Data Mining:

Concepts and Techniques

- Chapter 2 -

Ali Shakiba

Vali-e-Asr University of Rafsanjan

based on slides by Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign Simon Fraser University ©2011 Han, Kamber, and Pei. All rights reserved.

Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - **Quartiles**: Q₁ (25th percentile), Q₃ (75th percentile)
 - Inter-quartile range: IQR = Q₃-Q₁
 - **Five number summary**: min, Q₁, median, Q₃, max
 - Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
 - **Outlier**: usually, a value higher/lower than 1.5 x IQR
- Variance and standard deviation (*sample: s, population: \sigma*)
 - **Variance**: (algebraic, scalable computation)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} \right] - \left(\frac{1}{n} \sum_{i=1}^{n} x_{i} \right)^{2} \qquad \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

Standard deviation *s* (or σ) is the square root of variance s^2 (or σ^2)

Lower Upper Lower Quartile Upper Quartile Extreme Extreme Median **Boxplot Analysis** 10 20 30 40 50 60 70 80 90 100 Five-number summary of a distribution Minimum, Q1, Median, Q3, Maximum **Boxplot** 6.5 Data is represented with a box The ends of the box are at the first and third 5.1quartiles, i.e., the height of the box is IQR 4.3 The median is marked by a line within the 3.0 box +2.0 1.55 1.3 Whiskers: two lines outside the box extended - 1.0 0.3 to Minimum and Maximum Outliers: points beyond a specified outlier threshold, plotted individually

Properties of Normal Distribution Curve

- The normal (distribution) curve
 - From μ–σ to μ+σ: contains about 68% of the measurements (μ: mean, σ: standard deviation)
 - From μ -2 σ to μ +2 σ : contains about 95% of it
 - From μ -3 σ to μ +3 σ : contains about 99.7% of it

Graphic Displays of Basic Statistical Descriptions

- **Boxplot**: graphic display of five-number summary
- **Histogram**: x-axis are values, y-axis repres. frequencies
- **Quantile plot**: each value x_i is paired with f_i indicating that approximately 100 f_i % of data are $\leq x_i$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

Histogram Analysis

- Histogram: Graph display of tabulated frequencies, shown as bars
- It shows what proportion of cases fall into each of several categories
- Differs from a bar chart in that it is the *area* of the bar that denotes the ²⁰ value, not the height as in bar 15 charts, a crucial distinction when the₁₀ categories are not of uniform width
- The categories are usually specified as non-overlapping intervals of some variable. The categories (bars) must be adjacent

Histograms Often Tell More than Boxplots

- The two histograms shown in the left may have the same boxplot representation
 - The same values for: min, Q1, median, Q3, max
- But they have rather different data distributions

Quantile Plot

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots quantile information
 - For a data x_i data sorted in increasing order, f_i indicates that approximately 100 f_i% of the data are below or equal to the value x_i

