a hypothesis test. We present the research question
and then proceed through a series of steps to answer the question.

The Research Question

Does education increase a person’s wage? More precisely, if other factors that
influence wages are held constant, do college-educated workers earn more
than workers who have only a high school education? Human capital the-
ory says that education increases the productive capacity of individuals. An
individual obtaining an education is like a firm investing in physical capital:
current outlays (tuition and foregone earnings) increase future returns (earn-
ings from future jobs). If education increases productivity, it should increase
wages.

Of course, we cannot simply compare the sample average wages of workers
with college and high school degrees because we know the sample averages
and sample difference are random variables. An average wage for college-
educated workers might be obtained that is higher than the average wage of
their high school counterparts just by pure chance. In other words, perhaps
the population average wages are in fact the same and it was just luck that
we drew a few more highly paid college workers and a few more lower paid
high school workers. A hypothesis test will enable us to handle this issue.

The Null and Alternative Hypotheses

To conduct a hypothesis test, we need to define a null hypothesis and an
alternative hypothesis.

Null Hypothesis: The average wage of workers with a college degree is equal to the
average wage of workers with only a high school degree.

Alternative Hypothesis: The average wage of workers with a college degree is higher
than the average wage of workers with only a high school degree.

Notice that the null represents the default answer that there really is no
difference. Observed sample differences are caused by chance alone. We will
test the null and decide to reject or not reject it.

The Data

The data that we will use to investigate this question come from the
March 1990 Current Population Survey. They consist of two random sam-
ples of workers from the entire population of those people who had a job in
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Education
Data 12 16 Grand Total
Average of Wage 9.31$              14.06$            10.61$         
StdDev of Wage 4.99$              7.14$              6.04$          
Max of Wage 40.00$            44.23$            44.23$         
Min of Wage 1.00$              1.38$              1.00$          
Count of Wage 819 308 1127  

Figure 12.4.1. Summarizing wage data by high school and college.
Source: [CPS90Workers.xls]PivotTable.

March 1990. For each observation (corresponding to an individual person),
we have values for the following variables:

Education = highest grade completed, in years

Wage = reported hourly wage, in $ per hour

The first sample, which has 819 observations, is a random sample of all
those working in March 1990 who had 12 years of education (i.e., a high
school degree). The second sample, which has 308 observations, is a random
sample of all those working in March 1990 who had 16 years of education
(i.e., a college degree).

A PivotTable in the CPS90Workers.xls workbook, shown in Figure 12.4.1,
summarizes the data from the two groups.

Is the Difference Real or Due to Chance?

The college grad sample has a higher average wage than the high school
sample. Have we found the answer to our question? Should we conclude
that the population of people with 16 years of education has a higher average
wage than the population of people with 12 years of education? Not yet.
Although the sample averages support an affirmative answer, there is still the
possibility that the population averages are actually equal and the difference
observed is simply due to the luck of the draw. To determine if this difference
is real or due to chance, we need to use a test of significance. To do this,
we need to construct a box model that represents the data generation process.

Setting Up the Box Model

The first box contains individual wages of workers who have 12 years of edu-
cation. The second box contains the wages of workers who have 16 years
of education. Figure 12.4.2 depicts the two box model and actual sam-
ples in this case. We will argue that the data were generated according to
Figure 12.4.2. In fact, the CPS uses a cluster sampling scheme, not the pure
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High School Box
Avg = ?
SD = ?

819 draws
Sample Avg = 9.31
Sample SD = 4.99

College Box
Avg = ?
SD = ?

308 draws
Sample Avg = 14.06
Sample SD = 7.14

Figure 12.4.2. The box model for comparing high school and college wages.

simple random sampling design required by the two box model. The cluster
sampling means our computation of the SE of the difference in the sample
average is a little off. We can legitimately argue, however, that the data were
generated by a random process. For the purposes of illustrating the two box
model, we will proceed as if the two box model applies.

We believe it is of utmost importance to tie the data to a box model. You
cannot use the sophisticated methods explained in this book to determine the
variability of a sample statistic unless the data generation process is explicitly
connected to a box model. Often, the tie will not be exact. In this case, it
is best to state the lack of agreement in the actual DGP from the ideal box
model being used to justify the application of statistical methods.

Figure 12.4.2 allows us to recast our null and alternative hypotheses in the
language of the box model.

Null Hypothesis: Both boxes have the same average, or, the difference between the
averages is equal to zero.

Alternative Hypothesis: The college box has a higher average than the high school
box, or, the difference between the average for the college box and the average of
the high school box is positive.

Constructing the Test Statistic and Interpreting the Results

With a box model that reflects the data generating process, explicit state-
ments of the null and alternative hypotheses, and sample data, we are ready
to construct the test statistic. We will use the z-statistic because the sample
sizes are large enough that we know, from the central limit theorem, the sam-
pling distribution of the difference of the sample averages is approximately
normal. We know the observed difference: it is 4.75 (=14.06 − 9.31). The null
hypothesis gives us the hypothesized difference, which is zero. To find the
z-statistic, we still need the SE of the difference.

The sample of 819 workers with 12 years of education has an SD of 4.99.
Using this SD as the SD of the high school population, we get an estimated
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SE of the sample average equal to

4.99√
819

= 4.99
28.62

≈ 0.17.

The sample of 308 workers with 16 years of education has an SD of 7.139.
Using this SD as the SD of the college box, we obtain an estimated SE of the
sample average equal to

7.14√
308

= 7.14
17.55

≈ 0.41.

The SE of the difference between these two sample averages is√
SE2

A + SE2
B =

√
0.172 + 0.412

=
√

0.0289 + 0.1681

= 0.44.

The z-statistic, then, is

4.75
0.44

≈ 10.7.

The z-statistic tells us that, if the null is true, the observed difference is 10.7
standard errors away from the hypothesized difference of zero.

The P-value for this z-statistic is tiny. We reject the null that there is no
difference in the average wage of high school and college-educated people
in the United States in March 1990 because our sample result (or one more
extreme) is ridiculously unlikely to have been observed if there really were
no difference.

A Brief Note on Confounding

The data confirm that college-educated workers earn more than workers with
only a high school education. Suppose, however, we want to know whether
getting a college education will increase your wage if everything else is held
constant. If we take someone who currently has a high school education
and send that person to college, will that person’s hourly wage increase by
5 dollars? This is a more difficult question to answer, and we may not be able
to answer it if there is confounding. If the two populations are not alike in
every way except for their level of education, then we may have confounding.
The test of our null hypothesis does not tell us whether there is confounding
and may lead us to the wrong conclusion if confounding exists.

Virtually every study shows that better educated workers have higher
wages. Much controversy, however, remains over the interpretation of this
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result. Do better educated workers have higher wages because the schooling
improves their productivity or because they were more talented in the first
place? Perhaps people who are less talented get less schooling because they
do not like education. In other words, another factor, innate ability, may be
confounding the comparison between the wages of the two groups. Econo-
metricians also use the term omitted variable bias to describe this situation.
We discuss this issue in more detail in Chapter 18.

Summary

This section has been devoted to a real-world application of the two box
model with an emphasis on the logic of hypothesis testing. We estimated
the difference in the average wage between college and high school edu-
cated workers with the sample difference. Given a concern that the observed
difference might be due to chance alone, we ran a test of significance.

We began the hypothesis test by explicitly tying the data from the CPS sam-
ple to the two box model. The tie was not perfect, but it was close enough.
The important lesson is that we made an argument for using the two box
model. Without this argument, we cannot justify the use of the formula for
the SE of the difference in the sample averages. The rest of the testing pro-
cedure was fairly mechanical. We constructed a test statistic, computed the
corresponding P-value, and made a decision to reject the null.

12.5. Conclusion

This brief chapter serves as a stepping stone to our eventual goal, the classical
econometric model. By examining a data generation process in which two
groups are being compared (for example, wages of high school versus college
educated people), we are taking a small step toward a regression that explores
the effect of education on earnings.

This chapter especially emphasizes the idea that a sample difference
between two groups is a random variable that changes with each new sample.
Although the sample difference is important, remember that the SE of the
sample difference is also crucial. Without this give or take number, we have
no way of knowing whether the observed sample difference reflects an actual
difference between the two population averages. Every statistic derived from
a data generation process has a sampling distribution, and much effort is
focused on determining the center, spread, and shape of the statistic’s prob-
ability histogram. Of course, if the sample was not generated by a random
process, you have no business applying the methods demonstrated here.

These lessons remain in force as we turn to the next chapter, which intro-
duces the classical econometric model.
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12.6. Exercises

Workbook: CPS90ExpWorkers.xls

These exercises are organized around the research question: Does experience
increase a person’s wage in the United States?

Open the Excel workbook, CPS90ExpWorkers.xls. The Intro sheet explains the
variables.

1. Report the average wage for Experienced and Inexperienced workers.
2. The difference between the average wage of the Experienced workers and the

average wage of the Inexperienced workers is $3.10 per hour. Why can we not
conclude that experience raises a person’s wage based on this fact?

3. Draw a two box model that represents the data generation process.
4. State the null and alternative hypotheses.
5. Find the SE of the difference of the sample averages. Show your work.
6. On the assumption that the null is true, draw a rough sketch of the sampling

distribution of the difference of the sample averages. Mark the location of the
$3.10 per hour difference we observed in our sample.

7. Would you reject the null hypothesis? Explain.

References
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Somewhere early in the development of this general idea, the word significant came to be
used to indicate that the probability was low enough for rejection. Data became significant if
they could be used to reject a proposed distribution. The word was used in its late-nineteenth-
century English meaning, which is simply that the computation signified or showed something.
As the English language entered the twentieth century, the word significant began to take on
other meanings, until it developed its current meaning, implying something very important.
Statistical analysis still uses the word significant to indicate a very low probability computed
under the hypothesis being tested. In that context, the word has an exact mathematical mean-
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implying something much closer to the modern meaning of the word (p. 98).
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The Classical Econometric Model

. . . the class of populations we are dealing with does not consist of an infinity of
different individuals, it consists of an infinity of possible decisions which might be
taken with respect to the value of y.

Trygve Haavelmo1

13.1. Introduction

This chapter will introduce and discuss the classical econometric box model.
We will use CEM as our acronym for this fundamental model. In other books
and articles, you might see this model referred to as the classical linear model
or the classical regression model. The name is not as important as the content.

The CEM has been by far the most commonly used description of the
data generation process in econometrics. Understanding the requirements,
functioning, and characteristics of the CEM is extremely important because
modeling the data generation process is a crucial step in econometric analy-
sis. Without a model of how the data were generated, inference is impossible.
Subsequent chapters present more complicated box models designed to han-
dle some of the situations in which this basic model deals inadequately with
the data generation process.

Sections 13.2 and 13.3 present a hypothetical example designed to provide
an intuitive understanding of the CEM, and Sections 13.4 and 13.5 describe
the CEM in a more formal way.

13.2. Introducing the CEM via a Skiing Example

Workbook: Skiing.xls

The heart of this chapter, and a crucial idea in econometrics, is the data gen-
eration process (DGP) specified by the CEM. This section uses an extended

1 Haavelmo (1944) in Hendry and Morgan (1995, p. 488).

316
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Women Super Giant Slalom Medal Results in the 1998 Winter Olympics

Medal Athlete Country Time (min:s.00) Time (s)
Gold Picabo Street USA 01:18.02 78.02
Silver Michaela Dorfmeister AUT 01:18.03 78.03

Bronze Alexandra Meissnitzer AUT 01:18.09 78.09

Figure 13.2.1. Women super giant slalom results, 1998 Winter Olympics.
Source: [Skiing.xls]Picabo.

hypothetical example to illustrate the DGP embedded in the model. We
could instead have launched into a dry, abstract description of the model and
its requirements, but we think you will have more fun and learn more by
beginning with an example that makes intuitive sense.

Super G at the 1998 Nagano Olympics

Olympic skier Picabo (pronounced PEEK-a-boo) Street is poised to come
shooting out of the gate. She will reach speeds in excess of 70 mph as she
completes her Super G run. Her competitors will try to beat her time. One
after the other they come rocketing down the mountain. In the 1998 Winter
Olympic Games in Nagano, Japan, the final standings for the Super G medals
are presented in Figure 13.2.1.

We are going to consider ways to model the outcome of this and other
imaginary races from an econometric perspective. Our goal is to give an
informative example of the CEM. We will work toward that model by starting
one we have already encountered. How can the measurement box model be
used to interpret each individual time?

The Measurement Box Model

A simplistic application of the measurement error DGP would give a cynical
and clearly false explanation of what happened at Nagano as follows. Each
skier actually had the exact same time on her run in the Super G, but the
official clock sometimes registered a faster time, sometimes a slower time.
Picabo Street happened to have been the luckiest skier, and so she got the
gold medal!

Now this story is nonsense, but let us write down the model anyway for
purposes of comparison to more realistic models:

Model 1: Observed Timei = True Time + εi for i = 1, . . . , n.

Subscript i indexes skiers, and thus, for example, Observed Time9 would be
the time for the ninth skier. There are n skiers in all. The observed time
for skier i is the true time, which is the same for all skiers (you can tell
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Figure 13.2.2. A measurement box model for observed ski times.

because there is no subscript on True Time) plus εi , a draw from a mea-
surement box. All the draws are independent, meaning, for example that a
clock that was too slow for one skier tells us nothing about the likely amount
of the timing error for any other skier. The SD of the error box depends
on the precision of the timing system and that precision did not vary during
the competition (e.g., a better timing device was not installed after the second
skier’s run).

Model 1 applies the univariate measurement box model not to the distance
between two mountains, but to the time taken by world-class skiers hurtling
down a mountain. The observed time is composed of two unobservables: (1) a
true, unchanging value, plus (2) a random, chance error term generated by
the measuring device itself. Figure 13.2.2 is a picture of Model 1.

Notice that the measurement box model, as currently implemented, is
based on no information about each skier. It is assumed that the skiers are
identical and that, owing to the vagaries of the timing system, some pick
positively numbered tickets from the box on their way down the mountain
(which is bad because they want to get down there fast!), whereas others draw
negatively numbered tickets. The parameter β0 indicates the true, unknown
time for each skier.

One way to estimate the fixed, unknown True Time would be to take the
sample average of all 11 skiers’ times. Furthermore, if we wanted to pre-
dict any individual skier’s time, we would guess the sample average, give
or take the SD of the sample (which would be our estimate of the SD of
the box). We repeat that Model 1 is just the univariate measurement box
model.
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But we ought to reject Model 1. Why is Model 1 unsatisfactory? There
are three good reasons. First, owing to modern technology and the scrutiny
of the entire skiing world, the Olympic timing system is actually quite pre-
cise. Measurement errors for the clock in the Super G are considerably less
than a hundredth of a second (Picabo Street’s winning margin over Michaela
Dorfmeister at Nagano). Second, it seems likely that, even among the very
best skiers in the world, some are better than others, and so the assumption
that the true time was the same for all skiers is silly. Third, even if all the skiers
were equally talented, there is no way they would take the same time coming
down the mountain. Snow, wind, and the path left by other skiers must have
an impact on each skier’s time. Our conclusion is that the measurement box
model, as implemented in Model 1, does not describe this data generation
process.

Notice that we do not blindly assume a data generation process. In this
case, we have rejected Model 1 because it does not accurately depict the way
the observed times were generated. Similarly, we would reject a model of
the data generation process based on the polling box model because the way
observed ski times are generated is not from a box with a fixed average and
a finite number of tickets each representing a single skier.

A New DGP to Describe Observed Ski Times

To represent the data generation process in the skiing example correctly,
we are going to need a new box model. We will call it the classical econo-
metric box model or CEM for short. Before we begin, let us think more
realistically about what causes differences in skiing times. Athletic perfor-
mance clearly depends on raw talent, the time spent practicing the sport,
and luck. Now there is no way to influence raw talent and luck, but it is pos-
sible to adjust time spent practicing. Skiers know that the more you train,
the lower your time, but no one knows how much you can improve by
increasing training. Furthermore, it is possible to measure how much time
an athlete spends training, but it is very hard to measure either talent or
luck.

The box model for skiing must correct the three flaws in the simple measure-
ment error model. First, we will eliminate measurement error as an important
explanation for differences in observed times. There is undoubtedly some
measurement error in the observed ski time, but it is so small in this case
(compared with the other sources of variation in times of skiers) that mea-
surement error can be safely ignored. Second, we explicitly model training
time as a variable that helps to explain differences in the true time of each
skier – more training, we think, yields a lower true time ceteris paribus. Third,
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we will allow observed time to be influenced by two other factors as well: luck
and pure talent.

In this more realistic model, each skier has a true, exact, but unknown time
on a given hill on a given day. That time is determined by his or her training and
talent. What each observed time represents is a composite number formed
according to Model 2:

Model 2: Timei = β0 + β1 · Trainingi + β2 · Talenti + νi , i = 1, . . . , n.

In Model 2, the error term, νi , represents luck: good luck is a negative error
term, reducing the observed time, whereas bad luck is a positive error term.
The observed time is different from the true time because of luck.

Although Model 2 is a much more satisfactory description of the data
generating process, it cannot be estimated. The problem is that Talent is
unobserved: medical science is incapable of measuring raw skiing talent.2

For purposes of estimating the model, talent must be dumped into the error
box. A model we actually could estimate is Model 3:

Model 3: Timei = β0 + β1 · Trainingi + εi , i = 1, . . . , n.

The source of the chance error (εi ) in Model 3 can be found in two places.
First, each error term in part represents the impact of omitted variables. An
omitted variable is an independent variable that influences the dependent
variable, but is not included in the regression model. Although we have high-
lighted natural ability (talent) as an obvious determinant of performance,
there are potentially many more omitted variables such as the motivation
and health of each skier. The second component of the error in each obser-
vation reflects the inherent randomness in the world (slight wind shifts while
flying down the mountain, bumps, etc.) or, in other words, just plain luck.
Thus, Model 3’s error term εi is really the sum of all omitted variables (like
talent), measurement error (which is small compared to the other two sources
of error), and just plain luck (the ν term in Model 2). The i subscript reminds
us that the value of the error term varies from one skier to the next.

Figure 13.2.3 is a graphical representation of the CEM treatment of
Model 3. Each ticket drawn from the box is a composite error term rep-
resenting the effect of talent, luck, measurement error, and other factors.
Because each draw from the error box is made at random and with replace-
ment, the chance errors are independent of the included X variables. In this
case, that means the amount of training a skier has tells us nothing about his
or her talent. Because the draws are with replacement, the box is the same
for all of the skiers. That rules out situations in which, for example, skiers

2 Researchers, however, do try to measure the relationship between exercise and how well the body
performs using regression techniques. For example, see Winter, Eston, and Lamb (2001).
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Observed Time1 = β0 + β1⋅Training1 +   

Error Box 
Reflecting the impact of omitted 

variables and luck. 

Average = 0 
SD = ? 

Observed Time2 = β0 + β1⋅Training2 +  

Observed Timen = β0 + β1⋅Trainingn +  

Figure 13.2.3. The classical econometric box model.

with more training have more consistent times, which would imply that there
is a smaller spread in better trained skiers’ error terms.

Comparing Box Models

Suppose we knew the values of the four unknown parameters in Model 2: the
intercept, two slopes, and SD of the error box. Then for each individual skier
we could predict the amount of time he or she would take coming down the
mountain given the number of hours that skier trained and his or her talent
level. Mathematically speaking, this situation would be just like the Hooke’s
law example. If we knew the exact physical characteristics of the spring (the
intercept and slope parameter values), we could compute the exact length of
the spring for different weights. The skier’s true time (with a zero draw from
the box) and the exact length of the spring are deterministic functions of the
parameters and independent variables. In both cases, the observed values of
the dependent variables are different from the true, deterministic values. This
is due to the presence of the error terms in the models.

Despite the formal similarity, there is a big philosophical difference
between the two models. That difference lies in the explanation for the pres-
ence of the error terms. In the CEM, the error term no longer reflects an
imperfect measurement instrument. Instead it summarizes the impact of all
the factors not explicitly included in the model: motivation, quality of train-
ing, equipment, and plain old luck. For economists, this idea that the error
term reflects factors influencing the outcome that they cannot measure is an
appealing concept. Because it is usually impossible for economists to collect
information on all the relevant variables, we attribute variation in observed
dependent variables to factors that have not been measured.
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Summary

This section introduced our hypothetical shing example. It forms the back-
bone of our presentation of the CEM. This discussion may seem overly
abstract; therefore, let us implement these notions in a concrete, visual
presentation to explain more clearly what is going on. The next section
shows how Excel can be used to simulate the ideas presented here and
gives you a chance to see the data generation process of the CEM in action
literally.

13.3. Implementing the CEM via a Skiing Example

Workbook: Skiing.xls

To demonstrate the operation of the classical econometric box model, let
us imagine an experimental setup that could generate the data. Suppose the
Austrian Ski Federation, stung from their defeat at Nagano, is determined
to figure out the effect of training on performance. Therefore, the federation
has decided to perform a series of tests designed to determine the effect of
training on ski times. They will take groups of 25 skiers and apply a training
regimen to each skier. One will train 8 hours per day, whereas another might
train only 2 hours per day. After 6 months, the 25 skiers will race and their
times will be recorded.

Open the Excel file Skiing.xls. Go to the sheet called EstimatingBeta1,
which implements the DGP of the classical econometric model. The purpose
of this workbook is to clarify the roles played by the observed and unobserved
variables in the data generating process of the CEM.

Let us take a tour through the EstimatingBeta1 sheet, as depicted in Fig-
ure 13.3.1. As you work on understanding the information presented on this
sheet, we suggest clicking on cells to reveal formulas and noting which cells
bounce and which remain constant as we simulate the data generation pro-
cess. As usual, all of the parameters and variables that would be unknown to
the econometrician are in red text. Training and Observed Time are in black
text because they are observed.

The key parameter of interest is β1, the coefficient on Training Time, which
has been set at −0.5 and is in units of seconds/hours per day. This means
that, for every additional hour of training per day, the skier’s time falls by
0.5 seconds. Although this may not seem like much, when you consider that
races are won by hundredths of a second, maybe training that extra hour
every day really is worth it. Of course, we have cooked all of these data
and really do not know how much training affects skiing performance; how-
ever, we do think training, whether for skiing or in the classroom, really
matters.
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β0 100 (s)

β1 −0.5 (s/hr per day) b1 −0.637 100.612 b0

β2 −0.2 (s/index points) est. SE(b1) 0.088 0.472 est. SE(b0)

SD of Nus 0.5 (s) R2 1.270
r (Training, 

Talent) 0.29 Sample Correlation between Training and Talent F 52.309 23
RegSS 84.400 37.110 SSR

Average 4.52 −0.436 97.827 −0.091 −0.004 97.7348
Max 11.884 101.462 0.916 2.623 102.12
Min −12.867 93.123 −0.593 −2.286 93.21

SD of Nus 2.95 6.45 2.22 0.39 1.31 2.25

Skier

Training 
(hr per  

day) Talenti

True Timei 

(s) νi (s)

β2Talenti + 

νi (s)

Observed 
Time 
(s) Skier

A 7 1.503 96.199 −0.146 −0.447 96.05 A Winner Y 93.21 s
B 8 −8.895 97.779 −0.431 1.348 97.35 B
C 9 11.884 93.123 0.916 −1.460 94.04 C
D 4 10.655 95.869 0.103 −2.028 95.97 D
E 2 0.683 98.863 0.519 0.383 99.38 E
F 7 3.936 95.713 −0.187 −0.974 95.53 F
G 2 −8.303 100.661 0.258 1.919 100.92 G
H 7 −0.585 96.617 0.054 0.171 96.67 H
I 0 2.491 99.502 −0.237 −0.735 99.26 I
J 3 −6.514 99.803 −0.569 0.734 99.23 J
K 2 −2.287 99.457 −0.528 −0.071 98.93 K
L 5 −3.637 98.227 −0.593 0.134 97.63 L
M 9 4.229 94.654 −0.251 −1.097 94.40 M
N 1 −0.248 99.550 0.067 0.117 99.62 N
O 6 −2.237 97.447 −0.070 0.378 97.38 O
P 4 3.851 97.230 −0.450 −1.220 96.78 P
Q 4 0.802 97.840 −0.510 −0.670 97.33 Q
R 1 0.959 99.308 −0.244 −0.436 99.06 R
S 3 3.405 97.819 −0.016 −0.697 97.80 S slope -0.63663273
T 8 −12.867 98.573 −0.045 2.528 98.53 T
U 3 −5.192 99.538 −0.216 0.823 99.32 U
V 1 −7.177 100.935 0.276 1.711 101.21 V
W 1 −9.810 101.462 0.661 2.623 102.12 W
X 7 1.471 96.206 −0.559 −0.853 95.65 X
Y 9 10.991 93.302 −0.088 −2.286 93.21 Y

Population Parameters

Model 3: Time = β
0
 + β

1
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Figure 13.3.1. The skiing example.
Source: [Skiing.xls]EstimatingBeta1.

Click on one of the Observed Time cells in column G. We clicked on cell
G18 to reveal the following formula:

= ROUND(Beta0 + Beta1∗Training + Beta2∗Talent + Nu, 2)

The formula puts Model 3 of the previous section into play. Nu is an error term
reflecting luck and measurement error. Because we do not observe talent,
our error term is actually Beta2*Talent+Nu. The values of this composite
error term are given in column F. The ROUND function is used to force the
computed result to be rounded to the second decimal place.

A key assumption of the CEM is that the omitted X ’s that help make up
the tickets in the error box must be independent of the included X ’s. For this
to be true when we implement the skiing example, the correlation between
Talent and Training must be zero on average. Cell B6, which reports the sam-
ple correlation between Talent and Training, shows that in each individual
sample the correlation will not be exactly zero. As you repeatedly draw sam-
ples, however, you will observe that this correlation bounces around zero, as
claimed by the CEM. Use the Monte Carlo simulation add in to demonstrate
that the correlation between Training and Talent is indeed zero on average.
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Observed Time as a function of Training

A

B

CD

E

F

G

H

I

J

K

L

M

N
O

P

Q

R
S

T

U
VW

X Y

90

92

94

96

98

100

102

104

0 2 4 6 8 10

Training (hr/day)

O
bs

er
ve

d 
T

im
e 

(s
)

Figure 13.3.2. Results of one race.
Source: [Skiing.xls]EstimatingBeta1.

In Chapter 18, we will see how a nonzero long-run correlation between the
error term and the X variable affects the sampling distributions of regression
slopes causing biased estimates of the slopes.

Another condition required by the CEM is that the composite error terms
shown in column F, consisting of Talent and luck, vary with every new sample
of 25 skiers. Thus, we cannot describe the DGP as taking the same 25 people
with the same talents and racing them over and over. If, for example, the first
skier always had more talent than the second skier, then the two skiers would
not be drawing from the same error box. To meet the requirements of the
CEM, we must imagine that each time, the experiment is run, the Austrian
Ski Federation gets a set of 25 new skiers and forces the training protocol
upon them (in column B), and thus we are getting 25 new Talents in every
sample.3

Having seen how the observed times are generated, let us race. Click on
the Race button. A typical outcome of a race from a set of 25 skiers might
look like Figure 13.3.2.

There are several things to notice about this chart. First, there seems to
be a negative relationship between time in the race and training time. This is
not an accident because the value of β1 has been set to −0.5, meaning that,
if everything else is held constant, an increase of 1 hour per day in training
time results in a decrease in time on the course of −0.5 seconds. Second, even
though several skiers have the same amount of training time, they do not
have the same race time.

3 Data sets in which the same individuals are observed more than once are called panel data. Models for
the DGP appropriate to panel data are beyond the scope of this book. See Wooldridge (2003).
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b1 −0.471 99.778 b0

est. SE(b1) 0.084 0.450 est. SE(b0)

R2 0.578 1.211 RMSE
F 31.481 23 df

RegSS 46.171 33.733 SSR

Model 3: Time = β0 + β1Training + ε

Figure 13.3.3. Regression results.
Source: [Skiing.xls]EstimatingBeta1.

Click the Race button a few times more. The winner, the skier with the
lowest time, is reported in cell J13. The Observed Time as a function of
Training chart also shows the winner. Skiers C, M, and Y seem to win more
often than the others. Race repeatedly by clicking the button and watch poor
skier I. This skier will almost never win. Do you understand why? Is it talent?
No, I is as likely to be a talented skier (as shown in the Talent column) as the
others.

Skier I’s problem is training. The Austrian Ski Federation always assigns
zero training to skier I, whereas C, M, and Y always get, on the other hand,
the maximum amount of training – a grueling 9 hours per day. The others
sometimes overcome less training by sheer talent or a lucky draw. Click the

Race button repeatedly and keep an eye on the winner. There is no doubt
about it – the higher-training-time skiers usually do better.

Now that we have explored the sheet and understand the data generation
process, let us turn our attention to estimating the crucial training parameter
β1. Click the Add Regression Line button (below the chart) and then click the Race

button repeatedly. Each new set of 25 skiers is like a new realization of the
chance process. We can fit an OLS regression line to each new sample of 25
observed times and associated training values.

We use LINEST to report regression results in the table above the chart.
Of course, every new race will have new regression results, but Figure 13.3.3
displays a typical output.

Notice that the intercept and slope coefficients are the same as those
reported by the Trendline in the chart. Everything in the table except df
(the degrees of freedom, the number of observations minus the number of
coefficients) changes with every click of the Race button. This means that all
of these statistics are random variables.

If you did not know the parameter on training, β1, but had a sample of 25
observations, it would seem natural to use the fitted slope coefficient as an
estimate. Notice, however, that the sample slope coefficient is almost never
exactly equal to −0.5. Fortunately, you can also see by repeatedly clicking

the Race button that the coefficient does seem to be bouncing around −0.5.
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Average −4.999 ββββ1 −0.5

SD 0.091 SD(νννν) 0.5

Max −0.209 r(Training, Talent) 0

Min −0.801 ββββ2 −0.2
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Figure 13.3.4. Monte Carlo simulation of the sample slope.
Source: [Skiing.xls]MCSim.

Exactly how much bounce is there in the sample slope coefficient (i.e., what
is the SE of b1, the OLS estimator of β1)? This question lies at the very heart
of inferential regression analysis.

To answer it, we must do more than observe the regression results as each
new race is run. Although it is possible to use analytical techniques to work
out the SE of b1 – see Chapter 15 – for now we will attack the question via
the brute force approach of Monte Carlo simulation.

Monte Carlo Simulation

Go to the MCSim sheet in Skiing.xls and click on the Run a Monte Carlo
Simulation button.

Running the default 10,000 repetitions will produce results like those in Fig-
ure 13.3.4.

We have taken 25 skiers and assigned their training times per the A to
Y protocol in the EstimatingBeta1 sheet and then raced them and fitted a
line to the resulting observed-time as a function of training-time scatter plot.
We have done this 10,000 times. Figure 13.3.4 displays summary statistics of
the 10,000 sample slopes on the training time independent variable.

The average of the 10,000 sample slopes is −0.499, which is very close to
the true, but unknown, slope parameter β1. This suggests (though it does not
conclusively prove) that our strategy of using the sample slope to estimate
the unknown slope parameter will, on average, be right. In fact, the sample
slope estimator we are using is indeed unbiased.
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Of crucial importance is the SD of the 10,000 sample slopes, which equals
0.091 in our Monte Carlo experiment. This is an approximation to the true,
exact SE (which we would see if we ran an infinite number of repetitions).
We do not have anything to compare this number to because we do not yet
know how to compute the exact SE. You certainly do not want to compare
it with SD(ν), although this quantity does influence the SE of the sample
slope.

Notice that the regression output is producing an estimated SE for each
sample but not the true, exact SE (which is a fixed, unchanging constant).
The regression is estimating the SD of the errors using the SD of the resid-
uals. Return to the EstimatingBeta1 sheet and run a few races, keeping an
eye on cell J4. Notice how this number is bouncing around – sometimes
higher and sometimes lower than 0.10. This will be explained in more detail in
Chapter 15.

Why Can We Assume That the Average of the Error Box Is Zero?

The careful student might wonder why it makes sense to assume that the
average of the error box is zero when the errors reflect the influence of
omitted variables. Why should the impact of the omitted variables average
out to zero? The answer that they need not average to zero, but the average
impact of the error terms will be absorbed by the intercept term. To see this,
go to the NonZeroMeanTalent sheet. To follow the discussion, make sure
that the parameter values in cells B2, B3, and B4 are β0 = 100, β1 = −0.5,

and β2 = −0.2, respectively. In cell B7, you can set the average value of
Talent. Note, by hitting F9 repeatedly (or using the MCSim add-in) that,
when the average value of Talent is set to 0, the estimate of the intercept
term, b0 (reported in cell J3) is on average 100, which is the same as the
value of the parameter β0. Why is this the case? The answer is that, when the
average level of Talent is zero, the average influence of Talent on skiing time is
zero.

Suppose, however, that the average value of Talent increases – for instance,
to 10. Now people will on average ski faster because they are on average
more talented. How much faster? The value of the Talent parameter, β2, is
−0.2. Therefore, the average time will fall by −0.2 × 10, or 2 seconds. The
key points are (1) that the average value of b0, the intercept term, will also
fall by 2 seconds, but (2) the sampling distribution (center and spread) of
the slope, b1, is unaffected by a change in the average value of Talent. You
can verify this with before and after simulations using the MCSim add-in. In
general, the expected value of the intercept term will differ from the intercept
parameter by the average impact of the omitted variable or variables. The
average value of the omitted variables, however, does not affect the sampling
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distribution of the OLS estimates of the slope parameters, as long as the error
term is independent of the X variables.

Summary

This section has introduced the classical econometric model by implementing
in Excel the data generation process described in our make-believe skiing
example. It may not seem like much, but we have made great progress in
understanding the fundamental box model used in economics. The next sec-
tion will present the model in more general terms and highlight important
requirements for it.

13.4. CEM Requirements

In the previous sections, we tried to provide a motivation for the classical
econometric model. In this section we give a more formal statement of the
model. This box model is the one most commonly used by econometricians
in empirical analysis.

This section has two parts: a description of the CEM and the requirements
of the model. In any given application, these requirements cannot simply be
assumed; rather, the data must actually be generated according to the rules
of the CEM. If not, then the CEM does not apply and the regression results
generated are wrong.

The CEM in Words and Pictures

For every observation, the observed Y variable equals a linear function of
the observed X variable(s) plus a draw from a box. The draws from the box
reflect the influence of variables other than those included in the regression
equation on the dependent variable. The tickets in the box usually are infinite
in number and have mean zero. The draws are made with replacement. The
X ’s are fixed in repeated sampling. There is no exact linear relationship
between the X variables.

Usually, the draws from the box are called error terms 4 (not residuals!) and
are said to reflect the influence of omitted variables as well as just plain luck.
The statement that that the X ’s are fixed in repeated sampling means that
every sample that could have been drawn would have had the same values
for the independent variables (the X ’s stay fixed) but different values of the
error terms. In the Monte Carlo simulations of this book, we almost always
hold the X ’s constant when drawing another sample. A consequence of our
statements about the draws and the X ’s is the following: The draws from the

4 Some authors call the error terms disturbances.
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Y1 = β0 + β1⋅X1 + 
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Figure 13.4.1. The classical econometric model.

box (error terms) are independent of the X ’s. This means that knowing
the value of X tells us nothing about the value of the error that will be
drawn.

This assumption is critical for inference because it implies that there is no
confounding of the linear relationship between the Y variable and the X vari-
able(s). Often, careful examination of the data will show that this assumption
is unwarranted.

Figure 13.4.1 shows what the model looks like in a picture for the bivariate
case. In this picture the subscripts index the observation number; there are
a total of n observations. In the bivariate case there is only one independent
variable.

The case of more than one independent variable is easily accommodated
in the model by simply adding X variable terms onto the deterministic part
of the equation as follows:

Yi = β0 + β1 X1i + β2 X2i + . . . βK XKi + εi .

The i subscript runs from 1 to the total number of observations, whereas
K signifies the number of independent regressors (or X variables) in the
multivariate equation. Be careful to observe that, in this notation, the first
subscript after X35, for instance, refers to the X variable (in this case the
third) whereas the second subscript refers to the observation (in this case
the fifth).

In both bivariate and multivariate specifications, the average of the box is
zero. This box is often called a Gaussian error box5 because, although the
tickets do not represent measurement error, in statistical terms they behave
just like measurement error.

5 To be more accurate, the error term is often called a Gaussian error term. The word “box” is much less
commonly used. We think it helps students to visualize the model.



P1: JZZ
0521843197c13 CB962B/Barretto 0 521 84319 7 November 7, 2005 16:14

330 The Classical Econometric Model

There are two philosophical interpretations of the role played by errors and
omitted variables in the CEM. The first view is that, if absolutely everything
were known about an observation (i.e., the values of all possible relevant X
variables were observed), then the value of the Y variable for that observation
could be predicted perfectly. The second view is that there is always some
inherent randomness contributing to the outcome (the Y variable), which
can never be eliminated. Under the first, deterministic view, the error term in
principle could be removed if all relevant X variables were included. (Notice
that we are talking about adding more explanatory variables, not more obser-
vations.) Under the second view, the error term will always be necessary –
if only to account for the role played by mere chance. The first view implies
that the box contains an extremely large number of tickets because there are
many X variables that influence the outcome and there are many possible
values for each X variable. The second view suggests that the box may contain
an infinite number of tickets.

The philosophical debate over whether we have a great many or an infinite
number of tickets in the box has little bearing on the application of the CEM.
In practice, economists typically posit that the error term reflect not only the
influence of omitted variables but also the effect of measurement error on
the Y variable.

Requirements of the CEM

Let us restate the mathematical features of the classical econometric model
in more formal terms. We will use words and equations.

1. The model must be linear in the parameters, and it contains an additive error
term:

Yi = β0 + β1 X1i + β2 X2i + . . . βK XKi + εi .

Various transformations of the Y and X variables are, of course, permitted.
2. The Xs are fixed in repeated sampling.

This is often an unrealistic assumption, but it makes demonstrations of the basic
results of statistical inference much easier. Almost all of the results we will present
are also true if one makes the more realistic assumption that the data (Xs and Ys)
are a random sample from a population generated according to the equation given
in the first requirement above.

3. The error terms have mean zero:

E (εi ) = 0, i = 1, . . . , n.

This assumption may seem unrealistic in light of the claim that the errors reflect
the influence of omitted variables, which presumably have on net a nonzero effect.
However, if one includes an intercept term in the model, the mean influence of
omitted variables will be absorbed into the intercept.
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4. The error terms are independent of one another:

εi is distributed independently of ε j , for all i 	= j.

If on the other hand, a previous draw affects the current or a future draw, this is
called autocorrelation. This is a problem often encountered in time series analysis
and is discussed in Chapter 20 on autocorrelation. (We actually could make the
weaker assumption that the errors are merely uncorrelated with one another.)

5. Each error term draw comes from the same box with the same SD:

SD(εi ) = σ , i = 1, . . . , n

This is known as homoskedasticity. A separate chapter on heteroskedasticity
(Chapter 19) discusses the effects of not having the same spread in the errors
for each draw from the box.

6. The error terms are independent of the X ’s.
The fixed-in-repeated-samples requirement together with the mean-zero error
term requirement already guarantees that the error terms are uncorrelated with
the X ’s. We include the independence condition in the list of requirements to
emphasize that the errors should not be related to the included X’s. The situation in
which omitted variables (which are summarized in the error term) are correlated
with the included X ’s is also known as confounding. The resulting coefficient
estimates are biased. This violation is explored in Chapter 18.

7. A technical requirement is that the X ’s, including the intercept term, cannot have
an exact linear relationship. This avoids the problem of perfect multicollinearity.

Notice that, in this presentation of the classical econometric model, we
have not specified the exact distribution of the error terms. Although for
convenience our Excel workbooks typically draw errors from the normal
distribution, most of the results we will obtain in later chapters do not depend
on the errors coming from a normal distribution.

In the next few chapters, we will use Monte Carlo simulation to demon-
strate the properties of OLS regression as applied to the classical economet-
ric model. The Monte Carlo simulations faithfully implement the CEM. For
example, in our Monte Carlo experiments we almost always keep the same
set of X ’s from one repetition to the next.6 This automatically enforces the
assumption of fixed X ’s in repeated sampling. We implement the box model
metaphor of repeatedly drawing with replacement from the same error box
by drawing repeatedly from a pseudorandom number generator designed
to produce numbers randomly with the specified distribution for the errors
(including specified mean and SD).

Summary

This section has presented the classical econometric box model and listed
its requirements. If the requirements are violated, the model does not apply,

6 For exceptions, see Chapters 18, 19, and 21.
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and the usual regression results may be wrong and cannot be trusted. Three
important categories of violations are omitted variable bias, autocorrelation,
and heteroskedasticity. These issues are reviewed in more detail in Chap-
ters 18, 19, 20.

It is important to remember that the mere existence of omitted variables
does not automatically cause omitted variable bias. In fact, econometricians
assume that part of the error term is composed of omitted independent vari-
ables (e.g., Talent in the skiing example). It is when the omitted variable is
correlated with an included X variable that confounding emerges.

13.5. Conclusion

The classical econometric model is just one of many ways to conceptualize
the process by which the data were generated. Its popularity arises from the
way in which it encapsulates economists’ views about how their observational
data are produced, from the fact that it can be used to motivate the use of
a multiple linear regression, and from the relative ease of working out the
properties of the OLS estimator when the data are generated according to
the assumptions of the model.

Mathematically speaking, the CEM is very similar to the measurement box
model of Chapter 11. In fact the mathematical summary given in Section 13.5
for the CEM could apply equally well to the measurement box model. The
difference between the measurement box model and the classical economet-
ric model lies in the story told about the data generation process.

The CEM is a very powerful tool in part because of the flexibility of mul-
tiple regression. The techniques introduced in Chapters 6 and 8 concerning
functional form and dummy variables can be used to generate an extremely
wide variety of data generating processes that fit this model. The CEM can
therefore provide a compact yet flexible summary of the data generating
process that relates dependent and independent variables.

The next two chapters, Chapter 14, “The Gauss–Markov Theorem,” and
Chapter 15, “Understanding the Standard Error” go on to explore the prop-
erties of the CEM. These two chapters will cover three important points,
which we highlight now to emphasize their importance and indicate the path
of future work:

1. The OLS Estimator is just one of many recipes to estimate population parameters.
It turns out that, when the CEM applies, the OLS Estimator is in a certain sense
the best estimator to use. The Gauss–Markov theorem states this formally.

2. Software reports standard errors for each coefficient in the regression equation. If
the CEM requirements are met, reported SEs can be used to measure the spread
of the sampling distribution of the OLS estimator.
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3. In general, the SE of the OLS estimator depends on the sample size, the SD of
the box, and the SD of the X ’s.

13.6. Exercises

1. In Section 5.7 we discussed a regression of Hourly Wages on Education.
a. Write down a model for the data regression process that conform to the CEM,

and could be used to support this regression.
b. What evidence did we present in Section 5.7 that suggests the data do not in

fact conform to the CEM?
2. In Section 12.4 we proposed a two box model for the data generation process in

an example in which Hourly Wages was the dependent variable and educational
attainment (as measured by whether the worker had a college degree) was the
independent variable. Instead of comparing the sample averages directly, as we
did in Section 12.4, we could have run a regression of Hourly Wage on a dummy
variable, College (equal to 1 if the worker had a college education 0 and otherwise).
The results would be

Predicted Hourly Wage = 9.31 + 4.75 College
RMSE = 5.66.

a. Write down a model for the data-regression process that conforms to the CEM.
b. The RMSE is a measure of something about the box in the CEM. What exactly?
c. In estimating the two box model, there is no RMSE. What is there instead? In

what ways, therefore, is the CEM more restrictive than the Two Box model in
this particular application?

3. Suppose that Training in fact has nothing to do with skiing time, in other words
suppose that β1 = 0. What would happen? To answer the question, set β1 = 0 and
β2 = −0.2 in the EstimatingBeta1 sheet. Then go to the Winners sheet and run
a Monte Carlo experiment. Explain the results, copying and pasting graphs into
your answer sheet as necessary.

4. In the text we claim that we have set things up so that the long-run correlation
between the observed variable Training and the unobserved variable Talent is
zero.
a. Verify this by using the Monte Carlo add-in to find the distribution of the corre-

lation between Training and Talent recorded in cell B6 of the EstimatingBeta1
sheet of Skiing.xls. Set β1 = −0.5 and β2 = −0.2 and SDnu = 0.5 in the Esti-
matingBeta1 sheet. Copy and paste your results into the answer sheet.

b. Next run a Monte Carlo simulation in which you compare the computed corre-
lation coefficient (recorded in cell B6) and the estimate of the regression slope
(recorded in cell I3). The MCSim add-in will spit out the first 100 values of each
random variable. Draw a scatter graph with the regression slope on the y-axis
and the correlation coefficient on the x-axis. Interpret the graph and explain
the relationship shown between the two random variables.

5. Independence between two random variables X and Y means that E (XY) =
E (X) · E (Y), the expected value of the product of two random variables, equals
the product of their expected values. Suppose that, as assumed in the CEM,
an error term ε with mean zero is independent of the variable X. Then the
expected value of the product εX is 0. Check that the composite error term
in the skiing example obeys the rule that the product of two random variables
equals the product of their expected values by using the Monte Carlo add-in
to approximate the distributions of the products (β2TalentA + νA) TrainingA
and (β2TalentB + νB) TrainingB in 1,000 repetitions. Use the EstimatingBeta1
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worksheet, on which we have set the mean of the error terms equal to zero by
making both Talent and ν zero-mean random variables. The composite error terms
are in Column F. Sort the skiers alphabetically with the Race and Sort 

by Ski Order button.
6. Go to the NonZeroMeanTalent sheet. Make sure that the parameter values in

cells B2, B3, and B4 are β0 = 100, β1 = −0.5, and β2 = −0.2, respectively. Use
the MCSim add-in to verifty that, when the average value of Talent is set to 0 (in
cell B7), the estimate of the intercept term b0 (reported in cell J3) is on average
100, the same as the value of the parameter β0, and that the average value of b1 is
−0.5. Next set the average value of Talent to 10. Use the MCSim add-in to show
(1) that the average value of b0, the intercept term, will also fall by 2 seconds, but
(2) the sampling distribution (center and spread) of the slope b1 is unaffected by
a change in the average value of Talent.
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The Gauss–Markov Theorem

[J]ust a year after getting his degree, Mansfield Merriman, Ph.D. Yale 1876, wrote of
Gauss’s elegant demonstration of the “Gauss-Markov” theorem that “The proof is
entirely untenable.” In charity to Merriman it might be added that no less a mathe-
matician than Poincaré also misconstrued the nature of Gauss’s result.

Stephen M. Stigler1

14.1. Introduction

This chapter brings together all the key ideas in this book:

� In order to do inference one must have a model of the data generating process.
� There are many possible estimators of the population parameters.
� Estimators can be classified according to whether they are unbiased – that is, on

average correct.
� Many, but by no means all, estimators are linear estimators.
� One of the main criteria for comparing estimators is the variance of the estimator.
� When the data are generated according to the classical econometric box model,

ordinary least squares is the best estimator in the class of linear, unbiased esti-
mators – best, that is, according to the criterion of finding the estimator with the
minimum variance for a given sample size.

This last statement is often stated in shorthand as “OLS is BLUE” (best
linear unbiased estimator) and is known as the Gauss–Markov theorem from
which the title of this chapter is derived. This theorem explains the preemi-
nence of the OLS estimator in econometrics.

The Gauss–Markov theorem also works in reverse: when the data gener-
ating process does not follow the classical econometric model, ordinary least
squares is typically no longer the preferred estimator. Much of econometrics
concerns pointing out the deficiencies of OLS and finding better estimators
under particular violations of requirements of the CEM.

1 Stigler (1978, p. 260).

335
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Throughout this chapter, we work with the classical econometric model.
To make matters as clear as possible, we begin with a simple problem: esti-
mating the population average for a single variable. This case, considered in
Section 14.2, allows us to introduce the notion of linear estimators and to
demonstrate that there are many possible estimators for a given population
parameter. Section 14.3 races various estimators to show how we decide the
winner. Section 14.4 presents a formal proof of the Gauss–Markov theorem
for the univariate case. Sections 14.5 and 14.6 consider the more complicated
bivariate case. Once again, we will show that there are many possible estima-
tors of the parameters, that some of them are linear (i.e., weighted sums of the
dependent variable), and that the OLS estimator is in fact the best estimator
in the bivariate case. Finally, Section 14.7 uses the algebra of expectations to
present the ideas in this chapter in a more formal way.

The Gauss–Markov theorem is a crowning achievement in statistics. The
time and effort spent in understanding this material are well worth it.

14.2. Linear Estimators

Workbook: GaussMarkovUnivariate.xls

This section examines linear estimators in the context of the simplest version
of the classical econometric model. An estimator is a recipe for obtaining an
estimate of a population parameter. A simple analogy explains the core idea:
An estimator is like a recipe in a cook book; an estimate is like a cake baked
according to the recipe. The first major goal of this section is to show that, for
any given model of the data generation process, there is always more than
one way to estimate a population parameter. Thus, we have a decision to
make: From the set of estimators, which one should we use? In other words,
which one is best?

We proceed by dividing the entire set of possible estimators into subsets.
Estimators can be classified according to whether they are linear. The second
major goal of this section is to explain what linear means in the context of esti-
mators and to demonstrate that there are many linear estimators (including
the OLS estimator).

Estimating the Population Average

Suppose we want to estimate a single parameter, the population average, and
we have a sample of 10 observations. Suppose that a reasonable mathematical
model for the data generation process is

Yi = β + εi , i = 1, . . . , 10.

Here β is the population average we want to estimate, and the εi ’s represent
draws from a box with an infinite number of tickets whose mean is zero and
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with an unknown standard deviation. The 10 draws are independent of each
other.

The last two sentences sound like standard boilerplate language that the
reader will have skipped to avoid falling into a coma. Be warned, however:
If the box model does not apply, then the claims we make about the sample
average are false. In fact, much of the rest of this book is about what happens
when the conditions of the classical econometric box model do not apply.
We worry that some readers will miss this key point. That is why we write
the Excel workbooks. We hope that you are sufficiently interested in the way
that the cells are created that you learn about the data generation process
there.

This DGP works well with a measurement error story (like the distance
between two mountain peaks), but it could apply to a situation in which the
errors represent random luck plus the influence of omitted variables that
combine to make the individual value bigger or smaller than the population
average. Thus, this DGP is an example of the classical econometric model
applied to univariate data.

If you want to get technical, think of the independent variable as a series
of 1’s hidden inside the intercept term. That is, the DGP can be written

Yi = β · 1 + εi , i = 1, . . . , 10.

Every observation contains the number 1 as the single independent variable.
By extension, note that in a bivariate or multiple regression equation the
intercept parameter can be interpreted as being multiplied by an X variable
that has a 1 for every value.

Open the Excel workbook GaussMarkovUnivariate.xls now and go to the
UnivariateSample sheet to see the display shown in Figure 14.2.1 (drawn with
the true population average β set to 200 and SD(ε) set to 5).

On the screen, everything in red text means that we would not actually
observe that cell; black text cells are observable. For example, neither the
population average β, nor the SD of the εi ’s, nor the εi ’s themselves can be
seen. We can see the Yi ’s, which are composed of the constant β plus a random
component, εi .

β εi Yi

200 −5.63 194.37
200 −1.28 198.72
200 −5.76 194.24
200 4.42 204.42
200 −7.78 192.22
200 −1.88 198.12
200 2.25 202.25
200 12.84 212.84
200 −0.23 199.77
200 −4.20 195.80

Figure 14.2.1. A univariate sample.
Source: [GaussMarkovUnivariate.xls]
Univariate Sample.
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β εi Yi wi wiβ wiεi wiYi

200 −2.02 197.98 0.1 20 −0.202 19.798
200 −7.46 192.54 0.1 20 −0.746 19.254
200 7.44 207.44 0.1 20 0.744 20.744
200 2.37 202.37 0.1 20 0.237 20.237
200 7.99 207.99 0.1 20 0.799 20.799
200 6.32 206.32 0.1 20 0.632 20.632
200 −0.31 199.69 0.1 20 −0.031 19.969
200 −0.78 199.22 0.1 20 −0.078 19.922
200 5.12 205.12 0.1 20 0.512 20.512
200 −0.74 199.26 0.1 20 −0.074 19.926

Sum 17.93 2017.93 1.0 200 1.793 201.793

Sample Average Estimator

Figure 14.2.2. Illustration of the sample average estimator.
Source: [GaussMarkovUnivariate.xls]UnivariateSample.

You can draw a new sample by hitting the F9 key. Click on one of the εi cells
such as cell B8. The formula is, “= normalrandom(0,SDepsilon).” Every time
you recalculate the workbook by hitting F9, Excel recalculates the formula
and draws a new epsilon value from a box that is normally distributed with
mean zero and SD = 5. Each of the draws (represented by the 10 cells from
B6:B15) comes from the same, unchanging box, and they are independent.
Click on one of the Y cells to see that its formula is simply β plus ε. The
population average, β, remains constant, but the Y values bounce because
the ε’s bounce. The UnivariateSample sheet is a faithful implementation of
the DGP, Yi = β + εi , i = 1, . . . , 10.

To see the Sample Average estimator in action, click on the Show Estimator

button. Several new columns appear, as depicted in Figure 14.2.2. The infor-
mation to focus on first in Figure 14.2.2 is the columns displayed in black
on the computer screen: the Yi , wi , and wi Yi columns. As noted above, the
Yi column displays the 10 observed values in the sample. The sum of the 10
observations is, in this specific case, 2017.93. With 10 observations, the sam-
ple average estimate is 201.793, the number in bold in the lower right-hand
corner.

Think of the Sample Average as a weighted sum: take each observation
(Yi ), multiply it by a weight (wi ), and sum up the products (the wi Yi ’s). In the
specific case at hand,

Sample Average = 0.1 · 197.98 + 0.1 · 192.54 + · · · + 0.1 · 199.26

= 19.798 + 19.254 + · · · + 19.926

= 201.793.

More generally, the Sample Average can be represented as follows:

Sample Average = w1 · Y1 + w2 · Y2 + · · · + wn · Yn,

where the wi ’s are all equal to 1
n .
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β εi Yi wi wiβ wiεi wiYi

200 −2.02 197.98 0.5 100 −1.011 98.989
200 −7.46 192.54 0.25 50 −1.864 48.136
200 7.44 207.44 0.125 25 0.930 25.930
200 2.37 202.37 0.0625 12.5 0.148 12.648
200 7.99 207.99 0.03125 6.25 0.250 6.500
200 6.32 206.32 0.01563 3.125 0.099 3.224
200 −0.31 199.69 0.00781 1.5625 −0.002 1.560
200 −0.78 199.22 0.00391 0.78125 −0.003 0.778
200 5.12 205.12 0.00195 0.39063 0.010 0.401
200 −0.74 199.26 0.00195 0.39063 −0.001 0.389

Sum 17.93 2017.93 1.0 200 −1.446 198.554

Diminishing Weights Estimator

Figure 14.2.3. The diminishing weights estimator.
Source: [GaussMarkovUnivariate]UnivariateSample.

There are many other (in fact an infinite number) weighted-sum estimators
of the population average. To see another one, click on the Change Estimators 

button. This button cycles through a series of estimators. Keep clicking it
until you see the Diminishing Weights Estimator similar to the display in
Figure 14.2.3.

This estimator is a different recipe for producing an estimate of the popu-
lation average β. Yet it has the exact same form as the sample average. Thus,
the calculation of the Diminishing Weights estimator proceeds in exactly the
same fashion as the computation of the Sample Average estimator.

The Diminishing Weights estimate can be obtained as follows. Take each
observation (Yi ), multiply it by a weight (wi ), and sum up the products (the
wi Yi ’s). In the specific case at hand,

Diminishing Weights Estimate = 0.5 · 197.98 + 0.25 · 192.54

+ · · · + 0.00195 · 199.26

= 98.989 + 48.136 + · · · + 0.389

= 198.554.

More generally, the Diminishing Weights estimate can be represented as
follows:

Diminishing Weights Estimate = w1 · Y1 + w2 · Y2 + · · · + wn · Yn,

where the wi ’s are equal to 1/2, 1/4, 1/8, and so on. Each weight equals a
power of 1

2 . The very last weight breaks the pattern in that it is not half as big
as the previous weight but rather equal to the previous weight.2

Two other estimators are still available. Click the Change Estimators button
again, and you will see the 0.9 Estimator; one more click and you will see
the Random Linear Estimator. Like the other two, both these estimators are
weighted sums of the Y values. The title of the 0.9 Estimator matches the sum

2 More precisely, wi = 1
2i for i = 1, . . . , n − 1, and wn = 1

2n−1 .
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of its weights. The Random Linear Estimator produces a random set of nine
weights, and the last weight is chosen so the sum of the weights equals 1.

Note the essential similarity between the formulas for these four esti-
mators: each involves weights multiplied into the Y’s. Thus, all are linear
functions of the Y’s. All four are therefore linear estimators.

Digression on Linearity

Because this is the third time in this book the word linear has been used in a
different sense, let us try to be clear about the various definitions of the term.
� Linear in the independent variables. A linear functional form is one in which the

dependent variable is a linear function of the independent variable(s). For example,
in the equation

Y = a + bX,

with a and b constants, Y is a linear function of X. The X appears raised only to
the first power. There are no terms involving X raised to a power other than one
or zero (e.g., no X2, X3 or X−1 terms).

� Linear in the regression coefficients. In linear least squares, the equation for the
regression line is a linear function of the coefficients. In nonlinear least squares, the
coefficients enter into the regression in a nonlinear way. Here are two examples:

Linear in b0 and b1 : Y = b0 + b1 X2

Nonlinear in b0 and b1 : Y = 1
b0

+ b−0.5
1 X.

Notice that, in the first equation, X enters nonlinearly, whereas in the second
equation X enters linearly. However the adjective linear in linear least squares has
to do with the coefficients. Each of the parameters enters into the equation raised
to the first power.

� Linear in the dependent variables. The third (and thankfully, last) way we will use
the word linear has to do with what the recipe for estimating the population param-
eters does with the dependent variable. The four estimators we have introduced
are linear estimators because they are linear functions of the Y’s. Each Yi appears
raised to the first power in the formulas for these estimators.

This last definition of linear is important because estimators are recipes in
which the ingredients are the data, the values of the independent and depen-
dent variables. We classify estimators by how they handle the ingredients –
in particular how the values of the dependent variable enter into the formula
for estimating the population parameters.

We have introduced four linear estimators for the population average.
What is an example of a nonlinear estimator? The Sample Median is a good
answer. It is impossible to write the Sample Median as a weighted sum of
the Y’s without first sorting the Y’s in order to find the middle observation
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(or middle two observations if the number of observations is even). Because
we do not know which observation will be the middle in advance, we cannot
write down a weighted sum The Sample Median is therefore not a linear
estimator.

The Sample Average Is the Least Squares Estimator

Before closing this section, we will tie up a loose end. In Section 5.4 we
showed that the sample average is the least squares estimator for describing
the central tendency of a univariate data set. Now we restate that result:
The sample average is the least squares estimator of the population average.
Notice the difference in language. In Part 1 of this book, no model is presented
for the data generating process. We could only speak about describing the data
at hand. In Part 2, we typically regard the data as representing a sample from
a larger (quite possibly infinite) population. Rather than merely describing
data, we are attempting to infer the value of an unknown parameter that in
a sense lies behind the data.

To remind you that the sample average is the least squares estimator, go
to the SampleAveIsOLS sheet. You will see an augmented version of the
table you first encountered in the OLSFormula.xls workbook discussed in
Section 5.4. The difference between the two tables is that, in Section 5.4, we
just gave you the Y values and said nothing about the population average β

and the error terms, the εi ’s. In other words there was no model for the data
generation process.

The SampleAveIsOLS sheet is depicted in Figure 14.2.4. Because you have
seen this demonstration before, we will highlight the new elements. The true
population average is 200. Observed Y is the unobserved population aver-
age plus an unobserved error. The sample average is a weighted sum of
the observed Y’s. Now turn to the Sample Average Residuals column. Each
residual is the actual observed Y less the sample average. Students often con-
fuse residuals and errors. To avoid falling into this trap, note the following
well:

� The residuals are not the same concept as the errors, nor are they equal to the
errors.

� The residuals sum to zero (and therefore average zero). This is always true for
residuals produced by least squares estimates, when an intercept term is included.

� The errors in the sample do not sum to zero.

We will leave the rest to you. Use Solver to find the estimate of the popu-
lation average that minimizes the sum of squared residuals. In every sample,
Solver’s solution will be the same as the estimate produced by the Sample
Average estimator. As you repeatedly draw samples, you will remind yourself
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Sample 
Average 202.375 OLS SSR 264.80

ββββ 200

Solver 
Estimate 202.375 Solver SSR 264.80

SD(εεεε ) 5

β εi Yi

Sample 
Average 

wi

 Sample 
Average 

wiYi

Sample 
Average 
Residuals

Sample 
Average 
Residuals 
Squared

200 −3.13 196.87 0.1 19.687 −5.506 30.318
200 −3.00 197.00 0.1 19.700 −5.375 28.888
200 3.63 203.63 0.1 20.363 1.254 1.572
200 9.62 209.62 0.1 20.962 7.245 52.494
200 8.53 208.53 0.1 20.853 6.151 37.841
200   −4.50 195.50 0.1 19.550 −6.879 47.325
200 −2.67 197.33 0.1 19.733 −5.044 25.437
200     8.57 208.57 0.1 20.857 6.196 38.389
200 2.80 202.80 0.1 20.280 0.423 0.179
200      3.91 203.91 0.1 20.391 1.534 2.353

Sum 23.75 2023.75 1 202.375 0.000 264.796

Population 
Parameters

Figure 14.2.4. Showing that the Sample Average is the OLS estimator.
Source: [GaussMarkovUnivariate.xls]SampleAveIsOLS.

of an obvious but important point. An estimator is a recipe for obtaining an
estimate. Each time we draw a new sample from the same population, we are
liable to get a new, quite possibly unique, estimate of the same underlying
population parameter.

Summary

This section has accomplished two major goals. First, we have seen that there
are many estimators, or recipes, that can be applied to a sample of 10 data
points to estimate the population average. We are going to work with just four
of them, but it is clear that there are many, many other recipes that could be
applied to the data. Second, we have explained what makes an estimator a
linear estimator. Our four candidates are linear estimators because they can
be written as a linear function of the dependent variable.

We are well positioned to ask the obvious question: From all of the esti-
mators available, how do we pick the best one? Read on to find out.

14.3. Choosing an Estimator

Workbook: GaussMarkovUnivariate.xls

The previous section showed that we divide estimators according to whether
or not they are linear estimators. Another way that we group estimators is
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Estimates from two rival estimators

Unbiased

Biased

ββββ

Figure 14.3.1. Biased and unbiased estimators of
a population parameter.

by their expected values. Unbiased means that the estimator on average gets
the right answer. Put differently, the estimator is accurate. Of course, any
particular sample estimate of a population parameter is very likely to be
different from the true value of that parameter because chance plays a role
in generating the sample. An unbiased estimator, however, does not produce
estimates that are systematically wrong. In this section, we show that one of
our four linear estimators is biased and, therefore, out of the running.

We then turn to the three remaining candidates. Monte Carlo simulation
allows us to race the estimators in head-to-head to competition. We will see
that the choice of the best estimator is grounded in the idea of precision.
When choosing among unbiased estimators, we pick the one with the least
variability.

Eliminating Biased Estimators from Contention

An unbiased estimator is one that is, on average, accurate. Another way of
putting this is that the probability histogram for the estimator (also known
as the sampling distribution) is centered on the true population parameter.
Figure 14.3.1 offers a visual definition of bias.

Biased estimators are systematically wrong, and so they are out of the hunt.3

After all, you could get lucky and get a tasty cake from a flawed recipe, but
most of the time bad recipes produce bad cakes.

So, which one is the biased estimator in our group of four linear estimators?
To find out, open the GaussMarkovUnivariate.xls workbook and proceed to
the MonteCarlo sheet. This sheet enables you to race three alternative linear
estimators, one at a time, against the Sample Average.

First up is the Diminishing Weights Estimator. We drew 10,000 samples,
obtained the sample average and diminishing weights estimates from each
sample, and kept track of the results. The output shows the averages and SDs

3 You might be thinking that a slightly biased but spiked sampling distribution would be preferred to an
unbiased but spread out probability histogram. That is an interesting idea but is beyond the scope of
this book. The concept of Mean Squared Error addresses this issue.
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Figure 14.3.2. Sample Average versus Diminishing Weights.
Source: [GaussMarkovUnivariate.xls]MonteCarlo.

of the estimates produced by the two estimators. Figure 14.3.2 displays our
results; yours will be slightly different.

The empirical histograms generated by the Monte Carlo simulation are
approximations to the respective probability histograms for the Sample
Average and Diminishing Weights estimators. It seems clear that the sam-
pling distributions for both estimators are centered on the true population
average. The display shows the average of the 10,000 estimates to two decimal
places. They are both quite close to 200.

Next, race the Random Linear estimator against the Sample Average. You
should see that the Random Linear estimator is also centered on the value of
the population parameter. If you are nervous about your average of 10,000
repetitions not being close enough to 200, run another Monte Carlo with
more repetitions – 100,000, for instance. The more repetitions you run, the
closer the approximation of the Monte Carlo’s empirical histogram to the
true probability histogram. Increasing the number of repetitions is always an
option when using the Monte Carlo method.

Finally, let us consider the 0.9 estimator. The results are striking. Fig-
ure 14.3.3 shows that the 0.9 estimator is shifted off of the true value of β.
Instead of being centered around 200, it is centered around 180. This means
that our estimate will usually be around 180, but the truth is actually 200. The
0.9 estimator is systematically wrong. It is inaccurate. This is bias.
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Figure 14.3.3. Sample Average versus 0.9 Estimator.
Source: [GaussMarkovUnivariate.xls]MonteCarlo.

In 10,000 repetitions, the 0.9 estimator never gave us an estimate close to
β. This is a bad recipe. We exclude the 0.9 estimator and all biased estimators
from the race.

Choosing a Winner

We have eliminated the 0.9 estimator (and all other biased estimators) from
contention, but we still have many candidates to choose from in the set of
linear, unbiased estimators. We are using the Sample Average, Diminish-
ing Weights, and Random Linear estimators as examples of linear, unbiased
estimators. Which one is the best from this group?

The criterion for best estimator first stated by statisticians in the nineteenth
century is that the best estimator has the smallest standard error (SE) of all
linear, unbiased estimators. The SE is a measure of the expected size of the
deviation between the estimate and the expected value of the estimate. Many
other possible criteria could be used and, in fact, occasionally are used to rank
estimators. The minimum SE criterion has two main advantages: first, the SE
is a good measure of the precision of an estimator; second, the SE has nice
mathematical properties that make it easy to work with.

Let us apply this criterion to the example at hand. From the Monte Carlo
sheet, we can easily judge the three estimators. Figure 14.3.4 shows the results
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Figure 14.3.4. Choosing the best linear unbiased estimator.
Source: [GaussMarkovUnivariate.xls]MonteCarlo.

of a comparison of the Sample Average with the other two linear, unbiased
estimators.

In the Monte Carlo results, the SD of the 10,000 sample estimates approx-
imates the exact SE of the estimator. We can readily see that the Sample
Average has the lowest SE of the three. This fact can also be visually appreci-
ated. The Sample Average has the most concentrated histogram of the three.
The Random Linear estimator is unbiased, but its spread is huge relative
to that of the Sample Average estimator. On average, the Random Linear
estimator gets the right answer, but it also gives estimates quite far from the
truth. The Diminishing Weights estimator is better than the Random Linear
estimator but not as good as the Sample Average.

Thus, of these three linear, unbiased estimators, we would select the
Sample Average as the best linear, unbiased estimator. The phrase “best
linear, unbiased estimator” is used so often that we refer to it by its acronym,
BLUE. We say, “If the DGP follows the classical econometric model, then the
Sample Average is BLUE.” The Sample Average wins the race because it has
the smallest SE. In other words, it is both accurate (unbiased) and the most
precise (smallest SE) of these three linear estimators.

Unfortunately, our comparison of three linear, unbiased estimators does
not come close to a much more powerful statement that the Sample Average
estimator has the smallest SE of all of the linear, unbiased estimators of the
population average. This remarkable claim is known as the Gauss–Markov
theorem. To prove the theorem, we need to show that the Sample Average
estimator has a smaller SE than any other linear, unbiased estimator. Because
there are an infinite number of such estimators, we will not be able to use
Monte Carlo techniques to prove the result we are after. We can confidently
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assert that careful Monte Carlo experiments will always declare the Sample
Average the winner against any alternative linear, unbiased estimator for the
population average, but the reason we know that is because of the analytical
proof.

Summary

This section has used Monte Carlo methods to demonstrate the notion of
bias and to show that the Sample Average has the lowest SE of three linear,
unbiased estimators. Biased estimators are systematically wrong. In other
words, the sampling distribution of a biased estimator is not centered on
the population value we are trying to estimate. When we take a random
sample and compute a sample estimate, it is like drawing the estimate from
the estimator’s sampling distribution. If it is not centered on the truth, the
estimator is said to be biased and, therefore, inaccurate.

Even after we eliminate all of the biased, linear estimators, we are still left
with an infinite number of potential candidates. The winner is chosen based
on which one has the least variability. This makes common sense. If they are
all unbiased, they are all centered on the population value we are trying to
estimate. But the ones with large SEs (like the Random Linear estimator)
can produce wild results. Very high estimates do indeed cancel out with very
low estimates, and so on average all is well, but we prefer estimates that are
unbiased and tightly clustered around the truth. Our Monte Carlo results
showed that the Sample Average was indeed the winner because it had the
smallest SE of the three unbiased estimators.

The Gauss–Markov theorem goes one step farther. It guarantees that the
Sample Average will have the lowest possible SE of any linear, unbiased
estimator. The next section proves this remarkable result.

14.4. Proving the Gauss–Markov Theorem in the Univariate Case

Workbook: GaussMarkovUnivariate.xls

This section presents a formal proof of the Gauss–Markov theorem in the
univariate case and also tries to explain exactly what is going on in the proof
by using Excel. We approach the proof by working with our 10-observation
example. We then consider the more general case of n observations.

Gauss–Markov with 10 Observations

Open the GaussMarkovUnivariate.xls workbook and go to the Com-
putingSEs sheet. The table in the ComputingSEs sheet, reproduced in
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SD(ε) 5
Variance(ε) 25

Observation
Sample 
Average

Diminishing 
Weights 
Estimator

Sample 
Average

Diminishing 
Weights 
Estimator

1 0.1 0.5 0.2500 6.2500
2 0.1 0.25 0.2500 1.5625
3 0.1 0.125 0.2500 0.3906
4 0.1 0.0625 0.2500 0.0977
5 0.1 0.03125 0.2500 0.0244
6 0.1 0.015625 0.2500 0.0061
7 0.1 0.0078125 0.2500 0.0015
8 0.1 0.0039063 0.2500 0.0004
9 0.1 0.0019531 0.2500 0.0001

10 0.1 0.0019531 0.2500 0.0001
Sum 1 1 2.500 8.333

SquareRoot 1.581 2.887

Weights (wi ) wi
2SD(ε)2

Figure 14.4.1. Computing the SEs of the OLS and diminishing weights estimators.
Source: [GaussMarkovUnivariate.xls]ComputingSEs.

Figure 14.4.1, computes the exact SEs of different estimators of the popu-
lation average. Each and every linear estimator of the population average
can be analyzed in the table – just put the weights into the appropriate cells
– and the table will compute the SE. If an estimator is to be unbiased, it must
meet an additional condition: The weights must sum to one. The Change Estimators

button cycles through different competing estimators.
The left half of the table simply reports the weights for the OLS estimator

and a competing estimator. The right half of the table computes the exact SE
for the two estimators. Recall that the general formula for the exact SE is

SD

(
n∑

i=1

wi Yi

)
=

√√√√ n∑
i=1

w2
i Var (εi )

=
√√√√ n∑

i=1

w2
i SD2 (εi ).

Each cell in the right half of the table computes one of the terms in the sum.
We have set up the workbook so that the SD of the errors is controlled by
the UnivariateSample sheet. In Figure 14.4.1, the SD of the error terms has
been set to equal 1 and the Diminishing Weights estimator (in addition to
the OLS estimator) has been selected. The very first entry in the last column
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reads 6.25. The computation behind this number is straightforward:

w2
1SD2 (ε1) = (0.5)2 · 52

= 6.25.

The table sums up all the individual w2
i SD2 (εi ) entries and then takes the

square root of the sum to obtain the SE of the estimator. As you can see, the
OLS estimator has a smaller SE than the Diminishing Weights estimator. If
you run a Monte Carlo simulation (as we did in Figure 14.3.4), you will find
that the Monte Carlo approximations to the SEs are very close to the exact
SEs computed in the table.

Are there linear estimators with smaller SEs than the OLS estimator? The
answer is yes: Change the estimators until you reach the 0.9 Estimator. Its
SE is guaranteed to be 90 percent as large as the SE of the OLS estimator.
Unfortunately, the 0.9 Estimator is biased. As we explained in the previous
section, this removes it from contention.

Thus, the problem is to find that set of weights for a linear, unbiased esti-
mator that has the smallest possible SE. This can be viewed as a constrained
optimization problem that Excel’s Solver can easily handle. The objective
function to be minimized is the SE, and the constraint is that the weights
must sum to 1. To see the Solver setup, click on the Show Solver button. Execute
Tools: Solver, and a display like that of Figure 14.4.2 will appear. Click the
Solve button to get the optimal solution.

The solution – the set of weights in column F – is guaranteed to be identical
to the weights used by the Sample Average estimator. In other words, in this
specific case of 10 observations, the Sample Average estimator is BLUE.

Figure 14.4.2. Using Solver to find minimum SE weights subject to the
constraint of unbiasedness.
Source: [GaussMarkovUnivariate.xls]ComputingSEs.
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SD(ε) 1
Variance                1

Observation
Sample 
Average

Alternative 
Estimator Difference

Sample 
Average

Alternative 
Estimator Difference

1                 0.1 0.0675 0.0325 0.01 0.0046 0.001058
2                 0.1 0.0379 0.0621 0.01 0.0014 0.003857
3                 0.1 0.1606 −0.0606 0.01 0.0258 0.003667
4                 0.1 0.0992 0.0008 0.01 0.0098 6.01E-07
5                 0.1 0.1666 −0.0666 0.01 0.0278 0.004438
6                 0.1 0.1402 −0.0402 0.01 0.0197 0.001614
7                 0.1 0.0433 0.0567 0.01 0.0019 0.003211
8                 0.1 0.1875 −0.0875 0.01 0.0351 0.007651
9                 0.1 0.1012 −0.0012 0.01 0.0102 1.42E-06
10 0.1 −0.0040 0.1040 0.01 0.0000 0.010806

Sum                1 1              0.0000 0.100 0.136 0.036 Variance
SquareRoot 0.316 0.369 0.191 SE

wi
2SD(ε)2Weights (wi)

Figure 14.4.3. Demonstration of Gauss–Markov proof.
Source: [GaussMarkovUnivariate.xls]GaussMarkovThm.

The key to understanding why the Sample Average is guaranteed to be the
best linear, unbiased estimator is to realize that it weights the data optimally.
Linear estimators are weighted sums that contain two components:

n∑
i=1

wi Yi =
n∑

i=1

wiβ +
n∑

i=1

wiεi .

Because β is a constant, the first component,
∑n

i=1 wiβ, can be written as
β

∑n
i=1 wi . In as much as the weights (the wi ’s) sum to 1, the first component

equals the true population average β. The second component,
∑n

i=1 wiεi ,
has an expected value of 0 because the DGP follows the CEM. Because the
expected value of the estimates is β, linear estimators whose weights sum to
one are unbiased. Figure 14.4.3 shows the Sample Average and an Alternative
Estimator that is linear and unbiased.

All linear, unbiased estimators, however, are not equivalent. It is the dif-
ference in the second component,

∑n
i=1 wiεi , that causes the difference in

the behavior of linear, unbiased estimators. The equal weighting of the Sam-
ple Average means that its SE is smallest in the class of linear, unbiased
estimators. The intuition is that the Sample Average does not allow any indi-
vidual observation, which might have a large error term, to outvote the other
observations. Estimators like the Diminishing Weights estimator, which give
much weight to the first observation, do a great job when the first observa-
tion is close to the population average but are far off the mark when the first
observation contains a large positive or negative error term. The SE of the
Diminishing Weights estimator reflects the resulting increased variability of
the estimator.
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Gauss–Markov with n Observations

The formal algebraic proof goes beyond Excel’s Solver in that it works for
any number of observations. We begin by pointing out that any alternative
linear, unbiased estimator to the Sample Average has this basic form:

Alternative Estimator =
n∑

i=1

wi Yi .

These weights are presumably different from the least squares weights, which
are all 1/n. Label the difference between the weights di. That is di = wi − 1

n .
The GaussMarkovThm sheet, reproduced by Figure 14.4.3, gives an example
for our 10-observation case. The column labeled “Difference” contains the
di’s. The differences must sum to zero to guarantee unbiasedness. Verify that
cell D16 is, in fact, zero. Hit the F9 key to recalculate the workbook and get
a new Alternative Estimator. Cell D16 continues to evaluate to zero, which
maintains the constraint that the Alternative Estimator is unbiased.

The variance of the linear, unbiased Alternative Estimator is then given
by this equation:

Var(Alternative Estimator)

=
n∑

i=1

w2
i SD(ε)2

= SD(ε)2
n∑

i=1

(
1
n

+ di

)2

= SD(ε)2

[
n∑

i=1

(
1
n

)2

+
n∑

i=1

(di )
2 + 2

n∑
i=1

(
1
n

· di

)]

= SD(ε)2

[
n∑

i=1

(
1
n

)2

+
n∑

i=1

(di )
2 + 2

n

n∑
i=1

(di )

]

= SD(ε)2

[
n∑

i=1

(
1
n

)2

+
n∑

i=1

(di )
2 + 2

n
0

]

= SD(ε)2

[
n∑

i=1

(
1
n

)2

+
n∑

i=1

(di )
2

]

= SD(ε)2
n∑

i=1

(
1
n

)2

+ SD(ε)2
n∑

i=1

(di )
2

= Var(Sample Average) + SD(ε)2
n∑

i=1

(di )
2
.
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In other words, the variance of the alternative estimator is the sum of the
variance of the Sample Average plus a quantity guaranteed to be nonnegative
because it is a sum of squares. Thus, any alternative linear, unbiased estimator
has a greater variance than the Sample Average estimator. We conclude that
the Sample Average estimator has the smallest variance and therefore the
smallest SE of all linear, unbiased estimators of the population average.

The GaussMarkovThm sheet shows the decomposition of the variance of
alternative estimators (we use random numbers to generate different alter-
natives) into a sum of the variance of the Sample Average and the sum of the
squared differences multiplied by the square of the SD of the error terms on
the right. Recalculate the GaussMarkovThm sheet repeatedly (by hitting F9)
and you will see that cell G16 is always positive. Use the Monte Carlo simula-
tion add-in on cell G16 for a more convincing demonstration. The Alternative
Estimator is unbiased, but it is always less precise than the Sample Average
(which is the OLS Estimator).

Summary

This section proved what the Monte Carlo results from Section 14.3 suggested:
If the DGP follows the classical econometric model, the Sample Average
estimator is BLUE. This statement, known as the Gauss–Markov theorem,
is what justifies the use of the sample average to estimate the population
average.

The next section shows that the Gauss–Markov theorem carries over to
regression analysis. Just as in the univariate case, we will see that OLS is
BLUE when fitting a line to a cloud of bivariate data.

14.5. Linear Estimators in Regression Analysis

Workbook: GaussMarkovBivariate.xls

In this section and the next we discuss linear, unbiased estimators in the bi-
variate case. We assume that the classical econometric model applies. The
approach closely mirrors our work in the previous sections in this chapter. We
characterize linear estimators as weighted sums of the data. We show that the
weights for the OLS estimator in the bivariate case are different from those in
the univariate case – they are a complicated function of the X’s, and they sum
to 0, not 1. As in the univariate case, however, the weights reveal whether the
estimator is biased. All linear, unbiased estimators in the bi- and multivariate
cases have weights that sum to zero. As before, we will race the OLS estima-
tor against alternative linear, unbiased estimators. We will use Monte Carlo
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experiments to demonstrate that the OLS estimator of the bivariate slope is
the best (i.e., the minimum-variance linear, unbiased estimator).

The DGP Follows the CEM

The model for the data generation process is the following:

Yi = β0 + β1 · Xi + εi , i = 1, . . . , n.

Here β0 and β1 are, respectively, the intercept and slope parameters we want
to estimate, and the εi ’s are assumed to be repeated draws from an error box
(always the same one) with an infinite number of tickets whose mean is zero
and with an unknown standard deviation. The n draws are independent of
each other. The X’s are fixed in repeated sampling. These assumptions, taken
together, guarantee that the εi ’s are independent of the X’s. Thus the value
of the draw from the box, εi , has nothing to do with the value of Xi.

To better understand the data generation process of the CEM in the bivari-
ate case, go to the BivariateSample sheet in the GaussMarkovBivariate.xls
workbook. As shown in Figure 14.5.1, the first four columns display the data
generation process.

β 0 10

β 1 5
SD(εεεε ) 50

β1 εi Xi Yi

5 22.11 10 82.11
5 −39.84 15 45.16
5 115.87 22 235.87
5 −12.86 30 147.14
5 −15.18 45 219.82
5 85.03 50 345.03
5 5.50 65 340.50
5 46.04 75 431.04
5 −24.84 89 430.16
5 −5.78 100 504.22

Sum 176.06 501.000 2781.06

Population 
Parameters

Figure 14.5.1. Implementing the data generation process in Excel.
Source: [GaussMarkovBivariate.xls]BivariateSample.
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The true, unknown population parameters are given in the upper, left-
hand corner. As usual, all values that would not be observed by the
econometrician are in red. The formula for each εi (in column B) is
“=normalrandom(0,SDepsilon).” This fulfills the requirement that the aver-
age of the box be zero and that each draw come from the same box. As
required, the X values remain fixed in repeated sampling. Finally, the Y val-
ues in each row are faithful to the classical econometric model requirements
because the formula for each Yi is “=beta0+beta1*Xi + epsilon.”

The OLS Estimator of the Slope Is a Linear Estimator

We turn now to the OLS estimator of the slope parameter, β1. We initially
concentrate on the weights that go into the estimator. The relevant compu-
tations are displayed in Figure 14.5.2.

In Section 5.4 we discussed the formulas for the OLS Slope and Inter-
cept (b0 and b1, respectively) and pointed out that the Slope coefficient is a
weighted sum of the Y values. In the next few paragraphs, we will remind you
of those formulas and point to how they are implemented in GaussMarkov-
Bivariate.xls.

The OLS estimator for the Slope is obtained via the following formula:

Slope =
n∑

i=1

wi · Yi ,

where

wi = (Xi − X̄)∑n
i=1 (Xi − X̄)2

, i = 1, . . . , n,

n is the number of observations and X̄ is the average value of the Xi’s in the
data set. Since the variance of X is defined as

Variance(X) =
∑n

i=1 (Xi − X̄)2

n
,

the weights for the OLS estimator can be written as

wi = (Xi − X̄)
n · Variance(X)

, i = 1, . . . , n.

The first and second columns from the left in Figure 14.5.2 break the com-
putation of the weights into two parts. The first column simply gives the devi-
ations of each individual Xi from the average value of X. The Excel equation
for each cell in this column is “=Xi-Xmean,” and each cell in the column is
named Xdeviationi. The cell labeled Variance X is used in the computation
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OLS Estimate 4.794

Mean X 55

Variance X 825

Xi − Avg(X ) OLS wi wiXi

−45 −0.00545 −0.0545
−35 −0.00424 −0.0848
−25 −0.00303 −0.0909
−15 −0.00182 −0.0727
−5 −0.00061 −0.0303

5 0.00061 0.0364
15 0.00182 0.1273
25 0.00303 0.2424
35 0.00424 0.3818
45 0.0055 0.5455

0.000 0.000 1.000  

Figure 14.5.2. Computing the OLS estimator
in the bivariate case.
Source: [GaussMarkovBivariate.xls]
BivariateSample.

of each weight.4 The formula for wi just above tells us that the weights them-
selves are the deviations of the X’s from the mean X divided by the product
of the number of observations and the variance of the X’s. The Excel formula
for each weight is “= XDeviationi/(10*VarX).”

Before moving on, we should note one instance in which the weights and
the OLS estimator are undefined. This is the case of perfect multicollinearity
between the X’s and the intercept term. Multicollinearity arises in the bivari-
ate setting when the X’s are all the same. That makes the variance of X equal
to zero, causing the weights to be undefined. As shown in Chapter 7, with
perfect multicollinearity there are an infinite number of different estimates
of the slope that minimize the sum of squared residuals, meaning that there
is no single, unique least squares estimate.

The upshot of all this is that the OLS slope estimator is a linear estimator,
that is, b1 is a linear function of the Y’s. The weight multiplying each Y value
is a complicated function of the X’s, but the Y’s themselves enter linearly into
the formula.

In Section 14.2 we showed that a key property of the Sample Average esti-
mator weights – namely that they summed to 1 – guaranteed that the Sample
Average estimator of the population average was unbiased. Furthermore,
we showed that any linear estimator whose weights sum to 1 is unbiased.
We are about to demonstrate that the OLS estimator for the bivariate case
has not one but two crucial properties, which, taken together, imply that it
produces unbiased estimates of the slope. As before, any estimator sharing

4 Notice that the formula for the variance in cell F3 is =SUMPRODUCT(XDeviationi,XDeviationi)/10.
This SUMPRODUCT function sums up the 10 squared deviations of each X value from the mean of
the X’s. The variance is the average of the squared deviations of the X’s from their mean. The variance
of X is also the square of the population SD of the X’s.
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these properties will be an unbiased estimator of the slope in the bivariate
case.

The table in the BivariateSample sheet, which is reproduced in Fig-
ure 14.5.2, reveals the two important, general (i.e., true for any values of
the X’s) properties about the OLS weights.

1. The sum of the weights is 0 (not 1 as in the univariate case).
This fact follows directly from the definition of the weights. Each numerator is
the deviation of each individual Xi from the mean of the X’s. The sum of these
deviations must be 0. Because the sum of the weights is the sum of the deviations
divided by n multiplied by the Sample Variance, the sum of the weights must be
0. Here is the algebra:

n∑
i=1

wi =
n∑

i=1

(Xi − X̄)∑n
i=1 (Xi − X̄)2

= 1∑n
i=1 (Xi − X̄)2

n∑
i=1

(Xi − X̄)

= 1∑n
i=1 (Xi − X̄)2

· 0

= 0.

2. The sum of the products of the weights with the X’s is 1.
This property of the OLS estimator is harder to show algebraically. It relies on the
following somewhat surprising fact:

n∑
i=1

(Xi − X̄) · Xi =
n∑

i=1

(Xi − X̄)2.

To demonstrate that
∑n

i=1 wi Xi = 1, we plug this fact into the computation below:

n∑
i=1

wi Xi =
n∑

i=1

(Xi − X̄) · Xi∑n
i=1 (Xi − X̄)2

= 1∑n
i=1 (Xi − X̄)2

n∑
i=1

(Xi − X̄) · Xi

=
∑n

i=1 (Xi − X̄)2∑n
i=1 (Xi − X̄)2

= 1.

You can use the BivariateSample worksheet to verify that these two prop-
erties are indeed general. Click on the Change the X's button several times to
appreciate that the sum of the weights in cell F16 is always 0, whereas the
sum of the product of the weights with the X values in cell G16 is always 1.
Of course this is not a proof but just a demonstration.
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At this point you may have a question. The least squares weights sum
to 1 in the univariate case, but now we are telling you they sum to 0 in the
bivariate case. How can that be? The answer is that the two sets of weights are
elements of two separate recipes designed to handle two different situations.
We are about to see how the bivariate least squares weights produce unbiased
estimates of the slope, which is a trickier proposition than obtaining unbiased
estimates of the population average.

The OLS Estimator of the Slope Is an Unbiased Estimator

Showing that OLS is an unbiased estimator in the bivariate case is a more
complicated proposition algebraically than it was in the univariate case. Our
method of decomposing the sum of the wi Yi terms into columns should help
you understand what is going on.

We begin by substituting the equation for the DGP into the formula for
the OLS estimator for the Slope:

Slope =
n∑

i=1

wi (β0 + β1 Xi + εi )

=
n∑

i=1

wiβ0 + wiβ1 Xi + wiεi .

Each Yi term is the sum of a weight times the sum of the intercept parameter
β0, the product β1 · Xi , and an error term εi . The table shown in Figure 14.5.3
decomposes the weighted sum of the OLS estimator of the Slope into three
separate components.

None of the three components is directly observed, and so they show up
in red on the computer screen. All that we can observe are the wi Yi ’s (the
right-most column).

The decomposition reveals some surprising facts. The first component,∑n
i=1 wiβ0, sums to 0. Why? The reason is that the sum can be rewritten

wiβ0 wiβ1Xi wi εi wiY i

−0.045 −0.225 −0.100 −0.370
−0.039 −0.296 0.157 −0.178
−0.032 −0.347 −0.366 −0.744
−0.023 −0.339 0.029 −0.332
−0.006 −0.129 0.009 −0.126

0.000 −0.003 −0.001 −0.004
0.017 0.544 0.009 0.570
0.028 1.049 0.129 1.205
0.044 1.944 −0.109 1.879
0.056 2.802 −0.032 2.825

0.000 5.000 −0.274 4.726

Figure 14.5.3. Decomposing the sum of the
products wi Yi into its three components.
Source: [GaussMarkovBivariate.xls]
BivariateSample.
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as β0
∑n

i=1 wi and we know that the sum of the weights is 0. Thus, the influ-
ence of β0 on the slope estimate is removed. Try this: Change the value of β0

in cell B2 and observe that the slope estimate is unchanged even though all
the Yi values change. Second, the product of the weights with the β1 Xi terms
sums to β1 (i.e., the sum of the wi Xiβ1 column is β1). Again this follows from
the special properties of the OLS weights and can be verified from the sheet:
Change the value of β1 and observe that the value of the sum of the wi Xiβ1

column is always β1. This has nothing to do with the specific X values in the
example. Hit the Change the X’s button and observe that the sum of the wi Xiβ1

column does not change.
The last component is a weighted sum of the error terms, which will bounce

around zero whenever you draw a new sample. Notice that, in keeping with
the fixed-X’s-in-repeated-sampling assumption, recalculating the sheet by
hitting the F9 key repeatedly takes another 10 draws from the error box but
does not change the X’s.

Let us sum up what has been learned via this decomposition of the sum
of the products of the weights and the Y’s. The first component, the wiβ0

terms, is guaranteed to sum to 0. The second component, the wi Xiβ1 terms,
is guaranteed to sum to β1. The third component, the wiεi terms, sums to a
number that bounces around 0. Thus, the overall sum of the three components
bounces around β1.

Hit F9 repeatedly. It appears that the OLS slope estimator is unbiased.
A simple Monte Carlo simulation with the MCSim add-in confirms this.
Figure 14.5.4 was created by tracking cell F1 in the BivariateSample sheet.
The average is close to 5, the value of β1. This is strong evidence that the OLS
slope estimator is indeed unbiased. To prove that the OLS slope estimator
is unbiased, we must employ the algebra of expectations by computing the
expected value of the slope estimator and showing that it equals β1. That is
done in Section 14.7.

Other Linear, Unbiased Estimators

The OLS estimator is not the only linear, unbiased estimator of the slope
in the bivariate version of the classical econometric model. It is possible to
come up with other linear unbiased estimators on the basis of straightforward
intuition. We will discuss two alternative linear, unbiased estimators: the
Extreme Points estimator and the Average Slopes estimator.

The Extreme Points estimator simply takes the slope of the first and last
points in the bivariate data set. Figure 14.5.4 displays a graph of this estimator.
The other points are ignored. Figure 14.5.5 shows how the Extreme Points
Line simply connects the first and last observations.

The Extreme Points Estimator is just one of many two-point estimators;
related two-point estimators would connect other points. The slope estimate
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Average 5.026
SD 0.5668
Max 6.503

Min

Summary Statistics Notes

Histogram of $F$1

3.4 3.9 4.4 4.9 5.4 5.9 6.4

3.418

Figure 14.5.4. 1,000 OLS estimates.
Source: [GaussMarkovBivariate.xls]BivariateSample and MCSim add-in.

for the Extreme Points estimator can be computed as follows:

Slope = Y10 − Y1

X10 − X1
.

This means that the Extreme Points estimator can be written as a linear
function of the Y’s:

Extreme Points Estimate =
n∑

i=1

wi · Yi ,

Extreme Points

0

100

200

300

400

500

600

0 20 40 60 80 100
X

Y

Figure 14.5.5. The extreme points estimator.
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where the weights are

w1 = − 1
X10 − X1

wi = 0, i = 2, . . . 9

w10 = 1
X10 − X1

.

Thus, the Extreme Points estimator is linear. It is straightforward to show
that the weights of the Extreme Points estimator share the two properties
we highlighted for the OLS estimator and therefore that the Extreme Points
estimator is unbiased:

1. The sum of the weights is 0.

w1 + w2 + · · · + w9 + w10 = − 1
X10 − X1

+ 0 + · · · + 0 + 1
X10 − X1

= 0.

2. The sum of the products of the weights and the X ’s is 1.

w1 X1 + w2 X2 + · · · + w9 X9 + w10 X10 = − 1
X10 − X1

X1 + 0 · X2

+ · · · + 0 · X9 + 1
X10 − X1

X10

= −X1

X10 − X1
+ X10

X10 − X1

= X10 − X1

X10 − X1

= 1.

The BivariateEstimators sheet contrasts the OLS estimator with either the
Extreme Points or the Average Slopes estimator (which we are about to dis-
cuss). Click on the Change the 

Alternative Estimator button to select which estimator you want
to compare with the OLS estimator. For now, make sure that the Alterna-
tive Estimator is the Extreme Points estimator and observe that the same
three-way decomposition of the weighted sum applies to the Extreme Points
estimator as to the OLS estimator. The columnar decomposition is visible
in columns I through L of the BivariateEstimators sheet. Once again the
results do not depend on the particular X’s employed (so long as the X’s do
not all have the same value). The Change the X’s button cycles through various
possibilities.

Another possible estimator of the slope is the average of the slopes of the
lines formed by connecting adjacent points together. It takes a little work to
find the weights for the Average Slopes Estimator. The slope of the first line
is Y2−Y1

X2−X1
, the slope of the second line is Y3−Y2

X3−X2
, and so on. This means that Y1
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is multiplied by −1
X2−X1

, whereas Y2 is multiplied by 1
X2−X1

and −1
X3−X2

. Carrying
this logic further, we find that the weights are as follows:

w1 = 1
9

·
(

− 1
X2 − X1

)

wi = 1
9

·
(

1
Xi − Xi−1

− 1
Xi+1 − Xi

)
, i = 2, . . . 9

w10 = 1
9

·
(

1
X10 − X9

)
.

The 1/9 terms show up because we are taking the average of the slopes.
Again, it can be shown that the weights sum to 0, the product of the weights
with the X’s is 1, and thus that the expected value of the estimator of the
slope is β1. The BivariateEstimators sheet demonstrates these facts.

It is interesting to note that the Average Slopes Estimator and Extreme
Points Estimator result in exactly the same recipe when the X’s are equally
spaced. This occurs for one of the sets of X values in the BivariateEstimators
sheet – namely, the one in which the X’s are 10, 20, . . . , 100.

Summary

In this section, we have emphasized that the OLS estimator is a weighted
sum of the values of the dependent variable and therefore a linear estimator.
Monte Carlo results suggest that the OLS slope estimator is unbiased when
the classical econometric model applies.

The fact that OLS is a linear, unbiased estimator is not particularly distinc-
tive. There are an infinite number of other linear, unbiased estimators. Two
of them are the Extreme Points and Average Slopes Estimators, which we
chose because they are relatively easy to describe.

From this sea of linear, unbiased estimators, why is OLS the best choice?
The next section shows that, despite the infinite number of competitors,
when the CEM applies, the OLS estimator is guaranteed to be the minimum-
variance estimator in the class of linear, unbiased estimators.

14.6. OLS is BLUE: The Gauss–Markov Theorem for the Bivariate Case

Workbook: GaussMarkovBivariate.xls

In this section we return to the Gauss–Markov theorem – this time for
the bivariate case. The theorem says that, when the classical econometric
model (CEM) of the data generation process applies, the OLS estimator is
the Best Linear Unbiased Estimator. Our approach is straightforward: We
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Set 1 Set 2 Set 3

Xi Xi Xi

10 10 8.219
15 20 12.993
22 30 31.121
30 40 41.735
45 50 43.073
50 60 62.422
65 70 70.127
75 80 78.052
89 90 88.427

100 100 101.159
(random)
slightly different each time

Figure 14.6.1. Three sets of X values.
Source: [GaussMarkovBivariate.xls]Q&A.

perform Monte Carlo experiments to find approximate SEs for the OLS
estimator and two competing estimators. You will not be surprised to hear
that OLS decisively wins these Monte Carlo races. This is suggestive but by no
means conclusive evidence that OLS is in fact the minimum-variance linear,
unbiased, estimator under the CEM.

The GaussMarkovBivariate.xls workbook enables you to approximate the
SE of three estimators of the sample slope: the OLS estimator, the Extreme
Points estimator, and the Average Slopes estimator. We will walk you through
a few races. We invite you to run other races in exercises at the end of this
chapter and in the Q&A sheet.

To set up a Monte Carlo experiment, first go to the BivariateEstimators
sheet and choose the set of X’s you want to use by clicking on the Change the X’s

button. The three sets of X’s you can choose from are given in Figure 14.6.1.
Set 3 is actually a collection of random X’s that changes slightly each time
you toggle through. Finally, you can set the values of the parameters of the
CEM. We chose the values given in Figure 14.6.2.

We selected Set 2 of the X’s, returned to the Monte Carlo sheet, and ran a
10,000-repetition Monte Carlo experiment that raced OLS versus Extreme
Points (by clicking on the Extreme Points option in the MonteCarlo sheet).
Figure 14.6.3 shows our results.

In this Monte Carlo experiment the approximate SE of the OLS estimator
is 0.528, whereas the approximate SE of the Extreme Points estimator is

ββββ 0000 10

ββββ 1111 5
SD(εεεε ) 50

Population 
Parameters

Figure 14.6.2. Population parameters for the Monte Carlo
experiment.
Source: [GaussMarkovBivariate.xls]BivariateEstimators.
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ββββ 1111 5 Average 5.00 Average 4.99

SD(εεεε ) 50 SD 0.551 SD 0.786

Population Parameters OLS Estimates
Extreme Points 

Estimates

Empirical Histogram for 10,000 Repetitions

0

200

400

600

800

1000

1200

1400

1 3 5 7 9

Figure 14.6.3. OLS versus extreme points estimator.
Source: [GaussMarkovBivariate.xls]MonteCarlo.

0.787. This is strong evidence that the OLS estimator has a smaller SE than
the Extreme Points estimator.

The OLS estimator has defeated Extreme Points for this particular DGP,
but what if the spread of the errors was different? Would OLS win again?
Change cell B4 in the BivariateEstimators sheet and then race the estimators
again. What happens? The result is the same: OLS wins.

Let us try a more sophisticated experiment. This one caused some con-
troversy when the properties of OLS were being discovered. The question
is this: Does the status of OLS as BLUE depend on the distribution of the
errors? In other words, suppose the errors came from another distribution
such as a uniform distribution. Would OLS still win?

You can answer this question with Monte Carlo simulation. The first step
is to change the distribution of the errors. Return to the BivariateEstima-
tors sheet and set cell B4 to 50. Next, change the formula for the epsilons
in the BivariateEstimators sheet from “= normalrandom(0, SDepsilon)” to
“= uniform(0, SDepsilon).” You can change the first cell, A6, then, fill down
the formula. Another approach is to select all of the epsilons (in cell range
A6:A15) and execute Edit: Replace in order to replace “normalrandom”
with “uniform.” The new formula makes the errors come from a box that is
uniformly distributed in the interval −86.6 to 86.6.5 The average of this box

5 See the Random.xls workbook in the Basic Tools/Random Number folder if you are interested in how
this interval is determined.
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−0.183 AverageAverage 0.808
SD 50.1283 SD 49.4003
Max Max86.590 187.808
Min −86.545 Min −173.936

$B$6 $B$7 Notes

Histogram of $B$6 and $B$7

−180 −80 20 120

$B$6

$B$7

Figure 14.6.4. Normal versus uniform error distributions.

remains 0 and the SD is still 50. Hit F9 to see that the error draws are equally
likely to come from anywhere in the interval (unlike the normalrandom for-
mula that concentrates the draws around zero).

To see the difference between the normal and uniform error distributions,
we used the Monte Carlo simulation add-in to track two cells. One cell used
the uniform formula and the other the normalrandom formula. Both cells
had mean 0 and SD of 50. Figure 14.6.4 shows the results.

As you can see, the uniform distribution has a rectangular shape. That
means any of the numbers within the interval are equally likely to be chosen.
You are more likely to get a draw from the center of the normal distribution
and the tails are much longer (in theory, infinitely long).

To make a fair comparison with the normal error distribution used to create
Figure 14.6.3, we need to make sure that everything else is the same. Make
sure the SD of the errors is 50 and that the BivariateEstimators sheet is based
on Set 2 of the X’s.

With the BivariateEstimators sheet prepared, you are ready to run the
Monte Carlo. You cannot, however, use the MonteCarlo sheet because it is
hard-wired to use a normal distribution for the errors. Fortunately, you have
the Monte Carlo simulation add-in at your disposal. Use it to track cells E1
and G1. We did and got the results displayed in Figure 14.6.5.

In our 10,000-repetition Monte Carlo with uniformly distributed errors,
OLS beats Extreme Points handily once again. Figure 14.6.5 shows that both
are centered on the population parameter value, but the OLS estimator is
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Average 5.000 Average 4.968
SD 0.5553 SD 0.7744
Max 6.724 Max 6.868
Min                 3.487 Min 3.151

n=10
SD=50

Set 2 X’s
Uniform(0, 50) Errors

Extreme Points (G1)OLS Estimates (E1) Notes

Histogram of BivariateEstimators!$G$1 and
BivariateEstimators!$E$1

3 4 5 6

BivariateEstimators!$G$1
BivariateEstimators!$E$1

Figure 14.6.5. OLS versus extreme points estimators with a uniform error box.
Source: [GaussMarkovBivariate.xls]BivariateEstimators and MCSim add-in.

more concentrated around that value than the Extreme Points estimator.
Whether the distribution of the errors is normal or uniform does not affect
the outcome – OLS wins in the either case.

Figure 14.6.6 collects the results from the Monte Carlo simulations in Fig-
ures 14.6.3 and 14.6.5. If you compare the Monte Carlo results from the
normally and uniformally distributed errors, you can see that neither the
expected value nor the SE of the two estimators is affected by the distribution
of the errors. As long as the distribution of the errors is centered on zero, both
remain unbiased. Because the SD is 50 for both the uniform and normal error
distributions, the standard errors of the two estimators are also unaffected.

This result may seem counterintuitive. After all, surely the distribution
of the errors must have some effect. In fact, it does. If you compare the
histograms of the OLS estimator in Figures 14.6.3 and 14.6.5, the normally
distributed errors produce a more normal looking sampling distribution than

 OLS Estimator Extreme Points Estimator 

Error 

Distribution 

Average 

(Approximate EV) 

SD 

(Approximate SE) 

Average 

(Approximate EV) 

SD 

(Approximate SE) 

Normal 5.00 0.551 4.99 0.786 

Uniform 5.00 0.555 4.97 0.774 

Figure 14.6.6. No effect of error distribution on EV and SE of sampling distribution.
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the uniformly distributed errors. Thus, we can conclude that, although the
expected values and SEs are unaffected by the distribution of the errors,
the shape of the sampling distribution does depend on the distribution of
the errors.6

We close this section by turning to a comparison of the OLS and Average
Slopes estimators. It is straightforward to run a Monte Carlo that shows that
the OLS estimator wins. For the Set 2 X’s, Average Slopes is even worse than
Extreme Points. It is unbiased, but its SE (as approximated by the empirical
SD) is almost three times as large as that of the Extreme Points estimator.

No matter what comparison you make (and we encourage you to try vari-
ous combinations of X’s and parameter values with the Extreme Points and
Average Slopes estimators), you will find that the Monte Carlo approxima-
tion of the SE of the OLS estimator is always lower than those of its two
competitors. In this set of three linear, unbiased estimators, OLS is BLUE.
If we posit other linear, unbiased candidates, OLS will beat them too.

Summary

We already know, however, that Monte Carlo cannot be used to prove the
Gauss–Markov theorem because you can not possibly race every linear, unbi-
ased estimator in the infinite set of this category. We used the method of
Monte Carlo in this section to demonstrate that there are other linear esti-
mators available and that the winner, OLS, is chosen on the basis of being
unbiased and having the smallest SE.

The next section presents an approach that can unequivocally establish
the dominance of the OLS estimator. By computing the exact expected value
and SE, the algebra of expectations can be used to prove the Gauss–Markov
theorem.

14.7. Using the Algebra of Expectations

Workbooks: GaussMarkovUnivariate.xls; GaussMarkovBivariate.xls

The material in this section provides a window to a more mathematical pre-
sentation of ideas that have already been covered. This section will use the
algebra of expectations (reviewed in Chapter 10) to derive analytical formu-
las for random variables. We follow the organizational scheme of the chapter.
First, we work on the univariate case of estimating the population average,
and then we analyze the slope estimator in a bivariate regression.

6 We discuss the shape of the sampling distribution of the OLS slope estimator in more detail when we
present the z- and t-statistics in Chapter 16.
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Estimating the Population Average

Section 14.3 uses Monte Carlo simulation to approximate the sampling dis-
tribution of four estimators of the population average. We use the empirical
histogram generated by repeated sampling as a stand-in for the true prob-
ability histogram. We compute the average and SD of 10,000 estimates as
approximations to the exact expected value and SE, respectively. This sec-
tion takes a more conventional approach to finding the expected value and
SE of a sample statistic: derivation of a formula. The formula will tell us the
expected value and SE that would result from a Monte Carlo using an infinite
number of repetitions.

It is convenient to recapitulate the most important rules about the algebra
of expectations before we apply them to derive formulas. We use the symbol
k to indicate a constant and X and Y to indicate random variables.

Rule 1: The expected value of a constant is the constant itself. In particular, the
expected value of a population parameter is simply the population parameter
itself,

E (β) = β.

Rule 2: The expected value of the sum of two or more random variables is the sum
of the expected values,

E(X + Y ) = E(X) + E(Y ).

Rule 3: The expected value of the product of a constant and any other term is the
product of the constant and the expected value of the other term,

E(kβ) = kE(β). and E(kX) = kE(X)

Return to the UnivariateSample sheet in GaussMarkovUnivariate.xls, click
the Hide Estimator button, and reexamine the resulting table, which will look like
Figure 14.7.1.

β                 εi Yi

200 −2.39 197.61
200 2.95 202.95
200 0.55 200.55
200 −2.59 197.41
200 1.60 201.60
200 1.59 201.59
200 4.01 204.01
200 −0.98 199.02
200 −5.37 194.63
200 −1.25 198.75

Figure 14.7.1. A univariate sample.
Source: [GaussMarkovUnivariate.xls]
UnivariateSample.
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Each row represents an observation. Each Yi is made up of two compo-
nents: the population average β (the population parameter) and the draw
from the error box εi . Applying the rules stated above, we have

E(Yi ) = E(β + εi )

= E(β) + E(εi ) [Applying Rule 2]

= β + 0[Applying Rule 1 and the fact thatE(εi ) = 0]

= β.

In essence we are saying that, on average, we expect the value of each Yi to be
the true population parameter β. A quick inspection of Figure 14.7.1 should
convince you that this is a reasonable statement about the sample. You can
repeatedly draw samples (by hitting the F9 key) and find that the values of
each Y bounce around the true population average (in this case, 200).

Let us use the algebra of expectations to find the expected value of the
Sample Average estimator. The data generating process is the classical econo-
metric model for the univariate case, Yi = β + εi , i = 1, . . . , n:

E

[
n∑

i=1

1
n

Yi

]
= E

[
n∑

i=1

1
n

(β + εi )
i

]
[Using the CEM]

= E

[
n∑

i=1

1
n
β

]
+ E

[
n∑

i=1

1
n
εi

]
[Applying Rule 2]

= β +
n∑

i=1

1
n

E (εi )[Applying Rules 1 and 2]

= β +
n∑

i=1

1
n

· 0[Using the fact thatE(εi ) = 0]

= β.

In any given sample, the Sample Average estimate will not equal β, but
its long run average will be β. Therefore, the Sample Average estimator is
unbiased.

What about the spread of the Sample Average estimator? To compute the
SE of an estimator, analytically one must recognize that the estimator is a
random variable. The SE is actually the SD of a random variable. The general
strategy in bringing the algebra of expectations to bear on such a problem is
to compute the Variance of the estimator and at the end take its square root
to get the SD of the estimator. Here are the usual steps:

� Find the components of the estimator that are random variables (you can ignore
the constants because they do not change the variance).

� Use standard formulas for computing the variances of sums.
� Hope that the random variables are independent of one another because that

simplifies the formulas a great deal.
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To make progress in computing the SE of linear estimators, we need a few
rules for computing variances and SDs. The following rules are similar to
rules one can apply for computing empirical variances and SDs. You must
understand, however, that the variances we are talking about in this section
are expected values of random variables. We use the symbols a and k to
indicate constants and X and Y to indicate random variables.

Rule 1: The variance of a constant multiplied by a random variable is the product
of the square of the constant and the variance of the random variable. In
equation form, this is expressed as

Var (kX) = k2Var (X) .

Rule 2: The variance of a constant is zero:

Var (a) = 0.

Rule 3: The variance of the sum of a constant and a random variable is just the
variance of the random variable:

Var (a + X) = Var (X) .

Rule 4: The variance of a sum of independent random variables is the sum of the
variances:

Var (X + Y ) = Var (X) + Var (Y )

when X and Y are independent random variables.

An implication of Rule 1 is that the SD of a random variable multiplied
by a constant is just the product of the constant and the SD of the random
variable. It is easier to understand this in equation form:

SD(kX) = k · SD(X) .

Our goal is to compute the variance (and then the SD) of a weighted
sum of random variables, which is the way we are thinking about the linear
estimators of the population average. Combining Rules 1 and 4, we obtain
the following result. If X and Y are independent random variables and a and
b are two constants, then

Var (a X + bY ) = a2Var (X) + b2Var (Y ) .

In the case of linear estimators for 10 observations generated according to
the CEM, the random variables are the Yi ’s and the constants are the wi ’s.
The individual Yi ’s are sums of a constant β, the population average, and
individual error terms, the εi ’s. Applying Rule 3, we obtain

Var (Yi ) = Var (β + εi ) = Var (εi ) ,

for every i (every observation).
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Then the variance of a linear estimator of the population average is

Var

(
n∑

i=1

wi Yi

)
=

n∑
i=1

Var (wi Yi )

=
n∑

i=1

w2
i Var (Yi )

=
n∑

i=1

w2
i Var (εi ).

The spread of a linear estimator of the population average is

SD

(
n∑

i=1

wi Yi

)
=

√√√√ n∑
i=1

w2
i Var (εi )

=
√√√√ n∑

i=1

w2
i SD2 (εi ).

These formulas are more general mathematical versions of the rules pre-
viously stated (in Chapter 10) for computing the SE of sample sums
and averages. Applying these formulas to the example in GaussMarkov-
Univariate.xls, we obtain the following values for the exact SE of the Sample
Average and Diminishing Weights estimators in the 10-observation case:

SE(Sample Average Estimator) = 0.316 SD(ε)

SE(Diminishing Weights Estimator) = 0.577 SD(ε).

See the sheet ComputingSEs in GaussMarkovUnivariate.xls for details of the
computation.

Estimating β1

To compute the exact expected value and SE of a linear slope estimator,
we apply the expected value and variance rules to the weighted sum that
implements the recipe for the estimator. The algebra begins like this:

E

[
n∑

i=1

wi Yi

]
= E

[
n∑

i=1

wi (β0 + β1 Xi + εi )

]

= E

[
n∑

i=1

wiβ0

]
+ E

[
n∑

i=1

wiβ1 Xi

]
+ E

[
n∑

i=1

wiεi

]
.
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The first term on the right-hand-side, E [
∑n

i=1 wiβ0], is the expected value
of a constant – it does not change when a new sample is drawn. We showed
in Section 14.5 that the term inside the expectation sign sums to zero.

The second term can be rewritten

E

[
n∑

i=1

wiβ1 Xi

]
= E

[
β1

n∑
i=1

wi Xi

]

= β1

n∑
i=1

wi Xi

= β1 · 1

= β1.

The final term, E [
∑n

i=1 wiεi ], is a weighted sum of constants multiplied by
the error terms, but each error term has expected value 0; thus, the weighted
sum has expected value 0. Let us be more specific because we wish to highlight
a point that will be important in the discussion of omitted variable bias. Here
is the algebra:

E

[
n∑

i=1

wiεi

]
=

n∑
i=1

E(wiεi )

=
n∑

i=1

wi E(εi )

=
n∑

i=1

wi · 0

= 0.

The legitimacy of the move from the first line to the second depends on
the fact that the X’s, and therefore functions of the X’s like the weights, are
fixed in repeated sampling. Because the wi ’s do not change from one sample
to the next, they can be treated as constants in taking expectations. If, on the
other hand, the X’s were to change from one sample to the next, we would
need to make additional assumptions to get the desired result.

Putting the three terms back together, we get

E

[
n∑

i=1

wi Yi

]
= E

[
n∑

i=1

wi (β0 + β1 Xi + εi )

]

= E

[
n∑

i=1

wiβ0

]
+ E

[
n∑

i=1

wiβ1 Xi

]
+ E

[
n∑

i=1

wiεi

]

= 0 + β1 + 0

= β1.
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The conclusion of our calculations is that the expected value of the sum
of the three terms is β1. Thus, the OLS estimator for the Bivariate CEM is
unbiased. Similar computations would show that the OLS estimator of the
intercept is unbiased. More complicated but similar computations can be
used to prove the unbiasedness of the OLS estimators of all the parameters
in multiple regression versions of the CEM.

We turn now to computing the exact SE of the OLS estimator via the alge-
bra of expectations. The basic building block in the formula for the variance
of a linear estimator based on the Y’s is Variance(Yi), the variance of each
individual observation on Y. The assumptions of the classical econometric
model make it easy to compute this variance, as follows

Var(Yi ) = Var(β0 + β1 Xi + εi )

= Var(εi ).

This derivation works because β0 + β1 Xi is a constant which does not vary
from one sample to the next, and Rule 3 says that the variance of a constant
plus a random variable is just the variance of the random variable. Armed
with this fact, we can work out the variance of any linear estimator for the
classical econometric model.

Var

(
n∑

i=1

wi Yi

)
=

n∑
i=1

Var (wi Yi )

=
n∑

i=1

w2
i Var (Yi )

=
n∑

i=1

w2
i Var (εi ).

This implies that the SE of a linear estimator is:

SD

(
n∑

i=1

wi Yi

)
=

√√√√ n∑
i=1

w2
i Var (εi )

=
√√√√ n∑

i=1

w2
i SD2 (εi ).

Note that these formulas apply no matter how many X variables there are
in the model, though the weights get much more complicated once one goes
beyond the bivariate model.

We can use the ComputingSEs sheet in GaussMarkovBivariate.xls to do the
tedious work of computing the variances and SEs for the different estimators
we have considered. The ComputingSEs sheet looks Figure 14.7.2.
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SD(ε) 5
Variance 25

Observation X ’s OLS
Extreme 
Points

Average 
Slopes OLS

Extreme 
Points

Average 
Slopes

1 10.00 −0.005 −0.011 −0.022 0.001 0.003 0.012
2 15.00 −0.004 0.000 0.006 0.000 0.000 0.001
3 22.00 −0.003 0.000 0.002 0.000 0.000 0.000
4 30.00 −0.002 0.000 0.006 0.000 0.000 0.001
5 45.00 −0.001 0.000 −0.015 0.000 0.000 0.005
6 50.00 0.000 0.000 0.015 0.000 0.000 0.005
7 65.00 0.002 0.000 −0.004 0.000 0.000 0.000
8 75.00 0.003 0.000 0.003 0.000 0.000 0.000
9 89.00 0.004 0.000              −0.002 0.000 0.000 0.000

10 100.00 0.006 0.011 0.010 0.001 0.003 0.003
Sum 501.00 0 0 0 0.003 0.006 0.029
Mean 50.10 Square Root 0.053 0.079 0.170
Variance 890.49

wi
2SD(ε)2Weights (wi )

Figure 14.7.2. Computing the SEs of different estimators of the bivariate slope.
Source: [GaussMarkovBivariate.xls]ComputingSEs.

The X’s are in the second column from the left. The weights for the three
estimators are computed in the third through fifth columns, and the individual
w2

i SD2 (εi ) terms for each estimator are calculated in the last three columns.
The SEs are displayed in the bottom row in bold – they are the square roots
of the variances. For this particular choice of the X ’s, and given that the SD
of the error terms is 5, the exact SE of the OLS estimator is 0.053, the exact
SE for the Extreme Points estimator is 0.079, and the exact SE for the Aver-
age Slopes Estimator is 0.170. The approximate SEs from the Monte Carlo
experiments will be quite close to the exact SEs in the ComputingSEs table.
Try it! You will find that both the exact computation using the algebra of
expectations and the Monte Carlo approximation tell the same story: OLS is
always better – has a lower variance (SE) than the Extreme Points and the
Average Slopes estimators.

This is of course not a proof of the Gauss–Markov theorem, nor will we give
a formal proof for the bivariate case – the algebra is just too messy. We can,
however, offer some further insight into the problem by using Excel’s Solver.

Just as was the case for in the univariate setting, the problem of obtaining
the minimum-variance, linear, unbiased estimator of the bivariate slope can
be thought of as a constrained optimization problem. To solve this optimiza-
tion problem, we want to find the estimator that has the minimum variance
subject to the constraints that the weights sum to 0 and the product of the
weights with the X’s sum to 1. More formally, we want to choose a set of
wi , i = 1, . . . , n to minimize the quantity

∑n
i=1 w2

i Var (εi ) subject to the con-
straints that

∑n
i=1 wi = 0 and

∑n
i=1 wi Xi = 1. The constraints guarantee that

the estimator will be unbiased.
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In the last three columns of the table in the ComputingSEs sheet, we have
set up Solver to handle this problem for the specific 10-observation case.
When you execute Tools: Solver, you will see that it is set up to minimize the
value in cell K16 (the sum

∑n
i=1 w2

i Var (εi ), where the weights are those in
column I) subject to two constraints: that the sum of column I (the weights) is 0
and the sum of column J (the weights multiplied by the X’s) is 1. Click Solve,
and Solver will obtain the least squares weights. Now click the Change the X’s

button and the Solver solution will no longer meet the constraints. Use Solver
again, and once again Solver will obtain the least squares weights.

The Solver demonstration shows that, for the specific 10-observation cases
available in the GaussMarkovBivariate.xls workbook, the OLS estimator is
the Best Linear Unbiased Estimator.

Summary

This section has demonstrated, though it does not prove, the Gauss–Markov
theorem for the bivariate version of the classical econometric model. The
proofs for the bivariate and multiple regression cases can be succinctly pre-
sented with matrix algebra, but we will not give them here. You should, how-
ever, continue to use the concepts we have developed to think about the OLS
estimator. The OLS estimator is a weighted sum of the dependent variable;
given a model of the data generating process, those weights, together with the
SD of the error box, determine the spread of the OLS estimator’s sampling
distribution. The OLS estimator is preferred by econometricians because,
when the classical econometric model applies, its SE is smallest among the
class of linear, unbiased estimators. Finally, the Gauss–Markov theorem does
not depend on any assumption about the distribution of the error terms other
than the two assumptions that the SD of the errors is a finite number and
their expected value is 0. The tickets in the error box might be normally dis-
tributed, uniformly distributed, or come from other distribution which meets
the two basic requirements about their expected value and SD. This can be
seen in the formulas for the exact SE, which depend on just the SD of the
errors, not their distribution.

14.8. Conclusion

This chapter spells out several crucial ideas in inferential econometrics:

� When a chance process is at work generating the observed Y’s, a sample is a real-
ization of the chance process.

� There are many estimators, or recipes, that can be used to obtain an estimate of a
population parameter.
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� The resulting estimates are random variables whose value depends on the sample,
which is merely one possible outcome of the chance process. Drawing a new sample
and applying the same estimator will produce a new estimate.

� Econometricians prefer unbiased estimators because they are accurate – that is, on
average, correct.

� In addition, the smaller the SE of the estimator’s sampling distribution the better.
The SE signals the precision of the estimator.

� Provided that the data were generated according to the classical econometric
model, the Gauss–Markov theorem says that the OLS estimator is the best lin-
ear unbiased estimator available. “Best” refers directly to having the lowest SE.

� The Gauss–Markov theorem does not require that the error terms follow any
particular distribution. All that is required of the distribution is that the expected
value of the errors be zero and the errors have a finite SD.

Because the OLS estimator is based on minimizing the sum of squared
residuals, beginning students often mistakenly believe that solving this min-
imization problem is the source of the desirability of the OLS estimator. In
fact, minimizing the SSR is simply the recipe that defines OLS. The Gauss–
Markov theorem addresses a different optimization problem – that is, to find
the most precise (smallest SE) linear unbiased estimator.

In this chapter, we introduced three crucial concepts: linear, unbiased, and
estimator. We stressed that the properties of an estimator depend on the
data generating process. We used the algebra of expectations and the notions
of random variables and constants to work out the expected value of the
estimators we considered. A key to understanding this extremely important
chapter is mastering the vocabulary, which means being able to make crucial
distinctions. You should be able to tell what the difference is between an
estimator and an estimate, a linear and a nonlinear estimator, a biased and
an unbiased estimator, and a residual and an error.

14.9. Exercises

1. Here is an estimator for the population average that might be applied when you
know the data generating process produces only nonnegative numbers. Take each
number in the sample, square it, find the average of the squared values, and take
its square root. In equation form, the formula for this Weird estimator is

√∑n
i=1 Y2

i

n
.

Is this Weird estimator linear? Why or why not? Is it unbiased? A simple example
that supposes there are only two possible, equally likely values for Yi will suffice
to answer the question about bias.
Questions 2–6 use the GaussMarkovUnivariate.xls workbook.
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2. The Odd estimator of the population average gives each odd-numbered obser-
vation a weight of 2/n. Apply this estimator in the UnivariateSample sheet. What
do the weights in column D look like?

3. Use the Monte Carlo simulation add-in to analyze the sampling distribution of
the Odd estimator. Is it biased? What part of the Monte Carlo results did you
use to answer this question?

4. Would you prefer the Odd estimator or the Sample Average estimator? Explain
your choice.

5. Explore the consequences of changing the error distribution from normal to
uniform in the UnivariateSample sheet. (Section 14.6 compares the normal and
uniform distributions.) Replace the normalrandom formula in column B with
the uniform function. What effect does this have on the sampling distribution of
the Sample Average? In your answer, comment on the expected value, SE, and
shape of the sampling distribution.

6. From the UnivariateSample sheet, use Excel’s MEDIAN function to compute
the sample median of the observed Y values. Use the Monte Carlo simulation
add-in to race the Median against the Sample Average. Who wins? Why?
Questions 7–10 use the GaussMarkovBivariate.xls workbook.

7. In the BivariateSample sheet, create the Missing Last Value estimator. This silly
estimator uses the same weights as the OLS slope estimator but makes the weight
of the tenth observation equal to 0. Without running a Monte Carlo, can you tell
if this estimator is biased? Explain.

8. Use the algebra of expectations to compute the exact expected value and SE of
the Missing Last Value estimator by means of Set 2 of the X’s (see the Q&A
sheet for the values of the X’s in Set 2).

9. Run a Monte Carlo simulation of the Missing Last Value estimator. Evaluate the
results, commenting on the approximate expected value and SE.

10. Compare the Monte Carlo results in the previous question with the exact solu-
tions obtained in Question 8. Do you find substantial agreement? Explain.
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Understanding the Standard Error

But to know how to compute the standard error of a function, it is first necessary
to know how to compute the probable values of the parameters, their weights, and
their standard errors, by the method of least squares.

Henry Schultz1

15.1. Introduction

The previous chapter made clear that a single OLS estimate from one realized
sample is like a draw from the probability histogram of the OLS sample
estimates. The Gauss–Markov theorem says that, if the requirements of the
classical econometric model are met, then the OLS estimator is BLUE – that
is, of the class of linear and unbiased estimators, the OLS estimator has the
smallest standard error.

This chapter is devoted to more practical concerns about the SE of the
OLS estimator. In the next section, we restate the formulas for the SE in the
univariate and bivariate cases in much simpler language that will allow for
an intuitive understanding of the SE. Section 15.3 shows how to compute the
estimated SE reported by OLS routines such as Excel’s LINEST function.
Section 15.4 illustrates the properties of the SE of the OLS estimator by a sim-
ple discovery exercise. Section 15.5 discusses the concept of consistency and
applies it to a discussion of the estimated RMSE. The final section introduces
another standard error, the SE of forecasted Y. Throughout this chapter, we
work with the classical econometric model of the data generation process.

15.2. SE Intuition

Workbook: SEb1OLS.xls

In the previous chapter, we were able to derive, via the algebra of expecta-
tions, the exact SE of the OLS estimator for univariate and bivariate CEM

1 Schultz (1930, p. 12).

378
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applications. This section shows how these formulas can be restated in much
more intuitive terms.

Univariate CEM: Estimating the Population Average

We begin by considering the univariate version of the classical econometric
model (CEM):

Univariate CEM: Yi = β + εi , i = 1, . . . , n.

Here β is the population average we want to estimate. The ε’s are assumed
to be repeated draws from a classical econometric error box (always the
same one) with tickets whose mean is zero and with an unknown standard
deviation. The n draws are independent of each other.

Section 14.7 showed that the SE of a linear estimator of the population
average using weights w1 through wn is given by the formula:

SD

(
n∑

i=1

wi Yi

)
=

√√√√ n∑
i=1

w2
i Var (εi )

=
√√√√ n∑

i=1

w2
i SD2 (εi ).

We know from work in the last chapter that the OLS estimator of the popu-
lation average is the sample average that uses weights equal to 1/n for every
observation. We can substitute in 1/n for wi:

SE (Sample Average) =
√√√√ n∑

i=1

(
1
n2

)
SD2 (εi )

Now the sum from 1 to n of any constant is simply n times the constant. Thus,
the sum from 1 to n of (1/n)2 is 1/n. This means we can rewrite the formula
for SE of the sample average in a more intuitive way as

SE (Sample Average) =
√

1
n

SD2 (ε) = SD(ε)√
n

= SD(Box)√
# of draws

.

When written in words, the formula for the SE of the sample average is much
easier to understand. It says, quite simply, that the spread of the sample
average estimates depends directly on the spread of the tickets in the box
and inversely on the square root of the number of draws.
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Bivariate CEM: Estimating the Slope (β1)

A similar, but more algebraically complicated, approach can be used to sim-
plify the formula for the SE of the OLS slope estimator in a bivariate regres-
sion equation. The DGP is described by

Bivariate CEM: Yi = β0 + β1 · Xi + εi , i = 1, . . . , n.

Here β0 and β1 are, respectively, the intercept and slope parameters that we
want to estimate. The εi ’s are assumed to be repeated draws from a classical
econometric error box (always the same one) with tickets whose mean is zero
and with an unknown standard deviation. The n draws are independent of
each other. The εi ’s are assumed to be independent of the X ’s. Thus, the value
of the draw from the box, εi , has nothing to do with the value of Xi.

Although the intercept has a formula for the SE just like the slope, we will
not derive an intuitive formula for the SE of the OLS sample intercept in
order to concentrate our efforts on the much more important SE of the OLS
sample slope.

As in the univariate case, we start from the fundamental result that the SE
of a linear estimator of a population parameter can be written as a weighted
sum of a random variable:

SD

(
n∑

i=1

wi Yi

)
=

√√√√ n∑
i=1

w2
i Var (εi )

=
√√√√ n∑

i=1

w2
i SD2(εi ).

Unlike the univariate case, however, in which the weights were a convenient
and easy 1/n, the weights for the OLS estimator of β1 are given by a more
complicated formula (derived in Section 14.5):

wi =
(
Xi − X̄

)
n · Variance(X)

, i = 1, . . . , n

By substituting the expression for the weights into the formula for the SE of
a linear estimator, we obtain:

SE(OLSSampleSlope) =

√√√√ n∑
i=1

[ (
Xi − X̄

)
n · Variance(X)

]2

SD2(εi )

We can simplify this expression by squaring the numerator and denominator,
noting that the sum of the squared deviations from the average X (in the
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numerator) is equal to n times the variance of the X ’s, and canceling terms,

SE(OLSSampleSlope) =
√√√√ n∑

i=1

(Xi − X̄)2

n2 · Variance2(X)
SD2(εi )

=
√

n · Variance(X)

n2 · Variance2(X)
SD2(ε)

=
√

SD2(ε)
n · Variance(X)

= SD(ε)√
n · SD(X)

Note that because the errors all come from the same box, they all have the
same SD. Thus it is possible to replace SD2(εi ) with SD2(ε), as we did in
moving from the second line to the third line above. Thus the analytical
formula for the SE of the OLS estimator of the slope in a bivariate regression
can be reduced to something quite simple and intuitively appealing:

SE(OLSSampleSlope) = SD(ε)√
n · SDX

= SD (Box)√
# of draws · SD of the X’s

.

Notice the close similarity between the formula for the SE of the OLS sample
slope and its univariate analogue, the SE of the sample average. Both have
the SD of the error box in the numerator and both have a square root of
the number of draws from the box in the denominator. The SE of the OLS
sample slope has an extra term, the SD of the X’s, that is not present in the
univariate case. Note that sinceX is fixed, the SD of the X’s is computed using
n, the number of observations, not n−1.

Implementing the SE of the OLS Sample Slope Formula

Open the Excel workbook SEb1OLS.xls and go to the ExactSEb1 sheet to
see the formula for the SE of the OLS sample slope in action. Figure 15.2.1
shows the information on the screen. Cell range A1:B4 contains the β0, β1,
and SD(ε) parameter values.

In red text on your computer screen, cell F4 contains the exact SE of the
sample slope. Figure 15.2.2 shows, via Excel’s Auditing feature, that the exact
SE cell depends on three other cells.

Click the
Draw Another 
Sample (F9) button repeatedly. The Y’s and the OLS Fitted Line

bounce (both in the table and on the chart). Notice that n, the SD of X, and
all cells (and the line) in red stay fixed. Especially pay attention to the fact
that the exact SE(b1), the SE of the OLS sample slope, is constant.
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Figure 15.2.1. The exact SE stays fixed.
Source: [SEb1OLS.xls]ExactSEb1

This demonstrates, visually and concretely, that the SE of the OLS sample
slope is a fixed number that exists for a particular characterization of the
DGP described by the classical econometric model. Its value depends on the
three elements in its formula: SD of the errors, n, and SD of X.

With the classical econometric model, we will always know the number of
draws and the SD of the X values. If we know the SD of the errors, we can
compute the SE of the OLS sample slope exactly, which is a value that is
fixed and unchanging. Unfortunately, this is rarely the case. The next section
reveals the obvious solution to this predicament, but first we will provide a
formula for the SE of one of several slope estimators in the multivariate case.

The SEs in the Multivariate CEM

The formula for the SE in the multivariate case is one notch more complicated
than in the bivariate case. Suppose we are interested in the kth slope term

slope n 31
5.0 100.0 SD of X 8.94

SD_Error 20 exact SE(b1) 0.401609664  

Intercept

Figure 15.2.2. Tracing precedents of the exact SE.
Source: [SEb1OLS.xls]ExactSEb1
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bk. Its SE is given by the formula

SE (bk) = SD (Box)
√

# of draws · SD (Xk) ·
√

1 − R2
k

.

In this expression, the symbol R2
k means the R2 from a regression of Xk

(the X variable corresponding to bk) on all the other independent variables,
including an intercept term. Notice that the 1√

1−R2
k

term is the only difference
between the formula for the SE of a slope estimator in the multivariate case
and the formula for the SE of the slope estimator in the bivariate case. This
last term has the effect of increasing the SE of coefficients whose correspond-
ing X variables are highly correlated with other X ’s. In the case of perfect
multicollinearity between Xk and other X variables, R2

k =1 and SE(bk) is
undefined. The typical practical remedy is to drop one of the X variables
from the regression.

Summary

This section presented formulas for the SE of the sample average and OLS
sample slope in bivariate and multivariate settings. Much of the work for
these formulas was presented in Section 14.7. Our goal in this section was
to derive an intuitive version of the formulas that we can use to explain the
behavior of the SE under different conditions.

The formulas derived in this section are exact SEs because they do not
rely on Monte Carlo simulations to approximate the SE and they are based
on knowing the SD of the error distribution. The next section relaxes this
unrealistic assumption and explains how we estimate the SE when the SD of
the box is unknown.

15.3. The Estimated SE

Workbook: SEb1OLS.xls

The previous section showed that the exact SE of the OLS sample slope is

SE (OLSSampleSlope) = SD(ε)√
n · SDX

= SD (Box)√
# of draws · SD of the X ’s

.

In practice we are generally unable to compute this formula because we do
not know the SD of the box. We must therefore estimate it. This section
will show that, if the CEM applies, the natural estimator for the unknown
SD(ε) value is the RMSE, the spread of the residuals from the regression. We
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will also demonstrate that this is exactly what LINEST (and other standard
regression software packages) do in computing an estimated SE of the OLS
sample slope.

RMSE Estimates SD(ε)

Begin by going to the EstSEb1 sheet in SEb1OLS.xls. This sheet is based on
the ExactSEb1 sheet. However, we have added two variables, Residuals and
Errors, in columns E and F. To reveal how the two series are computed, click
on cells in these two columns. The Residuals are the observed Y values minus
the predicted Y from the OLS Fitted Line. Errors, on the other hand, are the
observed Y values minus the points on the True Fitted Line. By subtracting
the True Fitted Line, we are in essence removing the deterministic component
of Y, leaving only the error component.

To see that the residuals closely follow the errors, scroll over to the Errors
and Residuals as a function of X chart and click on the

Draw Another 
Sample (F9) but-

ton a few times. You should see that residuals and errors track each other.
Figure 15.3.1 shows an example. The values are not perfectly aligned because
the residuals are not the errors. The residuals are based on the estimated
intercept and slope coefficients from a particular sample, whereas the errors
use the true parameter values for the intercept and slope.

Another, perhaps more instructive, graph (top left corner on cell H60)
shows the Errors and Residuals as a scatter plot (with the Residuals on the
X-axis). Again, repeatedly draw new samples and watch the graph, which is

Errors and Residuals as a Function of X

−60

−30

0

30

60

0 5 10 15 20 25 30 35

X

Figure 15.3.1. One view of errors and residuals.
Source: [SEb1OLS.xls]EstSEb1.



P1: JZZ
0521843197c15 CB962B/Barretto 0 521 84319 7 November 7, 2005 18:35

The Estimated SE 385

r 0.9900

Errors and Residuals: Scatter Plot

-60

-30

0

30

60

-60 -30 0 30 60

Residuals

E
rr

or
s

Figure 15.3.2. Another view of errors and residuals.
Source: [SEb1OLS.xls]EstSEb1.

shown in Figure 15.3.2. This is strong visual evidence that the residuals do a
good job of tracking the errors.

As noted in Chapter 5, the RMSE is essentially the SD of the residu-
als, the only difference being that the RMSE as conventionally calculated
uses the number of degrees of freedom in place of the number of observa-
tions in the formula. (We discuss the reasons for this – generally minor –
adjustment in Section 15.5.) Because the residuals are good estimates of
the errors, the RMSE ought to be a good estimator of the SD of the error
box. We will demonstrate that the RMSE is at least adequate in this task,
though far from perfect, via a Monte Carlo simulation for the bivariate
case.

The Monte Carlo simulation is based on the parameters in the EstSEb1
sheet. Make sure that the SD Error parameter is set to 20 and then go to
the MCSim sheet to run your own Monte Carlo simulation. Compare your
results to those given in Figure 15.3.3.

The key result is the average of the 10,000 RMSEs: 19.7999. This is just
slightly less than 20 but far enough away to suggest something is awry. It is
an unfortunate fact that the RMSE is a biased estimator of the true value
of the spread of the errors, SD(ε). This bias gets smaller as the number of
observations in the sample increases. Because the bias is in practice negligible
and no better estimator available is, we use the RMSE to estimate SD(ε). We
discuss this issue in greater detail in Section 15.5.
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Average 19.7999 SDErrors 20

SD 2.61012
Max 29.7099
Min 10.2707

Population ParameterRMSE Summary Statistics

Empirical Histogram for 10,000 Repetitions

0

200

400

600

800

1000

1200

4 12 20 28 36
Estimated RMSEs

Figure 15.3.3. RMSE Monte Carlo simulation.
Source: [SEb1OLS.xls]MCSim.

The SE of the OLS Sample Slope in Practice

Now that we have an estimator for the unknown SD of the box, the RMSE,
we can simply substitute this into the formula for the SE of the OLS sample
slope:

SE (OLS Sample Slope) = SD(ε)√
n · SD(X)

= SD(Box)√
# of draws · SD of theX ’s

Estimated SE (OLS Sample Slope) = Estimated SD (Box)√
# of draws · SD of the X ’s

Estimated SE (OLS Sample Slope) = RMSE√
n · SDX

Scroll over to cell O8 in the EstSEb1 sheet to see a demonstration of the fact
that LINEST is performing exactly the substitution given above, as shown in
Figure 15.3.4. As you can see by comparing the cells with yellow backgrounds
while repeatedly clicking the replace

Draw Another 
Sample (F9) button, LINEST’s estimate

of the SE of the slope coefficient always equals the value derived from our
formula.
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SHOWING HOW LINEST USES RMSE TO ESTIMATE THE SD(ε)

slope Intercept
estimate 4.531 108.188 estimate

estimated SE(b1) 0.42576 7.43566 estimated SE(b0)
R2 0.80 21.20 RMSE

F test 113.26 29 df
Reg SS 50917.71 13037.35 SSR

estimated SE(b1) 0.42576             using the formula

Figure 15.3.4. LINEST uses RMSE.
Source: [SEb1OLS.xls]EstSEb1.

Summary

This section introduced the estimated SE of the OLS sample slope. We now
have three different types of SEs to consider:
� Exact SE: a formula that uses the SD of the errors when it is known;
� Estimated SE: using the RMSE to estimate the unknown SD of the errors in the

formula; and
� Approximate SE: obtained from a Monte Carlo simulation that uses the SD of the

sample slopes from many repetitions of the DGP.

In practice, it is the estimated SE on which we must rely. The exact SE is
unknown, and we typically only have one sample to work with; thus we
cannot use Monte Carlo methods to approximate the SE.2

15.4. Determinants of the SE of the OLS Sample Slope

Workbook: SEb1OLS.xls

The intuitive reformulation of the SE of the OLS sample slope estimator in
Section 15.2 led to the following formula:

SE(OLSSampleSlope) = SD(ε)√
n · SDX

= SD(Box)√
# of draws · SD of theX ’s

.

This section points out the obvious relationships between the SE of the OLS
sample slope and its three influences. It does so by asking the reader to walk
through the DeterminantsofSEb1 sheet in the SEb1OLS.xls workbook. The
sheet is organized in horizontal fashion with text boxes across the top that con-
tain instructions. Read the text box at the beginning of the sheet to familiarize

2 This statement is not strictly accurate. It is possible to use bootstrapping techniques, which are similar
to Monte Carlo simulations, to estimate SEs. This book introduces bootstrap methods in Chapter 23.



P1: JZZ
0521843197c15 CB962B/Barretto 0 521 84319 7 November 7, 2005 18:35

388 Understanding the Standard Error

yourself with the layout of the sheet. Click on cells to read the formulas. Scroll
right to perform the first of three discovery exercises. Each discovery exercise
has a “Thinking” button that will help you understand the point.

We offer three figures generated by following the instructions in the Deter-
minantsofSEb1 sheet that demonstrate three lessons. Each figure compares
two histograms. The same base case (SD Error = 1, SD of X = 8.66, and n =
90) is used in the left panel of each figure. As you work through the Determi-
nantsofSEb1 sheet, compare your results to ours. Your exact SEs should be
the same, but your estimated SEs will probably be different from ours.

Figure 15.4.1 shows what happens to the SE of the sample slope when
the SD of the errors increases ceteris paribus. We changed the SD of the
errors from 1 to 3. The exact SE rises threefold from 0.012 (with some of the
rounding error in the displayed result).

Figure 15.4.2 demonstrates the effect on the SE of the sample slope given
changes in the sample size. When n falls from 90 to 30, the denominator in
the SE of the sample slope formula is cut – but not by a third – because the
formula shows that the SE varies inversely with the square root of n. In fact,
the square root of 90 is around 9.5, and so its reciprocal is about 0.1. The
square root of 30 is approximately 5.5, and 1/SQRT(30) is roughly 0.18. Thus,
the SE rises by about 80 percent, as confirmed by Figure 15.4.2.

Finally, Figure 15.4.3 explores changes in the spread of the X variable. As
the SD of X falls, the SE rises. In Figure 15.4.3, we changed the step size of
the X variable from 1 to 0.1, dramatically reducing the variation in X. This
tenfold decrease in the SD of X directly caused a tenfold increase in the SE
of the sample slope.

As you work through the DeterminantsofSEb1 sheet, we hope that you not
only see the three lessons in the three figures in this section but also explore
the Thinking buttons. By hitting F9 and watching the effect of changing these
three crucial parameters, you cement your understanding of the relationship
between the SE and its determinants. You also develop intuition about the
variability in the sample slope coefficient.

Summary

This section demonstrated that the SE of the OLS slope estimator in the
bivariate case depends directly on the SD of the error distribution and
inversely on the number of observations and the spread of the X ’s. We
realize that the formula for the SE of b1 makes this obvious, but by chang-
ing the spreadsheet and directly observing the results, we hope you will
understand better the factors that drive the SE of the slope in a bivariate
regression.
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15.5. Estimating the SD of the Errors

Workbook: EstimatingSDErrors.xls

The crucial step in estimating the SE of the sample slope is estimating the SD
of the error distribution. After all, in the formula for the SE of the sample
slope, the square root of n and the SD of the X ’s are known.

SE (OLSSampleSlope) = SD(Box)√
# of draws · SD of theX ’s

.3

It is the term in the numerator, the SD of the box, which is abbreviated
as SD(ε), that poses a problem. As earlier sections of this chapter demon-
strated, when this parameter is known, we can compute the exact SE. Com-
puter regression software (including Excel’s LINEST function) reports an
estimated SE (not an exact SE) because it substitutes an estimate for the
unknown SD(ε). Standard practice is to use the RMSE (also known as the
Standard Error of the Regression) as the estimator of the SD of the errors.
Section 15.3 demonstrated that Excel’s LINEST function plugs in the RMSE
to compute the estimated SE of the sample slope.

This section addresses three issues: first, the reason the RMSE is not simply
the SD of the residuals but instead is adjusted for the number of degrees of
freedom; second, why even after the adjustment the RMSE is biased; third,
the fact that nevertheless the RMSE is a consistent estimator, meaning that
its sampling distribution becomes ever more tightly concentrated around
the true value of the SD of the error box as the number of observations
increases.4

How can we estimate the spread of the errors? Because the residuals can
be thought of as estimates of the error terms, the obvious candidate is the
spread of the residuals. From the Data sheet of the EstimatingSDErrors.xls
workbook, run a Monte Carlo simulation of cell J8, the SD of the residuals,
with n = 10. In a few seconds, you have an approximation to the sampling
distribution of this statistic. Your results should be similar to ours, which are
displayed in Figure 15.5.1.

Notice that the average of the SD of the Residuals, an approximation to
the expected value of the random variable SD of the Residuals, is about 4.4 –
quite far from 5 (the value of the SD of the errors in cell B5 of the Data
sheet). This is strong evidence that the SD of the Residuals is biased.

We can improve on the SD of the Residuals as an estimator of the SD of the
Errors by adjusting it based on the number of observations in the sample and

3 Recall that in this formula we are using the SD as computed with the number of observations n, not
n−1.

4 Section 10.6 offers a brief review of the concept of consistency.
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Average 4.423 n=10
SD 1.0691
Max 8.702
Min 1.572

Summary Statistics Notes

Histogram of $J$8

1.5 3.5 5.5 7.5

Figure 15.5.1. Monte Carlo simulation of the SD of the residuals.
Source: MCSim add-in run on [EstimatingSDErrors.xls]Data.

the number of parameters being estimated. This is similar to the adjustment
made to the sample SD. By multiplying the SD of the Residuals by

√
n

n−k,
where n is the sample size and k is the number of parameters being estimated,
we obtain a better estimator of the SD of the Errors.5 Statisticians refer to the
number of observations minus the number of parameters being estimated,
n−k, as the number of degrees of freedom. LINEST, like most regression
software, reports this number. Of course, the adjusted SD of the Residuals is
exactly the RMSE. Compare cells J7 and G12 in the Data sheet to confirm
this.

You could simply take our word for the fact that the RMSE is a better
estimator of SD(ε) than the SD of the Residuals or you could run your own
Monte Carlo simulation. Because the latter approach takes a few seconds,
why not give it a spin? In the MCSim add-in input box, track both G12, the
RMSE reported by LINEST, and J8, the unadjusted SD of the Residuals.
Figure 15.5.2 reports our results. How did you do?

Because the true SD of the Errors parameter is 5, we have convincing
evidence that the RMSE, the adjusted SD of the Residuals, outperforms
the simple, unadjusted SD of the Residuals. The average of 1,000 RMSEs,

5 Note that we use the population SD of the Residuals in cell J8. If the sample SD is used, then the
adjustment factor would use n−1.
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Average 4.839 Average 4.328
SD 1.2143 SD 1.0861
Max 9.152 Max 8.186
Min Min 4.529

$G$12 Data!$J$8 Notes

Histogram of $G$12 and Data!$J$8

1.25 3.25 5.25 7.25 9.25

$G$12

Data!$J$8

1.710

Figure 15.5.2. Comparing RMSE and SD of the residuals.
Source: MCSim add-in run on [EstimatingSDErrors.xls]Data.

4.839, is much closer to 5 than the average of 1,000 SD of the Residuals,
4.328.6

The RMSE’s superiority over the SD of the Residuals explains why we
do not use the SD of the Residuals to estimate the SD of the errors, but
Figure 15.5.2 brings some negative news as well. The RMSE is biased (i.e.,
its sampling distribution is not centered on the true parameter value, 5). This
is not an artifact of too few repetitions of the Monte Carlo simulation. You can
run a 10,000-repetition (or more) Monte Carlo and the empirical histogram
will get ever closer to the true probability histogram for the RMSE; however,
the center of that probability histogram will not get closer to 5.

The fact that the RMSE is biased leads to an obvious question: Why do we
use it? There are two reasons. First, the RMSE, though biased, is consistent.
This means that, as we increase the sample size, the sampling distribution
converges on the true parameter value. Second, in Chapter 16 we will see that,
when the sample size is small but the error terms are normally distributed,
the bias does not matter.

We can demonstrate the consistency result fairly easily. Simply return to the
Data sheet, click the Set N button, and change the number of observations

6 The average value of the RMSE is exactly
√

n
n−k times as big as the average value of the SD of the

Residuals (in our example the adjustment factor is
√

10
10−2 ≈ 1.12). The spread of the RMSE is affected

by exactly the same multiplicative factor.
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Average 4.984 Average 4.883 n = 50
SD 0.5151 SD 0.5047
Max 6.515 Max 6.384
Min 3.383 Min 3.314

$G$12 Data!$J$8 Notes

Histogram of $G$12 and Data!$J$8

3.3 3.8 4.3 4.8 5.3 5.8 6.3

$G$12

Data!$J$8

Figure 15.5.3. Consistency in action.
Source: MCSim add-in run on [EstimatingSDErrors.xls]Data.

to 50. Next, run the same Monte Carlo simulation as used previously, tracking
the RMSE and the SD of the Residuals. In the Notes box, include the number
of observations for easy reference. Figure 15.5.3 displays our results. Yours
should be similar.

Notice how much better the RMSE is doing when n = 50 (in Figure 15.5.3)
compared with n = 10 (in Figure 15.5.2). You might point out that the SD
of the Residuals is doing better also. This is true. Both of these estimators
provide consistent estimates of SD(ε), but we prefer the RMSE over the SD
of the Residuals because it is closer to the SD of the Errors parameter.7

The Q&A sheet asks you to run a 100-observation Monte Carlo simulation.
Not surprisingly, the average of the RMSEs is almost 5. With n = 100, the SD
of the Residuals also does a great job of estimating the SD(ε). The adjust-
ment factor,

√
n

n−k, works out to be
√

100
100−2 , which is about 1.01. With n so

high, the two are essentially the same statistic.
You might wonder whether it would be possible to somehow adjust the

RMSE to take the bias into account. A major problem with this approach
is that the distribution of the error terms is not necessarily known. On the
Data sheet you can experiment with a nonnormal distribution for the errors

7 The conventional criterion for comparing biased estimators is Mean Squared Error, which is defined as
E

[
(Estimator − Parameter)2

]
– that is, the expected value of the square of the deviation of the estimate

from the true parameter value. It can be shown that the RMSE outperforms the SD of the Residuals
on this measure. We leave a demonstration of this fact to the reader as an exercise.
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by choosing the
Set N

Exponential Dist button.8 A question on the Q&A sheet asks you
to see how changing the error distribution affects the bias in the RMSE. In
Chapter 16 we will see that it is possible to nullify the biased-in-small-samples
problem of the RMSE if one assumes that the errors are normally distributed.

Why Is the RMSE a Biased Estimator of the SD of the Errors?

Let us take a moment to see why the RMSE is a biased estimator of the SD
of the errors. The reason, ironically, is that the RMSE is the square root of an
unbiased estimator of the variance of the errors. That is, the sum of squared
residuals divided by the number of degrees of freedom is an unbiased estimate
of the variance (the square of the SD) of the error terms. We ask you to check
that this is the case in the Q&A sheet of EstimatingSDErrors.xls. Now in
general, the expected value of the square root of an unbiased estimator is not
equal to the square root of the expected value of that estimator. That means
that the expected value of the RMSE is not equal to the square root of the
variance of the errors.

Here is a simpler example of the same phenomenon: Suppose that half
of a population has the value 9 and half of the population has the value 16.
The population average is, therefore, 12.5. Draw a random sample of size
1 from the population. The expected value of the sample average (which is
just the value of the single observation you picked) is 1

2 · 9 + 1
2 · 16 = 12.5, the

population average. Thus this crude estimator is unbiased. Now the square
root of the population average is

√
12.5 ≈ 3.54. The expected value of the

square root of the however sample average is, however, 1
2 · √

9 + 1
2 · √

16 =
1
2 · 3 + 1

2 · 4 = 3.5. Therefore, the square root of the sample average (sample
size one) is a biased estimator of the square root of the population average.
Increasing the sample size will reduce the bias in the square root of the sample
average.

The Estimated SE Is a Biased, But Consistent Estimator of the Exact SE

We close this section by making sure we connect the dots. We have noted that
the estimated SE uses the RMSE as an estimate of the SD of the error distri-
bution and have shown that the RMSE is a biased, but consistent estimator.
Thus, it stands to reason that the estimated SE is a biased, but consistent
estimator of the exact SE.

Monte Carlo simulation can be used to demonstrate this point. From the
Data sheet, use the button to set n to 3 observations and enter the formula

8 See the workbook ExponentialDist.xls in the \ Basic Tools \ RandomNumber folder to learn about the
error distribution we use in this example.
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Average 5.004 Average 0.796
SD 1.0089 SD 0.6018
Max 9.129 Max 3.918
Min 0.962 Min 0.000

Data!$F$10 Data!$F$11 Notes

Histogram of Data!$F$10 And Data!$F$11

0 2 4 6 8

Data!$F$10

Data!$F$11

Figure 15.5.4. The Estimated SE is biased.
Source: MCSim add-in run on [EstimatingSDErrors.xls]Data.

“=SQRT(3)” in cell B5 to make the SD of the errors equal to the square root
of 3. Because the SD of the X ’s is 1 and we set the SD of the errors equal
to the square root of n, the exact SE is therefore 1. Use the Monte Carlo
simulation add-in to track the sample slope (cell F10) and its estimated SE
(F11) with 10,000 repetitions. Figure 15.5.4 shows our results. The SD of the
10,000 sample slopes is very close to 1, the exact SE. The average of the 10,000
estimated SEs, however, is 0.796 – quite far from 1. This is strong evidence
that the estimated SE is indeed a biased estimator of the exact SE. The source
of the bias can be traced directly to the RMSE.

You can run a Monte Carlo simulation with n = 30, ceteris paribus, to
see that the estimated SE does a much better job of estimating the exact
SE. As n increases, the bias of the estimated SE gets smaller and smaller.
The consistency of the estimated SE is directly tied to the consistency of the
RMSE.

Summary

The bottom line of this section is the following: When you run a regression,
the software will almost certainly report the RMSE and the estimated SE
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of the sample coefficients. The estimated SE of the sample coefficients uses
the RMSE as an estimate for the unknown SD of the box. The RMSE is a
biased estimator of the SD of the errors, but the bias becomes negligible as
the sample size increases.

15.6. The Standard Error of the Forecast and the Standard Error of the
Forecast Error

Workbook: SEForecast.xls

Previous sections in this chapter have emphasized the SE of the sample slope.
By hitting the F9 key and recalculating the sheet, we have made it clear that
the sample slope is a random variable with a sampling distribution.

This section explores two other commonly used SEs associated with the
problem of forecasting the SE of the Forecast and the SE of the Forecast
Error. We show how these SEs are computed and explore their properties. As
usual, our emphasis will be on the basics, emphasizing the visual presentation
and making heavy use of Monte Carlo simulation.

We begin with an important distinction between Forecasted Y and Pre-
dicted Y. In this book, Predicted Y means the value of Y predicted for an
observation in the sample based on its X value. Forecasted Y, on the other
hand, means the value of Y forecasted for a new observation not already in
the sample based on the value of X, which we assign for that new observation.
When we forecast, we assume that the same data generating process applies
to the new observation as applied to the data in the sample. Forecasted Y is
often used in the context of trying to guess the future value of some variable
of interest or the value of a dependent variable if a change occurs in the
value of one or more independent variables. For example, a state may wish to
forecast next year’s tax revenues, or a car manufacturer may want to forecast
demand for an SUV if it lowers its price.

Very closely related to Forecasted Y is the Forecast Error, which is defined
simply as

Forecast Error = Actual Y − Forecasted Y.

Both Forecasted Y and the Forecast Error are random variables. In this sec-
tion we explore the determinants of the spread in these two random variables
and explain how to construct simple forecasts. We speak of point forecasts
and interval forecasts. The point forecast is simply the value of Forecasted Y
obtained from the regression estimates. The interval forecast is a point fore-
cast plus an associated give or take number that gives a confidence interval for
the forecast. In practical applications, one must decide whether to use the SE
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of Forecasted Y or the SE of the Forecast Error to construct the confidence
interval. The latter is usually the right choice.

Forecasting can be an extremely complicated business. We will keep things
simple by supposing that a model for the data generating process conforming
to the CEM has already been correctly specified and that the model using
an OLS regression on sample data has already been estimated. Furthermore,
we assume that the value of the independent variable(s) for which we are
forecasting are already known. Thus, we will not consider two important
sources of errors in forecasts: having an incorrect model for the data gener-
ating process and not knowing the values of the independent variables that
will generate Forecasted Y.

We begin our discussion with a bivariate example of the classical econo-
metric model:

Yi = β0 + β1 Xi + εi , i = 1, . . . , n.

The standard assumptions of the CEM apply. We are interested in forecasting
the value of Y given a new value of X, call it XF (for future X), not in the
sample. We would like to know how far off our forecast of Y (Forecasted Y)
is likely to be from the actual, not yet observed, future value of Y, which we
will call Actual Y or YF. The model is implemented in SEForecast.xls on the
Two Components sheet, which you should open now.

Figure 15.6.1 displays the set up. True parameter values, including the
spread of the error terms, are located in the upper-left-hand corner. Cells
A12 through B41 (not in the figure) contain the sample data. Note that we
use the normal distribution to generate the error terms; however, the distri-
bution of the error terms does not affect the results presented in this section.
Estimates of the intercept and slope parameters (b0 and b1, respectively)
based on the sample are reported at the top of the sheet in cells D2 and D3.

ββββ 0 100 b0 66.01

ββββ 1 1 b1 1.68

SD Error 50 RMSE 49.18

XF

Actual Y  

(YF)
Forecasted 

Y
Forecasted 
Y from True

Forecast 
Error

120 181.8 267.4 220 −85.6

200 236.8 401.6 300 −164.8

300 445.0 569.4 400 −124.5

True Parameters Estimates

Three Forecasts

Figure 15.6.1. Variability in forecasting.
Source: [SEForecast.xls]TwoComponents.
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Cells C7, C8, and C9, the three cells in the Forecasted Y column of Fig-
ure 15.6.1, contain forecasts of Y for three different values of XF (120, 200,
and 300). The three forecasts are each computed via the following formula:

Forecasted Y = b0 + b1 XF .

Hitting the F9 key draws a new set of errors and therefore a new sample. The
values of b0 and b1 and the Forecasted Y’s all bounce, which is incontrovertible
evidence that Forecasted Y is a random variable.

The values of Actual Y, reported in cells B7, B8, and B9 are determined
according to the data generating process:

YF = β0 + β1 XF + εF ,

where εF is a new draw from the same distribution of errors that produced
the sample data. We report three separate values of Actual Y, corresponding
to the three different values of XF.

The values in the Forecasted Y from True column (cells D7, D8, and D9)
do not bounce. These are forecasts based on the true parameter values:

Forecasted Y from True = β0 + β1 XF .

The difference between Actual Y and Forecasted Y from True is just the
error term εF . The point of including Forecasted Y from True in the table is
to show that, even if we knew the true parameter values, we would still not
forecast perfectly because of chance error (the influence of luck and omitted
variables).

The final column in the table is the Forecast Error, which is the difference
between Actual Y and Forecasted Y. Hit F9 and the Forecast Errors change,
indicating that it, too, is a random variable. Where does the Forecast Error
come from? To answer this question, compare the equation for Actual Y,

YF = β0 + β1 XF + εF ,

with the equation for Forecasted Y,

Forecasted Y = b0 + b1 XF .

One part of the Forecast Error is due to using the estimated intercept (b0)
and slope (b1) instead of the true intercept (β0) and True Slope (β1); we call
this Estimation Error. The second part of the Forecast Error comes from
the error term εF ; we call this Chance Error. Note that the Estimation Error
component of the Forecast Error is also the source of the bounce in Forecasted
Y, whereas the Chance Error component is not present in Forecasted Y.

Figure 15.6.2, based on the chart displayed in the cell range F1:I12, provides
intuition on the two components of the Forecast Error. The numerical values
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101.6 Estimation Error

63.2 Chance Error

164.8 Total Forecast Error

TWO Components of Forecast Error
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Actual Y
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Figure 15.6.2. Decomposing forecast error.
Source: [SEForecastedY.xls]TwoComponents.

in the chart correspond to those in Figure 15.6.1. The estimated intercept
and slope are 66.01 and 1.68, respectively. Forecasted Y when XF = 200 is,
therefore, 66.01 + 1.68 · 200 = 401.6.

Two lines are displayed in the chart in Figure 15.6.2. The line with the
steeper slope is the sample regression line (in black on the computer screen).
The dashed portion of this line indicates we are extrapolating from the in-
sample data (contained in the range roughly 0 to 100) out to an X value of
200, at which, as noted, our forecast is that Y will take on the value 401.6.
The less steep (red) line in Figure 15.6.2 reflects the true parameter values.
According to the true parameter values, we expect that Y will equal 300 when
X is 200. The diamond shaped point is Actual Y when X is 200; in this case, YF

is 236.8. To the right of the chart, Figure 15.6.2 displays the numerical values
of the two components of the Forecast Error and their sum, the Total Forecast
Error.

To more clearly distinguish the Estimation and Chance Error components,
click on the

View Estimation
Error Component button, which is a toggle whose text changes. You

will see only the estimated regression line and the true regression line. The
numerical value of the Estimation Error is −101.6 in our example. This com-
ponent of the Forecast Error results from the slope and intercept of the
estimated line not being equal to the true parameter values. Click once again
and you will see just the true regression line and Actual Y. The Chance
Error component of Forecast Error is the deviation of Actual Y from the
true regression line. This is just the error term εF , whose value in this case
is −63.2. Click on the button again to return the display to its original form.
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The total Forecast Error is the sum of the Estimation Error and Chance Error
components – namely −164.8. You will see a different estimated regression
line and Actual Y on your screen. Experiment with the toggle button and use
the F9 key to view the two different sources of the Forecast Error.

The forecast in our example, in Figure 15.6.2, is quite poor. However Fore-
casted Y is on average right. This follows from the fact that Forecasted Y =
b0 + b1 XF . Since both b0 and b1 are random variables, Forecasted Y is a ran-
dom variable. We know that both b0 and b1 are unbiased estimators of their
respective parameters and we can treat XF as a constant. Thus the expected
value of Forecasted Y is β0 + β1 XF . Since Actual Y = β0 + β1 XF + εF , and
the expected value of the error term is zero, the expected value of Actual
Y is also β0 + β1 XF . Therefore Forecasted Y is an unbiased estimator of
Actual Y.

The SE of Forecasted Y

Now we know that Forecasted Y is a random variable bouncing around β0 +
β1 XF . But what is its SE and what does that SE depend on? In a moment we
will give you the analytical formula for the exact SE of Forecasted Y, but first
we want to build some intuition to help you better understand that formula.
Figure 15.6.3, the middle chart in the TwoComponents sheet, provides an
important clue about the SE of Forecasted Y. The chart allows you to compare
the Forecast Error for two values of XF, 300 and a number between 0 and 750
that you select with the scroll bar. The chart demonstrates that, the farther
away from the center of the data XF, is the bigger in general the vertical
distance between the estimated regression line and the true regression line.
Therefore, Forecasted Y bounces more the farther XF is from the center of
the X ’s. Verify this fact by hitting the F9 key several times.

Careful examination of either chart in the TwoComponents sheet as you
repeatedly hit F9 suggests a related fact: the regression line tends to intersect
the true regression line somewhere near the center of the X ’s. This means
that forecasts involving an XF closer to the center of the sample data have
the smallest spread.

The formula for the exact SE of Forecasted Y in the bivariate case with n
observations is

SE(ForecastedY ) = SD(Errors) ·
√

1
n

+
[

(XF − X̄)√
n · SD(X)

]2

.

The symbol X̄ stands for the average value of the X ’s in the sample.
This somewhat daunting formula is easier to understand if we consider

two extreme cases: the situation in which we are forecasting for a value of XF
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Set X Value for forecast
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Figure 15.6.3. Demonstrating increasing SE of forecasted Y as X moves farther from
the center of the sample.
Source: [SEForecastedY.xls]TwoComponents.

equal to the average of the X ’s in the sample, and when we are forecasting
for an X very far from the average of the X ’s in the sample.

1. In the first case the squared term equals zero and the SE of Forecasted Y reaches
its minimum value, SD (Errors)√

n . This is just what we noted above: the spread of
Forecasted Y is smallest at the center of the data set.

2. In the second extreme case in which we are forecasting far from the center of
the sample, the 1

n inside the square root becomes relatively unimportant, and the
formula for SE of Forecasted Y approximately reduces to

SE(ForecastedY ) ≈ SD(Errors) ·
∣∣XF − X̄

∣∣
√

n · SD(X)

= ∣∣XF − X̄
∣∣ · SD(Errors)√

n · SD(X)

= ∣∣XF − X̄
∣∣ · SE (b1) .

In other words, in this case the spread of Forecasted Y is approximately the product
of the spread in the slope coefficient and the absolute value of the distance of
the value of X for which we are forecasting from the center of the X ’s in the
sample.
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(a) Chance Error: 
Actual Y contains a  
draw from the Error 
Box 

(b) Estimation Error: Forecasted 
Y uses b coefficients, not β 

(c) Forecast Error 
combines both sources 
via the familiar 
Pythagorean theorem  

Figure 15.6.4. Two sources of forecast error.

The SE of the Forecast Error

As noted, the Forecast Error contains not only the Estimation Error present
in Forecasted Y but also Chance Error that goes into the determination of
Actual Y. We depict the two sources of error in the forecast in Figure 15.6.4.

The right triangle of Figure 15.6.4 is an accurate metaphor for the determi-
nation of the Forecast Error. We drew the two sources of error as the sides of
a right triangle because the sum of the square of the SE of the Chance Error
and the square of the SE of the Estimation Error is equal to the square of the
SE of the Forecast Error. In other words, the variance of the Forecast Error
equals the sums of the variances of its two components. This follows because,
under our assumptions, the two components are independent of one another.
All this implies that the SE of the Forecast Error obeys a square-root law:

SE of Forecast Error =
√

SD(Errors)2 + SE (Forecasted Y)2.

The implication of this square-root formula is that the spread of the Fore-
cast Error is not simply the sum of the spreads in Chance Error and Estimation
Error components. Figure 15.6.5 captures an outcome that helps explain why
we do not simply add the spread in the two sources of error. Notice how the
negative Estimation Error gets canceled out to some degree by the fact that
the Chance Error in observed Y happens to be positive. The resulting total
Forecast Error is not that bad.

The analytical formula for the SE of the Forecast Error in the bivariate
case is

SE(Forecast Error) = SD(Errors) ·
√

1 + 1
n

+
(

(XF − X̄)√
n · SD(X)

)2

.

Figure 15.6.6 depicts how the exact SE of Forecasted Y and the exact SE of
the Forecast Error depend on the value of XF. The figure replicates the third
chart in the TwoComponents sheet.
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Figure 15.6.5. Decomposing forecast error.
Source: [SEForecast.xls]TwoComponents.

Multivariate Forecasting

The basic ideas about forecasting outlined for the bivariate case carry over
to the multivariate setting. We demonstrate these facts using the Trivariate
sheet. Once again, the data in the sample are generated according to the
classical econometric model. The values of Actual Y are determined by the
equation

YF = β0 + β1 X1F + β2 X2F + εF ,

Exact SEs of the Forecast Error and Forecasted Y
vs. XF

Forecast Error

Forecasted Y 

0

20

40
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140

160

180

−500 −300 −100 100 300 500

Figure 15.6.6. Exact SEs as functions of XF.
Source: [SEForecast.xls]Bivariate.
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ββββ 0 100 b0 108.21

ββββ 1 1 b1 0.77

ββββ 2 b2 1.67
SD Error 50 RMSE 48.63

X1F X2F Actual Y
Forecasted 
Y

Forecasted 
Y from  
True

Forecast 
Error

120 100 25.5 32.9 20 7.4
200 100 205.0 94.2 100 110.8

300 100 247.8 170.8 200 77.0

True Parameters Estimates

Three Forecasts

Figure 15.6.7. Setup for the Trivariate sheet.
Source: [SEForecast.xls]Trivariate.

where εF is a new draw from the same distribution of errors that produced
the sample data. We report three separate values of Actual Y corresponding
to the three different combinations of X1F and X2F: The three forecasts are
each computed via the following formula:

Forecasted Y = b0 + b1 X1F + b2 X2F .

Figure 15.6.7 shows the basic setup for the trivariate example. It is no longer
possible to draw two-dimensional graphs of the regression plane and Fore-
casted and Actual values of Y.

Estimating the SEs of Forecasted Y and the Forecast Error

In the Basic Tools \ HowTo folder we outline a straightforward procedure
for estimating the SE of the Forecasted Y in the bivariate and multivariate
cases. With this procedure you need not bother to work with the formulas,
which are very unwieldy in the multivariate case.

Monte Carlo Simulation

Monte Carlo simulation can be used to verify the analytical formulas for the
SEs. Go to the MCSim sheet to see a Monte Carlo simulation for the bivariate
case. The Monte Carlo experiment uses the parameters on the MCSim sheet
to generate a sample and then computes the Forecasted and Actual Y’s, along
with the Forecast Error.

Forecasted Y is computed by first fitting a line to a sample (using the X
values in the TwoComponents sheet) and then using that sample-fitted line
to predict Y given X = 200. Forecasted Y bounces because each sample
generates a different fitted line. The outcome we are most interested in is
the Forecast Error. This is calculated by subtracting the Forecasted Y from
the Actual Y.
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Forecasted 
Y’s Actual Y’s

Forecast 
Errors

0 s Average 299.1 299.7 0.6

SD 45.8 50.9 69.6

Min 118.6 −267.1

Max 443.7 198.8

Exact SE

ββββ0 100

ββββ1 1
SD Error 50
XF 200

ββββ0+ββββ1*X 1 300

Simulation Progress

Summary Statistics

Set Key Parameters

Empirical Histogram for 1000 Repetitions

-12.5 300143.75 456.25 612.5

Actual 
Ys

Forecasted Y Monte Carlo 
Simulation

Take A Picture

View Forecasted Ys

68.1

158.7

432.7

46.2

Figure 15.6.8. Monte Carlo simulation of forecast outcomes.
Source: [SEForecast.xls] MCSim.

Click the Forecasted Y Monte 
Carlo Simulation button to run your own Monte Carlo simulation.

Compare your results to those reported in Figure 15.6.8. The Monte Carlo
experiment makes it clear that the error from a forecast of Y is a random
variable with a sampling distribution. At XF = 200, the center of Forecasted
Y is located at about 300. This demonstrates that the forecast is unbiased
because Actual Y is also centered at 300 (when X = 200 and given that the
true intercept is 100 and the true slope is 1). Another way of making the same
point is to see that the center of the Forecast Errors is zero (actually 0.6 in this
experiment). The SD of the 1,000 Forecasted Y values, 45.8, approximates
the exact Standard Error of Forecasted Y, 46.2. Similarly, the SD of 1,000
forecast errors, 69.6, is very close to the exact SE of the forecast error, 68.1.
The View Forecasted Ys button is a toggle that allows you to display three sepa-
rate histograms from the Monte Carlo experiment for the Forecast Errors,
Forecasted Y ’s, and Actual Y ’s.

The MCSimTrivariate sheet performs the same kinds of Monte Carlo exper-
iments for the trivariate example using the X values in the Trivariate sheet.
We have set the values of X1F and X2F to approximately their respective
sample averages. This is the situation in which both the SE of Forecasted
Y and the SE of the Forecast Error are minimized. You should experiment
with other values for X1F and X2F to verify that the spread increases as the
forecast values of the independent variables move away from the sample
averages.



P1: JZZ
0521843197c15 CB962B/Barretto 0 521 84319 7 November 7, 2005 18:35

408 Understanding the Standard Error

Summary

In this section we have explored the basics of forecasting. We have assumed
that the researcher has sample data and the correct model of the data gener-
ating process. He or she wishes to forecast the future value of the dependent
variable based on assumed values of the independent variables. We called
this future value Actual Y, and emphasized that its value will depend on a
draw from the error distribution. Applying the estimated sample coefficients
to the assumed X values produces a point forecast called Forecasted Y:

Forecasted Y = b0 + b1 X1F + · · · + bK XKF .

Forecasted Y is a random variable, which is an unbiased estimator because
its expected value is the expected value of the Actual Y we are trying to
forecast. Forecasted Y has its own SE, which depends in turn on the SEs of
the slope coefficients. In forecasting we usually are interested in a different
SE – namely the SE of the Forecast Error. This SE takes into account not
only the variability in the regression line that determines Forecasted Y, but
also the spread of the error term, which is an integral part of Actual Y.

In many forecasting applications, the basic CEM assumption that the error
terms are independent of one another is likely to be wrong. Chapter 20 dis-
cusses what happens when this is the case and how econometricians deal with
the problem.

We end this section on a practical note. You may be using software that
reports the SE of the forecast error and facilitates easy calculation of forecast
confidence intervals. If not, please see the file HowToFindSEForecast.doc in
the Basic Tools \ HowTo folder for a simple recipe.

15.7. Conclusion

This chapter has presented the following two formulas for standard errors in
a bivariate OLS regression:

SE (SampleSlope) = SD(ε)√
n · SDX

= SD(Box)√
# of draws × SD of theX ’s

SE (ForecastError) = SDErrors ·
√

1 + 1
n

+
(

(Xvalue − X̄)√
n · SDX

)2

.

Both SEs provide similar information about their respective sampling dis-
tributions. They tell you the size of the typical deviation from the expected
value for the statistic. Both can be used to create confidence intervals or to
conduct tests of significance (as the next chapter explains). Both rely on the
spread of the error distribution. Usually, this parameter is unknown and must



P1: JZZ
0521843197c15 CB962B/Barretto 0 521 84319 7 November 7, 2005 18:35

Exercises 409

be estimated. The RMSE is the estimator of choice for this task. Although it
is biased, it is a consistent estimator of the SD of the errors.

In the case of the SE of the sample slope, you can immediately see that the
SE varies according to the spread of the errors, the number of observations,
and the spread of the X values. The formula for the SE of the Forecast Error is
somewhat more complicated, but it reveals that there are two sources of error
in operation: Chance and Estimation error. An important lesson embedded
in the formula is that the farther away you are forecasting from the center of
the sample, the greater the variability in the forecast.

The lessons of this chapter apply to multiple regression as well: In every
case the SE is smaller the greater the spread in the X values, the greater the
sample size, and the smaller the spread in the errors. All estimates of SEs
depend on the RMSE. The formula for the SE of the slope in a multiple
regression is similar to that for a bivariate regression, the one difference
being that the SE of the slope in the multiple regression depends on the size
of the correlation between a particular independent variable and the other
independent variables in the model. Standard statistical software computes
SEs for slope coefficients. A How To document demonstrates how to compute
SEs for forecasts.

15.8. Exercises

1. What is the difference between the exact SE of the sample slope and the estimated
SE of the sample slope? Which one is reported by regression software?

2. In the ExactSEb1 sheet in SEb1OLS.xls, the exact SE in cell F4 is about 0.4. If
someone wanted the SE to be cut in half, how could you change the setup to
make this so?

3. Run a Monte Carlo simulation that compares the performance of the RMSE to
the SD of the Residuals using the Mean Squared Error criterion with n = 10.

Forecast Error vs. Forecasted Y, X = 
100

−150

−100

−50

0

50

100

150

0 100 200 300

Forecast Error vs. Forecasted Y, X = 
200

−150

−100

−50

0

50

100

150

200

250

0 100 200 300 400 500

Figure 15.8.1. Forecast errors forecasted Y ’s, X = 100 and X = 200.
Source: [SEForecast.xls]MCSim.
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You will have to create a new formula in a cell in the Data sheet of EstimatingS-
DErrors.xls that computes the squared deviation of each sample’s RMSE from
the SD Errors parameter. Create another cell that does the same thing for the
SD of the Residuals. Find the average of the squared deviations of the estimates
from the true parameter value. The empirical average is a good approximation
to the expected value with a large number of repetitions. Take a picture of your
results and paste it in a Word document. What do you conclude?

4. Explain why we do not use the RMSE as the SE of the Forecast Error. Take
pictures from the SEForecast.xls workbook to support your argument.

5. In the MCSim sheet of SEForecast.xls, we chose β0 = 100, β1 =
1, and SD (Error) = 50. We then ran two Monte Carlo simulations of forecasts,
one with X set to 100 and the second with X set to 200. We graphed the Forecast
Errors against Forecasted Y for the first 100 repetitions in both experiments.
The two graphs in Figure 15.8.1 show our results. Explain the different patterns
that you see in the two graphs.
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Confidence Intervals and Hypothesis Testing

We would not assert that every economist misunderstands statistical significance,
only that most do, and these some of the best economic scientists. . . . Simulation,
new data sets, and quantitative thinking about the conversation of the science offer
a way forward. The first step anyway is plain: stop searching for economic findings
under the lamppost of statistical significance.

Deirdre N. McCloskey and Stephen T. Ziliak1

16.1. Introduction

This chapter shows how a single sample can be used to construct confidence
intervals and test hypotheses about population parameters. Hypothesis test-
ing, also known as testing for significance, is a fundamental part of inferential
econometrics.

Statistical significance should not, however, be confused with practical
importance. Just because we can reject a null hypothesis and claim a statisti-
cally significant result, does not mean that the result matters. In economics,
many data sets are large n, which means it is easy to find statistically signifi-
cant results that are not of practical importance. Tests of significance have a
place in econometrics but are not the be all and end all of inference.

Hypothesis testing can be confusing, but it has a coherent, stable frame-
work that should help you organize the complicated details. The next section
demonstrates that there is a sampling distribution for each sample statistic
that is a random variable. Section 16.3 will explain how confidence inter-
vals are constructed and interpreted. We then turn to the logic of hypothesis
testing (Section 16.4) and explain why the t distribution is so often used
(Section 16.5). The chapter’s last section puts the ideas into practice by work-
ing on a real-world example.

1 McCloskey and Ziliak (1996, pp. 111–112).

411
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16.2. Distributions of OLS Regression Statistics

Workbook: LinestRandomVariables.xls

This section focuses on the basic regression statistics reported by Excel’s
LINEST function to make a simple, but crucial point: Each statistic, because
it is derived from a sample with chance error, is a random variable with its
own particular type of distribution. In addition, we show that the sampling
distribution of a statistic depends on several crucial factors, including (1) the
distribution of the errors, (2) the recipe used to create the statistic, (3) the
values of the X’s, and (4) the number of observations in the sample.

Open the LinestRandomVariables.xls workbook and go to the Data sheet.
We have implemented the bivariate version of the classical econometric
model: the X’s are fixed in repeated samples, and, of course, the param-
eters are constant across samples. The error terms are like tickets drawn
with replacement from a box. Because the Y’s are composed of the deter-
ministic component (β0 + β1X) and chance error (ε), they vary from one
sample to the next. The Data sheet (see Figure 16.2.1) demonstrates the fact
that Excel’s LINEST function reports nine separate, sample-based random
variables.

From the Data sheet, hit F9 to recalculate the workbook. The errors change,
which leads to changes in the observed Y values. When the realized chance
errors change (which is what happens when you hit the F9 key and draw a
new sample), so does the observed Y.

Previous chapters have shown that changing the observed Y’s changes
the sample intercept and slope of the fitted line. But notice how 9 of the
10 values in the 5 × 2 LINEST output bounce every time F9 is hit. Only the
degrees of freedom for the regression stay constant at 8 (this is computed by
subtracting the number of parameters being estimated, 2, from the number
of observations, 10).

The fact that the numbers in the LINEST output bounce is a clear demon-
stration that they are random variables. This means each sample statistic
reported by LINEST has a sampling distribution (also known as a proba-
bility histogram). But what might the sampling distribution of each sample
statistic look like? What determines its expected value, SE, and shape?

Several fundamental factors determine the distribution of a sample statis-
tic. First, the distribution of the errors affects the distribution of the regression
sample statistics. In addition, the computations applied to a statistic (averag-
ing, squaring, etc.) influence the resulting sampling distribution. Finally, the
values of the X’s and the number of observations in the sample also affect
the sampling distribution. In the next part of this section, we focus on the
distribution of the errors and then turn to the computation of a particular
statistic.
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DGP: Y = β0 + β1X + ε  

β0 0
β1 5

SD Uniform 2 1.649 1.74
SD Normal 1 2.161 SD LogNormal SD(X ) 1

n 10
X Error Y

0.174 −0.236 slope 5.159 −0.112 intercept
0.522 −0.217 est SE 0.324 0.650 est SE 
0.870 1.801 6.153  R2 0.969 RMSE
1.219 −0.917 5.175 F 253.76 df
1.567 0.600 8.434 Reg SS 266.15 8.39 SSR
1.915 −1.084 8.490
2.263 0.383 11.698
2.611 0.150 13.206
2.959 −0.495 14.302
3.307 1.667 18.204

Predicted Y = b0 + b1X  

y = 5.16x − 0.11 

0

5

10

15

20

0

1

0.635
2.395

Mean LogNormal Average (X )
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4321

Figure 16.2.1. Random variables reported by LINEST.
Source: [LinestRandomVariables.xls]Data.

The Distribution of the Errors

The Data sheet allows you to choose three different error distributions –
uniform, normal, or log-normal – in order to see the effect that the error
distribution has on the sampling distribution of a particular statistic.2

Because we are dealing with an error distribution and a sampling distri-
bution, things can become pretty confusing. It is important to keep track of
where you are in the problem. Figure 16.2.2 depicts the data generating pro-
cess of the bivariate case of the classical econometric box model. It is a map
to help keep things clear and organized.

The box model graphic in Figure 16.2.2 shows the logical order of the
data generation process and the road to the sampling distribution. The error
distribution is the source of the variation in the observed Y’s, which in turn is
used in the calculation of sample-based statistics reported by LINEST. Thus,
the distribution of the errors plays an important role in the distribution of
the sample-based statistics.

The ErrorDist sheet in the LinestRandomVariables.xls workbook shows
how we can use Excel to generate uniformly, normally, and log-normally dis-
tributed random variables. Column A uses the formula RANDOM(), which

2 The Advanced Topic:
Another Error Dist button allows you to experiment with a fourth type of error distribution based on

Student’s t. This enables sampling from a distribution with “fat tails.”
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Y 1 = β0 + β1⋅X 1 +  

Classical Econometric 
Error Box  

iid 

Average = 0 
SD = ? 

Y 2 = β0 + β1⋅X 2 +  

Yn  = β0 + β1⋅X n +  

In one sample, from observed Y and X, we get
Predicted Y = b0 + b1X 

Any sample statistic that uses the observed Y ’s is 
a random variable with a sampling distribution. 

sample statistics 

Figure 16.2.2. The bivariate CEM.

generates a uniformly distributed random variable from the interval (0,1).
In Column B, we use the function NORMALRANDOM(mean, SD). The
two arguments of the NORMALRANDOM function are the mean and SD,
respectively, of the normal distribution we wish to draw from. (Note that
cells F4 and F5 contain these two parameter values that describe the normal
distribution.) Column C takes e (the base of the natural log, the transcen-
dental number 2.71828 . . .) raised to the power of the value in column B. This
creates a log-normally distributed random variable. The values in column C
are all positive because the negative numbers in the exponent simply trigger
the reciprocal (2 raised to the −2 is 1/4 or 0.25).

Click on the Draw Histogram button and click OK to draw a histogram of 1,000
values from a uniform distribution. Select the cell range B2:B1001 to draw a
histogram of the normal values. Repeat the procedure to see the log-normal
distribution. Figure 16.2.3 displays empirical histograms of 1,000 draws each
from the three distributions.

In the uniform distribution, the 1,000 values are roughly evenly distributed
across the interval from 0 to 1 in the histogram, whereas the normal values are
more bunched up in the center and gradually fade away in the tails and the
log-normal has a long right-hand tail (due to exponentiation). The empirical
histograms displayed in Figure 16.2.3 are just approximations to the actual
probability density functions.

What effect would drawing from a uniform, normal, or log-normal distribu-
tion have on the sample-based statistics generated by LINEST? Intuitively,
you would expect the distribution of the errors to matter because the observed
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Figure 16.2.3. Three distributions.
Source: [LinestRandomVariables.xls]ErrorDist.
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Statistic 
Average 5.007 Error Box 

SD 0.319 SD 1.00
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Min 3.695 n 10
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Figure 16.2.4. The sampling distribution of b1 with normal errors.
Source: [LinestRandomVariables.xls]MCSim.

Y’s depend on the errors, which in turn affect the sample statistics reported
by LINEST. But what exactly is the effect?

Let us focus on the sample slope. Suppose, for example, that the errors are
normally distributed. Go to the Data sheet and make sure the Normal option
in the Set Errors box is chosen. If the number of observations is not already
set to 10, click on the Set N button to make the number of observations equal
to 10. Then go to the MCSim sheet. Select the slope option and run a Monte
Carlo simulation. Click the

Show Normal
Distribution button to superimpose a normal curve

on the histogram. Figure 16.2.4 shows our results.
These results provide fairly convincing evidence that the sample slope is

normally distributed when the errors are normally distributed. Note also that
the OLS sample slope is apparently unbiased and the approximate SE from
this Monte Carlo experiment (0.319) is close to the exact SE (see the formula
in cell H1 of the MCSim sheet) of about 0.3162.

In contrast, Figure 16.2.5 shows what happens to the sampling distribution
when we use log-normally distributed errors. The normal curve does not fit
as well, indicating that in this case the sampling distribution is not that close
to normal.

At this point we must make a very important distinction between small-
sample and large-sample results for sampling distributions. Small sample
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Statistic          Slope
Average 4.989 Error Box LogNormal
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Figure 16.2.5. The sampling distribution of b1 with log-normal errors.
Source: [LinestRandomVariables.xls]MCSim.

results pertain to small sample sizes. We have demonstrated that, in small
samples (such as n = 10), normally distributed error terms lead to sample
slopes that are normally distributed; log-normally distributed error terms
lead to sample slopes that are not close to being normally distributed. The
term large-sample result, sometimes called an asymptotic result, refers to
what happens as the sample size increases and becomes large. The central
limit theorem plays a crucial role in asymptotic analysis of sample statistics. It
says that in many cases the sampling distribution of sums of random variables
converges toward the normal curve.

Fortunately for inferential econometrics, the central limit theorem applies
in this case: we can demonstrate that, as the number of observations, n,
increases, for almost all error distributions, the sampling distributions of b0

and b1 converge to normal even if the errors were not initially normally
distributed.

To do so, we continue working with a log-normal error distribution, steadily
increasing the number of observations. Figure 16.2.6 shows the progression.
We held the SD of the X’s and the error distribution constant while varying n
in the Data sheet. The sampling distribution, far from normal in Figure 16.2.5,
with n = 10, gets closer and closer to the normal curve as n rises. Even for
n = 90, in the right panel of Figure 16.2.6, the sampling distribution is not
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Figure 16.2.6. The central limit theorem in action.
Source: [LinestRandomVariables.xls]MCSim.
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exactly normal. It keeps getting closer and closer to normal as the sample
size increases but never quite reaches true normality.

Convergence of the probability histogram of b1 to the normal curve is quite
quick for the uniform distribution and for log-normal distributions in which
the SD of the underlying normal distribution is small (e.g., 0.5). Convergence
to the normal curve, however, is much slower when errors are log-normally
distributed if the SD of the underlying normal distribution is large (say 2).

The convergence of the sampling distribution of the OLS slope estimator to
the normal curve is a powerful result. It tells us that the sampling distribution
of the OLS estimator will be approximately normal if n is large even if the
distribution of the errors is not normal. For many applications, normally
distributed errors may be reasonable, but the convergence result says we
do not have to worry if the errors are nonnormally distributed as long as
the sample size is large. In other words, the convergence of the sampling
distribution to the normal curve when the errors are nonnormally distributed
frees us from having to make a restrictive assumption about the distribution
of the errors.

In practice, when the sample size is large, econometricians know they do not
have to worry about the effect of the distribution of the errors on the sampling
distribution of the OLS estimator. For small samples, however, all bets are
off. Unfortunately, there is no magic cutoff between small and large samples.
All we can say is that the bigger the sample, the closer the convergence to
the normal curve.

The Distribution of LINEST Random Variables

Should you conclude that all sample statistics converge to the normal curve as
the sample size increases? Absolutely not. Would the additional assumption
of a normally distributed error box guarantee that all sampling distributions
converge to the normal curve? The answer is still no. The intuition behind this
is rather obvious: For statistics such as RMSE and sum of squared residuals
(SSR), the squaring involved in the computation of these statistics leads to
long tails.

We can approximate the sampling distribution of these statistics easily by
simply clicking on the appropriate button in the MCSim sheet. Figure 16.2.7
shows the Monte Carlo approximation to the sampling distribution of the
SSR when the distribution of the error terms is normal.

Clearly, the SSR for this DGP is not normally distributed.3 You can approxi-
mate the sampling distributions of other statistics by running your own Monte

3 In fact, SSR with Normal errors is distributed chi-squared with n−k degrees of freedom.
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Figure 16.2.7. The sampling distribution of SSR with normal errors.
Source: [LinestRandomVariables.xls]MCsim.

Carlo simulations. Many sampling distributions do not have names. This does
not change the fact that the sampling distributions exist.

Summary

This section has shown that, within the context of the classical econometric
model, statistics based on bouncing sample data are random variables. The
distributions of these random variables depend on the recipe used to calcu-
late the statistic and the distribution of the errors. If the errors are normally
distributed, then the OLS slope estimator’s sampling distribution is also nor-
mally distributed.

If the errors are not normally distributed, we invoke the extremely helpful
central limit theorem: The sampling distribution of the sample slopes con-
verges to the normal curve as the number of observations increases. Thus, a
large sample size protects us against having to determine the shape of the
sampling distribution when the distribution of the errors is not normal. This
is true in the multivariate case as well as the bivariate case, and it holds for
almost every possible distribution of the error terms.

Our discussion of convergence to the normal curve used the sampling dis-
tribution of the sample slope. There are other sample statistics that con-
verge to the normal, but we cannot say that all sample statistics behave
this way.
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16.3. Understanding Confidence Intervals

Workbook: ConfidenceIntervals.xls

The previous section showed that the distribution of the errors affects the
sampling distribution of b1. We showed that, if the errors are normally dis-
tributed, then the sample slope will also be normally distributed. If the errors
are not normally distributed but the sample size is large, then we can rely
on the central limit theorem to rescue us – the sampling distribution of b1,
though not normal, will approach the normal curve as n increases.

This section is devoted to explaining the confidence interval. This is a dif-
ficult idea to grasp, and so we will resort to our usual combination of live
graphics and Monte Carlo simulation. Before we dive in, however, let us set
the stage by providing a brief introduction to the use of confidence intervals
and tests of significance.

Consider two examples: the rate of return to an additional year of education
and the male–female wage gap in the labor market. Economic theory may
lead you to believe that more education leads to higher income, but it does
not say by how much. Thus, you may be interested in estimating the unknown
true parameter value of the return from an additional year of education. With
the male–female wage gap, on the other hand, we may want to test a claim
that there is no wage gap after controlling for factors other than gender that
determine the wage. Of course, we may also want to test someone’s claim
about the rate of return to education or estimate the size of the wage gap.

To make matters more concrete, suppose we had data from the CPS on
some measure of pay, educational attainment, gender, and other control vari-
ables (such as race, union status, and so on). We posit a semilog model for the
data generating process and assume the classical econometric model applies
as follows:

Ln (Wagei) = β0 + β1 Education in Yearsi + β2 Femalei + Other Terms + εi .

We estimate the following equation:

Predicted Ln (Wagei)

= b0 + b1 Education in Yearsi + b2 Femalei + Other Terms.
(SE)(SE) (SE)

We can use these results in two ways: to estimate an unknown parameter and
to test a hypothesized value for an unknown parameter. If we are interested
in the former, we will want to use confidence intervals; if the latter, we will
turn to a hypothesis test.

In the earnings function regression, b1 can be interpreted as a rate of return
on education because it is approximately the percentage change in wage given
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one more year of education. Suppose b1 = 0.07. This would be an estimate
of the unknown true parameter (β1). Because b1 is a random variable with a
sampling distribution, econometricians report the point estimate along with
a confidence interval. The confidence level (typically 95 percent) reports
the chances that the interval covers the true, but unknown β1. This section
explains how this rather amazing feat can be accomplished. Notice, however,
that we could also use the sample results to test a claim about β1. Someone
might say that the true parameter is 10 percent and that the observed value
of 7 percent is due to chance error. The way to test such a claim is to use a
hypothesis test. Section 16.4 discusses hypothesis tests.

In fact, the same two approaches can be used with any coefficient from
an estimated regression. We might be interested in the size of the male–
female wage gap, in which case we would report the b2 estimate along with
its associated confidence interval, or we might want to test the claim that
there is no wage gap, which implies that β2 = 0 and that an observed value
of b2 less than zero is due solely to chance variation.

This section assumes that the sampling distribution of the OLS slope esti-
mator is normal (either because the errors are normal or because the number
of observations is large) and focuses on how econometricians use a single sam-
ple to estimate an unknown parameter. In such cases, creating an interval by
putting upper and lower bounds on the estimate is a way to communicate the
level of confidence in the estimate.

Confidence Intervals in Action

The workbook ConfidenceIntervals.xls demonstrates the logic behind confi-
dence intervals. Go to the UniformCI sheet. You will see a plot of the prob-
ability density function for the uniform distribution on the interval 0 to 1
drawn in blue. Superimposed on the same graph is a pink point, representing
a single draw from the uniform distribution. Figure 16.3.1 is an example of
the display.

The expected value (EV) of a single draw from the uniform distribution
on the (0,1) interval is 0.5. Hit the F9 key several times and watch the point
bounce around. Notice that you almost never hit the expected value.

Let us play a game. Here are the rules:

1. Take a draw from a distribution. We can play with any distribution, but we will
use just two, the uniform and the normal.

2. Next, create an interval by going from your realized draw, plus or minus a number
that you choose.

3. Determine if your interval covers the EV of the distribution. The interval covers
the EV if the interval contains the value of the expected value.
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−0.25 0.25 0.5 0.75 1 1.25
EV

A Single Draw 
0.854

0

Figure 16.3.1. A single draw from a uniform distribution.
Source: [ConfidenceIntervals.xls]UniformCI.

You win the game if the interval covers the EV, but you lose if it does not.
If you draw a new value and construct a new confidence interval repeatedly,
what fraction of the time will you cover the EV and win? Put another way,
what is the chance that on a single draw your confidence interval will cover
the EV?

The answer to this question is our confidence level in the interval. The
question can be answered analytically or via Monte Carlo simulation.

You can play this game and gain some intuition about confidence intervals
by clicking on the Show Confidence

Interval Calculations button in the UniformCI sheet. This adds a
confidence interval of width 0.2 on either side of the point and draws another
value from the uniform distribution. Figure 16.3.2 is an example.

Hit F9 repeatedly and watch the interval bounce around. Sometimes it
covers the expected value, 0.5; sometimes it does not.

How can we figure out what fraction of the time it covers? There is an
analytical answer to this question. Because the distribution is uniform, for

−0.25 0.25 0.5 0.75 1 1.250

Figure 16.3.2. A single confidence interval from a uniform distribution.
Source: [ConfidenceIntervals.xls]UniformCI.
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the interval to cover the EV, the drawn value must be between 0.3 and 0.7.
What are the chances of drawing a value in this range? 40 percent.

We can also obtain an answer via Monte Carlo simulation. Click on the
Monte Carlo button to take 10,000 draws from which 10,000 intervals are created.

The percentage of intervals that cover the EV is reported in cell K13. As usual,
the Monte Carlo approach provides a reasonable approximation to the exact
answer.

Change the interval width to 0.45 (in cell B12) and hit the F9 key a few
times. The interval is longer, and you cover more often. How often will you
cover? The exact answer is 90 percent. Running a Monte Carlo simulation
confirms this result.

Intervals that cover a given percentage of the time are named accordingly.
When cell B12 is 0.2, we have a 40-percent confidence interval, and when it is
0.45 we have a 90-percent confidence interval. Notice that we are expressing
our confidence in the interval, which is what is bouncing around.

We can also “back out” a confidence level. In other words, if you desire
a given percentage of times that you want the interval to cover, you can
then compute the required length of the interval. Click the Set Confidence Level

button and enter a 95-percent confidence level. The necessary plus and minus
number, called the critical value, is 0.475, and it is placed in cell B12.

Uniform distributions are rarely, if ever, used for confidence intervals. We
used the uniform distribution because it is easy to work with and see what is
going on. A much more common distribution from which to create confidence
intervals is the normal distribution. Go to the NormalCI sheet to see how
confidence intervals based on this distribution can be created.

The game is the same: Take a draw, create an interval, and then determine
if you covered the EV. The question is the same: What are the chances that
I cover the EV? The idea behind the confidence interval is the same: A 95-
percent confidence interval says that 95 percent of the intervals constructed
this way will cover the EV. The only difference lies in the distribution – the
normal is not evenly distributed like the uniform and it has tails that actually
never touch the horizontal axis.

Begin by clicking on the Reset button in the NormalCI sheet. This will
ensure that the sheet starts out with a small +/− Value of 0.2 applied to
a draw from a standard normal distribution (i.e., a distribution with EV
equal to 0 and SD equal to 1). Hit F9 to see the confidence interval bounce.
Every so often, it covers the EV. How often? We will forego the expla-
nation of the analytical approach and go straight to Monte Carlo simu-
lation. Click the Monte Carlo button to get an approximate answer to the
question. If roughly 16 percent from such a small interval seems high, con-
sider the advantage offered by the normal distribution – many draws will
come from close to the EV (unlike the uniform where the draws are evenly
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spread out) so even such a tiny interval has a decent chance of covering
the EV.

Change the +/− Value in cell B12 to 1.0. Run a Monte Carlo simulation to
see that you have created a 68-percent confidence interval (because intervals
constructed this way cover the EV roughly 68 percent of the time). Finally,
click the Set Confidence Level button and create a 95-percent confidence interval.
Notice that the interval runs 1.96 units above and below the drawn value.

Let us summarize: we take a draw from a given distribution and build an
interval around that draw by going a certain distance above and below the
draw. The confidence level conveys the chances that an interval of a given
length will cover the expected value of that distribution. If we know the shape
of the distribution, its EV and SD, we can compute the interval length needed
to achieve a desired confidence level. Similarly, with sufficient knowledge,
given the length of the interval, we can compute the confidence level. With
this understood, we are ready to proceed to constructing confidence intervals
for the sample slope.

Confidence Intervals for b1 – Known Box

Suppose we draw a sample from a data generating process that obeys the
classical econometric box model, and run a regression to get a single estimate
of β1. Where is this b1 value relative to the expected value of the sampling
distribution?

We will reduce the problem to a more manageable size by noticing that we
can treat the realized b1 as a draw from its sampling distribution. Figure 16.3.3
is a picture of the CEM, which we will use in our examples. The process of
generating observed Y’s and running a regression on the sample data to get b1

can be distilled simply to drawing a b1 from its probability histogram. When
the CEM applies, the expected value of b1 is β1. Notice also that, if we know
the SD of the errors, we can compute the SE of b1 exactly using the formula
derived in Sections 14.7 and 15.5.

Because we have reduced the problem to drawing a value from a dis-
tribution, we can apply the same approach that we used with the uniform
and normal distributions. We will compute the chances that an interval of
a particular length covers the expected value (β1 because our OLS estima-
tor is unbiased). The probability histogram for the sample slopes will be
exactly normally distributed when the error terms are normally distributed
or approximately normally distributed when n is large. Thus, the confidence
interval will be based on the normal distribution.

The Data sheet provides an example of the procedure for constructing a
95-percent confidence interval, which is reproduced in Figure 16.3.4.
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sample slopes 

Exact SE can 
be computed 

Y 1 = β0 + β1⋅X 1 +  

Classical Econometric 
Error Box 

iid 

Average = 0 
SD = KNOWN 

Y 2 = β0 + β1⋅X 2 +  

Y n = β0 + β1⋅X n +  

In one sample, from observed Y and X , we get: 
Predicted Y = b0 + b1X 

The sample intercept and sample slope are 
random variables with sampling distributions. 

Figure 16.3.3. The classical econometric model with known SD of the error box.

The exact SE in this case is 0.316 based on the known SD of the normally
distributed box in cell B6 (and the SD of the X ’s and n). The center of
the confidence interval is the sample slope b1 to which we add and subtract
1.96 · Exact SE.

To see how this creates a 95-percent confidence interval, return to the
NormalCI sheet and enter 0.316 in cell G20. Hit F9, and the normal curve
will compress (because the spread is much smaller), but the interval in
cells B14:C15 has not been corrected to reflect the new SE. Click the
Set Confidence 

Level button and click OK to create a 95-percent confidence interval.
Hit F9 a few times to see that the interval bounces and covers EV quite often.
To verify that we have indeed created a 95-percent confidence interval, run
a Monte Carlo simulation.

Confidence Interval for b1 – Unknown Box

In practice, we do not know the SD of the error box. That means we can-
not determine the exact SE of b1, the slope estimate. Our recourse is to use

slope 5.359 −0.264 intercept Constructing the Confidence Interval–Exact SE

est SE 0.259 0.519 est SE b1 + 1.96 ExactSE b1 − 1.96 ExactSE b1 Covered?

R2 0.982 0.818 RMSE 5.979 4.739 5.359 1
F 429 tdf

Reg SS 287 5 Exact SE 0.316

Predicted Y = b0 + b1X 

 SSR
8

Figure 16.3.4. Constructing a confidence interval for the sample slope.
Source: [ConfidenceIntervals.xls]Data.
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slope 5.373 −0.257 intercept Constructing the Confidence Interval–Exact SE

est SE 0.389 0.780 est SE b1 + 1.96 ExactSE b1 − 1.96 ExactSE  b1 Covered?

R 2 0.960 1.229 RMSE 5.993 4.753 5.373 1
F 191 8 df

Reg SS 289 12 SSR Exact SE 0.316

Constructing the Confidence Interval–Estimated SE

b1 + 1.96 EstSE   Covered?

6.135 4.611 5.373 1

Estimated SE 0.389

Reporting the Estimated Equation
Predicted Y = −0.257 5.373X

(0.78) (0.389) 

Predicted Y = b0 + b1X

y = 5.37x − 0.26    

0.000

5.000

10.000

15.000

20.000

0.000 1.000 2.000 3.000 4.00

b1 − 1.96 EstSE b1

+

Figure 16.3.5. Different confidence intervals for the same data set.
Source: [ConfidenceIntervals.xls]Data.

the RMSE to estimate the SD of the error box. We can then plug this esti-
mate of the box’s SD into the formula for the SE of b1. The result is the
estimated SE. What are the consequences for confidence intervals of using
the estimated SE instead of the exact SE in setting upper and lower bounds
on the confidence intervals? The bottom line is that, when the sample size
is large (let us say n greater than 30), the estimated SE is a good substi-
tute for the exact SE and the resulting confidence intervals behave quite
well. When the sample size is small, confidence intervals are less reliable and
inference may be severely compromised because the estimated SE is biased.
In Section 16.5, we will talk about what can be done to rescue matters when
one must use a small sample for inference but the error terms are normally
distributed.

The first consequence of using the estimated SE is that the length of the
confidence interval will vary from one sample to the next. We contrast esti-
mated SEs and exact SEs on the Data sheet. Figure 16.3.5 is an example with
10 observations.

We computed the exact SE (with our knowledge of the SD of the error
box, the square root of the number of observations, and the SD of the X’s).
In this case it turns out to be 0.316. This value for the exact SE stays fixed for
every sample we might draw. The estimated SE, on the other hand, uses the
RMSE to estimate the SD of the error box. The RMSE bounces around (hit
F9 and note how cell G12 changes) and, therefore, so does the estimated SE
(cell K20) and the width of the confidence intervals.

The second consequence of using the estimated SE instead of the exact SE is
that, for small samples, confidence intervals based on the normal curve may be
unreliable. This is true no matter the distribution of the errors. To demonstrate
the poor performance of confidence intervals for small samples, go to the
Data sheet and use the Set N button to set n to 3. We use this absurdly small



P1: JZZ
0521843197c16 CB962B/Barretto 0 521 84319 7 November 6, 2005 19:37

428 Confidence Intervals and Hypothesis Testing

1

% Covered 69.24% Error Bo

Choose SE

x Normal
SD 1.00

SE Used Variable
n  3

 Interval

            

        

Estimated SE

Exact SE

Confidence

Figure 16.3.6. Performance of 95-percent confidence interval when n = 3
using estimated SE.
Source: [ConfidenceIntervals.xls]MCSim.

sample size so we can clearly demonstrate the unreliability of the confidence
intervals when the SD has to be estimated. Make the distribution of the errors
Normal. Go to the CIMCSim sheet and run a 10,000-repetition Monte Carlo
experiment. You will obtain results similar to those given in Figure 16.3.6.

The 95-percent confidence intervals did very poorly, covering the true
parameter value only 69 percent of the time. Pause to look at the graph
of the first 100 confidence intervals and verify that they have varying lengths,
reflecting different estimates of the SE in different samples. Now use the
radio button option for the exact SE (0.577 in this case) and run a second
10,000-repetition experiment. You should obtain results like those presented
in Figure 16.3.7.

The confidence intervals are now performing as advertised: Very close to
95 percent of the intervals covered the true parameter value. Take a look at
the graph of the first 100 confidence intervals to see that they all have the
same length.

Similar experiments with small n can be performed for the two other error
distributions that can be specified on the Data sheet. You will find that the con-
fidence intervals do not do the job (cover the true parameter 95 percent of the
time) when the estimated SE is employed, but that they perform remarkably

2

% Covered 94.88% Error Box Normal
SD 1.00

SE Used 0.5774

Choose SE

n

 IntervalConfidence

         

            

        

Estimated SE

Exact SE

3

Figure 16.3.7. Performance of 95-percent confidence interval when n = 3
using exact SE.
Source: ConfidenceIntervals.xls!MCSim.
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1

% Covered 94.69% Error Box Log Normal
SD

Choose SE

2.16
SE Used Variable

n 30

 IntervalConfidence

Estimated SE

Exact SE

Figure 16.3.8. Performance of 95-percent confidence interval for n = 30,
LogNormal Errors.
Source: [ConfidenceIntervals.xls]MCSim.

well when the exact SE is used (covering the true parameter close to 95 per-
cent of the time).

Unfortunately, in practice one must use estimated SEs. In general that
means that inference may be severely compromised for small samples. This
is true for both confidence intervals and hypothesis testing (which is covered
in the next section). If the errors are normally distributed, the situation can
be rescued by basing the confidence interval bounds on the t-distribution.
This procedure is explained in Section 16.5.

The good news is that as n increases, confidence intervals using the esti-
mated SE with the normal curve work better and better. You can verify this
via Monte Carlo experiments. As one example, we set the error distribution to
be lognormal, set n to 30, chose estimated SEs for computing the confidence
interval, and ran a Monte Carlo simulation. Figure 16.3.8 displays the results.

The confidence intervals based on the normal curve covered the true
parameter just about 95 percent of the time. You ought to perform simi-
lar experiments for the normal and uniform error distributions with varying
sample sizes. Even with a sample size as small as 10 observations and log nor-
mal errors, over 90-percent coverage from a 95-percent confidence interval
results.

Summary

This section has discussed one main branch of inference – creating confidence
intervals when estimating a parameter. Confidence intervals are constructed
by adding and subtracting a value to a draw from a distribution. The level of
confidence is the probability that the interval covers the expected value of
the distribution.

Applied to the sample slope, we use the result that the sampling distribu-
tion of b1 is either exactly normal (when the errors are normally distributed)
or approximately normal (when the errors are not normally distributed but
the sample size is large). In practice, a complication is that the SD of the errors
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must be estimated. The larger the sample size, the better the confidence inter-
val based on the normal curve works. When using the estimated SE, extremely
small sample sizes can cripple the confidence interval method. In economics,
we rarely deal with such small sample sizes and, thus, confidence intervals
based on the normal curve are an accepted, common way of expressing the
variability in an estimate.

The next section discusses a second way to use the SE of an estimator.
Instead of using the SE as a give or take number to signal the precision of the
estimate, we can test a claim about the true parameter value by constructing
an appropriate test statistic.

16.4. The Logic of Hypothesis Testing

Workbook: HypothesisTest.xls

The previous section explored how confidence intervals are used when esti-
mating a parameter; this section is devoted to the second main branch of
inference, hypothesis testing. Hypothesis tests are used when some claim
has been made about the parameters governing the data generation process.
Instead of reporting the parameter estimate along with a confidence interval,
we use the parameter estimate and its estimated SE to test the claim about
the value of the parameter.

This section ignores complicated calculations and subtle details in order
to focus on the essential logic of hypothesis testing. Because it is easy to get
confused when doing tests of significance, keeping the fundamental strategy
clear should be helpful.

Suppose a particular value is proposed for a population parameter. A
hypothesis test simply asks whether the proposed population parameter is so
implausible that it cannot be believed. Notice that it is the proposed popula-
tion parameter that is being tested. The claim that the population parameter
is a given value is called the null hypothesis. We will have to decide to reject
or not reject the claimed value of the population parameter. According to
the null hypothesis, any deviation from the claimed value in a single sample
is due to mere chance. Often, the null hypothesis is a “straw man” we hope
to reject.

Unlike the null, the alternative hypothesis is not tested. We reject or do
not reject the null, not the alternative. Strictly speaking, we never accept the
alternative; instead, we reject the null.

We reject the proposed parameter value if there is strong enough evidence
against the claimed value. Evidence comes from the sample data and is based
on the idea of implausibility. If, given the proposed parameter value, the
sample estimate or one more extreme is highly unlikely to be observed, we will
reject the claimed value. If on the other hand, given the proposed parameter
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value, it is quite possible we could have observed the sample estimate or one
more extreme, then we do not reject the claimed value. We say there is not
enough evidence to reject the null.

Implausibility is, by definition, vague. How many heads in a sample of 100
coin flips would you have to see before you rejected the notion that the coin
was fair? By convention, two standards have been developed: statistically
significant and highly statistically significant.

We will apply the two standards to the coin-flip example. You expect to
see 50 heads in 100 coin flips, give or take 5 heads. The sampling distribution
of the number of heads in 100 coin flips is approximately normal. Thus, if
the coin was fair, you would expect the number of heads in 100 coin flips to
vary between 45 and 55 heads about 68 percent of the time, whereas about 95
percent of 100 coin flips will yield between 40 and 60 heads. If you saw, say,
80 heads in 100 coin flips, you would certainly be dubious about the fairness
of the coin. Such an outcome is certainly possible but extremely unlikely
because it is 6 standard units away from the expected outcome under the null
hypothesis that the coin is fair. Thus, you would reject the null hypothesis
that the coin is fair.

The chances of getting a particular value or one more extreme, given that
the null hypothesis is true, is called the probability, or P, value or the observed
level of significance. A test of significance computes the P-value and then
rejects the null if the P-value is small. P-values less than 5 percent are said to be
statistically significant, whereas those below 1 percent, are highly statistically
significant.

In the coin-flip example, 80 heads would be a highly statistically significant
result because it has a P-value less than 1 percent – in other words, such a
result, or one more extreme, on the assumption the null is true, occurs less
than 1 percent of the time that 100 coins are flipped.

To compute a P-value, the sampling distribution, or probability histogram,
must be known. Although many statistics are normally distributed, there are
many other nonnormal sampling distributions. Irrespective of the distribu-
tion, the P-value is always interpreted the same way – it is the chance of
getting a particular value or one more extreme given that the null hypothesis
is true. The smaller the P value, the stronger the evidence against the null.

Warning: Many students incorrectly believe that the P-value represents
the chance that the null is true. Because the P-value is computed on the basis
that the null hypothesis is true, the P-value is not the chance that the null is
true.

The Excel workbook HypothesisTest.xls puts these ideas to work with
uniform and normal distributions. As with confidence intervals, the uniform
distribution (on the interval 0 to 1) is used here because it is easy to work with,
whereas the normal is, in practice, a commonly used sampling distribution
for hypothesis testing.
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Tails
NULL

0.5 Null is true.

Null:  The average of the box equals 0.50
Alternative:  The average of the box is less than 0.5

Your Significance 
Level 5%

A Single Draw 0.153
Uniform test 
statistic −0.347
P Value 15.3%
Your Decision to 
Reject the Null No EV 0.5

SE 0.288675

−0.5 −0.25 0.25 0.5 0.75 1 1.25 1.5

  Right Tail        
Both Tails          

Left Tail         

0

Figure 16.4.1. Playing the hypothesis test game with the uniform distribution.
Source: [HypothesisTest.xls]Uniform.

As with confidence intervals, hypothesis testing has a set of rules.
Here are the rules for the procedure:

1. Take a draw from a distribution – we can play with any distribution, but we will
use just two: the Uniform and the Normal.

2. Center the distribution on the value indicated by the null hypothesis (i.e., make
the expected value of the distribution the value under the null).

3. Determine the chances of obtaining a draw like the one you got (in step 1) or
one more extreme. This is the P-value. Step 3 requires that you decide if it is a
one- or a two-tailed test.

4. Decide if there is enough evidence (if the P-Value is small enough) to reject the
null.

Let us put the rules into play with the uniform distribution. Follow along
on the Uniform sheet of HypothesisTest.xls.

In Figure 16.4.1, the null is set at 0.5 and it is true (because the expected
value of the distribution is, in fact, 0.5). We select a one-tailed test: Only
values that are much lower than 0.5 will be evidence against the null. We
drew a value of 0.153. What are the chances of obtaining this draw or one
more extreme? Because we have selected a one-tailed (left-tail) test, more
extreme values are only smaller (more negative) values. The chance of getting
0.153 or smaller from a uniform (0, 1) distribution is 15.3 percent. This is weak
evidence against the null: after all, if the null is true, getting 0.153 or less is
reasonably common.

Hit the F9 key. Notice that, when the drawn value is above 0.5, you get
P-values over 50 percent. You reject the null and conclude that the draw is
“statistically significant” when the draw is below 0.05 (which happens about
1 in 20 clicks of the F9 key). “Highly statistically significant,” by convention,
is reserved for P-values below 1 percent. When testing hypothesis, you
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should report the P-value and let the reader decide what is enough evidence
against the null to reject it.

The one- versus two-tailed test is a tricky concept that is easy to confuse.
Consider the following example as a means of grasping that the way the
research question is framed drives the type of test.

Suppose a light bulb box says that bulbs will last for 1,000 hours. Unbe-
knownst to them, two separate people do the same experiment. One works
for Consumer Reports and the other for GE (who makes the bulbs). They
each get 100 light bulbs and turn them on. Then each person records how
long each bulb lasted.

The GE person will run a two-sided test. He or she wants to know from a
quality control point of view if the bulbs are lasting 1,000 hours. A bulb that
lasts too long is costly for GE. There can be evidence against the null from
either side – too short or too long. If that person gets a sample average of
1005.23 hours with an SE of the sample average of 1, he or she will reject the
null that the bulbs last an average of 1,000 hours.

The Consumer Reports person, on the other hand, will run a one-sided,
left-tailed test. He or she only cares if GE is falsely advertising the bulbs as
lasting too long. If that person gets the same average of 1005.23, the null is
not rejected and the case is closed.

The Normal sheet applies the same rules for hypothesis testing using a
normal distribution. This is called a z-test. Go to the Normal sheet and hit F9
a few times. Notice that the P-value is computed by finding the area under
the normal curve.

There is nothing new here. You set the null, which may be false or true. The
null is a statement about where the sampling distribution is centered. You
then take a draw from the true, unknown sampling distribution. This draw is
used to test the null. Given the draw and the sampling distribution under the
null, we can compute the chances of getting the realized value (or one more
extreme – including whether more extreme evidence can come from either
direction). This is called the P-value. The P-value is used to decide if there is
enough evidence to reject the null.

If the null is true, then you will reject the null about as often as the level of
significance you choose. You may think that in order to better guard against
rejecting a true null you should set the significance level for rejection quite
low, say 0.1 percent. But consider the following example: Set the expected
value under the null (in cell B7) to 1 (and hit the F9 key). The entire distri-
bution has shifted and it is now, incorrectly, centered at 1. The draws are still
coming from a normal distribution with an expected value of 0, so the null is
now false.

Notice that the value of the null hypothesis is a claim about the position of
the distribution. The null claims that the distribution is such that the expected
value is 1, but the draws continue to come from a normal distribution centered
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NULL 1
Null is false.

Null:  The average of the box equals 1
Alternative:  The average of the box is less than 1

Your Significance 
Level 5% -1.539

A Single Draw −1.539
Normal test 
statistic −2.539
P Value 0.6%
Your Decision to
Reject the Null Yes EV

SE 1

−4 −3 −2 −1 0
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4321

Tails

Right Tail
Both Tails
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The truth:  draws come from a Normal(0,1) distribution.
Maintained assumption: The draws come from a box with tickets that are normally distributed.  

Figure 16.4.2. Testing the null hypothesis of a uniform distribution with EV = 0.75.
Source: [HypothesisTest.xls]Uniform.

on 0. Hypothesis testing reduces to the following simple idea: assuming the
null is true, what are the chances of getting a draw like the one obtained or
one more extreme?

Hit the F9 key a few times. Figure 16.4.2 is a picture of one possibility. In the
case depicted in Figure 16.4.2, the realized draw, −1.539, yields a P-value of
0.6 percent. Let us review what this means. Assuming that the null of a normal
distribution centered on 1 is true, we would expect to get a draw like −1.539
or smaller, 0.6 percent of the time. That means that we have strong evidence
against the null and, therefore, if we were using the typical criteria of either
5-percent or 1-percent significance levels, we would reject the claim that the
center of the distribution is 1. But because we are employing the extremely
conservative significance level of 0.1 percent, we would not reject this false
null. In order to guard against rejecting a true null, we have rendered the test
less capable of detecting false nulls.

Summary

While this section has focused on the logic and mechanics of hypothesis
testing, the next section shows that, if the errors are normally distributed,
then the sampling distribution of the test statistic, (b1 − null)/estSE, will be t-
distributed. This is why many papers in the econometrics literature use t-tests
(instead of the z-test based on the normal curve).

16.5. Z- and T-Tests

Workbooks: ZandTTests.xls; ConfidenceIntervals.xls

Read almost any empirical paper in economics that uses regression and
you will probably see the t-statistic. The t-statistic has almost completely
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superseded the z-statistic even for data sets with extremely large sample
sizes. This section explains why. In all that follows, we continue to suppose
that the classical econometric model applies for a bivariate model. We will
work with the Excel workbook ZandTTests.xls.

Section 16.2 demonstrated the central limit theorem at work in the sam-
pling distribution of the OLS slope estimator. As applied to sample slope
estimates, we remind you that the CLT says that, no matter the distribution
of the error terms (the tickets in the error box), the probability histogram for
the OLS slope estimate b1 approaches a normal distribution as the number
of observations rises. The spread of the probability histogram is the exact
SE, and its center is the true parameter value β1. We used Figure 16.2.6 to
show that, with a log-normal error distribution, as the number of observations
increases the superimposed normal curve more closely matches the approxi-
mate sampling distribution of the sample slope generated by the Monte Carlo
simulation. This is the central limit theorem in action.

This section is concerned with the sampling distribution of yet another
sample-based statistic: a slope hypothesis test statistic. This statistic is formed
by subtracting the value claimed by the null hypothesis from the observed
sample slope value and then dividing this entire quantity by an SE. The SE
can be either exact or estimated depending on whether the SD of error dis-
tribution is known or has to be estimated. Once we have the value of the test
statistic itself, we compute a P-value. It is here that things get messy. Differ-
ent distributions will give different P-values. We have to find the appropriate
distribution to get the P-value exactly right.

The material is difficult to follow because there are several forks in the
road. We add structure to the section by following the flowchart depicted in
Figure 16.5.1. There are three crucial questions. The first question is at the
center of Figure 16.5.1: How big is the sample? A large sample size makes life
much easier. As n increases, the central limit theorem works in our favor to
make the sampling distribution of the slope hypothesis test statistic increas-
ingly normal. We use 30 observations as a rough rule of thumb to denote a
large sample size, but the bigger the sample, the closer the sampling distribu-
tion gets to the normal curve. If we have a large sample, we use the normal
curve to compute the P-value and call the test statistic a z-statistic.

For small sample sizes, things get complicated. In this case, Figure 16.5.1
shows that we are faced with a second question: Are the errors normally
distributed? If not, we may be in danger. Regression software will proceed as
if the errors are normal and the SD has to be estimated. The software will use
the t-distribution to compute the P-value. If the sample size is small and the
errors are not normally distributed, the reported P-value may not be reliable.

If we know the errors are normally distributed (or can argue that they
are reasonably close to normally distributed), then we consider our third and
final question: Is the SD of the errors known? This question is a bit unrealistic



P1: JZZ
0521843197c16 CB962B/Barretto 0 521 84319 7 November 6, 2005 19:37

436 Confidence Intervals and Hypothesis Testing

Sample 
Size? 

Large  
(n>30) 

Use the normal curve to
find P value: z statistic 

Small 
 

Normal
Errors? 

Yes 
 

Known 
SD? 

Yes 

No 

No

Use t 
distribution to
find P value: t 

statistic 

Use the normal 
curve to find P
value: z statistic 

Warning! 
Software 

may report t 
statistics for 
zero slope 
nulls, but 
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Figure 16.5.1. To z or to t – that is the
question.

because it is highly unlikely that the SD of the errors is known. In practically
all real-world applications, we do not know the SD of the error box and
we estimate this parameter with the RMSE. In this case, the appropriate
distribution to use to compute the P-value is the t-distribution and the test
statistic is called a t-statistic.

It is time to put these abstract ideas into practice. Open the ZandTTests.xls
workbook and proceed to the Data sheet. We have implemented the classical
econometric model on this sheet. Let us apply the flow chart in Figure 16.5.1.
Is the sample size small? Most definitely, for a sample of five observations is
quite small. We use such a ridiculously small n to show the difference between
normal and t-distributions.

Cell F18 has the test statistic which is based on the true null that β1 = 5. We
will take evidence against the null from above and below the null so that it is
a two-tailed test. Note that the errors are drawn from a normal distribution.
Hit F9 to recalculate the sheet and confirm that the test statistic is a random
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Statistic Slope
Average 5.0005 Error Box

SD 0.4485 SD Errors 1
Max 6.8816 5n
Min 3.2482 Normal Tails 10.2%

Summary     Statistics

Empirical Histogram for 30,000 Repetitions

3 4 5 6 7

sample slope estimates

Show t Distribution

Hide Normal (z) 
Distribution

Normal

Figure 16.5.2. The OLS slope estimator is normally distributed.
Source: [ZandTTests.xls]MCSim.

variable. The big question concerns the shape of the sampling distribution of
the test statistic. Proceed to the MCSim sheet to answer this question.

As a first pass, Monte Carlo the sample slope itself. The default number
of repetitions is set quite high at 30,000 to obtain close approximations to
the true probability histograms. Figure 16.5.2 shows the results. Click the
Show Normal 
(z) Distribution button to superimpose the normal distribution over the Monte
Carlo histogram. It matches up quite nicely. Click the Show t Distribution button on
your Monte Carlo results to see that the t-distribution, however, poorly fits
the empirical histogram. Normal Tails reports the fraction of sample slopes
that fell outside +/− 1.645 SEs of the expected value. This number should be
close to 10 percent if the distribution is really normal. Both the visual display
and the Normal Tails measure agree; if the errors are normal, the OLS slope
estimator is normally distributed.

But what about the test statistic, (sample slope – null)/estimated SE? Is
it also normally distributed when the errors are normal? We have reason to
be doubtful because the test statistic is a random variable (the sample slope)
divided by another random variable (the estimated SE). The estimated SE
is a random variable because we are using the RMSE to estimate the SD of
the errors. Hence, unlike the case of the sample slope, in which we had one
random variable, in the usual case when the SD of the errors is unknown,
the test statistic we are dealing with has two sources of variability. We would
expect this to affect the sampling distribution. But does it, and, if so, how?

The MCSim sheet enables a quick answer to this question. Figure 16.5.3
has our results. Yours should be similar. This time the t-distribution fits
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Figure 16.5.3. Test statistic is t-distributed.
Source: [ZandTTests.xls]MCSim.

the empirical histogram almost perfectly. The test statistic is definitely
t-distributed and not normally distributed.

It is instructive to compare Figures 16.5.2 and 16.5.3. The Error Boxes, SD
Errors, and n are the same, but the statistic being analyzed is different. In Fig-
ure 16.5.2, it is simply the sample slope and it is clearly normally distributed.
Figure 16.5.3 shows the sampling distribution of the test statistic (not the
sample slope) and this time it is the t-distribution that fits well.

The Normal Tails measure confirms that the distribution of the test statistic
is not normal. Instead of a 10-percent chance of getting a value +/− 1.645
or more SEs away from the expected value as the normal curve would pre-
dict, almost 20 percent of the samples are in this interval. With n = 5, the
t-distribution has fatter tails and is less spiked than the normal. If we used
the normal curve to compute a P-value, we would get it wrong.

Perhaps a little intellectual history will help explain what is going on. In
1908, an author who called himself “Student” published the first paper that
obtained an exact small-sample result. Student was actually William Sealy
Gosset.

The reason for the pseudonym was a policy by Gosset’s employer, the brewery Arthur
Guinness Sons and Co., against work done for the firm being made public. Allowing
Gosset to publish under a pseudonym was a concession that resulted in the birth of
the statistician “Student,” the creator of Student’s t-test. Lehmann (1999, p. 418)

Gossett discovered that, if the classical econometric model applied, if
the errors were normally distributed, and if the SD of the errors was
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estimated using the RMSE, then the exact probability histogram of the
test statistic, (sample slope − null)/estimated SE, followed the t-distribution.
Gosset pointed out that the normal curve does a poor job of approximating
the distribution of this test statistic when n is small.

The problem lies in the fact that the estimated SE is a random variable
because the SD of the box is being estimated by the RMSE and the RMSE is
a random variable. Gosset showed that adding more structure to the problem
by specifying the distribution of the errors enabled derivation of the exact
sampling distribution of the test statistic.

He also made a more contentious claim: the t-distribution applies even if the
errors are only roughly normal. “This [normality] assumption is accordingly
made in the present paper, so that its conclusions are not strictly applicable
to populations known not to be normally distributed; yet it appears probable
that the deviation from normality must be very extreme to lead to serious
error.” (Student, 1908, p. 1). In other words, although the t-distribution is
exactly correct only if the errors are normally distributed, it will continue to
do a good job of approximating the distribution of the test statistic, (sample
slope − null)/estimated SE, for many nonnormal error distributions.

The t-distribution looks very much like the standard normal distribution,
but its shape depends on the number of “degrees of freedom.” The number of
degrees of freedom equals the number of observations minus the number of
parameters being estimated. In the bivariate case, two parameters are being
estimated, and so the number of degrees of freedom is n − 2. When n is small,
the t-distribution deviates substantially from the standard normal curve.
Figure 16.5.4 presents three comparisons of normal and t-distributions. On
the top, with only 3 degrees of freedom, the t-distribution deviates consider-
ably from the normal. The deviation is quite small for DF = 10 and is almost
nonexistent in the bottom graph, where DF = 30.

You can compare the standard normal and t-distributions for any value of
the degrees of freedom parameter in the tDist sheet. Notice how the standard
normal stays fixed because it does not depend on the degrees-of-freedom
parameter. Notice also how the t-distribution gets closer and closer to the
normal as the number of degrees of freedom rises.

Figure 16.5.4 shows that using the t-distribution only matters when n is
small. In economics, this is rarely the case. Regression software, however,
will almost always report t-statistics for the null hypothesis that the true
parameter value is 0 and a P-value based on the t distribution. For practical
purposes, when you read about a t-statistic in an article, if the sample size is
greater than 30, you may safely substitute in your mind the normal curve and
the z-statistic. That is, the P-value might as well be based on a normal curve.

To cement this point, return to the Data sheet and set the sample size to
20 observations (using the Normal error distribution). This is a very small
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Figure 16.5.4. Normal and t-distributions with varying df.
Source: [ZandTTests.xls]tDist.

sample size for work in economics. Proceed to the MCSim sheet and run
a Monte Carlo simulation of the test statistic. Our results are presented in
Figure 16.5.5. We superimposed the normal curve to show that it does a
reasonably good job, but it is not perfect because it is too high in the center. We
know that the sampling distribution in Figure 16.5.5 is actually t-distributed
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Figure 16.5.5. t-distribution with n = 20.
Source: [ZandTTests.xls]tDist.

with 18 degrees of freedom. The Normal Tails measure, 11.7 percent, shows
we are a little off from the expected 10 percent. As n increases, the test
statistic will always be exactly t-distributed, but the normal curve will be an
increasingly good approximation.

The t-Distribution and Confidence Intervals

We conclude this section by tying up a loose end. Section 16.3 showed that
a confidence interval for the sample slope built with the estimated SE and
using the normal curve performed poorly with a sample size of 5 observations.
Although the sample slope is normally distributed (assuming the errors are
normally distributed), the fact that we have to use the RMSE to estimate the
SD of the errors causes the confidence interval to be too short and, therefore,
fewer than 95 percent of the confidence intervals constructed using 1.96 times
the estimated SE will cover the parameter.

Now that we understand the t-distribution, we can revisit this problem and
show how the t-distribution can be used to construct a confidence interval
that performs as advertised. Open the ConfidenceInterval.xls workbook and
proceed to the CIMCSim sheet. Click on the CI with the t

Distribution button (to the right
of the histogram). Two new sheets appear in the workbook, tCI and CItM-
CSim. The tCI sheet is similar to the UniformCI and NormalCI sheets. You
set the confidence level and an interval of appropriate width, based on the
t-distribution, is constructed. You can hit F9 to see the interval bounce around
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Figure 16.5.6. Confidence intervals with the t-distribution.
Source: [ConfidenceIntervals.xls]CItMCSim.

and run a Monte Carlo simulation to confirm that the interval covers with
the given confidence level.

With 3 degrees of freedom, compare the length of the 95-percent confi-
dence interval in the tCI sheet to the Normal sheet. The confidence interval
in the tCI sheet is longer, using a give or take number of 3.182 SEs, than
the CI in the NormalCI sheet, which adds and subtracts 1.96 SEs around the
drawn value to get a 95-percent confidence interval. This is due to the fact
that the t-distribution has fatter tails than the normal distribution.

Set n = 5 in the Data sheet with Normal errors, then go to the CItM-
CSim sheet and run a Monte Carlo simulation of the confidence interval.
Figure 16.5.6 shows the results. Unlike the CIMCSim sheet, which computed
the interval length based on the normal curve and, therefore, performed
poorly, the CItMCSim sheet computes intervals based on the t-distribution
and, therefore, gets it right: About 95 percent of the intervals cover the true
parameter value.

Just as we saw with hypothesis testing, if the errors are normally distributed
and their spread must be estimated (by the RMSE), then small samples
require that the t-distribution be used to construct confidence intervals cor-
rectly. As the sample size increases, the t-distribution gets closer and closer to
the normal curve. Thus, for large samples, it hardly matters if the confidence
interval is constructed with the normal or t-distribution. Software and most
empirical papers will report confidence intervals based on the t-distribution.

Summary

This section has explained the reason behind the commonplace use of the
t-distribution. Gosset discovered that the test statistic, (slope − null)/
estimatedSE, is not normally distributed. The fact that the estimated SE is a
random variable affects the sampling distribution of the test statistic. Regres-
sion software and articles in journals use the t-distribution to compute a P-
value because, if the errors are normally distributed, then the t-distribution
is the correct distribution. If the sample size is small, using the t-distribution
instead of the normal is the right thing to do. If the sample size is large, the
t-distribution remains the exactly correct distribution, but it becomes almost
identical to the normal curve.
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16.6. A Practical Example

Workbook: CigDataInference.xls

To make the ideas in this chapter clearer, we relate the abstract points made
in the previous sections to the example introduced in Chapter 1 studying the
demand for cigarettes. We have cross-sectional data from 1960 at the state
level on per capita cigarette sales, average price of cigarettes, and per capita
income. We focus on hypothesis testing and show how to display regression
results.

In Chapter 1, two models were developed to describe the data, but we had
not yet introduced the classical econometric model. We restate the models,
this time adding an error term and assuming that the classical econometric
model applies. The two models are as follows:

Model 1: Quantity Demandedi = β0 + β1 · Pricei + εi , i = 1, . . . , 47

Model 2: Quantity Demandedi = β0 + β1 · Pricei + β2 Incomei + νi ,

i = 1, . . . , 47,

where Quantity Demanded is measured by per capita sales of cigarettes in a
given state in a given year, Price is the average price per pack of cigarettes
in that state, Income is per capita income in that state, i indexes the 47
states (including the District of Columbia) with nonmissing data, and the
error terms εi and νi , respectively, reflect the influence of omitted variables
(e.g., tastes and preferences formed by religion and education), measurement
error, and the inherent randomness in the world. Let us suppose that the clas-
sical econometric model applies: The errors are all drawn from the same error
box, they are independent of one another, and they are uncorrelated with
Price (in Model 1) and Price and Income (in Model 2). (Note that the error
terms of Model 1 come from different boxes and will have a different SD than
those of Model 2.) We also assume that the independent variables are fixed in
repeated sampling. The unit of observation is, obviously, states. In Chapter 1
we demonstrated that in the bivariate analysis of Model 1 the relationship
between Quantity Demanded and Price is confounded by the fact that omit-
ted variables (such as Income) are correlated with price. A demand curve
cannot be estimated by simply fitting a line to a cloud of price and quantity
points. We therefore focus our attention on Model 2. Later in this section a
third model for the data generation process using a logarithmic functional
form is introduced.

It is easy to criticize the application of the CEM in this case. When we intro-
duced this example in the first chapter, we pointed out several complicating
factors. There are problems with measuring the variables, aggregation, and
simultaneous equations bias (discussed in Chapter 24). Good econometric
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practice recognizes and explicitly states the difficulties in the empirical appli-
cation of a theoretical model.

The fact that perfection cannot be attained does not mean we should give
up and announce that all applied work is flawed. Instead, we do our best
and realize that there are quality differences in empirical analysis. Model 2
is undoubtedly superior to Model 1. Are there even better models? Yes.
Chapters 18, 19, 20, and 24 present methods that can be applied when various
violations of the CEM are present. For now, we will use Model 2 as an exam-
ple of how to create a confidence interval and conduct tests of significance.
The remainder of this section briefly indicates the hypotheses suggested by
economic theory for Model 2. We actually test the hypotheses and discuss
how to present the results. Finally, we compare the results obtained to those
for a third model, using a different functional form.

There are two crucial parts to the statement of a hypothesis:

1. A definite statement about a parameter or parameters of the model dictated by
the economic theory, called the null hypothesis. (The parameter is the true, exact,
unknown value.) Usually, though not always, this is a statement the theory asserts
is not true.

The two null hypotheses relevant to Model 2, expressed in English, are that,
with income held constant, price has no effect on the quantity demanded of
cigarettes, and, with price held constant, income has no effect on the quan-
tity demanded of cigarettes. The two null hypotheses, expressed in terms of
parameters of the model, are

Null Hypothesis on Price: β1 = 0

Null Hypothesis on Income: β2 = 0.

2. An alternative statement about a parameter of the model, which contradicts the
null. This is called the alternative hypothesis. This alternative statement can take
two forms: one- and two-tailed tests, respectively.

Economists generally think that, as price rises, quantity demanded falls. On
the other hand, there is no strong presumption about whether cigarettes are
normal goods or inferior goods (i.e., about the effect of income on quantity
demanded). This means that the alternative hypothesis in English with regard
to price is that, with income held constant, quantity demanded falls as price
rises; the alternative hypothesis in English with regard to income is that, with
price held constant, quantity demanded changes as income rises. In terms of
Model 2, the two alternative hypotheses, expressed in compact mathematical
notation, are

Alternative Hypothesis on Price: β1 < 0

Alternative Hypothesis on Income: β2 	= 0.

The first is a one-tailed test; the second a two-tailed test.
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Price
Per Capita 

Income Intercept
Estimate −5.808 0.0351 198.9

Estimated SE 1.756 52.444 Estimated SE
R2 0.561 18.769 #N/A RMSE

F-stat 28.16 44 #N/A

Reg SS 19,837 15,500        #N/A SSR

Model (2): Multiple Regression Analysis

Estimate
0.0067

df

Figure 16.6.1. LINEST presentation of OLS results for Model 2.
Source: [CigDataInference.xls]1960Analysis.

The essential prerequisite for being able to conduct a test of significance
on a particular claim about the population is that the stipulated box model is
a good analogy to the data generating process for the data at hand. If so, the
estimated slope in a regression can be related to the probability histogram
of all the possible estimates that could have been obtained. That probabil-
ity histogram for the sample estimates is centered on the true value of the
population parameter. The typical estimate will be within one SE of the true
population parameter. The area under the probability histogram above a
given interval gives the probability that the sample estimate will fall in that
interval. We can compute such areas by stating the interval endpoints in terms
of standard units and using the normal approximation.

We now show how to test the hypotheses above using Model 2 and the
1960 data set. Open the CigDataInference.xls workbook and go to the
1960Analysis sheet. Excel’s LINEST function displays the results given in
Figure 16.6.1. These results are conventionally reported in one of two ways:
either as an equation with SEs written below coefficient estimates,

PredictedQpercapita = 199 − 5.81 Price + 0.035 Income,

(52.4) (1.76) (0.0067)

or, more commonly (especially with many independent variables), in a table,
which might look like Figure 16.6.2.

Before we demonstrate the hypothesis testing procedure, we show you how
to construct a confidence interval. The coefficient on Price, −5.8, tells us that
a one-cent increase in the price of a pack of a cigarettes leads to a decrease of
5.8 packs per person per year. Of course, we know that the estimated coef-
ficient is a random variable with an estimated SE of 1.8 (rounding up from
1.756 reported in Figures 16.6.1 and 16.6.2). We can indicate the variability in
our estimate by reporting the estimate as “−5.8 +/− 1.8” or by constructing
a confidence interval.

We will follow convention and create a 95-percent confidence interval. We
have to add and subtract a value from the coefficient estimate to create the
interval. The value depends on the distribution of the estimated coefficient.
If we use the normal curve, then we multiply the estimated SE by 1.96. (Since
the normal curve is an approximation anyway, we often multiply by 2, but
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Independent 
Variable Estimate
Intercept 198.939

(52.444)
Price −5.808

(1.756)
Per Capita Income 0.0351

(0.007)

R2 0.56
n 47

Note: SEs in parentheses.

Typical Display of Results

Dependent Variable: Quantity per capita

 

Figure 16.6.2. Tabular presentation of OLS
results for Model 2.
Source: [CigDataInference.xls]1960Analysis.

we are going to compare the normal to the t-distribution in a moment, so
we will use the exact value needed to create a 95-percent confidence interval
with the normal curve.) The resulting 95-percent confidence interval, based
on the normal curve, is from −9.25 to −2.37. You can examine the formulas
for these bounds in cells G39 and H39.

Since we are using the estimated SE, we know (from Section 16.3) that the
confidence interval based on the normal curve is incorrect. If we assume that
the errors are normally distributed, then the correct distribution to use for the
confidence interval computation is the t-distribution. We can find the value to
add and subtract from the estimated coefficient with Excel’s TINV function.
Cell F48 uses this function to find the critical value of 2.015. In cells G44 and
H44, we use this value to compute the 95-percent confidence interval based
on the t-distribution, −9.35 to −2.27.

The 95-percent confidence intervals from the normal and t-distributions are
so close because the sample size, 47, is large enough that the two distributions
are almost identical. Reporting a coefficient estimate along with a give or take
number (the estimated SE) or providing a confidence interval are two good
ways to convey the variability in the coefficient estimate.

We can also use the estimates to conduct the two hypothesis tests outlined
above. The test statistic for the null hypothesis – that the price does not affect
per capita quantity demanded, that is, β1 = 0 – is computed as follows:

test statistic = −5.808 − 0
1.756

= −3.31.

Using the normal approximation for the sampling distribution of b1 under
the null, we find that the P-value for a one-tailed test is about 0.05 percent. If
we make the assumption that the errors are normally distributed, that gives us
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license to use the t-distribution, and the P-value would be computed as about
0.09 percent.4 In either case, at standard levels of significance, we decisively
reject the null hypothesis and conclude that, as the price of cigarettes rises,
quantity demanded falls.

The test statistic for the null hypothesis that the per capita income does not
affect per capita quantity demanded (i.e., β2 = 0) is computed as follows:

test statistic = 0.0351 − 0
0.0067

= 5.24.

The P-value for this two-tailed hypothesis test is extremely small – less than
0.000 percent – no matter whether one uses the normal approximation or the
t-distribution.

We thus have strong evidence that, in 1960 at least, quantity demanded
falls as price increases and rises as income increases. This knowledge that
there is an effect and the direction it takes is nice, but economists generally
want to know how big the effect is. In other words, economists ought to be
less interested in claiming statistical significance and more concerned with
measuring the magnitude, and practical importance, of the effect.

The slope estimates are our best estimates of the magnitude of the effects
of price and income on quantity demanded. It is good practice to couch
these estimates in the form of confidence intervals, which tell us something
about how much variability there is in each estimate. An approximate 95-
percent confidence interval for the price slope (b1) is (−9.25, −2.37); for the
income slope (b2) the approximate 95-percent confidence interval is (0.22,
0.48). Confidence intervals based on the t-distribution are slightly wider. See
the 1960Analysis sheet for details on these computations.

Another useful way to quantify the impact of price and income is to com-
pute the price and income elasticities of demand. These work out to –1.26
and 0.613, respectively. Thus a 1-percent increase in price, with income held
constant, is associated with a 1.26-percent decrease in quantity demanded,
whereas a 1-percent increase in per capita income, with price held constant,
is associated with a 0.613-percent increase in quantity demanded. Of course
we really ought to put give-or-take numbers on these elasticities. Comput-
ing the estimated SE of an elasticity is an advanced topic. See the HowTo-
UseDeltaMethod.xls workbook in the Basic Tools\How To folder for more
information.

4 Details on these calculations are available in the 1960Analysis sheet. LINEST does not output P-values,
but the sheet shows how the Excel function TDIST can be used. Excel’s Data Analysis: Regression
tool reports the P-value for a two-tailed test. The P Value Calculator add-in packaged with this book
computes P-values for a variety of distributions and is more flexible because the user can select one- or
two-tailed tests.
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ln Price
ln Per Capita 

Income Intercept
Estimate −1.24 0.563 4.5 Estimate

Estimated SE 0.382 1.732

R2 0.539 0.156 #N/A RMSE
F-stat 25.75 44 #N/A df

Reg SS 1.25 1.07 #N/A SSR

Model (3): Logarithmic Functional Form

0.113 Estimated SE

Figure 16.6.3. LINEST presentation of OLS results for Model 3.
Source: [CigDataInference.xls]1960Analysis.

An Alternative Functional Form

Economic theory does not dictate that demand curves are straight lines (i.e.,
linear functions of price and income). Therefore, it is appropriate to inves-
tigate other nonlinear functional forms. A popular alternative to the linear
functional forms of Models 1 and 2 is the double-log functional form we
incorporate in Model 3:

Model 3: ln Quantity Demandedi = β0 + β1 · ln Pricei + β2 ln Incomei + ηi ,

i = 1, . . . , 47,

where ln indicates we are taking natural logs of each of the variables, and
we rename the error term η to stress that this is a different model from the
first two. As before, we will suppose that the requirements of the classical
econometric model are met. Chapter 6 discusses nonlinear functional forms;
refer back to this chapter to refresh your memory. In particular, Section 6.5
points out that the coefficients in a double-log model directly measure (in
this case) the constant price and income elasticities of demand.

The 1960 Analysis sheet presents the LINEST results for Model 3 reported
here in Figure 16.6.3.

We have now estimated three different models of the demand for cigarettes.
A convenient, space-saving way to present the results is to put them all into
one table, as shown in Figure 16.6.4.

The table in Figure 16.6.4 facilitates comparisons between the three mod-
els. For example, the table makes clear that including income in the regression
substantially improves the fit of the linear functional form. Econometricians
are in the habit of using a rule of thumb: If the absolute value of a coeffi-
cient is more than twice its SE, then the difference between 0 and the coeffi-
cient estimate is statistically significant. A glance at the table will verify that
all the null hypotheses that each of the parameters is equal to zero will be
rejected. The table also shows that there is pretty good agreement between the
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Summary of Results for the Three Models

Independent Variable Qpc Qpc Qpcln

Price
−8.856
(2.094)

−5.808 
(1.756)

Income
0.351 

(.0067)

ln Price
−1.24 
(0.382)

ln Income
0.563 

(0.113)

Price Elasticity −1.93 −1.26
Income Elasticity 0.613

R 2 0.284 0.561 0.539

n 47 47 47
Standard errors are in parentheses.
Elasticities in Models 1 and 2 are evaluated at sample means  

Figure 16.6.4. Tabular presentation of OLS results for Models 1, 2, and 3.
Source: [CigDataInference.xls]1960Analysis.

linear and double-log models (2 and 3) on the value of the price and income
elasticities. The notes to the table help the reader to interpret it; you will
see some tables in which it is the t-statistics, not the SEs, which are placed
beneath the coefficient estimates. We have followed conventional practice in
choosing not to report the intercept estimates for the models because these
results are not especially interesting.

Summary

This section has illustrated a practical application of statistical inference and
the manner in which economists typically report their results. Our example
is the one we used in the first chapter of this book; you now are able to
appreciate the inferential side of the story.

We used this example to demonstrate how to perform a test of significance
and display regression results. But you should be aware that a hypothesis test
is often much less interesting than the actual estimate itself and its practical
importance. Remember that the hypothesis test merely serves to rule out the
argument that chance alone could have caused the observed result. Statistical
significance can never be substituted for practical importance. Economists
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use elasticity as a way to measure practical importance, but there are other
approaches as dictated by the context of the problem.

16.7. Conclusion

This chapter has presented the logic and implementation of confidence inter-
vals and hypothesis testing. Although confusing to students and often incor-
rectly used by researchers, the fundamentals should be clear: Every sample-
based statistic has its own sampling distribution, and if we can determine its
SE we can create a confidence interval or test a claim about the true value of
the parameter.

We prefer a simple approach to reporting the variability of an estimate and
suggest that you routinely provide the estimated SE along with the statistic in
your own work. When you are reading tables or regression output, remember
to take the observed statistic and wrap ±1 SE around it to get a sense of the
variability in the statistic.

If you are working with confidence intervals, do not forget that the true
parameter value is fixed and it is the interval itself that is bouncing. Thus,
“95 percent of the intervals constructed this way would cover” is right,
whereas “95 percent of the time the parameter falls in the interval” is wrong.

With regard to hypothesis testing, you should understand the special sit-
uations in which they are appropriate. If you do a test of significance, do
not adopt the “significant” and “highly significant” convention. Report the
observed P-value and let the reader decide what that means. Of course, always
keep in mind that statistical significance has nothing to do with practical or
economic importance.

Finally, there is little need to worry about the details and fine points of the
t-distribution. As n rises, the t and normal distributions become increasingly
indistinguishable. Thus, although software and empirical papers will use the
t-distribution, when n is large, the t-distribution can safely be interpreted as
the normal curve.

16.8. Exercises

Workbook: SemiLogEarningsFn.xls

In Chapter 6, we used the data in the EducWageData sheet in the SemiLogEarn-
ingsFn.xls workbook to regress education on wages. At that time, we did not have a
model of the data generation process. Therefore, regression analysis was used strictly
as a description of the data.

These exercise questions return to that data set, but this time we will use the esti-
mated standard errors to create confidence intervals and perform tests of significance.
For the purposes of these questions, we simply assert that the data generation process
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follows the classical econometric model. We consider two models:

Linear Model : Wagei = β0 + β1 Educationi + εi

Semilog Model : ln Wagei = β0 + β1 Educationi + εi

1. Open SemiLogEarningsFn.xls (in the Chapter 6 folder on the CD-ROM) and pro-
ceed to the EducWageData sheet. Use the Regression option in Excel’s Data Anal-
ysis add-in to run regressions on the two models. Use the Confidence Level option
to create a 90-percent confidence interval for the Education variable. Report your
results in a nicely formatted table with SEs in parentheses under the parameter
estimates.

2. In Chapter 6, we interpreted the coefficients on Education in the two models.
For the Linear Model, one more year of education is associated with an addi-
tional $1.65 per hour in the wage. The interpretation of the Semi-Log Model is
different: each additional year of education is associated with a wage increase of
approximately 10 percent. But now we are treating the data as a sample and the
coefficients are viewed as random variables. For each model, interpret the coef-
ficient on Education, including information that expresses the variability in the
estimate.

3. In your work for Question 1, the Data Analysis: Regression output generated
95-percent and 90-percent confidence intervals. Explain why the 90-percent inter-
vals are smaller.

4. For the Linear Model, conduct a two-tailed test of the claim that education has
no effect on wage. Your answer should include clearly stated null and alternative
hypotheses, a test statistic, a P-value, and a decision on rejecting or not rejecting
the null.

5. Trying to convince her son to go to college, mom (who happens to be an econo-
metrician) argues that the rate of return to education is incredibly statistically
significant, and this proves that college is worth it. What do you think of this
logic?

6. For the Semilog Model, we want to conduct a two-tailed test of the claim that the
true rate of return for one more year of education (i.e., β1) is 8 percent. Why is it
not possible to use the reported P-value from Excel’s Data Analysis: Regression
output to answer this question?

7. Use the P Value Calculator add-in (see Section 10.5 for instructions) to conduct
a two-tailed test of the claim that the true rate of return for one more year of
education (i.e., β1) is 8 percent. Show all of your work. What do you conclude?
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other observational sciences. Econometrics will survive, but it will come at last to emphasize
economic rather than statistical significance. We should of course worry some about the pre-
cision of the estimates, but as Leamer has pointed out the imprecision usually comes from
sources other than too small a sample. (p. 114)
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Joint Hypothesis Testing

“Well”, [Pearson] said “I do not know how old I was, but I was sitting in a high
chair and I was sucking my thumb. Someone told me to stop sucking it and said that
unless I did so the thumb would wither away. I put my two thumbs together and
looked at them for a long time. ‘They look alike to me,’ I said to myself. ‘I can’t see
that the thumb I suck is any smaller than the other. I wonder if she could be lying
to me.’”

Walker (1958, p. 13)

17.1. Introduction

Chapter 16 shows how to test a hypothesis about a single slope parameter in a
regression equation. This chapter explains how to test hypotheses about more
than one of the parameters in a multiple regression model. Simultaneous
multiple parameter hypothesis testing generally requires constructing a test
statistic that measures the difference in fit between two versions of the same
model.

An Example of a Test Involving More than One Parameter

One of the central tasks in economics is explaining savings behavior. National
savings rates vary considerably across countries, and the United States has
been at the low end in recent decades. Most studies of savings behavior by
economists look at strictly economic determinants of savings. Differences
in national savings rates, however, seem to reflect more than just differ-
ences in the economic environment. In a study of individual savings behav-
ior, Carroll et al. (1999) examined the hypothesis that cultural factors play
a role. Specifically, they asked the question, Does national origin help to
explain differences in savings rate across a group of immigrants to the United
States? Using 1980 and 1990 U.S. Census data with data on immigrants
from 16 countries and on native-born Americans, Carroll et al. estimated

453
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a model similar to the following:1

Savings Rateh = β0 + β1 · Ageh + β2 · Educationh + β3 · Argentinah

+β4 · Chinah + · · · + εh.

For reasons that will become obvious, we call this the unrestricted model.
The dependent variable is the household savings rate. Age and education
measure, respectively, the age and education of the household head (both in
years). The error term reflects omitted variables that affect savings rates as
well as the influence of luck. The subscript h indexes households. A series
of 16 dummy variables indicate the national origin of the immigrants; for
example, Chinah = 1 if both husband and wife in household h were Chinese
immigrants.2 Suppose that the value for the coefficient multiplying China is
0.12. This would indicate that, with other factors controlled, immigrants of
Chinese origin have a savings rate 12 percentage points higher than the base
case (which in this regression consists of people who were born in the United
States).

If there are no cultural effects on savings, then all the coefficients multiply-
ing the dummy variables for national origin ought to be equal to each other.
In other words, if culture does not matter, national origin ought not to affect
savings rates ceteris paribus. This is a null hypothesis involving 16 parameters
and 16 equal signs:

Null hypothesis : β3 = β4 = · · · = β18 = 0.

The alternative hypothesis simply negates the null hypothesis, meaning that
immigrants from at least one country have different savings rates than immi-
grants from other countries:

Alternative hypothesis : Not β3 = β4 = · · · = β18 = 0.

Now, if the null hypothesis is true, then an alternative, simpler model
describes the data generation process:

Savings Rateh = β0 + β1 · Ageh + β2 · Educationh + εh.

Relative to the original model, the one above is a restricted model. We can
test the null hypothesis with a new test statistic, the F-statistic, which essen-
tially measures the difference between the fit of the original and restricted
models above. The test is known as an F-test. The F-statistic will not have a
normal distribution. Under the often-made assumption that the error terms

1 Their actual model is, not surprisingly, substantially more complicated.
2 There were 17 countries of origin in the study, including 900 households selected at random from the

United States. Only married couples from the same country of origin were included in the sample. Other
restrictions were that the household head must have been older than 35 and younger than 50 in 1980.
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are normally distributed, when the null is true, the test statistic follows an F-
distribution, which accounts for the name of the statistic. We will need to learn
about the F- and the related chi-square distributions in order to calculate the
P-value for the F-test.

F-Test Basics

The F-distribution is named after Ronald A. Fisher, a leading statistician of
the first half of the twentieth century. This chapter demonstrates that the F-
distribution is a ratio of two chi-square random variables and that, as the
number of observations increases, the F-distribution comes to resemble the
chi-square distribution. Karl Pearson popularized the chi-square distribution
beginning in 1900.

The Whole Model F-Test (discussed in Section 17.2) is commonly used as
a test of the overall significance of the included independent variables in a
regression model. In fact, it is so often used that Excel’s LINEST function and
most other statistical software report this statistic. We will show that there
are many other F-tests that facilitate tests of a variety of competing models.

The idea that there are competing models opens the door to a difficult
question: How do we decide which model is the right one? One way to answer
this question is with an F-test. At first glance, one might consider measures
of fit such as R2 or the sum of squared residuals (SSR) as a guide. But these
statistics have a serious weakness – as you include additional independent
variables, the R2 and SSR are guaranteed (practically speaking) to improve.
Thus, naive reliance on these measures of fit leads to kitchen sink regression –
that is, we throw in as many variables as we can find (the proverbial kitchen
sink) in an effort to optimize the fit.

The problem with kitchen sink regression is that, for a particular sample, it
will yield a higher R2 or lower SSR than a regression with fewer X variables,
but the true model may be the one with the smaller number of X variables.
This will be shown via a concrete example in Section 17.5.

The F-test provides a way to discriminate between alternative models. It
recognizes that there will be differences in measures of fit when one model
is compared with another, but it requires that the loss of fit be substantial
enough to reject the reduced model.

Organization

In general, the F-test can be used to test any restriction on the parameters in
the equation. The idea of a restricted regression is fundamental to the logic
of the F-test, and thus it is discussed in detail in the next section. Because
the F-distribution is actually the ratio of two chi-square (χ2) distributed
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random variables (divided by their respective degrees of freedom), Sec-
tion 17.3 explains the chi-square distribution and points out that, when the
errors are normally distributed, the sum of squared residuals is a random vari-
able with a chi-square distribution. Section 17.4 demonstrates that the ratio
of two chi-square distributed random variables is an F-distributed random
variable. The remaining sections of this chapter put the F-statistic into prac-
tice. Section 17.5 does so in the context of Galileo’s model of acceleration,
whereas Section 17.6 considers an example involving food stamps. We use
the food stamp example to show that, when the restriction involves a single
equals sign, one can rewrite the original model to make it possible to employ
a t-test instead of an F-test. The t- and F-tests yield equivalent results in such
cases. We apply the F-test to a real-world example in Section 17.7. Finally,
Section 17.8 discusses multicollinearity and the distinction between confi-
dence intervals for a single parameter and confidence regions for multiple
parameters.

17.2. Restricted Regression

Workbook: NoInterceptBug.xls

The first step in understanding the F-test is appreciating the idea of a restricted
regression. After describing exactly what is being restricted, we offer several
types of restrictions as examples. The word restricted in this context is syn-
onymous with constrained or limited. What is being restricted is the values
of the coefficients that can be used to minimize the SSR (in order to fit the
least squares line). In an unrestricted regression, we are free to choose any
values of the coefficients (intercept and slope terms) from negative to posi-
tive infinity. Anything that does not allow the coefficients to be freely chosen
can be considered a type of restriction.

Three Examples

There are many kinds of restrictions that can be imposed on a linear regression
equation. Let us examine three examples. Consider the following regression
model:

Yi = β0 + β1 X1i + β2 X2i + εi .

If apply the restriction or constraint that β2 = 0, then we can write the
restricted regression version as

Yi = β0 + β1 X1i + εi .



P1: JZZ
0521843197c17 CB962B/Barretto 0 521 84319 7 November 6, 2005 19:57

Restricted Regression 457

Not surprisingly, when comparing these two regressions, the unrestricted
regression is often called the long regression, and the restricted specification
is dubbed the short regression. Of course, the unrestricted regression in this
comparison becomes a restricted or short regression if we include another
X variable in the model. Thus, the labels, short and long, describing regression
are used to compare two regression equations and not as absolute terms.

Another kind of restriction often applied is called regression through the
origin. This restriction forces the intercept to be zero:

Yi = β1 X1i + β2 X2i + εi .

Unfortunately, in versions prior to Excel 2003, Excel suffers from a bug that
incorrectly computes the regression SSR, R2, and F-statistic (for the whole
model F-test that is explained below in this section) when there is no intercept.
The Excel workbook NoInterceptBug.xls offers an example of the bug when
regression without a constant term is done with Trendline, LINEST, and
Data Analysis: Regression. Although the problem with the reported results
is obvious in the example provided in the workbook, this will not always be
the case.3

A third type of restriction is to zero out all of the explanatory models,
leaving a severely stripped-down regression equation:

Yi = β0 + εi .

This regression equation says, in effect, that none of the explanatory (or X)
variables matter at all (i.e., that the true parameters multiplying the X’s all
equal 0). The test of the original model against the intercept model is the
whole-model F-test that most software (including Excel’s LINEST) promi-
nently reports. In this case, the number of constraints is the number of slope
parameters in the model.

There are many other restrictions that can be applied to regression equa-
tions. Forcing one slope parameter to equal another is a form of restricted
regression. In fact, the single-parameter hypothesis (z- or t)-test covered
in the previous chapter is a special case of restricted regression because it
amounts to imposing the restriction that a single-slope parameter be equal
to a particular value (be it zero or any other constant).

3 In regression through the origin, it is possible for the R2 as we have defined it to be negative. Intuitively,
this can happen because the line of average Y may do a better job than the constrained regression in
explaining the overall variation in Y. Many statistical packages and Excel 2003 redefine R2 as follows
when there is no intercept:

R2 = 1 − SSR∑n
i=1 Y2

i

.
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Summary

The idea of restrictions in regression equations is a powerful, ubiquitous
concept. In every case, it means that some kind of constraint or limitation has
been placed on the coefficient values in fitting an equation to a set of data.
The next section is a first step toward understanding how the F-distribution
is used in joint hypothesis testing.

17.3. The Chi-Square Distribution

Workbook: ChiSquareDist.xls

Because the F-distribution is the ratio of two chi-square distributed ran-
dom variables, understanding the chi-square distribution is a prerequisite for
understanding the F-distribution.

If the realized values of a normally distributed variable are squared and
then summed, the sums are not normally distributed. In 1900, Karl Pear-
son worked out the distribution of the sum of squared normally distributed
random variables and named it the chi-square (χ2) distribution.4 (The nor-
mally distributed random variables must have mean zero and SD one.) If you
take the ratio of two independent random variables each having a chi-square
distribution, you get a variable with an F-distribution.

The explanation above is fairly abstract. It might help to think about this
more concretely: If we take a simple random sample from a box with normally
distributed tickets and sum the draws, and then repeat the procedure for many
more samples, the resulting distribution of the sum of the draws is normal.
The sample average will also have a normal distribution because it is the sum
of the draws divided by the number of draws.

But if we multiplied the draws, the resulting distribution of the product of
the draws would not be normal. The key idea here is that there are various
numerical recipes that can be applied to the sample data. For any recipe, the
resulting outcome will have a particular distribution that may not necessarily
be normally distributed. We presented this idea in the previous chapter when
we showed that the LINEST statistics are random variables and have sam-
pling distributions, but they are not necessarily normally distributed (such as
the RMSE and R2).

If we apply a more complicated recipe than the sum to a normally dis-
tributed random variable (with mean 0 and SD 1), first squaring the val-
ues and then summing them, the resulting distribution is not normal but

4 Pearson also gave modern statistics many other terms and concepts including normal curve, kurtosis,
skedasticity (and its two primary types, homoskedasticity and heteroskedasticity), standard deviation,
and the Greek letter sigma (σ ) as a symbol for the SD. See Walker (1958).
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chi-square. The number of random variables squared and summed is called
the “degrees of freedom” of the chi-square distribution.

Open the Excel workbook ChiSquareDist.xls to see an implementation
of the chi-square recipe. Each sheet has a number for its name that indi-
cates the degrees of freedom (or number of random variables being squared
and summed). Look in several of the numbered sheets. Click on the cells in
columns B and C and note the formulas being used. Column B reports the
total, or sum, of the realized normally distributed random variables. Notice
how each value in column C is simply the square of the value in column B.
Summing the squared values in column C generates a realization of a single
draw from a chi-square distribution. Hit F9 to recalculate the sheet and draw
another single value from the chi-square distribution.

From the 1 sheet, click the  Draw Empirical
Histograms button to create your own Monte

Carlo approximation to the chi-square distribution with one degree of free-
dom. Enter the number of repetitions and click OK. Excel will then draw as
many normally distributed random numbers as indicated by the sheet name
and sum them. The pink histogram and summary statistics text show the
empirical distribution of the sum of the normal draws for as many repetitions
as you selected. At the same time, Excel squares each normally distributed
value and sums the squares. The resulting blue histogram is a Monte Carlo
approximation to the probability density function of the chi-square distri-
bution. The more repetitions you request, the closer the pink and blue his-
tograms will get to the exact normal and chi-square distributions, respectively.

The chi-square distribution is skewed right for small values of the degrees-
of-freedom parameter that controls the chi-square distribution. The sheets
of the workbook make this clear. Figure 17.3.1 displays an approximation

Sum of Draws  Sum of Squared Draws
Average 0.127 24.961
SD 4.881 6.989
Max 20.051 52.127
Min −15.873 8.424

Empirical Histogram for 1000 Repetitions

−20 0 20 40 60

Sum of Draws 

Sum of Squared Draws

Figure 17.3.1. A chi-square random variable with 25 degrees of freedom versus a
normally distributed random variable.
Source: [ChiSquareDist.xls]25.
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(based on 10,000 draws) of the chi-square distribution resulting from the
summation of 25 squared normal random draws.

Squaring the draws gives a distribution that is everywhere positive and
skewed to the right. It is clearly not normal. In fact, it is chi-square.

As the number of degrees of freedom increases, the chi-square distribu-
tion approaches the normal distribution. Click on the 50 sheet to convince
yourself of this fact. Create chi-square distributions with greater degrees of
freedom to demonstrate this convergence. The expected value of the chi-
square distribution is the number of degrees of freedom, whereas the SD of
the chi-square distribution is the square root of twice the number of degrees
of freedom.

With Normally Distributed Errors, the SSR is Chi-Square Distributed

The chi-square distribution finds its most direct application in regression with
the sum of squared residuals. Assume that the classical econometric model
applies. Then if, in addition, the error terms are normally distributed, the sum
of squared residuals will be exactly chi-square distributed with the number of
degrees of freedom equal to the number of observations minus the number
of parameters being estimated.

This fact makes sense when you consider the recipe being applied to gener-
ate the SSR. The residuals are simply realizations of the observed Y’s minus
the deterministic component (b0 + b1X in a bivariate regression). The residu-
als are good estimates of the errors. When the errors are normally distributed
with mean zero and we square and sum them, per the SSR recipe, we are
essentially creating a chi-square realization! There are two additional details
we must mention. First, there is the nasty fact that the number of degrees
of freedom seems wrong – it is not the number of squared residuals but
rather that number less the number of parameters being estimated. Second,
when the SD of the underlying normally distributed errors is not 1, the dis-
tribution of the SSR is scaled up by the variance of the error terms. Thus,
it is the SSR divided by the variance of the errors that is distributed chi-
square.

Summary

This section has shown that if a given number of realizations from a standard
normally distributed random variable are squared and then summed, the
resulting distribution is chi-square. The next section demonstrates that the
ratio of two chi-square-distributed random variables is F-distributed.



P1: JZZ
0521843197c17 CB962B/Barretto 0 521 84319 7 November 6, 2005 19:57

The F-Distribution 461

17.4. The F-Distribution

Workbook: FDist.xls

The Excel workbook FDist.xls demonstrates that, if a random variable that
is chi-square distributed is divided by its number of degrees of freedom and
then a second random variable that is distributed chi-square is divided by its
number of degrees of freedom, and then finally the ratio of these variables is
formed, an F-distributed random variable will result.

The FDist.xls workbook works just like the ChiSquareDist.xls workbook
from the previous section. Each sheet name reveals the degrees of freedom
for the numerator and denominator in the F-distribution.

The F-distribution requires two degrees-of-freedom parameters – one for
the chi-square in the numerator and another for the chi-square in the denom-
inator. They need not be the same. For example, you can click the Create My Own

button and create an F-distribution with 10 degrees of freedom in the numer-
ator and 5 in the denominator. Figure 17.4.1 displays a histogram of a Monte
Carlo approximation to the probability density function of the F (5,5) random
variable. Because the F-distribution has a very long right-hand tail when the
number of degrees of freedom is small, we have cut off the display, collapsing
all of the top 2 percent of the values into the last bin on the right. For example,
in Figure 17.4.1 every outcome with a value of 7.7 or above is collapsed into
the bin running from 7.7 to 7.95.

VERY long tail
is collapsed
in last category

Ratio of Sum of Squared Draws (adj for df)
Average 1.818
SD 5.726
Max 146.633
Min 0.071

Empirical Histogram for 1000
Repetitions

0 2 4 6 8 10

Figure 17.4.1. An empirical approximation to the F-distribution with
degrees of freedom (5,5).
Source: [FDist.xls]5.5.
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Summary

This section and the previous one are simply building blocks. They are
designed to acquaint you with two basic distributions, the chi-square and F.
The next sections in this chapter provide examples of how the F-distribution
can be used with a restricted regression to test a variety of hypotheses.

17.5. An F-Test: The Galileo Example

Workbook: FDistGalileo.xls

The previous sections have defined the F-distribution as the ratio of two chi-
square random variables and have shown the F-distribution for a variety of
degrees-of-freedom values. This section offers our first application of an F-
test. We begin with a general description of the test and then apply it to the
Galileo functional form example introduced in Section 6.2.

The General Idea Behind the F-Test

The basic idea behind the F-test is the following: We compare the fit of a
restricted model to that of an unrestricted model using the sum of squared
residuals (SSR) as our guide. Because, practically speaking, a restriction will
increase the SSR, we must determine if the restriction is large enough to
warrant rejecting the restricted model. If the difference in fit between the
two models is not very big and could have resulted from chance alone, then
we decide in favor of the restricted model. If the difference is big, and chance
alone is an unlikely explanation, we reject the restricted model.

To implement the test, we need a way to measure fit and a way to decide if
the difference in fit is big or small. We measure fit by working with the SSR.
The percentage loss in fit is the difference between the SSR of the restricted
model and the SSR of the unrestricted model divided by the SSR of the
unrestricted model:

Percentage Loss of Fit

= Restricted Sum of Squared Residuals − Unrestricted Sum of Squared Residuals
Unrestricted Sum of Squared Residuals

.

For technical reasons, to ensure the statistic follows the F-distribution
under the null hypothesis, we must adjust the numerator and denominator;
thus, the actual F-statistic looks like this:

F-statistic =
Restricted SSR − Unrestricted SSR

Number of Constraints
Unrestricted SSR

Number of Observations − Number of Parameters Estimated

,
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Degrees of freedom in the numerator = Number of Constraints

Degrees of freedom in the denominator = Number of Observations

−Number of Parameters Estimated.

The F-test procedure strongly resembles other tests of significance. We
locate the resulting ratio on a graph of the appropriate F-distribution (i.e.,
the one with correct numerator and denominator degrees of freedom). This
allows us to find a P-value, and then we use that value in the customary way.
The P-value tells us, given that the null hypothesis is true, the probability of
obtaining a result like the observed result or one that is even more extreme. If
the P-value is large (above 5 percent is the typical standard, though sometimes
1 percent is used), we do not reject the null hypothesis. That is, we decide for
the restricted version of the model. If the P-value is small (below 5 percent,
sometimes below 1 percent), then we reject the restricted version in favor of
the unrestricted version.

There is one subtle point about the construction of the F-statistic in this
case. When the errors are normally distributed, the actual distribution of
the Unrestricted SSR is chi-square (n − k), where n is the number of obser-
vations and k is the number of parameters multiplied by the variance of
the error terms. The difference in SSRs, the Restricted SSR less the Unre-
stricted SSR, however, also follows a chi-square distribution that has been
scaled up by the variance of the error terms. The variance of the error terms
present in both the numerator and the denominator cancels out, and the
resulting statistic is distributed according to the F-distribution under the null
hypothesis.

Applying the F-Test to the Galileo Example

Let us look at an example that has been considered before: the data on
the distance traveled by a falling object that was analyzed by our fictional
Galileo. You will recall that Galileo had strong theoretical reasons for pre-
ferring a parsimonious model of the relationship between distance and time.
He believed that objects accelerate as they fall toward earth. Thus, dis-
tance should increase in proportion to the square of the amount of time
that the object had fallen. Furthermore, Galileo thought the rate of accel-
eration to be constant. That would require that distance not depend on
time in addition to the square of time. Finally, Galileo knew that the dis-
tance traveled cannot be anything but zero at time zero. These consid-
erations suggested that the restricted model, Distance = β2Time2 + ε, is a
good description of the behavior of falling objects. The unrestricted model,
Distance = β0 + β1Time+ β2Time2 + ε, is more flexible, but Galileo thought
his version to be correct.
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Note that we are describing a hypothesis test in which the null hypothesis
says that the restricted version is true, whereas the alternative says it is not.
Interestingly, the traditional roles of null as a straw man and the alternative
as the thing we really believe in are frequently reversed in this application of
testing methodology. With F-tests, economists often have a sharper version
of the theory that they think may well be true – this is the null hypothesis; the
straw man may instead be the weak version of the theory – the alternative
hypothesis.

The workbook FDistGalileo.xls contains several sheets. The Solver sheet
demonstrates how the restricted version of the model can be viewed as a
constrained optimization problem (using Solver). The Solver sheet makes
clear that the restricted regression has a larger SSR because the constrained
optimization problem is not free to choose values of b0 and b1. To run Solver
on the unrestricted problem, execute Tools: Solver; then click on the Options
button. Click the Load Model button and select the cell range (in yellow)
from R9:R13. After asking whether you wish to reset previous Solver cell
selections (you should click OK), Solver incorporates this Solver Model into
the Solver Dialog box. You are asking Solver to minimize the value in cell
Q13 (the SSR) by changing cells Q9 through Q11 (the intercept and slope
parameters). Click Solve to have Solver compute the unrestricted regression
solution.

To add the constraints that the intercept and slope on time (b0 and b1)
must be equal to 0, use the Load Model approach again by loading the Solver
Model in cells Z9:Z13. This time Solver will minimize the SSR but will impose
the restriction. You should be able to reproduce, with Solver, exactly the same
b2 and SSR values provided by LINEST. Solver’s solutions to the restricted
and unrestricted optimization problems of minimizing the SSR are shown in
Figure 17.5.1.

The Example sheet is live. Every time the sheet is recalculated, a new
sample based on 50 draws from a normally distributed error box is created.

Unrestricted Optimization

b0 4.728

b1 −6.438

b2 11.885

min SSR 745.762

Restricted Optimization

b0 0

b1 0

b2 9.91966

min SSR 889.236

Figure 17.5.1. Solver solutions to unrestricted and restricted problems of minimizing
the SSR.
Source: [FDistGalileo.xls]Solver.
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Predicted Distance versus Time
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Figure 17.5.2(a). Unrestricted versus restricted model.

b2 b1 b0 Slope Intercept

8.15 0.31 2.73 9.05 0.00

1.37 3.47 1.84 0.25 #N/A

0.92 4.50 #N/A 0.96 4.82

281.34 47 #N/A 1307.29 49.00

11,414         953       #N/A 30395.95 1,139 

Unrestricted Regression Restricted Regression

Figure 17.5.2(b). Regression results for unrestricted and restricted models. The SSRs
are emphasized.
Source: [FDistGalileo.xls]Example.

The X values are held fixed. Hit F9 a few times and keep your eye on the F7
and I7 cells. The minimum SSR of the restricted regression is always greater
than its unrestricted counterpart.

In Figure 17.5.2 we deliberately picked an example in which there is appar-
ently a big difference between the two models. The unrestricted regression
is the higher curve through most of the range.

The FTestProc sheet enables repeated testing of samples from the Example
sheet to be done. Figure 17.5.3 shows the procedure for implementing the F-
test using the data in our example.
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The F-Test
SSR for null (Galileo is right)

Restricted Model 1139

SSR for alternative hypothesis
Unrestricted Model 953

Intuition:
If the deviation of the Restricted from the Unrestricted Model is large, 

we reject the null that β0 and β1 are zero

Getting the F-Test Exactly Right:

Additional Information for the F-Statistic
Number of Constraints

Number of Observations 50
Number of Parameters Estimated 3

F-Statistic P-Value
4.58657 1.51%

Significance Level
5%

Reject Restricted Regression?
Yes

Number of Observations  −  Number of  Parameters Estimated 

Unrestricted Sum of  Squared Residuals 

Number of Constraints 

Residuals Sum of  Squared Residuals − Unrestricted Sum of  Squared Restricted

Fstatistic =

2

Figure 17.5.3. A single-sample implementation of the F-test.
Source: [FDistGalileo.xls]FTestProc.

In the example of Figure 17.5.3, we have implemented the procedure for
an F-test. At conventional levels of significance, we would incorrectly reject
the restricted model because its loss of fit is large enough to conclude that
something other than chance alone is responsible for the difference in the fit
of the two models.

The Run SSR
MC and Run F Stat

MC buttons in the Example sheet take you to the
MCSSR and MCF sheets, where you can run Monte Carlo simulations of the
Unrestricted SSR and the F-statistic. For now, we assume that the error terms
are normally distributed. The Monte Carlo approximation of the F-statistic’s
sampling distribution when the null is true for the Galileo example looks like
Figure 17.5.4.

The superimposed curve is the actual F(2, 47) distribution. It fits the Monte
Carlo–generated empirical histogram quite well because, when the null is
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# Constraints 2
Average 1.041 # Observations 50
SD 1.098 # Parameters 3
Max 13.117 Error Box Normal
Min 0.000 % Rejected at 5% 4.86%

1

Sample F Summary Statistics

Empirical Histogram for 10,000 Repetitions
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Figure 17.5.4. The approximate F-distribution for the Galileo example.
Source: [FDistGalileo.xls]MCF.

true, the F-statistic really is F-distributed. The “% Rejected at 5%” box
reports the fraction of repetitions that produced an F-statistic greater than
the value associated with a 5-percent level of significance. If all is well, this
should read about 5 percent. In this case, the F-statistic is working very well.

Nonnormal Errors

What happens when the error terms are not normally distributed? We have
given you the option of running Monte Carlo experiments using uniformly
and exponentially distributed errors and also the ability to adjust the sample
size.5 You will find that the probability histogram for the SSR deviates quite
considerably from the chi-square distribution when the errors are nonnormal
and the sample size is small. Surprisingly, however, the F-statistic, which
depends on the SSR, is much more resilient. The probability histograms for
the F-statistics look fairly close to being F-distributed even when the errors
are exponentially distributed and the sample size is small. The tail is a little
“too fat” in such cases: We tend to reject the true null too often.

Summary

We conclude this section with a list of the steps for performing an F-test:

1. Identify the restricted and unrestricted models.
2. Run each model and find the SSR for each model.
3. Calculate the F-statistic.

5 The file ExponentialDist.xls in the\Basic Tools\RandomNumber folder discusses the exponential
distribution.
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4. Find the P-value using the F-distribution with the correct degrees of freedom for
the numerator and denominator.

5. Reach a conclusion about the null.

The F-test can be used to test a large variety of possible hypotheses in a regres-
sion model. Strictly speaking, the F-test requires the additional assumption
not contained in the CEM that the error terms are normally distributed.
Monte Carlo evidence, however, shows that it can be fairly resilient to non-
normal errors. In the sections that follow, we consider a few of the possibilities.

17.6. F- and T-Tests for Equality of Two Parameters

Workbook: FDistFoodStamps.xls

In this section we show how to test a restriction stating that two parameters
in the model are equal. We will demonstrate use of the F-statistic and the
t-statistic to test such single-constraint restrictions. We will use a fictional
example based on a real question to illustrate our discussion.

Suppose we want to know whether an additional dollar of food stamps has
the same impact on the demand for food as does an additional dollar of cash
income. Economic theory says that, if people would ordinarily spend more
on food than they receive in food stamps, then the receipt of food stamps
should have the same effect on people as cash income. But whether people
treat food stamps the same as cash remains an open question that requires
empirical analysis.6

The following model could be used to examine this question:

Food Purchases = β0 + β1 Number of adults in family

+ β2 Number of children in family

+ β3 Cash Income

+ β4 Value of Food Stamps + ε.

We assume that the classical econometric model applies. In more compact
notation, the unrestricted model reads like this:

Yi = β0 + β1 X1i + β2 X2i + β3 X3i + β4 X4i + εi , i = 1, . . . , n.

The null hypothesis we want to test involves more than one parameter. In
terms of the parameters, the null and alternative hypotheses read as follows:

Null Hypothesis : β3 = β4.

Alternative Hypothesis : β3 	= β4.

6 See Whitmore (2002) for recent evidence on the cash-equivalent value families place on food stamps.
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ββββ0 200

ββββ1 600

ββββ2 400

ββββ3 0.3

ββββ4 0.3

SD(Errors) 100
Figure 17.6.1. Parameter values for food stamps example.
Source: [FDistFoodStamps.xls]Example.

To test this hypothesis, let us write the restricted model as follows:

Yi = β0 + β1 X1i + β2 X2i + γ (X3i + X4i ) + εi , i = 1, . . . , n.

Here γ stands for the common parameter that multiplies both Cash Income
and Value of Food Stamps. To use the F-test, we employ a trick: We define a
new variable that is just the sum of Cash Income and Value of Food Stamps
and run the restricted regression using that new variable.

Open the Excel workbook FDistFoodStamps.xls and go to the Example
sheet. You will see a fictional data set with 50 observations and four indepen-
dent variables (cell range A9:E59, labels included). Notice that we have set
up the sheet so that the null hypothesis is true – β3 really does equal β4. The
values of the parameters in our example are shown in Figure 17.6.1. If your
workbook has different values, click on the Reset button to restore them to
those in our example.

Using LINEST, we estimate the restricted (D1:H7) and unrestricted
(I1:L7) regression models. This sheet is live, and thus a new sample is drawn
every time it is recalculated. Figure 17.6.2 is an example of the results.

On the Example sheet, hit F9 a few times while watching the SSR reported
by LINEST for the two models. As in the preceding results, the restricted
regression always has a higher SSR than the unrestricted regression. Is the
performance loss severe enough, however, to lead us to reject the restricted
model?

b4 b3 b2 b1 b0 g b2 b1 b0

0.26 0.30 398.73 584.09 266.80 0.30 398.10 584.18 248.87

0.04 0.01 26.83 9.18 53.55 0.00 26.72 9.14 48.67

1.00 99.58 #N/A #N/A #N/A 1.00 99.22 #N/A #N/A

3574.13 45 #N/A #N/A #N/A 4800.02 46.00 #N/A #N/A

1.42E+08 446,223       #N/A #N/A #N/A 1.42E+08 452,838        #N/A #N/A

Unrestricted: Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε Restricted: Y = β0 + β1X1 + β2X2 + γ(X3 + X4) + ε

 

εεβ β β β β β β β

Figure 17.6.2. Unrestricted and restricted regression results.
Source: [FDistFoodStamps.xls]Example.
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The question is answered via an F-test. The F-statistic for our example
would be computed as follows:

F-statistic = (SSRRestricted − SSRUnrestricted)/#Constraints
SSRUnrestricted/(n − k)

= (452,838 − 446,223)/1
446,223/(50 − 5)

= 0.67.

The intuition behind the construction of this test statistic is as follows: If food
stamps are treated the same as cash, then the restricted model should do
almost as well as the unrestricted one. We need some measure of how big
a difference exists between the two models. That is supplied by taking into
account the number of restrictions (in this case only 1) and the fit supplied
by the unrestricted model (its SSR adjusted by the number of degrees of
freedom). Both numerator and denominator in the F-statistic are scaled by
the variance of the error terms; this factor cancels.

Notice that there is just one constraint in this hypothesis. The P-value is
reported in cell J9. The cell formula reveals that we simply asked for the
area under the F-distribution (with numerator degrees of freedom 1 and
denominator degrees of freedom n −k, or 45) that is to the right of the F-
statistic. Because the P-value in our example is 42 percent, we do not reject
the null that the restricted model is correct. This is good news because the
null is true.

Another way to gain some intuition on what is going on with this F-test is to
explore the Raw Loss of Fit Measures area of the Example sheet (beginning
in cell G13). Hit F9 and watch the P-value (J9), Percentage Difference (H19),
and b3, b4 coefficients (H24:I25). The coefficients in cells I24 and I25 bounce
but are restricted to be equal, whereas they are unrestricted in the H24 and
H25 cells. Notice that only when the gap between the coefficients is large do
we reject the null that the restricted model is correct. Figure 17.6.3 gives an
example in which the (true) null is rejected.

In this sample, the null is rejected (incorrectly) because we happened to
get a sample in which the unrestricted regression minimized the SSR with
a large deviation between the coefficients on food stamps and cash income.
When you choose a 5-percent level of significance, this will happen only about
1 in 20 times in situations in which the null is true and either the errors are
normally distributed or there are a large number of observations.

The FTestProc sheet shows the recipe for conducting the F-test as repro-
duced in Figure 17.6.4. Notice that the procedure is identical to that used for
the FDistGalileo.xls F-test. In fact, no matter the form of the restriction, the
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F-Stat 9.992 P-value 0.3%

Difference
(Restricted SSR − Unrestricted SSR)

110679
Percentage Difference
(Restricted SSR − Unrestricted SSR)/Unrestricted SSR

22.2%

Unrestricted Restricted
b0 124.70 198.03

b1 606.62 606.24

b2 345.08 347.66

b3 0.29 0.31
b4 0.45 0.31

Raw Loss-of-Fit Measures

Figure 17.6.3. A sample in which we would reject the true null at the
5-percent level of significance.
Source: [FDistFoodStamps.xls]Example.

The F-Test
SSR for null (Cash and Food Stamps are the same)

Restricted Model

SSR for Alternative Hypothesis
Unrestricted Model 413148

Intuition:
If the deviation of the Restricted from the Unrestricted Model is large, 

we reject the null that β3 equals β4 

Getting the F-Test Exactly Right:

Additional Information for the F-Statistic
Number of Constraints

Number of Observations 50
Number of Parameters Estimated

F-statistic P-value
1.77474 18.95%

Significance Level 5%

Reject Restricted Regression? No

Number of  Observations − Number of  Parameters Estimated  

Unrestricted Sum of Squared Residuals

Number of Constraints 

Restricted Sum of Squared Residuals − Unrestricted Sum of Squared Residuals     

F-statistic =

429442

1

5

Figure 17.6.4. Running an F-test.
Source: [FDistFoodStamps.xls]FTestProc.
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Average 1.04 # Constraints

SD 1.49 # Observations 50

Max 18.02 # Parameters 5

Min 0.00 % Rejected at 5% 5.06%

β0 200

β1 600

β2 400

β3 0.3

β4 0.3

SD(Errors) 500

Sample F-statistic Summary 
Statistics

True ParametersEmpirical Histogram for 10000 Repetitions
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Figure 17.6.5. F-statistics for true null hypothesis.
Source: [FDistFoodStamps.xls]MCF.

same procedure is used to conduct the F-test. You can use FTestProc sheet
as a template to conduct your own F-tests.

Monte Carlo Evidence

Because the value of the true parameters can be controlled, we can inves-
tigate how the F-statistic behaves across samples when the null hypothesis is
true. To perform this investigation, go to the MCF sheet. Figure 17.6.5 shows
results from a Monte Carlo experiment with 10,000 repetitions.

In our example, the number of constraints is 1 and the number of obser-
vations minus the number of parameters is 45. If the null hypothesis is true,
the fraction of repetitions producing F-statistics above 4.06 ought to be about
5 percent (for an F(1,45) distribution), and the empirical histogram for the
Monte Carlo repetitions ought to closely follow the entire F (1,45) distribu-
tion. Both these conditions were met in our experiment. The “% Rejected
at 5%” box shows what fraction of the repetitions produced an F-statistic
greater than 4.06. The green line in the graph (on your computer screen) is a
superimposed F(1,45) distribution.

To see how the F-test performs when the null is not true, go back to the
Example sheet and change the value of β3 to 0.6, holding the other param-
eter values constant. We did this and obtained the results depicted in Fig-
ure 17.6.6.
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Average 2.67 # Constraints

SD 3.16 # Observations 50

Max 32.68 # Parameters 5

Min 0.00 % Rejected at 5% 22.82%

β0 200

β1 600

β2 400

β3 0.6

β4 0.3

SD(Errors) 500

Sample F-statistic Summary 
Statistics

True  ParametersEmpirical Histogram for 10000 Repetitions
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Figure 17.6.6. F-statistics for false null hypothesis.
Source: [FDistFoodStamps.xls]MCF.

The F-statistic is large enough to reject the null hypothesis about 23 per-
cent of the time using the 5-percent level of significance (once again that is
the 4.06 cutoff). The good news is that we are about four times more likely to
reject this false null hypothesis than the true null hypothesis. The bad news
is that in these circumstances there is still about a 77-percent chance that we
will draw the incorrect inference – namely that the propensities to consume
food out of income and food stamps are the same. You can experiment to
show that the greater the difference between the true food stamp and income
parameters, the more likely you are to reject the false null.

The Relationship between F- and T-Statistics

The attentive reader might wish to ask the following question: Is it possi-
ble to test restrictions with just one constraint like the one in this section
using the t-statistic instead of the F-statistic? The answer is yes. Very for-
tunately, the F-statistic and the t-statistic give exactly the same answer. The
t-statistic has the advantage that it can be used to test single-tailed alternative
hypotheses, whereas the F-statistic cannot be used to perform such one-tailed
tests.

In our food-stamp example, although the restriction involves two parame-
ters, there is just one equals sign in the restriction, meaning just one constraint.
This makes it possible to run a t-test by cleverly rewriting the model. Recall
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b4 b3 b2 b1 b0 g b2 b1 b0

0.28 0.30 396.00 602.10 244.47 0.30 395.74 602.13 237.06

0.05 0.01 27.78 9.50 55.45 0.00 27.50 9.41 50.09

1.00 103.11 #N/A #N/A #N/A 1.00 102.10 #N/A #N/A

3406.36 45 #N/A #N/A #N/A 4631.77 46 #N/A #N/A

1.45E+08 478,430  #N/A #N/A #N/A 1.45E+08 479,559 #N/A #N/A

d b3 b2 b1 b0 Test Statistics Statistic P-value

−0.02 0.30 396.00 602.10 244.47 F-stat 0.106

0.05 0.01 27.78 9.50 55.45 t-stat −0.326 75%

1.00 103.11 #N/A #N/A #N/A t-stat2 0.106 n/a

3406.36 45 #N/A #N/A #N/A

1.45E+08 478,430 #N/A #N/A #N/A

Unrestricted: Y = β0 + β1X1 + β2X2 + β3(X3 +X4) + δ(X4) + ε

Unrestricted: Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε Restricted: Y = β0 + β1X1 + β2X2 + γ(X3 + X4) + ε
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Figure 17.6.7. Two unrestricted and one restricted regressions.
Source: [FDistFoodStamps.xls]tStat.

that the original, unrestricted model reads as follows:

Yi = β0 + β1 X1i + β2 X2i + β3 X3i + β4 X4i + εi , i = 1, . . . , n.

The restriction says that β3 = β4. We can incorporate the restriction into the
original model in this fashion: Create a new variable that is the sum of X3

and X4 but also include X4 separately in the regression:

Yi = β0 + β1 X1i + β2 X2i + β3 (X3i + X4i ) + δX4i + εi , i = 1, . . . , n.

When OLS is run on this model, exactly the same results are obtained as with
OLS on the unrestricted model: All the coefficient estimates are the same
as are the other regression statistics. The one exception proves the rule. The
new coefficient is an estimate of δ, but the sum of the coefficient estimates
for δ and β3 is equal to the value of the coefficient estimate of β4 in the
unrestricted model. To see that this is indeed the case, go to the tStat sheet in
FDistFoodStamps.xls. As Figure 17.6.7 shows, we report three closely related
regressions in this sheet.

The two regressions at the top of Figure 17.6.7 are the unrestricted and
restricted models we have already seen in the Example sheet. The third
regression at the bottom on the left is the rewritten, unrestricted model.
As claimed above, all of the estimates for the two unrestricted regressions
are exactly the same with the one exception being the coefficient estimate for
δ, which is not a parameter in the original version of the unrestricted model.
We see that the two unrestricted models are essentially the same. The main
difference is that the original unrestricted model gives us the estimated SE
of b4, whereas the rewritten unrestricted model gives us the estimated SE
of d = (b4 – b3). We can therefore use the rewritten model to test the null
hypothesis that β3 = β4 against the alternative hypothesis β3 	= β4.
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The lower right-hand corner of Figure 17.6.7 displays the F-statistic (cell
K10 in the tStat sheet) obtainable from the comparison of the restricted and
unrestricted regressions. The comparable t-statistic (in cell K11) is computed
as follows:

t-statistic = d − 0
Estimated SE (d)

.

We compute the P-values for the two test statistics (in cells L10 and L11) and
find that they are exactly the same. Note that we use the two-tailed P-value for
the t-test. Finally, we note that the square of the t-statistic (cell K13) is exactly
equal to that of the F-statistic. If you hit F9, a new sample will be drawn and
new estimates and new values of the test statistics will be generated, but the
equivalencies just pointed out will still hold true.

Summary

To review, we have shown that, when there is just one restriction, it is possible
to rewrite the original model in order to use the t-statistic in place of the
F-statistic. There is one advantage to this procedure: it is possible to test
one-sided hypotheses with the t-statistic but impossible to do so with the F-
statistic. The next section explains how to test a claim that more than one
coefficient in the model is equal to zero.

17.7. F-Test for Multiple Parameters

Workbook: FDistEarningsFn.xls

In this section we show how to test a restriction that says that multiple (but
not all) parameters in the model are all equal to zero. We use a real example
based on a model of earnings. We gathered data on 15,756 individuals from
the March 2002 CPS on total personal income, sex, race, and education. We
are especially interested in whether or not males earn more than females and
whether the gains to income from increases in education vary between males
and females. The basic, unrestricted model we start from looks like this:

Total Personal Incomei = β0 + β1Educationi + β2Blacki + β3Malei

+ β4 Male · Educationi + εi , i = 1, . . . , n.

If β3 is nonzero, then males receive an income boost or penalty versus females.
If β4 is nonzero, then the slope of the relationship between income and edu-
cation is not the same for men and women.

One possible restricted version of this model says that being male does
not matter, and thus both the intercept-shifter β3 and the slope-shifter β4 are
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zero. The restricted version thus reads like this:

Total Personal Incomei = β0 + β1Educationi + β2Blacki

+ νi , i = 1, . . . n.

We make the standard CEM assumptions about the data generating process.7

In this case, with a very large sample, there is no need to assume that the errors
are normally distributed. In English, the null and alternative hypotheses are
as follows:

Null: Being male does not affect earnings.
Alternative: Being male does affect earnings.

In terms of mathematical symbols, the null and alternative hypotheses read
as follows:

Null Hypothesis : β3 = β4 = 0.

Alternative Hypothesis : Not the null.

Open the Excel workbook FDistEarningsFn.xls and go to the Data1 sheet.
You will see a real-world data set with 15,756 observations, which we can use
to estimate these two models and run an F-test to decide if we should reject
the Restricted model. As Figure 17.7.1 shows, we decisively reject the null
hypothesis that being male does not affect one’s earnings. The F-statistic is
huge and the P-value is nearly zero.

You should always pay attention to the practical importance of a result
that has been deemed statistically significant. Statistical significance means
that chance alone is a poor explanation of the observed difference. Statisti-
cal significance says nothing about the practical importance of the observed
difference. In this case, the impact of being a male is quite big, though at first
the results seem somewhat contradictory. From the coefficient estimate b3,
it appears that males make $26,700 less than women. However, the coeffi-
cient estimate on the interaction term, b4, tells us that every additional year
of education boosts male’s personal income by $3,562 more than females’
income. Thus, males catch up to females as education increases. Figure 17.7.2
contrasts predicted values for nonblack males and females.

The null hypothesis says that the two predicted income functions coincide.
As we saw, the F-test provides very strong evidence against the null. The
Q&A sheet asks you to perform a similar analysis involving the variables
Black and Education.

7 The fact that in real-world applications like this one the X’s are not fixed in repeated samples is a
problem. More realistic descriptions of the data generating process, however, do not change the story
in material ways.
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maleeduc male black educ intercept
3562 −26700 −4454 3065 −17744
209 2753 974 149 1970

0.179 39413 #N/A #N/A #N/A
860.44 15751 #N/A #N/A #N/A

5.3464E+12 2.447E+13 #N/A #N/A #N/A

F-stat 597.77
black educ intercept  P-value 0%

−5282 4880 −31859
1010 109 1446
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Figure 17.7.1. F-test of hypothesis that being male does not affect personal income.
Source: [FDistEarnngsFn.xls]Data1.

One feature of Figure 17.7.2 requires comment. The regression estimates
make little sense for people with very low levels of education: negative pre-
dicted incomes just are not plausible. The assumption that the relationship
between income and education is linear is not reasonable for low levels of
education.

Predicted Personal Income for Non-Blacks

−$60,000
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−$20,000

$0

$20,000
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$60,000

$80,000
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5

Figure 17.7.2. Comparing male and female predicted personal income.
Source: [FDistEarnngsFn.xls]Data1.
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Summary

LINEST, like most regression software, reports a whole model F-test that the
coefficients of all of the included X variables are zero. This section showed
how to test the claim that a subset of the coefficients equal zero. By running
two regressions, one unrestricted and the other restricted (by dropping the
variables that supposedly do not matter), the resulting SSRs and degrees
of freedom can be incorporated in an F-test. In our example, we rejected
the claim that being male does not affect personal income. The next section
discusses situations in which hypotheses tests give conflicting answers.

17.8. The Consequences of Multicollinearity

Workbook: CorrelatedEstimates.xls

Our aim in this section is to highlight a seeming paradox that often occurs in
empirical hypothesis testing: It is entirely possible that two estimated coef-
ficients can be found to be statistically insignificant separately (the two null
hypotheses that each parameter is equal to zero are not rejected), whereas the
joint hypothesis that both are equal to zero is soundly rejected. Our expla-
nation of this apparent contradiction will show that estimates of different
parameters are correlated random variables and will replace the notion of a
confidence interval for a single parameter with that of a confidence region for
multiple parameters.

To make these points, we will work with an artificial trivariate example in
which the data are generated according to the classical econometric model.
We have

Yi = β0 + β1 · X1i + β2 · X2i + εi , i = 1, . . . , n.

Here β0 is the intercept parameter and β1 and β2 are the slope parameters
we want to estimate. The εi ’s are assumed to be repeated draws from an error
box (always the same one) with tickets whose mean is zero with an unknown
standard deviation. The n draws are independent of each other. The X ’s are
fixed in repeated sampling. Therefore the εi ’s are independent of the X ’s.

The Example sheet in the CorrelatedEstimates.xls workbook contains a
data set with 10 observations that conforms to this model. We will contrast
the results of the following hypothesis tests:

Separate Null Hypotheses:
Individual Null Hypothesis 1: β1 = 0
Individual Null Hypothesis 2: β2 = 0

Joint Null Hypothesis: β1 = 0 and β2 = 0.
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Estimate SE t-stat P-value
b1 1.01 0.92 1.10 31%
b2 1.02 0.92 1.11 30%

RMSE 11.76 F-stat 121.94 0%

Figure 17.8.1. Individual nulls not rejected while joint null is rejected.
Source: [CorrelatedEstimates.xls]Example.

The separate null hypotheses look at only one parameter, whereas the joint
null hypothesis says that both slope coefficients are equal to zero. It would
seem that if the joint null hypothesis is rejected, then there will be evidence
that at least one of the slope parameters is not equal to zero. We shall see,
however, that this logic is flawed.

In the Example sheet click on the
Make Alternative
Hypothesis True button. This button sets the

values of the (hidden) true parameters in the model so that strange things
will happen. In particular, the type of outcome displayed in Figure 17.8.1 is
very common.

In the sample results depicted in Figure 17.8.1, the t-statistics tell us that
we cannot reject the individual null hypotheses that β1 = 0 and β2 = 0, and
yet the F-statistic says that we can decisively reject the null hypothesis that
β1 and β2 are jointly equal to zero. (An F-statistic of 121.94 with n = 10 is
huge, and although the P-value is not exactly zero, it is really close!)

If you do not see an outcome like this, just hit the F9 key a few times. Very
shortly, a qualitatively similar outcome will show up. Write down the results
you obtain for later use.

A result like the one in Figure 17.8.1 should seem contradictory to you.
The (t- or z-) statistics corresponding to the separate null hypotheses seem
to be telling us that it is quite possible that both β1 and β2 are equal to zero,
whereas the F-statistic says that it is not true that both are equal to zero.

To understand what is going on, go to the Setup sheet. Do not make any
changes yet. There is much information in this sheet, and so you should take a
few moments to absorb it. The true parameter values are given in the upper-
left-hand corner as shown in Figure 17.8.2.

We do not worry about β0. The key point here is that all three null hypothe-
ses, the separate individual nulls that β1 = 0 and that β2 = 0 and the joint null
that both β1 and β2 are equal to 0, are indeed false. (When you clicked on

ββββ 0000 10

ββββ 1111 1

ββββ 2222 1
SD(εεεε ) 10

Population 
Parameters

Figure 17.8.2. True population parameters for our example.
Source: [CorrelatedEstimates.xls]Setup.
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Figure 17.8.3. Setting the correlation between
X1 and X2.
Source: [CorrelatedEstimates.xls]Setup.

the
Make Alternative
Hypothesis True button, both values of the slope parameters were set equal

to 1.) The data in cells B7:G16 faithfully conform to the classical econometric
model. Finally, note that you can control the correlation between X1 and X2.
As Figure 17.8.3 shows, we have deliberately selected the case in which there
is almost perfect positive correlation between the X’s. You will shortly see
why this near-perfect multicollinearity makes the paradoxical situation we
have encountered quite likely.

Think about the paradox in this way: In many samples produced by this data
generation process, we do not have enough evidence to reject either separate
null hypothesis; yet, in almost all samples there is more than enough evidence
to refute the joint null.

The joint sampling distribution under the joint null hypothesis will reveal
the cause of the paradox. In the Setup sheet, set both β1 and β2 to 0. This
choice makes the joint null hypothesis (and, of course, both individual null
hypotheses) true. Be sure that the correlation between the X’s stays equal
to 0.99 and that you keep the SD of the errors equal to 10. Now click on
the Go to Monte 

Carlo button. Once you have run a Monte Carlo simulation, summary
statistics for the slope estimates much like those in Figure 17.8.4 will result.

Also displayed on the MonteCarlo sheet (and in Figure 17.8.5) is a scatter
diagram for the slope estimates. Each dot on the graph reflects the result
from one of the first 400 repetitions in the Monte Carlo simulation. The x-
coordinate of each point gives the value for b1, and the y-coordinate gives
the value for b2 for a particular repetition.

Average 
estimate 0.00

Average 
estimate 0.00

SD estimates 0.765 SD estimates 0.766
Max estimate 2.54 Max estimate 2.23

Min estimate −2.26 Min estimate −2.47

b1 b2

 

Figure 17.8.4. Summary of Monte Carlo results for b1 and b2.
Source: [CorrelatedEstimates.xls]MonteCarlo.
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Figure 17.8.5. Scatter diagram of Monte Carlo results for b1 and b2 (X’s highly cor-
related) when both slope parameters equal zero.
Source: [CorrelatedEstimates.xls]MonteCarlo.

Figure 17.8.5 is the footprint of an approximate joint sampling distribu-
tion of b1 and b2 for our data generation process under the null hypothesis
that both slope parameters equal zero. The exact joint sampling distribution,
or probability histogram, for b1 and b2 would have to be graphed in three
dimensions with the frequency axis coming out of the page. If you could
see this three-dimensional histogram, it would be tallest around the origin –
(0,0), the assumed values of β1 and β2 – with its height falling gently as it
goes either southeast or northwest and quite steeply as one heads northeast
or southwest. You can get some sense of this by trying to pick out the den-
sity of the points – the denser the points, the taller the three-dimensional
histogram.

Because of the very strong positive correlation between the X’s, the joint
sampling distribution under the null hypothesis has an unusual shape – it is
cloud shaped like a thin ellipse with a main axis (a line running through the
middle of the ellipse the “long way”) that has a slope of about −1. This ellipse
tells us that when the joint null hypothesis (that both slope parameters are
zero) is true, the estimates b1 and b2 are typically not zero, but when b1 is
positive, b2 is extremely likely to be negative. Conversely, when b1 is negative,
it is very likely that b2 is positive. In other words, the slope estimates are
strongly negatively correlated.

We have superimposed the observed value of b1 = 1.01 and b2 = 1.02
that we obtained earlier (see Figure 17.8.1) on the graph in Figure 17.8.5.
The reason for the decisive rejection of the joint null hypothesis is now
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clear. The realized values of b1 and b2 are far away from the cloud of esti-
mates we would obtain if the null hypothesis were true. In other words,
the actual sample estimates lie well outside any plausible realization from
the joint sampling distribution of the sample estimates under the null
hypothesis.

On the other hand, we can also understand why each individual null hypoth-
esis was not rejected. The estimated SE of the estimates in each case was
around 0.9. From the point of view of an individual estimate, we should not
be surprised to find values for the slope parameters within two SEs of the
true value. Therefore, anything in the range of −1.8 to 1.8 for either slope
estimate is quite compatible with the individual null hypothesis that the true
slope is zero for either parameter. Considered all by itself, a value of 1.01
for b1 is not at all remarkable even if the true value of β1 is 0, nor, taken in
isolation, is a value of 1.02 for b2 anything special.

It is the fact that both slope estimates are positive that would be very
unusual were the joint null to be true. The F-statistic of 121.94 with n = 10
implies an incredibly small P-value, which means that, assuming the null is
true, a result like (1.01, 1.02) is almost (though not quite) impossible.

We have noted that it is the unusually high correlation between the X’s
that makes likely the paradoxical outcome of not rejecting individual null
hypotheses but rejecting the seemingly identical joint null hypothesis. Let
us now see what happens when we go to the opposite extreme: near-zero
correlation between the X’s. Return to the Setup sheet, choose a correlation
coefficient of 0.01, and set the values of the two slope parameters both equal
to 1. Next run a Monte Carlo simulation. The results will be similar to those
displayed in Figure 17.8.6.

The first thing to note in Figure 17.8.6 is that, when there is very little cor-
relation between the X’s, there is next to no correlation between the slope
estimates; this is obvious from the scatter diagram. Next, observe that the
paradox we very often encountered when there was extremely high correla-
tion between the X’s is now incredibly rare. The histograms for the t-statistics
and the F-statistics in the lower part of Figure 17.8.6 both show that few if
any repetitions produced statistics consistent with the null hypothesis at stan-
dard significance levels. Finally, note that the SEs of the slope estimates are
now much smaller than they were when the correlation between the X’s was
0.99 (on the assumption the SD of the errors was not changed in the mean
time).

What is going on behind the scenes? In the trivariate case, the SEs of the
slope estimates depend on the correlation between the X’s as well as on
the SD of the X’s. Furthermore, the correlation between the slope estimates
depends negatively on the correlation between the X’s.
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Figure 17.8.6. Scatter diagram and distribution of test statistics for b1 and b2 (X’s
uncorrelated) when both slope parameters equal one.
Source: [CorrelatedEstimates.xls]MonteCarlo.

Section 15.2 showed that the intuitive version of the formula for the SE of
a slope coefficient, bk, in a regression with multiple X variables is

SE (bk) = SD(ε)
√

n · SD(Xk) ·
√

1 − R2
k

.

R2
k is the R2 from a regression of Xk on the other X variables. In the special case

of two X variables, the square root of R2
k is simply the correlation coefficient

between X1 and X2, r(X1, X2). Go to cell A20 in the Setup sheet to see a
demonstration that the square root of R2 from the bivariate regression of X2

on X1 is exactly equal to r(X1, X2). By substituting r(X1, X2) for R2
k, we get
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the formulas for the SEs of the two estimated slope coefficients in the case
of the regression of Y on X1 and X2:

SE(b1) = SD(ε)√
n · SD(X1)

√
1 − r(X1, X2)2

SE(b2) = SD(ε)√
n · SD(X2)

√
1 − r(X1, X2)2

.

Notice that the larger r is in absolute value, the greater the SE of the slope
estimate.8 With r(X1, X2) = 0.99, the SE increases by a factor of 7 (the inverse
of the square root of the quantity 1 minus 0.99 squared) compared to the case
of no correlation in the X ’s. The SDs of the estimates in the Monte Carlo
simulations in Figures 17.8.4 and 17.8.6 confirm this result (using r(X1, X2) =
0.01 instead of exactly zero).

The Joint Confidence Region

The scatter charts of (b1, b2) pairs in Figures 17.8.5 and 17.8.6 suggest that
the sample estimates will be scattered around the true parameter values in
particular patterns that depend on the correlation between the X’s. In general
the sample estimates will lie in an ellipse centered on the true parameter
values. This is the footprint of the sampling distribution. The shape of the
ellipse depends on the correlation between the X’s and on their SDs. The
shape is close to a circle when the X’s have the same SD and when the
correlation between the X’s is close to zero. The footprint becomes a tilted,
elongated ellipse as the correlation between the X’s increases in absolute
value.

Using statistical theory, one can draw ellipses that will in the long run
contain a certain percentage of all sample outcomes. To see such an ellipse,
set the values of the true slope parameters to zero in the Setup sheet and
set the correlation between the X’s to −0.5. Go to the MonteCarlo sheet
and run a Monte Carlo experiment. Click on the

Show
Ellipse toggle button and you

will see a graph like that of Figure 17.8.7. The ellipse encloses approximately
95 percent of the 400 points in the scatter diagram.9

8 Here are a few notes about how we constructed the example. In the workbook we set up the two X
variables so that they have the same SD. This guarantees that both the estimated and exact SEs will be
equal for b1 and b2; that of course would generally not be the case in a real example. Also, given the way
we have set up the workbook, the exact long-run correlation between the slope estimates is equal to −1
multiplied by the correlation between the X’s. In general, although this exact correspondence will not
occur, it is the case that the degree of correlation between the X’s will negatively affect the correlation
between the slope estimates.

9 This button always draws an ellipse based on a true null hypothesis of zero slope values. Thus, the
“center” of this ellipse is always the point (0,0).
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Figure 17.8.7. Scatter diagram of Monte Carlo results for b1 and b2 with 95-percent
ellipse (Correlation between X’s = −0.5; true slope parameters both zero).
Source: [CorrelatedEstimates.xls]MonteCarlo.

Now suppose that we obtain sample estimates but do not know the true
parameter values. What is the 95-percent joint confidence region for our
estimates? Recall that confidence intervals in the individual-parameter case
are centered on the parameter estimate. On the basis of confidence interval,
logic the 95-percent joint confidence region is just the 95-percent ellipse cen-
tered around our parameter estimates rather than around the true (unknown)
parameter values. To see such a confidence region, scroll over to cells Q2
through U14 in the MonteCarlo sheet.

Figure 17.8.8 displays an example. We centered the 95-percent confidence
ellipse around the sample estimates from the first repetition in the Monte
Carlo experiment. In this case, the (true) null hypothesis that both slope
parameters are zero is covered: the point (0,0) lies within the 95-percent
confidence region. Suppose, however, that the joint null hypothesis was that
the true parameter values were β1 = 0.6, β2 = 0, respectively. In that case,
the confidence region built on our sample estimates would not cover that
point and we would reject the joint null hypothesis. The exact shape and size
of the confidence ellipse depends on the correlation between the X’s and on
the size of the RMSE.10

It is rather difficult to construct confidence regions without specialized soft-
ware. Nonetheless, it is important you realize that the joint confidence region

10 For computational convenience we cheated just a bit by using the true spread of the error terms in
constructing the confidence region.
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Figure 17.8.8. 95-percent confidence region for estimates from first repetition in
Monte Carlo simulation (Correlation between X’s = −0.5).
Source: [CorrelatedEstimates.xls]MonteCarlo.

is not a rectangle built on the individual coefficient confidence intervals;
rather it is an ellipse whose shape reflects the correlation between the X’s.

Summary

We can draw the following lessons from this discussion:

� Joint null hypotheses are different from single, separate null hypotheses.
� Slope estimates are correlated random variables for which the correlation depends

on the correlation of the X’s.
� A strong correlation between the X variables makes it hard to figure out which

independent variable is causing the dependent variable to vary – sometimes the
best we can do is to talk about the joint range that parameters could fall in.

� The greater the (multi-)collinearity between included X’s, the higher the SEs of
the individual coefficients.
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� Joint confidence regions are the multivariate analogue to univariate confidence
intervals.

17.9. Conclusion

In Chapter 6 on functional form of the regression and Chapter 8 on dummy
variables, we emphasized the flexibility of regression analysis. This chapter
has extended the idea of flexibility of regression to hypothesis testing. Before
reading this chapter, you were aware that an SE of the sample slope can be
used to test a claim about the true parameter value of the slope, but that
is really just the tip of the iceberg. In this chapter we have reviewed just
a few of the many restrictions that can be imposed and tested via linear
regression.

Although each particular application is different, the fundamental proce-
dure stays constant. In the case of imposing restrictions in a regression model,
the basic idea is to compare the (properly adjusted) SSR from restricted and
unrestricted regressions. Because imposing a restriction is practically guar-
anteed to increase the SSR, we need a decision rule to determine if the
gain in SSR is high enough to convince us to reject the restricted model.
We use the usual hypothesis-testing logic to compute the P-value (from the
F-distribution) and decide on rejecting or not rejecting the null hypothesis.

Strictly speaking, use of the F-statistic requires adding an assumption to the
classical econometric model that the errors are normally distributed. If one
is working with a small sample, this assumption matters. The P-value from
the F-statistic is not to be trusted if errors are nonnormal and the sample is
small. When the sample size is large, the normality assumption is not needed
and, in general, the F-statistic works well.

This concludes our examination of well-behaved classical econometric
models. Beginning with the next chapter on omitted variable bias, we will
turn to a variety of complications in the data generation process.

17.10. Exercises

Workbook: MyMonteCarlo.xls

1. The Dead sheet in FDistFoodStamps.xls contains data that does not bounce. The
data were generated according to the following DGP:

Food Purchases = β0 + β1 Number of adults in family
+ β2 Number of children in family
+ β3 Cash Income
+ β4 Value of Food Stamps + ε.
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a. Test the following null hypothesis:

Null Hypothesis : β1 = β2.

Alternative Hypothesis : β1 	= β2.

Use both the F- and t-statistic procedures and show that they produce equivalent
results. The P-value Calculator Add-In may prove helpful.

b. Perform this hypothesis test:

Null Hypothesis : β1 = β2.

Alternative Hypothesis : β1 > β2.

2. In the food stamps example (FDistFoodStamps.xls), check to see whether the SD
of the errors (and therefore the variance of the errors) affects the distribution of
the F-statistic. Use 10,000 repetitions. The SD of the errors is controlled by cell
B7 of the Example sheet.

3. In the Setup sheet of the CorrelatedEstimates.xls, set both β1 and β2 to 1 and
set the SD of the errors equal to 10. Set the correlation of the X’s to 0.99.
Using the Monte Carlo add-in, run a Monte Carlo experiment that approxi-
mates the sampling distribution of the sum b1 + b2. Take a picture of the results.
Change the correlation of the X’s to −0.99 and repeat the experiment. Compare
the results and give an intuitive explanation for the difference in the sampling
distributions.

4. Create your own Monte Carlo study. The workbook MyMonteCarlo.xls contains
the functions NormalRandom(), Uniform(), and Expo() in a Visual Basic mod-
ule. Use this file and these functions to see how well the Whole Model F-Test
performs under alternative assumptions about the error terms – that they are
normally, uniformly, or exponentially distributed. Use the sample with three X
variables (fixed in repeated sampling) that we have helpfully placed in the Data
sheet. Set the SD of the errors equal to 10. Make the true values of the param-
eters β1, β2, and β3 all equal to zero so that the null hypothesis of the Whole
Model F-test is true. Approximate the distribution of the F-statistics for the three
error distributions using the LINEST function to obtain the Whole Model F-
statistic and the MCSim Add-in. Compare the three distributions and write up your
conclusions.

5. In a hypothetical data set with 400 adults in the New York metropolitan area,
250 own their homes and 150 do not. Of the home owners, 245 own a car. Of
the 150 non-home-owners, only 25 own a car. A researcher runs a regression of
expenditures on movie entertainment on the dummy variable OwnHome and
OwnCar. She finds that at the 5 percent significance level she cannot reject the
two individual null hypotheses that the parameters multiplying these coefficients
are zero, but that she can decisively reject the null hypothesis that both parameters
are jointly equal to zero (P-value = 0.2%). Can you explain why she might have
obtained such a result?
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Omitted Variable Bias

. . . if the more educated workers tend to be more intelligent, motivated, or blessed
with advantageous family backgrounds, . . . then the more educated workers typically
would have received higher wages even without their additional schooling. It there-
fore is difficult to ascertain how much of the empirical association between wages and
schooling is due to the causal effect of schooling and how much is due to unobserved
factors that influence both wages and schooling.

John Bound and Gary Solon1

18.1. Introduction

In this chapter we discuss the consequences of not including an independent
variable that actually does belong in the model. We revisit our discussion
in Chapter 13 about the role of the error term in the classical econometric
model. There we argue that the error term typically accounts for, among
other things, the influence of omitted variables on the dependent variable.
The term omitted variable refers to any variable not included as an indepen-
dent variable in the regression that might influence the dependent variable.
In Chapter 13 we point out that, so long as the omitted variables are uncorre-
lated with the included independent variables, OLS regression will produce
unbiased estimates. In this chapter we focus on the issue of omitted variables
and highlight the very real danger that omitted variables are in fact correlated
with the included independent variables. When that happens, OLS regression
generally produces biased and inconsistent estimates, which accounts for the
name omitted variable bias.

The chapter begins, in the next section, by emphasizing the importance of
the issue of omitted variable bias and tying the problem directly to the fact
that economists generally have data from an observational study rather than
a controlled experiment. We then split the work into three parts.

1 Bound and Solon (1999).

490
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First, Section 18.3 uses cooked data from the skiing example to develop
an intuitive understanding of omitted variable bias. Next, in Section 18.4 we
work with real data. In this case, the true parameter values are unknown.
By seeing how parameter estimates change when additional X variables
are included in the regression, however, we will be able to detect strong
evidence of omitted variable bias. The fixed X’s assumption of the classi-
cal econometric model is hard to reconcile with a view of omitted X’s that
vary from one sample to the next. Therefore, in Section 18.5 we consider
a new data generation process, the random X’s model, which does away
with the assumption of fixed X’s in favor of random X’s. This new DGP is
used to investigate omitted variable bias in samples of varying sizes from a
given population. We show that the bias stays constant as the sample size
increases.

18.2. Why Omitted Variable Bias Is Important

Omitted variable bias is a crucial topic because almost every study in econo-
metrics is an observational study as opposed to a controlled experiment.
Very often, economists would like to be able to interpret the comparisons
they make as if they were the outcomes of controlled experiments. In a
properly conducted controlled experiment, the only systematic difference
between groups results from the treatment under investigation; all other
variations stem from chance. In an observational study, because the parti-
cipants self-select into groups, it is always possible that varying average out-
comes between groups result from systematic differences between groups
other than the treatment. We can attempt to control for those system-
atic differences by explicitly incorporating variables in a regression. Unfor-
tunately, if not all of those differences have been controlled for in the
analysis, we are vulnerable to the devastating effects of omitted variable
bias.

The epigraph to this chapter highlights one major area in which omitted
variable bias has been very commonly suspected to play a role: the returns
to schooling. (Here the “treatment” is how many years of schooling a person
gets.) The suspicion is that people with more education may differ from people
with less education in many ways that are difficult to measure. For example,
one’s wage may depend on factors such as motivation or parental upbringing
that cannot easily be quantified, or factors like intelligence, which are usually
not reported in surveys used by economists. We see that more education is
correlated with higher wages but do not know whether to attribute the higher
wages to education or to the omitted variables that cannot be included in our
regression analysis.
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Another example of omitted variable bias is the issue of discrimination
in home mortgages, which will be discussed in Chapter 22. In that case we
are interested in an important question: Are blacks discriminated against
in mortgage applications? This question cannot be answered via a simple
comparison in an observational study of loan denial rates. It is, in fact, true
that blacks are denied loans more often than whites, but this raw, unadjusted
comparison of loan denial rates is inadequate to answer the question. The
problem is that discrimination occurs when otherwise similar applicants are
treated differently solely on the basis of a personal characteristic like race.
In the raw comparison, however, we are not taking into account the fact that
there may be systematic differences between black and white applicants that
might be the cause of the different outcomes. The simple comparison omits
these factors (income, other debts, etc.) from the analysis. As a measure of
discrimination, the raw difference is almost certainly biased owing to this
omission.

One way to overcome the problem of omitted variable bias in observa-
tional studies is to conduct controlled experiments. Researchers have in fact
conducted experiments that attempt to determine whether there is racial
discrimination in home mortgages. The traditional remedy to the omitted
variable bias problem in an observational study, however, is to include other
variables in the model in an attempt to control statistically for systematic
differences other than race between black and white applicants.

Note, however, that although the analysis can be improved, we can never
really slay the omitted variable dragon in the context of an observational
study. Every additional control may improve our study, but we are never
immune to the charge that yet another subtle, hidden variable has not been
accounted for. This is a frustrating reality when working with data from obser-
vational studies.

Summary

Another name for omitted variable bias is confounding. The bottom line is
that we want to measure the effect that an X variable has on the dependent
variable correctly – that is, accurately and precisely for the given question.
If variables that matter are omitted or ignored, we will mistakenly attribute
too much or too little to the included X variable. We often worry that the
relationship between the Y and X variables is confounded by other variables
our analysis has not taken into account.

The next section uses a previously presented hypothetical example to
explain the conditions under which omitted variable bias affects regression
analysis. It also makes clear the devastating effects of omitted variable
bias.
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18.3. Omitted Variable Bias Defined and Demonstrated

Workbook: SkiingOVB.xls

Chapter 13 introduced the classical econometric model. Here are the essential
requirements:

Yi = β0 + β1 X1i + β1 X2i + . . . β1 XKi + εi .

E(εi ) = 0, i = 1, . . . , n.

SD(εi ) = σ, i = 1, . . . , n.

εi is distributed independently of ε j , for all i 	= j.

The errors are independent of the X ’s.

The X ’s are fixed in repeated sampling.

TheX ’s, including the intercept term,

cannot have an exact linear relationship.

These statements describe a model that is linear in the parameters, with an
additive error term. The three conditions on the error term, εi , ensure that it
is well-behaved, meaning that the distribution of each individual error term
is centered on zero with the same spread (also known as homoskedasticity)
and one error draw has no effect on another error draw (i.e., there is no auto-
correlation). The next requirement is examined in detail in this section, which
focuses on the implications of violating the condition that the errors be inde-
pendent of the X’s. The final requirement rules out perfect multicollinearity,
thereby ensuring that there is a unique OLS solution.

As we will see, the requirement that the X’s are fixed in repeated sampling
is decidedly unrealistic when we are considering the impact of the omitted
X variables, whose values we think will change from one sample to the next.
However, almost all of the results we have presented are also true if one
makes the more realistic assumption that the data (X’s and Y’s) are a random
sample from a population which is generated according to the equation given
above. (See Sections 18.5 and 19.7 and associated Excel files where we discuss
and demonstrate an alternative, more realistic DGP called the Random X’s
Model.)

Chapter 14 demonstrates that, if the requirements of the classical econo-
metric model are met, the OLS estimator of the sample slope is BLUE – the
Best Linear Unbiased Estimator. This means that the sampling distribution
of bOLS

1 , the OLS estimator of the first slope parameter, has two desirable
properties. First, the OLS estimator is unbiased (i.e., the expected value of
bOLS

1 is β1). Second, the spread of the OLS probability histogram (or sam-
pling distribution) for bOLS

1 is less than the spread of any other linear, unbiased
estimator of β1.

Notice how the evaluation of an estimator focuses on the center and spread
of its sampling distribution. To be centered off the true parameter value is



P1: irk
0521843197c18 CB962B/Barretto 0 521 84319 7 November 7, 2005 19:29

494 Omitted Variable Bias

estimates from three rival estimators

OLS

Rival 1

ββββ

Rival 2

Figure 18.3.1. OLS beats rivals.

called bias; this means the estimator is inaccurate. Rival 1 in Figure 18.3.1 is
biased. The estimates it produces are systematically, on average, wrong. The
spread of the estimator speaks to its precision. The smaller the SE, the better
the estimator because it is more precise. Rival 2 is unbiased, but OLS is also
unbiased and more precise; thus, we prefer OLS.

Unfortunately, we cannot simply obtain unbiased estimates automatically
with maximum precision. The best linear unbiased property of the OLS esti-
mator depends on the chance process that generated the data. If any of the
conditions of the box model are not satisfied, the OLS results are less than
ideal. A violation of the requirements can affect the OLS estimator by chang-
ing the center, the spread of its sampling distribution, or both.

If the violation changes the center so that the expected value of the sam-
pling distribution is no longer equal to the true parameter value, this is called
bias. There are different kinds of bias, and we use a descriptive word or phrase
to indicate the cause of the bias. In the case of omitting a relevant X vari-
able that is correlated with an included X variable, the bias is caused by the
omitted variable; hence, the name omitted variable bias is used.2

Omitted variable bias results from violating the requirement that the draws
from the Error Box are independent of the X ’s. If this assumption does
not hold, then the OLS estimates are quite possibly biased. This means that
the sampling distribution of the OLS estimates is not centered on the true
parameter value. Our estimates are on average wrong.

A Fictional Example

A fictional, concrete example will help you master this difficult concept. Let us
return to the Picabo Street skiing example of Chapter 13 to see what omitting
a relevant variable means and what effect this has on the regression results.
Open the SkiingOVB.xls workbook in this chapter’s Excel Files folder. This

2 Chapter 24 discusses simultaneity bias. In future work in econometrics you may see terms such as self-
selection bias or specification bias. In each case, the idea is that something has shifted the sampling
distribution of the estimator so that it is no longer centered on the true parameter value.
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file is very similar to the Skiing.xls workbook of Chapter 13. (You may want
to look over Sections 13.2 and 13.3 quickly to refresh your memory.)

Go to the EstimatingBeta1 sheet and click the Race button a few times. Cell
I3 reports the OLS estimate of β1 (which is equal to −0.5 in cell B3) from
a regression that omits Talent as an explanatory variable. There should be
clear evidence that b1 (in cell I3) is bouncing around −0.5. This means that,
even though Talent is omitted, the OLS estimator of the slope on Training is
unbiased. In other words, there is no omitted variable bias here even though
we have an omitted variable! How can this be?

The answer lies in cell B6, which sets the correlation between Talent and
Training. Because this correlation is set at zero, the omitted variable is func-
tioning simply as another source of random error in the DGP. Remember
that the errors in the classical econometric model have three sources:

1. Omitted variables independent of the included X ’s,
2. measurement error, and
3. inherent randomness.

As long as cell B6 is set at zero, the omitted variable will not bias the
estimate of the Training slope coefficient. Talent is simply part of the well-
behaved error box. What happens if Talent and Training are correlated? To
answer this question, click the Exploring Omitted

Variable Bias button.
You are now in the same workbook, but we have hidden the Estimating-

Beta1 sheet and replaced it with a new sheet, TrueModel. The TrueModel
sheet is basically the same as the EstimatingBeta1 sheet, except it has an
extra button, Redraw Talent

(with Exact Rho) and displays different information. To follow this
discussion, make sure that the value of the correlation between Training and
Talent is set to zero in cell B6, and for good measure hit the Redraw Talent

(with Exact Rho) but-
ton. Also, check that the true parameter values for the two slope coefficients
for Training and Talent are −0.5 and −0.2, respectively (in cells B3 and B4).

Figure 18.3.2 displays the results of two regressions (you will see slightly dif-
ferent numbers because you will have a different sample) for which we have
set the value of the correlation between Talent and Training to be exactly 0

g1 g0 b2 b1 b0

�0.551 79.337 −0.185 �0.551 80.079

est. SE 0.085 0.457 est. SE est. SE 0.014 0.029 0.165 est. SE

R2 0.645 1.230 RMSE R2 0.961 0.418 #N/A RMSE
F 41.834 23 df F 269.182 22 #N/A df

Total SS 63.323 34.815 SSR Total SS 94.285 3.853 #N/A SSR

Predicted Time = g0 + g1Training Predicted Time = b0 + b1Training + b2Talent

 

Figure 18.3.2. Short and long regressions in TrueModel sheet;
Talent uncorrelated with Training.
Source: [Skiing.xls]TrueModel.
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(not on average zero across samples but exactly zero in this sample). The first
(the short regression) regresses Time on Training only. The model is

Short Regression: Timei = γ0 + γ1 · Trainingi + εi , i = 1, . . . , n.

This is the regression that the Austrian Ski Federation analysts actually run.
The second (long regression) regresses Time on Training and Talent. The
model is

Long Regression: Timei = β0 + β1 · Trainingi

+β2 · Talenti + νi , i = 1, . . . , n.

This is the regression that the Austrians would like to run but cannot because
they have no way of measuring Talent objectively. The Austrians, like most
econometricians, must settle with estimating a regression that has at least one
important omitted variable.

When Training and Talent are uncorrelated, however, the fact that the
Austrians are stuck with the short regression does not hurt them. Hit F9
a few times and notice how the slope coefficients on Training are exactly
the same in both regressions (we have emphasized these coefficients in the
display).3 That is because, as currently constructed, the DGP follows the
requirements of the CEM. There is a relevant variable, Talent, omitted from
the short regression, but Talent is completely uncorrelated with Training and
thus does not affect the OLS estimator of the slope.4 We could run a Monte
Carlo to demonstrate this, but it seems clear from resampling a few times
that all is well.

Now, change cell B6 to 0.9 and click the
Redraw Talent

(with Exact Rho) button. The results, as
shown in Figure 18.3.3 and in the various displays on your computer screen,
are dramatic. Your numbers will be slightly different, but the change will be
equally striking.

Suddenly, the slope on Training is poorly estimated by g1, the OLS esti-
mator from the short model. Repeated resampling (hitting F9 over and over
again) shows that the g1 estimates in cell H3 are not centered on −0.5, the true
parameter value. (Note that, as the sheet is set up, the omitted Talent values do
not change when a new sample of error terms is drawn. In these simulations,
it is as if we are sending the same skiers down the mountain repeatedly.)

The reason for the bias is clear: When the correlation of Training and Talent
is set to 0.9, you have violated the independence-of-omitted-X ’s-requirement

3 The estimates of the intercept coefficient differ because we have made the mean of Talent nonzero.
See Section 13.3 to recall that a nonzero value of the omitted variable affects the expected value of the
intercept term but not the slope.

4 More generally, if Talent is on average uncorrelated with Training (rather than being exactly uncorrelated
as in this example), the short- and long-slope estimates for Training will differ in individual samples, but
their expected values will be the same.
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g1 g0 b2 b1 b0

�0.928 81.093 −0.219 �0.518 80.117

est. SE 0.058 0.309 est. SEe st. SE 0.045 0.094 0.298e st. SE

R2 0.919 0.830 RMSE R2 0.961 0.590 #N/A RMSE
F 259.971 23 df F 69.220 22 #N/A df

Total SS 179.274 15.861 SSRT Total SS1 87.474 7.660 #N/A SSR

Predicted Time = g0 + g1Training Predicted Time = b0 + b1Training + b2Talent

 

Figure 18.3.3. Omitted-variable bias demonstrated.
Source: [Skiing.xls]TrueModel.

of the classical econometric model. This has directly caused the poor perfor-
mance in the OLS estimator.

What is the story behind the nonzero correlation? Suppose that instead of
randomly assigning Training to 25 skiers (a point we stressed in Chapter 13),
the Austrian Ski Federation merely allowed 25 skiers to train whatever time
they wanted to train. The Federation analysts would merely watch and record
Training time and then observed ski times in a race. This is the quintessential
observational study. It is also a big problem for the short regression if Talent
and Training are not independent.

For example, it could be that more talented skiers tend to train considerably
more than less talented skiers. This would lead to a high positive correlation
between Training and Talent. In the short regression, what would happen
is that Training would get too much credit because it is strongly, positively
correlated with Talent. In this version of events, highly trained skiers do well
because they trained more and are more talented. The short regression sees
and accounts for only the variation in Training, not the variation in Talent.

By setting the correlation between Training and Talent to 0.9, we have
enforced this idea that better skiers train more with a vengeance. When the
omitted variable effect is so pronounced, it is easy to see by resampling a few
times on the sheet that the short regression slope coefficient on Training is
biased.

Summary

We close this section with some additional notes about omitted variable bias.
First, omitted variable bias is not a problem even when the omitted variable is
correlated with the included variable in the special case that the true value of
the slope of the dependent variable on the omitted variable (β2) is zero. This
of course means that the omitted variable does not belong in the regression.
The reason the bias disappears is that bias depends on the true value of the
parameter multiplying the omitted variable. When that parameter is zero,
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the expected value of the OLS slope on the included variable is unaffected
by inclusion or exclusion of the omitted variable. Second, although we have
stressed that bias shows up when the omitted variable is correlated with the
included variable, it should be emphasized that the size of the bias depends not
on that correlation directly but rather on the slope of the auxiliary regression
of the omitted variable on the included variable (see the next section for
more discussion of this point).

Finally, we have described the short regression slope coefficient as a biased
estimator of the effect of Talent on Time. We need, however, to be very care-
ful with our language and logic. The short and long regressions address two
different questions. The short regression answers the question, How much
faster will skiers go who have trained 1 hour more per day? The long regres-
sion answers the question, How much faster will a given skier go if we increase
his or her training by an hour a day? The first question does not presume that
skiers who have trained 1 more hour are otherwise identical to skiers who
have not. The second question does presume that the skiers who have trained
more are otherwise the same as those who have not.

As determined by the circumstances, we may wish to answer one or the
other of these questions. If the objective is to predict skiing performance
based on your knowledge of how much someone has trained, you would
want the answer to the first question. The Austrian Ski Federation wants to
know how training affects skiing performance, and thus it wants an answer
to the second question.

We next turn to a real example of omitted variable bias, in which once
again we need to pay careful attention to the question being asked.

18.4. A Real Example of Omitted Variable Bias

Workbook: ComputerUse1997.xls

In this section we explore omitted variable bias using an actual data set. The
inspiration for this example is a 1993 paper by Alan Krueger that asks whether
people who use computers at work earn higher wages than otherwise similar
workers who do not use computers.5 Krueger performs numerous analyses
in the paper. We will replicate just one small portion of his work, using more
recent data than Krueger had at his disposal.

Krueger writes that his paper “focuses on the issue of whether employees
who use computers at work earn more as a result of applying their computer
skills” (p. 34). The simplest way to address this issue is to make a direct com-
parison of the wages of those who do and do not use computers at work.

5 Krueger (1993).
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Computer Noncomputer
Variable Average SD Average Average
In Hourly Wage 2.41 0.56 2.60 2.21
Comp At Work 0.51 01
Education 13.31 2.56 14.29 12.29
Comp At Home 0.35 0.48 0.49 0.21
White 0.85 0.35 0.88 0.83
Male 0.51 0.50 0.46 0.57
Age 12.49 39.03 37.89

All Workers
Summary Statistics

38.47

0.50

Figure 18.4.1. Summary statistics for computer use data set.
Source: [ComputerUse1997.xls]Data.

Computer-using workers and other workers, however, may differ systemat-
ically in other ways, and it may be those other characteristics that explain
why computer-using workers earn more than others. Therefore, Krueger
attempts to control for other factors besides computer use that may influence
wages.

The Current Population Survey has a special supplement asking people
about their use of computers (and in more recent years, Internet use). Krueger
used the October 1984 and October 1989 CPS supplements. We employ the
October 1997 supplement. Two of Krueger’s models look like this:

Short Regression:

ln Wagei = γ0 + γ1CompAtWorki + εi .

Long Regression:

ln Wagei = β0 + β1CompAtWorki + β2Educationi + νi .

The dependent variable, ln Wagei, is the natural logarithm of individual i’s
hourly wage. The variable CompAtWorki is a dummy variable equal to 1 if
individual i uses a computer at work, and this variable is 0 if he or she does
not. The variable Educationi measures years of schooling completed. The
error term in the short regression, εi , comprises both the error term in the
long regression, νi , and the impact of Education, β2Educationi . In the actual
paper, Krueger’s long regression included a host of other control variables
such as sex, race, marital status, and potential labor force experience. To keep
things simple, we will focus only on Education as a variable omitted from the
short regression.

The file ComputerUse1997.xls contains 12,699 observations on adult work-
ers. The data are presented in the Data sheet.6 Summary statistics for the data
set are in Figure 18.4.1. We present the average and SD of several variables for

6 Raw data with recoding formulas are in the RawData sheet. See the Notes sheet for information on the
data set.
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Table 18.4.1. Results from Regression Analyses of ln Wages

OLS Regression Estimates of the Effect of Computer Use on ln Wages

Independent Variable Short Regression Long Regression

Intercept 2.207
(0.007)

1.138
(0.023)

CompAtWork 0.393
(0.009)

0.219
(0.009)

Education – 0.087
(0.002)

Source: [ComputerUse1997.xls]Data. Estimated SEs are in parentheses.

all workers and the averages within the two categories of computer users and
nonusers. The summary statistics reveal some large differences between the
two categories of workers: Computer users at work on average earn higher
hourly wages, are better educated, and are much more likely to own a com-
puter at home. They are also more likely to be white and female and are on
average a little older than nonusers.

We ran both the short and long regression using these data and obtained
the results shown in Table 18.4.1. This table provides strong evidence that
omitted variable bias may contaminate the results of the short regression.
The estimate for the dummy variable CompAtWork in the short regression
says that people who use a computer at work have a log of hourly wage 0.393
higher than people who do not use a computer at work. In terms of hourly
wage this translates into a huge 48 percent premium for workers who use
computers at work versus those who do not. The long regression, in which we
control for years of education, tells a different story. Now the log differential
is only 0.219, which translates into a 25 percent premium for computer-using
workers.

Here is the explanation for the difference between the two regressions:
People who used computers at work in 1997 were on the average better
educated than those who did not; as Figure 18.4.1 shows, computer users
had on average 2.0 years more education than nonusers. The long regression
attributes part of the higher wages of computer users to their higher education
and part to their use of computers. The short regression attributes the entire
wage gap to the use of computers. The precise difference between the short-
regression and long-regression estimated coefficients can be explained by the
omitted variable rule discussed in Section 7.7.

The auxiliary regression of Education on CompAtWork gives an intercept
of 12.3 and a slope of 2.0 (see the cell range L17:M20 in the Data sheet). This
regression simply verifies what we already saw in Figure 18.4.1: Workers who
use a computer at work on average have 2.0 more years of education than
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nonusers. The average education level of nonusers, 12.3 years, is the same as
the intercept in the auxiliary regression.

The omitted variable rule says that the slope in the short regression of ln
Wages on CompAtWork is equal to

1. The corresponding slope in the long regression, plus
2. The product of the auxiliary regression slope of Education on CompAtWork and

the slope of Ln Wage on Education in the long regression.

Denote the short-regression slope as g1 and the long-regression slopes as b1

(for CompAtWork) and b2 (for Education). Denote the auxiliary regression
slope of Education on CompAtWork by d1. Then, in equation form,

g1 = b1 + d1 · b2

= 0.219 + 2.0 · 0.087

= 0.393.

Let us try to say this in English. In the long regression each additional year
of Education increases the Ln Wage by 0.087. We know that computer users
have 2 more years of Education than nonusers. Thus, the Ln Wage advantage
for computer users due to Education is 2.0 · 0.087 = 0.174. This means that in
the short regression in which we leave out Education, the effect of computer
use on ln Wage is 0.174 higher than it is in the long regression.

Our results are comparable to Krueger’s. In his analyses of the October
1984 and 1989 supplements, Krueger found log wage gaps of 0.276 and 0.325,
respectively, between those who used a computer at work and those who did
not. In a long regression with several control variables, including Education,
potential labor force experience, urban location, union membership, marital
status, urban residence, and race, Krueger found that the wage gap fell to
0.170 and 0.188 in 1984 and 1989, respectively. We used only one control
variable to keep our example simple, whereas Krueger wanted to hunt down
as many potential sources of omitted variable bias as he could.

Summary

This section presented a real example of omitted variable bias. The measured
computer-use wage premium is about 18 percent greater in the simple raw
comparison than it is when education is included as a control variable. The
difference arises from the positive association between computer use, the
included variable, and education, the omitted variable. The omitted variable
rule gives an exact formula for the difference, but the magnitude of the bias
in this case can be easily appreciated as the result of the two-year advantage
in schooling that computer users have over nonusers. In the long regression
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each year of schooling is associated with about 9 percent higher wages; a
two-year advantage translates into an 18 percent wage premium, and this is
the size of the omitted variable bias.

Krueger’s argument that the computer-use wage premium exists because
workers able to use computers are more valuable to their employers is con-
troversial. This claim is itself subject to the criticism that important variables
have been omitted from the analysis. Critics of Krueger’s paper point out that
people who use pencils on the job also earn substantially higher wages than
those who do not with factors like education controlled. One way of interpret-
ing the critics’ findings is to say that there are other, unmeasured skills that
are positively correlated with both computer (or pencil) use and the value
of a worker to his or her employer. Because these skills are not measured in
surveys used by econometricians, they are omitted from the wage regression.
As a result, higher wages are attributed to on-the-job computer use rather
than the variables that are really causing higher wages – these unmeasured
skills.7

18.5. Random X ’s: A More Realistic Data Generation Process

Workbook: ComputerUse1997.xls

In this section we introduce and demonstrate a more realistic model of the
data generating process than the classical econometric model. We call it the
random X ’s model. To illustrate this model, we pretend that the very large
sample in the ComputerUse1997.xls data set is a “population.” In this demon-
stration of the new DGP, each observation is like a draw at random from a
box containing the entire population of 12,699 tickets. Each ticket holds infor-
mation on three variables for a single individual: Ln Wage, CompAtWork, and
Education. Unlike the classical econometric model, we are not working with
X ’s which are unchanged from one sample to the next.

This DGP bears a strong resemblance to the polling box model described
in Section 10.4. The two differences between the random X ’s model and
the polling model are, first, that each ticket contains values for more than
one variable describing an individual, and second, that we posit a linear
functional relationship (called the population regression function) between
the dependent and independent variables. What about the error term?
Although we could avoid any mention of an error term in this model,
the notion of an error term is a very convenient way to talk about the
joint distribution of the independent and dependent variables. Thus, for
our purposes, in this model the error term is, as before, the difference

7 See DiNardo and Pischke (1997), who carefully discuss possible interpretations of the evidence.
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between a population regression function of the independent variables (e.g.,
β0 + β1CompAtWorki + β1Educationi ) and the observed value of the depen-
dent variable (e.g., LnWagei ). We assume that the average value of the error
terms is zero for every combination of X variables in the data set.8 We also
assume that the spread of the error terms is constant across all combinations
of X variables in the data.

In our example, the true values of the parameters are those given in the
Long Regression box of the Data sheet of ComputerUse1997.xls. Thus, the
errors can be computed as follows:

Errori = LnWagei − (1.138 + 0.219 · CompAtWorki + 0.087 · Educationi ),

i = 1, . . . , 12,699.

The reason we introduce this DGP now is it that makes little sense to
pretend that included X ’s are fixed in random sampling when the omitted
X ’s are varying from one sample to the next. Furthermore, many data sets
can be well described by this model. For example, in the Current Population
Survey, we can think of the individuals in the sample as random draws from the
larger population of all people in the United States. Imagine a box containing
one ticket for each person in the United States. On each ticket is written the
person’s age, sex, race, and a whole host of other values of variables measured
by the survey. The CPS consists of about 160,000 random draws from this box
each month.9 The X ’s we include in regressions using the CPS are clearly not
fixed but random.

Note that the assumptions just made are not quite satisfied in our example.
The average value of the error terms is not exactly zero for every combination
of values of the two X variables, nor is the SD of the error terms constant
across X-variable combinations. These violations of the random X ’s model
assumptions, however, are slight enough not to make a noticeable difference
in this example.

A key assumption is that the tickets are drawn at random from the box
containing the population. A more formal way of putting this is to say that
the (X, Y) observations in the sample are independent and identically dis-
tributed. We can easily implement this assumption on an Excel sheet. Go
to the SampleCompAtWork sheet. This sheet displays a random sample of
size 100 from the “population” in the Data sheet. Figure 18.5.1 is a represen-
tative example. Using the auxiliary regression, the Formula box (cell G19)

8 By combination we mean {Education = 12, CompAtWork = 1}, {Education = 12, CompAtWork = 0},
and so on. You might think of these combinations as defining cells in a two-dimensional PivotTable.

9 In actual fact the sampling scheme of the Current Population Survey is much more complicated than
just drawing at random from a box. See CPS.doc in the Basic Tools\InternetData\CPS folder for more
information.
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Education CompAtWork Intercept CompAtWork Intercept
0.127 0.051 0.742 2.561 12.356
0.023 0.110 0.290
0.328 0.464 #N/A
23.70 97 #N/A
10.19 20.85 #N/A

CompAtWork Intercept
0.377 2.314
0.106 0.073
0.114 0.530

12.626 98.00
3.542 27.492

Difference Formula
0.326 0.326

0.326 = 2.561 x 0.051

Sample Avg SD
In Wage 2.50 0.56
CompAtWork 0.48 0.50
Education 13.59 2.41

Auxiliary RegressionLong Regression

Short Regression

Auxiliary Regression of Educationon  
CompAtWork

4

6

8

10

12

14

16

18

20

0 1

Figure 18.5.1. Long and short regressions for CompAtWork in
a 100-observation sample.
Source: [ComputerUse1997]SampleCompAtWork.

applies the omitted variable rule to compute the difference in coefficient esti-
mates for the sample slope of ln Wage on CompAtWork in the short and long
regressions. The Difference box (cell F19) verifies the accuracy of the omitted
variable rule. The SampleEducation sheet performs exactly the same analysis
when the focus is on the sample slope of ln Wage on Education. Notice that
you can choose to draw the samples with or without replacement. Almost all
surveys of individuals use samples drawn without replacement.

We can apply the random X ’s model to study how the expected value
of the omitted variable bias varies as we change the sample size. You can
use the MCSim sheet to draw repeated samples of any size between 4 and
2,000 observations. Figure 18.5.2 shows the Monte Carlo approximation to
the sampling distributions for the short and long regressions in which we focus
on the slope coefficient for CompAtWork. The average estimates for the two
regressions are very close to the corresponding parameters of the population
regression functions reported in Section 18.4 and on the Data sheet. In this
experiment, the expected value of the bias is approximated as 0.177 (the
difference between the long regression and short regression average slopes),
in the population, the bias is 0.174. We leave it as an exercise for you to verify
that the expected value of the bias appears to remain constant as the sample
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Repetitions
Sample

size
Average 
estimate 0.393

Average 
estimate 0.216 100,000 10

SD estimates 0.354 SD estimates 0.394

Short Regression Long Regression

Empirical Histogram for 100,000 Repetitions

−3.75 −1.75 0.25 2.25 4.25

Estimates of Slope of CompAtWork

Figure 18.5.2. Monte Carlo simulation results comparing short-regression to long-
regression estimates of slope of ln wage on CompAtWork.
Source: [ComputerUse1997.xls]MCSim.

size increases. The lesson is clear: When relevant variables correlated with
included variables are omitted from a regression, the resulting estimates will
be biased. This bias does not go away as the sample size increases.

The primary focus of the MCSim sheet is to investigate bias in samples
of different size when relevant variables are omitted. This sheet, however,
can also be used to demonstrate that OLS behaves the same way under
the random X ’s model as it does when the classical econometric model cor-
rectly describes the data generation process. In both models, OLS is unbiased
(when the long regression is studied) and the distribution of the sample slope
approaches the normal curve as the sample size increases. Consequently,
statistical inference with the random X ’s model proceeds almost exactly as
discussed for the CEM in Chapters 15 through 17.

Summary

This section introduced a new, more realistic model of the data generation
process in which the X ’s (the independent variables) are themselves changing
from sample to sample. Throughout this book we have maintained the fixed-
X ’s-in-repeated-sampling assumption of the classical econometric model for
reasons of convenience. The model is easier to describe and the algebra of
expectations needed to prove the unbiasedness of the OLS estimator and to
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compute its exact SE is considerably simplified with the fixed-X ’s assumption.
Fortunately, almost all results we obtained with the fixed-X ’s assumption
carry over to the random X ’s model of the data generation process.

18.6. Conclusion

Omitted variables are a part of the general background noise that forms the
classical econometric error box. Along with measurement error and inherent
randomness in the world, they are an assumed part of inferential regression
analysis. Why, then, do we sometimes worry about omitted variables?

This chapter has focused on a special kind of omitted variable – not only
is it not included in the model, but it belongs there and is correlated with
the included X variables. This is devastating to the regression because the
estimated coefficients are no longer centered on their true parameter values.
In fact, omitted variable bias is another name for a common term in statistics:
confounding. It is difficult to spot, and all observational studies have it poten-
tially lurking in the background. Omitted variable bias is a big problem for
anyone wanting to estimate a parameter with observational data accurately.

The basic lesson about confounding in this chapter is also presented in
Chapter 7, which introduces multiple regression. As noted in Chapter 7,
the primary motivation for multiple regression is to avoid confounding. The
difference between Chapter 7 and this chapter is that we now have ways to
talk about the data generating process and can make statements about the
expected value of the OLS estimates.

In this chapter we have introduced a new model for the data generation
process: the random X ’s model. Fortunately, the claims made about the classi-
cal econometric model (the Gauss–Markov theorem and hypothesis testing)
also hold true in the random X ’s model. The next chapter makes use of the
random X ’s model in another application with real data. Chapter 21 presents
other models for the data generation process that also dispense with the
requirement that X ’s be fixed in repeated samples.

18.7. Exercises

1. Explain why it is important to include control variables like Age and Education in
the model of savings behavior discussed in Section 17.1.

2. Use the MCSim sheet in the ComputerUse1997.xls data set to demonstrate that
the bias of the short regression does not change as the sample size increases. Do
this for both the sample slope of ln Wage on Education and for the sample slope
on ln Wage on CompAtWork.

3. Suppose you obtain a data set that includes a measure of IQ in addition to standard
data on wages and education. You run a short regression of wages on education
and then a long regression of wages on both education and IQ. How do you think
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the slope of wage on education will differ between the two regressions? Explain
your reasoning.

4. Set the correlation between Training and Talent (cell B6) in the TrueModel sheet of
SkiingOVB.xls equal to 0.9 but make the value of β2 equal to 0. Hit F9 a few times.
You should find that the two slope coefficients in cells I3 and O3 are not equal.
However, as stated in Section 18.3, omitted-variable bias is no longer present.
a. Verify that this is true in our example by running a Monte Carlo simulation to

approximate the distribution of g1 (the short regression slope on Training) for
this case.

b. The omitted variable rule says that g1 = b1 + d1 · b2, where g1 is the short regres-
sion slope on the included variable, b1 is the corresponding long-regression
slope, b2 is the long-regression slope on the omitted variable, and d1 is the slope
of the auxiliary regression of the omitted variable on the included variable.
Now in the set-up of SkiingOVB.xls, d1 is a constant because the X ’s do not
change from one sample to the next (this is not true in the samples we create in
ComputerUse1997.xls). The other terms are random variables. Take expected
values of both sides of the omitted-variable rule to show that g1 is unbiased
when β2 = 0.

5. Consider the case in which Education is included but CompAtWork is omitted in
the short regression explaining the log of wages. Using the information in the Data
sheet of ComputerUse1997.xls, carefully explain the computation of the difference
in coefficient estimates for the sample slope of ln Wage on Education in the short
and long regressions. Do so with equations, and in English.
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Heteroskedasticity

Our word is a modern coinage, derived from the two Greek roots hetero (�����),
meaning “other” or “different,” and skedannumi (����	

��), meaning to “scatter.”

J. Huston McCulloch1

19.1. Introduction

In this part of the book, we are systematically investigating failures to conform
to the requirements of the classical econometric model. We focus in this
chapter on the requirement that the tickets in the box for each draw are
identically distributed across every X variable. When this condition holds,
the error terms are homoskedastic, which means the errors have the same
scatter regardless of the value of X. When the scatter of the errors is different,
varying depending on the value of one or more of the independent variables,
the error terms are heteroskedastic.

Heteroskedasticity has serious consequences for the OLS estimator.
Although the OLS estimator remains unbiased, the estimated SE is wrong.
Because of this, confidence intervals and hypotheses tests cannot be relied
on. In addition, the OLS estimator is no longer BLUE. If the form of the het-
eroskedasticity is known, it can be corrected (via appropriate transformation
of the data) and the resulting estimator, generalized least squares (GLS), can
be shown to be BLUE. This chapter is devoted to explaining these points.

Heteroskedasticity can best be understood visually. Figure 19.1.1 depicts
a classic picture of a homoskedastic situation. We have drawn a regression
line estimated via OLS in a simple, bivariate model. The vertical spread of
the data around the predicted line appears to be fairly constant as X changes.
In contrast, Figure 19.1.2 shows the same model with heteroskedasticity. The
vertical spread of the data around the predicted line is clearly increasing as
X increases.

1 McCulloch (1985, p. 483).

508
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Regression Line with 2 SE Bands
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Figure 19.1.1. Homoskedasticity in a simple, bivariate model.
Source: [Het.xls]GenBiVar with α = 0.

One of the most difficult parts of handling heteroskedasticity is that it
can take many different forms. Figure 19.1.3 shows another example of het-
eroskedasticity. In this case, the spread of the errors is large for small values
of X and then gets smaller as X rises. If the spread of the errors is not constant
across the X values, heteroskedasticity is present.

Regression Line with 2 SE Bands
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α = 1.0

Figure 19.1.2. Heteroskedasticity in a simple, bivariate model.
Source: [Het.xls]GenBiVar with α = 1.



P1: JZZ
0521843197c19 CB962B/Barretto 0 521 84319 7 November 7, 2005 19:44

510 Heteroskedasticity

Regression Line with 2 SE Bands
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Figure 19.1.3. Another form of heteroskedasticity.
Source: [Het.xls]GenBiVar with α = −0.5.

This chapter is organized around four basic issues:

� Understanding the violation itself
� Appreciating the consequences of the violation
� Diagnosing the presence of the violation
� Correcting the problem.

The next two sections (19.2 and 19.3) describe heteroskedasticity and its
consequences in two simple, contrived examples. Although heteroskedas-
ticity can sometimes be identified by eye, Section 19.4 presents a formal
hypothesis test to detect heteroskedasticity. Section 19.5 describes the most
common way in which econometricians handle the problem of heteroskedas-
ticity – using a modified computation of the estimated SE that yields correct
reported SEs. Section 19.6 discusses a more aggressive method for dealing
with heteroskedasticity comparable to the approaches commonly employed
in dealing with autocorrelation in which data transformation is applied to
obtain the best linear unbiased estimator. Finally, Section 19.7 offers an
extended discussion of heteroskedasticity in an actual data set.

19.2. A Univariate Example of Heteroskedasticity

Workbook: Het.xls

To better understand what heteroskedasticity is as well as its consequences,
in this section and the next we examine three contrived examples. The first
two examples are based on the notion of measurement error in which two
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A possibly infinite 
bnumber of tickets with  

different values. 

ERROR BOX

observed measurement1 = exact value + 

observed measurement n  = exact value +

1

observed measurement2 = exact value + 
2

 n

SAMPLE 

Average of the box = 0

NOTE: Tickets are drawn with replacement.

Figure 19.2.1. The DGP for a homoskedastic measuring instrument.

different devices with different levels of precision are used to generate the
data. The third example is a more complicated model that allows a variety
of forms of heteroskedasticity. In each of the three cases, we discuss the box
model for the data generating process, display the heteroskedasticity visually,
and show its impact via Monte Carlo simulation.

In this section, we examine heteroskedasticity in the context of a univari-
ate data generation process. We build on the simple example used to discuss
measurement error in Chapter 11. We are interested in measuring the dis-
tance between two mountain peaks. We have a measuring instrument that is
subject to measurement error but is unbiased. Furthermore, every individual
measurement is independent of every other. The model for the data gener-
ating process is depicted in Figure 19.2.1. Because the error term for each
observation comes from the same box, this model is homoskedastic.

The best (most precise) estimate of the distance between the two points
from the sample we collect is simply the sample average. The level of precision
is measured by the standard error. As observed in Chapter 11, estimates based
on averages of individual measurements are subject to a square-root law –
that is, the standard error of the sample average estimator is given by the
following formula:

SE of the Sample Average = SD(Box)√
Number of Measurements

.

This formula works so long as the spread of the measurement errors is con-
stant across measurements. When this condition – that the measurement
errors are identically distributed – fails to hold, we are dealing with het-
eroskedasticity.

How might heteroskedasticity arise? In the case of measurement error,
heteroskedasticity could occur if the precision of the measuring instrument
were to change between observations. In this artificial example, we suppose
that there are two instruments with different levels of precision.
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Open the workbook Het.xls and go to the Univariate sheet. Measurements
from Instrument 1, which is more precise, and Instrument 2, which is less
precise, are displayed in a table and accompanying chart. The first 10 obser-
vations come from Instrument 1, and the second 10 come from Instrument 2.
The overall average distance is indicated by a horizontal line. As usual, red
lines and red text pertain to values that would be unknown to the observer.

Figure 19.2.2 displays the Univariate sheet. The key parameters (located
in cells in the upper left portion of the sheet, where you can alter their val-
ues) governing the simulation are True Distance, Precision Ratio, and SDIn-
strument1. True Distance gives the exact distance we are trying to measure,
SDInstrument1 gives the precision of Instrument 1, and Precision Ratio tells
us how much less precise Instrument 2 is than Instrument 1. The spread
of the measurements for Instrument 1 is given by SDInstrument1, which is
initially set at 1 kilometer. Because the Precision Ratio is set initially at 4,
SDInstrument2 is 4 kilometers.

The measurements are simulated using techniques we have employed
several times before. For example, the formula in cell B9 reads
“=NORMALRANDOM(0,SDInstrument1).” This says that the first error
term is a normally distributed random variable with mean zero and a
spread equal to SDInstrument1 (given in cell B6). The formula in cell C9
is “=True Distance+Error1.” Thus, the actual measurement is equal to the
true distance plus the error. The name “Error1” refers to a draw from the
first error box. The formula in cell F9 is “=True Distance+Error2”; here,
“Error2” refers to a draw from the second error box. More formally, we have
the following model:

Observed Distancei = True Distance + εi ,

where εi is a draw from a normally distributed error box with mean 0 and SD
of SDInstrument1 when i ≤ 10 and SDInstrument2 when i > 10. Pictorially,
the model looks like Figure 19.2.3.

We now consider three different estimates of the true distance based on
three different sample averages:

1. Avg1 is the average of the 10 measurements with Instrument 1.
2. Avg2 is the average of the 10 measurements with Instrument 2.
3. OverallAvg is the average of all 20 measurements.

Figure 19.2.4 displays the 20 measurements along with average and SD
information. Click the Draw Another Sample button a few times. It is clear from the
chart that observations 11 through 20 are less precise; the empirical SDs con-
firm that impression. In the sample in Figure 19.2.4, the overall average of
24.64 is exactly midway between the two averages from the two instruments;
this is because we took the same number of measurements from both. The
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Observed measurement1 = True Distance + 

Observed measurement2 = True Distance + 
. . . 

Observed measurement10 = True Distance + 

Observed measurement11 = True Distance + 

Observed measurement12 = True Distance +  

. . . 

Observed measurement20 = True Distance + 

Ave = 0 km; SD = 1 

Ave = 0 km; SD = 4 km

2
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10

12

11

20

Figure 19.2.3. Box model for heteroskedastic, univariate measurements.

empirical SDs (0.76 and 4.93) are rather different from the SD of the respec-
tive boxes (1 and 4), but this is not unusual when we deal with only 10 draws
from each box. In the case of an equal number of measurements from both
devices, the overall SD will typically be about halfway between the SDs of
the two subsamples, though not exactly halfway.

Avg1 =  24.85   SD1 =  0.76  
Avg2 = 24.43 SD2 = 4.93
OverallAvg = 24.64 OverallSD = 3.35
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Figure 19.2.4. Heteroskedastic, univariate data.
Source: [Het.xls]Univariate.
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The View Residuals button is a three-way toggle. Click on the button and a
display of the residuals appears in place of the original graph. Click again,
and a graph of the errors appears. Observe how closely the residuals track the
errors in this model. Because they are estimates of the errors, residuals can
be a good diagnostic tool for observing heteroskedasticity in the errors. Click
once more, and the original graph of the measured distances will appear.

Comparing the Precision of the Three Sample Averages

Next we wish to compare the SEs of the three different sample averages that
have just been introduced. Without too much difficulty, you can compute the
exact SE for each of the three sample averages being considered: the sample
average for measurements from Instrument 1 alone, the sample average for
Instrument 2, and the overall sample average; however, we will instead use a
Monte Carlo simulation to obtain approximate SEs for the different sample
averages. To do so, click on the third button, Go to Monte Carlo Simulation , which takes
you to the Monte Carlo simulation sheet. Each repetition of the simulation
takes another 20 measurements and reports the averages and estimated SEs
for each instrument and their overall counterparts. We compute the estimated
SEs by using the sample SDs in place of the unknown true SDs. Figure 19.2.5
shows the result from a typical simulation with 10,000 repetitions.

We display numerical results for Instruments 1 and 2 and the combination
of the two instruments (called Overall). The chart display in Figure 19.2.5 con-
tains histograms of Instrument 1 and Overall sample averages. In the Excel
workbook, the displays are color coordinated. A toggle button, View Instrument 1

versus Instrument 2 ,
changes the histogram to contrast Instrument 1 and 2. The toggle button alters
the chart displayed but uses the same numerical results.

The Monte Carlo simulation tells an interesting story. First, all three aver-
ages are quite close to the True Distance of 25, and so, not surprisingly, we
have evidence that the averages are unbiased estimators. Second, the spread
of the sampling distribution, as approximated by the SD of the 10,000 sam-
ples, is about four times bigger for the estimate derived from Instrument 2
than it is for Instrument 1. This is because the SEs of the sample averages are
directly proportional to the SDs of the respective error boxes.

Third, it is somewhat surprising that the overall average, based on all 20
measurements, has a greater spread than the average from Instrument 1,
which is based on only 10 measurements. On the one hand, it is not diffi-
cult to see why this is happening: the precision of the estimates based on
all 20 measurements is being dragged down by the 10 relatively imprecise
measurements from Instrument 2. On the other hand, it would seem that
those 10 measurements are additional measurements and therefore must
add some additional information. This is in fact true, and when corrections
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True Distance 25
Average SD

Average 
Estimated SE Exact SE

Instr. 1 25.002 0.317 0.325 0.316

Instr. 2 24.971 1.264 1.299 1.265

3 Overall 24.986 0.650 0.655 0.652

Precision of Instrument 1 = 1.0
Precision of Instrument 2 = 4.0

17. 91 .81

Sample Averages

Empirical Histogram for 10000 Repetitions

17.2 21.1 28.9 32.8

Sample Averages

Univariate Monte Carlo 
Simulation

Take a Picture

View Instrument 1 versus 
Instrument 2

25.0

Figure 19.2.5. Comparing sample averages from two instruments.
Source: [Het.xls]UniMCSim.

for heteroskedasticity are discussed, it will be seen that there is an unbiased
estimator (called the GLS estimator) that makes use of all 20 measurements
and has a smaller SE than the estimate based on Instrument 1 measurements
alone.

Analytic Computation of the SEs of the Sample Averages

It is a relatively simple matter to compute analytically the exact SEs of the
three sample averages we have considered. Let us introduce some notation.
Each estimator has the following form:

Sample Average =
n∑

i=1

wi Yi .

Here the wi’s are weights, each equal to 1
n , where n is the number of observa-

tions being averaged, and the Yi’s are the measurements. Each measurement
is the sum of the true distance and a draw from the error box.

In our model of the data generation process, the error terms are indepen-
dent of one another. That means that each one of the measurements (the true
distance plus a draw from the error box) is independent of every other mea-
surement. The sample averages are therefore sums of independent random
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variables. We have already computed the SE of such sample averages in Sec-
tion 14.4 in which it is shown that the spread of a linear estimator of the
population average is

SD

(
n∑

i=1

wi Yi

)
=

√√√√ n∑
i=1

w2
i Var(εi )

=
√√√√ n∑

i=1

w2
i SD2(εi ).

Notice that this expression allows for the SD of the error term to vary
across observations. Now apply the formula to obtain the SEs for each of our
three estimators. We assume that the Precision Ratio remains 4 and the SD
of the measurements from Instrument 1 is 1. For the Sample Average based
on Instrument 1 alone, we have

ExactSE(Sample Average for Instrument1) =
√√√√ n∑

i=1

w2
i Var(εi )

=
√√√√ 10∑

i=1

(
1

10

)2

1

=
√

10 · 1
100

= 0.316.

Note that the Var(εi ) term is constant across the first 10 observations and
equal to the square of the SD of the measurements from instrument 1 (in this
case 1).

The SE of the Sample Average based on Instrument 2 is four times as big
because the error terms from the second instrument have an SD four times
greater:

ExactSE(Sample Average for Instrument 2) =
√√√√ 20∑

i=11

w2
i Var(εi )

=
√√√√ 20∑

i=11

(
1

10

)2

42

= 4 ·
√

10 · 1
100

= 1.264.
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Finally, the SE of the Overall Average is a slightly more complicated sum:

ExactSE(OverallAverage) =
√√√√ 20∑

i=1

w2
i Var(εi )

=
√√√√ 10∑

i=1

(
1

20

)2

12 +
20∑

i=11

(
1

20

)2

42

=
√

10 · 1
400

+ 10 · 1
400

· 16

=
√

170
400

= 0.652.

Because the weights sum to one for each of the three estimators, it is
easy to show that they are all unbiased. Thus, in this case the OLS esti-
mator, the Overall Sample Average, is not BLUE because there is another
linear unbiased estimator, the Instrument 1 Average, which has a smaller
SE than the OLS estimator. In Section 19.6 we identify yet another esti-
mator (the GLS estimator), which is termed Best for this data generation
process (i.e., this estimator has the smallest SE in the class of linear, unbiased
estimators).

Summary

In this section we have demonstrated the nature of heteroskedasticity in
a simple, univariate context. This example illustrates one of the important
consequences of heteroskedasticity – the OLS estimator is no longer BLUE
(i.e., there are other linear, unbiased estimators that have smaller SEs than the
OLS estimator). In Section 19.6, we see how, given enough information about
the nature of the heteroskedasticity, one can obtain the BLUE estimators. The
next section goes on to consider heteroskedasticity in the bivariate setting.

19.3. A Bivariate Example of Heteroskedasticity

Workbook: Het.xls

In this section, we turn to bivariate data generation processes to study the
nature and consequences of heteroskedasticity. In these examples we high-
light the second major consequence of heteroskedasticity – biased estimated
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SEs. In other words, the OLS-reported SEs for the coefficients are wrong and
cannot be trusted.

A Measurement Error Example: Hooke’s Law Revisited

Like the case we studied in Section 19.2, the first example of this section
employs the measurement error paradigm. It is the Hooke’s law example
revisited. This time there are two apparatuses for measuring the length of
a spring when a weight is attached to it. The first is set up for weights from
10 to 39 kg. The second is used for the heaviest weights ranging from 50 to
95 kg. Heteroskedasticity occurs because the second instrument is less precise
than the first. We take 30 measurements from the first instrument and then
move the spring to the second instrument for another 10 measurements. The
model for the data generating process is

ObservedLengthi = β0 + β1Weighti + εi ,

where the spread of the ε’s is SDBox1 for i ≤ 30 and SDBox2 for i > 30.
Go to the SimpleBiVar sheet in Het.xls now. Because this is a bivariate

model, there is one more parameter than there was before. We have set the
true intercept at 11.235 cm and the constant of proportionality at 0.4. The first
instrument has an SD of 0.2 cm; the second, 0.8 cm. Click on cells in columns
B, C, and D to see how this model is implemented in Excel. You can see that
we continue to simulate normally distributed errors. The three buttons on
the SimpleBiVar sheet work in the same way as the buttons on the Univariate
sheet. A fourth button, View B-P Test , will be used when we discuss the diagnosis
of heteroskedasticity.

This setup will give us a fairly precise estimate of the constant of proportion-
ality for our spring, as Figure 19.3.1 makes clear. That figure and the displays
of residuals and errors in the SimpleBiVar sheet all show abundant evidence
of heteroskedasticity, however. Click on the Go to Monte Carlo

Simulation button to see why
we need to worry about heteroskedasticity in this case. Run your own Monte
Carlo simulation for 10,000 repetitions by clicking on the Run Monte Carlo Simulation

button. You should obtain results like those shown in Figure 19.3.2.
We present results for the slope estimate only and focus on two com-

parisons. Compare the average of the b1 estimates to the true value of β1:
It appears that the OLS estimator is unbiased. This supports the first claim
about the effects of heteroskedasticity: The OLS estimator remains unbiased.

The crucial comparison, however, is between the average of the estimated
SEs and the empirical SD of the slope estimates (the b1’s). The former is the
typical value of the estimated spread of the sampling distribution. The latter
is a good approximation to the true spread of the sampling distribution (the
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Estimating the Constant of Proportionality

y = 0.39x + 11.429
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Figure 19.3.1. Regression line and data points for simple bivariate model.
Source: [Het.xls]SimpleBiVar.

Average 0.400 ββββ 1 0.4

Min 0.385 SD1 0.2
0.8Max 0.415 SD2

SD 0.0046
Average 
Estimated SE 0.0028

Population ParametersSample b1 Summary Statistics

Empirical Histogram for 10,000 Repetitions

0.375 0.3875 0.4 0.4125 0.425

OLS b1 estimates

Figure 19.3.2. Simple bivariate model.
Source: [Het.xls]SimpleBiVarMC.
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Sample
Number

Sample

b1

OLS 
Estimated 
SE

P-Value
for True  
Null

1 0.3969 0.0023 19%

Figure 19.3.3. Results from a single repetition
in the Monte Carlo experiment.
Source: [Het.xls] SimpleBivarMC.

exact SE). The point is that, on average, the estimated SE is too small. The
empirical SD for our slope estimates was 0.0046, but the average estimated SE
was only 0.0028. In this case, using OLS misleads us into believing that we have
a more precise estimate of the constant of proportionality than is actually the
case. The bias in the estimated SE is the second major consequence induced
by heteroskedasticity.

Why should we care about biased SEs? Because they seriously hamper
statistical inference. Let us demonstrate this in the context of hypothesis
testing. We will test the true null hypothesis that β1 = 0.4 against the two-
sided alternative that β1 	= 0.4 in each of the 10,000 samples that we drew. For
example, take a look at results from the first repetition in our Monte Carlo
experiment, as shown in Figure 19.3.3.

The test statistic in this case is

test statistic = b1 − hypothesized value of β1

SE(b1)

= 0.3969 − 0.4
0.0023

= 1.304.

The P-value is about 19 percent.2 You can use the P value Calculator add-in
to confirm this. Choose the t-distribution with 38 degrees of freedom.

Let us look at the distribution of all 10,000 P-values in the simulation. Click
on the View Histogram of  P-Values button to see something similar to the display in
Figure 19.3.4.

Figure 19.3.4 tells us that, for the particular heteroskedastic data generation
process chosen, if we were testing the true null hypothesis that the slope is
0.4 and used a 5-percent level of significance, we would falsely reject the null
about 22 percent of the time. In other words, we chose a significance that
leads us to believe we will reject the true null hypothesis only 5-percent of
the time, however, there is in fact roughly a 22-percent chance that we will
reject the true null.

A much less obvious problem with the OLS estimator in the simple bivari-
ate case is that OLS is no longer BLUE. Just as the estimator derived from
the overall average in the univariate measurement case was clearly not the

2 When the errors are normally distributed, a t-statistic is appropriate, and in fact we used the t-distribution
to compute P-values in our Monte Carlo routine.
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Sample P-Value Summary Statistics Population Parameters

Average 0.349 beta1 0.4

0.2
0.8

SD 0.307 SD1
Max 0.994 SD2

Min 0.000 %P Val<5% 22.40%

Empirical Histogram for 10000 Repetitions
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0 0.2 0.4 0.6 0.8 1

P Values from OLS 

Figure 19.3.4. P-values in a simple bivariate model.
Source: [Het.xls]SimpleBivarMC.

best estimator, our OLS estimator is also inferior to estimators that take the
heteroskedasticity into account. We return to this issue in Section 19.6.

More General Heteroskedasticity in the Bivariate Setting

So far the errors in our models in this section have been generated by two
boxes. Heteroskedasticity is usually more complicated and can take a variety
of forms. To illustrate the possibilities, consider a model in which every single
error is drawn from a different box. The data generating process is harder to
describe than it was for our first two examples. As in the first example of this
section, we have a simple bivariate model:

Yi = β0+β1 · Xi + εi .

The complication is in the error term. Let us suppose that there are 100
observations and X varies from 0.01 to 1.00 in steps of 0.01. In this example,
the error terms are determined by the following equation:

εi = X α
i · νi ,
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Regression Line with 2 SE Bands
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Figure 19.3.5. Heteroskedasticity in the general bivariate model
with evenly spaced X ’s.
Source: [Het.xls]GenBiVar.

where νi is a normally distributed random variable whose SD is initially set
at 1. Thus, the spread of each error term is a function of its associated X value
and a parameter called α :

SD(εi ) = X α
i .

These formulas look intimidating, but the GenBivar sheet in Het.xls will
clarify the model. Open that sheet now. The parameters governing this model
are contained in cells B3 through B6. The initial values of β0 and β1 are 0 and
10, respectively. Thus, the equation for the true model is

Yi = 0 + 10 · Xi + εi .

The value of α should be set at 1. If it is not, change it to 1 and hit F9 to
recalculate the sheet. The SD of the error terms is therefore equal to the
value of Xi. The chart of the regression line includes two bands drawn two
SEs vertically above and below the regression line. Thus, in Figure 19.3.5, at
X100 = 1 (the one-hundredth observation), the upper band is 2 units above
the regression line and the lower band is 2 units below the regression line. As
you can see, about 95 percent of all the points fit between the two bands.

Now change α to 2 and hit F9. The error terms associated with smaller
values of X are extremely small but spread out more rapidly than they did
before as X increases. Click on the View X α Chart button to see how the spread of
the errors changes as X increases. Change α to −0.5 to see another possible
pattern of heteroskedasticity.

In this model, each error term comes from its own individual box. The
consequences for estimation, however, are similar to those for the two-box,
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Sample b1 Summary Statistics Population Parameters

Average 10.000 ββββ 1 10
Min 9.244 αααα 2.0

Max 10.682 SD νννν 1.0

SD 0.1966
Average 
Estimated SE 0.1554

Empirical Histogram for 10,000 Repetitions

8.4375 9.21875 10 10.78125 11.5625

OLS b1 estimates

Figure 19.3.6. Heteroskedasticity with α = 2 and X ’s evenly spaced and
varying from 0.01 to 1.
Source: [Het.xls]GenBiVarMC.

Hooke’s law case we just considered: The OLS estimates are unbiased, but
the estimated SEs are wrong. These assertions can be demonstrated with
Monte Carlo experiments. To run the Monte Carlo experiments, first confirm
that α = 2 and then click the Go to the Monte 

Carlo Simulation button. Click the Run Monte Carlo
Simulation button

and choose the number of repetitions desired. The Monte Carlo simulation
should produce something like the results shown in Figure 19.3.6.

With α = 2, the heteroskedasticity would best be characterized as moder-
ately damaging. As before, the two numbers to be compared are the average
of the estimated SEs (0.1554), the typical estimated measure of the spread
of the sampling distribution of b1, and the SD of the estimates (0.1966),
which is a good approximation of the true spread of the sampling distri-
bution (i.e., the exact SE of b1). This comparison shows that the OLS esti-
mates of the SE are typically about 21 percent lower than the true SE. Click
on the

View Histogram of 
P-Values button to see the effect the biased estimates of the SE

have on hypothesis testing. As in the previous example, we test the true
null in each repetition. We find that at the 5-percent significance level, we
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Sample P-Value Summary Statistics Population Parameters

Average 0.425 ββββ 1 10

SD 0.302 αααα 2
Max 1.000

Min 0.000
%P Val<5
% 11.74%

Empirical Histogram for 10,000 Repetitions
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Figure 19.3.7. P-values with α = 2 and X ’s varying from 0.01 to 1.
Source: [Het.xls]GenBiVarMC.

would reject the true null about twice as often as we should, as shown in
Figure 19.3.7.

With α = 1, you will find that the heteroskedasticity makes very little
difference in terms of the estimated SEs. You should not conclude, however,
on the basis of these Monte Carlo experiments, that heteroskedasticity is an
unimportant issue in the general bivariate case.

To drive this point home, go back to the GenBiVar sheet and click on the
Change the Xs button. This button replaces the 100, evenly spaced X ’s we’ve been
dealing with so far with a set graphed in Figure 19.3.8.

Now the X ’s vary from 0 to about 15 and are concentrated in the begin-
ning of this range. Next, set α to 2 and go the GenBiVarMC sheet to run a
Monte Carlo simulation. You should obtain results similar to those shown in
Figure 19.3.9.

Now the heteroskedasticity is very noticeable: The typical estimated SE
vastly underestimates the true SE. Click on the View Histogram of 

P-Values button to see
how hypothesis testing might be affected. This example shows that the
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Regression Line with 2 SE Bands
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Figure 19.3.8. Heteroskedasticity with unevenly spaced X ’s.
Source: [Het.xls]GenBiVar.

Population Parameters

Average 9.994 ββββ 1 10
Min 8.511 αααα 1.0
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SD 0.4774
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Estimated SE 0.1277

Sample b1 Summary Statistics 
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6.875 8.4375 10 11.5625 13.125
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Figure 19.3.9. Heteroskedasticity with α = 2 and X ’s unevenly spaced.
Source: [Het.xls]GenBiVarMC.
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distribution of the X ’s interacts with the type of heteroskedasticity to deter-
mine how much damage heteroskedasticity causes.

Summary

In Sections 19.2 and 19.3 we have presented some basic, contrived models of
heteroskedasticity. The purpose of these examples was to demonstrate what
heteroskedasticity is and to show its consequences. The two problems caused
by heteroskedasticity are that standard OLS estimates of the SEs of slope
parameters are incorrect and that the OLS estimator is no longer Best in the
class of linear, unbiased estimators. We have used Monte Carlo simulation
to demonstrate that the reported SEs are wrong. Before we show that OLS
is not BLUE, we discuss how one can diagnose heteroskedasticity.

19.4. Diagnosing Heteroskedasticity with the B–P Test

Workbooks: Het.xls; BPSampDist.xls

In this section we discuss ways to determine whether the error terms in
a model are heteroskedastic. This is an important topic for two reasons:
First, as we have noted, heteroskedasticity causes problems for inference;
second, heteroskedasticity is extremely common. Heteroskedasticity is so
prevalent that many econometricians routinely avoid using the standard OLS
estimated SEs. What they do instead is explained in the next section of this
chapter.

A standard theme of this book is that one should act both on the basis of
theory and data. Diagnosis ought to begin with theory. In the case of het-
eroskedasticity, there are occasionally precise theoretical reasons for worry-
ing that the errors have varying SDs for different values of the independent
variables; very often there are less well-defined arguments for the presence
of heteroskedasticity; and sometimes there is just a vague suspicion that the
assumption of homoskedasticity is too strong.

Theoretical Reasons to Worry about Heteroskedasticity

An example of a compelling theoretical case for heteroskedasticity is that of
grouped data (e.g., a situation in which each observation represents the aver-
age behavior of the inhabitants of a single state). When the groups are of dif-
ferent sizes, the error terms are almost guaranteed to have different spreads
for different observations. A typical, looser argument for heteroskedastic
errors is the one made for consumption regressions. The error term in most
accounts reflects unobserved tastes and preferences. A plausible case can
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be made that the variation in the impact of tastes and preferences increases
as consumers’ income rises. For example, spending by poor people on auto-
mobiles probably varies less than that of rich people. Most people below the
poverty line buy used cars; some millionaires drive old Honda Civics, whereas
others own fleets of Bentleys.

Diagnosing Heteroskedasticity in the Data

If you have a theoretical reason for worrying about heteroskedasticity, how
can you test for its presence in your data set? There are many different tests
for heteroskedasticity. In this book, we focus on a relatively simple test that
is fairly intuitive. We call it the Breusch–Pagan test (B–P for short), though
Breusch and Pagan originally proposed a slightly different procedure.

The intuition for the B–P test is straightforward. If the errors have different
spreads for different X ’s, then the residuals ought to as well. Why? The reason
is that the residuals are good estimators of the errors. One way to measure
the spread of the residuals is to square them. Then if heteroskedasticity is
present there ought to be some type of relationship between the squared
residuals and the corresponding X ’s. In other words, knowledge of the value
of the X variables ought to help us to predict the size of the residuals. On the
other hand, if there is no heteroskedasticity, there ought to be no relationship
between the squared residuals and the corresponding X ’s.

How can one test for that relationship? Run an auxiliary regression of the
squared residuals on all the X ’s:

Residuals2
i = γ0 + γ1 X1i + γ2 X2i + · · · + γkXki + ηi ,

where i indexes observations. Then test the null hypothesis that

γ1 = γ2 = · · · = γk = 0,

(i.e., that none of the X ’s are related to the squared residuals). This is the F-
statistic for overall significance of the regression (also called the whole-model
F-statistic), which is discussed in Chapter 17. The whole-model F-statistic is
reported by almost all regression packages, including Excel’s Data Analysis
and LINEST.

You can see examples of the B–P test procedure for particular samples by
clicking on the View B–P Test buttons in the SimpleBiVar and GenBiVar sheets
of Het.xls. For the simple bivariate case (the one based on Hooke’s law), the
scatter plot associated with the auxiliary regression makes it very clear that
there is some relationship between the residuals and the X ’s. Recall that the
story in this case is that we switched measuring instruments when we started
using heavier weights. The second instrument is much less precise than the
first. In this example, the B–P test procedure requires that we run an original
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Squared Residuals vs. Weight
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Figure 19.4.1. Artificial regression behind the Breusch–Pagan test.
Source: [Het.xls]SimpleBivar.

regression of length of the spring on the weight, obtain the residuals, and then
square them. Then we run an auxiliary regression of the squared residuals
on the original X variable – in this case the Weight. The scatter plot and
regression results for a typical sample resemble those of Figure 19.4.1.

From the scatter plot shown in Figure 19.4.1, it is obvious that something
happens to the residuals when we switch to the scale designed for heavier
weights. The OLS regression line picks up on this, for the positive slope tells us
that the squared residuals appear to increase in size as the weights get bigger.
The test statistic is in bold: It is the F-statistic for the overall significance of the
regression (13.457 in this case). The null hypothesis says that all the regression
slopes (in this case just one) are jointly equal to zero; there is no relationship
between the size of the squared residuals and the X ’s. If the null hypothesis is
true, the F-statistic is distributed F(1,38) because there is just one independent
variable in our auxiliary regression, which determines the numerator degrees
of freedom, whereas the denominator degrees of freedom equals the number
of observations, 40, less the number of parameters in the regression, 2 (slope
and intercept).
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Population Parameters

3 s Average 9.989 ββββ 1 10
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b1 statistics
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Figure 19.4.2. Approximate sampling distribution of b1
with homoskedasticity (α = 0).
Source: [BPSampDist.xls]GenBiVarMCSim.

The B–P Sampling Distribution

To see the behavior of the B–P statistic for the general bivariate model, open
the BPSampDist.xls workbook. Set α (the parameter governing the degree
of heteroskedasticity) equal to 0 in the GenBiVar sheet. When α = 0, there is
no heteroskedasticity in the error terms. Click the Draw Another Sample button and
note the P-values for the whole-model F-test from the auxiliary regression
in cell H13.

To see the performance of the B–P statistic (i.e., the auxiliary regression’s
F-statistic), with α = 0, click the Go to the Monte 

Carlo Simulation button and run a Monte Carlo
experiment. You should find the average estimated SE of b1 to be very close
to the spread of the empirical histogram (the SD of the slope estimates),
which is the Monte Carlo approximation to the true SE of b1. Figure 19.4.2
displays the Monte Carlo results.

Click on the View Histogram  
of F stats button to see the Monte Carlo approximation to

the B–P statistic’s sampling distribution, as shown in Figure 19.4.3.
The histogram depicted in Figure 19.4.3 is close to the histogram of the

exact F(1, 38) distribution we expect to see when the null that there is no
heteroskedasticity is true. To obtain further evidence about the performance
of the B–P statistic when the null is true, click the Go Back to

Histogram of Betas button and
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Sample B–P Summary Statistics Population Parameters

Average 1.01 ββββ 1 10

Min 0.00 αααα 0.0
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Figure 19.4.3. Approximate sampling distribution of B–P statistics when the null is
true.
Source: [BPSampDist.xls]GenBiVarMCSim.

click on the
View Histogram of

P-values for F-statistics button. Something resembling Figure 19.4.4 will
appear.

What happens to the test statistic when there is heteroskedasticity? Change
α to 1 in the GenBiVar sheet and run another Monte Carlo simulation. Results
similar to those shown in Figure 19.4.5 will be obtained.

There is a huge difference between Figures 19.4.3 and 19.4.5. The F-
statistics are now much bigger. In fact, in this example the B–P test turns
out to be extremely good at sniffing out heteroskedasticity.

Under the null hypothesis of no heteroskedasticity, we expect to find B–
P statistics (whole-model F-statistics from the auxiliary regression) greater
than 4 about 5 percent of the time. With α = 1, however, the center of the
sampling distribution is about 23, and the minimum in our 1,000 samples was
5.74. In this (admittedly contrived) example, the B–P test succeeds every time
in its task of detecting heteroskedasticity.

To drive the point home, click on the View Histogram of
P-values for F-statistics button. Something

like Figure 19.4.6 will appear. In 1,000 repetitions, the B–P test rejected the
false null every time at the 5-percent significance level. It is interesting to
note that, when α = 1, although our diagnostic test has no trouble finding
heteroskedasticity, the heteroskedasticity itself does relatively small dam-
age to inference. To verify that statistical inference is not badly harmed,
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Sample P-Value Summary Statistics Population Parameters
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Figure 19.4.4. P-values for B–P test when the null is true.
Source: [BPSampDist.xls] GenBiVarMCSim.
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Figure 19.4.5. B–P statistics when the null is false (α = 1).
Source: [BPSampDist.xls]GenBiVarMCSim.
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Population Parameters

Average 0.000 β 1 10

SD 0.002 α 1
Max 0.045

Min 0.000
%P Val<5
% 100.00%

Sample P-Value Summary Statistics for 
B–P Test

Empirical Histogram for 1000 Repetitions

0

200

400

600

800

1000

1200

0 0.2 0.4 0.6 0.8 1

P Values for F-Stat

Figure 19.4.6. P-values for B–P test when the null is false.
Source: [BPSampDist.xls]GenBiVarMCSim.

make the same comparisons we did for the α = 2 case at the end of Sec-
tion 19.3. You will find the average value of the estimated SEs to be about
10 percent greater than the SD of the empirical distribution of the slope
estimates, and a hypothesis test based on a true null hypothesis about the
slope β1 rejects just a little more often than it should.

Summary

The B–P test is based on the fact that the residuals typically are good estimates
of the errors. If the spread of the errors varies as the X values change, then
that ought to show up when the (squared) residuals are regressed on the
X ’s. The whole-model F-statistic on the appropriate auxiliary regression is
a useful diagnostic tool for finding a dependence of the squared residuals
on the X ’s. If the B–P test tells you that there is heteroskedasticity in your
data, what can you do about it? The next two sections outline two different
approaches to dealing with heteroskedasticity.

19.5. Dealing with Heteroskedasticity: Robust Standard Errors

Workbooks: HetRobustSE.xls; OLSRegression.xla (Excel add-in in the
Basic Tools folder)

This section and Section 19.6 describe two different approaches to tack-
ling the problem of heteroskedasticity. The first avenue of attack, discussed
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in this section, is to use OLS but to replace the conventional estimate of
the SE – which, as we have seen, can be severely biased – with some-
thing called robust standard errors. One need not know the exact form of
the heteroskedasticity to implement robust standard errors. We will explain
how robust standard errors are obtained and present evidence that they
indeed are much less biased than the standard estimate of the SE. The
second approach, called generalized least squares or GLS (discussed in
Section 19.6), is to transform the data so that the heteroskedasticity is
removed. The advantage of robust standard errors over the GLS approach
is that one need not know the form of the heteroskedasticity to deal with
the problem. In addition to explaining the logic behind robust standard
errors, this section introduces an Excel add-in that facilitates easy compu-
tation of robust SEs (and offers additional OLS output beyond LINEST’s
capabilities).

Robust standard errors are estimates of the standard errors of the esti-
mated coefficients that take into account the heteroskedasticity revealed by
the data. The way in which this is done is explained below for the bivari-
ate case. The multivariate case is more complicated, but the basic idea is
the same. The word robust is used in this context to mean “impervious to
the heteroskedasticity.” In other words, although conventional OLS esti-
mated SEs break down if the DGP is not homoskedastic, robust SEs keep
working well.

The explanation of exactly how robust standard errors work is somewhat
complicated, but in the bivariate case, at least, it is fairly easy to gain an
intuitive grasp of what is going on. Here are formulas for the conventionally
reported OLS estimated SE and the robust estimated SE:

OLS Estimated SE (b1) =
√√√√ n∑

i=1

w2
i RMSE2

Robust Estimated SE (b1) =
√√√√ n∑

i=1

w2
i e2

i .

In the above expressions, n is the number of observations, the wi’s are weights
which depend on the X ’s and the ei’s are the residuals corresponding to each
observation. In the above sums RMSE is a constant which is the same across
all n observations, while the value of the squared residual, e2

i , varies across
observations. The difference between the OLS and robust estimated SE’s is
that the OLS SE uses just one measure of the spread of the error terms, the
RMSE, while the robust SE uses n different estimates of the spread of the
error terms, the n squared residuals. The intuition behind the robust SE is
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that the changing squared residuals better estimate the varying spread of the
errors than the unchanging RMSE.

A more formal explanation of the robust SE goes as follows. We begin with
the classical econometric model in the bivariate case,

Yi = β0 + β1 Xi + εi , i = 1, . . . , n,

where each εi is a draw from a single error box with a standard deviation
SD(εi ). All the εi ’s are independent of one another and are uncorrelated
with the X ’s, which are fixed in repeated sampling.

We know how to compute the SE of the OLS estimator of the slope b1.
Recall that the OLS estimator of b1 is a weighted sum of the Y’s,

b1 =
n∑

i=1

wi Yi ,

where each of the OLS weights is given by the formula

wi = (Xi − X̄)∑n
i=1(Xi − X̄)2

.

In words, this formula says that each observation’s weight (wi) is the deviation
of that observation’s X value from the average of the X values (i.e., the
numerator) divided by the variance of the X ’s multiplied by the number of
observations (i.e., the denominator).

Our assumptions that the εi ’s are independent and that the X ’s are fixed
in repeated samples make the variance (the square of the SE) of b1 easy to
compute, as follows:

Var(b1) =
n∑

i=1

w2
i SD(εi )

2
.

The formula for the exact SE is simply the square root of this expression:

Exact SE(b1) =
√√√√ n∑

i=1

w2
i SD(εi )

2
.

Homoskedasticity means that each of the error terms comes from the same
box. When each error term is drawn from the same box, the SD(εi) is the
same value for every observation; thus, the formula can be simplified to

Var(b1) =
n∑

i=1

w2
i SD(ε)2

where SD(ε) is just the SD of the error box.
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The conventional OLS estimate of the SE uses the RMSE as an estimate
of SD(ε):

OLS Estimated SE(b1) =
√√√√ n∑

i=1

w2
i RMSE2.

Now suppose that the requirement that the errors come from the same box
is violated. In other words, we have,

Yi = β0 + β1 Xi + εi , i = 1, . . . , n,

where each εi is a draw from a separate error box with its own standard devia-
tion SD(εi ). All the εi ’s are independent of one another and are uncorrelated
with the X ’s, which are fixed in repeated sampling. This is no longer the clas-
sical econometric model because the errors are not identically distributed for
each observation. For one observation, the SD of the error box may be small
but for another observation it may be quite large.

What effect will the heteroskedasticity have on the formula for the exact
SE of the OLS slope estimator? Well, the formula is the same as before:

Exact SE(b1) =
√√√√ n∑

i=1

w2
i SD(εi )

2
,

where εi is the ith observation’s error term. We cannot, however, treat all
of the SD(εi ) as being equal to each other because the whole point of het-
eroskedasticity is that each error term comes from a different box. We can
emphasize the fundamental difference between the homoskedastic and het-
eroskedastic DGPs by simply comparing the formulas for the exact SEs side
by side as follows:

Homoskedastic Exact SE(b1) =
√√√√ n∑

i=1

w2
i SD (ε)2 versus

Heteroskedastic Exact SE(b1) =
√√√√ n∑

i=1

w2
i SD(εi )

2
.

The two formulas look identical, but there is one difference between them:
The formula for the heteroskedastic DGP has an epsilon with a subscript. The
homoskedastic formula is missing the subscript. This seemingly minute dif-
ference is actually critical. The exact SE for the homoskedastic case uses one
single number to represent the SD of the error box for all of the observations
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because it is assumed in the classical econometric model that the error distri-
butions is the same for all of the observations. In contrast, the exact SE for
the heteroskedastic DGP employs a different SD of the error box for each
observation. This difference carries over into the estimated versions of the
formulas:

OLS Estimated SE (b1) =
√√√√ n∑

i=1

w2
i RMSE2 versus

Robust Estimated SE (b1) =
√√√√ n∑

i=1

w2
i e2

i .

Notice that the formulas use the weights in the same way and the only dif-
ference is in how the spread of the errors is treated. The problem with the
conventional OLS estimated SE in the presence of heteroskedasticity is the
underlying assumption that every error term has the same spread. The OLS
SE uses the RMSE as an overall single estimate of the spread of the error
terms. This is a mistake, however, because, in fact, there is no overall single,
constant SD of the box.

The robust standard error, however, is faithful to the true heteroskedastic
DGP because it uses the square of each individual residual as an estimate of
the spread of the associated error term. Because the robust SE pays atten-
tion to the varying spread of the error terms, it does a better job than the
conventional OLS estimate of the SE.

Now because the error terms and therefore the residuals bounce around
a great deal and can be close to zero even when the error terms have a high
SD, it would seem that the robust SE procedure should not work that well.
We will see, however, that the robust SE generally does a better job than
the OLS estimated SE when heteroskedasticity is present. In fact, it does an
adequate job even when there is no heteroskedasticity.

It’s time to put these ideas into practice. The ComputingSE sheet of Het-
RobustSE.xls compares the computation of the conventional OLS SE with
that of the robust SE in the general bivariate case considered in Section 19.3:

Yi = β0 + β1 · Xi + εi .

We have 100 observations, and X varies from 0.01 to 1.00 in steps of 0.01. The
error terms are determined by the following equation:

εi = X α
i · νi .
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Parameters

ββββ 0 0

ββββ 1111 10

αααα 2.0
SD νννν 1

Figure 19.5.1. Parameter values for Monte Carlo simulation.
Source: [HetRobustSE.xls]ComputingSE.

Although you can change the value of α, we set it to 2 to make the comparisons
more dramatic. We set the value of the parameters that govern the example
(and the associated Monte Carlo simulation) as shown in Figure 19.5.1.

The ComputingSE sheet is set up to show how each of the three SEs
(exact, conventional OLS estimated, robust) of the OLS slope are computed.
Columns G and H compute the weights (the wi’s), column L computes the
squared residuals, and columns I, J, and K compute the individual terms in
the three sums that produce the three SEs. The sums, which are the exact
variance and the two estimated variances, are reported in cells I10, J10, and
K10. The exact and estimated SEs are in cells I9, J9, and K9, as shown in
Figure 19.5.2.

Click on the Draw Another Sample button or simply hit F9 to draw a new sample.
You will see the OLS-reported SE and robust SE bounce around to reflect new
residuals (that go into the RMSE and squared residuals used in computing
the two estimates), but the exact SE does not change. Note that, usually, the
OLS SE is too low, whereas the robust SE is closer to the exact, true SE. A
Monte Carlo simulation will confirm this first impression.

To graphically compare the three weighted sums that are used to compute
the exact variance, the conventional OLS variance, and the robust SE vari-
ance, click on the View Graph of Contributions 

to Variance button. It graphs the values in columns
I, J, and K. Figure 19.5.3 is an example.

As you can see, the robust SE contributions are widely scattered, but they
actually track the exact SE contributions better than the OLS estimated
SE – particularly for low values of X for which the exact SE and robust SE
contributions essentially coincide.

The MCSim sheet uses a Monte Carlo simulation to confirm that robust
SEs do a better job than OLS estimated SEs of estimating the true SE of the
OLS slope. Figure 19.5.4 displays output from one simulation.

Exact
Estimated 

OLS Robust
SE 0.196 0.177 0.201

Variance 0.039 0.031 0.040

Figure 19.5.2. Exact and estimated variances and SEs.
Source: [HetRobustSE.xls]ComputingSE.
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Figure 19.5.4. Comparing robust and OLS estimated SEs.
Source: [HetRobustSE.xls]MCSim.
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As usual, we start our interpretation of the results with the average of the
10,000 sample slopes. The closeness of this average to the true parameter
value is evidence that the OLS sample slope estimator is an unbiased esti-
mator of β1 even in the presence of heteroskedasticity. Next, notice that, as
advertised, the empirical SD of the 10,000 estimates of b1 in the Monte Carlo
experiment (0.1973 in Figure 19.5.4) is very close to the computed, exact,
analytic SE it is approximating, 0.196 as reported in Figure 19.5.2.

We now turn our attention to the Average Estimated SE and Average
Robust SE. In Figure 19.5.4, the average value of the robust SE (0.1901)
is much closer to the exact SE (0.196) than the average value of the OLS
estimated SE (0.1553). Like the OLS estimated SE, the robust SE is a biased
estimator of the exact SE, but the bias is much smaller than that for the OLS
estimated SE. The reason the robust SE is almost unbiased is that it is a
consistent estimator of the exact SE. Thus, as the sample size increases, the
center of the sampling distribution of the robust SE gets closer to the exact SE.
This is not true for the OLS estimated SE. It is not only biased but inconsistent.
A larger sample size will not improve the performance of the OLS estimated
SE. We encourage you to run similar Monte Carlo experiments for different
degrees of heteroskedasticity by changing α.

The OLS Regression Add-In

Robust SEs are not available in the core Excel application; however, an
Excel add-in, called OLSRegression.xla, is included with this book in the
Basic Tools \ ExcelAddIns \ OLSRegression folder. This add-in computes
and reports robust SEs (along with a few other OLS regression statistics).
Full documentation on installation and use is available in the OLSRegres-
sion.doc file in the Basic Tools folder of the CD-ROM that accompanies this
book.

Use the Add-In Manager to install the OLS Regression add-in. After suc-
cessful installation, a new item, OLS Regression . . . , will appear in the Tools
menu. Click on this option, and a dialog box will pop up, as seen in Fig-
ure 19.5.5.

To test drive the OLS Regression add-in, go to the ComputingSE sheet and
click on the Draw A Dead Sample button. The program will create a new worksheet
called DeadSample as well as computations of OLS parameter estimates, the
exact SE, the OLS estimated SE, and the robust SE for the slope b1. With the
OLS Regression add-in installed, execute Tools: OLS Regression . . . Click
on the “X Variable(s) Range” dialog box and enter the X data, being sure to
include the label that identifies the data by simply selecting the appropriate
cells on the DeadSample sheet. Do the same for the Y data. You can safely
ignore the other options at this time. Click OK when you are ready. The
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Figure 19.5.5. OLS regression add-in dialog box.
Source: OLSRegression.xla add-in

computer spends a little time making the computations, and the result appears
in a new worksheet. Figure 19.5.6 is an example. Your results will be a little
different because you will have a different sample.

You can confirm that the results in the first two columns are the same as
those generated by LINEST (or Excel’s Data Analysis: Regression add-in).
What the OLS Regression add-in gives you that is unavailable in Excel is the
robust SE, which, if you have reason to believe there is heteroskedasticity in
the data, is preferred to the OLS estimated SE. Our default implementation
of the robust SE makes a correction (the HC2 choice in the OLS Regression
add-in) that has been found to work well in small samples. If you wish to obtain
exactly the same result as the DeadSample sheet, use the HC0 option in the
OLS Regression add-in. For more on this issue, please see the documentation

Regression Statistics for Y(i)
No. of obs. 100 SSR 15.4524381
No. of missing obs. 0TSS 872.624106

Mean of Dep Var 5.071845 R 2 0.98229199
RMSE 0.397087 F-stat 5436.21808

Variable Estimate SE
Robust SE 
(HC2)

Intercept −0.05013 0.080017 0.04210152
X(i) 10.14253 0.137562 0.14371302

Figure 19.5.6. Sample output from OLS regression add-in.
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in the OLSRegression.doc file in the Basic Tools folder of this book’s
CD-ROM.

Summary

Previous sections have shown that the presence of heteroskedasticity means
that the OLS estimated SE reported is wrong. This section has used the
analytical formulas for the SE to explain the reason for the breakdown in
the SE computed via conventional methods. By substituting a single num-
ber, the RMSE, when in fact each observation has its own SD of the error
box, the conventional method generates a biased and inconsistent estimator
of the true SE. The inconsistency is the real killer. It means that no matter the
sample size, the poor performance of the OLS estimated SE will not improve.
Irrespective of the sample size, the center of the sampling distribution of the
OLS estimated SE will differ from the exact SE of the OLS estimator of
the sample slope. The conventional approach, using a single number to rep-
resent the SD of the error box, works if the errors all come from the same box.
This is why homoskedasticity is a requirement for the classical econometric
model. In the presence of heteroskedasticity, the OLS estimated SE cannot
be trusted.

This section has demonstrated the first of two strategies for dealing with
heteroskedasticity: Use OLS but get the SE right. We have shown that by
using each observation’s residual as an estimate of each observation’s own
SD of the errors, we can obtain a consistent estimate of the true SE of the OLS
sampling distribution. The OLSRegression.xla add-in offers a convenient,
easy way to estimate robust SEs from sample data.

Although robust SEs are a marked improvement over conventional OLS
SEs, they do not end the story of heteroskedasticity. Unfortunately, the third
consequence of violating the requirement of homoskedasticity – OLS is not
BLUE – remains. The next section explains how, if the form of the het-
eroskedasticity is known, GLS can be used to get Best Linear Unbiased
Estimates.

19.6. Correcting for Heteroskedasticity: Generalized Least Squares

Workbook: HetGLS.xls

In this section we discuss how to obtain a better estimator than OLS given
enough information on the nature of the heteroskedasticity. The correction
for heteroskedasticity involves a transformation of the regression equation.
When we transform the equation to improve the estimation, we are using
generalized least squares (GLS). The basic idea behind GLS is to give more
weight to observations that enjoy more compact error-term distributions
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because these observations will have less bounce from the true regression
line.

The ordinary least squares approach is not sophisticated enough to use the
fact that the observations with the smaller spread in the error box should be
given more weight. The ordinary least squares method is ordinary because it
gives every observation equal weight. This means that the OLS estimator is
not BLUE – that is, there are other linear, unbiased estimators that have sam-
pling distributions with smaller SEs. If we know enough about the differing
spreads to be able to weight the observations via the GLS estimator correctly,
OLS can be improved upon. We will demonstrate this point by first returning
to the univariate example of Section 19.2 and then addressing the regression
examples covered in Section 19.3. We will also show that the estimated SEs
from the GLS estimator are consistent.

The Univariate Case: Finding the Optimal Estimator

Recall that Section 19.2 discusses an artificial example of distance measure-
ments in which the first measuring instrument is more precise than the second
measuring instrument. For this example, 10 measurements from each instru-
ment were obtained and the Instrument 1 Average distance, the Instrument 2
Average, and the Overall Average were compared. When Instrument 1 was 4
times more precise than Instrument 2, both Monte Carlo evidence and analyt-
ical methods showed, somewhat surprisingly, that the Instrument 1 Average
was better than the Overall Average in the sense that it had a smaller SE. In
other words, the OLS estimator, which used all the data, was inferior to an
estimator that used only part of the data. We hinted that there, is in fact, an
estimator that is superior to both the Overall and Instrument 1 Averages.

That estimator is the GLS estimator in the univariate case. The GLS esti-
mator applies the basic idea that estimates that are more precise should get
more weight. The solution will involve including all 20 measurements in the
estimator but giving more weight to the Instrument 1 measurements and less
to the Instrument 2 measurements. The result will have a smaller SE than the
Instrument 1 Average. The problem regards, what the weights ought to be.

One way to determine the proper weights is to use Excel’s Solver. The
UniComputingSE sheet in HetGLS.xls is set up to compute the SE, using the
general formula

SD

(
n∑

i=1

wi Yi

)
=

√√√√ n∑
i=1

w2
i Var (εi )

=
√√√√ n∑

i=1

w2
i SD2(εi ).
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Set the Precision Ratio parameter in cell B3 to 2. This means that Instru-
ment 1 is twice as precise as Instrument 2 (as you can see in cells B5 and B6).
Run Solver to solve the constrained optimization problem as follows:

min
wi

√√√√ n∑
i=1

w2
i SD2 (εi ) subject to

n∑
i=1

wi = 1.

The constraint is necessary to ensure that the estimator is unbiased. We
make Solver’s job easier by noting that, in the optimal solution, there are
only two values for the weights – one for the observations from 1 to 10 and
another for observations 11 to 20.

With the Precision Ratio at 2, the optimal weights are 0.08 and 0.02. The
problem can also be solved via calculus using the Lagrangian multiplier
method. The general, calculus solution reveals that the ratio of the weights
is the square of the Precision Ratio.

The Go to Monte Carlo Simulation button takes you to the UniMCSim sheet present-
ing Monte Carlo evidence showing that the GLS estimator indeed outper-
forms the Instrument1 estimator, which is demonstrated in Section 19.2 to
be preferable to the OLS estimator.

The UniMCSim sheet (see Figure 19.6.1) enables comparison of GLS to
OLS and GLS to just Instrument 1. Generalized least squares beats both
competitors. Of course, this is hardly a proof that GLS is BLUE, but it is
suggestive evidence in favor of GLS. That GLS using the optimal weight-
ing scheme is the best possible linear, unbiased estimator can be rigorously
proved, but we leave that for more advanced treatments.

The Transformation for Regression Models

In this discussion, we tackle the problem of finding the best, linear, unbi-
ased, estimator in the presence of known heteroskedasticity for the bivariate
case. Heteroskedasticity can be corrected via GLS – a technique that relies
on transforming the original equation, the errors, of which do not meet the
classical requirements, into something new whose errors do meet the con-
ditions demanded by the classical econometric model. When the form of
heteroskedasticity is known, we can follow a procedure to return the DGP
to one that faithfully meets the requirements of the CEM – and, thus, OLS
applied to the transformed model is, once again, BLUE.

For ease of presentation, let us consider a simple bivariate model:

Yi = β0 + βi Xi + εi .
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Average SD
Estimated 

SE Exact SE

Instr. 1 25.00 0.32 0.33 0.32
OLS 25.00 0.35 0.36 0.35
GLS 25.00 0.28 0.37 0.28

Precision of Instrument 1 = 1.00
Precision of Instrument 2 = 2.00
GLS Weight1 = 0.08
GLS Weight2 = 0.02

23.44 24.22 25.00 25.78 26.56

Empirical Histogram for 10000 
Repetitions

23.44 24.22 25.00 25.78 26.56

Sample Averages

Figure 19.6.1. GLS versus OLS in the univariate case.
Source: [HetGLS.xls]UniMCSim.

We will model heteroskedasticity as follows:

εi = kiνi ,

where εi is the heteroskedastic error term, ν i is an independent and identi-
cally distributed error term, and i indexes the individual observations. The
homoskedastic error term (ν i) is multiplied by a factor ki that varies across
observations. The larger in absolute value ki is, the larger the SD of εi will
be. In fact, the relationship is

SD(εi) = |ki | SD(νi ) .

Note that all the νi terms have the same SD; what makes the SD of the εi’s
vary is the differing values of the ki ’s. Our basic equation can be rewritten in
terms of the homoskedastic error term as follows:

Yi = β0 + βi Xi + kiνi .
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Here is the key to GLS: To transform the equation so that the error term
is simply 
i, all we have to do is divide the entire equation by ki as follows:

1
ki

Yi = 1
ki

β0 + 1
ki

β1 Xi + 1
ki

εi

Yi

ki
= 1

ki
β0 + β1

Xi

ki
+ νi .

The transformed equation now has a homoskedastic error term. Note that
the intercept term has been replaced by 1

ki
. This means that you need to be

very careful when implementing GLS to specify in LINEST (or whatever
software you are using) that there is no intercept and to include a column of
data containing 1

ki
as an X variable. Of course, to do this we need to know

what ki is. Understanding the process that generated Y may help us ascertain
how ki is determined.

We have implemented the GLS correction for the general bivariate model
studied in Section 19.3. Recall that in the general bivariate model, the spread
of the error terms was given by this equation:

SD(εi ) = X α
i .

The GLS transformation in this case is

1
X α

i
Yi = 1

X α
i

β0 + 1
X α

i
β1 Xi + 1

X α
i

εi

Yi

X α
i

= 1
X α

i
β0 + β1 X 1− α

i + νi .

Note once again, that this regression must be estimated without an intercept
term and with an X variable containing the values of 1

X α
i

.
Go to the GenBivariate sheet in HetGLS.xls to see this transformation put

into practice. You can change the values of each of the parameters given in red
in the upper left-hand corner of the sheet. Of most interest is the parameter
α. The GenBivariate sheet computes the GLS estimate and its estimated SE.
There are two possible sets of X values that can be used in these simulations.
For now, choose the X values which start at 0.01 and go up to 1 in increments
of 0.01. Click on the Go to the Monte 

Carlo Simulation button to obtain Monte Carlo evidence
showing the superiority of the GLS procedure when heteroskedasticity is
present (i.e., when α is not 0).

One special feature of the Monte Carlo simulation is that it asks you to
specify the value of α to include in the GLS correction. Thus, if a is the number
chosen as our estimate of α, the GLS estimator we actually report uses 1

X a
i

Yi

for the dependent variable and 1
X a

i
and X 1−a

i for the independent variables.
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b1  S OLS

GLS (a  =  

1) Population Parameters

Average 9.970 10.007 ββββ 1 10

SD 1.066 0.543 αααα 1. 0

Average 

Estimated 

SE 0.999 0.545 SD  νννν 5. 0

Empirical Histogram for 1000 Repetitions

6 8 10 12 14

OLS and GLS b1 estimates

 OLS 

 GLS 

Figure 19.6.2. Comparison of OLS and GLS estimators with α = 1; a = 1.
Source: [HetGLS.xls]GenBivarMCSim.

We set α = 1, chose a = 1, and found that GLS does much better than
OLS. See Figure 19.6.2. Compare the SDs of the two sets of estimates, 1.066
and 0.543, in this figure. These are Monte Carlo approximations to the SEs of
the OLS and GLS estimators, respectively. You would much rather use the
GLS estimator than the OLS estimator because you are more likely to draw
a b1 near the true parameter value β1. Notice that not only does GLS have
a smaller SE than OLS, but it appears that the GLS-estimated SE is close to
being unbiased (this is in fact the case: the GLS-estimated SE is consistent,
meaning that, as the sample size increases, the bias of the GLS-estimated SE
vanishes).

However, when we again set α = 1, but choose a value of −0.5 for a, so that
we are using the wrong value to make the transformation, the GLS estima-
tor with an incorrect adjustment for heteroskedasticity does not outperform
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b1  OLS

GLS (a =  -

0.5) Population Parameters

Average 9.999 9.984 ββββ 1 10

SD 1.045 1.660 αααα 1. 0

Average 

Estimated 

SE 0. 998 1.478 SD  νννν 5. 0

Empirical Histogram for 1000 Repetitions

0 5 10 15 20

OLS and GLS b1 estimates

 OLS 

 GLS 

Figure 19.6.3. Comparison of OLS and GLS estimators with α = 1, a = −0.5.
Source: [HetGLS.xls]GenBivarMCSim.

OLS. See Figure 19.6.3. Note that, even though we have put in the wrong
correction, the incorrect GLS estimator is still unbiased.

At this level of exposition, we are unable to prove that GLS is in fact
BLUE. We can, however, offer some suggestive evidence via Monte Carlo
simulations. If the GLS estimator (i.e., the one obtained by multiplying
the equation by 1

X α
i

) is indeed the minimum-variance estimator, then a
different transformation must produce an estimator inferior to the GLS
estimator. That is, multiplying the equation by 1

X a
i

, where a is a number
different than α, must produce an estimator with a higher variance (and
therefore SE). In fact you will find that the estimator with the smallest SE
(as approximated by the Monte Carlo simulation) is the one in which we
transform by the 1

X α
i

factor. Any choice for the exponent other than α pro-
duces an approximate SE which is greater than the GLS approximate SE
(even though it may have a smaller approximate SE than the OLS approxi-
mate SE).
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Summary

This section is another one of those good news and bad news stories. First,
we consider the good news. If you know the form of the heterskedasticity, it
is possible to transform the data and access an estimator called GLS that is
BLUE. This is a best-case scenario because you would have the most precise
estimator from the class of linear, unbiased estimators.

The bad news is that work with α = 1 and a = −0.5 reveals a serious compli-
cation with GLS: You have to know the exact form of the heteroskedasticity
to gain the full benefits of GLS. This has proven to be a major obstacle to the
widespread acceptance of GLS-based methods. Heteroskedasticity is not a
simple yes or no condition. It comes in many varieties. If the type is unknown,
then the cure (i.e., the transformation you implement to carry out GLS) may
be worse than the disease, simple OLS. In the last few years, econometricians
have increasingly relied on OLS with robust SEs (to avoid the problem of the
incorrect OLS estimated SEs) instead of the more aggressive GLS approach.

19.7. A Real Example of Heteroskedasticity: The Earnings Function

Workbook: WagesOct97.xls

The purpose of this section is to show how heteroskedasticity affects infer-
ence in real data sets. Because it is usually impossible to observe an entire
population, we need to pretend that we have such information. Because our
example comes from real data, however, it does shed light on the practical
consequences of heteroskedasticity in a way that artificial examples of pre-
vious sections cannot. Our example will provide more evidence on how well
robust SEs deal with heteroskedasticity and will also highlight a common way
in which econometricians handle heteroskedasticity: by changing the func-
tional form of the regression. Finally, the example in this section provides
another example of the more realistic Random X ’s data generation process
introduced in Section 18.5.

The WagesOct97.xls file contains data which come from the Outgoing
Rotation Groups of the October 1997 Current Population Survey. There are
12,699 observations. Only individuals whose hourly wage could be computed
are retained in the data set. Besides Hourly Wage, the variables included are
Male and College. The Male variable is self-explanatory. College is a dummy
variable that equals 1 if the individual has a 4 year college degree and 0
otherwise.3

In this section we will pretend that the 12,699 people in the data set are an
entire population. This allows us to know the “true” population regression

3 Details on how the variables were created are contained in the Codebook sheet of WagesOct97.xls.
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StdDevp of Linear Error
College Total

0 6.28$ 
1 9.77$ 

Grand Total 7.39$ 

Figure 19.7.1. Standard deviations of Error
terms by Education.
Source: [WagesOct97.xls]PivotTable.

functions for the relationships to be investigated. We are interested in the
relationship between Hourly Wage, treated as the dependent variable, and
College and Male, treated as independent variables (later in this section we
make the log of the hourly wage the dependent variable). The population
regression function is

Hourly Wage = 9.420 + 2.971 Male + 7.963 College.

Each person’s actual hourly wage contains an error term:

Observed Hourly Wagei = 9.420 + 2.971 × Malei + 7.963 Collegei + Errori,

i = 1, . . . , 12,699.

As usual, i indexes individuals. We assume that the error term reflects luck
and the influence of omitted variables. In the population, obtaining a college
degree, if the variable Male is held constant, is associated with an increase
in Hourly Wage of $7.96 per hour. Furthermore, males make on average of
$2.97 more than females with the same level of education. The errors are
heteroskedastic as the PivotTable in Figure 19.7.1 makes clear. The errors
are also heteroskedastic when considered relative to Male, as Figure 19.7.2
shows.

We will draw samples from the population and use them to estimate the
population regression functions. The Sample sheet allows you to do so. You
have the option of choosing whether the dependent variable should be Hourly
Wage or ln Hourly Wage; for now we will examine results for the regression
of Hourly Wage on Male and College.

This example simulates the random X ’s data generation process introduced
in Section 18.5. There it is asserted that each observation is like a draw from
a box containing the entire population of 12,699 tickets.4 Each ticket holds
information on three variables for a single individual, Hourly Wage, Educa-
tion, and Male. Unlike the classical econometric model, we are not working
with X ’s that are unchanged from one sample to the next.

Click on the Draw Sample With
Replacement Hourly Wage  button to draw a sample. A dialog box

allows you to determine how many observations to include in the sample.
You must include at least four in order to have enough to obtain regression

4 As in the simulations from the ComputerUse1997.xls data set in Chapter 18, the draws are made with
replacement, meaning that the same observation could appear more than once in any given sample.
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StdDevp of Linear Error
Male Total

0 6.50$     
1 7.93$     

Grand Total 7.26$     

Figure 19.7.2. Standard deviations of error
terms by Gender.
Source: [WagesOct97.xls]PivotTable.

estimates. If you choose the default value of 100, you will obtain results
similar to those shown in Figure 19.7.3. The values of the dependent variable
(in this case Hourly Wages), College, and Male are displayed in columns A
through C. Column D holds the squared residuals. For each sample, we run
a B–P test in which the squared residuals are regressed on Education and
Male.

Every time a new sample is drawn, you will obtain an entirely (or almost
entirely) new set of observations. The sample average values of Education
and Male will therefore vary from one sample to another. This is not the fixed-
X-in-repeated-samples scheme that characterizes the classical econometric
model.

To study the issue of heteroskedasticity more carefully, click on the
Go to Monte Carlo

Simulation button. This sheet allows you to choose which independent

Sample Avg SD
Hourly Wage 12.71 6.62
Male 0.48 0.50
College 0.27 0.45
n 100

College Male Intercept
6.316 3.676 9.240
1.289 1.145 0.856
0.270 5.716 #N/A
17.93 97 #N/A

1171.75 3169.11 #N/A

Sample Regression

Education Male Intercept
19.266 11.774 20.837
13.488 11.986 8.954
0.031 59.818 #N/A
1.572 97 #N/A

11,248 347,080 #N/A
P-value 
21.30%

Breusch-Pagan Test

Figure 19.7.3. Results for typical sample of 100 observations.
Source: [WagesOct97.xls]Sample.
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Figure 19.7.4. Radio buttons to choose
regression focus.
Source: [WagesOct97.xls]MCSim.

variable to focus on and which dependent variable to include in the regres-
sion (as shown in Figure 19.7.4). With the Hourly Wage as the dependent
variable and focus on Education as the independent variable, you are ready
to go. The Monte Carlo will therefore run many repetitions of this regression
model:

HourlyWagei = β0 + β1Collegei + β2Malei + εi .

This means that the histogram and other summary statistics will pertain to b1,
the slope on education. Click on the button, choose a sample size (make it 25
for this first analysis), and wait a while. The computer has much work to do.
In every repetition, the computer first draws a new sample of size 25 on the
3 variables (HourlyWage, Male, and College), then runs an OLS regression,
and finally calculates the robust SE of b1. Figure 19.7.5 displays a typical
result of such a simulation.

Three conclusions can be drawn from different comparisons we can make
using the results of this Monte Carlo experiment. First, there is clear evidence
of heteroskedasticity: The average conventional OLS estimate of the SE of
b1 is 3.363, whereas the Monte Carlo approximation to the SE (the SD of the
b1 estimates) is 4.444. Second, the robust SEs definitely perform better than
the OLS SE’s, because their average value is 3.862. Third, the robust SEs are
apparently still biased downward.

It turns out that robust SEs can perform poorly for small samples but
do better and better as the sample size increases. To demonstrate this fact,
we ran three additional Monte Carlo simulations, each with 10,000 repeti-
tions. Figure 19.7.6 is a table with the pertinent results. This figure presents
evidence that the robust SEs are consistent estimators of the SE of the
slope, whereas the regular OLS estimated SEs appear to be biased even in
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Average 
estimate of b1 7.940

Number of   
Repetitions 1000

SD estimates 4.444 n
Mean OLS SE 3.363
Mean Robust 
SE 3.862

Slope Estimates

Empirical Histogram for 1000 Repetitions

−38.50 −18.50 1.50 21.5 41.50

Estimates of Slope of College 

25

Figure 19.7.5. Estimating the effect of Education on Hourly Wage
with 25 observations.
Source: [WagesOct97.xls]MCSim.

Number of 
Obs

SD of OLS 
Estimates

Average OLS 
SE

Average 
Robust SE

Average Slope 
Estimate

Ratio OLS 
SE/SD of 
OLS

Ratio 
Robust
SE/SD of 
OLS

25 4.394 3.325 3.792 7.930 76% 86%
100 2.052 1.648 1.982 7.949 80% 97%
400 1.018 0.830 1.001 7.960 82% 98%

True Slope 7.963

Dependent Variable: Hourly Wages; Slope of College
Results for 10,000-Repetition Monte Carlo Experiments

 

Figure 19.7.6. Testing the performance of robust and OLS SEs.
Source: [WagesOct97.xls]MCSim.
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large samples. Notice that, as we would expect from the square-root law, the
SE of the slope for College falls roughly by half for every quadrupling of the
sample size.

Robust SEs do not always perform better than OLS estimated SEs. You
can demonstrate this fact by choosing Hourly Wage as the dependent vari-
able and focusing on the results for the slope on Male. In this case, the
average of the OLS estimated SEs will be closer to the empirical SD than
the average of the robust SEs for sample sizes of 100 or less. The discrep-
ancy between robust SEs and OLS estimated SEs gets smaller as the sample
size increases. It turns out just through luck that though heteroscedastic-
ity is present, the OLS estimated SE is not far off from exact SE in this
case.

Using a Different Functional Form to Handle Heteroskedasticity

Robust SEs are one way to deal with heteroskedasticity. Another approach is
to specify a different functional form. A very common procedure in analyses
of wages is to take the log of the dependent variable. Although we will not
present the evidence here, you can use the WagesOct97.xls workbook to
demonstrate that, when the log of the hourly wage is the dependent variable,
heteroskedasticity is a much smaller problem than it is when hourly wage
is the dependent variable and that robust SEs do not perform any better
than regular OLS SEs. There is, however, not much harm in using robust SEs
either.

As demonstrated in Chapter 6, we also have strong theoretical reasons for
believing that the semilog functional form applies to earnings functions. In
other words, when we are trying to explain differences in pay, it is percentage
changes that vary linearly with education and experience. Nevertheless, the
fact that heteroskedasticity is reduced when we use the log of hourly wages
instead of the raw hourly wage data itself partly accounts for the common
use of the log of hourly wages in earnings functions.

Summary

This section has investigated the performance of robust SEs in a situation
more closely approximating actual conditions than contrived data sets. We
find that the robust SE approach performs fairly well.

We have also taken the opportunity to work with the random X ’s data
generation process. Although in this book we have emphasized the classical
econometric model, it is important to be aware that econometrics utilizes
other DGPs as well. One of our central messages is that valid statistical
inference depends on careful modeling of the data generation process.
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19.8. Conclusion

This chapter has given extensive coverage to a violation of one of the assump-
tions of the classical econometric model – namely that the error terms have
the same spread, or in box model terms, are drawn from the same box. We
outlined four steps for thinking about the problem: understanding the vio-
lation itself, appreciating the consequences of the violation, diagnosing the
presence of the violation, and finally, correcting the problem. Our discussion
has underlined a point made in Chapter 10: When the analogy between the
data generating process and the box model is imperfect, statistical inference
breaks down. With the B–P test we have extended our repertoire of test
statistics, this time using the test statistic as a diagnostic tool. Finally, we have
highlighted one approach to dealing with violations of the classical economet-
ric model: the construction of statistics that are robust to the violation. In the
next chapter, on autocorrelation, we will see a different violation, the same
four steps for thinking about the problem, and a different featured approach
to dealing with the violation.

We conclude this chapter with a strong visual message. Figure 19.8.1 illus-
trates that there are three consequences when a DGP fails to meet the classical
econometric model’s requirement that errors be homoskedastic.

1. The OLS estimator remains unbiased. The sampling distribution of the OLS esti-
mator remains centered on the true parameter value even in the presence of
heteroskedasticity. This is good news.

2. The OLS estimated SE is wrong. This is bad news. In Figure 19.8.1, we show
this consequence as an imaginary sampling distribution (which accounts for the
dashed line) that is exceptionally spiked. In other words, we get OLS estimated
SEs that appear to be exceptionally small, but that is because the formula for the
OLS estimated SE breaks down when there is heteroskedasticity. The precision

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
b1 estimates

True OLS
Imaginary OLS
GLS

ββββ

Figure 19.8.1. Three consequences from heteroskedasticity illustrated.
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promised by the estimated SE is a mirage, and the true sampling distribution of the
OLS estimator has more variability than that indicated by the OLS estimated SE.
Furthermore, this problem will not go away as the sample size increases. This is
the primary reason you should never trust the OLS estimated SE in the presence
of heteroskedasticity. Any procedure that uses the OLS estimated SE, such as
confidence intervals and tests of significance, is also contaminated.

3. The OLS estimator is no longer BLUE; but the GLS estimator is BLUE. Figure
19.8.1 shows that GLS is more tightly clustered around the true parameter value
than the true OLS sampling distribution. There is no doubt about it: If you know
the form of the heteroskedasticity, then you can improve on OLS. In practice,
this turns out to be a big “if,” which explains the rise of robust SEs as the pri-
mary method of dealing with heteroskedasticity. Unlike the conventional OLS
estimated SE, the robust SE consistently estimates the exact SE of the OLS esti-
mator, thereby more accurately signaling the true precision of the OLS coefficient
estimate.

19.9. Exercises

In Chapter 6, we use the data in the EducWageData sheet in the SemiLogEarnings.xls
workbook to regress education on wages, for no model of the DGP is introduced
before Chapter 6. Therefore, the regression analysis is used strictly as a description
of the data.

Chapter 16 returns to that data set, and the estimated standard errors are obtained
to create confidence intervals and perform tests of significance. We simply assert that
the DGP follows the classical econometric model. The following two models are
presented:

Linear Model: Wagei = β0 + β1Educationi + εi

Semilog Model: ln Wagei = β0 + β1Educationi + εi .

We return to this data set once again, this time with an eye toward examining the
issue of heteroskedasticity.

1. Open SemiLogEarnings.xls (in the Chapter 6 folder on the CD-ROM) and pro-
ceed to the EducWageData sheet. Use the Regression option in Excel’s Data
Analysis add-in to run regressions on the two models. Report your results in a
nicely formatted table with SEs in parentheses under the parameter estimates.

2. We are worried, however, that there is heteroskedasticity. Run a B–P test on each
model. Describe your procedure. Your answer should include clearly stated null
and alternative hypotheses, a test statistic, a P-value, and a decision on rejecting
or not rejecting the null.

3. In answering the previous question, you reject the null for the linear model, but
not for the semilog model. Suppose that for the linear model someone asks for
a two-tailed test of the claim that education has no effect on wage. They use the
results from your answer to Question 1. What is the problem?

4. Use the OLSRegression.xla add-in to find robust SEs for the linear model. Report
your regression results in a nicely formatted table with SEs in parentheses under
the parameter estimates.
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5. In addition to the theoretical argument for the semilog functional form presented
in Chapter 6, your work in Question 2 on the semilog model is an example of why
we routinely take the natural log of the dependent variable (a measure of remu-
neration) in earnings function regressions. What part of your answer to Question
2 helps explain the popularity of the semilog functional form?

References

Our opening quotation comes from McCulloch, J. Huston (1985). “Miscellanea: On
Heteros*edasticity,” Econometrica 53(2): 483. McCulloch makes a strong case for
the “k” spelling and concludes by arguing that

if heteros*edasticity were spelled with a c, it would thus have had to have entered the English
language either in 1066 with the Norman invaders or else in the middle ages from Latin, neither
of which was the case. Furthermore, it would have to be pronounced “heterossedasticity,”
which it is not. Heteroskedasticity is therefore the proper English spelling.

A quick look at the econometrics texts on our bookshelves was not conclusive. We
resorted to a Google search for both versions and “k” had more hits: 161,000 to
114,000. Convinced by McCulloch, we went with “heteroskedasticity” in this book.
The citation for the B–P Test is Breusch, T. S. and A. R. Pagan (1979). “A Simple

Test for Heteroskedasticity and Random Coefficient Variation,” Econometrica
50: 987–1007. See Wooldridge (2003), p. 257, for more information.

The shift from attempts to correct OLS in the presence of heteroskedasticity to
accepting OLS but computing the estimated SEs via robust SEs started in the
1980s. In Estimation and Inference in Econometrics (New York: Oxford University
Press, 1993), Davidson and MacKinnon credit “an extremely influential paper by
White (1980)” (p. 552). That paper is
White, Halbert (1980), “A Heteroskedasticity-Consistent Covariance Matrix

Estimator and a Direct Test for Heteroskedasticity,” Econometrica 48(4).
There are a variety of approaches to compute robust SEs. See the documentation
for the OLS Regression add-in for more information.



P1: irk
0521843197c20 CB962B/Barretto 0 521 84319 7 November 7, 2005 20:2

20

Autocorrelation

A great deal of use has undoubtedly been made of least squares regression methods
in circumstances in which they are known to be inapplicable. In particular, they
have often been employed for the analysis of time series and similar data in which
successive observations are serially correlated.

James Durbin and Geoffrey S. Watson1

20.1. Introduction

In this part of the book (Chapters 20 and 21), we discuss issues especially
related to the study of economic time series. A time series is a sequence of
observations on a variable over time. Macroeconomists generally work with
time series (e.g., quarterly observations on GDP and monthly observations on
the unemployment rate). Time series econometrics is a huge and complicated
subject. Our goal is to introduce you to some of the main issues.

We concentrate in this book on static models. A static model deals with
the contemporaneous relationship between a dependent variable and one or
more independent variables. A simple example would be a model that relates
average cigarette consumption in a given year for a given state to the average
real price of cigarettes in that year:

Qt = β0 + β1 · RealPricet + εt , t = 1960, . . . , 1989.

In this model we assume that the price of cigarettes in a given year affects
quantity demanded in that year.2 In many cases, a static model does not
adequately capture the relationship between the variables of interest. For
example, cigarettes are addictive, and so quantity demanded this year might

1 Durbin and Watson (1950, p. 409).
2 We are implicitly assuming that changes in quantity demanded are due entirely to shifts in the supply

curve. If this is not the case, a single equation model is inappropriate.
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depend on prices last year. Capturing this idea in a model requires some addi-
tional notation and terminology. If we denote year t’s real price by RealPricet,
then the previous year’s price is RealPricet−1. The latter quantity is called
a one-period lag of RealPrice. We could then write down a distributed lag
model:

Qt = β0 + β1 · RealPricet + β2 · RealPricet−1 + εt , t = 1960, . . . , 1989.

Although highly relevant to time series applications, distributed lag models
are an advanced topic that is not covered in this book.3

Let us return to the static model:

Qt = β0 + β1 · RealPricet + εt , t = 1960, . . . , 1989.

As always, before we can proceed to draw inferences from regressions from
sample data, we need a model of the data generating process. We will attempt
to stick as close as possible to the classical econometric model. Thus, to keep
things simple, in our discussion of static models we continue to assume that the
X ’s, the independent variables, are fixed in repeated samples. Although this
assumption is pretty clearly false for most time series, for static models it does
not do too much harm to pretend it is true. Chapter 21 points out how things
change when one considers more realistic models for the data generating
process.

Unfortunately, we cannot be so cavalier with another key assumption of
the classical econometric model: the assertion that the error terms for each
observation are independent of one another. In the case we are consid-
ering, the error term reflects omitted variables that influence the demand
for cigarettes. For example, social attitudes toward cigarette smoking and
the amount of cigarette advertising both probably affect the demand for
cigarettes. Now social attitudes are fairly similar from one year to the next,
though they may vary considerably over longer time periods. Thus, social
attitudes in 1961 were probably similar to those in 1960, and those in 1989
were probably similar to those in 1988. If that is true and if social attitudes
are an important component of the error term in our model of cigarette
demand, the assumption of independent error terms across observations is
violated.

These considerations apply quite generally. In most time series, it is plausi-
ble that the omitted variables change slowly over time. Thus, the influence of
the omitted variable is similar from one time period to the next. Therefore,

3 For a good treatment of distributed lag models, see Wooldridge (2003), pp. 326–329 and 601–607.
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the error terms are correlated with one another. This violation of the classical
econometric model is generally known as autocorrelation of the errors. As
is the case with heteroskedasticity, OLS estimates remain unbiased, but the
estimated SEs are biased.

For both heteroskedasticity and autocorrelation there are two approaches
to dealing with the problem. You can either attempt to correct the bias in the
estimated SE, by constructing a heteroskedasticity- or autocorrelation-robust
estimated SE, or you can transform the original data and use generalized least
squares (GLS) or feasible generalized least squares (FGLS). The advantage
of the former method is that it is not necessary to know the exact nature of the
heteroskedasticity or autocorrelation to come up with consistent estimates
of the SE. The advantage of the latter method is that, if you know enough
about the form of the heteroskedasticity or autocorrelation, the GLS or FGLS
estimator has a smaller SE than OLS. In our discussion of heteroskedasticity
we have chosen to emphasize the first method of dealing with the problem;
this chapter emphasizes the latter method. These choices reflect the actual
practice of empirical economists who have spent much more time trying to
model the exact nature of the autocorrelation in their data sets than the
heteroskedasticity.

In this chapter, we analyze autocorrelation in the errors and apply the
results to the study of static time series models. In many ways our discussion of
autocorrelation parallels that of heteroskedasticity. The chapter is organized
in four main parts:
� Understanding autocorrelation
� Consequences of autocorrelation for the OLS estimator
� Diagnosing the presence of autocorrelation
� Correcting for autocorrelation

Chapter 21 goes on to consider several topics that stem from the discussion
of autocorrelation in static models: trends and seasonal adjustment, issues
surrounding the data generation process (stationarity and weak dependence),
forecasting, and lagged dependent variable models.

20.2. Understanding Autocorrelation

Workbook: AutoCorr.xls

Chapter 9 uses free-throw shooting as a vehicle to explain Monte Carlo simu-
lation. The model assumed independence in free-throw shooting. This means
that making or missing the previous free throw has no effect on the cur-
rent free throw. Independence means that the shooter does not get hot – the
probability of making the next free throw does not increase after making the
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t Lagged Z
1 −4.49 .
2 0.55 −4.49
3 17.08 0.55
4 −7.05 17.08
5 6.13 −7.05

r(Z, Lagged Z) −0.55

Z

Figure 20.2.1. Lagging a variable.

first free throw or after making six in a row.4 Flipping coins is also an exam-
ple of an independent chance process. It does not matter if five heads have
been flipped in a row; the chances that the next flip will be heads remains
50 percent. The coin does not remember previous results.

Of course, not all processes are independent. In other words, past results
sometimes do influence the current outcome. If missing five shots in a row
makes the shooter hesitate or alters his or her mechanics, thereby lowering the
chances of making the next shot, that is autocorrelation at work. The weather
is clearly dependent on previous results. The position of the hurricane on
today’s weather map depends on where it was yesterday. Today’s temperature
depends on yesterday’s temperature. You would do a decent job of predicting
the temperature tomorrow just by guessing today’s 85◦F because weather
tends to persist.

This section describes the terminology used in discussing autocorrelation
and then presents a detailed explanation of a particular type of autocorrela-
tion called the AR(1) model. The AutoCorr.xls file will enable you to walk
through the process that generates observed Y in an AR(1) model.

The Naming Scheme

We begin with some basic terminology. Autocorrelation is sometimes called
serial correlation. These terms used to have slightly different meanings, but
now they are essentially synonyms. Auto, which means self, signifies that a
series is correlated with itself.

Subscripts are generally used to specify the time period in which a variable
is observed. Thus, Z1 means the value of Z in period 1, whereas Z6 is its value
in period 6. Lagging a variable means reading its previous value. In general,
Zt lagged one period is equal to Zt−1. The numbers in Figure 20.2.1 illustrate
the concept of lagging. The third value is 17.08. At t = 4, Z’s lagged value
is 17.08, or Z’s previous value. At t = 1, there is no value for Z lagged one

4 This may not describe the typical playground player, but it does seem to hold for professionals (see
Gilovich and Tversky, [1985]).
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period because there is no previous data for Z.5 A period is often used to
indicate a missing value.6

The correlation coefficient r of the four pairs of Z and Lagged Z (from
t = 2 to t = 5) equals −0.55. Because this correlation coefficient is found by
correlating Z with one-period lags of itself, it is an estimate of the first-order
autocorrelation coefficient. If you found the correlation coefficient between
Zt and Zt−2, you would have an estimate of the second-order autocorrelation
coefficient.7

Autoregression, and its adjective autoregressive, means that a variable is
expressed in an equation in terms of itself. The DGP for such a variable
is called an autoregressive process. The parameters of the process can be
estimated by regressing current values of the variable on previous, or lagged,
values of itself, which accounts for the name autoregression.

The order of an autoregressive process is given by the highest lag length
involved:

AR(1) (First-order autoregression) : Zt = β0 + β1 Zt−1 + εt

AR(2)(Second-order autoregression) : Zt = β0 + β1Zt−1 + β2 Zt−2 + εt

Autocorrelation and autoregression are confusing terms. You can keep
things straight by noting that, from a single variable, Zt, its ith lagged coun-
terpart, Zt−i, can be created. The ith order autocorrelation can be estimated
by calculating the correlation coefficient between the original series (the Zt’s)
and the ith lag of that series (the Zt−i’s). The ith order autoregression is found
by regressing Zt on Zt−1, Zt−2, . . ., and Zt−i.

The AR(1) Model of Autocorrelation

The idea of autocorrelation is applicable to any series of numbers. With regard
to the errors in a regression equation, autocorrelation refers to a situation in
which the errors, as they are sequentially drawn from the box, are related to
each other systematically.

This book focuses on first-order autocorrelation. A first-order autoregres-
sive, or AR(1), process is often the starting point of analysis.

The AR(1) model can be written in the form of two equations as follows:

Yt = β0 + β1 Xt + εt , (1)

5 Similarly, if the data were quarterly, a four-period lag would read the value four periods ago. At t = 5
(the first quarter of the second year), Z is 6.13 and Z lagged four periods is −4.49. Leading a variable
reads values ahead.

6 Do not use blanks to indicate missing values because many software packages and spreadsheets (includ-
ing Excel) will interpret a blank as a zero.

7 The estimates of the autocorrelation coefficients are well-behaved provided that the underlying series
are stationary, which is a concept discussed in Chapter 21.
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where the error terms are generated by a first-order autoregressive process:

εt = ρεt−1 + νt . (2)

Note that this AR(1) process has no intercept term. With no intercept term
in the AR(1) process, we are considering the simplest possible AR(1) model.

The symbol νt represents the tth draw from a classical econometric error
box. When ρ is less than one in absolute value, it can be interpreted as the
correlation coefficient between the errors and their values lagged one period.
Because the sample correlation coefficient is usually denoted by an r, it
makes sense for the analogous population parameter to be ρ, the Greek letter
for r.

When ρ is positive, one speaks of positive autocorrelation; when ρ is nega-
tive, negative autocorrelation. This book concentrates on positive autocorre-
lation, which is more common in economic time-series models. In this chapter
we restrict our discussion to cases in which ρ is less than one in absolute value.
As usual, most of what we have to say about the bivariate case will carry
over immediately to the multivariate case of more than one independent
variable.

The AR(1) Process in Action

Having described the two equations and the new variables ν and ρ, we are
ready to begin learning how an AR(1) process actually works.

The second equation in the model,

εt = ρεt−1 + νt ,

says that each error term is composed of ρ times the previous ε error term
(εt−1) plus a draw from the error box (ν t). When ρ is positive and close to 1,
the current error term will closely resemble the previous error term. When ρ

is 0, there is no autocorrelation (i.e., the error terms are independent of each
other). This is exactly what the classical econometric model requires. Any ρ

not equal to zero generates autocorrelation because the errors terms are not
independent of each other.

You can put these ideas into practice and better learn the concept of auto-
correlation by exploring the AR1Process sheet in AutoCorr.xls. Read and
scroll down the sheet. The example itself starts with the initial values of
the table in row 34. Click the Reset and New Starting Values buttons as needed.
The

Generate Another
Observation button walks you through how each observation is gen-

erated. The key idea is that the previous ε error term influences the curr-
ent ε error term – this is autocorrelation. Note that, although we observe the
data starting in 1985, it is assumed the process that generates the data started
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r(ν, lagged ν)              0.03 r(ε, lagged ε)                     0 .74

ν on year
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Another 50 
Observations ρ=0.8 −> ρ=0

Figure 20.2.2. Views of autocorrelation.
Source: [AutoCorr.xls]AR(1)Process.

sometime in the past; thus, we need a previous value for ε, which the computer
furnishes.

As you click the button to build up an Observed Y value, the button caption
changes and message boxes pop up to report on each step of the process. The
crucial step occurs when ρ is multiplied by the previous value of ε. The arrows
we use to focus attention on how ρεprevious is calculated are part of Excel’s
auditing feature. You can remove the arrows by executing Tools: Formula
Auditing: Remove All Arrows or by clicking on the Reset button.

To see how an autocorrelated process propagates itself, click on the
Generate 50

Observations button and then scroll down to see a set of four graphs, as in
Figure 20.2.2. The graphs on the left focus on ν, the uncorrelated, clean ran-
dom component, whereas on the right we have ε, the autocorrelated, total
error in the model. Compare the top graphs to each other. The ν graph is
random; over time, the values of ν are dispersed all over. Low values are
equally likely to be followed by low or high values. The ε graph exhibits a
more up and down pattern. There are periods of persistent lows and then
switches to persistent highs. Click on the

Another 50
Observations button a few times to

refresh the graphs. The up and down pattern in the ε’s is a telltale sign of
autocorrelation. What happens is that a negative ε value tends to generate
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Year ε

2010 4.15

2011 4.74 Figure 20.2.3. The highlighted pair of observations.
Source: [AutoCorr.xls]AR(1)Process.

another negative value, but this is only a tendency. A positive ε value can
follow a negative one if there is an exceptionally high ν drawn from the error
box. The series then jumps from negative to positive and stays positive for
a while until it switches back to negative.8 This description does not fit the
ν-on-year graph at all.

Another way to see autocorrelation is through the errors themselves.
Graphing ν or ε against either one’s lagged value reveals an obvious dif-
ference. The ν-on-lagged-ν graph is a formless blob, whereas the ε on lagged
ε chart exhibits an upward-sloping orientation.

Note how the same data are used in creating the ε-on-year and ε-on-lagged-
ε graphs. The circle in Figure 20.2.2 draws attention to the particular pair of
values for ε listed in Figure 20.2.3. In the ε-on-year graph, these observations
are side by side, whereas in the ε on lagged ε graph, they are x, y coordinates
4.15, 4.74.

Click on the
Another 50

Observations button to refresh the graphs. The positive orienta-
tion you repeatedly see in the ε-on-lagged-ε graph is a direct manifestation
of the AR(1) process. The ν-on-lagged-ν graph shows no persistent orienta-
tion. On occasion, as you repeatedly refresh the graphs, a sample that does
not produce a formless blob for the ν-on-lagged-ν-graph may arise, but this
is sampling error at work. The ε-on-lagged-ε graph, you must admit, is per-
sistently positively oriented with a decidedly nonzero slope.9 These graphs
show that the ε random terms are autocorrelated but the ν’s are not. This
will prove to be important when we turn our attention to correcting the
autocorrelation.

Another way to understand autocorrelation is to compare autocorrelated
and unautocorrelated processes. The ρ=0.8 −> ρ=0 button enables you to toggle
back and forth from ρ = 0.8 to ρ = 0. The button tells you the current value
of rho. Click on this button a few times and focus on the ε graphs (because
the ν graphs are not autocorrelated no matter the value of ρ).

Use the buttons to convince yourself that, as ρ approaches 1, the stronger
the autocorrelation becomes. Click on the ρ=0.1 −> ρ=0.95 button to toggle back

8 With |ρ| < 1 and a 0 intercept, the process will stay centered on 0, rising and falling but never exploding
away. You are free to experiment and ponder the effects of ρ = + 1 and ρ > 1 (or the negative
counterparts of these values) by changing ρ in cell C34 and clicking on the appropriate buttons. Before
you try large values of ρ, try values close to 1, such as 1.1 or −1.2.

9 Note that, because we know the process has no intercept, regression is employed through the origin.
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and forth between ρ = 0.1 (low autocorrelation) and ρ = 0.95 (high auto-
correlation). Clearly, autocorrelation is present whenever ρ is not zero, but
it intensifies in strength as ρ nears one.

Summary

This section has focused on explaining the concept of autocorrelation. The
basic idea is that, unlike flipping a coin, an autocorrelated chance process
“remembers” the previous results. A common starting point of analysis is
the AR(1) Model. In addition to the usual regression equation, a second,
autoregressive equation says that the current error is equal to a parameter ρ

multiplied by the previous error plus a “clean,” unautocorrelated error. The
AR1Process sheet in the AutoCorr.xls file makes clear that autocorrelation
generates patterns in the errors (whether viewed over time or as a function
of their lagged values).

20.3. Consequences of Autocorrelation

Workbook: AutoCorr.xls

Autocorrelation means that current values are influenced by past values. If
there is autocorrelation in the errors of a regression model, draws from the
error box are no longer independent of one another. This section explores
the consequences of an AR(1) positively autocorrelated error model for the
OLS estimator.

The Data Generation Process

We assume the following static model of the DGP applies:

(1) Yt = β0 + β1 Xt + εt , t = 1, . . . , T,

where the error terms are generated by a first-order autoregressive process:

(2) εt = ρεt−1 + νt , t = 1, . . . , T.

The νt error terms are assumed to be draws from a normally distributed
error box in which the draws are independent and identically distributed. We
assume the absolute value of the autoregressive parameter ρ is less than 1. (If
ρ equals 1, we are dealing with a random walk, which it turns out makes a big
difference in the DGP.) Our argument can easily be extended to the case with
multiple X ’s in Eq. (1). We assume the X ’s are fixed in repeated sampling.
This assumption is discussed in more detail at the end of this section.
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Three Econometric Consequences of Autocorrelation

When the AR(1) description of the data generating process applies, there are
three consequences for the OLS estimator of the parameters in Eq. (1).

(1) OLS Estimates Remain Unbiased

Autocorrelation in the error terms does not cause the OLS coefficient esti-
mates to be biased. In other words, the coefficient estimates will still on
average be equal to the true parameter value.

(2) OLS Estimated SEs are Inconsistent

If there is autocorrelation in the error terms, then the estimated standard
errors from OLS regression will be biased and this bias does not go away
as the sample size increases. In the case of positive autocorrelation, the esti-
mated standard errors will typically be too small.10 The resulting test statistics
produced from OLS regressions will be too big and the confidence intervals
too narrow. In other words, OLS estimates will appear to be more precise
than they actually are. Inference based on the OLS estimated SE is flawed.
This is a serious problem.

(3) OLS is not BLUE; GLS is BLUE

Autocorrelated errors destroy a primary virtue of OLS because the OLS esti-
mator is no longer the best linear unbiased estimator. A better estimator (in
theory at least) than the OLS estimator is available. The best linear unbi-
ased estimator in the presence of autocorrelation is called the generalized
least squares, or GLS, estimator. GLS works by first transforming the origi-
nal autocorrelated model into the classical econometric model. GLS is better
than OLS because GLS has a smaller SE.

These three fundamental points can be made clearer by working with a Monte
Carlo simulation of a model in which there is first-order autocorrelation.
This section will illustrate via our example that OLS coefficient estimates
are unbiased but the estimated SEs are systematically wrong. The section on
correcting the AR(1) error model will demonstrate that GLS is superior to
OLS in the presence of autocorrelated errors.

10 Even if there is positive autocorrelation in the errors, the OLS reported SEs are not absolutely guaran-
teed to be too small because the values of the X variable(s) affect the SE. Usually, the X ’s themselves
are positively autocorrelated, which does ensure that the OLS reported SEs are smaller than their true
values. A problem using Monte Carlo simulation to demonstrate this point is included in the Q&A
sheet of the AutoCorr.xls file.
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A Monte Carlo Simulation of the Consequences of Positive,
First-Order Autocorrelation

A simple model of positive, first-order autocorrelation can be represented by
the following two equations:

Yt = β0 + β1 Xt + εt

εt = ρεt−1 + νt ,

where 0 < ρ < 1 and ν is drawn from a normal distribution.

Claim #1: The OLS estimates, b0 and b1, are unbiased even if ρ is not equal to zero.
Claim #2: The estimated SEs of the OLS coefficient estimates are systematically

biased if ρ is not equal to zero.

How do we test these two claims?
The sheet AR1Model in the AutoCorr.xls workbook is ready to imple-

ment a Monte Carlo simulation that illustrates the performance of the OLS
estimator in an autocorrelated model.

Begin by noting that there are 60 observations and the X variable ranges
from 8 to 125 (as reported in the Summary Statistics table in range A69:F76).
The X values are fixed and will remain so throughout the Monte Carlo sim-
ulation. Unlike the AR1Process sheet example of the previous section, the
X variable is not the year. The X variable has a time dimension, but time is
captured by the t variable in range A9:A68.

The dependent variable, Yt , is generated in the range E9:E68. Cell E10,
for example, like the other Y cells, contains a formula describing the chance
process that generates the data: =beta0+beta1*X+Error (note that we haved
named cells containing parameters and variables on the Excel worksheet).
The Error term is especially important. The Error value is coming from the
cell right next to it, D10, with formula: =rho*D9+C10. Click on cell D10;
then click on the formula itself, in the formula bar, to activate Excel’s auditing
feature. The error term in this model, ε, depends on ρ, the previous ε drawn,
and a random error draw ν. Figure 20.3.1 shows these computations in cells
B3 through D10 of the AR1Model sheet.

For any nonzero ρ, the errors will be autocorrelated. Note that cell C10
has a formula stating that ν =NORMALRANDOM(0,SDnu). Regardless of
the value of ρ, the ν’s are not autocorrelated.

Hit F9 a few times to get a sense of what is going on. The X variable is fixed,
but the other columns are bouncing around. As you hit F9 and recalculate,
Excel draws a new value of ν for each observation, which leads to a new
ε error term and a new Y. Predicted Y changes because the sample OLS
intercept and slope coefficients (in cells H2 and G2 are changing) change as
each new sample of 60 observed Y ’s are drawn.
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Figure 20.3.1. Understanding
autocorrelation.
Source: [AutoCorr.xls] AR1Model.

The parameter values and OLS regression results are also provided on
the chart (cell E20). Figure 20.3.2 displays the results from one particular
sample. Although all appears well, severe problems lurk in the background.
Concentrate on the sample slope (cell G2), the estimated SE (cell G3), and
cell G4, which reports the P-value for the null that β1 (beta1) is zero. Note
that β1 is, in fact, zero. This means that we should correctly fail to reject the
null, at the 5-percent level of significance, 95 percent of the time. Now, hit F9
many times in a row. Something is wrong. As you hit F9, look at how often
the result is statistically significantly different from zero. In other words, the
P-value is less than 5 percent much too often and we are rejecting the true
null too many times. What is going on?

To answer this question, we move away from hitting F9 and turn to
its more systematic counterpart, Monte Carlo simulation. Click on the

Regression of Y on X
y = 0.49x − 21.54

R2 = 0.56
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Figure 20.3.2. OLS regression from AR(1)Model.
Source: [AutoCorr.xls] AR1Model.
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Sample b1 Summary Statistics Population Parameters

Average 0.004 β1

SD 0.1633
Average OLS 
Estimated SE 0.0531

Max 0.674 ρρρρ 0.8
Min

Empirical Histogram for 10,000 Repetitions

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

OLS b1 estimates

0

−0.686

Figure 20.3.3. OLS b1 Monte Carlo simulation.
Source: [AutoCorr.xls] b1MCSim.

b1 Monte Carlo Simulation Show button. Ten thousand repetitions of “hitting F9” are
displayed in the b1MCSim sheet. Figure 20.3.3 shows our results.

The 10,000 OLS sample slopes are used to create the empirical histogram
in Figure 20.3.3. It approximates the probability histogram (or sampling
distribution) of the OLS b1 estimator. Because we have so many repe-
titions, the approximation is quite close. The y-axis in the histogram is
suppressed to lessen clutter and focus attention on the shape of the his-
togram. Either a frequency (number of samples from 0 to 10,000) or rela-
tive frequency (percentage of samples) y-axis interpretation is valid. Thus,
very few samples, either as a number or a percentage, had b1 estimates
above 0.5.

The evidence in Figure 20.3.3 supports the two claims about the conse-
quences of autocorrelation in the error terms. First, note that the average
sample slope of the 10,000 repetitions is very close to zero, which is the true
value of the slope parameter we are estimating. This suggests that the OLS
estimator is unbiased.

The OLS estimated SEs, however, are wrong. The Monte Carlo approxi-
mation to the true SE of the sample slope is 0.1633. The average of the OLS
estimated SEs is a very low 0.0531. This demonstrates the second claim that
autocorrelation can produce a misleading OLS estimated SE.
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The average of the OLS estimated SEs is an important, but confusing, piece
of evidence. Let us focus on how the results of the Monte Carlo are being
generated. By repeated sampling, we obtain not only OLS b1 estimates from
each sample but also OLS estimated SEs from each sample. Because the
OLS b1 estimate is a random variable, we can use the average and SD of the
10,000 b1 estimates to approximate the center and spread of the probability
histogram of the b1 estimator.

Similarly, the OLS estimated SE is a random variable. Given a sample, the
spread of the residuals is used to estimate the unobserved SD of the error box.
Each sample generates its own estimated SD of the errors and, therefore, the
OLS estimated SE varies from sample to sample. By taking the average of
the 10,000 OLS estimated SEs, we are finding the center (i.e., expected value)
of the OLS estimated SE probability histogram. That it is far away (0.0531)
from the SD of the 10,000 b1 estimates (0.1633) shows that, in general, OLS
poorly estimates the spread of the b1 estimator.

The OLS estimated SE is typically too low because its formula applies to
an independent error process. Ordinary least squares uses a formula (in the
bivariate case) to calculate the estimated SE of b1 that relies on the RMSE.

OLS Estimated SE(b1) = RMSE√
n · SDX

.

With AR(1) errors, the true SE of the OLS b1 estimator is given by a
much more complicated formula. The evidence in Figure 20.3.3 tells us that
the true SE of the OLS b1 estimator is around 0.1633.11 Using the usual
OLS formula instead of the correct formula for an AR(1) error process will
generate estimates of the SE of the OLS b1 estimator that are around 0.0532.
Thus, OLS estimated SEs are misleading.

Run your own Monte Carlo simulation by clicking on the b1 Monte Carlo Simulation

button in the b1MCSim sheet. Do you get similar results? Use the Take A Picture

button to keep track of your simulations. Each time you take a picture, the
graphic is pasted below the previous picture. As determined by the speed of
your computer, 10,000 repetitions may take a long time. The Monte Carlo
simulation can be accelerated by clicking on the Speed Up Simulation option.
Because it does not have to update the Simulation Progress cell, Excel runs
much faster. The drawback is that no feedback on the progress of the simu-
lation is provided.

Your results will be similar but not exactly the same as ours. When run-
ning your own Monte Carlo simulation, new error terms, observed Y ’s, and

11 In fact, the exact OLS SE can be calculated for this process. Given the initial X ’s, ρ = 0.8, and SDν =
10, the OLS true SE of b1 is 0.1635. The matrix algebra behind the correct formula is shown beginning
in cell A100 of the AR1Model sheet.
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OLS sample slopes and estimated SEs will be drawn over and over again.
Although your Monte Carlo numbers will not be exactly the same as ours,
your conclusion will be: The average OLS slope is close to zero, and the aver-
age OLS estimated SE is much smaller than the SD of sample slopes in the
simulation. This suggests that OLS produces unbiased estimates of β1 but
that the estimated SE is wrong.

You should be aware that the expected value of the OLS estimated SE
is less than the true OLS SE result depends on the particular conditions of
this chance process. In the AR1Model sheet, 0 < ρ < 1 and the correlation
between X and lagged X is positive (cell AR1Model!B76 shows that the
sample correlation r(Xt, Xt−1) = 0.992). In general, autocorrelation of the
error terms causes the OLS estimated SE to be wrong, but the OLS estimated
SE is not necessarily too small. If the X ’s were negatively autocorrelated,
the OLS estimated SEs would be too large.12 Question 5 in the Q&A sheet
of AutoCorr.xls asks you to explore this issue of the relationship between
correlation in the X ’s and the bias in the estimated SE for b1.

Getting the wrong SE is no minor drawback. Confidence intervals and
hypotheses tests based on the wrong SE must, naturally, also be wrong. To see
this, scroll over to the P-value results starting in cell R4 of the b1MCSim sheet.

The histogram in Figure 20.3.4 makes an important point about the conse-
quences of autocorrelation in the errors. Focusing on the P-values is another
way of illustrating the claim that OLS in the presence of autocorrelation
yields misleading results. The problem is that the P-values generated by the
OLS estimator, because they are based on the wrong SEs, are all bunched up
at low values. Suppose we choose a P-value of 5 percent as our significance
level cutoff. We should then reject the true null only 5 percent of the time, but
at the 5-percent significance level the null was rejected in more than half of
the 10,000 samples in this simulation. Put another way, given the population
parameters in this example, if you were testing the null that β1 = 0 and using
the standard 5-percent significance level, OLS gives you a better than even
chance of drawing the wrong conclusion that β1 is not zero. That is a severe
flaw.

To describe the situation further, in Figure 20.3.5 we compare the true
sampling distribution of the OLS slope estimator under the null hypothesis
that β1 = 0, with an SE of 0.165 (as approximated by Monte Carlo simulation
in Figure 20.3.3) with the incorrect probability histogram, which we would
draw using the typical OLS estimated SE of 0.053.

The arrows indicate the 5-percent critical values for the spiked normal
curve. If the null is true and if the SE is 0.053 (as reported by OLS),

12 And, as mentioned in a previous footnote of this chapter, if the X ’s were not at all autocorrelated
(highly unlikely in a time series setting), the autocorrelation in the errors would have no effect on the
OLS estimator.
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Sample P Value Summary Statistics Population Parameters

Average 0.204 β1 0

SD 0.283 ρρρρ 0.8
Max 0.999

Min 0.000 %P Val<5% 51.30%

Empirical Histogram for 10,000 Repetitions
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P Values from OLS

Figure 20.3.4. P-value Monte Carlo simulation.
Source: [AutoCorr.xls]b1MCSim.

then only 5 percent of the samples should produce slope estimates out-
side the arrows. The broader-shaped normal curve shows the actual sam-
pling distribution. About 50 percent of the b1 estimates fall outside the
arrows.

True versus Reported OLS

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

b1 estimates

True OLS:
SE=0.165
Reported OLS:
SE=0.053

Figure 20.3.5. The consequence of a misleading estimated SE.
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Suppose you drew a sample that generated an OLS sample slope coeffi-
cient of 0.2. Along with the 0.2 parameter estimate, OLS would report an
estimated SE – for instance, 0.05. Suppose you relied on the OLS estimated
SE to reconstruct the probability histogram under the null. Because the OLS
estimated SE is wrong, the reconstructed probability histogram would be as
well. You would reject the zero null because it would seem that the sample
estimate would be way out in the tail of the b1 probability histogram under
the null. Chance alone is highly unlikely to have generated such a result.
You would think that the true probability histogram under the null would be
a histogram centered on 0 with an SE of 0.05. In fact, the true SE is much
larger, which means the true probability histogram is much less spiked. The
true OLS probability histogram shows that a sample slope of 0.2 when β1 = 0
is not all that rare.

To further reinforce the lessons that OLS coefficient estimates are unbi-
ased but the estimated SEs are wrong, return to the AR1Model sheet and
change ρ to 0 (in cell C6). This kills the autocorrelation and removes the
violation of the classical econometric model requirements. Run another
Monte Carlo simulation from the b1MCSim sheet and compare the b1

and P-value histograms under ρ = 0.8 and ρ = 0. Use the Take A Picture but-
ton as needed. What effect does removing the autocorrelation have on
the Monte Carlo simulation results? Our results look like those shown in
Figure 20.3.6.

With ρ = 0, the discrepancy between the Monte Carlo approximation of the
true SE and the average OLS estimated SE has disappeared. In other words,
the OLS estimated SE is accurately estimating the true SE of the probability
histogram of the sample slope. The simple formula used by OLS to estimate
the SE of b1 once again applies because ρ = 0. The estimated SE gives us a
probability histogram under the null that is, on average, correct.

The P-value histogram also behaves as advertised. The true null is rejected
at the 5-percent significance level about one in twenty times (unlike the over
50-percent rejection rate that resulted when ρ = 0.8).

Summary

This section has shown that first-order autocorrelation in the errors leads
to biased OLS estimated SEs but unbiased estimates of the true parameters.
The misleading OLS estimated SE is a serious problem that taints conclusions
about the precision of the slope estimate and can cause hypothesis testing to
go awry. These conclusions apply in much more general situations than the
simple model addressed in this section. Thus, we have a strong incentive to
determine if autocorrelation in the errors is present. In the next section, we
explain how to diagnose autocorrelation.
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20.4. Diagnosing Autocorrelation

Workbook: AutoCorr.xls

In previous sections we have explained the concept of autocorrelation and
the consequences of using the OLS estimator. Autocorrelation in the errors
leads to misleading OLS estimated SEs and OLS is no longer BLUE (a claim
demonstrated in the next section). Thus, we have a compelling interest in
determining if autocorrelation is present in the data we work with. This sec-
tion describes how to go about figuring out if autocorrelation is present in
a sample. Because time series models often exhibit autocorrelated errors,
econometricians routinely use the methods described herein to test time
series regressions for autocorrelation.

Detecting autocorrelation in the errors of a regression model is not a sim-
ple matter. Recall that we cannot observe the error terms, because the values
of the true parameters are unknown. We do, however, have a sample from
which we can estimate the true parameters and calculate residuals. Because
patterns in the residuals tend to reflect patterns in the error terms, diagnos-
ing autocorrelation amounts to examining the residuals and deciding if the
evidence is strong enough to conclude that autocorrelation is present.

This section will explore three ways of using the residuals to detect autocor-
relation. The first two approaches are based on a scatter plot of the residuals
and provide support for understanding the most common – but rather com-
plicated – method, the Durbin–Watson test. We continue to work with the
AR(1) Model for the process that generates the error terms,

εt = ρεt−1 + νt , t = 1, . . . , T,

with the νt ’s independent and identically distributed draws from a classical
econometric error box. At the end of the section we caution you that our
detection procedures are flawed when the AR(1) model does not apply.

Eyeballing the Residuals

The first step in diagnosing autocorrelation is to draw a scatter plot of residuals
as a function of their lagged values. This gives you a rough idea if the residuals
are correlated with each other.

Open the Graphs sheet in the AutoCorr.xls workbook to see how the
eyeball method works. Although the graphs in this sheet are based on data
in the AR1Model sheet, you can choose between two values of ρ, 0 and 0.8.
Click the toggle button (located below the graphs) a few times to see this.
Make sure that ρ is set equal to 0.8. Autocorrelation will then be apparent in
the ε and residuals graphs. Figure 20.4.1 displays a typical example.
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Figure 20.4.1. Examining the residuals.
Source: [AutoCorr.xls]Graphs.

Figure 20.4.1 contains three sets of graphs: on the left are the εt ’s, in the
middle the residuals, and on the right are the νt ’s that underlie the εt ’s. The top
row of charts shows the variables graphed against their own lagged values;
the bottom row shows the variables graphed against time. Both the εt ’s and
νt ’s are unobserved and therefore are depicted in red in the Autocorr.xls
workbook (and show up as a lighter shade than the residuals in the black-
and-white Figure 20.4.1).

The six graphs reveal some important facts about the AR(1) process. First,
observe the difference between the overall pattern in the time series graph of
the εt ’s (bottom middle) and the time series graph of the νt ’s (bottom right).
The autocorrelated εt ’s change in a relatively smooth fashion, whereas the
independent νt ’s bounce around a great deal.

Second, note that in the time series graphs the residuals do a very good job
of tracking the εt ’s. Though the relationship is not exact because of sampling
error, the pattern of the residuals pretty faithfully reflects the pattern of the
errors. Hit F9 a few times to see that this phenomenon is not a fluke of a
single sample.

Next, switch your attention to the top row. The positive relationship
between the εt ’s and their lagged counterparts is obvious in the scatter dia-
gram on the left. We don’t observe the εt ’s, but the close similarity between
the εt ’s and the residuals means that the autocorrelation also shows up quite
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clearly in the scatter diagram of the residuals against lagged residuals. The
eyeball test for first-order autocorrelation is thus very simple: Compute the
residuals and the one-period lag of the residuals. Then draw a scatter diagram
with the lagged residuals on the x-axis and the residuals on the y-axis. Positive
autocorrelation will then manifest itself as a positively sloped cloud on the
scatter diagram.

Notice that the scatter graph of the νt ’s against their lagged counterparts
shows a much weaker positive relationship in this case, which is no surprise
because in fact these error terms are unrelated to their own lagged values.
Similarly, if you set the value of ρ to zero and then repeatedly resample (by
hitting the F9 key), you should in general see no obvious pattern in any of
the graphs in the first row. Occasionally, however, you will see a graph of the
residuals against lagged residuals in which it appears there might be some
evidence of either positive or negative autocorrelation with ρ = 0, this is due
to chance error.

Testing for Autocorrelation via the Sample Estimate of ρ

The residuals-versus-lagged-residuals scatter plot suggests a formal hypoth-
esis test for autocorrelation: Under the null, the slope of the regression of
errors on lagged errors should be zero. Of course, we must use the residuals
as a proxy for the errors, and thus the null hypothesis will refer to the slope
of the residuals regressed against lagged residuals. If the sample slope is far
enough away from zero in standard units, we will reject the null that ρ is zero.
In the AutoCorr.xls workbook, the data are being generated by an AR(1)
process with no intercept in the equation for the error terms:

εt = ρεt−1 + νt .

Thus, a good estimate of ρ is the slope of the regression through the origin
of residuals against lagged residuals.13 We call this test for first-order auto-
correlation the estimated ρ test. Scroll down to row 40 of the Graphs sheet
to see this test in action. Click the ρ toggle button a few times and set ρ = 0.8.
Hit F9 repeatedly. The test is performing well. Cell E44 shows that we are
rejecting the false null that there is no autocorrelation.

To calculate the observed difference from zero of the estimate of ρ in
standard units, we will use the SE of the slope of the regression through the

13 In fact, there are a variety of ways to get an estimate of ρ. A slightly different estimate of ρ can
be obtained by the sample correlation coefficient between the residuals and lagged residuals. This
estimate of ρ is extremely close to the slope of the regression of residuals on lagged residuals with an
intercept included – the only difference being the treatment of the first and last observations. This point
is explained in more detail at [AutoCorr.xls] Graphs!Q30. In addition, given that most econometric
software packages report the Durbin–Watson d statistic (which will be explained in detail later in this
section), another estimate of ρ is 1 − d/2. Further explanation of the different estimators of ρ is available
in [AutoCorr.xls]Graphs!Q1.
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origin and apply the z-statistic under the presumption that the probability
histogram is approximately normally distributed. There is one problem with
this procedure: The data generating process clearly does not conform to the
classical econometric model. The difficulty is that the X ’s in the regression,
being the lagged residuals, are obviously not fixed in repeated samples; there-
fore, we cannot be sure that standard results apply.

It turns out that the unusual data generating process does indeed cause
problems, though they go away as the sample size gets large. To show exactly
what is going on requires much messy algebra, which we will forgo here.
The main results are that the sample slope is a biased estimator of ρ, that
there is no known unbiased estimator, and that the bias goes away in large
samples (i.e., the sample slope is a consistent estimator of ρ). Furthermore,
the probability histogram converges toward the normal curve as the sample
size increases.

We demonstrate these facts via a Monte Carlo simulation. First, use the
ρ toggle button to make sure ρ is set equal to 0.8. We draw a sample of 60
observations with every repetition, and then calculate the OLS regression
of Y on X. The residuals are obtained from this regression. Next we run
a regression through the origin of residuals on lagged residuals to obtain
a slope that is our estimated ρ. This is done 10,000 times to obtain an
empirical distribution of estimated ρ that approximates its long-run fre-
quency distribution (or probability histogram). To run this Monte Carlo sim-
ulation, click on the Show Estimated ρ Monte Carlo button at Graphs!C50. You are
sent to the rhoMCSim sheet, make sure that you choose 60 observations
in the Number Obs option box. Click on the Estimated ρ Monte Carlo button. Our
results are shown in Figure 20.4.2. This Monte Carlo simulation reveals good
and bad news about the estimated ρ test. First we present the good news.
When ρ = 0.8, the distribution of estimated ρ is centered far from zero.
We will reject the false null the vast majority of the time. The test really
does detect autocorrelation in our constructed example – 60 observations
generated according to the AR(1) model with a ρ of 0.8 and the given
values of X.

Here is the bad news. The distribution of estimated ρ is not normal, and
it is not centered on 0.8. The average of the 10,000 estimated ρ’s in this run
was 0.700, and the distribution has a long tail toward zero.

These results signify that the probability histogram for estimated ρ (the
slope of the regression through the origin of residuals on lagged residuals)
is not centered on the true value of ρ and is not normally distributed. For-
tunately, as the sample size increases, the distribution of estimated ρ will
converge to the normal distribution and the expected value of estimated ρ

will converge to ρ. In other words, we are working with a consistent estimator
for ρ.



P1: irk
0521843197c20 CB962B/Barretto 0 521 84319 7 November 7, 2005 20:2

580 Autocorrelation

Sample rho Summary Statistics Population Parameters
Average ρρρρ 0.8

SD
Average 
Reported SE 0.0919

Max Number Obs 60
Min

0.700

0.1034
0.960
0.129

Empirical Histogram for 10,000 Repetitions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

ρρρρ  estimates

Figure 20.4.2. Estimated ρ Monte Carlo simulation.
Source: [AutoCorr.xls]rhoMCSim.

That the bias of estimated ρ is inversely related to the sample size can be
illustrated by the method of Monte Carlo simulation. By setting the num-
ber of observations in the Monte Carlo simulation in the rhoMCSim sheet
(click on the desired radio button in the Number Obs option controller),
you can verify that our estimator of ρ improves as the sample size increases.
Figure 20.4.3 gives our results for 10 and 20 observations. The Monte Carlo
results in Figure 20.4.3 clearly demonstrate that estimated ρ’s small sample
probability histogram depends on the sample size (and, it turns out, on the
particular values of X in the sample). With 10 observations, estimated ρ is
centered around 0.1 (that is very far from the true value of 0.8), and, conse-
quently, we will mistakenly fail to reject the null of no autocorrelation quite
frequently. As the sample size increases to 20, estimated ρ’s expected value
is around 0.4; as has already been seen, its expected value rises to around
0.7 with 60 observations. As the number of observations rises, estimated ρ’s
expected value approaches ρ.

Thus, for large sample sizes, the estimated ρ test for detecting autocorre-
lation in the errors is a good solution. For small samples, however, the bias
in estimated ρ is crippling. Because of this, James Durbin and Geoffrey S.
Watson created a statistic that applies even in small samples.
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Testing for Autocorrelation via the Durbin–Watson d statistic

Durbin and Watson wanted to detect autocorrelation (because the OLS esti-
mated SEs are wrong and OLS is not BLUE) no matter the sample size. They
knew that directly testing estimated ρ from the residuals works only for large
samples. In 1950 and 1951, they published two important papers that showed
how to test for first-order autocorrelated errors even if the sample size is
small.

Durbin and Watson’s statistic (originally called the d statistic and also
known as the DW statistic) is rather complicated. Furthermore, it applies
only if the chance process that generates the data follows an AR(1) pro-
cess, the errors are normally distributed, and the model is correctly specified.
Since the 1950s, a great deal of effort has been spent on generalizing the
Durbin–Watson strategy (e.g., dealing with the case in which lagged Y vari-
ables are included as regressors). The problem of detecting autocorrelation
in the errors generated by a variety of autoregressive processes (including
higher order autoregressive and moving average schemes) in small samples
remains unsolved, however. As a practical matter, the Durbin–Watson test
is routinely run as a general diagnostic even though the strict requirements
of the test are not met.

In this section, we set up an AR(1) chance error process with the correctly
specified model. We can then explain and demonstrate how the Durbin–
Watson d statistic can be used to detect autocorrelation. We begin with the d
statistic itself:

d =
∑T

t=2 (residualst − residualst−1)2∑T
t=1 residuals2

t

.

Notice how the formula uses the residuals (not the errors, for the errors
cannot be observed) and forms a ratio. The observed d value in any given
sample is a random variable because the residuals contain chance error.

Go to [AutoCorr.xls] AR1Model!R2 to see the formula applied and to
verify that d is a random variable. Set ρ = 0.8 in cell AR1Model!C6 if needed.
Clearly, recalculating the sheet by hitting F9 draws a new sample with new
realized chance errors and observed Y ’s. This results in new OLS b0 and b1

coefficient estimates. The new observed and new predicted Y ’s generate new
residuals and thus a new value of d.

Note that, with ρ = 0.8, d seems to be bouncing around 0.5 or so. Pay close
attention as you hit F9 and convince yourself that d is never negative. Now
remove the autocorrelation by changing the value of ρ in cell C6 to zero. Now
d is bouncing around 2. This is the key to the Durbin–Watson test: If there
is no first-order autocorrelation, d will be close to 2; if there is first-order
autocorrelation, d will be far away from 2.
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As with the estimated ρ test, the null hypothesis is that there is no first-
order autocorrelation (i.e., ρ is equal to 0). That would mean that the errors
are really independent of each other and that you can go ahead and use the
OLS estimated SEs because the classical econometric model applies. If the
null is true, then the expected value of d is equal to 2 and we would expect
to see a value of d near 2.

The alternative hypothesis is that there is first-order autocorrelation, (i.e.,
ρ is not equal to 0). If the alternative is true, then the expected value of d is
not equal to 2. If the observed value of d from a given sample is really far
away from 2, then we would conclude that autocorrelation is present.

Suppose you obtain a d = 1.62. Is this value “around 2” or “really far away
from 2”? To answer that, you would need to know the sampling distribution
of the Durbin–Watson d statistic. Then you would know how far away from
2 would be far enough to be statistically significantly different from 2 so that
you would reject the null that there is no autocorrelation.

Life would be much easier if the Durbin–Watson d statistic were normally
distributed. We’d just find the SE of the Durbin–Watson statistic, compute a
z-statistic, and be done. Unfortunately, the Durbin–Watson statistic is neither
normally distributed nor easily described by two parameters (center and
spread) like the normal distribution. The Durbin–Watson d statistic has its
own sampling distribution that depends on the process generating observed
Y and the values of the independent variables (the X ’s). We can approximate
the Durbin–Watson d distribution using Monte Carlo simulation.

Click on the DW Monte Carlo Simulation Show button to continue learning about the
Durbin–Watson d test. Figure 20.4.4 displays Monte Carlo simulations of
10,000 repetitions with ρ = 0.8 and ρ = 0.

Clearly, when ρ = 0.8, the average d is far from 2 (the expected value
under the null of no autocorrelation), whereas ρ = 0 generates a probability
histogram centered on 2. The histogram on the right implies that we would
reject the null of no autocorrelation if we observed a d statistic less than 1.5
(or greater than 2.5) or so. After all, under the null of no autocorrelation, we
would expect to see values near 2. The histogram shows that values below
1.5 and above 2.5 are unlikely.

Although Monte Carlo simulation can be used to illustrate the sampling
distribution of the d statistic under alternative values of ρ, it makes little sense
to actually compute a d statistic P-value with Monte Carlo simulation. What
is needed is the exact probability histogram of the Durbin–Watson d statistic.

Unfortunately, the distribution of the d statistic depends not only on ρ but
also on the particular values of the X variable(s) in the regression! Durbin and
Watson were stumped by this complication because it means the d statistic
cannot be tabulated – a different table would be needed for every different
data set. As a workaround, they created an ingenious solution involving upper
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and lower bounds for the d statistic. Many statistics and econometrics texts
still provide printed tables based on this method. Fortunately, improvements
in numerical algorithms and ever faster computers have made these tables
unnecessary. High-quality econometric software should report not only the
Durbin–Watson d statistic but also its associated exact P-value. Once the P-
value is obtained, significance testing proceeds as usual – low P-values are
evidence against the null of no autocorrelation.

This book comes with an Excel add-in called the P Value Calculator that
will compute and report the Durbin–Watson d statistic and P-value. To access
the P Value Calculator add-in, you must load and install the Excel add-in file,
PValue.xla. The Basic Tools/Excel Add-Ins folder contains a Word file called
PValue.doc with complete instructions. Once the P Value add-in is available,
it can be used to calculate the Durbin–Watson d statistic and P-value as
described below.

You can practice the Durbin–Watson test by clicking the Create One Sample

button (near cell Y3 of the AR1Model sheet). A new sheet is inserted into
the workbook with a dead sample. Use this sample to find the residuals from
the OLS regression of Y on X. You can use LINEST and then manually
compute the residuals or the Regression option in Excel’s Data Analysis
ToolPak add-in (Tools: Data Analysis: Regression), making sure to check
the Residuals box.

Now that the residuals have been obtained, click on the Tools menu and
select the P Values . . . item to display the P Value Calculator form. Select the
Durbin–Watson d choice and click the Next button to get the Durbin–Watson
Analysis dialog box shown in Figure 20.4.5. Next, click on the Input X Data

Figure 20.4.5. Dialog box for Durbin–Watson analysis in P-values add-in.
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Figure 20.4.6. Dialog box for Durbin–Watson analysis in P-value add-in
with data ranges selected.

and Input Residuals buttons. You will be prompted to select cell ranges. The
X data are contained in column A (range A2:A61), whereas the location of
the residuals depends on how you computed them. It does not matter if the
X variables are on one sheet and the residuals on another. Simply select the
appropriate ranges when prompted.

After you have provided the X data and residuals information, the Durbin–
Watson Analysis dialog box might look like Figure 20.4.6.

Click OK, and Excel will go to work. The time needed to make the com-
plicated calculations depends on the number of observations, number of X
variables, and, of course, the speed of your computer. Upon completion,
the results are reported to you via a message box, which looks like Fig-
ure 20.4.7. Your result will be different from that shown in Figure 20.4.7
because you are working with a different sample. Of course, with ρ = 0.8,
you probably will also obtain a very small P-value and reject the null of no
autocorrelation.

Figure 20.4.7. Results from Durbin–Watson analysis, where ρ = 0.8,
using P-value add-in.
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Figure 20.4.8. Results from Durbin–Watson analysis, where ρ = 0,
using P-value add-in.

You can practice some more by setting ρ = 0, clicking the Create One Sample

button, and finding the P-value for the Durbin–Watson d statistic. In this
case, we could not reject the null of no autocorrelation, as shown in Fig-
ure 20.4.8.

Summary

This section has demonstrated how to detect an AR(1) process autocorre-
lation in the errors via visual inspection of the residuals on lagged residu-
als scatter plot, the estimated ρ hypothesis test, and the Durbin–Watson d
statistic test of significance. Sample evidence can be used to reach a decision
concerning the presence of autocorrelation.

Unfortunately, there are serious complications involved in diagnosing auto-
correlation in practice. Rejection of the null hypothesis of no autocorrelation
by either the estimated ρ or Durbin–Watson test does not mean that an AR(1)
process with a nonzero ρ is present in a particular application.

This depressing result must be emphasized. This section has focused exclu-
sively on a first-order autocorrelated error-process associated with a bivariate
regression equation. The model contains two equations:

Yt = β0 + β1 Xt + εt

εt = ρεt−1 + νt .

Higher order autocorrelated or more complicated error-generating processes
might produce a residuals pattern detected by the estimated ρ and Durbin–
Watson tests as first-order autocorrelation. In other words, these tests are
incapable of distinguishing between types of error processes, of which there
are infinitely many.

Thus, it is important to remember that the tests discussed in this section
presume proper specification of the regression equation (and included X
variables) and a first-order autocorrelated error process. Deviations from
the AR(1) model, whether in the observed Y or error-generating equations,
may be picked up as first-order autocorrelation.
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20.5. Correcting Autocorrelation

Workbook: AutoCorr.xls

Suppose that you conclude that you have first-order positive autocorrelation.
What can you do about it?

If the AR(1) model applies, the autocorrelation can be removed. The data
can be transformed, and thus, once again, the process that generated the data
meets the requirements of the classical econometric model. We then run OLS
on the transformed data. Applying OLS on appropriately transformed data
is called the GLS estimator, and it is BLUE.

In this section we will first show the algebraic rationale behind the trans-
formation and then demonstrate GLS using the data in the AR1Model sheet
in AutoCorr.xls. A Monte Carlo simulation will compare the OLS and GLS
estimators to support the claim that GLS is BLUE (and OLS is not) under
an AR(1) error process.

In practice, ρ is unknown. Nevertheless, on the assumption that the errors
follow the AR(1) process, it is possible to estimate ρ, transform the data using
the estimated ρ, and run OLS on the transformed data. This procedure, called
feasible generalized least squares (FGLS) usually improves on OLS.

The Algebra behind GLS

Our AR(1) autocorrelated error model contains the following two equations:

Yt = β0 + β1 Xt + εt

εt = ρεt−1 + νt ,

where −1 < ρ < 1 and the ν’s are draws from a normal error distribution.14

The idea behind correcting this first-order autocorrelated error process is
not difficult. We simply transform the model so that we get rid of the ε errors
that are systematically related to the previous errors, leaving only the ν errors
that represent independent, identically distributed draws from a normally
distributed error box. The Graphs sheet shows that no matter the value of ρ,
ν remains well behaved. Replacing ε with ν is the key to the correction.

Starting with the AR(1) model, we can do some simple algebra that will
remove the ε errors and, thus, the autocorrelation. If the regression equation
is misspecified15 or the error process does not follow the AR(1) model, the
transformation presented below will not work.

14 In Autocorr.xls, the ν’s are normally distributed, but normality is not an essential assumption for this
discussion.

15 See the exercises for an example in which misspecification induces apparent autocorrelation.
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Begin by substituting the error-generating equation into the equation that
generates the observed Y:

Yt = β0 + β1 Xt + ρεt−1 + νt .

Our goal is to remove ρεt−1, leaving only νt as a pure error term with all the
properties of the classical econometrics model.

Because each individual Y is generated the same way, the equation for the
previous Y, Yt−1, is

Yt−1 = β0 + β1 Xt−1 + εt−1.

Multiply the equation above by ρ to get

ρYt−1 = ρβ0 + ρβ1 Xt−1 + ρεt−1.

Subtract this equation from the first one to obtain

Yt − ρYt−1 = β0 − ρβ0 + β1 Xt − ρβ1 Xt−1 + ρεt−1 + νt − ρεt−1.

This equation can be rewritten (simply by collecting terms) as a model whose
error term is a pure, independently and identically distributed error, νt:

Yt − ρYt−1 = β0 (1 − ρ) + β1 Xt − ρβ1 Xt−1 + νt .

If we define new variables Y∗
t = Yt − ρYt−1 and X∗

t = Xt − ρXt−1, then we
have

Y∗
t = β0 (1 − ρ) + β1X∗

t + νt .

This model no longer contains X and Y but rather transformations X* and
Y* of the independent and dependent variables that involve ρ. Note that
β0 and β1 are the original parameter values of the model. Running OLS on
the transformed model is called generalized least squares. Notice as well that
when ρ = 0, the transformation reduces to the familiar OLS model. Our
new model is called generalized least squares because the transformation
applied here is one of many possible transformations, which includes OLS as
a particular case.16

The intercept term in the transformed model deserves special mention. As
we know, OLS implicitly treats the X value for the intercept term as a 1 for
each observation. Mathematically,

Yt = β0 + β1 Xt + εt

16 Heteroskedastic error models can also be algebraically manipulated to meet the homoskedasticity
requirement (see Chapter 19) when the form of the heteroskedasticity is known.
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is identical to

Yt = β0 × 1 + β1 Xt + εt .

The transformed model, however, has changed the intercept term from 1 to
(1−ρ):

Y∗
t = β0 (1 − ρ) + β1X∗

t + νt .

We will have to pay close attention when estimating this model. Either
we need to interpret the reported intercept coefficient as an estimate of
β0 (1 − ρ), or we can tell the computer software to suppress the usual inter-
cept in favor of the transformed intercept. In Excel, this is done by including
a new X variable – a column of (1 − ρ)’s – and running the regression without
an intercept.

There is an additional sticky detail to consider. How do we transform
the first observation? No previous observed value of the independent or
dependent variables is available, and thus we cannot apply the formula for
the transformed model on the first observation.

In early work on autocorrelated models, the first observation was simply
thrown out.17 Intuitively, if the number of observations is large, this procedure
might not be too harmful. With small samples, however, removing observa-
tions can cause parameter estimates to be noticeably less precise. It turns out
that the following formula is the correct transformation to apply to the first
observation:

Y∗
1 =

√
(1−ρ2)Y1

X∗
1 =

√
(1−ρ2)X1

Intercept∗1 =
√

(1−ρ2).

The explanation for why this is the appropriate transformation is beyond
the scope of this book. Intuitively, what this transformation accomplishes
is to ensure that the error term in the transformed equation for the first
observation has the same spread as the other error terms (i.e., the spread of
the ν’s).18

In summary, if you run OLS on the AR(1) model,

Yt = β0 + β1 Xt + εt

εt = ρεt−1 + νt ,

17 See, for example, Cochrane and Orcutt (1949).
18 That is, SD(

√
1 − ρ2ε1) = SD(ν1). For more details, see Greene (2000), p. 543, or Goldberger (1991),

pp. 302–3.
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there are three consequences: (1) although the OLS coefficient estimates are
unbiased, (2) the reported SEs are wrong and (3) OLS is not BLUE.

Algebraic manipulation shows that the model can be transformed into one
with a well-behaved error term:

Y∗
t = β0 (1 − ρ) + β1 X∗

t + νt .

Running OLS on this model is called GLS. It generates the right SEs and it
is BLUE.

Ordinary least squares and GLS use the same coefficient-fitting algo-
rithm (minimize the sum of the squared residuals), but the algorithm is
applied to different values of Y and the X (including the intercept term).
For OLS, the original values are used, whereas transformed data are utilized
with GLS.

An Example of GLS Estimation

In cells AE9:AH68 of the AR1Model sheet, the original intercept, X, and
the Y data have been appropriately transformed. Click the View

Formula button
to see how the algebra of the previous section has been applied. Note how
the first observation has a different transformation than the rest. Click the

View Formula Results button to return the display to its original setting.19

With the data transformed, we can now use OLS to estimate the coef-
ficients. We apply LINEST to the transformed data, taking care to spec-
ify that LINEST does not include an intercept term. The formula reads
“=LINEST(AG9:AG68,AE9:AF68,0,1)”: the transformed Y values are in
column AG, the values of the transformed intercept term are in column AE,
the transformed X values are in column AF, and finally, the 0 indicates that
LINEST is not to add an intercept term. The sample coefficients in cells AF2
and AG2, labeled b1GLS and b0GLS, are the GLS estimates of the slope and
intercept parameters.

Figure 20.5.1 is an example of Excel’s output. In equation form, these
results could be reported like this:

Predicted Y = 8.54
(10.74)

+ 0.02
(0.14)

X.

Note that Y and X are the original, untransformed values. Interpretations of
slope, elasticities, predictions, and forecasts proceed as usual using untrans-
formed Y and X values.

It is important to realize that the GLS transformation is applied simply
to get the best (minimum SE) coefficient estimates. Once the parameter

19 The button merely changes a display option in Excel. You can control this display setting, and others,
by executing Tools: Options (or Preferences) and clicking on the View tab.
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GLS b1 GLS

estimate 0.02 8.54

SE(estimate) 0.14 10.74

P Value 64%

ρρρρ 0.8

b0 GLS

Figure 20.5.1. Output for the GLS estimator,
bivariate example.
Source: [Autocorr.xls]AR1Model.

estimates are obtained, focus shifts back to the original data. Because the
parameter estimates do not need to be transformed, this is completely
straightforward. Predicted Y is computed by multiplying the parameter esti-
mates into the original data. See cells AP9 to AP69 in the AR1Model sheet
for the computation. As always, residuals are computed as observed Y less
predicted Y.

Evaluating the GLS Estimator

Having shown how the GLS transformation is applied, we now explore its
properties. We compare the OLS and GLS estimators and use Monte Carlo
simulation to demonstrate the superiority of GLS.

Begin by returning to the beginning of the AR1Model sheet. Make sure ρ

is set at 0.8; then go back to the GLS results. Hit F9 to draw a new sample.
Figure 20.5.2, with top-left corner on cell AQ9, compares the predicted Y ’s

OLS v. GLS Regression of Y on X

GLSGLSGLSGLS

OLSOLSOLSOLS

−40.00

−30.00

−20.00

−10.00

0.00

10.00

20.00

30.00

40.00

0 20 40 60 80 100 120 140

ββββ 0000 = = = =

ββββ 1111 =  =  =  = 

ρρρρ  == ==

SDSDSDSDνννν = =  = = 

10
0

0.8
10

b1 OLS =

bbbb1111 GLS =GLS = GLS =GLS = 0.12

0.26

Figure 20.5.2. Fitting lines with OLS and GLS.
Source: [Autocorr.xls]AR1Model.
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generated by OLS and GLS. In Figure 20.5.2, GLS gives us a slope estimate
closer to the truth than OLS. Of course, this is only one sample. Hitting F9
repeatedly as you watch the chart should show you that the GLS predicted
Y line bounces around much less than the OLS-predicted Y line. Because
β0 = 10 and β1 = 0, the closer the predicted Y is to the horizontal (red) line
Y= 10, the better.

As was pointed out in the section on consequences of OLS estimation of
an AR(1) error model, the failure of OLS is apparent in cell G4. Instead of
incorrectly rejecting the true null of β1 = 0 only 5 percent of the time, OLS
is reporting P-values less than 5 percent more than half of the time. Go to
cell AF4 and repeatedly recalculate the sheet. Notice that, with GLS, the
P-values appear to be much more evenly distributed.

Of course, a more systematic approach than repeatedly recalculating
is to draw many samples and display the parameter estimates. Click the

GLS b1 Monte Carlo
Simulation Show button to go to the b1GLSMCSim sheet. Run your own Monte

Carlo simulation and compare it to our results in Figure 20.5.3.
The Monte Carlo results suggest that the GLS estimator is unbiased (with

β1 = 0, the average of our 10,000 sample slopes was 0.001) and the reported
SE is right: The Monte Carlo approximation to the exact SE is 0.1398, which is
very close to the average of the reported SEs of 0.1403. Unlike the OLS esti-
mator, the GLS estimator does not suffer from reporting the wrong SEs.
Furthermore, the distribution of the P-values is correct. For example, in
our simulation, in 5.19 percent of the repetitions we found a P-value below
5 percent.

The fact that GLS does not mislead us about the precision of the estimator
is appealing, but that alone does not drive our decision to use GLS over OLS.
After all, we could find and use the correct formula to determine the true SE of
the OLS estimator to eliminate the misleading nature of the OLS-estimated
SE.20

The superiority of GLS over OLS – although both are unbiased linear
estimators – is the result of GLS having a smaller SE. In fact, though it is not
proved here, in this case, GLS is indeed the best linear unbiased estimator.
That is, the GLS estimator has the smallest spread in its sampling distribution
of all unbiased linear estimators.

To see a head-to-head competition between OLS and GLS, click on the
OLS v. GLS Monte Carlo

Simulation Show button (in the AR1Model or b1GLSMCSim sheets). With
ρ = 0.8, a Monte Carlo simulation with 10,000 samples shows that GLS beats
OLS, as shown in Figure 20.5.4. Although the victory does not appear to be
overwhelming, the ratio of the OLS to the GLS SE is 1.168, which means that

20 The true OLS SE is derived using matrix algebra beginning in cell A100 of the AR1Model sheet in
AutoCorr.xls.
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Population Parameters

Average −0.001 Average 0.000 β 1 0
SD 0.1624 SD 0.1391 ρ 0.8
Max 0.665 Max 0.573
Min −0.593 Min −0.585

OLS b1 GLS b1

Empirical Histogram for 10,000 Repetitions

−1 −0.5 0 0.5 1

b 1 estimates

 OLS 

 GLS 

Figure 20.5.4. OLS versus GLS Monte Carlo simulation with p = 0.8.
Source: [Autocorr.xls]OLSGLSMCSim.

the OLS SE is about 17 percent bigger than its GLS competitor. If you want
a more visually compelling example, increase the value of ρ in cell C6 of the
AR1Model sheet. With ρ = 0.95, GLS is almost twice as precise as OLS, as
seen in Figure 20.5.5. Clearly, as ρ approaches 1, the gains from using GLS
increase.

Population Parameters

Average 0.004 Average 0.004 β1 0
SD 0.4163 SD 0.2376 ρ 0.95
Max 1.515 Max 0.891
Min −1.542 Min −0.849

OLS b1 GLS b1

Empirical Histogram for 10,000 Repetitions

−2 −1 0 1 2

b1 estimates

 OLS 

 GLS 

Figure 20.5.5. OLS versus GLS Monte Carlo simulation with ρ = 0.95.
Source: [Autocorr.xls]OLSGLSMCSim.
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Feasible Generalized Least Squares

Although the superiority of GLS over OLS is quite clear, there is a very
important practical problem with the GLS procedure. Typically, we do not
know the value of ρ. This crucial piece of information is needed to transform
the data.

Faced with an unknown population parameter, we proceed as usual – we
estimate it. In this case, we use the residuals of the original autocorrelated
regression equation to obtain an estimate of ρ. As described in Section 20.4,
Diagnosing Autocorrelation, there are many alternatives to choose from in
estimating ρ.21 No matter what estimator is used, whenever an estimate of
ρ – instead of ρ itself – is used to transform the data, the procedure is called
feasible generalized least squares (FGLS). It is called feasible GLS because,
if ρ is unknown, GLS is unattainable. By estimating ρ, we substitute a feasible
estimator in place of its unworkable ideal.

Beginning in cell AZ1 of the AR1Model sheet of AutoCorr.xls, we apply
the FGLS procedure. Click on the View

Formula button to see the formulas we use.
Notice how exactly the same algebra is applied as in the GLS procedure. The
only difference is that we use our estimate of ρ, not ρ itself. In this FGLS
implementation, the estimate (named rho estimated) is given in cell BD6,
which reports the slope of the regression through the origin of the residuals
on lagged residuals. Click the View Formula Results button to return Excel to its
default display cell results view.

It turns out that there are many ways to implement FGLS. We have chosen
one named for Prais and Winsten. The special feature of their estimator is
that they use the first observation, whereas competing versions of FGLS
throw it out. Monte Carlo evidence shows that the Prais–Winsten estimator
generally performs better than an alternative procedure called Cochrane–
Orcutt, which uses the identical transformation except for discarding the first
observation.22

Unfortunately, FGLS is not as good an estimator as GLS. What is the
source of the problem with FGLS? The answer is the need to estimate ρ. After
explaining why estimated ρ is to blame, we run head-to-head competitions
of FGLS against GLS and FGLS against OLS. The results show that all are
unbiased estimators of β1 but differ in precision. As would be expected, FGLS
ranks between OLS and GLS.

To understand why having to estimate ρ hampers FGLS, first set ρ = 0.8 in
cell C6 of the AR1Model sheet, then hit F9 repeatedly. As you do so, focus on
the estimated ρ values in cell BD6. There is a problem there. Estimated ρ is
biased downward – it is persistently too low. You will get values greater than

21 Further explanation of the variety of estimators of ρ is available in [AutoCorr.xls]Graphs!Q1.
22 See Rao and Griliches (1969).
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GLS b1 FGLS b1 Population Parameters

Average 0.002 Average 0.002 β1 0

SD 0.1410 SD 0.1464 ρρρρ 0.80.80.80.8
Max 0.574 Max 0.633
Min −0.494 Min −0.574

Empirical Histogram for 10,000 Repetitions

−1 −0.5 0 0.5 1

b1 estimates

 GLS 
FGLS 

Figure 20.5.6. GLS versus FGLS Monte Carlo simulation.
Source: [Autocorr.xls]GLSFGLSMCSim.

0.8 on occasion, but most values of estimated ρ are less than 0.8. The previous
section ran Monte Carlo simulations of estimated ρ (see also the rhoMCSim
sheet in AutoCorr.xls). We found the average of 10,000 estimated ρ’s to be
0.700, when ρ = 0.8. If we get estimated ρ wrong and then use this wrong value
to transform the data, it stands to reason that FGLS will not do as well as GLS.

There are many FGLS estimators. All are biased in small samples, but some
are better than others in certain situations (discussion of which is beyond the
scope of this book).23

Using our estimated ρ as the slope of regression through the origin of
residuals on lagged residuals with ρ = 0.8 and 60 observations, let us test
drive and compare FGLS to GLS and OLS.

We begin with the obvious – FGLS is not as good as GLS. Near cell BH1
of the AR1Model sheet, you will find the GLS v. FGLS Monte Carlo

Simulation Show button. Click on it
and then run your own Monte Carlo simulation that calculates b1 estimates
using GLS and FGLS. For 10,000 samples, given the initial fixed values of X,
60 observations, and ρ = 0.8, our results, reproduced in Figure 20.5.6, show
GLS is slightly superior to FGLS.

Of course, this result depends on a set of particular parameter (and X )
values. For example, when we change ρ to 0.95, GLS performs much better
than FGLS, as can be seen in Figure 20.5.7.

23 See Rao and Griliches (1969) and Taylor, (1981). Rao and Griliches consider autocorrelated X ’s, and
Taylor demonstrates that the values of the X variables influence which estimator of ρ is best.
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GLS b1 FGLS b1 Population Parameters

Average −0.002 Average −0.002 β1 0

SD 0.2380 SD 0.3175 ρρρρ 0.950.950.950.95
Max 0.872 Max 1.317
Min −0.834 Min −1.373

Empirical Histogram for 10,000 Repetitions

−1 −0.5 0 0.5 1

b1 estimates

 GLS 
FGLS 

Figure 20.5.7. GLS versus FGLS, ρ = 0.95, Monte Carlo simulation.
Source: [Autocorr.xls] GLSFGLSMCSim.

Average 0.002 Average 0.001 β1 0
SD 0.1631 SD 0.1457 ρ 0.8
Max 0.607 Max 0.541
Min −0.572 Min −0.507

OLS b1 FGLS b1 Population Parameters

Empirical Histogram for 10,000 Repetitions

−1 −0.5 0 0.5 1

b1 estimates

 OLS 

 FGLS 

 

Figure 20.5.8. OLS versus FGLS Monte Carlo simulation.
Source: [Autocorr.xls]OLSFGLSMCSim.
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In practice, comparing FGLS with GLS is not especially relevant. After all,
if a crucial parameter value is unknown, it is not especially helpful to note that
you would be able to do better if you knew it. Of much greater importance
is comparing OLS and FGLS – two viable, real-world alternatives.

Click on the OLS v. FGLS Monte Carlo
Simulation Show button in the AR1Model sheet and run your

own Monte Carlo simulation that compares OLS and FGLS. Our results are
given in Figure 20.5.8. The evidence is clear: FGLS beats OLS. They are both
unbiased, but FGLS has a smaller SE, which means it is more precise. As
was the case with GLS versus OLS, as ρ approaches 1, the victory margin
of FGLS over OLS will increase. You can demonstrate this by changing ρ to
0.95 and running your own Monte Carlo simulation.

The superiority of FGLS over OLS makes sense if you remember that GLS
contains OLS as a special case. Ordinary least squares is equal to FGLS with
estimated ρ set at 0. Thus, even though FGLS is hampered by a downward
biased estimate of ρ, this is far better than treating ρ as if it were zero, which
is the implicit assumption made by OLS.

Summary

An AR(1) error process can be converted into an independent error process
via an appropriate algebraic transformation of the data. When ρ is known,
running OLS on the transformed data is called GLS. Advanced statistical
theory can be used to show that GLS is BLUE. This means that OLS (or any
other linear unbiased estimator) is less precise than GLS. This is the primary
reason GLS is preferred over OLS in the estimation of AR(1) autocorrelated
error models. Although this section does not prove that GLS is BLUE, it has
demonstrated through Monte Carlo simulation that GLS beats OLS, the third
claim posited in Section 20.3.

Once AR(1) autocorrelation in the errors is detected, OLS should be aban-
doned in favor of its more precise competitor GLS. In practice, however, ρ is
not known and must be estimated. The process of estimating ρ, transforming
the data, and running OLS on the transformed data is called FGLS. Because
there are many ways to estimate ρ, there are many FGLS estimators. We
chose one that tested well in Monte Carlo simulations. Although not as good
as its ideal counterpart, GLS, the primary virtue of the FGLS procedure is
that, in terms of precision, it beats OLS.

An alternative method for dealing with autocorrelation is to use OLS in
conjunction with a serial correlation–robust estimate of the SE. The advan-
tage of this procedure is that it works for more general types of serial
correlation than the AR(1) process discussed in this chapter.24 In contrast, the

24 For details on this approach, see Wooldridge (2003), pp. 410–414.
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FGLS procedure outlined in this chapter applies only to the AR(1) process.
Procedures for transforming data in the presence of other autocorrelation
processes are beyond the scope of this book.

20.6. Conclusion

Workbooks: CPIMZM.xls; Luteinizing.xls

This chapter has used computer-generated data to illustrate important con-
cepts about autocorrelation. This section summarizes the critical points and
then offers two examples with real-world data.

The Highlights of Autocorrelation

With a first-order autoregressive (AR1) autocorrelated error model,

Yt = β0 + β1 Xt + εt

εt = ρεt−1 + νt ,

the errors, εt, are not independently distributed because the previous error,
εt−1, influences the current error whenever ρ is not zero. We say that the
errors are autocorrelated.

There are three important consequences when OLS is used to estimate β0

and β1 in the presence of an autocorrelated data generation process:

1. The estimates of β0 and β1 are unbiased.
2. The OLS estimated SEs of the estimated coefficients are wrong and usually too low.

Inference is flawed. This problem does not go away as the sample size increases.
3. Ordinary least squares is not BLUE; GLS is the best (smallest SE) linear unbiased

estimator.

Because OLS estimated SEs are misleading and the OLS estimator is not
BLUE if autocorrelation exists, we need to know if the errors are autocorre-
lated. We have discussed three diagnostic procedures:

1. Examine the scatter diagram of residuals plotted against lagged residuals.
2. Apply the estimated ρ test in which estimated ρ is the slope of the regression of

residuals on lagged residuals.
3. The Durbin–Watson test is often used because, unlike the estimated ρ test, it does

not suffer from small sample bias. This test is not, however, a perfect solution
because strict requirements must be met for it to be strictly applicable. In fact, the
next chapter demonstrates that the estimated ρ test is more resilient in the face
of violations of the classical econometric model than the Durbin–Watson test.

Once first-order autocorrelated errors are detected, it is possible to correct
the autocorrelation. BLUE estimates of β0 and β1 in an AR1 model can
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be obtained via GLS. By appropriately transforming the original data (and
applying a special formula to the first observation) and then running OLS
on the transformed data, linear unbiased estimates with the minimum SE
are found. The GLS coefficient estimates and SEs are then reported with the
original data in the usual way:

Predicted Y = bGLS
0

(SEGLS
b0

)
+ bGLS

1

(SEGLS
b1

)
X

The transformed data are merely a means to an end – best linear unbiased
estimation – and are discarded once the parameter estimates, and SEs are
obtained.

When ρ is unknown, it must be estimated, and the same transformation
procedure is applied with the estimated value of ρ. Using an estimate of ρ

in the data transformation and then applying OLS is called feasible GLS.
Although GLS is better than FGLS, if ρ is unknown, GLS is not within our
reach. Of the attainable choices, FGLS is better than OLS.

If the autocorrelation in the errors is not AR(1) or of unknown form, more
advanced methods beyond the scope of this book are needed.

Two Real-World Examples

You can apply the diagnosis and correction of an AR1 error model to real-
world data in the CPIMZM.xls workbook. Follow the steps in the Analysis
sheet to see how the ideas presented in this chapter are put into practice.
The BusCycleData, MoneyData, and CPIData sheets contain important and
interesting documentation.25

The example illustrates textbook lessons.26 Note how the autocorrelation
in the original model is picked up by the diagnostics, how OLS and FGLS
differ, and how the transformation greatly lowers estimated ρ. The end result,
however, is far from perfect. The last step shows that the transformed model
still suffers from autocorrelation. Much more work is needed because the
AR(1) model probably does not adequately describe the way in which the
errors were generated.

A second example can be found in the Luteinizing.xls workbook.
Luteinizing hormone levels (which are involved in the menstrual cycle)
are measured on a healthy woman in 10-minute intervals over an 8-hour

25 The example is completely worked out in the CPIMZMAnswers.xls workbook. The DWOrig and
DWTran sheets were created by using the Durbin–Watson d option in the P Values Calculator and
selecting the Show Matrix Results option.

26 The example is used as a teaching device giving the student an opportunity to put in practice the
procedures described in the text. Handling trend and other complications implicit in this example
requires methods beyond the scope of this book.
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time period. This example shows how FGLS can be used to correct the
autocorrelation in the data and the AR(1) model appears to be a good descrip-
tion of the process generating the errors in this case.

The world beyond the carefully controlled environment under which we
run Monte Carlo simulations is messy and unclear. You will rarely run the per-
fect regression or ideal test in the real world. The FGLS estimator provides
better analysis than OLS, but we may not have exactly the right answer. Fur-
thermore, the analysis of time series data is an advanced, complicated topic
in econometrics. The discussion of autocorrelation in this chapter introduces
an important issue, but you should know that there is much more to the study
of autocorrelation than the Durbin–Watson statistic applied to an AR(1)
process.

20.7. Exercises

Workbooks: Misspecification.xls; FreeThrowAutoCorr.xls

1. Recall the fable about Galileo (see Chapter 6) in which he estimated the model

Predicted Distance = −124.82 + 96.83 × Time
(ft) (ft) (ft/s) (s).

This is a good example of a model in which the functional form is incorrect. Recall
that the true model includes neither an intercept nor a Time term (just Time2).
Open the file Misspecification.xls and perform the estimated ρ test on the model
above. Your answer should include clearly stated null and alternative hypotheses,
a test statistic, a P-value, and a decision on rejecting or not rejecting the null.

2. Now run a Durbin–Watson test. Your answer should include clearly stated null
and alternative hypotheses, a test statistic, a P-value, and a decision on rejecting
or not rejecting the null.

3. We actually know that autocorrelation is not really present in these data. Why,
then, is it showing up in our tests?

4. Simply for practice, go ahead and run an FGLS estimation of the model. Describe
your procedure in transforming the data and report your results.
Open the FreeThrowAutoCorr.xls workbook and use it to answer the questions
below. Read the Intro sheet and explore the workbook to get a sense of what is
going on.

5. Click on cell B11 in the Model sheet. The heart of the formula is “B10+IF
(C10=1,zeta,-zeta).” Explain how this formula is inducing autocorrelation.

6. What effect does increasing autocorrelation have on the sampling distribution of
the percentage of made free throws? Describe your procedure in answering this
question.

7. Does autocorrelation have the same effect on the sampling distribution of the
percentage of made free throws if µ=0.8? Describe your procedure in answering
this question.

8. If autocorrelation is present, what is wrong with using the conventional estimated
SE formula (in cell K27)? How do you know?
HINT: Use the MCSim.xla add-in to run a Monte Carlo simulation on cell K27.
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Greene, W. H. (2000). Econometric Analysis. New York: Prentice Hall.
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Gilovich, T., R. Vallone, and A. Tversky (1985).
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It seems necessary, then, that all commercial fluctuations should be investigated
according to the same scientific methods with which we are familiar in other com-
plicated sciences, such especially as meteorology and terrestrial magnetism. Every
kind of periodic fluctuation, whether daily, weekly, monthly, quarterly, or yearly,
must be detected and exhibited, not only as a study in itself, but because we must
ascertain and eliminate such periodic variations before we can correctly exhibit
those which are irregular and non-periodic, and probably of more interest and
importance.

W. S. Jevons1

21.1. Introduction

In this chapter we discuss further topics relating to time series analysis. Time
series econometrics is a vast field. Our aim in this chapter is to expose you to
some of the main techniques for modeling time series and to call attention
to important issues pertaining to the data generation process for variables
that change over time. Sections 21.2 through 21.4 demonstrate basic tech-
niques for dealing with time series using a trend term and dummy variables
and making seasonal adjustments. Sections 21.5 and 21.6 examine important
issues pertaining to the data generation process. For OLS to produce consis-
tent estimates of parameters, time series must be stationary and cannot be
strongly dependent. Section 21.5 examines the issue of stationarity, while Sec-
tion 21.6 tackles the subject of weak dependence. In time series, lagged depen-
dent variables are very often included as regressors. Section 21.7 discusses
lagged dependent variables in general and Section 21.8 contains a practical
example of the use of lagged dependent variables in the estimation of money
demand. Section 21.9 provides an introduction to forecasting using time series
methods.

1 Jevons (1862) in Hendry and Morgan (1995, pp. 113–114).

604
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21.2. Trends in Time Series Models

Workbooks: IndiaPopulation.xls; ExpGrowthModel.xls;
AnnualGDP.xls; Spurious.xls

This section covers the use of trends in time series models. Trends are a simple
and effective means for incorporating a steady upward or downward move-
ment over time into the behavior of a time series. There are two important
uses of trends in modeling economic time series. First, a trend can provide a
succinct, summary description of how a variable has changed over time. As
such, a trend can be useful for forecasting purposes, provided that there is
reason to believe that the variable will continue to change in the same way in
the future. (Section 21.9 covers forecasting of time series.) Second, including
a trend in a time series can guard against incorrect inferences. The first part
of this section illustrates two functional forms for trends via simple examples.
The second part of this section demonstrates that time series models which
do not account for trends are potentially subject to significant problems.

Two major functional forms for trends in economic variables are the linear
and exponential.We apply these functional forms initially to the problem of
modeling the time path of the population of India, the world’s second most
populous country. We obtained data on India’s population from the U.S.
Census Bureau. According to Census Bureau estimates, India’s population
increased from 368 million people in 1950 to 998 million in 1999. (By way
of comparison, the U.S. population was about 273 million in 1999.) The data
and sources are in the Excel workbook IndiaPopulation.xls.

Linear Trend

A simple approach to modeling how an economic variable changes over time
is to treat it as following a linear trend. This means estimating the following
equation:

yt = β0 + β1t + εt .

The time trend term (usually abbreviated “t” as in the equation above) is
typically chosen equal to 0 in the first period (that is, the first observation) and
to increase by 1 during each successive period. As we ask you to demonstrate
in an exercise, this choice is arbitrary; any starting point can be used so long
as the trend term increases by 1 when the time of the observation increases
by 1 unit. (The time period need not be 1 year; it could be quarters of a year,
months, weeks, etc.) We assume for now that the errors obey the classical
econometric model (later we allow the error terms to be autocorrelated).
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Linear Trend Line for India's Population, Actual 
Data, Estimation Period, 1950-1990
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Figure 21.2.1. Linear trend model of India’s population.
Source: [IndiaPopulation.xls]Data.

Adopting a linear trend assumes the following model for India’s population:

Populationt = β0 + β1t + εt ,

for t = 0 to 40, corresponding to the years 1950 to 1990, with population
measured in millions. We obtain the following results:

Predicted Population in millions = 331.74 + 12.13t

(5.47) (0.24)

The estimated SEs are given in parentheses.2 Figure 21.2.1 shows the data
and the fitted line.

The linear trend model assumes that the value of the dependent variable
(the one you are forecasting) goes up or down by a constant amount every
year. Thus, this model says that the population of India rose by about 12.1
million people every year.

You should be skeptical of using a linear trend to model India’s population,
for both empirical and theoretical reasons. The empirical case against the
linear extrapolation model is very easy to make. A quick look at Figure 21.2.1
shows that the rate of population growth was not constant over time. The
12.1-million-people-per-year rate is the predicted constant increase in units

2 Note that we computed the estimated SEs under the standard assumption that the errors are
homoskedastic and independent, which is highly questionable in the case of population.
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of millions of people per year, but the change in the number of people per
year was obviously lower in the early 1950s and clearly much higher in the
1980s.

The theoretical case against linear extrapolation for forecasting popula-
tion requires a model of population growth. We present a simple model in
the workbook ExpGrowthModel.xls. This model suggests that constant per-
centage growth rates for population are plausible.

Log-Linear (Exponential) Trend

A commonly used alternative to a linear trend is the log-linear or exponential
trend in which the series grows or declines by a constant percentage instead
of a constant absolute number. In other words, this is a semi-log model (see
Chapter 6.4) with the dependent variable transformed by the natural log
function and the X variable unchanged. The regression model is written as
follows:

ln yt = β0 + β1 · t + εt .

We assume for now that the errors obey the classical econometric model
(later we allow the error terms to be autocorrelated). This model for the
logarithm of y implies that the equation for the level of y is

yt = exp(β0 + β1 · t + εt )

= exp(β0) · exp(β1 · t) · exp(εt ).

As pointed out in Section 6.4, in this model 100 · β1 is approximately equal
to the percentage change in yt corresponding to a one unit change in t.

In Excel, the log-linear specification can be estimated by taking the natural
log of the dependent variable and then running OLS (via the Data Analysis
add-in or LINEST) or, because it is a bivariate model, charting the data and
using the Trend line approach.

Using our population data for India, we obtain the following fit for the
log-linear model:3

Predicted ln(Population) = 5.895 + 0.0213t.

(.0001) (.002)

Figure 21.2.2 shows the results.

3 The R2 from this regression is 0.9994. Very high R2’s are not unusual in regressions in which the
dependent variable follows a strong trend. When the regression includes another independent variable
other than the trend, an adjusted R2, which takes into account the trend, can give a better picture of the
explanatory power of the model. For details, see Wooldridge (2003), pp. 351–353.
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In Population and Trend Line, Estimation Period,
1950-1990
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Figure 21.2.2. Logarithmic trend line for India’s population.
Source: [IndiaPopulation.xls]Data.

The dependent variable in the log-linear model is in terms of logarithms
of population in millions. To get back to population in millions, we need to
exponentiate, or take the antilog as follows:

yt = exp(ln yt )

Populationt = exp(5.895 + 0.0213 · t)

= exp(5.895) · exp(0.0213 · t)

= 363.2 · 1.0215t .

In fact for technical reasons, this is almost, but not quite, the correct proce-
dure. It turns out that there is an additional multiplicative factor we need to
append to the expression above. In this case the correction makes very little
difference (assuming the error terms are normally distributed, we need to
multiply this expression by 1.0003), but it can make an important difference
in other applications. For further details, see the How To file called How-
ToPredictYfromLnY.doc in the Basic Tools \ HowTo folder. Notice that the
preceding calculation tells us the percentage growth rate is 2.15 percent – just
a little more than the slope coefficient in the log-linear regression.

Figure 21.2.3, a graphical comparison of the linear and exponential trend
models with predicted values expressed in levels, shows the clear superiority
of the latter method of fitting a trend to Indian population. The actual popu-
lation series (the dots) is almost indistinguishable from the exponential trend.
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Linear and Exponential Trend Lines for India's 
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Figure 21.2.3. Comparing two trend models for India’s population.
Source: [IndiaPopulation.xls]Data.

Example: U.S. Real GDP, 1947–2003

As a second example, we present linear and log-linear trend results for annual
gross domestic product (GDP) between 1947 and 2003. In these models the
trend term might reflect the combined impact of labor-force growth, capital
accumulation, and technological progress over time. The models implicitly
assume that, taken together, these factors lead to a constant (linear or expo-
nential) rate of growth in GDP. The error term might capture the influence of
other variables, e.g., economic policy.4 The purpose of the trend model may
be strictly descriptive, summarizing the rate of economic growth over time.
The data and analysis are contained in the file AnnualGDP.xls. All figures
are billions of real dollars with 2000 as the base year. (Comparing economic
variables over time often requires taking into account the effect of inflation
by converting nominal figures into real figures.)

We ran both linear and log-linear trend models. The linear trend is clearly
inappropriate, as Figure 21.2.4 demonstrates. The linear trend underpredicts
GDP initially, overpredicts in the intermediate years, and underpredicts at
the end of the time series: The level of GDP is rising at an increasing rate.
On the other hand, a model in which GDP rises at a constant percentage rate,
the log-linear trend, does a much better job, as seen in Figure 21.2.5.

4 It is possible to measure labor-force growth and capital accumulation and thus include these variables
in the regression. However, it is very hard to measure technological progress. Thus a trend term is often
included to proxy for technological progress.
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Figure 21.2.4. A linear trend for U.S. GDP.
Source: AnnualGDP.xls[Data].

The equation for the log-linear trend is

Predicted Log GDPt = 7.3921 + 0.0334t.

As noted for the first example, in moving from an equation involving logs to
one involving levels, we need to take into account an additional multiplicative
factor. Although the resulting correction was trivial in the case of predicting
India’s population, it is fairly important in the case of predicting U.S. GDP.
To produce Figure 21.2.5 we used the general correction procedure described
in the HowToPredictYfromLnY.doc file in the Basic Tools \ HowTo folder.
We began by regressing exp(7.3921 + 0.0334t) on actual GDP without an
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Figure 21.2.5. A log-linear trend for U.S. GDP.
Source: [AnnualGDP.xls]Data.
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Figure 21.2.6. Time series plot for two trending variables.
Source: [Spurious.xls]Trends.

intercept. This gave a slope coefficient of 0.99.5 We then computed Log-
Linear Predicted GDP as follows:

Log-Linear Predicted GDPt = 0.99 · exp(7.3921 + 0.0334t) .

Our regression tells us that the trend rate of growth in real GDP was about
3.4 percent per year.

Trends and Spurious Regression

It is important to be aware of trends in analyzing the relationship between
two variables that are changing over time. One reason is that it is easy for
investigators to be fooled into believing that there is a real relationship
between two variables when in fact the two variables are unrelated. For exam-
ple, if both variables are following an upward trend over time, it will appear
that the “dependent” variable is increasing because the “independent” vari-
able is increasing. We will show this with an example.

Open the file Spurious.xls and go to the Trends sheet. Figure 21.2.6 shows
two variables, X and Y, graphed against time. The data generating process
for the two variables is the following:

Xt = γ1 · t + ηt

Yt = β0 + β1 · Xt + β2 · t + εt .

The error terms in both equations are draws from an error box (i.e., inde-
pendent and identically distributed). Also, the error terms are independent
of one another: Knowing the value of ηt tells us nothing about the value of
εt . Notice that this DGP is not the classical econometric model because X is
not fixed in repeated samples.

5 If we had assumed that the errors were normally distributed, our correction factor would instead have
been 1.000826. The resulting series is computed in Column R of the Data sheet, starting in cell R4.
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X (g1) X  (b1) t (b2)

0.61 4.24 --0.03 1.01 −0.635 Regress t on X

0.22 2.49 0.32 0.39 2.892 X (d1) Intercept

0.30 7.02 0.50 6.13 #N/A 0.64 4.83

7.86 18 8.45 17 #N/A

387.8 887.7 635.7 639.8 #N/A 0.65 =b2*d1

Omitted Variable RuleLong RegressionShort Regression

Auxiliary Regression

Bias in g1:

 

Intercept Intercept

Figure 21.2.7. Short and long regressions of trending Y on trending X.
Source: [Spurious.xls]Trends.

Let us look at what happens when β1 = 0 – that is when there is no rela-
tionship between Y and X. The Trends sheet should be set up for this case,
with β1 set to zero in cell B3.

In general, spurious regression means that we believe X and Y are related
when in fact, they are not. In this example, a regression of Y on X that does
not include a trend term typically gives biased estimates of the slope of Y on
X. This is essentially an omitted variable problem, as is demonstrated at the
conclusion of this section. Another spurious regression problem is presented
later in this chapter.

Consider two regressions that can be estimated with these data. The short
regression just includes X, whereas the long regression includes X and t.
Figure 21.2.7 displays representative results.

The key parameter estimates are highlighted in bold. The OLS estimator,
g1, short regression (on the left of Figure 21.2.7) is biased, as you can see
by hitting the F9 key several times: The estimate of the slope of Y on X is
not centered on 0, the true value. In contrast, the long regression estimates
(displayed in the center of the figure) are unbiased, as can be demonstrated
with a Monte Carlo analysis (see the Q&A sheet). The omitted variable rule
says that the size of the difference between the short- and long-regression
coefficients for X depends on the slope of the omitted variable on the included
variable (this is d1 in our example). Specifically,

Difference in Regression Slopes of Y on X

= Slope of t on X × Slope of Y on t

= 0.64 × 1.01

= 0.65.

In the example of Figure 21.2.7 an increase of one unit in X predicts an
increase of 0.64 units in t. Because it omits t but includes X, the short regres-
sion of Y on X attributes changes in Y that stem from changes in t to changes
in X. Because the slope of Y on t changes from one sample to the next, the size
of the difference in estimated regression slopes will change even if we hold the
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values of X constant while drawing a new sample of Y values. Observe that
the estimated SE of the slope of Y on X in the short regression is generally
considerably smaller than the slope estimate itself. Thus, the short regression
is likely to lead to a statistically significant but false finding that changes in X
are associated with changes in Y, ceteris paribus.

Summary

This section has served as an introduction to the use of trends in time series. A
trend term serves as a convenient way to summarize the change in a variable
over time. We introduced two popular functional forms for trends, linear
and log-linear, but there are many others. Trends also play an important
role in statistical inference. When both dependent and independent variables
contain trends, neglecting to include a trend can lead to biased estimates of the
regression parameters. This is called spurious regression. In the next section,
we turn to a useful device for modeling changes in a dependent variable over
time: dummy variables.

21.3. Dummy Variables in Time Series Models

Workbooks: TimeSeriesDummyVariables.xls; CoalMining.xls

In addition to incorporating trends, dummy variables are a second common
strategy for modeling the way in which economic variables change over time.
Dummy variables are a way to shift the predicted series up or down for a
portion of the sample period.

Dummy Variables in Time Series

Dummy variables can be used to track innovations that affect the value of
a variable at particular points in time but not throughout the entire period
under study. Here is a simple example. A dairy food manufacturer might be
interested in the impact of retail price and coupons on sales of its premium
ice cream. During some weeks the manufacturer issues a coupon for the ice
cream; at other times it does not offer any coupons. A way to model the
relationship between Sales, Price, and coupon policies is to define a dummy
variable, Coupon, which is an indicator of whether there was a limited-time
coupon for the ice cream in the Sunday papers for a given week. Specifically,

Coupont = 1 when there is a coupon in week t

Coupont = 0 when there is no coupon in week t

The file TimeSeriesDummyVariables.xls works out this example. Go to the
Sales sheet. Figure 21.3.1 shows the path of sales over time. The data were
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Figure 21.3.1. Hypothetical retail sales of ice cream.
Source: [TimeSeriesDummyVariables.xls]Sales.

generated according to the following simple model:

IceCreamSalest = β0 + β1 RetailPricet + β2 Coupont + εt , t = 0, . . . , 20.

The error term accounts for the influence of weather and other factors. In
weeks 2, 8, 14, and 17, the firm issued coupons good for those weeks, and
this is clearly reflected in upward hikes in sales for those weeks. In week 12,
the firm raised the price of the ice cream by $1.00; this shows up in Figure
21.3.1 as a downward shift to a permanently lower level (if you think of the
last 9 weeks as permanent) of sales. Of course, there is some bounce in sales,
reflecting the influence of the error term. (Hit F9 to see this.)

An OLS regression of Sales on Retail Price and Coupon easily picks out
the impact of coupons on sales, as the LINEST output in Figure 21.3.2 demon-
strates. This shows how a dummy variable can be used in a time series model
to capture time-specific effects.

Example: Coal Mine Safety

We turn now to an actual example of the use of dummy variable in a
time series study provided by Andrews and Christenson’s analysis of the
impact of federal regulations on coal mining safety during the period 1940 to

Coupon Retail Price Intercept
1079.2 −757.2 5817.1

56.6 44.9 199.7

1.0 101.6 #N/A

302.8 18 #N/A
6253084 185838 #N/A

Regression of Sales on ...

 

Figure 21.3.2. Regression of sales on price and a
dummy variable, Coupon.
Source: [TimeSeriesDummyVariables.xls]Sales.
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Variables:
T %m

Sm/m 
St/m

R dummy variable: government regulation in place
W

F
NF nonfatal injury rates per million man hours worked
NFP nonfatal, permanent disability, injury rates per million man-hours. 

percent of coal mechanically loaded

average number of men working per mine
average output per mine (tons)

dummy variable: war currently taking place

fatal injury rates per million man hours worked (in underground bituminous coal mines)

Figure 21.3.3. Variables in Andrews and Christenson’s (1974) study
of coal mine safety.

1965.6 In their model, the fatality rate in the U.S. underground coal mining
industry depends on the level of technology, the average size of mines, and
federal regulation. All of these are measured on an annual basis, and so there
are 26 observations in the data set – a relatively short time series. Andrews
and Christenson argue that the use of more modern technology (measured
by the percent of coal mechanically loaded) might reduce the fatality rate.
They assert that safety in small mines is worse than safety in large mines,
implying that as the average number of workers per mine falls, safety should
decline. Unfortunately, decreases in the number of workers per mine might
also reflect improvements in technology, clouding the interpretation of this
variable.

Andrews and Christenson’s main research question is, Did the Coal Mine
Safety Act of 1952 improve coal mine safety? The 1952 Act gave the Bureau
of Mine Safety increased powers, including the ability to shut down mines
that failed to correct violations of safety regulations. The authors use two
dummy variables in their regression: one for observations during World
War II (during which changes in the labor force might have pushed up acci-
dent rates) and one for years in which government regulation was in place
(1953 and after).

We reproduce just one part of Andrews and Christenson’s study: their
model labeled F4, which analyzes fatal accident rates. The variables are
defined as shown in Figure 21.3.3. The ModelF4 sheet in CoalMining.xls
presents the data. Columns B and C contain the dummy variables for Regu-
lation and War.

Andrews and Christenson’s Model F4 is as follows:

Ft = β0 + β1 Rt + β2Wt + β3T%mt + β4Sm/mt + εt .

6 Andrews, W. H. and C. L. Christenson (1974).
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Variable Estimate SE
Intercept 3.482 0.501
R 0.028 0.105
W 0.076 0.105
T%m −0.023 005
Sm/m −0.017 0.

0.
004  

Figure 21.3.4. OLS results for Andrews and
Christenson Model F4.
Source: [CoalMining.xls]ModelF4.

As the authors mention, there are many other factors besides the included
independent variables that influence the fatality rate, the most prominent
of which might be luck. Thus, there is ample reason for the presence of an
error term. We assume that the error term follows the classical econometric
model. (In the Q&A sheet, we ask you to test for first-order autocorrelation
in the errors.) As Figure 21.3.4 shows, the regression results do not support
the contention that federal regulation has improved mine safety.

The coefficient estimate for W, taken literally, says that fatal accident rates
were 0.076 fatalities per million man hours higher during World War II than
after the war; the coefficient estimate for R indicates that accident rates during
the years when the Coal Mine Safety Act was in effect were also slightly
higher than during the previous, less-regulated period. However, both null
hypotheses that the true parameters relating to W and R are zero cannot be
rejected. Thus, we cannot say that either war or regulation affected coal mine
safety.7

On the other hand, the estimates for the variables reflecting technology
and mine size are statistically significant, and the estimates indicate that
these variables have very large impacts on the fatality rate. This is not so
obvious given the seemingly small coefficient estimates of −.023 and −0.17,
respectively. The elasticity of the fatality rate with respect to the technology
measure, however, is −1.28, whereas the elasticity of the fatality rate with
respect to the size measure is −0.55 (both elasticities are evaluated at sample
means – see the Model F4 sheet for more detail on these computations).
Furthermore, the technology measure increased from 35.4 to 89.2 between
1940 and 1965. According to the regression estimates, this alone would have
caused a decrease in the fatality rate of 1.36 fatalities per million man hours
ceteris paribus; similarly, the decrease in mine size over the same period
would have led to an increase ceteris paribus of 0.78 fatalities per million
man hours. The actual observed rate fell from 1.70 in 1940 to 1.23 fatalities
per million man hours in 1965.

We would argue that this study provides suggestive but not conclusive evi-
dence that technology and mine size have affected mine safety. There are

7 Nor can we reject that joint null hypothesis that both dummy-variable parameters are equal to zero.
The F-statistic was 0.51 and the P-value 61 percent.
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only 26 observations in the data set, and the authors admit that “all too often
the available data do not correspond very closely to the variables in the mod-
els – and that is the case with our model” (Andrews and Christenson, 1974,
p. 366). Nevertheless the impact of technological improvement on safety is
an important issue. At least one other study has found that technological
change is correlated with reductions on coal mine injuries. In another impor-
tant field, debate continues over how much of the improvement in car safety
is due to technological change and how much is the result of government
regulation.

Summary

Dummy variables are commonly used in time series models to register the
occurrence of particular events or the existence of particular policies which
affect the value of the dependent variable. This section considered a fictional
example and an actual example of the use of dummy variables in time series
regressions. The next section explores another use for dummy variables in
time series analysis.

21.4. Seasonal Adjustment

Workbooks: SeasonalTheory.xls; SeasonalPractice.xls

This section explains the basic mechanics of seasonal adjustment. Macroeco-
nomic data that are measured more frequently than on an annual basis – that
is, quarterly or monthly data – are often seasonally adjusted. For exam-
ple, quarterly GDP figures are usually reported as “Seasonally Adjusted at
Annual Rates.”

The quarterly figures are “at annual rates” because this makes the quarterly
production figures comparable to the annual figures. To express output in
terms of annual rates, multiply quarterly output by four. (Remember that
GDP is a flow variable; in a whole year the economy can produce four times
as much as it can produce in 3 months.) In addition to reporting GDP in annual
rates, the quarterly figures are also “seasonally adjusted.” How exactly is the
adjustment performed? Why are the data adjusted?

Consider a second example: monthly unemployment rates. The table in
Figure 21.4.1 reports seasonally and not seasonally adjusted data. What is
the adjustment being applied to the “not seasonally adjusted” data to get
the “seasonally adjusted” figures? Which one should you use? This section
addresses these questions about seasonally adjusted data.
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Unem Rate Unadjusted
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88 89 90 91 92 93 94 95 96 97 98 99 00 01 02

Within a year, the Unem 
Rate is HIGHER in winter, 
falls, then RISES in 
summer, and then goes down 
at the end of the year.

Trace a pencil over the 
squiggly line.  This is 
how unemployment 
behaves over the 
course of a boom year. 

Figure 21.4.2. Not seasonally adjusted.
Source: <www.bls.gov/cps/>.

Comparing Graphs

Figure 21.4.2 shows monthly unemployment rates between January 1988 and
December 2002. The series shows a marked pattern: Winters and summers
seem to have high unemployment rates; spring and fall months show lower
unemployment rates. Construction layoffs in January, February, and March
help explain the winter increase. Students pouring into the labor market
in June and July generate the summer increase. November and December
consumer spending drives the fall decline in unemployment. Figure 21.4.3
depicts seasonally adjusted unemployment data for the same period.

Compare years such as 1989, 1995, and 2000 in the two figures. These
years have a relatively stable seasonally adjusted unemployment rate over
the entire year. The exaggerated, persistent pattern in Figure 21.4.2 has been
largely removed in the seasonally adjusted graph.

Unem Rate Seasonally Adjusted
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Figure 21.4.3. Seasonally adjusted.
Source: <www.bls.gov/cps/>.
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Why Seasonal Adjustment?

Seasonal adjustment is designed to control for the persistent time patterns in
economic data. Seasonal adjustment is an application of the general principle
“Do not mislead your audience.”

If the data come in units that exhibit systematic patterns over time and
you want to make comparisons across time periods, seasonally adjusting the
data usually makes for better comparisons. If you insist on comparing raw
data that have strong seasonal patterns, you might make some rather silly
statements.

For example, in 2002, we cannot say that the economy was improving
because the unemployment rate was higher in July (5.9 percent) than Decem-
ber (5.7 percent) because July is usually high and December is usually low.
In fact, the seasonally adjusted rate in July 2002, 5.8 percent, was lower than
the seasonally adjusted December 2002 value of 6 percent. In the season-
ally adjusted figures, July’s rate was reduced somewhat to account for the
usual flood of students into the labor market, whereas December’s rate was
increased to reflect the hiring of retail workers to help with the usual increase
in fourth-quarter consumer spending. The unemployment rate, after remov-
ing the effect of seasonal variation, was actually worse in December than in
July. Comparing seasonally adjusted rates in July and December is better than
looking at unadjusted rates because we get an apples-to-apples comparison.

The Bureau of Labor Statistics says this about seasonal adjustment:

Question: What is seasonal adjustment?

Answer: Seasonal adjustment is a statistical technique which eliminates the influences
of weather, holidays, the opening and closing of schools, and other recurring seasonal
events from economic time series. This permits easier observation and analysis of
cyclical, trend, and other nonseasonal movements in the data. By eliminating seasonal
fluctuations, the series becomes smoother and it is easier to compare data from month
to month. Source:www.bls.gov/dolfaq/bls ques25.htm

Seasonal Adjustment Theory

Open the Excel workbook SeasonalTheory.xls to see an implementation of a
DGP with seasonal variation. The workbook is based on an extremely simply
seasonal variation model. We augment a well-behaved classical econometric
model DGP with an additive, stable seasonality component:

y∗
t = β0 + εt

yobserved
t = y∗

t + ys
t

The error term εt is just an independent, identically distributed draw from an
error box. The seasonal component is ys

t , which takes on one of four values
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Observed Values (yt)
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Observed Values (yt) by Quarter
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Figure 21.4.4. Observed y (with seasonal variation included).
Source: [SeasonalTheory.xls]Deconstruction.

as determined by the season of the year. These parameter values are given
in cells B10 to B13 of the Deconstruction sheet.

The resulting values for observed y look like those in Figure 21.4.4.
There is no doubt about it – we have a strong, seasonally varying series. Now

the question is, How can we remove the seasonality? There are many different
methods of seasonal adjustment. We demonstrate a relatively straightforward
three-step approach:

1. Regress the variable on dummies for the seasons (quarters or months).
2. Create a seasonal index.
3. Use the index to adjust the raw data.

Scroll right to column Q in the Deconstruction sheet to see how regression
can be used to create a seasonally adjusted series. After regressing observed
Y on three quarterly dummies (leaving Fall out as the base case), we obtain
the results shown in Figure 21.4.5. Your results will be somewhat different
because the sheet is live and new error terms are drawn every time you hit
F9. Notice that the three coefficients on the dummy variables are positive.
The interpretation is clear: Relative to Fall, the predicted values of the three
other seasons are higher, and Winter is the highest of all. This result reflects
the parameter values in cells B10:B13. Notice as well that the estimates are

y on Seasonal Dummies

Summer Spring Winter Intercept

0.355 0.082 0.491 4.758

0.019 0.019 0.019 0.013

0.962 0.042 #N/A #N/A

299.949 36 #N/A #N/A
1.583 0.063 #N/A #N/A  

Figure 21.4.5. Regression of y on Seasonal Dummies.
Source: [SeasonalTheory.xls]Deconstruction.
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Quarter Season Predicted Seasonal Index

1 Winter 5.232 0.229

2 Spring 4.876 −0.127

3 Summer 5.141 0.139

4 Fall 4.761 −0.242

Average 5.002

Figure 21.4.6. The seasonal index.
Source: [SeasonalTheory.xls]Deconstruction.

random variables. Chance error is at work here (the spread of the chance
errors is controlled by the SD Error parameter in cell B15).

The next step is to create the seasonal index. The computations are shown
starting in column AA. We first compute predicted values for each season
(cells AC5 to AC8) based on the estimated coefficients from the dummy
variable regression. To produce the seasonal index values, we subtract the
predicted value for each season from the average of the predicted values for
all four seasons. In effect, we have recentered the coefficients on the dummy
variables (including the absent Fall dummy around zero). Figure 21.4.6 dis-
plays a typical result.

We know we are on the right track because the seasonal index reflects the
seasonality in the series. Winter and Summer are higher than Spring and Fall
just like the parameter values in cells B10:B13.

The final step is to use the seasonal index values to adjust the observed
Y data. Column AJ shows that we simply subtract the seasonal index from
the observed Y to obtain the seasonally adjusted value. Thus, Winter and
Summer values are adjusted downward, whereas the other two seasons are
nudged upward. The results, shown in Figure 21.4.7, are impressive.

Seasonal Adjustment in Practice

Unfortunately, seasonal adjustment in the real world is not as easy as in this
example. The way in which seasonality affects a series may not be as simple

Unadjusted and Adjusted Series

4.60
4.70
4.80
4.90
5.00
5.10
5.20
5.30
5.40

1 5 9 13 17 21 25 29 33 37

Figure 21.4.7. The results of regression-based seasonal adjustment.
Source: [SeasonalTheory.xls]Deconstruction.
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Estimation of Seasonal Effects 

 
From the BLS Handbook of Methods Bulletin 2490, April 1997 Chapter 17, The Consumer Price Index, "Estimation 
of Price Change", p. 192  

Seasonal adjustment Seasonal adjustment removes the estimated effect of changes that normally occur at the same 
time every year (such as price movements resulting from changing climatic conditions, production cycles, model 
changeovers, holidays, sales, etc.). CPI series are selected for seasonal adjustment if they pass certain statistical 
criteria and if there is an economic rationale for the observed seasonality. Seasonal factors used in computing the 
seasonally adjusted indexes are derived using the ARIMA option of the X-11 variant of the Census Method II 
Seasonal Adjustment Program. In some cases, intervention analysis seasonal adjustment is carried out using X-12-
ARIMA to derive more accurate seasonal factors. Consumer price indexes may be adjusted directly or aggregatively 
depending on the level of aggregation of the index, and the behavior of the component series.  
 
Revision The seasonal factors are updated annually. BLS recalculates and publishes seasonally adjusted indexes for 
the previous 5 years. 

Figure 21.4.8. Bureau of Labor Statistics discussion of seasonal adjustment.
Source: <www.bls.gov/cpi/cpisameth.htm.>

as the additive process implemented in the workbook. (For a hint about the
reason, see the Trend and Q&A sheets in SeasonalTheory.xls: If a series con-
tains a trend, seasonal adjustment is more difficult.) In fact, as indicated in
Figure 21.4.8, the Bureau of Labor Statistics uses a complicated method
involving autoregressive integrated moving-average methods (ARIMA)
used by econometricians to model autocorrelation in time series.

The Excel workbook SeasonalPractice.xls has a link to Bureau of Labor
Statistics (BLS) unemployment data and compares the regression-based
adjustment method with the BLS Adjusted Unemployment Rate series. The
BLS method generates different adjustments than the simple regression-
based approach just outlined. One reason for this is that we have estimated
the monthly seasonal adjustments by running the regression over the entire
period, which assumes that the seasonal pattern has not changed over the
past 57 years. A second, more important reason is that the BLS method
allows the size of the adjustment to vary. We plotted the differences between
the raw, unadjusted unemployment series and the adjusted BLS series and
the differences between the raw, unadjusted unemployment series and our
dummy-variable-regression-adjusted series on the same graph against time
in Figure 21.4.9. We are close, but our method does not exactly replicate the
BLS series.

Seasonal Adjustment: To Do or Not To Do?

Most comparisons over time involving different months or quarters are better
made with seasonally adjusted data because the adjustment removes recur-
ring seasonal events. When you are using a variable in a regression equation,
however, the decision to use unadjusted or adjusted data is not an obvious
one. If the seasonal adjustment used by the BLS were easily replicated via
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Figure 21.4.9. Comparing seasonal adjustments by the Bureau of Labor Statistics
(BLS) and the dummy variable regression methods.
Source: [SeasonalPractice.xls]UnempAdjCompared.

regression, it would not matter if we used seasonally adjusted data or unad-
justed data with seasonal dummies. Figure 21.4.9 shows, however, that we
cannot rely on this easy solution. Ideally, the underlying economic theory
would point to the way seasonality should be incorporated. Absent such a
theoretical guide, the choice is a difficult one. One simple, but time-consuming
step is to estimate the model both ways and to see how the results compare.

Summary

This section introduced the concept of seasonal adjustment. The basic pur-
pose of seasonal adjustment is to facilitate the comparison of the values of
economic variables over time. Seasonal adjustment ideally removes purely
seasonal factors which affect a time series in the same regular way year after
year. We saw how regressions with dummy variables for seasons (or months)
can be used to measure the size of seasonal factors and how the time series can
be adjusted via seasonal indexes based on the dummy variable coefficient esti-
mates. In practice, seasonal adjustment can be a good deal more complicated,
but the same fundamental ideas apply.

21.5. Stationarity

Workbook: Stationarity.xls

So far in this chapter we have introduced functional forms that help
researchers do a better job of modeling economic variables that change over
time. In the next two sections, we return to a more careful consideration of the
data generation process for time series variables. We highlight the key ideas
of stationarity and weak dependence. The distinctions between stationary
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and nonstationary time series and between time series that are weakly depen-
dent and those that are strongly dependent have important implications for
the properties of estimation methods like OLS. For example, if an economic
variable is not stationary or is strongly dependent, it generally must be trans-
formed before OLS can have a hope of producing consistent estimates of
the parameters of interest. This section considers the issue of stationarity;
Section 21.6 introduces the notion of weak dependence.

We begin with a somewhat loose definition: If a sequence of random vari-
ables is a stationary time series process, then the joint probability distribution
(the expected values, SDs, and correlations) of the random variables is con-
stant no matter at what point in the sequence one looks. This concept is best
appreciated through examples.

Trends

Suppose that the data generating process is

Yt = β0 + β1t + εt , t = 1, . . . T,

where εt is a mean-zero draw from an error box. Then for any given time
period t the expected value of Yt is given by

E(Yt ) = β0 + β1t,

and the variance of Yt is

Var(Yt ) = Var(ε),8

where Var(ε) = SD(ε)2 is the common variance of the error terms (they are
identically distributed – that is, drawn from the same box).

Open Stationarity.xls and go to the Trend worksheet to see an implemen-
tation of this DGP. Figure 21.5.1 shows the expected values of the random
variables in the time series (the straight line) and a single realization of the
time series when β1 = 2 and SD(ν) = 5.

Stationarity has to do with the joint distribution of different elements in
the time series. Key features of the joint distribution are the expected values
of each random variable in the series, their variances, and their covariances
(which are directly related to their correlations). Figure 21.5.2 makes it clear
that the expected values of different elements in the series are different as t
changes when β1 	= 0. Thus, for example, the joint distribution of Y1 and Y2 is
not the same as the joint distribution of Y11 and Y12. When β1 	= 0, the Trend
DGP is not stationary. The numerical facts about the joint distributions of
these random variables are summarized in Figure 21.5.2.

8 More precisely, this is the variance of Yt conditional on the trend term, t.
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The E(yt)  Series and a Single Realization of the Y 
Series
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Figure 21.5.1. Comparison between single realization of time series of a trending
random variable and its expected values.
Source: [Stationarity.xls]Trend.

Figure 21.5.2 requires some explanation. The expected values of the Yt

and εt random variables follow directly from the DGP. The expected values
of the εt ’s are always zero because the error terms are draws from an error
box with mean zero. If the true slope parameter is known, we can determine
the expected values of the Yt’s. The variances refer to the spread of each Yt

around its own expected value. Thus, the table tells us that, when β0 = 10
and β1 = 2, Y12 is expected to equal 34 give or take 5 (the square root of the
variance of 25). The variance of each Yt is exactly the common variance of
the εt ’s because each εt is what makes each Yt move off of its expected value
after taking into account the value of t. Similarly, the covariance between two
Yt’s is related to whether a higher than expected value in, Y1, for example,
is correlated with a higher than expected value of Y2. The covariances are
zero because, for example, the existence of a positive ε1 that makes Y1 higher
than expected tells us nothing about the expected value of ε2 and therefore

Exp Value Var Exp Value Var

Y1 12 25 ε1 0 25

Y2 14 25 ε2 0 25

Cov(Y1,Y2) 0 Cov(ε1,ε2) 0

Exp Value Var Exp Value Var

Y11 32 25 ε11 0 25

Y12 34 25 ε12 0 25

Cov(Y11,Y12) 0 Cov(ε11,ε12) 0

Joint Distributions

Figure 21.5.2. Joint distributions of two pairs of random variables in the time series.
Source: [Stationarity.xls]Trend.
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SD(νννν) 5
β0 10

β1 2

Avg SD Y1 Y2 Y3 Y11 Y12 Y13

Y1 12.0 5.0 Y1 1

Y2 14.1 5.1 Y2 0.00 1

Y3 15.9 5.1 Y3 0.02 0.01 1

Y11 32.0 5.0 Y11 0.02 0.05 0.04 1

Y12 34.2 4.8 Y12 −0.02 .00 −0.01 −0.04 1

Y13 35.9 4.9 Y13 0.01 0.

0

00 −0.04 −0.06 0.02 1

Parameters

Correlations

Reset Parameters

 

Figure 21.5.3. Monte Carlo approximation to expected values, SDs, and correlations
of random variables in the trend time series.
Source: [Stationarity.xls]Trend.

what will happen to Y2. The zero-valued covariances just signify that the
draws from the error box are independent. Put another way, after taking into
account the time trend, the Y’s are uncorrelated with one another.

It is important to realize that Figure 21.5.1 depicts an entire series of random
variables. Each time you hit F9, you will see another realization of 21 different
random variables, each bouncing around its own respective expected value.
Even though they are related to each other through the common intercept
and slope parameters, the Yt’s are independent random variables. To drive
this point home, we performed a Monte Carlo analysis of the Trend DGP.
Click on the Go To Monte Carlo

Simulation button to switch to the MCTrend sheet.
The MCTrend sheet runs 1,000 repetitions of the Trend DGP and displays

the results for six different random variables in the series: Y1, Y2, Y3, Y11,
Y12, and Y13. Then it computes correlations between each term. Figure 21.5.3
displays a typical outcome of the Monte Carlo experiment.

Click on cell L8; its formula reads “=CORREL(B6:B1005,A6:A1005).”
This computes the empirical correlation between the 1,000 pairs of Y1 and
Y2 from the 1,000 repetitions. This Monte Carlo experiment supports the
claims we made about the trend series in Figure 21.5.2. Thus, Figure 21.5.3
is consistent with our assertions that the Yt’s have changing expected values
but constant variance and are uncorrelated with one another. Of course the
numbers in the table are not all exactly 5 (the SDs) or 0 (the correlations),
but that is to be expected given that we took a finite number of repetitions.
The scatter diagram to the right of the empirical autocorrelation table graphs
the (Y1, Y2) pairs from the first 100 repetitions to make the point visually that
there is no correlation between these random variables.

In summary, the Trend DGP is nonstationary only because the expected
values of the Yt’s are changing. In all other aspects the joint distributions of
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Figure 21.5.4. The data generation process for
the AR(1) series.
Source: [Stationarity.xls]AR(1).

the random variables in the series stay constant across time periods. Although
the Y series is not a stationary time series, it is obvious how to convert it into
a stationary one: simply remove the trend. This brings us back to a series
with the same expected value (β0) for each element in the series and leaves
the variances and correlations unchanged. More generally, a trend stationary
process is one that is stationary after taking the trend into account.

Autoregressive Process

We turn now to the autoregressive process:

εt = ρεt−1 + νt ,

where the νt ’s are independent and identically distributed. This process is
simulated in the AR(1) sheet of Stationary.xls. Go to that sheet now and
make sure that the values of the parameters are set so that ρ = 0.5 and
SD(ν) = 1. Then click on cell C7. Figure 21.5.4 shows the data generation
process in action for the random variable ε22. We have added auditing arrows
to make the data generation process clearer. The random variable ε22 equals
ρ multiplied by ε21 (in cell C6) plus ν22 (in cell B7). Is this a stationary process?

We can use Monte Carlo simulation to get a tentative answer. We focus on
the six shaded observations: ε21, ε22, and ε23, and ε38, ε39, and ε40. (We explain
later in this section why observations earlier in the series are not considered.)
Hit F9 a few times, and you will see the series bounce around in the time
series graph. We are interested in the expected values, variances (SDs), and
correlations of the six random variables. Click on the Go To Monte Carlo Simulation 

button and then run a Monte Carlo simulation in the MCAR(1) sheet. We
display a typical outcome of the Monte Carlo simulation in Figure 21.5.5.

This Monte Carlo experiment provides suggestive evidence that the AR(1)
process we are studying is indeed stationary. Click on the various cells in
the table (located in cells I5 to R12) to see how they are calculated. The
table tells us the following. First, the empirical averages of the values of the
six random variables from the 1,000 repetitions are all very close to zero,
which is consistent with a claim that the expected value for every random
variable in the series is zero. Second, the SD column is consistent with a
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SD(νννν) 1

ρρρρ 0.5

Avg SD ε21 ε22 ε23 ε38 ε39 ε40

ε21 −0.01 1.12 ε21 1

ε22 0.00 1.13 ε22 0.52 1

ε23 0.03 1.18 ε23 0.29 0.50 1

1ε38 0.05 1.17 ε38 −0.05 0.00 0.01

ε39 0.03 1.16 ε39 −0.04 0.00 −0.02 0.49 1

ε40 0.00 1.15 ε40 −0.01 0.01 0.02 0.28 0.5 01

Parameters

Correlations

Reset Parameters

 

Figure 21.5.5. Monte Carlo approximation to expected values, SDs, and correlations
of random variables in the AR(1) time series.
Source: [Stationarity.xls]MCAR(1).

claim that the spread of the random variables is constant (though it seems to
be somewhat greater than the spread of the underlying error term, SD(ν),
which is 1 in this case). Third, the correlations display a definite, constant
pattern. The correlation between a random variable and its counterpart in
the next time period always appears to be about 0.5; the correlation between
random variables and their counterparts shifted by two time periods always
seems to be about 0.28 or so, whereas the correlation of variables separated
by 15 time periods or more always seems to be close to zero. All of these
observations suggest that the joint distribution of the random variables in
the series stays constant over time.

In fact, this process is indeed, for all intents and purposes, stationary. (There
is a slight caveat; see the discussion of initial conditions below.) We will not
go through the algebra,9 but it can be shown that, for all t (i.e., for every time
period) and for |ρ| < 1,

(1) the expected value of each random variable in the series is zero,

E[εt ] = 0,

(2) the spread of each random variable around its expected value stays constant,

SD(εt ) = SD(ν)√
1 − ρ2

, and

(3) the correlations of two random variables separated a given distance (say h time
periods) stay the same:

Corr(εt , εt−h) = ρh.

9 Derivations are in most econometrics textbooks. For example, see Goldberger (1998, p. 165) or
Wooldridge (2003, pp. 363–4).
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As examples of the second and third items in this list, when ρ = 0.5 and
SD(ν) = 1,

SD(εt ) = 1√
1 − 0.52

= 1.15

Corr (ε1, ε3) = Corr (ε21, ε23) = 0.52 = 0.25, and

Corr (ε1, ε18) = Corr (ε21, ε38) = 0.517 ≈ 7.6 · 10−6, or essentially zero.

These formulas are implemented in the “Asymptotic Values” table in columns
T through AC of the MCAR(1) sheet.

We now address the caveat and some special cases. The caveat is that, in
the example in the AR(1) sheet, these formulas are only approximately true
and the time series is not quite stationary. The reason is related to the initial
conditions (i.e., how we got the series started). To start the series off, we set
ε1 = ν1. Because ε1 = ρε0 + ν1, this implies that we arbitrarily set ε0 equal to
zero. This choice makes the first term in the series different in character from
all subsequent terms. Owing to the autoregressive nature of the time series,
the initial condition has ripple effects on all subsequent random variables in
the series. When ρ is not too close to 1, however, the correlation between
random variables that are far enough away is very small, and thus the ripples
are of rapidly diminishing importance. That is why we let the series run for a
while (to observation 21) before looking at its properties.

If you want to see the initial conditions still affecting the series, set ρ equal
to 0.99 in the AR(1) sheet and then run a Monte Carlo simulation in the
MCAR(1) sheet. In the empirical SD column (cells K7 to K12), you will
observe that the approximate SDs of the earlier random variables (t = 21,
22, and 23) are substantially less than the SDs of the later random variables
(t = 38, 39, and 40). What is happening is that, in this case of a very high
autocorrelation coefficient, the initial condition exerts a constraining effect
on the realizations of even random variables that are far away.10

Next we consider the special cases. First, let us make the series blow up. In
the AR(1) sheet, set ρ equal to 1.1. Hit F9 several times. The time series plot
will literally go off the chart (we have locked down the axes so that only values
between −25 and +25 are displayed). Run a Monte Carlo simulation and
verify that, although the empirical averages of the εt ’s are still close to zero,
the SDs of the εt ’s are rapidly increasing as t rises. To see a different explosive
pattern, return to the Trend sheet, set ρ equal to −1.1, and hit F9 several times.

10 It is possible to get rid of the influence of the initial condition by setting ε1 equal to ν1 plus an error term
with a spread equal to the SD for the stationary series, SD(ν)/

√
1 − ρ2. This solution not coincidentally

resembles the transformation we use for the first observation in the GLS and FGLS methods for dealing
with first-order autocorrelation in the previous chapter. Go to cell A31 in the Intro sheet to see the
Excel formula for implementing this change.
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SD(νννν) 1

ρρρρ 1

Avg SD ε21 ε22 ε23 ε38 ε39 ε40

ε21 −0.04 4.63 ε21 1

ε22 −0.07 4.77 ε22 0.98 1

ε23 −0.02 4.84 ε23 0.96 0.98 1

ε38 −0.11 6.27 ε38 0.73 0.76 0.77 1

ε39 −0.14 6.41 ε39 0.72 0.75 0.76 0.99 1

ε40 −0.12 6.48 ε40 0.71 0.73 0.75 0.97 0.99 1

Parameters

Correlations

Reset Parameters

 

Figure 21.5.6. Monte Carlo approximation to expected values, SDs, and correlations
of random variables in the AR(1) time series for random walk.
Source: [Stationarity.xls]MCAR(1).

In both cases, when ρ is greater than 1 in absolute value, each deviation from 0
in one random variable is magnified in the next random variable in the series
because they are multiplied by a number bigger than 1 in absolute value. On
the other hand, when ρ is less than 1 in absolute value, deviations from 0 are
damped down. This makes first-order autoregressive processes with |ρ| < 1
stationary and those with |ρ| ≥ 1 nonstationary. Stationary autoregressive
processes are also called stable processes for obvious reasons.

Random Walks

A very interesting and important special case occurs when ρ = 1, which is
known as a random walk. The data generation process for the most basic kind
of random walk is described by

εt = εt−1 + νt ,

where the νt ’s are independent and identically distributed. To learn about
random walks, set ρ equal to 1 in the AR(1) sheet and run a Monte Carlo
simulation. Figure 21.5.6 displays findings from our experiment.

We highlight three important results from the Monte Carlo simulation
of a simple random walk. First, the empirical averages are consistent with
the fact that the expected value of any given random variable in the series
is still zero. Second, the spread of the random variables is increasing as t
increases. In fact, the spread of the random variables increases without limit
as time increases. This implies that a random walk is not stationary. Third,
the correlations in the table are all very high. In fact, these correlations will
increase as time increases. That is, if we could observe the series up to t = 240,
for instance, we would find that the correlation between the two random
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variables ε221 and ε240 is greater than the correlation between two earlier
random variables that are also 20 time periods apart (e.g., ε21 and ε40).11

It is not difficult to work out the expected values, variances, and SDs alge-
braically for some versions of the random walk. In the AR(1) sheet, the initial
value of the series is always

ε0 = 0.

The t = 1 and t = 2 values are

ε1 = ε0 + ν1 = ν1, and

ε2 = ε1 + ν2 = ν1 + ν2.

Repeatedly applying the basic formula of the data generation process, we
arrive at, for any given time period T,

εT = (ν1 + ν2 + · · · + νT).

It now comes in extremely handy that all the ν’s are independent and have the
same spread (variance or SD). Applying standard formulas for the expected
value and variance of a sum of independent random variables,12 we have

E(εT) = 0

Var(εT) = T · Var[ν]

SD(εT) =
√

T · SD(v).

The last equation says that the spread of the random walk around its expected
value increases proportionally to the square root of the time.

An important variation on the basic random walk is a random walk with
drift whose data generation process

εt = β + εt−1 + νt ,

where, as usual, the νt ’s are independent and identically distributed. The
β term is known as the drift because it determines the general course of
the time series. The worksheet RWDrift illustrates such a process. The key
difference vis-à-vis the basic random walk is that the expected values of the
random variables in the series are now no longer constant at zero. Instead

11 When a series Y follows a random walk and SD(Y0) = 0 (as is the case in the AR(1) sheet), the formula
for the correlation between two terms in the series separated by h time periods is Corr(Yt , Yt+h) =

√
t

t+h .
Note that this correlation depends on what time period you start from (which violates one of the rules
for a stationary series) and that the correlation increases asymptotically toward 1 as t increases toward
infinity. See Wooldridge (2003, p. 374).

12 The formulas say that the expected value of the sum of random variables is the sum of the expected
values. The variance of the sum of independent, identically distributed random variables is just the
number of random variables multiplied by the common variance.
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the expected value is given by

E(εT) = ε0 + β · T.

The variance and SD however, are still the same as they are for the basic
random walk:

Var(εT) = T · Var(ν)

SD(εT) =
√

T · SD(ν).

Monte Carlo experiments support these claims, as you can see for yourself
by going to the MCRWDrift sheet.

Summary

This section introduced the important concepts of stationarity and random
walks. Stationarity is crucial for time series because without it, ordinary sta-
tistical inference fails. First-differencing time series is a frequently used rem-
edy used to restore stationarity to time series. Random walks, a special case
of the AR(1) process, are a prime example of a nonstationary time series.
Random walks with drift are quite commonly employed to model important
economic time series, such as the movement of the stock market and of GDP.
Section 21.9 returns to the topic of random walks in the context of forecasting
time series.

21.6. Weak Dependence

Workbooks: Stationarity.xls; Spurious.xls

Throughout most of this book we have assumed that the X’s are fixed in
repeated sampling. This assumption, although false in most practical appli-
cations, has essentially the same statistical implications as a more realistic
assumption that the X’s are obtained via random sampling. In both cases, a
crucial step in showing that OLS is unbiased involves the fact that the X’s are
independent of the error terms contained in the Y values. Time series models
make the task of specifying the data generation process more complicated.
This section discusses the assumption of weak dependence that econometri-
cians use for time series data when it is no longer possible to claim that the
X’s are independent of the error terms.

A good example of this problem occurs in time series models in which
lagged versions of the dependent Y variable show up as X variables. When
this is the case, the X’s are clearly not independent of the error terms (for
example Yt−1 is correlated with the t − 1 error term). This means that the
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crucial step in showing that OLS is unbiased fails, and, in fact, OLS slope
estimates involving models with lagged Y’s as regressors are generally biased.

Fortunately when the X and Y variables are no longer independent but
are still weakly dependent, OLS estimators can be shown to be consistent:
The bias goes away as the sample size increases. In general, a sequence of
random variables is weakly dependent if the elements of the sequence become
essentially independent at a sufficiently rapid pace as the distance between
them grows. The alternative is a strongly dependent series. The prime example
of a strongly dependent series is a random walk. The Stationarity.xls file
showed that the correlations between different random variables in a random
walk remain very high even when separated by long periods of time.

Unit root processes are a more general type of strongly dependent process
than random walks. As is the case with a random walk, in a unit root process
the previous value of the series is added to an error term to produce the
current value; however, the error terms themselves can be autocorrelated.

We saw an example of consistent estimation of a parameter of interest
involving weakly dependent series in the previous chapter: estimating ρ when
the error terms follow an AR(1) process. In this case, the residuals are proxies
for the unobserved error terms, which are correlated with one another. We
regress the residuals on their one-period lagged counterparts. Suppose, to
simplify the discussion, we knew the error terms and were trying to use them
to estimate ρ. The equation we would estimate is the AR(1) process:

εt = ρεt−1 + νt .

We know that OLS regression produces unbiased estimates when the X’s are
fixed in repeated samples, or more generally, when the X’s are independent of
all the error terms. But those assumptions about the data generating process
do not hold in the case of our AR(1) process. Clearly, each εt in the series
other than ε1 is correlated with ν1. As a result, estimated ρ is biased. However
because, the εt ’s are weakly dependent when |ρ| < 1, this bias goes away as
the sample size increases. The correlation between regressors and error terms
can be overcome when the errors are weakly dependent.

This is not true if the series is strongly dependent. In the simple random
walk case, we have seen that the value of ν1 has a strong influence on the
value of all subsequent εt ’s in the series. The correlation between regressors
and error terms stays too high as the sample size increases to improve the
bias. As an example, consider the following data generating process for two
random variables:

Yt = Yt−1 + εt , t = 1, . . . , T,

Xt = Xt−1 + δ + ηt , t = 1, . . . , T,
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Figure 21.6.1. One realization of the two unrelated random walks.
Source: [Spurious.xls]RandomWalks.

where both the ε’s and the η’s are draws from error boxes with mean 0.
The two error terms are mutually independent. In other words, both X and
Y are random walks and there is no connection between the two. If δ is
nonzero, X also has a drift. This data generating process is represented in
the RandomWalks sheet of Spurious.xls. One example of the resulting time
series is contained in the two graphs of Figure 21.6.1.

In the RandomWalks sheet we run two regressions on samples with 20
observations: a short regression of Y on X and an intercept and a long regres-
sion of Y on X and the time period t. Set δ equal to 0 and the SD’s of the
two error terms, ε and η, equal to 5. Hit F9 repeatedly and examine the
regression output. We are especially interested in the z-statistics, which can
be used to test the null hypothesis that the slope of Y on X is equal to zero.
You should observe that the corresponding P-values are very small all too
often. We confirmed this to be the case by using the MCSim add-in to run
a 1,000-repetition Monte Carlo experiment. Our experimental results are
in the MCSimRWPValues sheet. Figure 21.6.2 shows the histograms of the
1,000 pairs of P-values.

That the histograms are very far from a uniform distribution tips us off that
something is amiss. Further evidence comes from the point we highlighted in
Figure 21.6.2. The height of the lower histogram – the one for the P-values
from the long regression (cell H11 on the RandomWalks sheet) – is 252 at
the point 0.025. This says that in 252 of the 1,000 repetitions we obtained
a P-value of 0.025 or less. Thus, at the 2.5-percent level of significance, we
would reject a true null hypothesis about ten times as often as we should.
The height of the taller histogram, the one for the P-values from the short
regression (cell H4 in the RandomWalks sheet), is 445: we would reject the
true null almost half the time even when we chose a very cautious 2.5-percent
level of significance to guard against the possibility of rejecting a true null!
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Figure 21.6.2. P-values for regression of unrelated random walks.
Source: [Spurious.xls]MCSimRWPValues.

This is the spurious regression problem for random walks: One can easily
be misled into believing that there is a statistically significant relationship
between two unrelated economic variables if they follow random walks.

One might suspect the problem would go away if we were just to increase
the sample size. Unfortunately, this is not the case. The RandomWalks 100
sheet extends the random walks for X and Y to 100 observations. The
MCSimRW100PValues sheet gives the results of a Monte Carlo simulation
approximating the sampling distributions of P-values from both the short
and long regressions. In both cases more than 60 percent of the P-values are
under 2.5 percent even though the null hypothesis is true. These results are
strong evidence that the OLS slope estimate is inconsistent in this version of
the data generating process.

What if anything can be done if you suspect the data you are working
with are strongly dependent? A popular, and often effective, remedy is to
difference the data. The first difference of a variable is its current value less
its one-period lagged value:

�Yt = Yt − Yt−1.

The differencing remedy is to substitute first differences for the original vari-
ables in the regression equation. Chapter 20 presents a variation of this strat-
egy in the GLS and FGLS estimators for AR(1) models.

In the DifferencedRWs sheet we apply the differencing strategy to the pre-
ceding example. There we set up two random walks using exactly the same
data generating process outlined and implemented in the RandomWalks
sheet. Figure 21.6.3 shows the results for the first three observations.
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t X ε Y η ∆Y ∆ X
1 3.7 1.1 1.1 1.7
2 5.3 −1.4 −0.3 −0.4 −1.4 1.6
3 7.4 −1.3 −1.6 0.1 −1.3 2.1

Figure 21.6.3. First differenced data.
Source: [Spurious.xls]DifferencedRWs.

For example, the first difference between Y2 and Y1 is

�Y2 = Y2 − Y1

= −1.6 − (−0.3)

= −1.3.

We ran a 10,000-repetition Monte Carlo simulation in which we regressed the
first difference of Y on the first difference of X with an intercept term (this is
the Short Regression in the DifferencedRWs sheet). The results are contained
in the MCSimDifferPValues sheet and are displayed in Figure 21.6.4.

Using the z-test in 632 or 6.32% of the repetitions, we obtained a P-
value below 5 percent. The Monte Carlo experiment demonstrates that first-
differencing substantially alleviates the spurious regression problem.

Average 0.491
SD 0.2935 δδδδ 0

Max 1.000 SD(εεεε) 5

Min 0.000 SD(ηηηη) 2

Summary Statistics Notes
Parameters

Histogram of P Values for Short Regression
10,000 Repetitions

260

372

0 0.2 0.4 0.8 10.6

Figure 21.6.4. First differenced data.
Source: [Spurious.xls] MCSimDifferPValues.
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Summary

In this section we have asserted that the weak dependence assumption is suffi-
cient to ensure that OLS estimates in many time series models are consistent
even if they are biased. We have also demonstrated that, when variables
are strongly dependent, the consistency property does not necessarily hold.
Finally, we have shown that first-differencing can restore consistency to OLS
estimates involving strongly dependent time series.

In the next section we analyze a leading example of time series in which the
weak dependence assumption is invoked: lagged dependent variable models.

21.7. Lagged Dependent Variables

Workbook: PartialAdjustment.xls

In this section we discuss the use of lagged dependent variables in time series
models. Recall that a variable lagged one period is just a series containing the
one-period previous values of the original variable. It is also common to see
lags of two or more periods. Lagged variables can be either lagged indepen-
dent variables or lagged dependent variables. Many models contain both. We
address only models with lagged dependent variables. Our discussion serves
merely as an introduction to some of the main issues in this area. We will give
some reasons why lagged dependent variables are included in econometric
models and explain the implications of including a lagged dependent vari-
able for the short- and long-run impact of an independent variable on the
dependent variable. In Section 21.8 we go on to present a leading example
of the use of lagged dependent variables in econometrics. Finally, we discuss
ways to test for the presence of autocorrelation when the regressors include
a lagged dependent variable.

Partial Adjustment Models

Lagged dependent variables make frequent appearances in time series anal-
yses. One common justification for the inclusion of a lagged dependent vari-
able is the concept of partial adjustment. In a partial adjustment model, the
researcher assumes that there is some level of the dependent variable eco-
nomic agents desire but that there are costs of adjustment. This implies that,
when the desired level changes, the actual level does not immediately and
completely respond to the change in the desired level. Instead there is partial
adjustment with the actual level moving closer and closer to the desired level
over time.

A simple example can be used to illustrate the idea of partial adjustment.
Assume that the initial value of an economic variable, call it Y, is 100. In
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Figure 21.7.1. A simple partial adjustment process.
Source: [PartialAdustment.xls]Example.

the next period and every succeeding period, economic agents wish to set Y
equal to 200. It is not possible, however, for agents to change the value of Y
immediately to 200. Instead, in each time period they partially adjust to the
new, desired level. The way they adjust is the following: Y in each period is
equal to the previous period’s Y plus some fraction of the distance between
previous period’s Y and the desired level of Y. In equation form,

Yt = Yt−1 + λ(Y∗
t − Yt−1).

In this equation, Yt is the actual observed level of the variable in period t, Y∗
t

is the desired level of the variable in period t, and λ is the rate of adjustment.
Open the file PartialAdjustment.xls and go to the Example sheet to see a

concrete version of this adjustment process. We have set up the workbook so
that the initial level of Y, Y0 is 100, the new desired level is 50 in every period
from t = 1 onward, and the rate of adjustment is 0.4. As you can see in Fig-
ure 21.7.1, this setup implies that, in each period, Y moves 40 percent of the
distance between its previous value and the desired value. Thus, when we
start with Y0 = 100 and set the desired level at Y∗

t = 50 for every time period
(t) greater than 0, in the first period we move 40 percent of the way from
100 to 50 or down to Y1 = 80; in the next period we move 40 percent of the
distance between 80 and 50 or down to Y2 = 68, and so on.

You should experiment with the workbook to see how the adjustment
process changes when the value of the adjustment parameter is changed.
Two important special cases are λ = 0 (no adjustment) and λ = 1 (immediate
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adjustment). When λ is greater than 1, we have overshooting (the adjustment
is too great); λ less than 0 makes little economic sense.

Next we show how the partial adjustment model leads to the inclusion of
a lagged independent variable in the regression equation. Suppose that the
desired level of a variable Y at time t is a linear function of some independent
variable X at time t plus a time t error term. In equation form,

Y∗
t = β0 + β1 Xt + εt .

It is crucial to note, however, that we do not observe the desired level of Y;
instead we observe the actual level, which depends on the adjustment process.
If the partial adjustment process is as described above, observed Y is given
by

Yt = λ(Y∗
t − Yt−1) + Yt−1.

The key step in getting to the lagged dependent variable model is substi-
tuting the previous equation for Y∗

t into this partial adjustment equation:

Yt = λ (β0 + β1 Xt + εt ) − λYt−1 + Yt−1

= λβ0 + (1 − λ) Yt−1 + λβ1 Xt + λεt .

We can rewrite the second line as follows:

Yt = γ0 + γ1Yt−1 + γ2 Xt + νt .

In this formulation the parameters estimated by a regression are functions
of the original parameters. Thus, γ0 = λβ0, γ1 = 1 − λ, and γ2 = λβ1. Note
especially that the slope on the lagged dependent variable Yt−1 is equal to
one minus the adjustment parameter. This line of reasoning tells us that a
partial adjustment model implies that a lagged dependent variable belongs
in the regression equation for the observed Y variable.

Short- and Long-Run Impacts in Partial Adjustment Models

A natural question to ask in dealing with models involving partial adjustment
is, How does a change in the value of an independent variable affect the value
of the dependent variable over time? Actually there are two questions:

1. What is the immediate, next-period effect of a change in an independent variable?
2. What is the long-run effect, after all the adjustment has been made?

The Short&LongRun sheet in PartialAdjustment.xls provides helpful intu-
ition into the algebraic answers to these questions. We work with the bivari-
ate, partial adjustment model just derived but drop the error term in order to
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t Xt Yt −1 Yt

0 0 12.5
1 0 12.5 12.5
2 1 12.5 15.5
3 0 15.5 14.3
4 0 14.3 13.58
5 0 13.58 13.148
6 0 13.148 12.889
7 0 12.889 12.733
8 0 12.733 12.64
9 0 12.64 12.584

10 0 12.584 12.55
11 0 12.55 12.53

One Time Change in X
One Time Change in X

0
2
4
6
8

10
12
14
16
18

0 5 10 15

Figure 21.7.2. Impact of a one-time change in X on the value of Y over time.
Source: [PartialAdjustment.xls]Short&LongRun.

focus on the essential ideas. Thus, the lagged dependent variable model is

Yt = γ0 + γ1Yt−1 + γ2 Xt .

In order to follow our discussion, in the Short&LongRun sheet make sure that
the parameter values are set as follows: γ0 = 5, γ1 = 0.6, and γ2 = 3. We first
consider the impact of a one-time change in X on the value of Y. Figure 21.7.2
shows in tabular and graphical forms what happens to Y when X, which is
usually 0, temporarily switches to a value of 1 in period 2.

The parameter γ2 = 3 gives the short-run impact of a one-time change
in X. In this case, a one-unit change in X leads to an immediate three-unit
increase in Y. In period 3, X falls back to zero, but the sharp increase in Y
is not immediately reversed. To see why, compare the equation determining
the value of Y3 with the equation determining Y1. In both cases the X value
is zero: X1 = X3 = 0, however, whereas in period 1 the previous value of Y
was Y0 = 12.5, in period 3, the previous value of Y was Y2 = 15.5. Thus,

Y1 = 5 + 0.6Y0 + 3X1

= 5 + 0.6 · 12.5 + 3 · 0

= 12.5;

Y3 = 5 + 0.6Y2 + 3X3

= 5 + 0.6 · 15.5 + 3 · 0

= 14.3.

To clarify what exactly is the process driving observed Y, go to the
BehindTheScenes sheet. In this worksheet we work out the implied original
parameter values in the two-equation system that is the actual data genera-
tion process standing behind the model of the Short&LongRun sheet. Recall
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t Xt Yt −1 Yt
* Yt

0 0 12.5 12.5
1 0 12.5 12.5 12.5
2 1 12.5 20 15.5
3 0 15.5 12.5 14.3
4 0 14.3 12.5 13.58
5 0 13.58 12.5 13.148
6 0 13.148 12.5 12.8888
7 0 12.8888 12.5 12.73328
8 0 12.73328 12.5 12.63997
9 0 12.63997 12.5 12.58398

10 0 12.58398 12.5 12.55039
11 0 12.55039 12.5 12.53023
12 0 12.53023 12.5 12.51814
13 0 12.51814 12.5 12.51088
14 0 12.51088 12.5 12.50653
15 0 12.50653 12.5 12.50392

One Time Change in X
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Figure 21.7.3. Impact of a one-time change in X on the value of Y and Y* over time.
Source: [PartialAdjustment.xls]BehindTheScenes.

that it was the two equations

Y∗
t = β0 + β1 X 13

t

and

Yt = Yt−1 + λ(Y∗
t − Yt−1)

that produced the model we actually observe:

Yt = γ0 + γ1Yt−1 + γ2 Xt .

Now, using the facts that γ0 = λβ0, γ1 = 1 − λ, and γ2 = λβ1, we can solve for
the parameters of the Y* and partial adjustment equations:

λ = 1 − γ1,

β0 = γ0

λ
, and

β1 = γ2

λ
.

This means that from the observed values of γ0, γ1, and γ2, we can infer the
values of λ, β0, and β1. In the BehindTheScenes sheet the relevant formulas
are in cells J3 through J5. We obtain these values for our three underlying
parameters: λ = 0.4, β0 = 12.5, and β1 = 7.5. Figure 21.7.3 shows how Yt and
Yt

* evolve over time. The figure makes clear that the move from Y1 = 12.5
to Y2 = 15.5 is actually a partial adjustment that goes 40 percent of the way
to the new desired level, Y∗

2 = 20. Furthermore, the gradual decline in Y in

13 Note that we have removed the error term to simplify the exposition. This changes nothing essential
in the argument.
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7.5

t X Yt −1 Y

0 0 12.5
1 0 12.5 12.5
2 1 12.5 15.5
3 1 15.5 17.3
4 1 17.3 18.38
5 1 18.38 19.028
6 1 19.028 19.4168
7 1 19.4168 19.6501
8 1 19.6501 19.79
9 1 19.79 19.874

10 1 19.874 19.9244
11 1 19.9244 19.9547

Permanent Change in X
Long-Run Change in Y

Effects of Permanent Change 
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Figure 21.7.4. Impact of a permanent change in X on the value of Y over time.
Source: PartialAdjustment.xls]Short&LongRunImpact.

periods 3 onward reflects a partial adjustment in each period back to the
original desired level, Y∗ = 12.5.14

The bottom line for the impact of a one-time change in an independent
variable on the dependent variable is that its immediate effect is given by its
coefficient in the observed Y equation and that its effects diminish over time
as determined by the size of the adjustment parameter, which is equal to one
minus the coefficient on lagged Y.

We now move to examining the long-run impact of a permanent increase
in the value of an independent variable in a model with a lagged dependent
variable. Return to the Short&LongRun sheet and look at the right-hand side
display (in column I).

The second column in Figure 21.7.4 shows that X rises in value from 0
in period 1 to 1 in period 2 and remains at the new, higher level perma-
nently, whereas the chart shows that Y responds by increasing with the rate
of increase falling as it moves to the new long-run level of 20. We follow the
process up to t = 100, which is our measure of the new long run solution. The
“Long-Run Change in Y” cell computes the difference between Y100 and Y1.
With our parameter values, the impact of a permanent change of one unit in
X is a change of 7.5 units in Y.

What determines the magnitude of the long-run impact of X on Y? There
are two ways to think about this question: at the level of the lagged depen-
dent variable model or in terms of the underlying partial adjustment data
generation process. The lagged dependent variable story is this: At each step

14 Notice that we have set Y0 in such a way that it is in long-run equilibrium; unless X changes there is
nothing to cause Y to change. See the formulas in cells D8 and L8 in the Short&LongRun sheet. We
ask you to explain this algebraically in an exercise.
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7.5

t X Yt−1 Yt* Y

0 0 12.5 12.5
1 0 12.5 12.5 12.5
2 1 12.5 20 15.5
3 1 15.5 20 17.3
4 1 17.3 20 18.38
5 1 18.38 20 19.028
6 1 19.028 20 19.4168
7 1 19.417 20 19.65008
8 1 19.65 20 19.79005
9 1 19.79 20 19.87403

10 1 19.874 20 19.92442
11 1 19.924 20 19.95465
12 1 19.955 20 19.97279

Permanent Change in X
Long-Run Change in Y

Effects of Permanent Change in X
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Figure 21.7.5. Impact of a permanent change in X on the value of Y and Y* over
time.
Source: [PartialAdjustment]BehindTheScenes.

after period 1, each new Y depends on a different lagged Y; thus, Y keeps on
changing. For example, in the calculations below, we have put the successive
values of Y in boldface:

Y2 = 5 + 0.6Y1 + 3X1

= 5 + 0.6 · 12.5 + 3 · 1

= 15.5;

Y3 = 5 + 0.6Y2 + 3X3

= 5 + 0.6 · 15.5 + 3 · 1

= 17.3

Y4 = 5 + 0.6Y3 + 3X1

= 5 + 0.6 · 17.3 + 3 · 1

= 18.4;

. . .

Because the model is stable, Y is moving toward a new equilibrium value –
namely 20.

Go to the BehindTheScenes sheet to see the partial adjustment story.
Figure 21.7.5 shows that in each time period Y is partially adjusting toward a
permanently higher desired level of Y, Y* = 20. In this version of the story, it
is easy to work out the magnitude of the effect of a permanent change in X
on Y; it is simply β1, the coefficient on X in the desired Y equation. To work
out the long-run impact in terms of the lagged dependent variable equation,
recall that β1 = γ2

λ
. Because the rate of adjustment is given by λ = 1 − γ1, the



P1: JZZ
0521843197c21 CB962B/Barretto 0 521 84319 7 November 7, 2005 20:14

Money Demand 645

long-run impact in terms of the parameters of the lagged dependent variable
equation is β1 = γ2

1−γ1
.

Summary

This section introduced the concepts of lagged dependent variables and par-
tial adjustment models. We tied partial adjustment models to costly adjust-
ment by economic agents and demonstrated how partial adjustment models
lead to regression specifications which include lagged dependent variables.
In partial adjustment models, it is important to distinguish between the short
and long-run impacts of changes in independent variables on the value of the
dependent variable. The next section contains an actual example of the use
of partial adjustment models.

21.8. Money Demand

Workbooks: MoneyDemand.xls; LaggedDepVar.xls

In this section we examine one prominent example of the use of partial
adjustment models that leads to the use of lagged dependent variables, and
we discuss tests for the presence of autocorrelation when there is a lagged
dependent variable.

Partial adjustment models have been applied to many areas of empirical
economics, including models of agricultural supply and investment behavior.
A leading example of the use of the partial adjustment idea is econometric
studies of the demand for money. In transactions theories of the demand for
money, individuals and institutions want to hold some of their assets in the
form of money (cash and checking accounts) to pay for goods and services.
The greater the GDP, which is a measure of the volume of activity in the
economy, the more money people need in order to buy goods and services.
On the other hand, the greater the interest rate on alternatives to money, the
greater the opportunity cost of holding money (cash earns no interest and
checking accounts pay low rates of interest) and therefore the less money
people will want to hold.

Thus, changes in GDP and interest rates cause people to revise their desired
holdings of money. Economists argue, however, that changing the amount of
money people hold is costly, and thus people do not adjust their money hold-
ings completely and immediately in response to changes in the economic envi-
ronment. This gives rise to the partial adjustment theory of money demand.
In one version of the theory, the desired amount of money, M∗

t , is expressed
in terms of real money balances, which is the nominal money stock divided
by the price index.
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Variable  Description 
M Natural log of the nominal money stock 
y Natural log of real GDP 
P  Natural log of the price level (measured by the 

GNP deflator 1972=100) 
RCP  
 

Natural log of interest rate on commercial 

RTD Natural log of an average of interet rates on time 
deposits and similar interest-bearing assets. 

Figure 21.8.1. Variable definitions for MacKinnon and Milbourne study used in
MoneyDemand.xls.
Source: MacKinnon and Milbourne (1988).

The MoneyDemand.xls workbook contains quarterly data, obtained from
MacKinnon and Milbourne (1988), on money demand, GDP, and interest
rates between 1952 and 1973. The definitions of the variables they use are
given in Figure 21.8.1.

The authors estimate many different equations, but we will concentrate on
their equation (3):

Mt − Pt = γ0 + γ1 yt + γ2RCPt + γ3RTD + γ4(Mt−1 − Pt−1) + νt .

One potentially confusing aspect of this equation is the use of logarithms. The
difference between logs of two variables is equal to the log of the quotient of
the two variables. Thus,

Mt − Pt = ln
(

Nominal Money Supplyt

PriceLevelt

)
.

To be clear, the dependent variable in MacKinnon and Milbourne’s Eq. (3)
is the natural log of the real money supply, and the last independent variable
is the log of the one-period lagged real money supply.

The Equation(3) sheet in MoneyDemand.xls estimates the model reports
the Durbin–Watson statistic and an estimated ρ test, both of which point to
autocorrelation in the error terms, and then reestimates the model, correcting
for first-order autocorrelation. (These two tests are discussed later in this
section.) The results from the FGLS procedure are given in Figure 21.8.2. We
can use these estimates to compute short- and long-run effects of changes

Variable Estimate SE
Intercept −0.874 0.155
Yt 0.179 0.033
RCP −0.018 0.003
RTD −0.044 0.010
M(t−1)  − P(t−1) 0.678 0.070

Figure 21.8.2. Estimates from autocorrelation
corrected version of Equation (3).
Source: [MoneyDemand.xls]Equation(3).
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in the independent variables on money demand. Because equation (3) is a
double-log model, the slopes we compute are elasticities.

The short-run elasticities can be read straight from the regression results.
According to the equation (3) estimates, a 1-percent increase in real GDP
leads to roughly a 0.18-percent increase in money demand. The short-run
interest rate elasticities are quite small: −0.018 and −0.044 for commercial
paper and time deposits, respectively. For the long-run elasticities, we need to
know the rate of adjustment. The estimated coefficient on lagged real money
is g4 = 0.678. Thus, our estimate of the rate of adjustment (call it l to stand for
the roman letter version of lambda) is l = 1 − 0.678 = 0.322. The estimated
long-run income elasticity of money demand is therefore as follows:

Estimated Long-Run Income Elasticity = g1

1 − g4
= g1

l
= 0.179

0.322
= 0.55.

The estimated interest rate elasticities can be computed in the same way:

Estimated Long-Run RCP Elasticity = g2

1 − g4
= g2

l
= −0.018

0.322
= −0.055

Estimated Long-Run RTD Elasticity = g3

1 − g4
= g3

l
= −0.044

0.322
= −0.135.

These results are roughly in accord with economic theory. For example, the
simple Baumol–Tobin model of the transactions demand for money predicts
an interest rate elasticity of 0.5. The interest rate elasticities are of the correct
sign, and care needs to be taken in interpreting them. The commercial paper
rate and the time deposit rate averaged 4.3 percent and 3.0 percent, respec-
tively, over the period 1952–1973; a one percentage point increase in interest
rates would translate into roughly 25 percent and 33 percent increases in the
levels of these interest rates. According to our results, if a 25-percent increase
in both interest rates is assumed, the long-run response of money demand
would be on the order of 0.19 × 25 percent or approximately a 5-percent
decrease in money demand.

Before turning to a discussion of econometric issues relating to the detec-
tion of autocorrelation when lagged dependent variables are included among
the regressor, we wish to explain why we estimated money demand using
data that is over 30 years old – data originally reported in a paper published
more than 15 years ago. There are good reasons for both facts, each of which
sheds light on the difficulties faced by econometricians working with time
series data.

The reason our example is based on such old data is that the parameters
of the money demand function have changed drastically over time. Back
in the early 1970s, results like the ones we have just reported were quite
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reassuring to monetary economists. The estimated elasticities were in accord
with economic theory, and the somewhat low estimated partial adjustment
parameter (32 percent per quarter) was still plausible. Since 1973 or so, several
things have gone wrong with estimates of money demand. The most important
factor, perhaps, is that the money demand function has changed owing to
major innovations in financial markets. The increased availability of credit
cards as a substitute for cash is just one example. This has made the money
demand function quite unstable. Estimates on data from later periods using
the model of Eq. (3) generally find that the rate of adjustments and the income
and interest rate elasticities are all much lower than they were previously. The
variability of underlying parameter values over time is a real challenge for
all time series models.

The reason we obtained our data from a relatively old paper relates to the
issue of replicating prior results. We had a great deal of difficulty replicating
early 1970s estimates of money demand – in part because the M1 and GDP
(formerly GNP) series have undergone significant revisions. This means that
the numbers that economists were using back in the mid-1970s for the period
1952 to 1973 are different from the numbers pertaining to the same period
available to us today in government data banks of historical statistics. Fortu-
nately, a useful data archive, the Real-Time Data Set for Macroeconomists
(RTDSM) maintained by the Federal Reserve Bank of Philadelphia, contains
data as they were available to economists in the past. Even with data as they
existed in 1973, however, we could not come close to replicating 1973 studies
of money demand. We are not sure why, but we suspect that the lack of a
series containing the rate on time deposits in the RTDSM archive doomed
our efforts. For more on RTDSM, see the Basic Tools \ InternetData folder.

Replication of prior results has been a thorny problem in all areas of empir-
ical economics – not just time series models.15 In reaction, economics journals
have begun to ask authors to make data sets publicly available. A leader in this
effort has been the Journal of Applied Econometrics.16 The earliest published
paper that contributed to that journal’s data archive was the MacKinnon and
Milbourne paper on money demand used as the source of the data for this
example. (As it happens, MacKinnon is the coordinator of the data archive
for this journal as well as the coauthor of two excellent advanced economet-
rics texts.) MacKinnon and Milbourne in turn obtained data on interest rates
on time deposits from one of the leading researchers on money demand,
Stephen Goldfeld. They also used older data on income and money – not the
updated series available to them in the late1980s.

15 See, for example, Dewald and Thursby, et al. (1986).
16 Other journals that have led the charge include the Journal of Money Credit and Banking, Federal

Reserve Bank of St. Louis Review, and the Journal of Business and Economic Statistics.



P1: JZZ
0521843197c21 CB962B/Barretto 0 521 84319 7 November 7, 2005 20:14

Money Demand 649

Detecting First-Order Autocorrelation When There Is a
Lagged Dependent Variable

We now return to an important issue that was glossed over a few pages ago.
When the regression includes a lagged dependent variable and one wishes
to test for first-order autocorrelation in the error terms, the Durbin–Watson
statistic is unreliable. In this discussion we will first outline an alternate, simple
test that is an extension of the estimated ρ test and then provide Monte Carlo
evidence demonstrating that this augmented estimated-ρ test is superior to
the Durbin–Watson test in these circumstances.

Recall the estimated ρ test for first-order autocorrelation initially involves
estimating the main equation of interest and then regressing the residuals on
one-period lagged residuals without an intercept term. Because the residuals
are good estimates of the error terms, first-order autocorrelation, if present,
should manifest itself as a nonzero slope. Therefore, a z-test is performed
with the null hypothesis that the coefficient on lagged residuals is zero.

The estimated ρ test can easily be extended to handle a situation in which a
lagged dependent variable is one of the regressors. All that is necessary is to
regress the residuals against lagged residuals and all the X variables (including
of course the lagged dependent variable). The idea is that including the lagged
dependent variable in the estimated ρ regression is a way of handling the
correlation between the residuals and the lagged dependent variable. 17 The
test statistic is the same as in the original estimated ρ test: a z-statistic for
the null that the parameter multiplying the lagged residual equals 0.

The Excel workbook LaggedDepVar.xls demonstrates the use of the aug-
mented estimated ρ test and shows that it does a much better job than the
Durbin–Watson test in detecting first-order autocorrelation in the presence of
a lagged dependent variable. Go to the LaggedEndogAR(1) sheet. This sheet
simulates the following simple version of a lagged dependent variable model:

Yt = β0 + β1Yt−1 + εt and

εt = ρεt−1 + νt .

We set parameter values in the upper-left-hand corner of the worksheet. To
handle the problem of initial conditions, we set the process going at t = −21.
We only begin observing the process at t = 0 after the initial conditions have
had time to wear out. See cells M11 through Q12, which show initial values
for Yt , Yt−1, εt , and νt . We observe the data from t = 0 to t = 60. Figure 21.8.3
shows the setup of the worksheet.

17 Note that the estimated ρ test can be extended to 2nd or higher order autocorrelation by including
higher order lags of the residuals; in this case an F-test of the null that the parameters multiplying all
the lagged residuals are all equal to 0 is required.
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b1 b0

β 0 10 0.78 3.61 Resid t −1 Yt −1 Intercept

β 1 0.5 0.08 1.75 0.164 −0.073 1.414 z-stat 0.99

ρ 0.5 0.60 8.93 0.166 0.105 2.032 P value 32.4%

SD(ν) 10 88 58 0.017 8.792 #N/A

DGP: 7038 4623 0.490 56 #N/A

DW 1.77 75.80 4329.06 #N/A

Parameters Residual Test for AR(1)

εt = ρεt −1 +νt

ttt YY εββ ++= −110

Figure 21.8.3. Detecting AR(1) errors in the presence of a lagged dependent variable.
Source: [LaggedDepVar.xls]LaggedEndogAR(1).

In Figure 21.8.3 the OLS slope (b1) and intercept (b0) estimates of a regression
of Y on lagged Y are in the center. We also compute the Durbin–Watson
statistic, though not its P-value. On the right the augmented estimated
ρ test is displayed in which the residuals are regressed on lagged residuals and
the included X variable (lagged Y). The z-statistic is the test statistic for the
null hypothesis that the parameter multiplying the lagged residuals is equal
to zero. Hit F9 a few times to see the estimates bounce as new samples are
drawn.

To compare the relative performance of the Durbin–Watson and estimated
ρ test statistics in detecting first-order autocorrelation, we performed a few
Monte Carlo simulations. We first examined the case in which there is no
autocorrelation and then a case in which there is positive first-order auto-
correlation. To replicate our work, set ρ equal to zero in cell B4 of Lagge-
dEndogAR(1). Click on the Go to Monte Carlo button. Once in the Monte Carlo
sheet, click on the Run Monte Carlo button. You will next be asked to choose the
number of observations in each sample. Then you will be asked to choose the
number of repetitions. Warning: This is a very slow Monte Carlo simulation.
The reason is that, for each sample (i.e., each repetition), we compute the
exact P-value for the Durbin–Watson statistic, which is a computationally
intensive task. You may wish to choose 10 repetitions before attempting a
full-scale Monte Carlo experiment. Alternatively, choose a small number of
observations (for instance, 10).

We chose the default options – 40 observations and 1,000 repetitions. After
a quick coffee break, the output in Figure 21.8.4 was waiting for us. The broad
picture is quite clear. If the test statistic is functioning as it ought to, the P-
value histogram should be completely level when the null hypothesis is true
as in this case. The histogram for the estimated ρ test is fairly level; that for
the Durbin–Watson test rises steadily, meaning that high P-values are much
more likely to be observed than low P-values. As a corollary, the graph tells
us that the P-value for the Durbin–Watson statistic was below 5 percent in
only two repetitions, whereas the P-value for the estimated ρ-test was below
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ββββ 0000 10 ρρρρ 0 nobs 40

ββββ 1111 0.5 SD(ν)ν)ν)ν) 10 reps 1000

Experimental SetupParameters

Histogram of P-Values for DW and Estimated 

2

53

0 0.2 0.4 0.6 0.8

DW

Est. Rho

1

1-Testsρρρρ

Figure 21.8.4. Monte Carlo results for Durbin–Watson and estimated ρ tests for
first-order autocorrelation with a lagged dependent variable: Null hypothesis of no
autocorrelation is true.
Source: [LaggedDepVar.xls]MCLaggedEndogAR(1).

5 percent in 53 or 5.3 percent of the repetitions. (These numbers are reported
in the left portion of the histogram chart itself above the 0.05 level.)

The hasty student might conclude that the Durbin–Watson test is perform-
ing exceptionally well – after all, in this case, we know that the null is true,
and so perhaps we ought to like a test that rejects the true null too rarely!
One way to show that this reasoning is fallacious is to see what happens when
the null is, in fact, false.

To that end, we next investigated how the two test statistics performed when
the null is false. We set ρ equal to 0.5 and obtained the results depicted in
Figure 21.8.5. This experiment provides strong evidence that the estimated
ρ test does a better job of detecting first-order autocorrelation than the
Durbin–Watson procedure when lagged dependent variables are included
as regressors. In 425 of the 1,000 repetitions, the estimated ρ test rejected the
null hypothesis at the 5-percent level of significance, whereas the Durbin–
Watson test rejected the null hypothesis only 287 times. In light of the results
obtained when the null was true, this is not surprising – with lagged depen-
dent variables, the Durbin–Watson test is biased toward not rejecting the
null. Notice that no test statistic is perfect; the risk of failing to reject the null
even when it is false is always there.
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ββββ 0000 10 ρρρρ 0.5 nobs 40

ββββ 1111 0.5 SD(ν)ν)ν)ν) 10 reps 1000

Experimental SetupParameters

Histogram of P-Values for DW and Estimated 

287

425

0 0.2 0.4 0.6 0.8

DW

Est. Rho

1

1-Testsρρρρ

Figure 21.8.5. Monte Carlo results for Durbin–Watson and estimated ρ-tests for first-
order autocorrelation with a lagged dependent variable: Null hypothesis of no auto-
correlation is false; ρ = 0.5.
Source: [LaggedDepVar.xls] MCLaggedEndogAR(1).

Summary

This section has given an important example of the use of lagged
dependent variables in empirical economics – estimating the demand for
money – and discussed procedures for detecting autocorrelation when lagged
dependent variables are included as regressors. The next section offers one
final topic in time series analysis.

21.9. Comparing Forecasts Using Different Models of the DGP

Workbooks: AnnualGDP.xls; ForecastingGDP.xls

In this section we discuss basic issues pertaining to forecasting using time
series models. Using the example of annual Real GDP in the United States,
we contrast forecasts made from two different models of the data generation
process: a trend with an AR(1) process for the errors and a random walk with
drift.

Recall from Section 21.2 that in the Data sheet of AnnualGDP.xls we esti-
mated a log-linear model for U.S. Annual GDP and obtained an estimate
of 3.4 percent for the long-run growth rate of GDP. That model was fine
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for illustrating simple trends, but we ignored the possibility of autocorrela-
tion in the error terms. For forecasting purposes, it is necessary to take into
account autocorrelation, which we model in two different ways: as an AR(1)
process and as a random walk with drift. In the RandomWalkvsTrend sheet
we implement the two models: a log-linear trend with AR(1) errors and a
logarithmic random walk with drift model. To avoid complications we will
not worry about converting back to the level of GDP; instead we will discuss
only the logarithmic series.

The trend AR(1) model for the data generating process is

ln GDPt = β0 + β1t + εt ,

εt = ρεt−1 + νt .

The random walk model for the log of GDP is the following:

ln GDPt = ln GDPt−1 + δ + ηt .

We assume that the νt ’s and ηt ’s are independent, identically distributed error
terms with mean zero. We estimated the trend AR(1) model in two steps,
using our standard FGLS procedure. Details are in cells A1 through K7 of
the RandomWalkvsTrend sheet. To estimate the random walk model, we took
the first difference of the original series:

� ln GDPt = ln GDPt − ln GDPt−1 = δ + ηt .

Upon regressing � ln GDPt against an intercept term, we obtained estimates
of the drift parameter, δ, and, via the RMSE, the spread of the ηt terms, SD(η).

Both models yield plausible results. The estimated slope of the trend is
0.0346, and the estimated drift is 0.0337; these translate into growth rates
of 3.52 percent and 3.43 percent respectively. The value of estimated ρ in
the AR(1) model is 0.822. The RMSEs, which are necessary for forecasting
purposes, are 0.023 and 0.022 for the AR(1) trend and random walk models,
respectively. The estimated residuals from the two models show very different
patterns. Figure 21.9.1 shows the residuals from both models.

The dotted line in the Residuals from Trend chart represents forecasted
future errors, which decline exponentially. Forecasted future errors are
nonzero because of the first-order autocorrelation in the errors. We are
assuming that the value of the last residual, for 2003 (t = 57), is a good
estimate of the error for 2003. Specifically, the forecasted future value of the
error-term h periods from 2003 (where h could be 1, 2, etc.) is the expected
value of the error-term given our current knowledge about it.

Forecastedε57+h = (Estimated ρ)h Residual57
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Residuals and Forecasted Residuals from Trend
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Figure 21.9.1. Residuals from the two models of GDP.
Source: [AnnualGDP.xls]RandomWalkvsTrend.

This equation follows directly from the AR(1) assumptions that εt = ρεt−1 +
νt and that the expected value of the νt ’s is zero. If we make the strong
but convenient assumption that the parameters are known with certainty,
then the year 2003 or fifty-seventh error is equal to the 2003 or fifty-seventh
residual. In any case, if the model of the data generating process is correct,
the residuals are good estimates of the errors; thus, this is not such a bad
assumption.

On the other hand, forecasted future errors for the random walk model
are zero. Again this follows from our assumptions about the random walk
with drift data generating process.

Which model is best? It is very hard to tell.18 Many economists believe
that GDP is a random walk. Choosing a model, however, has important

18 Wooldridge (2003, pp. 607–615), discusses tests that can be applied to distinguish unit root processes
from other data generating processes.
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Figure 21.9.2. Two forecasts for the log of GDP.
Source: [AnnualGDP.xls]RandomWalkvsTrend.

implications for forecasts – in particular for the SE of the forecast error,
which is a topic we turn to now.

Chapter 15 discusses the SE of the forecast error and explains that in
forecasts there are two components to the forecast error – one due to chance
error (modeled here as either an AR(1) process or a random walk) and
a second due to estimation error (error in estimating the trend and drift
parameters). We concentrate on the first component because the second one
turns out to be fairly small (this is rather common for long time series in which
the parameters are estimated quite precisely).19 Note that future values of the
trend term (t) are known with certainty in the AR(1) trend model so we do
not need to worry about forecasting the values of the independent variables.

Let us first compare point forecasts. The random walk forecast is below
the trend AR(1) forecast. In Figure 21.9.2 we take into account that the
forecasted residual declines in absolute value, but this is hard to see; most of
the differences in the forecast occur because the trend model predicts faster
growth in GDP.

As emphasized in Chapter 15, point forecasts should be accompanied by
interval forecasts to reflect the degree of uncertainty remaining even after
it is assumed that one has the correct model of the data generating process
and that the parameters will stay constant over the forecasted future of the
variable of interest. To construct the interval forecasts we need to pay close
attention to the way in which the forecast errors evolve.

Let us consider the AR(1) model first. Suppose we forecast one period
out to period 58 (equivalent to year 2004). If we know the parameters, the

19 To see the impact of the estimation error component, look at columns X through Z in AnnualGDP.xls
and compare the overall forecast SEs in columns AA and AB with the forecast SEs due to chance error
alone in columns U and V. We do not take into account estimation error for the estimated value of ρ.
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forecast error is

Forecast Error = GDP58 − E(GDP58)

= (β0 + β158 + ε58) − (β0 + β158 + ρε57)

= ρε57 + ν58 − ρε57

= ν58.

In other words, the forecast error arises solely from the ν58 term. The spread
(SE) of this forecast error is simply SD(ν). Let us forecast out one more
period. The forecast error for GDP59 is given by

Forecast Error = GDP59 − E(GDP59)

= (β0 + β159 + ρε58 + ν59) − (β0 + β159 + ρ2ε57)

= ρ2ε57 + ρν58 + ν59 − ρ2ε57

= ρν58 + ν59.

Now there are two components to the forecast error, one corresponding to
the ν58 error term and the other to the ν59 error term. Because these are
independent of each other, we can use a square-root law and the fact that ρ

is a constant to derive the spread of the period 59 forecast error. It is√
SD(ν)2 + ρ2SD(ν)2 = SD(ν)

√
1 + ρ2.

We will not bore you with additional terms in this series. The basic point
behind the mathematics is that each additional ν term contributes to the

SEs of Forecasts for Random Walk and AR(1)
Trend
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Figure 21.9.3. How the SE of the forecast error evolves for two models
of log of GDP.
Source: [AnnualGDP.xls]RandomWalkvsTrend.



P1: JZZ
0521843197c21 CB962B/Barretto 0 521 84319 7 November 7, 2005 20:14

Comparing Forecasts Using Different Models of the DGP 657

FE1 FE2 FE5 FE1 FE2 FE5

Avg 0.001 0.000 0.001 0.000 0.002 0.003
SD 0.022 0.029 0.035 0.023 0.033 0.052

Trend AR(1) Random Walk with Drift

Figure 21.9.4. Monte Carlo evidence on SE of the forecast error for two models of
log of GDP.
Source: [ForecastingGDP.xls] MCTwoModels.

spread of the predicted ln GDP series, but the impact of each term diminishes
over time because, when ρ is less than one, the error is damped away by the
passage of time. Columns V and W in [AnnualGDP.xls]RandomWalkvsTrend
carry out the detailed computations.

Matters are different with the random walk model. In this case, in essence
ρ = 1, and so the impact of additional error terms is not worn down by the
passage of time. The spread of the forecast error still obeys a square-root law,
but it rises faster than the spread of the forecast errors from the AR(1) trend
model. The exact formula for an h-period ahead forecast, implemented in
column V of [AnnualGDP.xls]RandomWalkvsTrend is

SE(ForecastError) = SD(η)
√

h.

Figure 21.9.3 shows the difference between the two SEs.
Another way to think about the forecast errors is to create a Monte

Carlo simulation that builds in the two data generating processes. Open the
ForecastingGDP.xls workbook. On the assumption the parameters (derived
from the regression estimates in AnnualGDP.xls) are known with certainty,
we simulate the future path of the log of GDP for both models in the RWDrift
and ARTrend sheets. Both sheets carefully set up the data generation
process. The ARTrend sheet computes forecast errors for both models from
simulations. The MCTwoModels sheet runs a Monte Carlo experiment that
computes, 1,000 one-period, two-period, and five-period ahead forecasts
errors for the two models. It then finds the empirical spread of the six dif-
ferent forecast errors. Representative results are shown in Figure 21.9.4.
The results from the Monte Carlo simulation in ForecastingGDP.xls com-
pare very well to the formula-derived forecast SEs in columns U and V of
[AnnualGDP.xls]RandomWalkvsTrend. The SE of the random walk Forecast
error increases faster than the SE of the trend Forcecast error.

Summary

This section has shown how to incorporate autocorrelation into a forecast and
how the SE of the forecast error evolves over time. This discussion should
have provided further insight into the data generating process of time series
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models but is only an introduction to a vast topic. To students interested
in studying the subject further, we recommend Wooldridge’s text for a seri-
ous discussion of econometric details and Diebold’s book for a very clear
introduction to the field of forecasting.

21.10. Conclusion

This chapter has covered several topics relating to time series models. Our
purpose has been to give you an introduction to some of the main ideas in the
field. We began the chapter by covering some of the basic tools for modeling
economic variables that change over time. Many series trend upwards and
there are many different functional forms for trends, though we discussed only
two: the linear and the exponential (or log-linear) trends. Dummy variables
can be used both to single out observations subject to special influences (e.g.,
wars or changes in government policy) and to model seasonal variation in a
time series.

We then went on to take a closer look at the data generating process for
time series variables. We made two crucial distinctions: between stationary
and nonstationary time series and between series that are weakly dependent
and strongly dependent. Very broadly speaking, OLS gives biased but con-
sistent estimates when variables are stationary and weakly dependent; when
variables are nonstationary, strongly dependent, or both, they must generally
be transformed to make it possible for OLS to provide consistent estimates
of the variables of interest. One popular transformation is simply to deal with
the first differences of the variables rather than their levels.

Spurious regression is a major issue for time series models. We examined
two types of spurious regressions. The first arises when a trend is incorrectly
omitted from a regression involving economic variables; this is essentially
an instance of omitted variable bias. The second type of spurious regression
arises when both the X and Y variables are random walks.

In the last three sections of the chapter we introduced two important
areas in time series. The first was lagged dependent variables. When a lagged
dependent variable is present in a regression, it is necessary to distinguish
between short- and long-run impacts of changes in independent variables on
the dependent variable. The presence of a lagged dependent variable clearly
violates the classical econometric model because the independent variables
are of necessity correlated with the error terms. This is one of the reasons
we discussed weak dependence: If variables are weakly dependent it is still
possible to obtain consistent estimates using OLS. Finally, we noted that the
presence of a lagged dependent variable invalidates the Durbin–Watson test
for first-order autocorrelation in the errors; however, the estimated ρ test can
be adapted to provide a consistent test.
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The last topic covered was forecasting. We showed how to construct fore-
casts of future values of a time series using two very simple models – an
autocorrelated trend and a random walk. This example gave us another
opportunity to apply the techniques of Chapter 20 for estimating parameters
under first-order autocorrelation. We noted that the assumed data generating
process has important implications for forecasts – in particular for the SEs of
the forecast error.

21.11. Exercises

1. Suppose we are considering two variables to measure trend in a study of U.S.
population. The first five values of each variable are in Figure 21.11.1: We ran
two regressions,

(1) Predicted U.S. Population = a1 + b1Trend1, and

(2) Predicted U.S. Population = a2 + b2Trend2,

and obtained the results in Figure 21.11.2.
a. What are the estimates of the constants (a1 and a2) and the slopes (b1 and b2)

in each regression?
b. Using Figure 21.11.3, write down the mathematical relationships between the

constants and slopes from bivariate regressions using two different Trends. If
you can, express the relationships in general terms rather than the particular
numbers from this example.

2. (Creating Predicted Level Using Log-Linear Trend Model) To see why it is nec-
essary to correct for the influence of the error term, make sure the MCSim
add-in is installed and available; then open a blank Excel workbook and cre-
ate 400 cells with the formula =NORMALRANDOM(0,1) in column A. In
column B exponentiate the numbers in column A by entering the formula
=EXP(A1) in cell B1 and then copying this formula down. Suppose that we
wish to find the average value of the exponentiated numbers. Compute three
separate estimates of the average of the exponentiated normally distributed
random variables. In cell D2 type “=AVERAGE(A1:A400).” In cell E2, type
“=EXP(AVERAGE(A1:A400)).” In cell F2, compute the normal correction fac-
tor by typing the formula “ =EXP(STDEV(A1:A400)2/2).” In cell G2, multiply
Exp(Ave) by the correction factor by typing in the formula “ =D2*F2.” Figure
21.11.4 shows the setup. Of course we should use the result in cell D2 if we want
to know the average of the exponentiated numbers, but how far off would we be
if we used the number in cell E2 instead? How much can we improve matters by
using the normal correction factor and therefore the number in cell G2?

Year Trend1 Trend2
1970 0 20
1971 1 21
1972 2 22
1973 3 23
1974 4 24 Figure 21.11.1. The first five observations in the data.
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Year
U.S. Pop 
(millions)

Predicted Pop 
Using Trend1

Predicted Pop 
Using Trend2

1970 205.05 202.52 202.52
1971 207.66 205.00 205.00
1972 209.9 207.48 207.48
1973 211.91 209.96 209.96
1974 213.85 212.45 212.45  

Figure 21.11.2. The first five observations in the data.
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a1=_____
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slope = b1 = b2 = ___

0 10 20  30 40 Trend 2
1950 1960 1970 1980 1990 Year

Trend 1

Trend2 − Trend1 = __

a1 − a2 =  ____

0

Figure 21.11.3. Comparing two trends.

Figure 21.11.4. Setting up the problem.

To answer these questions, run two Monte Carlo simulations, one in which you
compare the Exp(Ave) with the Ave(Exp) and a second in which you compare
Ave(Exp) with the Corr Factor*Exp(Ave). Comment on your results.

On a separate sheet, create the same setup but use RANDOM() instead of
NORMALRANDOM(0,1). How well does the normal correction work in this
case?

3. (Dummy Variables) In the TimeSeriesDummyVariable.xls file we set up a “short
regression” in which we regressed Ice Cream Sales on Price only, ignoring the
Coupon dummy variable. Then we performed a Monte Carlo analysis; the aver-
age value of the estimated slope coefficient for Price in 1,000 repetitions was −742
and the SD was 42. This is fairly strong evidence of bias in the short regression.
Explain why the short regression estimate for Price is biased.

4. In the coal mining example, a regression of the fatality rate on the regulation
dummy variable gives the results in Figure 21.11.5, whereas a regression of the
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Variable Estimate

Intercept 1.233077
R −0.07077 Figure 21.11.5. Coal mining regression results.

Variable Estimate
Intercept
Trend −0.01401099
R 0.11137363

1.31714286
Figure 21.11.6. Coal mining regression results
with a trend term.

fatality rate on the regulation dummy variable and a trend term gives the results
in Figure 21.11.6. Explain why the coefficient estimate for R changes. Be sure to
discuss the relationship between R and Trend in your answer.

5. (Lagged Dependent Variables) In the Example sheet of PartialAdjustment.xls,
we have set the initial value of Y as follows:

Y0 = γ0 + γ2 · X0

(1 − γ1)
.

Bearing in mind the equation for the data generating process,

Yt = γ0 + γ1Yt−1 + γ2 Xt ,

use algebra to explain why this is an equilibrium value (i.e., a value such that if
X does not change, then Y will not change).
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Dummy Dependent Variable Models

Bliss invented a procedure he called “probit analysis.” His invention required
remarkable leaps of original thought. There was nothing in the works of Fisher,
or “Student,” or of anyone else that even suggested how he might proceed. He used
the word probit because his model related the dose to the probability that an insect
would die at that dose.

David Salsburg1

22.1. Introduction

In earlier chapters, we have created and interpreted dummy independent
variables in regressions. We have seen how 0/1 variables such as Female (1 if
female, 0 if male) can be used to test for wage discrimination. These variables
have either/or values with nothing in between. Up to this point, however, the
dependent variable Y has always been essentially a continuous variable. That
is, in all the regressions we have seen thus far, from our first regression using
SAT scores to the many earnings function regressions, the Y variable has
always taken on many possible values.

This chapter discusses models in which the dependent variable (i.e., the
variable on the left-hand side of the regression equation, which is the vari-
able being predicted) is a dummy or dichotomous variable. This kind of model
is often called a dummy dependent variable (DDV), binary response, dichoto-
mous choice, or qualitative response model.

Dummy dependent variable models are difficult to handle with our usual
regression techniques and require some rather sophisticated econometrics. In
keeping with our teaching philosophy, we present the material with a heavy
emphasis on intuition and graphical analysis. In addition, we focus on the box
model and the source of the error term. Finally, we continue to rely on Monte
Carlo simulation in explaining the role of chance. Although the material
remains difficult, we believe our approach greatly increases understanding.

1 Salsburg (2001, p. 76).

663
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What Exactly Is a Dummy Dependent Variable Model?

That question is easy to answer. In a dummy dependent variable model, the
dependent variable (also known as the response, left-hand side, or Y variable)
is qualitative, not quantitative.

Yearly Income is a quantitative variable; it might range from zero dollars
per year to millions of dollars per year. Similarly, the Unemployment Rate
is a quantitative variable; it is defined as the number of people unemployed
divided by the number of people in the labor force in a given location (county,
state, or nation). This fraction is expressed as a percentage (e.g., 4.3 or 6.7 per-
cent). A scatter diagram of unemployment rate and income is a cloud of points
with each point representing a combination of the two variables.

On the other hand, whether you choose to emigrate is a qualitative variable;
it is 0 (do not emigrate) or 1 (do emigrate). A scatter diagram of Emigrate
and the county Unemployment Rate would not be a cloud. It would be simply
two strips: one horizontal strip for various county unemployment rates for
individuals who did not emigrate and another horizontal strip for individuals
who did emigrate.

The political party to which you belong is a qualitative variable; it might be
0 if Democrat, 1 if Republican, 2 if Libertarian, 3 if Green Party, 4 if any other
party, and 5 if independent. The numbers are arbitrary. The average and SD of
the 0, 1, 2, 3, 4, and 5 are meaningless. A scatter diagram of Political Party and
Yearly Income would have a horizontal strip for each value of political party.

When the qualitative dependent variable has exactly two values (like Emi-
grate), we often speak of binary choice models. In this case, the dependent
variable can be conveniently represented by a dummy variable that takes on
the value 0 or 1.

If the qualitative dependent variable can take on more than two values
(such as Political Party), the model is said to be multiresponse or multinomial
or polychotomous. Qualitative dependent variable models with more than
two values are more difficult to understand and estimate. They are beyond
the scope of this book.

More Examples of Dummy Dependent Variables

Figure 22.1.1 gives more examples of applications of dummy dependent vari-
ables in economics. Notice that many variables are dummy variables at the
individual level (like Emigrate or Unemployed), although their aggregated
counterparts are continuous variables (like emigration rate or unemployment
rate).

The careful student might point out that some variables commonly consid-
ered to be continuous, like income, are not truly continuous because fractions
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Topic Dummy-Dependent Variable Description 

Labor Force Participation Inlaborforce  0 if out of the labor force 

1 if in the labor force 

Choice of Occupation Managerial  0 if not managerial 

1 if managerial 

Firm Location Shoppingmall 0 if not in shopping mall 

1 if in shopping mall 

Union Membership Union 0 if not a union member 

1 if a union member 

Retirement Retired  0 if not retired 

1 if retired 

Use of Seat Belts Seatbeltused  0 if does not use seat belt 

1 if uses seat belt 

 

Figure 22.1.1. Applications of dummy variables in economics.

of pennies are not possible. Although technically correct, this criticism could
be leveled at any observed variable and for practical purposes is generally
ignored. There are some examples, however, like educational attainment (in
years of schooling), in which determining whether the variable is continuous
or qualitative is not so clear.

The definition of a dummy dependent variable model is quite simple: If
the dependent, response, left-hand side, or Y variable is a dummy variable,
you have a dummy dependent variable model. The reason dummy dependent
variable models are important is that they are everywhere. Many individual
decisions of how much to do something require a prior decision to do or
not do at all. Although dummy dependent variable models are difficult to
understand and estimate, they are worth the effort needed to grasp them.

Organization

The next two sections provide intuition for the data generating process under-
lying the dummy dependent variable model. We emphasize the fundamental
idea that a chance draw is compared with a threshold level, and this deter-
mines the observed 0 or 1 value of the dummy dependent variable. Sec-
tion 22.4 continues working on the data generating process by drawing the
box model that generates the observed values of 0 or 1. In Section 22.5,
we introduce the linear probability model (LPM), which simply fits a line
to the observed scatter plot of 0’s and 1’s. The LPM is easy to work with,
but its substantial defects lead us to look for better methods. Section 22.6
uses nonlinear least squares (NLLS) to fit an S-shaped curve to the data and
improve on the LPM. Nonlinear least squares is better than LPM but more
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difficult to interpret, and so we devote the next section to interpreting the
results from the NLLS regression. We conclude the chapter with a real-world
example of a dummy dependent variable that examines the issue of mortgage
discrimination.

22.2. Developing Intuition about Dummy Dependent Variable Models

Workbook: Raid.xls

Suppose you wanted to know if a bug spray really works. You took 200 bugs
and split them up into two groups (obeying random assignment rules and
double-blinding; we note that blinding the subject, a bug, should not be a
problem). One group is the treatment group, Sprayed with Raid2 (SR) for
2 seconds, whereas the control group is dosed with a placebo for 2 seconds
and called Sprayed with Water (SW). At the end of an hour, it is time to count
them up. Figure 22.2.1 presents the results of our hypothetical experiment.

The research question is, Does Raid work? We can not simply argue that
Raid obviously works because many more bugs died with Raid. The flaw in
this argument is that some roaches died without the Raid (20 of them) and
some roaches (16 of them) did not die with the Raid.In reality, the question
is, Does Raid increase the odds of death and, if so, by how much?

As soon as you realize that Raid will not wipe out all bugs on contact, deter-
mining the efficacy of Raid becomes quite difficult. The problem is that Raid,
to the extent that it works, merely increases the probability of death – it does
not guarantee death. This line of thinking opens the door to the chance expla-
nation – that the results of this single sample might be due to chance alone.

Once it is realized that observed deaths contain an element of randomness,
we must confront the task of modeling the chance process generating the
data. Unfortunately, this process is much more complicated than the classical
econometric model.

For an individual bug, the chance process looks something like this:

� Dead if the draw from the error box is the same or less than the threshold value
needed to kill the bug.

� Alive if the draw from the error box is more than the threshold value needed to
kill the bug

The draw from the error box reflects the hardiness of the bug – its ability to
withstand poison. The bug needs a draw greater than the threshold value in
order to live. If Raid is effective, it increases the threshold value, meaning
that the bug has to be more poison-resistant to survive. The problem is that
we will see only if the bug is dead or alive; we cannot observe either the draw
from the error box or the value needed to kill the bug.

2 Raid is a popular insecticide made by SC Johnson & Sons.
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Group Number Dead Number Alive 
SR 84 16 
SW 20 80 

SR: Sprayed with Raid for 2 seconds 
SW: Sprayed with Water for 2 seconds 

Figure 22.2.1. Results of Raid experiment (hypothetical).

These ideas are implemented in the Excel workbook Raid.xls. Begin by
reading the Description sheet. Make sure you scroll down and play around
a bit with the sheet. When you are ready, go to the sheet Single Bug. The
workbook facilitates understanding of what is going on by making clear that
we observe only the dichotomous outcome, dead or alive, generated by a
chance process. The crucial idea is that a random error term is compared
with some threshold value, and this comparison determines whether or not
the observed value is dead or alive.

Figure 22.2.2 displays the happy outcome for a single bug. She lived because
her draw from the box (reflecting her hardiness to the environment) was
bigger than the threshold level. Her draw was not particularly fortuitous, but
it did not need to be because she only had a 20 percent chance of dying.

Click the Take a Draw button repeatedly to conduct the experiment on a sin-
gle bug. Every click takes a draw and compares it with the threshold level.
Sometimes the bug dies, but most of the time (80 percent of the time in the
long run) the bug lives. Click the Instructions button and follow the directions.

Increase the value of the yellow-shaded cell to 50 percent and hit the F9
key a few times. In this case, a positive draw is needed for survival. If the
probability of dying is increased to 90 percent, the outlook for the bug will
be rather bleak. The effectiveness of an insecticide rides on its ability to push
the threshold value very high so that there will be little chance for the bug to
survive.

Draw from Error Box Observed

−0.183 Alive
−0.842 threshold level in standard units

Bug’s True Prob of Dying

20%

0

0.1

0.2

0.3

0.4

0.5

0.6

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

Take a Draw

Instructions

The probability of 
death was translated 
into a standard unit 
value of  −0.842. 
The bug needs a draw 
bigger than this to live.  
On average, 20% of the 
bugs will die. 

Figure 22.2.2. The DGP at work.
Source: [Raid.xls]Single Bug.
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            Number Dead Number Alive %Dead 
SR                    84 16 84% 
SW                       20 80 20% 

Figure 22.2.3. Results of Raid experiment restated (hypothetical).

This same chance process was carried out on our hypothetical experiment.
In the case of the 200 bugs we observed, the odds favor Raid. Look at the
odds of death from Raid versus water in Figure 22.2.3.

Raid appears to increase the threshold value for death by a large amount.
The reason why we cannot simply conclude that Raid works is our old friend
chance error. Rewind and replay the world, and you will obtain different
numbers in Figure 22.2.3. Use the Death by Raid sheet in Raid.xls to demon-
strate that the percentage dead varies as you resample. Clearly, the sample
percentage dead is one realization of the chance process.

In other words, our fundamental problem is that the true increase in the
probability of death from using Raid is not guaranteed to be what we observe
from a single sample:

84% − 20% = 64%.

The calculation above is merely the sample difference (for a sample we
obtained). We do not know the true difference because it is not directly
observable. Chance error, modeled by the draw from the error box, makes
the observed sample differences bounce around.

The sheet Death by Raid in the Raid.xls workbook clarifies this concept.
Every click of the Repeat the

Experiment button draws a new sample in which 200 bugs are
dosed and counted. Repeated clicking of this button convincingly demon-
strates that the sample difference bounces around the True Effectiveness of
Raid in cell F4. Click the Instructions button and follow the directions.

Although we have been pointing out that Raid cannot be said to work
just because some bugs died, the same argument applies to those who would
reject Raid even though it is not 100 percent effective. We cannot just say
that Raid obviously does not work because 16 percent lived through the
Raid.

Raid is effective because many more of the bugs died as the result of its
use. That 16 bugs survived the Raid does not mean that it is ineffective. Your
knowing someone 90 years old in perfect health who has smoked everyday
since he was 7 does not clear smoking of causing lung cancer. What takes place
is not like the law of gravity – that is, pencils always fall to the floor when
dropped. If a pencil rose when dropped, you would have a major situation on
your hands. Yes/No dependent variables are different. An issue of probability
is involved. Raid can be said to “work” if it increases the probability of death.
Of course, the more it increases the probability of death, the better it works;
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however, it does not have to guarantee death for us to conclude that it is
effective.

Summary

Keep the following two ideas in mind as you study dummy dependent variable
models:

� Chance plays a role in the observed sample through a complicated box model. In
this model, one takes a draw from an error box and compares it with a threshold
value. If the draw is greater than the threshold value, the outcome is 0; if the draw
is less than or equal to the threshold value, the outcome is a 1.

� Although we see only the outcome as Yes or No, we are interested in determining
an underlying probability – that is, the threshold value with which the draw is
compared.

22.3. The Campaign Contributions Example

Workbook: CampCont.xls

In this section, we turn to another, slightly more complicated dummy depen-
dent variable example. We are still developing your intuition and proceeding
slowly to get the details exactly right.

Research Question: What is the effect of campaign contributions on voting
in the legislature?

Put more bluntly, can a special interest lobby buy the votes it needs?
One common theory says that the reason corporations and special interest

groups donate money to a political candidate is simple: If you help a candidate
win, he or she will be more likely to vote in ways beneficial to the donor. That
is not to say that a particular vote will be guaranteed – only that it is more
likely.

The problem for social scientists investigating this hypothesis is that the
observed voting record on a particular bill will be Yes or No, whereas the
underlying, unobserved probability of a particular vote may be sensitive to
the amount of money received. This is not to say that as soon as a representa-
tive receives money he or she immediately votes one way or the other; rather,
it is a matter of probability – of increasing the chances of a particular vote.

This is akin to the Raid example of the previous section. We only see the
legislator’s vote as 0 or 1. Taking a draw from an error box and compar-
ing it with some unknown threshold value determines whether the vote is 0
(no) or 1 (yes). If the draw is less than or equal to the unknown threshold
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Amount of Campaign Contribution

Legislator's True Prob of YES Vote Draw from Error Box Observed Vote

–0.340 No
–0.571 threshold value in standard units
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Figure 22.3.1. The DGP for observed voting behavior.
Source: [CampCont.xls]SingleLegislator.

value, we see a Yes vote (and thus the campaign contribution worked). The
campaign contribution affects the unknown threshold value – it increases it
(like Raid did), making it more likely, but not certain, that the legislator will
vote Yes.

Although this example shares the same underlying box model as the Raid
example, it also differs in an important way from the Raid example. Instead of
a dummy independent variable (get water or Raid), the independent variable
is continuous. The unknown threshold value with which the draw from the
error box is compared is a function of the amount of money received.

The Excel workbook CampCont.xls demonstrates how the campaign con-
tribution affects the threshold value of a Yes vote. Figure 22.3.1 displays the
SingleLegislator sheet in CampCont.xls.

Click the Instructions button and follow the steps described to see how chang-
ing the amount of campaign contributions affects the threshold level and,
thus, the observed voting response. Be certain you are comfortable with the
idea that the threshold level is determined by the amount of campaign con-
tribution. As the legislator receives more money, the chances of voting Yes
rise.

When you are finished working with the SingleLegislator sheet, you should
understand the following ideas. The dummy dependent variable, VotesYes is
being determined in part by a chance process. When the draw from the error
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box is less than the threshold level,−0.571, in Figure 22.3.1, the legislator votes
Yes (VotesYes=1). The legislator in Figure 22.3.1 voted No (VotesYes=0,
even though he or she pocketed a $20,000 contribution) because the draw
from the box was greater than the threshold level. This is just like the Raid
example in which some bugs sprayed with Raid lived.

The threshold level is a function of the amount of campaign contributions.
The higher the campaign contributions, the greater the threshold level, which
in turn makes it more likely that the legislator will vote Yes.

The Raid example could be made similar to this campaign contribution
example if one were to allow for different doses or strengths of insecticide
in Raid. As the dose strength increased, the threshold level would increase,
making it more likely that the bug would die.

Finally, you should be aware that we are interested in estimating the param-
eters of the function driving the threshold level. We will want to know how
much the probability of voting Yes increases when the campaign contribution
goes up. This is a crucial concept.

Summary

This section extended the Raid example from Section 22.2 by incorporating
continuous variation in the X variable. As X (the amount of campaign contri-
bution) increases, so does the threshold level, making it more likely that we
observe a Yes vote. The next sections will demonstrate how we can estimate
the parameters of the function determining the threshold level. We will begin
our explanation with a more formal description of the box model.

22.4. A DDV Box Model

Workbooks: Raid.xls; CampCont.xls

The Raid and Campaign Contributions examples have set the stage for a
careful exposition of the way the ultimately observed 0 or 1 responses are
generated in a dummy dependent variable model.

The data generation process underlying the Raid and Campaign Contri-
bution examples is much more complicated than the classical econometric
model, which is a continuous, dependent variable data generation process.
The Raid and Campaign Contribution examples have a Y that is forced to
be either 0 or 1. The observed 0/1 dependent variable value is generated by
drawing a ticket from the error box and comparing it against the threshold
level – if the ticket is greater, then we see a 0; otherwise, we observe 1.

The box model for this data generation process looks like Figure 22.4.1.
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<= 

Figure 22.4.1. Data generation process for bivariate binary choice model.

Figure 22.4.1 offers a visual box model statement of the data generation
process. The Raid and Campaign Contribution examples were built with
this box model in mind. The single draw from the box, the error ticket in
Figure 22.4.1, is the blue vertical line in the Raid.xls and CampCont.xls work-
books. The process of comparing the error ticket with the threshold level is
shown in Figure 22.4.1 via the if-then statements and is visually depicted in the
two workbooks by a change in color. Finally, the resulting, mutually exclusive
0 or 1 value is what we observe.

In addition, it is important to understand that the threshold level is a func-
tion of a deterministic component, β0 + β1 X, whose parameters we will be
trying to estimate from a single sample. The Campaign Contributions exam-
ple has made it clear that increases in campaign contributions (the X variable)
increase the threshold level, making it more likely that the resulting observed
vote will be Yes.

This unusual box model has important implications for the way in which
we interpret observed data in dummy dependent variable models. If we know
enough about the contents of the box and the determinants of the threshold,
we can compute the probability that a particular observation will take on a
value of 1. This is done as follows: The probability that a given Y will equal 1
is equal to the probability that a ticket drawn from the box will have a value
less than or equal to the threshold. Figure 22.4.2 shows an example taken
from the campaign contributions example.

In this example, we see that a campaign contribution of $20,000 leads to a
threshold value of −0.571 in standard units and that a draw from the error
box will fall below that threshold 28.4 percent of the time. More generally,
in the campaign contributions example, the probability that a given vote will
be Yes is the area under a standard normal curve to the left of the threshold.
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Figure 22.4.2. The threshold model for campaign contributions.
Source: [CampCont.xls]SingleLegislator.

For example, if we were to examine the votes of a large number of legisla-
tors, each of whom received a $20,000 contribution, we would expect to find
that about 28 percent of them voted Yes. A group of legislators who received
$30,000 would share a threshold value of 0.583, and we would expect that
about 72 percent would vote Yes. In other words, the threshold model says
that the probability that the dependent variable equals 1 is a function of the
area under the distribution of the tickets to the left of the threshold value –
a value that varies as the independent variable changes. More generally, in
mathematical terms,

Pr(Yi = 1 given Xi ) = Pr(εi < Threshold determined by Xi )

= Pr(εi < β0 + β1 Xi ).

We call the probability on the left a conditional probability function because
the probability that Y equals 1 depends on (is conditional on) the value of
X. Two further observations are in order. First, the distribution of the tickets
matters in determining the probability. In most of what follows, we assume
that the tickets are normally distributed. Second, in general, this model leads
to a nonlinear relationship between the probability that the dependent vari-
able equals 1 and the threshold – in other words, the conditional probability
function is, in general, nonlinear.
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Summary

Figure 22.4.1 holds the core idea developed in this section. It displays a new
box model called the dummy dependent variable model. In previous chapters
in this book, we have presented the coin flip, polling, measurement, and,
most importantly, the classical econometric box models. The box model we
are working with in this chapter shares many similarities with these models,
especially the idea that chance is at work in determining observed outcomes.
The dummy dependent variable model differs markedly, however, from the
others in that it uses a threshold level to guarantee a binary response. In
other words, the two values, 0 or 1, are the only possible outcomes. We are
interested in estimating the function that determines the threshold level. The
next section presents an obvious, easy, but flawed approach.

22.5. The Linear Probability Model (OLS with
a Dummy Dependent Variable)

Workbooks: CampCont.xls; LPMMonteCarlo.xls

In this section we take a closer look at the hypothetical campaign contribu-
tions example. We extend the analysis to consider many legislators receiving
varying amounts of campaign contributions. We estimate a model with OLS
and point out the weaknesses of this approach.

Suppose that a special interest lobby has given campaign contributions
varying from $1 to $50,000 to 500 representatives who subsequently voted on
a piece of legislation very important to that lobby. The special interest lobby
was hoping for enough Yes votes to pass the legislation.

We have records of how each legislator voted and the amount of campaign
contributions each legislator was given by the special interest lobby. The data
are in columns A and B of the SingleSample sheet of CampCont.xls. The
relationship between the representatives’ votes on the legislation and the
campaign money they received is graphically depicted in Figure 22.5.1.

Figure 22.5.1 discloses the way each individual representative voted as a
function of the campaign contributions received. A Yes vote is coded as a 1;
a No vote is coded as a 0. There are 500 observations on the graph bunched
up in the bottom-left and top-right corners. It is somewhat difficult to see this
in this scatter plot because there is no histogram-like height to indicate how
many observations fall in a certain range.

Even though the scatter diagram is difficult to read, it appears that some-
thing is going on. Sure, there are a few representatives who received sub-
stantial campaign money but still voted No (0) and a few who voted Yes
(1) although they did not receive much money, but there is some obvious
clumping at the bottom-left and top-right.
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Figure 22.5.1. Observed vote as a function of campaign contribution.
Source: [CampCont.xls]SingleSample.xls.

The threshold model offers a coherent method for interpreting the data.
The model focuses attention on the conditional probability function. In this
case, that means the probability of a Yes vote given the level of campaign
contributions. It is difficult to see that probability function in Figure 22.5.1.
One way to visualize the probability function is to draw a graph of averages,
as shown in Figure 22.5.2.

In Figure 22.5.2, we grouped the contributions into $1,000 intervals and
showed the percentage of representatives in each interval who voted Yes.
The data underlying Figures 22.5.1 and 22.5.2 are the same, but instead of 500
dots Figure 22.5.2 has only 50 dots. The vertical strip in the figure summarizes
the votes of 10 representatives who received contributions averaging $28,500.
Sixty percent of these representatives voted Yes. The graph of averages shows
the empirical conditional probability that a representative will vote Yes given
the amount of the campaign contribution he or she receives.

There are three different ways to estimate the conditional probability
function: ordinary least squares (known as the Linear Probability Model),
nonlinear least squares (NLLS), and maximum likelihood. We start with
OLS in this section because it is the easiest method to understand. Econo-
metricians commonly estimate a linear probability model before turning to
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Figure 22.5.2. Graph of averages with a vertical strip centered on $28,500.
Source: [CampCont.xls]SingleSample.

more complicated estimation procedures. However, OLS has significant lim-
itations that lead us to consider nonlinear least squares. The latter method
is typically not employed to estimate dummy dependent variable models,
but we spend time on it for two reasons. First, the application to dummy
dependent variables is a good opportunity for us to introduce the concept of
nonlinear least squares, which is widely used in other contexts. Second, the
generally preferred estimator, maximum likelihood, is too complicated to
explain fully in this introductory textbook. Maximum likelihood estimates,
however, can be interpreted in exactly the same way as NLLS estimates.
We have written two Excel add-ins that will enable you to produce both
NLLS and maximum likelihood estimates for dummy dependent variable
models.

Using the Linear Probability Model (LPM)

Our first attempt at estimating the effect of the probability that a represen-
tative votes Yes is simply to fit a straight line via ordinary least squares to the
Y variable. The application of OLS to dummy dependent variable models is
known as the linear probability model. Although we will soon be criticizing
this model, remember that it does have the virtue of simplicity, making it easy
to find the estimates and to interpret them.
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slope 2.69E-05 −0.171 intercept
estimated SE 9.78E-07 0.028 estimated SE

R2 0.603 0.316 RMSE
F 756.601 498 df

RegSS 75.383 49.617 SSR

OLS Model: VotesYes = β0 + β1CampCont + ε

 
Voting Results with Linear Probability Model
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Figure 22.5.3. LPM results.
Source: [CampCont.xls]SingleSample.

Ordinary least squares estimation on a dummy dependent variable simply
ignores the fact that the dependent variable takes on only two values and fits
a line to the scatter plot (which has only two horizontal strips). The result is
neatly captured in the usual OLS equation:

Predicted Y = b0 + b1CampaignContribution

along with the usual estimated standard errors, RMSE, R2, F-statistic, and so
on. The interpretation of Predicted Y is the probability that the dependent
variable equals 1 given the value of the X variable. The Predicted Y in the
voting example is the predicted probability that a representative who receives
a given amount of campaign contributions would vote Yes.

The SingleSample sheet in the CampCont.xls workbook displays the results,
as shown in Figure 22.5.3.
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Because Predicted Y is the predicted probability of voting Yes given a
value for CampaignContribution, we can simply plug in a campaign contri-
bution value and use the equation of the fitted line to compute the predicted
probability of voting Yes. If the legislator received $25,000 in campaign con-
tributions, we would compute: Predicted Y = −0.18 + 0.0000269 (25,000) =
50.25 percent. Thus, 50.25 percent is the predicted probability of voting Yes
given a $25,000 campaign contribution.

We might also be interested in the increase in the predicted probability of
voting Yes as the amount of campaign contributions rises. The slope estimate
b1 tells us exactly this. Thus, a $10,000 donation will buy you a 26.9 per-
cent increase in the probability that a representative votes Yes because
0.0000269 × 10,000 = 26.9 percent. Note that what the LPM predicts is the
same regardless of whether the increase is from 0$ to $10,000 or from $40,000
to $50,000.

Three Problems with the Linear Probability Model

There are three important difficulties with the linear probability model.

1. LPM Imposes a Linear Relationship

The assumption implicit in the linear probability model is that an additional
dollar increases the probability of a Yes vote by the same amount for all
levels of campaign contributions. We may, however, have theoretical reasons
to believe that the slope changes with the level of contributions. After all, do
we really believe that giving another $10,000 to representative A, who has
already received $40,000, is going to have the same change on the probability
of voting Yes as giving $10,000 to representative B, who has received only
$15,000 thus far?

Figure 22.5.2 should convince you that this is unlikely. At the $40,000 mark,
the probability of a Yes vote is quite high, and another $10,000 is not going to
increase the probability of a Yes vote by much more. On the other hand, at
$15,000, near the center of the scatter plot, there is much action. It looks as if
$10,000 might really matter. The LPM cannot capture this kind of variability.
It imposes a single, straight line on the scatter plot.

2. LPM Is an Unbounded Functional Form

The results of the LPM in this example violate the laws of probability. Look
again at Figure 22.5.3. Many representatives have predicted probabilities of
voting Yes of less than 0 or greater than 1. That is obviously nonsensical.

Now, you may argue that we have seen nonsensical results before. After
all, in earnings functions regressions, predictions of wage at Education=0
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Figure 22.5.4. LPM residuals plot.

and Experience=0, for instance, are often negative (because the intercept
estimate is less than 0). We have excused such results by pointing out that
predictions “way outside the sample scatter of points” are not interesting.
No one is interested in predicting the wage of a newborn infant! But the
situation in the linear probability model is different because the unbounded
estimates are often in-sample. In our case, representatives with campaign
contributions under roughly $6,400 yield negative predicted probabilities,
whereas those above roughly $43,500 lead to predicted probabilities greater
than 100 percent. There are actual observations in these ranges. We know the
LPM is giving us erroneous predictions for those ranges of the independent
variable.

3. The LPM Suffers from Heteroskedasticity

The last difficulty is a more technical issue than the first two. Figure 22.5.4
is a plot of the residuals from our regression. It may be difficult to interpret
exactly what is going on in that residual plot, but you have to agree that no
“formless blob” is evident. The residuals, which are our estimates of the errors,
are definitely not the same across the values of X. The heteroskedasticity in
the linear probability model generates biased and inconsistent estimates of
the estimated SE of the sample slope.3

Summary

Given these three problems (constant slope, unboundedness, and het-
eroskedasticity) with the linear probability model, econometricians have
developed better ways of estimating the underlying probability of an
observed outcome in a dummy dependent variable model. We consider one
of these alternatives in the next section.

3 To see this, explore the file LPMMonteCarlo.xls. Heteroskedasticity and its meaning and effect on the
OLS estimator are covered in Chapter 19.
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Voting Results with Linear Probability Model
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Figure 22.6.1. Three defects of the LPM.

22.6. Nonlinear Least Squares Applied to Dummy
Dependent Variable Models

Workbooks: NLLSFit.xls; NLLSMCSim.xls

In the previous section, we used OLS to fit a line to a scatter plot of the
voting decisions of 500 hypothetical representatives as a function of received
campaign contributions. Figure 22.6.1 shows the OLS fitted line and highlights
the three difficulties of the linear probability model.

We can do better by paying closer attention to the data generating pro-
cess. In our earlier Raid and Campaign Contribution examples, we assumed
the error box to be normally distributed. Econometricians call this a Probit
Model. In the old days (before ubiquitous computing), for ease of calculation
the errors were assumed to be logistically distributed.4 If this assumption is
invoked, the data generation process is called a Logit Model.

There is not much practical difference between the normal and logistic
distributions. They both are symmetrical, bell-shaped curves with S-shaped
cumulative distributions. The logistic has slightly fatter tails. The logistic
“more closely resembles a t distribution with 7 degrees of freedom” Greene
(2000, p. 815). The primary advantage of the logistic is that it has a closed-
form cumulative distribution that can easily be derived (see previous foot-
note), whereas the normal distribution must be tediously calculated to figure
out what fraction of the area lies up to a given value. Computers, however,

4 The random variable x has a standard logistic distribution if its density function is f(x) = ex/(1 + ex)2.
The corresponding cumulative distribution function is F(x) = ex/(1 + ex).



P1: irk
0521843197c22 CB962B/Barretto 0 521 84319 7 November 7, 2005 13:46

Nonlinear Least Squares Applied to Dummy Dependent Variable Models 681

make the logistic’s computational advantage almost irrelevant. We will work
exclusively with the normal distribution and, thus, the probit model.

Having decided that we will model the errors as coming from a normally
distributed box, we turn our attention to the method of estimation. Let us
consider two nonlinear alternatives: (1) nonlinear least squares (NLLS) and
(2) maximum likelihood (ML).

Nonlinear least squares is more complicated than the OLS algorithm used
to estimate the linear probability model, but NLLS applied to a probit (or
logit) model corrects two of the three defects inherent in the LPM via the
OLS approach. Nonlinear least squares will fix the problems of constant slope
(i.e., linearity of the functional form) and impossible predicted probabilities
less than 0 and greater than 1 (i.e., unboundedness). This approach, however,
will still suffer from heteroskedasticity (which means the estimated SEs are
biased). In principle, NLLS can be corrected for heteroskedasticity with an
appropriately weighted nonlinear least squares estimator, but, in practice,
many investigators turn to maximum likelihood estimation.

We will use NLLS (uncorrected for heteroskedasticity) because its familiar
least squares logic makes it easier to understand than the likelihood maxi-
mization approach. The Excel add-ins packaged with this book enable you
to use the ML method. The references at the end of this chapter have several
sources for learning about maximum likelihood.

Because it is easy to be confused by the terminology, we will use the flow
chart in Figure 22.6.2 to present the various pieces involved. Although the
errors can come from any distribution, the normal and logistic distributions
are the most commonly used. Figure 22.6.2 also points out that the data
generating process and the estimation approach are separate. You could have
a probit model and estimate it via OLS (which would be called the LPM),
NLLS, or ML.

To be clear, maximum likelihood is the preferred approach, but a care-
ful explanation of this method is beyond the scope of the presentation in
this introductory textbook. Of the familiar least squares approaches, we
show in the next paragraphs that NLLS overcomes two of the three weak-
nesses of OLS. Unfortunately, the gain comes at a price – NLLS estimation
is more difficult, and extra care is required in interpreting the computed
estimates.

Why Nonlinear Least Squares?

We know from Figure 22.5.3 that OLS has a major weakness in fitting
dummy dependent variables models. The LPM forces a straight line fit to an
S-shaped pattern of dots. We want to fit some kind of a curve to the data,
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The DGP of the DDV Model
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Figure 22.6.2. The terminology of the DDV model.

not a straight line, like OLS does. Figure 22.6.3 dramatically illustrates the
difference between LPM and NLLS estimates of the conditional probability
function.

Although much of the material in this chapter – from the box model to
the estimation techniques and interpretation of results – is admittedly quite
difficult, Figure 22.6.3 speaks volumes about the intuition and basic idea of
NLLS. Notice especially how the constant slope and unboundedness defects
of OLS are avoided by NLLS.

So, why should we use NLLS? The answer is easy – NLLS allows us to
fit an S-shaped curve to an obviously S-shaped scatter diagram. Ordinary
least squares restricts us to a straight line. What if the vertical strips were in
a straight line? That would not pose a problem – a straight line is a particular
type of S-shaped curve! In other words, the S-shape can be quite pronounced
or almost indistinguishable from a line. This will be demonstrated next.

Which S Shape?

Although there are many S-shaped functional forms available, we are going
to use the S-shaped functional form provided by the normal distribution.
Open the NLLSFit.xls workbook and proceed to the NormalDist sheet to
see how the normal’s cumulative distribution function provides a flexible
S-shaped fit. You will see a display like that shown in Figure 22.6.4.
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Figure 22.6.3. NLLS versus LPM fits for the campaign contributions data set.
Source: [NLLSFit.xls]Fitting.
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From the standard normal distributions’s probability density function (in
visual terms, the bell-shaped curve), we know that about 16 percent of the
area lies between minus infinity and −1.5 What, however, if we plotted the
area under the curve up to each standard unit? We would be adding up or
accumulating the areas. Then we would have what is called the cumulative
distribution function.

As Figure 22.6.4 shows, the normal’s cumulative distribution function is
clearly an S shape. For values in the left tail, such as −2.5, there is little area,
and thus the cumulative distribution function is near zero. At a standard
unit of 0, 50 percent of the area under the curve is from negative infinity to
zero; thus, the y-intercept of the cumulative distribution function is 50 per-
cent. Finally, for high values of the standard unit, the area under the normal
curve approaches 100 percent and so does the cumulative distribution func-
tion. It is clear that as the value of the standard unit rises, so does the area
under the curve up to the value of the standard unit; however, the upward
rise is not constant. The cumulative distribution function has a pronounced
S shape.

Furthermore, you can manipulate the location and S shape by changing the
center and spread of the distribution. This can be demonstrated by selecting
different center and spread values in the lists.

If the Normal’s S Shape Can Be Altered, How Is a
Particular S Shape Determined?

Different values of the b0 and b1 parameters alter the S shape. Figure 22.6.5
shows part of the Fitting sheet of the NLLSFit.xls workbook. Your natural
reaction should be that Figure 22.6.5 displays a poor fit. The S shape should
be shifted over to the right so that it predicts better. After all, right now it
says that $20,000 of campaign contributions almost guarantees a Yes vote,
and this is clearly not true.

You can change the value in cell E2 of the Fitting sheet to adjust the position
of the S-shaped curve. Try 0.0005, 0.001, and 0.00005 in cell E2. Keep your
eye on the fitting table (top-left corner in cell H23) below the chart in the
Fitting sheet as you change the value of the slope in cell E2. The fitting table
makes clear how the S shape is being generated. For example, the S shape in
Figure 22.6.5 was generated with E2 = 0.00025. The fitting table shows how
the predicted probabilities are created.

Cells L23:L28 show that the formula for Std Units is simply the inter-
cept + slope*X. Cells M23:M28 show that the Std Units value is then fed into

5 Because 68 percent of the area lies from −1 to 1, 32 percent must lie outside of that interval. Because
the normal curve is symmetric, we can divide 32 percent by two to get the area from minus infinity to −1.
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Fitting Table: Uses the b0 and b1 values in cells E1 and E2
b0 b1 X     Std Units Pred Prob Yes

−3.008949 0.00025 $0 −3.00895 0.13%
−3.008949 0.00025 $10,000 −0.50895 30.54%
−3.008949 0.00025 $20,000 1.99105 97.68%
−3.008949 0.00025 $30,000 4.49105 100.00%
−3.008949 0.00025 $40,000 6.99105 100.00%
−3.008949 0.00025 $50,000 9.49105 100.00%

Figure 22.6.5. Determining the S shape.
Source: [NLLSFit.xls]Fitting.

Excel’s NORMDIST function (with parameters 0 and 1 for the center and
spread) to find the probability of a Yes vote (by computing the area under
the curve up to the Std Units value).

Of course, you can only do so much by eye to fit the curve. Actually fitting
an S-shaped curve to a set of data requires an objective function. The obvious
choice is to minimize the sum of squared residuals. Just as with OLS, a residual
is defined as actual minus predicted, and squaring penalizes equally for being
above or below the predicted value. Thus, the fitting algorithm is similar to
OLS: Choose an intercept and slope to fit the S shape so as to minimize
the SSR.

Before describing the actual process of finding the optimal intercept and
slope combination, we take a quick look at the surface under consideration,
as shown in Figure 22.6.6.

The 3DSurface sheet in NLLSFit.xls contains the data used to create
Figure 22.6.6. Each intercept and slope pair generates an SSR value. We
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Figure 22.6.6. A 3D view of the SSR surface.
Source: [NLLSFit.xls]3DSurface.

are trying to find the intercept and slope that lead to the lowest point on the
SSR surface. The 3DSurface sheet allows you to rotate the chart and change
the range of the slope coefficient.

Now that it is clear a minimization problem is being considered, we are
ready to deal with a difficult question: How can we find the coefficients that
solve the minimization problem? It turns out that there is only one alternative.
To fit the S shape of the normal cumulative distribution, you need a numerical
method.

Chapter 4 demonstrates several ways to fit a least squares line. We can use
Solver to minimize the sum of squared residuals or apply Excel’s LINEST
function (which underlies the Data Analysis: Regression approach). The
LINEST function uses an algebraic solution to the minimization problem.
In fact, there are many shortcuts that have been developed specifically for
finding the OLS estimates. When you hit F9 to draw a new sample, Excel’s
LINEST formula is able to use the algebraic solution to quickly and easily
compute the values of the intercept and slope estimates that minimize the
sum of squared residuals.

Fitting the S shape with the normal curve, however, is more complicated.
The problem of minimizing the sum of squared residuals from the S shape
based on the normal distribution has no closed-form solution. This means
that the parameter estimates must be derived through a process of iteration.
Basically, initial values are posited, the sum of squared residuals is evaluated
at those initial values, and then the values are changed and the SSR re-
evaluated. This procedure of repeated evaluation is called iteration, and it
continues until little improvement can be made in the SSR. At that point, the
solution is found.

Ordinary least squares estimates can be found iteratively (which is what
Excel’s Solver does), but it is much more convenient (and exact) to use
the simple algebraic solution. The point is that the S shape based on the
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normal cumulative distribution function can be found only through numeri-
cal methods.

In the case of the dummy dependent variable model, the optimization
problem is to choose the values of b0 and b1 (estimates of intercept and
slope parameters) of the underlying threshold function b0 + b1 Campaign
Contributions so as to minimize the sum of squared residuals.

It is easy to see why a computer is needed. Although it is technically possible
for a human being to zoom in iteratively on the solution by hand, it is so time-
consuming and cumbersome that it is not feasible.

The bad news is that the S shape of the normal cannot be represented in
a simple equation. The good news, on the other hand, is that we do have
a computer at our disposal and Excel has a built-in optimization algorithm
called Solver; thus, the iterative procedure that must be employed is well
within our means.

Using Excel’s Solver to Fit the S Shape

The Fitting sheet in the NLLSFit.xls workbook shows how Excel can be
used to find the parameter estimates for the 500 observed votes based on the
S-shaped normal cumulative distribution function. Execute Tools: Solver and
note how the Target Cell, Equal To, and Changing Cells have been chosen.
Click the Solve button.

Solver offers the S shape shown in Figure 22.6.7 as the best one.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10,000 20,000 30,000 40,000 50,000

Figure 22.6.7. Finding the optimal S shape.
Source: [NLLSFit.xls]Fitting.
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There are an infinite number of other cumulative normal S shapes from
which to choose. Each combination of b0 and b1 establishes a particular
S shape (as we demonstrated earlier in the Normal Dist sheet).

The particular combination of b0 and b1 in Figure 22.6.7 is the best solution
to the minimize-the-sum-of-squared-residuals optimization problem. Excel
iteratively cranked through combinations of b0 and b1 and evaluated the
SSR for each combination until it found one for which the SSR could not be
lowered by changing b0 and b1. Excel then reported this combination, and
we used those values of b0 and b1 to draw the graph.

The Sample-Based S Shape Bounces

Proceed to the NLLSvLPM sheet. It attempts to make the usual point that
the sample coefficients are random variables. This is more difficult to see
for NLLS than for OLS, however, because the S-shaped NLLS fit for each
sample cannot be immediately displayed as you hit F9.

Follow the instructions in the sheet to convince yourself that the sample
coefficients are indeed random variables. Scroll right to see the different
graphs displayed. Notice that there is a true S-shaped curve based on the β0

and β1 parameter values (in cells B1 and B2).
Each new sample generates an estimated curve that differs from the previ-

ous result and from the true relationship. This is the result of chance error in
our observed sample. Rewind and replay the world, giving 500 new legisla-
tors exactly the same amounts of campaign contributions, and the estimated
S-shaped curve will move because the observed pattern of Yes and No votes
will change. An observed sample is merely one outcome of the many possible
outcomes. The S-shaped curve bounces in the same way as the OLS-fitted
line!

In Graphs 4 and 5 in the NLLSvLPM sheet, compare the NLLS S shape
and the OLS/LPM line. Notice how the line bounces around when you hit
F9 but the estimated S shape does not. Why does the estimated S shape not
bounce? For our answer, see the text box under Graph 5 (top left corner is
cell AU50).

Monte Carlo Simulation

Getting the b0 and b1 values to minimize the sum of squared residuals for
a particular sample is important, but once we realize there is only a single
outcome of the chance process generating the data, we must find a measure
of the variability in the estimates. We can obtain a reading of the SEs of the
estimates via the Monte Carlo methods used throughout this book.
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Average 0.0001172 n 500
SD 0.0000125

Max 0.0001944
Min 0.0000829

b1 Summary Statistics

Empirical Histogram for 10,000 Repetitions
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0 0.00005 0.0001 0.00015 0.0002 0.00025
b1 estimates

 

Figure 22.6.8. Monte Carlo simulation of b1.
Source: [NLLSMCSim.xls]MCSim (MCSim sheet available only after clicking Show
MCSim button in Data sheet).

Open the Excel workbook NLLSMCSim.xls to run your own Monte Carlo
simulation. The Intro sheet explains the setup, and the Data sheet implements
it. Be careful about the number of repetitions you request. Because the Monte
Carlo algorithm has to get a new sample and use Excel’s Solver to find the
optimal coefficients, the process may take a while. Hit the ESC key if you
think this activity is taking too long. If the Monte Carlo is the middle of
Solver’s routine, it will ask if you want to continue. Keep hitting ESC until
you get to a dialog box that asks if you want to End or Debug. Choose End.
You could also let the Monte Carlo run over night. Figure 22.6.8 shows the
results for one Monte Carlo experiment (that ran all night).

Notice how the sampling distribution of b1 is not especially normal even
though we have a large sample of 500 observations. This problem is inherent
to this model, for DDV models require extremely large sample sizes before
large sample (or asymptotic) properties come into play.

We know the true parameter value of 0.000115 and can thus conclude that
the NLLS b1 estimator is biased because the average of the 10,000 repetitions
does not equal the true parameter value. The good news is that the bias is
not large and, more importantly, it diminishes as the sample size increases.
Thus, the NLSS b1 estimator, though biased is in small samples, is a consistent
estimator.

As usual, the empirical SD is an approximation to the true, exact SE of the
estimator. It tells us by how much the sample estimate bounces. Just as with
conventional OLS estimation, we are going to want a give-or-take number
that signals the variability of our estimate.
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We included Excel’s Solver in the algorithm running the Monte Carlo simu-
lation in the NLLSMCSim.xls workbook to make it easy for you to explore the
sampling distributions of the coefficients via Monte Carlo methods. The Excel
add-in, MCSimSolver.xla (explained in more detail in Chapter 9), enables
you to run Monte Carlo simulations that utilize Solver in each repetition. It
uses a nonvolatile random number function, RANDOMNV(), that allows
Solver to converge to the optimal solution without redrawing random num-
bers with each trial solution. You can use the Monte Carlo Simulation with
Solver add-in on your own nonlinear regression models.

Summary

This section has explained the estimation of a dummy dependent variable
model via an S-shaped curve with NLLS. It is clear that the intercept and slope
coefficients determine the S shape and that, by using the usual least squares
criterion (i.e., min SSR), we can compute the values of b0 and b1 that generate
a best-fit S shape. Unfortunately, we cannot derive an analytical formula for
the optimal solution; thus, we must rely on numerical optimization algorithms
(such as Excel’s Solver). Finally, because each sample contains chance error,
the estimates are random variables with sampling distributions.

Although much has been accomplished, we still need to learn how to obtain
and interpret the estimates in practice. This is the subject of the next section.

22.7. Interpreting NLLS Estimates

Workbooks: NLLSFit.xls; DDV.xla (Excel add-in)

Before we interpret the estimates, we have to get them! Although it is possible
to set up a worksheet to do this (as in the previous section), we have developed
an Excel add-in that does a great deal of the work for you. Use the DDV.doc
instructions in the Basic Tools\ExcelAdd-ins folder of the CD-ROM pack-
aged with this book to install the DDV.xla software in Excel and then run the
add-in on the dead data in the Fitting sheet of the NLLSFit.xls workbook.6

The Y values are in $D$4:$D$504, and the X data range is $A$4:$A$504.
Check the Probit NLLS box and click OK. See the ProbitNLLS10 sheet to
check your answers, which should look something like Figure 22.7.1.

6 This book has a second DDV model add-in called DDV Gauss–Newton (filename DDVGN.xla). The
DDV.xla add-in uses Excel’s Solver and will help you understand the optimization problem involved
in the DDV model. DDVGN.xla does not need Excel’s Solver and is faster and more flexible. Full
documentation on both add-ins can be found in the Basic Tools\ExcelAddins folder. Because they use
different methods, they give slightly different answers.
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Figure 22.7.1. DDV.xla results.
Source: [NLLSFit.xls]ProbitNLLS10.

Interpreting the Estimates

Although the NLLS S-shaped curve can be a vast improvement on the OLS
straight line in terms of the fit to the data, when it comes time to interpret the
estimates, NLLS is much more difficult than OLS. In particular, unlike OLS
estimates that easily and quickly convey information (e.g., b1 = −1.34 means
that a unit increase in X1 leads to a 1.34 decrease in Y), a transformation of
NLLS estimates is required.

We repeat: You cannot easily interpret the NLLS estimates as you do in
OLS regressions. Transformation is required. The standard procedure for
interpreting NLLS coefficients is to use the coefficients to determine the
predicted probabilities at given values of the independent variables. A table
of predicted probabilities can be augmented by a column for the change in
predicted probability as an independent variable changes as well as a graph.

Figure 22.7.1 shows that the slope estimate is 0.000125314. This most cer-
tainly does not mean that an additional $1,000 of campaign contributions
leads to a 12.5-percent increase in the predicted probability of voting Yes.
That would be an OLS-like, untransformed interpretation of the estimate,
which is wrong.

Clearly, the NLLS parameters are not acting directly on observed voting
behavior. Instead, the parameters are used to determine the value in standard
units up to which we will compute the area under the normal curve (this
area is the actual probability of voting Yes). Thus, to determine the effect of
campaign contributions on the predicted probability of voting Yes, we must
transform the parameter estimates into standard units (multiplying by the
given X) and then report the predicted probability as the area under the
normal curve. Figure 22.7.2 depicts the procedure for one value of X.

The area under the normal curve up to a standard unit value is a nonlinear
function of the standard unit value. For a standard unit value of −2, we
know the area under the normal curve from negative infinity to −2 is about
2.5 percent. If the standard unit value is increased to −1, the area up to −1
will rise to 16 percent – a gain of 13.5 percentage points. If the standard unit
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b 0 + b1 X Std Units Pred Prob of Yes is 
area under normal 

0.10923 
b 0  = −3.018343318 
b1 = 0.000125314 
X = $24 ,950

52.13% 

0%

25%

50%

−4 −3 −2 0 1 2 3 4−1
standard units

Figure 22.7.2. Transformation of NLLS estimates.

value is again increased by one unit to 0, the area will be 50%. From −1 to 0,
the area increases by 34 percentage points.

This means that, unlike the LPM, we cannot simply and easily say that a
given increase in campaign contributions will yield a particular change in the
predicted probability of observing a Yes vote. The predicted probability of
a Yes vote is the area up to the standard unit value, and this relationship is
nonlinear – it depends on the value of campaign contribution from which the
increase is taking place. Thus, we need a table to display the effect of increas-
ing campaign contributions from a variety of starting values for campaign
contributions.

The Dummy Dependent Variable Analysis add-in does this. After estimat-
ing the Probit Model via NLLS, click on the Analysis

Options button and check both
boxes to get approximate SEs and a predicted probability table (click on cell
A5 when prompted). The latter is crucial for interpreting estimates, whereas
the former tells us the variability in our estimates. An example of the output
from the Analysis

Options button is shown in Figure 22.7.3.
The predicted probability table output helps you interpret the estimates.

The table converts the coefficients into predicted probabilities for different
levels of Campaign Contributions. Other independent variables are evaluated
at their means, but in this example there are no other X variables. Notice that
the table cells for the predicted probabilities are formulas. This means the
table is alive and can be easily changed to compute predicted probabilities
for other X variable values.

Now it is time to clean up the results. The DDV add-in computes predicted
probabilities for a range of the chosen X variable from 2.5 SDs below the
average to 2.5 SDs above the average. In some cases, as in this one, some of
the values make no sense and should be deleted. In this example, negative
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Predicted Probability Table

No other X variables

SDs away Campaign Predicted Probability
−2.5 −11134.3 5.11E-06

−2 −3917.46 0.000226
−1.5 3299.408 0.004609

−1 10516.27 0.044611
−0.5 17733.14 0.213265

0 24950 0.54349
0.5 32166.86 0.844613

1 39383.73 0.972443
1.5 46600.59 0.997616

2 53817.46 0.999903
2.5 61034.32 0.999998

Predicted Probability

0

0.2

0.4

0.6

0.8

1

1.2

−20000 −10000 0 10000 20000 30000 40000 50000 60000 70000

Campaign Contributions

Figure 22.7.3. Initial results of predicted probability table.
Source: Analysis

Options button applied to a ProbitNLLS output sheet.

campaign contributions are not reasonable, and so we would delete the first
three rows of the predicted probability table. Although the initial output is
based on the values of the chosen X variable in standard units, the table is alive
and any values of the X’s can be used to compute the predicted probability.
In this case, it seems natural to let campaign contribution values range from
$0 to $50,000 by $10,000 increments.

Because the change in predicted probability is often of interest, we can
add a new column that computes this change as the given X variable changes.
Finally, we format the cells to make the table easier to read.

Our cleaned up version can be seen in the ProbitNLLS10 sheet. It looks
like Figure 22.7.4. Clearly, it is impossible to state the magnitude of the effect
of an increase in Campaign Contributions on the Predicted Probability of
voting Yes unless you know the initial amount of Campaign Contributions

Campaign 
Contributions

Predicted 
Probability ∆Pred Prob/∆$10,000

-$            0.13%
10,000$       3.88% 3.76%
20,000$       30.46% 26.58%
30,000$       77.10% 46.63%
40,000 $      97.70% 20.60%
50,000$       99.94% 2.24%

Voting Yes as a functon of Campaign Contributions

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

$- $10,000 $20,000 $30,000 $40,000 $50,000

Campaign Contributions

Figure 22.7.4. Cleaning up the results.
Source: [NLLSFit.xls]ProbitNLLS10.
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Figure 22.7.5. LPM versus NLLS.

from which the increase takes place. This is another way of saying that the
predicted probability is nonlinear in campaign contributions. Where does the
contributor get the biggest bang for the buck? This occurs right around the
middle of the campaign contribution distribution. An extra $10,000 in con-
tributions increases the predicted probability of a Yes vote by 46 percentage
points from $20,000 to $30,000. The same $10,000 does very little at either
end of the campaign contribution range.

LPM versus NLLS with a Probit DGP

We conclude this section by examining Figure 22.7.5, which is a graph that
compares the two estimation procedures presented in this chapter. The figure
is quite busy. The dots represent the percentage of those voting Yes in $1,000
intervals. The straight line is obviously the OLS fit for this particular sample.
There are two S shapes. The thicker one is the true relationship between
the probability of voting Yes and the amount of campaign contributions. The
thinner one is the fit for this particular sample.

There is no doubt about it – NLLS entails much more work than OLS,
but it does a much better job when the DGP follows the probit model. Not
only are the predicted probabilities always safely bounded between 0 and 100
percent, but the NLLS approach does not force the predicted probability to
be a linear function of the amount of campaign contributions.
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We point out, however, that NLLS still suffers from heteroskedasticity.
Therefore, in practice, most econometricians would use maximum likelihood
to estimate the parameters of a probit model.

Summary

Although NLLS in the dummy dependent variable setting is much more
difficult to estimate and interpret than OLS, it is important to recognize that
the same framework is being applied. We use a sample to get estimates (b0

and b1) of the true, unknown parameters (β0 and β1) of interest. We use
the reported SE of the coefficient estimate as a give-or-take number on the
estimate that provides information on its variability. Estimation procedures
and presentation of results may vary, but the idea that the observed sample
is merely one outcome of the chance process that generated the data (and
that therefore we need to determine the variability of the sample estimate)
will always remain the crux of inferential econometrics.

22.8. Is There Mortgage Discrimination?

Workbooks: MortDisc.xls; MortDiscMCSim.xls;
DDV.xla(Excel add-in);DDVGN.xla(Excel add-in)

This section uses mortgage discrimination as another example of a binary
response model. After introducing the example, including summary statistics
on the real-world data, we use hypothetical data to demonstrate the data
generation process and to show the behavior of binary response estimators
via Monte Carlo simulation. We then return to the real world and look at the
results of an important paper.

The Research Question

To obtain a home mortgage loan, one fills out an application and then the
lender decides whether to grant the loan. The research question focuses on
discrimination. Are minorities more likely to be denied loans solely because
of racial discrimination?

Home Mortgage Disclosure Act (HMDA) data show that, in fact, minori-
ties are rejected for home mortgage loans more often than whites. In
Figure 22.8.1, you can see that in 1998 blacks had a 38.42-percent mortgage
denial rate compared with an 18.16-percent rate for whites. Can we conclude
that there is racial discrimination in the home mortgage market?

Unfortunately, we cannot answer the question on racial discrimination in
mortgage loans on the basis of the difference in denial rates alone just as
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we cannot conclude that there is gender discrimination in wages by simply
comparing male and female average wages. There are many omitted variables
that may be correlated with race (credit history, loan to value ratio, and so
on). It may be these variables that are responsible for the higher observed
black denial rates. This is another example of the persistent, fundamental
issue of confounding in an observational study.

In their paper, Munnell et al. (1996) painstakingly extracted the individual
data from each loan application to include many potentially confounding vari-
ables in a dummy dependent variable model. Their goal was to test for racial
discrimination in home mortgage lending. We first work with a hypothetical
data set in order to understand the model and then turn to the real-world
results.

Mortgage Discrimination as a Dummy Dependent Variable Model

In our hypothetical example we will ignore real-world complications sur-
rounding empirical analyses of mortgage lending in order to use mortgage
lending as an example of a dummy dependent variable model. We use a sim-
ple, single-equation, three-independent-variable specification to generate the
latent probability of loan denial for each individual:

Threshold = β0 + β1Loan to Appraised Value Ratio

+ β2Years on Job + β3Black

Each individual who applies for a loan has an error term reflecting other
characteristics that influence that person’s credit worthiness. The loan is
denied if εi , individual i’s draw from the credit-worthiness error box, is less
than the threshold value. The parameter on the dummy variable Black, β3,
is the crucial coefficient in the analysis.

We created an Excel workbook, MortDisc.xls, that puts this hypothetical
model into action. Open MortDisc.xls and proceed to the BoxModel sheet
displayed in Figure 22.8.2. Notice that the two individuals being compared
have the same Loan to Appraised Value Ratio and Years on Job, but the
first person is black and the second is not. β3 = 0.7 reflects discrimination
because its positive value means that blacks have to cross a higher threshold
of credit worthiness to secure a home mortgage loan. We assume that the
tickets in the error box are normally distributed. Thus we use a probit model
for estimation.

We explain the formulas in each cell and how the graphs are constructed.
Then we illustrate the data generation process. Follow along in the BoxModel
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sheet in the MortDisc.xls workbook. Click on cell D11 (or D21) to show that
the threshold for loan denial is determined by the following formula:

Intercept + beta1∗A11 + beta2∗B11 + beta3∗C11.

We named cell D11 ThresholdBlack and cell D21 ThresholdNonBlack.
Because β3 = 0.7, when Black is 1, the threshold for blacks works out to 0,
whereas that for nonblacks is −0.7. The cells immediately to the right, E11
and E21, compute the probability of loan denial based on the threshold value.
The Excel function NORMDIST returns the normal cumulative distribution
function. The first person’s probability of denial evaluates to 50 percent,
whereas the second person has only a 24.2-percent probability of loan denial.
The pink area (or left side) in each graph represents the probability of loan
denial, and the green area (or right side) is the probability of loan acceptance
(1 – probability of denial).

Click on cell F11 (or F21) to display the formula used to generate the
independently, identically, normally (probit) distributed random error term
in the model,

=NORMALRANDOM(0, 1).

The blue vertical lines on the graphs indicate the random errors drawn for
each person. A logistic, or any other, distribution could be implemented
by using a random number generator corresponding to the desired distri-
bution.

The last cells to be explained are G11 and G21. Their formulas are

G11: = IF(F11 < ThresholdBlack, 1, 0) and
G21: = IF(F21 < ThresholdNonBlack, 1, 0).

Excel’s IF function returns a 1 in cell G11 when F11 is less than Threshold
Black and 0 when F11 is greater than or equal to ThresholdBlack. This gener-
ates the observed 0/1 outcome that is the essential characteristic of a dummy
dependent variable model.

Figure 22.8.2 illustrates how two observations in a sample would be gen-
erated. The first person has been denied a loan because the value of the
normally distributed error term is less than the threshold level. The nonblack
loan applicant, with exactly the same Loan to Value and Years on Job char-
acteristics, has been approved because the realized error term value exceeds
the threshold level. Figure 22.8.2 shows that the random draw of the nonblack
applicant would have resulted in a loan denial for a black applicant because
the threshold to be crossed to yield a loan acceptance is greater for the black
applicant.
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By hitting the F9 key on your keyboard, it is possible to bring Figure 22.8.2
to life. Using the F9 key recalculates the sheet, drawing new random num-
bers and reevaluating all cells. Hit F9 again and again to reveal a variety of
situations. The black loan applicant is not always rejected: If the blue vertical
line falls in the green area, then the random draw is above the threshold level
and the loan is not rejected. Similarly, the nonblack applicant is not always
accepted. You may have to hit the F9 key a few times, but you should quickly
see a draw for the nonblack loan applicant less than the threshold level of
−0.7 in standard units, which leads to the blue vertical line’s falling in the
pink area signifying that the loan application is denied.

Having completed the exploration of the DGP in this dummy dependent
variable model using the initial coefficient values, we invite you to change the
parameter coefficients to see how the model responds. Of particular interest
is β3 in cell C7. By changing this value to 2, for example, and hitting F9
several times, you can see how the threshold level is affected. There is less
discrimination at β3 = 0.7 than at β3 = 2. The threshold level, in standard units,
increases as β3 rises. Of course, no discrimination implies β3 = 0, making the
two graphs identical. Were this to be true, any observed differences in black
and nonblack loan-denial rates in a sample would be due to chance alone.

Using the DDV.xla Add-in on a Sample

With the data generation process well understood and implemented in Excel,
you are ready to draw a sample and use the Dummy Dependent Variable
Analysis add-in. Go to the Live sheet in the MortDisc.xls workbook to see
the 1,000-observation data set. The X’s (Loan to Appraised Value Ratio,
Years on Job, and Black) are fixed in repeated sampling. Each observation
is generated according to the DGP presented in the Intro sheet. Click the

Draw a Sample 
on THIS sheet button to draw new normal random errors (in column F), resulting

in a new series of observed loan denial values (column G). The Pivot Table
reports the number of Loan Denials by Black for this sample. Because the
workbook opens with cell C7 = 0, cells M17 and M18 which contain sample
loan-denial rates usually are close to each other.

Set the discrimination coefficient β3 in cell C7 to 0.7. Click the Draw a Sample 
on THIS sheet

button repeatedly and watch cells M17 and M18. There is a marked difference
in loan denial rates now. Black denial rates have soared. By changing β3

from zero to 0.7, you have increased the threshold value that blacks must
cross to obtain a loan. Their denial rates are now much higher than those of
nonblacks.

With the discrimination coefficient β3 = 0.7, click the Draw a Sample 
in a NEW book button

to have a new sample generated and displayed in a separate workbook. This
sample follows the same data generating process as that of the Live sheet in



P1: irk
0521843197c22 CB962B/Barretto 0 521 84319 7 November 7, 2005 13:46

Is There Mortgage Discrimination? 701

Figure 22.8.3. DDV Add-in applied to your sample.

the MortDisc.xls workbook, but it differs from the Live sheet in two respects.
First, the underlying probability of loan denial, threshold level, and normal
random draw information is not displayed. Second, the observed loan denial
is a “dead” 0 or 1 instead of a “live” formula. This sample will be used to
demonstrate the Dummy Dependent Variable Analysis add-in.

The next step is to make sure the DDV.xla add-in is available. If not, instruc-
tions are provided in the file DDV.doc, entitled “Installing and Using the
Dummy Dependent Variable Excel Add-in” in the Basic Tools\ExcelAddins
folder of the CD-ROM packaged with this book.

With the DDV.xla add-in properly installed, use it to estimate a Probit
ML model on your sample data. Figure 22.8.3 shows how to configure the
DDV add-in’s dialog box.

When finished, the DDV add-in displays a few messages and inserts a new
sheet in your workbook. Click on the cells in columns A, B, and C to see the
formulas. Execute Tools: Solver to see that Solver is used to solve the least
squares minimization problem.
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Using the Analysis
Options button makes quick work of creating a predicted proba-

bility table. Because the results are presented as formulas on the spreadsheet,
you are easily able to see the source of displayed numbers, quickly edit cells,
and make new calculations. For example, computing marginal probabilities or
making comparisons of predicted probabilities for different sets of indepen-
dent variables are routine tasks in Excel. This is important in binary response
models because the coefficient estimates are not easily interpreted.

In our sample, the estimated slope on the variable Black, b3, was 0.7391.
This slope represents an estimate of the discrimination level, but it cannot
be interpreted directly. Instead, predicted probabilities must be computed
for a variety of cases. Creating tables and charts to display the effects of the
coefficients is the best way to interpret and convey the information from an
estimated dummy dependent variable model.

The add-in also makes it possible to compare Probit and Logit models via
nonlinear least squares and maximum likelihood. See the references at the
end of this chapter for sources that explain maximum likelihood. You can use
the DDV.xla and DDVGN.xla add-ins to compare the predicted probabilities
from different models and estimation strategies.

Understanding the SE and Sampling Distribution
via Monte Carlo Simulation

Because your sample has its own set of realized random error values and,
therefore, observed 0/1 values, it will have its own set of estimated coefficients.
The sampling distribution of the estimated coefficient is often of interest.
We want the expected value, or center, of the sampling distribution of an
estimated coefficient, E(bk), to be equal to the true coefficient value, βk. We
also would like to know the spread of the sampling distribution, or standard
error, in order to determine the variability of the estimate.

The software you use to estimate a DDV model will report an estimated
SE. In our sample, the estimated slope on the variable Black, b3, was 0.7391,
and the estimated SE of b3 was 0.1016. Your results will be different.

Because the sample was cooked from known parameters (especially
β3 = 0.7), Monte Carlo simulation can be used to confirm that the reported
SE is reasonably accurate and to understand the SE itself. Open the MortDis-
cMCSim.xls workbook and click the Show Monte Carlo

Simulation button (in the Data sheet)
to reveal a new worksheet from which to run Monte Carlo simulations. Notice
that the workbook uses the method of Maximum Likelihood (ML) instead
of NLLS. Because you will undoubtedly come across papers that use ML, we
thought it would help you to see that it is simply another way to estimate the
coefficients.
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Average 0.7055 n 1000

SD 0.1023 Average Estimated SE 0.1028
Max 1.1084
Min 0.2954

b3 Summary Statistics

Empirical Histogram for 10000 Repetitions
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Figure 22.8.4. Monte Carlo simulation of maximum
likelihood estimation of b3.
Source: [MortDiscMCSim.xls]MCSim.

By generating 10,000 samples and estimating b3 in each sample, Monte
Carlo simulation provides an approximation of the sampling distribution.
Your Monte Carlo will differ slightly from that reported in Figure 22.8.4.

The standard deviation of the 10,000 b3 coefficients, 0.1023, which is an
approximation to the exact SE, substantially agrees with the average esti-
mated SE of 0.1028 reported by the Monte Carlo simulation. You are invited
to change the number of observations from 1,000 to 100 to see the effect on
the sampling distribution and average estimated SE of b3.

Mortgage Discrimination in the Real World

We conclude this section by returning to reality. We used cooked data to
explain the data generating process involved in the mortgage discrimination
question, and now we are ready to see what the real-world results show. In
their paper, Munnell et al. (1996) highlight a list of variables that compare
groups. Table 22.8.1 shows a few of these comparisons.

As you can easily see in the first row of Table 22.8.1, blacks and hispanics
have a 28-percent mortgage denial rate in their sample, whereas only 10 per-
cent of white loan applications are denied. This 18-percentage point gap is the
crux of the analysis. Is it due to discrimination by lenders or can other vari-
ables plausibly explain the gap? For example, lenders would be more likely
to reject applicants with unstable work histories. Table 22.8.1 says that whites
have an average of 23 years in the same line of work and 19 years on the job.
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Table 22.8.1. Selected Differences between Applicant Groups

Applicant Characteristic Total White Black/Hispanic

Percent rejected 15 10 28
Mean age 37 36 37
Mean years of school 15 16 14
Percent of applicants married 59.9 61.8 53.6
Mean number of years in line of work 20 23 13
Mean number of years on job 17 19 10
Mean base monthly income $4,109 $4,407 $3,132
Mean purchase price $186,000 $197,000 $150,000
Mean value liquid assets $85,000 $99,000 $41,000
Mean value total assets $316,000 $373,000 $128,000
Percent meeting credit history guideline

for approval
89.8 93.6 77.4

Percent with delinquent consumer
credit accounts

16.8 13.9 26.6

Percent with public record defaults 7.9 5.9 14.7
Percent of loans in special programs

(MHFA)
7.3 3.3 20.2

Percent single-family type of property 60.9 67.9 38.1

Note: Percentage base for each item does not include applicants for whom information was
missing.
Source: Munnell et al. (1996), p. 32.

Their black and hispanic counterparts, however, have only 13 and 10 years,
respectively.7 There are clear differences in other relevant variables such as
the applicant’s assets, credit history, and the type of property being purchased.

The question remains, however, Can these differences account for the
entire 18-percentage point gap? By estimating a dummy dependent variable
model, this question can be answered. Of course, we have several regression
specifications to choose from, including the linear probability, probit, and logit
models. For the latter two, we can choose NLLS or ML estimation approaches.

Munnell and her colleagues used a variety of models and estimation
approaches and decided to report a logit model via ML and the LPM (with
OLS, of course) as their first results (see Table 22.8.2). They point out a claim
we made while explaining the linear probability model: “One benefit of OLS
estimates is the ease with which one can interpret the coefficients. The OLS
coefficient on race implies that the rejection rate of minority applications is 7
to 8 percentage points higher than the rejection rate of applications by whites
with similar characteristics” (Munnell et al. 1996, p. 33).

They further point out that interpreting the logit coefficients is much more
difficult. To aid the reader, they created a Percentage Point Impact column

7 We should note that given the mean applicant ages, all of these job tenure figures appear too high.
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Table 22.8.2. Selected Determinants of Probability of Mortgage Loan
Application Denial

Logit

Percentage Point
OLS

Variable Base (1) Impact (2) Base (3)

Constant −13.69 −0.22
(12.62) (−1.47)

Risk of Default:
Housing expense/income 0.63 4.6 0.06

(2.76) (3.56)
Consumer credit history 0.51 4.1 0.04

(9.16) (9.46)
Cost of default:
Denied private mortgage 6.16 65.0 0.65

insurance (8.55) (16.06)
Personal characteristics:
Race (Black/Hispanic = 1) 1.00 8.2 0.07

(3.73) (2.57)
Percent correctly predicted 95.3
Adjusted R2 0.32
Number of observations 2,925 2,925

Notes: Numbers in parentheses are t statistics.
Not all variables included in the regression are displayed in this table.
Source: Munnell et al. (1996), p. 34.

[column (2) in Table 22.8.2] in addition to reporting the Logit estimates.
For continuous variables, the authors computed the change in the predicted
probability from a 1 SD increase (with all other variables held constant).
Thus, for example, the housing expense to income ratio has a logit estimate
of 0.63. This cannot be interpreted as a 63-percent increase in the probability
of rejection. Instead, the authors computed the probability of rejection for
the mean housing expense to income ratio and then found the probability
of rejection for a 1-SD increase in the housing expense to income ratio with
the other included variables held constant. The percentage point difference
resulting from the 1-SD increase in the housing expense to income ratio is
reported as the Percentage Point Impact.

For dummy independent variables, such as Race (which is 1 if you are
a minority applicant), they simply calculated the change in the predicted
probability of loan denial for an applicant with a particular characteristic. The
Percentage Point Impact reported in Table 22.8.2 for Race is 8.2 percentage
points. In other words, Munnell and her coauthors found that, with all of
the included variables held constant, the rejection gap between minority
applicants and whites falls from 18 percentage points to 8.2 percentage points.
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From this analysis they concluded that there is evidence of discrimination,
but not as much as the raw, unadjusted comparison would have you believe.

Unfortunately, this is an observational study. The authors are well aware
that there may be subtle, hidden confounding factors that have not been
accounted for. The remainder of the paper tries alternative models while
focusing on the Race variable. Because Race keeps popping up as signifi-
cant, the authors wrote “that a serious problem may exist in the market for
mortgage loans” (Munnell et al. 1996, p. 51).

Summary

As we have done in previous chapters, we devoted the last section of this
chapter to a real-world application of the theoretical ideas presented in ear-
lier sections. There are countless examples of dummy dependent variable
models in the literature and we merely scratched the surface of the issues
surrounding mortgage discrimination. We like the example because mort-
gage discrimination is an important issue. Table 22.8.2 is a nice model for
how to present results from Logit or Probit estimations.

22.9. Conclusion

Dummy dependent variable or binary response models are common because
many individual decisions are simply yes or no ones. Labor force partici-
pation, union status, voting, and attending college are a few of the many
examples of dichotomous choices. Unfortunately, the data generation pro-
cess underlying the observed 0 or 1 dependent variable makes estimating
parameters and interpreting results quite difficult.

We used a live, interactive display in three separate examples – Raid, Cam-
paign Contributions, and Mortgage Discrimination – to emphasize that the
0 or 1 binary response is generated by comparing a draw from an error box
to a threshold level. This idea is difficult to understand in the abstract but
easy to grasp once seen on your computer screen. Similarly, the fact that the
normal distribution has a flexible, S-shaped cumulative distribution function
that responds to values of the coefficients is much easier to understand once
you see a visual demonstration.

Although you will probably use sophisticated commercial statistical anal-
ysis software to actually estimate a DDV model, the two add-ins packaged
with this book, DDV.xla and DDVGN.xla, provide a user-friendly, simple
way to fit a dummy dependent variable model, including standard errors and
a table of predicted probabilities. The latter is crucial because one drawback
of NLLS or ML estimation of binary response models is that the coefficients



P1: irk
0521843197c22 CB962B/Barretto 0 521 84319 7 November 7, 2005 13:46

References 707

cannot be interpreted as easily as the usual OLS coefficients. Transformation
is required.

Finally, as is done throughout this book, we employ Monte Carlo simulation
to explain the concept of the SE and the sampling distribution. As with any
fitting procedure or estimator, a new sample will generate new coefficients.
By repeatedly resampling and examining the resulting estimated coefficients,
you have learned, once again, the idea behind the sampling distribution of a
coefficient. It is worth remembering that dummy dependent variable DGPs
require large sample sizes before the sampling distribution of the estimators
begins to resemble the normal curve.

22.10. Exercises

1. Open the Raid.xls workbook and go to the Death By Raid sheet. The initial default
parameters were A2 = 18 percent and G2 = 78 percent. Could these parameters
have produced the results in Figure 22.2.1?

2. Repeatedly clicking the Repeat the
Experiment button offers convincing evidence that the sam-

ple effectiveness of Raid is bouncing. That means it has a sampling distribution.
Determine and report its center and spread. Describe your procedure.

3. Change the probability of dying by Raid to 18 percent. Resample by hitting the
F9 key. What kinds of results do you get? Does Raid ever seem to be effective
(even though it really is not)?

4. Open the NLLSMCSim.xls workbook. Click the
Get a 100 Obs

Sample button in the Data
sheet and use your sample to estimate the model via OLS and Probit NLLS.
Create a graph that compares the predicted probabilities of the two estimation
techniques.

5. Open the MortDisc.xls workbook. With a positive level of discrimination, use the
MCSim.xla add-in to make sure the model is responding as expected. In other
words, track both Loan Denial cells and check to make sure the probability of
loan denial rates are correct. Take a picture of your results and report on the
results of your testing.

6. From the MortDisc.xls workbook, set β3 = 2 and follow the instructions in Sec-
tion 22.8 to create your own sample and estimate it via NLLS. Report your results.
Do you find evidence of discrimination in mortgage lending from your sample?
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Bootstrap

I also wish to thank the many friends who suggested names more colorful than
Bootstrap, including Swiss Army Knife, Meat Axe, Swan-Dive, Jack-Rabbit, and my
personal favorite, the Shotgun, which to paraphrase Tukey, “can blow the head off
any problem if the statistician can stand the resulting mess.”

Bradley Efron1

23.1. Introduction

Throughout this book, we have used Monte Carlo simulations to demon-
strate statistical properties of estimators. We have simulated data generation
processes on the computer and then directly examined the results.

This chapter explains how computer-intensive simulation techniques can
be applied to a single sample to estimate a statistic’s sampling distribution.
These increasingly popular procedures are known as bootstrap methods.
They can be used to corroborate results based on standard theory or pro-
vide answers when conventional methods are known to fail.

When you “pull yourself up by your bootstraps,” you succeed – on your
own – despite limited resources. This idiom is derived from The Surprising
Adventures of Baron Munchausen by Rudolph Erich Raspe. The baron tells
a series of tall tales about his travels, including various impossible feats and
daring escapes. Bradley Efron chose “the bootstrap” to describe a particular
resampling scheme he was working on because “the use of the term bootstrap
derives from the phrase to pull oneself up by one’s own bootstrap . . . (The
Baron had fallen to the bottom of a deep lake. Just when it looked like all
was lost, he thought to pick himself up by his own bootstraps.)” [Efron and
Tibshirani (1993), p. 5].

In statistics and econometrics, bootstrapping has come to mean to resam-
ple repeatedly and randomly from an original, initial sample using each

1 Efron (1979, p. 25).

709
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bootstrapped sample to compute a statistic. The resulting empirical distri-
bution of the statistic is then examined and interpreted as an approximation
to the true sampling distribution.

The tie between the bootstrap and Monte Carlo simulation of a statistic
is obvious: Both are based on repetitive sampling and then direct exam-
ination of the results. A big difference between the methods, however, is
that bootstrapping uses the original, initial sample as the population from
which to resample, whereas Monte Carlo simulation is based on setting up
a data generation process (with known values of the parameters). Where
Monte Carlo is used to test drive estimators, bootstrap methods can be
used to estimate the variability of a statistic and the shape of its sampling
distribution.

There are many types of bootstrapping because there are many ways to
resample, and there are a variety of ways to use the bootstrapped samples.
The next section introduces the bootstrap by returning to the free-throw
shooting example used to explain Monte Carlo simulation. We then apply the
bootstrap with regression analysis, using data presented by Ronald Fisher.
Section 23.4 demonstrates how the Bootstrap Excel add-in can be used on
your own data to obtain bootstrapped SEs. We conclude our introduction to
bootstrapping by exploring how the bootstrap can be applied to get a measure
of the variability of the R2 statistic.

23.2. Bootstrapping the Sample Percentage

Workbook: PercentageBootstrap.xls

We introduce the bootstrap with a simple example. Suppose you had a single
sample of 100 free throws and computed the percentage made. If you did
not know the true, underlying accuracy of the free-throw shooter, your best
estimate of the shooter’s probability of making a free throw would be the
sample percentage made.

Of course, there is variability in the percentage made out of 100 free throws.
The standard error of the sample percentage can be estimated via conven-
tional methods by dividing the sample SD (an estimate of the unknown pop-
ulation SD) by the square root of the number of free throws. This is not the
exact SE because the true SD is unknown.

With the estimated SE of the sample percentage and taking advantage
of the central limit theorem, we can generate confidence intervals and com-
pute P-values. This relies on the sampling distribution being approximately
normal.

A bootstrapping approach to the problem of estimating the SE and finding
the sampling distribution of the sample percentage treats the original sample
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as a population from which to sample, with replacement, 100 free throws.
By repeatedly sampling 100 free throws from this artificial population, we
generate a list of bootstrapped sample percentages. The length of the list is
equal to the number of bootstrap repetitions. Each number in the list is the
percentage of 100 free throws made from a bootstrapped sample. Just as in
a Monte Carlo simulation, the spread in the list approximates the SE of the
sampling distribution, and the empirical histogram of the repetitions mirrors
the probability histogram of the sample percentage.

The PercentageBootstrap.xls workbook puts these ideas into action. From
the Introduction sheet, click the Draw a Sample button. A new sheet, called Origi-
nalSample, appears in the workbook. Columns A and B contain the results of
100 free-throw attempts. The workbook is set up so that the shooter will have
a true probability of success between 65 and 75 percent. The best estimate of
this unknown probability is the sample percentage. Cell D15 reports the esti-
mated SE using the conventional approach, and cells D17 and D18 display
the lower and upper bounds of a 95-percent confidence interval (relying on
the normal distribution).

To understand how the bootstrap method works, click the Draw One Bootstrap
Observation

button several times. Each click draws a new observation for the bootstrapped
sample (from the 100 free throws in the original sample) and places it in
columns H and I. The sampling is done with replacement, and each observa-
tion in the original sample is equally likely to be drawn. To obtain a complete
bootstrapped sample, we need 100 observations, the same size as the original
sample.

Instead of drawing the bootstrapped sample one observation at a time,
you can simply click the Draw One Bootstrap

Sample button to draw 100 observations. Click
the Draw One Bootstrap

Sample button repeatedly. Each click draws a bootstrapped sam-
ple. The bootstrapped sample percentage is displayed in cell I1. Each new
bootstrapped sample generates a new bootstrapped sample percentage.

A particular observation may appear more than once in a bootstrapped
sample, whereas another may not be drawn at all. Cell K1 displays the number
of times a particular observation, number 27 in the original sample, appears
in the bootstrapped sample. Click the Draw One Bootstrap

Sample button repeatedly and
keep your eye on cell K1. Sometimes observation number 27 does not appear
at all, but usually it is drawn at least once. As you repeatedly draw a new
bootstrapped sample, you will probably see it appear between zero and three
times.

The bounce in the bootstrapped sample percentage is the sampling varia-
tion we want to capture. We need to resample repeatedly, keeping track of
the sample percentage in each bootstrapped sample. Click the Bootstrap

Simulation  but-
ton to access a new sheet, Bootstrap, from which a bootstrap analysis can be
carried out.
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Average = 71.02%
SD = 4.53%
Max = 89%
Min = 51%

Empirical Histogram for 10,000 Repetitions
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Figure 23.2.1. Bootstrapping the sample percentage.
Source: [PercentageBootstrap.xls]Bootstrap.

When we drew a sample, our Original Sample had 71 free throws made.
Using conventional methods – that is, the sample SD divided by the square
root of n (the number of observations)– the estimated SE is 4.56 percentage
points. Our bootstrap results are displayed in Figure 23.2.1. The bootstrapped
SE, the estimate of the exact SE based on bootstrapping, is 4.53 percentage
points. How did you do?

When estimating the SE of the sample percentage of 100 free throws, the
bootstrap and conventional approaches are in substantial agreement. This
makes sense because both are using the same information from the original
sample. The conventional approach uses the sample SD to construct the
estimated SE via a formula. The bootstrap treats the sample as a population
and resamples from it. The bootstrap converges to the conventional result as
the number of repetitions increases.

The two methods differ in estimating the sampling distribution itself.
Instead of relying on the normal distribution to approximate the unknown
shape of the sampling distribution, the bootstrap uses the empirical histogram
from the simulation as an estimate of the sampling distribution. Brownstone
and Valleta clearly stake out the issues:

This bootstrap method described above will only give accurate estimates if the orig-
inal sample is large enough to reflect the true population accurately. The traditional
analytic approach approximates the sampling distribution by a normal distribution



P1: IYP
0521843197c23 CB962B/Barretto 0 521 84319 7 November 7, 2005 13:56

Paired XY Bootstrap 713

centered at the sample mean with variance equal to the sample variance. This tradi-
tional approximation requires that the sample be large enough for the central limit
theorem to apply to the sample mean. If the sample size is small and the true popu-
lation is not normally distributed, then the bootstrap approximation should be more
accurate. Brownstone and Valleta (2001, p. 130).

In other words, the bootstrap will do a better job of answering questions
that involve the shape of the sampling distribution when its profile is not
normal. Suppose, for example, that we wanted to know the chances that a
95-percent free-throw shooter will make 16 or less out of 20 free throws. The
standard approach will fare badly because the sampling distribution of the
sample percentage for this case is not very normal.

Summary

This section has introduced the bootstrap by showing how it can be used
to estimate the SE and sampling distribution of the sample percentage. By
sampling with replacement from an original sample, we generate an artificial
sample. We use the artificial, or bootstrapped, sample to compute a statistic of
interest. By repeating this procedure many times, we obtain an approximation
to the sampling distribution of the statistic. The next section shows how the
bootstrap can be applied to regression analysis.

23.3. Paired XY Bootstrap

Workbook: PairedXYBootstrap.xls

In the 1940s, “although digitalis had been a standard medication for heart
disease for more than a century, there were still no reliable methods for
evaluating its potency. Biological assays (bioassays) were performed on frogs,
pigeons, and cats, but none were totally satisfactory” (Scheindlin, 2001, p. 88).
In too high a dose, digitalis is deadly. Doctors needed to know the right dosage
for different patients. Experiments on laboratory animals were undertaken
in an attempt to determine toxicity levels.

In 1947, Ronald Fisher published an article that analyzed the data from
digitalis assays from 144 cats. The data set had the sex, heart weight (in
grams), and body weight (in kilograms) of each cat. Fisher’s Table 1 (see
Figure 23.3.1) displayed salient summary characteristics.

Fisher noted that the “heart as a fraction of the entire body” was remark-
ably similar for female and male cats. Could the optimal digitalis dose be
determined simply as a function of the patient’s body weight? After all, if
given body weight, heart weight is simply a constant fraction, then from
body weight we can infer heart weight and administer the correct dosage.
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Females Males
Number   47   97
Total Body Weight 110.9 Kg.   281.3 Kg.
Total Heart Weight 432.5 g. 1098.2 g.

Heart as fraction of entire body      .3900%       .3904%

Fisher's Original TABLE 1

 

Figure 23.3.1. Fisher’s cat data for digitalis study.
Source: [PairedXYBootstrap.xls]Data.

Unfortunately, closer inspection revealed that the correspondence between
body and heart weight broke down. Fisher reported that the slope coeffi-
cients from regressions of heart weight on body weight for each sex differed:
“namely .2637% for females and .4313% for males.” A 1-kg increase in body
weight led, on average, to a 4.313-g increase in heart weights for males but only
a 2.637-g increase in heart weights for females. Figure 23.3.2, which Fisher
did not include in his published article, shows the two individual regressions.

Fisher suspected that male and female cats in his sample had different rela-
tionships between body and heart weight. The next step required a decision
on whether this difference was real. It could be that the difference observed
in the sample was simply due to chance error in the selection of the particular
cats chosen for the study.

Fisher used the data to illustrate how the analysis of covariance method can
be used to determine if the coefficient estimates from the two regressions are
statistically significantly different from each other. He concluded that “the
close agreement between the sexes in the average percentage of the body
taken up by the heart seems to mask a real difference in the heart weight to
be expected for a given body weight” (Fisher 1947, p. 68).

HeartWt = 2.6364BodyWt + 2.9813
HeartWt = 4.3127BodyWt − 1.1841
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Figure 23.3.2. Individual regressions on female and male cats.
Source: [PairedXYBootstrap.xls]Data.
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Model 1 Model 2 Model 3 Model 4
Females Males Both Both

Intercept 2.981 −1.184 −0.497 −1.184
(1.485) (0.998) (0.868) (0.925)

Body Weight (kg) 2.6364 4.3127 0.082 4.313
(0.625) (0.340) (0.304) (0.315)

Female 4.076 4.165
(0.295) (2.062)

Female*BodyWeight (kg) −1.676
(0.837)

N 47 97 144 144
RMSE 1.162 1.557 1.457 1.442

R2 0.28 0.63 0.65 0.66
SEs in parentheses

Dependent Variable: Heart Weight (g)

 

Figure 23.3.3. Uncovering gender differences via regression.
Source: [PairedXYBootstrap.xls]Data.

Although he chose to use the analysis of covariance method, Fisher could
have explored the effect of sex on the relationship between heart and body
weight with multiple regression analysis. Figure 23.3.3 compares the results
from four models. Models 1 and 2 treat females and males separately. Model 3
is a multivariate model that forces the slopes to be equal but allows the
intercepts to be different for female and male cats. The interaction term,
Female*BodyWeight (kg), in Model 4 relaxes the restriction on the slopes.
The coefficient on the interaction term has a P-value of 4.7% when testing the
null that it is 0. We would conclude that the slopes are statistically significantly
different from each other.

The hypothesis test of the null that the coefficient on Female*Body Weight
(kg) is zero relies heavily on the estimated SE. In turn, the computation of the
estimated SE is based on the estimate of the spread of the errors, the RMSE.
Ordinary least squares regression requires homoskedastic errors and uses a
single number to estimate the spread of the errors. Unfortunately, the RMSEs
from the individual regressions are worrisome because it looks like the male
cats have much greater spread around the regression line (RMSE = 1.557)
than the female cats (RMSE = 1.162). This is evidence of heteroskedasticity.
Fisher was aware of this problem and ended the paper with the following
observation: “It may be noted that the estimated variance of heart weight for
given body weight in males, 2.424 g.2, is considerably greater than the value
for females, 1.351 g.2 The greater residual variance for males possibly was
related to their larger size. The heaviest female weighed 3.0 Kg. while nearly
40 percent of the males exceeded this weight” (Fisher 1947, p. 68).

Heteroskedastic errors pose serious problems for OLS regression analy-
sis. Although estimates remain unbiased, OLS is no longer the best linear
unbiased estimator, and the reported OLS estimated SEs cannot be trusted.
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Regression Statistics for Heart Weight (g)
Number of observations 144 Number of missing observations = 0
Mean of Dep Var 10.631
RMSE 1.442
Coefficient Estimates
Variable Estimate SE Robust SE
Intercept −1.184 0.925 1.166
Female 4.165 2.062 1.854
Female*BodyWeight (kg) −1.676 0.837 0.735
Body Weight (kg) 4.313 0.315 0.414  

Figure 23.3.4. Robust SEs of regression coefficients.
Source: [PairedXYBootstrap.xls]Data.

Because we use the estimated SE to compute the t-statistic and P-value, the
hypothesis test conducted on the Female*Body Weight (kg) coefficient is
flawed.

The conventional solution is to estimate SEs that are robust to the pres-
ence of heteroskedasticity. Figure 23.3.4 shows the results of this approach
(using the OLS Regression add-in described in detail in the chapter on het-
eroskedasticity). The estimated SE falls by 12 percent from 0.837 to 0.735.
The P-value on the null that the slope is zero falls by half from 4.7 to 2.4%.

Another approach to estimating the SE is to use the bootstrap. For regres-
sion analysis, several different resampling schemes are possible. We will
demonstrate the most popular one, called paired XY or case resampling.
Using the original sample with 144 observations, three independent vari-
ables (Female, Female*Body Weight, and Body Weight), and the dependent
variable (Heart Weight), we generate each bootstrap sample by randomly
drawing 144 rows from the data.

Scroll over to column AK in the Data sheet of PairedXYBootstrap.xls.
Click the Draw One Bootstrap

Observation button several times. Each click draws a new obser-
vation for the bootstrapped sample and places it in columns AK, AL, AM, and
AN. Each click takes an entire row or record (which accounts for the names
paired XY or case resampling). The sampling is done with replacement, and
each observation in the original sample is equally likely to be drawn. To get a
complete bootstrapped sample, simply click the Draw One Bootstrap

Sample button to draw
144 observations. Click the Draw One Bootstrap

Sample button repeatedly. Each click draws
a bootstrapped sample. Regression results for the artificial bootstrapped sam-
ple are displayed in cells AP2:AS6 of the Data sheet. Each new bootstrapped
sample generates a new bootstrapped regression line. The cell highlighted in
yellow (AQ2) is the coefficient for the interaction term.

The bootstrapped SE of the slope of Female*Body Weight (kg) is the stan-
dard deviation from the list of coefficients generated by repeatedly resam-
pling. The Bootstrap sheet enables you to run your own analysis by simply
clicking the Run Bootstrap button. Figure 23.3.5 shows our results.
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Slope Female*BodyWt Estimates Average - Original Sample Slope Female*BodyWt Estimate

Average −1.6903 −0.0140

SD 0.7224
Max 0.9250
Min −4.7243

Empirical Histogram for 10,000 Repetitions
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Figure 23.3.5. Bootstrapping the interaction term.
Source: [PairedXYBootstrap.xls]Bootstrap.

The bootstrapped SE, the spread of the 10,000 bootstrapped coefficients,
is about 0.72 or 0.73. This agrees with the estimated SE via robust methods,
0.735. By resampling the entire row, or case, the paired XY bootstrap correctly
handles the heteroskedasticity.

To construct a confidence interval or conduct a test of significance via the
bootstrap, we have the possibility of two approaches. First, one can simply use
the bootstrapped SE as the estimated SE in a conventional computation. For
example, for a hypothesis test of the null that the coefficient on the interaction
term is zero, we use the bootstrapped SE to compute the t-statistic:

observed − expected
estimated SE

= −1.676 − 0
0.722

= −2.32.

This t-stat produces a P-value of about 2.2 percent.
There is an alternative to marrying the SE generated via the bootstrap to the

conventional approach. By directly using the bootstrapped approximation to
the sampling distribution, we can compute confidence intervals and conduct
hypothesis tests. A 95-percent confidence interval for the interaction term
coefficient is simply the 2.5th to the 97.5th percentile of the 10,000 bootstrap
repetitions. Scroll over to column AJ of the Bootstrap sheet to see that this
interval is from roughly −3.0 to −0.2. Because the interval does not cover 0,
you would reject the null that the true parameter value is 0.2

2 Efron and Tibshirani (1993) discuss the connection between confidence intervals and hypothesis tests.
The simple approach to bootstrapping canfidence intervals presented here, the percentile method, is
not used very often. For a review of better alternatives, see DiCiccio and Efron (1996).
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It appears Fisher was right. There is a statistically significant difference
in the relationship between body and heart weight for male and female cats.
Using the usual estimated SEs from OLS, however, is an inappropriate way of
obtaining the variability in the estimated coefficients because heteroskedas-
ticity is present. Robust SE methods and the bootstrap are two alternative,
better approaches.

Summary

In the previous section, we bootstrapped the SE of the sample percentage by
generating an artificial sample, finding the sample percentage for the artificial
sample, and repeating the procedure many times. This section has done the
same thing. From an original sample, we generated a pretend sample, ran a
regression on the pretend sample, and repeated the procedure 10,000 times.
The heart of bootstrapping is to generate artificial samples and construct the
same statistic on each sample as the statistic of interest in the original sample.

In both examples thus far, the spreadsheet has been set up for you. Can
you run a bootstrap analysis on your own data? Yes, you can, and the next
section shows you how.

23.4. The Bootstrap Add-In

Workbooks: PairedXYBootstrap.xls; Bookstrap.xla (Excel add-in)

The previous sections introduced bootstrapping using workbooks especially
designed for that purpose. This section shows how to use an Excel add-in
packaged with this book that enables you to run a bootstrap from any Excel
workbook. Thus, the add-in allows you to use bootstrapping methods on your
own data and your own statistic of interest.

The first step is to install the Bootstrap add-in. The software is in the
Basic Tools\ExcelAddIns\Bootstrap folder. Open the Bootstrap.doc file in
that folder for instructions on how to install and use the add-in.

Having installed the Bootstrap.xla file, open the PairedXYBootstrap.xls
workbook to test drive the Bootstrap simulation add-in. The Female sheet
shows the OLS estimated SE on Body Weight is about 0.625. Let us use the
Bootstrap add-in to find the Paired XY bootstrap SE of Body Weight.

Begin by inserting a sheet into the workbook (Insert: Worksheet) and
renaming it BootFemale and then go to the Data sheet and copy the body
and heart weight data for the female cats (cell range C1:D48) to the A1:B48
range of the BootFemale sheet. We use the data in the BootFemale sheet
as our original sample and the same range as the place in which we will
write our bootstrapped resamples. This will destroy the original sample in
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Figure 23.4.1. Preparing to run a bootstrap.

the BootFemale sheet, but we have it in the Data sheet and thus this is not a
problem.

We need, however, to compute the statistic of interest (the OLS estimated
SE of Body Weight) for each bootstrapped sample. We can use Excel’s
LINEST function for this. In the BootFemale sheet, select a 5 × 2 cell range
and use LINEST to regress Heart Weight on Body Weight. With the data in
the BootFemale sheet in cells A1:B48, the LINEST formula should look like
this: “= LINEST(B2:B48,A2:A48,1,1).” The LINEST results (especially the
OLS estimated SE for Body Weight) should be exactly equal to the regression
results in the Female sheet.

With LINEST available to recompute the slope coefficients as we repeat-
edly put down new samples in the worksheet, we are ready to bootstrap.
Execute Tools: Bootstrap . . . to bring up the bootstrap dialog box.
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Average 2.634 1000 repetitions
SD 0.6082
Max 4.911
Min 0.940

Summary Statistics Notes

Histogram of Boot Female!$ D$ 3

0.9 1.4 1.9 2.4 2.9 3.4 3.9 4.4 4.9

Figure 23.4.2. Results from the bootstrap add-in for the heart weight coefficient.

Enter the same cell range for the Original and Bootstrap Sample input
boxes and select the coefficient on Body Weight as the cell to be tracked.
Figure 23.4.1 shows how the dialog box should look. The BootFemale!
$A$2:$B$48 range contains the data, and we selected cell D3 as the tracking
cell because we put Excel’s LINEST array function in cells D3:E7, which
reports the slope coefficient in cell D3. We obtain a bootstrapped approxi-
mation of the slope coefficient’s sampling distribution by repeatedly resam-
pling and keeping track of the slope coefficient from each bootstrapped
sample.

When you click the Proceed button, the add-in immediately warns you
that the original sample data will be overwritten. The Bootstrap add-in reads
the original sample, samples from it (with replacement), and then writes the
bootstrap sample (temporarily) to the spreadsheet. It records the tracked
cell and then repeats this procedure for as many repetitions as you request.
Because the original sample is used as the place in which bootstrapped sam-
ples are written, a warning is issued. In this case, we can safely proceed
because the original female cat data is in the Data sheet.

When the bootstrap simulation finishes its last repetition, a worksheet is
added to the workbook that displays the first 100 repetitions along with sum-
mary statistics and a histogram of the complete results (see Figure 23.4.2).

For female cats, the paired XY bootstrapped SE and OLS estimated SE on
Body Weight are almost the same. This is not true for the male cats (as the
Q&A sheet in the PairedXYBootstrap.xls workbook asks you to show).
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Summary

You may have noticed that the bootstrap built into the workbook is much
faster. Unlike the simulations in the Bootstrap sheet, the Bootstrap add-in
spends a great deal of time writing each sample to the spreadsheet. Using
this add-in on a large data set may be impractical (although the authors have
let the Bootstrap add-in run over night).

The Bootstrap add-in is ideal, however, for exploring problems on your
own. Any statistic you can compute on the spreadsheet, no matter how com-
plicated, can be bootstrapped. The next section shows how to apply bootstrap
methods to a statistic for which no conventional method exists for estimating
its sampling distribution.

23.5. Bootstrapping R2

Workbook: BootstrapR2.xls

In this section, we apply the bootstrap to a statistic for which there is no
standard analytical means of estimating its variability. We also introduce a
new resampling scheme called the residuals bootstrap.

The coefficient of determination, commonly abbreviated and reported sim-
ply as R2, is often used as a measure of the overall goodness of fit of a regres-
sion. This coefficient ranges from 0 to 1: 0 signifies that the regression explains
none of the observed variance in the dependent variable, and 1 denotes a
perfect fit. Chapter 5 explains the R2 statistic in detail and shows how it is
calculated. Excel reports R2 through its Data Analysis: Regression add-in
and in the third row and first column of the LINEST array function.

Like the sample slope, estimated SE, and other sample-based statistics, R2

is a random variable. If you draw a new sample, a new R2 will result. Ohtani
(2000) points out that the sampling properties of R2 have been investigated.
Researchers, however, rarely, if ever, report a measure of the precision of
the R2 value because the sampling distribution of R2 is complex and depends
on the particular values of the X variables. Thus, although we know R2 is a
random variable, without an SE, confidence intervals and hypotheses tests
using R2 are simply ignored.

The bootstrap offers a way to estimate the SE of R2 and its sampling dis-
tribution. The bootstrap, in this case, is conducted by repeatedly resampling
from the original sample and keeping track of the R2 of each artificial sample.
Just like any other sample-based statistic, we can approximate the sampling
distribution of R2 via the empirical histogram generated by the bootstrap
simulation and use the SD of the bootstrapped R2 values as an estimate of
the exact SE of R2.



P1: IYP
0521843197c23 CB962B/Barretto 0 521 84319 7 November 7, 2005 13:56

722 Bootstrap

Figure 23.5.1. The data sheet.
Source: [BootstrapR2.xls]Data

Open the Excel workbook BootstrapR2.xls and go to the Data sheet. Both
the Monte Carlo Simulation and Bootstrap add-ins will be applied to this
workbook, and so you need to have them available.

Let us begin with a tour of the Data sheet, a portion of which is displayed in
Figure 23.5.1. Hit F9 to recalculate the sheet and confirm that R2 is a random
variable.

The data generation process meets all of the classical model’s requirements.
The X’s are fixed in repeated sampling (and thus do not change when you hit
F9); the errors are independently and identically distributed (and, in addition,
drawn from a normal distribution); and each Y is generated by β0 + β1X1 +
β2X2 + ε.

The Data sheet allows you to control two crucial parameters, the sample
size and �, by clicking on the buttons. The Greek letter � is the parent
coefficient of determination. This parameter controls the position and shape
of the sampling distribution of R2. In Figure 23.5.1, and on the spreadsheet in
cell G16, notice that � (set at 0.667) does not equal the R2 obtained from the
20 observation sample. This is due to chance error, which is also responsible
for the deviation of the sample coefficients (in the first row of the LINEST
Regression Results table) from their respective parameter values (the betas
in cells H5:H7).

Unlike the sample slope coefficients, whose expected value is equal to
the parameter value, R2 is a biased estimator of �. The R2 statistic is con-
sistent, however, and thus, as the sample size increases, its expected value
does converge to its parent parameter value (and the SE converges to 0).
You can quickly get a sense of the sampling distribution of R2 by running a
Monte Carlo simulation. Execute Tools: MCSim . . . and select cell G16 as the
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tracking variable. The average of your Monte Carlo repetitions is an approx-
imation to the expected value, and the SD is an estimate of the exact SE.
Your results should be similar to the MCSimN20Phi0.667 sheet (available
by clicking the Show MCSim

Results button). Note the bias of R2 as an estimator of �

(the average of the 10,000 R2 values is not close to 0.667) and the nonnormal
shape of the histogram.

Now that the properties of the sampling distribution for R2 for this data
generation process are known, we are ready to proceed to the bootstrap.
Instead of using the paired XY Bootstrap, we introduce a different resampling
scheme. The residuals bootstrap uses the residuals as a stand-in for the errors
and produces a bootstrapped sample by shuffling the residuals and creating
a bootstrapped Y observation according to the equation

Bootstrapped Y = b0 + b1 X1 + b2 X2 + residual.

Note that the coefficients are not the β’s (because the true parameter values
are unknown) but the original sample-estimated coefficients.

Some preparatory work is needed to run the residuals bootstrap, but we
have set up the spreadsheet for you. Click the Draw a Single

Sample button in the Data
sheet to obtain an Original Sample and regression results. Click on the Y data
cells in column AE to see that the cells contain numbers (not formulas) that
represent a single realization from the data generation process. Column AD
is blank because you cannot observe the errors.

Cell range AG14:AI18 of the Data sheet reports the regression results
for your Original Sample. Cell AG16 displays the R2 value for which we
want to find the SE. In column AK, we have computed the residual for
each observation. Click on cell AK14 to see the usual actual minus predicted
formula for the residual.

The data next to the residuals column are labeled “Adj residuals.” By mul-
tiplying the residuals by an adjustment factor, we improve the performance
of the bootstrap.3 The Adj Residuals represent the errors and are our artifi-
cial population. By sampling with replacement from the Adj Residuals, we
can create artificial dependent variables and bootstrapped regression results.
Click on one of the Boot Y cells in column AQ and examine the formula. It
uses the Original Sample coefficients along with a randomly sampled Boot
Residual to form Boot Y.

We will use the Bootstrap add-in to write the Boot Residuals in column
AP and track the R2 for each bootstrapped sample in cell AS16. Figure 23.5.2
shows how the Bootstrap add-in should be configured.

Click Proceed to obtain a bootstrap estimate of the variability of R2 and the
shape of its sampling distribution. You now have Monte Carlo and Bootstrap

3 For more on rescaling the residuals, see Wu (1986, p. 1281).
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Figure 23.5.2. Setting up the bootstrap.
Source: Bootstrap.xla add-in.

simulation results. It is time to figure out what all of this means. Figure 23.5.3
compares the Monte Carlo with the Bootstrap for n = 20 and � = 0.667.

The Monte Carlo results, on the left, are a good approximation to the true
sampling distribution of R2. The average of the 10,000 repetitions is 0.706,
which is close to the exact expected value (reported by Ohtani) of 0.7053.
Similarly, the SD of the 10,000 repetitions, 0.0945, is a good approximation to
Ohtani’s exact SE of 0.0955. The Monte Carlo simulation is based on knowing
the data generation process and simply repeating it and directly examining
the results. Your Monte Carlo results should be quite close to ours. It should
not be surprising that the Monte Carlo with 10,000 repetitions does a good
job of reflecting the true sampling distribution.

The Bootstrap results, the right panel in Figure 23.5.3, are not as good as the
Monte Carlo results. With 1,000 bootstrap repetitions, we had an average R2 of
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Average 0.706 N
SD 0.0945 Phi 0.667
Max
Min

Summary Statistics Notes

Histogram of Data!$G$16

0.25 0.35 0.45 0.55 0.65 0.75 0.85

Average 0.663 N 20
SD 0.1103 Phi 0.667
Max
Min

Summary Statistics Notes

Histogram of Data!$AS$16

0.26 0.36 0.46 0.56 0.66 0.76 0.86

0.939
0.257 0.272

0.935

20

Figure 23.5.3. Monte Carlo and bootstrap simulation results.
Source: [BootstrapR2.xls]Data.

0.663 with an SD of 0.1103. Your bootstrap results may be markedly different
from ours (available by clicking the Show Bootstrap

Results button). To understand the
inferiority of the bootstrap compared with the Monte Carlo, remember that
the latter is based on knowing and running the true data generation pro-
cess. The bootstrap, however, takes one Original Sample – one realization of
the DGP – and treats it as a population from which to resample. The boot-
strap relies on the premise that the Original Sample will closely mirror the
population. The sample size, however, is merely 20 in this case, and so it is
quite possible that the Original Sample differs substantially from the true
population.

In fact, seen in this light, it is actually quite remarkable that the bootstrap
does as well as it does. After all, the bootstrapped and Monte Carlo sam-
pling distributions are reasonably similar, and our bootstrap approximate SE
(0.1103) is not that far off the true mark (0.0955).

Of course, to run a full test of the bootstrap, we would have to nest simula-
tions. In other words, take an Original Sample, bootstrap it (like we did), then
take another Original Sample, bootstrap it, and repeat this many times. The
Advanced Thinking button allows you to do exactly this, but Ohtani (2000) has done
the hard work for us. His experiments show that the Residuals Bootstrap has
an expected value of 0.7089 with a spread of 0.0899. This shows that, for this
case, the Residuals Bootstrap does a good job of approximating the sampling
distribution of R2.

Once a bootstrap approximation of the variability of the statistic has been
obtained, we have two options: (1) use the Bootstrapped SE in conventional
ways to construct confidence intervals and conduct tests of significance or (2)
use the bootstrapped values themselves for these purposes. Note that we are
using the bootstrap to estimate the variability of R2, not the statistic itself.
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Could we have used the paired XY instead of the residuals bootstrap on
this problem? Yes, and the Q&A sheet in BootstrapR2.xls invites you to do
so. Remember that, unlike Fisher’s cat data, the DGP in the BootstrapR2.xls
workbook exactly follows the classical econometric model. If you know that
the errors are identically, independently distributed, then the Residuals
Bootstrap is appropriate. On the other hand, if the DGP is based on sam-
pling X and Y from a population, then use the paired XY Bootstrap. In gen-
eral, the bootstrap procedure adopted should mimic the DGP as closely as
possible.

Unlike the paired XY Bootstrap, if the residuals bootstrap is applied to
Fisher’s cat data (in PairedXYBootstrap.xls), you will not correctly estimate
the sampling distribution. You could use a modified residuals bootstrap, tying
the size of the residual to whether the cat was male or female.

As Efron and Tibshirani make clear, “perhaps the most important point
here is that bootstrapping is not a uniquely defined concept” (Efron and
Tibshirani 1993, p. 113). In other words, within the realm of “resample from
an original sample,” there are a great many possibilities in the resampling
scheme. Research in bootstrapping methods focuses on the properties of
alternative resampling plans.

Summary

Unlike previous sections in this chapter where we used bootstrapping meth-
ods to reproduce results obtained with conventional techniques, this section
showed how the bootstrap can be used to estimate the variability of R2, a
statistic with a sampling distribution whose analytical solution is beyond the
reach of traditional statistical practice. This example also allowed us to intro-
duce the idea that there is more than one way to resample. The next section
concludes our introduction to the bootstrap by highlighting a few of the points
in the debate about the role of bootstrap methods.

23.6. Conclusion

The heart of the bootstrap is not simply computer simulation, and bootstrap-
ping is not perfectly synonymous with Monte Carlo. Bootstrap methods rely
on using an original sample (or some part of it, such as the residuals) as an
artificial population from which to randomly resample.

Because the bootstrap utilizes resampling, advances in computing power
have facilitated the development of the bootstrap. Bradley Efron is recog-
nized as the inventor of the bootstrap – not because he was the first to con-
ceive of replacing an unknown population with a single sample but because
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he realized that the explosion in computing would permit a wide variety of
resampling schemes.

The method, however, is still in its infancy, and many questions remain
unanswered.

Grand claims sometimes have been made for bootstrap analysis. For instance, Efron
and Tibshirani (1993) and Vinod (1998) envision the bootstrap as part of a strategy
to find universally applicable methods for estimation and inference, which can be
implemented with very little effort or analysis by researchers. This vision is tempt-
ing, especially given the ease and speed with which bootstrap estimates for many
models can be obtained using modern desktop computers. However, Manski (1996)
argues that this vision is flawed due to the inherent ambiguity of statistical theory in
comparing alternative estimation procedures.

Brownstone and Valleta (2001, p. 139)

The fundamental requirement of the bootstrap is that the resampling be
faithful to the data generation process. This can be difficult to do in practice.
Consider the two bootstrap methods used in this chapter: paired XY and
residuals bootstraps. These are two of many possible resampling schemes.
The paired XY Bootstrap handled the heteroskedasticity in Fisher’s cat data,
but it is not always clear which resampling strategy is best for a particular
case.

But critics have not been able to slow the advance of bootstrap methods.
Modern data analysis software includes commands for bootstrapping, and
the latest research papers report bootstrap results. Econometrics textbooks
increasingly devote space to explaining the bootstrap.

The allure of the bootstrap is due to the weakness of its competition as
much as its own inherent advantages. Remember that conventional statis-
tical theory relies heavily on large-sample asymptotic theory. With finite
sample sizes, we know for a fact that using the limiting distribution (for
example, the normal distribution for a regression coefficient) is merely
an approximation to the exact sampling distribution. Research is show-
ing that bootstrapping outperforms the conventional approach in areas in
which the shape of the sampling distribution is crucial such as confidence
intervals.

In addition, bootstrap methods force you to confront the data generation
process directly. You must describe the way the dependent variable is gener-
ated and the role of the X’s (for example, fixed or stochastic) to construct a
resampling scheme that mimics the DGP. Once so described, the bootstrap
can quickly approximate the sampling distribution of complicated statis-
tics that would require difficult (and sometimes impossible) mathematical
derivations.

Finally, no restrictive distributional assumptions are required to use the
bootstrap. The sample data simply are what they are. Are the errors normally
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distributed? This is a crucial question for anyone wishing to apply a conven-
tional t-test correctly, but the answer is irrelevant for a bootstrap analysis.

“Bootstrap methods, and other computationally intensive statistical tech-
niques, continue to develop at a robust pace. . . . The twenty-first century may
or may not use different theories of statistical techniques, but it will certainly
be a different, better world for statistical practitioners” (Efron and Tibshirani
1993, p. 394).

23.7. Exercises

1. In Section 23.2, the text claims that, “in other words, the bootstrap will do a better
job of answering questions that involve the shape of the sampling distribution
when its profile is not normal. Suppose, for example, that we wanted to know the
chances that a 95-percent free throw shooter will make 16 or less out of 20 free
throws. The standard approach will fare badly because the sampling distribution
of the sample percentage for this case is not very normal.”
a. Use the normal approximation to estimate the chances that a 95-percent free-

throw shooter will make 16 or less out of 20 free throws. Describe your pro-
cedure and show your work. HINT: You need to find the SE of the sample
percentage and use the endpoint correction (calculating the area under the
normal curve up to 16.5, instead of just 16).

b. Suppose you had an original sample of 19 out of 20 free throws made. Use the
Bootstrap add-in to find the chances that the shooter will make 16 or less out of
20 free throws. Describe your procedure and take a screenshot of your results.

c. Given your work in parts a. and b., what do you conclude about the claim
that the bootstrap will do better than the standard approach (using the normal
approximation)?

2. Suppose you had an original sample from a 95-percent free shooter in which he
or she made all 20 free throws. How would the bootstrap work in this case?

3. Use the Bootstrap sheet in PairedXYBootstrap.xls to estimate the SE and sampling
distribution of the coefficient on BodyWeight in Model 4. Take a screenshot of
your bootstrap results.

4. The OLS estimated SE for the coefficient on BodyWeight in Model 4 is 0.315.
Does your bootstrap SE substantially agree with the OLS estimated SE? Explain
the reason for the difference or agreement.

5. Use the Bootstrap add-in to run a residuals bootstrap of the coefficient on Body-
Weight in Model 4. Take a screenshot of your bootstrap results.

6. Compare the paired XY and residuals bootstraps for this case. Which one do you
prefer? Why?
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Simultaneous Equations

The method of two stage least squares (2SLS or TSLS) is second in popularity only
to ordinary least squares for estimating linear equations in applied econometrics.

Jeffrey M. Woolridge1

24.1. Introduction

Throughout this book, we have used regression analysis in a variety of ways.
From the simplest bivariate regression to consideration of the effects of het-
eroskedasticity or autocorrelation, we have always worked with a single equa-
tion. This chapter introduces you to simultaneous equations models (SEM).
As the name makes clear, the heart of this class of models lies in a data gen-
eration process that depends on more than one equation interacting together
to produce the observed data.

Unlike the single-equation model in which a dependent (y) variable is
a function of independent (x) variables, other y variables are among the
independent variables in each SEM equation. The y variables in the system
are jointly (or simultaneously) determined by the equations in the system.

Compare the usual single-equation DGP,

y = β0 + β1x1 + ε,

with a simple, two-equation SEM:

y1 = α0 + α1 y2 + α2x1 + ε1

y2 = γ0 + γ1 y1 + ε2.

Notice that the first equation in the system has a conventional x variable,
but it also has a dependent variable (y2) on the right-hand side. Likewise,
the second equation has a dependent variable (y1) as a right-hand side vari-
able. In a simultaneous equations system, variables that appear only on the

1 Wooldridge (2003, p. 484).
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right-hand side of the equals sign are called exogenous variables. They are
truly independent variables because they remain fixed. Variables that appear
on the right-hand side and also have their own equations are referred to
as endogenous variables. Unlike exogenous variables, endogenous variables
change value as the simultaneous system of equations grinds out equilibrium
solutions. They are endogenous variables because their values are determined
within the system of equations.

A natural question to ask is, What happens if we just ignore the simul-
taneity? Suppose, for example, we are interested only in the effect of y1 on
y2. Could we simply toss out the first equation and treat the second one as
a standalone, single equation, using our usual ordinary least squares regres-
sion to estimate the coefficients? In fact, this is what most single-equation
regressions actually do – they simply ignore the fact that many x variables
are not truly exogenous, independent variables. Unfortunately, it turns out
that closing your eyes to the other equations is not a good move: the single-
equation OLS estimator of γ 1 is biased. This important result, called simul-
taneity bias, occurs because y1 is correlated with ε2, as we will show in
Section 24.3.

Fortunately, there are ways to consistently estimate the coefficients in the
system. The most common approach is called the method of instrumental
variables or IV. When several instrumental variables are available, they are
combined via regression (the first stage) and then used in a second regression.
This procedure is called two-stage least squares, 2SLS (or TSLS).

We cannot hope to cover this wide and complex area of econometrics
completely in this introductory text, but we can convey the essentials of
SEMs. As we have done with other topics, we will focus on fundamental
concepts, using concrete examples to illustrate key points.

The next section introduces a simple example used throughout the chapter.
Section 24.3 shows how OLS on a single equation pulled from a simultaneous
system of equations is hopelessly flawed. With OLS out of the picture, we then
turn to a demonstration of how IV estimation via 2SLS works.

24.2. Simultaneous Equations Model Example

Workbook: SimEq.xls

The hoary example of simultaneous equations in econometrics is supply
and demand. Every first-year student in economics is taught that quantity
demanded depends on own price, prices of other goods, and consumers’
income. On the other hand, quantity supplied depends on own price, prices
of goods related in production, and firms’ expectations. Together, supply and
demand interact to generate an equilibrium price and quantity combination.
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Because there is a solid foundation of theory and intuition behind the joint
determination of price and quantity, it is not surprising that almost every
introduction of SEM utilizes supply and demand. Illustrating simultaneity
via supply and demand can be found in countless econometrics texts and is
so clichéd that we will rely on a different example.

Our hypothetical SEM example is built on a simple, two-equation model
of the crime rate and law enforcement spending.

EnforcementSpendingi = γ0 + γ1CrimeRatei + εES
i .

CrimeRatei = β0 + β1EnforcementSpendingi + β2Ginii + εCR
i .

Each error term is independently and identically normally distributed with
mean zero and a given, constant SD. In a simultaneous equations model,
each y variable has its own structural equation describing how the variable
is generated.

The first structural equation says that enforcement spending by the state,
measured in dollars per person per year, is a function of the number of
crimes per 100,000 people. The Bureau of Justice Statistics (available online
at <www.ojp.usdoj.gov/bjs/>) reports that, in the United States, enforce-
ment spending is about $500 per person and the crime rate is about 4,000 per
100,000 people. Suppose that the parameter of special interest in this exam-
ple, gamma1 (γ 1), is positive; increases in the crime rate lead to more police
officers, prison guards, and so forth.

The second structural equation flips enforcement spending and the crime
rate. People deciding how many crimes to commit are influenced by the
locality’s law enforcement expenditures. Communities with high levels of
enforcement will enjoy lower crime rates ceteris paribus. In addition, the
distribution of income, measured by the Gini coefficient,2 also affects the
crime rate. Higher Gini values mean more income inequality and higher
crime rates. Unlike enforcement spending, Gini is a truly exogenous variable
in this model.

As Wooldridge (2003) points out, “the most important point to remember
in using simultaneous equations models is that each equation should have a
ceteris paribus, causal interpretation” (p. 525). Our model meets this require-
ment because government policy makers allocate resources to enforcement
spending based on the amount of criminal behavior, whereas criminals decide
how many crimes to commit depending on the perceived probabilities of con-
viction and severity of punishment, which are determined by enforcement
spending.

2 The Gini coefficient, or index, ranges from 0 (perfect equality) to 1, or 100 percent (meaning one person
has all of the income). The GiniData sheet in SimEq.xls has values for a few countries from the 1990s
and sources for learning more about this measure of income inequality.
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The model also contains an equilibrating force that characterizes most
simultaneous equations models. An increase in the crime rate, for example,
leads to more enforcement spending, which, in turn, lowers the crime rate,
which lowers enforcement spending, and so on, until the model settles to
its equilibrium solution. We assume that only the equilibrium enforcement
spending and crime rate pairs are being observed.

The interaction between crime rate and enforcement spending can be
mathematically expressed by solving the two structural equation system for
the reduced-form equations of crime rate and enforcement spending. We
begin by substituting the Crime Rate equation into the Enforcement Spend-
ing equation.

EnforcementSpendingi = γ0 + γ1
[
β0 + β1EnforcementSpendingi

+ β2Ginii + εCR
i

] + εES
i .

We obtain the reduced form for enforcement spending by solving for En-
forcement Spending as follows:

EnforcementSpendingi − γ1β1EnforcementSpendingi

= γ0 + γ1β0 + γ1β2Ginii + γ1ε
CR
i + εES

i .

EnforcementSpendingi = γ0 + γ1β0

1 − γ1β1
+ γ1β2

1 − γ1β1
Ginii + γ1ε

CR
i + εES

i

1 − γ1β1
.

By similar algebra, we can find the reduced-form expression for the crime
rate as follows:

CrimeRatei = β0 + β1
[
γ0 + γ1CrimeRatei + εES

i

] + β2Ginii + εCR
i .

CrimeRatei − β1γ1CrimeRatei = β0 + β1γ0 + β2Ginii + β1ε
ES
i + εCR

i .

CrimeRatei = β0 + β1γ0

1 − γ1β1
+ β2

1 − γ1β1
Ginii + β1ε

ES
i + εCR

i

1 − γ1β1
.

These two reduced-form expressions represent the equilibrium solution
to the simultaneous equations model. Given parameter values and a Gini
value, draws of chance errors (εCR and εES) generate observed enforcement
spending and crime rate.

The Data sheet in SimEq.xls brings this DGP to life. Figure 24.2.1 shows
part of the sheet.

By hitting F9, you recalculate the workbook, drawing new error terms in
columns E and F, which result in new observed values for Crime Rate and
Enforcement Spending in columns G and H. Click on the dependent variable
cells (e.g., G23 or H24) to see the formulas being used to generate the values.
The formulas are simply the reduced-form expressions for each variable.
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Summary

With this constructed example, we know that γ 1 = 0.02. In other words, if
the crime rate increases by 1,000 (per 100,000 people per year), enforcement
spending will rise by $20 per person per year. But what if we were trying to
estimate γ 1? The next section shows that using OLS on a single equation is
not a good way to estimate the effect of crime rate on enforcement spending.

24.3. Simultaneity Bias with OLS

Workbook: SimEq.xls

The previous section has described a simple, two-equation model of the crime
rate and law enforcement spending:

EnforcementSpendingi = γ0 + γ1CrimeRatei + εES
i .

CrimeRatei = β0 + β1EnforcementSpendingi + β2Ginii + εCR
i .

This section shows what happens if we simply ignore the second equation
and estimate the parameter of interest, γ 1, directly from the first equation
using conventional ordinary least squares regression. Figure 24.3.1 displays
the results, which are available starting in cell M21 of the Data sheet in
SimEq.xls.

The problem with ignoring the second equation is immediately clear – our
estimate from a single sample, g1 = −0.008, says that enforcement spending
will fall when the crime rate rises. That makes no sense at all. Of course, we

Single-Equation OLS Estimation of Enforcement Spending
g1

−0.008 386.048
0.0072 28.6966
0.068 6.5938
1.305 18
56.7 782.6

Single-Equation Estimation

y = −0.008x + 386.048
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Figure 24.3.1. Single-equation estimation of γ1.
Source: [SimEq.xls]Data.
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Average −0.008

SD 0.0073

Max 0.020

Min −0.028

Summary Statistics Notes

Histogram of $M$23

−0.028 −0.018 −0.008 0.002 0.012

 
Figure 24.3.2. Monte Carlo simulation of g1.
Source: MCSim add-in applied to cell M23 in [SimEq.xls]Data.

have looked at just one sample. Hit F9 to recalculate the sheet, drawing a new
sample and new estimated coefficients. As you would expect, g1 bounces.

Use the Monte Carlo simulation add-in (Chapter 9) to explore the sampling
distribution of g1. Our results, shown in Figure 24.3.2, reveal that the OLS
estimator of γ 1 is hopelessly biased. It is centered around −0.008, whereas
the true parameter value is 0.02.

Because the sampling distribution of g1 is not centered on γ 1, we say that
the OLS estimator is biased. The bias is caused by ignoring the fact that the
crime rate is actually an endogenous variable in a second equation and is
therefore called simultaneity bias. Furthermore, OLS is inconsistent – the
bias will not go away as the sample size increases.

The source of the poor performance of the OLS estimator lies in the fact
that the SEM data generation process fails to meet the requirements of the
classical DGP. In particular, regressing Enforcement Spending on the Crime
Rate violates the requirement that the x variable be independent of the error
term. The reduced-form expression for the crime rate shows quite clearly
that it depends on the enforcement spending error (εES):

CrimeRatei = β0 + β1γ0

1 − γ1β1
+ β2

1 − γ1β1
Ginii + β1ε

ES
i + εCR

i

1 − γ1β1
.

Consider what happens when the error term for a particular observation on
enforcement spending (εES) is high. In the crime rate equation, enforcement



P1: JZZ
0521843197c24 CB962B/Barretto 0 521 84319 7 November 7, 2005 14:20

Simultaneity Bias with OLS 737

y = −0.016x + 415.977 

320

330

340

350

360

370

380

3600 3800 4000 4200 4400
Crime Rate

E
nf

or
ce

m
en

t S
pe

nd
in

g

Figure 24.3.3. Understanding simultaneity bias.
Source: [SimEq.xls]Data.

spending is multiplied by β1 = −15, and so the error term in the reduced form
expression for the crime rate will likely be negative, which means that the
crime rate for that observation will now be relatively low. Of course, when
εES is negative and large in absolute value, the crime rate will be relatively
large. This is what is causing the negative relationship in Figure 24.3.1 and
the bias in estimating γ 1.3

Understanding the source of simultaneity bias is important. We can use our
concrete example to create a graph that shows exactly where OLS runs into
problems. Figure 24.3.3 shows an OLS regression of Enforcement Spend-
ing on Crime Rate. In addition, Figure 24.3.3 depicts the true relationship
between these two variables (the upward sloping line).

The top left corner of the live version of Figure 24.3.3 is in cell S28 of the
Data sheet. Hit F9 to recalculate the sheet and refresh the graph. The points
are obviously bouncing, but they do not bounce vertically around the upward
sloping line that captures the true relationship between enforcement spend-
ing and crime rate. In fact, it is difficult to see what is going on in this graph.

Scroll down a bit in the Data sheet to see the live version of Figure 24.3.4
titled “Tracing the Movement of One Observation.” Click the Trace One 

Observation but-
ton and accept the default value (1) in order to see how the first observation
bounces.

Notice by glancing at the Obs Number and Gini table to the left of the
graph that observation number 1 has a Gini value of 49. Hit the F9 key a few
times to recalculate the sheet. The observation is bouncing, but it stays on
the traced line.4 The slope of the line on which the observation is moving is
1/β1 (the coefficient on Enforcement Spending in the Crime Rate structural
equation). All of the observations follow this pattern. Click the Trace One 

Observation

3 The sharp reader will note that we cooked the example to exaggerate this effect and to facilitate our
explanation. After all, the error term on enforcement spending has an SD of 10, whereas the SD of
εCR = 1.

4 In fact, to be exactly correct, it does vary a bit because εCR is low but not zero. If you are interested,
you can change the value of εCR later to explore the effect it will have on the scatter plot and OLS fit.
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Figure 24.3.4. Focusing on the bounce of a single observation.
Source: [SimEq.xls]Data.

button and experiment with a few other observations. Include observation
19, which has the lowest Gini, 40, in your trials.

Scroll down again to see a graph that tracks the movement of two obser-
vations at once. Figure 24.3.5 displays an example of this graph. Once again,
notice the behavior of the observations as you hit the F9 key. The two obser-
vations are clearly tied to the downward-sloping lines. In Figure 24.3.5, obser-
vations 2 and 3 will never leave their respective tracks. Each new sample gen-
erates a new pair of equilibrium values of enforcement spending and crime
rate that move in a patterned way. The bigger the draw in the error term, the
farther the observations move from the red line – but always along the track
line. Click the Trace Two 

Observations button and enter a pair of observations to track. Try
observations 5 and 12. Because these two observations have the same value
of the fixed exogenous variable (Gini = 43), they bounce along the same line.

Having visually demonstrated that the observations are moving along pre-
scribed tracks, we are ready to see the full scatter plot in motion. Figure 24.3.6
is the same as Figure 24.3.3 but with one crucial addition – we have added
the tracks along which all of the observations bounce.

Tracing the Movement of Two Observations
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Figure 24.3.5. Focusing on the bounce of two observations.
Source: [SimEq.xls]Data.
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Figure 24.3.6. Focusing on the bounce of all of the observations.
Source: [SimEq.xls]Data.

Go to cell S80 of the Data sheet and hit F9 a few times. With the aid of the
track lines, you should be able to see that the observations are not bouncing
vertically around the upward-sloping (true) line. Instead, they are moving
with a tilt. This tilt is responsible for the bias in the OLS estimator of the
slope of the enforcement spending on crime rate relationship.

Click the Why Bias? button to display a new sheet called Bias. The scroll bar
will enable you to see why the tilt causes bias. For OLS to work as advertised,
the variation in the dependent variable must be in truly vertical strips. Fig-
ure 24.3.7 shows two situations. The left graphic in Figure 24.3.7 shows that
the variation in y is vertical and that OLS estimates the true relationship well.
On the right, however, the variation in y is tilted, and thus the fitted line is
way off the true relationship.

Now that we know that this phenomenon of tilted strips is exactly what is
causing the simultaneity bias in our model, return to the Data sheet to see
how the bias depends on two factors. Use the Set SDErrorES scroll bar to set
the SDErrorES to zero. That means there is no chance error in enforcement

y = 0.0805x + 4.5969 

y = −0.3053x + 6.7923

Figure 24.3.7. OLS needs vertical strips.
Source: [SimEq.xls]Bias.
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Figure 24.3.8. SDErrorES=0 eliminates simultaneity bias.
Source: [SimEq.xls]Data.

spending. Hit F9 a few times to recalculate the sheet. The simultaneity bias
should disappear. Figure 24.3.8 shows this result.

Return the SDErrorES to its initial value of 10 and set the value of β1

to 0 (by dragging the scroll box all the way to the right).5 Use the Repair Axes

button to reset the axes in the graph. Hit F9 to see that the OLS-fitted line
is now dancing around the true relationship. Figure 24.3.9 shows this result.
Of course, when β1 = 0, we no longer have a simultaneous equations model
because the link between enforcement spending and crime rate is broken.

In general, when an endogenous variable (determined by a system of equa-
tions) is included as an explanatory variable in a single-equation OLS regres-
sion, the result will be misleading because the OLS-fitted line will not capture
the true relationship. In our example, the single-equation OLS estimate of
γ 1 is confounded by the interaction of crime rate and enforcement spending.
By carefully tracing the variation in expenditure spending given crime rate,
we have demonstrated that the fundamental source of the simultaneity bias,
from a geometrical point of view, lies in the way the points bounce in a tilted
pattern.

As long as there is a positive spread in εES and a nonzero β1, there will be
simultaneity bias. The reduced form for crime rate makes this clear because
the correlation between crime rate and the enforcement spending error term
depends on the β1ε

ES term:

CrimeRatei = β0 + β1γ0

1 − γ1β1
+ β2

1 − γ1β1
Ginii + β1ε

ES
i + εCR

i

1 − γ1β1
.

5 Actually, because the track lines have slope 1/β1, you cannot set β1 = 0. Dragging the scroll box to the
right sets β1 = 0.000001. This is small enough to make the lines appear (almost) vertical.
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Figure 24.3.9. β1 = 0 eliminates simultaneity bias.
Source: [SimEq.xls]Data.

Under the conventional OLS assumptions, the value of the error term
should have no effect at all on the value of the right-hand-side x variables.
When an included x variable is correlated with the error term, OLS estimators
are biased. Omitted variable bias occurs when an included variable is corre-
lated with an omitted variable. Simultaneity bias arises when the included x
variable is actually a y variable in a simultaneous system of equations and, by
virtue of the interaction between the equations, the right-hand-side y variable
is correlated with the error term in the equation.

The commonality between omitted variables and simultaneity enable us
to point out that there are other forms of bias in the endogeneity problem
family. Selection bias and bias from measurement error in included x variables
(called errors-in-variables) are two other manifestations of the endogeneity
problem. In every case, the problem is that the right-hand-side variable is
not independent of the error term. This causes tilt in the data strips and
guarantees that OLS will fail.

Summary

Simultaneity bias means that, on average, our OLS estimate of γ 1 is wrong.
Can we do better? Yes, by using instrumental variables and two-stage least
squares, we can correctly estimate γ 1. The next section shows how.

24.4. Two-Stage Least Squares

Workbook: SimEq.xls

The previous section described how single-equation OLS estimation of a
simple, two-equation model of the crime rate and law enforcement spending
results in simultaneity bias.
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Figure 24.4.1. Running 2SLS to estimate γ 1.
Source: [SimEq.xls]Data.

This section shows how a variation on the familiar methodology of least
squares regression can be used to recover unbiased estimates of some of the
parameters of the structural equation. By taking two steps, one to create a
new variable called an instrumental variable (or instrument) and another
step to actually estimate the parameter of interest, two-stage least squares
(2SLS) succeeds where simple OLS fails.

The 2SLS approach, discovered independently by H. Theil and R. L.
Basmann in the 1950s, is a clever idea that shows how flexible regression anal-
ysis can be. The first stage uses OLS regression to generate predicted values
that serve as the explanatory variable in the second-stage OLS regression.

Scroll over to cell AA1 in the Data sheet of SimEq.xls to see how 2SLS
can be applied to estimate γ 1. Figure 24.4.1 has a screenshot of this area of
the spreadsheet. Remember that the workbook itself is alive; therefore, hit
the F9 key to see the bounce in the graphs and click on cells to reveal their
formulas. It is a good idea to click the Reset button to return the parameter
values to their initial values.

Cell AA22 contains the top-left corner of the first-stage regression results.
Crime Rate is regressed on Gini because the reduced form expression dictates
that crime rate depends on Gini. The coefficients from this regression (in cells
AA22 and AA23) are then used to create Predicted Crime Rate values for
each observation (see cells AD22:AD41). Note that this simple example uses
only one instrument, Gini, instead of combining several available instruments
in a multiple regression with Crime Rate as the dependent variable. Two
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Figure 24.4.2. The results of 2SLS estimation of γ 1.
Source: [SimEq.xls]Data.

stage least squares typically involves the use of multiple instruments and,
often, multiple endogenous variables. In such cases, in the first step each
endogenous variable is regressed on every instrument.

Once the Predicted Crime Rate instrumental variable is available, we are
ready for the second stage. The shaded cell, AG23, contains the 2SLS estimate
of γ 1. It is the slope on the regression of Enforcement Spending on Predicted
Crime Rate. Notice the crucial substitution of Predicted Crime Rate (created
in the first-stage regression) for Crime Rate. This is the secret to the success
of 2SLS.

In Figure 24.4.1, g1 = 0.026. That is not a bad estimate of γ 1 = 0.02. Recal-
culate the sheet (by hitting the F9 key) several times to draw new samples and
generate new 2SLS g1’s. You cannot do a full-scale Monte Carlo simulation
by hitting the F9 key a few times, but it should be enough to convince you
that 2SLS is in the ballpark.

Scroll down a bit to see the chart titled “Applying 2SLS Estimates”
(depicted in Figure 24.4.2). This chart shows the original data on Enforcement
Spending and Crime Rate (on the x-axis) along with the true relationship
between these two variables (with slope γ 1 = 0.02). Instead of the usual
OLS-fitted line, we used the coefficient estimates from the second-stage
regression (in cells AG23 and AG24) to create 2SLS Predicted Enforcement
Spending. The cells in AJ22:AJ41 have formulas that show how to create
the fitted line for the 2SLS estimator from the sample coefficients. Hit F9 a
few times to see strong visual evidence in favor of 2SLS. Click the Add OLS Line

button (below the chart) to add the usual OLS fitted line to the chart. The
button is a toggle, and thus you can remove the OLS line when you wish.
Although the OLS-fitted line is persistently downward sloping (it is the least
squares fit for the data displayed in the chart), the 2SLS seems to be bouncing
around the true relationship.
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Figure 24.4.3. Racing OLS and 2SLS estimators of γ 1.
Source: [SimEq.xls] MCSimOLS2SLS.

You can conduct a definitive, final demonstration of the superiority of
2SLS over OLS by running a Monte Carlo simulation. Use the Monte Carlo
simulation add-in (Chapter 9) to track the OLS estimate of γ 1 in cell M23
and the 2SLS estimate of γ 1 in cell AG23. Our results are contained in the
MCSimOLS2SLS sheet and displayed in Figure 24.4.3. The 2SLS estimator
is somewhat biased, but it is vastly superior to the OLS estimator.

Notice that the sampling distribution of the 2SLS estimate of γ 1 in this
example is most decidedly not normally distributed. As is often the case, the
small sample properties of 2SLS estimators are the source of a great deal of
research interest. We can report that 2SLS is consistent, and it is an important
tool in applied econometrics.

You probably would not perform 2SLS estimation by manually running the
first stage, computing predicted values, and then running the second regres-
sion. Most modern statistical packages have commands through which you
simply list the endogenous and exogenous variables in the system and the
software handles all of the computations for you.

Besides ease, there is one important additional reason for not running 2SLS
in two separate regressions: Getting the estimated SEs for the coefficients
(and any other statistic that relies on an estimate of the SD of the errors)
requires an adjustment. Scroll over to column BB if you want to see how the
adjustment factor is computed and applied to the estimated SEs from the
second-stage regression.
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Summary

Two stage least squares and instrumental variable regression techniques in
general rely on the availability of truly exogenous instruments for the endoge-
nous variables other than the variables already included in the regression
equation. The term instrument, or instrumental variable, refers to a vari-
able which is uncorrelated with the error term in an equation determining
the endogenous variable, but correlated with the endogenous variable itself.
Both Gini and the Predicted Crime Rate (a linear function of Gini alone) can
be called instruments for the Crime Rate variable in the enforcement spend-
ing equation. In our example, the Gini variable meets the requirements of
being uncorrelated with the enforcement spending error term and being cor-
related with Crime Rate. Furthermore, the Gini variable is not present in the
enforcement spending structural equation.

On the other hand, 2SLS fails when no truly exogenous instrument is avail-
able. For the task of estimating the coefficients in the crime rate equation,
2SLS is not a viable approach. In the technical language of simultaneous equa-
tions models, the crime rate equation is not identified. Identification means
the ability to obtain a consistent estimate of the parameters in question. The
discussion starting in column BU in the Data sheet of SimEQ.xls demon-
strates why the parameters of the crime rate equation are not identified.
The second stage of the 2SLS procedure encounters perfect multicollinearity
because the only potential instrument available, Gini, is already present in
the crime rate equation.

24.5. Conclusion

This chapter has introduced an important but complicated class of estimation
problems: simultaneous equations models. Even at the introductory level, a
good student of econometrics should be aware of the pitfalls associated with
simply ignoring that an explanatory variable is actually a dependent variable
in another equation.

We demonstrated, via concrete example and Monte Carlo simulation, that
the OLS estimate of a structural parameter in a SEM is, in general, biased.
Ordinary least squares is also inconsistent – that is, the bias does not go away
as the sample size increases. We also showed, through a careful examination
of the source of the variation in the dependent variable, that the problem
with OLS arises because the errors cause the y variable to bounce along
nonvertical strips. This throws the OLS line off its intended mark. This will
happen whenever the data generation process is such that an included x
variable is not independent of the error term in the equation.

By constructing an artificial exogenous variable, called an instrumen-
tal variable, in the first stage, and using it in place of the problematic
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right-hand-side y variable in the second stage, 2SLS provides consistent esti-
mates of some of the parameters in the structural equation.

Our simple cooked example has neatly illustrated a few basic points, but
there is much more to discuss in the world of simultaneous equations models.
We have given just enough information to make you aware of the issue of
simultaneity bias and the most popular solution to the problem. To learn
more, turn to one of the readings we recommend in the References section.

We started this book by using the demand for cigarettes as an interest-
ing example to introduce the idea of regression analysis. We returned to
the cigarette data to illustrate the problems associated with using aggregate
data (Chapter 2), to demonstrate tests of significance (Chapter 16), and as
an example of autocorrelation (Chapter 20). We have pointed out, several
times, that fitting a line to a cloud of price and quantity points is a poor way
to estimate a demand curve. With a single independent variable, price, the
estimated coefficient is sure to be biased by the omission of other factors that
influence quantity demanded and are correlated with price.

This chapter explained how simultaneous equations bias is a second fun-
damental difficulty in estimating a demand curve. Throughout this book, we
have tried to follow explanations of theoretical concepts that use hypotheti-
cal data with real-world examples. We could have used our cigarette data
to show how the instrumental variables technique can be used to estimate
the demand for cigarettes in a simultaneous system of demand and supply.
A careful, clear presentation of this very example is in Stock and Watson
(2003), Section 10.4, however, and we highly recommend it.

If you read Stock and Watson (2003) or, another book that we recommend,
Wooldridge (2003), you may find the level of presentation challenging at first.
We hope, however, that the fundamental ideas you have learned from our
strong emphasis on simulation and visual display will enable you to under-
stand more sophisticated presentations of econometrics.

24.6. Exercises

Let us explore the ideas in the chapter using the supply and demand SEM in the
Q&A sheet of SimEq.xls.

1. Use the equations for quantity demanded and quantity supplied to find the
reduced-form expressions for Q and P.

2. Use LINEST to regress Q on P in order to find the single-equation OLS estimate
of α1. Show the results from a single sample.

3. Run a Monte Carlo simulation to approximate the sampling distribution of a1. Is
OLS biased? Explain.

4. Use the data to find the 2SLS estimate of α1. Describe your procedure and explain
your results.
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5. Run a Monte Carlo simulation to approximate the sampling distribution of 2SLS
a1. Is 2SLS biased? Explain.

6. Suppose we were interested in estimating δ1. Can 2SLS be used? Explain.
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Algebra of expectations: A set of rules for computing expected values of
random variables.

Alternative hypothesis: In a hypothesis test, a claim made about a parameter
or parameters which contradicts the null hypothesis. According to this claim,
differences between the estimated and hypothesized values of a parameter
or parameters reflect real differences.

AR(1) process: A first-order autoregressive process, i.e., one in which a vari-
able is determined by a regression on a one-period lag of itself.

Autocorrelation: The correlation of values of a variable with lagged values
of itself.

Autoregression: A linear regression of a variable on lagged values of itself.
The number of lags determines the order of the autoregressive process.

Auxiliary regression: A regression used as a diagnostic or supporting analysis.
See also omitted variable rule and Breusch–Pagan test.

Best linear unbiased estimator (BLUE): A set of criteria for choosing an
estimator that excludes biased and nonlinear estimators, while defining best
as that which has minimum variance (or spread).

Bias: The difference between the expected value of an estimator and the true
value of the parameter being estimated.

Biased estimator: An estimator whose expected value is not equal to the
value of the population parameter being estimated. See also, unbiased
estimator.

Bivariate regression: A regression using only two variables, a dependent vari-
able and an independent variable.

749
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Bootstrap: Computer-intensive, simulation techniques that are applied to a
single sample in order to estimate a statistic’s sampling distribution. See also,
paired XY bootstrap and residuals bootstrap.

Box model: A description of a data generation process that includes the role
of chance via the metaphor of draws from a box.

Breusch–Pagan (BP) test: A procedure in which the squared residuals are
regressed on the independent variables in order to determine if the errors
are heteroskedastic.

Central Limit Theorem: A theorem from probability theory which says that
the distribution of the standardized average of independent random variables
tends to the standard normal distribution as the number of random variables
in the average increases.

Classical econometric model (CEM): A standard model of the data genera-
tion process for economic data.

Coin flip box model: A box model in which the data are generated according
to a chance mechanism, like flipping a coin. See also polling box model.

Conditional mean function: A function that produces the average Y for a
given value of an X variable or given values of more than one X variable.

Conditional median function: A function that produces the median Y for a
given value of an X variable or given values of more than one X variable.

Conditional probability function: In a dummy dependent variable model,
a function that expresses the probability of observing a value of 1 for the
dependent variable given values of the independent (X ) variables.

Confidence interval: An interval constructed from a sample parameter esti-
mate and an estimated SE, designed so that the procedure will cover the true
parameter a specified percentage of the time in repeated sampling

Controlled experiment: An experiment in which the investigator assigns sub-
jects into treatment or control groups at random. See also, observational
study.

Correlation coefficient: A measure of the linear association between two sets
of data or random variables. Bounded between −1 and 1.

Covariance: A measure of the degree to which two random variables move
together, taking into account their expected values. Related to the correlation
coefficient.

Critical value: In hypothesis testing, a number against which the test
statistic is compared in order to determine whether to reject the null
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hypothesis. For confidence intervals, a value which determines the width of
the interval.

Cross-sectional data set: A data set that is a slice of information gathered at
one point in time across different units of observation. See also panel data set
and time series data set.

Cross tab: Short for cross tabulation; a table that displays results (e.g., a count
or average) for one variable for given values of another variable. For example,
average income given level of education. Also known as a contingency or
cross classification table. See also PivotTable.

Data generation process (DGP): A description of how each observation in
the sample was produced, often including the source of chance error.

Degrees of freedom: In regression, the number of observations minus the
number of parameters estimated.

Dependent variable: A variable that is determined by other variables, also
known as an endogenous variable. In econometric theory, the dependent
variable includes a chance component. By convention, a dependent variable
is denoted by the letter Y.

Distributed lag model: A model that includes effects from the past via lagged
variables. See also static model.

Dummy dependent variable: A dependent variable that is not continuous
and can take on only two values.

Dummy dependent variable (DDV) model: A model for the data generation
process of a dummy dependent variable. Also known as a binary response
model.

Dummy variable: An indicator variable that reveals (indicates) whether
an observation possesses a certain characteristic. The value of the dummy
variable is 1 if the observation possesses the characteristic and 0 if it
does not.

Durbin–Watson test: A statistical test that uses the residuals and independent
variables (X ’s) in order to determine if there is first-order autocorrelation in
the errors.

Ecological correlation: The practice of using correlation coefficients based
on grouped or aggregated data.

Elasticity: The percentage change in a dependent (Y or endogenous) variable
for a given percentage change in an independent (X or exogenous) variable.
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Empirical histogram: In contrast to a probability histogram, a histogram
based on data.

Endogeneity: A general term to describe a situation in which a right-hand
side variable is not independent of the error term, e.g., simultaneity bias.

Error term: An element of a linear regression equation which encapsulates
the effects of measurement error, omitted variables, and luck.

Estimate: The outcome of applying an estimator to sample data; a data-based
guess at the value of a population parameter.

Estimated ρ-test: A regression of residuals on lagged residuals in order to
test for autocorrelation.

Estimator: A recipe for producing estimates of the value of a population
parameter.

Expected value: The long-run average value of a random variable.

Feasible generalized least squares (FGLS): A procedure based on general-
ized least squares, but using estimated values of parameters determining the
distribution of the errors.

First difference: The first difference of a variable is its current value less its
one-period lagged variable.

Forecast error: The actual, realized value of the dependent variable (Y )
minus the forecasted value.

Gauss-Markov theorem: This theorem states that if the data generation pro-
cess follows the classical econometric model, then ordinary least squares is
the best linear unbiased estimator.

Generalized least squares (GLS): A procedure in which the original model is
transformed before running ordinary least squares in order to deal with het-
eroskedasticity or autocorrelation in the errors. See also feasible generalized
least squares.

Gini coefficient: A measure of inequality in the distribution of income.

Heteroskedasticity: A situation in which the residuals (in the context of
descriptive statistics) or errors (in the context of inferential statistics) have
differing amounts of spread.

Homoskedasticity: A situation in which the residuals (in the context of
descriptive statistics) or errors (in the context of inferential statistics) have
the same amount of spread.
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Hypothesis test: A procedure for using sample data to determine whether a
claim about a population parameter is true.

Identification: In a simultaneous equations model, the ability to consistently
estimate the parameters of an equation.

Independent variable: In a regression model, a variable which helps to deter-
mine the value of the dependent variable. By convention, an independent
variable is denoted by the letter X.

Inference: The process of using sample evidence to reach conclusions about
the values of population parameters.

Initial conditions: In an autoregressive process, assumptions made about
starting values for the process.

Instrument: An instrument for an endogenous variable, also called an instru-
mental variable, refers to a variable which is uncorrelated with the error term
in an equation determining the endogenous variable, but correlated with the
endogenous variable itself. See also two stage least squares.

Interval forecast: A confidence interval for a forecast, typically centered on
the point forecast.

Iteration: A procedure based on repeated recalculation until convergence or
little improvement is found.

Joint confidence region: Analogous to a confidence interval, a multi-
dimensional region constructed from sample estimates, estimated SE’s, and
estimated covariances in such a way that the region covers the coordi-
nates for the true parameters a specified percentage of the time in repeated
sampling.

Joint sampling distribution: A sampling distribution for two or more ran-
dom variables, which takes into account the correlation between the random
variables.

Lagging: Reading a previous value of a variable: Zt lagged one period is Zt−1.

Linear estimator: An estimator that is a linear function of the dependent
variable (Y’s); an estimator that can be written as a weighted sum with each
observation on Y raised to the first power.

Linear functional form: A regression equation in which the dependent vari-
able (Y ) is a linear function of the independent variable(s) (X ’s), such as
Yi = b0 + b1 Xi . There are no terms involving X raised to a power other than
one or zero.
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Linear probability model (LPM): A linear regression applied to a dummy
dependent variable model.

Linear regression: A fitting procedure in which the equation for the regres-
sion line is a linear function of the parameters. The dependent and
independent variables can be nonlinearly transformed as long as the equation
remains linear in the coefficients. See also nonlinear least squares.

LINEST: An array function in Excel that returns regression results.

Logit model: A dummy dependent variable regression model in which the
errors are logistically distributed.

Long regression: A regression of Y on all of the X ’s, instead of a subset of
the X ’s (termed the short regression).

Maximum likelihood (ML): An estimation technique that chooses coef-
ficients that maximize the likelihood of observing a given sample. This
advanced method is not presented in this book, but the DDV add-ins compute
maximum likelihood estimates of probit and logit models as one option.

Measurement error: Variation in measurements of the dependent variable
due to inherent randomness in the process of observing and taking readings.
In more advanced texts and the econometrics literature, measurement error
often refers to the situation in which the values of the independent variables
are incorrectly measured.

Missing value: An unobserved value for a variable, which is properly indi-
cated by a period, not a blank in Excel.

Monte Carlo simulation: A method of analysis based on artificially recre-
ating a chance process, running it many times, and directly observing the
results.

Multicollinearity: Refers to the correlation among independent variables in
a regression. As the degree of multicollinearity increases, estimates remain
unbiased, but the SE increases. See also perfect multicollinearity.

Multiple regression: A regression model with more than one independent
variable. Also called multivariate regression (although in advanced econo-
metrics, this refers to models with more than one dependent variable).

Nonlinear least squares (NLLS): Regression analysis applied to a function
that is nonlinear in the parameters. See also linear regression.

Normal approximation: A procedure in which the normal curve is substi-
tuted for the exact histogram in order to determine a particular area of the
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histogram; often used for computing P-values of statistics known to converge
to the normal curve as sample size increases.

Null hypothesis: In a hypothesis test, a claim made about a parameter or
parameters. According to this claim, any difference between the estimated
and hypothesized values of the parameter(s) is (are) due to chance.

Observation: All the information about a single unit in a collection of data.

Observational study: In an observational study, one gathers data by directly
observing decisions and behaviors in a natural environment. Individuals self-
select into the group (e.g., smoker versus non-smoker) they are in. See also
controlled experiment.

Omitted variable: An independent (X ) variable not included in the regres-
sion.

Omitted variable bias: A situation in which an estimator’s sampling distri-
bution is not centered on the true parameter value because the regression
omits a relevant independent (X ) variable that is correlated with one or more
of the included independent variables.

Omitted variable rule: A set of equations which relates the value of a param-
eter estimate in a short regression to the corresponding estimate in a long
regression, which produces a measure of the level of bias in the short regres-
sion. The rule involves an auxiliary regression of the omitted X variable on
the included X variable.

Ordinary least squares (OLS): A linear regression technique in which the
regression estimates are that set of coefficients which minimize the sum of
squared residuals.

Paired XY bootstrap: A bootstrap procedure that samples entire rows (or
observations). See also residuals bootstrap.

Panel (longitudinal) data set: A data set that combines time series and cross-
sectional data, following different units of observation over time. These data
sets are not discussed in this book.

Parameter: A numerical fact about a population that typically is unknown
and must be estimated from a sample.

Perfect multicollinearity: A special case of multicollinearity, perfect multi-
collinearity occurs when there is an exact linear relationship among the Xs.
There is no unique solution to the least squares problem and software will
often zero out one of the variables.

PivotTable: An interactive table produced by Excel, which can be used to
create cross tabs. Execute Data: PivotTable to begin.
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Point forecast: The single best guess as to the future value of a variable of
interest.

Point of averages: In a scatter diagram of a bivariate data set, the point whose
x-coordinate is the average value of the X ’s and whose y-coordinate is the
average value of the Y ’s.

Polling box model: A box model in which the contents of the box represent
characteristics of an existing population. See also coin flip box model.

Population: A class of individuals, whose characteristics we wish to learn
about.

Probability histogram: A histogram which represents the chances of a ran-
dom variable taking on different values. The probability histogram gives the
exact, long-run probability of obtaining a particular outcome to a chance
process. Also known as the sampling distribution.

Probit model: A dummy dependent variable regression model in which the
errors are normally distributed.

Population regression function: A linear functional relationship which best
summarizes the relationship between a dependent variable and one or
more independent variables for the entire population. The goal of regres-
sion analysis is to estimate the population regression function from a
sample.

R2: A statistic which measures the improvement in prediction gained by
using the regression line instead of the average value of the dependent
variable.

Random number generation (RNG): An algorithm used to produce pseudo-
random number sequences by a computer.

Random variable: In a chance process, a function that ties a numerical value
(probability) to every possible outcome.

Random walk: A first-order autoregressive (AR(1)) process in which ρ = 1.
Each term in the series is equal to the previous term plus a random error and,
possibly, a drift parameter.

Random X’s model: A box model in which the independent variables (the
X ’s) are randomly generated, unlike the fixed-X ’s-in-repeated-sampling data
generation process that underlies the classical econometric model.

Reduced-form equation: An equation from a simultaneous equations model
which expresses the value of the dependent variable (Y ) as a function of
independent (X ) variables alone. See also structural equation.
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Regression line: Summarizes the relationship between two variables as a line
that optimizes an objective function. The prime example is ordinary least
squares, which minimizes the sum of squared residuals.

Regression sum of squares: The total sum of squares minus the sum of
squared residuals; also known as the explained sum of squares.

Regression through the origin: A regression in which the intercept is forced
to be zero. In Excel, the third parameter in the LINEST function is set to
zero as in this formula: “=LINEST(A1:A10,B1:B10,0,1).”

Residual: The actual (or observed) value minus the predicted value; the ver-
tical distance of the actual, observed Y from its predicted Y value.

Residual plot: A scatter plot of the residuals on the y-axis against the inde-
pendent variable or one of the independent variables on the x-axis.

Residuals bootstrap: A bootstrap procedure that samples from the residuals.
See also paired XY bootstrap.

Robust SE: An estimated SE that takes into account heteroskedasticity.
(There are also serial-correlation robust SE’s, but those are not discussed
in this book.)

Root mean square error (RMSE): A measure of the dispersion of the data
around the regression line. If the classical econometric model applies, the
RMSE is an estimate of the common SD of the error terms.

Sampling distribution: See probability histogram.

Seasonal adjustment: A method of adjusting a time series in order to control
for persistent time patterns in the data. The purpose is to facilitate compar-
isons across time periods.

Short regression: A regression of the dependent variable on a subset of the
independent variables, instead of all the independent variables. See also long
regression.

Simultaneity bias: Occurs when an estimate’s sampling distribution is not
centered on the true parameter value because it was obtained by estimating
a single equation which is actually part of a simultaneous equations model
(SEM). The bias is due to correlation between endogenous right-hand-side
variables and the error term.

Simultaneous equations model (SEM): A model with more than one equa-
tion in which dependent variables (Y’s) appear as regressors (in the right-
hand side of the equations).
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Spurious regression: Comes in two types, both of which produce biased esti-
mates of the slope of Y on X. The first type occurs when both X and Y
variables are trending. In this case, a regression of Y on X which does not
include a trend term typically gives biased estimates. The second type occurs
when both X and Y variables are random walks.

Stable process: An autoregressive process which does not “blow up”. For an
AR(1) process, this means that the absolute value of ρ is less than one.

Standard deviation (SD): A measure of the spread of a list of numbers. See
also standard error.

Standard error (SE): A measure of the spread (SD) of the values of a ran-
dom variable, typically a sample statistic. The standard error of a regression
estimate can be exact (if the SD of the errors is known), estimated (when the
SD of the errors must be estimated) or approximate (when we use the SD
from a Monte Carlo simulation). See also standard deviation.

Standard normal distribution: The normal distribution with mean 0 and
SD 1.

Static model: A time series model that deals with a contemporaneous rela-
tionship between a dependent variable and one or more independent vari-
ables. See also distributed lag model.

Stationary time series: Loosely speaking, a time series is stationary if the joint
probability distribution of the random variables in the time series is constant
at every point in the sequence.

Structural equation: One of the equations in a simultaneous equations model
(SEM). The typical structural equation includes dependent (endogenous vari-
ables) on both sides of the equation. See also reduced-form equation.

Test statistic: A statistic based on the sample data which can be used to
conduct a hypothesis test.

Threshold: In DDV models, the deterministic component to which a random
draw is compared in order to produce the observed zero or one variable.

Time series data set: A data set that follows the same observational unit over
different periods of time. See also cross-sectional data set.

Total sum of squares: The sum of squared deviations of the Y variable from
its average.

Trend stationary process: A time series which is stationary after taking into
account the trend in the series.
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T-statistic: a test statistic which follows the t distribution. Computed in
exactly the same way as the z-statistic.

Two stage least squares (2SLS): A regression procedure used to estimate
coefficients in a simultaneous equations model in which the first stage
regression is run to create predicted values of the endogenous variables,
which are then used in a second stage regression to estimate the coefficients.

Unbiased estimator: An estimator whose expected value is equal to the value
of the population parameter being estimated. See also biased estimator.

Variance: The square of the standard deviation.

Wage discrimination: The practice of paying otherwise identical workers dif-
ferent amounts based on a characteristic (such as gender or ethnicity) that is
unrelated to productivity.

Weak dependence: A sequence of random variables is weakly dependent if
the elements of the sequence become essentially independent at a sufficiently
rapid pace as the distance between them grows.

Whole model F-test: A hypothesis test in which the null is that all of the slope
coefficients, jointly, are equal to zero.

Z-statistic: A test statistic which approximately follows the standard normal
distribution in large samples. Formed by taking the observed value, subtract-
ing the hypothesized value, and dividing the result by the appropriate SE.
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#N/A (Excel code), 89
#NUM (Excel error message), 201

in RANDOM and NORMALRANDOM
functions, 223

aggregation, 44–50
aggregation problem. See ecological

correlation
algebra of expectations, 264–277

and constants, 271
and Gauss–Markov theorem, 366–374
and Gauss–Markov theorem in univariate case,

347–350, 351–352
for random walk, 632
and rules for computing expectations, 367,

369
and SE, 379, 380–381
and variance and SD of a random variable,

271–276
AlgebraOfExpections.xls, 266–274
alternative hypothesis, 257–258, 430 See also

hypothesis tests
in cigarette demand example, 444
one-tailed, 258
two-tailed, 257–258

annual rates and quarterly data, 617
AnnualGDP.xls, 609, 652–657
Anscombe.xls, 127
Anscombe’s data, 126
Answers folder, 2
AR(1) model. See also AR(1) process

data generation process, 562–563
step-by-step implementation, 563–564

AR(1) process,
graphs of error terms in, 564

array functions in Excel, 88
artificial sample. See bootstrap
assumptions of classical econometric model. See

also box models, comparing
average of errors is zero, 327–328, 330
errors independent of X ’s, 320, 323–324, 331
homoskedastic errors, 320–321, 331
lack of autocorrelation, 331
linear in parameters with additive errror term,

330

no multicollinearity, 331
normal errors not assumed, 331
X ’s fixed in repeated sampling, 328–329,

330
assumptions of measurement box model, 287,

289
astronomers and measurement box model,

282
asymptotic. See large-sample analysis
AutoCorr.xls, 563–599
autocorrelation, 296. See also AR(1) model;

Durbin–Watson test; estimated ρ test;
feasible generalized least squares; generalized
least squares and autocorrelation

in cigarette example, 559–560
comparing auto- and unautocorrelated

processes, 565
consequences for OLS, 567
defined, 561
detection via eyeballing residuals, 576
effect of autocorrelation in the X ’s, 572
effect on P-values, 572
estimated SEs incorrect, 570–571
first-order autocorrelation coefficient, 562
two basic strategies for handling, 560
versus autoregression, 562

autoregression,
defined, 562
versus autocorrelation, 562

autoregressive processes. See also random walk
algebra of expectations, 632
asymptotic correlations, 629–630
defined, 562
explosive, 630–631
initial conditions, 630
order of, 562
stable, 631
and stationarity, 628–633
and strong dependence, 634
unit root processes as special case,

634
auxiliary regression,

and Breusch–Pagan test, 528
and computer use example, 500
and omitted variable rule, 197

761



P1: IYP
0521843197ind CB962B/Barretto 0 521 84319 7 November 7, 2005 16:52

762 Index

Basmann, Robert, 742, 747
best linear unbiased estimator (BLUE). See also

Gauss–Markov theorem; generalized least
squares

confusion with minimum variance estimator,
375

Monte Carlo evidence for univariate case,
345–346

bias. See also biased estimator; consistency;
omitted variable bias

in lagged dependent variable models, 633
and measurement box model, 295

biased estimator. See also simultaneous equations
model (SEM)

defined, 343
example of, 344
and omitted variable bias, 494

binary response variable. See dummy dependent
variable

bootstrap. See also Bootstrap (Bootstrap.xla)
add-in

compared to Monte Carlo simulation, 710
confidence interval, 717
defined, 709–710
free throw example, 711–712
Monte Carlo evidence, 724
paired XY, 716
paired XY versus residuals, 726
R2 with residuals bootstrap, 723–724
sampling distribution, 712
versus conventional methods, 727

Bootstrap (Bootstrap.xla) add-in,
demonstration of bootstrap, 722
installation, 718
practice example, 718–720

BootstrapR2.xls, 722–726
box models, 239–277. See also coin flip box model,

polling box model
benefits of, 240
comparing, 290, 321, 332
conceptual areas associated with, 243–244, 293
and Monte Carlo simulation, 244–249
principles for constructing, 240–241
recipe for building, 240–241
SD of the box, 244

BoxModel.xls, 244–249, 277
BPSampDist.xls, 530–533
Breusch–Pagan (BP) test. See also heteroskedastic

errors
bivariate example, 529
used to detect heteroskedasticity, 531
intuition behind, 528
real world example of, 551
sampling distribution of, 530

Bricklin, Daniel, 4
Brownstone, David, 712, 727, 732

campaign contribution example, 669–694
CampCont.xls, 670–679
case resampling. See bootstrap
Cauchy distribution, 267, 288
central limit theorem, 258, 308, 312

applied to OLS estimators, 416–417, 418, 419
and free throw example, 229
and test statistics, 435

CEM. See classical econometric model
chance error,

in campaign contribution example, 670
in classical econometric model, 320
and difference between two sample averages,

307–308
in digitalis example, 714
in free throw example, 228
in measurement box model, 285, 291
in Raid example, 668
in weight of adult US citizens example,

256
versus estimation error, 401

chi-square distribution,
convergence to normal distribution, 460
degrees of freedom of, 459, 460
expected value and SD, 460
and F-distribution, 461
and normal distribution, 458–460
recipe for creating, 455, 458–459, 460
and SSR, 419, 460

ChiSquareDist.xls, 459–460
Cig.xls, 11–15
cigarette example. See also autocorrelation;

controlled experiment; observational study
and aggregation, 45
autocorrelation in, 559–560
bivariate regression in, 21
and classical econometric model, 443
confounding in, 22
data limitations, 24–25
historical data, 11
and hypothesis tests, 443–449
hypothetical data, 15
hypothetical demand, 13
multivariate regression, 24
state data, 18, 19

CigDataInference.xls, 445
classical econometric model (CEM), 319. See also

assumptions of classical econometric
model

bivariate example, 353
experimental setup for, 322
implemented in LinestRandomVariables.xls,

412
and measurement box model, 282, 301
and multiple regression, 329
origins, 334
philosophical interpretation of omitted

variables in, 330
pictorial representation, 321, 329
sampling in, 324
univariate example, 336
in words, 328–333

cluster samples, 254. See also presidential heights
example

and CPS, 311–312
CMF. See conditional mean function
coal mine safety example,

and dummy variables, 614–617
and elasticities, 616
and hypothesis tests, 616
and practical importance of estimates, 616

CoalMining.xls, 615–616
coefficient of determination. See R2



P1: IYP
0521843197ind CB962B/Barretto 0 521 84319 7 November 7, 2005 16:52

Index 763

cohort,
defined, 304

coin flip box model, 242–250, 286
applied to free throw example, 258

coin flip example,
and box model, 242–249
and hypothesis tests, 431

computer use example,
and omitted variable bias, 498–501, 502
and random X’s data generation process,

502
ComputerUse1997.xls, 499–501
conditional mean function (CMF). See also

regression line
defined, 69
as first compression of the data, 96–98
versus regression line, 101

conditional median function, 69
conditional probability function. See also linear

probability model; nonlinear least squares
campaign contribution example, 675
defined, 673
ways to estimate, 675

confidence interval game, 422
and uniform distribution, 422–424
confidence level in, 423

confidence intervals, 421–430. See also confidence
interval game

and cigarette demand example, 447
confidence level in, 424
defined, 422
and hypothesis tests, 421–422
proper interpretation of, 450
for sample slope, 425–430

ConfidenceIntervals.xls, 422–429
confounding, 43. See also omitted variable bias;

simultaneity (simultaneous equations) bias
in bivariate regression, 177
in cigarette example, 22
in education and wages two box example,

313–314
in mortgage discrimination example, 697,

706
and wage discrimination, 62, 206

consistency, 262–264
of estimated rho test, 579–580
in free throw example, 234
lack of, in simultaneous equations model

(SEM), 736
of Root Mean Squared Error (RMSE), 394
and weak dependence, 634

Consistency.xls, 262–264, 277
consistent estimator, example of, 262–264
constants,

and expectations operator, 271
controlled experiment. See also omitted variable

bias
and cigarette example, 16–17
and omitted variable bias, 492

correction factor (CF). See also sampling without
replacement, correction factor

correlated slope estimates. See joint sampling
distribution

correlated X’s,
and joint confidence region, 484–487

and joint sampling distribution, 481
and SEs of slopes, 482

CorrelatedEstimates.xls, 478, 488
correlation, 35–51

association vs. causation and, 43–44
common misunderstandings about, 40
computing value of, 36–37
and heteroskedasticity, 41
and nonlinearity, 41–42
as poor descriptive statistic (shortcomings of),

40–43
and regression line, 102–103
and trend DGP, 627

Correlation.xls, 34–50
Costa Rica example, 37–38
Covariance. See also correlation

in trend DGP, 626–627
CPIMZM.xls, 601
CPS. See Current Population Survey
CPS.doc, 48
CPS90ExpWorkers.xls, 315
CPS90Workers.xls, 311–313
crime rate. See also simultaneous equations model

(SEM)
Bureau of Justice data, 732

cross-sectional data,
defined, 18

cross tab (cross tabulation),
defined, 59
income as a function of education,

60
law school admissions grid, 70

cumulative distribution function,
defined, 684, 687

Current Population Survey (CPS),
and cluster samples, 311–312
and computer use example, 499
and earnings function data, 475
and education and wages example, 310–311
and example of ecological correlation,

48–50
and IndianaFTWorkers.xls, 53
and months in survey for households, 67
and unemployment data, 618
and wage discrimination example, 205

Data Analysis: Regression add-in,
and hypothesis tests, 447, 451
finding OLS regression line using, 85–86
zero intercept bug, 86

data generation process (DGP),
and box model, 240–277
defined, 238

DDV Gauss Newton (DDVGN.xla) add-in. See
also DDV (DDV.xla) add-in

described, 690
degrees of freedom,

and adjusting SD of residuals, 393
defined, 393
and t-distribution, 439–441

descriptive statistics,
univariate, 34–35

DGP. See data generation process
dice example,

and expectations operator, 270–274, 276
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dichomotous choice variable. See dummy
dependent variable

die rolls,
and box model, 239–241

difference between sample averages,
as estimate of difference between population

averages, 304
as random variable, 307–308

differencing data,
and random walk model, 653
and strong dependence, 636–637

digitalis example,
and bootstrapping, 713–720

distributed lag model,
defined, 559

distribution of error terms,
and OLS regression statistics, 413–420

disturbances. See error terms
DoubleCompression.xls, 96–99
double-logarithmic functional form,

and cigarette demand example,
448–449

draws from a box. See box model
dummy dependent variable. See also dummy

dependent variable (DDV) model
defined, 663
examples, 665
versus continuous variable, 664

Dummy Dependent Variable (DDV) add-in. See
also DDV Gauss Newton (DDVGN.xla)
add-in

installation, 690
and mortgage discrimination example,

701
for NLLS estimation, 690
predicted probability table, 693

dummy dependent variable (DDV) model. See
also linear probability model; nonlinear least
squares; threshold

defined, 665
intuition in campaign contribution example,

669–671
intuition in Raid example, 666–669
and role of threshold, 669
visual box model for, 672

dummy variables,
base case, 201
defined, 199
how to create, in Excel, 199
interaction terms and, 209, 475–476,

477
as intercept shifter, 207
and perfect multicollinearity, 200
poorly named, 199
properties, 202
and seasonal adjustment, 621–622
and several categories, 200
in savings behavior example, 454
synonyms for “dummy”, 198
in time series models, 613–614

Durbin, James, 558, 582
Durbin–Watson statistic,

computed, 582
formula for, 582

Durbin–Watson test,
implementing formula, 582
inability to distinguish between types of

autocorrelation, 587
and lagged dependent variables, 649–650, 651,

652
and printed tables, 585
Monte Carlo of sampling distribution, 583
via P Value Calculator add-in, 585–586

earnings and education example, 99–101
conditional mean function, 99

earnings function,
defined, 148
empirical estimates, 154
and heteroskedasticity, 549–554
and internal rate of return (IRR), 150
interpreting coefficient estimates, 154
justification for semilog, 149–151
present value, 150

EastNorthCentralFTWorkers.xls, 65–69, 99–101,
131

EcolCorr.xls, 46–47
EcolCorrCPS.xls, 48
ecological correlation, 44–50

defined, 44
hypothetical example, 45–47
real example, 48–50

ecological fallacy,
defined, 44

education and wages example,
and hypothesis tests, 450–451
linear model, 451
semilog model, 451

education and wages two box example,
310–314

Efron, Bradley, 709, 726, 728
elasticity,

advantages of, 157
and cigarette demand example, 447, 448–449
computing, 15, 156–157
defined, 15, 156
and functional form, 158
local phenomenon, 157–158

ellipse, confidence. See joint confidence region
empirical histogram,

of Monte Carlo experiment, 248–249
of sample, 246–247

endogeneity,
types of bias, 741

enforcement spending. See also simultaneous
equations model (SEM)

Bureau of Justice data, 732
error terms. See also forecast error, distribution of

error terms
composite, 323
in Hooke’s Law example, 298
interpretation of, 443, 454
interpretation of in CEM, 320
and luck, 320
and omitted variables, 320, 328
SD of, estimated by RMSE, 393
SD of, estimated by SD of residuals, 392
versus residuals, 341, 384
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estimated ρ test,
consistency of, 579–580
defined, 578–579
and lagged dependent variables, 649–651,

652
Monte Carlo evidence, 579–580
properties, 579
and weak dependence, 634

estimated SE, 307, 327, 386, 437
and spurious regression, 613

estimated slope as random variable,
in Hooke’s Law example, 299–300

estimates, 281–282
EstimatingSDErrors.xls, 392–396
estimation eror versus chance error,

401
estimator,

defined, 107–108, 336
estimators. See also least absolute deviation

(LAD) estimator, least median of squares
(LMS) estimator, linear estimator, nonlinear
least squares (NLLS), ordinary least
squares (OLS)

0.9Estimator, 339
diminishing weights, 339
random linear, 340
sample average, 338

Excel,
add-ins, 2
array functions, 88
as teaching tool, 90
calculation, 223–224
Excel no-intercept bug, 457
file naming conventions, 1
foreign language, 5
history, 4
Macintosh compatibility, 5, 8
minimum requirements, 5
Q&A sheets, 2
security patches, 5
security settings, 5–7
trademark, 4
troubleshooting, 8
Update Links, 224
versions, 4–5
Visual Basic error message, 9

Excel codes,
#N/A, 89

Excel functions,
NORMALRANDOM, 223
NORMINV, 221
RAND, 221
RANDOM, 221
ROUND, 293, 323

exercise and sports,
regression analyses of, 320, 334

expectations operator, 265, 267–268, 272–275,
276. See also algebra of expectations

formula for, 267
expected value (EV), 243

computing in box model, 244
defined, 267
in measurement box model, 289
as probability weighted sum, 267

of sample average, 293
of sums and averages of random variables,

274–276
ExpGrowthModel.xls, 607
explained sum of squares,

defined, 124
explained variation. See regression sum of

squares
exponential distribution,

for errors, 467
exponential trend. See trends, exponential
ExponentialDist.xls, 467
extrapolation,

dangers of, 26–27, 477

F-distribution, 455, 461
and chi-square distribution, 461
degrees of freedom of, 461
recipe for creating, 461

FDist.xls, 461
FDistEarningsFn.xls, 476–477
FDistGalileo.xls, 464–467
FDistFoodStamps.xls, 469–475, 487–488
feasible generalized least squares (FGLS), 596,

599
defined, 596
Monte Carlo evidence, 597–599
versus GLS, 596
versus OLS, 599
Prais–Winsten versus Cochrane–Orcutt,

596
Female.xls, 199–201, 205–211
first difference. See differencing data
Fisher, Ronald, 455, 713–715
food stamps example,

and F-statistics, 489
and hypothesis tests, 468–475
restricted and unrestricted models in,

473–474
forecast error. See also standard error of the

forecast error
components of, 400
defined, 398
estimation error versus chance error, 401
Monte Carlo simulation of, 385–407

forecasted Y,
defined, 398
Monte Carlo simulation, 385–407

forecasting. See also interval forecast, point
forecast, standard error of the forecast;
standard error of the forecast error

and autocorrelation, 652–658
and cigarette example, 25–27
depends on model of DGP, 652–657
standard errors associated with,

398–408
ForecastingGDP.xls, 657
Frankston, Bob, 4
FreeThrowAutoCorr.xls, 602
free throw example, 225–229

autocorrelation, 561
autocorrelation exercise, 602
bootstrap example, 711–712
coin-flip box model applied to, 258
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free throw example (cont.)
and hypothesis tests, 145–147, 257–260
Monte Carlo simulation, 226–229
streaks in free throws, 230–231

Freedman, et al. Statistics, 240, 278
F-statistic,

computing, 470
defined, 462
and error distributions, 467, 487
and multicollinearity, 482
and t-statistics, 475

F-test, 462. See also Breusch-Pagan (BP) test
and estimated ρ test, 649
implementing, 465–466, 467–468, 470–472
and SSR, 462, 463
in total personal income example, 476, 477

F-tests versus t-tests, 473–475
FuncFormCatalog.xls, 162
functional forms,

catalog of, 161
comparison of residuals, 147
defined, 141
double-log, 145, 646–647
elasticity, 158
nonlinear, 142–143
reciprocal, 145
semilog, 148, 154–155, 451
for trends in time series models, 605–611

fundamental question of inferential statistics,
311

and hypothesis tests, 257

Galileo,
and measurement box model, 302

Galileo example,
and F-tests, 463–467
linear functional form, 139–140
nonlinear functional form, 141–143
regression through the origin, 144
residual plot, 141, 143
restricted and unrestricted models in, 463

Galileo.xls, 139–144
Galton, Francis, 51. See also regression line, there

are two regression lines
and regression, 103–104, 107, 136
names regression, 104
regression effect, 95

GaltonHeights.xls,
Gauss, Carl Friedrich, 281, 291. See also Gaussian

errors
and invention of ordinary least squares, 91
and measurement box model, 286–287, 302

Gaussian errors, 329
Gauss–Markov theorem. See also best linear

unbiased estimator (BLUE)
and algebra of expectations, 366–374
and distribution of the errors, 363–366
bivariate case, Monte Carlo, 362
confusion with min SSR, 375
defined, 335, 346
history, 376
and Monte Carlo simulation, 366
proof of, in univariate case, 347–350, 351–352
proof, bivariate model, with 10 observations,

366–374

GaussMarkovBivariate.xls, 353–366, 372–374
GaussMarkovUnivariate.xls, 337–340, 341–342,

343–352, 370
generalized least squares (GLS) and

autocorrelation. See also feasible generalized
least squares (FGLS)

example, 591
first observation, 590
Monte Carlo evidence, 593
transformation, 588
versus OLS, 593

generalized least squares (GLS) and
heteroskedasticity,

GLS SE is consistent, 547
information requirement, 547–549
intuition, 542
Monte Carlo evidence, 547
transformation, 544–546

Gini coefficient. See also simultaneous equations
model (SEM)

country comparison, 727, 732
in simultaneous equations example, 727,

732
Goldberger, Arthur,

and random X’s data generation process, 507
Gosset, William Sealy, 438–439, 442

and Monte Carlo simulation, 451–452
graph of averages, 96, 100–101. See also

conditional mean function
as conditional probability function, 675
and double compression of the data, 97–99
and PivotTable, 98
and regression line, 98–99
and two regression lines, 105–106

Griliches, Zvi, 507

Haavelvmo, Tryvge, 316
heating oil example, 168–188

comparing four models, 170
and multicollinearity, 185–186
more homogenous groups, 181

Het.xls, 513–515, 519–527
heteroskedastic errors. See also Breusch-Pagan

(BP) test; generalized least squares (GLS)
and heteroskedasticity nonlinear least
squares (NLLS); robust standard errors
(robust SEs)

bivariate example, 519–527
bivariate Monte Carlo evidence, 519–521
in bootstrap example, 715–716, 720
defined, 508, 511
and earnings function Monte Carlo simulation,

551–554
effect on OLS estimated SE, 519
effect on OLS P-value, 521
general implementation, 522–523
general Monte Carlo evidence, 524
and inconsistency of OLS estimated SE,

542
and semilog functional form, 554
univariate exact SE, 518
univariate example, 513–518
univariate Monte Carlo evidence, 515
visual explanation, 508–509
visual summary of ideas, 555
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heteroskedasticity, 41, 129–133, 296, 331. See also
heteroskedastic errors

consequences for OLS, 555–556
defined, 130
two basic strategies for handling, 560

HetGLS.xls, 543–544, 546–548
HetRobustSE.xls,

comparing conventional and robust SEs,
537–540

histogram,
in SAT example, 34–35
of residuals, 119–121, 133, 134

Histogram (Histogram.xla) add-in,
installation, 55

homogeneous groups,
and confounding, 178–181
and wage discrimination, 63

homoskedastic errors,
defined, 508
visual explanation, 509

homoskedasticity, and root mean square error
(RMSE), 41

defined, 130
in measurement box model, 289

Hooke, Robert, 296
Hooke’s Law example,

data generation process for, 297–298,
299

with heteroskedasticity, 519
and measurement box model, 296, 301

HookesLaw.xls, 298–300
hourly earnings and education. See wage and

education
HourlyEarnings.xls, 133
HowtoPredictYfromLnY.doc, 608, 610
hypothesis tests, 257–262, 430. See also F-tests

and coin flip example, 431
and confidence intervals, 421–422
in education and wages two box example,

310–313
how to report results of, 433
and multicollinearity, 480–487
normal distribution and, 433
test statistic, 435–436

HypothesisTest.xls, 431–433
hypothetical difference of wages example,

306–309
hypothetical wage example,

and confidence intervals, 421–422
and hypothesis tests, 421–422

ice cream sales example, 613
identically distributed errors, 297–298
identically distributed random variables, 275
identification, 745
IMRGDPFunForm.xls, 145–147, 257–260
IMRGDPReg.xls, 128
independence, 275. See also independent random

variables
of error terms, 289
between error terms and X variables,

297–298
of observations in trend time series, 627

independent random variables, variance and SD
of sum of, 275–276

independent variables, in simultaneous equations
model (SEM), 731

India population example, 605–608
IndianaFTWorkers.xls, 53–65
IndiaPopulation.xls, 605–608
individual null hypothesis versus joint null

hypothesis, 482
infant mortality example,

and nonlinearity, 128
inference, 238

defined, 215
fundamental question, 238
how it can break down, 295–296
and mountain peaks example, 283–284
reasoning from sample to population, 281
steps in, 260–261

instrumental variables,
defined, 742

intercept in ordinary least squares, 113
internal rate of return (IRR), 150
interval forecast,

defined, 398–399
iteration,

defined, 686

joint confidence region, 484–487
and RMSE, 485

joint null hypotheses, 479–482, 485
joint sampling distribution, 481

and correlated Xs, 482, 483

kitchen sink regression, 455
Krueger, Alan, 498

LaggedDepVar.xls, 649
lagged dependent variables, 638. See also partial

adjustment
defined, 638
and estimated ρ test, 649–651, 652
and money demand example, 645–648
testing for autocorrelation in the presence of,

649–651
lagging,

defined, 561
large-sample analysis, 262, 416–419.See also

central limit theorem
least absolute deviation (LAD) estimator, 81
least median of squares (LMS) estimator, 81
least squares estimators,

sample average, 341–342
Legendre, Adrian-Marie,

and invention of ordinary least squares, 91
linear estimator,

averages slopes, 360
defined, 340
extreme points, 358
ordinary least squares slope estimator,

354–355
linear model, in education and wages example,

451
linear probability model (LPM),

campaign contribution example, 677
versus nonlinear least squares (NLLS), 683
ordinary least squares in a DDV Model, 676
weaknesses, 678–679
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linear trend. See trends, linear
linearity,

different meanings of, 340
LINEST (Excel function), 86–89, 412, 445

multiple regression example, 173
and perfect multicollinearity, 187
in skiing example, 325
statistics as random variables, 412
and whole-model F-test, 455

LinestRandomVariables.xls, 412–420
lin-log. See functional forms, semilog
log normal distribution, 414

and confidence intervals, 429
for errors, 417–419
in hypothetical difference of wages example,

306
logistic distribution, 732
logit,

compared to probit, 680–681
defined, 680
terminology, 682

log-linear. See functional forms, semilog; earnings
function

log-linear trend. See trends, exponential
long regression, 456–457. See also short regression

computer use example, 499
in skiing example, 496
and spurious regression, 612–613, 635

LPM. See linear probability model (LPM)
LPMMonteCarlo.xls, 679
Luteinizing.xls, 601

matrix algebra, 89
maximum likelihood,

via DDV add-in, 675
and nonlinear least squares (NLLS), 681
terminology, 682

MCSim add-in. See Monte Carlo simulation
(MCSim.xla) add-in

Measure.xls, 287, 291–292, 293
measurement box model, 286–291. See also

assumptions of measurement box model
and bivariate regression, 296–301
and classical econometric model, 301
versus classical econometric model, 282
compared to other box models, 290
data generation process, 289
expected value of measurement in, 289
in equations, 288
pictorial representation of, 287–288
precision of measuring device, 289, 292, 295
unbiased measurement process, 289

measurement error. See also heteroskedastic
errors

defined, 284
idea behind, 284–285

median,
sum of squared residuals for, 110

Mincer, Jacob, 138, 161
minimizing SSR,

and NLLS, 685
not same as finding best estimator, 375

missing values, 89–90
in CPS, 15, 67
shown by a period, 562

Misspecification.xls, 602
money demand example, 645–648

Durbin–Watson test, 646–651
elasticities, 647–648
estimated ρ test, 646–651
feasible generalized least squares (FGLS),

646
and partial adjustment, 645–647
theory, 645

MoneyDemand.xls, 645–647
Monte Carlo simulation, 661. See also box model;

Monte Carlo simulation (MCSim.xla) add-in
advantages of, 229–230
and algebra of expecations, 276, 277
and assuming a zero average error, 327
approximate SE of OLS regression slope,

326–327
approximation to expected value, 269
and best linear unbiased estimator, 345–346
and the box model, 244–249
checking for stationarity and, 628–630
of chi-square distribution, 459–460
and confidence intervals, 424–425, 426,

427–429
and consistency, 263–264
convergence of empirical histogram toward

probability histogram, 274
and correlation of Training and Talent, 333
defined, 216
draws with replacement, 331
and Durbin–Watson test, 650–651, 652
empirical histogram as approximation to

probability histogram, 248–249, 387
estimated ρ test, 579–580, 650–651, 652
and F-distribution, 461
and feasible generalized least squares (FGLS),

597–599
and forecast errors, 657
and F-tests, 466–467, 472–473
free throw example, 225–229
and Gauss–Markov theorem, 366
and heteroskedasticity, 520
in Hooke’s Law example, 299–300
and hypothesis tests, 437–441
and hypothetical difference of wages example,

308–309
and joint sampling distribution, 480
and measurement box model, 291–292
as method to approximate SE, 227, 387
and mountain peaks example, 291–292
not a method of estimating unknown

parameters, 292, 293
as practiced by Gosset, 451–452
random walks and, 631–632, 633
SD as approximation of SE, 249, 291, 299–300,

308, 327, 416
for SE of sample average estimator, 349
spurious regression and, 635–636, 637
streaks in free throws, 230–231
of trend DGP, 627
X’s fixed in repeated sampling in, 331

Monte Carlo simulation (MCSim.xla) add-in,
versus built-in Monte Carlo, 232
and consistency, 263–264
installation, 232
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Monte Carlo simulation with Solver
(MCSimSolver.xla) add-in

described, 235
MonteCarlo.xls, 226–229
MortDisc.xls, 697–702
MortDiscMCSim.xls, 702–703
mortgage discrimination example, 695

data, 695
data generation process, 697–700
drawing a sample, 700
implementing the DGP, 697–700
raw differential, 703–706

mountain peaks example, 283–296
and measurement box model, 287

multicollinearity,
between age and experience,

188–189
in bivariate regression, 355
consequences of perfect, 185–186
defined, 184
effect on SE, 383
and hypothesis tests, 480–487
and LINEST, 187
near-perfect, 189
perfect, 187

Multicollinearity.xls, 700
multiple regression, 165

analytical derivation of coefficients,
194

and confounding, 183, 255
defined, 166
as double compression, 182
improving prediction, 173
interpreting coefficients, 183
LINEST output and, 89

MultiReg.xls, 168–184
MyMonteCarlo.xls, 488

NLLSFit.xls, 682–688
NLLSMCSim.xls, 689
NoInterceptBug.xls, 457
nominal vs. real variables, 609
nonlinear estimator,

sample median as, 340
nonlinear fitting. See nonlinear least squares

(NLLS)
nonlinear least squares (NLLS),

and consistency, 689
compared to maximum likelihood, 681
demonstration of fitting, 684, 687
displaying results of, 693
estimation with Solver, 687
and heteroskedasticity, 695
interpreting coefficient estimates of, 691–692
versus linear probabilty model, 683, 694
Monte Carlo evidence, 689
no analytic solution, 686
S shape of, 681
terminology for, 682
visualizing surface, 685

nonlinear regression. See nonlinear least squares
(NLLS)

normal approximation,
and P-values, 445, 446
versus Monte Carlo simulation, 253–254

normal distribution, 291, 414
and chi-square distribution, 458–460
and confidence interval game, 424–425
and Gauss–Markov theorem, 363–366
and test statistics, 435
versus t distribution

NORMALRANDOM (Excel function), 293, 414,
568. See also normal distribution

#NAME? error, 223
to generate normally distributed random

numbers, 223
and heteroskedasticity, 513
superior to NORMINV, 223

NORMINV (Excel function),
explanation of, 222
NLLS example, 699
problems with, 223
using, to generate normally distributed random

numbers, 221
notation for estimates and parameters, 299
null and alternative hypotheses,

null hypothesis, 257, 430, 464
in cigarette demand example, 444
in total personal income example, 476

objective function, and ordinary least squares,
91–92

observation, 73–74, 75, 82–83
observational study. See also omitted variable bias

cigarette example, 17
and omitted variable bias, 491
types of, 17

Ohtani, Kazuhiro, 721
OLS. See ordinary least squares
OLS Regression (OLSRegression.xla) add-in,

installation, 540
for robust SE, 540

OLSFormula.xls, 108–113
omitted variable,

but no bias, 495
defined, 490, 494

omitted variable bias. See also confounding
basic lesson of, 505–506
and computer use example, 500–501
and controlled experiment, 492
in a hypothetical example, 494–497
in mortgage discrimination example, 697
and observational study, 491
and Random X’s DGP, 503, 504–505
and spurious regression, 612–613
violation of independence, 496
visual explanation, 494

omitted variable rule,
applied to computer use example, 500–501
defined, 197
and spurious regression, 612–613

one-tailed test,
in education and wages two box example, 310

one-tailed versus two-tailed tests, 433
in cigarette demand example, 444

ordinary least squares (OLS), 72–94. See also sum
of squared residuals, minimizing.

alternatives to, 81
computing, 82–84
deriving formulas for, 91–94
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ordinary least squares (cont.)
formulas for, 82–84, 111–112
versus 2SLS, 742–743, 744
weighted sum of Y values, 84, 93–94

ordinary least squares (OLS) estimator. See also
least squares estimator

computing expected values of, 368, 370–372
as unbiased estimator, 326, 368, 370–372

ordinary least squares slope,
as unbiased estimator, 357–358
as weighted sum, 111–112, 354–357

orthogonal regression, 81
outliers, 81

and Anscombe data set, 127

P Value Calculator (PValue.xla) add-in
installation, 259
and Durbin–Watson test, 585–586

paired XY resampling. See bootstrap
PairedXYBootstrap.xls, 715–716, 720
parameter, 238
partial adjustment, 638–647

equilibrium value for dependent variable, 643
long run, 643–645, 647
and money demand example, 645–647
short run, 641–643, 647

PartialAdjustment.xls, 639–645
Pearson, Karl, 51, 453, 455, 458
PercentageBootstrap.xls, 711–712
PivotTable (Excel), dynamic data exploration,

63
in education and wages two box example, 311
and graph of averages, 105
grouping, 63, 67
and heteroskedasticity, 133, 134
toolbar, 57

point forecast,
defined, 398

point of averages, 35–37. See also scatter diagram
in Costa Rica example, 38
and ordinary least squares intercept, 113
and ordinary least squares regression line, 84,

112, 113
polling box model, 251–257, 286
population, 238

and box model, 243
predicted value of Y given X. See conditional

mean function, predicted Y
predicted Y, 74–75

and conditional mean function, 96–98
computing, 83
defined, 398
equation for, 83
and regression line, 98–99
and residuals, 114–116
and two regression lines, 106
and vertical strips, 96–98

present value, 150
presentation of regression results, 445–449
presidential heights example, 251–254. See also

cluster sample
consecutive presidents sampling scheme,

254
PresidentialHeights.xls, 251–254
probability density function (pdf), 265

probability histogram of sample slope,
with log normally distributed errors, 416, 417
with normally distributed errors, 416

probability histograms, 243, 266
approximated via Monte Carlo simulation,

248–249, 251–253
and convergence to normal curve, 249
defined, 247
and expected value of sample sum, 243–244
for F-statistic, 466–467
and SE of sample sum, 253
versus empirical histograms, 266

probit,
compared to logit, 680–681
defined, 680
terminology, 682

proxy variable, 25
P-values,

for difference between population averages,
305

in education and wages two box example, 313
and F-statistic, 470
and F-tests, 463
and Monte Carlo simulation, 521, 525, 530, 531,

532, 533, 572, 574, 575, 593, 594, 635–636, 637,
650–651

proper interpretation of, 261
spurious regression and, 259, 431, 635–636, 637

qualitative response variable. See dummy
dependent variable

R Squared. See R2

R2, 122–126
adjusted, 125, 607
bootstrap example, 723–724
computing, 124–125
defined, 123
and functional form comparison, 146
and kitchen sink regression, 455
logic of, 123–124
misuse of, 125
and regression through the origin, 457
and trends, 607

Raid example, 666–669
Raid.xls, 666–669
RAND (Excel function), 218

criticized in literature, 237
performance and evaluation, 218
usage in a formula, 221

RANDOM (Excel function), 413. See also
uniform distribution

#NAME? error, 223
algorithm, 219
performance and evaluation, 219
superior to RAND, 223
usage in a formula, 221

random number generation,
comparing random number generators, 218
criticism of Excel’s RAND, 237
Data Analysis add-in warning, 221
discused in Basic Tools folder, 3
linear congruential generator, 217
in LinestRandomVariables.xls, 413
log normal, 414, 415
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multiple recursive generator, 219
normal distribution, 221, 414, 415
performance and evaluation, 217–218
pseudo-randomness, 216–217
RAND function, 218
RANDOM function, 219
RND function, 218
uniform distribution, 221, 271, 413, 415

random variables, 244, 265–276
defined, 265
discrete, 265
sums and averages of, 274–276

random walk, 631–633
with drift, 632–633

random X’s, 476. See also weak dependence
and spurious regression, 611
and time series, 633

random X’s DGP, 611
compared to classic econometric model,

505–506
compared to polling box model, 502–504
implementation, 502
rationale, 503, 504–505
with heteroskedasticity, 550

Real-Time Data Set for Macroeconomists
(RTDSM), 648

reduced form equation,
in SEM example, 733

Reg SS. See regression sum of squares
Reg.xls, 73–90
regression. See also conditional mean function

and Average Y line, 76
earnings and education example, 99
flexibility, 146
four ways to run in Excel. See regression line,

fitting in Excel.
limitations, 126–134
linear in the parameters, 138, 141, 145
multiple. See multiple regression
notation for coefficients, 83
origin of name, 104
through origin, 87, 125

regression effect, 104, 107
regression line,

“by eye,” 73–74, 77
computing. See ordinary least squares; sum of

squared residuals, minimizing
versus conditional mean function, 101
and correlation, 102–103
as double compression, 95–103
defined, 72
equation for, 73–74, 75
fitting in Excel, 84–90
intercept, 73
versus SD line, 101–103
slope, 73, 74
there are two regression lines, 103–107

regression plane, 166
equation for, 166
live visualization, 167–168

regression statistics,
as random variables, 325, 412–420,

458
regression sum of squares (Reg SS),

defined, 124

regression through the origin, 457. See also
restricted regression; Data Analysis;
Regression add-in

and estimated ρ test, 578
Galileo example, 144

regression to the mean. See regression effect
replication of prior results, 648, 662
residuals. See also bootstrap

defined, in multiple regression, 149, 166
versus error terms, 341, 384

residual plots, 75
and heteroskedasticity, 133
Galileo example, 141, 143
in infant mortality example, 128
and plots of y versus x, 115–116, 119–121

ResidualPlot.xls, 114–116
residuals, 75–81

average of, 76
computing, 75, 83, 115–116
defined, 75
versus errors, 117
equation for, 72–75, 83
as estimates of error terms, 384
histogram. See histogram, of residuals, 75

restricted and unrestricted models,
in food stamps example, 468–469, 473–474
in Galileo example, 463
in total personal income example, 475–476

restricted model. See also restricted regression
in savings behavior example, 454

restricted regression, 456–458
examples of, 456–458
and F-tests, 462
and Solver, 464
and SSR, 464–465

RMSE. See root mean square error (RMSE)
RMSE.xls, 118–121
RNGPractice.xls, 221–225
RNGTheory.xls, 217–220
robust regression, 81
robust standard errors (robust SEs),

better than conventional standard errors, 537
biased, but consistent, 540
defined, 534
formula for, 537
versus generalized least squares (GLS), 534
in OLS Regression add-in, 540
Monte Carlo evidence, 538

root mean square error (RMSE),
as adjusted SD of residuals, 393
as biased estimator of SD of errors, 394
computing, 117, 118
as consistent estimator of SD of errors, 394
defined generally, 116
and degrees of freedom, 118
as estimate of SD of errors, 384
and estimated SE, 386, 426–427
explanation of bias in estimating SD of errors,

396
and heteroskedasticity, 133
in Hooke’s Law example, 299
other names for, 117
as overall, single measure of spread, 121
rule of thumb using, 118
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