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Artificial  bee  colony  (ABC)  algorithm  has  been  introduced  for  solving  numerical  optimization  problems,
inspired  collective  behavior  of  honey  bee  colonies.  ABC  algorithm  has  three  phases  named  as  employed
bee,  onlooker  bee  and  scout  bee.  In the model  of  ABC,  only  one  design  parameter  of  the  optimization
problem  is  updated  by the  artificial  bees at the  ABC  phases  by  using  interaction  in  the  bees.  This updating
has  caused  the slow  convergence  to global  or near global  optimum  for the  algorithm.  In order  to accelerate
convergence  of  the method,  using  a control  parameter  (modification  rate-MR)  has  been  proposed  for
ABC  but  this  approach  is  based  on updating  more  design  parameters  than  one.  In this  study,  we  added
warm intelligence
rtificial bee colony
irection information
umerical optimization

directional  information  to  ABC  algorithms,  instead  of  updating  more  design  parameters  than  one. The
performance  of proposed  approach  was  examined  on  well-known  nine  numerical  benchmark  functions
and  obtained  results  are  compared  with  basic  ABC  and  ABCs  with  MR.  The  experimental  results  show  that
the  proposed  approach  is very  effective  method  for  solving  numeric  benchmark  functions  and  successful
in terms  of  solution  quality,  robustness  and  convergence  to  global  optimum.
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. Introduction

Swarm intelligence is a subfield of artificial intelligence and the
lgorithms of swarm intelligence have been developed by inspir-
ng natural behavior of real ants [1], bees, birds, fishes [2], etc.
rtificial bee colony algorithm is one of the swarm intelligence
lgorithms and has been developed by using waggle dance and for-
ging behaviors of real honey bee colonies [3]. In the nature, the
oney bees search and forage food sources around the hive and
hare position information about the food sources. The honey bees
hich work in the foraging labor are divided into three groups.

irst group is employed bees and they move to hive nectar foraged
rom food source and position information about the food sources.
econd group consists of onlooker bees and onlookers forage food
ources by considering information shared by employed bees. The
ast group of the bees is scout bees. 5–10% of a bee population is
cout bee [3,4] and scout bees search new food source around the
ive and share position information of found new food sources with
he other bees. For sharing information, the bees use waggle dance
n the dance area of the hive and the time and glow of the dance
Please cite this article in press as: M.S. Kıran, O. Fındık, A directed
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epend on amount and distance from hive of food source.
Karaboga [3] used the aforementioned natural behaviors of

he real honey bee in order to develop the artificial bee colony
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algorithm and solve numerical optimization problems. In the ABC
algorithm, half of the population is first scout bee. For each scout
bee, a new food source which is possible solution for the opti-
mization problem is generated. After generating new food source
position, all the scout bees become employed bees and all employed
bees try to improve food sources by using interaction between
them. If a food source could not be improved in a certain time
named as limit which is a control parameter for ABC algorithm,
the employed bee of this food source becomes a scout bee. For
this scout bee, a new food source is produced and the scout bee
becomes employed bee, again. The onlooker bees wait to be shared
food sources position by the employed bees in the hive. After
employed bees share position information about the food sources,
each onlooker bee select one of the food source position and tries
to improve the food source position.

ABC algorithm is an iterative algorithm and only one design
parameter of the optimization problem is updated by the each
employed or onlooker bee at the each ABC iteration and updat-
ing only one design parameter has caused slow convergence for
the algorithm. In order to overcome this issue, Akay and Karaboga
[5] have proposed a control parameter called as modification rate-
MR.  In this work, we  used directional information for each design
parameter in order to cope slow convergence of the algorithm and
 artificial bee colony algorithm, Appl. Soft Comput. J. (2014),

the performance of the proposed approach is investigated on the
well-known numerical benchmark optimization problems.

The paper is organized as follows: Section 1 introduces the study
and gives literature review on artificial bee colony algorithm. The
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asic ABC algorithm and modifications are explained in Section
 and the experiments and experimental results are presented in
ection 3. The study is discussed in Section 4 and finally, the con-
lusions and future works are given in Section 5.

.1. Literature review

The ABC algorithm was first introduced in 2005 and its perfor-
ance is analyzed on three numerical problems [3]. It is mentioned

hat ABC algorithm has developed for solving numeric optimiza-
ion problems [6] and proposed modifications and improvements
or the methods have also been tested by using numeric prob-
ems. We  give the literature review based on modifications and
mprovements of the method, and the studies on applications and
ybridizations which use basic ABC algorithm can be found in a
omprehensive literature review on ABC in [6]. The performance
f ABC has been investigated on the numeric benchmark functions
n [7–10]. Akay and Karaboga [5] introduced a modified version of
BC and used it for real-parameter optimization. In the modified
BC, Karaboga and Akay added two new control parameters named
s modification rate-MR which is used for increasing convergence
ate of ABC and scaling factor-SF which is used for controlling mag-
itude of perturbation to ABC. Dongli et al. [11] proposed three
odified versions of ABC in order to obtain better quality results for

he optimization problems. In the first modification, the neighbor-
ood structure is changed in the solution updating equation of ABC,

n the second modification, a new selection equation is proposed for
nlooker bees in order to choose an employed bee and the last mod-
fied version of ABC is based on modification #1 and #2. Tsai et al.
12] proposed a model based on ABC, by employing Newtonian law
f universal gravitation in onlooker bee phase of ABC. Alatas [13]
roposed an ABC model that uses chaotic maps for parameter adap-
ation so as to prevent the ABC to get stuck local minimums. Zhu and
wong [14] modified ABC algorithm (named as GABC) by append-

ng the global best information of the population to exploitation
quation of ABC in order to increase exploitation ability of ABC.
ao and Liu [15] modified search equation of the basic ABC by
sing chaotic systems and opposition-based learning methods
nd applied the modified ABC (called as MABC) to 28 benchmark
unctions. Banharnsakun et al. [16] improved the capability of con-
ergence of ABC to a global optimum by using the best-so-far
election for onlooker bees and they tested performance of their
ethod on the numerical benchmark functions and image regis-

ration. The Rosenbrock’s rotational direction method which was
esigned to cope with specific features of “Rosenbrock’s banana
unction” was applied to ABC in order to increase exploitation and
ocal search abilities of the basic ABC [17]. Karaboga and Akay [18]
dapted the basic ABC for constrained optimization problems by
sing the Deb’s Rules and evaluated the performance of the adapted
odel on the 13 constrained optimizations in the literature. Kıran

nd Gündüz [19] proposed a crossover-based improvement for
eighbor bee selection in onlooker bee phase of basic ABC algo-
ithm. Horng [20] proposed maximum entropy thresholding based
n the ABC for image segmentation and Omkar et al. [21] pre-
ented vector evaluated ABC (VEABC) for multi-objective design
ptimization of laminated composite components and compared
erformance of VEABC with other population based methods. Liu
t al. [22] have published a variant of ABC algorithm which is
mproved by using mutual learning which tunes the produced can-
idate food source with the higher fitness between two individuals
elected by a mutual learning factor. Gao et al. [23] proposed two
BC-based algorithms which use two update rules of differential
Please cite this article in press as: M.S. Kıran, O. Fındık, A directed
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volution (DE), and they are called as ABC/best/1 and ABC/best/2.
he global best-based ABC methods also use chaotic initialization in
rder to properly distribute the agents to the search space, and the
erformance and accuracy of the methods are examined on 26
 PRESS
omputing xxx (2014) xxx–xxx

numerical benchmark functions [23]. Due to premature conver-
gence and getting trap of local minima in ABC/best/1, Gao  and Liu
[24] proposed to use the update rule of ABC/best/1 algorithm for
employed bees and the update rule of basic ABC for onlooker bees
in order to reinforce exploration ability of the method, and they
tested the variant of ABC on 28 numerical benchmark functions.
In another study, Gao et al. [25] defined a new update rule for
ABC algorithm, and the new update rule uses random solutions
for obtaining the candidate solution. New update rule looks like
to crossover operator of GA, and the method is named as CABC.
In this study, the orthogonal learning strategy is proposed for ABC
methods such as basic ABC (OABC), GABC (OGABC), CABC (OCABC),
and their accuracies and performances are examined on numerical
benchmark functions and compared with the other nature-inspired
optimization algorithm.

Being analyzed literature review, it is seen that the update rule of
ABC algorithm was  modified, and the local search capability of the
method is tried to improve in most of the papers which are based
on improvement of the ABC algorithm. Therefore, we propose the
same update rule with a bit modification in order to improve con-
vergence characteristic of the basic ABC algorithm instead of local
search capability. But it should be mentioned that this modification
provides local search capability besides improvement convergence
characteristics of the basic ABC algorithm.

2. ABC algorithm

By simulating intelligent behavior of real honey bee colonies,
ABC algorithm tries to find a global optimum or near optimum solu-
tion for the optimization problems. In the ABC algorithm, number of
food sources is equals to number of employed bees and also num-
ber of employed bees equals to number of onlooker bees. All the
employed bees are scout bees in the starting of the algorithm and a
food source position is produced for each scout bee using Eq. (1):

Pij = Xmin
j + r × (Xmax

j − Xmin
j ), i = 1, 2, . . .,  NE and

j = 1, 2, . . ., D (1)

where Pij is the jth dimension of ith food source which will be
assigned to ith employed bee, Xmin

j
and Xmax

j
are the lower and

upper bounds of the jth dimension, respectively, r is a random num-
ber between [0,1], NE is the number of employed bee and D is the
dimensionality (the number of decision variables) of the problem
or function optimized.

After producing a food source position for each scout bee, all the
scout bees become employed bee. The qualities of the food sources
of the employed bees are measured by using Eq. (2):

fiti =
{

1/(1 + fi) if (fi≥0)

1 + abs(fi) if (fi, 0)
(2)

where fiti is the fitness of the ith food source and fi is the objective
function value specific for the optimization problem. In addition, a
trial counter is defined and reset for each food source and limit value
for the population is described in the initialization of the algorithm.

The employed bees search around the self-food sources for new
food sources. A new food source position around the food source of
employed bee is obtained as follows:

Vij = Sij + ϕ × (Sij − Nj), i = 1, 2, . . .,  NE, k ∈ {1, 2, . . .,  NE} and

j ∈ {1, 2, . . .,  D} (3)
 artificial bee colony algorithm, Appl. Soft Comput. J. (2014),

where V is the candidate food source position produced for food
source position S, N is the randomly selected neighbor food source
for food source S and ϕ is a random number in range of [−1,1]. It
is mentioned that only one dimension of the food source position
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Initializat ion Phase 
 Determine the number of food sources 
  Define Limit for the populati on 
  Produ ce the food  sources using equ ation 1. 
 Define trial counters for the food sources. 
 Ass ign the food sour ces to the employed bees 
 Calculate fitness of the food sources using Eq. 2.
Employed Bee  Phase 
  For Eac h Employed Bee 
  Produce new food source position using Eq.3. 
    Calc ula te fitness  of the candidat e food  source . 

If the fitness of  candidate  food source is bet ter than old one, memorize new po sition and reset trial  
counter; otherwise increase its trial counter by 1.

Onloo ker Bee Phase 
  Cal culate  bei ng sel ect ed probabilities of the em ployed bee s using  Eq.  4 
  For eac h on looker bee 
    Produce  new food  source po sition using  Eq.3. 
    Calc ula te fitness  of the candidat e food  source . 

If the fitness of  cand idate  food source is bet ter than old one, memoriz e new position and reset trial  
counter; otherwise increase its trial counter by 1.

Save the best solution obtained so far. 

Scout Bee Phase 
  If a scout bee  occurs 
    Produce  a new foo d source  po siti on by using Eq.1.
    Calc ula te fitness  of the prod uced food source position by using Eq.2. 
    Reset  its trial  coun ter. 
IF a termination condition is met THEN  report the best solution 
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Fig. 1. The

 is updated for each the iteration and the dimension is randomly
elected. The fitness of the candidate food source is obtained by
sing Eq. (2) and if the fitness of candidate food source is better
han the old one, the employed bee memorizes the new food source
osition and trial counter of the food source is reset; otherwise the
rial counter of the food source is increased by 1.

After the employed bees return to the hive, the employed
ees share self-food source positions with the onlooker bees. An
nlooker bee selects an employed bee and memorizes its food
ource position in order to improve its food source by using
oulette-wheel selection mechanism given as follows:

i = fiti∑NE
j=1fitj

(4)

here pi is the being selected probability of the ith employed bee
y an onlooker bee. Thereafter, the onlooker bee searches around
he food source position of the employed bee by using Eq. (3). If
he fitness of the food source found by onlooker bee is better than
tness of the food source of the employed bee, the employed bee
emorizes the food source position of the onlooker bee and trial

ounter of this food source is reset; otherwise the trial counter of
he food source is increased by 1.

The occurrence of the scout bee in the ABC depends on limit and
rial counters of the food sources. After onlooker’s search, the trial
ounter with maximum content (H) is fixed and if H is higher than
he limit, a new food source position is produced for this bee by
sing Eq. (1) and its trial counter is reset. It is mentioned that only
ne scout bee can occur at the each ABC iteration.

The ABC algorithm is an iterative algorithm and consists of four
hases sequentially realized named as initialization, employed bee,
Please cite this article in press as: M.S. Kıran, O. Fındık, A directed
http://dx.doi.org/10.1016/j.asoc.2014.10.020

nlooker bee and scout bee phases. In order to terminate the algo-
ithm, the maximum iteration number, meeting an error tolerance,
tc can be used. The detailed algorithm of ABC is also shown in
ig. 1.
lgorithm.

2.1. ABC algorithm with MR control parameter

In order to increase convergence rate of the method, Akay and
Karaboga [5] proposed a control parameter named as modifica-
tion rate-MR. In the basic ABC, only one dimension of the food
source position is updated by the employed or onlooker bees, but
in the ABC with MR  (called as ABCMR), whether a dimension will be
updated is decided by using MR  value which is a number in range
of [0,1]. By using MR  parameter, the Eq. (2) is changed as follows:

Vij =
{

Sij + ϕ × (Sij − Nj) if (Rij < MR)

Sij otherwise
(5)

where Rij is a random number produced in range of [0,1]. If random
number is less than MR,  the dimension j is modified and at least one
dimension is updated by using Eq. (3). The lower value for MR  may
cause solutions to improve slowly while higher value for MR  can be
caused too much diversification in the population [5]. Therefore, we
used 0.3 and 0.7 values for the MR  in the experiments by obtaining
from [5].

2.2. Directed ABC (dABC)

The searching around the food source in the basic ABC is fully
random in terms of direction because ϕ is a random number
between [−1,1]. This undirected search has caused the slow conver-
gence of the algorithm to the optimum or near optimum. Therefore,
we added direction information for each dimension of for each food
source position. By using direction information for the dimensions,
the Eq. (3) is modified as follows:

Vij =

⎧⎪⎨ Sij + ϕ × (Sij − Nj) if (dij = 0)

Sij + r × abs(Sij − Nj) if (dij = 1) (6)
 artificial bee colony algorithm, Appl. Soft Comput. J. (2014),

⎪⎩
Sij − r × abs(Sij − Nj) if (dij = −1)

where abs is absolute function, dij is the direction information for jth
dimension of the ith food source position and while ϕ is a random
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optimum Nx Fx 

Sea rch fie ld for Fx 

where, optimum is optimal  val ue for the parameter, Fx is  
the food source  positi on of bee X and Nx  is the neigh bor  
food  source  po sition of  bee  N. 
If we use direction information fo r Fx , the search field 
for Fx is given as foll ows: 

optimum Nx Fx 

Sea rch fie ld for  Fx

Fig. 2. An illustrative example of using direction information.
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Fig. 4. The convergence graph of the methods on the Rosenbrock function with
30-D.

Fig. 5. The convergence graph of the methods on the Ackley function with 30-D.
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ig. 3. The convergence graph of the methods on the sphere function with 30-D.

umber in range of [−1,+1], r is a random number produced in range
f [0,1].

The Eq. (6) identifies the direction of searching. In the initializa-
ion of the algorithm, the direction of information for all dimensions
quals to 0. If the new solution obtained by Eq. (6) is better than
ld one (the better solution is determined by using fitness values
f the old and new solutions via Eq. (2)), the direction information
s updated. If previous value of the dimension is less than current
alue, the direction information of this dimension is set to −1; oth-
rwise the direction information of this dimension is set to 1. If new
olution obtained by Eq. (6) is worse than old one, the direction
nformation of the dimension is set to 0. In this way, the direction
nformation of each dimension of each food source position is used
nd also, the local search capability and convergence rate of the
lgorithm are improved. This situation is also shown by using an
llustrative example in Fig. 2. Based on Fig. 2, a worse value can be
btained for Fx because an undirected search is performed on the
earch field for Fx.  If we use direction information for Fx,  the search
ends to optimum (Figs. 3–10).

. Experiments

The performance of the method is investigated on the well-
Please cite this article in press as: M.S. Kıran, O. Fındık, A directed artificial bee colony algorithm, Appl. Soft Comput. J. (2014),
http://dx.doi.org/10.1016/j.asoc.2014.10.020

nown eight benchmark functions taken from [5] and collected
rom the literature. The experiments are conducted on IBM-
ompatible PC with 3.01 GHZ, 4GB Ram and Matlab® 7.04 platform.
ach experiment is repeated 30 times with random seeds and the Fig. 6. The convergence graph of the methods on the Griewank function with 30-D.
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Fig. 7. The convergence graph of the methods on Weierstrass function with 30-D.

Fig. 8. The convergence graph of the methods on the Rastrigin function with 30-D.

Fig. 9. The convergence graph of the methods on Non-continuous Rastrigin function
with 30-D.
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Fig. 10. The convergence graph of the methods on the Schwefel function with 30-D.

best, the worst, mean and standard deviations are reported on the
comparisons.

3.1. Benchmark functions

The benchmark functions are given in Table 1. D, C, Range
and f(x*) in Table 1, are dimensions, characteristics, lower and
upper bounds of search spaces and global minimum values of the
functions, respectively. The numerical functions used in the exper-
iments have some characteristics. If a function has more than one
local minimum, this function is called as multimodal (M) and the
multimodal functions such as Rastrigin, Griewank tests search abil-
ity of the algorithms. Unimodal functions (U) such as Sphere has
only one local optimum and this is global optimum. The exploita-
tion ability of the algorithms is examined on this kind of functions.
If a function with n-variable can be written as sum of the n functions
of one variable, then this function is called as separable (S) function
(Sphere, Rastrigin). Non-separable functions such as Rosenbrock
functions cannot be written in this form because there is interre-
lation among variables of these functions. Therefore, to optimize
non-separable functions is more difficult than optimizing the sep-
arable functions. The dimensionality of the search space is also an
important issue with the problem for the algorithms [9,26]. If the
global optimum of the function is in the narrow curving valley
such as Rosenbrock’s Banana function, the methods should keep
up the direction changes in the functions. In the experiments, we
investigated and compared the performance of the methods on the
numeric functions with 10, 30 and 50 dimensionalities (Table 1X). 

3.2. Setting control parameters for methods

In order to make a clear and consistent comparison, the control
parameters values of the methods are equal to each other. Akay
and Karaboga [27] show that there is no need to a huge colony size
for basic ABC algorithm. Therefore, the population size is taken as
40 in the experiments. The limit value which is a specific control
parameter for ABC algorithms for the population is calculated as
follows [9]:

limit = NE × D (7)
 artificial bee colony algorithm, Appl. Soft Comput. J. (2014),

where limit is used for controlling occurrence of scout bee, NE is the
number of food source or employed bee and D is dimensionality of
the optimization problem. By using Eq. (7), the occurrence of scout

310

311

312

dx.doi.org/10.1016/j.asoc.2014.10.020


ARTICLE IN PRESSG Model
ASOC 2577 1–9

6 M.S. Kıran, O. Fındık / Applied Soft Computing xxx (2014) xxx–xxx

Table 1
Benchmark functions used in the experiments.

Function C f([x]D) Range Formulae

F1-Sphere US 0 [−100,100]D f (x) =
∑D

i=1
x2

i

F2-Rosenbrock UN 0 [−2.048,2.048]D f (x) =
∑D−1

i=1
[100(xi+1 − x2

i
)
2 + (xi − 1)2]

F3-Ackley MN 0 [−32.768,32.768]D f (x) = −20exp

(
−0.2

√
1
n

∑D

i=1
x2

i

)
− exp

(
1
n

∑D

i=1
cos(2�xi)

)
+ 20 + e

F4-Griewank MN 0 [−600,600]D f (x) = 1
4000

∑D

i=1
x2

i
−
∏D

i=1
cos

(
xi√

i

)
+ 1

F5-Weierstrass MN 0 [−0.5,0.5]D
f (x) =

∑D

i=1

(∑kmax

k=0
[ak cos(2�bk(xi + 0.5))]

)
− D

∑kmax

k=0
[ak cos(2�bk0.5)]

a = 0.5, b = 3, kmax = 20

F6-Rastrigin MS  0 [−5.12,5.12]D f (x) =
∑D

i=1
[x2

i
− 10 cos(2�xi) + 10]

F7-Non-Cont. Rastrigin MS  0 [−5.12,5.12]D

f (x) =
∑D

i=1
[y2

i
− 10 cos(2�yi) + 10]

yi =

{
xi |xi| >

1
2

round(2xi)
2

|xi| ≤ 1
2

F8-Schwefel MN 0 [−500,500]D f (x) = 418.9829 × D −
∑D

i=1
− xi sin

(√
|xi|

)
F9-Sumsquares US 0 [−10,10]D f (x) =

∑D

i=1
ix2

i

Table 1X
The parameter list and values of the methods.

Parameter Algorithms

Basic ABC ABCMR (0.3) ABCMR (0.3) dABC

Population Size 40 40 40 40
000/1

 = NE ×

b
d

a
m
a

c
1

3

i
e

f
o
i
r
W
v
s
d
r
b
o
v
e

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361
MCN  500/1000/1500 500/1
Limit limit = NE × D limit
MR  NA 0.3 

ee is properly controlled by depending on population size and
imensionality of the problem.

The ABCMR algorithm with lower MR  value likes to basic ABC
lgorithm and ABCMR algorithm with higher MR  value has caused
ore diversification in the population [5]. Therefore, we  used 0.3

nd 0.7 values for the MR  parameter in the experiments.
The termination condition for the methods is used maximum

ycle number (MCN) and MCN  is taken as 500, 1000 and 1500 for
0, 30 and 50-dimensional numeric functions, respectively.

.3. Comparison of the methods

Comparisons of the basic ABC, ABCMR, dABC algorithms are given
n Tables 2–4. Based on the comparisons, the dABC algorithm is very
ffectiveness for solving numeric functions.

While the dimensionality of the functions is increased, the per-
ormance of the methods is decreased but when the performance
f the methods is compared, it is shown that the dABC algorithm
s better than the other methods in terms of solution quality and
obustness by considering mean results and standard deviations.

ilcoxon non-parametric signed-rank statistical test with 0.05 p
alue is performed to the results of 30 independent runs and the
tatistical tests results are shown in Tables 5–7 for 10, 30 and 50-
imensional functions, respectively. According to statistical test
esults, the proposed method is significantly different from the
Please cite this article in press as: M.S. Kıran, O. Fındık, A directed
http://dx.doi.org/10.1016/j.asoc.2014.10.020

asic or other ABC variants in most cases. The convergence graphs
f the methods are also figured for the 30-D functions and the con-
ergence rate of dABC algorithm is better than the other methods
xcept Weierstrass function. In addition, the experimental results
500 500/1000/1500 500/1000/1500
 D limit = NE × D limit = NE × D

0.7 NA

and convergence graphs of the ABCMR show that 0.3 value for MR
parameter is more appropriate than 0.7 value.

4. Discussion

The swarm intelligence-based optimization methods start with
random initial solutions to search solution space. For obtaining an
optimum or near optimum solution, the interactions between the
agents in the population are used. In the ABC algorithm, the dance
behavior is performed for sharing position information about the
food sources. In this point, the direction information is important
factor for finding a good solution although basic ABC algorithm is
undirected and this information is not shared in the artificial hive
of ABC. This issue has caused to slow convergence and decreased
local search ability of basic ABC algorithm. In this work, for each
dimension of each food source is described a field for direction
information and this is used for updating position of food sources.
Obtained results show that the proposed approach is better than
the other versions of ABC algorithm in terms of solution quality,
robustness and convergence characteristics. ABCMR method use the
technique based on updating more than one decision variable or
dimension at the each iteration of ABC for improving convergence
and local search characteristics of basic ABC algorithm. Instead of
more than one decision variable, dABC method uses direction infor-
 artificial bee colony algorithm, Appl. Soft Comput. J. (2014),

mation for improving convergence characteristic and local search
capability of basic ABC algorithm and this mechanism is better than
the other technique in terms of solution quality and convergence
to optima according to experiments.

362

363

364

365
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Table 2
The best, worst, mean and standard deviations of results obtained by 30 independent runs on numeric functions. D:10 and MCN: 500.Q4

Function Basic ABC ABCMR (MR = 0.3) ABCMR (MR  = 0.7) dABC

Best Worst Mean Std. Dev. Best Worst Mean Std. Dev. Best Worst Mean Std. Dev. Best Worst Mean Std. Dev.

F1 7.40E−17 3.05E−16 2.08E−16 6.49E−17 3.17E−17 1.11E−16 8.37E−17 2.00E−17 3.80E−17 1.04E−16 6.43E−17 1.55E−17 7.07E−17 2.77E−16 1.51E−16 6.47E−17
F2  2.34E−02 3.93E+00 8.93E−01 1.02E+00 3.08E−01 6.79E+00 3.69E+00 1.90E+00 6.74E−01 6.24E+00 5.47E+00 9.67E−01 1.62E−02 2.00E+00 2.80E−01 4.15E−01
F3  7.88E−11 4.98E−09 7.67E−10 9.34E−10 3.61E−12 5.33E−11 1.79E−11 1.16E−11 2.21E−13 4.73E−12 1.33E−12 1.12E−12 1.87E−14 2.42E−13 7.30E−14 4.53E−14
F4  1.72E−11 2.71E−02 1.08E−02 8.92E−03 3.15E−06 3.75E−02 1.09E−02 9.06E−03 1.01E−02 3.02E−01 1.22E−01 7.74E−02 1.90E−13 2.71E−02 6.09E−03 7.31E−03
F5  1.13E−11 2.24E−09 5.23E−10 5.99E−10 0.00E+00 1.81E−13 2.58E−14 3.64E−14 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F6  0.00E+00 1.23E−11 8.03E−13 2.31E−12 2.64E−09 1.28E−04 1.03E−05 2.56E−05 3.09E+00 1.68E+01 1.04E+01 3.05E+00 0.00E+00 2.84E−14 1.42E−15 5.62E−15
F7  0.00E+00 1.28E−09 1.18E−10 2.97E−10 8.58E−07 1.00E+00 3.35E−02 1.80E−01 6.38E+00 1.15E+01 8.33E+00 1.28E+00 0.00E+00 1.48E−11 5.58E−13 2.66E−12
F8  1.27E−04 1.18E+02 1.18E+01 3.55E+01 1.27E−04 2.97E+01 1.06E+00 5.33E+00 1.52E−03 9.09E+02 3.12E+02 2.43E+02 1.27E−04 7.35E−04 1.56E−04 1.16E−04
F9  7.00E−17 2.47E−16 1.27E−16 4.98E−17 2.00E−17 2.69E−16 1.05E−16 5.87E−17 2.15E−17 8.78E−17 6.46E−17 1.65E−17 5.09E−17 2.47E−16 1.33E−16 6.22E−17

Table 3
The best, worst, mean and standard deviations of results obtained by 30 independent runs on numeric functions. D:30 and MCN: 1000.

Function Basic ABC ABCMR (MR = 0.3) ABCMR (MR  = 0.7) dABC

Best Worst Mean Std. Dev. Best Worst Mean Std. Dev. Best Worst Mean Std. Dev. Best Worst Mean Std. Dev.

F1 1.88E−10 2.53E−08 3.14E−09 5.38E−09 1.85E−13 3.02E−12 8.93E−13 5.42E−13 5.06E−09 8.37E−08 3.20E−08 2.21E−08 9.53E−16 5.98E−15 1.92E−15 1.08E−15
F2  1.77E−01 2.79E+01 1.79E+01 7.44E+00 2.16E+01 2.65E+01 2.45E+01 1.57E+00 2.07E+01 2.88E+01 2.59E+01 1.42E+00 1.32E−01 2.40E+01 1.02E+01 7.35E+00
F3  4.14E−06 6.58E−05 2.36E−05 1.48E−05 1.37E−07 5.94E−07 2.69E−07 9.20E−08 2.44E−05 1.24E−04 5.46E−05 2.61E−05 1.35E−08 1.32E−07 6.76E−08 3.26E−08
F4  2.23E−10 2.33E−02 3.03E−03 7.13E−03 1.51E−10 4.65E−06 4.29E−07 1.10E−06 3.88E−07 8.67E−02 4.67E−03 1.59E−02 1.89E−15 7.53E−03 2.59E−04 1.35E−03
F5  4.16E−04 1.27E−03 7.82E−04 2.20E−04 8.88E−07 7.55E−06 2.90E−06 1.75E−06 7.39E−04 2.04E−03 1.33E−03 3.67E−04 2.13E−05 6.19E−05 3.87E−05 1.17E−05
F6  5.97E−09 1.99E+00 2.98E−01 5.03E−01 4.60E+01 7.62E+01 6.28E+01 7.13E+00 1.40E+02 1.77E+02 1.58E+02 8.85E+00 1.57E−10 1.25E+00 2.42E−01 4.39E−01
F7  1.10E−08 2.37E+00 1.14E+00 8.46E−01 3.24E+01 5.29E+01 4.32E+01 4.94E+00 1.04E+02 1.65E+02 1.38E+02 1.25E+01 3.57E−08 3.03E+00 1.01E+00 9.66E−01
F8  1.19E+02 5.94E+02 3.99E+02 1.29E+02 1.88E+03 3.43E+03 2.78E+03 4.09E+02 4.51E+03 6.79E+03 5.89E+03 5.06E+02 1.18E−01 5.97E+02 3.68E+02 1.42E+02
F9  1.75E−11 2.97E−10 9.11E−11 7.67E−11 1.51E−14 2.62E−13 1.02E−13 7.65E−14 5.93E−10 7.05E−09 2.71E−09 1.50E−09 5.54E−16 1.20E−15 8.62E−16 1.53E−16

dx.doi.org/10.1016/j.asoc.2014.10.020
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4 Table 5
Statistical significant test results among the ABC variants for 10-dimensional
functions.

Function. Basic ABC ABCMR (MR  = 0.3) ABCMR (MR = 0.7)

F1 − − −
F2  + + +
F3  + − −
F4  − + +
F5  + + NA
F6  + + +
F7  + + +
F8  + + +
F9  − + +

Table 6
Statistical significant test results among the ABC variants for 30-dimensional
functions.

Function. Basic ABC ABCMR (MR  = 0.3) ABCMR (MR = 0.7)

F1 + + +
F2  − − −
F3  − − −
F4  + + +
F5  + + +
F6  − + +
F7  − + +
F8  + + +
F9  + + +

Table 7
Statistical significant test results among the ABC variants for 50-dimensional
functions.

Function Basic ABC ABCMR (MR  = 0.3) ABCMR (MR  = 0.7)

F1 + + +
F2  − − −
F3  + + +
F4  + + +
F5  + + +
F6  − + +
F7  − + +

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385
F8  + + +
F9  + + +

5. Conclusion and future works

In this study, a new version of basic ABC algorithm named as
dABC is described, and performance of the proposed approach is
investigated on the numeric benchmark functions. Obtained results
are compared with basic ABC and ABCMR algorithms and experi-
mental results show that dABC algorithm is better than the other
methods in terms of solution quality and convergence character-
istics. This is originated from giving the direction information to
the bee population. The direction information is used to constrict
the search space for obtaining better solutions. Therefore, obtained
new solutions guide for the search process and the solution infor-
mation about search space are shared in the bee population. This
version of dABC algorithm uses the update rule of basic ABC algo-
rithm and the other update rules proposed in the literature can be
replaced with the basic update rule of ABC algorithm. We  will apply
the other update rules for dABC algorithm in our future works.
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