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Preface to the Second Edition

Since the publication in 1983 of Theory of Point Estimation, much new work
has made it desirable to bring out a second edition. The inclusion of the new
material has increased the length of the book from 500 to 600 pages; of the
approximately 1000 references about 25% have appeared since 1983.

The greatest change has been the addition to the sparse treatment of Bayesian
inference in the first edition. This includes the addition of new sections on
Equivariant, Hierarchical, and Empirical Bayes, and on their comparisons. Other
major additions deal with new developments concerning the information in-
equality and simultaneous and shrinkage estimation. The Notes at the end of
each chapter now provide not only bibliographic and historical material but also
introductions to recent development in point estimation and other related topics
which, for space reasons, it was not possible to include in the main text. The
problem sections also have been greatly expanded. On the other hand, to save
space most of the discussion in the first edition on robust estimation (in particu-
lar L, M, and R estimators) has been deleted. This topic is the subject of two
excellent books by Hampel et al (1986) and Staudte and Sheather (1990). Other
than subject matter changes, there have been some minor modifications in the
presentation. For example, all of the references are now collected together at
the end of the text, examples are listed in a Table of Examples, and equations
are references by section and number within a chapter and by chapter, section
and number between chapters.

The level of presentation remains the same as that of TPE. Students with a
thorough course in theoretical statistics (from texts such as Bickel and Doksum
1977 or Casella and Berger 1990) would be well prepared. The second edition of
TPE is a companion volume to “Testing Statistical Hypotheses, Second Edition
(TSH2).” Between them, they provide an account of classical statistics from a
unified point of view.

Many people contributed to TPE2 with advice, suggestions, proofreading and
problem-solving. We are grateful to the efforts of John Kimmel for overseeing
this project; to Matt Briggs, Lynn Eberly, Rich Levine and Sam Wu for proof-
reading and problem solving, to Larry Brown, Anirban DasGupta, Persi
Diaconis, Tom DiCiccio, Roger Farrell, Leslaw Gajek, Jim Hobert, Chuck
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McCulloch, Elias Moreno, Christian Robert, Andrew Rukhin, Bill Strawderman
and Larry Wasserman for discussions and advice on countless topics, and to
June Meyermann for transcribing most of TEP to LaTeX. Lastly, we thank Andy
Scherrer for repairing the near-fatal hard disk crash and Marty Wells for the
almost infinite number of times he provided us with needed references.

E. L. Lehmann
Berkeley, California

George Casella
Ithaca, New York

March 1998



Preface to the First Edition

This book is concerned with point estimation in Euclidean sample spaces.
The first four chapters deal with exact (small-sample) theory, and their approach
and organization parallel those of the companion volume, Testing Statistical
Hypotheses (TSH). Optimal estimators are derived according to criteria such as
unbiasedness, equivariance, and minimaxity, and the material is organized
around these criteria. The principal applications are to exponential and group
families, and the systematic discussion of the rich body of (relatively simple)
statistical problems that fall under these headings constitutes a second major
theme of the book.

A theory of much wider applicability is obtained by adopting a large sample
approach. The last two chapters are therefore devoted to large-sample theory,
with Chapter 5 providing a fairly elementary introduction to asymptotic con-
cepts and tools. Chapter 6 establishes the asymptotic efficiency, in sufficiently
regular cases, of maximum likelihood and related estimators, and of Bayes esti-
mators, and presents a brief introduction to the local asymptotic optimality the-
ory of Hajek and LeCam. Even in these two chapters, however, attention is
restricted to Euclidean sample spaces, so that estimation in sequential analysis,
stochastic processes, and function spaces, in particular, is not covered.

The text is supplemented by numerous problems. These and references to the
literature are collected at the end of each chapter. The literature, particularly
when applications are included, is so enormous and spread over the journals of
so many countries and so many specialties that complete coverage did not seem
feasible. The result is a somewhat inconsistent coverage which, in part, reflects
my personal interests and experience.

It is assumed throughout that the reader has a good knowledge of calculus
and linear algebra. Most of the book can be read without more advanced mathe-
matics (including the sketch of measure theory which is presented in Section
1.2 for the sake of completeness) if the following conventions are accepted.

1. A central concept is that of an integral such as ∫f dP or ∫f dµ. This covers
both the discrete and continuous case. In the discrete case ∫f dP becomes Σf
(xi)P(xi) where P(xi) = P(X = xi) and ∫f dµ becomes Σf(xi). In the continuous case,
∫f dP and ∫f dµ become, respectively, ∫f(x)p(x) dx and ∫f(x) dx. Little is lost

ix
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(except a unified notation and some generality) by always making these substi-
tutions.

2. When specifying a probability distribution, P, it is necessary to specify not
only the sample space X, but also the class of sets over which P is to be
defined. In nearly all examples X will be a Euclidean space and a large class
of sets, the so-called Borel sets, which in particular includes all open and closed
sets. The references to can be ignored with practically no loss in the under-
standing of the statistical aspects.

A forerunner of this book appeared in 1950 in the form of mimeographed
lecture notes taken by Colin Blyth during a course I taught at Berkeley; they
subsequently provided a text for the course until the stencils gave out. Some
sections were later updated by Michael Stuart and Fritz Scholz. Throughout the
process of converting this material into a book, I greatly benefited from the
support and advice of my wife, Juliet Shaffer. Parts of the manuscript were read
by Rudy Beran, Peter Bickel, Colin Blyth, Larry Brown, Fritz Scholz, and Geoff
Watson, all of whom suggested many improvements. Sections 6.7 and 6.8 are
based on material provided by Peter Bickel and Chuck Stone, respectively. Very
special thanks are due to Wei-Yin Loh, who carefully read the complete manu-
script at its various stages and checked all the problems. His work led to the
corrections of innumerable errors and to many other improvements. Finally, I
should like to thank Ruth Suzuki for her typing, which by now is legendary,
and Sheila Gerber for her expert typing of many last-minute additions and cor-
rections.

E.L. Lehmann
Berkeley, California,

March 1983
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Table of Notation

The following notation will be used throughout the book.
We present this list for easy reference.

Quantity Notation Comment

Random variable X, Y, uppercase

Sample space X ,Y uppercase script
Roman letters

Parameter θ, λ lowercase Greek letters

Parameter space �, uppercase script
Greek letters

Realized values x, y lowercase
(data)

Distribution function F (x), F (x|θ ), P (x|θ ) continuous
(cdf) Fθ (x), Pθ , (x) or discrete

Density function (pdf) f (x), f (x|θ ), p(x|θ ) notation is “generic”,
fθ (x), Pθ (x) i.e., don’t assume

f (x|y) = f (x|z)

Prior distribution �(γ ),�(γ |λ)

Prior density π (γ ), π (γ |λ) may be improper

Probability triple (X ,P,B) sample space, probability
distribution, and

sigma-algebra of sets
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Quantity Notation Comment

Vector h = (h1, . . . , hn) = {hi} boldface signifies
vectors

Matrix H = {hij } = ||hij || uppercase signifies
matrices

Special matrices I Identity matrix
and vectors 1 vector of ones

J = 11′ matrix of ones

Dot notation hi· = 1
J

∑J
j=1hij average across the

dotted subscript

Gradient ∇h(x) =
(
∂
∂x1
h(x), . . . , ∂

∂xn
h(x)

)
vector of partial

derivatives

=
{
∂
∂xi
h(x)

}
Hessian ∇∇h(x) =

{
∂2

∂xi∂xj
h(x)

}
matrix of partial

second derivatives

Jacobian
{
∂
∂xj
hi(x)

}
matrix of

derivatives

Laplacian
∑
i
∂2

∂x2
i

h(x) sum of

second derivatives

Euclidean norm |x| (�x2
i )

1/2

Indicator function IA(x), I (x ∈ A) equals 1 if
or I (x < a) x ∈ A,

0 otherwise

Big ”Oh,” little ”oh” O(n), o(n) or Op(n), op(n) Asn→∞
O(n)
n
→ constant,o(n)

n
→ 0

subscriptp denotes
in probability



CHAPTER 1

Preparations

1 The Problem

Statistics is concerned with the collection of data and with their analysis and
interpretation. We shall not consider the problem of data collection in this book
but shall take the data as given and ask what they have to tell us. The answer
depends not only on the data, on what is being observed, but also on background
knowledge of the situation; the latter is formalized in the assumptions with which
the analysis is entered. There have, typically, been three principal lines of approach:

Data analysis. Here, the data are analyzed on their own terms, essentially without
extraneous assumptions. The principal aim is the organization and summarization
of the data in ways that bring out their main features and clarify their underlying
structure.

Classical inference and decision theory. The observations are now postulated
to be the values taken on by random variables which are assumed to follow a
joint probability distribution,P , belonging to some known classP. Frequently,
the distributions are indexed by a parameter, sayθ (not necessarily real-valued),
taking values in a set,, so that

P = {Pθ, θ ∈ }.(1.1)

The aim of the analysis is then to specify a plausible value forθ (this is the
problem of point estimation), or at least to determine a subset of of which we
can plausibly assert that it does, or does not, containθ (estimation by confidence
sets or hypothesis testing). Such a statement aboutθ can be viewed as a summary
of the information provided by the data and may be used as a guide to action.

Bayesian analysis. In this approach, it is assumed in addition thatθ is itself
a random variable (though unobservable) with aknown distribution. This prior
distribution (specified according to the problem) is modified in light of the data to
determine a posterior distribution (the conditional distribution ofθ given the data),
which summarizes what can be said aboutθ on the basis of the assumptions made
and the data.

These three methods of approach permit increasingly strong conclusions, but
they do so at the price of assumptions which are correspondingly more detailed
and possibly less reliable. It is often desirable to use different formulations in
conjunction; for example, by planning a study (e.g., determining sample size)
under rather detailed assumptions but performing the analysis under a weaker set
which appears more trustworthy. In practice, it is often useful to model a problem
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in a number of different ways. One may then be satisfied if there is reasonable
agreement among the conclusions; in the contrary case, a closer examination of
the different sets of assumptions will be indicated.

In this book, Chapters 2, 3, and 5 will be primarily concerned with the second
formulation, Chapter 4 with the third. Chapter 6 considers a large-sample treat-
ment of both. (A book-length treatment of the first formulation is Tukey’s classic
Exploratory Data Analysis, or the more recent book by Hoaglin, Mosteller, and
Tukey 1985, which includes the interesting approach of Diaconis 1985.) Through-
out the book we shall try to specify what is meant by a “best” statistical procedure
for a given problem and to develop methods for determining such procedures.
Ideally, this would involve a formal decision-theoretic evaluation of the problem
resulting in an optimal procedure.

Unfortunately, there are difficulties with this approach, partially caused by the
fact that there is no unique, convincing definition of optimality. Compounding this
lack of consensus about optimality criteria is that there is also no consensus about
the evaluation of such criteria. For example, even if it is agreed that squared error
loss is a reasonable criterion, the method of evaluation, be it Bayesian, frequentist
(the classical approach of averaging over repeated experiments), or conditional,
must then be agreed upon.

Perhaps even more serious is the fact that the optimal procedure and its prop-
erties may depend very heavily on the precise nature of the assumed probability
model (1.1), which often rests on rather flimsy foundations. It therefore becomes
important to consider therobustness of the proposed solution under deviations
from the model. Some aspects of robustness, from both Bayesian and frequentist
perspectives, will be taken up in Chapters 4 and 5.

The discussion so far has been quite general; let us now specialize to point
estimation. In terms of the model (1.1), suppose thatg is a real-valued function
defined over and that we would like to know the value ofg(θ ) (which may, of
course, beθ itself). Unfortunately,θ , and henceg(θ ), is unknown. However, the
data can be used to obtain an estimate ofg(θ ), a value that one hopes will be close
to g(θ ).

Point estimation is one of the most common forms of statistical inference. One
measures a physical quantity in order to estimate its value; surveys are conducted
to estimate the proportion of voters favoring a candidate or viewers watching a
television program; agricultural experiments are carried out to estimate the effect of
a new fertilizer, and clinical experiments to estimate the improved life expectancy
or cure rate resulting from a medical treatment. As a prototype of such an estimation
problem, consider the determination of an unknown quantity by measuring it.

Example 1.1 The measurement problem. A number of measurements are taken
of some quantity, for example, a distance (or temperature), in order to obtain an
estimate of the quantityθ being measured. If thenmeasured values arex1, . . . , xn,
a common recommendation is to estimateθ by their mean

x̄ =
(x1 + · · · + xn)

n
.

The idea of averaging a number of observations to obtain a more precise value
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seems so commonplace today that it is difficult to realize it has not always been
in use. It appears to have been introduced only toward the end of the seventeenth
century (see Plackett, 1958). But why should the observations be combined in just
this way? The following are two properties of the mean, which were used in early
attempts to justify this procedure.

(i) An appealing approximation to the true value being measured is the valuea,
for which the sum of squared difference�(xi − a)2 is a minimum. That this
least squares estimate ofθ is x̄ is seen from the identity

�(xi − a)2 = �(xi − x̄)2 + n(x̄ − a)2,(1.2)

since the first term on the right side does not involvea and the second term
is minimized bya = x̄. (For the history of least squares, see Eisenhart 1964,
Plackett 1972, Harter 1974–1976, and Stigler 1981. Least squares estimation
will be discussed in a more general setting in §3.4.)

(ii) The least squares estimate defined in (i) is the value minimizing the sum of the
squared residuals, the residuals being the differences between the observations
xi and the estimated value. Another approach is to ask for the valuea for which
the sum of the residuals is zero, so that the positive and negative residuals are
in balance. The condition ona is

�(xi − a) = 0,(1.3)

and this again immediately leads toa = x̄. (That the two conditions lead to the
same answer is, of course, obvious since (1.3) expresses that the derivative of
(1.2) with respect toa is zero.)

These two principles clearly belong to the first (data analytic) level mentioned
at the beginning of the section. They derive the mean as a reasonable descriptive
measure of the center of the observations, but they cannot justifyx̄ as an estimate
of the true valueθ since no explicit assumption has been made connecting the
observationsxi with θ . To establish such a connection, let us now assume that
the xi are the observed values ofn independent random variables which have a
common distribution depending onθ . Eisenhart (1964) attributes the crucial step
of introducing such probability models for this purpose to Simpson (1755).

More specifically, we shall assume thatXi = θ + Ui , where the measurement
errorUi is distributed according to a distributionF symmetric about 0 so that the
Xi are symmetrically distributed aboutθ with distribution

P (Xi ≤ x) = F (x − θ ).(1.4)

In terms of this model, can we now justify the idea that the mean provides a more
precise value than a single observation? The second of the approaches mentioned
at the beginning of the section (classical inference) suggests the following kind of
consideration.

If the X’s are independent and have a finite varianceσ 2, the variance of the
meanX̄ is σ 2/n; the expected squared difference betweenX̄ andθ is therefore
only 1/n of what it is for a single observation. However, if theX’s have a Cauchy
distribution, the distribution of̄X is the same as that of a singleXi (Problem 1.6),
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so that nothing is gained by taking several measurements and then averaging them.
WhetherX̄ is a reasonable estimator ofθ thus depends on the nature of theXi . ‖

This example suggests that the formalization of an estimation problem involves
two basic ingredients:

(a) A real-valued functiong defined over a parameter space, whose value atθ
is to be estimated; we shall callg(θ ) theestimand. [In Example 1.1,g(θ ) = θ .]

(b) A random observableX (typically vector-valued) taking on values in a sample
spaceX according to a distributionPθ , which is known to belong to a family
P as stated in (1.1). [In Example 1.1,X = (X1, . . . , Xn), where theXi are
independently, identically distributed (iid) and their distribution is given by
(1.4). The observed valuex of X constitutes thedata.]

The problem is the determination of a suitableestimator.

Definition 1.2 An estimator is a real-valued functionδ defined over the sample
space. It is used to estimate anestimand, g(θ ), a real-valued function of the pa-
rameter.

Of course, it is hoped thatδ(X) will tend to be close to the unknowng(θ ), but
such a requirement is not part of the formal definition of an estimator. The value
δ(x) taken on byδ(X) for the observed valuex ofX is theestimate of g(θ ), which
will be our “educated guess” for the unknown value.

One could adopt a slightly more restrictive definition than Definition 1.2. In
applications, it is often desirable to restrictδ to possible values ofg(θ ), for example,
to be positive wheng takes on only positive values, to be integer-valued wheng

is, and so on. For the moment, however, it is more convenient not to impose this
additional restriction.

The estimatorδ is to be close tog(θ ), and sinceδ(X) is a random variable,
we shall interpret this to mean that it will be close on the average. To make this
requirement precise, it is necessary to specify a measure of the average closeness
of (or distance from) an estimator tog(θ ). Examples of such measures are

P (|δ(X)− g(θ )| < c) for some c > 0(1.5)

and

E|δ(X)− g(θ )|p for some p > 0.(1.6)

(Of these, we want the first to be large and the second to be small.) Ifg andδ take
on only positive values, one may be interested in

E

∣∣∣∣δ(X)

δ(θ )
− 1

∣∣∣∣p ,
which suggests generalizing (1.6) to

κ(θ )E|δ(X)− g(θ )|p.(1.7)

Quite generally, suppose that the consequences of estimatingg(θ ) by a valued
are measured byL(θ, d). Of theloss function L, we shall assume that

L(θ, d) ≥ 0 for all θ, d(1.8)
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and

L[θ, g(θ )] = 0 for all θ,(1.9)

so that the loss is zero when the correct value is estimated. The accuracy, or rather
inaccuracy, of an estimatorδ is then measured by therisk function

R(θ, δ) = Eθ {L[θ, δ(X)]},(1.10)

the long-term average loss resulting from the use ofδ. One would like to find aδ
which minimizes the risk for all values ofθ .

As stated, this problem has no solution. For, by (1.9), it is possible to reduce the
risk at any given pointθ0 to zero by makingδ(x) equal tog(θ0) for all x. There
thus exists nouniformly best estimator, that is, no estimator which simultaneously
minimizes the risk for all values ofθ , except in the trivial case thatg(θ ) is constant.

One way of avoiding this difficulty is to restrict the class of estimators by ruling
out estimators that too strongly favor one or more values ofθ at the cost of ne-
glecting other possible values. This can be achieved by requiring the estimator to
satisfy some condition which enforces a certain degree of impartiality. One such
condition requires that thebias Eθ [δ(X)]− g(θ ), sometimes called the systematic
error, of the estimatorδ be zero, that is, that

Eθ [δ(X)] = g(θ ) for all θ ∈ .(1.11)

This condition ofunbiasedness ensures that, in the long run, the amounts by which
δ over- and underestimatesg(θ ) will balance, so that the estimated value will be
correct “on the average.” A somewhat similar condition is obtained by considering
not the amount but only the frequency of over- and underestimation. This leads to
the condition

Pθ [δ(X) < g(θ )] = Pθ [δ(X) > g(θ )](1.12)

or slightly more generally to the requirement thatg(θ ) be a median ofδ(X) for all
values ofθ . To distinguish it from this condition ofmedian-unbiasedness, (1.11)
is calledmean-unbiasedness if there is a possibility of confusion.

Mean-unbiased estimators, due to Gauss and perhaps the most classical of all
frequentist constructions, are treated in Chapter 2. There, we will also consider
performance assessments that naturally arise from unbiasedness considerations.
[A more general unbiasedness concept, of which (1.11) and (1.12) are special
cases, will be discussed in Section 3.1.]

A different impartiality condition can be formulated when symmetries are present
in a problem. It is then natural to require a corresponding symmetry to hold for
the estimator. The resulting condition ofequivariance will be explored in Chapter
3 and will also play a role in the succeeding chapters.

In many important situations, unbiasedness and equivariance lead to estima-
tors that are uniformly best among the estimators satisfying these restrictions.
Nevertheless, the applicability of both conditions is limited. There is an alterna-
tive approach which is more generally applicable. Instead of seeking an estimator
which minimizes the risk uniformly inθ , one can more modestly ask that the risk
function be low only in some overall sense. Two natural global measures of the
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size of the risk are the average∫
R(θ, δ)w(θ )dθ(1.13)

for some weight functionw and the maximum of the risk function

sup


R(θ, δ).(1.14)

The estimator minimizing (1.13) (discussed in Chapter 4) formally coincides with
the Bayes estimator whenθ is assumed to be a random variable with probabil-
ity densityw. Minimizing (1.14) leads to theminimax estimator, which will be
considered in Chapter 5.

The formulation of an estimation problem in a concrete situation along the lines
described in this chapter requires specification of the probability model (1.1) and of
a measure of inaccuracyL(θ, d). In the measurement problem of Example 1.1 and
its generalizations to linear models, it is frequently reasonable to assume that the
measurement errors are approximately normally distributed. In other situations,
the assumptions underlying a binomial or Poisson distribution may be appropri-
ate. Thus, knowledge of the circumstances and previous experience with similar
situations will often suggest a particular parametric familyP of distributions. If
such information is not available, one may instead adopt a nonparametric model,
which requires only very general assumptions such as independence or symmetry
but does not lead to a particular parametric family of distributions. As a compro-
mise between these two approaches, one may be willing to assume that the true
distribution, though not exactly following a particular parametric form, lies within
a stated distance of some parametric family. For a theory of such neighborhood
models see, for example, Huber (1981) or TSH2, Section 9.3.

The choice of an appropriate model requires judgment and utilizes experience;
it is also affected by considerations of convenience. Analogous considerations
for choice of the loss functionL appear to be much more difficult. The most
common fate of a point estimate (for example, of the distance of a star or the
success probability of an operation) is to wind up in a research report or paper. It
is likely to be used on different occasions and in various settings for a variety of
purposes which cannot be foreseen at the time the estimate is made. Under these
circumstances, one wants the estimator to be accurate, but just what measure of
accuracy should be used is fairly arbitrary.

This was recognized very clearly by Laplace (1820) and Gauss (1821), who
compared the estimation of an unknown quantity, on the basis of observations
with random errors, with a game of chance and the error in the estimated value
with the loss resulting from such a game. Gauss proposed the square of the error
as a measure of loss or inaccuracy. Should someone object to this specification
as arbitrary, he writes, he is in complete agreement. He defends his choice by an
appeal to mathematical simplicity and convenience. Among the infinite variety
of possible functions for the purpose, the square is the simplest and is therefore
preferable.

When estimates are used to make definite decisions (for example, to determine
the amount of medication to be given a patient or the size of an order that a store
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should place for some goods), it is sometimes possible to specify the loss function
by the consequences of various errors in the estimate. A general discussion of the
distinction between inference and decision problems is given by Blyth (1970) and
Barnett (1982).

Actually, it turns out that much of the general theory does not require a detailed
specification of the loss function but applies to large classes of such functions,
in particular to loss functionsL(θ, d), which are convex ind. [For example, this
includes (1.7) withp ≥ 1 but not withp < 1. It does not include (1.5)]. We shall
develop here the theory for suitably general classes of loss functions whenever the
cost in complexity is not too high. However, in applications to specific examples
— and these form a large part of the subject — the choice of squared error as loss
has the twofold advantage of ease of computation and of leading to estimators that
can be obtained explicitly. For these reasons, in the examples we shall typically
take the loss to be squared error.

Theoretical statistics builds on many different branches of mathematics, from
set theory and algebra to analysis and probability. In this chapter, we will present
an overview of some of the most relevant topics needed for the statistical theory
to follow.

2 Measure Theory and Integration

A convenient framework for theoretical statistics is measure theory in abstract
spaces. The present section will sketch (without proofs) some of the principal
concepts, results, and notational conventions of this theory. Such a sketch should
provide sufficient background for a comfortable understanding of the ideas and
results and the essentials of most of the proofs in this book. A fuller account of
measure theory can be found in many standard books, for example, Halmos (1950),
Rudin (1966), Dudley (1989), and Billingsley (1995).

The most natural example of a “measure” is that of the length, area, or volume
of sets in one-, two-, or three-dimensional Euclidean space. As in these special
cases, a measure assigns non-negative (not necessarily finite) values to sets in some
spaceX . A measureµ is thus a set function; the value it assigns to a setA will be
denoted byµ(A).

In generalization of the properties of length, area, and volume, a measure will
be required to beadditive, that is, to satisfy

µ(A ∪ B) = µ(A) +µ(B) whenA,B are disjoint,(2.1)

whereA∪B denotes the union ofA andB. From (2.1), it follows immediately by
induction that additivity extends to any finite union of disjoint sets. The measures
with which we shall be concerned will be required to satisfy the stronger condition
of sigma-additivity, namely that

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai)(2.2)

for any countable collection of disjoint sets.
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The domain over which a measureµ is defined is a class of subsets ofX . It would
seem easiest to assume that this is the class of all subsets ofX . Unfortunately, it
turns out that typically it is not possible to give a satisfactory definition of the
measures of interest for all subsets ofX in such a way that (2.2) holds. [Such
a negative statement holds in particular for length, area, and volume (see, for
example, Halmos (1950), p. 70) but not for the measureµ of Example 2.1 below.]
It is therefore necessary to restrict the definition ofµ to a suitable class of subsets
of X . This class should contain the whole spaceX as a member, and for any setA
also itscomplement X −A. In view of (2.2), it should also contain the union of any
countable collection of sets of the class. A class of sets satisfying these conditions
is called aσ -field or σ -algebra. It is easy to see that ifA1, A2, . . . are members of
aσ -field A, then so are their union and intersection (Problem 2.1).

If A is aσ -field of subsets of a spaceX , then (X ,A) is said to be ameasurable
space and the setsA of A to bemeasurable. A measure µ is a nonnegative set
function defined over aσ -field A and satisfying (2.2). Ifµ is a measure defined
over a measurable space (X ,A), the triple (X ,A, µ) is called ameasure space.

A measure isσ -finite if there exist setsAi in A whose union isX and such
thatµ(Ai) <∞. All measures with which we shall be concerned in this book are
σ -finite, and we shall therefore use the termmeasure to mean aσ -finite measure.

The following are two important examples of measure spaces.

Example 2.1 Counting measure. Let X be countable andA the class of all
subsets ofX . For anyA in A, let µ(A) be the number of points ofA if A is
finite, andµ(A) =∞ otherwise. This measureµ is calledcounting measure. That
µ is σ -finite is obvious. ‖
Example 2.2 Lebesgue measure. Let X ben-dimensional Euclidean spaceEn,
and letA be the smallestσ -field containing all open rectangles

A = {(x1, . . . , xn) : ai < xi < bi}, −∞ < ai < bi <∞.(2.3)

We shall then say that (X ,A) is Euclidean. The members ofA are calledBorel
sets. This is a very large class which contains, among others, all open and all closed
subsets ofX . There exists a (unique) measureµ, defined overA, which assigns
to (2.3) the measure

µ(A) = (b1− a1) · · · (bn − an),(2.4)

that is, its volume;µ is calledLebesgue measure. ‖
The intuitive meaning of measure suggests that any subset of a set of measure

zero should again have measure zero. If (X ,A, µ) is a measure space, it may,
however, happen that a subset of a set inA which has measure zero is not in
A and hence not measurable. This difficulty can be remedied by the process of
completion. Consider the classB of all setsB = A ∪ C whereA is in A andC is
a subset of a set inA having measure zero. Then,B is aσ -field (Problem 2.7). If
µ′ is defined overB byµ′(B) = µ(A), µ′ agrees withµ overA, and (X ,B, µ′) is
called thecompletion of the measure space (X ,A, µ).

When the process of completion is applied to Example 2.1 so thatX is Euclidean
andA is the class of Borel sets, the resulting larger classB is the class of Lebesgue
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measurable sets. The measureµ′ defined overB, which agrees with Lebesgue
measure over the Borel sets, is also called Lebesgue measure.

A third principal concept needed in addition toσ -field and measure is that of the
integral of a real-valued functionf with respect to a measureµ. However, before
defining this integral, it is necessary to specify a suitable class of functionsf . This
will be done in three steps.

First, consider the class of real-valued functionss calledsimple, which take on
only a finite number of values, saya1, . . . , am, and for which the sets

Ai = {x : s(x) = ai}(2.5)

belong toA. An important special case of a simple function is theindicator IA of
a setA in A, defined by

IA(x) = I (x ∈ A) =

{
1 if x ∈ A
0 if x �= A.(2.6)

If the setA is an interval, for example (a, b], the indicator function of the interval
may be written in the alternate formI (a < x ≤ b).

Second, lets1, s2, . . . be a nondecreasing sequence of non-negative simple func-
tions and let

f (x) = lim
n→∞ sn(x).(2.7)

Note that this limit exists since for everyx, the sequences1(x), s2(x), . . . is non-
decreasing but thatf (x) may be infinite. A function with domainX and range
[0,∞), that is, non-negative and finite valued, will be calledA-measurable or, for
short,measurable if there exists a nondecreasing sequence of non-negative simple
functions such that(2.7) holds for allx ∈ X .

Third, for an arbitrary functionf , define itspositive and negative part by

f +(x) = max(f (x),0), f −(x) = −min(f (x),0),

so thatf + andf − are both non-negative and

f = f + − f −.
Then a function with domainX and range (−∞,∞) will be calledmeasurable if
both its positive and its negative parts are measurable. The measurable functions
constitute a very large class which has a simple alternative characterization.

It can be shown that a real-valued functionf is A-measurable if and only if, for
every Borel setB on the real line, the set

{x : f (x) ∈ B}
is in A. If follows from the definition of Borel sets that it is enough to check that
{x : f (x) < b} is in A for everyb. This shows in particular that if (X ,A) is
Euclidean andf continuous, thenf is measurable. As another important class,
consider functions taking on a countable number of values. Iff takes on distinct
valuesa1, a2, . . . on setsA1, A2, . . ., it is measurable if and only ifAi ∈ A for all
i.

The integral can now be defined in three corresponding steps.
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(i) For a non-negative simple functions taking on valuesai on the setsAi , define∫
s dµ = �aiµ(Ai),(2.8)

whereaµ(A) is to be taken as zero whena = 0 andµ(A) =∞.

(ii) For a non-negative measurable functionf given by (2.7), define∫
f dµ = lim

n→∞

∫
sndµ.(2.9)

Here, the limit on the right side exists since the fact that the functionssn
are nondecreasing implies the same for the numbers

∫
sndµ. The definition

(2.9) is meaningful because it can be shown that if{sn} and {s ′n} are two
nondecreasing sequences with the same limit function, their integrals also
will have the same limit. Thus, the value of

∫
f dµ is independent of the

particular sequence used in (2.7).

The definitions (2.8) and (2.9) do not preclude the possibility that
∫
s dµ or∫

f dµ is infinite. A non-negative measurable function isintegrable (with
respect toµ) if

∫
f dµ <∞.

(iii) An arbitrary measurable functionf is said to be integrable if its positive and
negative parts are integrable, and its integral is then defined by∫

f dµ =
∫
f +dµ−

∫
f −dµ.(2.10)

Important special cases of this definition are obtained by taking, forµ, the
measures defined in Examples 2.1 and 2.2.

Example 2.3 Continuation of Example 2.1. If X = {x1, x2, . . .} andµ is count-
ing measure, it is easily seen from (2.8) through (2.10) that∫

f dµ = �f (xi). ‖

Example 2.4 Continuation of Example 2.2. If µ is Lebesgue measure, then∫
f dµ exists whenever the Riemann integral (the integral taught in calculus

courses) exists and the two agree. However, the integral defined in (2.8) through
(2.10) exists for many functions for which the Riemann integral is not defined. A
simple example is the functionf for whichf (x) = 1 or 0, asx is rational or irra-
tional. It follows from (2.22) below that the integral off with respect to Lebesgue
measure is zero; on the other hand,f is not Riemann integrable (Problem 2.11).‖

In analogy with the customary notation for the Riemann integral, it will fre-
quently be convenient to write the integral (2.10) as

∫
f (x)dµ(x). This is especially

true whenf is given by an explicit formula.
The integral defined above has the properties one would expect of it. In particular,

for any real numbersc1, . . . , cm and any integrable functionsf1, . . . , fm,�cifi is
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also integrable and ∫
(�cifi) dµ = �ci

∫
fidµ.(2.11)

Also, if f is measurable andg integrable and if 0≤ f ≤ g, thenf is also
integrable, and ∫

f dµ ≤
∫
g dµ.(2.12)

We shall often be dealing with statements that hold except on a set of measure
zero. If a statement holds for allx in X − N whereµ(N ) = 0, the statement is
said to hold a.e. (almost everywhere)µ (or a.e. if the measureµ is clear from the
context).

It is sometimes required to know whenf (x) = lim fn(x) or more generally
when

f (x) = lim fn(x) (a.e. µ)(2.13)

implies that ∫
f dµ = lim

∫
fndµ.(2.14)

Here is a sufficient condition.

Theorem 2.5 (Dominated Convergence) If the fn are measurable and satisfy
(2.13), and if there exists an integrable function g such that

|fn(x)| ≤ g(x) for all x,(2.15)

then the fn and f are integrable and (2.14) holds.

The following is another useful result concerning integrals of sequences of
functions.

Lemma 2.6 (Fatou) If {fn} is a sequence of non-negative measurable functions,
then ∫ (

lim inf
n→∞ fn

)
dµ ≤ lim inf

n→∞

∫
fndµ(2.16)

with the reverse inequality holding for limsup.

Recall that theliminf andlimsup of a sequence of numbers are, respectively, the
smallest and largest limit points that can be obtained through subsequences. See
Problems 2.5 and 2.6.

As a last extension of the concept of integral, define∫
A

f dµ =
∫
IAf dµ(2.17)

when the integral on the right exists. It follows in particular from (2.8) and (2.17)
that ∫

A

dµ = µ(A).(2.18)

Obviously such properties as (2.11) and (2.12) continue to hold when
∫

is replaced
by

∫
A

.
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It is often useful to know under what conditions an integrable functionf satisfies∫
A

f dµ = 0.(2.19)

This will clearly be the case when either

f = 0 on A(2.20)

or

µ(A) = 0.(2.21)

More generally, it will be the case whenever

f = 0 a.e. onA,(2.22)

that is,f is zero except on a subset ofA having measure zero.
Conversely, iff is a.e. non-negative onA,∫

A

f dµ = 0⇒ f = 0 a.e. onA,(2.23)

and iff is a.e. positive onA, then∫
A

f dµ = 0⇒ µ(A) = 0.(2.24)

Note that, as a special case of (2.22), iff andg are integrable functions differing
only on a set of measure zero, that is, iff = g (a.e.µ), then∫

f dµ =
∫
g dµ.

It is a consequence that functions can never be determined by their integrals
uniquely but at most up to sets of measure zero.

For a non-negative integrable functionf , let us now consider

ν(A) =
∫
A

f dµ(2.25)

as a set function defined overA. Thenν is non-negative,σ -finite, andσ -additive
and hence a measure over (X ,A).

If µ andν are two measures defined over the same measurable space (X ,A), it is
a question of central importance whether there exists a functionf such that (2.25)
holds for allA ∈ A. By (2.21), a necessary condition for such a representation is
clearly that

µ(A) = 0⇒ ν(A) = 0.(2.26)

When (2.26) holds,ν is said to beabsolutely continuous with respect toµ. It is a
surprising and basic fact known as theRadon-Nikodym theorem that (2.26) is not
only necessary but also sufficient for the existence of a functionf satisfying (2.25)
for all A ∈ A. The resulting functionf is called theRadon-Nikodym derivative
of ν with respect toµ. Thisf is not unique because it can be changed on a set of
µ-measure zero without affecting the integrals (2.25). However, it isunique a.e. µ
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in the sense that ifg is any other integrable function satisfying (2.25), thenf = g
(a.e.µ). It is a useful consequence of this result that∫

A

f dµ = 0 for all A ∈ A

implies thatf = 0 (a.e.µ).
The last theorem on integration we require is a form of Fubini’s theorem which

essentially states that in a repeated integral of a non-negative function, the order
of integration is immaterial. To make this statement precise, define the Cartesian
productA × B of any two setsA,B as the set of all ordered pairs (a, b) with
a ∈ A, b ∈ B. Let (X ,A, µ) and (Y,B, ν) be two measure spaces, and define
A×B to be the smallestσ -field containing all setsA×B withA ∈ A andB ∈ B.
Then there exists a unique measureλ overA×B which to any product setA×B
assigns the measureµ(A) · ν(B). The measureλ is called theproduct measure of
µ andν and is denoted byµ× ν.
Example 2.7 Borel sets. If X andY are Euclidean spacesEm andEn andA and
B theσ -fields of Borel sets ofX andY respectively, thenX × Y is Euclidean
spaceEm+n, andA× B is the class of Borel sets ofX × Y. If, in addition,µ and
ν are Lebesgue measure on (X ,A) and (Y,B), thenµ × ν is Lebesgue measure
on (X × Y,A× B). ‖

An integral with respect to a product measure generalizes the concept of a double
integral. The following theorem, which is one version of Fubini’s theorem, states
conditions under which a double integral is equal to a repeated integral and under
which it is permitted to change the order of integration in a repeated integral.

Theorem 2.8 (Fubini) Let (X ,A, µ) and (Y,B, ν) be measure spaces and letf
be a non-negativeA× B-measurable function defined onX × Y.

Then ∫
X

[∫
Y
f (x, y)dν(y)

]
dµ(x) =

∫
Y

[∫
X
f (x, y)dµ(x)

]
dν(y)(2.27)

=
∫

X×Y
f d(µ× ν).

Here, the first term is the repeated integral in whichf is first integrated for fixed
x with respect toν, and then the result with respect toµ. The inner integrals of
the first two terms in (2.27) are, of course, not defined unlessf (x, y), for fixed
values of either variable, is a measurable function of the other. Fortunately, under
the assumptions of the theorem, this is always the case. Similarly, existence of
the outer integrals requires the inner integrals to be measurable functions of the
variable that has not been integrated. This condition is also satisfied.

3 Probability Theory

For work in statistics, the most important application of measure theory is its
specialization to probability theory. A measureP defined over a measure space
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(X ,A) satisfying
P (X ) = 1(3.1)

is aprobability measure (or probability distribution), and the valueP (A) it assigns
toA is theprobability ofA. If P is absolutely continuous with respect to a measure
µ with Radon-Nikodym derivative,p, so that

P (A) =
∫
A

p dµ,(3.2)

p is called theprobability density of P with respect toµ. Such densities are, of
course, determined only up to sets ofµ-measure zero.

We shall be concerned only with situations in whichX is Euclidean, and typi-
cally the distributions will either be discrete (in which caseµ can be taken to be
counting measure) or absolutely continuous with respect to Lebesgue measure.

Statistical problems are concerned not with single probability distributions but
with families of such distributions

P = {Pθ, θ ∈ }(3.3)

defined over a common measurable space (X ,A). When all the distributions ofP
are absolutely continuous with respect to a common measureµ, as will usually be
the case, the familyP is said to bedominated (byµ).

Most of the examples with which we shall deal belong to one or the other of the
following two cases.

(i) The discrete case. Here,X is a countable set,A is the class of subsets ofX ,
and the distributions ofP are dominated by counting measure.

(ii) The absolutely continuous case. Here,X is a Borel subset of a Euclidean
space,A is the class of Borel subsets ofX , and the distributions ofP are
dominated by Lebesgue measure over (X ,A).

It is one of the advantages of the general approach of this section that it includes
both these cases, as well as mixed situations such as those arising with censored
data (see Problem 3.8).

When dealing with a familyP of distributions, the most relevant null-set concept
is that of aP-null set, that is, of a setN satisfying

P (N ) = 0 for all P ∈ P.(3.4)

If a statement holds except on a setN satisfying (3.4), we shall say that the statement
holds (a.e.P). If P is dominated byµ, then

µ(N ) = 0(3.5)

implies (3.4). When the converse also holds,µ andP are said to beequivalent.
To bring the customary probabilistic framework and terminology into conso-

nance with that of measure theory, it is necessary to define the concepts of random
variable and random vector. A random variable is the mathematical representation
of some real-valued aspect of an experiment with uncertain outcome. The experi-
ment may be represented by a spaceE , and the full details of its possible outcomes
by the pointse of E . The frequencies with which outcomes can be expected to fall
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into different subsetsE of E (assumed to form aσ -field B) are given by a proba-
bility distribution over (E,B). A random variable is then a real-valued functionX
defined overE . Since we wish the probabilities of the eventsX ≤ a to be defined,
the functionX must be measurable and the probability

FX(a) = P (X ≤ a)(3.6)

is simply the probability of the set{e : X(e) ≤ a}. The functionFX defined through
(3.6) is thecumulative distribution function (cdf) of X.

It is convenient to digress here briefly in order to define another concept of
absolute continuity. A real-valued functionf on (−∞,∞) is said to beabsolutely
continuous if given anyε > 0, there exitsδ > 0 such that for each finite collection
of disjoint bounded open intervals (ai, bi),

�(bi − ai) < δ implies �|f (bi)− f (ai)| < ε.(3.7)

A connection with the earlier concept of absolute continuity of one measure with
respect to another is established by the fact that a cdfF on the real line is absolutely
continuous if and only if the probability measure it generates is absolutely con-
tinuous with respect to Lebesgue measure. Any absolutely continuous function is
continuous (Problem 3.2), but the converse does not hold. In particular, there exist
continuous cumulative distribution functions which are not absolutely continuous
and therefore do not have a probability density with respect to Lebesgue measure.
Such distributions are rather pathological and play little role in statistics.

If not just one butn real-valued aspects of an experiment are of interest, these
are represented by a measurable vector-valued function (X1, . . . , Xn) defined over
E , with the joint cdf

FX(a1, . . . , an) = P [X1 ≤ a1, . . . , Xn ≤ an](3.8)

being the probability of the event

{e : X1(e) ≤ a1, . . . , Xn(e) ≤ an}.(3.9)

The cdf (3.8) determines the probabilities of (X1, . . . Xn) falling into any Borel set
A, and these agree with the probabilities of the events

{e : [X1(e), . . . , Xn(e)] ∈ A}.
From this description of the mathematical model, one might expect the starting

point for modeling a specific situation to be the measurable space (E,B) and a fam-
ily P of probability distributions defined over it. However, the statistical analysis
of an experiment is typically not based on a full description of the experimental
outcome (which would, for example, include the smallest details concerning all
experimental subjects) represented by the pointse of E . More often, the starting
point is a set of observations, represented by a random vectorX = (X1, . . . , Xn),
with all other aspects of the experiment being ignored. The specification of the
model will therefore begin withX, thedata; the measurable space (X ,A) in which
X takes on its values, thesample space; and a familyP of probability distributions
to which the distribution ofX is known to belong. Real-valued or vector-valued
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measurable functionsT = (T1, . . . , Tk) of X are calledstatistics; in particular,
estimators are statistics.

The change of starting point from (E,B) to (X ,A) requires clarification of two
definitions: (1) In order to avoid reference to (E,B), it is convenient to requireT to
be a measurable function over (X ,A) rather than over (E,B). Measurability with
respect to the original (E,B) is then an automatic consequence (Problem 3.3). (2)
Analogously, the expectation of a real-valued integrableT is originally defined as∫

T [X(e)]dP (e).

However, it is legitimate to calculate it instead from the formula

E(T ) =
∫
T (x)dPX(X)

wherePX denotes the probability distribution ofX.
As a last concept, we mention thesupport of a distributionP on (X ,A). It is

the set of all pointsx for whichP (A) > 0 for all open rectanglesA [defined by
(2.3)] which containx.

Example 3.1 Support. LetX be a random variable with distributionP and cdf
F , and suppose the support ofP is a finite intervalI with end pointsa andb. Then,
I must be the closed interval [a, b] andF is strictly increasing on [a, b] (Problem
3.4). ‖

If P andQ are two probability measures on (X ,A) and are equivalent (i.e.,
each is absolutely continuous with respect to the other), then they have the same
support; however, the converse need not be true (Problems 3.6 and 3.7).

Having outlined the mathematical foundation on which the statistical develop-
ments of the later chapters are based, we shall from now on ignore it as far as
possible and instead concentrate on the statistical issues. In particular, we shall
pay little or no attention to two technical difficulties that occur throughout.

(i) The estimators that will be derived are statistics and hence need to be measur-
able. However, we shall not check that this requirement is satisfied. In specific
examples, it is usually obvious. In more general constructions, it will be tac-
itly understood that the conclusion holds only if the estimator in question is
measurable. In practice, the sets and functions in these constructions usually
turn out to be measurable although verification of their measurability can be
quite difficult.

(ii) Typically, the estimators are also required to be integrable. This condition
will not be as universally satisfied in our examples as measurability and will
therefore be checked when it seems important to do so. In other cases, it will
again be tacitly assumed.

4 Group Families

The two principal families of models with which we shall be concerned in this book
areexponential families andgroup families. Between them, these families cover
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many of the more common statistical models. In this and the next section, we shall
discuss these families and some of their properties, together with some of the more
important special cases. More details about these and other special distributions
can be found in the four-volume reference work on statistical distributions by
Johnson and Kotz (1969-1972), and the later editions by Johnson, Kotz, and Kemp
(1992) and Johnson, Kotz, and Balakrishnan (1994,1995).

One of the main reasons for the central role played by these two families in
statistics is that in each of them, it is possible to effect a great simplification of the
data. In an exponential family, there exists a fixed (usually rather small) number of
statistics to which the data can be reduced without loss of information, regardless
of the sample size. In a group family, the simplification stems from the fact that the
different distributions of the family play a highly symmetric role. This symmetry
in the basic structure again leads essentially to a reduction of the dimension of the
data since it is then natural to impose a corresponding symmetry requirement on
the estimator.

A group family of distributions is a family obtained by subjecting a random
variable with a fixed distribution to a suitable family of transformations.

Example 4.1 Location-scale families. LetU be a random variable with a fixed
distributionF . If a constanta is added toU , the resulting variable

X = U + a(4.1)

has distribution
P (X ≤ x) = F (x − a).(4.2)

The totality of distributions (4.2), for fixedF and asa varies from−∞ to∞, is
said to constitute alocation family.

Analogously, ascale family is generated by the transformations

X = bU, b > 0,(4.3)

and has the form
P (X ≤ x) = F (x/b).(4.4)

Combining these two types of transformations into

X = a + bU, b > 0,(4.5)

one obtains thelocation-scale family

P (X ≤ x) = F

(
x − a
b

)
.(4.6)

In applications of these families,F usually has a densityf with respect to
Lebesgue measure. The density of (4.6) is then given by

1

b
f

(
x − a
b

)
.(4.7)

Table 4.1 exhibits several such densities, which will be used in the sequel.‖
In each of (4.1), (4.3), and (4.5), the class of transformations has the following

two properties.
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Table 4.1.Location-Scale Families −∞ < a <∞, b > 0

Density Support Name Notation

1√
2πb
e−(x−a)2/2b2 −∞ < x <∞ Normal N (a, b2)

1
2b e

−|x−a|/b −∞ < x <∞ Double exponential DE(a, b)

b
π

1
b2+(x−a)2 −∞ < x <∞ Cauchy C(a, b)

1
b

e−(x−a)/b
[1+e−(x−a)/b]2 −∞ < x <∞ Logistic L(a, b)

1
b
e−(x−a)/bI[a,∞)(x) a < x <∞ Exponential E(a, b)

1
b
I[a−b/2,a+b/2](x) a − b

2 < x < a + b
2 Uniform U

(
a − b

2, a + b
2

)

(i) Closure under composition. Application of a 1:1 transformationg1 from X
to X followed by another,g2, results in a new such transformation called the
composition ofg1 with g2 and denoted byg2 ·g1. For the transformation (4.1),
addition first ofa1 and then ofa2 results in the addition ofa1 + a2. For (4.3),
multiplication byb1 and then byb2 is equivalent to multiplication byb2 · b1.
The composition rule (4.5) is slightly more complicated. First transformingu

tox = a1 +b1u and then the result toy = a2 +b2x results in the transformation

y = a2 + b2(a1 + b1u) = (a2 + b2a1) + b2b1u.(4.8)

A classJ of transformations is said to beclosed under composition ifg1 ∈
J , g2 ∈ J implies thatg2 ·g1 ∈ J . We have just shown that the three classes
of transformations,

(4.1) with−∞ < a <∞,
(4.3) with 0< b,(4.9)

(4.5) with−∞ < a <∞,0< b,
are all closed with respect to composition. On the other hand, the class (4.1)
with |a| < 1 is not, sinceU + 1/2 andU + 2/3 are both members of the class
but their composition is not.

(ii) Closure under inversion. Given any 1 : 1 transformationx ′ = gx, let g−1,
theinverse of g, denote the transformation which undoes whatg did, that is,
takesx ′ back tox so thatx = g−1x ′. For the transformation which addsa, the
inverse subtractsa; the inverse in (4.3) of multiplication byb is division by
b; and the inverse ofa + bu is (x − a)/b. A classJ is said to be closed under
inversion ifg ∈ J impliesg−1 ∈ J . The three classes listed in (4.9) are all
closed under inversion. On the other hand, (4.1) with 0≤ a is not.



1.4 ] GROUP FAMILIES 19

The structure of the class of transformations possessing these properties is a
special case of a more general mathematical object, simply called agroup.

Definition 4.2 A setG of elements is called agroup if it satisfies the following
four conditions.

(i) There is defined an operation, group multiplication, which with any two el-
ementsa, b ∈ G associates an elementc of G. The elementc is called the
product ofa andb and is denotedab.

(ii) Group multiplication obeys the associative law

(ab)c = a(bc).

(iii) There exists an elemente ∈ G, called theidentity, such that

ae = ea = a for all a ∈ G.
(iv) For each elementa ∈ G, there exists an elementa−1, its inverse, such that

aa−1 = a−1a = e.

Both the identity element and the inversea−1 of any elementa can be shown to
be unique.

The groups of primary interest in statistics aretransformation groups.

Definition 4.3 A classG of transformations is called atransformation group if it
is closed under both composition and inversion.

It is straightforward to verify (Problem 4.4) that a transformation group is, in
fact, a group. In particular, note that theidentity transformation x ≡ x is a member
of any transformation groupG sinceg ∈ G impliesg−1 ∈ G and henceg−1g ∈ G,
and by definition,g−1g is the identity. Note also that the inverse (g−1)−1 of g−1 is
g, so thatgg−1 is also the identity.

A transformation groupG which satisfies

g2 · g1 = g1 · g2

for all g1, g2 ∈ G is calledcommutative. The first two groups of transformations
of (4.9) are commutative, but the third is not.

Example 4.4 Continuation of Example 4.1. The group families (4.2), (4.4), and
(4.6) generalize easily to the case thatU is a vectorU = (U1, . . . , Un), if one
defines

U + a = (U1 + a, . . . , Un + a) and bU = (bU1, . . . , bUn).(4.10)

This covers in particular the case thatX1, . . . , Xn are iid according to one of the
previous families, for example, one of the densities of Table 4.1. Larger group
families are obtained in the same way by letting

U + a = (U1 + a1, . . . , Un + an) andbU = (b1U1, . . . , bnUn).(4.11)

‖
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Example 4.5 Multivariate normal distribution. As a more special but very im-
portant example, suppose next thatU = (U1, . . . , Up) where theUi are indepen-
dently distributed asN (0,1) and letX1

...
Xp

 =

 a1
...
ap

 +B

U1
...
Up

(4.12)

whereB is nonsingularp × p matrix. The resulting family of distributions in
p-space is the family of nonsingularp-variate normal distributions. If the three
columns of (4.12) are denoted byX, a, andU, respectively,1 (4.12) can be written
as

X = a +BU.(4.13)

From this equation, it is seen that the covariance matrix� of X are given by

E(X) = a and � = E[(X− a)(X− a)′] = BB ′.(4.14)

To obtain the density ofX, write the density ofU as

1

(
√

2π )p
e−(1/2)u′u.

Now U = B−1(X − a) and the Jacobian of the linear transformation (4.13) is just
the determinant|B| of B. Thus, by the usual formula for transforming densities,
the density ofX is seen to be

|B|−1

(
√

2π )p
e−(x−a)′�−1(x−a)/2.(4.15)

For the casep = 2, this reduces to (Problem 4.6)

1

2πστ
√

1− ρ2
e−[(x−ξ )2/σ 2−2ρ(x−ξ )(y−η)/στ+(y−η)2/τ 2]/2(1−ρ2)(4.16)

where we write (x, y) for (x1, x2) and (ξ, η) for (a1, a2), and whereσ 2 = var(X),
τ 2 = var(Y ), andρστ = cov(X, Y ). ‖

There is a difference between the transformation groups (4.1), (4.3), and (4.5),
on the one hand, and (4.13), on the other. In the first three cases, different transfor-
mations of the group lead to different distributions. This is not true of (4.13) since
the distributions of

a1 +B1U and a2 +B2U

coincide provideda1 = a2 andB1B
′
1 = B2B

′
2. This occurs whena1 = a2 and

(B−1
2 B1)(B−1

2 B1)′ is the identity matrix, that is, whenB−1
2 B1 is orthogonal. The

same family of distributions can therefore be generated by restricting the matrices
B in (4.13) to belong to a smaller group. In particular, it is enough to letG be the
group of lower triangular matrices, in which all elements above the main diagonal
are zero (Problems 4.7 - 4.9).

1 When it is not likely to cause confusion, we shall useU and so on to denote both the vector and the
column with elementsUi .
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Example 4.6 The linear model. Let us next consider a different generalization
of a location-scale family. As before, letU = (U1, . . . , Un) have a fixed joint
distribution and consider the transformations

Xi = ai + bUi, i = 1, . . . , n,(4.17)

where the translation vectora = (a1, . . . , an) is restricted to be in somes-dimen-
sional linear subspace of n-space, that is, to satisfy a set of linear equations

ai =
s∑
j=1

dijβj (i = 1, . . . , n).(4.18)

Here, thedij are fixed (without loss of generality the matrixD = (dij ) is assumed
to be of ranks) and theβj are arbitrary.

The most important case of this model is that in which theU ’s are iid asN (0,1).
The joint distribution of theX’s is then given by

1

(
√

2πb)n
exp

[
− 1

2b2
�(xi − ai)2

]
(4.19)

with a ranging over. ‖
We shall next consider a number of models in which the groups (and hence the

resulting families of distributions) are much larger than in the situations discussed
so far.

Example 4.7 A nonparametric iid family. Let U1, . . . , Un be n independent
random variables with a fixed continuous common distribution, sayN (0,1), whose
support is the whole real line, and letG be the class of all transformations

Xi = g(Ui)(4.20)

whereg is any continuous, strictly increasing function satisfying

lim
u→−∞ g(u) = −∞, lim

u→∞ g(u) =∞.(4.21)

This class constitutes a group. TheXi are again iid with common distribution,
sayFg. The class{Fg : g ∈ G} is the class of all continuous distributions whose
support is (−∞,∞), that is, the class of all distributions whose cdf is continuous
and strictly increasing on (−∞,∞).

In this example, one may wish to impose ong the additional restriction of
differentiability for allµ. The resulting family of distributions will be as before
but restricted to have probability density with respect to Lebesgue measure.‖

Many variations of this basic example are of interest, we shall mention only a
few.

Example 4.8 Symmetric distributions. Consider the situation of Example 4.7
but with g restricted to be odd, that is, to satisfyg(−u) = −g(u) for all u. This
leads to the class of all distributions whose support is the whole real line and which
are symmetric with respect to the origin. If instead we letXi = g(ui) + a,−∞ <

a <∞, the resulting class is that of all distributions whose support is the real line
and which are symmetric with the pointa of symmetry being specified. ‖
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Example 4.9 Continuation of Example 4.7. In Example 4.7, replaceN (0,1) as
the initial distribution of theUi with the uniform distribution on (0,1), and letG
be the class of all strictly increasing continuous functionsg on (0,1) satisfying
g(0) = 0, g(1) = 1. If, then,Xi = a + bg(Ui) with −∞ < a < ∞,0 < b, the
resulting group family is that of all continuous distributions whose support is an
interval. ‖

The examples of group families considered so far are of two types. In Examples
4.1 - 4.6, the distributions within a family were naturally indexed by a relatively
small number of parameters (a andb in Example 4.1; the elements of the matrix
B and the vectora in Example 4.4; the quantitiesb andβ1, . . . , βs in Example
4.6). On the other hand, in Examples 4.7 - 4.9, the distribution of theXi was
fairly unrestricted, subject only to conditions such as independence, identity of
distribution, nature of support, continuity, and symmetry. The next example is the
prototype of a third kind of model arising in survey sampling.

Example 4.10 Sampling from a finite population. To motivate this model, con-
sider a finite population ofN elements (or subjects) to each of which is attached
a real number (for example, the age or income of the subject) and an identifying
label. A random sample ofn elements drawn from this population constitutes the
observations. Let the observed values and labels be (X1, J1), . . . , (Xn, Jn). The
following group family provides a possible model for this situation.

Let v1, . . . , vN be any fixedN real numbers, and let the pairs (U1, J1), . . .,
(Un, Jn) ben of the pairs (v1,1), . . . , (vN,N ) selected at random, that is, in such
a way that all(

N

n

)
possible choices ofn pairs are equally likely.

Finally, letG be the group of transformations

X1 = U1 + aJ1, . . . , Xn = Un + aJn(4.22)

where theN -tuple (a1, . . . , , aN ) ranges over all possibleN -tuples−∞ < a1,
a2, . . . , aN < ∞. If we put yi = vi + ai , then the pairs (X1, J1), . . . , (Xn, Jn)
are a random sample from the population (y1,1), . . . , (yN,N ), they values being
arbitrary.

This example can be extended in a number of ways. In particular, the sampling
method, reflecting some knowledge concerning the population ofy values, may be
more complex. Instratified sampling, for instance, the population ofN is divided
into, say,s subpopulations ofN1, . . . , Ns members (�Ni = N ) and a sample of
ni is drawn at random from theith subpopulation (Problem 4.12). This and some
other sampling schemes will be considered in Section 3.7. A different modification
places some restrictions on they’s such as 0< yi <∞, or 0< yi < 1 (Problem
4.11). ‖

It was stated at the beginning of the section that in a group family, the differ-
ent members of the family play a highly symmetric role. However, the general
construction of such a familyP as the distributions ofgU , whereU has a fixed
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distributionP0 andg ranges over a groupG of transformations, appears to single
out the distributionP0 of U (which is a member ofP since the identity transfor-
mation is a member ofG) as the starting point of the construction. This asymmetry
is only apparent. LetP1 be any distribution ofP other thanP0 and consider the
family P ′ of distributions ofgV asg ranges overG, whereV has distributionP1.
SinceP1 is an element ofP, there exists an elementg0 of G for which g0U is
distributed according toP1. Thus,g0U can play the role ofV , andP ′ is the family
of distributions ofgg0U asg ranges overG. However, asg ranges overG, so does
gg0 (Problem 4.5), so that the family of distributions ofgg0U , g ∈ G, is the same
as the family ofP of gU, g ∈ G. A group family is thus independent of which of
its members is taken as starting distribution.

If one cannot find a group generating a given familyP of distributions, the
question arises whether such a group exists, that is, whetherP is a group family.
In principle, the answer is easy. For the sake of simplicity, suppose thatP is a
family of univariate distributions with continuous and strictly increasing cumula-
tive distribution functions. LetF0 andF be two such cdf’s and suppose thatU is
distributed according toF0. Then, ifg is strictly increasing,g(U ) is distributed ac-
cording toF if and only ifg = F−1(F0) (Problem 4.14). Thus, the transformations
generating the family must be the transformations

{F−1(F0), F ∈ P}.(4.23)

The familyP will be a group family if and only if the transformations (4.23) form
a group, that is, are closed under composition and inversion. In specific situations,
the calculations needed to check this requirement may not be easy. For an important
class of problems, the question has been settled by Borges and Pfanzagl (1965).

5 Exponential Families

A family {Pθ } of distributions is said to form ans-dimensional exponential family
if the distributionsPθ have densities of the form

pθ (x) = exp

[
s∑
i=1

ηi(θ )Ti(x)− B(θ )

]
h(x)(5.1)

with respect to some common measureµ. Here, theηi andB are real-valued
functions of the parameters and theTi are real-valued statistics, andx is a point in
the sample spaceX , thesupport of the density. Frequently, it is more convenient
to use theηi as the parameters and write the density in thecanonical form

p(x|η) = exp

[
s∑
i=1

ηiTi(x)− A(η)

]
h(x).(5.2)

It should be noted that the form (5.2) is not unique. We can, for example, multiply
ηi by a constantc if, at the same time,Ti is replaced byTi/c. More generally, we
can make linear transformations of theη’s andT ’s.

Both (5.1) and (5.2) are redundant in that the factorh(x) could be absorbed into
µ. The reason for not doing so is that it is then usually possible to takeµ to be
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either Lebesgue measure or counting measure rather than having to define a more
elaborate measure.

The functionp given by (5.2) is non-negative and is therefore a probability
density with respect to the givenµ, provided its integral with respect toµ equals
1. A constantA(η) for which this is the case exists if and only if∫

e�ηiTi (x)h(x)dµ(x) <∞.(5.3)

The setF of pointsη = (η1, . . . , ηs) for which (5.3) holds is called thenatural
parameter space of the family (5.2) andη is called thenatural parameter. It
is not difficult to see thatF is convex (TSH2, Section 2.7, Lemma 7). In most
applications, it turns out to be open, but this need not be the case (Problem 5.1).
In the parametrization (5.1), the natural parameter space is the set ofθ values for
which [η1(θ ), . . . , ηs(θ )] is in F.

Example 5.1 Normal family. If X has theN (ξ, σ 2) distribution, thenθ = (ξ, σ 2)
and the density with respect to Lebesgue measure is

pθ (x) = exp

[
ξ

σ 2
x − 1

2σ 2
x2 − ξ2

2σ 2

]
1√
2πσ

,

a two-parameter exponential family with natural parameters (η1, η2) = (ξ/σ 2,
−1/2σ 2) and natural parameter space�× (−∞,0). ‖

Some other examples of one- and two-parameter exponential families are shown
in Table 5.1.

If the statisticsT1, . . . , Ts satisfy linear constraints, the numbers of terms in
the exponent of (5.1) can be reduced. Unless this is done, the parametersηi are
statistically meaningless; they areunidentifiable (see Problem 5.2).

Definition 5.2 If X is distributed according topθ , thenθ is said to beunidentifiable
on the basis of X if there existθ1 �= θ2 for whichPθ1 = Pθ2.

A reduction is also possible when theη’s satisfy a linear constraint. In the latter
case, the natural parameter space will be a convex set which lies in a linear subspace
of dimension less thans. If the representation (5.2) is minimal in the sense that
neither theT ’s nor theη’s satisfy a linear constraint, the natural parameter space
will then be a convex set inEs containing an opens-dimensional rectangle. If
(5.2) is minimal and the parameter space contains ans-dimensional rectangle, the
family (5.2) is said to be offull rank.

Example 5.3 Multinomial. In n independent trials withs + 1 possible outcomes,
let the probability of theith outcome bepi in each trial. IfXi denotes the number
of trials resulting in outcomei (i = 0,1, . . . , s), then the joint distribution of the
X’s is themultinomial distributionM(p0, . . . , ps ; n)

P (X0 = x0, . . . , Xs = xs) =
n!

x0! · · · xs !p
x0
0 . . . p

xs
s ,(5.4)

which can be rewritten as

exp(x0 logp0 + · · · + xs logps)h(x).
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Table 5.1.Some One- and Two-Parameter Exponential Families

Density∗ Name Notation Support

1

H(a)ba
xa−1e−x/a Gamma(a, b) H(a, b) 0< x <∞

1

H(f/2)2f/2
xf/2−1e−x/2 Chi-squared(f ) χ2

f 0< x <∞

H(a + b)

H(a)H(b)
xa−1(1− x)b−1 Beta(a, b) B(a, b) 0< x < 1

px(1− p)n−x Bernoulli(p) b(p) x = 0,1(
n

x

)
px(1− p)n−x Binomial(p, n) b(p, n) x = 0,1, . . . , n

1

x!
λxe−λ Poisson(λ) P (λ) x = 0,1, . . .

(
m + x − 1
m− 1

)
pmqx Negative binomial(p,m) Nb(p,m) x = 0,1, . . .

∗The density of the first three distributions is with respect to Lebesgue measure,
and that of the last four with respect to counting measure.

Since thexi add up ton, this can be reduced to

exp[n logp0 + x1 log(p1/p0) + · · · + xs log(ps/p0)]h(x).(5.5)

This is ans-dimensional exponential family with

ηi = log(pi/p0), A(η) = −n logp0 = n log

[
1 +

s∑
i=1

eηi

]
.(5.6)

The natural parameter space is the set of all (η1, . . . , ηs) with −∞ < ηi <∞. ‖
In the normal family of Example 5.1, it might be the case that the mean and

the variance are related. [Such a model can be useful in data analysis, where the
variance may be modeled as a power of the mean (see, for example, Snedecor and
Cochran 1989, Section 15.10).] In such cases, when the natural parameters of the
distribution are related in a nonlinear way, we say that (5.1) or (5.2) forms acurved
exponential family (see Note 10.6).

Example 5.4 Curved normal family. For the normal family of Example 5.1,
assume thatξ = σ , so that

pθ (x) = exp

[
1

ξ
x − 1

2ξ2
x2 − 1

2

]
1√
2πξ

, ξ > 0.(5.7)
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Although this is formally a two-parameter exponential family with natural param-
eter (1

ξ
,− 1

2ξ2 ), this parameter is, in fact, generated by the single parameterξ . The

two-dimensional parameter (1
ξ
,− 1

2ξ2 ) lies on a curve in�2, making (5.7) a curved
exponential family. ‖

The underlying parameter in a curved exponential family need not be one di-
mensional. The following is an example in which it is two dimensional.

Example 5.5 Logit model. LetXi be independentb(pi, ni), i = 1, . . . , m, so that
their joint distribution is

P (X1 = x1, . . . , Xm = xm) =
m∏
i=1

(
ni
xi

)
p
xi
i (1− pi)ni−xi .

This can be written as

exp

{
m∑
i=1

xi log
pi

1− pi

}
m∏
i=1

(
ni
xi

)
(1− pi)ni ,(5.8)

an m-dimensional exponential family with natural parametersηi = log[(pi/
(1 − pi)], i = 1, . . . , m. The quantity log[p/(1 − p)] is known as thelogit of
p.

If the η’s satisfy

ηi = α + βzi, i = 1, . . . , m,(5.9)

for known covariateszi , the model only contains the two parametersα andβ and
(5.8) becomes a curved exponential family (see Note 10.6). ‖

Note that the parameter space of ans-dimensional curved exponential family
cannot contain ans-dimensional rectangle, so a curved exponential family is not
of full rank. Nevertheless, as long as theT ’s are not rank deficient, a curved
exponential family shares many of the following properties of a full rank family.
(An exception is completeness of the sufficient statistic, discussed in the next
section.) A more detailed treatment can be found in Brown (1986a) or Barndorff-
Nielsen and Cox (1994).

LetX andY be independently distributed according tos-dimensional exponen-
tial families (not necessarily full rank) with densities

exp[�ηiTi(x)− A(η)] h(x) and exp[�ηiUi(y)− C(η)] k(y)(5.10)

with respect to measuresµ and ν over (X ,A) and (Y,B), respectively. Then,
the joint distribution ofX, Y is again an exponential family, and by induction, the
result extends to the joint distribution of more than two factors. The most important
special case is that of iid random variablesXi , each distributed according to (5.1):
The exponential structure is preserved under random sampling. The joint density
of X = (X1, . . . , Xn) is

exp
[
�ηi(θ )T

′
i (x)− ηB(θ )

]
h(x1) · · ·h(xn)(5.11)

with T ′i (x) = �nj=1Ti(xj ).
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Example 5.6 Normal sample. LetXi (i = 1, . . . , n) be iid according toN (ξ, σ 2).
Then, the joint density ofX1, . . . , Xn with respect to Lebesgue measure inEn is

exp

(
ξ

σ 2
�xi − 1

2σ 2
�x2

i −
n

2σ 2
ξ2

)
· 1

(
√

2π σ )n
.(5.12)

As in the casen = 1 (Example 5.1), this constitutes a two-parameter exponential
family with natural parameters (ξ/σ 2,−1/2σ 2). ‖
Example 5.7 Bivariate normal. Suppose that (Xi, Yi), i = 1, . . . , n, is a sample
from the bivariate normal density (4.16). Then, it is seen that the joint density of
then pairs is a five-parameter exponential density with statistics

T1 = �Xi, T2 = �X2
i , T3 = �XiYi, T4 = �Yi, T5 = �Y 2

i .

This example easily generalizes to thep-variate case (Problem 5.3). ‖
A useful property of exponential families is given by the following theorem,

which is proved, for example, in TSH2 (Chapter 2, Theorem 9) and in Barndorff-
Nielsen (1978, Section 7.1).

Theorem 5.8 For any integrable function f and any η in the interior of F, the
integral ∫

f (x) exp[�ηiTi(x)]h(x) dµ(x)(5.13)

is continuous and has derivatives of all orders with respect to the η’s, and these
can be obtained by differentiating under the integral sign.

As an application, differentiate the identity∫
exp[�ηiTi(x)− A(η)]h(x) dµ(x) = 1

with respect toηj to find

Eη(Tj ) =
∂

∂ηj
A(η).(5.14)

Differentiating (5.14), in turn, with respect toηk leads to

cov(Tj , Tk) =
∂2

∂ηj∂ηk
A(η).(5.15)

(For the corresponding formulas in terms of (5.1), see Problem 5.6.)

Example 5.9 Continuation of Example 5.3. From (5.6), (5.14), and (5.15), one
easily finds for the multinomial variables of Example 5.3 that (Problem 5.15)

E(Xi) = npi, cov(Xj,Xk) =

{
npj (1− pj ) if k = j
−npjpk if k �= j.(5.16)

‖
As will be discussed in the next section, in an exponential family the statistics

T = (T1, . . . , Ts) carry all the information aboutη or θ contained in the data, so
that all statistical inferences concerning these parameters will be based on theT ’s.
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For this reason, we shall frequently be interested in calculating not only the first
two moments of theT ’s given by (5.14) and (5.15) but also some of the higher
moments

αr1,...,rs = E(T r11 · · · T rss )(5.17)

and central moments

µr1,...,rs = E{[T1− E(T1)]r1 · · · [Ts − E(Ts)]
rs }.(5.18)

A tool that often facilitates such calculations is themoment generating function

MT (u1, . . . , us) = E(eu1T1+···+usTs ).(5.19)

If MT exists in some neighborhood�u2
i < δ of the origin, then all moments

αr1,...,rs exist and are the coefficients in the expansion ofMT as a power series

MT (u1, . . . , us) =
∑

(r1,...,rs )

αr1,...,rs u
r1
1 · · · urss /r1! · · · rs !(5.20)

As an alternative, it is sometimes more convenient to calculate, instead, the
cumulants κr1,...,rs , defined as the coefficients in the expansion of thecumulant
generating function

KT (u1, . . . , us) = logMT (u1, . . . , us)(5.21)

=
∑

(r1,...,rs )

κr1,...,rs u
r1
1 · · · urss /r1! · · · rs !

From the cumulants, the moments can be determined by formal comparison of
the two power series (see, for example, Cramér 1946a, p. 186, or Stuart and Ord
1987, Chapter 3.). Fors = 1, one finds, for example (Problem 5.7),

α1 = κ1, α2 = κ2 + κ2
1, α3 = κ3 + 3κ1κ2 + κ3

1,(5.22)

α4 = κ4 + 3κ2
2 + 4κ1κ3 + 6κ2

1κ2 + κ4
1 .

For exponential families, the moment and cumulant generating functions can
be expressed rather simply as follows.

Theorem 5.10 If X is distributed with density (5.2), then for any η in the interior
ofF, the moment and cumulant generating functionsMT (u) andKT (u) of the T ’s
exist in some neighborhood of the origin and are given by

KT (u) = A(η + u)− A(η)(5.23)

and
MT (u) = eA(η+u)/eA(η)(5.24)

respectively.

Frequently, the calculation of moments becomes particularly easy when they can
be represented as the sum of independent terms. We shall illustrate two examples
for the cases = 1.

(a) SupposeX = X1 + · · · +Xn, where theXi are independent with moment and
cumulant generating functionsMXi (u) andKXi (u), respectively. Then

MX(u) = E[e(x1+···+xn)] = MX1(u) · · ·MXn (u)
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and therefore

KX(u) =
n∑
i=1

KXi (u).

From the definition of cumulants, it then follows that

κr =
n∑
i=1

κir(5.25)

whereκir is therth cumulant ofXi .

(b) The situation is also very simple for low central moments. Ifξi = E(Xi), σ 2
i =

var(Xi) and theXi are independent, one easily finds (Problem 5.7)

var(�Xi) = �σ 2
i , E[�(Xi − ξi)]3 = �E(Xi − ξi)3,(5.26)

E[�(Xi − ξi)]4 = �E(Xi − ξi)4 + 6
∑
i<j

σ 2
i σ

2
j .

For the case of identical components withξi = ξ, σ 2
i = σ 2, this reduces to

var(�Xi) = nσ 2, E[�(Xi − ξ )]3 = nE(X1− ξ )3,(5.27)

E[�(Xi − ξ )]4 = nE(X1− ξ )4 + 3n(n− 1)σ 4.

The following are a few of the many important special cases of exponential fam-
ilies and some of their moments. Additional examples are given in the problems;
see also Johanson (1979), Brown (1986a), or Hoffmann-Jorgensen (1994, Chapter
12).

Example 5.11 Binomial moments. LetX have the binomial distributionb(p, n)
so that forx = 0,1, . . . , n,

P (X = x) =

(
n

x

)
pxqn−x (0< p < 1; q = 1− p).(5.28)

This is the special case of the multinomial distribution (5.4) withs = 1. The
probability (5.28) can be rewritten as(

n

x

)
ex log(p/q)+n logq,

which defines an exponential family, withµ being counting measure over the
pointsx = 0,1, . . . , n and with

η = log(p/q), A(η) = n log(1 +eη).(5.29)

From (5.24) and (5.29), one finds that (Problem 5.8)

MX(u) = (q + peu)n.(5.30)

An easy way to obtain the expectation and the first three central moments ofX

is to use the fact thatX arises as the number of successes inn Bernoulli trials with
success probabilityp, and hence thatX = �Xi , whereXi is 1 or 0, as theith trial
is or is not a success. From (5.27) and the moments ofXi , one then finds (Problem
5.8)
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E(X) = np, E(X − np)3 = npq(q − p),(5.31)

var(X) = npq, E(X − np)4 = 3(npq)2 + npq(1− 6pq). ‖

Example 5.12 Poisson moments. A random variableX has the Poisson distribu-
tion P (λ) if

P (X = x) =
λx

x!
e−λ, x = 0,1, . . . ; λ > 0.(5.32)

Writing this as an exponential family in canonical form, we find

η = logλ, A(η) = λ = eη(5.33)

and hence
KX(u) = λ(eu − 1), MX(u) = eλ(eu−1),(5.34)

so that, in particular,κr = λ for all r. The expectation and first three central
moments are given by (Problem 5.9)

E(X) = λ, E(X − λ)3 = λ,(5.35)

var(X) = λ, E(X − λ)4 = λ + 3λ2. ‖

Example 5.13 Normal moments. LetX have the normal distributionN (ξ, σ 2)
with density

1√
2πσ

e−(x−ξ )2/2σ 2
(5.36)

with respect to Lebesgue measure. For fixedσ , this is a one-parameter exponential
family with

η = ξ/σ 2 and A(η) = η2σ 2/2 + constant.(5.37)

It is thus seen that
MX(u) = eξu+(1/2)σ 2u2

,(5.38)

and hence in particular that
E(X) = ξ.(5.39)

Since the distribution ofX−ξ isN (0, σ 2), the central momentsµr ofX are simply
the momentsαr of N (0, σ 2), which are obtained from the moment generating
function

M0(u) = eσ
2u2/2

to be
µ2r+1 = 0, µ2r = 1 · 3 · · · (2r − 1)σ 2r , r = 1,2, . . . .(5.40)

‖
Example 5.14 Gamma moments. A random variableX has thegamma distribu-
tion H(α, b) if its density is

1

H(α)bα
xα−1e−x/b, x > 0, α > 0, b > 0,(5.41)
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with respect to Lebesgue measure on (0,∞). Here,b is a scale parameter, whereas
α is called theshape parameter of the distribution. Forα = f/2 (f an integer),
b = 2, this is theχ2-distributionχ2

f with f degrees of freedom. For fixed-shape
parameterα, (5.41) is a one-parameter exponential family withη = −1/b and

A(η) = α logb = −α log(−η).
Thus, the moment and cumulant generating functions are seen to be

MX(u) = (1− bu)−α and KX(u) = −α log(1− bu), u < 1/b.(5.42)

From the first of these formulas, one finds

E(Xr ) = α(α + 1) · · · (α + r − 1)br =
H(α + r)

H(α)
br(5.43)

and hence (Problem 5.17)

E(X) = αb, E(X − αb)3 = 2αb3,(5.44)

var(X) = αb2, E(X − αb)4 = (3α2 + 6α)b4. ‖

Another approach to moment calculations is to use an identity of Charles Stein,
which was given a thorough treatment by Hudson (1978). Stein’s identity is pri-
marily used to establish minimaxity of estimators, but it is also useful in moment
calculations.

Lemma 5.15 (Stein’s identity) If X is distributed with density (5.2) and g is any
differentiable function such that E|g′(X)| <∞, then

E

{[
h′(X)

h(X)
+

s∑
i=1

ηiT
′
i (X)

]
g(X)

}
= −Eg′(X),(5.45)

provided the support ofX is (−∞,∞). If the support ofX is the bounded interval
(a, b), then (5.45) holds if exp{∑ ηiTi(x)}h(x) → 0 as x → a or b.

The proof of the lemma is quite straightforward and is based on integration by
parts (Problem 5.18). We illustrate its use in the normal case.

Example 5.16 Stein’s identity for the normal. If X ∼ N (µ, σ 2), then (5.45)
becomes

E{g(X)(X − µ)} = σ 2Eg′(X).

This immediately shows thatE(X) = µ (takeg(x) = 1) andE(X2) = σ 2 +µ2 (take
g(x) = x). Higher-order moments are equally easy to calculate (Problem 5.18).‖

Not only are the moments of the statisticsTi appearing in (5.1) and (5.2) of
interest but also the family of distributions of theT ’s. This turns out again to be
an exponential family.

Theorem 5.17 IfX is distributed according to an exponential family with density
(5.1) with respect to a measureµ over (X ,A), then T = (T1, . . . , Ts) is distributed
according to an exponential family with density

exp[�ηiti − A(η)] k(t)(5.46)
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with respect to a measure ν over Es .

For a proof, see, for example, TSH2, Section 2.7, Lemma 8.
Let us now apply this theorem to the case of two independent exponential fami-

lies with densities (5.10). Then it follows from Theorem 5.17 that (T1+U1, . . . , Ts+
Us) is also distributed according to ans-dimensional exponential family, and by
induction, this result extends to the sum of more than two independent terms.
In particular, letX1, . . . , Xn be independently distributed, each according to a
one-parameter exponential family with density

exp[ηTi(xi)− Ai(η)] hi(xi).(5.47)

Then, the sum
∑n
i=1 Ti(Xi) is again distributed according to a one-parameter expo-

nential family. In fact, the sum of independent Poisson or normal variables again
has a distribution of the same type, and the same is true for a sum of independent
binomial variables with commonp, or a sum of independent gamma variables
H(αi, b) with commonb.

The normal distributionsN (ξ, σ 2) for fixedσ constitute both a one-parameter
exponential family (Example 5.12) and a location family (Table 4.1). It is natural to
ask whether there are any other families that enjoy this double advantage. Another
example is obtained by puttingX = logY whereY has the gamma distribution
H(α, b) given by (5.41), and where the location parameterθ is θ = logb. Since
multiplication of a random variable by a constantc �= 0 preserves both the expo-
nential and location structure, a more general example is provided by the random
variablec logY for anyc �= 0. It was shown by Dynkin (1951) and Ferguson (1962)
that the cases in whichX is normal or is equal toc logY , with Y being gamma,
provide the only examples of exponential location families.

TheH(α, b) distribution, with known parameterα, constitutes an example of
an exponential scale family. Another example of an exponential scale family is
provided by the inverse Gaussian distribution (see Problem 5.22), which has been
extensively studied by Tweedie (1957). For a general treatment of these and other
results relating exponential and group families, see Barndorff-Nielsen et al. (1992)
or Barndorff-Nielsen (1988).

6 Sufficient Statistics

The starting point of a statistical analysis, as formulated in the preceding sections,
is a random observableX taking on values in a sample spaceX , and a family of
possible distributions ofX. It often turns out that some part of the data carries no
information about the unknown distribution and thatX can therefore be replaced by
some statisticT = T (X) (not necessarily real-valued) without loss of information.
A statisticT is said to besufficient for X, or for the familyP = {Pθ, θ ∈ }
of possible distributions ofX, or for θ , if the conditional distribution ofX given
T = t is independent ofθ for all t .

This definition is not quite precise and we shall return to it later in this section.
However, consider first in what sense a sufficient statisticT contains all the in-
formation aboutθ contained inX. For that purpose, suppose that an investigator
reports the value ofT , but on being asked for the full data, admits that they have
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been discarded. In an effort at reconstruction, one can use a random mechanism
(such as a pseudo-random number generator) to obtain a random quantityX′ dis-
tributed according to the conditional distribution ofX givent . (This would not be
possible, of course, if the conditional distribution depended on the unknownθ .)
Then the unconditional distribution ofX′ is the same as that ofX, that is,

Pθ (X
′ ∈ A) = Pθ (X ∈ A) for all A,

regardless of the value ofθ . Hence, from a knowledge ofT alone, it is possible
to construct a quantityX′ which is completely equivalent to the originalX. Since
X andX′ have the same distribution for allθ , they provide exactly the same
information aboutθ (for example, the estimatorsδ(X) andδ(X′) have identical
distributions for anyθ ).

In this sense, a sufficient statistic provides a reduction of the data without loss of
information. This property holds, of course, only as long as attention is restricted
to the modelP and no distributions outsideP are admitted as possibilities. Thus,
in particular, restriction toT is not appropriate when testing the validity ofP.

The construction ofX′ is, in general, effected with the help of an independent
random mechanism. An estimatorδ(X′) depends, therefore, not only onT but
also on this mechanism. It is thus not an estimator as defined in Section 1, but
a randomized estimator. Quite generally, ifX is the basic random observable, a
randomized estimator of g(θ ) is a rule which assigns to each possible outcomex of
X a random variableY (x) with a known distribution. WhenX = x, an observation
of Y (x) will be taken and will constitute the estimate ofg(θ ). The risk, defined by
(1.10), of the resulting estimator is then∫

X

[∫
Y
L(θ, y)dPY |X=x(y)

]
dPX|θ (x),

where the probability measure in the inside integral does not depend onθ . With this
representation, the operational significance of sufficiency can be formally stated
as follows.

Theorem 6.1 Let X be distributed according to Pθ ∈ P and let T be sufficient
for P . Then, for any estimator δ(X) of g(θ ), there exists a (possibly randomized)
estimator based on T which has the same risk function as δ(X).

Proof. Let X′ be constructed as above so thatδ′(X) is an (possibly randomized)
estimator depending on the data only throughT . Sinceδ(X) andδ′(X) have the
same distribution, they also have the same risk function. ✷

Example 6.2 Poisson sufficient statistic. Let X1, X2 be independent Poisson
variables with common expectationλ, so that their joint distribution is

P (X1 = x1, X2 = x2) =
λx1+x2

x1!x2!
e−2λ.

Then, the conditional distribution ofX1 givenX1 +X2 = t is given by

P (X1 = x1|X1 +X2 = t) =
λte−2λ/x1!(t − x1)!∑t
y=0 λ

te−2λ/y!(t − y)!
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=
1

x1!(t − x1)!

(
1∑t

y=0 1/y!(t − y)!

)−1

.

Since this is independent ofλ, so is the conditional distribution givent of (X1, X2 =
t − X1), and henceT = X1 + X2 is a sufficient statistic forλ. To see how to
reconstruct (X1, X2) from T , note that

�
1

y!(t − y)!
=

1

t !
2t

so that

P (X1 = x1|X1 +X2 = t) =

(
t

x1

)(
1
2

)x1
(

1
2

)t−x1

,

that is, the conditional distribution ofX1 given t is the binomial distribution
b(1/2, t) corresponding tot trials with success probability 1/2. LetX′1 andX′2 =
t−X′1 be respectively the number of heads and the number of tails int tosses with
a fair coin. Then, the joint conditional distribution of (X′1, X

′
2) givent is the same

as that of (X1, X2) givent . ‖
Example 6.3 Sufficient statistic for a uniform distribution. LetX1, . . . , Xn be
independently distributed according to the uniform distributionU (0, θ ). LetT be
the largest of thenX’s, and consider the conditional distribution of the remaining
n − 1X’s given t . Thinking of then variables asn points on the real line, it is
intuitively obvious and not difficult to see formally (Problem 6.2) that the remaining
n − 1 points (after the largest is fixed att) behave liken − 1 points selected at
random from the interval (0, t). Since this conditional distribution is independent
of θ, T is sufficient. Given onlyT = t , it is obvious how to reconstruct the original
sample: Selectn− 1 points at random on (0, t). ‖
Example 6.4 Sufficient statistic for a symmetric distribution. Suppose thatX is
normally distributed with mean zero and unknown varianceσ 2 (or more generally
thatX is symmetrically distributed about zero). Then, given that|X| = t , the only
two possible values ofX are±t , and by symmetry, the conditional probability of
each is 1/2. The conditional distribution ofX givent is thus independent ofσ and
T = |X| is sufficient. In fact, a random variableX′ with the same distribution as
X can be obtained fromT by tossing a fair coin and lettingX′ = T or−T as the
coin falls heads or tails. ‖

The definition of sufficiency given at the beginning of the section depends on
the concept of conditional probability, and this, unfortunately, is not capable of a
treatment which is both general and elementary. Difficulties arise whenPθ (T = t) =
0, so that the conditioning event has probability zero. The definition of conditional
probability can then be changed at one or more values oft (in fact, at any set oft
values which has probability zero) without affecting the distribution ofX, which
is the result of combining the distribution ofT with the conditional distribution of
X givenT .

In elementary treatments of probability theory, the conditional probabilityP (X ∈
A|t) is considered for fixedt as defining the conditional distribution ofX given
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T = t . A more general approach can be obtained by a change of viewpoint, namely
by consideringP (X ∈ A|t) for fixedA as a function oft , defined in such a way
that in combination with the distribution ofT , it leads back to the distribution
of X. (See TSH2, Chapter 2, Section 4 for details.) This provides a justification,
for instance, of the assignment of conditional probabilities in Example 6.4 and
Example 6.10.

In the same way, the conditional expectationη(t) = E[δ(X)|t ] can be defined in
such a way that

Eη(T ) = Eδ(X),(6.1)

that is, so that the expected value of the conditional expectation is equal to the
unconditional expectation.

Conditional expectation essentially satisfies the usual laws of expectation. How-
ever, since it is only determined up to sets of probability zero, these laws can only
hold a.e. More specifically, we have with probability 1

E[af (X) + bg(X)|t ] = aE[f (X)|t ] + bE[g(X)|t ]
and

E[b(T )f (X)|t ] = b(t)E[f (X)|t ].(6.2)

As just discussed, the functionsP (A|t) are not uniquely defined, and the question
arises whether determinations exist which, for each fixedt , define a conditional
probability. It turns out that this is not always possible. [See Romano and Siegel
(1986), who give an example due to Ash (1972). A more detailed treatment is
Blackwell and Ryll-Nardzewsky (1963).] It is possible when the sample space is
Euclidean, as will be the case throughout most of this book (see TSH2, Chapter
2, Section 5). When this is the case, a statisticT can be defined to be sufficient if
there exists a determination of the conditional distribution functions ofX given t
which is independent ofθ .

The determination of sufficient statistics by means of the definition is incon-
venient since it requires, first, guessing a statisticT that might be sufficient and,
then, checking whether the conditional distributions ofX givent is independent of
θ . However, for dominated families, that is, when the distributions have densities
with respect to a common measure, there is a simple criterion for sufficiency.

Theorem 6.5 (Factorization Criterion) A necessary and sufficient condition for
a statistic T to be sufficient for a family P = {Pθ, θ ∈ } of distributions of X
dominated by a σ -finite measure µ is that there exist non-negative functions gθ
and h such that the densities pθ of Pθ satisfy

pθ (x) = gθ [T (x)]h(x) (a.e. µ).(6.3)

Proof. See TSH2, Section 2.6, Theorem 8 and Corollary 1. ✷

Example 6.6 Continuation of Example 6.2. Suppose thatX1, . . . , Xn are iid
according to a Poisson distribution with expectationλ. Then

Pλ(X1 = x1, . . . , Xn = xn) = λ�xi e−nλ/O(xi !).

This satisfies (6.3) withT = �Xi , which is therefore sufficient. ‖
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Example 6.7 Normal sufficient statistic. LetX1, . . . , Xn be iid asN (ξ, σ 2) so
that their joint density is

pξ,σ (x) =
1

(
√

2πσ )n
exp

[
− 1

2σ 2
�x2

i +
ξ

σ 2
�xi − n

2σ 2
ξ2

]
.(6.4)

Then it follows from the factorization criterion thatT = (�X2
i , �Xi) is sufficient

for θ = (ξ, σ 2). Sometimes it is more convenient to replaceT by the equivalent
statisticT ′ = (X̄, S2) whereX̄ = �Xi/n andS2 = �(Xi − X̄)2 = �X2

i − nX̄2.
The two representations are equivalent in that they identify the same points of the
sample space, that is,T (x) = T (y) if and only if T ′(x) = T ′(y). ‖
Example 6.8 Continuation of Example 6.3. The joint density of a sample
X1, . . . , Xn fromU (0, θ ) is

pθ (x) =
1

θn

n∏
i=1

I (0< xi)I (xi < θ )(6.5)

where the indicator function,I (·) is defined in (2.6). Now
n∏
i=1

I (0< xi)I (xi < θ ) = I (x(n) < θ )
n∏
i=1

I (0< xi)

wherex(n) is the largest of thex values. It follows from Theorem 6.5 thatX(n) is
sufficient, as had been shown directly in Example 6.3. ‖

As a final illustration, consider Example 6.4 from the present point of view.

Example 6.9 Continuation of Example 6.4. If X is distributed asN (0, σ 2), the
density ofX is

1√
2πσ

e−x
2/2σ 2

which depends onx only throughx2, so that (6.3) holds withT (x) = x2. As always,
of course, there are many equivalent statistics such as|X|, X4 or eX

2
. ‖

Quite generally, two statistics,T = T (X) andT ′ = T ′(X), will be said to be
equivalent (with respect to a familyP of distributions ofX) if each is a function
of the other a.e.P, that is, if there exists aP-null setN and functionsf andg
such thatT (x) = f [T ′(x)] andT ′(x) = g[T (x)] for all x ∈ N . Two such statistics
carry the same amount of information.

Example 6.10 Sufficiency of order statistics. LetX = (X1, . . . , Xn) be iid ac-
cording to an unknown continuous distributionF and letT = (X(1), . . . , X(n))
whereX(1) < · · · < X(n) denotes the ordered observations, the so-calledorder
statistics. By the continuity assumptions, theX’s are distinct with probability 1.
GivenT , the only possible values forX are then! vectors (X(i1), · · · , X(in)), and
by symmetry, each of these has conditional probability 1/n! The conditional dis-
tribution is thus independent ofF , andT is sufficient. In fact, a random vector
X′ with the same distribution asX can be obtained fromT by labeling then
coordinates ofT at random. Equivalent toT is the statisticU = (U1, . . . , Un)
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whereU1 = �Xi,U2 = �XiXj (i �= j ), . . . , Un = X1 · · ·Xn, and also the statistic
V = (V1, . . . , Vn) whereVk = Xk1 + · · · +Xkn (Problem 6.9). ‖

Equivalent forms of a sufficient statistic reduce the data to the same extent.
There may, however, also exist sufficient statistics which provide different degrees
of reduction.

Example 6.11 Different sufficient statistics. LetX1, . . . , Xn be iid asN (0, σ 2)
and consider the statistics

T1(X) = (X1, . . . , Xn),

T2(X) = (X2
1, . . . , X

2
n),

T3(X) = (X2
1 + · · · +X2

m,X
2
m+1 + · · · +X2

n),

T4(X) = X2
1 + · · · +X2

n.

These are all sufficient (Problem 6.5), withTi providing increasing reduction of
the data asi increases. ‖

It follows from the interpretation of sufficiency given at the beginning of this
section that ifT is sufficient andT = H (U ), thenU is also sufficient. Knowledge
of U implies knowledge ofT and hence permits reconstruction of the original
data. Furthermore,T provides a greater reduction of the data thanU unlessH
is 1:1, in which caseT andU are equivalent. A sufficient statisticT is said to
beminimal if of all sufficient statistics it provides the greatest possible reduction
of the data, that is, if for any sufficient statisticU there exists a functionH such
thatT = H (U ) (a.e.P). Minimal sufficient statistics can be shown to exist under
weak assumptions (see, for example, Bahadur, 1954), but exceptions are possible
(Pitcher 1957, Landers and Rogge 1972). Minimal sufficient statistics exist, in
particular if the basic measurable space is Euclidean in the sense of Example 2.2
and the familyP of distributions is dominated (Bahadur 1957).

It is typically fairly easy to construct a minimal sufficient statistic. For the sake
of simplicity, we shall restrict attention to the case that the distributions ofP all
have the same support (but see Problems 6.11 - 6.17).

Theorem 6.12 Let P be a finite family with densitiespi, i = 0,1, . . . , k, all having
the same support. Then, the statistic

T (X) =

(
p1(X)

p0(X)
,
p2(X)

p0(X)
, . . . ,

pk(X)

p0(X)

)
(6.6)

is minimal sufficient.

The proof is an easy consequence of the following corollary of Theorem 6.5
(Problem 6.6).

Corollary 6.13 Under the assumptions of Theorem 6.5, a necessary and sufficient
condition for a statistic U to be sufficient is that for any fixed θ and θ0, the ratio
pθ (x)/pθ0(x) is a function only of U (x).

Proof of Theorem 6.12. The corollary states thatU is a sufficient statistic forP if
and only ifT is a function ofU , and this provesT to be minimal. ✷
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Theorem 6.12 immediately extends to the case thatP is countable. Generaliza-
tions to uncountable families are also possible (see Lehmann and Scheffé 1950,
Dynkin 1951, and Barndorff-Nielsen, Hoffmann-Jorgensen, and Pedersen 1976),
but must contend with measure-theoretic difficulties. In most applications, min-
imal sufficient statistics can be obtained for uncountable families by combining
Theorem 6.12 with the following lemma.

Lemma 6.14 If P is a family of distributions with common support and P0 ⊂ P ,
and if T is minimal sufficient for P0 and sufficient for P , it is minimal sufficient
for P .

Proof. If U is sufficient forP, it is also sufficient forP0, and henceT is a function
of U . ✷

Example 6.15 Location families. As an application, let us now determine mini-
mal sufficient statistics for a sampleX1, . . . , Xn from a location familyP, that is,
when

pθ (x) = f (x1− θ ) · · · f (xn − θ ),(6.7)

wheref is assumed to be known. By Example 6.10, sufficiency permits the rather
trivial reduction to the order statistics for allf . However, this reduction uses only
the iid assumption and neither the special structure (6.7) nor the knowledge off .
To illustrate the different possibilities that arise when this knowledge is utilized,
we shall take forf the six densities of Table 4.1, each withb = 1.

(i) Normal. If P0 consists of the two distributionsN (θ0,1) andN (θ1,1), it
follows from Theorem 6.12 that the minimal sufficient statistic forP0 is
T (x) = pθ1(X)/pθ0(X), which is equivalent toX̄. SinceX̄ is sufficient for
P = {N (θ,1),−∞ < θ < ∞} by the factorization criterion, it is minimal
sufficient.

(ii) Exponential. If theX’s are distributed asE(θ,1), it is easily seen thatX(1) is
minimal sufficient (Problem 6.17).

(iii) Uniform. For a sample fromU (θ − 1/2, θ + 1/2), the minimal sufficient
statistic is (X(1), X(n)) (Problem 6.16).

In these three instances, sufficiency was able to reduce the originaln-di-
mensional data to one or two dimensions. Such extensive reductions are not
possible for the remaining three distributions of Table 4.1.

(iv) Logistic. The joint density of a sample fromL(θ,1) is

pθ (x) = exp[−�(xi − θ )]/
∏
{1 + exp[−(xi − θ )]}2.(6.8)

Consider a subfamilyP0 consisting of the distribution (6.8) withθ0 = 0 and
θ1, . . . , θk. Then by Theorem 6.12, the minimal sufficient statistic forP0 isT (X) =
[T1(X), . . . , Tk(X)], where

Tj (x) = enθj
n∏
i=1

(
1 + e−xi

1 + e−xi+θj

)2

.(6.9)

We shall now show that fork = n + 1, T (X) is equivalent to the order statistics,
that is, thatT (x) = T (y) if and only if x = (x1, . . . , xn) andy = (y1, . . . , yn) have
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the same order statistics, which means that one is a permutation of the other. The
equationTj (x) = Tj (y) is equivalent to

O

(
1 + exp(−xi)

1 + exp(−xi + θj )

)2

= O

(
1 + exp(−yi)

1 + exp(−yi + θj )

)2

and henceT (x) = T (y) to
n∏
i=1

1 + ξui
1 +ui

=
n∏
i=1

1 + ξvi
1 +vi

for ξ = ξ1, . . . , ξn+1,(6.10)

whereξj = eθj , ui = e−xi , andvi = e−yi . Now the left- and right-hand sides of
(6.10) are polynomials inξ of degreen which agree forn + 1 values ofξ if and
only if the coefficients ofξ r agree for allr = 0,1, . . . , n. For r = 0, this implies
O(1 + ui) = O(1 + vi), so that (6.10) reduces toO(1 + ξui) = O(1 + ξvi) for
ξ = ξ1, . . . , ξn+1, and hence for allξ . It follows thatO(η + ui) = O(η + vi) for all
η, so that these two polynomials inη have the same roots. Since this is equivalent
to thex’s andy’s having the same order statistics, the proof is complete.

Similar arguments show that in the Cauchy and double exponential cases, too,
the order statistics are minimal sufficient (Problem 6.10). This is, in fact, the typical
situation for location families, examples (i) through (iii) being happy exceptions.

‖
As a second application of Theorem 6.12 and Lemma 6.1, let us determine

minimal sufficient statistics for exponential families.

Corollary 6.16 (Exponential Families) Let X be distributed with density (5.2).
Then, T = (T1, . . . , Ts) is minimal sufficient provided the family (5.2) satisfies one
of the following conditions:

(i) It is of full rank.

(ii) The parameter space contains s + 1 points η(j )(j = 0, . . . , s), which span Es ,
in the sense that they do not belong to a proper affine subspace of Es .

Proof. ThatT is sufficient follows immediately from Theorem 6.5. To prove min-
imality under assumption (i), letP0 be a subfamily consisting ofs +1 distributions
η(j ) = (η(j )

1 , . . . , η
(j )
s ), j = 0,1, . . . , s. Then, the minimal sufficient statistic forP0

is equivalent to

�(η(1)
i − η(0)

i )Ti(X), . . . , �(η(s)
i − η(0)

i )Ti(X),

which is equivalent toT = [T1(X), . . . , Ts(X)], provided thes × s matrix ||η(j )
i −

η
(0)
i || is nonsingular. A subfamilyP0 for which this condition is satisfied exists

under the assumption of full rank.
The proof of minimality under assumption (ii) is similar. ✷

It is seen from this result that the sufficient statisticsT of Examples 6.6 and 6.7
are minimal. The following example illustrates the applicability of part (ii).

Example 6.17 Minimal sufficiency in curved exponential families. LetX1, X2,
. . . , Xn have joint density (6.4), but, as in Example 5.4, assume thatξ = σ , so
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the parameter space is the curve of Figure 10.1 (see Note 10.6). The statistic
T = (

∑
Xi,

∑
X2
i ) is sufficient, and it is also minimal by Corollary 6.16. To see

this, recall that the natural parameter isη = (1/ξ,−1/2ξ2), and choose

η(0) =
(
1,− 1

2

)
, η(1) =

(
2,− 1

8

)
, η(2) =

(
3,− 1

18

)
and note that the 2× 2 matrix(

2− 1 3− 1
− 1

8 + 1
2 − 1

18 + 1
2

)
has rank 2 and is invertible.

In contrast, suppose that the parameters are restricted according toξ = σ 2,
another curved exponential family. This defines an affine subspace (with zero
curvature) and the sufficient statisticT is no longer minimal (Problem 6.20). ‖

Let X1, . . . , Xn be iid, each with density (5.2), assumed to be of full rank.
Then, the joint distribution of theX’s is again full-rank exponential, withT =
(T ∗1 , . . . , T

∗
s ) whereT ∗i = �nj=1Ti(Xj ). This shows that in a sample from the

exponential family (5.2), the data can be reduced to ans-dimensional sufficient
statistic, regardless of the sample size.

The reduction of a sample to a smaller number of sufficient statistics greatly
simplifies the statistical analysis, and it is therefore interesting to ask what other
families permit such a reduction. The dimensionality of a sufficient statistic is a
property which differs from those considered so far, in that it depends not only
on the sets of points of the sample space for which the statistic takes on the same
value but it also depends on these values; that is, the dimensionality may not be the
same for different representations of a sufficient statistic (see, for example, Denny,
1964, 1969). To make the concept of dimensionality meaningful, let us callT a
continuous s-dimensional sufficient statistic over a Euclidean sample spaceX if
the assumptions of Theorem 6.5 hold, ifT (x) = [T1(x), . . . , Ts(x)] whereT is
continuous, and if the factorization (6.3) holds not only a.e. but for allx ∈ X .

Theorem 6.18 SupposeX1, . . . , Xn are real-valued iid according to a distribution
with density fθ (xi) with respect to Lebesgue measure, which is continuous in xi
and whose support for all θ is an interval I . Suppose that for the joint density of
X = (X1, . . . , Xn)

pθ (x) = fθ (x1) · · · fθ (xn)
there exists a continuous k-dimensional sufficient statistic. Then

(i) if k = 1, there exist functions η1, B and h such that (5.1) holds;

(ii) k > 1, and if the densities fθ (xi) have continuous partial derivatives with
respect to xi , then there exist functions ηi, B and h such that (5.1) holds with
s ≤ k.

For a proof of this result, see Barndorff-Nielsen and Pedersen (1968). A corre-
sponding problem for the discrete case is considered by Andersen (1970a).

This theorem states essentially that among “smooth” absolutely continuous fam-
ilies of distributions with fixed support, exponential families are the only ones that
permit dimensional reduction of the sample through sufficiency. It is crucial for
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this result that the support of the distributionsPθ is independent ofθ . In the con-
trary case, a simple example of a family possessing a one-dimensional sufficient
statistic for any sample size is provided by the uniform distribution (Example 6.3).

The Dynkin-Ferguson theorem mentioned at the end of the last section and
Theorem 6.18 state roughly that (a) the only location families which are one-
dimensional exponential families are the normal and log of gamma distributions
and (b) only exponential families permit reduction of the data through sufficiency.
Together, these results appear to say that the only location families with fixed
support in which a dimensional reduction of the data is possible are the normal and
log of gamma families. This is not quite correct, however, because a location family
— although it is a one-dimensional family — may also be a curved exponential
family.

Example 6.19 Location/curved exponential family. LetX1, . . . , Xn be iid with
joint density (with respect to Lebesgue measure)

C exp

[
−

n∑
i=1

(xi − θ )4

]
(6.11)

= C exp(−nθ4) exp(4θ3�xi − 6θ2�x2
i + 4θ�x3

i −�x4
i ).

According to (5.1), this is a three-dimensional exponential family, and it provides
an example of a location family with a three-dimensional sufficient statistic sat-
isfying all the assumptions of Theorem 6.18. This is a curved exponential family
with parameter space� = {(θ1, θ2, θ3) : θ1 = θ3

3 , θ2 = θ2
3 }, a curved subset of

three-dimensional space. ‖
The tentative conclusion, which had been reached just before Example 6.19

and which was contradicted by this example, is nevertheless basically correct.
Typically, a location family with fixed support (−∞,∞) will not constitute even a
curved exponential family and will, therefore, not permit a dimensional reduction
of the data without loss of information.

Example 6.15 shows that the degree of reduction that can be achieved through
sufficiency is extremely variable, and an interesting question is, what characterizes
the situations in which sufficiency leads to a substantial reduction of the data? The
ability of a sufficient statistic to achieve such a reduction appears to be related
to the amount of ancillary information it contains. A statisticV (X) is said to
be ancillary if its distribution does not depend onθ , andfirst-order ancillary if
its expectationEθ [V (X)] is constant, independent ofθ . An ancillary statistic by
itself contains no information aboutθ, but minimal sufficient statistics may still
contain much ancillary material. In Example 6.15(iv), for instance, the differences
X(n) −X(i)(i = 1, . . . , n− 1) are ancillary despite the fact that they are functions
of the minimal sufficient statistics (X(1), . . . , X(n)).

Example 6.20 Location ancillarity. Example 6.15(iv) is a particular case of a
location family. Quite generally, when sampling from any location family, the
differencesXi −Xj, i �= j , are ancillary statistics. Similarly, when sampling from
scale families, ratios are ancillary. See Problem 6.34 for details. ‖
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A sufficient statisticT appears to be most successful in reducing the data if
no nonconstant function ofT is ancillary or even first-order ancillary, that is, if
Eθ [f (T )] = c for all θ ∈  implies f (t) = c (a.e.P). By subtractingc, this
condition is seen to be equivalent to

Eθ [f (T )] = 0 for all θ ∈  implies f (t) = 0 (a.e. P)(6.12)

whereP = {Pθ, θ ∈ }. A statisticT satisfying (6.12) is said to becomplete. As
will be seen later, completeness brings with it substantial simplifications of the
statistical situation.

Since complete sufficient statistics are particularly effective in reducing the data,
it is not surprising that a complete sufficient statistic is always minimal. Proofs are
given in Lehmann and Scheffé (1950), Bahadur (1957), and Schervish (1995); see
also Problem 6.29.

What happens to the ancillary statistics when the minimal sufficient statistic is
complete is shown by the following result.

Theorem 6.21 (Basu’s Theorem) If T is a complete sufficient statistic for the
family P = {Pθ, θ ∈ }, then any ancillary statistic V is independent of T .

Proof. If V is ancillary, the probabilitypA = P (V ∈ A) is independent ofθ
for all A. Let ηA(t) = P (V ∈ A|T = t). Then,Eθ [ηA(T )] = pA and, hence, by
completeness,

ηA(t) = pA(a.e. P).

This establishes the independence ofV andT . ✷

We conclude this section by examining some complete and incomplete families
through examples.

Theorem 6.22 If X is distributed according to the exponential family (5.2) and
the family is of full rank, then T = [T1(X), . . . , Ts(X)] is complete.

For a proof, see TSH2 Section 4.3, Theorem 1; Barndorff-Nielsen (1978),
Lemma 8.2.; or Brown (1986a), Theorem 2.12.

Example 6.23 Completeness in some one-parameter families. We give some
examples of complete one-parameter families of distributions.

(i) Theorem 6.22 proves completeness of

(a) X for the binomial family{b(p, n),0< p < 1}
(b) X for the Poisson family{P (λ),0< λ}

(ii) Uniform. LetX1, . . . , Xn be iid according to the uniform distributionU (0, θ ),
0< θ . It was seen in Example 6.3 thatT = X(n) is sufficient forθ . To see that
T is complete, note that

P (T ≤ t) = tn/θn, 0< t < θ,

so thatT has probability density

pθ (t) = ntn−1/θn, 0< t < θ.(6.13)
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SupposeEθf (T ) = 0 for all θ , and letf + andf − be its positive and negative
parts, respectively. Then,∫ θ

0
tn−1f +(t) dt =

∫ θ

0
tn−1f −(t) dt

for all θ . It follows that∫
A

tn−1f +(t) dt =
∫
A

tn−1f −(t) dt

for all Borel setsA, and this impliesf = 0 a.e.

(iii) Exponential. Let Y1, . . . , Yn be iid according to the exponential distribution
E(η,1). If Xi = e−Yi andθ = e−η, thenX1, . . . , Xn iid asU (0, θ ) (Problem
6.28), and it follows from (ii) thatX(n) or, equivalently,Y(1) is sufficient and
complete. ‖

Example 6.24 Completeness in some two-parameter families.

(i) NormalN (ξ, σ 2). Theorem 6.22 proves completeness of (X̄, S2) of Example
6.7 in the normal family{N (ξ, σ 2),−∞ < ξ <∞,0< σ }.

(ii) Exponential E(a, b). Let X1, . . . , Xn be iid according to the exponential
distribution E(a, b),−∞ < a < ∞,0 < b, and letT1 = X(1), T2 =
�[Xi −X(1)]. Then, (T1, T2) are independently distributed asE(a, b/n) and
1
2bχ

2
2n−2, respectively (Problem 6.18), and they are jointly sufficient and com-

plete. Sufficiency follows from the factorization criterion. To prove complete-
ness, suppose that

Ea,b[f (T1, T2)] = 0 for all a, b.

Then if
g(t1, b) = Eb[f (t1, T2)],(6.14)

we have that for any fixedb,∫ ∞

a

g(t1, b)e
−nt1/bdt1 = 0 for all a.

It follows from Example 6.23(iii) that

g(t1, b) = 0,

except on a setNb of t1 values which has Lebesgue measure zero and which
may depend onb. Then, by Fubini’s theorem, for almost allt1 we have

g(t1, b) = 0 a.e. inb.

Since the densities ofT2 constitute an exponential family,g(t1, b) by (6.14)
is a continuous function ofb for any fixedt1. It follows that for almost all
t1, g(t1, b) = 0, not only a.e. but for allb. Applying completeness ofT2 to
(6.14), we see that for almost allt1, f (t1, t2) = 0 a.e. int2. Thus, finally,
f (t1, t2) = 0 a.e. with respect to Lebesgue measure in the (t1, t2) plane. [For
measurability aspects which have been ignored in this proof, see Lehmann
and Scheff́e (1955, Theorem 7.1).] ‖
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Example 6.25 Minimal sufficient but not complete.

(i) Location uniform. LetX1, . . . , Xn be iid according toU (θ − 1/2, θ + 1/2),
−∞ < θ <∞. Here,T = {X(1), X(n)) is minimal sufficient (Problem 6.16).
On the other hand,T is not complete sinceX(n)−X(1) is ancillary. For example,
Eθ [X(n) −X(1)− (n− 1)/(n + 1)] = 0 for all θ .

(ii) Curved normal family. In the curved exponential family derived from the
N (ξ, σ 2) family with ξ = σ , we have seen (Example 6.17) that the statistic
T = (

∑
xi,

∑
x2
i ) is minimal sufficient. However, it is not complete since

there exists a functionf (T ) satisfying (6.12). This follows from the fact that
we can find unbiased estimators forξ based on either

∑
Xi or

∑
X2
i (see

Problem 6.21). ‖
We close this section with an illustration of sufficiency and completeness in

logit dose-response models.

Example 6.26 Completeness in the logit model. For the model of Example 5.5,
whereXi are independentb(pi, ni), i = 1, . . . , m, that is,

P (X1 = x1, . . . , Xm = xm) =
m∏
i=1

(
ni
xi

)
p
xi
i (1− pi)ni−xi ,(6.15)

it can be shown thatX = (X1, · · · , Xm) is minimal sufficient. The natural param-
eters are the logitsηi = log[(pi/(1− pi)], i = 1, . . . , m [see (5.8)], and if thepi ’s
are unrestricted, the minimal sufficient statistic is also complete (Problem 6.23).‖
Example 6.27 Dose-response model. Supposeni subjects are each given dose
leveldi of a drug,i = 1,2, and thatd1 < d2. The response of each subject is either
0 or 1, independent of the others, and the probability of a successful response is
pi = ηθ (di). The joint distribution of the response vectorX = (X1, X2) is

pθ (x) =
2∏
i=1

(
ni
xi

)
[ηθ (di)]

xi [1− ηθ (di)]ni−xi .(6.16)

Note the similarity to the model (6.15).
The statisticX is minimal sufficient in the model (6.16), and remains so ifηθ (di)

has the form

ηθ (di) = 1− e−θdi , d1 = 1, d2 = 2, n1 = 2, n2 = 1.(6.17)

However, it is not complete since

Eθ [I (X1 = 0)− I (X2 = 0)] = 0.(6.18)

If instead of (6.17), we assume thatηθ (di) is given by

ηθ (di) = 1− e−θ1di−θ2d2
i , i = 1,2,(6.19)

whered1/d2 is an irrational number, thenX is a complete sufficient statistic.
These models are special cases of those examined by Messig and Strawderman

(1993), who establish conditions for minimal sufficiency and completeness in a
large class of dose-response models. ‖
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Table 7.1.Convex Functions

Functionφ Interval (a, b)

(i) |x| −∞ < x <∞

(ii) x2 −∞ < x <∞

(iii) xp, p ≥ 1 0< x

(iv) 1/xp, p > 0 0< x

(v) ex −∞ < x <∞

(vi) − logx 0< x <∞

7 Convex Loss Functions

The property of convexity and the associated property of concavity play an impor-
tant role in point estimation. In particular, the point estimation problem outlined
in Section 1 simplifies in a number of ways when the loss functionL(θ, d) is a
convex function ofd.

Definition 7.1 A real-valued functionφ defined over an open intervalI = (a, b)
with −∞ ≤ a < b ≤ ∞ is convex if for anya < x < y < b and any 0< γ < 1

φ[γ x + (1− γ )y] ≤ γφ(x) + (1− γ )φ(y).(7.1)

The function is said to bestrictly convex if strict inequality holds in (7.1) for all
indicated values ofx, y, andγ . A functionφ is concave on (a, b) if −φ is convex.

Convexity is a very strong condition which implies, for example, thatφ is con-
tinuous in (a, b) and has a left and right derivative at every point of (a, b). Proofs
of these properties and of the other properties of convex functions stated in the fol-
lowing without proof can be found, for example, in Hardy, Littlewood, and Polya
(1934), Rudin (1966), Roberts and Varberg (1973), or Dudley (1989).

Determination of whether or not a function is convex is often easy with the help
of the following two criteria.

Theorem 7.2

(i) If φ is defined and differentiable on (a, b), then a necessary and sufficient
condition for φ to be convex is that

φ′(x) ≤ φ′(y) for all a < x < y < b.(7.2)

The function is strictly convex if and only if the inequality (7.2) is strict for
all x < y.

(ii) If, in addition, φ is twice differentiable, then the necessary and sufficient
condition (7.2) is equivalent to

φ′′(x) ≥ 0 for all a < x < b(7.3)



46 PREPARATIONS [ 1.7

with strict inequality sufficient (but not necessary) for strict convexity.

Example 7.3 Convex functions. From these criteria, it is easy to see that the
functions of Table 7.1 are convex over the indicated intervals: In all these cases,φ

is strictly convex, except in (i) and in (iii) withp = 1. ‖
In general, a convex function is strictly convex unless it is linear over some

subinterval of (a, b) (Problems 7.1 and 7.6).
A basic property of convex functions is contained in the following theorem.

Theorem 7.4 Let φ be a convex function defined on I = (a, b) and let t be any
fixed point in I . Then, there exists a straight line

y = L(x) = c(x − t) + φ(t)(7.4)

through the point [t, φ(t)] such that

L(x) ≤ φ(x) for all x in I.(7.5)

By definition, a functionφ is convex if the value of the function at the weighted
average of two points does not exceed the weighted average of its values at these
two points. By induction, this is easily generalized to the average of any finite
number of points (Problem 7.8). In fact, the inequality also holds for the weighted
average of any infinite set of points, and in this general form, it is known as Jensen’s
inequality.

The weighted average ofφ with respect to the weight function� is represented
by ∫

I

φd�(7.6)

where� is a measure with�(I ) = 1. In the particular case that� assigns measure
γ and 1− γ to the pointsx andy, respectively, this reduces to the right side of
(7.1). It is convenient to interpret (7.6) as the expected value ofφ(X), whereX is
a random variable taking on values inI according to the probability distribution
�.

Theorem 7.5 (Jensen’s Inequality) If φ is a convex function defined over an open
interval I , and X is a random variable with P (X ∈ I ) = 1 and finite expectation,
then

φ[E(X)] ≤ E[φ(X)].(7.7)

If φ is strictly convex, the inequality is strict unlessX is a constant with probability
1.

Proof. Let y = L(x) be the equation of the line which satisfies (7.5) and for which
L(t) = φ(t) whent = E(X). Then,

E[φ(X)] ≥ E[L(X)] = L[E(X)] = φ[E(X)],(7.8)

which proves (7.7). Ifφ is strictly convex, the inequality in (7.5) is strict for all
x �= t , and hence the inequality in (7.8) is strict unlessφ(X) = E[φ(X)] with
probability 1. ✷

Note that the theorem does not exclude the possibility thatE[φ(X)]
=∞.
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Corollary 7.6 If X is a nonconstant positive random variable with finite expec-
tation, then

1

E(X)
< E

(
1

X

)
(7.9)

and
E(logX) < log[E(X)].(7.10)

Example 7.7 Entropy distance. For density functionsf andg, we define the
entropy distance betweenf andg , with respect tof (also known asKullback-
Leibler Information of g at f or Kullback-Leibler distance between g and f )
as

Ef [log(f (X)/g(X))] =
∫

log[f (x)/g(x)]f (x) dx.(7.11)

Corollary 7.6 shows that

Ef [log(f (X)/g(X))] = −Ef [log(g(X)/f (X))]

≥ − log[Ef (g(X)/f (X))](7.12)

= 0,

and hence that the entropy distance is always non-negative, and equals zero if
f = g. Note that inequality (7.12) also establishes

Ef log[g(X)] ≤ Ef log[f (X)],(7.13)

which plays an important role in the theory of the EM algorithm of Section 6.4.
Entropy distance was explored by Kullback (1968); for an exposition of its

properties see, for example, Brown (1986a). Entropy distance has, more recently,
found many uses in Bayesian analysis, see e.g., Berger (1985) or Robert (1994a),
and Section 4.5. ‖

In Theorem 6.1, it was seen that ifT is a sufficient statistic, then for any statistical
procedure there exists an equivalent procedure (i.e., having the same risk function)
based only onT . We shall now show that in estimation with a strictly convex loss
function, a much stronger statement is possible: Given any estimatorδ(X) which
is not a function ofT , there exists abetter estimator depending only onT .

Theorem 7.8 (Rao-Blackwell Theorem) Let X be a random observable with
distribution Pθ ∈ P = {Pθ ′ , θ ′ ∈ }, and let T be sufficient for P . Let δ be an
estimator of an estimand g(θ ), and let the loss functionL(θ, d) be a strictly convex
function of d . Then, if δ has finite expectation and risk,

R(θ, δ) = EL[θ, δ(X)] <∞,
and if

η(t) = E[δ(X)|t ],(7.14)

the risk of the estimator η(T ) satisfies

R(θ, η) < R(θ, δ)(7.15)

unless δ(X) = η(T ) with probability 1.



48 PREPARATIONS [ 1.7

Proof. In Theorem 7.5, letφ(d) = L(θ, d), let δ = δ(X), and letX have the
conditional distributionPX|t of X givenT = t . Then

L[θ, η(t)] < E{L[θ, δ(X)]|t}
unlessδ(X) = η(T ) with probability 1. Taking the expectation on both sides of this
inequality yields (7.15), unlessδ(X) = η(T ) with probability 1. ✷

Some points concerning this result are worth noting.

1. Sufficiency ofT is used in the proof only to ensure thatη(T ) does not depend
on θ and hence is an estimator.

2. If the loss function is convex but not strictly convex, the theorem remains true
provided the inequality sign in (7.15) is replaced by≤. Even in that case, the
theorem still provides information beyond the results of Section 6 because it
shows that the particular estimatorη(T ) is at least as good asδ(X).

3. The theorem is not true if the convexity assumption is dropped. Examples
illustrating this fact will be given in Chapters 2 and 5.

In Section 6, randomized estimators were introduced, and such estimators may
be useful, for example, in reducing the maximum risk (see Chapter 5, Example
5.1.8), but this can never be the case when the loss function is convex.

Corollary 7.9 Given any randomized estimator of g(θ ), there exists a nonran-
domized estimator which is uniformly better if the loss function is strictly convex
and at least as good when it is convex.

Proof. Note first that a randomized estimator can be obtained as a nonrandomized
estimatorδ∗(X,U ), whereX andU are independent andU is uniformly distributed
on (0,1). This is achieved by observingX = x and then usingU to construct the
distribution ofY givenX = x, whereY = Y (x) is the random variable employed in
the definition of a randomized estimator (Problem 7.10). To prove the theorem, we
therefore need to show that given any estimatorδ∗(X,U ) of g(θ ), there exists an
estimatorδ(X), depending onX only, which has uniformly smaller risk. However,
this is an immediate consequence of the Rao-Blackwell theorem since for the
observations (X,U ), the statisticX is sufficient. Forδ(X), one can therefore take
the conditional expectation ofδ∗(X,U ) givenX. ✷

An estimatorδ is said to beinadmissible if there exists another estimatorδ′which
dominates it (that is, such thatR(θ, δ′) ≤ R(θ, δ) for all θ , with strict inequality
for someθ ) andadmissible if no such estimatorδ′ exists. If the loss functionL
is strictly convex, it follows from Corollary 7.9 that every admissible estimator
must be nonrandomized. Another property of admissible estimators in the strictly
convex loss case is provided by the following uniqueness result.

Theorem 7.10 IfL is strictly convex and δ is an admissible estimator of g(θ ), and
if δ′ is another estimator with the same risk function, that is, satisfying R(θ, δ) =
R(θ, δ′) for all θ , then δ′ = δ with probability 1.

Proof. If δ∗ = 1
2(δ + δ′), then

R(θ, δ∗) <
1

2
[R(θ, δ) +R(θ, δ′)] = R(θ, δ)(7.16)
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unlessδ = δ′ with probability 1, and (7.16) contradicts the admissibility ofδ. ✷

The preceding considerations can be extended to the situation in which the
estimandg(θ ) = [g1(θ ), . . ., gk(θ )] and the estimatorδ(X) = [δ1(X), . . ., δk(X)]
are vector-valued.

Definition 7.11 For any two pointsx = (x1, . . . , xk) andy = (y1, . . . , yk) in Ek,
defineγ x +(1−γ )y to be the point with coordinatesγ xi +(1−γ )yi, i = 1, . . . , k.

(i) A set S in Ek is convex if for any x, y ∈ S, the points

γ x + (1− γ )y, 0< γ < 1

are also inS. (Geometrically, this means that the line segment connecting any
two points inS lies inS.)

(ii) A real-valued function φ defined over an open convex setS in Ek is convex
if (7.1) holds withx andy replaced byx andy; it is strictly convex if the
inequality is strict for allx andy.

Example 7.12 Convex combination. If φj is a convex function of a real variable
defined over an intervalIj for eachj = 1, . . . , k, then for any positive constants
a1, . . . , ak

φ(x) = �ajφj (xj )(7.17)

is a convex function defined over thek-dimensional rectangle with sidesI1, . . . , Ik;
it is strictly convex, providedφ1, . . . , φk are all strictly convex. This example
implies, in particular, that the loss function

L(θ,d) = �ai [di − gi(θ )]2(7.18)

is strictly convex. ‖
A useful criterion to determine whether a given functionφ is convex is the

following generalization of (7.3).

Theorem 7.13 Let φ be defined over an open convex set S in Ek and twice differ-
entiable in S. Then, a necessary and sufficient condition for φ to be convex is that
the k× k matrix with ij th element ∂2φ(x1, . . . , xk)/∂xi∂xj , which is known as the
Hessian matrix, is positive semidefinite; if the matrix is positive definite, then φ is
strictly convex.

Example 7.14 Quadratic loss. Consider the loss function

L(θ,d) = ��aij [di − gi(θ )][dj − gj (θ )].(7.19)

Since∂2L/∂di∂dj = aij , L is strictly convex, provided the matrix||aij || is positive
definite. ‖

Let us now consider some consequences of adopting a convex loss function in a
location model. In Section 1, it was pointed out that there exists a unique number
a minimizing�(xi −a)2, namelyx̄, and that the minimizing value of�ni=1|xi −a|
is either unique (whenn is odd) or the minimizing values constitute an interval.
This interval structure of the minimizing values does not hold, for example, when
minimizing�

√|xi − a|. In the casen = 2, for instance, there exist two minimizing
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values,a = x1 anda = x2 (Problem 7.12). This raises the general question of the
set of valuesa minimizing �ρ(xi − a), which, in turn, is a special case of the
following problem. LetX be a random variable andL(θ, d) = ρ(d − θ ) a loss
function, withρ even. Then, what can be said about the set of valuesaminimizing
E[ρ(X−a)]? This specializes to the earlier case ifX takes on the valuesx1, . . . , xn
with probabilities 1/n each.

Theorem 7.15 Let ρ be a convex function defined on (−∞,∞) and X a random
variable such that φ(a) = E[ρ(X − a)] is finite for some a. If ρ is not monotone,
φ(a) takes on its minimum value and the set on which this value is taken is a closed
interval. If ρ is strictly convex, the minimizing value is unique.

The proof is based on the following lemma.

Lemma 7.16 Let φ be a convex function on (−∞,∞) which is bounded below
and suppose that φ is not monotone. Then, φ takes on its minimum value; the set
S on which this value is taken on is a closed interval and is a single point when φ
is strictly convex.

Proof. Sinceφ is convex and not monotone, it tends to∞ asx → ±∞. Sinceφ
is also continuous, it takes on its minimizing value. ThatS is an interval follows
from convexity and that it is closed follows from continuity. ✷

Proof of Theorem 7.15. By the lemma, it is enough to prove thatφ is (strictly)
convex and not monotone. Thatφ is not monotone follows from that fact that
φ(a) → ∞ asa → ±∞. This latter property ofφ is a consequence of the facts
thatX − a tends in probability to∓∞ as a → ±∞ and thatρ(t) → ∞ as
t →±∞. (Strict) convexity ofφ follows from the corresponding property ofρ.
✷

Example 7.17 Squared error loss. Let ρ(t) = t2 and suppose thatE(X2) <∞.
Sinceρ is strictly convex, if follows thatφ(a) has a unique minimizing value. If
E(X) = µ, which by assumption is finite, we have, in fact,

φ(a) = E(X − a)2 = E(X − µ)2 + (µ− a)2,(7.20)

which shows thatφ(a) is a minimum if and only ifa = µ. ‖
Example 7.18 Absolute error loss. Let ρ(t) = |t | and suppose thatE|X| < ∞.
Sinceρ is convex but not strictly convex, it follows from Theorem 7.15 thatφ(a)
takes on its minimum value and that the setS of minimizing values is a closed
interval. The setS is, in fact, the set ofmedians of X (Problems 1.7 and 1.8). ‖

The following is a useful consequence of Theorem 7.15 (see also Problem 7.27).

Corollary 7.19 Under the assumptions of Theorem 7.15, suppose that ρ is even
and X is symmetric about µ. Then, φ(a) attains its minimum at a = µ.

Proof. By Theorem 7.15 the minimum is taken on. Ifµ+ c is a minimizing value,
so isµ − c and so, therefore, are all valuesa betweenµ − c andµ + c, which
includesa = µ. ✷
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Now consider an example in whichρ is not convex.

Example 7.20 Nonconvex loss. Let ρ(t) = 1 if |t | ≥ k andρ(t) = 0 otherwise.
Minimizing φ(a) is then equivalent to maximizingψ(a) = P (|X − a| < k).
Consider the following two special cases (Problem 7.22):
(i) The distribution ofX has a probability density (with respect to Lebesgue

measure) which is continuous, unimodal, and such thatf (x) decreases strictly
asxmoves away from the mode in either direction. Then, there exists a unique
valuea for which f (a − k) = f (a + k), and this is the unique maximizing
value ofψ(a).

(ii) Suppose thatf is even andU -shaped withf (x) attaining its maximum at
x = ±A andf (x) = 0 for |x| > A. Then,ψ(a) attains its maximum at the
two pointsa = −A + k anda = A− k. ‖

Convex loss functions have been seen to lead to a number of simplifications of
estimation problems. One may wonder, however, whether such loss functions are
likely to be realistic. IfL(θ, d) represents not just a measure of inaccuracy but a
real (for example, financial) loss, one may argue that all such losses are bounded:
once you have lost all, you cannot lose any more. On the other hand, ifd can take on
all values in (−∞,∞) or (0,∞), no nonconstant bounded function can be convex
(Problem 7.18). Unfortunately, bounded loss functions with unboundedd can lead
to completely unreasonable estimators (see, for example, Theorem 2.1.15). The
reason is roughly that arbitrarily large errors can then be committed with essentially
no additional penalty and their leverage used to unfair advantage. Perhaps convex
loss functions result in more reasonable estimators because the large penalties they
exact for large errors compensate for the unrealistic assumption of unboundedd:
They make such values so expensive that the estimator will try hard to avoid them.

The most widely used loss function is squared error

L(θ, d) = [d − g(θ )]2(7.21)

or slightly more generally weighted squared error

L(θ, d) = w(θ )[d − g(θ )]2.(7.22)

Since these are strictly convex ind, the simplifications represented by Theorem
7.8, Corollary 7.9, and Theorem 7.10 are valid in these cases. The most slowly
growing even convex loss function is absolute error

L(θ, d) = |d − g(θ )|.(7.23)

The faster the loss function increases, the more attention it pays to extreme
values of the estimators and hence to outlying observations, so that the perfor-
mance of the resulting estimators is strongly influenced by the tail behavior of
the assumed distribution of the observable random variables. As a consequence,
fast-growing loss functions lead to estimators that tend to be sensitive to the as-
sumptions made about this tail behavior, and these assumptions typically are based
on little information and thus are not very reliable.

It turns out that the estimators produced by squared error loss often are uncom-
fortably sensitive in this respect. On the other hand, absolute error appears to go
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too far in leading to estimators which discard all but the central observations. For
many important problems, the most appealing results are obtained from the use of
loss functions which lie between (7.21) and (7.23). One interesting class of such
loss functions, due to Huber (1964), puts

L(θ, d) =

{
[d − g(θ )]2 if |d − g(θ )| ≤ k
2k|d − g(θ )| − k2 if |d − g(θ )| ≥ k.(7.24)

This agrees with (7.21) for|d − g(θ )| ≤ k, but abovek and below−k, it replaces
the parabola with straight lines joined to the parabola so as to make the function
continuous and continuously differentiable (Problem 7.21).

The Huber loss functions are convex but not strictly convex. An alternative
family, which also interpolates between (7.21) and (7.23) and which is strictly
convex, is

L(θ, d) = |d − g(θ )|p, 1< p < 2.(7.25)

It is a disadvantage of both (7.24) and (7.25) that the resulting estimators, even
in fairly simple problems, cannot be obtained in closed form and hence are more
difficult to grasp intuitively and to interpret. This may account at least in part for
the fact that squared error is the most commonly used loss function or measure of
accuracy and that the classic estimators in most situations are the ones derived on
this basis. As indicated at the end of Section 1, we shall develop here the theory
under the more general assumption of convex loss functions (which, in practice,
does not appear to be a serious limitation), but we shall work most examples for
the conventional squared error loss. The issue of the robustness of the resulting
estimators, which requires going outside the assumed model, will not be treated
in detail here. References for further study of robustness include Huber (1981),
Hampel et al. (1986), and Staudte and Sheather (1990).

With some care, the properties of convex and concave functions generalize to
multivariate situations. For example, Theorem 7.4 generalizes to the following
supporting hyperplane theorem for convex functions.

Theorem 7.21 Let φ be a convex function defined over an open convex set S in
Ek and let t be any point in S. Then, there exists a hyperplane

y = L(x) = �ci(xi − ti) + φ(t)(7.26)

through the point [t, φ(t)] such that

L(x) ≤ φ(x) for all x ∈ S.(7.27)

Jensen’s inequality (Theorem 7.5) generalizes in the obvious way. The only
changes that are needed are replacement of the intervalI by an open convex setS,
of the random variableX by a random vectorX satisfyingP (X ∈ S) = 1, and of
the expectationE(X) by the expectation vectorE(X) = [E(X1), . . . , E(Xk)]. For
the resulting modification of the inequality (7.7) to be meaningful, it is necessary
to know thatE(X) is in S so thatφ[E(X)] is defined.

Lemma 7.22 If X is a random vector with P (X ∈ S) = 1, where S is an open
convex set in Ek , and if E(X) exists, then E(X) ∈ S.
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A formal proof is given by Ferguson (1967, p. 74). Here, we shall give only a
sketch. Suppose thatk = 2, and suppose thatξ = E(X) is not inS. Then, Theorem
7.21 guarantees the existence of a linea1x1 + a2x2 = b through the point (ξ1, ξ2)
such thatS lies entirely on one side of the line. By a rotation of the plane, it can be
assumed without loss of generality that the equation of the line isx2 = ξ2 and that
S lies above this line so thatP (X2 > ξ2) = 1. It follows thatE(X2) > ξ2, which
is a contradiction.

The notions of convexity and concavity can also be extended to the multidi-
mensional case in a slightly different way, one that examines the behavior of the
function when it is averaged over spheres instead of over pairs of points.

Definition 7.23 A continuous functionf : Rk → R is superharmonic at a point
x0 ∈ Rk if, for every r > 0, the average off over the surface of the sphere
Sr (x0) = {x : ||x − x0|| = r} is less than or equal tof (x0). The functionf is
superharmonic inRp if it is superharmonic at eachx0 ∈ Rp. (See Problem 7.15
for an extension.)

If we denote the average off over the surface of the sphere byAx0(f ), we thus
definef to besuperharmonic, harmonic, or subharmonic, depending on whether
Ax0(f ) is less than or equal to, equal to, or greater than or equal tof , respectively.
These definitions are analogous to those of convexity and concavity, but here we
take the average over the surface of a sphere. (Note that in one dimension, the sphere
reduces to two points, so superharmonic and concave are the same property.) The
following characterization of superharmonicity, which is akin to that of Theorem
7.13, is typically easier to check than the definition. (For a proof, see Helms 1969).

Theorem 7.24 If f : Rk → R is twice differentiable, then f is superharmonic in
Rk if and only if for all x ∈ Rk ,

k∑
i=1

∂2

∂x2
i

f (x) ≤ 0.(7.28)

If Equation (7.28) is an equality, then f is harmonic, and if the inequality is
reversed, then f is subharmonic.

Example 7.25 Subharmonic functions. Some multivariate analogs of the con-
vex functions in Example 7.3 are subharmonic. For example, iff (x1, . . . , xk) =∑k
i=1 x

p

i then
k∑
i=1

∂2

∂x2
i

f (x) =
k∑
i=1

p(p − 1)xp−2
i .

This function is subharmonic ifp ≥ 1 andxi > 0, or if p ≥ 2 is an even integer.
Problem 7.14 considers some other multivariate functions. ‖
Example 7.26 Subharmonic loss. The loss function of Example 7.14, given in
Equation (7.19), has second derivative∂2L/∂d2

i = aii . Thus, it is subharmonic if,
and only if,

∑
i aii ≥ 0. This is a weaker condition than that needed for multidi-

mensional convexity. ‖
The property of superharmonicity is useful in the theory of minimax point

estimation, as will be seen in Section 5.6.
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8 Convergence in Probability and in Law

Thus far, our preparations have centered on “small-sample” aspects, that is, we
have considered the sample sizen as being fixed. However, it is often fruitful to
consider a sequence of situations in whichn tends to infinity. If the given sample
size is sufficiently large, the limit behavior may provide an important complement
to the small-sample behavior, and often discloses properties of estimators that are
masked by complications inherent in small-sample calculations. In preparation for
a study of such large-sample asymptotics in Chapter 6, we here present some of
the necessary tools.

In particular, we review the probabilistic foundations necessary to derive the
limiting behavior of estimators. It turns out that under rather weak assumptions,
the limit distribution of many estimators is normal and hence depends only on
a mean and a variance. This mitigates the effect of the underlying assumptions
because the results become less dependent on the model and the loss function.

We consider a sampleX = (X1, . . . , Xn) as a member of a sequence corre-
sponding ton = 1,2 (or, more generally,n0, n0 + 1, . . .) and obtain the limiting
behavior of estimator sequences asn→ ∞. Mathematically, the results are thus
limit theorems.

In applications, the limiting results (particularly the asymptotic variances) are
used as approximations to the situation obtaining for the actual finiten. A weakness
of this approach is that, typically, no good estimates are available for the accuracy
of the approximation. However, we can obtain at least some idea of the accuracy
by numerical checks for selected values ofn.

Suppose for a moment thatX1, . . . , Xn are iid according to a distributionPθ, θ ∈
, and that the estimand isg(θ ). Asn increases, more and more information about
θ becomes available, and one would expect that for sufficiently large values ofn, it
would typically be possible to estimateg(θ ) very closely. Ifδn = δn(X1, . . . , Xn)
is a reasonable estimator, of course, it cannot be expected to be close tog(θ ) for
every sample point (x1, . . . , xn) since the values of a particular sample may always
be atypical (e.g., a fair coin may fall heads in 1000 successive spins). What one
can hope for is thatδn will be close tog(θ ) with high probability.

This idea is captured in the following definitions, which do not assume the
random variables to be iid.

Definition 8.1 A sequence of random variablesYn defined over sample spaces

(Yn,Bn) tendsin probability to a constantc (Yn
P→ c) if for everya > 0

P [|Yn − c| ≥ a] → 0 as n→∞.(8.1)

A sequence of estimatorsδn of g(θ ) is consistent if for every θ ∈ 
δn

Pθ→ g(θ ).(8.2)

The following condition, which assumes the existence of second moments, fre-
quently provides a convenient method for proving consistency.

Theorem 8.2 Let {δn} be a sequence of estimators of g(θ ) with mean squared
error E[δn − g(θ )]2.
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(i) If

E[δn − g(θ )]2 → 0 for all θ,(8.3)

then δn is consistent for estimating g(θ ).

(ii) Equivalent to (8.3), δn is consistent if

bn(θ ) → 0 and varθ (δn) → 0 for all θ,(8.4)

where bn is the bias of δn.

(iii) In particular, δn is consistent if it is unbiased for each n and if

varθ (δn) → 0 for all θ.(8.5)

The proof follows from Chebychev’s Inequality (see Problem 8.1).

Example 8.3 Consistency of the mean. LetX1, . . . , Xn be iid with expectation
E(Xi) = ξ and varianceσ 2 <∞. Then,X̄ is an unbiased estimator ofξ with vari-
anceσ 2/n, and hence is consistent by Theorem 8.2(iii). Actually, it was proved by
Khinchin, see, for example, Feller 1968, Chapter X, Section 1,2) that consistency
of X̄ already follows from the existence of the expectation, so that the assumption
of finite variance is not needed. ‖

Note. The statement that̄X is consistent is shorthand for the fuller assertion
that the sequence of estimatorsX̄n = (X1 + · · · +Xn)/n is consistent. This type of
shorthand is used very common and will be used here. However, the full meaning
should be kept in mind.

Example 8.4 Consistency of S2. LetX1, . . . , Xn be iid with finite varianceσ 2.
Then, the unbiased estimator

S2
n = �(Xi − X̄)2/(n− 1)

is a consistent estimator ofσ 2. To see this, assume without loss of generality that
E(Xi) = 0, and note that

S2
n =

n

n− 1

[
1

n
�X2

i − X̄2

]
.

By Example 8.3,�X2
i /n

P→ σ 2 andX̄2 P→ 0. Sincen/(n − 1) → 1, it follows

from Problem 8.4 thatS2
n

P→ σ 2. (See also Problem 8.5.) ‖

Example 8.5 Markov chains. As an illustration of a situation involving depen-
dent random variables, consider a two-state Markov chain. The variablesX1, X2, . . .

each take on the values 0 and 1, with the joint distribution determined by the initial
probabilityP (X1 = 1) =p1, and the transition probabilities

P (Xi+1 = 1|Xi = 0) = π0, P (Xi+1 = 1|Xi = 1) = π1,

of which we shall assume 0< π0, π1 < 1. For such a chain, the probability

pk = P (Xk = 1)
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typically depends onk and the initial probabilityp1 (but see Problem 8.10). How-
ever, ask → ∞, pk tends to a limitp, which is independent ofp1. It is easy to
see what the value ofp must be. Consider the recurrence relation

pk+1 = pkπ1 + (1− pk)π0 = pk(π1− π0) + π0.(8.6)

If
pk → p,(8.7)

this implies

p =
π0

1− π1 + π0
.(8.8)

To prove (8.7), it is only necessary to iterate (8.6) starting withk = 1 to find
(Problem 8.6).

pk = (p1− p)(π1− π0)k−1 + p.(8.9)

Since|π1− π0| < 1, the result follows.
For estimatingp, aftern trials, the natural estimator is̄Xn, the frequency of ones

in these trials. Since
E(X̄n) = (p1 + · · · + pn)/n,

it follows from (8.7) thatE(X̄n) → p (Problem 8.7), so that the bias ofX̄n tends
to zero. Consistency of̄Xn will therefore follow if we can show that var(X̄n) → 0.
Now,

var(X̄n) =
n∑
i=1

n∑
j=1

cov(Xi,Xj )/n
2.

Asn→∞, this average ofn2 terms will go to zero if cov(Xi,Xj ) → 0 sufficiently
fast as|j− i| → ∞. The covariance ofXi andXj can be obtained by a calculation
similar to that leading to (8.9) and satisfies

|cov(Xi,Xj )| ≤ M|π1− π0|j−i .(8.10)

From (8.10), one finds that var(X̄n) is of order 1/n and hence that̄Xn is consistent
(Problem 8.11).

Instead ofp, one may be interested in estimatingπ0 andπ1 themselves. Again,
it turns out that the natural estimatorN01/(N00 + N01) for π0, whereN0j is the
number of pairs (Xi,Xi+1) with Xi = 0, Xi+1 = j, j = 0,1, is consistent.

Consider, on the other hand, the estimation ofp1. It does not appear that observa-
tions beyond on the first provide any information aboutp1, and one would therefore
not expect to be able to estimatep1 consistently. To obtain a formal proof, suppose
for a moment that theπ ’s are known, so thatp1 is the only unknown parameter. If
a consistent estimatorδn exists for the original problem, thenδn will continue to
be consistent under this additional assumption. However, when theπ ’s are known,
X1 is a sufficient statistic forp1 and the problem reduces to that of estimating a
success probability from a single trial. That a consistent estimator ofp1 cannot
exist under these circumstances follows from the definition of consistency.‖

WhenX1, . . . , Xn are iid according to a distributionPθ, θ ∈ , consistent
estimators of real-valued functions ofθ will exist in most of the situations we
shall encounter (see, for example, Problem 8.8). There is, however, an important
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exception. Suppose theX’s are distributed according toF (xi − θ ) whereF is
N (ξ, σ 2), with θ, ξ , andσ 2 unknown. Then, no consistent estimator ofθ exists. To
see this, note that theX’s are distributed asN (ξ + θ, σ 2). Thus,X̄ is consistent for
estimatingξ + θ , butξ andθ cannot be estimated separately because they are not
uniquely defined, they areunidentifiable (see Definition 5.2). More precisely, for
X ∼ Pθ,ξ , there exist pairs (θ1, ξ1) and (θ2, ξ2) with θ1 �= θ2 for whichPθ1,ξ1 = Pθ2,ξ2,
showing the parameterθ to be unidentifiable. A parameter that is unidentifiable
cannot be estimated consistently sinceδ(X1, . . . , Xn) cannot simultaneously be
close to bothθ1 andθ2.

Consistency is too weak a property to be of much interest in itself. It tells us
that for largen, the errorδn − g(θ ) is likely to be small but not whether the order
of the error is 1/n,1/

√
n,1/ logn, and so on. To obtain an idea of the rate of

convergence of a consistent estimatorδn, consider the probability

Pn(a) = P

{
|δn − g(θ )| ≤ a

kn

}
.(8.11)

If kn is bounded, thenPn(a) → 1. On the other hand, ifkn→∞ sufficiently fast,
Pn(a) → 0. This suggests that for a givena > 0, there might exist an intermediate
sequencekn → ∞ for which Pn(a) tends to a limit strictly between 0 and 1.
This will be the case for most of the estimators with which we are concerned.
Commonly, there will exist a sequencekn →∞ and a limit functionH which is
a continuous cdf such that for alla

P {kn[δn − g(θ )] ≤ a} → H (a) as n→∞.(8.12)

We shall then say that the error|δn − g(θ )| tends to zero at rate 1/kn. The rate, of
course, is not uniquely determined by this definition. If 1/kn is a possible rate, so
is 1/k′n for any sequencek′n for whichk′n/kn tends to a finite nonzero limit. On the
other hand, ifk′n tends to∞more slowly (or faster) thankn, that is, ifk′n/kn→ 0
(or∞), thenk′n[δn − g(θ )] tends in probability to zero (or∞) (Problem 8.12).

One can think of the normalizing constantskn in (8.12) in another way. Ifδn is
consistent, the errorsδn−g(θ ) tend to zero asn→∞. Multiplication by constants
kn tending to infinity magnifies these minute errors—it acts as a microscope. If
(8.12) holds, thenkn is just the right degree of magnification to give a well-focused
picture of the behavior of the errors.

We formalize (8.12) in the following definition.

Definition 8.6 Suppose that{Yn} is a sequence of random variables with cdf

Hn(a) = P (Yn ≤ a)

and that there exists a cdfH such that

Hn(a) → H (a)(8.13)

at all pointsa at whichH is continuous. Then, we shall say that the distribution
functionsHn converge weakly to H , and that theYn have thelimit distribution
H , or converge in law to any random variableY with distributionH . This will be

denoted byYn
L→ Y or by L(Yn) → H . We may also say thatYn tends in law to

H and writeYn→ H .
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The crucial assumption in (8.13) is thatH (−∞) = 0 andH (+∞) = 1, that is,
that no probability mass escapes to±∞ (see Problem 1.37).

The following example illustrates the reason for requiring (8.13) to hold only
for the continuity points ofH .

Example 8.7 Degenerate limit distribution.

(i) Let Yn be normally distributed with mean zero and varianceσ 2
n whereσn→ 0

asn→∞.

(ii) Let Yn be a random variable taking on the value 1/n with probability 1.

In both cases, it seems natural to say thatYn tends in law to a random variable
Y which takes on the value 0 with probability 1. The cdfH (a) of Y is zero for
a < 0 and 1 fora ≥ 0. The cdfHn(a) of Yn in both (i) and (ii) tends toH (a) for
all a �= 0, but not fora = 0 (Problem 8.14). ‖

An important property of weak convergence is given by the following theorem.
Its proof, and those of Theorems 8.9-8.12, can be found in most texts on probability
theory. See, for example, Billingsley (1995, Section 25).

Theorem 8.8 The sequence Yn converges in law to Y if and only if E[f (Yn)] →
E[f (Y )] for every bounded continuous real-valued function f .

A basic tool for obtaining the limit distribution of many estimators of interest
is the central limit theorem (CLT), of which the following is the simplest case.

Theorem 8.9 (Central Limit Theorem) LetXi (i = 1, . . . , n) be iid withE(Xi) =
ξ and var(Xi) = σ 2 < ∞. Then,

√
n(X̄ − ξ ) tends in law to N (0, σ 2) and hence√

n(X̄ − ξ )/σ to the standard normal distribution N (0,1).

The usefulness of this result is greatly extended by Theorems 8.10 and 8.12
below.

Theorem 8.10 If Yn
L→ Y , and An and Bn tend in probability to a and b, respec-

tively, then An +BnYn
L→ a + bY .

WhenYn converges to a distributionH , it is often required to evaluate prob-
abilities of the formP (Yn ≤ yn) whereyn → y, and one may hope that these
probabilities will tend toH (y).

Corollary 8.11 If Yn
L→ H , and yn converges to a continuity point y of H , then

P (Yn ≤ yn) → H (y).

Proof. P (Yn ≤ yn) = P [Yn + (y − yn) ≤ y] and the result follows from Theorem
8.10 withBn = 1 andAn = y − yn. ✷

The following widely used result is often referred to as thedelta method.

Theorem 8.12 (Delta Method) If
√
n[Tn − θ ] L→ N (0, τ 2),(8.14)

then √
n[h(Tn)− h(θ )]

L→ N (0, τ 2[h′(θ )]2),(8.15)

provided h′(θ ) exists and is not zero.
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Proof. Consider the Taylor expansion ofh(Tn) aroundh(θ ):

h(Tn) = h(θ ) + (Tn − θ )[h′(θ ) +Rn],(8.16)

whereRn → 0 asTn → θ . It follows from (8.14) thatTn → θ in probability and
hence thatRn → 0 in probability. The result now follows by applying Theorem
8.10 to

√
n[h(Tn)− h(θ )]. ✷

Example 8.13 Limit of binomial. LetXi, i = 1,2, . . ., be independent Bernoulli
(p) random variables and letTn = 1

n

∑n
i=1Xi . Then by the CLT (Theorem 8.9)

√
n (Tn − p) → N [0, p(1− p)](8.17)

sinceE(Tn) = p and var(Tn) = p(1− p).
Suppose now that we are interested in the large sample behavior of the estimate

Tn(1− Tn) of the varianceh(p) = p(1−p). Sinceh′(p) = 1− 2p, it follows from
Theorem 8.12 that

√
n [Tn(1− Tn)− p(1− p)] → N

[
0, (1− 2p)2p(1− p)

]
(8.18)

for p �= 1/2. ‖
When the dominant term in the Taylor expansion (8.16) vanishes [as it does at

p = 1/2 in (8.18)], it is natural to carry the expansion one step further to obtain

h(Tn) = h(θ ) + (Tn − θ )h′(θ ) +
1

2
(Tn − θ )2[h′′(θ ) +Rn],

whereRn→ 0 in probability asTn→ θ , or, sinceh′(θ ) = 0,

h(Tn)− h(θ ) =
1

2
(Tn − θ )2[h′′(θ ) +Rn].(8.19)

In view of (8.14), the distribution of [
√
n(Tn− θ )]2 tends to a nondegenerate limit

distribution, namely (after division byτ 2) to aχ2-distribution with 1 degree of
freedom, and hence

n(Tn − θ )2 → τ 2 · χ2
1 .(8.20)

The same argument as that leading to (8.15), but withh′(θ ) = 0 andh′′(θ ) �= 0,
establishes the following theorem.

Theorem 8.14 If
√
n[Tn − θ ] L→ N (0, τ 2) and if h′(θ ) = 0, then

n[h(Tn)− h(θ )] → 1

2
τ 2h′′(θ )χ2

1(8.21)

provided h′′(θ ) exists and is not zero.

Example 8.15 Continuation of Example 8.13. Forh(p) = p(1−p), we have, at
p = 1/2,h′(1/2) = 0 andh′′(1/2) =−2. Hence, from Theorem 8.14, atp = 1/2,

n

[
Tn(1− Tn)− 1

4

]
→−1

2
χ2

1 .(8.22)

Although (8.22) might at first appear strange, note thatTn(1− Tn) ≤ 1/4, so the
left side is always negative. An equivalent form for (8.22) is

2n

[
1

4
− Tn(1− Tn)

]
→ χ2

1 . ‖
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The typical behavior of estimator sequences as sample sizes tend to infinity
is that suggested by Theorem 8.12, that is, ifδn is the estimator ofg(θ ) based
on n observations, one may expect that

√
n[δn − g(θ )] will tend to a normal

distribution with mean zero and variance, sayτ 2(θ ). It is in this sense that the
large-sample behavior of such estimators can be studied without reference to a
specific loss function. The asymptotic behavior ofδn is governed solely byτ 2(θ )
since knowledge ofτ 2(θ ) determines the probability of the error

√
n[δn − g(θ )]

lying in any given interval. In particular,τ 2(θ ) provides a basis for the large-sample
comparison of different estimators.

Contrast this to the finite-sample situation where, for example, if estimators are
compared in terms of their risk, one estimator might be best in terms of absolute
error, another for squared error, and still another in terms of a higher power of the
error or the probability of falling within a stated distance of the true value. This
cannot happen here, asτ 2(θ ) provides the basis for all large-sample evaluations.

It is straightforward to generalize the preceding theorems to functions of several
means. The expansion (8.16) is replaced by the corresponding Taylor’s theorem in
several variables. Although the following theorem starts in a multivariate setting,
the conclusion is univariate.

Theorem 8.16 Let (X1ν, . . . , Xsν), ν = 1, . . . , n, be n independent s-tuples of
random variables with E(Xiν) = ξi and cov(Xiν,Xjν) = σij . Let X̄i = �Xiν/n,
and suppose that h is a real-valued function of s arguments with continuous first
partial derivatives. Then,

√
n[h(X̄1, . . . , X̄s)− h(ξ1, . . . , ξs)]

L→ N (0, v2), v2 = ��σij
∂h

∂ξi
· ∂h
∂ξj
,

provided v2 > 0.

Proof. See Problem 8.20. ✷

Example 8.17 Asymptotic distribution of S2. As an illustration of Theorem
8.16, consider the asymptotic distribution ofS2 = �(Zν − Z̄)2/n where theZ’s
are iid. Without loss of generality, suppose thatE(Zν) = 0, E(Z2

ν ) = σ 2. Since
S2 = (1/n)�Z2

ν−Z̄2, Theorem 8.16 applies withX1ν = Z2
ν , X2ν = Zν, h(x1, x2) =

x1 − x2
2, ξ2 = 0, andξ1 = var(Zν) = σ 2. Thus,

√
n(S2 − σ 2) → N (0, v2) where

v2 = var(Z2
ν ). ‖

We conclude this section by considering the multivariate case and extending
some of the basic probability results for random variables to vectors of random
variables. The definitions of convergence in probability and in law generalize very
naturally as follows.

Definition 8.18 A sequence of random vectorsYn = (Y1n, . . . , Yrn), n = 1,2, . . .,

tendsin probability toward a constant vectorc = (c1, . . . , cr ) if Yin
P→ ci for each

i = 1, . . . , r, and it convergesin law (or weakly) to a random vectorY with cdfH
if

Hn(a) → H (a)(8.23)
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at all continuity pointsa of H , where

Hn(a) = P [Y1n ≤ a1, . . . , Yrn ≤ ar ](8.24)

is the cdf ofYn.

Theorem 8.8 extends to the present case.

Theorem 8.19 The sequence {Yn} converges in law to Y if and only ifE[f (Yn)] →
E[f (Y)] for every bounded continuous real-valued f .

[For a proof of this and Theorem 8.20, see Billingsley (1995, Section 29).]
Weak convergence ofYn to Y does not imply

P (Yn ∈ A) → P (Y ∈ A)(8.25)

for all setsA for which these probabilities are defined since this is not even true
for the setA defined by

T1 ≤ a1, . . . , Tr ≤ ar
unlessH is continuous ata.

Theorem 8.20 The sequence {Yn} converges in law to Y if and only if (8.25) holds
for all sets A for which the probabilities in question are defined and for which the
boundary of A has probability zero under the distribution of Y.

As in the one-dimensional case, the central limit theorem provides a basic tool
for multivariate asymptotic theory.

Theorem 8.21 (Multivariate CLT) Let Xν = (X1ν, . . . , Xrν) be iid with mean
vector ξ = (ξ1, . . . , ξr ) and covariance matrix � = ||σij ||, and let X̄in = (Xi1 +
· · · +Xin)/n. Then,

[
√
n(X̄1n − ξ1), . . . ,

√
n(X̄rn − ξr )]

tends in law to the multivariate normal distribution with mean vector 0 and co-
variance matrix �.

As a last result, we mention a generalization of Theorem 8.16.

Theorem 8.22 Suppose that

[
√
n(Y1n − θ1), . . . ,

√
n(Yrn − θr )]

tends in law to the multivariate normal distribution with mean vector 0 and co-
variance matrix �, and suppose that h1, . . . , hr are r real-valued functions of
θ = (θ1, . . . , θr ), defined and continuously differentiable in a neighborhood ω of
the parameter point θ and such that the matrix B = ||∂hi/∂θj || of partial deriva-
tives is nonsingular in ω. Then,

[
√
n[h1(Yn)− h1(θ )], . . . ,

√
n[hr (Yn)− hr (θ )]]

tends in law to the multivariate normal distribution with mean vector 0 and with
covariance matrix B�B ′.

Proof. See Problem 8.27 ✷
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9 Problems

Section 1

1.1 If (x1, y1), . . . , (xn, yn) aren points in the plane, determine the best fitting liney =
α + βx in the least squares sense, that is, determine the valuesα andβ that minimize
�[yi − (α + βxi)]2.

1.2 Let X1, . . . , Xn be uncorrelated random variables with common expectationθ and
varianceσ 2. Then, among all linear estimators�αiXi of θ satisfying�αi = 1, the mean
X̄ has the smallest variance.

1.3 In the preceding problem, minimize the variance of�αiXi(�αi = 1)

(a) When the variance ofXi is σ 2/αi (αi known).
(b) When theXi have common varianceσ 2 but are correlated with common correlation

coefficientρ.

(For generalizations of these results see, for example, Watson 1967 and Kruskal 1968.)
1.4 LetX andY have common expectationθ , variancesσ 2 andτ 2, and correlation coeffi-

cientρ. Determine the conditions onσ, τ , andρ under which

(a) var(X) < var[(X + Y )/2].
(b) The value ofα that minimizes var[αX + (1− α)Y ] is negative.

Give an intuitive explanation of your results.
1.5 Let Xi (i = 1,2) be independently distributed according to the Cauchy densities
C(ai, bi). Then,X1 +X2 is distributed asC(a1 + a2, b1 + b2). [Hint: Transform to new
variablesY1 = X1 +X2, Y2 = X2.]

1.6 If X1, . . . , Xn are iid asC(a, b), the distribution ofX̄ is againC(a, b). [Hint: Prove by
induction, using Problem 5.]

1.7 A median of X is any valuem such thatP (X ≤ m) ≥ 1/2 andP (X ≥ m) ≥ 1/2.

(a) Show that this is equivalent toP (X < m) ≤ 1/2 andP (X > m) ≤ 1/2.
(b) Show that the set of medians is always a closed intervalm0 ≤ m ≤ m1.

1.8 If φ(a) = E|X − a| < ∞ for somea, show thatφ(a) is minimized by any median of
X. [Hint: If m0 ≤ m ≤ m1 (in the notation of Problem 1.7) andm1 < c, then

E|X − c| − E|X −m| = (c −m)[P (X ≤ m)− P (X > m)] + 2
∫
m<x<c

(c − x)dP (x)].

1.9 (a) The median of any set of distinct real numbersx1, . . . , xn is defined to be the
middle one of the orderedx’s whenn is odd, and any value between the two middle
orderedx’s whenn is even. Show that this is also the median of the random variable
X which takes on each of the valuesx1, . . . , xn with probability 1/n.

(b) For any set of distinct real numbersx1, . . . , xn, the sum of absolute deviations
�|xi − a| is minimized by any median of thex’s.

(c) Forn given points (xi, yi), i = 1, . . . , n, find the valueb that minimizes�|yi−bxi |.
[Hint: Reduce the problem to a special case of Problem 8.]

1.10 For any set of numbersx1, · · · , xn and a monotone functionh(·), show that the value of
a that minimizes

∑n

i=1[h(xi)−h(a)]2 is given bya = h−1
(∑n

i=1 h(xi)/n
)
. Find functions

h that will yield the arithmetic, geometric, and harmonic means as minimizers.

[Hint: Recall that the geometric mean of non-negative numbers is
(∏
xi

)1/n
and the

harmonic mean is
[
(1/n)

∑
(1/xi)

]−1
. This problem, and some of its implications, is

considered by Casella and Berger (1992).]
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1.11 (a) If two estimatorsδ1, δ2 have continuous symmetric densitiesfi(x − θ ), i = 1,2,
andf1(0)> f2(0), then

P [|δ1 − θ | < c] > P [|δ2 − θ | < c] for some c > 0

and henceδ1 will be closer toθ thanδ2 with respect to the measure (1.5).

(b) LetX, Y be independently distributed with common continuous symmetric density
f , and letδ1 = X, δ2 = (X + Y )/2. The inequality in part (a) will hold provided
2
∫
f 2(x) dx < f (0) (Edgeworth 1883, Stigler 1980).

1.12 (a) Letf (x) = (1/2)(k − 1)/(1 + |x|)k, k ≥ 2. Show thatf is a probability density
and that all its moments of order< k − 1 are finite.

(b) The density of part (a) satisfies the inequality of Problem 1.11(b).

1.13 (a) If X is binomialb(p, n), show that

E

∣∣∣x
n
− p

∣∣∣ = 2

(
n− 1
k − 1

)
pk(1− p)n−k+1 for

k − 1

n
≤ p ≤ k

n
.

(b) Graph the risk function of part (i) forn = 4 andn = 5.

[Hint: For (a), use the identity(
n

x

)
(x − np) = n

[(
n− 1
x − 1

)
(1− p)−

(
n− 1
x

)
p

]
, 1≤ x ≤ n.

(Johnson 1957–1958, and Blyth 1980).]

Section 2

2.1 If A1, A2, . . . are members of aσ -field A (theA’s need not be disjoint), so are their
union and intersection.

2.2 For anya < b, the following sets are Borel sets (a){x : a < x} and (b){x : a ≤ x ≤ b}.
2.3 Under the assumptions of Problem 2.1, let

A = lim inf An = {x : x ∈ An for all except a finite number ofn’s},
A = lim supAn = {x : x ∈ An for infinitely manyn}.

Then,A andA are inA.

2.4 Show that

(a) If A1 ⊂ A2 ⊂ · · · , thenA = A = ∪An.
(b) If A1 ⊃ A2 ⊃ · · · , thenA = A = ∩An.

2.5 For any sequence of real numbersa1, a2, . . ., show that the set of all limit points of
subsequences is closed. The smallest and largest such limit point (which may be infinite)
are denoted by lim infak and lim supak, respectively.

2.6 Under the assumptions of Problems 2.1 and 2.3, show that

IA(x) = lim inf IAk (x) and IA(x) = lim supIAk (x)

whereIA(x) denotes the indicator of the setA.

2.7 Let (X ,A, µ) be a measure space and letB be the class of all setsA ∪ C with A ∈ A
andC a subset of a setA′ ∈ A with µ(A′) = 0. Show thatB is aσ -field.

2.8 If f andg are measurable functions, so are (i)f + g, and (ii) max(f, g).

2.9 If f is integrable with respect toµ, so is|f |, and
∣∣∫ f dµ∣∣ ≤ ∫ |f | dµ. [Hint: Express

|f | in terms off + andf −.]
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2.10 Let X = {x1, x2, . . .}, µ = counting measure onX , andf integrable. Then
∫
f dµ =

�f (xi). [Hint: Suppose, first, thatf ≥ 0 and letsn(x) be the simple function, which is
f (x) for x = x1, . . . , xn, and 0 otherwise.]

2.11 Let f (x) = 1 or 0 asx is rational or irrational. Show that the Riemann integral off

does not exist.

Section 3

3.1 LetX have a standard normal distribution and letY = 2X. Determine whether

(a) the cdfF (x, y) of (X, Y ) is continuous.

(b) the distribution of (X, Y ) is absolutely continuous with respect to Lebesgue measure
in the (x, y) plane.

3.2 Show that any functionf which satisfies (3.7) is continuous.

3.3 Let X be ameasurable transformation from (E,B) to (X ,A) (i.e., such that for any
A ∈ A, the set{e : X(e) ∈ A} is in B), and letY be a measurable transformation from
(X ,A) to (Y, C). Then,Y [X(e)] is a measurable transformation from (E,B) to (Y, C).

3.4 In Example 3.1, show that the support ofP is [a, b] if and only ifF is strictly increasing
on [a, b].

3.5 LetS be the support of a distribution on a Euclidean space (X ,A). Then, (i) S is closed;
(ii) P (S) = 1; (iii) S is the intersection of all closed setsC with P (C) = 1.

3.6 If P andQ are two probability measures over the same Euclidean space which are
equivalent, then they have the same support.

3.7 Let P andQ assign probabilities

P : P

(
X =

1

n

)
= pn > 0, n = 1,2, . . . (�pn = 1),

Q : P (X = 0) =
1

2
; P

(
X =

1

n

)
= qn > 0; n = 1,2, . . .

(
�qn =

1

2

)
.

Then, show thatP andQ have the same support but are not equivalent.

3.8 SupposeX andY are independent random variables withX ∼ E(λ,1) andY ∼
E(µ,1). It is impossible to obtain direct observations ofX andY . Instead, we observe
the random variablesZ andW , where

Z = min{X, Y } and W =

{
1 if Z = X
0 if Z = Y.

Find the joint distribution ofZ andW and show that they are independent. (TheX and
Y variables arecensored., a situation that often arises in medical experiments. Suppose
thatX measures survival time from some treatment, and the patient leaves the survey
for some unrelated reason. We do not get a measurement onX, but only a lower bound.)

Section 4

4.1 If the distributions of a positive random variableX form a scale family, show that the
distributions of logX form a location family.

4.2 If X is distributed according to the uniform distributionU (0, θ ), show that the distri-
bution of− logX is exponential.
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4.3 Let U be uniformly distributed on (0,1) and consider the variablesX = Uα,0 < α.
Show that this defines a group family, and determine the density ofX.

4.4 Show that a transformation group is a group.

4.5 If g0 is any element of a groupG, show that asg ranges overG so doesgg0.

4.6 Show that forp = 2, the density (4.15) specializes to (4.16).

4.7 Show that the family of transformations (4.12) withB nonsingular and lower triangular
form a groupG.

4.8 Show that the totality of nonsingular multivariate normal distributions can be obtained
by the subgroupG of (4.12) described in Problem 4.7.

4.9 In the preceding problem, show thatG can be replaced by the subgroupG0 of lower
triangular matricesB = (bij ), in which the diagonal elementsb11, . . . , bpp are all positive,
but that no proper subgroup ofG0 will suffice.

4.10 Show that the family of all continuous distributions whose support is an interval with
positive lower end point is a group family. [Hint: LetU be uniformly distributed on the
interval (2, 3) and letX = b[g(U )]a whereα, b > 0 and whereg is continuous and 1:1
from (2, 3) to (2, 3).]

4.11 Find a modification of the transformation group (4.22) which generates a random
sample from a population{y1, . . . , yN } where they’s, instead of being arbitrary, are
restricted to (a) be positive and (b) satisfy 0< yi < 1.

4.12 Generalize the transformation group of Example 4.10 to the case ofs populations
{yij , j = 1, . . . , Ni}, i = 1, . . . , s, with a random sample of sizeni being drawn from
theith population.

4.13 LetU be a positive random variable, and let

X = bU1/c, b > 0, c > 0.

(a) Show that this defines a group family.

(b) If U is distributed asE(0,1), thenX is distributed according to theWeibull distri-
bution with density

c

b

(x
b

)c−1
e−(x/b)c , x > 0.

4.14 If F andF0 are two continuous, strictly increasing cdf’s on the real line, and if the
cdf ofU is F0 andg is strictly increasing, show that the cdf ofg(U ) is F if and only if
g = F−1(F0).

4.15 The following two families of distributions are not group families:

(a) The class of binomial distributionsb(p, n), with n fixed and 0< p < 1.

(b) The class of Poisson distributionsP (λ), 0< λ.

[Hint: (a) How many 1:1 transformations are there taking the set of integers{0,1, . . . , n}
into itself?]

4.16 Let X1, . . . , Xr have a multivariate normal distribution withE(Xi) = ξi and with
covariance matrix�. If X is the column matrix with elementsXi andB is anr × r
matrix of constants, thenBX has a multivariate normal distribution with meanBξ and
covariance matrixB�B ′.

Section 5

5.1 Determine the natural parameter space of (5.2) whens = 1,T1(x) = x, µ is Lebesgue
measure, andh(x) is (i) e−|x| and (ii) e−|x|/(1 +x2).
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5.2 Suppose in (5.2),s = 2 andT2(x) = T1(x). Explain why it is impossible to estimateη1.
[Hint: Compare the model with that obtained by puttingη′1 = η1 + c, η′2 = η2 − c.]

5.3 Show that the distribution of a sample from thep-variate normal density (4.15) con-
stitutes ans-dimensional exponential family. Determines and identify the functionsηi ,
Ti , andB of (5.1).

5.4 Efron (1975) gives very general definitions of curvature, which generalize (10.1) and
(10.2). For thes-dimensional family (5.1) with covariance matrix�θ , if θ is a scalar,
define thestatistical curvature to beγθ =

(|Mθ |/m3
11

)1/2
where

Mθ =

(
m11 m12

m21 m22

)
=

(
η̇′θ �̇θηθ η̇

′
θ�θ η̈θ

η̈′θ�θ η̇θ η̈
′
θ�θ η̈θ

)
,

with η(θ ) = {ηi(θ )}, η̇(θ ) = {η′i(θ )} andη̈(θ ) = {η′′i (θ )}. Calculate the curvature of the
family (see Example 6.19)C exp

[−∑n

i=1(xi − θ )m
]

for m =2, 3, 4. Are the values of
γθ ordered in the way you expected them to be?

5.5 Let (X1, X2) have a bivariate normal distribution with mean vectorξ = (ξ1, ξ2) and
identity the covariance matrix. In each of the following situations, verify the curvature,
γθ of the family.

(a) ξ = (θ, θ), γθ = 0.

(b) ξ = (θ1, θ2), θ2
1 + θ2

2 = r2, γθ = 1/r.

5.6 In the density (5.1)

(a) Fors = 1 show thatEθ [T (X)] = B ′(θ )/η′(θ ) and varθ [T (X)] = B ′′(θ )
[η′(θ )]2 − η′′(θ )B ′(θ )

[η′(θ )]3 .

(b) Fors > 1, show thatEθ [T (X)] = J−1∇B whereJ is the Jacobian matrix defined
by J = { ∂ηj

∂θi
} and∇B is the gradient vector∇B = { ∂

∂θi
B(θ )}.

(See Johnson, Ladalla, and Liu (1979) for a general treatment of these identities.)

5.7 Verify the relations (a) (5.22) and (b) (5.26).

5.8 For the binomial distribution (5.28), verify (a) the moment generating function (5.30)
and (b) the moments (5.31).

5.9 For the Poisson distribution (5.32), verify the moments (5.35).

5.10 In a Bernoulli sequence of trials with success probabilityp, letX +m be the number
of trials required to achievem successes.

(a) Show that the distribution ofX, thenegative binomial distribution, is as given in
Table 5.1.

(b) Verify that the negative binomial probabilities add up to 1 by expanding
(

1
p
− q

p

)−m
= pm(1− q)−m.

(c) Show that the distributions of (a) constitute a one-parameter exponential family.

(d) Show that the moment generating function ofX isMX(u) = pm/(1− qeu)m.

(e) Show thatE(X) = mq/p and var(X) = mq/p2.

(f) By expandingKX(u), show that the first four cumulants ofX are k1 = mq/p,
k2 = mq/p2, k3 = mq(1 +q)/p3, andk4 = mq(1 + 4q + q2)/p4.

5.11 In the preceding problem, letXi + 1 be the number of trials required after the (i−1)st
success has been obtained until the next success occurs. Use the fact thatX = �mi=1Xi
to find an alternative derivation of the mean and variance in part (e).
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5.12 A discrete random variable with probabilities

P (X = x) = a(x)θx/C(θ ), x = 0,1, . . . ; a(x) ≥ 0; θ > 0,

is apower series distribution. This is an exponential family (5.1) withs = 1,η = logθ ,
andT = X. The moment generating function isMX(u) = C(θeu)/C(θ ).

5.13 Show that the binomial, negative binomial, and Poisson distributions are special cases
of the power series distribution of Problem 5.12, and determineθ andC(θ ).

5.14 The distribution of Problem 5.12 witha(x) = 1/x andC(θ ) = − log(1− θ ), x =
1,2, . . . ; 0 < θ < 1, is thelogarithmic series distribution. Show that the moment
generating function is log(1− θeu)/ log(1− θ ) and determineE(X) and var(X).

5.15 For the multinomial distribution (5.4), verify the moment formulas (5.16).

5.16 As an alternative to using (5.14) and (5.15), obtain the moments (5.16) by representing
eachXi as a sum ofn indicators, as was done in (5.5):

5.17 For the gamma distribution (5.41).

(a) verify the formulas (5.42), (5.43), and (5.44);

(b) show that (5.43), with the middle term deleted, holds not only for all positive
integersr but for all realr > −α.

5.18 (a) Prove Lemma 5.15. (Use integration by parts.)

(b) By choosingg(x) to bex2 andx3, use the Stein Identity to calculate the third and
fourth moments of theN (µ, σ 2) distribution.

5.19 Using Lemma 5.15:

(a) Derive the form of the identity forX ∼ Gamma(α, b) and use it to verify the
moments given in (5.44).

(b) Derive the form of the identity forX ∼ Beta(a, b), and use it to verify thatE(X) =
a/(a + b) and var(X) = ab/(a + b)2(a + b + 1).

5.20 As an alternative to the approach of Problem 5.19(b) for calculating the moments of
X ∼ B(a, b), a general formula forEXk (similar to equation (5.43)) can be derived.
Do so, and use it to verify the mean and variance ofX given in Problem 5.19. [Hint:
WriteEXk as the integral ofxc−1(1− x)d−1 and use the constantB(c, d) of Table 5.1.
Note that a similar approach will work for many other distributions, including theχ2,
Student’st , andF distributions.]

5.21 The Stein Identity can also be applied to discrete exponential families, as shown by
Hudson (1978) and generalized by Hwang (1982a). IfX takes values inN = {0,1, . . . , }
with probability function

pθ (x) = exp[θx − B(θ )]h(x),

then for anyg : N → � with Eθ |g(X)| <∞, we have the identity

Eg(X) = e−θE{t(X)g(X − 1)}
wheret(0) = 0 andt(x) = h(x − 1)/h(x) for x > 0.

(a) Prove the identity.

(b) Use the identity to calculate the first four moments of the binomial distribution
(5.31).

(c) Use the identity to calculate the first four moments of the Poisson distribution
(5.35).
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5.22 The inverse Gaussian distribution,IG(λ,µ), has density function√
λ

2π
e(λµ)1/2x−3/2e−

1
2 ( λx +µx), x > 0, λ, µ > 0.

(a) Show that this density constitutes an exponential family.

(b) Show that this density is a scale family (as defined in Example 4.1).

(c) Show that the statistics̄X = (1/n)�xi andS∗ = �(1/xi − 1/x̄) are complete
sufficient statistics.

(d) Show thatX̄ ∼ IG(nλ, nµ) andS∗ ∼ (1/λ)χ2
n−1.

Note: Together with the normal and gamma distributions, the inverse Gaussian completes
the trio of families that are both an exponential and a group family of distributions. This
fact plays an important role in distribution theory based on saddlepoint approximations
(Daniels 1983) or likelihood theory (Barndorff-Nielsen 1983).

5.23 In Example 5.14, show that

(a) χ2
1 is the distribution ofY 2 whereY is distributed asN (0,1);

(b) χ2
n is the distribution ofY 2

1 + · · · + Y 2
n where theYi are independentN (0,1).

5.24 Determine the valuesα for which the density (5.41) is (a) a decreasing function ofx

on (0,∞) and (b) increasing forx < x0 and decreasing forx > x0(0< x0). In case (b),
determine the mode of the density.

5.25 A random variableX has thePareto distribution P (c, k) if its cdf is 1− (k/x)c,
x > k > 0, c > 0.

(a) The distributionsP (c,1) constitute a one-parameter exponential family (5.2) with
η = −c andT = logX.

(b) The statisticT is distributed asE(logk,1/c).

(c) The familyP (c, k) (0< k,0< c) is a group family.

5.26 If (X, Y ) is distributed according to the bivariate normal distribution (4.16) with
ξ = η = 0:

(a) Show that the moment generating function of (X, Y ) is

MX,Y (u1, u2) = e−[u2
1σ

2+2ρστu1u2+u2
2τ

2]/2.

(b) Use (a) to show that

µ12 = µ21 = 0, µ11 = ρστ,

µ13 = 3ρστ 3, µ31 = 3ρσ 3τ, µ22 = (1 + 2ρ2)σ 2τ 2.

5.27 (a) If X is a random column vector with expectationξ , then the covariance matrix
of X is cov(X) = E[(X′ − ξ )(X′ − ξ ′)].

(b) If the density ofX is (4.15), thenξ = a and cov(X) = �.

5.28 (a) LetX be distributed with densitypθ (x) given by (5.1), and letA be any fixed
subset of the sample space. Then, the distributions ofX truncated onA, that is,
the distributions with densitypθ (x)IA(x)/Pθ (A) again constitute an exponential
family.

(b) Give an example in which the natural parameter space of the original exponential
family is a proper subset of the natural parameter space of the truncated family.
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5.29 If Xi are independently distributed according toH(αi, b), show that�Xi is distributed
asH(�αi, b). [Hint: Method 1. Prove it first for the sum of two gamma variables by a
transformation to new variablesY1 = X1 + X2, Y2 = X1/X2 and then use induction.
Method 2. Obtain the moment generating function of�Xi and use the fact that a distri-
bution is uniquely determined by its moment generating function, when the latter exists
for at least someu �= 0.]

5.30 When theXi are independently distributed according to Poisson distributionsP (λi),
find the distribution of�Xi .

5.31 LetX1, . . . , Xn be independently distributed asH(α, b). Show that the joint distribu-
tion is a two-parameter exponential family and identify the functionsηi , Ti , andB of
(5.1).

5.32 If Y is distributed asH(α, b), determine the distribution ofc log Y and show that for
fixedα and varyingb it defines an exponential family.

5.33 Morris (1982, 1983b) investigated the properties of natural exponential families with
quadratic variance functions. There are only six such families: normal, binomial, gamma,
Poisson, negative binomial, and the lesser-known generalized hyperbolic secant distri-
bution, which is the density ofX = 1

π
log( Y

1−Y ) whenY ∼ Beta(12 + θ

π
, 1

2 − θ

π
), |θ | < π

2 .

(a) Find the density ofX, and show that it constitutes an exponential family.

(b) Find the mean and variance ofX, and show that the variance equals 1 +µ2, where
µ is the mean.

Subsequent work on quadratic and other power variance families has been done by Bar-
Lev and Enis (1986, 1988), Bar-Lev and Bshouty (1989), and Letac and Mora (1990).

Section 6

6.1 Extend Example 6.2 to the case thatX1, . . . , Xr are independently distributed with
Poisson distributionsP (λi) whereλi = aiλ (ai > 0, known).

6.2 LetX1, . . . , Xn be iid according to a distributionF and probability densityf . Show that
the conditional distribution givenX(i) = a of thei−1 values to the left ofa and then− i
values to the right ofa is that ofi−1 variables distributed independently according to the
probability densityf (x)/F (a) andn−i variables distributed independently with density
f (x)/[1 − F (a)], respectively, with the two sets being (conditionally) independent of
each other.

6.3 Let f be a positive integrable function over (0,∞), and letpθ (x) be the density over
(0, θ ) defined bypθ (x) = c(θ )f (x) if 0 < x < θ , and 0 otherwise. IfX1, . . . , Xn are iid
with densitypθ , show thatX(n) is sufficient forθ .

6.4 Let f be a positive integrable function defined over (−∞,∞) and letpξ,η(x) be the
probability density defined bypξ,η(x) = c(ξ, η)f (x) if ξ < x < η, and 0 otherwise. If
X1, . . . , Xn are iid with densitypξ,η, show that (X(1), X(n)) is sufficient for (ξ, n).

6.5 Show that each of the statisticsT1 − T4 of Example 6.11 is sufficient.

6.6 Prove Corollary 6.13.

6.7 Let X1, . . . , Xm andY1, . . . , Yn be independently distributed according toN (ξ, σ 2)
andN (η, τ 2), respectively. Find the minimal sufficient statistics for these cases:

(a) ξ , η, σ , τ are arbitrary:−∞ < ξ , η <∞, 0< σ, τ .

(b) σ = τ andξ , η, σ are arbitrary.

(c) ξ = η andξ , σ , τ are arbitrary.
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6.8 LetX1, . . . , Xn be iid according toN (σ, σ 2),0 < σ . Find a minimal set of sufficient
statistics.

6.9 (a) If (x1, . . . , xn) and (y1, . . . , yn), have the same elementary symmetric functions
�xi = �yi,�i �=j xiyj = �i �=j yiyj , . . . , x1 · · · xn = y1 · · · yn, then they’s are a
permutation of thex’s.

(b) In the notation of Example 6.10, show thatU is equivalent toV . [Hint: Compare
the coefficients and the roots of the polynomialsP (x) = O(x − ui) andQ(x) =
O(x − vi).]

6.10 Show that the order statistics are minimal sufficient for the location family (6.7) when
f is the density of

(a) the double exponential distributionD(0,1).

(b) the Cauchy distributionC(0,1).

6.11 Prove the following generalization of Theorem 6.12 to families without common
support.

Theorem 9.1 Let P be a finite family with densities pi, i = 0, . . . , k, and for any x,
let S(x) be the set of pairs of subscripts (i, j ) for which pi(x) + pj (x) > 0. Then, the
statistic

T (X) =

{
pj (X)

pi(X)
, i < j and (i, j ) ∈ S(X)

}
is minimal sufficient. Here, pj (x)/pi(x) =∞ if pi(x) = 0 and pj (x) > 0.

6.12 In Problem 6.11 it is not enough to replacepi(X) by p0(X). To see this letk = 2 and
p0 = U (−1,0),p1 = U (0,1), andp2(x) = 2x, 0< x < 1.

6.13 Let k = 1 andPi = U (i, i + 1), i = 0,1.

(a) Show that a minimal sufficient statistic forP = {P0, P1} isT (X) = i if i < X < i+1,
i = 0,1.

(b) LetX1 andX2 be iid according to a distribution fromP. Show that each of the two
statisticsT1 = T (X1) andT2 = T (X2) is sufficient for (X1, X2).

(c) Show thatT (X1) andT (X2) are equivalent.

6.14 In Lemma 6.14, show that the assumption of common support can be replaced by
the weaker assumption that everyP0-null set is also aP-null set so that (a.e.P0) is
equivalent to (a.e.P).

6.15 Let X1, . . . , Xn be iid according to a distribution fromP = {U (0, θ ), θ > 0}, and
let P0 be the subfamily ofP for which θ is rational. Show that everyP0-null set in the
sample space is also aP-null set.

6.16 Let X1, . . . , Xn be iid according to a distribution from a familyP. Show thatT is
minimal sufficient in the following cases:

(a) P = {U (0, θ ), θ > 0}; T = X(n).

(b) P = {U (θ1, θ2),−∞ < θ1 < θ2 <∞}; T = (X(1), X(n)).

(c) P = {U (θ − 1/2, θ + 1/2),−∞ < θ <∞}; T = (X(1), X(n)).

6.17 Solve the preceding problem for the following cases:

(a) P = {E(θ,1),−∞ < θ <∞}; T = X(1).

(b) P = {E(0, b),0< b}; T = �Xi .

(c) P = {E(a, b),−∞ < a <∞,0< b}; T = (X(1), �[Xi −X(1)]).
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6.18 Show that the statisticsX(1) and�[Xi − X(1)] of Problem 6.17(c) are independently
distributed asE(a, b/n) andbGamma(n− 2,1) respectively.

[Hint: If a = 0 andb = 1, the variablesYi = (n− i + 1)[X(i) −X(i−1)], i = 2, . . . , n, are
iid asE(0,1).]

6.19 Show that the sufficient statistics of (i) Problem 6.3 and (ii) Problem 6.4 are minimal
sufficient.

6.20 (a) Show that in theN (θ, θ) curved exponential family, the sufficient statisticT =
(
∑
xi,

∑
x2
i ) is not minimal.

(b) For the density of Example 6.19, show thatT = (
∑
xi,

∑
x2
i ,

∑
x3
i ) is a minimal

sufficient statistic.

6.21 For the situation of Example 6.25(ii), find an unbiased estimator ofξ based on
∑
Xi ,

and another based on
∑
X2
i ); hence, deduce thatT = (

∑
Xi,

∑
X2
i ) is not complete.

6.22 For the situation of Example 6.26, show thatX is minimal sufficient and complete.

6.23 For the situation of Example 6.27:

(a) Show thatX = (X1, X2) is minimal sufficient for the family (6.16) with restriction
(6.17).

(b) Establish (6.18), and hence that the minimal sufficient statistic of part (a) is not
complete.

6.24 (Messig and Strawderman 1993) Show that for the general dose-response model

pθ (x) =
m∏
i=1

(
ni
xi

)
[ηθ (di)]

xi [1− ηθ (di)]ni−xi ,

the statistic X = (X1, X2, . . . , Xm) is minimal sufficient if there exist vectors
θ1, θ2, · · · , θm) such that them×m matrix

P =

{
log

(
ηθj (di)

[
1− ηθ0(di)

]
ηθ0(di)

[
1− ηθj (di)

])}
is invertible. (Hint: Theorem 6.12.)

6.25 Let (Xi, Yi), i = 1, . . . , n, be iid according to the uniform distribution over a setR in
the (x, y) plane and letP be the family of distributions obtained by lettingR range over
a classR of setsR. Determine a minimal sufficient statistic for the following cases:

(a) R is the set of all rectanglesa1 < x < a2, b1 < y < b2, −∞ < a1 < a2 < ∞,
−∞ < b1 < b2 <∞.

(b) R′ is the subset ofR, for whicha2 − a1 = b2 − b1.

(c) R′′ is the subset ofR′ for whicha2 − a1 = b2 − b1 = 1.

6.26 Solve the preceding problem if

(a) R is the set of all triangles with sides parallel to thex axis, they axis, and the line
y = x, respectively.

(b) R′ is the subset ofR in which the sides parallel to thex andy axes are equal.

6.27 Formulate a general result of which Problems 6.25(a) and 6.26(a) are special cases.

6.28 If Y is distributed asE(η,1), the distribution ofX = e−Y isU (0, e−η). (This result is
useful in the computer generation of random variables; see Problem 4.4.14.)
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6.29 If a minimal sufficient statistic exists, a necessary condition for a sufficient statistic to
be complete is for it to be minimal. [Hint: Suppose thatT = h(U ) is minimal sufficient
andU is complete. To show thatU is equivalent toT , note that otherwise there exists
ψ such thatψ(U ) �= η[h(U )] with positive probability whereη(t) = E[ψ(U )|t ].]

6.30 Show that the minimal sufficient statisticsT = (X(1), X(n)) of Problem 6.16(b) are
complete. [Hint: Use the approach of Example 6.24.]

6.31 For each of the following problems, determine whether the minimal sufficient statistic
is complete: (a) Problem 6.7(a)-(c); (b) Problem 6.25(a)-(c); (c) Problem 6.26(a) and
(b).

6.32 (a) Show that ifP0,P1 are two families of distributions such thatP0 ∈ P1 and every
null set ofP0 is also a null set ofP1, then a sufficient statisticT that is complete
for P0 is also complete forP1.

(b) LetP0 be the class of binomial distributionsb(p, n),0< p < 1, n = fixed, and let
P1 = P0 ∪ {Q} whereQ is the Poisson distribution with expectation 1. ThenP0 is
complete butP1 is not.

6.33 Let X1, . . . , Xn be iid each with densityf (x) (with respect to Lebesgue measure),
which is unknown. Show that the order statistics are complete.

[Hint: Use Problem 6.32(a) withP0 the class of distributions of Example 6.15(iv).
Alternatively, letP0 be the exponential family with density

C(θ1, . . . , θn)e
−θ1�xi−θ2�x2

1−···−θn�xni −�x2n
i .]

6.34 Suppose thatX1, . . . , Xn are an iid sample from a location-scale family with distri-
bution functionF ((x − a)/b).

(a) If b is known, show that the differences (X1 −Xi)/b, i = 2, . . . , n, are ancillary.

(b) If a is known, show that the ratios (X1 − a)/(Xi − a), i = 2, . . . , n, are ancillary.

(c) If neithera or b are known, show that the quantities (X1 − Xi)/(X2 − Xi), i =
3, . . . , n, are ancillary.

6.35 Use Basu’s theorem to prove independence of the following pairs of statistics:

(a) X and�(Xi −X)2 where theX’s are iid asN (ξ, σ 2).

(b) X(1) and�[Xi −X(1)] in Problem 6.18.

6.36 (a) Under the assumptions of Problem 6.18, the ratiosZi = [X(n) − X(i)]/X(n) −
X(n−1)], i = 1, . . . , n− 2, are independent of{X(1), �[Xi −X(1)]}.

(b) Under the assumptions of Problems 6.16(b) and 6.30 the ratiosZi = [X(i) −
X(1)]/X(n) −X(1)], i = 2, . . . , n− 1, are independent of{X(1), X(n)).

6.37 Under the assumptions of Theorem 6.5, letA be any fixed set in the sample space,P ∗θ
the distributionPθ truncated onA, andP∗ = {P ∗θ , θ ∈ }. Then prove

(a) if T is sufficient forP, it is sufficient forP∗.
(b) if, in addition,T is complete forP, it is also complete forP∗.

Generalizations of this result were derived by Tukey in the 1940s and also by Smith
(1957). The analogous problem for observations that arecensored rather than truncated
is discussed by Bhattacharyya, Johnson, and Mehrotra (1977).

6.38 If X1, . . . , Xn are iid asB(a, b),

(a) Show that [OXi,O(1−Xi)] is minimal sufficient for (a, b).

(b) Determine the minimal sufficient statistic whena = b.
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Section 7

7.1 Verify the convexity of the functions (i)-(vi) of Example 7.3.

7.2 Show thatxp is concave over (0,∞) if 0 < p < 1.

7.3 Give an example showing that a convex function need not be continuous on a closed
interval.

7.4 If φ is convex on (a, b) andψ is convex and nondecreasing on the range ofφ, show
that the functionψ [φ(x)] is convex on (a, b).

7.5 Prove or disprove by counterexample each of the following statements. Ifφ is convex
on (a, b), then so is (i)eφ(x) and (ii) logφ(x) if φ > 0.

7.6 Show that if equality holds in (7.1) for some 0< γ < 1, thenφ is linear on [x, y].

7.7 Establish the following lemma, which is useful in examining the risk functions of
certain estimators. (For further discussion, see Casella 1990).

Lemma 9.2 Let r : [0,∞) → [0,∞) be concave. Then, (i) r(t) is nondecreasing and
(ii) r(t)/t is nonincreasing.

7.8 Prove Jensen’s inequality for the case thatX takes on the valuesx1, . . . , xn with prob-
abilitiesγ1, . . . , γn(�γi = 1) directly from (7.1) by induction overn.

7.9 A slightly different form of the Rao-Blackwell theorem, which applies only to the
variance of an estimator rather than any convex loss, can be established without Jensen’s
inequality.

(a) For any estimatorδ(x) with var[δ(X)] <∞, and any statisticT , show that

var[δ(X)] = var[E(δ(X)|T )] + E[var(δ(X)|T )].

(b) Based on the identity in part (a), formulate and prove a Rao-Blackwell type theorem
for variances.

(c) The identity in part (a) plays an important role in both theoretical and applied
statistics. For example, explain how Equation (1.2) can be interpreted as a special
case of this identity.

7.10 Let U be uniformly distributed on (0,1), and letF be a distribution function on the
real line.

(a) If F is continuous and strictly increasing, show thatF−1(U ) has distribution func-
tion F .

(b) For arbitraryF , show thatF−1(U ) continues to have distribution functionF .

[Hint: TakeF−1 to be any nondecreasing function such thatF−1[F (x)] = x for all x for
which there exists nox ′ �= x with F (x ′) = F (x).]

7.11 Show that thek-dimensional sphere�ki=1x
2
1 ≤ c is convex.

7.12 Show thatf (a) =
√|x − a| +√|y − a| is minimized bya = x anda = y.

7.13 (a) Show thatφ(x) = e�xi is convex by showing that its Hessian matrix is positive
semidefinite.

(b) Show that the result of Problem 7.4 remains valid ifφ is a convex function defined
over an open convex set inEk.

(c) Use (b) to obtain an alternative proof of the result of part (a).

7.14 Determine whether the following functions are super- or subharmonic:

(a)
∑k

i=1 x
p

i , p < 1, xi > 0.
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(b) e−
∑k
i=1 x

2
i .

(c) log
(∏k

i=1 xi

)
.

7.15 A function is lower semicontinuous at the pointy if f (y) ≤ lim inf x→y f (x). The
definition of superharmonic can be extended from continuous to lower semicontinuous
functions.

(a) Show that a continuous function is lower semicontinuous.

(b) The functionf (x) = I (a < x < b) is superharmonic on (−∞,∞).

(c) For an estimatord of θ , show that the loss function

L(θ, d) =

{
0 if |d − θ | ≤ k
2 if |d − θ | > k

is subharmonic.

7.16 (a) If f : �p → � is superharmonic, thenϕ(f (·)) is also superharmonic, where
ϕ : � → � is a twice-differentiable increasing concave function.

(b) If h is superharmonic, thenh∗(x) =
∫
g(x−y)h(y)dy is also superharmonic, where

g(·) is a density.

(c) If hγ is superharmonic, then so ish∗(x) =
∫
hγ (x)dG(γ ) whereG(γ ) is a distribu-

tion function.

(Assume that all necessary integrals exist, and that derivatives may be taken inside the
integrals.)

7.17 Use the convexity of the functionφ of Problem 7.13 to show that the natural parameter
space of the exponential family (5.2) is convex.

7.18 Show that iff is defined and bounded over (−∞,∞) or (0,∞), thenf cannot be
convex (unless it is constant).

7.19 Show thatφ(x, y) = −√xy is convex overx > 0, y > 0.

7.20 If f andg are real-valued functions such thatf 2, g2 are measurable with respect to
theσ -finite measureµ, prove theSchwarz inequality(∫

fg dµ

)2

≤
∫
f 2dµ

∫
g2dµ.

[Hint: Write
∫
fg dµ = EQ(f/g), whereQ is the probability measure withdQ =

g2dµ/
∫
g2dµ, and apply Jensen’s inequality withϕ(x) = x2.]

7.21 Show that the loss functions (7.24) are continuously differentiable.

7.22 Prove that statements made in Example 7.20(i) and (ii).

7.23 Let f be a unimodal density symmetric about 0, and letL(θ, d) = ρ(d − θ ) be a loss
function withρ nondecreasing on (0,∞) and symmetric about 0.

(a) The functionφ(a) = E[ρ(X − a)] defined in Theorem 7.15 takes on its minimum
at 0.

(b) If
Sa = {x : [ρ(x + a)− ρ(x − a)][f (x + a)− f (x − a)] �= 0},

thenφ(a) takes on its unique minimum value ata = 0 if and only if there existsa0

such thatφ(a0) <∞, andµ(Sa) > 0 for alla. [Hint: Note thatφ(0)≤ 1/2[φ(2a)+
φ(−2a)], with strict inequality holding if and only ifµ(Sa) > 0 for all a.]
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7.24 (a) Suppose thatf andρ satisfy the assumptions of Problem 7.23 and thatf is
strictly decreasing on [0,∞). Then, ifφ(a0) <∞ for somea0, φ(a) has a unique
minimum at zero unless there existsc ≤ d such that

ρ(0) = c and ρ(x) = d for all x �= 0.

(b) If ρ is symmetric about 0, strictly increasing on [0,∞), andφ(a0) <∞ for some
a0, thenφ(a) has a unique minimum at (0) for all symmetric unimodalf .

[Problems 7.23 and 7.24 were communicated by Dr. W.Y. Loh.]

7.25 Let ρ be a real-valued function satisfying

0 ≤ ρ(t) ≤ M <∞ and ρ(t) → M as t →±∞,
and letX be a random variable with a continuous probability densityf . Thenφ(a) =
E[ρ(X − 1)] attains its minimum. [Hint: Show that (a)φ(a) → M asa → ±∞ and
(b)φ is continuous. Here, (b) follows from the fact (see, for example, TSH2, Appendix,
Section 2) that iffn,n = 1,2, . . ., andf are probability densities such thatfn(x) → f (x)
a.e., then

∫
ψfn →

∫
ψf for any boundedψ .]

7.26 Let φ be a strictly convex function defined over an intervalI (finite or infinite). If
there exists a valuea0 in I minimizingφ(a), thena0 is unique.

7.27 Generalize Corollary 7.19 to the case whereX andµ are vectors.

Section 8

8.1 (a) Prove Chebychev’s Inequality: For any random variableX and non-negative func-
tion g(·),

P (g(X) ≥ ε) ≤ 1

ε
Eg(X)

for every ε > 0 . (In many statistical applications, it is useful to takeg(x) =
(x − a)2/b2 for some constantsa andb.)

(b) Prove Lemma 9.3. [Hint: Apply Chebychev’s Inequality.]

Lemma 9.3 A sufficient condition for Yn to converge in probability to c is that E(Yn −
c)2 → 0.

8.2 To see that the converse of Theorem 8.2 does not hold, letX1, . . . , Xn be iid with
E(Xi) = θ , var(Xi) = σ 2 <∞, and letδn = X̄ with probability 1− εn andδn = An with
probabilityεn. If εn andAn are constants satisfying

εn → 0 and εnAn →∞,
thenδn is consistent for estimatingθ , butE(δn − θ )2 does not tend to zero.

8.3 Supposeρ(x) is an even function, nondecreasing and non-negative forx ≥ 0 and
positive forx > 0. Then,E{ρ[δn− g(θ )]} → 0 for all θ implies thatδn is consistent for
estimatingg(θ ).

8.4 (a) If An, Bn, andYn tend in probability toa, b, andy, respectively, thenAn + BnYn
tends in probability toa + by.

(b) If An takes on the constant valuean with probability 1 andan → a, thenAn → a

in probability.

8.5 Referring to Example 8.4, show thatcnS2
n

P→ σ 2 for any sequence of constantscn → 1.
In particular, the MLEσ̂ 2 = n−1

n
S2
n is a consistent estimator ofσ 2.

8.6 Verify Equation (8.9).
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8.7 If {an} is a sequence of real numbers tending toa, and ifbn = (a1 + · · · + an)/n, then
bn → a.

8.8 (a) If δn is consistent forθ , andg is continuous, theng(δn) is consistent forg(θ ).

(b) LetX1, . . . , Xn be iid asN (θ,1), and letg(θ ) = 0 if θ �= 0 andg(0) = 1. Find a
consistent estimator ofg(θ ).

8.9 (a) In Example 8.5, find cov(Xi,Xj ) for anyi �= j .
(b) Verify (8.10).

8.10 (a) In Example 8.5, find the value ofp1 for whichpk becomes independent ofk.

(b) If p1 has the value given in (a), then for any integersi1 < · · · < ir andk, the joint
distribution ofXi1, . . . , Xir is the same as that ofXi1+k, . . . , Xir+k.

[Hint: Do not calculate, but use the definition of the chain.]

8.11 SupposeX1, . . . , Xn have a common meanξ and varianceσ 2, and that cov(Xi,Xj ) =
ρj−i . For estimatingξ , show that:

(a) X̄ is not consistent ifρj−i = ρ �= 0 for all i �= j ;
(b) X̄ is consistent if|ρj−i | ≤ Mγ j−i with |γ | < 1.

[Hint: (a) Note that var(̄X) > 0 for all sufficiently largen requiresρ ≥ 0, and determine
the distribution ofX̄ in the multivariate normal case.]

8.12 Suppose thatkn[δn − g(θ )] tends in law to a continuous limit distributionH . Prove
that:

(a) If k′n/kn → d �= 0 or∞, thenk′n[δn − g(θ )] also tends to a continuous limit
distribution.

(b) If k′n/kn → 0 or∞, thenk′n[δn − g(θ )] tends in probability to zero or infinity,
respectively.

(c) If kn →∞, thenδn → g(θ ) in probability.

8.13 Show that ifYn → c in probability, then it tends in law to a random variableY which
is equal toc with probability 1.

8.14 (a) In Example 8.7(i) and (ii),Yn → 0 in probability. Show that:

(b) If Hn denotes the distribution function ofYn in Example 8.7(i) and (ii), then
Hn(a) → 0 for all a < 0 andHn(a) → 1 for all a > 0.

(c) Determine limHn(0) for Example 8.7(i) and (ii).

8.15 If Tn > 0 satisfies
√
n[Tn − θ ] L→ N (0, τ 2), find the limiting distribution of (a)

√
T n

and (b) logTn (suitably normalized).

8.16 If Tn satisfies
√
n[Tn − θ ] L→ N (0, τ 2), find the limiting distribution of (a)T 2

n , (b)
log |Tn|, (c) 1/Tn, and (d)eTn (suitably normalized).

8.17 Variance stabilizing transformations are transformations for which the resulting statis-
tic has an asymptotic variance that is independent of the parameters of interest. For each
of the following cases, find the asymptotic distribution of the transformed statistic and
show that it is variance stabilizing.

(a) Tn = 1
n

∑n

i=1Xi,Xi ∼Poisson(λ), h(Tn) =
√
T n.

(b) Tn = 1
n

∑n

i=1Xi,Xi ∼Bernoulli(p), h(Tn) = arcsin
√
T n.

8.18 (a) The functionv(·) is a variance stabilizing transformation if the estimatorv(Tn)
has asymptotic varianceτ 2(θ )[v′(θ )]2 = c, wherec is a constant independent ofθ .
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(b) For any positive integern, find the variance stabilizing transformation ifτ 2(θ ) = θn.
In particular, be careful of the important casen = 2.

[A variance stabilizing transformation (if it exists) is the solution of a differential equation
resulting from the Delta Method approximation of the variance of an estimator (Theorem
8.12) and is not a function of the distribution of the statistic (other than the fact that the
distribution will determine the form of the variance). The transformations of part (b) are
known as the Box-Cox family of power transformations and play an important role in
applied statistics. For more details and interesting discussions, see Bickel and Doksum
1981, Box and Cox 1982, and Hinkley and Runger 1984.]

8.19 Serfling (1980, Section 3.1) remarks that the following variations of Theorem 8.12
can be established. Show that:

(a) If h is differentiable in a neighborhood ofθ , andh′ is continuous atθ , thenh′(θ )
may be replace byh′(Tn) to obtain

√
n

[h(Tn)− h(θ )]

τh′(Tn)
L→ N (0,1).

(b) Furthermore, ifτ 2 is a continuous function ofθ , sayτ 2(θ ), it can be replaced by
τ 2(Tn) to obtain

√
n

[h(Tn)− h(θ )]

τ (Tn)h′(Tn)
L→ N (0,1).

8.20 Prove Theorem 8.16.

[Hint: Under the assumptions of the theorem we have the Taylor expansion

h(x1, . . . , xs) = h(ξ1, . . . , ξs) +�(xi − ξi)
[
∂h

∂ξi
+Ri

]
whereRi → 0 asxi → ξi .]

8.21 A sequence of numbersRn is said to beo(1/kn) asn → ∞ if knRn → 0 and to be
O(1/kn) if there existM andn0 such that|knRn| < M for all n > n0 or, equivalently,
if knRn is bounded.

(a) If Rn = o(1/kn), thenRn = 0(1/kn).

(b) Rn = 0(1) if and only ifRn is bounded.

(c) Rn = o(1) if and only ifRn → 0.

(d) If Rn isO(1/kn) andk′n/kn tends to a finite limit, thenRn isO(1/k′n).

8.22 (a) If Rn andR′n are bothO(1/kn), so isRn +R′n.

(b) If Rn andR′n are botho(1/kn), so isRn +R′n.

8.23 Supposek′n/kn →∞.

(a) If Rn = 0(1/kn) andR′n = 0(1/k′n), thenRn +R′n = 0(1/kn).

(b) If Rn = o(1/kn) andR′n = o(1/k′n), thenRn +R′n = o(1/kn).

8.24 A sequence of random variablesYn is bounded in probability if given anyε > 0, there
existM andn0 such thatP (|Yn| > M) < ε for all n > n0. Show that ifYn converges in
law, thenYn is bounded in probability.

8.25 In generalization of the notationo andO, let us say thatYn = op(1/kn) if knYn → 0
in probability and thatYn = Op(1/kn) if knYn is bounded in probability. Show that the
results of Problems 8.21 - 8.23 continue to hold ifo andO are replaced byop andOp.
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8.26 Let (Xn, Yn) have a bivariate normal distribution with meansE(Xn) = E(Yn) = 0,
variancesE(X2

n) = E(Y 2
n ) = 1, and with correlation coefficientρn tending to 1 as

n→∞.

(a) Show that (Xn, Yn)
L→ (X, Y ) whereX isN (0,1) andP (X = Y ) = 1.

(b) If S = {(x, y) : x = y}, show that (8.25) does not hold.

8.27 Prove Theorem 8.22. [Hint: Make a Taylor expansion as in the proof of Theorem 8.12
and use Problem 4.16.]

10 Notes

10.1 Fubini’s Theorem

Theorem 2.8, called variously Fubini’s or Tonelli’s theorem, is often useful in mathe-
matical statistics. A variant of Theorem 2.8 allowsf to be nonpositive, but requires an
integrability condition (Billingsley 1995, Section 18). Dudley (1989) refers to Theorem
2.8 as the Tonelli-Fubini theorem and recounts an interesting history in which Lebesgue
played a role. Apparently, Fubini’s first published proof of this theorem was incorrect
and was later corrected by Tonelli, using results of Lebesgue.

10.2 Sufficiency

The concept of sufficiency is due to Fisher (1920). (For some related history, see Stigler
1973.). In his fundamental paper of 1922, Fisher introduced the term sufficiency and
stated the factorization criterion. The criterion was rediscovered by Neyman (1935) and
was proved for general dominated families by Halmos and Savage (1949). The theory of
minimal sufficiency was initiated by Lehmann and Scheffé (1950) and Dynkin (1951).
Further generalizations are given by Bahadur (1954) and Landers and Rogge (1972).
Yamada and Morimoto (1992) review the topic. Theorem 7.8 with squared error loss
is due to Rao (1945) and Blackwell (1947). It was extended to thepth power of the
error (p ≥ 1) by Barankin (1950) and to arbitrary convex loss functions by Hodges and
Lehmann (1950).

10.3 Exponential Families

One-parameter exponential families, as the only (regular) families of distributions for
which there exists a one-dimensional sufficient statistic, were also introduced by Fisher
(1934). His result was generalized to more than one dimension by Darmois (1935),
Koopman (1936), and Pitman (1936). (Their contributions are compared by Barankin
and Maitra (1963).) Another discussion of this theorem with reference to the literature is
given, for example, by Hipp (1974). Comprehensive treatments of exponential families
are provided by Barndorff-Nielsen (1978) and Brown (1986a); a more mathematical
treatment is given in Hoffman-Jorgenson (1994). Statistical aspects are emphasized in
Johansen (1979).

10.4 Ancillarity

To illustrate his use of ancillary statistics, group families were introduced by Fisher
(1934). (For more information on ancillarity, see Buehler 1982, or the review article by
Lehmann and Scholtz 1992).)

Ancillary statistics, and more general notions of ancillarity, have played an important
role in developing inference in both group families and curved exponential families,
the latter having connections to the field of “small-sample asymptotics,” where it is
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shown how to obtain highly accurate asymptotic approximations, based on ancillaries
and saddlepoints.

For example, as curved exponential families are not of full rank, it is typical that a minimal
sufficient statistic is not complete. One might hope that ans-dimensional sufficient
statistic could be split into ad-dimensional sufficient piece and ans − d-dimensional
ancillary piece. Although this cannot always be done, useful decompositions can be
found. Such endeavors lie at the heart of conditional inference techniques.

Good introductions to these topics can be found in Reid (1988), Field and Ronchetti
(1990), Hinkley, Reid, and Snell (1991), Barndorff-Nielsen and Cox (1994), and Reid
(1995).

10.5 Completeness

Completeness was introduced by Lehmann and Scheffé (1950). Theorem 6.21 is due to
Basu (1955b, 1958). Although there is no converse to Basu’s theorem as stated here,
some alternative definitions and converse results are discussed by Lehmann (1981).

There are alternate versions of Theorem 6.22, which relate completeness in exponential
families to having full rank. This is partially due to the fact that afull or full-rank
exponential family can be defined in alternate ways. For example, referring to (5.1), if
we define� as the index set of the densitiespθ (x), that is, we consider the family of
densities{pθ (x), θ ∈ �}, then Brown (1986a, Section 1.1) defines the exponential family
to befull if � = F, whereF is the natural parameter space [see (5.3)]. But this property
is not needed for completeness. As Brown (1986a, Theorem 2.12) states, as long as the
interior of� is nonempty (that is,� contains an open set), the family{pθ (x), θ ∈ �} is
complete. Another definition of afull exponential model is given by Barndorff-Nielsen
and Cox (1994, Section 1.3), which requires that the statisticsT1, . . . , Ts not be linearly
dependent.

In nonparametric families, the property of completeness, and determination of complete
sufficient statistics, continues to be investigated. See, for example, Mandelbaum and
Rüschendorf (1987) and Mattner (1992, 1993, 1994). For example, building on the work
of Fraser (1954) and Mandelbaum and Rüschendorf (1987), Mattner (1994) showed that
the order statistics are complete for the family of densitiesP, in cases such as

(a) P={all probability measures on the real line with unimodal densities with respect
to Lebesgue measure}.

(b) P = {(1− t)P + tQ : P ∈ P,Q ∈ Q(P ), t ∈ [0, ε]}, whereε is fixed and, for each
P ∈ P, P is absolutely continuous with respect to the complete and convex family
Q(P ).

10.6 Curved Exponential Families

The theory of curved exponential families was initiated by Efron (1975, 1978), who
applied the ideas ofplane curvature andarc length to better understand the structure of
exponential families. Curved exponential families have been extensively studied since
then. (See, for example, Brown 1986a, Chapter 3; Barndorff-Nielsen 1988; McCul-
lagh and Nelder 1989; Barndorff-Nielsen and Cox 1994, Section 2.10.) Here, we give
some details in a two-dimensional case; extensions to higher dimensions are reasonably
straightforward (Problem 5.4).

For the exponential family (5.1), withs = 2, the parameter is (η1(θ ), η2(θ )), whereθ
is an underlying parameter which is indexing the parameter space. Ifθ itself is a one-
dimensional parameter, then the parameter space is a curve in two dimensions, a subset
of the full two-dimensional space. Assuming that theηi ’s have at least two derivatives
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as functions ofθ , the parameter space is a one-dimensionaldifferentiable manifold, a
differentiable curve. (See Amari et al 1987 or Murray and Rice 1993 for an introduction
to differential geometry and statistics.)

Figure 10.1.The curve η(τ ) = (η1(τ ), η2(τ )) = (τ,− 1
2τ

2). The radius of curvature γτ is the
instantaneous rate of change of the angle Wa, between the derivatives ∇η(τ ), with respect
to the arc length Ws. The vector ∇η(τ ), the tangent vector, and the unit normal vector
N (τ ) = [−η′2(τ ), η′1(τ )]/[dsτ /dτ ] provide a moving frame of reference.

Example 10.1 Curvature. For the exponential family (5.7) letτ = 1
ξ
, so the parameter

space is the curve

η(τ ) = (τ,−1

2
τ 2),

as shown in Figure 10.1. The direction of the curveη(τ ), at any pointτ , is measured by
the derivative vector (thegradient) ∇η(τ ) = (η′1(τ ), η′2(τ )) = (1,−τ ). At eachτ we can
assign an angular value

a(τ ) = polar angle of normalized gradient vector∇η(τ )

= polar angle of
(η′1(τ ), η′2(τ ))

[(η′1)2 + (η′2)2]1/2
,

which measures how the curve “bends.” Thecurvature, γτ , is a measure of the rate of
change of this angle as a function of thearc length s(τ ), wheres(τ ) =

∫ τ
0 |∇η(t)|dt .
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Thus,

γτ = lim
δ→0

a(τ + δτ )− a(τ )

s(τ + δτ )− s(τ )
=
da(τ )

ds(τ )
;(10.1)

see Figure 10.1. An application of calculus will show that

γτ =
η′1η

′′
2 − η′2η′′1

[(η′1)2 + (η′2)2]3/2
,(10.2)

so for the exponential family (5.7), we haveγτ = −(1 + τ 2)3/2. ‖

For the most part, we are only concerned with|γτ |, as the sign merely gives the direction
of parameterization, and the magnitude gives the degree of curvature. As might be
expected, lines have zero curvature and circles have constant curvature. The curvature
of a circle is equal to the reciprocal of the radius, which leads to calling 1/|γτ | the
radius of curvature. Definitions of arc length, and so forth, naturally extend beyond two
dimensions. (See Problems 5.5 and 5.4.)

10.7 Large Deviation Theory

Limit theorems such as Theorem 1.8.12 refer to sequences of situations asn → ∞.
However, in a given problem, one is dealing with a specific large value ofn. Any
particular situation can be embedded in many different sequences, which lead to different
approximations.

Suppose, for example, that it is desired to find an approximate value for

P (|Tn − g(θ )| ≥ a)(10.3)

whenn = 100 anda = 0.2. If
√
n[Tn − g(θ )] is asymptotically normally distributed

asN (0,1), one might want to puta = c/
√
n (so thatc = 2) and consider (10.3) as a

member of the sequence

P

(
|Tn − g(θ )| ≥ 2√

n

)
≈ 2[1−X(2)].(10.4)

Alternatively, one could keepa = 0.2 fixed and consider (10.3) as a member of the
sequence

P (|Tn − g(θ )| ≥ 0.2).(10.5)

SinceTn − g(θ ) → 0, this sequence of probabilities tends to zero, and in fact does so at
a very fast rate. In this approach, the normal approximation is no longer useful (it only
tells us that (10.5)→ 0 asn → ∞). The study of the limiting behavior of sequences
such as (10.5) is calledlarge deviation theory. An exposition of large deviation theory
is given by Bahadur (1971). Books on large deviation theory include those by Kester
(1985) and Bucklew (1990). Much research has been done on this topic, and applications
to various aspects of point estimation can be found in Fu (1982), Kester and Kallenberg
(1986), Sieders and Dzhaparidze (1987), and Pfanzagl (1990).

We would, of course, like to choose the approximation that comes closer to the true
value. It seems plausible that for values of (10.3) not extremely close to 0 and for mod-
erate sample sizes, (10.4) would tend to do better than that obtained from the sequence
(10.5). Some numerical comparisons in the context of hypothesis testing can be found
in Groeneboom and Oosterhoff (1981); other applications in testing are considered in
Barron (1989).
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CHAPTER 2

Unbiasedness

1 UMVU Estimators

It was pointed out in Section 1.1 that estimators with uniformly minimum risk
typically do not exist, and restricting attention to estimators showing some degree
of impartiality was suggested as one way out of this difficulty. As a first such
restriction, we shall study the condition ofunbiasedness in the present chapter.

Definition 1.1 An estimatorδ(x) of g(θ ) is unbiased if

Eθ [δ(X)] = g(θ ) for all θ ∈ .(1.1)

When used repeatedly, an unbiased estimator in the long run will estimate the
right value “on the average.” This is an attractive feature, but insistence on unbi-
asedness can lead to problems. To begin with, unbiased estimators ofg may not
exist.

Example 1.2 Nonexistence of unbiased estimator. LetX be distributed accord-
ing to the binomial distributionb(p, n) and suppose thatg(p) = 1/p. Then, unbi-
asedness of an estimatorδ requires

n∑
k=0

δ(k)

(
n

k

)
pkqn−k = g(p) for all 0< p < 1.(1.2)

That no suchδ exists can be seen, for example, for the fact that asp→ 0, the left
side tends toδ(0) and the right side to∞. Yet, estimators of 1/p exist which (for
n not too small) are close to 1/p with high probability. For example, sinceX/n
tends to be close top, n/X (with some adjustment whenX = 0) will tend to be
close to 1/p. ‖

If there exists an unbiased estimator ofg, the estimandg will be calledU -
estimable. (Some authors call such an estimand “estimable,” but this conveys the
false impression that anyg not possessing this property cannot be accurately esti-
mated.) Even wheng isU -estimable there is no guarantee that any of its unbiased
estimators are desirable in other ways, and one may instead still prefer to use an
estimator that does have some bias. On the other hand, a large bias is usually con-
sidered a drawback and special methods of bias reduction have been developed
for such cases.

Example 1.3 The jackknife. A general method for bias reduction was initiated
by Quenouille (1949, 1956) and later named the jackknife by Tukey (1958). Let
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T (x) be an estimator of a parameterτ (θ ) based on a samplex = (x1, . . . , xn) and
satisfyingE[T (x)] = τ (θ ) +O( 1

n
). Definex(−i) to be the vector of sample values

excludingxi . Then, the jackknifed version ofT (x) is

TJ (x) = nT (x)− n− 1

n

n∑
i=1

T (x(−i)).(1.3)

It can be shown thatE[TJ (x)] = τ (θ )+O( 1
n2 ), so the bias has been reduced (Stuart

and Ord 1991, Section 17.10; see also Problem 1.4). ‖
Although unbiasedness is an attractive condition, after a best unbiased estimator

has been found, its performance should be investigated and the possibility not ruled
out that a slightly biased estimator with much smaller risk might exist (see, for
example, Sections 5.5 and 5.6).

The motive for introducing unbiasedness was the hope that within the class
of unbiased estimators, there would exist an estimator with uniformly minimum
risk. In the search for such an estimator, a natural approach is to minimize the
risk for some particular valueθ0 and then see whether the result is independent of
θ0. To this end, the following obvious characterization of the totality of unbiased
estimators is useful.

Lemma 1.4 If δ0 is any unbiased estimator of g(θ ), the totality of unbiased esti-
mators is given by δ = δ0 − U where U is any unbiased estimator of zero, that is,
it satisfies

Eθ (U ) = 0 for all θ ∈ .
To illustrate this approach, suppose the loss function is squared error. The risk

of an unbiased estimatorδ is then just the variance ofδ. Restricting attention to
estimatorsδ0, δ, andU with finite variance, we have, ifδ0 is unbiased,

var(δ) = var(δ0 − U ) = E(δ0 − U )2 − [g(θ )]2

so that the variance ofδ is minimized by minimizingE(δ0 − U )2.

Example 1.5 Locally best unbiased estimation. LetX take on the values−1,0,
1, . . . with probabilities (Problem 1.1)

P (X = −1) = p, P (X = k) = q2pk, k = 0,1, . . . ,(1.4)

where 0< p < 1 andq = 1− p, and consider the problems of estimating (a)p

and (b)q2. Simple unbiased estimators ofp andq2 are, respectively,

δ0 =

{
1 if X = −1
0 otherwise

and δ1 =

{
1 if X = 0
0 otherwise.

It is easily checked thatU is an unbiased estimator of zero if and only if [Problem
1.1(b)]

U (k) = −kU (−1) for k = 0,1, . . .(1.5)

or equivalently ifU (k) = ak for all k = −1,0,1, . . . and somea. The problem
of determining the unbiased estimator which minimizes the variance atp0 thus
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reduces to that of determining the value ofa which minimizes

�P (X = k)[δi(k)− ak]2.(1.6)

The minimizing values ofa are (Problem 1.2)

a∗0 = −p0/

[
p0 + q2

0

∞∑
k=1

k2pk0

]
and a∗1 = 0

in cases (a) and (b), respectively. Sincea∗1 does not depend onp0, the estimator
δ∗1 = δ1 − a∗1X = δ1 minimizes the variance among all unbiased estimators not
only whenp = p0 but for all values ofp. On the other hand,δ∗0 = δ0 − a∗0X does
depend onp0, and it therefore only minimizes the variance atp = p0. ‖

The properties possessed byδ∗0 andδ∗1 are characterized more generally by the
following definition.

Definition 1.6 An unbiased estimatorδ(x) of g(θ ) is theuniform minimum vari-
ance unbiased (UMVU) estimator ofg(θ ) if varθ δ(x) ≤ varθ δ′(x) for all θ ∈ ,
whereδ′(x) is any other unbiased estimator ofg(θ ). The estimatorδ(x) is locally
minimum variance unbiased (LMVU) at θ = θ0 if varθ0δ(x) ≤ varθ0δ

′(x) for any
other unbiased estimatorδ′(x).

In terms of Definition 1.6, we have shown in Example 1.5 thatδ∗1 is UMVU and
thatδ∗0 is LMVU. Sinceδ∗0 depends onp0, no UMVU estimator exists in this case.

Notice that the definition refers to “the” UMVU estimator, since UMVU estima-
tors are unique (see Problem 1.12). The existence, uniqueness, and characterization
of LMVU estimators have been investigated by Barankin (1949) and Stein (1950).
InterpretingE(δ0 − U )2 as the distance betweenδ0 andU , the minimizingU ∗

can be interpreted as the projection ofδ0 onto the linear spaceU formed by the
unbiased estimatorsU of zero. The desired results then follow from the projection
theorem of linear space theory (see, for example, Bahadur 1957, and Luenberger
1969).

The relationship of unbiased estimators ofg(θ ) with unbiased estimators of zero
can be helpful in characterizing and determining UMVU estimators when they
exist. Note that ifδ(X) is an unbiased estimator ofg(θ ), then so isδ(X) + aU (X),
for any constanta and any unbiased estimatorU of zero and that

varθ0[δ(X) + aU (X)] = varθ0δ(X) + a2varθ0U (X) + 2acovθ0(U (X), δ(X)).

If covθ (U (X), δ(X)) �= 0 for someθ = θ0, we shall show below that there exists a
value ofa for which varθ0[δ(X)+aU (X)] < varθ0δ(X). As a result, the covariance
with unbiased estimators of zero is the key in characterizing the situations in which
a UMVU estimator exists. In the statement of the following theorem, attention
will be restricted to estimators with finite variance, since otherwise the problem of
minimizing the variance does not arise. The class of estimatorsδ with Eθδ2 <∞
for all θ will be denoted byW.

Theorem 1.7 Let X have distribution Pθ, θ ∈ , let δ be an estimator in W, and
let U denote the set of all unbiased estimators of zero which are in W. Then, a
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necessary and sufficient condition for δ to be a UMVU estimator of its expectation
g(θ ) is that

Eθ (δU ) = 0 for all U ∈ U and all θ ∈ .(1.7)

(Note: SinceEθ (U ) = 0 for all U ∈ U , it follows thatEθ (δU ) = covθ (δ, U ), so
that (1.7) is equivalent to the condition thatδ is uncorrelated with everyU ∈ U .)

Proof.

(a) Necessity. Supposeδ is UMVU for estimating its expectationg(θ ). Fix U ∈
U, θ ∈ , and for arbitrary realλ, letδ′ = δ+λU . Then,δ′ is also an unbiased
estimator ofg(θ ), so that

varθ (δ + λU ) ≥ varθ (δ) for all λ.

Expanding the left side, we see that

λ2varθU + 2λcovθ (δ, U ) ≥ 0 for all λ,

a quadratic inλ with real rootsλ = 0 andλ =−2 covθ (δ, U )/varθ (U ). It will
therefore take on negative values unless covθ (δ, U ) = 0.

(b) Sufficiency. SupposeEθ (δU ) = 0 for all U ∈ U . To show thatδ is UMVU,
let δ′ be any unbiased estimator ofEθ (δ). If varθ δ′ = ∞, there is nothing to
prove, so assume varθ δ′ <∞. Then,δ − δ′ ∈ U (Problem 1.8) so that

Eθ [δ(δ − δ′)] = 0

and henceEθ (δ2) = Eθ (δδ′). Sinceδ andδ′ have the same expectation,

varθ δ = covθ (δ, δ
′),

and from the covariance inequality (Problem 1.5), we conclude that varθ (δ) ≤
varθ (δ′).

✷

The proof of Theorem 1.7 shows that condition (1.7), if required only forθ = θ0,
is necessary and sufficient for an estimatorδ with Eθ0(δ

2) < ∞ to be LMVU at
θ0. This result also follows from the characterization of the LMVU estimator as
δ = δ0 − U ∗ whereδ0 is any unbiased estimator ofg andU ∗ is the projection of
δ0 ontoU . Interpreting the equationEθ0(δU ) = 0 as orthogonality ofδ0 andU ,
the projection ofU ∗ has the property thatδ = δ0 − U ∗ is orthogonal toU , that is,
Eθ0(δU ) = 0 for all U ∈ U . If the estimator is to be UMVU, this relation must
hold for all θ .

Example 1.8 Continuation of Example 1.5. As an application of Theorem 1.7,
let us determine the totality of UMVU estimators in Example 1.5. In view of (1.5)
and (1.7), a necessary and sufficient condition forδ to be UMVU for its expectation
is

Ep(δX) = 0 for all p,(1.8)

that is, forδX to be inU and hence to satisfy (1.5). This condition reduces to

kδ(k) = kδ(−1) for k = 0,1,2, . . . ,
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which is satisfied provided

δ(k) = δ(−1) for k = 1,2, . . .(1.9)

with δ(0) being arbitrary. If we putδ(−1) = a, δ(0) = b, the expectation of such aδ
isg(p) = bq2 +a(1−q2) andg(p) is therefore seen to possess a UMVU estimator
with finite variance if and only if it is of the forma + cq2. ‖

It is interesting to note, although we shall not prove it here, that Theorem 1.7
typically, but not always, holds not only for squared error but for general convex
loss functions. This result follows from a theorem of Bahadur (1957). For details,
see Padmanabhan (1970) and Linnik and Rukhin (1971).

Constants are always UMVU estimators of their expectations since the variance
of a constant is zero. (Ifδ is a constant, (1.7) is of course trivially satisfied.) Deleting
the constants from consideration, three possibilities remain concerning the set of
UMVU estimators.

Case 1. No nonconstantU -estimable function has a UMVU estimator.

Example 1.9 Nonexistence of UMVU estimator. Let X1, . . . , Xn be a sample
from a discrete distribution which assigns probability 1/3 to each of the points
θ − 1, θ , θ + 1, and letθ range over the integers. Then, no nonconstant function
of θ has a UMVU estimator (Problem 1.9). A continuous version of this example
is provided by a sample from the uniform distributionU (θ − 1/2, θ + 1/2); see
Lehmann and Scheffé (1950, 1955, 1956). (For additional examples, see Section
2.3.) ‖

Case 2. Some, but not all, nonconstantU -estimable functions have UMVU esti-
mators. Example 1.5 provides an instance of this possibility.

Case 3. EveryU -estimable function has a UMVU estimator.

A condition for this to be the case is suggested by (Rao-Blackwell) Theorem
1.7.8. If T is a sufficient statistic for the familyP = {Pθ, θ ∈ } andg(θ ) is
U -estimable, then any unbiased estimatorδ of g(θ ) which is not a function ofT
is improved by its conditional expectation givenT , sayη(T ). Furthermore,η(T )
is again an unbiased estimator ofg(θ ) since by (6.1),Eθ [η(T )] = Eθ [δ(X)].

Lemma 1.10 Let X be distributed according to a distribution from P = {Pθ, θ ∈
}, and let T be a complete sufficient statistic for P . Then, every U -estimable
function g(θ ) has one and only one unbiased estimator that is a function of T .
(Here, uniqueness, of course, means that any two such functions agree a.e. P .)

Proof. That such an unbiased estimator exists was established just preceding the
statement of Lemma 1.10. Ifδ1 andδ2 are two unbiased estimators ofg(θ ), their
differencef (T ) = δ1(T )− δ2(T ) satisfies

Eθf (T ) = 0 for all θ ∈ ,
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and hence by the completeness ofT , δ1(T ) = δ2(T ) a.e.P, as was to be proved.
✷

So far, attention has been restricted to squared error loss. However, the Rao-
Blackwell theorem applies to any convex loss function, and the preceding argument
therefore establishes the following result.

Theorem 1.11 Let X be distributed according to a distribution in P = {Pθ, θ ∈
}, and suppose that T is a complete sufficient statistic for P .

(a) For every U -estimable function g(θ ), there exists an unbiased estimator that
uniformly minimizes the risk for any loss function L(θ, d) which is convex in
its second argument; therefore, this estimator in particular is UMVU.

(b) The UMVU estimator of (i) is the unique unbiased estimator which is a func-
tion of T ; it is the unique unbiased estimator with minimum risk, provided its
risk is finite and L is strictly convex in d.

It is interesting to note that under mild conditions, the existence of a complete
sufficient statistic is not only sufficient but also necessary for Case 3. This result,
which is due to Bahadur (1957), will not be proved here.

Corollary 1.12 If P is an exponential family of full rank given by (5.1), then the
conclusions of Theorem 1.11 hold with θ = (θ1, . . . , θs) and T = (T1, . . . , Ts).

Proof. This follows immediately from Theorem 1.6.22. ✷

Theorem 1.11 and its corollary provide best unbiased estimators for large classes
of problems, some of which will be discussed in the next three sections. For the
sake of simplicity, these estimators will be referred to as being UMVU, but it
should be kept in mind that their optimality is not tied to squared error as loss, but,
in fact, they minimize the risk for any convex loss function.

Sometimes we happen to know an unbiased estimatorδ of g(θ ) which is a
function of a complete sufficient statistic. The theorem then states thatδ is UMVU.
Suppose, for example, thatX1, . . . , Xn are iid according toN (ξ, σ 2) and that the
estimand isσ 2. The standard unbiased estimator ofσ 2 is thenδ = �(Xi−X̄)2/(n−
1). Since this is a function of the complete sufficient statisticT = (�Xi,�(Xi −
X̄)2), δ is UMVU. Barring such fortunate accidents, two systematic methods are
available for deriving UMVU estimators through Theorem 1.11.

Method One: Solving for δ

If T is a complete sufficient statistic, the UMVU estimator of anyU -estimable
functiong(θ ) is uniquely determined by the set of equations

Eθδ(T ) = g(θ ) for all θ ∈ .(1.10)

Example 1.13 Binomial UMVU estimator. Suppose thatT has the binomial
distributionb(p, n) and thatg(p) = pq. Then, (1.10) becomes

n∑
t=0

(
n

t

)
δ(t)ptqn−1 = pq for all 0< p < 1.(1.11)
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If ρ = p/q so thatp = ρ/(1 +ρ) andq = 1/(1 +ρ), (1.11) can be rewritten as

n∑
t=0

(
n

t

)
δ(t)ρt = ρ(1 +ρ)n−2 =

n−1∑
t=1

(
n− 2
t − 1

)
ρt (0< ρ <∞).

A comparison of the coefficients on the left and right sides leads to

δ(t) =
t(n− t)
n(n− 1)

. ‖

Method Two: Conditioning

If δ(X) is any unbiased estimator ofg(θ ), it follows from Theorem 1.11 that
the UMVU estimator can be obtained as the conditional expectation ofδ(X) given
T . For this derivation, it does not matter which unbiased estimatorδ is being
conditioned; one can thus chooseδ so as to make the calculation ofδ′(T ) =
E[δ(X)|T ] as easy as possible.

Example 1.14 UMVU estimator for a uniform distribution. Suppose thatX1,
. . ., Xn are iid according to the uniform distributionU (0, θ ) and thatg(θ ) = θ/2.
Then,T = X(n), the largest of theX’s, is a complete sufficient statistic. Since
E(X1) = θ/2, the UMVU estimator ofθ/2 isE[X1|X(n) = t ]. If X(n) = t , then
X1 = t with probability 1/n, andX1 is uniformly distributed on (0, t) with the
remaining probability (n− 1)/n (see Problem 1.6.2). Hence,

E[X1|t ] =
1

n
· t +

n− 1

n
· t

2
=
n + 1

n
· t

2
.

Thus, [(n + 1)/n] · T/2 and [(n + 1)/n] · T are the UMVU estimators ofθ/2 and
θ , respectively. ‖

The existence of UMVU estimators under the assumptions of Theorem 1.11 was
proved there for convex loss functions. That the situation tends to be very different
without convexity of the loss is seen from the following results of Basu (1955a).

Theorem 1.15 Let the loss function L(θ, d) for estimating g(θ ) be bounded, say
L(θ, d) ≤ M , and assume thatL[θ, g(θ )] = 0 for all θ , that is, the loss is zero when
the estimated value coincides with the true value. Suppose that g is U -estimable
and let θ0 be an arbitrary value of θ . Then, there exists a sequence of unbiased
estimators δn for which R(θ0, δn) → 0.

Proof. Sinceg(θ ) isU -estimable, there exists an unbiased estimatorδ(X). For any
0< π < 1, let

δ′π (x) =


g(θ0) with probability 1− π

1

π
[δ(x)− g(θ0)] + g(θ0) with probabilityπ.

Then,δ′π is unbiased for allπ and allθ , since

Eθ (δ
′
π ) = (1− π )g(θ0) +

π

π
[g(θ )− g(θ0)] + πg(θ0) = g(θ ).
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The riskR(θ0, δ
′
π ) atθ0 is (1−π )·0 plusπ times the expected loss of (1/π )[δ(X)−

g(θ0)] + g(θ0), so that

R(θ0, δ
′
π ) ≤ πM.

As π → 0, it is seen thatR(θ0, δ
′
π ) → 0. ✷

This result implies that for bounded loss functions, no uniformly minimum-risk-
unbiased or even locally minimum-risk-unbiased estimator exists except in trivial
cases, since at eachθ0, the risk can be made arbitrarily small even by unbiased
estimators. [Basu (1955a) proved this fact for a more general class of nonconvex
loss functions.] The proof lends support to the speculation of Section 1.7 that the
difficulty with nonconvex loss functions stems from the possibility of arbitrarily
large errors since asπ → 0, the error|δπ (x)− g(θ0)| → ∞. It is the leverage of
these large but relatively inexpensive errors which nullifies the restraining effect
of unbiasedness.

This argument applies not only to the limiting case of unbounded errors but
also, although to a correspondingly lesser degree, to the case of finite large errors.
In the latter situation, convex loss functions receive support from a large-sample
consideration. To fix ideas, suppose the observations consist forn iid variables
X1, . . . , Xn. Asn increases, the error in estimating a given valueg(θ ) will decrease
and tend to zero asn → ∞. (See Section 1.8 for a precise statement.) Thus,
essentially only the local behavior of the loss function near the true valueg(θ ) is
relevant. If the loss function is smooth, its Taylor expansion aboutd = g(θ ) gives

L(θ, d) = a(θ ) + b(θ )[d − g(θ )] + c(θ )[d − g(θ )]2 +R,

where the remainderR becomes negligible as the error|d − g(θ )| becomes suf-
ficiently small. If the loss is zero whend = g(θ ), thena must be zero, so that
b(θ )[d − g(θ )] becomes the dominating term for small errors. The condition
L(θ, d) ≥ 0 for all θ then impliesb(θ ) = 0 and hence

L(θ, d) = c(θ )[d − g(θ )]2 +R.

Minimizing the risk for largen thus becomes essentially equivalent to minimizing
E[δ(X)− g(θ )]2, which justifies not only a convex loss function but even squared
error. Not only the loss function but also other important aspects of the behavior
of estimators and the comparison of different estimators greatly simplify for large
samples, as will be discussed in Chapter 6.

The difficulty which bounded loss functions present for the theory of unbiased
estimation is not encountered by a different unbiasedness concept, that of median
unbiasedness mentioned in Section 1.1. For estimatingg(θ ) in a multiparameter
exponential family, it turns out that uniformly minimum risk median unbiased
estimators exist for any loss functionL for which L(θ, d) is a nondecreasing
function ofd asd moves in either direction away fromg(θ ). A detailed version
of this result can be found in Pfanzagl (1979). We shall not discuss the theory of
median unbiased estimation here since the methods required belong to the theory
of confidence intervals rather than that of point estimation (see TSH2, Section 3.5).



2.2 ] CONTINUOUS ONE- AND TWO-SAMPLE PROBLEMS 91

2 Continuous One- and Two-Sample Problems

The problem of estimating an unknown quantityθ from n measurements ofθ
was considered in Example 1.1.1 as the prototype of an estimation problem. It
was formalized by assuming that then measurements are iid random variables
X1, . . . , Xn with common distribution belonging to the location family

Pθ (Xi ≤ x) = F (x − θ ).(2.1)

The problem takes different forms according to the assumptions made aboutF .
Some possibilities are the following:

(a) F is completely specified.

(b) F is specified except for an unknown scale parameter. In this case, (2.1) will
be replaced by a location-scale family. It will then be convenient to denote the
location parameter byξ rather thanθ (to reserveθ for the totality of unknown
parameters) and hence to write the family as

Pθ (Xi ≤ x) = F

(
x − ξ
σ

)
.(2.2)

Here, it will be of interest to estimate bothξ andσ .

(c) The distribution of theX’s is only approximately given by Equation (2.1) or
(2.2) with a specifiedF . What is meant by “approximately” leads to the topic
of robust estimation

(d) F is known to be symmetric about 0 (so that theX’s are symmetrically
distributed aboutθ or ξ ) but is otherwise unknown.

(e) F is unknown except that it has finite variance; the estimand isξ = E(Xi).

In all these models,F is assumed to be continuous.

A treatment of Problems (a) and (b) for an arbitrary knownF is given in Chapter 3
from the point of view of equivariance. In the present section, we shall be concerned
with unbiased estimation ofθ or (ξ, σ ) in Problems (a) and (b) and some of their
generalizations for some special distributions, particularly for the case thatF is
normal or exponential. Problems (c), (d), and (e) all fall under the general heading
of robust and nonparametric statistics (Huber 1981, Hampel et al. 1986, Staudte
and Sheather 1990). We will not attempt a systematic treatment of these topics
here, but will touch upon some points through examples. For example, Problem
(e) will be considered in Section 2.4.

The following three examples will be concerned with the normal one-sample
problems, that is, with estimation problems arising whenX1, . . . , Xn are dis-
tributed with joint density (2.3).

Example 2.1 Estimating polynomials of a normal variance. LetX1, . . . , Xn be
distributed with joint density

1

(
√

2πσ )n
exp

[
− 1

2σ 2
�(xi − ξ )2

]
,(2.3)

and assume, to begin with, that only one of the parameters is unknown. Ifσ is
known, it follows from Theorem 1.6.22 that the sample meanX̄ is a complete
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sufficient statistic, and sinceE(X̄) = ξ, X̄ is the UMVU estimator ofξ . More
generally, ifg(ξ ) is anyU -estimable function ofξ , there exists a unique unbiased
estimatorδ(X̄) based onX̄ and it is UMVU. If, in particular,g(ξ ) is a polynomial
of degreer, δ(X̄) will also be a polynomial of that degree, which can be determined
inductively forr = 2, 3, . . . (Problem 2.1).

If ξ is known, (2.3) is a one-parameter exponential family withS2 = �(Xi −
ξ )2 being a complete sufficient statistic. SinceY = S2/σ 2 is distributed asχ2

n

independently ofσ 2, it follows that

E

(
Sr

σ r

)
=

1

Kn,r
,

whereKn,r is a constant, and hence that

Kn,rS
r(2.4)

is UMVU for σ r . Recall from Example 1.5.14 witha = n/2, b = 2 and withr/2
in place ofr that

E

(
Sr

σ r

)
= E

[
(χ2
n )r/2

]
=
H[(n + r)/2]

H(n/2)
2r/2

so that

Kn,r =
H(n/2)

2r/2H[(n + r)/2]
.(2.5)

As a check, note that forr = 2,Kn,r = 1/n, and henceE(S2) = nσ 2.
Formula (2.5) is established in Example 1.5.14 only forr > 0. It is, however,

easy to see (Problem 1.5.19) that it holds whenever

n > −r,(2.6)

but that the (r/2)th moment ofχ2
n does not exist whenn ≤ −r.

We are now in a position to consider the more realistic case in which both
parameters are unknown. Then, by Example 1.6.24,X̄ andS2 =

∑
(Xi − X̄)2

jointly are complete sufficient statistics for (ξ, σ 2). This shows that̄X continues
to be UMVU for ξ . Since var(̄X) = σ 2/n, estimation ofσ 2 is, of course, also of
great importance. Now,S2/σ 2 is distributed asχ2

n−1 and it follows from (2.4) with
n replaced byn− 1 and the new definition ofS2 that

Kn−1,rS
r(2.7)

is UMVU for σ r providedn > −r + 1, and thus in particularS2/(n−1) is UMVU
for σ 2.

Sometimes, it is of interest to measureξ in σ -units and hence to estimate
g(ξ, σ ) = ξ/σ . Now X̄ is UMVU for ξ andKn−1,−1/S for 1/σ . SinceX̄ and
S are independent, it follows thatKn−1,−1X̄/S is unbiased forξ/σ and hence
UMVU, providedn− 1> 1, that is,n > 2.

If we next consider calculating the variance ofKn−1,−1X̄/S or, more generally,
calculating the variance of UMVU estimators of polynomial functions ofξ andσ ,
we are led to calculating the momentsE(X̄k) andE(Sk) for all k = 1,2, . . . . This
is investigated in Problems 2.4-2.6 ‖
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Another class of problems within the framework of the normal one-sample
problem relates to the probability

p = P (X1 ≤ u).(2.8)

Example 2.2 Estimating a probability or a critical value. Suppose that the
observationsXi denote the performances of past candidates on an entrance exam-
ination and that we wish to estimate the cutoff valueu for which the probability
of a passing performance,X ≥ u, has a preassigned probability 1− p. This is the
problem of estimatingu in (2.8) for a given value ofp. Solving the equation

p = P (X1 ≤ u) = X

(
u− ξ
σ

)
(2.9)

(whereX denotes the cdf of the standard normal distribution) foru shows that

u = g(ξ, σ ) = ξ + σX−1(p).

It follows that the UMVU estimator ofu is

X̄ +Kn−1,1SX
−1(p).(2.10)

Consider next the problem of estimatingp for a given value ofu. Suppose, for
example, that a manufactured item is acceptable if some quality characteristic is
≤ u and that we wish to estimate the probability of an item being acceptable, its
reliability, given by (2.9).

To illustrate a method which is applicable to many problems of this type, con-
sider, first, the simpler case thatσ = 1. An unbiased estimatorδ ofp is the indicator
of the eventX1 ≤ u. SinceX̄ is a complete sufficient statistic, the UMVU estimator
of p = P (X1 ≤ u) = X(u− ξ ) is therefore

E[δ|X̄] = P [X1 ≤ u|X̄].

To evaluate this probability, use the fact thatX1 − X̄ is independent of̄X. This
follows from Basu’s theorem (Theorem 1.6.21) sinceX1− X̄ is ancillary.1 Hence,

P [X1 ≤ u|x̄] = P [X1− X̄ ≤ u− x̄|x̄] = P [X1− X̄ ≤ u− x̄],

and the computation of a conditional probability has been replaced by that of an
unconditional one. Now,X1− X̄ is distributed asN (0, (n− 1)/n), so that

P [X1− X̄ ≤ u− x̄] = X

[√
n

n− 1
(u− x̄)

]
,(2.11)

which is the UMVU estimator ofp.
Closely related to the problem of estimatingp, which is the cdf

F (u) = P [X1 ≤ u] = X(u− ξ )
of X1 evaluated atu, is that of estimating the probability density atu : g(ξ ) =
φ(u− ξ ). We shall now show that the UMVU estimator of the probability density
g(ξ ) = p

X1
ξ (u) of X1 evaluated atu is the conditional density ofX1 given X̄

1 Such applications of Basu’s theorem can be simplified when invariance is present. The theory and
some interesting illustrations are discussed by Eaton and Morris (1970).
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evaluated atu, δ(X̄) = pX1|X̄(u). Since this is a function of̄X, it is only necessary
to check thatδ is unbiased. This can be shown by differentiating the UMVU
estimator of the cdf after justifying the required interchange of differentiation and
integration, or as follows. Note that the joint density ofX1 andX̄ ispX1|X̄(u)pX̄ξ (x)
and that the marginal density is therefore

p
X1
ξ (u) =

∫ ∞

−∞
pX1|X̄(u)pX̄ξ (x) dx.

This equation states just thatδ(X̄) is an unbiased estimator ofg(ξ ). Differentiating
the earlier equation

P [X1 ≤ u|x̄] = X

[√
n

n− 1
(u− x̄)

]
with respect tou, we see that the derivative

d

du
[P [X1 ≤ u|X̄] = pX1|X̄(u)

=

√
n

n− 1
φ

[√
n

n− 1
(u− X̄)

]
,

(whereφ is the standard normal density) is the UMVU estimator ofp
X1
ξ (u).

Suppose now that bothξ and σ are unknown. Then, exactly as in the case
σ = 1, the UMVU estimator ofP [X1 ≤ u] = X((u − ξ )/σ ) and of the density
pX1(u) = (1/σ )φ((u − ξ )/σ ) is given, respectively, byP [X1 ≤ u|X̄, S] and the
conditional density ofX1 givenX̄ andS evaluated atu, whereS2 = �(Xi−X̄)2. To
replace the conditional distribution with an unconditional one, note that (X1−X̄)/S
is ancillary and therefore, by Basu’s theorem, independent of (X̄, S). It follows, as
in the earlier case, that

P [X1 ≤ u|x̄, s] = P

[
X1− X̄
S

≤ u− x̄
s

]
(2.12)

and that

pX1|x̄,s(u) =
1

s
f

(
u− x̄
s

)
(2.13)

wheref is the density of (X1 − X̄)/S. A straightforward calculation (Problem
2.10) gives

f (z) =
H

(
n−1

2

)
H

(
1
2

)
H

(
n−2

2

)√ n

n− 1

(
1− nz2

n− 1

)(n/2)−2

if 0 < |z| <
√
n− 1

n

(2.14)
and zero elsewhere. The estimator (2.13) is obtained by substitution of (2.14), and
the estimator (2.12) is obtained by integrating the densityf . ‖

We shall next consider two extensions of the normal one-sample model. The
first extension is concerned with the two-sample problem, in which there are two
independent groups of observations, each with a model of this type, but corre-
sponding to different conditions or representing measurements of two different
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quantities so that the parameters of the two models are not the same. The sec-
ond extension deals with the multivariate situation ofn p-tuples of observations
(X1ν, . . . , Xpν), ν = 1, . . . , n, with (X1ν, . . . , Xpν) representing measurements of
p different characteristics of theνth subject.

Example 2.3 The normal two-sample problem. LetX1, . . . , Xm andY1, . . . , Yn
be independently distributed according to normal distributionsN (ξ, σ 2) andN (η,
τ 2), respectively.

(a) Suppose thatξ, η, σ, τ are completely unknown. Then, the joint density

1

(
√

2π )m+nσmτn
exp

[
− 1

2σ 2
�(xi − ξ )2 − 1

2τ 2
�(yj − η)2

]
(2.15)

constitutes an exponential family for which the four statistics

X̄, Ȳ , S2
X = �(Xi − X̄)2, S2

Y = �(Yj − Ȳ )2

are sufficient and complete. The UMVU estimators ofξ andσ r are therefore
X̄ andKn−1,rS

r
X, as in Example 2.1, and those ofη and τ r are given by

the corresponding formulas. In the present model, interest tends to focus on
comparing parameters from the two distributions. The UMVU estimator of
η − ξ is Ȳ − X̄ and that ofτ r/σ r is the product of the UMVU estimators of
τ r and 1/σ r .

(b) Sometimes, it is possible to assume thatσ = τ . ThenX̄, Ȳ , andS2 = �(Xi −
X̄)2 +�(Yj − Ȳ )2 are complete sufficient statistics [Problem 1.6.35(a)] and
the natural unbiased estimators ofξ ,η,σ r ,η−ξ , and (η−ξ )/σ are all UMVU
(Problem 2.11).

(c) As a third possibility, suppose thatη = ξ but thatσ andτ are not known to be
equal, and that it is desired to estimate the common meanξ . This might arise,
for example, when two independent sets of measurements of the same quantity
are available. The statisticsT = (X̄, Ȳ , S2

X, S
2
Y ) are then minimal sufficient

(Problem 1.6.7), but they are no longer complete sinceE(Ȳ − X̄) = 0.

If σ 2/τ 2 = γ is known, the best unbiased linear combination ofX̄ andȲ is

δγ = αX̄ + (1− α)Ȳ , where α =
τ 2

n

/(
σ 2

m
+
τ 2

n

)
(Problem 2.12). Since, in this case,T ′ = (�X2

i +γ�Y
2
j , �Xi+γ�Yj ) is a complete

sufficient statistic (Problem 2.12) andδγ is a function ofT ′, δγ is UMVU. When
σ 2/τ 2 is unknown, a UMVU estimator ofξ does not exist (Problem 2.13), but
one can first estimateα, and then estimateξ by ξ = α̂X̄ + (1− α̂)Ȳ . It is easy
to see that̂ξ is unbiased provided̂α is a function of onlyS2

X andS2
Y (Problem

2.13), for example, ifσ 2 andτ 2 in α are replaced byS2
X/(m− 1) andS2

Y /(n− 1).
The problem of finding a good estimator ofξ has been considered by various
authors, among them Graybill and Deal (1959), Hogg (1960), Seshadri (1963),
Zacks (1966), Brown and Cohen (1974), Cohen and Sackrowitz (1974), Rubin
and Weisberg (1975), Rao (1980), Berry (1987), Kubokawa (1987), Loh (1991),
and George (1991). ‖
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It is interesting to note that the nonexistence of a UMVU estimator holds not
only for ξ but for anyU -estimable function ofξ . This fact, for which no easy proof
is available, was established by Unni (1978, 1981) using the results of Kagan and
Palamadov (1968).

In cases (a) and (b), the differenceη− ξ provides one comparison between the
distributions of theX’s andY ’s. An alternative measure of the superiority (if large
values of the variables are desirable) of theY ’s over theX’s is the probability
p = P (X < Y ). The UMVU estimator ofp can be obtained as in Example
2.2 asP (X1 < Y1|X̄, Ȳ , S2

X, S
2
Y ) andP (X1 < Y1|X̄, Ȳ , S2) in cases (a) and (b),

respectively (Problem 2.14). In case (c), the problem disappears since thenp = 1/2.

Example 2.4 The multivariate normal one-sample problem. Suppose that (Xi ,
Yi , . . .), i = 1, . . . , n, are observations ofp characteristics on a random sample of
n subjects from a large population, so that then p-vectors can be assumed to be
iid. We shall consider the case that their common distribution is ap-variate normal
distribution (Example 1.4.5) and begin with the casep = 2.

The joint probability density of the (Xi, Yi) is then(
1

2πστ
√

1− ρ2

)n
exp

{
− 1

2(1− ρ2)

[
1

σ 2
�(xi − ξ )2(2.16)

− 2ρ

στ
�(xi − ξ )(yi − η) +

1

τ 2
�(yi − η)2

]}
whereE(Xi) = ξ, E(Yi) = η, var(Xi) = σ 2, var(Yi) = τ 2, and cov(Xi, Yi) = ρστ ,
so thatρ is the correlation coefficient betweenXi andYi . The bivariate family
(2.16) constitutes a five-parameter exponential family of full rank, and the set of
sufficient statisticsT = (X̄, Ȳ , S2

X, S
2
Y , SXY ) where

SXY = �(Xi − X̄)(Yi − Ȳ )(2.17)

is therefore complete. Since the marginal distributions of theXi andYi areN (ξ, σ 2)
andN (η, τ 2), the UMVU estimators ofξ andσ 2 areX̄ andS2

X/(n− 1), and those
of η andτ 2 are given by the corresponding formulas. The statisticSXY /(n−1) is an
unbiased estimator ofρστ (Problem 2.15) and is therefore the UMVU estimator
of cov(Xi, Yi).

For the correlation coefficientρ, the natural estimator is the sample correlation
coefficient

R = SXY /
√
S2
XS

2
Y .(2.18)

However,R is not unbiased, since it can be shown [see, for example, Stuart and
Ord (1987, Section 16.32)] that

E(R) = ρ

[
1− (1− ρ2)

2n
+O

(
1

n2

)]
.(2.19)

By implementing Method One of Section 2.1, together with some results from the
theory of Laplace transforms, Olkin and Pratt (1958) derived a functionG(R) of
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R which is unbiased and hence UMVU. It is given by

G(r) = rF

(
1

2
,

1

2
;
n− 1

2
; 1− r2

)
,

whereF (a, b; c; x) is thehypergeometric function

F (a, b; c; x) =
∞∑
k=0

H(a + k)H(b + k)H(c)xk

H(a)H(b)H(c + k)k!

=
H(c)

H(b)H(c − b)
∫ 1

0

tb−1(1− t)c−b−1

(1− tx)a
dt.

Calculation ofG(r) is facilitated by using a computer algebra program. Alterna-
tively, by substituting in the above series expansion, one can derive the approxi-
mation

G(r) = r

[
1 +

1− r2

2(n− 1)
+O

(
1

n2

)]
which is quite accurate.

These results extend easily to the general multivariate case. Let us change
notation and denote by (X1ν, . . . , Xpν), ν = 1, . . . , n, a sample from a non-
singularp-variate normal distribution with meansE(Xiν) = ξi and covariances
cov(Xiν,Xjν) = σij . Then, the density of theX’s is

|�|n/2
(2π )pn/2

exp

(
−1

2
��θjkS

′
jk

)
(2.20)

where

S ′jk =
n∑
ν=1

(Xjν − ξj )(Xkν − ξk)(2.21)

and where� = (θjk) is the inverse of the covariance matrix (σjk). This is a full-rank

exponential family, for which thep +

(
p

2

)
= 1

2p(p + 1) statisticsXi· = �Xiν/n

(i = 1, . . . , p) andSjk = �(Xjν −Xj .)(Xkν −Xk.) are complete.
Since the marginal distributions of theXjν and the pair (Xjν,Xkν) are univariate

and bivariate normal, respectively, it follows from Example 2.1 and the earlier part
of the present example, thatXi· is UMVU for ξi andSjk/(n−1) for σjk. Also, the
UMVU estimators of the correlation coefficientsρjk = σjk/

√
σjjσkk are just those

obtained from the bivariate distribution of the (Xjν,Xkν). The UMVU estimator of
the square of the multiple correlation coefficient of one of thep coordinates with
the otherp−1 was obtained by Olkin and Pratt (1958). The problem of estimating
a multivariate normal probability density has been treated by Ghurye and Olkin
(1969); see also Gatsonis 1984. ‖

Results quite analogous to those found in Examples 2.1–2.3 obtain when the
normal density (2.3) is replaced by the exponential density

1

bn
exp

[
−1

b
�(xi − a)

]
, xi > a.(2.22)
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Despite its name, this two-parameter family does not constitute an exponential
family since its support changes witha. However, for fixeda, it constitutes a
one-parameter exponential family with parameter 1/b.

Example 2.5 The exponential one-sample problem. Suppose, first, thatb is
known. Then,X(1) is sufficient fora and complete (Example 1.6.24). The distri-
bution ofn[X(1) − a]/b is the standard exponential distributionE(0,1) and the
UMVU estimator ofa is X(1) − (b/n) (Problem 2.17). On the other hand, when
a is known, the distribution (2.22) constitutes a one-parameter exponential family
with complete sufficient statistic�(Xi − a). Since 2�(Xi − a)/b is distributed as
χ2

2n, it is seen that�(Xi − a)/n is the UMVU estimator forb (Problem 2.17).
When both parameters are unknown,X(1) and�[Xi−X(1)] are jointly sufficient

and complete (Example 1.6.27). Since they are independently distributed,n[X(1)−
a]/b asE(0,1) and 2�[Xi − X(1)]/b asχ2

2(n−1) (Problem 1.6.18), it follows that
(Problem 2.18)

1

n− 1
�[Xi −X(1)] and X(1)− 1

n(n− 1)
�[Xi −X(1)](2.23)

are UMVU forb anda, respectively.
It is also easy to obtain the UMVU estimators ofa/b and of the critical value

u for which P (X1 ≤ u) has a given valuep. If, instead,u is given, the UMVU
estimator ofP (X1 ≤ u) can be found in analogy with the normal case (Problems
2.19 and 2.20). Finally, the two-sample problems corresponding to Example 2.3(a)
and (b) can be handled very similarly to the normal case (Problems 2.21-2.23).‖

An important aspect of estimation theory is the comparison of different estima-
tors. As competitors of UMVU estimators, we shall now consider the maximum
likelihood estimator (ML estimator, see Section 6.2). This comparison is of in-
terest both because of the widespread use of the ML estimator and because of its
asymptotic optimality (which will be discussed in Chapter 6). If a distribution is
specified by a parameterθ (which need not be real-valued), the ML estimator of
θ is that valueθ̂ of θ which maximizes the probability or probability density. The
ML estimator ofg(θ ) is defined to beg(θ̂ ).

Example 2.6 Comparing UMVU and ML estimators. Let X1, . . ., Xn be iid
according to the normal distributionN (ξ, σ 2). Then, the joint density of theX′s is
given by (2.3) and it is easily seen that the ML estimators ofξ andσ 2 are (Problem
2.26)

ξ̂ = X̄ and σ̂ 2 =
1

n

∑
(Xi − X̄)2.(2.24)

Within the framework of this example, one can illustrate the different possible
relationships between UMVU and ML estimators.

(a) When the estimandg(ξ, σ ) is ξ , thenX̄ is both the ML estimator and the
UMVU estimator, so in this case, the two estimators coincide.

(b) Letσ be known, sayσ = 1, and letg(ξ, σ ) be the probabilityp = X(u− ξ )
considered in Example 2.2 (see also Example 3.1.13). The UMVU estimator
isX[

√
n/(n− 1)(u− X̄)], whereas the ML estimator isX(u− X̄). Since the
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ML estimator is biased (by completeness, there can be only one unbiased
function of X̄), the comparison should be based on the mean squared error
(rather than the variance)

Rδ(ξ, σ ) = E[δ − g(ξ, σ )]2(2.25)

as risk. Such a comparison was carried out by Zacks and Even (1966), who
found that neither estimator is uniformly better than the other. Forn = 4, for
example, the UMVU estimator is better when|u− ξ | > 1.3 or, equivalently,
whenp < .1 orp > .9, whereas for the remaining values the ML estimator
has smaller mean squared error.

This example raises the question whether there are situations in which the
ML estimator is either uniformly better or worse than its UMVU competitor.
The following two simple examples illustrate these possibilities.

(c) If ξ andσ 2 are both unknown, the UMVU estimator and the ML estimator of
σ 2 are, respectively,S2/(n−1) andS2/n, whereS2 =

∑
(Xi− X̄)2. Consider

the general class of estimatorscS2. An easy calculation (Problem 2.28) shows
that

E(cS2 − σ 2) = σ 4
[
(n2 − 1)c2 − 2(n− 1)c + 1

]
.(2.26)

For any givenc, this risk function is proportional toσ 4. The risk functions
corresponding to different values ofc, therefore, do not intersect, but one lies
entirely above the other. The right side of (2.26) is minimized byc = 1/(n+1).
Since the valuesc = 1/(n−1) andc = 1/n, corresponding to the UMVU and
ML estimator, respectively, lie on the same side of 1/(n + 1) with 1/n being
closer and the risk function is quadratic, it follows that the ML estimator has
uniformly smaller risk than the UMVU estimator, but that the ML estimator,
in turn, is dominated byS2/(n + 1). (For further discussion of this problem,
see Section 3.3.)

(d) Suppose thatσ 2 is known and let the estimand beξ2. Then, the ML estimator
is X̄2 and the UMVU estimator is̄X2− σ 2/n (Problem 2.1). That the risk of
the ML estimator is uniformly larger follows from the following lemma.

‖
Lemma 2.7 Let the risk be expected squared error. If δ is an unbiased estimator
of g(θ ) and if δ∗ = δ+b, where the bias b is independent of θ , then δ∗ has uniformly
larger risk than δ, in fact,

Rδ∗ (θ ) = Rδ(θ ) + b2.

For small sample sizes, both the UMVU and ML estimators can be unsatisfac-
tory. One unpleasant possible feature of UMVU estimators is illustrated by the
estimation ofξ2 in the normal case [Problem 2.5; Example 2.6(d)]. The UMVU
estimator isX̄2−σ 2/nwhenσ is known, andX̄2−S2/n(n−1) when it is unknown.
In either case, the estimator can take on negative values although the estimand is
known to be non-negative. Except whenξ = 0 orn is small, the probability of such
values is not large, but when they do occur, they cause some embarrassment. The
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difficulty can be avoided, and at the same time the risk of the estimator improved,
by replacing the estimator by zero whenever it is negative. This idea is developed
further in Sections 4.7 and 5.6. It is also the case that most of these problems
disappear in large samples, as we will see in Chapter 6.

The examples of this section are fairly typical and suggest that the difference
between the two estimators tends to be small. For samples from the exponential
families, which constitute the main area of application of UMVU estimation, it
has, in fact, been shown under suitable regularity assumptions that the UMVU and
ML estimators are asymptotically equivalent as the sample size tends to infinity,
so that the UMVU estimator shares the asymptotic optimality of the ML estimator.
(For an exact statement and counterexamples, see Portnoy 1977b.)

3 Discrete Distributions

The distributions considered in the preceding section were all continuous. We shall
now treat the corresponding problems for some of the basic discrete distributions.

Example 3.1 Binomial UMVU estimators. In the simplest instance of a one-
sample problem with qualitative rather than quantitative “measurements,” the ob-
servations are dichotomous; cure or no cure, satisfactory or defective, yes or no.
The two outcomes will be referred to generically as success or failure.

The results ofn independent such observations with common success probability
p are conveniently represented by random variablesXi which are 1 or 0 as the
ith case or “trial” is a success or failure. Then,P (Xi = 1) = p, and the joint
distribution of theX’s is given by

P (X1 = x1, . . . , Xn = xn) = p�xi qn−�xi (q = 1− p).(3.1)

This is a one-parameter exponential family, andT = �Xi —the total number
of successes—is a complete sufficient statistic. SinceE(Xi) = E(X̄) = p and
X̄ = T/n, it follows thatT/n is the UMVU estimator ofp. Similarly,�(Xi −
X̄)2/(n − 1) = T (n − T )/n(n − 1) is the UMVU estimator of var(Xi) = pq

(Problem 3.1; see also Example 1.13).
The distribution ofT is the binomial distributionb(p, n), and it was pointed out

in Example 1.2 that 1/p is notU -estimable on the basis ofT , and hence not in the
present situation. In fact, it follows from Equation (1.2) that a functiong(p) can
beU -estimable only if it is a polynomial of degree≤ n.

To see that every such polynomial is actuallyU -estimable, it is enough to show
thatpm isU -estimable for everym ≤ n. This can be established, and the UMVU
estimator determined, by Method 1 of Section 1 (Problem 3.2). An alternative
approach utilizes Method 2. The quantitypm is the probability

pm = P (X1 = · · · = Xm = 1)

and its UMVU estimator is therefore given by

δ(t) = P [X1 = · · · = Xm = 1|T = t ].

This probability is 0 ift < m. For t ≥ m, δ(t) is the probability of obtainingm
successes in the firstm trials andt − m successes in the remainingn − m trials,
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divided byP (T = t), and hence it is

pm
(
n−m
t −m

)
pt−mqn−1

/(
n

t

)
ptqn−1,

or

δ(T ) =
T (T − 1) · · · (T −m + 1)

n(n− 1) · · · (n−m + 1)
.(3.2)

Since this expression is zero whenT = 0, . . . , m−1, it is seen thatδ(T ), given by
(3.2) for allT = 0,1, . . . , n, is the UMVU estimator ofpm. This proves thatg(p)
isU -estimable on the basis ofn binomial trials if and only if it is a polynomial of
degree≤ n. ‖

Consider now the estimation of 1/p, for which no unbiased estimator exists.
This problem arises, for example, when estimating the size of certain animal pop-
ulations. Suppose that a lake contains an unknown numberN of some species of
fish. A random sample of sizek is caught, tagged, and released again. Somewhat
later, a random sample of sizen is obtained and the numberX of tagged fish in the
sample is noted. (This is thecapture-recapture method. See, for example, George
and Robert, 1992.) If, for the sake of simplicity, we assume that each caught fish is
immediately returned to the lake (or alternatively thatN is very large compared to
n), then fish in this sample constituten binomial trials with probabilityp = k/N
of success (i.e., obtaining a tagged fish). The population sizeN is therefore equal
tok/p. We shall now discuss a sampling scheme under which 1/p, and hencek/p,
isU -estimable.

Example 3.2 Inverse binomial sampling. Reliable estimation of 1/p is clearly
difficult whenp is close to zero, where a small change ofpwill cause a large change
in 1/p. To obtain control of 1/p for allp, it would therefore seem necessary to take
more observations the smallerp is. A sampling scheme achieving this is inverse
sampling, which continues until a specified number of successes, saym, have been
obtained. LetY +m denote the required number of trials. Then,Y has thenegative
binomial distribution given by (Problem 1.5.12)

P (Y = y) =

(
m + y − 1
m− 1

)
pm(1− p)y, y = 0,1, . . . ,(3.3)

with

E(Y ) = m(1− p)/p; var(Y ) = m(1− p)/p2.(3.4)

It is seen from (3.4) that

δ(Y ) = (Y +m)/m,

the reciprocal of the proportion of successes, is an unbiased estimator of 1/p.
The full data in the present situation are notY but also include the positions in

which them successes occur. However,Y is a sufficient statistic (Problem 3.6),
and it is complete since (3.3) is an exponential family. As a function ofY, δ(Y ) is
thus the unique unbiased estimator of 1/p; based on the full data, it is UMVU.
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It is interesting to note that 1/(1 − p) is not U -estimable with the present
sampling scheme, for supposeδ(Y ) is an unbiased estimator so that

pm
∞∑
y=0

δ(y)

(
m + y − 1
m− 1

)
(1− p)y = 1/(1− p) for all 0< p < 1.

The left side is a power series which converges for all 0< p < 1, and hence
converges and is continuous for all|p| < 1. As p → 1, the left side therefore
tends toδ(0) while the right side tends to infinity. Thus, the assumedδ does not
exist. (For the estimation ofpr , see Problem 3.4.) ‖

The situations described in Examples 3.1 and 3.2 are special cases ofsequential
binomial sampling in which the number of trials is allowed to depend on the
observations. The outcome of such sampling can be represented as a random walk
in the plane. The walk starts at (0,0) and moves a unit to the right or up as the first
trial is a success or failure. From the resulting point (1,0) or (0,1), it again moves
a unit to the right or up, and continues in this way until the sampling plan tells it
to stop. A stopping rule is thus defined by a setB of points, aboundary, at which
sampling stops. We requireB to satisfy∑

(x,y)∈B
P (x, y) = 1(3.5)

since otherwise there is positive probability that sampling will go on indefinitely.
A stopping rule that satisfies (3.5) is calledclosed.

Any particular sample path ending in (x, y) has probabilitypxqy , and the prob-
ability of a path ending in any particular point (x, y) is therefore

P (x, y) = N (x, y)pxqy,(3.6)

whereN (x, y) denotes the number of paths along which the random walk can
reach the point (x, y). As illustrations, consider the plans of Examples 3.1 and 3.2.

(a) In Example 3.1,B is the set of points (x, y) satisfyingx+y = n, x = 0, . . . , n,

and for any (x, y) ∈ B, we haveN (x, y) =

(
n

x

)
.

(b) In Example 3.2,B is the set of points (x, y) with x = m; y = 0,1, . . . , and
for any such point

N (x, y) =

(
m + y − 1

y

)
.

The observations in sequential binomial sampling are represented by the sample
path, and it follows from (3.6) and the factorization criterion that the coordinates
(X, Y ) of the stopping point in which the path terminates constitute a sufficient
statistic. This can also be seen from the definition of sufficiency, since the condi-
tional probability of any given sample path given that it ends in (x, y) is

pxqx

N (x, y)pxqy
=

1

N (x, y)
,

which is independent ofp.
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Example 3.3 Sequential estimation of binomial p. For any closed sequential
binomial sampling scheme, an unbiased estimator ofp depending only on the
sufficient statistic (X, Y ) can be found in the following way. A simple unbiased
estimator isδ = 1 if the first trial is a success andδ = 0 otherwise. Application of
the Rao-Blackwell theorem then leads to

δ′(X, Y ) = E[δ|(X, Y )] = P [1st trial = success|(X, Y )]

as an unbiased estimator depending only on (X, Y ). If the point (1,0) is a stopping
point, thenδ′ = δ and nothing is gained. In all other cases,δ′ will have a smaller
variance thanδ. An easy calculation [Problem 3.8(a)] shows that

δ′(x, y) = N ′(x, y)/N (x, y)(3.7)

whereN ′(x, y) is the number of paths possible under the sampling schemes which
pass through (1,0) and terminate in (x, y). ‖

More generally, if (a, b) is anyaccessible point, that is, if it is possible under
the given sampling plan to reach (a, b), the quantitypaqb is U -estimable, and
an unbiased estimator depending only on (X, Y ) is given by (3.7), whereN ′(x, y)
now stands for the number of paths passing through (a, b) and terminating in (x, y)
[Problem 3.8(b)].

The estimator (3.7) will be UMVU for any sampling plan for which the sufficient
statistic (X, Y ) is complete. To describe conditions under which this is the case, let
us call an accessible point that is not inB a continuation point. A sampling plan
is calledsimple if the set of continuation pointsCt on each line segmentx + y = t
is an interval or the empty set. A plan is calledfinite if the number of accessible
points is finite.

Example 3.4 Two sampling plans.

(a) Leta, b, andm be three positive integers witha < b < m. Continue obser-
vation until eithera successes or failures have been obtained. If this does not
happen during the firstm trials, continue until eitherb successes or failures
have been obtained. This sampling plan is simple and finite.

(b) Continue untilboth at leasta successes anda failures have been obtained.
This plan is neither simple nor finite, but it is closed (Problem 3.10). ‖

Theorem 3.5 A necessary and sufficient condition for a finite sampling plan to be
complete is that it is simple.

We shall here only prove sufficiency. [For a proof of necessity, see Girschick,
Mosteller, and Savage 1946.] If the restriction to finite plans is dropped, simplicity
is no longer sufficient (Problem 3.9). Another necessary condition in that case is
stated in Problem 3.13. This condition, together with simplicity, is also sufficient.
(For a proof, see Lehmann and Stein 1950.)

For the following proof it may be helpful to consider a diagram of plan (a) of
Example 3.4.

Proof. Proof of sufficiency. Suppose there exists a nonzero functionδ(X, Y ) whose
expectation is zero for allp (0 < p < 1). Let t0 be the smallest value oft for
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which there exists a boundary point (x0, y0) onx + y = t0 such thatδ(x0, y0) �= 0.
Since the continuation points onx +y = t0 (if any) form an interval, they all lie on
the same side of (x0, y0). Suppose, without loss of generality, that (x0, y0) lies to
the left and aboveCt0, and let (x1, y1) be that boundary point onx + y = t0 above
Ct0 and withδ(x, y) �= 0, which has the smallestx-coordinate. Then, all boundary
points withδ(x, y) �= 0 satisfyt ≥ t0 andx ≥ x1. It follows that for all 0< p < 1

E[δ(X, Y )] = N (x1, y1)δ(x1, y1)px1qt0−x1 + px1+1R(p) = 0

whereR(p) is a polynomial inp. Dividing bypx1 and lettingp→ 0, we see that
δ(x1, y1) = 0, which is a contradiction. ✷

Fixed binomial sampling satisfies the conditions of the theorem, but, there (and
for inverse binomial sampling), completeness follows already from the fact that it
leads to a full-rank exponential family (5.1) withs = 1. An example in which this is
not the case is curtailed binomial sampling, in which sampling is continued as long
asX < a, Y < b, andX + Y < n(a, b < n) and is stopped as soon as one of the
three boundaries is reached (Problem 3.11). Double sampling and curtailed double
sampling provide further applications of the theory. (See Girshick, Mosteller, and
Savage 1946; see also Kremers 1986.)

The discrete distributions considered so far were all generated by binomial trials.
A large class of examples is obtained by considering one-parameter exponential
families (5.2) in whichT (x) is integer-valued. Without loss of generality, we shall
takeT (x) to bex and the distribution ofX to be given by

P (X = x) = eηx−B(η)a(x).(3.8)

Puttingθ = eη, we can write (3.8) as

P (X = x) = a(x)θx/C(θ ), x = 0,1, . . . , θ > 0.(3.9)

For any functiona(x) for which�a(x)θx < ∞ for someθ > 0, this is a family
of power series distributions (Problems 1.5.14–1.5.16). The binomial distribution

b(p, n) is obtained from (3.9) by puttinga(x) =

(
n

x

)
for x = 0,1, . . . , n, and

a(x) = 0 otherwise;θ = p/q andC(θ ) = (θ + 1)n. The negative binomial dis-

tribution with a(x) =

(
m + x − 1
m− 1

)
, θ = q, andC(θ ) = (1− θ )−m is another

example. The family (3.9) is clearly complete. Ifa(x) > 0 for all x = 0,1, . . . ,
thenθr isU -estimable for any positive integerr, and its unique unbiased estimator
is obtained by solving the equations

∞∑
x=0

δ(x)a(x)θx = θr · C(θ ) for all θ ∈ .

Since�a(x)θx = C(θ ), comparison of the coefficients ofθx yields

δ(x) =

{
0 if x = 0, . . . , r − 1
a(x − r)/a(x) if x ≥ r.(3.10)

Suppose, next, thatX1, . . . , Xn are iid according to a power series family (3.9).
Then,X1 + · · ·+Xn is sufficient forθ , and its distribution is given by the following



2.3 ] DISCRETE DISTRIBUTIONS 105

lemma.

Lemma 3.6 The distribution of T = X1 + · · · +Xn is the power series family

P (T = t) =
A(t, n)θ t

[C(θ )]n
,(3.11)

where A(t, n) is the coefficient of θ t in the power series expansion of [C(θ )]n.

Proof. By definition,

P (T = t) = θ t
∑
t

a(x1) · · · a(xn)

[C(θ )]n

where�t indicates that the summation extends over alln-tuples of integers
(x1, . . . , xn) with x1 + · · · + xn = t . If

B(t, n) =
∑
t

a(x1) · · · a(xn),(3.12)

the distribution ofT is given by (3.11) withB(t, n) in place ofA(t, n). On the
other hand,

[C(θ )]n =

[ ∞∑
x=0

a(x)θx
]n
,

and for anyt = 0,1, . . . , the coefficient ofθ t in the expansion of the right side as
a power series inθ is justB(t, n). Thus,B(t, n) = A(t, n), and this completes the
proof. ✷

It follows from the lemma thatT is complete and from (3.10) that the UMVU
estimator ofθr on the basis of a sample ofn is

δ(t) =

0 if t = 0, . . . , r − 1
A(t − r, n)

A(t, n)
if t ≥ r.(3.13)

Consider, next, the problem of estimating the probability distribution ofX from
a sampleX1, . . . , Xn. The estimand can be written as

g(θ ) = Pθ (X1 = x)

and the UMVU estimator is therefore given by

δ(t) = P [X1 = x|X1 + · · · +Xn = t ]

=
P (X1 = x)P (X2 + · · · +Xn = t − x)

P (T = t)
.

In the present case, this reduces to

δ(t) =
a(x)A(t − x, n− 1)

A(t, n)
, n > 1, 0 ≤ x ≤ t.(3.14)

Example 3.7 Poisson UMVU estimation. The Poisson distribution, shown in
Table 1.5.1, arises as a limiting case of the binomial distribution for largen and
smallp, and more generally as the number of events occurring in a fixed time
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period when the events are generated by a Poisson process. The distributionP (θ )
of a Poisson variable with expectationθ is given by (3.9) with

a(x) =
1

x!
, C(θ ) = eθ .(3.15)

Thus, [C(θ )]n = enθ and

A(t, n) =
nt

t !
.(3.16)

The UMVU estimator ofθr is therefore, by (3.13), equal to

δ(t) =
t(t − 1) · · · (t − r + 1)

nr
(3.17)

for all t ≥ r. Since the right side is zero fort = 0, . . . , r − 1, formula (3.17) holds
for all r.

The UMVU estimator ofPθ (X = x) is given by (3.14), which, by (3.16), be-
comes

δ(t) =

(
t

x

)(
1

n

)x (
n− 1

n

)t−x
, x = 0,1, . . . , t.

For varyingx, this is the binomial distributionb(1/n, t).
In some situations, Poisson variables are observed only when they are positive.

For example, suppose that we have a sample from a truncated Poisson distribution
(truncated on the left at 0) with probability function

P (X = x) =
1

eθ − 1

θx

x!
, x = 1,2, . . . .(3.18)

This is a power series distribution with

a(x) =
1

x!
if x ≥ 1, a(0) = 0,

and
C(θ ) = eθ − 1.

For any values oft andn, the UMVU estimatorδ(t) of θ , for example, can now
be obtained from (3.13). (See Problems 3.18–3.22; for further discussion, see Tate
and Goen 1958.) ‖

We next consider some multiparameter situations.

Example 3.8 Multinomial UMVU estimation. Let (X0, X1, . . . , Xn) have the
multinomial distribution (5.4). As was seen in Example 1.5.3, this is ans-parameter
exponential family, with (X1, . . .,Xs) or (X0,X1, . . . , Xs) constituting a complete
sufficient statistic. [Recall thatX0 = n − (X1 + · · · +Xs).] SinceE(Xi) = npi , it
follows thatXi/n is the UMVU estimator ofpi . To obtain the UMVU estimator of
pipj , note that one unbiased estimator isδ = 1 if the first trial results in outcome
i and the second trial in outcomej , andδ = 0 otherwise. The UMVU estimator of
pipj is therefore

E(δ|X0, . . . , Xs) =
(n− 2)!XiXj
X0! · · ·Xs !

/
n!

X0! · · ·Xs ! =
XiXj

n(n− 1)
. ‖
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Table 3.1.I × J Contingency Table

B1 · · ·BJ Total

A1 n11 · · · n1J n1+

...
...

AI nI1 · · · nIJ nI+

Total n+1 · · · n+J n

In the application of multinomial models, the probabilitiesp0, . . . , ps are fre-
quently subject to additional restrictions, so that the number of independent param-
eters is less thans. In general, such a restricted family will not constitute a full-rank
exponential family, but may be a curved exponential family. There are, however,
important exceptions. Simple examples are provided by certain contingency tables.

Example 3.9 Two-way contingency tables. A numbern of subjects is drawn at
random from a population sufficiently large that the drawings can be considered
to be independent. Each subject is classified according to two characteristics:A,
with possible outcomesA1, . . . , AI , andB, with possible outcomesB1, . . . , BJ .
[For example, students might be classified as being male or female (I = 2) and
according to their average performance (A,B,C,D, orF ; J = 5).] The probability
that a subject has properties (Ai, Bj ) will be denoted bypij and the number of
such subjects in the sample bynij . The joint distribution of theIJ variablesnij
is an unrestricted multinomial distribution withs = IJ − 1, and the results of the
sample can be represented in anI ×J table, such as Table 3.1. From Example 3.8,
it follows that the UMVU estimator ofpij is nij /n.

A special case of Table 3.1 arises whenA andB are independent, that is, when
pij = pi+p+j wherepi+ = pi1 + · · · + piJ andp+j = p1j + · · · + pIj . The joint
probability of theIJ cell counts then reduces to

n!∏
i,j nij !

∏
i

p
ni+
i+

∏
j

p
n+j

+j .

This is an (I +J −2)-parameter exponential family with the complete sufficient
statistics (ni+, n+j ), i = 1, . . . , I , j = 1, . . . , J , or, equivalently,i = 1, . . . , I − 1,
j = 1, . . . , J − 1. In fact, (n1+, . . . , nI+) and (n+1, . . . , n+J ) are independent,
with multinomial distributionsM(p1+, . . . , pI+; n) andM(p+1, . . . , p+J ; n), re-
spectively (Problem 3.27), and the UMVU estimators ofpi+, p+j andpij = pi+p+j

are, therefore,ni+/n, n+j /n andni+n+j /n
2, respectively. ‖

When studying the relationship between two characteristicsA andB, one may
find A andB to be dependent although no mechanism appears to exist through
which either factor could influence the other. An explanation is sometimes found
in the dependence of both factors on a common third factor,C, a phenomenon
known asspurious correlation. The following example describes a model for this
situation.
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Example 3.10 Conditional independence in a three-way table. In the situation
of Example 3.9, suppose that each subject is also classified according to a third
factor C asC1, . . . , or CK . [The third factor for the students of Example 3.9
might be their major (History, Physics, etc.).] Consider this situation under the
assumption that conditionally givenCk (k = 1, . . . , K), the characteristicsA and
B are independent, so that

pijk = p++kpi+|kp+j |k(3.19)

wherepi+|k,p+j |k, andpij |k denote the probability of the subject having properties
Ai, Bj , or (Ai, Bj ), respectively, given that it has propertyCk.

After some simplification, the joint probability of theIJK cell countsnijk is
seen to be proportional to (Problem 3.28)∏

i,j,k

(p++kpi+|kp+j |k)nijk =
∏
k

[
p
n++k
++k

∏
i

p
ni+k
i+|k

∏
j

p
n+jk

+j |k

]
.(3.20)

This is an exponential family of dimension

(K − 1) +K(I + J − 2) =K(I + J − 1)− 1

with complete sufficient statisticsT = {(n++k, ni+k, n+jk), i = 1, . . . , I , j =
1, . . . , J , k = 1, . . . , K}. Since the expectation of any cell count isn times the
probability of that cell, the UMVU estimators ofp++k, pi+k, andp+jk aren++k/n,
ni+k/n, andn+jk/n, respectively. ‖

Consider, now, the estimation of the probabilitypijk. The unbiased estimator
δ0 = nijk/n, which is UMVU in the unrestricted model, is not a function of
T and hence no longer UMVU. The relationship (3.19) suggests the estimator
δ1 = (n++k/n) · (ni+k/n++k) · (n+jk/n++k), which is a function ofT . It is easy to
see (Problem 3.30) thatδ1 is unbiased and hence is UMVU. (For additional results
concerning the estimation of the parameters of this model, see Cohen 1981, or
Davis 1989.)

To conclude this section, an example is provided in which the UMVU estimator
fails completely.

Example 3.11 Misbehaved UMVU estimator. LetX have the Poisson distribu-
tion P (θ ) and letg(θ ) = e−aθ , wherea is a known constant. The condition of
unbiasedness of an estimatorδ leads to∑ δ(x)θx

x!
= e(1−a)θ =

∑ (1− a)xθx

x!
and hence to

δ(X) = (1− a)X.(3.21)

Supposea = 3. Then,g(θ ) = e−3θ , and one would expect an estimator which
decreases from 1 to 0 asX goes from 0 to infinity. The ML estimatore−3X meets
this expectation. On the other hand, the unique unbiased estimatorδ(x) = (−2)x

oscillates wildly between positive and negative values and appears to bear no
relation to the problem at hand. (A possible explanation for this erratic behavior is
suggested in Lehmann (1983).) It is interesting to see that the difficulty disappears
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if the sample size is increased. IfX1, · · · , Xn are iid according toP (θ ), then
T =

∑
Xi is a sufficient statistic and has the PoissonP (nθ ) distribution. The

condition of unbiasedness now becomes∑ δ(t)(nθ )t

t !
= e(n−a)θ =

∑ (n− a)t θ t

t !
and the UMVU estimator is

δ(T ) =
(
1− a

n

)T
.(3.22)

This is quite reasonable as soon asn > a. ‖

4 Nonparametric Families

Section 2.2 was concerned with continuous parametric families of distributions
such as the normal, uniform, or exponential distributions, and Section 2.3 with
discrete parametric families such as the binomial and Poisson distributions. We
now turn to nonparametric families in which no specific form is assumed for the
distribution.

We begin with the one-sample problem in whichX1, . . . , Xn are iid with distri-
butionF ∈ F . About the familyF , we shall make only rather general assumptions,
for example, that it is the family of distributionsF which have a density, or are con-
tinuous, or have first moments, and so on. The estimandg(F ) might, for example,
beE(Xi) =

∫
x dF (x), or varXi , orP (Xi ≤ a) = F (a).

It was seen in Problem 1.6.33 that for the familyF0 of all probability densities,
the order statisticsX(1) < · · · < X(n) constitute a complete sufficient statistic, and
the hint given there shows that this result remains valid ifF0 is further restricted by
requiring the existence of some moments.2 (For an alternative proofs, see TSH2,
Section 4.3. Also, Bell, Blackwell, and Breiman (1960) show the result is valid for
the family of all continuous distributions.)

An estimatorδ(X1, . . . , Xn) is a function of the order statistics if and only if
it is symmetric in itsn arguments. For familiesF for which the order statistics
are complete, there can therefore exist at most one symmetric unbiased estimator
of any estimand, and this is UMVU. Thus, to find the UMVU estimator of any
U -estimableg(F ), it suffices to find a symmetric unbiased estimator.

Example 4.1 Estimating the distribution function. Let g(F ) = P (X ≤ a) =
F (a), a known. The natural estimator is the number ofX’s which are≤ a, di-
vided byN . The number of suchX’s is the outcome ofn binomial trials with
success probabilityF (a), so that this estimator is unbiased forF (a). Since it is
also symmetric, it is the UMVU estimator. This can be paraphrased by saying
that the empirical cumulative distribution function is the UMVU estimator of the
unknown true cumulative distribution function.
Note. In the normal case of Section 2.2, it was possible to find unbiased estimators
not only ofP (X ≤ u) but also of the probability densitypX(u) ofX. No unbiased

2 The corresponding problem in which the values of some moments (or expectations of other functions)
are given is treated by Hoeffding (1977) and N. Fisher (1982).
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estimator of the density exists for the familyF0. For proofs, see Rosenblatt 1956,
and Bickel and Lehmann 1969, and for further discussion of the problem of esti-
mating a nonparametric density see Rosenblatt 1971, the books by Devroye and
Gyoerfi (1985), Silverman (1986), or Wand and Jones (1995), and the review ar-
ticle by Izenman (1991). Nonparametric density estimation is an example of what
Liu and Brown (1993) callsingular problems, which pose problems for unbiased
estimation. See Note 8.3. ‖
Example 4.2 Nonparametric UMVU estimation of a mean. Let us now further
restrictF0, the class of all distributionsF having a density, by adding the condition
E|X| < ∞, and letg(F ) =

∫
xf (x) dx. SinceX̄ is symmetric and unbiased for

g(F ), X̄ is UMVU. An alternative proof of this result is obtained by noting thatX1

is unbiased forg(F ). The UMVU estimator is found by conditioning on the order
statistics;E[X1|X(1), . . . , X(n)]. But, given the order statistics,X1 assumes each
value with probability 1/n. Hence, the above conditional expectation is equal to
(1/n)�X(i) = X̄.

In Section 2.2, it was shown that̄X is UMVU for estimatingE(Xi) = ξ in the
family of normal distributionsN (ξ, σ 2); now it is seen to be UMVU in the family
of all distributions that have a probability density and finite expectation. Which of
these results is stronger? The uniformity makes the nonparametric result appear
much stronger. This is counteracted, however, by the fact that the condition of
unbiasedness is much more restrictive in that case. Thus, the number of competitors
which the UMVU estimator “beats” for such a wide class of distributions is quite
small (see Problem 4.1). It is interesting in this connection to note that, for a
family intermediate between the two considered here, the family of all symmetric
distributions having a probability density,X̄ is not UMVU (Problem 4.4; see also
Bickel and Lehmann 1975-1979). ‖
Example 4.3 Nonparametric UMVU estimation of a variance. Let g(F ) =
varX. Then [�(Xi−X̄)2]/(n−1) is symmetric and unbiased, and hence is UMVU.

‖
Example 4.4 Nonparametric UMVU estimation of a second moment. Let
g(F ) = ξ2, whereξ = EX. Now, σ 2 = E(X2) − ξ2 and a symmetric unbiased
estimator ofE(X2) is �X2

i /n. Hence, the UMVU estimator ofξ2 is �X2
i /n −

�(Xi − X̄)2/(n− 1).
An alternative derivation of this result is obtained by noting thatX1X2 is un-

biased forξ2. The UMVU estimator ofξ2 can thus be found by conditioning:
E[X1, X2|X(1), . . . , X(n)]. But, given the order statistics, the pair{X1, X2}assumes
the value of each pair{X(i), X(j )}, i �= j , with probability 1/n(n− 1). Hence, the
above conditional expected value is

1

n(n− 1)

∑
i �=j
XiXj ,

which is equivalent to the earlier result. ‖
Consider, now, quite generally a functiong(F ) which isU -estimable inF0.

Then, there exists an integerm ≤ n and a functionδ(X1, . . . , Xm), which is
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unbiased forg(F ). We can assume without loss of generality thatδ is symmetric
in itsm arguments; otherwise, it can be symmetrized. Then, the estimator

1(
n

m

) ∑
(i1,...,im)

δ(Xi1, . . . , Xim )(4.1)

is UMVU for g(F ); here, the sum is over allm-tuples (i1, . . . , im) from the integers
1,2, . . . , n with i1 < · · · < im. That this estimator is UMVU follows from the

facts that it is symmetric and that each of the

(
n

m

)
summands has expectation

g(F ).
The class of statistics (4.1) calledU -statistics was studied by Hoeffding (1948)

who, in particular, gave conditions for their asymptotic normality; for further work
onU -statistics, see Serfling 1980, Staudte and Sheather 1990, Lee 1990, or Ko-
roljuk and Borovskich 1994.

Two problems suggest themselves:

(a) What kind of functionsg(F ) have unbiased estimators, that is, areU -estimable?

(b) If a functionalg(F ) has an unbiased estimator, what is the smallest number
of observations for which the unbiased estimator exists? We shall call this
smallest number thedegree of g(F ).

(For the case thatF assigns positive probability only to the two values 0 and 1,
these equations are answered in the preceding section.)

Example 4.5 Degree of the variance. Let g(F ) be the varianceσ 2 of F . Then
g(F ) has an unbiased estimator in the subsetF ′

0 of F02 withEFX2 <∞ andn = 2
observations, since�(Xi− X̄)2/(n−1) = 1

2(X2−X1)2 is unbiased forσ 2. Hence,
the degree ofσ 2 is≤ 2. Furthermore, since in the normal case with unknown mean
there is no unbiased estimator ofσ 2 based on only one observation (Problem 2.7),
there is no such estimator within the classF ′

0. It follows that the degree ofσ 2 is 2.
‖

We shall now give another proof that the degree ofσ 2 in this example is greater
than 1 to illustrate a method that is of more general applicability for problems of
this type.

Let g be any estimand that is of degree 1 inF ′
0. Then, there existsδ such that∫

δ(x)dF (x) = g(F ), for all F ∈ F ′
0.

Fix two arbitrary distributionsF1 andF2 in calF ′0 with F1 �= F2, and letF =
αF1 + (1− α)F2,0 ≤ α ≤ 1. Then,

g[αF1 + (1− α)F2] = α
∫
δ(x)dF1(x) + (1− α)

∫
δ(x)dF2(x).(4.2)

Then,αF1 + (1−α)F2 is also incalF ′0, and as a function ofα, the right-hand side
is linear inα. Thus, the onlyg’s that can be of degree 1 are those for which the
left-hand side is linear inα.
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Now, consider
g(F ) = α2

F = E(X2)− [EX]2.

In this case,

σ 2
αF1+(1−α)F2

= αE(X2
1) + (1− α)E(X2

2)− [αEX1 + (1− α)EX2]2(4.3)

whereXi is distributed according toFi . The coefficient ofα2 on the right-hand
side is seen to be−[E(X2)− E(X1)]2. Since this is not zero for allF1, F2 ∈ F ′

0,
the right-hand side is not linear inα, and it follows thatσ 2 is not of degree 1. ‖

Generalizing (4.2), we see that ifg(F ) is of degreem, then
g[αF1 + (1− α)F2]

=
∫ · · · ∫ δ(x1, . . . , xm)d[αF1(x1) + (1− α)F2(x1)] · · ·

is a polynomial of degree at mostm,
(4.4)

which is thus a necessary condition forg to be estimable withm observations.
Conditions for (4.4) to be also sufficient are given by Bickel and Lehmann (1969).

Condition (4.4) may also be useful for proving that there exists no value ofn

for which a functionalg(F ) has an unbiased estimate.

Example 4.6 Nonexistence of unbiased estimator. Letg(F ) = σ . Theng[αF1 +
(1− α)F2] is the square root of the right-hand side of (4.3). Since this quadratic
in α is not a perfect square for allF1, F2 ∈ F ′

0, it follows that its square root is not
a polynomial. Henceσ does not have an unbiased estimator for any fixed number
n of observations. ‖

Let us now turn from the one-sample to the two-sample problem. LetX1, . . . , Xm
andY1, . . . , Yn be independently distributed according to distributionsF andG ∈
F0. Then the order statisticsX(1) < · · · < X(m) andY(1) < · · · < Y(n) are sufficient
and complete (Problem 4.5). A statisticδ is a function of these order statistics if
and only ifδ is symmetric in theXi ’s and separately symmetric in theYj ’s.

Example 4.7 Two-sample UMVU estimator. Leth(F,G) = E(Y )−E(X). Then
Ȳ − X̄ is unbiased forh(F,G). Since it is a function of the complete sufficient
statistic, it is UMVU. ‖

The concept of degree runs into difficulty in the present case. Smallest valuesm0

andn0 are sought for which a given functionalh(F,G) has an unbiased estimator.
One possibility is to find the smallestm for which there exists ann such that
h(F,G) has an unbiased estimator, and to letm0 andn0 be the smallest values so
determined. This procedure is not symmetric inm andn. However, it can be shown
that if the reverse procedure is used, the same minimum values are obtained. [See
Bickel and Lehmann, (1969)].

As a last illustration, let us consider the bivariate nonparametric problem. Let
(X1, Y1), . . . , (Xn, Yn) be iid according to a distributionF ∈ F , the family of
all bivariate distributions having a probability density. In analogy with the order
statistics in the univariate case, the set of pairs

T = {[X(1), Yj1], . . . , [X(n), Yjn ]}
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that is, then pairs (Xi, Yi), ordered according to the value of their first coordinate,
constitute a sufficient statistic. An equivalent statistic is

T ′ = {[Xi1, Y(1)], . . . , [Xin, Y(n)]},
that is, the set of pairs (Xi, Yi) ordered according to the value of the second co-
ordinate. Here, as elsewhere, the only aspect ofT that matters is the set of points
to whichT assigns a constant value. In the present case, these are then! points
that can be obtained from the given point [(X1, Y1), . . . , (Xn, Yn)] by permuting
then pairs. As in the univariate case, the conditional probability of each of these
permutations givenT or T ′ is 1/n!. Also, as in the univariate case,T is complete
(Problem 4.10).

An estimatorδ is a function of the complete sufficient statistic if and only ifδ is
invariant under permutation of then pairs. Hence, any such function is the unique
UMVU estimator of its expectation.

Example 4.8 U -estimation of covariance. The estimator�(Xi−X̄) (Yi−Ȳ )/(n−
1) is UMVU for cov(X, Y ) (Problem 4.8). ‖

5 The Information Inequality

The principal applications of UMVU estimators are to exponential families, as
illustrated in Sections 2.2–2.3. When a UMVU estimator does not exist, the vari-
anceVL(θ0) of the LMVU estimator atθ0 is the smallest variance that an unbiased
estimator can achieve atθ0. This establishes a useful benchmark against which to
measure the performance of a given unbiased estimatorδ. If the variance ofδ is
close toVL(θ ) for all θ , not much further improvement is possible. Unfortunately,
the functionVL(θ ) is usually difficult to determine. Instead, in this section, we shall
derive some lower bounds which are typically not sharp [i.e., lie belowVL(θ )] but
are much simpler to calculate. One of the resulting inequalities for the variance, the
information inequality, will be used in Chapter 5 as a tool for minimax estimation.
However, its most important role is in Chapter 6, where it provides insight and
motivation for the theory of asymptotically efficient estimators.

For any estimatorδ of g(θ ) and any functionψ(x, θ) with a finite second mo-
ment, thecovariance inequality (Problem 1.5) states that

var(δ) ≥ [cov(δ, ψ)]2

var(ψ)
.(5.1)

In general, this inequality is not helpful since the right side also involvesδ. How-
ever, when cov(δ, ψ) depends onδ only throughEθ (δ) = g(θ ), (5.1) does provide
a lower bound for the variance of all unbiased estimators ofg(θ ). The following
result is due to Blyth (1974).

Theorem 5.1 A necessary and sufficient condition for cov(δ, ψ) to depend on δ
only through g(θ ) is that for all θ

cov(U,ψ) = 0 for all U ∈ U,(5.2)
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where U is the class of statistics defined in Theorem 1.1, that is,

U = {U : EθU = 0, EθU
2 <∞ , for all θ ∈ }.

Proof. To say that cov(δ, ψ) depends onδ only throughg(θ ) is equivalent to
saying that for any two estimatorsδ1 andδ2 with Eθδ1 = Eθδ2 for all θ , we have
cov(δ1, ψ) = cov(δ2, ψ). The proof of the theorem is then easily established by
writing

cov(δ1, ψ)− cov(δ2, ψ) = cov(δ1− δ2, ψ)(5.3)

= cov(U,ψ)

and noting that therefore, cov(δ1, ψ) = cov(δ2, ψ) for all δ1 andδ2 if and only if
cov(U,ψ) = 0 for allU . ✷

Example 5.2 Hammersley-Chapman-Robbins inequality. SupposeX is dis-
tributed with densitypθ = p(x, θ), and for the moment, suppose thatp(x, θ) > 0
for all x. If θ andθ +W are two values for whichg(θ ) �= g(θ +W), then the function

ψ(x, θ) =
p(x, θ +W)

p(x, θ)
− 1(5.4)

satisfies the conditions of Theorem 5.1 since

Eθ (ψ) = 0(5.5)

and hence
cov(U,ψ) = E(ψU ) = Eθ+W(U )− Eθ (U ) = 0.

In fact,
cov(δ, ψ) = Eθ (δψ) = g(θ +W)− g(θ ),

so that (5.1) becomes

var(δ) ≥ [g(θ +W)− g(θ )]2/Eθ

[
p(X, θ +W)

p(X, θ)
− 1

]2

.(5.6)

Since this inequality holds for allW, it also holds when the right side is replaced
by its supremum overW. The resulting lower bound is due to Hammersley (1950)
and Chapman and Robbins (1951). ‖

In this inequality, the assumption of a common support for the distributionspθ
can be somewhat relaxed. IfS(θ ) denotes the support ofpθ , (5.6) will be valid
providedS(θ +W) is contained inS(θ ). In taking the supremum overW, attention
must then be restricted to the values ofW for which this condition holds.

When certain regularity conditions are satisfied, a classic inequality is obtained
by lettingW → 0 in (5.4). The inequality (5.6) is unchanged if (5.4) is replaced
by

pθ+W − pθ
W

1

pθ
,

which tends to ((∂/∂θ )pθ )/pθ asW→ 0, providedpθ is differentiable with respect
to θ . This suggests as an alternative to (5.4)

ψ(x, θ) =
∂

∂θ
p(x, θ)/p(x, θ).(5.7)
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Since for anyU ∈ U , clearly (d/dθ )Eθ (U ) = 0, ψ will satisfy (5.2), provided

Eθ (U ) =
∫
Upθ dµ

can be differentiated with respect toθ under the integral sign for allU ∈ U . To
obtain the resulting lower bound, letp′θ = (∂pθ/∂θ ) so that

cov(δ, ψ) =
∫
δp′θ dµ.

If differentiation under the integral sign is permitted in∫
δpθ dµ = g(θ ),

it then follows that
cov(δ, ψ) = g′(θ )(5.8)

and hence

var(δ) ≥ [g′(θ )]2

var

[
∂

∂θ
logp(X, θ)

] .(5.9)

The assumptions required for this inequality will be stated more formally in Theo-
rem 5.15, where we will pay particular attention to requirements on the estimator.
Pitman (1979, Chapter 5) provides an interesting interpretation of the inequality
and discussion of the regularity assumptions.

The functionψ defined by (5.7) is the relative rate at which the densitypθ
changes atx. The average of the square of this rate is denoted by

I (θ ) = Eθ

[
∂

∂θ
logp(X, θ)

]2

=
∫ (

p′θ
pθ

)2

pθ dµ.(5.10)

It is plausible that the greater this expectation is at a given valueθ0, the easier it
is to distinguishθ0 from neighboring valuesθ , and, therefore, the more accurately
θ can be estimated atθ = θ0. (Under suitable assumptions this surmise turns out
to be correct for large samples; see Chapter 6.) The quantityI (θ ) is called the
information (or the Fisher information) thatX contains about the parameterθ .

It is important to realize thatI (θ ) depends on the particular parametrization
chosen. In fact, ifθ = h(ξ ) andh is differentiable, the information thatX contains
aboutξ is

I ∗(ξ ) = I [h(ξ )] · [h′(ξ )]2.(5.11)

When different parameterizations are considered in a single problem, the notation
I (θ ) is inadequate; however, it suffices for most applications.

To obtain alternative expressions forI (θ ) that sometimes are more convenient,
let us make the following assumptions:

(a)  is an open interval (finite, infinite, or semi-infinite).

(b) The distributionsPθ have common support, so that

without loss of generality the setA = {x : pθ (x) > 0}
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is independent ofθ .(5.12)

(c) For anyx in A andθ in , the derivative

p′θ (x) = ∂pθ (x)/∂θ exists and is finite.

Lemma 5.3

(a) If (5.12) holds, and the derivative with respect to θ of the left side of∫
pθ (x) dµ(x) = 1(5.13)

can be obtained by differentiating under the integral sign, then

Eθ

[
∂

∂θ
logpθ (X)

]
= 0(5.14)

and

I (θ ) = varθ

[
∂

∂θ
logpθ (X)

]
.(5.15)

(b) If, in addition, the second derivative with respect to θ of logpθ (x) exists for
all x and θ and the second derivative with respect to θ of the left side of (5.13)
can be obtained by differentiating twice under the integral sign, then

I (θ ) = −Eθ
[
∂2

∂θ2
logpθ (X)

]
.(5.16)

Proof.

(a) Equation (5.14) is derived by differentiating (5.13), and (5.15) follows from
(5.10) and (5.14).

(b) We have

∂2

∂θ2
logpθ (x) =

∂2

∂θ2
pθ (x)

pθ (x)
−


∂

∂θ
pθ (x)

pθ (x)


2

,

and the result follows by taking the expectation of both sides.

✷

Let us now calculateI (θ ) for some of the families discussed in Sections 1.4 and
1.5.

We first look at exponential families withs = 1, given in Equation (1.5.1), and
derive a relationship between some unbiased estimators and information.

Theorem 5.4 Let X be distributed according to the exponential family (5.1) with
s = 1, and let

τ (θ ) = Eθ (T ),(5.17)

the so-called mean-value parameter. Then, T

I [τ (θ )] =
1

varθ (T )
.(5.18)
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Proof. From Equation (5.15), the amount of information thatX contains about
θ, I (θ ), is

I (θ ) = varθ

[
∂

∂θ
logpθ (X)

]
= varθ [η

′(θ )T (X)− B ′(θ )] (from (1.5.1))(5.19)

= [η′(θ )]2var(T ).

Now, from (5.11), the informationI [τ (θ )] thatX contains aboutτ (θ ), is given by

I [τ (θ )] =
I (θ )

[τ ′(θ )]2

=

[
η′(θ )
τ ′(θ )

]2

var(T ).(5.20)

Finally, using the fact thatτ (θ ) = B ′(θ )/η′(θ ) [(Problem 1.5.6)], we have

var(T ) =
B ′′(θ )− η′′(θ )τ (θ )

[η′(θ )]2
=

[
τ ′2(θ )

η′2(θ )

]1/2

(5.21)

and substituting (5.21) into (5.20) yields (5.18). ✷

If we combine Equations (5.11) and (5.19), then for any differentiable function
h(θ ), we have

I [h(θ )] =

[
η′(θ )
h′(θ )

]2

var(T ).(5.22)

Example 5.5 Information in a gamma variable. LetX ∼Gamma(α, β), where
we assume thatα is known. The density is given by

pβ(x) =
1

H(α)βα
xα−1e−x/β(5.23)

= e(−1/β)x−α log(β)h(x)

with h(x) = xα−1/H(α). In this parametrization,η(β) = −1/β, T (x) = x and
B(β) = α log(β). Thus,E(T ) = αβ, var(T ) = αβ2, and the information inX about
αβ is I (αβ) = 1/αβ2.

If we are instead interested in the information inX aboutβ, then we can repa-
rameterize (5.23) usingη(β) = −α/β andT (x) = x/α. From (5.22), we have,
quite generally, thatI [ch(θ )] = 1

c2 I [h(θ )], so the information inX aboutβ is
I (β) = α/β2. ‖

Table 5.1 givesI [τ (θ )] for a number of special cases.
Qualitatively,I [τ (θ )] given by (5.18) behaves as one would expect. SinceT is

the UMVU estimator of its expectationτ (θ ), the variance ofT is a measure of the
difficulty of estimatingτ (θ ). Thus, the reciprocal of the variance measures the ease
with which τ (θ ) can be estimated and, in this sense, the informationX contains
aboutτ (θ ).

Example 5.6 Information in a normal variable. Consider the case of theN (ξ, σ 2)
distribution withσ known, when the interest is in estimation ofξ2. The density is
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Table 5.1.I [τ (θ )] for Some Exponential Families

Distribution Parameterτ (θ ) I (τ (θ ))

N (ξ, σ 2) ξ 1/σ 2

N (ξ, σ 2) σ 2 1/2σ 4

b(p, n) p n/pq

P (λ) λ 1/λ
H(α, β) β α/β2

given by

pξ (x) =
1√

2π σ
e
− 1

2σ2 (x−ξ )2

= eη(ξ )T (x)−B(ξ )h(x)

with η(ξ ) = ξ, T (x) = x/σ 2, B(ξ ) = 1
2ξ

2/σ 2, andh(x) = e−x
2/2σ 2

/
√

2π . The
information inX abouth(ξ ) = ξ2 is given by

I (ξ2) =

[
η′(ξ )
h′(ξ )

]2

var(T ) =
1

4ξ2σ 2
.

Note that we could have equivalently definedη(ξ ) = ξ/σ 2, T (x) = x and arrived
at the same answer. ‖
Example 5.7 Information about a function of a Poisson parameter. Suppose
thatX has the Poisson (λ) distribution, so thatI [λ], the informationX contains
aboutλ = E(X), is 1/λ. For η(λ) = logλ, which is an increasing function of
λ, I [log λ] = λ. Thus, the information inX aboutλ is inversely proportional to
that about logλ . In particular, for large values ofλ, it seems that the parameter
logλ can be estimated quite accurately, although the converse is true forλ. This
conclusion is correct and is explained by the fact the logλ changes very slowly
whenλ is large. Hence, for largeλ, even a large error in the estimate ofλ will
lead to only a small error in logλ, whereas the situation is reversed forλ near
zero where logλ changes very rapidly. It is interesting to note that there exists a
function ofλ [namelyh(λ) =

√
λ] whose behavior is intermediate between that of

h(λ) = λ andh(λ) = logλ, in that the amount of informationX contains about it
is constant, independent ofλ (Problem 5.6). ‖

As a second class of distributions for which to evaluateI (θ ), consider location
families with density

f (x − θ ) (x, θ real-valued)(5.24)

wheref (x) > 0 for all x. Conditions (5.12) are satisfied provided the derivative
f ′(x) of f (x) exists for all values ofx. It is seen thatI (θ ) is independent ofθ and
given by (Problem 5.14)

If =
∫ ∞

−∞

[f ′(x)]2

f (x)
dx.(5.25)
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Table 5.2.If for Some Standard Distributions

Distribution N (0,1) L(0,1) C(0,1) DE(0,1)

If 1 1/3 1/2 1

Table 5.2 showsIf for a number of distributions (defined in Table 1.4.1).
Actually, the double exponential density does not satisfy the stated assumptions

sincef ′(x) does not exist atx = 0. However, (5.25) is valid under the slightly
weaker assumption thatf is absolutely continuous [see (1.3.7)] which does hold
in the double exponential case. For this and the extensions below, see, for example,
Huber 1981, Section 4.4. On the other hand, it does not hold whenf is the uniform
density on (0,1) sincef is then not continuous and hence, a fortiori, not absolutely
continuous. It turns out that wheneverf is not absolutely continuous, it is natural to
putIf equal to∞. For the uniform distribution, for example, it is easier by an order
of magnitude to estimateθ (see Problem 5.33) than for any of the distributions
listed in Table 5.2, and it is thus reasonable to assign toIf the value∞. This
should be contrasted with the fact thatf ′(x) = 0 for all x �= 0,1, so that formal
application of (5.25) leads to the incorrect value 0.

When (5.24) is replaced by

1

b
f

(
x − θ
b

)
,(5.26)

the amount of information aboutθ becomes (Problem 5.14)

If

b2
(5.27)

with If given by (5.25).
The information aboutθ contained in independent observations is, as one would

expect, additive. This is stated formally in the following result.

Theorem 5.8 LetX and Y be independently distributed with densities pθ and qθ ,
respectively, with respect to measures µ and ν satisfying (5.12) and (5.14).

If I1(θ ), I2(θ ), and I (θ ) are the information about θ contained in X, Y , and
(X, Y ), respectively, then

I (θ ) = I1(θ ) + I2(θ ).(5.28)

Proof. By definition,

I (θ ) = E

[
∂

∂θ
logpθ (X) +

∂

∂θ
logqθ (Y )

]2

,

and the result follows from the fact that the cross-product is zero by (5.14).✷

Corollary 5.9 If X1, . . . , Xn are iid, satisfy (5.12) and (5.14), and each has in-
formation I (θ ), then the information in X = (X1, . . . , Xn) is nI (θ ).

Let us now return to the inequality (5.9), and proceed to a formal statement of
when it holds. If (5.12), and hence (5.15), holds, then the denominator of the right
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side of (5.9) can be replaced byI (θ ). The result is the following version of the
Information Inequality.

Theorem 5.10 (The Information Inequality) Suppose pθ is a family of densities
with dominating measure µ for which (5.12) and (5.14) hold, and that I (θ ) > 0.
Let δ be any statistic with

Eθ (δ
2) <∞(5.29)

for which the derivative with respect to θ of Eθ (δ) exists and can be differentiated
under the integral sign, that is,

d

dθ
Eθ (δ) =

∫
∂

∂θ
δ pθ dµ.(5.30)

Then

varθ (δ) ≥

[
∂

∂θ
Eθ (δ)

]2

I (θ )
.(5.31)

Proof. The result follows from (5.9)and Lemma 5.3 and is seen directly by differ-
entiating (5.30) and then applying (5.1). ✷

If δ is an estimator ofg(θ ), with

Eθ (δ) = g(θ ) + b(θ )

whereb(θ ) is the bias ofδ, then (5.31) becomes

varθ (δ) ≥ [b′(θ ) + g′(θ )]2

I (θ )
,(5.32)

which provides a lower bound for the variance of any estimator in terms of its bias
andI (θ ).

If δ = δ(X) whereX = (X1, . . . , Xn) and if theX’s are iid, then by Corollary
5.9

varθ (δ) ≥ [b′(θ ) + g′(θ )]2

nI1(θ )
(5.33)

whereI1(θ ) is the information aboutθ contained inX1. Inequalities (5.32) and
(5.33) will be useful in Chapter 5.

Unlike I (θ ), which changes under reparametrization, the lower bound (5.31),
and hence the bounds (5.32) and (5.33), does not. Letθ = h(ξ ) withhdifferentiable.
Then,

∂

∂ξ
Eh(ξ )(δ) =

∂

∂θ
Eθ (δ) · h′(ξ ),

and the result follows from (5.11). (See Problem 5.20.)
The lower bound (5.31) for varθ (δ) typically is not sharp. In fact, under suitable

regularity conditions, it is attained if and only ifpθ (x) is an exponential family
(1.5.1) withs = 1 andT (x) = δ(x) (see Problem 5.17). However, (5.1) is based
on the Cauchy-Schwarz inequality, which has a well-known condition for equality
(see Problems 5.2 and 5.19). The bound (5.31) will be attained by an estimator if
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and only if

δ = a

[
∂

∂θ
logpθ (x)

]
+ b(5.34)

for some constantsa andb (which may depend onθ ).

Example 5.11 Binomial attainment of information bound. For the binomial
distributionX ∼ b(p, n), we have

δ = a

[
∂

∂θ
logpθ (x)

]
+ b = a

[
∂

∂p
[x logp + (n− x) log(1− p)]

]
+ b

= a

[
x − np
p(1− p)

]
+ b

withEδ = b and varδ = na2/p(1−p). This form forδ is the only form of function
for which the information inequality bound (5.31) can be attained. The function
δ is an estimator only ifa = p(1− p) andb = np. This yieldsδ = X, Eδ = np,
and var(δ) = np(1− p). Thus,X is the only unbiased estimator that achieves the
information inequality bound (5.31). ‖

Many authors have presented general necessary and sufficient conditions for
attainment of the bound (5.31) (Wijsman 1973, Joshi 1976, Müller-Funk et al.,
1989). The following theorem is adapted from Müller-Funk et al.

Theorem 5.12 Attainment. Suppose (5.12) holds, and δ is a statistic with varθ δ <
∞ for all θ ∈ . Then δ attains the lower bound

varθ δ =

(
∂

∂θ
Eθδ

)2 /
I (θ )

for all θ ∈  if and only if there exists a continuously differentiable function ϕ(θ )
such that

pθ (x) = C(θ )eϕ(θ )δ(x)h(x)

is a density with respect to a dominating measure µ(x) for suitably chosen C(θ )
and h(x), i.e., pθ (x) constitutes an exponential family.

Moreover, if Eθδ = g(θ ), then δ and g satisfy

δ(x) =

[
g′(θ )
I (θ )

]
∂

∂θ
logpθ (x) + g(θ ),(5.35)

g(θ ) = −C ′(θ )/C(θ )ϕ′(θ ),

and I (θ ) = ϕ′(θ )g′(θ ).

Note that the functionδ specified in (5.35) may depend onθ . In such a case,δ is
not an estimator, and there is no estimator that attains the information bound.

Example 5.13 Poisson attainment of information bound. SupposeX is a dis-
crete random variable with probability function that is absolutely continuous with
respect toµ = counting measure, and satisfies

EλX = varλ(X) = λ.
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If X attains the Information Inequality bound thenλ = [∂/(∂λ)Eλ(X)]2 /I (λ) so
from Theorem 5.12ϕ′(λ) = 1/λ and the distribution ofX must be

pλ(x) = C(λ)e[log λ]xh(x).

Sinceg(θ ) = λ = −λC ′(λ)/C(λ), it follows that C(λ) = e−λ, which implies
h(x) = x!, andpλ(x) is the Poisson distribution. ‖

Some improvements over (5.31) are available when the inequality is not attained.
These will be briefly mentioned at the end of the next section.

Theorem 5.10 restricts the information inequality to estimatorsδ satisfying
(5.29) and (5.30). The first of these conditions imposes no serious restrictions
since any estimator satisfies (5.31) automatically. However, it is desirable to replace
(5.30) by a condition (on the densitiespθ ) not involvingδ, so that (5.31) will then
hold for all δ. Such conditions will be given in Theorem 5.15 below, with a more
detailed discussion of alternatives given in Note 8.6.

In reviewing the argument leading to (5.9), the conditions that were needed on
the estimatorδ(x) were

(a) Eθ [δ
2(X)] <∞ for all θ

(b)
∂

∂θ
Eθ [δ(X)] =

∫
∂

∂θ
δ(x)pθ (x) dµ(x) = g′(θ ).(5.36)

The key point is to find a way to ensure that cov(δ, φ) = (∂/∂θ )Eθδ, and hence
(5.30) holds. Consider the following argument, in which one of the steps is not
immediately justified. Forqθ (x) = ∂ logpθ (x)/∂θ , write

cov(δ, q) =
∫
δ(x)

[
∂

∂θ
logpθ (x)

]
pθ (x)dx

=
∫
δ(x)

[
lim
W→0

pθ+W(x)− pθ (x)

Wpθ (x)

]
pθ (x)dx

?
= lim
W→0

∫
δ(x)

[
pθ+W(x)− pθ (x)

Wpθ (x)

]
pθ (x)dx(5.37)

= lim
W→0

Eθ+Wδ(X)− Eθδ(X)

W

=
∂

∂θ
Eθδ(X)

Thus (5.30) will hold provided the interchange of limit and integral is valid. A
simple condition for this is given in the following lemma.

Lemma 5.14 Assume that (5.12(a)) and (5.12(b)) hold, and let δ be any estimator
for which Eθδ2 <∞. Let qθ (x) = ∂ logpθ (x)/∂θ and, for some ε > 0, let bθ be a
function that satisfies

Eθb
2
θ (X) <∞ and

∣∣∣∣pθ+W(x)− pθ (x)

Wpθ (x)

∣∣∣∣ ≤ bθ (x) for all |W| < ε.(5.38)

Then Eθqθ (X) = 0 and

∂

∂θ
Eθδ(X) = Eδ(X)qθ (X) = covθ (δ, qθ ),(5.39)
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and thus (5.30) holds.

Proof. Since ∣∣∣∣δ(x)
pθ+W(x)− pθ (x)

Wpθ (x)

∣∣∣∣ ≤ |δ(x)|b(x)|,
and

Eθ [|δ(x)|b(x)] ≤ {Eθ [δ(x)2]}1/2{Eθ [b(x)2]}1/2 <<∞,
it follows from the Dominated Convergence Theorem (Theorem 1.2.5) that the
interchange of limit and integral in (5.37) is valid. ✷

An immediate consequence of Lemma 5.14 is the following theorem.

Theorem 5.15 Suppose pθ (x) is a family of densities with dominating measure
µ(x) satisfying (5.12), I (θ ) > 0, and there exists a function bθ and ε > 0 for which
(5.38) holds, If δ is any statistic for which Eθ (δ2) << ∞, then the information
inequality (5.31) will hold.

We note that condition (5.38) is similar to what is known as aLipschitz condition,
which imposes a smoothness constraint on a function by bounding the left side
of (5.38) by a constant. It is satisfied for many families of densities (see Problem
5.27), including of course the exponential family. We give one illustration here.

Example 5.16 Integrability. Suppose thatX ∼ f (x − θ ), wheref (x − θ ) is
Studentst distribution withm degrees of freedom. It is not immediately obvious
that this family of densities satisfies (5.14), so we cannot directly apply Theorem
5.10. We leave the general case to Problem 5.27(b), and show here that the Cauchy
family (m = 1), with densitypθ (x) = 1

π
1

1+(x−θ )2 , satisfies (5.38). The left side of
(5.38) is ∣∣∣∣ 1

W

(
1 + (x − θ )2

1 + (x −W− θ )2
− 1

)∣∣∣∣
=

∣∣∣∣ 1

W

1 + (x − θ )2 − 1− (x −W− θ )2

1 + (x −W− θ )2

∣∣∣∣
=

∣∣∣∣ 1

W

2W(x − θ )−W2

1 + (x −W− θ )2

∣∣∣∣
≤ 2

|x −W− θ |
1 + (x −W− θ )2

+
|W|

1 + (x −W− θ )2

≤ 2 + ε.

Here the last inequality follows from the facts that|W| << ε and|x|/(1 +x2) ≤ 1
for all x . Condition (5.38) therefore holds withbθ (x) = 2 + ε, which verifies the
information inequality (5.31) for the Cauchy case. ‖

As a consequence of Theorem 5.15, note
Corollary 5.17 If (5.38) holds, then (5.14) is valid.

Proof. Puttingδ(x) = 1 in (5.29), we have that

0 =
d

dθ
(1) =

∫
∂

∂θ
pθdµ = Eθ

[
∂

∂θ
logpθ (X)

]
✷
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6 The Multiparameter Case and Other Extensions

In discussing the information inequality, we have so far assumed thatθ is real-
valued. To extend the inequalities of the preceding section to the multiparameter
case, we begin by generalizing the inequality (5.1) to one involving several func-
tionsψi (i = 1, . . . , r). This extension also provides a tool for sharpening the
inequality (5.31).

Theorem 6.1 For any unbiased estimator δ of g(θ ) and any functions ψi(x, θ)
with finite second moments, we have

var(δ) ≥ γ ′C−1γ,(6.1)

where γ ′ = (γ1 · · · γr ) and C = ||Cij || are defined by

γi = cov(δ, ψi), Cij = cov(ψi, ψj ).(6.2)

The right side of (6.1) will depend on δ only through g(θ ) = Eθ (δ), provided each
of the functions ψi satisfies (5.2).

Proof. For any constantsa1, . . . , ar , it follows from (5.1) that

var(δ) ≥ [cov(δ,�aiψi)]2

var(�aiψi)
,(6.3)

and direct calculation shows

cov(δ,�aiψi) = �aiγi = a′γ, var(�aiψi) = a′Ca.(6.4)

Since (6.3) is true for any vectora, from (6.4) and (5.1) we have

var(δ) ≥ max
a

[a′γ ]2

a′Ca
= γ ′C−1γ,

where we use the fact (see Problem 6.2) that ifP is anr × r matrix andp anr ×1
column vector such thatP = pp′, then

max
a

a′Pa
a′Qa

= largest eigenvalue ofQ−1P(6.5)

= p′Q−1p.

✷

As the first and principal application of (6.1), we shall extend the information
inequality (5.31) to the multiparameter case. LetX be distributed with density
pθ , θ ∈ , with respect toµ whereθ is vector-valued, sayθ = (θ1, . . . , θs).
Suppose that

(5.12)(a) and (b) hold, and in addition

(c) For anyx in A, θ in , andi = 1, . . . , s,(6.6)

the derivative∂pθ (x)/∂θi exists and is finite.

In a generalization of (5.10), define theinformation matrix as thes × s matrix

I (θ ) = ||Iij (θ )||(6.7)
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where

Iij (θ ) = Eθ

[
∂

∂θi
logpθ (X) · ∂

∂θj
logpθ (X)

]
.(6.8)

If (6.6) holds and the derivative with respect to eachθi of the left side of (5.13)
can be obtained by differentiating under the integral sign, one obtains, as in Lemma
5.3,

E

[
∂

∂θi
logpθ (X)

]
= 0(6.9)

and

Iij (θ ) = cov

[
∂

∂θi
logpθ (X),

∂

∂θj
logpθ (X)

]
.(6.10)

Being a covariance matrix,I (θ ) is positive semidefinite and positive definite unless
the (∂/∂θi) logpθ (X), i = 1, . . . , s, are affinely dependent (and hence, by (6.9),
linearly dependent).

If, in addition to satisfying (6.6) and (6.9), the densitypθ also has second deriva-
tives∂2pθ (x)/∂θi∂θj for all i andj , there is in generalization of (5.16), an alter-
native expression forIij (θ ) which is often more convenient (Problem 6.4),

Iij (θ ) = −E
[
∂2

∂θi∂θj
logpθ (X)

]
.(6.11)

In the multiparameter situation withθ = (θi, . . . , θs), Theorem 5.8 and Corollary
5.9 continue to hold with only the obvious changes, that is, information matrices
for independent observations are additive.

To see how an information matrix changes under reparametrization, suppose
that

θi = hi(ξ1, . . . , ξs), i = 1, . . . , s,(6.12)

and letJ be the matrix

J =

∣∣∣∣∣∣∣∣∂θj∂ξi
∣∣∣∣∣∣∣∣ .(6.13)

Let the information matrix for (ξ1, . . . , ξs) beI ∗(ξ ) = ||I ∗ij (ξ )|| where

I ∗ij (ξ ) = E

[
∂

∂ξi
logpθ (ξ )(X) · ∂

∂ξj
logpθ (ξ )(X)

]
.(6.14)

Then, it is seen from the chain rule for differentiating a function of several variables
that (Problem 6.7)

I ∗ij (ξ ) =
∑
k

∑
l

Ikl(θ )
∂θk

∂ξi

∂θl

∂ξj
(6.15)

and hence that
I ∗(ξ ) = J IJ ′.(6.16)

In generalization of Theorem 5.4, let us now calculateI (θ ) for multiparameter
exponential families.

Theorem 6.2 LetX be distributed according to the exponential family (1.5.1) and
let
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τi = ETi(X), i = 1, . . . , s,(6.17)

the mean-value parametrization. Then,

I (τ ) = C−1(6.18)

where C is the covariance matrix of (T1, . . . , Ts).

Proof. It is easiest to work with the natural parametrization (1.5.2), which is equiv-
alent. By (6.10) and (1.5.15), the information inX about the natural parameterη
is

I ∗(η) =

∣∣∣∣∣∣∣∣ ∂2

∂ηj∂ηk
A(η)

∣∣∣∣∣∣∣∣ = cov(Tj , Tk) = C.

Furthermore, (1.5.14) shows thatτj = ∂/∂ηjA(η) and, hence, (6.13) shows that

J =

∣∣∣∣∣∣∣∣∂τj∂ηi
∣∣∣∣∣∣∣∣ = C.

Thus, from (6.16)
C = I ∗(η) = J I (τ )J ′ = CI (τ )C,

which implies (6.18). ✷

Example 6.3 Multivariate normal information matrix. Let (X1, . . .,Xp) have
a multivariate normal distribution with mean 0 and covariance matrix� = ||σij ||,
so that by (1.4.15), the density is proportional to

e−��ηij xixj /2

where||ηij || = �−1. SinceE(XiXj ) = σij , we find that the information matrix of
theσij is

I (�) = �−1.(6.19)

‖
Example 6.4 Exponential family information matrices. Table 6.1 givesI (θ ) for
three two-parameter exponential families, whereψ(α) = H′(α)/H(α) andψ ′(α) =
dψ(α)/dα are, respectively, the digamma and trigamma function (Problem 6.5).
‖

Example 6.5 Information in location-scale families. For the location-scale fam-
ilies with density (1/θ2)f ((x − θ1)/θ2), θ2 > 0, f (x) > 0 for all x, the elements
of the information matrix are (Problem 6.5)

I11 =
1

θ2
2

∫ [
f ′(y)

f (y)

]2

f (y) dy,(6.20)

I22 =
1

θ2
2

∫ [
yf ′(y)

f (y)
+ 1

]2

f (y) dy

and

I12 =
1

θ2
2

∫
y

[
f ′(y)

f (y)

]2

f (y) dy.(6.21)
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Table 6.1.Three Information Matrices

N (ξ, σ 2) H(α, β)

I (ξ, σ ) =

(
1/σ 2 0

0 2/σ 2

)
I (α, β) =

(
ψ ′(α) 1/β
1/β α/β2

)
B(α, β)

I (α, β) =

(
ψ ′(α)− ψ ′(α + β) −ψ ′(α + β)
−ψ ′(α + β) ψ ′(β)− ψ ′(α + β)

)

The covariance termI12 is zero wheneverf is symmetric about the origin. ‖
Let us now generalize Theorems 5.10 and 5.15 to the multiparameter case in

which θ = (θ1, . . . , θs). For convenience, we state the generalizations in one the-
orem.

Theorem 6.6 (Multiparameter Information Inequality) Suppose that (6.6) holds,
and I (θ ) is positive definite. Let δ be any statistic for which Eθ (|δ|2) < ∞ and
either

(i) For i = 1, . . . , s, (∂/∂θi)Eθ δ exists and can be obtained by differentiating
under the integral sign,

or

(ii) There exist functions b(i)

θ
, i = 1, . . . , s, with Eθ b

(i)

θ
(X)2 <∞ that satisfy∣∣∣∣pθ +Wεi

(x)− pθ (x)

W

∣∣∣∣ ≤ b(i)

θ
(x) for all W,

where εi ∈ Rs is the unit vector with 1 in the ith position and zero elsewhere.

Then, Eθ (∂/∂θi) logpθ (X) = 0 and

varθ (δ) ≥ α′I−1(θ )α(6.22)

where α′ is the row matrix with ith element

αi =
∂

∂θi
Eθ [δ(X)].(6.23)

Proof. If the functions ψi of Theorem 6.1 are taken to beψi =
(∂/∂θi) logpθ (X), (6.22) follows from (6.1) and (6.10). ✷

If δ is an estimator ofg(θ ) andb(θ ) is its bias, then (6.23) reduces to

αi =
∂

∂θi
[b(θ ) + g(θ )].(6.24)

It is interesting to compare the lower bound (6.22) with the corresponding bound
when theθ ’s other thanθi are known. By Theorem 5.15, the latter is equal to
[(∂/∂θi)Eθ (δ)]2/Iii(θ ). This is the bound obtained by settinga = εi in (6.4),
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whereεi is theith unit vector. For example, if theθ ’s other thanθi are zero, then
the only nonzero element of the vectorα of (6.22) isαi . Since (6.22) was obtained
by maximizing (6.4), comparing the two bounds shows

I−1
ii (θ ) ≤ ||I−1(θ )||ii .(6.25)

(See Problem 6.10 for a different derivation.) The two sides of (6.25) are equal if

Iij (θ ) = 0 for all j �= i,(6.26)

as is seen from the definition of the inverse of a matrix, and, in fact, (6.26) is also
necessary for equality in (6.25) (Problem 6.10). In this situation, when (6.26) holds,
the parameters are said to be orthogonal. This is illustrated by the first matrix in
Table 6.1. There, the information bound for one of the parameters is independent
of whether the other parameter is known. This is not the case, however, in the
second and third situations in Table 6.1, where the value of one parameter affects
the information for another. Some implications of these results for estimation will
be taken up in Section 6.6. (Cox and Reid (1987) discuss methods for obtaining
parameter orthogonality, and some of its consequences; see also Barndorff-Nielsen
and Cox 1994.)

In a manner analogous to the one-parameter case, it can be shown that the
information inequality bound is attained only ifδ(x) has the form

δ(x) = g(θ ) + [∇g(θ )]′I (θ )−1[∇ logpθ (x)],(6.27)

whereEδ = g(θ ), ∇g(θ ) = {(∂/∂θi)g(θ ), i = 1,2, . . . , s}, ∇ logpθ (x) = {(∂/∂θi)
logpθ (x), i = 1,2, . . . , s}. It is also the case, analogous to Theorem 5.12, that
if the bound is attainable then the underlying family of distributions constitutes
an exponential family (Joshi 1976, Fabian and Hannan, 1977; Müller-Funk et al.
1989).

The information inequalities (5.31) and (6.22) have been extended in a number
of directions, some of which are briefly sketched in the following.

(a) When the lower bound is not sharp, it can usually be improved by considering
not only the derivativesψi but also higher derivatives:

ψi1,...,is =
1

pθ (x)

∂i1+···+is pθ (x)

∂θ
i1
1 · · · ∂θ iss

.(6.28)

It is then easy to generalize (5.31) and (5.24) to obtain a lower bound based on
any given setS of theψ ’s. Assume (6.6) with (c) replaced by the corresponding
assumption for all the derivatives needed for the setS, and suppose that the
covariance matrixK(θ ) of the given set ofψ ’s is positive definite. Then, (6.1)
yields theBhattacharyya inequality

varθ (δ) ≥ α′K−1(θ )α(6.29)

whereα′ is the row matrix with elements

∂i1+···+is

∂θ
i1
1 · · · ∂θ iss

Eθδ(X) = cov(δ, ψi1,...,is ).(6.30)
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It is also seen that equality holds in (6.29) if and only ifδ is a linear func-
tion of theψ ’s in S (Problem 6.12). The problem of whether the Bhat-
tacharyya bounds become sharp ass → ∞ has been investigated for some
one-parameter cases by Blight and Rao (1974).

(b) A different kind of extension avoids the need for regularity conditions by con-
sidering differences instead of derivatives. (See Hammersley 1950, Chapman
and Robbins 1951, Kiefer 1952, Fraser and Guttman 1952, Fend 1959, Sen
and Ghosh 1976, Chatterji 1982, and Klaassen 1984, 1985.)

(c) Applications of the inequality to the sequential case in which the number of
observations is not a fixed integer but a random variable, sayN , determined
from the observations is provided by Wolfowitz (1947), Blackwell and Gir-
shick (1947), and Seth (1949). Under suitable regularity conditions, (6.23)
then continues to hold withn replaced byEθ (N ); see also Simons 1980,
Govindarajulu and Vincze 1989, and Stefanov 1990.

(d) Other extensions include arbitrary convex loss functions (Kozek 1976);
weighted loss functions (Mikulski and Monsour 1988); to the case thatg

andδ are vector-valued (Rao 1945, Cramér 1946b, Seth 1949, Shemyakin
1987, and Rao 1992); to nonparametric problems (Vincze 1992); location
problems (Klaassen 1984); and density estimation (Brown and Farrell 1990).

7 Problems

Section 1
1.1 Verify (a) that (1.4) defines a probability distribution and (b) condition (1.5).
1.2 In Example 1.5, show thata∗i minimizes (1.6) fori = 0,1, and simplify the expression
for a∗0. [Hint: �κpκ−1 and�κ(κ − 1)pκ−2 are the first and second derivatives of�pκ =
1/q.]

1.3 Let X take on the values−1, 0, 1, 2, 3 with probabilitiesP (X = −1) = 2pq and
P (X = k) = pkq3−k for k = 0, 1,2,3.

(a) Check that this is a probability distribution.
(b) Determine the LMVU estimator atp0 of (i) p, and (ii) pq, and decide for each

whether it is UMVU.

1.4 For a sample of sizen, suppose that the estimatorT (x) of τ (θ ) has expectation

E[T (X)] = τ (θ ) +
∞∑
k=1

ak

nk
,

whereak may depend onθ but not onn.

(a) Show that the expectation of the jackknife estimatorTJ of (1.3) is

E[TJ (X)] = τ (θ )− a2

n2
+O(1/n3).

(b) Show that if varT ∼ c/n for some constantc, then varTJ ∼ c′/n for some
constantc′. Thus, the jackknife will reduce bias and not increase variance.

A second-order jackknife can be defined by jackknifingTJ , and this will result in further
bias reduction, but may not maintain a variance of the same order (Robson and Whitlock
1964; see also Thorburn 1976 and Note 8.3).
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1.5 (a) Any two random variablesX andY with finite second moments satisfy the
covariance inequality [cov(X, Y )]2 ≤ var(X) · var(Y ).

(b) The inequality in part (a) is an equality if and only if there exist constantsa andb
for whichP (X = aY + b) = 1.

[Hint: Part (a) follows from the Schwarz inequality (Problem 1.7.20) withf = X−E(X)
andg = Y − E(Y ).]

1.6 An alternative proof of the Schwarz inequality is obtained by noting that∫
(f + λg)2dP =

∫
f 2dP + 2λ

∫
fg dP + λ2

∫
g2dP ≥ 0 for all λ,

so that this quadratic inλ has at most one root.

1.7 SupposeX is distributed on (0,1) with probability densitypθ (x) = (1− θ ) + θ/2
√
x

for all 0< x < 1, 0≤ θ ≤ 1. Show that there does not exist an LMVU estimator ofθ .
[Hint: Let δ(x) = a[x−1/2 + b] for c < x < 1 andδ(x) = 0 for 0< x < c. There exist
valuesa andb, andc such thatE0(δ) = 0 andE1(δ) = 1 (andδ is unbiased) and that
E0(δ2) is arbitrarily close to zero (Stein 1950).]

1.8 If δ andδ′ have finite variance, so doesδ′ − δ. [Hint: Problem 1.5.]

1.9 In Example 1.9, (a) determine all unbiased estimators of zero; (b) show that no
nonconstant estimator is UMVU.

1.10 If estimators are restricted to the class of linear estimators, characterization of best
unbiased estimators is somewhat easier. Although the following is a consequence of
Theorem 1.7, it should be established without using that theorem.

Let Xp×1 satisfyE(X) = Bψ and var(X) = I , whereBp×r is known, andψr×1 is
unknown. Alinear estimator is an estimator of the forma′X, whereap×1 is a known
vector. We are concerned with the class of estimators

D = {δ(x) : δ(x) = a′x, for some known vectora}.
(a) For a known vectorc, show that the estimators inD that are unbiased estimators

of c′ψ satisfya′B = c′.

(b) LetDc = {δ(x) : δ(x) = a′x, a′B = c′} be the class of linear unbiased estimators of
c′ψ . Show that thebest linear unbiased estimator (BLUE) of c′ψ , the linear unbi-
ased estimator with minimum variance, isδ∗(x) = a∗′x, wherea∗′ = a′B(B ′B)−1B ′

anda∗′B = c with variance var(δ∗) = c′c.

(c) LetD0 = {δ(x) : δ(x) = a′x, a′B = 0.} be the class of linear unbiased estimators of
zero. Show that ifδ ∈ D0, then cov(δ, δ∗) = 0.

(d) Hence, establish the analog of Theorem 1.7 for linear estimators:

Theorem. An estimator δ∗ ∈ Dc satisfies var(δ∗) = minδ∈Dc var(δ) if and only if
cov(δ∗, U ) = 0, where U is any estimator in D0.

(e) Show that the results here can be directly extended to the case of var(X) = �, where
�p×p is a known matrix, by considering the transformed problem withX∗ = �1/2X
andB∗ = �1/2B.

1.11 Use Theorem 1.7 to find UMVU estimators of some of theηθ (di) in the dose-
response model (1.6.16), with the restriction (1.6.17) (Messig and Strawderman 1993).
Let the classesW andU be defined as in Theorem 1.7.

(a) Show that an estimatorU ∈ U if and only ifU (x1, x2) = a[I (x1 = 0)− I (x2 = 0)]
for an arbitrary constanta <∞.
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(b) Using part (a) and (1.7), show that an estimatorδ is UMVU for its expectation only
if it is of the formδ(x1, x2) = aI(0,0)(x1, x2)+bI(0,1),(1,0),(2,0)(x1, x2) + cI(1,1)(x1, x2)+
dI(2,1)(x1, x2) wherea, b, c, andd are arbitrary constants.

(c) Show that there does not exist a UMVU estimator ofηθ (d1) = 1− e−θ , but the
UMVU estimator ofηθ (d2) = 1− e−2θ is δ(x1, x2) = 1− 1

2 [I (x1 = 0) +I (x2 = 0)].

(d) Show that the LMVU estimator of 1− e−θ is δ(x1, x2) = x1
2 + 1

2(1+e−θ )
[I (x1 =

0)− I (x2 = 0)].

1.12 Show that ifδ(X) is a UMVU estimator ofg(θ ), it is the unique UMVU estimator
of g(θ ). (Do not assume completeness, but rather use the covariance inequality and the
conditions under which it is an equality.)

1.13 If δ1 andδ2 are inW and are UMVU estimators ofg1(θ ) andg2(θ ), respectively,
thena1δ1 +a2δ2 is also inW and is UMVU for estimatinga1g1(θ ) +a2g2(θ ), for any real
a1 anda2.

1.14 Completeness ofT is not only sufficient but also necessary so that everyg(θ ) that
can be estimated unbiasedly has only one unbiased estimator that is a function ofT .

1.15 SupposeX1, . . . , Xn are iid Poisson (λ).

(a) Show thatX̄ is the UMVU estimator forλ.

(b) ForS2 =
∑n

i=1(Xi−X̄)2/(n−1), we have thatES2 = EX̄ = λ. To directly establish
that varS2 > var X̄, prove thatE(S2|X̄) = X̄.

Note: The identityE(S2|X̄) = X̄ shows how completeness can be used in calculating
conditional expectations.

1.16 (a) If X1, . . . , Xn are iid (not necessarily normal) with var(Xi) = σ 2 <∞, show
thatδ = �(Xi − X̄)2/(n− 1) is an unbiased estimator ofσ 2.

(b) If theXi take on the values 1 and 0 with probabilitiesp andq = 1−p, the estimator
δ of (a) depends only onT = �Xi and hence is UMVU for estimatingσ 2 = pq.
Compare this result with that of Example 1.13.

1.17 If T has the binomial distributionb(p, n) with n > 3, use Method 1 to find the
UMVU estimator ofp3.

1.18 LetX1, . . . , Xn be iid according to the Poisson distributionP (λ). Use Method 1 to
find the UMVU estimator of (a)λk for any positive integerk and (b)e−λ.

1.19 LetX1, . . . , Xn be distributed as in Example 1.14. Use Method 1 to find the UMVU
estimator ofθk for any integerk > −n.

1.20 Solve Problem 1.18(b) by Method 2, using the fact that an unbiased estimator of
e−λ is δ = 1 if X1 = 0, andδ = 0 otherwise.

1.21 In n Bernoulli trials, letXi = 1 or 0 as theith trial is a success or failure, and let
T = �Xi . Solve Problem 1.17 by Method 2, using the fact that an unbiased estimator
of p3 is δ = 1 if X1 = X2 = X3 = 1, andδ = 0 otherwise.

1.22 LetX take on the values 1 and 0 with probabilityp andq, respectively, and assume
that 1/4< p < 3/4. Consider the problem of estimatingp with loss functionL(p, d) =
1 if |d − p| ≥ 1/4, and 0 otherwise. Letδ∗ be the randomized estimator which isY0 or
Y1 whenX = 0 or 1 whereY0 andY1 are distributed asU (−1/2,1/2) andU (1/2,3/2),
respectively.

(a) Show thatδ∗ is unbiased.

(b) Compare the risk function ofδ∗ with that ofX.
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Section 2

2.1 If X1, . . . , Xn are iid asN (ξ, σ 2) with σ 2 known, find the UMVU estimator of (a)
ξ2, (b) ξ3, and (c)ξ4. [Hint: To evaluate the expectation ofX̄k, write X̄ = Y + ξ , where
Y isN (0, σ 2/n) and expandE(Y + ξ )k.]

2.2 Solve the preceding problem whenσ is unknown.

2.3 In Example 2.1 withσ known, letδ = �ciXi be any linear estimator ofξ . If δ is
biased, show that its riskE(δ − ξ )2 is unbounded. [Hint: If �ci = 1 + k, the risk is
≥ k2ξ2.]

2.4 Suppose, as in Example 2.1, thatX1, . . . , Xn are iid asN (ξ, σ 2), with one of the
parameters known, and that the estimand is a polynomial inξ or σ . Then, the UMVU
estimator is a polynomial in̄X orS2 =

∑
(Xi−ξ )2. The variance of any such polynomial

can be estimated if one knows the momentsE(X̄k) andE(Sk) for all k = 1,2, . . . . To
determineE(X̄k), write X̄ = Y + ξ , whereY is distributed asN (0, σ 2/n). Show that

(a)

E(X̄k) =
k∑
r=0

(
k

r

)
ξk−rE(Y r )

with

E(Y r ) =


(r − 1)(r − 3) · · ·3 · 1(σ 2/n)r/2 whenr ≥ 2 is even

0 whenr is odd.

(b) As an example, consider the UMVU estimatorS2/n of σ 2. Show thatE(S4) =

n(n + 2)σ 2 and var
(
S2

n

)
= 2σ4

n
and that the UMVU estimator of this variance is

2S4/n2(n + 2).

2.5 In Example 2.1, when both parameters are unknown, show that the UMVU estimator
of ξ2 is given byδ = X̄2 − S2

n(n−1) where nowS2 =
∑

(Xi − X̄)2.

2.6 (a) Determine the variance of the estimator Problem 2.5.

(b) Find the UMVU estimator of the variance in part (a).

2.7 If X is a single observation fromN (ξ, σ 2), show that no unbiased estimatorδ of
σ 2exists whenξ is unknown. [Hint: For fixedσ = a,X is a complete sufficient statistic
for ξ , andE[δ(X)] = a2 for all ξ impliesδ(x) = a2 a.e.]

2.8 LetXi , i = 1, . . . , n, be independently distributed asN (α +βti, σ 2) whereα, β, and
σ 2 are unknown, and thet ’s are known constants that are not all equal. Find the UMVU
estimators ofα andβ.

2.9 In Example 2.2 withn = 1, the UMVU estimator ofp is the indicator of the event
X1 ≤ u whetherσ is known or unknown.

2.10 Verify Equation (2.14), the density of (X1−X̄)/S in normal sampling. [The UMVU
estimator in (2.13) is used by Kiefer (1977) as an example of his estimated confidence
approach.]

2.11 Assuming (2.15) withσ = τ , determine the UMVU estimators ofσ 2 and (η−ξ )/σ .

2.12 Assuming (2.15) withη = ξ andσ 2/τ 2 = γ , show that whenγ is known:

(a) T ′ defined in Example 2.3(iii) is a complete sufficient statistic;

(b) δγ is UMVU for ξ .

2.13 Show that in the preceding problem withγ unknown,
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(a) a UMVU estimator ofξ does not exist;

(b) the estimator̂ξ is unbiased under the conditions stated in Example 2.3. [Hint: (i)
Problem 2.12(b) and the fact thatδγ is unbiased forξ even whenσ 2/τ 2 �= γ . (ii)
Condition on (SX, SY ).]

2.14 For the model (2.15) find the UMVU estimator ofP (X1 < Y1) when (a)σ = τ and
(b) whenσ andτ are arbitrary. [Hint: Use the conditional density (2.13) ofX1 given
X̄, S2

X and that ofY1 givenȲ , S2
Y to determine the conditional density ofY1−X1 given

X̄, Ȳ , S2
X, andS2

Y .]

2.15 If (X1, Y1), . . . , (Xn, Yn) are iid according to any bivariate distribution with finite
second moments, show thatSXY /(n − 1) given by (2.17) is an unbiased estimator of
cov(Xi, Yi).

2.16 In a sample sizeN = n + k + 1, some of the observations are missing. Assume that
(Xi, Yi), i = 1, . . . , n, are iid according to the bivariate normal distribution (2.16), and
thatU1, . . . , Uk andV1, . . . , Vl are independentN (ξ, σ 2) andN (η, τ 2), respectively.

(a) Show that the minimal sufficient statistics are complete whenξ andη are known
but not when they are unknown.

(b) Whenξ andη are known, find the UMVU estimators forσ 2, τ 2, andρστ , and
suggest reasonable unbiased estimators for these parameters whenξ and η are
unknown.

2.17 For the family (2.22), show that the UMVU estimator ofa whenb is known and the
UMVU estimator ofb is known are as stated in Example 2.5. [Hint: Problem 6.18.]

2.18 Show that the estimators (2.23) are UMVU. [Hint: Problem 1.6.18.].

2.19 For the family (2.22) withb = 1, find the UMVU estimator ofP (X1 ≥ u) and
of the densitye−(u−a) of X1 at u. [Hint: Obtain the estimatorδ(X(1)) of the density by
applying Method 2 of Section 2.1 and then the estimator of the probability by integration.
Alternatively, one can first obtain the estimator of the probability asP (X1 ≥ u|X(1))
using the fact thatX1−X(1) is ancillary and that givenX(1),X1 is either equal toX(1) or
distributed asE(X(1),1).]

2.20 Find the UMVU estimator ofP (X1 ≥ u) for the family (2.22) when botha andb
are unknown.

2.21 LetX1, . . . , Xm andY1, . . . , Yn be independently distributed asE(a, b) andE(a′, b′),
respectively.

(a) If a, b, a′, andb′ are completely unknown,X(1), Y(1),�[Xi−X(1)], and�[Yj−Y(1)]
jointly are sufficient and complete.

(b) Find the UMVU estimators ofa′ − a andb′/b.

2.22 In the preceding problem, suppose thatb′ = b.

(a) Show thatX(1), Y(1), and�[Xi −X(1)] + �[Yj − Y(1)] are sufficient and complete.

(b) Find the UMVU estimators ofb and (a′ − a)/b.

2.23 In Problem 2.21, suppose thata′ = a.

(a) Show that the complete sufficient statistic of Problem 2.21(a) is still minimal suf-
ficient but no longer complete.

(b) Show that a UMVU estimator fora′ = a does not exist.

(c) Suggest a reasonable unbiased estimator fora′ = a.
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2.24 LetX1, . . . , Xn be iid according to the uniform distributionU (ξ − b, ξ + b). If ξ, b
are both unknown, find the UMVU estimators ofξ , b, andξ/b. [Hint: Problem 1.6.30.]

2.25 LetX1, . . . , Xm andY1, . . . , Yn be iid asU (0, θ ) andU (0, θ ′), respectively. Ifn > 1,
determine the UMVU estimator ofθ/θ ′.

2.26 Verify the ML estimators given in (2.24).

2.27 In Example 2.6(b), show that

(a) The bias of the ML estimator is 0 whenξ = u.

(b) At ξ = u, the ML estimator has smaller expected squared error than the UMVU
estimator.

[Hint: In (b), note thatu− X̄ is always closer to 0 than
√

n

n−1(u− X̄).]

2.28 Verify (2.26).

2.29 Under the assumptions of Lemma 2.7, show that:

(a) If b is replaced by any random variableB which is independent ofX and not 0
with probability 1, thenRδ(θ ) < Rδ∗ (θ ).

(b) If squared error is replaced by any loss function of the formL(θ, δ) = ρ(d− θ ) and
δ is risk unbiased with respect toL, thenRδ(θ ) < Rδ∗ (θ ).

Section 3

3.1 (a) In Example 3.1, show that�(Xi − X̄)2 = T (n− T )/n.

(b) The variance ofT (n−T )/n(n−1) in Example 3.1 is (pq/n)[(q−p)2+2pq/(n−1)].

3.2 If T is distributed asb(p, n), find an unbiased estimatorδ(T ) of pm (m ≤ n) by
Method 1, that is, using (1.10). [Hint: Example 1.13.]

3.3 (a) Use the method leading to (3.2) to find the UMVU estimatorπk(T ) of P [X1 +

· · · +Xm = k] =

(
m

k

)
pkqm−k (m ≤ n).

(b) For fixedt and varyingk, show that theπk(t) are the probabilities of a hypergeo-
metric distribution.

3.4 If Y is distributed according to (3.3), use Method 1 of Section 2.1

(a) to show that the UMVU estimator ofpr (r < m) is

δ(y) =
(m− r + y − 1)(m− r + y − 2) . . . (m− r)

(m + y − 1)(m + y − 2) · · ·m ,

and hence in particular that the UMVU estimator of 1/p,1/p2 andp are, respec-
tively, (m + y)/m, (m + y)(m + y + 1)/m(m + 1), and (m− 1)/(m + y − 1);

(b) to determine the UMVU estimator of var(Y );

(c) to show how to calculate the UMVU estimatorδ of logp.

3.5 Consider the scheme in which binomial sampling is continued until at leasta suc-
cessesand b failures have been obtained. Show how to calculate a reasonable estimator of
log(p/q). [Hint: To obtain an unbiased estimator of logp, modify the UMVU estimator
δ of Problem 3.4(c).]

3.6 If binomial sampling is continued untilm successes have been obtained, letXi (i =
1, . . . , m) be the number of failures between the (i − 1)st andith success.

(a) TheXi are iid according to thegeometric distribution P (Xi = x) = pqx , x =
0,1, . . ..
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(b) The statisticY = �Xi is sufficient for (X1, . . . , Xm) and has the distribution (3.3).

3.7 Suppose that binomial sampling is continued until the number of successes equals
the number of failures.

(a) This rule is closed ifp = 1/2 but not otherwise.
(b) If p = 1/2 andN denotes the number of trials required,E(N ) =∞.

3.8 Verify Equation (3.7) with the appropriate definition ofN ′(x, y) (a) for the estimation
of p and (b) for the estimation ofpaqb.

3.9 Consider sequential binomial sampling with the stopping points (0,1) and (2, y),
y = 0,1, . . .. (a) Show that this plan is closed and simple. (b) Show that (X, Y ) is not
complete by finding a nontrivial unbiased estimator of zero.

3.10 In Example 3.4(ii), (a) show that the plan is closed but not simple, (b) show that
(X, Y ) is not complete, and (c) evaluate the unbiased estimator (3.7) ofp.

3.11 Curtailed single sampling. Let a, b < n be three non-negative integers. Continue
observation until eithera successes,b failures, orn observations have been obtained.
Determine the UMVU estimator ofp.

3.12 For any sequential binomial sampling plan, the coordinates (X, Y ) of the end point
of the sample path are minimal sufficient.

3.13 Consider any closed sequential binomial sampling plan with a setB of stopping
points, and letB ′ be the setB∪{(x0, y0)}where (x0, y0) is a point not inB that has positive
probability of being reached under planB. Show that the sufficient statisticT = (X, Y ) is
not complete for the sampling plan which hasB ′ as its set of stopping points. [Hint: For
any point (x, y) ∈ B, letN (x, y) andN ′(x, y) denote the number of paths to (x, y) when
the set of stopping points isB andB ′, respectively, and letN (x0, y0) = 0, N ′(x0, y0) = 1.
Then, the statistic 1− [N (X, Y )/N ′(X, Y )] has expectation 0 underB ′ for all values of
p.]

3.14 For any sequential binomial sampling plan under which the point (1,1) is reached
with positive probability but is not a stopping point, find an unbiased estimator ofpq

depending only on (X, Y ). Evaluate this estimator for

(a) taking a sample of fixed sizen > 2;
(b) inverse binomial sampling.

3.15 Use (3.3) to determineA(t, n) in (3.11) for the negative binomial distribution with
m = n, and evaluate the estimators (3.13) ofqr , and (3.14).

3.16 Considern binomial trials with success probabilityp, and letr ands be two positive
integers withr + s < n. To the boundaryx + y = n, add the boundary point (r, s), that
is, if the number of successes in the firstr + s trials is exactlyr, the process is stopped
and the remainingn− (r + s) trials are not performed.

(a) Show thatU is an unbiased estimator of zero if and only ifU (k, n − k) = 0 for
k = 0,1, . . . , r−1 andk = n− s + 1,n− s + 2, . . . , n, andU (k, n− k) = ckU (r, s)
for k = r, . . . , n− s, where thec’s are given constants�= 0.

(b) Show thatδ is the UMVU estimator of its expectation if and only if

δ(k, n− k) = δ(r, s) for k = r, . . . , n− s.
3.17 Generalize the preceding problem to the case that two points (r1, s1) and (r2, s2)
with ri + si < n are added to the boundary. Assume that these two points are such that
all n + 1 pointsx + y = n remain boundary points. [Hint: Distinguish the three cases
that the intervals (r1, s1) and (r2, s2) are (i) mutually exclusive, (ii) one contained in the
other, and (iii) overlapping but neither contained in the other.]
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3.18 If X has the Poisson distributionP (θ ), show that 1/θ does not have an unbiased
estimator.

3.19 If X1, . . . , Xn are iid according to (3.18), the Poisson distribution truncated on the
left at 0, find the UMVU estimator ofθ when (a)n = 1 and (b)n = 2.

3.20 LetX1, . . . , Xn be a sample from the Poisson distribution truncated on the left at 0,
i.e., with sample spaceX = {1,2,3, . . .}.
(a) Fort = �xi , the UMVU estimator ofλ is (Tate and Goen 1958)λ̂ =

Cn
t−1
Cnt t where

Cnt = (−1)n

n!

∑∞
k=0

(
n

k

)
(−1)kkt is aStirling number of the second kind.

(b) An alternate form of the UMVU estimator iŝλ = t

n

(
1− Cn−1

t−1
Cnt

)
. [Hint: Establish

the identityCnt = Cn−1
t−1 + nCnt−1.]

(c) The Craḿer-Rao lower bound for the variance of unbiased estimators ofλ isλ(1−
e−λ)2/[n(1− e−λ − λe−λ)], and it is not attained by the UMVU estimator. (It is,
however, the asymptotic variance of the ML estimator.)

3.21 Suppose thatX has the Poisson distribution truncated on the right ata, so that it
has the conditional distribution ofY givenY ≤ a, whereY is distributed asP (λ). Show
thatλ does not have an unbiased estimator.

3.22 For the negative binomial distribution truncated at zero, evaluate the estimators
(3.13) and (3.14) form = 1, 2, and 3.

3.23 If X1, . . . , Xn are iidP (λ), consider estimation ofe−bλ, whereb is known.

(a) Show thatδ∗ = (1− b/n)t is the UMVU estimator ofe−bλ.

(b) Forb > n, describe the behavior ofδ∗, and suggest why it might not be a reasonable
estimator.

(The probabilitye−bλ, for b > n, is that of an “unobservable” event, in that it can be
interpreted as the probability of no occurrence in a time interval of lengthb. A number
of such situations are described and analyzed in Lehmann (1983), where it is suggested
that, in these problems, no reasonable estimator may exist.)

3.24 If X1, . . . , Xn are iid according to the logarithmic series distribution of Problem
1.5.14, evaluate the estimators (3.13) and (3.14) forn = 1, 2, and 3.

3.25 For the multinomial distribution of Example 3.8,

(a) show thatpr00 · · ·prss has an unbiased estimator providedr0, . . . , rs are nonnegative
integers with�ri ≤ n;

(b) find the totality of functions that can be estimated unbiasedly;

(c) determine the UMVU estimator of the estimand of (a).

3.26 In Example 3.9 whenpij = pi+p+j , determine the variances of the two unbiased
estimatorsδ0 = nij /n andδ1 = ni+n+j /n

2 ofpij , and show directly that var(δ0) > var(δ1)
for all n > 1.

3.27 In Example 3.9, show that independence ofA andB implies that (n1+, . . ., nI+) and
(n+1, . . ., n+J ) are independent with multinomial distributions as stated.

3.28 Verify (3.20).

3.29 LetX,Y , andg be such thatE[g(X, Y )|y] is independent ofy. Then,E[f (Y )g(X, Y )] =
E[f (Y )]E[g(X, Y )], and hencef (Y ) andg(X, Y ) are uncorrelated, for allf .
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3.30 In Example 3.10, show that the estimatorδ1 of pijk is unbiased for the model (3.20).
[Hint: Problem 3.29.]

Section 4

4.1 LetX1, . . . , Xn be iid with distributionF .

(a) Characterize the totality of functionsf (X1, . . . , Xn) which are unbiased estimators
of zero for the classF0 of all distributionsF having a density.

(b) Give one example of a nontrivial unbiased estimator of zero when (i)n = 2 and (ii)
n = 3.

4.2 Let F be the class of all univariate distribution functionsF that have a probability
density functionf and finitemth moment.

(a) LetX1, . . . , Xn be independently distributed with common distributionF ∈ F .
Forn ≥ m, find the UMVU estimator ofξm whereξ = ξ (F ) = EXi .

(b) Show that for the case thatP (Xi = 1) =p, P (Xi = 0) = q, p +q = 1, the estimator
of (a) reduces to (3.2).

4.3 In the preceding problem, show that 1/varFXi does not have an unbiased estimator
for anyn.

4.4 LetX1, . . . , Xn be iid with distributionF ∈ F whereF is the class of all symmetric
distributions with a probability density. There exists no UMVU estimator of the center
of symmetryθ of F (if unbiasedness is required only for the distributionsF for which
the expectation of the estimator exists). [Hint: The UMVU estimator ofθ whenF is
U (θ − 1/2, θ + 1/2), which was obtained in Problem 2.24, is unbiased for allF ∈ F ;
so isX̄.]

4.5 If X1, . . . , Xm andY1, . . . , Yn are independently distributed according toF andG ∈
F0, defined in Problem 4.1, the order statisticsX(1) < · · · < X(m) andY(1) < · · · <
Y(n) are sufficient and complete. [Hint: For completeness, generalize the second proof
suggested in Problem 6.33.]

4.6 Under the assumptions of the preceding problem, find the UMVU estimator of
P (Xi < Yj ).

4.7 Under the assumptions of Problem 4.5, letξ = EXi andη = EYj . Show thatξ2η2

possesses an unbiased estimator if and only ifm ≥ 2 andn ≥ 2.

4.8 Let (X1, Y1), . . . , (Xn, Yn) be iidF ∈ F , whereF is the family of all distributions
with probability density and finite second moments. Show thatδ(X, Y ) =

∑
(Xi −

X̄)(Yi − Ȳ )/(n− 1) is UMVU for cov(X, Y ).

4.9 Under the assumptions of the preceding problem, find the UMVU estimator of

(a) P (Xi ≤ Yi);
(b) P (Xi ≤ Xj andYi ≤ Yj ), i �= j .

4.10 Let (X1, Y1), . . . , (Xn, Yn) be iid withF ∈ F , whereF is the family of all bivariate
densities. Show that the sufficient statisticT , which generalizes the order statistics to
the bivariate case, is complete. [Hint: Generalize the second proof suggested in Problem
6.33. As an exponential family for (X, Y ), take the densities proportional toeQ(x,y) where

Q(x, y) = (θ01x + θ10y) + (θ02x
2 + θ11xy + θ20y

2) + · · ·
+(θ0nx

n + · · · + θn0y
n)− x2n − y2n.]
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Section 5

5.1 Under the assumptions of Problem 1.3, determine for eachp1, the valueLV (p1) of
the LMVU estimator ofp atp1 and compare the functionLV (p),0 < p < 1 with the
varianceVp0(p) of the estimator which is LMVU at (a)p0 = 1/3 and (b)p0 = 1/2.

5.2 Determine the conditions under which equality holds in (5.1).

5.3 Verify I (θ ) for the distributions of Table 5.1.

5.4 If X is normal with mean zero and standard deviationσ , determineI (σ ).

5.5 Find I (p) for the negative binomial distribution.

5.6 If X is distributed asP (λ), show that the information it contains about
√
λ is inde-

pendent ofλ.

5.7 Verify the following statements, asserted by Basu (1988, Chapter 1), which illus-
trate the relationship between information, sufficiency, and ancillarity. Suppose that
we let I (θ ) = Eθ

[−∂2/∂θ2 logf (x|(θ )] be the information inX about θ and let
J (θ ) = Eθ

[−∂2/∂θ2 logg(T |θ )] be the information aboutθ contained in a statistic
T , whereg(·|θ ) is the density function ofT . Defineλ(θ ) = I (θ ) − J (θ ), a measure of
information lost by usingT instead ofX. Under suitable regularity conditions, show
that

(a) λ(θ ) ≥ 0 for all θ

(b) λ(θ ) = 0 if and only ifT is sufficient forθ .

(c) If Y is ancillary but (T , Y ) is sufficient, thenI (θ ) = Eθ [J (θ |Y )], where

J (θ |y) = Eθ

[
− ∂2

∂θ2
logh(T |y, θ)|Y = y

]
andh(t |y, θ) is the conditional density ofT givenY = y.

(Basu’s “regularity conditions” are mainly concerned with interchange of integration
and differentiation. Assume any such interchanges are valid.)

5.8 Find a function ofθ for which the amount of information is independent ofθ :

(a) for the gamma distributionH(α, β) with α known and withθ = β;

(b) for the binomial distributionb(p, n) with θ = p.

5.9 For inverse binomial sampling (see Example 3.2):

(a) Show that the best unbiased estimator ofp is given byδ∗(Y ) = (m−1)/(Y+m− 1).

(b) Show that the information contained inY aboutP is I (p) = m/p2(1− p).

(c) Show that varδ∗ > 1/I (p).

(The estimatorδ∗ can be interpreted as the success rate if we ignore the last trial, which
we know must be a success.)

5.10 Show that (5.13) can be differentiated by differentiating under the integral sign
whenpθ (x) is given by (5.24), for each of the distributions of Table 5.2. [Hint: Form the
difference quotient and apply the dominated convergence theorem.]

5.11 Verify the entries of Table 5.2.

5.12 Evaluate (5.25) whenf is the density of Student’st-distribution withν degrees of
freedom. [Hint: Use the fact that∫ ∞

−∞

dx

(1 +x2)k
=
H(1/2)H(k − 1/2)

H(k)
.

]
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5.13 For the distribution with density (5.24), show thatI (θ ) is independent ofθ .

5.14 Verify (a) formula (5.25) and (b) formula (5.27).

5.15 For the locationt density, calculate the information inequality bound for unbiased
estimators ofθ .

5.16 (a) For the scale family with density (1/θ )f (x/θ ), θ > 0, the amount of informa-
tion a single observationX has aboutθ is

1

θ2

∫ [
yf ′(y)

f (y)
+ 1

]2

f (y) dy.

(b) Show that the informationX contains aboutξ = logθ is independent ofθ .

(c) For the Cauchy distribution C(0, θ ), I (θ ) = 1/(2θ2).

5.17 If pθ (x) is given by 1.5.1 withs = 1 andT (x) = δ(x), show that var[δ(X)] attains
the lower bound (5.31) and is the only estimator to do so. [Hint: Use (5.18) and (1.5.15).]

5.18 Show that if a given functiong(θ ) has an unbiased estimator, there exists an unbi-
ased estimatorδ which for all θ values attains the lower bound (5.1) for someψ(x, θ)
satisfying (5.2) if and only ifg(θ ) has a UMVU estimatorδ0. [Hint: By Theorem 5.1,
ψ(x, θ) = δ0(x) satisfies (5.2). For any other unbiasedδ, cov(δ − δ0, δ0) = 0 and hence
var(δ0) = [cov(δ, δ0)]2/var(δ0), so thatψ = δ0 provides an attainable bound.] (Blyth
1974).

5.19 Show that ifEθδ = g(θ ), and var(δ) attains the information inequality bound (5.31),
then

δ(x) = g(θ ) +
g′(θ )
I (θ )

∂

∂θ
pθ (x).

5.20 If Eθδ = g(θ ), the information inequality lower bound isIB(θ ) = [g′(θ )]2/I (θ ). If
θ = h(ξ ) whereh is differentiable, show thatIB(ξ ) = IB(θ ).

5.21 (Liu and Brown 1993) LetX be an observation from the normal mixture density

pθ (x) =
1

2
√

2π

{
e−(1/2)(x−θ )2 + e−(1/2)(x+θ )2

}
, θ ∈ ,

where is any neighborhood of zero. Thus, the random variableX is eitherN (θ,1) or
N (−θ,1), each with probability 1/2. Show thatθ = 0 is asingular point, that is, if there
exists an unbiased estimator ofθ it will have infinite variance atθ = 0.

5.22 Let X1, . . . , Xn be a sample from the Poisson (λ) distribution truncated on the
left at 0, i.e., with sample spaceX = {1,2,3, . . .} (see Problem 3.20). Show that the
Craḿer-Rao lower bound for the variance of unbiased estimators ofλ is

λ(1− e−λ)2

n(1− e−λ − λe−λ)
and is not attained by the UMVU estimator. (It is, however, the asymptotic variance of
the ML estimator.)

5.23 Let X1, . . . , Xn be iid according to a densityp(x, θ) which is positive for allx.
Then, the variance of any unbiased estimatorδ of θ satisfies

varθ0(δ) ≥ (θ − θ0)2{∫∞
−∞

[p(x, θ)]2

p(x, θ0)

}n
− 1

, θ �= θ0.

[Hint: Direct consequence of (5.6).]



140 UNBIASEDNESS [ 2.7

5.24 If X1, . . . , Xn are iid asN (θ, σ 2) whereσ is known andθ is known to have one
of the values 0,±1,±2, . . . , the inequality of the preceding problem shows that any
unbiased estimatorδ of the restricted parameterθ satisfies

varθ0(δ) ≥ W2

enW
2/σ2 − 1

, W �= 0,

whereW = θ − θ0, and hence supW �=0varθ0(δ) ≥ 1/[en/σ
2 − 1].

5.25 Under the assumptions of the preceding problem, letX̄∗ be the integer closest tōX.

(a) The estimator̄X∗ is unbiased for the restricted parameterθ .

(b) There exist positive constantsa andb such that for all sufficiently largen, varθ (X̄∗) ≤
ae−bn for all integersθ .

[Hint: (b) One findsP (X̄∗ = k) =
∫
Ik
φ(t) dt , whereIk is the interval ((k − θ −

1/2)
√
n/σ, (k − θ + 1/2)

√
n/σ ), and hence

var(X̄∗) ≤ 4
∞∑
k=1

k

{
1−X

[√
n

σ

(
k − 1

2

)]}
.

The result follows from the fact that for ally > 0,1 − X(y) ≤ φ(y)/y. See, for
example, Feller 1968, Chapter VII, Section 1. Note thath(y) = φ(y)/(1 − X(y)) is
the hazard function for the standard normal distribution, so we haveh(y) ≥ y for
all y > 0. (1− X(y))/φ(y) is also known asMill’s ratio (see Stuart and Ord, 1987,
Section 5.38.) Efron and Johnstone (1990) relate the hazard function to the information
inequality].

Note. The surprising results of Problems 5.23–5.25 showing a lower bound and variance
which decrease exponentially are due to Hammersley (1950), who shows that, in fact,

var(X̄∗) ∼
√

8σ 2

πn
e−n/8σ

2
as

n

σ 2
→∞.

Further results concerning the estimation of restricted parameters and properties of
X̄∗ are given in Khan (1973), Ghosh (1974), Ghosh and Meeden (1978), and Kojima,
Morimoto, and Takeuchi (1982).

5.26 Kiefer inequality.

(a) LetX have density (with respect toµ) p(x, θ) which is> 0 for all x, and let�1

and�2 be two distributions on the real line with finite first moments. Then, any
unbiased estimatorδ of θ satisfies

var(δ) ≥ [
∫
Wd�1(W)− ∫

Wd�2(W)]2∫
ψ2(x, θ)p(x, θ) dµ(x)

where

ψ(x, θ) =

∫
θ
p(x, θ +W)[d�1(W)− d�2(W)]

p(x, θ)

with θ = {W : θ +Wε}.
(b) If �1 and�2 assign probability 1 toW = 0 andW, respectively, the inequality

reduces to (5.6) withg(θ ) = θ . [Hint: Apply (5.1).] (Kiefer 1952.)

5.27 Verify directly that the following families of densities satisfy (5.38).
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(a) The exponential family of (1.5.1),

pη(x) = h(x)eηT (x)−A(η).

(b) The locationt family of Example 5.16.

(c) The logistic density of Table 1.4.1.

5.28 Extend condition (5.38) to vector-valued parameters, and show that it is satisfied by
the exponential family (1.5.1) fors > 1.

5.29 Show that the assumption (5.36(b)) implies (5.38), so Theorem 5.15 is, in fact, a
corollary of Theorem 5.10.

5.30 Show that (5.38) is satisfied if either of the following is true:

(a) |∂ logpθ/∂θ | is bounded.

(b) [pθ+W(x)− pθ (x)]/W→ ∂ logpθ/∂θ uniformly.

5.31 (a) Show that if (5.38) holds, then the family of densities isstrongly differentiable
(see Note 8.6).

(b) Show thatweak differentiability is implied by strong differentiability.

5.32 Brown and Gajek (1990) give two different sufficient conditions for (8.2) to hold,
which are given below. Show that each implies (8.2). (Note that, in the progression from
(a) to (b) the conditions become weaker, thus more widely applicable and harder to
check.)

(a) For someB <∞,

Eθ0

[
∂2

∂θ2
pθ (X)/pθ0(X)

]2

< B

for all θ in a neighborhood ofθ .

(b) If p∗t (x) = ∂/∂θpθ (x)|θ=t , then

lim
W→0

Eθ0

[
p∗θ0+W(X)− p∗θ0(X)

pθ0(X)

]2

= 0.

5.33 Let F be the class of all unimodal symmetric densities or, more generally, densities
symmetric around zero and satisfyingf (x) ≤ f (0) for all x. Show that

min
f∈F

∫
x2f (x)dx =

1

12
,

and that the minimum is attained by the uniform(− 1
2,

1
2) distribution. Thus, the uniform

distribution has minimum variance among symmetric unimodal distributions. (See Ex-
ample 4.8.6 for large-sample properties of the scale uniform.) [Hint: The side condition∫
f (x)dx = 1, together with the method of undetermined multipliers, yields an equiv-

alent problem, minimization of
∫

(x2 − a2)f (x)dx, wherea is chosen to satisfy the
constraint. A Neyman-Pearson type argument will now work.]

Section 6

6.1 For any random variables (ψ1, . . . , ψs), show that the matrices||Eψiψj || andC =
||cov(ψi, ψj )|| are positive semidefinite.
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6.2 In this problem, we establish some facts about eigenvalues and eigenvectors of square
matrices. (For a more general treatment, see, for example, Marshall and Olkin 1979,
Chapter 20.)

We use the facts that a scalarλ > 0 is aneigenvalue of then × n symmetric matrix
A if there exists ann× 1 vectorp, the correspondingeigenvector, satisfyingAp = λp.
If A is nonsingular, there aren eigenvalues with corresponding linearly independent
eigenvectors.

(a) Show thatA = P ′DλP , whereDλ is a diagonal matrix of eigenvalues ofA andP
is andn × n matrix whose rows are the corresponding eigenvalues that satisfies
P ′P = PP ′ = I , the identity matrix.

(b) Show that maxx x
′Ax
x′x = largest eigenvalue ofA.

(c) If B is a nonsingular symmetric matrix with eigenvector-eigenvalue represen-
tation B = Q′DβQ, then maxx x

′Ax
x′Bx = largest eigenvalue ofA∗, whereA∗ =

D
−1/2
β QAQ′D−1/2

β andD−1/2
β is a diagonal matrix whose elements are the recipro-

cals of the square roots of the eigenvalues ofB.

(d) For any square matricesC andD, show that the eigenvalues of the matrixCD are
the same as the eigenvalues of the matrixDC, and hence that maxx x

′Ax
x′Bx = largest

eigenvalue ofAB−1.

(e) IfA = aa′, wherea is an×1 vector (A is thus a rank-one matrix), then maxx
x′aa′x
x′Bx =

a′B−1a.

[Hint: For part (b) show thatx
′Ax
x′x = y′Dλy

y′y =
∑
i λi y

2
i∑

i y
2
i

, wherey = Px, and hence the

maximum is achieved at the vectory that is 1 at the coordinate of the largest eigenvalue
and zero everywhere else.]

6.3 An alternate proof of Theorem 6.1 uses the method of Lagrange (or undetermined)
multipliers. Show that, for fixedγ, the maximum value ofa′γ , subject to the constraint
thata′Ca = 1, is obtained by the solutions to

∂

∂ai

{
a′γ − 1

2
λ[a′Ca − 1]

}
= 0,

whereλ is the undetermined multiplier. (The solution isa = ±C−1γ /
√
γ ′C−1γ .)

6.4 Prove (6.11) under the assumptions of the text.

6.5 Verify (a) the information matrices of Table 6.1 and (b) Equations (6.15) and (6.16).

6.6 If p(x) = (1−ε)φ(x−ξ )+(ε/τ )φ[(x−ξ )/τ ] whereφ is the standard normal density,
find I (ε, ξ, τ ).

6.7 Verify the expressions (6.20) and (6.21).

6.8 Let A =

(
A11 A12

A21 A22

)
be a partitioned matrix withA22 square and nonsingular, and

let

B =

(
I −A12A

−1
22

0 I

)
.

Show that|A| = |A11− A12A
−1
22A21| · |A22|.

6.9 (a) Let

A =

(
a b′

b C

)
wherea is a scalar andb a column matrix, and suppose thatA is positive definite.
Show that|A| ≤ a|C| with equality holding if and only ifb = 0.
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(b) More generally, if the matrixA of Problem 6.8 is positive definite, show that|A| ≤
|A11| · |A22| with equality holding if and only ifA12 = 0.

[Hint: TransformA11 and the positive semidefiniteA12A
−1
22A21 simultaneously to diag-

onal form.]

6.10 (a) Show that if the matrixA is nonsingular, then for any vectorx, (x ′Ax)(x ′A−1x) >
(x ′x)2.

(b) Show that, in the notation of Theorem 6.6 and the following discussion,[
∂

∂θi
Eθδ

]2

Iii(θ )
=

(ε′iα)2

ε′i I (θ )εi
,

and ifα = (0, . . . ,0, αi,0, . . .0), α′I (θ )−1α = (ε′iα)2ε′i I (θ )
−1εi , and hence estab-

lish (6.25).

6.11 Prove that (6.26) is necessary for equality in (6.25). [Hint: Problem 6.9(a).]

6.12 Prove the Bhattacharyya inequality (6.29) and show that the condition of equality
is as stated.

8 Notes

8.1 Unbiasedness and Information

The concept of unbiasedness as “lack of systematic error” in the estimator was introduced
by Gauss (1821) in his work on the theory of least squares. It has continued as a basic
assumption in the developments of this theory since then.

The amount of information that a data set contains about a parameter was introduced by
Edgeworth (1908, 1909) and was developed more systematically by Fisher (1922 and
later papers). The first version of the information inequality, and hence connections with
unbiased estimation, appears to have been given by Fréchet (1943). Early extensions
and rediscoveries are due to Darmois (1945), Rao (1945), and Cramér (1946b). The des-
ignation “information inequality,” which replaced the earlier “Cramér-Rao inequality,”
was proposed by Savage (1954).

8.2 UMVU Estimators

The first UMVU estimators were obtained by Aitken and Silverstone (1942) in the
situation in which the information inequality yields the same result (Problem 5.17).
UMVU estimators as unique unbiased functions of a suitable sufficient statistic were
derived in special cases by Halmos (1946) and Kolmogorov (1950) and were pointed out
as a general fact by Rao (1947). An early use of Method 1 for determining such unbiased
estimators is due to Tweedie (1947). The concept of completeness was defined, its
implications for unbiased estimation developed, and Theorem 1.7 obtained, in Lehmann
and Scheff́e (1950, 1955, 1956).

Theorem 1.11 has been used to determine UMVU estimators in many special cases.
Some applications include those of Abbey and David (1970, exponential distribution),
Ahuja (1972, truncated Poisson), Bhattacharyya et al. (1977, censored), Bickel and
Lehmann (1969, convex), Varde and Sathe (1969, truncated exponential), Brown and
Cohen (1974, common mean), Downton (1973,P (X ≤ Y )), Woodward and Kelley
(1977,P (X ≤ Y )), Iwase (1983, inverse Gaussian), and Kremers (1986, sum-quota
sampling).
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Figure 8.1.Illustration of the information inequality

8.3 Existence of Unbiased Esimators

Doss and Sethuraman (1989) show that the process of bias reduction may not always
be the wisest course. If an estimandg(θ ) does not have an unbiased estimator, and one
tries to reduce the bias in a biased estimatorδ, they show that as the bias goes to zero,
var(δ) →∞ (see Problem 1.4).

This result has implications for bias-reduction procedures such as the jackknife and
the bootstrap. (For an introduction to the jackknife and the bootstrap, see Efron and
Tibshirani 1993 or Shao and Tu 1995.) In particular, Efron and Tibshirani (1993, Section
10.6) discuss some practical implications of bias reduction, where they urge caution in
its use, as large increases in standard errors can result.

Liu and Brown (1993) call a problemsingular if there exists no unbiased estimator
with finite variance. More precisely, ifF is a family of densities, then if a problem is
singular, there will be at least one member ofF , called asingular point, where any
unbiased estimator of a parameter (or functional) will have infinite variance. There are
many examples of singular problems, both in parametric and nonparametric estimation,
with nonparametric density estimation being, perhaps, the best known. Two particularly
simple examples of singular problems are provided by Example 1.2 (estimation of 1/p

in a binomial problem) and Problem 5.21 (a mixture estimation problem).

8.4 Geometry of the Information Inequality
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The information inequality can be interpreted as, and a proof can be based on, the fact
that the length of the hypotenuse of a right triangle exceeds the length of each side.

For two vectorsa andb, define< t, q >= t ′q, with < t, t >2= |t |2. For the triangle
in Figure 8.1, using the fact that the cosine of the angle betweent andq is cos(t, q) =
t ′q/|t ||q| and the fact that the hypotenuse is the longest side, we have

|t | > |t | cos(t, q) = |t |
[
< t, q >

|t ||q|
]

=
< t, q >

|q| .

If we define< X, Y > = E [(X − EX) (Y − EY )] for random variablesX andY ,
applying the above inequality with this definition results in the covariance inequality
(5.1), which, in turn, leads to the information inequality. See Fabian and Hannan (1977)
for a rigorous development.

8.5 Fisher Information and the Hazard Function

Efron and Johnstone (1990) investigate an identity between the Fisher information num-
ber and thehazard function, h, defined by

hθ (x) = lim
W→0

W−1P (x ≤ X < x +W|X ≥ x) =
fθ (x)

1− Fθ (x)

wherefθ andFθ are the density and distribution function of the random variableX,
respectively. The hazard function,h(x), represents the conditional survival rate given
survival up to timex and plays and important role in survival analysis. (See, for example,
Kalbfleish and Prentice 1980, Cox and Oakes 1984, Fleming and Harrington 1991.)

Efron and Johnstone show that

I (θ ) =
∫ ∞

−∞

∂

∂θ
log[fθ (x)]2fθ (x)dx =

∫ ∞

−∞

∂

∂θ
log[hθ (x)]2fθ (x)dx.

They then interpret this identity and discuss its implications to, and connections with,
survival analysis and statistical curvature of hazard models, among other things. They
also note that this identity can be derived as a consequence of the more general result of
James (1986), who showed that ifb(·) is a continuous function of the random variable
X, then

var[b(X)] = E[b(X)− b̄(X)]2, where b̄(x) = E[b(X)|b(X) > x],

as long as the expectations exist.

8.6 Weak and Strong Differentiability

Research into determining necessary and sufficient conditions for the applicability of the
Information Inequality bound has a long history (see, for example, Blyth and Roberts
1972, Fabian and Hannan 1977, Ibragimov and Has’minskii 1981, Section 1.7, Müller-
Funk et al. 1989, Brown and Gajek 1990). What has resulted is a condition on the density
sufficient to ensure (5.29).

The precise condition needed was presented by Fabian and Hannan (1977), who call it
weak differentiability. The functionpθ+W(x)/pθ (x) is weakly differentiable at θ if there
is a measurable functionq such that

lim
W→0

∫
h(x)

{[
W−1

(
pθ+W(x)

pθ (x)
− 1

)]
− q(x)

}
pθ (x) dµ(x) = 0(8.1)

for all h(·) such that
∫
h2(x)pθ (x) dµ(x) <∞. Weak differentiability is actually equiva-

lent (necessary and sufficient) to the existence of a functionqθ (x) such that (∂/∂θ )Eθδ =
Eδq. Hence, it can replace condition (5.38) in Theorem 5.15.
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Since weak differentiability is often difficult to verify, Brown and Gajek (1990) intro-
duce the more easily verifiable condition ofstrong differentiability, which implies weak
differentiability, and thus can also replace condition (5.38) in Theorem 5.15 (Problem
5.31). The functionpθ+W(x)/pθ (x) is strongly differentiable at θ = θ0 with derivative
qθ0(x) if

lim
W→0

∫ {[
W−1

(
pθ+W(x)

pθ (x)
− 1

)]
− qθ0(x)

}2

pθ0(x) dµ(x) = 0.(8.2)

These variations of the usual definition of differentiability are well suited for the in-
formation inequality problem. In fact, consider the expression in the square brackets
in (8.1). If the limit of this expression exists, it isqθ (x) = ∂ logpθ (x)/∂θ . Of course,
existence of this limit does not, by itself, imply condition (8.2); such an implication
requires an integrability condition.

Brown and Gajek (1990) detail a number of easier-to-check conditions that imply
(8.2). (See Problem 5.32.) Fabian and Hannan (1977) remark that if (8.1) holds and
∂ logpθ (x)/∂θ exists, then it must be the case thatqθ (x) = ∂ logpθ (x)/∂θ . However,
the existence of one does not imply the existence of the other.



CHAPTER 3

Equivariance

1 First Examples

In Section 1.1, the principle of unbiasedness was introduced as an impartiality
restriction to eliminate estimators such asδ(X) ≡ g(θ0), which would give very
low risk for some parameter values at the expense of very high risk for others. As
was seen in Sections 2.2–2.4, in many important situations there exists within the
class of unbiased estimators a member that is uniformly better for any convex loss
function than any other unbiased estimator.

In the present chapter, we shall use symmetry considerations as the basis for
another such impartiality restriction with a somewhat different domain of appli-
cability.

Example 1.1 Estimating binomial p. Considern binomial trials with unknown
probabilityp (0< p < 1) of success which we wish to estimate with loss function
L(p, d), for example,L(p, d) = (d − p)2 orL(p, d) = (d − p)2/p(1− p). If Xi ,
i = 1, . . . , n is 1 or 0 as theith trial is a success or failure, the joint distribution of
theX’s is

P (x1, . . . , xn) = p�xi (1− p)�(1−xi ).

Suppose now that another statistician interchanges the definition of success and
failure. For this worker, the probability of success is

p′ = 1− p(1.1)

and the indicator of success and failure on theith trial is

X′i = 1−Xi.(1.2)

The joint distribution of theX′i is

P (x ′1, · · · , x ′n) = p′�x
′
i (1− p′)�(1−x ′i )

and hence satisfies
P (x ′i , . . . , x

′
n) = P (x1, . . . , xn).(1.3)

In the new terminology, the estimated valued ′ of p′ is

d ′ = 1− d,(1.4)

and the loss resulting from its use isL(p′, d ′). The loss functions suggested at the
beginning of the example (and, in fact, most loss functions that we would want to
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employ in this situation) satisfy

L(p, d) = L(p′, d ′).(1.5)

Under these circumstances, the problem of estimatingpwith loss functionL is said
to beinvariant under the transformations (1.1), (1.2), and (1.4). This invariance is
an expression of the complete symmetry of the estimation problem with respect
to the outcomes of success and failure.

Suppose now that in the above situation, we had decided to useδ(x), where
x = (x1, . . . , xn) as an estimator ofp. Then, the formal identity of the primed and
unprimed problem suggests that we should use

δ(x′) = δ(1− x1, . . . ,1− xn)(1.6)

to estimatep′ = 1− p. On the other hand, it is natural to estimate 1− p by 1
minus the estimator ofp, i.e., by

1− δ(x).(1.7)

It seems desirable that these two estimators should agree and hence that

δ(x′) = 1− δ(x).(1.8)

An estimator satisfying (1.8) will be called equivariant under the transformations
(1.1), (1.2), and (1.4). Note that the standard estimate�Xi/n satisfies (1.8).

The arguments for (1.6) and (1.7) as estimators of 1− p are of a very different
nature. The appropriateness of (1.6) depends entirely on the symmetry of the
situation. It would continue to be suitable if it were known, for example, that
1
3 < p < 2

3 but not if, say,1
4 < p < 1

2. In fact, in the latter case,δ(X) would
typically be chosen to be< 1

2 for all X, and henceδ(X′) would be entirely unsuitable
as an estimator of 1− p, which is known to be> 1

2. More generally, (1.6) would
cease to be appropriate if any prior information aboutp is available which is not
symmetric about12. In contrast, the argument leading to (1.7) is quite independent of
any symmetry assumptions, but simply reflects the fact that ifδ(X) is a reasonable
estimator of a parameterθ (that is, is likely to be close toθ ), then 1− δ(X) is
reasonable as an estimator of 1− θ . ‖

We shall postpone giving a general definition of equivariance to the next section,
and in the remainder of the present section, we formulate this concept and explore
its implications for the special case of location problems.

Let X = (X1, . . . , Xn) have joint distribution with probability density

f (x − ξ ) = f (x1− ξ, . . . , xn − ξ ), −∞ < ξ <∞,(1.9)

wheref is known andξ is an unknownlocation parameter. Suppose that for the
problem of estimatingξ with loss functionL(ξ, d), we have found a satisfactory
estimatorδ(X).

In analogy with the transformations (1.2) and (1.1) of the observationsXi and
the parameterp in Example 1.1, consider the transformations

X′i = Xi + a(1.10)
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and

ξ ′ = ξ + a.(1.11)

The joint density ofX′ = (X′1, . . . , X
′
n) can be written as

f (x′ − ξ ′) = f (x ′1− ξ ′, · · · , x ′n − ξ ′)
so that in analogy with (1.3) we have by (1.10) and (1.11)

f (x′ − ξ ′) = f (x − ξ ) for all x andξ.(1.12)

The estimated valued ′ of ξ ′ is

d ′ = d + a(1.13)

and the loss resulting from its use isL(ξ ′, d ′).
In analogy with (1.5), we requireL to satisfyL(ξ ′, d ′) = L(ξ, d) and hence

L(ξ + a, d + a) = L(ξ, d).(1.14)

A loss functionL satisfies (1.14) for all values ofa if and only if it depends only
on the differenced − ξ , that is, it is of the form

L(ξ, d) = ρ(d − ξ ).(1.15)

That (1.15) implies (1.14) is obvious. The converse follows by puttinga = −ξ in
(1.14) and lettingρ(d − ξ ) = L(0, d − ξ ).

We can formalize these considerations in the following definition.

Definition 1.2 A family of densitiesf (x|ξ ), with parameterξ , and a loss function
L(ξ, d) are location invariant if, respectively,f (x ′|ξ ′) = f (x|ξ ) andL(ξ, d) =
L(ξ ′, d ′) wheneverξ ′ = ξ + a andd ′ = d + a. If both the densities and the loss
function are location invariant, the problem of estimatingξ is said to belocation
invariant under the transformations (1.10), (1.11), and (1.13).

As in Example 1.1, this invariance is an expression of symmetry. Quite generally,
symmetry in a situation can be characterized by its lack of change under certain
transformations. After a transformation, the situation looks exactly as it did before.
In the present case, the transformations in question are the shifts (1.10), (1.11), and
(1.13), which leave both the density (1.12) and the loss function (1.14) unchanged.

Suppose now that in the original (unprimed) problem, we had decided to use
δ(X) as an estimator ofξ . Then, the formal identity of the primed and unprimed
problem suggest that we should use

δ(X′) = δ(X1 + a, . . . , Xn + a)(1.16)

to estimateξ ′ = ξ + a. On the other hand, it is natural to estimateξ + a by adding
a to the estimator ofξ , i.e., by

δ(X) + a.(1.17)

As before, it seems desirable that these two estimators should agree and hence that

δ(X1 + a, . . . , Xn + a) = δ(X1, . . . , Xn) + a for all a.(1.18)
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Definition 1.3 An estimator satisfying (1.18) will be called equivariant under the
transformations (1.10), (1.11), and (1.13), orlocation equivariant.1

All the usual estimators of a location parameter are location equivariant. This
is the case, for example, for the mean, the median, or any weighted average of the
order statistics (with weights adding up to one). The MLEξ̂ is also equivariant
since, ifξ̂ maximizesf (x − ξ ), ξ̂ + a maximizesf (x − ξ − a).

As was the case in Example 1.1, the arguments for (1.16) and (1.17) as estimators
of ξ + a are of a very different nature. The appropriateness of (1.16) results from
the invariance of the situation under shift. It would not be suitable for an estimator
of ξ +a, for example, if it were known that 0< ξ < 1. Then,δ(X) would typically
only take values between 0 and 1, and henceδ(X′) would be disastrous as an
estimate ofξ + a if a > 1. In contrast, the argument leading to (1.17) is quite
independent of any equivariance arguments, but simply reflects the fact that if
δ(X) is a reasonable estimator of a parameterξ , thenδ(X) + a is reasonable for
estimatingξ + a.

The following theorem states an important set of properties of location equiv-
ariant estimators.

Theorem 1.4 Let X be distributed with density (1.9), and let δ be equivariant for
estimating ξ with loss function (1.15). Then, the bias, risk, and variance of δ are
all constant (i.e., do not depend on ξ ).

Proof. Note that ifX has densityf (x) (i.e., ξ = 0), thenX + ξ has density (1.9).
Thus, the bias can be written as

b(ξ ) = Eξ [δ(X)] − ξ = E0[δ(X + ξ )] − ξ = E0[δ(X)],

which does not depend onξ .
The proofs for risk and variance are analogous (Problem 1.1). ✷

Theorem 1.4 has an important consequence. Since the risk of any equivariant
estimator is independent ofξ , the problem of uniformly minimizing the risk within
this class of estimators is replaced by the much simpler problem of determining
the equivariant estimator for which this constant risk is smallest.

Definition 1.5 In a location invariant estimation problem, if a location equivariant
estimator exists which minimizes the constant risk, it is called theminimum risk
equivariant (MRE) estimator.

Such an estimator will typically exist, and is often unique, although in rare
cases there could be a sequence of estimators whose risks decrease to a value not
assumed. To derive an explicit expression for the MRE estimator, let us begin by
finding a representation of the most general location equivariant estimator.

Lemma 1.6 If δ0 is any equivariant estimator, then a necessary and sufficient
condition for δ to be equivariant is that

δ(x) = δ0(x) + u(x)(1.19)

1 Some authors have called such estimatorsinvariant, which could suggest that the estimator remains
unchanged, rather than changing in a prescribed way. We will reserve that term for functions that
do remain unchanged, such as those satisfying (1.20).
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where u(x) is any function satisfying

u(x + a) = u(x), f or all x, a.(1.20)

Proof. Assume first that (1.19) and (1.20) hold. Then,δ(x+a) = δ0(x+a)+u(x+a) =
δ0(x) + a + u(x) = δ(x) + a, so thatδ is equivariant.

Conversely, ifδ is equivariant, let

u(x) = δ(x)− δ0(x).

Then

u(x + a) = δ(x + a)− δ0(x + a)

= δ(x) + a − δ0(x)− a = u(x)

so that (1.19) and (1.20) hold. ✷

To complete the representation, we need a characterization of the functionsu

satisfying (1.20).

Lemma 1.7 A function u satisfies (1.20) if and only if it is a function of the dif-
ferences yi = xi − xn (i = 1, . . . , n − 1), n ≥ 2; for n = 1, if and only if it is a
constant.

Proof. The proof is essentially the same as that of (1.15). ✷

Note that the functionu(·), which is invariant, is only a function of the ancillary
statistic (y1, . . . , yn−1) (see Section 1.6). Hence, by itself, it does not carry any
information about the parameterξ . The connection between invariance and ancil-
larity is not coincidental. (See Lehmann and Scholz 1992, and Problems 2.11 and
2.12.)

Combining Lemmas 1.6 and 1.7 gives the following characterization of equiv-
ariant estimators.

Theorem 1.8 If δ0 is any equivariant estimator, then a necessary and sufficient
condition for δ to be equivariant is that there exists a function v of n−1 arguments
for which

δ(x) = δ0(x)− v(y) f or all x.(1.21)

Example 1.9 Location equivariant estimators based on one observation. Con-
sider the casen = 1. Then, it follows from Theorem 1.8 that the only equivariant
estimators areX + c for some constantc. ‖

We are now in a position to determine the equivariant estimator with minimum
risk.

Theorem 1.10 Let X = (X1, . . . , Xn) be distributed according to (1.9), let Yi =
Xi−Xn (i = 1, . . . , n−1) and Y = (Y1, . . . , Yn−1). Suppose that the loss function
is given by (1.15) and that there exists an equivariant estimator δ0 of ξ with finite
risk. Assume that for each y there exists a number v(y) = v∗(y) which minimizes

E0{ρ[δ0(X)− v(y)]|y}.(1.22)



152 EQUIVARIANCE [ 3.1

Then, a location equivariant estimator δ of ξ with minimum risk exists and is given
by

δ∗(X) = δ0(X)− v∗(Y).

Proof. By Theorem 1.8, the MRE estimator is found by determiningv so as to
minimize

Rξ (δ) = Eξ {ρ[δ0(X)− v(Y)− ξ ]}.
Since the risk is independent ofξ , it suffices to minimize

R0(δ) = E0{ρ[δ0(X)− v(Y)]}
=

∫
E0{ρ[δ0(X)− v(y)]|y} dP0(y).

The integral is minimized by minimizing the integrand, and hence (1.22), for each
y. Sinceδ0 has finite riskE0{ρ[δ0(X)]|y} < ∞ (a.e.P0), the minimization of
(1.22) is meaningful. The result now follows from the assumptions of the theorem.

✷

Corollary 1.11 Under the assumptions of Theorem 1.10, suppose that ρ is convex
and not monotone. Then, an MRE estimator of ξ exists; it is unique if ρ is strictly
convex.

Proof. Theorems 1.10 and 1.7.15. ✷

Corollary 1.12 Under the assumptions of Theorem 1.10:

(i) if ρ(d − ξ ) = (d − ξ )2, then

v∗(y) = E0[δ0(X)|y];(1.23)

(ii) if ρ(d− ξ ) = |d− ξ |, then v∗(y) is any median of δ0(X) under the conditional
distribution of X given y.

Proof. Examples 1.7.17 and 1.7.18 ✷

Example 1.13 Continuation of Example 1.9. For the casen = 1, if X has fi-
nite risk, the arguments of Theorem 1.10 and Corollary 1.11 show that the MRE
estimator isX − v∗ wherev∗ is any value minimizing

E0[ρ(X − v)].(1.24)

In particular, the MRE estimator isX−E0(X) andX−med0(X) when the loss is
squared error and absolute error, respectively.

Suppose, now, thatX is symmetrically distributed aboutξ . Then, for anyρwhich
is convex and even, if follows from Corollary 1.7.19 that (1.24) is minimized by
v = 0, so thatX is MRE. Under the same assumptions, ifn = 2, the MRE estimator
is (X1 +X2)/2. (Problem 1.3). ‖

The existence of MRE estimators is, of course, not restricted to convex loss
functions. As an important class of nonconvex loss functions, consider the case
thatρ is bounded.

Corollary 1.14 Under the assumptions of Example 1.13, suppose that 0 ≤ ρ(t) ≤
M for all values of t , that ρ(t) → M as t → ±∞, and that the density f of X is
continuous a.e. Then, an MRE estimator of ξ exists.
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Proof. See Problem 1.8. ✷

Example 1.15 MRE under 0− 1 loss. Suppose that

ρ(d − ξ ) =

{
1 if |d − ξ | > k
0 otherwise.

Then,v will minimize (1.24), provided it maximizes

P0{|X − v| ≤ k}.(1.25)

Suppose that the densityf is symmetric about 0. Iff is unimodal, thenv = 0
and the MRE estimator ofξ isX. On the other hand, suppose thatf is U-shaped,
sayf (x) is zero for|x| > c > k and is strictly increasing for 0< x < c. Then,
there are two values ofv maximizing (1.25), namelyv = c − k andv = −c + k,
hence,X − c + k andX + c − k are both MRE. ‖
Example 1.16 Normal. Let X1, . . . , Xn be iid according toN (ξ, σ 2), whereσ
is known. If δ0 = X̄ in Theorem 1.10, it follows from Basu’s theorem thatδ0 is
independent ofY and hence thatv(y) = v is a constant determined by minimizing
(1.24) withX̄ in place ofX. ThusX̄ is MRE for all convex and evenρ. It is also
MRE for many nonconvex loss functions including that of Example 1.15. ‖

This example has an interesting implication concerning a “least favorable” prop-
erty of the normal distribution.

Theorem 1.17 Let F be the class of all univariate distributions F that have a
density f (w.r.t. Lebesgue measure) and fixed finite variance, say σ 2 = 1. Let
X1, . . . , Xn be iid with density f (xi − ξ ), ξ = E(Xi), and let rn(F ) be the risk of
the MRE estimator of ξ with squared error loss. Then, rn(F ) takes on its maximum
value over F when F is normal.

Proof. The MRE estimator in the normal case isX̄ with risk E(X̄ − ξ )2 = 1/n.
Since this is the risk of̄X, regardless ofF , the MRE estimator for any otherF
must have risk≤ 1/n, and this completes the proof. ✷

Forn ≥ 3, the normal distribution is, in fact, the only one for whichrn(F ) = 1/n.
Since the MRE estimator is unique, this will follow if the normal distribution can
be shown to be the only one whose MRE estimator isX̄. From Corollary 1.12, it
is seen that the MRE estimator is̄X − E0[X̄|Y] and, hence, is̄X if and only if
E0[X̄|Y] = 0. It was proved by Kagan, Linnik, and Rao (1965, 1973) that this last
equation holds if and only ifF is normal.

Example 1.18 Exponential. LetX1, . . . , Xn be iid according to the exponential
distributionE(ξ, b) with b known. If δ0 = X(1) in Theorem 1.10, it again follows
from Basu’s theorem thatδ0 is independent ofY and hence thatv(y) = v is
determined by minimizing

E0[ρ(X(1)− v)].(1.26)

(a) If the loss is squared error, the minimizing value isv = E0[X(1)] = b/n, and
hence the MRE estimator isX(1)− (b/n).

(b) If the loss is absolute error, the minimizing value isv = b(log 2)/n (Problem
1.4).



154 EQUIVARIANCE [ 3.1

(c) If the loss function is that of Example 1.15, thenv is the center of the interval
I of length 2k which maximizesPξ=0[X(1)εI ]. Since forξ = 0, the density of
X(1) is decreasing on (0,∞), v = k, and the MRE estimator isX(1)− k.

See Problem 1.5 for another comparison. ‖
Example 1.19 Uniform. LetX1, . . . , Xn be iid according to the uniform distri-
butionU (ξ − 1/2b, ξ + 1/2b), with b known, and suppose the loss functionρ is
convex and even. Forδ0, take [X(1) +X(n)]/2 whereX(1) < · · · < X(n) denote the
orderedX’s To findv(y) minimizing (1.22), consider the conditional distribution of
δ0 giveny. This distribution depends ony only through the differencesX(i)−X(1),
i = 2, . . . , n. By Basu’s theorem, the pair (X(1), X(n)) is independent of the ratios
Zi = [X(i) −X(1)]/X(n) −X(1)], i = 2, . . . , n− 1 (Problem 1.6.36(b)). Therefore,
the conditional distribution ofδ0 given the differencesX(i)−X(1), which is equiva-
lent to the conditional distribution ofδ0 givenX(n)−X(1) and theZ’s, depends only
onX(n)−X(1). However, the conditional distribution ofδ0 givenV = X(n)−X(1) is
symmetric about 0 (whenξ = 0; Problem 1.2). It follows, therefore, as in Example
1.13 that the MRE estimator ofξ is [X(1) +X(n)]/2, the midrange. ‖

When loss is squared error, the MRE estimator

δ∗(X) = δ0(X)− E[δ0(X)|Y](1.27)

can be evaluated more explicitly.

Theorem 1.20 Under the assumptions of Theorem 1.15, with L(ξ, d) = (d − ξ )2,
the estimator (1.27) is given by

δ∗(x) =

∫∞
−∞ uf (x1− u, . . . , xn − u) du∫∞
−∞ f (x1− u, . . . , xn − u) du

,(1.28)

and in this form, it is known as the Pitman estimator of ξ .

Proof. Let δ0(X) = Xn. To computeE0(Xn|y) (which exists by Problem 1.21),
make the change of variables

yi = xi − xn (i = 1, . . . , n− 1); yn = xn.

The Jacobian of the transformation is 1. The joint density of theY ’s is therefore

pY (y1, . . . , yn) = f (y1 + yn, . . . , yn−1 + yn, yn),

and the conditional density ofYn giveny = (y1, . . . , yn−1) is

f (y1 + yn, . . . , yn−1 + yn, yn)∫
f (y1 + t, . . . , yn−1 + t, t) dt

.

It follows that

E0[Xn|y] = E0[Yn|y] =

∫
tf (y1 + t, . . . , yn−1 + t, t) dt∫
f (y1 + t, . . . , yn−1 + t, t) dt

.

This can be reexpressed in terms of thex’s as

E0[Xn|y] =

∫
tf (x1− xn + t, . . . , xn−1− xn + t, t) dt∫
f (x1− xn + t, . . . , xn−1− xn + t, t) dt
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or, finally, by making the change of variablesu = xn − t as

E0[Xn|y] = xn −
∫
uf (x1− u, . . . , xn − u) du∫
f (x1− u, . . . , xn − u) du

.

This completes the proof. ✷

Example 1.21 (Continuation of Example 1.19). As an illustration of (1.28), let
us apply it to the situation of Example 1.19. Then

f (x1− ξ, . . . , xn − ξ ) =


b−n if ξ − b

2
≤ X(1) ≤ X(n) ≤ ξ +

b

2

0 otherwise

whereb is known. The Pitman estimator is therefore given by

δ∗(x) =
∫ x(1)+b/2

x(n)−b/2
u du

(∫ x(1)+b/2

x(n)−b/2
du

)−1

=
1

2
[x(1) + x(n)],

which agrees with the result of Example 1.19. ‖
For most densities, the integrals in (1.28) are difficult to evaluate. The following

example illustrates the MRE estimator for one more case.

Example 1.22 Double exponential. LetX1, . . . , Xn be iid with double exponen-
tial distributionDE(ξ,1), so that their joint density is (1/2n)× exp(−�|xi − ξ |).
It is enough to evaluate the integrals in (1.28) over the set wherex1 < · · · < xn. If
xk < ξ < xk+1,

�|xi − ξ | =
n∑
k+1

(xi − ξ )−
k∑
1

(xi − ξ )

=
n∑
k+1

xi −
k∑
1

xi + (2k − n)ξ.

The integration then leads to two sums, both in numerator and denominator of the
Pitman estimator. The resulting expression is the desired estimator. ‖

So far, the estimatorδ has been assumed to be nonrandomized. Let us now con-
sider the role of randomized estimators for equivariant estimation. Recall from the
proof of Corollary 1.7.9 that a randomized estimator can be obtained as a nonran-
domized estimatorδ(X,W ) depending onX and an independent random variable
W with known distribution. For such an estimator, the equivariance condition
(1.18) becomes

δ(X + a,W ) = δ(X,W ) + a for all a.

There is no change in Theorem 1.4, and Lemma 1.6 remains valid with (1.20)
replaced by

u(x + a,w) = u(x, w) for all x, w, anda.

The proof of Lemma 1.7 shows that this condition holds if and only ifu is a
function only ofy andw, so that, finally, in generalization of (1.21), an estimator
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δ(X,W ) is equivariant if and only if it is of the form

δ(X,W ) = δ0(X,W )− v(Y,W ).(1.29)

Applying the proof of Theorem 1.10 to (1.29), we see that the risk is minimized
by choosing forv(y, w) the function minimizing

E0{ρ[δ0(X, w)− v(y, w)]|y, w}.
Since the startingδ0 can be any equivariant estimator, let it be nonrandomized,
that is, not dependent onW . SinceX andW are independent, it then follows that
the minimizingv(y, w) will not involvew, so that the MRE estimator (if it exists)
will be nonrandomized.

Suppose now thatT is a sufficient statistic forξ . Then,X can be represented
as (T ,W ), whereW has a known distribution (see Section 1.6), and any estimator
δ(X) can be viewed as a randomized estimator based onT . The above argument
then suggests that a MRE estimator can always be chosen to depend onT only.
However, the argument does not apply since the family{PTξ ,−∞ < ξ < ∞}
no longer needs be a location family. Let us therefore add the assumption that
T = (T1, . . . , Tr ) whereTi = Ti(X) are real-valued and equivariant, that is, satisfy

Ti(x + a) = Ti(x) + a for all x anda.(1.30)

Under this assumption, the distributions ofT do constitute a location family. To
see this, letV = X − ξ so thatV is distributed with densityf (v1, . . . , vn). Then,
Ti(X) = Ti(V + ξ ) = Ti(V) + ξ , and this defines a location family. The earlier
argument therefore applies, and under assumption (1.30), an MRE estimator can
be found which depends only onT . (For a general discussion of the relationship of
invariance and sufficiency, see Hall, Wijsman, and Ghosh 1965, Basu 1969, Berk
1972a, Landers and Rogge 1973, Arnold 1985, Kariya 1989, and Ramamoorthi
1990.)

In Examples 1.16, 1.18 and 1.19, the sufficient statisticsX̄,X(1), and (X(1), X(n)),
respectively, satisfy (1.30), and the previous remark provides an alternative deriva-
tion for the MRE estimators in these examples.

It is interesting to compare the results of the present section with those on
unbiased estimation in Chapter 2. It was found there that when a UMVU estimator
exists, it typically minimizes the risk for all convex loss functions, but that for
bounded loss functions not even a locally minimum risk unbiased estimator can
be expected to exist. In contrast:

(a) An MRE estimator typically exists not only for convex loss functions but even
when the loss function is not so restricted.

(b) On the other hand, even for convex loss functions, the MRE estimator often
varies with the loss function.

(c) Randomized estimators need not be considered in equivariant estimation since
there are always uniformly better nonrandomized ones.

(d) Unlike UMVU estimators which are frequently inadmissible, the Pitman es-
timator is admissible under mild assumptions (Stein 1959, and Section 5.4).
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(e) The principal area of application of UMVU estimation is that of exponential
families, and these have little overlap with location families (see Section 1.5).

(f) For location families, UMVU estimators typically do not exist. (For specific
results in this direction, see Bondesson 1975.)

Let us next consider whether MRE estimators are unbiased.

Lemma 1.23 Let the loss function be squared error.

(a) When δ(X) is any equivariant estimator with constant bias b, then δ(X)− b
is equivariant, unbiased, and has smaller risk than δ(X).

(b) The unique MRE estimator is unbiased.

(c) If a UMVU estimator exists and is equivariant, it is MRE.

Proof. Part (a) follows from Lemma 2.2.7; (b) and (c) are immediate consequences
of (a). ✷

That an MRE estimator need not be unbiased for general loss functions is seen
from Example 1.18 with absolute error as loss. Some light is thrown on the possible
failure of MRE estimators to be unbiased by considering the following decision-
theoretic definition of unbiasedness, which depends on the loss functionL.

Definition 1.24 An estimatorδ of g(θ ) is said to berisk-unbiased if it satisfies

EθL[θ, δ(X)] ≤ EθL[θ ′, δ(X)] for all θ ′ �= θ,(1.31)

If one interpretsL(θ, d) as measuring how far the estimated valued is from the
estimandg(θ ), then (1.31) states that, on the average,δ is at least as close to the
true valueg(θ ) as it is to any false valueg(θ ′).

Example 1.25 Mean-unbiasedness. If the loss function is squared error, (1.31)
becomes

Eθ [δ(X)− g(θ ′)]2 ≥ Eθ [δ(X)− g(θ )]2 for all θ ′ �= θ.(1.32)

Suppose thatEθ (δ2) <∞ and thatEθ (δ) ∈ g for all θ , whereg = {g(θ ) : θ ∈
}. [The latter condition is, of course, automatically satisfied when = (−∞,∞)
andg(θ ) = θ , as is the case whenθ is a location parameter.] Then, the left side
of (1.32) is minimized byg(θ ′) = Eθδ(X) (Example 1.7.17) and the condition of
risk-unbiasedness, therefore, reduces to the usual unbiasedness condition

Eθδ(X) = g(θ ).(1.33)

‖
Example 1.26 Median-unbiasedness. If the loss function is absolute error, (1.31)
becomes

Eθ |δ(X)− g(θ ′)| ≥ Eθ |δ(X)− g(θ )| for all θ ′ �= θ.(1.34)

By Example 1.7.18, the left side of (1.34) is minimized by any median ofδ(X). It
follows that (1.34) reduces to the condition

medθ δ(X) = g(θ ),(1.35)
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that is,g(θ ) is a median ofδ(X), providedEθ |δ| <∞ andg contains a median
of δ(X) for all θ . An estimatorδ satisfying (1.35) is calledmedian-unbiased. ‖
Theorem 1.27 If δ is MRE for estimating ξ in model (1.9) with loss function
(1.15), then it is risk-unbiased.

Proof. Condition (1.31) now becomes

Eξρ[δ(X)− ξ ′] ≥ Eξρ[δ(X)− ξ ] for all ξ ′ �= ξ,
or, if without loss of generality we putξ = 0,

E0ρ[δ(X)− a] ≥ E0ρ[δ(X)] for all a.

✷

That this holds is an immediate consequence of the fact thatδ(X) = δ0(X)− v∗(Y)
wherev∗(y) minimizes (1.22).

2 The Principle of Equivariance

In the present section, we shall extend the invariance considerations of the bi-
nomial situation of Example 1.1 and the location families (1.9) to the general
situation in which the probability model remains invariant under a suitable group
of transformations.

LetX be a random observable taking on values in a sample spaceX according
to a probability distribution from the family

P = {Pθ, θ ∈ }.(2.1)

Denote byC a class of 1 : 1 transformationsg of the sample space onto itself.

Definition 2.1
(i) If g is a 1 : 1 transformation of the sample space onto itself, if for eachθ

the distribution ofX′ = gX is again a member ofP, sayPθ ′ , and if asθ
traverses, so doesθ ′, then theprobability model (2.1) is invariant under the
transformationg.

(ii) If (i) holds for each member of a class of transformationsC, then the model
(2.1) isinvariant under C.

A class of transformations that leave a probability model invariant can always
be assumed to be a group. To see this, letG = G(C) be the set of all compositions
(defined in Section 1.4) of a finite number of transformationsg±1

1 · · · g±1
m with

g1, . . . , gm ∈ C, where each of the exponents can be +1 or−1 and where the
elementsg1, . . . , gm need not be distinct. Then, any elementg ∈ G leaves (2.1)
invariant, andG is a group (Problem 2.1), the groupgenerated by C.

Example 2.2 Location family.
(a) Consider the location family (1.9) and the group of transformationsX′ = X+a,

which was already discussed in (1.10) and Example 4.1. It is seen from (1.12)
that if X is distributed according to (1.9) withθ = ξ , thenX′ = X + a has the
density (1.9) withθ ′ = ξ ′ = ξ + a, so that the model (1.9) is preserved under
these transformations.
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(b) Suppose now that, in addition,f has the symmetry property

f (−x) = f (x)(2.2)

where−x = (−x1, . . . ,−xn), and consider the transformationx′ = −x. The
density ofX′ is

f (−x ′1− ξ, . . . ,−x ′n − ξ ) = f (x ′1− ξ ′, . . . , x ′n − ξ ′)
if ξ ′ = −ξ . Thus, model (1.9) is invariant under the transformationsx′ = −x,
ξ ′ = −ξ , and hence under the group consisting of this transformation and the
identity (Problem 2.2). This is not true, however, iff does not satisfy (1.10).
If, for example,X1, . . . , Xn are iid according to the exponential distribution
E(ξ,1), then the variables−X1, . . . ,−Xn no longer have an exponential
distribution. ‖

Let {gX, g ∈ G} be a group of transformations of the sample space which leave
the model invariant. IfgX has the distributionPθ ′ , thenθ ′ = ḡθ is a function which
maps onto, and the transformation̄gθ is 1 : 1, provided the distributionsPθ ,
θ ∈  are distinct (Problem 2.3). It is easy to see that the transformationsḡ then
also form a group which will be denoted bȳG (Problem 2.4). From the definition
of ḡθ , it follows that

Pθ (gX ∈ A) = Pḡθ (X ∈ A)(2.3)

where the subscript on the left side indicates the distribution ofX, not that ofgX.
More generally, for a functionψ whose expectation is defined,

Eθ [ψ(gX)] = Eḡθ [ψ(X)].(2.4)

We have now generalized the transformations (1.10) and (1.11), and it remains to
consider (1.13). This last generalization is most easily introduced by an example.

Example 2.3 Two-sample location family. Let X = (X1, . . . , Xm) and Y =
(Y1, . . . , Yn) and suppose that (X,Y) has the joint density

f (x − ξ, y− η) = f (x1− ξ, . . . , xm − ξ, y1− η, . . . , yn − η).(2.5)

This model remains invariant under the transformations

g(x, y) = (x + a, y + b), ḡ(ξ, η) = (ξ + a, η + b).(2.6)

Consider the problem of estimating

W = η − ξ.(2.7)

If the transformed variables are denoted by

x′ = x + a, y′ = y + b, ξ ′ = ξ + a, η′ = η + b,

thenW is transformed intoW′ = W + (b − a). Hence, an estimated valued, when
expressed in the new coordinates, becomes

d ′ = d + (b − a).(2.8)
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For the problem to remain invariant, we require, analogously to (1.14), that the
loss functionL(ξ, η; d) satisfies

L[ξ + a, η + b; d + (b − a)] = L(ξ, η; d).(2.9)

It is easy to see (Problem 2.5) that this is the case if and only ifL depends only on
the difference (η − ξ )− d, that is, if

L(ξ, η; d) = ρ(W− d).(2.10)

Suppose, next, that instead of estimatingη−ξ , the problem is that of estimating

h(ξ, η) = ξ2 + η2.

Under the transformations (2.6),h(ξ, η) is transformed into (ξ +a)2 +(η+b)2. This
does not lead to an analog of (2.8) since the transformed value does not depend on
(ξ, η) only thoughh(ξ, η). Thus, the form of the function to be estimated plays a
crucial role in invariance considerations.

‖
Now, consider the general problem of estimatingh(θ ) in model (2.1), which is

assumed to be invariant under the transformationsX′ = gX, θ ′ = ḡθ , g ∈ G. The
additional assumption required is that for any givenḡ, h(ḡθ ) depends onθ only
throughh(θ ), that is,

h(θ1) = h(θ2) implies h(ḡθ1) = h(ḡθ2).(2.11)

The common value ofh(ḡθ ) for all θ ’s to whichh assigns the same value will then
be denoted by

h(ḡθ ) = g∗h(θ ).(2.12)

If H is the set of values taken on byh(θ ) asθ ranges over, the transforma-
tionsg∗ are 1 : 1 fromH onto itself. [Problem 2.8(a)]. As̄g ranges overḠ, the
transformationsg∗ form a groupG∗ (Problem 2.6).

The estimated valued of h(θ ) when expressed in the new coordinates becomes

d ′ = g∗d.(2.13)

Since the problems of estimatingh(θ ) in terms of (X, θ, d) or h(θ ′) in terms of
(X′, θ ′, d ′) represent the same physical situation expressed in a new coordinate
system, the loss function should satisfyL(θ ′, d ′) = L(θ, d).

This leads to the following definition.

Definition 2.4 If the probability model (2.1) is invariant underg, the loss function
L satisfies

L(ḡθ, g∗d) = L(θ, d),(2.14)

andh(θ ) satisfies (2.11), the problem of estimatingh(θ ) with loss functionL is
invariant under g.

In this discussion, it was tacitly assumed that the setD of possible decisions
coincides withH. This need not, however, be the case. In Chapter 2, for example,
estimators of a variance were permitted (with some misgiving) to take on negative
values. In the more general case thatH is a subset ofD, one can take the condition
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that (2.14) holds for allθ as the definition ofg∗d. If L(θ, d) = L(θ, d ′) for all
θ implies d = d ′, as is typically the case,g∗d is uniquely defined by the above
condition, andg∗ is 1 : 1 fromD onto itself [Problem 2.8(b)].

In an invariant estimation problem, ifδ is the estimator that we would like to
use to estimateh(θ ), there are two natural ways of estimatingg∗h(θ ), the estimand
h(θ ) expressed in the transformed system. One of these generalizes the estimators
(1.6) and (1.16), and the other the estimators (1.6) and (1.17) of the preceding
section.

1. Functional Equivariance. Quite generally, if we have decided to useδ(X) to
estimateh(θ ), it is natural to use

φ[δ(X)] as the estimator ofφ[h̄(θ )],

for any functionφ. If, for example,δ(X) is used to estimate the lengthθ of the edge
of a cube, it is natural to estimate the volumeθ3 of the cube by [δ(X)]3. Hence, if
d is the estimated value ofh(θ ), theng∗d should be the estimated value ofg∗h(θ ).

Applying this toφ = g∗ leads to

g∗δ(X) as the estimator ofg∗h(θ )(2.15)

whenδ(X) is used to estimateh(θ ).

2. Formal Invariance. Invariance under transformationsg, ḡ, andg∗ of the esti-
mation ofh(θ ) means that the problem of estimatingh(θ ) in terms ofX, θ , and
d and that of estimatingg∗h(θ ) in terms ofX′, θ ′, andd ′ are formally the same,
and should therefore be treated the same. In generalization of (1.6) and (1.16), this
means that we should use

δ(X′) = δ(gX) to estimateg∗[h̄(θ )] = h(ḡθ ).(2.16)

It seems desirable that these two principles should lead to the same estimator
and hence that

δ(gX) = g∗δ(X).(2.17)

Definition 2.5 In an invariant estimation problem, an estimatorδ(X) is said to be
equivariant if it satisfies (2.17) for allg ∈ G.

As was discussed in Section 1, the arguments for (2.15) and (2.16) are of a
very different nature. The appropriateness of (2.16) results from the symmetries
exhibited by the situation and represented mathematically by the invariance of the
problem under the transformationsg ∈ G. It gives expression to the idea that if
some symmetries are present in an estimation problem, the estimators should pos-
sess the corresponding symmetries. It follows that (2.16) is no longer appropriate
if the symmetry is invalidated by asymmetric prior information; if, for example,θ

is known to be restricted to a subsetω of the parameter space, for whichḡω �= ω,
as was the case mentioned at the end of Example 1.1.1 and after Definition 1.3.
In contrast, the argument leading to (2.15) is quite independent of any symmetry
assumptions and simply reflects the fact that ifδ(X) is a reasonable estimator of,
say,θ thenφ[δ(X)] is a reasonable estimator ofφ(θ ).
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Example 2.6 Continuation of Example 2.3. In Example 2.3,h(ξ, η) = η − ξ ,
and by (2.8),g∗d = d + (b − a). It follows that (2.17) becomes

δ(x + a, y + b) = δ(x, y) + b − a.(2.18)

If δ0(X) andδ′0(Y) are location equivariant estimators ofξ andη, respectively, then
δ(X,Y) = δ′0(Y)− δ0(X) is an equivariant estimator ofη − ξ . ‖

The following theorem generalizes Theorem 1.4 to the present situation.

Theorem 2.7 If δ is an equivariant estimator in a problem which is invariant
under a transformation g, then the risk function of δ satisfies

R(ḡθ, δ) = R(θ, δ) f or all θ.(2.19)

Proof. By definition
R(ḡθ, δ) = EḡθL[ḡθ, δ(X)].

It follows from (2.4) that the right side is equal to

EθL[ḡθ, δ(gX)] = EθL[ḡθ, g∗δ(X)] = R(θ, δ).

✷

Looking back on Section 1, we see that the crucial fact underlying the success of
the invariance approach was the constancy of the risk function of any equivariant
estimator. Theorem 2.7 suggests the following simple condition for this property
to obtain.

A groupG of transformations of a space is said to betransitive if for any two
points there is a transformation inG taking the first point into the second.

Corollary 2.8 Under the assumptions of Theorem 2.7, if Ḡ is transitive over the
parameter space, then the risk function of any equivariant estimator is constant,
that is, independent of θ .

When the risk function of every equivariant estimator is constant, the best equiv-
ariant estimator (MRE) is obtained by minimizing that constant, so that a uniformly
minimum risk equivariant estimator will then typically exist. In such problems,
alternative characterizations of the best equivariant estimator can be obtained.
(See Problems 2.11 and 2.12.) Berk (1967a) and Kariya (1989) provide a rigorous
treatment, taking account of the associated measurability problems. A Bayesian
approach to the derivation of best equivariant estimators is treated in Section 4.4.

Example 2.9 Conclusion of Example 2.3. In this example,θ = (ξ, η) andḡθ =
(ξ + a, η + b). This group of transformations is transitive over since, given any
two points (ξ, η) and (ξ ′, η′), a andb exist such thatξ +a = ξ ′, andη+b = η′. The
MRE estimator can now be obtained in exact analogy to Section 3.1 (Problems
1.13 and 1.14). ‖

The estimation problem treated in Section 1 was greatly simplified by the fact
that it was possible to dispense with randomized estimators. The corresponding
result holds quite generally when̄G is transitive. If an estimatorδ exists which is
MRE among all nonrandomized estimators, it is then also MRE when randomiza-
tion is permitted. To see this, note that a randomized estimator can be represented
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asδ′(X,W ) whereW is independent ofX and has a known distribution and that
it is equivariant ifδ′(gX,W ) = g∗δ′(X,W ). Its risk is again constant, and for any
θ = θ0, it is equal toE[h(W )] where

h(w) = Eθ0{L[δ′(X,w), θ0]}.
This risk is minimized by minimizingh(w) for eachw. However, by assumption,
δ′(X,w) = δ(X) minimizesh(w), and hence the MRE estimator can be chosen to be
nonrandomized. The corresponding result need not hold whenḠ is not transitive.
A counterexample is given in Example 5.1.8.

Definition 2.10 For a groupG of transformations of, two pointsθ1, θ2 ∈ 
areequivalent if there exists ag ∈ G such thatgθ1 = θ2. The totality of points
equivalent to a given point (and hence to each other) is called anorbit of G. The
groupG is transitive over if it has only one orbit.

For the most part, we will consider transitive groups; however, there are some
groups of interest that are not transitive.

Example 2.11 Binomial transformation group. LetX ∼ binomial(n, p), 0 <
p < 1, and consider the group of transformations.

gX = n−X,
ḡp = 1− p.

The orbits are the pairs (p,1− p). The group is not transitive. ‖
Example 2.12 Orbits of a scale group. Let X1, . . . , Xn be iidN (µ, σ 2), both
unknown, and consider estimation ofσ 2. The model remains invariant under the
scale group

gXi = aXi,

ḡ(µ, σ 2) = (aµ, a2σ 2), a > 0.

We shall now show that (µ1, σ
2
1 ) and (µ2, σ

2
2 ) lie on the same orbit if and only if

µ1/σ1 = µ2/σ2.
On the one hand, suppose thatµ1/σ1 = µ2/σ2. Then,µ2/µ1 = σ2/σ1 = a, say,

andµ2 = aµ1; σ 2
2 = a2σ 2

1 . On the other hand, ifµ2 = aµ1 andσ 2
2 = a2σ 2

1 , then
µ2/µ1 = a andσ 2

2 /σ
2
1 = a. Thus, the values ofτ = µ/σ can be used to label the

orbits ofG. ‖
The following corollary is a straightforward consequence of Theorem 2.7.

Corollary 2.13 Under the assumptions of Theorem 2.7, the risk function of any
equivariant estimator is constant on the orbits of G.

Proof. See Problem 2.15. ✷

In Section 1.4,group families were introduced as families of distributions gen-
erated by subjecting a random variable with a fixed distribution to a group of
transformations. Consider now a family of distributionsP = {Pθ, θ ∈ } which
remains invariant under a groupG for which Ḡ is transitive over andg1 �= g2
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implies ḡ1 �= ḡ2. Let θ0 be any fixed element of. ThenP is exactly the group
family of distributions of{gX, g ∈ G} whenX has distributionPθ0.

Conversely, letP be the group family of the distributions ofgX asg varies
overG, whenX has a fixed distributionP , so thatP = {Pg, g ∈ G}. Then,g can
serve as the parameterθ andG as the parameter space. In this notation, the starting
distributionP becomesPe, wheree is the identity transformation. Thus, a family
of distributions remains invariant under a transitive group of transformations of
the sample space if and only if it is a group family.

When an estimation problem is invariant under a group of transformations and
an MRE estimator exists, this seems the natural estimator to use—of the various
principles we shall consider, equivariance, where it applies, is perhaps the most
convincing. Yet, even this principle can run into difficulties. The following example
illustrates the possibility of a problem remaining invariant under two different
groups,G1 andG2, which lead to two different MRE estimatorsδ1 andδ2.

Example 2.14 Counterexample. Let the pairs (X1, X2) and (Y1, Y2) be indepen-
dent, each with a bivariate normal distribution with mean zero. Let their covariance
matrices be� = [σij ] andW� = [Wσij ],W > 0, and consider the problem of es-
timatingW.

LetG1 be the group of transformations

X′1 = a1X1 + a2X2 Y ′1 = c(a1Yi + a2Y2)
X′2 = bX2 Y ′2 = cbY2 .

(2.20)

Then, (X′1, X
′
2) and (Y ′1, Y

′
2) will again be independent and each will have a bivariate

normal distribution with zero mean. If the covariance matrix of (X′1, X
′
2) is�′, that

of (Y ′1, Y
′
2) is W′�′ whereW′ = c2W (Problem 2.16). Thus,G1 leaves the model

invariant.
If h(�,W) = W, (2.11) clearly holds, (2.12) and (2.13) become

W′ = c2W, d ′ = c2d,(2.21)

respectively, and a loss functionL(W, d) satisfies (2.14) providedL(c2W, c2d) =
L(W, d). This condition holds if and only ifL is of the form

L(W, d) = ρ(d/W).(2.22)

[For the necessity of (2.22), see Problem 2.10.]
An estimatorδ of W is equivariant under the above transformation if

δ(x′, y′) = c2δ(x, y).(2.23)

We shall now show that (2.23) holds if and only if

δ(x, y) =
ky2

2

x2
2

for some value ofk a.e.(2.24)

It is enough to prove this for the reduced sample space in which the matrix

(
x1x2

y1y2

)
is nonsingular and in which bothx2 andy2 are �= 0, since the rest of the sample
space has probability zero.
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Let G′1 be the subgroup ofG1 consisting of the transformations (2.20) with
b = c = 1. The condition of equivariance under these transformations reduces to

δ(x′, y′) = δ(x, y).(2.25)

This is satisfied wheneverδ depends only onx2 andy2 sincex ′2 = x2 andy ′2 = y2.
To see that this condition is also necessary for (2.25), suppose thatδ satisfies (2.25)
and let (x ′1, x2; y ′1, y2) and (x1, x2; y1, y2) be any two points in the reduced sample
space which have the same second coordinates. Then, there exista1 anda2 such
that

x ′1 = a1x1 + a2x2; y ′1 = a1y1 + a2y2,

that is, there existsg ∈ G′1 for which g(x, y) = (x′y′), and henceδ depends only
onx2, y2.

Consider now anyδ′(x2, y2). To be equivariant under the full groupG1, δ
′ must

satisfy
δ′(bx2, cby2) = c2δ′(x2, y2).(2.26)

Forx2 = y2 = 1, this condition becomes

δ′(b, cb) = c2δ′(1,1)

and hence reduces to (2.24) withx2 = b, y2 = bc, andk = δ′(1,1). This shows that
(2.24) is necessary forδ to be equivariant; that it is sufficient is obvious.

The best equivariant estimator underG1 is thusk∗Y 2
2 /X

2
2 wherek∗ is a value

which minimizes

EWρ

(
kY 2

2

WX2
2

)
= E1ρ

(
kY 2

2

X2
2

)
.

Such a minimizing value will typically exist. Suppose, for example, that the loss
is 1 if |d −W|/W > 1/2 and zero otherwise. Then,k∗ is obtained by maximizing

P1

(∣∣∣∣k Y 2
2

X2
2

− 1

∣∣∣∣ < 1

2

)
= P1

(
1

2k
<
Y 2

2

X2
2

<
3

2k

)
.

As k → 0 or∞, this probability tends to zero, and a maximizing value therefore
exists and can be determined from the distribution ofY 2

2 /X
2
2 whenW = 1.

Exactly the same argument applies ifG1 is replaced by the transformationsG2

X′1 = bX1 Y ′1 = cbY1

X′2 = a1X1 + a2X2 Y ′2 = c(a1Y1 + a2Y2)

and leads to the MRE estimatork∗Y 2
1 /X

2
1. See Problems 2.19 and 2.20. ‖

In the location case, it turned out (Theorem 1.27) that an MRE estimator is
always risk-unbiased. The extension of this result to the general case requires
some assumptions.

Theorem 2.15 If Ḡ is transitive and G∗ commutative, then an MRE estimator is
risk-unbiased.

Proof. Let δ be MRE andθ, θ ′ ∈ . Then, by the transitivity ofḠ, there exists
ḡ ∈ Ḡ such thatθ = ḡθ ′, and hence

EθL[θ ′, δ(X)] = EθL[ḡ−1θ, δ(X)] = EθL[θ, g∗δ(X)].
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Now, if δ(X) is equivariant, so isg∗δ(X) (Problem 2.18), and, therefore, sinceδ is
MRE,

EθL[θ, g∗δ(X)] ≥ EθL[θ, δ(X)],

which completes the proof. ✷

Transitivity ofḠ will usually [but not always, see Example 2.14(a) below] hold
when an MRE estimator exists. On the other hand, commutativity ofG∗ imposes
a severe restriction. That the theorem need not be valid if either condition fails is
shown by the following example.

Example 2.16 Counterexample. Let X beN (ξ, σ 2) with both parameters un-
known, let the estimand beξ and the loss function be

L(ξ, σ ; d) = (d − ξ )2/σ 2.(2.27)

(a) The problem remains invariant under the groupG1; gx = x + c. It follows
from Section 1 thatX is MRE underG1. However,X is not risk-unbiased
(Problem 2.19). Here,̄G1 is the group of transformations

ḡ(ξ, σ ) = (ξ + c, σ ),

which is clearly not transitive.

If the loss function is replaced by (d − ξ )2, the problem will remain invariant
underG1; X remains equivariant but is now risk-unbiased by Example 1.25.
Transitivity of Ḡ is thus not necessary for the conclusion of Theorem 2.15.

(b) When the loss function is given by (2.27), the problem also remains invariant
under the larger groupG2 : ax+c,0< a. SinceX is equivariant underG2 and
MRE underG1, it is also MRE underG2. However, as stated in (i),X is not
risk-unbiased with respect to (1.35). Here,G∗2 is the group of transformations
g∗d = ad + c, and this is not commutative (Problem 2.19). ‖

The location problem considered in Section 1 provides an important example
in which the assumptions of Theorem 2.15 are satisfied, and Theorem 1.27 is the
specialization of Theorem 2.15 to that case. The scale problem, which will be
considered in Section 3, can also provide another illustration.

We shall not attempt to generalize to the present setting the characterization of
equivariant estimators which was obtained for the location case in Theorem 1.8.
Some results in this direction, taking account also of the associated measurability
problems, can be found in Eaton (1989) or Wijsman (1990). Instead, we shall
consider in the next section some other extensions of the problem treated in Section
1.

We close this section by exhibiting a familyP of distributions for which there
exists no group leavingP invariant (except the trivial group consisting of the
identity only).

Theorem 2.17 Let X be distributed according to the power series distribution
[see (2.3.9)]

P (X = k) = ckθ
kh(θ ); k = 0,1, . . . , 0< θ <∞.(2.28)
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If ck > 0 for all k, then there does not exist a transformation gx = g(x) leaving
the family (2.28) invariant except the identity transformation g(x) = x for all x.

Proof. SupposeY = g(X) is a transformation leaving (2.28) invariant, and let
g(k) = ak andḡθ = µ. Then,Pθ (X = k) = Pµ(Y = ak) and hence

ckθ
kh(θ ) = cakµ

akh(µ).(2.29)

Replacingk by k + 1 and dividing the resulting equation by (2.29), we see that

ck+1

ck
θ =

cak+1

cak
µak+1−ak .(2.30)

Replacingk by k + 1 in (2.30) and dividing the resulting equation by (2.30) shows
that

µak+2−ak+1 is proportional toµak+1−ak for all 0< µ < m

and hence that

ak+2− ak+1 = ak+1− ak.
If we denote this common value byW, we get

ak = a0 + kW for k = 0,1,2, . . . .(2.31)

Invariance of the model requires the set (2.31) to be a permutation of the set
{0,1,2, . . .}. This implies thatW > 0 and hence thata0 = 0 andW = 1, i.e., that
ak = k andg is the identity. ✷

Example 2.11 shows that this result no longer holds ifck = 0 for k exceeding
somek0; see Problem 2.28.

3 Location-Scale Families

The location model discussed in Section 1 provides a good introduction to the ideas
of equivariance, but it is rarely realistic. Even when it is reasonable to assume the
form of the densityf in (1.9) to be known, it is usually desirable to allow the model
to contain an unknown scale parameter. The standard normal model according to
which X1, . . . , Xn are iid asN (ξ, σ 2) is the most common example of such a
location-scale model. In this section, we apply some of the general principles
developed in Section 2 to location-scale models, as well as some other group
models. As preparation for the analysis of these models, we begin with the case,
which is of interest also in its own right, in which the only unknown parameter is
scale parameter.

Let X = (X1, . . . , Xn) have a joint probability density

1

τn
f

(x
τ

)
=

1

τn
f

(x1

τ
, . . . ,

xn

τ

)
, τ > 0,(3.1)

wheref is known andτ is an unknownscale parameter. This model remains
invariant under the transformations

X′i = bXi, τ ′ = bτ for b > 0.(3.2)
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The estimand of primary interest ish(τ ) = τ r . Sinceh is strictly monotone,
(2.11) is vacuously satisfied. Transformations (3.2) induce the transformations

h(τ ) → brτ r = brh(τ ) and d ′ = brd,(3.3)

and the loss functionL is invariant under these transformations, provided

L(bτ, brd) = L(τ, d).(3.4)

This is the case if and only if it is of the form (Problem 3.1)

L(τ, d) = γ

(
d

τ r

)
.(3.5)

Examples are

L(τ, d) =
(d − τ r )2

τ 2r
and L(τ, d) =

|d − τ r |
τ r

(3.6)

but not squared error.
An estimatorδ of τ r is equivariant under (3.2), orscale equivariant, provided

δ(bX) = brδ(X).(3.7)

All the usual estimators ofτ are scale equivariant; for example, the standard devi-

ation
√
�

(
Xi − X̄

)2
/ (n− 1), the mean deviation�|Xi − X̄|/n, the range, and

the maximum likelihood estimator [Problem 3.1(b)].
Since the groupḠ of transformationsτ ′ = bτ , b > 0, is transitive over,

the risk of any equivariant estimator is constant by Corollary 2.8, so that one can
expect an MRE estimator to exist. To derive it, we first characterize the totality of
equivariant estimators.

Theorem 3.1 Let X have density (3.1) and let δ0(X) be any scale equivariant
estimator of τ r . Then, if

zi =
xi

xn
(i = 1, . . . , n− 1) and zn =

xn

|xn|(3.8)

and if z = (z1, . . . , zn), a necessary and sufficient condition for δ to satisfy (3.7) is
that there exists a function w(z) such that

δ(x) =
δ0(x)

w(z)
.

Proof. Analogous to Lemma 1.6, a necessary and sufficient condition forδ to
satisfy (3.7) is that it is of the formδ(x) = δ0(x)/u(x) where (Problem 3.4)

u(bx) = u(x) for all x and all b > 0.(3.9)

It remains to show that (3.9) holds if and only ifu depends onx only throughz.
Note here thatz is defined whenxn �= 0 and, hence, with probability 1. That any
function ofz satisfies (3.9) is obvious. Conversely, if (3.9) holds, then

u(x1, . . . , xn) = u

(
x1

xn
, . . . ,

xn−1

xn
,
xn

|xn|
)

;

hence,u does depend only onz, as was to be proved. ✷
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Example 3.2 Scale equivariant estimator based on one observation. Suppose
thatn = 1. Then, the most general estimator satisfying (3.7) is of the formXr/w(Z)
whereZ = X/|X| is±1 asX is≥ or≤ 0, so that

δ(X) =

{
AXr if X > 0
BXr if X < 0,

A, B being two arbitrary constants. ‖
Let us now determine the MRE estimator for a general scale family.

Theorem 3.3 Let X be distributed according to (3.1) and let Z be given by (3.8).
Suppose that the loss function is given by (3.5) and that there exists an equivariant
estimator δ0 of τ r with finite risk. Assume that for each z, there exists a number
w(z) = w∗(z) which minimizes

E1{γ [δ0(X)/w(z)]|z}.(3.10)

Then, an MRE estimator δ∗ of τ r exists and is given by

δ∗(X) =
δ0(X)

w∗(X)
.(3.11)

The proof parallels that of Theorem 1.10.

Corollary 3.4 Under the assumptions of Theorem 3.3, suppose that ρ(v) = γ (ev)
is convex and not monotone. Then, an MRE estimator of τ r exists; it is unique if ρ
is strictly convex.

Proof. By replacingγ (w) byρ(logw) [with ρ(−∞) = γ (0)], the result essentially
reduces to that of Corollary 1.11. This argument requires thatδ ≥ 0, which can be
assumed without loss of generality (Problem 3.2). ✷

Example 3.5 Standardized power loss. Consider the loss function

L(τ, d) =
|d − τ r |p
τpr

=

∣∣∣∣ dτ r − 1

∣∣∣∣p = γ

(
d

τ r

)
(3.12)

with γ (v) = |v − 1|p. Then,ρ is strictly convex forv > 0, providedp ≥ 1
(Problem 3.5). Under the assumptions of Theorem 3.3, if we set

γ

(
d

τ r

)
=

(d − τ r )2

τ 2r
,(3.13)

then (Problem 3.10)

δ∗(X) =
δ0(X)E1[δ0(X)|Z]

E1[δ2
0(X)|Z]

;(3.14)

if

γ

(
d

τ r

)
=
|d − τ r |
τ r

,(3.15)

thenδ∗(X) is given by (3.11), withw∗(Z) any scale median of δ0(X) under the
conditional distribution ofX givenZ and withτ = 1, that is,w∗(z) satisfies

E(X|Z)I (X ≥ w∗(Z)) = E(X|Z)I (X ≤ w∗(Z))(3.16)

(Problems 3.7 and 3.10). ‖
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Example 3.6 Continuation of Example 3.2. Suppose thatn = 1, andX > 0
with probability 1. Then, the arguments of Theorem 3.3 and Example 3.5 show
that ifXr has finite risk, the MRE estimator ofτ r isXr/w∗ wherew∗ is any value
minimizing

E1[γ (Xr/w)].(3.17)

In particular, the MRE estimator is

XrE1(Xr )/E1(X2r )(3.18)

when the loss is (3.13), and it isXr/w∗, wherew∗ is any scale median ofXr for
τ = 1, when the loss is (3.15). ‖
Example 3.7 MRE for normal variance, known mean. LetX1, . . ., Xn be iid
according toN (0, σ 2) and consider the estimation ofσ 2. Forδ0 = �X2

i , it follows
from Basu’s theorem thatδ0 is independent ofZ and hence thatw∗(z) = w∗ is
a constant determined by minimizing (3.17) with�X2

i in place ofXr . For the
loss function (3.13) withr = 2, the MRE estimator turns out to be�X2

i /(n + 2)
[Equation (2.2.26) or Problem 3.7]. ‖

Quite generally, when the loss function is (3.13), the MRE estimator ofτ r is
given by

δ∗(x) =

∫∞
0 vn+r−1f (vx1, . . . , vxn) dv∫∞
0 vn+2r−1f (vx1, . . . , vxn) dv

,(3.19)

and in this form, it is known as thePitman estimator of τ r . The proof parallels that
of Theorem 1.20 (Problem 3.16).

The loss function (3.13) satisfies

lim
d→∞

L(τ, d) =∞ but lim
d→0

L(τ, d) = 1,

so that it assigns much heavier penalties to overestimation than to underestimation.
An alternative to the loss function (3.13) and (3.15), first introduced by Stein (James
and Stein, 1961), and known asStein’s loss, is given by

Ls(τ, d) = (d/τ r )− log(d/τ r )− 1.(3.20)

For this loss, limd→∞ Ls(τ, d) = limd→0Ls(τ, d) = ∞; it is thus somewhat more
evenhanded. For another justification of (3.20), see Brown 1968, 1990b and also
Dey and Srinivasan 1985.

The change in the estimator (3.14) if (3.13) is replaced by (3.20) is shown in the
following corollary.
Corollary 3.8 Under the assumptions of Theorem 3.3, if the loss function is given
by (3.20), the MRE estimator δ∗ of τ r is uniquely given by

δ∗s = δ0(X)/E1(δ0(X)|z).(3.21)

Proof. Problem 3.19. ✷

In light of the above discussion about skewness of the loss function, it is inter-
esting to compareδ∗s of (3.21) withδ∗ of (3.14). It is clear thatδ∗s ≥ δ∗ if and only
if E1(δ2

0(X)|Z) ≥ [E1(δ0(X)|Z)]2, which will always be the case. Thus,Ls results
in an estimator which is larger.
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Example 3.9 Normal scale estimation under Stein’s loss. For the situation of
Example 3.7, withr = 2, the MLE isδ∗s (x) = �X2

i /n which is always larger than
δ∗ = �X2

i /(n + 2), the MRE estimator underL2(τ, d). Brown (1968) explores the
loss functionLs further, and shows that it is the only scale invariant loss function
for which the UMVU estimator is also the MRE estimator. ‖

So far, the estimatorδ has been assumed to be nonrandomized. SinceḠ is
transitive over, it follows from the result proved in the preceding section that
randomized estimators need not be considered. It is further seen, as for the cor-
responding result in the location case, that if a sufficient statisticT exists which
permits a representationT = (T1, . . . , Tr ) with

Ti(bX) = bTi(X) for all b > 0,

then an MRE estimator can be found which depends only onT . Illustrations are
provided by Example 3.7 and Problem 3.12, withT = (�X2

i )
1/2 andT = X(n),

respectively. When the loss function is (3.13), it follows from the factorization
criterion that the MRE estimator (3.19) depends only onT .

Since the groupτ ′ = bτ , b > 0, is transitive and the groupd ′ = τ rd is commuta-
tive, Theorem 3.3 applies and an MRE estimator is always risk-unbiased, although
the MRE estimators of Examples 3.7 and 3.9 are not unbiased in the sense of
Chapter 2. See also Problem 3.12.

Example 3.10 Risk-unbiasedness. If the loss function is (3.13), the condition of
risk-unbiasedness reduces to

Eτ [δ
2(X)] = τ rEτ [δ(X)].(3.22)

Given any scale equivariant estimatorδ0(X) of τ r , there exists a value ofc for
whichcδ0(X) satisfies (3.22), and for this value,cδ0(X) has uniformly smaller risk
thanδ0(X) unlessc = 1 (Problem 3.21).

If the loss function is (3.15), the condition of risk-unbiasedness requires that
Eτ |δ(X)−a|/a be minimized bya = τ r . From Example 3.5, for this loss function,
risk-unbiasedness is equivalent to the condition that the estimandτ r is equal to the
scale median ofδ(X). ‖

Let us now turn to location-scale families, where the density ofX = (X1, . . . , Xn)
is given by

1

τn
f

(
x1− ξ
τ

, . . . ,
xn − ξ
τ

)
(3.23)

with both parameters unknown. Consider first the estimation ofτ r with loss func-
tion (3.5). This problem remains invariant under the transformations

X′i = a + bXi, ξ ′ = a + bξ, τ ′ = bτ (b > 0),(3.24)

andd ′ = brd, and an estimatorδ of τ r is equivariant under this group if

δ(a + bX) = brδ(X).(3.25)

Consider first only a change in location,

X′i = Xi + a,(3.26)
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which takesξ into ξ ′ = ξ +a but leavesτ unchanged. By (3.25),δmust then satisfy

δ(x + a) = δ(x),(3.27)

that is, remaininvariant. By Lemma 1.7, condition (3.27) holds if and only ifδ is
a function only of the differencesyi = xi − xn. The joint density of theY ’s is

1

τn

∫ ∞

−∞
f

(
y1 + t

τ
, . . . ,

yn−1 + t

τ
,
t

τ

)
dt(3.28)

=
1

τn−1

∫ ∞

−∞
f

(y1

τ
+ u, . . . ,

yn−1

τ
+ u, u

)
du.

Since this density has the structure (3.1) of a scale family, Theorem 3.3 applies
and provides the estimator that uniformly minimizes the risk among all estimators
satisfying (3.25).

It follows from Theorem 3.3 that such an MRE estimator ofτ r is given by

δ(X) =
δ0(Y)

w∗(Z)
(3.29)

whereδ0(Y) is any finite risk scale equivariant estimator ofτ r based onY =
(Y1, . . . , Yn−1), whereZ = (Z1, . . . , Zn−1) with

Zi =
Yi

Yn−1
(i = 1, . . . , n− 2) and Zn−1 =

Yn−1

|Yn−1| ,(3.30)

and wherew∗(Z) is any number minimizing

Eτ=1{γ [δ0(Y)/w(Z)|Z]}.(3.31)

Example 3.11 MRE for normal variance, unknown mean. LetX1, . . . , Xn be
iid according toN (ξ, σ 2) and consider the estimation ofσ 2 with loss function
(3.13),r = 2. By Basu’s theorem, (̄X,�(Xi − X̄)2) is independent ofZ. If δ0 =
�(Xi − X̄)2, thenδ0 is equivariant under (3.24) and independent ofZ. Hence,
w∗(z) = w∗ in (3.29) is a constant determined by minimizing (3.17) with�(Xi −
X̄)2 in place ofXr . Since�(Xi − X̄)2 has the distribution ofδ0 of Example 3.7
with n−1 in place ofn, the MRE estimator for the loss function (3.13) withr = 2
is�(Xi − X̄)2/(n + 1). ‖
Example 3.12 Uniform. LetX1, . . . , Xn be iid according toU (ξ − 1

2τ, ξ + 1
2τ ),

and consider the problem of estimatingτ with loss function (3.13),r = 1. By
Basu’s theorem, (X(1), X(n)) is independent ofZ. If δ0 is the rangeR = X(n)−X(1),
it is equivariant under (3.24) and independent ofZ. It follows from (3.18) with
r = 1 that (Problem 3.22)δ∗(X) = [(n + 2)/n]R. ‖

Since the groupξ ′ = a + bξ, τ ′ = bτ is transitive and the groupd ′ = brd is
commutative, it follows (as in the pure scale case) that an MRE estimator is always
risk-unbiased.

The principle of equivariance seems to suggest that we should want to invoke
as much invariance as possible and hence use the largest groupG of transforma-
tions leaving the problem invariant. Such a group may have the disadvantage of
restricting the class of eligible estimators too much. (See, for example, Problem
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2.7.) To increase the number of available estimators, we may then want to restrict
attention to a subgroupG0 ofG. Since estimators that are equivariant underG are
automatically also equivariant underG0, invariance underG0 alone will leave us
with a larger choice, which may enable us to obtain improved risk performance.

For estimating the scale parameter in a location-scale family, a natural subgroup
of (3.24) is obtained by settinga = 0, which reduces (3.24) to the scale group

X′i = bXi, ξ ′i = bξi, τ ′ = bτ (b > 0),(3.32)

andd ′ = brd. An estimatorδ of τ r is equivariant under this group ifδ(bX) =
brδ(X), as in (3.7). Application of Theorem 3.1 shows that the equivariant estima-
tors are of the form

δ(x) =
δ0(x)

ω(x)
(3.33)

whereδ0 is any scale equivariant estimator andw(z) is a function ofzi = Xi/Xn,
i = 1, . . . , n − 1, andzn = xn/|xn|. However, we cannot now apply Theorem 3.3
to obtain the MRE estimator, because the group is no longer transitive (Example
2.14), and the risk of equivariant estimators is no longer constant.

We can, however, go further in special cases, such as in the following example.

Example 3.13 More normal variance estimation. If X1, . . . , Xn are iid as
N (ξ, τ 2), with both parameters unknown, then it was shown in Example 3.11
that δ0(x) = �(xi − x̄)2/(n + 1) = S2/(n + 1) is MRE under the location-scale
group (3.24) for the loss function (3.13) withr = 2.

Now consider the scale group (3.32). Of course,δ0 is equivariant under this
group, but so are the estimators

δ(x) = ϕ(x̄/s)s2

for some functionϕ(·) (Problem 3.24). Stein (1964) showed thatϕ(x̄/s) = min{(n+
1)−1, (n + 2)−1(1 + nx̄2/s2)} produces a uniformly better estimator thanδ0, and
Brewster and Zidek (1974) found the best scale equivariant estimator. See Example
5.2.15 and Problem 5.2.14 for more details. ‖

In the location-scale family (3.23), we have so far considered only the estimation
of τ r ; let us now take up the problem of estimating the location parameterξ . The
transformations (3.24) relating to the sample space and parameter space remain
the same, but the transformations of the decision space now becomed ′ = a + bd.
A loss functionL(ξ, τ ; d) is invariant under these transformations if and only if it
is of the form

L(ξ, τ ; d) = ρ

(
d − ξ
τ

)
.(3.34)

That any such loss function is invariant is obvious. Conversely, suppose thatL

is invariant and that (ξ, τ ; d) and (ξ ′, τ ′; d ′) are two points with (d ′ − ξ ′)/τ ′ =
(d − ξ )/τ . Puttingb = τ ′/τ andξ ′ − a = bξ , one hasd ′ = a + bd, ξ ′ = a + bξ ,
andτ ′ = bτ , henceL(ξ ′, τ ′; d ′) = L(ξ, τ ; d), as was to be proved.

Equivariance in the present case becomes

δ(a + bx) = a + bδ(x), b > 0.(3.35)
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SinceḠ is transitive over the parameter space, the risk of any equivariant estimator
is constant so that an MRE estimator can be expected to exist. In some special cases,
the MRE estimator reduces to that derived in Section 1 withτ known, as follows.

For fixedτ , write

gτ (x1, . . . , xn) =
1

τn
f

(x1

τ
, . . . ,

xn

τ

)
(3.36)

so that (3.23) becomes

gτ (x1− ξ, . . . , xn − ξ ).(3.37)

Lemma 3.14 Suppose that for the location family (3.37) and loss function (3.34),
there exists an MRE estimator δ∗ of ξ with respect to the transformations (1.10)
and (1.11) and that

(a) δ∗ is independent of τ , and

(b) δ∗ satisfies (3.35).

Then δ∗ minimizes the risk among all estimators satisfying (3.35).

Proof. Supposeδ is any other estimator which satisfies (3.35) and hence, a fortiori,
is equivariant with respect to the transformations (1.10) and (1.11), and that the
valueτ of the scale parameter is known. It follows from the assumptions aboutδ∗

that for thisτ , the risk ofδ∗ does not exceed the risk ofδ. Since this is true for all
values ofτ , the result follows. ✷

Example 3.15 MRE for normal mean. LetX1, . . . , Xn be iid asN (ξ, τ 2), both
parameters being unknown. Then, it follows from Example 1.15 thatδ∗ = X̄ for
any loss functionρ[(d − ξ )/τ ] for which ρ satisfies the assumptions of Example
1.15. Since (i) and (ii) of Lemma 3.14 hold for thisδ∗, it is the MRE estimator of
ξ under the transformations (3.24). ‖

Example 3.16 Uniform location parameter. Let X1, . . . , Xn be iid asU (ξ −
1
2τ, ξ + 1

2τ ). Then, analogous to Example 3.15, it follows from Example 1.19 that
[X(1) +X(n)]/2 is MRE for the loss functions of Example 3.15. ‖

Unfortunately, the MRE estimators of Section 1 typically do not satisfy the
assumptions of Lemma 3.14. This is the case, for instance, with the estimators of
Examples 1.18 and 1.22. To derive the MRE estimator without these assumptions,
let us first characterize the totality of equivariant estimators.

Theorem 3.17 Let δ0 be any estimator ξ satisfying (3.35) and δ1 any estimator of
τ taking on positive values only and satisfying

δ1(a + bx) = bδ1(x) f or all b > 0 and all a.(3.38)

Then, δ satisfies (3.35) if and only if it is of the form

δ(x) = δ0(x)− w(z)δ1(x)(3.39)

where z is given by (3.30).
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Proof. Analogous to Lemma 1.6, it is seen thatδ satisfies (3.35) if and only if it
is of the form

δ(x) = δ0(x)− u(x)δ1(x),(3.40)

where
u(a + bx) = u(x) for all b > 0 and all a(3.41)

(Problem 3.26). That (3.40) holds if and only ifu depends onx only throughz
follows from Lemma 1.7 and Theorem 3.1.

An argument paralleling that of Theorem 1.10 now shows that the MRE esti-
mator ofξ is

δ(X) = δ0(X)− w∗(Z)δ1(X)

where for eachz, w∗(z) is any number minimizing

E0,1{ρ[δ0(X)− w∗(z)δ1(X)]|z}.(3.42)

Here,E0,1 indicates that the expectation is evaluated atξ = 0, τ = 1. ✷

If, in particular,

ρ

(
d − ξ
τ

)
=

(d − ξ )2

τ 2
,(3.43)

it is easily seen thatw∗(z) is

w∗(z) = E0,1[δ0(X)δ1(X)|z]/E0,1[δ2
1(X)|z].(3.44)

Example 3.18 Exponential. LetX1, . . . , Xn be iid according to the exponential
distributionE(ξ, τ ). If δ0(X) = X(1) andδ1(X) = �[Xi − X(1)], it follows from
Example 1.6.24 that (δ0, δ1) are jointly independent ofZ and are also independent
of each other. Then (Problem 3.25),

w∗(z)− w∗ = E
[δ0(X)δ1(X)]

E[δ2
1(X)]

=
1

n2
,

and the MRE estimator ofξ is therefore

δ∗(X) = X(1)− 1

n2
�[Xi −X(1)].

When the best location equivariant estimate is not also scale equivariant, its risk
is, of course, smaller than that of the MRE under (3.35). Some numerical values
of the increase that results from the additional requirement are given for a number
of situations by Hoaglin (1975). ‖

For the loss function (3.43), no risk-unbiased estimatorδ exists, since this would
require that for allξ , ξ ′, τ , andτ ′

1

τ 2
Eξ,τ [δ(X)− ξ ]2 ≤ 1

τ ′2
Eξ,τ [δ(X)− ξ ′]2,(3.45)

which is clearly impossible. Perhaps (3.45) is too strong and should be required
only when τ ′ = τ . It then reduces to (1.32) withθ = (ξ, τ ) and g(θ ) = ξ ,
and this weakened form of (3.45) reduces to the classical unbiasedness condi-
tion Eξ,τ [δ(X)] = ξ . A UMVU estimator ofξ exists in Example 3.18 (Problem
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2.2.18), but it is

δ(X) = X(1)− 1

n(n− 1)
�[Xi −X(1)]

rather thanδ∗(X), and the latter is not unbiased (Problem 3.27).

4 Normal Linear Models

Having developed the theory of unbiased estimation in Chapter 2 and of equivariant
estimation in the first three sections of the present chapter, we shall now apply these
results to some important classes of statistical models. One of the most widely used
bodies of statistical techniques, comprising particularly the analysis of variance,
regression, and the analysis of covariance, is formalized in terms of linear models,
which will be defined and illustrated in the following. The examples, however,
are not enough to give an idea of the full richness of the applications. For a more
complete treatment, see, for example, the classic book by Scheffé (1959), or Seber
(1977), Arnold (1981), Searle (1987), or Christensen (1987).

Consider the problem of investigating the effect of a number of different factors
on a response. Typically, each factor can occur in a number of different forms or at
a number of different levels. Factor levels can be qualitative or quantitative. Three
possibilities arise, corresponding to three broad categories of linear models:

(a) All factor levels qualitative.

(b) All factor levels quantitative.

(c) Some factors of each kind.

Example 4.1 One-way layout. A simple illustration of category (a) is provided
by theone-way layout in which a single factor occurs at a number of qualitatively
different levels. For example, we may wish to study the effect on performance of
a number of different textbooks or the effect on weight loss of a number of diets.
If Xij denotes the response of thej th subject receiving treatmenti, it is often
reasonable to assume that theXij are independently distributed as

Xij : N (ξi, σ
2), j = 1, . . . , ni ; i = 1, . . . , s.(4.1)

Estimands that may be of interest areξi andξi − (1/s)�sj=1ξj . ‖
Example 4.2 A simple regression model. As an example of type (b), consider
the time required to memorize a list of words. If the number of words presented to
the ith subject and the time it takes the subject to learn the words are denoted by
ti andXi , respectively, one might assume that for the range oft ’s of interest, the
X’s are independently distributed as

Xi : N (α + βti + γ t2i , σ
2)(4.2)

whereα, β, andγ are the unknown regression coefficients, which are to be esti-
mated.

This would turn into an example of the third type if there were several groups
of subjects. One might, for example, wish to distinguish between women and men
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or to see how learning ability is influenced by the form of the word list (whether
it is handwritten, typed, or printed). The model might then become

Xij : N (αi + βitij + γit
2
ij , σ

2)(4.3)

whereXij is the response of thej th subject in theith group. Here, the group is a
qualitative factor and the length of the list a quantitative one.

‖
The generallinear model, which covers all three cases, assumes that

Xi is distributed asN (ξi, σ
2), i = 1, . . . , n,(4.4)

where theXi are independent and (ξi, . . . , ξn) ∈
∏
, an s-dimensional linear

subspace ofEn(s < n).
It is convenient to reduce this model to a canonical form by means of an orthog-

onal transformation
Y = XC(4.5)

where we shall useY to denote both the vector with components (Y1, . . . , Yn) and
the row matrix (Y1, . . . , Yn). If ηi = E(Yi), theη’s andξ ’s are related by

η = ξC(4.6)

whereη = (η1, . . . , ηn) andξ = (ξ1, . . . ξn).
To find the distribution of theY ’s, note that the joint density ofX1, . . . , Xn is

1

(
√

2πσ )n
exp

[
− 1

2σ 2
�(xi − ξi)2

]
,

that
�(xi − ξi)2 = �(yi − ηi)2,

sinceC is orthogonal, and that the Jacobian of the transformation is 1. Hence, the
joint density ofY1, . . . , Yn is

1

(
√

2πσ )n
exp

[
− 1

2σ 2
�(yi − ηi)2

]
.

TheY ’s are therefore independent normal withYi ∼ N (ηi, σ 2), i = 1, . . . , n. If
c′i denotes theith column ofC, the desired form is obtained by choosing theci so
that the firsts columnsc′1, . . . , c

′
s span

∏
. Then,

ξ ∈
∏


⇐⇒ ξ is orthogonal to the lastn− s columns ofC.

Sinceη = ξC, it follows that

ξ ∈
∏


⇐⇒ ηs+1 = · · · = ηn = 0.(4.7)

In terms of theY ’s, the model (4.4) thus becomes

Yi : N (ηi, σ
2), i = 1, . . . , s, and Yj : N (0, σ 2), j = s + 1, . . . , n.(4.8)

As (ξ1, . . . , ξn) varies over
∏
, (η1, . . . , ns) varies unrestrictedly overEs while

ηs+1 = · · · = ηn = 0.
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In this canonical model,Y1, . . . , Ys andS2 = �nj=s+1Y
2
j are complete sufficient

statistics for (η1, . . . , ηs, σ
2).

Theorem 4.3

(a) The UMVU estimators of �si=1λiηi (where the λ’s are known constants) and
σ 2 are �si=1λiYi and S2/(n − s), respectively. (Here, UMVU is used in the
strong sense of Section 2.1.)

(b) Under the transformations

Y ′i = Yi + ai (i = 1, . . . , s); Y ′j = Yj (j = s + 1, . . . , n)

η′i = ηi + ai (i = 1, . . . , s); and d ′ = d +
s∑
i=1

aiλi

and with loss function L(η, d) = ρ(d − �λiηi) where ρ is convex and even,
the UMVU estimator �si=1λiYi is also the MRE estimator of �si=1λiηi .

(c) Under the loss function (d−σ 2)2/σ 4, the MRE estimator ofσ 2 isS2/(n−s+2).

Proof.

(a) Since�si=1λiYi andS2/(n− s) are unbiased and are functions of the complete
sufficient statistics, they are UMVU.

(b) The condition of equivariance is that

δ(Y1 + c1, . . . , Ys + cs, Ys+1, . . . , Yn)

= δ(Y1, . . . , Ys, Ys+1, . . . , Yn) +
s∑
i=1

λici

and the result follows from Problem 2.27.

(c) This follows essentially from Example 3.7 (see Problem 4.3) .

✷

It would be more convenient to have the estimator expressed in terms of the
original variablesX1, . . . , Xn, rather than the transformed variablesY1, . . . , Yn.
For this purpose, we introduce the following definition.

Let ξ = (ξ1, . . . , ξn) be any vector in
∏
. Then, theleast squares estimators

(LSE) (ξ̂1, . . . , ξ̂n) of (ξ1, . . . , ξn) are those estimators which minimize�ni=1(Xi −
ξi)2 subject to the conditionξ ∈∏

.

Theorem 4.4 Under the model (4.4), the UMVU estimator of�ni=1γiξi is�ni=1γi ξ̂1.

Proof. By Theorem 4.3 (and the completeness ofY1, . . . , Ys andS2), it suffices
to show that�ni=1γi ξ̂i is a linear function ofY1, . . . , Ys , and that it is unbiased for
�ni=1γiξi . Now,

n∑
i=1

(Xi − ξi)2 =
n∑
i=1

[Yi − E(Yi)]
2 =

s∑
i=1

(Yi − ηi)2 +
n∑

j=s+1

Y 2
j .(4.9)

The right side is minimized bŷηi = Yi (i = 1, . . . , s), and the left side is minimized
by ξ̂1, . . . , ξ̂n. Hence,

(Y1 · · ·Ys 0 · · ·0) = (ξ̂1 · · · ξ̂n)C = ξ̂C
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so that
ξ̂ = (Y1 · · ·Ys 0 · · ·0)C−1.

It follows that eacĥξi and, therefore,�ni=1γi ξ̂i is a linear function ofY1, . . . , Ys .
Furthermore,

E(ξ̂ ) = E[(Y1 · · ·Ys 0 · · ·0)C−1] = (η1 · · · ηs 0 · · ·0)C−1 = ξ .

Thus, eacĥξi is unbiased forξi ; consequently,�ni=1γi ξ̂i is unbiased for�ni=1γiξi .
✷

It is interesting to note that each of the two quite different equations

X = (Y1 · · ·Yn)C−1 and ξ̂ = (Y1 · · ·Ys 0 · · ·0)C−1

leads toξ = (η1, . . . , ηs 0 · · ·0)C−1 by taking expectations.
Let us next reinterpret the equivariance considerations of Theorem 4.3 in terms

of the original variables. It is necessary first to specify the group of transformations
leaving the problem invariant. The transformations ofY -space defined in Theorem
4.3(b), in terms of theX’s becomeX′i = Xi + bi , i = 1, . . . , n, but thebi are not
arbitrary since the problem remains invariant only ifξ ′ = ξ +b ∈∏

; that is, thebi
must satisfyb = (b1, . . . , bn) ∈

∏
. Theorem 4.3(ii) thus becomes the following

corollary.

Corollary 4.5 Under the transformations

X′ = X + b with b ∈
∏


,(4.10)

�ni=1γi ξ̂i is MRE for estimating �ni=1γiξi with the loss function ρ(d −�γiξi) pro-
vided ρ is convex and even.

To obtain the UMVU and MRE estimators ofσ 2 in terms of theX’s, it is only
necessary to reexpressS2. From the minimization of the two sides of (4.9), it is
seen that

n∑
i=1

(Xi − ξ̂i)2 =
n∑

j=s+1

Y 2
j = S2.(4.11)

The UMVU and MRE estimators ofσ 2 given in Theorem 4.3, in terms of theX’s
are therefore�(Xi − ξ̂i)2/(n− s) and�(Xi − ξ̂i)2/(n− s + 2), respectively.

Let us now illustrate these results.

Example 4.6 Continuation of Example 4.1. LetXij be independentN (ξi, σ 2),
j = 1, . . . , ni , i = 1, . . . , s. To find the UMVU or MRE estimator of a linear
function of theξi , it is only necessary to find the least squares estimatorsξ̂i .
Minimizing

s∑
i=1

ni∑
j=1

(Xij − ξi)2 =
s∑
i=1

[
ni∑
j=1

(Xij −Xi·)2 + ni(Xi· − ξi)2

]
,

we see that

ξ̂i = Xi· =
1

ni

ni∑
j=1

Xij .



180 EQUIVARIANCE [ 3.4

From (4.11), the UMVU estimator ofσ 2 in the present case is seen to be

σ̂ 2 =
s∑
i=1

ni∑
j=1

(Xij −Xi·)2/(�ni − s). ‖

Example 4.7 Simple linear regression. Let Xi be independentN (ξi, σ 2), i =
1, . . . , n, with ξi = α + βti , ti known and not all equal. Here,

∏
 is spanned by

the vectors (1, . . . ,1) and (t1, . . . , tn) so that the dimension of
∏
 is s = 2. The

least squares estimators ofξi are obtained by minimizing
∑n
i=1(Xi − α − βti)2

with respect toα andβ. It is easily seen that for anyi andj with ti �= tj ,

β =
ξj − ξi
tj − ti , α =

tj ξi − tiξj
tj − ti(4.12)

and thatβ̂ andα̂ are given by the same functions ofξ̂i andξ̂j (Problem 4.4). Hence,
α̂ andβ̂ are the best unbiased and equivariant estimators ofα andβ, respectively.

Note that the representation ofα andβ in terms of theξi ’s is not unique. Any
two ξi andξj values withti �= tj determineα andβ and thus all theξ ’s. The reason,
of course, is that the vectors (ξ1, . . . , ξn) lie in a two-dimensional linear subspace
of n-space. ‖

Example 4.7 is a special case of the model specified by the equation

ξ = θA(4.13)

whereθ = (θ1 · · · θs) ares unknown parameters andA is a knowns × nmatrix of
ranks, the so-calledfull-rank model. In Example 4.7,

θ = (α, β) and A =

(
1 · · ·1
t1 · · · tn

)
.

The least squares estimators of theξi in (4.13) are obtained by minimizing
n∑
i=1

[Xi − ξi(θ )]2

with respect toθ . The minimizing valueŝθi are the LSEs ofθi , and the LSEs of
theξi are given by

ξ̂ = θ̂A.(4.14)

Theorems 4.3 and 4.4 establish that the various optimality results apply to the
estimators of theξi and their linear combinations. The following theorem shows
that they also apply to the estimators of theθ ’s and their linear functions.

Theorem 4.8 Let Xi ∼ N (ξi, σ 2), i = 1, . . . , n, be independent, and let ξ satisfy
(4.13) withA of rank s. Then, the least squares estimator θ̂ of θ is a linear function
of the ξ̂i and hence has the optimality properties established in Theorems 4.3 and
4.4 and Corollary 4.5.

Proof. It need only be shown thatθ is a linear function ofξ ; then, by (4.13) and
(4.14),θ̂ is the corresponding linear function ofξ̂ .
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Assume without loss of generality that the firsts columns ofA are linearly
independent, and form the corresponding nonsingulars × s submatrixA∗. Then,

(ξ1 · · · ξs) = (θ1 · · · θs)A∗,
so that

(θ1 · · · θs) = (ξ1 · · · ξs)A∗−1,

and this completes the proof. ✷

Typical examples in whichξ is given in terms of (4.13) are polynomial regres-
sions such as

ξi = α + βti + γ t2i
or regression in more than one variable such as

ξi = α + βti + γ ui

where thet ’s andu’s are given, andα, β, andγ are the unknown parameters. Or
there might be several regression lines with a common slope, say

ξij = αi + βtij (j = 1, . . . , ni ; i = 1, . . . , a),

and so on.
The full-rank model does not always provide the most convenient parametriza-

tion; for reasons of symmetry, it is often preferable to use the model (4.13) with
more parameters than are needed. Before discussing such models more fully, let
us illustrate the resulting difficulties on a trivial example. Suppose thatξi = ξ for
all i and that we putξi = λ+µ. Such a model does not defineλ andµ uniquely but
only their sum. One can then either let this ambiguity remain but restrict attention
to clearly defined functions such asλ + µ, or one can remove the ambiguity by
placing an additional restriction onλ andµ, such asµ− λ = 0,µ = 0, orλ = 0.

More generally, let us suppose that the model is given by

ξ = θA(4.15)

whereA is a t × n matrix of ranks < t . To define theθ ’s uniquely, (4.15) is
supplemented by side conditions

θB = 0(4.16)

chosen so that the set of equations (4.15) and (4.16) has a unique solutionθ for
everyξ ∈∏

.

Example 4.9 Unbalanced one-way layout. Consider the one-way layout of Ex-
ample 4.1, withXij (j = 1, . . . , ni ; i = 1, . . . , s) independent normal variables
with meansξi and varianceσ 2. When the principal concern is a comparison of the
s treatments or populations, one is interested in the differences of theξ ’s and may
represent these by means of the differences between theξi and some mean value
µ, sayαi = ξi − µ. The model then becomes

ξi = µ + αi, i = 1, . . . , s,(4.17)
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which expresses thes ξ ’s in terms ofs + 1 parameters. To specify the parameters,
an additional restriction is required, for example,

�αi = 0.(4.18)

Adding thes equations (4.17) and using (4.18), one finds

µ = �
ξi

s
= ξ̄(4.19)

and hence

αi = ξi − ξ̄ .(4.20)

The quantityαi measures the effect of theith treatment. SinceXi· is the least
squares estimator ofξi , the UMVU estimators ofµ and theα’s are

µ̂ = �
Xi·
s

= ��
Xij

sni
and α̂i = Xi· − µ̂.(4.21)

When the sample sizesni are not all equal, a possible disadvantage of this
representation is that the vectors of the coefficients of theXij in the α̂i are not
orthogonal to the corresponding vector of coefficients ofµ̂ [Problem 4.7(a)]. As a
result,µ̂ is not independent of thêαi . Also, when theαi are known to be zero, the
estimator ofµ is no longer given by (4.21) (Problem 4.8).

For these reasons, the side condition (4.18) is sometimes replaced by

�niαi = 0,(4.22)

which leads to

µ = �
niξi

N
= ξ̃ (N = �ni)(4.23)

and hence

αi = ξi − ξ̃ .(4.24)

Although theαi of (4.22) seems to be a less natural measure of the effect of theith
treatment, the resulting UMVU estimatorsˆ̂αi and ˆ̂µhave the orthogonality property
not possessed by the estimators (4.21) [Problem 4.7(b)]. The side conditions (4.18)
and (4.22), of course, agree when theni are all equal. ‖

The following theorem shows that the conclusion of Theorem 4.8 continues to
hold when theθ ’s are defined by (4.15) and (4.16) instead of (4.13).

Theorem 4.10 Let Xi be independent N (ξi, σ 2), i = 1, . . . , n, with ξ ∈ ∏
,

an s-dimensional linear subspace of En. Suppose that (θ1, . . . , θt ) are uniquely
determined by (4.15) and (4.16), where A is of rank s < t and B of rank k. Then,
k = t − s, and the optimality results of Theorem 4.4 and Corollary 4.5 apply to the
parameters θ1, . . . , θt and their least squares estimators θ̂1, . . . , θ̂t .

Proof. Let θ̂1, . . . , θ̂t be the LSEs ofθ1, . . . , θt , that is, the values that minimize

n∑
i=1

[Xi − ξi(θ )]2
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subject to (4.15) and (4.16). It must be shown, as in the proof of Theorem 4.8, that
the θ̂i ’s are linear functions of̂ξ1, . . . , ξ̂n, and that theθi ’s are the same functions
of ξ1, . . . , ξn.

Without loss of generality, suppose that theθ ’s are numbered so that the lastk
columns ofB are linearly independent. Then, one can solve forθt−k+1, . . . , θt in
terms ofθ1, . . . , θt−k, obtaining the unique solution

θj = Lj (θ1, . . . , θt−k) for j = t − k + 1, . . . , t.(4.25)

Substituting intoξ = θA gives

ξ = (θ1 · · · θt−k)A∗

for some matrixA∗, with (θ1, . . . , θt−k) varying freely inEt−k. Since eachξ ∈∏


uniquely determinesθ , in particular the valueξ = 0 has the unique solutionθ = 0,
so that (θ1 · · · θt−k)A∗ = 0 has a unique solution. This implies thatA∗ has rank
t − k. On the other hand, sinceξ ranges over a linear space of dimensions, it
follows thatt − k = s and, hence, thatk = t − s.

The situation is now reduced to that of Theorem 4.8 withξ a linear function of
t − k = s freely varyingθ ’s, so the earlier result applies toθ1, . . . , θt−k. Finally,
the remaining parametersθt−k+1, . . . , θt and their LSEs are determined by (4.25),
and this completes the proof. ✷

Example 4.11 Two-way layout. A typical illustration of the above approach is
provided by a two-way layout. This arises in the investigation of the effect of two
factors on a response. In a medical situation, for example, one of the factors might
be the kind of treatment (e.g., surgical, nonsurgical, or no treatment at all), the
other the severity of the disease. LetXijk denote the response of thekth subject to
which factor 1 is applied at leveli and factor 2 at levelj . We assume that theXijk
are independently, normally distributed with meansξij and common varianceσ 2.
To avoid the complications of Example 4.9, we shall suppose that each treatment
combination (i, j ) is applied to the same number of subjects. If the number of
levels of the two factors isa andb, respectively, the model is thus

Xijk : N (ξij , σ
2), i = 1, . . . , I ; j = 1, . . . , J ; k = 1, . . . , m.(4.26)

This model is frequently parametrized by

ξij = µ + αi + βj + γij(4.27)

with the side conditions∑
i

αi =
∑
j

βj =
∑
i

γij =
∑
j

γij = 0.(4.28)

It is easily seen that (4.27) and (4.28) uniquely determineµ and theα’s, β ’s,
andγ ’s. Using a dot to denote averaging over the indicated subscript, we find by
averaging (4.27) over bothi andj and separately overi and overj that

ξ·· = µ, ξi· = µ + αi, ξ·j = µ + βj

and hence that
µ = ξ··, αi = ξi· − ξ··, βj = ξ·j − ξ··,(4.29)
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and

γij = ξij − ξi· − ξ·j + ξ·· .(4.30)

‖

Thus,αi is the average effect (averaged over the levels of the second factor) of
the first factor at leveli, andβj is the corresponding effect of the second factor at
level j . The quantityγij can be written as

γij = (ξij − ξ··)− [(ξi· − ξ··) + (ξj · − ξ··)].(4.31)

It is therefore the difference between the joint effect of the two treatments at levels
i andj , respectively, and the sum of the separate effectsαi + βj . The quantity
γij is called theinteraction of the two factors when they are at levelsi and j ,
respectively.

The UMVU estimators of these various effects follow immediately from Theo-
rem 4.3 and Example 4.6. This example shows that the UMVU estimator ofξij is
Xij and the associated estimators of the various parameters are thus

µ̂ = X···, α̂i = Xi·· −X···, β̂j = X·j · −X···,(4.32)

and

γ̂ij = Xij · −Xi·· −X·j · +X··· .(4.33)

The UMVU estimator ofσ 2 is

1

IJ (m− 1)
���(Xijk −Xij ·)2.(4.34)

These results for the two-way layout easily generalize to otherfactorial experi-
ments, that is, experiments concerning the joint effect of several factors, provided
the numbers of observations at the various combinations of factor levels are equal.
Theorems 4.8 and 4.10, of course, apply without this restriction, but then the situ-
ation is less simple.

Model (4.4) assumes that the random variablesXi are independently normally
distributed with common unknown varianceσ 2 and meansξi , which are subject
to certain linear restrictions. We shall now consider some models that retain the
linear structure but drop the assumption of normality.

(i) A very simple treatment is possible if one is willing to restrict attention to
unbiased estimators that are linear functions of theXi and to squared error loss.
Suppose we retain from (4.4) only the assumptions about the first and second
moments of theXi , namely

E(Xi) = ξi, ξ ∈
∏


,(4.35)

var(Xi) = σ 2, cov(Xi,Xj ) = 0 for i �= j.
Thus, both the normality and independence assumptions are dropped.

Theorem 4.12 (Gauss’ Theorem on Least Squares) Under assumptions (4.35),
�ni=1γi ξ̂i of Theorem 4.4 is UMVU among all linear estimators of �ni=1γiξi .
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Proof. The estimator is still unbiased, since the expectations of theXi are the same
under (4.35) as under (4.4). Let�ni=1ciXi be any other linear unbiased estimator
of �ni=1γiξi . Since�ni=1γi ξ̂i is UMVU in the normal case, and variances of linear
functions of theXi depend only on first and second moments, it follows that
var �ni=1γi ξ̂i ≤ var �ni=1ciXi . Hence,�ni=1γi ξ̂i is UMVU among linear unbiased
estimators. ✷

Corollary 4.13 Under the assumptions (4.35) and with squared error loss,�ni=1γi ξ̂i
is MRE with respect to the transformations (4.10) among all linear equivariant
estimators of �ni=1γiξi .

Proof. This follows from the argument of Lemma 1.23, since�ni=1γi ξ̂i is UMVU
and equivariant. ✷

Theorem 4.12, which is also called the Gauss-Markov theorem, has been ex-
tensively generalized (see, for example, Rao 1976, Harville 1976, 1981, Kariya,
1985). We shall consider some extensions of this theorem in the next section. On
the other hand, the following result, due to Shaffer (1991), shows a direction in
which the theorem does not extend. If, in (4.35), we adopt the parametrization
ξ = θA for somes × nmatrixA, there are some circumstances in which it is rea-
sonable to assume thatA also has a distribution (for example, if the data (X,A) are
obtained from a sample of units, rather thanA being a preset design matrix as is the
case in many experiments). The properties of the resulting least squares estimator,
however, will vary according to what is assumed about both the distribution ofA

and the distribution ofX. Note that in the following theorem, all expectations are
over the joint distribution ofX andA.

Theorem 4.14 Under assumptions (4.35), with ξ = θA, the following hold.

(a) If (X,A) are jointly multivariate normal with all parameters unknown, then
the least squares estimator �γiξ̂i is the UMVU estimator of �γiξi .

(b) If the distribution of A is unknown, then the least squares estimator �γiξ̂i is
UMVU among all linear estimators of �γiξi .

(c) If E(AA′) is known, no best linear unbiased estimator of �γiξi exists.

Proof. Part (a) follows from the fact that the least squares estimator is a function
of the complete sufficient statistic. Part (b) can be proved by showing that if�γiξ̂i
is unconditionally unbiased then it is conditionally unbiased, and hence Theorem
4.12 applies. For this purpose, one can use a variation of Problem 1.6.33, where it
was shown that the order statistics are complete sufficient. Finally, part (c) follows
from the fact that the extra information about the variance ofA can often be used
to improve any unbiased estimator. See Problems 4.16–4.18 for details. ✷

The formulation of the regression problem in Theorem 4.14, in which thep

rows ofA are sometimes referred to as “random regressors,” has other interesting
implications. IfA is ancillary, the distribution ofA and henceE(A′A) are known
and so we have a situation where the distribution of an ancillary statistic will
affect the properties of an estimator. This paradox was investigated by Brown
(1990a), who established some interesting relationships between ancillarity and
admissibility (see Problems 5.7.31 and 5.7.32).
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For estimatingσ 2, it is natural to restrict attention to unbiased quadratic (rather
than linear) estimatorsQ of σ 2. Among these, does the estimatorS2/(n − s)
which is UMVU in the normal case continue to minimize the variance? Under
mild additional restrictions—for example, invariance under the transformations
(4.10) or restrictions toQ’s taking on only positive values—it turns out that this
is true in some cases (for instance, in Example 4.15 below when theni are equal)
but not in others. For details, see Searle et al. (1992, Section 11.3).

Example 4.15 Quadratic unbiased estimators. Let Xij (j = 1, . . ., ni ; i = 1,
. . ., s) be independently distributed with meansE(Xij ) = ξi and common variance
and fourth moment

σ 2 = E(Xij − ξi)2 and β = E(Xij − ξi)4/σ 4,

respectively. Consider estimators ofσ 2 of the formQ = �λiS
2
i whereS2

i =
�(Xij −Xi·)2 and�λi(ni−1) = 1 so thatQ is an unbiased estimator ofσ 2. Then,
the variance ofQ is minimized (Problem 4.19) when theλ’s are proportional to
1/(αi + 2) whereαi = [(ni − 1)/ni ](β − 3). The standard choice of theλi (which
is to make them equal) is, therefore, best if either theni are equal orβ = 3, which
is the case when theXij are normal.

(ii) Let us now return to the model obtained from (4.4) by dropping the as-
sumption of normality but without restricting attention to linear estimators. More
specifically, we shall assume thatX1, . . . , Xn are random variables such that

the variablesXi − ξi are iid with a common distributionF

which has expectation zero and an otherwise unknown(4.36)

probability densityf ,

and such that (4.13) holds withA ann× n matrix of ranks. ‖
In Section 2.4, we found that for the caseξi = θ , the LSEX̄ of θ is UMVU in this

nonparametric model. To show that the corresponding result does not generally
hold whenξ is given by (4.13), consider the two-way layout of Example 4.11 and
the estimation of

αi = ξi· − ξ·· =
1

IJ

I∑
j=1

J∑
k=1

(ξik − ξjk).(4.37)

To avoid calculations, suppose thatF is t2, the t-distribution with 2 degrees of
freedom. Then, the least squares estimators have infinite variance. On the other
hand, letX̃ij be the median of the observationsXijv, v = 1, . . . , m. ThenX̃ik−X̃jk
is an unbiased estimator ofξik − ξjk so thatδ = (1/ab)��(X̃ik − X̃jk) is an
unbiased estimator ofαi . Furthermore, ifm ≥ 3, theX̃ij have finite variance and
so, therefore, doesδ. (A sum of random variables with finite variance has finite
variance.) This shows that the least squares estimators of theαi are not UMVU
whenF is unknown. The same argument applies to theβ ’s andγ ’s.

The situation is quite different for the estimation ofµ. Let U be the class of
unbiased estimators ofµ in model (4.27) withF unknown, and letU ′ be the cor-
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responding class of unbiased estimators when theα’s , β ’s, andγ ’s are all zero.
Then, clearly,U ⊂ U ′; furthermore, it follows from Section 2.4 thatX··· uniformly
minimizes the variance withinU ′. SinceX··· is a member ofU , it uniformly mini-
mizes the variance withinU and, hence, is UMVU forµ in model (4.27) whenF
is unknown.

For a more detailed discussion of this problem, see Anderson (1962).

(iii) Instead of assuming the densityf in (4.36) to be unknown, we may be
interested in the case in whichf is known but not normal. The model then remains
invariant under the transformations

X′v = Xv +
s∑
j=1

ajvγj , −∞ < γ1, . . . , γs <∞.(4.38)

SinceE(X′v) = �ajv(θj + γj ), the induced transformations in the parameter space
are given by

θ ′j = θj + γj (j = 1, . . . , s).(4.39)

The problem of estimatingθj remains invariant under the transformations (4.38),
(4.39), and

d ′ = d + γj(4.40)

for any loss function of the formρ(d − θj ), and an estimatorδ of θj is equivariant
with respect to these transformations if it satisfies

δ(X′) = δ(X) + γj .(4.41)

Since (4.39) is transitive over, the risk of any equivariant estimator is constant,
and an MRE estimator ofθj can be found by generalizing Theorems 1.8 and 1.10
to the present situation (see Verhagen 1961).

(iv) Important extensions to random and mixed effects models, and to general
exponential families, will be taken up in the next two sections.

5 Random and Mixed Effects Models

In many applications of linear models, the effects of the various factorsA,B,C, . . .

which were considered to be unknown constants in Section 3.4 are, instead, ran-
dom. One then speaks of arandom effects model (or Model II); in contrast, the
corresponding model of Section 3.4 is afixed effects model (or Model I). If both
fixed and random effects occur, the model is said to bemixed.

Example 5.1 Random effects one-way layout. Suppose that, as a measure of
quality control, an auto manufacturer tests a sample of new cars, observing for
each car, the mileage achieved on a number of occasions on a gallon of gas.
SupposeXij is the mileage of theith car on thej th occasion, at timetij , with all
thetij being selected at random and independently of each other. This would have
been modeled in Example 4.1 as

Xij = µ + αi +Uij

where theUij are independentN (0, σ 2). Such a model would be appropriate if
these particular cars were the object of study and a replication of the experiment
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thus consisted of a number of test runs by the same cars. However, the manufacturer
is interested in the performance of the thousands of cars to be produced that year
and, for this reason, has drawn a random sample of cars for the test. A replication
of the experiment would start by drawing a new sample. The effect of theith car
is therefore a random variable, and the model becomes

Xij = µ +Ai +Uij (j = 1, . . . , ni ; i = 1, . . . , s).(5.1)

Here and following, the populations being sampled are assumed to be large enough
so that independence and normality of the unobservable random variablesAi and
Uij can be assumed as a reasonable approximation. Without loss of generality, one
can putE(Ai) = E(Uij ) = 0 since the means can be absorbed intoµ. The variances
will be denoted by var(Ai) = σ 2

A and var(Uij ) = σ 2.
TheXij are dependent, and their joint distribution, and hence the estimation

of σ 2
A andσ 2, is greatly simplified if the model is assumed to bebalanced, that

is, to satisfyni = n for all i. In that case, in analogy with the transformation
(4.5), let each set (Xi1, . . . , Xin) be subjected to an orthogonal transformation to
(Yi1, . . . , Yin) such thatYi1 =

√
nXi· . An additional orthogonal transformation

is made from (Y11, . . . , Ys1) to (Z11, . . . , Zs1) such thatZ11 =
√
s Y·1, whereas

for i > 1, we putZij = Yij . Unlike theXij , theYij andZij are all independent
(Problem 5.1). They are normal with means

E(Z11) =
√
snµ, E(Zij ) = 0 if i > 1 or j > 1

and variances

var(Zi1) = σ 2 + nσ 2
A, var(Zij ) = σ 2 for j > 1,

so that the joint density of theZ’s is proportional to

exp

{
− 1

2(σ 2 + nσ 2
A)

[
(Z11−

√
snµ)2 + S2

A

]− 1

2σ 2
S2

}
(5.2)

with

S2
A =

s∑
i=2

Z2
i1 = n�(Xi· −X··)2, S2 =

s∑
i=1

n∑
j=2

Z2
ij =

s∑
i=1

n∑
j=1

(Xij −Xi·)2.

This is a three-parameter exponential family with

η1 =
µ

σ 2 + nσ 2
A

, η2 =
1

σ 2 + nσ 2
A

, η3 =
1

σ 2
.(5.3)

The variance ofXij is var(Xij ) = σ 2 + σ 2
A, and we are interested in estimating the

variance components σ 2
A andσ 2. Since

E

(
S2
A

s − 1

)
= σ 2 + nσ 2

A and E

(
S2

s(n− 1)

)
= σ 2,

it follows that

σ̂ 2 =
S2

s(n− 1)
and σ̂ 2

A =
1

n

[
S2
A

s − 1
− S2

s(n− 1)

]
(5.4)
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are UMVU estimators ofσ 2 andσ 2
A, respectively. The UMVU estimator of the

ratio isσ 2
A/σ

2 is
1

n

[
Kf,−2

s(n− 1)

σ̂ 2 + nσ̂ 2
A

σ̂ 2
− 1

]
,

whereKf,−2 is given by (2.2.5) withf = s(n−1) (Problem 5.3). Typically, the only
linear subspace of theη’s of interest here is the trivial one defined byσ 2

A = 0, which
corresponds toη2 = η3 and to the case in which thesnXij are iid asN (µ, σ 2). ‖
Example 5.2 Random effects two-way layout. In analogy to Example 4.11, con-
sider the random effects two-way layout.

Xijk = µ +Ai +Bj +Cij +Uijk(5.5)

where the unobservable random variablesAi , Bj ,Cij , andUijk are independently
normally distributed with zero mean and with variancesσ 2

A,σ 2
B ,σ 2

C , andσ 2, respec-
tively. We shall restrict attention to the balanced casei = 1, . . . , I , j = 1, . . . , J ,
andk = 1, . . . n. As in the preceding example, a linear transformation leads to
independent normal variablesZijk with meansE(Z111) =

√
IJnµ and 0 for all

otherZ ’s and with variances

var(Z111) = nJσ 2
A + nIσ 2

B + nσ 2
C + σ 2,

var(Zi11) = nJσ 2
A + nσ 2

C + σ 2, i > 1,

var(Z1j1) = nIσ 2
B + nσ 2

C + σ 2, j > 1,(5.6)

var(Zij1) = nσ 2
C + σ 2, i, j > 1,

var(Zijk) = σ 2, k > 1.

As an example in which such a model might arise, consider a reliability study of
blood counts, in which blood samples from each ofJ patients are divided intonI
subsamples of whichnare sent to each ofI laboratories. The study is not concerned
with these particular patients and laboratories, which, instead, are assumed to be
random samples from suitable patient and laboratory populations. From (5.5) it
follows that var(Xijk) = σ 2

A +σ 2
B +σ 2

C +σ 2. The terms on the right are the variance
components due to laboratories, patients, the interaction between the two, and the
subsamples from a patient.

The joint distribution of theZijk constitutes a five-parameter exponential family
with the complete set of sufficient statistics (Problem 5.9)

S2
A =

I∑
i=2

Z2
i11 = nJ

I∑
i=1

(Xi·· −X···)2,

S2
B =

J∑
j=2

Z2
1j1 = nI

J∑
j=1

(X·j · −X···)2,

S2
C =

I∑
i=2

J∑
j=2

Z2
ij1 = n

I∑
i=1

J∑
j=1

(Xij · −Xi·· −X·j · +X···)2,(5.7)

S2 =
I∑
i=1

J∑
j=1

n∑
k=2

Z2
ijk =

I∑
i=1

J∑
j=1

n∑
k=1

(Xijk −Xij ·)2,
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Z111 =
√
IJnX···.

From the expectations of these statistics, one finds the UMVU estimators of the
variance componentsσ 2, σ 2

C , σ 2
A, andσ 2

B to be

σ̂ 2 =
S2

IJ (n− 1)
, σ̂ 2

C =
1

n

[
S2
C

(I − 1)(J − 1)
− σ̂ 2

]
,

σ̂ 2
A =

1

nJ

[
S2
A

I − 1
− nσ̂ 2

C − σ̂ 2

]
, σ̂ 2

B =
1

nI

[
S2
B

J − 1
− nσ̂ 2

C − σ̂ 2

]
.

A submodel of (5.5), which is sometimes appropriate, is theadditive model
corresponding to the absence of the interaction termsCij and hence to the as-
sumptionσ 2

C = 0. If η1 = µ/var(Z111), 1/η2 = nJσ 2
A + nσ 2

C + σ 2,1/η3 =
nIσ 2

B + nσ 2
C + σ 2,1/η4 = nσ 2

C + σ 2, and 1/η5 = σ 2, this assumption is equiv-
alent toη4 = η5 and thus restricts theη’s to a linear subspace. The submodel
constitutes a four-parameter exponential family, with the complete set of sufficient
statisticsZ111,S2

A,S2
B , andS ′2 = S2

C = ���(Xijk−Xi··−X·j ·+X···)2. The UMVU
estimators of the variance componentsσ 2

A, σ 2
B , andσ 2 are now easily obtained as

before (Problem 5.10).
Another submodel of (5.5) which is of interest is obtained by settingσ 2

B = 0,
thus eliminating theBj terms from (5.5) . However, this model, which corresponds
to the linear subspaceη3 = η4, does not arise naturally in the situations leading to
(5.5), as illustrated by the laboratory example. These situations are characterized
by a crossed design in which each of theIA units (laboratories) is observed in
combination with each of theJB units (patients). On the other hand, the model
without theB terms arises naturally in the very commonly occurringnested design
illustrated in the following example. ‖
Example 5.3 Two nested random factors. For the two factorsA andB, suppose
that each of the units corresponding to different values ofi (i.e., different levels
of A) is itself a collection of smaller units from which the values ofB are drawn.
Thus, theA units might be hospitals, schools, or farms that constitute a random
sample from a population of such units from each of which a random sample of
patients, students, or trees is drawn. On each of the latter, a number of observations
is taken (for example, a number of blood counts, grades, or weights of a sample
of apples). The resulting model [with a slight change of notation from (5.5)] may
be written as

Xijk = µ +Ai +Bij +Uijk.(5.8)

Here, theA’s, B ’s, andU ’s are again assumed to be independent normal with
zero means and variancesσ 2

A, σ 2
B , and σ 2, respectively. In the balanced case

(i = 1, . . . , I , j = 1, . . . , J , k = 1, . . . , n), a linear transformation produces
independent variables with meansE(Z111) =

√
IJnµ and = 0 for all otherZ’s

and variances

var(Zi11) = σ 2 + nσ 2
B + Jnσ 2

A (i = 1, . . . ,1),

var(Zij1) = σ 2 + nσ 2
B (j > 1),

var(Zijk) = σ 2 (k > 1).
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The joint distribution of theZ’s constitutes a four-parameter exponential family
with the complete set of sufficient statistics

S2
A =

I∑
i=2

Z2
i11 = Jn�(Xi·· −X···)2,

S2
B =

J∑
j=2

Z2
1j1 = n��(Xij · −Xi··)2,(5.9)

S2 =
I∑
i=1

J∑
j=1

n∑
k=2

Z2
ijk =

I∑
i=1

J∑
j=1

n∑
k=1

(Xijk −Xij ·)2,

Z111 =
√
IJnX···,

and the UMVU estimators of the variance components can be obtained as before
(Problem 5.12). ‖

The models illustrated in Examples 5.2 and 5.3 extend in a natural way to more
than two factors, and in the balanced cases, the UMVU estimators of the variance
components are easily derived.

The estimation of variance components described above suffers from two serious
difficulties.

(i) The UMVU estimators of all the variance components exceptσ 2 can take
on negative values with probabilities as high as.5 and even in excess of that value
(Problem 5.5–5.7) (and, correspondingly, their expected squared errors are quite
unsatisfactory; see Klotz, Milton, and Zacks 1969).

The interpretation of such negative values either as indications that the associated
components are negligible (which is sometimes formalized by estimating them to
be zero) or that the model is incorrect is not always convincing because negative
values do occur even when the model is correct and the components are positive.
An alternative possibility, here and throughout this section, is to fall back on max-
imum likelihood estimation or restricted MLE’s (REML estimates) obtained by
maximizing the likelihood after first reducing the data through location invariance
(Thompson, 1962; Corbeil and Searle, 1976). Although these methods have no
small-sample justification, they are equivalent to a noninformative prior Bayesian
solution (Searle et al. 1992; see also Example 2.7). Alternatively, there is an ap-
proach due to Hartung (1981), who minimizes bias subject to non-negativity, or
Pukelsheim (1981) and Mathew (1984), who find non-negative unbiased estimates
of variance.

(ii) Models as simple as those obtained in Examples 5.1–5.3 are not available
when the layout is not balanced.

The joint density of theX’s can then be obtained by noting that they are linear
functions of normal variables and thus have a joint multivariate normal distribu-
tion. To obtain it, one only need write down the covariance matrix of theX’s and
invert it. The result is an exponential family which typically is not complete un-
less the model is balanced. (This is illustrated for the one-way layout in Problem
5.4.) UMVU estimators cannot be expected in this case (see Pukelsheim 1981). A
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characterization ofU -estimable functions permitting UMVU estimators is given
by Unni (1978). Two general methods for the estimation of variance components
have been developed in some detail; these are maximum and restricted maximum
likelihood, and the minimum norm quadratic unbiased estimation (Minque) intro-
duced by Rao (1970). Surveys of the area are given by Searle (1971b), Harville
(1977), and Kleffe (1977). More detailed introductions can be found, for exam-
ple, in the books by Rao and Kleffe (1988), Searle et al. (1992), and Burdick and
Graybill (1992).

So far, the models we have considered have had factors that were either all fixed
or all random. We now look at an example of a mixed model, which contains both
types of factors.

Example 5.4 Mixed effects model. In Example 5.3, it was assumed that the hos-
pital, schools, or farms were obtained as a random sample from a population of
such units. Let us now suppose that it is only these particular hospitals that are
of interest (perhaps it is the set of all hospitals in the city), whereas the patients
continue to be drawn at random from these hospitals. Instead of (5.8), we shall
assume that the observations are given by

Xijk = µ + αi +Bij +Uijk (�αi = 0).(5.10)

A transformation very similar to the earlier one (Problem 5.14) now leads to
independent normal variablesWijk with joint density proportional to

exp

{
− 1

2(σ 2 + nσ 2
B)

[�(wi11− µ− αi)2 + S2
B ] − 1

2σ 2
S2

}
(5.11)

with S2
B andS2 given by (5.9), and withWi11 =

√
JnXi··. This is an exponential

family with the complete set of sufficient statisticsXi··, S2
B , andS2. The UMVU

estimators ofσ 2
B andσ 2 are the same as in Example 5.3, whereas the UMVU

estimator ofαi isXi·· −X···, as it would be if theB ’s were fixed. ‖
Thus far in this section, our focus has been the estimation of the variance compo-

nents in random and mixed effects models. There is, however, another important
estimation target in these models, the random effects themselves. This presents
a somewhat different problem than is considered in the rest of this book, as the
estimand is now a random variable rather than a fixed parameter. However, the
theory of UMVU estimation has a fairly straightforward extension to the present
case. We illustrate this in the following example.

Example 5.5 Best prediction of random effects. Consider, once more, the ran-
dom effects model (5.1), where the valueαi ofAi , the effect on gas mileage, could
itself be of interest.

Sinceαi is the realized value of a random variable rather than a fixed parameter,
it is common to speak ofprediction of αi rather than estimation ofαi . To avoid
identifiability problems, we will, in fact, predictµ + αi rather thanαi . If δ(X) is a
predictor, then under squared error loss we have

E[δ(X)− (µ + αi)]
2 = E[δ(X)± E(µ + αi |X)− (µ + αi)]

2

= E[δ(X)− E(µ + αi |X)]2(5.12)
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+E[E(µ + αi |X)− (µ + αi)]
2.

As we have no control over the second term on the right side of (5.12), we only
need be concerned with minimization of the first term. (In this sense, prediction
of a random variable is the same as estimation of its conditional expected value.)

Under the normality assumptions of Example 5.1,

E(µ + αi |X) =
nσ 2
A

nσ 2
A + σ 2

X̄i +
σ 2

nσ 2
A + σ 2

µ.(5.13)

Assuming the variances known, we set

δ(X) =
nσ 2
A

nσ 2
A + σ 2

X̄i +
σ 2

nσ 2
A + σ 2

δ′(X)

and chooseδ′(X) to minimizeE[δ′(X) − µ]2. The UMVU estimator ofµ is X̄,
and the UMVU predictor ofµ + αi is

nσ 2
A

nσ 2
A + σ 2

X̄i +
σ 2

nσ 2
A + σ 2

X̄.(5.14)

As we will see in Chapter 4, this predictor is also a Bayes estimator in a hierarchical
model (which is another way of thinking of the model (5.1); see Searle et al. 1992,
Chapter 9, and Problem 4.7.15).

Although we have assumed normality, optimality of (5.14) continues if the
distributional assumptions are relaxed, similar to (4.35). Under such relaxed as-
sumptions, (5.14) continues to be best among linear unbiased predictors (Problem
5.17). Harville (1976) has formulated and proved a Gauss-Markov-type theorem
for a general mixed model. ‖

6 Exponential Linear Models

The great success of the linear models described in the previous sections suggests
the desirability of extending these models beyond the normal case. A natural gen-
eralization combines a general exponential family with the structure of a linear
model and will often result in exponential linear models in terms of new param-
eters [see, for example, (5.2) and (5.3)]. However, the models in this section are
discrete and do not arise from normal theory.

Equivariance tends to play little role in the resulting models; they are therefore
somewhat out of place in this chapter. But certain analogies with normal linear
models make it convenient to present them here.

(i) Contingency Tables

Suppose that the underlying exponential family is the set of multinomial distri-
butions (1.5.4), which may be written as

exp

(
s∑
i=0

xi logpi

)
h(x),(6.1)
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and that a linear structure is imposed on the parametersηi = logpi . Expositions
of the resulting theory oflog linear models can be found in the books by Agresti
(1990), Christensen (1990), Santner and Duffy (1990), and Everitt (1992). Diaconis
(1988, Chapter 9) shows how a combination of exponential family theory and group
representations lead naturally to log linear models.

The models have close formal similarities with the corresponding normal mod-
els, and a natural linear subspace of the logpi often corresponds to a natural
restriction on thep’s. In particular, since sums of the logp’s correspond to prod-
ucts of thep’s, a subspace defined by setting suitable interaction terms equal to zero
often is equivalent to certain independence properties in the multinomial model.

The exponential family (6.1) is not of full rank since thep’s must add up to 1.
A full-rank form is [

exp
s∑
i=1

xi log(pi/p0)

]
h(x).(6.2)

If we let
η′i = log

pi

p0
= ηi − η0,(6.3)

we see that arbitrary linear functions of theη′i correspond to arbitrary contrasts
(i.e., functions of the differences) of theηi . From Example 2.3.8, it follows that
(X1, . . . , Xs) or (X0, X1, . . . , Xs) is sufficient and complete for (6.2) and hence
also for (6.1). In applications, we shall find (6.1) the more convenient form to use.

If theη’s are required to satisfyr independent linear restrictions�aijηj = bi(i =
1, . . . , r), the resulting distributions will form an exponential family of ranks− r,
and the associated minimal sufficient statisticsT will continue to be complete.
SinceE(Xi/n) = pi , the probabilitiespi are alwaysU -estimable; their UMVU
estimators can be obtained as the conditional expectations ofXi/n given T . If
p̂i is the UMVU estimator ofpi , a natural estimator ofηi is η̂i = logp̂i , but,
of course, this is no longer unbiased. In fact, no unbiased estimator ofηi exists
because only polynomials of thepi can beU -estimable (Problem 2.3.25). When
p̂i is also the MLE ofpi , η̂i is the MLE of ηi . However, the MLEˆ̂pi does not
always coincide with the UMVU estimator̂pi . An example of this possibility with
logpi = α + βti (t ’s known; α andβ unknown) is given by Haberman (1974,
Example 1.16, p. 29; Example 3.3, p. 60). It is a disadvantage of thep̂i in this case
that, unlike ˆ̂pi , they do not always satisfy the restrictions of the model, that is, for
some values of theX’s, noα andβ exist for which logp̂i = α + βti . Typically, if
p̂i �= ˆ̂pi , the difference between the two is moderate.

For estimating theηi , Goodman (1970) has recommended in some cases apply-
ing the estimators not to the cell frequenciesXi/n but toXi/n + 1/2, in order to
decrease the bias of the MLE. This procedure also avoids difficulties that may arise
when some of the cell counts are zero. (See also Bishop, Fienberg, and Holland
1975, Chapter 12.)

Example 6.1 Two-way contingency table. Consider the situation of Example
2.3.9 in whichn subjects are classified according to two characteristicsA and
B with possible outcomesA1, . . . , AI andB1, . . . , BJ . If nij is the number of
subjects with propertiesAi andBj , the joint distribution of thenij can be written
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as
n!

Oi,j (nij )!
exp��nij ξij , ξij = logpij .

Write ξij = µ + αi + βj + γij as in Example 4.11, with the side conditions (4.28).
This implies no restrictions since anyIJ numbersξij can be represented in this
form. Thepij must, of course, satisfy��pij = 1 and theξij must therefore satisfy
� expξij = 1. This equation determinesµ as a function of theα’s, β ’s, andγ ’s
which are free, subject only to (4.28). The UMVU estimators of thepij were seen
in Example 2.3.9 to benij /n. ‖

In Example 4.11 (normal two-way layout), it is sometimes reasonable to suppose
that all theγijs (the interactions) are zero. In the present situation, this corresponds
exactly to the assumption that the characteristicsA andB are independent, that is,
thatpij = pi+p+j (Problem 6.1). The UMVU estimator ofpij is nowni+n+j /n

2.

Example 6.2 Conditional independence in a three-way table. In Example 2.3.10,
it was assumed that the subjects are classified according to three characteristicsA,
B, andC and that conditionally, given outcomeC, the two characteristicsA and
B are independent. Ifξijk = logpijk andξijk is written as

ξijk = µ + αAi + αBj + αCk + αABij + αACik + αBCjk + αABCijk

with theα’s subject to the usual restrictions and withµ determined by the fact
that thepijk add up to 1, it turns out that the conditional independence ofA and
B givenC is equivalent to the vanishing of both the three-way interactionsαABCijk

and theA,B interactionsαABij (Problem 6.2). The UMVU estimators of thepijk
in this model were obtained in Example 2.3.10. ‖

(ii) Independent Binomial Experiments

The submodels considered in Example 5.2–5.4 and 6.1–6.2 corresponded to
natural assumptions about the variances or probabilities in question. However, in
general, the assumption of linearity in theη’s made at the beginning of this section
is rather arbitrary and is dictated by mathematical convenience rather than by
meaningful structural assumptions. We shall now consider a particularly simple
class of problems, in which this linearity assumption is inconsistent with more
customary assumptions. Agreement with these assumptions can be obtained by
not insisting on a linear structure for the parametersηi themselves but permitting
a linear structure for a suitable function of theη’s.

The problems are concerned with a number of independent random variablesXi
having the binomial distributionsb(pi, ni). Suppose theX’s have been obtained
from some unobservable variablesZi distributed independently asN (ζi, σ 2) by
setting

Xi =

{
0 if Zi ≤ u
1 if Zi > u.

(6.4)

Then

pi = P (Zi > u) = X

(
ζi − u
σ

)
(6.5)
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and hence
ζi = u + σX−1(pi).(6.6)

Now consider a two-way layout for theZ’s in which the effects are additive, as
in Example 4.11. The subspace of theζij (i = 1, . . . , a, j = 1, . . . , b) defining this
model is characterized by the fact that the interactions satisfy

γij = ζij − ζi· − ζ·j + ζ·· = 0(6.7)

which, by (6.6), implies that

X−1(pij )− 1

J

∑
j

X−1(pij ) − 1

I

∑
i

X−1(pij )(6.8)

+
1

IJ

∑
i

∑
j

X−1(pij ) = 0.

The “natural” linear subspace of the parameter space for theZ’s thus translates
into a linear subspace in terms of the parametersX−1(pij ) for theX’s, and the
corresponding fact by (6.6) is true quite, generally, for subspaces defined in terms
of differences of theζ ’s. On the other hand, the joint distribution of theX’s is
proportional to

exp

[
�xi log

pi

qi

]
h(x),(6.9)

and the natural parameters of this exponential family areηi = log(pi/qi). The
restrictions (6.8) are not linear in theη’s, and the minimal sufficient statistics for
the exponential family (6.9) with the restrictions (6.8) are not complete.

It is interesting to ask whether there exists a distributionF for the underlying
variablesZi such that a linear structure for theζi will result in a linear structure
for ηi = log(pi/qi) when thepi and theζi are linked by the equation

qi = P (Zi ≤ u) = F (u− ζi)(6.10)

instead of by (6.5). Then,ζi = u − F−1(qi) so that linear functions of theζi
correspond to linear functions of theF−1(qi) and hence of log(pi/qi), provided

F−1(qi) = a − b log
pi

qi
.(6.11)

Suppressing the subscripti and puttingx = a − b log(p/q), we see that (6.11) is
equivalent to

q = F (x) =
1

1 + e−(x−a)/b
,(6.12)

which is the cdf of the logistic distributionL(a, b) whose density is shown in Table
2.3.1.

Inferences based on the assumption of linearity inX−1(pi) and log(pi/qi) =
F−1(qi) with F given by (6.12) where, without loss of generality, we can take
a = 0, b = 1, are known asprobit andlogit analysis, respectively, and are widely
used analysis techniques. For more details and many examples, see Cox 1970,
Bishop, Fienberg, and Holland 1975, or Agresti 1990. As is shown by Cox (p. 28),
the two analyses may often be expected to give very similar results, provided the
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p’s are not too close to 0 or 1. The probit model can also be viewed as a special
case of athreshold model, a model in which it is only observed whether a random
variable exceeds a threshold (Finney 1971). For the calculation of the MLEs in
this model see Problem 6.4.16.

The outcomes ofs independent binomial experiments can be represented by a
2× s contingency table, as in Table 3.3.1, withI = 2 andJ = s, and the outcomes
A1 andA2 corresponding to success and failure, respectively. The column totals
n+1, . . . , n+s are simply thes sample sizes and are, therefore, fixed in the present
model. In fact, this is the principal difference between the present model and that
assumed for a 2× J table in Example 2.3.9. The case ofs independent binomials
arises in the situation of that example, if then subjects, instead of being drawn at
random from the population at large, are obtained by drawingn+j subjects from
the subpopulation having propertyBj for j = 1, . . . , s.

A 2 × J contingency table, with fixed column totals and with the distribution
of the cell counts given by independent binomials, occurs not only in its own
right through the sampling ofn+1, . . . , n+J subjects from categoriesB1, . . . , BJ ,
respectively, but also in the multinomial situation of Example 6.1 withI = 2, as the
conditional distribution of the cell counts given the column totals. This relationship
leads to an apparent paradox. In the conditional model, the UMVU estimator of
the probabilitypj = p1j /(p1j + p2j ) of success, given that the subject is inBj , is
δj = n1j /n+j . Sinceδj satisfies

E(δj |Bj ) = pj ,(6.13)

it appears also to satisfyE(δj ) = pj and hence to be an unbiased estimator of
p1j /(p1j + p2j ) in the original multinomial model. On the other hand, an easy
extension of the argument of Example 3.3.1 (see Problem 2.3.25) shows that,
in this model, only polynomials in thepij can beU -estimable, and the ratio in
question clearly is not a polynomial.

The explanation lies in the tacit assumption made in (6.13) thatn+j > 0 and
in the fact thatδj is not defined whenn+j = 0. To ensure at least one observation
in Bj , one needs a sampling scheme under which an arbitrarily large number of
observations is possible. For such a scheme, theU -estimability ofp1j /(p1j +p2j )
would no longer be surprising.

It is clear from the discussion leading to (6.8) that the generalization of normal
linear models to models linear in the natural parametersηi of an exponential family
is too special and that, instead, linear spaces in suitable functions of theηi should
be permitted. Because in exponential families the parameters of primary interest
often are the expectationsθi = E(Ti) [for example in (6.9), thepi = E(Xi)],
generalized linear models are typically defined by restricting the parameters to
lie in a space defined by linear conditions onv(θi) [or in some casesvi(θi)] for a
suitablelink function v (linking the θ ’s with the linear space). A theory of such
models was developed Dempster (1971) and Nelder and Wedderburn (1972), who,
in particular, discuss maximum likelihood estimation of the parameters. Further
aspects are treated in Wedderburn (1976) and in Pregibon (1980). For a compre-
hensive treatment of thesegeneralized linear models, see the book by McCullagh
and Nelder (1989), an essential reference on this topic; an introductory treatment
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is provided by Dobson (1990). A generalized linear interactive modeling (GLIM)
package has been developed by Baker and Nelder (1983ab). The GLIM package
has proved invaluable in implementing these methods and has been in the center
of much of the research and modeling (see, for example, Aitken et al. 1989).

7 Finite Population Models

In the location-scale models of Sections 3.1 and 3.3, and the more general linear
models of Section 4.4 and 4.5, observations are measurements that are subject to
random errors. The parameters to be estimated are the true values of the quantities
being measured, or differences and other linear functions of these values, and the
variance of the measurement errors. We shall now consider a class of problems in
which the measurements are assumed to be without error, but in which the obser-
vations are nevertheless random because the subjects (or objects) being observed
are drawn at random from a finite population.

Problems of this kind occur whenever one wishes to estimate the average in-
come, days of work lost to illness, reading level, or the proportion of a population
supporting some measure or candidate. The elements being sampled need not be
human but may be trees, food items, financial records, schools, and so on. We
shall consider here only the simplest sampling schemes. For a fuller account of
the principal methods of sampling, see, for example, Cochran (1977); a systematic
treatment of the more theoretical aspects is given by Cassel, Särndal, and Wretman
(1977) and S̈arndal, Swensson, and Wretman (1992).

The prototype of the problems to be considered is the estimation of a population
average on the basis of a simple random sample from that population. In order
to draw a random sample, one needs to be able to identify the members of the
population. Telephone subscribers, for example, can conveniently be identified by
the page and position on the page, trees by their coordinates, and students in a
class by their names or by the row and number of their seat. In general, a list or
other identifying description of the members of the population is called aframe.
To represent the sampling frame, suppose thatN population elements are labeled
1, . . . , N ; in addition, a valueai (the quantity of interest) is associated with the
elementi. (This notation is somewhat misleading because, in any realization of
the model, thea’s will simply beN real numbers without identifying subscripts.)
For the purpose of estimatinḡa = �Ni=1ai/N , a sample of sizen is drawn in order,
one element after another, without replacement. It is asimple random sample if
all N (N − 1) . . . (N − n + 1) possiblen-tuples are equally likely.

The data resulting from such a sampling process consist of then labels of the
sampled elements and the associateda values, in the order in which they were
drawn, say

X = {(I1, Y1), . . . , (In, Yn)}(7.1)

where theI ’s denote the labels and theY ’s the associateda values,Yk = aIk . The
unknown aspect of the situation, which as usual we shall denote byθ , is the set of
populationa values of theN elements,

θ = {(1, a1), . . . , (N, aN )}.(7.2)
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In the classic approach to sampling, the labels are discarded. Let us for a moment
follow this approach, so that what remains of the data is the set ofn observed
a values:Y1, . . . , Yn. Under simple random sampling, the order statisticsY(1) ≤
· · · ≤ Y(n) are then sufficient. To obtain UMVU estimators ofā and other functions
of the a’s, one needs to know whether this sufficient statistic is complete. The
answer depends on the parameter space, which we have not yet specified.

It frequently seems reasonable to assume that the setV of possible values is the
same for each of thea’s and does not depend on the values taken on by the other
a’s. (This would not be the case, for example, if thea’s were the grades obtained
by the students in a class which is being graded “on the curve.”) The parameter
space is then the set of all θ ’s given by (7.2) with (a1, . . . , aN ) in the Cartesian
product

V × V × · · · × V.(7.3)

Here,V may, for example, be the set of all real numbers, all positive real numbers,
or all positive integers. Or it may just be the setV = {0,1} representing a situation
in which there are only two kinds of elements—those who vote yes or no, which
are satisfactory or defective, and so on.

Theorem 7.1 If the parameter space is given by (7.3), the order statistics Y(1), . . .,
Y(n) are complete.

Proof. Denote by s an unordered sample ofn elements and byY(1)(s, θ),
. . . , Y(n)(s, θ) its a values in increasing size. Then, the expected value of any
estimatorδ depending only on the order statistics is

Eθ {δ[Y(1), . . . , Y(n)]} = �P (s)δ[Y(1)(s, θ), . . . , Y(n)(s, θ)],(7.4)

where the summation extends over all

(
N

n

)
possible samples, and where for

simple random sampling,P (s) = 1/

(
N

n

)
for all s. We need to show that

Eθ {δ[Y(1), . . . , Y(n)]} = 0 for all θ ∈ (7.5)

implies thatδ[y(1), . . . , y(n)] = 0 for all y(1) ≤ · · · ≤ y(n).
Let us begin by considering (7.5) for all parameter pointsθ for which (a1, . . . , aN )

is of the form (a, . . . , a), a ∈ V . Then, (7.5) reduces to∑
s

P (s)δ(a, . . . , a) = 0 for all a,

which impliesδ(a, . . . , a) = 0. Next, suppose thatN − 1 elements inθ are equal
to a, and one is equal tob > a. Now, (7.5) will contain two kinds of terms:
those corresponding to samples consisting ofn a’s and those in which the sample
containsb, and (7.5) becomes

p δ(a, . . . , a) + qδ(a, . . . , a, b) = 0

wherep andq are known numbers�= 0. Since the first term has already been shown
to be zero, it follows thatδ(a, . . . , a, b) = 0. Continuing inductively, we see that
δ(a, . . . , a, b, . . . , b) = 0 for anyk a’s andn− k b’s, k = 0, . . . , n.
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As the next stage in the induction argument, considerθ ’s of the form
(a, . . . , a, b, c) with a < b < c, thenθ ’s of the form (a, . . . , a, b, b, c), and so
on, showing successively thatδ(a, . . . , a, b, c), δ(a, . . . , a, b, b, c), . . . are equal
to zero. Continuing in this way, we see thatδ[y(1), . . . , y(n)] = 0 for all possible
(y(1), . . . , y(n)), and this proves completeness. ✷

It is interesting to note the following:
(a) No use has been made of the assumption of simple random sampling, so that

the result is valid also for other sampling methods for which the probabilities
P (s) are known and positive for alls.

(b) The result need not be true for other parameter spaces (Problem 7.1).

Corollary 7.2 On the basis of the sample values Y1, . . . , Yn, a UMVU estima-
tor exists for any U -estimable function of the a’s, and it is the unique unbiased
estimator δ(Y1, . . . , Yn) that is symmetric in its n arguments.

Proof. The result follows from Theorem 2.1.11 and the fact that a function of
y1, . . . , yn depends only ony(1), . . . , y(n) if and only if it is symmetric in itsn
arguments (see Section 2.4). ✷

Example 7.3 UMVU estimation in simple random sampling. If the sampling
method is simple random sampling and the estimand isā, the sample mean̄Y is
clearly unbiased sinceE(Yi) = ā for all i (Problem 7.2). SincēY is symmetric in
Y1, . . . , Yn, it is UMVU and among unbiased estimators, it minimizes the risk for
any convex loss function. The variance ofȲ is (Problem 7.3)

var(Ȳ ) =
N − n
N − 1

· 1

n
τ 2(7.6)

where

τ 2 =
1

N
�(ai − a)2(7.7)

is thepopulation variance. To obtain an unbiased estimator ofτ 2, note that (Prob-
lem 7.3)

E

[
1

n− 1
�(Yi − Ȳ )2

]
=

N

N − 1
τ 2.(7.8)

Thus, [(N − 1)/N (n − 1)]�ni=1(Yi − Ȳ )2 is unbiased forτ 2, and because it is
symmetric in itsn arguments, it is UMVU. ‖

If the sampling method is sequential, the stopping rule may add an additional
complication.

Example 7.4 Sum-quota sampling. Suppose that eachYi has associated with it a
costCi , a positive random variable, and sampling is continued untilν observations
are taken, where

∑ν−1
1 Ci < Q <

∑ν
1Ci , withQbeing a specified quota. (Note the

similarity to inverse binomial sampling, as discussed in Example 2.3.2.) Under this
sampling scheme, Pathak (1976) showed thatȲν−1 = 1

ν−1

∑ν−1
1 Yi is an unbiased

estimator of the population averageā (Problem 7.4).
Note that Pathak’s estimator drops the terminal observationYν , which tends to

be upwardly biased. As a consequence, Pathak’s estimator can be improved upon.
This was done by Kremers (1986), who showed the following:
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(a) T = {(C1, Y1), . . . , (Cν, Yν)} is complete sufficient.

(b) Conditional onT , {(Ci, Y1), . . . , (Cν−1, Yν−1)} are exchangeable (Problem
7.5).

Under these conditions, the estimator

â = Ȳ − (Ȳ[ν] − Ȳ )/(ν − 1)(7.9)

is UMVU if ν > 1, whereȲ[ν] is the mean of all of the observations thatcould
have been the terminal observation; that is,Ȳ[ν] is the mean of all theYi ’s in the
set

{(cj , yj ) :
∑
i �=j
ci < Q, j = 1, . . . , ν}.(7.10)

See Problem 7.6. ‖
So far, we have ignored the labels. That Theorem 7.1 and Corollary 7.2 no longer

hold when the labels are included in the data is seen by the following result.

Theorem 7.5 Given any sampling scheme of fixed size n which assigns to the
sample sa known probability P (s) (which may depend on the labels but not on the
a values of the sample), given any U -estimable function g(θ ), and given any pre-
assigned parameter point θ0 = {(1, a10), . . . , (N, aN0)}, there exists an unbiased
estimator δ∗ of g(θ ) with variance varθ0(δ

∗) = 0.

Proof. Let δ be any unbiased estimator ofg(θ ), which may depend on both labels
andy values, say

δ(s) = δ[(i1, y1), . . . , (in, yn)],

and let
δ0(s) = δ[(i1, ai10), . . . , (in, ain0)].

Note thatδ0 depends on the labels whether or notδ does and thus would not be
available if the labels had been discarded. Let

δ∗(s) = δ(s)− δ0(s) + g(θ0).

Since
Eθ (δ) = g(θ ) and Eθ (δ0) = g(θ0),

it is seen thatδ∗ is unbiased for estimatingg(θ ). Whenθ = θ0, δ∗ = g(θ0) and is
thus a constant. Its variance is therefore zero, as was to be proved. ✷

To see under what circumstances the labels are likely to be helpful and when it
is reasonable to discard them, let us consider an example.

Example 7.6 Informative labels. Suppose the population is a class of several
hundred students. A random sample is drawn and each of the sampled students is
asked to provide a numerical evaluation of the instructor. (Such a procedure may be
more accurate than distributing reaction sheets to the whole class, if for the much
smaller sample it is possible to obtain a considerably higher rate of response.)
Suppose that the frame is an alphabetically arranged class list and that the label is
the number of the student on this list. Typically, one would not expect this label
to carry any useful information since the place of a name in the alphabet does not



202 EQUIVARIANCE [ 3.7

usually shed much light on the student’s attitude toward the instructor. (Of course,
there may be exceptional circumstances that vitiate this argument.) On the other
hand, suppose the students are seated alphabetically. In a large class, the students
sitting in front may have the advantage of hearing and seeing better, receiving more
attention from the instructor, and being less likely to read the campus newspaper
or fall asleep. Their attitude could thus be affected by the place of their name in
the alphabet, and thus the labels could carry some information. ‖

We shall discuss two ways of formalizing the idea that the labels can reasonably
be discarded if they appear to be unrelated to the associateda values.

(i) Invariance. Consider the transformations of the parameter and sample space
obtained by an arbitrary permutation of the labels:

ḡθ = {(j (1), a1), . . . , (j (N ), aN )},(7.11)

gX = {(j (I1), Y1), . . . , (j (In), Yn)}.
The estimand̄a [or, more generally, any functionh(a1, . . . , aN ) that is symmetric
in the a’s] is unchanged by these transformations, so thatg∗d = d and a loss
functionL(θ, d) is invariant if it depends onθ only through thea’s (in fact, as a
symmetric function of thea’s) and not the labels. [For estimatingā, such a loss
function would be typically of the formρ(d − ā).] Sinceg∗d = d, an estimatorδ
is equivariant if it satisfies the condition

δ(gX) = δ(X) for all g andX.(7.12)

In this case, equivariance thus reduces to invariance. Condition (7.12) holds if and
only if the estimatorδ depends only on the observedY values and not on the labels.
Combining this result with Corollary 7.2, we see that for anyU -estimable function
h(a1, . . . , aN ), the estimator of Corollary 7.2 uniformly minimizes the risk for any
convex loss function that does not depend on the labels among all estimators ofh

which are both unbiased and invariant.
The appropriateness of the principle of equivariance, which permits restricting

consideration to equivariant (in the present case, invariant) estimators, depends on
the assumption that the transformations (7.11) leave the problem invariant. This
is clearly not the case when there is a relationship between the labels and the
associateda values, for example, when lowa values tend to be associated with
low labels and higha values with high labels, since permutation of the labels will
destroy this relationship. Equivariance considerations therefore justify discarding
the labels if, in our judgment, the problem is symmetric in the labels, that is,
unchanged under any permutation of the labels.

(ii) Random labels. Sometimes, it is possible to adopt a slightly different formu-
lation of the model which makes an appeal to equivariance unnecessary. Suppose
that the labels have been assigned at random, that is, so that allN ! possible as-
signments are equally likely. Then, the observeda valuesY1, . . . , Yn are sufficient.
To see this, note that given these values, anyn labels (I1, . . . , In) associated with
them are equally likely, so that the conditional distribution ofX given (Y1, . . . , Yn)
is independent ofθ . In this model, the estimators of Corollary 7.2 are, therefore,
UMVU without any further restriction.
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Of course, the assumption of random labeling is legitimate only if the labels
really were assigned at random rather than in some systematic way such as alpha-
betically or first come, first labeled. In the latter cases, rather than incorporating a
very shaky assumption into the model, it seems preferable to invoke equivariance
when it comes to the analysis of the data with the implied admission that we be-
lieve the labels to be unrelated to thea values but without denying that a hidden
relationship may exist.

Simple random sampling tends to be inefficient unless the population being
sampled is fairly homogeneous with respect to thea’s. To see this, suppose that
a1 = · · · = aN1 = a andaN1+1 = · · · = aN1+N2 = b(N1 +N2 = N ). Then (Problem
7.3)

var(Ȳ ) =
N − n
N − 1

· γ (1− γ )

n
(b − a)2(7.13)

whereγ = N1/N . On the other hand, suppose that the subpopulationsOi consisting
of thea’s andb’s, respectively, can be identified and that one observationXi is taken
from each of theOi (i = 1,2). ThenX1 = a andX2 = b and (N1X1+N2X2)/N = ā
is an unbiased estimator ofā with variance zero.

This suggests that rather than taking a simple random sample from a hetero-
geneous populationO, one should try to divideO into more homogeneous sub-
populationsOi , calledstrata, and sample each of the strata separately. Human
populations are frequently stratified by such factors as age, gender, socioeconomic
background, severity of disease, or by administrative units such as schools, hospi-
tals, counties, voting districts, and so on.

Suppose that the populationO has been partitioned intos strataO1, . . .,Os of
sizesN1, . . . , Ns and that independent simple random samples of sizeni are taken
from eachOi (i = 1, . . . , s). If aij (j = 1, . . . , Ni) denote thea values in theith
stratum, the parameter is nowθ = (θ1, . . . , θs), where

θi = {(1, ai1), . . . , (Ni, aiNi ); i},
and the observations areX = (X1, . . . , Xs), where

Xi = {(Ki1, Yi1), . . . , (Kini , Yini ); i}.
Here,Kij is the label of thej th element drawn fromOi andYij is itsa value.

It is now easy to generalize the optimality results for simple random sampling
to stratified sampling.

Theorem 7.7 Let theYij (j = 1, . . . , ni), ordered separately for each i, be denoted
byYi(1) < · · · < Yi(ni ). On the basis of theYij (i.e., without the labels), these ordered
sample values are sufficient. They are also complete if the parameter spacei for
θi is of the form Vi × · · · × Vi (Ni factors) and the overall parameter space is
 = 1 × · · · × s . (Note that the value sets Vi may be different for different
strata.)

The proof is left to the reader (Problem 7.9).

It follows from Theorem 7.7 that on the basis of theY ’s, a UMVU estimator exists
for anyU -estimator function of thea’s and that it is the unique unbiased estimator
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δ(Yi1, . . . , Y1ni ;Y21, . . . , Y2n2; . . .) which is symmetric in its firstn1 arguments,
symmetric in its second set ofn2 arguments, and so forth.

Example 7.8 UMVU estimation in stratified random sampling. Suppose that
we leta·· = ��aij /N be the average of thea’s for the populationO. If ai· is the
average of thea’s inOi , Yi· is unbiased for estimatingai· and hence

δ = �
NiYi·
N

(7.14)

is an unbiased estimator ofa··. Sinceδ is symmetric for each of thes subsamples,
it is UMVU for a·· on the basis of theY ’s. From (7.6) and the independence of the
Yi ’s, it is seen that

var(δ) = �
N2
i

N2
· Ni − ni
Ni − 1

· 1

ni
τ 2
i ,(7.15)

whereτ 2
i is the population variance ofOi , and from (7.8), one can read off the

UMVU estimator of (7.15). ‖
Discarding the labels within each stratum (but not the strata labels) can again

be justified by invariance considerations if these labels appear to be unrelated to
the associateda values. Permutation of the labels within each stratum then leaves
the problem invariant, and the condition of equivariance reduces to the invariance
condition (7.12). In the present situation, an estimator again satisfies (7.12) if and
only if it does not depend on the within-strata labels. The estimator (7.14), and
other estimators which are UMVU when these labels are discarded, are therefore
also UMVU invariant without this restriction.

A central problem in stratified sampling is the choice of the sample sizesni .
This is a design question and hence outside the scope of this book (but see Hedayat
and Sinha 1991). We only mention that a natural choice isproportional allocation,
in which the sample sizesni are proportional to the population sizesNi . If the τi
are known, the best possible choice in the sense of minimizing the approximate
variance

�(N2
i τ

2
i /niN

2)(7.16)

is theTschuprow-Neyman allocation withni proportional toNiτi (Problem 7.11).
Stratified sampling, in addition to providing greater precision for the same total

sample size than simple random sampling, often has the advantage of being admin-
istratively more convenient, which may mean that a larger sample size is possible
on the same budget. Administrative convenience is the principal advantage of a
third sampling method,cluster sampling, which we shall consider next. The pop-
ulation is divided intoK clusters of sizesM1, . . . ,MK . A single random sample
of k clusters is taken and thea values of all the elements in the sampled clusters
are obtained. The clusters might, for example, be families or city blocks. A field
worker obtaining information about one member of a family can often obtain the
same information for all the members at relatively little additional cost.

An important special case of cluster sampling issystematic sampling. Suppose
the items on a conveyor belt or the cards in a card catalog are being sampled. The
easiest way of drawing a sample in these cases and in many situations in which the
sampling is being done in the field is to take everyrth element, wherer is some
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positive number. To inject some randomness into the process, the starting point is
chosen at random. Here, there arer clusters consisting of the items labeled

{1, r + 1,2r + 1, . . .}, {2, r + 2,2r + 2, . . .}, . . . , {r,2r,3r, . . .},
of which one is chosen at random, so thatK = r andk = 1. In general, let the
elements of theith cluster be{ai1, . . . , aiMi

} and letui = �Mi

j=1aij be the total for
theith cluster. We shall be interested in estimating some function of theu’s such as
the population averagea·· = �ui/�Mi . Of theaij , we shall assume that the vector
of values (ai1, . . . , aiMi

) belongs to some setWi (which may, but need not be, of the
formV × · · · × V ) and that (a11, . . . , a1M1; a21, . . . , a2M2; . . .) ∈ W1× · · · ×WK .
The observations consist of the labels of the clusters included in the sample together
with the full set of labels and values of the elements of each such cluster:

X =
{[
i1; (1, ai1,1), (2, ai1,2), . . .

]
;
[
i2; (1, ai2,1), (2, ai2,2), . . .

]
; . . .

}
.

Let us begin the reduction of the statistical problem with invariance consider-
ations. Clearly, the problem remains invariant under permutations of the labels
within each cluster, and this reduces the observation to

X′ =
{[
i1, (ai1,1, . . . , ai1,Mi1

)
]

;
[
i2, (ai2,1, . . . , ai2,Mi2

)
]

; . . .
}

in the sense that an estimator is invariant under these permutations if and only if it
depends onX only throughX′.

The next group is different from any we have encountered so far. Consider any
transformation taking (ai1, . . . , aiMi

) into (a′i1, . . . , a
′
iMi

), i = 1, . . . , K, where the
a′ij are arbitrary, except that they must satisfy

(a) (a′i1, . . . , a
′
iMi

) ∈ Wi
and

(b)
Mi∑
j=1

a′ij = ui.

Note that for some vectors (ai1, . . . , aiMi
), there may be no such transformations

except the identity; for others, there may be just the identity and one other, and so
on, depending on the nature ofWi .

It is clear that these transformations leave the problem invariant, provided both
the estimand and the loss function depend on thea’s only through theu’s. Since the
estimand remains unchanged, the same should then be true forδ, which, therefore,
should satisfy

δ(gX′) = δ(X′)(7.17)

for all these transformations. It is easy to see (Problem 7.17) thatδ satisfies (7.17)
if and only if δ depends onX′ only through the observed cluster labels, cluster
sizes, and the associated cluster totals, that is, only on

X′′ = {(ii , ui1,Mi1), . . . , (ik, uik ,Mik )}(7.18)

and the order in which the clusters were drawn.
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This differs from the set of observations we would obtain in a simple random
sample from the collection

{(1, u1), . . . , (K, uK )}(7.19)

through the additional observations provided by the cluster sizes. For the estimation
of the population average or total, this information may be highly relevant and the
choice of estimator must depend on the relationship betweenMi and ui . The
situation does, however, reduce to that of simple random sampling from (7.19)
under the additional assumption that the cluster sizesMi are equal, sayMi = M,
whereM can be assumed to be known. This is the case, either exactly or as a very
close approximation, for systematic sampling, and also in certain applications to
industrial, commercial, or agricultural sampling—for example, when the clusters
are cartons of eggs of other packages or boxes containing a fixed number of items.
From the discussion of simple random sampling, we know that the averageȲ of
the observedu values is then the UMVU invariant estimatorū = �ui/K and hence
that Ȳ /M is UMVU invariant for estimatinga·· . The variance of the estimator is
easily obtained from (7.6) withτ 2 = �(ui − ū)2/K.

In stratified sampling, it is desirable to have the strata as homogeneous as possi-
ble: The more homogeneous a stratum, the smaller the sample size it requires. The
situation is just the reverse in cluster sampling, where the whole cluster will be
observed in any case. The more homogeneous a cluster, the less benefit is derived
from these observations: “If you have seen one, you have seen them all.” Thus, it
is desirable to have the clusters as heterogeneous as possible. For example, fam-
ilies, for some purposes, constitute good clusters by being both administratively
convenient and heterogeneous with respect to age and variables related to age.
The advantages of stratified sampling apply not only to the sampling of single ele-
ments but equally to the sampling of clusters.Stratified cluster sampling consists
of drawing a simple random sample of clusters from each stratum and combining
the estimates of the strata averages or totals in the obvious way. The resulting
estimator is again UMVU invariant, provided the cluster sizes are constant within
each stratum, although they may differ from one stratum to the next. (For a more
detailed discussion of stratified cluster sampling, see, for example, Kish 1965.)

To conclude this section, we shall briefly indicate two ways in which the equiv-
ariance considerations in the present section differ from those in the rest of the
chapter.

(i) In all of the present applications, the transformations leave the estimand un-
changed rather than transforming it into a different value, and the condition of
equivariance then reduces to the invariance condition:δ(gX) = δ(X). Correspond-
ingly, the groupḠ is not transitive over the parameter space and a UMRE estimator
cannot be expected to exist. To obtain an optimal estimator, one has to invoke un-
biasedness in addition to invariance. (For an alternative optimality property, see
Section 5.4.)

(ii) Instead of starting with transformations of the sample space which would
then induce transformations of the parameter space, we inverted the order and
began by transformingθ , thereby inducing transformations ofX. This does not
involve a new approach but was simply more convenient than the usual order. To
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see how to present the transformations in the usual order, let us consider the sample
space as the totality of possible sampless together with the labels and values of
their elements. Suppose, for example, that the transformations are permutations
of the labels. Since the same elements appear in many different samples, one
must ensure that the transformationsg of the samples are consistent, that is, that
the transform of an element is independent of the particular sample in which it
appears. If a transformation has this property, it will define a permutation of all
the labels in the population and hence a transformationḡ of θ . Starting withg or
ḡ thus leads to the same result; the latter is more convenient because it provides
the required consistency property automatically.

8 Problems

Section 1

1.1 Prove the parts of Theorem 1.4 relating to (a) risk and (b) variance.

1.2 In model (1.9), suppose thatn = 2 and thatf satisfiesf (−x1,−x2) = f (x2, x1).
Show that the distribution of (X1 + X2)/2 givenX2 − X1 = y is symmetric about 0.
Note that ifX1 andX2 are iid according to a distribution which is symmetric about 0,
the above equation holds.

1.3 If X1 andX2 are distributed according to (1.9) withn = 2 andf satisfying the
assumptions of Problem 1.2, and ifρ is convex and even, then the MRE estimator ofξ

is (X1 +X2)/2.

1.4 Under the assumptions of Example 1.18, show that (a)E[X(1)] = b/n and (b)
med[X(1)] = b log 2/n.

1.5 For each of the three loss functions of Example 1.18, compare the risk of the MRE
estimator to that of the UMVU estimator.

1.6 If T is a sufficient statistic for the family (1.9), show that the estimator (1.28) is a
function ofT only. [Hint: Use the factorization theorem.]

1.7 LetXi(i = 1,2,3) be independently distributed with densityf (xi−ξ ) and letδ = X1

if X3 > 0 and =X2 if X3 ≤ 0. Show that the estimatorδ of ξ has constant risk for any
invariant loss function, butδ is not location equivariant.

1.8 Prove Corollary 1.14. [Hint: Show that (a)φ(v) = E0ρ(X − v) → M asv → ±∞
and (b) thatφ is continuous; (b) follows from the fact (see TSH2, Appendix Section 2)
that iffn, n = 1,2, . . . andf are probability densities such thatfn(x) → f (x) a.e., then∫
ψfn →

∫
ψf for any boundedψ .]

1.9 LetX1, . . . , Xn be distributed as in Example 1.19 and let the loss function be that of
Example 1.15. Determine the totality of MRE estimators and show that the midrange is
one of them.

1.10 Consider the loss function

ρ(t) =

{−At if t < 0
Bt if t ≥ 0 (A,B ≥ 0).

If X is a random variable with densityf and distribution functionF , show thatEρ(X−v)
is minimized for anyv satisfyingF (v) = B/(A +B).

1.11 In Example 1.16, find the MRE estimator ofξ when the loss function is given by
Problem 1.10.
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1.12 Show that an estimatorδ(X) of g(θ ) is risk-unbiased with respect to the loss function
of Problem 1.10 ifFθ [g(θ )] = B/(A +B), whereFθ is the cdf ofδ(X) underθ .

1.13 SupposeX1, . . . , Xm andY1, . . . , Yn have joint densityf (x1− ξ, . . . , xm− ξ ; y1−
η, . . . , yn − η) and consider the problem of estimatingW = η − ξ . Explain why it is
desirable for the loss functionL(ξ, η; d) to be of the formρ(d−W) and for an estimator
δ of W to satisfyδ(x + a, y + b) = δ(x, y) + (b − a).

1.14 Under the assumptions of the preceding problem, prove the equivalents of Theorems
1.4–1.17 and Corollaries 1.11–1.14 for estimators satisfying the restriction.

1.15 In Problem 1.13, determine the totality of estimators satisfying the restriction when
m = n = 1.

1.16 In Problem 1.13, suppose theX’s andY ’s are independently normally distributed
with known variancesσ 2 andτ 2. Find conditions onρ under which the MRE estimator
is Ȳ − X̄.

1.17 In Problem 1.13, suppose theX’s andY ’s are independently distributed asE(ξ,1)
andE(η, t), respectively, and thatm = n. Find conditions onρ under which the MRE
estimator ofW is Y(1) −X(1).

1.18 In Problem 1.13, suppose thatX andY are independent and that the loss function
is squared error. If̂ξ andη̂ are the MRE estimators ofξ andη, respectively, the MRE
estimator ofW is η̂ − ξ̂ .

1.19 Suppose theX’s andY ’s are distributed as in Problem 1.17 but withm �= n. Deter-
mine the MRE estimator ofW when the loss is squared error.

1.20 For any densityf of X = (X1, . . . , Xn), the probability of the setA = {x : 0 <∫∞
−∞ f (x− u) du <∞} is 1. [Hint: With probability 1, the integral in question is equal

to the marginal density ofY = (Y1, . . . , Yn−1) whereYi = Xi −Xn, andP [0 < g(Y) <
∞] = 1 holds for any probability densityg.]

1.21 Under the assumptions of Theorem 1.10, if there exists an equivariant estimatorδ0

of ξ with finite expected squared error, show that

(a) E0(|Xn| | Y) <∞ with probability 1;

(b) the setB = {x :
∫ |u|f (x − u) du <∞} has probability 1.

[Hint: (a)E|δ0| < ∞ impliesE(|δ0| | Y) < ∞ with probability 1 and henceE[δ0 −
v(Y)| | Y] < ∞ with probability 1 for anyv(Y). (b) P (B) = 1 if and only ifE(|Xn| |
Y) <∞ with probability 1.]

1.22 Let δ0 be location equivariant and letU be the class of all functionsu satisfying
(1.20) and such thatu(X) is an unbiased estimator of zero. Then,δ0 is MRE if and only
if cov[δ0, u(X)] = 0 for all u ∈ U .2 (Note the analogy with Theorem 2.1.7. )

Section 2

2.1 Show that the classG(C) is a group.

2.2 In Example 2.2(ii), show that the transformationsx′ = −x together with the identity
transformation form a group.

2.3 Let {gX, g ∈ G} be a group of transformations that leave the model (2.1) invariant.
If the distributionsPθ , θ ∈  are distinct, show that the induced transformationsḡ are
1 : 1 transformations of. [Hint: To show thatḡθ1 = ḡθ2 impliesθ1 = θ2, use the fact
thatPθ1(A) = Pθ2(A) for all A impliesθ1 = θ2.]

2 Communicated by P. Bickel.
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2.4 Under the assumptions of Problem 2.3, show that

(a) the transformations̄g satisfyg2g1 = ḡ2 · ḡ1 and (̄g)−1 = (g−1);

(b) the transformations̄g corresponding tog ∈ G form a group.

(c) establish (2.3) and (2.4).

2.5 Show that a loss function satisfies (2.9) if and only if it is of the form (2.10).

2.6 (a) The transformationsg∗ defined by (2.12) satisfy (g2g1)∗ = g∗2 · g∗1 and (g∗)−1 =
(g−1)∗.

(b) If G is a group leaving (2.1) invariant andG∗ = {g∗, g ∈ G}, thenG∗ is a group.

2.7 LetX be distributed asN (ξ, σ 2),−∞ < ξ <∞,0 < σ , and leth(ξ, σ ) = σ 2. The
problem is invariant under the transformationsx ′ = ax+c; 0< a,−∞ < c <∞. Show
that the only equivariant estimator isδ(X) ≡ 0.

2.8 Show that:

(a) If (2.11) holds, the transformationsg∗ defined by (2.12) are 1 : 1 fromH onto itself.

(b) If L(θ, d) = L(θ, d ′) for all θ impliesd = d ′, theng∗ defined by (2.14) is unique,
and is a 1 : 1 transformation fromD onto itself.

2.9 If θ is the true temperature in degrees Celsius, thenθ ′ = ḡθ = θ + 273 is the true
temperature in degrees Kelvin. Given an observationX, in degrees Celsius:

(a) Show that an estimatorδ(X) is functionally equivariant if it satisfiesδ(x) + a =
δ(x + a) for all a.

(b) Suppose our estimator isδ(x) = (ax + bθ0)/(a + b), wherex is the observed tem-
perature in degrees Celsius,θ0 is a prior guess at the temperature, anda andb are
constants. Show that for a constantK, δ(x +K) �= δ(x) +K, soδ does not satisfy
the principle of functional equivariance.

(c) Show that the estimators of part (b) will not satisfy the principle of formal invariance.

2.10 To illustrate the difference between functional equivariance and formal invariance,
consider the following.

To estimate the amount of electric power obtainable from a stream, one could use the
estimate

δ(x) = cmin{100, x − 20}
wherex = stream flow in m3/sec, 100 m3/sec is the capacity of the pipe leading to the
turbine, and 20 m3/sec is the flow reduction necessary to avoid harming the trout. The
constantc, in kilowatts/m3/sec converts the flow to a kilowatt estimate.

(a) If measurements were, instead, made in liters and watts, sog(x) = 1000x and
ḡ(θ ) = 1000θ , show that functional equivariance leads to the estimate

ḡ(δ(x)) = cmin{105, g(x)− 20,000}.
(b) The principle of formal invariance leads to the estimateδ(g(x)). Show that this

estimator is not a reasonable estimate of wattage.

(Communicated by L. LeCam.)

2.11 In an invariant probability model, writeX = (T ,W ), whereT is sufficient forθ ,
andW is ancillary .

(a) If the group operation is transitive, show that any invariant statistic must be ancillary.

(b) What can you say about the invariance of an ancillary statistic?
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2.12 In an invariant estimation problem, writeX = (T ,W ) whereT is sufficient forθ ,
andW is ancillary. If the group of transformations is transitive, show:

(a) The best equivariant estimatorδ∗ is the solution to mind Eθ [L(θ, d(x))|W = w].

(b) If e is the identity element of the group (g−1g = e), thenδ∗ = δ∗(t, w) can be found
by solving, for eachw, mind Ee{L[e, d(T ,w)]|W = w}.

2.13 For the situation of Example 2.11:

(a) Show that the class of transformations is a group.

(b) Show that equivariant estimators must satisfyδ(n− x) = 1− δ(x).

(c) Show that, using an invariant loss, the risk of an equivariant estimator is symmetric
aboutp = 1/2.

2.14 For the situation of Example 2.12:

(a) Show that the class of transformations is a group.

(b) Show that estimators of the formϕ(x̄/s2)s2, wherex̄ = 1/n�xi ands2 = �(xi−x̄)2

are equivariant, whereϕ is an arbitrary function.

(c) Show that, using an invariant loss function, the risk of an equivariant estimator is a
function only ofτ = µ/σ .

2.15 Prove Corollary 2.13.

2.16 (a) If g is the transformation (2.20), determineḡ.

(b) In Example 2.12, show that (2.22) is not only sufficient for (2.14) but also necessary.

2.17 (a) In Example 2.12, determine the smallest groupG containing bothG1 andG2.

(b) Show that the only estimator that is invariant underG is δ(X,Y) ≡ 0.

2.18 If δ(X) is an equivariant estimator ofh(θ ) under a groupG, then so isg∗δ(X) with
g∗ defined by (2.12) and (2.13), providedG∗ is commutative.

2.19 Show that:

(a) In Example 2.14(i),X is not risk-unbiased.

(b) The group of transformationsax + c of the real line (0< a,−∞ < c <∞) is not
commutative.

2.20 In Example 2.14, determine the totality of equivariant estimators ofW under the
smallest groupG containingG1 andG2.

2.21 Let θ be real-valued andh strictly increasing, so that (2.11) is vacuously satisfied.
If L(θ, d) is the loss resulting from estimatingθ by d, suppose that the loss resulting
from estimatingθ ′ = h(θ ) by d ′ = h(d) isM(θ ′, d ′) = L[θ, h−1(d ′)]. Show that:

(a) If the problem of estimatingθ with loss functionL is invariant underG, then so is
the problem of estimatingh(θ ) with loss functionM.

(b) If δ is equivariant underG for estimatingθ with loss functionL, show thath[δ(X)]
is equivariant for estimatingh(θ ) with loss functionM.

(c) If δ is MRE for θ with L, thenh[δ(X)] is MRE for h(θ ) withM.

2.22 If δ(X) is MRE for estimatingξ in Example 2.2(i) with loss functionρ(d− ξ ), state
an optimum property ofeδ(X) as an estimator ofeξ .
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2.23 LetXij , j = 1, . . . , ni , i = 1, . . . , s, andW be distributed according to a density of
the form [

s∏
i=1

fi(xi − ξi)
]
h(w)

wherexi−ξi = (xi1−ξi, . . . , xini−ξi), and consider the problem of estimatingθ = �ciξi
with loss functionL(ξi, . . . , ξs ; d) = ρ(d − θ ). Show that:

(a) This problem remains invariant under the transformations

X′ij = Xij + ai, ξ ′i = ξi + ai, θ ′ = θ +�aici,

d ′ = d +�aici .

(b) An estimatorδ of θ is equivariant under these transformations if

δ(x1 + a1, . . . , xs + as, w) = δ(x1, . . . , xs , w) +�aici .

2.24 Generalize Theorem 1.4 to the situation of Problem 2.23.

2.25 If δ0 is any equivariant estimator ofθ in Problem 2.23, and ifyi = (xi1− xini , xi2−
xini , . . . , xini−1 − xini ), show that the most general equivariant estimator ofθ is of the
form

δ(x1, . . . , xs , w) = δ0(x1, . . . , xs , w)− v(y1, . . . , ys , w).

2.26 (a) Generalize Theorem 1.10 and Corollary 1.12 to the situation of Problems 2.23
and 2.25. (b) Show that the MRE estimators of (a) can be chosen to be independent of
W .

2.27 Suppose that the variablesXij in Problem 2.23 are independently distributed as
N (ξi, σ 2), σ is known. Show that:

(a) The MRE estimator ofθ is then�ciX̄i − v∗, whereX̄i = (Xi1 + · · ·+Xini )/ni , and
wherev∗ minimizes (1.24) withX = �ciX̄i .

(b) If ρ is convex and even, the MRE estimator ofθ is�ciX̄i .

(c) The results of (a) and (b) remain valid whenσ is unknown and the distribution of
W depends onσ (but not theξ ’s).

2.28 Show that the transformation of Example 2.11 and the identity transformation are
the only transformations leaving the family of binomial distributions invariant.

Section 3

3.1 (a) A loss functionL satisfies (3.4) if and only if it satisfies (3.5) for someγ .

(b) The sample standard deviation, the mean deviation, the range, and the MLE ofτ

all satisfy (3.7) withr = 1.

3.2 Show that ifδ(X) is scale invariant, so isδ∗(X) defined to beδ(X) if δ(X) ≥ 0 and
= 0 otherwise, and the risk ofδ∗ is no larger than that ofδ for any loss function (3.5) for
whichγ (v) is nonincreasing forv ≤ 0.

3.3 Show that the bias of any equivariant estimator ofτ r in (3.1) is proportional toτ r .

3.4 A necessary and sufficient condition forδ to satisfy (3.7) is that it is of the form
δ = δ0/u with δ0 andu satisfying (3.7) and (3.9), respectively.

3.5 The functionρ of Corollary 3.4 withγ defined in Example 3.5 is strictly convex for
p ≥ 1.

3.6 LetX be a positive random variable. Show that:
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(a) If EX2 <∞, then the value ofc that minimizesE(X/c − 1)2 is c = EX2/EX.

(b) If Y has the gamma distribution withH(α,1), then the value ofw minimizing
E[(Y/w)− 1]2 isw = α + 1.

3.7 LetX be a positive random variable.

(a) If EX < ∞, then the value ofc that minimizesE|X/c − 1| is a solution to
EXI (X ≤ c) = EXI (X ≥ c), which is known as ascale median.

(b) Let Y have aχ2-distribution withf degrees for freedom. Then, the minimizing
value isw = f + 2. [Hint: (b) Example 1.5.9.]

3.8 Under the assumptions of Problem 3.7(a), the set of scale medians ofX is an interval.
If f (x) > 0 for all x > 0, the scale median ofX is unique.

3.9 Determine the scale median ofX when the distribution ofX is (a)U (0, θ ) and (b)
E(0, b).

3.10 Under the assumptions of Theorem 3.3:

(a) Show that the MRE estimator under the loss (3.13) is given by (3.14).

(b) Show that the MRE estimator under the loss (3.15) is given by (3.11), wherew∗(z)
is any scale median ofδ0(x) under the distribution ofX|Z.

[Hint: Problem 3.7.]

3.11 LetX1, . . . , Xn be iid according to the uniform distributionu(0, θ ).

(a) Show that the complete sufficient statisticX(n) is independent ofZ [given by Equa-
tion (3.8)].

(b) For the loss function (3.13) withr = 1, the MRE estimator ofθ is X(n)/w, with
w = (n + 1)/(n + 2).

(c) For the loss function (3.15) withr = 1, the MRE estimator ofθ is [21/(n+1)] X(n).

3.12 Show that the MRE estimators of Problem 3.11, parts (b) and (c), are risk-unbiased,
but not mean-unbiased.

3.13 In Example 3.7, find the MRE estimator of var(X1) when the loss function is (a)
(3.13) and (b) (3.15) withr = 2.

3.14 LetX1, . . . , Xn be iid according to the exponential distributionE(0, τ ). Determine
the MRE estimator ofτ for the loss functions (a) (3.13) and (b) (3.15) withr = 1.

3.15 In the preceding problem, find the MRE estimator of var(X1) when the loss function
is (3.13) withr = 2.

3.16 Prove formula (3.19).

3.17 LetX1, . . . , Xn be iid each with density (2/τ )[1 − (x/τ )], 0 < x < τ . Determine
the MRE estimator (3.19) ofτ r when (a)n = 2, (b) n = 3, and (c)n = 4.

3.18 In the preceding problem, find var(X1) and its MRE estimator forn = 2, 3, 4 when
the loss function is (3.13) withr = 2.

3.19 (a) Show that the loss functionLs of (3.20) is convex and invariant under scale
transformations.

(b) Prove Corollary 3.8.

(c) Show that for the situation of Example 3.7, if the loss function isLs , then the
UMVU estimator is also the MRE.

3.20 LetX1, . . . , Xn be iid from the distributionN (θ, θ2).

(a) Show that this probability model is closed under scale transformations.
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(b) Show that the MLE is equivariant.

[The MRE estimator is obtainable from Theorem 3.3, but does not have a simple form.
See Eaton 1989, Robert 1991, 1994a for more details. Gleser and Healy (1976) consider
a similar problem using squared error loss.]

3.21 (a) If δ0 satisfies (3.7) andcδ0 satisfies (3.22), show thatcδ0 cannot be unbiased
in the sense of satisfyingE(cδ0) ≡ τ r .

(b) Prove the statement made in Example 3.10.

3.22 Verify the estimatorδ∗ of Example 3.12.

3.23 If G is a group, a subsetG0 ofG is asubgroup ofG if G0 is a group under the group
operation ofG.

(a) Show that the scale group (3.32) is a subgroup of the location-scale group (3.24)

(b) Show that any equivariant estimator ofτ r that is equivariant under (3.24) is also
equivariant under (3.32); hence, in a problem that is equivariant under (3.32), the
best scale equivariant estimator is at least as good as the best location-scale equiv-
ariant estimator.

(c) Explain why, in general, ifG0 is a subgroup ofG, one can expect equivariance under
G0 to produce better estimators than equivariance underG.

3.24 For the situation of Example 3.13:

(a) Show that an estimator is equivariant if and only if it can be written in the form
ϕ(x̄/s)s2.

(b) Show that the risk of an equivariant estimator is a function only ofξ/τ .

3.25 If X1, . . . , Xn are iid according toE(ξ, τ ), determine the MRE estimator ofτ for
the loss functions (a) (3.13) and (b) (3.15) withr = 1 and the MRE estimator ofξ for
the loss function (3.43).

3.26 Show thatδ satisfies (3.35) if and only if it satisfies (3.40) and (3.41).

3.27 Determine the bias of the estimatorδ∗(X) of Example 3.18.

3.28 Lele (1993) uses invariance in the study ofmophometrics, the quantitative analysis of
biological forms. In the analysis of a biological object, one measures dataX onk specific
points calledlandmarks, where each landmark is typically two- or three-dimensional .
Here we will assume that the landmark is two-dimensional (as is a picture), soX is a
k × 2 matrix. A model forX is

X = (M + Y)H + t

whereMk×2 is the mean form of the object,t is a fixed translation vector, andH is a 2×2
matrix that rotates the vectorX. The random variableYk×2 is amatrix normal random
variable, that is, each column ofY is distributed asN (0, �k), ak-variate normal random
variable, and each row is distributed asN (0, �d ), a bivariate normal random variable.

(a) Show thatX is a matrix normal random variable with columns distributed as
Nk(MHj,�k) and rows distributed asN2(MiH, H

′�dH), whereHj is thej th column
of H andMi is theith row ofM.

(b) For estimation of the shape of a biological form, the parameters of interest areM,
�k and�d , with t andH being nuisance parameters. Show that, even if there were
no nuisance parameters,�k or�d is not identifiable.

(c) It is usually assumed that the (1,1) element of either�k or�d is equal to 1. Show
that this makes the model identifiable.
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(d) The form of a biological object is considered an inherent property of the form
(a baby has the same form as an adult) and should not be affected by rotations,
reflections, or translations. This is summarized by the transformation

X′ = XP + b

whereP is a 2× 2 orthogonal matrix (P ′P = I ) andb is ak× 1 vector. (See Note
9.3 for a similar group.) Suppose we observen landmarksX1, · · · ,Xn. Define the
Euclidean distance between two matricesA andB to beD(A,B) =

∑
ij (aij−bij )2,

and let then × n matrixF have (i, j )th elementfij = D(Xi ,Xj ). Show thatF is
invariant under this group, that isF (X′) = F (X). (Lele (1993) notes thatF is, in
fact, maximal invariant.)

3.29 In (9.1), show that the groupX′ = AX+b induces the groupµ′ = Aµ+b,�′ = A�A′.

3.30 For the situation of Note 9.3, consider the equivariant estimation ofµ.

(a) Show that an invariant loss is of the formL(µ,�, δ) = L((µ− δ)′�−1(µ− δ)).
(b) The equivariant estimators are of the form̄X + c, with c = 0 yielding the MRE

estimator.

3.31 For X1, . . . ,Xn iid asNp(µ,�), the cross-products matrixS is defined by

S = {Sij } =
n∑
k=1

(xik − x̄i)(xjk − x̄j )

wherex̄i = (1/n)
∑n

k=1 xik . Show that, for� = I ,

(a) EI [trS] = EI
∑p

i=1

∑n

k=1(Xik − X̄i)(Xik − X̄i) = p(n− 1),

(b) EI [trS2] = EI
∑p

i=1

∑p

j=1{
∑n

k=1(Xik − X̄i)(Xjk − X̄j )}2 = (n− 1)(np − p − 1).

[These are straightforward, although somewhat tedious, calculations involving the chi-
squared distribution. Alternatively, one can use the fact thatS has a Wishart distribution
(see, for example, Anderson 1984), and use the properties of that distribution.]

3.32 For the situation of Note 9.3:

(a) Show that equivariant estimators of� are of the formcS, whereS is the cross-
products matrix andc is a constant.

(b) Show thatEI {tr[(cS − I )′(cS − I )]} is minimized byc = EI trS/EI trS2.

[Hint: For part (a), use a generalization of Theorem 3.3; see the argument leading to
(3.29), and Example 3.11.]

3.33 For the estimation of� in Note 9.3:

(a) Show that the loss function in (9.2) is invariant.

(b) Show that Stein’s lossL(δ,�) = tr(δ�−1) − log |δ�−1| − p, where|A| is the
determinant ofA, is an invariant loss with MRE estimatorS/n.

(c) Show that a lossL(δ,�) is an invariant loss if and only if it can be written as a
function of the eigenvalues ofδ�−1.

[The univariate version of Stein’s loss was seen in (3.20) and Example 3.9. Stein (1956b)
and James and Stein (1961) used the multivariate version of the loss. See also Dey and
Srinivasan 1985, and Dey et al. 1987.]
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3.34 LetX1, . . . , Xm andY1, . . . , Yn have joint density

1

σmτn
f

(x1

σ
, . . . ,

xm

σ
;
y1

τ
, . . . ,

yn

τ

)
,

and consider the problem of estimatingθ = (τ/σ )r with loss functionL(σ, τ ; d) =
γ (d/θ ). This problem remains invariant under the transformationsX′i = aXi , Y ′j = bYj ,
σ ′ = aσ , τ ′ = bτ , andd ′ = (b/a)rd (a, b > 0), and an estimatorδ is equivariant under
these transformations ifδ(ax, by) = (b/a)r δ(x, y). Generalize Theorems 3.1 and 3.3,
Corollary 3.4, and (3.19) to the present situation.

3.35 Under the assumptions of the preceding problem and with loss function (d−θ )2/θ2,
determine the MRE estimator ofθ in the following situations:

(a) m = n = 1 andX andY are independently distributed asH(α, σ 2) andH(β, τ 2),
respectively (α, β known).

(b) X1, . . . , Xm andY1, . . . , Yn are independently distributed asN (0, σ 2) andN (0, τ 2),
respectively.

(c) X1, . . . , Xm andY1, . . . , Yn are independently distributed asU (0, σ ) andU (0, τ ),
respectively.

3.36 Generalize the results of Problem 3.34 to the case that the joint density ofX andY
is

1

σmτn
f

(
x1 − ξ
σ

, . . . ,
xm − ξ
σ

;
y1 − η
τ

, . . . ,
yn − η
τ

)
.

3.37 Obtain the MRE estimator ofθ = (τ/σ )r with the loss function of Problem 3.35
when the density of Problem 3.36 specializes to

1

σmτn
Oif

(
xi − ξ
σ

)
Ojf

(
yj − η
τ

)
andf is (a) normal, (b) exponential, or (c) uniform.

3.38 In the model of Problem 3.37 withτ = σ , discuss the equivariant estimation of
W = η − ξ with loss function (d − W)2/σ 2 and obtain explicit results for the three
distributions of that problem.

3.39 Suppose in Problem 3.37 that an MRE estimatorδ∗ of W = η − ξ under the trans-
formationsX′i = a + bXi andY ′j = a + bYj , b > 0, exists when the ratioτ/σ = c is
known and thatδ∗ is independent ofc. Show thatδ∗ is MRE also whenσ andτ are
completely unknown despite the fact that the induced group of transformations of the
parameter space is not transitive.

3.40 Let f (t) = 1
π

1
1+t2

be the Cauchy density, and consider the location-scale family

F =

{
1

σ
f

(
x − µ
σ

)
,−∞ < µ <∞,0< σ <∞

}
.

(a) Show that this probability model is invariant under the transformationx ′ = 1/x.

(b) If µ′ = µ/(µ2+σ 2) andσ ′ = σ/(µ2+σ 2), show thatPµ,r (X ∈ A) = Pµ′,σ ′ (X′ ∈ A);
that is, ifX has the Cauchy density with location parameterµ and scale parameter
σ , thenX′ has the Cauchy density with location parameterµ/(µ2 + σ 2) and scale
parameterσ/(µ2 + σ 2).

(c) Explain why this group of transformations of the sample and parameter spaces does
not lead to an invariant estimation problem.
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[See McCullaugh (1992) for a full development of this model, where it is suggested that
the complex plane provides a more appropriate parameter space.]

3.41 Let (Xi, Yi), i = 1, . . . , n, be distributed as independent bivariate normal random
variables with mean (µ,0) and covariance matrix(

σ11 σ12

σ21 σ22

)
.

(a) Show that the probability model is invariant under the transformations

(x ′, y ′) = (a + bx, by),

(µ′, σ ′11, σ
′
12, σ

′
22) = (a + bµ, b2σ11, b

2σ12, b
2σ22).

(b) Using the loss functionL(µ, d) = (µ−d)2/σ11, show that this is an invariant estima-
tion problem, and equivariant estimators must be of the formδ = x̄+ψ(u1, u2, u3)ȳ,
whereu1 = �(xi − x̄)2/ȳ2, u2 = �(yi − ȳ)2/ȳ2, andu3 = �(xi − x̄)(yi − ȳ)/ȳ2.

(c) Show that ifδ has a finite second moment, then it is unbiased for estimatingµ. Its
risk function is a function ofσ11/σ22 andσ12/σ22.

(d) If the ratioσ12/σ22 is known, show that̄X− (σ12/σ22)Ȳ is the MRE estimator ofµ.

[This problem illustrates the technique ofcovariance adjustment. See Berry, 1987.]

3.42 Suppose we letX1, . . . , Xn be a sample from an exponential distributionf (x|µ, σ ) =
(1/σ )e−(x−µ)/σ I (x ≥ µ). The exponential distribution is useful in reliability theory, and
a parameter of interest is often a quantile, that is, a parameter of the formµ + bσ ,
whereb is known. Show that, under quadratic loss, the MRE estimator ofµ + bσ is
δ0 = x(1) + (b − 1/n)(x̄ − x(1)), wherex(1) = mini xi .

[Rukhin and Strawderman (1982) show thatδ0 is inadmissible, and exhibit a class of
improved estimators.]

Section 4

4.1 (a) SupposeXi : N (ξi, σ 2) with ξi = α + βti . If the first column of the matrixC
leading to the canonical form (4.7) is (1/

√
n, . . . , 1/

√
n)′, find the second column

of C.

(b) If Xi : N (ξi, σ 2) with ξi,= α + βti + γ t2i , and the first two columns ofC are those
of (a), find the third column under the simplifying assumptions�ti = 0, �t2i = 1.
[Note: The orthogonal polynomials that are progressively built up in this way are
frequently used to simplify regression analysis.]

4.2 Write out explicit expressions for the transformations (4.10) whenO is given by
(a) ξi = α + βti and (b)ξi = α + βti + γ t2i .

4.3 Use Problem 3.10 to prove (iii) of Theorem 4.3.

4.4 (a) In Example 4.7, determinêα, β̂, and hencêξi by minimizing�(Xi −α−βti)2.

(b) Verify the expressions (4.12) forα andβ, and the corresponding expressions forα̂

andβ̂.

4.5 In Example 4.2, find the UMVU estimators ofα, β, γ , andσ 2 when�ti = 0 and
�t2i = 1.

4.6 Let Xij be independentN (ξij , σ 2) with ξij = αi + βtij . Find the UMVU estimators
of theαi andβ.

4.7 (a) In Example 4.9, show that the vectors of the coefficients in theα̂i are not or-
thogonal to the vector of the coefficients ofµ̂.
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(b) Show that the conclusion of (a) is reversed ifα̂i andµ̂ are replaced bŷ̂αi and ˆ̂µ.

4.8 In Example 4.9, find the UMVU estimator ofµ when theαi are known to be zero
and compare it witĥµ.

4.9 The coefficient vectors of theXijk given by (4.32) forµ̂, α̂i , andβ̂j are orthogonal
to the coefficient vectors for thêγij given by (4.33).

4.10 In the model defined by (4.26) and (4.27), determine the UMVU estimators ofαi ,
βj , andσ 2 under the assumption that theγij are known to zero.

4.11 (a) In Example 4.11, show that

���(Xijk − µ− αi − βj − γij )2 = S2 + S2
µ + S2

α + S2
β + S2

γ

whereS2 = ���(Xijk−Xij ·)2,S2
µ = IJm(X···−µ)2,S2

α = Jm�(X1··−X···−αi)2,
andS2

β, S
2γ are defined analogously.

(b) Use the decomposition of (a) to show that the least squares estimators ofµ, αi, . . .
are given by (4.32) and (4.33).

(c) Show that theerror sum of squares S2 is equal to���(Xijk − ξ̂ij )2 and hence in
the canonical form to�nj=s+1Y

2
j .

4.12 (a) Show how the decomposition in Problem 4.11(a) must be modified when it is
known that theγij are zero.

(b) Use the decomposition of (a) to solve Problem 4.10.

4.13 LetXijk (i = 1, . . . , I , j = 1, . . . , J , k = 1, . . . , K) beN (ξijk, σ 2) with

ξijk = µ + αi + βj + γk

where�αi = �βj = �γk = 0. Expressµ, αi , βj , andγk in terms of theξ ’s and find
their UMVU estimators. Viewed as a special case of (4.4), what is the value ofs?

4.14 Extend the results of the preceding problem to the model

ξijk = µ + αi + βj + γk + δij + εik + λjk

where ∑
i

δij =
∑
j

δij =
∑
i

εik =
∑
k

εik =
∑
j

λjk =
∑
k

λjk = 0.

4.15 In the preceding problem, if it is known that theλ’s are zero, determine whether the
UMVU estimators of the remaining parameters remain unchanged.

4.16 (a) Show that under assumptions (4.35), ifξ = θA, then the least squares estimate
of θ is xA(AA′)−1.

(b) If (X,A) is multivariate normal with all parameters unknown, show that the least
squares estimator of part (a) is a function of the complete sufficient statistic and,
hence, prove part (a) of Theorem 4.14.

4.17 A generalization of the order statistics, to vectors, is given by the following defini-
tion.

Definition 8.1 The cj -order statistics of a sample of vectors are the vectors arranged
in increasing order according to theirj th components.

Let Xi , i = 1, . . . , n, be an iid sample ofp × 1 vectors, and letX = (X1, . . . , Xn) be a
p × n matrix.

(a) If the distribution ofXi is completely unknown, show that, for anyj , j = 1, . . . , p,
thecj -order statistics of (X1, . . . , Xn) are complete sufficient. (That is, the vectors
X1, . . . , Xn are ordered according to theirj th coordinate.)
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(b) LetY1×n be a random variable with unknown distribution (possibly different from

Xi). Form the (p − 1)× n matrix

(
x
y

)
, and for anyj = 1, . . . , p, calculate the

cj -order statistics based on the columns of

(
x
y

)
. Show that thesecj -order statistics

are sufficient.

[Hint: See Problem 1.6.33, and also TSH2, Chapter 4, Problem 12.]

(c) Use parts (a) and (b) to prove Theorem 4.14(b).

[Hint: Part (b) implies that only a symmetric function of (X,A) need be considered, and
part (a) implies that an unconditionally unbiased estimator must also be conditionally
unbiased. Theorem 4.12 then applies.]

4.18 The proof of Theorem 4.14(c) is based on two results. Establish that:

(a) For large values ofθ , the unconditional variance of a linear unbiased estimator will
be greater than that of the least squares estimator.

(b) Forθ = 0, the variance ofXA(AA′)−1 is greater than that ofXA[E(AA′)]−1. [You
may use the fact thatE(AA′)−1 − [E(AA′)]−1 is a positive definite matrix (Mar-
shall and Olkin 1979; Shaffer 1991). This is a multivariate extension of Jensen’s
inequality.]

(c) Parts (a) and (b) imply that no best linear unbiased estimator of�γiξi exists if
EAA′ is known.

4.19 (a) Under the assumptions of Example 4.15, find the variance of�λiS
2
i .

(b) Show that the variance of (a) is minimized by the values stated in the example.

4.20 In the linear model (4.4), a function�ciξi with �ci = 0 is called acontrast. Show
that a linear function�diξi is a contrast if and only if it is translation invariant, that is,
satisfies�di(ξi + a) = �diξi for all a, and hence if and only if it is a function of the
differencesξi − ξj .

4.21 Determine which of the following are contrasts:

(a) The regression coefficientsα, β, or γ of (4.2).

(b) The parametersµ, αi , βj , or γij of (4.27).

(c) The parametersµ or αi of (4.23) and (4.24).

Section 5

5.1 In Example 5.1:

(a) Show that the joint density of theZij is given by (5.2).

(b) Obtain the joint multivariate normal density of theXij directly by evaluating their
covariance matrix and then inverting it.

[Hint: The covariance matrix ofX11, . . . , X1n; . . . ; Xs1, . . . , Xsn has the form

� =


�1 0 . . . 0
0 �2 . . . 0
...

...
...

0 0 . . . �s


where each�i is ann × n matrix with a valueai for all diagonal elements and a
valuebi for all off-diagonal elements. For the inversion of�i , see the next problem.]
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5.2 Let A = (aij ) be a nonsingularn × n matrix with aii = a andaij = b for all i �= j .
Determine the elements ofA−1. [Hint: Assume thatA−1 = (cij ) with cii = c andcij = d
for all i �= j , calculatec andd as the solutions of the two linear equations�a1j cj1 = 1
and�a1j cj2 = 0, and check the productAC.]

5.3 Verify the UMVU estimator ofσ 2
A/σ

2 given in Example 5.1.

5.4 Obtain the joint density of theXij in Example 5.1 in the unbalanced case in which
j = 1, . . . , ni , with theni not all equal, and determine a minimal set of sufficient statistics
(which depends on the number of distinct values ofni).

5.5 In the balanced one-way layout of Example 5.1, determine limP (σ̂ 2
A < 0) asn→∞

for σ 2
A/σ

2 = 0, 0.2, 0.5 , 1, ands = 3, 4, 5, 6. [Hint: The limit of the probability can be
expressed as a probability for aχ2

s−1 variable.]

5.6 In the preceding problem, calculate values ofP (σ̂ 2
A < 0) for finiten. When would you

expect negative estimates to be a problem? [The probabilityP (σ̂ 2
A < 0), which involves

anF random variable, can also be expressed using the incomplete beta function, whose
values are readily available through either extensive tables or computer packages. Searle
et al. (1992, Section 3.5d) look at this problem in some detail.]

5.7 The following problem shows that in Examples 5.1–5.3 every unbiased estimator of
the variance components (exceptσ 2) takes on negative values. (For some related results,
see Pukelsheim 1981.)

LetX have distributionP ∈ P and suppose thatT is a complete sufficient statistic forP.
If g(P ) is anyU -estimable function defined overP and its UMVU estimatorη(T ) takes
on negative values with probability> 0, then show that this is true of every unbiased
estimator ofg(P ). [Hint: For any unbiased estimatorδ, recall thatE(δ|T ) = η(T ).]

5.8 Modify the car illustration of Example 5.1 so that it illustrates (5.5).

5.9 In Example 5.2, define a linear transformation of theXijk leading to the joint dis-
tribution of theZijk stated in connection with (5.6), and verify the complete sufficient
statistics (5.7).

5.10 In Example 5.2, obtain the UMVU estimators of the variance componentsσ 2
A, σ 2

B ,
andσ 2 whenσ 2

C = 0, and compare them to those obtained without this assumption.

5.11 For theXijk given in (5.8), determine a transformation taking them to variablesZijk
with the distribution stated in Example 5.3.

5.12 In Example 5.3, obtain the UMVU estimators of the variance componentsσ 2
A, σ 2

B ,
andσ 2.

5.13 In Example 5.3, obtain the UMVU estimators ofσ 2
A andσ 2 whenσ 2

B = 0 so that the
B terms in (5.8) drop out, and compare them with those of Problem 5.12.

5.14 In Example 5.4:

(a) Give a transformation taking the variablesXijk into theWijk with density (5.11).

(b) Obtain the UMVU estimators ofµ, αi , σ 2
B , andσ 2.

5.15 A general class of models containing linear models of Types I and II, and mixed
models as special cases assumes that the 1× n observation vectorX is normally dis-
tributed with meanθA as in (4.13) and with covariance matrix�mi=1γiVi where theγ ’s
are the components of variance and theVi ’s are known symmetric positive semidefinite
n×nmatrices. Show that the following models are of this type and in each case specify
theγ ’s andV ’s: (a) (5.1 ); (b) (5.5); (c) (5.5) without the termsCij ; (d) (5.8); (e) (5.10).
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5.16 Consider a nested three-way layout with

Xijkl = µ + αi + bij + cijk +Uijkl

(i = 1, . . . , I ; j = 1, . . . , J ; k = 1, . . . , K; l = 1, . . . , n) in the versions

(a) ai = αi , bij = βij , cijk = γijk;
(b) ai = αi , bij = βij , cijk = Cijk;
(c) ai = αi , bij = Bij , cijk = Cijk;
(d) ai = Ai , bij = Bij , cijk = Cijk;

where theα’s,β ’s, andγ ’s are unknown constants defined uniquely by the usual conven-
tions, and theA’s, B ’s,C’s, andU ’s are unobservable random variables, independently
normally distributed with means zero and with variancesσ 2

A, σ 2
B , σ 2

C andσ 2.
In each case, transform theXijkl to independent variablesZijkl and obtain the UMVU
estimators of the unknown parameters.

5.17 For the situation of Example 5.5, relax the assumption of normality to only assume
thatAi andUij have zero means and finite second moments. Show that among all linear
estimators (of the form

∑
cij xij , cij known), the UMVU estimator ofµ + αi (the best

linear predictor) is given by (5.14).
[This is a Gauss-Markov theorem for prediction in mixed models. See Harville (1976)
for generalizations.]

Section 6
6.1 In Example 6.1, show thatγij = 0 for all i, j is equivalent topij = pi+p+j . [Hint:
γij = ξij − ξi· − ξ·j + ξ·· = 0 impliespij = aibj and hencepi+ = cai andp+j = bj/c for
suitableai , bj , andc > 0.]

6.2 In Example 6.2, show that the conditional independence ofA,B givenC is equivalent
to αABCijk = αABij = 0 for all i, j , andk.

6.3 In Example 6.1, show that the conditional distribution of the vectors (ni1, . . ., niJ )
given the values ofni+ (i = 1, . . . , I ) is that ofI independent vectors with multinomial
distributionM(p1|i , . . . , pJ |i ; ni+) wherepj |i = pij /pi+.

6.4 Show that the distribution of the preceding problem also arises in Example 6.1 when
then subjects, rather than being drawn from the population at large, are randomly drawn:
n1+ from CategoryA1, . . . , nI+ from CategoryAI .

6.5 An application of log linear models in genetics is through theHardy-Weinberg model
of mating. If a parent population contains allelesA, a with frequenciesp and 1− p,
then standard random mating assumptions will result in offspring with genotypesAA,
Aa, andaa with frequenciesθ1 = p2, θ2 = 2p(1− p), andθ3 = (1− p)2.

(a) Give the full multinomial model for this situation, and show how the Hardy-
Weinberg model is a non-full-rank submodel.

(b) For a sampleX1, . . . , Xn of n offspring, find the minimal sufficient statistic.

[See Brown (1986a) for a more detailed development of this model.]
6.6 A city has been divided intoI major districts and theith district intoJi subdistricts,

all of which have populations of roughly equal size. From the police records for a given
year, a random sample ofn robberies is obtained. Write the joint multinomial distribution
of the numbersnij of robberies in subdistrict (i, j ) for this nested two-way layout as
e��nij ξij with ξij = µ + αi + βij where�iαi = �jβij = 0, and show that the assumption
βij = 0 for all i, j is equivalent to the assumption thatpij = pi+/Ji for all i, j .
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6.7 Instead of a sample of fixed sizen in the preceding problem, suppose the observations
consist of all robberies taking place within a given time period, so thatn is the value
taken on by a random variableN . Suppose thatN has a Poisson distribution with
unknown expectationλ and that the conditional distribution of thenij givenN = n is the
distribution assumed for thenij in the preceding problem. Find the UMVU estimator of
λpij and show that no unbiased estimatorpij exists. [Hint: See the following problem.]

6.8 Let N be an integer-valued random variable with distributionPθ (N = n) = Pθ (n),
n = 0, . . . , for whichN is complete. GivenN = n, letX have the binomial distribution
b(p, n) for n > 0, with p unknown, and letX = 0 whenn = 0. For the observations
(N,X):

(a) Show that (N,X) is complete.

(b) Determine the UMVU estimator ofpEθ (N ).

(c) Show that no unbiased estimator of any functiong(p) exists ifPθ (0)> 0 for some
θ .

(d) Determine the UMVU estimator ofp if Pθ (0) for all θ .

Section 7

7.1 (a) Consider a population{a1, . . . , aN } with the parameter space defined by the
restrictiona1 + · · · + aN = A (known). A simple random sample of sizen is drawn
in order to estimateτ 2. Assuming the labels to have been discarded, show that
Y(1), . . . , Y(n) are not complete.

(b) Show that Theorem 7.1 need not remain valid when the parameter space is of the
form V1 × V2 × · · · × VN . [Hint: LetN = 2,n = 1,V1 = {1,2}, V2 = {3,4}.]

7.2 If Y1, . . . , Yn are the sample values obtained in a simple random sample of sizen from
the finite population (7.2), then (a)E(Yi) = ā, (b) var(Yi) = τ 2, and (c) cov(Yi, Yj ) =
−τ 2/(N − 1).

7.3 Verify equations (a) (7.6), (b) (7.8), and (c) (7.13).

7.4 For the situation of Example 7.4:

(a) Show thatEȲν−1 = E[ 1
ν−1

∑ν−1
1 Yi ] = ā.

(b) Show that [ 1
ν−1 − 1

N
] 1
ν−2

∑ν−1
1 (Yi − Ȳν−1)2 is an unbiased estimator of var(Ȳν−1).

[Pathak (1976) proved (a) by first showing thatEY1 = ā, and then thatEY1|T0 = Ȳν−1.
To avoid trivialities, Pathak also assumes thatCi + Cj < Q for all i, j , so that at least
three observations are taken.]

7.5 Random variablesX1, . . . , Xn areexchangeable if any permutation ofX1, . . ., Xn
has the same distribution.

(a) If X1, . . . , Xn are iid, distributed as Bernoulli (p), show that given
∑n

1Xi =
t, X1, . . . , Xn are exchangeable (but not independent).

(b) For the situation of Example 7.4, show that givenT = {(C1, X1), . . ., (Cν,Xν)},
theν − 1 preterminal observations are exchangeable.

The idea of exchangeability is due to deFinetti (1974), who proved a theorem that char-
acterizes the distribution of exchangeable random variables as mixtures of iid random
variables. Exchangeable random variables play a large role in Bayesian statistics; see
Bernardo and Smith 1994 (Sections 4.2 and 4.3).
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7.6 For the situation of Example 7.4, assuming that (a) and (b) hold:

(a) Show that̂a of (7.9) is UMVUE for ā.

(b) DefiningS2 =
∑ν

i=1(Yi − Ȳ )/(ν − 1), show that

σ̂ 2 = S2 − MS[v]
ν

ν−1 − S2

ν − 2

is UMVUE for τ 2 of (7.7), whereMS[v] is the variance of the observations in the
set (7.10).

[Kremers (1986) uses conditional expectation arguments (Rao-Blackwellization),
and completeness, to establish these results. He also assumes that at leastn0 obser-
vations are taken. To avoid trivialities, we can assumen0 ≥ 3.]

7.7 In simple random sampling, with labels discarded, show that a necessary condition
for h(a1, . . . , aN ) to beU -estimable is thath is symmetric in itsN arguments.

7.8 Prove Theorem 7.7.

7.9 Show that the approximate variance (7.16) for stratified sampling withni = nNi/N
(proportional allocation) is never greater than the corresponding approximate variance
τ 2/n for simple random sampling with the same total sample size.

7.10 Let Vp be the exact variance (7.15) andVr the corresponding variance for simple
random sampling given by (7.6) withn = �ni , N = �Ni , ni/n = Ni/N andτ 2 =
��(aij − a··)2/N .

(a) Show thatVr − Vp = N−n
n(N−1)N

[
�Ni(ai· − a··)2 − 1

N
�
N−Ni
Ni−1Niτ

2
i

]
.

(b) Give an example in whichVr < Vp.

7.11 The approximate variance (7.16) for stratified sampling with a total sample size
n = n1 + · · · + ns is minimized whenni is proportional toNiτi .

7.12 For sampling designs where the inclusion probabilitiesπi =
∑

s:i∈s P (s) of including
the ith sample valueYi is known, a frequently used estimator of the population total is
the Horvitz-Thompson (1952) estimatorδHT =

∑
i Yi/πi .

(a) Show thatδHT is an unbiased estimator of the population total.

(b) The variance ofδHT is given by

var(δHT ) =
∑
i

Y 2
i

[
1

πi
− 1

]
+
∑
i �=j
YiYj

[
πij

πiπj
− 1

]
,

whereπij are thesecond-order inclusion probabilities πij =
∑

s:i,j∈s P (s).

Note that it is necessary to know the labels in order to calculateδHT , thus Theorem 7.5
precludes any overall optimality properties. See Hedayat and Sinha 1991 (Chapters 2
and 3) for a thorough treatment ofδHT .

7.13 Suppose that an auxiliary variable is available for each element of the population
(7.2) so thatθ = {(1, a1, b1), . . . , (N, aN, bN )}. If Y1, . . . , Yn andZ1, . . . , Zn denote the
values ofa andb observed in a simple random sample of sizen, andȲ andZ̄ denote
their averages, then

cov(Ȳ , Z̄) = E(Ȳ − ā)(Z̄ − b̄) =
N − n

nN (N − 1)
�(ai − ā)(bi − b̄).
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7.14 Under the assumptions of Problem 7.13, ifB = b1 +· · ·+bN is known, an alternative
unbiased estimator̄a is(

1

n

n∑
i=1

Yi

Zi

)
b̄ +

n(N − 1)

(n− 1)N

[
Ȳ −

(
1

n

n∑
i=1

Yi

Zi

)
Z̄

]
.

[Hint: Use the facts thatE(Y1/Z1) = (1/N )�(ai/bi) and that by the preceding problem

E

[
1

n− 1
�
Yi

Zi
(Zi − Z̄)

]
=

[
1

N − 1
�
ai

bi
(bi − b̄)

]
.]

7.15 In connection with cluster sampling, consider a setW of vectors (a1, . . . , aM )
and the totalityG of transformations taking (a1, . . . , aM ) into (a′1, . . . , a

′
M ) such that

(a′1, . . . , a
′
M ) ∈ W and�a′i = �ai . Give examples ofW such that for any real number

a1 there exista2, . . . , aM with (a1, . . . , aM ) ∈ W and such that

(a) G consists of the identity transformation only;

(b) G consists of the identity and one other element;

(c) G is transitive overW .

7.16 For cluster sampling with unequal cluster sizesMi , Problem 7.14 provides an al-
ternative estimator of̄a, withMi in place ofbi . Show that this estimator reduces toȲ if
b1 = · · · = bN and hence when theMi are equal.

7.17 Show that (7.17) holds if and only ifδ depends only onX′′, defined by (7.18).

9 Notes

9.1 History

The theory of equivariant estimation of location and scale parameters is due to Pitman
(1939), and the first general discussions of equivariant estimation were provided by
Peisakoff (1950) and Kiefer (1957). The concept of risk-unbiasedness (but not the term)
and its relationship to equivariance were given in Lehmann (1951).

The linear models of Section 3.4 and Theorem 4.12 are due to Gauss. The history of
both is discussed in Seal (1967); see also Stigler 1981. The generalization to exponential
linear models was introduced by Dempster (1971) and Nelder and Wedderburn (1972).

The notions ofFunctional Equivariance andFormal Invariance, discussed in Section
3.2, have been discussed by other authors sometimes using different names. Functional
Equivariance is called thePrinciple of Rational Invariance by Berger (1985, Section
6.1), Measurement Invariance by Casella and Berger (1990, Section 7.2.4) andPa-
rameter Invariance by Dawid (1983). Schervish (1995, Section 6.2.2) argues that this
principle is really only a reparametrization of the problem, and has nothing to do with
invariance. This is almost in agreement with the principle of functional equivariance,
however, it is still the case that when reparameterizing one must be careful to properly
reparameterize the estimator, density, and loss function, which is part of the prescription
of an invariant problem. This type of invariance is commonly illustrated by the example
that if δ measures temperature in degrees Celsius, then (9/5)δ + 32 should be used to
measure temperature in degrees Fahrenheit (see Problems 2.9 and 2.10).

What we have calledFormal Invariance was also called by that name in Casella and
Berger (1990), but was called theInvariance Principle by Berger (1985) andContext
Invariance by Dawid (1983).
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9.2 Subgroups

The idea of improving an MRE estimator by imposing equivariance only under a sub-
group was used by Stein (1964), Brown (1968), and Brewster and Zidek (1974) to find
improved estimators of a normal variance. Stein’s 1964 proof is also discussed in detail
by Maatta and Casella (1990), who give a history of decision-theoretic variance estima-
tion. The proof of Stein (1964) contains key ideas that were further developed by Brown
(1968), and led to Brewster and Zidek (1974) finding the best equivariant estimator of
the form (2.33). [See Problem 2.14.]

9.3 General Linear Group

Thegeneral linear group (also called thefull linear group) is an example of a group that
can be thought of as a multivariate extension of the location-scale group. LetX1, . . . , Xn
be iid according to ap-variate normal distributionNp(µ,�), and defineX as thep× n
matrix (X1, . . . , Xn) and X̄ as then × 1 vector (X̄1, . . . , X̄n). Consider the group of
transformations

X′ = AX + b

µ′ = Aµ + b, �′ = A�A′,(9.1)

whereA is ap × p nonsingular matrix andb is ap × 1 vector. [The group of real
p× p nonsingular matrices, with matrix multiplication as the group operation is called
thegeneral linear group, denotedGlp (see Eaton 1989 for a further development). The
group (9.1) adds a location component.]

Consider now the estimation of�. (The estimation ofµ is left to Problem 3.30.) An
invariant loss function, analogous to squared error loss, is of the form

L(�, δ) = tr[�−1(δ −�)�−1(δ −�)] = tr[�−1/2δ�−1/2 − I ]2,(9.2)

where tr[·] is the trace of a matrix (see Eaton 1989, Example 6.2, or Olkin and Selliah
1977). It can be shown that equivariant estimators are of the formcS, whereS = (X −
1X̄′)(X−1X̄′)′ with 1 ap×1 vector of 1’s andc a constant, is thecross-products matrix
(Problem 3.31). Since the group is transitive, the MRE estimator is given by the value
of c that minimizes

EIL(I, cS) = EI tr(cS − I )′(cS − I ),(9.3)

that is, the risk with� = I . Since

EI tr(cS − I )′(cS − I ) = c2EI trS
2 − 2cEI trS + p,

the minimizingc is given byc = EI trS/EI trS2. Note that, forp = 1, this reduces to the
best equivariant estimator of quadratic loss in the scalar case. Other equivariant losses,
such as Stein’s loss (3.20), can be handled in a similar manner. See Problems 3.29-3.33
for details.

9.4 Finite Populations

Estimation in finite populations has, until recently, been developed largely outside the
mainstream of statistics. The books by Cassel, Särndal, and Wretman (1977) and Särndal,
Swenson, and Wretman (1992) constitute important efforts at a systematic presentation
of this topic within the framework of theoretical statistics. The first steps in this direction
were taken by Neyman (1934) and by Blackwell and Girshick (1954). The need to
consider the labels as part of the data was first emphasized by Godambe (1955). Theorem
7.1 is due to Watson (1964) and Royall (1968), and Theorem 7.5 to Basu (1971).



CHAPTER 4

Average Risk Optimality

1 Introduction

So far, we have been concerned with finding estimators which minimize the risk
R(θ, δ) at every value ofθ . This was possible only by restricting the class of es-
timators to be considered by an impartiality requirement such as unbiasedness or
equivariance. We shall now drop such restrictions, admitting all estimators into
competition, but shall then have to be satisfied with a weaker optimality prop-
erty than uniformly minimum risk. We shall look for estimators that make the
risk functionR(θ, δ) small in some overall sense. Two such optimality proper-
ties will be considered: minimizing the (weighted) average risk for some suitable
non-negative weight function and minimizing the maximum risk. The second (min-
imax) approach will be taken up in Chapter 5; the present chapter is concerned
with the first of these approaches, the problem of minimizing

r(�, δ) =
∫
R(θ, δ)d�(θ )(1.1)

where we shall assume that the weights represented by� add up to 1, that is,∫
d�(θ ) = 1,(1.2)

so that� is a probability distribution. An estimatorδ minimizing (1.1) is called a
Bayes estimator with respect to�.

The problem of determining such Bayes estimators arises in a number of dif-
ferent contexts.

(i) As Mathematical Tools

Bayes estimators play a central role in Wald’s decision theory. It is one of the
main results of this theory that in any given statistical problem, attention can be
restricted to Bayes solutions and suitable limits of Bayes solutions; given any other
procedureδ, there exists a procedureδ′ in this class such thatR(θ, δ′) ≤ R(θ, δ)
for all values ofθ . (In view of this result, it is not surprising that Bayes estimators
provide a tool for solving minimax problems, as will be seen in the next chapter.)

(ii) As a Way of Utilizing Past Experience

It is frequently reasonable to treat the parameterθ of a statistical problem as
the realization of a random variable� with known distribution rather than as an
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unknown constant. Suppose, for example, that we wish to estimate the probability
of a penny showing heads when spun on a flat surface. So far, we would have
consideredn spins of the penny as a set ofn binomial trials with an unknown
probabilityp of showing heads. Suppose, however, that we have had considerable
experience with spinning pennies, experience perhaps which has provided us with
approximate values ofp for a large number of similar pennies. If we believe this
experience to be relevant to the present penny, it might be reasonable to represent
this past knowledge as a probability distribution forp, the approximate shape of
which is suggested by the earlier data.

This is not as unlike the modeling we have done in the earlier sections as it
may seem at first sight. When assuming that the random variables representing the
outcomes of our experiments have normal, Poisson, exponential distributions, and
so on, we also draw on past experience. Furthermore, we also realize that these
models are in no sense exact but, at best, represent reasonable approximations.
There is the difference that in earlier models we have assumed only the shape of
the distribution to be known but not the values of the parameters, whereas now we
extend our model to include a specification of the prior distribution. However, this
is a difference in degree rather than in kind and may be quite reasonable if the past
experience is sufficiently extensive.

A difficulty, of course, is the assumption that past experience is relevant to the
present case. Perhaps the mint has recently changed its manufacturing process,
and the present coin, although it looks like the earlier ones, has totally different
spinning properties. Similar kinds of judgment are required also for the models
considered earlier. In addition, the conclusions derived from statistical procedures
are typically applied not only to the present situation or population but also to
those in the future, and extrastatistical judgment is again required in deciding how
far such extrapolation is justified.

The choice of the prior distribution� is typically made like that of the dis-
tributionsPθ by combining experience with convenience. When we make the
assumption that the amount of rainfall has a gamma distribution, we probably do
not do so because we really believe this to be the case but because the gamma
family is a two-parameter family which seems to fit such data reasonably well
and which is mathematically very convenient. Analogously, we can obtain a prior
distribution by starting with a flexible family that is mathematically easy to handle
and selecting a member from this family which approximates our past experience.
Such an approach, in which the model incorporates a prior distribution forθ to
reflect past experience, is useful in fields in which a large amount of past experi-
ence is available. It can be brought to bear, for example, in many applications in
agriculture, education, business, and medicine.

There are important differences between the modeling of the distributionsPθ
and that of�. First, we typically have a number of observations fromPθ and can
use these to check the assumption of the form of the distribution. Such a check of�

is not possible on the basis of one experiment because the value ofθ under study
represents only a single observation from this distribution. A second difference
concerns the meaning of a replication of the experiment. In the models preceding
this section, the replication would consist of drawing another set of observations
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from Pθ with the same value ofθ . In the model of the present section, we would
replicate the experiment by first drawing another value,θ ′, of� from� and then a
set of observations fromP ′θ . It might be argued that sampling of theθ values (choice
of penny, for example) may be even more haphazard and less well controlled than
the choice of subjects for an experiment of a study, which assumes these subjects
to be a random sample from the population of interest. However, it could also be
argued that the assumption of a fixed value ofθ is often unrealistic. As we will
see, the Bayesian approaches of robust and hierarchical analysis attempt to address
these problems.

(iii) As a Description of a State of Mind

A formally similar approach is adopted by the so-called Bayesian school, which
interprets� as expressing the subjective feeling about the likelihood of different
θ values. In the presence of a large amount of previous experience, the chosen
� would often be close to that made under (ii), but the subjective approach can
be applied even when little or no prior knowledge is available. In the latter case,
for example, the prior distribution� then models the state of ignorance aboutθ .
The subjective Bayesian uses the observationsX to modify prior beliefs. After
X = x has been observed, the belief aboutθ is expressed by the posterior (i.e.,
conditional) distribution of� givenx.

Detailed discussions of this approach, which we shall not pursue here, can be
found, for example, in books by Savage (1954), Lindley (1965), de Finetti (1970,
1974), Box and Tiao (1973), Novick and Jackson (1974), Berger (1985), Bernardo
and Smith (1994), Robert (1994a) and Gelman et al. (1995).

A note on notation: In Bayesian (as in frequentist) arguments, it is important to
keep track of which variables are being conditioned on. Thus, the density ofX will
be denoted byX ∼ f (x|θ ). Prior distributions will typically be denoted byO or
� with their density functions beingπ (θ |λ) or γ (λ),whereλ is another parameter
(sometimes called ahyperparameter). From these distributions we often calculate
conditional distributions such as that ofθ givenx andλ, orλ givenx (calledposte-
rior distributions). These typically have densities, denoted byπ (θ |x, λ) orγ (λ|x).
We will also be interested in marginal distributions such asm(x|λ). To illustrate,
π (θ |x, λ) = f (x|θ )π (θ |λ)/m(x|λ), wherem(x|λ) =

∫
f (x|θ )π (θ |λ) dθ .

It is convenient to use boldface to denote vectors, for example,x = (x1, . . . , xn),
so we can writef (x|θ ) for the sample densityf (x1, . . . , xn|θ ).

The determination of a Bayes estimator is, in principle, quite simple. First,
consider the situation before any observations are taken. Then,� has distribution
� and the Bayes estimator ofg(�) is any numberd minimizingEL(�, d). Once
the data have been obtained and are given by the observed valuex of X, the prior
distribution� of� is replaced by the posterior, that is, conditional, distribution of
� givenx and the Bayes estimator is any numberδ(x) minimizing the posterior
risk E{L[�, δ(x)]|x}. The following is a precise statement of this result, where,
as usual, measurability considerations, are ignored.
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Theorem 1.1 Let � have distribution �, and given � = θ , let X have distribu-
tion Pθ . Suppose, in addition, the following assumptions hold for the problem of
estimating g(�) with non-negative loss function L(θ, d).

(a) There exists an estimator δ0 with finite risk.

(b) For almost all x, there exists a value δ�(x) minimizing

E{L[�, δ(x)]|X = x}.(1.3)

Then, δ�(X) is a Bayes estimator.

Proof. Let δ be any estimator with finite risk. Then, (1.3) is finite a.e. sinceL is
non-negative. Hence,

E{L[�, δ(x)]|X = x} ≥ E{L[�, δ�(x)]|X = x} a.e.,

and the result follows by taking the expectation of both sides. ✷

[For a discussion of some measurability aspects and more detail whenL(θ, d) =
ρ(d − θ ), see DeGroot and Rao 1963. Brown and Purves (1973) provide a general
treatment.]

Corollary 1.2 Suppose the assumptions of Theorem 1.1 hold.

(a) If L(θ, d) = [d − g(θ )]2, then

δ�(x) = E[g(�)|x](1.4)

and, more generally, if

L(θ, d) = w(θ )[d − g(θ )]2,(1.5)

then

δ�(x) =

∫
w(θ )g(θ )d�(θ |x)∫
w(θ )d�(θ |x)

=
E[w(�)g(�)|x]

E[w(�)|x]
.(1.6)

(b) IfL(θ, d) = |d−g(θ )|, then δ�(x) is any median of the conditional distribution
of � given x.

(c) If

L(θ, d) =

{
0 when|d − θ | ≤ c
1 when|d − θ | > c,(1.7)

then δ�(x) is the midpoint of the interval I of length 2c which maximizes
P [� ∈ I |x].

Proof. To prove part (i), note that by Theorem 1.1, the Bayes estimator is obtained
by minimizing

E{[g(�)− δ(x)]2|x}.(1.8)

By assumption (a) of Theorem 1.1, there existsδ0(x) for which (1.8) is finite
for almost all values ofx, and it then follows from Example 1.7.17 that (1.8) is
minimized by (1.4).

The proofs of the other parts are completely analogous. ✷
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Example 1.3 Poisson. The parameterθ of a Poisson(θ ) distribution is both the
mean and the variance of the distribution. Although squared error lossL0(θ, δ) =
(θ−δ)2 is often preferred for the estimation of a mean, some type of scaled squared
error loss, for example,Lk(θ, δ) = (θ − δ)2/θk, may be more appropriate for the
estimation of a variance.

If X1, . . . , Xn are iid Poisson(θ ), andθ has the gamma(a, b) prior distribution,
then the posterior distribution is

π (θ |x̄) = Gamma

(
a + x̄,

b

1 +b

)
and the Bayes estimator underLk is given by (see Problem 1.1)

δk(x̄) =
E(θ1−k|x̄)

E(θ−k|x̄)
=

b

1 +b
(x̄ + a − k)

for a − k > 0. Thus, the choice of loss function can have a large effect on the
resulting Bayes estimator. ‖

It is frequently important to know whether a Bayes solution is unique. The
following are sufficient conditions for this to be the case.

Corollary 1.4 If the loss function L(θ, d) is squared error, or more generally, if it
is strictly convex in d , a Bayes solution δ� is unique (a.e. P), where P is the class
of distributions Pθ , provided

(a) the average risk of δ� with respect to � is finite, and

(b) ifQ is the marginal distribution of X given by

Q(A) =
∫
Pθ (X ∈ A)d�(θ ),

then a.e.Q implies a.e. P .

Proof. For squared error, if follows from Corollary 1.2 that any Bayes estimator
δ�(x) with finite risk must satisfy (1.4) except on a setN ofx values withQ(N ) = 0.
For general strictly convex loss functions, the result follows by the same argument
from Problem 1.7.26. ✷

As an example of a case in which condition (b) does not hold, letX have the
binomial distributionb(p, n), 0≤ p ≤ 1, and suppose that� assigns probability
1/2 to each of the valuesp = 0 andp = 1. Then, any estimatorδ(X) of p with
δ(0) = 0 andδ(n) = 1 is Bayes.

On the other hand, condition (b) is satisfied when the parameter space is an
open set which is the support of� and if the probabilityPθ (X ∈ A) is continuous
in θ for anyA. To see this, note thatQ(N ) = 0 impliesPθ (N ) = 0 (a.e.�) by
(1.2.23). If there existsθ0 with Pθ0(N ) > 0, there exists a neighborhoodω of θ0

in whichPθ (N ) > 0. By the support assumption,P�(ω) > 0 and this contradicts
the assumption thatPθ (N ) = 0 (a.e.�).

Three different aspects of the performance of a Bayes estimator, or of any other
estimatorδ, may be of interest in the present model. These are (a) the Bayes risk
(1.1); (b) the risk functionR(θ, δ) of Section 1.1 [Equation (1.1.10)] [this is the
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frequentist risk, which is now the conditional risk ofδ(X) given θ ]; and (c) the
posterior risk givenx which is defined by (1.3).

For the determination of the Bayes estimator the relevant criterion is, of course,
(a). However, consideration of (b), the conditional risk givenθ , as a function of
θ provides an important safeguard against an inappropriate choice of� (Berger
1985, Section 4.7.5). Finally, consideration of (c) is of interest primarily to the
Bayesian. From the Bayesian point of view, the posterior distribution of� given
x summarizes the investigator’s belief aboutθ in the light of the observation, and
hence the posterior risk is the only measure of risk of accuracy that is of interest.

The possibility of evaluating the risk function (b) ofδ� suggests still another
use of Bayes estimators.

(iv) As a General Method for Generating Reasonable Estimators

Postulating some plausible distributions� provides a method for generating inter-
esting estimators which can then be studied in the conventional way. A difficulty
with this approach is, of course, the choice of�. Methodologies have been de-
veloped to deal with this difficulty which sometimes incorporate frequentist mea-
sures to assess the choice of�. These methods tend to first select not a single
prior distribution but a family of priors, often indexed by a parameter (a so-called
hyperparameter). The family should be chosen so as to balance appropriateness,
flexibility, and mathematical convenience. From it, a plausible member is selected
to obtain an estimator for consideration. The following are some examples of these
approaches, which will be discussed in Sections 4.4 and 4.5.

• Empirical Bayes. The parameters of the prior distribution are themselves esti-
mated from the data.

• Hierarchical Bayes. The parameters of the prior distribution are, in turn, mod-
eled by another distribution, sometimes called a hyperprior distribution.

• Robust Bayes. The performance of an estimator is evaluated for each member
of the prior class, with the goal of finding an estimator that performs well (is
robust) for the entire class.

Another possibility leading to a particular choice of� corresponds to the third
interpretation (iii), in which the state of mind can be described as “ignorance.”
One would then select for� a noninformative prior which tries (in the spirit of
invariance) to treat all parameter values equitably. Such an approach was developed
by Jeffreys (1939, 1948, 1961), who, on the basis of invariance considerations,
suggests as noninformative prior forθ a density that is proportional to

√|I (θ )|,
where|I (θ )| is the determinant of the information matrix. A good account of this
approach with many applications is given by Berger (1985), Robert (1994a), and
Bernardo and Smith (1994). Note 9.6 has a further discussion.

Example 1.5 Binomial. Suppose thatX has the binomial distributionb(p, n). A
two-parameter family of prior distributions forp which is flexible and for which
the calculation of the conditional distribution is particularly simple is the family
of beta distributionsB(a, b). These densities can take on a variety of shapes (see
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Problem 1.2) and we note for later reference that the expectation and variance of
a random variablep with densityB(a, b) are (Problem 1.5.19).

E(p) =
a

a + b
and var(p) =

ab

(a + b)2(a + b + 1)
.(1.9)

To determine the Bayes estimator of a given estimandg(p), let us first obtain
the conditional distribution (posterior distribution) ofp givenx. The joint density
of X andp is (

n

x

)
H(a + b)

H(a)H(b)
px+a−1(1− p)n−x+b−1.

The conditional density ofp givenx is obtained by dividing by the marginal ofx,
which is a function ofx alone (Problem 2.1 ). Thus, the conditional density ofp

givenx has the form

C(a, b, x)px+a−1(1− p)n−x+b−1.(1.10)

Again, this is recognized to be a beta distribution, with parameters

a′ = a + x, b′ = b + n− x.(1.11)

Let us now determine the Bayes estimator ofg(p) = p when the loss function
is squared error. By (1.4), this is

δ�(x) = E(p|x) =
a′

a′ + b′
=

a + x

a + b + n
.(1.12)

It is interesting to compare this Bayes estimator with the usual estimatorX/n.
Before any observations are taken, the estimator from the Bayesian approach is
the expectation of the prior:a/(a + b). OnceX has been observed, the standard
non-Bayesian (for example, UMVU) estimator isX/n. The estimatorδ�(X) =
(a +X)/(a + b + n) lies between these two. In fact,

a +X

a + b + n
=

(
a + b

a + b + n

)
a

a + b
+
( n

a + b + n

) X
n

(1.13)

is a weighted average ofa/(a + b), the estimator ofp before any observations are
taken, andX/n, the estimator without consideration of a prior.

The estimator (1.13) can be considered as a modification of the standard esti-
matorX/n in the light of the prior information aboutp expressed by (1.9) or as
a modification of the prior estimatora/(a + b) in the light of the observationX.
From this point of view, it is interesting to notice what happens asa andb→∞,
with the ratiob/a being kept fixed. Then, the estimator (1.12) tends in probability
to a/(a + b), that is, the prior information is so overwhelming that it essentially
determines the estimator. The explanation is, of course, that in this case the beta
distributionB(a, b) concentrates all its mass essentially ata/(a + b) [the variance
in (1.9) tends toward 0], so that the value ofp is taken to be essentially known and
is not influenced byX. (“Don’t confuse me with the facts!”)

On the other hand, ifa andb are fixed, butn→∞, it is seen from (1.12) thatδ�
essentially coincides withX/n. This is the case in which the information provided
byX overwhelms the initial information contained in the prior distribution.
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The UMVU estimatorX/n corresponds to the casea = b = 0. However,B(0,0)
is no longer a probability distribution since

∫ 1
0 (1/p(1− p))dp = ∞. Even with

such animproper distribution (that is, a distribution with infinite mass), it is pos-
sible formally to calculate a posterior distribution givenx. This possibility will be
considered in Example 2.8. ‖

This may be a good time to discuss a question facing the reader of this book.
Throughout, the theory is illustrated with examples which are either completely
formal (that is, without any context) or stated in terms of some vaguely described
situation in which such an example might arise. In either case, what is assumed is a
model and, in the present section, a prior distribution. Where do these assumptions
come from, and how should they be interpreted? “LetX have a binomial distri-
butionb(p, n) and letp be distributed according to a beta distributionB(a, b). ”
Why binomial and why beta?

The assumptions underlying the binomial distribution are (i) independence of the
n trials and (ii) constancy of the success probabilityp throughout the series. While
in practice it is rare for either of these two assumptions to hold exactly - consecutive
trials typically exhibit some dependence and success probabilities tend to change
over time (as in Example 1.8.5) - they are often reasonable approximations and
may serve as identifications in a wide variety of situations arising in the real world.
Similarly, to a reasonable degree, approximate normality may often be satisfied
according to some version of the central limit theorem, or from past experience.

Let us next turn to the assumption of a beta prior forp. This leads to an estimator
which, due to its simplicity, is highly prized for a variety of reasons. But simplicity
of the solution is of little use if the problem is based on assumptions which bear
no resemblance to reality.

Subjective Bayesians, even though perhaps unable to state their prior precisely,
will typically have an idea of its shape: It may be bimodal, unimodal (symmetric or
skewed), or it may be L- or U-shaped. In the first of these cases, a beta prior would
be inappropriate since no beta distribution has more than one mode. However, by
proper choice of the parametersa andb, a beta distribution can accommodate itself
to each of the other possibilities mentioned (Problem 1.2), and thus can represent
a considerable variety of prior shapes.

The modeling of subjective priors discussed in the preceding paragraph corre-
spond to the third of the four interpretations of the Bayes formalism mentioned
at the beginning of the section. A very different approach is suggested by the
fourth interpretation, where formal priors are used simply as a method of generat-
ing a reasonable estimator. A standard choice in this case is to treat all parameter
values equally (which corresponds to a subjective prior modeling ignorance). In
the nineteenth century, the preferred choice for this purpose in the binomial case
was the uniform distribution forp over (0,1), which is the beta distribution with
a = b = 1. As an alternative, the Jeffreys prior corresponding toa = b = 1/2 (see
the discussion preceding Example 1.5) has the advantage of being invariant under
change of parameters (Schervisch 1995, Section 2.3.4). The prior density in this
case is proportional to [p(1−p)]−1/2, which is U-shaped. It is difficult to imagine
many real situations in which an investigator believes that it is equally likely for
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the unknownp to be close to either 0 or 1. In this case, the fourth interpretation
would therefore lead to very different priors from those of the third interpretation.

2 First Examples

In constructing Bayes estimators, as functions of the posterior density, some
choices are made (such as the choice of prior and loss function). These choices will
ultimately affect the properties of the estimators, including not only risk perfor-
mance (such as bias and admissibility) but also more fundamental considerations
(such as sufficiency). In this section, we look at a number of examples to illustrate
these points.

Example 2.1 Sequential binomial sampling. Consider a sequence of binomial
trials with a stopping rule as in Section 3.3. LetX, Y , andN denote, respectively,
the number of successes, the number of failures, and the total number of trials at
the moment sampling stops. The probability of any sample path is thenpx(1−p)y

and we shall again suppose thatp has the prior distributionB(a, b). What now is
the posterior distribution ofp givenX andY (or equivalentlyX andN = X +Y )?
The calculation in Example 1.3 shows that, as in the fixed sample size case, it is the
beta distribution with parametersa′ andb′ given by (1.11), so that, in particular,
the Bayes estimator ofp is given by (1.12)regardless of the stopping rule. ‖

Of course, there are stopping rules which even affect Bayesian inference (for
example, ”stop when the posterior probability of an event is greater than .9”).
However, if the stopping rule is a function only of the data, then the Bayes inference
will be independent of it. These so-calledproper stopping rules, and other aspects
of inference under stopping rules, are discussed in detail by Berger and Wolpert
(1988, Section 4.2). See also Problem 2.2 for another illustration.

Thus, Example 2.1 illustrates a quite general feature of Bayesian inference:
The posterior distribution does not depend on the sampling rule but only on the
likelihood of the observed results.

Example 2.2 Normal mean. LetX1, . . . , Xn be iid asN (θ, σ 2), with σ known,
and let the estimand beθ . As a prior distribution for�, we shall assume the
normal distributionN (µ, b2). The joint density of� andX = (X1, . . . , Xn) is then
proportional to

f (x, θ ) = exp

[
− 1

2σ 2

n∑
i=1

(xi − θ )2

]
exp

[
− 1

2b2
(θ − µ)2

]
.(2.1)

To obtain the posterior distribution of�|x, the joint density is divided by the
marginal density ofX, so that the posterior distribution has the formC(x)f (x|θ ).
If C(x) is used generically to denote any function ofx not involvingθ , the posterior
density of�|x is

C(x)e−(1/2)θ2[n/σ 2+1/b2]+θ [nx̄/σ 2+µ/b2]

= C(x) exp

{[
−1

2

(
n

σ 2
+

1

b2

)][
θ2 − 2θ

nx̄/σ 2 +µ/b2

n/σ 2 + 1/b2

]}
.
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This is recognized to be the normal density with mean

E(�|x) =
nx̄/σ 2 +µ/b2

n/σ 2 + 1/b2
(2.2)

and variance

var(�|x) =
1

n/σ 2 + 1/b2
.(2.3)

When the loss is squared error, the Bayes estimator ofθ is given by (2.2) and
can be rewritten as

δ�(x) =

(
n/σ 2

n/σ 2 + 1/b2

)
x̄ +

(
1/b2

n/σ 2 + 1/b2

)
µ,(2.4)

and by Corollary 2.7.19, this result remains true for any loss functionρ(d − θ )
for which ρ is convex and even. This showsδ� to be a weighted average of the
standard estimator̄X, and the meanµ of the prior distribution, which is the Bayes
estimator before any observations are taken. Asn→∞withµ andb fixed,δ�(X)
becomes essentially the estimatorX̄, andδ�(X) → θ in probability. Asb → 0,
δ�(X) → µ in probability, as is to be expected when the prior becomes more
and more concentrated aboutµ. As b→∞, δ�(X) essentially coincides with̄X,
which again is intuitively reasonable. These results are analogous to those in the
binomial case. See Problem 2.3. ‖

It was seen above that̄X is the limit of the Bayes estimators asb → ∞. As
b→∞, the prior density tends to Lebesgue measure. Since the Fisher information
I (θ ) of a location parameter is constant, this is actually the Jeffrey’s prior mentioned
under (iv) earlier in the section. It is easy to check that the posterior distribution
calculated from this improper prior is a proper distribution as soon as an observation
has been taken. This is not surprising; sinceX is normally distributed aboutθ with
variance 1, even a single observation provides a good idea of the position ofθ .

As in the binomial case, the question arises whetherX̄ is the Bayes solution
also with respect to a proper prior�. This question is answered for both cases by
the following theorem.

Theorem 2.3 Let � have a distribution �, and let Pθ denote the conditional
distribution of X given θ . Consider the estimation of g(θ ) when the loss function
is squared error. Then, no unbiased estimator δ(X) can be a Bayes solution unless

E[δ(X)− g(�)]2 = 0,(2.5)

where the expectation is taken with respect to variation in both X and �.

Proof. Supposeδ(X) is a Bayes estimator and is unbiased for estimatingg(θ ).
Sinceδ(X) is Bayes and the loss is squared error,

δ(X) = E[g(�)|X],

with probability 1. Sinceδ(X) is unbiased,

E[δ(X)|θ ] = g(θ ) for all θ.
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Conditioning onX and using (1.6.2) leads to

E[g(�)δ(X)] = E{δ(X)E[g(�)|X]} = E[δ2(X)].

Conditioning instead on�, we find

E[g(�)δ(X)] = E{g(�)E[δ(X)|�]} = E[g2(�)].

It follows that

E[δ(X)− g(�)]2 = E[δ2(X)] + E[g2(�)] − 2E[δ(X)g(�)] = 0,

as was to be proved. ✷

Let us now apply this result to the case thatδ(x) is the sample mean.

Example 2.4 Sample means. If Xi , i = 1, . . . , n, are iid withE(Xi) = θ and
varXi = σ 2 (independent ofθ ), then the risk ofX̄ (givenθ ) is

R(θ, X̄) = E(X̄ − θ )2 = σ 2/n.

For any proper prior distribution on�,

E(X̄ −�)2 = σ 2/n �= 0,

so (2.5) cannot be satisfied and, from Theorem 2.3,X̄ is not a Bayes estimator.
This argument will apply to any distribution for which the variance ofX̄ is

independent ofθ , such as theN (θ, σ 2) distribution in Example 2.2. However, if
the variance is a function ofθ , the situation is different.

If var Xi = v(θ ), then (2.5) will hold only if∫
v(θ )d�(θ ) dθ = 0(2.6)

for some proper prior�. If v(θ ) > 0 (a.e.�), then (2.6) cannot hold. For example,
if X1, · · · , Xn are iid Bernoulli(p) random variables, then the risk function of the
sample meanδ(�Xi) = �Xi/n is

E (δ(�Xi)− p)2 =
p(1− p)

n
,

and the left side of (2.5) is therefore

1

n

∫ 1

0
p(1− p) d�(p).

The integral is zero if and only if� assigns probability 1 to the set{0,1}. For such
a distribution,�,

δ�(0) = 0 and δ�(n) = 1,

and any estimator satisfying this condition is a Bayes estimator for such a�.
Hence, in particular,X/n is a Bayes estimator. Of course, if� is true, then the
valuesX = 1,2, . . . , n−1 are never observed. Thus,X/n is Bayes only in a rather
trivial sense. ‖

Extensions and discussion of other consequences of Theorem 2.3 can be found
in Bickel and Blackwell (1967), Noorbaloochi and Meeden (1983), and Bickel and
Mallows (1988). See Problem 2.4.
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The beta and normal prior distributions in the binomial and normal cases are the
so-calledconjugate families of prior distributions. These are frequently defined as
distributions with densities proportional to the density ofPθ . It has been pointed
out by Diaconis and Ylvisaker (1979) that this definition is ambiguous; they show
that in the above examples and, more generally, in the case of exponential families,
conjugate priors can be characterized by the fact that the resulting Bayes estimators
are linear inX. They also extend the weighted-average representation (1.13) of the
Bayes estimator to general exponential families. For one parameter exponential
families, MacEachern (1993) gives an alternate characterization of conjugate priors
based on the requirement that the posterior mean lies ”in between” the prior mean
and sample mean.

As another example of the use of conjugate priors, consider the estimation of a
normal variance.

Example 2.5 Normal variance, known mean. LetX1, . . . , Xn be iid according
toN (0, σ 2), so that the joint density of theXi ’s is Cτre−τ�x

2
i , whereτ = 1/2σ 2

andr = n/2. As conjugate prior forτ , we take the gamma densityH(g,1/α) noting
that, by (1.5.44),

E(τ ) =
g

α
, E(τ 2) =

g(g + 1)

α2
,(2.7)

E

(
1

τ

)
=

α

g − 1
, E

(
1

τ 2

)
=

α2

(g − 1)(g − 2)
.

Writing y = �x2
i , we see that the posterior density ofτ given thexi ’s is

C(y)τ r+g−1e−τ (α+y),

which isH[r + g,1/(α + y)]. If the loss is squared error, the Bayes estimator of
2σ 2 = 1/τ is the posterior expectation of 1/τ , which by (2.7) is (α+y)/(r +g−1).
The Bayes estimator ofσ 2 = 1/2τ is therefore

α + Y

n + 2g − 2
.(2.8)

In the present situation, we might instead prefer to work with the scale invariant
loss function

(d − σ 2)2

σ 4
,(2.9)

which leads to the Bayes estimator (Problem 2.6)

E(1/σ 2)

E(1/σ 4)
=
E(τ )

2E(τ 2)
,(2.10)

and hence by (2.7) after some simplification to

α + Y

n + 2g + 2
.(2.11)

Since the Fisher information forσ is proportional to 1/σ 2 (Table 2.5.1), the
Jeffreys prior density in the present case is proportional to the improper density
1/σ , which induces forτ the density (1/τ ) dτ . This corresponds to the limiting
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caseα = 0, g = 0, and hence by (2.8) and (2.11) to the Bayes estimatorsY/(n−2)
andY/(n + 2) for squared error and loss function (2.9), respectively. The first of
these has uniformly larger risk than the second which is MRE. ‖

We next consider two examples involving more than one parameter.

Example 2.6 Normal variance, unknown mean. Suppose that we letX1, . . . , Xn
be iid asN (θ, σ 2) and consider the Bayes estimation ofθ andσ 2 when the prior
assigns toτ = 1/2σ 2 the distributionH(g,1/α) as in Example 2.5 and takesθ to
be independent ofτ with (for the sake of simplicity) the uniform improper prior
dθ corresponding tob = ∞ in Example 2.2. Then, the joint posterior density of
(θ, τ ) is proportional to

τ r+g−1e−τ [α+z+n(x̄−θ )2](2.12)

wherez = �(xi− x̄)2 andr = n/2. By integrating outθ , it is seen that the posterior
distribution ofτ is H[r + g − 1/2,1/(α + z)] (Problem 1.12). In particular, for
α = g = 0, the Bayes estimator ofσ 2 = 1/2τ is Z/(n − 3) andZ/(n + 1) for
squared error and loss function (2.9), respectively. To see that the Bayes estimator
of θ is X̄ regardless of the values ofα andg, it is enough to notice that the posterior
density ofθ is symmetric about̄X (Problem 2.9; see also Problem 2.10). ‖

A problem for which the theories of Chapters 2 and 3 do not lead to a satisfac-
tory solution is that of components of variance. The following example treats the
simplest case from the present point of view.

Example 2.7 Random effects one-way layout. In the model (3.5.1), suppose for
the sake of simplicity thatµ andZ11 have been eliminated either by invariance or
by assigning toµ the uniform prior on (−∞,∞). In either case, this restricts the
problem to the remainingZ’s with joint density proportional to

1

σ s(n−1)(σ 2 + nσ 2
A)(s−1)/2

exp

[
− 1

2(σ 2 + nσ 2
A)

s∑
i=2

z2
i1−

1

2σ 2

s∑
i=1

n∑
j=2

z2
ij

]
.

(2.13)
The most natural noninformative prior postulatesσ andσA to be independent with
improper densities 1/σ and 1/σA, respectively. Unfortunately, however, in this
case, the posterior distribution of (σ, σA) continues to be improper, so that the
calculation of a posterior expectation is meaningless (Problem 2.12).

Instead, let us consider the Jeffreys prior� which has the improper density
(1/σ )(1/τ ) but with τ 2 = σ 2 + nσ 2

A so that the density is zero forτ < σ . (For
a discussion of the appropriateness of this and related priors see Hill, Stone and
Springer 1965, Tiao and Tan 1965, Box and Tiao 1973, Hobert 1993, and Hobert
and Casella 1996.) The posterior distribution is then proper (Problem 2.11). The
resulting Bayes estimatorδ� of σ 2

A is obtained by Klotz, Milton, and Zacks (1969),
who compare it with the more traditional estimators discussed in Example 5.5.
Since the risk ofδ� is quite unsatisfactory, Portnoy (1971) replaces squared error
by the scale invariant loss function (d−σ 2

A)2/(σ 2 +nσ 2
A)2, and shows the resulting

estimator to be

δ′� =
1

2n

[
S2
A

a
− S2

c − a − 1
+

c − 1

ca(c − a − 1)
· S

2
A + S2

F (R)

]
(2.14)
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wherec = 1
2(sn + 1),a = 1

2(s + 3),R = S2/(S2
A + S2), and

F (R) =
∫ 1

0

va

[R + v(1− R)]c+1
dv.

Portnoy’s risk calculations suggest thatδ′� is a satisfactory estimator ofσ 2
A for

his loss function or equivalently for squared error loss. The estimation ofσ 2 is
analogous. ‖

Let us next examine the connection between Bayes estimation, sufficiency, and
the likelihood function. Recall that if (X1, X2, . . . , Xn) has densityf (x1, . . . , xn|θ ),
the likelihood function is defined byL(θ |x) = L(θ |x1, . . . , xn) = f (x1, . . . , xn|θ ).
If we observeT = t, whereT is sufficient forθ , then

f (x1, . . . , xn|θ ) = L(θ |x) = g(t|θ )h(x),

where the functionh(·) does not depend onθ . For any prior distributionπ (θ ), the
posterior distribution is then

π (θ |x) =
f (x1, . . . , xn|θ )π (θ )∫
f (x1, . . . , xn|θ ′)π (θ ′) dθ ′

=
L(θ |x)π (θ )∫
L(θ ′|x)π (θ ′) dθ ′

=
g(t|θ )π (θ )∫
g(t|θ ′)π (θ ′) dθ ′

(2.15)

soπ (θ |x) = π (θ |t), that is,π (θ |x) depends onx only throught, and the posterior
distribution ofθ is the same whether we compute it on the basis ofx or of t. As an
illustration, in Example 2.2, rather than starting with (2.1), we could use the fact
that the sufficient statistic is̄X ∼ N (θ, σ 2/n) and, starting from

f (x̄|θ ) ∝ e− n

2σ2 (x̄−θ )2

e
− 1

2b2
(θ−µ)2

,

arrive at the same posterior distribution forθ as before. Thus, Bayesian measures
that are computed from posterior distributions are functions of the data only through
the likelihood function and, hence, are functions of a minimal sufficient statistic.

Bayes estimators were defined in (1.1) with respect to a proper distribution�.
It is useful to extend this definition to the case that� is a measure satisfying∫

d�(θ ) =∞,(2.16)

a so-called improper prior. It may then still be the case that (1.3) is finite for each
x, so the Bayes estimator can formally be defined.

Example 2.8 Improper prior Bayes. For the situation of Example 1.5, where
X ∼ b(p, n), the Bayes estimator under a beta(a, b) prior is given by (1.12). For
a = b = 0, this estimator isx/n, the sample mean, but the prior density,π (p),
is proportional toπ (p) ∝ p−1(1− p)−1, and hence is improper. The posterior
distribution in this case is(

n

x

)
px−1(1− p)n−x−1

∫ 1
0

(
n

x

)
px−1(1− p)n−x−1

=
H(n)

H(x)H(n− x)
px−1(1− p)n−x−1(2.17)
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which is a proper posterior distribution if 1≤ x ≤ n − 1 with x/n the posterior
mean. Whenx = 0 or x = n, the posterior density (2.17) is no longer proper.
However, for any estimatorδ(x) that satisfiesδ(0) = 0 andδ(n) = 1, the posterior
expected loss (1.3) is finite and minimized atδ(x) = x/n (see Problem 2.16 and
Example 2.4). Thus, even though the resulting posterior distribution is not proper
for all values ofx, δ(x) = x/n can be considered a Bayes estimator. ‖

This example suggests the following definition.

Definition 2.9 An estimatorδπ (x) is ageneralized Bayes estimator with respect
to a measureπ (θ ) (even if it is not a proper probability distribution) if the posterior
expected loss,E{L(�, δ(X))|X = x}, is minimized atδ = δπ for all x.

As we will see, generalized Bayes estimators play an important part in point
estimation optimality, since they often may be optimal under both Bayesian and
frequentist criteria.

There is one other useful variant of a Bayes estimator, alimit of Bayes estimators.

Definition 2.10 A nonrandomized1 estimatorδ(x) is a limit of Bayes estimators
if there exists a sequence of proper priorsπν and Bayes estimatorsδπν such that
δπν (x) → δ(x) a.e. [with respect to the densityf (x|θ )] asν →∞.

Example 2.11 Limit of Bayes estimators. In Example 2.8, it was seen that the
binomial estimatorX/n is Bayes with respect to an improper prior. We shall now
show that it is also a limit of Bayes estimators. This follows since

lim
a→0
b→0

a + x

a + b + n
=
x

n
(2.18)

and the beta(a, b) prior is proper ifa > 0, b > 0. ‖

From a Bayesian view, estimators that are limits of Bayes estimators are some-
what more desirable than generalized Bayes estimators. This is because, by con-
struction, a limit of Bayes estimators must be close to a proper Bayes estimator.
In contrast, a generalized Bayes estimator may not be close to any proper Bayes
estimator (see Problem 2.15).

3 Single-Prior Bayes

As discussed at the end of Section 1, the prior distribution is typically selected from
a flexible family of prior densities indexed by one or more parameters. Instead
of denoting the prior by�, as was done in Section 1, we shall now denote its
density byπ (θ |γ ), where the parameterγ can be real- or vector-valued. (Hence,
we are implicitly assuming that the priorπ is absolutely continuous with respect
to a dominating measureµ(θ ), which, unless specified, is taken to be Lebesgue
measure.)

1 For randomized estimators the convergence can only be in distribution. See Ferguson 1967 (Section
1.8) or Brown 1986a (Appendix).
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We can then write a Bayes model in a general form as

X|θ ∼ f (x|θ ),(3.1)

�|γ ∼ π (θ |γ ).

Thus, conditionally onθ ,X has sampling densityf (x|θ ), and conditionally onγ ,�
has prior densityπ (θ |γ ). From this model, we calculate the posterior distribution,
π (θ |x, γ ), from which all Bayesian answers would come. The exact manner in
which we deal with the parameterγ or, more generally, the prior distribution
π (θ |γ ) will lead us to different types of Bayes analyses. In this section we assume
that the functional form of the prior, and the value ofγ , is known so we have
one completely specified prior. (To emphasize that point, we will sometimes write
γ = γ0.)

Given a loss functionL(θ, d), we then look for the estimator that minimizes∫
L(θ, d(x))π (θ |x, γ0) dθ,(3.2)

whereπ (θ |x, γ0) = f (x|θ )π (θ |γ0)/
∫
f (x|θ )π (θ |γ0) dθ.

The calculation of single-prior Bayes estimators has already been illustrated in
Section 2. Here is another example.

Example 3.1 Scale uniform. For estimation in the model

Xi |θ ∼ U(0, θ ), i = 1, . . . , n,
1

θ
|a, b ∼ Gamma(a, b), a, b known,(3.3)

sufficiency allows us to work only with the density ofY = maxi Xi , which is
given byg(y|θ ) = nyn−1/θn, 0< y < θ . We then calculate the single-prior Bayes
estimator ofθ under squared error loss. By (4.1.4), this is the posterior mean, given
by

E(�|y, a, b) =

∫∞
y
θ 1
θn+a+1e

−1/θb dθ∫∞
y

1
θn+a+1e

−1/θb dθ
.(3.4)

Although the ratio of integrals is not expressible in any simple form, calculation
is not difficult. See Problem 3.1 for details. ‖

In general, the Bayes estimator under squared error loss is given by

E(�|x) =

∫
θf (x|θ )π (θ ) dθ∫
f (x|θ )π (θ ) dθ

(3.5)

whereX ∼ f (x|θ ) is the observed random variable and� ∼ π (θ ) is the parameter
of interest. While there is a certain appeal about expression (3.5), it can be difficult
to work with. It is therefore important to find conditions under which it can be
simplified. Such simplification is useful for two somewhat related purposes.

(i) Implementation

If a Bayes solution is deemed appropriate, and we want to implement it, we
must be able to calculate (3.5). Thus, we need reasonably straightforward,
and general, methods of evaluating these integrals.
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(ii) Performance
By construction, a Bayes estimator minimizes the posterior expected loss and,
hence, the Bayes risk. Often, however, we are interested in its performance,
and perhaps optimality under other measures. For example, we might examine
its mean squared error (or, more generally, its risk function) in looking for
admissible or minimax estimators. We also might examine Bayesian measures
using other priors, in an investigation of Bayesian robustness.

These latter considerations tend to lead us to look for either manageable expres-
sions for or accurate approximations to the integrals in (3.5). On the other hand,
the considerations in (i) are more numerical (or computational) in nature, leading
us to algorithms that ease the computational burden. However, even this path can
involve statistical considerations, and often gives us insight into the performance
of our estimators.

A simplification of (3.5) is possible when dealing with independent prior dis-
tributions. If Xi ∼ f (x|θi), i = 1, · · · , n, are independent, and the prior is
π (θ1, · · · , θn) =

∏
i π (θi), then the posterior mean ofθi satisfies

E(θi |x1, . . . , xn) = E(θi |xi),(3.6)

that is, the Bayes estimator ofθi only depends on the data throughxi . Although
the simplification provided by (3.6) may prove useful, at this level of generality it
is impossible to go further.

However, for exponential families, evaluation of (3.5) is sometimes possible
through alternate representations of Bayes estimators. Suppose the distribution of
X = (X1, . . . , Xn) is given by the multiparameter exponential family (see (1.5.2)),
that is,

pη (x) = exp

{
s∑
i=1

ηiTi(x)− A(η )

}
h(x).(3.7)

Then, we can express the Bayes estimator as a function of partial derivatives with
respect tox. The following theorem presents a general formula for the needed
posterior expectation.

Theorem 3.2 If X has density (3.7), and η has prior density π (η ), then for j =
1, . . . , n,

E

(
s∑
i=1

ηi
∂Ti(x)

∂xj
|x

)
=
∂

∂xj
logm(x)− ∂

∂xj
logh(x),(3.8)

where m(x) =
∫
pη (x)π (η ) dη is the marginal distribution of X. Alternatively,

the posterior expectation can be expressed in matrix form as

E (T η ) = ∇ logm(x)− ∇ logh(x),(3.9)

where T = {∂Ti/∂xj }.
Proof. Noting that∂ exp{∑ ηiTi}/∂xj =

∑
i ηi(∂Ti/∂xj ) exp{∑ ηiTi}, we can

write

E

(∑
ηi
∂Ti(x)

∂xj
|x

)
=

1

m(x)

∫ ∑
i

[
ηi
∂Ti

∂xj

]
e�ηiTi−A(η )h(x)π (η ) dη
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=
1

m(x)

∫ [
∂

∂xj
e�iηiTi

]
e−A(η )h(x)π (η ) dη

=
1

m(x)

∫ [(
∂

∂xj
e�iηiTi h(x)

)
−

(
∂

∂xj
h(x)

)
e�iηiTi

]
e−A(η )π (η ) dη(3.10)

=
1

m(x)

∂

∂xj

∫ (
e�ηiTi−A(η )h(x)

)
π (η ) dη

−
∂
∂xj
h(x)

h(x)

1

m(x)

∫
e�ηiTi−A(ηh(x)π (η ) dη

=
∂
∂xj
m(x)

m(x)
−

∂
∂xj
h(x)

h(x)

where, in the third equality, we have used the fact that[
∂Ti

∂xj

]
e�iηiTi h(x) =

∂

∂xj

(
e�iηiTi h(x)

)− e�iηiTi [∂h(x)

∂xj

]
.

In the fourth equality, we have interchanged the order of integration and differen-
tiation (justified by Theorem 1.5.8), and used the definition ofm(x). Finally, using

logarithms,E
(∑

ηi
∂Ti (x)
∂xj
|x

)
can be written as (3.8). ✷

Although it may appear that this theorem merely shifts calculation from one
integral [the posterior of (3.5)] to another [the marginalm(x) of (3.8)], this shift
brings advantages which will be seen throughout the remainder of this section
(and beyond). These advantages stem from the facts that the calculation of the
derivatives of logm(x) is often feasible and that, with the estimator expressed as
(3.8), risk calculations may be simplified. Theorem 3.2 simplifies further when
Ti = Xi .

Corollary 3.3 If X = (X1, . . . , Xp) has the density

pη (x) = e�
p

i=1ηixi−A(η )h(x)(3.11)

and η has prior density π (η ), the Bayes estimator of η under the loss L(η , δ) =
�(ηi − δi)2 is given by

E(ηi |x) =
∂

∂xi
logm(x)− ∂

∂xi
logh(x).(3.12)

Proof. Problem 3.3. ✷

Example 3.4 Multiple normal model. For

Xi |θi ∼ N (θi, σ
2), i = 1, . . . , p, independent,

�i ∼ N (µ, τ 2), i = 1, . . . , p, independent,

whereσ 2, τ 2, andµ are known,ηi = θi/σ 2 and the Bayes estimator ofθi is

E(�i |x) = σ 2E(ηi |x) = σ 2

[
∂

∂xi
logm(x)− ∂

∂xi
logh(x)

]
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=
τ 2

σ 2 + τ 2
xi +

σ 2

σ 2 + τ 2
µ,

since
∂

∂xi
logm(x) =

∂

∂xi
log

(
e

1
2(σ2+τ2)

∑
i (xi−µ)2

)
=
−(xi − µ)

σ 2 + τ 2

and
∂

∂xi
logh(x) =

∂

∂xi
log

(
e−

1
2

∑
x2
i /σ

2
)

= − xi
σ 2
.

‖
An application of the representation (3.12) is to the comparison of the risk of the
Bayes estimator with the risk of the best unbiased estimator.

Theorem 3.5 Under the assumptions of Corollary 3.3, the risk of the Bayes esti-
mator (3.12), under the sum of squared error loss, is

R[η , E(η |X)] = R[η ,−∇ logh(X)]

+
p∑
i=1

E

{
2
∂2

∂X2
i

logm(X) +

(
∂

∂Xi
logm(X)

)2
}
.(3.13)

Proof. By an application of Stein’s identity (Lemma 1.5.15; see Problem 3.4), it
is straightforward to establish that for the situation of Corollary 3.3.

Eη

[
− ∂

∂Xi
logh(X)

]
=

∫ [
∂

∂xi
logh(x)

]
pη(x)dx = ηi.

Hence, if we write∇ logh(x) = {∂/∂xi logh(x)},
− Eη∇ logh(X) = η .(3.14)

Thus,−∇ logh(X) is an unbiased estimator ofη with risk

R[η ,−∇ logh(X)] = Eη
p∑
i=1

[
ηi +

∂

∂Xi
logh(X)

]2

= Eη|η +∇ logh(X)|2,(3.15)

which can also be further evaluated using Stein’s identity (see Problem 3.4). Re-
turning to (3.12), the risk of the Bayes estimator is given by

R[η , E(η |X)] =
p∑
i=1

[ηi − E(ηi |X)]2

=
p∑
i=1

[
ηi −

(
∂

∂Xi
logm(X)− ∂

∂Xi
logh(X)

)]2

= R[η ,−∇ logh(X)]

−2
p∑
i=1

E

[
(ηi +

∂

∂Xi
logh(X))

∂

∂Xi
logm(X)

]



244 AVERAGE RISK OPTIMALITY [ 4.3

+
p∑
i=1

E

[
∂

∂Xi
logm(X)

]2

.(3.16)

An application of Stein’s identity to the middle term leads to

Eη

[(
ηi +

∂

∂Xi
logh(X)

)
∂

∂Xi
logm(X)

]
= −Eη

[
∂2

∂X2
i

logm(X)

]
,

which establishes (3.13). ✷

From (3.13), we see that if the second term is negative, then the Bayes estimator
of η will have smaller risk than the unbiased estimator−∇ logh(X), (which is
best unbiased if the family is complete). We will exploit this representation (3.13)
in Chapter 5, but now just give a simple example.

Example 3.6 Continuation of Example 3.4. To evaluate the risk of the Bayes
estimator, we also calculate

∂2

∂x2
i

logm(x) = − 1

σ 2 + τ 2
,

and hence, from (3.13),

R[η , E(η |X)] = R[η ,−∇ logh(X)]

− 2p

σ 2 + τ 2
+
∑
i

Eη

(
Xi − µ
σ 2 + τ 2

)2

.(3.17)

The best unbiased estimator ofηi = θi/σ 2 is

− ∂

∂Xi
logh(X) =

Xi

σ 2

with riskR(η ,−∇ logh(X)) = p/σ 2. If ηi = µ for eachi, then the Bayes estimator
has smaller risk, whereas the Bayes estimator has infinite risk as|ηi − µ| → ∞
for anyi (Problem 3.6). ‖

We close this section by noting that in exponential families there is a general
expression for the conjugate prior distribution and that use of this conjugate prior
results in a simple expression for the posterior mean. For the density

pη(x) = eηx−A(η)h(x), −∞ < x <∞,(3.18)

the conjugate prior family is

π (η|k, µ) = c(k, µ)ekηµ−kA(η),(3.19)

whereµ can be thought of as a prior mean andk is proportional to a prior variance
(see Problem 3.9).

If X1, . . . , Xn is a sample frompη(x) of (3.18), the posterior distribution result-
ing from (3.19) is

π (η|x, k, µ) ∝ [
enηx̄−nA(η)

] [
ekηµ−kA(η)

]
= eη(nx̄+kµ)−(n+k)A(η)(3.20)
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which is in the same form as (3.19) withµ′ = (nx̄ + kµ)/(n + k) andk′ = n + k.
Thus, using Problem 3.9,

E(A′(η)|x, k, µ) =
nx̄ + kµ

n + k
.(3.21)

AsEX|η = A′(η), we see that the posterior mean is a convex combination of the
sample and prior means.

Example 3.7 Conjugate gamma. LetX1, . . . , Xn be iid as Gamma(a, b), where
a is known. This is in the exponential family form withη = −1/b andA(η) =
−a log(−η). If we use a conjugate prior distribution (3.19) forb for which

E(A′(η)|x) = E

(
−a
η
|x̄

)
=
nx̄ + kµ

n + k
.

The resulting Bayes estimator under squared error loss is

E(b|x) =
1

a

[
nx̄ + kµ

n + k

]
.(3.22)

This is the Bayes estimator based on an inverted gamma prior forb (see Problem
3.10). ‖

Using the conjugate prior (3.19) will not generally lead to simplifications in
(3.9) and is, therefore, not helpful in obtaining expressions for estimators of the
natural parameter: However, there is often more interest in estimating the mean
parameter rather than the natural parameter.

4 Equivariant Bayes

Definition 3.2.4 specified what is meant by an estimation problem being invariant
under a transformationg of the sample space and the induced transformationsḡ

andg∗ of the parameter and decision spaces, respectively. In such a situation, when
considering Bayes estimation, it is natural to select a prior distribution which is
also invariant.

Recall that a group family is a family of distributions which is invariant under
a groupG of transformations for which̄G is transitive over the parameter space.
We shall say that a prior distribution� for θ is invariant with respect toḠ if the
distribution ofḡθ is also� for all ḡ ∈ Ḡ; that is, if for allḡ ∈ Ḡ and all measurable
B

P�(ḡθ ∈ B) = P�(θ ∈ B)(4.1)

or, equivalently,
�(ḡ−1B) = �(B).(4.2)

Suppose now that such a� exists and that the Bayes solutionδ� with respect to it
is unique. By (4.1), anyδ then satisfies∫

R(θ, δ) d�(θ ) =
∫
R(ḡθ, δ) d�(θ ).(4.3)
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Now

R(ḡθ, δ) = Eḡθ {L[ḡθ, δ(X)]} = Eθ {L[ḡθ, δ(gX)]}
= Eθ {L[θ, g∗−1δ(gX)]}.(4.4)

Here, the second equality follows from (3.2.4) (invariance of the model) and the
third from (3.2.14) (invariance of the loss). On substituting this last expression into
the right side of (4.3), we see that ifδ�(x) minimizes (4.3), so does the estimator
g∗−1δ�(gx). Hence, if the Bayes estimator is unique, the two must coincide. By
(3.2.17), this appears to proveδ� to be equivariant. However, at this point, a
technical difficulty arises. Uniqueness can be asserted only up to null sets, that
is, setsN with Pθ (N ) = 0 for all θ . Moreover, the setN may depend ong. An
estimatorδ satisfying

δ(x) = g∗−1δ(gx) for all x /∈ Ng(4.5)

wherePθ (Ng) = 0 for all θ is said to bealmost equivariant. We have therefore
proved the following result.

Theorem 4.1 Suppose that an estimation problem is invariant under a group and
that there exists a distribution� over such that (4.2) holds for all (measurable)
subsets B of  and all g ∈ G. Then, if the Bayes estimator δ� is unique, it is
almost equivariant.

Example 4.2 Equivariant binomial. Suppose we are interested in estimating
p under squared error loss, whereX ∼ binomial(n, p). A common group of
transformations which leaves the problem invariant is

gX = n−X,
ḡp = 1− p.

For a prior� to satisfy (4.1), we must have

P�(ḡp ≤ t) = P�(p ≤ t) for all t.(4.6)

If � has densityγ (p), then (4.1) implies∫ t

0
γ (p) dp =

∫ t

0
γ (1− p) dp for all t,(4.7)

which, upon differentiating, requiresγ (t) = γ (1− t) for all t and, hence, thatγ (t)
must be symmetric aboutt = 1/2. It then follows that, for example, a Bayes rule
under a symmetric beta prior is equivariant. See Problem 4.1.

‖
The existence of a proper invariant prior distribution is rather special. More

often, the invariant measure forθ will be improper (if it exists at all), and the
situation is then more complicated. In particular, (i) the integral (4.3) may not be
finite, and the argument leading to Theorem 4.1 is thus no longer valid and (ii) it
becomes necessary to distinguish between left- and right-invariant measures�.
These complications require a level of group-theoretic sophistication that we do
not assume. However, for the case of location-scale, we can develop the theory in
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sufficient detail. [For a more comprehensive treatment of invariant Haar measures,
see Berger 1985 (Section 6.6), Robert 1994a (Section 7.4), or Schervisch 1995
(Section 6.2). A general development of the theory of group invariance, and its
application to statistics, is given by Eaton (1989) and Wijsman (1990).]

To discuss invariant prior distributions, or more generally invariant measures,
over the parameter space, we begin by considering invariant measures over groups.
(See Section 1.4 for some of the basics.) LetG be a group andL be aσ -field of
measurable subsets ofG, and for a setB in L, let

Bh = {gh : g ∈ B}
and

gB = {gh : h ∈ B}.
Then, a measure� over (G,L) is right-invariant, aright invariant Haar measure
if

�(Bh) = �(B) for all B ∈ L, h ∈ G(4.8)

and aleft-invariant Haar measure if

�(gB) = �(B) for all B ∈ L, g ∈ G.(4.9)

In our examples, measures satisfying (4.8) or (4.9) exist, have densities, and
are unique up to multiplication by a positive constant. We will now look at some
location-scale examples.

Example 4.3 Location group. Forx = (x1, . . . , xn) in a Euclidean sample space,
consider the transformations

gx = (x1 + g, . . . , xn + g), −∞ < g <∞,(4.10)

with the composition (group operation)

g ◦ h = g + h,(4.11)

which was already discussed in Sections 1 and 2. Here,G is the set of real numbers
g, and forL, we can take the Borel sets. The setsBh andgB are

Bh = {g + h : g ∈ B} and gB = {g + h : h ∈ B}
and satisfyBg = gB since

g ◦ h = h ◦ g.(4.12)

When (4.12) holds, the group operation is said to be commutative; groups with this
property are calledAbelian. For an Abelian group, if a measure is right invariant, it
is also left invariant and vice versa, and will then be calledinvariant. In the present
case, Lebesgue measure is invariant since it assigns the same measure to a setB

on the line as to the set obtained by translatingB by any fixed accountg orh to the
right or left. (Abelian groups are a special case ofunimodular groups, the type of
group for which the left- and right-invariant measures agree. See Wijsman (1990,
Chapter 7) for details. ‖

There is a difference between transformations acting on parameters or on ele-
ments of a group. In the first case, we know what we mean byḡθ , but θḡ makes
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no sense. On the other hand, for group elements, multiplication is possible both
on the left and on the right.

For this reason, a prior distribution� (a measure over the parameter space) sat-
isfying (4.1), which only requires left-invariance, is said to be invariant. However,
for measures over a group one must distinguish between left- and right-invariance
and call such measures invariant only if they are both left and right invariant.

Example 4.4 Scale group. Forx = (x1, . . . , xn) consider the transformations

gx = (gx1, · · · , gxn), 0< g <∞,
that is, multiplication of each coordinate by the same positive numberg, with the
composition

g ◦ h = g × h.
The setsBh andgB are obtained by multiplying each element ofB by h on the
right andg on the left, respectively. Sincegh = hg, the group is Abelian and the
concepts of left- and right-invariance coincide. An invariant measure is given by
the density

1

g
dg.(4.13)

To see this, note that

�(B) =
∫
B

1

g
dg =

∫
Bh

h

g′
· dg
dg′
dg′ =

∫
Bh

1

g′
dg′ = �(Bh),

where the first equality follows by making the change of variablesg′ = gh. ‖

Example 4.5 Location-scale group. As a last and somewhat more complicated
example, consider the group of transformations

gx = (ax1 + b, . . . , axn + b), 0< a <∞, −∞ < b <∞.
If g = (a, b) andh = (c, d), we have

hx = cx + d

and

ghx = a(cx + d) + b = acx + (ad + b).

So, the composition rule is

(a, b) ◦ (c, d) = (ac, ad + b).(4.14)

Since

(c, d) ◦ (a, b) = (ac, cb + d),

it is seen that the group operation is not commutative, and we shall therefore have
to distinguish between left and right Haar measures. We shall now show that these
are given, respectively, by the densities

1

a2
dadb and

1

a
dadb.(4.15)
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To show left-invariance of the first of these, note that the transformationg(h) = g◦h
takes

h = (c, d) into (c′ = ac, d ′ = ad + b).(4.16)

If � has densitydadb/a2, we have

�(B) = �{(ac, ad + b) : (c, d) ∈ B}(4.17)

and, hence,

�(B) =
∫
B

1

c2
dcdd =

∫
gB

a2

(c)2

∂(c, d)

∂(c′, d ′)
dc′dd ′,(4.18)

where
∂(c′, d ′)
∂(c, d)

=

∣∣∣∣a 0
0 a

∣∣∣∣ = a2

is the Jacobian of the transformation (4.16). The right side of (4.18) therefore
reduces to ∫

gB

1

(c′)2
dc′dd ′ = �(gB)

and thus proves (4.9).
To prove the right-invariance of the densitydadb/a, consider the transformation

h(g) = g ◦ h taking

g = (a, b) into (a′ = ac, b′ = ad + b).(4.19)

We then have

�(B) =
∫
B

1

a
dadb =

∫
Bh

c

a′
∂(a, b)

∂(a′, b′)
da′db′.(4.20)

The Jacobian of the transformation (4.19) is

∂(a′, b′)
∂(a, b)

=

∣∣∣∣ c d

0 1

∣∣∣∣ = c,

which shows that the right side of (4.20) is equal to�(Bh). ‖

We introduced invariant measures over groups as a tool for defining measures
over the parameter space that, in some sense, share these invariance properties.
For this purpose, consider a measure� over a transitive group̄G that leaves
invariant. Then,� induces a measure�′ by the relation

�′(ω) = �{ḡ ∈ Ḡ : ḡθ0 ∈ ω},(4.21)

whereω is any subset of, andθ0 any given point of. A disadvantage of this
definition is the fact that the resulting measure�′ will typically depend onθ0,
so that it is not uniquely defined by this construction. However, this difficulty
disappears when� is right invariant.

Lemma 4.6 If Ḡ is transitive over, and� is a right-invariant measure over Ḡ,
then �′ defined by (4.21) is independent of θ0.
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Proof. If θ1 is any other point of, there exists (by the assumption of transitivity)
an element̄h of Ḡ such thatθ1 = hθ0. Let

�′′(ω) = �{ḡ ∈ Ḡ : ḡθ1 ∈ ω}
and letB be the subset of̄G given by

B = {ḡ : ḡθ0 ∈ ω}.
Then,

{ḡ : ḡh̄ ∈ B} = {ḡh̄−1 : ḡ ∈ B} = Bh̄−1

and

�′′(ω) = �{ḡ : ḡh̄θ0 ∈ ω} = �{ḡh̄−1 : ḡθ0 ∈ ω}
= �(Bh̄−1) = �(B) = �′(ω),

where the next to last equation follows from the fact that� is right invariant. ✷

Example 4.7 Continuation of Example 4.3. The groupG of Example 4.3 given
by (4.10) and (4.11) and (1.2) of Section 1 induces on = {η : −∞ < η < ∞}
the transformation

ḡη = η + ḡ

and, as we saw in Example 4.3, Lebesgue measure� is both right and left invariant
overḠ. For any pointη0 and any subsetω of , we find

�′(ω) = �{ḡ ∈ Ḡ : η0 + ḡ ∈ ω} = �{ḡ ∈ Ḡ : ḡ ∈ ω − η0},
whereω−η0 denotes the setω translated by an amountη0. Since Lebesgue measure
of ω − η0 is the same as that ofω, it follows that�′ is Lebesgue measure over
regardless of the choice ofη0.

Let us now determine the Bayes estimates for this prior measure forη when the
loss function is squared error. By (1.6), the Bayes estimator ofη is then (Problem
4.2)

δ(x) =

∫
uf (x1− u, . . . , xn − u) du∫
f (x1− u, . . . , xn − u) du

.(4.22)

This is the Pitman estimator (3.1.28) of Chapter 3, which in Theorem 1.20 of that
chapter was seen to be the MRE estimator ofη. ‖
Example 4.8 Continuation of Example 4.4. The scale groupG given in Ex-
ample 4.4 and by (3.2) of Section 3.3 induces on = {τ : 0 < τ < ∞} the
transformations

ḡ ◦ τ = g × τ(4.23)

and, as we saw in Example 4.4, the measure� with density 1
g
dg is both left and

right invariant overḠ. For any pointτ0 and any subsetω of , we find

�′(ω) = �{ḡ ∈ Ḡ : gτ0 ∈ ω} = �{ḡ ∈ Ḡ : g ∈ ω/τ0},
whereω/τ0 denotes the set of values inω each divided byτ0. The change of
variablesg′ = τ0g shows that∫

ω/τ0

1

g
dg =

∫
ω

τ0

g′
dg

dg′
dg′ =

∫
ω

1

g′
dg′,
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and, hence, that

�′(ω) =
∫
ω

dτ

τ
.

Let us now determine the Bayes estimator ofτ for this prior distribution when the
loss function is

L(τ, d) =
(d − τ )2

τ 2
.

This turns out to be the Pitman estimator (3.19) of Section 3.3 withr = 1,

δ(x) =

∫∞
0 vnf (vx1, . . . , vxn) dv∫∞

0 vn+1f (vx1, . . . , vxn) dv
,(4.24)

which is also MRE (Problems 3.3.17 and 4.3). ‖
Example 4.9 Continuation of Example 4.5. The location-scale family of distri-
butions (3.23) of Section 3.3 remains invariant under the transformations

gx : x ′i = a + bxi, −∞ < a <∞, 0< b,

which induce in the parameter space

 = {(η, τ ) : −∞ < η <∞, 0< τ }
the transformations

η′ = aη + b, τ ′ = bτ.(4.25)

It was seen in Example 4.5 that the left and right Haar measures�1 and�2 over
the groupG = {g = (a, b) : −∞ < a <∞, 0< b}with group operation (4.14)
are given by the densities

1

a2
dadb and

1

a
dadb,(4.26)

respectively.
Let us now determine the corresponding measures over induced by (4.19). If

we describe the elementsḡ in this group by (a, b), then for any measure� over
Ḡ and any parameter point (η0, τ0), the induced measure�′ over is given by

�′(ω) = �{(a, b) : (aη0 + b, bτ0) ∈ ω}.(4.27)

Since a measure over the Borel sets is determined by its values over open intervals,
it is enough to calculate�′(ω) for

ω : η1 < η < η2, τ1 < τ < τ2.(4.28)

If, furthermore, we assume that� has a densityλ

�′(ω) = �{(a, b) : η1− aη0 < b < η2 − aη0,
τ1

τ0
< a <

τ2

τ0
}

=
∫ τ2/τ0

τ1/τ0

[∫ η2−aη0

η1−aη0

λ(a, b)db

]
da.

In this integral, let us now change variables from (a, b) to

a′ = aτ0, b′ = b + aη0.
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The Jacobian of the transformation is∣∣∣∣∂(a′, b′)∂(a, b)

∣∣∣∣ =

∣∣∣∣ τ0 η0

0 1

∣∣∣∣ = τ0

and we, therefore, find

�′(ω) =
∫ τ2

τ1

∫ η2

η1

λ′(a, b)dadb =
∫ τ2

τ1

∫ η2

η1

λ(a, b)
1

τ0
da′db′,

with a = a′/τ0 andb = b′ − aη0 = b′ − a′/τ0. We can therefore take

λ′(a′, b′) =
1

τ0
λ

[
a′

τ0
, b′ − a

′

τ0

]
.

Now consider the following two cases:

(i) For λ(a, b) = 1
a
,

λ′(a′, b′) =
1

τ0

τ0

a′
=

1

a′
;(4.29)

(ii) for λ(a, b) = 1
a2 ,

λ′(a′, b′) =
1

τ0

τ 2
0

a′2
=

1

a′2
.(4.30)

The Bayes estimators ofη andτ corresponding to (4.29) are (Problem 4.4)

η̂ =

∫∞
−∞

∫∞
0

u
vn+3 f

(
x1−u
v
, · · · , xn−u

v

)
dv du∫∞

−∞
∫∞

0
1
vn+3f

(
x1−u
v
, · · · , xn−u

v

)
dv du

(4.31)

and

τ̂ =

∫∞
−∞

∫∞
0

1
vn+2 f

(
x1−u
v
, · · · , xn−u

v

)
dv du∫∞

−∞
∫∞

0
1
vn+3 f

(
x1−u
v
, · · · , xn−u

v

)
dv du

.(4.32)

These turn out to be the MRE estimators ofη and τ under the loss functions
(d − η)2/τ 2 and (d − τ )2/τ 2, respectively. ‖

The treatment of these three examples extends to a number of other important
cases (see, for example, Problems 4.6 and 4.7) and suggests that the Bayes estimator
with respect to the measure induced by right Haar measure overḠ is equivariant
and is, in fact, MRE. For conditions under which these conclusions are valid, see
Berger 1985 (Section 6.6), Robert 1994a (Section 7.4), or Schervish 1995 (Section
6.2); a special case is treated in Section 5.4. It is also worth noting that if a Haar
measure� over a groupG is finite, that is,�(G) < ∞, then left and right Haar
measures coincide.

At the beginning of the section, we defined invariance of a prior distribution by
(4.1) and (4.2), and the same equations define invariance of a measure over even
if it is improper. We shall now consider whether the measure�′ induced over
by left- or right-invariant Haar measure is invariant in this sense.

Example 4.10 Invariance of induced measures. We look at the location-scale
groups and consider invariance of the induced measures.
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(i) Location Group. We saw in Example 4.7 that left and right Haar measures�

coincide in this case and that�′ is Lebesgue measure which clearly satisfies
(4.2)

(ii) Scale Group. Again, left and right Haar measure� coincide, and by Example
4.4,�′(ω) =

∫
ω
dτ
τ

. Sinceḡ−1(ω) = ω/ḡ, as in Example 4.4,

�′[ḡ−1(ω)] =
∫
ω/ḡ

dτ

τ
=

∫
ω

1

ḡ
dḡ = �(ω)

so that�′ is invariant.

(iii) Location-Scale Group. Here, the densities induced by the left- and right-
invariant Haar measures are given by (4.30) and (4.29), respectively. Calcu-
lations similar to those of Example 4.9 show that the former is invariant but
the latter is not ‖

The general situation is described in the following result.

Theorem 4.11 Under the assumptions of Theorem 4.1, the measure �′ over 
induced by a measure � over Ḡ is invariant provided � is left invariant.

Proof. For anyω andθ0 ∈ , letB = {h̄ ∈ Ḡ : h̄θ0 ∈ ω}, so that�′(ω) = �(B).
Then,ḡB = {ḡh̄ : h̄θ0 ∈ ω} and

�′(ḡω) = �(h̄ : h̄θ0 ∈ ḡω) = �(h̄ : ḡ−1h̄θ0 ∈ ω)

= �(ḡh̄ : h̄θ0 ∈ ω) = �(ḡB).

Thus,�(ḡω) = �′(ω) if and only if �(gB) = �(B), and it follows that�′ is
invariant if and only if� is left invariant. ✷

Note that this result does not contradict the remark made after Example 4.9 to the
effect that the Bayes estimator under the prior measure induced by right-invariant
Haar measure is equivariant. A Bayes estimator can be equivariant under a prior
measure� even if� is not invariant (see Problem 4.8).

When there are no groups leaving the given family of distributions invariant, no
Haar measure is available to serve as a noninformative prior. In such situations,
transformations that utilize some (perhaps arbitrary) structure of the parameter
space may sometimes be used to deduce a form for a “noninformative” prior
(Villegas 1990). A discussion of these approaches is given by Berger 1985 (Section
3.3); see also Bernardo and Smith 1994 (Section 5.6.2).

5 Hierarchical Bayes

In a hierarchical Bayes model, rather than specifying the prior distribution as a
single function, we specify it in a hierarchy. Thus, we place another level on the
model (3.1), and write

X|θ ∼ f (x|θ ),
�|γ ∼ π (θ |γ ),(5.1)

H ∼ ψ(γ ),
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where we assume thatψ(·) is known and not dependent on any other unknown
hyperparameters (as parameters of a prior are sometimes called). Note that we can
continue this hierarchical modeling and add more stages to the model, but this is
not often done in practice. The class of models (5.1) appears to be more general
than the class (3.1) since in (3.1),γ has a fixed value, but in (5.1), it is permitted to
have an arbitrary probability distribution. However, this appearance is deceptive.
Sinceπ (θ |γ ) in (3.1) can be any fixed distribution, we can, in particular, take for it
π (θ ) =

∫
π (θ |γ )ψ(γ )dγ , which reduces the hierarchical model (5.1) to the single-

prior model (3.1). However, there is a conceptual and practical advantage to the
hierarchical model, in that it allows us to model relatively complicated situations
using a series of simpler steps; that is, bothπ (θ |γ ) andψ(γ ) may be of a simple
form (even conjugate), butπ (θ ) may be more complex. Moreover, there is often a
computational advantage to hierarchical modeling. We will illustrate both of these
points in this section.

It is also interesting to note that this process can be reversed. Starting from the
single-prior model (3.1), we can look for a decomposition of the priorπ (θ ) of the
formπ (θ ) =

∫
π (θ |γ )ψ(γ )dγ and thus create the hierarchy (5.1). Such modeling,

known ashidden Markov models, hidden mixtures, or deconvolution, has proved
very useful (Churchill 1989, Robert 1994a (Section 9.3), Robert and Casella 1998).

Given a loss functionL(θ, d), we would then determine the estimator that min-
imizes ∫

L(θ, d(x))π (θ |x) dθ(5.2)

whereπ (θ |x) =
∫
f (x|θ )π (θ |γ )ψ(γ ) dγ /

∫∫
f (x|θ )π (θ |γ )ψ(γ ) dθ dγ . Note also

that

π (θ |x) =
∫
π (θ |x, γ )π (γ |x) dγ(5.3)

whereπ (γ |x) is the posterior distribution ofH, unconditional onθ . We may then
write (5.2) as∫

L(θ, d(x))π (θ |x) dθ =
∫ [∫

L(θ, d(x))π (θ |x, γ ) dθ

]
π (γ |x) dγ,(5.4)

which shows that the hierarchical Bayes estimator can be thought of as a mixture
of single-prior Bayes estimators. (See Problems 5.1 and 5.2.)

Hierarchical models allow easier modeling of prior distributions with “flatter”
tails, which can lead to Bayes estimators with more desirable frequentist properties.
This latter end is often achieved by takingψ(·) to be improper (see, for example,
Berger and Robert 1990, or Berger and Strawderman 1996).

Example 5.1 Conjugate normal hierarchy. Starting with the normal distribution
and modeling, each stage with a conjugate prior yields the hierarchy

Xi |θ ∼ N (θ, σ 2), σ 2 known, i = 1, . . . , n,

θ |τ ∼ N (0, τ 2)(5.5)
1

τ 2
∼ Gamma(a, b), a, b known.
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The hierarchical Bayes estimator ofθ under squared error loss is

E(�|x) =
∫∫

θπ (θ |x, τ 2) dθπ (τ 2|x) dτ 2

=
∫

nτ 2x̄

nτ 2 + σ 2
π (τ 2|x) dτ 2(5.6)

= E[E(�|x, τ 2)],

which is the expectation of the single-prior Bayes estimator using the density
π (τ 2|x). (See Problem 5.3 for the form of the posterior distributions.) Although
there is no explicit form forE(�|x), calculation is not particularly difficult. ‖

It is interesting to note that even though at each stage of the model (5.5) a
conjugate prior was used, the resulting Bayes estimator is not from a conjugate
prior (the priorπ (θ |a, b) =

∫
π (θ |τ )ψ(τ |a, b)dτ is not conjugate) and is not

expressible in a simple form. Such an occurrence is somewhat commonplace in
hierarchical Bayes analysis and leads to more reliance on numerical methods.

Example 5.2 Conjugate normal hierarchy, continued. As a special case of the
model (5.5), consider the model

Xi |θ ∼ N (θ, σ 2), i = 1, . . . , p, independent,

�|τ 2 ∼ N (0, τ 2)(5.7)
1

τ 2
∼ Gamma

(
ν

2
,

2

ν

)
.

This leads to a Student’st-prior distribution on�, and a posterior mean

E[�|x̄] =

∫∞
−∞ θ (1 + θ2/ν)−

ν+1
2 e−p/2σ

2(θ−x̄)2
dθ∫∞

−∞(1 + θ2/ν)−
ν+1
2 e−p/2σ 2(θ−x̄)2

dθ
,(5.8)

which is not expressible in a simple form. Numerical evaluation of (5.8) is simple,
so calculation of this hierarchical Bayes estimator in practice poses no problem.
However, evaluation of the mean squared error or Bayes risk of (5.8) presents a
more substantial task. ‖

In the preceding example, the hierarchical Bayes estimator was expressible as a
ratio of integrals which easily yielded to either direct calculation or simple approx-
imation. There are other cases, however, in which a straightforward hierarchical
model can lead to very difficult problems in evaluation of a Bayes estimator.

Example 5.3 Beta-binomial hierarchy. A generalization of the standard beta-
binomial hierarchy is

X|p ∼ binomial (p, n),

p|a, b ∼ beta (a, b),(5.9)

(a, b) ∼ ψ(a, b),
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leading to the posterior mean

E(p|x) =

∫ 1
0 p

x+1(1− p)n−xπ (p) dp∫ 1
0 p

x(1− p)n−xπ (p) dp
,(5.10)

where

π (p) =
∫∫

H(a + b)

H(a)H(b)
pa−1(1− p)b−1ψ(a, b) da db.(5.11)

For almost any choice ofψ(a, b), calculation of (5.11), and hence (5.10), is quite
difficult. Indeed, there could be difficulty with numerical integration, simulation,
and approximation. Moreover, ifψ(a, b) is chosen to be improper, as is typical
in such hierarchies, the propriety ofπ (p|x) is not easy to verify (and often does
not obtain). George et al. (1993) provide algorithms for calculating expressions
such as (5.10), and Hobert (1994) establishes conditions for the propriety of some
resulting posterior distributions. ‖

To overcome the difficulties in computing hierarchical Bayes estimators, we
need to establish either easy-to-use formulas or good approximations, in order to
further investigate their risk optimality. The approximation issue will be addressed
in the next section. In the remainder of the present section, we consider the evalu-
ation of (3.5) using theory based on Markov chain limiting behavior (see Note 9.4
for a brief discussion). Although this theory does not result in a simple expression
for the Bayes estimators in general, it usually allows us to write expressions such
as (5.6) as a limit of simple estimators. (Technically, these computations are not
approximations, as they are exact in the limit. However, since they involve only
a finite number of computations, we think of them as approximations, but realize
that any order of precision can be achieved.) The resulting techniques, collectively
known asMarkov chain Monte Carlo (MCMC) techniques (see Tanner 1996, Gilks
et al. 1996, or Robert and Casella 1998) can greatly facilitate calculation of a hier-
archical Bayes estimator. One of the most popular of these methods is known as the
Gibbs sampler [brought to statistical prominence by Gelfand and Smith (1990)],
which we now illustrate.

Starting with the hierarchy (5.1), suppose we are interested in calculating the
posterior distributionπ (θ |x) (or E(�|x), or some other feature of the posterior
distribution). From (5.1) we calculate thefull conditionals

�|x, γ ∼ π (θ |x, γ ),(5.12)

H|x, θ ∼ π (γ |x, θ ),
which are the posterior distributions of each parameter conditional on all others.
If, for i = 1,2, . . . ,M, random variables are generated according to

�i |x, γi−1 ∼ π (θ |x, γi−1),(5.13)

Hi |x, θi ∼ π (γ |x, θi),
this defines a Markov chain (�i, Hi). It follows from the theory of such chains (see
Note 9.4) that there exist distributionsπ (θ |x) andπ (γ |x) such that

�i
L→ � ∼ π (θ |x),(5.14)
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Hi
L→ H ∼ π (γ |x)

asi →∞, and

1

M

M∑
i=1

h(�i) → E(h(�)|x) =
∫
h(θ )π (θ |x) dθ(5.15)

asM → ∞. (A full development of this theory is given in Meyn and Tweedie
(1993). See also Resnick 1992 for an introduction to Markov chains and Robert
1994a for more applications to Bayesian calculation.)

It follows from (5.15) that for�i generated according to (5.13), we have

1

M

M∑
i=1

�i → E(�|x),(5.16)

the hierarchical Bayes estimator. (Problems 5.8 - 5.11 develop some of the more
practical aspects of this theory.)

Example 5.4 Poisson hierarchy with Gibbs sampling. As an example of a Pois-
son hierarchy (see also Example 6.6), consider

X|λ ∼ Poisson(λ)

�|b ∼ Gamma(a, b), a known(5.17)
1

b
∼ Gamma(k, τ ),

leading to the full conditionals

�|x, b ∼ Gamma

(
a + x,

b

1 +b

)
(5.18)

1

b
|x, λ ∼ Gamma

(
a + k,

τ

1 +λτ

)
.

Recall that in this hierarchy,π (λ|x) is not expressible in a simple form. However,
if we simulate from (5.18), we obtain a sequence{�i} satisfying

1

M

M∑
i=1

h(�i) →
∫
h(λ)π (λ|x) dλ = E[h(�|x)].(5.19)

Alternatively, we could use a{bi} sequence and calculate

1

M

M∑
i=1

π (λ|x, bi) →
∫
π (λ|x, b)π (b|x) db = π (λ|x).(5.20)

‖
The Gibbs sampler actually yields two methods of calculating the same quantity.

For example, from the hierarchy (5.1), using the full conditionals of (5.12) and the
iterations in (5.13), we could estimateE(h(�)|x) by

(i)
1

M

M∑
i=1

h(�i) →
∫
h(θ )π (θ |x) dθ = E(h(�)|x)
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or by(5.21)

(ii)
1

M

M∑
i=1

Eh(�|x, Hi) →
∫
E(h(�)|x, γ )π (γ |x) dγ = E(h(�)|x).

Implementation of the Gibbs sampler is most effective when the full condition-
als are easy to work with, and in such cases, it is often possible to calculate
E(h(�)|x, Hi) in a simple form, so (5.21)(ii) is a viable option. To see that it is
superior to (5.21)(i), write

E(h(�)|x) = E[E(h(�)|x, γ )]

and apply the Rao-Blackwell theorem (see Problem 5.12).

Example 5.5 Gibbs point estimation. To calculate the hierarchical Bayes esti-
mator ofλ in Example 5.4, we use

1

M

M∑
i=1

E(�|x, bi) =
1

M

M∑
i=1

bi

1 +bi
(a + x)

rather than (1/M)
∑M
i=1�i . Analogously, the posterior densityπ (λ|x) can be cal-

culated by

π̂ (λ|x) =
1

M

M∑
i=1

π (λ|x, bi)

=
λa+x−1

MH(a + x)

M∑
i=1

(
1 +bi
bi

)a+x

e
−λ (1+bi )

bi .

‖
The actual implementation of the Gibbs sampler relies on Monte Carlo tech-

niques to simulate random variables from the distributions in (5.13). Very efficient
algorithms for such simulations are available, and Robert (1994a, Appendix B)
catalogs a number of them. There are also full developments in Devroye (1985)
and Ripley (1987). (See Problems 5.14 and 5.15.)

For many problems, the simulation step is straightforward to implement on a
computer so we can takeM as large as we like. This makes it possible for the
approximations to have any desired precision, with the only limiting factor being
computer time. (In this sense we are doing exact calculations.) Many applications
of these techniques are given in Tanner (1996).

As a last example, consider the calculation of the hierarchical Bayes estimator
of Example 5.2.

Example 5.6 Normal hierarchy. From (5.5), we have the set of full conditionals

θ |x̄, τ 2 ∼ N
(

τ 2

τ 2 + nσ 2
x̄,

σ 2τ 2

σ 2 + nτ 2

)
(5.22)

1

τ 2
|x̄, θ ∼ Gamma

(
a +

1

2
,

(
θ2

2
+

1

b

)−1
)
.
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Note that, conditional onθ , τ 2 is independent of̄x. Both of these conditional
distributions are easy to simulate from, and we thus use the Gibbs sampler to
generate a chain (�i, τ 2

i ), i = 1, . . . ,M, from (5.22). This yields the approximation

Ẽ(�|x̄) =
1

M

M∑
i=1

E(�|x̄, τ 2
i )

=
1

M

M∑
i=1

τ 2
i

τ 2
i + nσ 2

x̄(5.23)

→ E(�|x̄)

asM →∞. ‖
As mentioned before, one of the purposes of specifying a model in a hierarchy

is to make it possible to model more complicated phenomena in a sequence of
less complicated steps. In addition, the ordering in the hierarchy allows us both to
order the importance of the parameters and to incorporate some of our uncertainty
about the prior specification.

To be precise, in the model

X|θ ∼ f (x|θ ),
�|λ ∼ π (θ |λ),(5.24)

� ∼ ψ(λ),

we tend to be more exacting in our specification ofπ (θ |λ), and less so in our
specification ofψ(λ). Indeed, in many cases,ψ(λ) is taken to be “flat” or “non-
informative” (for example,ψ(λ) = Lebesgue measure). In practice, this leads to
heavier-tailed prior distributionsπ (θ ), with the resulting Bayes estimators being
more robust (Berger and Robert 1990, Fourdrinier et al 1996; see also Example
5.6.7.).

One way of studying the effect that the stages of the hierarchy (5.24) have
on each other is to examine, for each parameter, the information contained in its
posterior distribution relative to its prior distribution. In effect, this measures how
much the data can tell us about the parameter, with respect to the prior distribution.

To measure this information, we can use Kullback-Leibler information (recall
Example 1.7.7), which also is known by the longer, and more appropriate name,
Kullback-Leiblerinformation for discrimination between two densities. For den-
sitiesf andg, it is defined by

K[f, g] =
∫

log

[
f (t)

g(t)

]
f (t) dt.(5.25)

The interpretation is that asK[f, g] gets larger, it becomes easier to discriminate
between the densitiesf andg; that is, there is more information for discrimination.
From the model (5.24), we can assess the information between the data and the
parameter by calculatingK[π (θ |x), π (θ )], where

π (θ ) =
∫
π (θ |λ)ψ(λ) dλ,(5.26)
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π (θ |x) =
f (x|θ )π (θ )∫
f (x|θ )π (θ ) dθ

=
f (x|θ )π (θ )

m(x)
.

By comparison, the information between the data and the hyperparameter is mea-
sured byK[π (λ|x), ψ(λ)], where

π (λ|x) =

∫
f (x|θ )π (θ |λ)ψ(λ) dθ

m(x)
=
m(x|λ)ψ(λ)

m(x)
.(5.27)

An important result about the two measures of information for (5.26) and (5.27)
is contained in the following theorem.

Theorem 5.7 For the model (5.24),

K[π (λ|x), ψ(λ)] < K[π (θ |x), π (θ )].(5.28)

From (5.28), we see that the distribution of the data has less effect on hyperpriors
than priors, or, turning things around, the posterior distribution of a hyperparameter
is less affected by changes in the prior than the posterior distribution of a parameter.
This provides justification of the belief that parameters that are deeper in the
hierarchy have less effect on inference.

Proof of Theorem 5.7. By definition,

K[π (λ|x), ψ(λ)] =
∫
�

π (λ|x) log

(
π (λ|x)

ψ(λ)

)
dλ(5.29)

=
∫
�

(
π (λ|x)

ψ(λ)

)
log

(
π (λ|x)

ψ(λ)

)
ψ(λ) dλ.

Now, note that
π (λ|x)

ψ(λ)
=

∫


(
f (x|θ )
m(x)

)
π (θ |λ) dθ,(5.30)

or, more succinctly,π (λ|x)/ψ(λ) = E[f (x|θ )/m(x)], where the expectation is
taken with respect toπ (θ |λ). We now apply Jensen’s inequality to (5.29), using
the fact that the functionx logx is convex ifx > 0, which leads to(

π (λ|x)

ψ(λ)

)
log

(
π (λ|x)

ψ(λ)

)
=

(
E

[
f (x|θ )
m(x)

])
log

(
E

[
f (x|θ )
m(x)

])
≤ E

[(
f (x|θ )
m(x)

)
log

(
f (x|θ )
m(x)

)]
(5.31)

=
∫


[(
f (x|θ )
m(x)

)
log

(
f (x|θ )
m(x)

)]
π (θ |λ) dθ.

Substituting back into (5.29), we have

K[π (λ|x), ψ(λ)](5.32)

≤
∫
�

∫


(
f (x|θ )
m(x)

)
log

(
f (x|θ )
m(x)

)
π (θ |λ)ψ(λ) dθ dλ.

We now (of course) interchange the order of integration and notice that∫
�

f (x|θ )
m(x)

π (θ |λ)ψ(λ) dλ = π (θ |x).(5.33)
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Substitution into (5.32), together with the fact thatf (x|θ )
m(x) = π (θ |x)

π (θ ) yields (5.28).✷

Thus, hierarchical modeling allows us to be less concerned about the exact form
of ψ(λ). This frees the modeler to choose aψ(λ) to yield other good properties
without unduly compromising the Bayesian interpretations of the model. For ex-
ample, as we will see in Chapter 5,ψ(λ) can be chosen to yield hierarchical Bayes
estimators with reasonable frequentist performance.

A full development of information measures and hierarchical models is given
by Goel and DeGroot (1979, 1981); see also Problems 5.16–5.19.

Theorem 5.7 shows how information acts within the levels of a hierarchy, but
does not address the, perhaps, more basic question of assessing the information
provided by a prior distribution in a particular model. Information measures, such
asK[f, g], can also be the basis of answering this latter question. IfX ∼ f (x|θ )
and� ∼ π (θ ), then prior distributions that have a large effect onπ (θ |x) should
produce small values ofK[π (θ |x), π (θ )], since the prior and posterior distributions
will be close together. Alternatively, prior distributions that have a small effect
on π (θ |x) should produce large values ofK[π (θ |x), π (θ )], as the posterior will
mainly reflect the sampling density. Thus, we may seek to find a priorπ (θ ) that
produces the maximum value ofK[π (θ |x), π (θ )]. We can consider such a prior to
have the least influence onf (x|θ ) and, hence, to be a default, or noninformative,
prior.

The above is an informal description of the approach to the construction of a
reference prior, initiated by Bernardo (1979) and further developed and formalized
by Berger and Bernardo (1989, 1992). [See also Robert 1994a, Section 3.4]. This
theory is quite involved, but approximations due to Clarke and Barron (1990, 1994)
and Clarke and Wasserman (1993) shed some interesting light on the problem. First,
we cannot directly useK[π (θ |x), π (θ )] to derive a prior distribution, because it is
a function ofx. We, thus, consider its expected value with respect to the marginal
distribution ofX, theShannon information

S(π ) =
∫
K[π (θ |x), π (θ )]mπ (x) dx,(5.34)

wheremπ (x) =
∫
f (x|θ )π (θ ) dθ is the marginal distribution. The reference prior

is the distribution that maximizesS(π ).
The following theorem is due to Clarke and Barron (1990).

Theorem 5.8 LetX1, . . . , Xn be an iid sample from f (x|θ ), and let Sn(π ) denote
the Shannon information of the sample. Then, as n→∞,

Sn(π ) =
k

2
log

n

2πe
+
∫
π (θ ) log

|I (θ )|1/2
π (θ )

dθ + o(1)(5.35)

where k is the dimension of θ and I (θ ) is the Fisher information

I (θ ) = −E
[
∂2

∂θ2
logf (X|θ )

]
.

As the integral in the expansion (5.35) is the only term involving the priorπ (θ ),
maximizing that integral will maximize the expansion. Provided that|I (θ )|1/2 is
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integrable, Corollary 1.7.6 shows thatπ (θ ) = |I (θ )|1/2 is the appropriate choice.
This is the Jeffreys prior, which was discussed in Section 4.1.

Example 5.9 Binomial reference prior. ForX1, . . . , Xn iid as Bernoulli(θ ), we
have

I (θ ) = −E
[
∂2

∂θ2
logf (X|θ )

]
=

n

θ (1− θ ) ,(5.36)

which yields the Jeffreys priorπ (θ ) ∝ [θ (1− θ )]−1/2. This is also the prior that
maximizes the integral inSn(π ) and, in that sense, imparts the least information
onf (x|θ ). A formal reference prior derivation also shows that the Jeffreys prior is
the reference prior. ‖

In problems where there are no nuisance parameters, the Jeffreys and reference
priors agree, even when they are improper. In fact, the reference prior approach
was developed to deal with the nuisance parameter problem, as the Fisher infor-
mation approach gave no clear-cut guidelines as to how to proceed in that case.
Reference prior derivations for nuisance parameter problems are given by Berger
and Bernardo (1989, 1992a, 1992b) and Polson and Wasserman (1990). See also
Clarke and Wasserman (1993) for an expansion similar to (5.35) that is valid in
the nuisance parameter case.

6 Empirical Bayes

Another generalization of single-prior Bayes estimation, empirical Bayes estima-
tion, falls outside of the formal Bayesian paradigm. However, it has proven to
be an effective technique of constructing estimators that perform well under both
Bayesian and frequentist criteria. One reason for this, as we will see, is that empir-
ical Bayes estimators tend to be more robust against misspecification of the prior
distribution.

The starting point is again the model (3.1), but we now treatγ as an unknown
parameter of the model, which also needs to be estimated. Thus, we now have two
parameters to estimate, necessitating at least two observations. We begin with the
Bayes model

Xi |θ ∼ f (x|θ ), i = 1, . . . , p,(6.1)

�|γ ∼ π (θ |γ ).

and calculate the marginal distribution ofX, with density

m(x|γ ) =
∫ ∏

f (xi |θ )π (θ |γ ) dθ.(6.2)

Based onm(x|γ ), we obtain an estimate,̂γ (x), of γ . It is most common to take
γ̂ (x) to be the MLE ofγ , but this is not essential. We now substituteγ̂ (x) for γ in
π (θ |γ ) and determine the estimator that minimizes the empirical posterior loss∫

L(θ, δ(x))π (θ |x, γ̂ (x)) dθ.(6.3)
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This minimizing estimator is the empirical Bayes estimator.
An alternative definition is obtained by substitutingγ̂ (x) for γ in the Bayes

estimator. Although, mathematically, this is equivalent to the definition given here
(see Problem 6.1), it is statistically more satisfying to define the empirical Bayes
estimator as minimizing the empirical posterior loss (6.3).

Example 6.1 Normal empirical Bayes. To calculate an empirical Bayes estima-
tor for the model (5.7) of Example 5.2, rather than integrate over the prior forτ 2,
we estimateτ 2. We determine the marginal distribution ofX (see Problem 6.4),

m(x|τ 2) =
∫ n∏

i=1

f (xi |θ )π (θ |τ 2) dθ(6.4)

=
1

(2πσ 2)n/2
e
− 1

2σ2�(xi−x̄)2 1

(2πτ 2)1/2

×
∫ ∞

−∞
e
− n

2σ2 (x̄−θ )2

e
− 1

2
θ2

τ2 dθ

=
1

(2π )n/2
1

σn

(
σ 2

σ 2 + nτ 2

)1/2

e
− 1

2

[
�(xi−x̄)2

σ2 + nx̄2

σ2+nτ2

]
.

(Note the similarity to the density (2.13) in the one-way random effects model.)
From this density, we can now estimateτ 2 using maximum likelihood (or some
other estimation method). Recalling that we are assumingσ 2 is known, we find
the MLE of σ 2 + nτ 2 given by ̂σ 2 + nτ 2 = max{σ 2, nx̄2}. Substituting into the
single-prior Bayes estimator, we obtain the empirical Bayes estimator

E(�|x̄, τ̂ ) =

(
1− σ 2̂σ 2 + nτ 2

)
x̄(6.5)

=

(
1− σ 2

max{σ 2, nx̄2}
)
x̄.

‖
It is tempting to ask whether the empirical Bayes estimator is ever a Bayes

estimator; that is, can we considerπ (θ |x, γ̂ (x)) to be a “legitimate” posterior
density, in that it be derived from a real prior distribution? The answer is yes, but
the prior distribution that leads to such a posterior may sometimes not be proper
(see Problem 6.2).

We next consider an example that illustrates the type of situation where empirical
Bayes estimation is particularly useful.

Example 6.2 Empirical Bayes binomial. Empirical Bayes estimation is best
suited to situations in which there are many problems that can be modeled si-
multaneously in a common way. For example, suppose that there areK different
groups of patients, where each group hasn patients. Each group is given a different
treatment for the same illness, and in thekth group, we countXk, k = 1, . . . , K, the
number of successful treatments out ofn. Since the groups receive different treat-
ments, we expect different success rates; however, since we are treating the same
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illness, these rates should be somewhat related to each other. These considerations
suggest the hierarchy

Xk ∼ binomial(pk, n),(6.6)

pk ∼ beta(a, b), k = 1, . . . , K,

where theK groups are tied together by the common prior distribution. As in
Example 1.5, the single-prior Bayes estimator ofpk under squared error loss is

δπ (xk) = E(pk|xk, a, b) =
a + xk
a + b + n

.(6.7)

In Example 1.5,a andb are assumed known and all calculations are straightfor-
ward. In the empirical Bayes model, however, we consider these hyperparameters
unknown and estimate them. To construct an empirical Bayes estimator, we first
calculate the marginal distribution

m(x|a, b) =
∫ 1

0
· · ·

∫ 1

0

K∏
k=1

(
n

xk

)
p
xk
k (1− pk)n−xk

× H(a + b)

H(a)H(b)
pa−1
k (1− pk)b−1dpk(6.8)

=
K∏
k=1

(
n

xk

)
H(a + b)H(a + xk)H(n− xk + b)

H(a)H(b)H(a + b + n)
,

a product of beta-binomial distributions. We now proceed with maximum likeli-
hood estimation ofa andb based on (6.8). Although the MLEŝa and b̂ are not
expressible in closed form, we can calculate them numerically and construct the
empirical Bayes estimator

δπ̂ (xk) = E(pk|xk, â, b̂) =
â + xk

â + b̂ + n
.(6.9)

The Bayes risk ofE(pk|xk, â, b̂) is only slightly higher than that of the Bayes
estimator (6.7), and is given in Table 6.1. For comparison, we also include the
Bayes risk of the unbiased estimatorx/n. The first three rows correspond to a
prior mean of 1/2, with decreasing prior variance. Notice how the risk of the
empirical Bayes estimator is between that of the Bayes estimator and that ofX/n.

‖

As Example 6.2 illustrates, and as we will see later in this chapter (Section 7),
the Bayes risk performance of the empirical Bayes estimator is often “robust”; that
is, its Bayes risk is reasonably close to that of the Bayes estimator no matter what
values the hyperparameters attain.

We next turn to the case of exponential families, and find that a number of
the expressions developed in Section 3 are useful in evaluating empirical Bayes
estimators. In particular, we find an interesting representation for the risk under
squared error loss.
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Table 6.1.Bayes Risks for the Bayes, Empirical Bayes, and Unbiased Estimators of Example
6.2, where K = 10and n = 20

Prior Parameters Bayes Risk
a b δπ of (6.7) δπ̂ of (6.9) x/n

2 2 .0833 .0850 .1000
6 6 .0721 .0726 .1154
20 20 .0407 .0407 .1220
3 1 .0625 .0641 .0750
9 3 .0541 .0565 .0865
30 10 .0305 .0326 .0915

For the situation of Corollary 3.3, using a priorπ (η|λ), whereλ is a hyperpa-
rameter, the Bayes estimator of (3.12) becomes

E(ηi |x, λ) =
∂

∂xi
logm(x|λ)− ∂

∂xi
logh(x)(6.10)

wherem(x|λ) =
∫
pη(x)π (η|λ) dη is the marginal distribution. Simply substituting

an estimate ofλ, λ̂(x) into (6.10) yields the empirical Bayes estimator

E(ηi |x, λ̂) =
∂

∂xi
logm(x|λ)

∣∣∣∣
λ=λ̂(x)

− ∂

∂xi
logh(x).(6.11)

If λ̂ is, in fact, the MLE ofλ based onm(x|λ), then the empirical Bayes estimator
has an alternate representation.

Theorem 6.3 For the situation of Corollary 3.3, with prior distribution π (η|λ),
suppose λ̂(x) is the MLE of λ based onm(x|λ). Then, the empirical Bayes estimator
is

E(ηi |x, λ̂) =
∂

∂xi
logm(x|λ̂(x))− ∂

∂xi
logh(x).(6.12)

Proof. Recall from calculus that iff (·, ·) andg(·) are differentiable functions,
then

d

dx
f (x, g(x)) = g′(x)

∂

∂y
f (x, y)

∣∣∣∣
y=g(x)

+
∂

∂x
f (x, y)

∣∣∣∣
y=g(x)

.(6.13)

Applying this tom(x|λ̂(x)) shows that

∂

∂xi
logm(x|λ̂(x)) =

∂

∂xi
λ̂(x)

∂

∂λ
logm(x|λ)

∣∣∣∣
λ=λ̂(x)

+
∂

∂xi
logm(x|λ)

∣∣∣∣
λ=λ̂(x)

=
∂

∂xi
logm(x|λ)

∣∣∣∣
λ=λ̂(x)

because (∂/∂λ) logm(x|λ) is zero atλ = λ̂(x). Hence, the empirical Bayes estima-
tor is equal to (6.12). ✷
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Thus, for estimating the natural parameter of an exponential family, the empiri-
cal Bayes estimator (using the marginal MLE) can be expressed in the same form
as aformal Bayes estimator. Here we use the adjectiveformal to signify a math-
ematical equivalence, as the functionm(x|λ̂(x)) may not correspond to a proper
marginal density. See Bock (1988) for some interesting results and variations on
these estimators.

Example 6.4 Normal empirical Bayes, µ unknown. Consider the estimation of
θi in the model of Example 3.4,

Xi |θi ∼ N (θi, σ
2), i = 1, . . . , p, independent,(6.14)

�i ∼ N (µ, τ 2), i = 1, . . . , p, independent,(6.15)

whereµ is unknown. We can use Theorem 6.3 to calculate the empirical Bayes
estimator, giving

E(�i |x, µ̂) = σ 2

[
∂

∂xi
logm(x|µ̂)− ∂

∂xi
h(x)

]
whereµ̂ is the MLE ofµ from

m(x|µ) =
1

[2π (σ 2 + τ 2)]p/2
e
− 1

2(σ2+τ2)
�(xi−µ)2

.

Hence,µ̂ = x̄ and

∂

∂xi
logm(x|µ̂) =

∂

∂xi

[ −1

2(σ 2 + τ 2)
�(xi − x̄)2

]
.

This yields the empirical Bayes estimator

E(�i |x, µ̂) =
τ 2

σ 2 + τ 2
xi +

σ 2

σ 2 + τ 2
x̄,

which is the Bayes estimator under the priorπ (θ |x̄).
An advantage of the form (6.12) is that it allows us to represent the risk of the

empirical Bayes estimator in the form specified by (3.13). The risk of the empirical
Bayes estimator (6.12) is given by

R[η,E(η|X, λ̂(X))] = R[η,−∇ logh(X)]

+
p∑
i=1

Eη

{
2
∂2

∂X2
i

logm(X| λ̂(X)](6.16)

+

(
∂

∂Xi
logm[X|λ̂(X)]

)2
}
.

Using the MLEµ̂(x̄) = x̄, differentiating the log ofm(x|µ̂(x)), and substituting
into (6.12) shows (Problem 6.10) that

R[η,E{η|X, µ̂(X)}] = p/σ 2

− 2(p − 1)2

p(σ 2 + τ 2)
+

p − 1

p(σ 2 + τ 2)2

p∑
i=1

Eη(Xi − X̄)2.
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Table 6.2.Values of the Hierarchical Bayes (HB)(5.8) and Empirical Bayes (EB) Estimate
(6.5).

Value of x̄

ν .5 2 5 10

2 .27 1.22 4.36 9.69
10 .26 1.07 3.34 8.89
30 .25 1.02 2.79 7.30
∞ .25 1.00 2.50 5.00

EB 0 1.50 4.80 9.90

‖
As mentioned at the beginning of this section, empirical Bayes estimators can

also be useful as approximations to hierarchical Bayes estimators. Since we often
have simpler expressions for the empirical Bayes estimator, if its behavior is close
to that of the hierarchical Bayes estimator, it becomes a reasonable substitute (see,
for example, Kass and Steffey 1989).

Example 6.5 Hierarchical Bayes approximation. Both Examples 5.2 and 6.1
consider the same model, where in Example 5.2 the hierarchical Bayes estimator
(5.8) averages over the hyperparameter, and in Example 6.1 the empirical Bayes
estimator (6.5) estimates the hyperparameter. A small numerical comparison in
Table 6.2 suggests that the empirical Bayes estimator is a reasonable, but not
exceptional, approximation to the hierarchical Bayes estimator.

The approximation, of hierarchical Bayes by empirical Bayes, is best for small
values ofν [defined in (5.7)] and deteriorates asν →∞. At ν =∞, the hierarchical
Bayes estimator becomes a Bayes estimator under aN (0,1) prior (see Problem
6.11). Notice that, even though (6.5) provides us with a simple expression for an
estimator, it still requires some work to evaluate the mean squared error, or Bayes
risk, of (6.5). However, it is important to do so to obtain an overall picture of the
performance of the estimator (Problem 6.12). ‖

Although the (admittedly naive) approximation in Example 6.5 is not very ac-
curate, there are other situations where the empirical Bayes estimator, or slight
modifications thereof, can provide a good approximation to the hierarchical Bayes
estimator. We now look at some of these situations.

For the general hierarchical model (5.1), the Bayes estimator under squared
error loss is

E(�|x) =
∫
θπ (θ |x) dθ(6.17)

which can be written

E(�|x) =
∫ ∫

θπ (θ |x, γ )π (γ |x) dγ dθ(6.18)
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=
∫
E(�|x, γ )π (γ |x) dγ

where

π (γ |x) =
m(x|γ )ψ(γ )

m(x)
(6.19)

with

m(x|γ ) =
∫
f (x|θ )π (θ |γ ) dθ,(6.20)

m(x) =
∫
m(x|γ )ψ(γ ) dγ.

Now, suppose thatπ (γ |x) is quite peaked around its mode,γ̂π . We might then
consider approximatingE(�|x) by E(�|x, γ̂π ). Moreover, ifψ(γ ) is relatively
flat, as compared tom(x|γ ), we would expectπ (γ |x) ≈ m(x|γ ) and γ̂π ≈ γ̂ ,
the marginal MLE. In such a case,E(�|x, γ̂π ) would be close to the empirical
Bayes estimatorE(�|x, γ̂ ), and hence the empirical Bayes estimator is a good
approximation to the hierarchical Bayes estimator (Equation 5.4.2).

Example 6.6 Poisson hierarchy. Although we might expect the empirical Bayes
and hierarchical Bayes estimators to be close if the hyperparameter has a flat-tailed
prior, they will, generally, not be equal unless that prior is improper. Consider the
model

Xi ∼ Poisson (λi), i = 1, . . . , p, independent,(6.21)

λi ∼ Gamma(a, b), i = 1, . . . , p, independent, a known.

The marginal distribution ofXi is

m(xi |b) =
∫ ∞

0

e−λi λxii
xi !

1

H(a)ba
λa−1
i e−λi/bdλi

=
H(xi + a)

xi !H(a)

1

ba

(
1 +

1

b

)−(xi+a)

=

(
xi + a − 1
a − 1

)(
b

b + 1

)xi ( 1

b + 1

)a
,

a negative binomial distribution. Thus,

m(x|b) =

[
p∏
i=1

(
xi + a − 1
a − 1

)](
b

b + 1

)∑
xi

(
1

b + 1

)pa
(6.22)

and the marginal MLE ofb is b̂ = x̄/a. From (6.21), the Bayes estimator is

E(λi |xi, b) =
b

b + 1
(a + xi)(6.23)

and, hence, the empirical Bayes estimator is

E(λi |xi, b̂) =
x̄

x̄ + a
(a + xi).(6.24)



4.6 ] EMPIRICAL BAYES 269

If we add a priorψ(b) to the hierarchy (6.21), the hierarchical Bayes estimator can
be written

E(λi |x) =
∫
E(λi |xi, b)π (b|x) db(6.25)

where

π (b|x) =

(
b

b + 1

)px̄ ( 1

b + 1

)pa
ψ(b)

∫∞
0

(
b

b + 1

)px̄ ( 1

b + 1

)pa
ψ(b) db

.(6.26)

From examination of the hierarchy (6.21), a choice ofψ(b) might be an inverted
gamma, as this would be conjugate forλi . However, these priors will not lead to
a simple expression forE(λi |x̄) (although they may lead to good estimators). In
general, however, we are less concerned that the hyperprior reflect reality (which
is a concern for the prior), since the hyperprior tends to have less influence on
our ultimate inference (Theorem 5.7). Thus, we will often base the choice of the
hyperprior on convenience.

Let us, therefore, choose as prior forb anF -distribution,

ψ(b) ∝ bα−1

(1 +b)α+β
(6.27)

which is equivalent to putting a beta(α, β) prior onb/(1 +b). The denominator of
π (b|x) in (6.26) is∫ ∞

0

(
b

b + 1

)px̄ ( 1

b + 1

)pa
bα−1

(1 +b)α+β
db

=
∫ 1

0
tpx̄+α−1(1− t)pa+β−1 dt

(
t =

b

1 +b

)
(6.28)

=
H(px̄ + α)H(pa + β)

H(px̄ + pa + α + β)
,

and (6.23), (6.26), and (6.28) lead to the hierarchical Bayes estimator

E(λi |x) =
∫
E(λi |x, b)π (b|x) db

=
H(px̄ + pa + α + β)

H(px̄ + α)H(pa + β)
(a + xi)

×
∫ ∞

0

(
b

b + 1

)px̄+1 (
1

b + 1

)pa
bα−1

(1 +b)α+β
db(6.29)

=

[
H(px̄ + pa + α + β)

H(px̄ + α)H(pa + β)

] [
H(px̄ + α + 1)H(pa + β)

H(px̄ + pa + α + β + 1)

]
(a + xi)

=

[
px̄ + α

px̄ + pa + α + β

]
(a + xi).

The hierarchical Bayes estimator will therefore be equal to the empirical Bayes
estimator whenα = β = 0. This makesψ(b) ∝ (1/b) an improper prior. However,
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the calculation ofπ (b|x) from (6.26) andE(λi |x) from (6.29) will still be valid.
(This model was considered by Deely and Lindley (1981), who termed itBayes
Empirical Bayes.)

To further see how the empirical Bayes estimator is an approximation to the
hierarchical Bayes estimator, write

px̄ + α

px̄ + pa + α + β
=

x̄

x̄ + a
− β

p(x̄ + a)

+
paα + paβ + αβ

p2(x̄ + a)2

− 2aαβ

p2(x̄ + a)3
+ · · · .

This shows that the empirical Bayes estimator is the leading term in a Taylor series
expansion of the hierarchical Bayes estimator, and we can write

E(λi |x) = E(λi |xi, b̂) +O

(
1

p

)
.(6.30)

Estimators of the form (6.29) are similar to those developed by Clevenson and
Zidek (1975) for estimation of Poisson means. The Clevenson-Zidek estimators,
which havea = 0 in (6.29), are minimax estimators ofλ (see Section 5.7). ‖

If interest centers on obtaining an approximation to a hierarchical Bayes esti-
mator, a more direct route would be to look for an accurate approximation to the
integral in (6.17). When such an approximation coincides with the empirical Bayes
estimator, we can safely consider the empirical Bayes estimator as an approximate
hierarchical Bayes estimator.

Example 6.7 Continuation of Example 5.2. In Example 5.2, the hierarchical
Bayes estimator (5.5.8) was approximated by the empirical Bayes estimator (5.6.5).
If, instead, we seek a direct approximation to (5.5.8), we might start with the Taylor
expansion of (1 +θ2/ν)−(ν+1)/2 aroundx̄

1

(1 + θ2/ν)(ν+1)/2
=

1

(1 + x̄2/ν)(ν+1)/2
(6.31)

−ν + 1

ν

x̄

(1 + x̄2/ν)(ν+3)/2
(θ − x̄) +O[(θ − x̄)−2],

and using this in the numerator and denominator of (5.5.8) yields the approximation
(Problem 6.15)

Ê(�|x) =

(
1− (ν + 1)σ 2

p(ν + x̄2)

)
x̄ +O

(
1

p3/2

)
.(6.32)

Notice that the approximation is equal to the empirical Bayes estimator ifν = 0, an
extremely flat prior! The approximation (6.32) is better than the empirical Bayes
estimator for large values ofν, but worse for small values ofν. ‖

The approximation (6.32) is a special case of aLaplace approximation (Tierney
and Kadane 1986). The idea behind the approximation is to carry out a Taylor
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series expansion of the integrand around an MLE, which can be summarized as∫
b(λ)e−nh(λ)dλ

.
= b(λ̂)

√
2π

nh′′(λ̂)
e−nh(λ̂).(6.33)

Here,h(λ̂) is the unique minimum ofh(λ); that is, λ̂ is the MLE based on a
likelihood proportional toe−nh(λ). (See Problem 6.17 for details.) In applying
(6.33) to a representation like (6.18), we obtain

E(�|x) =
∫
E(�|x, λ)π (λ|x) dλ

=
∫
E(�|x, λ)en logπ (λ|x)1/n

dλ(6.34)

.
=

[ √
2π π (λ̂|x)

− ∂2

∂λ2 logπ (λ|x)|λ=λ̂

]
E(�|x, λ̂)

whereλ̂ is the mode ofπ (λ|x). Thus,E(�|x, λ̂) in (6.34) will be the empirical
Bayes estimator ifπ (λ|x) ∝ m(x|λ), that is, ifψ(λ) = 1. Moreover, the expression
in square brackets in (6.34) is equal to 1 ifπ (λ|x) is normal with mean̂λ and
variance equal to the inverse of the observed Fisher information (see Problem
6.17).

Both the hierarchical and empirical Bayes approach are generalizations of single-
prior Bayes analysis. In each case, we generalize the single prior to a class of priors.
Hierarchical Bayes then averages over this class, whereas empirical Bayes chooses
a representative member. Moreover, we have considered the functional forms of
the prior distribution to be known; that is, even though� andγ are unknown,
π (θ |γ ) andψ(γ ) are known.

Another generalization of single-prior Bayes analysis isrobust Bayes analysis,
where the class of priors is treated differently. Rather than summarize over the
class, we allow the prior distribution to vary through it, and examine the behavior
of the Bayes procedures as the prior varies. Moreover, the assumption of knowledge
of the functional form is relaxed. Typically, a hierarchy like (3.1) is used, and a
class of distributions forπ (·|·) is specified. For example, a popular class of prior
distributions for� is given by anε-contamination class

O = {π (θ |λ) : π (θ |λ) = (1− ε)π0(θ |λ) + εq(θ ), q ∈ Q}(6.35)

whereπ0(θ |λ) is a specified prior (sometimes called theroot prior) and q is
any distribution in a classQ. [Here,Q is sometimes taken to be the class of
all distributions, but more restrictive classes can often provide estimators and
posterior distributions with desirable properties. See, for example, Berger and
Berliner 1986. Also, Mattner (1994) showed that for densities specified in the form
of ε-contamination classes, the order statistics are complete. See Note 1.10.5.)

Using (6.35), we then proceed in a formal Bayesian way, and derive estimators
based on minimizing posterior expected loss resulting from a priorπ ∈ O, say
π∗. The resulting estimator, sayδπ∗, is evaluated using measures that range over
all π ∈ O, to assess the robustness ofδπ∗ against misspecification of the prior.
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For example, one might consider robustness using the posterior expected loss, or
robustness using the Bayes risk. In this latter case, we might look at (Berger 1985,
Section 4.7.5)

sup
π∈O

r(π, δ)(6.36)

and, perhaps, choose an estimatorδ that minimizes this quantity. If the loss is
squared error, then for any estimatorδ, we can write (Problem 6.2)

r(π, δ) = r(π, δπ ) +E(δ − δπ )2,(6.37)

whereδπ is the Bayes estimator underπ . From (6.37), we see that a robust Bayes
estimator is one that is “close” to the Bayes estimators for allπ ∈ O. An ultimate
goal of robust Bayes analysis is to find a priorπ∗ ∈ O for which δπ∗ can be
considered to be robust.

Example 6.8 Continuation of Example 3.1. To obtain a robust Bayes estimator
of θ , consider the class of priors

O = {π : π (θ ) = (1− ε)π0(θ |τ0) + εq(θ )}(6.38)

whereπ0 = N (θ, τ 2
0 ), τ0 is specified, andq(θ ) =

∫
π (θ |τ 2)π (τ 2|a, b)dτ 2, as in

Problem 6.3(a). The posterior density corresponding to a distributionπ ∈ O is
given by

π (θ |x) = λ(x)π0(θ |x̄, τ0) + (1− λ(x))q(θ |x, a, b)(6.39)

whereλ(x) is given by

λ(x) =
(1− ε)mπ0(x̄|τ0)

(1− ε)mπ0(x̄|τ0) + εmq(x|a, b)(6.40)

(see Problem 5.3). Using (6.39) and (6.40), the Bayes estimator forθ under squared
error loss is

E(�|x, τ0, a, b) = λ(x)E(�|x̄, τ0) + (1− λ(x))E(�|x, a, b),(6.41)

a convex combination of the single-prior and hierarchical Bayes estimators, with
the weights dependent on the marginal distribution. A robust Bayes analysis would
proceed to evaluate the behavior (i.e.,robustness) of this estimator asπ ranges
thoughO. ‖

7 Risk Comparisons

In this concluding section, we look, in somewhat more detail, at the Bayes risk
performance of some Bayes, empirical Bayes, and hierarchical Bayes estimators.
We will also examine these risks under different prior assumptions, in the spirit of
robust Bayes analysis.

Example 7.1 The James-Stein estimator. LetX have ap-variate normal distribu-
tion with meanθ and covariance matrixσ 2I , whereσ 2 is known;X ∼ Np(θ , σ 2I ).
We want to estimateθ under sum-of-squared-errors loss

L[θ , δ(x)] = |θ − δ(x)|2 =
p∑
i=1

(θi − δi(x))2,
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using a prior distribution� ∼ N (0, τ 2I ), whereτ 2 is assumed to be known.
The Bayes estimator ofθ is δτ (x) = [τ 2/(σ 2 + τ 2)]x, x being the vector of

componentwise Bayes estimates. It is straightforward to calculate its Bayes risk

r(τ, δτ ) =
pσ 2τ 2

σ 2 + τ 2
.(7.1)

An empirical Bayes approach to this problem would replaceτ 2 with an estimate
from the marginal distribution ofx,

m(x|τ 2) =
1

[2π (σ 2 + τ 2)]p/2
e
− 1

2(σ2+τ2)
�x2

i .(7.2)

Although, for the most part, we have used maximum likelihood to estimate the
hyperparameters in empirical Bayes estimators, unbiased estimation provides an
alternative. Using the unbiased estimator ofτ 2/(σ 2 + τ 2), the empirical Bayes
estimator is (Problem 7.1)

δJS(x) =

(
1− (p − 2)σ 2

|x|2
)

x,(7.3)

the James-Stein estimator. ‖
This estimator was discovered by Stein (1956b) and later shown by James and

Stein (1961) to have a smaller mean squared error than the maximum likelihood
estimatorX for all θ . Its empirical Bayes derivation can be found in Efron and
Morris (1972a).

Since the James-Stein estimator (or any empirical Bayes estimator) cannot attain
as small a Bayes risk as the Bayes estimator, it is of interest to see how much larger
its Bayes riskr(τ, δJS) will be. This, in effect, tells us the penalty we are paying
for estimatingτ 2.

As a first step, we must calculater(τ, δJS), which is made easier by first obtaining
an unbiased estimate of the riskR(θ , δJS). The integration overθ then becomes
simple, since the integrand becomes constant inθ .

Recall Theorem 3.5, which gave an expression for the risk of a Bayes estimator
of the form (3.3.12). In the normal case, we can apply the theorem to a fairly wide
class of estimators to get an unbiased estimator of the risk.

Corollary 7.2 Let X ∼ Np(θ , σ 2I ), and let the estimator δ be of the form

δ(x) = x − g(x),

where g(x) = {gi(x)} is differentiable. If Eθ |(∂/∂Xi)gi(X)| <∞ for i = 1, . . . , p,
then

R(θ , δ) = Eθ |θ − δ(X)|2(7.4)

= pσ 2 +Eθ |g(X)|2 − 2σ 2
p∑
i=1

Eθ
∂

∂Xi
gi(X).

Hence,

R̂(δ(x)) = pσ 2 + |g(x)|2 − 2σ 2
p∑
i=1

∂

∂xi
gi(x)(7.5)
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is an unbiased estimator of the risk R(θ , δ).

Proof. In the notation of Theorem 3.5, in the normal case−∂/∂xi logh(x) =
xi/σ

2, and the result now follows by identifyingg(x) with ∇ logm(x), and some
calculation. See Problem 7.2. ✷

For the James-Stein estimator (7.3), we haveg(x) = (p − 2)σ 2x/|x|2; hence,

R(θ , δJS) = pσ 2 +Eθ

[
(p − 2)2σ 4

|X|2
]

−2σ 2
p∑
i=1

Eθ

[
∂

∂Xi

(p − 2)σ 2Xi

|X|2
]

= pσ 2 + (p − 2)2σ 4Eθ
1

|X|2(7.6)

−2(p − 2)σ 4
p∑
i=1

Eθ

[ |X|2 − 2X2
i

|X|4
]

= pσ 2 − (p − 2)2σ 4Eθ
1

|X|2 ,

soR̂(δJS(x)) = pσ 2 − (p − 2)2σ 4/|x|2.

Example 7.3 Bayes risk of the James-Stein estimator. Under the model of Ex-
ample 7.1, the Bayes risk ofδJS is

r(τ, δJS) =
∫


R(θ , δJS)π (θ ) dθ

=
∫


∫
X

[
pσ 2 − (p − 2)2σ 4

|x|2
]
f (x|θ )π (θ ) dx dθ

=
∫

X

{∫


[
pσ 2 − (p − 2)2σ 4

|x|2
]
π (θ |x) dθ

}
m(x) dx,

where we have used (7.6), and changed the order of integration. Since the integrand
is independent ofθ , the inner integral is trivially equal to 1, and

r(τ, δJS) = pσ 2 − (p − 2)2σ 4E
1

|X|2 .(7.7)

Here, the expected value is over the marginal distribution ofX (in contrast to (7.6),
where the expectation is over the conditional distribution ofX|θ ).

Since, marginally,Ep−2
|X|2 = 1

σ 2+τ 2 , we have

r(τ, δJS) = pσ 2 − (p − 2)σ 4

σ 2 + τ 2

=
pσ 2τ 2

σ 2 + τ 2
+

2σ 4

σ 2 + τ 2
(7.8)

= r(τ, δτ ) +
2σ 4

σ 2 + τ 2
.

Here, the second term represents the increase in Bayes risk that arises from esti-
matingτ 2. ‖
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It is remarkable thatδJS has a reasonable Bayes risk for any value ofτ 2, although
the latter is unknown to the experimenter. This establishes a degree of Bayesian
robustness of the empirical Bayes estimator. Of course, the increase in risk is a
function ofσ 2 and can be quite large ifσ 2 is large. Perhaps a more interesting
comparison is obtained by looking at the relative increase in risk

r(τ, δJS)− r(τ, δτ )
r(τ, δτ )

=
2

p

σ 2

τ 2
.

We see that the increase is a decreasing function of the ratio of the sample-to-
prior variance and goes to 0 asσ 2/τ 2 → 0. Thus, the risk of the empirical Bayes
estimator approaches that of the Bayes estimator as the sampling information gets
infinitely better than the prior information.

Example 7.4 Bayesian robustness of the James-Stein estimator. To further ex-
plore the robustness of the James-Stein estimator, consider what happens to the
Bayes risk if the prior used to calculate the Bayes estimator is different from the
prior used to evaluate the Bayes risk (a classic concern of robust Bayesians).

For the model in Example 7.1, suppose we specify a value ofτ , sayτ0. The
Bayes estimator ,δτ0, is given byδτ0(xi) = [τ 2

0/(τ
2
0 + σ 2)]xi . When evaluating the

Bayes risk, suppose we let the prior variance take on any valueτ 2, not necessarily
equal toτ 2

0 . Then, the Bayes risk ofδτ0 is (Problem 7.4)

r(τ, δτ0) = pσ 2

(
τ 2

0

τ 2
0 + σ 2

)2

+ pτ 2

(
σ 2

τ 2
0 + σ 2

)2

,(7.9)

which is equal to the single-prior Bayes risk (7.1) whenτ0 = τ . However, as
τ 2 →∞, r(τ, δτ0) →∞, whereasr(τ, δτ ) → pσ 2.

In contrast, the Bayes risk ofδJS , given in (7.8), is valid for allτ with r(τ, δJS) →
pσ 2 asτ 2 → ∞. Thus, the Bayes risk ofδJS remains finite for any prior in the
class, demonstrating robustness. ‖

In constructing an empirical Bayes estimator in Example 7.1, the use of unbiased
estimation of the hyperparameters led to the James-Stein estimator. If, instead, we
had used maximum likelihood, the resulting empirical Bayes estimator would have
been (Problem 7.1)

δ+(x) =

(
1− pσ

2

|x|2
)+

x,(7.10)

where (a)+ = max{0, a}. Such estimators are known as positive-part Stein estima-
tors.

A problem with the empirical Bayes estimator (7.3) is that when|x|2 is small
(less than (p − 2)σ 2), the estimator has the “wrong sign”; that is, the signs of the
components ofδJS will be opposite those of the Bayes estimatorδτ . This does
not happen with the estimator (7.10), and as a result, estimators like (7.10) tend to
have improved Bayes risk performance.

Estimators such as (7.3) and (7.10) are calledshrinkage estimators, since they
tend to shrink the estimatorX toward 0, the shrinkage target. Actually, of the two,
only (7.10) completely succeeds in this effort since the shrinkage factor 1− (p−
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2)σ 2/|x|2 may take on negative (and even very large negative) values. Nevertheless,
the terminology is used to cover also (7.3). The following theorem is due to Efron
and Morris (1973a).

Theorem 7.5 Let X ∼ Np(θ , σ 2I ) and θ ∼ Np(0, τ 2I ), with loss function
L(θ , δ) = |θ − δ|2. If δ(x) is an estimator of the form

δ(x) = [1− B(x)]x

and if
δ+(x) = [1− B(x)]+x,

then r(τ, δ) ≥ r(τ, δ+), with strict inequality if Pθ (δ(X) �= δ+(X)) > 0.

Proof. For any estimatorδ(x), the posterior expected loss is given by

E[L(θ , δ(x))|x] =
∫


p∑
i=1

(θi − δi(x))2π (θ |x) dθ

=
∫


p∑
i=1

[
(θi − E(θi |x))2 + (E(θi |x)− δi(x))2

]
(7.11)

×π (θ |x) dθ

where we have added±E(θi |x) and expanded the square, noting that the cross-term
is zero. Equation (7.11) can then be written as

E[L(θ , δ(x))|x] =
p∑
i=1

var(θi |x)(7.12)

+
p∑
i=1

[E(θi |x)− δi(x)]2.

As the first term in (7.12) does not depend on the particular estimator, the difference
in posterior expected loss betweenδ andδ+ is

E[L(θ , δ(x)|x] − E[L(θ , δ+(x))|x](7.13)

=
P∑
i=1

{
[E(θi |x)− δi(x)]2 − [E(θi |x)]2

}
I (|B(x)| > 1)

since the estimators are identical when|B(x)| ≤ 1. However, sinceE(θi |x) =
τ 2/(σ 2 + τ 2)xi , it follows that when|B(x)| > 1,[

τ 2

σ 2 + τ 2
xi − δi(x)

]2

>

[
τ 2

σ 2 + τ 2
xi

]2

.

Thus, (7.13) is positive for allx, and the result follows by taking expectations.✷

In view of results like Theorem 7.5 and other risk results in Chapter 5 (see
Theorem 5.5.4), the positive-part Stein estimator

δ+(x) =

(
1− (p − 2)σ 2

|x|2
)+

x(7.14)
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is preferred to the ordinary James-Stein estimator (7.3). Moreover, Theorem 7.5
generalizes to the entire exponential family (Problem 7.8). It also supports the use
of maximum likelihood estimation in empirical Bayes constructions.

The good Bayes risk performance of empirical Bayes estimators is not restricted
to the normal case, nor to squared error loss. We next look at Bayes and empirical
Bayes estimation in the Poisson case.

Example 7.6 Poisson Bayes and empirical Bayes estimation. Recall the Poisson
model of Example 6.6:

Xi ∼ Poisson(λi), i = 1, . . . , p, independent,(7.15)

λi ∼ Gamma(a, b).

For estimation ofλi under the loss

Lk(λ, δ) =
p∑
i=1

1

λki
(λi − δi)2,(7.16)

the Bayes estimator (see Example 1.3) is

δki (x) =
b

b + 1
(xi + a − k).(7.17)

The posterior expected loss ofδki (x) = δki (xi) is

E

[
1

λki
[λi − δki (xi)]2|xi

]
=

1

H(a + xi)
(
b
b+1

)a+xi(7.18)

×
∫ ∞

0
(λi − δi)2λ

a+xi−k−1
i e−

λi (b+1)
b dλi,

since the posterior distribution ofλi |xi is Gamma(a + xi, b
b+1). Evaluating the

integral in (7.18) gives

E

[
1

λki
[λi − δki (xi)]2|xi

]
=
H(a + xi − k)
H(a + xi)

(
b

b + 1

)2−k
(a + xi − k).(7.19)

To evaluate the Bayes risk,r(k, δk), we next sum (7.19) with respect to the marginal
distribution ofXi , which is Negative Binomial(a, 1

b+1). For k = 0 andk = 1, we
have

r(0, δ0) = p
ab2

b + 1
and r(1, δ1) = p

b

b + 1
.

See Problems 7.10 and 7.11 for details.
For the model (7.15) with loss functionLk(λ, δ) of (7.16), an empirical Bayes

estimator can be derived (similar to (6.6.24); see Example 6.6) as

δEBki (x) =
x̄

x̄ + a
(xi + a − k).(7.20)

We shall now consider the risk of the estimatorδEB . For the loss function (7.16),
we can actually evaluate the risk of a more general estimator thanδEB . The coordi-
natewise posterior expected loss of an estimator of the formδ

ϕ

i = ϕ(x̄)(xi + a− k)
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is

E

[
1

λki
[λi − δϕi ]2|x

]
=

1

H(a + xi)
(
b
b+1

)a+xi

∫ ∞

0
[λi − δϕi (x)]2λ

a+xi−k−1
i e−λi

b+1
b dλi(7.21)

=
H(a + xi − k)
H(a + xi)

(
b

b + 1

)−k
E[(λi − δϕi (x))2|x)]

where the expectation is over the random variableλi with distribution Gamma(a +
xi − k, b

b+1). Using the same technique as in the proof of Theorem 7.5 [see (7.12)],
we add±δki (xi) = b

b+1(a + xi − k) in (7.21) to get

E

[
1

λki
[λi − δϕi ]2|x

]
=
H(a + xi − k)
H(a + xi)

(
b

b + 1

)2−k
(a + xi − k)(7.22)

+
H(a + xi − k)
H(a + xi)

(
b

b + 1

)−k (
b

b + 1
− ϕ(x̄)

)2

(a + xi − k)2.

The first term in (7.22) is the posterior expected loss of the Bayes estimator, and
the second term reflects the penalty for estimatingb. Evaluation of the Bayes
risk, which involves summing overxi , is somewhat involved (see Problem 7.11).
Instead, Table 7.1 provides a few numerical comparisons. Specifically, it shows
the Bayes risks for the Bayes (δk), empirical Bayes (δEB), and unbiased estimators
(X) of Example 6.6, based on observingp independent Poisson variables, for the
loss function (7.16) withk = 1. The gamma parameters are chosen so that the
prior mean equals 10 and the prior variances are 5 (a = 20,b = .5), 10 (a = 10,
b = 1), and 25 (a = 4,b = 2.5). It is seen that the empirical Bayes estimator attains
a reasonable Bayes risk reduction over that ofX, and in some cases, comes quite
close to the optimum. ‖

As a final example of Bayes risk performance, we turn now to the analysis of
variance. Here, we shall consider only the one-way layout (Examples 4.1, 4.6 and
4.9) in detail. Other situations and generalizations are illustrated in the problems
(Problems 7.17 and 7.18).

Example 7.7 Empirical Bayes analysis of variance. In the one-way layout (con-
sidered earlier in Example 3.4.9 from the point of view of equivariance), we have

Xij ∼ N (ξi, σ
2), j = 1, . . . , ni ; i = 1, . . . , s,(7.23)

ξi = µ + αi, i = 1, . . . , s

where we assume that�αi = 0 to ensure the identifiability of parameters. With this
restriction, the parameterization in terms ofµ andαi is equivalent to that in terms
of ξi , with the latter parameterization (the so-calledcell means model; see Searle
1987) being computationally more friendly. As interest often lies in estimation of,
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Table 7.1.Comparisons of Some Bayes Risks for Model (7.15)

p = 5

Prior var. δk of (7.17) δEB of (7.20) X

5 1.67 2.28 5.00
10 2.50 2.99 5.00
25 3.57 3.84 5.00

p = 20

Prior var. δπ of (7.17) δEB of (7.20) X

5 6.67 7.31 20.00
10 10.00 10.51 20.00
25 14.29 14.52 20.00

and testing hypotheses about, the differences of theαis, which are equivalent to
the differences of theξi ’s, we will use theξi version of the model. We will also
specialize to thebalanced case where allni ’s are equal. The more general case
requires some (often much) extra effort. (See Problems 7.16 and 7.19).

As an illustration, consider an experiment to assess the effect of linseed oil meal
on the digestibility of food by steers. The measurements are a digestibility coeffi-
cient, and there are five treatments, representing different amounts of linseed oil
meal added to the feed (approximately 1, 2, 3, 4, and 5 kg/animal/day; see Hsu
1982 for more details.) The variableXij of (7.23) is thej th digestibility measure-
ment in theith treatment group, whereξi is the true coefficient of digestibility of
that group. Perhaps the most common hypothesis about theξi ’s is

H0 : ξ1 = ξ2 = · · · = ξs = µ, µ unknown.(7.24)

This specifies that the means are equal and, hence, the treatment groups are equiv-
alent in that they each result in the same (unknown) mean level of digestibility.
This hypothesis can be thought of as specifying a submodel where all of theξ ’s
are equal, which suggests expanding (7.23) into the hierarchical model

Xij |ξi ∼ N (ξi, σ
2), j = 1, . . . , n, i = 1, . . . , s, independent,(7.25)

ξi |µ ∼ N (µ, τ 2), i = 1, . . . , s, independent.

The model (7.25) is obtained from (7.24) by allowing some variation around the
prior mean,µ, in the form of a normal distribution.

In analogy to (4.2.4), the Bayes estimator ofξi is

δB(x̄i) =
σ 2

σ 2 + nτ 2
µ +

nτ 2

σ 2 + nτ 2
x̄i .(7.26)
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Calculation of an empirical Bayes estimator is straightforward. Since the marginal
distribution ofX̄i is

X̄i ∼ N
(
µ,
σ 2

n
+ τ 2

)
, i = 1, . . . , s,

the MLE ofµ is x̄ =
∑
i

∑
j xij /ns and the resulting empirical Bayes estimator is

δEBi =
σ 2

σ 2 + nτ 2
x̄ +

nτ 2

σ 2 + nτ 2
x̄i .(7.27)

Note thatδEB is a linear combination of̄Xi , the UMVU estimator under the full
model, andX̄, the UMVU estimator under the submodel that specifiesξ1 = · · · = ξs .

If we drop the assumption thatτ 2 is known, we can estimate (σ 2 +nτ 2)−1 by the
unbiased estimator (s − 3)/�(x̄i − x̄)2 and obtain the empirical Bayes estimator

δLi = x̄ +

(
1− (s − 3)σ 2

�(x̄i − x̄)2

)
(x̄i − x̄),(7.28)

which was first derived by Lindley (1962) and examined in detail by Efron and
Morris (1972a 1972b, 1973a, 1973b).

Calculation of the Bayes risk ofδL proceeds as in Example 7.3, and leads to

r(ξ, δL) = s
σ 2

n
− (s − 3)2

(
σ 2

n

)2

E

[
s∑
i=1

(X̄i − X̄)2

]−1

(7.29)

= r(ξ, δB) +
3(σ 2/n)2

σ 2/n + τ 2

where
∑s
i=1(X̄i − X̄)2 ∼ (σ 2/n + τ 2)χ2

s−1 andr(ξ, δB) is the risk of the Bayes
estimator (7.26). See Problem 7.14 for details.

If we compare (7.29) to (7.8), we see that the Bayes risk performance ofδL,
where we have estimated the value ofµ, is similar to that ofδJS , where we assume
that the value ofµ is known. The difference is thatδL pays an extra penalty for
estimating the point that is the shrinkage target. ForδJS , the target is assumed
known and taken to be 0, whileδL estimates it byX̄. The penalty for this is that
the factor in the term added to the Bayes risk is increased from 2 in (7.8), where
k = 1 to 3. In general, if we shrink to ak-dimensional subspace, this factor is 2+k.

‖
More general submodels can also be incorporated in empirical Bayes analyses,

and in many cases, the resulting estimators retain good Bayes risk performance.

Example 7.8 Analysis of variance with regression submodel. Another common
hypothesis (or submodel) in the analysis of variance is that of a linear trend in the
means, which was considered earlier in Example 3.4.7 and can be written as the
null hypothesis

H0 : ξi = α + βti, i = 1, . . . , s, α andβ unknown, ti known.

For the situation of Example 7.7, this hypothesis would assert that the effect of the
quantity of linseed oil meal on digestibility is linear. (We know that as the quantity
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of linseed oil meal increases, the coefficient of digestibility decreases. But we do
not know if this relationship is linear.) In analogy with (7.25), we can translate the
hypothesis into the hierarchical model

Xij |ξi ∼ N (ξi, σ
2), j = 1, . . . , n, i = 1, . . . , s,(7.30)

ξi |α, β ∼ N (α + βti, τ
2), i = 1, . . . , s.

Again, the hypothesis models the prior mean of theξi ’s, and we allow variation
around this prior mean in the form of a normal distribution. Using squared error
loss, the Bayes estimator ofξi is

δBi =
σ 2

σ 2 + nτ 2
(α + βti) +

nτ 2

σ 2 + nτ 2
X̄i .(7.31)

For an empirical Bayes estimator, we calculate the marginal distribution ofX̄i .

X̄i ∼ N (α + βti, σ
2 + nτ 2), i = 1, . . . , s,

and estimateα andβ by

α̂ = X̄ − β̂ t̄ , β̂ =
�(X̄i − X̄)(ti − t̄)

�(ti − t̄)2
,

the UMVU estimators ofα andβ (Section 3.4). This yields the empirical Bayes
estimator

δ
EB1
i =

σ 2

σ 2 + nτ 2
(α̂ + β̂ti) +

nτ 2

σ 2 + nτ 2
X̄i .(7.32)

If τ 2 is unknown we can, in analogy to Example 7.7 use the fact that, marginally,
E[�(X̄i − α̂ + β̂ti)2]−1 = (s − 4)/(σ 2/n + τ 2) to construct the estimator

δ
EB2
i = α̂ + β̂ti +

(
1− (s − 4)σ 2

�(X̄i − α̂ − β̂ti)2

)
(X̄i − α̂ − β̂ti)(7.33)

with Bayes risk

r(τ, δEB2) = s
σ 2

n
− (s − 4)2

(
σ 2

n

)2

E

[
s∑
i=1

(X̄i − α̂ − β̂ti)2

]
(7.34)

= r(ξ, δB) +
4(σ 2/n)2

σ 2/n + τ 2

wherer(ξ, δB) is the risk of the Bayes estimatorδB of (7.31). See Problem 7.14
for details.

Notice that here we shrunk the estimator toward a two-dimensional submodel,
and the factor in the second term of the Bayes risk is 4 (2 +k). We also note that
for δEB2, as well asδJS andδL, the Bayes risk approaches that ofδπ asn→∞. ‖

In both Examples 7.7 and 7.8, empirical Bayes estimators provide a means for
attaining reasonable Bayes risk performance ifσ 2/τ 2 is not too large, yet do not
require full specification of a prior distribution. An obvious limitation of these
results, however, is the dimension of the submodel. The ordinary James-Stein
estimator shrinks toward the point 0 [see Equation (7.3)], or any specified point
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(Problem 7.6), and hence toward a submodel (subspace) of dimension zero. In the
analysis of variance, Example 7.7, the subspace of the submodel has dimension
1, {(ξ1, . . . , ξs) : ξi = µ, i = 1, . . . , s}, and in Example 7.8, it has dimension
2, {(ξ1, . . . , ξs) : {i = α + βti, i = 1, . . . , s}. In general, the empirical Bayes
strategies developed here will only work if the dimension of the submodel,r, is at
least two fewer than that of the full model,s; that is,s − r > 2. This is a technical
requirement, as the marginal distribution of interest isχ2

s−r , and estimation is
problematic ifs − r ≤ 2. The reason for this difficulty is the need to calculate the
expectationE(1/χ2

s−r ), which is infinite if s − r ≤ 2. (See Problem 7.6; also see
Problem 6.12 for an attempt at empirical Bayes ifs − r ≤ 2.)

In light of Theorem 7.5, we can improve the empirical Bayes estimators of
Examples 7.7 and 7.8 by using their positive-part version. Moreover, Problem
7.8 shows that such an improvement will hold throughout the entire exponential
family. Thus, the strategy of taking a positive part should always be employed in
these cases of empirical Bayes estimation.

Finally, we note that Examples 7.7 and 7.8 can be greatly generalized. One
can handle unequalni , unequal variances, full covariance matrices, general linear
submodels, and more. In some cases, the algebra can become somewhat over-
whelming, and details about performance of the estimators may become obscured.
We examine a number of these cases in Problems 7.16–7.18.

8 Problems

Section 1

1.1 Verify the expressions forπ (λ|x̄) andδk(x̄) in Example 1.3.

1.2 Give examples of pairs of values (a, b) for which the beta densityB(a, b) is (a)
decreasing, (b) increasing, (c) increasing forp < p0 and decreasing forp > p0, and
(d) decreasing forp < p0 and increasing forp > p0.

1.3 In Example 1.5, ifp has the improper prior density 1
p(1−p) , show that the posterior

density ofp givenx is proper, provided 0< x < n.

1.4 In Example 1.5, find the Jeffreys prior forp and the associated Bayes estimatorδ�.

1.5 For the estimatorδ� of Problem 1.4,

(a) calculate the bias and maximum bias;

(b) calculate the expected squared error and compare it with that of the UMVU esti-
mator.

1.6 In Example 1.5, find the Bayes estimatorδ of p(1−p) whenp has the priorB(a, b).

1.7 For the situation of Example 1.5, the UMVU estimator ofp(1− p) is δ′ = [x(x −
1)]/[n(n− 1)] (see Example 2.3.1 and Problem 2.3.1).

(a) Compare the estimatorδ of Problem 1.6 with the UMVU estimatorδ′.
(b) Compare the expected squared error of the estimator ofp(1− p) for the Jeffreys

prior in Example 1.5 with that ofδ′.

1.8 In analogy with Problem 1.2, determine the possible shapes of the gamma density
H(g,1/α), α, g > 0.

1.9 Let X1, . . . , Xn be iid according to the Poisson distributionP (λ) and letλ have a
gamma distributionH(g, α).
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(a) For squared error loss, show that the Bayes estimatorδα,g of λ has a representation
analogous to (1.1.13).

(b) What happens toδα,g as (i)n→∞, (ii) α→∞, g→ 0, or both?

1.10 For the situation of the preceding problem, solve the two parts corresponding to
Problem 1.5(a) and (b).

1.11 In Problem 1.9, ifλ has the improper prior densitydλ/λ (corresponding toα = g =
0), under what circumstances is the posterior distribution proper?

1.12 Solve the problems analogous to Problems 1.9 and 1.10 when the observations
consist of a single random variableX having a negative binomial distributionNb(p,m),
p has the beta priorB(a, b), and the estimand is (a)p and (b) 1/p.

Section 2

2.1 Referring to Example 1.5, suppose thatX has the binomial distributionb(p, n) and
the family of prior distributions forp is the family of beta distributionsB(a, b).

(a) Show that the marginal distribution ofX is thebeta-binomial distribution with mass
function (

n

x

)
H(a + b)

H(a)H(b)

H(x + a)H(n− x + b)

H(n + a + b)
.

(b) Show that the mean and variance of the beta-binomial is given by

EX =
na

a + b
and varX = n

( a

a + b

)(
b

a + b

)(
a + b + n

a + b + 1

)
.

[Hint: For part (b), the identitiesEX = E[E(X|p)] and varX = var[E(X|p)] +
E[var(X|p)] are helpful.]

2.2 For the situation of Example 2.1, Lindley and Phillips (1976) give a detailed account
of the effect of stopping rules, which we can illustrate as follows. LetX be the number
of successes inn Bernoulli trials with success probabilityp.

(a) Suppose that the number of Bernoulli trials performed is a prespecifed numbern,

so that we have the binomial sampling model,P (X = x) =

(
n

x

)
px(1− p)n−x ,

x − 0,1, . . . , n. Calculate the Bayes risk of the Bayes estimator (1.1.12) and the
UMVU estimator ofp.

(b) Suppose that the number of Bernoulli trials performed is a random variableN . The
valueN = nwas obtained when a prespecified number,x, of successes was observed

so that we have the negative binomial sample model,P (N = n) =

(
n− 1
x − 1

)
px(1−

p)n−x , n = x. Calculate the Bayes risk of the Bayes estimator and the UMVU
estimator ofp.

(c) Calculate the mean squared errors of all three estimators under each model. If it is
unknown which sampling mechanism generated the data, which estimator do you
prefer overall?

2.3 Show that the estimator (2.2.4) tends in probability (a) toθ asn→ ∞, (b) toµ as
b→ 0, and (c) toθ asb→∞.
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2.4 Bickel and Mallows (1988) further investigate the relationship between unbiasedness
and Bayes, specifying conditions under which these properties cannot hold simultane-
ously. In addition, they show that if a prior distribution is improper, then a posterior mean
can be unbiased. LetX ∼ 1

θ
f (x/θ ), x > 0, where

∫∞
0 tf (t)dt = 1, and letπ (θ ) = 1

θ2 dθ ,
θ > 0.

(a) Show thatE(X|θ ) = θ , soX is unbiased.

(b) Show thatπ (θ |x) = x2

θ3 f (x/θ ) is a proper density.

(c) Show thatE(θ |x) = x, and hence the posterior mean, is unbiased.

2.5 DasGupta (1994) presents an identity relating the Bayes risk to bias, which illustrates
that a small bias can help achieve a small Bayes risk. LetX ∼ f (x|θ ) andθ ∼ π (θ ).
The Bayes estimator under squared error loss isδπ = E(θ |x). Show that the Bayes risk
of δπ can be written

r(π, δπ ) =
∫
�

∫
X

[θ − δπ (x)]2f (x|θ )π (θ )dxdθ =
∫
�

θb(θ )π (θ )dθ

whereb(θ ) = E[δπ (X)|θ ] − θ is the bias ofδπ .

2.6 Verify the estimator (2.2.10).

2.7 In Example 2.6, verify that the posterior distribution ofτ isH(r +g−1/2,1/(α+z)).

2.8 In Example 2.6 withα = g = 0, show that the posterior distribution given theX’s of√
n(θ − X̄)/

√
Z/(n− 1) is Student’st-distribution withn− 1 degrees of freedom.

2.9 In Example 2.6, show that the posterior distribution ofθ is symmetric about̄x when
the joint prior ofθ andσ is of the formh(σ )dσ dθ , whereh is an arbitrary probability
density on (0,∞).

2.10 Rukhin (1978) investigates the situation when the Bayes estimator is the same for
every loss function in a certain set of loss functions, calling such estimatorsuniversal
Bayes estimators. For the case of Example 2.6, using the prior of the form of Problem
2.9, show thatX̄ is the Bayes estimator under every even loss function.

2.11 Let X andY be independently distributed according to distributionsPξ andQη,
respectively. Suppose thatξ andη are real-valued and independent according to some
prior distributions� and�′. If, with squared error loss,δ� is the Bayes estimator ofξ
on the basis ofX, andδ′

�′ is that ofη on the basis ofY ,

(a) show thatδ′
�′ − δ� is the Bayes estimator ofη − ξ on the basis of (X, Y );

(b) if η > 0 andδ∗
�′ is the Bayes estimator of 1/η on the basis ofY , show thatδ� · δ∗�′

is the Bayes estimator ofξ/η on the basis of (X, Y ).

2.12 For the density (2.2.13) and improper prior (dσ/σ ) · (dσA/σA), show that the pos-
terior distribution of (σ, σA) continues to be improper.

2.13 (a) In Example 2.7, obtain the Jeffreys prior distribution of (σ, τ ).

(b) Show that for the prior of part (a), the posterior distribution of (σ, τ ) is proper.

2.14 Verify the Bayes estimator (2.2.14).

2.15 LetX ∼ N (θ,1) andL(θ, δ) = (θ − δ)2.

(a) Show thatX is the limit of the Bayes estimatorsδπn , whereπn isN (0,1). Hence,
X is both generalized Bayes and a limit of Bayes estimators.

(b) For the prior measureπ (θ ) = eaθ , a > 0, show that the generalized Bayes estimator
isX + a.

(c) Fora > 0, show that there is no sequence of proper priors for whichδπn → X + a.
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This example is due to Farrell; see Kiefer 1966. Heath and Sudderth (1989), building on
the work of Stone (1976), showed that inferences from this model areincoherent, and
established when generalized Bayes estimators will lead tocoherent (that is, noncontra-
dictory) inferences. Their work is connected to the theory of “approximable by proper
priors,” developed by Stein (1965) and Stone (1965, 1970, 1976), which shows when
generalized Bayes estimators can be looked upon as Bayes estimators.

2.16 (a) For the situation of Example 2.8, verify thatδ(x) = x/n is a generalized Bayes
estimator.

(b) If X ∼ N (0,1) andL(θ, δ) = (θ − δ)2, show thatX is generalized Bayes under the
improper priorπ (θ ) = 1.

Section 3

3.1 For the situation of Example 3.1:

(a) Verify that the Bayes estimator will only depend on the data throughY = maxi Xi .
(b) Show thatE(�|y, a, b) can be expressed as

E(�|y, a, b) =
1

b(n + a − 1)

P (χ2
2(n+a−1) < 2/by)

P (χ2
2(n+a) < 2/by)

whereχ2
ν is a chi-squared random variable withν degrees of freedom. (In this form,

the estimator is particularly easy to calculate, as many computer packages will have
the chi-squared distribution built in.)

3.2 LetX1, . . . , Xn be iid from Gamma(a, b) wherea is known.

(a) Verify that the conjugate prior for the natural parameterη = −1/b is equivalent to
an inverted gamma prior onb.

(b) Using the prior in part (a), find the Bayes estimator under the losses (i)L(b, δ) =
(b − δ)2 and (ii)L(b, δ) = (1− δ/b)2.

(c) Express the estimator in part (b)(i) in the form (3.3.9). Can the same be done for
the estimator in part (b)(ii)?

3.3 (a) Prove Corollary 3.3.
(b) Verify the calculation of the Bayes estimator in Example 3.4.

3.4 Using Stein’s identity (Lemma 1.5.15), show that ifXi ∼ pηi (x) of (3.3.7), then

Eη(−∇ logh(X)) = η ,

R(η ,−∇ logh(X)) =
p∑
i=1

Eη

[
− ∂2

∂X2
i

logh(X)

]
.

3.5 (a) If Xi ∼ Gamma(a, b), i = 1, . . . , p, independent witha known, calculate
−∇ logh(x) and its expected value.

(b) Apply the results of part (a) to the situation whereXi ∼ N (0, σ 2
i ), i = 1, . . . , p,

independent. Does it lead to an unbiased estimator ofσ 2
i ?

[Note: For part (b), squared error loss on the natural parameter 1/σ 2 leads to the
lossL(σ 2, δ) = (σ 2δ − 1)2/σ 4 for estimation ofσ 2.]

(c) If

Xi ∼ tan(aiπ )

π
xai (1− x)−1, 0< x < 1, i = 1, . . . , p, independent,

evaluate−∇ logh(X) and show that it is an unbiased estimator ofa = (a1, . . . , ap).
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3.6 For the situation of Example 3.6:

(a) Show that ifδ is a Bayes estimator ofθ , thenδ′ = δ/σ 2 is a Bayes estimator ofη,
and henceR(θ, δ) = σ 4R(η, δ′).

(b) Show that the risk of the Bayes estimator ofη is given by

pτ 4

σ 2(σ 2 + τ 2)2
+

(
σ 2

σ 2 + τ 2

)2 ∑
a2
i ,

whereai = ηi − µ/σ 2.

(c) If�a2
i = k, a fixed constant, then the minimum risk is attained atηi = µ/σ 2+

√
k/p.

3.7 If X has the distributionpθ (x) of (1.5.1) show that, similar to Theorem 3.2,E(T η (θ )) =
∇ logmπ (x)− ∇ logh(x).

3.8 (a) Use Stein’s identity (Lemma 1.5.15) to show that ifXi ∼ pηi (x) of (3.3.18),
then

Eη(−∇ logh(X)) =
∑
i

ηiEη
∂

∂Xj
Ti(X).

(b) If Xi are iid from a gamma distribution Gamma(a, b), where the shape parameter
a is known, use part (a) to find an unbiased estimator of 1/b.

(c) If theXi are iid from a beta(a, b) distribution, can the identity in part (a) be used
to obtain an unbiased estimator ofa whenb is known, or an unbiased estimator of
b whena is known?

3.9 For the natural exponential familypη(x) of (3.3.7) and the conjugate priorπ (η|k, µ)
of (3.3.19) establish that:

(a) E(X) = A′(η) and varX = A′′(η), where the expectation is with respect to the
sampling densitypη(x).

(b) EA′(η) = µ and var[A(η)] = (1/k)EA′′(η), where the expectation is with respect
to the prior distribution.

[The results in part (b) enable us to think ofµ as a prior mean andk as a prior sample
size.]

3.10 For each of the following situations, write the density in the form (3.7), and identify
the natural parameter. Obtain the Bayes estimator ofA′(η) using squared loss and the
conjugate prior. Express your answer in terms of the original parameters. (a)X ∼
binomial(p, n), (b)X ∼ Poisson(λ), and (c)X ∼ Gamma(a, b), a known.

3.11 For the situation of Problem 3.9, ifX1, . . . , Xn are iid aspη(x) and the prior is the
conjugateπ (η|k, µ), then the posterior distribution isπ (η|k + n, kµ+nx̄

k+n ).

3.12 If X1, . . . , Xn are iid from a one-parameter exponential family, the Bayes estimator
of the mean, under squared error loss using a conjugate prior, is of the formaX̄ + b for
constantsa andb.

(a) If EXi = µ and varXi = σ 2, then no matter what the distribution of theXi ’s, the
mean squared error is

E[(aX̄ + b)− µ]2 = a2 var X̄ + [(a − 1)µ + b]2.

(b) If µ is unbounded, then no estimator of the formaX̄ + b can have finite mean
squared error fora �= 1.

(c) Can a conjugate-prior Bayes estimator in an exponential family have finite mean
squared error?
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[This problem shows why conjugate-prior Bayes estimators are considered “non-robust.”]

Section 4

4.1 For the situation of Example 4.2:

(a) Show that the Bayes rule under a beta(α, α) prior is equivariant.

(b) Show that the Bayes rule under any prior that is symmetric about 1/2 is equivariant.

4.2 The Bayes estimator ofη in Example 4.7 is given by (4.22).

4.3 The Bayes estimator ofτ in Example 4.5 is given by (4.22).

4.4 The Bayes estimators ofη and τ in Example 4.9 are given by (4.31) and (4.32).
(Recall Corollary 1.2.)

4.5 For each of the following situations, find a groupG that leaves the model invariant
and determine left- and right-invariant measures overG. The joint density ofX =
(X1, . . . , Xn) andY = (Y1, . . . , Yn) and the estimand are

(a) f (x − η, y− ζ ), estimandη − ζ ;

(b) f
( x−η
σ
,

y−ζ
τ

)
, estimandτ/σ ;

(c) f
( x−η
τ
, /,

y−ζ
τ

)
, τ unknown; estimandη − ζ .

4.6 For each of the situations of Problem 4.5, determine the MRE estimator if the loss is
squared error with a scaling that makes it invariant.

4.7 For each of the situations of Problem 4.5:

(a) Determine the measure over induced by the right-invariant Haar measure over
Ḡ;

(b) Determine the Bayes estimator with respect to the measure found in part (a), and
show that it coincides with the MRE estimator.

4.8 In Example 4.9, show that the estimator

τ̂ (x) =

∫ ∫
1
vr
f

(
x1−u
v
, . . . , xn−u

v

)
dvdu∫ ∫

1
vr+1f

(
x1−u
v
, . . . , xn−u

v

)
dvdu

is equivariant under scale changes; that is, it satisfiesτ̄ (cx) = cτ̂ (x) for all values ofr
for which the integrals in̂τ (x) exist.

4.9 If � is a left-invariant measure overG, show that�∗ defined by�∗(B) = �(B−1) is
right invariant, whereB−1 = {g−1 : g ∈ B}.
[Hint: Express�∗(Bg) and�∗(B) in terms of�.]

4.10 There is a correspondence between Haar measures and Jeffreys priors in the location
and scale cases.

(a) Show that in the location parameter case, the Jeffreys prior is equal to the invariant
Haar measure.

(b) Show that in the scale parameter case, the Jeffreys prior is equal to the invariant
Haar measure.

(c) Show that in the location-scale case, the Jeffreys prior is equal to the left invariant
Haar measure.

[Part c) is a source of some concern because, as mentioned in Section 4.4 (see the
discussion following Example 4.9), the best-equivariant rule is Bayes against the right-
invariant Haar measure (if it exists).]
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4.11 For the model (3.3.23), find a measureν in the (ξ, τ ) plane which remains invariant
under the transformations (3.3.24).

The next three problems contain a more formal development of left- and right-invariant
Haar measures.

4.12 A measure� over a groupG is said to be right invariant if it satisfies�(Bg) = �(B)
and left invariant if it satisfies�(gB) = �(B). Note that ifG is commutative, the two
definitions agree.

(a) If the elementsg ∈ G are real numbers (−∞ < g <∞) and group composition is
g2 · g1 = g1 + g2, the measureν defined byν(B) =

∫
B
dx (i.e., Lebesgue measure)

is both left and right invariant.

(b) If the elementsg ∈ G are the positive real numbers, and composition ofg2 andg1

is multiplication of the two numbers, the measureν defined byν(B) =
∫
B
(1/y) dy

is both left and right invariant.

4.13 If the elementsg ∈ G are pairs of real numbers (a, b), b > 0, corresponding to the
transformationsgx = a + bx, group composition by (1.4.8) is

(a2, b2) · (a1, b1) = (a2 + a1b2, b1b2).

Of the measures defined by

ν(B) =
∫∫

B

1

y
dx dy and ν(B) =

∫∫
B

1

y2
dx dy,

the first is right but not left invariant, and the second is left but not right invariant.

4.14 The four densities defining the measuresν of Problem 4.12 and 4.13 (dx, (1/y)dy,
(1/y)dxdy, (1/y2)dxdy) are the only densities (up to multiplicative constants) for which
ν has the stated invariance properties in the situations of these problems.

[Hint: In each case, consider the equation∫
B

π (θ ) dθ =
∫
gB

π (θ ) dθ.

In the right integral, make the transformation to the new variable or variablesθ ′ = g−1θ .
If J is the Jacobian of this transformation, it follows that∫

B

[π (θ )− Jπ (gθ )] dθ = 0 for all B

and, hence, thatπ (θ ) = Jπ (gθ ) for all θ except in a null setNg. The proof of Theorem
4 in Chapter 6 of TSH2 shows thatNg can be chosen independent ofg. This proves in
Problem 4.12(a) that for allθ /∈ N,π(θ ) = π (θ + c), and hence thatπ (c) = constant a.e.
The other three cases can be treated analogously.]

Section 5

5.1 For the model (3.3.1), letπ (θ |x, λ) be a single-prior Bayes posterior andπ (θ |x)
be a hierarchical Bayes posterior. Show thatπ (θ |x) =

∫
π (θ |x, λ) · π (λ|x) dλ, where

π (λ|x) =
∫
f (x|θ )π (θ |λ)γ (λ) dθ/

∫∫
f (x|θ )π (θ |λ)γ (λ) dθ dλ.

5.2 For the situation of Problem 5.1, show that:

(a) E(θ |x) = E[E(θ |x, λ)];

(b) var(θ |x) = E[var(θ |x, λ)] + var[E(θ |x, λ)];
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and hence thatπ (θ |x) will tend to have a larger variance thanπ (θ |x, λ0).

5.3 For the model (3.3.3), show that:

(a) The marginal prior ofθ , unconditional onτ 2, is given by

π (θ ) =
H(a + 1

2)√
2π H(a)ba

1(
1
b

+ θ2

2

)a+1/2 ,

which fora = ν/2 andb = 2/ν is Student’st-distribution withν degrees of freedom.

(b) The marginal posterior ofτ 2 is given by

π (τ 2|x̄) =

[
σ2τ2

σ2+τ2

]1/2
e
− 1

2
x̄2

σ2+τ2 1
(τ2)a+3/2 e

−1/bτ2

∫∞
0

[
σ2τ2

σ2+τ2

]1/2
e
−f rac12 x̄2

σ2+τ2 1
(τ2)a+3/2 e

−1/bτ2
dt2
.

5.4 Albert and Gupta (1985) investigate theory and applications of the hierarchical model

Xi |θi ∼ b(θi, n), i = 1, . . . , p, independent,

θi |η ∼ beta[kη, k(1− η)], k known,

η ∼ Uniform(0,1).

(a) Show that

E(θi |x) =
( n

n + k

) (xi
n

)
+

(
k

n + k

)
E(η|x),

var(θi |x) =
k2

(n + k)(n + k + 1)
var(η|x).

[Note thatE(η|x) and var(η|x) are not expressible in a simple form.]

(b) Unconditionally onη, theθi ’s have conditional covariance

cov(θi, θj |x) =

(
k

n + k

)2

var(η|x), i �= j.

(c) Ignoring the prior distribution ofη, show how to construct an empirical Bayes
estimator ofθi . (Again, this is not expressible in a simple form.)

[Albert and Gupta (1985) actually consider a more general model than given here, and
show how to approximate the Bayes solution. They apply their model to a problem of
nonresponse in mail surveys.]

5.5 (a) Analogous to Problem 1.7.9, establish that for any random variableX, Y , and
Z,

cov(X, Y ) = E[cov(X, Y )|Z] + cov[E(X|Z), E(Y |Z)].

(b) For the hierarchy

Xi |θi ∼ f (x|θi), i = 1, . . . , p, independent,

�i |λ ∼ π (θi |λ), i = 1, . . . , p, independent,

� ∼ γ (λ),

show that cov(�i,�j |x) = cov[E(�i |x, λ), E(�j |x, λ)].
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(c) If E(�i |x, λ) = g(xi) + h(λ), i = 1, . . . , p, whereg(·) andh(·) are known, then

cov(�i,�j |x) = var[E(�i |x, λ)].

[Part (c) points to what can be considered a limitation in the applicability of some
hierarchical models, that they imply a positive correlation structure in the posterior
distribution.]

5.6 The one-way random effects model of Example 2.7 (see also Examples 3.5.1 and
3.5.5) can be written as the hierarchical model

Xij |µ, αi ∼ N (µ + αi, σ
2), j = 1, . . . , n, i = 1, . . . , s,

αi ∼ N (0, σ 2
A), i = 1, . . . , s.

If, in addition, we specify thatµ ∼ Uniform(−∞,∞), show that the Bayes estimator
of µ + αi under squared error loss is given by (3.5.13), the UMVU predictor ofµ + αi .

5.7 Referring to Example 6.6:

(a) Using the prior distribution forγ (b) given in (5.6.27), show that the mode of the
posterior distributionπ (b|x) is b̂ = (px̄ + α − 1)/(pa + β − 1), and hence the
empirical Bayes estimator based on thisb̂ does not equal the hierarchical Bayes
estimator (5.6.29).

(b) Show that if we estimateb/(b+1) using its posterior expectationE[b/(b+1)|x], then
the resulting empirical Bayes estimator is equal to the hierarchical Bayes estimator.

5.8 The method of Monte Carlo integration allows the calculation of (possibly compli-
cated) integrals by using (possibly simple) generations of random variables.

(a) To calculate
∫
h(x)fX(x) dx, generate a sampleX1, . . . , Xm, iid, fromfX(x). Then,

1/m
∑m

i=1 h(xi) →
∫
h(x)fX(x) dx asm→∞.

(b) If it is difficult to generate random variable fromfX(x), then generate pairs of
random variables

Yi ∼ fY (y),

Xi ∼ fX|Y (x|yi).
Then, 1/m

∑m

i=1 h(xi) →
∫
h(x)fX(x) dx asm→∞.

[Show that ifX is generated according toY ∼ fY (y) andX ∼ fX|Y (x|Y ), then
P (X ≤ a) =

∫ a
−∞ fx(x) dx.]

(c) If it is difficult to generate as in part (b), then generate

Xmi ∼ fX|Y (x|Ymi−1),

Ymi ∼ fY |X(y|Xmi ).
for i = 1, . . . , K andm = 1, . . . ,M.

Show that:

(i) for eachm, {Xmi } is a Markov chain. If it is also an ergodic Markov chainXmi
L→ X,

asi →∞, whereX has the stationary distribution of the chain.

(ii) If the stationary distribution of the chain isfX(x), then

1

M

M∑
m=1

h(xmk ) →
∫
h(x)fX(x) dx

asK,M →∞.
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[This is the basic theory behind the Gibbs sampler. For eachk, we have generated in-
dependent random variablesXmk , m = 1, . . . ,M, whereXmk is distributed according
to fX|Y (x|ymk− ). It is also the case that for eachm and largek, Xmk is approximately
distributed according tofX(x), although the variables are not now independent. The ad-
vantages and disadvantages of these computational schemes (one-long-chain vs.many-
short-chains) are debated in Gelman and Rubin 1992; see also Geyer and Thompson
1992 and Smith and Roberts 1992. The prevailing consensus leans toward one long
chain.]

5.9 To understand the convergence of the Gibbs sampler, let (X, Y ) ∼ f (x, y), and define

k(x, x ′) =
∫
fX|Y (x|y)fY |X(y|x ′) dy.

(a) Show that the functionh∗(·) that solvesh∗(x) =
∫
k(x, x ′)h∗(x ′) dx ′ is h∗(x) =

fX(x), the marginal distribution ofX.

(b) Write down the analogous integral equation that is solved byfY (y).

(c) Define a sequence of functions recursively byhi+1(x) =
∫
k(x, x ′)hi(x ′) dx ′I where

h0(x) is arbitrary but satisfies supx

∣∣∣ h0(x)
h∗(x)

∣∣∣ <∞. Show that∫
|hi+1(x)− h∗(x)|dx <

∫
|hi(x)− h∗(x)| dx

and, hence,hi(x) converges toh∗(x).

[The method of part (c) is calledsuccessive substitution. When there are two variables in
the Gibbs sampler, it is equivalent todata augmentation (Tanner and Wong 1987). Even
if the variables are vector-valued, the above results establish convergence. If the original
vector of variables contains more than two variables, then a more general version of this
argument is needed (Gelfand and Smith 1990).]

5.10 A direct Monte Carlo implementation of substitution sampling is provided by the
data augmentation algorithm (Tanner and Wong 1987). If we define

hi+1(x) =
∫[∫

fX|Y (x|y)fY |X(y|x ′) dy
]
hi(x

′) dx ′,

then from Problem 5.9,hi(x) → fx(x) asi →∞.

(a) To calculatehi+1 using Monte Carlo integration:

(i) GenerateX′j ∼ hi(x ′), j = 1, . . . , J .
(ii) Generate, for eachx ′j , Yjk ∼ fY |X(y|x ′j ), k = 1, . . . , K.

(iii) Calculateĥi+1(x) = 1
J

∑J

j=1
1
K

∑K

k=1 fX|Y (x|yjk).
Then,ĥi+1(x) → hi+1(x) asJ,K →∞, and hence the data augmentation algorithm
converges.

(b) To implement (a)(i), we must be able to generate a random variable from a mixture
distribution. Show that iffY (y) =

∑n

i=1 aigi(y), �ai = 1, then the algorithm

(i) Selectgi with probabilityai
(ii) GenerateY ∼ gi
produces a random variable with distributionfY . Hence, show how to implement
step (a)(i) by generating random variables fromfX|Y . Tanner and Wong (1987)

note that this algorithm will work even ifJ = 1, which yields the approximation
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ĥi+1(x) = 1
K

∑K

k=1 fX|Y (x|yk), identical to the Gibbs sampler. The data augmentation
algorithm can also be seen as an application of the process ofmultiple imputation
(Rubin 1976, 1987, Little and Rubin 1987).

5.11 Successive substitution sampling can be implemented via the Gibbs sampler in the
following way. From Problem 5.8(c), we want to calculate

hM =
1

M

M∑
m=1

k(x|xmk ) =
1

M

M∑
m=1

∫
fX|Y (x|y)fX|Y (y|xmk ) dy.

(a) Show thathM (x) → fX(x) asM →∞.

(b) Givenxmk , a Monte Carlo approximation tohM (x) is

ĥM (x) =
1

M

M∑
m=1

1

J

J∑
j=1

fX|Y (x|ykj )

whereYkj ∼ fY |X(y|xmk ) andĥM (x) → hM (x) asJ →∞.

(c) Hence, asM,J →∞, ĥM (x) → fX(x).

[This is the Gibbs sampler, which is usually implemented withJ = 1.]

5.12 For the situation of Example 5.6, show that

(a) E

(
1

M

M∑
i=1

�i

)
= E

(
1

M

M∑
i=1

E(�|x, τi)
)
,

(b) var

(
1

M

M∑
i=1

�i

)
≥ var

(
1

M

M∑
i=1

E(�|x, τi)
)
.

(c) Discuss when equality might hold in (b). Can you give an example?

5.13 Show that for the hierarchy (5.5.1), the posterior distributionsπ (θ |x) andπ (λ|x)
satisfy

π (θ |x) =
∫ [∫

π (θ |x, λ)π (λ|x, θ ′) dλ
]
π (θ ′|x) dθ ′,

π (λ|x) =
∫ [∫

π (λ|x, θ )π (θ |x, λ′) dθ
]
π (λ′|x) dλ′,

and, hence, are stationary points of the Markov chains in (5.5.13).

5.14 Starting from a uniform random variableU ∼ Uniform(0,1), it is possible to
construct many random variables through transformations.

(a) Show that− logU ∼ exp(1).

(b) Show that−∑n

i=1 logUi ∼ Gamma(n,1), whereU1, . . . , Un are iid asU (0,1).

(c) LetX ∼ Exp(a, b). WriteX as a function ofU .

(d) LetX ∼ Gamma(n, β), n an integer. WriteX as a function ofU1, . . . , Un, iid as
U (0,1).

5.15 Starting with aU (0,1) random variable, the transformations of Problem 5.14 will
not get us normal random variables, or gamma random variables with noninteger shape
parameters. One way of doing this is to use theAccept-Reject Algorithm (Ripley 1987,
Section 3.2), an algorithm for simulatingX ∼ f (x):
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(i) GenerateY ∼ g(y), U ∼ U (0,1), independent.
(ii) Calculateρ(Y ) = 1

M

f (Y )
g(Y ) whereM = supt f (t)/g(t).

(iii) If U < ρ(Y ), setX = Y , otherwise return to i).

(a) Show that the algorithm will generateX ∼ f (x).
(b) Starting withY ∼ exp(1), show how to generateX ∼ N (0,1).
(c) Show how to generate a gamma random variable with a noninteger shape parameter.

5.16 Consider the normal hierarchical model

X|θ1 ∼ n(θ1, σ
2
1 ),

θ1|θ2 ∼ n(θ2|σ 2
2 ),

...

θk−1|θk ∼ n(θk, σ
2
k )

whereσ 2
1 , i = 1, . . . , k, are known.

(a) Show that the posterior distribution ofθi (1≤ i ≤ k − 1) is

π (θi |x, θk) = N (αix + (1− αi)θk, τ 2
i )

whereτ 2
i = (�i1σ

2
j )(�ki+1σ

2
j )/�ki σ

2
j andαi = τ 2

i /�
i
1σ

2
j .

(b) Find an expression for the Kullback-Leibler informationK[π (θi |x, θk), π (θi |θk)]
and show that it is a decreasing function ofi.

5.17 The original proof of Theorem 5.7 (Goel and DeGroot 1981) usedRényi’s entropy
function (Rényi 1961)

Rα(f, g) =
1

α − 1
log

∫
f α(x)g1−α(x) dµ(x),

wheref andg are densities,µ is a dominating measure, andα is a constant,α �= 1.

(a) Show thatRα(f, g) satisfiesRα(f, g) > 0 andRα(f, f ) = 0.
(b) Show that Theorem 5.7 holds ifRα(f, g) is used instead ofK[f, g].
(c) Show that limα→1Rα(f, g) = K[f, g], and provide another proof of Theorem 5.7.

5.18 The Kullback-Leibler information,K[f, g] (5.5.25), is not symmetric inf andg,
and a modification, called thedivergence, remedies this. DefineJ [f, g], the divergence
betweenf andg, to beJ [f, g] = K[f, g] +K[g, f ]. Show that, analogous to Theorem
5.7,J [π (λ|x), γ (λ)] < J [π (θ |x), π (θ )].

5.19 Goel and DeGroot (1981) define a Bayesian analog of Fisher information [see
(2.5.10)] as

I[π (θ |x)] =
∫


[
∂

∂x
π (θ |x)

π (θ |x)

]2

dθ,

the information thatx has about the posterior distribution. As in Theorem 5.7, show that
I[π (λ|x)] < I[π (θ |x)], again showing that the influence ofλ is less than that ofθ .

5.20 Each ofm spores has a probabilityτ of germinating. Of ther spores that germinate,
each has probabilityω of bending in a particular direction. Ifs bends in the particular
direction, a probability model to describe this process is thebivariate binomial, with
mass function

f (r, s|τ, ω,m) =

(
m

r

)
τ r (1− τ )m−r

(
r

s

)
ωs(1− ω)r−s .
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(a) Show that the Jeffreys prior isπJ (τ, ω) = (1− τ )−1/2ω−1/2(1− ω)−1/2.

(b) If τ is considered a nuisance parameter, the reference prior is

πR(τ, ω) = τ−1/2(1− τ )−1/2ω−1/2(1− ω)−1/2.

Compare the posterior meansE(ω|r, s,m) under both the Jeffreys and reference
priors. Is one more appropriate?

(c) What is the effect of the different priors on the posterior variance?

[Priors for the bivariate binomial have been considered by Crowder and Sweeting (1989),
Polson and Wasserman (1990), and Clark and Wasserman (1993), who propose a refer-
ence/Jeffreys trade-off prior.]

5.21 LetF = {f (x|θ ); θ ∈ } be a family of probability densities. The Kullback-Leibler
information for discrimination between two densities inF can be written

ψ(θ1, θ2) =
∫
f (x|θ1) log

[
f (x|θ1)

f (x|θ2)

]
dx.

Recall that the gradient ofψ is ∇ψ = {(∂/∂θi)ψ} and the Hessian is∇∇ψ =
{(∂2/∂θi∂θj )ψ}.
(a) If integration and differentiation can be interchanged, show that

∇ψ(θ, θ) = 0 and det[∇∇ψ(θ, θ)] = I (θ ),

whereI (θ ) is the Fisher information off (x|θ ).
(b) George and McCulloch (1993) argue that choosingπ (θ ) = (det[∇∇ψ(θ , θ )])1/2 is

an appealing least informative choice of priors. What justification can you give for
this?

Section 6

6.1 For the model (3.3.1), show thatδλ(x)|λ=λ̂ = δλ̂(x), where the Bayes estimatorδλ(x)
minimizes

∫
L[θ, d(x)]π (θ |x, λ) dθ and the empirical Bayes estimatorδλ̂(x) minimizes∫

L[θ, d(x)]π (θ |x, λ̂) dθ .

6.2 This problem will investigate conditions under which an empirical Bayes estimator
is a Bayes estimator. Expression (6.6.3) is a true posterior expected loss ifπ (θ |x, λ̂(x))
is a true posterior.

From the hierarchy

X|θ ∼ f (x|θ ),
�|λ ∼ π (θ |λ),

define the joint distribution ofX and� to be (X, θ ) ∼ g(x, θ ) = f (x|θ )π (θ |λ̂(x)), where
π (θ |λ̂(x)) is obtained by substitutinĝλ(x) for λ in π (θ |λ).

(a) Show that, for this joint density, the formal Bayes estimator is equivalent to the
empirical Bayes estimator from the hierarchical model.

(b) If f (·|θ ) and π (·|λ) are proper densities, then
∫
g(x, θ ) dθ < ∞. However,∫ ∫

g(x, θ ) dxdθ need not be finite.

6.3 For the model (6.3.1), the Bayes estimatorδλ(x) minimizes
∫
L(θ, d(x))×π (θ |x, λ) dθ

and the empirical Bayes estimator,δλ̂(x), minimizes
∫
L(θ, d(x))π (θ |x, λ̂(x)) dθ . Show

thatδλ(x)|λ=λ̂(x) = δλ̂(x).
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6.4 For the situation of Example 6.1:

(a) Show that∫ ∞

−∞
e−n/2σ

2(x̄−θ )2e(−1/2)θ2/τ2
dθ =

√
2π

(
σ 2τ 2

σ 2 + τ 2

)1/2

e(−n/2)x̄2/σ2+nτ2

and, hence, establish (6.6.4).

(b) Verify that the marginal MLE ofσ 2 + nτ 2 is nx̄2 and that the empirical Bayes
estimator is given by (6.6.5).

6.5 Referring to Example 6.2:

(a) Show that the Bayes risk,r(π, δπ ), of the Bayes estimator (6.6.7) is given by

r(π, δπ ) = kE[var(pk|xk)] =
kab

(a + b)(a + b + 1)(a + b + n)
.

(b) Show that the Bayes risk of the unbiased estimatorX/n = (X1/n, . . . , Xk/n) is
given by

r(π,X/n) =
kab

n(a + b + 1)(a + b)
.

6.6 Extend Theorem 6.3 to the case of Theorem 3.2; that is, ifX has density (3.3.7) and
η has prior densityπ (η |γ ), then the empirical Bayes estimator is

E

(∑
ηi
∂Ti(x)

∂xj
|x, γ̂ (x)

)
=
∂

∂xj
logm(x|γ̂ (x))− ∂

∂xj
logh(x),

wherem(x|γ ) is the marginal distribution ofX andγ̂ (x) is the marginal MLE ofγ .

6.7 (a) Forpη(x) of (1.5.2), show that for any prior distributionπ (η|λ) that is dependent
on a hyperparameterλ, the empirical Bayes estimator is given by

E

[
s∑
i=1

ηi
∂

∂xj
Ti(x)|x, λ̂

]
=
∂

∂xj
logmπ (x|λ̂(x))− ∂

∂xj
logh(x).

wheremπ (x) =
∫
pθ (x)π (θ ) dθ .

(b) If X has the distributionpθ (x) of (1.5.1), show that a similar formulas holds, that
is,

E(T η(θ )|λ̂) = ∇ logmπ (x|λ̂)− ∇ logh(x),

whereT = {∂Ti/∂xj } is the Jacobian ofT and∇a is the gradient vector ofa, that is,
∇a = {∂a/∂xi}.

6.8 For each of the following situations, write the empirical Bayes estimator of the natural
parameter (under squared error loss) in the form (6.6.12), using the marginal likelihood
estimator of the hyperparameterλ. Evaluate the expressions as far as possible.

(a) Xi ∼ N (0, σ 2
i ), i = 1, . . . , p, independent; 1/σ 2

i ∼ Exponential(λ).

(b) Xi ∼ N (θi,1), i = 1, . . . , p, independent,θi ∼ DE(0, λ).

6.9 Strawderman (1992) shows that the James-Stein estimator can be viewed as an empir-
ical Bayes estimator in an arbitrary location family. LetXp×1 ∼ f (x− θ ), withEX = θ
and varX = σ 2I . Let the prior beθ ∼ f ∗n, then-fold convolution off with itself. [The
convolution of f with itself is f ∗2(x) =

∫
f (x − y)f (y)dy. Then-fold convolution is

f ∗n(x) =
∫
f ∗(n− 1)(x)(x − y)f (y)dy.] Equivalently, letUi ∼ f , i = 0, · · · , n, iid,

θ =
∑n

1 Ui , andX = U0 + θ .



296 AVERAGE RISK OPTIMALITY [ 4.8

(a) Show that the Bayes rule against squared error loss isn

n+1x. Note thatn is a prior
parameter.

(b) Show that|X|2/(pσ 2) is an unbiased estimator ofn+1, and hence that an empirical
Bayes estimator ofθ is given byδEB = [1− (pσ 2/|x|2)]x.

6.10 Show for the hierarchy of Example 3.4, whereσ 2 andτ 2 are known butµ is unknown,
that:

(a) The empirical Bayes estimator ofθi , based on the marginal MLE ofθi, is τ2

σ2+τ2Xi +
σ2

σ2+τ2 X̄.

(b) The Bayes risk, under sum-of-squared-errors loss, of the empirical Bayes estimator
from part (a) is

pσ 2 − 2(p − 1)2σ 4

p(σ 2 + τ 2)
+ (p − 1)

(
σ 2

σ 2 + τ 2

)2 p∑
i=1

E(Xi − X̄)2.

(c) The minimum risk of the empirical Bayes estimator is attained when allθis are
equal.

[Hint: Show that
∑p

i=1E[(Xi − X̄)2] =
∑p

i=1(θi − θ̄ )2 + (p − 1)σ 2. ]

6.11 ForE(�|x) of (5.5.8), show that asν →∞, E(�|x) → [p/(p + σ 2)]x̄, the Bayes
estimator under aN (0,1) prior.

6.12 (a) Show that the empirical BayesδEB (x̄) = (1− σ 2/max{σ 2, px̄2})x̄ of (6.6.5)
has bounded mean squared error.

(b) Show that a variation ofδEB (x̄), of part (a),δv(x̄) = [1− σ 2/(v + px̄2)]x̄, also has
bounded mean squared error.

(c) Forσ 2 = τ 2 = 1, plot the risk functions of the estimators of parts (a) and (b).

[Thompson (1968a, 1968b) investigated the mean squared error properties of estimators
like those in part (b). Although such estimators have smaller mean squared error thanx̄

for small values ofθ , they always have larger mean squared error for larger values ofθ .]

6.13 (a) For the hierarchy (5.5.7), withσ 2 = 1 andp = 10, evaluate the Bayes risk
r(π, δπ ) of the Bayes estimator (5.5.8) forν = 2, 5, and 10.

(b) Calculate the Bayes risk of the estimatorδv of Problem 6.12(b). Find a value of
v that yields a good approximation to the risk of the hierarchical Bayes estimator.
Compare it to the Bayes risk of the empirical Bayes estimator of Problem 6.12(a).

6.14 Referring to Example 6.6, show that the empirical Bayes estimator is also a hierar-
chical Bayes estimator using the priorγ (b) = 1/b.

6.15 The Taylor series approximation to the estimator (5.5.8) is carried out in a number
of steps. Show that:

(a) Using a first-order Taylor expansion around the pointx̄, we have

1

(1 + θ2/ν)(ν+1)/2
=

1

(1 + x̄2/ν)(ν+1)/2

−ν + 1

ν

x̄

(1 + x̄2/ν)(ν+3)/2
(θ − x̄) +R(θ − x̄)

where the remainder,R(θ − x̄), satisfiesR(θ − x̄)/(θ − x̄)2 → 0 asθ → x̄.

(b) The remainder in part (a) also satisfies∫ ∞

−∞
R(θ − x̄)e−

p

2σ2 (θ−x̄)2
dθ = O(1/p3/2).
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(c) The numerator and denominator of (5.5.8) can be written∫ ∞

−∞

1

(1 + θ2/ν)(ν+1)/2
e
− p

2σ2 (θ−x̄)2
dθ =

√
2πσ 2/p

(1 + x̄2/ν)(ν+1)/2
+O

(
1

p3/2

)
and ∫ ∞

−∞

θ

(1 + θ2/ν)(ν+1)/2
e
− p

2σ2 (θ−x̄)2
dθ

=

√
2πσ 2/p

(1 + x̄2/ν)(ν+1)/2

[
1− (ν + 1)/ν

(1 + x̄2/ν)

]
x̄ +O

(
1

p3/2

)
,

which yields (5.6.32).

6.16 For the situation of Example 6.7:

(a) Calculate the values of the approximation (5.6.32) for the values of Table 6.2. Are
there situations where the estimator (5.6.32) is clearly preferred over the empirical
Bayes estimator (5.6.5) as an approximation to the hierarchical Bayes estimator
(5.5.8)?

(b) Extend the argument of Problem 6.15 to calculate the next term in the expansion and,
hence, obtain a more accurate approximation to the hierarchical Bayes estimator
(5.5.8). For the values of Table 6.2, is this new approximation to (5.5.8) preferable
to (5.6.5) and (5.6.32)?

6.17 (a) Show that ifb(·) has a bounded second derivative, then∫
b(λ)e−nh(λ)dλ = b(λ̂)

√
2π

nh′′(λ̂)
e−nh(λ̂) +O

(
1

n3/2

)
whereh(λ̂) is the unique minimum ofh(λ), h′′(λ) �= 0, andnh(λ̂) → constant as
n→∞.

[Hint: Expand bothb(·) andh(·) in Taylor series around̂λ, up to second-order terms.
Then, do the term-by-term integration.]

This is theLaplace approximation for an integral. For refinements and other de-
velopments of this approximation in Bayesian inference, see Tierney and Kadane
1986, Tierney, Kass, and Kadane 1989, and Robert 1994a (Section 9.2.3).

(b) For the hierarchical model (5.5.1), the posterior mean can be approximated by

E(�|x) = e−nh(λ̂)

[
2π

nh′′(λ̂)

]1/2

E(�|x, λ̂) +O

(
1

n3/2

)
whereh = 1

n
logπ (λ|x) andλ̂ is the mode ofπ (λ|x), the posterior distribution of

λ.

(c) If π (λ|x) is the normal distribution with mean̂λ and varianceσ 2 = [−(∂2/∂λ2) ×
logπ (λ|x)|λ=λ̂]

−1, thenE(�|x) = E(�|x, λ̂) +O(1/n3/2).

(d) Show that the situation in part (c) arises from the hierarchy

Xi |θi ∼ N (θi, σ
2),

θi |λ ∼ N (λ, τ 2),

λ ∼ Uniform(−∞,∞).

6.18 (a) Apply the Laplace approximation (5.6.33) to obtain an approximation to the
hierarchical Bayes estimator of Example 6.6.



298 AVERAGE RISK OPTIMALITY [ 4.8

(b) Compare the approximation from part (a) with the empirical Bayes estimator
(5.6.24). Which is a better approximation to the hierarchical Bayes estimator?

6.19 Apply the Laplace approximation (5.6.33) to the hierarchy of Example 6.7 and show
that the resulting approximation to the hierarchical Bayes estimator is given by (5.6.32).

6.20 (a) Verify (6.6.37), that under squared error loss

r(π, δ) = r(π, δπ ) +E(δ − δπ )2.

(b) ForX ∼ binomial(p, n), L(p, δ) = (p − δ)2, andπ = {π : π = beta(a, b), a > 0,
b > 0}, determine whether̂p = x/n or δ0 = (a0 + x)/(a0 + b0 + n) is more robust,
according to (6.6.37).

(c) Is there an estimator of the form (c + x)/(c + d + n) that you would consider more
robust, in the sense of (6.6.37), than either estimator in part (b)?

[In part (b), for fixedn and (a0, b0), calculate the Bayes risk of̂p andδ0 for a number
of (a, b) pairs.]

6.21 (a) Establish (6.6.39) and (6.6.40) for the class of priors given by (6.6.38).

(b) Show that the Bayes estimator based onπ (θ ) ∈ π in (6.6.38), under squared error
loss, is given by (6.6.41).

Section 7

7.1 For the situation of Example 7.1:

(a) The empirical Bayes estimator ofθ , using an unbiased estimate ofτ 2/(σ 2 + τ 2), is

δEB =

(
1− (p − 2)σ 2

|x|2
)

x,

the James-Stein estimator.

(b) The empirical Bayes estimator ofθ , using the marginal MLE ofτ 2/(σ 2 + τ 2), is

δEB =

(
1− pσ

2

|x|2
)+

x,

which resembles the positive-part Stein estimator.

7.2 Establish Corollary 7.2. Be sure to verify that the conditions ong(x) are sufficient to
allow the integration-by-parts argument. [Stein (1973, 1981) develops these representa-
tions in the normal case.]

7.3 The derivation of an unbiased estimator of the risk (Corollary 7.2) can be extended
to a more general model in the exponential family, the model of Corollary 3.3, where
X = X1, . . . , Xp has the density

pη (x) = e
∑p
i=1 ηi xi−A(η )h(x).

(a) The Bayes estimator ofη , under squared error loss, is

E(ηi |x) =
∂

∂xi
logm(x)− ∂

∂xi
logh(x).

Show that the risk ofE(η |X)] has unbiased estimator

p∑
i=1

[
∂2

∂x2
i

(logh(x)− 2 logm(x)) +

(
∂

∂xi
logm(x)

)2
]
.

[Hint: Theorem 3.5 and Problem 3.4.]
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(b) Show that the risk of the empirical Bayes estimator

E(ηi |x, λ̂) =
∂

∂xi
logm(x|λ̂(x))− ∂

∂xi
logh(x).

of Theorem 6.3 has unbiased estimator
p∑
i=1

[
∂2

∂x2
i

(
logh(x)− 2 logm(x|λ̂(x))

)
+

(
∂

∂xi
logm(x|λ̂(x))

)2
]
.

(c) Use the results of part (b) to derive an unbiased estimator of the risk of the positive-
part Stein estimator of (7.7.10).

7.4 Verify (7.7.9), the expression for the Bayes risk ofδτ0. (Problem 3.12 may be helpful.)

7.5 A general version of the empirical Bayes estimator (7.7.3) is given by

δc(x) =

(
1− cσ

2

|x|2
)

x,

wherec is a positive constant.

(a) Use Corollary 7.2 to verify that

Eθ |θ − δc(X)|2 = pσ 2 + cσ 4[c − 2(p − 2)]Eθ
1

|X|2 .

(b) Show that the Bayes risk, under� ∼ Np(0, τ 2I ), is given by

r(π, δc) = σ 2

[
p +

cσ 2

σ 2 + τ 2

(
c

p − 2
− 2

)]
and is minimized by choosingc = p − 2.

7.6 For the model

X|θ ∼ Np(θ , σ 2I ),

θ |τ 2 ∼ Np(µ, τ 2I ) :

Show that:

(a) The empirical Bayes estimator, using an unbiased estimator ofτ 2/(σ 2 + τ 2), is the
Stein estimator

δJS
i (x) = µi +

(
1− (p − 2)σ 2

�(xi − µi)2

)
(xi − µi).

(b) If p ≥ 3, the Bayes risk, under squared error loss, ofδJS is r(τ, δJS) = r(τ, δτ ) +
2σ 4/(σ 2 + τ 2), wherer(τ, δτ ) is the Bayes risk of the Bayes estimator.

(c) If p < 3, the Bayes risk ofδJS is infinite. [Hint: Show that ifY ∼ χ2
m,E(1/Y ) <

∞⇐⇒ m < 3].

7.7 For the model

X|θ ∼ Np(θ , σ 2I ),

θ |τ 2 ∼ N (µ, τ 2I )

the Bayes risk of the ordinary Stein estimator

δi(x) = µi +

(
1− (p − 2)σ 2

�(xi − µi)2

)
(xi − µi)
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is uniformly larger than its positive-part version

δ+
i (x) = µi +

(
1− (p − 2)σ 2

�(xi − µi)2

)+

(xi − µi).

7.8 Theorem 7.5 holds in greater generality than just the normal distribution. Suppose
X is distributed according to the multivariate version of the exponential familypη(x) of
(33.7),

pη(x) = eη
′x−A(η)h(x), −∞ < xi <∞,

and a multivariate conjugate prior distribution [generalizing (3.19)] is used.

(a) Show thatE(X|η) = ∇A(η).

(b) If µ = 0 in the prior distribution (see 3.19), show thatr(τ, δ) ≥ r(τ, δ+), where
δ(x) = [1− B(x)]x andδ+(x) = [1− B(x)]+x.

(c) If µ �= 0, the estimatorδ(x) would be modified toµ + δ(x − µ). Establish a result
similar to part (b) for this estimator.

[Hint: For part (b), the proof of Theorem 7.5, modified to use the Bayes estimator
E(∇A(η)|x, k, µ) as in (3.21), will work.]

7.9 (a) For the model (7.7.15), show that the marginal distribution ofXi is negative
binomial(a,1/b + 1); that is,

P (Xi = x) =

(
a + x − 1

x

)(
b

b + 1

)x ( 1

b + 1

)a
with EXi = ab and varXi = ab(b + 1).

(b) If X1, . . . , Xm are iid according to the negative binomial distribution in part (a),
show that the conditional distribution ofXj |

∑m

1 Xi is thenegative hypergeometric
distribution, given by

P

(
Xj = x|

m∑
1

Xi = t

)
=

(
a + x − 1

x

)(
(m− 1)a + t − x − 1

t − x
)

(
ma + t − 1

t

)
with EXj = t/m and varXj = (m− 1)t(ma + t)/m2(ma + 1).

7.10 For the situation of Example 7.6:

(a) Show that the Bayes estimator under the lossLk(λ, δ) of (7.7.16) is given by
(7.7.17).

(b) Verify (7.7.19) and (7.7.20).

(c) Evaluate the Bayes risksr(0, δ1) andr(1, δ0). Which estimator,δ0 or δ1, is more
robust?

7.11 For the situation of Example 7.6, evaluate the Bayes risk of the empirical Bayes
estimator (7.7.20) fork = 0 and 1. What values of the unknown hyperparameterb are
least and which are most favorable to the empirical Bayes estimator?

[Hint: Using the posterior expected loss (7.7.22) and Problem 7.9(b), the Bayes risk can
be expressed as an expectation of a function of�Xi only. Further simplification seems
unlikely.]
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7.12 Consider a hierarchical Bayes estimator for the Poisson model (7.7.15) with loss
(7.7.16). Using the distribution (5.6.27) for the hyperparameterb, show that the Bayes
estimator is (

px̄ + α − k
px̄ + pa + α + β − k

)
(a + xi − k).

[Hint: Show that the Bayes estimator isE(λ1−k|x)/E(λ−k|x) and that

E(λr |x) =
H(px̄ + pa + α + β)H(px̄ + α + r)

H(px̄ + α)H(px̄ + pa + α + β + r)

H(a + xi + r)

H(a + xi)
.

]

7.13 Prove the following: Two matrix results that are useful in calculating estimators
from multivariate hierarchical models are

(a) For any vectora of the forma = (I − 1
s
J )b, 1′a = �ai = 0.

(b) If B is an idempotent matrix (that is,B2 = I ) anda is a scalar, then

(I + aB)−1 = I − a

1 +a
B.

7.14 For the situation of Example 7.7:

(a) Show how to derive the empirical Bayes estimatorδL of (7.7.28).

(b) Verify the Bayes risk ofδL of (7.7.29).

For the situation of Example 7.8:

(c) Show how to derive the empirical Bayes estimatorδEB2 of (7.7.33).

(d) Verify the Bayes risk ofδEB2, (7.7.34).

7.15 The empirical Bayes estimator (7.7.27) can also be derived as a hierarchical Bayes
estimator. Consider the hierarchical model

Xij |ξi ∼ N (ξi, σ
2), j = 1, . . . , n, i = 1, . . . , s,

ξi |µ ∼ N (µ, τ 2), i = 1, . . . , s,

µ ∼ Uniform(−∞,∞)

whereσ 2 andτ 2 are known.

(a) Show that the Bayes estimator, with respect to squared error loss, is

E(ξi |x) =
σ 2

σ 2 + nτ 2
E(µ|x) +

nτ 2

σ 2 + nτ 2
x̄i

whereE(µ|x) is the posterior mean ofµ.

(b) Establish thatE(µ|x) = x̄ = �xij /ns. [This can be done by evaluating the expec-
tation directly, or by showing that the posterior distribution ofξi |x is

ξi |x ∼ N
[

σ 2

σ 2 + nτ 2
x̄ +

nτ 2

σ 2 + nτ 2
x̄i ,

σ 2

σ 2 + nτ 2

(
nτ 2 +

σ 2

s

)]
.

Note that theξi ’s are not independent a posteriori. In fact,

ξ |x ∼ Ns
(

nτ 2

σ 2 + nτ 2
M,

nσ 2τ 2

σ 2 + nτ 2
M

)
,

whereM = I + (σ 2/nτ 2)J ].
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(c) Show that the empirical Bayes estimator (7.7.32) can also be derived as a hierar-
chical Bayes estimator, by appending the specification (α, β) ∼ Uniform(�2) [that
is,π (α, β) = dα dβ,−∞ < α, β <∞] to the hierarchy (7.7.30).

7.16 Generalization of model (7.7.23) to the case of unequalni is, perhaps, not as straight-
forward as one might expect. Consider the generalization

Xij |ξi ∼ N (ξi, σ
2), j = 1, . . . , ni, i = 1, . . . , s,

ξi |µ ∼ N (µ, τ 2
i ), i = 1, . . . , s.

We also make the assumption thatτ 2
i = τ 2/ni . Show that:

(a) The above model is equivalent to

Y ∼ Ns(λ , σ 2I ),

λ ∼ Ns(Zµ, τ 2I )

whereYi =
√
niX̄i , λi =

√
niξi andz = (

√
n1, . . . ,

√
ns)

′.
(b) The Bayes estimator ofξi , using squared error loss, is

σ 2

σ 2 + τ 2
µ +

τ 2

σ 2 + τ 2
x̄i .

(c) The marginal distribution ofYi isYi ∼ Ns(Zµ, (σ 2 +τ 2)I ), and an empirical Bayes
estimator ofξ is

δEBi = x̄ +

(
1− (s − 3)σ 2

�ni(x̄i − x̄)2

)
(x̄i − x̄)

wherex̄i = �jxij /ni andx̄ = �ini x̄i/�ini .
[Without the assumption thatτ 2

i = τ 2/ni , one cannot get a simple empirical Bayes
estimator. Ifτ 2

i = τ 2, the likelihood estimation can be used to get an estimate ofτ 2 to
be used in the empirical Bayes estimator. This is discussed by Morris (1983a).]

7.17 (Empirical Bayes estimation in a general case). A general version of the hierarchical
models of Examples 7.7 and 7.8 is

X|ξ ∼ Ns(ξ , σ 2I ),

ξ |β ∼ Ns(Zβ , τ 2I )

whereσ 2 andZs×r , of rank r, are known andτ 2 andβ r×1 are unknown. Under this
model show that:

(a) The Bayes estimator ofξ , under squared error loss, is

E(ξ |x,β ) =
σ 2

σ 2 + τ 2
zβ +

τ 2

σ 2 + τ 2
x.

(b) Marginally, the distribution ofX|β is X|β ∼ Ns(Zβ , (σ 2 + τ 2)I ).
(c) Under the marginal distribution in part (b),

E[(Z′Z)−1Z′x] = Eβ̂ = β ,

E

[
s − r − 2

|X− Zβ̂ |2

]
=

1

σ 2 + τ 2
,

and, hence, an empirical Bayes estimator ofξ is

δEB = Zβ̂ +

(
1− (s − r − 2)σ 2

|x − Zβ̂ |2

)
(x − Zβ̂ ).
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(d) The Bayes risk ofδEB is r(τ, δτ ) + (r + 2)σ 4/(σ 2 + τ 2), wherer(τ, δτ ) is the risk
of the Bayes estimator.

7.18 (Hierarchical Bayes estimation in a general case.) In a manner similar to the previous
problem, we can derive hierarchical Bayes estimators for the model

X|ξ ∼ Ns(ξ , σ 2I ),

ξ |β ∼ Ns(Zβ , τ 2I ),

β ∼ Uniform(�r )
whereσ 2 andZs×r , of rankr, are known andτ 2 is unknown.

(a) The prior distribution ofξ , unconditional onβ, is proportional to

π (ξ ) =
∫
�r
π (ξ |β ) dβ ∝ e− 1

2
ξ ′ (I−H )ξ

τ2 ,

whereH = Z(Z′Z)−1Z′ projects from�s to�r .
[Hint: Establish that

(ξ − Zβ )′(ξ − Zβ ) = ξ ′(I −H )ξ

+[β − (Z′Z)−1Z′ξ ] ′Z′Z[β − (Z′Z)−1Z′ξ ]

to perform the integration onβ .]

(b) Show that

ξ |x ∼ Ns
(

τ 2

σ 2 + τ 2
M,

σ 2τ 2

σ 2 + τ 2
M

)
whereM = I + (σ 2/τ 2)H , and hence that the Bayes estimator is given by

σ 2

σ 2 + τ 2
Hx +

τ 2

σ 2 + τ 2
x,

whereZβ̂ = Hx.

[Hint: Establish that

1

τ 2
ξ ′(I −H )ξ +

1

σ 2
(x − ξ )′(x − ξ )

=
σ 2 + τ 2

σ 2τ 2

[(
ξ − τ 2

σ 2 + τ 2
Mx

)′
M−1

(
ξ − τ 2

σ 2 + τ 2
Mx

)]

+
1

σ 2 + τ 2
x′(I −H )x

whereM−1 = I − σ2

σ2+τ2H .]

(c) Marginally,X′(I − H )X ∼ (σ 2 + τ 2)χ2
s−r . This leads us to the empirical Bayes

estimator

Hx +

(
1− (s − r − 2)σ 2

x′(I −H )x

)
(x −Hx)

which is equal to the empirical Bayes estimator of Problem 7.17(c).

[The model in this and the previous problem can be substantially generalized. For exam-
ple, bothσ 2I andτ 2I can be replaced by full, positive definite matrices. At the cost of
an increase in the complexity of the matrix calculations and the loss of simple answers,
hierarchical and empirical Bayes estimators can be computed. The covariances, either
scalar or matrix, can also be unknown, and inverted gamma (or inverted Wishart) prior
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distributions can be accommodated. Calculations can be implemented via the Gibbs
sampler.

Note that these generalizations encompass the “unequalni” case (see Problem 7.16),
but there are no simple solutions for this case. Many of these estimators also possess a
minimax property, which will be discussed in Chapter 5.]

7.19 As noted by Morris (1983a), an analysis of variance-type hierarchical model, with
unequalni , will yield closed-form empirical Bayes estimators if the prior variances are
proportional to the sampling variances. Show that, for the model

Xij |ξi ∼ N (ξi, σ
2), j = 1, . . . , ni, i = 1, . . . , s,

ξ |β ∼ Ns(Zβ , τ 2D−1)

whereσ 2 andZs×r , of full rank r, are known,τ 2 is unknown, andD = diag(n1, . . . , ns),
an empirical Bayes estimator is given by

δEB = Zβ̂ +

(
1− (s − r − 2)σ 2

(x̄ − Zβ̂ )′D(x̄ − Zβ̂ )

)
(x̄ − Zβ̂ )

with x̄i = �jxij /ni , x̄ = {x̄i}, andβ̂ = (Z′DZ)−1Z′Dx̄.

7.20 An entertaining (and unjustifiable) result which abuses a hierarchical Bayes calcu-
lation yields the following derivation of the James-Stein estimator. LetX ∼ Np(θ , I )
andθ |τ 2 ∼ Np(0, τ 2I ).

(a) Verify that conditional onτ 2, the posterior and marginal distributions are given by

π (θ |x, τ 2) = Np

(
τ 2

τ 2 + 1
x,

τ 2

τ 2 + 1
I

)
,

m(x|τ 2) = Np[0, (τ 2 + 1)I ].

(b) Show that, takingπ (τ 2) = 1,−1< τ 2 <∞, we have∫∫
�p

θπ (θ |x, τ 2)m(x|τ 2) dθ dτ 2

=
x

(2π )p/2(|x|2)p/2−1

[
H

(
p − 2

2

)
2(p−2)/2 − H(p/2)2p/2

|x|2
]

and ∫ ∫
�p
π (θ |x, τ 2)m(x|τ 2)dθ dτ 2

=
1

(2π )p/2(|x|2)p/2−1
H

(
p − 2

2

)
2(p−2)/2

and hence

E(θ |x) =

(
1− p − 2

|x|2
)

x.

(c) Explain some implications of the result in part (b) and, why it cannot be true. [Try
to reconcile it with (3.3.12).]

(d) Why are the calculations in part (b) unjustified?
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9 Notes

9.1 History

Following the basic paper by Bayes (published posthumously in 1763), Laplace initiated
a widespread use of Bayes procedures, particularly with noninformative priors (for
example, in his paper of 1774 and the fundamental book of 1820; see Stigler 1983,
1986). However, Laplace also employed non-Bayesian methods, without always making
a clear distinction. A systematic theory of statistical inference based on noninformative
(locally invariant) priors, generalizing and refining Laplace’s approach, was developed
by Jeffreys in his book on probability theory (1st edition 1939, 3rd edition 1961). A
corresponding subjective theory owes its modern impetus to the work of deFinetti (for
example, 1937, 1970) and that of L. J. Savage, particularly in his book on theFoundations
of Statistics (1954). The idea of selecting an appropriate prior from the conjugate family
was put forward by Raiffa and Schlaifer (1961). Interest in Bayes procedures (although
not from a Bayesian point of view) also received support from Wald’s result (for example,
1950) that all admissible procedures are either Bayes or limiting Bayes (see Section 5.8).

Bayesian attitudes and approaches are continually developing, with some of the most
influential work done by Good (1965), DeGroot(1970), Zellner (1971), deFinetti (1974),
Box and Tiao (1973), Berger (1985), and Bernardo and Smith (1994). An account of
criticisms of the Bayesian approach can be found in Rothenberg (1977), and Berger
(1985, Section 4.12). Robert (1994a, Chapter 10) provides a defense of “The Bayesian
Choice.”

9.2 Modeling

A general Bayesian treatment of linear models is given by Lindley and Smith (1972);
the linear mixed model is given a Bayesian treatment in Searle et al. (1992, Chapter
9); sampling from a finite population is discussed from a Bayesian point of view by
Ericson (1969) (see also Godambe 1982); a Bayesian approach to contingency tables
is developed by Lindley (1964), Good (1965), and Bloch and Watson (1967) (see also
Bishop, Fienberg, and Holland 1975 and Leonard 1972). The theory of Bayes estimation
in exponential families is given a detailed development by Bernardo and Smith (1994).
The fact that the resulting posterior expectations are convex combinations of sample and
prior means is a characterization of this situation (Diaconis and Ylvisaker 1979, Goel
and DeGroot 1980, MacEachern 1993).

Extensions to nonlinear and generalized linear models are given by Eaves (1983) and
Albert (1988). In particular, for the generalized linear model, Ibrahim and Laud (1991)
and Natarajan and McCulloch (1995) examine conditions for the propriety of posterior
densities resulting from improper priors.

9.3 Computing

One reason why interest in Bayesian methods has flourished is because of the great
strides in Bayesian computing. The fundamental work of Geman and Geman (1984)
(which built on that of Metropolis et al. (1953) and Hastings 1970) influenced Gelfand
and Smith (1990) to write a paper that sparked new interest in Bayesian methods, sta-
tistical computing, algorithms, and stochastic processes through the use of computing
algorithms such as the Gibbs sampler and the Metropolis-Hastings algorithm. Elemen-
tary introductions to these topics can be found in Casella and George (1992) and Chib
and Greenberg (1995). More detailed and advanced treatments are given in Tierney
(1994), Robert (1994b), Gelman et al. (1995), and Tanner (1996).
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9.4 The Ergodic Theorem

The general theorem about convergence of (5.15) in a Markov chain is known as the
Ergodic Theorem; the name was coined by Boltzmann when investigating the behavior
of gases (see Dudley 1989, p. 217). A sequenceX0, X1, X2, . . . is calledergodic if
the limit of

∑n

i=1Xi/n is independent of the initial value ofX0. The ergodic theorem
for stationary sequences, those for which (Xj1, . . . , Xjk ) has the same distribution as
(Xj1+r , . . . , Xjk+r ) for all r = 1,2, . . . is an assertion of the equality of time and space
averages and holds in some generality (Dudley 1989, Section 8.4, Billingsley 1995,
Section 24).

As the importance of this theorem led it to have wider applicability, the term “ergodic”
has come to be applied in many situations and is often associated with Markov chains. In
statistical practice, the usefulness of Markov chains for computations and the importance
of the limit being independent of the starting values has brought the study of the ergodic
behavior of Markov chains into prominence for statisticians. Good entries to the classical
theory of Markov chains can be found in Feller (1968), Kemeny and Snell (1976),
Resnick (1992), Ross (1985), or the more advanced treatment by Meyn and Tweedie
(1993). In the context of estimation, the papers by Tierney (1994) and Robert (1995)
provide detailed introductions to the relevant Markov chain theory. Athreya, Doss, and
Sethuraman (1996) rigorously develop limit theorems for Markov chains arising in Gibbs
sampling-type situations.

We are mainly concerned with Markov chainsX0, X1, . . . that have aninvariant dis-
tribution, F , satisfying

∫
A
dF (x) =

∫
P (Xn+1 ∈ A|Xn = x)dF (x). The chain is called

irreducible if all sets with positive probability under the invariant distribution can be
reached at some point by the chain. Such an irreducible chain is alsorecurrent (Tier-
ney 1994, Section 3.1). A recurrent chain is one that visits every set infinitely often
(i.o.) or, more importantly, a recurrent chain tends not to “drift off” to infinity. For-
mally, an irreducible Markov chain isrecurrent if for eachA with

∫
A
dF (x) > 0, we

haveP (Xk ∈ A i.o. |X0 = x0) > 0 for all x0, and equal to 1 for almost allx0 (f ). If
P (Xk ∈ A i.o. |X0 = x0) = 1 for all x0, the chain is calledHarris recurrent. Finally, if
the invariant distributionF has finite mass (as it will in most of the cases we consider
here), the chain ispositive recurrent; otherwise it isnull recurrent.

The Markov chain isperiodic if for some integerm ≥ 2, there exists a collection
of disjoint sets{A1, . . . , Am} for which P (Xk+1 ∈ Aj+1|Xk ∈ Aj ) = 1 for all j =
1, . . . , m−1 (modm). That is, the chain periodically travels through the setsA1, . . . , Am.
If no such collection of sets exists, the chain isaperiodic.

The relationship between these Markov chain properties and their consequences are
summarized in the following theorem, based on Theorem 1 of Tierney (1994).

Theorem 9.1 Suppose that the Markov chain X0, X1, . . . is irreducible with invariant
distribution F satisfying

∫
dF (x) = 1. Then, the Markov chain is positive recurrent and

F is the unique invariant distribution. If the Markov chain is also aperiodic, then for
almost all x0 (F ),

sup
A

|P (Xk ∈ A|X0 = x0)−
∫
A

dF (x)| → 0.

If the chain is Harris recurrent, the convergence occurs for all x0.

It is common to call a Markov chainergodic if it is positive Harris recurrent and aperiodic.
For such chains, we have the following version of the ergodic theorem.
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Theorem 9.2 Let X0, X1, X2, . . . be an ergodic Markov chain with invariant distribu-
tion F . Then, for any function h with

∫ |h(x)|dF (x) <∞,

(1/n)
n∑
i=1

h(Xi) →
∫
h(x)dF (x) almost everywhere (F ).

9.5 Parametric and Nonparametric Empirical Bayes

The empirical Bayes analysis considered in Section 6 is sometimes referred to aspara-
metric empirical Bayes, to distinguish it from the empirical Bayes methodology de-
veloped by Robbins (1955), which could be callednonparametric. In nonparametric
empirical Bayes analysis, no functional form is assumed for the prior distribution, but a
nonparametric estimator of the prior is built up and the resulting empirical Bayes mean
is calculated. Robbins showed that as the sample size goes to infinity, it is possible to
achieve the same Bayes risk as that achieved by the true Bayes estimator. Much research
has been done in this area (see, for example, Van Ryzin and Susarla 1977, Susarla 1982,
Robbins 1983, and Maritz and Lwin 1989). Due to the nature of this approach, its op-
timality properties tend to occur in large samples, with the parametric empirical Bayes
approach being more suited for estimation in finite-sample problems.

Parametric empirical Bayes methods also have a long history, with major developments
evolving in the sequence of papers by Efron and Morris (1971, 1972a, 1972b, 1973a,
1973b, 1975, 1976a, 1976b), where the connection with minimax estimation is explored.
The theory and applications of empirical Bayes methods is given by Morris (1983a);
a more comprehensive treatment is found in Carlin and Louis (1996). Less technical
introductions are given by Casella (1985a, 1992a).

9.6 Robust Bayes

Robust Bayesian methods were effectively coalesced into a practical methodology by
Berger (1984). Since then, there has been a great deal of research on this topic. (See, for
example, Berger and Berliner 1986, Wasserman 1989, 1990, Sivaganesen and Berger
1989, DasGupta 1991, Lavine 1991a, 1991b, and the review papers by Berger 1990b,
1994 and Wasserman 1994.) The idea of using a class of priors is similar to thegamma-
minimax approach, first developed by Robbins (1951, 1964) and Good (1952). In this
approach, the subject of robustness over the class is usually not an issue, but rather the
objective is the construction of an estimator that is minimax over the class (see Problem
5.1.2).
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CHAPTER 5

Minimaxity and Admissibility

1 Minimax Estimation

At the beginning of Chapter 4, we introduced two ways in which the risk function
R(θ, δ) can be minimized in some overall sense: minimizing a weighted-average
risk and minimizing the maximum risk. The first of these approaches was the
concern of Chapter 4; in the present chapter, we shall consider the second.

Definition 1.1 An estimatorδM of θ , which minimizes the maximum risk, that is,
which satisfies

inf
δ

sup
θ

R(θ, δ) = sup
θ

R(θ, δM ),(1.1)

is called aminimax estimator.

The problem of finding the estimatorδM , which minimizes the maximum risk,
is often difficult. Thus, unlike what happened in UMVU, equivariant, and Bayes
estimations, we shall not be able to determine minimax estimators for large classes
of problems but, rather, will treat problems individually (see Section 5.4).

Example 1.2 A first example. As we will see (Example 2.17), the Bayes estima-
tors of Example 4.1.5, given by (4.1.12), that is,

δ∧(x) =
a + x

a + b + n
,(1.2)

are admissible. Their risk functions are, therefore, incomparable as they all must
cross (or coincide). As an illustration, consider the group of three estimators
δπi , i = 1, . . . ,3, Bayes estimators from beta(1,3),beta(2,2) and beta(3,1) pri-
ors, respectively. Based on this construction, eachδπi will be preferred if it is
thought that the true value of the parameter is close to its prior mean (1/4, 1/2,
3/4, respectively). Alternatively, one might chooseδπ2 since it can be shown that
δπ2 has the smallest maximum risk among the three estimators being considered
(see Problem 1.1). Althoughδπ2 is minimax among these three estimators, it is
not minimax overall. See Problems 1.2 and 1.3 for an alternative definition of
minimaxity where the class of estimators is restricted. ‖

As pointed out in Section 4.1(i), and suggested by Example 1.2, Bayes estima-
tors provide a tool for solving minimax problems. Thus, Bayesian considerations
are helpful when choosing an optimal frequentist estimator. Viewed in this light,
there is a synthesis of the two approaches. The Bayesian approach provides us
with a means of constructing an estimator that has optimal frequentist properties.
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This synthesis highlights important features of both the Bayesian and frequentist
approaches. The Bayesian paradigm is well suited for the construction of possi-
bly optimal estimators, but is less well suited for their evaluation. The frequentist
paradigm is complementary, as it is well suited for risk evaluations, but less well
suited for construction. It is important to view these two approaches and hence the
contents of Chapters 4 and 5 as complementary rather than adversarial; together
they provide a rich set of tools and techniques for the statistician.

If we want to apply this idea to the determination of minimax estimators, we
must ask ourselves: For what prior distribution� is the Bayes solutionδ� likely to
be minimax? A minimax procedure, by minimizing the maximum risk, tries to do
as well as possible in the worst case. One might, therefore, expect that the minimax
estimator would be Bayes for the worst possible distribution. To make this concept
precise, let us denote the average risk (Bayes risk) of the Bayes solutionδ� by

r� = r(�, δ�) =
∫
R(θ, δ�) d�(θ ).(1.3)

Definition 1.3 A prior distribution � is least favorable if r� ≥ r�′ for all prior
distributions�′.

This is the prior distribution which causes the statistician the greatest average
loss.

The following theorem provides a simple condition for a Bayes estimatorδ� to
be minimax.

Theorem 1.4 Suppose that � is a distribution on � such that

r(�, δ�) =
∫
R(θ, δ�) d�(θ ) = sup

θ

R(θ, δ�).(1.4)

Then:

(i) δ� is minimax.

(ii) If δ� is the unique Bayes solution with respect to �, it is the unique minimax
procedure.

(iii) � is least favorable.

Proof.

(i) Let δ be any other procedure. Then,

sup
θ

R(θ, δ) ≥
∫
R(θ, δ) d�(θ )

≥
∫
R(θ, δ�) d�(θ ) = sup

θ

R(θ, δ�).

(ii) This follows by replacing≥ by> in the second equality of the proof of (i).

(iii) Let �′ be some other distribution ofθ . Then,

r�′ =
∫
R(θ, δ�′ ) d�

′(θ ) ≤
∫
R(θ, δ�) d�′(θ )

≤ sup
θ

R(θ, δ�) = r�. ✷



5.1 ] MINIMAX ESTIMATION 311

Condition (1.4) states that the average ofR(θ, δ�) is equal to its maximum. This
will be the case when the risk function is constant or, more generally, when�

assigns probability 1 to the set on which the risk function takes on its maximum
value. The following minimax characterizations are variations and simplifications
of this requirement.

Corollary 1.5 If a Bayes solution δ� has constant risk, then it is minimax.

Proof. If δ� has constant risk, (1.4) clearly holds. ✷

Corollary 1.6 Let ω� be the set of parameter points at which the risk function of
δ� takes on its maximum, that is,

ω� = {θ : R(θ, δ�) = sup
θ ′
R(θ ′, δ�)}.(1.5)

Then, δ� is minimax if and only if

�(ω�) = 1.(1.6)

This can be rephrased by saying that a sufficient condition forδ� to be minimax
is that there exists a setω such that

�(ω) = 1

and
R(θ, δ�) attains its maximum at all points ofω.(1.7)

Example 1.7 Binomial. Suppose thatX has the binomial distributionb(p, n) and
that we wish to estimatepwith squared error loss. To see whetherX/n is minimax,
note that its risk functionp(1−p)/n has a unique maximum atp = 1/2. To apply
Corollary 1.6, we need to use a prior distribution� forpwhich assigns probability
1 top = 1/2. The corresponding Bayes estimator isδ(X) ≡ 1/2, notX/n. Thus,
if X/n is minimax, the approach suggested by Corollary 1.6 does not work in the
present case. It is, in fact, easy to see thatX/n is not minimax (Problem 1.9).

To determine a minimax estimator by the method of Theorem 1.4, let us utilize
the result of Example 4.1.5 and try a beta distribution for�. If � is B(a, b), the
Bayes estimator is given by (4.1.12) and its risk function is

1

(a + b + n)2
{np(1− p) + [a(1− p)− bp]2}.(1.8)

Corollary 1.5 suggests seeing whether there exist valuesa andb for which the risk
function (1.8) is constant. Setting the coefficients ofp2 andp in (1.8) equal to zero
shows that (1.8) is constant if and only if

(a + b)2 = n and 2a(a + b) = n.(1.9)

Sincea andb are positive,a + b =
√
n and, hence,

a = b =
1

2

√
n.(1.10)
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It follows that the estimator

δ =
X + 1

2

√
n

n +
√
n

=
X

n

√
n

1 +
√
n

+
1

2

1

1 +
√
n

(1.11)

is constant risk Bayes and, hence, minimax. Because of the uniqueness of the
Bayes estimator (4.1.4), it is seen that (1.11) is the unique minimax estimator of
p.

Of course, the estimator (1.11) is biased (Problem 1.10) becauseX/n is the only
unbiased estimator that is a function ofX. A comparison of its risk, which is

rn = E(δ − p)2 =
1

4

1

(1 +
√
n)2
,(1.12)

with the risk function
Rn(p) = p(1− p)/n(1.13)

of X/n shows that (Problem 1.11)rn < Rn(p) in an intervalIn = (1/2− cn <
p < 1/2 +cn) andrn > Rn(p) outsideIn. For small values ofn, cn is close to 1/2,
so that the minimax estimator is better (and, in fact, substantially better) for most
of the range ofp. However, asn→ ∞, cn → 0 andIn shrinks toward the point
1/2. Furthermore, supp Rn(p)/rn = Rn(1/2)/rn → 1, so that even atp = 1/2,
where the comparison is least favorable toX/n, the improvement achieved by the
minimax estimator is negligible. Thus, for large and even moderaten,X/n is the
better of the two estimators. In the limit asn→∞ (although not for any finiten),
X/n dominates the minimax estimator. Problems for which such asubminimax
sequence does not exist are discussed by Ghosh (1964).

The present example illustrates an asymmetry between parts (ii) and (iii) of
Theorem 1.4. Part (ii) asserts the uniqueness of the minimax estimator, whereas
no such claim is made in part (iii) for the least favorable�. In the present case, it
follows from (4.1.4) that for any�, the Bayes estimator ofp is

δ�(x) =

∫ 1
0 p

x+1(1− p)n−xd�(p)∫ 1
0 p

x(1− p)n−xd�(p)
.(1.14)

Expansion of (1− p)n−x in powers ofp shows thatδ�(x) depends on� only
through the firstn + 1 moments of�. This shows, in particular, that the least
favorable distribution is not unique in the present case. Any prior distribution with
the same firstn+1 moments gives the same Bayes solution and, hence, by Theorem
1.4 is least favorable (Problem 1.13).

Viewed as a loss function, squared error may be unrealistic when estimatingp

since in many situations an error of fixed size seems much more serious for values
of p close to 0 or 1 than for values near 1/2. To take account of this difficulty, let

L(p, d) =
(d − p)2

p(1− p)
.(1.15)

With this loss function,X/n becomes a constant risk estimator and is seen to be
a Bayes estimator with respect to the uniform distribution on (0,1) and hence a
minimax estimator. It is interesting to note that with (1.15), the risk function of the
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estimator (1.11) is unbounded. This indicates how strongly the minimax property
can depend on the loss function. ‖

When the loss function is convex ind, as was the case in Example 1.7, it follows
from Corollary 1.7.9 that attention may be restricted to nonrandomized estimators.
The next example shows that this is no longer true when the convexity assumption
is dropped.

Example 1.8 Randomized minimax estimator. In the preceding example, sup-
pose that the loss is zero when|d − p| ≤ α and is one otherwise, whereα <
1/2(n + 1). Since any nonrandomizedδ(X) can take on at mostn + 1 distinct val-
ues, the maximum risk of any suchδ is then equal to 1. To exhibit a randomized
estimator with a smaller maximum risk, consider the extreme case in which the
estimator ofp does not depend on the data at all but is a random variableU , which
is uniformly distributed on (0,1). The resulting risk function is

R(p,U ) = 1− P (|U − p| ≤ α)(1.16)

and it is easily seen that the maximum of (1.16) is 1− α < 1 (Problem 1.14). ‖
The loss function in this example was chosen to make the calculations easy, but

the possibility of reducing the maximum risk through randomization exists also
for other nonconvex loss functions. In particular, for the problem of Example 1.7
with loss function|d − p|r (0 < r < 1), it can be proved that no nonrandomized
estimator can be minimax (Hodges and Lehmann 1950).

Example 1.9 Difference of two binomials. Consider the case of two independent
variablesX andY with distributionsb(p1,m) andb(p2, n), respectively, and the
problem of estimatingp2 − p1 with squared error loss. We shall now obtain the
minimax estimator whenm = n; no solution is known whenm �= n.

The derivation of the estimator in Example 4.1.5 suggests that in the present
case, too, the minimax estimator might be a linear estimatoraX + bY + k with
constant risk. However, it is easy to see (Problem 1.18) that such a minimax
estimator does not exist. Still hoping for a linear estimator, we shall therefore try
to apply Corollary 1.6. Before doing so, let us simplify the hoped-for solutions by
an invariance consideration.

The problem remains invariant under the transformation

(X′, Y ′) = (Y,X), (p′1, p
′
2) = (p2, p1), d ′ = −d,(1.17)

and an estimatorδ(X, Y ) is equivariant under this transformation providedδ(Y,X) =
−δ(X, Y ) and hence if

(a + b)(x + y) + 2k = 0 for all x, y.

This leads to the conditiona+b = k = 0 and, therefore, to an estimator of the form

δ(X, Y ) = c(Y −X).(1.18)

As will be seen in Section 5.4 (see Theorem 4.1 and the discussion following it),
if a problem remains invariant under a finite groupG and if a minimax estimator
exists, then there exists an equivariant minimax estimator. In our search for a linear
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minimax estimator, we may therefore restrict attention to estimators of the form
(1.18).

Application of Corollary 1.6 requires determination of the setω of pairs (p1, p2)
for which the risk of (1.18) takes on its maximum. The risk of (1.18) is

Rc(p1, p2) = E[c(Y −X)− (p2 − p1)]2

= c2n(p1(1− p1) + p2(1− p2)) + (cn− 1)2(p2 − p1)2.

Taking partial derivatives with respect top1 andp2 and setting the resulting ex-
pressions equal to 0 leads to the two equations

[2(cn− 1)2 − 2c2n]p1− 2(cn− 1)2p2 = −c2n,

−2(cn− 1)2p1 + [2(cn− 1)2 − 2c2n]p2 = −c2n.(1.19)

Typically, these equations have a unique solution, say (p0
1, p

0
2), which is the point of

maximum risk. Application of Corollary 1.6 would then have� assign probability
1 to the point (p0

1, p
0
2) and the associated Bayes estimator would beδ(X, Y ) ≡

p0
2 − p0

1, whose risk does not have a maximum at (p0
1, p

0
2).

This impasse does not occur if the two equations (1.19) are linearly dependent.
This will be the case only if

c2n = 2(cn− 1)2

and hence if

c =

√
2n

n
[√

2n± 1
] .(1.20)

Now, a Bayes estimator (4.1.4) does not take on values outside the convex hull
of the range of the estimand, which in the present case is (−1,1). This rules out
the minus sign in the denominator ofc. Substituting (1.20) with the plus sign into
(1.19) reduces these two equations to the single equation

p1 + p2 = 1.(1.21)

The hoped-for minimax estimator is thus

δ(X, Y ) =

√
2n

n
(√

2n + 1
) (Y −X).(1.22)

We have shown (and it is easily verified directly, see Problem 1.19) that in the
(p1, p2) plane, the risk of this estimator takes on its maximum value at all points
of the line segment (1.21), with 0< p1 < 1, which therefore is the conjecturedω
of Corollary 1.6.

It remains to show that (1.22) is the Bayes estimator of a prior distribution�,
which assigns probability 1 to the set (1.21).

Let us now confine attention to this subset and note thatp1 + p2 = 1 implies
p2−p1 = 2p2−1. The following lemma reduces the problem of estimating 2p2−1
to that of estimatingp2.
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Lemma 1.10 Let δ be a Bayes (respectively, UMVU, minimax, admissible) esti-
mator of g(θ ) for squared error loss. Then, aδ + b is Bayes (respectively, UMVU,
minimax, admissible) for ag(θ ) + b.

Proof. This follows immediately from the fact that

R(ag(θ ) + b, aδ + b) = a2R(g(θ ), δ).

✷

For estimatingp2, we have, in the present case,n binomial trials with parameter
p = p2 andn binomial trials with parameterp = p1 = 1− p2. If we interchange
the meanings of “success” and “failure” in the lattern trials, we have 2n binomial
trials with success probabilityp2, resulting inY + (n − X) successes. According
to Example 1.7, the estimator

Y + n−X
2n

√
2n

1 +
√

2n
+

1

2

1

1 +
√

2n

is unique Bayes forp2. Applying Lemma 1.10 and collecting terms, we see that
the estimator (1.22) is unique Bayes for estimatingp2 − p1 = 2p2 − 1 onω.
It now follows from the properties of this estimator and Corollary 1.5 thatδ is
minimax for estimatingp2− p1. It is interesting thatδ(X, Y ) is not the difference
of the minimax estimators forp2 andp1. This is unlike the behavior of UMVU
estimators.

Thatδ(X, Y ) is the unique Bayes (and hence minimax) estimator forp2 − p1,
even when attention is not restricted toω, follows from the remark after Corollary
4.1.4. It is only necessary to observe that the subsets of the sample space which
have positive probability are the same whether (p1, p2) is inω or not.

The comparison of the minimax estimator (1.22) with the UMVU estimator
(Y −X)/n gives results similar to those in the case of a singlep. In particular, the
UMVU estimator is again much better for largem = n (Problem 1.20). ‖

Equation (1.4) implies that a least favorable distribution exists. When such a
distribution does not exist, Theorem 1.4 is not applicable. Consider, for example,
the problem of estimating the meanθ of a normal distribution with known variance.
Since all possible values ofθ play a completely symmetrical role, in the sense that
none is easier to estimate than any other, it is natural to conjecture that the least
favorable distribution is “uniform” on the real line, that is, that the least favorable
distribution is Lebesgue measure. This is the Jeffreys prior and, in this case, is not
a proper distribution.

There are two ways in which the approach of Theorem 1.4 can be generalized
to include such improper priors.
(a) As was seen in Section 4.1, it may turn out that the posterior distribution given

x is a proper distribution. One can then compute the expectationE[g(�)|x]
for this distribution, ageneralized Bayes estimator, and hope that it is the
desired estimator. This approach is discussed, for example, by Sacks (1963),
Brown (1971), and Berger and Srinivasan (1978).

(b) Alternatively, one can approximate the improper prior distribution with a se-
quence of proper distributions; for example, Lebesgue measure by the uniform
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distributions on (−N,N), N = 1,2, . . ., and generalize the concept of least
favorable distribution to that of least favorable sequence. We shall here follow
the second approach.

Definition 1.11 A sequence of prior distributions {�n} is least favorable if for
every prior distribution� we have

r� ≤ r = lim
n→∞ r�n,(1.23)

where

r�n =
∫
R(θ, δn) d�n(θ )(1.24)

is the Bayes risk under�n.

Theorem 1.12 Suppose that {�n} is a sequence of prior distributions with Bayes
risks rn satisfying (1.23) and that δ is an estimator for which

sup
θ

R(θ, δ) = r.(1.25)

Then

(i) δ is minimax and

(ii) the sequence {�n} is least favorable.

Proof.

(i) Supposeδ′ is any other estimator. Then,

sup
θ

R(θ, δ′) ≥
∫
R(θ, δ′) d�n(θ ) ≥ r�n,

and this holds for everyn. Hence,

sup
θ

R(θ, δ′) ≥ sup
θ

R(θ, δ),

andδ is minimax.

(ii) If � is any distribution, then

r� =
∫
R(θ, δ�) d�(θ ) ≤

∫
R(θ, δ) d�(θ ) ≤ sup

θ

R(θ, δ) = r.

This completes the proof. ✷

This theorem is less satisfactory than Theorem 1.4 in two respects. First, even if the
Bayes estimatorsδn are unique, it is not possible to conclude thatδ is the unique
minimax estimator. The reason for this is that the second inequality in the second
line of the proof of (i), which is strict whenδn is unique Bayes, becomes weak
under the limit operation.

The other difficulty is that in order to check condition (1.25), it is necessary to
evaluater and hence the Bayes riskr�n . This evaluation is often easy when the�n
are conjugate priors. Alternatively, the following lemma sometimes helps.
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Lemma 1.13 If δ� is the Bayes estimator of g(θ ) with respect to � and if

r� = E[δ�(X)− g(�)]2(1.26)

is its Bayes risk, then

r� =
∫

var[g(�)|x] dP (x).(1.27)

In particular, if the posterior variance of g(�)|x is independent of x, then

r� = var[g(�)|x].(1.28)

Proof. The right side of (1.26) is equal to∫ {
E [g(�)− δ�(x)]2 |x} dP (x)

and the result follows from (4.5.2). ✷

Example 1.14 Normal mean. Let X = (X1, . . . , Xn), with theXi iid according
toN (θ, σ 2). Let the estimand beθ , the loss squared error, and suppose, at first, that
σ 2 is known. We shall prove that̄X is minimax by finding a sequence of Bayes
estimatorsδn satisfying (1.23) withr = σ 2/n.

As prior distribution forθ , let us try the conjugate normal distributionN (µ, b2).
Then, it follows from Example 4.2.2 that the Bayes estimator is

δ�(x) =
nx̄/σ 2 +µ/b2

n/σ 2 + 1/b2
.(1.29)

The posterior variance is given by (4.2.3) and is independent ofx, so that

r� =
1

n/σ 2 + 1/b2
.(1.30)

Asb→∞, r� ↑ σ 2/n, and this completes the proof of the fact thatX̄ is minimax.
Suppose, now, thatσ 2 is unknown. It follows from the result just proved that the

maximum risk of every estimator will be infinite unlessσ 2 is bounded. We shall
therefore assume that

σ 2 ≤ M.(1.31)

Under this restriction, the maximum risk ofX̄ is

sup
(θ,σ 2)

E(X̄ − θ )2 =
M

n
.

ThatX̄ is minimax subject to (1.31), then, is an immediate consequence of Lemma
1.15 below.

It is interesting to note that although the boundedness condition (1.31) was
required for the minimax problem to be meaningful, the minimax estimator does
not, in fact, depend on the value ofM.

An alternative modification, whenσ 2 is unknown, is to consider the loss function

L(θ, δ) =
1

σ 2
(θ − δ)2.(1.32)



318 MINIMAXITY AND ADMISSIBILITY [ 5.1

For this loss function, the risk of̄X is bounded, and̄X is again minimax (Problem
1.21). ‖

We now prove a lemma which is helpful in establishing minimaxity in nonpara-
metric situations.

Lemma 1.15 Let X be a random quantity with distribution F , and let g(F ) be a
functional defined over a set F1 of distributions F . Suppose that δ is a minimax
estimator of g(F ) when F is restricted to some subset F0 of F1. Then, if

sup
F∈F0

R(F, δ) = sup
F∈F1

R(F, δ),(1.33)

δ is minimax also when F is permitted to vary over F1.

Proof. If an estimatorδ′ existed with smaller sup risk overF1 thanδ, it would also
have smaller sup risk overF0 and thus contradict the minimax property ofδ over
F0. ✷

Example 1.16 Nonparametric mean. LetX1, . . . , Xn be iid with distributionF
and finite expectationθ , and consider the problem of estimatingθ with squared
error loss. If the maximum risk of every estimator ofθ is infinite, the minimax
problem is meaningless. To rule this out, we shall consider two possible restrictions
onF :

(a) Bounded variance,

varF (Xi) ≤ M <∞;(1.34)

(b) bounded range,

−∞ < a < Xi < b <∞.(1.35)

Under (a), it is easy to see thatX̄ is minimax by applying Lemma 1.15 with
F1 the family of all distributionsF satisfying (1.34), andF0 the family of normal
distributions satisfying (1.34). Then,X̄ is minimax forF0 by Example 1.14. Since
(1.33) holds withδ = X̄, it follows thatX̄ is minimax forF1. We shall see in the
next section that it is, in fact, the unique minimax estimator ofθ .

To find a minimax estimator ofθ under (b), suppose without loss of generality
thata = 0 andb = 1, and letF1 denote the class of distributionsF with F (1)−
F (0) = 1. It seems plausible in the present case that a least favorable distribution
overF1 would concentrate on those distributionsF ∈ F1 which are as spread out
as possible, that is, which put all their mass on the points 0 and 1. But these are
just binomial distributions withn = 1. If this conjecture is correct, the minimax
estimator ofθ should reduce to (1.11) when all theXi are 0 or 1, withX in (1.11)
given byX = �Xi . This suggests the estimator

δ(X1, . . . , Xn) =

√
n

1 +
√
n
X̄ +

1

2

1

1 +
√
n
,(1.36)

and we shall now prove that (1.36) is, indeed, a minimax estimator ofθ .
Let F0 denote the set of distributionsF according to which

P (Xi = 0) = 1− p, P (Xi = 1) =p, 0< p < 1.
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Then, it was seen in Example 1.7 that (1.36) is the minimax estimator ofp = E(Xi)
asF varies overF0. To prove that (1.36) is minimax with respect toF1, it is, by
Lemma 1.15, enough to prove that the risk function of the estimator (1.36) takes
on its maximum overF0.

LetR(F, δ) denote the risk of (1.36). Then,

R(F, δ) = E

[ √
n

1 +
√
n
X̄ +

1

2(1 +
√
n)
− θ

]2

.

By adding and subtracting [
√
n/(1 +

√
n)]θ inside the square brackets, this is seen

to simplify to

R(F, δ) =
1

(1 +
√
n)2

[
varF (X) +

(
1

2
− θ

)2
]
.(1.37)

Now,
varF (X) = E(X − θ )2 = E(X2)− θ2 ≤ E(X)− θ2

since 0≤ X ≤ 1 impliesX2 ≤ X. Thus,

varF (X) ≤ θ − θ2.(1.38)

Substitution of (1.38) into (1.37) shows, after some simplification, that

R(F, δ) ≤ 1

4(1 +
√
n)2
.(1.39)

Since the right side of (1.39) is the (constant) risk ofδ over F0, the minimax
property ofδ follows. ‖

Let us next return to the situation, considered at the beginning of Section 3.7, of
estimating the mean̄a of a population{a1, . . . , aN } from a simple random sample
Y1, . . . , Yn drawn from this population. To make the minimax estimation ofā

meaningful, restrictions on thea’s are needed. In analogy to (1.34) and (1.35), we
shall consider the following cases:

(a) Bounded population variance

1

N
�(ai − ā)2 ≤ M;(1.40)

(b) Bounded range,

0 ≤ ai ≤ 1,(1.41)

to which the more general casea ≤ ai ≤ b can always be reduced. The loss
function will be squared error, and for the time being, we shall ignore the labels. It
will be seen in Section 5.4 that the minimax results remain valid when the labels
are included in the data.

Example 1.17 Simple random sampling. We begin with case (b) and consider
first the special case in which all the values ofa are either 1 or 0, sayD equal to
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1,N −D equal to 0. The total numberX of 1’s in the sample is then a sufficient
statistic and has the hypergeometric distribution

P (X = x) =

(
D

x

)(
N −D
n− x

)/(
N

n

)
(1.42)

where max[0, n − (N −D)] ≤ x ≤ min(n,D) (Problem 1.28) and whereD can
take on the values 0,1, . . . , N . The estimand is̄a = D/N , and, following the
method of Example 4.1.5, one finds thatαX/n + β with

α =
1

1 +
√

N−n
n(N−1)

, β =
1

2
(1− α)(1.43)

is a linear estimator with constant risk (Problem 1.29). That (1.43) is minimax is
then a consequence of the fact that it is the Bayes estimator ofD/N with respect
to the prior distribution

P (D = d) =
∫ 1

0

(
N

d

)
pdqN−d

H(a + b)

H(a)H(b)
pa−1qb−1dp,(1.44)

where

a = b =
β

α/n− 1/N
.(1.45)

It is easily checked that asN → ∞, (1.43)→ (1.11) and (1.45)→ 1/2
√
n,

as one would expect since the hypergeometric distribution then tends toward the
binomial.

The special case just treated plays the same role as a tool for the problem of
estimatingā subject to (1.41) that the binomial case played in Example 1.16. To
show that

δ = αȲ + β(1.46)

is minimax, it is only necessary to check that

E(δ − ā)2 = α2 var(Ȳ ) + [β + (α − 1)ā]2(1.47)

takes on its maximum when all the values ofa are 0 or 1, and this is seen as in
Example 1.16 (Problem 1.31). Unfortunately,δ shares the poor risk properties of
the binomial minimax estimator for all but very smalln.

The minimax estimator of̄a subject to (1.40), as might be expected from Exam-
ple 1.16, isȲ . For a proof of this result, which will not be given here, see Bickel
and Lehmann (1981) or Hodges and Lehmann (1981). ‖

As was seen in Examples 1.7 and 1.8, minimax estimators can be quite unsat-
isfactory over a large part of the parameter space. This is perhaps not surprising
since, as a Bayes estimator with respect to a least favorable prior, a minimax esti-
mator takes the most pessimistic view possible. This is illustrated by Example 1.7,
in which the least favorable prior,B(an, bn) with an = bn =

√
n/2, concentrates

nearly its entire attention on the neighborhood ofp = 1/2 for which accurate esti-
mation ofp is most difficult. On the other hand, a Bayes estimator corresponding
to a personal prior may expose the investigator to a very high maximum risk, which



5.1 ] MINIMAX ESTIMATION 321

may well be realized if the prior has badly misjudged the situation. It is possible
to avoid the worst consequences of both these approaches through a compromise
which permits the use of personal judgment and yet provides adequate protection
against unacceptably high risks.

Suppose thatM is the maximum risk of the minimax estimator. Then, one may
be willing to consider estimators whose maximum risk exceedsM, if the excess
is controlled, say, if

R(θ, δ) ≤ M(1 + ε) for all θ(1.48)

whereε is the proportional increase in risk that one is willing to tolerate. Are-
stricted Bayes estimator is then obtained by minimizing, subject to (1.48), the
average risk (4.1.1) for the prior� of one’s choice.

Such restricted Bayes estimators are typically quite difficult to calculate. There
is, however, one class of situations in which the evaluation is trivial: If the maximum
risk of the unrestricted Bayes estimator satisfies (1.48), it, of course, coincides
with the restricted Bayes estimator. This possibility is illustrated by the following
example.

Example 1.18 Binomial restricted Bayes estimator. In Example
4.1.5, suppose we believep to be near zero (it may, for instance, be the prob-
ability of a rarely occurring disease or accident). As a prior distribution forp, we
therefore takeB(1, b) with a fairly high value ofb. The Bayes estimator (4.11.12)
is thenδ = (X + 1)/(n + b + 1) and its risk is

E(δ − p)2 =
np(1− p) + [(1− p)− bp]2

[n + b + 1]2
.(1.49)

At p = 1, the risk is [b/(n + b + 1)]2, which for fixedn and sufficiently largeb
can be arbitrarily close to 1, while the constant risk of the minimax estimator is
only 1/4(1 +

√
n)2. On the other hand, for fixedb, an easy calculation shows that

(Problem 1.32).

4(1 +
√
n)2 supR(p, δ) → 1 as n→∞.

For any givenb andε > 0, δ will therefore satisfy (1.48) for sufficiently large
values ofn. ‖

A quite different, and perhaps more typical, situation is illustrated by the normal
case.

Example 1.19 Normal. If in the situation of Example 4.2.2, without loss of gen-
erality, we putσ = 1 andµ = 0, the Bayes estimator (4.2.2) reduces tocX̄ with
c = nb2/(1+nb2). Since its risk function is unbounded for alln, while the minimax
risk is 1/n, no such Bayes estimator can be restricted Bayes.

As a compromise, Efron and Morris (1971) propose an estimator of the form

δ =


x̄ +M if x̄ < −M/(1− c)
cx̄ if |x̄| ≤ M/(1− c)
x̄ −M if x̄ > M/(1− c)

(1.50)

for 0 ≤ c ≤ 1. The risk of these estimators is bounded (Problem 1.33) with
maximum risk tending toward 1/n asM → 0. On the other hand, for largeM
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values, (1.50) is close to the Bayes estimator. Although (1.50) is not the exact
optimum solution of the restricted Bayes problem, Efron and Morris (1971) and
Marazzi (1980) show it to be close to optimal. ‖

2 Admissibility and Minimaxity in Exponential Families

It was seen in Example 2.2.6 that a UMVU estimatorδ need not be admissible. If
a biased estimatorδ′ has uniformly smaller risk, the choice betweenδ andδ′ is not
clear-cut: One must balance the advantage of unbiasedness against the drawback
of larger risk. The situation is, however, different for minimax estimators. Ifδ′

dominates a minimax estimatorδ, thenδ′ is also minimax and, thus, definitely
preferred. It is, therefore, particularly important to ascertain whether a proposed
minimax estimator is admissible. In the present section, we shall obtain some
admissibility results (and in the process, some minimax results) for exponential
families, and in the next section, we shall consider the corresponding problem for
group families.

To prove inadmissibility of an estimatorδ, it is sufficient to produce an estimator
δ′ which dominates it. An example was given in Lemma 2.2.7. The following is
another instance.

Lemma 2.1 Let the range of the estimand g(θ ) be an interval with end-points a
and b, and suppose that the loss function L(θ, d) is positive when d �= g(θ ) and
zero when d = g(θ ), and that for any fixed θ , L(θ, d) is increasing as d moves
away from g(θ ) in either direction. Then, any estimator δ taking on values outside
the closed interval [a, b] with positive probability is inadmissible.

Proof. δ is dominated by the estimatorδ′, which isa or b whenδ < a or> b, and
which otherwise is equal toδ. ✷

Example 2.2 Randomized response. The following is a survey technique some-
times used when delicate questions are being asked. Suppose, for example, that
the purpose of a survey is to estimate the proportionp of students who have ever
cheated on an exam. Then, the following strategy may be used. With probabilitya

(known), the student is asked the question “Have you ever cheated on an exam?”,
and with probability (1− a), the question “Have you always been honest on ex-
ams?” The survey taker does not know which question the student answers, so
the answer cannot incriminate the respondent (hence, honesty is encouraged). If a
sample ofn students is questioned in this way, the number of positive responses
is a binomial random variableX∗ ∼ b(p∗, n) with

p∗ = ap + (1− a)(1− p),(2.1)

wherep is the probability of cheating, and

min{a,1− a} < p∗ < max{a,1− a}.(2.2)

For estimating the probabilityp = [p∗−(1−a)]/(1−2a), the method of moments
estimatorp̃ = [p̂∗ − (1− a)]/(1− 2a) is inadmissible by Lemma 2.1. The MLE
of p, which is equal top̃ if it falls in the interval specified in (2.2) and takes on
the endpoint values if̃p is not in the interval, is also inadmissible, although this
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fact does not follow directly from Lemma 2.1. (Inadmissibility of the MLE ofp
follows from Moors (1981); see also Hoeffding 1982 and Chaudhuri and Mukerjee
1988). ‖
Example 2.3 Variance components. Another application of Lemma 2.1 occurs
in the estimation of variance components. In the one-way layout with random
effects (see Example 3.5.1 or 4.2.7), let

Xij = µ +Ai +µij , j = 1, . . . , ni, i = 1, . . . , s,(2.3)

where the variablesAi ∼ N (0, σ 2
A) andUij ∼ N (0, σ 2) are independent. The

parameterσ 2
A has range [0,∞); hence, any estimatorδ taking on negative values

is an inadmissible estimator ofσ 2
A (against any loss function for which the risk

function exists). The UMVU estimator ofσ 2
A [see (3.5.4)] has this property and

hence is inadmissible. ‖
A principal method for proving admissibility is the following result.

Theorem 2.4 Any unique1 Bayes estimator is admissible.

Proof. If δ is unique Bayes with respect to the prior distribution�and is dominated
by δ′, then ∫

R(θ, δ′) d�(θ ) ≤
∫
R(θ, δ) d�(θ ),

which contradicts uniqueness. ✷

An example is provided by the binomial minimax estimator (1.11) of Example
1.7. For the corresponding nonparametric minimax estimator (1.36) of Example
1.16, admissibility was proved by Hjort (1976) who showed that it is the essen-
tially unique minimax estimator with respect to a class of Dirichlet-process priors
described by Ferguson (1973).

We shall, in the present section, illustrate a number of ideas and results concern-
ing admissibility on the estimation of the mean and variance of a normal distribution
and then indicate some of their generalizations. Unless stated otherwise, the loss
function will be assumed to be squared error.

Example 2.5 Admissibility of linear estimators. Let X1, . . . , Xn be indepen-
dent, each distributed according to aN (θ, σ 2), with σ 2 known. In the preceding
section,X̄ was seen to be minimax for estimatingθ . Is it admissible? Instead of
attacking this question directly, we shall consider the admissibility of an arbitrary
linear functionaX̄ + b.

From Example 2.2, it follows that the unique Bayes estimator with respect to
the normal prior forθ with meanµ and varianceτ 2 is

nτ 2

σ 2 + nτ 2
X̄ +

σ 2

σ 2 + nτ 2
µ(2.4)

and that the associated Bayes risk is finite (Problem 2.2). It follows thataX̄ + b is
unique Bayes and hence admissible whenever

1 Uniqueness here means that any two Bayes estimators differ only on a setN with Pθ (N ) = 0 for
all θ .
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0< a < 1.(2.5)

‖
To see what can be said about other values ofa, we shall now prove an inadmis-

sibility result for linear estimators, which is quite general and in particular does
not require the assumption of normality.

Theorem 2.6 Let X be a random variable with mean θ and variance σ 2. Then,
aX + b is an inadmissible estimator of θ under squared error loss whenever

(i) a > 1, or

(ii) a < 0, or

(iii) a = 1 and b �= 0.

Proof. The risk ofaX + b is

ρ(a, b) = E(aX + b − θ )2 = a2σ 2 + [(a − 1)θ + b]2.(2.6)

(i) If a > 1, then
ρ(a, b) ≥ a2σ 2 > σ 2 = ρ(1,0)

so thataX + b is dominated byX.

(ii) If a < 0, then (a − 1)2 > 1 and hence

ρ(a, b) ≥ [(a − 1)θ + b]2 = (a − 1)2
[
θ +

b

a − 1

]2

>

(
θ +

b

a − 1

)2

= ρ

(
0,− b

a − 1

)
.

Thus,aX + b is dominated by the constant estimatorδ ≡ −b/(a − 1).

(iii) In this case,aX + b = X + b is dominated byX (see Lemma 2.2.7). ✷

Example 2.7 Continuation of Example 2.5. Combining the results of Example
2.5 and Theorem 2.6, we see that the estimatoraX̄ + b is admissible in the strip
0 < a < 1 in the (a, b) plane, that it is inadmissible to the left (a < 0) and to the
right (a > 1).

The left boundarya = 0 corresponds to the constant estimatorsδ = b which are
admissible sinceδ = b is the only estimator with zero risk atθ = b. Finally, the
right boundarya = 1 is inadmissible by (iii) of Theorem 2.6, with the possible
exception of the pointa = 1, b = 0. ‖

We have thus settled the admissibility ofaX̄ + b for all cases except̄X itself,
which was the estimator of primary interest. In the next example, we shall prove
thatX̄ is indeed admissible.

Example 2.8 Admissibility of X̄. The admissibility ofX̄ for estimating the mean
of a normal distribution is not only of great interest in itself but can also be regarded
as the starting point of many other admissibility investigations. For this reason, we
shall now give two proofs of this fact—they represent two principal methods for
proving admissibility and are seen particularly clearly in this example because of
its great simplicity.
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First Proof of Admissibility (the Limiting Bayes Method). Suppose that̄X is not
admissible, and without loss of generality, assume thatσ = 1. Then, there exists
δ∗ such that

R(θ, δ∗) ≤ 1

n
for all θ,

R(θ, δ∗) <
1

n
for at least someθ.

Now,R(θ, δ) is a continuous function ofθ for everyδ so that there existsε > 0
andθ0 < θ1 such that

R(θ, δ∗) <
1

n
− ε for all θ0 < θ < θ1.

Let r∗τ be the average risk ofδ∗ with respect to the prior distribution�τ = N (0, τ 2),
and letrτ be the Bayes risk, that is, the average risk of the Bayes solution with
respect to�τ . Then, by (1.30) withσ = 1 andτ in place ofb,

1
n
− r∗τ

1
n
− rτ

=
1√
2πτ

∫∞
−∞

[
1
n
− R(θ, δ∗)

]
e−θ

2/2τ 2
dθ

1
n
− τ 2

1+nτ 2

≥ n(1 +nτ 2)ε

τ
√

2π

∫ θ1

θ0

e−θ
2/2τ 2

dθ.

The integrand converges monotonically to 1 asτ →∞. By the Lebesgue mono-
tone convergence theorem (TSH2, Theorem 2.2.1), the integral therefore converges
to θ1− θ0, and, hence, asτ 2 →∞,

1/n− r∗τ
1/n− rτ →∞.

Thus, there existsτ0 such thatr∗τ0 < rτ0, which contradicts the fact thatrτ0 is the
Bayes risk for�τ0. This completes the proof.

A more general version of this approach, known asBlyth’s method, will be given
in Theorem 7.13.

Second Proof of Admissibility (the Information Inequality Method). Another use-
ful tool for establishing admissibility is based on the information inequality and
solutions to a differential inequality, a method due to Hodges and Lehmann (1951).

It follows from the information inequality (2.5.33) and the fact that

R(θ, δ) = E(δ − θ )2 = varθ (δ) + b2(θ ),

whereb(θ ) is the bias ofδ, that

R(θ, δ) ≥ [1 + b′(θ )]2

nI (θ )
+ b2(θ ),(2.7)

where the first term on the right is the information inequality variance bound for
estimators with expected valueθ +b(θ ). Note that, in the present case withσ 2 = 1,
I (θ ) = 1 from Table 2.5.1.
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Suppose, now, thatδ is any estimator satisfying

R(θ, δ) ≤ 1

n
for all θ(2.8)

and hence
[1 + b′(θ )]2

n
+ b2(θ ) ≤ R(θ, δ) ≤ 1

n
for all θ.(2.9)

We shall then show that (2.9) implies

b(θ ) ≡ 0,(2.10)

that is, thatδ is unbiased.

(i) Since|b(θ )| ≤ 1/
√
n, the functionb is bounded.

(ii) From the fact that
1 + 2b′(θ ) + [b′(θ )]2 ≤ 1,

it follows thatb′(θ ) ≤ 0, so thatb is nonincreasing.

(iii) We shall show, next, that there exists a sequence of valuesθi tending to∞
and such thatb′(θi) → 0. Suppose thatb′(θ ) were bounded away from 0 as
θ → ∞, sayb′(θ ) ≤ −ε for all θ > θ0. Thenb(θ ) cannot be bounded as
θ →∞, which contradicts (i).

(iv) Analogously, it is seen that there exists a sequence of valuesθi → −∞ and
such thatb′(θi) → 0 (Problem 2.3).

Inequality (2.9) together with (iii) and (iv) shows thatb(θ ) → 0 asθ → ±∞,
and (2.10) now follows from (ii).

Since (2.10) implies thatb(θ ) = b′(θ ) = 0 for all θ , it implies by (2.7) that

R(θ, δ) ≥ 1

n
for all θ

and hence that

R(θ, δ) ≡ 1

n
.

This proves that̄X is admissible and minimax. That it is, in fact, the only minimax
estimator is an immediate consequence of Theorem 1.7.10.

For another application of this second method of proof, see Problem 2.7.‖
Admissibility (hence, minimaxity) ofX̄ holds not only for squared error loss

but for large classes of loss functionsL(θ, d) = ρ(d − θ ). In particular, it holds if
ρ(t) is nondecreasing ast moves away from 0 in either direction and satisfies the
growth condition ∫

|t |ρ(2|t |)φ(t) dt <∞,
with the only exceptions being the loss functions

ρ(0) = a, ρ(t) = b for |t | �= 0, a < b.

This result2 follows from Brown (1966, Theorem 2.1.1); it is also proved under
somewhat stronger conditions in Hájek (1972).

2 Communicated by L. Brown.
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Example 2.9 Truncated normal mean. In Example 2.8, suppose it is known that
θ > θ0. Then, it follows from Lemma 2.1 that̄X is no longer admissible. However,
assuming thatσ 2 = 1 and using the method of the second proof of Example 2.8, it
is easy to show that̄X continues to be minimax. If it were not, there would exist
an estimatorδ and anε > 0 such that

R(θ, δ) ≤ 1

n
− ε for all θ > θ0

and hence
[1 + b′(θ )]2

n
+ b2(θ ) ≤ 1

n
− ε for all θ > θ0.

As a consequence,b(θ ) would be bounded and satisfyb′(θ ) ≤ −εn/2 for all
θ > θ0, and these two statements are contradictory.

This example provides an instance in which the minimax estimator is not unique
and the constant risk estimatorX̄ is inadmissible. A uniformly better estimator
which a fortiori is also minimax is max(θ0, X̄), but it, too, is inadmissible [see
Sacks (1963), in which a characterization of all admissible estimators is given].
Admissible minimax estimators in this case were found by Katz (1961) and Sacks
(1963); see also Gupta and Rohatgi 1980.

If θ is further restricted to satisfya ≤ θ ≤ b, X̄ is not only inadmissible but also
no longer minimax. IfX̄were minimax, the same would be true of its improvement,
the MLE

δ∗(X) =


a if X̄ < a
X̄ if a ≤ X̄ ≤ b
b if X̄ > b,

so that

sup
a≤θ≤b

R(θ, δ∗) = sup
a≤θ≤b

R(θ, X̄) =
1

n
.

However,R(θ, δ∗) < R(θ, X̄) = 1/n for all a ≤ θ ≤ b. Furthermore,R(θ, δ∗)
is a continuous function ofθ and hence takes on its maximum at some point
a ≤ θ0 ≤ b. Thus,

sup
a≤θ≤b

R(θ, δ∗) = R(θ0, δ
∗) <

1

n
,

which provides a contradiction.
It follows from Wald’s general decision theory (see Section 5.8) that in the

present situation, there exists a probability distribution�over [a, b] which satisfies
(1.4) and (1.6). We shall now prove that the associated setω� of (1.5) consists of
a finite number of points. Suppose the contrary were true. Then,ω� contains an
infinite sequence of points with a limit point. SinceR(θ, δ�) is constant over these
points and since it is an analytic function ofθ , it follows thatR(θ, δ�) is constant,
not only in [a, b] but for all θ . Example 2.8 then shows thatδ� = X̄, which is in
contradiction to the fact that̄X is not minimax for the present problem.

To simplify matters, and without losing generality [Problem 2.9(a)], we can take
a = −mandb = m, and, thus, considerθ to be restricted to the interval [−m,m]. To
determine a minimax estimator, let us consider the form of a least favorable prior.
Since� is concentrated on a finite number of points, it is reasonable to suspect
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Figure 2.1.Risk functions of bounded mean estimators for m = 1.056742, n = 1.

that these points would be placed at a distances neither too close together nor too
far apart, where “close” is relative to the standard deviation of the density ofX.
(If the points are either much closer together or much further apart, then the prior
might be giving us information.) One might therefore conjecture that the number
of points inω� increases withm, and for smallm, look at the Bayes estimator for
the two-point prior� that puts mass 1/2 at±m.

The Bayes estimator, against squared error loss, is [Problem 2.9(b)]

δ�(x̄) = m tanh(mnx̄)(2.11)

where tanh(·) is thehyperbolic tangent function. Form ≤ 1.05/
√
n, Corollary

1.6 can be used to show thatδ is minimax and provides a substantial risk decrease
overx̄. Moreover, form < 1/

√
n, δ also dominates the MLEδ∗ [Problem 2.9(c)].

This is illustrated in Figure 2.1, where we have takenm to be the largest value for
which (2.11) is minimax. Note that the risk ofδ� is equal atθ = 0 andθ = m.

Asm increases, so does the number of points inω�. The range of values ofm,
for which the associated Bayes estimators is minimax, was established by Casella
and Strawderman (1981) for 2- and 3-point priors and Kempthorne (1988a, 1988b)
for 4-point priors. Some interesting results concerning� andδ�, for largem, are
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given by Bickel (1981). An alternative estimator, the Bayes estimator against a
uniform prior on [−m,m], was studied by Gatsonis et al. (1987) and shown to
perform reasonably when compared toδ� and to dominateδ∗ for |θ | ≤ m/√n.
Many of these results were discovered independently by Zinzius (1981, 1982),
who derived minimax estimators forθ restricted to the interval [0, c], wherec is
known and small. ‖
Example 2.10 Linear minimax risk. Suppose that in Example 2.9 we decide to
restrict attention to linear estimatorsδ(a,b) = aX̄ + b because of their simplicity.

With σ 2 = 1, from the proof of Theorem 2.6 [see also Problem 4.3.12(a)],

R(θ, aX̄ + b) = a2 varX̄ + [(a − 1)θ + b]2

= a2/n + [(a − 1)θ + b]2,

and from Theorem 2.6, we only need consider 0≤ a ≤ 1. It is straightforward to
establish (Problem 2.10) that

max
θ∈[−m,m]

R(θ, aX̄ + b) = max{R(−m, aX̄ + b), R(m, aX̄ + b)}

and thatδ∗ = a∗X̄, with a∗ = m2/( 1
n

+m2) is minimax among linear estimators.
Donoho et al. (1990) provide bounds on the ratio of the linear minimax risk to the

minimax risk. They show that, surprisingly, this ratio is approximately 1.25 and,
hence, that the linear minimax estimators may sometimes be reasonable substitutes
for the full minimax estimators. ‖
Example 2.11 Linear model. Consider the general linear model of Section 3.4
and suppose we wish to estimate some linear function of theξ ’s. Without loss
of generality, we can assume that the model is expressed in the canonical form
(4.8) so thatY1, . . . , Yn are independent, normal, with common varianceσ 2, and
E(Yi) = ηi (i = 1, . . . , s);E(Ys+1) = · · · = E(Yn) = 0. The estimand can be taken
to beη1. If Y2, . . . , Yn were not present, it would follow from Example 2.8 that
Y1 is admissible for estimatingη1. It is obvious from the Rao-Blackwell theorem
(Theorem 1.7.8 ) that the presence ofYs+1, . . . , Yn cannot affect this result. The
following lemma shows that, as one would expect, the same is true forY2, . . . , Ys .

‖
Lemma 2.12 LetX and Y be independent (possibly vector-valued) with distribu-
tions Fξ and Gη, respectively, where ξ and η vary independently. Then, if δ(X)
is admissible for estimating ξ when Y is not present, it continues to be so in the
presence of Y .

Proof. Suppose, to the contrary, that there exists an estimatorT (X, Y ) satisfying

R(ξ, η; T ) ≤ R(ξ ; δ) for all ξ, η,

R(ξ0, η0; T ) < R(ξ0; δ) for some ξ0, η0.

Consider the case in which it is known thatη = η0. Then,δ(X) is admissible on
the basis ofX andY (Problem 2.11). On the other hand,

R(ξ, η0; T ) ≤ R(ξ ; δ) for all ξ,

R(ξ0, η0; T ) < R(ξ0; δ) for some ξ0,
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and this is a contradiction. ✷

The examples so far have been concerned with normal means. Let us now turn
to the estimation of a normal variance.

Example 2.13 Normal variance. Under the assumptions of Example 4.2.5, let
us consider the admissibility, using squared error loss, of linear estimatorsaY + b
of 1/τ = 2σ 2. The Bayes solutions

α + Y

r + g − 1
,(2.12)

derived there for the prior distributionsH(g,1/α), appear to prove admissibility
of aY + b with

0< a <
1

r − 1
, 0< b.(2.13)

In particular, this includes the estimators (1/r)Y + b for anyb > 0. On the other
hand, it follows from (2.7) thatE(Y ) = r/τ , so that (1/r)Y is an unbiased estimator
of 1/τ , and hence from Lemma 2.2.7, that (1/r)Y +b is inadmissible for anyb > 0.
What went wrong?

Conditions (i) and (ii) of Corollary 4.1.4 indicate two ways in which the unique-
ness (hence, admissibility) of a Bayes estimator may be violated. The second of
these clearly does not apply here since the gamma prior assigns positive density
to all valuesτ > 0. This leaves the first possibility as the only visible suspect. Let
us, therefore, consider the Bayes risk of the estimator (2.12).

Givenτ , we find [by adding and subtracting the expectation ofY/(g + r − 1)],
that

E

(
Y + α

g + r − 1
− 1

τ

)2

=
1

(g + r − 1)2

[
1

τ 2
−

(
α − g − 1

τ

)2
]
.

The Bayes risk will therefore be finite if and only ifE(1/τ 2) < ∞, where the
expectation is taken with respect to the prior and, hence, if and only ifg > 2.
Applying this condition to (2.12), we see that admissibility has not been proved
for the region (2.13), as seemed the case originally, but only for the smaller region

0< a <
1

r + 1
, 0< b.(2.14)

In fact, it is not difficult to prove inadmissibility for alla > 1/(r + 1) (Problem
2.12), whereas fora < 0 and forb < 0, it, of course, follows from Lemma 2.1.

The left boundarya = 0 of the strip (2.14) is admissible as it was in Example
2.5; the bottom boundaryb = 0 was seen to be inadmissible for any positive
a �= 1/(r + 1) in Example 2.2.6. This leaves in doubt only the pointa = b = 0,
which is inadmissible (Problem 2.13), and the right boundary, corresponding to
the estimators

1

r + 1
Y + b, 0 ≤ b <∞.(2.15)

Admissibility of (2.15) forb = 0 was first proved by Karlin (1958), who considered
the case of general one-parameter exponential families. His proof was extended to
other values ofb by Ping (1964) and Gupta (1966). We shall follow Ping’s proof,
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which uses the second method of Example 2.3, whereas Karlin (1958) and Stone
(1967) employed the first method. ‖

LetX have probability density

pθ (x) = β(θ )eθT (x) (θ, T real-valued)(2.16)

with respect toµ and let be the natural parameter space. Then, is an interval,
with endpoints, say,θ andθ̄ (−∞ ≤ θ ≤ θ̄ ≤ ∞) (see Section 1.5). For estimating
Eθ (T ), the estimatoraT +b is inadmissible ifa < 0 ora > 1 and is a constant for
a = 0. To state Karlin’s sufficient condition in the remaining cases, it is convenient
to write the estimator as

δλ,γ (x) =
1

1 +λ
T +

γ λ

1 +λ
,(2.17)

with 0 ≤ λ <∞ corresponding to 0< a ≤ 1.

Theorem 2.14 (Karlin’s Theorem) Under the above assumptions, a sufficient
condition for the admissibility of the estimator (2.17) for estimating g(θ ) = Eθ (T )
with squared error loss is that the integral of e−γ λθ [β(θ )]−λ diverges at θ and θ̄ ;
that is, that for some (and hence for all) θ < θ0 < θ̄ , the two integrals∫ θ∗

θ0

e−γ λθ

[β(θ )]λ
dθ and

∫ θ0

θ∗

e−γ λθ

[β(θ )]λ
dθ(2.18)

tend to infinity as θ∗ tends to θ̄ and θ , respectively.

Proof. It is seen from (1.5.14) and (1.5.15) that

g(θ ) = Eθ (T ) =
−β ′(θ )
β(θ )

(2.19)

and

g′(θ ) = varθ (T ) = I (θ ),(2.20)

whereI (θ ) is the Fisher information defined in (2.5.10). For any estimatorδ(X),
we have

Eθ [δ(X)− g(θ )]2 = varθ [δ(X)] + b2(θ )

≥ [g′(θ ) + b′(θ )]2

I (θ )
+ b2(θ ) [information inequality](2.21)

=
[I (θ ) + b′(θ )]2

I (θ )
+ b2(θ )

whereb(θ ) = Eθ [δ(X)] − g(θ ) is the bias ofδ(x). If δ = δλ,γ of (2.17), then its
bias isbλ,γ (θ ) = λ

1+λ [γ − g(θ )] with b′(θ ) = − λ
1+λg

′(θ ) and

Eθ [δλ,γ (X)− g(θ )]2 = Eθ

[
T + γ λ

1 +λ
− g(θ )

]2

=
I (θ )

(1 +λ)2
+
λ2[g(θ )− γ ]2

(1 +λ)2
(2.22)
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=
[I (θ ) + b′λ,γ (θ )]2

I (θ )
+ b2

λ,γ (θ ).

Thus, for estimators (2.17), the information inequality risk bound is an equality.
Now, suppose thatδ0 satisfies

Eθ [δλ,γ (X)− g(θ )]2 ≥ Eθ [δ0(X)− g(θ )]2 for all θ.(2.23)

Denote the bias ofδ0 by b0(θ ), apply inequality (2.21) to the right side of (2.23),
and apply Equation (2.22) to the left side of (2.23) to get

b2
λ,γ (θ ) +

[I (θ ) + b′λ,γ (θ )]2

I (θ )
≥ b2

0(θ ) +
[I (θ ) + b′0(θ )]2

I (θ )
.(2.24)

If h(θ ) = b0(θ )− bλ,γ (θ ), (2.24) reduces to

h2(θ )− 2λ

1 +λ
h(θ )[g(θ )− γ ] +

2

1 +λ
h′(θ ) +

[h′(θ )]2

I (θ )
≤ 0,(2.25)

which implies

h2(θ )− 2λ

1 +λ
h(θ )[g(θ )− γ ] +

2

1 +λ
h′(θ ) ≤ 0.(2.26)

Finally, let
κ(θ ) = h(θ )βλ(θ )eγλθ .

Differentiation ofκ(θ ) and use of (2.19) reduces (2.26) to (Problem 2.7)

κ2(θ )β−λ(θ )e−γ λθ +
2

1 +λ
κ ′(θ ) ≤ 0.(2.27)

We shall now show that (2.27) withλ ≥ 0 implies thatκ(θ ) ≥ 0 for all θ .
Suppose to the contrary thatκ(θ0) < 0 for someθ0. Then,κ(θ ) < 0 for all θ ≥ θ0

sinceκ ′(θ ) < 0, and forθ > θ0, we can write (2.27) as

d

dθ

[
1

κ(θ )

]
≥ 1 +λ

2
β−λ(θ )e−γ λθ .

Integrating both sides fromθ0 to θ∗ leads to

1

κ(θ )
− 1

κ(θ0)
≥ 1 +λ

2

∫ θ∗

θ0

β−λ(θ )e−γ λθ dθ.

As θ∗ → θ̄ , the right side tends to infinity, and this provides a contradiction since
the left side is< −1/κ(θ0).

Similarly, κ(θ ) ≤ 0 for all θ . It follows thatκ(θ ) and, hence,h(θ ) is zero for all
θ . This shows that for allθ equality holds in (2.25), (2.24), and, thus, (2.23). This
proves the admissibility of (2.17). ✷

Under some additional restrictions, it is shown by Diaconis and Ylvisaker (1979)
that when the sufficient condition of Theorem 2.14 holds,aX + b is Bayes with
respect to a proper prior distribution (a member of the conjugate family) and has
finite risk. This, of course, implies that it is admissible.
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Karlin (1958) conjectured that the sufficient condition of Theorem 2.14 is also
necessary for the admissibility of (2.17). Despite further work on this problem
(Morton and Raghavachari 1966, Stone 1967, Joshi 1969a), this conjecture has
not yet been settled. See Brown (1986a) for further discussion.

Let us now see whether Theorem 2.14 settles the admissibility ofY/(r + 1),
which was left open in Example 2.13.

Example 2.15 Continuation of Example 2.13. The density of Example 4.2.5 is
of the form (2.16) with

θ = −rτ, β(θ ) =

(−θ
r

)r
,

Y

r
= T (X), θ = −∞, θ̄ = 0.

Here, the parameterization is chosen so that

Eθ [T (X)] =
1

τ

coincides with the estimand of Example 2.13. An estimator

1

1 +λ

Y

r
+
γ λ

1 +λ
(2.28)

is therefore admissible, provided the integrals∫ −c

−∞
e−γ λθ

(−θ
r

)−rγ
dθ = C

∫ ∞

c

eγλθ θ−rλ dθ

and ∫ c

0
eγλθ θ−rλ dθ

are both infinite.
The conditions for the first integral to be infinite are that either

γ = 0 and rλ ≤ 1, or γ λ > 0.

For the second integral, the factoreγλθ plays no role, and the condition is simply

rλ ≥ 1.

Combining these conditions, we see that the estimator (2.28) is admissible if either

(a) γ = 0 and λ =
1

r
or

(b) λ ≥ 1

r
and γ > 0 (sincer > 0).

If we puta = 1/(1 +λ)r andb = γ λ/(1 +λ), it follows thataY +b is admissible
if either

(a’) b = 0 and a =
1

1 + r
or

(b’) b > 0 and 0< a ≤ 1

1 + r
.
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The first of these results settles the one case that was left in doubt in Example
2.13; the second confirms the admissibility of the interior of the strip (2.14), which
had already been established in that example. The admissibility ofY/(r + 1) for
estimating 1/τ = 2σ 2 means that

1

2r + 2
Y =

1

n + 2
Y(2.29)

is admissible for estimatingσ 2. The estimator (2.29) is the MRE estimator forσ 2

found in Section 3.3 (Example 3.3.7). ‖
Example 2.16 Normal variance, unknown mean. Admissibility of the estimator
�X2

i /(n + 2) when theX’s are fromN (0, σ 2) naturally raises the corresponding
question for

�(Xi − X̄)2/(n + 1),(2.30)

the MRE estimator ofσ 2 when theX’s are fromN (ξ, σ 2) with ξ unknown (Ex-
ample 3.3.11). The surprising answer, due to Stein (1964), is that (2.30) is not
admissible (see Examples 3.3.13 and 5.2.15). An estimator with uniformly smaller
risk is

δs = min

(
�(Xi − X̄)2

n + 1
,
�X2

i

n + 2

)
.(2.31)

The estimator (2.30) is MRE under the location-scale group, that is, among
estimators that satisfy

δ(ax1 + b, . . . , axn + b) = aδ(x1, . . . , xn).(2.32)

To search for a better estimator ofσ 2 than (2.30), consider the larger class of
estimators that are only scale invariant. These are the estimators ofσ 2 that satisfy
(2.32) withb = 0, and are of the form

δ(x̄, s) = ϕ(x̄/s)s2.(2.33)

The estimatorδs is of this form.
As a motivation ofδs , suppose that it is thought a priori likely but by no means

certain thatξ = 0. One might then wish to test the hypothesisH : ξ = 0 by the
usualt-test. If

|√nX̄|√
�

(
Xi − X̄

)2
/(n− 1)

< c,(2.34)

one would acceptH and correspondingly estimateσ 2 by �X2
i /(n + 2); in the

contrary case,H would be rejected andσ 2 estimated by (2.30). For the value
c =

√
(n− 1)/(n + 1), it is easily checked that (2.34) is equivalent to

1

n + 2
�X2

i <
1

n + 1
�(Xi − X̄)2,(2.35)

and the resulting estimator then reduces to (2.31).
While (2.30) is inadmissible, it is clear that no substantial improvement is pos-

sible, since�(Xi − X̄)2/σ 2 has the same distribution as�(Xi − ξ )2/σ 2 with n
replaced byn−1 so that ignorance ofσ 2 can be compensated for by one additional



5.2 ] ADMISSIBILITY AND MINIMAXITY IN EXPONENTIAL FAMILIES 335

observation. Rukhin (1987) shows that the maximum relative risk improvement is
approximately 4%. ‖

Let us now return to Theorem 2.14 and apply it to the binomial case as another
illustration.

Example 2.17 Binomial. LetX have the binomial distributionb(p, n), which we
shall write as

P (X = x) =

(
n

x

)
(1− p)ne(x/n)n log(p/(1−p)).(2.36)

Puttingθ = n log(p/(1− p)), we have

β(θ ) = (1− p)n = [1 + eθ/n]−n

and

g(θ ) = Eθ

(
X

n

)
= p =

eθ/n

1 + eθ/n
.

Furthermore, asp ranges from 0 to 1,θ ranges fromθ = −∞ to θ̄ = +∞.
The integral in question is then∫

e−γ λθ (1 + eθ/n)λn dθ(2.37)

and the estimatorX/[n(1 +λ)] + γ λ/(1 +λ) is admissible, provided this integral
diverges at both−∞ and +∞. If λ < 0, the integrand is≤ e−γ λθ and the integral
cannot diverge at both limits, whereas forλ = 0, the integral does diverge at both
limits. Suppose, therefore, thatλ > 0. Near infinity, the dominating term (which
is also a lower bound) is ∫

e−γ λθ+λθ dθ,

which diverges providedγ ≤ 1. At the other end, we have∫ −c

−∞
e−γ λθ (1 + eθ/n)λn dθ =

∫ ∞

c

eγλθ
(

1 +
1

eθ/n

)λn
dθ.

The factor in parentheses does not affect the convergence or divergence of this
integral, which therefore diverges if and only ifγ λ ≥ 0. The integral will therefore
diverge at both limits, provided

λ > 0 and 0≤ γ ≤ 1, or λ = 0.(2.38)

With a = 1/(1 + λ) andb = γ λ/(1 + λ), this condition is seen to be equivalent
(Problem 2.7) to

0< a ≤ 1, 0 ≤ b, a + b ≤ 1.(2.39)

The estimator, of course, is also admissible whena = 0 and 0≤ b ≤ 1, and it is
easy to see that it is inadmissible for the remaining values ofa andb (Problem
2.8). The region of admissibility is, therefore, the closed triangle{(a, b) : a ≥ 0,
b ≥ 0, a + b ≤ 1}. ‖

Theorem 2.14 provides a simple condition for the admissibility ofT as an
estimator ofEθ (T ).
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Corollary 2.18 If the natural parameter space of (2.16) is the whole real line so
that θ = −∞, θ̄ = ∞, then T is admissible for estimating Eθ (T ) with squared
error loss.

Proof. With λ = 0 andγ = 1, the two integrals (2.18) clearly tend toward infinity
asθ →±∞. ✷

The condition of this corollary is satisfied by the normal (variance known),
binomial, and Poisson distributions, but not in the gamma or negative binomial
case (Problem 2.25).

The starting point of this section was the question of admissibility of some
minimax estimators. In the opposite direction, it is sometimes possible to use the
admissibility of an estimator to prove that it is minimax.

Lemma 2.19 If an estimator has constant risk and is admissible, it is minimax.

Proof. If it were not, another estimator would have smaller maximum risk and,
hence, uniformly smaller risk. ✷

This lemma together with Corollary 2.18 yields the following minimax result.

Corollary 2.20 Under the assumptions of Corollary 2.18,T is the unique minimax
estimator of g(θ ) = Eθ (T ) for the loss function [d − g(θ )]2/varθ (T ).

Proof. For this loss function,T is a constant risk estimator which is admissible
by Corollary 2.18 and unique by Theorem 1.7.10. ✷

A companion to Lemma 2.19 allows us to deduce admissibility from unique
minimaxity.

Lemma 2.21 If an estimator is unique minimax, it is admissible.

Proof. If it were not admissible, another estimator would dominate it in risk and,
hence, would be minimax. ✷

Example 2.22 Binomial admissible minimax estimator. If X has the binomial
distributionb(p, n), then, by Corollary 2.20,X/n is the unique minimax estimator
of p for the loss function (d − p)2/pq (which was seen in Example 1.7). By
Lemma 2.21,X/n is admissible for this loss function. ‖

The estimation of a normal variance with unknown mean provided a surprising
example of a reasonable estimator which is inadmissible. We shall conclude this
section with an example of a totally unreasonable estimator that is admissible.

Example 2.23 Two binomials. Let X andY be independent binomial random
variables with distributionsb(p,m) andb(π, n), respectively. It was shown by
Makani (1977) that a necessary and sufficient condition for

a
X

m
+ b
Y

n
+ c(2.40)

to be admissible for estimatingp with squared error loss is that either

0 ≤ a < 1, 0 ≤ c ≤ 1, 0 ≤ a + c ≤ 1,(2.41)

0 ≤ b + c ≤ 1, 0 ≤ a + b + c ≤ 1,
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or
a = 1 and b = c = 0.(2.42)

We shall now prove the sufficiency part, which is the result of interest; for
necessity, see Problem 2.21.

Suppose there exists another estimatorδ(X, Y ) with risk uniformly at least as
small as that of (2.40), so that

E

(
a
X

m
+ b
Y

n
+ c − p

)2

≥ E[δ(X, Y )− p]2 for all p.

Then
m∑
x=0

n∑
k=0

(
a
x

m
+ b
k

n
+ c − p

)2

P (X = x, Y = k)(2.43)

≥
m∑
x=0

n∑
k=0

[δ(x, k)− p]2P (X = x, Y = k).

Lettingπ → 0, this leads to
m∑
x=0

(
a
x

m
+ c − p

)2
P (X = x) ≥

m∑
x=0

[δ(x,0)− p]2P (X = x)

for all p. However,a(X/m) + c is admissible by Example 2.17; henceδ(x,0) =
a(x/m) + c for all x = 0,1, . . . , m.

The terms in (2.43) withk = 0, therefore, cancel. The remaining terms contain a
common factorπ which can also be canceled and one can now proceed as before.
Continuing in this way by induction overk, one finds at the (k + 1)st stage that

m∑
x=0

(
a
x

m
+ b
k

n
+ c − p

)2

P (X = x) ≥
m∑
x=0

[δ(x, k)− p]2P (X = x)

for all p. However,aX/m + bk/n + c is admissible by Example 2.17 since

a + b
k

n
+ c ≤ 1

and, hence,

δ(x, k) = a
x

m
+ b
k

n
+ c for all x.

This shows that (2.43) implies

δ(x, y) = a
x

m
+ b
y

n
+ c for all x andy

and, hence, that (2.40) is admissible.
Puttinga = 0 in (2.40), we see that estimates of the formb(Y/n) + c (0 ≤

c ≤ 1, 0 ≤ b + c ≤ 1) are admissible for estimatingp despite the fact that
only the distribution ofX depends onp and thatX andY are independent. This
paradoxical result suggests that admissibility is an extremely weak property. While
it is somewhat embarrassing for an estimator to be inadmissible, the fact that it
is admissible in no way guarantees that it is a good or even halfway reasonable
estimator. ‖
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The result of Example 2.23 is not isolated. An exactly analogous result holds in
the Poisson case (Problem 2.22) and a very similar one due to Brown for normal
distributions (see Example 7.2); that an exactly analogous example is not possible
in the normal case follows from Cohen (1965a).

3 Admissibility and Minimaxity in Group Families

The two preceding sections dealt with minimax estimators and their admissibility
in exponential families. Let us now consider the corresponding problems for group
families. As was seen in Section 3.2, in these families there typically exists an MRE
estimatorδ0 for any invariant loss function, and it is a constant risk estimator. If
δ0 is also a Bayes estimator, it is minimax by Corollary 1.5 and admissible if it is
unique Bayes.

Recall Theorem 4.4.1, where it was shown that a Bayes estimator under an
invariant prior is (almost) equivariant. It follows that under the assumptions of
that theorem, there exists an almost equivariant estimator which is admissible.
Furthermore, it turns out that under very weak additional assumptions, given any
almost equivariant estimatorδ, there exists an equivariant estimatorδ′ which differs
from δ only on a fixed null setN . The existence of such aδ′ is obvious in the
simplest case, that of a finite group. We shall not prove it here for more general
groups (a precise statement and proof can be found in TSH2, Section 6.5, Theorem
4). Sinceδ andδ′ then have the same risk function, this establishes the existence
of an equivariant estimator that is admissible.

Theorem 4.4.1 does not requireḠ to be transitive over. If we add the assump-
tion of transitivity, we get a stronger result.

Theorem 3.1 Under the conditions of Theorem 4.4.1, if Ḡ is transitive over ,
then the MRE estimator is admissible and minimax.

The crucial assumption in this approach is the existence of an invariant prior
distribution. The following example illustrates the rather trivial case in which the
group is finite.

Example 3.2 Finite group. LetX1, . . . , Xn be iid according to the normal distri-
butionN (ξ,1). Then, the problem of estimatingξ with squared error loss remains
invariant under the two-element groupG, which consists of the identity transfor-
matione and the transformation

g(x1, . . . , xn) = (−x1, . . . ,−xn); ḡξ = −ξ ; g∗d = −d.
In the present case, any distribution� for ξ which is symmetric with respect to
the origin is invariant. Under the conditions of Theorem 4.4.1, it follows that for
any such�, there is a version of the Bayes solution which is equivariant, that is,
which satisfiesδ(−x1, . . . ,−xn) = −δ(x1, . . . xn). The groupḠ in this case is, of
course, not transitive over. ‖

As an example in whichG is not finite, we shall consider the following version
of the location problem on the circle.
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Example 3.3 Circular location family. LetU1, . . . , Un be iid on (0,2π ) accord-
ing to a distributionF with densityf . We shall interpret these variables asn
points chosen at random on the unit circle according toF . Suppose that each point
is translated on the circle by an amountθ (0 ≤ θ < 2π ) (i.e., the new positions
are those obtained by rotating the circle by an amount,θ ). When a valueUi + θ
exceeds 2π , it is, of course, replaced byUi + θ − 2π . The resulting values are the
observationsX1, . . . , Xn. It is then easily seen (Problem 3.2) that the density of
Xi is

f (xi − θ + 2π ) when 0< xi < θ,(3.1)

f (xi − θ ) when θ < xi < 2π.

This can also be written as

f (xi − θ )I (θ < xi) + f (xi − θ + 2π )I (xi < θ )(3.2)

whereI (a < b) is 1 whena < b, and 0 otherwise.
If we straighten the circle to a straight-line segment of length 2π , we can also

represent this family of distributions in the following form. Selectn points at
random on (0,2π ) according toF . Cut the line segment at an arbitrary pointθ
(0< θ < 2π ). Place the upper segment so that its endpoints are (0,2π−θ ) and the
lower segment so that its endpoints are (2π − θ,2π ), and denote the coordinates
of then points in their new positions byX1, . . . , Xn. Then, the density ofXi is
given by (3.1).

As an illustration of how such a family of distributions might arise, suppose
that in a study of gestation in rats,n rats are impregnated by artificial insemination
at a given time, say at midnight on day zero. The observations are then times
Y1, . . . , Yn to birth, recorded as the number of days plus a fractional day. It is
assumed that theY ’s are iid according toG(y − η) whereG is known andη is
an unknown location parameter. A scientist who is interested in the time of day at
which births occur abstracts from the data the fractional partsX′i = Yi − [Yi ]. The
variablesXi = 2πX′i have a distribution of the form (3.1) whereθ is 2π times the
fractional part ofη.

Let us now return to (3.2) and consider the problem of estimatingθ . The model as
originally formulated remains invariant under rotations of the circle. To represent
these transformations formally, consider for any real numbera the unique number
a∗, 0 ≤ a∗ < 2π , for whicha = 2κπ + a∗ (κ an integer). Then, the groupG of
rotations can be represented by

x ′i = (xi + c)∗, θ ′ = (θ + c)∗, d ′ = (d + c)∗.

A loss functionL(θ, d) remains invariant underG if and only if it is of the form
L(θ, d) = ρ[(d− θ )∗] (Problem 3.3.). Typically, one would want it to depend only
on (d − θ )∗∗ = min{(d − θ )∗, (2π − (d − θ ))∗}, which is the difference betweend
andθ along the smaller of the two arcs connecting them. Thus, the loss might be
((d − θ )∗∗)2 or |(d − θ )∗∗|. It is important to notice that neither of these is convex
(Problem 3.4).

The groupG is transitive over and an invariant distribution forθ is the uniform
distribution over (0,2π ). By applying an obvious extension of the construction
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(3.20) or (3.21) below, one obtains an admissible equivariant (and, hence, constant
risk) Bayes estimator, which a fortiori is also minimax. If the loss function is not
convex ind, only the extension of (3.20) is available and the equivariant Bayes
procedure may be randomized. ‖

Let us next turn to the question of the admissibility and minimaxity of MRE
estimators which are Bayes solutions with respect to improper priors. We begin
with the location parameter case.

Example 3.4 Location family on the line. Suppose thatX = (X1, . . ., Xn) has
density

f (x − θ ) = f (x1− θ, . . . , xn − θ ),(3.3)

and letG andḠ be the groups of translationsx ′i = xi + a andθ ′ = θ + a. The
parameter space is the real line, and from Example 4.4.3, the invariant measure
on is the measureν which to any intervalI assigns its length, that is, Lebesgue
measure.

Since the measureν is improper, we proceed as in Section 4.3 and look for a
generalized Bayes estimator. The posterior density ofθ givenx is given by

f (x − θ )∫
f (x − θ ) dθ .(3.4)

This quantity is non-negative and its integral, with respect toθ , is equal to 1. It
therefore defines a proper distribution forθ , and by Section 4.3, the generalized
Bayes estimator ofθ , with loss functionL, is obtained by minimizing the posterior
expected loss ∫

L[θ, δ(x)]f (x − θ ) dθ/
∫
f (x − θ ) dθ.(3.5)

For the case thatL is squared error, the minimizing value ofδ(x) is the expectation
of θ under (3.4), which was seen to be the Pitman estimator (3.1.28) in Exam-
ple 4.4.7. The agreement of the estimator minimizing (3.5) with that obtained in
Section 3.1 of course holds also for all other invariant loss functions.

Up to this point, the development here is completely analogous to that of Ex-
ample 3.3. However, sinceν is not a probability distribution, Theorem 4.4.1 is not
applicable and we cannot conclude that the Pitman estimator is admissible or even
minimax. ‖

The minimax character of the Pitman estimator was established in the normal
case in Example 1.14 by the use of a least favorable sequence of prior distributions.
We shall now consider the minimax and admissibility properties of MRE estimators
more generally in group families, beginning with the case of a general location
family.

Theorem 3.5 Suppose X = (X1, . . . , Xn) is distributed according to the density
(3.3) and that the Pitman estimator δ∗ given by (1.28) has finite variance. Then,
δ∗ is minimax for squared error loss.

Proof. As in Example 1.14, we shall utilize Theorem 1.12, and for this purpose,
we require a least favorable sequence of prior distributions. In view of the discus-
sion at the beginning of Example 3.4, one would expect a sequence of priors that
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approximates Lebesgue measure to be suitable. The sequence of normal distribu-
tions with variance tending toward infinity used in Example 1.14 was of this kind.
Here, it will be more convenient to use instead a sequence of uniform densities.

πT (u) =

{
1/2T if |u| < T
0 otherwise,

(3.6)

with T tending to infinity. IfδT is the Bayes estimator with respect to (3.6) andrT
its Bayes risk, the minimax character ofδ∗ will follow if it can be shown thatrT
tends to the constant riskr∗ = E0δ

∗2(X) of δ∗ asT → ∞. SincerT ≤ r∗ for all
T , it is enough to show

lim inf rT ≥ r∗.(3.7)

We begin by establishing the lower bound forrT

rT ≥ (1− ε) inf
a≤−εT
b≥εT

E0δ
2
a,b(X),(3.8)

whereε is any number between 0 and 1, andδa,b is the Bayes estimator with respect
to the uniform prior on (a, b) so that, in particular,δT = δ−T ,T . Then, for anyc
(Problem 3.7),

δa,b(x + c) = δa−c,b−c(x) + c(3.9)

and hence

Eθ [δ−T ,T (X)− θ ]2 = E0[δ−T−θ,T−θ (X)]2.

It follows that for any 0< ε < 1,

rT =
1

2T

∫ T

−T
E0[δ−T−θ,T−θ (X)]2 dθ

≥ (1− ε) inf
|θ |≤(1−ε)T

E0[δ−T−θ,T−θ (X)]2.

Since−T − θ ≤ −εT andT − θ ≥ εT when|θ | ≤ (1− ε)T , this implies (3.8).
Next, we show that

lim inf
T→∞

rT ≥ E0

[
lim inf
a→−∞
b→∞

δ2
a,b(X)

]
(3.10)

where the lim inf on the right side is defined as the smallest limit point of all
sequencesδ2

an,bn
(X) with an → −∞ andbn → ∞. To see this, note that for any

functionh of two real arguments, one has (Problem 3.8).

lim inf
T→∞

 inf
a≤−T
b≥T

h(a, b)

 = lim inf
a→−∞
b→∞

h(a, b).(3.11)

Taking the lim inf of both sides of (3.8), and using (3.11) and Fatou’s Lemma
(Lemma 1.2.6) proves (3.10).

We shall, finally, show that asa→−∞ andb→∞,

δa,b(X) → δ∗(X) with probability 1.(3.12)
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From this, it follows that the right side of (3.10) isr∗, which will complete the
proof. The limit (3.12) is seen from the fact that

δa,b(x) =
∫ b

a

uf (x − u) du/
∫ b

a

f (x − u) du

and that, by Problems 3.1.20, and 3.1.21 the set of pointsx for which

0<
∫ ∞

−∞
f (x − u) du <∞ and

∫ ∞

−∞
|u|f (x − u) du <∞

has probability 1. ✷

Theorem 3.5 is due to Girshick and Savage (1951), who proved it somewhat more
generally without assuming a probability density and under the sole assumption
that there exists an estimator (not necessarily equivariant) with finite risk. The
streamlined proof given here is due to Peter Bickel.

Of course, one would like to know whether the constant risk minimax estimator
δ∗ is admissible. This question was essentially settled by Stein (1959). We state
without proof the following special case of his result.

Theorem 3.6 If X1, . . . , Xn are independently distributed with common proba-
bility density f (x − θ ), and if there exists an equivariant estimator δ0 of θ for
whichE0|δ0(X)|3 <∞, then the Pitman estimator δ∗ is admissible under squared
error loss.

It was shown by Perng (1970) that this admissibility result need not hold when
the third-moment condition is dropped.

In Example 3.4, we have, so far, restricted attention to squared error loss. Ad-
missibility of the MRE estimator has been proved for large classes of loss functions
by Farrell (1964), Brown (1966), and Brown and Fox (1974b). A key assumption
is the uniqueness of the MRE estimator. An early counterexample when that as-
sumption does not hold was given by Blackwell (1951). A general inadmissibility
result in the case of nonuniqueness is due to Farrell (1964).

Examples 3.3 and 3.4 involved a single parameterθ . That an MRE estimator ofθ
may be inadmissible in the presence of nuisance parameters, when the correspond-
ing estimator ofθ with known values of the nuisance parameters is admissible, is
illustrated by the estimator (2.30). Other examples of this type have been studied
by Brown (1968), Zidek (1973), and Berger (1976bc), among others. An impor-
tant illustration of the inadmissibility of the MRE estimator of a vector-valued
parameter constitutes the principal subject of the next two sections.

Even when the best equivariant estimator is not admissible, it may still be—
and frequently is—minimax. Conditions for an MRE estimator to be minimax are
given by Kiefer (1957) or Robert (1994a, Section 7.5). (See Note 9.3.) The general
treatment of admissibility and minimaxity of MRE estimators is beyond the scope
of this book. However, roughly speaking, MRE estimators will typically not be
admissible except in the simplest situations, but they have a much better chance
of being minimax.

The difference can be seen by comparing Example 1.14 and the proof of Theo-
rem 3.5 with the first admissibility proof of Example 2.8. If there exists an invariant
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measure over the parameter space of the group family (or equivalently over the
group, see Section 3.2 ) which can be suitably approximated by a sequence of
probability distributions, one may hope that the corresponding Bayes estimators
will tend to the MRE estimator and Theorem 3.5 will become applicable. In com-
parison, the corresponding proof in Example 2.8 is much more delicate because
it depends on the rate of convergence of the risks (this is well illustrated by the
attempted admissibility proof at the beginning of the next section).

As a contrast to Theorem 3.5, we shall now give some examples in which the
MRE estimator is not minimax.

Example 3.7 MRE not minimax. Consider once more the estimation ofW in
Example 3.2.12 with loss 1 when|d−W|/W > 1/2, and 0 otherwise. The problem
remains invariant under the groupG of transformations

X′1 = a1X1 + a2X2, Y ′1 = c(a1Y1 + a2Y2),

X′2 = b1X1 + b2X2, Y ′2 = c(b1Y1 + b2Y2)

with a1b2 �= a2b1 andc > 0. The only equivariant estimator isδ(x, y) ≡ 0 and its
risk is 1 for all values ofW. On the other hand, the risk of the estimatork∗Y 2

2 /X
2
2

obtained in Example 3.2.12 is clearly less than 1. ‖
Example 3.8 A random walk.3 Consider a walk in the plane. The walker at each
step goes one unit either right, left, up, or down and these possibilities will be
denoted bya, a−, b, andb−, respectively. Such a walk can be represented by a
finite “path” such as

bba−b−a−a−a−a−.

In reporting a path, we shall, however, cancel any pair of successive steps which re-
verse each other, such asa−a orbb−. The resulting set of all finite paths constitutes
the parameter space. A typical element of will be denoted by

θ = π1 · · ·πm,
its length byl(θ ) = m. Being a parameter,θ (as well asm) is assumed to be
unknown. What is observed is the pathX obtained fromθ by adding one more
step, which is taken in one of the four possible directions at random, that is, with
probability 1/4 each. If this last step isπm+1, we have

X =

{
θπm+1 if πm andπm+1 do not cancel each other,
π1 · · ·πm−1 otherwise.

A special case occurs ifθ or X, after cancellation, reduce to a path of length 0;
this happens, for example, ifθ = a− and the random step leading toX is a. The
resulting path will then be denoted bye.

The problem is to estimateθ , having observedX = x; the loss will be 1 if the
estimated pathδ(x) is �= θ , and 0 ifδ(x) = θ .

If we observeX to be
x = π1 · · ·πk,

3 A more formal description of this example is given in TSH2 [Chapter 1, Problem 11(ii)]. See also
Diaconis (1988) for a general treatment of random walks on groups.
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the natural estimate is
δ0(x) = π1 · · ·πk−1.

An exception occurs whenx = e. In that case, which can arise only whenl(θ ) = 1,
let us arbitrarily putδ0(e) = a. The estimator defined in this way clearly satisfies

R(θ, δ0) ≤ 1

4
for all θ.

Now, consider the transformations that modify the pathsθ, x, andδ(x) by having
each preceded by an initial segmentπ−r · · ·π−1 on the left, so that, for example,
θ = π1 · · ·πm is transformed into

ḡθ = π−r · · ·π−1π1 · · ·πm
where, of course, some cancellations may occur. The groupG is obtained by con-
sidering the addition in this manner of all possible initial path segments. Equivari-
ance of an estimatorδ under this group is expressed by the condition

δ(π−r · · ·π−1x) = π−r · · ·π−1δ(x)(3.13)

for all x and allπ−r · · ·π−1, r = 1,2 . . .. This implies, in particular, that

δ(π−r · · ·π−1) = π−r · · ·π−1δ(e),(3.14)

and this condition is sufficient as well as necessary forδ to be equivariant because
(3.14) implies that

π−r · · ·π−1δ(x) = π−r · · ·π−1xδ(e) = δ(π−r · · ·π−1x).

SinceḠ is clearly transitive over, the risk function of any equivariant esti-
mator is constant. Let us now determine the MRE estimator. Suppose thatδ(e) =
π10 · · ·πk0, so that by (3.14),

δ(x) = xπ10 · · ·πk0.
The only possibility ofδ(x) being equal toθ occurs whenπ10 cancels the last
element ofx. The best choice fork is clearlyk = 1, and the choice ofπ10 (fixed
or random) is then immaterial; in any case, the probability of cancellation with
the last element ofX is 1/4, so that the risk of the MRE estimator (which is not
unique) is 3/4. Comparison withδ0 shows that a best equivariant estimator in this
case is not only not admissible but not even minimax. ‖

The following example, in which the MRE estimator is again not minimax but
whereG is simply the group of translations on the real line, is due to Blackwell
and Girshick (1954).

Example 3.9 Discrete location family. Let X = U + θ whereU takes on the
values 1,2, . . . with probabilities

P (U = k) = pk.

We observex and wish to estimateθ with loss function

L(θ, d) = d − θ if d > θ(3.15)

= 0 if d ≤ θ.
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The problem remains invariant under arbitrary translation ofX, θ , andd by the
same amount. It follows from Section 3.1 that the only equivariant estimators are
those of the formX− c. The risk of such an estimator, which is constant, is given
by ∑

k>c

(k − c)pk.(3.16)

If the pk tend to 0 sufficiently slowly, an equivariant estimator will have infinite
risk. This is the case, for example, when

pk =
1

k(k + 1)
(3.17)

(Problem 3.11). The reason is that there is a relatively large probability of sub-
stantially overestimatingθ for which there is a heavy penalty. This suggests a
deliberate policy of grossly underestimatingθ , for which, by (3.15), there is no
penalty. One possible such estimator (which, of course, is not equivariant) is

δ(x) = x −M|x|, M > 1,(3.18)

and it is not hard to show that its maximum risk is finite (Problem 3.12). ‖
The ideas of the present section have relevance beyond the transitive case for

which they were discussed so far. IfḠ is not transitive, we can no longer ask
whether the uniform minimum risk equivariant (UMRE) estimator is minimax
since a UMRE estimator will then typically not exist. Instead, we can ask whether
there exists a minimax estimator which is equivariant. Similarly, the question of
the admissibility of the UMRE estimator can be rephrased by asking whether an
estimator which is admissible among equivariant estimators is also admissible
within the class of all estimators.

The conditions for affirmative answers to these two questions are essentially
the same as in the transitive case. In particular, the answer to both questions is
affirmative whenG is finite. A proof along the lines of Theorem 4.1 is possible
but not very convenient because it would require a characterization of all admis-
sible (within the class of equivariant estimators) equivariant estimators as Bayes
solutions with respect to invariant prior distributions. Instead, we shall utilize the
fact that for every estimatorδ, there exists an equivariant estimator whose average
risk (to be defined below) is no worse than that ofδ.

Let the elements of the finite groupG beg1, . . . , gN and consider the estimators

δi(x) = g∗−1
i δ(gix).(3.19)

Whenδ is equivariant, of course,δi(x) = δ(x) for all i. Consider the randomized
estimatorδ∗ for which

δ∗(x) = δi(x) with probability 1/N for eachi = 1, . . . , N,(3.20)

and assuming the setD of possible decisions to be convex, the estimator

δ∗∗(x) =
1

N

N∑
i=1

δi(x)(3.21)
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which, for givenx, is the expected value ofδ∗(x). Then,δ∗∗(x) is equivariant, and
so isδ∗(x) in the sense thatg∗−1δ∗(gx) again is equal toδi(x) with probability
1/N for eachi (Problem 3.13). For these two estimators, it is easy to prove that
(Problem 3.14):

(i) for any loss functionL,

R(θ, δ∗) =
1

N
�R(ḡiθ, δ)(3.22)

and

(ii) for any loss functionL(θ, d) which is convex ind,

R(θ, δ∗∗) ≤ 1

N
�R(ḡiθ, δ).(3.23)

From (3.22) and (3.23), it follows immediately that

supR(θ, δ∗) ≤ supR(θ, δ) and supR(θ, δ∗∗) ≤ supR(θ, δ),

which proves the existence of an equivariant minimax estimator provided a mini-
max estimator exists.

Suppose, next, thatδ0 is admissible among all equivariant estimators. Ifδ0 is
not admissible within the class of all estimators, it is dominated by someδ. Let δ∗

andδ∗∗ be as above. Then, (3.22) and (3.23) imply thatδ∗ andδ∗∗ dominateδ0,
which is a contradiction.

Of the two constructions,δ∗∗ has the advantage of not requiring randomization,
whereasδ∗ has the advantage of greater generality since it does not requireL to
be convex. Both constructions easily generalize to groups that admit an invariant
measure which is finite (Problems 4.4.12–4.4.14). Further exploration of the re-
lationship of equivariance to admissibility and the minimax property leads to the
Hunt-Stein theorem (see Notes 9.3).

4 Simultaneous Estimation

So far, we have been concerned with the estimation of a single real-valued param-
eterg(θ ). However, one may wish to estimate several parameters simultaneously,
for example, several physiological constants of a patient, several quality charac-
teristics of an industrial or agricultural product, or several dimensions of musical
ability. One is then dealing with a vector-valued estimand

g(θ ) = [g1(θ ), . . . , gr (θ )]

and a vector-valued estimator

δ = (δ1, . . . , δr ).

A natural generalization of squared error as a measure of accuracy is

�[δi − gi(θ )]2,(4.1)

a sum of squared error losses, which we shall often simply call squared error loss.
More generally, we shall consider loss functionsL(θ , δ) whereδ = (δ1, . . . , δr ),
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and then denote the risk of an estimatorδ by

R(θ , δ) = EθL[θ , δ(X)].(4.2)

Another generalization of expected squared error loss is the matrixR(θ , δ)
whose (i, j )th element is

E{[δi(X)− gi(θ )][δj (X)− gj (θ )]}.(4.3)

We shall say thatδ is more concentrated aboutg(θ ) thanδ′ if

R(θ , δ′)−R(θ , δ)(4.4)

is positive semidefinite (but not identically zero). This definition differs from that
based on (4.2) by providing only a partial ordering of estimators, since (4.4) may
be neither positive nor negative semidefinite.

Lemma 4.1
(i) δ is more concentrated about g(θ ) than δ′ if and only if

E{�ki [δi(X)− gi(θ )]}2 ≤ E{�ki [δ′i(X)− gi(θ )]}2(4.5)

for all constants k1, . . . , kr .

(ii) In particular, if δ is more concentrated about g(θ ) than δ′, then

E[δi(X)− gi(θ )]2 ≤ E[δ′i(X)− gi(θ )]2 f or all i.(4.6)

(iii) IfR(θ , δ) ≤ R(θ , δ′) for all convex loss functions, then δ is more concentrated
about g(θ ) than δ′.

Proof.

(i) If E{�ki [δi(X)−gi(θ )]}2 is expressed as a quadratic form in theki , its matrix
is R(θ , δ).

(ii) This is a special case of (i).

(iii) This follows from the fact that{�ki [di − gi(θ )]}2 is a convex function of
d = (d1, . . . , dr ).

✷

Let us now consider the extension of some of the earlier theory to the case of
simultaneous estimation of several parameters.

(1) The Rao-Blackwell theorem (Theorem 1.7.8). The proof of this theorem
shows that its results remain valid whenδ andg are vector-valued. In particular,
for any convex loss function, the risk of any estimator is reduced by taking its
expectation given a sufficient statistic. It follows that for such loss functions, one
can dispense with randomized estimators. Also, Lemma 4.1 shows that an estimator
δ is always less concentrated aboutg(θ ) than the expectation ofδ(X), given a
sufficient statistic.

(2) Unbiased estimation. In the vector-valued case, an estimatorδ of g(θ ) is said
to be unbiased if

Eθ [δi(X)] = gi(θ ) for all i andθ .(4.7)
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For unbiased estimators, the concentration matrixR defined by (4.3) is just the
covariance matrix ofδ.

From the Rao-Blackwell theorem, it follows, as in Theorem 2.1.11 for the case
r = 1, that ifL is convex and if a complete sufficient statisticT exists, then anyU -
estimableg has a unique unbiased estimator depending only onT . This estimator
uniformly minimizes the risk among all unbiased estimators and, thus, is also more
concentrated aboutg(θ ) than any other unbiased estimator.

(3) Equivariant estimation. The definitions and concepts of Section 3.2 apply
without changes. They are illustrated by the following example, which will be
considered in more detail later in the section.

Example 4.2 Several normal means. Let X = (X1, . . . , Xr ), with theXi inde-
pendently distributed asN (θi,1), and consider the problem of estimating the vector
meanθ = (θ1, . . . , θr ) with squared error loss. This problem remains invariant un-
der the groupG1 of translations

gX = (X1 + a1, . . . , Xr + ar ),

ḡθ = (θ1 + a1, . . . , θr + ar ),(4.8)

g∗d = (d1 + a1, . . . , dr + ar ).

The only equivariant estimators are those of the form

δ(X) = (X1 + c1, . . . , Xr + cr )(4.9)

and an easy generalization of Example 3.1.16 shows thatX is the MRE estimator
of θ .

The problem also remains invariant under the groupG2 of orthogonal transfor-
mations

gX = XH, ḡθ = θH, g∗d = dH(4.10)

whereH is an orthogonalr × r matrix. An estimatorδ is equivariant if and only if
it is of the form (Problem 4.1)

δ(X) = u(X) · X,(4.11)

whereu(X) is any scalar satisfying

u(XH) = u(X) for all orthogonalH and allX(4.12)

and, hence, is an arbitrary function of�X2
i (Problem 4.2). The group̄G defined

by (4.10) is not transitive over the parameter space, and a UMRE estimator ofθ ,
therefore, cannot be expected. ‖

(4)Bayes estimators. The following result frequently makes it possible to reduce
Bayes estimation of a vector-valued estimand to that of its components.

Lemma 4.3 Suppose that δ∗i (X) is the Bayes estimator of gi(θ ) when θ has the
prior distribution � and the loss is squared error. Then, δ∗ = (δ∗1, . . . , δ

∗
r ) is more

concentrated about g(θ ) in the Bayes sense that it minimizes

E[�ki(δi(X)− gi(θ ))]2 = E[�kiδi(X)−�kigi(θ )]2(4.13)
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for all ki , where the expectation is taken over both θ and X.

Proof. The result follows from the fact that the estimator�kiδi(X) minimizing
(4.13) is

E[�kigi(θ )|X] = �kiE[g(θ i)|X] = �kiδ
∗
i (X).

✷

Example 4.4 Multinomial Bayes. Let X = (X0, . . . , Xs) have the multinomial
distributionM(n;p0, . . . , ps), and consider the Bayes estimation of the vector
p = (p0, . . . , ps) when the prior distribution ofp is the Dirichlet distribution�
with density

H(a0, . . . , as)

H(a0) . . . H(as)
p
a0−1
0 · · ·pas−1

s (ai > 0, 0 ≤ pi ≤ 1, �pi = 1).(4.14)

The Bayes estimator ofpi for squared error loss is (Problem 4.3)

δi(X) =
ai +Xi
�aj + n

,(4.15)

and by Lemma 4.3, the estimator [δ0(X), . . . , δs(X)] is then most concentrated in
the Bayes sense. As a check, note that�δi(X) = 1 as, of course, it must since�
assigns probability 1 to�pi = 1. ‖

(5) Minimax estimators. In generalization of the binomial minimax problem
treated in Example 1.7, let us now determine the minimax estimator of (p0, . . . , ps)
for the multinomial model of Example 4.4.

Example 4.5 Multinomial minimax. Suppose the loss function is
squared error. In light of Example 1.7, one might guess that a least favorable
distribution is the Dirichlet distribution (4.14) witha0 = · · · = as = a. The Bayes
estimator (4.15) reduces to

δi(X) =
a +Xi

(s + 1)a + n
.(4.16)

The estimatorδ(X) with components (4.16) has constant risk over the support of
(4.14), provideda =

√
n/(s +1), and for this value ofa, δ(X) is therefore minimax

by Corollary 1.5. [Various versions of this problem are discussed by Steinhaus
(1957), Trybula (1958), Rutkowska (1977), and Olkin and Sobel (1979).] ‖
Example 4.6 Independent experiments. Suppose the componentsXi of X =
(X1, . . . , Xr ) are independently distributed according to distributionsPθi , where
theθi vary independently overi , so that the parameter space forθ = (θ1, . . . , θr )
is  = 1 × · · · × r . Suppose, further, that for theith component problem of
estimatingθi with squared error loss,�i is least favorable forθi , and the minimax
estimatorδi is the Bayes solution with respect to�i , satisfying condition (1.5) with
ωi = ω�i . Then,δ = (δ1, . . . , δr ) is minimax for estimatingθ with squared error
loss. This follows from the facts that (i)δ is a Bayes estimator with respect to the
prior distribution� for θ , according to which the componentsθi are independently
distributed with distribution�i , (ii) �(ω) = 1 whereω = ω1× · · · × ωr , and (iii)
the set of pointsθ at whichR(θ , δ) attains its maximum is exactlyω.
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The analogous result holds if the component minimax estimatorsδi are not Bayes
solutions with respect to least favorable priors but have been obtained through
a least favorable sequence by Theorem 1.12. As an example, suppose thatXi
(i = 1, . . . , r) are independently distributed asN (θi,1). Then, it follows that
(X1, . . . , Xr ) is minimax for estimating (θ1, . . . , θr ) with squared error loss. ‖

The extensions so far have brought no great surprises. The results for generalr

were fairly straightforward generalizations of those forr = 1. This will no longer
always be the case for the last topic to be considered.

(6) Admissibility. The multinomial minimax estimator (4.16) was seen to be a
unique Bayes estimator and, hence, is admissible. To investigate the admissibility
of the minimax estimatorX for the case ofr normal means considered at the end
of Example 4.6, one might try the argument suggested following Theorem 4.1. It
was seen in Example 4.2 that the problem under consideration remains invariant
under the groupG1 of translations and the groupG2 of orthogonal transformations,
given by (4.8) and (4.10), respectively. Of these,G1 is transitive; if there existed
an invariant probability distribution overG1, the remark following Theorem 4.1
would lead to an admissible estimator, hopefullyX. However, the measurescν,
whereν is Lebesgue measure, are the only invariant measures (Problem 4.14) and
they are not finite. Let us instead considerG2. An invariant probability distribution
overG2 does exist (TSH2, Example 6 of Chapter 9). However, the approach now
fails becausēG2 is not transitive. Equivariant estimators do not necessarily have
constant risk and, in fact, in the present case, a UMRE estimator does not exist
(Strawderman 1971).

Since neither of these two attempts works, let us try the limiting Bayes method
(Example 2.8, first proof) instead, which was successful in the caser = 1. For the
sake of convenience, we shall take the loss to be the average squared error,

L(θ , d) =
1

r
�(di − θi)2.(4.17)

If X is not admissible, there exists an estimatorδ∗, a numberε > 0, and intervals
(θi0, θi1) such that

R(θ , δ∗)
{≤ 1 for all θ
< 1− ε for θ satisfyingθi0 < θi < θi1 for all i.

A computation analogous to that of Example 2.8 now shows that

1− r∗τ
1− rτ ≥

ε(1 + τ 2)

(
√

2πτ )r

∫ θ11

θ10

· · ·
∫ θr1

θr0

exp(−�θ2
i /2τ

2)dθ1 · · · dθr .(4.18)

Unfortunately, the factor preceding the integral no longer tends to infinity when
r > 1, and so this proof breaks down too.

It was shown by Stein (1956b) thatX is, in fact, no longer admissible when
r ≥ 3 although admissibility continues to hold forr = 2. (A limiting Bayes proof
will work for r = 2, although not with normal priors. See Problem 4.5). Forr ≥ 3,
there are many different estimators whose risk is uniformly less than that ofX.
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To produce an improved estimator, Stein (1956b) gave a “larger and|θ |” ar-
gument based on the observation that with high probability, the trueθ is in the
sphere{θ : |θ |2 ≤ |x|2 − r}. Since the usual estimatorX is approximately the
same size asθ , it will almost certainly be outside of this sphere. Thus, we should
cut down the estimatorX to bring it inside the sphere. Stein argues thatX should
be cut down by a factor of (|X|2 − r)/|X|2 = 1− r/|X|2, and as a more general
form, he considers the class of estimators

δ(x) = [1− h(|x|2)]x,(4.19)

with particular emphasis on the special case

δ(x) =

(
1− r

|x|2
)

x.(4.20)

See Problem 4.6 for details.
Later, James and Stein (1961) established the complete dominance of (4.20) over

X, and (4.20) remains the basic underlying form of almost all improved estimators.
In particular, the appearance of the squared term in the shrinkage factor is essential
for optimality (Brown 1971; Berger 1976a; Berger 1985, Section 8.9.4).

Since Stein (1956b) and James and Stein (1961), the proof of domination of the
estimator (4.20) over the maximum likelihood estimator,X, has undergone many
modifications and updates. More recent proofs are based on the representation of
Corollary 4.7.2 and can be made to apply to cases other than the normal. We defer
treatment of this topic until Section 5.6. At present, we only make some remarks
about the estimator (4.20) and the following modifications due to James and Stein
(1961). Let

δi = µi +

(
1− r − 2

|x − µ|2
)

(xi − µi)(4.21)

whereµ = (µ1, . . . , µr ) are given numbers and

|x − µ| =
[
�(xi − µi)2

]1/2
.(4.22)

A motivation for the general structure of the estimator (4.21) can be obtained by
using arguments similar to the empirical Bayes arguments in Examples 4.7.7 and
4.7.8 (see also Problems 4.7.6 and 4.7.7). Suppose, a priori, it was thought likely,
though not certain, thatθi = µi (i = 1, . . . , r). Then, it might be reasonable first
to test

H : θ1 = µ1, . . . , θr = µr

and to estimateθ byµ whenH is accepted and byX otherwise. The best acceptance
region has the form|x − µ| ≤ C so that the estimator becomes

δ =

{
µ if |x − µ| ≤ C
x if |x − µ| > C.(4.23)

A smoother approach is provided by an estimator with components of the form

δi = ψ(|x − µ|)xi + [1− ψ(|x − µ|)]µi(4.24)
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whereψ , instead of being two-valued as in (4.23), is a function increasing con-
tinuously withψ(0) = 0 toψ(∞) = 1. The estimator (4.21) is of the form (4.24)
(although withψ(0) = −∞), but the argument given above provides no expla-
nation of the particular choice forψ . We note, however, that many hierarchical
Bayes estimators (such as given in Example 5.2) will result in estimators of this
form. We will return to this question in Section 5.6.

For the case of unknownσ, the estimator corresponding to (4.23) has been
investigated by Sclove, Morris, and Radhakrishnan (1972). They show that it does
not provide a uniform improvement overX and that its risk is uniformly greater
than that of the corresponding James-Stein estimator. Although these so-called
pretest estimators tend not to be optimal, they have been the subject of considerable
research (see, for example, Sen and Saleh 1985, 1987).

Unlike X, the estimatorδ is, of course, biased. An aspect that in some circum-
stances is disconcerting is the fact that the estimator ofθi depends not only onXi
but also on the other (independent)X’s. Do we save enough in risk to make up for
these drawbacks? To answer this, we take a closer look at the risk function.

Under the loss (4.17), it will be shown in Theorem 5.1 that the risk function of
the estimator (4.21) can be written as

R(θ , δ) = 1− r − 2

r
Eθ

(
r − 2

|X− µ|2
)
.(4.25)

Thus,δ has uniformly smaller risk than the constant estimatorX when r ≥ 3,
and, in particular,δ is then minimax by Example 4.6. More detailed information
can be obtained from the fact that|X− µ|2 has a noncentralχ2-distribution with
noncentrality parameterλ = �(θi − µi)2 and that, therefore, the risk function
(4.25) is an increasing function ofλ. (See TSH2 Chapter 3, Lemma 2 and Chapter
7, Problem 4 for details). The risk function tends to 1 asλ → ∞, and takes on
its minimum value atλ = 0. For this value,|X − µ|2 has aχ2-distribution withr
degrees of freedom, and it follows from Example 2.1 that (Problem 4.7)

E

(
1

|X− µ|2
)

=
1

r − 2

and henceR(µ, δ) = 2/r. Particularly for large values ofr, the savings over the
risk of X (which is equal to 1 for allθ ) can therefore be substantial. (See Bondar
1987 for further discussion.)

We thus have the surprising result thatX is not only inadmissible whenr ≥ 3
but that even substantial risk savings are possible. This is the case not only for
squared error loss but also for a wide variety of loss functions which in a suitable
way combine the losses resulting from ther component problems. In particular,
Brown (1966, Theorem 3.1.1) proves thatX is inadmissible forr ≥ 3 when
L(θ , d) = ρ(d − θ ), whereρ is a convex function satisfying, in addition to some
mild conditions, the requirement that ther × r matrixR with the (i, j )th element

E0

[
Xi

∂

∂Xj
ρ(X)

]
(4.26)

is nonsingular. Here, the derivative in (4.26) is replaced by zero whenever it does
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not exist.

Example 4.7 A variety of loss functions. Consider the following loss functions
ρ1, . . . , ρ4:

ρ1(t) = �νit
2
i (all νi > 0);

ρ2(t) = maxi t
2
i ;

ρ3(t) = t21 ,

ρ4(t) =

(
1

r
�ti

)2

.

All four are convex, andR is nonsingular forρ1 andρ2 but singular forρ3 andρ4

(Problem 4.8). Forr ≥ 3, it follows from Brown’s theorem thatX is inadmissible
for ρ1 andρ2. On the other hand, it is admissible forρ3 andρ4 (Problem 4.10).‖

Other ways in which the admissibility ofX depends on the loss function are
indicated by the following example (Brown, 1980b) in whichL(θ , d) is not of the
form ρ(d − θ ).

Example 4.8 Admissibility of X. Let Xi (i = 1, . . . , r) be independently dis-
tributed asN (θi,1) and consider the estimation ofθ with loss function

L(θ , d) =
r∑
i=1

v(θi)

�v(θj )
(θi − di)2.(4.27)

Then the following results hold:

(i) Whenv(t) = ekt (k �= 0), X is inadmissible if and only ifr ≥ 2.

(ii) Whenv(t) = (1 + t2)k/2,

(a) X is admissible fork < 1, 1≤ r < (2− k)/(1− k) and fork ≥ 1, all r;

(b) X is inadmissible fork < 1, r > (2− k)/(1− k).
Parts (i) and (ii(b)) will not be proved here. For the proof of (ii(a)), see Problem

4.11. ‖
In the formulations considered so far, the loss function in some way combines

the losses resulting from the different component problems. Suppose, however, that
the problems of estimatingθ1, . . . , θr are quite unrelated and that it is important
to control the error on each of them. It might then be of interest to minimize

max
i

[
sup
θi

E(δi − θi)2

]
.(4.28)

It is easy to see thatX is the unique estimator minimizing (4.28) and is admissible
from this point of view. This follows from the fact thatXi is the unique estimator
for which

sup
θi

E(δi − θi)2 ≤ 1.

[On the other hand, it follows from Example 4.7 thatX is inadmissible forr ≥ 3
whenL(θ , d) = maxi(di − θi)2.]
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The performance measure (4.28) is not a risk function in the sense defined in
Chapter 1 because it is not the expected value of some loss but the maximum of a
number of such expectations. An interesting way of looking at such a criterion was
proposed by Brown (1975) [see also Bock 1975, Shinozaki 1980, 1984]. Brown
considers a familyL of loss functionsL, with the thought that it is not clear which
of these loss functions will be most appropriate. (It may not be clear how the data
will be used, or they may be destined for multiple uses. In this connection, see also
Rao 1977.) If

RL(θ , δ) = EθL[θ , δ(X)],(4.29)

Brown definesδ to be admissible with respect to the classL if there exists noδ′

such that

RL(θ , δ′) ≤ RL(θ , δ) for all L ∈ L and allθ

with strict inequality holding for at least oneL = L0 andθ = θ 0.
The argument following (4.28) shows thatX is admissible whenL contains the

r loss functionsLi(θ , d) = (di − θi)2, i = 1, . . . , r, and hence, in particular, when
L is the class of all loss functions

r∑
i=1

ci(δi − θi)2, 0 ≤ ci <∞.(4.30)

On the other hand, Brown shows that if the ratios of the weightsci to each other
are bounded,

ci/cj < K, i, j = 1, . . . , r,(4.31)

then no matter how largeK, the estimatorX is inadmissible with respect to the
classL of loss functions (4.30) satisfying (4.31). Similar results persist in even
more general settings, such as whenL is not restricted to squared error loss. See
Hwang 1985, Brown and Hwang 1989, and Problem 4.14.

The above considerations make it clear that the choice betweenX and competi-
tors such as (4.21) must depend on the circumstances. (In this connection, see also
Robinson 1979a, 1979b). A more detailed discussion of some of these issues will
be given in the next section.

5 Shrinkage Estimators in the Normal Case

The simultaneous consideration of a number of similar estimation problems in-
volving independent variables and parameters (Xi, θi) often occurs in repetitive
situations in which it may be reasonable to view theθ ’s themselves as random
variables. This leads to the Bayesian approach of Examples 4.7.1, 4.7.7, and 4.7.8.
In the simplest normal case, we assume, as in Example 4.7.1, that theXi are inde-
pendent normal with meanθi and varianceσ 2, and that theθi ’s are also normal, say
with meanξ and varianceA (previously denoted byτ 2), that is,X ∼ Nr (θ , σ 2I )
andθ ∼ Nr (ξ , AI ). This model has some similarity with the Model II version of
the one-way layout considered in Section 3.5. There, however, interest centered
on the variancesσ 2 andA, while we now wish to estimate theθi ’s.
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To simplify the problem, we shall begin by assuming thatσ andξ are known,
sayσ = 1 andξ = 0, so that onlyA andθ are unknown. The empirical Bayes
arguments of Example 4.7.1 led to the estimator

δπ̂i = (1− B̂)xi,(5.1)

whereB̂ = (r − 2)/�x2
i , that is, the James-Stein estimator (4.21) withµ = 0. We

now prove that, as previously claimed, the risk function of (5.1) is given by (4.25).
However, we shall do so for the more general estimator (5.1) withB̂ = c(r−2)/�x2

i

wherec is a positive constant. (The valuec = 1 minimizes both the Bayes risk
(Problem 4.7.5) and the frequentist risk among estimators of this form.)

Theorem 5.1 Let Xi , i = 1, . . . , r (r > 2), be independent, with distributions
N (θi,1) and let the estimator δc of θ be given by

δc(x) =

(
1− c r − 2

|x|2
)

x, |x|2 = �x2
j .(5.2)

Then, the risk function of δc, with loss function (5.17), is

R(θ , δc) = 1− (r − 2)2

r
Eθ

[
c(2− c)
|X|2

]
.(5.3)

Proof. From Theorem 4.7.2, using the loss function (4.17), the risk ofδc is

R(θ , δc) = 1 +
1

r
Eθ |g(X)|2 − 2

r

r∑
i=1

Eθ
∂

∂Xi
gi(X)(5.4)

wheregi(x) = c(r−2)xi/|x|2 and|g(x)|2 = c2(r−2)2/|x|2. Differentiation shows

∂

∂xi
gi(x) =

c(r − 2)

|x|4 [|x|2 − 2x2
i ](5.5)

and hence
r∑
i=1

∂

∂xi
gi(x) =

c(r − 2)

|x|4
r∑
i=1

[|x|2 − 2x2
i ]

=
c(r − 2)

|x|2 (r − 2),

and substitution into (5.4) gives

R(θ , δc) = 1 +
1

r
Eθ

[
c2(r − 2)2

|X|2
]
− 2

r
Eθ

[
c(r − 2)2

|X|2
]

= 1− (r − 2)2

r
Eθ

[
c(2− c)
|X|2

]
.

✷

Note that

Eθ

[
1

|X|2
]
≤ E0

[
1

|X|2
]
,(5.6)

soR(θ , δc) <∞ only if the latter expectation is finite, which occurs whenr ≥ 3
(see Problem 5.2).
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From the expression (5.3) for the risk, we immediately get the following results.

Corollary 5.2 The estimator δc defined by (5.2) dominates X (δc = X when c = 0),
provided 0< c < 2 and r ≥ 3.

Proof. For these values,c(2− c) > 0 and, hence,R(θ , δc) < 1 for all θ . Note that
R(θ , δc) = R(θ , X) for c = 2. ✷

Corollary 5.3 The James-Stein estimator δ, which equals δc with c = 1, dominates
all estimators δc with c �= 1.

Proof. The factorc(2− c) takes on its maximum value 1 if and only ifc = 1. ✷

For c = 1, formula (5.3) verifies the risk formula (4.25). Since the James-
Stein estimator dominates all estimatorsδc with c �= 1, one might hope that it
is admissible. However, unfortunately, this is not the case, as is shown by the
following theorem, which strengthens Theorem 4.7.5 by extending the comparison
from the average (Bayes) risk to the risk function.

Theorem 5.4 Let δ be any estimator of the form (5.1) with B̂ any strictly decreas-
ing function of the xi’s and suppose that

Pθ (B̂ > 1)> 0.(5.7)

Then,

R(θ , δ̂) < R(θ , δ)

where

δ̂i = max[(1− B̂),0]xi.(5.8)

Proof. By (4.17),

R(θ , δ)− R(θ , δ̂) =
1

r

∑[
Eθ

(
δ2
i − δ̂2

i

)
− 2θiEθ

(
δi − δ̂i

)]
.

To show that the expression in brackets is always> 0, calculate the expectations
by first conditioning onB̂. For any valueB̂ ≤ 1, we haveδi = δ̂i , so it is enough
to show that the right side is positive when conditioned on any valueB̂ = b > 1.
Since in that casêδi = 0, it is finally enough to show that for anyb > 1,

θiEθ [δi |B̂ = b] = θi(1− b)Eθ (Xi |B̂ = b) ≤ 0

and hence thatθiEθ (Xi |B̂ = b) ≥ 0. NowB̂ = b is equivalent to|X|2 = c for some
c and hence toX2

1 = c− (X2
2 + · · · +X2

r ). Conditioning further onX2, . . . , Xr , we
find that

Eθ (θ1X1||X|2 = c, x2, . . . , xr ) = θ1Eθ (X1|X2
1 = y2)

=
θ1y(eθ1y − e−θ1y)
eθ1y + e−θ1y

wherey =
√
c − (x2

2 + · · · + x2
r ). This is an increasing function of|θ1y|, which is

zero whenθ1y = 0, and this completes the proof. ✷
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Theorem 5.4 shows in particular that the James-Stein estimator (δc with c = 1)
is dominated by another minimax estimator,

δ+
i =

(
1− r − 2

|x|2
)+

xi(5.9)

where (·)+ indicates that the quantity in parentheses is replaced by 0 whenever it
is negative. We shall call

(·)+ = max[(·),0]

the positive part of (·). The risk functions of the ordinary and positive-part Stein
estimators are shown in Figure 5.1.

Figure 5.1.Risk functions of the ordinary and positive-part Stein estimators, for r=4.

Unfortunately, it can be shown that evenδ+ is inadmissible because it is not
smooth enough to be either Bayes or limiting Bayes, as we will see in Section
5.7. However, as suggested by Efron and Morris (1973a, Section 5), the positive-
part estimatorδ+ is difficult to dominate, and it took another twenty years until a
dominating estimator was found by Shao and Strawderman (1994). There exist, in
fact, many admissible minimax estimators, but they are of a more general form than
(5.1) or (5.9). To obtain such an estimator, we state the following generalization
of Corollary 5.2, due to Baranchik (1970) (see also Strawderman 1971, and Efron
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and Morris 1976a). The proof is left to Problem 5.4.

Theorem 5.5 For X ∼ Nr (θ , I ), r ≥ 3, and loss L(θ , d) = 1
r
�(di − θi)2, an

estimator of the form

δi =

[
1− c(|x|) r − 2

|x|2
]
xi(5.10)

is minimax provided

(i) 0 ≤ c(·) ≤ 2 and

(ii) the function c is nondecreasing.

It is interesting to note how very different the situation forr ≥ 3 is from
the one-dimensional problem discussed in Sections 5.2 and 5.3. There, minimax
estimators were unique (although recall Example 2.9); here, they constitute a rich
collection. It follows from Theorem 5.4 that the estimators (5.10) are inadmissible
wheneverc(|x|)/|x|2 > 1/(r −2) with positive probability. On the other hand, the
family (5.10) does contain some admissible members, as is shown by the following
example, due to Strawderman (1971).

Example 5.6 Proper Bayes minimax. LetXi be independent normal with mean
θi and unit variance, and suppose that theθi ’s are themselves random variables
with the following two-stage prior distribution. For a fixed value ofλ, let theθi be
iid according toN [0, λ−1(1− λ)]. In addition, suppose thatλ itself is a random
variable,�, with distribution� ∼ (1− a)λ−a, 0≤ a < 1. We therefore have the
hierarchical model

X ∼ Nr (θ , I ),
θ ∼ Nr (0, λ−1(1− λ)I ),(5.11)

� ∼ (1− a)λ−a, 0< λ < 1, 0< a < 1.

Here, for illustration, we takea = 0 so that� has the uniform distributionU (0,1).
A straightforward calculation (Problem 5.5) shows that the Bayes estimatorδ,

under squared error loss (4.17), is given by (5.10) with

c(|x|) =
1

r − 2

[
r + 2− 2 exp(− 1

2|x|2)∫ 1
0 λ

r/2 exp(−λ|x|2/2)dλ

]
.(5.12)

It follows from Problem 5.4 thatE(�|x) = (r − 2)c(|x|)/|x|2 and hence that
c(|x|) ≥ 0 sinceλ < 1. On the other hand,c(|x|) ≤ (r + 2)/(r − 2) and hence
c(|x|) ≤ 2 providedr ≥ 6. It remains to show thatc(|x|) is nondecreasing or,
equivalently, that ∫ 1

0
λr/2 exp

[
1

2
|x|2(1− λ)

]
dλ

is nondecreasing in|x|. This is obvious since 0< λ < 1.
Thus, the estimator (5.10) withc(|x|) given by (5.12) is a proper Bayes (and

admissible) minimax estimator forr ≥ 6. ‖
Although neither the James-Stein estimator nor its positive-part version of (5.9)

are admissible, it appears that no substantial improvements over the latter are
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possible (see Example 7.3). We shall now turn to some generalizations of these
estimators, where we no longer require equal variances or equal weights in the
loss function.

We first look at the case where the covariance matrix is no longerσ 2I , but may
be any positive definite matrix�. Conditions for minimaxity of the estimator

δ(x) =

(
1− c(|x|

2)

|x|2
)

x(5.13)

will now involve this covariance matrix.

Theorem 5.7 For X ∼ Nr (θ , �) with � known, an estimator of the form (5.13)
is minimax against the loss L(θ , δ) = |θ − δ|2, provided

(i) 0 ≤ c(|x|2) ≤ 2[tr(�)/λmax(�)] − 4,

(ii) the function c(·) is nondecreasing,

where tr(�) denotes the trace of the matrix � and λmax(�) denotes its largest
eigenvalue.

Note that the covariance matrix must satisfy tr(�)/λmax(�) > 2 for δ to be
different fromX. If � = I , tr(�)/λmax(�) = r, so this is the dimensionality
restriction in another guise. Bock (1975) (see also Brown 1975) shows thatX

is unique minimax amongspherically symmetric estimators if tr(�)/λmax(�) <
2. (An estimator is said to bespherically symmetric if it is equivariant under
orthogonal transformations. Such estimators were characterized by (4.11), to which
(5.13) is equivalent.)

When the bound onc(·) is displayed in terms of the covariance matrix, we get
some idea of the types of problems in which we can expect improvement from
shrinkage estimators. The condition tr(�) > 2λmax(�) will be satisfied when the
eigenvalues of� are not too different (see Problem 5.10). If this condition is
not satisfied, then estimators which allow different coordinatewise shrinkage are
needed to obtain minimaxity (see Notes 9.6).

Proof of Theorem 5.7. The risk ofδ(x) is

R(θ , δ) = Eθ
[
(θ − δ(X))′(θ − δ(X))

]
= Eθ

[
(θ − X)′(θ − X)

]
(5.14)

−2Eθ

[
c(|X|2)

|X|2 X′(θ − X)

]
+Eθ

[
c2(|X|2)

|X|2
]

whereEθ (θ − X)′(θ − X) = tr(�), the trace of the matrix�, is the minimax risk
(Problem 5.8). We can now apply integration by parts (see Problem 5.9) to write

R(θ , δ) = tr(�) +Eθ

{
c(|X|2)

|X|2
[
(c(|X|2) + 4)

X′�X
|X|2 − 2 tr �

]}
(5.15)

−4Eθ
c′(|X|2)

|X|2 X′�X.

Sincec′(·) ≥ 0, an upper bound onR(θ , δ) results by dropping the last term. We
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then note [see Equation (2.6.5)]

x′�x
|x|2 =

x′�x
x′x

≤ λmax(�)(5.16)

and the result follows. ✷

Theorem 5.5 can also be extended by considering more general loss functions
in which the coordinates may have different weights.

Example 5.8 Loss functions in the one-way layout. In the one-way layout we
observe

Xij ∼ N (ξi, σ
2
i ), j = 1, . . . , ni, i = 1, . . . , r ,(5.17)

where the usual estimator ofξi is X̄i =
∑
j Xij /ni . If the assumptions of Theorem

5.7 are satisfied, then the estimatorX̄ = (X̄1, . . . , X̄r ) can be improved. If theξi ’s
represent mean responses for different treatments, for example, crop yields from
different fertilization treatments or mean responses from different drug therapies,
it may be unrealistic to penalize the estimation of each coordinate by the same
amount. In particular, if one drug is uncommonly expensive or if a fertilization
treatment is quite difficult to apply, this could be reflected in the loss function.‖

The situation described in Example 5.8 can be generalized to

X ∼ N (θ , �),(5.18)

L(θ , δ) = (θ − δ)′Q(θ − δ),
where both� andQ are positive definite matrices. We again ask under what
conditions the estimator (5.13) is a minimax estimator ofθ .

Before answering this question, we first note that, without loss of generality,
we can consider one of� orQ to be the identity (see Problem 5.11). Hence, we
take� = I in the following theorem, whose proof is left to Problem 5.12; see also
Problem 5.13 for a more general result.

Theorem 5.9 Let X ∼ N (θ , I ). An estimator of the form (5.13) is minimax against
the loss L(θ , δ) = (θ − δ)′Q(θ − δ), provided

(i) 0 ≤ c(|x|2) ≤ 2[tr(Q)/λmax(Q)] − 4,

(ii) the function c(·) is nondecreasing.

Theorem 5.9 can also be viewed as a robustness result, since we have shownδ

to be minimax against anyQ, which provides an upper bound forc(|x|2) in (i).
This is in the same spirit as the results of Brown (1975), mentioned in Section 5.5.
(See Problem 5.14.)

Thus far, we have been mainly concerned with one form of shrinkage estima-
tor, the estimator (5.13). We shall now obtain a more general class of minimax
estimators by writingδ asδ(x) = x − g(x) and utilizing the resulting expression
(5.4) for the risk ofδ. As first noted by Stein, (5.4) can be combined with the
identities derived in Section 4.3 (for the Bayes estimator in an exponential family)
to obtain a set of sufficient conditions for minimaxity in terms of the condition of
superharmonicity of the marginal distribution (see Section 1.7).
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In particular, for the case ofX ∼ N (θ , I ), we can, by Corollary 3.3, write a
Bayes estimator ofθ as

E(θi |x) =
∂

∂xi
logm(x)− ∂

∂xi
logh(x)(5.19)

with −∂ logh(x)/∂xi = xi (Problem 5.17) so that the Bayes estimators are of the
form

δ(x) = x +∇ logm(x).(5.20)

Theorem 5.10 If X ∼ Nr (θ , I ), the risk, under squared error loss, of the estimator
(5.20) is given by

R(θ , δ) = 1 +
4

r
Eθ

 r∑
i=1

∂2

∂x2
i

√
m(X)

√
m(X)

(5.21)

= 1 +
4

r
Eθ
∇2
√
m(X)√
m(X)

where ∇2f =
∑{(∂2/∂x2

i )f } is the Laplacian of f .

Proof. Theith component of the estimator (5.20) is

δi(x) = xi + (∇ logm(x))i

= xi +
∂

∂xi
logm(x) = xi +

m′i(x)

m(x)

where, for simplicity of notation, we writem′i(x) = (∂/∂xi)m(x). In the risk identity
(5.4), setgi(x) = −m′i(x)/m(x) to obtain

R(θ , δ) = 1 +
1

r
Eθ

{
r∑
i=1

[
m′i(X)

m(X)

]2
}

+
2

r
Eθ

{
r∑
i=1

[
∂

∂xi

m′i(X)

m(X)

]}
(5.22)

= 1 +
1

r

r∑
i=1

Eθ

{
2
m′′i (X)

m(X)
−

[
m′i(X)

m(X)

]2
}

wherem′′i (x) = (∂2/∂x2
i )m(x), and the second expression follows from straight-

forward differentiation and gathering of terms. Finally, notice the differentiation
identity

∂2

∂x2
i

[g(x)]1/2 =
g′′i (x)

2[g(x)]1/2
− [g′i(x)]2

4[g(x)]3/2
.(5.23)

Using (5.23), we can rewrite the risk (5.22) in the form (5.21). ✷

The form of the risk function (5.21) shows that the estimator (5.20) is minimax
(provided all expectations are finite) if

∑
(∂2/∂x2

i )[m(x)]1/2 < 0, and hence by
Theorem 1.7.24 if [m(x)]1/2 is superharmonic. We, therefore, have established the
following class of minimax estimators.

Corollary 5.11 Under the conditions of Theorem 5.10, ifEθ {∇2
√
m(X)/

√
m(X)}

< ∞ and [m(x)]1/2 is a superharmonic function, then δ(x) = x + log∇m(x) is
minimax.
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A useful consequence of Corollary 5.11 follows from the fact that superhar-
monicity ofm(x) implies that of [m(x)]1/2 (Problem 1.7.16) and is often easier to
verify.

Corollary 5.12 Under the conditions of Theorem 5.10, if Eθ |∇m(X)/ m(X)|2 <
∞, Eθ |∇2m(X)/m(X)| <∞, and m(x) is a superharmonic function, then δ(x) =
x + log∇m(x) is minimax.

Proof. From the second expression in (5.22), we see that

R(θ , δ) ≤ 1 +
2

r

r∑
i=1

Eθ
m′′i (X)

m(X)
,(5.24)

which is≤ 1 if m(x) is superharmonic. ✷

Example 5.13 Superharmonicity of the marginal. For the model in (5.11) of
Example 5.6, we have

m(x) ∝
∫ 1

0
λ(r/2)−ae

−λ
2 |x|2dλ

and
r∑
i=1

∂2

∂x2
i

m(x) ∝
∫ 1

0
λ(r/2)−a+1[λ|x|2 − r]e −λ2 |x|2dλ(5.25)

=
1

(|x|2)(r/2)−a+2

∫ |x|2

0
t (r/2)−a+1[t − r]e−t/2 dt.

Thus, a sufficient condition form(x) to be superharmonic is∫ |x|2

0
t (r/2)−a+1[t − r]e−t/2 dt ≤ 0.(5.26)

From Problem 5.18, we have∫ |x|2

0
t (r/2)−a+1[t − r]e−t/2 dt ≤

∫ ∞

0
t (r/2)−a+1[t − r]e−t/2 dt(5.27)

= H
( r

2
− a + 2

)
2(r/2)−a+2[−2a + 4],

som(x) is superharmonic if−2a + 4 ≤ 0 or a ≥ 2. For the choicea = 2, the
Strawderman estimator is (Problem 5.5)

δ(x) =

(
1− r − 2

|x|2
[
P (χ2

r ≤ |x|2)

P (χ2
r−2 ≤ |x|2)

])
x,

which resembles the positive-part Stein estimator. Note that this estimator is not a
proper Bayes estimator, as the prior distribution is improper. ‖

There are many other characterizations of superharmonic functions that lead
to different versions of minimax theorems. A most useful one, noticed by Stein
(1981), is the following.
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Corollary 5.14 Under the conditions of Theorem 5.10 and Corollary 5.11, if the
prior π (θ ) is superharmonic, then δ(x) = x +∇ logm(x) is minimax.

Proof. The marginal density can be written as

m(x) =
∫
φr (x − θ )π (θ ) dθ ,(5.28)

whereφr (x− θ ) is ther-variate normal density. From Problem 1.7.16, the super-
harmonicity ofm(x) follows. ✷

Example 5.15 Superharmonic prior. The hierarchical Bayes estimators of Faith
(1978) (Problem 5.7) are based on the multivariatet prior

π (θ ) ∝
(

2

b
+ |θ |2

)−(a+r/2)

.(5.29)

It is straightforward to verify that this prior is superharmonic ifa ≤ −1, allowing
a simple verification of minimaxity of an estimator that can only be expressed as
an integral.

The superharmonic condition, although sometimes difficult to verify, has often
proved helpful in not only establishing minimaxity but also in understanding what
types of prior distributions may lead to minimax Bayes estimators. See Note 9.7
for further discussion. ‖

We close this section with an examination of componentwise risk. ForXi ∼
N (θi,1), independent, and risk function

R̄(θ , δ) =
1

r
�R(θi, δi)(5.30)

with R(θi, δi) = E(δi − θi)2, it was seen in Section 5.3 that it is not possible to find
a δi for whichR(θi, δi) is uniformly better thanR(θi, Xi) = 1.

Thus, the improvement in the average risk can be achieved only though in-
creasing some of the component risks, and it becomes of interest to consider the
maximum possible component risk

max
i

sup
θi

R(θi, δi).(5.31)

For givenλ = �θ2
j , it can be shown (Baranchik 1964) that (5.31) attains its

maximum when all but one of theθi ’s are zero, sayθ2 = · · · = θr = 0, θ1 =
√
λ,

and that this maximum riskρr (λ) as a function ofλ increases from a minimum
of 2/r atλ = 0 to a maximum and then decreases and tends to 1 asλ→∞; see
Figure 6.2.

The values of maxλ ρr (λ) and the valueλr at which the maximum is attained,
shown in Table 5.1, are given by Efron and Morris (1972a). The table suggests that
shrinkage estimators will typically not be appropriate when the component prob-
lems concern different clients. No one wants his or her blood test subjected to the
possibility of large errors in order to improve a laboratory’s average performance.

To get a feeling for the behavior of the James-Stein estimator (4.21) withµ = 0,
in a situation in which most of theθi ’s are at or near zero (representing the standard
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Figure 5.2.Maximum component risk ρr (λ) of the ordinary James-Stein estimator, and the
componentwise risk of X, the UMVU estimator, for r=4.

Table 5.1.Maximum Component Risk

r 3 5 10 20 30 ∞
λr 2.49 2.85 3.62 4.80 5.75

ρr (λr ) 1.24 1.71 2.93 5.40 7.89 r/4

or normal situation of no effect) but a few relatively largeθi ’s are present, consider
the 20-component model

Xi ∼ N (θi,1), i = 1, . . . ,20,

where the vectorθ = (θ1, . . . , θ20) is taken to have one of three configurations:

(a) θ1 = · · · = θ19 = 0, θ20 = 2,3,4,

(b) θ1 = · · · = θ18 = 0, θ19 = i, θ20 = j, 2 ≤ i ≤ j ≤ 4,

(c) θ1 = · · · = θ17 = 0, θ18 = i, θ19 = j,

θ20 = k, 2 ≤ i ≤ j ≤ k ≤ 4.



5.5 ] SHRINKAGE ESTIMATORS IN THE NORMAL CASE 365

The resulting shrinkage factor, 1− (r − 2)/|x|2, by which the observation is mul-
tiplied to obtain the estimatorsδi of θi , has expected value

E

(
1− r − 2

|X|2
)

= 1− (r − 2)E
1

χ2
r (λ)

(5.32)

= 1− (r − 2)
∞∑
k=0

e−λ/2(λ/2)k

(r + 2k − 2)k!

whereλ = |θ |2 (see Problem 5.23). Its values are given in Table 5.2.

Table 5.2.Expected Value of the Shrinkage Factor

(a) θ20 (b) θ19θ20

θ ′s �= 0 2 3 4 22 23 33 24 34 44
Factor .17 .37 .46 .29 .40 .49 .51 . 57 .63
λ 4 9 16 8 13 18 20 25 32

(c) θ18θ19θ20

θ ′s �= 0 222 223 224 233 234 244 333 334 344 444
Factor .38 .47 .56 .54 .61 .66 .59 .64 .69 .78
λ 12 17 24 22 29 36 27 34 41 64

To see the effect of the shrinkage explicitly, suppose, for example, that the
observationX20 corresponding toθ20 = 2 turned out to be 2.71. The modified
estimate ranges from 2.71× .17 = .46 (whenθ1 = · · · = θ19 = 0) to 2.71× .66 =
1.79 (whenθ1 = · · · = θ17 = 0, θ18 = θ19 = 4).

What is seen here can be summarized roughly as follows:
(i) If all the θi ’s are at or fairly close to zero, then the James-Stein estimator will

reduce theX’s very substantially in absolute value and thereby typically will
greatly improve the accuracy of the estimated values.

(ii) If there are some very largeθi ’s or a substantial number of moderate ones,
the factor by which theX’s are multiplied will not be very far from 1, and the
modification will not have a great effect.

Neither of these situations causes much of a problem: In (ii), the modification
presents an unnecessary but not particularly harmful complication; in (i), it
is clearly very beneficial. The danger arises in the following intermediate
situation.

(iii) Most of theθi ’s are close to zero, but there are a few moderately largeθi ’s (of
the order of two to four standard deviations, say). These represent the cases
in which something is going on, about which we will usually want to know.
However, in these cases, the estimated values are heavily shrunk toward the
norm, with the resulting risk of their being found “innocent by association.”

If one is interested in minimizing the average risk (5.30) but is concerned about
the possibility of large component risks, a compromise is possible along the lines



366 MINIMAXITY AND ADMISSIBILITY [ 5.6

of restricted Bayes estimation mentioned in Section 5.2. One can impose an upper
bound on the maximum component risk, say 10% or 25% above the minimax
risk of 1 (whenσ = 1). Subject to this restriction, one can then try to minimize
the average risk, for example, in the sense of obtaining a Bayes or empirical
Bayes solution. An approximation to such an approach has been developed by
Efron and Morris (1971, 1972a), Berger (1982a, 1988b), Bickel (1983, 1984), and
Kempthorne (1988a, 1988b). See Example 6.7 for an illustration.

The results discussed in this and the preceding section for the simultaneous
estimation of normal means have been extended, particularly to various members
of the exponential family and to general location parameter families, with and
without nuisance parameters. The next section contains a number of illustrations.

6 Extensions

The estimators of the previous section have all been constructed for the case of the
estimation ofθ based on observingX ∼ Nr (θ , I ). The applicability of shrinkage
estimation, now often referred to as Stein estimation, goes far beyond this case. In
this section, through examples, we will try to illustrate some of the wide ranging
applicability of the “Stein effect,” that is, the ability to improve individual estimates
by using ensemble information.

Also, the shrinkage estimators previously considered were designed to obtain
the greatest risk improvement in a specified region of the parameter space. For
example, the maximum risk improvement of (5.10) occurs atθ1 = θ2 = · · · =
θr = 0, while that of (4.21) occurs atθ1 = µ1, θ2 = µ2, . . . , θr = µr . In the next
three examples, we look at modifications of Stein estimators that shrink toward
adaptively chosen targets, that is, targets selected by the data. By doing so, it is
hoped that a maximal risk improvement will be realized.

Although we only touch upon the topic of selecting a shrinkage target, the
literature is vast. See Note 9.7 for some references.

The first two examples examine estimators that we have seen before, in the
context of empirical Bayes analysis of variance and regression (Examples 4.7.7
and 4.7.8). These estimators shrink toward subspaces of the parameter space rather
than specified points. Moreover, we can allow the data to help choose the specific
shrinkage target. We now establish minimaxity of such estimators.

Example 6.1 Shrinking toward a common mean. In problems where it is thought
there is some similarity between components, a reasonable choice of shrinkage
target may be the linear subspace where all the components are equal. This was
illustrated in Example 4.7.7, where the estimator (4.7.28) shrunk the coordinates
toward an estimated common mean value rather than a specified point.

For the average squared error lossL(θ , δ) = 1
r
|θ − δ|2, the estimator (4.7.28)

with coordinates

δLi (x) = x̄ +

(
1− c(r − 3)∑

j (xj − x̄)2

)
(xi − x̄),(6.1)
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has risk given by

R(θ , δL) = 1 +
(r − 3)2

r
Eθ

[
c(c − 2)∑
j (Xj − X̄)2

]
.(6.2)

Hence,δL is minimax ifr ≥ 4 andc ≤ 2. The minimum risk is attained atθ values
that satisfy

∑
(θi − θ̄ )2 = 0, that is, whereθ1 = θ2 = · · · = θr . Moreover, the best

value ofc is c = 1, which results in a minimum risk of 3/r. This is greater than
the minimum of 2/r (for the case of a known value ofθ ) but is attained on a larger
set. See Problems 6.1 and 6.2. ‖
Example 6.2 Shrinking toward a linear subspace. The estimatorδL given by
(6.1) shrinks toward the subspace of the parameter space defined by

L = {θ : θ1 = θ2 = · · · = θr} =

{
θ :

1

r
J θ = θ

}
(6.3)

whereJ is a matrix of 1’s,J = 11′.
Another useful submodel, which is a generalization of (6.3), is

θi = α + βti(6.4)

where theti ’s are known butα and β are unknown. This corresponds to the
(sub)model of a linear trend in the means (see Example 4.7.8). If we define

T =

(
11 · · · 1
t1t2 · · · tr

)′
,(6.5)

then theθi ’s satisfying (6.4) constitute the subspace

L =
{
θ : T ∗θ = θ

}
,(6.6)

whereT ∗ = T (T ′T )−1T ′ is the matrix that projects any vectorθ into the sub-
space. (Such projection matrices are symmetric and idempotent, that is, they satisfy
(T ∗)2 = I .)

The models (6.3) and (6.6) suggest what the more general situation would look
like when the target is a linear subspace defined by

Lk = {θ : Kθ = θ , K idempotent of ranks}.(6.7)

If we shrink toward the MLE ofθ ∈ Lk, which is given byθ̂ k = Kx, the resulting
Stein estimator is

δk(x) = θ̂ k +

(
1− r − s − 2

|x − θ̂ k|2

)
(x − θ̂ k)(6.8)

and is minimax providedr − s > 2. (See Problem 6.3.) More general linear
restrictions are possible: one can takeL = {θ : Hθ = m} whereHs×r andms×1

are specified (see Casella and Hwang, 1987). ‖
Example 6.3 Combining biased and unbiased estimators. Green and Strawder-
man (1991) show how the Stein effect can be used to combine biased and unbiased
estimators, and they apply their results to a problem in forestry.
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An important attribute of a forest stand (a homogeneous group of trees) is the
basal area per acre,B, defined as the sum of the cross-sectional areas 4.5 feet above
the ground of all trees. Regression models exist that predict logB as a function of
stand age, number of trees per acre, and the average height of the dominant trees
in the stand. The average prediction,Y, from the regression is a biased estimator
of B. Green and Strawderman investigated how to combine this estimator withX,
the sample mean basal area from a small sample of trees, to obtain an improved
estimator ofB. They formulated the problem in the following way.

SupposeX ∼ Nr (θ , σ 2I ) and Y ∼ Nr (θ + ξ , τ 2I ), independent, whereσ 2

andτ 2 are known, and the loss function isL(θ , δ) = |θ − δ|2/rσ 2. Thus,ξ is an
unknown nuisance parameter. The estimator

δc(x, y) = y +

(
1− c(r − 2)σ 2

|x − y|2
)

(x − y)(6.9)

is a minimax estimator ofθ if 0 ≤ c ≤ 2, which follows from noting that

R(θ , δc) = 1− σ 2 (r − 2)2

r
E
c(2− c)
|X− Y|2(6.10)

and that the minimax risk is 1. Ifξ = 0 and, hence,Y is also an unbiased estimator
of θ , then the optimal linear combined estimator

δcomb(x, y) =
τ 2x + σ 2y
σ 2 + τ 2

(6.11)

dominatesδ1(x, y) in risk. However, the risk ofδcomb becomes unbounded as
|ξ | → ∞, whereas that ofδ1 is bounded by 1. (See Problems 6.5 and 6.6.) ‖

The next example looks at the important case of unknown variance.

Example 6.4 Unknown variance. The James-Stein estimator (4.21)
which shrinksX toward a given pointµ was obtained under the assumption that
X ∼ N (θ , I ). We shall now generalize this estimator to the situations, first, that
the common variance of theXi has a known valueσ 2 and then thatσ 2 is unknown.

In the first case, the problem can be reduced to that with unit variance by con-
sidering the variablesXi/σ and estimating the meansθi/σ and then multiplying
the estimator ofθi/σ by σ to obtain an estimator ofθi . This argument leads to
replacing (4.21) by

δi = µi +

(
1− r − 2

|x − µ|2/σ 2

)
(xi − µi),(6.12)

where|x − µ|2 = �(xi − µi)2, with risk function (see Problem 6.7)

R(θ , δ) = σ 2

[
1− r − 2

r
Eθ

(
r − 2

|X− µ|2/σ 2

)]
.(6.13)

Suppose now thatσ 2 is unknown. We shall then suppose that there exists a
random variableS2, independent ofX and such thatS2/σ 2 ∼ χ2

ν , and we shall
in (6.12) replaceσ 2 by σ̂ 2 = kS2, wherek is a positive constant. The estimator is
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then modified to

δi = µi +

(
1− r − 2

|x − µ|2/σ̂ 2

)
(xi − µi)(6.14)

= µi +

(
1− r − 2

|x − µ|2/σ 2
· σ̂

2

σ 2

)
(xi − µi).

The conditional risk ofδ given σ̂ is given by (5.4) with|x − µ|2 replaced by
|x−µ|2/σ 2 andc = σ̂ 2/σ 2. Because of the independence ofS2 and|x−µ|2, we
thus have

R(θ , δ) = 1− (r − 2)2

r
Eθ

[
σ 2

|X− µ|2
]
E

[
2k
S2

σ 2
− k2

(
S2

σ 2

)2
]
.(6.15)

Now,E(S2/σ 2) = ν andE(S2/σ 2)2 = ν(ν + 2), so that the second expectation is

E

[
2k
S2

σ 2
− k2

(
S2

σ 2

)2
]

= 2kν − k2ν(ν + 2).(6.16)

This is positive (making the estimator minimax) ifk ≤ 2/(ν + 2), and (6.16) is
maximized atk = 1/(ν + 2) where its value isν/(ν + 2).

The best choice ofk in σ̂ 2 thus leads to using the estimator

σ̂ 2 = S2/(ν + 2)(6.17)

and the risk of the resulting estimator is

R(θ , δ) = 1− ν

ν + 2

(r − 2)2

r
Eθ

σ 2

|X− µ|2 .(6.18)

The improvement in risk overX is thus reduced from that of (4.25) by a factor of
ν/(ν + 2). (See Problems 6.7–6.11.) ‖

For distributions other than the normal, Strawderman (1974) determined mini-
max Stein estimators for the following situation.

Example 6.5 Mixture of normals. Suppose that, givenσ , the vectorX is dis-
tributed asN (θ , σ 2I ), and thatσ is a random variable with distributionG, so that
the density ofX is

f (|x − θ |) =
1

(2π )r/2

∫ ∞

0
e−(1/2σ 2)|x−θ |2σ−rdG(σ ),(6.19)

a scale mixture of normals, including, in particular, the multivariate Student’st-
distribution. SinceE(|X − θ |2 | σ ) = rσ 2, it follows that with loss function
L(θ , δ) = |θ − δ|2/r, the risk of the estimatorX isE(σ 2). On the other hand, the
risk of the estimator

δ(x) =

(
1− c

|x|2
)

x(6.20)

is given by
EθL[θ , δ(X)] = EσEθ |σL[θ , δ(X)].(6.21)
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Calculations similar to those in the proofs of Theorems 4.7.2 and 5.1 show that

Eθ |σL[θ , δ(X)] = σ 2 − 1

r

[
2c(r − 2)− c2

σ 2

]
Eθ |σ

(
σ 2

|X|2
)

and, hence,

R(θ , δ) = Eσσ
2 − 1

r
Eσ

{[
2c(r − 2)− c2

σ 2

] [
Eθ |σ

(
σ 2

|X|2
)]}

.(6.22)

An upper bound on the risk can be obtained from the following lemma, whose
proof is left to Problem 6.13.

Lemma 6.6 Let Y be a random variable, and g(y) and h(y) any functions for
which E[g(Y )], E[(h(Y )], and E(g(Y )h(Y )] exist. Then:

(a) If one of the functions g(·) and h(·) is nonincreasing and the other is nonde-
creasing,

E[g(Y )h(Y )] ≤ E[g(Y )]E[h(Y )].

(b) If both functions are either nondecreasing or nonincreasing,

E[g(Y )h(Y )] ≥ E[g(Y )]E[h(Y )].

Returning to the risk function (6.22), we see that [2c(r−2)−c2/σ 2] is an increasing
function of σ 2, andEθ |σ (σ 2/|X|2) is also an increasing function ofσ 2. (This
latter statement follows from the fact that, givenσ 2, |X|2/σ 2 has a noncentral
χ2-distribution with noncentrality parameter|θ |2/σ 2, and that, therefore, as was
pointed out following (4.25), the expectation is increasing inσ 2.)

Therefore, by Lemma 6.6,

Eσ

{[
2c(r − 2)− c2

σ 2

]
Eθ |σ

(
σ 2

|X|2
)}

≥ Eσ
[
2c(r − 2)− c2

σ 2

]
Eσ

σ 2

|X|2
.

Hence,δ(x) will dominatex if

2c(r − 2)− c2Eσ
1

σ 2
≥ 0

or

0< c < 2(r − 2)/Eσ
1

σ 2
= 2/E0|X|−2,

whereE0|X|−2 is the expectation whenθ = 0 (see Problem 6.12).
If f (|x − θ |) is the normal densityN (θ , I ), thenE0|X|−2 = (r − 2)−1, and

we are back to a familiar condition. The interesting fact is that, for a wide class
of scale mixtures of normals,E0|X|−2 > (r − 2)−1. This holds, for example, if
1/σ 2 ∼ χ2

ν /ν so f (|x − θ |) is multivariate Student’st . This implies a type of
robustness of the estimator (6.20); that is, for 0≤ c ≤ 2(r − 2), δ(X) dominates
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X under a multivariatet-distribution and hence retains its minimax property (see
Problem 6.12). ‖

Bayes estimators minimize the average risk under the prior, but the maximum
of their risk functions can be large and even infinite. On the other hand, minimax
estimators often have relatively large Bayes risk under many priors. The following
example, due to Berger (1982a) , shows how it is sometimes possible to construct
estimators having good Bayes risk properties (with respect to a given prior), while
at the same time being minimax. The resulting estimator is a compromise between
a Bayes estimator and a Stein estimator.

Example 6.7 Bayesian robustness. ForX ∼ Nr (θ , σ 2I ) andθ ∼ π = Nr (0, τ 2I ),
the Bayes estimator against squared error loss is

δπ (x) =
τ 2

σ 2 + τ 2
x(6.23)

with Bayes riskr(π, δπ ) = rσ 2τ 2/(σ 2 + τ 2). However,δπ is not minimax and, in
fact, has unbounded risk ( Problem 4.3.12). The Stein estimator

δc(x) =

(
1− c (r − 2)σ 2

|x|2
)

x(6.24)

is minimax if 0≤ c ≤ 2, but its Bayes risk

r(π, δc) = r(π, δπ ) +
σ 4

σ 2 + τ 2
[r + c(c − 2)(r − 2)],

at the best valuec = 1, isr(π, δ′) = r(π, δπ ) + 2σ 4/(σ 2 + τ 2).
To construct a minimax estimator with small Bayes risk, consider the compro-

mise estimator

δR(x) =

{
δπ (x) if |x|2 < c(r − 2)(σ 2 + τ 2)
δc(x) if |x|2 ≥ c(r − 2)(σ 2 + τ 2).

(6.25)

This estimator is minimax if 0≤ c ≤ 2 (Problem 6.14). If|x|2 > c(r−2)(σ 2+τ 2),
the data do not support the prior specification and we, therefore, putδR = δc;
if |x|2 < c(r − 2)(σ 2 + τ 2), we tend to believe that the data support the prior
specification since|x|

2

σ 2+τ 2 ∼ χ2
r , and we are, therefore, willing to gamble onπ and

put δR = δπ .
The Bayes risk ofδR is

r(π, δR) = E|θ − δπ (X)|2I (|X|2 < c(r − 2)(σ 2 + τ 2)
)

(6.26)

+ E|θ − δc(X)|2I (|X|2 ≥ c(r − 2)(σ 2 + τ 2)
)
,

where the expectation is over the joint distribution ofX andθ . Adding±δπ to the
second term in (6.26) yields

r(π, δR) = E|θ − δπ (X)|2
+E|δπ (X)− δc(X)|2I (|X|2 ≥ c(r − 2)(σ 2 + τ 2)

)
(6.27)

= r(π, δπ ) +E|δπ (X)− δc(X)|2I (|X|2 ≥ c(r − 2)(σ 2 + τ 2)
)
.
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Here, we have used the fact that, marginally,|X|2/(σ 2 + τ 2) ∼ χ2
r . We can write

(6.27) as (see Problem 6.14)

r(π, δR) = r(π, δπ )

+
1

r − 2

σ 4

σ 2 + τ 2
E[Y − c(r − 2)]2I [Y > c(r − 2)],(6.28)

whereY ∼ χ2
r−2. An upper bound on (6.28) is obtained by dropping the indicator

function, which gives

r(π, δR) ≤ r(π, δπ ) +
1

r − 2

σ 4

σ 2 + τ 2
E[Y − c(r − 2)]2

= r(π, δπ ) + [r + c(c − 2)(r − 2)]
σ 4

σ 2 + τ 2
(6.29)

= r(π, δc).

This shows thatδR has smaller Bayes risk thanδc while remaining minimax.
SinceE(Y−a)2I (Y > a) is a decreasing function ofa (Problem 6.14), the value

c = 2 minimizes (6.28) and therefore, among the estimators (6.25), determines the
minimax estimator with minimum Bayes risk. However, forc = 2,δc has the same
(constant) risk asX, so we are trading optimal Bayes risk for minimal frequentist
risk improvement overX, the constant risk minimax estimator. Thus, it may be
better to choosec = 1, which gives optimal frequentist risk performance and still
provides good Bayes risk reduction overδ′. Table 6.1 shows the relative Bayes
savings

r∗ =
r(π, δc)− r(π, δπ )

r(π, δc)
for c = 1.

Table 6.1.Values of r∗, the Relative Bayes Risk Savings of δR over δc, with c = 1

r 3 4 5 7 10 20

r∗ .801 .736 .699 .660 .629 .587

For other approaches to this “compromise” decision problem, see Bickel (1983,
1984), Kempthorne (1988a, 1988b), and DasGupta and Rubin (1988). ‖

Thus far, we have considered only continuous distributions, but the Stein effect
continues to hold also in discrete families. Minimax proofs in discrete families
have developed along two different lines. The first method, due to Clevenson and
Zidek (1975), is illustrated by the following result.

Theorem 6.8 Let Xi ∼ Poisson(λi), i = 1, . . . , r , r ≥ 2, be independent, and let
the loss be given by

L(λ , δ) =
r∑
i=1

(λi − δi)2/λi.(6.30)
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The estimator

δcz(x) =

(
1− c(�xi)

�xi + b

)
x(6.31)

is minimax if
(i) c(·) is nondecreasing,

(ii) 0 ≤ c(·) ≤ 2(r − 1),

(iii) b ≥ r − 1.

Recall (Corollary 2.20) that the usual minimax estimator here isX, with constant
risk r. Note also that, in contrast to the normal-squared-error-loss case, by (ii) there
exist positive values ofc for which δcz is minimax providedr ≥ 2.

Proof. If Z = �Xi , the risk ofδcz can be written as

R(λ , δcz) = E

[
r∑
i=1

1

λi

(
λi −Xi +

c(Z)Xi
Z + b

)2
]

= r + 2E

{
c(Z)

Z + b

r∑
i=1

Xi(λi −Xi)
}

(6.32)

+E

{
c2(Z)

(Z + b)2

r∑
i=1

X2
i

}
.

Let us first evaluate the expectations conditional onZ. The distribution ofXi |Z
is multinomial withE(Xi |Z) = Z(λi/�) and var(Xi |Z) = Z(λi/�)(1− λi/�),
where� = �λi . Hence,

E

[
r∑
i=1

Xi(λi −Xi)|Z
]

=
Z

�
[�− (Z + r − 1)](6.33)

E

[
r∑
i=1

X2
i |Z

]
=
Z

�
(Z + r − 1),

and, so, after some rearrangement of terms,

R(λ , δcz) = r +E

{
c(Z)Z

�(Z + b)

[
2(�− Z)− 2(r − 1) + c(Z)

Z + r − 1

Z + b

]}
.

(6.34)
Now, if b ≥ r − 1, z + r − 1< z + b, andc(z) < 2(r − 1), we have

−2(r − 1) + c(z)
z + r − 1

z + b
≤ −2(r − 1) + c(z) ≤ 0,

so the risk ofδcz is bounded above by

R(λ , δcz) ≤ r + 2E

[(
c(Z)Z

�(Z + b)

)
(�− Z)

]
.

But this last expectation is the product of an increasing and a decreasing function
of z; hence, by Lemma 6.6,

E

(
c(Z)Z

�(Z + b)

)
(�− Z) ≤ E c(Z)Z

�(Z + b)
E(�− z) = 0,(6.35)
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sinceZ ∼ Poisson(�). Hence,R(λ , δcz) ≤ r andδcz is minimax. ✷

If we recall Example 4.6.6 [in particular, Equation (4.6.29)], we see a similarity
betweenδcz and the hierarchical Bayes estimators derived there. It is interesting
to note thatδcz is also a Bayes estimator (Clevenson and Zidek 1975; see Problem
6.15).

The above method of proof, which relies on being able to evaluate the conditional
distribution ofXi |�Xi and the marginal distribution of

∑
Xi , works for other

discrete families, in particular the negative binomial and the binomial (wheren is
the parameter to be estimated). (See Problem 6.16.) However, there exists a more
powerful method (similar to that of Stein’s lemma) which is based on the following
lemma due to Hudson (1978) and Hwang (1982a). The proof is left to Problem
6.17.

Lemma 6.9 Let Xi , i = 1, . . . , r , be independent with probabilities

pi(x|θi) = ci(θi)hi(x)θxi , x = 0,1, . . . ,(6.36)

that is, pi(x|θi) is in the exponential family. Then, for any real-valued function
g(x) with Eθ |g(X)| <∞, and any number m for which g(x) = 0 when x + i < m,

Eθθ
m
i g(X) = Eθ

{
g(X−mei)

hi(Xi −m)

hi(Xi)

}
(6.37)

where ei is the unit vector with ith coordinate equal to 1 and the rest equal to 0.

The principal application of Lemma 6.9 is to find an unbiased estimator of the
risk of estimators of the formX + g(X), analogous to that of Corollary 4.7.2.

Theorem 6.10 Let X1, . . . , Xr be independently distributed according to (6.36),
and let δ0(x) = {hi(xi − 1)/hi(xi)} [the estimator whose ith coordinate is hi(xi −
1)/hi(xi)] be the UMVU estimator of θ . For the loss function

Lm(θ , δ) =
r∑
i=1

θ
mi
i (θi − δi)2,(6.38)

where m = (m1, . . . , mr ) are known numbers, the risk of the estimator δ(x) =
δ0(x) + g(x) is given by

R(θ , δ) = R(θ , δ0) +EθD(x)(6.39)

with

D(x) =
r∑
i=1

{
2hi(xi −mi − 1)

hi(xi)
[gi(x −miei − ei)− gi(x −miei)](6.40)

+
hi(xi −mi)
hi(xi)

g2
i (x −miei)

}
.

Proof. Write

R(θ , δ) = R(θ , δ0)− 2Eθ

{
r∑
i=1

θmi gi(X)

(
θi − hi(Xi − 1)

hi(Xi)

)}
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+Eθ

{
r∑
i=1

θmi g
2
i (X)

}
.

and apply Lemma 6.9 (see Problem 6.17.) ✷

Hwang (1982a) established general conditions ong(x) for which D(x) ≤ 0,
leading to improved estimators ofθ (see also Ghosh et al. 1983, Tsui 1979a,
1979b, and Hwang 1982b). We will only look at some examples.

Example 6.11 Improved estimation for independent Poissons. The Clevenson-
Zidek estimator (6.31) dominatesX (and is minimax) for the lossL−1(θ, δ) of
(6.38); however, Theorem 6.8 does not cover squared error loss,L0(θ , δ). For this
loss, ifXi ∼ Poisson(λi), independent, the risk of an estimatorδ(x) = x + g(x) is
given by (6.39) withδ0 = x and

D(x) =
r∑
i=1

{
2xi [gi(x)− gi(x − ei)] + g2

i (x)
}
.(6.41)

The estimator with

gi(x) =
c(x)k(xi)∑r

j=1 k(xj )k(xj + 1)
, k(x) =

x∑
l=1

1

l
,(6.42)

andc(x) nondecreasing in each coordinate with

0 ≤ c(x) ≤ 2[#(x ′i s > 1)− 2]

satisfiesD(x) ≤ 0 and hence dominatesx underL0. (The notation #(ais > b)
denotes the number ofai s that are greater thanb.)

For the loss functionL−1(θ , δ), the situation is somewhat easier, and the esti-
matorx + g(x), with

gi(x) = c(x − ei)
xi∑r
j=1 xi

,(6.43)

wherec(·) is nondecreasing with 0≤ c(·) ≤ 2(p − 1), will satisfy D(x) ≤ 0
and, hence, is minimax forL−1. Note that (6.43) includes the Clevenson-Zidek
estimator as a special case. (See Problem 6.18.) ‖

As might be expected, these improved estimators, which shrink toward 0, per-
form best and give the greatest risk improvement, when theθi ’s are close to zero
and, more generally, when they are close together. Numerical studies (Clevenson
and Zidek 1975, Tsui, 1979a, 1979b, Hudson and Tsui, 1981) quantify this im-
provement, which can be substantial. Other estimators, which shrink toward other
targets in the parameter space, can optimize the region of greatest risk reduction
(see, for example, Ghosh et al. 1983, Hudson 1985).

Just as the minimaxity of Stein estimators carried over from the normal distribu-
tion to mixtures of normals, minimaxity carries over from the Poisson to mixtures
of Poissons, for example, the negative binomial distribution (see Example 4.6.6).

Example 6.12 Improved negative binomial estimation. ForX1, . . . , , Xr inde-
pendent negative binomial random variables with distribution

pi(x|θi) =

(
ti + x − 1

x

)
θxi (1− θi)ti , x = 0,1, . . .(6.44)
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the UMVU estimator ofθi is δ0
i (xi) = xi/(xi + ti − 1) (whereδ0

i (0) = 0 for ti = 1).
Using Theorem 6.10, this estimator can be improved. For example, for the loss
L−1(θ , δ) of (6.38), the estimatorδ0(x) + g(x), with

gi(x) =
c(x − ei)xi∑r
j=1(x

2
j + xj )

(6.45)

andc(·) nondecreasing with 0≤ c ≤ 2(r − 2)/mini{ti}, satisfiesD(x) ≤ 0 and,
hence, has uniformly smaller risk thanδ0(x). Similar results can be obtained for
other loss functions (see Problem 6.19). Surprisingly, however, similar domination
results do not hold for the MLÊθi = xi/(xi + ti). Chow (1990) has shown that the
MLE is admissible in all dimensions (see also Example 7.14). ‖

Finally, we turn to a situation where the Stein effect fails to yield improved
estimators.

Example 6.13 Multivariate binomial. ForXi ∼ b(θi, ni), i = 1, . . . , r, inde-
pendent, that is, with distribution

pi(x|θi) =

(
ni
x

)
θxi (1− θi)ni−x, x = 0,1, . . . , ni,(6.46)

it seems reasonable to expect that estimators of the formx+g(x) exist that dominate
the UMVU estimatorx. This expectation is partially based on the fact that (6.46) is a
discrete exponential family. However, Johnson (1971) showed that such estimators
do not exist in the binomial problem for squared error loss (see Example 7.23 and
Problem 7.28).

Theorem 6.14 If ki(θi), i = 1, . . . , r , are continuous functions and δi(xi) is an
admissible estimator of ki(θi) under squared error loss, then (δ1(x1), . . . , δr (xr )) is
an admissible estimator of (k1(θ1), . . . , kr (θr )) under sum-of-squared-error loss.

Thus, there is no “Stein effect” in the binomial problem. In particular, asXi
is an admissible estimator ofθi under squared error loss (Example 2.16),X is an
admissible estimator ofθ . ‖

It turns out that the absence of the Stein effect is not a property of the binomial
distribution, but rather a result of the finiteness of the sample space (Gutmann
1982a; see also Brown 1981). See Note 9.7 for further discussion.

7 Admissibility and Complete Classes

In Section 1.7, we defined the admissibility of an estimator which can be formally
stated as follows.

Definition 7.1 An estimatorδ = δ(X) of θ is admissible [with respect to the loss
functionL(θ , δ)] if there exists no estimatorδ′ that satisfies

(i) R(θ , δ′) ≤ R(θ , δ) for all θ ,(7.1)

(ii) R(θ , δ′) < R(θ , δ) for some θ ,

whereR(θ , δ) = EθL(θ , δ). If such an estimatorδ′ exists, thenδ is inadmissible.
When a pair of estimatorsδ andδ′ satisfy (7.1),δ′ is said todominate δ.
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Although admissibility is a desirable property, it is a very weak requirement.
This is illustrated by Example 2.23, where an admissible estimator was completely
unreasonable since it used no information from the relevant distribution. Here is
another example (from Makani 1977, who credits it to L.D. Brown).

Example 7.2 Unreasonable admissible estimator. LetX1 andX2 be indepen-
dent random variables,Xi distributed asN (θi,1), and consider the estimation of
θ1 with loss functionL((θ1, θ2), δ) = (θ1 − δ)2. Then,δ = sign(X2) is an admissi-
ble estimator ofθ1, although its distribution does not depend onθ1. The result is
established by showing thatδ cannot be simultaneously beaten at (θ1, θ2) = (1, θ2)
and (−1, θ2). (See Problem 7.1.) ‖

Conversely, there exist inadmissible decision rules that perform quite well.

Example 7.3 The positive-part Stein estimator. ForX ∼ Nr (θ , I ), the positive-
part Stein estimator

δ+(x) =

(
1− r − 2

|x|2
)+

x(7.2)

is a good estimator ofθ under squared error loss, being both difficult to improve
upon and difficult to dominate. However, as was pointed out by Baranchik (1964),
it is not admissible. (This follows from Theorem 7.17, asδ+ is not smooth enough
to be a generalized Bayes estimator.) Thus, there exists an estimator that uniformly
dominates it.

How much better can such a dominating estimator be? Efron and Morris (1973a,
Section 5) show thatδ+ is “close” to a Bayes rule (Problem 7.2). Brown (1988; see
also Moore and Brook 1978) writing

R(θ , δ+) = Eθ

[
1

r

r∑
i=1

(θi − δi(X))2

]
= EθDδ+(X),(7.3)

where

Dδ+(x) = 1 +
m2(x)|x|2

r
− 2

r
{(r − 2)m(x) + 2I [m(x) = 1]}

with m(x) = min{1, c(r − 2)/|x|2} (see Corollary 4.7.2), proves that no estimator
δ exists for whichDδ(x) ≤ Dδ+(x) for all x. These observations imply that the
inadmissibleδ+ behaves similar to a Bayes rule and has a risk that is close to that
of an admissible estimator. ‖

However, since admissibility generally is a desirable property, it is of interest to
determine the totality of admissible estimators.

Definition 7.4 A class ofC of estimators iscomplete if for any δ not in C there
exists an estimatorδ′ in C such that (7.1) holds;C is essentially complete if for any
δ not inC there exists an estimatorδ′ in C such that (7.1)(i) holds.

It follows from this definition that any estimator outside a complete class is
inadmissible. IfC is essentially complete, an estimatorδ outside ofC may be
admissible, but there will then exist an estimatorδ′ in C with the same risk function.
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It is therefore reasonable, in the search for an optimal estimator, to restrict
attention to a complete or essentially complete class. The following result provides
two examples of such classes.

Lemma 7.5

(i) If C is the class of all (including randomized) estimators based on a sufficient
statistic, then C is essentially complete.

(ii) If the loss function L(θ, d) is convex in d, then the class of nonrandomized
estimators is complete.

Proof. These results are immediate consequences of Theorem 1.6.1 and Corollary
1.7.9. ✷

Although a complete class contains all admissible estimators, it may also contain
many inadmissible ones. (This is, for example, the case for the two complete classes
of Lemma 7.5.) A complete class is most useful if it is as small as possible.

Definition 7.6 A complete classC of estimators isminimal complete if no proper
subset ofC is complete.

Lemma 7.7 If a minimal complete class C exists, then it is exactly the class of all
admissible estimators.

Proof. It is clear thatC contains all admissible rules, so we only need to prove
that it cannot contain any inadmissible ones. Letδ ∈ C and suppose thatδ is
inadmissible. Then, there is aδ′ ∈ C that dominates it, and, hence, the classC \ {δ}
(C with the estimatorδ removed) is a complete class. This contradicts the fact that
C is minimal complete. ✷

Note that Lemma 7.7 requires the existence of a minimal complete class. The
following example illustrates the possibility that a minimal complete class may
not exist. (For another example, see Blackwell and Girshick 1954, Problem 5.2.1.)

Example 7.8 Nonexistence of a minimal complete class. Let X be normally
distributed asN (θ,1) and consider the problem of estimatingθ with loss function

L(θ, d) =

{
d − θ if θ < d
0 if θ ≥ d.

Then, ifδ(x) ≤ δ′(x) for all x, we haveR(θ, δ) ≤ R(θ, δ′) with strict inequality if
Pθ [δ(X) ≤ δ′(X)] > 0.

Many complete classes exist in this situation. For example, ifδ0 is any estimator
of θ , then the class of all estimators withδ(x) < δ0(x) for somex is complete
(Problem 7.4). We shall now show that there exists no minimal complete class.
SupposeC is minimal complete andδ0 is any member ofC. Then, some estimator
δ1 dominatingδ0 must also lie inC. If not, there would be no members ofC left to
dominate such estimators andC would not be complete. On the other hand, ifδ1
dominatesδ0, andδ1 andδ0 are both inC, the classC is not minimal sinceδ0 could
be removed without disturbing completeness. ‖
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Despite this example, the minimal complete class typically coincides with the
class of admissible estimators, and the search for a minimal complete class is there-
fore equivalent to the determination of all admissible estimators. The following
results are concerned with these two related aspects, admissibility and complete-
ness, and with the relation of both to Bayes estimators.

Theorem 2.4 showed that any unique Bayes estimator is admissible. The fol-
lowing result replaces the uniqueness assumption by some other conditions.

Theorem 7.9 For a possibly vector-valued parameter θ , suppose that δπ is a
Bayes estimator having finite Bayes risk with respect to a prior density π which
is positive for all θ , and that the risk function of every estimator δ is a continuous
function of θ . Then, δπ is admissible.

Proof. If δπ is not admissible, there exists an estimatorδ such that

R(θ , δ) ≤ R(θ , δπ ) for all θ

and
R(θ , δ) < R(θ , δπ ) for someθ .

It then follows from the continuity of the risk functions thatR(θ , δ) < R(θ , δπ )
for all θ in some open subset0 of the parameter space and hence that∫

R(θ , δ)π (θ )dθ <
∫
R(θ , δπ )π (θ )dθ ,

which contradicts the definition ofδπ . ✷

A basic assumption in this theorem is the continuity of all risk functions. The
following example provides an important class of situations for which this assump-
tions holds.

Example 7.10 Exponential families have continuous risks. Suppose that we let
p(x|η) be the exponential family of (5.2). Then, it follows from Theorem 1.5.8
that for any loss functionL(η, δ) for whichR(η, δ) = EηL(η, δ) is finite,R(η, δ)
is continuous. (See Problem 7.6.) ‖

There are many characterizations of problems in which all risk functions are
continuous. With assumptions on both the loss function and the density, theorems
can be established to assert the continuity of risks. (See Problem 7.7 for a set of
conditions involving boundedness of the loss function.) The following theorem,
which we present without proof, is based on a set of assumptions that are often
satisfied in practice.

Theorem 7.11 Consider the estimation of θ with loss L(θ, δ), whereX ∼ f (x|θ )
has monotone likelihood ratio and is continuous in θ for each x. If the loss function
L(θ, δ) satisfies

(i) L(θ, δ) is continuous in θ for each δ,

(ii) L is decreasing in δ for δ < θ and increasing in δ for δ > θ ,

(iii) there exist functions a and b, which are bounded on all bounded subsets of
the parameter space, such that for all δ

L(θ, δ) ≤ a(θ, θ ′)L(θ ′, δ) + b(θ, θ ′),
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then the estimators with finite-valued, continuous risk functionsR(θ, δ) = EθL(θ, δ)
form a complete class.

Theorems similar to Theorem 7.11 can be found in Ferguson (1967, Section 3.7,
Brown 1986a, Berk, Brown, and Cohen 1981, Berger 1985, Section 8.8, or Robert
1994a, Section 6.2.1). Also see Problem 7.9 for another version of this theorem.

The assumptions on the loss are relatively simple to check. In fact, assumptions
(i) and (ii) are almost self-evident, whereas (iii) will be satisfied by most interesting
loss functions.

Example 7.12 Squared error loss. ForL(θ, δ) = (θ − δ)2, we have

(θ − δ)2 = (θ − θ ′ + θ ′ − δ)2(7.4)

= (θ − θ ′)2 + 2(θ − θ ′)(θ ′ − δ) + (θ ′ − δ)2.

Now, since 2xy ≤ x2 + y2,

2(θ − θ ′)(θ ′ − δ) ≤ (θ − θ ′)2 + (θ ′ − δ)2

and, hence,
(θ − δ)2 ≤ 2(θ − θ ′)2 + (θ ′ − δ)2,

so condition (iii) is satisfied witha(θ, θ ′) = 2 andb(θ, θ ′) = 2(θ − θ ′)2. ‖
Since most problems that we will be interested in will satisfy the conditions of

Theorem 7.11, we now only need consider estimators with finite-valued continuous
risks. Restriction to continuous risk, in turn, allows us to utilize the method of
proving admissibility that we previously saw in Example 2.8. (But note that this
restriction can be relaxed somewhat; see Gajek 1983.) The following theorem
extends the admissibility of Bayes estimators to sequences of Bayes estimators.

Theorem 7.13 (Blyth’s Method) Suppose that the parameter space  ∈ �r is
open, and estimators with continuous risk functions form a complete class. Let
δ be an estimator with a continuous risk function, and let {πn} be a sequence of
(possibly improper) prior measures such that

(a) r(πn, δ) <∞ for all n,

(b) for any nonempty open set 0 ∈ , there exist constants B > 0 and N such
that ∫

0

πn(θ ) dθ ≥ B for all n ≥ N,

(c) r(πn, δ)− r(πn, δπn ) → 0 as n→∞.

Then, δ is an admissible estimator.

Proof. Supposeδ is inadmissible, so that there existsδ′ with R(θ, δ′) ≤ R(θ, δ),
with strict inequality for someθ . By the continuity of the risk functions, this implies
that there exists a set0 andε > 0 such thatR(θ, δ)− R(θ, δ′) > ε for θ ∈ 0.
Hence, for alln ≥ N ,

r(πn, δ)− r(πn, δ′) > ε
∫
0

πn(θ ) dθ ≥ εB(7.5)

and therefore (c) cannot hold. ✷
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Note that condition (b) prevents the possibility that asn → ∞, all the mass
of πn escapes to∞. This is similar to the requirement oftightness of a family
of measures (see Chung 1974, Section 4.4, or Billingsley 1995, Section 25). [It
is possible to combine conditions (b) and (c) into one condition involving a ratio
(Problem 7.12) which is how Blyth’s method was applied in Example 2.8.]

Example 7.14 Admissible negative binomial MLE. As we stated in Example
6.12 (but did not prove), the MLE of a negative binomial success probability is
admissible under squared error loss. We can now prove this result using Theorem
7.13.

LetX have the negative binomial distribution

p(x|θ ) =

(
r + x − 1

x

)
θx(1− θ )r , 0< θ < 1.(7.6)

The ML estimator ofθ is δ0(x) = x/(x + r).
To use Blyth’s method, we need a sequence of priorsπ for which the Bayes risks

r(π, δπ ) get close to the Bayes risk ofδ0. Whenθ has the beta priorπ = B(a, b),
the Bayes estimator is the posterior meanδπ = (x + a)/(x + r + a + b). Since
δπ (x) → δ0(x) asa, b → 0, it is reasonable to try a sequence of priorsB(a, b)
with a, b→ 0.

It is straightforward to calculate the posterior expected losses

E
{
[δπ (x)− θ ]2|x} =

(x + a)(r + b)

(x + r + a + b)2(x + r + a + b + 1)
(7.7)

E
{
[δ0(x)− θ ]2|x} =

(bx − ar)2

(x + r)2(x + r + a + b)2
+E

{
[δπ (x)− θ ]2|x} ,

and hence the difference is

D(x) =
(bx − ar)2

(x + r)2(x + r + a + b)2
.(7.8)

Before proceeding further, we must check that the priors satisfy condition (b) of
Theorem 7.13. [The normalized priors will not, since, for example, the probability
of the interval (ε,1− ε) underB(a, b) tends to zero asa, b → 0.] Since we are
letting a, b → 0, we only need consider 0< a, b < 1. We then have for any
0< ε < ε′ < 1,∫ ε′

ε

θa−1(1− θ )b−1 dθ ≥
∫ ε′

ε

θ−1(1− θ )−1 dθ = log

(
1− ε
ε

ε′

1− ε′
)
,(7.9)

satisfying condition (b).
To compute the Bayes risk, we next need the marginal distribution ofX, which

is given by

P (X = x) =
H(r + x)

H(x + 1)H(r)

H(r + b)H(x + a)

H(r + x + a + b)

H(a + b)

H(a)H(b)
,(7.10)
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the beta-Pascal distribution. Hence, the difference in Bayes risks, using the un-
normalized priors, is

∞∑
x=0

H(r + x)

H(x + 1)H(r)

H(r + b)H(x + a)

H(r + x + a + b)
D(x),(7.11)

which we must show goes to 0 asa, b→ 0.
Note first that the x=0 term in (7.11) is

H(r)H(a + 1)

H(r + a + b)

a

(r + a + b)2
→ 0

asa → 0. Also, forx ≥ 1 anda ≤ 1, H(r+x)
H(x+1)

H(x+a)
H(r+x+a+b) ≤ 1, so it is sufficient to

show ∞∑
x=1

D(x) → 0 asa, b→ 0.

From (7.8), using the facts that

sup
x≥0

(bx − ar)2

(x + r)2
= max{a2, b2} and

1

(x + r + a + b)2
≤ 1

x2
,

we have ∞∑
x=1

D(x) ≤ max{a2, b2}
∞∑
x=1

1

x2
→ 0

asa, b→ 0, establishing the admissibility of the ML estimator ofθ . ‖
Theorem 7.13 shows that one of the sufficient conditions for an estimator to be

admissible is that its Bayes risk is approachable by a sequence of Bayes risks of
Bayes estimators. It would be convenient if it were possible to replace the risks by
the estimators themselves. That this is not the case can be seen from the fact that
the normal sample mean in three or more dimensions is not admissible although
it is the limit of Bayes estimators.

However, under certain conditions the converse is true: That every admissible
estimator is a limit of Bayes estimators.4 We present, but do not prove, the follow-
ing necessary conditions for admissibility. (This is essentially Theorem 4A.12 of
Brown (1986a); see his Appendix to Chapter 4 for a detailed proof.)

Theorem 7.15 Let X ∼ f (x|θ ) be a density relative to a σ -finite measure ν, such
that f (x|θ ) > 0 for all x ∈ X , θ ∈ . Let the loss function L(θ, δ) be continuous,
strictly convex in δ for every θ , and satisfy

lim
|δ|→∞

L(θ, δ) =∞ for all θ ∈ .

Then, to every admissible procedure δ(x) there corresponds a sequence πn of prior
distributions with support on a finite set (and hence with finite Bayes risk) for which

δπn (x) → δ(x) a.e. (ν),(7.12)

where δπn is the Bayes estimator for πn.

4 The remaining material of this section is of a somewhat more advanced nature. It is sketched here
to give the reader some idea of these developments and to serve as an introduction to the literature.
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As an immediate corollary to Theorem 7.15, we have the following complete
class theorem.

Corollary 7.16 Under the assumptions of Theorem 7.15, the class of all estimators
δ(x) that satisfy (7.12) is complete.

For exponential families, the assumptions of Theorem 7.15 are trivially satisfied,
so limits of Bayes estimators are a complete class. More importantly, ifX has a
density in ther-variate exponential family, and ifδπ is a limit of Bayes estimators
δπn , then a subsequence of measures{πn′ } can be found such thatπn′ → π andδπ

is generalized Bayes againstπ . Such a result was originally developed by Sacks
(1963) and extended by Brown (1971) and Berger and Srinivasan (1978) to the
following theorem.

Theorem 7.17 Under the assumptions of Theorem 7.15, if the densities ofX con-
stitute an r-variate exponential family, then any admissible estimator is a gener-
alized Bayes estimator. Thus, the generalized Bayes estimators form a complete
class.

Further characterizations of generalized Bayes estimators were given by Straw-
derman and Cohen (1971) and Berger and Srinivasan (1978). See Berger 1985
for more details. Note that it is not the case that all generalized Bayes estimators
are admissible. Farrell (1964) gave examples of inadmissible generalized Bayes
estimators in location problem, in particularX ∼ N (θ,1), π (θ ) = eθ . (See also
Problem 4.2.15.) Thus, it is of interest to determine conditions under which gen-
eralized Bayes estimators are admissible. We do so in the following examples,
where we look at a number of characterizations of admissible estimators in spe-
cific situations. Although these characterizations have all been derived using the
tools (or their generalizations) that have been described here, in some cases the
exact derivations are complex.

We begin with a fundamental identity.

Example 7.18 Brown’s identity. In order to understand what types of estimators
are admissible, it would be helpful if the convergence of risk functions in Blyth’s
method were more explicitly dependent on the convergence of the estimators.
Brown (1971) gave an identity that makes this connection clearer.

Let X ∼ Nr (θ , I ) andL(θ , δ) = |θ − δ|2, and for a given priorπ (θ ), let
δπ (x) = x+∇ logmπ (x) be the Bayes estimator, wheremπ (x) =

∫

f (x|θ )π (θ ) dθ

is the marginal density. Suppose thatδg(x) = x +∇ logmg(x) is another estimator.
First note that

r(π, δπ )− r(π, δg) = E
∣∣δπ (X)− δg(X)

∣∣2 ,(7.13)

(see Problem 7.16); hence, we have the identity

r(π, δπ )− r(π, δg) =
∫ ∣∣∇ logmπ (x)− ∇ logmg(x)

∣∣2mπ (x) dx.(7.14)

We now have the estimator explicitly in the integral, but we must develop (7.14)
a bit further to be more useful in helping to decide admissibility. Two paths have
been taken. On the first, we note that if we were going to use (7.14) to establish the
admissibility ofδg, we might replace the priorπ (·) with a sequenceπn(·). However,
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it would be more useful to have the measure of integration not depend onn [since
mπ (x) would now equalmπn (x)]. To this end, writekn(x) = mπn (x)/mg(x), and

r(π, δπ )− r(π, δg) =
∫ ∣∣∇ log

(
mπn (x)/mg(x)

)∣∣2mπn (x) dx(7.15)

=
∫ |∇kn(x)|2

kn(x)
mg(x) dx,

where the second equality follows from differentiation (see Problem 7.16), and now
the integration measure does not depend onn. Thus, if we could apply Lebesgue’s
dominated convergence, then|∇kn(x)|2

kn(x) → 0 would imply the admissibility ofδg.
This is the path taken by Brown (1971), who established a relationship between
(7.15) and the behavior of a diffusion process inr dimensions, and then gave
necessary and sufficient conditions for the admissibility ofδg. For example, the
admissibility of the sample mean in one and two dimensions is linked to the
recurrence of a random walk in one and two dimensions, and the inadmissibility
is linked to its transience in three or more dimensions. This is an interesting and
fruitful approach, but to pursue it fully requires the development of properties of
diffusions, which we will not do here. [Johnstone 1984 (see also Brown and Farrell
1985) developed similar theorems for the Poisson distribution (Problem 7.25), and
Eaton (1992) investigated another related stochastic process; the review paper by
Rukhin (1995) provides an excellent entry into the mathematics of this literature.]

Another path, developed in Brown and Hwang (1982), starts with the estimator
δg and constructs a sequencegn → g that leads to a simplified condition for the
convergence of (7.14) to zero, and uses Blyth’s method to establish admissibility.
Although they prove their theorem for exponential families, we shall only state it
here for the normal distribution. (See Problem 7.19 for a more general statement.)

‖
Theorem 7.19 Let X ∼ Nr (θ , I ) and L(θ , δ) = |θ − δ|2. Let δg(x) = x +
∇ logmg(x) where mg(x) =

∫

f (x|θ )g(θ ) dθ . Assume that g(·) satisfies

(a)
∫
{θ :|θ |>1}

g(θ )

|θ |2 max{log |θ |, log 2}2 dθ <∞,

(b)
∫


|∇g(θ )|2
g(θ )

dθ <∞,

(c) sup{R(θ , δg) : θ ∈ K} <∞ for all compact sets K ∈ .

Then, δg(x) is admissible.

Proof. The proof follows from (7.14) by taking the sequence of priorsgn(θ ) →
g(θ ), wheregn(θ ) = h2

n(θ )g(θ ) and

hn(θ ) =


1 if |θ | ≤ 1

1− log(|θ |)
log(n) if 1 < |θ | ≤ n

0 if |θ | > n
(7.16)

for n = 2,3, . . .. See Problem 7.18 for details. ✷



5.7 ] ADMISSIBILITY AND COMPLETE CLASSES 385

Example 7.20 Multivariate normal mean. The conditions of Theorem 7.19 re-
late to the tails of the prior, which are crucial in determining whether the integral
are finite. Priors with polynomial tails, that is, priors of the formg(θ ) = 1/|θ |k,
have received a lot of attention. Perhaps the reason for this is that using a Laplace
approximation (4.6.33), we can write

δg(x) = x +∇ logmg(x)

= x +
∇mg(x)

mg(x)
(7.17) ≈ x +

∇g(x)

g(x)

=

(
1− k

|x|2
)

x.

See Problem 7.20 for details.
Now what can we say about the admissibility ofδg? Forg(θ ) = 1/|θ |k, condition

(a) of Theorem 7.19 becomes, upon transforming to polar coordinates,∫
{θ :|θ |>1}

g(θ )

|θ |2 max{log |θ |, log 2}2 dθ(7.18)

=
∫ 2π

0
sinr−2 β dβ

∫ ∞

1

1

tk+2 max{log(t), log 2}2 t
r−1 dt

wheret = |θ | andβ is a vector of direction cosines. The integral overβ is finite,
and if we ignore the log term, a sufficient condition for this integral to be finite is∫ ∞

1

1

tk−r+3
d t <∞,(7.19)

which is satisfied ifk > r − 2. If we keep the log term and work a little harder,
condition (a) can be verified fork ≥ r − 2 (see Problem 7.22). ‖
Example 7.21 Continuation of Example 7.20. The characterization of admissi-
ble estimators by Brown (1971) goes beyond that of Theorem 7.19, as he was able
to establish both necessary and sufficient conditions. Here is an example of these
results.

Using a spherically symmetric prior (see, for example, Corollary 4.3.3), all
generalized Bayes estimators are of the form

δπ (x) = x +∇ logm(x) = (1− h(|x|))x.(7.20)

The estimatorδπ is

(a) inadmissible if there existsε > 0 andM <∞ such that

0 ≤ h(|x|) < r − 2− ε
|x|2 for |x| > M,

(b) admissible if h(|x|)|x| is bounded and there existsM <∞ such that

1≥ h(|x|) ≥ r − 2

|x|2 for |x| > M.
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It is interesting how the factorr − 2 appears again and supports its choice as
the optimal constant in the James-Stein estimator (even though that estimator is
not generalized Bayes, and hence inadmissible). Bounds such as these are called
semitail upper bounds by Hwang (1982b), who further developed their applicabil-
ity.

For Strawderman’s estimator (see Problem 5.5), we have

h(|x|) =
r − 2a + 2

|x|2
P (χ2

r−2a+4 ≤ |x|2)

P (χ2
r−2a+2 ≤ |x|2)

(7.21)

and it is admissible (Problem 7.23) as long asr − 2a + 2 ≥ r − 2, or r ≥ 1 and
a ≤ 2. ‖

Now that we have a reasonably complete picture of the types of estimators
that are admissible estimators of a normal mean, it is interesting to see how the
admissibility conditions fit in with minimaxity conditions. To do so requires the
development of some general necessary conditions for minimaxity. This was first
done by Berger (1976a), who derived conditions for an estimator to betail minimax.

Example 7.22 Tail minimaxity. Let X ∼ Nr (θ , I ) andL(θ , δ) = |θ − δ|2. Since
the estimatorX is minimax with constant riskR(θ ,X), another estimatorδ is tail
minimax if there existsM > 0 such thatR(θ , δ) ≤ R(θ ,X) for all |θ | > M.
(Berger investigated tail minimaxity for much more general situations than are
considered here, including non-normal distributions and nonquadratic loss.) Since
tail minimaxity is a necessary condition for minimaxity, it can help us see which
admissible estimators have the possibility of also being minimax. An interest-
ing characterization ofh(|x|) of (7.20) is obtained if admissibility is considered
together with tail minimaxity.

Using a risk representation similar to (5.4), the risk ofδ(x) = [1− h(|x|)]x is

R(θ , δ) = r +Eθ
[|X|2h2(|X|)− 2rh(|X|)− 4|X|2h′(|X|)] .(7.22)

If we now use a Laplace approximation on the expectation in (7.22), we have

Eθ
[|X|2h2(|X|)− 2rh(|X|)− 4|X|2h′(|X|)]

≈ |θ |2h2(|θ |)− 2rh(|θ |)− 4|θ |2h′(|θ |)
= B(θ ).(7.23)

By carefully working with the error terms in the Laplace approximation, Berger
showed that the error of approximation waso(|θ |−2), that is,

R(θ , δ) = r + B(θ ) + o(|θ |−2).(7.24)

In order to ensure that the estimator is tail minimax, we must be able to ensure
thatB(θ ) + o(|θ |−2) < 0 for sufficiently large|θ |. This would occur if, for some
ε > 0, |θ |−2B(θ ) ≤ −ε for sufficiently large|θ |, that is,

|θ |2h2(|θ |)− 2rh(|θ |)− 4|θ |2h′(|θ |) ≤ −ε
|θ |2(7.25)

for sufficiently large|θ |.



5.7 ] ADMISSIBILITY AND COMPLETE CLASSES 387

Now, for δ(x) = [1 − h(|x|)]x to be admissible, we must haveh(|x|) ≥ (r −
2)/|x|2. Since|x|h(|x|) must be bounded, this suggests that, for large|x|, we could
haveh(|x|) ≈ k/|x|2α, for someα,1/2 ≤ α ≤ 1. We now show that forδ(x) to be
minimax, it is necessary thatα = 1.

Forh(|x|) = k/|x|2α, (7.25) is equal to

k

|θ |2α
[

k

|θ |2α−2
− 2(r − 2α)

]
<
−ε
|θ |2 for |x| > M(7.26)

which, for r ≥ 3, cannot be satisfied if 1/2 ≤ α < 1. Thus, the only possible
admissible minimax estimators are those for whichh(|x|) ≈ k/|x|2, with r − 2 ≤
k ≤ 2(r − 2). ‖

Theorem 7.17 can be adapted to apply to discrete distributions (the assumption
of a density can be replaced by a probability mass function), and an interesting
case is the binomial distribution. It turns out that the fact that the sample space is
finite has a strong influence on the form of the admissible estimators. We first look
at the following characterization of admissible estimators, due to Johnson (1971).

Example 7.23 Binomial estimation. For the problem of estimatingh(p), where
h(·) is a continuous real-valued function on [0,1], X ∼ binomial(p, n), and
L(h(p), δ) = (h(p)− δ)2, a minimal complete class is given by

δπ (x) =


h(0) if x ≤ r∫ 1

0 h(p)px−r−1(1−p)s−x−1dπ (p)∫ 1
0 p

x−r−1(1−p)s−x−1dπ (p)
if r + 1≤ x < s − 1

h(1) if x ≥ s,
(7.27)

wherep has the prior distribution

p ∼ k(p)dπ (p)(7.28)

with

k(p) =
P (r + 1≤ X ≤ s − 1|p)

pr+1(1− p)n−s+1
,

r ands are integers,−1 ≤ r < s ≤ n + 1, andπ is a probability measure with
π ({0} ∪ {1}) < 1, that is,π does not put all of its mass on the endpoints of the
parameter space.

To see thatδπ is admissible, letδ′ be another estimator ofh(p) that satisfies
R(p, δπ ) ≥ R(p, δ′). We will assume thats ≥ 0, r ≤ n, andr + 1 < s (as the
casesr = −1, s = n+1, andr +1 = s are straightforward). Also, ifδ′(x) = h(0) for
x ≤ r ′, andδ′(x) = h(1) for x ≥ s ′, then it follows thatr ′ ≥ r ands ′ ≤ s. Define

Rr,s(p, δ) =
s−1∑
x=r+1

(
n

x

)
[h(p)− δ(x)]2px−r−1(1− p)s−x−1k(p)−1.

Now,R(p, δ′) ≤ R(p, δπ ) for all p ∈ [0,1] if and only ifRr,s(p, δ′) ≤ Rr,s(p, δπ )
for all p ∈ [0,1]. However, for the prior (7.28),

∫ 1
0 Rr,s(p, δ)×k(p)dπ (p) is uniquely minimized by [δπ (r + 1), . . . , δπ (s − 1)], which estab-

lishes the admissibility ofδπ . The converse assertion, that any admissible estimator
is of the form (7.27), follows from Theorem 7.17. (See Problem 7.27.)
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For h(p) = p, we can taker = 0, s = n, andπ (p) = Beta(a, b). The re-
sulting estimators are of the formα x

n
+ (1− α) a

a+b , so we obtain conditions on
admissibility of linear estimators. In particular, we see thatx/n is an admissible
estimator. Ifh(p) = p(1− p), we find an admissible estimator of the variance to
be n

n+1 (x/n) (1− x/n). (See Problem 7.26.)
Brown (1981, 1988) has generalized Johnson’s results and characterizes a min-

imal complete class for estimation in a wide class of problems with finite sample
spaces. ‖

Johnson (1971) was further able to establish the somewhat surprising result that
if δ1 is an admissible estimator ofh(p1) in the binomialb(p1, n1) problem and
δ2 is an admissible estimator ofh(p2) in the binomialb(p2, n2) problem, then
[δ1, δ2] is an admissible estimator of [h(p1), h(p2)] if the loss function is the sum
of the losses. This result can be extended to higher dimensions, and thus there is
no Stein effect in the binomial problem. The following example gives conditions
under which this can be expected.

Example 7.24 When there is no Stein effect. For i = 1,2, letXi ∼ fi(x|θi) and
suppose thatδ∗i (xi) is a unique Bayes (hence, admissible) estimator ofθi under the
lossL(θi, δ), whereL satisfiesL(a, a) = 0 andL(a, a′) > 0, a �= a′, and all risk
functions are continuous. Suppose there is a valueθ∗ such that ifθ2 = θ∗,
(i) X2 = x∗ with probability 1,

(ii) δ∗2(x∗) = θ∗,
then (δ∗1(x1), δ∗2(x2)) is admissible for (θ1, θ2) under the loss

∑
i L(θi, δ); that is,

there is no Stein effect.
To see why this is so, letδ′ = (δ′1(x1, x2), δ′2(x1, x2)) be a competitor. At the

parameter value (θ1, θ2) = (θ1, θ
∗), we have

R[(θ1, θ
∗), δ′] = E(θ1,θ∗)L[θ1, δ

′
1(X1, X2)] + E(θ1,θ∗)L[θ2, δ

′
2(X1, X2)]

= E(θ1,θ∗)L[θ1, δ
′
1(X1, x

∗)] + E(θ1,θ∗)L[θ∗, δ′2(X1, x
∗)](7.29)

= Eθ1L[θ1, δ
′
1(X1, x

∗)] + Eθ1L[θ∗, δ′2(X1, x
∗)],

while for (δ∗1(x1), δ∗2(x2)),

R[(θ1, θ
∗), δ∗] = E(θ1,θ∗)L[θ1, δ

∗
1(X1)] + E(θ1,θ∗)L[θ2, δ

∗
2(X2)]

= Eθ1L[θ1, δ
∗
1(X1)] + Eθ∗L[θ∗, δ∗2(x∗)](7.30)

= Eθ1L[θ1, δ
∗
1(X1)]

asEθ∗L[θ∗, δ∗2(x∗)] = 0.
Sinceδ∗1 is a unique Bayes estimator ofθ1,

Eθ1L[θ1, δ
∗
1(X1)] < Eθ1L[θ1, δ

′
1(X1, x

∗)] for someθ1.

SinceEθ1L[θ∗, δ′2(X1, x
∗)] ≥ 0, it follows thatR[(θ1, θ

∗), δ∗] < R[(θ1, θ
∗), δ′]

for someθ1, and hence thatδ∗ is an admissible estimator of (θ1, θ2). By induction,
the result can be extended to any number of coordinates (see Problem 7.28).

If X ∼ b(θ, n), then we can takeθ∗ = 0 or 1, and the above result applies. The
absence of the Stein effect persists in other situations, such as any problem with
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a finite sample space (Gutmann 1982a; see also Brown 1981). Gutmann (1982b)
also demonstrates a sequential context in which the Stein effect does not hold (see
Problem 7.29). ‖

Finally, we look at the admissibility of linear estimators. There has always been
interest in characterizing admissibility of linear estimators, partly due to the ease
of computing and using linear estimators, and also due to a search for a converse
to Karlin’s theorem (Theorem 2.14) (which gives sufficient conditions for admis-
sibility of linear estimators). Note that we are concerned with the admissibility
of linear estimators in the class of all estimators, not just in the class of linear
estimators. (This latter question was addressed by La Motte (1982).)

Example 7.25 Admissible linear estimators. Let X ∼ Nr (θ , I ), and consider
estimation ofϕ′θ , whereϕr×1 is a known vector, andL(ϕ′θ , δ) = (ϕ′θ − δ)2. For
r = 1, the results of Karlin (1958); see also Meeden and Ghosh (1977), show that
ax is admissible if and only if 0≤ a ≤ ϕ. This result was generalized by Cohen
(1965a) to show thata′x is admissible if and only ifa is in the sphere:

{a : (a − ϕ/2)′(a − ϕ/2)≤ ϕ′ϕ/4}(7.31)

(see Problem 7.30). Note that the extension to known covariance matrix is straight-
forward, and (7.31) becomes an ellipse.

For the problem of estimatingθ , the linear estimatorCx, whereC is anr × r
symmetric matrix, is admissible if and only if all of the eigenvalues ofC are
between 0 and 1, with at most two equal to 1 (Cohen 1966).

Necessary and sufficient conditions for admissibility of linear estimators have
also been described for multivariate Poisson estimation (Brown and Farrell, 1985a,
1985b) and for estimation of the scale parameters in the multivariate gamma distri-
bution (Farrell et al., 1989). This latter result also has application to the estimation
of variance components in mixed models. ‖

8 Problems

Section 1

1.1 For the situation of Example 1.2:

(a) Plot the risk functions ofδ1/4, δ1/2, andδ3/4 for n = 5, 10, 25.

(b) For each value ofn in part (a), find the range of prior values ofp for which each
estimator is preferred.

(c) If an experimenter has no prior knowledge ofp, which ofδ1/4, δ1/2, andδ3/4 would
you recommend? Justify your choice.

1.2 The principle ofgamma-minimaxity [first used by Hodges and Lehmann (1952); see
also Robbins 1964 and Solomon 1972a, 1972b)] is a Bayes/frequentist synthesis. An
estimatorδ∗ is gamma-minimax if

inf
δ∈D

sup
π∈H
r(π, δ) = sup

π∈H
r(π, δ∗)

whereH is a specified class of priors. Thus, the estimatorδ∗ minimizes the maximum
Bayes risk over those priors in the classH. (If H = all priors, thenδ∗ would be minimax.)
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(a) Show that ifH = {π0}, that is,H consists of one prior, then the Bayes estimator is
H minimax.

(b) Show that ifH = {all priors}, then the minimax estimator isH minimax.

(c) Find theH-minimax estimator among the three estimators of Example 1.2.

1.3 Classes of priors forH-minimax estimation have often been specified using moment
restrictions.

(a) ForX ∼ b(p, n), find theH-minimax estimator ofp under squared error loss, with

Hµ =
{
π (p) : π (p) = beta(a, b), µ =

a

a + b

}
whereµ is considered fixed and known.

(b) ForX ∼ N (θ,1), find theH-minimax estimator ofθ under squared error loss, with

Hµ,τ =
{
π (θ ) : E(θ ) = µ, var θ = τ 2

}
whereµ andτ are fixed and known.

[Hint: In part (b), show that theH-minimax estimator is the Bayes estimator against a
normal prior with the specified moments (Jackson et al. 1970; see Chen, Eichenhauer-
Herrmann, and Lehn 1990 for a multivariate version). This somewhat nonrobustH-
minimax estimator is characteristic of estimators derived from moment restrictions and
shows why robust Bayesians tend to not use such classes. See Berger 1985, Section 4.7.6
for further discussion.]

1.4 (a) For the random effects model of Example 4.2.7 (see also Example 3.5.1), show
that the restricted maximum likelihood (REML) likelihood ofσ 2

A andσ 2 is given
by (4.2.13), which can be obtained by integrating the original likelihood against a
uniform (−∞,∞) prior forµ.

(b) Forni = n in

Xij = µ +Ai + uij (j = 1, . . . , ni, i = 1, . . . , s)

calculate the expected value of the REML estimate ofσ 2
A and show that it is biased.

Compare REML to the unbiased estimator ofσ 2
A. Which do you prefer?

(Construction of REML-type marginal likelihoods, where some effects are integrated out
against priors, becomes particularly useful in nonlinear and generalized linear models.
See, for example, Searle et al. 1992, Section 9.4 and Chapter 10.)

1.5 Establishing the fact that (9.1) holds, soS2 is conditionally biased, is based on a
number of steps, some of which can be involved. Defineφ(a, µ, σ 2) = (1/σ 2)Eµ,σ2[S2 |
|x̄|/s < a].

(a) Show thatφ(a, µ, σ 2) only depends onµ andσ 2 throughµ/σ . Hence, without loss
of generality, we can assumeσ = 1.

(b) Use the fact that the densityf (s | |x̄|/s < a,µ) has monotone likelihood ratio to
establishφ(a, µ,1)≥ φ(a,0,1).

(c) Show that

lim
a→∞

φ(a,0,1) = 1 and lim
a→0

φ(a,0,1) =
E0,1S

3

E0,1S
=

n

n− 1
.

(d) Combine parts (a), (b), and (c) to establish (19.1).
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The next three problems explore conditional properties of estimators. A detailed de-
velopment of this theory is found in Robinson (1979a, 1979b), who also explored the
relationship between admissibility and conditional properties.

1.6 Suppose thatX ∼ f (x|θ ), andT (x) is used to estimateτ (θ ). One might question
the worth ofT (x) if there were some setA ∈ X for whichT (x) > τ (θ ) for x ∈ A (or
if the reverse inequality holds). This leads to the conditional principle of never using an
estimator if there exists a setA ∈ X for whichEθ {[T (X)− τ (θ )]I (X ∈ A)} ≥ 0 ∀θ ,
with strict inequality for someθ (or if the equivalent statement holds with the inequality
reversed). Show that ifT (x) is the posterior mean ofτ (θ ) against a proper prior, where
both the prior andf (x|θ ) are continuous inθ , then no suchA can exist. (If such anA
exists, it is called asemirelevant set. Elimination of semirelevant sets is an extremely
strong requirement. A weaker requirement, elimination ofrelevant sets, seems more
appropriate.)

1.7 Show that if there exists a setA ∈ X and anε > 0 for whichEθ {[T (X)−τ (θ )]I (X ∈
A)} > ε, thenT (x) is inadmissible for estimatingτ (θ ) under squared error loss. (A set
A satisfying the this inequality is an example of arelevant set.)

[Hint: Consider the estimatorT (x) + εI (x ∈ A)]

1.8 To see why elimination of semirelevant sets is too strong a requirement, consider the
estimation ofθ based on observingX ∼ f (x − θ ). Show that for any constanta, the
Pitman estimatorX satisfies

Eθ [(X − θ )I (X < a)] ≤ 0 ∀θ or Eθ [(X − θ )I (X > a)] ≥ 0 ∀θ,
with strict inequality for someθ . Thus, there are semirelevant sets for the Pitman esti-
mator, which is, by most accounts, a fine estimator.

1.9 In Example 1.7, letδ∗(X) = X/n with probability 1− ε and = 1/2 with probability
ε. Determine the risk function ofδ∗ and show that forε = 1/(n + 1), its risk is constant
and less than supR(p,X/n).

1.10 Find the bias of the minimax estimator (1.11) and discuss its direction.

1.11 In Example 1.7,

(a) determinecn and show thatcn → 0 asn→∞,

(b) show thatRn(1/2)/rn → 1 asn→∞.

1.12 In Example 1.7, graph the risk functions ofX/n and the minimax estimator (1.11)
for n = 1, 4, 9, 16, and indicate the relative positions of the two graphs for large values
of n.

1.13 (a) Find two points 0< p0 < p1 < 1 such that the estimator (1.11) forn = 1 is
Bayes with respect to a distribution� for whichP�(p = p0) + P�(p = p1) = 1.

(b) Forn = 1, show that (1.11) is a minimax estimator ofp even if it is known that
po ≤ p ≤ p1.

(c) In (b), find the valuesp0 andp1 for whichp1 − p0 is as small as possible.

1.14 Evaluate (1.16) and show that its maximum is 1− α.

1.15 LetX = 1 or 0 with probabilitiesp andq, respectively, and consider the estimation
of p with loss = 1 when|d − p| ≥ 1/4, and 0 otherwise. The most general randomized
estimator isδ = U whenX = 0, andδ = V whenX = 1 whereU andV are two random
variables with known distributions.

(a) Evaluate the risk function and the maximum risk ofδ whenU andV are uniform
on (0,1/2) and (1/2,1), respectively.
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(b) Show that the estimatorδ of (a) is minimax by considering the three valuesp = 0,
1/2, 1.

[Hint: (b) The risk atp = 0, 1/2, 1 is, respectively,P (U > 1/4), 1/2[P (U < 1/4) +
P (V > 3/4)], andP (V < 3/4)].

1.16 Show that the problem of Example 1.8 remains invariant under the transformations

X′ = n−X, p′ = 1− p, d ′ = 1− d.
This illustrates that randomized equivariant estimators may have to be considered when
Ḡ is not transitive.

1.17 Let r� be given by (1.3). Ifr� = ∞ for some�, show that any estimatorδ has
unbounded risk.

1.18 In Example 1.9, show that no linear estimator has constant risk.

1.19 Show that the risk function of (1.22) depends onp1 andp2 only throughp1 + p2

and takes on its maximum whenp1 + p2 = 1.

1.20 (a) In Example 1.9, determine the region in the (p1, p2) unit square in which (1.22)
is better than the UMVU estimator ofp2 − p1 for m = n = 2, 8, 18, and 32.

(b) Extend Problems 1.11 and 1.12 to Example 1.9.

1.21 In Example 1.14, show that̄X is minimax for the loss function (d− θ )2/σ 2 without
any restrictions onσ .

1.22 (a) Verify (1.37).

(b) Show that equality holds in (1.39) if and only ifP (Xi = 0) +P (Xi = 1) = 1.

1.23 In Example 1.16(b), show that for anyk > 0, the estimator

δ =

√
n

1 +
√
n

1

n

n∑
i=1

Xki +
1

2(1 +
√
n)

is a Bayes estimator for the prior distribution� overF0 for which (1.36) was shown to
be Bayes.

1.24 Let Xi (i = 1, . . . , n) andYj (j = 1, . . . , n) be independent with distributionsF
andG, respectively. IfF (1)− F (0) = G(1)− G(0) = 1 butF andG are otherwise
unknown, find a minimax estimator forE(Yj )− E(Xi) under squared error loss.

1.25 LetXi (i = 1, . . . , n) be iid with unknown distributionF . Show that

δ =
No. ofXi ≤ 0√

n
· 1

1 +
√
n

+
1

2(1 +
√
n)

is minimax for estimatingF (0) = P (Xi ≤ 0) with squared error loss. [Hint: Consider
the risk function ofδ.]

1.26 LetX1, . . . , Xm andY1, . . . , Yn be independently distributed asN (ξ, σ 2) andN (η, τ 2),
respectively, and consider the problem of estimatingW = η− ξ with squared error loss.

(a) If σ andτ are known,Ȳ − X̄ is minimax.

(b) If σ andτ are restricted byσ 2 ≤ A andτ 2 ≤ B, respectively (A,B known and
finite), Ȳ − X̄ continues to be minimax.

1.27 In the linear model (3.4.4), show that�ai ξ̂i (in the notation of Theorem 3.4.4) is
minimax for estimatingθ = �aiξi with squared error loss, under the restrictionσ 2 ≤ M.
[Hint: Treat the problem in its canonical form.]

1.28 For the random variableX whose distribution is (1.42), show thatx must satisfy the
inequalities stated below (1.42).
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1.29 Show that the estimator defined by (1.43)

(a) has constant risk,

(b) is Bayes with respect to the prior distribution specified by (1.44) and (1.45).

1.30 Show that for fixedX andn, (1.43)→ (1.11) asN →∞.

1.31 Show that var(̄Y ) given by (3.7.6) takes on its maximum value subject to (1.41)
when all thea’s are 0 or 1.

1.32 (a) IfR(p, δ) is given by (1.49), show that supR(p, δ)·4(1+
√
n)2 → 1 asn→∞.

(b) Determine the smallest value ofn for which the Bayes estimator of Example 1.18
satisfies (1.48) forr = 1 andb = 5, 10, and 20.

1.33 (Efron and Morris 1971)

(a) Show that the estimatorδ of (1.50) is the estimator that minimizes|δ− cx̄| subject
to the constraint|δ − x̄| ≤ M. In this sense, it is the estimator that is closest to a
Bayes estimator,cx̄, while not straying too far from a minimax estimator,x̄.

(b) Show that for the situation of Example 1.19,R(θ, δ) is bounded forδ of (1.50).

(c) For the situation of Example 1.19,δ of (1.50) satisfies supθ R(θ, δ) = (1/n) +M2.

Section 2

2.1 Lemma 2.1 has been extended by Berger (1990a) to include the case where the
estimand need not be restricted to a finite interval, but, instead, attains a maximum or
minimum at a finite parameter value.

Lemma 8.1 Let the estimand g(θ ) be nonconstant with global maximum or minimum
at a point θ∗ ∈  for which f (x|θ∗) > 0 a.e. (with respect to a dominating measure
µ), and let the loss L(θ, d) satisfy the assumptions of Lemma 2.1. Then, any estimator
δ taking values above the maximum of g(θ ), or below the minimum, is inadmissible.

(a) Show that ifθ∗ minimizesg(θ ), and if ĝ(x) is an unbiased estimator ofg(θ ), then
there existsε > 0 such that the setAε = {x ∈ X : ĝ(x) < g(θ ) − ε} satisfies
P (Aε) > 0. A similar conclusion holds ifg(θ∗) is a maximum.

(b) Supposeg(θ∗) is a minimum. (The case of a maximum is handled similarly.) Show
that the estimator

δ(x) =

{
ĝ(x) if ĝ(x) ≥ g(θ∗)

g(θ∗) if ĝ(x) < g(θ∗)

satisfiesR(δ, θ)− R(ĝ(x), θ ) < 0.

(c) For the situation of Example 2.3, apply Lemma 8.1 to establish the inadmissibility
of the UMVU estimator ofσ 2

A. Also, explain why the hypotheses of Lemma 8.1 are
not satisfied for the estimation ofσ 2

2.2 Determine the Bayes risk of the estimator (2.4) whenθ has the prior distribution
N (µ, τ 2).

2.3 Prove part (d) in the second proof of Example 2.8, that there exists a sequence of
valuesθi →−∞ with b′(θi) → 0 .

2.4 Show that an estimatoraX + b (0 ≤ a ≤ 1) ofEθ (X) is inadmissible (with squared
error loss) under each of the following conditions:

(a) if Eθ (X) ≥ 0 for all θ, andb < 0;
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(b) if Eθ (X) ≤ k for all θ , andak + b > k.

[Hint: In (b), replaceX byX′ = k−X andaX + b by k− (aX + b) = aX′ + k− b− ak,
respectively and use (a).]

2.5 Show that an estimator [1/(1 +λ) +ε]X ofEθ (X) is inadmissible (with squared error
loss) under each of the following conditions:

(a) if varθ (X)/E2
θ (X) > λ > 0 andε > 0,

(b) if varθ (X)/E2
θ (X) < λ andε < 0.

[Hint: (a) Differentiate the risk function of the estimator with respect toε to show that
it decreases asε decreases (Karlin 1958).]

2.6 Show that if varθ (X)/E2
θ (X) > λ > 0, an estimator [1/(1+λ)+ε]X+b is inadmissible

(with squared error loss) under each of the following conditions:

(a) if Eθ (X) > 0 for all θ, b > 0 andε > 0;

(b) if Eθ (X) < 0 for all θ, b < 0 andε > 0 (Gupta 1966).

2.7 Brown (1986a) points out a connection between the information inequality and the
unbiased estimator of the risk of Stein-type estimators.

(a) Show that (2.7) implies

R(θ, δ) ≥ [1 + b′(θ )]2

n
+ b2(θ ) ≥ 1

n
+

2b′(θ )
n

+ b2(θ )

and, hence, ifR(θ, δ) ≤ R(θ, X̄), then 2b′(θ )
n

+ b2 ≤ 0.

(b) Show that a nontrivial solutionb(θ ) would lead to an improved estimatorx−g(x),
for p = 1, in Corollary 4.7.2.

2.8 A density functionf (x|θ ) is variation reducing of order n + 1 (VRn+1) if, for any
functiong(x) with k (k ≤ n) sign changes (ignoring zeros), the expectationEθg(X) =∫
g(x)f (x|θ ) dx has at mostk sign changes. IfEθg(X) has exactlyk sign changes, they

are in the same order.

Show thatf (x|θ ) is VR2 if and only if it has monotone likelihood ratio. (See TSH2,
Lemma 2, Section 3.3 for the “if” implication).

Brown et al. (1981) provide a thorough introduction to this topic, includingVR charac-
terizations of many families of distributions (the exponential family isVR∞, as is theχ2

ν

with ν the parameter, and the noncentralχ2
ν (λ) in λ). There is an equivalence between

VRn andT Pn, Karlin’s (1968)total positivity of order n, in thatVRn = T Pn.

2.9 For the situation of Example 2.9, show that:

(a) without loss of generality, the restrictionθ ∈ [a, b] can be reduced toθ ∈ [−m,m],
m > 0.

(b) If � is the prior distribution that puts mass 1/2 on each of the points±m, then the
Bayes estimator against squared error loss is

δ�(x̄) = m
emnx̄ − e−mnx̄
emnx̄ + e−mnx̄

= m tanh(mnx̄).

(c) Form < 1/
√
n,

max
θ∈[−m,m]

R(θ, δ(X̄)) = max
{
R(−m, δ�(X̄)), R(m, δ�(X̄))

}
and hence, by Corollary 1.6,δ� is minimax.
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[Hint: Problem 2.8 can be used to show that the derivative of the risk function can
have at most one sign change, from negative to positive, and hence any interior
extrema can only be a minimum.]

(d) Form > 1.05/
√
n, δ� of part (b) is no longer minimax. Explain why this is so and

suggest an alternate estimator in this case.

[Hint: ConsiderR(0, δ�)].

2.10 For the situation of Example 2.10, show that:

(a) max
θ∈[−m,m]

R(θ, aX̄ + b) = max{R(−m, aX̄ + b), R(m, aX̄ + b)}.
(b) The estimatora∗X̄, with a∗ = m2/( 1

n
+m2), is the linear minimax estimator for all

m with minimax riska∗/n.

(c) X̄ is the linear minimax estimator form =∞.

2.11 SupposeX has distributionFξ and Y has distributionGη, whereξ and η vary
independently. If it is known thatη = η0, then any estimatorδ(X, Y ) can be improved
upon by

δ∗(x) = EY δ(x, Y ) =
∫
δ(x, y) dGη0(y).

[Hint: Recall the proof of Theorem 1.6.1.]

2.12 In Example 2.13, prove that the estimatoraY +b is inadmissible whena > 1/(r+1).

[Hint: Problems 2.4–2.6]

2.13 Let X1, . . . , Xn be iid according to aN (0, σ 2) density, and letS2 =
∑
X2
i . We

are interested in estimatingσ 2 under squared error loss using linear estimatorscS2 + d,
wherec andd are constants. Show that:

(a) admissibility of the estimatoraY + b in Example 2.13 is equivalent to the admissi-
bility of cS2 + d, for appropriately chosenc andd.

(b) the risk ofcS2 + d is given byR(cS2 + d, σ 2) = 2nc2σ 2 + [(nc − 1)σ 2 + d]2

(c) for d = 0,R(cS2, σ 2) < R(0, σ 2) whenc < 2/(n + 2), and hence the estimator
aY + b in Example 2.13 is inadmissible whena = b = 0.

[This exercise illustrates the fact that constants are not necessarily admissible estimators.]

2.14 For the situation of Example 2.15, letZ = X̄/S.

(a) Show that the risk, under squared error loss, ofδ = ϕ(z)s2 is minimized by taking

ϕ(z) = ϕ∗µ,σ (z) = E(S2/σ 2|z)/E((S2/σ 2)2|z).
(b) Stein (1964) showed thatϕ∗µ,σ (z) ≤ ϕ∗0,1(z) for everyµ, σ . Assuming this is so,

deduce thatϕs(Z)S2 dominates [1/(n + 1)]S2 in squared error loss, where

ϕs(z) = min

{
ϕ∗0,1(z),

1

n + 1

}
.

(c) Show thatϕ∗0,1(z) = (1 +z2)/(n + 2), and, hence,ϕs(Z)S2 is given by (2.31).

(d) The best equivariant estimator of the formϕ(Z)S2 was derived by Brewster and
Zidek (1974) and is given by

ϕBZ(z) =
E(S2|Z ≤ z)
E(S4|Z ≤ z) ,
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where the expectation is calculated assumingµ = 0 andσ = 1. Show thatϕBZ(Z)S2

is generalized Bayes against the prior

π (µ, σ ) =
1

σ

∫ ∞

0
u−1/2(1 +u)−1e−unµ

2/σ2
du dµ dσ.

[Brewster and Zidek did not originally derive their estimator as a Bayes estimator,
but rather first found the estimator and then found the prior. Brown (1968) consid-
ered a family of estimators similar to those of Stein (1964), which took different
values depending on a cutoff point forz2. Brewster and Zidek (1974) showed that
the number of cutoff points can be arbitrarily large. They constructed a sequence of
estimators, with decreasing risks and increasingly dense cutoffs, whose limit was
the best equivalent estimator.]

2.15 Show the equivalence of the following relationships: (a) (2.26) and (2.27), (b) (2.34)
and (2.35) whenc =

√
(n− 1)/(n + 1), and (c) (2.38) and (2.39).

2.16 In Example 2.17, show that the estimatoraX/n + b is inadmissible for all (a, b)
outside the triangle (2.39).

[Hint: Problems 2.4–2.6.]

2.17 Prove admissibility of the estimators corresponding to the interior of the triangle
(2.39), by applying Theorem 2.4 and using the results of Example 4.1.5.

2.18 Use Theorem 2.14 to provide an alternative proof for the admissibility of the esti-
matoraX̄ + b satisfying (2.6), in Example 2.5.

2.19 Determine which estimatorsaX + b are admissible for estimatingE(X) in the
following situations, for squared error loss:

(a) X has a Poisson distribution.

(b) X has a negative binomial distribution (Gupta 1966).

2.20 LetX have the Poisson(λ) distribution, and consider the estimation ofλ under the
loss (d − λ)2/λ with the restriction 0≤ λ ≤ m, wherem is known.

(a) Using an argument similar to that of Example 2.9, show thatX is not minimax,
and a least favorable prior distribution must have a setw∧ [of (1.5)] consisting of
a finite number of points.

(b) Let�a be a prior distribution that puts massai , i = 1, . . . , k, at parameter points
bi , i = 1, . . . , k. Show that the Bayes estimator associated with this prior is

δ�a (x) =
1

E(λ−1|x)
=

∑k

i=1 aib
x
i e
−bi∑k

i=1 aib
x−1
i e−bi

.

(c) Letm0 be the solution tom = e−m(m0 ≈ .57). Show that for 0≤ λ ≤ m,m ≤ m0

a one-point prior (ai = 1, b1 = m) yields the minimax estimator. Calculate the
minimax risk and compare it to that ofX.

(d) Letm1 be the first positive zero of (1 +δ�(m))2 = 2 +m2/2, where� is a two-point
prior (a1 = a,b1 = 0;a2 = 1−a,b2 = m). Show that for 0≤ λ ≤ m,m0 < m ≤ m1,
a two-point prior yields the minimax estimator (use Corollary 1.6). Calculate the
minimax risk and compare it to that ofX.

[Asm increases, the situation becomes more complex and exact minimax solutions
become intractable. For these cases, linear approximations can be quite satisfactory.
See Johnstone and MacGibbon 1992, 1993.]
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2.21 Show that the conditions (2.41) and (2.42) of Example 2.22 are not only sufficient
but also necessary for admissibility of (2.40).

2.22 Let X andY be independently distributed according to Poisson distributions with
E(X) = ξ andE(Y ) = η, respectively. Show thataX+bY +c is admissible for estimating
ξ with squared error loss if and only if either 0≤ a < 1,b ≥ 0,c ≥ 0 ora = 1,b = c = 0
(Makani 1972).

2.23 LetX be distributed with density12β(θ )eθxe−|x|, |θ | < 1.

(a) Show thatβ(θ ) = 1− θ2.

(b) Show thataX +b is admissible for estimatingEθ (X) with squared error loss if and
only if 0 ≤ a ≤ 1/2.

[Hint: (b) To see necessity, letδ = (1/2 + ε)X + b (0 < ε ≤ 1/2) and show thatδ is
dominated byδ′ = (1− 1

2α + αε)X + (b/α) for someα with 0< α < 1/(1/2− ε).]
2.24 LetX be distributed asN (θ,1) and letθ have the improper prior densityπ (θ ) = eθ

(−∞ < θ <∞). For squared error loss, the formal Bayes estimator ofθ isX+1, which
is neither minimax nor admissible. (See also Problem 2.15.)

Conditions under which the formal Bayes estimator corresponding to an improper prior
distribution forθ in Example 3.4 is admissible are given by Zidek (1970).

2.25 Show that the natural parameter space of the family (2.16) is (−∞,∞) for the
normal (variance known), binomial, and Poisson distribution but not in the gamma or
negative binomial case.

Section 3

3.1 Show that Theorem 3.2.7 remains valid for almost equivariant estimators.

3.2 Verify the density (3.1).

3.3 In Example 3.3, show that a loss function remains invariant underG if and only if it
is a function of (d − θ )∗.

3.4 In Example 3.3, show that neither of the loss functions [(d − θ )∗∗]2 or |(d − θ )∗∗| is
convex.

3.5 Let Y be distributed asG(y − η). If T = [Y ] andX = Y − T , find the distribution of
X and show that it depends onη only throughη − [η].

3.6 (a) IfX1, . . . , Xn are iid with densityf (x−θ ), show that the MRE estimator against
squared error loss [the Pitman estimator of (3.1.28)] is the Bayes estimator against
right-invariant Haar measure.

(b) If X1, . . . , Xn are iid with density 1/τf [(x − µ)/τ ], show that:

(i) Under squared error loss, the Pitman estimator of (3.1.28) is the Bayes esti-
mator against right-invariant Haar measure.

(ii) Under the loss (3.3.17), the Pitman estimator of (3.3.19) is the Bayes estimator
against right-invariant Haar measure.

3.7 Prove formula (3.9).

3.8 Prove (3.11).

[Hint: In the term on the left side, lim inf can be replaced by lim. Let the left side of
(3.11) beA and the right sideB, and letAN = inf h(a, b), where the inf is taken over
a ≤ −N , b ≥ N , N = 1,2, . . . , so thatAN → A. There exist (aN, bN ) such that
|h(aN, bN )− AN | ≤ 1/N . Then,h(aN, bN ) → A andA ≥ B.]
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3.9 In Example 3.8, leth(θ ) be the length of the pathθ after cancellation. Show thath
does not satisfy conditions (3.2.11).

3.10 Discuss Example 3.8 for the case that the random walk instead of being in the plane
is (a) on the line and (b) in three-space.

3.11 (a) Show that the probabilities (3.17) add up to 1.

(b) With pk given by (3.17), show that the risk (3.16) is infinite.

[Hint: (a) 1/k(k + 1) = (1/k)− 1/(k + 1).]

3.12 Show that the riskR(θ, δ) of (3.18) is finite.

[Hint: R(θ, δ) < �k>M|k+θ |1/(k + 1) ≤ �c<k<d1/(k + 1) <
∫ d+1
c
dx/x, wherec =

M|θ |/(M + 1) andd = M|θ |/(M − 1). The reason for the second inequality is that
values ofk outside (c, d) make no contribution to the sum.]

3.13 Show that the two estimatorsδ∗ andδ∗∗, defined by (3.20) and (3.21), respectively,
are equivariant.

3.14 Prove the relations (3.22) and (3.23).

3.15 Let the distribution ofX depend on parametersθ andϑ , let the risk function of an
estimatorδ = δ(x) of θ beR(θ, ϑ ; δ), and letr(θ, δ) =

∫
R(θ, ϑ ; δ) dP (ϑ) for some dis-

tributionP . If δ0 minimizes supθ r(θ, δ) and satisfies supθ r(θ, δ0) = supθ,ϑ R(θ, ϑ ; δ0),
show thatδ0 minimizes supθ,ϑ R(θ, ϑ ; δ).

Section 4

4.1 In Example 4.2, show that an estimatorδ is equivariant if and only if it satisfies (4.11)
and (4.12).

4.2 Show that a functionµ satisfies (4.12) if and only if it depends only on�X2
i .

4.3 Verify the Bayes estimator (4.15).

4.4 LetXi be independent with binomial distributionb(pi, ni), i = 1, . . . , r. For estimat-
ingp = (p1, . . . , pr ) with average squared error loss (4.17), find the minimax estimator
of p, and determine whether it is admissible.

4.5 Establishing the admissibility of the normal mean in two dimensions is quite difficult,
made so by the fact that the conjugate priors fail in the limiting Bayes method. Let

X ∼ N2(θ , I ) and L(θ , δ) = |θ − δ|2.
The conjugate priors areθ ∼ N2(0, τ 2I ), τ 2 > 0.

(a) For this sequence of priors, verify that the limiting Bayes argument, as in Example
2.8, results in inequality (4.18), which does not establish admissibility.

(b) Stein (in James and Stein 1961), proposed the sequence of priors that works to
proveX is admissible by the limiting Bayes method. A version of these priors,
given by Brown and Hwang (1982), is

gn(θ ) =



1 if |θ | ≤ 1

1− log |θ |
logn

if 1 ≤ |θ | ≤ n

0 if |θ | ≥ n
for n = 2, 3, . . .. Show thatδgn (x) → x a.e. asn→∞.
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(c) A special case of the very general results of Brown and Hwang (1982) state that for
the priorπn(θ )2g(θ ), the limiting Bayes method (Blyth’s method) will establish the
admissibility of the estimatorδg(x) [the generalized Bayes estimator againstg(θ )]
if ∫

{θ :|θ |>1}

g(θ ) dθ

|θ |2[max{log |θ |, log 2}]2
<∞.

Show that this holds forg(θ ) = 1 and thatδg(x) = x, sox is admissible.

[Stein (1956b) originally established the admissibility ofX in two dimensions using an
argument based on the information inequality. His proof was complicated by the fact that
he needed some additional invariance arguments to establish the result. See Theorem
7.19 and Problem 7.19 for more general statements of the Brown/Hwang result.]

4.6 Let X1, X2, . . . , Xr be independent withXi ∼ N (θi,1). The following heuristic
argument, due to Stein (1956b), suggests that it should be possible, at least for larger

and hence large|θ |, to improve on the estimatorX = (X1, X2, . . . , Xr ).

(a) Use a Taylor series argument to show

|x|2 = r + |θ |2 +Op[(r + |θ |2)1/2],

so, with high probability, the trueθ is in the sphere{θ : |θ |2 ≤ |x|2 − r}. The
usual estimatorX is approximately the same size asθ and will almost certainly be
outside of this sphere.

(b) Part (a) suggested to Stein an estimator of the formδ(x) = [1 − h(|x|2)]x. Show
that

|θ − δ(x)|2 = (1− h)2|x − θ |2 − 2h(1− h)θ ′(x − θ ) + h2|θ |2.
(c) Establish thatθ ′(x − θ )/|θ | = Z ∼ N (0,1), and|x − θ |2 ≈ r, and, hence,

|θ − δ(x)|2 ≈ (1− h)2r + h2|θ |2 +Op[(r + |θ |2)1/2].

(d) Show that the leading term in part (c) is minimized ath = r/(r + |θ |2), and since

|x|2 ≈ r + |θ |2, this leads to the estimatorδ(x) =
(
1− r

|x|2
)

x of (4.20).

4.7 If S2 is distributed asχ2
r , use (2.2.5) to show thatE(S−2) = 1/(r − 2).

4.8 In Example 4.7, show thatR is nonsingular forρ1 andρ2 and singular forρ3 andρ4.

4.9 Show that the functionρ2 of Example 4.7 is convex.

4.10 In Example 4.7, show thatX is admissible for (a)ρ3 and (b)ρ4.

[Hint: (a) It is enough to show thatX1 is admissible for estimatingθ1 with loss (d1−θ1)2.
This can be shown by lettingθ2, . . . , θr be known. (b) Note thatX is admissible minimax
for θ = (θ1, . . . , θr ) whenθ1 = · · · = θr .]

4.11 In Example 4.8, show thatX is admissible under the assumptions (ii)(a).

[Hint:

i. If v(t) > 0 is such that ∫
1

v(t)
e−t

2/2τ2
dt <∞,

show that there exists a constantk(τ ) for which

λτ (θ ) = k(τ )
[
�v(θj )

]
exp

(
− 1

2τ 2
�θ2

j

)
/Ov(θj )

is a probability density forθ = (θ1, . . . , θr ).
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ii. If the Xi are independentN (θi,1) andθ has the priorλτ (θ ), the Bayes estimator
of θ with loss function (4.27) isτ 2X/(1 + τ 2).

iii. To proveX admissible, use (4.18) withλτ (θ ) instead of a normal prior.]

4.12 Let L be a family of loss functions and suppose there existsL0 ∈ L and a minimax
estimatorδ0 with respect toL0 such that in the notation of (4.29),

sup
L,θ

RL(θ, δ0) = sup
θ

RL0(θ, δ0).

Then,δ0 is minimax with respect toL; that is, it minimizes supL,θ RL(θ, δ).

4.13 Assuming (4.25), show thatE = 1− [(r − 2)2/r|X − µ|2] is the unique unbiased
estimator of the risk (5..4.25), and thatE is inadmissible. [The estimatorE is also
unbiased for estimation of the lossL(θ , δ). See Note 9.5.]

4.14 A natural extension of risk domination under a particular loss is to risk domination
under a class of losses. Hwang (1985) definesuniversal domination of δ by δ′ if the
inequality

EθL(|θ − δ′(X)|) ≤ EθL(|θ − δ(X)|) for all θ

holds for all loss functionsL(·) that are nondecreasing, with at least one loss function
producing nonidentical risks.

(a) Show thatδ′ universally dominatesδ if and only if it stochastically dominates δ,
that is, if and only if

Pθ (|θ − δ′(X)| > k) ≤ Pθ (|θ − δ(X)| > k)
for all k andθ with strict inequality for someθ .

[Hint: For a positive random variableY , recall thatEY =
∫∞

0 P (Y > t) dt . Al-
ternatively, use the fact that stochastic ordering on random variables induces an
ordering on expectations. See Lemma 1, Section 3.3 of TSH2.]

(b) ForX ∼ Nr (θ , I ), show that the James-Stein estimatorδc(x) = (1− c/|x|2)x does
not universally dominatex. [From (a), it only need be shown thatPθ (|θ − δc(X)| >
k) > Pθ (|θ − X| > k) for someθ andk. Takeθ = 0 and find such ak.]

Hwang (1985) and Brown and Hwang (1989) explore many facets of universal domi-
nation. Hwang (1985) shows that evenδ+ does not universally dominateX unless the
class of loss functions is restricted.

We also note that although the inequality in part (a) may seem reminiscent of the “Pitman
closeness” criterion, there is really no relation. The criterion of Pitman closeness suffers
from a number of defects not shared by stochastic domination (see Robert et al. 1993).

Section 5

5.1 Show that the estimatorδc defined by (5.2) with 0< c = 1−W < 1 is dominated by
anyδd with |d − 1| < W.

5.2 In the context of Theorem 5.1, show that

Eθ

[
1

|X|2
]
≤ E0

[
1

|X|2
]
<∞.

[Hint: The chi-squared distribution has monotone likelihood ratio in the noncentrality
parameter.]
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5.3 Stigler (1990) presents an interesting explanation of the Stein phenomenon using a
regression perspective, and also gives an identity that can be used to prove the minimaxity

of the James-Stein estimator. ForX ∼ (Nrθ , I ), andδc(x) =
(
1− c

|x|2
)

x:

(a) Show that

Eθ |θ − δc(X)|2 = r − 2cEθ

[
X′θ + (c/2)

|X|2 − 1

]
.

(b) The expression in square brackets is increasing inc. Prove the minimaxity ofδc for
0 ≤ c ≤ 2(r − 2) by establishing Stigler’s identity

Eθ

[
X′θ + r − 2

|X|2
]

= 1.

[Hint: Part (b) can be established by transforming to polar coordinates and directly

integrating, or by writingx′θ
|x|2 = x′(θ−x)+|x|2

|x|2 and using Stein’s identity.]

5.4 (a) Prove Theorem 5.5.

(b) Apply Theorem 5.5 to establish conditions for minimaxity of Strawderman’s (1971)
proper Bayes estimator given by (5.10) and (5.12).

[Hint: (a) Use the representation of the risk given in (5.4), withg(x) = c(|x|)(r−2)x/|x|2.
Show thatR(θ , δ) can be written

R(θ , δ) = 1− (r − 2)2

r
Eθ

[
c(|X|)(2− c(|X|))

|X|2
]
− 2(r − 2)

r
Eθ
�Xi

∂

∂Xi
c(|X|)

|X|2
and an upper bound onR(θ , δ) is obtained by dropping the last term. It is not necessary
to assume thatc(·) is differentiable everywhere; it can be nondifferentiable on a set of
Lebesgue measure zero.]

5.5 For the hierarchical model (5.11) of Strawderman (1971):

(a) Show that the Bayes estimator against squared error loss is given byE(θ |x) =
[1− E(λ|x)]x where

E(λ|x) =

∫ 1
0 λ

r/2−a+1e−1/2λ|x|2 dλ∫ 1
0 λ

r/2−ae−1/2λ|x|2 dλ.
.

(b) Show thatE(λ|x) has the alternate representations

E(λ|x) =
r − 2a + 2

|x|2
P (χ2

r−2a+4 ≤ |x|2)
P (χ2

r−2a+2 ≤ |x|2
,

E(λ|x) =
r − 2a + 2

|x|2 − 2e−1/2|x|2

|x|2 ∫ 1
0 λ

r/2−ae−1/2λ|x|2
dλ,

and hence thata = 0 gives the estimator of (5.12).

(c) Show that|x|2E(λ|x) is increasing in|x|2 with maximumr − 2a + 2. Hence, the
Bayes estimator is minimax ifr−2a+2≤ 2(r−2) orr ≥ 2(3−a). For 0≤ a ≤ 1,
this requiresr ≥ 5.

[Berger (1976b) considers matrix generalizations of this hierarchical model and derives
admissible minimax estimators. Proper Bayes minimax estimators only exist ifr ≥ 5
(Strawderman 1971); however, formal Bayes minimax estimators exist forr = 3 and 4.]
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5.6 Consider a generalization of the Strawderman (1971) hierarchical model of Problem
5.5:

X|θ ∼ N (θ , I ),

θ |λ ∼ N (0, λ−1(1− λ)I ),

λ ∼ π (λ).

(a) Show that the Bayes estimator against squared error loss is [1− E(λ|x)]x, where

E(λ|x) =

∫ 1
0 λ

r/2+1e−1/2λ|x|2π (λ) dλ∫ 1
0 λ

r/2e−1/2λ|x|2π (λ) dλ
.

(b) Supposeλ ∼ beta(α, β), with density

π (λ) =
H(α + β)

H(α)H(β)
λα−1(1− λ)β−1.

Show that the Bayes estimator is minimax ifβ ≥ 1 and 0≤ a ≤ (r − 4)/2.

[Hint: Use integration by parts onE(λ|x), and apply Theorem 5.5. These estimators
were introduced by Faith (1978).]

(c) Let t = λ−1(1−λ), the prior precision ofθ . If λ ∼ beta(α, β), show that the density
of t is proportional totα−1/(1 + t)α+β , that is,t ∼ F2α,2β , theF -distribution with
2α and 2β degrees of freedom.

[Strawderman’s prior of Problem 5.5 corresponds toβ = 1 and 0< α < 1. If we
takeα = 1/2 andβ = 1, thent ∼ F1,2.]

(d) Two interesting limiting cases areα = 1, β = 0 andα = 0, β = 1. For each case,
show that the resulting prior ont is proper, and comment on the minimaxity of the
resulting estimators.

5.7 Faith (1978) considered the hierarchical model

X|θ ∼ N (θ , I ),

θ |t ∼ N
(

0,
1

t
I

)
,

t ∼ Gamma(a, b),

that is,

π (t) =
1

H(a)ba
ta−1e−t/b.

(a) Show that the marginal prior forθ , unconditional ont , is

π (θ ) ∝ (2/b + |θ |2)−(a+r/2),

a multivariate Student’st-distribution.

(b) Show thata ≤ −1 is a sufficient condition for
∑

i
∂2π (θ )
∂θ2
i

≥ 0 and, hence, is

a sufficient condition for the minimaxity of the Bayes estimator against squared
error loss.

(c) Show, more generally, that the Bayes estimator against squared error loss is minimax
if a ≤ (r − 4)/2 anda ≤ 1/b + 3.

(d) What choices ofa andb would produce a multivariate Cauchy prior forπ (θ )? Is
the resulting Bayes estimator minimax?
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5.8 (a) LetX ∼ N (θ , �) and consider the estimation ofθ under the lossL(θ , δ) =
(θ − δ)′(θ − δ). Show thatR(θ ,X) = tr �, the minimax risk. Hence,X is a
minimax estimator.

(b) Let X ∼ N (θ , I ) and consider estimation ofθ under the lossL(θ , δ) = (θ −
δ)′Q(θ−δ), whereQ is a known positive definite matrix. Show thatR(θ ,X) = tr Q,
the minimax risk. Hence,X is a minimax estimator.

(c) Show that the calculations in parts (a) and (b) are equivalent.

5.9 In Theorem 5.7, verify

Eθ
c(|X|2)
|X|2 X′(θ − X) = Eθ

{
c(|X|2)
|X|2 tr(�)− 2

c(|X|2)
|X|4 X′�X + 2

c′(|X|2)
|X|2 X′�X

}
.

[Hint: There are several ways to do this:

(a) Write

Eθ
c(|X|2)
|X|2 X′(θ − X) = Eθ

c(Y′Y
Y′Y

Y′�(η − Y)

=
∑
i

Eθ

{
c(Y′Y
Y′Y

∑
j

Yjσji(ηi − Yi)
}

where� = {σij } andY = �−1/2X ∼ N (�−1/2θ , I ) = N (η , I ). Now apply Stein’s
lemma.

(b) Write� = PDP ′, whereP is an orthogonal matrix (P ′P = I ) andD=diagonal
matrix of eigenvalues of�,D = diagonal{di}. Then, establish that

Eθ
c(|X|2)
|X|2 X′(θ − X) =

∑
j

Eθ
c(

∑
i diZ

2
i )∑

i diZ
2
i

djZj (η
∗
j − Zj )

whereZ = P�−1/2X andη∗ = P�−1/2θ . Now apply Stein’s lemma.

5.10 In Theorem 5.7, show that condition (i) allows the most shrinkage when� = σ 2I ,
for some value ofσ 2. That is, show that for allr × r positive definite�,

max
�

tr �

λmax(�)
=

tr σ 2I

λmax(σ 2I )
= r.

[Hint: Write tr�
λmax(�) =

∑
λi/λmax, where theλi ’s are the eigenvalues of�.]

5.11 The estimation problem of (5.18),

X ∼ N (θ , �)

L(θ , δ) = (θ − δ)′Q(θ − δ),
where both� andQ are positive definite matrices, can always be reduced, without loss
of generality, to the simpler case,

Y ∼ N (η , I )

L(η , δ∗) = (η − δ∗)′Dq∗ (η − δ∗),
whereDq∗ is a diagonal matrix with elements (q∗1 , . . . , q

∗
r ), using the following argument.

DefineR = �1/2B, where�1/2 is a symmetric square root of� (that is,�1/2�1/2 = �),
andB is the matrix of eigenvectors of�1/2Q�1/2 (that is,B ′�1/2Q�1/2B = Dq∗ ).

(a) Show thatR satisfies

R′�−1R = I , R′QR = Dq∗
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(b) DefineY = R−1X. Show thatY ∼ N (η , I ), whereη = R−1θ .

(c) Show that estimations problems are equivalent if we defineδ∗(Y) =
R−1δ(RY).

[Note: If � has the eigenvalue-eigenvector decompositionP ′�P = D =
diagonal(d1, · · ·, dr ), then we can define�1/2 = PD1/2P ′, whereD1/2 is a diagonal
matrix with elements

√
di . Since� is positive definite, thedi ’s are positive.]

5.12 Complete the proof of Theorem 5.9.

(a) Show that the risk ofδ(x) is

R(θ , δ) = Eθ
[
(θ − X)′Q(θ − X)

]
−2Eθ

[
c(|X|2)
|X|2 X′Q(θ − X)

]
+Eθ

[
c2(|X|2)
|X|4 X′QX

]
whereEθ (θ − X)′Q(θ − X) = tr(Q).

(b) Use Stein’s lemma to verify

Eθ
c(|X|2)
|X|2 X′Q(θ − X)

= Eθ

{
c(|X|2)
|X|2 tr(Q)− 2

c(|X|2)
|X|4 X′QX + 2

c′(|X|2)
|X|2 X′QX

}
.

Use an argument similar to the one in Theorem 5.7.

[Hint: Write

Eθ
c(|X|2)
|X|2 X′Q(θ − X) =

∑
i

Eθ

{
c(|X|2)
|X|2

∑
j

Xjqji(θi −Xi)
}

and apply Stein’s lemma.]

5.13 Prove the following ”generalization” of Theorem 5.9.

Theorem 8.2 Let X ∼ N (θ , �). An estimator of the form (5.13) is minimax against the
loss L(θ , δ) = (θ − δ)′Q(θ − δ), provided

(i) 0 ≤ c(|x|2) ≤ 2[tr(Q∗)/λmax(Q∗)] − 4,

(ii) the function c(·) is nondecreasing,

whereQ∗ = �1/2Q�1/2.

5.14 Brown (1975) considered the performance of an estimator against a class of loss
functions

L(C) =

{
L : L(θ , δ) =

r∑
i=1

ci(θi − δi)2; (c1, . . . , cr ) ∈ C
}

for a specified setC, and proved the following theorem.

Theorem 8.3 For X ∼ Nr (θ , I ), there exists a spherically symmetric estimator δ, that
is, δ(x) = [1−h(|x|2)]x, whereh(|x|2) �= 0, such thatR(θ , δ) ≤ R(θ ,X) for allL ∈ L(C)
if, for all (c1, . . . , cr ) ∈ C, the inequality

∑r

j=1 ci > 2ck holds for k = 1, . . . , r .
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Show that this theorem is equivalent to Theorem 5.9 in that the above inequality is
equivalent to part (i) of Theorem 5.9, and the estimator (5.13) is minimax.
[Hint: Identify the eigenvalues ofQ with c1, . . . , cr .]
Bock (1975) also establishes this theorem; see also Shinozaki (1980).

5.15 There are various ways to seemingly generalize Theorems 5.5 and 5.9. However, if
both the estimator and loss function are allowed to depend on the covariance and loss
matrix, then linear transformations can usually reduce the problem.
LetX ∼ Nr (θ , �), and let the loss function beL(θ , δ) = (θ − δ)′Q(θ − δ), and consider
the following “generalizations” of Theorems 5.5 and 5.9.

(a) δ(x) =

(
1− c(x

′�−1x)

x′�−1x

)
x, Q = �−1,

(b) δ(x) =

(
1− c(x

′Qx)

x′Qx

)
x, � = I or� = Q,

(c) δ(x) =

(
1− c(x

′�−1/2Q�−1/2x)

x′�−1/2Q�−1/2x

)
x.

In each case, use transformations to reduce the problem to that of Theorem 5.5 or 5.9,
and deduce the condition for minimaxity ofδ.
[Hint: For example, in (a) the transformationY = �−1/2X will show thatδ is minimax
if 0 < c(·) < 2(r − 2).]

5.16 A natural extension of the estimator (5.10) is to one that shrinks toward an arbitrary
known pointµ = (µ1, . . . , µr ),

δµ(x) = µ +

[
1− c(S)

r − 2

|x − µ|2
]

(x − µ)

where|x − µ|2 = �(xi − µi)2.

(a) Show that, under the conditions of Theorem 5.5,δµ is minimax.
(b) Show that its positive-part version is a better estimator.

5.17 Let X ∼ Nr (θ , I ). Show that the Bayes estimator ofθ , against squared error loss,
is given byδ(x) = x + ∇ logm(x) wherem(x) is the marginal density function and
∇f = {∂/∂xif }.

5.18 Verify (5.27).
[Hint: Show that, as a function of|x|2, the only possible interior extremum is a minimum,
so the maximum must occur either at|x|2 = 0 or |x|2 =∞.]

5.19 The property of superharmonicity, and its relationship to minimaxity, is not restricted
to Bayes estimators. ForX ∼ Nr (θ , I ), a pseudo-Bayes estimator (so named, and
investigated by Bock, 1988) is an estimator of the form

x +∇ logm(x)

wherem(x) is not necessarily a marginal density.

(a) Show that the positive-part Stein estimator

δ+
a = µ +

(
1− a

|x − µ|2
)+

(x − µ)

is a pseudo-Bayes estimator with

m(x) =

{
e−(1/2)|x−µ|2 if |x − µ|2 < a
(|x − µ|2)−a/2 if |x − µ|2 ≥ a.
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(b) Show that, except at the point of discontinuity, ifa ≤ r − 2, then
∑r

i=1
∂2

∂x2
i

m(x)

≤ 0, som(x) is superharmonic.

(c) Show how to modify the proof of Corollary 5.11 to accommodate superharmonic
functionsm(x) with a finite number of discontinuities of measure zero.

This result is adapted from George (1986a, 1986b), who exploits both pseudo-Bayes
and superharmonicity to establish minimaxity of an interesting class of estimators that
are further investigated in the next problem.

5.20 ForX|θ ∼ Nr (θ , I ), George (1986a, 1986b) looked atmultiple shrinkage estima-
tors, those that can shrink to a number of different targets. Suppose thatθ ∼ π (θ ) =∑k

j=1ωiπi(θ ), where theωi are known positive weights,
∑
ωi = 1.

(a) Show that the Bayes estimator againstπ (θ ), under squared error loss, is given by
δ∗(x) = x +∇ logm∗(x) wherem∗(x) =

∑k

j=1ωjmj (x) and

mi(x) =
∫


1

(2π )p/2
e−(1/2)|x−θ |2πi(θ ) dθ .

(b) Clearly,δ∗ is minimax ifm∗(x) is superharmonic. Show thatδ∗(x) is minimax if
either (i)mi(x) is superharmonic, i = 1, . . . , k, or (ii) πi(θ ) is superharmonic,
i = 1, . . . , k. [Hint: Problem 1.7.16]

(c) The real advantage ofδ∗ occurs when the components specify different targets. For
ρj = ωjmj (x)/m∗(x), let δ∗(x) =

∑k

j=1 ρj δ
+
j (x) where

δ+
j (x) = µj +

(
1− r − 2

|x − µj |2
)+

(x − µj )

and theµj ’s are target vectors. Show thatδ∗(x) is minimax. [Hint: Problem 5.19]

[George (1986a, 1986b) investigated many types of multiple targets, including multiple
points, subspaces, and clusters and subvectors. The subvector problem was also con-
sidered by Berger and Dey (1983a, 1983b). Multiple shrinkage estimators were also
investigated by Ki and Tsui (1990) and Withers (1991).]

5.21 Let Xi, Yj be independentN (ξi,1) andN (ηj ,1), respectively (i = 1, . . . , r; j =
1, . . . , s).

(a) Find an estimator of (ξ1, . . . , ξr ; η1, . . . , ηs) that would be good nearξi = · · · =
ξr = ξ, η1 = · · · = ηs = η, with ξ andη unknown, if the variability of theξ ’s and
η’s is about the same.

(b) When the loss function is (4.17), determine the risk function of your estimator.

[Hint: Consider the Bayes situation in whichξi ∼ N (ξ, A) andηj ∼ N (η,A). See
Berger 1982b for further development of such estimators].

5.22 The early proofs of minimaxity of Stein estimators (James and Stein 1961, Baranchik
1970) relied on the representation of a noncentralχ2-distribution as a Poisson sum of
centralχ2 (TSH2, Problem 6.7). In particular, ifχ2

r (λ) is a noncentralχ2 random variable
with noncentrality parameterλ, then

Eλh(χ2
r (λ)) = E[Eh(χ2

r+2K )|K]

whereK ∼ Poisson(λ) andχ2
r+2k is a centralχ2 random variable withr + 2k df . Use

this representation, and the properties of the centralχ2-distribution, to establish the
following identities forX ∼ Nr (θ , I ) andλ = |θ |2.
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(a) Eθ X′θ
|X|2 = |θ |2E 1

χ2
r+2(λ)

.

(b) (r − 2)E 1
χ2
r (λ)

+ |θ |2E 1
χ2
r+2(λ)

= 1.

(c) Forδ(x) = (1− c/|x|2)x, use the identities (a) and (b) to show that forL(θ , δ) =
|θ − δ|2,

R(θ , δ) = r + 2c|θ |2E 1

χ2
r+2(λ)

− 2c + c2E
1

χ2
r (λ)

= r + 2c

[
1− (r − 2)E

1

χ2
r (λ)

]
− 2c + c2E

1

χ2
r (λ)

and, hence, thatδ(x) is minimax if 0≤ c ≤ 2(r − 2).

[See Bock 1975 or Casella 1980 for more identities involving noncentralχ2 expecta-
tions.]

5.23 Let χ2
r (λ) be aχ2 random variable withr degrees of freedom and noncentrality

parameterλ.

(a) Show that E 1
χ2
r (λ)

= E
[
E 1
χ2
r+2K
|K

]
= E

[
1

r−2+2K

]
, where K ∼

Poisson(λ/2).

(b) Establish (5.32).

5.24 For the most part, the risk function of a Stein estimator increases as|θ |moves away
from zero (if zero is the shrinkage target). To guarantee that the risk function is monotone
increasing in|θ | (that is, that there are no “dips” in the risk as in Berger’s 1976a tail
minimax estimators) requires a somewhat stronger assumption on the estimator (Casella
1990). LetX ∼ Nr (θ , I ) andL(θ , δ) = |θ − δ|2, and consider the Stein estimator

δ(x) =

(
1− c(|x|2) (r − 2)

|x|2
)

x.

(a) Show that if 0≤ c(·) ≤ 2 andc(·) is concave and twice differentiable, thenδ(x) is
minimax. [Hint: Problem 1.7.7.]

(b) Under the conditions in part (a), the risk function ofδ(x) is nondecreasing in|θ |.
[Hint: The conditions onc(·), together with the identity

(d/dλ)Eλ[h(χ2
p(λ))] = Eλ{[∂/∂χ2

p+2(λ)]h(χ2
p+2(λ))},

whereχ2
p(λ) is a noncentralχ2 random variable withp degrees of freedom and

noncentrality parameterλ, can be used to show that (∂/∂|θ |2)R(θ , δ) > 0.]

5.25 In the spirit of Stein’s “larger and|θ |” argument, Casella and Hwang (1982) inves-
tigated the limiting risk ratio ofδJS(x) = (1− (r−2)/|x|2)x to that ofx. If X ∼ Nr (θ , I )
andL(θ , δ) = |θ − δ|2, they showed

lim r→∞
|θ |2
r
→ c

R(θ , δJS)

R(θ ,X)
=

c

c + 1
.

To establish this limit we can use the following steps.

(a) Show thatR(θ ,δJS )

R(θ ,x)
= 1− (r−2)2

r
Eθ

1
|X|2 .

(b) Show that 1
p−2+|θ |2 ≤ Eθ

1
|X)|2 ≤ 1

p−2

(
p

p+|θ |2
)
.

(c) Show that the upper and lower bounds on the risk ratio both have the same limit.
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[Hint: (b) The upper bound is a consequence of Problem 5.22(b). For the lower bound,
showEθ (1/|X)|2) = E(1/p − 2 + K), whereK ∼ Poisson(|θ |2) and use Jensen’s
inequality.]

Section 6

6.1 Referring to Example 6.1, this problem will establish the validity of the expression
(6.2) for the risk of the estimatorδL of (6.1), using an argument similar to that in the
proof of Theorem 5.7.

(a) Show that

R(θ , δL) =
∑
i

Eθ [θi − δLi (X)]2

=
∑
i

Eθ

{
(θi −Xi)2 +

2c(r − 3)

S
(θi −Xi)(Xi − X̄)

+
[c(r − 3)]2

S2
(Xi − X̄)2

}
whereS =

∑
j (Xj − X̄)2.

(b) Use integration by parts to show

Eθ
(θi −Xi)(Xi − X̄)

S
= −Eθ

r−1
r
S + 2(Xi − X̄)2

S2
.

[Hint: Write the cross-term as−Eθ
[

(Xi−X̄)
S

]
(Xi − θi) and adapt Stein’s identity

(Lemma 1.5.15).]

(c) Use the results of parts (a) and (b) to establish (6.2).

6.2 In Example 6.1, show that:

(a) The estimatorδL is minimax if r ≥ 4 andc ≤ 2.

(b) The risk ofδL is infinite if r ≤ 3

(c) The minimum risk is equal to 3/r , and is attained atθ1 = θ2 = · · · = θ .

(d) The estimatorδL is dominated in risk by its positive-part version

δL
+

= x̄1 +

(
1− c(r − 3)

|x − x̄1|2
)+

(x − x̄1).

6.3 In Example 6.2:

(a) Show thatkx is the MLE if θ ∈ Lk.
(b) Show thatδk(x) of (6.8) is minimax under squared error loss.

(c) Verify thatθi of the form (6.4) satisfyT (T ′T )−1T ′θ = θ forT of (6.5), and construct
a minimax estimator that shrinks toward this subspace.

6.4 Consider the problem of estimating the mean based onX ∼ Nr (θ , I ), where it is
thought thatθi =

∑s

j=1 βj t
j

i where (ti , . . . , tr ) are known, (β1, . . . , βs) are unknown,
andr − s > 2.

(a) Find the MLE ofθ , sayθ̂R, if θ is assumed to be in the linear subspace

L =

{
θ :

s∑
j=1

βj t
j

i = θi, i = 1, . . . , r

}
.
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(b) Show thatL can be written in the form (6.7), and findK.

(c) Construct a Stein estimator that shrinks toward the MLE of part (a) and prove that
it is minimax.

6.5 For the situation of Example 6.3:

(a) Show thatδc(x, y) is minimax if 0≤ c ≤ 2.

(b) Show that ifξ = 0,R(θ , δ1) = 1− σ2

σ2+τ2
r−2
r

, R(θ , δcomb) = 1− σ2

σ2+τ2 , and, hence,
R(θ , δ1) > R(θ , δcomb).

(c) Forξ �= 0, show thatR(θ , δcomb) = 1− σ2

σ2+τ2 + |ξ |2σ2

r(σ2+τ2)
and hence is unbounded as

|ξ | → ∞.

6.6 The Green and Strawderman (1991) estimatorδc(x, y) can be derived as an empirical
Bayes estimator.

(a) ForX|θ ∼ Nr (θ , σ 2I ), Y |θ , ξ ∼ Nr (θ + ξ , τ 2I ), ξ ∼ N (0, γ 2I ), and θi ∼
Uniform(−∞,∞), with σ 2 and τ 2 assumed to be known, show how to derive
δr−2(x, y) as an empirical Bayes estimator.

(b) Calculate the Bayes estimator,δπ , against squared error loss.

(c) Comparer(π, δπ ) andr(π, δr−2).

[Hint: For part (a), Green and Strawderman suggest starting withθ ∼ N (0, κ2I ) and let
κ2 →∞ get the uniform prior.]

6.7 In Example 6.4:

(a) Verify the risk function (6.13).

(b) Verify that for unknownσ 2, the risk function of the estimator (6.14) is given by
(6.15).

(c) Show that the minimum risk of the estimator (6.14) is 1− ν

ν+2
r−2
r

.

6.8 For the situation of Example 6.4, the analogous modification of the Lindley estimator
(6.1) is

δL = x̄1 +

(
1− r − 3

�(xi − x̄)2/σ̂ 2

)
(x − x̄1),

whereσ̂ 2 = S2/(ν + 2) andS2/σ 2 ∼ χ2
ν , independent ofX.

(a) Show thatR(θ , δL) = 1− ν

ν+2
(r−3)2

r
Eθ

σ2

�(xi−x̄)2
.

(b) Show that bothδL andδ of (6.14) can be improved by using their positive-part
versions.

6.9 The major application of Example 6.4 is to the situation

Yij ∼ N (θi, σ
2), i = 1, . . . , s, j = 1, . . . , n, independent

with Ȳi = (1/n)�jYij andσ̂ 2 = �ij (Yij − Y i)2/s(n− 1). Show that the estimator

δi = ¯̄y +

(
1− c (s − 3)σ̂ 2

�(ȳi − ¯̄y)2

)+

(ȳi − ¯̄y)

is a minimax estimator, wherēy = �ijyij /sn, as long as 0≤ c ≤ 2.

[The case of unequal sample sizesni is not covered by what we have done so far. See
Efron and Morris 1973b, Berger and Bock 1976, and Morris 1983 for approaches to this
problem. The case of totally unknown covariance matrix is considered by Berger et al.
(1977) and Gleser (1979, 1986).]
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6.10 The positive-part Lindley estimator of Problem 6.9 has an interesting interpretation
in the one-way analysis of variance, in particular with respect to the usual test performed,
that ofH0 : θ1 = θ2 = · · · = θs . This hypothesis is tested with the statistic

F =
�(ȳi − ¯̄y)2/(s − 1)

�(yij − ȳi)2/s(n− 1)
,

which, underH0, has anF -distribution withs − 1 ands(n− 1) degrees of freedom.

(a) Show that the positive-part Lindley estimator can be written as

δi = ¯̄y +

(
1− c s − 3

s − 1

1

F

)+

(ȳi − ¯̄y).

(b) The null hypothesis is rejected ifF is large. Show that this corresponds to using
the MLE underH0 if F is small, and a Stein estimator ifF is large.

(c) The null hypothesis is rejected at levelα if F > Fs−1,s(n−1),α. Fors = 8 andn = 6:

(i) What is the level of the test that corresponds to choosingc = 1, the optimal risk
choice?

(ii) What values ofc correspond to choosingα = .05 orα = .01, typicalα levels. Are
the resulting estimators minimax?

6.11 Prove the following extension of Theorem 5.5 to the case of unknown variance, due
to Strawderman (1973).

Theorem 8.4 Let X ∼ Nr (θ , σ 2I ) and let S2/σ 2 ∼ χ2
ν , independent of X. The estima-

tor

δc(x) =

(
1− c(F, S

2)

S2

r − 2

ν + 2

)
x,

where F = �x2
i /S

2, is a minimax estimator of θ , provided

(i) for each fixed S2, c(·, S2) is nondecreasing,

(ii) for each fixed F, c(F, ·) is nonincreasing,

(iii) 0 ≤ c(·, ·) ≤ 2.

[Note that, here, the loss function is taken to be scaled byσ 2, L(θ , δ) = |θ − δ|2/σ 2,
otherwise the minimax risk is not finite. Strawderman (1973) went on to derive proper
Bayes minimax estimators in this case.]

6.12 For the situation of Example 6.5:

(a) Show thatEσ 1
σ2 = E0

r−2
|X|2 .

(b) If 1/σ 2 ∼ χ2
ν /ν, thenf (|x− θ |) of (6.19) is the multivariatet-distribution, withν

degrees of freedom andE0|X|−2 = (r − 2)−1.

(c) If 1/σ 2 ∼ Y , whereχ2
ν /ν is stochastically greater thanY , thenδ(x) of (6.20) is

minimax for this mixture as long as 0≤ c ≤ 2(r − 2).

6.13 Prove Lemma 6.2.

6.14 For the situation of Example 6.7:

(a) Verify that the estimator (6.25) is minimax if 0≤ c ≤ 2. (Theorem 5.5 will apply.)
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(b) Referring to (6.27), show that

E|δπ (X)− δc(X)|2I [|X|2 ≥ c(r − 2)(σ 2 + τ 2)]

=
σ 4

σ 2 + τ 2
E

1

Y
[Y − c(r − 2)]2I [Y ≥ c(r − 2)]

whereY ∼ χ2
r .

(c) If χ2
ν denotes a chi-squared random variable withν degrees of freedom, establish

the identity

Eh(χ2
ν ) = νE

h(χ2
ν+2)

χ2
ν+2

to show that

r(π, δR) = r(π, δπ ) +
1

r − 2

σ 4

σ 2 + τ 2
E[Y − c(r − 2)]2I [Y ≥ c(r − 2)]

where, now,Y ∼ χ2
r−2.

(d) Verify (6.29), hence showing thatr(π, δR) ≤ r(π, δc).
(e) Show thatE(Y −a)2I (Y > a) is a decreasing function ofa, and hence the maximal

Bayes risk improvement, while maintaining minimaxity, is obtained atc = 2.

6.15 For Xi ∼ Poisson(λi) i = 1, . . . , r, independent, and loss functionL(λ , δ) =
�(λi − δi)2/λi :

(a) For what values ofa, α, andβ are the estimators of (4.6.29) minimax? Are they
also proper Bayes for these values?

(b) Let� = �λi and defineθi = λi/�, i = 1, . . . , r. For the prior distributionπ (θ ,�) =
m(�)d�

∏r

i=1 dθi , show that the Bayes estimator is

δπ (x) =
ψπ (z)

z + r − 1
x,

wherez = �xi and

ψπ (z) =

∫
�ze−�m(�) d�∫
�z−1e−�m(�) d�

.

(c) Show that the choicem(�) = 1, yields the estimatorδ(x) = [1−(r−1)/(z+r−1)]x,
which is minimax.

(d) Show that the choicem(�) = (1 +�)−β,1≤ β ≤ r − 1 yields an estimator that is
proper Bayes minimax forr > 2.

(e) The estimator of part (d) is difficult to evaluate. However, for the prior choice

m(�) =
∫ ∞

0

t−r e−1/t

(1 +�t)β
dt, 1≤ β ≤ r − 1,

show that the generalized Bayes estimator is

δπ (x) =
z

z + β + r − 1
x,

and determine conditions for its minimaxity. Show that it is proper Bayes ifβ > 1.

6.16 LetXi ∼ binomial(p, ni), i = 1, . . . , r, whereni are unknown andp is known. The
estimation target isn = (n1, . . . , nr ) with loss function

L(n, δ) =
r∑
i=1

1

ni
(ni − δi)2.
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(a) Show that the usual estimatorx/p has constant riskr(1− p)/p.

(b) Forr ≥ 2, show that the estimator

δ(x) =

(
1− a

z + r − 1

)
x
p

dominatesx/p in risk, wherez = �xi and 0< a < 2(r − 1)(1− p).

[Hint: Use an argument similar to Theorem 6.8, but hereXi |Z is hypergeometric,
with E(Xi |z) = z ni

N
and var(Xi |z) = z ni

N

(
1− ni

N

)
N−z
N−1, whereN = �ni .]

(c) Extend the argument from part (b) and find conditions on the functionc(·) and
constantb so that

δ(x) =

(
1− c(z)

z + b

)
x
p

dominatesx/p in risk.

Domination of the usual estimator ofn was looked at by Feldman and Fox (1968),
Johnson (1987), and Casella and Strawderman (1994). The problem ofn estimation for
the binomial has some interesting practical applications; see Olkin et al. 1981, Carroll
and Lombard 1985, Casella 1986. Although we have made the unrealistic assumption
thatp is known, these results can be adapted to the more practical unknownp case (see
Casella and Strawderman 1994 for details).

6.17 (a) Prove Lemma 6.9. [Hint: Change variables fromx to x − ei , and note thathi
must be defined so thatδ0(0) = 0.]

(b) Prove that forX ∼ pi(x|θ ), wherepi(x|θ ) is given by (6.36),δ0(x) = hi(x −
1)/hi(x) is the UMVU estimator ofθ (Roy and Mitra 1957).

(c) Prove Theorem 6.10.

6.18 For the situation of Example 6.11:

(a) Establish thatx + g(x), whereg(x) is given by (6.42), satisfiesD(x) ≤ 0 for the
lossL0(θ , δ) of (6.38), and hence dominatesx in risk.

(b) DeriveD(x) forXi ∼Poisson(λi), independent, and lossL−1(λ , δ) of (6.38). Show
thatx + g(x), for g(x) given by (6.43), satisfiesD(x) ≤ 0 and hence is a minimax
estimator ofλ .

6.19 For the situation of Example 6.12:

(a) Show that the estimatorδ0(x) + g(x), for g(x) of (6.45) dominatesδ0 in risk under
the lossL−1(θ , δ) of (6.38) by establishing thatD(x) ≤ 0.

(b) For the lossL0(θ , δ) of (6.38), show that the estimatorδ0(x) + g(x), where

gi(x) =
c(x)ki(xi)∑r

j=1[k
2
j (xj ) +

(
1+tj

2

)
kj (xj )]

,

with ki(x) = �x\=1(ti − 1 + \)/\ andc(·) nondecreasing with 0≤ c(·) ≤ 2[(#xis >
1)− 2] hasD(x) ≤ 0 and hence dominatesδ0(x) in risk.

6.20 In Example 6.12, we saw improved estimators for the success probability of nega-
tive binomial distributions. Similar results hold for estimating the means of the negative
binomial distributions, with some added features of interest. LetX1, . . . , Xr be inde-
pendent negative binomial random variables with mass function (6.44), and suppose we
want to estimateµ = {µi}, whereµi = tiθi/(1− θi), the mean of theith distribution,
using the lossL(µ, δ) = �(µi − δi)2/µi .
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(a) Show that the MLE ofµ isX, and the risk of an estimatorδ(x) = x + g(x) can be
written

R(µ, δ) = R(µ,X) +Eµ[D1(X) + D2(X)]

where

D1(x) =
r∑
i=1

{
2[gi(x + ei)− gi(x)] +

g2
i (x + ei)

xi + 1

}
and

D2(x) =
r∑
i=1

{
2
xi

ti
[gi(x + ei)− gi(x)]

+
g2
i (x + ei)

ti

[
xi

xi+1
− 1

]}
so that a sufficient condition for domination of the MLE isD1(x) + D2(x) ≤ 0 for

all x. [Use Lemma 6.9 in the formEf (X)/θi = E
[
ti+Xi
Xi+1f (X + ei)

]
.]

(b) Show that ifXi are Poisson(θi) (instead of negative binomial), thenD2(x) = 0.
Thus, any estimator that dominates the MLE in the negative binomial case also
dominates the MLE in the Poisson case.

(c) Show that the Clevenson-Zidek estimator

δcz(x) =

(
1− c(r − 1)

�xi + r − 1

)
x

satisfiesD1(x) ≤ 0 andD2(x) ≤ 0 and, hence, dominates the MLE under both the
Poisson and negative binomial model.

This robustness property of Clevenson-Zidek estimators was discovered by Tsui (1984)
and holds for more general forms of the estimator. Tsui (1984, 1986) also explores other
estimators of Poisson and negative binomial means and their robustness properties.

Section 7

7.1 Establish the claim made in Example 7.2. LetX1 andX2 be independent random
variables,Xi ∼ N (θi,1), and letL((θ1, θ2), δ) = (θ1− δ)2. Show thatδ = sign(X2) is an
admissible estimate ofθ1, even though its distribution does not depend onθ1.

7.2 Efron and Morris (1973a) give the following derivation of the positive-part Stein es-
timator as atruncated Bayes estimator. ForX ∼ Nr (θ , σ 2I ), r ≥ 3, andθ ∼ N (0, τ 2I ),
whereσ 2 is known andτ 2 is unknown, definet = σ 2/(σ 2 + τ 2) and put a prior
h(t),0< t < 1 ont .

(a) Show that the Bayes estimator against squared error loss is given byE(θ |x) =
[1− E(t |x)]x where

π (t |x) =
t r/2e−t |x|

2/2h(t)∫ 1
0 t

r/2e−t |x|2/2h(t) dt
.

(b) For estimators of the formδτ (x) =
(
1− τ (|x|2) r−2

|x|2
)

x, the estimator that satisfies

(i) τ (·) is nondecreasing,
(ii) τ (·) ≤ c,

(iii) δτ minimizes the Bayes risk againsth(t)
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hasτ (|x|2) = τ ∗(|x|2) = min{c, |x|2
r−2E(t |x)}. (This is a truncated Bayes estimator,

and is minimax ifc ≤ 2.)
(c) Show that ifh(t) puts all of its mass ont = 1, then

τ ∗(|x|2) = min

{
c,
|x|2
r − 2

}
and the resulting truncated Bayes estimator is the positive-part estimator.

7.3 Fill in the details of the proof of Lemma 7.5.
7.4 For the situation of Example 7.8, show that ifδ0 is any estimator ofθ , then the class
of all estimators withδ(x) < δ0(x) for somex is complete.

7.5 A decision problem ismonotone (as defined by Karlin and Rubin 1956; see also
Brown, Cohen and Strawderman 1976 and Berger 1985, Section 8.4) if the loss function
L(θ, δ) is, for eachθ , minimized atδ = θ and is an increasing function of|δ − θ |. An
estimatorδ is monotone if it is a nondecreasing function ofx.

(a) Show that ifL(θ, δ) is convex, then the monotone estimators form a complete class.
(b) If δ(x) is not monotone, show that the monotone estimatorδ′ defined implicitly by

Pt (δ
′(X) ≤ t) = Pt (δ(X) ≤ t) for everyt

satisfiesR(θ, δ′) ≤ R(θ, δ) for all θ .
(c) If X ∼ N (θ,1) andL(θ, δ) = (θ − δ)2, construct a monotone estimator that

dominates

δa(x) =


−2a − x if x < −a
x if |x| ≤ a
2a − x if x > a.

7.6 Show that, in the following estimation problems, all risk functions are continuous.

(a) Estimateθ with L(θ, δ(x)) = [θ − δ(x)]2,X ∼ N (θ,1).
(b) Estimateθ with L(θ, δ(x)) = |θ − δ(x)|2,X ∼ Nr (θ, I ).
(c) Estimateλ with L(λ , δ(x)) =

∑r

i=1 λ
−m
i (λi − δi(x))2, Xi ∼ Poisson(λi), indepen-

dent.
(d) Estimateβ with L(β, δ(x)) =

∑r

i=1 β
−m
i (βi − δi(x))2, Xi ∼ Gamma(αi, βi), inde-

pendent,αi known.

7.7 Prove the following theorem, which gives sufficient conditions for estimators to have
continuous risk functions.

Theorem 8.5 (Ferguson 1967, Theorem 3.7.1) Consider the estimation of θ with loss
L(θ, δ), where X ∼ f (x|θ ). Assume

(i) the loss function L(θ, δ) is bounded and continuous in θ uniformly in δ (so that
limθ→θ0 supδ |L(θ, δ)− L(θ0, δ)| = 0);

(ii) for any bounded function ϕ,
∫
ϕ(x)f (x|θ )dµ(x) is continuous in θ .

Then, the risk function R(θ, δ) = EθL(θ, δ) is continuous in θ .

[Hint: Show that

|R(θ ′, δ)− R(θ, δ)| ≤
∫
|L(θ ′, δ(x))− L(θ, δ(x))|f (x|θ ′) dx

+
∫
L(θ, δ(x))|f (x|θ ′)− f (x|θ )| dx,

and use (i) and (ii) to make the first integral< ε/2, and (i) and (iii) to make the second
integral< ε/2.]
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7.8 Referring to Theorem 8.5, show that condition (iii) is satisfied by

(a) the exponential family,

(b) continuous densities in whichθ is a one-dimensional location or scale parameter.

7.9 A family of functionsF is equicontinuous at the point x0 if, givenε > 0, there exists
δ such that|f (x)− f (x0)| < ε for all |x − x0| < δ and allf ∈ F . (The sameδ works
for all f .) The family isequicontinuous if it is equicontinuous at eachx0.

Theorem 8.6 (Communicated by L. Gajek) Consider estimation of θ with loss L(θ, δ),
where X ∼ f (x|θ ) is continuous in θ for each x. If

(i) The family L(θ, δ(x)) is equicontinuous in θ for each δ.

(ii) For all θ, θ ′ ∈ ,

supx
f (x|θ ′)
f (x|θ ) <∞.

Then, any finite-valued risk function R(θ, δ) = EθL(θ, δ) is continuous in θ and, hence,
the estimators with finite, continuous risks form a complete class.

(a) Prove Theorem 8.6.

(b) Give an example of an equicontinuous family of loss functions. [Hint: Consider
squared error loss with a bounded sample space.]

7.10 Referring to Theorem 7.11, this problem shows that the assumption of continuity
of f (x|θ ) in θ cannot be relaxed. Consider the densityf (x|θ ) that isN (θ,1) if θ ≤ 0
andN (θ + 1,1) if θ > 0.

(a) Show that this density has monotone likelihood ratio, but is not continuous inθ .

(b) Show that there exists a bounded continuous loss functionL(θ − δ) for which the
riskR(θ,X) is discontinuous.

7.11 ForX ∼ f (x|θ ) and loss functionL(θ, δ) =
∑r

i=1 θ
m
i (θi − δi)2, show that condition

(iii) of Theorem 7.11 holds.

7.12 Prove the following (equivalent) version of Blyth’s Method (Theorem 7.13).

Theorem 8.7 Suppose that the parameter space  ∈ �r is open, and estimators with
continuous risks are a complete class. Let δ be an estimator with a continuous risk
function, and let {πn} be a sequence of (possibly improper) prior measures such that

(i) r(πn, δ) <∞ for all n,

(ii) for any nonempty open set �0 ∈ ,

r(πn, δ)− r(πn, δπn )∫
�0
πn(θ ) dθ

→ 0 as n→∞.

Then, δ is an admissible estimator.

7.13 Fill in some of the gaps in Example 7.14:

(i) Verify the expressions for the posterior expected losses ofδ0 andδπ in (7.7).

(ii) Show that the normalized beta priors will not satisfy condition (b) of Theorem 7.13,
and then verify (7.9).

(iii) Show that the marginal distribution ofX is given by (7.10).
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(iv) Show that
∞∑
x=1

D(x) ≤ max{a2, b2}
∞∑
x=1

1

x2
→ 0,

and hence thatδ0 is admissible.

7.14 Let X ∼ Poisson(λ). Use Blyth’s method to show thatδ0 = X is an admissible
estimator ofλ under the loss functionL(λ, δ) = (λ− δ)2 with the following steps:

(a) Show that the unnormalized gamma priorsπn(λ) = λa−1e−λ/n satisfy condition (b)
of Theorem 7.13 by verifying that for anyc,

lim
n→∞

∫ c

0
πn(λ) dλ = constant.

Also show that the normalized gamma priors will not work.

(b) Show that under the priorsπn(λ), the Bayes risks ofδ0 andδπ
′
n , the Bayes estimator,

are given by

r(π ′n, δ
0) = naH(a),

r(π ′n, δ
π ′n ) =

n

n + 1
naH(a).

(c) The difference in risks is

r(π ′n, δ
0)− r(π ′n, δπ

′
n ) = H(a)na

(
1− n

n + 1

)
,

which, for fixeda > 0, goes to infinity asn→∞ (Too bad!). However, show that
if we choosea = a(n) = 1/

√
n, thenH(a)na

(
1− n

n+1

)→ 0 asn→∞. Thus, the
difference in risks goes to zero.

(d) Unfortunately, we must go back and verify condition (b) of Theorem 7.13 for the
sequence of priors witha = 1/

√
n, as part (a) no longer applies. Do this, and

conclude thatδ0(x) = x is an admissible estimator ofλ.

[Hint: For largen, sincet ≤ c/n, use Taylor’s theorem to writee−t = 1− t + error,
where the error can be ignored.]

(Recall that we have previously considered the admissibility ofδ0 = X in Corollaries
2.18 and 2.20, where we saw thatδ0 is admissible.)

7.15 Use Blyth’s method to establish admissibility in the following situations.

(a) If X ∼ Gamma(α, β), α known, thenx/α is an admissible estimator ofβ using
the loss functionL(β, δ) = (β − δ)2/β2.

(b) If X ∼ Negative binomial(k, p), thenX is an admissible estimator ofµ = k(1−
p)/p using the loss functionL(µ, δ) = (µ− δ)2/(µ + 1

k
µ2).

7.16 (i) Show that, in general, ifδπ is the Bayes estimator under squared error loss,
then

r(π, δπ )− r(π, δg) = E |δπ (X)− δg(X)|2 ,
thus establishing (7.13).

(ii) Prove (7.15).

(iii) Use (7.15) to prove the admissibility ofX in one dimension.
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7.17 The identity (7.14) can be established in another way. For the situation of Example
7.18, show that

r(π, δg) = r − 2
∫

[∇ logmπ (x)][∇ logmg(x)]mπ (x) dx

+
∫
|∇ logmg(x)|2 mπ (x) dx,

which implies

r(π, δπ ) = r −
∫
|∇ logmπ (x)|2 mπ (x) dx,

and hence deduce (7.14).

7.18 This problem will outline the argument needed to prove Theorem 7.19:

(a) Show that∇mg(x) = m∇g(x), that is,

∇
∫
g(θ )e−|x−θ |

2
dθ =

∫
[∇g(θ )] e−|x−θ |

2
dθ .

(b) Using part (a), show that

r(π, δg)− r(gn, δgn ) =
∫ ∣∣∇ logmg(x)− ∇ logmgn (x)

∣∣2mgn (x) dx

=
∫ ∣∣∣∣∇mg(x)

mg(x)
− ∇mgn (x)

mgn (x)

∣∣∣∣2mgn (x) dx

≤ 2
∫ ∣∣∣∣∇mg(x)

mg(x)
− mh2

n∇g(x)

mgn (x)

∣∣∣∣2mgn (x) dx

+2
∫ ∣∣∣∣mg∇h2

n
(x)

mgn (x)

∣∣∣∣2mgn (x) dx

= Bn +An.

(c) Show that

An = 4
∫ ∣∣∣∣∣mghn∇hn (x)

mgh2
n
(x)

∣∣∣∣∣
2

mgn (x) dx ≤ 4
∫
mg(∇hn)2(x) dx

and this last bound→ 0 by condition (a).

(d) Show that the integrand ofBn → 0 asn→∞, and use condition (b) together with
the dominated convergence theorem to showBn → 0, proving the theorem.

7.19 Brown and Hwang (1982) actually prove Theorem 7.19 for the casef (x|θ ) =

eθ
′
x−ψ(θ ), where we are interested in estimatingτ (θ ) = Eθ (X) = ∇ψ(θ ) under the loss

L(θ , δ) = |τ (θ ) − δ|2. Prove Theorem 7.19 for this case. [The proof is similar to that
outlined in Problem 7.18.]

7.20 For the situation of Example 7.20:

(a) Using integration by parts, show that

∂

∂xi

∫
g(θ )e−|x−θ |

2
dθ = −

∫
(xi − θi)g(θ )e−|x−θ |

2
dθ

=
∫ [

∂

∂θi
g(θ )

]
e−|x−θ |

2
dθ
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and hence
∇mg(x)

mg(x)
=

∫
[∇g(θ )] e−|x−θ |

2
dθ∫

g(θ )e−|x−θ |2 dθ
.

(b) Use the Laplace approximation (4.6.33) to show that∫
[∇g(θ )] e−|x−θ |

2
dθ∫

g(θ )e−|x−θ |2 dθ
≈ ∇g(x)

g(x)
,

and that

δg(x) ≈ x +
∇g(x)

g(x)
.

(c) If g(θ ) = 1/|θ |k, show that

δg(x) ≈
(

1− k

x2

)
x.

7.21 In Example 7.20, ifg(θ ) = 1/|θ |k is a proper prior, thenδg is admissible. For what
values ofk is this the case?

7.22 Verify that the conditions of Theorem 7.19 are satisfied forg(θ ) = 1/|θ |k if (a)
k > r − 2 and (b)k = r − 2.

7.23 Establish conditions for the admissibility of Strawderman’s estimator (Example 5.6)

(a) using Theorem 7.19,

(b) using the results of Brown (1971), given in Example 7.21.

(c) Give conditions under which Strawderman’s estimator is an admissible minimax
estimator.

(See Berger 1975, 1976b for generalizations).

7.24 (a) Verify the Laplace approximation of (7.23).

(b) Show that, forh(|x|) = k/|x|2α, (7.25) can be written as (7.26) and thatα = 1 is
needed for an estimator to be both admissible and minimax.

7.25 Theorem 7.17 also applies to the Poisson(λ ) case, where Johnstone (1984) obtained
the following characterization of admissible estimators for the lossL(λ , δ) =

∑r

i=1(λi−
δi)2/λi .

A generalized Bayes estimator of the formδ(x) = [1− h(�xi)]x is

(i) inadmissible if there existsε > 0 andM <∞ such that

h(�xi) <
r − 1− ε
�xi

for �xi > M,

(ii) admissible if h(�xi)(�xi)1/2 is bounded and there exitsM <∞ such that

h(�xi) ≥ r − 1

�xi
for �xi > M.

(a) Use Johnstone’s characterization of admissible Poisson estimators (Example 7.22)
to find an admissible Clevenson-Zidek estimator (6.31).

(b) Determine conditions under which the estimator is both admissible and minimax.

7.26 For the situation of Example 7.23:

(a) Show thatX/n and(n/n + 1) (X/n) (1−X/n) are admissible for estimatingp and
p(1− p), respectively.
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(b) Show thatα(X/n) + (1− α)(a/(a + b)) is an admissible estimator ofp, where
α = n/(n + a + b). Compare the results here to that of Theorem 2.14 (Karlin’s
theorem). [Note that the results of Diaconis and Ylvisaker (1979) imply thatπ (·) =
uniform are the only priors that give linear Bayes estimators.]

7.27 Fill in the gaps in the proof that estimatorsδπ of the form (7.27) are a complete
class.

(a) Show thatδπ is admissible whenr = −1, s = n + 1, andr + 1 = s.

(b) For any other estimatorδ′(x) for whichδ′(x) = h(0) for x ≤ r ′ andδ′(x) = h(1) for
x ≥ s ′, show that we must haver ′ ≥ r ands ′ ≤ s.

(c) Show thatR(p, δ′) ≤ R(p, δπ ) for all p ∈ [0,1] if and only if Rr,s(p, δ′) ≤
Rr,s(p, δπ ) for all p ∈ [0,1].

(d) Show that
∫ 1

0 Rr,s(p, δ)k(p)dπ (p) is uniquely minimized by [δπ (r + 1), . . ., δπ (s−
1)], and hence deduce the admissibility ofδπ .

(e) Use Theorem 7.17 to show that any admissible estimator ofh(p) is of the form
(7.27), and hence that (7.27) is a minimal complete class.

7.28 For i = 1,2, . . . , k, let Xi ∼ fi(x|θi) and suppose thatδ∗i (xi) is a unique Bayes
estimator ofθi under the lossLi(θi, δ), whereLi satisfiesLi(a, a) = 0 andLi(a, a′) >
0, a �= a′. Suppose that for somej , 1≤ j ≤ k, there is a valueθ∗ such that ifθj = θ∗,

(i) Xj = x∗ with probability 1,

(ii) δ∗j (x
∗) = θ∗.

Show that (δ∗1(x1), δ∗2(x2), . . . , δ∗k (xk)) is admissible for (θ1, θ2, · · · , θk) under the loss∑
i Li(θi, δ); that is, there is no Stein effect.

7.29 Suppose we observeX1, X2, . . . sequentially, whereXi ∼ fi(x|θi). An estimator
of θ j = (θ1, θ2, . . . , θj ) is callednonanticipative (Gutmann 1982b) if it only depends
on (X1, X2, . . . , Xj ). That is, we cannot use information that comes later, with indices
> j . If δ∗i (xi) is an admissible estimator ofθi , show that it cannot be dominated by a
nonanticipative estimator. Thus, this is again a situation in which there is no Stein effect.

[Hint: It is sufficient to considerj = 2. An argument similar to that of Example 7.24
will work.]

7.30 For X ∼ Nr (θ , I ), consider estimation ofϕ′θ whereϕr×1 is known, using the
estimatora′X with loss functionL(ϕ′θ , δ) = (ϕ′θ − δ)2.

(a) Show that ifa lies outside the sphere (7.31), thena′X is inadmissible.

(b) Show that the Bayes estimator ofϕ′θ against the priorθ ∼ N (0, V ) is given by

E(ϕ′θ |x) = (I + V )−1ϕx.

(c) Find a covariance matrixV such thatE(ϕ′θ |x) lies inside the sphere (7.31) [V will
be of rank one, hence of the formvv′ for somer × 1 vectorv].

Parts (a)–(c) show that all linear estimators inside the sphere (7.31) are admissible, and
those outside are inadmissible. It remains to consider the boundary, which is slightly
more involved. See Cohen 1966 for details.

7.31 Brown’s ancillarity paradox. LetX ∼ Nr (µ, I ), r > 2, and consider the estimation
of w′µ = �ri=1wiµi , wherew is a known vector with�w2

i > 0, using loss function
L(µ, d) = (w′µ− w′d)2.

(a) Show that the estimatorw′X is minimax and admissible.
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(b) Assume no thatw is the realized value of a random variableW, with distribution
independent ofX, whereV = E(W′W) is known. Show that the estimatorw′d∗,
where

d∗(x) =

(
I − cV−1

xV−1x

)
x,

with 0< c < 2(r − 2), dominatesw′X in risk.

[Hint: Establish and use the fact thatE[L(µ, d)] = E[(d − µ)′V(d − µ)]. This is a
special case of results established by Brown (1990a). It is referred to as aparadox
because the distribution of the ancillary, which should not affect the estimation ofµ,
has an enormous effect on the properties of the standard estimator. Brown showed how
these results affect the properties of coefficient estimates in multiple regression when
the assumption of random regressors is made. In that context, the ancillarity paradox
also relates to Shaffer’s (1991) work on best linear unbiased estimation (see Theorem
3.4.14 and Problems 3.4.16-3.4.18.]

7.32 Efron (1990), in a discussion of Brown’s (1990a) ancillarity paradox, proposed an
alternate version.
SupposeX ∼ Nr (µ, I ), r > 2, and with probability 1/r, independent ofX, the value
of the random variableJ = j is observed,j = 1,2, . . . , r. The problem is to estimate
θj using the loss functionL(θj , d) = (θj − d)2. Show that, conditional onJ = j , Xj is
a minimax and admissible estimator ofθj . However, unconditionally,Xj is dominated
by thej th coordinate of the James-Stein estimator. This version of the paradox may
be somewhat more transparent. It more clearly shows how the presence of the ancillary
random variable forces the problem to be considered as a multivariate problem, opening
the door for the Stein effect.

9 Notes

9.1 History
Deliberate efforts to develop statistical inference and decision making not based on “in-
verse probability” (i.e., without assuming prior distributions) were mounted by R.A.
Fisher (for example, 1922, 1930, and 1935; see also Lane 1980), by Neyman and Pear-
son (for example, 1933ab), and by Wald (1950). The latter’s general decision theory
introduced, as central notions, the minimax principle and least favorable distributions in
close parallel to the corresponding concepts of the theory of games. Many of the exam-
ples of Section 5.2 were first worked out by Hodges and Lehmann (1950). Admissibility
is another basic concept of Wald’s decision theory. The admissibility proofs in Example
2.8 are due to Blyth (1951) and Hodges and Lehmann (1951). A general necessary and
sufficient condition for admissibility was obtained by Stein (1955). Theorem 2.14 is due
to Karlin (1958), and the surprising inadmissibility results of Section 5.5 had their origin
in Stein’s seminal paper (1956b). The relationship between equivariance and the mini-
max property was foreshadowed in Wald (1939) and was developed for point estimation
by Peisakoff (1950), Girshick and Savage (1951), Blackwell and Girshick (1954), Kudo
(1955), and Kiefer (1957).
Characterizations of admissible estimators and complete classes have included tech-
niques such as Blyth’s method and the information inequality. The pathbreaking paper
of Brown (1971) was influential in shaping the understanding of admissibility problems,
and motivated further study of differential inequalities (Brown 1979, 1988) and asso-
ciated stochastic processes and Markov chains (Brown 1971, Johnstone 1984, Eaton
1992).
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9.2 Synthesis

The strengths of combining the Bayesian and frequentist approach are evident in Prob-
lem 1.4. The Bayes approach provides a clear methodology for constructing estimators
(of which REML is a version), while the frequentist approach provides the methodology
for evaluation. There are many other approaches to statistical problems, that is, many
other statistical philosophies. For example, there is the fiducial approach (Fisher 1959),
structural inference (Fraser 1968, 1979), pivotal inference (Barnard 1985), conditional
inference (Fisher 1956, Cox 1958, Buehler 1959, Robinson 1979a, 1979b), likelihood-
based conditional inference (Barndorff-Nielsen 1980, 1983, Barndorff-Nielsen and Cox,
1979, 1994), and many more. Moreover, within each philosophy, there are many subdi-
visions, for example, robust Bayesian, conditional frequentist, and so on. Examination
of conditional inference, with both synthesis and review in mind, can also be found in
Casella (1987, 1988, 1992b).

An important difference among these different philosophies is the role of conditional
and unconditional inference, that is, whether the criterion for evaluation of an estimator
is allowed to depend on the data.

Example 9.1 Conditional bias. If X1, . . . , Xn are distributed iid as
N (µ, σ 2), both unknown, the estimatorS2 = 1

n−1

∑n

i=1(Xi − X̄)2 is an unbiased es-
timator ofσ 2; that is, the unconditional expectation satisfiesEσ2[S2] = σ 2, for all values
of σ 2. In doing a conditional evaluation, we might ask if there is a set in the sample space
[a reference set or recognizable subset according to Fisher (1959)] on which the condi-
tional expectation is always biased. Robinson (1979b) showed that there exist constants
a andδ > 0 such that

Eσ2[S2 | |X̄|/S < a] > (1 + δ)σ 2 for all µ, σ 2,(9.1)

showing thatS2 is conditionally biased. See Problem 1.5 for details.

The importance of a result such as (9.1) is that the experimenter knows whether the
recognizable set{(x1, . . . , xn) : x̄/s < a} has occurred. If it has, then the claim that
S2 is unbiased may be suspect if the inference is to apply to experiments in which the
recognizable set occurs. ‖

The study of conditional properties is actually better suited to examination of confidence
procedures, which we are not covering here. (However, see TSH2, Chapter 10 for an
introduction to conditional inference in testing and, hence, in confidence procedures.)
The variance inequality (9.1) has many interesting consequences in interval estimation
for normal parameters, both for the mean (Brown 1968, Goutis and Casella 1992) and the
variance (Stein 1964, Maata and Casella 1987, Goutis and Casella 1997 and Shorrock
1990).

9.3 The Hunt-Stein Theorem

The relationship between equivariance and minimaxity finds an expression in the Hunt-
Stein theorem. Although these authors did not publish their result, it plays an important
role in mathematical statistics.

The work of Hunt and Stein took place in the 1940s, but it was not until the landmark
paper by Kiefer (1957) that a comprehensive treatment of the topic, and a very general
version of the theorem, was given. (See also Kiefer 1966 for an expanded discussion.)

The basis of the theorem is that in invariant statistical problems, if the group satisfies
certain assumptions, then the existence of a minimax estimator implies the existence
of an equivariant minimax estimator. Intuitively, we expect such a theorem to exist in
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invariant decision problems for which the group is transitive and a right-invariant Haar
measure exists. If the Haar measure were proper, then Theorem 4.1 and Theorem 3.1
(see also the end of Section 5.4) would apply. The question that the Hunt-Stein theorem
addresses is whether an improper right-invariant Haar measure can yield a minimax
estimator.
The theorem turns out to be not true for all groups, but only for groups possessing
certain properties. A survey of these properties, and some interrelationships, was made
by Stone and van Randow (1968). A later paper by Bondar and Milnes (1981) reviews
and establishes many of the group-theoretic equivalences conjectured by Stone and van
Randow. From this survey, two equivalent group-theoretic conditions, which we discuss
informally, emerge as the appropriate conditions on the group.

A. Amenability. A group isamenable if there exists a right-invariant mean. That is, if
we define the sequence of functionals

mn(f ) =
1

2n

∫ n

−n
f (x)dx,

wheref ∈ L∞, then there exists a functionalm(·) such that for anyf1, . . . , fk ∈ L∞
andε > 0 there is ann0 such that

|mn(fi)−m(fi)| < ε for i = 1, . . . , k and alln > n0.

B. Approximable by proper priors, or the existence of a sequence of proper probabil-
ity distributions that converge to the right-invariant Haar measure. [The concept
of approximable by proper priors can be traced to Stein (1965), and was further
developed by Stone (1970) and Heath and Sudderth (1989).]

With these conditions, we can state the theorem

Theorem 9.2 (Hunt-Stein) If the decision problem is invariant with respect to a group
G that satisfies condition A (equivalently condition B), then if a minimax estimator
exists, an equivariant minimax estimator exists. Conversely, if there exists an equivariant
estimator that is minimax among equivariant estimators, it is minimax overall.

The proof of this theorem has a history almost as rich as the theorem itself. The original
published proof of Kiefer (1957) was improved upon by use of a fixed-point theorem.
This elegant method is attributed to LeCam and Huber, and is used in the general devel-
opment of the Hunt-Stein theorem by LeCam (1986, Section 8.6) and Strasser (1985,
Section 48). An outline of such a proof is given by Kiefer (1966). Brown (1986b) pro-
vides an interesting commentary on Kiefer’s 1957 paper, and also sketches Huber’s
method of proof. Robert (1994a, Section 7.5) gives a particularly readable sketch of the
proof. If the group is finite, then the assumptions of the Hunt-Stein theorem are satisfied,
and a somewhat less complex proof will work. See Berger (1985, Section 6.7) for the
proof for finite groups. In TSH2, Section 9.5, a version of the Hunt-Stein theorem for
testing problems is stated and proved under condition B.
Theorem 9.2 reduces the problem to a property of groups, and to apply the theorem we
need to identify which groups satisfy the A/B conditions. Bondar and Milnes (1981)
provide a nice catalog of groups, and we note that the amenable groups include finite
groups, location/scale groups, thetriangular group T (n) of n × n nonsingular upper
triangular matrices, and many permutation groups. ”Large” groups, such as those arising
in nonparametric problems, are often not amenable. A famous group that is not amenable
is thegeneral linear groupGLn, n > 2, of nonsingularn× nmatrices (see Note 3.9.3).
See also Examples 3.7-3.9 for MRE estimators that are not minimax.
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9.4 Recentered Sets

The topic of set estimation has not been ignored because of its lack of importance,
but rather because the subject is so vast that it really needs a separate book-length
treatment. (TSH2 covers many aspects of standard set estimation theory.) Here, we will
only comment on some of the developments in set estimators that are centered at Stein
estimators, so-calledrecentered sets.

The remarkable paper of Stein (1962) gave heuristic arguments that showed why recen-
tered sets of the form

C+ =
{
θ : |θ − δ+(x)| ≤ c}

would dominate the usual confidence setC

C0 = {θ : |θ − x| ≤ c}
in the sense thatPθ (θ ∈ C+(X)) > Pθ (θ ∈ C0(X)) for all θ , whereX ∼ Nr (θ , I ), r ≥ 3,
andδ+ is the positive-part Stein estimator. Stein’s argument was heuristic, but Brown
(1966) and Joshi (1967) proved the inadmissibility ofC0 if r ≥ 3 (without giving an
explicit dominating procedure). Joshi (1969b) also showed thatC0 was admissible if
r ≤ 2.

Advances in this problem were made by Olshen (1977), Morris (1977, 1983a), Faith
(1976), and Berger (1980), each demonstrating (but not proving) dominance ofC0 by
Stein-like set estimators. Analytic dominance ofC0 by C+ was established by Hwang
and Casella (1982, 1984) and, in subsequent papers (Casella and Hwang 1983, 1987),
dominance in both coverage probability and volume was achieved (the latter was only
demonstrated numerically).

Many other results followed. Generalizations were given by Ki and Tsui (1985) and
Shinozaki (1989), and domination results for non-normal distributions by Hwang and
Chen (1986), Robert and Casella (1990), and Hwang and Ullah (1994).

All of these improved confidence sets have the property that their coverage probabil-
ity is uniformly greater than that ofC0, but the infimum of the coverage probability
(the confidence coefficient) is equal to that ofC0. As this is the value that is usually
reported, unless there is a great reduction in volume, the practical advantages of such
sets may be minimal. For example, recentered sets such asC+ will present the same
volume and confidence coefficient to an experimenter. Other sets, which attain some
volume reduction but maintain the same confidence coefficient asC0, still are somewhat
“wasteful” because they have coverage probabilities higher than that ofC0. However,
this deficiency now seems to be overcome. By adapting results of Brown et al. (1995),
Tseng and Brown (1997) have constructed an improved confidence set,C∗, with the
property thatPθ (θ ∈ C∗(X)) = Pθ (θ ∈ C0(X)) for everyθ , and vol(C∗) < vol(C0),
achieving a maximal amount of volume reduction while maintaining the same coverage
probability asC0.

9.5 Estimation of the Loss Function

In the proof of Theorem 5.1, the integration-by-parts technique yielded an unbiased
estimate of the risk, that is, a functionD(x) satisfyingEθD(X) = EθL(θ , δ) = R(θ , δ).
Of course, we could also considerD(x) as an estimate ofL(θ , δ), and ask ifD(x) is a
reasonable estimator using, perhaps, another loss function such as

L(L,D) = (L(θ , δ)−D(x))2.

If we think of L(θ , δ) as a measure of accuracy ofδ, then we are looking for good
estimators of this accuracy. Note, however, that this problem is slightly more complex
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than the ones we have considered, as the “parameter”L(θ , δ(x)) is a function of bothθ
andx.

Loss estimation was first addressed by Rukhin (1988a, 1988b, 1988c) and Johnstone
(1988). Rukhin considered “decision-precision” losses, that combined the estimation
of θ andL(θ , δ) into one loss. Johnstone looked at the multivariate normal problem,
and showed that 1 is an inadmissible estimator ofL(θ , x) = 1/r

∑r

i=1(θi − xi)2 (recall
thatEθ [L(θ ,X)] = 1) and showed that estimates of the formD(x) = 1− (c/r)/|x|2
dominate it, where 0≤ c ≤ 2(r − 4). Note that this impliesr ≥ 5. Further advances in
loss estimation are found in Lu and Berger (1989a, 1989b) and Fourdrinier and Wells
(1995).

The loss estimation problem is closely tied to the problem of set estimation, and actually
transforms the set estimation problem into one of point estimation. SupposeC(x) is a
set estimator (orconfidence set) for θ , and we measure the worth ofC(x) with the loss
function

L(θ , C) =

{
0 if θ ∈ C
1 if θ /∈ C.

We usually calculateR(θ , C) = EθL(θ , C(X)) = Pθ (θ ∈ C(X)), the probability of cov-
erage ofC. Moreover, 1− α = inf θ Pθ (θ ∈ C(X)) is usually reported as our confidence
in C. However, it is really of interest to estimateL(θ , C), the actual coverage. We can
thus ask how well 1−α estimates this quantity, and if there are estimatorsγ (x) (known
asestimators of accuracy) that are better. Using the loss function

L(θ , γ ) = (L(θ , C)− γ (x))2,

a number of interesting (and some surprising) results have been obtained. In the mul-
tivariate normal problem improved estimates have been found for the accuracy of the
usual confidence set (Lu and Berger 1989a, 1989b, Robert and Casella 1994) and for the
accuracy of Stein-type confidence sets (George and Casella, 1994). However, Hwang
and Brown (1991) have shown that under an additional constraint (that offrequency
validity), the estimator 1− α is an admissible estimator of the accuracy of the usual
confidence set.

Other situations have also been considered. Goutis and Casella (1992) have demonstrated
that the accuracy statement of Student’st interval can be uniformly increased, and will
still dominate 1− α under squared error loss. Hwang et al. (1992) have looked at
accuracy estimation in the context of testing, where complete classes are described and
the question of the admissibility of thep value is addressed. More recently, Lindsay and
Yi (1996) have shown that, up to second-order terms, the observed Fisher information is
the best estimator of the expected Fisher information, which is the variance (or loss) of
the MLE. One can think of this result as a decision-theoretic formalization of the work
of Efron and Hinkley (1978).

This variant of loss estimation as confidence estimation also has roots in the work
of Kiefer (1976, 1977) who considered an alternate approach to the assignment of
confidence (see also Brown 1978).

9.6 Shrinkage and Multicollinearity

In Sections 5 and 6, we have assumed that the covariance is known, and hence, without
loss of generality, that it is the identity. This has led to shrinkage estimators of the form
δi(x) = (1−h(x))xi , that is, estimators that shrink every coefficient by the same fraction.

If the original variances are unequal, sayX ∼ Nr (θ , �), then it may be more desirable
to shrink some coordinates more than others (Efron and Morris 1973a, 1973b, Morris
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1983a). Intuitively, it seems reasonable for the amount of shrinkage to be proportional
to the size of the componentwise variance, that is, the greater the variance the greater
the shrinkage. This would tend to leave alone the coefficients with small variance, and
to shrink the coefficients with higher variance relatively more, bringing the ensemble
information more to bear on these coefficients (and improving the variance of the coef-
ficient estimates). This strategy reflects the shrinkage pattern of a Bayes estimator with
prior θ ∼ N (0, τ 2I ).

However, general minimax estimators of Hudson (1974) and Berger (1976a, 1976b)
(see also Berger 1985, Section 5.4.3, and Chen 1988), on the contrary, shrink the lower
variance coordinates more than the higher variance coordinates. What happens is that
the variance/bias trade-off is profitable for coordinates with low variance, but not so for
coordinates with high variance, whereXi is minimax anyway.

This minimax shrinkage pattern is directly opposite to what is advocated to relieve the
problem of multicollinearity in multiple regression problems. For that problem, work
that started from ridge regression (Hoerl and Kennard 1971a, 1971b) advocated shrink-
age patterns that are similar to those arising from theN (0, τ 2I ) prior—and were in the
opposite direction of the minimax pattern. There is a large literature on ridge regression,
with much emphasis on applications and data analysis, and less on this dichotomy of
shrinkage patterns. A review of ridge regression is given by Draper and van Nostrand
(1979), and some theoretical properties are investigated by Brown and Zidek (1980),
Casella (1980), and Obenchain (1981); see also Oman 1985 for a discussion of appropri-
ate prior distributions. Casella (1985b) attempts to resolve the minimax/multicollinear
shrinkage dilemma.

9.7 Other Minimax Considerations

The following provides a guide to some additional minimax literature.

(i) Bounded mean

The multiparameter version of Example 2.9 suffers from the additional complica-
tion that many different shapes of the bounding set may be of interest. Shapes that
have been considered are convex sets (DasGupta, 1985), spheres and rectangles
(Berry, 1990), and hyperrectangles (Donoho, et al. 1990). Other versions of this
problem that have been investigated include different loss functions (Bischoff and
Fieger 1992, Eichenauer-Herrmann and Fieger 1992), gamma-minimax estimation
(Vidakovic and DasGupta 1994), other distributions (Eichenauer-Herrmann and
Ickstadt 1992), and other restrictions (Fan and Gijbels 1992, Spruill 1986, Feld-
man 1991). Some other advances in this problem have come from application of
bounds on the risk function, often derived using the information inequality (Gajek
1987, 1988, Brown and Gajek 1990, Brown and Low 1991, Gajek and Kaluzka
1995). Truncated mean problems also underlie many deeper problems in estima-
tion, as illustrated by Donoho (1994) and Johnstone (1994).

(ii) Selection of shrinkage target

In Stein estimation, much has been written on the problem of selecting a shrinkage
target. Berger (1982a, 1982b) shows how to specify elliptical regions in which maxi-
mal risk improvement is obtained, and also shows that desirable Bayesian properties
can be maintained. Oman (1982a, 1982b) and Casella and Hwang (1987) describe
shrinking toward linear subspaces, and Bock (1982) shows how to shrink toward
convex polyhedra. George (1986a, 1986b) constructs estimators that shrink toward
multiple targets, using properties of superharmonic functions establish minimaxity
of multiple shrinkage estimators.
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(iii) A Bayes/minimax compromise

Bayes estimation subject to a bound on the maximum risk was first considered by
Hodges and Lehmann (1952). Although such problems tend to be computationally
difficult, the resulting estimators often show good performance on both frequentist
and Bayesian measures (Berger 1982a, 1982b, 1985, Section 4.7.7, DasGupta and
Bose 1988, Chen 1988, DasGupta and Studden 1989) Some of these properties are
related to those of Stein-type shrinkage estimators (Bickel 1983, 1984, Kempthorne
1988a, 1988b) and some are discussed in Section 5.7.

(iv) Superharmonicity

The superharmonic condition, although often difficult to verify, has sometimes
proved helpful in not only establishing minimaxity, but also in understanding what
types of prior distributions may lead to minimax Bayes estimators. Berger and
Robert (1990) applied the condition to a family of hierarchical Bayes estimators
and Haff and Johnson (1986) generalized it to the estimation of means in exponential
families. More recently, Fourdrinier, Strawderman, and Wells (1998) have shown
that no superharmonic prior can be proper, and were able to use Corollary 5.11 to
establish minimaxity of a class of proper Bayes estimators, in particular, the Bayes
estimator using a Cauchy prior. The review article of Brandwein and Strawderman
(1990) contains other examples.

(v) Minimax robustness

Minimax robustness of Stein estimators, that is, the fact that minimaxity holds
over a wide range of densities, has been established for many different spherically
symmetric densities. Strawderman (1974) was the first author to exhibit minimax
Stein estimators for distributions other than the normal. [The work of Stein (1956b)
and Brown (1966) had established the inadmissibility of the best invariant estimator,
but explicit improvements had not been given.] Brandwein and Strawderman (1978,
1980) have established minimax results for wide classes of mixture distributions,
under both quadratic and concave loss. Elliptical distributions were considered by
Srivastava and Bilodeau (1989) and Cellier, Fourdrinier, and Robert (1989), where
domination was established for an entire class of distributions.

(vi) Stein estimation

Other topics of Stein estimation that have received attention include matrix esti-
mation (Efron and Morris 1976b, Haff 1979, Dey and Srinivasan 1985, Bilodeau
and Srivastava 1988, Carter et al. 1990, Konno 1991), regression problems (Zidek
1978, Copas 1983, Casella 1985b, Jennrich and Oman 1986, Gelfand and Dey
1988, Rukhin 1988c, Oman 1991), nonnormal distributions (Bravo and MacGib-
bon 1988, Chen and Hwang 1988, Srivastava and Bilodeau 1989, Cellier et al. 1989,
Ralescu et al. 1992), robust estimation (Liang and Waclawiw 1990, Konno 1991),
sequential estimation (Natarajan and Strawderman 1985, Sriram and Bose 1988,
Ghosh et al. 1987), and unknown variances (Berger and Bock 1976, Berger et al.
1977, Gleser 1979, 1986, DasGupta and Rubin 1988, Honda 1991, Tan and Gleser
1992).

9.8 Other Admissibility Considerations

The following provides a guide to some additional admissibility literature.



5.9 ] NOTES 427

(i) Establishing admissibility

Theorems 7.13 and 7.15 (and their generalizations; see, for example, Farrell 1968)
represent the major tools for establishing admissibility. The other admissibility re-
sult we have seen (Karlin’s theorem, Theorem 2.14) can actually be derived using
Blyth’s method. (See Zidek 1970, Portnoy 1971, and Brown and Hwang 1982 for
more general Karlin-type theorems, and Berger 1982b for a partial converse.) Com-
bining these theorems with a thorough investigation of the differential inequality
that results from an integration by parts can also lead to some interesting charac-
terizations of the behavior of admissible estimators (Portnory 1975, Berger 1976d,
1976e, 1980a, Brown 1979, 1988). A detailed survey of admissibility is given by
Rukhin (1995).

(ii) Dimension doubling

Note that for the Poisson case, in contrast to the normal case, the factorr−1 tends to
appear (instead ofr−2). This results in the Poisson sample mean being inadmissible
in two dimensions. This occurrence was first explained by Brown (1978, Section
2.3), who noted that the Poisson problem ink dimensions is ”qualitatively similar”
to the location problem in 2k dimensions (in terms of a differential inequality
derived to establish admissibility). In Johnstone and MacGibbon (1992), this idea
of “dimension doubling” also occurs and provides motivation for the transformed
version of the Poisson problem that they consider.

(iii) Finite populations

Although we did not cover the topic of admissibility in finite population sampling,
there are interesting connections between admissibility in multinomial, nonpara-
metric, and finite population problems.

Using results of Meeden and Ghosh (1983) and Cohen and Kuo (1983), Meeden,
Ghosh and Vardeman (1985) present a theorem that summarizes the admissibility
connection, relating admissibility in a multinomial problem to admissibility in a
nonparametric problem.

Stepwise Bayes arguments, which originated with Johnson (1971) [see also Alam
1979, Hsuan 1979, Brown 1981] are useful tools for establishing admissibility in
these situations.
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CHAPTER 6

Asymptotic Optimality

1 Performance Evaluations in Large Samples

The performance of the estimators developed in the preceding chapters—UMVU,
MRE, Bayes, and minimax—is often difficult to evaluate exactly. This difficulty
can frequently be overcome by computing power (particularly by simulation).
Although such an approach works well on a case-by-case basis, it lacks the ability
to provide an overall picture of performance which is needed, for example, to
assess robustness and efficiency. We shall consider an alternative approach here:
to obtain approximations to or limits of performance measures as the sample size
gets large. Some of the probabilistic tools required for this purpose were treated
in Section 1.8.

One basic result of that section concerned the consistency of estimators, that
is, their convergence in probability to the parameters that they are estimating. For
example, ifX1, X2, . . . are iid withE(Xi) = ξ and var(Xi) = σ 2 < ∞, it was
seen in Example 1.8.3 that the sample meanX̄ is a consistent estimator ofξ . More
detailed information about the large-sample behavior ofX̄ can be obtained from
the central limit theorem (Theorem 1.8.9), which states that

√
n(X̄ − ξ ) L→ N (0, σ 2).(1.1)

The limit theorem (1.1) suggests the approximation

P

(
X̄ ≤ ξ +

W√
n

)
≈ X

(
W√
n

)
(1.2)

whereX denotes the standard normal distribution function.
Instead of the probabilities (1.2), one may be interested in the expectation,

variance, and higher moments ofX̄ and then find

E(X̄) = ξ, E(X̄ − ξ )2 =
σ 2

n
;(1.3)

E(X̄ − ξ )3 =
1

n2
µ3, E(X̄ − ξ )4 =

1

n3
µ4 +

3(n− 1)

n3
σ 4

whereµk = E(X1 − ξ )k. We shall be concerned with the behavior corresponding
to (1.1) and (1.3) not only of̄X but also of functions of̄X.

As we shall see, performance evaluation of statisticsh(X̄n) based on, respec-
tively, (1.1) and (1.3)—the asymptotic distribution and limiting moment approach—
agree often but not always. It is convenient to have both approaches since they tend
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to be applicable in different circumstances. In the present section, we shall begin
with (1.3) and then take up (1.1).

(a) The limiting moment approach

Theorem 1.1 Let X1, . . . , Xn be iid with E(X1) = ξ , var(X1) = σ 2, and finite
fourth moment, and suppose h is a function of a real variable whose first four
derivatives h′(x), h′′(x), h′′′(x), and h(iv)(x) exist for all x ∈ I , where I is an
interval with P (X1 ∈ I ) = 1. Furthermore, suppose that |h(iv)(x)| ≤ M for all
x ∈ I , for someM <∞. Then,

E[h(X̄)] = h(ξ ) +
σ 2

2n
h′′(ξ ) +Rn,(1.4)

and if, in addition, the fourth derivative of h2 is also bounded,

var[h(X̄)] =
σ 2

n
[h′(ξ )]2 +Rn,(1.5)

where the remainderRn in both cases isO(1/n2), that is, there exist n0 andA <∞
such that Rn(ξ ) < A/n2 for n > n0 and all ξ .

Proof. The reason for the possibility of such a result is the strong set of assump-
tions concerningh, which permit an expansion ofh(X̄n) abouth(ξ ) with bounded
coefficients. Using the assumptions on the fourth derivativeh(iv)(x), we can write

h(x̄n) = h(ξ ) + h′(ξ )(x̄n − ξ ) +
1

2
h′′(ξ )(x̄n − ξ )2(1.6)

+
1

6
h′′′(ξ )(x̄n − ξ )3 +R(xn, ξ )

where

|R(x̄n, ξ )| ≤ M(x̄n − ξ )4

24
.(1.7)

Using (1.3) and taking expectations of both sides of (1.6), we find

E[h(X̄n)] = h(ξ ) +
1

2
h′′(ξ )

σ 2

n
+O

(
1

n2

)
.(1.8)

Here, the term inh′(ξ ) is missing sinceE(X̄n) = ξ , and the order of the remainder
term follows from (1.3) and (1.7).

To obtain an expansion of var[h(X̄n)], apply (1.8) toh2 in place ofh, using the
fact that

[h2(ξ )]′′ = 2{h(ξ )h′′(ξ ) + [h′(ξ )]2}.(1.9)

This yields

E[h2(X̄n)] = h2(ξ ) + [h(ξ )h′′(ξ ) + (h′(ξ ))2]
σ 2

n
+O

(
1

n2

)
,(1.10)

and it follows from (1.8) that

[Eh(X̄n)]
2 = h2(ξ ) + h(ξ )h′′(ξ )

σ 2

n
+O

(
1

n2

)
.(1.11)
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Taking the difference proves the validity of (1.5). ✷

Equation (1.4) suggests the following definition.

Definition 1.2 A sequence of estimatorsδn of h(ξ ) is unbiased in the limit if

E[δn] → h(ξ ) asn→∞,(1.12)

that is, if the bias ofδn, E[δn] − h(ξ ), tends to 0 asn→∞.

Whenever (1.4) holds, the estimatorh(X̄) of h(ξ ) is unbiased in the limit.

Example 1.3 Approximate variance of a binomial UMVU estimator. Consider
the UMVU estimatorT (n − T )/n(n − 1) of pq in Example 2.3.1. Note that
ξ = E(X) = p andσ 2 = pq and thatX̄ = T/n, and write the estimator as

δ(X̄) = X̄(1− X̄)
n

n− 1
.

To obtain an approximation of its variance, let us consider firsth(X̄) = X̄(1− X̄).
Then,h′(p) = 1−2p = q−p and var[h(X̄)] = (1/n)pq(q−p)2 +O(1/n2). Also,(

n

n− 1

)2

=
1

(1− 1/n)2
= 1 +

2

n
+O

(
1

n2

)
.

Thus,

var δ(X̄) =

(
n

n− 1

)2

varh(X̄)

=

[
pq(q − p)2

n
+O

(
1

n2

)][
1 +

2

n
+O

(
1

n2

)]
=
pq(q − p)2

n
+O

(
1

n2

)
.

The exact variance ofδ(X̄) given in Problem 2.3.1(b) shows that the error is
2p2q2/n(n−1) which is, indeed, of the order 1/n2. The maximum absolute error
occurs atp = 1/2 and is 1/8n(n − 1). It is a decreasing function ofn which, for
n = 10, equals 1/720. On the other hand, the relative error will tend to be large,
unlessp is close to 0 or 1 (Problem 1.2; see also Examples 1.8.13 and 1.8.15).‖

In this example, the bounded derivative condition of Theorem 1.1 is satisfied
for all polynomialsh becausēX is bounded. On the other hand, the condition fails
whenh is polynomial of degreek ≥ 4 and theX’s are, for example, normally
distributed. However, (1.5) continues to hold in these circumstances. To see this,
carry out an expansion like (1.6) to the (k−1)st power. Thekth derivative ofh is then
a constantM, and instead of (1.7), the remainder will satisfyR =M(X̄ − δ)k/k!.
This result then follows from the fact that all moments of theX’s of order≤ k exist
and from Problem 1.1. This argument proves the following variant of Theorem 1.1.

Theorem 1.4 In the situation of Theorem 1.1, formulas (1.4) and (1.5) remain
valid if for some k ≥ 3 the function h has k derivatives, the kth derivative is
bounded, and the first k moments of the X’s exist.
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To cover estimators such as

δn(X̄) = X

(√
n

n− 1
(u− X̄)

)
(1.13)

ofp in Example 2.2.2, in which the functionh depends onn, a slight generalization
of Theorem 1.1 is required.

Theorem 1.5 Suppose that the assumptions of Theorem 1.1 hold, and that cn is a
sequence of constants satisfying

cn = 1 +
a

n
+O

(
1

n2

)
.(1.14)

Then, the variance of
δn(X̄) = h(cnX̄)(1.15)

satisfies

var[δn(X̄)] =
σ 2

n
[h′(ξ )]2 +O

(
1

n2

)
.(1.16)

The proof is left as an exercise (Problem 1.3).

Example 1.6 Approximate variance of a normal probability estimator. For
the estimatorδn(X̄) given by (1.13), we have

cn =

√
n

n− 1
=

(
1− 1

n

)−1/2

= 1 +
1

2n
+O

(
1

n2

)
and

δn = h(cnȲ ) = X(−cnȲ ) where Yi = Xi − u.
Thus,

h′(ξ ) = −φ(ξ ), h′′(ξ ) = ξφ(ξ )(1.17)

and hence from (1.16)

varδn(X̄) =
1

n
φ2(u− ξ ) +O

(
1

n2

)
.(1.18)

Sinceξ is unknown, it is of interest to note that to terms of order 1/n, the maximum
variance is 1/2πn.

If the factor
√
n/(n− 1) is neglected and the maximum likelihood estimator

δ(X̄) = X(u− X̄) is used instead ofδn, the variance is unchanged (up to the order
1/n); however, the estimator is now biased. It follows from (1.8) and (1.17) that

Eδ(X̄) = p +
ξ − u

2n
φ(u− ξ ) +O

(
1

n2

)
so that the bias is of the order 1/n. The MLE is therefore unbiased in the limit.‖

The approximations of the accuracy of an estimator indicated by the above
theorems may appear somewhat restrictive in that they apply only to functions
of sample means. However, this covers all sufficiently smooth estimators based
on samples from one-parameter exponential families. For on the basis of such a
sample,T̄ = �T (Xi)/n [in the notation of (8.1)] is a sufficient statistic, so that
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attention can be restricted to estimators that are functions ofT̄ (and possiblyn).
Extensions of the approximations of Theorems 1.1 - 1.5 to functions of higher
sample moments are given by Cramér (1946a, Sections 27.6 and 28.4) and Ser-
fling (1980, Section 2.2). On the other hand, this type of approximation is not
applicable to optimal estimators for distributions whose support depends on the
unknown parameter, such as the uniform or exponential distributions. Here, the
minimal sufficient statistics and the estimators based on them are governed by
different asymptotic laws with different convergence rates. (Problems 1.15–1.18
and Examples 7.11 - 7.14).

The conditions on the functionh(·) of Theorem 1.1 are fairly stringent and do
not apply, for example, toh(x) = 1/x or

√
x (unless theXi are bounded away

from zero) and the corresponding fact also limits the applicability of multivariate
versions of these theorems (see Problem 1.27). When the assumptions of the the-
orems are not satisfied, the conclusions may or may not hold, depending on the
situation.

Example 1.7 Limiting variance in the exponential distribution. Suppose that
X1, . . . , Xn are iid from the exponential distribution with density (1/θ )e−x/θ , x >
0,θ > 0, so thatEXi = θ and varXi = θ2. The assumptions of Theorem 1.1 do not
hold for h(x) =

√
x, so we cannot use (1.5) to approximate var(

√
X̄). However,

an exact calculation shows that (Problem 1.14)

var
(√
X̄

)
=

[
1− 1

n

(
H(n + 1/2)

H(n)

)2
]
θ

and that limn→∞ n var(
√
X̄) = θ/4 = θ2[h′(θ )]2.

Thus, although the assumptions of Theorem 1.1 do not apply, the limit of the
approximation (1.5) is correct. For an example in which the conclusions of the
theorem do not hold, see Problem 1.13(a). ‖

Let us next take up the second approach mentioned at the beginning of the
section.

(b) The asymptotic distribution approach

Instead of the behavior of the momentsE[h(X̄)] and var[h(X̄)], we now consider
the probabilistic behavior ofh(X̄).

Theorem 1.8 IfX1, . . . , Xn are iid with expectation ξ , andh is any function which
is continuous at ξ , then

h(X̄)
P→ h(ξ ) as n→∞.(1.19)

Proof. It was seen in Section 1.8 (Example 8.3) thatX̄
P→ ξ . The conclusion

(1.19) is then a consequence of the following general result. ✷

Theorem 1.9 If a sequence of random variables Tn tends to ξ in probability and

if h is continuous at ξ , then h(Tn)
P→ h(ξ ).
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Proof. To show thatP (|h(Tn)−h(ξ )| < a) → 1, it is enough to notice that by the
continuity ofh, the difference|h(Tn)−h(ξ )| will be arbitrarily small ifTn is close
to ξ , and that for anya, the probability that|Tn − ξ | < a tends to 1 asn → ∞.
We leave a detailed proof to Problem 1.30 ✷

Consistency can be viewed as a probabilistic analog of unbiasedness in the
limit but, as Theorem 1.8 shows, requires much weaker assumptions onh. Unlike
those needed for Theorem 1.1, they are satisfied, for example, whenξ �= 0 and
h(x) = 1/x or h(x) = 1/

√
x.

The assumptions of Theorem 1.1 provide sufficient conditions in order that

var[
√
n h(X̄)] → σ 2[h′(ξ )]2 as n→∞.(1.20)

On the other hand, it follows from Theorem 8.12 of Section 1.8 thatv2 = σ 2[h′(ξ )]
is also the variance of the limiting distributionN (0, v2) of

√
n[h(X̄)− h(ξ )]. This

asymptotic normality holds under the following weak assumptions onh.

Theorem 1.10 Let X1, . . . , Xn be iid with E(Xi) = ξ and var(Xi) = σ 2. Suppose
that

(a) the function h has a derivative h′ with h′(ξ ) �= 0,

(b) the constants cn satisfy cn = 1 +a/n +O(1/n2).

Then,

(i)
√
n[h(cnX̄) − h(ξ )] has the normal limit distribution with mean zero and

variance σ 2[h′(ξ )]2;

(ii) ifh′(ξ ) = 0buth′′(ξ ) exists and is not 0, thenn[h(cnx̄)−h(ξ )]
L→ 1

2σ
2h′′(ξ )χ2

1 .

Proof. Immediate consequence of Theorems 1.8.10 - 1.8.14. ✷

Example 1.11 Continuation of Example 1.6. ForYi = Xi − u, we haveEYi =
ξ − u and varYi = σ 2. The maximum likelihood estimator ofX(u − ξ ) is given
by δ′n = X(−Ȳn) and Theorem 1.10 shows

√
n[δ′n −X(u− ξ )] D→ N (0, φ2(u− ξ )).

The UMVU estimator isδn = X(−cnȲn) as in (1.13), and again by Theorem 1.10,√
n[δn −X(u− ξ )] D→ N (0, ϕ2(u− ξ )). ‖

Example 1.12 Asymptotic distribution of squared mean estimators. LetX1,
. . .,Xn be iidN (θ, σ 2), and let the estimand beθ2. Three estimators ofθ2 (Problems
2.2.1 and 2.2.2) are

δ1n = X̄2 − σ
2

n
(UMVU when σ is known),

δ2n = X̄2 − S2

n(n− 1)
(UMVU when σ is unknown)

whereS2 = �(Xi − X̄)2,

δ3n = X̄2 (MLE in either case).



6.1 ] PERFORMANCE EVALUATIONS IN LARGE SAMPLES 435

For each of these three sequences of estimatorsδ(X), let us find the limiting distri-
bution of [δ(X)− θ2] suitably normalized. Now,

√
n(δ3n − θ ) → N (0, σ 2) in law

by the central limit theorem. Usingh(u) = u2 in Theorem 1.8.10, it follows that

√
n(X̄2 − θ2)

L→ N (0,4σ 2θ2),(1.21)

providedh′(θ ) = 2θ �= 0.
Next, considerδ1n. Since

√
n

(
X̄2 − σ

2

n
− θ2

)
=
√
n(X̄2 − θ2)− σ 2

√
n
,

it follows from Theorem 1.8.9 that
√
n(δ1n − θ2)

L→ N (0,4σ 2θ2).(1.22)

Finally, consider

√
n

(
X̄2 − S2

n(n− 1)
− θ2

)
=
√
n(X̄2 − θ2)− 1√

n

(
S2

n− 1

)
.

Now,S2/(n−1) tends toσ 2 in probability, soS2/
√
n (n−1) tends to 0 in probability.

Thus,
√
n(δ2n − θ2)

L→ N (0,4σ 2θ2).

Hence, whenθ �= 0, all three estimators have the same limit distribution.
There remains the caseθ = 0. It is seen from the Taylor expansion [for example,

Equation (1.6)] that ifh′(θ ) = 0, then
√
n[h(Tn)− h(θ )] → 0 in probability.

Thus, in particular, in the present situation, whenθ = 0,
√
n[δ(X) − θ2] → 0 in

probability for all three estimators. Whenh′(θ ) = 0,
√
n is no longer the appropriate

normalizing factor: it tends to infinity too slowly.
Let us therefore apply the second part of Theorem 1.10 to the three estimators

δin (i = 1,2,3) whenθ = 0. Sinceh′′(0) = 2, it follows that forδ3n = X̄2,

n(X̄2 − θ2) = n(X̄2 − 02) → 1

2
σ 2 (2χ2

1 ) = σ 2χ2
1 .

Actually, since the distribution of
√
nX̄ is N (0, σ 2) for eachn, the statisticnX̄2

is distributed exactly asσ 2χ2
1 , so that no asymptotic argument would have been

necessary.
For δ1n, we find

n

(
X̄2 − σ

2

n
− θ2

)
= nX̄2 − σ 2,

and the right-hand side tends in law toσ 2(χ2
1 − 1). In fact, here too, this is the

exact rather than just a limit distribution. Finally, considerδ2n. Here,

n

(
X̄2 − S2

n(n− 1)
− θ2

)
= nX̄2 − S2

n− 1
,
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and sinceS2/(n − 1) tends in probability toσ 2, the limiting distribution is again
σ 2(χ2

1 − 1).
Although, for θ �= 0, the three sequences of estimators have the same limit

distribution, this is no longer true whenθ = 0. In this case, the limit distribution
of n(δ − θ2) is σ 2(χ2

1 − 1) for δ1n and δ2n but σ 2χ2
1 for the MLE δ3n. These

two distributions differ only in their location. The distribution ofσ 2(χ2
1 − 1) is

centered so that its expectation is zero, while that ofσ 2χ2
1 has expectationσ 2.

So, althoughδ1n andδ2n suffer from the disadvantage of taking on negative values
with probability> 0, asymptotically they are preferable to the MLEδ3n.

The estimatorsδ1n andδ2n of Example 1.12 can be thought of as bias-corrected
versions of the MLEδ3n. Typically, the MLEθ̂n has bias of order 1/n, say

bn(θ ) =
B(θ )

n
+O

(
1

n2

)
.

The order of the bias can be reduced by subtracting fromθ̂n an estimator of the
bias based on the MLE. This leads to the bias-corrected ML estimator

ˆ̂
θn = θ̂n − B(θ̂n)

n
(1.23)

whose bias will be of order 1/n2. (For an example, see Problem 1.25; see also
Example 7.15.) ‖

To compare these bias-correcting approaches, consider the following example.

Example 1.13 A family of estimators. The estimatorsδ1n andδ3n for θ2 of Ex-
ample 1.12 are special cases (withc = 1 or 0) of the family of estimators

δ(c)
n = X̄2 − cσ

2

n
.(1.24)

As in Example 1.12, it follows from Theorems 1.8.10 and 1.8.12 that forθ �= 0,
√
n[δ(c)

n − θ2]
L→ N (0,4σ 2θ2),(1.25)

so that the asymptotic variance is 4σ 2θ2.
If, instead, we apply Theorem 1.1 withh(θ ) = θ2, we see that

E
(
X̄2

)
= θ2 +

σ 2

2n
+O

(
1

n2

)
,(1.26)

var
(
X̄2

)
=

4σ 2θ2

n
+O

(
1

n2

)
.

Thus, to the first order, the two approaches give the same result.
Since the common value of the asymptotic and limiting variance does not involve

c, this first-order approach does not provide a useful comparison of the estimators
(1.25) corresponding to different values ofc. To obtain such a comparison, we
must take the next-order terms into account. This is easy for approach (a), where
we only need to take the Taylor expansions (1.10) and (1.11) a step further. In fact,
in the present case, it is easy to calculate var(δ(c)

n ) exactly (Problem 1.26).
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However, since the estimatorsδ(c)
n are biased whenc �= 1, they should be com-

pared not in terms of their variances but in terms of the expected squared error,
which is (Problem 1.26)

E

(
X̄2 − cσ

2

n
− θ2

)2

=
4σ 2θ2

n
+

(c2 − 2c + 3)σ 4

n2
.(1.27)

In terms of this measure, the estimator is better the smallerc2 − 2c + 3 is. This
quadratic has its minimum atc = 1, and the UMVU estimatorδ(1)

n therefore
minimizes the risk (1.27) among all estimators (1.25).

Equality of the asymptotic variance and the limit of the variance does not al-
ways hold (Problem 1.38). However, what can be stated quite generally is that
the appropriately normalized limit of the variance is greater than or equal to the
asymptotic variance. To see this, let us state the following lemma.

Lemma 1.14 Let Yn, n = 1,2, . . ., be a sequence of random variables such that

Yn
D→ Y , where E(Y ) = 0 and var(Y 2) = E(Y 2) = v2 < ∞. For a constant A,

define YnA = YnI (|Yn| ≤ A) +AI (|Yn| > A), the random variable Yn truncated at
A. Then,

(a) limA→∞ limn→∞ E(Y 2
nA

) = limA→∞ limn→∞ E[min(Y 2
n , A)] = v2,

(b) if EY 2
n → w2, then w2 ≤ v2.

Proof. (a) By Theorem 1.8.8,

lim
n→∞E(Y 2

nA) = E[Y 2I (|Y | ≤ A)] + A2P (|Y | > A),

and asA→∞, the right side tends tov2.
(b) It follows from Problem 1.39 that

lim
A→∞

lim
n→∞E(Y 2

nA
) ≤ lim

n→∞ lim
A→∞

E(Y 2
nA

),(1.28)

provided the indicated limit exists. Now, limA→∞ E(Y 2
nA

) = E(Y 2
n ), so that the

right side of (1.28) isw2, while the left side isv2 by part (a). ✷

Suppose now thatTn is a sequence of statistics for whichYn = kn[Tn − E(Tn)]
tends in law to a random variableY with zero expectation. Then, the asymptotic
variancev2 = var(Y ) and the limit of the variancesw2 = lim E(Y 2

n ), if it exists,
satisfyv2 ≤ w2 as was claimed. (Note thatw2 need not be finite.) Conditions for
v2 andw2 to coincide are given by Chernoff (1956). For the special case thatTn is a
function of a sample mean of iid variables, the two coincide under the assumptions
of Theorems 1.1 and 1.8.12. ‖

2 Asymptotic Efficiency

The large-sample approximations of the preceding section not only provide a con-
venient method for assessing the performance of an estimator and for comparing
different estimators, they also permit a new approach to optimality that is less
restrictive than the theories of unbiased and equivariant estimation developed in
Chapters 2 and 3.
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It was seen that estimators1 of interest typically are consistent as the sample
sizes tend to infinity and, suitably normalized, are asymptotically normally dis-
tributed about the estimand with a variancev(θ ) (the asymptotic variance), which
provides a reasonable measure of the accuracy of the estimator sequence. (In this
connection, see Problem 2.1.) Within this class of consistent asymptotically nor-
mal estimators, it turns out that under additional restrictions, there exist estimators
that uniformly minimizev(θ ). The remainder of this chapter is mainly concerned
with the development of fairly explicit methods of obtaining suchasymptotically
efficient estimators.

Before embarking on this program, it may be helpful to note an important dif-
ference between the present large-sample approach and the small-sample results
here and elsewhere. Both UMVU and MRE estimators tend to be unique (Theorem
1.7.10) and so are at least some of the minimax estimators derived in Chapter 5.
On the other hand, it is in the nature of asymptotically optimal solutions not to be
unique, since asymptotic results refer to the limiting behavior of sequences, and
the same limit is shared by many different sequences. More specifically, if

√
n[δn − g(θ )]

L→ N (0, v)

and{δn} is asymptotically optimal in the sense of minimizingv, thenδn + Rn is
also optimal, provided

√
nRn→ 0 in probability.

As we shall see later, asymptotically equivalent optimal estimators can be obtained
from quite different starting points.

The goal of minimizing the asymptotic variance is reasonable only if the estima-
tors under consideration have the same asymptotic expectation. In particular, we
shall be concerned with estimators whose asymptotic expectation is the quantity
being estimated.

Definition 2.1 If kn[δn − g(θ )]
L→ H for some sequencekn, the estimatorδn of

g(θ ) is asymptotically unbiased if the expectation ofH is zero.

Note that the definition of asymptotic unbiasedness is analogous to that of
asymptotic variance. Unlike Definition 1.2, it is concerned with properties of the
limiting distribution rather than limiting properties of the distribution of the es-
timator sequence. To see that Definition 2.1 is independent of the normalizing
constant, see Problem 2.2.

Under the conditions of Theorem 1.8.12, the estimatorh(Tn) is asymptotically
unbiased for the parameterh(θ ). The estimator of Theorem 1.1 is unbiased in the
limit.

Example 2.2 Large-sample behavior of squared mean estimators. In Example
1.12, all three estimators ofθ2 are asymptotically unbiased and unbiased in the
limit. We note that these results continue to hold if the assumption of normality is
replaced by that of finite variance. ‖

1 We shall frequently useestimator instead of the more accurate but cumbersome termestimator
sequence.
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In Example 1.12, the MLE was found to be asymptotically unbiased forθ �= 0 but
asymptotically biased when the range of the distribution depends on the parameter.

Example 2.3 Asymptotically biased estimator. If X1, . . . , Xn are iid asU (0, θ ),
the MLE of θ isX(n) and satisfies (Problem 2.6)

n(θ −X(n))
L→ E(0, θ ),

and, hence, is asymptotically biased, but it is unbiased in the limit.
A similar situation occurs in sampling from an exponentialE(a, b) distribution.

See Examples 7.11 and 7.12 for further details. ‖
The asymptotic analog of a UMVU estimator is an asymptotically unbiased

estimator with minimum asymptotic variance. In the theory of such estimators,
an important role is played by an asymptotic analog of the information inequality
(2.5.31). IfX1, . . . , Xn are iid according to a densityfθ (x) (with respect toµ)
satisfying suitable regularity conditions, this inequality states that the variance of
any unbiased estimatorδ of g(θ ) satisfies

varθ (δ) ≥ [g′(θ )]2

nI (θ )
,(2.1)

whereI (θ ) is the amount of information in a single observation defined by (2.5.10).
Suppose now thatδn = δn(X1, . . . , Xn) is asymptotically normal, say that

√
n[δn − g(θ )]

L→ N [0, v(θ )], v(θ ) > 0.(2.2)

Then, it turns out that under some additional restrictions, one also has

v(θ ) ≥ [g′(θ )]2

I (θ )
.(2.3)

However, although the lower bound (2.1) is attained only in exceptional circum-
stances (Section 2.5), there exist sequences{δn} that satisfy (2.2) withv(θ ) equal
to the lower bound (2.3) subject only to quite general regularity conditions.

Definition 2.4 A sequence{δn} = {δn(X1, . . . , Xn)}, satisfying (2.2) with

v(θ ) =
[g′(θ )]2

I (θ )
(2.4)

is said to beasymptotically efficient.

At first glance, (2.3) might be thought to be a consequence of (2.1). Two differ-
ences between the inequalities (2.1) and (2.3) should be noted, however.

(i) The estimatorδ in (2.1) is assumed to be unbiased, whereas (2.2) only implies
asymptotic unbiasedness and consistency of{δn}. It does not imply thatδn is
unbiased or even that its bias tends to zero (Problem 2.11).

(ii) The quantityv(θ ) in (2.3) is an asymptotic variance whereas (2.1) refers to
the actual variance ofδ. It follows from Lemma 1.14 that

v(θ ) ≤ lim inf[ n varθ δn](2.5)
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but equality need not hold. Thus, (2.3) is a consequence of (2.1), provided

var{√n[δn − g(θ )]} → v(θ )(2.6)

and if δn is unbiased, but not necessarily if these requirements do not hold.

For a long time, (2.3) was nevertheless believed to be valid subject only to
regularity conditions on the densitiesfθ . This belief was exploded by the example
(due to Hodges; see Le Cam 1953) given below. Before stating the example, note
that in discussing the inequality (2.3) under assumption (2.2), ifθ is real-valued
andg(θ ) is differentiable, it is enough to consider the caseg(θ ) = θ , for which
(2.3) reduces to

v(θ ) ≥ 1

I (θ )
.(2.7)

For if √
n(δn − θ ) L→ N [0, v(θ )](2.8)

and ifg has derivativeg′, it was seen in Theorem 1.8.12 that
√
n[g(δn)− g(θ )]

L→ N [0, v(θ )[g′(θ )]2].(2.9)

After the obvious change of notation, this implies (2.3).

Example 2.5 Superefficient estimator. LetX1, . . . , Xn be iid according to the
normal distributionN (θ,1) and let the estimand beθ . It was seen in Table 2.5.1
that in this case,I (θ ) = 1 so that (2.7) reduces tov(θ ) ≥ 1. On the other hand,
consider the sequence of estimators,

δn =

{
X̄ if |X̄| ≥ 1/n1/4

aX̄ if |X̄| < 1/n1/4.

Then (Problem 2.8), √
n(δn − θ ) L→ N [0, v(θ )],

wherev(θ ) = 1 whenθ �= 0 andv(θ ) = a2 whenθ = 0. If a < 1, inequality (2.3)
is therefore violated atθ = 0. ‖

This phenomenon is quite general (Problems 2.4 - 2.5). There will typically exist
estimators satisfying (2.8) but withv(θ ) violating (2.7) for at least some values of
θ , called points ofsuperefficiency. However, (2.7) is almost true, for it was shown
by Le Cam (1953) that for any sequenceδn satisfying (2.8), the setS of points of
superefficiency has Lebesgue measure zero. The following version of this result,
which we shall not prove, is due to Bahadur (1964). The assumptions are somewhat
stronger but similar to those of Theorem 2.5.15.

Remark on notation. Recall that we are usingXi andX, andxi andx for real-
valued random variables and the values they take on, respectively, andX andx for
the vectors (X1, . . . , Xn) and (x1, . . . , xn), respectively.

Theorem 2.6 Let X1, . . . , Xn be iid, each with density f (x|θ ) with respect to a
σ -finite measure µ, where θ is real-valued, and suppose the following regularity
conditions hold.

(a) The parameter space  is an open interval (not necessarily finite).
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(b) The distributions Pθ of the Xi have common support, so that the set A = {x :
f (x|θ ) > 0} is independent of θ .

(c) For every x ∈ A, the density f (x|θ ) is twice differentiable with respect to θ ,
and the second derivative is continuous in θ .

(d) The integral
∫
f (x|θ ) dµ(x) can be twice differentiated under the integral

sign.

(e) The Fisher information I (θ ) defined by (3.5.10) satisfies 0< I (θ ) <∞.

(f) For any given θ0 ∈ , there exists a positive number c and a function M(x)
(both of which may depend on θ0) such that

|∂2 logf (x|θ )/∂θ2| ≤ M(x)

for all x ∈ A, θ0 − c < θ < θ0 + c

and
Eθ0[M(X)] <∞.

Under these assumptions, if δn = δn(X1, . . . , Xn) is any estimator satisfying
(2.8), then v(θ ) satisfies (2.7) except on a set of Lebesgue measure zero.

Note that by Lemma 2.5.3, condition (d) ensures that for allθ ∈ 
(g) E[∂ logf (X|θ )/∂θ ] = 0

and

(h) E[−∂2 logf (X|θ )/∂θ2] = E[∂ logf (X|θ )/∂θ ]2 = I (θ ).

Condition (d) can be replaced by conditions (g) and (h) in the statement of the
theorem.

The example makes it clear that no regularity conditions on the densitiesf (x|θ )
can prevent estimators from violating (2.7). This possibility can be avoided only by
placing restrictions on the sequence of estimators also. In view of the information
inequality (2.5.31), an obvious sufficient condition is (2.6) [withg(θ ) = θ ] together
with

b′n(θ ) → 0(2.10)

wherebn(θ ) = Eθ (δn)− θ is the bias ofδn.
If I (θ ) is continuous, as will typically be the case, a more appealing assumption

is perhaps thatv(θ ) also be continuous. Then, (2.7) clearly cannot be violated at
any point since, otherwise, it would be violated in an interval around this point in
contradiction to Theorem 2.6. As an alternative, which under mild assumptions
on f implies continuity ofv(θ ), Rao (1963) and Wolfowitz (1965) require the
convergence in (2.2) to be uniform inθ . By working with coverage probabilities
rather than asymptotic variance, the latter author also removes the unpleasant
assumption that the limit distribution in (2.2) must be normal. An analogous result
is proved by Pfanzagl, (1970), who requires the estimators to be asymptotically
median unbiased.

The search for restrictions on the sequence{δn}, which would ensure (2.7) for all
values ofθ , is motivated in part by the hope of the existence, within the restricted
class, of uniformly best estimators for whichv(θ ) attains the lower bound. It is
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further justified by the fact, brought out by Le Cam (1953), Huber (1966), and Hájek
(1972), that violation of (2.7) at a pointθ0 entails certain unpleasant properties of
the risk of the estimator in the neighborhood ofθ0.

This behavior can be illustrated in the Hodges example.

Example 2.7 Continuation of Example 2.5. The normalized risk function

Rn(θ ) = nE(δn − θ )2(2.11)

of the Hodges estimatorδn can be written as

Rn(θ ) = 1− (1− a2)
∫ Īn

I n

(x +
√
n θ )2φ(x) dx

+2θ
√
n(1− a)

∫ Īn

I n

(x +
√
n θ )φ(x) dx

whereĪn = 4
√
n−√n θ andI n = − 4

√
n−√n θ . When the integrals are broken up

into their three and two terms, respectively, and the relations

X′(x) = φ(x) and φ′(x) = −xφ(x)

are used,Rn(θ ) reduces to

Rn(θ ) =

[
1− (1− a2)

∫ Īn

I n

x2φ(x) dx

]
+nθ2(1− a)2[X(Īn)−X(I n)]

+2
√
n θa(1− a)[φ(Īn)− φ(I n)].

Consider now the sequence of parameter valuesθn = 1/ 4
√
n, so that

√
n θn = n1/4, I n = −2n1/4, Īn = 0.

Then, √
n θnφ(I n) → 0,

so that the third term tends to infinity asn→∞. Since the second term is positive
and the first term is bounded, it follows that

Rn(θn) →∞ for θn = 1/ 4
√
n,

and hence, a fortiori, that
supθRn(θ ) →∞.

Let us now compare this result with the fact that (Problem 2.12) for any fixedθ

Rn(θ ) → 1 for θ �= 0, Rn(0)→ a2.

(This shows that in the present case, the limiting risk is equal to the asymptotic
variance (see Problem 2.4).) The functionsRn(θ ) are continuous functions ofθ
with discontinuous limit function

L(θ ) = 1 for θ �= 0, L(0) = a2.

However, each of the functions with large values ofn rises to a high above the
limit value 1, at values ofθ tending to the origin withn, and with the value of the
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Figure 2.1.Risk functionsRn(θ ) of the superefficient estimator δn of Example 2.5 for a = .5.

peak tending to infinity withn. This is illustrated in Figure 2.1, where values of
Rn(θ ) are given for various values ofn.

As Figure 2.1 shows, the improvement (overX̄) from 1 toa2 in the limiting risk
at the origin and hence for large finiten also near the origin, therefore, leads to an
enormous increase in risk at points slightly further away but nevertheless close to
the origin. (In this connection, see Problem 2.14.) ‖

3 Efficient Likelihood Estimation

Under smoothness assumptions similar to those of Theorem 2.6, we shall in the
present section prove the existence of asymptotically efficient estimators and pro-
vide a method for determining such estimators which, in many cases, leads to an
explicit solution.

We begin with the following assumptions:

(A0) The distributionsPθ of the observations are distinct (otherwise,θ cannot be
estimated consistently2).

(A1) The distributionsPθ have common support.

2 But see Redner (1981) for a different point of view
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(A2) The observations areX = (X1, . . . , Xn), where theXi are iid with probability
densityf (xi |θ ) with respect toµ.

(A3) The parameter space contains an open setω of which the true parameter
valueθ0 is an interior point.

Note: The true value ofθ will be denoted byθ0.
The joint density of the sample,f (x1|θ ) · · · f (xn|θ ) = Of (xi |θ ), considered as

a function ofθ , plays a central role in statistical estimation, with a history dating
back to the eighteenth century (see Note 10.1).

Definition 3.1 For a sample pointx = (x1, . . . , xn) from a densityf (x|θ ), the
likelihood function L(θ |x) = f (x|θ ) is the sample density considered as a function
of θ for fixed x .

In the case of iid observations, we haveL(θ |x) = Oni=1f (xi |θ ). It is then often
easier to work with the logarithm of the likelihood function, thelog likelihood
l(θ |x) =

∑n
i=1 logf (xi |θ ).

Theorem 3.2 Under assumptions (A0)–(A2),

Pθ0(L(θ0|X) > L(θ |X)) → 1 as n→∞(3.1)

for any fixed θ �= θ0.

Proof. The inequality is equivalent to

1

n
� log[f (Xi |θ )/f (Xi |θ0)] < 0.

By the law of large numbers, the left side tends in probability toward

Eθ0 log[f (X|θ )/f (X|θ0)].

Since− log is strictly convex, Jensen’s inequality shows that

Eθ0 log[f (X|θ )/f (X|θ0)] < logEθ0[f (X|θ )/f (X|θ0)] = 0,

and the result follows. ✷

By (3.1), the density ofX at the trueθ0 exceeds that at any other fixedθ with
high probability whenn is large. We do not knowθ0, but we can determine the
value θ̂ of θ which maximizes the density ofX, that is, which maximizes the
likelihood function at the observedX = x. If this value exists and is unique, it is
themaximum likelihood estimator (MLE) of θ .3 The MLE ofg(θ ) is defined to be
g(θ̂ ). If g is 1:1 andξ = g(θ ), this agrees with the definition ofξ̂ as the value ofξ
that maximizes the likelihood, and the definition is consistent also in the case that
g is not 1:1. (In this connection, see Zehna 1966 and Berk 1967b.)

Theorem 3.2 suggests that if the density ofX varies smoothly withθ , the MLE
of θ typically should be close to the true value ofθ , and hence be a reasonable
estimator.

3 For a more general definition, see Strasser (1985, Sections 64.4 and 84.2) or Scholz (1980, 1985).
A discussion of the MLE as a summarizer of the data rather than an estimator is given by Efron
(1982a).
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Example 3.3 Binomial MLE. Let X have the binomial distribution

b(p, n). Then, the MLE ofp is obtained by maximizing

(
n

x

)
pxqn−x and hence

is p̂ = X/n (Problem 3.1). ‖
Example 3.4 Normal MLE. If X1, . . . , Xn are iid asN (ξ, σ 2), it is convenient to
obtain the MLE by maximizing the logarithm of the density,−n logσ−1/2σ 2�(xi
− ξ )2− c. When (ξ, σ ) are both unknown, the maximizing values areξ̂ = x̄, σ̂ 2 =
�(x − x̄)2/n (Problem 3.3). ‖

As a first question regarding the MLE for iid variables, let us ask whether it is
consistent. We begin with the case in which is finite, so thatθ can take on only
a finite number of values. In this case, a sequenceδn is consistent if and only if

Pθ (δn = θ ) → 1 for all θ ∈ (3.2)

(Problem 3.6).

Corollary 3.5 Under assumptions (A0)–(A2) if is finite, the MLE θ̂n exists, it is
unique with probability tending to 1, and it is consistent.

Proof. The result is an immediate consequence of Theorem 3.2 and the fact that if
P (Ain) → 1 for i = 1, . . . , k, then alsoP [A1n ∩ · · · ∩Akn] → 1 asn→∞. ✷

The proof of Corollary 3.5 breaks down when is not restricted to be finite.
That the consistency conclusion itself can break down even if is only countably
infinite is shown by the following example due to Bahadur (1958) and Le Cam
(1979b, 1990).

Example 3.6 An inconsistent MLE. Let h be a continuous function defined on
(0,1], which is strictly decreasing, withh(x) ≥ 1 for all 0< x ≤ 1 and satisfying∫ 1

0
h(x) dx =∞.(3.3)

Given a constant 0< c < 1, letak, k = 0,1, . . ., be a sequence of constants defined
inductively as follows:a0 = 1; givena0, . . . , ak−1, the constantak is defined by∫ ak−1

ak

[h(x)− c] dx = 1− c.(3.4)

It is easy to see that there exists a unique value 0< ak < ak−1 satisfying (3.4)
(Problem 3.8). Since the sequence{ak} is decreasing, it tends to a limita ≥ 0. If
a were> 0, the left side of (3.4) would tend to zero which is impossible. Thus,
ak → 0 ask→∞.

Consider now the sequence of densities

fk(x) =

{
c if x ≤ ak or x > ak−1

h(x) if ak < x ≤ ak−1,

and the problem of estimating the parameterk on the basis of independent obser-
vationsX1, . . . , Xn from fk. We shall show that the MLE exists and that it tends
to infinity in probability regardless of the true valuek0 of k and is, therefore, not
consistent, providedh(x) →∞ sufficiently fast asx → 0.
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Let us denote the joint density of theX’s by

pk(x) = fk(x1) · · · fk(xn).
That the MLE exists follows from the fact thatpk(x) = cn < 1 for any value of
k for which the intervalIk = (ak, ak−1] contains none of the observations, so that
the maximizing value ofk must be one of the≤ n values for whichIk contains at
least one of thex’s.

Forn = 1, the MLE is the value ofk for whichX1 ∈ Ik, and forn = 2, the MLE
is the value ofk for whichX(1) ∈ Ik. Forn = 3, it may happen that one observation
lies in Ik and two inIl(k < l), and whether the MLE isk or l then depends on
whetherc · h(x(1)) is greater than or less thanh(x(2))h(x(3)).

We shall now prove that the MLÊKn (which is unique with probability tending
to 1) tends to infinity in probability, that is, that

P (K̂n > k) → 1 for every k,(3.5)

providedh satisfies
h(x) ≥ e1/x2

(3.6)

for all sufficiently small values ofx.
To prove (3.5), we will show that for any fixedj ,

P [pK∗n (X) > pj (X)] → 1 as n→∞(3.7)

whereK∗n is the value ofk for whichX(1) ∈ Ik. SincepK̂n (X) ≥ pK∗n (X), it then
follows that for any fixedk,

p[K̂n > k] ≥ P [pK̂n (X) > pj (X) for j = 1, . . . , k] → 1.

To prove (3.7), consider

Ljk = log
fk(x1) · · · fk(xn)
fj (x1) · · · fj (xn) = �(1)

i log
h(xi)

c
−�(2)

i log
h(xi)

c

where�(1) and�(2) extend over alli for whichxi ∈ Ik andxi ∈ Ij , respectively.
Now xi ∈ Ij implies thath(xi) < h(aj ), so that

�(2) log[h(xi)/c] < νjn log[h(aj )/c]

whereνjn is the number ofx’s in Ij . Similarly, fork = K∗n ,

�(1) log[h(xi)/c] ≥ log[h(x(1))/c]

since log[h(x)/c] ≥ 0 for all x. Thus,

1

n
Lj,K∗n ≥

1

n
log

h(x(1))

c
− 1

n
νjn log

h(aj )

c
.

Sincevjn/n tends in probability toP (X1 ∈ Ij ) < 1, it only remains to show that

1

n
logh(X(1)) →∞ in probability.(3.8)

Instead ofX1, . . . , Xn, consider a sampleY1, . . . , Yn from the uniform distri-
butionU (0,1/c). Then, for anyx, P (Yi > x) ≥ P (Xi > x) and hence

P [h(Y(1)) > x] ≤ P [h(X(1)) > x],
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and it is therefore enough to prove that (1/n) logh(Y(1)) → ∞ in probability. If
h satisfies (3.6), (1/n) logh(Y(1)) ≥ 1/nY 2

(1), and the right side tends to infinity in
probability sincenY(1) tends to a limit distribution (Problem 2.6). This completes
the proof. ‖

For later reference, note that the proof has established not only (2.5) but the fact
that for any fixedA (Problem 3.9),

P [pK∗n (X) > Anpj (X)] → 1.(3.9)

The example suggests (and this suggestion will be verified in the next section)
that also for densities depending smoothly on a continuously varying parameter
θ , the MLE need not be consistent. We shall now show, however, that a slightly
weaker conclusion is possible under relatively mild conditions. Throughout the
present section, we shall assumeθ to be real-valued. The case of several parameters
will be taken up in Section 6.5.

In the following, we shall frequently use the shorthand notationl(θ ) for thelog
likelihood

l(θ |x) = � logf (xi |θ ),(3.10)

andl′(θ ), l′′(θ ), . . . for its derivatives with respect toθ .
A way around the difficulty presented by this example was found by Cramér

(1946a, 1946b), who replaced the search for a global maximum of the likelihood
function with that for a local maximum.

Theorem 3.7 Let X1, . . . , Xn satisfy (A0)–(A3) and suppose that for almost all
x, f (x|θ ) is differentiable with respect to θ in ω, with derivative f ′(x|θ ). Then,
with probability tending to 1 as n→∞, the likelihood equation

∂

∂θ
l(θ |x) = 0(3.11)

or, equivalently, the equation

l′(θ |x) = �
f ′(xi |θ )
f (xi |θ ) = 0(3.12)

has a root θ̂n = θ̂n(x1, . . . , xn) such that θ̂n(X1, . . . , Xn) tends to the true value θ0

in probability.

Proof. Let a be small enough so that (θ0 − a, θ0 + a) ⊂ ω, and let

Sn = {x : l(θ0|x) > l(θ0 − a|x) and l(θ0|x) > l(θ0 + a|x)}.(3.13)

By Theorem 3.2,Pθ0(Sn) → 1. For anyx ∈ Sn, there thus exists a valueθ0− a <
θ̂n < θ0 + a at whichl(θ ) has a local maximum, so thatl′(θ̂n) = 0. Hence, for any
a > 0 sufficiently small, there exists a sequenceθ̂n = θ̂n(a) of roots such that

Pθ0(|θ̂n − θ0| < a) → 1.(3.14)

It remains to show that we can determine such a sequence, which does not depend
ona.

Let θ∗n be the root closest toθ0. [This exists because the limit of a sequence of
roots is again a root by the continuity ofl(θ ).] Then, clearly,Pθ0(|θ∗n−θ0| < a) → 1
and this completes the proof. ✷
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In connection with this theorem, the following comments should be noted.

1. The proof yields the additional fact that with probability tending to 1, the
rootsθ̂n(a) can be chosen to be local maxima and so, therefore, can theθ∗n if
we letθ∗n be the closest root corresponding to a maximum.

2. On the other hand, the theorem does not establish the existence of a consistent
estimator sequence since, with the true valueθ0 unknown, the data do not tell
us which root to choose so as to obtain a consistent sequence. An exception,
of course, is the case in which the root is unique.

3. It should also be emphasized that the existence of a rootθ̂n is not asserted for
all x (or for a givenn even for anyx). This does not affect consistency, which
only requiresθ̂n to be defined on a setS ′n, the probability of which tends to 1
asn→∞.

4. Although the likelihood equation can have many roots, the consistent se-
quence of roots generated by Theorem 3.7 is essentially unique. For a more
precise statement of this result, which is due to Huzurbazar (1948), see Prob-
lem 3.28.

5. Finally, there is a technical question concerning the measurability of the esti-
mator sequencêθn(a), and hence of the sequenceθ̂∗n . Recall from Section 1.2
thatθ̂n(a) is measurable function if the set{a : θ̂n(a) > t} is a measurable set
for everyt . Sinceθ̂n(a) is defined implicitly, its measurability (and also that
of θ̂∗n ) is not immediately obvious. Happily, it turns out that the sequences
θ̂n(a) andθ̂∗n are measurable. (For details, see Problem 3.29.)

Corollary 3.8 Under the assumptions of Theorem 3.7, if the likelihood equation
has a unique root δn for each n and all x, then {δn} is a consistent sequence of
estimators of θ . If, in addition, the parameter space is an open interval (θ, θ̄ ) (not
necessarily finite), then with probability tending to 1, δn maximizes the likelihood,
that is, δn is the MLE, which is therefore consistent.

Proof. The first statement is obvious. To prove the second, suppose the probability
of δn being the MLE does not tend to 1. Then, for sufficiently large values ofn, the
likelihood must tend to a supremum asθ tends towardθ or θ̄ with positive proba-
bility. Now with probability tending to 1, δn is a local maximum. This contradicts
the assumed uniqueness of the root. ✷

The conclusion of Corollary 3.8 holds, of course, not only when the root of the
likelihood equation is unique but also when the probability of multiple roots tends
to zero asn→∞. On the other hand, even when the root is unique, the corollary
says nothing about its properties for finiten.

Example 3.9 Minimum likelihood. LetX take on the values 0, 1, 2 with proba-
bilities 6θ2− 4θ + 1, θ − 2θ2, and 3θ − 4θ2 (0< θ < 1/2). Then, the likelihood
equation has a unique root for allx, which is a minimum forx = 0 and a maximum
for x = 1 and 2 (Problem 3.11). ‖

Theorem 3.7 establishes the existence of a consistent root of the likelihood
equation. The next theorem asserts that any such sequence is asymptotically normal
and efficient.
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Theorem 3.10 Suppose that X1, . . . , Xn are iid and satisfy the assumptions of
Theorem 2.6, with (c) and (d) replaced by the corresponding assumptions on
the third (rather than the second) derivative, that is, by the existence of a third
derivative satisfying∣∣∣∣ ∂3

∂θ3
logf (x|θ )

∣∣∣∣ ≤ M(x)(3.15)

for all x ∈ A, θ0 − c < θ < θ0 + c

with
Eθ0[M(X)] <∞.(3.16)

Then, any consistent sequence θ̂n = θ̂n(X1, . . . , Xn) of roots of the likelihood
equation satisfies

√
n(θ̂n − θ ) £→ N

(
0,

1

I (θ )

)
.(3.17)

We shall call such a sequenceθ̂n an efficient likelihood estimator (ELE) of θ . It
is typically (but need not be, see Example 4.1) provided by the MLE. Note also
that any sequencêθ∗n satisfying (3.19) isasymptotically efficient in the sense of
Definition 2.4.

Proof of Theorem 3.10. For any fixedx, expandl′(θ̂n) aboutθ0,

l′(θ̂n) = l′(θ0) + (θ̂n − θ0)l′′(θ0) +
1

2
(θ̂n − θ0)2l′′′(θ∗n )

whereθ∗n lies betweenθ0 andθ̂n. By assumption, the left side is zero, so that

√
n(θ̂n − θ0) =

(1/
√
n) l′(θ0)

−(1/n)l′′(θ0)− (1/2n)(θ̂n − θ0)l′′′(θ∗n )

where it should be remembered thatl(θ ), l′(θ ), and so on are functions ofX as
well asθ . We shall show that

1√
n
l′(θ0)

L→ N [0, I (θ0)],(3.18)

that

− 1

n
l′′(θ0)

P→ I (θ0)(3.19)

and that
1

n
l′′′(θ∗n ) is bounded in probability.(3.20)

The desired result then follows from Theorem 1.8.10.
Of the above statements, (3.18) follows from the fact that

1√
n
l′(θ0) =

√
n

1

n

∑[
f ′(Xi |θ0)

f (Xi |θ0)
− Eθ0

f ′(Xi |θ0)

f (Xi |θ0)

]
since the expectation term is zero, and then from the central limit theorem (CLT)
and the definition ofI (θ ).
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Next, (3.19) follows because

−1

n
l′′(θ0) =

1

n

∑ f ′2(Xi |θ0)− f (Xi |θ0)f ′′(Xi |θ0)

f 2(Xi |θ0)
,

and, by the law of large numbers, this tends in probability to

I (θ0)− Eθ0
f ′′(Xi |θ0)

f (Xi |θ0)
= I (θ0).

Finally, (3.20) is established by noting

1

n
l′′′(θ ) =

1

n

∑ ∂3

∂θ3
logf (Xi |θ )

so that by (3.15), ∣∣∣∣1

n
l′′′(θ∗n )

∣∣∣∣ < 1

n
[M(X1) + · · · +M(Xn)]

with probability tending to 1. The right side tends in probability to
Eθ0[M(X)], and this completes the proof. ✷

Although the conclusions of Theorem 3.10 are quite far-reaching, the proof is
remarkably easy. The reason is that Theorem 3.7 already putsθ̂n into the neighbor-
hood of the true valueθ0, so that an expansion aboutθ0 essentially linearizes the
problem and thereby prepares the way for application of the central limit theorem.

Corollary 3.11 Under the assumptions of Theorem 3.10, if the likelihood equation
has a unique root for all n and x, and more generally if the probability of multiple
roots tends to zero as n→∞, the MLE is asymptotically efficient.

To establish the assumptions of Theorem 3.10, one must verify the following
two conditions that may not be obvious.

(a) That
∫
f (x|θ ) dµ(x) can be differentiated twice with respect toθ by differ-

entiating under the integral sign.

(b) The third derivative is uniformly bounded by an integrable function [see
(3.15)].

Conditions when (a) holds are given in books on calculus (see also Casella
and Berger 1990, Section 2.4) although it is often easier simply to calculate the
difference quotient and pass to the limit.

Condition (b) is usually easy to check after realizing that it is not necessary for
(3.15) to hold for allθ , but that it is enough if there existθ1 < θ0 < θ2 such that
(3.15) holds for allθ1 ≤ θ ≤ θ2.

Example 3.12 One-parameter exponential family. Let X1, . . . , Xn be iid ac-
cording to a one-parameter exponential family with density

f (xi |η) = eηT (xi )−A(η)(3.21)

with respect to aσ -finite measureµ, and let the estimand beη. The likelihood
equation is

1

n
�T (xi) = A′(η),(3.22)
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which, by (1.5.14), is equivalent to

Eη[T (Xj )] =
1

n
�T (xi).(3.23)

The left side of (3.23) is a strictly increasing function ofη since, by (1.5.15),

d

dη
[EηT (Xj )] = varηT (Xj ) > 0.

It follows that Equation (3.23) has at most one solution. The conditions of Theorem
3.10 are easily checked in the present case. In particular, condition (a) follows
from Theorem 1.5.8 and (b) from the fact that the third derivative of logf (x|η)
is independent ofx and a continuous function ofη. With probability tending
to 1, (3.23) therefore has a solutionη̂. This solution is unique, consistent, and
asymptotically efficient, so that

√
n(η̂ − η) L→ N (0, varT )(3.24)

whereT = T (Xi) and the asymptotic variance follows from (2.5.18). ‖
Example 3.13 Truncated normal. As an illustration of the preceding example,
consider a sample ofn observations from a normal distributionN (ξ,1), truncated
at two fixed pointsa < b. The density of a singleX is then

1√
2π

exp

[
−1

2
(x − ξ )2

]
/ [X(b − ξ )−X(a − ξ )] , a < x < b,

which satisfies (3.21) withη = ξ, T (x) = x. An ELE will therefore be the unique
solution ofEξ (X) = x̄ if it exists. To see that this equation has a solution for any
valuea < x̄ < b, note that asξ → −∞ or +∞, X tends in probability toa or
b, respectively (Problem 3.12). SinceX is bounded, this implies that alsoEξ (X)
tends toa or b. SinceEξ (X) is continuous, the existence ofξ̂ follows. ‖

For densities that are members of location or scale families, it is fairly straight-
forward to determine the existence and behavior of the MLE. (See Problems 3.15
–3.19.)

We turn to one last example, which is not covered by Theorem 3.10.

Example 3.14 Double exponential. For the double exponential densityDE(θ,1)
given in Table 1.5.1, it is not true that for all (or almost all)x, f (x − θ ) is differ-
entiable with respect toθ , since for everyx there exists a value (θ = x) at which
the derivative does not exist. Despite this failure, the MLE (which is the median
of theX’s) satisfies the conclusion of Theorem 3.10 and is asymptotically normal
with variance 1/n (see Problem 3.25). This was established by Daniels (1961),
who proved a general theorem, not requiring differentiability of the density, that
was motivated by this problem. (See Note 10.2.) ‖

4 Likelihood Estimation: Multiple Roots

When the likelihood equation has multiple roots, the assumptions of Theorem 3.10
are no longer sufficient to guarantee consistency of the MLE, even when it exists
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for all n. This is shown by the following example due to Le Cam (1979b, 1990),
which is obtained by embedding the sequence{fk} of Example 3.6 in a sufficiently
smooth continuous-parameter family.

Example 4.1 Continuation of Example 3.6. For k ≤ θ < k + 1, k = 1,2, . . . ,
let

f (x|θ ) = [1− u(θ − k)]fk(x) + u(θ − k)fk+1(x),(4.1)

with fk defined as in Example 3.6 andu defined on (−∞,∞) such thatu(x) = 0
for x ≤ 0 andu(x) = 1 for x ≥ 1 is strictly increasing on (0,1) and infinitely
differentiable on (−∞,∞) (Problem 4.1). LetX1, . . . , Xn be iid, each with density
f (x|θ ), and letp(x|θ ) = Of (xi |θ ).

Since for any givenx, the densityp(x|θ ) is bounded and continuous inθ and is
equal tocn for all sufficiently largeθ and greater thancn for someθ , it takes on
its maximum for some finiteθ , and the MLEθ̂n therefore exists.

To see that̂θn→∞ in probability, note that fork ≤ θ < k + 1,

p(x|θ ) ≤ Omax[fk(xi), fk+1(xi)] = p̄k(x).(4.2)

If K̂n andK∗n are defined as in Example 3.6, the argument of that example shows
that it is enough to prove that for any fixedj ,

P [pK∗n (X) > p̄j (X)] → 1 as n→∞,(4.3)

wherepk(x) = p(x|k). Now

L̄jk =
pk(x)

p̄j (x)
= �(1) log

h(xi)

c
−�(2) log

h(xi)

c
−�(3) log

h(xi)

c

where�(1),�(2), and�(3) extend over alli for whichxi ∈ Ik,xi ∈ Ij , andxi ∈ Ij+1,
respectively. The argument is now completed as before to show thatθ̂n → ∞ in
probability regardless of the true value ofθ and is therefore not consistent.

The example is not yet completely satisfactory since∂f (x|θ )/∂θ = 0 and, hence,
I (θ ) = 0 for θ = 1,2, . . . [The remaining conditions of Theorem 3.10 are easily
checked (Problem 4.2).] To remove this difficulty, define

g(x|θ ) =
1

2
[f (x|θ ) + f (x|θ + αe−θ

2
)], θ ≥ 1,(4.4)

for some fixedα < 1.
If X1, . . . , Xn are iid according tog(x|θ ), we shall now show that the MLÊθn

continues to tend to infinity for any fixedθ . We have, as before

P [θ̂n > k] ≥ P [Og(xi |K∗n ) > Og(xi |θ ) for all θ ≤ k]
≥ P

{
1

2n
Of (xi |K∗n ) > O

(
1

2

[
f (xi |θ ) + f (xi |θ + αe−θ

2
)
])}

.

For j ≤ θ < j + 1, it is seen from (4.1) that [f (xi |θ ) + f (xi |θ + αe−θ
2
)]/2 is

a weighted average offj (xi), fj+1(xi), and possiblyfj+2(xi). By usingp̄j (x) =
Omax[fj (xi), fj+1(xi), fj+2(xi)] in place ofpj (x), the proof can now be com-
pleted as before. Since the densitiesg(xi |θ ) satisfy the conditions of Theorem
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3.10 (Problem 4.3), these conditions are therefore not enough to ensure the con-
sistency of the MLE. (For another example, see Ferguson 1982.) ‖

Even under the assumptions of Theorem 3.10, one is thus, in the case of multiple
roots, still faced with the problem of identifying a consistent sequence of roots.
Following are three possible approaches.

(a) In many cases, the maximum likelihood estimator is consistent. Conditions
which ensure this were given by, among others, Wald (1949), Wolfowitz
(1965), Le Cam (1953, 1955, 1970), Kiefer and Wolfowitz (1956), Kraft
and Le Cam (1956), Bahadur (1967), and Perlman (1972). A survey of the
literature can be found in Perlman (1983). This material is technically difficult,
and even when the conditions are satisfied, the determination of the MLE may
present problems (see Barnett 1966). We shall therefore turn to somewhat
simpler alternatives.

The following two methods require that some sequence of consistent (but not
necessarily efficient) estimators be available. In any given situation, it is usually
easy to construct a consistent sequence, as will be illustrated below and in the next
section.

(b) Suppose thatδn is any consistent estimator ofθ and that the assumptions of
Theorem 3.10 hold. Then, the rootθ̂n of the likelihood equation closest toδn
(which exists by the proof of Theorem 3.7) is also consistent, and hence is
efficient by Theorem 3.10.

To see this, note that by Theorem 3.10, there exists a consistent sequence of
roots, sayθ̂∗n . Sinceθ̂∗n − δn→ 0 in probability, so doeŝθn − δn.

The following approach, which does not require the determination of the closest
root and in which the estimators are no longer exact roots of the likelihood equation,
is often more convenient.

(c) The usual iterative methods for solving the likelihood equation

l′(θ ) = 0(4.5)

are based on replacing the left side by the linear terms of its Taylor expansion
about an approximate solutioñθ . If θ̂ denotes a root of (4.5), this leads to the
approximation

0 = l′(θ̂ )
.
= l′(θ̃ ) + (θ̂ − θ̃ )l′′(θ̃ ),(4.6)

and hence to

θ̂ = θ̃ − l′(θ̃ )

l′′(θ̃ )
.(4.7)

The procedure is then iterated by replacingθ̃ by the value˜̃θ of the right
side of (4.7), and so on. This is theNewton-Raphson iterative process. (For
a discussion of the performance of this procedure, see, for example, Barnett
1966, Stuart and Ord 1991, Section 18.21, or Searle et al. 1992, Section 8.2.)

Here, we are concerned only with the first step and with the performance of
the one-step approximation (4.7) as an estimator ofθ . The following result gives



454 ASYMPTOTIC OPTIMALITY [ 6.4

conditions onθ̃ under which the resulting sequence of estimators is consistent,
asymptotically normal, and efficient. It relies on the sequence of estimators pos-
sessing the following property.

Definition 4.2 A sequence of estimatorsδn is
√
n-consistent for θ if

√
n(δn − θ )

is bounded in probability, that is, ifδn − θ = Op(1/
√
n).

Theorem 4.3 Suppose that the assumptions of Theorem 3.10 hold and that θ̃n is
not only a consistent but a

√
n-consistent4 estimator of θ . Then, the estimator

sequence

δn = θ̃n − l′(θ̃n)

l′′(θ̃n)
(4.8)

is asymptotically efficient, that is, it satisfies (3.17) with δn in place of θ̂n.

Proof. As in the proof of Theorem 3.10, expandl′(θ̃n) aboutθ0 as

l′(θ̃n) = l′(θ0) + (θ̃n − θ0)l′′(θ0) +
1

2
(θ̃n − θ0)2l′′′(θ∗n )

whereθ∗n lies betweenθ0 andθ̃n. Substituting this expression into (4.8) and sim-
plifying, we find

√
n(δn − θ0) =

(1/
√
n)l′(θ0)

−(1/n)l′′(θ̃n)
+
√
n(θ̃n − θ0)(4.9)

×
[
1− l

′′(θ0)

l′′(θ̃n)
− 1

2
(θ̃n − θ0)

l′′′(θ∗n )

l′′(θ̃n)

]
.

The result now follows from the following facts:

(a)
(1/
√
n)l′(θ0)

−(1/n)l′′(θ0)
L→ N (0, I−1(θ0)] [(3.18) and (3.19)]

(b)
√
n(θ̂n − θ0) = Op(1) [assumption]

(c)
l′′′(θ∗n )

l′′(θ̃n)
= Op(1) [(3.19) and (3.20)]

(d)
l′′(θ̃n)
l′′(θ0)

→ 1 in probability [see below]

Here, (d) follows from the fact that

1

n
l′′(θ̃n) =

1

n
l′′(θ0) +

1

n
(θ̃n − θ0)l′′′(θ∗∗n ),(4.10)

for someθ∗∗n betweenθ0 andθ̃n. Now (3.19), (3.20), and consistency ofθ̃n applied
to (4.10) imply (d). In turn, (b)-(d) show that the entire second term in (4.9)
converges to zero in probability, and (a) shows that the first term has the correct
limit distribution. ✷

4 A general method for constructing
√
n-consistent estimators is given by Le Cam (1969, p. 103).

See also Bickel et al. (1993).
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Corollary 4.4 Suppose that the assumptions of Theorem 4.3 hold and that the
Fisher information I (θ ) is a continuous function of θ . Then, the estimator

δ′n = θ̃n +
l′(θ̃n)

nI (θ̃n)
(4.11)

is also asymptotically efficient.

Proof. By (d) in the proof of Theorem 4.3, condition (h) of Theorem 2.6, and
the law of large numbers,−(1/n)l′′(θ̃n) → I (θ0) in probability. Also, sinceI (θ )
is continuous,I (θ̃n) → I (θ0) in probability, so that−(1/n)l′′(θ̃n)/I (θ̃n) → 1 in
probability, and this completes the proof. ✷

The estimators (4.8) and (4.11) are compared by Stuart (1958), who gives a
heuristic argument why (4.11) might be expected to be closer to the ELE than
(4.8) and provides a numerical example supporting this argument. See also Efron
and Hinkley 1978 and Lindsay and Yi 1996.

Example 4.5 Location parameter. Consider the case of a symmetric location
family, with densityf (x − θ ), in which the likelihood equation∑ f ′(xi − θ )

f (xi − θ ) = 0(4.12)

has multiple roots. [For the Cauchy distribution, for example, it has been shown
by Reeds (1985) that if (4.12) hasK + 1 roots, then asn → ∞, K tends in law
to a Poisson distribution with expectation 1/π . The Cauchy case has also been
considered by Barnett (1966) and Bai and Fu (1987).] If var(X) < ∞, it follows
from the CLT that the sample meanX̄n is

√
n-consistent and that an asymptotically

efficient estimator ofθ is therefore provided by (4.8) or (4.11) with̃θn = X̄ as long
asf (x − θ ) satisfies the conditions of Theorem 3.10. For distributions such as the
Cauchy for whichE(X2) = ∞, one can, instead, take forθ̃n the sample median
providedf (0)> 0; other robust estimators provide still further possibilities (see,
for example, Huber 1973, 1981 or Haberman 1989). ‖
Example 4.6 Grouped or censored observations. Suppose thatX1, . . ., Xn are
iid according to a location family with cdfF (x − θ ), with F known and with
0 < F (x) < 1 for all x, but that it is only observed whether eachXi falls below
a, betweena andb, or aboveb wherea < b are two given constants. Then
observations constituten trinomial trials with probabilitiesp1 = p1(θ ) = F (a−θ ),
p2(θ ) = F (b− θ )− F (a − θ ), p3(θ ) = 1− F (b− θ ) for the three outcomes. IfV
denotes the number of observations less thana, then

√
n

[
V

n
− p1

]
L→ N [0, p1(1− p1)](4.13)

and, by Theorem 1.8.12,

Ṽn = a − F−1

(
V

n

)
(4.14)

is a
√
n-consistent estimator ofθ . Since the estimator is not defined whenV = 0 or

V = n, some special definition has to be adopted in these cases whose probability
however tends to zero asn→∞.
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If the trinomial distribution for a single trial satisfies the assumptions of The-
orem 3.10 as will be the case under mild assumptions onF , the estimator (4.8)
is asymptotically efficient (but see the comment following Example 7.15). The
approach applies, of course, equally to the case of more than three groups.

A very similar situation arises when theX’s arecensored, say at a fixed point
a. For example, they might be lengths of life of light bulbs or patients, with obser-
vation discontinued at timea. The observations can then be represented as

Yi =

{
Xi if Xi < a
a if Xi ≥ a.(4.15)

Here, the valuea of Yi whenXi ≥ a has no significance; it simply indicates that
the value ofXi is≥ a. TheY ’s are then iid with density

g(y|θ ) =

{
f (y − θ ) if y < a
1− F (a − θ ) if y = a

(4.16)

with respect to the measureµwhich is Lebesgue measure on (−∞, a) and assigns
measure 1 to the pointy = a.

The estimator (4.14) continues to be
√
n-consistent in the present situation. An

alternative starting point is, for example, the best linear combination of the ordered
X’s less thana (see, for example, Chan 1967). ‖
Example 4.7 Mixtures. LetX1, . . . , Xn be a sample from a distributionθG+(1−
θ )H , 0< θ < 1, whereG andH are two specified distributions with densitiesg
andh. The log likelihood of a single observation is a concave function ofθ , and
so therefore is the log likelihood of a sample (Problem 4.5). It follows that the
likelihood equation has at most one solution. [The asymptotic performance of the
ML estimator is studied by Hill (1963).]

Even when the root is unique, as it is here, Theorem 4.3 provides an alternative,
which may be more convenient than the MLE. In the mixture problem, as in many
other cases, a

√
n-consistent estimator can be obtained by themethod of moments,

which consists in equating the firstk moments ofX to the corresponding sample
moments, say

Eθ (X
r
i ) =

1

n

n∑
j=1

Xrj , r = 1, . . . , k,(4.17)

wherek is the number of unknown parameters. (For further discussion, see, for
example, Craḿer 1946a, Section 33.1 and Serfling 1980, Section 4.3.1). In the
present case, suppose thatE(Xi) = ξ or η whenX is distributed asG orH where
η �= ξ andG andH have finite variance. Sincek = 1, the method of moments
estimatesθ as the solution of the equation

ξθ + η(1− θ ) = X̄n

and hence by

θ̃n =
X̄n − η
ξ − n .

[If η = ξ but the second moments ofXi underH andG differ, one can, instead,
equateE(X2

i ) with �X2
j /n (Problem 4.6).] An asymptotically efficient estimator
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is then provided by (4.8).
Estimation under a mixture distribution provides interesting challenges, and has

many application in practice. There is a large literature on mixtures, and entry can
be found through the books by Everitt and Hand (1981), Titterington et al. (1985),
McLachlan and Basford (1988), and McLachlan (1997). ‖

In the context of choosing a
√
n-consistent estimator̃θn for (4.8), it is of interest

to note that in sufficiently regular situations good efficiency ofθ̃n is equivalent to
high correlation withθ̂n. This is made precise by the following result, which is
concerned only with first-order approximations.

Theorem 4.8 Suppose θ̂n is an ELE estimator and θ̃n a
√
n-consistent estimator,

for which the joint distribution of

Tn =
√
n(θ̂n − θ ) and T ′n =

√
n(θ̃n − θ )

tends to a bivariate limit distribution H with zero means and covariance matrix
� = ||σij ||. Let (T , T ′) have distribution H and suppose that the means and
covariance matrix of (Tn, T ′n) tend toward those of (T , T ′) as n→∞. Then,

var T

var T ′
= ρ2(4.18)

where ρ = σ12/
√
σ11σ22 is the correlation coefficient of (T , T ′).

Proof. Consider var[(1− α)Tn + αT ′n] which tends to

var[(1− α)T + αT ′] = (1− α)2σ11 + 2α(1− α)σ12 + α2σ22.(4.19)

This is non-negative for all values ofα and takes on its minimum atα = 0 sinceθ̂n
is asymptotically efficient. Evaluating the derivative of (4.19) atα = 0 shows that
we must haveσ11 = σ12 (Problem 4.7). Thus,ρ =

√
σ11/σ22, as was to be proved.

✷

The ratio of the asymptotic variances in (4.18) is a special case ofasymptotic
relative efficiency (ARE). See Definition 6.6.

In Examples 4.6 and 4.7, we used the method of moments to obtain
√
n-

consistent estimators and then applied the one-step estimator (4.8) or (4.11). An
alternative approach, when the direct calculation of an ELE is difficult, is the fol-
lowing expectation-maximization (EM) algorithm for obtaining a stationary point
of the likelihood.

The idea behind the EM algorithm is to replace one computationally difficult
likelihood maximization with a sequence of easier maximizations whose limit is the
answer to the original problem. More precisely, letY1, . . . , Yn be iid with density
g(y|θ ), and suppose that the object is to compute the valueθ̂ that maximizes
L(θ |y) =

∏n
i=1 g(yi |θ ). If L(θ |y) is difficult to work with, we can sometimes

augment the datay = (y1, . . . , yn) and create a new likelihood functionL(θ |y, z)
that has a simpler form.

Example 4.9 Censored data likelihood. Suppose that we observeY1, . . ., Yn,
iid, with density (4.16), and we have ordered the observations so that (y1, . . . , ym)
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are uncensored and (ym+1, . . . , yn) are censored (and equal toa). The likelihood
function is then

L(θ |y) =
n∏
i=1

g(yi |θ ) =
m∏
i=1

f (yi |θ ) [1− F (a − θ )]n−m .(4.20)

If we had observed the lastn − m values, sayz = (zm+1, . . . , zn), the likelihood
would have had the simpler form

L(θ |y, z) =
m∏
i=1

f (yi |θ )
n∏

i=m+1

f (zi |θ ).

More generally, the EM algorithm is useful when the density of interest,g(yi |θ ),
can be expressed as

g(y|θ ) =
∫

Z
f (y, z|θ ) dz,(4.21)

for some simpler functionf (y, z|θ ). Thez vector merely serves to simplify cal-
culations, and its choice does not affect the value of the estimator. An illustration
of a typical construction of the densityf is the case of ”filling in” missing data,
for example, by turning an unbalanced data set into a balanced one.

Example 4.10 EM in a one-way layout. In a one-way layout (Example 3.4.9),
suppose there are four treatments with the following data

Treatments

1 2 3 4

y11 y12 y13 y14

y21 y22 y23 y24

z1 y32 z3 y34

where theyij ’s represent the observed data, and the dummy variablesz1 andz3

represent missing observations. Under the usual assumptions, theYij ’s are inde-
pendently normally distributed asN (µ+αi, σ 2). If we let θ = (µ, α1, . . . , α4, σ

2)
and letnij denote the number of observations per treatment, the incomplete-data
likelihood is given by

L(θ |y) = g(y|θ ) =

(
1√

2πσ 2

)10

e
∑4
i=1

∑nij

j=1(yij−µ−αi )2/σ 2

while the complete-data likelihood is

L(θ |y, z) = f (y, z|θ ) =

(
1√

2πσ 2

)12

e
∑4
i=1

∑3
j=1(yij−µ−αi )2/σ 2

,

wherey31 = z1 andy33 = z3. By integrating outz1 andz3, the original likelihood
is recovered.

Although estimation in the original problem (with only theyij ’s) is not difficult,
it is easier in the augmented problem. [The computational advantage of the EM
algorithm becomes more obvious as we move to higher-order designs, for example,
the two-way layout (see Problem 4.14).] ‖
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The EM algorithm is often useful for obtaining an MLE when, as in Example
4.10, we should like to maximizeL(θ |y), but it would be much easier, if certain
additional observationsz were available, to work with the joint densityf (y, z|θ ) =
L(θ |y, z) and the conditional density ofZ giveny, that is,

L(θ |y, z) and k(z|θ, y) =
f (y, z|θ )
g(y|θ ) .(4.22)

These quantities are related by the identity

logL(θ |y) = logL(θ |y, z)− logk(z|θ, y).(4.23)

Sincez is not available, we replace the right side of (4.23) with its expectation,
using the conditional distribution ofZ given y. With an initial guessθ0 (to start
the iterations), we define

Q(θ |θ0, y) =
∫

logL(θ |yk(z|θ0, y) dz,(4.24)

H (θ |θ0, y) =
∫

logk(z|θ, y)|θ0, y) dz.

As the left side of (4.23) does not depend onz, the expected value of logL(θ |y) is
then given by

L(θ |y) = Q(θ |θ0, y)−H (θ |θ0, y).(4.25)

Let the value ofθ maximizingQ(θ |θ0, y) be θ̂(1). The process is then repeated
with θ0 in (4.24) and (4.22) replaced by the updated valueθ̂(1), so that (4.24)
is replaced byQ(θ |θ̂(1), y). In this manner, a sequence of estimatorsθ̂(j ), j =
1,2, . . . is obtained iteratively wherêθ(j ) is defined as the value ofθ maximizing
Q(θ |θ̂(j−1), y), that is,

Q(θ̂(j )|θ̂(j−1), y) = max
θ
Q(θ |θ̂(j−1), y).(4.26)

(It is sometimes written̂θ(j ) = argmaxθQ(θ |θ̂(j−1), y), that is,θ̂(j ) is the value of
the argumentθ that maximizesQ.)

The quantities logL(θ |y), logL(θ |y, z), andQ(θ |θ0, y) are referred to as the
incomplete, complete, andexpected log likelihood. The term EM for this algorithm
stands forExpectation-Maximization since thej th step of the iteration consists
of the calculating the expectation (4.24), withθ0 replaced byθ̂(j−1), and then
maximizing it.

The following is a key property of the sequence{θ̂(j )}.
Theorem 4.11 The sequence {θ̂(j )} defined by (4.26) satisfies

L(θ̂(j+1)|y) ≥ L(θ̂(j )|y),(4.27)

with equality holding if and only ifQ(θ̂(j+1)|θ̂(j ), y) = Q(θ̂(j )|θ̂(j ), y).

Proof. On successive iterations, the difference between the logarithms of the left
and right sides of (4.25) is

logL(θ̂(j+1)|y) − logL(θ̂(j )|y)
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=
[
Q(θ̂(j+1)|θ̂(j ), y)−Q(θ̂(j )|θ̂(j ), y)

]
(4.28)

−
[
H (θ̂(j+1)|θ̂(j ), y)−H (θ̂(j )|θ̂(j ), y)

]
.

The first expression in (4.28) is non-negative by definition ofθ̂(j+1). It remains to
show that the second term is non-negative, that is,∫ [

logk(z|θ̂(j+1), y)− logk(z|θ̂(j ), y)
]
k(z|θ̂(j ), y) dz ≤ 0.(4.29)

Since the difference of the logarithms is the logarithm of the ratio, this integral can
be written as∫

log

[
k(z|θ̂(j+1), y)

k(z|θ̂(j ), y)

]
k(z|θ̂(j ), y) dz ≤ log

∫
k(z|θ̂(j+1), y)dz = 0.(4.30)

The inequality follows from Jensen’s inequality (see Example 1.7.7, Inequality
(1.7.13), and Problem 4.17), and this completes the proof. ✷

Although Theorem 4.11 guarantees that the likelihood will increase at each itera-
tion, we still may not be able to conclude that the sequence{θ̂(j )} converges to a
maximum likelihood estimator.

To ensure convergence, we require further conditions on the mappingθ̂(j ) →
θ̂(j+1). These conditions are investigated by Boyles (1983) and Wu (1983); see also
Finch et al. 1989. The following theorem is, perhaps, the most easily applicable
condition to guarantee convergence to astationary point, which may be a local
maximum or saddlepoint.

Theorem 4.12 If the expected complete-data likelihoodQ(θ |θ0, y) is continuous
in both θ and θ0, then all limit points of an EM sequence {θ̂(j )} are stationary points
of L(θ |y), and L(θ̂(j )|y) converges monotonically to L(θ̂ |y) for some stationary
point θ̂ .

Example 4.13 Continuation of Example 4.9. The situation of Example 4.9 does
not quite fit the conditions under which the EM algorithm was described above
since the observationsym+1, . . . , yn are not missing completely but only partially.
(We know that they are≥ a.) However, the situation reduces to the earlier one if we
just ignoreym+1, . . . , yn, so thaty now stands for (y1, . . . , ym). To be specific, let
the densityf (y|θ ) of (4.16) be theN (θ,1) density, so that the likelihood function
(4.20) is

L(θ |y) =
1

(2π )m/2
e−

1
2

∑m
i=1(yi−θ )2

.

We replaceym+1, . . . , yn with n−m phantom variablesz = (z1, . . . , zn−m) which
are distributed asn−m iid variables from the conditional normal distribution given
that they are all≥ a; thus, forzi ≥ a, i = 1, . . . , n−m,

k(z|θ, y) =
1

(
√

2π )(n−m)/2

exp
{− 1

2

∑n−m
i=1 (zi − θ )2

}
[1−X(a − θ )]n−m .
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At the j th step in the EM sequence, we have

Q(θ |θ̂(j ), y) ∝ −1

2

m∑
i=1

(yi − θ )2 − 1

2

n−m∑
i=1

∫ ∞

a

(zi − θ )2k(z|θ̂(j ), y) dzi,

and differentiating with respect toθ yields

m(ȳ − θ ) + (n−m)
[
E(Z|θ̂(j ))− θ

]
= 0

or

θ̂(j+1) =
mȳ + (n−m)E(Z|θ̂(j ))

n

where

E(Z|θ̂(j )) =
∫ ∞

a

zk(z|θ̂(j ), y) dz = θ̂(j ) +
φ(a − θ̂(j ))

1−X(a − θ̂(j ))
.

Thus, the EM sequence is defined by

θ̂(j+1) =
m

n
ȳ +

n−m
n

[
θ̂(j ) +

φ(a − θ̂(j ))

1−X(a − θ̂(j )

]
,

which converges to the MLÊθ (Problem 4.8). ‖
Quite generally, in an exponential family, computations are somewhat simplified

because we can write

Q(θ |θ̂(j ), y) = Eθ̂(j )
[
logL(θ |y,Z)|y)

]
= Eθ̂(j )

[
log(h(y,Z) e

∑
ηi (θ )Ti−B(θ )

)
|y

]
= Eθ̂(j )

[
logh(y,Z)

]
+
∑

ηi(θ )Eθ̂(j )
[
Ti |y

]− B(θ ).

Thus, calculating the complete-data MLE only involves the simpler expectation
Eθ̂(j )

[
Ti |y

]
.

The books by Little and Rubin (1987), Tanner (1996), and McLachlan and
Krishnan (1997) provide good overviews of the EM literature. Other references
include Louis (1982), Laird et al. (1987), Meng and Rubin (1993), Smith and
Roberts (1993), and Liu and Rubin (1994).

5 The Multiparameter Case

In the preceding sections, asymptotically efficient estimators were obtained when
the distribution depends on a single parameterθ . When extending this theory to
probability models involving several parametersθ1, . . . , θs , one may be interested
either in the simultaneous estimation of these parameters (or certain functions
of them) or with the estimation of one of the parameters at a time, the remaining
parameters then playing the role of nuisance or incidental parameters. In the present
section, we shall primarily take the latter point of view.

LetX1, . . . , Xn be iid with a distribution that depends onθ = (θ1, . . . , θs) and
satisfies assumptions (A0)–(A3) of Section 6.3. For the time being, we shall assume
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s to be fixed. Suppose we wish to estimateθj . Then, it was seen in Section 2.6 that
the variance of any unbiased estimatorδn of θj , based onn observations, satisfies
the inequality

var(δn) ≥ [I (θ )]−1
jj /n(5.1)

where the numerator on the right side is thejj th element of the inverse of the
information matrixI (θ ) with elementsIjk(θ ), j, k = 1, . . . , s, defined by

Ijk(θ ) = cov

[
∂

∂θj
logf (X|θ ),

∂

∂θk
logf (X|θ )

]
.(5.2)

It was further shown by Bahadur (1964) under conditions analogous to those of
Theorem 2.6 that for any sequence of estimatorsδn of θj satisfying

√
n (δn − θj ) L→ N (0, v(θ )],(5.3)

the asymptotic variancev satisfies

v(θ ) ≥ [I (θ )]−1
jj ,(5.4)

except on a set of valuesθ having measure zero.
We shall now show under assumptions generalizing those of Theorem 3.10

that with probability tending to 1, there exist solutionsθ̂ n = (θ̂1n, . . . , θ̂sn) of the
likelihood equations

∂

∂θj
[f (x1|θ ) · · · f (xn|θ )] = 0, j = 1, . . . , s,(5.5)

or, equivalently,
∂

∂θj
[l(θ )] = 0, j = 1, . . . , s,(5.6)

such thatθ̂jn is consistent for estimatingθj and asymptotically efficient in the
sense of satisfying (5.3) with

v(θ ) = [I (θ )]−1
jj .(5.7)

We state first some assumptions:

(A) There exists an open subsetω of  containing the true parameter pointθ 0

such that for almost allx, the densityf (x|θ ) admits all third derivatives
(∂3/∂θj ∂θk∂θl)f (x|θ ) for all θ ∈ ω.

(B) The first and second logarithmic derivatives off satisfy the equations

Eθ

[
∂

∂θj
logf (X|θ )

]
= 0 for j = 1, . . . , s(5.8)

and

Ijk(θ ) = Eθ

[
∂

∂θj
logf (X|θ ) · ∂

∂θk
logf (X|θ )

]
(5.9)

= Eθ

[
− ∂2

∂θj ∂θk
logf (X|θ )

]
.

Clearly, (5.8) and (5.9) imply (5.2).
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(C) Since thes × s matrixI (θ ) is a covariance matrix, it is positive semidefinite.
In generalization of condition (v) of Theorem 2.6, we shall assume that the
Ijk(θ ) are finite and that the matrixI (θ ) is positive definite for allθ in ω, and
hence that thes statistics

∂

∂θ1
logf (X|θ ), . . . ,

∂

∂θs
logf (X|θ )

are affinely independent with probability 1.

(D) Finally, we shall suppose that there exist functionsMjkl such that∣∣∣∣ ∂3

∂θj ∂θk∂θl
logf (x|θ )

∣∣∣∣ ≤ Mjkl(x) for all θ ∈ ω

where
mjkl = Eθ0[Mjkl(X)] <∞ for all j, k, l.

Theorem 5.1 Let X1, . . . , Xn be iid, each with a density f (x|θ ) (with respect to
µ) which satisfies (A0)–(A2) of Section 6.3 and assumptions (A)–(D) above. Then,
with probability tending to 1 as n→∞, there exist solutions θ̂ n = θ̂ n(X1, . . . , Xn)
of the likelihood equations such that

(a) θ̂jn is consistent for estimating θj ,

(b)
√
n(θ̂ n−θ ) is asymptotically normal with (vector) mean zero and covariance

matrix [I (θ )]−1, and

(c) θ̂jn is asymptotically efficient in the sense that
√
n(θ̂jn − θj ) L→ N{0, [I (θ )]−1

jj }.(5.10)

Proof. (a) Existence and Consistency. To prove the existence, with probability
tending to 1, of a sequence of solutions of the likelihood equations which is con-
sistent, we shall consider the behavior of the log likelihoodl(θ ) on the sphereQa
with center at the true pointθ 0 and radiusa. We will show that for any sufficiently
smalla, the probability tends to 1 that

l(θ ) < l(θ 0)

at all pointsθ on the surface ofQa, and hence thatl(θ ) has a local maximum
in the interior ofQa. Since at a local maximum the likelihood equations must
be satisfied, it will follow that for anya > 0, with probability tending to 1 as
n→ ∞, the likelihood equations have a solutionθ̂ n(a) within Qa and the proof
can be completed as in the one-dimensional case.

To obtain the needed facts concerning the behavior of the likelihood onQa for
smalla, we expand the log likelihood about the true pointθ 0 and divide byn to
find

1

n
l(θ ) − 1

n
l(θ 0)

=
1

n
�Aj (x)(θj − θ0

j )
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+
1

2n
��Bjk(x)(θj − θ0

j )(θk − θ0
k )

+
1

6n

∑
j

∑
k

∑
l

(θj − θ0
j )(θk − θ0

k )(θl − θ0
l )

n∑
i=1

γjkl(xi)Mjkl(xi)

= S1 + S2 + S3

where

Aj (x) =
∂

∂θj
l(θ )

∣∣∣∣
θ=θ0

and

Bjk(x) =
∂2

∂θj ∂θk
l(θ )

∣∣∣∣
θ=θ0

,

and where, by assumption (D),

0 ≤ |γjkl(x)| ≤ 1.

To prove that the maximum of this difference forθ onQa is negative with proba-
bility tending to 1 ifa is sufficiently small, we will show that with high probability
the maximum ofS2 is negative whileS1 andS3 are small compared toS2. The
basic tools for showing this are the facts that by (5.8), (5.9), and the law of large
numbers,

1

n
Aj (X) =

1

n

∂

∂θj
l(θ )

∣∣∣∣
θ=θ0

→ 0 in probability(5.11)

and
1

n
Bjk(X) =

1

n

∂2

∂θj ∂θk
l(θ )

∣∣∣∣
θ=θ0

→−Ijk(θ0) in probability.(5.12)

Let us begin withS1. OnQa, we have

|S1| ≤ 1

n
a�|Aj (X)|.

For any givena, it follows from (5.11) that|Aj (X)|/n < a2 and hence that
|S1| < sa3 with probability tending to 1. Next, consider

2S2 = ��[−Ijk(θ0)(θj − θ0
j )(θk − θ0

k )](5.13)

+��

{
1

n
Bjk(X)− [−Ijk(θ0)

]}
(θj − θ0

j )(θk − θ0
k ).

For the second term, it follows from an argument analogous to that forS1 that its
absolute value is less thans2a3 with probability tending to 1. The first term is a
negative (nonrandom) quadratic form in the variables (θj − θ0

j ). By an orthogonal
transformation, this can be reduced to diagonal form�λiζ 2

i with Qa becoming
�ζ 2

i = a2. Suppose that theλ’s that are negative are numbered so thatλs ≤ λs−1 ≤
· · · ≤ λ1 < 0. Then,�λiζ 2

i ≤ λi�ζ 2
i = λ1a

2. Combining the first and second
terms, we see that there existc > 0 anda0 > 0 such that fora < a0

S2 < −ca2
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with probability tending to 1.
Finally, with probability tending to 1,∣∣∣∣1

n
�Mjkl(Xi)

∣∣∣∣ < 2mjkl

and hence|S3| < ba3 onQa where

b =
s3

3
���mjkl.

Combining the three inequalities, we see that

max(S1 + S2 + S3) < −ca2 + (b + s)a3,(5.14)

which is less than zero ifa < c/(b + s), and this completes the proof of (i).

(b) and (c) Asymptotic Normality and Efficiency. This part of the proof is ba-
sically the same as that of Theorem 3.10. However, the single equation derived
there from the expansion ofθ̂ n − θ 0 is now replaced by a system ofs equations
which must be solved for the differences (θ̂jn − θ0

j ). This makes the details of the
argument somewhat more cumbersome. In preparation, it will be convenient to
consider quite generally a set of random linear equations ins unknowns,

s∑
k=1

AjknYkn = Tjn (j = 1, . . . , s).(5.15)

✷

Lemma 5.2 Let (T1n, . . . , Tsn) be a sequence of random vectors tending weakly to
(T1, . . . , Ts) and suppose that for each fixed j and k,Ajkn is a sequence of random
variables tending in probability to constants ajk for which the matrix A = ||ajk||
is nonsingular. Let B = ||bjk|| = A−1. Then, if the distribution of (T1, . . . , Ts) has
a density with respect to Lebesgue measure over Es , the solutions (Y1n, . . . , Ysn)
of (5.15) tend in probability to the solutions (Y1, . . . , Ys) of

s∑
k=1

ajkYk = Tj (j = 1, . . . , s)(5.16)

given by

Yj =
s∑
k=1

bjkTk.(5.17)

Proof. With probability tending to 1, the matrices||Ajkn|| are nonsingular, and
by Theorem 1.8.19 (Problem 5.1), the elements of the inverse of||Ajkn|| tend
in probability to the elements ofB. Therefore, by a slight extension of Theorem
1.8.10, the solutions of (5.15) have the same limit distribution as those of

Yjn =
s∑
k=1

bjkTkn.(5.18)

By applying Theorem 1.8.19 to the setS,

�b1kTk ≤ y1, . . . , �bskTk ≤ ys,(5.19)
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it is only necessary to show that the distribution of (T1, . . . , Ts) assigns probability
zero to the boundary of (5.19). Since this boundary is contained in the union of
the hyperplanes�bjkTk = yj , the result follows. ✷

Proof of Parts (b) and (c) of Theorem 5.1. In the generalization of the proof of
Theorem 3.10, expand∂l(θ )/∂θj = l′j (θ ) aboutθ 0 to obtain

l′j (θ ) = l′j (θ
0) +�(θk − θ0

k )l′′jk(θ
0)(5.20)

+
1

2
��(θk − θ0

k )(θl − θ0
l )l′′′jkl(θ

∗)

wherel′′jk andl′′′jkl denote the indicated second and third derivatives ofl and where

θ ∗ is a point on the line segment connectingθ andθ 0. In this expansion, replace
θ by a solutionθ̂ n of the likelihood equations, which by part (a) of the theorem
can be assumed to exist with probability tending to 1 and to be consistent. The left
side of (5.20) is then zero and the resulting equations can be written as

√
n�(θ̂k − θ0

k )

[
1

n
l′′jk(θ

0) +
1

2n
�(θ̂l − θ0

l )l′′′jkl(θ
∗)
]

(5.21)

= − 1√
n
l′j (θ

0).

These have the form (5.15) with

Ykn =
√
n (θ̂k − θ0

k ),

Ajkn =
1

n
l′′jk(θ

0) +
1

2n
�(θ̂l − θ0

l )l′′′jkl(θ
∗),(5.22)

Tjn = − 1√
n
l′j (θ

0) = −√n
[

1

n

n∑
i=1

∂

∂θj
logf (Xi |θ )

]
θ=θ0

.

SinceEθ0[(∂/∂θj ) logf (Xi |θ )] = 0, the multivariate central limit theorem (Theo-
rem 1.8.21) shows that (T1n, . . . , Tsn) has a multivariate normal limit distribution
with mean zero and covariance matrixI (θ 0).

On the other hand, it is easy to see—again in parallel to the proof of Theorem
3.10—that

Ajkn
P→ ajk = E[l′′jk(θ

0)] = −Ijk(θ 0).(5.23)

The limit distribution of theY ’s is therefore that of the solution (Y1, . . . , Ys) of the
equations

s∑
k=1

Ijk(θ
0)Yk = Tj(5.24)

whereT = (T1, . . . , Ts) is multivariate normal with mean zero and covariance
matrix I (θ 0). It follows that the distribution ofY is that of

[I (θ 0)]−1T ,

which is a multivariate distribution with zero mean and covariance matrix [I (θ 0)]−1.
This completes the proof of asymptotic normality and efficiency. ✷
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If the likelihood equations have a unique solutionθ̂ n, then θ̂ n is consistent,
asymptotically normal, and efficient. It is, however, interesting to note that even if
the parameter space is an open interval, it does not follow as in Corollary 3.8 that
the MLE exists and hence is consistent (Problem 5.6). Sufficient conditions for
existence and uniqueness are given in Mäkel̈ainen, Schmidt, and Styan (1981).

As in the one-parameter case, if the solution of the likelihood equations is not
unique, Theorem 5.1 does not establish the existence of an efficient estimator ofθ .
However, the methods mentioned in Section 2.5 also work in the present case. In
particular, ifθ̃ n is a consistent sequence of estimators ofθ , then the solutionŝθ n of
the likelihood equations closest toθ̃ n, for example, in the sense that�(θ̂jn− θ̃jn)2

is smallest, is asymptotically efficient.
More convenient, typically, is the approach of Theorem 4.3, which we now

generalize to the multiparameter case.

Theorem 5.3 Suppose that the assumptions of Theorem 5.1 hold and that θ̃jn is
a
√
n-consistent estimator of θj for j = 1, . . . , s. Let {δkn, k = 1, . . . , s} be the

solution of the equations
s∑
k=1

(δkn − θ̃kn)l′′jk(θ̃ n) = −l′j (θ̃ n).(5.25)

Then, δn = (δ1n, . . . , δsn) satisfies (5.10) with δjn in place of θ̂jn and, thus, is
asymptotically efficient.

Proof. The proof is a simple combination of the proofs of Theorem 4.3 and 5.1
and we shall only sketch it. Expanding the right side aboutθ 0 allows us to rewrite
(5.25) as

�k(δkn − θ̃kn)l′′jk(θ̃ n) = −l′j (θ 0)−�k(θ̃kn − θ0
k )l′′jk(θ

0) +Rn

where

Rn = −1

2
�k�l(θ̃kn − θ0

k )(θ̃ln − θ0
l )l′′′jkl(θ

∗
n)

and hence as
√
n�k(δkn − θ0

k )
1

n
l′′jk(θ̃ n)

= − 1√
n
l′j (θ

0) +
√
n�k(θ̃kn − θ0

k )

[
1

n
l′′jk(θ̃ n)−

1

n
l′′jk(θ

0)

]
+

1√
n
Rn.(5.26)

This has the form (5.15), and it is easy to check (Problem 5.2) that the limits (in
probability) of theAjkn are the sameajk as in (5.23) and that the second and
third terms on the right side of (5.26) tend toward zero in probability. Thus, the
joint distribution of the right side is the same as that of theTjn given by (5.22). If
follows that the joint limit distribution of the

√
n (δkn − θ0

k ) is the same as that of
the
√
n (θ̂kn − θ0

k ) in Theorem 3.2, and this completes the proof. ✷

The following result generalizes Corollary 4.4 to the multiparameter case.

Corollary 5.4 Suppose that the assumptions of Theorem 5.3 hold and that the
elements Ijk(θ ) of the information matrix of the X’s are continuous. Then, the
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solutions δ′kn of the equations

n�(δ′kn − θ̃kn)Ijk(θ̃ n) = l′j (θ̃ n)(5.27)

are asymptotically efficient.

The proof is left to Problem 5.5.

6 Applications

Maximum likelihood (together with some of its variants) is the most widely used
method of estimation, and a list of its applications would cover practically the
whole field of statistics. [For a survey with a comprehensive set of references,
see Norden 1972-1973 or Scholz 1985.] In this section, we will discuss a few
applications to illustrate some of the issues arising. The discussion, however, is
not carried to the practical level, and in particular, the problem of choosing among
alternative asymptotically efficient methods is not addressed. Such a choice must
be based not only on theoretical considerations but requires empirical evidence
on the performance of the estimators at various sample sizes. For any specific
example, the relevant literature should be consulted.

Example 6.1 Weibull distribution. Let X1, . . . , Xn be iid according to a two-
parameter Weibull distribution, whose density it is convenient to write in a param-
eterization suggested by Cohen (1965b) as

γ

β
xγ−1e−x

γ /β, x > 0, β > 0, γ > 0,(6.1)

whereγ is a shape parameter andβ1/γ a scale parameter. The likelihood equations,
after some simplification, reduce to (Problem 6.1)

h(γ ) =
�x

γ

i logxi
�x

γ

i

− 1

γ
=

1

n
� logxi(6.2)

and
β = �xγi /n.(6.3)

To show that (6.2) has at most one solution, note thath′(γ ) exceeds the derivative
of the first term, which equals (Problem 6.2)�a2

i pi − (�aipi)2 with

ai = logxi, pi = eγai /
∑
j

eγ aj .(6.4)

It follows thath′(γ ) > 0 for all γ > 0. That (6.2) always has a solution follows
from (Problem 6.2):

−∞ = lim
γ→0

h(γ ) <
1

n
� logxi < logx(n) = lim

γ→∞h(γ ).(6.5)

This example, therefore, illustrates the simple situation in which the likelihood
equations always have a unique solution. ‖
Example 6.2 Location-scale families. LetX1, . . . , Xn be iid, each with density
(1/a)f [(x−ξ )/a]. The calculation of an ELE is easy when the likelihood equations
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have a unique root (ξ̂ , â). It was shown by Barndorff-Nielsen and Blaesild (1980)
that sufficient conditions for this to be the case is thatf (x) is positive, twice
differentiable for allx, and strongly unimodal. Surprisingly, Copas (1975) showed
that it is unique also whenf is Cauchy, despite the fact that the Cauchy density
is not strongly unimodal and that in this case the likelihood equation can have
multiple roots whena is known. Ferguson (1978) gave explicit formulas for the
Cauchy MLEs forn = 3 or 4. See also Haas et al. 1970 and McCullagh 1992.

In the presence of multiple roots, the simplest approach typically is that of
Theorem 5.3. The

√
n-consistent estimators ofξ anda required by this theorem

are easily obtained in the present case. As was pointed out in Example 4.5, the
mean or median of theX’s will usually have the desired property forξ . (When
f is asymmetric, this requires thatξ be specified to be some particular location
measure such as the mean or median of the distribution of theXi .) If E(X4

i ) <

∞, ân =
√
�(Xi − X̄)2/n will be

√
n-consistent fora if the latter is taken to be

the population standard deviation. IfE(X4
i ) = ∞, one can instead, for example,

take a suitable multiple of the interquartile rangeX(k) − X(j ), wherek = [3n/4]
andj = [n/4] (see, for example, Mosteller 1946).

If f satisfies the assumptions of Theorem 5.1, then [
√
n(ξ̂n − ξ ),

√
n(ân − a)]

have a joint bivariate normal distribution with zero means and covariance matrix
I−1(a) = ||Iij (a)||−1, which is independent ofξ and whereI (a) is given by (2.6.20)
and (2.6.21). ‖

If the distribution of theXi depends onθ = (θ1, . . . , θs), it is interesting to
compare the estimation ofθj when the other parameters are unknown with the
situation in which they are known. The mathematical meaning of this distinction
is that an estimator is permitted to depend on known parameters but not on un-
known ones. Since the class of possible estimators is thus more restricted when the
nuisance parameters are unknown, it follows from Theorems 3.10 and 5.1 that the
asymptotic variance of an efficient estimator when some of theθ ’s are unknown
can never fall below its value when they are known, so that

1

Ijj (θ )
≤ [I (θ )]−1

jj ,(6.6)

as was already shown in Section 2.6 as (2.6.25). There, it was also proved that
equality holds in (6.6) whenever

cov

[
∂

∂θj
logf (X|θ ),

∂

∂θk
logf (X|θ )

]
= 0 for all j �= k,(6.7)

and that this condition, which states that

I (θ ) is diagonal,(6.8)

is also necessary for equality. For the location-scale families of Example 6.2, it
follows from (2.6.21) thatI12 = 0 wheneverf is symmetric about zero but not
necessarily otherwise. For symmetricf , there is therefore no loss of asymptotic
efficiency in estimatingξ or a when the other parameter is unknown.

Quite generally, if the off-diagonal elements of the information matrix are zero,
the parameters are said to be orthogonal. Although it is not always possible to find
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an entire set of orthogonal parameters, it is always possible to obtain orthogonality
between a scalar parameter of interest and the remaining (nuisance) parameters.
See Cox and Reid 1987 and Problem 6.5.

As another illustration of efficient likelihood estimation, consider a multiparam-
eter exponential family. Here, UMVU estimators often are satisfactory solutions
of the estimation problem. However, the estimand may not beU -estimable and
then another approach is needed. In some cases, even when a UMVU estimator
exists, the MLE has the advantage of not taking on values outside the range of the
estimand.

Example 6.3 Multiparameter exponential families. Let X = (X1,. . ., Xn) be
distributed according to ans-parameter exponential family with density (1.5.2)
with respect to aσ -finite measureµ, wherex takes the place ofx and where it is
assumed thatT1(X), . . . , Ts(X) are affinely independent with probability 1. Using
the fact that

∂

∂ηj
[l(η )] = − ∂

∂ηj
[A(η )] + Tj (x)(6.9)

and other properties of the densities (1.5.2), one sees that the conditions of Theorem
5.1 are satisfied when theX’s are iid. By (1.5.14), the likelihood equations for the
η’s reduce to

Tj (x) = Eη[Tj (X)].(6.10)

If these equations have a solution, it is unique (and is the MLE) sincel(η ) is a
strictly concave function ofη . This follows from Theorem 1.7.13 and the fact that,
by (1.5.15),

− ∂2

∂ηj∂ηk
[l(η )] =

∂2

∂ηj∂ηk
[A(η )] = cov[Tj (X), Tk(X)](6.11)

and that, by assumption, the matrix with entries (6.11) is positive definite.
Sufficient conditions for the existence of a solution of the likelihood equations

are given by Crain (1976) and Barndorff-Nielsen (1978, Section 9.3, 9.4), where
they are shown to be satisfied for the two-parameter gamma family of Table 1.5.1.

An alternative method for obtaining asymptotically efficient estimators for the
parameters of an exponential family is based on the mean-value parameteriza-
tion (2.6.17). Slightly changing the formulation of the model, consider a sample
(X1, . . . , Xn) of size n from the family (1.5.2), and let̄Tj = [Tj (X1) + · · · +
Tj (Xn)]/n andθj = E(Tj ). By the CLT, the joint distribution of the

√
n(T̄j −θj ) is

multivariate normal with zero means and covariance matrixσij = cov[Ti(X), Tj (X)].
This proves thēTj to be asymptotically efficient estimators by (2.6.18). ‖

For further discussion of maximum likelihood estimation in exponential fam-
ilies, see Berk 1972b, Sundberg 1974, 1976, Barndorff-Nielsen 1978, Johansen
1979, Brown 1986a, and Note 10.4.

In the next two examples, we shall consider in somewhat more detail the most
important case of Example 6.3, the multivariate and, in particular, the bivariate
normal distribution.
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Example 6.4 Multivariate normal distribution. Suppose we let (X1ν, . . . , Xpν),
ν = 1, . . . , n, be a sample from a nonsingular normal distribution with means
E(Xiν) = ξi and covariances cov(Xiν,Xjν) = σij . By (1.4.15), the density of the
X’s is given by

|F|n/2(2π )−pn/2 exp

(
−1

2
��ηjkSjk

)
(6.12)

where
Sjk = �ν(Xjν − ξj )(Xkν − ξk), j, k = 1, . . . , p,(6.13)

and whereF = ||ηjk|| is the inverse of the covariance matrix||σjk||.
Consider, first, the case in which theξ ’s are known. Then, (6.12) is an exponential

family withTjk = −(1/2)Sjk. If the matrix||σjk|| is nonsingular, theTjk are affinely
independent with probability 1, so that the result of the preceding example applies.
SinceE(Sjk) = nσjk, the likelihood equations (6.10) reduce tonσjk = Sjk and
thus have the solutions

σ̂jk =
1

n
Sjk.(6.14)

The sample moments and correlations are, therefore, ELEs of the population
variances, covariances, and correlation coefficients. Also, the (jk)th element of
||σ̂jk||−1 is an asymptotically efficient estimator ofηjk. In addition to being the
MLE, σ̂jk is the UMVU estimator ofσjk (Example 2.2.4).

If the ξ ’s are unknown,

ξ̂j =
1

n
�νXjν = Xj,

andσ̂jk, given by (6.14) but withSjk now defined as

Sjk = �ν(Xjν −Xj .)(Xkν −Xk.),(6.15)

continue to be ELEs forξj andσjk (Problem 6.6).
If ξ is known, the asymptotic distribution ofSjk given by (6.13) is immedi-

ate from the central limit theorem sinceSjk is the sum ofn iid variables with
expectation

E(Xjν − ξj )(Xkν − ξk) = σjk

and variance
E[(Xjν − ξj )2(Xkν − ξk)2] − σ 2

jk.

If j �= k, it follows from Problem 1.5.26 that

E[(Xjν − ξj )2(Xkν − ξk)2] = σjjσkk + 2σ 2
jk

so that
var[(Xjν − ξj )(Xkν − ξk)] = σjjσkk + σ 2

jk

and √
n

(
Sjk

n
− σjk

)
L→ N (0, σjjσkk + σ 2

jk).(6.16)

If ξ is unknown, theSjk given by (6.15) are independent of theXi , and the
asymptotic distribution of (6.15) is the same as that of (6.13) (Problem 6.7).‖
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Example 6.5 Bivariate normal distribution. In the preceding example, it was
seen that knowing the means does not affect the efficiency with which the covari-
ances can be estimated. Let us now restrict attention to the covariances and, for
the sake of simplicity, suppose thatp = 2. With an obvious change of notation,
let (Xi, Yi), i = 1, . . . , n be iid, each with density (1.4.16). Since the asymptotic
distribution ofσ̂ , τ̂ , andρ̂ are not affected by whether or notξ andη are known,
let us assumeξ = η = 0. For the information matrixI (θ ) [whereθ = (σ 2, τ 2, ρ)],
we find [Problem 6.8(a)]

(1− ρ2)I (θ ) =



2− ρ2

4σ 4

−ρ2

4σ 2τ 2

−ρ
2σ 2

−ρ2

4σ 2τ 2

2− ρ2

4τ 4

−ρ
2τ 2

−ρ
2σ 2

−ρ
2τ 2

1 +ρ2

1− ρ2


.(6.17)

Inversion of this matrix gives the covariance matrix of the
√
n(θ̂j−θj ) as [Problem

6.8(b)]  2σ 4 2ρ2σ 2τ 2 ρ(1− ρ2)σ 2

2ρ2σ 2τ 2 2τ 4 ρ(1− ρ2)τ 2

ρ(1− ρ2)σ 2 ρ(1− ρ2)τ 2 (1− ρ2)2

 .(6.18)

Thus, we find that
√
n(σ̂ 2 − σ 2)

L→ N (0,2σ 4),
√
n(τ̂ 2 − τ 2)

L→ N (0,2τ 4),(6.19)
√
n(ρ̂ − ρ)

L→ N [0, (1− ρ2)2].

On the other hand, ifσ andτ are known to be equal to 1, the MLÊ̂ρ of ρ satisfies
(Problem 6.9)

√
n ( ˆ̂ρ − ρ)

L→ N

(
0,

(1− ρ2)2

1 +ρ2

)
,(6.20)

whereas ifρ andτ are known, the MLÊ̂σ of σ satisfies (Problem 6.10)

√
n( ˆ̂σ 2 − σ 2)

L→ N

(
0,

4σ 4(1− ρ2)

2− ρ2

)
.(6.21)

‖
A criterion for comparinĝρ to ˆ̂ρ is provided by theasymptotic relative efficiency.

Definition 6.6 If the sequence of estimatorsδn of g(θ ) satisfies
√
n[δn−g(θ )]

L→
N (0, τ 2), and the sequence of estimatorsδ′n′ , whereδ′n′ is based onn′ = n′(n) ob-

servations, also satisfies
√
n [δ′n′ −g(θ )]

L→ N (0, τ 2), then theasymptotic relative
efficiency (ARE) of {δn} with respect to{δ′n} is

eδ,δ′ = lim
n→∞

n′(n)

n
,
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provided the limit exists and is independent of the subsequencesn′.

The interpretation is clear. Suppose, for example, thee = 1/2. Then, for large
values ofn, n′ is approximately equal to (1/2)n. To obtain the same limit distri-
bution (and limit variance), half as many observations are therefore required with
δ′ as withδ. It is then reasonable to say thatδ′ is twice as efficient asδ or thatδ is
half as efficient asδ′.

The following result shows that in order to obtain the ARE, it is not necessary
to evaluate the limitn′(n)/n.

Theorem 6.7 If
√
n [δin− g(θ )]

L→ N (0, τ 2
i ), i = 1,2, then the ARE of {δ2n} with

respect to {δ1n} exists and is e2,1 = τ 2
1/τ

2
2 .

Proof. Since
√
n [δ2n′ − g(θ )] =

√
n

n′
√
n′ [δ2n′ − g(θ )],

it follows from Theorem 1.8.10 that the left side has the same limit distribution
N (0, τ 2

1 ) as
√
n [δ1n − g(θ )] if and only if lim

[
n/n′(n)

]
exists and

τ 2
2 lim

n

n′(n)
= τ 2

1 ,

as was to be proved. ✷

Example 6.8 Continuation of Example 6.5. It follows from (6.19) and 6.20) that
the efficiency ofρ̂ to ˆ̂ρ is

e
ρ̂, ˆ̂ρ =

1

1 +ρ2
.(6.22)

This is 1 whenρ = 0 but can be close to 1/2 when|ρ| is close to 1. Similarly,

e
σ̂ 2, ˆ̂σ 2 =

2(1− ρ)2

2− ρ2
.(6.23)

This efficiency is again 1 whenρ = 0 but tends to zero as|ρ| → 1. This last result,
which at first may seem surprising, actually is easy to explain. Ifρ were equal to
1, andτ = 1 say, we would haveXi = σYi . Since bothXi andYi are observed, we
could then determineσ without error from a single observation. ‖
Example 6.9 Efficiency of nonparametric UMVU estimator. As another ex-
ample of an efficiency calculation, recall Example 2.2.2. IfX1, . . ., Xn are iid
according toN (θ,1), it was found that the UMVU estimator of

p = P (X1 ≤ a)

is

δ1n = X

[√
n

n− 1
(a − X̄)

]
.(6.24)

Suppose now that we do not trust the assumption of normality; then, we might,
instead of (6.24), prefer to use the nonparametric UMVU estimator derived in
Section 2.4, namely

δ2n =
1

n
(No. ofXi ≤ a).(6.25)
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What do we lose by using (6.25) instead of (6.24) if theX’s areN (0,1) after
all? Note thatp is then given by

p = X(a − θ )(6.26)

and that √
n(δ1n − p) → N [0, φ2(a − θ )].

On the other hand,nδ2n is the number of successes inn binomial trials with success
probabilityp, so that

√
n(δ2n − p) → N (0, p(1− p)).

It thus follows from Theorem 6.7 that

e2,1 =
φ2(a − θ )

X(a − θ )[1−X(a − θ )] .(6.27)

At a = θ (whenp = 1/2), e2,1 = (1/2π )/(1/4) = 2/π ≈ 0.637. Asa − θ →∞,
the efficiency tends to zero (Problem 6.12). It can be shown, in fact, that (6.27) is
a decreasing function of|a − θ | (for a proof, see Sampford, 1953). The efficiency
loss resulting from the use ofδ2n instead ofδ1n is therefore quite severe. If the
underlying distribution is not normal, however, this conclusion could change (see
Problem 6.13). ‖
Example 6.10 Normal mixtures. Let X1, . . . , Xn be iid, each with probability
p asN (ξ, σ 2) and probabilityq = 1− p asN (η, τ 2). (The Tukey models are
examples of such distributions withη = ξ.) The joint density of theX’s is then
given by

n∏
i=1

{
p√
2πσ

exp

[
− 1

2σ 2
(xi − ξ )2

]
+

q√
2πτ

exp

[
1

2τ 2
(xi − η)2

]}
.(6.28)

This is a sum of non-negative terms of which one, for example, is proportional to

1

στn−1
exp

[
− 1

2σ 2
(x1− ξ )2 − 1

2τ 2

n∑
i=2

(xi − η)2

]
.

Whenξ = x1 andσ → 0, this term tends to infinity for any fixed values ofη, τ , and
x2, . . . , xn. The likelihood is therefore unbounded and the MLE does not exist. (The
corresponding result holds for any other mixture with densityO{(p/σ )f [(xi −
ξ )/σ ] + (q/τ )f [(xi − η)/τ ]} whenf (0) �= 0.)

On the other hand, the conditions of Theorem 5.1 are satisfied (Problem 6.10)
so that efficient solutions of the likelihood equations exist and asymptotically
efficient estimators can be obtained through Theorem 5.3. One approach to the
determination of the required

√
n-consistent estimators is the method of moments.

In the present case, this means equating the first five moments of theX’s with the
corresponding sample moments and then solving for the five parameters. For the
normal mixture problem, these estimators were proposed in their own right by K.
Pearson (1894). For a discussion and possible simplifications, see Cohen 1967,
and for more details on mixture problems, see Everitt and Hand 1981, Titterington
et al. 1985, McLachlan and Basford 1988, and McLachlan 1997.
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A study of the improvement of an asymptotically efficient estimator over that
obtained by the method of moments has been carried out for the case for which it
is known thatτ = σ (Tan and Chang 1972). IfW = (η − ξ )/σ , the AREs for the
estimation of all four parameters depend only onW andp. As an example, consider
the estimation ofp. Here, the ARE is< 0.01 ifW < 1/2 andp < 0.2; it is< 0.1
if W < 1/2 and 0.2 < p < 0.4, and is> 0.9 if W > 0.5. (For an alternative
starting point for the application of Theorem 5.3, see Quandt and Ramsey 1978,
particularly the discussion by N. Kiefer.) ‖

Example 6.11 Multinomial experiments. Let (X0, X1, . . . , Xs) have the multi-
nomial distribution (1.5.4). In the full-rank exponential representation,

exp[n logp0 + x1 log(p1/p0) + · · · + xs log(ps/p0)]h(x),

the statisticsTj can be taken to be theXj . Using the mean-value parameterization,
the likelihood equations (6.10) reduce tonpj = Xj so that the MLE ofpj is
p̂j = Xj/n (j = 1, . . . , s). If Xj is 0 or n, the likelihood equations have no
solution in the parameter space 0< pj < 1,

∑s
j=1pj < 1. However, for any

fixed vectorp, the probability of anyXj taking on either of these values tends
to zero asn → ∞. (But the convergence is not uniform, which causes trouble
for asymptotic confidence intervals; see Lehmann and Loh 1990.) That the MLEs
p̂j are asymptotically efficient is seen by introducing the indicator variablesXjν ,
ν = 1, . . . , n, which are 1 when theνth trial results in outcomej and are 0
otherwise. Then, the vectors (Xoν, . . . , Xsν) are iid andTjXj1 + · · · +Xjn, so that
asymptotic efficiency follows from Example 6.3. ‖

In applications of the multinomial distribution to contingency tables, thep’s are
usually subject to additional restrictions. Theorem 5.1 typically continues to apply,
although the computation of the estimators tend to be less obvious. This class of
problems is treated comprehensively in Haberman (1973, 1974), Bishop, Fien-
berg, and Holland (1975), and Agresti (1990). Empty cells often present special
problems.

7 Extensions

The discussion of efficient likelihood estimation so far has been restricted to the iid
case. In the present section, we briefly mention extensions to some more general
situations, which permit results analogous to those of Sections 6.3–6.5. Treatments
not requiring the stringent (but frequently applicable) assumptions of Theorem 3.10
and 5.1 have been developed by Le Cam 1953, 1969, 1970, 1986, and others. For
further work in this direction, see Pfanzagl 1970, 1994, Weiss and Wolfowitz 1974,
Ibragimov and Has’minskii 1981, Blyth 1982, Strasser 1985, and Wong(1992).

The theory easily extends to the case of two or more samples. Suppose that the
variablesXα1, . . . , Xαnα in theαth sample are iid according to the distribution with
densityfα,θ (α = 1, . . . , r) and that ther samples are independent. In applications,
it will typically turn out that the vector parameterθ = (θ1, . . . , θs) has some
components occurring in more than one of ther distributions, whereas others may
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be specific to just one distribution. However, for the present discussion, we shall
permit each of the distributions to depend on all the parameters.

The limit situation we shall consider supposes that each of the sample sizesnα
tends to infinity, all at the same rate, but thatr remains fixed. Consider, therefore,
sequences of sample sizesnα,k (k = 1, . . . ,∞) with total sample sizeNk = �rα=1nαk
such that

nα,k/Nk → λα as k→∞(7.1)

where�λα = 1 and theλα are> 0.

Theorem 7.1 Suppose the assumptions of Theorem 5.1 hold for each of the den-
sities fα,θ . Let I (α)(θ ) denote the information matrix corresponding to fα,θ and
let

I (θ ) = �λαI
(α)(θ ).(7.2)

The log likelihood l(θ ) is given by

l(θ ) =
r∑
α=1

nα∑
j=1

logfα,θ (xαj )

and the likelihood equations by

∂

∂θj
l(θ ) = 0 (j = 1, . . . , s).(7.3)

With these identifications, the conclusions of Theorem 5.1 remain valid.

The proof is an easy extension of that of Theorem 5.1 sincel(θ ), and therefore
each term of its Taylor expansion, is a sum ofr independent terms of the kind
considered in the proof of Theorem 5.1 (Problem 7.1). (For further discussion of
this situation, see Bradley and Gart 1962.)

That asymptotic efficiency continues to have the meaning it had in Theorems
3.10 and 5.1and follows from the fact that Theorem 2.6 and its extension to the mul-
tiparameter case also extends to the present situation (see Bahadur 1964, Section
4).

Corollary 7.2 Under the assumptions of Theorem 7.1, suppose that for each α,
all off-diagonal elements in the j th row and j th column of I (α)(θ ) are zero. Then,
the asymptotic variance of θ̂j is the same when the remaining θ ’s are unknown as
when they are known.

Proof. If the property in question holds for eachI (α)(θ ), it also holds forI (θ ) and
the result thus follows from Problem 6.3. ✷

The following four examples illustrate some applications of Theorem 7.1.

Example 7.3 Estimation of a common mean. LetX1, . . . , Xm andY1, . . . , Yn
be independently distributed according toN (ξ, σ 2) andN (ξ, τ 2), respectively,
with ξ , σ , andτ unknown. The problem of estimatingξ was considered briefly in
Example 2.2.3 where it was found that a UMVU estimator forξ does not exist.
Complications also arise in the problem of asymptotically efficient estimation of
ξ .



6.7 ] EXTENSIONS 477

Since the MLEs of the mean and variance of a single normal distribution are
asymptotically independent, Corollary 7.2 applies and shows thatξ can be esti-
mated with the efficiency that is attainable whenσ andτ are known. Now, in that
case, the MLE—which is also UMVU—is

ξ̂ =
(m/σ 2)X̄ + (n/τ 2)Ȳ

m/σ 2 + n/τ 2
.

It is now tempting to claim that Theorem 1.8.10 implies that the asymptotic dis-
tribution of ξ̂ is not changed whenσ 2 andτ 2 are replaced by

σ̂ 2 =
1

m− 1
�(Xi − X̄)2 and τ̂ 2 =

1

n− 1
�(Yj − Ȳ )2(7.4)

and the resulting estimator, sayˆ̂ξ , is asymptotically normal and efficient. However,
this does not immediately follow. To see why, let us look at the simple case where
m = n and, hence, var(ξ̂ ) = (σ 2 + τ 2)/n. Consider the asymptotic distribution of

√
n

ˆ̂
ξ − ξ√
σ 2 + τ 2

=
√
n

ˆ̂
ξ − ξ̂√
σ 2 + τ 2

+
√
n
ξ̂ − ξ√
σ 2 + τ 2

.(7.5)

Sinceξ̂ is efficient, efficiency of̂̂ξ will follow if
√
n( ˆ̂ξ − ξ̂ ) → 0, which is not

the case. But Theorem 7.1 does apply, and an asymptotically efficient estimator is
given by the full MLE (see Problem 7.2). ‖

Example 7.4 Balanced one-way random effects model. Consider the estimation
of variance componentsσ 2

A andσ 2 in model (3.5.1). In the canonical form (3.5.2),
we are dealing with independent normal variablesZ11 andZi1, (i = 2, . . . , s), and
Zij , (i = 1, . . . , s, j = 2, . . . , n). We shall restrict attention to the second and third
group, as suggested by Thompson (1962), and we are then dealing with samples
of sizess − 1 and (n − 1)s from N (0, τ 2) andN (0, σ 2), whereτ 2 = σ 2 + nσ 2

A.
The assumptions of Theorem 7.1 are satisfied withr = 2, θ = (σ 2, τ 2), and the
parameter space = {(σ, τ ) : 0 < σ 2 < τ 2}. For fixedn, the sample sizes
n1 = s − 1 andn2 = s(n − 1) tend to infinity ass → ∞, with λ1 = 1/n and
λ2 = (n− 1)/n.

The joint density of the second and third group ofZ’s constitutes a two-parameter
exponential family; the log likelihood is given by

− l(θ ) = n2 logσ + n1 logτ +
S2

2σ 2
+
S2
A

2τ 2
+ c(7.6)

whereS2 =
∑s
i=1

∑n
j=2Z

2
ij andS2

A =
∑s
i=1Z

2
i1. By Example 7.8, the likelihood

equations have at most one solution. Solving the equations yields

σ̂ 2 = S2/n2, τ̂ 2 = S2
A/n1,(7.7)

and these are the desired (unique, ML) solution, provided they are in, that is,
they satisfy

σ̂ 2 < τ̂ 2.(7.8)
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It follows from Theorem 5.1 that the probability of (7.8) tends to 1 ass →∞ for
anyθ ∈ ; this can also be seen directly from the fact thatσ̂ 2 andτ̂ 2 tend toσ 2

andτ 2 in probability.
What can be said when (7.8) is violated? The likelihood equations then have no

root in and an MLE does not exist (the likelihood attains its maximum at the
boundary point̂σ 2 =τ̂ 2 =(S2

A +S2)/(n1 +n2) which is not in). However, none of
this matters from the present point of view since the asymptotic theory has nothing
to say about a set of values whose probability tends to zero. (For small-sample
computations of the mean squared error of a number of estimators ofσ 2 andσ 2

A,
see Klotz, Milton and Zacks 1969, Portnoy 1971, and Searle et al. 1992.)

The joint asymptotic distribution of̂σ 2 andτ̂ 2 can be obtained from Theorem
6.7 or directly from the distribution ofS2

A andS2 and the CLT, and a linear trans-
formation of the limit distribution then gives the joint asymptotic distribution of
σ̂ 2 andσ̂ 2

A (Problem 7.3). ‖
Example 7.5 Balanced two-way random effects model. A new issue arises as we
go from the one-way to the two-way layout with the model given by (3.5.5). After
elimination ofZ111 (in the notation of Example 5.2), the data in canonical form
consist of four samplesZi11 (i = 2, . . . , I ),Z1j1 (j = 2, . . . , J ),Zij1 (i = 2, . . . , I ,
j = 2, . . . , J ), andZijk (i = 1, . . . , I , j = 1, . . . , J , k = 2, . . . , n), and the
parameter isθ = (σ, τA, τB, τC) where

τ 2
C = σ 2 + nσ 2

C, τ 2
B = nIσ 2

B + nσ 2
C + σ 2, τ 2

A = nJσ 2
A + nσ 2

C + σ 2(7.9)

so that = {θ : σ 2 < τ 2
C < τ

2
A, τ

2
B}. The joint density of these variables constitutes

a four-parameter exponential family. The likelihood equations thus again have at
most one root, and this is given by

σ̂ 2 = S2/(n− 1)IJ, τ̂ 2
C = S2

C/(I − 1)(J − 1),

τ̂ 2
B = S2

B/(J − 1), τ̂ 2
A = S2

A/(I − 1)

whenσ̂ 2 < τ̂ 2
C < τ̂A

2
, τ̂B

2. No root exists when these inequalities fail.
In this case, asymptotic theory requires that bothI andJ tend to infinity, and

assumption (7.1) of Theorem 7.1 then does not hold. Asymptotic efficiency of the
MLEs follows, however, from Theorem 5.1 since each of the samples depends
on only one of the parametersσ 2, τ 2

A, τ 2
B , andτ 2

C . The apparent linkage of these
parameters through the inequalitiesσ 2 < τ 2

C < τ
2
A, τ 2

B is immaterial. The true point
θ 0 = (σ 0, τ 0

A, τ
0
B, τ

0
C) is assumed to satisfy these restrictions, and each parameter

can then independently vary about the true value, which is all that is needed for
Theorem 5.1. It, therefore, follows as in the preceding example that the MLEs are
asymptotically efficient, and that

√
(n− 1)IJ (σ̂ 2− σ 2), and so on. have the limit

distributions given by Theorem 5.1 or are directly obtainable from the definition
of these estimators. ‖

A general large-sample treatment both of components of variance and the more
general case of mixed models, without assuming the models to be balanced was
given by Miller (1977); see also Searle et al. 1992, Cressie and Lahiri 1993, and
Jiang 1996, 1997.
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Example 7.6 Independent binomial experiments. As in Section 3.5, letXi
(i = 1, . . . , s) be independently distributed according to the binomial distribu-
tions b(pi, ni), with thepi being functions of a smaller number of parameters.
If the ni tend to infinity at the same rate, the situation is of the type considered
in Theorem 7.1, which will, in typical cases, ensure the existence of an efficient
solution of the likelihood equations with probability tending to 1.

As an illustration, suppose, as in (3.6.12), that thep’s are given in terms of the
logistic distribution, and more specifically that

pi =
e−(α+βti )

1 + e−(α+βti )
(7.10)

where thet ’s are known numbers andα andβ are the parameters to be estimated.
The likelihood equations∑

nipi =
∑

xi,
∑

nitipi =
∑

tixi(7.11)

have at most one solution (Problem 7.6) which will exist with probability tending
to 1 (but may not exist for some particular finite values) and which can be obtained
by standard iterative methods.

That the likelihood equations have at most one solution is true not only for the
model (7.10) but more generally when

pi = 1− F
(∑

βj tj

)
(7.12)

where thets are known, theβs are being estimated, andF is a known distribution
function with logF (x) and log[1− F (x)] strictly concave. (See Haberman 1974,
Chapter 8; and Problem 7.7.) For further discussion of this and more general
logistic regression models, see Pregibon 1981 or Searle et al. 1992, Chapter 10.‖

For the multinomial problem mentioned in the preceding section and those of
Example 7.6, alternative methods have been developed which are asymptotically
equivalent to the ELEs, and hence also asymptotically efficient. These methods
are based on minimizingχ2 or some other functions measuring the distance of the
vector of probabilities from that of the observed frequencies. (See, for example,
Neyman 1949, Taylor 1953, Le Cam 1956, 1990, Wijsman 1959, Berkson 1980,
Amemiya 1980, and Ghosh and Sinha 1981 or Agresti 1990 for entries to the
literature on choosing between these different estimators.)

The situation of Theorem 7.1 shares with that of Theorem 3.10 the crucial prop-
erty that the total amount of informationT (θ ) asymptotically becomes arbitrarily
large. In the general case of independent but not identically distributed variables,
this need no longer be the case.

Example 7.7 Total information. LetXi (i = 1, . . . , n) be independent Poisson
variables withE(Xi) = γiλwhere theγ ’s are known numbers. Consider two cases.
(a)

∑∞
i=1 γi < ∞. The amount of informationXi contains aboutλ is γi/λ

by (2.5.11) and Table 2.5.1 and the total amount of informationTn(λ) that
(X1, . . . , Xn) contains aboutλ is therefore

Tn(λ) =
1

λ

n∑
i=1

γi.(7.13)



480 ASYMPTOTIC OPTIMALITY [ 6.7

It is intuitively plausible that in these circumstancesλcannot be estimated con-
sistently because only the early observations provide an appreciable amount
of information. To prove this formally, note thatYn = �ni=1Xi is a sufficient
statistic forλ on the basis of (X1, . . . , Xn) and thatYn has Poisson distribu-
tion with meanλ�ni=1γi . Thus, all theY ’s are less informative than a random
variableY with distributionP (λ�∞i=1γi) in the sense that the distribution of
any estimator based onYn can be duplicated by one based onY (Problem
7.9). Sinceλ cannot be estimated exactly on the basis ofY , the result follows.

(b) �∞i=1γi =∞. Here, the MLEδn = �ni=1Xi/�
n
i=1γi is consistent and asymptot-

ically normal (Problem 7.10) with[
n∑
i=1

γi

]1/2

(δn − λ)
L→ N (0, λ).(7.14)

Thus,δn is approximately distributed asN [λ,1/Tn(λ)] and an extension of The-
orem 2.6 to the present case (see Bahadur 1964) permits the conclusion thatδn is
asymptotically efficient.

Note: The norming constant required for asymptotic normality must be propor-
tional to

√
�ni=1γi . Depending on the nature of theγ ’s, this can be any function

of n tending to infinity rather than the customary
√
n. In general, it is the total

amount of information rather than the sample size which governs the asymptotic
distribution of an asymptotically efficient estimator. In the iid case,Tn(θ ) = nI (θ ),
so that

√
Tn(θ ) is proportional to

√
n. ‖

A general treatment of the case of independent random variables with densities
fj (xj |θ ), θ = (θ1, . . . , θr ), along the lines of Theorems 3.10 and 5.1 has been given
by Bradley and Gart (1962) and Hoadley (1971) (see also Nordberg 1980). The
proof (for r = 1) is based on generalizations of (3.18)-(3.20) (see Problem 7.14)
and hence depends on a suitable law of large numbers and central limit theorem for
sums of independent nonidentical random variables. In the multiparameter case,
of course, it may happen that some of the parameters can be consistently estimated
and others not.

The theory for iid variables summarized by Theorems 2.6, 3.10, and 5.1 can be
generalized not only to the case of independent nonidentical variables but also to
dependent variables whose joint distribution depends on a fixed number of param-
etersθ = (θ1, . . . , θr ) where, for illustration, we taker = 1. (The generalization
to r > 1 is straightforward.) The log likelihoodl(θ ) is now the sum of the loga-
rithms of the conditional densitiesfj (xj |θ, x1, . . . , xj−1) and the total amount of
informationTn(θ ) is the sum of the expected conditional amounts of information
Ij (θ ) in Xj , givenX1, . . . , Xj−1:

Ij (θ ) = E

{
E

[
∂

∂θ
logfj (Xj |θ,X1, . . . , Xj−1)

]2
}

= E

[
∂

∂θ
logfj (Xj |θ )

]2

.

Under regularity conditions on thefj ’s, analogous to those of Theorems 3.10
and 5.1 together with additional conditions to ensure that the total amount of
information tends to infinity asn→∞ and that the appropriate CLT for dependent
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variables is applicable, it can be shown that with probability tending to 1, there

exists a root̂θn of the likelihood equations such that
√
Tn(θ )(θ̂n − θ ) L→ N (0,1).

This program has been carried out in a series of papers by Bar-Shalom (1971),
Bhat (1974), and Crowder (1976).5 [The required extension of Theorem 2.6 can be
obtained from Bahadur (1964); see also Kabaila 1983.] The following illustrates
the theory with a simple classic example.

Example 7.8 Normal autoregressive Markov series. Let

Xj = βXj−1 +Uj , j = 2, . . . , n,(7.15)

where theUj are iid asN (0,1), whereβ is an unknown parameter satisfying
|β| < 1,6 and whereX1 isN (0, σ 2). TheX’s all have marginal normal distributions
with mean zero. The variance ofXj satisfies

var (Xj ) = β2var(Xj−1) + 1(7.16)

and hence var(Xj ) = σ 2 for all j provided

σ 2 = 1/(1− β2).(7.17)

This is the stationary case in which (Xj1, . . . , Xjk) has the same distribution as
(Xj1+r , . . . , Xjk+r ) for all r = 1,2, . . . (Problem 7.15).

The amount of information that eachXj (j > 1) contains aboutβ is (Problem
7.17)Ij (θ ) = 1/(1−β2), so thatTn(β) ∼ n/(1−β2). The general theory therefore
suggests the existence of a rootβ̂n of the likelihood equation such that

√
n(β̂n − β)

L→ N (0,1− β2).(7.18)

That (7.18) does hold can also be checked directly (see, for example, Brockwell
and Davis 1987, Section 8.8 ). ‖

The conclusions of this section up to this point can be summarized by saying
that the asymptotic theory developed for the iid case in Sections 6.2–6.6 continues
to hold—under appropriate safeguards—even if the iid assumption is dropped,
provided the number of parameters is fixed and the total amount of information
goes to infinity.

We shall now briefly consider two generalizations of the earlier situation to
which this conclusion does not apply. The first concerns the case in which the
number of parameters tends to infinity with the total sample size.

In Theorem 7.1, the numberr of samples was considered fixed, whereas the
sample sizesnα were assumed to tend to infinity. Such a model is appropriate when
one is dealing with a small number of moderately large samples. A quite different
asymptotic situation arises in the reverse case of a large number (considered as
tending to infinity) of finite samples. Here, an important distinction arises between
structural parameters such asξ in Example 7.3, which are common to all the
samples and which are the parameters of interest, andincidental parameters such

5 A review of the literature of maximum likelihood estimation in both discrete and continuous pa-
rameter stochastic processes can be found in Basawa and Prakasa Rao(1980).

6 For a discussion without this restriction, see Anderson (1959) and Heyde and Feigin (1975).
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asσ 2 andτ 2 in Example 7.3, which occur in only one of the samples. That Theorem
5.1 does not extend to this case is illustrated by the following two examples.

Example 7.9 Estimation of a common variance. Let Xαj (j = 1, . . . , r) be
independently distributed according toN (θα, σ 2), α = 1, . . . , n. The MLEs are

θ̂α = Xα·, σ̂ 2 =
1

rn
��(Xαj −Xα.)2.(7.19)

Furthermore, these are the unique solutions of the likelihood equations.
However, in the present case, the MLE ofσ 2 is not even consistent. To see this,

note that the statistics
S2
α = �(Xαj −Xα.)2

are identically independently distributed with expectation

E(S2
α) = (r − 1)σ 2,

so that�S2
α/n→ (r − 1)σ 2 and hence

σ̂ 2 → r − 1

r
σ 2 in probability.(7.20)

A consistent and efficient estimator sequence ofσ 2 is available in the present case,
namely

ˆ̂σ 2
=

1

(r − 1)n
�S2

α.

‖
The study of this class of problems (including Example 7.9) was initiated by

Neyman and Scott (1948), who also considered a number of other examples in-
cluding one in which an MLE is consistent but not efficient.

A reformulation of the problem of structural parameters was proposed by Kiefer
and Wolfowitz (1956), who considered the case in which the incidental parameters
are themselves random variables, identically independently distributed according
to some distribution, but, of course, unobservable. This will often bring the situation
into the area of applicability of Theorems 5.1 or 7.1.

Example 7.10 Regression with both variables subject to error. LetXi andYi
(i = 1, . . . , n) be independent normal with meansE(Xi) = ξi andE(Yi) = ηi and
variancesσ 2 andτ 2, whereηi = α+βξi . There is, thus, a linear relationship between
ξ andη, both of which are observed with independent, normally distributed errors.
We are interested in estimatingβ and, for the sake of simplicity, shall takeα as
known to be zero. Then,θ = (β, σ 2, τ 2, ξ1, . . . , ξn), with the first three parameters
being structural and theξ ’s incidental. The likelihood is proportional to

1

σnτn
exp

[
− 1

2σ 2
�(xi − ξi)2 − 1

2τ 2
�(yi − βξi)2

]
.(7.21)

The likelihood equations have two roots, given by (Problem 7.20),

β̂ = ±
√
�y2

i

�x2
i

, 2nσ̂ 2 = �x2
j −

1

β̂
�xjyj , 2nτ̂ 2 = �y2

j − β̂�xjyj ,(7.22)
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2ξ̂i = xi +
1

β̂
yi, i = 1, . . . , n

and the likelihood is larger at the root for whicĥβ�xiyi > 0. If Theorem 5.1
applies, one of these roots must be consistent and, hence, tend toβ in probabil-
ity. SinceS2

X = �X2
j andS2

Y = �Y 2
j are independently distributed according to

noncentralχ2-distributions with noncentrality parametersλ2
n = �nj=1ξ

2
j andβ2λ2

n,
their limit behavior depends on that ofλn. (Note, incidentally, that forλn = 0, the
parameterβ becomes unidentifiable.) Suppose thatλ2

n/n → λ2 > 0. The distri-
bution ofS2

X andS2
Y is unchanged if we replace eachξ2

i by λ2
n/n, and by the law

of large numbers,�X2
j /n therefore has the same limit as

E(X2
1) = σ 2 +

1

n
λ2
n→ σ 2 + λ2.

Similarly, �Y 2
j /n tends in probability toτ 2 + β2λ2 and, hence,β̂2

n

P→ (τ 2 +
β2λ2)/(σ 2 + λ2). Thus, neither of the roots is consistent. [It was pointed out by
Solari (1969) that the likelihood in this problem is unbounded so that an MLE
does not exist (Problem 7.21). The solutions (7.22) are, in fact, saddlepoints of the
likelihood surface.]

If in (7.21) it is assumed thatτ = σ , it is easily seen that the MLE ofβ is
consistent (Problem 7.18). For a discussion of this problem and some of its gener-
alizations, see Anderson 1976, Gleser 1981, and Anderson and Sawa 1982. Another
modification leading to a consistent MLE is suggested by Copas (1972a).

Instead of (7.21), it is sometimes assumed that theξ ’s are themselves iid accord-
ing to a normal distributionN (µ, γ 2). The pairs (Xi, Yi) then constitute a sample
from a bivariate normal distribution, and asymptotically efficient estimators of the
parametersµ, γ , β, σ , andτ can be obtained from the MLEs of Example 6.4. An
analogous treatment is possible for Example 7.9. ‖

Kiefer and Wolfowitz (1956) have considered not only this problem and that
of Example 7.9, but a large class of problems of this type by postulating that
the ξ ’s are iid according to a distributionG, but treatingG as unknown, subject
only to some rather general regularity assumptions. Alternative approaches to the
estimation of structural parameters in the presence of a large number of incidental
parameters are discussed by Andersen (1970b) and Kalbfleisch and Sprott (1970).
A discussion of Example 7.10 and its extension to more general regression models
can be found in Stuart and Ord (1991, Chapters 26 and 28), and of Example 7.9
in Jewell and Raab (1981).

A review of these models, also known asmeasurement error models, is given
by Gleser (1991) and is the topic of the book by Carroll, Ruppert, and Stefanski
(1995).

Another extension of likelihood estimation leads us along the lines of Example
4.5, in which it was seen that an estimator such as the sample median, which
was not the MLE, was a desirable alternative. Such situations can lead naturally
to replacing the likelihood function by another function, often with the goal of
obtaining arobust estimator.



484 ASYMPTOTIC OPTIMALITY [ 6.7

Such an approach was suggested by Huber (1964), resulting in a compromise be-
tween the mean and the median. The mean and the median minimize, respectively,∑

(xi − a)2 and
∑ |xi − a|. Huber suggested minimizing instead

n∑
i=1

ρ(xi − a)(7.23)

whereρ is given by

ρ(x) =

{ 1
2x

2 if |x| ≤ k
k|x| − 1

2k
2 if |x| ≥ k.(7.24)

This function is proportional tox2 for |x| ≤ k, but outside this interval, it replaces
the parabolic arcs by straight lines. The pieces fit together so thatρ and its derivative
ρ ′ are continuous (Problem 7.22). Ask gets larger,ρ will agree with1

2x
2 over most

of its range, so that the estimator comes close to the mean, Ask gets smaller, the
estimator will become close to the median. As a moderate compromise, the value
k = 1.5 is sometimes suggested.

TheHuber estimators minimizing (7.23) withρ given by (7.24) are a subset of
the class ofM-estimators obtained by minimizing (7.23) for arbitraryρ. If ρ is
convex and even, as is the case for (7.24), it follows from Theorem 1.7.15 that the
minimizing values of (7.23) constitute a closed interval; ifρ is strictly convex, the
minimizing value is unique. Ifρ has a derivativeρ ′ = ψ , theM-estimatorsMn

may be defined as the solutions of the equation

n∑
i=1

ψ(xi − a) = 0.(7.25)

If X1, . . . , Xn are iid according toF (x − θ ) whereF is symmetric about zero
and has densityf , it turns out under weak assumptions onψ andF that

√
n(Mn − θ ) → N [0, σ 2(F,ψ)](7.26)

where

σ 2(F,ψ) =

∫
ψ2(x)f (x)dx

[
∫
ψ ′(x)f (x)dx]2

,(7.27)

provided both numerator and denominator on the right side are finite and the
denominator is positive.

Proofs of (7.26) can be found in Huber (1981), in which a detailed account of the
theory ofM-estimators is given not only for location parameters, but also in more
general settings. See also Serfling 1980, Chapter 7, Hampel et al. 1986, Staudte
and Sheather 1990, as well as Problems 7.24-7.26.

For
ρ(x) = − logf (x),(7.28)

minimizing (7.23) is equivalent to maximizing
∏
f (xi − a), and theM-estimator

then coincides with the maximum likelihood estimator. In particular, for known
F , theM-estimator ofθ corresponding to (7.28) satisfies (7.26) withσ 2 = 1/If
(see Theorem 3.10). Further generalizations are discussed in Note 10.4.
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The results of this chapter have all been derived in the so-calledregular case,
that is, when the densities satisfy regularity assumptions such as those of Theorems
2.6, 3.10, and 5.1. Of particular importance for the validity of the conclusions is
that the support of the distributionsPθ does not vary withθ . Varying support brings
with it information that often makes it possible to estimate some of the parameters
with greater accuracy than that attainable in the regular case.

Example 7.11 Uniform MLE. LetX1, . . . , Xn be iid asU (0, θ ). Then, the MLE
of θ is θ̂n = X(n) and satisfies (Problem 2.6)

n(θ − θ̂n) L→ E(0, θ ).(7.29)

Sinceθ̂n always underestimatesθ and has a bias of order 1/n, the order of the
errorθ̂n− θ , considers as an alternative the UMVU estimatorδn = [(n+1)/n]X(n),
which satisfies

n(θ − δn) L→ E(−θ, θ).(7.30)

The two asymptotic distributions have the same variance, but the first has expec-
tationθ , whereas the second is asymptotically unbiased with expectation zero and
is thus much better centered.

The improvement ofδn over θ̂n is perhaps seen more clearly by considering
expected squared error. We have (Problem 2.7)

E[n(θ̂n − θ )]2 → 2θ2, E[n(δn − θ )]2 → θ2.(7.31)

Thus, the risk efficiency of̂θn with respect toδn is 1/2. ‖
The example illustrates two ways in which such situations differ from the regular

iid cases. First, the appropriate normalizing factor isn rather than
√
n, reflecting

the fact that the error of the MLE is of order 1/n instead of 1/
√
n. Second, the

MLE need no longer be asymptotically optimal even when it is consistent.

Example 7.12 Exponential MLE. LetX1, . . . , Xn be iid according to the expo-
nential distributionE(ξ, b). Then, the MLEs ofξ andb are

ξ̂ = X(1) and b̂ =
1

n
�[Xi −X(1)].(7.32)

It follows from Problem 1.6.18 thatn[X(1) − ξ ]/b is exactly (and hence asymp-
totically) distributed asE(0,1). As was the case for̂θ in the preceding example,
ξ̂ is therefore asymptotically biased. More satisfactory is the UMVU estimatorδn
given by (2.2.23), which is obtained from̂ξ by subtracting an estimator of the bias
(Problem 7.27).

It was further seen in Problem 1.6.18 that 2nb̂/b is distributed asχ2
2n−2. Since

(χ2
n − n)/

√
2n→ N (0,1) in law, it is seen that

√
n(b̂− b) → N (0, b2). We shall

now show that̂b is asymptotically efficient. For this purpose, consider the case that
ξ is known. The resulting one-parameter family of theX’s is an exponential family

and the MLEˆ̂b of b is asymptotically efficient and satisfies
√
n( ˆ̂b−b) → N (0, b2)

(Problem 7.27). Sincêb and ˆ̂b have the same asymptotic distribution,b̂ is a fortiori
also asymptotically efficient, as was to be proved. ‖
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Example 7.13 Pareto MLE. LetX1, . . . , Xn be iid according to the Pareto dis-
tributionP (a, c) with density

f (x) = aca/xa+1, 0< c < x, 0< a.(7.33)

The distribution is widely used, for example, in economics (see Johnson, Kotz,
and Balakrishnan 1994, Chapter 20) and is closely connected with the exponential
distribution of the preceding example through the fact that ifX has density (7.33),
thenY = logX has the exponential distributionE(ξ, b) with (Problem 1.5.25)

ξ = logc, b = 1/a.(7.34)

From this fact, it is seen that the MLEs ofa andc are

â =
n

� log(Xi/X(1))
and ĉ = X(1)(7.35)

and that these estimators are independently distributed,ĉ asP (na, c) and 2na/â
asχ2

2n−2 (Problem 7.29).

Sinceb̂ is asymptotically efficient in the exponential case, the same is true of 1/b̂

and hence of̂a. On the other hand,n(X(1)− c) has the limit distributionE(0, c/a)
and hence is biased. As was the case with the MLE ofξ in Example 7.12, an
improvement over the MLÊc of c is obtained by removing its bias and replacing
ĉ by the UMVU estimator

X(1)

[
1− 1

(n− 1)â

]
.(7.36)

For the details of these calculations, see Problems 7.29–7.31. ‖
Example 7.14 Lognormal MLE. As a last situation with variable support, con-
sider a sampleX1, . . . , Xn from a three-parameter lognormal distribution, defined
by the requirement thatZi = log(Xi − ξ ) are iid asN (γ, σ 2), so that

f (x; ξ, γ, σ 2) =
1

(x − ξ )√2πσ
exp

{
− 1

2σ 2
[log(x − ξ )− γ ]2

}
(7.37)

whenx > ξ , andf = 0 otherwise. Whenξ is known, the problem reduces to that
of estimating the meanγ and varianceσ 2 from the normal sampleZ1, . . . , Zn.
However, whenξ is unknown, the support varies withξ . Although in this case the
density (7.37) tends to zero very smoothly atξ (Problem 7.34), the theory of Section
6.5 is not applicable, and the problem requires a more powerful approach such as
that of Le Cam (1969). [For a discussion of the literature on this problem, see, for
example, Johnson, Kotz, and Balakrishnan 1994, Chapter 14. A comprehensive
treatment of the lognormal distribution is given in Crow and Shimizu (1988).]

The difficulty can be circumvented by a device used in other contexts by Kemp-
thorne (1966), Lambert (1970), and Copas (1972a), and suggested for the present
problem by Giesbrecht and Kempthorne (1976). These authors argue that observa-
tions are never recorded exactly but only to the nearest unit of measurement. This
formulation leads to a multinomial model of the kind considered for one parameter
in Example 4.6, and Theorem 5.1 is directly applicable.
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The corresponding problem for the three-parameter Weibull distribution is re-
viewed in Scholz (1985). For further discussion of such irregular cases, see, for
example, Polfeldt 1970 and Woodrofe 1972. ‖

Although the MLE, or bias-corrected MLE, may achieve the smallest asymptotic
variance, it may not minimize mean squared error when compared with all other
estimators. This is illustrated by the following example in which, for the sake of
simplicity, we shall consider expected squared error instead of asymptotic variance.

Example 7.15 Second-order mean squared error. Consider the estimation of
σ 2 on the basis of a sampleX1, . . . , Xn fromN (0, σ 2). The MLE is then

σ̂ 2 =
1

n
�X2

i ,

which happens to be unbiased, so that no correction is needed. Let us now consider
the more general class of estimators

δn =

(
1

n
+
a

n2

)
�X2

i .(7.38)

It can be shown (Problem 7.32) that

E(δn − σ 2)2 =
2σ 4

n
+

(4a + a2)σ 4

n2
+O

(
1

n3

)
.(7.39)

Thus, the estimatorsδn are all asymptotically efficient, that is,nE(δn − θ )2 →
1/I (θ ) whereθ = σ 2. However, the MLE does not minimize the error in this class
since the term of order 1/n2 is minimized not bya = 0 (MLE) but bya = −2, so
that (1/n− 2/n2)�X2

i has higher second-order efficiency than the MLE. In fact,
the normalized limiting risk difference between the MLE (a = 0) relative toδn
with a = −2 is 2, that is, the limiting risk of the MLE is larger (Problem 7.32) .‖

A uniformly best estimator (up to second-order terms) typically will not ex-
ist. The second-order situation is thus similar to that encountered in the exact
(small-sample) theory. One can obtain uniform second-order optimality by impos-
ing restrictions such as first-order unbiasedness, or must be content with weaker
properties such as second-order admissibility or minimaxity. An admissibility re-
sult (somewhat similar to Theorem 5.2.14) is given by Ghosh and Sinha (1981);
the minimax problem is treated by Levit (1980).

8 Asymptotic Efficiency of Bayes Estimators

Bayes estimators were defined in Section 4.1, and many of their properties were
illustrated throughout Chapter 4. We shall now consider their asymptotic behavior.

Example 8.1 Limiting binomial. If X has the binomial distributionb(p, n) and
the loss is squared error, it was seen in Example 4.1.5 that the Bayes estimator of
p corresponding to the beta priorB(a, b) is

δn(X) = (a +X)/(a + b + n).
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Thus,

√
n[δn(X)− p] =

√
n

(
X

n
− p

)
+

√
n

a + b + n

[
a − (a + b)

X

n

]
and it follows from Theorem 1.8.10 that

√
n[δn(X)− p] has the same limit distri-

bution as
√
n[X/n − p], namely the normal distributionN [0, p(1− p)]. So, the

Bayes estimator of the success probabilityp, suitably normalized, has a normal
limit distribution which is independent of the parameters of the prior distribution
and is the same as that of the MLEX/n. Therefore, these Bayes estimators are
asymptotically efficient. (See Problem 8.1 for analogous results.) ‖

This example raises the question of whether the same limit distribution also
obtains when the conjugate priors in this example are replaced by more general
prior distributions, and whether the phenomenon persists in more general situa-
tions. The principal result of the present section (Theorem 8.3) shows that, under
suitable conditions, the distribution of Bayes estimators based onn iid random
variables tends to become independent of the prior distribution asn → ∞ and
that the Bayes estimators are asymptotically efficient.

Versions of such a theorem were given by Bickel and Yahav (1969) and by Ibrag-
imov and Has’minskii (1972, 1981). The present proof, which combines elements
from these papers, is due to Bickel. We begin by stating some assumptions.

LetX1, . . . , Xn be iid with densityf (xi |θ ) (with respect toµ), whereθ is real-
valued and the parameter space is an open interval. The true value ofθ will be
denoted byθ0.

(B1) The log likelihood functionl(θ ) satisfies the assumptions of Theorem 2.6.

To motivate the next assumption, note that under the assumptions of Theorem

2.6, if θ̃ = θ̃n is any sequence for which̃θ
P→ θ then

l(θ ) = l(θ0) + (θ − θ0)l′(θ0)− 1

2
(θ − θ0)2[nI (θ0) +Rn(θ )](8.1)

where
1

n
Rn(θ )

P→ 0 as n→∞(8.2)

(Problem 8.3). We require here the following stronger assumption.

(B2) Given anyε > 0, there existsδ > 0 such that in the expansion (8.1), the probability
of the event

sup

{∣∣∣∣1

n
Rn(θ )

∣∣∣∣ : |θ − θ0| ≤ δ
}
≥ ε(8.3)

tends to zero asn→∞.

In the present case it is not enough to impose conditions onl(θ ) in the neighbor-
hood ofθ0, as is typically the case in asymptotic results. Since the Bayes estimators
involve integration over the whole range ofθ values, it is also necessary to control
the behavior ofl(θ ) at a distance fromθ0.
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(B3) For anyδ > 0, there existsε > 0 such that the probability of the event

sup

{
1

n
[l(θ )− l(θ0)] : |θ − θ0| ≥ δ

}
≤ −ε(8.4)

tends to 1 asn→∞.

(B4) The prior densityπ of θ is continuous and positive for allθ ∈ .

(B5) The expectation ofθ underπ exists, that is,∫
|θ |π (θ )dθ <∞.(8.5)

To establish the asymptotic efficiency of Bayes estimators under these assump-
tions, we shall first prove that for large values ofn, the posterior distribution ofθ
given theX’s is approximately normal with

mean =θ0 +
1

nI (θ0)
l′(θ0) and variance = 1/nI (θ0).(8.6)

Theorem 8.2 If π∗(t |x) is the posterior density of
√
n(θ − Tn) where

Tn = θ0 +
1

nI (θ0)
l′(θ0),(8.7)

(i) then if (B1)-(B4) hold,∫ ∣∣∣π∗(t |x)−
√
I (θ0)φ

[
t
√
I (θ0)

]∣∣∣ dt P→ 0.(8.8)

(ii) If, in addition, (B5) holds, then∫
(1 + |t |)

∣∣∣∣π∗(t |x)−
√
I (θ0)φ

[
t
√
I (θ0)

]∣∣∣∣ dt P→ 0.(8.9)

Proof. (i) By the definition ofTn,

π∗(t |x) =
π

(
Tn + t√

n

)
exp

[
l
(
Tn + t√

n

)]
∫
π

(
Tn + u√

n

)
exp

[
l
(
Tn + u√

n

)]
du

(8.10)

= eω(t)π

(
Tn +

t√
n

)
/Cn

where

ω(t) = l

(
Tn +

t√
n

)
− l(θ0)− 1

2nI (θ0)
[l′(θ0)]2(8.11)

and

Cn =
∫
eω(u)π

(
Tn +

u√
n

)
du.(8.12)

We shall prove at the end of the section that

J1 =
∫ ∣∣∣∣eω(t)π

(
Tn +

t√
n

)
− e−t2I (θ0)/2π (θ0)

∣∣∣∣ dt P→ 0,(8.13)
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so that

Cn
P→

∫
e−t

2I (θ0)/2π (θ0) dt = π (θ0)
√

2π/I (θ0).(8.14)

The left side of (8.8) is equal toJ/Cn, where

J =
∫ ∣∣∣∣eω(t)π

(
Tn +

t√
n

)
− Cn

√
I (θ0)φ

[
t
√
I (θ0)

]∣∣∣∣ dt(8.15)

and, by (8.14), it is enough to show thatJ
P→ 0.

Now, J ≤ J1 + J2 whereJ1 is given by (8.13) and

J2 =
∫ ∣∣∣∣Cn√I (θ0)φ

[
t
√
I (θ0)

]
− exp

[
− t

2

2
I (θ0)

]
π (θ0)

∣∣∣∣ dt
=

∣∣∣∣Cn√I (θ0)√
2π

− π (θ0)

∣∣∣∣ ∫ exp

[
− t

2

2
I (θ0)

]
dt.

By (8.13) and (8.14),J1 andJ2 tend to zero in probability, and this completes the
proof of part (i).

(ii) The left side of (8.9) is equal to

1

Cn
J ′ ≤ 1

Cn
(J ′1 + J ′2)

whereJ ′, J ′1, andJ ′2 are obtained fromJ , J1, andJ2, respectively, by inserting the
factor (1 +|t |) under the integral signs. It is therefore enough to prove thatJ ′1 and
J ′2 both tend to zero in probability. The proof forJ ′2 is the same as that forJ2; the
proof forJ ′1 will be given at the end of the section, together with that forJ1. ✷

On the basis of Theorem 8.2, we are now able to prove the principal result of
this section.

Theorem 8.3 If (B1)-(B5) hold, and if θ̃n is the Bayes estimator when the prior
density is π and the loss is squared error, then

√
n(θ̃n − θ0)

£→ N [0,1/I (θ0)],(8.16)

so that θ̃n is consistent7 and asymptotically efficient.

Proof. We have
√
n(θ̃n − θ0) =

√
n(θ̃n − Tn) +

√
n(Tn − θ0).

By the CLT, the second term has the limit distributionN [0,1/I (θ0)], so that it only
remains to show that √

n(θ̃n − Tn) P→ 0.(8.17)

Note that Equation (8.10 ) says thatπ∗(t |x) = 1√
n
π (Tn + t√

n
|x), and, hence, by a

change of variable, we have

θ̃n =
∫
θπ (θ |x) dθ

7 A general relationship between the consistency of MLEs and Bayes estimators is discussed by
Strasser (1981).



6.8 ] ASYMPTOTIC EFFICIENCY OF BAYES ESTIMATORS 491

=
∫ (

t√
n

+ Tn

)
π∗(t |x) dt

=
1√
n

∫
tπ∗(t |x) dt + Tn

and hence √
n(θ̃n − Tn) =

∫
tπ∗(t |x) dt.

Now, since
∫
t
√
I (θ0)φ

[
t
√
I (θ0)

]
dt = 0,

√
n|θ̃n − Tn| =

∣∣∣∣∫ tπ∗(t |x) dt −
∫
t
√
I (θ0)φ

[
t
√
I (θ0)

]
dt

∣∣∣∣
≤

∫
|t |

∣∣∣π∗(t |x)−
√
I (θ0)φ

[
t
√
I (θ0)

]∣∣∣ dt,
which tends to zero in probability by Theorem 8.2. ✷

Before discussing the implications of Theorem 8.3, we shall show that assump-
tions (B1)-(B5) are satisfied in exponential families.

Example 8.4 Exponential families. Let

f (xi |θ ) = eθT (xi )−A(θ ).

so that

A(θ ) = log
∫
eθT (x)dµ(x).

Recall from Section 1.5 thatA is differentiable to all orders and that

A′(θ ) = Eθ [T (X)],

A′′(θ ) = varθ [T (X)] = I (θ ).

SupposeI (θ ) > 0. Then,

l(θ )− l(θ0) = (θ − θ0)�T (Xi)− n[A(θ )− A(θ0)]

= (θ − θ0)�[T (Xi)− A′(θ0)](8.18)

−n{[A(θ )− A(θ0)] − [(θ − θ0)A′(θ0)]}.
The first term is equal to (θ − θ0)l′(θ0). Apply Taylor’s theorem toA(θ ) to find

A(θ ) = A(θ0) + (θ − θ0)A′(θ0) +
1

2
(θ − θ0)2A′′(θ∗),

so that the second term in (8.18) is equal to (−n/2)(θ − θ0)2A′′(θ∗). Hence,

l(θ )− l(θ0) = (θ − θ0)l′(θ0)− n
2

(θ − θ0)2A′′(θ∗).

To prove (B2), we must show that

A′′(θ∗) = I (θ0) +
1

n
Rn(θ )

where
Rn(θ ) = n[A′′(θ∗)− I (θ0)]
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satisfies (8.3); that is, we must show that givenε, there existsδ such that the
probability of

sup{|A′′(θ∗)− I (θ0)| : |θ − θ0| ≤ δ} ≥ ε
tends to zero. This follows from the facts thatI (θ ) = A′′(θ ) is continuous and that
θ∗ → θ0 asθ → θ0.

To see that (B3) holds, write

1

n
[l(θ )− l(θ0)] = (θ − θ0)

{
1

n
�[T (Xi)− A′(θ0)]

−
[
A(θ )− A(θ0)

θ − θ0
− A′(θ0)

]}
and suppose without loss of generality thatθ > θ0.

SinceA′′(θ ) > 0, so thatA(θ ) is strictly convex, it is seen thatθ > θ0 implies

[A(θ )−A(θ0)]/(θ − θ0) > A′(θ0). On the other hand,�[T (Xi)−A′(θ0)]/n
P→ 0

and hence with probability tending to 1, the factor of (θ−θ0) is negative. It follows
that

sup

{
1

n
[l(θ )− l(θ0)] : θ − θ0 ≥ δ

}
≤ δ

{
�[T (Xi)− A′(θ0)]

n
− inf

[
A(θ )− A(θ0)

θ − θ0
− A′(θ0) : θ − θ0 ≥ δ

]}
.

and hence that (B3) is satisfied. ‖
Theorems 8.2 and 8.3 were stated under the assumption thatπ is the density of

a proper distribution, so that its integral is equal to 1. There is a trivial but useful
extension to the case in which

∫
π (θ )dθ = ∞ but where there existsn0, so that

the posterior density

π̃ (θ |x1, . . . , xn0) =

∏n0
i=1 f (xi |θ )π (θ )∫ ∏n0
i=1 f (xi |θ )π (θ ) dθ

of θ givenx1, . . . , xn0 is, with probability 1, a proper density satisfying assumptions
(B4) and (B5). The posterior density ofθ givenX1, . . . , Xn (n > n0) whenθ has
prior densityπ is then the same as the posterior density ofθ givenXn0+1, . . . , Xn
whenθ has prior densitỹπ , and the result now follows.

Example 8.5 Location families. The Pitman estimator derived in Theorem 3.1.20
is the Bayes estimator corresponding to the improper prior densityπ (θ ) ≡ 1. If
X1, . . . , Xn are iid with densityf (x1− θ ) satisfying (B1)-(B3), the posterior den-
sity after one observationX1 = x1 isf (xi−θ ) and hence a proper density satisfying
assumption (B5), providedEθ |X1| <∞ (Problem 8.4). Under these assumptions,
the Pitman estimator is therefore asymptotically efficient.8 An analogous result
holds in the scale case (Problem 8.5).

Theorem 7.9 can be generalized further. Rather than requiring the posterior
densityπ̃ to be proper with finite expectation after a fixed numbern0 of observa-

8 For a more general treatment of this result, see Stone 1974.
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tions, it is enough to assume that it satisfies these conditions for alln ≥ n0 when
(X1, . . . , Xn0) ∈ Sn0, whereP (Sn0) → 1 asn0 →∞ (Problem 8.7).

Example 8.6 Binomial. Let Xi be independent, taking on the values 1 and 0
with probabilityp andq = 1− p, respectively, and letπ (p) = 1/pq. Then, the
posterior distribution ofp will be proper (and will then automatically have finite
expectation) as soon as 0< �Xi < n, but not before. Since for any 0< p < 1
the probability of this event tends to 1 asn→∞, the asymptotic efficiency of the
Bayes estimator follows. ‖

Theorem 8.3 provides additional support for the suggestion, made in Section
4.1, that Bayes estimation constitutes a useful method for generating estimators.
However, the theorem is unfortunately of no help in choosing among different
Bayes estimators, since all prior distributions satisfying assumptions (B4) and (B5)
lead to the same asymptotic behavior. In fact, ifθ̃n and θ̃ ′n are Bayes estimators
corresponding to two different prior distributions� and�′ satisfying (B4) and
(B5), (8.17) implies the even stronger statement,

√
n(θ̃ ′n − θ̃ ′n)

P→ 0.(8.19)

Nevertheless, the interpretation ofθ as a random variable with densityπ (θ )
leads to some suggestions concerning the choice ofπ . Theorem 8.2 showed that
the posterior distribution ofθ , given the observations, eventually becomes a normal
distribution which is concentrated near the trueθ0 and which is independent ofπ .
It is intuitively plausible that a close approximation to the asymptotic result will
tend to be achieved more quickly (i.e., for smallern) if π assigns a relatively
high probability to the neighborhood ofθ0 than if this probability is very small. A
minimax approach thus leads to the suggestion of a uniform assignment of prior
density. It is clear what this means for a location parameter but not in general,
since the parameterization is arbitrary and reparametrization destroys uniformity.
In addition, it seems plausible that account should also be taken of the relative
informativeness of the observations corresponding to different parameter values.

As discussed in Section 4.1, proposals for prior distributions satisfying such
criteria have been made (from a somewhat different point of view) by Jeffreys and
others. For details, further suggestions, and references, see Box and Tiao 1973,
Jaynes 1979, Berger and Bernardo 1989, 1992a, 1992b, and Robert 1994a, Section
3.4.

When the likelihood equation has a unique rootθ̃n (which with probability
tending to 1 is then the MLE), this estimator has a great practical advantage over
the Bayes estimators which share its asymptotic properties. It provides a unique
estimating procedure, applicable to a large class of problems, which is supported
(partly because of its intuitive plausibility and partly for historical reasons) by a
substantial proportion of the statistical profession. This advantage is less clear in
the case of multiple roots where asymptotically efficient likelihood estimators such
as the one-step estimator (4.11) depend on a somewhat arbitrary initial estimator
and need no longer agree with the MLE even for largen.

In the multiparameter case, calculation of Bayes estimators often require the
computationally inconvenient evaluation of multiple integrals. However, this diffi-
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culty can often be overcome through Gibbs sampling or other Monte Carlo-Markov
chain algorithms; see Section 4.5.

To resolve the problem raised by the profusion of asymptotically efficient es-
timators, it seems natural to carry the analysis one step further and to take into
account terms (for example, in an asymptotic expansion of the distribution of the
estimator) of order 1/n or 1/n3/2. Investigations along these lines have been un-
dertaken by Rao (1961), Peers (1965), Ghosh and Subramanyam (1974), Efron
(1975, 1982a), Pfanzagl and Wefelmeyer (1978-1979), Tibshirani (1989), Ghosh
and Mukerjee (1991, 1992, 1993), Barndorff-Nielsen and Cox (1994), and Datta
and Ghosh (1995) (see also Section 6.4). They are complicated by the fact that to
this order, the estimators tend to be biased and their efficiencies can be improved by
removing these biases. For an interesting discussion of these issues, see Berkson
(1980). The subject still requires further study.

We conclude this section by proving that the quantitiesJ1 [defined by (8.13)] and
J ′1 tend to zero in probability. For this purpose, it is useful to obtain the following
alternative expression forω(t).

Lemma 8.7 The quantity ω(t), defined by (8.11), is equal to

ω(t) = −I (θ0)
t2

2n
− 1

2n
Rn

(
Tn +

t√
n

)[
t +

1

I (θ0)
√
n
l′(θ0)

]2

(8.20)

where Rn is the function defined in (8.1) (Problem 8.9).

Proof for J1. To prove that the integral (8.13) tends to zero in probability, divide
the range of integration into the three parts: (i)|t | ≤ M, (ii) |t | ≥ δ√n, and (iii)
M < |t | < δ√n, and show that the integral over each of the three tends to zero in
probability.

(i) |t | ≤ M. To prove this result, we shall show that for every 0< M <∞,

sup

∣∣∣∣eω(t)π

(
Tn +

t√
n

)
− e−I (θ0)t2/2π (θ0)

∣∣∣∣ P→ 0,(8.21)

where here and throughout the proof of (i), the sup is taken over|t | ≤ M. The result
will follow from (8.21) since the range of integration is bounded. Substituting the
expression (8.20) forω(t), (8.21) is seen to follow from the following two facts
(Problem 8.10):

sup

{∣∣∣∣1

n
Rn

(
Tn +

t√
n

)∣∣∣∣ [t +
1

I (θ0)
√
n
l′(θ0)

]2
}

P→ 0(8.22)

and

sup

∣∣∣∣π (
Tn +

t√
n

)
− π (θ0)

∣∣∣∣ P→ 0.(8.23)

The second of these is obvious from the continuity ofπ and the fact that (Problem
8.11)

Tn
P→ θ0.(8.24)
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To prove (8.22), it is enough to show that

sup

∣∣∣∣1

n
Rn

(
Tn +

t√
n

)∣∣∣∣ P→ 0(8.25)

and
1

I (θ0)

1√
n
l′(θ0) is bounded in probability.(8.26)

Of these, (8.26) is clear from (B1) and the central limit theorem. To see (8.25),
note that|t | ≤ M implies

Tn − M√
n
≤ Tn +

t√
n
≤ Tn +

M√
n

and hence, by (8.24), that for anyδ > 0, the probability of

θ0 − δ ≤ Tn +
t√
n
≤ θ0 + δ

will be arbitrarily close to 1 for sufficiently largen. The result now follows from
(B2).

(ii) M ≤ |t | ≤ δ√n. For this part it is enough to prove that for|t | ≤ δ√n, the
integrand ofJ1 is bounded by an integrable function with probability≥ 1− ε.
Then, the integral can be made arbitrarily small by choosing a sufficiently largeM.
Since the second term of the integrand of (8.13) is integrable, it is enough to show
that such an integrable bound exists for the first term. More precisely, we shall
show that givenε > 0, there existsδ > 0 andC < ∞ such that for sufficiently
largen,

P

[
eω(t)π

(
Tn +

t√
n

)
≤ Ce−t2I (θ0)/4 for all |t | ≤ δ√n

]
≥ 1− ε.(8.27)

The factorπ (Tn + t/
√
n) causes no difficulty by (8.24) and the continuity ofπ ,

so that it remains to establish such a bound for

expω(t) ≤ exp

{
− t

2

2
I (θ0) +

1

n

∣∣∣∣Rn (Tn +
t√
n

)∣∣∣∣ [t2 +
(l′(θ0))2

nI 2(θ0)

]}
.(8.28)

For this purpose, note that

|t | ≤ δ′√n implies Tn − δ′ ≤ Tn +
t√
n

+ δ′

and hence, by (8.24), that with probability arbitrarily close to 1, forn sufficiently
large,

|t | ≤ δ′√n implies

∣∣∣∣Tn +
1

2
− θ0

∣∣∣∣ ≤ 2δ′.

By (B2), there existsδ′ such that the latter inequality implies

P

{
sup

|t |≤δ′√n

∣∣∣∣1

n
Rn

(
Tn +

t√
n

)∣∣∣∣ ≤ 1

4
I (θ0)

}
≥ 1− ε.
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Combining this fact with (8.26), we see that the right side of (8.28) is≤ C ′e−t2I (θ0)/4

for all t satisfying (ii), with probability arbitrarily close to 1, and this establishes
(8.27).

(iii) |t | ≥ δ
√
n. As in (ii), the second term in the integrand of (8.13) can be

neglected, and it is enough to show that for allδ,∫
|t |≥δ√n

exp[ω(t)]π

(
Tn +

t√
n

)
dt

=
√
n

∫
|θ−Tn|≥δ

π (θ ) exp

{
l(θ )− l(θ0)(8.29)

− 1

2nI (θ0)
[l′(θ0)]2

}
dθ

P→ 0.

From (8.24) and (B3), it is seen that givenδ, there existsε such that

sup
|θ−Tn|≥δ

e[l(θ )−l(θ0)] ≤ e−nε

with probability tending to 1. By (8.26), the right side of (8.29) is therefore bounded
above by

C
√
n e−nε

∫
π (θ ) dθ = C

√
n e−nε(8.30)

with probability tending to 1, and this completes the proof of (iii).
To prove (8.13), let us now combine (i)-(iii). Givenε > 0 andδ > 0, chooseM

so large that∫ ∞

M

[
C exp

[
− t

2

2
I (θ0)

]
+ exp

[
− t

2

2
I (θ0)

]
π (θ0)

]
dt ≤ ε

3
,(8.31)

and, hence, that for sufficiently largen, the integral (8.13) over (ii) is≤ ε/3 with
probability≥ 1− ε. Next, choosen so large that the integrals (8.13) over (i) and
over (iii) are also≤ ε/3 with probability≥ 1− ε. Then,P [J1 ≤ ε] ≥ 1− 3ε, and
this completes the proof of (8.13).

The proof forJ ′1 requires only trivial changes. In part (i), the factor [1 +|t |] is
bounded, so that the proof continues to apply. In part (ii), multiplication of the
integrand of (8.31) by [1 +|t |] does not affect its integrability, and the proof goes
through as before. Finally, in part (iii), the integral in (8.30) must be replaced by
Cne−nε

∫ |θ |π (θ ) dθ , which is finite by (B5).

9 Problems

Section 1

1.1 LetX1, . . . , Xn be iid withE(Xi) = ξ .

(a) If theXis have a finite fourth moment, establish (1.3)

(b) Fork a positive integer, show thatE(X̄− ξ )2k−1 andE(X̄− ξ )2k, if they exist, are
bothO(1/nk).

[Hint: Without loss of generality, letξ = 0 and note thatE(Xr1i1X
r2
i2
· · ·) = 0 if any of the

r ’s is equal to 1.]



6.9 ] PROBLEMS 497

1.2 For fixedn, describe the relative error in Example 1.3 as a function ofp.

1.3 Prove Theorem 1.5.

1.4 LetX1, . . . , Xn be iid asN (ξ, σ 2),σ 2 known, and letg(ξ ) = ξ r ,r = 2, 3, 4. Determine,
up to terms of order 1/n,

(a) the variance of the UMVU estimator ofg(ξ );

(b) the bias of the MLE ofg(ξ ).

1.5 LetX1, . . . , Xn be iid asN (ξ, σ 2), ξ known. For evenr, determine the variance of
the UMVU estimator (2.2.4) ofσ r up to terms of orderr.

1.6 Solve the preceding problem for the case thatξ is unknown.

1.7 For estimatingpm in Example 3.3.1, determine, up to order 1/n,

(a) the variance of the UMVU estimator (2.3.2);

(b) the bias of the MLE.

1.8 Solve the preceding problem ifpm is replaced by the estimand of Problem 2.3.3.

1.9 LetX1, . . . , Xn be iid as PoissonP (θ ).

(a) Determine the UMVU estimator ofP (Xi = 0) = e−θ .
(b) Calculate the variance of the estimator of (a) up to terms of order 1/n.

[Hint: Write the estimator in the form (1.15) whereh(X̄) is the MLE ofe−θ .]
1.10 Solve part (b) of the preceding problem for the estimator (2.3.22).

1.11 Under the assumptions of Problem 1.1, show thatE|X̄−ξ |2k−1 = O(n−k+1/2). [Hint:
Use the fact thatE|X̄− ξ |2k−1 ≤ [E(X̄− ξ )4k−2]1/2 together with the result of Problem
1.1.]

1.12 Obtain a variant of Theorem 1.1, which requires existence and boundedness of only
h′′′ instead ofh(iv), but whereRn is onlyO(n−3/2).

[Hint: Carry the expansion (1.6) only to the second instead of the third derivative, and
apply Problem 1.11.]

1.13 To see that Theorem 1.1 is not necessarily valid without boundedness of the fourth
(or some higher) derivative, suppose that theX’s are distributed asN (ξ, σ 2) and let
h(X) = ex

4
. Then, all moments of theX’s and all derivatives ofh exist.

(a Show that the expectation ofh(X̄) does not exist for anyn, and hence thatE{√n[h(X̄)
− h(ξ )]}2 =∞ for all values ofn.

(b On the other hand, show that
√
n [h(X̄)−h(ξ )] has a normal limit distribution with

finite variance, and determine that variance.

1.14 Let X1, . . . , Xn be iid from the exponential distribution with density
(1/θ )e−x/θ , x > 0, andθ > 0.

(a) Use Theorem 1.1 to find approximations toE(
√
X̄) and var(

√
X̄).

(b) Verify the exact calculation

var(
√
X̄) =

[
1− 1

n

(
H(n + 1/2)

H(n)

)2
]
θ

and show that limn→∞ n var(
√
X̄) = θ/4.

(c) Reconcile the results in parts (a) and (b). Explain why, even though Theorem 1.1
did not apply, it gave the correct answer.
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(d) Show that a similar conclusion holds forh(x) = 1/x.

[Hint: For part (b), use the fact thatT = �Xi has a gamma distribution. The limit can
be evaluated with Stirling’s formula. It can also be evaluated with a computer algebra
program.]

1.15 LetX1, . . . , Xn be iid according toU (0, θ ). Determine the variance of the UMVU
estimator ofθk, wherek is an integer,k > −n.

1.16 Under the assumptions of Problem 1.15, find the MLE ofθk and compare its expected
squared error with the variance of the UMVU estimator.

1.17 LetX1, . . . , Xn be iid according toU (0, θ ), letT = max(X1, . . . , Xn), and leth be
a function satisfying the conditions of Theorem 1.1. Show that

E[h(T )] = h(θ )− θ
n
h′(θ ) +

1

n2
[θh′(θ ) + θ2h′′(θ )] + O

(
1

n3

)
and

var[h(T )] =
θ2

n2
[h′(θ )]2 +O

(
1

n3

)
.

1.18 Apply the results of Problem 1.17 to obtain approximate answers to Problems 1.15
and 1.16, and compare the answers with the exact solutions.

1.19 If the X’s are as in Theorem 1.1 and if the first five derivatives ofh exist and the
fifth derivative is bounded, show that

E[h(X̄)] = h(ξ ) +
1

2
h′′
σ 2

n
+

1

24n2
[4h′′′µ3 + 3h(iv)σ 4] + O(n−5/2)

and if the fifth derivative ofh2 is also bounded

var[h(X̄)] = (h′2)
σ 2

n
+

1

n2
[h′h′′µ3 + (h′h′′′ +

1

2
h′′

2
)σ 4] + O(n−5/2)

whereµ3 = E(X − ξ )3.

[Hint: Use the facts thatE(X̄ − ξ )3 = µ3/n
2 andE(X̄ − ξ )4 = 3σ 4/n2 +O(1/n3).]

1.20 Under the assumptions of the preceding problem, carry the calculation of the vari-
ance (1.16) to terms of order 1/n2, and compare the result with that of the preceding
problem.

1.21 Carry the calculation of Problem 1.4 to terms of order 1/n2.

1.22 For the estimands of Problem 1.4, calculate the expected squared error of the MLE
to terms of order 1/n2, and compare it with the variance calculated in Problem 1.21.

1.23 Calculate the variance (1.18) to terms of order 1/n2 and compare it with the expected
squared error of the MLE carried to the same order.

1.24 Find the variance of the estimator (2.3.17) up to terms of the order 1/n3.

1.25 For the situation of Example 1.12, show that the UMVU estimatorδ1n is the bias-
corrected MLE, where the MLE isδ3n.

1.26 For the estimators of Example 1.13:

(a) Calculate their exact variances.

(b) Use the result of part (a) to verify (1.27).

1.27 (a) Under the assumptions of Theorem 1.5, if all fourth moments of theXiν are
finite, show thatE(X̄i− ξi)(X̄j − ξj ) = σij /n and that all third and fourth moments
E(X̄i − ξi)(X̄j − ξj )(X̄k − ξk), and so on are of the order 1/n2.
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(b) If, in addition, all derivatives ofh of total order≤ 4 exist and those of order 4 are
uniformly bounded, then

E[h(X̄1, . . . , X̄s)] = h(ξ1, . . . , ξs) +
1

2n

s∑
i=1

s∑
j=1

σij
∂2h(ξ1, . . . , ξs)

∂ξi∂ξj
+Rn,

and if the derivatives ofh2 of order 4 are also bounded,

var[h(X̄1, . . . , X̄s)] =
1

n
��σij

∂h

∂ξi

∂h

∂ξj
+Rn

where the remainderRn in both cases isO(1/n2).

1.28 On the basis of a sample fromN (ξ, σ 2), let Pn(ξ, σ ) be the probability that the
UMVU estimatorX̄2 − σ 2/n of ξ2 (σ known) is negative.

(a) Show thatPn(ξ, σ ) is a decreasing function of
√
n |ξ |/σ .

(b) Show thatPn(ξ, σ ) → 0 asn→∞ for any fixedξ �= 0 andσ .

(c) Determine the value ofPn(0, σ ).

[Hint: Pn(ξ, σ ) = P [−1−√n ξ/σ < Y < 1−√n ξ/σ ], whereY =
√
n (X̄ − ξ )/σ is

distributed asN (0,1).]

1.29 Use thet-distribution to find the value ofPn(0, σ ) in the preceding problem for the
UMVU estimator ofξ2 whenσ is unknown for representative values ofn.

1.30 Fill in the details of the proof of Theorem 1.9. (See also Problem 1.8.8.)

1.31 In Example 8.13 withθ = 0, show thatδ2n is not exactly distributed asσ 2(χ2
1−1)/n.

1.32 In Example 8.13, letδ4n = max(0, X̄2 − σ 2/n), which is an improvement overδ1n.

(a) Show that
√
n(δ4n−θ2) has the same limit distribution as

√
n(δ1n−θ2) whenθ �= 0.

(b) Describe the limit distribution ofnδ4n whenθ = 0.

[Hint: Write δ4n = δ1n +Rn and study the behavior ofRn.]

1.33 Let X have the binomial distributionb(p, n), and letg(p) = pq. The UMVU
estimator ofg(p) is δ = X(n−X)/n(n−1). Determine the limit distribution of

√
n(δ−

pq) andn(δ − pq) wheng′(p) �= 0 andg′(p) = 0, respectively.

[Hint: Consider first the limit behavior ofδ′ = X(n−X)/n2.]

1.34 LetX1, . . . , Xn be iid asN (ξ,1). Determine the limit behavior of the distribution
of the UMVU estimator ofp = P [|Xi | ≤ u].

1.35 Determine the limit behavior of the estimator (2.3.22) asn→∞.

[Hint: Consider first the distribution of logδ(T ).]

1.36 Let X1, . . . , Xn be iid with distributionPθ , and supposeδn is UMVU for esti-
matingg(θ ) on the basis ofX1, . . . , Xn. If there existsn0 and an unbiased estimator
δ0(X1, . . . , Xn0) which has finite variance for allθ , thenδn is consistent forg(θ ).

[Hint: Forn = kn0 (with k an integer), compareδn with the estimator

1

k
{δ0(X1, . . . , Xn0) + δ0(Xn0+1, . . . , X2n0) + . . .}].

1.37 LetYn be distributed asN (0,1) with probabilityπn and asN (0, τ 2
n ) with probability

1−πn. If τn →∞ andπn → π , determine for what values ofπ the sequence{Yn} does
and does not have a limit distribution.

1.38 (a) In Problem 1.37, determine to what values var(Yn) can tend asn → ∞ if
πn → 1 andτn →∞ but otherwise both are arbitrary.
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(b) Use (a) to show that the limit of the variance need not agree with the variance of
the limit distribution.

1.39 Let bm,n, m, n = 1,2, . . ., be a double sequence of real numbers, which for each
fixedm is nondecreasing inn. Show that limn→∞ limm→∞ bm,n = limm,n→∞ inf bm,n and
limm→∞ limn→∞ bm,n = limm,n→∞ supbm,n provided the indicated limits exist (they may
be infinite) and where lim infbm,n and lim supbm,n denote, respectively, the smallest and
the largest limit points attainable by a sequencebmk,nk , k = 1,2, . . ., withmk →∞ and
nk →∞.

Section 2

2.1 LetX1, . . . , Xn be iid asN (0,1). Consider the two estimators

Tn =


X̄n if Sn ≤ an

n if Sn > an,

whereSn = �(Xi − X̄)2, P (Sn > an) = 1/n, andT ′n = (X1 + · · · +Xkn )/kn with kn the
largest integer≤ √n.

(a) Show that the asymptotic efficiency ofT ′n relative toTn is zero.

(b) Show that for anyfixed ε > 0,P [|Tn− θ | > ε] = 1
n

+o
(

1
n

)
, butP [|T ′n− θ | > ε] =

o
(

1
n

)
.

(c) For large values ofn, what can you say about the two probabilities in part (b) when
ε is replaced bya/

√
n? (Basu 1956).

2.2 If kn[δn − g(θ )]
L→ H for some sequencekn, show that the same result holds ifkn is

replaced byk′n, wherekn/k′n → 1.

2.3 Assume that the distribution ofYn =
√
n(δn − g(θ )) converges to a distribution

with mean 0 and variancev(θ ). Use Fatou’s lemma (Lemma 1.2.6) to establish that
varθ (δn) → 0 for all θ .

2.4 If X1, . . ., Xn are a sample from a one-parameter exponential family (1.5.2), then
�T (Xi) is minimal sufficient andE[(1/n)�T (Xi)] = (∂/∂η)A(η) = τ . Show that for
any functiong(·) for which Theorem 1.8.12 holds,g((1/n)�T (Xi)) is asymptotically
unbiased forg(τ ).

2.5 If X1, . . . , Xn are iidn(µ, σ 2), show thatSr = [1/(n−1)�(xi − x̄)2]r/2 is an asymp-
totically unbiased estimator ofσ r .

2.6 Let X1, . . . , Xn be iid asU (0, θ ). From Example 2.1.14,δn = (n + 1)X(n)/n is the
UMVU estimator ofθ , whereas the MLE isX(n). Determine the limit distribution of (a)
n[θ − δn] and (b)n[θ −X(n)]. Comment on the asymptotic bias of these estimators.

[Hint: P (X(n) ≤ y) = yn/θn for any 0< y < θ .]

2.7 For the situation of Problem 2.6:

(a) Calculate the mean squared errors of bothδn andX(n) as estimators ofθ .

(b) Show

lim
n→∞

E(X(n) − θ )2

E(δn − θ )2
= 2.

2.8 Verify the asymptotic distribution claimed forδn in Example 2.5.

2.9 Let δn be any estimator satisfying (2.2) withg(θ ) = θ . Construct a sequenceδ′n such

that
√
n(δ′n − θ )

L→ N [0, w2(θ )] with w(θ ) = v(θ ) for θ �= θ0 andw(θ0) = 0.
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2.10 In the preceding problem, constructδ′n such thatw(θ ) = v(θ ) for all θ �= θ0 andθ1

and< v(θ ) for θ = θ0 andθ1.

2.11 Construct a sequence{δn} satisfying (2.2) but for which the biasbn(θ ) does not tend
to zero.

2.12 In Example 2.7 withRn(θ ) given by (2.11), show thatRn(θ ) → 1 for θ �= 0 and that
Rn(0)→ a2.

2.13 Let bn(θ ) = Eθ (δn)− θ be the bias of the estimatorδn of Example 2.5.

(a) Show that

bn(θ ) =
−(1− a)√

n

∫ 4√n

− 4√n
xφ(x −√nθ ) dx;

(b) Show thatb′n(θ ) → 0 for anyθ �= 0 andb′n(0)→ (1− a).

(c) Use (b) to explain how the Hodges estimatorδn can violate (2.7) without violating
the information inequality.

2.14 In Example 2.7, show that ifθn = c/
√
n, thenRn(θn) → a2 + c2(1− a)2.

Section 3

3.1 LetX have the binomial distributionb(p, n), 0≤ p ≤ 1. Determine the MLE ofp

(a) by the usual calculus method determining the maximum of a function;

(b) by showing thatpxqn−x ≤ (x/n)x [(n− x)/n]n−x .

[Hint: (b) Apply the fact that the geometric mean is equal to or less than the arithmetic
mean ton numbers of whichx are equal tonp/x andn− x equal tonq/(n− x).]

3.2 In the preceding problem, show that the MLE does not exist whenp is restricted to
0< p < 1 and whenx = 0 or =n.

3.3 LetX1, . . . , Xn be iid according toN (ξ, σ 2). Determine the MLE of (a)ξ whenσ is
known, (b)σ whenξ is known, and (c) (ξ, σ ) when both are unknown.

3.4 SupposeX1, . . . , Xn are iid asN (ξ,1) with ξ > 0. Show that the MLE is̄X when
X̄ > 0 and does not exist when̄X ≤ 0.

3.5 LetX take on the values 0 and 1 with probabilitiesp andq, respectively. When it is
known that 1/3 ≤ p ≤ 2/3, (a) find the MLE and (b) show that the expected squared
error of the MLE is uniformly larger than that ofδ(x) = 1/2.

[A similar estimation problem arises inrandomized response surveys. See Example
5.2.2.]

3.6 When is finite, show that the MLE is consistent if and only if it satisfies (3.2).

3.7 Show that Theorem 3.2 remains valid if assumption A1 is relaxed to A1′: There is a
nonempty set0 ∈  such thatθ0 ∈ 0 and0 is contained in the support of eachPθ .

3.8 Prove the existence of unique 0< ak < ak−1, k = 1,2, . . . , satisfying (3.4).

3.9 Prove (3.9).

3.10 In Example 3.6 with 0< c < 1/2, determine a consistent estimator ofk.

[Hint: (a) The smallest valueK of j for which Ij contains at least as many of theX’s
as any otherI is consistent. (b) The value ofj for which Ij contains the median of the
X’s is consistent since the median offk is in Ik.]

3.11 Verify the nature of the roots in Example 3.9.
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3.12 Let X be distributed asN (θ,1). Show that conditionally givena < X < b, the
variableX tends in probability tob asθ →∞.

3.13 Consider a sampleX1, . . . , Xn from a Poisson distribution conditioned to be posi-
tive, so thatP (Xi = x) = θxe−θ /x!(1− e−θ ) for x = 1,2, . . .. Show that the likelihood
equation has a unique root for all values ofx.

3.14 LetX have the negative binomial distribution (2.3.3). Find an ELE ofp.

3.15 (a) A density function isstrongly unimodal, or equivalentlylog concave, if log f (x)
is a concave function. Show that such a density function has a unique mode.

(b) LetX1, . . . , Xn be iid with densityf (x− θ ). Show that the likelihood function has
a unique root iff ′(x)/f (x) is monotone, and the root is a maximum iff ′(x)/f (x)
is decreasing. Hence, densities that are log concave yield unique MLEs.

(c) LetX1, . . . , Xn be positive random variables (or symmetrically distributed about
zero) with joint densityanOf (axi), a > 0. Show that the likelihood equation has
a unique maximum ifxf ′(x)/f (x) is strictly decreasing forx > 0.

(d) IfX1, . . . , Xn are iid with densityf (xi−θ ) wheref is unimodal and if the likelihood
equation has a unique root, show that the likelihood equation also has a unique root
when the density of eachXi is af [a(xi − θ )], with a known.

3.16 For each of the following densities,f (·), determine if (a) it is strongly unimodal
and (b)xf ′(x)/f (x) is strictly decreasing forx > 0. Hence, comment on whether the
respective location and scale parameters have unique MLEs:

(a) f (x) =
1√
2π
e−

1
2 x

2
, −∞ < x <∞ (normal)

(b) f (x) =
1√
2π

1

x
e−

1
2 (logx)2, 0 ≤ x <∞ (lognormal)

(c) f (x) = e−x/(1 + e−x)2, −∞ < x <∞ (logistic)

(d) f (x) =
H(ν + 1/2)

H(ν/2)

1√
νπ

1

[1 + (x/ν)2]
ν+1
2

, −∞ < x <∞ (t with ν df)

3.17 If X1, . . . , Xn are iid with densityf (xi − θ ) or af (axi) andf is the logistic density
L(0,1), the likelihood equation has unique solutionsθ̂ and â both in the location and
the scale case. Determine the limit distribution of

√
n(θ̂ − θ ) and

√
n(â − a).

3.18 In Problem 3.15(b), withf the Cauchy densityC(0, a), the likelihood equation has

a unique root̂a and
√
n(â − a)

L→ N (0,2a2).

3.19 If X1, . . . , Xn are iid asC(θ,1), then for any fixedn there is positive probability (a)
that the likelihood equation has 2n− 1 roots and (b) that the likelihood equation has a
unique root.

[Hint: (a) If thex’s are sufficiently widely separated, the value ofL′(θ ) in the neighbor-
hood ofxi is dominated by the term (xi − θ )/[1 + (xi − θ )2]. As θ passes throughxi ,
this term changes signs so that the log likelihood has a local maximum nearxi . (b) Let
thex’s be close together.]

3.20 If X1, . . . , Xn are iid according to the gamma distributionH(θ,1), the likelihood
equation has a unique root.

[Hint: Use Example 3.12. Alternatively, write down the likelihood and use the fact that
H′(θ )/H(θ ) is an increasing function ofθ .]
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3.21 LetX1, . . . , Xn be iid according to a Weibull distribution with density

fθ (x) = θxθ−1e−x
θ

, x > 0, θ > 0,

which is not a member of the exponential, location, or scale family. Nevertheless, show
that there is a unique interior maximum of the likelihood function.

3.22 Under the assumptions of Theorem 3.2, show that[
L

(
θ0 +

1√
n

)
− L(θ0) +

1

2
I (θ0)

]
/
√
I (θ0)

tends in law toN (0,1).

3.23 LetX1, . . . , Xn be iid according toN (θ, aθ2), θ > 0, wherea is a known positive
constant.

(a) Find an explicit expression for an ELE ofθ .

(b) Determine whether there exists an MRE estimator under a suitable group of trans-
formations.

[This case was considered by Berk (1972).]

3.24 Check that the assumptions of Theorem 3.10 are satisfied in Example 3.12.

3.25 ForX1, . . . , Xn iid asDE(θ,1), show that (a) the sample median is an MLE ofθ

and (b) the sample median is asymptotically normal with variance 1/n, the information
inequality bound.

3.26 In Example 3.12, show directly that (1/n)�T (Xi) is an asymptotically efficient
estimator ofθ = Eη[T (X)] by considering its limit distribution.

3.27 Let X1, . . . , Xn be iid according toθg(x) + (1− θ )h(x), where (g, h) is a pair of
specified probability densities with respect toµ, and where 0< θ < 1.

(a) Give one example of (g, h) for which the assumptions of Theorem 3.10 are satisfied
and one for which they are not.

(b) Discuss the existence and nature of the roots of the likelihood equation forn = 1,
2, 3.

3.28 Under the assumptions of Theorem 3.7, suppose thatθ̂1n andθ̂2n are two consistent
sequences of roots of the likelihood equation. Prove thatPθ0(θ̂1n = θ̂2n) → 1 asn→∞.

[Hint:

(a) LetSn = {x : x = (x1, . . . , xn) such that̂θ1n(x) �= θ̂2n(x)}. For allx ∈ Sn, there exists
θ∗n betweenθ̂1n andθ̂2n such thatL′′(θ∗n ) = 0. For allx /∈ Sn, let θ∗n be the common
value of θ̂1n and θ̂2n. Then,θ∗n is a consistent sequence of roots of the likelihood
equation.

(b) (1/n)L′′(θ∗n ) − (1/n)L′′(θ0) → 0 in probability and therefore (1/n)L′′(θ∗n ) →
−I (θ0) in probability.

(c) Let 0< ε < I (θ0) and let

S ′n =

{
x :

1

n
L′′(θ∗n ) < −I (θ0) + ε

}
.

Then,Pθ0(S ′n) → 1. On the other hand,L′′(θ∗n ) = 0 onSn so thatSn is contained in
the complement ofS ′n (Huzurbazar 1948).]
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3.29 To establish the measurability of the sequence of rootsθ̂∗n of Theorem 3.7, we can
follow the proof of Serfling (1980, Section 4.2.2) where the measurability of a similar
sequence is proved.

(a) For definiteness, definêθn(a) as the value that minimizes|θ̂ − θ0| subject to

θ0 − a ≤ θ̂ ≤ θ0 + a and
∂

∂θ
l(θ |x)|θ=θ̂ = 0.

Show thatθ̃n(a) is measurable.

(b) Show thatθ∗n , the root closest toθ∗, is measurable.

[Hint: For part (a), write the set{θ̂n(a) > t} as countable unions and intersections of
measurable sets, using the fact that (∂/∂θ ) log(θ |x) is continuous, and hence measurable.]

Section 4

4.1 Let

u(t) =

 c
∫ t

0 e
−1/x(1−x)dx for 0< t < 1

0 for t ≤ 0
1 for t ≥ 1.

Show that for a suitablec, the functionu is continuous and infinitely differentiable for
−∞ < t <∞.

4.2 Show that the density (4.1) with = (0,∞) satisfies all conditions of Theorem 3.10
with the exception of (d) of Theorem 2.6.

4.3 Show that the density (4.4) with = (0,∞) satisfies all conditions of Theorem 3.10.

4.4 In Example 4.5, evaluate the estimators (4.8) and (4.14) for the Cauchy case, using
for θ̃n the sample median.

4.5 In Example 4.7, show thatl(θ ) is concave.

4.6 In Example 4.7, ifη = ξ , show how to obtain a
√
n-consistent estimator by equating

sample and population second moments.

4.7 In Theorem 4.8, show thatσ11 = σ12.

4.8 Without using Theorem 4.8, in Example 4.13 show that the EM sequence converges
to the MLE.

4.9 Consider the following 12 observations from a bivariate normal distribution with
parametersµ1 = µ2 = 0,σ 2

1 , σ 2
2 , ρ:

x1 1 1 -1 -1 2 2 -2 -2 * * * *

x2 1 -1 1 -1 * * * * 2 2 -2 -2
where “∗” represents a missing value.

(a) Show that the likelihood function has global maxima atρ = ±1/2,σ 2
1 = σ 2

2 = 8/3,
and a saddlepoint atρ = 0,σ 2

1 = σ 2
2 = 5/2.

(b) Show that if an EM sequence starts withρ = 0, then it remains withρ = 0 for all
subsequent iterations.

(c) Show that if an EM sequence starts withρ bounded away from zero, it will converge
to a maximum.

[This problem is due to Murray (1977), and is discussed by Wu (1983).]

4.10 Show that if the EM complete-data densityf (y, z|θ ) of (4.21) is in a curved expo-
nential family, then the hypotheses of Theorem 4.12 are satisfied.
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4.11 In the EM algorithm, calculation of the E-step, the expectation calculation, can
be complicated. In such cases, it may be possible to replace the E-step by a Monte
Carlo evaluation, creating the MCEM algorithm (Wei and Tanner 1990). Consider the
following MCEM evaluation ofQ(θ |θ̂(j ), y):

Given θ̂ (k)
(j )

(1) GenerateZ1, · · · , Zk, iid, from k(z|θ̂ (k)
(j ) , y),

(2) Let Q̂(θ |θ̂ (k)
(j ) , y) = 1

k

∑k

i=1 logL(θ |y, z)

and then calculatêθ (k)
(j+1) as the value that maximizeŝQ(θ |θ̂ (k)

(j ) , y).

(a) Show thatQ̂(θ |θ̂ (k)
(j ) , y) → Q̂(θ |θ̂(j ), y) ask→∞.

(b) What conditions will ensure thatL(θ̂ (k)
(j+1)|y) ≥ L(θ̂ (k)

(j ) |y) for sufficiently largek?
Are the hypotheses of Theorem 4.12 sufficient?

4.12 For the mixture distribution of Example 4.7, that is,

Xi ∼ θg(x) + (1− θ )h(x), i = 1, . . . , n, independent

whereg(·) andh(·) are known, an EM algorithm can be used to find the ML estimator
of θ . LetZ1, · · · , Zn, whereZi indicates from which distributionXi has been drawn, so

Xi |Zi = 1∼ g(x)

Xi |Zi = 0∼ h(x).

(a) Show that the complete-data likelihood can be written

L(θ |x, z) =
n∏
i=1

[zig(xi) + (1− zi)h(xi)] θ
zi (1− θ )1−zi .

(b) Show thatE(Zi |θ, xi) = θg(xi)/[θg(xi) + (1− θ )h(xi)] and hence that the EM
sequence is given by

θ̂(j+1) =
1

n

n∑
i=1

θ̂(j )g(xi)

θ̂(j )g(xi) + (1− θ̂(j ))h(xi)
.

(c) Show thatθ̂(j ) → θ̂ , the ML estimator ofθ .

4.13 For the situation of Example 4.10:

(a) Show that the M-step of the EM algorithm is given by

µ̂ =

(
4∑
i=1

ni∑
j=1

yij + z1 + z2

)
/12,

α̂i =

(
2∑
j=1

yij + zi

)
/3− µ̂, i = 1,3

=

(
3∑
j=1

yij

)
/3− µ̂, i = 2,4.

(b) Show that the E-step of the EM algorithm is given by

zi = E
[
Yi3|µ = µ̂, αi = α̂i

]
= µ̂ + α̂i i = 1,3.
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(c) Under the restriction
∑

i αi = 0, show that the EM sequence converges toα̂i =
ȳi· − µ̂, whereµ̂ =

∑
i ȳi·/4.

(d) Under the restriction
∑

i niαi = 0, show that the EM sequence converges toα̂i =
ȳi· − µ̂, whereµ̂ =

∑
ij yij /10.

(e) For a general one-way layout witha treatments andnij observations per treatment,
show how to use the EM algorithm to augment the data so that each treatment has
n observation. Write down the EM sequence, and show what it converges to under
the restrictions of parts (c) and (d).

[The restrictions of parts (c) and (d) were encountered in Example 3.4.9, where they led,
respectively, to anunweighted means analysis and aweighted means analysis.]

4.14 In the two-way layout (see Example 3.4.11), the EM algorithm can be very helpful
in computing ML estimators in the unbalanced case. Suppose that we observe

Yijk : N (ξij , σ
2), i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , nij ,

whereξij = µ+αi +βj +γij . The data will be augmented so that the complete data have
n observations per cell.

(a) Show how to compute both the E-step and the M-step of the EM algorithm.

(b) Under the restriction
∑

i αi =
∑

j βj =
∑

i γij =
∑

j γij = 0, show that the EM
sequence converges to the ML estimators corresponding to an unweighted means
analysis.

(c) Under the restriction
∑

i ni·αi =
∑

j n·j βj =
∑

i ni·γij =
∑

j ·jγij = 0, show that
the EM sequence converges to the ML estimators corresponding to a weighted
means analysis.

4.15 For the one-way layout with random effects (Example 3.5.1), the EM algorithm is
useful for computing ML estimates. (In fact, it is very useful in many mixed models;
see Searle et al. 1992, Chapter 8.) Suppose we have the model

Xij = µ +Ai +Uij (j = 1, . . . , ni, i = 1, . . . , s)

whereAi andUij are independent normal random variables with mean zero and known
variance. To compute the ML estimates ofµ, σ 2

U , andσ 2
U it is typical to employ an EM

algorithm using the unobservableAi ’s as the augmented data. Write out both the E-step
and the M-step, and show that the EM sequence converges to the ML estimators.

4.16 Maximum likelihood estimation in theprobit model of Section 3.6 can be imple-
mented using the EM algorithm. We observe independent Bernoulli variablesX1, . . . , Xn,
which depend on unobservable variablesZi distributed independently asN (ζi, σ 2),
where

Xi =

{
0 if Zi ≤ u
1 if Zi > u.

Assuming thatu is known, we are interested in obtaining ML estimates ofζ andσ 2.

(a) Show that the likelihood function isp�xi (1− p)n−�xi , where

p = P (Zi > u) = X

(
ζ − u
σ

)
.

(b) If we considerZ1, . . . , Zn to be the complete data, the complete-data likelihood is
n∏
i=1

1√
2πσ

e
− 1

2σ2 (zi−ζ )2
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and the expected complete-data log likelihood is

−n
2

log(2πσ 2)− 1

2σ 2

n∑
i=1

[
E(Z2

i |Xi)− 2ζE(Zi |Xi) + ζ 2
]
.

(c) Show that the EM sequence is given by

ζ̂(j+1) =
1

n

n∑
i=1

ti(ζ̂(j ), σ̂
2
(j ))

σ̂ 2
(j+1) =

1

n

 n∑
i=1

vi(ζ̂(j ), σ̂
2
(j ))−

1

n

(
n∑
i=1

ti(ζ̂(j ), σ̂
2
(j ))

)2


where

ti(ζ, σ
2) = E(Zi |Xi, ζ, σ 2) and vi(ζ, σ

2) = E(Z2
i |Xi, ζ, σ 2).

(d) Show that

E(Zi |Xi, ζ, σ 2) = ζ + σHi

(
u− ζ
σ

)
,

E(Z2
i |Xi, ζ, σ 2) = ζ 2 + σ 2 + σ (u + ζ )Hi

(
u− ζ
σ

)
where

Hi(t) =


ϕ(t)

1−X(t)
if Xi = 1

− ϕ(t)

X(t)
if Xi = 0.

(e) Show that̂ζ(j ) → ζ̂ andσ̂ 2
(j ) → σ̂ 2, the ML estimates ofζ andσ 2.

4.17 Verify (4.30).
4.18 The EM algorithm can also be implemented in a Bayesian hierarchical model to
find a posterior mode. Recall the model (4.5.5.1),

X|θ ∼ f (x|θ ),
�|λ ∼ π (θ |λ),

� ∼ γ (λ),

where interest would be in estimating quantities fromπ (θ |x). Since

π (θ |x) =
∫
π (θ, λ|x)d λ,

whereπ (θ, λ|x) = π (θ |λ, x)π (λ|x), the EM algorithm is a candidate method for finding
the mode ofπ (θ |x), whereλ would be used as the augmented data.

(a) Definek(λ|θ, x) = π (θ, λ|x)/π (θ |x), and show that

logπ (θ |x) =
∫

logπ (θ, λ|x)k(λ|θ∗, x)d λ−
∫

logk(λ|θ, x)k(λ|θ∗, x)d λ.

(b) If the sequence{θ̂(j )} satisfies

max
θ

∫
logπ (θ, λ|x)k(λ|θ(j ), x)d λ =

∫
logπ (θ(j+1), λ|x)k(λ|θ(j ), x)d λ,

show that logπ (θ(j+1)|x) ≥ logπ (θ(j )|x). Under what conditions will the sequence
{θ̂(j )} converge to the mode ofπ (θ |x)?
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(c) For the hierarchy

X|θ ∼ N (θ ),1),

�|λ ∼ N (λ,1)),

� ∼ Uniform(−∞,∞),

show how to use the EM algorithm to calculate the posterior mode ofπ (θ |x).

4.19 There is a connection between the EM algorithm and Gibbs sampling, in that both
have their basis in Markov chain theory. One way of seeing this is to show that the
incomplete-data likelihood is a solution to the integral equation of successive substitu-
tion sampling (see Problems 4.5.9-4.5.11), and that Gibbs sampling can then be used
to calculate the likelihood function. IfL(θ |y) is the incomplete-data likelihood and
L(θ |y, z) is the complete-data likelihood, define

L∗(θ |y) =
L(θ |y)∫
L(θ |y)dθ

,

L∗(θ |y, z) =
L(θ |y, z)∫
L(θ |y, z)dθ

.

.

(a) Show thatL∗(θ |y) is the solution to

L∗(θ |y) =
∫ [∫

L∗(θ |y, z)k(z|θ ′, y)dz
]
L∗(θ ′|y)dθ ′

where, as usual,k(z|θ, y) = L(θ |y, z)/L(θ |y).

(b) Show how the sequenceθ(j ) from the Gibbs iteration,

θ(j ) ∼ L∗(θ |y, z(j−1)),

z(j ) ∼ k(z|θ(j ), y),

will converge to a random variable with densityL∗(θ |y) asj →∞. How can this
be used to compute the likelihood functionL(θ |y)?

[Using the functionsL(θ |y, z) and k(z|θ, y), the EM algorithm will get us the ML
estimator fromL(θ |y), whereas the Gibbs sampler will get us the entire function. This
likelihood implementation of the Gibbs sampler was used by Casella and Berger (1994)
and is also described by Smith and Roberts (1993). A version of the EM algorithm,
where the Markov chain connection is quite apparent, was given by Baum and Petrie
(1966) and Baum et al. (1970).]

Section 5

5.1 (a) If a vectorYn in Es converges in probability to a constant vectora, and ifh is a
continuous function defined overEs , show thath(Yn) → h(a) in probability.

(b) Use (a) to show that the elements of||Ajkn||−1 tend in probability to the elements
of B as claimed in the proof of Lemma 5.2.

[Hint: (a) Apply Theorem 1.8.19 and Problem 1.8.13.]

5.2 (a) Show that (5.26) with the remainder term neglected has the same form as (5.15)
and identify theAjkn.

(b) Show that the resultingajk of Lemma 5.2 are the same as those of (5.23).

(c) Show that the remainder term in (5.26) can be neglected in the proof of Theorem
5.3.
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5.3 LetX1, . . . , Xn be iid according toN (ξ, σ 2).

(a) Show that the likelihood equations have a unique root.

(b) Show directly (i.e., without recourse to Theorem 5.1) that the MLEsξ̂ andσ̂ are
asymptotically efficient.

5.4 Let (X0, . . . , Xs) have the multinomial distributionM(p0, . . . , ps ; n).

(a) Show that the likelihood equations have a unique root.

(b) Show directly that the MLEŝpi are asymptotically efficient.

5.5 Prove Corollary 5.4.

5.6 Show that there exists a functionf of two variables for which the equations∂f (x, y)/∂x =
0 and∂f (x, y)/∂y = 0 have a unique solution, and this solution is a local but not a global
maximum off .

Section 6

6.1 In Example 6.1, show that the likelihood equations are given by (6.2) and (6.3).

6.2 In Example 6.1, verify Equation (6.4).

6.3 Verify (6.5).

6.4 If θ = (θ1, . . . , θr , θr+1, . . . , θs) and if

cov

[
∂

∂θi
L(θ ),

∂

∂θj
L(θ )

]
= 0 for any i ≤ r < j,

then the asymptotic distribution of (θ̂1, . . . , θ̂r ) under the assumptions of Theorem 5.1
is unaffected by whether or notθr+1, . . . , θs are known.

6.5 LetX1, . . . , Xn be iid from aH(α, β) distribution with density 1/(H(α)βα) × xα−1

e−x/β .

(a) Calculate the information matrix for the usual (α, β) parameterization.

(b) Write the density in terms of the parameters (α,µ) = (α, α/β). Calculate the
information matrix for the (α,µ) parameterization and show that it is diagonal,
and, hence, the parameters are orthogonal.

(c) If the MLE’s in part (a) are (̂α, β̂), show that (̂α, µ̂) = (α̂, α̂/β̂). Thus, either model
estimates the mean equally well.

(For the theory behind, and other examples of, parameter orthogonality, see Cox and
Reid 1987.)

6.6 In Example 6.4, verify the MLEŝξi andσ̂jk when theξ ’s are unknown.

6.7 In Example 6.4, show that theSjk given by (6.15) are independent of (X1, . . ., Xp)
and have the same joint distribution as the statistics (6.13) withn replaced byn− 1.

[Hint: Subject each of thep vectors (Xi1, . . . , Xin) to the same orthogonal transforma-
tion, where the first row of the orthogonal matrix is (1/

√
n, . . ., 1/

√
n).]

6.8 Verify the matrices (a) (6.17) and (b) (6.18).

6.9 Consider the situation leading to (6.20), where (Xi, Yi), i = 1, . . . , n, are iid according
to a bivariate normal distribution withE(Xi) = E(Yi) = 0, var(Xi) = var(Yi) = 1, and
unknown correlation coefficientρ.



510 ASYMPTOTIC OPTIMALITY [ 6.9

(a) Show that the likelihood equation is a cubic for which the probability of a unique
root tends to 1 asn→∞. [Hint: For a cubic equationax3 + 3bx2 + 3cx + d = 0,
letG = a2d − 3abc + 2b3 andH = ac − b2. Then the condition for a unique real
root isG2 + 4H 3 > 0.]

(b) Show that ifρ̂n is a consistent solution of the likelihood equation, then it satisfies
(6.20).

(c) Show thatδ = �XiYi/n is a consistent estimator ofρ and that
√
n (δ − ρ)

L→
N (0,1 +ρ2) and, hence, thatδ is less efficient than the MLE ofρ.

6.10 Verify the limiting distribution asserted in (6.21).

6.11 LetX, . . . , Xn be iid according to the Poisson distributionP (λ). Find the ARE of
δ2n = [No. ofXi = 0]/n to δ1n = e−X̄n as estimators ofe−λ.

6.12 Show that the efficiency (6.27) tends to 0 as|a − θ | → ∞.

6.13 For the situation of Example 6.9, consider as another family of distributions, the
contaminated normal mixture family suggested by Tukey (1960) as a model for obser-
vations which usually follow a normal distribution but where occasionally something
goes wrong with the experiment or its recording, so that the resulting observation is a
gross error. Under theTukey model, the distribution function takes the form

Fτ,ε(t) = (1− ε)X(t) + εX

(
t

τ

)
.

That is, in the gross error cases, the observations are assumed to be normally distributed
with the same meanθ but a different (larger) varianceτ 2. 9

(a) Show that if theXi ’s have distributionFτ,ε(x − θ ), the limiting distribution ofδ2n

is unchanged.

(b) Show that the limiting distribution ofδ1n is normal with mean zero and variance
n

n−1

{
φ

[√
n

n−1(a − θ )
]}2

(1− ε + ετ 2).

(c) Compare the asymptotic relative efficiency ofδ1n andδ2n.

6.14 LetX1, . . . , Xn be iid asN (0, σ 2).

(a) Show thatδn = k�|Xi |/n is a consistent estimator ofσ if and only if k =
√
π/2.

(b) Determine the ARE ofδ with k =
√
π/2 with respect to the MLE

√
�X2

i /n.

6.15 Let X1, . . . , Xn be iid with E(Xi) = θ , var(Xi) = 1, andE(Xi − θ )4 = µ4, and
consider the unbiased estimatorsδ1n = (1/n)�X2

i − 1 andδ2n = X̄2
n − 1/n of θ2.

(a) Determine the AREe2,1 of δ2n with respect toδ1n.

(b) Show thate2,1 ≥ 1 if theXi are symmetric aboutθ .

(c) Find a distribution for theXi for which e2,1 < 1.

6.16 The property of asymptotic relative efficiency was defined (Definition 6.6) for es-
timators that converged to normality at rate

√
n. This definition, and Theorem 6.7, can

be generalized to include other distributions and rates of convergence.

9 As has been pointed out by Stigler (1973) such models for heavy-tailed distributions had already
been proposed much earlier in a forgotten work by Newcomb (1882, 1886).
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Theorem 9.1 Let {δin} be two sequences of estimators of g(θ ) such that

nα[δin − g(θ )]
L→ τiT , α > 0, τi > 0, i = 1,2,

where the distribution H of T has support on an interval −∞ ≤ A < B ≤ ∞ with
strictly increasing cdf on (A,B). Then, the ARE of {δ2n} with respect to {δ1n} exists and
is

e21 = lim
n2→∞

n1(n2)

n2
=

[
τ1

τ2

]1/α

.

6.17 In Example 6.10, show that the conditions of Theorem 5.1 are satisfied.

Section 7

7.1 Prove Theorem 7.1.

7.2 For the situation of Example 7.3 withm = n:

(a) Show that a necessary condition for (7.5) to converge toN (0,1) is that
√
n(λ̂−λ) →

0, whereλ̂ = σ̂ 2/τ̂ 2 andλ = σ 2/τ 2, for σ̂ 2 andτ̂ 2 of (7.4).

(b) Use the fact that̂λ/λ has anF -distribution to show that
√
n(λ̂− λ) �→ 0.

(c) Show that the full MLE is given by the solution to

ξ =
(m/σ 2)X̄ + (n/τ 2)Ȳ

m/σ 2 + n/τ 2
, σ 2 =

1

m
�(Xi − ξ )2, τ 2 =

1

n
�(Yj − ξ )2,

and deduce its asymptotic efficiency from Theorem 5.1.

7.3 In Example 7.4, determine the joint distribution of (a) (σ̂ 2, τ̂ 2) and (b) (̂σ 2, σ̂ 2
A).

7.4 Consider samples (X1, Y1), . . . , (Xm, Ym) and (X′1, Y
′
1), . . . , (X

′
n, Y

′
n) from two bi-

variate normal distributions with means zero and variance-covariances (σ 2, τ 2, ρστ )
and (σ ′2, τ ′2, ρ ′σ ′τ ′), respectively. Use Theorem 7.1 and Examples 6.5 and 6.8 to find
the limit distribution

(a) of σ̂ 2 andτ̂ 2 when it is known thatρ ′ = ρ

(b) of ρ̂ when it is known thatσ ′ = σ andτ ′ = τ .

7.5 In the preceding problem, find the efficiency gain (if any)

(a) in part (a) resulting from the knowledge thatρ ′ = ρ

(b) in part (b) resulting from the knowledge thatσ ′ = σ andτ ′ = τ .

7.6 Show that the likelihood equations (7.11) have at most one solution.

7.7 In Example 7.6, suppose thatpi = 1−F (α +βti) and that both logF (x) and log[1−
F (x)] are strictly concave. Then, the likelihood equations have at most one solution.

7.8 (a) If the cdfF is symmetric and if logF (x) is strictly concave, so is log[1−F (x)].

(b) Show that logF (x) is strictly concave whenF is strongly unimodal but not when
F is Cauchy.

7.9 In Example 7.7, show thatYn is less informative thanY .

[Hint: Let Zn be distributed asP (λ�∞i=n+1γi) independently ofYn. Then,Yn + Zn is a
sufficient statistic forλ on the basis of (Yn, Zn) andYn +Zn has the same distribution as
Y .]

7.10 Show that the estimatorδn of Example 7.7 satisfies (7.14).

7.11 Find suitable normalizing constants forδn of Example 7.7 when (a)γi = i, (b)
γi = i2, and (c)γi = 1/i.
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7.12 LetXi (i = 1, . . . , n) be independent normal with variance 1 and meanβti (with ti
known). Discuss the estimation ofβ along the lines of Example 7.7.

7.13 Generalize the preceding problem to the situation in which (a)E(Xi) = α +βti and
var(Xi) = 1 and (b)E(Xi) = α + βti and var(Xi) = σ 2 whereα, β, andσ 2 are unknown
parameters to be estimated.

7.14 LetXj (j = 1, . . . , n) be independently distributed with densitiesfj (xj |θ ) (θ real-
valued), letIj (θ ) be the informationXj contains aboutθ , and letTn(θ ) = �nj=1Ij (θ ) be

the total information aboutθ in the sample. Suppose thatθ̂n is a consistent root of the
likelihood equationL′(θ ) = 0 and that, in generalization of (3.18)-(3.20),

1√
Tn(θ0)

L′(θ0)
L→ N (0,1)

and

−L
′′(θ0)

Tn(θ0)
P→ 1 and

L′′′(θ∗n )

Tn(θ0)
is bounded in probability.

Show that √
Tn(θ0)(θ̂n − θ0)

L→ N (0,1).

7.15 Prove that the sequenceX1,X2, . . . of Example 7.8 is stationary provided it satisfies
(7.17).

7.16 (a) In Example 7.8, show that the likelihood equation has a unique solution, that it
is the MLE, and that it has the same asymptotic distribution asδ′n =

∑n

i=1XiXi+1/∑n

i=1X
2
i .

(b) Show directly thatδ′n is a consistent estimator ofβ.

7.17 In Example 7.8:

(a) Show that forj > 1 the expected value of the conditional information (givenXj−1)
thatXj contains aboutβ is 1/(1− β2).

(b) Determine the informationX1 contains aboutβ.

7.18 Whenτ = σ in (7.21), show that the MLE exists and is consistent.

7.19 Suppose that in (7.21), theξ ’s are themselves random variables, which are iid as
N (µ, γ 2).

(a) Show that the joint density of the (Xi, Yi) is that of a sample from a bivariate normal
distribution, and identify the parameters of that distribution.

(b) In the model of part (a), find asymptotically efficient estimators of the parameters
µ, γ , β, σ , andτ .

7.20 Verify the roots (7.22).

7.21 Show that the likelihood (7.21) is unbounded.

7.22 Show that ifρ s defined by (7.24), thenρ andρ ′ are everywhere continuous.

7.23 Let F have a differentiable densityf and let
∫
ψ2f <∞.

(a) Use integration by parts to write the denominator of (7.27) as [
∫
ψ(x)f ′(x)dx]2.

(b) Show thatσ 2(F,ψ) ≥ [
∫

(f ′/f )2f ]−1 = I−1
f by applying the Schwarz inequality

to part (a).

The following three problems will investigate the technical conditions required for the
consistency and asymptotic normality of M-estimators, as noted in (7.26).
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7.24 To have consistency ofM-estimators, a sufficient condition is that the root of the
estimating function be unique and isolated. Establish the following theorem.

Theorem 9.2 Assume that conditions (A0)-(A3) hold. Let t0 be an isolated root of the
equation Eθ0[ψ(X, t)] = 0, where ψ(·, t) is monotone in t and continuous in a neigh-
borhood of t0. If T0(x) is a solution to

∑n

i=1ψ(xi, t) = 0, then T0 converges to t0 in
probability.

[Hint: The conditions onψ imply thatEθ0[ψ(X, t)] is monotone, sot0 is a unique root.
Adapt the proofs of Theorems 3.2 and 3.7 to complete this proof.]

7.25 Theorem 9.3 Under the conditions of Theorem 9.2, if, in addition

(i) Eθ0
[
∂

∂t
ψ(X, t)|t=t0

]
is finite and nonzero,

(ii) Eθ0
[
ψ2(X, t0)

]
<∞,

then √
n(T0 − t0) L→ N (0, σ 2

T0
),

where σ 2
T0

= Eθ0
[
ψ2(X, t0)

]
/(Eθ0

[
∂

∂t
ψ(X, t)|t=t0

]
)2.

[Note that this is a slight generalization of (7.27).]

[Hint: The assumptions onψ are enough to adapt the Taylor series argument of Theorem
3.10, whereψ takes the place ofl′.]

7.26 For each of the following estimates, write out theψ function that determines it, and
show that the estimator is consistent and asymptotically normal under the conditions of
Theorems 9.2 and 9.3.

(a) Theleast squares estimate, the minimizer of
∑

(xi − t)2.

(b) Theleast absolute value estimate, the minimizer of
∑ |xi − t |.

(c) TheHuber trimmed mean, the minimizer of (7.24).

7.27 In Example 7.12, compare (a) the asymptotic distributions ofξ̂ and δn; (b) the
normalized expected squared error ofξ̂ andδn.

7.28 In Example 7.12, show that (a)
√
n( ˆ̂b − b) L→ N (0, b2) and (b)

√
n(b̂ − b) L→

N (0, b2).

7.29 In Example 7.13, show that

(a) ĉ andâ are independent and have the stated distributions;

(b) X(1) and� log[Xi/X(1)] are complete sufficient statistics on the basis of a sample
from (7.33).

7.30 In Example 7.13, determine the UMVU estimators ofa andc, and the asymptotic
distributions of these estimators.

7.31 In the preceding problem, compare (a) the asymptotic distribution of the MLE
and the UMVU estimator ofc; (b) the normalized expected squared error of these two
estimators.

7.32 In Example 7.15, (a) verify equation (7.39), (b) show that the choicea = −2
produces the estimator with the best second-order efficiency, (c) show that the limiting
risk ratio of the MLE (a = 0) to δn(a = −2) is 2, and (d) discuss the behavior of this
estimator in small samples.

7.33 Let X1, . . . , Xn be iid according to the three-parameter lognormal distribution
(7.37). Show that
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(a)

p∗(x|ξ ) = sup
γ,σ2

p(x|ξ, γ, σ 2) = c/[σ̂ (ξ )]nO[1/(xi − ξ )]

where

p(x|ξ, γ, σ 2) =
n∏
i=1

f (xi |ξ, σ 2),

σ̂ 2(ξ ) =
1

n
�[log(xi − ξ )− γ̂ (ξ )]2 and γ̂ (ξ ) =

1

n
� log(xi − ξ ).

(b) p∗(x|ξ ) →∞ as ξ → x(1).

[Hint: (b) Forξ sufficiently nearx(1),

σ̂ 2(ξ ) ≤ 1

n
�[log(xi − ξ )]2 ≤ [log(x(1) − ξ )]2

and hence
p∗(x|ξ ) ≥ | log(x(1) − ξ )|−nO(x(i) − ξ )−1.

The right side tends to infinity asξ → x(1) (Hill 1963.]

7.34 The derivatives of all orders of the density (7.37) tend to zero asx → ξ .

Section 8

8.1 Determine the limit distribution of the Bayes estimator corresponding to squared
error loss, and verify that it is asymptotically efficient, in each of the following cases:

(a) The observationsX1, . . . , Xn are iidN (θ, σ 2), with σ known, and the estimand is
θ . The prior distribution for� is a conjugate normal distribution, sayN (µ, b2).
(See Example 4.2.2.)

(b) The observationsYi have the gamma distributionH(γ,1/τ ), the estimand is 1/τ ,
andτ has the conjugate prior densityH(g, α).

(c) The observations and prior are as in Problem 4.1.9 and the estimand isλ.

(d) The observationsYi have the negative binomial distribution (4.3),p has the prior
densityB(a, b), and the estimand is (a)p and (b) 1/b.

8.2 Referring to Example 8.1, consider, instead, the minimax estimatorδn of p given by
(1.11) which corresponds to the sequence of beta priors witha = b =

√
n/2. Then,

√
n[δn − p] =

√
n

(
X

n
− p

)
+

√
n

1 +
√
n

(
1

2
− X
n

)
.

(a) Show that the limit distribution of
√
n[δn − p] is N [ 1

2 − p, p(1− p)], so thatδn
has the same asymptotic variance asX/n, but that forp �= 1

2, it is asymptotically
biased.

(b) Show that ARE ofδn relative toX/n does not exist except in the casep = 1
2 when

it is 1.

8.3 The assumptions of Theorem 2.6 imply (8.1) and (8.2).

8.4 In Example 8.5, the posterior density ofθ after one observation isf (x1 − θ ); it is a
proper density, and it satisfies (B5) providedEθ |X1| <∞.

8.5 LetX1, . . . , Xn be independent, positive variables, each with density (1/τ )f (xi/τ ),
and letτ have the improper densityπ (τ ) = 1/τ (τ > 0). The posterior density after one
observation is a proper density, and it satisfies (B5), providedEτ (1/X1) <∞.
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8.6 Give an example in which the posterior density is proper (with probability 1) after
two observations but not after one.

[Hint: In the preceding example, letπ (τ ) = 1/τ 2.]

8.7 Prove the result stated preceding Example 8.6.

8.8 LetX1, . . . , Xn be iid asN (θ,1) and consider the improper densityπ (θ ) = eθ
4
. Then,

the posterior will be improper for alln.

8.9 Prove Lemma 8.7.

8.10 (a) If sup|Yn(t)| P→ 0 and sup|Xn(t) − c| P→ 0 asn → ∞, then sup|Xn(t) −
ceYn(t)| P→ 0, where the sup is taken over a common sett ∈ T .

(b) Use (a) to show that (8.22) and (8.23) imply (8.21).

8.11 Show that (B1) implies (a) (8.24) and (b) (8.26).

10 Notes

10.1 Origins

The origins of the concept of maximum likelihood go back to the work of Lambert,
Daniel Bernoulli, and Lagrange in the second half of the eighteenth century, and of
Gauss and Laplace at the beginning of the nineteenth. (For details and references, see
Edwards 1974 or Stigler 1986.) The modern history begins with Edgeworth (1908, 1909)
and Fisher (1922, 1925), whose contributions are discussed by Savage (1976) and Pratt
(1976).

Fisher’s work was followed by a euphoric belief in the universal consistency and asymp-
totic efficiency of maximum likelihood estimators, at least in the iid case. The true situa-
tion was sorted out only gradually. Landmarks are Cramér (1946a, 1946b), who shifted
the emphasis from the global to a local maximum and defined the “regular” case in which
the likelihood equation has a consistent asymptotically efficient root; Wald (1949), who
provided fairly general conditions for consistency; the counterexamples of Hodges (Le
Cam, 1953) and Bahadur (1958); and Le Cam’s resulting theorem on superefficiency
(1953).

Convergence (under suitable restrictions and appropriately normalized) of the posterior
distribution of a real-valued parameter with a prior distribution to its normal limit was
first discovered by Laplace (1820) and later reobtained by Bernstein (1917) and von
Mises (1931). More general versions of this result are given in Le Cam (1958). The
asymptotic efficiency of Bayes solutions was established by Le Cam (1958), Bickel
and Yahav (1969), and Ibragimov and Has’minskii (1972). (See also Ibragimov and
Has’minskii 1981.)

Computation of likelihood estimators was influenced by the development of theEM
Algorithm (Dempster, Laird, and Rubin 1977). This algorithm grew out of work done on
iterative computational methods that were developed in the 1950s and 1960s, and can be
traced back at least as far as Hartley (1958). The EM algorithm has enjoyed widespread
use as a computational tool for obtaining likelihood estimators in complex problems
(see Little and Rubin 1987, Tanner 1996, or McLachlan and Krishnan 1997).

10.2 Alternative Conditions for Asymptotic Normality

The Craḿer conditions for asymptotic normality and efficiency that are given in Theo-
rems 3.10 and 5.1 are not the most general; for those, see Strasser 1985, Pfanzagl 1985,
or LeCam 1986. They were chosen because they have fairly wide applicability, yet are
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relatively straightforward to verify. In particular, it is possible to relax the assumptions
somewhat, and only require conditions on the second, rather than third, derivative (see
Le Cam 1956, H́ajek 1972, and Inagaki 1973). These conditions, however, are somewhat
more involved to check than those of Theorem 3.10, which already require some effort.

The conditions have also been altered to accommodate specific features of a problem.
One particular change was introduced by Daniels (1961) to overcome the nondifferentia-
bility of the double exponential distribution (see Example 3.14). Huber (1967) notes an
error in Daniels proof; however, the validity of the theorem remains. Others have taken
advantage of the form of the likelihood. Berk (1972b) exploited the fact that in expo-
nential families, the cumulant generating function is convex. This, in turn, implies that
the log likelihood is concave, which then leads to simpler conditions for consistency and
asymptotic normality. Other proofs of existence and consistency under slightly different
assumptions are given by Foutz (1977). Consistency proofs in more general settings
were given by Wald (1949), Le Cam (1953), Bahadur (1967), Huber (1967), Perlman
(1972), and Ibragimov and Has’minskii (1981), among others. See also Pfanzagl 1969,
1994, Landers 1972, Pfaff 1982, Wong 1992, Bickel et al. 1993, and Note 10.4. Another
condition, which also eliminates the problem of superefficiency, is that oflocal asymp-
totic normality (Le Cam 1986, Strasser 1985, Section 81, LeCam and Yang 1990, and
Wong 1992.)

10.3 Measurability and Consistency

Theorems 3.7 and 4.3 assert the existence of a consistent sequence of roots of the
likelihood equation, that is, a sequence of roots that converges in probability to the true
parameter value. The proof of Theorem 3.7 is a modification of those of Cramér (1946a,
1946b) and Wald (1949), where the latter established convergence almost everywhere of
the sequence. In almost all cases, we are taught, convergence almost everywhere implies
convergence in probability, but that is not so here because a sequence of roots need not be
measurable! Happily, theθ∗n of Theorem 3.7 are measurable (however, those of Theorem
4.3 are not necessarily). Serfling (1980, Section 4.2.2; see also Problem 3.29), addresses
this point, as does Ferguson (1996, Section 17), who also notes that nonmeasurability
does not preclude consistency. (We thank Professor R. Wijsman for alerting us to these
measurability issues.)

10.4 Estimating Equations

Theorems 9.2 and 9.3 use assumptions similar to the original assumptions of Huber
(1964, 1981, Section 3.2). Alternate conditions for consistency and asymptotic normal-
ity, which relax some smoothness requirements onρ, have been developed by Boos
(1979) and Boos and Serfling (1980); see also Serfling 1980, Chapter 7, for a detailed
development of this topic. Further results can be found in Portnoy (1977a, 1984, 1985)
and the discrete case is considered by Simpson, Carroll, and Ruppert (1987).

The theory ofM-estimation, in particular results such as (7.26), have been generalized
in many ways. In doing so, much has been learned about the properties of the functions
ρ andψ = ρ ′ needed for the solutioñθ to the equation

∑n

i=1ψ(xi − θ ) = 0 to have
reasonable statistical properties.

For example, the structure of the exponential family can be exploited to yield less re-
strictive conditions for consistency and asymptotic efficiency ofθ̃ . In particular, the
concavity of the log likelihood plays an important role. Haberman (1989) gives a com-
prehensive treatment of consistency and asymptotic normality of estimators derived
from maximizing concave functions (which include likelihood andM-estimators).
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This approach to constructing estimators has become known as the theory ofestimating
functions [see, for example, Godambe 1991 or the review paper by Liang and Zeger
(1994)]. A general estimating equation has the form

∑n

i=1 h(xi |θ ) = 0, and consis-
tency and asymptotic normality of the solutionθ̃ can be established under quite gen-
eral conditions (but also see Freedman and Diaconis 1982 or Lele 1994 for situations
where this can go wrong). For example, if the estimating equation isunbiased, so that
Eθ

[∑n

i=1 h(Xi |θ )
]

= 0 for all θ , then the “usual” regularity conditions (such as those
in Problems 7.24 - 7.25 or Theorem 3.10) will imply thatθ̃ is consistent. Asymptotic
normality will also often follow, using a proof similar to that of Theorem 3.10, where
the estimating functionh is used instead of the log likelihoodl. Carroll, Ruppert, and
Stefanski (1995, Appendix A.3) provide a nice introduction to this topic.

10.5 Variants of Likelihood

A large number of variants of the likelihood function have been proposed. Many started as
a means of solving a particular problem and, as their usefulness and general effectiveness
was realized, they were generalized. Although we cannot list all of these variants, we
shall mention a few of them.

The first modifications of the usual likelihood function are primarily aimed at dealing
with nuisance parameters. These include themarginal, conditional, andprofile likeli-
hoods, and themodified profile likelihood of Barndorff-Nielsen (1983). In addition, many
of the modifications are accompanied by higher-order distribution approximations that
result in faster convergence to the asymptotic distribution. These approximations may
utilize techniques of small-sample asymptotics (conditioning on ancillaries, saddlepoint
expansions) or possibly Bartlett corrections (Barndorff-Nielsen and Cox 1984).

Other modifications of likelihood may entail, perhaps, a more drastic variation of the
likelihood function. Thepartial likelihood of Cox (1975; see also Oakes 1991), presents
an effective means of dealing with censored data, by dividing the model into parametric
and nonparametric parts. Along these linesquasi-likelihood (Wedderburn 1974, Mc-
Culloch and Nelder 1989, McCulloch 1991) is based only on moment assumptions and
empirical likelihood (Owen 1988, 1990, Hall and La Scala 1990) is a nonparametric
approach based on a multinomial profile likelihood.

There are many other variations of likelihood, includingdirected, penalized, andex-
tended, and the idea ofpredictive likelihood (Hinkley 1979, Butler 1986, 1989).

An entry to this work can be obtained through Kalbfleisch (1986), Barndorff-Nielsen
and Cox (1994), or Edwards (1992), the review articles of Hinkley (1980) and Bjørnstad
(1990), or the volume of review articles edited by Hinkley, Reid, and Snell (1991).

10.6 Boundary Values

A key feature throughout this chapter was the assumption that the true parameter pointθ0

occurs at an interior point of the parameter space (Section 6.3, Assumption A3; Section
6.5, Assumption A). The effect of this assumption is that, for largen, as the likelihood
estimator gets close toθ0, the likelihood estimator will, in fact, be a root of the likelihood.
(Recall the proofs of Theorems 3.7 and 3.10 to see how this is used.) However, in some
applicationsθ0 is on the boundary of the parameter space, and the ML estimator is not
a root of the likelihood. This situation is more frequently encountered in testing than
estimation, where the null hypothesisH0 : θ = θ0 often involves a boundary point.
However, boundary values can also occur in point estimation. For example, in a mixture
problem (Example 6.10), the value of the mixing parameter could be the boundary value
0 or 1. Chernoff (1954) first investigated the asymptotic distribution of the maximum
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likelihood estimator when the parameter is on the boundary. This distribution is typically
not normal, and is characterized by Self and Liang (1987), who give many examples,
ranging from multivariate normal to mixtures of chi-squared distributions to even more
complicated forms.

An alternate approach to establishing the limiting distribution is provided by Feng and
McCulloch (1992), who use a strategy of expanding the parameter space.

10.7 Asymptotics of REML

The results of Cressie and Lahiri (1993) and Jiang (1996, 1997) show that when using
restricted maximum likelihood estimation (REML; see Example 2.7 and the discussion
after Example 5.3) instead of ML, efficiency need not be sacrificed, as the asymptotic
covariance matrix of the REML estimates is the inverse information matrix from the
reduced problem. More precisely, we can write thegeneral linear mixed model (gener-
alizing the linear model of Section 3.4) as

Y = Xβ +Zu + ε,(10.1)

whereY is theN × 1 vector of observations,X andZ areN × p design matrices,β is
thep × 1 vector of fixed effects,u ∼ N (0,D) is thep × 1 vector of random effects,
andε ∼ N (0, R), independent ofu. The variance components ofD andR are usually
the targets of estimation. The likelihood functionL(β ,u,D,R|y) is transformed to the
REML likelihood by marginalizing out theβ andu effects, that is,

L(D,R|y) =
∫ ∫

L(β ,u,D,R|y) du dβ .

Suppose now thatV = V (θ ), that is, the vectorθ represents the variance components
to be estimated. We can thus writeL(D,R|y) = L(V (θ )|y) and denote the information
matrix of the marginal likelihood byIN (θ ). Cressie and Lahiri (1993, Corollary 3.1)
show that under suitable regularity conditions,

[IN (θ )]1/2
(
θ̂ − θ

) L→ Nk(0, I ),

whereθ̂N maximizesL(V (θ )|y). Thus, the REML estimator is asymptotically efficient.
Jiang (1996, 1997) has extended this result, and established the asymptotic normality of
θ̂ even when the underlying distributions are not normal.

10.8 Higher-Order Asymptotics

Typically, not only is the MLE asymptotically efficient, but so also are various approxi-
mations to the MLE, to Bayes estimators, and so forth. Therefore, it becomes important
to be able to distinguish between different asymptotically efficient estimator sequences.
For example, it seems plausible that one would do best in any application of Theorem
4.3 by using a highly efficient

√
n-consistent starting sequence. It has been pointed out

earlier that an efficient estimator sequence can always be modified by terms of order 1/n

without affecting the asymptotic efficiency. Thus, to distinguish among them requires
taking into account the terms of the next order.

A number of authors (among them Rao 1963, Pfanzagl 1973, Ghosh and Subramanyam
1974, Efron 1975, 1978, Akahira and Takeuchi 1981, and Bhattacharya and Denker
1990) have investigated estimators that are “second-order efficient,” that is, efficient and
among efficient estimators have the greatest accuracy to terms of the next order, and in
particular these authors have tried to determine to what extent the MLE is second-order
efficient. For example, Efron (1975, Section 10) shows that in exponential families, the
MLE minimizes the coefficient of the second-order term among efficient estimators.
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For the most part, however, the asymptotic theory presented here is “first-order” theory
in the sense that the conclusion of Theorem 3.10 can be expressed as saying that

√
n(θ̂n − θ )√
I−1(θ )

= Z +O

(
1√
n

)
,

whereZ is a standard normal random variable, so the convergence is at rateO(1/n1/2).
It is possible to reduce the error in the approximation toO(1/n3/2) using “higher-
order” asymptotics. The book by Barndorff-Nielsen and Cox (1994) provides a detailed
treatment of higher-order asymptotics. Other entries into this subject are through the
review papers of Reid (1995, 1996) and a volume edited by Hinkley, Reid, and Snell
(1991).

Another technique that is very useful in obtaining accurate approximations for the densi-
ties of statistics is thesaddlepoint expansion (Daniels 1980, 1983), which can be derived
through inversion of a characteristic function or through the use of Edgeworth expan-
sions. Entries to this literature can be made through the review paper of Reid (1988), the
monograph by Kolassa (1993), or the books by Field and Ronchetti (1990) or Jensen
(1995).

Still another way to achieve higher-order accuracy in certain cases is through a technique
known as thebootstrap, initiated by Efron (1979, 1982b). Some of the theoretical foun-
dations of the bootstrap are rooted in the work of von Mises (1936, 1947) and Kiefer and
Wolfowitz (1956). The bootstrap can be thought of as a “nonparametric” MLE, where the
quantity

∫
h(x)dF (x) is estimated by

∫
h(x)dFn(x). Using the technique of Edgeworth

expansions, it was established by Singh (1981) (see also Bickel and Freedman 1981)
that the bootstrap sometimes provides a more accurate approximation than the Delta
Method (Theorem 1.8.12). An introduction to the asymptotic theory of the bootstrap
is given by Lehmann (1999), and implementation and applications of the bootstrap are
given in Efron and Tibshirani (1993). Other introductions to the bootstrap are through
the volume edited by LePage and Billard (1992), the book by Shao and Tu (1995), or
the review paper of Young (1994). A more theoretical treatment is given by Hall (1992).
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type.Ann. Statist. 2, 464-473.

Blyth, C. R. (1980). Expected absolute error of the usual estimator of the binomial parameter.
Amer. Statist. 34, 155-157.

Blyth, C. R. (1982). Maximum probability estimation in small samples.Festschrift for
Erich Lehmann (P. J. Bickel. K. A. Doksum, and J. L. Hodges, Jr., eds). Pacific Grove, CA:
Wadsworth and Brooks/Cole.

Bock, M. E. (1975). Minimax estimators of the mean of a multivariate normal distribution.
Ann. Statist. 3, 209-218.

Bock, M. E. (1982). Employing vague inequality information in the estimation of normal
mean vectors (Estimators that shrink toward closed convex polyhedra).Statistical Decision
Theory III (S. S. Gupta and J. O. Berger, eds.). New York: Academic Press, pp. 169-193.

Bock, M. E. (1988). Shrinkage estimators: Pseudo-Bayes estimators for normal mean vec-
tors.Statistical Decision Theory IV (S. S. Gupta and J. O. Berger, eds.). New York: Springer-
Verlag, pp. 281-298.

Bondar, J. V. (1987). How much improvement can a shrinkage estimator give?Foundations
of Statistical Inference (I. MacNeill and G Umphreys, eds.). Dordrecht: Reidel.

Bondar, J. V. and Milnes, P. (1981). Amenability: A survey for statistical applications of
Hunt-Stein and related conditions on groups.Zeitschr. Wahrsch. Verw. Geb. 57, 103-128.

Bondesson, L. (1975). Uniformly minimum variance estimation in location parameter fam-
ilies. Ann. Statist. 3, 637-66.

Boos, D. D. (1979). A differential forL-statistics.Ann. Statist. 7, 955-959.



528 REFERENCES [ 6.10

Boos, D. D. and Serfling, R. J. (1980). A note on differentials and the CLT and LIL for
statistical functions, with application toM-estimators.Ann. Statist. 86, 618-624.

Borges, R. and Pfanzagl, J. (l965). One-parameter exponential families generated by trans-
formation groups.Ann. Math. Statist. 36, 261-271.

Box, G. E. and Tiao, G. C. (1973).Bayesian Inference in Statistical Analysis. Reading, MA:
Addison-Wesley.

Box, G. E. P. and Cox, D. R. (1982). An analysis of transformations revisited, rebutted.J.
Amer. Statist. Assoc. 77, 209-210.

Boyles, R. A. (1983). On the convergence of the EM algorithm.J. Roy. Statist. Soc. Ser. B
45, 47-50.

Bradley R A. and Gart, J.J. (1962). The asymptotic properties of ML estimators when
sampling for associated populations.Biometrika 49, 205-214.

Brandwein, A. C. and Strawderman, W. E. (1978). Minimax estimation of location param-
eters for spherically symmetric unimodal distributions under quadratic loss.Ann. Statist. 6,
377-416.

Brandwein, A. C. and Strawderman, W. E. (1980). Minimax estimation of location param-
eters for spherically symmetric distributions with concave loss.Ann. Statist. 8, 279-284.

Brandwein, A. C. and Strawderman, W. E. (1990). Stein estimation: The spherically sym-
metric case.Statist. Sci. 5, 356-369.

Bravo, G. and MacGibbon, B. (1988). Improved shrinkage estimators for the mean vector
of a scale mixture of normals with unknown variance.Can. J. Statist. 16, 237-245.

Brewster, J. F and Zidek, J. V. (1974). Improving on equivariant estimatorsAnn. Statist. 2,
21-38.

Brockwell, P. J. and Davis, R. A. (1987).Time Series: Theory and Methods New York:
Springer-Verlag

Brown, L. D. (1966). On the admissibility of invariant estimators of one or more location
parameters.Ann. Math. Statist. 37, 1087-1136.

Brown, L. D. (1968). Inadmissibility of the usual estimators of scale parameters in problems
with unknown location and scale parameters.Ann. Math. Statist. 39, 29-48.

Brown, L. D. (1971). Admissible estimators, recurrent diffusions, and insoluble boundary
value problems.Ann. Math. Statist. 42, 855-903. [Corr: (1973)Ann. Statist. 1, 594-596.]

Brown, L. D. (1975). Estimation with incompletely specified loss functions (the case of
several location parameters).J. Amer. Statist. Assoc. 70, 417-427.

Brown, L. D. (1978). A contirbution to Kiefer’s theory of conditional confidence procedures.
Ann. Statist. 6, 59-71.

Brown, L. D. (1979). A heuristic method for determining admissibility of estimators - with
applications.Ann. Statist. 7, 960-994.

Brown, L. D. (1980a). A necessary condition for admissibility.Ann. Statist. 8, 540-544.

Brown, L. D. (1980b). Examples of Berger’s phenomenon in the estimation of independent
normal means.Ann. Statist. 8, 572-585.

Brown, L. D. (1981). A complete class theorem for statistical problems with finite sample
spaces.Ann. Statist. 9, 1289-1300.

Brown, L. D. (1986a).Fundamentals of Statistical Exponential Families. Hayward, CA:
Institute of Mathematical Statistics



6.10 ] REFERENCES 529

Brown, L. D. (1986b). Commentary on paper [19].J. C. Kiefer Collected Papers, Supple-
mentary Volume. New York: Springer-Verlag, pp. 20-27.

Brown, L. D. (1988). Admissibility in discrete and continuous invariant nonparametric
estimation problems and in their multinomial analogs.Ann. Statist. 16, 1567-1593.

Brown L. D. (1990a). An ancillarity paradox which appears in multiple linear regression
(with discussion).Ann. Statist. 18, 471-538.

Brown L. D. (1990b). Comment on the paper by Maatta and Casella.Statist. Sci. 5, 103-106.

Brown, L. D. (1994). Minimaxity, more or less.Statistical Decision Theory and Related
Topics V (S. S. Gupta and J. O. Berger, eds.). New York: Springer-Verlag, pp. 1-18.

Brown, L. D. and Cohen, A. (1974). Point and confidence estimation of a common mean
and recovery of interblock information,Ann. Statist. 2, 963-976.

Brown, L. D. and Farrell, R. (1985a). All admissible estimators of a multivariate Poisson
mean.Ann. Statist. 13, 282-294.

Brown, L. D. and Farrell, R. (1985b). Complete class theorems for estimation of multivariate
Poisson means and related problems.Ann. Statist. 13, 706-726.

Brown, L. D. and Farrell, R. (1990). A lower bound for the risk in estimating the value of
a probability density.J. Amer. Statist. Assoc. 90, 1147-1153.

Brown, L. D. and Fox, M. (1974a). Admissibility of procedures in two-dimensional location
parameter problems.Ann. Statist. 2, 248-266.

Brown, L. D. and Fox, M. (1974b). Admissibility in statistical problems involving a location
or scale parameter.Ann. Statist. 2, 807-814.

Brown, L. D. and Gajek, L. (1990). Information inequalities for the Bayes risk.Ann. Statist.
18, 1578-1594.

Brown, L. D. and Hwang, J. T. (1982). A unified admissibility proof.Statistical Decision
Theory III (S. S. Gupta and J. O. Berger, eds.). New York: Academic Press, pp. 205-230.

Brown, L. D. and Hwang, J. T. (1989). Universal domination and stochastic domination:
U-admissibility and U-inadmissibility of the least squares estimator.Ann. Statist. 17, 252-
267.

Brown, L. D., Johnstone, I., and MacGibbon, B. K. (1981). Variation diminishing transfor-
mations: A direst approach to total positivity and its statistical applications.J. Amer. Statist.
Assoc. 76, 824-832.

Brown, L. D. and Low, M. G. (1991). Information inequality bounds on the minimax risk
(with an application to nonparametric regression).Ann. Statist. 19, 329-337.

Brown, L. D. and Purves, R. (1973). Measurable selection of extremaAnn. Statist. 1, 902-
912.

Brown, P. J. and Zidek, J. V. (1980). Adaptive multivariate ridge regression.Ann. Statist. 8,
64-74.

Brown, L. D., Cohen, A. and Strawderman, W. E. (1976). A complete class theorem for
strict monotone likelihood ratio with applications.Ann. Statist. 4, 712-722.

Brown, L. D., Casella, G., and Hwang, J. T. G. (1995). Optimal confidence sets, bioequiv-
alence, and the limac¸on of Pascal.J. Amer. Statist. Assoc. 90, 880-889.

Bucklew, J. A. (1990).Large Deviation Techniques in Decision, Simulation and Estimation.
New York: Wiley.



530 REFERENCES [ 6.10

Buehler, R. J. (1959). Some validity criteria for statistical inference.Ann. Math. Statist. 30,
845-863.

Buehler, R. J. (1982). Some ancillary statistics and their properties.J. Amer. Statist. Assoc.
77, 581-589.

Burdick, R. K. and Graybill, F. A. (1992).Confidence Intervals on Variance Components.
New York: Marcel Dekker

Butler, R. W. (1986). Predictive likelihood inference with applications (with discussion).J.
Roy. Statist. Soc. Ser. B 48, 1-38.

Butler, R. W. (1989). Approximate predictive pivots and densities.Biometrika 76, 489-501.

Carlin, B. P. and Louis, T. A. (1996).Bayes and Empirical Bayes Methods for Data Analysis.
London: Chapman & Hall.

Carroll, R. J. and Lombard, F. (1985). A note on N estimators for the binomial distribution.
J. Amer. Statist. Assoc. 80, 423-426.

Carroll, R. J. Ruppert, D., and Stefanski, L. (1995).Measurment Error in Nonlinear Models.
London: Chapman & Hall.

Carter, R. G., Srivastava, M. S., and Srivastava, V. K. (1990). Unbiased estimation of the
MSE matrix of Stein-rule estimators, confidence ellipsoids, and hypothesis testing.Econ.
Theory 6, 63-74.

Casella, G. (1980). Minimax ridge regression estimation.Ann. Statist. 8, 1036-1056.

Casella, G. (1985a). An introduction to empirical Bayes data analysis.Amer. Statist. 39,
83-87.

Casella, G. (1985b). Matrix conditioning and minimax ridge regression estimation.J. Amer.
Statist. Assoc. 80, 753-758.

Casella, G. (1986). Stabilizing binomialn estimators.J. Amer. Statist. Assoc. 81, 172-175.

Casella, G. (1987). Conditionally acceptable recentered set estimators.Ann. Statist. 15,
1363-1371.

Casella, G. (1988). Conditionally acceptable frequentist solutions (with discussion).Statis-
tical Decision Theory IV (S. S. Gupta and J. O. Berger, eds.). New York: Springer-Verlag,
pp. 73-111.

Casella, G. (1990). Estimators with nondecreasing risk: Application of a chi-squared iden-
tity. Statist. Prob. Lett. 10, 107-109.

Casella, G. (1992a). Illustrating empirical Bayes methods.Chemolab 16, 107-125.

Casella, G. (1992b). Conditional inference from confidence sets. InCurrent Issues in Sta-
tistical Inference: Essays in Honor of D. Basu (M. Ghosh and P. K. Pathak, eds.). Hayward,
CA: Institute of Mathematical Statistics, pp. 1-12.

Casella, G. and Berger, R. L. (1990).Statistical Inference. Pacific Grove, CA:
Wadsworth/Brooks Cole.

Casella, G. and Berger, R. L. (1992). Deriving generalized means as least squares and
maximum likelihood estimates.Amer. Statist. 46, 279-282.

Casella, G. and Berger, R. L. (1994). Estimation with selected binomial information.J.
Amer. Statist. Assoc. 89, 1080-1090.

Casella, G. and Hwang, J. T. G. (1982). Limit expressions for the risk of James-Stein
estimators.Can. J. Statist. 10, 305-309.



6.10 ] REFERENCES 531

Casella, G. and Hwang, J. T. (1983). Empirical Bayes confidence sets for the mean of a
multivariate normal distribution.J. Amer. Statist. Assoc. 78, 688-697.

Casella, G. and Hwang, J. T. (1987). Employing vague prior information in the construction
of confidence sets.J. Mult. Anal. 21, 79-104.

Casella, G. and Strawderman, W. E. (1981). Estimating a bounded normal mean.Ann.
Statist. 9, 870-878.

Casella, G. and Strawderman, W. E. (1994). On estimating several binomial N’s.Sankhya
56, 115-120.

Cassel, C., S̈arndal, C., and Wretman, J. H. (1977).Foundations of Inference in Survey
Sampling. New York: Wiley.

Cellier, D., Fourdrinier, D., and Robert, C. (1989). Robust shrinkage estimators of the
location parameter for elliptically symmetric distributions.J. Mult. Anal. 29, 39-42.

Chan, K. S. and Geyer, C. J. (1994). Discussion of the paper by Tierney.Ann. Statist. 22,
1747-1758

Chan, L. K. (1967). Remark on the linearized maximum likelihood estimate.Ann. Math.
Statist. 38, 1876-1881.

Chapman, D. G. and Robbins, H. (1951). Minimum variance estimation without regularity
assumptions.Ann. Math. Statist. 22, 581-586.

Chatterji, S. D. (1982). A remark on the Cramér-Rao inequality. InStatistics and Probability:
Essays in Honor of C. R. Rao (G. Kallianpur, P. R. Krishnaiah, and J. K. Ghosh, eds.). New
York: North Holland, pp. 193-196.

Chaudhuri, A. and Mukerjee, R. (1988).Randomized Response: Theory and Techniques.
New York: Marcel Dekker.

Chen, J. and Hwang, J. T. (1988). Improved set estimators for the coefficients of a linear
model when the error distribution is spherically symmetric.Can. J. Statist. 16, 293-299.

Chen, L., Eichenauer-Herrmann, J., and Lehn, J. (1990). Gamma-minimax estimation of a
multivariate normal mean.Metrika 37, 1-6.

Chen, S-Y. (1988). Restricted risk Bayes estimation for the mean of a multivariate normal
distribution.J. Mult. Anal. 24, 207-217.

Chernoff, H. (1954). On the distribution of the likelihood ratio.Ann. Math. Statist. 25,
573–578.

Chernoff, H. (1956). Large-sample theory: Parametric case.Ann. Math. Statist. 27, 1-22.

Chib, S. and Greenberg, E. (1955). Understanding the Metropolis-Hastings algorithm.The
American Statistician 49, 327–335.

Chow, M. (1990). Admissibility of MLE for simultaneous estimation in negative binomila
problems.J. Mult. Anal. 33, 212-219.

Christensen, R. (1987).Plane Answers to Complex Questions: The Theory of Linear Models,
Second Edition. New York: Springer-Verlag.

Christensen, R. (1990).Log-linear Models. New York: Springer-Verlag.

Churchill, G. A. (1985). Stochastic models for heterogeneous DNA.Bull. Math. Biol. (51)
1, 79-94.

Chung, K. L. (1974).A Course in Probability Theory, Second Edition. New York: Academic
Press.



532 REFERENCES [ 6.10

Clarke, B. S. and Barron, A. R. (1990). Information-theoretic asymptotics of Bayes methods.
IEEE Trans. Inform. Theory 36, 453-471.

Clarke, B. S. and Barron, A. R. (1994). Jeffreys prior is asymptotically least favorable under
entropy loss.J. Statist. Plan. Inform. 41, 37-60.

Clarke, B. S. and Wasserman, L. (1993). Noninformative priors and nuisance parameters.
J. Amer. Statist. Assoc. 88, 1427-1432.

Cleveland, W. S. (1985).The Elements of Graphing Data. Monterey, CA: Wadsworth.

Clevensen, M. L. and Zidek, J. (1975). Simultaneous estimation of the mean of independent
Poisson laws.J. Amer. Statist. Assoc. 70, 698-705.

Cochran, W. G. (1977).Sampling Techniques, Third Edition. New York: Wiley.

Cohen, A. (1965a). Estimates of linear combinations of the parameters in the mean vector
of a multivariate distribution.Ann. Math. Statist. 36, 78-87.

Cohen, A. C. (1965b). Maximum likelihood estimation in the Weibull distribution based on
complete and on censored samples.Technometrics 7, 579-588.

Cohen, A. C. (1966). All admissible linear estimators of the mean vector.Ann. Math. Statist.
37, 458-463.

Cohen, A. C. (1967). Estimation in mixtures of two normal distributions.Technometrics 9,
15-28.

Cohen, A. (1981). Inference for marginal means in contingency tables.J. Amer. Statist.
Assoc. 76, 895-902.

Cohen, A. and Sackrowitz, H. B. (1974). On estimating the common mean of two normal
distributions.Ann. Statist. 2, 1274-1282.

Cohen, M. P. and Kuo, L. (1985). The admissibility of the empirical distribution function.
Ann. Statist. 13, 262-271.

Copas, J.B. (1972a) The likelihood surface in the linear functional relationship problem.J.
Roy. Statist. Soc. Ser. B 34, 274-278.

Copas, J. B. (1972b). Empirical Bayes methods and the repeated use of a standard.
Biometrika 59, 349-360.

Copas, J. B. (1975). On the unimodality of the likelihood for the Cauchy distribution.
Biometrika 62, 701-704.

Copas, J. B. (1983). Regression, prediction and shrinkage.J. Roy. Statist. Soc. Ser. B 45,
311-354.

Corbeil, R. R. and Searle, S. R. (1976). Restricted maximum likelihood
(REML) estimation of variance components in the mixed model.Technometrics 18, 31-
38.

Cox, D. R. (1958). Some problems connected with statistical inference.Ann. Math. Statist.
29, 357-372.

Cox, D. R. (1970).The Analysis of Binary Data. London: Methuen.

Cox, D. R. (1975) Partial likelihood.Biometrika 62, 269-276.

Cox, D. R. and Oakes, D. O. (1984).Analysis of Survival Data. London: Chapman & Hall.

Cox, D. R. and Reid, N. (1987). Parameter orthogonality and approximate conditional
inference (with discussion).J. Roy. Statist. Soc. Ser. B 49, 1-39.

Crain, B. R. (1976). Exponential models, maximum likelihood estimation, and the Haar
condition.J. Amer. Statist. Assoc. 71, 737-740.



6.10 ] REFERENCES 533
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Information matrix, 124, 462
Integrable, 10, 16
Integral, 9, 10

continuity of, 27
by Monte Carlo, 290

Interaction, 184, 195
Invariance: of estimation problem,

160
formal, 161
of induced measure, 250
of loss function, 148, 160
of measure, 247
nonexistence of, 166
of prior distribution, 246, 338
of probability model, 158, 159
and sufficiency, 156
and symmetry, 149.See also

Equivariance, Haar measure
Invariant distribution of a Markov

chain, 290, 306
Inverse binomial sampling, 101.See

also Negative binomial
distribution

Inversecdf , 73
Inverse Gaussian distribution, 32,

68
Inverted gamma distribution, 245
Irreducible Markov chain, 306

Jackknife, 83, 129
James-Stein estimator, 272, 351

Bayes risk of, 274
Bayes robustness of, 275
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as empirical Bayes estimator,
273, 295, 298

component risk, 356
inadmissibility of, 276, 282 356
maximum component risk of,

353
risk function of, 355.See also

Positive part James-Stein
estimator, Shrinkage estimator,
Simultaneous estimation

Jeffrey’s prior, 230, 234, 287, 305,
315.See also Reference prior

Jensen’s inequality, 46, 47, 52

Karlin’s theorem, 331, 389, 427
Kiefer inequality, 140
Kullback-Leibler information, 47,

259, 293

Labels in survey sampling, 201, 224
random, 201

Laplace approximation, 270, 297
Laplacian (∇2f ), 361
Large deviation, 81
Least absolute deviations, 484
Least favorable: distribution, 310,

420
sequence of distributions, 316

Least informative distribution, 153
Least squares, 3, 178

Gauss’ theorem on, 184, 220
Lebesgue measure, 8, 14
Left invariant Haar measure, 247,

248, 250, 287
Likelihood: conditional, 517

empirical, 517
marginal, 517
partial, 517
penalized, 517
profile, 517
quasi, 517

Likelihood equation, 447, 462
consistent root of, 447, 463
multiple roots of, 451

Likelihood function, 238, 444, 517

Lim inf, 11, 63
Limit of Bayes estimators, 239, 383
Lim sup, 11, 63
Limiting Bayes method (for

proving admissibility), 325
Limiting moment approach, 429,

430.See also Asymptotic
distribution approach

Linear estimator, admissibility of,
323, 389
properties of, 184

Linear minimax risk, 329
Linear model, 176

admissible estimators in, 329
Bayes estimation in, 305
canonical form for, 177
full-rank model, 180
generalization of, 220
least squares estimators in, 178,

180, 182, 184
minimax estimation in, 392
MRE estimation in, 178
without normality, 184
UMVU estimation in, 178.See

also Normal linear model
Link function, 197
Lipschitz condition, 123
LMVU, see Locally minimum

variance unbiased estimator
Local asymptotic normality (LAN),

516
Locally minimum variance

unbiased estimator, 84, 90, 113
Location/curved exponential family,

41
Location family, 17, 340, 492

ancillary statistics for, 41
asymptotically efficient

estimation in, 455, 492
circular, 339
discrete, 344
exponential, 32
information in, 118
invariance in, 158
minimal sufficient statistics for,

38
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minimax estimation in, 340
MRE estimator in, 150
two-sample, 159
which is a curved exponential

family, 41
which is an exponential family,

32.See also Location-scale
family, Scale family

Location group, 247, 250
Location invariance, 149, 149
Location parameter, 148, 223
Location-scale family, 17, 167

efficient estimation in, 468
information in, 126
invariance in, 167
invariant loss function for, 173
MRE estimator for, 174

Location-scale group, 248, 250
Log likelihood, 444
Log linear model, 194
Logarithmic series distribution, 67
Logistic distributionL(a, l), 18,

196, 479
Fisher information in, 119, 139
minimal sufficient statistics for,

38
Logistic regression model, 479
Logit, 26, 196
Logit dose-response model, 44
Log-likelihood, 447
Loglinear model, 194
Lognormal distribution, 486
Loss function, 4, 7

absolute error, 50
bounded, 51
choice of, 7
convex, 7, 45, 87, 152
estimation of, 423
family of, 354, 400
invariant, 148
multiple, 354
non-convex, 51
realism of, 51
squared error, 50
subharmonic, 53

Lower semicontinuous, 74

Markov chain, 55, 290, 306, 420
Markov chain Monte Carlo

(MCMC), 256
Markov series, normal autogressive,

481
Maximum component risk, 353,

363, 364
Maximum likelihood estimator

(MLE), 98, 444, 467, 515
asymptotic efficiency of, 449,

463, 482
asymptotic normality of, 449,

463
bias corrected, 436
of boundary values, 517
comparison with Bayes

estimator, 493
comparison with UMVU

estimator, 98
in empirical Bayes estimation,

265
inconsistent, 445, 452, 482
in irregular cases, 485
measurability of, 448
in the regular case, 515
restricted (REML), 191, 390,

518
second order properties of, 518.

See also Efficient likelihood
estimation, Superefficiency

Mean (population), 200, 204, 319
nonparametric estimation of,

110, 318.See also Normal
mean, Common mean,
One-sample problem

Mean (sample), admissibility of,
324
consistency of, 55
distribution in Cauchy case, 3, 62
inadmissibility of, 327, 350, 352
inconsistency of, 76
optimum properties of, 3, 98,

110, 153, 200, 317, 318
Mean-unbiasedness, 5, 157.See

also Unbiasedness
Mean-value parametrization of
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exponential family, 116, 126
Measurable: function, 9, 16

set, 8, 15
Measurable transformation, 63, 64
Measure, 8
Measure space, 8
Measure theory, 7
Measurement error models, 483
Measurement invariance, 223
Measurement problem, 2
Median, 5, 62, 455

as Bayes estimator, 228.See also
Scale median, 212

Median-unbiasedness, 5, 157
M-estimator, 484, 512, 513, 516
Method of moments, 456
Mill’s ratio, 140
Minimal complete class, 378
Minimal sufficient statistic, 37, 69,

78
and completeness, 42, 43
dimensionality of, 40, 79

Minimax estimator, 6, 225, 309, 425
characterization of, 311, 316,

318
and equivariance, 421
non-uniqueness, 327
randomized, 313
vector-valued, 349
with constant risk, 336

Minimax robustness, 426
Minimum χ2, 479
Minimum norm quadratic unbiased

estimation (Minque), 192
Minimum risk equivariant (MRE)

estimator, 150, 162
behavior under transformations,

210
comparison with UMVU

estimator, 156
inadmissible, 342
in linear models, 178, 185
in location families, 154
in location-scale families, 171
minimaxity and admissibility of,

338, 342, 345

non-unique, 164, 170
risk unbiasedness of, 157, 165
in scale families, 169
under transitive group, 162
unbiasedness of, 157
which is not minimax, 343.See

also Pitman estimator
Minimum variance unbiased

estimate,see Uniformly
minimum variance unbiased
estimator

Minque, 192
Missing data, 458
Mixed effects model, 187, 192, 305,

478
Mixtures, 456

normal, 474
MLE, see Maximum likelihood

estimator
Model,see Exponential, Finite

population, Fixed effects,
General linear, Generalized
linear, Hierarchical Bayes,
Linear, Mixed effects,
Probability, Random, Threshold,
Tukey

Moment generating function, 28
of exponential family, 28

Monotone decision problem, 414
Monte Carlo integration, 290
Morphometrics, 213
MRE estimator,see Minimum risk

equivariant estimator
Multicollinearity, 424
Multinomial distribution
M(p0, . . . , ps ; n), 24, 27, 220
Bayes estimation in, 349
for contingency tables, 106, 193,

197
maximum likelihood estimation

in, 194, 475, 479
minimax estimation in, 349
restricted, 194
unbiased estimation in, 106, 194,

197
Multiple correlation coefficient, 96
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Multiple imputation, 292
Multi-sample problem, efficient

estimation in, 475
Multivariate CLT, 61
Multivariate normal distribution,

20, 61, 65, 96
information matrix for, 127
maximum likelihood estimation

in, 471.See also Bivariate
normal distribution

Multivariate normal one-sample
problem, 96

Natural parameter space (of
exponential family), 24√
n-consistent estimator, 454, 467

Negative binomial distribution
Nl(p, n), 25, 66, 101, 375, 381

Negative hypergeometric
distribution, 300

Neighborhood model, 6
Nested design, 190
Newton-Raphson method, 453
Non-centralχ2 distribution, 406
Nonconvex loss, 51.See also

Bounded loss
Noninformative prior, 230, 305.See

also Jeffrey’s prior, Reference
prior

Nonparametric density estimation,
110, 144

Nonparametric family, 21, 79
complete sufficient statistic for,

109
unbiased estimation in, 109, 110

Nonparametric: mean, 318
model, 6
one-sample problem, 110
two-sample problem, 112

Normalcdf , estimation of, 93
Normal correlation coefficient,

efficient estimation in, 472, 509
multiple, 96
unbiased estimation of, 96

Normal distribution, 18, 324

curved, 25
empirical Bayes estimation in,

263, 266
equivariant estimation in, 153
as exponential family, 24, 25, 27,

30, 32
hierarchy, 254, 255
as least informative, 153
as limit distribution, 59, 442
moments of, 30
as prior distribution, 233, 242,

254, 255, 258, 272
sufficient statistics for, 36, 36, 38
truncated, 393.See also

Bivariate and Multivariate
normal distribution

Normal limit distribution, 58
of binomial, 59

Normal linear model, 21, 176, 177,
329
canonical form of, 177

Normal mean, estimation of
squared, 434

Normal mean (multivariate), 20
admissibility of, 426
bounded, 425
equivariant estimation of, 348
minimax estimation of, 317.See

also James-Stein estimator,
Shrinkage estimation

Normal mean (univariate):
admissibility of, 324
Bayes estimator of, 234
minimax estimator of, 317
equivariant estimator of, 153,

174
minimax estimator of, 317
restricted Bayes estimator of,

321
restricted to integer values, 140
truncated, 327
unbiased estimation in, 350, 352,

352
Normal: mixtures, 474

one-sample problem, 91
probability, 93
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probability density, 94, 97
two-sample problem

Normal variance: admissibility of
estimators, 330, 334
Bayes estimation of, 236, 237
estimation in presence of

incidental parameters, 482,
483

inadmissibility of standard
estimator of, 334

linear estimator of, 330
MRE estimator of, 170, 170, 172
UMVU estimator of, 92

Normal vector mean,see Normal
mean (multivariate)

Normalizing constant, 57
Nuisance parameters, 461

effect on admissibility, 342
effect on efficiency, 469.See

also Incidental parameters
Null-set, 14

One-sample problem,see
Exponential one- and two-sample
problem, Nonparametric
one-sample problem, Normal
one-sample problem, Uniform
distribution

One-way layout, 176, 410
em algorithm, 458
empirical Bayes estimation for,

278
loss function for, 360
random effects model for, 187,

237, 477
unbalanced, 181

Optimal procedure, 2
Orbit (of a transformation group),

163
Order notation (o,O, op,Op), 77
Order statistics, 36

sufficiency of, 36
completeness of, 72, 109, 199

Orthogonal: group, 348
parameters, 469

transformations, 177
Orthogonal polynomials, 216

Parameter, 1
boundary values of, 517
in exponential families, 245
incidental, 482, 483
orthogonal, 469
structural, 481.See also Location

parameter, Scale parameter
Parameter invariance, 223
Pareto distribution, 68, 486
Partitioned matrix, 142
Past experience, Bayes approach to,

226
Periodic Markov chain, 306
Pitman estimator, 154, 155

admissibility of, 156, 342
asymptotic efficiency of, 492
as Bayes estimator, 250, 252,

397
minimaxity of, 340

Point estimation, 2
Poisson distribution, 25, 30, 35,

121, 427
admissibility of estimators, 427
Bayes and empirical Bayes

estimation in, 277
Fisher information for, 118
hierarchy, 257, 268, 277
minimax estimation in, 336, 372
misbehaving UMVU estimator,

108
moments and cumulants for, 30
not a group family, 65
Stein effect in, 372, 374
sufficient statistics for, 33, 35
truncated, 106
unbiased estimation in, 105

Poisson process, 106
Population variance, 200
Positive part of a function, 9
Positive part James-Stein estimator,

276, 356
as empirical Bayes estimator,
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282
inadmissible, 357, 377
as truncated Bayes estimator,

413
Posterior distribution, 227, 240

convergence to normality, 489,
514

for improper prior, 340, 492, 515
Power series distribution, 67, 104

not a group family, 166
Prediction, 192, 220
Pre-test estimator, 351, 352
Prior distribution, 227

choice of, 227, 492
conjugate, 236, 305
improper, 232, 238
invariant, 246
Jeffrey’s, 230, 234, 287, 305, 315
least favorable, 310
noninformative, 230, 305
reference, 261

ProbabilityP (A) of a setA, 14
second order inclusion

Probability density, 14
nonexistence of nonparametric

unbiased estimator for, 109
Probability distribution, 14

absolutely continuous, 14
discrete, 14
estimation of, 109

Probability measure, 14
Probability model, 3, 6
Probit, 196, 506
Product measure, 13
Projection, 367
Proportional allocation, 204, 222
Pseudo-Bayes estimator, 405

Quadratic estimator of variance,
186, 192

Radius of curvature, 81
Radon-Nikodym derivative, 12
Radon-Nikodym theorem, 12

Random effects model, 187, 278,
323, 477
additive, 187, 189
Bayes model for, 237
for balanced two-way layout,

478
nested, 190
prediction in, 192
UMVU estimators in, 189, 191.

See also Variance components
Random observable, 4
Random variable, 15
Random vector, 15
Random linear equations, 465
Random walk, 102, 343, 398
Randomized estimator, 33, 48

in complete class, 378
in equivariant estimation, 155,

156, 162
in minimax estimation, 313
in unbiased estimation, 131

Randomized response, 322, 501
Rao-Blackwell theorem, 47, 347
Ratio of variances, unbiased

estimation of, 95
Rational invariance, 223
Recentered confidence sets, 423
Recurrent Markov chain, 306
Reference prior, 261
Regression, 176, 180, 181, 280, 420

with both variables subject to
error, 482, 512.See also
Simple linear regression,
Ridge regression

Regular case for maximum
likelihood estimation, 485

Relevance of past experience, 230
Relevant subsets, 391
Reliability, 93
REML (restricted maximum

likelihood) estimator, 390, 518
Réngi’s entropy function, 293
Residuals, 3
Restricted Bayes estimator, 321,

426
Ridge regression, 425
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Riemann integral, 10
Right invariant Haar measure, 247,

248, 249, 250, 253, 287
Risk function, 5

conditions for constancy, 162,
162

continuity of, 379
invariance of, 162

Risk unbiasedness, 157, 171, 223
of MRE estimators, 165

Robust Bayes, 230, 271, 307, 371
Robustness, 52, 483

Saddle point expansion, 519
Samplecdf , see Empiricalcdf
Sample space, 15
Sample variance, consistency of, 55
Scale family, 17, 32
Scale group, 163, 248, 250
Scale median, 212
Scale parameter, 167, 223
Schwarz inequality, 74, 130
Second order efficiency, 487, 494,

518
Second order inclusion

probabilities, 222
Sequential binomial sampling, 102,

233
Shannon information, 261
Shrinkage estimator, 354, 366, 424

factor, 351
target, 366, 406, 424

Sigma-additivity, 7
Sigma field (σ -field), 8
Simple binomial sampling plan, 103
Simple function, 9
Simple linear regression, 180
Simple random sampling, 198

Bayes estimation for, 319
equivariant estimation in, 200
minimax estimation in, 319

Single prior Bayes, 239
Simultaneous estimation, 346, 354

admissibility in, 350, 418
equivariant estimation in, 348

minimax estimation in, 317.See
also Independent experiments,
Stein effect

Singular problem, 110, 144
Size of population, estimation of,

101
Spherically symmetric, 359
Spurious correlation, 107
Square root of a positive definite

matrix, 403
Squared error, 7

loss, 50, 51, 51, 90, 313
Standard deviation, 112
Stationary distribution of a Markov

chain,see Invariant distribution
Stationary sequence, 306
Statistic, 16
Stein effect, 366, 372, 419

absence of, 376, 388, 419
Stein estimation,see Shrinkage

estimation
Stein’s identity, 31, 67, 285
Stein’s loss function, 171, 214
Stirling number of the 2nd kind, 136
Stochastic processes, maximum

likelihood estimation in, 481
Stopping rule, 233
Stratified cluster sampling, 206
Stratified sampling, 22, 203, 222
Strict convexity, 45, 49
Strong differentiability, 141, 145
Strongly unimodal, 502
Structural parameter, 481
Student’st-distribution, Fisher

information for, 138
Subgroup, 213, 224
Subharmonic function, 53, 74

loss, 53
Subjective Bayesian approach, 227,

305
Subminimax, 312
Sufficient statistics, 32, 47, 78, 347

and Bayes estimation, 238
completeness of, 42, 72
dimensionality of, 40
factorization criterion for, 35
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minimal, 37, 69, 78
operational significance of, 33
for a symmetric distribution, 34.

See also Minimal sufficient
statistic

Superefficiency, 440, 515, 515
Superharmonic function, 53, 74,

360, 362, 406, 426
Support of a distribution, 16, 64
Supporting hyperplane theorem, 52
Survey sampling, 22, 224
Symmetric distributions, 22, 50

sufficient statistics for, 34
Symmetry, 147.See also Invariance
Systematic error, 5, 143
Systematic sampling, 204

Tail behavior, 51
Tail minimax, 386
Tightness (of a family of measures),

381
Threshold model, 197
Tonelli’s theorem,see Fubini’s

theorem
Total information, 479
Total positivity, 394
Transformation group, 19

transitive, 162
Transitive transformation group,

162
Translation group,see Location

group
Triangular matrix, 20, 65
Trigamma function, 126, 127
Truncated distributions, 68, 72

normal mean, 327
efficient estimation in, 451

Tschuprow-Negman allocation, 204
Tukey model, 474, 510
Two-sample location family, 159,

162
Two-way contingency table, 107,

194
Two-way layout, 183, 506

random effects, 189, 192, 478

U -estimable, 83, 87
UMVU, see Uniformly minimum

variance unbiased
Unbiased in the limit, 431
Unbiasedness, 5, 83, 143, 284

in vector-valued case, 347
Unidentifiable, 24, 56
Uniform distribution, 18, 34, 36, 70,

73
Bayes estimation in, 240
complete sufficient statistics for,

42, 42, 70
maximum likelihood estimation,

485
minimal sufficient statistics for,

38
MRE estimation for, 154, 172,

174
in the plane, 71
relation to exponential

distribution, 71
UMV estimation in, 89

Uniformly best estimator,
nonexistence of, 5

Uniformly minimum variance
unbiased (UMVU) estimation,
85, 143
comparison with MLE, 98, 99
comparison with MRE

estimator, 156
in contingency tables, 194
example of pathological case,

108
in normal linear models, 178
in random effects model, 189,

190
in restricted multinomial

models, 194
in sampling from a finite

population, 200, 203, 206
of vector parameters, 348

Unimodal density, 51, 153.See also
Strongly unimodal

Unimodular group, 247
Universal Bayes estimator, 284
U -shaped, 51, 153, 232



6.10 ] Subject Index 589

U -statistics, 111

Variance, estimator of, 98, 99, 110,
110
in linear models, 178, 184
nonexistence of unbiased

estimator of, 132
nonparametric estimator of, 110
quadratic unbiased estimator of,

186
in simple random sampling, 200
in stratified random sampling,

204.See also Normal variance,
Variance components

Variance/bias tradeoff, 425
Variance components, 189, 189,

237, 323, 477, 478
negative, 191

Variance stabilizing transformation,
76

Variation reducing, 394
Vector-valued estimation, 348

Weak convergence, 57, 60
Weak differentiability, 141, 145
Weibull distribution, 65, 468, 487



Springer Texts in Statistics (continued from page ii)

Nguyen and Rogers: Fundamentals of Mathematical Statistics: Volume I: 
Probability for Statistics

Nguyen and Rogers: Fundamentals of Mathematical Statistics: Volume II: 
Statistical Inference

Noether: Introduction to Statistics: The Nonparametric Way
Nolan and Speed: Stat Labs: Mathematical Statistics Through Applications
Peters: Counting for Something: Statistical Principles and Personalities
Pfeiffer: Probability for Applications
Pitman: Probability
Rawlings, Pantula and Dickey: Applied Regression Analysis
Robert: The Bayesian Choice: A Decision-Theoretic Motivation
Robert: The Bayesian Choice: From Decision-Theoretic Foundations to

Computational Implementation, Second Edition
Robert and Casella: Monte Carlo Statistical Methods
Santner and Duffy: The Statistical Analysis of Discrete Data
Saville and Wood: Statistical Methods: The Geometric Approach
Sen and Srivastava: Regression Analysis: Theory, Methods, and

Applications
Shao: Mathematical Statistics
Shorack: Probability for Statisticians
Shumway and Stoffer: Time Series Analysis and Its Applications
Terrell: Mathematical Statistics: A Unified Introduction
Whittle: Probability via Expectation, Fourth Edition
Zacks: Introduction to Reliability Analysis: Probability Models

and Statistical Methods


	Preface to the Second Edition
	Preface to the First Edition
	Contents
	List of Tables
	List of Figures
	List of Examples
	Table of Notation
	1 Preparations
	1 The Problem
	2 Measure Theory and Integration
	3 Probability Theory
	4 Group Families
	5 Exponential Families
	6 Sufficient Statistics
	7 Convex Loss Functions
	8 Convergence in Probability and in Law
	9 Problems
	10 Notes

	2 Unbiasedness
	1 UMVU Estimators
	2 Continuous One- and Two-Sample Problems
	3 Discrete Distributions
	4 Nonparametric Families
	5 The Information Inequality
	6 The Multiparameter Case and Other Extensions
	7 Problems
	8 Notes

	3 Equivariance
	1 First Examples
	2 The Principle of Equivariance
	3 Location-Scale Families
	4 Normal Linear Models
	5 Random and Mixed Effects Models
	6 Exponential Linear Models
	7 Finite Population Models
	8 Problems
	9 Notes

	4 Average Risk Optimality
	1 Introduction
	2 First Examples
	3 Single-Prior Bayes
	4 Equivariant Bayes
	5 Hierarchical Bayes
	6 Empirical Bayes
	7 Risk Comparisons
	8 Problems
	9 Notes

	5 Minimaxity and Admissibility
	1 Minimax Estimation
	2 Admissibility and Minimaxity in Exponential Families
	3 Admissibility and Minimaxity in Group Families
	4 Simultaneous Estimation
	5 Shrinkage Estimators in the Normal Case
	6 Extensions
	7 Admissibility and Complete Classes
	8 Problems
	9 Notes

	6 Asymptotic Optimality
	1 Performance Evaluations in Large Samples
	2 Asymptotic Efficiency
	3 Efficient Likelihood Estimation
	4 Likelihood Estimation: Multiple Roots
	5 The Multiparameter Case
	6 Applications
	7 Extensions
	8 Asymptotic Efficiency of Bayes Estimators
	9 Problems
	10 Notes

	References
	Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	Subject Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W


