Chapter 8, Solution 1.

(a) At $t=0$-, the circuit has reached steady state so that the equivalent circuit is shown in Figure (a).

(a)

(b)

$$
\mathrm{i}(0-)=12 / 6=2 \mathrm{~A}, \mathrm{v}(0-)=12 \mathrm{~V}
$$

$$
\text { At } \mathrm{t}=0+, \mathrm{i}(0+)=\mathrm{i}(0-)=\underline{\mathbf{2 A}}, \mathrm{v}(0+)=\mathrm{v}(0-)=\underline{\mathbf{1 2} \mathbf{V}}
$$

(b) For $\mathrm{t}>0$, we have the equivalent circuit shown in Figure (b).

$$
\mathrm{v}_{\mathrm{L}}=\mathrm{Ldi} / \mathrm{dt} \text { or } \mathrm{di} / \mathrm{dt}=\mathrm{v}_{\mathrm{L}} / \mathrm{L}
$$

Applying KVL at $\mathrm{t}=0+$, we obtain,

$$
\begin{gathered}
\mathrm{v}_{\mathrm{L}}(0+)-\mathrm{v}(0+)+10 \mathrm{i}(0+)=0 \\
\mathrm{v}_{\mathrm{L}}(0+)-12+20=0, \text { or } \mathrm{v}_{\mathrm{L}}(0+)=-8
\end{gathered}
$$

Hence,

$$
\operatorname{di}(0+) / \mathrm{dt}=-8 / 2=\underline{\mathbf{- 4} \mathbf{A} / \mathbf{s}}
$$

Similarly,

$$
\mathrm{i}_{\mathrm{C}}=\mathrm{Cdv} / \mathrm{dt}, \text { or } \mathrm{dv} / \mathrm{dt}=\mathrm{i}_{\mathrm{C}} / \mathrm{C}
$$

$$
\begin{aligned}
\mathrm{i}_{\mathrm{C}}(0+) & =-\mathrm{i}(0+)=-2 \\
\mathrm{dv}(0+) / \mathrm{dt} & =-2 / 0.4=\underline{\mathbf{- 5} \mathbf{~ V} / \mathbf{s}}
\end{aligned}
$$

(c) As t approaches infinity, the circuit reaches steady state.

$$
\mathrm{i}(\infty)=\underline{\mathbf{0} \mathbf{A}}, \mathrm{v}(\infty)=\underline{\mathbf{0} \mathbf{V}}
$$

Chapter 8, Solution 2.

(a) At $\mathrm{t}=0$-, the equivalent circuit is shown in Figure (a).

(a)

(b)

$$
60 \| 20=15 \text { kohms, } \mathrm{i}_{\mathrm{R}}(0-)=80 /(25+15)=2 \mathrm{~mA}
$$

By the current division principle,

$$
\begin{gathered}
\mathrm{i}_{\mathrm{L}}(0-)=60(2 \mathrm{~mA}) /(60+20)=1.5 \mathrm{~mA} \\
\mathrm{v}_{\mathrm{C}}(0-)=0
\end{gathered}
$$

At $\mathrm{t}=0+$,

$$
\begin{gathered}
\mathrm{v}_{\mathrm{C}}(0+)=\mathrm{v}_{\mathrm{C}}(0-)=0 \\
\mathrm{i}_{\mathrm{L}}(0+)=\mathrm{i}_{\mathrm{L}}(0-)=\underline{\mathbf{1 . 5 ~ m A}} \\
80=\mathrm{i}_{\mathrm{R}}(0+)(25+20)+\mathrm{v}_{\mathrm{C}}(0-) \\
\mathrm{i}_{\mathrm{R}}(0+)=80 / 45 \mathrm{k}=\underline{\mathbf{1 . 7 7 8} \mathbf{~ m A}}
\end{gathered}
$$

But,

$$
\begin{gathered}
\mathrm{i}_{\mathrm{R}}=\mathrm{i}_{\mathrm{C}}+\mathrm{i}_{\mathrm{L}} \\
1.778=\mathrm{i}_{\mathrm{C}}(0+)+1.5 \text { or } \mathrm{i}_{\mathrm{C}}(0+)=\underline{\mathbf{0 . 2 7 8} \mathbf{~ m \mathbf { A }}}
\end{gathered}
$$

(b)

$$
\mathrm{v}_{\mathrm{L}}(0+)=\mathrm{v}_{\mathrm{C}}(0+)=0
$$

But, $\quad \mathrm{v}_{\mathrm{L}}=\mathrm{Ldi}_{\mathrm{L}} / \mathrm{dt}$ and $\mathrm{di}_{\mathrm{L}}(0+) / \mathrm{dt}=\mathrm{v}_{\mathrm{L}}(0+) / \mathrm{L}=0$

$$
\begin{gathered}
\mathrm{di}_{\mathrm{L}}(0+) / \mathrm{dt}=\underline{\mathbf{0}} \\
\text { Again, } 80=45 \mathrm{i}_{\mathrm{R}}+\mathrm{v}_{\mathrm{C}} \\
0=45 \mathrm{di}_{\mathrm{R}} / \mathrm{dt}+\mathrm{dv}_{\mathrm{C}} / \mathrm{dt}
\end{gathered}
$$

But, $\quad \mathrm{dv}_{\mathrm{C}}(0+) / \mathrm{dt}=\mathrm{i}_{\mathrm{C}}(0+) / \mathrm{C}=0.278 \mathrm{mohms} / 1 \mu \mathrm{~F}=278 \mathrm{~V} / \mathrm{s}$
Hence, $\quad \operatorname{di}_{\mathrm{R}}(0+) / \mathrm{dt}=(-1 / 45) \mathrm{dv}_{\mathrm{C}}(0+) / \mathrm{dt}=-278 / 45$

$$
\mathrm{di}_{\mathrm{R}}(0+) / \mathrm{dt}=\underline{-6.1778 \mathrm{~A} / \mathbf{s}}
$$

Also, $\quad \mathrm{i}_{\mathrm{R}}=\mathrm{i}_{\mathrm{C}}+\mathrm{i}_{\mathrm{L}}$

$$
\begin{gathered}
\operatorname{di}_{\mathrm{R}}(0+) / \mathrm{dt}=\operatorname{di}_{C}(0+) / \mathrm{dt}+\mathrm{di}_{\mathrm{L}}(0+) / \mathrm{dt} \\
-6.1788=\mathrm{di}_{\mathrm{C}}(0+) / \mathrm{dt}+0, \text { or } \mathrm{di}_{C}(0+) / \mathrm{dt}=\underline{\mathbf{- 6 . 1 7 8 8 ~ A} / \mathbf{s}}
\end{gathered}
$$

(c)

As t approaches infinity, we have the equivalent circuit in Figure (b).

$$
\begin{gathered}
\mathrm{i}_{\mathrm{R}}(\infty)=\mathrm{i}_{\mathrm{L}}(\infty)=80 / 45 \mathrm{k}=\underline{\mathbf{1 . 7 7 8} \mathbf{~ m A}} \\
\mathrm{i}_{\mathrm{C}}(\infty)=\operatorname{Cdv}(\infty) / \mathrm{dt}=\underline{\mathbf{0}} .
\end{gathered}
$$

Chapter 8, Solution 3.

At $t=0^{-}, u(t)=0$. Consider the circuit shown in Figure (a). $i_{L}\left(0^{-}\right)=0$, and $v_{R}\left(0^{-}\right)=$ 0 . But, $-\mathrm{v}_{\mathrm{R}}\left(0^{-}\right)+\mathrm{v}_{\mathrm{C}}\left(0^{-}\right)+10=0$, or $\mathrm{v}_{\mathrm{C}}\left(0^{-}\right)=-10 \mathrm{~V}$.
(a) At $t=0^{+}$, since the inductor current and capacitor voltage cannot change abruptly, the inductor current must still be equal to $\mathbf{0 A}$, the capacitor has a voltage equal to $\underline{\mathbf{1 0 V}}$. Since it is in series with the +10 V source, together they represent a direct short at $\mathrm{t}=0^{+}$. This means that the entire 2 A from the current source flows through the capacitor and not the resistor. Therefore, $\mathrm{V}_{\mathrm{R}}\left(0^{+}\right)=\underline{\mathbf{0} \mathbf{V}}$.
(b) \quad At $t=0^{+}, \mathrm{v}_{\mathrm{L}}(0+)=0$, therefore $\operatorname{Ldi}_{\mathrm{L}}(0+) / \mathrm{dt}=\mathrm{v}_{\mathrm{L}}\left(0^{+}\right)=0$, thus, $\mathrm{di}_{\mathrm{L}} / \mathrm{dt}=\underline{\mathbf{0} \mathbf{A} / \mathbf{s}}$, $\mathrm{i}_{\mathrm{C}}\left(0^{+}\right)=2 \mathrm{~A}$, this means that $\mathrm{dv}_{\mathrm{C}}\left(0^{+}\right) / \mathrm{dt}=2 / \mathrm{C}=\underline{\mathbf{8} \mathbf{V} / \mathbf{s}}$. Now for the value of $\operatorname{dv}_{\mathrm{R}}\left(0^{+}\right) / \mathrm{dt}$. Since $\mathrm{v}_{\mathrm{R}}=\mathrm{v}_{\mathrm{C}}+10$, then $\mathrm{dv}_{\mathrm{R}}\left(0^{+}\right) / \mathrm{dt}=\underline{\mathrm{dv}_{\mathrm{C}}\left(0^{+}\right)} / \mathrm{dt}+0=\underline{\mathbf{8} \mathbf{~ V} / \mathbf{s}}$.

(c) As t approaches infinity, we end up with the equivalent circuit shown in Figure (b).

$$
\begin{gathered}
\mathrm{i}_{\mathrm{L}}(\infty)=10(2) /(40+10)=\underline{\mathbf{4 0 0} \mathbf{m A}} \\
\mathrm{v}_{\mathrm{C}}(\infty)=2[10 \| 40]-10=16-10=\underline{\mathbf{6 V}} \\
\mathrm{v}_{\mathrm{R}}(\infty)=2[10 \| 40]=\underline{\mathbf{1 6} \mathbf{V}}
\end{gathered}
$$

Chapter 8, Solution 4.

(a) At $t=0^{-}, u(-t)=1$ and $u(t)=0$ so that the equivalent circuit is shown in Figure (a).

$$
\mathrm{i}\left(0^{-}\right)=40 /(3+5)=5 \mathrm{~A}, \text { and } \mathrm{v}\left(0^{-}\right)=5 \mathrm{i}\left(0^{-}\right)=25 \mathrm{~V}
$$

Hence,

$$
\mathrm{i}\left(0^{+}\right)=\mathrm{i}\left(0^{-}\right)=\underline{\mathbf{5} \mathbf{A}}
$$

(a)

(b)
(b) $\quad \mathrm{i}_{\mathrm{C}}=\mathrm{Cdv} / \mathrm{dt}$ or $\mathrm{dv}\left(0^{+}\right) / \mathrm{dt}=\mathrm{i}_{\mathrm{C}}\left(0^{+}\right) / \mathrm{C}$

For $\mathrm{t}=0^{+}, 4 \mathrm{u}(\mathrm{t})=4$ and $4 \mathrm{u}(-\mathrm{t})=0$. The equivalent circuit is shown in Figure (b). Since i and v cannot change abruptly,

$$
\begin{gathered}
\mathrm{i}_{\mathrm{R}}=\mathrm{v} / 5=25 / 5=5 \mathrm{~A}, \mathrm{i}\left(0^{+}\right)+4=\mathrm{i}_{\mathrm{C}}\left(0^{+}\right)+\mathrm{i}_{\mathrm{R}}\left(0^{+}\right) \\
5+4=\mathrm{i}_{\mathrm{C}}\left(0^{+}\right)+5 \text { which leads to } \mathrm{i}_{\mathrm{C}}\left(0^{+}\right)=4 \\
\operatorname{dv}\left(0^{+}\right) / \mathrm{dt}=4 / 0.1=\underline{40 \mathbf{V} / \mathbf{s}}
\end{gathered}
$$

Chapter 8, Solution 5.

(a) For $t<0,4 u(t)=0$ so that the circuit is not active (all initial conditions $=0$).

$$
\mathrm{i}_{\mathrm{L}}(0-)=0 \text { and } \mathrm{v}_{\mathrm{C}}(0-)=0 .
$$

For $\mathrm{t}=0+, 4 \mathrm{u}(\mathrm{t})=4$. Consider the circuit below.

Since the 4 -ohm resistor is in parallel with the capacitor,

$$
\mathrm{i}(0+)=\mathrm{v}_{\mathrm{C}}(0+) / 4=0 / 4=\underline{\mathbf{0} \mathbf{A}}
$$

Also, since the 6 -ohm resistor is in series with the inductor, $\mathrm{v}(0+)=6 \mathrm{i}_{\mathrm{L}}(0+)=\underline{\mathbf{0 V}}$.
(b) $\quad \operatorname{di}(0+) / \mathrm{dt}=\mathrm{d}\left(\mathrm{v}_{\mathrm{R}}(0+) / \mathrm{R}\right) / \mathrm{dt}=(1 / \mathrm{R}) \mathrm{dv}_{\mathrm{R}}(0+) / \mathrm{dt}=(1 / \mathrm{R}) \mathrm{dv}_{\mathrm{C}}(0+) / \mathrm{dt}$

$$
=(1 / 4) 4 / 0.25 \mathrm{~A} / \mathrm{s}=\underline{\mathbf{4 A} / \mathbf{s}}
$$

$\mathrm{v}=6 \mathrm{i}_{\mathrm{L}}$ or $\mathrm{dv} / \mathrm{dt}=6 \mathrm{di}_{\mathrm{L}} / \mathrm{dt}$ and $\mathrm{dv}(0+) / \mathrm{dt}=6 \mathrm{di}_{\mathrm{L}}(0+) / \mathrm{dt}=6 \mathrm{v}_{\mathrm{L}}(0+) / \mathrm{L}=0$
Therefore $\mathrm{dv}(0+) / \mathrm{dt}=\underline{\mathbf{0 ~ V} / \mathbf{s}}$
(c) As t approaches infinity, the circuit is in steady-state.

$$
\begin{gathered}
\mathrm{i}(\infty)=6(4) / 10=\underline{\mathbf{2 . 4 ~ A}} \\
\mathrm{v}(\infty)=6(4-2.4)=\underline{\mathbf{9 . 6} \mathbf{V}}
\end{gathered}
$$

Chapter 8, Solution 6.

(a) Let $\mathrm{i}=$ the inductor current. For $\mathrm{t}<0, \mathrm{u}(\mathrm{t})=0$ so that

$$
\mathrm{i}(0)=0 \text { and } \mathrm{v}(0)=0
$$

For $\mathrm{t}>0, \mathrm{u}(\mathrm{t})=1$. Since, $\mathrm{v}(0+)=\mathrm{v}(0-)=0$, and $\mathrm{i}(0+)=\mathrm{i}(0-)=0$.

$$
\mathrm{v}_{\mathrm{R}}(0+)=\operatorname{Ri}(0+)=\underline{\mathbf{0} \mathbf{V}}
$$

Also, since $\mathrm{v}(0+)=\mathrm{v}_{\mathrm{R}}(0+)+\mathrm{v}_{\mathrm{L}}(0+)=0=0+\mathrm{v}_{\mathrm{L}}(0+)$ or $\mathrm{v}_{\mathrm{L}}(0+)=\underline{\mathbf{0} \mathbf{V}}$.
(b) \quad Since $i(0+)=0, \quad i_{C}(0+)=V_{S} / R_{S}$

But, $\quad \mathrm{i}_{\mathrm{C}}=\mathrm{Cdv} / \mathrm{dt}$ which leads to $\mathrm{dv}(0+) / \mathrm{dt}=\mathrm{V}_{\mathrm{S}} /\left(\mathrm{CR}_{\mathrm{S}}\right)$
From (1), $\quad \mathrm{dv}(0+) / \mathrm{dt}=\mathrm{dv}_{\mathrm{R}}(0+) / \mathrm{dt}+\mathrm{dv}_{\mathrm{L}}(0+) / \mathrm{dt}$
$\mathrm{v}_{\mathrm{R}}=\mathrm{iR}$ or $\mathrm{dv}_{\mathrm{R}} / \mathrm{dt}=\mathrm{Rdi} / \mathrm{dt}$
But, $\quad \mathrm{v}_{\mathrm{L}}=\operatorname{Ldi} / \mathrm{dt}, \quad \mathrm{v}_{\mathrm{L}}(0+)=0=\operatorname{Ldi}(0+) / \mathrm{dt}$ and $\operatorname{di}(0+) / \mathrm{dt}=0$
From (4) and (5),

$$
\begin{align*}
& \mathrm{dv}_{\mathrm{R}}(0+) / \mathrm{dt}=\underline{\mathbf{0} \mathbf{V} / \mathbf{s}} \tag{5}\\
& \mathrm{dv}_{\mathrm{L}}(0+) / \mathrm{dt}=\mathrm{dv}(0+) / \mathrm{dt}=\underline{\mathbf{V}}_{\mathrm{s}} /\left(\mathbf{C R}_{\mathbf{s}}\right)
\end{align*}
$$

From (2) and (3),
(c) As t approaches infinity, the capacitor acts like an open circuit, while the inductor acts like a short circuit.

$$
\begin{gathered}
\mathrm{v}_{\mathrm{R}}(\infty)=\left[\mathbf{R} /\left(\mathbf{R}+\mathbf{R}_{s}\right] \mathbf{V}_{\mathbf{s}}\right. \\
\mathrm{v}_{\mathrm{L}}(\infty)=\underline{\mathbf{0} \mathbf{V}}
\end{gathered}
$$

Chapter 8, Solution 7.

$$
\begin{gathered}
\mathrm{s}^{2}+4 \mathrm{~s}+4=0, \text { thus } \mathrm{s}_{1,2}=\frac{-4 \pm \sqrt{4^{2}-4 \mathrm{x} 4}}{2}=-2, \text { repeated roots. } \\
\mathrm{v}(\mathrm{t})=\left[(\mathrm{A}+\mathrm{Bt}) \mathrm{e}^{-2 \mathrm{t}}\right], \mathrm{v}(0)=1=\mathrm{A} \\
\mathrm{dv} / \mathrm{dt}=\left[\mathrm{Be}^{-2 \mathrm{t}}\right]+\left[-2(\mathrm{~A}+\mathrm{Bt}) \mathrm{e}^{-2 t}\right] \\
\mathrm{dv}(0) / \mathrm{dt}=-1=\mathrm{B}-2 \mathrm{~A}=\mathrm{B}-2 \text { or } \mathrm{B}=1 .
\end{gathered}
$$

Therefore, $v(t)=\left[(\mathbf{1 + t}) \mathbf{e}^{-2 t}\right] \mathbf{V}$

Chapter 8, Solution 8.

$$
\begin{gathered}
\frac{\mathbf{s}^{2}+\mathbf{6} \mathbf{s}+\mathbf{9}=\mathbf{0}}{} \text {, thus } \mathrm{s}_{1,2}=\frac{-6 \pm \sqrt{6^{2}-36}}{2}=-3 \text {, repeated roots. } \\
\mathrm{i}(\mathrm{t})=\left[(\mathrm{A}+\mathrm{Bt}) \mathrm{e}^{-3 \mathrm{t}}\right], \mathrm{i}(0)=0=\mathrm{A} \\
\mathrm{di} / \mathrm{dt}=\left[\mathrm{Be}^{-3 t}\right]+\left[-3(\mathrm{Bt}) \mathrm{e}^{-3 \mathrm{t}}\right] \\
\operatorname{di}(0) / \mathrm{dt}=4=\mathrm{B}
\end{gathered}
$$

Therefore, $\left.\mathrm{i}(\mathrm{t})=\llbracket 4 \mathrm{te}^{-3 \mathrm{t}}\right\rfloor \mathbf{A}$

Chapter 8, Solution 9.

$$
\begin{gathered}
\mathrm{s}^{2}+10 \mathrm{~s}+25=0, \text { thus } \mathrm{s}_{1,2}=\frac{-10 \pm \sqrt{10-10}}{2}=-5, \text { repeated roots. } \\
\mathrm{i}(\mathrm{t})=\left[(\mathrm{A}+\mathrm{Bt}) \mathrm{e}^{-5 \mathrm{t}}\right], \mathrm{i}(0)=10=\mathrm{A} \\
\mathrm{di} / \mathrm{dt}=\left[\mathrm{Be}^{-5 t}\right]+\left[-5(\mathrm{~A}+\mathrm{Bt}) \mathrm{e}^{-5 t}\right] \\
\operatorname{di}(0) / \mathrm{dt}=0=\mathrm{B}-5 \mathrm{~A}=\mathrm{B}-50 \text { or } \mathrm{B}=50 .
\end{gathered}
$$

Therefore, $\mathrm{i}(\mathrm{t})=\left[(\mathbf{1 0}+\mathbf{5 0 t}) \mathrm{e}^{-5 t}\right] \mathbf{A}$

Chapter 8, Solution 10.

$$
\begin{gathered}
\mathrm{s}^{2}+5 \mathrm{~s}+4=0, \text { thus } \mathrm{s}_{1,2}=\frac{-5 \pm \sqrt{25-16}}{2}=-4,-1 \\
\mathrm{v}(\mathrm{t})=\left(\mathrm{Ae}^{-4 \mathrm{t}}+\mathrm{Be}^{-t}\right), \mathrm{v}(0)=0=\mathrm{A}+\mathrm{B}, \text { or } \mathrm{B}=-\mathrm{A} \\
\mathrm{dv} / \mathrm{dt}=\left(-4 \mathrm{Ae}^{-4 t}-\mathrm{Be}^{-\mathrm{t}}\right) \\
\mathrm{dv}(0) / \mathrm{dt}=10=-4 \mathrm{~A}-\mathrm{B}=-3 \mathrm{~A} \text { or } \mathrm{A}=-10 / 3 \text { and } \mathrm{B}=10 / 3
\end{gathered}
$$

Therefore, $v(t)=\underline{\left(-(\mathbf{1 0 / 3}) \mathrm{e}^{-4 t}+(\mathbf{1 0} / \mathbf{3}) \mathrm{e}^{-t}\right) \mathbf{V}}$

Chapter 8, Solution 11.

$$
\begin{gathered}
\mathrm{s}^{2}+2 \mathrm{~s}+1=0, \text { thus } \mathrm{s}_{1,2}=\frac{-2 \pm \sqrt{4-4}}{2}=-1, \text { repeated roots. } \\
\mathrm{v}(\mathrm{t})=\left[(\mathrm{A}+\mathrm{Bt}) \mathrm{e}^{-\mathrm{t}}\right], \mathrm{v}(0)=10=\mathrm{A} \\
\mathrm{dv} / \mathrm{dt}=\left[\mathrm{Be}^{-t}\right]+\left[-(\mathrm{A}+\mathrm{Bt}) \mathrm{e}^{-\mathrm{t}}\right] \\
\mathrm{dv}(0) / \mathrm{dt}=0=\mathrm{B}-\mathrm{A}=\mathrm{B}-10 \text { or } \mathrm{B}=10 \\
\text { Therefore, } \mathrm{v}(\mathrm{t})=\left\lfloor(\mathbf{1 0}+\mathbf{1 0 t}) \mathrm{e}^{-\mathrm{t}}\right] \mathbf{V}
\end{gathered}
$$

Chapter 8, Solution 12.

(a) Overdamped when $\mathrm{C}>4 \mathrm{~L} /\left(\mathrm{R}^{2}\right)=4 \times 0.6 / 400=6 \times 10^{-3}$, or $\mathrm{C}>\underline{\mathbf{6} \mathbf{~ m F}}$
(b) Critically damped when $\mathrm{C}=\underline{\mathbf{6} \mathbf{m F}}$
(c) Underdamped when $\mathrm{C}<\underline{\mathbf{6 m F}}$

Chapter 8, Solution 13.

Let $R \| 60=R_{0}$. For a series RLC circuit,

$$
\omega_{o}=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{0.01 \mathrm{x} 4}}=5
$$

For critical damping, $\omega_{o}=\alpha=\mathrm{R}_{0} /(2 \mathrm{~L})=5$

$$
\text { or } R_{0}=10 \mathrm{~L}=40=60 \mathrm{R} /(60+\mathrm{R})
$$

which leads to $R=\underline{\mathbf{1 2 0} \mathbf{o h m s}}$

Chapter 8, Solution 14.

This is a series, source-free circuit. $60 \| 30=20$ ohms

$$
\begin{gathered}
\alpha=\mathrm{R} /(2 \mathrm{~L})=20 /(2 \mathrm{x} 2)=5 \text { and } \omega_{0}=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{0.04}}=5 \\
\omega_{\mathrm{o}}=\alpha \text { leads to critical damping } \\
\mathrm{i}(\mathrm{t})=\left[(\mathrm{A}+\mathrm{Bt}) \mathrm{e}^{-5 t}\right], \mathrm{i}(0)=2=\mathrm{A} \\
\mathrm{v}= \\
\mathrm{Ldi} / \mathrm{dt}=2\left\{\left[\mathrm{Be}^{-5 \mathrm{t}}\right]+\left[-5(\mathrm{~A}+\mathrm{Bt}) \mathrm{e}^{-5 t}\right]\right\} \\
\mathrm{v}(0)= \\
6=2 \mathrm{~B}-10 \mathrm{~A}=2 \mathrm{~B}-20 \text { or } \mathrm{B}=13 . \\
\text { Therefore, } \mathrm{i}(\mathrm{t})=\left[(\mathbf{2}+\mathbf{1 3 t}) \mathrm{e}^{-5 t}\right] \mathbf{A}
\end{gathered}
$$

Chapter 8, Solution 15.

This is a series, source-free circuit. $60 \| 30=20$ ohms

$$
\begin{gathered}
\alpha=\mathrm{R} /(2 \mathrm{~L})= \\
20 /(2 \mathrm{x} 2)=5 \text { and } \omega_{\mathrm{o}}=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{0.04}}=5 \\
\omega_{\mathrm{o}}=\alpha \text { leads to critical damping } \\
\mathrm{i}(\mathrm{t})=\left[(\mathrm{A}+\mathrm{Bt}) \mathrm{e}^{-5 t}\right], \mathrm{i}(0)=2=\mathrm{A} \\
\mathrm{v}= \\
\mathrm{Ldi} / \mathrm{dt}=2\left\{\left[\mathrm{Be}^{-5 t}\right]+\left[-5(\mathrm{~A}+\mathrm{Bt}) \mathrm{e}^{-5 t}\right]\right\} \\
\mathrm{v}(0)= \\
6=2 \mathrm{~B}-10 \mathrm{~A}=2 \mathrm{~B}-20 \text { or } \mathrm{B}=13 . \\
\text { Therefore, } \mathrm{i}(\mathrm{t})=\left[(\mathbf{2}+\mathbf{1 3 t}) \mathrm{e}^{-5 \mathrm{t}}\right] \mathbf{A}
\end{gathered}
$$

Chapter 8, Solution 16.

At $\mathrm{t}=0, \mathrm{i}(0)=0, \mathrm{v}_{\mathrm{C}}(0)=40 \times 30 / 50=24 \mathrm{~V}$
For $\mathrm{t}>0$, we have a source-free RLC circuit.

$$
\alpha=\mathrm{R} /(2 \mathrm{~L})=(40+60) / 5=20 \text { and } \omega_{\mathrm{o}}=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{10^{-3} \times 2.5}}=20
$$

$$
\omega_{\mathrm{o}}=\alpha \text { leads to critical damping }
$$

$$
\mathrm{i}(\mathrm{t})=\left[(\mathrm{A}+\mathrm{Bt}) \mathrm{e}^{-20 \mathrm{t}}\right], \mathrm{i}(0)=0=\mathrm{A}
$$

$$
\mathrm{di} / \mathrm{dt}=\left\{\left[\mathrm{Be}^{-20 \mathrm{t}}\right]+\left[-20(\mathrm{Bt}) \mathrm{e}^{-20 \mathrm{t}}\right]\right\}
$$

but $\operatorname{di}(0) / \mathrm{dt}=-(1 / \mathrm{L})\left[\operatorname{Ri}(0)+\mathrm{v}_{\mathrm{C}}(0)\right]=-(1 / 2.5)[0+24]$
Hence,

$$
\mathrm{B}=-9.6 \text { or } \mathrm{i}(\mathrm{t})=\left[-9.6 \mathrm{te}^{-20 \mathrm{t}}\right] \mathbf{A}
$$

Chapter 8, Solution 17.

$$
\begin{aligned}
& \mathrm{i}(0)=\mathrm{I}_{0}=0, \mathrm{v}(0)=\mathrm{V}_{0}=4 \mathrm{x} 15=60 \\
& \frac{\mathrm{di}(0)}{\mathrm{dt}}=-\frac{1}{\mathrm{~L}}\left(\mathrm{RI}_{0}+\mathrm{V}_{0}\right)=-4(0+60)=-240 \\
& \omega_{\mathrm{o}}=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{\frac{1}{4} \frac{1}{25}}}=10 \\
& \alpha=\frac{\mathrm{R}}{2 \mathrm{~L}}=\frac{10}{2 \frac{1}{4}}=20, \text { whichis }>\omega_{0} . \\
& \mathrm{s}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}=-20 \pm \sqrt{300}=-20 \pm 10 \sqrt{3}=-2.68,-37.32 \\
& \mathrm{i}(\mathrm{t})=\mathrm{A}_{1} \mathrm{e}^{-2.68 \mathrm{t}}+\mathrm{A}_{2} \mathrm{e}^{-37.32 \mathrm{t}} \\
& \mathrm{i}(0)=0=\mathrm{A}_{1}+\mathrm{A}_{2}, \frac{\mathrm{di}(0)}{\mathrm{dt}}=-2.68 \mathrm{~A}_{1}-37.32 \mathrm{~A}_{2}=-240
\end{aligned}
$$

$$
\text { This leads to } \mathrm{A}_{1}=-6.928=-\mathrm{A}_{2}
$$

$$
\mathrm{i}(\mathrm{t})=6.928\left(\mathrm{e}^{-37.32 \mathrm{t}}-\mathrm{e}^{-268 \mathrm{t}}\right)
$$

Since, $v(t)=\frac{1}{C} \int_{0}^{\mathrm{t}} \mathrm{i}(\mathrm{t}) \mathrm{dt}+60$, we get

$$
v(t)=\underline{\left(60+64.53 e^{-2.68 t}-4.6412 e^{-37.32 t}\right) V}
$$

Chapter 8, Solution 18.

When the switch is off, we have a source-free parallel RLC circuit.
$\omega_{o}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{0.25 x 1}}=2, \quad \alpha=\frac{1}{2 R C}=0.5$
$\alpha<\omega_{o} \quad \longrightarrow \quad$ underdamped case $\omega_{\mathrm{d}}=\sqrt{\omega_{o}{ }^{2}-\alpha^{2}}=\sqrt{4-0.25}=1.936$
$\mathrm{I}_{0}(0)=\mathrm{i}(0)=$ initial inductor current $=20 / 5=4 \mathrm{~A}$
$\mathrm{V}_{\mathrm{o}}(0)=\mathrm{v}(0)=$ initial capacitor voltage $=0 \mathrm{~V}$
$v(t)=e^{-\alpha t}\left(A_{1} \cos \omega_{d} t+A_{2} \sin \omega_{d} t\right)=e^{-0.5 a t}\left(A_{1} \cos 1.936 t+A_{2} \sin 1.936 t\right)$
$\mathrm{v}(0)=0=\mathrm{A}_{1}$
$\frac{d v}{d t}=e^{-0.5 \alpha t}(-0.5)\left(A_{1} \cos 1.936 t+A_{2} \sin 1.936 t\right)+e^{-0.5 \alpha t}\left(-1.936 A_{1} \sin 1.936 t+1.936 A_{2} \cos 1.936 t\right)$
$\frac{d v(0)}{d t}=-\frac{\left(V_{o}+R I_{o}\right)}{R C}=-\frac{(0+4)}{1}=-4=-0.5 A_{1}+1.936 A_{2} \quad \longrightarrow \quad A_{2}=-2.066$
Thus,

$$
v(t)=-2.066 e^{-0.5 t} \sin 1.936 t
$$

Chapter 8, Solution 19.

For $\mathrm{t}<0$, the equivalent circuit is shown in Figure (a).

$$
\mathrm{i}(0)=120 / 10=12, \mathrm{v}(0)=0
$$

For $\mathrm{t}>0$, we have a series RLC circuit as shown in Figure (b) with $\mathrm{R}=0=\alpha$.

$$
\begin{gathered}
\omega_{\mathrm{o}}=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{4}}=0.5=\omega_{\mathrm{d}} \\
\mathrm{i}(\mathrm{t})=[\mathrm{A} \cos 0.5 \mathrm{t}+\mathrm{B} \sin 0.5 \mathrm{t}], \mathrm{i}(0)=12=\mathrm{A} \\
\mathrm{v}=-\mathrm{Ldi} / \mathrm{dt} \text {, and }-\mathrm{v} / \mathrm{L}=\mathrm{di} / \mathrm{dt}=0.5[-12 \sin 0.5 \mathrm{t}+\mathrm{B} \cos 0.5 \mathrm{t}], \\
\text { which leads to }-\mathrm{v}(0) / \mathrm{L}=0=\mathrm{B} \\
\text { Hence, } \mathrm{i}(\mathrm{t})=12 \cos 0.5 \mathrm{t} \mathrm{~A} \text { and } \mathrm{v}=0.5 \\
\text { However, } \mathrm{v}=-\mathrm{Ldi} / \mathrm{dt}=-4(0.5)[-12 \sin 0.5 \mathrm{t}]=\underline{\mathbf{2 4} \sin 0.5 t \mathbf{~ V}}
\end{gathered}
$$

Chapter 8, Solution 20.

For $\mathrm{t}<0$, the equivalent circuit is as shown below.

$$
\mathrm{v}(0)=-12 \mathrm{~V} \text { and } \mathrm{i}(0)=12 / 2=6 \mathrm{~A}
$$

For $\mathrm{t}>0$, we have a series RLC circuit.

$$
\begin{gathered}
\alpha=\mathrm{R} /(2 \mathrm{~L})=2 /(2 \times 0.5)=2 \\
\omega_{0}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{0.5 \times 1 / 4}=2 \sqrt{2}
\end{gathered}
$$

Since α is less than ω_{0}, we have an under-damped response.

$$
\begin{gathered}
\omega_{d}=\sqrt{\omega_{o}^{2}-\alpha^{2}}=\sqrt{8-4}=2 \\
i(t)=(A \cos 2 t+B \sin 2 t) e^{-2 t} \\
i(0)=6=A
\end{gathered}
$$

$$
\begin{aligned}
\mathrm{di} / \mathrm{dt} & =-2(6 \cos 2 \mathrm{t}+\mathrm{B} \sin 2 \mathrm{t}) \mathrm{e}^{-2 \mathrm{t}}+(-2 \mathrm{x} 6 \sin 2 \mathrm{t}+2 \mathrm{~B} \cos 2 \mathrm{t}) \mathrm{e}^{-\alpha \mathrm{t}} \\
\mathrm{di}(0) / \mathrm{dt} & =-12+2 \mathrm{~B}=-(1 / \mathrm{L})\left[\operatorname{Ri}(0)+\mathrm{v}_{\mathrm{C}}(0)\right]=-2[12-12]=0
\end{aligned}
$$

Thus, $B=6$ and $i(t)=\underline{(6 \cos 2 t+6 \sin 2 t) e^{-2 t} A}$

Chapter 8, Solution 21.

By combining some resistors, the circuit is equivalent to that shown below. $60|\mid(15+25)=24$ ohms.

At $\mathrm{t}=0-, \quad \mathrm{i}(0)=0, \mathrm{v}(0)=24 \mathrm{x} 24 / 36=16 \mathrm{~V}$

For $\mathrm{t}>0$, we have a series RLC circuit. $\mathrm{R}=30 \mathrm{ohms}, \mathrm{L}=3 \mathrm{H}, \mathrm{C}=(1 / 27) \mathrm{F}$

$$
\begin{gathered}
\alpha=\mathrm{R} /(2 \mathrm{~L})=30 / 6=5 \\
\omega_{\mathrm{o}}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{3 \times 1 / 27}=3, \text { clearly } \alpha>\omega_{\mathrm{o}} \text { (overdamped response) }
\end{gathered}
$$

$$
\mathrm{s}_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{o}^{2}}=-5 \pm \sqrt{5^{2}-3^{2}}=-9,-1
$$

$$
\begin{equation*}
\mathrm{v}(\mathrm{t})=\left[\mathrm{Ae}^{-\mathrm{t}}+\mathrm{Be}^{-9 \mathrm{t}}\right], \mathrm{v}(0)=16=\mathrm{A}+\mathrm{B} \tag{1}
\end{equation*}
$$

$$
\mathrm{i}=\mathrm{Cdv} / \mathrm{dt}=\mathrm{C}\left[-\mathrm{Ae}^{-\mathrm{t}}-9 \mathrm{Be}^{-9 t}\right]
$$

$$
\begin{equation*}
\mathrm{i}(0)=0=\mathrm{C}[-\mathrm{A}-9 \mathrm{~B}] \text { or } \mathrm{A}=-9 \mathrm{~B} \tag{2}
\end{equation*}
$$

From (1) and (2), $\mathrm{B}=-2$ and $\mathrm{A}=18$.

$$
\text { Hence, } \quad v(t)=\underline{\left(18 e^{-t}-2 e^{-9 t}\right) V}
$$

Chapter 8, Solution 22.

$$
\begin{gather*}
\alpha=20=1 /(2 \mathrm{RC}) \text { or } \mathrm{RC}=1 / 40 \tag{1}\\
\omega_{\mathrm{d}}=50=\sqrt{\omega_{\mathrm{o}}^{2}-\alpha^{2}} \text { which leads to } 2500+400=\omega_{\mathrm{o}}^{2}=1 /(\mathrm{LC}) \tag{2}
\end{gather*}
$$

Thus, LC 1/2900
In a parallel circuit, $\mathrm{v}_{\mathrm{C}}=\mathrm{v}_{\mathrm{L}}=\mathrm{v}_{\mathrm{R}}$
But,

$$
\begin{gathered}
\mathrm{i}_{\mathrm{C}}=\mathrm{Cdv}_{\mathrm{C}} / \mathrm{dt} \text { or } \mathrm{i}_{\mathrm{C}} / \mathrm{C}=\mathrm{dv}_{\mathrm{C}} / \mathrm{dt} \\
=-80 \mathrm{e}^{-20 \mathrm{t}} \cos 50 \mathrm{t}-200 \mathrm{e}^{-20 \mathrm{t}} \sin 50 \mathrm{t}+200 \mathrm{e}^{-20 \mathrm{t}} \sin 50 \mathrm{t}-500 \mathrm{e}^{-20 \mathrm{t}} \cos 50 \mathrm{t} \\
=-580 \mathrm{e}^{-20 \mathrm{t}} \cos 50 \mathrm{t}
\end{gathered} \mathrm{i}_{\mathrm{C}}(0) / \mathrm{C}=-580 \text { which leads to } \mathrm{C}=-6.5 \times 10^{-3} /(-580)=\underline{\mathbf{1 1 . 2 1} \mu \mathbf{F}} .
$$

Chapter 8, Solution 23.

$$
\begin{gathered}
\text { Let } \mathrm{C}_{\mathrm{o}}=\mathrm{C}+0.01 . \text { For a parallel RLC circuit, } \\
\alpha=1 /\left(2 \mathrm{RC}_{\mathrm{o}}\right), \omega_{\mathrm{o}}=1 / \sqrt{\mathrm{LC}_{\mathrm{o}}} \\
\alpha=1=1 /\left(2 \mathrm{RC}_{\mathrm{o}}\right) \text {, we then have } \mathrm{C}_{\mathrm{o}}=1 /(2 \mathrm{R})=1 / 20=50 \mathrm{mF} \\
\omega_{\mathrm{o}}=1 / \sqrt{0.5 \times 0.5}=6.32>\alpha \text { (underdamped) } \\
\mathrm{C}_{\mathrm{o}}=\mathrm{C}+10 \mathrm{mF}=50 \mathrm{mF} \text { or } \underline{\mathbf{4 0 ~ m F}}
\end{gathered}
$$

Chapter 8, Solution 24.

$$
\begin{aligned}
& \text { For } \mathrm{t}<0, \mathrm{u}(-\mathrm{t}) 1 \text {, namely, the switch is on. } \\
& \mathrm{v}(0)=0, \mathrm{i}(0)=25 / 5=5 \mathrm{~A}
\end{aligned}
$$

For $\mathrm{t}>0$, the voltage source is off and we have a source-free parallel RLC circuit.

$$
\alpha=1 /(2 \mathrm{RC})=1 /\left(2 \times 5 \times 10^{-3}\right)=100
$$

$$
\begin{gathered}
\omega_{\mathrm{o}}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{0.1 \mathrm{x} 10^{-3}}=100 \\
\omega_{\mathrm{o}}=\alpha(\text { critically damped }) \\
\mathrm{v}(\mathrm{t})=\left[\left(\mathrm{A}_{1}+\mathrm{A}_{2} \mathrm{t}\right) \mathrm{e}^{-100 \mathrm{t}}\right] \\
\mathrm{v}(0)=0=\mathrm{A}_{1} \\
\mathrm{dv}(0) / \mathrm{dt}=-[\mathrm{v}(0)+\mathrm{Ri}(0)] /(\mathrm{RC})=-[0+5 \mathrm{x} 5] /\left(5 \times 10^{-3}\right)=-5000 \\
\mathrm{But}, \quad \mathrm{dv} / \mathrm{dt}=\left[\left(\mathrm{A}_{2}+(-100) \mathrm{A}_{2} \mathrm{t}\right) \mathrm{e}^{-100 \mathrm{t}}\right] \\
\text { Therefore, } \mathrm{dv}(0) / \mathrm{dt}=-5000=\mathrm{A}_{2}-0 \\
\mathrm{v}(\mathrm{t})=\underline{\mathbf{- 5 0 0 0 t e} \mathrm{e}^{-100 t} \mathbf{V}}
\end{gathered}
$$

Chapter 8, Solution 25.

In the circuit in Fig. 8.76, calculate $\mathrm{i}_{\mathrm{o}}(\mathrm{t})$ and $\mathrm{v}_{\mathrm{o}}(\mathrm{t})$ for $\mathrm{t}>0$.

Figure 8.78 For Problem 8.25.
At $t=0^{-}, v_{o}(0)=(8 /(2+8)(30)=24$
For $\mathrm{t}>0$, we have a source-free parallel RLC circuit.

$$
\begin{gathered}
\alpha=1 /(2 \mathrm{RC})=1 / 4 \\
\omega_{0}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{1 \mathrm{x} 1 / 4}=2
\end{gathered}
$$

Since α is less than ω_{0}, we have an under-damped response.

$$
\begin{gathered}
\omega_{d}=\sqrt{\omega_{o}^{2}-\alpha^{2}}=\sqrt{4-(1 / 16)}=1.9843 \\
v_{o}(t)=\left(A_{1} \cos \omega_{d} t+A_{2} \sin \omega_{d} t\right) e^{-\alpha t}
\end{gathered}
$$

$$
\begin{gathered}
v_{o}(0)=24=A_{1} \text { and } i_{o}(t)=C\left(d v_{o} / d t\right)=0 \text { when } t=0 . \\
d v_{0} / d t=-\alpha\left(A_{1} \cos \omega_{d} t+A_{2} \sin \omega_{d} t\right) e^{-\alpha t}+\left(-\omega_{d} A_{1} \sin \omega_{d} t+\omega_{d} A_{2} \cos \omega_{d} t\right) e^{-\alpha t} \\
\text { at } t=0 \text {, we get } d v_{0}(0) / d t=0=-\alpha A_{1}+\omega_{d} A_{2} \\
\text { Thus, } A_{2}=\left(\alpha / \omega_{d}\right) A_{1}=(1 / 4)(24) / 1.9843=3.024 \\
\left.v_{0}(t)=\underline{\left(24 \cos \omega_{d}\right.} \underline{t}+\mathbf{3 . 0 2 4} \sin \omega_{d} t\right) e^{-t / 4} \text { volts }
\end{gathered}
$$

Chapter 8, Solution 26.

$$
\begin{aligned}
& s^{2}+2 s+5=0, \text { which leads to } s_{1,2}=\frac{-2 \pm \sqrt{4-20}}{2}=-1 \pm j 4 \\
& i(t)=I_{s}+\left[\left(A_{1} \cos 4 t+A_{2} \sin 4 t\right) e^{-t}\right], I_{s}=10 / 5=2 \\
& i(0)=2=2+A_{1}, \text { or } A_{1}=0 \\
& d i / d t=\left[\left(A_{2} \cos 4 t\right) e^{-t}\right]+\left[\left(-A_{2} \sin 4 t\right) e^{-t}\right]=4=4 A_{2}, \text { or } A_{2}=1 \\
& i(t)=\underline{\mathbf{2}+\sin 4 t e^{-t} \mathbf{A}}
\end{aligned}
$$

Chapter 8, Solution 27.

$$
\begin{gathered}
s^{2}+4 s+8=0 \text { leads to } s=\frac{-4 \pm \sqrt{16-32}}{2}=-2 \pm j 2 \\
v(t)=V_{s}+\left(A_{1} \cos 2 t+A_{2} \sin 2 t\right) e^{-2 t} \\
8 V_{s}=24 \text { means that } V_{s}=3 \\
v(0)=0=3+A_{1} \text { leads to } A_{1}=-3 \\
d v / d t=-2\left(A_{1} \cos 2 t+A_{2} \sin 2 t\right) e^{-2 t}+\left(-2 A_{1} \sin 2 t+2 A_{2} \cos 2 t\right) e^{-2 t} \\
0=d v(0) / d t=-2 A_{1}+2 A_{2} \text { or } A_{2}=A_{1}=-3 \\
v(t)=\left[\mathbf{3}-\mathbf{3}(\cos 2 t+\sin 2 t) e^{-2 t}\right] \text { volts }
\end{gathered}
$$

Chapter 8, Solution 28.

The characteristic equation is $s^{2}+6 s+8$ with roots
$s_{1,2}=\frac{-6 \pm \sqrt{36-32}}{2}=-4,-2$
Hence,
$i(t)=I_{s}+A e^{-2 t}+B e^{-4 t}$
$8 I_{s}=12 \quad \longrightarrow \quad I_{s}=1.5$
$i(0)=0 \quad \longrightarrow \quad 0=1.5+A+B$
$\frac{d i}{d t}=-2 A e^{-2 t}-4 B e^{-4 t}$
$\frac{d i(0)}{d t}=2=-2 A-4 B \quad \longrightarrow \quad 0=1+A+2 B$
Solving (1) and (2) leads to $\mathrm{A}=-2$ and $\mathrm{B}=0.5$.
$i(t)=\underline{1.5-2 e^{-2 t}+0.5 e^{-4 t}} \mathrm{~A}$

Chapter 8, Solution 29.

(a) $\mathrm{s}^{2}+4=0$ which leads to $\mathrm{s}_{1,2}= \pm \mathrm{j} 2$ (an undamped circuit)

$$
\begin{gathered}
\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{s}}+\mathrm{A} \cos 2 \mathrm{t}+\mathrm{B} \sin 2 \mathrm{t} \\
4 \mathrm{~V}_{\mathrm{s}}=12 \text { or } \mathrm{V}_{\mathrm{s}}=3 \\
\mathrm{v}(0)=0=3+\mathrm{A} \text { or } \mathrm{A}=-3 \\
\mathrm{dv} / \mathrm{dt}=-2 \mathrm{~A} \sin 2 \mathrm{t}+2 \mathrm{~B} \cos 2 \mathrm{t} \\
\mathrm{dv}(0) / \mathrm{dt}=2=2 \mathrm{~B} \text { or } \mathrm{B}=1, \text { therefore } \mathrm{v}(\mathrm{t})=\underline{(3-3 \cos 2 t+\sin 2 \mathrm{t}) \mathrm{V}}
\end{gathered}
$$

(b) $\mathrm{s}^{2}+5 \mathrm{~s}+4=0$ which leads to $\mathrm{s}_{1,2}=-1,-4$

$$
\begin{gather*}
i(t)=\left(I_{s}+A e^{-t}+B e^{-4 t}\right) \\
4 I_{s}=8 \text { or } I_{s}=2 \\
i(0)=-1=2+A+B, \text { or } A+B=-3 \tag{1}
\end{gather*}
$$

$$
\begin{align*}
\mathrm{di} / \mathrm{dt} & =-\mathrm{Ae}^{-\mathrm{t}}-4 \mathrm{Be}^{-4 \mathrm{t}} \\
\mathrm{di}(0) / \mathrm{dt} & =0=-\mathrm{A}-4 \mathrm{~B}, \text { or } \mathrm{B}=-\mathrm{A} / 4 \tag{2}
\end{align*}
$$

From (1) and (2) we get $\mathrm{A}=-4$ and $\mathrm{B}=1$

$$
i(t)=\left(2-4 e^{-t}+e^{-4 t}\right) A
$$

(c) $\mathrm{s}^{2}+2 \mathrm{~s}+1=0, \mathrm{~s}_{1,2}=-1,-1$

$$
\begin{gathered}
\mathrm{v}(\mathrm{t})=\left[\mathrm{V}_{\mathrm{s}}+(\mathrm{A}+\mathrm{Bt}) \mathrm{e}^{-\mathrm{t}}\right], \mathrm{V}_{\mathrm{s}}=3 . \\
\mathrm{v}(0)=5=3+\mathrm{A} \text { or } \mathrm{A}=2 \\
\mathrm{dv} / \mathrm{dt}=\left[-(\mathrm{A}+\mathrm{Bt}) \mathrm{e}^{-\mathrm{t}}\right]+\left[\mathrm{Be}^{-\mathrm{t}}\right] \\
\mathrm{dv}(0) / \mathrm{dt}=-\mathrm{A}+\mathrm{B}=1 \text { or } \mathrm{B}=2+1=3 \\
\mathrm{v}(\mathrm{t})=\left[\mathbf{3}+(\mathbf{2}+\mathbf{3 t}) \mathrm{e}^{-\mathrm{t}}\right] \mathbf{V}
\end{gathered}
$$

Chapter 8, Solution 30.

$$
\begin{aligned}
& s_{1}=-500=-\alpha+\sqrt{\alpha^{2}-\omega_{o}^{2}}, \quad s_{2}=-800=-\alpha-\sqrt{\alpha^{2}-\omega_{o}{ }^{2}} \\
& s_{1}+s_{2}=-1300=-2 \alpha \quad \longrightarrow \quad \alpha=650=\frac{R}{2 L}
\end{aligned}
$$

Hence,

$$
\begin{gathered}
L=\frac{R}{2 \alpha}=\frac{200}{2 x 650}=\underline{153.8 \mathrm{mH}} \\
s_{1}-s_{2}=300=2 \sqrt{\alpha^{2}-\omega_{o}{ }^{2}} \longrightarrow \quad \omega_{o}=623.45=\frac{1}{\sqrt{L C}} \\
C=\frac{1}{(632.45)^{2} L}=\underline{16.25 \mu \mathrm{~F}}
\end{gathered}
$$

Chapter 8, Solution 31.

For $\mathrm{t}=0$-, we have the equivalent circuit in Figure (a). For $\mathrm{t}=0+$, the equivalent circuit is shown in Figure (b). By KVL,

$$
\mathrm{v}(0+)=\mathrm{v}(0-)=40, \mathrm{i}(0+)=\mathrm{i}(0-)=1
$$

By KCL, $2=\mathrm{i}(0+)+\mathrm{i}_{1}=1+\mathrm{i}_{1}$ which leads to $\mathrm{i}_{1}=1$. By KVL, $-\mathrm{v}_{\mathrm{L}}+40 \mathrm{i}_{1}+\mathrm{v}(0+)$ $=0$ which leads to $\mathrm{v}_{\mathrm{L}}(0+)=40 \mathrm{x} 1+40=80$

$$
\mathrm{v}_{\mathrm{L}}(0+)=\underline{\mathbf{8 0} \mathrm{V}}, \quad \mathrm{v}_{\mathrm{C}}(0+)=\underline{\mathbf{4 0} \mathrm{V}}
$$

(a)

(b)

Chapter 8, Solution 32.

For $\mathrm{t}=0$-, the equivalent circuit is shown below.

For $\mathrm{t}>0$, we have a series RLC circuit with a step input.

$$
\begin{gathered}
\alpha=\mathrm{R} /(2 \mathrm{~L})=6 / 2=3, \omega_{0}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{0.04} \\
\mathrm{~s}=-3 \pm \sqrt{9-25}=-3 \pm \mathrm{j} 4
\end{gathered}
$$

Thus, $v(t)=V_{f}+\left[(A \cos 4 t+B \sin 4 t) e^{-3 t}\right]$

$$
\begin{gathered}
\text { where } \mathrm{V}_{\mathrm{f}}=\text { final capacitor voltage }=50 \mathrm{~V} \\
\mathrm{v}(\mathrm{t})=50+\left[(\mathrm{A} \cos 4 \mathrm{t}+\mathrm{B} \sin 4 \mathrm{t}) \mathrm{e}^{-3 \mathrm{t}}\right] \\
\mathrm{v}(0)=-12=50+\mathrm{A} \text { which gives } \mathrm{A}=-62 \\
\mathrm{i}(0)=0=\mathrm{Cdv}(0) / \mathrm{dt} \\
\mathrm{dv} / \mathrm{dt}=\left[-3(\mathrm{~A} \cos 4 \mathrm{t}+\mathrm{B} \sin 4 \mathrm{t}) \mathrm{e}^{-3 \mathrm{t}}\right]+\left[4(-\mathrm{A} \sin 4 \mathrm{t}+\mathrm{B} \cos 4 \mathrm{t}) \mathrm{e}^{-3 \mathrm{t}}\right] \\
0=\mathrm{dv}(0) / \mathrm{dt}=-3 \mathrm{~A}+4 \mathrm{~B} \text { or } \mathrm{B}=(3 / 4) \mathrm{A}=-46.5 \\
\mathrm{v}(\mathrm{t})=\mathbf{\mathbf { 5 0 } + [(\mathbf { 6 2 } \operatorname { c o s } 4 \mathrm { t } - \mathbf { 4 6 . 5 } \operatorname { s i n } 4 \mathrm { t }) \mathrm { e } ^ { - 3 t }] \} \mathbf { V }}
\end{gathered}
$$

Chapter 8, Solution 33.

We may transform the current sources to voltage sources. For $t=0^{-}$, the equivalent circuit is shown in Figure (a).

(a)

(b)

$$
\mathrm{i}(0)=30 / 15=2 \mathrm{~A}, \mathrm{v}(0)=5 \times 30 / 15=10 \mathrm{~V}
$$

For $\mathrm{t}>0$, we have a series RLC circuit.

$$
\begin{gather*}
\alpha=\mathrm{R} /(2 \mathrm{~L})=5 / 2=2.5 \\
\omega_{\mathrm{o}}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{4}=0.25, \text { clearly } \alpha>\omega_{\mathrm{o}} \text { (overdamped response) } \\
\mathrm{s}_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{\mathrm{o}}^{2}}=-2.5 \pm \sqrt{6.25-0.25}=-4.95,-0.05 \\
\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{s}}+\left[\mathrm{A}_{1} \mathrm{e}^{-4.95 \mathrm{t}}+\mathrm{A}_{2} \mathrm{e}^{-0.05 \mathrm{t}}\right], \mathrm{v}=20 . \\
\mathrm{v}(0)=10=20+\mathrm{A}_{1}+\mathrm{A}_{2} \tag{1}
\end{gather*}
$$

$$
\mathrm{i}(0)=\operatorname{Cdv}(0) / \mathrm{dt} \text { or } \mathrm{dv}(0) / \mathrm{dt}=2 / 4=1 / 2
$$

Hence,

$$
\begin{equation*}
1 / 2=-4.95 \mathrm{~A}_{1}-0.05 \mathrm{~A}_{2} \tag{2}
\end{equation*}
$$

From (1) and (2),

$$
\begin{aligned}
& \mathrm{A}_{1}=0, \mathrm{~A}_{2}=-10 . \\
& \quad \mathrm{v}(\mathrm{t})=\left\{\mathbf{2 0}-\mathbf{1 0} \mathrm{e}^{-0.05 t}\right\} \mathbf{V}
\end{aligned}
$$

Chapter 8, Solution 34.

Before $\mathrm{t}=0$, the capacitor acts like an open circuit while the inductor behaves like a short circuit.

$$
\mathrm{i}(0)=0, \mathrm{v}(0)=20 \mathrm{~V}
$$

For $\mathrm{t}>0$, the LC circuit is disconnected from the voltage source as shown below.

This is a lossless, source-free, series RLC circuit.

$$
\alpha=\mathrm{R} /(2 \mathrm{~L})=0, \omega_{\mathrm{o}}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{\frac{1}{16}+\frac{1}{4}}=8, \mathrm{~s}= \pm \mathrm{j} 8
$$

Since α is less than ω_{0}, we have an underdamped response. Therefore,

$$
\begin{gathered}
i(t)=A_{1} \cos 8 t+A_{2} \sin 8 t \text { where } i(0)=0=A_{1} \\
\operatorname{di}(0) / d t=(1 / L) v_{L}(0)=-(1 / L) v(0)=-4 \times 20=-80
\end{gathered}
$$

However, $\mathrm{di} / \mathrm{dt}=8 \mathrm{~A}_{2} \cos 8 \mathrm{t}$, thus, $\mathrm{di}(0) / \mathrm{dt}=-80=8 \mathrm{~A}_{2}$ which leads to $\mathrm{A}_{2}=-10$
Now we have $\quad i(t)=\underline{-10 \sin 8 t} \mathbf{A}$

Chapter 8, Solution 35.

$$
\text { At } \mathrm{t}=0-, \mathrm{i}_{\mathrm{L}}(0)=0, \mathrm{v}(0)=\mathrm{v}_{\mathrm{C}}(0)=8 \mathrm{~V}
$$

For $\mathrm{t}>0$, we have a series RLC circuit with a step input.

$$
\begin{gathered}
\alpha=\mathrm{R} /(2 \mathrm{~L})=2 / 2=1, \omega_{0}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{1 / 5}=\sqrt{5} \\
\mathrm{~s}_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{o}^{2}}=-1 \pm \mathrm{j} 2 \\
\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{s}}+\left[(\mathrm{A} \cos 2 \mathrm{t}+\mathrm{B} \sin 2 \mathrm{t}) \mathrm{e}^{-\mathrm{t}}\right], \mathrm{V}_{\mathrm{s}}=12 \\
\mathrm{v}(0)=8=12+A \text { or } A=-4, \mathrm{i}(0)=\operatorname{Cdv}(0) / \mathrm{dt}=0
\end{gathered}
$$

But dv/dt $=\left[-(A \cos 2 t+B \sin 2 t) e^{-t}\right]+\left[2(-A \sin 2 t+B \cos 2 t) e^{-t}\right]$
$0=\operatorname{dv}(0) / \mathrm{dt}=-\mathrm{A}+2 \mathrm{~B}$ or $2 \mathrm{~B}=\mathrm{A}=-4$ and $\mathrm{B}=-2$

$$
v(t)=\left\{12-(4 \cos 2 t+2 \sin 2 t) e^{-t} V .\right.
$$

Chapter 8, Solution 36.

For $\mathrm{t}=0-, 3 \mathrm{u}(\mathrm{t})=0$. Thus, $\mathrm{i}(0)=0$, and $\mathrm{v}(0)=20 \mathrm{~V}$.
For $\mathrm{t}>0$, we have the series RLC circuit shown below.

$$
\begin{gathered}
\alpha=\mathrm{R} /(2 \mathrm{~L})=(2+5+1) /(2 \times 5)=0.8 \\
\omega_{0}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{5 \times 0.2}=1
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{s}_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{o}^{2}}=-0.8 \pm \mathrm{j} 0.6 \\
\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{s}}+\left[(\mathrm{A} \cos 0.6 \mathrm{t}+\mathrm{B} \sin 0.6 \mathrm{t}) \mathrm{e}^{-0.8 \mathrm{t}}\right] \\
\mathrm{V}_{\mathrm{s}}=15+20=35 \mathrm{~V} \text { and } \mathrm{v}(0)=20=35+\mathrm{A} \text { or } \mathrm{A}=-15 \\
\mathrm{i}(0)=\mathrm{Cdv}(0) / \mathrm{dt}=0
\end{gathered}
$$

But dv/dt $=\left[-0.8(\mathrm{~A} \cos 0.6 \mathrm{t}+\mathrm{B} \sin 0.6 \mathrm{t}) \mathrm{e}^{-0.8 \mathrm{t}}\right]+\left[0.6(-\mathrm{A} \sin 0.6 \mathrm{t}+\mathrm{B} \cos 0.6 \mathrm{t}) \mathrm{e}^{-0.8 \mathrm{t}}\right]$
$0=\mathrm{dv}(0) / \mathrm{dt}=-0.8 \mathrm{~A}+0.6 \mathrm{~B}$ which leads to $\mathrm{B}=0.8 \mathrm{x}(-15) / 0.6=-20$

$$
v(t)=\left\{35-\left[(15 \cos 0.6 t+20 \sin 0.6 t) \mathrm{e}^{-0.8 t}\right]\right\} \mathbf{V}
$$

$\mathrm{i}=\mathrm{Cdv} / \mathrm{dt}=0.2\left\{\left[0.8(15 \cos 0.6 \mathrm{t}+20 \sin 0.6 \mathrm{t}) \mathrm{e}^{-0.8 \mathrm{t}}\right]+\left[0.6(15 \sin 0.6 \mathrm{t}-20 \cos 0.6 \mathrm{t}) \mathrm{e}^{-0.8 \mathrm{t}}\right]\right\}$

$$
\mathrm{i}(\mathrm{t})=\left[(5 \sin 0.6 \mathrm{t}) \mathrm{e}^{-0.8 \mathrm{t}}\right] \mathbf{A}
$$

Chapter 8, Solution 37.

For $t=0$-, the equivalent circuit is shown below.

$$
\begin{align*}
& 18 i_{2}-6 i_{1}=0 \text { or } i_{1}=3 i_{2} \tag{1}\\
& -30+6\left(i_{1}-i_{2}\right)+10=0 \text { or } i_{1}-i_{2}=10 / 3 \tag{2}
\end{align*}
$$

From (1) and (2).

$$
\begin{gathered}
\mathrm{i}_{1}=5, \mathrm{i}_{2}=5 / 3 \\
\mathrm{i}(0)=\mathrm{i}_{1}=5 \mathrm{~A} \\
-10-6 \mathrm{i}_{2}+\mathrm{v}(0)=0
\end{gathered}
$$

$$
v(0)=10+6 \times 5 / 3=20
$$

For $\mathrm{t}>0$, we have a series RLC circuit.

$$
\begin{gathered}
\mathrm{R}=6 \| 12=4 \\
\omega_{\mathrm{o}}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{(1 / 2)(1 / 8)}=4 \\
\alpha=\mathrm{R} /(2 \mathrm{~L})=(4) /(2 \mathrm{x}(1 / 2))=4
\end{gathered}
$$

$\alpha=\omega_{0}$, therefore the circuit is critically damped

$$
\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{s}}+\left[(\mathrm{A}+\mathrm{Bt}) \mathrm{e}^{-4 \mathrm{t}}\right], \text { and } \mathrm{V}_{\mathrm{s}}=10
$$

$$
\begin{gathered}
\mathrm{v}(0)=20=10+\mathrm{A}, \text { or } \mathrm{A}=10 \\
\mathrm{i}=\mathrm{Cdv} / \mathrm{dt}=-4 \mathrm{C}\left[(\mathrm{~A}+\mathrm{Bt}) \mathrm{e}^{-4 \mathrm{t}}\right]+\mathrm{C}\left[(\mathrm{~B}) \mathrm{e}^{-4 \mathrm{t}}\right]
\end{gathered}
$$

$$
\mathrm{i}(0)=5=\mathrm{C}(-4 \mathrm{~A}+\mathrm{B}) \text { which leads to } 40=-40+\mathrm{B} \text { or } \mathrm{B}=80
$$

$$
i(t)=\left[-(1 / 2)(10+80 t) e^{-4 t}\right]+\left[(10) e^{-4 t}\right]
$$

$$
\left.i(t)=\llbracket(5-40 t) e^{-4 t}\right] A
$$

Chapter 8, Solution 38.

At $\mathrm{t}=0^{-}$, the equivalent circuit is as shown.

$$
\begin{array}{cl}
\mathrm{i}(0)=2 \mathrm{~A}, & \mathrm{i}_{1}(0)=10(2) /(10+15)=0.8 \mathrm{~A} \\
\mathrm{v}(0)=5 \mathrm{i}_{1}(0)=4 \mathrm{~V}
\end{array}
$$

For $\mathrm{t}>0$, we have a source-free series RLC circuit.

$$
\begin{gather*}
\mathrm{R}=5 \|(10+10)=4 \mathrm{ohms} \\
\omega_{\mathrm{o}}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{(1 / 3)(3 / 4)}=2 \\
\alpha=\mathrm{R} /(2 \mathrm{~L})=(4) /(2 \mathrm{x}(3 / 4))=8 / 3 \\
\mathrm{~s}_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{\mathrm{o}}^{2}}=-4.431,-0.903 \\
\mathrm{i}(\mathrm{t})=\left[\mathrm{Ae}^{-4.431 \mathrm{t}}+\mathrm{Be}^{-0.903 \mathrm{t}}\right] \\
\mathrm{i}(0)=\mathrm{A}+\mathrm{B}=2 \tag{1}\\
\mathrm{di}(0) / \mathrm{dt}=(1 / \mathrm{L})[-\mathrm{Ri}(0)+\mathrm{v}(0)]=(4 / 3)(-4 \mathrm{x} 2+4)=-16 / 3=-5.333 \\
\mathrm{Hence},-5.333=-4.431 \mathrm{~A}-0.903 \mathrm{~B} \tag{2}
\end{gather*}
$$

From (1) and (2), $\mathrm{A}=1$ and $\mathrm{B}=1$.

$$
i(t)=\left\lfloor\int^{-4.431 t}+\mathrm{e}^{-0.903 \mathrm{t}}\right] \mathbf{A}
$$

Chapter 8, Solution 39.

For $t=0^{-}$, the equivalent circuit is shown in Figure (a). Where $60 u(-t)=60$ and $30 u(t)=0$.

(a)

(b)

$$
\mathrm{v}(0)=(20 / 50)(60)=24 \text { and } \mathrm{i}(0)=0
$$

For $\mathrm{t}>0$, the circuit is shown in Figure (b).

$$
\begin{gathered}
\mathrm{R}=20 \| 30=12 \mathrm{ohms} \\
\omega_{\mathrm{o}}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{(1 / 2)(1 / 4)}=\sqrt{8} \\
\alpha=\mathrm{R} /(2 \mathrm{~L})=(12) /(0.5)=24
\end{gathered}
$$

Since $\alpha>\omega_{0}$, we have an overdamped response.

$$
s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{o}^{2}}=-47.833,-0.167
$$

Thus,

$$
\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{s}}+\left[\mathrm{Ae}^{-47.833 \mathrm{t}}+\mathrm{Be}^{-0.167 \mathrm{t}}\right], \quad \mathrm{V}_{\mathrm{s}}=30
$$

$$
\begin{equation*}
\mathrm{v}(0)=24=30+\mathrm{A}+\mathrm{B} \text { or }-6=\mathrm{A}+\mathrm{B} \tag{1}
\end{equation*}
$$

$$
\mathrm{i}(0)=\operatorname{Cdv}(0) / \mathrm{dt}=0
$$

But, $\quad \operatorname{dv}(0) / \mathrm{dt}=-47.833 \mathrm{~A}-0.167 \mathrm{~B}=0$

$$
\begin{equation*}
\mathrm{B}=-286.43 \mathrm{~A} \tag{2}
\end{equation*}
$$

From (1) and (2), $\quad \mathrm{A}=0.021$ and $\mathrm{B}=-6.021$

$$
\mathrm{v}(\mathrm{t})=\underline{\mathbf{3 0}+\left[0.021 \mathrm{e}^{-47.833 t}-6.021 \mathrm{e}^{-0.167 t}\right] V}
$$

Chapter 8, Solution 40.

$$
\text { At } \mathrm{t}=0-, \mathrm{v}_{\mathrm{C}}(0)=0 \text { and } \mathrm{i}_{\mathrm{L}}(0)=\mathrm{i}(0)=(6 /(6+2)) 4=3 \mathrm{~A}
$$

For $\mathrm{t}>0$, we have a series RLC circuit with a step input as shown below.

Since $\alpha=\omega_{0}$, we have a critically damped response.

$$
\begin{gathered}
\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{s}}+\left[(\mathrm{A}+\mathrm{Bt}) \mathrm{e}^{-5 \mathrm{t}}\right], \quad \mathrm{V}_{\mathrm{s}}=24-12=12 \mathrm{~V} \\
\mathrm{v}(0)=0=12+\mathrm{A} \text { or } \mathrm{A}=-12 \\
\mathrm{i}=\mathrm{Cdv} / \mathrm{dt}=\mathrm{C}\left\{\left[\mathrm{Be}^{-5 \mathrm{t}}\right]+\left[-5(\mathrm{~A}+\mathrm{Bt}) \mathrm{e}^{-5 \mathrm{t}}\right]\right\} \\
\mathrm{i}(0)=3=\mathrm{C}[-5 \mathrm{~A}+\mathrm{B}]=0.02[60+\mathrm{B}] \text { or } \mathrm{B}=90
\end{gathered}
$$

Thus, $\mathrm{i}(\mathrm{t})=0.02\left\{\left[90 \mathrm{e}^{-5 \mathrm{t}}\right]+\left[-5(-12+90 \mathrm{t}) \mathrm{e}^{-5 \mathrm{t}}\right]\right\}$

$$
i(t)=\left\{(3-9 t) e^{-5 t}\right\} \mathbf{A}
$$

Chapter 8, Solution 41.

$$
\text { At } \mathrm{t}=0 \text {-, the switch is open. } \mathrm{i}(0)=0 \text {, and }
$$

$$
v(0)=5 \times 100 /(20+5+5)=50 / 3
$$

For $\mathrm{t}>0$, we have a series RLC circuit shown in Figure (a). After source transformation, it becomes that shown in Figure (b).

Thus,

$$
\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{s}}+\left[\left(\mathrm{A} \cos \omega_{\mathrm{d}} \mathrm{t}+\mathrm{B} \sin \omega_{\mathrm{d}} \mathrm{t}\right) \mathrm{e}^{-2 \mathrm{t}}\right]
$$

where $\omega_{\mathrm{d}}=4.583$ and $\mathrm{V}_{\mathrm{s}}=20$

$$
\mathrm{v}(0)=50 / 3=20+\mathrm{A} \text { or } \mathrm{A}=-10 / 3
$$

$$
\begin{gathered}
i(t)=C d v / d t=C(-2)\left[\left(A \cos \omega_{d} t+B \sin \omega_{d} t\right) e^{-2 t}\right]+C \omega_{d}\left[\left(-A \sin \omega_{d} t+B \cos \omega_{d} t\right) e^{-2 t}\right] \\
i(0)=0=-2 A+\omega_{d} B \\
B=2 A / \omega_{d}=-20 /(3 x 4.583)=-1.455 \\
i(t)=C\left\{\left[\left(0 \cos \omega_{d} t+\left(-2 B-\omega_{d} A\right) \sin \omega_{d} t\right)\right] e^{-2 t}\right\} \\
\left.=(1 / 25)\left\{\left[(2.91+15.2767) \sin \omega_{d} t\right)\right] e^{-2 t}\right\} \\
i(t)=\left\{\mathbf{0 . 7 2 7 5} \sin (\mathbf{4 . 5 8 3 t}) \mathrm{e}^{-2 t}\right\} \mathbf{A}
\end{gathered}
$$

Chapter 8, Solution 42.

For $t=0-$, we have the equivalent circuit as shown in Figure (a).

$$
\mathrm{i}(0)=\mathrm{i}(0)=0, \text { and } \mathrm{v}(0)=4-12=-8 \mathrm{~V}
$$

(a)

(b)

For $t>0$, the circuit becomes that shown in Figure (b) after source transformation.

$$
\begin{gathered}
\omega_{0}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{1 \mathrm{x} 1 / 25}=5 \\
\alpha=\mathrm{R} /(2 \mathrm{~L})=(6) /(2)=3 \\
\mathrm{~s}_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{o}^{2}}=-3 \pm \mathrm{j} 4
\end{gathered}
$$

Thus,
$\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{s}}+\left[(\mathrm{A} \cos 4 \mathrm{t}+\mathrm{B} \sin 4 \mathrm{t}) \mathrm{e}^{-3 \mathrm{t}}\right], \quad \mathrm{V}_{\mathrm{s}}=-12$

$$
\mathrm{v}(0)=-8=-12+\mathrm{A} \text { or } \mathrm{A}=4
$$

$\mathrm{i}=\mathrm{Cdv} / \mathrm{dt}$, or $\mathrm{i} / \mathrm{C}=\mathrm{dv} / \mathrm{dt}=\left[-3(\mathrm{~A} \cos 4 \mathrm{t}+\mathrm{B} \sin 4 \mathrm{t}) \mathrm{e}^{-3 t}\right]+\left[4(-\mathrm{A} \sin 4 \mathrm{t}+\mathrm{B} \cos 4 \mathrm{t}) \mathrm{e}^{-3 \mathrm{t}}\right]$

$$
\mathrm{i}(0)=-3 \mathrm{~A}+4 \mathrm{~B} \text { or } \mathrm{B}=3
$$

$$
\mathrm{v}(\mathrm{t})=\left\{-12+\left[(4 \cos 4 \mathrm{t}+3 \sin 4 \mathrm{t}) \mathrm{e}^{-3 \mathrm{t}}\right]\right\} \mathbf{A}
$$

Chapter 8, Solution 43.

For $\mathrm{t}>0$, we have a source-free series RLC circuit.

$$
\begin{aligned}
& \alpha=\frac{R}{2 L} \longrightarrow \quad R=2 \alpha L=2 \times 8 x 0.5=\underline{8 \Omega} \\
& \omega_{d}=\sqrt{\omega_{o}{ }^{2}-\alpha^{2}}=30 \longrightarrow \quad \omega_{o}=\sqrt{900-64}=\sqrt{836} \\
& \omega_{o}=\frac{1}{\sqrt{L C}} \longrightarrow C=\frac{1}{\omega^{2}{ }_{o} L}=\frac{1}{836 x 0.5}=\underline{2.392 \mathrm{mF}}
\end{aligned}
$$

Chapter 8, Solution 44.

$$
\begin{aligned}
& \alpha=\frac{R}{2 L}=\frac{1000}{2 x 1}=500, \quad \omega_{o}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{100 \times 10^{-9}}}=10^{4} \\
& \omega_{0}>\alpha \quad \longrightarrow \quad \text { underdamped. }
\end{aligned}
$$

Chapter 8, Solution 45.

$$
\begin{gathered}
\omega_{\mathrm{o}}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{1 \mathrm{x} 0.5}=\sqrt{2} \\
\alpha=\mathrm{R} /(2 \mathrm{~L})=(1) /(2 \times 2 \times 0.5)=0.5
\end{gathered}
$$

Since $\alpha<\omega_{0}$, we have an underdamped response.

$$
\mathrm{s}_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{\mathrm{o}}^{2}}=-0.5 \pm \mathrm{j} 1.323
$$

Thus,

$$
\begin{aligned}
i(t)= & I_{s}+\left[(A \cos 1.323 t+B \sin 1.323 t) \mathrm{e}^{-0.5 t}\right], \quad I_{s}=4 \\
& i(0)=1=4+A \text { or } A=-3 \\
& v=v_{C}=v_{L}=\operatorname{Ldi}(0) / d t=0
\end{aligned}
$$

$\mathrm{di} / \mathrm{dt}=\left[1.323(-\mathrm{A} \sin 1.323 \mathrm{t}+\mathrm{B} \cos 1.323 \mathrm{t}) \mathrm{e}^{-0.5 \mathrm{t}}\right]+\left[-0.5(\mathrm{~A} \cos 1.323 \mathrm{t}+\mathrm{B} \sin 1.323 \mathrm{t}) \mathrm{e}^{-0.5 \mathrm{t}}\right]$

$$
\mathrm{di}(0) / \mathrm{dt}=0=1.323 \mathrm{~B}-0.5 \mathrm{~A} \text { or } \mathrm{B}=0.5(-3) / 1.323=-1.134
$$

Thus,

$$
\mathrm{i}(\mathrm{t})=\left\{4-\left[(3 \cos 1.323 \mathrm{t}+1.134 \sin 1.323 \mathrm{t}) \mathrm{e}^{-0.5 t}\right]\right\} \mathbf{A}
$$

Chapter 8, Solution 46.

For $t=0-, u(t)=0$, so that $v(0)=0$ and $i(0)=0$.
For $\mathrm{t}>0$, we have a parallel RLC circuit with a step input, as shown below.

$$
\begin{gathered}
\alpha=1 /(2 \mathrm{RC})=(1) /\left(2 \times 2 \times 10^{3} \times 5 \times 10^{-6}\right)=50 \\
\omega_{0}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{8 \times 10^{3} \times 5 \times 10^{-6}}=5,000
\end{gathered}
$$

Since $\alpha<\omega_{0}$, we have an underdamped response.

$$
s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{o}^{2}} \cong-50 \pm j 5,000
$$

Thus,

$$
\begin{gathered}
i(t)=I_{s}+\left[(A \cos 5,000 t+B \sin 5,000 t) \mathrm{e}^{-50 t}\right], \quad I_{s}=6 \mathrm{~mA} \\
\mathrm{i}(0)=0=6+A \text { or } A=-6 \mathrm{~mA} \\
\mathrm{v}(0)=0=\operatorname{Ldi}(0) / \mathrm{dt}
\end{gathered}
$$

$\mathrm{di} / \mathrm{dt}=\left[5,000(-\mathrm{A} \sin 5,000 \mathrm{t}+\mathrm{B} \cos 5,000 \mathrm{t}) \mathrm{e}^{-50 \mathrm{t}}\right]+\left[-50(\mathrm{~A} \cos 5,000 \mathrm{t}+\mathrm{B} \sin 5,000 \mathrm{t}) \mathrm{e}^{-50 t}\right]$

$$
\mathrm{di}(0) / \mathrm{dt}=0=5,000 \mathrm{~B}-50 \mathrm{~A} \text { or } \mathrm{B}=0.01(-6)=-0.06 \mathrm{~mA}
$$

Thus,

$$
i(t)=\left\{6-\left[(6 \cos 5,000 t+0.06 \sin 5,000 t) e^{-50 t}\right\}\right\} \mathbf{m A}
$$

Chapter 8, Solution 47.

$$
\begin{gathered}
\text { At } \mathrm{t}=0-\text {, we obtain, } \quad \mathrm{i}_{\mathrm{L}}(0)=3 \times 5 /(10+5)=1 \mathrm{~A} \\
\text { and } \mathrm{v}_{\mathrm{o}}(0)=0 .
\end{gathered}
$$

For $\mathrm{t}>0$, the 20 -ohm resistor is short-circuited and we have a parallel RLC circuit with a step input.

$$
\begin{gathered}
\alpha=1 /(2 \mathrm{RC})=(1) /(2 \times 5 \times 0.01)=10 \\
\omega_{\mathrm{o}}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{1 \times 0.01}=10
\end{gathered}
$$

Since $\alpha=\omega_{0}$, we have a critically damped response.

$$
\mathrm{s}_{1,2}=-10
$$

Thus,

$$
\begin{gathered}
i(t)=I_{s}+\left[(A+B t) e^{-10 t}\right], I_{s}=3 \\
i(0)=1=3+A \text { or } A=-2 \\
v_{o}=L d i / d t=\left[\mathrm{Be}^{-10 t}\right]+\left[-10(A+B t) e^{-10 t}\right] \\
\mathrm{v}_{\mathrm{o}}(0)=0=B-10 A \text { or } B=-20
\end{gathered}
$$

$$
\text { Thus, } v_{\mathrm{o}}(\mathrm{t})=\left(200 t \mathrm{e}^{-10 t}\right) \mathrm{V}
$$

Chapter 8, Solution 48.

For $\mathrm{t}=0-$, we obtain $\mathrm{i}(0)=-6 /(1+2)=-2$ and $\mathrm{v}(0)=2 \times 1=2$.
For $\mathrm{t}>0$, the voltage is short-circuited and we have a source-free parallel RLC circuit.

$$
\begin{gathered}
\alpha=1 /(2 \mathrm{RC})=(1) /(2 \times 1 \times 0.25)=2 \\
\omega_{0}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{1 \times 0.25}=2
\end{gathered}
$$

Since $\alpha=\omega_{0}$, we have a critically damped response.

$$
\mathrm{s}_{1,2}=-2
$$

Thus,

$$
\mathrm{i}(\mathrm{t})=\left[(\mathrm{A}+\mathrm{Bt}) \mathrm{e}^{-2 \mathrm{t}}\right], \quad \mathrm{i}(0)=-2=\mathrm{A}
$$

$$
\mathrm{v}=\mathrm{Ldi} / \mathrm{dt}=\left[\mathrm{Be}^{-2 \mathrm{t}}\right]+\left[-2(-2+\mathrm{Bt}) \mathrm{e}^{-2 \mathrm{t}}\right]
$$

$$
\mathrm{v}_{\mathrm{o}}(0)=2=\mathrm{B}+4 \text { or } \mathrm{B}=-2
$$

Thus, $i(t)=\left[(-2-2 t) e^{-2 t}\right] \mathbf{A}$

$$
\text { and } v(t)=\left[(2+4 t) e^{-2 t}\right] V
$$

Chapter 8, Solution 49.

For $\mathrm{t}=0^{-}, \mathrm{i}(0)=3+12 / 4=6$ and $\mathrm{v}(0)=0$.

For $\mathrm{t}>0$, we have a parallel $R L C$ circuit with a step input.

$$
\begin{gathered}
\alpha=1 /(2 \mathrm{RC})=(1) /(2 \times 5 \times 0.05)=2 \\
\omega_{0}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{5 \times 0.05}=2
\end{gathered}
$$

Since $\alpha=\omega_{0}$, we have a critically damped response.

$$
\mathrm{s}_{1,2}=-2
$$

Thus,

$$
\begin{aligned}
& \mathrm{i}(\mathrm{t})=\mathrm{I}_{\mathrm{s}}+\left[(\mathrm{A}+\mathrm{Bt}) \mathrm{e}^{-2 \mathrm{t}}\right], \quad \mathrm{I}_{\mathrm{s}}=3 \\
& \mathrm{i}(0)=6=3+\mathrm{A} \text { or } \mathrm{A}=3
\end{aligned}
$$

$$
\mathrm{v}=\mathrm{Ldi} / \mathrm{dt} \text { or } \mathrm{v} / \mathrm{L}=\mathrm{di} / \mathrm{dt}=\left[\mathrm{Be}^{-2 \mathrm{t}}\right]+\left[-2(\mathrm{~A}+\mathrm{Bt}) \mathrm{e}^{-2 \mathrm{t}}\right]
$$

$$
\mathrm{v}(0) / \mathrm{L}=0=\mathrm{di}(0) / \mathrm{dt}=\mathrm{B}-2 \times 3 \text { or } \mathrm{B}=6
$$

Thus, $i(t)=\left\{3+\left[(3+6 t) \mathrm{e}^{-2 \mathrm{t}}\right]\right\} \mathbf{A}$

Chapter 8, Solution 50.

$$
\text { For } t=0-, 4 u(t)=0, v(0)=0, \text { and } i(0)=30 / 10=3 \mathrm{~A} \text {. }
$$

For $\mathrm{t}>0$, we have a parallel RLC circuit.

$$
\mathrm{I}_{\mathrm{s}}=3+6=9 \mathrm{~A} \text { and } \mathrm{R}=10 \| 40=8 \mathrm{ohms}
$$

$$
\alpha=1 /(2 \mathrm{RC})=(1) /(2 \times 8 \times 0.01)=25 / 4=6.25
$$

$$
\omega_{0}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{4 \times 0.01}=5
$$

Since $\alpha>\omega_{o}$, we have a overdamped response.

$$
\mathrm{s}_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{\mathrm{o}}^{2}}=-10,-2.5
$$

Thus,

$$
\mathrm{i}(\mathrm{t})=\mathrm{I}_{\mathrm{s}}+\left[\mathrm{Ae}^{-10 \mathrm{t}}\right]+\left[\mathrm{Be}^{-2.5 \mathrm{t}}\right], \quad \mathrm{I}_{\mathrm{s}}=9
$$

$$
\mathrm{i}(0)=3=9+\mathrm{A}+\mathrm{B} \text { or } \mathrm{A}+\mathrm{B}=-6
$$

$$
\mathrm{di} / \mathrm{dt}=\left[-10 \mathrm{Ae}^{-10 \mathrm{t}}\right]+\left[-2.5 \mathrm{Be}^{-2.5 \mathrm{t}}\right]
$$

$$
\mathrm{v}(0)=0=\mathrm{Ldi}(0) / \mathrm{dt} \text { or } \mathrm{di}(0) / \mathrm{dt}=0=-10 \mathrm{~A}-2.5 \mathrm{~B} \text { or } \mathrm{B}=-4 \mathrm{~A}
$$

Thus, $\mathrm{A}=2$ and $\mathrm{B}=-8$
Clearly, $\quad i(t)=\left\{\mathbf{9 + [2 e ^ { - 1 0 t }] + [- 8 e ^ { - 2 . 5 t }] \} \mathbf { A }}\right.$

Chapter 8, Solution 51.

Let $\mathrm{i}=$ inductor current and $\mathrm{v}=$ capacitor voltage.
At $\mathrm{t}=0, \mathrm{v}(0)=0$ and $\mathrm{i}(0)=\mathrm{i}_{0}$.
For $t>0$, we have a parallel, source-free LC circuit $(R=\infty)$.

$$
\begin{gathered}
\alpha=1 /(2 \mathrm{RC})=0 \text { and } \omega_{0}=1 / \sqrt{\mathrm{LC}} \text { which leads to } \mathrm{s}_{1,2}= \pm \mathrm{j} \omega_{0} \\
v=A \cos \omega_{0} t+B \sin \omega_{0} t, v(0)=0 \mathrm{~A} \\
\mathrm{i}_{\mathrm{C}}=\mathrm{Cdv} / \mathrm{dt}=-\mathrm{i} \\
d v / \mathrm{dt}=\omega_{0} B \sin \omega_{0} t=-\mathrm{i} / \mathrm{C} \\
\operatorname{dv}(0) / \mathrm{dt}=\omega_{0} B=-i_{0} / \mathrm{C} \text { therefore } \mathrm{B}=\mathrm{i}_{0} /\left(\omega_{0} \mathrm{C}\right) \\
v(\mathrm{t})=\underline{-\left(\mathbf{i}_{0} /\left(\omega_{0} \underline{C}\right)\right) \sin \omega_{0} \mathbf{t} \mathbf{V} \text { where } \omega_{0}=\sqrt{\mathrm{LC}}}
\end{gathered}
$$

Chapter 8, Solution 52.

$$
\begin{align*}
& \alpha=300=\frac{1}{2 R C} \tag{1}\\
& \omega_{d}=\sqrt{\omega_{o}^{2}-\alpha^{2}}=400 \quad \longrightarrow \quad \omega_{o}=\sqrt{400^{2}-300^{2}}=264.575=\frac{1}{\sqrt{L C}} \tag{2}
\end{align*}
$$

From (2),

$$
C=\frac{1}{(264.575)^{2} \times 50 \times 10^{-3}}=\underline{285.71 \mu \mathrm{~F}}
$$

From (1),

$$
R=\frac{1}{2 \alpha C}=\frac{1}{2 x 300}(3500)=\underline{5.833 \Omega}
$$

Chapter 8, Solution 53.

$$
\begin{align*}
& \mathrm{i}_{2}=\mathrm{C}_{2} \mathrm{dv}_{\mathrm{o}} / \mathrm{dt} \tag{1}\\
& \mathrm{i}_{1}=\mathrm{C}_{1} \mathrm{dv}_{1} / \mathrm{dt} \tag{2}\\
& 0=\mathrm{R}_{2} \mathrm{i}_{2}+\mathrm{R}_{1}\left(\mathrm{i}_{2}-\mathrm{i}_{1}\right)+\mathrm{v}_{\mathrm{o}} \tag{3}
\end{align*}
$$

Substituting (1) and (2) into (3) we get,

$$
\begin{equation*}
0=\mathrm{R}_{2} \mathrm{C}_{2} \mathrm{dv}_{\mathrm{o}} / \mathrm{dt}+\mathrm{R}_{1}\left(\mathrm{C}_{2} \mathrm{dv}_{\mathrm{o}} / \mathrm{dt}-\mathrm{C}_{1} \mathrm{dv}_{1} / \mathrm{dt}\right) \tag{4}
\end{equation*}
$$

Applying KVL to the outer loop produces,

$$
\begin{gather*}
v_{s}=v_{1}+i_{2} R_{2}+v_{o}=v_{1}+R_{2} C_{2} d v_{o} / d t+v_{o} \text {, which leads to } \\
v_{1}=v_{s}-v_{o}-R_{2} C_{2} d v_{0} / d t \tag{5}
\end{gather*}
$$

Substituting (5) into (4) leads to,

$$
0=\mathrm{R}_{1} \mathrm{C}_{2} \mathrm{dv}_{\mathrm{o}} / \mathrm{dt}+\mathrm{R}_{1} \mathrm{C}_{2} \mathrm{dv}_{\mathrm{o}} / \mathrm{dt}-\mathrm{R}_{1} \mathrm{C}_{1}\left(\mathrm{dv}_{\mathrm{s}} / \mathrm{dt}-\mathrm{dv}_{\mathrm{o}} / \mathrm{dt}-\mathrm{R}_{2} \mathrm{C}_{2} \mathrm{~d}^{2} \mathrm{v}_{\mathrm{o}} / \mathrm{dt}^{2}\right)
$$

Hence, $\quad \underline{R}_{1} \underline{\mathbf{C}_{1}} \underline{\mathbf{R}_{2}} \underline{\mathbf{C}}_{2} \underline{)}\left(\mathbf{d}^{2} \mathbf{v}_{0} / \mathbf{d t}^{2}\right)+\left(\mathbf{R}_{1} \underline{C}_{1}+\mathbf{R}_{2} \underline{C}_{2} \underline{+\mathbf{R}_{1}} \underline{\mathbf{C}}_{2}\right)\left(\mathbf{d} v_{0} / \mathbf{d t}\right)=\mathbf{R}_{1} \underline{C}_{1}\left(\mathbf{d} \mathbf{v}_{\underline{s}} / \mathbf{d t}\right)$

Chapter 8, Solution 54.

Let i be the inductor current.

$$
\begin{align*}
& -i=\frac{v}{4}+0.5 \frac{d v}{d t} \tag{1}\\
& v=2 i+\frac{d i}{d t} \tag{2}
\end{align*}
$$

Substituting (1) into (2) gives

$$
\begin{gathered}
-v=\frac{v}{2}+\frac{d v}{d t}+\frac{1}{4} \frac{d v}{d t}+\frac{1}{2} \frac{d^{2} v}{d t^{2}} \quad \longrightarrow \quad \frac{d^{2} v}{d t^{2}}+2.5 \frac{d v}{d t}+3 v=0 \\
s^{2}+2.5 s+3=0 \quad s=-1.25 \pm j 1.199 \\
v=A e^{-1.25 t} \cos 1.199 t+B e^{-1.25 t} \sin 1.199 t \\
\mathrm{v}(0)=2=\mathrm{A} . \text { Let } \mathrm{w}=1.199 \\
\frac{d v}{d t}=-1.25\left(A e^{-1.25 t} \cos w t+B e^{-1.25 t} \sin w t\right)+w\left(-A e^{-1.25 t} \sin w t+B e^{-1.25 t} \cos w t\right) \\
\frac{d v(0)}{d t}=0=-1.25 A+B w \quad \longrightarrow \quad B=\frac{1.25 X 2}{1.199}=2.085 \\
v=\underline{2 e^{-1.25 t} \cos 1.199 t+2.085 e^{-1.25 t} \sin 1.199 t} \mathrm{~V}
\end{gathered}
$$

Chapter 8, Solution 55.

At the top node, writing a KCL equation produces,

$$
\begin{gather*}
\mathrm{i} / 4+\mathrm{i}=\mathrm{C}_{1} \mathrm{dv} / \mathrm{dt}, \mathrm{C}_{1}=0.1 \\
5 \mathrm{i} / 4=\mathrm{C}_{1} \mathrm{dv} / \mathrm{dt}=0.1 \mathrm{dv} / \mathrm{dt} \\
\mathrm{i}=0.08 \mathrm{dv} / \mathrm{dt} \tag{1}
\end{gather*}
$$

But,

$$
\begin{align*}
& \mathrm{v}=-\left(2 \mathrm{i}+\left(1 / \mathrm{C}_{2}\right) \int \mathrm{idt}\right), \mathrm{C}_{2}=0.5 \\
& \text { or } \quad-\mathrm{dv} / \mathrm{dt}=2 \mathrm{di} / \mathrm{dt}+2 \mathrm{i} \tag{2}
\end{align*}
$$

Substituting (1) into (2) gives,

$$
-\mathrm{dv} / \mathrm{dt}=0.16 \mathrm{~d}^{2} \mathrm{v} / \mathrm{dt}^{2}+0.16 \mathrm{dv} / \mathrm{dt}
$$

$0.16 \mathrm{~d}^{2} \mathrm{v} / \mathrm{dt}^{2}+0.16 \mathrm{dv} / \mathrm{dt}+\mathrm{dv} / \mathrm{dt}=0$, or $\mathrm{d}^{2} \mathrm{v} / \mathrm{dt}^{2}+7.25 \mathrm{dv} / \mathrm{dt}=0$
Which leads to $\mathrm{s}^{2}+7.25 \mathrm{~s}=0=\mathrm{s}(\mathrm{s}+7.25)$ or $\mathrm{s}_{1,2}=0,-7.25$

$$
\begin{align*}
& v(t)=A+B e^{-7.25 t} \tag{3}\\
& v(0)=4=A+B \tag{4}
\end{align*}
$$

From (1), $\quad i(0)=2=0.08 \mathrm{dv}(0+) / \mathrm{dt}$ or $\mathrm{dv}(0+) / \mathrm{dt}=25$
But, $\quad \mathrm{dv} / \mathrm{dt}=-7.25 \mathrm{Be}^{-7.25 t}$, which leads to,

$$
\begin{gathered}
\mathrm{dv}(0) / \mathrm{dt}=-7.25 \mathrm{~B}=25 \text { or } \mathrm{B}=-3.448 \text { and } \mathrm{A}=4-\mathrm{B}=4+3.448=7.448 \\
\text { Thus, } \mathrm{v}(\mathrm{t})=\left\{7.45-\mathbf{3 . 4 5 \mathrm { e } ^ { - 7 . 2 5 t }} \mathbf{V}\right.
\end{gathered}
$$

Chapter 8, Solution 56.

For $\mathrm{t}<0, \mathrm{i}(0)=0$ and $\mathrm{v}(0)=0$.
For $\mathrm{t}>0$, the circuit is as shown below.

Applying KVL to the larger loop,

$$
-20+6 \mathrm{i}_{\mathrm{o}}+0.25 \mathrm{di}_{\mathrm{o}} / \mathrm{dt}+25 \int\left(\mathrm{i}_{\mathrm{o}}+\mathrm{i}\right) \mathrm{dt}=0
$$

Taking the derivative,

$$
\begin{equation*}
6 \mathrm{di}_{0} / \mathrm{dt}+0.25 \mathrm{~d}^{2} \mathrm{i}_{0} / \mathrm{dt}^{2}+25\left(\mathrm{i}_{\mathrm{o}}+\mathrm{i}\right)=0 \tag{1}
\end{equation*}
$$

For the smaller loop,

$$
4+25 \int\left(\mathrm{i}+\mathrm{i}_{\mathrm{o}}\right) \mathrm{dt}=0
$$

Taking the derivative,

$$
\begin{equation*}
25\left(i+i_{0}\right)=0 \text { or } i=-i_{0} \tag{2}
\end{equation*}
$$

From (1) and (2)

$$
6 \mathrm{di}_{0} / \mathrm{dt}+0.25 \mathrm{~d}^{2} \mathrm{i}_{0} / \mathrm{dt}^{2}=0
$$

This leads to, $0.25 \mathrm{~s}^{2}+6 \mathrm{~s}=0$ or $\mathrm{s}_{1,2}=0,-24$

$$
\mathrm{i}_{0}(\mathrm{t})=\left(\mathrm{A}+\mathrm{Be}^{-24 \mathrm{t}}\right) \text { and } \mathrm{i}_{0}(0)=0=\mathrm{A}+\mathrm{B} \text { or } \mathrm{B}=-\mathrm{A}
$$

As tapproaches infinity, $\mathrm{i}_{\mathrm{o}}(\infty)=20 / 10=2=\mathrm{A}$, therefore $\mathrm{B}=-2$
Thus, $\mathrm{i}_{0}(\mathrm{t})=\left(2-2 \mathrm{e}^{-24 \mathrm{t}}\right)=-\mathrm{i}(\mathrm{t})$ or $\mathrm{i}(\mathrm{t})=\underline{\left(\mathbf{(2 + 2}+\mathbf{2} \mathrm{e}^{-24 t}\right) \mathbf{A}}$

Chapter 8, Solution 57.

(a) Let $\mathrm{v}=$ capacitor voltage and $\mathrm{i}=$ inductor current. At $\mathrm{t}=0$-, the switch is closed and the circuit has reached steady-state.

$$
\mathrm{v}(0-)=16 \mathrm{~V} \text { and } \mathrm{i}(0-)=16 / 8=2 \mathrm{~A}
$$

At $\mathrm{t}=0+$, the switch is open but, $\mathrm{v}(0+)=16$ and $\mathrm{i}(0+)=2$.
We now have a source-free RLC circuit.

$$
\begin{gathered}
\mathrm{R} 8+12=20 \mathrm{ohms}, \mathrm{~L}=1 \mathrm{H}, \mathrm{C}=4 \mathrm{mF} \\
\alpha=\mathrm{R} /(2 \mathrm{~L})=(20) /(2 \mathrm{x} 1)=10 \\
\omega_{\mathrm{o}}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{1 \mathrm{x}(1 / 36)}=6
\end{gathered}
$$

Since $\alpha>\omega_{0}$, we have a overdamped response.

$$
\mathrm{s}_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}=-18,-2
$$

Thus, the characteristic equation is $(s+2)(s+18)=0$ or $\underline{\mathbf{s}^{2}+\mathbf{2 0} \mathbf{s}+\mathbf{3 6}=\mathbf{0}}$.
(b)

$$
\begin{equation*}
\mathrm{i}(\mathrm{t})=\left[\mathrm{Ae}^{-2 \mathrm{t}}+\mathrm{Be}^{-18 \mathrm{t}}\right] \text { and } \mathrm{i}(0)=2=\mathrm{A}+\mathrm{B} \tag{1}
\end{equation*}
$$

To get di(0)/dt, consider the circuit below at $\mathrm{t}=0+$.

$$
-\mathrm{v}(0)+20 \mathrm{i}(0)+\mathrm{v}_{\mathrm{L}}(0)=0, \text { which leads to }
$$

$$
-16+20 \times 2+v_{\mathrm{L}}(0)=0 \text { or } \mathrm{v}_{\mathrm{L}}(0)=-24
$$

$\operatorname{Ldi}(0) / \mathrm{dt}=\mathrm{v}_{\mathrm{L}}(0)$ which gives $\operatorname{di}(0) / \mathrm{dt}=\mathrm{v}_{\mathrm{L}}(0) / \mathrm{L}=-24 / 1=-24 \mathrm{~A} / \mathrm{s}$

$$
\begin{equation*}
\text { Hence }-24=-2 \mathrm{~A}-18 \mathrm{~B} \text { or } 12=\mathrm{A}+9 \mathrm{~B} \tag{2}
\end{equation*}
$$

From (1) and (2),

$$
\mathrm{B}=1.25 \text { and } \mathrm{A}=0.75
$$

$$
\begin{gathered}
\mathrm{i}(\mathrm{t})=\left[0.75 \mathrm{e}^{-2 \mathrm{t}}+1.25 \mathrm{e}^{-18 t}\right]=-\mathrm{i}_{\mathrm{x}}(\mathrm{t}) \text { or } \mathrm{i}_{\mathrm{x}}(\mathrm{t})=\left[-\mathbf{0 . 7 5} \mathrm{e}^{-2 \mathrm{t}}-\mathbf{1 . 2 5 e ^ { - 1 8 t }} \mathbf{A}\right. \\
\mathrm{v}(\mathrm{t})=8 \mathrm{i}(\mathrm{t})=\left[6 \mathrm{e}^{-\mathbf{2 t}}+\mathbf{1 0 \mathrm { e } ^ { - 1 8 t }] \mathbf { A }}\right.
\end{gathered}
$$

Chapter 8, Solution 58.

(a) Let $\mathrm{i}=$ inductor current, $\mathrm{v}=$ capacitor voltage $\mathrm{i}(0)=0, \underline{\mathrm{v}}(0)=4$

$$
\frac{d v(0)}{d t}=-\frac{[v(0)+R i(0)]}{R C}=-\frac{(4+0)}{0.5}=\underline{-8 \mathrm{~V} / \mathrm{s}}
$$

(b) For $t \geq 0$, the circuit is a source-free RLC parallel circuit.

$$
\begin{aligned}
& \alpha=\frac{1}{2 R C}=\frac{1}{2 x 0.5 x 1}=1, \quad \omega_{o}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{0.25 x 1}}=2 \\
& \omega_{d}=\sqrt{\omega_{o}^{2}-\alpha^{2}}=\sqrt{4-1}=1.732
\end{aligned}
$$

Thus,

$$
\begin{aligned}
v(t) & =e^{-t}\left(A_{1} \cos 1.732 t+A_{2} \sin 1.732 t\right) \\
\mathrm{v}(0) & =4=\mathrm{A}_{1}
\end{aligned}
$$

$$
\frac{d v}{d t}=-e^{-t} A_{1} \cos 1.732 t-1.732 e^{-t} A_{1} \sin 1.732 t-e^{-t} A_{2} \sin 1.732 t+1.732 e^{-t} A_{2} \cos 1.732 t
$$

$$
\frac{d v(0)}{d t}=-8=-A_{1}+1.732 A_{2} \quad \longrightarrow \quad A_{2}=-2.309
$$

$v(t)=e^{-t}(4 \cos 1.732 t-2.309 \sin 1.732 t) \mathrm{V}$

Chapter 8, Solution 59.

Let $\mathrm{i}=$ inductor current and $\mathrm{v}=$ capacitor voltage

$$
\mathrm{v}(0)=0, \mathrm{i}(0)=40 /(4+16)=2 \mathrm{~A}
$$

For $\mathrm{t}>0$, the circuit becomes a source-free series RLC with

$$
\begin{aligned}
& \alpha=\frac{R}{2 L}=\frac{16}{2 x 4}=2, \quad \omega_{o}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{4 x 1 / 16}}=2, \quad \longrightarrow \quad \alpha=\omega_{o}=2 \\
& i(t)=A e^{-2 t}+B t e^{-2 t} \\
& \mathrm{i}(0)=2=\mathrm{A} \\
& \frac{d i}{d t}=-2 A e^{-2 t}+B e^{-2 t}-2 B t e^{-2 t} \\
& \frac{d i(0)}{d t}=-2 A+B=-\frac{1}{L}[R i(0)+v(0)] \quad \longrightarrow \quad-2 A+B=-\frac{1}{4}(32+0), \quad B=-4 \\
& i(t)=2 e^{-2 t}-4 t e^{-2 t} \\
& v=\frac{1}{C} \int_{0}^{t} i d t+v(0)=32 \int_{0}^{t} e^{-2 t} d t-64 \int_{0}^{t} t e^{-2 t} d t=-\left.16 e^{-2 t}\right|_{0} ^{t}-\left.\frac{64}{4} e^{-2 t}(-2 t-1)\right|_{0} ^{t} \\
& v=\underline{32 t e^{-2 t} \mathrm{~V}}
\end{aligned}
$$

Chapter 8, Solution 60.

$$
\begin{equation*}
\text { At } \mathrm{t}=0-, 4 \mathrm{u}(\mathrm{t})=0 \text { so that } \mathrm{i}_{1}(0)=0=\mathrm{i}_{2}(0) \tag{1}
\end{equation*}
$$

Applying nodal analysis,

$$
\begin{equation*}
4=0.5 \mathrm{di}_{1} / \mathrm{dt}+\mathrm{i}_{1}+\mathrm{i}_{2} \tag{2}
\end{equation*}
$$

Also, $\quad \mathrm{i}_{2}=\left[1 \mathrm{di}_{1} / \mathrm{dt}-1 \mathrm{di}_{2} / \mathrm{dt}\right] / 3$ or $3 \mathrm{i}_{2}=\mathrm{di} /{ }_{1} / \mathrm{dt}-\mathrm{di}_{2} / \mathrm{dt}$
Taking the derivative of (2), $0=\mathrm{d}^{2} \mathrm{i}_{1} / \mathrm{dt}^{2}+2 \mathrm{di}_{1} / \mathrm{dt}+2 \mathrm{di}_{2} / \mathrm{dt}$
From (2) and (3), $\quad \mathrm{di}_{2} / \mathrm{dt}=\mathrm{di}_{1} / \mathrm{dt}-3 \mathrm{i}_{2}=\mathrm{di}_{1} / \mathrm{dt}-3\left(4-\mathrm{i}_{1}-0.5 \mathrm{di}_{1} / \mathrm{dt}\right)$

$$
=\mathrm{di}_{1} / \mathrm{dt}-12+3 \mathrm{i}_{1}+1.5 \mathrm{di}_{1} / \mathrm{dt}
$$

Substituting this into (4),

$$
\mathrm{d}^{2} \mathrm{i}_{1} / \mathrm{dt}^{2}+7 \mathrm{di}_{1} / \mathrm{dt}+6 \mathrm{i}_{1}=24 \text { which gives } \mathrm{s}^{2}+7 \mathrm{~s}+6=0=(\mathrm{s}+1)(\mathrm{s}+6)
$$

Thus, $\mathrm{i}_{1}(\mathrm{t})=\mathrm{I}_{\mathrm{s}}+\left[\mathrm{Ae}^{-\mathrm{t}}+\mathrm{Be}^{-6 \mathrm{t}}\right], 6 \mathrm{I}_{\mathrm{s}}=24$ or $\mathrm{I}_{\mathrm{s}}=4$

$$
\begin{align*}
& \mathrm{i}_{1}(\mathrm{t})=4+\left[\mathrm{Ae}^{-t}+\mathrm{Be}^{-6 t}\right] \text { and } \mathrm{i}_{1}(0)=4+[\mathrm{A}+\mathrm{B}] \tag{5}\\
\mathrm{i}_{2}= & 4-\mathrm{i}_{1}-0.5 \mathrm{di}_{1} / \mathrm{dt}=\mathrm{i}_{1}(\mathrm{t})=4+-4-\left[\mathrm{Ae}^{-t}+\mathrm{Be}^{-6 t}\right]-\left[-\mathrm{Ae}^{-t}-6 \mathrm{Be}^{-6 t}\right] \\
& =\left[-0.5 \mathrm{Ae}^{-\mathrm{t}}+2 \mathrm{Be}^{-6 t}\right] \text { and } \mathrm{i}_{2}(0)=0=-0.5 \mathrm{~A}+2 \mathrm{~B} \tag{6}
\end{align*}
$$

From (5) and (6),

$$
\begin{gathered}
\mathrm{A}=-3.2 \text { and } \mathrm{B}=-0.8 \\
\mathrm{i}_{1}(\mathrm{t})=\left\{\mathbf{4 + [- \mathbf { 3 } . 2 \mathrm { e } ^ { - \mathrm { t } } - \mathbf { 0 . 8 } \mathbf { e } ^ { - 6 \mathrm { t } }] \} \mathbf { A }}\right. \\
\quad \mathrm{i}_{2}(\mathrm{t})=\left[\mathbf{1 . 6 \mathrm { e } ^ { - \mathrm { t } } - \mathbf { 1 . 6 } \mathrm { e } ^ { - 6 \mathrm { t } }] \mathbf { A }}\right.
\end{gathered}
$$

Chapter 8, Solution 61.

For $t>0$, we obtain the natural response by considering the circuit below.

At node a,

$$
\begin{equation*}
\mathrm{v}_{\mathrm{C}} / 4+0.25 \mathrm{dv}_{\mathrm{C}} / \mathrm{dt}+\mathrm{i}_{\mathrm{L}}=0 \tag{1}
\end{equation*}
$$

But,

$$
\begin{equation*}
\mathrm{v}_{\mathrm{C}}=1 \mathrm{di}_{\mathrm{L}} / \mathrm{dt}+6 \mathrm{i}_{\mathrm{L}} \tag{2}
\end{equation*}
$$

Combining (1) and (2),

$$
\begin{gathered}
(1 / 4) \mathrm{di}_{\mathrm{L}} / \mathrm{dt}+(6 / 4) \mathrm{i}_{\mathrm{L}}+0.25 \mathrm{~d}^{2} \mathrm{i}_{\mathrm{L}} / \mathrm{dt}^{2}+(6 / 4) \mathrm{di}_{\mathrm{L}} / \mathrm{dt}+\mathrm{i}_{\mathrm{L}}=0 \\
\mathrm{~d}^{2} \mathrm{i}_{\mathrm{L}} / \mathrm{dt}^{2}+7 \mathrm{di}_{\mathrm{L}} / \mathrm{dt}+10 \mathrm{i}_{\mathrm{L}}=0 \\
\mathrm{~s}^{2}+7 \mathrm{~s}+10=0=(\mathrm{s}+2)(\mathrm{s}+5) \text { or } \mathrm{s}_{1,2}=-2,-5 \\
\text { Thus, } \mathrm{i}_{\mathrm{L}}(\mathrm{t})=\mathrm{i}_{\mathrm{L}}(\infty)+\left[\mathrm{Ae}^{-2 \mathrm{t}}+\mathrm{Be}^{-5 \mathrm{t}}\right],
\end{gathered}
$$

where $i_{L}(\infty)$ represents the final inductor current $=4(4) /(4+6)=1.6$

$$
\begin{equation*}
\mathrm{i}_{\mathrm{L}}(\mathrm{t})=1.6+\left[\mathrm{Ae}^{-2 \mathrm{t}}+\mathrm{Be}^{-5 \mathrm{t}}\right] \text { and } \mathrm{i}_{\mathrm{L}}(0)=1.6+[\mathrm{A}+\mathrm{B}] \text { or }-1.6=\mathrm{A}+\mathrm{B} \tag{3}
\end{equation*}
$$

$$
\mathrm{di}_{\mathrm{L}} / \mathrm{dt}=\left[-2 \mathrm{Ae}^{-2 \mathrm{t}}-5 \mathrm{Be}^{-5 \mathrm{t}}\right]
$$

and $\operatorname{di}_{\mathrm{L}}(0) / \mathrm{dt}=0=-2 \mathrm{~A}-5 \mathrm{~B}$ or $\mathrm{A}=-2.5 \mathrm{~B}$
From (3) and (4), $\mathrm{A}=-8 / 3$ and $\mathrm{B}=16 / 15$
$i_{L}(t)=1.6+\left[-(8 / 3) e^{-2 t}+(16 / 15) e^{-5 t}\right]$
$\mathrm{v}(\mathrm{t})=6 \mathrm{i}_{\mathrm{L}}(\mathrm{t})=\left\{9.6+\left[-16 \mathrm{e}^{-2 \mathrm{t}}+6.4 \mathrm{e}^{-5 \mathrm{t}}\right]\right\} \mathbf{V}$
$\mathrm{v}_{\mathrm{C}}=1 \mathrm{di}_{\mathrm{L}} / \mathrm{dt}+6 \mathrm{i}_{\mathrm{L}}=\left[(16 / 3) \mathrm{e}^{-2 \mathrm{t}}-(16 / 3) \mathrm{e}^{-5 \mathrm{t}}\right]+\left\{9.6+\left[-16 \mathrm{e}^{-2 \mathrm{t}}+6.4 \mathrm{e}^{-5 \mathrm{t}}\right]\right\}$

$$
\mathrm{v}_{\mathrm{C}}=\left\{9.6+\left[-(32 / 3) \mathrm{e}^{-2 \mathrm{t}}+1.0667 \mathrm{e}^{-5 t}\right]\right\}
$$

$\mathrm{i}(\mathrm{t})=\mathrm{v}_{\mathrm{C}} / 4=\left\{\mathbf{2 . 4 + [- 2 . 6 6 7 \mathrm { e } ^ { - 2 t } + \mathbf { 0 . 2 6 6 7 } \mathrm { e } ^ { - 5 t }] \} \mathbf { A }}\right.$

Chapter 8, Solution 62.

This is a parallel RLC circuit as evident when the voltage source is turned off.

$$
\begin{gathered}
\alpha=1 /(2 \mathrm{RC})=(1) /(2 \times 3 \times(1 / 18))=3 \\
\omega_{0}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{2 \times 1 / 18}=3
\end{gathered}
$$

Since $\alpha=\omega_{0}$, we have a critically damped response.

$$
\mathrm{s}_{1,2}=-3
$$

$$
\text { Let } v(t)=\text { capacitor voltage }
$$

Thus, $v(t)=V_{s}+\left[(A+B t) e^{-3 t}\right]$ where $V_{s}=0$

$$
\text { But }-10+v_{R}+v=0 \text { or } v_{R}=10-v
$$

Therefore $\mathrm{v}_{\mathrm{R}}=\underline{\mathbf{1 0}-\left[(\mathbf{A}+\mathbf{B t}) \mathbf{e}^{-3 t}\right]}$ where A and B are determined from initial conditions.

Chapter 8, Solution 63.

At node 1,

$\frac{v_{s}-v_{1}}{R}=C \frac{d v_{1}}{d t}$

At node 2,
$\frac{v_{2}-v_{o}}{R}=C \frac{d v_{o}}{d t}$
As a voltage follower, $v_{1}=v_{2}=v$. Hence (2) becomes
$v=v_{o}+R C \frac{d v_{o}}{d t}$
and (1) becomes
$v_{s}=v+R C \frac{d v}{d t}$
Substituting (3) into (4) gives
$v_{s}=v_{o}+R C \frac{d v_{o}}{d t}+R C \frac{d v_{o}}{d t}+R^{2} C^{2} \frac{d^{2} v_{o}}{d t^{2}}$
or
$R^{2} C^{2} \frac{d^{2} v_{o}}{d t^{2}}+2 R C \frac{d v_{o}}{d t}+v_{o}=v_{s}$

Chapter 8, Solution 64.

At node 1, $\quad\left(\mathrm{v}_{\mathrm{s}}-\mathrm{v}_{1}\right) / \mathrm{R}_{1}=\mathrm{C}_{1} \mathrm{~d}\left(\mathrm{v}_{1}-0\right) / \mathrm{dt}$ or $\mathrm{v}_{\mathrm{s}}=\mathrm{v}_{1}+\mathrm{R}_{1} \mathrm{C}_{1} \mathrm{dv}_{1} / \mathrm{dt}$
At node $2, \quad \mathrm{C}_{1} \mathrm{dv}_{1} / \mathrm{dt}=\left(0-\mathrm{v}_{\mathrm{o}}\right) / \mathrm{R}_{2}+\mathrm{C}_{2} \mathrm{~d}\left(0-\mathrm{v}_{\mathrm{o}}\right) / \mathrm{dt}$

$$
\begin{equation*}
\text { or } \quad-\mathrm{R}_{2} \mathrm{C}_{1} \mathrm{dv}_{1} / \mathrm{dt}=\mathrm{v}_{\mathrm{o}}+\mathrm{C}_{2} \mathrm{dv}_{\mathrm{o}} / \mathrm{dt} \tag{2}
\end{equation*}
$$

From (1) and (2), $\quad\left(\mathrm{v}_{\mathrm{s}}-\mathrm{v}_{1}\right) / \mathrm{R}_{1}=\mathrm{C}_{1} \mathrm{dv}_{1} / \mathrm{dt}=-\left(1 / \mathrm{R}_{2}\right)\left(\mathrm{v}_{\mathrm{o}}+\mathrm{C}_{2} \mathrm{dv}_{\mathrm{o}} / \mathrm{dt}\right)$

$$
\begin{equation*}
\text { or } \quad \mathrm{v}_{1}=\mathrm{v}_{\mathrm{s}}+\left(\mathrm{R}_{1} / \mathrm{R}_{2}\right)\left(\mathrm{v}_{\mathrm{o}}+\mathrm{C}_{2} \mathrm{dv}_{\mathrm{o}} / \mathrm{dt}\right) \tag{3}
\end{equation*}
$$

Substituting (3) into (1) produces,

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{s}}=\mathrm{v}_{\mathrm{s}}+\left(\mathrm{R}_{1} / \mathrm{R}_{2}\right)\left(\mathrm{v}_{\mathrm{o}}+\mathrm{C}_{2} \mathrm{~d} \mathrm{v}_{\mathrm{o}} / \mathrm{dt}\right)+\mathrm{R}_{1} \mathrm{C}_{1} \mathrm{~d}\left\{\mathrm{v}_{\mathrm{s}}+\left(\mathrm{R}_{1} / \mathrm{R}_{2}\right)\left(\mathrm{v}_{\mathrm{o}}+\mathrm{C}_{2} \mathrm{~d} \mathrm{v}_{\mathrm{o}} / \mathrm{dt}\right)\right\} / \mathrm{dt} \\
& \left.=v_{s}+\left(R_{1} / R_{2}\right)\left(v_{o}\right)+\left(R_{1} C_{2} / R_{2}\right) d v_{0} / d t\right)+R_{1} C_{1} d v_{s} / d t+\left(R_{1} R_{1} C_{1} / R_{2}\right) d v_{0} / d t \\
& +\left(\mathrm{R}_{1}{ }^{2} \mathrm{C}_{1} \mathrm{C}_{2} / \mathrm{R}_{2}\right)\left[\mathrm{d} 2 \mathrm{vo} / \mathrm{dt}^{2}\right]
\end{aligned}
$$

Simplifying we get,

Chapter 8, Solution 65.

At the input of the first op amp,

$$
\begin{equation*}
\left(\mathrm{v}_{\mathrm{o}}-0\right) / \mathrm{R}=\mathrm{Cd}\left(\mathrm{v}_{1}-0\right) \tag{1}
\end{equation*}
$$

At the input of the second op amp,

$$
\begin{equation*}
\left(-\mathrm{v}_{1}-0\right) / \mathrm{R}=\mathrm{Cdv}_{2} / \mathrm{dt} \tag{2}
\end{equation*}
$$

Let us now examine our constraints. Since the input terminals are essentially at ground, then we have the following,

$$
\begin{equation*}
\mathrm{v}_{\mathrm{o}}=-\mathrm{v}_{2} \text { or } \mathrm{v}_{2}=-\mathrm{v}_{\mathrm{o}} \tag{3}
\end{equation*}
$$

Combining (1), (2), and (3), eliminating v_{1} and v_{2} we get,

$$
\frac{\mathrm{d}^{2} \mathrm{v}_{\mathrm{o}}}{\mathrm{dt}^{2}}-\left(\frac{1}{\mathrm{R}^{2} \mathrm{C}^{2}}\right) \mathrm{v}_{\mathrm{o}}=\frac{\mathrm{d}^{2} \mathrm{v}_{\mathrm{o}}}{\mathrm{dt}^{2}}-100 \mathrm{v}_{\mathrm{o}}=0
$$

$$
\text { Which leads to } s^{2}-100=0
$$

Clearly this produces roots of -10 and +10 .
And, we obtain,

$$
\mathrm{v}_{\mathrm{o}}(\mathrm{t})=\left(\mathrm{Ae}^{+10 \mathrm{t}}+\mathrm{Be}^{-10 t}\right) \mathrm{V}
$$

At $\mathrm{t}=0, \mathrm{v}_{\mathrm{o}}(0+)=-\mathrm{v}_{2}(0+)=0=\mathrm{A}+\mathrm{B}$, thus $\mathrm{B}=-\mathrm{A}$
This leads to $\mathrm{V}_{\mathrm{o}}(\mathrm{t})=\left(\mathrm{Ae}^{+10 \mathrm{t}}-\mathrm{Ae}^{-10 t}\right) \mathrm{V}$. Now we can use $\mathrm{v}_{1}(0+)=2 \mathrm{~V}$.
From (2), $\mathrm{v}_{1}=-\mathrm{RCdv}_{2} / \mathrm{dt}=0.1 \mathrm{dv}_{\mathrm{o}} / \mathrm{dt}=0.1\left(10 \mathrm{Ae}^{+10 \mathrm{t}}+10 \mathrm{Ae}^{-10 \mathrm{t}}\right)$

$$
\mathrm{v}_{1}(0+)=2=0.1(20 \mathrm{~A})=2 \mathrm{~A} \text { or } \mathrm{A}=1
$$

Thus, $v_{0}(t)=\left(e^{+10 t}-e^{-10 t}\right) V$
It should be noted that this circuit is unstable (clearly one of the poles lies in the right-half-plane).

Chapter 8, Solution 66.

Note that the voltage across C_{1} is $v_{2}=\left[R_{3} /\left(R 3+R_{4}\right)\right] v_{0}$
This is the only difference between this problem and Example 8.11, i.e. $\mathrm{v}=\mathrm{kv}$, where $\mathrm{k}=\left[\mathrm{R}_{3} /\left(\mathrm{R} 3+\mathrm{R}_{4}\right)\right]$.

At node 1,

$$
\begin{gather*}
\left(v_{s}-v_{1}\right) / R_{1}=C_{2}\left[d\left(v_{1}-v_{o}\right) / d t\right]+\left(v_{1}-v_{2}\right) / R_{2} \\
v_{s} / R_{1}=\left(v_{1} / R_{1}\right)+C_{2}\left[d\left(v_{1}\right) / d t\right]-C_{2}\left[d\left(v_{0}\right) / d t\right]+\left(v_{1}-k v_{0}\right) / R_{2} \tag{1}
\end{gather*}
$$

At node 2,
or

$$
\left(\mathrm{v}_{1}-\mathrm{kv} \mathrm{v}_{\mathrm{o}}\right) / \mathrm{R}_{2}=\mathrm{C}_{1}\left[\mathrm{~d}\left(\mathrm{kv}_{\mathrm{o}}\right) / \mathrm{dt}\right]
$$

$$
\begin{equation*}
\mathrm{v}_{1}=\mathrm{kv}_{\mathrm{o}}+\mathrm{kR}_{2} \mathrm{C}_{1}\left[\mathrm{~d}\left(\mathrm{v}_{\mathrm{o}}\right) / \mathrm{dt}\right] \tag{2}
\end{equation*}
$$

Substituting (2) into (1),
$\mathrm{v}_{\mathrm{s}} / \mathrm{R}_{1}=\left(\mathrm{kv}_{\mathrm{o}} / \mathrm{R}_{1}\right)+\left(\mathrm{kR}_{2} \mathrm{C}_{1} / \mathrm{R}_{1}\right)\left[\mathrm{d}\left(\mathrm{v}_{\mathrm{o}}\right) / \mathrm{dt}\right]+\mathrm{kC}_{2}\left[\mathrm{~d}\left(\mathrm{v}_{\mathrm{o}}\right) / \mathrm{dt}\right]+\mathrm{kR}_{2} \mathrm{C}_{1} \mathrm{C}_{2}\left[\mathrm{~d}^{2}\left(\mathrm{v}_{\mathrm{o}}\right) / \mathrm{dt}^{2}\right]-\left(\mathrm{kv}_{\mathrm{o}} / \mathrm{R}_{2}\right)$ $+\mathrm{kC}_{1}\left[\mathrm{~d}\left(\mathrm{v}_{\mathrm{o}}\right) / \mathrm{dt}\right]-\left(\mathrm{kv}_{\mathrm{o}} / \mathrm{R}_{2}\right)+\mathrm{C}_{2}\left[\mathrm{~d}\left(\mathrm{v}_{\mathrm{o}}\right) / \mathrm{dt}\right]$

We now rearrange the terms.

```
[d}\mp@subsup{}{}{2}(\mp@subsup{v}{\textrm{o}}{0})/\mp@subsup{\textrm{dt}}{}{2}]+[(1/\mp@subsup{C}{2}{}\mp@subsup{\textrm{R}}{1}{})+(1/\mp@subsup{\textrm{R}}{2}{}\mp@subsup{\textrm{C}}{2}{})+(1/\mp@subsup{\textrm{R}}{2}{}\mp@subsup{\textrm{C}}{1}{})-(1/k\mp@subsup{R}{2}{}\mp@subsup{\textrm{C}}{1}{})][\textrm{d}(\mp@subsup{\textrm{v}}{\textrm{o}}{})/\textrm{dt}]+[\mp@subsup{\textrm{v}}{\textrm{o}}{}/(\mp@subsup{\textrm{R}}{1}{}\mp@subsup{\textrm{R}}{2}{}\mp@subsup{\textrm{C}}{1}{}\mp@subsup{\textrm{C}}{2}{})
= vs}/(k\mp@subsup{R}{1}{}\mp@subsup{\textrm{R}}{2}{}\mp@subsup{\textrm{C}}{1}{}\mp@subsup{\textrm{C}}{2}{}
```

If $\mathrm{R}_{1}=\mathrm{R}_{2} 10 \mathrm{kohms}, \mathrm{C}_{1}=\mathrm{C}_{2}=100 \mu \mathrm{~F}, \mathrm{R}_{3}=20 \mathrm{kohms}$, and $\mathrm{R}_{4}=60 \mathrm{kohms}$,

$$
\begin{gathered}
\mathrm{k}=\left[\mathrm{R}_{3} /\left(\mathrm{R} 3+\mathrm{R}_{4}\right)\right]=1 / 3 \\
\mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}_{1} \mathrm{C}_{2}=10^{4} \times 10^{4} \times 10^{-4} \times 10^{-4}=1 \\
\left(1 / \mathrm{C}_{2} \mathrm{R}_{1}\right)+\left(1 / \mathrm{R}_{2} \mathrm{C}_{2}\right)+\left(1 / \mathrm{R}_{2} \mathrm{C}_{1}\right)-\left(1 / \mathrm{kR}_{2} \mathrm{C}_{1}\right)=1+1+1-3=3-3=0
\end{gathered}
$$

Hence,

$$
\begin{gathered}
{\left[\mathrm{d}^{2}\left(\mathrm{v}_{\mathrm{o}}\right) / \mathrm{dt}^{2}\right]+\mathrm{v}_{\mathrm{o}}=3 \mathrm{v}_{\mathrm{s}}=6, \mathrm{t}>0, \text { and } \mathrm{s}^{2}+1=0, \text { or } \mathrm{s}_{1,2}= \pm \mathrm{j}} \\
\mathrm{v}_{\mathrm{o}}(\mathrm{t})=\mathrm{V}_{\mathrm{s}}+[\text { Acost }+B \sin \mathrm{t}], \mathrm{V}_{\mathrm{s}}=6 \\
\mathrm{v}_{\mathrm{o}}(0)=0=6+\text { A or } \mathrm{A}=-6 \\
\mathrm{dv}_{\mathrm{o}} / \mathrm{dt}=- \text { Asint }+ \text { Bcost, but } \mathrm{dv}_{\mathrm{o}}(0) / \mathrm{dt}=0=\mathrm{B}
\end{gathered}
$$

Hence, $\quad v_{0}(t)=\underline{\mathbf{6}(1-\cos t)} \mathbf{u}(t)$ volts.

Chapter 8, Solution 67.

At node 1,

$$
\begin{equation*}
\frac{\mathrm{v}_{\mathrm{in}}-\mathrm{v}_{1}}{\mathrm{R}_{1}}=\mathrm{C}_{1} \frac{\mathrm{~d}\left(\mathrm{v}_{1}-\mathrm{v}_{\mathrm{o}}\right)}{\mathrm{dt}}+\mathrm{C}_{2} \frac{\mathrm{~d}\left(\mathrm{v}_{1}-0\right)}{\mathrm{dt}} \tag{1}
\end{equation*}
$$

At node 2, $\quad \mathrm{C}_{2} \frac{\mathrm{~d}\left(\mathrm{v}_{1}-0\right)}{\mathrm{dt}}=\frac{0-\mathrm{v}_{\mathrm{o}}}{\mathrm{R}_{2}}$, or $\frac{\mathrm{dv} \mathrm{v}_{1}}{\mathrm{dt}}=\frac{-\mathrm{v}_{\mathrm{o}}}{\mathrm{C}_{2} \mathrm{R}_{2}}$
From (1) and (2),

$$
\begin{align*}
& \mathrm{v}_{\text {in }}-\mathrm{v}_{1}=-\frac{\mathrm{R}_{1} \mathrm{C}_{1}}{\mathrm{C}_{2} \mathrm{R}_{2}} \frac{d v_{\mathrm{o}}}{\mathrm{dt}}-\mathrm{R}_{1} \mathrm{C}_{1} \frac{d v_{\mathrm{o}}}{\mathrm{dt}}-\mathrm{R}_{1} \frac{\mathrm{v}_{\mathrm{o}}}{\mathrm{R}_{2}} \\
& \mathrm{v}_{1}=\mathrm{v}_{\text {in }}+\frac{\mathrm{R}_{1} \mathrm{C}_{1}}{\mathrm{C}_{2} R_{2}} \frac{d v_{\mathrm{o}}}{\mathrm{dt}}+\mathrm{R}_{1} \mathrm{C}_{1} \frac{d v_{\mathrm{o}}}{\mathrm{dt}}+\mathrm{R}_{1} \frac{\mathrm{v}_{\mathrm{o}}}{\mathrm{R}_{2}} \tag{3}
\end{align*}
$$

From (2) and (3),

$$
\begin{aligned}
& -\frac{v_{o}}{C_{2} R_{2}}=\frac{d v_{1}}{d t}=\frac{d v_{\text {in }}}{d t}+\frac{R_{1} C_{1}}{C_{2} R_{2}} \frac{d v_{o}}{d t}+R_{1} C_{1} \frac{d^{2} v_{o}}{d t^{2}}+\frac{R_{1}}{R_{2}} \frac{d v_{o}}{d t} \\
& \frac{d^{2} v_{o}}{d t^{2}}+\frac{1}{R_{2}}\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right) \frac{d v_{o}}{d t}+\frac{v_{o}}{C_{1} C_{2} R_{2} R_{1}}=-\frac{1}{R_{1} C_{1}} \frac{d v_{\text {in }}}{d t}
\end{aligned}
$$

But $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{R}_{1} \mathrm{R}_{2}=10^{-4} \times 10^{-4} \times 10^{4} \times 10^{4}=1$

$$
\begin{aligned}
& \frac{1}{\mathrm{R}_{2}}\left(\frac{1}{\mathrm{C}_{1}}+\frac{1}{\mathrm{C}_{2}}\right)=\frac{2}{\mathrm{R}_{2} \mathrm{C}_{1}}=\frac{2}{10^{4} \times 10^{-4}}=2 \\
& \frac{\mathrm{~d}^{2} \mathrm{v}_{\mathrm{o}}}{\mathrm{dt}^{2}}+2 \frac{\mathrm{dv}_{\mathrm{o}}}{\mathrm{dt}}+\mathrm{v}_{\mathrm{o}}=-\frac{\mathrm{dv}_{\text {in }}}{\mathrm{dt}}
\end{aligned}
$$

Which leads to $\mathrm{s}^{2}+2 \mathrm{~s}+1=0$ or $(\mathrm{s}+1)^{2}=0$ and $\mathrm{s}=-1,-1$
Therefore, $\quad v_{o}(t)=\left[(A+B t) e^{-t}\right]+V_{f}$
As t approaches infinity, the capacitor acts like an open circuit so that

$$
\mathrm{V}_{\mathrm{f}}=\mathrm{v}_{\mathrm{o}}(\infty)=0
$$

$\mathrm{v}_{\mathrm{in}}=10 \mathrm{u}(\mathrm{t}) \mathrm{mV}$ and the fact that the initial voltages across each capacitor is 0
means that $\mathrm{v}_{\mathrm{o}}(0)=0$ which leads to $\mathrm{A}=0$.

$$
\mathrm{v}_{\mathrm{o}}(\mathrm{t})=\left[\mathrm{Bte}^{-\mathrm{t}}\right]
$$

$$
\begin{equation*}
\frac{\mathrm{dv}_{\mathrm{o}}}{\mathrm{dt}}=\left[(\mathrm{B}-\mathrm{Bt}) \mathrm{e}^{-\mathrm{t}}\right] \tag{4}
\end{equation*}
$$

From (2),

$$
\frac{\mathrm{dv}_{\mathrm{o}}(0+)}{\mathrm{dt}}=-\frac{\mathrm{v}_{\mathrm{o}}(0+)}{\mathrm{C}_{2} \mathrm{R}_{2}}=0
$$

From (1) at $\mathrm{t}=0+$,

$$
\frac{1-0}{R_{1}}=-C_{1} \frac{\mathrm{dv}_{\mathrm{o}}(0+)}{\mathrm{dt}} \text { which leads to } \frac{\mathrm{dv}_{\mathrm{o}}(0+)}{\mathrm{dt}}=-\frac{1}{\mathrm{C}_{1} \mathrm{R}_{1}}=-1
$$

Substituting this into (4) gives $B=-1$

$$
\text { Thus, } \quad v(t)=-t^{-t} \mathbf{u}(t) \mathbf{V}
$$

Chapter 8, Solution 68.

The schematic is as shown below. The unit step is modeled by VPWL as shown. We insert a voltage marker to display V after simulation. We set Print Step $=25 \mathrm{~ms}$ and final step $=6 \mathrm{~s}$ in the transient box. The output plot is shown below.

Chapter 8, Solution 69.

The schematic is shown below. The initial values are set as attributes of L1 and C1. We set Print Step to 25 ms and the Final Time to 20s in the transient box. A current marker is inserted at the terminal of $L 1$ to automatically display $i(t)$ after simulation. The result is shown below.

Chapter 8, Solution 70.

The schematic is shown below.

After the circuit is saved and simulated, we obtain the capacitor voltage $v(t)$ as shown below.

Chapter 8, Solution 71.

The schematic is shown below. We use VPWL and IPWL to model the $39 u(t) V$ and 13 $u(t)$ A respectively. We set Print Step to 25 ms and Final Step to 4 s in the Transient box. A voltage marker is inserted at the terminal of R2 to automatically produce the plot of $\mathrm{v}(\mathrm{t})$ after simulation. The result is shown below.

Chapter 8, Solution 72.

When the switch is in position 1, we obtain $\mathrm{IC}=10$ for the capacitor and $\mathrm{IC}=0$ for the inductor. When the switch is in position 2 , the schematic of the circuit is shown below.

When the circuit is simulated, we obtain $\mathrm{i}(\mathrm{t})$ as shown below.

Chapter 8, Solution 73.

(a) For $\mathrm{t}<0$, we have the schematic below. When this is saved and simulated, we obtain the initial inductor current and capacitor voltage as

$$
\mathrm{i}_{\mathrm{L}}(0)=3 \mathrm{~A} \text { and } \mathrm{v}_{\mathrm{c}}(0)=24 \mathrm{~V} .
$$

(b) For $t>0$, we have the schematic shown below. To display $i(t)$ and $v(t)$, we insert current and voltage markers as shown. The initial inductor current and capacitor voltage are also incorporated. In the Transient box, we set Print Step $=25 \mathrm{~ms}$ and the Final Time to 4 s . After simulation, we automatically have $\mathrm{i}_{\mathrm{o}}(\mathrm{t})$ and $\mathrm{v}_{\mathrm{o}}(\mathrm{t})$ displayed as shown below.

Chapter 8, Solution 74.

Hence the dual circuit is shown below.

Chapter 8, Solution 75.

The dual circuit is connected as shown in Figure (a). It is redrawn in Figure (b).

(a)

(b)

Chapter 8, Solution 76.

The dual is obtained from the original circuit as shown in Figure (a). It is redrawn in Figure (b).

(a)

(b)

Chapter 8, Solution 77.

The dual is constructed in Figure (a) and redrawn in Figure (b).

(a)

(b)

Chapter 8, Solution 78.

The voltage across the igniter is $\mathrm{v}_{\mathrm{R}}=\mathrm{v}_{\mathrm{C}}$ since the circuit is a parallel RLC type.

$$
\begin{gathered}
\mathrm{v}_{\mathrm{C}}(0)=12 \text {, and } \mathrm{i}_{\mathrm{L}}(0)=0 . \\
\alpha=1 /(2 \mathrm{RC})=1 /(2 \times 3 \times 1 / 30)=5 \\
\omega_{0}=1 / \sqrt{\mathrm{LC}}=1 / \sqrt{60 \times 10^{-3} \times 1 / 30}=22.36
\end{gathered}
$$

$$
\alpha<\omega_{0} \text { produces an underdamped response. }
$$

$$
s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}=-5 \pm j 21.794
$$

$$
\begin{equation*}
\mathrm{v}_{\mathrm{C}}(\mathrm{t})=\mathrm{e}^{-5 \mathrm{t}}(\mathrm{~A} \cos 21.794 \mathrm{t}+\mathrm{B} \sin 21.794 \mathrm{t}) \tag{1}
\end{equation*}
$$

$$
\mathrm{v}_{\mathrm{C}}(0)=12=\mathrm{A}
$$

$$
\begin{gathered}
\mathrm{dv}_{\mathrm{C}} / \mathrm{dt}=-5\left[(\mathrm{~A} \cos 21.794 \mathrm{t}+\mathrm{B} \sin 21.794 \mathrm{t}) \mathrm{e}^{-5 \mathrm{t}}\right] \\
+21.794\left[(-\mathrm{A} \sin 21.794 \mathrm{t}+\mathrm{B} \cos 21.794 \mathrm{t}) \mathrm{e}^{-5 \mathrm{t}}\right] \\
\operatorname{dv}_{\mathrm{C}}(0) / \mathrm{dt}=-5 \mathrm{~A}+21.794 \mathrm{~B}
\end{gathered}
$$

But, $\quad \quad \mathrm{dv}_{\mathrm{C}}(0) / \mathrm{dt}=-\left[\mathrm{v}_{\mathrm{C}}(0)+\mathrm{Ri}_{\mathrm{L}}(0)\right] /(\mathrm{RC})=-(12+0) /(1 / 10)=-120$
Hence, $\quad-120=-5 \mathrm{~A}+21.794 \mathrm{~B}$, leads to $\mathrm{B}(5 \mathrm{x} 12-120) / 21.794=-2.753$
At the peak value, $\quad \operatorname{dv}_{C}\left(\mathrm{t}_{\mathrm{o}}\right) / \mathrm{dt}=0$, i.e.,

$$
\begin{gathered}
0=\mathrm{A}+\mathrm{B} \tan 21.794 \mathrm{t}_{\mathrm{o}}+(\mathrm{A} 21.794 / 5) \tan 21.794 \mathrm{t}_{\mathrm{o}}-21.794 \mathrm{~B} / 5 \\
(\mathrm{~B}+\mathrm{A} 21.794 / 5) \tan 21.794 \mathrm{t}_{\mathrm{o}}=(21.794 \mathrm{~B} / 5)-\mathrm{A} \\
\tan 21.794 \mathrm{t}_{\mathrm{o}}=[(21.794 \mathrm{~B} / 5)-\mathrm{A}] /(\mathrm{B}+\mathrm{A} 21.794 / 5)=-24 / 49.55=-0.484 \\
\text { Therefore, } 21.7945 \mathrm{t}_{\mathrm{o}}=|-0.451| \\
\mathrm{t}_{\mathrm{o}}=|-0.451| / 21.794=\underline{\mathbf{2 0 . 6 8} \mathbf{~ m s}}
\end{gathered}
$$

Chapter 8, Solution 79.

For critical damping of a parallel RLC circuit,

$$
\alpha=\omega_{o} \quad \longrightarrow \quad \frac{1}{2 R C}=\frac{1}{\sqrt{L C}}
$$

Hence,

$$
C=\frac{L}{4 R^{2}}=\frac{0.25}{4 x 144}=\underline{434 \mu \mathrm{~F}}
$$

Chapter 8, Solution 80.

$$
\begin{gathered}
\mathrm{t}_{1}=1 /\left|\mathrm{s}_{1}\right|=0.1 \times 10^{-3} \text { leads to } \mathrm{s}_{1}=-1000 / 0.1=-10,000 \\
\mathrm{t}_{2}=1 /\left|\mathrm{s}_{2}\right|=0.5 \times 10^{-3} \text { leads to } \mathrm{s}_{1}=-2,000 \\
\mathrm{~s}_{1}=-\alpha-\sqrt{\alpha^{2}-\omega_{\mathrm{o}}^{2}} \\
\mathrm{~s}_{2}=-\alpha+\sqrt{\alpha^{2}-\omega_{\mathrm{o}}^{2}} \\
\mathrm{~s}_{1}+\mathrm{s}_{2}=-2 \alpha=-12,000, \text { therefore } \alpha=6,000=\mathrm{R} /(2 \mathrm{~L}) \\
\mathrm{L}=\mathrm{R} / 12,000=60,000 / 12,000=\underline{\mathbf{5 H}} \\
\mathrm{s}_{2}=-\alpha+\sqrt{\alpha^{2}-\omega_{o}^{2}}=-2,000 \\
\alpha-\sqrt{\alpha^{2}-\omega_{\mathrm{o}}^{2}}=2,000 \\
6,000-\sqrt{\alpha^{2}-\omega_{\mathrm{o}}^{2}}=2,000 \\
\sqrt{\alpha^{2}-\omega_{0}^{2}}=4,000 \\
\alpha^{2}-\omega_{\mathrm{o}}^{2}=16 \times 10^{6} \\
\mathrm{C}=1 /\left(20 \times 10^{6} \times 5\right)=\underline{\mathbf{1 0} \mathbf{n F}}
\end{gathered}
$$

Chapter 8, Solution 81.

$$
\mathrm{t}=1 / \alpha=0.25 \text { leads to } \alpha=4
$$

But,

$$
\begin{aligned}
& \quad \alpha 1 /(2 R C) \text { or, } C=1 /(2 \alpha R)=1 /(2 \times 4 \times 200)=\underline{\mathbf{6 2 5} \mu \mathbf{F}} \\
& \omega_{\mathrm{d}}=\sqrt{\omega_{\mathrm{o}}^{2}-\alpha^{2}} \\
& \omega_{\mathrm{o}}^{2}=\omega_{\mathrm{d}}^{2}+\alpha^{2}=\left(2 \pi 4 \times 10^{3}\right)^{2}+16 \cong\left(2 \pi 4 \times 10^{3} 0^{2}=1 /(\mathrm{LC})\right. \\
& \text { This results in } \mathrm{L}=1 /\left(64 \pi^{2} \times 10^{6} \times 625 \times 10^{-6}\right)=\underline{\mathbf{2} .533} \mu \mathbf{H}
\end{aligned}
$$

Chapter 8, Solution 82.

$$
\text { For } \mathrm{t}=0-, \mathrm{v}(0)=0 .
$$

For $\mathrm{t}>0$, the circuit is as shown below.

At node a,

$$
\begin{gathered}
\left(v_{o}-v / R_{1}=\left(v / R_{2}\right)+C_{2} d v / d t\right. \\
v_{o}=v\left(1+R_{1} / R_{2}\right)+R_{1} C_{2} d v / d t \\
60=(1+5 / 2.5)+\left(5 \times 10^{6} \times 5 \times 10^{-6}\right) d v / d t \\
60=3 v+25 \mathrm{dv} / \mathrm{dt} \\
\mathrm{v}(\mathrm{t})=\mathrm{V}_{\mathrm{s}}+\left[\mathrm{Ae}^{-3 \mathrm{t} / 25}\right]
\end{gathered}
$$

$$
\text { where } \quad 3 \mathrm{~V}_{\mathrm{s}}=60 \text { yields } \mathrm{V}_{\mathrm{s}}=20
$$

$$
\begin{gathered}
\mathrm{v}(0)=0=20+\mathrm{A} \text { or } \mathrm{A}=-20 \\
\mathrm{v}(\mathrm{t})=\underline{\mathbf{2 0}\left(\mathbf{1}-\mathbf{e}^{-3 \mathrm{t} / 2 \mathbf{2}}\right) \mathbf{V}}
\end{gathered}
$$

Chapter 8, Solution 83.

$$
\begin{align*}
& i=i_{D}+C d v / d t \tag{1}\\
& -v_{s}+i R+L d i / d t+v=0 \tag{2}
\end{align*}
$$

Substituting (1) into (2),

$$
\begin{aligned}
& \mathrm{v}_{\mathrm{s}}=\mathrm{Ri}_{\mathrm{D}}+\mathrm{RCdv} / \mathrm{dt}+\mathrm{Ldi} / \mathrm{dt}+\mathrm{LCd}^{2} \mathrm{v} / \mathrm{dt}^{2}+\mathrm{v}=0 \\
& L C d^{2} v / d t^{2}+R C d v / d t+\operatorname{Ri}_{D}+L d i / d t=v_{s}
\end{aligned}
$$

