

FPGA PROTOTYPING
BY VHDL EXAMPLES
Xilinx SpartanTM-3 Version

Pong P. Chu
Cleveland State University

WILEY-
INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

This Page Intentionally Left Blank

FPGA PROTOTYPING
BY VHDL EXAMPLES

This Page Intentionally Left Blank

FPGA PROTOTYPING
BY VHDL EXAMPLES
Xilinx SpartanTM-3 Version

Pong P. Chu
Cleveland State University

WILEY-
INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright 0 2008 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under
Section 107 or 108 ofthe 1976 United States Copyright Act, without either the prior written permission ofthe
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 11 1 River Street, Hoboken, NJ 07030, (201) 748-601 1, fax (201) 748-
6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or completeness of
the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives or written sales materials.
The advice and strategies contained herein may not be suitable for your situation. You should consult with a
professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (3 17) 572-
3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic format. For information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Chu, Pong P., 1959-

p. cm.
FPGA prototyping by VHDL examples / Pong P. Chu.

Includes bibliographical references and index.
ISBN 978-0-470-18531-5 (cloth : alk. paper)

1, Field programmable gate arrays-Design and construction. 2. Prototypes,
Engineering. 3.VHDL (Computer hardware description language) I. Title.

TK7895.G36C485 2008
6 2 1 . 3 9 ' 5 4 ~ 2 2 2007029063

Printed in the United States of America.

1 0 9 8 7 6 5 4 3 2 1

To myparents, Chia-Chi and Chi-Te, my wqe, Lee, and my daughtel; Patricia

This Page Intentionally Left Blank

CONTENTS

Preface

Acknowledgments

PART I BASIC DIGITAL CIRCUITS

1 Gate-level combinational circuit

1.1
1.2

1.3
1.4
1.5
1.6

Introduction
General description
1.2.1 Basic lexical rules
1.2.2 Library and package
1.2.3 Entity declaration
1.2.4 Data type and operators
1.2.5 Architecture body
1.2.6
Structural description
Testbench
Bibliographic notes
Suggested experiments
1.6.1
1.6.2

Code of a 2-bit comparator

Code for gate-level greater-than circuit
Code for gate-level binary decoder

2 Overview of FPGA and EDA software

xix

xxv

1

1
2
2
3
3
3
4

5
6
8
9

10
10
10

11

vii

viii CONTENTS

2.1
2.2

2.3
2.4
2.5
2.6

2.7
2.8
2.9

Introduction
FPGA
2.2.1
2.2.2
Overview of the Digilent S3 board
Development flow
Overview of the Xilinx ISE project navigator
Short tutorial on ISE project navigator

2.6.1
2.6.2
2.6.3
2.6.4
Short tutorial on the ModelSim HDL simulator
Bibliographic notes
Suggested experiments
2.9.1 Gate-level greater-than circuit

2.9.2 Gate-level binary decoder

Overview of a general FPGA device
Overview of the Xilinx Spartan-3 devices

Create the design project and HDL codes
Create a testbench and perform the RTL simulation
Add a constraint file and synthesize and implement the code
Generate and download the configuration file to an FPGA device

3 RT-level combinational circuit

3.1 Introduction
3.2 RT-level components

3.2.1 Relational operators
3.2.2 Arithmetic operators
3.2.3 Other synthesis-related VHDL constructs
3.2.4 Summary
Routing circuit with concurrent assignment statements
3.3.1 Conditional signal assignment statement
3.3.2 Selected signal assignment statement

3.4.1 Process
3.4.2 Sequential signal assignment statement
Routing circuit with if and case statements
3.5.1 If statement
3.5.2 Case statement
3.5.3 Comparison to concurrent statements
3.5.4 Unintended memory

3.6 Constants and generics
3.6.1 Constants
3.6.2 Generics

3.7 Design examples
3.7.1
3.7.2 Sign-magnitude adder

3.3

3.4 Modeling with a process

3.5

Hexadecimal digit to seven-segment LED decoder

11
11
11
13
13
15
17
19
21
22
22
24
27
32
33
33

33

35

35
35
37
37
38
40
41
41
44
46
46
46
47
47
49
50
52
53
53
54
56
56
59

CONTENTS ix

3.7.3 Barrel shifter
3.7.4 Simplified floating-point adder

3.8 Bibliographic notes

3.9 Suggested experiments
3.9.1 Multi-function barrel shifter
3.9.2 Dual-priority encoder
3.9.3 BCD incrementor
3.9.4 Floating-point greater-than circuit
3.9.5
3.9.6 Enhanced floating-point adder

Floating-point and signed integer conversion circuit

4 Regular Sequential Circuit

4.1

4.2

4.3

4.4
4.5

4.6
4.7

Introduction
4.1.1 D FF and register
4.1.2 Synchronous system
4.1.3 Code development
HDL code of the FF and register
4.2.1 D F F
4.2.2 Register
4.2.3 Register file
4.2.4
Simple design examples
4.3.1 Shift register
4.3.2 Binary counter and variant
Testbench for sequential circuits
Case study
4.5.1 LED time-multiplexing circuit
4.5.2 Stopwatch

4.5.3 FIFO buffer
Bibliographic notes
Suggested experiments
4.7.1 Programmable square wave generator
4.7.2 PWM and LED dimmer
4.7.3 Rotating square circuit
4.7.4 Heartbeat circuit
4.7.5 Rotating LED banner circuit
4.7.6 Enhanced stopwatch
4.7.7 Stack

Storage components in a Spartan-3 deviceXiLinx speci f ic

62
63
69
69
69
69
69
70
70
70

71

71
71
72
73
74
74
77
78
79
79
79
81
84
88
88
96

100
104
105
105
105
105
106
106
106
106

5 FSM

5.1 Introduction

107

107

X CONTENTS

5.1.1 Mealy and Moore outputs
5.1.2 FSM representation

5.2 FSM code development
5.3 Design examples

5.3.1 Rising-edge detector
5.3.2 Debouncing circuit
5.3.3 Testing circuit

5.4 Bibliographic notes
5.5 Suggested experiments

5.5.1 Dual-edge detector
5.5.2 Alternative debouncing circuit
5.5.3 Parking lot occupancy counter

6 FSMD

6.1 Introduction
6.1.1 Single RT operation
6.1.2 ASMD chart
6.1.3
Code development of an FSMD
6.2.1
6.2.2
6.2.3
6.2.4 Comparison
6.2.5 Testing circuit

6.3.1 Fibonacci number circuit
6.3.2 Division circuit
6.3.3 Binary-to-BCD conversion circuit
6.3.4 Period counter
6.3.5 Accurate low-frequency counter

Decision box with a register

Debouncing circuit based on RT methodology
Code with explicit data path components
Code with implicit data path components

6.2

6.3 Design examples

6.4 Bibliographic notes
6.5 Suggested experiments

6.5.1 Alternative debouncing circuit
6.5.2 BCD-to-binary conversion circuit
6.5.3
6.5.4
6.5.5 Auto-scaled low -frequency counter
6.5.6 Reaction timer
6.5.7

Fibonacci circuit with BCD IIO: design approach 1
Fibonacci circuit with BCD I/O: design approach 2

Babbage difference engine emulation circuit

PART I I I/OMODULES

107
108
111
114
114
118
122
124
124
124
124
125

127

127
127
128
129
131
132
134
136

137
138
140
1 40
143
147
150
153
156
157
157
157
157
157
158
158
159

CONTENTS xi

7 UART 163

163
164
164
165
165
168
17 1
174
174
176
178
180
180
180
181
181
181
182

7.1 Introduction
7.2 UART receiving subsystem

7.2.1 Oversampling procedure
7.2.2 Baud rate generator
7.2.3 UART receiver

7.2.4 Interface circuit
7.3 UART transmitting subsystem
7.4 Overall UART system

7.4.1 Complete UART core
7.4.2 UART verification configuration

7.5 Customizing a UART
7.6 Bibliographic notes
7.7 Suggested experiments

7.7.1 Full-featured UART
7.7.2
7.7.3
7.7.4 UART-controlled stopwatch
7.7.5 UART-controlled rotating LED banner

UART with an automatic baud rate detection circuit
UART with an automatic baud rate and parity detection circuit

8 PS2 Keyboard

8.1 Introduction
8.2 PS2 receiving subsystem

8.2.1 Physical interface of a PS2 port
8.2.2 Device-to-host communication protocol
8.2.3 Design and code

8.3 PS2 keyboard scan code
8.3.1 Overview of the scan code
8.3.2 Scan code monitor circuit

8.4.1
8.4.2 Verification circuit

8.4 PS2 keyboard interface circuit
Basic design and HDL code

8.5 Bibliographic notes
8.6 Suggested experiments

8.6.1 Alternative keyboard interface I
8.6.2 Alternative keyboard interface I1
8.6.3
8.6.4 Keyboard-controlled stopwatch
8.6.5 Keyboard-controlled rotating LED banner

PS2 receiving subsystem with watchdog timer

183

183
184
184
184
184
188
188
189
191
192
194
196
196
196
196
197
197
197

9 PS2Mouse 199

xii CONTENTS

9.1 Introduction
9.2 PS2 mouse protocol

9.2.1 Basic operation
9.2.2 Basic initialization procedure

9.3 PS2 transmitting subsystem
9.3.1 Host-to-PS2-device communication protocol
9.3.2 Design and code

9.4 Bidirectional PS2 interface
9.4.1 Basic design and code
9.4.2 Verification circuit

9.5 PS2 mouse interface
9.5.1 Basic design
9.5.2 Testing circuit

9.6 Bibliographic notes
9.7 Suggested experiments

9.7.1 Keyboard control circuit
9.7.2 Enhanced mouse interface
9.7.3 Mouse-controlled seven-segment LED display

10 External SRAM

10.1 Introduction
10.2 Specification of the IS61LV25616AL SRAM

10.2.1 Block diagram and 110 signals
10.2.2 Timing parameters

10.3.1 Block diagram
10.3.2 Timing requirement
10.3.3 Register file versus SRAM

10.4.1 ASMD chart
10.4.2 Timing analysis
10.4.3 HDL implementation
10.4.4 Basic testing circuit
10.4.5 Comprehensive SRAM testing circuit

10.5.1 Timing issues
10.5.2 Alternative design I
10.5.3 Alternative design I1
10.5.4 Alternative design I11
10.5.5 Advanced FPGA featuresxizinx specific

10.3 Basic memory controller

10.4 A safe design

10.5 More aggressive design

10.6 Bibliographic notes
10.7 Suggested experiments

199
200
200
200
20 1
20 1
202
206
206
208
210
210
212
214
214
214
214
214

21 5

215
216
216
216
220
220
22 1
222
222
222

223
224
226
228
233
233
234
236
237
237
240
240

CONTENTS xiii

10.7.1 Memory with a 512K-by-16 configuration
10.7.2 Memory with a 1M-by-8 configuration
10.7.3 Memory with an 8M-by-1 configuration
10.7.4 Expanded memory testing circuit
10.7.5 Memory controller and testing circuit for alternative design I
10.7.6 Memory controller and testing circuit for alternative design I1
10.7.7 Memory controller and testing circuit for alternative design III
10.7.8 Memory controller with DCM
10.7.9 High-performance memory controller

11 Xilinx Spartan-3 Specific Memory

1 1.1 Introduction
1 1.2 Embedded memory of Spartan-3 device

1 1.2.1 Overview
11.2.2 Comparison

11.3 Method to incorporate memory modules
11.3.1 Memory module via HDL component instantiation
11.3.2 Memory module via Core Generator
1 1.3.3 Memory module via HDL inference

1 I .4 HDL templates for memory inference
1 1.4.1 Single-port RAM
1 1.4.2 Dual-port RAM
11.4.3 ROM

11.5 Bibliographic notes
11.6 Suggested experiments

1 1.6.1 Block-RAM-based FIFO
11.6.2 Block-RAM-based stack
11.6.3 ROM-based sign-magnitude adder
11.6.4 ROM based sin(%) function
11.6.5 ROM-based sin(%) and cos(5) functions

12 VGA controller I : graphic

12.1 Introduction
12.1.1 Basic operation of a CRT
12.1.2 VGA port of the S3 board
12.1.3 Video controller

12.2 VGA synchronization
12.2.1 Horizontal synchronization
12.2.2 Vertical synchronization
12.2.3 Timing calculation of VGA synchronization signals
12.2.4 HDL implementation

240
240
240
24 1
24 1
24 1
24 1
24 1
24 1

243

243

243
243
244
244
245
245
246
246
246
249
25 1
254
254
254
254
255
255
255

257

257
257
259
259
260
260
262
263
263

XiV CONTENTS

12.2.5 Testing circuit
12.3 Overview of the pixel generation circuit
12.4 Graphic generation with an object-mapped scheme

12.4.1 Rectangular objects
12.4.2 Non-rectangular object
12.4.3 Animated object

12.5 Graphic generation with a bit-mapped scheme
12.5.1 Dual-port RAM implementation
12.5.2 Single-port RAM implementation

12.6 Bibliographic notes
12.7 Suggested experiments

12.7.1 VGA test pattern generator
12.7.2 SVGA mode synchronization circuit
12.7.3 Visible screen adjustment circuit
12.7.4 Ball-in-a-box circuit
12.7.5 Two-balls-in-a-box circuit
12.7.6 Two-player pong game
12.7.7 Breakout game
12.7.8 Full-screen dot trace
12.7.9 Mouse pointer circuit
12.7.10 Small-screen mouse scribble circuit
12.7.11 Full-screen mouse scribble circuit

13 VGA controller II: text

13.1 Introduction
13.2 Text generation

13.2.1 Character as a tile
13.2.2 Font ROM
13.2.3 Basic text generation circuit
13.2.4 Font display circuit
13.2.5 Font scaling

13.3 Full-screen text display
13.4 The complete pong game

13.4.1 Text subsystem
13.4.2 Modified graphic subsystem
13.4.3 Auxiliary counters
13.4.4 Top-level system

13.5 Bibliographic notes
13.6 Suggested experiments

13.6.1 Rotating banner
13.6.2 Underline for the cursor
13.6.3 Dual-mode text display

266
267
268
269
273
275
282
282
287
287
287
287
288
288
288
289
289
289
289
290
290
290

291

29 1
29 1
29 1
292
294
295
297
298
302
302
309
310
312
317
317
317
317
317

CONTENTS XV

13.6.4 Keyboard text entry
13.6.5 UART terminal
13.6.6 Square wave display
13.6.7 Simple four-trace logic analyzer
13.6.8 Complete two-player pong game
13.6.9 Complete breakout game

PART 111 PICOBLAZE MICRO CONTROLLER^^^^^^

14 PicoBlaze Overview

14.1 Introduction
14.2 Customized hardware and customized software

14.2.1 From special-purpose FSMD to general-purpose microcontroller
14.2.2 Application of microcontroller

14.3.1 Basic organization
14.3.2 Top-level HDL modules

14.3 Overview of PicoBlaze

14.4 Development flow
14.5 Instruction set

14.5.1 Programming model
14.5.2 Instruction format
14.5.3 Logical instructions
14.5.4 Arithmetic instructions
14.5.5 Compare and test instructions
14.5.6 Shift and rotate instructions
14.5.7 Data movement instructions
14.5.8 Program flow control instructions
14.5.9 Interrupt related instructions

14.6.1 The KCPSM3 directives
14.6.2 The PBlazeIDE directives

14.6 Assembler directives

14.7 Bibliographic notes

15 PicoBlaze Assembly Code Development

15.1 Introduction
15.2 Useful code segments

15.2.1 KCPSM3 conventions
15.2.2 Bit manipulation
15.2.3 Multiple-byte manipulation
15.2.4 Control structure

15.3 Subroutine development
15.4 Program development

317
3 17
318
318
3 19
319

323

323
324
324
326
326
326
328
329
329
33 1
332
332
333
334
335
336
338
341
342
342
342
343

345

345
345
345
346
347
348
350
35 1

XVi CONTENTS

15.4.1 Demonstration example
15.4.2 Program documentation

15.5 Processing of the assembly code
15.5.1 Compiling with KCSPM3
15.5.2 Simulation by PBlazeIDE
15.5.3 Reloading code via the JTAG port
15.5.4 Compiling by PBlazeIDE

15.6 Syntheses with PicoBlaze

15.7 Bibliographic notes
15.8 Suggested experiments

15.8.1 Signed multiplication
15.8.2 Multi-byte multiplication
15.8.3 Barrel shift function
15.8.4 Reverse function
15.8.5 Binary -to-BCD conversion
15.8.6 BCD-to-binary conversion
15.8.7 Heartbeat circuit
15.8.8 Rotating LED circuit
15.8.9 Discrete LED dimmer

16 PicoBlaze 110 Interface

16.1 Introduction

16.2 Output port
16.2.1 Output instruction and timing
16.2.2 Output interface

16.3.1 Input instruction and timing
16.3.2 Input interface

16.4 Square program with a switch and seven-segment LED display interface
16.4.1 Output interface
16.4.2 Input interface
16.4.3 Assembly code development
16.4.4 VHDL code development

16.5 Square program with a combinational multiplier and UART console
16.5.1 Multiplier interface
16.5.2 UART interface
16.5.3 Assembly code development
16.5.4 VHDL code development

16.3 Input port

16.6 Bibliographic notes
16.7 Suggested experiments

16.7.1 Low-frequency counter I
16.7.2 Low-frequency counter 11

352
356
358
358
359
362
362
363

3 64
365
365
365
365
365
365
365
365
366
366

367

367
368
368
3 69
37 1
37 1
37 1
373
374
375
376
384
386
387
387
389
398
402
402
402
402

CONTENTS xvii

16.7.3 Auto-scaled low-frequency counter
16.7.4 Basic reaction timer with a software timer

16.7.5 Basic reaction timer with a hardware timer
16.7.6 Enhanced reaction timer
16.7.7 Small-screen mouse scribble circuit
16.7.8 Full-screen mouse scribble circuit
16.7.9 Enhanced rotating banner
16.7.10 Pong game
16.7.1 1 Text editor

17 PicoBlaze Interrupt Interface

17.1 Introduction
17.2 Interrupt handling in PicoBlaze

17.2.1 Software processing
17.2.2 Timing

17.3.1 Single interrupt request
17.3.2 Multiple interrupt requests

17.4 Software development considerations
17.4.1 Interrupt as an alternative scheduling scheme
17.4.2 Development of an interrupt service routine

17.5.1 Interrupt interface
17.5.2 Interrupt service routine development
17.5.3 Assembly code development
17.5.4 VHDL code development

17.3 External interface

17.5 Design example

17.6 Bibliographic notes

17.7 Suggested experiments
17.7.1 Alternative timer interrupt service routine
17.7.2 Programmable timer
17.7.3 Set-button interrupt service routine
17.7.4 Interrupt interface with two requests
17.7.5 Four-request interrupt controller

Appendix A: Sample VHDL templates

A. 1 General VHDL constructs
A. 1.1 Overall code structure
A. 1.2 Component instantiation

A.2.1 Arithmetic operations
A.2.2 Fixed-amount shift operations

A.2 Combinational circuits

402
403
403
403
403
403
403
404
404

405

405
405
406
407
408
408
408
409
409
410
410
410
41 1
41 1
413
417
417
417
417
417
417
418

41 9

419
419
420
42 1
42 1
422

XViii CONTENTS

A.2.3 Routing with concurrent statements
A.2.4 Routing with if and case statements

A.2.5 Combinational circuit using process

A.3.1 Register template
A.3.2 Register file

A.4 Regular sequential circuits

A S FSM
A.6 FSMD
A.7

A.3 Memory Components

S3 board constraint file (s3. ucf)

References

422
423
424
425
425
426
427
428
430
433

437

Topic Index 439

PREFACE

HDL (hardware description language) and FPGA (field-programmable gate array) devices
allow designers to quickly develop and simulate a sophisticated digital circuit, realize it
on a prototyping device, and verify operation of the physical implementation. As these
technologies mature, they have become mainstream practice. We can now use a PC and
an inexpensive FPGA prototyping board to construct a complex and sophisticated digital
system. This book uses a “learning by doing” approach and illustrates the FPGA and HDL
development and design process by a series of examples. A wide range of examples is
included, from a simple gate-level circuit to an embedded system with an 8-bit soft-core
microcontroller and customized I/O peripherals. All examples can be synthesized and
physically tested on a prototyping board.

Focus and audience

FOCUS The main focus of this book is on the effective derivation of hardware, not the
syntax of HDL. Instead of explaining every language construct, the book is limited to a
small synthesizable subset and uses about a dozen code templates to provide the skeletons
of various types of circuits. These templates are general and can easily be integrated to
construct a large, complex system. Although this approach limits the “freedom” of syntactic
expression, it will not prevent us from developing innovative hardware architecture. Because
of the generality and flexibility of HDL, the same circuit can usually be described by a
wide variety of language constructs and coding styles. Many of these codes are intended
for modeling. They may lead to unnecessarily complex hardware implementation and
sometimes cannot be synthesized at all. The template approach actually forces us to think
more about hardware and develop a good coding practice for synthesis. Since we are

xix

XX PREFACE

more interested in hardware, it is more beneficial to spend time on developing 10 different
hardware architectures with the same code template rather than describing the same circuit
with 10 different versions of codes.

There are two popular HDLs, VHDL and Verilog. Both languages are used widely and
are IEEE standards. This book uses VHDL, and a separate book with a similar title uses
Verilog. Despite the drastic syntactic differences in the two languages, their capabilities are
very similar, particularly for our purposes. After we comprehend the design practice and
coding methodology in one language, learning the other language is rather straightforward.

Although the book is intended for beginning designers, the examples follow strict design
guidelines and prepare readers for future endeavors. The coding and design practice is
“forward compatible,” which means that:

0 The same practice can be applied to large design in the future.
0 The same practice can aid other system development tasks, including simulation,

0 The same practice can be applied to ASIC technology and different types of FPGA

0 The code can be accepted by synthesis software from different vendors.
In summary, the book is a hands-on, hardware-centric text that involves minimal HDL

overhead and follows good design and coding practice to achieve maximal forward com-
parability.

timing analysis, verification, and testing.

devices.

Audience and perquisites The book contains three major parts: basic digital circuits,
peripheral modules, and embedded microcontroller. The intended audience is students in
an introductory or advanced digital system design course as well as practicing engineers
who wish to learn FPGA- and HDL-based development. For the materials in the first two
parts, readers need to have a basic knowledge of digital systems, usually a required course
in electrical engineering and computer engineering curricula. For the materials in the third
part, prior exposure to assembly language programming will be helpful.

Logistics

Although a major goal of this book is to teach readers to develop software-independent
and device-neutral HDL codes, we have to choose a software package and a prototyping
board to synthesize and implement the design examples. The synthesis software and FPGA
devices from Xilinx, a leading manufacture in this area, are used in the book.

Software The synthesis software used in the book is the Web version of the Xilinx
ZSE package. The functionality is of this version is similar to that of the full version but
supports only a limited number of devices. Most introductory development boards use
FPGA devices from the inexpensive Spartan-3 family. Since the Web version supports
the Spartan-3 device, it fits our need. The simulation software used in the book is the
starter version of Mentor Graphics’ ModelSim XE III package. It is a customized edition
of ModelSim. Both software packages are free and can be downloaded from Xilinx’s Web
site.

FPGA prototyping board This book is prepared to be used with several entry-level
FPGA prototyping boards manufactured by Digilent Inc., including the Spartan-3 Starter,
Nexys-2, and Basys boards, all of which contain a Spartan-3/3E FPGA device and have

PREFACE xxi

similar I/O peripherals. The design examples in the book are based on the Spartan-3 Starter
board (or simply the S3 board), but most of them can be used directly in other boards as
well. The applicability of the HDL codes is summarized below.

0 Spartan-3 Starter 3 (S3) board. The S3 board contains all the peripherals and
no additional accessory module is needed. All HDL codes and discussions can be
applied to this board directly.

0 Nexys-2 board. The Nexys-2 board is a newer board, which contains a larger FPGA
device and a larger memory chip. Its peripherals are similar to those in the S3
board. There are two differences. First, the “color depth” of its VGA interface is
expanded from 3 bits to 8 bits. The the output of the VGA interface circuits discussed
in Chapters 12 and 13 needs to be modified accordingly. Second, it contains a
more sophisticated external memory device. Although the device can be configured
as an asynchronous SRAM, the timing characteristics is different from that of the
S3 board’s memory device, and thus the HDL codes for the memory controller in
Chapter 10 cannot be used directly. However, the same design principle can be
applied to construct a new controller.

0 Basys board. The Basys board is a simpler board. It lacks the RS-232 connector.
To implement the UART module and the serial interface discussed in Chapter 7, we
need Digilent’s RS-232 converterperipheral module. The Basys board has no external
memory devices, and thus the discussion of the memory controller in Chapter 10 is
not applicable.

0 Other FPGA boards. Most peripherals discussed in this book are de facto industrial
standards, and the corresponding HDL codes can be used as long as a board provides
proper analog interface circuits and connectors. Except for the Xilinx-specific por-
tions, the codes can be applied to the boards based on the FPGA devices from other
manufacturers as well.

PC Accessories The design examples include interfaces to several PC peripheral de-
vices. A keyboard, a mouse, and a VGA monitor are required for the respective modules,
and a “straight-through’’ serial cable (the most commonly used type) is required for the
UART module. These accessories are widely available and can probably be obtained from
an old PC.

Book organization

The book is divided into three major parts. Part I introduces the elementary HDL constructs
and their hardware counterparts, and demonstrates the construction of a basic digital circuit
with these constructs. It consists of six chapters:

0 Chapter 1 describes the skeleton of an HDL program, basic language syntax, and
logical operators. Gate-level combinational circuits are derived with these language
constructs.

0 Chapter 2 provides an overview of an FPGA device, prototyping board, and devel-
opment flow. The development process is demonstrated by a tutorial on Xilinx ISE
synthesis software and a tutorial on Mentor Graphics ModelSim simulation software.

0 Chapter 3 introduces HDL‘s relational and arithmetic operators and routing constructs.
These correspond to medium-sized components, such as comparators, adders, and
multiplexers. Module-level combinational circuits are derived with these language
constructs.

xxii PREFACE

0 Chapter 4 covers the codes for memory elements and the construction of “regular”
sequential circuits, such as counters and shift registers, in which the state transitions
exhibit a regular pattern.

0 Chapter 5 discusses the construction of a finite state machine (FSM), which is a
sequential circuit whose state transitions do not exhibit a simple, regular pattern.

0 Chapter 6 presents the construction of an FSM with data path (FSMD). The FSMD is
used to implement register transfer (RT) methodology, in which the system operation
is described by data transfers and manipulations among registers.

Part I1 applies the techniques from Part I to design an array of peripheral modules for the
prototyping board. Each chapter covers the development, implementation, and verification
of an individual peripheral. These modules can be incorporated to a larger project. Part I1
consists of seven chapters:

0 Chapter 7 discusses the design of a universal asynchronous receiver and transmitter
(UART), which provides a serial link to receive and transmit data via the prototyping

0 Chapter 8 covers the design of a keyboard interface, which reads scan code from a
keyboard. The keyboard is connected via the prototyping board’s PS2 port.

0 Chapter 9 covers the design of a mouse interface, which obtains the button and move-
ment information from a mouse. The mouse is also connected via the prototyping
board’s PS2 port.

0 Chapter 10 discusses the implementation and timing issues of a memory controller.
The controller is used to read data from and write data to the two static random access
memory (SRAM) devices on the S3 board.

0 Chapter 11 discusses the inference and application of Spartan-3 device-specific com-
ponents. The focus is on the FF’GA’s internal memory blocks and the digital clock
management (DCM) circuit.

0 Chapter 12 presents the design and implementation of a video controller. The discus-
sion covers the generation of video synchronization signals and shows the construc-
tion of simple bit- and object-mapped graphical interface. The monitor is connected
to the prototyping board’s VGA port.

0 Chapter 13 continues development of the video controller. The discussion illustrates
the construction of text interface and general tile-mapped scheme.

Part I11 introduces an FPGA-based soft-core microcontroller, known as PicoBlaze, and
demonstrates the integration of a general-purpose processor and customized circuit. It
includes four chapters:

0 Chapter 14 provides an overview of the organization and instruction set of PicoBlaze.
0 Chapter 15 introduces the basic assembly programming and provides an overview of

0 Chapter 16 discusses PicoBlaze’s I/O feature and illustrates the procedure to derive

0 Chapter 17 discusses PicoBlaze’s interrupt capability and demonstrates the construc-

In addition to regular chapters, the appendix summarizes and lists all code templates.

board’s RS-232 port.

the development process.

customized circuits to interface other I/O peripherals.

tion of a customized interrupt-handling circuit.

Special mark#i1inx 8pecif ic While the examples of this book are implemented on a
Xilinx-based prototyping board and the codes are synthesized by Xilinx ISE software, we
try to make the HDL codes device-independent and software-neutral as much as possible.
Most discussions and codes can be applied to different target devices and different synthesis

PREFACE xxiii

software as well. However, certain codes or device features are unique to Xilinx ISE
software or Spartan-3 FPGA devices. We use the Xilinx spec@c superscript, as in the
heading of this section, to indicate that the discussion in the corresponding section or
chapter is unique to Xilinx.

Similarly, we use marginal notes, such as the one shown on the outer edge, to indicate
that the discussion in the paragraph is unique to Xilinx. This note indicates that the code Xilinx
or design is no longer portable and needs to be revised when a different software package specific
or target device is used.

Instructional use

The book can be a good companion text for an introductory digital systems course or
an advanced project-oriented course. In an introductory digital systems course, the book
supplies the lab portion of the curriculum. The chapters in Part I basically follow the
sequence of a typical curriculum and can be presented along with regular lectures. One or
two peripheral modules can be selected as case studies, and corresponding experiments can
be used as term projects.

In an advanced project-oriented course, the book provides a base for independent projects.
The materials in Part I should be treated as an overview or refresher, which provides a general
background on HDL, synthesis, and FPGA boards. Some modules in Part I1 can be used to
demonstrate the design of more complex circuits. These modules can also be considered as
building blocks (i.e., IPS) or subsystems to be integrated into final projects. The PicoBlaze
microcontroller in Part I11 can be used as general-purpose processor if an embedded-system
type of project is desired.

Companion Web site

An accompanying Web site (http : //academic. csuohio . edu/chu-p/rtl) provides addi-
tional information, including the following materials:

0 Errata
0 Code templates
0 HDL code listing and relevant files
0 Links to synthesis and simulation software
0 Links to referenced materials
0 Additional project ideas

Errata The book is self-prepared, which means that the author has produced all aspects
of the text, including illustrations, tables, code listings, indexing, and formatting. As errors
are always bound to happen, the accompanying Web site provides an updated errata sheet
and a place to report errors.

Cleveland, Ohio

October 2007

This Page Intentionally Left Blank

ACKNOWLEDGMENTS

The author would like to express his gratitude to Professor George L. Kramerich for his
encouragement and help.

The author also thanks John Wiley & Sons, Inc. for giving permission to use Figures 3.1,
3.2, 4.2, 4.10, 4.11, and 6.5 from my text RTL Hardware Design Using VHDL: Coding
for EfJiciency, Portability, and Scalability, and Xilinx, Inc. for giving permission to use
Figures 2.3 and 8.3 from the Spartan-3 Starter Kit Board User Guide.

All trademarks used or referred to in this book are the property of their respective owners.

P. P. Chu

xxv

This Page Intentionally Left Blank

PART I

BASIC DIGITAL CIRCUITS

This Page Intentionally Left Blank

CHAPTER 1

GATE-LEVEL COMBINATIONAL CIRCUIT

1.1 INTRODUCTION

VHDL stands for “VHSIC (very high-speed integrated circuit) hardware description lan-
guage.” It was originally sponsored by the U.S. Department of Defense and later transferred
to the IEEE (Institute of Electrical and Electronics Engineers). The language is formally de-
fined by IEEE Standard 1076. The standard was ratified in 1987 (referred to as VHDL 87),
and revised several times. This book mainly follows the revision in 1993 (referred to as
VHDL 93).

VHDL is intended for describing and modeling a digital system at various levels and
is an extremely complex language. The focus of this book is on hardware design rather
than the language. Instead of covering every aspect of VHDL, we introduce the key VHDL
synthesis constructs by examining a collection of examples. Detailed VHDL coverage may
be explored through the sources listed in the Bibliography.

In this chapter, we use a simple comparator to illustrate the skeleton of a VHDL pro-
gram. The description uses only logical operators and represents a gate-level combinational
circuit, which is composed of simple logic gates. In Chapter 3, we cover the more sophis-
ticated VHDL operators and constructs and examine module-level combinational circuits,
which are composed of intermediate-sized components, such as adders, comparators, and
multiplexers.

FPGA Prototyping by VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

1

2 GATE-LEVEL COMBINATIONAL CIRCUIT

Table 1.1 Truth table of a 1-bit equality comparator

input output
iOil eq

0 0 1
0 1 0
1 0 0
1 1 1

1.2 GENERAL DESCRIPTION

Consider a 1-bit equality comparator with two inputs, i 0 and ii, and an output, eq. The
eq signal is asserted when i0 and il are equal. The truth table of this circuit is shown in
Table 1.1.

Assume that we want to use basic logic gates, which include not, and, or, and xor cells,
to implement the circuit. One way to describe the circuit is to use a sum-of-products format.
The logic expression is

eq = iO . il + iO’ . il’
One possible corresponding VHDL code is shown in Listing 1.1. We examine the language
constructs and statements of this code in the following subsections.

Listing 1.1 Gate-level implementation of a 1-bit comparator

l i b r a r y ieee;
use ieee.std-logic-ll64.all;
e n t i t y eql i s

p o r t (
5 i 0 , i l : in std-logic;

eq: o u t std-logic

1 ;
end eql;

10 a r c h i t e c t u r e sop-arch of eql i s
s i g n a l P O , p i : std-logic;

-- sum o f t w o p r o d u c t t e r m s
eq <= PO or pl;

1s -- p r o d u c t t e r m s
p0 <= (n o t i0) and (n o t il);
p l <= i 0 and il;

b e g i n

end sop-arch ;

1.2.1 Basic lexical rules

VHDL is case insensitive, which means that upper- and lowercase letters can be used
interchangeably, and free formatting, which means that spaces and blank lines can be
inserted freely. It is good practice to add proper spaces to make the code clear and to associate
special meaning with cases. In this book, we reserve uppercase letters for constants.

GENERAL DESCRIPTION 3

An identiJier is the name of an object and is composed of 26 letters, digits, and the
underscore (-), as in i0, i l , and data-busl-enable. The identifier must start with a letter.

The comments start with -- and the text after it is ignored. In this book, the VHDL
keywords are shown in boldface type, as in entity, and the comments are shown in italics
type, as in

__ t h i s is a comment

1.2.2 Library and package

The first two lines,

l i b r a r y ieee;
u s e ieee. std-logic-1164, a l l ;

invoke the std-logic-1164 package from the i e e e library. The package and library allow
us to add additional types, operators, functions, etc. to VHDL. The two statements are
needed because a special data type is used in the code.

1.2.3 Entity declaration

The entity declaration

e n t i t y eql i s
port (

i0, il: i n std-logic;
eq: out std-logic

) ;
end eql;

essentially outlines the I/O signals of the circuit. The first line indicates that the name of
the circuit is eq l , and the port section specifies the I/O signals. The basic format for an I/O
port declaration is

signal-namel, signal-name2, . . . : mode data-type;

The mode term can be in or out, which indicates that the corresponding signals flow “into”
or “out of” of the circuit. It can also be inout, for bidirectional signals.

1.2.4 Data type and operators

VHDL is a strongly typed language, which means that an object must have a data type and
only the defined values and operations can be applied to the object. Although VHDL is rich
in data types, our discussion is limited to a small set of predefined types that are suitable
for synthesis, mainly the s td- logic type and its variants.

std-logic type The s t d - l o g i c type is defined in the std-logic-I164 package and
consists of nine values. Three of the values, ’ 0 ’ , ’ I ’ , and ’ Z ’ , which stand for logical 0,
logical 1, and high impedance, can be synthesized. Two values, ’U’ and ’X’ , which stand
for “uninitialized” and “unknown” (e.g., when signals with ’ 0’ and ’ 1 ’ values are tied
together), may be encountered in simulation. The other four values, ’ - ’ , ’ H’ , ’ L ’ , and
’ W ’, are not used in this book.

4 GATE-LEVEL COMBINATIONAL CIRCUIT

A signal in a digital circuit frequently contains multiple bits. The std-logic-vector
data type, which is defined as an array with elements of std-logic, can be used for this
purpose. For example, let a be an 8-bit input port. It can be declared as

a : in std-logic-vector (7 downto 0) ;

We can use term like a (7 downto 4) to specify a desired range and term like a (1) to access
a single element of the array. The array can also be declared in ascending order:

a : in std-logic-vector(0 t o 7) ;

We generally avoid this format since it is more natural to associate the MSB with the leftmost
position.

Logical operators Several logical operators, including not, and, or, and xor, are de-
fined over the std-logic-vector and s td- logic data type. Bit-wise operation is used
when an operator is applied to an object with the std-logic-vector data type. Note that
the and, or, and xor operators have the same precedence and we need to use parentheses
to specify the desired order of evaluation, as in

(a and b) or (c and d)

1.2.5 Architecture body

The architecture body,

a r c h i t e c t u r e sop-arch of eql i s
s i g n a l PO, p l : std-logic;

begin
-- sum o f t w o p r o d u c t t e r m s
eq <= PO or p l ;
-- p r o d u c t t e r m s
PO <= (n o t i0) and (n o t il);
p l <= i0 and il;

end sop-arch ;

describes operation of the circuit. VHDL allows multiple bodies associated with an entity,
and thus the body is identified by the name sop-arch (“sum-of-products architecture”).

The architecture body may include an optional declaration section, which specifies con-
stants, internal signals, and so on. Two internal signals are declared in this program:

s i g n a l PO, p l : std-logic;

The main description, encompassed between begin and end, contains three concurrent
statements. Unlike a program in C language, in which the statements are executed sequen-
tially, concurrent statements are like circuit parts that operate in parallel. The signal on the
left-hand side of a statement can be considered as the output of that part, and the expression
specifies the circuit function and corresponding input signals. For example, consider the
statement

eq <= PO or p l ;

It is a circuit that performs the or operation. When PO or p i changes its value, this statement
is activated and the expression is evaluated. The new value is assigned to eq after the default
propagation delay.

GENERAL DESCRIPTION 5

(not i0) and (not i l)

PO or p l

Figure 1.1 Graphical representation of a comparator program.

The graphical representation of this program is shown in Figure 1.1. The three circuit
parts represent the three concurrent statements. The connections among these parts are
implicitly specified by the signal and port names. The order of the concurrent statements
is clearly irrelevant and the statements can be rearranged arbitrarily.

1.2.6 Code of a 2-bit comparator

We can expand the comparator to 2-bit inputs. Let the input be a and b and the output be
aeqb. The aeqb signal is asserted when both bits of a and b are equal. The code is shown
in Listing 1.2.

Listing 1.2 Gate-level implementation of a 2-bit comparator

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y e q 2 i s

p o r t (
a , b : in s t d - l o g i c - v e c t o r (1 downto 0) ;
a e q b : o u t s t d - l o g i c

) ;
end e q 2 ;

1 0 a r c h i t e c t u r e s o p - a r c h of e q 2 i s
s i g n a l p O , p l , p 2 , p 3 : s t d - l o g i c ;

-- sum of p r o d u c t t e r m s
a e q b <= P O or p l o r p2 or p 3 ;

P O < = ((n o t a (1)) and (n o t b (1))) and

p l <= ((n o t a (1)) and (n o t b (1))) and (a (0) and b (0)) ;
p2 <= (a (1) and b (1)) and ((n o t a (0)) and (n o t b (0))) ;

b e g i n

I 5 -- p r o d u c t t e r m s

((n o t a (0)) and (n o t b (0))) ;

x p 3 <= (a (1) and b (1)) and (a (0) and b (0)) ;
end s o p - a r c h ;

The a and b ports are now declared as a two-element std-logic-vector. Derivation
of the architecture body is similar to that of a 1-bit comparator. The PO, p i , p2, and p3
signals represent the results of the four product terms, and the final result, aeqb, is the logic
expression in sum-of-products format.

6 GATE-LEVEL COMBINATIONAL CIRCUIT

Figure 1.2 Construction of a 2-bit comparator from 1-bit comparators.

1.3 STRUCTURAL DESCRIPTION

A digital system is frequently composed of several smaller subsystems. This allows us to
build a large system from simpler or predesigned components. VHDL provides a mecha-
nism, known as component instantiation, to perform this task. This type of code is called
structural description.

An alternative to the design of the 2-bit comparator of Section 1.2.6 is to utilize the
previously constructed 1-bit comparators as the building blocks. The diagram is shown in
Figure 1.2, in which two 1-bit comparators are used to check the two individual bits and
their results are fed to an and cell. The aeqb signal is asserted only when the two bits are
equal.

The corresponding code is shown in Listing 1.3. Note that the entity declaration is the
same and thus is not included.

Listing 1.3 Structural description of a 2-bit comparator

a r c h i t e c t u r e struc-arch of eq2 i s

b e g i n
s i g n a l eO, e l : std-logic;

_- i n s t a n t i a t e t w o 1 - b i t c o m p a r a t o r s
5 eq-bit0-unit : e n t i t y work. eql (sop-arch)

eq-bitl-unit : e n t i t y work. eql (sop-arch)

-- a and b a r e e q u a l i f i n d i v i d u a l b i t s a r e e q u a l

p o r t m a p (i O = > a (O) , il=>b(O), eq=>eO);

p o r t m a p (i O = > a (l) , il=>b(i), eq=>el);

KI aeqb <= eO and el;
end struc-arch;

The code includes two component instantiation statements, whose syntax is:

unit-label : e n t i t y lib-name. entity-name (arch-name)
p o r t map(

formal-signal=>actual-signal,
f ormal-s ignal=> actual-s ignal ,

) ;

The first portion of the statement specifies which component is used. The uni t - labe l term
gives a unique id for an instance, the l ibname term indicates where (i.e., which library) the
component resides, and the en t i tyname and archname terms indicate the names of the

STRUCTURAL DESCRIPTION 7

entity and architecture. The archname term is optional. If it is omitted, the last compiled
architecture body will be used. The second portion is port mapping, which indicates the
connection between formal signals, which are I/O ports declared in a component’s entity
declaration, and actual signals, which are the signals used in the architecture body.

The first component instantiation statement is

e q - b i t 0 - u n i t : e n t i t y work . e q l (s o p - a r c h)
p o r t m a p (i O = > a (O) , i l = > b (O) , eq=>eO) ;

The work library is the default library in which the compiled entity and architecture units
are stored, and eql and sop-arch are the names of the entity and architecture defined in
Listing 1.1. The port mapping reflects the connections shown in Figure 1.2. The compo-
nent instantiation statement is also a concurrent statement and represents a circuit that is
encompassed in a “black box” whose function is defined in another module.

This example demonstrates the close relationship between a block diagram and code.
The code is essentially a textual description of a schematic. Although it is a clumsy way for
humans to comprehend a diagram, it puts all representations into a single HDL framework.
The Xilinx ISE package includes a simple schematic editor utility that can perform schematic Xilinx
capture in graphic format and then convert the diagram into an HDL structural description. specific

The component instantiation statement is added in VHDL 93. Older codes may use the
mechanism in VHDL 87, in which a component must first be declared (i.e., made known)
and then used. The code in this format is shown in Listing 1.4.

Listing 1.4 Structural description with VHDL-87

a r c h i t e c t u r e vhd-87-a rch of eq2 i s
_- c o m p o n e n t d e c 1 a r a t i o n
component e q l

p o r t (
i 0 , i l : i n s t d - l o g i c ;
e q : o u t s t d - l o g i c

) ;
end component ;
s i g n a l e O , e l : s t d - l o g i c ;

__ i n s t a n t i a t e t w o 1 - b i t c o m p a r a t o r s
e q - b i t 0 - u n i t : e q l -- u s e t h e d e c l a r e d n a m e , e q l

e q - b i t l - u n i t : e q l -- u s e t h e d e c l a r e d n a m e , e q l

-- a and b a r e e q u a l if i n d i v i d u a l b i t s a r e e q u a l
aeqb <= eO and e l ;

10 beg in

p o r t m a p (i O = > a (O) , i l = > b (O) , e q = > e O) ;

I 5 p o r t m a p (i O = > a (l) , i l = > b (l) , e q = > e l) ;

end v h d - 8 7 - a r c h ;

Note that the original clause,

e q - b i t 0 - u n i t : e n t i t y work. e q l (s o p - a r c h)

is replaced by a clause with the declared component name

e q - b i t 0 - u n i t : e q l

8 GATE-LEVEL COMBINATIONAL CIRCUIT

test vector generator

test-out - test-in-0 aeqb a

b
test-in-l eq2 monitor

-

Figure 1.3 Testbench for a 2-bit comparator.

1.4 TESTBENCH

After code is developed, it can be simulated in a host computer to verify the correctness
of the circuit operation and can be synthesized to a physical device. Simulation is usually
performed within the same HDL framework. We create a special program, known as a
testbench, to mimic a physical lab bench. The sketch of a 2-bit comparator testbench
program is shown in Figure 1.3. The uut block is the unit under test, the t e s t vec tor
genera tor block generates testing input patterns, and the monitor block examines the
output responses.

A simple testbench for the 2-bit comparator is shown in Listing 1.5.

Listing 1.5 Testbench for a 2-bit comparator

l i b r a r y i e e e ;
u s e i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y e q 2 - t e s t b e n c h i s
e n d e q 2 - t e s t b e n c h ;

a r c h i t e c t u r e t b- a r c h of e q 2 - t e s t b e n c h i s
5

s i g n a l t e s t - i n 0 , t e s t - i n 1 : s t d - l o g i c - v e c t o r (1 d o w n t o 0) ;
s i g n a l t e s t - o u t : s t d - l o g i c ;

b e g i n
10 -- i n s t a n t i a t e t h e c i r c u i t u n d e r t e s t

u u t : e n t i t y w o r k . e q 2 (s t r u c _ a r c h)

__ t e s t v e c t o r g e n e r a t o r
p r o c e s s

p o r t r n a p (a = > t e s t - i n O , b = > t e s t - i n 1 , a e q b = > t e s t - o u t) ;

15 b e g i n
t e s t v e c t o r I __

t e s t - i n 0 <= " 0 0 " ;

20

t e s t - i n 1 <= " 0 0 "
w a i t f o r 200 n s ;
__ t e s t v e c t o r 2
t e s t - i n 0 <= " 0 1 "
t e s t - i n 1 <= " 0 0 "
w a i t f o r 200 n s ;

t e s t v e c t o r 3
t e s t - i n 0 <= " 0 1 " ;
t e s t - i n 1 <= "11" ;
w a i t f o r 2 0 0 n s ;
__ t e s t v e c t o r 4

__

25

BIBLIOGRAPHIC NOTES 9

30

35

10

test-in0 <= "10"
test-in1 <= " 1 0 "
w a i t for 200 ns;

t e s t v e c t o r 5
test-in0 <= " 1 0 "
test-in1 <= "00"
w a i t for 200 ns;
__ t e s t v e c t o r 6
test-in0 <= " 1 1 "
test-in1 <= "11"
w a i t f o r 200 ns;
__ t e s t v e c t o r 7
test-in0 <= " 1 1 "

__

test-in1 <= "01";
w a i t f o r 200 ns;

end p r o c e s s ;
4s end tb-arch;

The code consists of a component instantiation statement, which creates an instance of a
2-bit comparator, and a process statement, which generates a sequence of test patterns.

The process statement is a special VHDL construct in which the operations are performed
sequentially. Each test pattern is generated by three statements. For example,

t e s t v e c t o r 2 __

test-in0 <= "01";
test-in1 <= "00";
w a i t for 200 ns;

The first two statements specify the values for the t e s t - in0 and t e s t - i n 1 signals, and
the third indicates that the two values will last for 200 ns.

The code has no monitor. We can observe the input and output waveforms on a simulator's
display, which can be treated as a "virtual logic analyzer." The simulated timing diagram
of this testbench is shown in Figure 2.16.

Writing code for a comprehensive test vector generator and a monitor requires detailed
knowledge of VHDL and is beyond the scope of this book. This listing can serve as a
testbench template for other combinational circuits. We can substitute the uut instance and
modify the test patterns according to the new circuit.

1.5 BIBLIOGRAPHIC NOTES

A short bibliographic section appears at the end of each chapter to provide some of the most
relevant references for further exploration. A comprehensive bibliography is included at
the end of the book.

VHDL is a complex language. The Designer's Guide to VHDL by P. J. Ashenden
provides detailed coverage of the language's syntax and constructs. The author's RTL
Hardware Design Using VHDL: Coding for EfJiciency, Portability, and Scalability provides
a comprehensive discussion on developing effective, synthesizable codes. The derivation of
the testbench for a large digital system is a difficult task. Writing Testbenches: Functional
VeriJication of HDL Models, 2nd edition, by J. Bergeron focuses on this topic.

10 GATE-LEVEL COMBINATIONAL CIRCUIl

1.6 SUGGESTED EXPERIMENTS

At the end of each chapter, some experiments are suggested as exercises. The experiments
help us to better understand the concepts and provide a hands-on opportunity to design and
debug actual circuits.

1.6.1

Develop the HDL codes in Experiment 2.9.1. The code can be simulated and synthesized
after we complete Chapter 2.

Code for gate-level greater-than circuit

1.6.2 Code for gate-level binary decoder

Develop the HDL codes in Experiment 2.9.2. The code can be simulated and synthesized
after we complete Chapter 2.

CHAPTER 2

OVERVIEW OF FPGA AND EDA
SOFTWARE

2.1 INTRODUCTION

Developing a large FPGA-based system is an involved process that consists of many com-
plex transformations and optimization algorithms. Software tools are needed to automate
some of the tasks. We use the Web version of the Xilinx ISE package for synthesis and
implementation, and use the starter version of Mentor Graphics ModelSim XE III package
for simulation. In this chapter, we give a brief overview of the FPGA device and the S3
prototyping board, and provide short tutorials for the two software packages to “jump-start”
the learning process.

2.2 FPGA

2.2.1 Overview of a general FPGA device

AJield programmable gate array (FPGA) is a logic device that contains a two-dimensional
array of generic logic cells and programmable switches. The conceptual structure of an
FPGA device is shown in Figure 2.1. A logic cell can be configured (i.e., programmed)
to perform a simple function, and a programmable switch can be customized to provide
interconnections among the logic cells. A custom design can be implemented by specifying
the function of each logic cell and selectively setting the connection of each programmable
switch. Once the design and synthesis is completed, we can use a simple adaptor cable to
download the desired logic cell and switch configuration to the FPGA device and obtain the

FPGA ProtoQping bj VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

11

12 OVERVIEW OF FPGA AND EDA SOFTWARE

S programmable switch

Figure 2.1 Conceptual structure of an FPGA device.

a b c y

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

(a) Conceptual diagram (b) Example table

Figure 2.2 Three-input LUT-based logic cell

custom circuit. Since this process can be done "in the field" rather than "in a fabrication
facility (fab)," the device is known asjeldprograrnrnable.

LUT-based logic cell A logic cell usually contains a small configurable combinational
circuit with a D-type flip-flop (D FF). The most common method to implement a configurable
combinational circuit is a look-up table (LUT). An n-input LUT can be considered as a
small 2"-by-1 memory. By properly writing the memory content, we can use the LUT
to implement any n-input combinational function. The conceptual diagram of a three-
input LUT-based logic cell is shown in Figure 2.2(a). An example of three-input LUT
implementation of a @ b c is shown in Figure 2.2(b). Note that the output of the LUT

OVERVIEW OF THE DIGILENT s3 BOARD 13

can be used directly or stored to the D FF. The latter can be used to implement sequential
circuits.

Macro cell Most FPGA devices also embed certain macro cells or macro blocks. These
are designed and fabricated at the transistor level, and their functionalities complement the
general logic cells. Commonly used macro cells include memory blocks, combinational
multipliers, clock management circuits, and I/O interface circuits. Advanced FPGA devices
may even contain one or more prefabricated processor cores.

2.2.2 Overview of the Xilinx Spartan-3 devices

This book uses Xilinx Spartan-3 family FPGA devices. Based on the ratio between the num-
ber of logic cells and the I/O counts, the family is further divided into several subfamilies.
Our discussion applies to all the subfamilies.

Logic cell, slice, and CL5 The most basic element of the Spartan-3 device is a logic
cell (LC), which contains a four-input LUT and a D FF, similar to that in Figure 2.2.
In addition, a logic cell contains a carry circuit, which is used to implement arithmetic
functions, and a multiplexing circuit, which is used to implement wide multiplexers. The
LUT can also be configured as a 16-by-1 static random access memory (SRAM) or a 16-bit
shift register.

To increase flexibility and improve performance, eight logic cells are combined together
with a special internal routing structure. In Xilinx terms, two logic cells are grouped to
form a slice, and four slices are grouped to form a conjgurable logic block (CLB).

Macro cell The Spartan-3 device contains four types of macro blocks: combinational
multiplier, block RAM, digital clock manager (DCM), and input/output block (IOB). The
combinational multiplier accepts two 18-bit numbers as inputs and calculates the product.
The block RAM is an 18K-bit synchronous SRAM that can be arranged in various types
of configurations. A DCM uses a digital-delayed loop to reduce clock skew and to control
the frequency and phase shift of a clock signal. An IOB controls the flow of data between
the device’s I/O pins and the internal logic. It can be configured to support a wide variety
of IiO signaling standards.

Devices in the Spartan-3 subfamily Althopugh Spartan-3 FPGA devices have sim-
ilar types of logic cells and macro cells, their densities differ. Each subfamily contains an
array of devices of various densities. The numbers of LCs, block RAMS, multipliers, and
DCMs of the devices from the Spartan-3 subfamily are summarized in Table 2.1.

2.3 OVERVIEW OF THE DlGlLENT S3 BOARD

The Digilent S3 board is based on a Spartan-3 device (usually an XC3S200) and has an
array of built-in peripherals. The simplified layouts of the board are shown in Figure 2.3(a)
and (b). The main components and connectors are as follows:

1. Xilinx Spartan-3 XC3S200 FPGA device (XC3S2OOFT256)
2. 2M-bit Xilinx XCF02S platform flash configuration PROM
3. Jumper to select the configuration source
4. Two 256K-by-16 asynchronous SRAM devices (ISSI IS61LV25616AL-lOT).

14 OVERVIEW OF FPGA AND EDA SOFTWARE

(a) Top view

(b) Bottom view

Figure 2.3
reserved.)

Layout of an S3 board. (Courtesy of Xilinx, Inc. 0 Xilinx, Inc. 1994-2007. All rights

DEVELOPMENT FLOW 15

Table 2.1 Devices in the Spartan-3 family

Device Number of Number of
LCS block RAMS

x c 3 s 5 0
x c 3 s 200
xc3s400
xc3s1000
xc3s1500
xc3s2000
xc3s4000
xc3s5000

1,728
4,320
8,064
17,280
29,952
46,080
62,208
74,880

4
12
16
24
32
40
96
104

Block
RAM bits

72K
216K
288K
432K
576K
720K

1,728K
1,872K

Number of
multipliers

Number of
DCMs

4
12
16
24
32
40
96
104

5. VGA display port
6. RS-232 serial port
7. RS-232 transceiver/voltage-level convertor
8. Second RS-232 transmit and receive channel
9. PSI2 mouselkeyboard port

10. Four-digit seven-segment LED display
11. Eight slide switches
12. Eight discrete LED outputs
13. Four momentary-contact pushbutton switches
14. 50-MHz crystal oscillator clock source
15. Socket for an auxiliary crystal oscillator clock source
16. Jumper to select an FPGA configuration mode
17. Pushbutton switch to force FPGA reconfiguration
18. LED to indicate whether the FPGA is successfully configured
19. 40-pin expansion connector 1 (labeled B1)
20. 40-pin expansion connector 2 (labeled A2)
21. 40-pin expansion connector 3 (labeled A l)
22. JTAG connector for Digilent download cable.
23. Digilent low-cost download cable (included in the S3 kit but not shown in Figure 2.3)
24. JTAG port (to be used with the Xilinx Parallel Cable IV and MultiPRO Desktop Tool,

25. Power connector for an unregulated 5-V power supply (included in the S3 kit)
26. Power-on LED indicator
27. 3.3-V voltage regulator
28. 2.5-V voltage regulator
29. 1.2-V voltage regulator
30. Selector for PS2 port voltage supply (3.3 or 5 V)

which are not included in the S3 kit)

2.4 DEVELOPMENT FLOW

The simplified development flow of an FPGA-based system is shown in Figure 2.4. To
facilitate further reading, we follow the terms used in the Xilinx documentation. The
left portion of the flow is the refinement and programming process, in which a system is
transformed from an abstract textual HDL description to a device cell-level configuration

16 OVERVIEW OF FPGA AND EDA SOFTWARE

/-/ input file pLq

constraint goa
0

testbench /7
I I

synthesis

0
simulation

r - - - - - + + I
I I functional 1

I simulation I

programming
L - - - - l

Q

FPGA
chip

Figure 2.4 Development flow.

and then downloaded to the FPGA device. The right portion is the validation process, which
checks whether the system meets the functional specification and performance goals. The
major steps in the flow are:

1. Design the system and derive the HDL file(s). We may need to add a separate
constraint file to specify certain implementation constraints.

2. Develop the testbench in HDL and perform RTL simulation. The RTL term reflects
the fact that the HDL code is done at the register transfer level.

3. Perform synthesis and implementation. The synthesis process is generally known as
logic s.ynthesis, in which the software transforms the HDL constructs to generic gate-
level components, such as simple logic gates and FFs. The implementation process
consists of three smaller processes: translate, map, and place and route. The translate
process merges multiple design files to a single netlist. The map process, which
is generally known as technology mapping, maps the generic gates in the netlist to
FPGAs logic cells and IOBs. The place and route process, which is generally known
as placement and routing, derives the physical layout inside the FPGA chip. It places
the cells in physical locations and determines the routes to connect various signals. In
the Xilinx flow, static timing analysis, which determines various timing parameters,
such as maximal propagation delay and maximal clock frequency, is performed at
the end of the implementation process.

4. Generate and download the programming file. In this process, a configuration file is
generated according to the final netlist. This file is downloaded to an FPGA device
serially to configure the logic cells and switches. The physical circuit can be verified
accordingly.

OVERVIEW OF THE XILINX ISE PROJECT NAVIGATOR 17

The optional functional simulation can be performed after synthesis, and the optional
timing sirnulation can be performed after implementation. Functional simulation uses a
synthesized netlist to replace the RTL description and checks the correctness of the synthesis
process. Timing simulation uses the final netlist, along with detailed timing data, to perform
simulation. Because of the complexity of the netlist, functional and timing simulation may
require a significant amount of time. If we follow good design and coding practices, the HDL
code will be synthesized and implemented correctly. We only need to use RTL simulation
to check the correctness of the HDL code and use static timing analysis to examine the
relevant timing information. Both functional and timing simulations can be omitted from
the development flow.

2.5 OVERVIEW OF THE XlLlNX ISE PROJECT NAVIGATOR

Xilinx ISE (integrated software environment) controls all aspects of the development flow.
Project Navigator is a graphical interface for users to access software tools and relevant files
associated with the project. We use it to launch all development tasks except ModelSim
simulation. The discussion in this section and the tutorial in the next section are based on
ISE WebPack version 8.2.

The default ISE window is shown in Figure 2.5. It is divided into four subwindows:
0 Sources window (top left): hierarchically displays the files included in the project
0 Processes window (middle left): displays available processes for the source file cur-

0 Transcript window (bottom): displays status messages, errors, and warnings
0 Workplace window (top right): contains multiple document windows (such as HDL

Each subwindow may be resized, moved, docked, or undocked. The default layout can be
restored by selecting View + Restore. Note that a subwindow may contain multiple pages.
The tabs at the bottom are used to select the desired page.

rently selected

code, report, schematic, and so on) for viewing and editing

Sources window The sources window is used mainly to display files associated with the
current project. A typical source window, which corresponds to the design of Listing 2.2,
is shown in Figure 2.6. The top drop-down list, labeled Sources for:, specifies the current
design view. The synthesis/implementation view should be selected since we use ISE
only for synthesis and implementation,

There are three tabs at the bottom, labeled Sources, Snapshots, and Libraries. The
Sources tab displays the project name, the FPGA device specified, and user documents
and design files. The modules are displayed according to the internal design hierarchy. In
Figure 2.6, the eq2 and eql entities reflect the hierarchy of Listing 2.2. The eq2 module
also includes the eq-s3. ucf file, which specifies the constraints of the design. We can open
a file in the workplace window by double-clicking the corresponding module. A top-level
module icon can be placed next to a module, as in the eq2 module, to invoke synthesis and
implementation for this particular module.

The Snapshots tab displays project’s “snapshots,” which are copies of previously stored
project files. The Libraries tab shows all libraries associated with the project.

Processes window The processes window displays the processes available. The dis-
play is context sensitive and the available processes are based on source type selected in
the sources window. For example, the eq2 module, which is set as the top-level module,

18 OVERVIEW OF FPGA AND EDA SOFTWARE

Figure 2.5 Typical ISE window.

SHORT TUTORIAL ON ISE PROJECT NAVIGATOR 19

Figure 2.6 Typical source window.

is selected in Figure 2.6. The available processes are displayed in the processes window,
as shown in Figure 2.7, Some processes may also contain several subprocesses. We can
initiate a process by clicking on the corresponding icon. ISE incorporates the “auto make”
technology, which automatically runs the processes necessary to get to the desired step.
For example, when we initiate the Generate Programming File process, ISE automatically
invokes the Synthesize and Implement Design processes since file generation is dependent
on the implementation result, which, in turn, is dependent on the synthesis result.

Transcript window The transcript window is used to display the progress of a process
and relevant messages. The Console page displays errors, warnings, and information mes-
sages. An error is signified by a red X mark next to the message and a warning is signified by
a yellow ! mark. The Warnings and Errors pages display only warning and error messages.

Workplace window The workplace window is for users to view and edit various types
of files. We use it to perform two main tasks. The first task is to view and edit the HDL
and constraint files. The default editor is the ZSE Text Editor, which is a simple text editor
with features to assist creation of the HDL code. The second task is to check the design
summary and various reports.

2.6 SHORT TUTORIAL ON ISE PROJECT NAVIGATOR

Xilinx ISE consists of an array of software tools, but detailed discussion of their use is
beyond the scope of this book. We present a short tutorial in this section to illustrate the
basic development process. There are four major steps:

1. Create the design project and HDL codes.
2. Create a testbench and perform RTL simulation.
3. Add a constraint file and synthesize and implement the code.
4. Generate and download the configuration file to an FPGA device.

These steps follow the general development flow discussed in Section 2.4.
We use the 2-bit comparator discussed in Chapter 1 in the tutorial. The codes are repeated

in Listings 2.1 and 2.2.

20 OVERVIEW OF FPGA AND EDA SOFTWARE

Figure 2.7 Typical processes window.

Listing 2.1 Gate-level implementation of a 1 -bit comparator

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y e q l i s

p o r t (
5 i 0 , i l : i n s t d - l o g i c ;

e q : o u t s t d - l o g i c
1 ;

end e q l ;

1 0 a r c h i t e c t u r e s o p - a r c h of e q l i s
s i g n a l PO, p l : s t d - l o g i c ;

__ sum of t"o p r o d u c t t e r m s
e q <= P O or p l ;

i s -- p r o d u c t t e r m s
p0 <= (n o t i 0) and (n o t i l) ;
p l <= i0 and i l ;

b e g i n

end s o p - a r c h ;

Listing 2.2

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y e q 2 i s

Structural description of a 2-bit comparator

SHORT TUTORIAL ON ISE PROJECT NAVIGATOR 21

p o r t (
5 a , b : i n s t d - l o g i c - v e c t o r (1 d o w n t o 0) ;

a e q b : o u t s t d - l o g i c
) ;

end e q 2 ;

1 0 a r c h i t e c t u r e s t r u c - a r c h of e q 2 i s
s i g n a l e O , e l : s t d - l o g i c ;

-- i n s t a n t i a t e two I - b i t c o m p a r a t o r s
e q - b i t 0 - u n i t : e n t i t y w o r k . e q l (s o p - a r c h)

e q - b i t l - u n i t : e n t i t y work. e q l (s o p - a r c h)

-- a and b a r e e q u a l if i n d i v i d u a l b i t s a r e e q u a l
a e q b <= eO a n d e l ;

b e g i n

I S p o r t m a p (i O = > a (O) , i l = > b (O) , e q = > e O) ;

p o r t m a p (i O = > a (l) , i l = > b (l) , e q = > e l) ;

20 e n d s t r u c - a r c h ;

2.6.1 Create the design project and HDL codes

There are three tasks in this step:
0 Create a project.
0 Add or create HDL files.
0 Check the HDL syntax.

Create a project An ISE project contains basic information of a design, which includes
the source files and a target device. A new project can be created as follows:

1. Select Start + All Programs + Xilinx ISE + Project Navigator (or wherever ISE resides)
to launch the ISE project navigator.

2. In Project Navigator, select File + New Project. The New Project Wizard - Create
New project dialog appears. Enter the project name as eq2 and the location, and
verify that HDL is selected in the Top-level Source Type field. Click Next.

3. The New Project Wizard - Device Properties dialog appears. We need to enter the
desired target device in this dialog. This information can be found in FPGA board
manual or by checking the marking on the top of the FPGA chip. For a typical S3
board, select the following:

0 Product Category: All
0 Family: Spartan3
0 Device: XC3S200
0 Package: FT256
0 Speed: -4

0 Synthesis Tool: XST (VHDL/Verilog)

We also need to verify that the Xilinx XST software is selected for synthesis:

4. Click Next a few times to go through the remaining dialogs and then click Finish to

After a project is created, we can create or add the relevant HDL files and a constraint file.

Create a new HDL file If a file does not exist, we must create a new source file. The
procedure to create a new HDL file is:

complete the creation.

22 OVERVIEW OF FPGA AND EDA SOFTWARE

1. Select Project + New Source. The New Source Wizard - Select Source Type dialog
appears. Select VHDL Module and type the file name, eq2. Click Next.

2. The next dialog appears. This dialog allows us to enter port names. These names are
then later embedded in the HDL code. Enter the 1/0 port information according to
Listing 2.2. Click Next.

3. Click Finish and a new HDL text editor window appears in the workplace window.
The software automatically generates the HDL skeleton, which includes a comment
header, library clauses, an entity declaration, and an empty architecture body.

4. By default, ISE version 8.2 generates the following library clauses:

use 1EEE.STD-LOGIC-ARITH.ALL;
use IEEE. STD-LOGIC-UNSIGNED .ALL

The two libraries are not IEEE standard and should be replaced with

use ieee. numeric-std. a l l ;

This issue is explained in Section 3.2.2.
5. Use the editor to enter the HDL code in Listing 2.2 and save the file.
6. Repeat the process to create another file for the code in Listing 2.1.

Add existing files If a file already exists, it can be added to the project as follows:
1. Select Project t Add Source. A dialog window appears.
2. Go to the desired directory and select the desired files. Click Open and a new dialog

3. Click OK to complete the addition. These files now appear in the sources window of
appears.

the project navigator.

Check the code syntax After completing a new HDL file, we need to check the syntax
of the code:

1. Select the desired file in the source window.
2. In the processes window, click the + icon next to Synthesize to expand the process

hierarchy.
3. Double-click the Check Syntax process.

The bottom transcript displays the progress of the process and reports errors and warnings,
which are started with a red X and yellow ! marks. Double-clicking the message leads
to the offending line in the file. We can correct the problem, save the file, and repeat the
syntax checking process until all syntax errors are eliminated.

2.6.2 Create a testbench and perform the RTL simulation

The testbench functions as a virtual lab bench. It consists of the HDL module to be tested
and a code segment to generate the stimulus. The RTL simulation verifies operation of the
HDL module in the host computer. ISE contains a built-in ISE simulator and can launch
the ModelSim simulator manufactured by Mentor Graphics Corporation. Since the latter
is more robust and versatile, we use it in the book. Although ModelSim can be invoked
from ISE Project Navigator, we treat it as an individual software tool and illustrate its use
in Section 2.1.

2.6.3 Add a constraint file and synthesize and implement the code

There are three tasks in this step:

SHORT TUTORIAL ON ISE PROJECT NAVIGATOR 23

0 Add a constraint file.
0 Perform synthesis and implementation.
0 Check the design summary.

Add a constraint file Constraints are certain conditions imposed on the synthesis
and implementation processes. For our purposes, the main type of constraint is the pin
assignment of a top-level I/O port and the minimal clock rate. During the implementation
process, an IiO signal of the top-level module must be mapped to a physical pin of the
FPGA device. Since the peripherals' I/O signals are already permanently connected to
the designated FPGA's pins on the prototyping board, we must ensure that the signals are
mapped to the corresponding pins. The other type of constraint is about timing, which
specifies the minimal clock frequency to facilitate the oscillator of the board.

The constraint information is stored in a text file with an extension of .ucf (for the user
constraint file). In the eq2 circuit, we can connect the a and b ports to four switches and
the aeqb port to an LED to verify the physical operation of the circuit. For the S3 board,
the corresponding pins are F12, G12, H14, H13, and K12. The constraint file becomes

4 s l i d e s w i t c h e s
NET " a < O > " LOC = "F12" ; # s w i t c h 0
NET " a < l > " LOC = " G 1 2 " ; # s w i t c h 1
NET " b < O > " LOC = "H14" ; # s w i t c h 2
NET " b < l > " LOC = "H13" ; # s w i t c h 3
l e d
NET " a e q b " L O C = "K12" ; # l e d 0

Note that the # sign is used for a comment and the text after it is ignored. This file must be
added to the design in the sources window.

There are several ISE tools to specify and generate the constraint file. Since all of our
experiments are done in the same prototyping board, the constraints (i.e., pin assignment
and clock frequency) remain the same. A constraint template file that includes all connected
I/O peripheral signals of the S3 board is provided in the Appendix. One easy method to
create a constraint file is simply to copy and edit the template file according to the I/O port
names of the current design. The procedure to create the .ucf file for the eq2 circuit is:

1. Copy the template constraint file and rename it eq2~3.ucf .
2. Follow the procedure in Section 2.6.1 to add the new constraint file to the eq2 module

in the sources window.
3. Select the constraint file.
4. In the processes window, click the + icon next to User Constraints to expand the

5. Double-click the Edit Constraints (Text) process to launch the ISE text editor.
6. Rename the I/O names as needed and then delete the unused pin assignments.
7. Save the file.
The default option of ISE version 8.2 only allows the pin assignments of the existing

top-level I/O ports. If unused pin assignments are not deleted from the ucf template, error
messages will be generated. We can override the default option as follows:

process hierarchy.

1. Select the top-level HDL file.
2. Right-click the implement Design process in the processes window and then select

3. In the dialog window, check the Allow Unmatched LOC Constraints option and then
Properties ... from the menu. A dialog window appears.

click OK.

24 OVERVIEW OF FPGA AND EDA SOFTWARE

After this option is turned on, we can use the same ucf template for all designs as long as
the same IiO port names are kept in the top-level module, and we don’t need to edit the ucf
file each time.

Perform synthesis and implementation Invoking the synthesis and implementation
procedure is very simple:

1. Select the module to be synthesized and make sure that it is designated as the top-level

2. Double-click the Implement Design process in the processes window.
3. Although the syntax is checked earlier, the code may contain constructs that cannot

be synthesized or may lead to poor implementation (such as a combinational loop).
The error and warning messages are displayed in the console tab of the transcript
window.

module (with a green square next to the module icon).

4. Correct the problems and repeat the simulation and synthesis processes if needed.

Check the design summary As the project progresses, a report is generated in each
process. These reports and key statistics are summarized in a design summary window. We
can check the size of the resulting circuit (in terms of the numbers of slices, FFs, and LUTs)
and, for a sequential circuit, check whether the clock rate meets the timing constraints.
The summary can be invoked by double-clicking the View Design Summary process in the
processes window. The summary for the eq2 circuit is shown in Figure 2.8. We can check
the use of slices, LUTs, and so on, in the Device Utilization Summary portion. A more
detailed report can be invoked by clicking the corresponding link.

2.6.4 Generate and download the configuration file to an FPGA device

The last step is to generate the configuration file and download the file to the FPGA device.
There are three tasks in this step:

0 Connect the download cable.
0 Generate the configuration file.
0 Download the configuration file.

The S3 kit comes with a parallel-port JTAG download cable, and the following discussion
is based on this cable. The procedures for other cables are similar and detailed instructions
can be found in their manuals.

Connect the download cable The procedure to prepare the board is as follows:
1. Make sure that the PROM and the Mode jumpers (labeled 3 and 16 in Figure 2.3) are

2. Connect the power cable.
3. Connect one end of the download cable to the parallel port of a PC and connect the

in their default setting (as the board is shipped).

other end to the JTAG port (labeled 22 in Figure 2.3) on the S3 board.

Generate the configuration file Generating a configuration file is very straightfor-
ward:

1. Make sure that the top-level module is selected in the source window.
2. Click Generate Programming File in the processes window.

After this process is completed, a configuration file, eq2.bit, is generated.

SHORT TUTORIAL ON ISE PROJECT NAVIGATOR 25

Figure 2.8 Design summary.

26 OVERVIEW OF FPGA AND EDA SOFTWARE

Figure 2.9 iMPACT welcome dialog.

Download the configuration file Downloading the configuration file to an FPGA
device is done by a software tool known as iMPACT, which can be invoked from ISE
Project Navigator. The procedure is

1. In the processes window, click the + sign to expand the Generate Programming File
hierarchy.

2. Double-click the Configure Device (IMPACT) process. The Welcome to iMPACT dia-
log appears, as shown in Figure 2.9. Check Configure devices using Boundary-Scan
(JTAG) and verify that Automatically connect to a cable and identify Boundary-Scan
chain is selected in the drop-down list. Click Finish.

3. If a message indicating that two devices are found is displayed, click OK to continue.
4. The main iMPACT window, along with the Assign New Configuration File dialog,

appears, as shown in Figure 2.10. The devices connected to the JTAG chain on the
board should be detected and displayed.

5. Select the eq2.bit file and click Open to assign this configuration file to the xc3s200
device in the JTAG chain.

6. If a warning message appears, ignore it and click OK.
7. Select Bypass to skip the other device.
8. Right-click on the xc3s200 device image, and select Program The Programming

9. The Program Succeeded message appears when the downloading process is com-

Now the FPGA device is configured and we can test the circuit with the switches and observe
the output LED.

Properties dialog opens. Click OK to program the device.

pleted.

SHORT TUTORIAL ON THE MODELSIM HDL SIMULATOR 27

Figure 2.10 iMPACT main window.

An alternative way to configure the FPGA is to download the configuration file to a
PROM and load the configuration file from the PROM. More information may be found in
the sources cited in the Bibliographic section.

2.7 SHORT TUTORIAL ON THE MODELSIM HDL SIMULATOR

The ModelSim software is an HDL simulator manufactured by Mentor Graphics Corpo-
ration and can run independently without ISE. The discussion in this section is based on
ModelSim XE I11 Starter version 6.0d.

The default ModelSim window is shown in Figure 2.1 1. It is divided into three subwin-
dows: Transcript window (bottom), Workspace window, and multiple document interface
(MDI) window. The Workspace window displays information on the current process. The
bottom tab is used to select the desired process page, which can be Project, Library, Sim,
and so on. The Transcript window keeps track of command history and messages. It can
also be used as a command-line interface to enter ModelSim commands. The MDI window
is an area to display HDL text, waveform, and so on. The bottom tab selects the desired
pages.

Each subwindow may be resized, moved, docked, or undocked. Additional windows
may appear for some operations. The default layout can be restored by selecting Window
+ initial Layout.

We present a short tutorial in this section to illustrate the basic simulation process. There
are three steps:

1. Prepare a simulation project.
2 . Compile the HDL codes.
3. Perform a simulation and examine the waveform.

28 OVERVIEW OF FPGA AND EDA SOFTWARE

Figure 2.11 Typical ModelSim window.

We use the 2-bit comparator testbench discussed in Chapter 1 for the tutorial, and the code
is repeated in Listing 2.3. An additional assertion statement,

a s s e r t false
report ” S imu 1 at ion C omp 1 e t e d I’
s e v e r i t y failure;

is added to the end of the process. It generates an “artificial failure” and stops the simulation.

Listing 2.3 Testbench of a 2-bit comparator

l i b r a r y ieee; use ieee. std-logic-1164. a l l ;
e n t i t y eq2-testbench i s
end eq2-testbench;

5 a r c h i t e c t u r e tb-arch of eq2-testbench i s
s i g n a l test-ino, test-in1 : std-logic-vector (1 downto 0) ;
s i g n a l test-out : std-logic ;

-_ i n s t a n t i a t e t h e c i r c u i t u n d e r t e s t
begin

1 0 u ut: e n t i t y work.eq2(struc-arch)
port map(a=>test-inO, b=>test-in1 , aeqb=>test-out) ;

-_ t e s t v e c t o r g e n e r a t o r
p r o c e s s

SHORT TUTORIAL ON THE MODELSIM HOL SIMULATOR 29

20

2s

b e g i n
15 t e s t v e c t o r 1 __

test-in0 <= "00";
test-in1 <= "00";
w a i t f o r 200 ns;
_- t e s t v e c t o r 2
test-in0 <= " 0 1 " ;
test-in1 <= " 0 0 " ;
w a i t f o r 200 ns;

t e s t v e c t o r 3
test-in0 <= " 0 1 " ;

__

30

3s

40

test-in1 <= "11"
w a i t f o r 200 ns;

t e s t v e c t o r 4
test-in0 <= "10"
test-in1 <= "10"
w a i t f o r 200 ns;
__ t e s t v e c t o r 5
test-in0 <= " 1 0 "
test-in1 <= "00"
w a i t f o r 200 ns;

t e s t v e c t o r 6
test-in0 <= "11"
test-in1 <= "11"
w a i t f o r 200 ns;

t e s t v e c t o r 7

__

__

__
test-in0 <= "11";
test-in1 <= "01";
w a i t f o r 200 ns;
__ t e r m i n a t e s i m u l a t i o n
a s s e r t false

r e p or t " S i mu 1 at i on C omp 1 e t e d ''
s e v e r i t y failure;

end p r o c e s s ;
end tb-arch;

Prepare a simulation project A ModelSim simulation project consists of the library
definition and a collection of HDL files. A testbench is an HDL program and can be created
by using the ISE text editor, as discussed in Section 2.6.1. Alternatively, ModelSim also
has a built-in editor. We assume that all HDL files are already constructed. The procedure
to create a project is as follows:

1. Select Start + All Programs + ModelSim XE ill 6.0d + ModelSim (or wherever Mod-
elSim resides) to launch the ModelSim program.

2. Select File + New + Project and the Create Project dialog appears, as shown in
Figure 2.12(a). Enter the project name as eq-testbench, select the project location,
and set Default Library Name to work. Click OK. A blank Project page appears
in the main window and the Add items to the project dialog appears, as shown in
Figure 2.12(b).

3. In the Add items to the project dialog, click Add Existing File and add the necessary
HDL files. Click OK. The project tab appears in the workplace subwindow and
displays the selected files, as shown in Figure 2.13.

30 OVERVIEW OF FPGA AND EDA SOFTWARE

(a) Create P r o j e c t dialog (b) Add items dialog

Figure 2.12 New project dialogs.

Figure 2.13 Project tab of the workplace panel.

SHORT TUTORIAL ON THE MODELSIM HDL SIMULATOR 31

Figure 2.14 Simulate dialog.

Compile the HDL code The compile term here means to convert the HDL code into
ModelSim internal format. In VHDL, the compiling is done on the design unit basis. Each
entity and architecture is considered as one design unit. The procedure is:

1. Highlight the eql file and right-click the mouse. Select Compile + Compile Selected.
Note that the compiling should be started from the modules at the bottom of the design
hierarchy. The progress and messages are displayed in the transcript window.

2 . If the file contains no syntactical error, a check mark shows up. Otherwise, an X
mark shows up. Click the red error line in the transcript window to locate the errors.
Correct the problems, save the file, and recompile the file.

3. Repeat the preceding steps to compile the eq2 file and then the eq-tb file.

Perform a simulation and examine the waveform After compiling the testbench
and corresponding files, we can perform the simulation and examine the resulting waveform.
This corresponds to running the circuit in a virtual lab bench and checking the waveform
in a virtual logic analyzer. The procedure is:

1. Select Simulate + Simulate and the Simulate dialog appears.
2. In the Design tab, find and expand the work library, which is the one defined when

we create the project. All compiled units are displayed, as shown in Figure 2.14.
3. Load eq2-testbench by double-clicking the corresponding icon. The sim tab ap-

pears in the workplace window and the corresponding page displays the structure of
the eq2-testbench module, as shown in Figure 2.15. An object window, which
contains the signals in the selected module, may also appear.

4. Highlight the uut unit and right-click the mouse. Select Add + Add to Wave. This
adds all the signals of the uut unit to the waveform page. The waveform page appears
in the MDI window.

5. If necessary, rearrange the signals order and set them to proper format (decimal, hex,
and so on.).

32 OVERVIEW OF FPGA AND EDA SOFTWARE

Figure 2.15 Sim panel of the workplace panel.

Figure 2.16 Waveform window,

6. Select Simulate t Run. There are several commands to control the simulation:
Restart (restart the simulation), Run (run the simulation one step), Continue run
(resume the run from the interrupt), Run All (run the simulation forever), and Break
(break the simulation). These commands are also shown as icons at the top of the
window.

7 . The waveform window displays the simulated result, shown in Figure 2.16. We can
scroll the window, zoom in, or zoom out to check the correctness of the design.

2.8 BIBLIOGRAPHIC NOTES

Both Xilinx ISE and Mentor Graphics ModelSim are complex software packages, and their
documentation exceeds several thousand pages. Most documentation can be accessed via
the Help menu. ISE has a short 30-page tutorial, ZSE 8.1i Quick Start Tutorial, and a more
comprehensive 170-page tutorial, ZSE In-Depth Tutorial. ModelSim also has a similar
tutorial, ModelSim Tutorial. These tutorials provide an overview on all features of the
software package. Relevant information for the Spartan-3 device can be found in its data
sheets, DS099 Spartan-3 FPGA Family: Complete Data Sheet, which includes the detailed

SUGGESTED EXPERIMENTS 33

Table 2.2 Truth table of a 2-to-4 decoder with enable

input output
e n a(1) a(0) bcode

0 - - 0000
1 0 0 0001
1 0 1 0010
1 1 0 0100
1 1 1 1000

explanation on the logic cells and macro cells. The Design Warrior’s Guide to FPGAs
by Clive Maxfield provides a comprehensive review of FPGA-related issues. The detailed
layout and I/O connectors of the S3 board can be found in Spartan-3 Starter Kit Board User
Guide. Information on other prototyping boards can be found in their manuals.

2.9 SUGGESTED EXPERIMENTS

2.9.1 Gate-level greater-than circuit

The greater-than circuit compares two inputs, a and b, and asserts an output when a is
greater than b. We want to create a 4-bit greater-than circuit from the bottom up and use
only gate-level logical operators. Design the circuit as follows:

1.

2.

3.

4.

5 .

6.

Derive the truth table for a 2-bit greater-than circuit and obtain the logic expression
in the sum-of-products format. Based on the expression, derive the HDL code using
only logical operators.
Derive a testbench for the 2-bit greater-than circuit. Perform a simulation and verify
the correctness of the design.
Use four switches as the inputs and one LED as the output. Synthesize the circuit
and download the configuration file to the prototyping board. Verify its operation.
Use the 2-bit greater-than circuits and 2-bit equality comparators and a minimal
number of “glue gates” to construct a 4-bit greater-than circuit. First draw a block
diagram and then derive the structural HDL code according to the diagram.
Derive a testbench for the 4-bit greater-than circuit. Perform a simulation and verify
the correctness of the design.
Use eight switches as the inputs and one LED as the output. Synthesize the circuit
and download the configuration file to the prototyping board. Verify its operation.

2.9.2 Gate-level binary decoder

An n - t 0 - 2 ~ binary decoder asserts one of 2n bits according to the input combination. The
functional table of a 2-to-4 decoder with an enable signal is shown in Table 2.2. We want to
create several decoders using only gate-level logical operators. The procedure is as follows:

1. Determine the logic expressions for the 2-to-4 decoder with enable and derive the

2. Derive a testbench for the decoder. Perform a simulation and verify the correctness
HDL code using only logical operators.

of the design.

34 OVERVIEW OF FPGA AND EDA SOFTWARE

3. Use two switches as the inputs and four LEDs as the outputs. Synthesize the circuit
and download the configuration file to the prototyping board. Verify its operation.

4. Use the 2-to-4 decoders to derive a 3-to-8 decoder. First draw a block diagram and
then derive the structural HDL code according to the diagram.

5. Derive a testbench for the 3-to-8 decoder. Perform a simulation and verify the cor-
rectness of the design.

6. Use three switches as the inputs and eight LEDs as the outputs. Synthesize the circuit
and download the configuration file to the prototyping board. Verify its operation.

7. Use the 2-to-4 decoders to derive a 4-to-16 decoder. First draw a block diagram and
then derive the structural HDL code according to the diagram.

8. Derive a testbench for the 4-to-16 decoder. Perform a simulation and verify the
correctness of the design.

CHAPTER 3

RT-LEVEL COMBINATIONAL CIRCUIT

3.1 INTRODUCTION

The gate-level circuits discussed in Chapter 1 utilize simple logical operators to describe
gate-level design, which is composed of simple logic cells. In this chapter, we examine
the HDL description of module-level circuits, which are composed of intermediate-sized
components, such as adders, comparators, and multiplexers. Since these components are
the basic building blocks used in register transfer methodology, it is sometimes referred
to as RT-level design. We first discuss more sophisticated VHDL operators and routing
constructs and then demonstrate the RT-level combinational circuit design through a series
of examples.

3.2 RT-LEVEL COMPONENTS

In addition to the logical operators, relational operators and several arithmetic operators
can also be synthesized automatically. These operators correspond to intermediate-sized
module-level components, such as comparators and adders. We examine these operators in
this section and also cover miscellaneous synthesis-related VHDL constructs. Tables 3.1
and 3.2 summarize the operators and their applicable data types used in this book.

FPGA Protowping by VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

35

36 RT-LEVEL COMBINATIONAL CIRCUIT

Table 3.1 Operators and data types of VHDL-93 and IEEE std-logic-I164 package

Operator Description Data type Data type
of operands of result

a ** b exponentiation integer integer
a * b multiplication
a / b division integer type for constants and
a + b addition array boundaries, not synthesis
a - b subtraction

a & b concatenation 1-D array,
element

1-D array

a = b equalto any boolean
a /= b notequal to
a < b less than scalar or 1 -D array boolean
a <= b
a > b greater than
a >= b

less than or equal to

greater than or equal to

not a negation
a and b and
a or b or
a xor b xor

boolean, std-logic, same as operand
std-logic-vector

Table 3.2 Overloaded operators and data types in the IEEE numeric-std package

Overloaded Description Data type Data type
operator of operands of result

a * b arithmetic unsigned, natural unsigned
a + b operation signed, integer signed
a - b

a = b
a /= b
a < b relational unsigned, natural boolean
a <= b operation signed, integer boolean
a > b
a >= b

Table 3.3 Type conversions between std-logic-vector and numeric data types

Data type of a To data type Conversion functiodtype casting

unsigned, signed std-logic-vector std-logic-vector(a)
signed, std-logic-vector unsigned unsigned(a)
unsigned, std-logic-vector signed signed(a)
unsigned, signed integer to-integer (a)
natural unsigned to-unsigned(a, size)
integer signed to-signed(a, size)

RT-LEVEL COMPONENTS 37

3.2.1 Relational operators

Six relational operators are defined in the VHDL standard: = (equal to), /= (not equal to),
< (less than), <= (less than or equal to), > (greater than), and >= (greater than or equal to).
These operators compare operands of the same data type and return a value of the boolean
data type. In this book, we don’t use the boolean data type directly, but embed it in routing
constructs. This is discussed in Sections 3.3 and 3.5. During synthesis, comparators are
inferred for these operators.

3.2.2 Arithmetic operators

In the VHDL standard, arithmetic operations are defined for the integer data type and
for the natural data type, which is a subtype of integer containing zero and positive
integers. We usually prefer to have more control in synthesis and define the exact number
of bits and format (i.e., signed or unsigned). The IEEE numeric-std package is developed
for this purpose. In this book, we use the integer and natural data types for constants
and array boundaries but not for synthesis.

IEEE numeric-std package The IEEE numeric-std package adds two new data
types, unsigned and signed, and defines the relational and arithmetic operators over the
new data types (known as operator overloading). The unsigned and signed data types
are defined as an array with elements of the std-logic data type. The array is interpreted
as the binary representation of unsigned or signed integers. We have to add an additional
use statement to invoke the package:

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numric-std. a l l ; -- i n v o k e n u m e r i c - s t d p a c k a g e

The synthesizable overloaded operators are summarized in Table 3.2.
Multiplication is a complicated operation, and synthesis of the multiplication operator *

depends on synthesis software and target device technology. Xilinx Spartan-3 FPGA family Xilinx
contains prefabricated combinational multiplier blocks. The Xilinx XST software can infer specific
these blocks during synthesis, and thus the multiplication operator can be used in HDL
code. The XCS200 device of the S3 board consists of twelve 18-by-18 multiplier blocks.
While the synthesis of the multiplication operator is supported, we need to be aware of the
limitation on the number and input width of these blocks and use them with care.

Type conversion Because VHDL is a strongly typed language, std-logic-vector,
unsigned, and signed are treated as different data types even when all of them are defined
as an array with elements of the std-logic data type. A conversionfunction or type
casting is needed to convert signals of different data types. The conversion is summarized
in Table 3.3. Note that the std-logic-vector data type is not interpreted as a number and
thus cannot be converted directly to an integer, and vice versa.

The following examples illustrate the common mistakes and remedies for type conver-
sion. Assume that some signals are declared as follows:

l i b r a r y ieee;
use ieee . std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;

s i g n a l sl, s 2 , s3, s 4 , s 5 , s6: std-logic-vector(3 downto 0) ;
. . .

38 RT-LEVEL COMBINATIONAL CIRCUIT

s i g n a l ul, u2, u 3 , u 4 , u5, u 6 , u 7 : unsigned(3 downto 0) ;
. . .

Let us first consider the following assignment statements:

u l <= s l ; -- n o t o k , t y p e m i s m a t c h
u2 <= 5 ; -- n o t o k , t y p e m i s m a t c h
s2 <= u 3 ; -- n o t o k , t y p e m i s m a t c h
s3 <= 5 ; -- n o t o k , t y p e m i s m a t c h

They are all invalid because of type mismatch. The right-hand-side expression must be
converted to the data type of the left-hand-side signal:

u l <= unsigned(s1); -- o k , t y p e c a s t i n g
u2 <= to-unsigned (5 , 4) ; -- o k , c o n v e r s i o n f u n c t i o n
s 2 <= std-logic-vector(u3); -- o k , t y p e c a s t i n g
s3 <= std-logic-vector (to-unsigned (5 , 4)) ; -- ok

Note that two type conversions are needed for the last statement.
Let us consider statements that involve arithmetic operations. The following statements

are valid since the -+ operator is defined with the unsigned and na tu ra l types in the IEEE
numer ic -s td package.

u4 <= u2 + u l ; -- o k , b o t h o p e r a n d s u n s i g n e d
u5 <= u2 + 1 ; -- o k , o p e r a n d s u n s i g n e d and n a t u r a l

On the other hand, the following statements are invalid since no overloaded arithmetic
operation is defined for the std-logic-vector data type:

s5 <= s2 + s l ; -- n o t o k , + u n d e f i n e d o v e r t h e t y p e s
~6 <= ~2 + 1; -- n o t o k , + u n d e f i n e d o v e r t h e t y p e s

To fix the problem, we must convert the operands to the unsigned (or signed) data type,
perform addition, and then convert the result back to the std-logic-vector data type.
The revised code becomes

s5 <= std-logic-vector(unsigned(s2) + unsigned(s1)); -- ok
s 6 <= std-logic-vector (unsigned(s2) + 1) ; -- ok

Nonstandard arithmetic packages There are several non-IEEE arithmetic pack-
ages, which are s td- logic-ar i th , std-logic-unsigned, and std-logic-signed. The
s td- logic-ar i th package is similar to the numeric-std package. The other two pack-
ages do not introduce any new data type but define overloaded arithmetic operators over
the std-logic-vector data type. This approach eliminates the need for data conversion.
Although using these packages seems to be less cumbersome initially, it is not good practice
since these packages are not a part of IEEE standards and may introduce a compatibility
problem in the long run. We do not use these packages in this book.

3.2.3 Other synthesis-related VHDL constructs

Concatenation operator The concatenation operator, &, combines segments of ele-
ments and small arrays to form a large array. The following example illustrates its use:

s i g n a l a1 : std-logic ;
s i g n a l a4: std-logic-vector (3 downto 0) ;
s i g n a l b8, c8, d8: std-logic-vector (7 downto 0) ;

RT-LEVEL COMPONENTS 39

oe Y

0 Z

1 a-in

Figure 3.1 Symbol and functional table of a tri-state buffer.

. . .
b8 <= a4 & a 4 ;
c8 <= a 1 & a 1 & a4 & ” 0 0 ” ;
d8 <= b 8 (3 downto 0) & c 8 (3 downto 0) ;

Implementation of the concatenation operator involves reconnection of the input and output
signals and only requires “wiring.”

One major application of the & operator is to perform shifting operations. Although both
VHDL standard and numeric-std package define shift functions, they sometimes cannot
be synthesized automatically. The & operator can be used for shifting a signal for a fixed
amount, as shown in the following example:

s i g n a l a : s t d - l o g i c - v e c t o r (7 downto 0) ;
s i g n a l r o t , s h l , s h a : s t d - l o g i c - v e c t o r (7 downto 0) ;

__ r o t a t e a t o r i g h t 3 b i t s
r o t <= a (2 downto 0) & a (8 downto 3) ;
_- s h i f t a t o r i g h t 3 b i t s and i n s e r t 0 (l o g i c s h i f t)
s h l <= “ 0 0 0 “ & a (8 downto 3) ;
_- s h i f t a t o r i g h t 3 b i t s and i n s e r t MSB
-- (a r i t h m e t i c s h i f t)
s h a <= a (8) & a (8) & a (8) & a (8 downto 3) ;

An additional routing circuit is needed if the amount of shifting is not fixed. The design of
a barrel shifter is discussed in Section 3.7.3.

’Z’ value of sfd-logk The s td- logic data type has a value of ’ Z ’ , which implies high
impedance or an open circuit. It is not a normal logic value and can only be synthesized by a
tri-state buffer. The symbol and function table of a tri-state buffer are shown in Figure 3.1.
Operation of the buffer is controlled by an enable signal, oe (“output enable”). When it is
’ 1 ’ , the input is passed to output. On the other hand, when it is ’ 0 ’, the y output appears
to be an open circuit. The code of the tri-state buffer is

y <= a - i n when o e = ’ 1 ’ e l s e ’ Z ’ ;

The most common application for a tri-state buffer is to implement a bidirectional port
to better utilize a physical I/O pin. A simple example is shown in Figure 3.2. The d i r
signal controls the direction of signal flow of the b i pin. When it is ’O’, the tri-state buffer
is in the high-impedance state and the s ig -ou t signal is blocked. The pin is used as an
input port and the input signal is routed to the s ig- in signal. When the d i r signal is ’l’,
the pin is used as an output port and the sig-out signal is routed to an external circuit. The
HDL code can be derived according to the diagram:

e n t i t y bi-demo i s
port (

40 RT-LEVEL COMBINATIONAL CIRCUIT

Xilinx
specific

sig-out
bi

Figure 3.2 Single-buffer bidirectional I/O port.

bi : i n o u t std-logic ;
. . .

)

sig-out <= output-expression;

some-signal <= expression-with-sig-in;

beg in

. . .

bi <= sig-out when dir=’l’ e l s e ’Z’;
sig-in <= bi;
. . .

Note that the mode of the bi port must be declared as inout for bidirectional operation.
For a Xilinx Spartan-3 device, a tri-state buffer exists only in the I/O block (IOB) of a

physical pin. Thus, the tri-state buffer can only be used for I/O ports that are mapped to the
physical pins of an FPGA device.

3.2.4 Summary

Because of the nature of a strongly typed language, the data type frequently confuses a new
VHDL user. Since this book is focused on synthesis, only a small set of data types and
operators are needed. Their uses can be summarized as follows:

0 Use the std-logic and std-logic-vector data types in entity port declaration and

Use the ’Z’ value only to infer a tri-state buffer.
0 Use the IEEE numeric-std package and its unsigned or signed data types for the

internal signals that involve arithmetic operation.
0 Use the data type casting or conversion functions in Table 3.3 to convert signals and

expressions among the std-logic-vector and various numerical data types.
0 Use VHDL‘s built-in integer data type and arithmetic operators for constant and

array boundary expressions, but not for synthesis (i.e., not used as a data type for a
signal).

0 Embed the result of a relational operation, which is in the boolean data type, in
routing constructs (discussed in Section 3.3).

0 Use a user-defined two-dimensional data type for two-dimensional storage array
(discussed in Section 4.2.3).

for the internal signals that involve no arithmetic operations.

ROUTING CIRCUIT WITH CONCURRENT ASSIGNMENT STATEMENTS 41

Use a user-defined enumerate data type for the symbolic states of a finite state machine
(discussed in Chapter 5).

3.3 ROUTING CIRCUIT WITH CONCURRENT ASSIGNMENT STATEMENTS

The conditional signal assignment and selected signal assignment statements are concur-
rent statements. Their behaviors are somewhat like the if and case statements of a conven-
tional programming language. Instead of being executed sequentially, these statements are
mapped to a routing network during synthesis.

3.3.1 Conditional signal assignment statement

Syntax and conceptual implementation The simplified syntax of a conditional
signal assignment statement is

signal-name <= value-expr-1 when boolean-expr-1 e l s e
value-expr-2 when boolean-expr-2 e l s e

value-expr-n ;
. . .

The Boolean expressions are evaluated successively in turn until one is found to be t r u e
and the corresponding value expression is assigned to the signal. The value-exprn is
assigned if all Boolean expressions are evaluated to be f a l s e .

The conditional signal assignment statement implies a cascading priority routing net-
work. Consider the following statement:

r <= a + b + c when m = n e l s e
a - b when m > n e l s e
c + 1 ;

The routing is done by a sequence of 2-to-1 multiplexers. The diagram and truth table of a
2-to-1 multiplexer are shown in Figure 3.3(a), and the conceptual diagram of the statement
is shown in Figure 3.3(b). It the first Boolean condition (i.e., m=n) is t rue , the result of
a+b+c is routed to r. Otherwise, the data connected to the 0 port is passed to r. We need to
trace the path along the 0 port and check the next Boolean condition (i.e., m>n) to determine
whether the result of a-b or c+l is routed to the output.

Note that all the Boolean expressions and value expressions are evaluated concurrently.
The values from the Boolean circuits set the selection signals of the multiplexers to route
the desired value to the output. The number of cascading stages increases proportionally to
the number of when-else clauses. A large number of when-else clauses will lead to a long
cascading chain and introduce a large propagation delay.

Examples We use two simple examples to demonstrate use of the conditional signal
assignment statement. The first example is a priority encoder. The priority encoder has
four requests, r (4), r (3), r (2), and r (I) , which are grouped as a single 4-bit r input, and
r (4) has the highest priority. The output is the binary code of the highest-order request.
The function table is shown in Table 3.4. The HDL code is shown in Listing 3.1.

Priority encoder using a conditional signal assignment statement Listing 3.1

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;

42 RT-LEVEL COMBINATIONAL CIRCUIT

L

(a) Diagram of a 2-to-1 multiplexer

Circuits for
"value expressions"

(b) Diagram of a conditional signal assignment statement

Figure 3.3 Implementation of a conditional signal assignment statement.

Table 3.4 Function table of a four-request priority encoder

input output
r pcode

I--- 100
0 1 - - 011
0 0 1 - 010
0 0 0 1 001
0 0 0 0 000

ROUTING CIRCUIT WITH CONCURRENT ASSIGNMENT STATEMENTS 43

Table 3.5 Truth table of a 2-to-4 decoder with enable

input output
en a(1) a(O) Y

0 - - 0000
1 0 0 0001
1 0 1 0010
1 1 0 0100
1 1 1 1000

e n t i t y prio-encoder i s
p o r t (

r : i n std-logic-vector (4 downto 1) ;
pcode : o u t std-logic-vector (2 downto 0)

) ;
end prio-encoder ;

10 a r c h i t e c t u r e cond-arch of prio-encoder i s
b e g i n

pcode <= 1110011 when (r(4)='1') e l s e
" 0 1 1 " when (r(3)='1') e l s e
1 '0101 ' when (r(2)='1') e l s e

IS " 0 0 1 " when (r(l)='l ') e l s e
" 000 " ;

end cond-arch;

The code first checks the r(4) request and assigns "100" to pcode if it is asserted. It
continues to check the r (3) request if r (4) is not asserted and repeats the process until all
requests are examined.

The second example is a binary decoder. An n t 0 - 2 ~ binary decoder asserts 1 bit of the
2n-bit output according to the input combination. The functional table of a 2-to-4 decoder
is shown in Table 3.5. The circuit also has a control signal, en, which enables the decoding
function when asserted. The HDL code is shown in Listing 3.2.

Listing 3.2 Binary decoder using a conditional signal assignment statement

l i b r a r y ieee;
u s e ieee. std-logic-1164. a l l ;
e n t i t y decoder-2-4 i s

p o r t (
5 a : i n std-logic-vector (1 downto 0) ;

en: in std-logic;
y : o u t std-logic-vector (3 downto 0)

) ;
end decoder-2-4;

a r c h i t e c t u r e cond-arch of decoder-2-4 i s
b e g i n

I 0

y <= " 0 0 0 0 " when (en='O') e l s e
"0001" when (a="OO") e l s e

15 "0010" when (a="Ol") e l s e

44 RT-LEVEL COMBINATIONAL CIRCUIT

" 0 1 0 0 " when (a=I'lO'l) e l s e
" 1 0 0 0 " ; -- a = "]] "

end cond-arch;

The code first checks whether en is not asserted. If the condition is false (i.e., en is ' 1 '),
it tests the four binary combinations in sequence.

3.3.2 Selected signal assignment statement

Syntax and conceptual implementation The simplified syntax of a selected signal
assignment statement is

w i t h sel s e l e c t
sig <= value-expr-1 when choice-1,

value-expr-2 when choice-2,
value-expr-3 when choice-3,

value-expr-n when o t h e r s ;
. . .

The selected signal assignment statement is somewhat like a case statement in a traditional
programming language. It assigns an expression to a signal according to the value of the
s e l signal. A choice (i.e., choice-i) must be a valid value or a set of valid values of s e l .
The choices have to be mutually exclusive (i.e., no value can be used more than once) and
all inclusive (i.e., all values must be used). In other words, all possible values of s e l must
be covered by one and only one choice. The reserved word, others, is used in the end to
cover unused values. Since the s e l signal usually has the std-logic-vector data type,
the others term is always needed to cover the unsynthesizable values ('XI, 'U' , etc.).

The selected signal assignment statement implies a multiplexing structure. Consider the
following statement:

s i g n a l sel : std-logic-vector (1 downto 0) ;

w i t h sel s e l e c t
. . .

r <= a + b + c when " O O " ,
a - b when I' 10 I' ,
c + l when o t h e r s ;

For synthesis purposes, the sel signal can assume four possible values: "OO", "01". "lo",
and "1 1". It implies a 22-to-1 multiplexer with s e l as the selection signal. The diagram and
functional table of the 2'-to-1 multiplexer are shown in Figure 3.4(a), and the conceptual
diagram of the statement is shown in Figure 3.4(b). The evaluated result of a+b+c is routed
to r when s e l is "OO", the result of a-b is routed when s e l is "10", and the result of c+ l
is routed when s e l is "01" or "1 1".

Again, note that all value expressions are evaluated concurrently. The s e l signal is used
as the selection signal to route the desired value to the output. The width (i.e., number of
input ports) of the multiplexer increases geometrically with the number of bits of the s e l
signal.

Example We use the same encoder and decoder circuits to illustrate use of the selected
signal assignment statement. The code for the priority encoder is shown in Listing 3.3. The
entity declaration is identical to that in Listing 3.1 and is omitted.

ROUTING CIRCUIT WITH CONCURRENT ASSIGNMENT STATEMENTS 45

i2 Y
i3

sel y
-

00 i0
01 i l

10 i2
sel 2 11 i3

(a) Diagram and functional table of a 4-to-1 multiplexer

Circuits for
"value expressions''

a
b

C

r

sel I

(b) Diagram of a selected signal assignment statement

Figure 3.4 Implementation of a selected signal assignment statement.

Listing 3.3 Priority encoder using a selected signal assignment statement

a r c h i t e c t u r e sel-arch of prio-encoder i s
b e g i n

w i t h r s e l e c t
pcode <= " 1 0 0 " when " 1 0 0 0 " l " 1 0 0 1 " 1 " 1 0 1 0 " 1 " 1 0 1 1 " 1

" 0 1 1 " when " 0 1 0 0 " I"01Ol1' I " O 1 1 0 " I " O 1 1 1 " ,
" 0 1 0 " when " 0 0 1 0 " I " O O 1 1 " ,
'I 0 0 1 I' when I' 0 0 0 1 'I ,
" 0 0 0 " when o t h e r s ; -- r="0000"

5 '1 1100 " I " 1101 '1 I " 11 10 1' I " 11 11 ,

10 end sel-arch;

The code exhaustively lists all possible combinations of the r signal and the corresponding
output values. Note that the I symbol is used if the choice is more than one value.

The code for the 2-to-4 decoder is shown in Listing 3.4.

Listing 3.4 Binary decoder using a selected signal assignment statement

a r c h i t e c t u r e sel-arch of decoder-2-4 i s

b e g i n
s i g n a l s : std-logic-vector (2 downto 0) ;

s <= en & a ;
5 w i t h s s e l e c t

y <= 1 ~ 0 0 0 0 " when " 0 0 0 " I " O O 1 " I " 0 1 0 " I t l O 1 l " ,
l t O O O 1 t ' when " 1 0 0 1 1 ,

46 RT-LEVEL COMBINATIONAL C I R C U I T

" 0 0 1 0 " when " 1 0 1 " ,
1 1 0 1 0 0 " when " l l O " ,

10 " 1 0 0 0 " when o t h e r s ; -- s = " I l l "
end sel-arch ;

We concatenate en and a to form a 3-bit signal, s, and use it as the selection signal. The
remaining code again exhaustively lists all possible combinations and the corresponding
output values.

3.4 MODELING WITH A PROCESS

3.4.1 Process

To facilitate system modeling, VHDL contains a number of sequential statements, which
are executed in sequence. Since their behavior is different from that of a normal concurrent
circuit model, these statements are encapsulated inside a process. A process itself is a
concurrent statement. It can be thought of as a black box whose behavior is described by
sequential statements.

Sequential statements include a rich variety of constructs, but many of them don't have
clear hardware counterparts. A poorly coded process frequently leads to unnecessarily
complex implementation or cannot be synthesized at all. Detailed discussion of sequential
statements and processes is beyond the scope of this book. For synthesis, we restrict the
use of the process to two purposes:

0 Describe routing structures with i f and case statements.
0 Construct templates for memory elements (discussed in Chapter 4).

The simplified syntax of a process with a sensitivity list is

process(sensitivity-list)
beg in

sequential statement;
sequential statement;

. . .
end p r o c e s s ;

The sensitivity-list is a list of signals to which the process responds (Le., is "sensitive
to"). For a combinational circuit, all the input signals should be included in this list. The
body of a process is composed of any number of sequential statements.

3.4.2 Sequential signal assignment statement

The simplest sequential statement is a sequential signal assignment statement. The simpli-
fied syntax is

sig <= value-expression;

The statement must be encapsulated inside a process.
Although its syntax is similar to that of a simple concurrent signal assignment statement,

the semantics are different. When a signal is assigned multiple times inside a process, only
the last assignment takes effect. For example, the code segment

p r o c e s s (a, b)
beg in

ROUTING CIRCUIT WITH IF AND CASE STATEMENTS 47

c <= a and b ;
c <= a or b ;

end p r o c e s s ;

is the same as

p r o c e s s (a, b)
beg in

end p r o c e s s ;
c <= a or b ;

On the other hand, if they are concurrent signal assignment statements, as in

-- n o t within a p rocess
c <= a and b ;
c <= a or b ;

the code infers an and cell and an or cell, whose outputs are tied together. It is not allowed
in most device technology and thus is a design error.

The semantics of assigning a signal multiple times inside a process is subtle and can
sometimes be error-prone. Detailed explanations can be found in the references cited in the
Bibliographic section. We use multiple assignments only to avoid unintended memory, as
discussed in Section 3.5.4.

3.5 ROUTING CIRCUIT WITH IF AND CASE STATEMENTS

If and case statements are two other commonly used sequential statements. In synthesis,
they can be used to describe routing structures.

3.5.1 If statement

Syntax and conceptual implementation The simplified syntax of an if statement is

i f boolean-expr- 1 then
sequential-statements;

e l s i f boolean-expr-2 then
sequential-statements;

e l s i f boolean-expr-3 then
sequent ial-statement s ;

. . .
e l s e

end i f ;
sequential-statements;

It has one then branch, one or more optional elsij" branches, and one optional else branch.
The Boolean expressions are evaluated sequentially until an expression is evaluated as
t r u e or the else branch is reached, and the statements in the corresponding branch will be
executed.

An if statement and a concurrent conditional signal assignment statement are somewhat
similar. The two statements are equivalent if each branch of the if statement contains only
a single sequential signal assignment statement. For example, the previous statement

r <= a + b + c when m = n e l s e
a - b when m > 0 e l s e
c + 1 ;

48 RT-LEVEL COMBINATIONAL CIRCUIT

can be rewritten as

p r o c e s s (a , b , c , m , n)
b e g i n

i f m = n t h e n
r <= a + b + c ;

e l s i f m > 0 t h e n
r <= a - b ;

e l s e

e n d i f ;
r <= c + 1;

e n d ;

As in a conditional signal assignment statement, the if statement infers a similar priority
routing structure during synthesis.

Example The codes of the same priority encoder and written with an if statement are
shown in Listings 3.5 and 3.6. They are similar to those in Listings 3.1 and 3.2. Note that
the if statement must be encapsulated inside a process.

Listing 3.5 Priority encoder using an if statement

a r c h i t e c t u r e i f - a r c h o f p r i o - e n c o d e r i s
b e g i n

p r o c e s s (r)
b e g i n

5 i f (r (4) = ' 1 ') t h e n
p c o d e <= " 1 0 0 " ;

e l s i f (r (3) = ' l ') t h e n
p c o d e <= " 0 1 1 " ;

e l s i f (r (2) = ' l ') t h e n
p c o d e <= " 0 1 0 " ;

e l s i f (r (l) = ' l J) t h e n
p c o d e <= " 0 0 1 " ;

e l s e
p c o d e <= " 0 0 0 " ;

1s e n d i f ;
e n d p r o c e s s ;

e n d i f - a r c h ;

10

5

10

Listing 3.6 Binary decoder using an if statement

a r c h i t e c t u r e i f - a r c h o f d e c o d e r - 2 - 4 i s b e g i n
p r o c e s s (e n , a)
b e g i n

i f (en='O') t h e n
y <= " 0 0 0 0 " ;

e I s i f (a = " 00 'I) t h e n
y <= " 0 0 0 1 ! I ;

e 1 s i f (a = " 0 1 I') t h e n
y <= " 0 0 1 0 " ;

e l s i f (a = " 1 0 ") t h e n
y <= " 0 1 0 0 " ;

e l s e
y <= " 1 0 0 0 " ;

ROUTING CIRCUIT WITH IF AND CASE STATEMENTS 49

end i f ;
1 5 end p r o c e s s ;

end i f - a r c h ;

3.5.2 Case statement

Syntax and conceptual implementation The simplified syntax of a case statement
is

c a s e s e l i s
when c h o i c e - 1 = >

when c h o i c e - 2 =>
s e q u e n t i a l s t a t e m e n t s ;

s e q u e n t i a l s t a t e m e n t s ;

when o t h e r s =>
s e q u e n t i a l s t a t e m e n t s ;

end c a s e ;

A case statement uses the s e l signal to select a set of sequential statements for execution.
As in a selected signal assignment statement, a choice (i.e., choice-i) must be a valid
value or a set of valid values of s e l , and the choices have to be mutually exclusive and all
inclusive. Note that the others term at the end covers the unused values.

A case statement and a concurrent selected signal assignment statement are somewhat
similar. The two statements are equivalent if each branch of the case statement contains
only a single sequential signal assignment statement. For example, the previous statement

with s e l s e l e c t
r <= a + b f c when " O O " ,

a - b when l t l O " ,
c + l when o t h e r s ;

can be rewritten as

p r o c e s s (a , b , c , s e l)
beg in

c a s e s e l i s
when ' l o o t 1 = >

r <= a f b f c ;
when " 1 0 " = >

r <= a - b ;
when o t h e r s = >

r <= c + 1 ;
end c a s e ;

end ;

As in a selected signal assignment statement, the case statement infers a similar multiplexing
structure during synthesis.

Example The codes of the same priority encoder and decoder written with a case state-
ment are shown in Listings 3.7 and 3.8. As in Listings 3.3 and 3.4, the codes exhaustively
lists all possible input combinations and the corresponding output values.

50 RT-LEVEL COMBINATIONAL CIRCUIT

Listing 3.7 Priority encoder using a case statement

a r c h i t e c t u r e c a s e - a r c h of p r i o - e n c o d e r i s
beg in

p r o c e s s (r)
beg in

5 c a s e r i s

in

3

when '11000" 1 '1001 '1 I " 1 0 1 0 "
" 1 1 0 0 " " 1 1 0 1 " 1 " 1 1 1 0 "

p c o d e <= " 1 0 0 " ;
when " 0 1 0 0 " " 0 1 0 1 " I " 0 1 1 0 "

p c o d e <= " 0 1 1 " ;
when " 0 0 1 0 " l " 0 0 1 1 " = >

p c o d e <= " 0 1 0 " ;
when 'I 00 0 1 I' = >

p c o d e <= " 0 0 1 " ;
when o t h e r s = >

p c o d e <= " 0 0 0 " ;
end c a s e ;

end p r o c e s s ;
end c a s e - a r c h ;

1' 101 1 " I
"1111" =>

Listing 3.8 Binary decoder using a case statement

a r c h i t e c t u r e c a s e - a r c h o f d e c o d e r - 2 - 4 i s

beg in
s i g n a l s : s t d - l o g i c - v e c t o r (2 downto 0) ;

s <= e n & a ;
5 p r o c e s s (s)

begin
case s i s

when " 0 0 0 " l " O O 1 " I " O 1 0 " I " 0 1 1 " =>
y <= " 0 0 0 1 "

when " 1 0 0 " = >
y <= " 0 0 0 1 "

when " 1 0 1 " =>
y <= " 0 0 1 0 "

when " l l O r t = >
y <= " 0 1 0 0 "

when o t h e r s = >
y <= " 1 0 0 0 " ;

end c a s e ;
end p r o c e s s ;

20 end c a s e - a r c h ;

3.5.3 Comparison to concurrent statements

The preceding subsections show that the simple if and case statements are equivalent to the
conditional and selected signal assignment statements. However, an if or case statement
allows any number and any type of sequential statements in their branches and thus is more
flexible and versatile. Disciplined use can make the code more descriptive and even make
a circuit more efficient.

ROUTING CIRCUIT WITH IF AND CASE STATEMENTS 51

This can be illustrated by two code segments. First, consider a circuit that sorts the
values of two input signals and routes them to the large and small outputs. This can be
done by using two conditional signal assignment statements:

l a r g e <= a when a > b e l s e

s m a l l <= b when a > b e l s e
b ;

a ;

Since there are two relation operators (ie., two >) in code, synthesis software may infer
two greater-than comparators. The same function can be coded by a single if statement:

p r o c e s s (a , b)
beg in

i f a > b then
l a r g e <= a ;
s m a l l <= b ;

l a r g e <= b ;
small <= a ;

e l s e

end i f ;
end ;

The code consists of only a single relational operator.

the output. This can be clearly described by nested two-level if statements:
Second, let us consider a circuit that routes the maximal value of three input signals to

p r o c e s s (a , b , c)
beg in

i f (a > b) then
i f (a > c) then

max <= a ;
e l s e

max <= c ;
end i f ;

i f (b > c) then
max <= b ;

e l s e
max <= c ;

end i f ;

e l s e

end i f ;
end p r o c e s s ;

We can translate the if statement to a “single-level” conditional signal assignment statement:

max <= a when ((a > b) and (a > c)) e l s e
c when (a > b) e l s e
b when (b > c) e l s e
c ;

Since no nesting is allowed, the code is less intuitive. If concurrent statements must be
used, a better alternative is to describe the circuit with three conditional signal assignment
statements:

s i g n a l ac-max , bc-max: s t d - l o g i c ;

52 RT-LEVEL COMBINATIONAL CIRCUIT

ac-max <= a when (a > c) e l s e

bc-max <= b when (b > c) e l s e

max <= ac-max when (a > b) e l s e

c ;

c ;

bc-max ;

3.5.4 Unintended memory

Although a process is flexible, a subtle error in code may infer incorrect implementation.
One common problem is the inclusion of intended memory in a combinational circuit. The
VHDL standard specifies that a signal will keep its previous value if it is not assigned in
a process. During synthesis, this infers an internal state (via a closed feedback loop) or a
memory element (such as a latch).

To prevent unintended memory, we should observe the following rules while developing
code for a combinational circuit:

0 Include all input signals in the sensitivity list.
0 Include the else branch in an if statement.
0 Assign a value to every signal in every branch.

For example, the following code segment tries to generate a greater-than (i.e., g t) and
an equal-to (ie. , eq) output signal:

p r o c e s s (a) -- b m i s s i n g f r o m s e n s i t i v i t y l i s t
begin

i f (a > b) then -- e q n o t a s s i g n e d i n t h i s b r a n c h

e l s i f (a = b) then -- g t n o t a s s i g n e d in t h i s b r a n c h

end i f ; -- e l s e b r a n c h is o m i t t e d

g t <=)l';

e q <= '1);

end p r o c e s s ;

Although the syntax is correct, it violates all three rules. For example, g t will keep its
previous value when the a>b expression is false and a latch will be inferred accordingly.
The correct code should be

p r o c e s s (a , b)
beg in

i f (a > b) then

e q <=) O ' ;
gt <= ' 1 ' ;

e l s i f (a = b) then
gt <= '0';
e q <= ' 1 ' ;

e l s e
gt <= ' 0 ' ;
e q <= 'Q';

end i f ;
end p r o c e s s ;

Since multiple sequential signal assignment statements are allowed inside a process, we
can correct the problem by assigning a default value in the beginning:

CONSTANTS AND GENERICS 53

p r o c e s s (a, b)
b e g i n

gt <= ’ 0 ’ ;
eq <= ’ 0 ’ ;
i f (a > b) then

gt <= ’1’;
e l s i f (a = b) then

end i f ;
end p r o c e s s ;

eq <= ’ 1 ’ ;

__ a s s i g n d e f a u l t v a l u e

The g t and eq signals assume ’ 0) if they are not assigned a value later. As discussed
earlier, assigning a signal multiple times inside a process can be error-prone. For synthesis,
this should not be used in other context and should be considered as shorthand to satisfy
the “assigning all signals in all branches” rule.

3.6 CONSTANTS AND GENERICS

3.6.1 Constants

HDL code frequently uses constant values in expressions and array boundaries. One good
design practice is to replace the “hard literals” with symbolic constants. It makes code clear
and helps future maintenance and revision. The constant declaration can be included in the
architecture’s declaration section, and it syntax is

c o n s t a n t const-name : data-type : = value-expression;

For example, we can declare two constants as

c o n s t a n t DATA-BIT: integer : = 8;
c o n s t a n t DATA-RANGE: integer : = 2**DATA_BIT - 1 ;

The constant expression is evaluated during preprocessing and thus requires no physical
circuit. In this book, we use capital letters for constants.

The use of a constant can best be explained by an example. Assume that we want to
design an adder with the carry-out bit. One way to do it is to extend the input by 1 bit and
then perform regular addition. The MSB of the summation becomes the carry-out bit. The
code is shown in Listing 3.9.

Listing 3.9 Adder using a hard literal

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use
e n t i t y add-w-carry i s

ieee . numeric-std. a l l ;

5 p o r t (
a , b : i n std-logic-vector(3 downto 0);
cout : o u t std-logic ;
sum: o u t std-logic-vector (3 downto 0)

) ;
in end add-w-carry ;

a r c h i t e c t u r e hard-arch of add-w-carry i s
s i g n a l a-ext , b-ext , sum-ext : unsigned(4 downto 0) ;

54 RT-LEVEL COMBINATIONAL CIRCUIT

b e g i n
1 5 a-ext <= unsigned(’0’ & a);

b-ext <= unsigned(’0’ & b) ;
sum-ext <= a-ext + b-ext;
sum <= std-logic-vector (sum-ext (3 downto 0)) ;
cout <= sum-ext(4);

20 end hard-arch;

The code is for a 4-bit adder. Hard literals, such as 3 and 4, are used for the ranges, as in
unsigned(4 downto 0) and sum-ext (3 downto O) , and the MSB, as in sum-ext (4). If
we want to revise the code for an 8-bit adder, these literals have to be modified manually.
This will be a tedious and error-prone process if the code is complex and the literals are
referred to in many places.

To improve the readability, we can use a symbolic constant, N , to represent the number
of bits of the adder. The revised architecture body is shown in Listing 3.10.

Listing 3.10 Adder using a constant

a r c h i t e c t u r e const-arch of add-w-carry i s
c o n s t a n t N : integer : = 4;
s i g n a l a-ext , b-ext , sum-ext : unsigned(N downto 0) ;

b e g i n
5 a-ext <= unsigned(’0’ & a);

b-ext <= unsigned(’0’ & b);
sum-ext <= a-ext + b-ext;
sum <= std-logic-vector (sum-ext (N - l downto 0)) ;
cout <= sum-ext(N);

in end const-arch;

The constant makes the code easier to understand and maintain.

3.6.2 Generics

VHDL provides a construct, known as a generic, to pass information into an entity and
component. Since a generic cannot be modified inside the architecture, it functions some-
what like a constant. A generic is declared inside an entity declaration, just before the port
declaration:

e n t i t y entity-name i s
g e n e r i c (

generic-name : data-type : = def ault-values ;
generic-name : data-type : = def ault-values ;

generic-name : data-type : = def ault-values
I

p o r t (
port-name : mode data-type ;

1 ;
end entity-name;

For example, the previous adder code can be modified to use the adder width as a generic,
as shown in Listing 3.1 1.

CONSTANTS AND GENERICS 55

Listing 3.11 Adder using a generic

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a i l ;
e n t i t y gen-add-w-carry i s

j g e n e r i c (N: integer :=4);
port (

a , b: in std-logic-vector(N-1 downto 0) ;
cout : out std-logic ;
sum: out std-logic-vector (N-1 downto 0)

10 1 ;
end gen-add-w-carry ;

a r c h i t e c t u r e arch of gen-add-w-carry i s
s i g n a l a-ext , b-ext , sum-ext : unsigned(N downto 0) ;

a-ext <= unsigned(’0’ & a);
b-ext <= unsigned(’0’ & b);
sum-ext <= a-ext + b-ext;
sum <= std-logic-vector (sum-ext (N-1 downto 0)) ;

i j begin

20 cout <= sum-ext(N);
end arch;

The N generic is declared in line 5 with a default value of 4. After N is declared, it can be
used in the port declaration and architecture body, just like a constant.

If the adder is later used as a component in other code, we can assign the desired value to
the generic in component instantiation. This is known as generic mapping. The default value
will be used if generic mapping is omitted. Use of the generic in component instantiation
is shown below.

s i g n a l a4, b4, sum4: unsigned(3 downto 0);
s i g n a l a8, b8, sum8: unsigned(7 downto 0) ;
s i g n a l a16, b16, suml6: unsigned(l5 downto 0) ;
s i g n a l c4, c8, c16: std-logic;

__ i n s t a n t i a t e 8 - b i t a d d e r
adder-8-unit: work.gen-add-w-carry(arch)

g e n e r i c map (N = >8)
port map(a=>a8, b=>b8, cout=>c8, sum=>sum8)) ;

__ i n s t a n t i a t e 16 - b i t a d d e r
adder-16-unit: work.gen-add-w-carry arch)

g e n e r i c map (N = > 16)
port map(a=>al6, b=>b16, cout=>c 6 , sum=>suml6)) ;

__ i n s t a n t i a t e 4 - b i t a d d e r
-- (g e n e r i c m a p p i n g o m i t t e d , d e f a u l t v a l u e 4 u s e d)
adder-4-unit: work.gen-add-w-carry(arch)

port map(a=>a4, b=>b4, cout=>c4, sum=>sum4)) ;

A generic provides a mechanism to create scalable code, in which the “width” of a circuit
can be adjusted to meet a specific need. This makes code more portable and encourages
design reuse.

56 FIT-LEVEL COMBINATIONAL CIRCUIT

a

d

(a) Diagram of a seven-segment LED display

(b) Hexadecimal digit patterns

Figure 3.5 Seven-segment LED display and hexadecimal patterns.

3.7 DESIGN EXAMPLES

3.7.1

The sketch of a seven-segment LED display is shown in Figure 3.5(a). It consists of seven
LED bars and a single round LED decimal point. On the prototyping board, the seven-
segment LED is configured as active low, which means that an LED segment is lit if the
corresponding control signal is '0'.

A hexadecimal digit to seven-segment LED decoder treats a 4-bit input as a hexadecimal
digit and generates appropriate LED patterns, as shown in Figure 3.5(b). For completeness,
we assume that there is also a 1-bit input, dp, which is connected directly to the decimal
point LED. The LED control signals. dp, a, b, c, d. e, f , and g, are grouped together as a
single 8-bit signal, sseg. The code is shown in Listing 3.12. It uses one selected signal
assignment statement to list all the desired patterns for the seven LSBs of the sseg signal.
The MSB is connected to dp.

Hexadecimal digit to seven-segment LED decoder

Listing 3.12 Hexadecimal digit to seven-segment LED decoder

l i b r a r y ieee;
u s e ieee. std-logic-1164. a l l ;
e n t i t y hex-to-sseg i s

p o r t (
hex: i n std-logic-vector (3 downto 0) ;
dp: i n std-logic;
sseg: o u t std-logic-vector (7 downto 0)

1 ;
end hex-to-sseg;

a r c h i t e c t u r e arch of hex-to-sseg i s
b e g i n

I {I

w i t h hex s e l e c t
sseg(6 downto 0) <=

15 'I 0000001 I' when 'I 0000 I' ,
I' 1 0 0 1 1 1 1 I' when " 0 0 0 1 'I ,

DESIGN EXAMPLES 57

25

'I 0 0 100 10 'I when I' 00 10 I' ,
'I 0 0 0 0 1 10 'I when 'I 0 0 1 1 ,
'I 1 0 0 1 1 0 0 when I' 0 1 0 0 'I ,
' I 0 100 100 'I when 'I 0 10 1 'I ,
'I 0 10 0 0 0 0 I' when ' I 0 1 10 I' ,
'I 0 0 0 1 I 1 1 'I when It 0 1 I 1 'I ,
" 0 0 0 0 0 0 0 ~ ~ when " 1 0 0 0 " ,
'I 0 0 0 0 1 0 0 I ' when 'I 1 0 0 1 I' ,
" 0 0 0 1 0 0 0 " when " 1 0 1 0 " , ---a
" 1 1 0 0 0 0 0 " when "1011", -4
"0110001" when " I l O O " , --c
" 1 0 0 0 0 1 0 " when " 1 1 0 1 " , --d
" 0 1 1 0 0 0 0 " when " I l l O " , ---e

in " 0 1 1 1 0 0 0 " when o t h e r s ; --f
sseg(7) <= d p ;

end arch;

There are four seven-segment LED displays on the prototyping board. To save the
number of FPGA chip's I/O pins, a time-multiplexing scheme is used. The block diagram
of the time-multiplexing module, disp-mux, is shown in Figure 3.6(a). The inputs are inO,
inl, in2, and in3, which correspond to four 8-bit seven-segment LED patterns, and the
outputs are an, which is a 4-bit signal that enables the four displays individually, and sseg,
which is the shared 8-bit signal that controls the eight LED segments. The circuit generates
a properly timed enable signal and routes the four input patterns to the output alternatively.
The design of this module is discussed in Chapter 4. For now, we just treat it as a black box
that takes four seven-segment LED patterns, and instantiate it in the code.

Testing circuit We use a simple 8-bit increment circuit to verify operation of the decoder.
The sketch is shown in Figure 3.6(b). The s w input is the 8-bit switch of the prototyping
board. It is fed to an incrementor to obtain sw+l. The original and incremented s w signals
are then passed to four decoders to display the four hexadecimal digits on seven-segment
LED displays. The code is shown in Listing 3.13.

Listing 3.13 Hex-to-LED decoder testing circuit

l i b r a r y ieee;
u s e ieee.std-logic-ll64.all;
use
e n t i t y hex-to-sseg-test i s

ieee . numeric-std. a l l ;

5 p o r t (
clk: i n std-logic;
s w : i n std-logic-vector (7 downto 0) ;
an: o u t std-logic-vector (3 downto 0) ;
sseg : o u t std-logic-vector (7 downto 0)

l o) ;
end hex-to-sseg-test;

a r c h i t e c t u r e arch of hex-to-sseg-test i s
s i g n a l inc : std-logic-vector (7 downto 0) ;

I (s i g n a l l e d 3 , led2, led1 , ledO: std-logic-vector (7 downto 0) ;
b e g i n

-_ i n c r e m e n t i n p u t
inc <= std-logic-vector(unsigned(sw) + 1);

58 RT-LEVEL COMBINATIONAL CIRCUIT

+hex
4

-41

+
4

in0 sseg
in1 an
in2
in3

> disp-mux

reset

sseg -
dp

hexto-sseg
in2
in3

disp-mux hex sseg - ->
dp reset

hex-to-sseg

(a) Block diagram of an LED time-multiplexing module -
hex-to-sseg ssegt-
u

/ hex sseg ,
4

+I

Idp I
hex-to-sseg I

ssegk an sseg an

clk I 0

(b) Block diagram of a decoder testing circuit

Figure 3.6 LED time-multiplexing module and decoder testing circuit.

DESIGN EXAMPLES 59

2 0 -- i n s t a n t i a t e f o u r i n s t a n c e s of h e x d e c o d e r s
__ i n s t a n c e f o r 4 LSBs of i n p u t
s s e g - u n i t - 0 : e n t i t y work . h e x - t o - s s e g

-_ i n s t a n c e f o r 4 MSBs of i n p u t
2 5 s s e g - u n i t - 1 : e n t i t y work . h e x - t o - s s e g

p o r t m a p (h e x = > s w (3 downto 0) , dp = > ' O ' , s s e g = > l e d O) ;

p o r t m a p (h e x = > s w (7 downto 4) , dp = > ' O ' , s s e g = > l e d l) ;
-- i n s t a n c e f o r 4 L S B s o f i n c r e m e n t e d v a l u e
s s e g - u n i t - 2 : e n t i t y work . h e x - t o - s s e g

p o r t m a p (h e x = > i n c (3 downto O) , dp =>'1', s s e g = > l e d 2) ;
20 -- i n s t a n c e for 4 MSBs of i n c r e m e n t e d v a l u e

s s e g - u n i t - 3 : e n t i t y work . h e x - t o - s s e g
p o r t m a p (h e x = > i n c (7 downto 4) , dp = > ' 1 ' , s s e g = > l e d 3) ;

__ i n s t a n t i a t e 7 - s e g LED d i s p l a y t i m e - m u l t i p l e x i n g m o d u l e
15 d i s p - u n i t : e n t i t y work .d i sp -mux

p o r t map(
c l k = > c l k , r e s e t = > ' O ' ,
i n O = > l e d O , i n l = > l e d l , i n 2 = > l e d 2 , i n 3 = > l e d 3 ,
a n = > a n , s s e g = > s s e g) ;

10 end a r c h ;

We can follow the procedure in Chapter 2 to synthesize and implement the circuit on
the prototyping board. Note that the disp-rnux.vhd file, which contains the code for the
time-multiplexing module, and the ucf constraint file must be included in the Xilinx ISE
project during synthesis.

3.7.2 Sign-magnitude adder

An integer can be represented in sign-magnitude format, in which the MSB is the sign and
the remaining bits form the magnitude. For example, 3 and -3 become "001 1" and "101 1"
in 4-bit sign-magnitude format.

A sign-magnitude adder performs an addition operation in this format. The operation
can be summarized as follows:

0 If the two operands have the same sign, add the magnitudes and keep the sign.
0 If the two operands have different signs, subtract the smaller magnitude from the

One possible implementation is to divide the circuit into two stages. The first stage sorts
the two input numbers according to their magnitudes and routes them to the max and min
signals. The second stage examines the signs and performs addition or subtraction on the
magnitude accordingly. Note that since the two numbers have been sorted, the magnitude
of max is always larger than that of min and the final sign is the sign of max.

The code is shown in Listing 3.14, which realizes the two-stage implementation scheme.
For clarity, we split the input number internally and use separate sign and magnitude signals.
A generic, N, is used to represent the width of the adder. Note that the relevant magnitude
signals are declared as unsigned to facilitate the arithmetic operation, and type conversions
are performed at the beginning and end of the code.

larger one and keep the sign of the number that has the larger magnitude.

60 RT-LEVEL COMBINATIONAL CIRCUIT

Listing 3.14 Sign-magnitude adder

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y sign-mag-add i s

5 g e n e r i c (N: integer : = 4) ; -- d e f a u l t 4 b i t s
p o r t (

a , b: i n std-logic-vector(N-1 downto 0) ;
sum: o u t std-logic-vector (N-1 downto 0)

1 ;
lo end sign-mag-add ;

a r c h i t e c t u r e arch of sign-mag-add i s
s i g n a l mag-a , mag-b : unsigned (N-2 downto 0) ;
s i g n a l mag-sum , max , min: unsigned (N-2 downto 0) ;

1 5 s i g n a l sign-a , sign-b , sign-sum: std-logic;
b e g i n

mag-a <= unsigned (a(N-2 downto 0) ;
mag-b <= unsigned(b(N-2 downto 0)) ;
sign-a <= a(N-1);

20 sign-b <= b(N-1);
-_ s o r t a c c o r d i n g t o m a g n i t u d e
p r o c e s s (mag-a ,mag-b , sign-a, sign-b)
b e g i n

i f mag-a > mag-b then
25 max <= mag-a;

min <= mag-b;
sign-sum <= sign-a;

max <= mag-b;
min <= mag-a;
sign-sum <= sign-b;

e l s e

end i f ;
end p r o c e s s ;
-- a d d / s u b m a g n i t u d e

ii mag-sum <= max + min when sign.-a=sign-b e l s e
max - min;

--form o u t p u t
sum <= std-logic-vector(sign-sum & mag-sum);

end arch;

Testing circuit We use a 4-bit sign-magnitude adder to verify the circuit operation. The
sketch of the testing circuit is shown in Figure 3.7. The two input numbers are connected to
the 8-bit switch, and the sign and magnitude are shown on two seven-segment LED displays.
Two pushbuttons are used as the selection signal of a multiplexer to route an operand or the
sum to the display circuit. The rightmost even-segment LED shows the 3-bit magnitude,
which is appended with a '0' in front and fed to the hexadecimal to seven-segment LED
decoder. The next LED displays the sign bit, which is blank for the plus sign and is lit
with a middle LED segment for the minus sign. The two LED patterns are then fed to the
time-multiplexing module, dispmux, as explained in Section 3.7.1. The code is shown in
Listing 3.15.

DESIGN EXAMPLES 61

mOut(2-0)

hex sseg -
dP

hex-to-sseg

Figure 3.7 Sign-magnitude adder testing circuit.

sseg
an

disp-mux

reset

Listing 3.15 Sign-magnitude adder testing circuit

- sseg
- an

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
u s e ieee . numeric-std. a l l ;
e n t i t y sm-add-test i s

5 p o r t (
clk: i n std-logic;
btn: i n std-logic-vector (1 downto 0) ;
sw: i n std-logic-vector (7 downto 0) ;
an: o u t std-logic-vector (3 downto 0) ;

i n sseg : o u t std-logic-vector (7 downto 0)
) ;

end sm-add-test;

a r c h i t e c t u r e arch of sm-add-test i s
1 5 s i g n a l sum, mout , oct : std-logic-vector (3 downto

s i g n a l led3, led2, led1 , led0 : std-logic-vector (

__ i n s t a n t i a t e a d d e r
sm-adder-unit : e n t i t y work. sign-mag-add

20 g e n e r i c map (N = >4)

b e g i n

p o r t map(a=>sw(3 downto 0) , b=>sw(7 downto 4)
sum=>sum);

- - 3 - t o - I m u x t o s e l e c t a n u m b e r t o d i s p l a y
2: with btn s e l e c t

mout <= sw(3 downto 0) when " 0 0 " , -- a
sw(7 downto 4) when " O l " , -- b

sum sum when o t h e r s ; _-

0) ;
downto 0);

30 -- m a g n i t u d e d i s p l a y e d on r i g h t m o s t 7 - s e g LED
act <= '0' & mout (2 downto 0) ;
sseg-unit : e n t i t y work. hex-to-sseg

_- s i g n d i s p l a y e d on 2 n d 7 - s e g LED
p o r t map(hex=>oct , dp=> ' 0 ' , sseg=>ledO) ;

62 FIT-LEVEL COMBINATIONAL CIRCUIT

led1 <= "11111110" when mout(3)='l' e l s e -- m i d d l e b a r

-- o t h e r two 7 - s e g LEDs b l a n k
led2 <= " 1 1 1 1 1 1 1 1 " ;
led3 <= "11111111";

" 11 1 1 1 1 11 " ; _- b l a n k

40

-- in s t a n t i a t e
disp-unit : e n t i t y work. disp-mux

p o r t map(

d i s p l a y m u 1 t i p 1 e x e r

clk=>clk, reset=>'O',

an=>an, sseg=>sseg) ;
4% inO=>ledO, inl=>ledl, in2=>led2, in3=>led3,

end arch;

3.7.3 Barrel shifter

Although VHDL has built-in shift functions, they sometimes cannot be synthesized auto-
matically. In this subsection, we examine an 8-bit barrel shifter that rotates an arbitrary
number of bits to right. The circuit has an 8-bit data input, a, and a 3-bit control signal, amt,
which specifies the amount to be rotated. The first design uses a selected signal assignment
statement to exhaustively list all combinations of the amt signal and the corresponding
rotated results. The code is shown in Listing 3.16.

Listing 3.16 Barrel shifter using a selected signal assignment statement

l i b r a r y ieee;
use ieee . std-logic-1164. a l l ;
e n t i t y barrel-shifter i s

p o r t (
a: i n std-logic-vector (7 downto 0) ;
amt: i n std-logic-vector (2 downto 0) ;
y : o u t std-logic-vector (7 downto 0)

) ;
end barrel-shifter ;

a r c h i t e c t u r e sel-arch o f barrel-shifter i s
b e g i n

10

w i t h amt s e l e c t
y < = a when "000" ,

a(l downto 0) & a(7 downto 2) when " O l O " ,
a(2 downto 0) & a(7 downto 3) when "Oil",
a(3 downto 0) & a(7 downto 4) when " l O O " ,
a(4 downto 0) & a(7 downto 5) when "101",

20 a(5 downto 0) & a(7 downto 6) when " 1 1 0 " ,

a(6 downto 0) & a(7) when o t h e r s ; -- 1 1 1

i s a(0) & a(7 downto 1) when "OOl",

end sel-arch;

While the code is straightforward, it will become cumbersome when the number of input
bits increases. Furthermore, a large number of choices implies a wide multiplexer, which
makes synthesis difficult and leads to a large propagation delay. Alternatively, we can
construct the circuit by stages. In the nth stage, the input signal is either passed directly to

DESIGN EXAMPLES 63

output or rotated right by 2n positions. The nth stage is controlled by the nth bit of the amt
signal. Assume that the 3 bits of amt are mzmlmo. The total rotated amount after three
stages is r 1 z z 2 ~ + m121 + mo2’, which is the desired rotating amount. The code for this
scheme is shown in Listing 3.17.

Listing 3.17 Barrel shifter using multi-stage shifts

a r c h i t e c t u r e multi-stage-arch of barrel-shifter i s
s i g n a l S O , sl: std-logic-vector (7 downto 0) ;

b e g i n
__ s t a g e 0 , s h i f t 0, o r I b i t

T S O <= a(0) & a(7 downto 1) when amt(O)=’l’ e l s e
a ;

__ s t a g e 1 , s h i f t 0 o r 2 b i t s
sl <= s O (1 downto 0) & s O (7 downto 2) when arnt(l)=’l’ e l s e

s o ;
10 -- s t a g e 2 , s h i f t 0 o r 4 b i t s

y <= s i (3 downto 0) & s O (7 downto 4) when amt(2)=’l’ e l s e
s l ;

end multi-stage-arch ;

Testing circuit To test the circuit, we can use the 8-bit switch for the a signal, three
pushbutton switches for the a t signal, and the eight discrete LEDs for output. Instead of
deriving a new constraint file for pin assignment, we create a new HDL file that wraps the
barrel shifter circuit and maps its signals to the prototyping board’s signals. The code is
shown in Listing 3.18.

Listing 3.18 Barrel shifter testing circuit

l i b r a r y ieee ;
u s e ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y shifter-test i s

.F p o r t (
sw: i n std-logic-vector (7 downto 0) ;
btn: i n std-logic-vector (2 downto 0) ;
led: o u t std-logic-vector (7 downto 0)

1 ;
10 end shifter-test;

a r c h i t e c t u r e arch of shifter-test i s
b e g i n

shift-unit : e n t i t y work.barrel-shifter(multi-stage-arch)
li port map(a=>sw, amt=>btn, y = > l e d) ;

end arch;

3.7.4 Simplified floating-point adder

Floating point is another format to represent a number. With the same number of bits,
the range in floating-point format is much larger than that in signed integer format. Al-
though VHDL has a built-in floating-point data type, it is too complex to be synthesized
automatically.

64 RT-LEVEL COMBINATIONAL CIRCUIT

sort align addsub normalize

eg. 1 + 0 . 5 4 E 3 - 0 . 8 7 E 4 - 0 . 8 7 E 4 - 0 . 8 7 E 4
- 0 . 8 7 E 4 + 0 . 5 4 E 3 + 0 . 0 5 E 4 + 0 . 0 5 E 4

- 0 . 8 2 E 4
~~~~ 

eg. 2 + O .  5 4 E 3  - 0 . 5 5 E 3  - 0 . 5 5 E 3  - 0 . 5 5 E 3  
- 0 . 5 5 E 3  + 0 . 5 4 E 3  + 0 . 5 4 E 3  + 0 . 5 4 E 3  

- 0 . 0 1 E 3  
~~~~ 

eg. 3 + O . 54E0 -0.55EO -0.55EO -0.55EO
-0.55EO +0 .54EO +0 .54EO +0 .54EO

-0. OlEO
~ ~ _ _ _ ~

- 0 . 8 7 E 4
+O . 0 5 E 4
- 0 . 8 2 E 4

- 0 . 5 5 E 3
+ O . 5 4 E 3
- 0 . 1 0 E 2

-0.55EO
+ O . 5 4 E 0
-0 . OOEO

+ O . 5 6 E 3
+O . 5 2 E 3
+ O . 1 0 E 4

Figure 3.8 Floating-point addition examples.

Detailed discussion of floating-point representation is beyond the scope of this book.
We use a simplified 13-bit format in this example and ignore the round-off error. The
representation consists of a sign bit, s , which indicates the sign of the number (1 for
negative); a 4-bit exponent field, e, which represents the exponent; and an 8-bit significand
field, f , which represents the significand or the fraction. In this format. the value of a
floating-point number is (-1)‘ * . f * 2“. The . f * 2“ is the magnitude of the number and
(-1)‘ is just a formal way to state that ‘ ‘ s equal to 1 implies a negative number.” Since
the sign bit is separated from the rest of the number, floating-point representation can be
considered as a variation of the sign-magnitude format.

We also make the following assumptions:
Both exponent and significand fields are in unsigned format.
The representation has to be either normalized or zero. Normalized representa-
tion means that the MSB of the significand field must be ’1’. If the magnitude of
the computation result is smaller than the smallest normalized nonzero magnitude,
0.10000000 * 2Oooo, it must be converted to zero.

Under these assumptions, the largest and smallest nonzero magnitudes are 0.11 11 11 11 *
2l1I1 and 0.10000000 * 20°00, and the range is about 216 (i.e.,

Our floating-point adder design follows the process of adding numbers manually in
scientific notation. This process can best be explained by examples. We assume that the
widths of the exponent and significand are 2 and 1 digits, respectively. Decimal format
is used for clarity. The computations of several representative examples are shown in
Figure 3.8. The computation is done in four major steps:

1. Sorting: puts the number with the larger magnitude on the top and the number with
the smaller magnitude on the bottom (we call the sorted numbers “big number” and
“small number”).

2. Alignment: aligns the two numbers so they have the same exponent. This can be
done by adjusting the exponent of the small number to match the exponent of the big

~AAAA~A~~$i~~).

DESIGN EXAMPLES 65

number. The significand of the small number has to shift to the right according to the
difference in exponents.

3. Additionhubtraction: adds or subtracts the significands of two aligned numbers.
4. Normalization: adjusts the result to normalized format. Three types of normalization

0 After a subtraction, the result may contain leading zeros in front, as in example 2.
0 After a subtraction, the result may be too small to be normalized and thus needs

0 After an addition, the result may generate a carry-out bit, as in example 4.

procedures may be needed:

to be converted to zero, as in example 3.

Our binary floating-point adder design uses a similar algorithm. To simplify the imple-
mentation, we ignore the rounding. During alignment and normalization, the lower bits of
the significand will be discarded when shifted out. The design is divided into four stages,
each corresponding to a step in the foregoing algorithm. The suffixes, ‘b’, ‘s’, ‘a’, ‘r’, and
‘n’, used in signal names are for “big number,” “small number,” “aligned number,” “result
of additionisubtraction,” and “normalized number,” respectively. The code is developed
according to these stages, as shown in Listing 3.19.

Listing 3.19 Simplified floating-point adder

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y fp-adder i s

5 port (

signl , sign2 : in std-logic ;
expl , exp2 : in std-logic-vector (3 downto 0) ;
fracl , frac2: in std-logic-vector (7 downto 0) ;
sign-out: out std-logic;

frac-out : out std-logic-vector (7 downto 0)
10 exp-out : out std-logic-vector (3 downto 0) ;

1 ;
end fp-adder ;

1 5 a r c h i t e c t u r e arch of fp-adder i s
_- s u f f i x b , s , a , n f o r
_- b i g , s m a l l , a l i g n e d , n o r m a l i z e d number
s i g n a l signb , signs : std-logic;
s i g n a l expb, exps , expn: unsigned (3 downto 0) ;

s i g n a l sum-norm: unsigned (7 downto 0) ;
s i g n a l exp-diff : unsigned (3 downto 0) ;
s i g n a l sum: unsigned(8 downto 0); --one e x t r a f o r c a r r y
s i g n a l leadO: unsigned (2 downto 0) ;

-- 1 s t s t a g e : s o r t t o find t h e l a r g e r n u m b e r
p r o c e s s (signl , sign:!, expl, exp2, fracl , frac2)
beg in

:C s i g n a l fracb, fracs, fraca, fracn: unsigned(7 downto 0) ;

25 beg in

if (expl & fracl) > (exp2 & frac2) then
10 signb <= signl;

signs <= sign2;
expb <= unsigned (expl) ;
exps <= unsigned (exp2) ;

66 RT-LEVEL COMBINATIONAL CIRCUIT

40

so

fracb <= unsigned(frac1);
5 fracs <= unsigned(frac2);

e l s e
signb <= sign2;
signs <= signl;
expb <= unsigned (exp2) ;
exps <= unsigned (expl) ;
fracb <= unsigned(frac2);
fracs <= unsigned(frac1);

e n d i f ;
e n d p r o c e s s ;

__ 2 n d s t a g e : a l i g n s m a l l e r n u m b e r
exp-diff <= expb - exps;
w i t h exp-diff s e l e c t

45

fraca <=
fracs
" 0 " & fracs(7 d o w n t o 1)
'I 0 0 I' & fracs(7 d o w n t o 2)
I' 000 " & fracs(7 downto 3)
" 0000 " & fracs(7 d o w n t o 4)
' ' 0 0 0 0 0 " & fracs (7 d o w n t o 5)
" 0 0 0 0 0 0 " & fracs (7 d o w n t o 6)
" 0 0 0 0 0 0 0 ' ' & fracs (7)
" 00000000"

when
when
when
when
when
when
when
when
when

" 0 0 0 0 " ,
"OOOl",
" 0 0 1 0 " ,
" 0 0 1 1 " ,
" 0 1 0 0 " ,
"OlOI",
" 0 1 10 " ,
"Olll",
o t h e r s ;

60 -- 3 r d s t a g e : a d d / s u b t r a c t
sum <= (' 0 ' & fracb) + (' 0 ' & fraca) when signb=signs e l s e

(' 0 ' & fracb) - (' 0 ' & fraca);

70

X I 1

-- 4 t h s t a g e : n o r m a l i z e

lead0 <= " 0 0 0 " when (sum(7)='l') e l s e
" 0 0 1 " when (sum(6)='1') e l s e
" 0 1 0 " when (sum(5)='1') e l s e
'loll" when (sum(4)='1') e l s e
11100" when (sum(3)='1') e l s e
" 1 0 1 " when (sum(2)='1') e l s e
" 1 1 0 " when (sum(l)='l') e l s e
'I 11 1 " ;

a5 -- c o u n t l e a d i n g 0 s

_- s h i f r s i g n i f i c a n d a c c o r d i n g t o l e a d i n g 0
- 5 w i t h lead0 s e l e c t

sum-norm <=
sum(7 d o w n t o 0) when " 0 0 0 " ,
sum(6 d o w n t o 0) & ' 0 ' when " O O l " ,
sum(5 d o w n t o 0) & " 0 0 " when "OIO",
s u m (4 d o w n t o 0) & " 0 0 0 " when "Oil",
s u m (3 d o w n t o 0) & " 0 0 0 0 " when " l O O " ,
sum(2 d o w n t o 0) & " 0 0 0 0 0 " when "101",
s u m (1 d o w n t o 0) & " 0 0 0 0 0 0 " when " 1 1 0 " ,
sum(0) & ~ t O O O O O O O 1 ~ when o t h e r s ;

*,
__ n o r m a l i z e with s p e c i a l c o n d i t i o n s

DESIGN EXAMPLES 67

90

95

p r o c e s s (sum, sum-norm, expb, leado)
b e g i n

i f s u r n (S) = ’ l ’ t h e n -- w / c a r r y o u t ; s h i f t f r a c t o r i g h t
expn <= expb + 1 ;
fracn <= s u m (8 downto 1);

expn <= (o t h e r s = > ’ O ’) ; -- s e t t o 0
fracn <= (o t h e r s = > ’ O ’) ;

expn <= expb - lead0;
fracn <= sum-norm;

e l s i f (lead0 > expb) t h e n -- t o o s m a l l t o n o r m a l i z e ;

e l s e

end i f ;
end p r o c e s s ;

-- f o r m o u t p u t
sign-out <= signb;
exp-out <= std-logic-vector(expn);
frac-out <= std-logic-vector(fracn);

I00

105 end arch;

The circuit in the first stage compares the magnitudes and routes the big number to the
signb, expb, and f r acb signals and the smaller number to the s igns, exps, and f r a c s
signals. The comparison is done between expl&f r a c l and exp2&f rac2. It implies that
the exponents are compared first, and if they are the same, the significands are compared.

The circuit in the second stage performs alignment. It first calculates the difference
between the two exponents, which is expb-exps, and then shifts the significand, f r acs ,
to the right by this amount. The aligned significand is labeled f raca. The circuit in the
third stage performs sign-magnitude addition, similar to that in Section 3.7.2. Note that the
operands are extended by 1 bit to accommodate the carry-out bit.

The circuit in the fourth stage performs normalization, which adjusts the result to make
the final output conform to the normalized format. The normalization circuit is constructed
in three segments. The first segment counts the number of leading zeros. It is somewhat
like a priority encoder. The second segment shifts the significands to the left by the amount
specified by the leading-zero counting circuit. The last segment checks the carry-out and
zero conditions and generates the final normalized number.

Testing circuit The floating-point adder has two 13-bit input operands. Since the proto-
typing board has only one 8-bit switch and four 1-bit pushbuttons, it cannot provide enough
number of physical inputs to test the circuit. To accommodate the 26 bits of the floating-
point adder, we must create a testing circuit and assign constants or duplicated switch signals
to the adder’s input operands. An example is shown in Listing 3.20. It assigns one operand
as constant and uses duplicated switch signals for the other operand. The addition result is
passed to the hexadecimal decoders and the sign circuit and is shown on the seven-segment
LED display.

Listing 3.20 Floating-point adder testing circuit

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y fp-adder-test i s

5 p o r t (

68 RT-LEVEL COMBINATIONAL CIRCUIT

clk: in std-logic;
sw: in std-logic-vector (7 downto 0) ;
btn: in std-logic-vector (3 downto 0) ;
an: out std-logic-vector (3 downto 0) ;

10 sseg: out std-logic-vector (7 downto 0)
) ;

end fp-adder-test;

architecture arch of fp-adder-test is
1 5 signal signl , sign2 : std-logic;

signal expl , exp2: std-logic-vector (3 downto 0) ;
signal fracl , frac2 : std-logic-vector (7 downto 0) ;
signal sign-out : std-logic;
signal exp-out : std-logic-vector (3 downto 0) ;

signal led3, led2, ledl, ledO:
20 signal frac-out : std-logic-vector (7 downto 0) ;

std-logic-vector (7 downto 0) ;
begin

__ s e t u p t h e f p a d d e r i n p u t s i g n a l s

expl <= "1000";
frac1<= '1' & sw(1) & sw(0) & " 1 0 1 0 1 " ;
sign2 <= sw(7);
exp2 <= btn;

2 5 signl <= '0';

10 frac2 <= '1' & sw(6 downto 0);

__ i n s t a n t i a t e fp a d d e r
fp-add-unit : entity work. fp-adder

port map(
3' signl=>signl, sign2=>sign2, expl=>expl, exp2=>exp2,

fracl=>fracl, fracZ=>frac2,
sign-out=>sign-out , exp-out=>exp-out ,
frac-out=>frac-out

1 ;
40

__ i n s t a n t i a t e t h r e e i n s t a n c e s of h e x d e c o d e r s

sseg-unit-0 : entity work. hex-to-sseg
e x p o n e n t

port map(hex=>exp-out , dp=>'O' , sseg=>ledO);

__

45 -- 4 L S B s of f r a c t i o n
sseg-unit-1 : entity work. hex-to-sseg

port map(hex=>frac-out (3 downto 0) ,
dp=>' 1 ' ,

50 sseg-unit-2: entity work. hex-to-sseg

sseg=>ledl) ;
-- 4 MSBs o f f r a c t i o n

port map(hex=>frac-out (7 downto 4) ,
dp=>'O', sseg=>led2);

__ s i g n
led3 <= " 1 1 1 1 1 1 1 0 " when sign-out='l' else -- m i d d l e b a r

55 " 11 11 11 11 " ; __ b l a n k

-_ i 11 s t a n t i a t e 7 - s e g LED d i s p l a j t i m e - m u 1 t i p 1 e x i n g m o d u l e
disp-unit : entity work.disp-mux

BIBLIOGRAPHIC NOTES 69

p o r t map(
60 c l k = > c l k , r e s e t = > ' O ' ,

i n O = > l e d O , i n l = > l e d l , i n 2 = > l e d 2 , i n 3 = > l e d 3 ,
a n = > a n , s s e g = > s s e g

1 ;
end a r c h ;

3.8 BIBLIOGRAPHIC NOTES

The Designer's Guide to VHDL by P. J. Ashenden provides detailed coverage on the VHDL
constructs discussed in this chapter, and the author's RTL Hardware Design Using VHDL:
Coding for Eficiency, Portability, and Scalability discusses the coding and optimization
schemes and gives additional design examples.

3.9 SUGGESTED EXPERIMENTS

3.9.1 Multi-function barrel shifter

Consider an %bit shifting circuit that can perform rotating right or rotating left. An addi-
tional l-bit control signal, lr, specifies the desired direction.

1.

2.
3.
4.

5.

6.
7.

Design the circuit using one rotate-right circuit, one rotate-left circuit, and one 2-to- 1
multiplexer to select the desired result. Derive the code.
Derive a testbench and use simulation to verify operation of the code.
Synthesize the circuit, program the FPGA, and verify its operation.
This circuit can also be implemented by one rotate-right shifter with pre- and post-
reversing circuits. The reversing circuit either passes the original input or reverses
the input bitwise (for example, if an %bit input is a7a6a5a4a3a2a1ao3 the reversed
result becomes aOa1a2a3f&5a5a6a7). Repeat steps 2 and 3.
Check the report files and compare the number of logic cells and propagation delays
of the two designs.
Expand the code for a 16-bit circuit and synthesize the code. Repeat steps 1 to 5.
Expand the code for a 32-bit circuit and synthesize the code. Repeat steps 1 to 5.

3.9.2 Dual-priority encoder

A dual-priority encoder returns the codes of the highest or second-highest priority requests.
The input is a 12-bit req signal and the outputs are first and second, which are the 4-bit
binary codes of the highest and second-highest priority requests, respectively.

1. Design the circuit and derive the code.
2. Derive a testbench and use simulation to verify operation of the code.
3. Design a testing circuit that displays the two output codes on the seven-segment LED

4. Synthesize the circuit, program the FPGA, and verify its operation.
display of the prototyping board, and derive the code.

3.9.3 BCD incrementor

The binary-coded-decimal (BCD) format uses 4 bits to represent 10 decimal digits. For
example, 25910 is represented as "0010 0101 1001" in BCD format. A BCD incrementor

70 RT-LEVEL COMBINATIONAL CIRCUIT

adds 1 to a number in BCD format. For example, after incrementing, "0010 0101 1001"
(i.e., 25910) becomes "0010 01 10 0000" (i.e., 26OlO).

1. Design a three-digit 12-bit incrementor and derive the code.
2 . Derive a testbench and use simulation to verify operation of the code.
3. Design a testing circuit that displays three digits on the seven-segment LED display

4. Synthesize the circuit, program the FPGA, and verify its operation.
and derive the code.

3.9.4 Floating-point greater-than circuit

A floating-point greater-than circuit compares two floating-point numbers and asserts out-
put, g t , when the first number is larger than the second number. Assume that the two
numbers are represented in the format discussed in Section 3.7.4.

1. Design the circuit and derive the code.
2. Derive a testbench and use simulation to verify operation of the code.
3. Design a testing circuit and derive the code.
4. Synthesize the circuit, program the FPGA, and verify its operation.

3.9.5 Floating-point and signed integer conversion circuit

A number may need to be converted to different formats in a large system. Assume that
we use the 13-bit format in Section 3.7.4 for the floating-point representation and the
8-bit signed data type for the integer representation. An integer-to-floating-point conver-
sion circuit converts an 8-bit integer input to a normalized, 13-bit floating-point output.
A floating-point-to-integer conversion circuit reverses the operation. Since the range of
a floating-point number is much larger, conversion may lead to the underflow condition
(i.e., the magnitude of the converted number is smaller than "00000001") or the overflow
condition (i.e., the magnitude of the converted number is larger than "01 11 11 11 ").

1. Design an integer-to-floating-point conversion circuit and derive the code.
2. Derive a testbench and use simulation to verify operation of the code.
3. Design a testing circuit and derive the code.
4. Synthesize the circuit, program the FPGA, and verify its operation.
5. Design a floating-point-to-integer conversion circuit. In addition to the &bit integer

output, the design should include two status signals, uf and o f , for the underflow
and overflow conditions. Derive the code and repeat steps 2 to 4.

3.9.6 Enhanced floating-point adder

The floating-point adder in Section 3.7.4 discards the lower bits when they are shifted out
(it is known as round to zero). A more accurate method is to round to the nearest even,
as defined in the IEEE Standard for Binary Floating-point Arithmetic (IEEE Std 754).
Three extra bits, known as the guard, round, and sticky bits, are required to implement this
method. If you learned floating-point arithmetic before, modify the floating-point adder in
Section 3.7.4 to accommodate the round-to-the-nearest-even method.

CHAPTER 4

REGULAR SEQUENTIAL CIRCUIT

4.1 INTRODUCTION

A sequential circuit is a circuit with memory, which forms the internal state of the circuit.
Unlike a combinational circuit, in which the output is a function of input only, the output
of a sequential circuit is a function of the input and the internal state. The synchronous
design methodology is the most commonly used practice in designing a sequential circuit. In
this methodology, all storage elements are controlled (i.e., synchronized) by a global clock
signal and the data is sampled and stored at the rising or falling edge of the clock signal. It
allows designers to separate the storage components from the circuit and greatly simplifies
the development process. This methodology is the most important principle in developing
a large, complex digital system and is the foundation of most synthesis, verification, and
testing algorithms. All of the designs in the book follow this methodology.

4.1.1 D FF and register

The most basic storage component in a sequential circuit is a D-type flip-flop (D FF). The
symbol and function table of a positive edge-triggered D FF are shown in Figure 4.l(a).
The value of the d signal is sampled at the rising edge of the clk signal and stored to FF.
A D FF may contain an asynchronous reset signal to clear the FF to ' 0 ' . Its symbol and
function table are shown in Figure 4.l(b). Note that the reset operation is independent of
the clock signal.

FPGA Protowping by VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

71

72 REGULAR SEQUENTIAL CIRCUIT

output
logic

~

d - next-state
* external

input

cI k

- logic

clk q*

4

4

f d

state-next >

(a) D FF

reset clk q*

- 0
~~

(b) D FF with asynchronous reset

reset clk en q*

1 0

4

0 1 4
reset o f 0 4

(c) D FF with synchronous enable

Figure 4.1 Block diagram and functional table of a D FF.

n
OUtDUt

Figure 4.2 Block diagram of a synchronous system.

The three main timing parameters of a D FF are Tcq (clock-to-q delay), Tsetup (setup
time), and Thold (hold time). Tcq is the time required to propagate the value of d to q at
the rising edge of the clock signal. The d signal must be stable around the sampling edge
to prevent the FF from entering the metastable state. Tsetup and Thold specify the time
intervals before or after the sampling edge.

A D FF provides 1-bit storage. A collection of D FFs can be grouped together to store
multiple bits and is known as a register.

4.1.2 Synchronous system

Block diagram
consists of the following parts:

The block diagram of a synchronous system is shown in Figure 4.2. It

0 State register: a collection of D FFs controlled by the same clock signal

INTRODUCTION 73

Next-state logic: combinational logic that uses the external input and internal state
(i.e., the output of register) to determine the new value of the register
Output logic: combinational logic that generates the output signal

Max..nal operating frequency One of the most difficult design aspects of a sequential
circuit is to ensure that the system timing does not violate the setup and hold time constraints.
In a synchronous system, the storage components are grouped together and treated as a single
register, as shown in Figure 4.2. We need to perfom timing analysis on only one memory
component.

The timing of a sequential circuit is characterized by f m a z , the maximal clock frequency,
which specifies how fast the circuit can operate. The reciprocal of f m a z specifies T c l o c k ,

the minimal clock period, which can be interpreted as the interval between two sampling
edges of the clock. To ensure correct operation, the next value must be generated and
stabilized within this interval. Assume that the maximal propagation delay of next-state
logic is Tcomb. The minimal clock period can be obtained by adding the propagation delays
and setup time constraint of the closed loop in Figure 4.2:

Tclock = Tcq + T c o m b + T s e t u p

and the maximal clock rate is the reciprocal:

1
- 1

-- f m a x =
Tclock Tcq + T c o m b + Tsetup

Timing constraint in Xilinx lSEXilinX wecif ic During synthesis, Xilinx software
will analyze the synthesized circuit and show f m a z in a report. We can also specify the
desired operating frequency as a synthesis constraint, and the synthesis software will try to
obtain a circuit to satisfy this requirement (i.e., a circuit whose f m a x is equal to or greater
than the desired operating frequency). For example, if we use the 50-MHz (i.e., 20-ns
period) oscillator on the prototyping board as the clock source, f m a z of a sequential circuit
must exceed this frequency (i.e., the period must be smaller than 20 ns). The following
lines can be added to the constraint file:

NET "clk" TNM-NET = "clk";
TIMESPEC "TS-clk" = PERIOD "clk" 20 ns HIGH 50 % ;

This indicates that the clk signal has a maximal period of 20 ns (i.e., 50 MHz) and a duty
cycle of 50%.

After synthesis, we can check the relevant timing information by invoking the View
Design Summary process from the ISE's Processes window. The Timing Constraints sec-
tion shows whether the imposed constraints are met, and the Static Timing Report section
provides more detailed timing information.

4.1.3 Code development

Our code development follows the basic block diagram in Figure 4.2. The key is to separate
the memory component (i.e., the register) from the system. Once the register is isolated,
the remaining portion is a pure combinational circuit, and the coding and analysis schemes
discussed in previous chapters can be applied accordingly. While this approach may make
the code a little bit more cumbersome at times, it helps us to better visualize the circuit
architecture and avoid unintended memory and subtle mistakes.

74 REGULAR SEQUENTIAL CIRCUIT

Based on the characteristics of the next-state logic, we divide sequential circuits into

0 Regular sequential circuit. The state transitions in the circuit exhibit a “regular”
pattern, as in a counter or shift register. The next-state logic is constructed primarily
by a predesigned, “regular” component, such as an incrementor or shifter.

0 FSM. The state transitions in the circuit do not exhibit a simple, repetitive pattern.
The next-state logic is constructed by “random logic” and synthesized from scratch.
It should be called a random sequential circuit, but is commonly known as an FSM
(finite state machine).

0 FSMD. The circuit consists of a regular sequential circuit and an FSM. The two parts
are known as a data path and a control path, and the complete circuit is known as an
FSMD (FSM with data path). This type of circuit is used to implement an algorithm
represented by register-transfer (RT) methodology, which describes system operation
by a sequence of data transfers and manipulations among registers.

three categories:

The three types of circuits are discussed in this and two subsequent chapters.

4.2 HDL CODE OF THE FF AND REGISTER

Describing storage components in HDL is a subtle procedure, and there are many ways to
do it. In fact, one common problem encountered by a new HDL user is the inference of
unintended latches and buffers. Instead of covering all possible forms of syntactic descrip-
tions, we introduce the code segments for several commonly used memory components.
Since our development process separates the register and the combinational circuit, these
components are sufficient for all designs in this book. The components are:

0 D F F
0 Register
0 Register file

4.2.1 D FF

We consider three types of D FFs:
0 D FF without asynchronous reset
0 D FF with asynchronous reset
0 D FF with synchronous enable

The first two are the most basic memory components and can be found in the library of
any device technology. The third can be constructed from a simple D FF. We include the
code since it is a frequently used memory component and can be mapped to the FF of the
Spartan-3 device’s logic cell.

D FF without asynchronous reset The function table of a D FF is shown in Fig-
ure 4.l(a) and the code is shown in Listing 4.1.

Listing 4.1 D FF without asynchronous reset

l i b r a r y i e e e ;
use i e e e . std-logic-1164. a l l ;
e n t i t y d - f f i s

p o r t (
clk: in std-logic;

HDL CODE OF THE FF AND REGISTER 75

d : i n std-logic;
q : out std-logic

1 ;
end d-ff ;

a r c h i t e c t u r e arch of d-ff i s
b e g i n

10

p r o c e s s (clk)
b e g i n

15 i f (clk’event and clk=’l’) then
q <= d ;

end i f ;
end p r o c e s s ;

end arch;

The rising edge is checked by the clk event and elk=' 1 expression, which represents
that there is a change in the clk signal (i.e., an “event”) and the new value is ’1’. If this
condition is t rue , the value of d is stored to q, and if this condition is false, q keeps its
previous value (i.e.. memorizes the value sampled earlier). Note that only the clk signal is
included in the sensitive list. This is consistent with the fact that the d signal is sampled only
at the rising edge of the c l k signal, and change in its value does not trigger any immediate
response.

D FF with asynchronous reset A D FF may contain an asynchronous reset signal, as
shown in the function table of Figure 4.l(b). The signal clears the D FF to ’0’ any time and is
not controlled by the clock signal. It actually has a higher priority than the regularly sampled
input. Using an asynchronous reset signal violates the synchronous design methodology
and thus should be avoided in normal operation. Its major application is to perform system
initialization. For example, we can generate a short reset pulse to force a system to an initial
state after turning on the power. The code for a D FF with asynchronous reset is shown in
Listing 4.2.

Listing 4.2 D FF with asvnchronous reset

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y d-ff-reset i s

p o r t (
5 clk, reset: i n std-logic;

d : i n std-logic;
q : o u t std-logic

1 ;
end d-f f -reset ;

a r c h i t e c t u r e arch o f d-ff-reset i s
b e g i n

10

p r o c e s s (clk, reset 1
b e g i n

I 5 i f (r e s e t = ’ l ’) then
q < = ’ O ’ ;

e l s i f (clk’event and c l k = ’ l ’) then

end i f ;
q <= d ;

76 REGULAR SEQUENTIAL CIRCUIT

XI end p r o c e s s ;
end arch;

Note that the reset signal is included in the sensitivity list, and its condition is checked
before the rising-edge condition.

D FF with synchronous enable A D FF may include an additional control signal,
en, to enable the FF to sample the input value. Its symbol and functional table are shown
in Figure 4.l(c). Note that the en signal is examined only at the rising edge of the clock
and thus is synchronous. If it is not asserted, the FF keeps its previous value. The code is
shown in Listing 4.3.

Listing 4.3 One-process coding style for a D FF with synchronous enable

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y d-ff-en i s

p o r t (
3 c l k, reset: i n std-logic;

e n : i n std-logic;
d : i n std-logic;
q : o u t std-logic

) ;
10 end d-f f -en ;

a r c h i t e c t u r e arch of d-ff-en i s
b e g i n

p r o c e s s (clk, reset)
15 b e g i n

i f (reset=’l’) then

e l s i f (clk’event and clk=’l’) then
q < = ’ O ’ ;

i f (en=’l’) then

end i f ;
20 q <= d ;

end i f ;
end p r o c e s s ;

end arch;

The enabling feature of this D FF is useful in maintaining synchronism between a fast
subsystem and a slow subsystem. For example, assume that the operation rates of a fast and
a slow subsystem are 50 MHz and 1 MHz. Instead of using a derived 1-MHz clock to drive
the slow subsystem, we can generate a periodic enable tick that is asserted one clock cycle
every 50 clock cycles. The slow subsystem is disabled (i.e., keep the previous state) for the
remaining 49 clock cycles. The same scheme can also be applied to eliminate a gated clock
signal.

Since the enable signal is synchronous, this circuit can be constructed by a regular D FF
and simple next-state logic. The code is shown in Listing 4.4, and its block diagram is
shown in Figure 4.3.

Listing 4.4 Two-segment coding style for a D FF with synchronous enable

a r c h i t e c t u r e two-seg-arch of d-ff-en i s
s i g n a l r-reg , r-next : std-logic;

HDL CODE OF THE FF AND REGISTER 77

clk
en
clk

reset

Figure 4.3 D FF with synchronous enable.

beg in
-- D FF

5 p r o c e s s (clk, reset)
beg in

i f (reset=’l’) then

e l s i f (clk’event and clk=’l’) then

end i f ;
end p r o c e s s ;
__ n e x t - s t a t e l o g i c
r-next <= d when en = ’ l ’ e l s e

I < r-reg ;
__ o u t p u t l o g i c
q <= r-reg;

end two-seg-arch ;

r-reg < = ’ O ’ ;

10 r-reg <= r-next;

For clarity, we use suffixes n e x t and -reg to emphasize the next input value and the
registered output of an FF. They are connected to the d and q signals of a D FF. The earlier
one-process code can be considered as shorthand for this more explicit description.

4.2.2 Register

A register is a collection of D FFs that are controlled by the same clock and reset signals.
Like a D FF, a register can have an optional asynchronous reset signal and a synchronous
enable signal. The code is identical to that of a D FF except that the array data type,
s t d - l o g i c v e c t o r , is needed for the relevant input and output signals. For example, an
8-bit register with asynchronous reset is shown in Listing 4.5.

Listing 4.5 Register

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y reg-reset i s

por t (
clk, reset: i n std-logic;
d: in std-logic-vector (7 downto 0) ;
q : out std-logic-vector (7 downto 0)

) ;
end reg-reset ;

10

78 REGULAR SEQUENTIAL CIRCUIT

a r c h i t e c t u r e arch of reg-reset i s
b e g i n

Ii

p r o c e s s (clk , reset)
b e g i n

i f (reset=’l’) then

e l s i f (clk’event and clk=’l’) then

end i f ;

q < = (o t h e r s = > ’ O ’) ;

q <= d ;

?O end p r o c e s s ;
end arch;

Note that the expression (others=>’O’) means that all elements are assigned to ’0’ and is
equivalent to t tOOOOOOOOrt in this case.

4.2.3 Register file

A register file is a collection of registers with one input port and one or more output ports.
The write address signal, w-addr, specifies where to store data, and the read address signal,
r-addr, specifies where to retrieve data. The register file is generally used as fast, temporary
storage. The code for a parameterized 2W-by-B register file is shown in Listing 4.6. Two
generics are defined in this design. The W generic specifies the number of address bits,
which implies that there are 2W words in the file, and the B generic specifies the number of
bits in a word.

Listing 4.6 Parameterized register file

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y reg-file i s

5 g e n e r i c (
B : integer:=8; -- number o f b i t s
W : integer:=2 -- number o f a d d r e s s b i t s

) ;
p o r t (

10 c lk, reset: i n std-logic;
wr-en: i n std-logic;
w-addr , r-addr : in std-logic-vector (W-1 downto 0) ;
w-data: i n std-logic-vector (B - 1 downto 0) ;
r-data: o u t std-logic-vector (B - 1 downto 0)

1’) ;
end reg-f ile;

a r c h i t e c t u r e arch of reg-file i s
t y p e reg-file-type i s a r r a y (2**W-1 downto 0) of

10 std-logic-vector (B - 1 downto 0) ;
s i g n a l array-reg : reg-f ile-type;

p r o c e s s (clk , reset)
b e g i n

25 i f (reset=’l’) t h e n

b e g i n

array-reg <= (o t h e r s = > (o t h e r s = > ’ O ’)) ;

SIMPLE DESIGN EXAMPLES 79

e l s i f (clk’event and clk=’l’) then
i f wr-en=’l’ then

array-reg(to-integer(unsigned(w-addr))) <= w-data;
?O end i f ;

end i f ;
end p r o c e s s ;
__ r e a d p o r t
r-data <= array-reg(to-integer(unsigned(r-addr)));

2 5 end a r c h ;

The code includes several new features. First, since no built-in two-dimensional ar-
ray is defined in the s td - log ic - I164 package a user-defined array-of-array data type,
reg-f i l e - t y p e , is introduced. It is first defined by a type statement and is then used by the
a r r ay - reg signal. Second, a signal is used as an index to access an element in the array, as
in a r r a y - r e g (. . w-addr . . 1. Although the description is very abstract, Xilinx software
recognizes this language construct and can derive the correct implementation accordingly.
The array-reg(. . .) <= . . . and . . . <= array-reg(. . .) statements infer decoding and
multiplexing logic, respectively.

Some applications may need to retrieve multiple data words at the same time. This can
be done by adding an additional read port:

r-data2 <= array-reg(to-integer(unsigned(r-addr-2)));

4.2.4 Storage components in a Spartan-3 devicexiiinx specific

In a Spartan-3 device, each logic cell contains a D FF with asynchronous reset and syn-
chronous enable. These D FFs basically constitute the register of Figure 4.2. Since a logic
cell also contains a four-input LUT, it will be wasteful if the cell is just used simply as
1 bit of a massive storage. The Spartan-3 device also has distributed RAM (random access
memory) and block RAM modules, and they can be used for larger storage requirements.
These modules can be configured for synchronous operation, and their characteristics are
somewhat like a restricted version of the register file. The configuration and inference of
these modules are discussed in Chapter 11.

4.3 SIMPLE DESIGN EXAMPLES

We illustrate the construction of several simple, representative sequential circuits in this
section.

4.3.1 Shift register

Free-running shift register A free-running shift register shifts its content to the left
or right by one position in each clock cycle. There is no other control signal. The code for
an N-bit free-running shift-right register is shown in Listing 4.7.

Listing 4.7 Free-running shift register

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y free-run-shift-reg i s

80 REGULAR SEQUENTIAL CIRCUIT

g e n e r i c (N: integer : = 8) ;
5 p o r t (

clk, reset: i n std-logic;
s-in: i n std-logic;
s-out : out std-logic

) ;
to end f ree-run-shif t-reg ;

a r c h i t e c t u r e arch of free-run-shift-reg i s
s i g n a l r-reg : std-logic-vector (N-1 downto 0) ;
s i g n a l r-next : std-logic-vector (N-1 downto 0) ;

__ r e g i s t e r
p r o c e s s (clk , reset
beg in

15 beg in

i f (reset=’l’) then
20 r-reg <= (o t h e r s = > ’ O ’) ;

e l s i f (clk’event and clk=’l’) then

end i f ;
end p r o c e s s ;

r-next <= s-in & r-reg(N-1 downto 1);
__ o u t p u t
s-out <= r-reg(0);

r-reg <= r-next;

25 -- n e x t - s t a t e l o g i c (s h i f t r i g h t I b i t)

end arch;

The next-state logic is a 1-bit shifter, which shifts r-reg right one position and inserts
the serial input, s-in, to the MSB. Since the 1-bit shifter involves only reconnection of
the input and output signals, no real logic is needed. Its propagation delay represents the
smallest possible Tcomb, and the corresponding f m a z represents the highest clock rate that
can be achieved for a given device technology.

Universal shift register A universal shift register can load parallel data, shift its content
left or right, or remain in the same state. It can perform parallel-to-serial operation (first
loading parallel input and then shifting) or serial-to-parallel operation (first shifting and
then retrieving parallel output). The desired operation is specified by a 2-bit control signal,
ctrl. The code is shown in Listing 4.8.

Listing 4.8 Universal shift register

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y univ-shift-reg i s

g e n e r i c (N : integer : = 8) ;
s p o r t (

clk, reset: in std-logic;
ctrl: i n std-logic-vector (1 downto 0) ;
d : i n std-logic-vector (N - 1 downto 0) ;
q : out std-logic-vector (N - 1 downto 0)

in) ;
end univ-shift-reg;

a r c h i t e c t u r e arch of univ-shift-reg i s

SIMPLE DESIGN EXAMPLES 81

s i g n a l r-reg : std-logic-vector (N-1 downto 0) ;
1 5 s i g n a l r-next : std-logic-vector (N - 1 downto 0) ;

b e g i n
__ r e g i s t e r
p r o c e s s (clk, reset)
b e g i n

20 i f (reset='l') then
r-reg <= (o t h e r s = > ' O ') ;

r-reg <= r-next;
e I s i f (clk ' event and clk= ' 1 ') then

end i f ;
:C end p r o c e s s ;

_- n e x t - s t a t e l o g i c
with ctrl s e l e c t
r-next <=

when " 0 0 " -- r-reg , no OP

30 r-reg"-2 downto 0) & d(0) when " 0 1 " , - - s h i f t l e f t :
d(N-1) & r-reg(N-1 downto 1) when "lo", - - s h i f t r i g h t ;
d when o t h e r s ; -- l o a d

__ o u t p u t
q <= r-reg;

35 end arch;

The next-state logic uses a 4-to-1 multiplexer to select the desired next value of the
register. Note that the LSB and MSB of d (i.e., d(0) and d(N-I)) are used as serial input
for the shift-left and shift-right operations.

In a Xilinx Spartan-3 device, a logic cell's 4-input LUT is implemented by a 16-by-1
SRAM. The same SRAM can also be configured as a cascading chain of sixteen 1-bit SRAM Xilinx
cells, which resembles a 16-bit shift register. This can be used to construct certain forms specific
of shift register and leads to very efficient implementation.

4.3.2 Binary counter and variant

Free-running binary counter A free-running binary counter circulates through a bi-
nary sequence repeatedly. For example, a 4-bit binary counter counts from "OOOO", "0001 'I,
. . , , to 'I 1 1 1 1 'I and wraps around. The code for a parameterized N-bit free-running binary
counter is shown in Listing 4.9.

Listing 4.9 Free-running binary counter

l i b r a r y ieee;
use ieee.std-logic-ll64.all;
use ieee. numeric-std. a l l ;
e n t i t y free-run-bin-counter i s

j g e n e r i c (N : integer : = 8);
p o r t (

clk, reset: i n std-logic;
max-tick: o u t std-logic;
q: o u t std-logic-vector (N-1 downto 0)

i n) ;
end free-run-bin-counter ;

a r c h i t e c t u r e arch of free-run-bin-counter i s

82 REGULAR SEQUENTIAL CIRCUIT

Table 4.1 Function table of a universal binary counter

syn-clr load en up q* Operation

1 - - - 00 ‘ . .OO synchronous clear
0 1 - - d parallel load
0 0 1 1 q+1 count up
0 0 1 0 q-I count down
0 0 0 - 9 pause

s i g n a l r-reg: unsigned(N-1 downto 0) ;
is s i g n a l r-next : unsigned (N - 1 downto 0) ;

b e g i n
__ r e g i s t e r
p r o c e s s (clk, reset)
b e g i n

20 i f (reset=’l’) t h e n
r-reg <= (o t h e r s = > ’ O ’) ;

r-reg <= r-next;
e l s i f (clk’event and clk=’l’) t h e n

end i f ;
2s end p r o c e s s ;

_- n e x t - s t a t e l o g i c
r-next <= r-reg + 1;
_- o u t p u t l o g i c
q <= std-logic-vector(r-reg);

30 max-tick <= ’ 1 ’ when r-reg=(2**N-l) e l s e J O J ;
end arch;

~ ~~~

The next-state logic is an incrementor, which adds 1 to the register’s current value. By
definition of the + operator in the IEEE numeric-std package, the operation implicitly
wraps around after the r - reg reaches ’’ 1. . .1”. The circuit also consists of an output status
signal, max-t ick, which is asserted when the counter reaches the maximal value, ” 1. . . 1
(which is equal to 2N - 1).

The max-t i ck signal represents a special type of signal that is asserted for a single clock
cycle. In this book, we call this type of signal a tick and use the suffix - t i ck to indicate a
signal with this property. It is commonly used to interface with the enable signal of other
sequential circuits.

Universal binary counter A universal binary counter is more versatile. It can count up
or down, pause, be loaded with a specific value, or be synchronously cleared. Its functions
are summarized in Table 4.1. Note the difference between the r e s e t and syn-clr signals.
The former is asynchronous and should only be used for system initialization. The latter is
sampled at the rising edge of the clock and can be used in normal synchronous design. The
code for this counter is shown in Listing 4.10.

Listing 4.10 Universal binary counter

l i b r a r y ieee;
use ieee.std-logic-ll64.all;
use ieee . numeric-std. a l l ;
e n t i t y univ-bin-counter i s

SIMPLE DESIGN EXAMPLES 83

i g e n e r i c (N : integer : = 8) ;

p o r t (
clk, reset: i n std-logic;
syn-clr , load, en, up: i n std-logic;
d : i n std-logic-vector (N - 1 downto 0) ;

q : o u t std-logic-vector (N - 1 d o w n t o 0)
I (1 max-tick, min-tick: o u t std-logic;

) ;
e n d univ-bin-counter;

15 a r c h i t e c t u r e arch of univ-bin-counter i s
s i g n a l r-reg : unsigned (N - 1 downto 0) ;
s i g n a l r-next : unsigned (N - 1 downto 0) ;

__ r e g i s t e r

b e g i n

b e g i n

20 p r o c e s s (clk, reset)

i f (reset=’l’) t h e n

e l s i f (clk’event a n d clk=’l’) t h e n

e n d i f ;
e n d p r o c e s s ;
__ n e x t - s t a t e l o g i c
r-next <= (o t h e r s = > ’ O ’) when syn-clr=’l’ e l s e

r-reg <= (o t h e r s = > ’ O ’) ;

15 r-reg <= r-next;

30 unsigned (d) when load= 1 ’ e l s e
r-reg f 1 when en = J l ’ a n d up=’l’ e l s e
r-reg - 1 when en = ’ i ’ a n d up=’O’ e l s e
r-reg ;

__ o u t p u t l o g i c

max-tick <= ’ 1 ’ when r-reg=(2**N-l) e l s e ’ O J ;
min-tick <= ’ 1 ’ when r-reg=O e l s e ’ 0 ’ ;

35 q <= std-logic-vector (r-reg) ;

e n d arch;

The next-state logic follows the function table and uses a conditional signal assignment to
prioritize the desired operations.

Mod- counter A mod-m counter counts from 0 to m - 1 and wraps around. A
parameterized mod-m counter is shown in Listing 4.11. It has two generics. One is M,
which specifies the limit, m , and the other is N, which specifies the number of bits needed
and should be equal to /log, M I . The code is shown in Listing 4.11, and the default value
is for a mod- 10 counter.

Listing 4.11 Mod-m counter

l i b r a r y ieee;
u s e ieee.std-logic-ll64,all;
u s e ieee . numeric-std. a l l ;
e n t i t y mod-m-counter i s

5 g e n e r i c (
N: integer : = 4; -- n u m b e r o f b i t s
M : integer : = 10 -- m o d 4

) ;

84 REGULAR SEQUENTIAL CIRCUIT

p o r t (
10 clk, reset: i n std-logic;

max-tick: ou t std-logic;
q : o u t std-logic-vector (N - 1 downto 0)

) ;
end mod-m-counter ;

a r c h i t e c t u r e arch of mod-m-counter i s
15

s i g n a l r-reg : unsigned (N - 1 downto 0) ;
s i g n a l r-next : unsigned (N - 1 downto 0) ;

begin
20 -- r e g i s t e r

25

p r o c e s s (clk, reset)
begin

if (reset=’l’) t h e n

e l s i f (clk’event and clk=’l’) t hen

end i f ;

r-reg <= (o t h e r s = > ’ O ’) ;

r-reg <= r-next;

end p r o c e s s ;
__ n e x t - s t a t e l o g i c

30 r-next <= (o t h e r s = > ’ O ’) when r-reg=(M-l) e l s e
r-reg + 1 ;

__ o u t p u t l o g i c
q <= std-logic-vector(r-reg);
max-tick <= ’ 1 ’ when r-reg=(M-l) e l s e ’ 0 ’ ;

is end arch;

The next-state logic is constructed by a conditional signal assignment statement. If the
counter reaches M-1, the new value is cleared to 0. Otherwise, it is incremented by 1.

Inclusion of the N parameter in the code is somewhat redundant since its value depends
on M. A more elegant way is to define a function that calculates N from M automatically. In
VHDL, this can be done by creating a user-definedfuncrion in a package and invoking the
package before the entity declaration. This is beyond the scope of this book and the details
may be found in the references cited in the Bibliographic section.

4.4 TESTBENCH FOR SEQUENTIAL CIRCUITS

A testbench is a program that mimics a physical lab bench, as discussed in Section 1.4.
Developing a comprehensive testbench is beyond the scope of this book. We discuss a
simple testbench for the previous universal binary counter in this section. It can serve as a
template for other sequential circuits. The code for the testbench is shown in Listing 4.12.

Listing 4.12 Testbench for a universal binarv counter

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;

e n t i t y bin-counter-tb i s
5 end bin-counter-tb;

a r c h i t e c t u r e arch of bin-counter-tb i s

TESTBENCH FOR SEQUENTIAL CIRCUITS 85

c o n s t a n t THREE: integer : = 3 ;
c o n s t a n t T : time : = 2 0 n s ; -- c l k p e r i o d

1 0 s i g n a l clk, reset: std-logic;
s i g n a l syn-clr , load, en, u p : std-logic;
s i g n a l d : std-logic-vector (T H R E E - 1 downto 0) ;
s i g n a l max-tick , min-tick: std-logic ;
s i g n a l q : std-logic-vector (T H R E E - 1 downto 0) ;

I S begin

50

S 5

60

__ .
__ i n s t a n t i a t i o n

counter-unit : e n t i t y work. univ-bin-counter (arch)
__ .

g e n e r i c map (N = > THREE)
port map(clk=>clk, reset=>reset , syn-clr=>syn-clr ,

load=>load, en=>en, u p = > u p , d=>d,
max-tick=>max-tick, min-tick=>min-tick, q = > q) ;

__ .
__ c l o c k

-- 2 0 n s c l o c k r u n n i n g f o r e v e r
p r o c e s s
begin

_- .

clk <= ’ 0 ’ ;
wai t f o r T / 2 ;
clk <= ’ 1 ’ ;
wait f o r T / 2 ;

end p r o c e s s ;

r e s e t
__ .
__

__ .
__ r e s e t a s s e r t e d f o r T / 2
reset <= ’ l ’ , ’ 0 ’ a f t e r T / 2 ;

__ .
__ o t h e r s t i m u l u s

p r o c e s s
begin

__ .

-_ .
__ i n i t i a 1 i n p u t

syn-clr <= ’ 0 ’ ;
load <= ’ 0 ’ ;

up <= > I > ; -- c o u n t up
d <= (o t h e r s = > ’ O ’) ;
wa i t u n t i l falling-edge (clk) ;
wait u n t i l falling-edge (clk) ;

__ t e s t l o a d

load <= ’1’:

__ .

en <= ’ 0 ’ ;

__ .

__ .

86 REGULAR SEQUENTIAL CIRCUIT

65

70

75

80

85

90

95

I00

105

I to

d <= "011";
w a i t u n t i l falling-edge (clk) ;
load <= '0';
-- p a u s e 2 c l o c k s
w a i t u n t i l falling-edge(clk);
w a i t u n t i l falling-edgecclk) ;

_- t e s t s y n - c l e a r

syn-clr <= '1'; -- c l e a r
w a i t u n t i l falling-edge (clk);
syn-clr <= '0';

_- t e s t up c o u n t e r and p a u s e

en <= '1'; -- c o u n t
up <= '1';
f o r i i n 1 t o 1 0 l o o p -- c o u n t 1 0 c l o c k s

end l o o p ;
en < = ' O ' ;
w a i t u n t i l f alling-edge (clk) ;
w a i t u n t i l f alling-edge (clk) ;
en <='I>;
w a i t u n t i l falling-edge(clk);
w a i t u n t i l falling-edge (clk);

__ .

_- .

__ .

__ .

w a i t u n t i l falling-edge (clk) ;

__ .
t e s t down c o u n t e r __

__ .
up <= '0';
f o r i i n 1 t o 10 l o o p -- r u n 1 0 c l o c k s

end l o o p ;

__ o t h e r w a i t c o n d i t i o n s

__ c o n t i n u e until q=2
w a i t u n t i l q="010";
w a i t u n t i l falling-edge (clk);
up <= '1';

__ c o n t i n u e u n t i l m i n - t i c k c h a n g e s v a l u e
w a i t on min-tick;
w a i t u n t i l falling-edge (clk) ;
up <= '0';
w a i t f o r 4*T; -- w a i t f o r 8 0 12s
en <= ' 0 ' ;
w a i t f o r 4*T;

__ t e r m i n a t e s i m u l a t i o n

a s s e r t false
r e p o r t 'I S i mu 1 at i on C o mp 1 e t e d "

w a i t u n t i l falling-edge (clk) ;

__ .

__ .

_- .

__ .

s e v e r i t y failure;

TESTBENCH FOR SEQUENTIAL CIRCUITS 87

end p r o c e s s ;
115 end arch;

The code consists of a component instantiation statement, which creates an instance of
a 3-bit counter, and three segments, which generate a stimulus for clock, reset, and regular
inputs. Since operation of a synchronous system is synchronized by a clock signal, we
define a constant with the built-in data type time for the clock period:

c o n s t a n t T : time : = 2 0 ns; -- c l k p e r i o d

The clock generation is specified by a process:

p r o c e s s
beg in

clk <= ’ 0 ’ ;
wai t f o r T / 2 ;
clk <= ’1’;
wai t f o r T / 2 ;

end p r o c e s s ;

The clk signal is assigned between ’0’ and ’ 1 ’ alternatively, and each value lasts for half a
period. Note that the process has no sensitivity list and repeats itself forever.

The reset stimulus involves one statement,

reset <= ’ I > , ’ 0 ’ a f t e r T / 2 ;

It indicates that the r e s e t signal is set to ’ 1’ initially and changed to ’0’ after half a period.
The statement represents the “power-on” condition, in which the r e s e t signal is asserted
momentarily to clear the system to the initial state. Note that, by default, the ’U’ value (for
uninitialized), not ’ 0 ’, is assigned to a signal with the s td- logic type. Using a short reset
pulse is a good mechanism to perform system initialization.

The last process statement generates a stimulus for other input signals. We first test
the load and clear operations and then exercise counting in both directions. The final
assert false statement forces the simulator to terminate simulation, as discussed in Sec-
tion 2.7.

For a synchronous system with positive edge-triggered FFs, an input signal must be stable
around the rising edge of the clock signal to satisfy the setup and hold time constraints. One
easy way to achieve this is to change an input signal’s value during the ’1’-to-’0’ transition
of the c l k signal. The f al l ing-edge function of the std-logic-1164 package checks
this condition, and we can use it in a wait statement:

wai t u n t i l falling-edge (clk) ;

Note that each statement represents a new falling edge, which corresponds to the advance-
ment of one clock cycle. In our template, we generally use this statement to specify the
progress of time. For multiple clock cycles, we can use a loop statement:

f o r i in 1 to 10 l oop -- c o u n t 1 0 c l o c k s

end l o o p ;
wa i t u n t i l falling-edge (clk) ;

There are other useful forms of wait statements, as shown at the end of the process. We
can wait until a special condition, such as “when q is equal to 2”,

wait u n t i l q = ” O l O ” ;

or wait until a signal changes, such as

88 REGULAR SEQUENTIAL CIRCUIT

reset
I t

Figure 4.4 Testbench waveform.

w a i t on m i n - t i c k ;

or wait for an absolute time, such as

w a i t for 4*T; -- w a i t f o r 4 c l o c k p e r i o d s

If an input signal is modified after these statements, we need to make sure that the input
change does not occur at the rising edge of the clock. An additional

w a i t u n t i l falling-edge(clk);

statement should be added when needed.

shown in Figure 4.4.
We can compile the code and perform simulation. Part of the simulated waveform is

4.5 CASE STUDY

After examining several simple circuits, we discuss the design of more sophisticated exam-
ples in this section.

4.5.1 LED time-multiplexing circuit

The S3 board has four seven-segment LED displays, each containing seven bars and one
small round dot. To reduce the use of FPGA's I/O pins, the S3 board uses a time-multiplexing
sharing scheme. In this scheme, the four displays have their individual enable signals but
share eight common signals to light the segments. All signals are active-low (i.e., enabled
when a signal is '0 ') . The schematic of displaying '3' on the rightmost LED is shown in
Figure 4.5. Note that the enable signal (i.e., an) is "1 110". This configuration clearly can
enable only one display at a time. We can time-multiplex the four LED patterns by enabling
the four displays in turn, as shown in the simplified timing diagram in Figure 4.6. If the
refreshing rate of the enable signal is fast enough, the human eye cannot distinguish the
on and off intervals of the LEDs and perceives that all four displays are lit simultaneously.
This scheme reduces the number of I/O pins from 32 to 12 (i.e., eight LED segments plus
four enable signals) but requires a time-multiplexing circuit. Two variations of the circuit
are discussed in the following subsections.

CASESTUDY 89

an0

an1

a ,.-,.

I

an3 an2 an1 an0
1 1 1 0

Figure 4.5 Time-multiplexed seven-segment LED display.

Figure 4.6 Timing diagram of a time-multiplexed seven-segment LED display.

90 REGULAR SEQUENTIAL CIRCUIT

/

18

disp-mux

q-reg (17.,16)
q-next q-reg

+I d 9 , ’ - 2 , ’

18 18 2
>clk

(a) Symbol

sseg in2
in3

/
I I

clk

reset

(b) Block diagram

Figure 4.7 Symbol and block diagram of a time-multiplexing circuit.

Time multiplexing with LED patterns The symbol and block diagram of the time-
multiplexing circuit are shown in Figure 4.7. It takes four seven-segment LED patterns,
in3, in2, ini, and inO, and passes them to the output, sseg, in accordance with the enable
signal.

The refresh rate of the enable signal has to be fast enough to fool our eyes but should
be slow enough so that the LEDs can be turned on and off completely. The rate around the
range 1000 Hz should work properly. In our design, we use an 18-bit binary counter for
this purpose. The two MSBs are decoded to generate the enable signal and are used as the
selection signal for multiplexing. The refreshing rate of an individual bit, such as an (0) ,
becomes W H z , which is about 800 Hz. The code is shown in Listing 4.13.

Listing 4.13 LED time-multiplexing circuit with LED patterns

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y disp-mux i s

5 p o r t (
clk, reset: i n std-logic;
in3, in2, inl, inO: i n std-logic-vsctor(7 downto 0) ;
an: out std-logic-vector (3 downto 0) ;
sseg : o u t std-logic-vector (7 downto 0)

10 1 ;
end disp-mux ;

CASESTUDY 91

a r c h i t e c t u r e arch of disp-mux i s
_- r e f r e s h i n g r a t e a r o u n d 8 0 0 H z (5 0 M H z / 2 ^ 1 6)

s i g n a l q-reg , q-next : unsigned (N - 1 downto 0) ;
s i g n a l sel: std-logic-vector (1 downto 0) ;

__ r e g i s t e r

beg in

1 5 c o n s t a n t N : integer :=18;

beg in

20 p r o c e s s (clk, reset)

i f reset='l' then

e l s i f (clk'event and clk='l') then

end i f ;
end p r o c e s s ;

q-reg <= (o t h e r s = > ' O ') ;

q-reg <= q-next;

-_ n e x t - s t a t e l o g i c f o r t h e c o u n t e r
30 q-next <= q-reg + 1 ;

-- 2 MSBs o f c o u n t e r t o c o n t r o l 4 - t o - I m u l t i p l e x i n g
__ and t o g e n e r a t e a c t i v e - l o w e n a b l e s i g n a l
sel <= std-logic-vector(q-reg(N-1 downto N-2)) ;
p r o c e s s (sel , inO, in1 , in2, in3)
beg in

3~

case sel i s
when " 0 0 " = >

an <= "1110";
40 sseg <= inO;

when " 0 1 " = >
an <= "1101";
sseg <= inl;

when "10" = >
44 an <= "1011";

sseg <= in2;

an <= "0111";
sseg <= in3;

when o t h e r s = >

5 0 end c a s e ;
end p r o c e s s ;

end arch;

We use the testing circuit in Figure 4.8 to verify operation of the LED time-multiplexing
circuit. It uses four 8-bit registers to store the LED patterns. The registers use the same
8-bit switch as input but are controlled by individual enable signal. When we press a button,
the corresponding register is enabled and the switch pattern is loaded to that register. The
code is shown in Listing 4.14.

Listing 4.14 Testing circuit for time multiplexing with LED patterns

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y disp-mux-test i s

5 p o r t (

92 REGULAR SEQUENTIAL CIRCUIT

sw -
btn(0)

4-d
btn(1) ~

4-

btn(2)

-d
btn(3)

d q
en

>

q
en in0 sseg sseg

> in1 an an
in2 - in3

d q disp-mux

en

> reset

4
en

>

Figure 4.8 LED time-multiplexing testing circuit.

clk: in std-logic;
btn: in std-logic-vector (3 downto 0) ;
sw: i n std-logic-vector (7 downto 0) ;
an: out std-logic-vector (3 downto 0) ;

10 sseg : out std-logic-vector (7 downto 0)

1 ;
end disp-mux-test ;

a r c h i t e c t u r e arch
1 5 s i g n a l d3_reg,

s i g n a l dl-reg ,

disp-unit : e n t
port map(

clk=>clk

beg in

20

30

of disp-mux-test i s
d2-reg: std-logic-vector (7 downto 0) ;
do-reg : std-logic-vector (7 downto 0) ;

t y work. disp-mux

reset => ’ 0 ’ ,
in3=>d3_reg, in2=>d2_reg, inl=>dl-reg,
inO=>dO-reg, an=>an, sseg=>sseg) ;

__ r e g i s t e r s f o r 4 l e d p a t t e r n s
p r o c e s s (clk)

25 beg in
i f (clk’event and clk=’l’) then

i f (btn(3)=’1’) then

end i f ;
i f (btn(2)=’l’) then

end i f ;
i f (btn(l)=’l’) then

d3-reg <= s w ;

d2-reg <= sw;

dl-reg <= s w ;

CASESTUDY 93

/ + I
18

,
/ 4

hexO
hexl
hex2 /

/ 4

q-next q-reg
q-reg (17,.16) d q 1 ’ - = / ’

18 18 2
>clk

elk

reset
2-to-4

1

- decoder /

Figure 4.9 Block diagram of a hexadecimal time-multiplexing circuit.

35 end i f ;
i f (btn(O)=’l’) then

end i f ;
do-reg <= s w ;

end i f ;
40 end p r o c e s s ;

end arch;

an

Time multiplexing with hexadecimal digits The most common application of a
seven-segment LED is to display a hexadecimal digit. The decoding circuit is discussed
in Section 3.7.1. To display four hexadecimal digits with the previous time-multiplexing
circuit, four decoding circuits are needed. A better alternative is first to multiplex the
hexadecimal digits and then decode the result, as shown in Figure 4.9.

This scheme requires only one decoding circuit and reduces the width of the 4-to-1
multiplexer from 8 bits to 5 bits (i.e., 4 bits for the hexadecimal digit and 1 bit for the
decimal point). The code is shown in Listing 4.15. In addition to clock and reset, the input
consists of four 4-bit hexadecimal digits, hex3, hex2, hexl, and hex0, and four decimal
points, which are grouped as one signal, dp-in.

Listing 4.15 LED time-multiplexing circuit with hexadecimal digits

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y disp-hex-mux i s

5 p o r t (
clk, reset: i n std-logic;
h e x 3 , hex2, hexl , hexO: i n std-logic-vector (3 downto 0) ;
dp-in : i n std-logic-vector (3 downto 0) ;
an: o u t std-logic-vector (3 downto 0) ;

10 sseg : o u t std-logic-vector (7 downto 0)

) ;
end disp-hex-mux ;

94 REGULAR SEQUENTIAL CIRCUIT

a r c h i t e c t u r e arch of disp-hex-mux i s
i s -- e a c h 7 - s e g l e d e n a b l e d (2 ^ 1 8 / 4) * 2 . 5 n s (4 0 m s)

c o n s t a n t N: integer :=18;
s i g n a l q-reg , q-next : unsigned (N-1 downto 0) ;
s i g n a l sel : std-logic-vector (1 downto 0) ;
s i g n a l hex: std-logic-vector (3 downto 0) ;

20 s i g n a l dp: std-logic;
begin

-- r e g i s t e r
p r o c e s s (clk , reset)
beg in

25 i f reset='l' then
q-reg <= (o t h e r s = > ' 0 ') ;

q-reg <= q-next;
e l s i f (clk'event and clk='l') then

end i f ;
30 end p r o c e s s ;

-- n e x t - s t a t e l o g i c for t h e c o u n t e r
q-next <= q-reg + 1 ;

45

50

60

65

35 -- 2 MSBs o f c o u n t e r t o c o n t r o l 4 - t o - l m u l t i p l e x i n g
sel <= std-logic-vector (q-reg"-1 downto N-2)) ;
p r o c e s s (sel , hex0 , hexl , hex2, hex3, dp-in)
beg in

c a s e sel i s
40 when "00" =>

an <= " 1 1 1 0 " ;
hex <= hex0;
dp <= dp-in(0);

an <= " 1 1 0 1 " ;
hex <= hexl;
dp <= dp-in(l);

an <= ' ~ 1 0 1 1 " ;
hex <= hex2;
dp <= dp-in(2);

an <= " 0 1 1 1 " ;
hex <= hex3;

when " 0 1 " =>

when " 1 0 " =>

when o t h e r s =>

5s dp <= dp-in(3);
end c a s e ;

end p r o c e s s ;
-_ hex - t o - 7- s e g in e IZ t I e d d e c o d i n g
with hex s e l e c t

sseg(6 downto 0) <=
t ' O O O O O O 1 I' when " 0 0 0 0 " ,
I' 1 0 0 1 1 1 1 (' when " 0 0 0 1 I' ,
" 0 0 1 0 0 1 0 " when " 0 0 1 0 " ,
~ ~ 0 0 0 0 ~ 1 0 " when " 0 0 1 1 " ,
t ~ l O O ~ ~ O O " when "OIOO",

CASESTUDY 95

7u

75

'I 0 1 0 0 100 It when I' 0 10 1 'I ,
'' 0 100000 I' when 'I 0 1 10 'I ,
'I 0 0 0 1 1 1 1 'I when It 0 1 1 1 I' ,
r l O O O O O O O 1 t when t l l O O O 1 t ,
" 0 0 0 0 1 0 0 " when " 1 0 0 1 " ,
" 0 0 0 1 0 0 0 " when " 1 0 1 0 " , --a
" 1 1 0 0 0 0 0 " when " 1 0 1 1 " , -4
t t O 1 l O O O 1 l t when " 1 1 0 0 " , --c
" 1 0 0 0 0 1 0 " when " 1 1 0 1 " , --d
" 0 1 1 0 0 0 0 " when "1110", --e
" 0 1 1 1 0 0 0 " when o t h e r s ; --f

-_ d e c i m a l p o i n t
sseg(7) <= dp;

end arch;

To verify operation of this circuit, we define the 8-bit switch as two 4-bit unsigned
numbers, add the two numbers, and show the two numbers and their sum on the four-digit
seven-segment LED display. The code is shown in Listing 4.16.

Listing 4.16

l i b r a r y ieee;
u s e ieee. std-logic-1164. a l l ;
u s e ieee. numeric-std. a l l ;
e n t i t y hex-mux-test i s

Testing circuit for time multiplexing with hexadecimal digits

5 p o r t (
clk: i n std-logic;
sw: i n std-logic-vector (7 downto 0) ;
an: o u t std-logic-vector (3 downto 0) ;
sseg : o u t std-logic-vector (7 downto 0)

10) ;
end hex-mux-test;

a r c h i t e c t u r e arch of hex-mux-test i s
s i g n a l a , b: unsigned(7 downto 0) ;

15 s i g n a l sum: std-logic-vector (7 downto 0) ;
b e g i n

disp-unit : e n t i t y work. disp-hex-mux
p o r t map(

clk=>clk, reset=>'O',
20 hex3=>sum(7 downto 4), hex2=>sum(3 downto 0) ,

hexl=>sw(7 downto 4), hexO=>sw(3 downto 0 1 ,
dp-in=>"lOll" , an=>an, sseg=>sseg) ;

a <= " 0 0 0 0 " & unsigned(sw(3 downto 0)) ;
b <= "0000" & unsigned(sw(7 downto 4));

2 5 sum <= std-logic-vector(a + b);
end arch;

Simulation consideration Many sequential circuit examples in the book operate at a
relatively slow rate, as does the enable pulse of the LED time-multiplexing circuit. This
can be done by generating a single-clock enable tick from a counter. An 18-bit counter is
used in this circuit:

c o n s t a n t N : integer : =18;

96 REGULAR SEQUENTIAL CIRCUIT

s i g n a l q-reg , q-next : unsigned (N - 1 downto 0) ;

q-next (= g-reg + 1 ;
. . .

Because of the counter's size, simulating this type of circuit consumes a significant amount
of computation time (i.e., 218 clock cycles for one iteration). Since our main interest is in
the multiplexing part of the code, most simulation time is wasted. It is more efficient to use
a smaller counter in simulation. We can do this by modifying the constant statement

c o n s t a n t N : integer : = 4 ;

when constructing the testbench. This requires only 2* clock cycles for one iteration and
allows us to better exercise and observe the key operations.

Instead of using a constant statement and modifying code between simulation and syn-
thesis, an alternative is to define a generic for the relevant parameter. During instantiation,
we can assign different values for simulation and synthesis.

4.5.2 Stopwatch

We consider the design of a stopwatch in this subsection. The watch displays the time in
three decimal digits, and counts from 00.0 to 99.9 seconds and wraps around. It contains
a synchronous clear signal, clr, which returns the count to 00.0, and an enable signal,
go, which enables and suspends the counting. This design is basically a BCD (binary-
coded decimal) counter, which counts in BCD format. In this format, a decimal number is
represented by a sequence of 4-bit BCD digits. For example, 13910 is represented as "0001
001 1 1001" and the next number in sequence is 14O1o, which is represented as "0001 0100
0000".

Since the S3 board has a 50-MHz clock, we first need a mod-5,000,000 counter that
generates a one-clock-cycle tick every 0.1 second. The tick is then used to enable counting
of the three-digit BCD counter.

Design I Our first design of the BCD counter uses a cascading structure of three decade
(i.e., mod-10) counters, representing counts of 0.1, 1, and 10 seconds, respectively. The
decade counter has an enable signal and generates a one-clock-cycle tick when it reaches 9.
We can use these signals to "hook" the three counters. For example, the 10-second counter
is enabled only when the enable tick of the mod-5,000,000 counter is asserted and both the
0.1- and I-second counters are 9. The code is shown in Listing 4.17.

Cascading description for a stopwatch Listing 4.17

l i b r a r y ieee;
use ieee . std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y stop-watch i s

z p o r t (
c l k : in std-logic;
g o , clr: i n std-logic;
d2, d l , do: out std-logic-vector (3 downto 0)

) ;
10 end stop-watch;

a r c h i t e c t u r e cascade-arch of stop-watch i s
c o n s t a n t DVSR: integer : =5000000;

CASESTUDY 97

s i g n a l ms-reg , ms-next : unsigned (22 d o w n t o 0) ;

s i g n a l d2-next , dl-next , do-next : unsigned (3 d o w n t o 0) ;
s i g n a l dl-en , d2_en, dO-en: std-logic;
s i g n a l ms-tick , do-tick, dl-tick: std-logic ;

15 s i g n a l d2_reg, dl-reg , do-reg : unsigned (3 d o w n t o 0) ;

b e g i n
20

40

60

__ r e g i s t e r
p r o c e s s (clk)
b e g i n

i f (clk ’ event a n d clk= ’ 1 ’) t h e n
ms-reg <= ms-next;
d2-reg <= d2-next;
dl-reg <= dl-next;
do-reg <= do-next;

e n d i f ;
e n d p r o c e s s ;

__ n e x t - s t a t e l o g i c
__ 0 . 1 s e e t i c k g e n e r a t o r : mod-5000000
ms-next <=

(o t h e r s = > ’ O ’) when clr=’l’ or

ms-reg + 1 when go=’l’ e l s e
ms-reg ;

(ms-reg=DVSR a n d go=’l’) e l s e

ms-tick <= ’1’ when ms-reg=DVSR e l s e ’ 0 ’ ;
__ 0 . 1 s e e c o u n t e r
d0-en <= ’1’ when ms-tick=’l’ e l s e ’ 0 ’ ;
do-next <=

“ 0 0 0 0 ” when (clr=’l ’) o r (dO-en=’l’ a n d dO_reg=9) e l s e
do-reg + 1 when dO-en=’l’ e l s e
do-reg ;

do-tick <= ’1’ when dO_reg=9 e l s e ’ 0 ’ ;
__ I s e e c o u n t e r
dl-en <= ’ 1 ’ when ms-tick=’l’ a n d dO-tick=’l’ e l s e
dl-next <=

“ 0 0 0 0 ” when (clr=’l’) o r (dl-en=’l’ a n d dl_reg=9
dl-reg + 1 when dl-en=’l’ e l s e
dl-reg ;

dl-tick <= ’1’ when dl_reg=9 e l s e ’ 0 ’ ;
_- I 0 s e e c o u n t e r
d2-en <=

0 ’ ;

e l s e

’1’ when ms-tick=’l’ a n d dO-tick=’l’ a n d dl-tick=’l’ e l s e
’0’;

“ 0 0 0 0 ” when (clr=’l’) o r (d2_en=’l’ a n d d2_reg=9) e l s e
d2-reg + 1 when d2_en=’l’ e l s e
d2-reg ;

d2-next <=

__ o u t p u t l o g i c
dO <= std-logic-vector (dO-reg) ;
dl <= std-logic-vector(dl-reg);
d2 <= std-logic-vector(d2-reg);

end cascade-arch;

98 REGULAR SEQUENTIAL CIRCUIT

Note that all registers are controlled by the same clock signal. This example illustrates
how to use a one-clock-cycle enable tick to maintain synchronicity. An inferior approach
is to use the output of the lower counter as the clock signal for the next stage. Although it
may appear to be simpler, it violates the synchronous design principle and is a very poor
practice.

Design /I An alternative for the three-digit BCD counter is to describe the entire structure
in a nested if statement. The nested conditions indicate that the counter reaches .9,9.9, and
99.9 seconds. The code is shown in Listing 4.18.

Listing 4.18 Nested if-statement description for a stopwatch

a r c h i t e c t u r e if-arch of stop-watch i s
c o n s t a n t DVSR: integer : = 5 0 0 0 0 0 0 ;
s i g n a l ms-reg , ms-next : unsigned (22 downto 0) ;
s i g n a l d2_reg, dl-reg , dO-reg: unsigned (3 downto 0) ;

s i g n a l ms-tick: std-logic;

-_ r e g i s t e r
p r o c e s s (clk)

5 s i g n a l dz-next, dl-next , do-next : unsigned(3 downto 0) ;

beg in

1 0 beg in
i f (clk event and clk= ’ 1 ’ then

ms-reg <= ms-next;
d2-reg <= d2-next;
dl-reg <= dl-next;
do-reg <= do-next;

end i f ;
end p r o c e s s ;

I 5

25

30

40

_- n e x t - s t a t e l o g i c

ms-next <=
20 -- 0 . 1 s e c t i c k g e n e r a t o r : mod-5000000

(o t h e r s = > ’0 ’) when clr=’l’ or

ms-reg + 1 when go=’l’ e l s e
ms-reg ;

(ms-reg=DVSR and go= ’ 1 ’) e l s e

ms-tick <= ’ 1 ’ when ms-reg=DVSR e l s e ’ 0 ’ ;
-- 3 - d i g i t i n c r e m e n t o r
p r o c e s s (do-reg , dl-reg ,d2_reg ,ms-tick, clr)
beg in

-- d e f a u l t
do-next <= do-reg;
dl-next <= dl-reg;
d2-next <= d2-reg;
i f clr= ’ 1 ’ then

do-next <= ”0000”;
dl-next <= ”0000”;
d2-next <= ”0000”;

e l s i f ms-tick=’l ’ then
i f (dO_reg/=9) then

do-next <= do-reg + 1 ;
e l s e -- r e a c h X X 9

do-next <= “0000“;

CASESTUDY 99

i f (dl_reg/=9) then
dl-next <= dl-reg + 1;

dl-next <= "0000";
i f (d2_reg/=9) then

e l s e -- r e a c h 9 9 9

end i f ;

15 e l s e -- r e a c h X 9 9

d2-next <= d2-reg + 1 ;

50 d2-next <= "0000";

end i f ;
end i f ;

end i f ;
5 s end p r o c e s s ;

__ o u t p u t l o g i c
dO <= std-logic-vector(d0-reg);
dl <= std-logic-vector(dl-reg);
d2 <= std-logic-vector (d2-reg) ;

M) end if -arch;

Verification circuit To verify operation of the stopwatch, we can combine it with the
previous hexadecimal LED time-multiplexing circuit to display the output of the watch.
The code is shown in Listing 4.19. Note that the first digit of the LED is assigned to 0 and
the go and c l r signals are mapped to two buttons of the S3 board.

Listing 4.19 Testing circuit for a stopwatch

l i b r a r y ieee;
use ieee . std-logic-1164. a l l ;
e n t i t y stop-watch-test i s

por t (
5 clk: in std-logic;

btn: in std-logic-vector (3 downto 0) ;
an: out std-logic-vector (3 downto 0) ;
sseg : out std-logic-vector (7 downto 0)

) ;
10 end stop-watch-test;

a r c h i t e c t u r e arch of stop-watch-test i s

beg in
s i g n a l d2, dl , dO : std-logic-vector (3 downto 0) ;

1 5 disp-unit : e n t i t y work. disp-hex-mux
port map(

clk=>clk, reset=>'O',
hex3=>"0000" , hex2=>d2,
hexl=>dl , hexO=>dO,
dp-in=>" 1 1 0 1 " , an=>an, sseg=>sseg) ; 20

watch-unit : e n t i t y work. stop-watch(cascade-arch)
port map(

clk=>clk, go=>btn(l) , clr=>btn(O),
2 s d2 =>d2, dl=>dl, dO=>dO) ;

end arch;

100 REGULAR SEQUENTIAL CIRCUIT

FIFO buffer

from FIFO
data written
into FIFO

data read

Figure 4.10 Conceptual diagram of a FIFO buffer.

4.5.3 FIFO buffer

A FIFO (first-in-first-out) buffer is an “elastic” storage between two subsystems, as shown
in the conceptual diagram of Figure 4.10. It has two control signals, w r and rd, for write
and read operations. When w r is asserted, the input data is written into the buffer. The
read operation is somewhat misleading. The head of the FIFO buffer is normally always
available and thus can be read at any time. The rd signal actually acts like a “remove”
signal. When it is asserted, the first item (i.e., head) of the FIFO buffer is removed and the
next item becomes available.

FIFO buffer is a critical component in many applications and the optimized implemen-
tation can be quite complex. In this subsection, we introduce a simple, genuine circular-
queue-based design. More efficient, device-specific implementation can be found in the
Xilinx literature.

Circular-queue-based implementation One way to implement a FIFO buffer is to
add a control circuit to a register file. The registers in the register file are arranged as a
circular queue with two pointers. The write pointer points to the head of the queue, and the
readpointer points to the tail of the queue. The pointer advances one position for each write
or read operation. The operation of an eight-word circular queue is shown in Figure 4.11.

A FIFO buffer usually contains two status signals, full and empty, to indicate that the
FIFO is full (i.e., cannot be written) and empty (i.e., cannot be read), respectively. One of
the two conditions occurs when the read pointer is equal to the write pointer, as shown in
Figure 4.11(a), (f), and (i). The most difficult design task of the controller is to derive a
mechanism to distinguish the two conditions. One scheme is to use two FFs to keep track
of the empty and full statuses. The FFs are set to ’ 1 ’ and ’0’ during system initialization
and then modified in each clock cycle according to the values of the wr and rd signals. The
code is shown in Listing 4.20.

Listing 4.20 FIFO buffer

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y fifo i s

s g e n e r i c (
B: natural:=8; -- number of b i t s
W: natural:=4 -- number o f a d d r e s s b i t s

) ;
p o r t (

10 clk, reset: i n std-logic;
rd, wr: i n std-logic;

CASE STUDY 101

Figure 4.11 FIFO buffer based on a circular queue.

102 REGULAR SEQUENTIAL CIRCUIT

w-data: i n std-logic-vector (B - 1 d o w n t o 0) ;
empty, full : o u t std-logic;
r-data: o u t std-logic-vector (B - 1 d o w n t o 0)

I5 ;
e n d fifo:

a r c h i t e c t u r e arch of fifo i s
t y p e reg-file-type i s a r r a y (2**W-1 d o w n t o 0) of

20 std-logic-vector (B - 1 d o w n t o 0) ;
s i g n a l array-reg : reg-f ile-type ;
s i g n a l w-ptr-reg , w-ptr-next , w-ptr-succ :

s i g n a l r-ptr-reg , r-ptr-next , r-ptr-succ:

s i g n a l full-reg , empty-reg , full-next , empty-next :
std-logic;

s i g n a l wr-op: std-logic-vector (1 d o w n t o 0) ;
s i g n a l wr-en : std-logic ;

std-logic-vector (W-1 d o w n t o 0) ;

25 std-logic-vector (W - 1 d o w n t o 0) ;

30 b e g i n
__

__ r e g i s t e r f i l e
__

40

p r o c e s s (clk, reset)
3s b e g i n

i f (reset=’l ’) t h e n

e l s i f (clk’event a n d clk=’l’) t h e n
array-reg <= (o t h e r s = > (o t h e r s = > ’ 0 ’)) ;

i f wr-en=’l’ t h e n
array_reg(to-integer(unsigned(w-ptr-reg)))

<= w-data;
e n d i f ;

e n d i f ;
e n d p r o c e s s ;

4s -- r e a d p o r t
r-data <= array_reg(to-integer(unsigned(r-ptr-reg)));
__ w r i t e e n a b l e d o n l y when FIFO i s n o t f u l l
wr-en <= wr a n d (n o t full-reg);

50 --
-- f i f o c o n t r o l l o g i c

__ r e g i s t e r f o r r e a d a n d w r i t e p o i n t e r s
p r o c e s s (clk , reset)

__

55 b e g i n
i f (reset=’l’) t h e n

w-ptr-reg <= (o t h e r s = > ’ O ’) ;
r-ptr-reg <= (o t h e r s = > ’ O ’) ;
full-reg <= ’ 0 ’ ;
empty-reg <= ’ 1 ’ ;

w-ptr-reg <= w-ptr-next ;
r-ptr-reg <= r-ptr-next ;
full-reg <= full-next;

e l s i f (clk’event a n d clk=’l’) t h e n
60

CASE STUDY 103

65 empty-reg <= empty-next ;
end i f ;

end p r o c e s s ;

-- s u c c e s s i v e p o i n t e r v a l u e s
70 w-ptr-succ <= std-logic-vector (unsigned(w_ptr-reg)+l) ;

r-ptr-succ <= std-logic-vector(unsigned(r-ptr-reg)+l);

80

85

90

95

IW

-- n e x t - s t a t e logic f o r r e a d a n d w r i t e p o i n t e r s
wr-op <= wr k r d ;
p r o c e s s (w-ptr-reg, w-ptr-succ ,r-ptr-reg ,r-ptr-succ ,wr-op,

beg in

75

empty-reg , full-reg)

w-ptr-next <= w-ptr-reg;
r-ptr-next <= r-ptr-reg;
full-next <= full-reg;
empty-next <= empty-reg ;
c a s e wr-op i s

when " 0 0 " => -- n o o p
when "01" = > -- r e a d

i f (empty-reg /= '1') then -- n o t e m p t y
r-ptr-next <= r-ptr-succ;
full-next <= ' 0 ' ;
i f (r-ptr-succ=w-ptr-reg) then

end i f ;
empty-next <='l';

end i f ;

i f (full-reg / = ' 1 ') then -- n o t f u l l
when "10" = > -- w r i t e

w-ptr-next <= w-ptr-succ;
empty-next <= ' 0 ' ;
i f (w-ptr-succ=r-ptr-reg) then

end i f ;
full-next <='1';

end i f ;

w-ptr-next <= w-ptr-succ ;
r-ptr-next <= r-ptr-succ ;

when o t h e r s = > -- w r i t e / r e a d ;

end c a s e ;
end p r o c e s s ;

full <= full-reg;
empty <= empty-reg;

105 -- o u t p u t

end arch;

The code is divided into a register file and a FIFO controller. The controller consists of
two pointers and two status FFs. Its next-state logic examines the wr and rd signals and takes
actions accordingly. For example, let us consider the 'I 10" case, which implies that only a
write operation occurs. The status FF is checked first to ensure that the buffer is not full.
If this condition is met, we advance the write pointer by one position and clear the empty
status FF Storing one extra word to the buffer may make it full. This happens if the new
write pointer "catches" the read pointer, which is expressed by the w-ptr-succ=r-ptr-reg
expression.

104 REGULAR SEQUENTIAL CIRCUIT

Verification circuit The verification circuit examines the operation of a 24-by-3 FIFO
buffer. We use three switches to generate the input data and use two buttons for the w r
and rd signals. The 3-bit readout and the f u l l and empty status signals are displayed
in five discrete LEDs. Because of bounces of the mechanical contact, a debouncing cir-
cuit is needed to generate a clean, one-clock-cycle tick. The debouncing module, named
debounce, is discussed in Section 5.9 but for now can be treated as a predesigned mod-
ule. The original button inputs are b tn(0) and b t n (I), and the debounced signals are
db-btn(0) and db-btn(l) . The code is shown in Listing 4.21.

Listing 4.21 Testing circuit for a FIFO buffer

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y f i f o - t e s t i s

p o r t (
c l k , r e s e t : i n s t d - l o g i c ;
b t n : s t d - l o g i c - v e c t o r (1 downto 0) ;
sw: s t d - l o g i c - v e c t o r (2 downto 0) ;
l e d : out s t d - l o g i c - v e c t o r (7 downto 0)

1 ;
1 0 end f i f o - t e s t ;

a r c h i t e c t u r e a r c h o f f i f o - t e s t i s

beg in
s i g n a l d b - b t n : s t d - l o g i c - v e c t o r (1 downto 0) ;

15 -- d e b o u n c i n g c i r c u i t f o r b t n (0)
b t n - d b - u n i t 0 : e n t i t y work . debounce (f s r n d - a r c h)

p o r t m a p (c l k = > c l k , r e s e t = > r e s e t , s w = > b t n (O) ,
d b - l e v e l = > o p e n , d b - t i c k = > d b - b t n (0)) ;

-- d e b o u n c i n g c i r c u i t f o r b t n (l)
zo b t n - d b - u n i t 1 : e n t i t y work.debounce(fsrnd-arch)

p o r t m a p (c l k = > c l k , r e s e t = > r e s e t , s w = > b t n (l) ,
d b - l e v e l = > o p e n , d b - t i c k = > d b - b t n (1)) ;

-_ i n s t a n t i a t e a 2 ^ 2 - b y - 3 f i f o
f i f o - u n i t : e n t i t y w o r k . f i f o (a r c h)

25 g e n e r i c map(B=>3 , W=>2)
p o r t m a p (c l k = > c l k , r e s e t = > r e s e t ,

r d = > d b - b t n (0) , w r = > d b - b t n (1) ,
w-data=>sw , r - d a t a = > l e d (2 downto 0) ,
f u l l = > l e d (7) , e rnp ty=>led (6)) ;

30 -- d i s a b l e unused l e d s
l e d (5 downto 3) < = (o t h e r s = > ’ O ’) ;

end a r c h ;

4.6 BIBLIOGRAPHIC NOTES

The bibliographic information for this chapter is similar to that for Chapter 3.

SUGGESTED EXPERIMENTS 105

Figure 4.12 Pattern for Experiment 4.7.3.

4.7 SUGGESTED EXPERIMENTS

4.7.1 Programmable square wave generator

A programmable square wave generator is a circuit that can generate a square wave with
variable on (i.e,, logic ’ 1 ’) and off (i.e,, logic ’0’) intervals. The durations of the intervals are
specified by two 4-bit control signals, m and n, which are interpreted as unsigned integers.
The on and off intervals are m*100 ns and n*100 ns, respectively (recall that the period of
the S 3 onboard oscillator is 20 ns). Design a programmable square wave generator circuit.
The circuit should be completely synchronous. We need a logic analyzer or oscilloscope
to verify its operation.

4.7.2 PWM and LED dimmer

The duty cycle of a square wave is defined as the percentage of the on interval (i.e., logic
’ 1 ’) in a period. A PWM (pulse width modulation) circuit can generate an output with
variable duty cycles. For a PWM with 4-bit resolution, a 4-bit control signal, w, specifies
the duty cycle. The w signal is interpreted as an unsigned integer and the duty cycle is 5.

1. Design a PWM circuit with 4-bit resolution and verify its operation using a logic
analyzer or oscilloscope.

2. Modify the LED time-multiplexing circuit to include the PWM circuit for the an
signal. The PWM circuit specifies the percentage of time that the LED display is
on. We can control the perceived brightness by changing the duty cycle. Verify the
circuit’s operation by observing 1 bit of an on a logic analyzer or oscilloscope.

3. Replace the LED time-multiplexing circuit of Listing 4.19 with the new design and
use the lower 4 bits of the 8-bit switch to control the duty cycle. Verify operation of
the circuit. It may be necessary to go to a dark area to see the effect of dimming.

4.7.3 Rotating square circuit

In a seven-segment LED display, a square pattern can be created by enabling the a, b, f,
and g segments or the c, d, e, and g segments. We want to design a circuit that circulates
the square patterns in the four-digit seven-segment LED display. The clockwise circulating
pattern is shown in Figure 4.12. The circuit should have an input, en, which enables or
pauses the circulation, and an input, cw, which specifies the direction (i.e., clockwise or
counterclockwise) of the circulation.

Design the circuit and verify its operation on the prototyping board. Make sure that the
circulation rate is slow enough for visual inspection.

106 REGULAR SEQUENTIAL CIRCUIT

Figure 4.13 Pattern for Experiment 4.7.4.

4.7.4 Heartbeat circuit

We want to create a “heartbeat” for the prototyping board. It repeats the simple pattern in
the four-digit seven-segment display, as shown in Figure 4.13, at a rate of 72 Hz. Design
the circuit and verify its operation on the prototyping board.

4.7.5 Rotating LED banner circuit

The prototyping board has a four-digit seven-segment LED display, and thus only four
symbols can be displayed at a time. We can show more information if the data is ro-
tated and moved continuously. For example, assume that the message is 10 digits (i.e.,
“0123456789”). The display can show the message as “0123”, “1234”, “2345”, . . ., “6789”,
“7890”, . . ., “0123”. The circuit should have an input, en, which enables or pauses the
rotation, and an input, d i r , which specifies the direction (i.e., rotate left or right).

Design the circuit and verify its operation on the prototyping board. Make sure that the
rotation rate is slow enough for visual inspection.

4.7.6 Enhanced stopwatch

Modify the stopwatch with the following extensions:

0 Add an additional signal, up, to control the direction of counting. The stopwatch
counts up when the up signal is asserted and counts down otherwise.

0 Add a minute digit to the display. The LED display format should be like M . SS . D,
where D represents 0.1 second and its range is between 0 and 9, SS represents seconds
and its range is between 00 and 59, and M represents minutes and its range is between 0
and 9.

Design the new stopwatch and verify its operation with a testing circuit.

4.7.7 Stack

A stack is a last-in-first-out buffer in which the last stored data is retrieved first. Storing a
data word to a stack is known as a push operation, and retrieving a data word from a stack
is known as apop operation. The I/O signals of a stack are similar to those of a FIFO buffer
except that we generally use the push and pop signals in place of the w r and rd signals.
Design a stack using a register file and verify its operation with a testing circuit similar to
the one in Listing 4.21.

CHAPTER 5

FSM

5.1 INTRODUCTION

An FSM (finite state machine) is used to model a system that transits among a finite number
of internal states. The transitions depend on the current state and external input. Unlike a
regular sequential circuit, the state transitions of an FSM do not exhibit a simple, repetitive
pattern. Its next-state logic is usually constructed from scratch and is sometimes known as
“random” logic. This is different from the next-state logic of a regular sequential circuit,
which is composed mostly of “structured” components, such as incrementors and shifters.

In this chapter, we provide an overview of the basic characteristics and representation of
FSMs and discuss the derivation of HDL codes. In practice, the main application of an FSM
is to act as the controller of a large digital system, which examines the external commands
and status and activates proper control signals to control operation of a data path, which
is usually composed of regular sequential components. This is known as an FSMD (finite
state machine with data path) and is discussed in Chapter 6.

5.1.1 Mealy and Moore outputs

The basic block diagram of an FSM is the same as that of a regular sequential circuit and is
repeated in Figure 5.1. It consists of a state register, next-state logic, and output logic. An
FSM is known as a Moore machine if the output is only a function of state, and is known as
a Mealy machine if the output is a function of state and external input. Both types of output
may exist in a complex FSM, and we simply refer to it as containing a Moore output and

FPGA Prototyping by VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

107

108 FSM

-
Mealy
output
logic

input

clk

d - next-state ' state:eg "
i

Mealy
output

- logic state-next > state
register Moore

output

Moore

Figure 5.1 Block diagram of a synchronous FSM.

-

Mealy output. The Moore and Mealy outputs are similar but not identical. Understanding
their subtle differences is the key for a controller design. The example in Section 5.3.1
illustrates the behaviors and constructions of the two types of outputs.

output
logic

5.1.2 FSM representation

An FSM is usually specified by an abstract state diagram or ASM chart (algorithmic state
machine chart), both capturing the FSM's input, output, states, and transitions in a graphical
representation. The two representations provide the same information. The FSM represen-
tation is more compact and better for simple applications. The ASM chart representation is
somewhat like a flowchart and is more descriptive for applications with complex transition
conditions and actions.

State diagram A state diagram is composed of nodes, which represent states and are
drawn as circles, and annotated transitional arcs. A single node and its transition arcs are
shown in Figure 5.2(a). A logic expression expressed in terms of input signals is associated
with each transition arc and represents a specific condition. The arc is taken when the
corresponding expression is evaluated t rue .

The Moore output values are placed inside the circle since they depend only on the
current state. The Mealy output values are associated with the conditions of transition arcs
since they depend on the current state and external input. To reduce clutter in the diagram,
only asserted output values are listed. The output signal takes the default (Le., unasserted)
value otherwise.

A representative state diagram is shown in Figure 5.3(a). The FSM has four states, two
external input signals (i.e., a and b), one Moore output signal (i.e., y l) , and one Mealy
output signal (i.e., yo). The yl signal is asserted when the FSM is in the s2 or s3 state.
The yo signal is asserted when the FSM is in the SO state and the a and b signals are "1 1".

ASM chart An ASM chart is composed of a network of ASM blocks. An ASM block
consists of one state box and an optional network of decision boxes and conditional output
boxes. A representative ASM block is shown in Figure 5.2(b).

A state box represents a state in an FSM, and the asserted Moore output values are
listed inside the box. Note that it has only one exit path. A decision box tests the input
condition and determines which exit path to take. It has two exit paths, labeled T and F,
which correspond to the t r u e and f a l s e values of the condition. A conditional output box
lists asserted Mealy output values and is usually placed after a decision box. It indicates
that the listed output signal can be activated only when the corresponding condition in the
decision box is met.

INTRODUCTION 109

mo: Moore output
me: Mealy output

state-name
mo <= value

logic expression I me <= value logic expression I me <= value

to other state to other state

(a) Node

mo: Moore output
me: Mealy output

state entry r

state box state

mo <= value

- decision box I 7-
Boolean

conditional
output box

.................................. t-----
- exit to other ASM 'L exit to other ASM

block block

(b) ASM block

Figure 5.2 Symbol of a state.

(a) State diagram

A Y

..............................

&
~ 1 (= =) I
..

I- . & y l < = l

F
I----- L..

(b) ASM chart

,.........

1 % ~

Figure 5.3 Example of an FSM.

FSM CODE DEVELOPMENT 11 1

A state diagram can easily be converted to an ASM chart, and vice versa. The corre-
sponding ASM chart of the previous FSM state diagram is shown in Figure 5.3(b).

5.2 FSM CODE DEVELOPMENT

The procedure of developing code for an FSM is similar to that of a regular sequential
circuit. We first separate the state register and then derive the code for the combinational
next-state logic and output logic. The main difference is the next-state logic. For an FSM,
the code for the next-state logic follows the flow of a state diagram or ASM chart.

For clarity and flexibility, we use the VHDL‘s enumerated data type to represent the
FSM’s states. The enumerated data type can best be explained by an example. Consider
the FSM of Section 5.1.2, which has three states: SO, sl, and s2. We can introduce a
user-defined enumerated data type as follows:

type e g - s t a t e - t y p e i s (s o , sl, s 2) ;

The data type simply lists (i.e., enumerates) all symbolic values. Once the data type is
defined, it can be used for the signals, as in

s i g n a l s t a t e - r e g , s t a t e - n e x t : e g - s t a t e - t y p e ;

During synthesis, software automatically maps the values in an enumerated data type to
binary representations, a process known as state assignment. Although there is a mechanism
to perform this manually, it is rarely needed.

The complete code of the FSM is shown in Listing 5.1. It consists of segments for the
state register, next-state logic, Moore output logic, and Mealy output logic.

Listing 5.1 FSM example

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 , a l l ;
e n t i t y f sm-eg i s

port (
5 c l k , r e s e t : i n s t d - l o g i c ;

a , b : in s t d - l o g i c ;
y o , y l : out s t d - l o g i c

) ;
end f s m - e g ;

a r c h i t e c t u r e m u l t - s e g - a r c h of f sm-eg i s
10

type e g - s t a t e - t y p e i s (s o , s l , s 2) ;
s i g n a l s t a t e - r e g , s t a t e - n e x t : e g - s t a t e - t y p e ;

beg in
I5 -- s t a t e r e g i s t e r

p r o c e s s (c l k , r e s e t)
beg in

i f (r e s e t = ’ l ’) then
s t a t e - r e g <= S O ;

s t a t e - r e g <= s t a t e - n e x t ;
20 e 1 s i f (c l k ’ e v e n t and c l k = ’ 1 ’) then

end i f ;
end p r o c e s s ;
-_ n e x t - s t a t e l o g i c

25 p r o c e s s (s t a t e - r e g , a , b)

112 FSM

30

40

45

55

65

begin
case s t a t e - r e g i s

when SO =>
i f a = ’ 1 ’ then

i f b=’l) then

e l s e

end i f ;

s t a t e - n e x t <= S O ;

s t a t e - n e x t <= s 2 ;

s t a t e - n e x t <= s l ;

e l s e

end i f ;
when sl =>

i f (a = ’ 1 ’) then

e l s e

end i f ;
when s 2 =>

s t a t e - n e x t <= S O ;

s t a t e - n e x t <= SO;

s t a t e - n e x t <= s l ;

end c a s e ;
end p r o c e s s ;
-- M o o r e o u t p u t l o g i c
p r o c e s s (s t a t e - r e g)

50 beg in
case s t a t e - r e g i s

when s o l s 2 =>
y l <= ’ 0 ’ ;

when sl = >
y l <= ’ 1 ’ ;

end c a s e ;
end p r o c e s s ;
-- M e a l y o u t p u t l o g i c
p r o c e s s (s t a t e - r e g , a , b)

case s t a t e - r e g i s
when SO =>

M begin

i f (a = ’ l ’) and (b=)l’) then

e l s e

end i f ;

yo <= > 1 ’ ;

yo <=) O ’ ;

when sl I s 2 = >
yo <= ’ 0 ’ ;

70 end c a s e ;
end p r o c e s s ;

end m u l t - s e g - a r c h ;

The key part is the next-state logic. It uses a case statement with the s ta te - reg signal
as the selection expression. The next state (i.e., s t a t e x e x t signal) is determined by the
current state (i.e., s ta te-reg) and external input. The code for each state basically follows
the activities inside each ASM block of Figure 5.3(b).

FSM CODE DEVELOPMENT 11 3

An alternative code is to merge next-state logic and output logic into a single combina-
tional block, as shown in Listing 5.2.

Listing 5.2 FSM with merged combinational logic

a r c h i t e c t u r e two-seg -a rch of fsm-eg i s
type e g - s t a t e - t y p e i s (s o , sl, s2);
s i g n a l s t a t e - r e g , s t a t e - n e x t : e g - s t a t e - t y p e ;

beg in
5 -- s t a t e r e g i s t e r

p r o c e s s (c l k , r e s e t)

10

beg in
i f (r e s e t = ’ l ’) then

s t a t e - r e g <= S O ;
e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

s t a t e - r e g <= s t a t e - n e x t ;
end i f ;

end p r o c e s s ;
-_ n e x t - s t a t e / o u t p u t l o g i c

15 p r o c e s s (s t a t e - r e g , a , b)
beg in

30

35

s t a t e - n e x t <= s t a t e - r e g ; -- d e f a u l t b a c k t o same s t a t e
y o <= ’ 0 ’ ; _- d e f a u l t 0

d e f a u l t 0 y l <= j 0 ’ ; __
c a s e s t a t e - r e g i s

when SO =>
i f a = ’ 1 ’ then

i f b = ’ l ’ then
s t a t e - n e x t <= s 2 ;
y o <= ’1’;

e l s e

end i f ;
s t a t e - n e x t <= sl;

-- no e l s e b r a n c h
end i f ;

when sl =>
y l <= ’ l > ;
i f (a = ’ l ’) then

-- no e l s e b r a n c h
end i f ;

when s2 = >
s t a t e - n e x t <= S O ;

s t a t e - n e x t <= S O ;

end c a s e ;
40 end p r o c e s s ;

end t w o - s e g - a r c h ;

Note that the default output values are listed at the beginning of the code.
The code for the next-state logic and output logic follows the ASM chart closely. Once a

detailed state diagram or ASM chart is derived, converting an FSM to HDL code is almost
a mechanical procedure. Listings 5.1 and 5.2 can serve as templates for this purpose.

114 FSM

Xilinx
specific

Xilinx ISE includes a utility program called StateCAD, which allows a user to draw a
state diagram in graphical format. The program then converts the state diagram to HDL
code. It is a good idea to try it first with a few simple examples to see whether the generated
code and its style are satisfactory, particularly for the output signals.

5.3 DESIGN EXAMPLES

5.3.1 Rising-edge detector

The rising-edge detector is a circuit that generates a short, one-clock-cycle pulse (we call it
a tick) when the input signal changes from ’0’ to ’ 1 ’. It is usually used to indicate the onset
of a slow time-varying input signal. We design the circuit using both Moore and Mealy
machines, and compare their differences.

Moore-based design The state diagram and ASM chart of a Moore machine-based
edge detector are shown in Figure 5.4. The zero and one states indicate that the input
signal has been ’0’ and ’ 1’ for awhile. The rising edge occurs when the input changes to ’ 1 ’
in the zero state. The FSM moves to the edge state and the output, t i c k , is asserted in
this state. A representative timing diagram is shown at the middle of Figure 5.5. The code
is shown in Listing 5.3.

Listing 5.3 Moore machine-based edge detector

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y e d g e - d e t e c t i s

port (
5 c l k , r e s e t : in s t d - l o g i c ;

l e v e l : in s t d - l o g i c ;
t i c k : out s t d - l o g i c

) ;
end e d g e - d e t e c t ;

a r c h i t e c t u r e m o o r e - a r c h of e d g e - d e t e c t i s
10

type s t a t e - t y p e i s (z e r o , e d g e , o n e) ;
s i g n a l s t a t e - r e g , s t a t e - n e x t : s t a t e - t y p e ;

begin
15 -- s t a t e r e g i s t e r

p r o c e s s (c l k , r e s e t 1
begin

i f (r e s e t = ’ l ’) then
s t a t e - r e g <= z e r o ;

s t a t e - r e g <= s t a t e - n e x t ;
20 e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

end i f ;
end p r o c e s s ;
-- n e x t - s t a t e / o u t p u t logic

begin
25 p r o c e s s (s t a t e - r e g , l e v e l)

s t a t e - n e x t <= s t a t e - r e g ;
t i c k <= ’ 0 ’ ;
c a s e s t a t e - r e g i s

DESIGN EXAMPLES 11 5

-

(a) State diagram (b) ASM chart

Figure 5.4 Edge detector based on a Moore machine.

t l t

level I
state zero edge one zero

r

X X X

X X

Moore
machine 1

tick 7 1
i

r state (zero one zero

Mealy
machine ‘I c tick

Figure 5.5 Timing diagram of two edge detectors.

116 FSM

30

35

40

(a) State diagram (b) ASM chart

Figure 5.6 Edge detector based on a Mealy machine.

when z e r o = >
i f l e v e l = 'I' then

end i f ;
when e d g e =>

t i c k <= ' 1 ' ;
i f l e v e l = ' 1 ' then

e l s e

end i f ;

i f l e v e l = ' 0 ' then

end i f ;

s t a t e - n e x t <= e d g e ;

s t a t e - n e x t <= o n e ;

s t a t e - n e x t <= z e r o ;

when o n e = >

s t a t e - n e x t <= z e r o ;

45 end c a s e ;
end p r o c e s s ;

end r n o o r e - a r c h ;

Mealy-based design The state diagram and ASM chart of a Mealy machine-based
edge detector are shown in Figure 5.6. The zero and one states have similar meaning.
When the FSM is in the zero state and the input changes to 'l ' , the output is asserted

DESIGN EXAMPLES 11 7

tick

level
clk

Figure 5.7 Gate-level implementation of an edge detector.

immediately. The FSM moves to the one state at the rising edge of the next clock and the
output is deasserted. A representative timing diagram is shown at the bottom of Figure 5.5.
Note that due to the propagation delay, the output signal is still asserted at the rising edge
of the next clock (i.e., at t l) . The code is shown in Listing 5.4.

10

20

25

Listing 5.4 Mealy machine-based edge detector

a r c h i t e c t u r e m e a l y - a r c h of e d g e - d e t e c t i s
type s t a t e - t y p e i s (z e r o , o n e) ;
s i g n a l s t a t e - r e g , s t a t e - n e x t : s t a t e - t y p e ;

begin
5 -- s t a t e r e g i s t e r

process (c l k , r e s e t)
begin

i f (r e s e t = ’ l ’) then

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

end i f ;
end p r o c e s s ;
_- n e x t - s t a t e / o u t p u t logic

begin

s t a t e - r e g <= z e r o ;

s t a t e - r e g <= s t a t e - n e x t ;

15 p r o c e s s (s t a t e - r e g , l e v e l)

s t a t e - n e x t <= s t a t e - r e g ;
t i c k <= ’ 0 ’ ;
case s t a t e - r e g i s

when z e r o = >
i f l e v e l = ’ 1 ’ then

s t a t e - n e x t <= o n e ;
t i c k <= ’1’;

end i f ;

i f l e v e l = ’ 0 ’ then

end i f ;

when one = >

s t a t e - n e x t <= z e r o ;

end c a s e ;
?O end p r o c e s s ;

end m e a l y - a r c h ;

Direct implementation Since the transitions of the edge detector circuit are very sim-
ple, it can be implemented without using an FSM. We include this implementation for
comparison purposes. The circuit diagram is shown in Figure 5.7. It can be interpreted that
the output is asserted only when the current input is ’1’ and the previous input, which is
stored in the register, is ’0’. The corresponding code is shown in Listing 5.5.

118 FSM

Listing 5.5 Gate-level implementation of an edge detector

a r c h i t e c t u r e gate-level-arch of edge-detect i s

begin
s i g n a l delay-reg : std-logic ;

_- d e l a y r e g i s t e r
5 p r o c e s s (clk, reset 1

lo

begin
i f (reset=’l’) then

e l s i f (clk’event and clk=’l’) then

end i f ;
end p r o c e s s ;
-- d e c o d i n g l o g i c
tick <= (n o t delay-reg) and level;

delay-reg <= ’ 0 ’ ;

delay-reg <= level;

15 end gate-level-arch;

Although the descriptions in Listings 5.4 and 5.5 appear to be very different, they describe
the same circuit. The circuit diagram can be derived from the FSM if we assign ’0’ and ’1’
to the zero and one states.

Comparison Whereas both Moore machine- and Mealy machine-based designs can
generate a short tick at the rising edge of the input signal, there are several subtle differences.
The Mealy machine-based design requires fewer states and responds faster, but the width
of its output may vary and input glitches may be passed to the output.

The choice between the two designs depends on the subsystem that uses the output
signal. Most of the time the subsystem is a synchronous system that shares the same clock
signal. Since the FSM’s output is sampled only at the rising edge of the clock, the width
and glitches do not matter as long as the output signal is stable around the edge. Note that
the Mealy output signal is available for sampling at t l , which is one clock cycle faster than
the Moore output, which is available at t 2 . Therefore, the Mealy machine-based circuit is
preferred for this type of application.

5.3.2 Debouncing circuit

The slide and pushbutton switches on the prototyping board are mechanical devices. When
pressed, the switch may bounce back and forth a few times before settling down. The
bounces lead to glitches in the signal, as shown at the top of Figure 5.8. The bounces
usually settle within 20 ms. The purpose of a debouncing circuit is to filter out the glitches
associated with switch transitions. The debounced output signals from two FSM-based
design schemes are shown in the two bottom parts of Figure 5.8. The first design scheme is
discussed in this subsection and the second scheme is left as an exercise in Experiment 5.5.2.
A better alternative FSMD-based scheme is discussed in Section 6.2.1.

An FSM-based design uses a free-running 10-ms timer and an FSM. The timer generates
a one-clock-cycle enable tick (the m-tick signal) every 10 ms and the FSM uses this
information to keep track of whether the input value is stabilized. In the first design scheme,
the FSM ignores the short bounces and changes the value of the debounced output only
after the input is stabilized for 20 ms. The output timing diagram is shown at the middle
of Figure 5.8. The state diagram of this FSM is shown in Figure 5.9. The zero and one
states indicate that the switch input signal, sw, has been stabilized with ’0’ and ’ 1 ’ values.

DESIGN EXAMPLES 11 9

original
switch output

bounces bounces
(last less than 20 ms) (last less than 20 ms)

- -

- - -

L 20 ms- debounced output
(scheme 1) *Oms I

I , 20ms

debounced output
(scheme 2)

20 ms - ;

Figure 5.8 Original and debounced waveforms.

Figure 5.9 State diagram of a debouncing circuit.

Assume that the FSM is initially in the zero state. It moves to the w a i t 1-1 state when s w
changes to ’1’. At the w a i t l - l state, the FSM waits for the assertion of m - t i c k . If s w
becomes ’0’ in this state, it implies that the width of the ’1’ value does not last long enough
and the FSM returns to the zero state. This action repeats two more times for the w a i t 1-2
and w a i t 1-3 states. The operation from the one state is similar except that the s w signal
must be ’0’.

Since the 10-ms timer is free-running and the m - t i c k tick can be asserted at any time,
the FSM checks the assertion three times to ensure that the s w signal is stabilized for at least
20 ms (it is actually between 20 and 30 ms). The code is shown in Listing 5.6. It includes
a 10-ms timer and the FSM.

Listing 5.6 FSM implementation of a debouncing circuit

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
use i e e e . n u m e r i c - s t d . a l l ;
e n t i t y db-fsm i s

5 p o r t (
c l k , r e s e t : i n s t d - l o g i c ;
s w : i n s t d - l o g i c ;
d b : o u t s t d - l o g i c

) ;
1 0 end db-f s m ;

a r c h i t e c t u r e a r c h of db-fsm i s
c o n s t a n t N: i n t e g e r : = 1 9 ; -- 2 * N * 2 0 n s = l O m s
s i g n a l q - r e g , q - n e x t : u n s i g n e d (N - 1 downto 0) ;

t y p e e g - s t a t e - t y p e i s (z e r o , w a i t l - l , w a i t l - 2 , w a i t l - 3 ,
o n e , w a i t 0 - 1 , w a i t 0 - 2 , w a i t 0 - 3) ;

s i g n a l s t a t e - r e g , s t a t e - n e x t : e g - s t a t e - t y p e ;

15 s i g n a l m - t i c k : s t d - l o g i c ;

b e g i n
20

-- c o u n t e r t o g e n e r a t e l O m s t i c k
-- (2 ^ 1 9 * 2 0 n s)

p r o c e s s (c l k , r e s e t)
25 beg in

i f (c l k ’ e v e n t and c l k = ’ l ’) then

end i f ;
end p r o c e s s ;

q - n e x t <= q - r e g + 1;
- - o u t p u t t i c k
rn- t ick <= ’ 1 ’ when q - r e g = O e l s e

q - r e g <= q - n e x t ;

30 -- n e x t - s t a t e l o g i c

’ 0 ’ .

35

-- d e b o u n c i n g FSM

__ s t a t e r e g i s t e r
p r o c e s s (c l k , r e s e t 1

40 beg in

DESIGN EXAMPLES 121

i f (r e s e t = ’ l ’) t h e n

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) t h e n
s t a t e - r e g <= z e r o ;

s t a t e - r e g <= s t a t e - n e x t ;
45 end i f ;

end p r o c e s s ;
-- n e x t - s t a t e / o u t p u t l o g i c
p r o c e s s (s t a t e - r e g , sw , m - t i c k)
b e g i n

50 s t a t e - n e x t <= s t a t e - r e g ; - - d e f a u l t : b a c k t o same s t a t e
db <= ’ 0 ’ ; -- d e f a u l t 0
c a s e s t a t e - r e g i s

when z e r o =>
i f s w = ’ l ’ t h e n

55

65

7 5

80

85

s t a t e - n e x t <= w a i t l - 1 ;
end i f ;

i f s w = ’ O ’ t h e n

e l s e

when w a i t l - 1 = >

s t a t e - n e x t <= z e r o ;

i f m - t i c k = ’ l ’ t h e n

end i f ;
s t a t e - n e x t <= w a i t l - 2 ;

end i f ;

i f s w = ’ O ’ t h e n

e l s e

when w a i t l - 2 =>

s t a t e - n e x t <= z e r o ;

i f m - t i c k = ’ l ’ t h e n

end i f ;
s t a t e - n e x t <= w a i t l - 3 ;

end i f ;

i f s w = ’ O ’ t h e n

e l s e

when wai t l -3 =>

s t a t e - n e x t <= z e r o ;

i f m - t i c k = ’ l ’ t h e n

end i f ;
s t a t e - n e x t <= o n e ;

end i f ;
when one = >

db < = ’ l ’ ;
i f s w = ’ O ’ t h e n

end i f ;
s t a t e - n e x t <= w a i t 0 - 1 ;

when w a i t 0 - 1 =>
db < = ’ I J ;
i f s w = ’ 1 ’ t h e n

e l s e
s t a t e - n e x t <= o n e ;

i f m - t i c k = ’ l ’ t h e n

end i f ;
s t a t e - n e x t <= w a i t 0 - 2 ;

122 FSM

- - btn(1) level tick - en q -
> detector

edge counter
> 4- hex0 sseg sseg

- hex1 an - an

95

sw db - level tick -

>
debouncing edge clk - > detector

105

en 9 disp-mux-hex
counter

> reset

I10

Figure 5.10 Debouncing testing circuit.

end i f ;
when w a i t 0 - 2 = >

db < = ’ I > ;
i f s w = ’ 1 ’ then

e l s e
s t a t e - n e x t <= o n e ;

i f m - t i c k = ’ l J then

end i f ;
s t a t e - n e x t <= w a i t 0 - 3 ;

end i f ;
when w a i t 0 - 3 = >

db < = ’ I > ;
i f s w = ’ 1 ’ then

e l s e
s t a t e - n e x t <= o n e ;

i f m - t i c k = ’ l ’ then

end i f ;
s t a t e - n e x t <= z e r o ;

end i f ;
end c a s e ;

end p r o c e s s ;
11s end a r c h ;

5.3.3 Testing circuit

We use a bounce counting circuit to verify operation of the rising-edge detector and the
debouncing circuit. The block diagram is shown in Figure 5.10. The input of the verification
circuit is from a pushbutton switch. In the lower part, the signal is first fed to the debouncing
circuit and then to the rising-edge detector. Therefore, a one-clock-cycle tick is generated
each time the button is pressed and released. The tick in turn controls the enable input of
an 8-bit counter, whose content is passed to the LED time-multiplexing circuit and shown
on the left two digits of the prototyping board’s seven-segment LED display. In the upper
part, the input signal is fed directly to the edge detector without the debouncing circuit,
and the number is shown on the right two digits of the prototyping board’s seven-segment
LED display. The bottom counter thus counts one desired 0-to- 1 transition as well as the
bounces.

DESIGN EXAMPLES 123

The code is shown in Listing 5.7. It basically uses component instantiation to realize
the block diagram.

Listing 5.7 Verification circuit for a debouncing circuit and rising-edge detector

l i b r a r y ieee;
use ieee. std-logic-1164 ~ a l l ;
use ieee. numeric-std. a l l ;
e n t i t y debounce-test i s

s p o r t (
clk: i n std-logic;
btn: i n std-logic-vector (3 downto 0) ;
a n : o u t std-logic-vector (3 downto 0) ;
sseg: o u t std-logic-vector (7 downto 0)

10) ;
end debounce-test ;

a r c h i t e c t u r e arch of debounce-test i s
s i g n a l ql-reg , ql-next : unsigned (7 downto 0) ;

I S s i g n a l qO-reg, q0-next : unsigned(7 downto 0) ;
s i g n a l b-count , d-count: std-logic-vector (7 downto 0) ;
s i g n a l btn-reg , db-reg : std-logic ;
s i g n a l db-level , db-tick, btn-tick , clr: std-logic;

begin
2o .

__ c o m p o n e n t i n s t a n t i a t i o n

__ i n s t a n t i a t e hex d i s p l a y t i m e - m u 1 t i p 1 e x i n g
disp-unit : e n t i t y work. disp-hex-mux

____________________----------------------------- __ ____________________-----------------------------
c i r c u i I

5 p o r t map(
clk=>clk, reset=>'O',
hex3=>b_count (7 downto 4) , hex2=>b_count (3 downto 0) ,
hexl=>d-count (7 downto 4) , hexO=>d-count (3 downto 0 1 ,
dp-in=>"lOll", an=>an, sseg=>sseg);

30 -- i n s t a n t i a t e d e b o u n c i n g c i r c u i t
db-unit: e n t i t y work.db-fsm(arch1

clk=>clk, reset=>'O',
sw=>btn (1) , db=>db-level) ;

p o r t map(

__ e d g e d e t e c t i o n c i r c u i t s

p r o c e s s (clk)
40 begin

if (clk'event and clk='l') t hen
btn-reg <= btn(1) ;
db-reg <= db-level;

end i f ;
JS end p r o c e s s ;

btn-tick <= (n o t btn-reg) and btn(l);
db-tick <= (n o t db-reg) and db-level;

FSM 124

50

55

60

65

__ two c o u n t e r s

clr <= btn(0) ;
p r o c e s s (clk)
beg in

____________________------------------------------- ________---

i f (clk event and clk= ’ 1 ’ then
ql-reg <= ql-next;
q0-reg <= q0-next;

end i f ;
end p r o c e s s ;
_- n e x t - s t a t e l o g i c for t h e c o u n t e r
ql-next <= (o t h e r s = > ’ O ’) when clr=’l’ e l s e

ql-reg + 1 when btn-tick=’l’ e l s e
ql-reg ;

q0-reg + 1 when db-tick=’l’ e l s e
qO-reg;

q0-next <= (o t h e r s = > ’ O ’) when clr=’l’ e l s e

-- 0 u t p u t
b-count <= std-logic-vector(q1-reg);
d-count <= std-logic-vector (qO-reg) ;

70 end arch;

The seven-segment display shows the accumulated numbers of 0-to-1 edges of bounced
and debounced switch input. After pressing and releasing the pushbutton switch several
times, we can determine the average number of bounces for each transition.

5.4 BIBLIOGRAPHIC NOTES

The bibliographic information for this chapter is similar to that for Chapter 3.

5.5 SUGGESTED EXPERIMENTS

5.5.1 Dual-edge detector

A dual-edge detector is similar to a rising-edge detector except that the output is asserted
for one clock cycle when the input changes from 0 to 1 (i.e., rising edge) and 1 to 0 (i.e.,
falling edge).

1. Design the circuit based on the Moore machine and draw the state diagram and ASM

2. Derive the HDL code based on the state diagram of the ASM chart.
3. Derive a testbench and use simulation to verify operation of the code.
4. Replace the rising detectors in Section 5.3.3 with dual-edge detectors and verify their

5. Repeat steps 1 to 4 for a Mealy machine-based design.

chart.

operations.

5.5.2 Alternative debouncing circuit

One problem with the debouncing design in Section 5.3.2 is the delayed response of the
onset of a switch transition. An alternative is to react to the first edge in the transition and

SUGGESTED EXPERIMENTS 125

4=
tl

1
entering lot

Figure 5.11 Conceptual diagram of gate sensors.

then wait for a small amount of time (at least 20 ms) to have the input signal settled. The
output timing diagram is shown at the bottom of Figure 5.8. When the input changes from
'0' to ' l ' , the FSM responds immediately. The FSM then ignores the input for about 20 ms
to avoid glitches. After this amount of time, the FSM starts to check the input for the falling
edge. Follow the design procedure in Section 5.3.2 to design the alternative circuit.

1. Derive the state diagram and ASM chart for the circuit.
2. Derive the HDL code.
3. Derive the HDL code based on the state diagram and ASM chart.
4. Derive a testbench and use simulation to verify operation of the code.
5 . Replace the debouncing circuit in Section 5.3.3 with the alternative design and verify

its operation.

5.5.3 Parking lot occupancy counter

Consider a parking lot with a single entry and exit gate. Two pairs of photo sensors are used
to monitor the activity of cars, as shown in Figure 5.11. When an object is between the
photo transmitter and the photo receiver, the light is blocked and the corresponding output
is asserted to '1'. By monitoring the events of two sensors, we can determine whether a
car is entering or exiting or a pedestrian is passing through. For example, the following
sequence indicates that a car enters the lot:

0 Initially, both sensors are unblocked (i.e., the a and b signals are ''00'').
0 Sensor a is blocked (i.e., the a and b signals are "lo").
0 Both sensors are blocked (i.e., the a and b signals are 'I 1 1 ").
0 Sensor a is unblocked (i.e., the a and b signals are ''01'').
0 Both sensors becomes unblocked (i.e., the a and b signals are llOO1l).

1. Design an FSM with two input signals, a and b, and two output signals, e n t e r and
e x i t . The en te r and e x i t signals assert one clock cycle when a car enters and one
clock cycle when a car exits the lot, respectively.

2. Derive the HDL code for the FSM.

Design a parking lot occupancy counter as follows:

126 FSM

3. Design a counter with two control signals, inc and dec, which increment and decre-
ment the counter when asserted. Derive the HDL code.

4. Combine the counter and the FSM and LED multiplexing circuit. Use two debounced
pushbuttons to mimic operation of the two sensor outputs. Verify operation of the
occupancy counter.

CHAPTER 6

FSMD

6.1 INTRODUCTION

An FSMD (finite state machine with data path) combines an FSM and regular sequential
circuits. The FSM, which is sometimes known as a control path, examines the external
commands and status and generates control signals to specify operation of the regular
sequential circuits, which are known collectively as a data path. The FSMD is used to
implement systems described by RT(register transfer) methodology, in which the operations
are specified as data manipulation and transfer among a collection of registers.

6.1.1 Single RT operation

An RT operation specifies data manipulation and transfer for a single destination register.
It is represented by the notation

rdest + f(rsrcl, rsrc2, . . . , rsrcn)

where rdest is the destination register, rsrCl, rSrc2, and r,,,, are the source registers, and f (.)
specifies the operation to be performed. The notation indicates that the contents of the source
registers are fed to the f (.) function, which is realized by a combinational circuit, and the
result is passed to the input of the destination register and stored in the destination register
at the next rising edge of the clock. Following are several representative RT operations:

0 ri + 0. A constant 0 is stored in the rl register.
0 rl +- ri. The content of the rl register is written back to itself.

FPGA Prototyping by VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

127

128 FSMD

a m

I D- b-reg

clk

(a) Block diagram

clk A-1

7 x 5 a-reg 9

(b) Timing diagram

Figure 6.1 Block and timing diagrams of an RT operation.

0 r2 +- r2 >> 3. The r2 register is shifted right three positions and then written back

0 r2 c rl. The content of the r l register is transferred to the r2 register.
0 i c i + 1. The content of the i register is incremented by 1 and the result is written

0 d c sl + s2 + s3. The summation of the sl, s2, and s3 registers is written to the d

0 y + a*a. The a squared is written to the y register.

to itself.

back to itself.

register.

A single RT operation can be implemented by constructing a combinational circuit for
the f (.) function and connecting the input and output of the registers. For example, consider
the a + a-b+l operation. The f (.) function involves a subtractor and an incrementor. The
block diagram is shown in Figure 6.l(a). For clarity, we use the -reg and n e x t suffixes to
represent the input and output of a register. Note that an RT operation is synchronized by an
embedded clock. The result from the f (.) function is not stored to the destination register
until the next rising edge of the clock. The timing diagram of the previous RT operation is
shown in Figure 6.l(b).

6.1.2 ASMD chart

A circuit based on the RT methodology specifies which RT operations should be executed
in each step. Since an RT operation is done in a clock-by-clock basis, its timing is similar
to a state transition of an FSM. Thus, an FSM is a natural choice to specify the sequencing

INTRODUCTION 129

r l t r l + r2 u
r l t r l << 2

r l t r l
state-reg

clk

(a) ASMD segment (b) Block diagram

Figure 6.2 Realization of an ASMD segment.

of an RT algorithm. We extend the ASM chart to incorporate RT operations and call it
an ASMD (ASM with data path) chart. The RT operations are treated as another type of
activity and can be placed where the output signals are used.

A segment of an ASMD chart is shown in Figure 6.2(a). It contains one destination
register, r l , which is initialized with 8, added with content of the r 2 register, and then
shifted left two positions. Note that the rl register must be specified in each state. When
r l is not changed, the rl +- r l operation should be used to maintain its current content, as
in the s3 state. In future discussion, we assume that r t r is the default RT operation for the
r register and do not include it in the ASMD chart. Implementing the RT operations of an
ASMD chart involves a multiplexing circuit to route the desired next value to the destination
register. For example, the previous segment can be implemented by a 4-to-1 multiplexer, as
shown in Figure 6.2(b). The current state (i.e., the output of the state register) of the FSM
controls the selection signal of the multiplexer and thus chooses the result of the desired
RT operation.

An RT operation can also be specified in a conditional output box, as the r 2 register shown
in Figure 6.3(a). Depending on the a>b condition, the FSMD performs either r 2 +- r2+a or
r 2 +- r2+b. Note that all operations are done in parallel inside an ASMD block. We need
to realize the a>b, r2+a, and r2+b operations and use a multiplexer to route the desired
value to r2 . The block diagram is shown in Figure 6.3(b).

6.1.3 Decision box with a register

The appearance of an ASMD chart is similar to that of a normal flowchart. The main
difference is that the RT operation in an ASMD chart is controlled by an embedded clock
signal and the destination register is updated when the FSMD exits the current ASMD block,
but not within the block. The r + r-1 operation actually means that:

0 r n e x t <= r - reg - I ;
0 r - reg <= r n e x t at the rising edge of the clock (i.e., when the FSMD exits the

current block).

130 FSMD

-1 j d 4
-

: u-

I
state-reg

(b) Block diagram

rl-reg >

Figure 6.3 Realization of an RT operation in a conditional output box.

CODE DEVELOPMENT OF AN FSMD 131

....................

r t r - I $ T F-

................... 1
(a) Use old value of r

(y r-next=O F+

T
................... 1

(b) Use new value of r

Figure 6.4 ASM block affected by a delayed store.

This “delayed store” may introduce subtle errors when a register is used in a decision box.
Consider the FSMD segment in Figure 6.4(a). The r register is decremented in the state
box and used in the decision box. Since the r register is not updated until the FSMD exits
the block, the old content of r is used for comparison in the decision box. If the new value
of r is desired, we should use the output of the combinational logic (i.e., r n e x t) in the
decision box (i.e., replace the r = O expression with rnext=O), as shown in Figure 6.4(b).
Note that we use the : = notation, as in r n e x t : =r-i, to indicate the immediate assignment
of r n e x t .

Block diagram of an FSMD The conceptual block diagram of an FSMD is divided
into a data path and a control path, as shown in Figure 6.5. The data path performs the
required RT operations. It consists of

0 Data registers: store the intermediate computation results
0 Functional units: perform the functions specified by the RT operations

Routing network: routes data between the storage registers and the functional units
The data path follows the cont ro l signal to perform the desiredRT operations and generates
the i n t e r n a l s t a t u s signal.

The control path is an FSM. As a regular FSM, it contains a state register, next-state
logic, and output logic. It uses the external command signal and the data path’s s t a t u s
signal as the input and generates the cont ro l signal to control the data path operation.
The FSM also generates the ex te rna l s t a t u s signal to indicate the status of the FSMD
operation.

Note that although an FSMD consists of two types of sequential circuits, both circuits
are controlled by the same clock, and thus the FSMD is still a synchronous system.

6.2 CODE DEVELOPMENT OF AN FSMD

We use an improved debouncing circuit to demonstrate derivation of the FSMD code.
Although the debouncing circuit in Section 5.3.2 uses an FSM and a timer (which is a
regular sequential circuit), it is not based on the RT methodology because the two units are
running independently and the FSM has no control over the timer. Since the 10-ms enable

132 FSMD

*

data
input

-
routing
network - functional units - routing

network

- d q
data > registers

command

internal status I I t
control signal

. , , ,

(I-.--

,

- ,

data
output

next-state
+ logic -

external
status

output
> register logic

state

control path

Figure 6.5 Block diagram of an FSMD.

tick can be asserted at any time, the FSM does not know how much time has elapsed when
the first tick is detected in the w a i t i - 1 or w a i t 0 - I state. Thus, the waiting period in this
design is between 20 and 30 ms but is not an exact interval. This deficiency can be overcome
by applying the RT methodology. In this section, we use this improved debouncing circuit
to illustrate the FSMD code development.

6.2.1

With the RT methodology, we can use an FSM to control the initiation of the timer to obtain
the exact interval. The ASMD chart is shown in Figure 6.6. The circuit is expanded to
include two output signals: db-level , which is the debounced output, and db-tick, which
is a one-clock-cycle enable pulse asserted at the zero-to-one transition. The z e r o and one
states mean that the s w input has been stabilized for '0' and ' l ' , respectively. The w a i t l
and w a i t 0 states are used to filter out short glitches. The s w signal must be stable for a
certain amount of time or the transition will be treated as a glitch. The data path contains
one register, q, which is 21 bits wide. Assume that the FSMD is originally in the z e r o state.
When the s w input signal becomes ' 1 ', the FSMD moves to the w a i t I state and initializes
q to "1 . . . 1". In the w a i t l state, the q decrements in each clock cycle. If s w remains
as ' 1 ', the FSMD returns to this state repeatedly until q reaches "0 . . . 0 " and then moves to
the one state.

Debouncing circuit based on RT methodology

CODE DEVELOPMENT OF AN FSMD 133

.

...

-

q-next := q- 3 q tq -nex t

T

db-tick <= 1 0

d b-level<= 1

T

q -1 ... 1 0
I-

....

wait0

d b-level<= 1

T

Figure 6.6 ASMD chart of a debouncing circuit.

134 FSMD

Recall that the 50-MHz (i.e., 20-11s period) system clock is used on the prototyping
board. Since the FSMD stays in the waitl state for 2’l clock cycles, it is about 40 ms
(i.e., 221*20 ns). We can modify the initial value of the q register to obtain the desired wait
interval.

There are two ways to derive the HDL code, one with explicit description of the data
path components and the other with implicit description of the data path components.

6.2.2 Code with explicit data path components

The first approach to FSMD code development is to separate the control FSM and the
key data path components. From an ASMD chart, we first identify the key components
in the data path and the associated control signals and then describe these components in
individual code segments.

The key data path component of the debouncing circuit ASMD chart is a custom 21-bit
decrement counter that can:

0 Be initialized with a specific value
Count downward or pause
Assert a status signal when the counter reaches 0

We can create a binary counter with a q-load signal to load the initial value and a q-dec
signal to enable the counting. The counter also generates a q-zero status signal, which
is asserted when the counter reaches zero. The complete data path is composed of the q
register and the next-state logic of the custom decrement counter. A comparison circuit is
included to generate the q-zero status signal. The control path consists of an FSM, which
takes the s w input and the q-zero status and asserts the control signals, q-load and q-dec,
according to the desired action in the ASMD chart. The HDL code follows the data path
specification and the ASMD chart, and is shown in Listing 6.1.

Listing 6.1 Debouncing circuit with an explicit data path component

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y debounce i s

s p o r t (
c l k , reset: in std-logic;
s w : in std-logic;
db-level , db-tick: out std-logic

) ;
mend debounce ;

a r c h i t e c t u r e exp-fsmd-arch of debounce i s
c o n s t a n t N: integer:=21; -- f i l t e r of 2 ^ N * 2 0 n s = 40ms
type state-type i s (zero, wait0, one, waitl);

s i g n a l q-reg , q-next : unsigned(N-1 downto 0) ;
s i g n a l q-load , q-dec , q-zero : std-logic ;

-- FSMD s t a t e C? d a t a r e g i s t e r s

begin

IS s i g n a l state-reg , state-next : state-type;

begin

zo p r o c e s s (clk ,reset)

if reset=’l’ then
state-reg <= zero;

CODE DEVELOPMENT OF AN FSMD 135

q - r e g <= (o t h e r s = > ’ O ’) ;

s t a t e - r e g <= s t a t e - n e x t ;
q - r e g <= q - n e x t ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

end i f ;
end p r o c e s s ;

30

-- FSMD d a t a p a t h (c o u n t e r) n e x t - s t a t e l o g i c
q - n e x t <= (o t h e r s = > ’ 1 ’) when q - l o a d = 1 ’ e l s e

q - r e g - 1 when q - d e c = ’ l J e l s e
q - r e g ;

35 q - z e r o <= ’ 1 ’ when q - n e x t = o e l s e j 0 ’ ;

-- FSMD c o n t r o l p a t h n e x t - s t a t e l o g i c
p r o c e s s (s t a t e - r e g , s w , q - z e r o)
beg in

40 q - l o a d <= ’ 0 ’ ;
q - d e c <= ’ 0 ’ ;
d b - t i c k <= ’ 0 ’ ;
s t a t e - n e x t <= s t a t e - r e g ;
case s t a t e - r e g i s

55

i 0

5

when z e r o =>
d b - l e v e l <= > O J ;
i f (s w = ’ l ’) then

s t a t e - n e x t <= w a i t l ;
q - l o a d <= ’ 1 ’ ;

end i f ;
when w a i t l = >

d b - l e v e l <= ’ 0 ’ ;
i f (s w = ’ l ’) then

q - d e c <= ’ 1 ’ ;
i f (q - z e r o = ’ l ’) then

s t a t e - n e x t (= o n e ;
d b - t i c k <= ’1’;

end i f ;

s t a t e - n e x t <= z e r o ;
e l s e -- s w = ’ O ’

end i f ;

d b - l e v e l <= ’ 1 ’ ;
i f (s w = ’ O J) then

when one = >

s t a t e - n e x t <= w a i t 0 ;
q - l o a d <= ’1’;

end i f ;
when w a i t O = >

d b - l e v e l <= ’ 1 ’ ;
i f (s w = ’ O ’) then

q - d e c <= ’ 1 ’ ;
i f (q-zero=’l’) then

end i f ;

s t a t e - n e x t <= o n e ;

s t a t e - n e x t <= z e r o ;

e l s e -- sw= ’ 1 ’

136 FSMD

end i f ;
end c a s e ;

end p r o c e s s ;
80 end e x p - f s m d - a r c h ;

6.2.3 Code with implicit data path components

An alternative coding style is to embed the RT operations within the FSM control path.
Instead of explicitly defining the data path components, we just list RT operations with the
corresponding FSM state. The code of the debouncing circuit is shown in Listing 6.2.

15

21

30

35

Listing 6.2 Debouncing circuit with an implicit data path component

a r c h i t e c t u r e imp-f s m d - a r c h of d e b o u n c e i s
c o n s t a n t N: i n t e g e r : = 2 1 ; -- f i l t e r o f 2 ^ N * 2 0 n s = 4 0 m s
type s t a t e - t y p e i s (z e r o , w a i t 0 , o n e , w a i t l) ;
s i g n a l s t a t e - r e g , s t a t e - n e x t : s t a t e - t y p e ;

s s i g n a l q - r e g , q - n e x t : u n s i g n e d (N - 1 downto 0) ;
begin

-- FSMD s t a t e C? d a t a r e g i s t e r s
p r o c e s s (c l k , r e s e t)
beg in

10 i f r e s e t = 1 ’ then
s t a t e - r e g <= z e r o ;
q - r e g <= (o t h e r s = > ’ O ’) ;

s t a t e - r e g <= s t a t e - n e x t ;
q - r e g <= q - n e x t ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

end i f ;
end p r o c e s s ;
-- n e x t - s t a t e l o g i c & d a t a p a t h f u n c t i o n a l u n i t s / r o u t i n g
p r o c e s s (s t a t e - r e g , q - r e g , s w , q - n e x t)

20 beg in
s t a t e - n e x t <= s t a t e - r e g ;
q - n e x t <= q - r e g ;
d b - t i c k <= ’ 0 ’ ;
c a s e s t a t e - r e g i s

when z e r o = >
d b - l e v e l <= ’ 0 ’ ;
i f (s w = ’ l ’) then

s t a t e - n e x t <= w a i t l ;
q - n e x t <= (o t h e r s = > ’ l ’) ;

end i f ;
when w a i t l = >

d b - l e v e l <= ’ 0 ’ ;
i f (s w = ’ l ’) then

q - n e x t <= q - r e g - 1;
i f (q - n e x t = O) then

s t a t e - n e x t <= o n e ;
d b - t i c k <= ’ 1 ’ ;

end i f ;

s t a t e - n e x t <= z e r o ;
e l s e -- s w = ’ O ’

CODE DEVELOPMENT OF AN FSMD 137

55

end i f ;

db-level <= ’1 ’ ;
i f (sw=’O’) then

when one =>

state-next <= wait0;
q-next <= (o t h e r s = > ’ l ’) ;

end i f ;
when waitO=>

db-level <= ’ 1 ’ ;
i f (sw=’O’) then

q-next <= q-reg - 1;
i f (q-next=O) then

end i f ;

state-next <= one;

state-next <= zero;

e l s e -- s w = ’ l ’

end i f ;
end c a s e ;

end p r o c e s s ;
60 end imp-f smd-arch ;

The code consists of a memory segment and a combinational logic segment. The former
contains the state register of the FSM and the data register of the data path. The latter
basically specifies the next-state logic of the control path FSM. Instead of generating control
signals, the next data register values are specified in individual states. The next-state logic of
the data path, which consists of functional units and routing network, is created accordingly.

6.2.4 Comparison

Code with implicit data path components essentially follows the ASMD chart. We just
convert the chart to an HDL description. Although this approach is simpler and more
descriptive, we rely on synthesis software for data path construction and have less control.
This can best be explained by an example. Consider the ASMD segment in Figure 6.7. The
implicit description becomes

c a s e
when sl

dl-next <= a * b ;
. . .

when s 2
d2-next <= b * c ;
. . .

when s3
d3-next <= a * c ;
. . .

end c a s e ;

The synthesis software may infer three multipliers. Since a combinational multiplier is a
complex circuit, it is more efficient to share the circuit. We can use explicit description to
isolate the multiplier:

case
when sl

138 FSMD

Figure 6.7 ASMD segment with sharing opportunity.

in1 <= a;
in2 <= b ;
dl-next <= m-out;

when s 2
in1 <= b ;
i n 2 <= c ;
d2-next <= m-out;

when s3
in1 <= a ;
in2 <= c ;
d3-next <= m-out;

end c a s e ;
__ e x p l i c i t d e s c r i p t i o n of a s i n g l e m u l t i p l i e r
m-out <= in1 * in2;

The code ensures that only one multiplier is inferred during synthesis. The implicit and
explicit descriptions can be mixed for a complex FSMD design. We frequently isolate and
extract complex data path components for code clarity and efficiency.

6.2.5 Testing circuit

The debouncing testing circuit discussed in Section 5.3.3 can be used to verify operation of
the new design. Since the revised debouncing circuit's outputs include a one-clock-cycle
tick signal, no edge detector is needed after the debouncing circuit. The revised block

CODE DEVELOPMENT OF AN FSMD 139

- btn(1) - level tick - en q -
edge

> detector
>counter 4- hex0 sseg sseg - hex1 an - an

Figure 6.8 Debouncing testing circuit.

diagram is shown in Figure 6.8, and the corresponding code is shown in Listing 6.3.

Listing 6.3

l i b r a r y ieee;
use ieee, std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y debounce-test i s

Verification circuit for a debouncing circuit

5 p o r t (
clk: i n std-logic;
btn: i n std-logic-vector (3 downto 0) ;
an: o u t std-logic-vector (3 downto 0) ;
sseg: out std-logic-vector (7 downto 0)

lo) ;
end debounce-test ;

sw db-tick

> clk - debouncing

30

 en q disp-mux-hex

> counter reset

a r c h i t e c t u r e arch of debounce-test i s
s i g n a l ql-reg , ql-next : unsigned (7 downto 0) ;

I S s i g n a l qO-reg, q0-next : unsigned (7 downto 0) ;
s i g n a l b-count , d-count : std-logic-vector (7 downto 0) ;
s i g n a l btn-reg : std-logic;
s i g n a l db-tick , btn-tick , clr : std-logic;

b e g i n
20 -- i n s t a n t i a t e d e b o u n c i n g c i r c u i t

db-unit : e n t i t y work. debounce (f smd-arch)
p o r t map(

clk=>clk, reset=>'O', sw=>btn(l) ,
db-level=> o p e n , db-tick=>db-tick

1 ;
_- i n s t a n t i a t e h e x d i s p l a y t i m e - m u 1 t i p l x i n g c i r c u i t
disp-unit : e n t i t y work. disp-hex-mux

p o r t map(
clk=>clk , reset=> ' 0 ' ,
hex3=>b_count (7 downto 4), hex2=>b_count (3 downto 0 1 ,
hexl=>d-count (7 downto 41, hexO=>d-count (3 downto 0 1 ,
dp-in=>"lOll", an=>an, sseg=>sseg

) ;

-- e d g e d e t e c t i o n c i r c u i t f o r u n - d e b o u n c e d i n p u t

140 FSMD

____________________----------------------------- -- ____________________--_---------------------
p r o c e s s (clk)
beg in

40 i f (clk event and clk= ’ 1 ’) then
btn-reg <= btn(1);

end i f ;
end p r o c e s s ;
btn-tick <= (not btn-reg) and btn(1);

45

.

-_ t w o c o u n t e r s

clr <= btn(0);

beg in

.

j n p r o c e s s (clk)

i f (clk ’ event and clk= ’ 1 ’) then
ql-reg <= ql-next;
q0-reg <= q0-next;

55 end i f ;
end p r o c e s s ;
__ n e x t - s t a t e logic f o r t h e c o u n t e r
ql-next <= (o t h e r s = > ’ O ’) when clr=’l’ e l s e

ql-reg f 1 when btn-tick=’l’ e l s e
60 ql-reg ;

q0-next <= (o t h e r s = > ’ O ’) when clr=’i’ e l s e
q0-reg + 1 when db-tick=’l’ e l s e
qO-reg;

-_ c o u n t e r o u t p u t
65 b-count <= std-logic-vector(ql-reg);

d-count <= s t d - l o g i c - v e c t o r (q 0 - r e g) ;
end arch;

6.3 DESIGN EXAMPLES

6.3.1 Fibonacci number circuit

The Fibonacci numbers constitute a sequence defined as

i f i = O
i f i = 1
if i > 1 f i b (i - 1) + f i b (i - 2)

One way to calculate f i b (i) is to construct the function iteratively, from 0 to the desired i.
This approach requires two temporary registers to store the two most recently calculated
values (i.e., f i b (i - 1) and f i b (i - 2)) and one index register to keep track of the number
of iterations. The ASMD chart is shown in Figure 6.9, in which t l and t O are temporary
storage registers and n is the index register. In addition to the regular data input and output
signals, i and f , we include a command signal, s tart , which signals the beginning of
operation, and two status signals: ready, which indicates that the circuit is idle and ready
to take new input, and done-tick, which is asserted for one clock cycle when the operation

DESIGN EXAMPLES 141

ready <='I '

-F

...

Figure 6.9 ASMD chart of a Fibonacci circuit.

142 FSMD

is completed. Since this circuit, like many other FSMD designs, is probably a part of a
larger system, these signals are needed to interface with other subsystems.

The ASMD chart has three states. The i d l e state indicates that the circuit is currently
idle. When s ta r t is asserted, the FSMD moves to the op state and loads initial values to
three registers. The t O and t l registers are loaded with 0 and 1, which represent f i b (0)
and f i b (l), respectively. The n register is loaded with i, the desired number of iterations.

The main computation is iterated through the op state by three RT operations:
0 t i t t i + t o
0 t o + ti
0 n t n - 1

The first two RT operations obtain a new value and store the two most recently calculated
values in t i and t o . The third RT operation decrements the iteration index. The iteration
ended when n reaches 1 or its initial value is 0 (i.e., f i b (0)) . Unlike a regular flowchart, the
operations in an ASMD block can be performed concurrently in the same clock cycle. We
put all comparison and RT operations in the op state to reduce the computation time. Note
that the new values of the t 1 and t O registers are loaded at the same time when the FSMD
exits the op state (i.e., at the next rising edge of the clock). Thus, the original value of t l ,
not t l+tO, is stored to t o . The purpose of the done state is to generate the one-clock-cycle
done-tick signal to indicate completion of the computation. This state can be omitted if
this status signal is not needed.

The code follows the ASMD chart and is shown in Listing 6.4. Note that the Fibonacci
function grows rapidly and the output signal should be wide enough to accommodate the
desired result.

Listing 6.4 Fibonacci number circuit

l i b r a r y ieee;
use ieee. std-logic-1164, a l l ;
use ieee. numeric-std. a l l ;
e n t i t y fib i s

5 port (
clk, reset: in std-logic;
start : in std-logic;
i : in std-logic-vector (4 downto 0) ;
ready, done-tick: out std-logic;

10 f : out std-logic-vector (1 9 downto 0)

) ;
end fib;

a r c h i t e c t u r e arch of fib i s
15 type state-type i s (idle,op,done);

s i g n a l state-reg , state-next : state-type;
s i g n a l to-reg , to-next : unsigned (19 downto 0) ;
s i g n a l tl-reg, tl-next : unsigned(l9 downto 0) ;
s i g n a l n-reg , n-next : unsigned (4 downto 0) ;

-- f s m d s t a t e a n d d a t a r e g i s t e r s
p r o c e s s (clk, reset)
begin

20 beg in

i f reset=’l’ then
25 state-reg <= idle;

to-reg <= (o t h e r s = > ’ O ’) ;

DESIGN EXAMPLES 143

30

t i - r e g <= (o t h e r s = > ’ O ’) ;
n - r e g <= (o t h e r s = > ’ O ’) ;

s t a t e - r e g <= s t a t e - n e x t ;
t 0 - r e g <= t o - n e x t ;
t l - r e g <= t l - n e x t ;
n - r e g <= n - n e x t ;

e I s i f (c l k ’ e v e n t and c l k = ’ 1 ’) then

end i f ;
35 end p r o c e s s ;

-- f s m d n e x t - s t a t e l o g i c
p r o c e s s (s t a t e - r e g , n - r e g , t o - r e g , t l - r e g , s t a r t , i n - n e x t)

40

45

begin
r e a d y < = ’ O ’ ;
d o n e - t i c k <= ’ 0 ’ ;
s t a t e - n e x t <= s t a
t o - n e x t <= t o - r e g
t l - n e x t <= t l - r e g
n - n e x t <= n - r e g ;
case s t a t e - r e g i s

when i d l e =>

e - r e g ;

50

55

M1

65

r e a d y <= ’ 1 ’ ;
i f s t a r t = ’ l ’ then

t o - n e x t <= (o t h e r s = > ’ O ’) ;
t i - n e x t <= (0 = > ’ 1 ’ , o t h e r s = > ’ O ’) ;
n - n e x t <= u n s i g n e d (i) ;
s t a t e - n e x t <= o p ;

end i f ;
when op =>

i f n-reg=O then
t i - n e x t <= (o t h e r s = > ’ O ’) ;
s t a t e - n e x t <= d o n e ;

s t a t e - n e x t <= d o n e ;

t l - n e x t <= t l - r e g + t o - r e g ;
t o - n e x t <= t l - r e g ;
n - n e x t <= n - r e g - 1;

e l s i f n - r e g = l then

e l s e

end i f ;
when done = >

d o n e - t i c k <= ’ 1 ’ ;
s t a t e - n e x t <= i d l e ;

end c a s e ;
end p r o c e s s ;

f <= std-logic-vector(tl-reg);
70 -- o u t p u t

end a r c h ;

6.3.2 Division circuit

Because of complexity, the division operator cannot be synthesized automatically. We use
an FSMD to implement the long-division algorithm in this subsection. The algorithm is
illustrated by the division of two 4-bit unsigned integers in Figure 6.10. The algorithm can

144 FSMD

rh

divisor

0 0 11 0 - quotient
0 0 1 0 1 0 0 0 0 1 10 1 - dividend

0000
0001
0000
0011

rI

Figure 6.10 Long division of two 4-bit unsigned integers.

Figure 6.11 Sketch of division circuit’s data path.

be summarized as follows:
1. Double the dividend width by appending 0’s in front and align the divisor to the

leftmost bit of the extended dividend.
2. If the corresponding dividend bits are greater than or equal to the divisor, subtract the

divisor from the dividend bits and make the corresponding quotient bit 1. Otherwise,
keep the original dividend bits and make the quotient bit 0.

3. Append one additional dividend bit to the previous result and shift the divisor to the
right one position.

4. Repeat steps 2 and 3 until all dividend bits are used.
The sketch of the data path is shown in Figure 6.11. Initially, the divisor is stored in the

d register and the extended dividend is stored in the rh and rl registers. In each iteration,
the rh and rl registers are shifted to the left one position. This corresponds to shifting the
divisor to the right of the previous algorithm. We can then compare rh and d and perform
subtraction if r h is greater than or equal to d. When r h and rl are shifted to the left, the
rightmost bit of rl becomes available. It can be used to store the current quotient bit. After

DESIGN EXAMPLES 145

we iterate through all dividend bits, the result of the last subtraction is stored in r h and
becomes the remainder of the division, and all quotients are shifted into rl.

The ASMD chart of the division circuit is somewhat similar to that of the previous
Fibonacci circuit. The FSMD consists of four states, i d l e , op, l a s t , and done. To make
the code clear, we extract the compare and subtract circuit to separate code segments. The
main computation is performed in the op state, in which the dividend bits and divisor are
compared and subtracted and then shifted left 1 bit. Note that the remainder should not be
shifted in the last iteration. We create a separate state, last, to accommodate this special
requirement. As in the preceding example, the purpose of the done state is to generate a
one-clock-cycle done-t i ck signal to indicate completion of the computation. The code is
shown in Listing 6.5.

Listing 6.5 Division circuit

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
use i e e e . n u m e r i c - s t d . a l l ;
e n t i t y d i v i s

5 g e n e r i c (
W :
C B I T : i n t e g e r : = 4 -- CBIT=logZ (W) + l

i n t e g e r : = 8 ;

1 ;
port (

10 c l k , r e s e t : in s t d - l o g i c ;
s t a r t : in s t d - l o g i c ;
d v s r , d v n d : i n s t d - l o g i c - v e c t o r (W-1 downto 0) ;
r e a d y , d o n e - t i c k : out s t d - l o g i c ;
q u o , r m d : out s t d - l o g i c - v e c t o r (W-1 downto 0)

15) ;

end d i v ;

a r c h i t e c t u r e a r c h of d i v i s
type s t a t e - t y p e i s (i d l e , o p , l a s t , d o n e) ;

s i g n a l r h - r e g , r h - n e x t : u n s i g n e d (W - 1 downto 0) ;
s i g n a l r l - r e g , r l - n e x t : s t d - l o g i c - v e c t o r (W-1 downto 0) ;
s i g n a l r h - t m p : u n s i g n e d (W - 1 downto 0) ;
s i g n a l d - r e g , d - n e x t : u n s i g n e d (W - 1 downto 0) ;

s i g n a l q - b i t : s t d - l o g i c ;

-- f s m d s t a t e a n d d a t a r e g i s t e r s
p r o c e s s (c l k , r e s e t)

x s i g n a l s t a t e - r e g , s t a t e - n e x t : s t a t e - t y p e ;

25 s i g n a l n - r e g , n - n e x t : u n s i g n e d (C B 1 T - 1 downto 0) ;

beg in

30 beg in
i f r e s e t = ’ l ’ then

s t a t e - r e g <= i d l e ;
r h - r e g <= (o t h e r s = > ’ 0 ’) ;
r l - r e g <= (o t h e r s = > ’ O ’) ;
d - r e g <= (o t h e r s = > ’ O ’) ;
n - r e g <= (o t h e r s = > ’ 0 ’) ;

s t a t e - r e g <= s t a t e - n e x t ;
r h - r e g <= r h - n e x t ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

146 FSMD

40 r l - r e g <= r l - n e x t ;
d - r e g <= d - n e x t ;
n - r e g <= n - n e x t ;

end i f ;
end p r o c e s s ;

-- f s m d n e x t - s t a t e l o g i c and d a t a p a t h l o g i c
p r o c e s s (s t a t e - r e g , n - r e g , r h - r e g , r l - r e g , d - r e g ,

s t a r t , d v s r , dvnd , q - b i t , rh- tmp , n - n e x t)
beg in

45

50 r e a d y < = ’ O ’ ;
d o n e - t i c k <= ’ 0 ’ ;
s t a t e - n e x t <= s t a t e - r e g ;
r h - n e x t <= r h - r e g ;
r l - n e x t <= r l - r e g ;

55

60

65

70

75

80

85

90

d - n e x t <= d - r e g ;
n - n e x t <= n - r e g ;
c a s e s t a t e - r e g i s

when i d l e = >
r e a d y <= ’1’;
i f s t a r t = ’ l ’ then

r h - n e x t <= (o t h e r s = > ’ O ’) ;
r l - n e x t <= d v n d ; __ d i v i d e n d
d - n e x t <= u n s i g n e d (d v s r 1 ; __ d i v i s o r
n - n e x t <= t o - u n s i g n e d (W + l , CBIT); -- i n d e x
s t a t e - n e x t <= o p ;

end i f ;
when op =>

__ s h i f t r h and r l l e f l
r l - n e x t <= r l - r e g (W - 2 downto 0) & q - b i t ;
r h - n e x t <= rh- tmp(W-2 downto 0) & r l - r e g (W - 1) ;
- - d e c r e a s e i n d e x
n - n e x t <= n - r e g - 1;
i f (n - n e x t = l) then

end i f ;

r l - n e x t <= r l - r e g (W - 2 downto 0) & q - b i t ;
r h - n e x t <= r h - t m p ;
s t a t e - n e x t <= d o n e ;

s t a t e - n e x t <= i d l e ;
d o n e - t i c k <= ’ 1 ’ ;

s t a t e - n e x t <= l a s t ;

when l a s t => -- l a s t i t e r a t i o n

when done = >

end c a s e ;
end p r o c e s s ;

__ c o m p a r e and s u b t r a c t
p r o c e s s (r h - r e g , d - r e g)
beg in

i f r h - r e g >= d - r e g then
rh- tmp <= r h - r e g - d - r e g ;
q - b i t <= ’ 1 ’ ;

e l s e

DESIGN EXAMPLES 147

rh-tmp <= rh-reg;
q-bit <= ' 0 ' ;

9 F end i f ;
end p r o c e s s ;

__ o u t p u t
quo <= rl-reg;

100 rmd <= std-logic-vector (rh-reg) ;
end arch;

6.3.3 Binary-to-BCD conversion circuit

We discussed the BCD format in Section 4.5.2. In this format, a decimal number is rep-
resented as a sequence of 4-bit BCD digits. A binary-to-BCD conversion circuit converts
a binary number to the BCD format. For example, the binary number "0010 0000 0000"
becomes "0101 0001 0010" (i.e., 51210) after conversion.

The binary-to-BCD conversion can be processed by a special BCD shift register, which
is divided into 4-bit groups internally, each representing a BCD digit. Shifting a BCD
sequence to the left requires adjustment if a BCD digit is greater than 910 after shifting.
For example, if a BCD sequence is "0001 01 11" (i.e., 1710), it should become "001 1 0100"
(i.e., 3410) rather than "0010 11 10". The adjustment requires subtracting 1010 (i.e., I l l O l O ")
from the right BCD digit and adding 1 (which can be considered as a carry-out) to the next
BCD digit. Note that subtracting 1010 is equivalent to adding 610 for a4-bit binary number.
Thus, the foregoing adjustment can also be achieved by adding 610 to the right BCD digit.
The carry-out bit is generated automatically in this process.

In the actual implementation, it is more efficient to first perform the necessary adjustment
on a BCD digit and then shift. We can check whether a BCD digit is greater than 410 and,
if this is the case, add 310 to the digit. After all the BCD digits are corrected, we can then
shift the entire register to the left one position. A binary-to-BCD conversion circuit can
be constructed by shifting the binary input to a BCD shift register bit by bit, from MSB to
LSB .

1.

2.

3.

[ts operation can be summarized as follows:
For each 4-bit BCD digit in a BCD shift register, check whether the digit is greater
than 4. If this is the case, add 310 to the digit.
Shift the entire BCD register left one position and shift in the MSB of the input binary
sequence to the LSB of the BCD register.
Repeat steps 1 and 2 until all input bits are used.

The conversion process of a 7-bit binary input, "1 11 11 11" (i.e., 12710), is demonstrated in
Table 6.1.

The code of a 13-bit conversion circuit is shown in Listing 6.6. It uses a simple FSMD to
control the overall operation. When the start signal is asserted, the binary input is stored
into the p2s register. The FSM then iterates through the 13 bits, similar to the process
described in previous examples. Four adjustment circuits are used to correct the four BCD
digits. For clarity, they are isolated from the next-state logic and described in a separate
code segment.

Listing 6.6 Binary-to-BCD conversion circuit

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;

148 FSMD

Table 6.1 Binary-to-BCD conversion example

Special BCD shift register
Operation Binary

BCD BCD BCU input
digit 2 digit 1 digit 0

Initial

Bit 6 no adjustment
111 1111

shift left 1 bit 1 11 1111
(1 10)

(310)

Bit 5 no adjustment
shift left 1 bit 11 1 1111

Bit 4 no adjustment
shift left 1 bit 111 1111

(710)
Bit 3 BCD digit 0 adjustment 1 0 1 0

Bit 2 BCD digit 0 adjustment 1 1 0 0 0

shift left 1 bit 1 0 1 0 1 111

(110) (510)

(310) (110)
shift left 1 bit 11 0 0 0 1 11

Bit 1 no adjustment
shift left 1 bit 1 1 0 0 0 1 1 1

(610) (310)
Bit 0 BCD digit 1 adjustment 1 0 0 1 0 0 1 1

shift left 1 bit 1 0 0 1 0 0 1 1 1
(110) (210) (710)

e n t i t y bin2bcd i s
5 p o r t (

clk: in std-logic;
reset : in std-logic;
start : in std-logic ;
bin: in std-logic-vector (12 downto 0) ;

bcd3,bcd2,bcdl,bcdO: out std-logic-vect
10 ready, done-tick: out std-logic ;

) ;
end bin2bcd :

r(3 d wnto 0)

15 a r c h i t e c t u r e arch of bin2bcd i s
type state-type i s (idle, op, done);
s i g n a l state-reg , state-next : state-type;
s i g n a l p2s_reg, p2s-next: std-logic-vector (12 downto 0) ;
s i g n a l n-reg , n-next : unsigned (3 downto 0) ;

zo s i g n a l bcd3_reg, bcd2_reg, bcdl-reg, bcd0-reg:
unsigned (3 downto 0) ;

unsigned (3 downto 0) ;
s i g n a l bcd3-nextt bcd2_next, bcdl-next , bcd0-next :

s i g n a l bcd3-tmpI bcd2_trnp, bcdl-tmp, bcd0-tmp:

DESIGN EXAMPLES 149

25 unsigned (3 downto 0) ;
begin

__ s t a t e and d a t a r e g i s t e r s
p r o c e s s (clk , reset)
begin

30 i f reset=’l’ then

35

45

state-reg <= idle;
p2s-reg <= (o t h e r s = > ’ O ’) ;
n-reg <= (o t h e r s = > ’ O ’) ;
bcd3-reg <= (o t h e r s = > ’ O ’) ;
bcd2-reg <= (o t h e r s = > ’ O ’) ;
bcdl-reg <= (o t h e r s = > ’ O ’) ;
bcd0-reg <= (o t h e r s = > ’ O ’) ;

state-reg <= state-next;
p2s-reg <= p2s-next ;
n-reg <= n-next;
bcd3-reg <= bcd3-next ;
bcd2-reg <= bcd2-next ;
bcdl-reg <= bcdl-next;
bcd0-reg <= bcd0-next ;

e 1 s i f (clk ’ event and clk= ’ 1 ’ then

end i f ;
end p r o c e s s ;

-- f s m d n e x t - s t a t e l o g i c / d a t a p a t h o p e r a t i o n s
p r o c e s s (state-reg ,start ,p2s_reg ,n-reg ,n-next, bin, 50

bcdO_reg,bcdl-reg,bcd2-reg,bcd3-reg,
b c d O - t m p , b c d l - t m p , b c d 2 ~ t m p , b c d 3 _ t m p)

begin
state-next <= state-reg;

55

M)

65

70

75

ready <= ’ 0 ’ ;
done-tick <= ’ 0 ’ ;
p2s-next <= p2s-reg;
bcd0-next <= bcd0-reg;
bcdl-next <= bcdl-reg;
bcd2-next <= bcd2-reg;
bcd3-next <= bcd3-reg;
n-next <= n-reg;
case state-reg i s

when idle = >
ready <= ’ 1 ’ ;
i f start=’l’ then

state-next <= op;
bcd3-next <= (o t h e r s = > ’ O ’) ;
bcd2-next <= (o t h e r s = > ’ O ’) ;
bcdl-next <= (o t h e r s = > ’ O ’) ;
bcd0-next <= (o t h e r s = > ’ O ’) ;
n-next < = “ 1 1 0 1 “ ; -- i n d e x
p2s-next <= bin; -- i n p u t s h i f t r e g i s t e r
state-next <= op;

end i f ;
when op =>

-_ s h i f t i n b i n a r y b i i

150 FSMD

p2s-next <= p2s_reg(ll downto 0) & ' 0 ' ;
__ s h i f t 4 BCD d i g i t s
bcd0-next <= bcd0-tmp (2 downto 0) & p2s-reg (12) ;
bcdl-next <= bcdl-tmp (2 downto 0) & bcd0-tmp (3) ;
bcd2-next <= bcd2-tmp (2 downto 0) & bcdl-tmp (3) ;
bcd3-next <= bcd3-tmp (2 downto 0) & bcd2-tmp (3) ;
n-next <= n-reg - 1 ;
i f (n-next=O) t h e n

end i f ;
when done =>

state-next <= i d l e ;
done-tick <= '1';

state-next <= d o n e ;

end c a s e ;
end p r o c e s s ;

-- d a t a p a t h f u n c t i o n u n i t s
95 -- f o u r BCD a d j u s t m e n t c i r c u i t s

bcd0-tmp <= bcd0-reg + 3 when bcd0-reg > 4 e l s e

bcdl-tmp <= bcdl-reg + 3 when bcdl-reg > 4 e l s e

100 bcd2-tmp <= bcd2-reg + 3 when bcd2-reg > 4 e l s e

bcd3-tmp <= bcd3-reg + 3 when bcd3-reg > 4 e l s e

bcd0-reg ;

bcdl-reg ;

bcd2-reg;

bcd3-reg;

105 -- o u t p u t
bcdO <= std-logic-vector(bcdO-reg);
bcdl <= std-logic-vector(bcdl-reg);
b c d 2 <= s t d - l o g i c - v e c t o r (b c d 2 - r e g) ;
b c d 3 <= std-logic-vector(bcd3-reg);

110 end arch;

6.3.4 Period counter

A period counter measures the period of a periodic input waveform. One way to construct
the circuit is to count the number of clock cycles between two rising edges of the input
signal. Since the frequency of the system clock is known, the period of the input signal
can be derived accordingly. For example, if the frequency of the system clock is f and the
number of clock cycles between two rising edges is N , the period of the input signal is
N * 1. - f

The design in this subsection measures the period in milliseconds. Its ASMD chart is
shown in Figure 6.12. The period counter takes a measurement when the start signal is
asserted. We use a rising-edge detection circuit to generate a one-clock-cycle tick, edge, to
indicate the rising edge of the input waveform. After s tart is asserted, the FSMD moves to
the waite state to wait for the first rising edge of the input. It then moves to the count state
when the next rising edge of the input is detected. In the count state, we use two registers
to keep track of the time. The t register counts for 50,000 clock cycles, from 0 to 49,999,
and then wraps around. Since the period of the system clock is 20 ns, the t register takes
1 ms to circulate through 50,000 cycles. The p register counts in terms of milliseconds. It

DESIGN EXAMPLES 151

ready <='I '

edger1

t=49,999 (-pT) P + P + l t t t t l

T 4-h t=49,999

(-3-6:)
................................. 1

donetick<=l

Figure 6.12 ASMD chart of a period counter.

152 FSMD

is incremented once when the t register reaches 49,999. When the FSMD exits the count
state, the period of the input waveform is stored in the p register and its unit is milliseconds.
The FSMD asserts the done-tick signal in the done state, as in previous examples.

The code follows the ASMD chart and is shown in Listing 6.7. We use a constant,
CLKMSXOUNT, for the boundary of the millisecond counter. It can be replaced if a different
measurement unit is desired.

Listing 6.7 Period counter

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
use i e e e . n u m e r i c - s t d . a l l ;
e n t i t y p e r i o d - c o u n t e r i s

s p o r t (
c l k , r e s e t : in s t d - l o g i c ;
s t a r t , s i : in s t d - l o g i c ;
r e a d y , d o n e - t i c k : out s t d - l o g i c ;
p r d : out s t d - l o g i c - v e c t o r (9 downto 0)

10 1 ;
end p e r i o d - c o u n t e r ;

a r c h i t e c t u r e a r c h of p e r i o d - c o u n t e r i s
c o n s t a n t CLK-MS-COUNT: i n t e g e r : = 5 0 0 0 0 ; -- 1 ms t i c k

I S type s t a t e - t y p e i s (i d l e , w a i t e , c o u n t , d o n e) ;
s i g n a l s t a t e - r e g , s t a t e - n e x t : s t a t e - t y p e ;
s i g n a l t - r e g , t - n e x t : u n s i g n e d (15 downto 0) ;
s i g n a l p - r e g , p - n e x t : u n s i g n e d (9 downto 0) ;
s i g n a l d e l a y - r e g : s t d - l o g i c ;

20 s i g n a l e d g e : s t d - l o g i c ;
beg in

__ s t a t e and d a t a r e g i s t e r
p r o c e s s (c l k , r e s e t)
beg in

25 i f r e s e t = ’ l ’ then
s t a t e - r e g <= i d l e ;
t - r e g <= (o t h e r s = >) O ’) ;
p - r e g <= (o t h e r s = > ’ O ’) ;
d e l a y - r e g <= ’ 0 ’ ;

s t a t e - r e g <= s t a t e - n e x t ;
t - r e g <= t - n e x t ;
p - r e g <= p - n e x t ;
d e l a y - r e g <= s i ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

35 end i f ;
end p r o c e s s ;

30

__ e d g e d e t e c t i o n c i r c u i t
e d g e <= (n o t d e l a y - r e g) and s i ;

-- f s m d n e x t - s t a t e l o g i c / d a t a p a t h o p e r a t i o n s
p r o c e s s (s t a r t , e d g e , s t a t e - r e g , t - r e g , t - n e x t , p - r e g)
beg in

40

r e a d y <= ’ 0 ’ ;
45 d o n e - t i c k <= ’ 0) ;

DESIGN EXAMPLES 153

s t a t e - n e x t <= s t a t e - r e g ;
p - n e x t <= p - r e g ;
t - n e x t <= t - r e g ;
case s t a t e - r e g i s

when i d l e =>
r e a d y <= ’ 1 ’ ;
i f (s t a r t = ’ l ’) then

end i f ;

i f (e d g e = ’ l ’) then

s t a t e - n e x t <= w a i t e ;

when w a i t e => -- w a i t for t h e f i r s t e d g e

s t a t e - n e x t <= c o u n t ;
t - n e x t <= (o t h e r s = > ’ O ’) ;
p - n e x t <= (o t h e r s = > ’ O ’) ;

end i f ;
when c o u n t = >

i f (e d g e = ’ l ’) then -- 2 n d e d g e a r r i v e d

e l s e -- o t h e r w i s e c o u n t
s t a t e - n e x t <= d o n e ;

i f t - r e g = CLK-MS-COUNT-1 then -- l m s t i c k
t - n e x t <= (o t h e r s = > ’ O ’) ;
p - n e x t <= p - r e g + 1;

t - n e x t <= t - r e g + 1;
e l s e

end i f ;
end i f ;

when done =>
d o n e - t i c k <= ’ 1 ’ ;

50

60

65

70

s t a t e - n e x t <= i d l e ;
7 5 end c a s e ;

end p r o c e s s ;
p r d <= std-logic-vector(p-reg);

end a r c h ;

6.3.5 Accurate low-frequency counter

A frequency counter measures the frequency of a periodic input waveform. The common
way to construct a frequency counter is to count the number of input pulses in a fixed amount
of time, say, 1 second. Although this approach is fine for high-frequency input, it cannot
measure a low-frequency signal accurately. For example, if the input is around 2 Hz, the
measurement cannot tell whether it is 2.123 Hz or 2.567 Hz. Recall that the frequency
is the reciprocal of the period (i.e., frequency = A). An alternative approach is to
measure the period of the signal and then take the reciprocal to find the frequency. We use
this approach to implement a low-frequency counter in this subsection.

This design example demonstrates how to use the previously designed parts to construct
a large system. For simplicity, we assume that the frequency of the input is between 1 and
10 Hz (i.e., the period is between 100 and 1000 ms). The operation of this circuit includes
three tasks:

1. Measure the period.
2. Find the frequency by performing a division operation.
3. Convert the binary number to BCD format.

154 FSMD

We can use the period counter, division circuit, and binary-to-BCD converter to perform
the three tasks and create another FSM as the master control to sequence and coordinate
the operation of the three circuits. The block diagram is shown in Figure 6.13(a), and the
ASM chart of the master control is shown in Figure 6.13(b). The FSM uses the start and
done-tick signals of these circuits to initialize each task and to detect completion of the
task. The code is shown in Listing 6.8.

Listing 6.8 Low-frequency counter

library ieee;
use ieee. std-logic-1164. all ;
use ieee . numeric-std. all ;
entity low-freq-counter is

5 port (
clk, reset: in std-logic;
start : in std-logic;
si: in std-logic;
bcd3, bcd2, bcdl , bcdO : out std-logic-vector (3 downto 0)

10) ;
end low-freq-counter;

architecture arch of low-freq-counter is
type state-type is (idle, count, frq, b2b);

15 signal state-reg, state-next : state-type;
signal prd: std-logic-vector (9 downto 0) ;
signal dvsr , dvnd, quo : std-logic-vector (19 downto 0) ;
signal prd-start , div-start , b2b-start : std-logic;
signal prd-done-t ick , div-done-t i ck , b2b-done-t i ck :

20 std-logic;
begin

... --______________________________________---------
__ c o m p o n e n t i n s t a n t i a t i o n

-_--_-_-_--_---_-_----------------------------- ... __

25 -- i n s t a n t i a t e p e r i o d c o u n t e r
prd-count-unit: entity work.period-counter
port map(clk=>clk, reset=>reset , start=>prd-start , si=>si,

ready=>open, done-tick=>prd-done-tick , prd=>prd);
__ i n s t a n t i a t e d i v i s i o n c i r c u i t

generic map(W=>20, C B I T = > 5)
port map(clk=>clk, reset=>reset , start=>div-start ,

30 div-unit : entity work. div

dvsr=>dvsr , dvnd=>dvnd, quo=>quo, rmd=>open,
ready=>open, done-tick=>div-done-tick);

35 -- i n s t a n t i a t e
bin2bcd-unit : entity work. bin2bcd
port map

b i n a r y - t o -BCD c o n v e r t o r

(clk=>clk, reset=>reset , start=>b2b_start,
bin=>quo (12 downto 0) , ready=>open,

bcd3=>bcd3, bcd2=>bcd2, bcdl=>bcdl, bcdO=>bcdO);
40 done_tick=>b2b_done_tick,

__ s i g n a l w i d t h e x t e n s i o n
dvnd <= s t d ~ l o g i c ~ v e c t o r (t o ~ u n s i g n e d (l O O O O O 0 , 20));
dvsr <= "0000000000" & prd;

45

DESIGN EXAMPLES 155

si I

start -

main control
FSM

period-counter

I quo rmd
I

b2b-start 1-1
donetick

b2b-donetick

bcd3 bcd2 bcdl bcdO

(a) Top-level block diagram

17

prd-start <= 1 (5 -

div-start <= 1

................................... 8

T

b2b-start <= 1 a

T
................................... 8 t

(b) ASM chart of main control

Figure 6.13 Accurate low-frequency counter.

156 FSMD

--

-- m a s t e r FSM

p r o c e s s (c l k , r e s e t)
50 b e g i n

i f r e s e t = ’ l ’ t h e n

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) t h e n
s t a t e - r e g <= i d l e ;

s t a t e - r e g <= s t a t e - n e x t ;
S i end i f ;

end p r o c e s s ;

65

15

no

p r o c e s s (s t a t e - r e g , s t a r t ,
prd_done-tick,div-done-tick,b2b-done-tick)

60 b e g i n
s t a t e - n e x t <= s t a t e - r e g ;
p r d - s t a r t < = ’ O ’ ;
d i v - s t a r t < = ’ O ’ ;
b 2 b - s t a r t < = ’ O ’ ;
c a s e s t a t e - r e g i s

when i d l e = >
i f s t a r t = ’ l ’ t h e n

s t a t e - n e x t <= c o u n t ;
p r d - s t a r t <=’1 ’ ;

end i f ;
when c o u n t =>

i f (p r d - d o n e - t i c k = ’ l ’) t h e n
d i v - s t a r t < = ’ l ’ ;
s t a t e - n e x t <= f r q ;

end i f ;

i f (d i v - d o n e - t i c k = ’ l ’) t h e n
when f r q =>

b 2 b - s t a r t < = ’ l ’ ;
s t a t e - n e x t <= b 2 b ;

end i f ;

i f (b 2 b _ d o n e _ t i c k = ’1 ’1 then

end i f ;

when b2b =>

s t a t e - n e x t <= i d l e ;

RS end c a s e ;
end p r o c e s s ;

end a r c h ;

6.4 BIBLIOGRAPHIC NOTES

The bibliographic information for this chapter is similar to that for Chapter 3.

SUGGESTED EXPERIMENTS 157

6.5 SUGGESTED EXPERIMENTS

6.5.1 Alternative debouncing circuit

Consider the alternative debouncing circuit in Experiment 5.5.2. Redesign the circuit using
the RT methodology:

1. Derive the ASMD chart for the circuit.
2. Derive the HDL code based on the ASMD chart.
3. Replace the debouncing circuit in Section 6.2.5 with the alternative design and verify

its operation.

6.5.2 BCD-to-binary conversion circuit

A BCD-to-binary conversion converts a BCD number to the equivalent binary representa-
tion. Assume that the input is an %bit signal in BCD format (i.e., two BCD digits) and the
output is a 7-bit signal in binary representation. Follow the procedure in Section 6.3.3 to
design a BCD-to-binary conversion circuit:

1. Derive the conversion algorithm and ASMD chart.
2. Derive the HDL code based on the ASMD chart.
3. Derive a testbench and use simulation to verify operation of the code.
4. Synthesize the circuit, program the FPGA, and verify its operation.

6.5.3 Fibonacci circuit with BCD I/O: design approach 1

To make the Fibonacci circuit more user friendly, we can modify the circuit to use the BCD
format for the input and output. Assume that the input is an &bit signal in BCD format
(i.e., two BCD digits) and the output is displayed as four BCD digits on the seven-segment
LED display. Furthermore, the LED will display “9999“ if the resulting Fibonacci number
is larger than 9999 (i.e., overflow). The operation can be done in three steps: convert input
to the binary format, compute the Fibonacci number, and convert the result back to the BCD
format.

The first design approach is to follow the procedure in Section 6.3.5. We first construct
three smaller subsystems, which are the BCD-to-binary conversion circuit, Fibonacci cir-
cuit, and binary-to-BCD conversion circuit, and then use a master FSM to control the overall
operation. Design the circuit as follows:

1. Implement the BCD-to-binary conversion circuit in Experiment 6.5.2.
2. Modify the Fibonacci number circuit in Section 6.3.1 to include an output signal to

3. Derive the top-level block diagram and the master control FSM state diagram.
4. Derive the HDL code.
5 . Derive a testbench and use simulation to verify operation of the code.
6. Synthesize the circuit, program the FPGA, and verify its operation.

indicate the overflow condition.

6.5.4 Fibonacci circuit with BCD I/O: design approach 2

An alternative to the previous “subsystem approach” in Experiment 6.5.3 is to integrate
the three subsystems into a single system and derive a customized FSMD for this partic-
ular application. The approach eliminates the overhead of the control FSM and provides
opportunities to share registers among the three tasks. Design the circuit as follows:

158 FSMD

1. Redesign the circuit of Experiment 6.5.3 using one FSMD. The design should elimi-
nate all unnecessary circuits and states, such as the various done-tick signals and the
done states, and exploit the opportunity to share and reuse the registers in different
steps.

2. Derive the ASMD chart.
3. Derive the HDL code based on the ASMD chart.
4. Derive a testbench and use simulation to verify operation of the code.
5. Synthesize the circuit, program the FPGA and verify its operation.
6. Check the synthesis report and compare the number of LEs used in the two approaches.
7. Calculate the number of clock cycles required to complete the operation in the two

approaches.

6.5.5 Au to-scaled low-f requency counter

The operation of the low-frequency counter in Section 6.3.5 is very restricted. The frequency
range of the input signal is limited between 1 and 10 Hz. It loses accuracy when the
frequency is beyond this range. Recall that the accuracy of this frequency counter depends
on the accuracy of the period counter of Section 6.3.5, which counts in terms of millisecond
ticks. We can modify the t counter to generate a microsecond tick (i.e., counting from 0
to 49) and increase the accuracy 1000-fold. This allows the range of the frequency counter
to increase to 9999 Hz and still maintain at least four-digit accuracy.

Using a microsecond tick introduces more than four accuracy digits for low-frequency
input, and the number must be shifted and truncated to be displayed on the seven-segment
LED. An auto-scaled low-frequency counter performs the adjustment automatically, dis-
plays the four most significant digits, and places a decimal point in the proper place. For
example, according to their range, the frequency measurements will be shown as 1.234",
"12.34", "123.4", or "1234".

The auto-scaled low-frequency counter needs an additional BCD adjustment circuit. It
first checks whether the most significant BCD digit (i.e., the four MSBs) of a BCD sequence
is zero. If this is the case, the circuit shifts the BCD sequence to the left four positions and
increments the decimal point counter. The operation is repeated until the most significant
BCD digit is not "0000".

The complete auto-scaled low-frequency counter can be implemented as follows:
1. Modify the period counter to use the microsecond tick.
2 . Extend the size of the binary-to-BCD conversion circuit.
3. Derive the ASMD chart for the BCD adjustment circuit and the HDL code.
4. Modify the control FSM to include the BCD adjustment in the last step.
5. Design a simple decoding circuit that uses the decimal point counter's output to

activate the desired decimal point of the seven-segment LED display.
6. Derive a testbench and use simulation to verify operation of the code.
7. Synthesize the circuit, program the FPGA, and verify its operation.

6.5.6 Reaction timer

Eye-hand coordination is the ability of the eyes and hands to work together to perform a
task. A reaction timer circuit measures how fast a human hand can respond after a person
sees a visual stimulus. This circuit operates as follows:

SUGGESTED EXPERIMENTS 159

1.

2 .

3.

4.

5.

6.
7.

The circuit has three input pushbuttons, corresponding to the c l e a r , s t a r t , and s t o p
signals. It uses a single discrete LED as the visual stimulus and displays relevant
information on the seven-segment LED display.
A user pushes the c l e a r button to force the circuit returning to the initial state, in
which the seven-segment LED shows a welcome message, "HI," and the stimulus
LED is off.
When ready, the user pushes the start button to initiate the test. The seven-segment
LED goes off.
After a random interval between 2 and 15 seconds, the stimulus LED goes on and
the timer starts to count upward. The timer increases every millisecond and its value
is displayed in the format of "0.000" second on the seven-segment LED.
After the stimulus LED goes on, the user should try to push the s t o p button as soon
as possible. The timer pauses counting once the s t o p button is asserted. The seven-
segment LED shows the reaction time. It should be around 0.15 to 0.30 second for
most people.
If the s t o p button is not pushed, the timer stops after 1 second and displays "1.000".
If the s t o p button is pushed before the stimulus LED goes on, the circuit displays
"9.999" on the seven-segment LED and stops.

Design the circuit as follows:
1. Derive the ASMD chart.
2 . Derive the HDL code based on the ASMD chart.
3. Synthesize the circuit, program the FPGA, and verify its operation.

6.5.7 Babbage difference engine emulation circuit

The Babbage difference engine is a mechanical digital computation device designed to
tabulate a polynomial function. It was proposed by Charles Babbage, an English mathe-
matician, in the nineteenth century. The engine is based on Newton's method of differences
and avoids the need of multiplication. For example, consider a second-order polynomial
f(n) = 2n2 + 372 + 5 . We can find the difference between f (n) and f(n - 1):

f (n) - f (n - 1) = 4n + 1

Assume that n is an integer and n 2 0. The f (n) can be defined recursively as

This process can be repeated for the 4n + 1 expression. Let g (n) = 4n + 1. We can find
the difference between g(n) and g(n - 1):

g(n) - g(n - 1) = 4

The g(n) can be defined recursively as

and f (n) can be rewritten as

160 FSMD

Note that only additions are involved in the recursive definitions of f (n) and g (n) .
Based on the definition of the last two recursive equations, we can derive an algorithm

to compute f (n) . Two temporary registers are needed to keep track of the most recently
calculated f (n) and g (n) , and two additions are needed to update f (n) and g (n) . Assume
that n is a 6-bit input and interpreted as an unsigned integer. Design this circuit using the
RT methodology:

1. Derive the ASMD chart.
2. Derive the HDL code based on the ASMD chart.
3. Derive a testbench and use simulation to verify operation of the code.
4. Synthesize the circuit, program the FPGA, and verify its operation.
5. Let h(n) = n3 + 2n2 + 2n + 1. Use the method above to find the recursive rep-

resentation of h(n) (note that three levels of recursive equations are needed for a
three-order polynomial). Repeat steps 1 to 4.

PART II

I/O MODULES

This Page Intentionally Left Blank

CHAPTER 7

UART

7.1 INTRODUCTION

Universal asynchronous receiver and transmitter (UART) is a circuit that sends parallel data
through a serial line. UARTs are frequently used in conjunction with the EIA (Electronic
Industries Alliance) RS-232 standard, which specifies the electrical, mechanical, functional,
and procedural characteristics of two data communication equipment. Because the voltage
level defined in RS-232 is different from that of FPGA I/O, a voltage converter chip is
needed between a serial port and an FF’GA’s IiO pins.

The S3 board has a RS-232 port with the standard nine-pin connector. The board contains
the necessary voltage converter chip and configures the various RS-232’s control signals
to automatically generate acknowledgment for the PC’s serial port. A standard straight-
through serial cable can be used to connect the S3 board and PC’s serial port. The S3 board
basically handles the RS-232 standard and we only need to concentrate on the design of the
UART circuit.

A UART includes a transmitter and a receiver. The transmitter is essentially a special
shift register that loads data in parallel and then shifts it out bit by bit at a specific rate. The
receiver, on the other hand, shifts in data bit by bit and then reassembles the data. The serial
line is ’ 1 ’ when it is idle. The transmission starts with a start bit, which is ’O’, followed by
data bits and an optional parity bit, and ends with stop bits, which are ’1’. The number of
data bits can be 6,7, or 8. The optional parity bit is used for error detection. For odd parity,
it is set to ’0’ when the data bits have an odd number of 1’s. For even parity, it is set to ’0’
when the data bits have an even number of 1’s. The number of stop bits can be 1, 1.5, or 2.

FPGA Prototyping by VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

163

164 UART

idle
stop bit 4 G:i*:x d2 x d3 x d4 d5 d6 1 d7 y

Figure 7.1 Transmission of a byte.

The transmission with 8 data bits, no parity, and 1 stop bit is shown in Figure 7.1. Note that
the LSB of the data word is transmitted first.

No clock information is conveyed through the serial line. Before the transmission starts,
the transmitter and receiver must agree on a set of parameters in advance, which include the
baud rate (i.e., number of bits per second), the number of data bits and stop bits, and use of
the parity bit. The commonly used baud rates are 2400,4800,9600, and 19,200 bauds.

We illustrate the design of the receiving and transmitting subsystems in the following
sections. The design is customized for a UART with a 19,200 baud rate, 8 data bits, 1 stop
bit, and no parity bit.

7.2 UART RECEIVING SUBSYSTEM

Since no clock information is conveyed from the transmitted signal, the receiver can retrieve
the data bits only by using the predetermined parameters. We use an oversampling scheme
to estimate the middle points of transmitted bits and then retrieve them at these points
accordingly.

7.2.1 Oversampling procedure

The most commonly used sampling rate is 16 times the baud rate, which means that each
serial bit is sampled 16 times. Assume that the communication uses N data bits and M
stop bits. The oversampling scheme works as follows:

1. Wait until the incoming signal becomes 'O', the beginning of the start bit, and then
start the sampling tick counter.

2. When the counter reaches 7, the incoming signal reaches the middle point of the start
bit. Clear the counter to 0 and restart.

3. When the counter reaches 15, the incoming signal progresses for one bit and reaches
the middle of the first data bit. Retrieve its value, shift it into a register, and restart
the counter.

4. Repeat step 3 N-1 more times to retrieve the remaining data bits.
5. If the optional parity bit is used, repeat step 3 one time to obtain the parity bit.
6. Repeat step 3 M more times to obtain the stop bits.
The oversampling scheme basically performs the function of a clock signal. Instead of

using the rising edge to indicate when the input signal is valid, it utilizes sampling ticks to
estimate the middle point of each bit. While the receiver has no information about the exact
onset time of the start bit, the estimation can be off by at most &. The subsequent data bit
retrievals are off by at most from the middle point as well. Because of the oversampling,
the baud rate can only be a small fraction of the system clock rate, and thus this scheme is
not appropriate for a high data rate.

UART RECEIVING SUBSYSTEM 165

Figure 7.2 Conceptual block diagram of a UART receiving subsystem.

The conceptual block diagram of a UART receiving subsystem is shown in Figure 7.2.

UART receiver: the circuit to obtain the data word via oversampling
0 Baud rate generator: the circuit to generate the sampling ticks
0 Znterjiace circuit: the circuit that provides buffer and status between the UART re-

It consists of three major components:

ceiver and the system that uses the UART

7.2.2 Baud rate generator

The baud rate generator generates a sampling signal whose frequency is exactly 16 times
the UART’s designated baud rate. To avoid creating a new clock domain and violating the
synchronous design principle, the sampling signal should function as enable ticks rather
than the clock signal to the UART receiver, as discussed in Section 4.3.2.

For the 19,200 baud rate, the sampling rate has to be 307,200 (i.e., 19,200*16) ticks per
second. Since the system clock rate is 50 MHz, the baud rate generator needs a mod-I63
(i.e., - ::;a$,) counter, in which the one-clock-cycle tick is asserted once every 163 clock
cycles. The parameterized mod-m counter discussed in Section 4.3.2 can be used for this
purpose by setting the M generic to 163.

7.2.3 UART receiver

With an understanding of the oversampling procedure, we can derive the ASMD chart
accordingly, as shown in Figure 7.3. To accommodate future modification, two constants
are used in the description. The D-BIT constant indicates the number of data bits, and the
SB-TICK constant indicates the number of ticks needed for the stop bits, which is 16, 24,
and 32 for 1, 1.5, and 2 stop bits, respectively. D B I T and SB-TICK are assigned to 8 and
16 in this design.

The chart follows the steps discussed in Section 7.2.1 and includes three major states,
start, d a t a , and s top , which represent the processing of the start bit, data bits, and stop
bit. The s - t i c k signal is the enable tick from the baud rate generator and there are 16 ticks
in a bit interval. Note that the FSMD stays in the same state unless the s - t i c k signal is
asserted. There are two counters, represented by the s and n registers. The s register keeps
track of the number of sampling ticks and counts to 7 in the s ta r t state, to 15 in the data
state, and to SB-TICK in the s t o p state. The n register keeps track of the number of data
bits received in the data state. The retrieved bits are shifted into and reassembled in the b

166 UART

....................... rg T

........................ -- 9

L F 9
rF-<->

(-I(-)
...

I I

I T

................................

LFg
i

(-)(-) rx-donefick <=I

........... t......... 1
I

Figure 7.3 ASMD chart of a UART receiver.

UART RECEIVING SUBSYSTEM 167

register. A status signal, rx-done-tick, is included. It is asserted for one clock cycle after
the receiving process is completed. The corresponding code is shown in Listing 7.1.

Listing 7.1 UART receiver

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
use i e e e . n u m e r i c - s t d . a l l ;
e n t i t y u a r t - r x i s

s g e n e r i c (
DBIT : i n t e g e r : = 8 ; -- # d a t a b i t s
SB-TICK: i n t e g e r : = 1 6 -- # t i c k s f o r s t o p b i t s

) ;
port (

10 c l k , r e s e t : in s t d - l o g i c ;
r x : in s t d - l o g i c ;
s - t i c k : in s t d - l o g i c ;
r x - d o n e - t i c k : out s t d - l o g i c ;
d o u t : out s t d - l o g i c - v e c t o r (7 downto 0)

15) ;
end u a r t - r x ;

10

15

45

a r c h i t e c t u r e a r c h of u a r t - r x i s
type s t a t e - t y p e i s (i d l e , s t a r t , d a t a , s t o p) ;

s i g n a l s - r e g , s - n e x t : u n s i g n e d (3 downto 0) ;
s i g n a l n - r e g , n - n e x t : u n s i g n e d (2 downto 0) ;
s i g n a l b - r e g , b - n e x t : s t d - l o g i c - v e c t o r (7 downto 0) ;

x s i g n a l s t a t e - r e g , s t a t e - n e x t : s t a t e - t y p e ;

beg in
zs -- FSMD s t a t e & d a t a r e g i s t e r s

p r o c e s s (c l k , r e s e t)
beg in

i f r e s e t = ’ l ’ then
s t a t e - r e g <= i d l e ;
s - r e g <= (o t h e r s = > ’ 0 J , ;
n - r e g <= (o t h e r s = > J O ’) ;
b - r e g <= (o t h e r s = > ’ O ’) ;

s t a t e - r e g <= s t a t e - n e x t ;
s - r e g <= s - n e x t ;
n - r e g <= n - n e x t ;
b - r e g <= b - n e x t ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

end i f ;
end p r o c e s s ;

p r o c e s s (s t a t e - r e g , s - r e g , n - r e g , b - r e g , ~ - t i c k , r x)
beg in

40 -- n e x t - s t a t e l o g i c & d a t a p a t h f u n c t i o n a l u n i t s / r o u t i n g

s t a t e - n e x t <= s t a t e - r e g ;
s - n e x t <= s - r e g ;
n - n e x t <= n - r e g ;
b - n e x t <= b - r e g ;
r x - d o n e - t i c k < = ’ O ’ ;
c a s e s t a t e - r e g i s

when i d l e =>

168 UART

50

55

65

70

75

i f r x = ’ O ’ then
s t a t e - n e x t <= s t a r t ;
s - n e x t <= (o t h e r s = > ’ 0 ’ 1 ;

end i f ;
when s t a r t =>

i f (s - t i c k = ’1’) then
i f s _ r e g = 7 then

s t a t e - n e x t <= d a t a ;
s - n e x t <= (o t h e r s = > ’ O ’) ;
n - n e x t <= (o t h e r s = > ’ O ’) ;

s - n e x t <= s - r e g + 1 ;
e l s e

end i f ;
end i f ;

when d a t a =>
i f (s - t i c k = ’1’) then

i f s _ r e g = 1 5 then
s - n e x t <= (o t h e r s = > ’ O ’) ;
b - n e x t <= r x & b - r e g (7 downto 1) ;
i f n - r e g = (DBIT -1) then

e l s e

end i f ;

s - n e x t <= s - r e g + 1;

s t a t e - n e x t <= s t o p ;

n - n e x t <= n - r e g + 1 ;

e l s e

end i f ;
end i f ;

when s t o p = >
i f (s - t i c k = ’1’) then

i f s - r e g = (S B - T I C K - l)
s t a t e - n e x t <= i d l e
r x - d o n e - t i c k <= ’ 1 ’

e l s e
s - n e x t <= s - r e g + 1 ;

85 end i f ;

end c a s e ;
end p r o c e s s ;
d o u t <= b - r e g ;

end i f ;

90 end a r c h ;

hen

7.2.4 Interface circuit

In a large system, a UART is usually a peripheral circuit for serial data transfer. The
main system checks its status periodically to retrieve and process the received word. The
receiver’s interface circuit has two functions. First, it provides a mechanism to signal the
availability of a new word and to prevent the received word from being retrieved multiple
times. Second, it can provide buffer space between the receiver and the main system. There
are three commonly used schemes:

Af lagFF

UART RECEIVING SUBSYSTEM 169

A flag FF and a one-word buffer
0 A FIFO buffer

Note that the UART receiver asserts the rx-ready-tick signal one clock cycle after a data
word is received.

The first scheme uses a j a g FF to keep track of whether a new data word is available.
The FF has two input signals. One is set-f lag, which sets the flag FF to ’l’, and the other
is clr-f lag, which clears the flag FF to ’0’. The rx-ready-tick signal is connected to
the s e t - f l ag signal and sets the flag when a new data word arrives. The main system
checks the output of the flag FF to see whether a new data word is available. It asserts the
clr-f l ag signal one clock cycle after retrieving the word. The top-level block diagram is
shown in Figure 7.4(a). To be consistent with other schemes, the flag FF’s output is inverted
to generate the final rx-empty signal, which indicates that no new word is available. In
this scheme, the main system retrieves the data word directly from the shift register of the
UART receiver and does not provide any additional buffer space. If the remote system
initiates a new transmission before the main system consumes the old data word (i.e., the
flag FF is still asserted), the old word will be overwritten, an error known as data overrun.

To provide some cushion, a one-word buffer can be added, as shown in Figure 7.4(b).
When the rx-ready-tick signal is asserted, the received word is loaded to the buffer
and the flag FF is set as well. The receiver can continue the operation without destroying
the content of the last received word. Data overrun will not occur as long as the main
system retrieves the word before a new word arrives. The code for this scheme is shown in
Listing 7.2.

Listing 7.2 Interface with a flag FF and buffer

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y flag-buf i s

g e n e r i c (W: integer : =8) ;
5 p o r t (

clk, reset: in std-logic;
clr-f lag, set-flag : in std-logic ;
din: i n std-logic-vector (W-1 downto 0) ;
dout : out std-logic-vector (W - I downto 0) ;

10 f lag: out std-logic

1 ;
end f lag-buf ;

a r c h i t e c t u r e arch of flag-buf i s
1s s i g n a l buf-reg, buf-next: std-logic-vector (W-1 downto 0) ;

s i g n a l f lag-reg , f lag-next : std-logic ;

-- F F & r e g i s t e r
p r o c e s s (clk, reset)

beg in

ZD beg in
i f reset=’l’ then

buf-reg <= (o t h e r s = > ’ O ’) ;
flag-reg <= ’ 0 ’ ;

buf -reg <= buf -next ;
flag-reg <= flag-next;

e l s i f (clk’event and clk=’l’) then

end i f ;

25

170 UART

Figure 7.4 Interface circuit of a UART receiving subsystem.

UART TRANSMITTING SUBSYSTEM 171

35

end p r o c e s s ;
__ n e x t - -s t a t e 1 o g i c
p r o c e s s (b u f - r e g , f l a g - r e g , s e t - f l a g , c l r - f l a g , d i n)
beg in

30

b u f - n e x t <= b u f - r e g ;
f l a g - n e x t <= f l a g - r e g ;
i f (s e t - f l a g = ’ l ’) then

b u f - n e x t <= d i n ;
f l a g - n e x t <= ’1’;

f l a g - n e x t <= ’ 0 ’ ;
e l s i f (c l r - f l a g = ’ 1 ’) then

end i f ;
40 end p r o c e s s ;

__ o u t p u t l o g i c
d o u t <= b u f - r e g ;
f l a g <= f l a g - r e g ;

end a r c h ;

The third scheme uses a FIFO buffer discussed in Section 4.5.3. The FIFO buffer provides
more buffering space and further reduces the chance of data overrun. We can adjust the
desired number of words in FIFO to accommodate the processing need of the main system.
The detailed block diagram is shown in Figure 7.4(c).

The rx-ready-tick signal is connected to the w r signal of the FIFO. When a new data
word is received, the w r signal is asserted one clock cycle and the corresponding data is
written to the FIFO. The main system obtains the data from FIFO’s read port. After retrieving
a word, it asserts the r d signal of the FIFO one clock cycle to remove the corresponding
item. The empty signal of the FIFO can be used to indicate whether any received data word
is available. A data-overrun error occurs when a new data word arrives and the FIFO is full.

7.3 UART TRANSMITTING SUBSYSTEM

The organization of a UART transmitting subsystem is similar to that of the receiving
subsystem. It consists of a UART transmitter, baud rate generator, and interface circuit.
The interface circuit is similar to that of the receiving subsystem except that the main system
sets the flag FF or writes the FIFO buffer, and the UART transmitter clears the flag FF or
reads the FIFO buffer.

The UART transmitter is essentially a shift register that shifts out data bits at a specific
rate. The rate can be controlled by one-clock-cycle enable ticks generated by the baud
rate generator. Because no oversampling is involved, the frequency of the ticks is 16 times
slower than that of the UART receiver. Instead of introducing a new counter, the UART
transmitter usually shares the baud rate generator of the UART receiver and uses an internal
counter to keep track of the number of enable ticks. A bit is shifted out every 16 enable
ticks.

The ASMD chart of the UART transmitter is similar to that of the UART receiver.
After assertion of the t x - s t a r t signal, the FSMD loads the data word and then gradually
progresses through the start , data , and s top states to shift out the corresponding bits.
It signals completion by asserting the tx-done-tick signal for one clock cycle. A 1-bit
buffer, tx-reg, is used to filter out any potential glitch. The corresponding code is shown
in Listing 1.3.

172 UART

Listing 7.3 UART transmitter

l i b r a r y ieee;
use ieee.std-logic-ll64.all;
use ieee . numeric-std. a l l ;
e n t i t y uart-tx i s

5 g e n e r i c (
DBIT : integer : =8 ; -- # d a t a b i t s
SB-TICK: integer:=16 -- # t i c k s f o r s t o p b i t s

1 ;
port (

10 clk, reset: in std-logic;
tx-start : in std-logic;
s-tick: in std-logic ;
din: in std-logic-vector (7 downto 0) ;
tx-done-tick: out std-logic;

15 tx: out std-logic
) ;

end uart-tx ;

35

40

50

a r c h i t e c t u r e arch of uart-tx i s
20 type state-type i s (idle, start, data, stop);

s i g n a l state-reg, state-next : state-type;
s i g n a l s-reg , s-next : unsigned (3 downto 0) ;
s i g n a l n-reg , n-next : unsigned (2 downto 0) ;
s i g n a l b-reg , b-next : std-logic-vector (7 downto 0) ;

25 s i g n a l tx-reg , tx-next : std-logic ;

-- FSMD s t a t e C? d a t a r e g i s t e r s
p r o c e s s (clk, reset)
begin

begin

30 i f reset=’l’ then
state-reg <= idle;
s-reg <= (o t h e r s = >) O)) ;
n-reg <= (o t h e r s = >) O ’) ;
b-reg <= (o t h e r s = >) O ’) ;
tx-reg <=)l);

state-reg <= state-next;
s-reg <= s-next;
n-reg <= n-next;
b-reg <= b-next;
tx-reg <= tx-next;

e 1 s i f (clk) event and clk=) 1 ’) then

end i f ;
end p r o c e s s ;
__ n e x t - s t a t e l o g i c & d a t a p a t h f u n c t i o n a l u n i t s / r o u t i n g
p r o c e s s (state-reg , s-reg ,n-reg ,b-reg, s-tick,

begin

45

tx-reg,tx-start,din)

state-next <= state-reg;
s-next <= s-reg;
n-next <= n-reg;
b-next <= b-reg;
tx-next <= tx-reg ;

UART TRANSMITTING SUBSYSTEM 173

t x - d o n e - t i c k <= ’ 0 ’ ;
case s t a t e - r e g i s

when i d l e =>
t x - n e x t <= 1 ;
i f t x - s t a r t = ’ l ’ then

s t a t e - n e x t <= s t a r t ;
s - n e x t <= (o t h e r s = > ’ O ’) ;
b - n e x t <= d i n ;

end i f ;
when s t a r t =>

t x - n e x t <= ’ 0 ’ ;
i f (s - t i c k = ’1’) then

i f s _ r e g = 1 5 then
s t a t e - n e x t <= d a t a ;
s - n e x t <= (o t h e r s = > ’ O ’) ;
n - n e x t <= (o t h e r s = > ’ O ’) ;

s - n e x t <= s - r e g + 1 ;
e l s e

end i f ;
end i f ;

when d a t a =>
t x - n e x t <= b - r e g (0) ;
i f (s - t i c k = Jl’) then

i f s _ r e g = 1 5 then
s - n e x t <= (o t h e r s = > ’ O ’) ;
b - n e x t <= ‘ 0 ’ 8z b - r e g (7 downto 1) ;
i f n - r e g = (D B I T -1) then

e l s e

end i f ;

s - n e x t <= s - r e g + 1;

s t a t e - n e x t <= s t o p ;

n - n e x t <= n - r e g + 1 ;

e l s e

end i f ;
end i f ;

when s t o p = >
t x - n e x t <= ’ 1 ’ ;
i f (s - t i c k = ’1’) then

i f s - r e g = (SB-TICK -1) then
s t a t e - n e x t <= i d l e ;
t x - d o n e - t i c k <= Jl’;

s - n e x t <= s -reg + 1 ;
e l s e

end i f ;
end i f ;

55

60

65

70

75

80

ns

w

95

end c a s e ;
end p r o c e s s ;

100 t x <= t x - r e g ;
end a r c h ;

174 UART

Figure 7.5 Block diagram of a complete UART.

7.4 OVERALL UART SYSTEM

7.4.1 Complete UART core

By combining the receiving and transmitting subsystems, we can construct the complete
UART core. The top-level diagram is shown in Figure 7.5. The block diagram can be
described by component instantiation, and the corresponding code is shown in Listing 7.4.

10

20

Listing 7.4 UART top-level description

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y uart i s

5 g e n e r i c (
__ D e f a u l t s e t t i n g :
-- 1 9 2 0 0 b a u d , 8 d a t a b i t s , 1 s t o p b i t , 2 ^ 2 FIFO
DBIT : integer : =8; -- # d a t a b i t s
SB-TICK: integer:=16; -- # t i c k s f o r s t o p b i t s , 1 6 / 2 4 / 3 2

DVSR: integer:= 163; -- baud r a t e d i v i s o r

DVSR-BIT: integer:=8; -- # b i t s of DVSR
FIFO-W: integer:=2 -- # a d d r b i t s of FIFO

-- for 1 / 1 . 5 / 2 s t o p b i t s

-- DVSR = 5 0 M / (1 6 * b a u d r a t e)

I 5 -- # w o r d s in FIFO=2^FIFO-W
) ;
p o r t (

clk, reset: i n std-logic;
rd-uart , wr-uart : i n std-logic ;
r x : i n std-logic;
w-data: i n std-logic-vector (7 downto 0) ;
tx-full, rx-empty: out std-logic;

OVERALL UART SYSTEM 175

r-data: out std-logic-vector (7 downto 0) ;
tx: out std-logic

25) ;
end uart;

architecture str-arch of uart is

10 signal rx-done-tick: std-logic;
signal tick: std-logic ;

signal tx-f if o-out : std-logic-vector (7 downto 0) ;
signal rx-data-out : std-logic-vector (7 downto 0) ;
signal tx-empty , tx-f if o-not-empty : std-logic ;
signal tx-done-tick : std-logic ;

baud-gen-unit: entity work.mod-m-counter(arch)
v begin

generic map(M=>DVSR , N=>DVSR-BIT)
port map(clk=>clk, reset=>reset ,

q=>open , max-tick=>tick) ;
40 uart-rx-unit: entity work.uart-rx(arch)

generic map(DBIT=>DBIT, SB-TICK=>SB-TICK)
port map(clk=>clk, reset=>reset , rx=>rx,

s-tick=>tick, rx-done_tick=>rx-done-tick,
dout=>rx-data-out ;

45 fifo-rx-unit: entity work.fifo(arch)
generic map(B=>DBIT , W=>FIFO-W)
port map(clk=>clk, reset=>reset , rd=>rd-uart ,

wr=>rx-done-t ick , w-data=>rx-data-out ,
empty=>rx-empty, full=>open, r-data=>r-data);

50 fifo-tx-unit: entity work.fifo(arch)
generic map(B=>DBIT , W=>FIFO-W)
port map(clk=>clk, reset=>reset, rd=>tx-done-tick,

wr=>wr-uart, w-data=>w-data, empty=>tx-empty,
full=>tx-full, r-data=>tx-fifo-out);

5 5 uart-tx-unit : entity work. uart-txcarch)
g e n e r i c map (DB I T = > DB I T , SB - T I CK = > SB - T I CK)
port map(clk=>clk, reset=>reset ,

tx-start=>tx-fifo-not-empty,
s-tick=>tick, din=>tx-fifo-out,

60 tx-done-tick=> tx-done-tick, tx=>tx);
tx-fifo-not-empty <= not tx-empty;

end str-arch;

In the picoBlaze source file (discussed in Chapter 14), Xilinx supplies a customized
UART module with similar functionality. Unlike our implementation, the module is de- Xilinx
scribed using low-level Xilinx primitives. It can be considered as a gate-level description specific
that utilizes Xilinx-specific components. Since the designer has the expert knowledge of
Xilinx devices and takes advantage of its architecture, its implementation is more efficient
than the generic RT-level device-independent description of this chapter. It is instructive to
compare the code complexity and the circuit size of the two descriptions.

176 UART

Figure 7.6 Block diagram of a UART verification circuit.

7.4.2 UART verification configuration

Verificafion circuif We use a loop-back circuit and a PC to verify the UART’s operation.
The block diagram is shown in Figure 7.6. In the circuit, the serial port of the S 3 board is
connected to the serial port of a PC. When we send a character from the PC, the received
data word is stored in the UART receiver’s four-word FIFO buffer. When retrieved (via the
r-data port), the data word is incremented by 1 and then sent back to the transmitter (via
the w-data port). The debounced pushbutton switch produces a single one-clock-cycle tick
when pressed and it is connected to the rd-uar t and wr-uart signals. When the tick is
generated, it removes one word from the receiver’s FIFO and writes the incremented word
to the transmitter’s FIFO for transmission. For example, we can first type HAL in the PC
and the three data words are stored in the FIFO buffer of the UART receiver. We then can
push the button on the S3 board three times. The three successive characters, IBM, will be
transmitted back and displayed. The UART’s r-data port is also connected to the eight
LEDs of the S 3 board, and its t x - f u l l and rx-empty signals are connected to the two
horizontal bars of the rightmost digit of the seven-segment display. The code is shown in
Listing 7.5.

Listing 7.5 UART verification circuit
~~

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y uart-test i s

5 p o r t (
clk, reset: in std-logic;
btn: std-logic-vector (2 downto 0) ;
r x : in std-logic;
t x : out std-logic;

sseg : out std-logic-vector (7 downto 0) ;
a n : out std-logic-vector (3 downto 0)

10 led: out std-logic-vector (7 downto 0) ;

) ;
end uart-test;

a r c h i t e c t u r e arch of uart-test i s
15

s i g n a l tx-full , rx-empty : std-logic;
s i g n a l rec-data ,rec-data1 : std-logic-vector (7 downto 0) ;

OVERALL UART SYSTEM 177

signal btn-tick: std-logic;

__ i n s t a n t i a t e u a r t
uart-unit : entity work.uart (str-arch)

20 begin

port map(clk=>clk, reset=>reset , rd-uart=>btn-tick,
wr-uart=>btn-tick, r x = > r x , w-data=>rec-datal,

r-data=>rec-data, tx=>tx);
15 tx-full=>tx-full, rx-empty=>rx-empty,

__ i n s t a n t i a t e d e b o u n c e c i r c u i t
btn-db-unit : entity work. debounce (fsmd-arch)

port map(clk=>clk, reset=>reset , sw=>btn(O),
30 db-level=>open, db-tick=>btn-tick);

-- i n c r e m e n t e d d a t a l o o p b a c k
rec-data1 <= std-logic_vector(unsigned(rec-data)+l);
__ l e d d i s p l a y
led <= rec-data;

sseg <= '1 ' & (n o t tx-full) & "11" & (not rx-empty) & "111";
35 an <= "1110";

end arch;

HyperTerminal of Windows On PC's side, Windows' HyperTerminal program can
be used as a virtual terminal to interact with the S3 board. To be compatible with our
customized UART, it has to be configured as 19,200 baud, 8 data bits, 1 stop bit, and no
parity bit. The basic procedure is:

1.

2.

3.

4.

5.

Select Start t Programs t Accessories t Communications + HyperTerminal. The
HyperTerminal dialog appears.
Type a name for this connection, say fpga-192. Click OK. This connection can be
saved and invoked later.
A Connect-to dialog appears. Press the Connecting Using field and select the desired
serial port (e.g., COM1). Click OK.
The Port Setting dialog appears. Configure the port as follows:

0 Bits per second: 19200
0 Data bits: 8
0 Parity: None
0 Stop bits: 1
0 Flow control: None

Click OK.
Select File t Properties + Setting. Click ASCII Setup and check the Echo typed
characters locally box. Click OK twice. This will allow the typed characters to be
shown on the screen.

The HyperTerminal program is set up now and ready to communicate with the S3 board.
We can type a few keys and observe the LEDs of the S3 board. Note that the received
words are stored in the FIFO buffer and only the first received data word is displayed.
After we press the pushbutton, the first data word will be removed from the FIFO and
the incremented word will be looped back to the PC's serial port and displayed in the
HyperTerminal window. The full and empty status of the respective FIFO buffers can be
tested by consecutively receiving and transmitting more than four data words.

ASCII code In HyperTerminal, characters are sent in ASCII code, which is 7 bits and
consists of 128 code words, including regular alphabets, digits, punctuation symbols, and

178 UART

nonprintable control characters. The characters and their code words (in hexadecimal for-
mat) are shown in Table 7.1. The nonprintable characters are shown enclosed in parentheses,
such as (del). Several nonprintable characters may introduce special action when received:

0 (nul): null byte, which is the all-zero pattern
0 (bel): generate a bell sound, if supported
0 (bs): backspace
0 (ht): horizontal tab
0 (nl): new line
0 (vt): vertical tab
0 (np): newpage
0 (cr): carriage return
0 (esc): escape
0 (sp): space
0 (del): delete, which is also the all-one pattern

Since we use the PC’s serial port to communicate with the S3 board in many experiments
and projects, the following observations help us to manipulate and process the ASCII code:

0 When the first hex digit in a code word is 016 or 116, the corresponding character is

0 When the first hex digit in a code word is Z16 or 316, the corresponding character is

0 When the first hex digit in a code word is 416 or 516, the corresponding character is

0 When the first hex digit in a code word is 616 or 716, the corresponding character is

0 If the first hex digit in a code word is 316, the lower hex digit represents the corre-

0 The upper- and lowercase letters differ in a single bit and can be converted to each

Note that the ASCII code uses only 7 bits, but a data word is normally composed of
8 bits (i.e., a byte). The PC uses an extended set in which the MSB is 1 and the characters
are special graphics symbols. This code, however, is not part of the ASCII standard.

a control character.

a digit or punctuation.

generally an uppercase letter.

generally a lowercase letter.

sponding decimal digit.

other by adding or subtracting 2016 or inverting the sixth bit.

7.5 CUSTOMIZING A UART

The UART discussed in previous sections is customized for a particular configuration. The
design and code can easily be modified to accommodate other required features:

0 Baud rate. The baud rate is controlled by the frequency of the sampling ticks of the
baud rate generator. The frequency can be changed by revising the M generic of the
mod-m counter, which is represented as the DVSR constant in code.

0 Number of data bits. The number of data bits can be changed by modifying the upper
limit of the n-reg register, which is specified as the DBIT constant in code.

0 Parity bit. A parity bit can be included by introducing a new state between the data
and stop states in the ASMD chart in Figure 7.3.

0 Number of stop bits. The number of stop bits can be changed by modifying the
upper limit of the s-reg register in the stop state of the ASMD chart. The SB-TICK
constant is used for this purpose. It can be 16,24, or 32, which is for 1, 1.5, or 2 stop
bits, respectively.

CUSTOMIZING A UART 179

Table 7.1 ASCII codes

Char Code

(SP) 40
! 41

42
43
$ 44
% 45
& 46

47
(48
1 49
* 4a

+ 4b
4c
4d
4e

I 4f
0 50
1 51
2 52
3 53
4 54
5 55
6 56
7 57
8 58
9 59

5a
5b

< 5c
5d

> 5e
? 5f

I1

5

- -

Code

00
01
02
03
04
05
06
07
08
09
Oa
Ob
oc
Od
Oe
Of
10
11
12
13
14
15
16
17
18
19
la
lb
I C

Id
le
If

Code

20
21
22
23
24
25
26
27
28
29
2a
2b
2c
2d
2e
2f
30
31
32
33
34
35
36
37
38
39
3a
3b
3c
3d
3e
3f

Char

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
1

Code

60
61
62
63
64
65
66
67
68
69
6a
6b
6c
6d
6e
6f
70
71
72
73
74
75
76
77
78
79
7a
7b
7c
7d
7e
7f

Char

a
b

d
e
f
g
h
i

k
1
m
n

P
9
r

C

j

0

S

t
u
V

W

X

Y
Z

{

1

(dell

I

x

180 UART

0 Error checking. Three types of errors can be detected in the UART receiving subsys-

- Parity error. If the parity bit is included, the receiver can check the correctness
of the received parity bit.

- Frame error. The receiver can check the received value in the s top state. If
the value is not ’l’, the frame error occurs.

- BufSer overrun error. This happens when the main system does not retrieve the
received words in a timely manner. The UART receiver can check the value
of the buffer’s f lag-reg signal or FIFO’s f u l l signal when the received word
is ready to be stored (i.e., when the rx-done-tick signal is generated). Data
overrun occurs if the f lag-reg or f u l l signal is still asserted.

tem:

7.6 BIBLIOGRAPHIC NOTES

Although the RS-232 standard is very old, it still provides a simple and reliable low-speed
communication link between two devices. The Wikipedia Web site has a good overview
article and several useful links on the subject (search with the keyword RS232). Serial Port
Complete by Jan Axelson provides information on interfacing hardware devices to PC’s
serial port.

7.7 SUGGESTED EXPERIMENTS

7.7.1 Full-featured UART

The alternative to the customized UART is to include all features in design and to dynam-
ically configure the UART as needed. Consider a full-featured UART that uses additional
input signals to specify the baud rate, type of parity bit, and the numbers of data bits and
stop bits. The UART also includes an error signal. In addition to the I/O signals of the
uar t - top design in Listing 7.4, the following signals are required:

0 bd-rate: 2-bit input signal specifying the baud rate, which can be 1200,2400,4800,

0 dnum: 1-bit input signal specifying the number of data bits, which can be 7 or 8
0 snum: 1-bit input signal specifying the number of stop bits, which can be 1 or 2
0 par: 2-bit input signal specifying the desired parity scheme, which can be no parity,

0 e r r : 3-bit output signal in which the bits indicate the existence of the parity error,

or 9600 baud

even parity, or odd parity

frame error, and data overrun error
Derive this circuit as follows:

1. Modify the ASMD chart in Figure 7.3 to accommodate the required extensions.
2. Revise the UART receiver code according to the ASMD chart.
3. Revise the UART transmitter code to accommodate the required extensions.
4. Revise the top-level UART code and the verification circuit. Use the onboard switches

for the additional input signals and three LEDs for the error signals. Synthesize the
verification circuit.

5. Create different configurations in HyperTerminal and verify operation of the UART
circuit.

SUGGESTED EXPERIMENTS 181

7.7.2 UART with an automatic baud rate detection circuit

The most commonly used number of data bits of a serial connection is eight, which cor-
responds to a byte. When a regular ASCII code is used in communication (as we type in
the HyperTerminal window), only seven LSBs are used and the MSB is ’0’. If the UART
is configured as 8 data bits, 1 stop bit, and no parity, the received word is in the form of
0-dddd-dddO-I, in which d is a data bit and can be ’0’ or ’ 1 ’. Assume that there is sufficient
time between the first word and subsequent transmissions. We can determine the baud rate
by measuring the time interval between the first ’0’ and last ’0’. Based on this observation,
we can derive a UART with an automatic baud rate detection circuit. In this scheme, the
transmitting system first sends an ASCII code for rate detection and then resumes normal
operation afterward. The receiving subsystem uses the first word to determine a baud rate
and then uses this rate for the baud rate generator for the remaining transmission.

Assume that UART configuration is 8 data bits, 1 stop bit, and no parity bit, and the
baud rate can be 4800,9600, or 19,200 baud. The revised UART receiver should have two
operation modes. It is initially in the “detection mode” and waits for the first word. After
the word is received and the baud rate is determined, the receiver enters “normal mode”
and the UART operates in a regular fashion. Derive the UART as follows:

1. Draw the ASMD chart for the automatic baud rate detector circuit.
2. Derive the VHDL code for the ASMD chart. Use three LEDs on the S3 board to

indicate the baud rate of the incoming signal.
3. Modify the UART to include three different baud rates: 4800, 9600, and 19,200.

This can be achieved by using a register for the divisor of the baud rate generator and
loading the value according to the desired baud rate.

4. Create a top-level FSMD to keep track of the mode and to control and coordinate
operation of the baud rate detection circuit and the regular UART receiver. Use a
pushbutton switch on the S3 board to force the UART into the detection mode.

5. Revise the top-level UART code and the verification circuit. Synthesize the verifica-
tion circuit.

6. Create different configurations in HyperTerminal and verify operation of the UART.

7.7.3 UART with an automatic baud rate and parity detection circuit

In addition to the baud rate, we assume that the parity scheme also needs to be determined
automatically, which can be no parity, even parity, or odd parity. Expand the previous
automatic baud rate detection circuit to detect the parity configuration and repeat Experi-
ment 7.7.2.

7.7.4 UART-controlled stopwatch

Consider the enhanced stopwatch in Experiment 4.7.6. Operation of the stopwatch is con-
trolled by three switches on the S3 board. With the UART, we can use PC’s HyperTerminal
to send commands to and retrieve time from the stopwatch:

0 When a c or C (for “clear”) ASCII code is received, the stopwatch aborts current
counting, is cleared to zero, and sets the counting direction to “up.”

0 When a g or G (for “go”) ASCII code is received, the stopwatch starts to count.
0 When a p or P (for “pause”) ASCII code is received, counting pauses.
0 When a u or U (for “up-down”) ASCII code is received, the stopwatch reverses the

direction of counting.

182 UART

0 When a r or R (for “receive”) ASCII code is received, the stopwatch transmits the
current time to the PC. The time should be displayed as ‘I DD . D It, where D is a decimal
digit.

0 All other codes will be ignored.
Design the new stopwatch, synthesize the circuit, connect it to a PC, and use HyperTerminal
to verify its operation.

7.7.5 UART-controlled rotating LED banner

Consider the rotating LED banner circuit in Experiment 4.7.5. With the UART, we can
use PC’s HyperTerminal to control its operation and dynamically modify the digits in the
banner:

0 When a g or G (for “go”) ASCII code is received, the LED banner rotates.
0 When a p or P (for “pause”) ASCII code is received, the LED banner pauses.
0 When a d or D (for “direction”) ASCII code is received, the LED banner reverses the

direction of rotation.
0 When a decimal-digit (i.e., 0, 1, . . ., 9) ASCII code is received, the banner will be

modified. The banner can be treated as a 10-word FIFO buffer. The new digit will
be inserted at beginning (i.e., the leftmost position) of the banner and the rightmost
digit will be shifted out and discarded.

0 All other codes will be ignored.

Design the new rotating LED banner, synthesize the circuit, connect it to a PC, and use
HyperTerminal to verify its operation.

CHAPTER 8

PS2 KEYBOARD

8.1 INTRODUCTION

PS2 port was introduced in IBM’s Personal Sys t ed2 personnel computers. It is a widely
supported interface for a keyboard and mouse to communicate with the host. The PS2 port
contains two wires for communication purposes. One wire is for data, which is transmitted
in a serial stream. The other wire is for the clock information, which specifies when the
data is valid and can be retrieved. The information is transmitted as an 1 1-bit “packet” that
contains a start bit, 8 data bits, an odd parity bit, and a stop bit. Whereas the basic format
of the packet is identical for a keyboard and a mouse, the interpretation for the data bits is
different. The FPGA prototyping board has a PS2 port and acts as a host. We discuss the
keyboard interface in this chapter and cover the mouse interface in Chapter 9.

The communication of the PS2 port is bidirectional and the host can send a command
to the keyboard or mouse to set certain parameters. For our purposes, the bidirectional
communication is hardly required for the PS2 keyboard, and thus our discussion is limited
to one direction, from the keyboard to the prototyping board. Bidirectional design will be
examined in the mouse interface in Chapter 9.

FPGA Prototyping by VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

183

184 ps2 KEYBOARD

data (ps2d)

clock (ps2c)

~ idle
start bit

Figure 8.1 Timing diagram of a PS2 port.

8.2 PS2 RECEIVING SUBSYSTEM

8.2.1

In addition to data and clock lines, the PS2 port includes connections for power (i.e., Vcc)
and ground. The power is supplied by the host. In the original PS2 port, V,, is 5 V and the
outputs of the data and clock lines are open-collector. However, most current keyboards
and mice can work well with 3.3 V. For an older keyboard and mouse, the 5-V supply can
be obtained by switching the 52 jumper on the S3 board. The FPGA should still function
properly since its I/O pins can tolerate 5-V input.

Physical interface of a PS2 port

8.2.2 Device-to-host communication protocol

A PS2 device and its host communicate via packets. The basic timing diagram of trans-
mitting a packet from a PS2 device to a host is shown in Figure 8.1, in which the data and
clock signals are labeled ps2d and ps2c, respectively.

The data is transmitted in a serial stream, and its format is similar to that of a UART.
Transmission begins with a start bit, followed by 8 data bits and an odd parity bit, and ends
with a stop bit. Unlike a UART, the clock information is carried in a separate clock signal,
ps2c. The falling edge of the ps2c signal indicates that the corresponding bit in the ps2d
line is valid and can be retrieved. The clock period of the ps2c signal is between 60 and
100 ps (i.e., 10 kHz to 16.7 kHz), and the ps2d signal is stable at least 5 ps before and after
the falling edge of the ps2c signal.

8.2.3 Design and code

The design of the PS2 port receiving subsystem is somewhat similar to that of a UART
receiver. Instead of using the oversampling scheme, the falling-edge of the ps2c signal is
used as the reference point to retrieve data. The subsystem includes a falling edge detection
circuit, which generates a one-clock-cycle tick at the falling edge of the ps2c signal, and
the receiver, which shifts in and assembles the serial bits.

The edge detection circuit discussed in Section 5.3.1 can be used to detect the falling edge
and generate an enable tick. However, because of the potential noise and slow transition, a
simple filtering circuit is added to eliminate glitches. Its code is

__ r e g i s t e r
p r o c e s s (clk , reset)

. . .
f ilter-reg <= f ilter-next ;

ps2 RECEIVING SUBSYSTEM 185

. . .
end p r o c e s s ;

-- 1- b i t s h i f t e r
filter-next <= ps2c & filter-reg(7 downto 1);
_- " f i l t e r "
f-ps2c-next <= '1' when filter-reg="llllllll" e l s e

' 0 ' when f ilter~reg="00000000" e l s e
f-ps2c-reg;

The circuit is composed of an 8-bit shift register and returns a '1' or '0' when eight consec-
utive 1's or 0's are received. Any glitches shorter than eight clock cycles will be ignored
(i.e., filtered out). The filtered output signal is then fed to the regular falling-edge detection
circuit.

The ASMD chart of the receiver is shown in Figure 8.2. The receiver is initially in
the idle state. It includes an additional control signal, rx-en, which is used to enable or
disable the receiving operation. The purpose of the signal is to coordinate the bidirectional
operation. It can be set to ' 1 ' for the keyboard interface.

After the first falling-edge tick and the rx-en signal are asserted, the FSMD shifts in the
start bit and moves to the dps state. Since the received data is in fixed format, we shift in
the remaining 10 bits in a single state rather than using separate data, parity, and s top
states. The FSMD then moves to the load state, in which one extra clock cycle is provided
to complete the shifting of the stop bit, and the psrx-done-tick signal is asserted for one
clock cycle. The HDL code consists of the filtering circuit and an FSMD, which follows
the ASMD chart. It is shown in Listing 8.1.

Listing 8.1 PS2 port receiver

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y ps2-rx i s

5 port (
clk, reset: in std-logic;
ps2d, ps2c: in std-logic; -- k e y d a t a , k e y c l o c k
rx-en : in std-logic ;
rx-done-tick: out std-logic;

10 dout: out std-logic-vector (7 downto 0)

) ;
end ps2-rx;

a r c h i t e c t u r e arch of ps2-rx i s
15 type statetype i s (idle, dps, load);

s i g n a l state-reg , state-next : statetype;
s i g n a l f ilter-reg , f ilter-next :

s i g n a l f -ps2c_reg, f -ps2c_next : std-logic ;

s i g n a l n-reg , n-next : unsigned (3 downto 0) ;
s i g n a l f all-edge : std-logic ;

std-logic-vector (7 downto 0) ;

zo s i g n a l b-reg , b-next : std-logic-vector (1 0 downto 0) ;

begin
___ __-------

2s -- f i l t e r and f a l l i n g e d g e t i c k g e n e r a t i o n f o r p s 2 c

186 ps2 KEYBOARD

-
............

............

i.............. t-----
................................ rg fall-edge= T 1

b c ps2d & (b W) c',
n t n-I

,,...........

Figure 8.2 ASMD chart of the PS2 port receiver.

ps2 RECEIVING SUBSYSTEM 187

____________________----------------------------- -_ __---------
p r o c e s s (c l k , r e s e t)
beg in

i f r e s e t = ' l ' then
30 f i l t e r - r e g <= (o t b e r s = > ' O ') ;

f - p s 2 c - r e g <= ' 0 ' ;

f i l t e r - r e g <= f i l t e r - n e x t ;
f - p s 2 c - r e g <= f - p s 2 c - n e x t ;

e l s i f (c l k ' e v e n t and c l k = ' l ') then

15 end i f ;
end p r o c e s s ;

f i l t e r - n e x t <= p s 2 c & f i l t e r - r e g (7 downto 1);
f - p s 2 c - n e x t <= '1' when f i l t e r ~ r e g = " l l l l l l l l " e l s e

40 ' 0 ' when f i l t e r ~ r e g = ' ' 0 0 0 0 0 0 0 0 " e l s e

f a l l - e d g e <= f - p s z c - r e g and (n o t f - p s 2 c - n e x t) ;
f - p s 2 c - r e g ;

ss

65

70

75

__-_-_---_-_- _-___--__-_--__-__-------------------------------
45 -- f s m d t o e x t r a c t t h e 8 - b i t d a t a

_-____--________--__-_------------------_-_------ ______-_________________________________--------- __

-_ r e g i s t e r s
p r o c e s s (c l k , r e s e t)
beg in

so i f r e s e t = ' l ' then
s t a t e - r e g <= i d l e ;
n - r e g <= (o t h e r s = > ' O ') ;
b - r e g <= (o t h e r s = > ' O ') ;

s t a t e - r e g <= s t a t e - n e x t ;
n - r e g <= n - n e x t ;
b - r e g <= b - n e x t ;

e l s i f (c l k ' e v e n t and c l k = ' l ') then

end i f ;
end p r o c e s s ;

p r o c e s s (s t a t e - r e g , ~ ~ - r e g , b - r e g , f a l l - e d g e , r x - e n , p s 2 d)
begin

w -- n e x t - s t a t e l o g i c

r x - d o n e - t i c k < = l o 7 ;
s t a t e - n e x t <= s t a t e - r e g ;
n - n e x t <= n - r e g ;
b - n e x t <= b - r e g ;
c a s e s t a t e - r e g i s

when i d l e =>
i f f a l l - e d g e = ' 1 ' and r x - e n = ' 1 ' then

__ s h i f t i n s t a r t b i t
b - n e x t <= ps2d & b - r e g (l 0 downto 1);
n - n e x t <= " 1 0 0 1 " ;
s t a t e - n e x t <= d p s ;

end i f ;
when d p s => -- 8 d a t a + I p a r i t y + 1 s t o p

i f f a l l - e d g e = ' 1 then
b - n e x t <= ps2d & b - r e g (l 0 downto 1) ;

i f n - r e g = 0 then

188 ps2 KEYBOARD

Figure 8.3
All rights reserved.)

Scan code of the PS2 keyboard. (Courtesy of Xilinx, Inc. 0 Xilinx, Inc. 1994-2007.

85

s t a t e - n e x t < = l o a d ;

n - n e x t <= n - r e g - 1;
no e l s e

end i f ;
end i f ;

when l o a d = >
-- I e x t r a c l o c k t o c o m p l e t e f h e l a s t s h i f t
s t a t e - n e x t <= i d l e ;
r x - d o n e - t i c k <='1';

end c a s e ;
end p r o c e s s ;

d o u t <= b - r e g (8 downto 1); -- d a t a b i t s
90 -- o u t p u t

end a r c h ;

There is no error detection circuit in the description. A more robust design should check
the correctness of the start, parity, and stop bits and include a watchdog timer to prevent the
keyboard from being locked in an incorrect state. This is left as an experiment at the end
of the chapter.

8.3 PS2 KEYBOARD SCAN CODE

8.3.1 Overview of the scan code

A keyboard consists of a matrix of keys and an embedded microcontroller that monitors
(i.e., scans) the activities of the keys and sends scan code accordingly. Three types of key
activities are observed:

0 When a key is pressed, the make code of the key is transmitted.
0 When a key is held down continuously, a condition known as typematic, the make

code is transmitted repeatedly at a specific rate. By default, a PS2 keyboard transmits
the make code about every 100 ms after a key has been held down for 0.5 second.

The make code of the main part of a PS2 keyboard is shown in Figure 8.3. It is normally
1 byte wide and represented by two hexadecimal numbers. For example, the make code

0 When a key is released, the break code of the key is transmitted.

PSZ KEYBOARD SCAN CODE 189

of the A key is I C . This code can be conveyed by one packet when transmitted. The make
codes of a handful of special-purpose keys, which are known as the extended keys, can have
2 to 4 bytes. A few of these keys are shown in Figure 8.3. For example, the make code of
the upper arrow on the right is EO 75. Multiple packets are needed for the transmission.
The break codes of the regular keys consist of FO followed by the make code of the key.
For example, the break code of the A key is FO 1C.

The PS2 keyboard transmits a sequence of codes according to the key activities. For
example, when we press and release the A key, the keyboard first transmits its make code
and then the break code:

1C FO 1C

If we hold the key down for awhile before releasing it, the make code will be transmitted
multiple times:

1C 1C 1 C . . . 1C FO 1 C

Multiple keys can be pressed at the same time. For example, we can first press the s h i f t
key (whose make code is 12) and then the A key, and release the A key and then release the
s h i f t key. The transmitted code sequence follows the make and break codes of the two
keys:

12 1 C FO 1 C FO 12

The previous sequence is how we normally obtain an uppercase A. Note that there is no
special code to distinguish the lower- and uppercase keys. It is the responsibility of the
host device to keep track of whether the shift key is pressed and to determine the case
accordingly.

8.3.2 Scan code monitor circuit

The scan code monitor circuit monitors the arrival of the received packets and displays the
scan codes on a PC's HyperTerminal window. The basic design approach is to first split the
received scan code into two 4-bit parts and treat them as two hexadecimal digits, and then
convert the two digits to ASCII code words and send the words to a PC via the UART. The
received scan codes should be displayed similar to the previous example sequences. The
program is shown in Listing 8.2.

Listing 8.2 PS2 keyboard scan code monitor circuit

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y kb-monitor i s

5 p o r t (

c l k , reset: in std-logic;
ps2d, ps2c: i n std-logic;
t x : out std-logic

) ;
10 end kb-monitor;

a r c h i t e c t u r e arch of kb-monitor i s
c o n s t a n t SP: std-logic-vector (7 downto 0) : = " 0 0 1 0 0 0 0 0 " ;
__ b l a n k s p a c e i n A S C I I

190 PS2 KEYBOARD

s i g n a l
s i g n a l
s i g n a l
s i g n a l

20 s i g n a l
b e g i n

_-
i n s

25 -- i n s

__
__

15 t y p e s t a t e t y p e i s (i d l e , s e n d l , s e n d 0 , s e n d b) ;
s t a t e - r e g , s t a t e - n e x t : s t a t e t y p e ;
s c a n - d a t a , w - d a t a : s t d - l o g i c - v e c t o r (7 downto . 0) ;
s c a n - d o n e - t i c k , w r - u a r t : s t d - l o g i c ;
a s c i i - c o d e : s t d - l o g i c - v e c t o r (7 d o w n t o 0) ;
h e x - i n : s t d - l o g i c - v e c t o r (3 d o w n t o 0) ;

30

35

45

KI

65

a n t i a t i o n

a n t i a t e PS2 r e c e i v e r
p s 2 - r x - u n i t : e n t i t y w o r k . p s 2 - r x (a r c h)

p o r t m a p (c l k = > c l k , r e s e t = > r e s e t , r x - e n = > ’ 1 I ,

p s 2 d = > p s 2 d , p s 2 c = > p s 2 c ,
rx-done-tick=>scan-done-tick,
d o u t = > s c a n - d a t a) ;

__ i n s t a n t i a t e UART
u a r t - u n i t : e n t i t y w o r k . u a r t (s t r - a r c h)

p o r t m a p (c l k = > c l k , r e s e t = > r e s e t , r d - u a r t = > ’ O ’ ,
w r - u a r t = > w r - u a r t , r x = > ’1’ , w - d a t a = > w - d a t a ,
t x - f u l l = > o p e n , r x - e m p t y = > o p e n , r - d a t a = > o p e n ,
t x = > t x) ;

__

40 -- FSM t o s e n d 3 A S C I I c h a r a c t e r s
__
-- s t a t e r e g i s t e r s
p r o c e s s (c l k , r e s e t)
b e g i n

i f r e s e t = ’ l ’ t h e n

e l s i f (c l k ’ e v e n t a n d c l k = ’ l ’) t h e n

e n d i f ;

s t a t e - r e g <= i d l e ;

s t a t e - r e g <= s t a t e - n e x t ;

50 e n d p r o c e s s ;
__ n e x t - s t a t e l o g i c
p r o c e s s (s t a t e - r e g , s c a n - d o n e - t i c k , a s c i i - c o d e)
b e g i n

w r - u a r t <= ’ 0 ’ ;

s t a t e - n e x t <= s t a t e - r e g ;
c a s e s t a t e - r e g i s

55 w-data <= S P ;

when i d l e => -- s t a r t when a s c a n c o d e r e c e i v e d
i f s c a n - d o n e - t i c k = ’ l ’ t h e n

s t a t e - n e x t <= s e n d l ;
e n d i f ;

w-data <= a s c i i - c o d e ;
w r - u a r t <= ’ 1 ’ ;
s t a t e - n e x t <= s e n d o ;

w-da ta <= a s c i i - c o d e ;

when s e n d l = > -- s e n d h i g h e r h e x c h a r

when s e n d 0 => -- s e n d l o w e r h e x c h a r

PS2 KEYBOARD INTERFACE CIRCUIT 191

w r - u a r t <= JIJ;
s t a t e - n e x t <= s e n d b ;

w-da ta <= S P ;
w r - u a r t <= ' 1 ' ;
s t a t e - n e x t <= i d l e ;

70 when sendb => -- s e n d b l a n k s p a c e c h a r

end c a s e ;
7 5 end p r o c e s s ;

-- s c a n c o d e t o A S C I I d i s p l a y
--

so -- s p l i t t h e s c a n c o d e i n t o t w o 4 - b i t h e x
h e x - i n <= s c a n - d a t a (7

s c a n - d a t a (3
-- h e x d i g i t t o A S C I I
w i t h h e x - i n s e l e c t

85 a s c i i - c o d e <=
0 0 1 10000 It when

I' 0 0 1 1 0 0 0 1 when
It 00 1 100 10 when
I' 00 11 00 1 1 I' when

90 I' 0 0 1 10 100 If when
I' 0 0 1 1 0 1 0 1 'I when
'I 00 1 10 1 10 when
'I 00 11 0 1 1 1 when
' I 00 1 1 1000 It when

95 'I 0 0 11 100 1 when
'I 0 1 0 0 0 0 0 1 'I when
I' 0 10000 10 when
"01000011 when
'I 0 1 0 0 0 1 0 0 when

0 1 0 0 0 1 0 1 'I when
I' 0 1000 11 0 when

IW

end a r c h ;

downto 4) when s t a t e - r e g = s e n d l e l s e
downto 0) ;
c o d e

' ~ 0 0 0 0 " , -- 0
" O O O l " , -- 1
" O O l O " , -- 2
" 0 0 1 1 " , -- 3
" O l O O " , -- 4
" O l O l " , -- 5
" O l l O " , -- 6
"Olll", -- 7
" l O O O " , -- 8
" l O O l " , -- 9
"1010", -- A
" l o l l " , -- B
" 1 1 0 0 " , -- c
" 1 1 0 1 " , -- D
" 1 1 1 0 " , -- E
o t h e r s ; -- F

An FSM is used to control the overall operation. The UART operation is initiated when
a new scan code is received (as indicated by the assertion of scan-done-tick). The FSM
circulates through the s e n d l , send0, and sendb states, in which the ASCII codes of the
upper hexadecimal digit, lower hexadecimal digit, and blank space are written to the UART.
Recall that the UART has a FIFO of four words, and thus no overflow will occur. Note that
the UART receiver is not used and the corresponding ports are mapped to constants or open.

8.4 PS2 KEYBOARD INTERFACE CIRCUIT

As discussed in Section 8.3.1, a sequence of packets is transmitted even for simple keyboard
activities. It will be quite involved if we want to cover all possible combinations. In this
section, we assume that only one regular key is pressed and released at a time and design a
circuit that returns the make code of this key. This design provides a simple way to send a
character or digit to the prototyping board and should be satisfactory for our purposes.

192 PS2 KEYBOARD

Figure 8.4 Block diagram of a last-released key circuit.

8.4.1 Basic design and HDL code

The keyboard circuit, as a UART, is a peripheral circuit of a large system and needs a
mechanism to communicate with the main system. The flagging and buffering schemes
discussed in Section 7.2.4 can be applied for the keyboard circuit as well. We use a four-
word FIFO buffer as the interface in this design.

The top-level conceptual diagram is shown in Figure 8.4. It consists of the PS2 receiver,
a FIFO buffer, and a control FSM. The basic idea is to use the FSM to keep track of the FO
packet of the break code. After it is received, the next packet should be the make code of
this key and is written into the FIFO buffer. Note that this scheme cannot be applied to the
extended keys since their make codes involve multiple packets. The corresponding HDL
code is shown in Listing 8.3.

Listing 8.3 PS2 keyboard last-released key circuit

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y kb-code i s

5 g e n e r i c (W-SIZE : integer : =2) ; -- 2 A W-SIZE w o r d s i n FIFO
port (

clk, reset: in std-logic;
ps2d, ps2c: in std-logic;
rd-key-code : in std-logic ;

kb-buf-empty: out std-logic
10 key-code : out std-logic-vector (7 downto 0) ;

) ;
end kb-code;

I5 a r c h i t e c t u r e arch of kb-code i s
c o n s t a n t B R K : std-logic-vector (7 downto 0) :="11110000";
-- FO (b r e a k c o d e)
type statetype i s (wait-brk, get-code) ;
s i g n a l state-reg , state-next : statetype;

s i g n a l scan-done-tick , got-code-tick: std-logic;
20 s i g n a l scan-out , w-data: std-logic-vector (7 downto 0) ;

b e g i n
-_

2s -- i n s t a n t i a t i o n

PSZ KEYBOARD INTERFACE CIRCUIT 193

30

p s 2 - r x - u n i t : e n t i t y w o r k . p s 2 - r x (a r c h)
p o r t m a p (c l k = > c l k , r e s e t = > r e s e t , r x - e n = > ’ l ’ ,

p s 2 d = > p s 2 d , p s 2 c = > p s 2 c ,
rx-done-tick=>scan-done-tick,
d o u t = > s c a n - o u t) ;

f i f o - k e y - u n i t : e n t i t y w o r k . f i f o (a r c h)
g e n e r i c m a p (B = > 8 , W=>W-SIZE)
p o r t map(c l k = > c l k , r e s e t = > r e s e t , r d = > r d - k e y - c o d e ,

w r = > g o t - c o d e - t i c k , w - d a t a = > s c a n - o u t ,
e m p t y = > k b - b u f - e m p t y , f u l l = > o p e n ,
r - d a t a = > k e y - c o d e) ;

40 --

-- FSM t o g e t t h e s c a n c o d e a f t e r FO r e c e i v e d

45

p r o c e s s (c l k , r e s e t)
b e g i n

i f r e s e t = ’ l ’ t h e n

e l s i f (c l k ’ e v e n t a n d c l k = ’ l ’) t h e n
s t a t e - r e g <= w a i t - b r k ;

s t a t e - r e g <= s t a t e - n e x t ;
e n d i f ;

50 e n d p r o c e s s ;

p r o c e s s (s t a t e - r e g , s c a n - d o n e - t i c k ,
b e g i n

g o t - c o d e - t i c k < = ’ O ’ ;
55 s t a t e - n e x t <= s t a t e - r e g ;

case s t a t e - r e g i s
when w a i t - b r k => -- w a i t f o r

i f s c a n - d o n e - t i c k = ’ l ’ a n d
s t a t e - n e x t <= g e t - c o d e

e n d i f ;
when g e t - c o d e = > -- g e t t h e

s c a n - o u t)

FO of b r e a k c o d e
scan-out=BRK t h e n

60

o l l o w i n g s c a n c o d e
i f s c a n - d o n e - t i c k = ’ l ’ t h e n

g o t - c o d e - t i c k <= 1 ’ ;
s t a t e - n e x t <= w a i t - b r k ;

h l e n d i f ;
e n d c a s e ;

e n d p r o c e s s ;
e n d a r c h ;

The main part of the code is the FSM, which screens for the break code and coordi-
nates the operation of two other modules. It checks the received packets in the wai t -brk
state continuously. When the FO packet is detected, it moves to the get-code state and
waits for the next packet, which is the make code of the key. The FSM then asserts the
code-done-tick signal for one clock cycle and returns to the wait-brk state.

194 PS2 KEYBOARD

Figure 8.5 Block diagram of a keyboard verification circuit.

8.4.2 Verification circuit

We design a simple serial interface and decoding circuit to verify operation of the PS2
keyboard interface. The top-level block diagram is shown in Figure 8.5. The circuit
converts a key's make code to the corresponding ASCII code and then sends the ASCII code
to the UART. The corresponding character or digits can be displayed in the HyperTerminal
window. The HDL code for the conversion circuit is shown in Listing 8.4.

Listing 8.4 Keyboard make code to ASCII code

l i b r a r y ieee;
u s e ieee. std-logic-1164. a l l ;
u s e ieee. numeric-std. a l l ;
e n t i t y key2ascii i s

5 p o r t (
key-code : i n std-logic-vector (7 downto 0) ;
ascii-code : o u t std-logic-vector (7 downto 0)

) ;
end key2ascii ;

a r c h i t e c t u r e arch of key2ascii i s
b e g i n

10

w i t h key-code s e l e c t
ascii-code <=

15 'I 0 0 1 1 0 0 0 0 I' when 'I 0 1 0 0 0 1 0 1 'I , -- 0
' 1001100011 ' when " 0 0 0 1 0 1 1 0 " , -- 1
" 0 0 1 1 0 0 1 0 " when " 0 0 0 1 1 1 1 0 " , -- 2
" 0 0 1 1 0 0 1 1 " when " 0 0 1 0 0 1 1 0 " , -- 3
" 0 0 1 1 0 1 0 0 ~ ' when " 0 0 1 0 0 1 0 1 " , -- 4
" 0 0 1 1 0 1 0 1 " when " 0 0 1 0 1 1 1 0 " , -- 5
" 0 0 1 1 0 1 1 0 " when " 0 0 1 1 0 1 1 0 " , -- 6
I' 00 11 0 11 1 I' when I' 00 1 1 1 1 0 1 It , -- 7
" 0 0 1 1 1 0 0 0 ' ~ when " 0 0 1 1 1 1 1 0 " , -- 8
" 0 0 1 1 1 0 0 1 " when " 0 1 0 0 0 1 1 0 " , -- 9

20

" 0 1 0 0 0 0 0 1 " when " 0 0 0 1 1 1 0 0 " , -- A
" 0 1 0 0 0 0 1 0 " when " 0 0 1 1 0 0 1 0 ' ~ , -- B
" O I O O O O 1 l t ~ when " 0 0 1 0 0 0 0 1 " , -- C
" 0 1 0 0 0 1 0 0 ' ~ when " 0 0 1 0 0 0 1 1 " , -- D
" 0 1 0 0 0 1 0 1 " when " 0 0 1 0 0 1 0 0 " , -- E

PS2 KEYBOARD INTERFACE CIRCUIT 195

" 0 1 0 0 0 1 1 0 " when t ' O O I O I O 1 l " , -- F
" 0 1 0 0 0 1 1 1 " when ~ ' 0 0 1 1 0 1 0 0 " , -- G
" 0 1 0 0 1 0 0 0 " when " 0 0 1 1 0 0 1 1 " , -- H
" O I O O I O O 1 t ~ when " O I O O O O 1 l ' t , -- I
" 0 1 0 0 1 0 1 0 " when ' t O O 1 l l O 1 l " , -- J
" 0 1 0 0 1 0 1 1 " when " 0 1 0 0 0 0 1 0 " , -- K
"01001100" when " 0 1 0 0 1 0 1 1 " , -- L
" 0 1 0 0 1 1 0 1 " when t l O O 1 l l O I O " , -- M
" 0 1 0 0 1 1 1 0 1 ' when " 0 0 1 1 0 0 0 1 " , -- N
" 0 1 0 0 1 1 1 1 " when " 0 1 0 0 0 1 0 0 " , -- 0
" 0 1 0 1 0 0 0 0 " when ' 101001101 '1 , -- P
" 0 1 0 1 0 0 0 1 ~ ' when " 0 0 0 1 0 1 0 1 " , -- Q
" 0 1 0 1 0 0 1 0 ~ 1 when " 0 0 1 0 1 1 0 1 " , -- R
" 0 1 0 1 0 0 1 1 " when t ' O O O 1 l O 1 l ~ ~ , -- S
" 0 1 0 1 0 1 0 0 " when '100101100", -- T
" 0 1 0 1 0 1 0 1 " when " 0 0 1 1 1 1 0 0 " , -- U
" 0 1 0 1 0 1 1 0 " when ' ~ 0 0 1 0 1 0 1 0 " , -- V
"O101O11lt~ when " 0 0 0 1 1 1 0 1 ~ ' , -- W
"O1O110OOt' when " 0 0 1 0 0 0 1 0 ~ ' , -- X
"O1O110Olt~ when " O O 1 l O I O 1 l f , -- Y
" O 1 0 1 1 O 1 O r 1 when " O O O 1 l O I O t t , -- 2

'101100000" when " 0 0 0 0 1 1 1 0 " , -- '

" 0 0 1 0 1 1 0 1 " when " 0 1 0 0 1 1 1 0 " , -- -
" 0 0 1 1 1 1 0 1 " when 1 ' 0 1 0 1 0 1 0 1 " , -- -
"01011011" when ~ t O I O I O I O O " , -- [
"01011101" when ' 101011011" , --]
" 0 1 0 1 1 1 0 0 " when " 0 1 0 1 1 1 0 1 " , -- \
"00111011" when " O I O O 1 l O O t l , -- ;
t l O O I O O 1 l l " when " 0 1 0 1 0 0 1 0 " , -- '
l ' O O I O 1 l O O 1 t when " O I O O O O O 1 l t , -- ,
~ ' 0 0 1 0 1 1 1 0 " when " 0 1 0 0 1 0 0 1 " , -- .
" 0 0 1 0 1 1 1 1 " when " 0 1 0 0 1 0 1 0 " , -- /

-

65 " 0 0 1 0 0 0 0 0 " when " 0 0 1 0 1 0 0 1 " , -- (s p a c e)
" 0 0 0 0 1 1 0 1 " when " 0 1 0 1 1 0 1 0 " , -- (e n t e r , c r)
" 0 0 0 0 1 0 0 0 ' ~ when " 0 1 1 0 0 1 1 0 " , -- (b a c k s p a c e)
" 0 0 1 0 1 0 1 0 " when o t h e r s ; --

end arch;

The complete code for the verification circuit follows the block diagram and is shown
in Listing 8.5.

Listing 8.5 Keyboard verification circuit

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
u s e ieee . numeric-std. a l l ;
e n t i t y kb-test i s

I p o r t (
clk, reset: i n std-logic;
ps2d, ps2c: i n std-logic;
tx : o u t std-logic

) ;

196 ps2 KEYBOARD

10 end kb-test;

architecture arch o f kb-test i s
signal scan-data, w-data: std-logic-vector (7 downto 0) ;
signal kb-not-empty , kb-buf -empty : std-logic;

I S signal key-code , ascii-code : std-logic-vector (7 downto 0) ;
begin

kb-code-unit : entity work. kb-code(arch)
port map(clk=>clk, reset=>reset , ps2d=>ps2d, ps2c=>ps2c,

rd-key-code=>kb-not-empty, key-code=>key-code,
20 kb-buf-empty=>kb_buf-empty);

uart-unit : entity work.uart (str-arch)
port map(clk=>clk, reset=>reset , rd-uart=>’O’,

wr-uart=>kb-not-empty, rx=>’l’,
w-dat a= > as c i i- c ode , t x-f ull =>open ,

25 rx-empty=>open, r-data=>open, tx=>tx);
key2a-unit : entity work. key2ascii(arch)

port map(key-code=>key-code, ascii-code=>ascii-code);

kb-not-empty <= not kb-buf-empty;
30 end arch;

8.5 BIBLIOGRAPHIC NOTES

Three articles, ‘‘PSI2 MouselKeyboard Protocol,” ‘‘PSI2 Keyboard Interface,” and ‘‘PSI2
Mouse Interface,” by Adam Chapweske, provide detailed information on the PS2 keyboard
and mouse interface. They can be found at the http://www.computer-engineering.org site.
Rapid Prototyping of Digital Systems: Quartus@ II Edition by James 0. Hamblen et al.
also contains a chapter on the PS2 port and the keyboard and mouse protocols.

8.6 SUGGESTED EXPERIMENTS

8.6.1 Alternative keyboard interface I

The interface circuit in Section 8.4 returns the make code of the last released key and
thus ignores the typematic condition. An alternative approach is to consider the typematic
condition. The keyboard interface circuit should return a key’s make code repeatedly when
it is held down and ignore the final break code. For simplicity, we assume that the extended
keys are not used. Design the new interface circuit, resynthesize the verification circuit,
and verify operation of the new interface circuit.

8.6.2 Alternative keyboard interface II

We can expand the interface circuit to distinguish whether the shift key is pressed so that
both lower- and uppercase characters can be entered. The expanded circuit can be modified
as follows:

0 The keycode output should be extended from 8 bits to 9 bits. The extra bit indicates
whether the shift key is held down.

SUGGESTED EXPERIMENTS 197

0 The FSM should add a special branch to process the make and break codes of the
shift key and set the value of the corresponding bit accordingly.

0 The width of the FIFO buffer should be extended to 9 bits.

Design the expanded interface circuit, modify the key2ascii circuit to handle both lower-
and uppercase characters, resynthesize the verification circuit, and verify operation of the
expanded interface circuit.

8.6.3 PS2 receiving subsystem with watchdog timer

There is no error-handling capability in the PS2 receiving subsystem in Section 8.2. The
potential noise and glitches in the ps2c signal may cause the FSMD to be stuck in an
incorrect state. One way to deal with this problem is to add a watchdog timer. The timer
is initiated every time the f all-edge-tick signal is asserted in the get-bit state. The
time-out signal is asserted if no subsequently falling edge arrives in the next 20 ps, and
the FSMD returns to the idle state. Design the modified receiving subsystem, derive a
testbench, and use simulation to verify its operation.

8.6.4 Keyboard-controlled stopwatch

Consider the enhanced stopwatch in Experiment 4.7.6. Operation of the stopwatch is
controlled by three switches on the prototyping board. We can use the keyboard to send
commands to the stopwatch:

0 When the C (for “clear”) key is pressed, the stopwatch aborts the current counting, is

0 When the G (for “go”) key is pressed, the stopwatch starts to count.
0 When the P (for “pause”) key is pressed, the counting pauses.
0 When the U (for “up-down”) key is pressed, the stopwatch reverses the direction of

0 All other keys will be ignored.

cleared to zero, and sets the counting direction to ‘‘up.’’

counting.

Design the new stopwatch, synthesize the circuit, and verify its operation.

8.6.5 Keyboard-controlled rotating LED banner

Consider the rotating LED banner circuit in Experiment 4.7.5. We can use a keyboard to
control its operation and dynamically modify the digits in the banner:

0 When the G (for “go”) key is pressed, the LED banner rotates.
0 When the P (for “pause”) key is pressed, the LED banner pauses.
0 When the D (for “direction”) key is pressed, the LED banner reverses the direction

of rotation.
0 When a decimal digit (i.e., 0, 1, . . ., 9) key is pressed, the banner will be modified.

The banner can be treated as a 10-word FIFO buffer. The new digit will be inserted at
the beginning (i.e., the leftmost position) of the banner, and the rightmost digit will
be shifted out and discarded.

0 All other keys will be ignored.
Design the new rotating LED banner, synthesize the circuit, and verify its operation.

This Page Intentionally Left Blank

CHAPTER 9

PS2 MOUSE

9.1 INTRODUCTION

A computer mouse is designed mainly to detect two-dimensional motion on a surface. Its
internal circuit measures the relative distance of movement and checks the status of the
buttons. For a mouse with a PS2 interface, this information is packed in three packets and
sent to the host through the PS2 port. In the stream mode, a PS2 mouse sends the packets
continuously in a predesignated sampling rate.

Communication of the PS2 port is bidirectional and the host can send a command to
the keyboard or mouse to set certain parameters. For our purposes, this functionality is
hardly required for a keyboard, and thus the keyboard interface in Chapter 8 is limited to
one direction, from the keyboard to the FPGA host. However, unlike the keyboard, a mouse
is set to be in the non-steaming mode after power-up and does not send any data. The host
must first send a command to the mouse to initialize the mouse and enable the stream mode.
Thus, bidirectional communication of the PS2 port is needed for the PS2 mouse interface,
and we must design a transmitting subsystem (i.e., from FPGA board to mouse) for the PS2
interface.

In this chapter, we provide a short overview of the PS2 mouse protocol, design a bidi-
rectional PS interface, and derive a simple mouse interface.

FPGA Prototyping by VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

199

200 PSZMOUSE

Table 9.1 Mouse data packet format

9.2 PS2 MOUSE PROTOCOL

9.2.1 Basic operation

A standard PS2 mouse reports the x-axis (right/left) and y-axis (up/down) movement and
the status of the left button, middle button, and right button. The amount of each movement
is recorded in a mouse’s internal counter. When the data is transmitted to the host, the
counter is cleared to zero and restarts the counting. The content of the counter represents a
9-bit signed integer in which a positive number indicates the right or up movement, and a
negative number indicates the left or down movement.

The relationship between the physical distances is defined by the mouse’s resolution
parameter. The default value of resolution is four counts per millimeter. When a mouse
moves continuously, the data is transmitted in a regular rate. The rate is defined by the
mouse’s sampling rate parameter. The default value of the sampling rate is 100 samples per
second. If a mouse moves too fast, the amount of the movement during the sampling period
may exceed the maximal range of the counter. The counter is set to the maximum magnitude
in the appropriate direction. Two overflow bits are used to indicate the conditions.

The mouse reports the movement and button activities in 3 bytes, which are embedded in
three PS2 packets. The detailed format of the 3-byte data is shown in Table 9.1. It contains
the following information:

0 2 8 , . . ., 20: x-axis movement in 2’s-complement format
0 2,: x-axis movement overflow
0 y8, . . ., yo: y-axis movement in 2’s-complement format
0 yu: y-axis movement overflow
0 1: left button status, which is ’1’ when the left button is pressed
0 T : right button status, which is ’ 1’ when the right button is pressed
0 m: optional middle button status, which is ’ 1 ’ when the middle button is pressed

During transmission, the byte 1 packet is sent first and the byte 3 packet is sent last.

9.2.2 Basic initialization procedure

The operation of a mouse is more complex than that of a keyboard. It has different operation
modes. The most commonly used one is the stream mode, in which a mouse sends the
movement data when it detects movement or button activity. If the movement is continuous,
the data is generated at the designated sample rate.

During the operation, a host can send commands to a mouse to modify the default values
of various parameters and set the operation mode, and a mouse may generate the status and
send an acknowledgment. For our purposes, the default values are adequate, and the only
task is to set the mouse to the stream mode.

The basic interaction sequence between a PS2 mouse and the FPGA host consists of the
following:

PS2 TRANSMITTING SUBSYSTEM 201

Figure 9.1 Host-to-device timing diagram of a PS2 port.

1. At power-on, a mouse performs a power-on test internally. The mouse sends l-byte
data AA, which indicates that the test is passed, and then l-byte data 00, which is the
id of a standard PS2 mouse.

2. The FPGA host sends the command, F4, to enable the stream mode. The mouse will
respond with FE to acknowledge acceptance of the command.

3. The mouse now enters the stream mode and sends normal data packets.
If a mouse is plugged into the FPGA prototyping board in advance, it performs the power-

on test when the power of the board is turned on and sends the AA 00 data immediately.
The FPGA chip is not configured at this point and will not receive this data. Thus, we can
usually ignore the power-on message in step 1. A minimal mouse interface circuit only
needs to send the F4 command, check the FE acknowledge, and enter the normal operation
mode to process the mouse’s regular data packet.

We can force the mouse to return to the initial state by sending the reset command:
1. The FPGA host sends the command, FF, to reset the mouse. The mouse will respond

2 . The mouse performs a power-on test internally and then sends AA 00. The stream

Newer mouses add more functionality, such as a scrolling wheel and additional buttons,
and thus send more information. Additional bytes are appended to the original 3-byte data
to accommodate these new features.

with FE to acknowledge acceptance of the command.

mode will be disabled during the process.

9.3 PS2 TRANSMITTING SUBSYSTEM

9.3.1 Host-to-PS2-device communication protocol

Host-to-PS2-device communication protocol involves bidirectional data exchange. The
mouse’s data and clock lines actually are open-collector circuits. For our design purposes,
we treat them as tri-state lines. The basic timing diagram of transmitting a packet from a
host to a PS2 device is shown in Figure 9.1, in which the data and clock signals are labeled
ps2d and ps2c. For clarity, the diagram is split into two parts to show which activities are
generated by the host (i.e., the FPGA chip) and which activities are generated by the device
(i.e., mouse). The basic operation sequence is as follows:

202 PSZMOUSE

PS2
transmitting

circuit

tri-d

Figure 9.2 Tri-state buffers of the PS2 transmission subsystem.

1. The host forces the ps2c line to be ’0’ for at least 100 ps to inhibit any mouse activity.
It can be considered that the host requests to send a packet.

2. The host forces the ps2d line to be ’0’ and disables the ps2c line (i.e., makes it high
impedance). This step can be interpreted as the host sending a start bit.

3. The PS2 device now takes over the ps2c line and is responsible for future PS2 clock
signal generation. After sensing the starting bit, the PS2 device generates a ’ 1 ’-to-’0’
transition.

4. Once detecting the transition, the host shifts out the least significant data bit over the
ps2d line. It holds this value until the PS2 device generates a ’1’-to-’0’ transition in
the ps2c line, which essentially acknowledges retrieval of the data bit.

5. Repeat step 4 for the remaining 7 data bits and 1 parity bit.
6. After sending the parity bit, the host disables the ps2d line (Lee, makes it high

impedance). The PS2 device now takes over the ps2d line and acknowledges com-
pletion of the transmission by asserting the ps2d line to ’0’. If desired, the host can
check this value at the last ’1’-to-’0’ transition in the ps2c line to verify that the
packet is transmitted successfully.

9.3.2 Design and code

Unlike the receiving subsystem, the ps2c and ps2d signals communicate in both directions.
A tri-state buffer is needed for each signal. The tri-state interface is shown in Figure 9.2.
The t r i - c and t r i - d signals are enable signals that control the tri-state buffers. When
they are asserted, the corresponding ps2c-out and ps2d-out signals will be routed to the
output ports.

To design the transmitting subsystem, we can follow the sequence of the preceding
protocol to create an ASMD chart, as shown in Figure 9.3. The FSMD is initially in the
i d l e state. To start the transmission, the host asserts the wr-ps2 signal and places the data
on the d in bus. The FSMD loads din, along with the parity bit, par to the sh i f t - r eg
register, loads the “1. . - 1” to c-reg, and moves to the r ts (for “request to send”) state. In
this state, the ps2c-out is set to ’0’ and the corresponding t r i - c is asserted to enable the
corresponding tri-state buffer. The c-reg is used as a 13-bit counter to generate a 164-ps
delay. The FSMD then moves to the s t a r t state, in which the PS2 clock line is disabled
and the data line is set to ’1’. The PS2 device (i.e., mouse) now takes over and generates

PSZ TRANSMITTING SUBSYSTEM 203

default: ps2c-out 1
ps2d-out 1
tri-c = 0
tri-d 0

...............

i
b t par & din (-) -

..........................

~ <Ti c t c-I

F -
T

.

ps2d-out <= 0

T

..........................,

Figure 9.3 ASMD chart of the PS2 transmitting subsystem.

204 PS2MOUSE

clock signal over the ps2c line. After detecting the falling edge of the ps2c signal through
the f all-edge signal, the FSMD goes to the data state and shifts 8 data bits and 1 parity
bit. The n register is used to keep track of the number of bits shifted. The FSMD then
moves to the s t o p state, in which the data line is disabled, It returns to the idle state after
sensing the last falling edge.

The FSMD also includes a t x - i d l e signal to indicate whether a transmission is in
progress. This signal can be used to coordinate operation between the receiving and trans-
mitting subsystems. The code follows the ASMD chart and is shown in Listing 9.1. A
filtering circuit similar to that of Section 8.2 is used to generate the f al l-edge signal.

Listing 9.1 PS2 port transmitter

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y ps2-tx i s

5 port (
clk, reset: in std-logic;
din: in std-logic-vector (7 downto 0) ;
wr-ps2: std-logic;
ps2d, ps2c : i n o u t std-logic ;

tx-done-tick: out std-logic
10 tx-idle: out std-logic;

) ;
end ps2-tx;

15 a r c h i t e c t u r e arch of ps2-tx i s
type statetype i s (idle, rts, start, data, stop);
s i g n a l state-reg , state-next: statetype;
s i g n a l f ilter-reg , f ilter-next : std-logic-vector (7 downto 0) ;
s i g n a l f_ps2c_reg, f _ps2c_next : std-logic;

s i g n a l b-reg , b-next : std-logic-vector (8 downto 0) ;
s i g n a l c-reg , c-next : unsigned (12 downto 0) ;
s i g n a l n-reg ,n-next : unsigned (3 downto 0) ;
s i g n a l par: std-logic;

s i g n a l tri-c , tri-d: std-logic ;

20 s i g n a l f all-edge : std-logic ;

25 s i g n a l ps2c-out , ps2d-out : std-logic;

begin
_____________---________________________--------- _ ~ ~ ~ ~ ~ _ ~ ~ ~ --

-- f i l t e r a n d f a l l i n g - e d g e t i c k g e n e r a t i o n f o r p s 2 c

p r o c e s s (clk , reset)
beg in

i f reset=’l’ then

30 .

f ilter-reg <= (o t h e r s = > ’ 0 ’) ;

e 1 s i f (clk ’ event and clk= ’ 1 ’) then
35 f -ps2c_reg <= ’ 0 ’ ;

filter-reg <= filter-next;
f-ps2c-reg <= f-ps2c-next;

end i f ;
40 end p r o c e s s ;

ps2 TRANSMITING SUBSYSTEM 205

45

f i l t e r - n e x t <= p s 2 c & f i l t e r - r e g (7 downto 1);
f - p s 2 c - n e x t <= ’1’ when f i l t e r ~ r e g = ” l l l l l l l l ” e l s e

’ 0 ’ when f i l t e r ~ r e g = “ 0 0 0 0 0 0 0 0 “ e l s e
f - p s 2 c - r e g ;

f a l l - e d g e <= f - p s a c - r e g and (n o t f - p s 2 c - n e x t) ;

-- f s m d
50 --

55

60

_- r e g i s t e r s
p r o c e s s (c l k , r e s e t
beg in

i f r e s e t = ’ l ’ then
s t a t e - r e g <= i d l e ;
c - r e g <= (o t h e r s = > ’ 0 ’ 1 ;
n - r e g <= (o t h e r s = > ’ O ’) ;
b - r e g <= (o t h e r s = > ’ O ’) ;

s t a t e - r e g <= s t a t e - n e x t ;
c - r e g <= c - n e x t ;
n - r e g <= n - n e x t ;
b - r e g <= b - n e x t ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

end i f ;
65 end p r o c e s s ;

-- odd p a r i t y b i t
p a r <= not (d i n (7) xor d i n (6) xor d i n (5) xor d i n (4) xor

-- f s m d n e x t - s t a t e l o g i c and d a t a p a t h l o g i c
p r o c e s s (s t a t e - r e g , n - r e g , b - r e g , c - r e g , w r _ p s 2 ,

beg in

d i n (3) xor d i n (2) xor d i n (1) xor d i n (0)) ;

70

d i n , p a r , f a l l - e d g e)

s t a t e - n e x t <= s t a t e - r e g ;
c - n e x t <= c - r e g ;

75

80

85

90

n - n e x t <= n - r e g ;
b - n e x t <= b - r e g ;
t x - d o n e - t i c k < = ’ O ’ ;

p s 2 d - o u t <= ’ 1 ’ ;
t r i - c <= > O ’ ;

t r i - d <= ’ 0 ’ ;
t x - i d l e < = ’ O ’ ;
c a s e s t a t e - r e g i s

when i d l e =>

p s 2 c - o u t (= ’1’;

t x - i d l e <= ’1 ’ ;
i f w r _ p s 2 = ’ 1 ’ then

b - n e x t <= p a r & d i n ;
c - n e x t <= (o t h e r s = > ’ l ’) ; -- 2 * 1 3 - 1
s t a t e - n e x t <= r t s ;

when r t s = > -- r e q u e s t t o s e n d
end i f ;

p s 2 c - o u t <= ’ 0 ’ ;
t r i - c <= ’1’;
c - n e x t <= c - r e g - 1;

206 PS2MOUSE

95

I 15

i f (c - r e g = O) t h e n

end i f ;

p s 2 d - o u t <=) O) ;
t r i - d <= ’ 1 ’ ;
i f f a l l - e d g e = ’ 1 ’ t h e n

s t a t e - n e x t <= s t a r t ;

when s t a r t = > -- a s s e r t s t a r t bit

n - n e x t <= “ 1 0 0 0 ” ;
s t a t e - n e x t <= d a t a ;

end i f ;
when d a t a => -- 8 d a t a + I p a r i t y

p s 2 d - o u t <= b - r e g (0) ;
t r i - d <=) l ’ ;
i f f a l l - e d g e = ’ l ’ t h e n

b - n e x t <= ’ 0) & b - r e g (8 downto 1);
i f n - r e g = 0 t h e n

e l s e

end i f ;

s t a t e - n e x t <= s t o p ;

n - n e x t <= n - r e g - 1;

end i f ;

i f f a l l - e d g e = ’ l ’ t h e n
when s t o p = > -- a s s u m e f l o a t i n g h i g h f o r p s 2 d

s t a t e - n e x t <= i d l e ;
t x - d o n e - t i c k <=’1);

I20 end i f ;
end c a s e ;

end p r o c e s s ;
t r i - s t a t e b u f f e r s

p s 2 c <= p s 2 c - o u t when t r i - c = ’ I ’ e l s e) Z ;
125 p s 2 d <= p s 2 d - o u t when t r i - d =) l ’ e l s e)Z’;

--

end a r c h ;

There is no error detection circuit in this code. A more robust design should check the
correctness of the parity and acknowledgment bits and include a watchdog timer to prevent
the mouse from being locked in an incorrect state.

9.4 BIDIRECTIONAL PS2 INTERFACE

9.4.1 Basic design and code

We can combine the receiving and transmitting subsystems to form a bidirectional PS2
interface. The top-level diagram is shown in Figure 9.4. We use the t x - id l e and rx-en
signals to coordinate the transmitting and receiving operations. Priority is given to the
transmitting operation. When the transmitting subsystem is in operation, the t x - id l e signal
is deasserted, which, in turn, disables the receiving subsystem. The receiving subsystem
can process input only when the transmitting subsystem is idle. The corresponding HDL
code is shown in Listing 9.2.

BIDIRECTIONAL ps2 INTERFACE 207

Figure 9.4 Top-level block diagram of a bidirectional PS2 interface.

Listing 9.2 Bidirectional PS2 interface

library ieee;
use ieee. std-logic-1164, all ;
entity ps2-rxtx is

port (
5 clk, reset: in std-logic;

wr-ps2 : std-logic;
din: in std-logic-vector (7 downto 0) ;
dout : out std-logic-vector (7 downto 0) ;
rx-done-tick : out std-logic ;

ps2d, ps2c : inout std-logic
10 tx-done-tick: out std-logic;

) ;
end ps2-rxtx;

15 architecture arch of ps2-rxtx i s
signal tx-idle : std-logic;

ps2-tx-unit : entity work. ps2_tx(arch)
begin

port map(clk=>clk, reset=>reset , wr_ps2=>wr_ps2,
20 din=>din, ps2d=>ps2d, ps2c=>ps2c,

tx-idle=>tx-idle, tx-done-tick=>tx-done-tick);
ps2-rx-unit : entity work. ps2-rx (arch)

port map(clk=>clk , reset=>reset , rx-en=>tx-idle,
ps2d=>ps2d, ps2c=>ps2c,

25 rx-done-tick=>rx-done-tick, dout=>dout);
end arch;

208 PS2MOUSE

Figure 9.5 Block diagram of a mouse monitor circuit.

9.4.2 Verification circuit

We create a testing circuit to verify and monitor operation of the bidirectional interface.
The block diagram is shown in Figure 9.5. A command is transmitted manually. We use
the 8-bit switch to specify the data (i.e., the command from the host) and use a pushbutton
to generate a one-clock-cycle tick to transmit the packet. The received packet data is first
passed to the byte-to-ascii circuit, which converts the data into two ASCII characters
plus a blank space. The characters are then transmitted via the UART and displayed in
Windows HyperTerrninal. The HDL code is shown in Listing 9.3.

Listing 9.3 Bidirectional PS2 interface monitor circuit

library ieee;
use ieee. std-logic-1164. all ;
use ieee. numeric-std. all ;
entity ps2-monitor i s

5 port (
clk, reset: in std-logic;
sw: in std-logic-vector (7 downto 0) ;
btn: in std-logic-vector (2 downto 0) ;
ps2d, ps2c : inout std-logic ;

10 tx : out std-logic

) ;
end ps2-monitor;

architecture arch of ps2-monitor is
15 constant SP: std-logic-vector (7 downto 0) : = " 0 0 1 0 0 0 0 0 " ;

-- b l a n k s p a c e i n A S C I I
type state-type is (idle, sendh, sendl, sendb);
signal state-reg , state-next : state-type;
signal rx-data , w-data: std-logic-vector (7 downto 0) ;

signal wr-ps2, wr-uart : std-logic;
signal ascii-code : std-logic-vector (7 downto 0) ;
signal hex-in: std-logic-vector (3 downto 0) ;

20 signal psrx-done-tick: std-logic ;

begin
__-_____________--__----------------------- __--- 25 --

-- i n s t a n t i a t i o n

btn-db-unit: entity work. debounce(fsmd-arch)

___________________-____________________--- --______________________________________-----

port map(clk=>clk, reset=>reset , sw=>btn(O),
30 db-level=>open, dbdtick=>wr-ps2);

BIDIRECTIONAL PSZ INTERFACE 209

p s 2 - r x t x - u n i t : e n t i t y w o r k . p s 2 _ r x t x (a r c h)
p o r t m a p (c l k = > c l k , r e s e t = > r e s e t , w r _ p s 2 = > w r _ p s 2 ,

d i n = > s w , d o u t = > r x - d a t a , p s 2 d = > p s 2 d ,
p s 2 c = > p s 2 c t rx-done-tick=>psrx-done-tick,

3s t x - d o n e - t i c k = > o p e n) ;
__ o n l y use t h e UART t r a n s m i t t e r
u a r t - u n i t : e n t i t y w o r k . u a r t (s t r - a r c h)

g e n e r i c map (FIFO-W= >4)
p o r t m a p (c l k = > c l k , r e s e t = > r e s e t , r d - u a r t = > ’ O ’ ,

10 w r - u a r t = > w r - u a r t , r x = > ’ l ’ , w - d a t a = > w - d a t a ,
t x - f u l l = > o p e n , r x - e m p t y = > o p e n , r - d a t a = > o p e n ,
t x = > t x) ;

-- FSM t o send 3 A S C I I c h a r a c t e r s

--____-------_____------------------------- --__________________------------------_------

_________________-__------_---------------- _____-_________-____----------------------- 4s --

Mi

65

70

7 5

-- s t a t e r e g i s t e r s
p r o c e s s (c l k , r e s e t)
b e g i n

i f r e s e t = ’ l ’ t h e n

e l s i f (c l k ’ e v e n t a n d c l k = ’ l ’) t h e n

e n d i f ;
e n d p r o c e s s ;

p r o c e s s (s t a t e - r e g , p s r x - d o n e - t i c k , a s c i i - c o d e)
b e g i n

s t a t e - r e g <= i d l e ;

s t a t e - r e g <= s t a t e - n e x t ;

ss -- n e x t - s t a t e l o g i c

w r - u a r t <= ’ 0 ’ ;
w - d a t a <= S P ;
s t a t e - n e x t <= s t a t e - r e g ;
c a s e s t a t e - r e g i s

when i d l e =>
i f p s r x - d o n e - t i c k = ’ 1 ’ t h e n

s t a t e - n e x t <= s e n d h ;
e n d i f ;

w - d a t a <= a s c i i - c o d e ;
w r - u a r t <= ’1’;
s t a t e - n e x t <= s e n d l ;

w - d a t a <= a s c i i - c o d e ;
w r - u a r t <= ’ 1) ;
s t a t e - n e x t <= s e n d b ;

w-data <= S P ;
w r - u a r t <= ’ I) ;
s t a t e - n e x t <= i d l e ;

when s e n d h = > -- send h i g h e r hex c h a r

when s e n d l = > -- send l o w e r hex c h a r

when s e n d b => -- send b l a n k s p a c e c h a r

e n d c a s e ;
e n d p r o c e s s ;

-- s c a n c o d e t o A S C I I d i s p l a y

-- s p l i t t h e s c a n code i n t o two 4 - b i t hex

80 .

____________________----------------------- ____________________-------------------_--- --

210 PSZMOUSE

90

YS

hex-in <= rx-data (7 downto 4) when state-reg=sendh e l s e
85 rx-data (3 downto 0) ;

-- h e x d i g i t t o A S C I I c o d e
w i t h hex-in s e l e c t

ascii-code <=
" 0 0 1 1 0 0 0 0 " when " O O O O " , -- 0
" 0 0 1 1 0 0 0 1 " when "OOOl", -- I
"00110010" when "OOlO", -- 2
' 100110011" when "OOll", -- 3
" 0 0 1 1 0 1 0 0 1 1 when 1 ' 0 1 0 0 " , -- 4
" 0 0 1 1 0 1 0 1 " when 1 ' 0 1 0 1 " , -- 5
" 0 0 1 1 0 1 1 0 " when " O 1 l O t ' , -- 6
1'00110111'1 when "Olll", -- 7
" 0 0 1 1 1 0 0 0 1 ~ when 1 1 1 0 0 0 " , -- 8
110011100111 when t l l O O 1 " , -- 9
~ t O I O O O O O 1 l ~ when " 1 0 1 O 1 l , -- A

" 0 1 0 0 0 0 1 1 " when ' 1 1 1 0 0 " , -- C
" 0 1 0 0 0 1 0 0 " when " 1 1 0 1 " , -- D
"O1OO01Ol1' when " 1 1 1 0 " , -- E
" 0 1 0 0 0 1 1 0 " when o t h e r s ; -- F

IW " 0 1 0 0 0 0 1 0 " when " 1 0 1 1 " , -- B

I05 end arch;

If a mouse is connected to the PS2 circuit, we can first issue the FF command to reset the
mouse and then issue the F4 command to enable the stream mode. Windows HyperTerminal
will show the mouse's acknowledge packets and subsequent mouse movement packets.

9.5 PS2 MOUSE INTERFACE

9.5.1 Basic design

The basic PS2 mouse interface creates another layer over the bidirectional PS2 circuit. Its
two basic functions are to enable the stream mode and to reassemble the 3 data bytes. The
output of the circuit are xm and ym, which are two 9-bit x- and y-axis movement signals;
btm, which is the 3-bit button status signal; and m-done-tick, which is a one-clock-cycle
status signal and is asserted when the assembled data is available.

The HDL code is shown in Listing 9.4. It is implemented by an FSMD with seven states.
The i n i t l , i n i t 2 , and i n i t 3 states are executed once after the r e s e t signal is asserted.
In these states, the FSMD issues the F4 command, waits for completion of the transmission,
and then waits for the acknowledgment packet. The mouse is in the stream mode now. The
FSMD then obtains and assembles the next three packets in the packl, pack2, and pack3
states, and activates the m-done-tick signal in the done state. The FSMD circulates these
four states afterward.

Listing 9.4 Basic mouse interface circuit

l i b r a r y ieee;
u s e ieee. std-logic-1164. a l l ;
u s e ieee. numeric-std. a l l ;
e n t i t y mouse i s

5 p o r t (
clk, reset: i n std-logic;

PS2 MOUSE INTERFACE 21 1

ps2d, ps2c : i n o u t std-logic ;
xm, ym: out std-logic-vector (8 downto 0) ;
btnm: out std-logic-vector (2 downto 0) ;

10 m-done-tick : out std-logic
1 ;

end mouse;

30

40

45

55

a r c h i t e c t u r e arch of mouse i s
15 c o n s t a n t STRM: std-logic-vector (7 downto 0) : = “ 1 1 1 1 0 1 0 0 ” ;

-- s t r e a m command F4
type state-type i s (initl, init2, init3,

s i g n a l state-reg , state-next : state-type;
zo s i g n a l rx-data: std-logic-vector (7 downto 0) ;

s i g n a l rx-done-tick , tx-done-tick: std-logic;
s i g n a l wr-ps2 : std-logic;
s i g n a l x-reg , y-reg : std-logic-vector (8 downto 0) ;
s i g n a l x-next , y-next : std-logic-vector (8 downto 0) ;

25 s i g n a l btn-reg , btn-next : std-logic-vector (2 downto 0) ;

pack1 , pack2, pack3, done) ;

begin
__ i n s t a n t i a t i o n
ps2-rxtx-unit : e n t i t y work. ps2-rxtx (arch)

port map(clk=>clk , reset=>reset , wr-ps2=>wr-ps2,
din=>STRM , dout=>rx-data ,
ps2d=>ps2d, ps2c=>ps2c,
rx-done_tick=>rx-done-tick,
tx-done-tick=>tx-done-tick);

-_ s t a t e and d a t a r e g i s t e r s

begin
35 p r o c e s s (clk, reset)

i f reset = 1 then
state-reg <= initl;
x-reg <= (o t h e r s = > ’ 0 J) ;
y-reg <= (o t h e r s = > ’ O ’) ;
btn-reg <= (o t h e r s = > ’ O ’) ;

state-reg <= state-next ;
x-reg <= x-next;
y-reg <= y-next;
btn-reg <= btn-next ;

e l s i f (clk’event and clk=’lJ) then

end i f ;
end p r o c e s s ;

n e x t - s t a t e 1 o g i c -_
50 p r o c e s s (state-reg ,rx-done-tick, tx-done-tick,

x-reg ,y-reg, btn-reg, rx-data)
begin

wr-ps2 <= ’ 0 ’ ;
m-done-tick <= ’ 0 ’ ;
x-next <= x-reg;
y-next <= y-reg;
btn-next <= btn-reg ;
state-next <= state-reg;
case state-reg i s

212 PS2MOUSE

65

70

75

KO

85

90

60 when i n i t l = >
w r - p s 2 <= ’1’;
s t a t e - n e x t <= i n i t 2 ;

i f t x - d o n e - t i c k = ’ l ’ t h e n

end i f ;

i f r x - d o n e - t i c k = ’ l ’ t h e n

end i f ;

i f r x - d o n e - t i c k = ’ l ’ t h e n

when i n i t 2 = > -- w a i t f o r s e n d t o c o m p l e t e

s t a t e - n e x t <= i n i t 3 ;

when i n i t 3 = > -- w a i t f o r a c k n o w l e d g e p a c k e t

s t a t e - n e x t <= p a c k l ;

when p a c k l = > -- w a i t f o r 1 s t d a t a p a c k e t

s t a t e - n e x t <= p a c k 2 ;
y - n e x t (8) <= r x - d a t a (5) ;
x - n e x t (8) <= r x - d a t a (4) ;
b t n - n e x t <= r x - d a t a (2 downto 0) ;

end i f ;

i f r x - d o n e - t i c k = ’ l ’ t h e n
when p a c k 2 = > -- w a i t f o r 2 n d d a t a p a c k e t

s t a t e - n e x t <= p a c k 3 ;
x - n e x t (7 downto 0) <= r x - d a t a ;

end i f ;

i f r x - d o n e - t i c k = ’ l ’ t h e n
s t a t e - n e x t <= d o n e ;
y - n e x t (7 downto 0) <= r x - d a t a ;

when p a c k 3 = > -- w a i t f o r 3 r d d a t a p a c k e t

end i f ;
when d o n e = >

m - d o n e - t i c k <= ’ 1 ’ ;
s t a t e - n e x t <= p a c k l ;

end c a s e ;
end p r o c e s s ;
xm <= x - r e g ;
ym <= y - r e g ;

9s b tnm <= b t n - r e g ;
end a r c h ;

This design provides only minimal functionalities. A more sophisticated circuit should
have a robust method to initiate the stream mode and add additional buffer, similar to that
in Section 7.2.4, to interact better with the external system.

9.5.2 Testing circuit

We use a simple testing circuit to demonstrate the use of the PS2 interface. The circuit uses
a mouse to control the eight discrete LEDs of the prototyping board. Only one of the eight
LEDs is lit and the position of that LED follows the x-axis movement of the mouse. The
pressing of the left or right button places the lit LED to the leftmost or rightmost position.

The HDL code is shown in Listing 9.5. It uses a 10-bit counter to keep track of the
current x-axis position. The counter is updated when a new data item is available (ie. ,
when the m-done-tick signal is asserted). The counter is set to 0 or maximum when the
left or right mouse button is pressed. Otherwise, it adds the amount of the signed-extended

PSZ MOUSE INTERFACE 213

x-axis movement. A decoding circuit uses the three MSBs of the counter to activate one of
the LEDs.

Listing 9.5 Mouse-controlled LED circuit

l i b r a r y ieee;
u s e ieee. std-logic-1164. a l l ;
u s e ieee. numeric-std. a l l ;
e n t i t y mouse-led i s

s p o r t (
clk, reset: i n std-logic;
ps2dt ps2c : i n o u t std-logic;
led: o u t std-logic-vector (7 d o w n t o 0)

1 ;
10 e n d mouse-led;

a r c h i t e c t u r e arch o f mouse-led i s
s i g n a l p-reg , p-next : unsigned (9 d o w n t o 0) ;
s i g n a l xm: std-logic-vector (8 d o w n t o 0) ;

s i g n a l m-done-tick: std-logic;
15 s i g n a l btnm: std-logic-vector (2 d o w n t o 0) ;

b e g i n
__ i n s t a n t i a t i o n

20 mouse-unit: e n t i t y work.mouse(arch)
p o r t map(clk=>clk, reset=>reset ,

ps2d=>ps2d, ps2c=>ps2c,
xm=>xm, ym=>open , btnm=>btnm ,
m-done-tick=>m-done-tick);

25 -- r e g i s t e r
p r o c e s s (clk , reset)
b e g i n

i f reset='l' t h e n
p-reg <= (o t h e r s = > ' 0 ' 1 ;

p-reg <= p-next;
?n e l s i f (clk'event a n d clk='l') t h e n

e n d i f ;
e n d p r o c e s s ;

c o u n t e r --

35 p-next <= p-reg when m-done-tick='O' e l s e
110000000000" when btnm(O)='l ' e l s e - - l e f t b u t t o n
'tllllllllll" when btnm(l)= '1 ' e l s e - - r i g h t b u t t o n
p-reg + unsigned(xm(8) & xm);

40 w i t h p-reg(9 d o w n t o 7) s e l e c t
led <= "10000000" when " O O O " ,

'I 0 1 0 00 0 00 I' when It 00 1 It ,
"00100000" when " 0 1 0 " ,
'I 000 1000 0 I' when I' 0 11 '' ,
" 0 0 0 0 1 0 0 0 " when t ' l O O " ,
I' 00000 100 I' when It 10 1 It ,
'I 0 0 0 0 0 0 1 0 I' when It 1 1 0 I' ,
" 0 0 0 0 0 0 0 1 ' ~ when o t h e r s ;

e n d arch;

45

214 PS~MOUSE

9.6 BIBLIOGRAPHIC NOTES

The bibliographic information for this Chapter is similar to that for Chapter 8.

9.7 SUGGESTED EXPERIMENTS

The mouse is used mainly with a graphic video interface, which is discussed in Chapters 12
and 13. Many additional mouse-related experiments can be found in these chapters.

9.7.1 Keyboard control circuit

A host can issue a command to set certain parameters for a PS2 keyboard as well. For
example, we can control the three LEDs of the keyboard by sending ED OX. The X is a
hexadecimal number with a format of “Osnc”, where s, n, and c are l-bit values that control
the Scroll, Num, and Caps Lock LEDs, respectively. We can incorporate this feature into
the keyboard interface circuit of Section 8.4.1 and use a 3-bit switch to control the three
keyboard LEDs. Design the expanded interface circuit, resynthesize the circuit, and verify
its operation.

9.7.2 Enhanced mouse interface

For the mouse interface discussed in Section 9.5, we can alter the design to manually
enable or disable the steam mode. This can be done by using two pushbuttons of the FPGA
prototyping board. One button issues the reset command, FF, which disables the stream
mode during operation, and the other button issues the F4 command to enable the steam
mode. Modify the original interface to incorporate this feature, and resynthesize the LED
testing circuit to verify its operation.

9.7.3 Mouse-controlled seven-segment LED display

We can use the mouse to enter four decimal digits on the four-digit seven-segment LED
display. The circuit functions as follows:

0 Only one of the four decimal points of the LED display is lit. The lit decimal point

0 The location of the selected digit follows the x-axis movement of the mouse.
0 The content of the select seven-segment LED display is a decimal digit (i.e., 0, . . ., 9)

indicates the location of the selected digit.

and changes with the y-axis movement of the mouse.
Design and synthesize this circuit and verify its operation.

CHAPTER 10

EXTERNAL SRAM

10.1 INTRODUCTION

Random access memory (RAM) is used for massive storage in a digital system since a RAM
cell is much simpler than an FF cell. A commonly used type of RAM is the asynchronous
static RAM (SRAM). Unlike a register, in which the data is sampled and stored at an edge
of a clock signal, accessing data from an asynchronous SRAM is more complicated. A
read or write operation requires that the data, address, and control signals be asserted in
a specific order, and these signals must be stable for a certain amount of time during the
operation.

It is difficult for a synchronous system to access an SRAM directly. We usually use
a memory controller as the interface, which takes commands from the main system syn-
chronously and then generates properly timed signals to access the SRAM. The controller
shields the main system from the detailed timing and makes the memory access appears
like a synchronous operation. The performance of a memory controller is measured by the
number of memory accesses that can be completed in a given period. While designing a
simple memory controller is straightforward, achieving optimal performance involves many
timing issues and is quite difficult.

The S3 board has two 256K-by-16 asynchronous SRAM devices, which total 1M bytes.
In this chapter, we demonstrate the construction of a memory controller for these devices.
Since the timing characteristics of each RAM device are different, the controller is applicable
only to this particular device. However, the same design principle can be used for similar

FPGA Prototjping bj. VHDL Examples. By Pang F? Chu
Copyright @ 2008 John Wiley & Sons, Inc.

21 5

216 EXTERNAL SRAM

SRAM devices. The Xilinx Spartan-3 device also contains smaller embedded memory
blocks. The use of this memory is discussed in Chapter 11.

10.2 SPECIFICATION OF THE IS61 LV25616AL SRAM

10.2.1 Block diagram and I/O signals

The S3 board has two IS61LV25616AL devices, which are 256K-by-16 SRAM manufac-
tured by Integrated Silicon Solution, Inc. (ISSI). A simplified block diagram is shown in
Figure lO.l(a). This device has an 18-bit address bus, ad, a bidirectional 16-bit data bus,
d io , and five control signals. The data bus is divided into upper and lower bytes, which
can be accessed individually. The five control signals are:

0 c e n (chip enable): disables or enables the chip
0 w e n (write enable): disables or enables the write operation
0 o e n (output enable): disables or enables the output
0 l b n (lower byte enable): disables or enables the lower byte of the data bus
0 u b n (upper byte enable): disables or enables the upper byte of the data bus

All these signals are active low and the n suffix is used to emphasize this property. The
functional table is shown in Figure lO.l(b). The c e n signal can be used to accommodate
memory expansion, and the w e n and o e n signals are used for write and read operations.
The l b n and u b n signals are used to facilitate the byte-oriented configuration.

In the remainder of the chapter, we illustrate the design and timing issues of a memory
controller. For clarity, we use one SRAM device and access the SRAM in 16-bit word
format. This means that the c e n , l b n , and u b n signals should always be activated (i.e.,
tied to '0 ') . The simplified functional table is shown in Figure lO.l(c).

10.2.2 Timing parameters

The timing characteristics of an asynchronous SRAM are quite complex and involve more
than two dozen parameters. We concentrate only on a few key parameters that are relevant
to our design.

The simplified timing diagrams for two types of read operations are shown in Fig-
ure 10.2(a) and (b). The relevant timing parameters are:

0 ~ R C : read cycle time, the minimal elapsed time between two read operations. It is
about the same as t A A for SRAM.

0 ~ A A : address access time, the time required to obtain stable output data after an
address change.

0 t o H A : output hold time, the time that the output data remains valid after the address
changes. This should not be confused with the hold time of an edge-triggered FF,
which is a constraint for the d input.
t D O E : output enable access time, the time required to obtain valid data after o e n is
activated.

0 t H Z O E : output enable to high-Z time, the time for the tri-state buffer to enter the
high-impedance state after o e n is deactivated.

0 t L Z O E : output enable to low-Z time, the time for the tri-state buffer to leave the
high-impedance state after o e n is activated. Note that even when the output is no
longer in the high-impedance state, the data is still invalid.

Values of these parameters for the IS61LV25616AL device are shown in Figure 10.2(c).

SPECIFICATION OF THE 1561LV25616AL SRAM 217

, ad / t

18

256K-by-16
cell array

decoder/
multiplexer +

Operation c e n wen o e n l b n u b n dio(1ower) dio(upper)

ce-n b
we-n
oe-n :
Ib-n b

ub-n -

disabled 1
0 1 1
0 1 1

control circuit

Z
Z
Z

Z
Z
Z

read 0 1 0 0 1 data out Z
0 1 0 1 0 Z data out
0 1 0 0 0 data out data out

write 0 0 0 1 data in
0 0 1 0 Z
0 0 0 0 data in

Z
data in
data in

(b) Functional table

Operation wen o e n d i o (16 bits)

output disabled 1 1 Z
read 16-bit word 1 0 data out
write 16-bit word 0 data in

(c) Simplified functional table

Figure 10.1 Block diagram and functional table of the ISSI 256K-by-16 SRAM.

218 EXTERNAL SRAM

(b) Timing diagram of an oen-controlled read cycle

parameter min max

tRC read cycle time 10 -
~ A A address access time - 10
~ O H A output hold time 2 -
 DOE output enable access time - 4
~ H Z O E output enable to high-Z time - 4
~ L Z O E output enable to low-Z time 0 -

(c) Timing parameters (in ns)

Figure 10.2 Timing diagrams and parameters of a read operation.

SPECIFICATION OF THE IS61LV25616AL SRAM 219

(a) Timing diagram of a write cycle

parameter min max

twc write cycle time 10 -
t S A address setup time 0 -
 HA address hold time 0 -
t P W E l w e n pulse width 8 -
t S D data setup time 6 -
~ H D data hold time 0 -

(b) Timing parameter (in ns)

Figure 10.3 Timing diagram and parameters of a write operation.

The simplified timing diagram for a wen-controlled write operation is shown in Fig-
ure 10.3(a). The relevant timing parameters are:

twc: write cycle time, the minimal elapsed time between two write operations.
t S A : address setup time, the minimal time that the address must be stable before w e n
is activated.
t H A : address hold time, the minimal time that the address must be stable after w e n
is deactivated.
t p W E 1 : w e n pulse width, the minimal time that w e n must be asserted.
t s ~ : data setup time, the minimal time that data must be stable before the latching
edge (the edge in which w e n moves from '0' to '1').
t H D : data hold time, the minimal time that data must be stable after the latching
edge.

The values of these parameters for the IS61LV25616AL device are shown in Figure 10.3(b).
The complete timing information can be found in the data sheet of the IS61LV25616AL
device.

220 EXTERNAL SRAM

Figure 10.4 Role of an SRAM memory controller.

10.3 BASIC MEMORY CONTROLLER

10.3.1 Block diagram

The role of a memory controller and its I/O signals are shown in Figure 10.4. The signals
to the SRAM side are discussed in Section 10.2.1. The signals to the main system side are:

mem: is asserted to ’ 1 ’ to initiate a memory operation.
0 rw: specifies whether the operation is a read (’1’) or write (’0’) operation.

addr: is the 18-bit address.
0 data-f 2s: is the 16-bit data to be written to the SRAM (the -f 2s suffix stands for

FPGA to SRAM).
0 data-s2f -r: is the 16-bit registered data retrieved from the SRAM (the s 2 f suffix

stands for SRAM to FPGA).
0 d a t a s 2 f -ur: is the 16-bit unregistered data retrieved from SRAM.
0 ready: is a status signal indicating whether the controller is ready to accept a new

command. This signal is needed since a memory operation may take more than one
clock cycle.

The memory controller basically provides a “synchronous wrap” around the SRAM.
When the main system wants to access the memory, it places the address and data (for a
write operation) on the bus and activates the command (i.e., the mem and rw signals). At the
rising edge of the clock, all signals are sampled by the memory controller and the desired
operation is performed accordingly. For a read operation, the data becomes available after
one or two clock cycles.

The block diagram of a memory controller is shown in Figure 10.5. Its data path contains
one address register, which stores the address, and two data registers, which store the data
from each direction. Since the data bus, dio, is a bidirectional signal, a tri-state buffer is
needed. The control path is an FSM, which follows the timing diagrams and specifications
in Figures 10.2 and 10.3 to generate a proper control sequence.

BASIC MEMORY CONTROLLER 221

raddr

addr ad

4
data-f2s

+ data-s2f-ur

+ data-s2f-r

m e m q J l wr

T-'
+

+

ri-n

we-n I

I Oe-"

ready I

Figure 10.5 Block diagram of a memory controller.

10.3.2 Timing requirement

Although the timing diagrams appear to be complicated at first glance, the control sequences
are fairly simple. Let us first consider a read cycle. The w e n should be deactivated during
the entire operation. Its basic operation sequence is:

1. Place the address on the ad bus and activate the o e n signal. These two signals must

2. Wait for at least t A A . The data from the SRAM becomes available after this interval.
3. Retrieve the data from dio and deactivate the o e n signal.
We use the wen-controlled write cycle in our design, as shown in Figure 10.3(a). The

1. Place the address on the ad bus and data on the dio bus and activate the w e n signal.

2. Wait for at least ~ P W E I .

3. Deactivate the w e n signal, The data is latched to the SRAM at the '0'-to-' 1 ' transition
edge.

4. Remove the data from the dio bus.

Note that t H D (data hold time after write ends) is 0 ns for this SRAM, which implies that
it is theoretically possible to remove the data and deactivate w e n simultaneously. However,
because of the variations in propagation delays, this condition cannot be guaranteed in a

be stable for the entire operation.

basic operation sequence is:

These signals must be stable for the entire operation.

222 EXTERNAL SRAM

real circuit. To achieve proper latching, we need to ensure that the wen signal is always
deactivated first.

10.3.3 Register file versus SRAM

We discuss the design of a register file in Section 4.2.3. Its basic storage elements are D FFs
and thus it is completely synchronous. Although a memory controller wraps the SRAM in
a synchronous interface, there are several differences:

0 A register file usually has one write port and multiple read ports.
0 The read and write ports of a register file can be accessed at the same time (i.e., the

0 Writing to a register takes only one clock cycle.
0 Data from a register’s read ports is always available and the read operation involves

In summary, a register file is faster and more flexible. However, due to the circuit size of
an FF, a register file is feasible only for small storage.

read and write operations can be done at the same time).

no clock or additional control signals.

10.4 A SAFE DESIGN

With the block diagram of Figure 10.5, the remaining task is to derive the controller. Our
first scheme uses a “safe” design, which means that the design provides large timing margins
and does not impose any stringent timing constraints. The control signals are generated
directly from the FSM. The controller uses two clock cycles (i.e., 40 ns) to complete memory
access and requires three clock cycles (i.e., 60 ns) for back-to-back operations.

10.4.1 ASMD chart

The ASMD chart for this controller is shown in Figure 10.6. The FSM has five states and is
initially in the i d l e state. It starts the memory operation when the mem signal is activated.
The r w signal determines whether it is a read or write operation.

For a read operation, the FSM moves to the r d l state. The memory address, addr, is
sampled and stored in the addr-reg register at the transition. The o e n signal is activated
in the r d l and rd2 states. At the end of the read cycle, the FSM returns to the i d l e state.
The retrieved data is stored in the data-s2f -reg register at the transition, and the o e n
signal is deactivated afterward. Note that the block diagram of Figure 10.5 has two read
ports. The d a t a s 2 f -r signal is a registered output and becomes available after the FSM
exits the r 2 state. The data remains unchanged until the end of the next read cycle. The
data-s2f -ur signal is connected directly to the SRAM’s d io bus. Its data should become
valid at the end of the rd2 state but will be removed after the FSM enters the i d l e state.
In some applications, the main system samples and stores the memory readout in its own
register, and the unregistered output allows this action to be completed one clock cycle
earlier.

For a write operation, the FSM moves to the w r l state. The memory address, addr, and
data, data-f 2s, are sampled and stored in the addr-reg and data-f 2s-reg registers at
the transition. The wen and t r in signals are both activated in the w r i state. The latter
enables the tri-state buffer to put the data over the SRAM’s d io bus. When the FSM moves
to the wr2 state, wen is deactivated but t r in remains asserted. This ensures that the data
is properly latched to the SRAM when wen changes from’0’ to ’1’. At the end of the write

A SAFE DESIGN 223

Default: oe-n <= 1; we-n <= 1; tri-n <= 1; ready <= 0

- I 4

raddr t addr a ..

1 1

t r i g <= 0

.t............

Figure 10.6 ASMD chart of a safe SRAM controller.

cycle, the FSM returns to the i d l e state and t r in is deactivated to remove data from the
d i o bus.

10.4.2 Timing analysis

To ensure correct operation of a memory controller, we must verify that the design meets
various timing requirements. Recall that the FSM is controlled by a 50-MHz clock signal
and thus stays in each state for 20 ns.

During the read cycle, o e n is asserted for two states, totaling 40 ns, which provides
a 30-ns margin over the 10-ns tAA. Although it appears that o e n can be deasserted in
the rd2 state, this imposes a more stringent timing constraint. This issue is explained in
Section 10.5.3. The data is stored in the data-s2f register when the FSM moves from the
rd2 state to the i d l e state. Although o e n is deasserted at the transition, the data remains
valid for a small interval because of the FPGA’s pad delay and the t H Z o E delay of the
SRAM chip. It can be sampled properly by the clock edge.

During the write cycle, w e n is asserted in the w r l state, and the 20-11s interval exceeds
the 8-ns t p W E l requirement. The t r in signal remains asserted in the wr2 state and thus
ensures that the data is still stable during the ’0’-to-’1’ transition edge of the wen signal.

224 EXTERNAL SRAM

In terms of performance, both read and write operations take two clock cycles to com-
plete. During the read operation, the unregistered data (i.e., data-s2f -ur) is available
at the end of the second clock cycle (i.e., just before the rising edge of the second clock
cycle) and the registered data (i.e., data-s2f -r) is available right after the rising edge of
the second clock cycle. Although a memory operation can be done in two clocks, the main
system cannot access memory at this rate. Both read and write operations must return to the
i d l e state after completion. The main system must wait for another clock cycle to issue a
new memory operation, and thus the back-to-back memory access takes three clock cycles.

10.4.3 HDL implementation

The HDL code can be derived by following the block diagram in Figure 10.5 and the
ASMD chart in Figure 10.6. The memory controller must generate fast, glitch-free control
signals. One method is to modify the output logic to include look-ahead output buffers for
the Moore output signals. This scheme adds a buffer (i.e., D FF) for each output signal to
remove glitches and reduce clock-to-output delay. To compensate the one clock cycle delay
introduced by the buffer, we “look ahead” at the state’s future value (i.e., the s t a t e n e x t
signal) and use it to replace the state’s current value (i.e., the s t a t e - r eg signal) in the
FSM’s output logic.

The complete HDL code is shown in Listing 10.1. To facilitate future expansion, we
label the S3 board’s two SRAM chips as a and b and add an -a suffix to the SRAM’s I/O
signals in port declaration. Note that tri-state buffers are required for the bidirectional data
signal dio-a.

10

15

Listing 10.1 SRAM controller with three-cycle back-to-back operation

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y sram-ctrl i s

por t (
5 clk, reset: in std-logic;

__ t o / f r o m main s y s t e m
mem: in std-logic;
rw: i n std-logic;
addr : in std-logic-vector (17 downto 0) ;
data-f2s : in std-logic-vector (1 5 downto 0) ;
ready : out std-logic ;
data-s2f -r , data-s2f -ur :

__ t o / f r o m c h i p
ad: out std-logic-vector (17 downto 0) ;
we-n, oe-n: out std-logic;
-- SRAM c h i p a
dio-a: i n o u t std-logic-vector (1 5 downto 0) ;
ce-a-n, ub-a-n, lb-a-n: out std-logic

out std-logic-vector (1 5 downto 0) ;

20) ;
end sram-ctrl;

a r c h i t e c t u r e arch of sram-ctrl i s
type state-type i s (idle, rdl, rd2, wrl, wr2);

s i g n a l data-f2s_reg, data-f2s_next :
25 s i g n a l state-reg , state-next : state-type;

A SAFE DESIGN 225

40

45

50

60

65

70

75

s t d - l o g i c - v e c t o r (1 5 downto 0) ;

s t d - l o g i c - v e c t o r (15 downto 0) ;
s i g n a l d a t a - s 2 f _ r e g , d a t a - s 2 f _ n e x t :

30 s i g n a l a d d r - r e g , a d d r - n e x t : s t d - l o g i c - v e c t o r (17 downto 0) ;
s i g n a l we-buf , oe-buf , t r i - b u f : s t d - l o g i c ;
s i g n a l we-reg , o e - r e g , t r i - r e g : s t d - l o g i c ;

__ s t a t e & d a t a r e g i s t e r s

begin

begin

35 p r o c e s s (c l k , r e s e t)

i f (r e s e t = ’ l ’) then
s t a t e - r e g <= i d l e ;
a d d r - r e g <= (o t h e r s = > ’ O ’) ;
d a t a - f 2 s _ r e g <= (o t h e r s = > ’ O ’) ;
d a t a - s 2 f _ r e g <= (o t h e r s = > ’ O ’) ;
t r i - r e g <= ’1 ’ ;
we-reg <= ’1 ’ ;
o e - r e g <= ’ 1 ’ ;

s t a t e - r e g <= s t a t e - n e x t ;
a d d r - r e g <= a d d r - n e x t ;
d a t a - f 2 s _ r e g <= d a t a - f 2 s _ n e x t ;
d a t a - s 2 f _ r e g <= d a t a - s 2 f _ n e x t ;
t r i - r e g <= t r i - b u f ;
we-reg <= we-buf ;
o e - r e g <= o e - b u f ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

end i f ;
end p r o c e s s ;

p r o c e s s (s t a t e - r e g ,mem , rw , d i o - a , a d d r , d a t a - f 2 s ,

begin

55 -- n e x t - s t a t e l o g i c

d a t a - f 2 s _ r e g , d a t a - s 2 f - r e g , a d d r - r e g)

a d d r - n e x t <= a d d r - r e g ;
d a t a - f 2 s - n e x t <= d a t a - f 2 s - r e g ;
d a t a _ s 2 f _ n e x t <= d a t a - s 2 f _ r e g ;
r e a d y <= ’ 0 ’ ;
case s t a t e - r e g i s

when i d l e = >
i f m e m = ’ O ’ then

e l s e
s t a t e - n e x t <= i d l e ;

a d d r - n e x t <= a d d r ;
i f r w = ’ O ’ then - - w r i t e

s t a t e - n e x t <= wrl;
d a t a _ f 2 s _ n e x t <= d a t a - f 2 s ;

s t a t e - n e x t <= r d l ;
e l s e -- r e a d

end i f ;
end i f ;
r e a d y <= ’ 1 ’ ;

s t a t e - n e x t <= wr2 ;
when w r l =>

when wr2 = >

EXTERNAL SRAM 226

80

85

90

95

IW

state-next <= idle;

state-next <= r d 2 ;

data-s2f_next <= dio-a;
state-next <= idle;

when rdl = >

when rd2=>

end c a s e ;
end p r o c e s s ;
_- ‘I l o o k - a h e a d I‘ o u t p u t l o g i c
p r o c e s s (state-next 1
b e g i n

tri-buf <= ’ 1 ’ ; -- d e f a u 1 t
we-buf <= ’ 1 ’ ;
oe-buf <= ’ 1) ;
c a s e state-next is

when idle =>
when wrl =>

tri-buf <= ’ 0 ’ ;
we-buf <= ’ 0) ;

tri-buf <= ’ 0 ’ ;

oe-buf <= ’ 0) ;

oe-buf <=) O) ;

when wr2 = >

when rdl = >

when rd2=>

end c a s e ;
end p r o c e s s ;
__ t o m a i n s y s t e m
data-s2f -r <= data-s2f - r e g ;
data-s2f -ur <= dio-a ;
-_ t o SRAM
we-n <= we-reg;
oe-n <= oe-reg;
ad <= addr-reg;
--i/o f o r SRAM c h i p a
ce-a-n < =) O ’ ;
ub-a-n < = ’ O ’ ;
lb-a-n <= 0 ’ ;
dio-a <= data-f2s_reg when tri-reg=’O’ e l s e (o t h e r s = > ’ Z ’) ;

end arch;

To minimize the off-chip pad delay (discussed in Section 10.5.1), the corresponding
FPGA’s I/O pins should be configured properly. This can be done by adding additional
information in the constraint file. A typical line is

NET “ a d < l 7 > “ LOC = “L3“ I IOSTANDARD = LVCMOS33 I SLEW=FAST ;

10.4.4 Basic testing circuit

We use two circuits to verify operation of the SRAM controller. The first one is a basic
testing circuit that allows us manually to perform a single read or write operation. In
addition to the SRAM chip I/O signals, the circuit has the following signals:

sw. It is 8 bits wide and used as data or address input.

A SAFE DESIGN 227

0 led. It is 8 bits wide and used to display the retrieved data.
0 btn (0). When it is asserted, the current value of sw is loaded to a data register. The

0 btn (1 1. When it is asserted, the controller uses the value of sw as a memory address

0 btn (2) . When it is asserted, the controller uses the value of s w as a memory address

During a write operation, we first specify the data value and load it to the internal register
and then specify the address and initiate the write operation. During a read operation, we
specify the address and initiate the read operation. The retrieved data is displayed in eight
discrete LEDs. The complete HDL code is shown in Listing 10.2.

output of the register is used as the data input for the write operation.

and performs a write operation.

and performs a read operation. The readout is routed to the l ed signal.

Listing 10.2 Basic SRAM testing circuit

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y ram-ctrl-test i s

5 p o r t (
clk, reset: in std-logic;
sw: in std-logic-vector (7 downto 0) ;
btn: in std-logic-vector (2 downto 0) ;
led: out std-logic-vector (7 downto 0) ;

we-n, oe-n: out std-logic;
dio-a: i n o u t std-logic-vector (15 downto 0) ;
ce-a-n, ub-a-n, lb-a-n: out std-logic

10 ad: out std-logic-vector (17 downto 0) ;

1 ;
I S end ram-ctrl-test;

a r c h i t e c t u r e arch of ram-ctrl-test i s
c o n s t a n t ADDR-W: integer :=18;
c o n s t a n t DATA-W: integer :=16;

s i g n a l data-f2sI data-s2f:

s i g n a l mem, rw: std-logic;
s i g n a l data-reg : std-logic-vector (7 downto 0) ;

20 s i g n a l addr : std-logic-vector (ADDR-W -1 downto 0) ;

std-logic-vector (DATA-W -1 downto 0) ;

25 s i g n a l db-btn: std-logic-vector (2 downto 0) ;

begin
ctrl-unit : e n t i t y work. sram-ctrl

port map(
30 clk=>clk, reset=>reset ,

mem=>mem, rw =>rw, addr=>addr , data-f2s=>data-f2s,
ready=>open , data-s2f -r=>data-s2f ,
data-s2f -ur=>open, ad=>ad,
we-n=>we-n, oe-n=>oe-n, dio-a=>dio-a,

3s ce-a-n=>ce-a-n, ub-a-n=>ub-a-n, lb-a-n=>lb-a-n);

debounce-unit0 : e n t i t y work. debounce
port map(

clk=>clk, reset=>reset , sw=>btn(O) ,

228 EXTERNAL SRAM

40 d b - l e v e l = > o p e n , d b - t i c k = > d b - b t n (0)) ;
d e b o u n c e - u n i t l : e n t i t y w o r k . d e b o u n c e

p o r t m a p (
c l k = > c l k , r e s e t = > r e s e t , s w = > b t n (l) ,
d b - l e v e l = > o p e n , d b - t i c k = > d b - b t n (l)) ;

45 d e b o u n c e - u n i t 2 : e n t i t y w o r k . d e b o u n c e
p o r t map(

c l k = > c l k , r e s e t = > r e s e t , s w = > b t n (2) ,
d b - l e v e l = > o p e n , d b - t i c k = > d b - b t n (2)) ;

55

7Cl

75

50 - - d a t a r e g i s t e r s
p r o c e s s (c l k)
b e g i n

i f (c l k ’ e v e n t a n d c l k = ’ 1 ’ t h e n
i f (d b - b t n (O) = ’ 1)) t h e n

e n d i f ;
d a t a - r e g <= s w ;

e n d i f ;
e n d p r o c e s s ;
-- a d d r e s s

-- command
p r o c e s s (d b - b t n , d a t a - r e g)
b e g i n

60 a d d r <= “ 0 0 0 0 0 0 0 0 0 0 ’ ‘ & s w ;

d a t a - f 2 s <= (o t h e r s = >) O)) ;
65 i f d b - b t n (l) = ’ l ’ t h e n -- w r i t e

m e m <= ’ 1 ’ ;
r w <= ’ 0 ’ ;
d a t a - f z s <= “ 0 0 0 0 0 0 0 0 ’ ’ & d a t a - r e g ;

mem <= ’ 1 ’ ;
r w <= ’1);

m e m <=) O) ;
r w <= ’1);

e l s i f d b _ b t n (2) = ’ 1) t h e n -- r e a d

e l s e

e n d i f ;
e n d p r o c e s s ;
-_ o u t p u t
l e d <= d a t a - s 2 f (7 d o w n t o 0) ;

e n d a r c h ;

10.4.5 Comprehensive SRAM testing circuit

The second circuit performs comprehensive testing. It verifies operation of the SRAM con-
troller and checks the integrity of the SRAM chip as well. This circuit has three functions:

0 Write testing data patterns to the entire SRAM at the maximal rate.
0 Read the entire SRAM at the maximal rate, check the retrieved data against the

original patterns, and record the number of erroneous readouts.
0 Inject erroneous data.

These functions can be initiated by three debounced pushbuttons.
The ASMD chart is shown in Figure 10.7. It contains three branches, corresponding to

A SAFE DESIGN 229

ready <=I

...............I

............. I....

I rd-clk2

L

............. 1
c t c+ l

T

T
...........I....... !

-
, 1

............................
1 ,wr-dk2: , ~

........................... ,.............I...

, r - c l k 3 ,
~ c t c + l

j <-> c-next.0 F.

T
.............. t------------

addr t O..O & sw

Figure 10.7 ASMD chart of a comprehensive SRAM testing circuit.

230 EXTERNAL SRAM

three functions. The middle branch writes the test patterns to the SRAM. The wr-clkl,
wr-clk2, and wr-clk3 states correspond to the i d l e , wrl, and wr2 states of the SRAM
controller. The FSMD uses the 18-bit c register as a counter to loop through this branch
2lS times. The content of the c register is used as an address and the reversed 16 LSBs
are used as data during a write operation. The FSMD writes all memory locations while
looping through this branch. The left branch reads data from the SRAM. The three states
correspond to the i d l e , r d i , and rd2 states of the SRAM controller. The FSMD again
loops through the branch 2lS times. The retrieved data is compared with the original test
patterns, and the e r r register is used to keep track of the number of mismatches. The right
branch performs a single write operation. It uses the 8-bit switch to form a memory address
and writes an erroneous pattern to that address. The i n j counter is used to keep track of
the number of injected errors. The complete HDL code is shown in Listing 10.3.

Listing 10.3 Comprehensive SRAM testing circuit

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y sram-test i s

5 p o r t (
clk, reset: in std-logic;
sw: in std-logic-vector (7 downto 0) ;
btn: in std-logic-vector (2 downto 0) ;
led: out std-logic-vector (7 downto 0) ;
an: out std-logic-vector (3 downto 0) ;
sseg : out std-logic-vector (7 downto 0) ;
ad: out std-logic-vector (17 downto 0) ;
we-n, oe-n: out std-logic;
dio-a: i n o u t std-logic-vector (15 downto 0) ;

10

15 ce-a-n, ub-a-n, lb-a-n: out std-logic

) ;
end sram-test;

a r c h i t e c t u r e arch of sram-test i s
20 c o n s t a n t A D D R - W : integer : =18;

c o n s t a n t D A T A - W : integer :=16;
s i g n a l addr : std-logic-vector (ADDR-W -1 downto
s i g n a l data-f 2s , data-s2f :

25 s i g n a l mem, rw: std-logic;
std-logic-vector (D A T A - W -1 downto 0) ;

type state-type i s (test-init , rd-clkl , rd-clk2, rd-clk3,

s i g n a l state-reg , state-next : state-type;
s i g n a l c-next , c-reg : unsigned (ADDR-W -1 downto 0) ;

30 s i g n a l c-std: std-logic-vector (ADDR-W -1 downto 0) ;
s i g n a l inj-next , inj-reg: unsigned(7 downto 0) ;
s i g n a l err-next , err-reg : unsigned (15 downto 0) ;
s i g n a l db-btn: std-logic-vector (2 downto 0) ;

wr-err , wr-clkl , wr-clk2 , wr-clk3) ;

35 beg in

__ c o m p o n e n t i n s t a n t i a t i o n
__

A SAFE DESIGN 231

c t r l - u n i t : e n t i t y work . s r a m - c t r l
40 p o r t map(

c l k = > c l k , r e s e t = > r e s e t ,
mem=>mem, r w = > r w , a d d r = > a d d r ,
d a t a - f 2 s = > d a t a - f 2 s , r e a d y = > o p e n ,
d a t a - s 2 f -r =>open , d a t a - s2 f - u r => d a t a - s2 f ,
a d = > a d , d i o - a = > d i o - a ,
we-n=>we-n, o e - n = > o e - n ,
c e - a - n = > ce-a-n , ub-a-n=>ub-a-n , l b - a - n = > l b - a - n) ;

15

55

h5

d e b o u n c e - u n i t 0 : e n t i t y work , debounce
50 p o r t map(

c l k = > c l k , r e s e t = > r e s e t , sw=>btn (O) ,
d b - l e v e l = > o p e n , d b - t i c k = > d b _ b t n (O)) ;

d e b o u n c e - u n i t 1 : e n t i t y work . debounce
p o r t map(

c l k = > c l k , r e s e t = > r e s e t , s w = > b t n (l) ,
d b - l e v e l = > o p e n , d b - t i c k = > d b - b t n (1)) ;

d e b o u n c e - u n i t 2 : e n t i t y work , debounce
p o r t map(

c l k = > c l k , r e s e t = > r e s e t , s w = > b t n (2) ,
60 d b - l e v e l = > o p e n , d b - t i c k = > d b m b t n (2)) ;

d i s p - u n i t : e n t i t y work . d i sp-hex-mux
p o r t map(

c l k = > c l k , r e s e t = > ’ O ’ , d p - i n = > ” l l l l ” ,
h e x 3 = > s t d _ l o g i c _ v e c t o r (e r r - r e g (1 5 downto 12)) ,
h e x 2 = > s t d _ l o g i c _ v e c t o r (e r r - r e g (11 downto 8)) ,
h e x l = > s t d - l o g i c - v e c t o r (e r r - r e g (7 downto 4)) ,
h e x O = > s t d - l o g i c - v e c t o r (e r r - r e g (3 downto 0)) ,
a n = > a n , s s e g = > s s e g) ;

80

85

70 --
-- FSMD
-_

__ s t a t e & d a t a r e g i s t e r s
p r o c e s s (c l k , r e s e t)

75 beg in
i f (r e s e t = ’ l ’) t h e n

s t a t e - r e g <= t e s t - i n i t ;
c - r e g <= (o t h e r s = > ’ O ’) ;
i n j - r e g <= (o t h e r s = > ’ O ’) ;
e r r - r e g <= (o t h e r s = > ’ O ’) ;

s t a t e - r e g <= s t a t e - n e x t ;
c - r e g <= c - n e x t ;
i n j - r e g <= i n j - n e x t ;
e r r - r e g <= e r r - n e x t ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) t h e n

end i f ;
end p r o c e s s ;
c - s t d <= std-logic-vector(c-reg);
-- f s m d n e x t - s t a t e l o g i c / d a t a p a t h o p e r a t i o n s
p r o c e s s (s t a t e - r e g ,sw , d b - b t n , c - r e g , c - s t d ,

c -nex t , i n j - r e g , e r r - r e g , d a t a - s 2 f)
9u

232 EXTERNAL SRAM

b e g i n
c - n e x t <= c - r e g ;
i n j - n e x t <= i n j - r e g ;
e r r - n e x t <= e r r - r e g ;
a d d r <= (o t h e r s = > ’ O ’) ;
r w <= ’ 1 ’ ;
mem <= ’ 0 ’ ;
d a t a - f 2 s <= (o t h e r s = > ’ O ’) ;
c a s e s t a t e - r e g i s

when t e s t - i n i t =>
i f d b - b t n (O) = ’ l ’ t h e n

s t a t e - n e x t <= r d - c l k l ;
c - n e x t < = (o t h e r s = > ’ O ’) ;
e r r - n e x t < = (o t h e r s = > ’ O ’) ;

s t a t e - n e x t <= w r - c l k l ;
c - n e x t < = (o t h e r s = > ’ O ’) ;
i n j - n e x t < = (o t h e r s = > ’ O ’) ; -- c l e a r i n j e c t e d e r r

e l s i f d b - b t n (2) = ’ 1 ’ t h e n
s t a t e - n e x t <= w r - e r r ;
i n j - n e x t <= i n j - r e g + 1 ;

s t a t e - n e x t <= t e s t - i n i t ;

e I s i f d b - b t n (1) = ’ 1 ’ t h e n

e l s e

end i f ;

s t a t e - n e x t <= t e s t - i n i t ;
m e m <= ’1’;
r w <= ’ 0 ’ ;
a d d r <= “ 0 0 0 0 0 0 0 0 0 0 “ & s w ;
d a t a - f 2 s <= (o t h e r s = > ’1 ’) ;

s t a t e - n e x t <= w r - c l k 2 ;
mern <= ’ 1 ’ ;
r w <= ’ 0 ’ ;
a d d r <= c - s t d ;
d a t a - f 2 s <= n o t c-std(DATA-W -1 downto 0) ;

when w r - c l k 2 => -- i n w r l s t a t e o f s r a r n - c t r l
s t a t e - n e x t <= w r - c l k 3 ;

when w r - c l k 3 = > -- i n wr2 s t a t e o f s r a r n - c t r l
c - n e x t <= c - r e g + 1;
i f c - n e x t =O t h e n

e l s e

end i f ;

s t a t e - n e x t <= r d - c l k 2 ;
m e m <= j l ’ ;

r w <= ’1’;
a d d r <= c - s t d ;

s t a t e - n e x t <= r d - c l k 3 ;

when wr-err => -- w r i t e 1 e r r ; d o n e i n n e x t 2 c l o c k s

when w r - c l k l = > -- i n i d l e s t a t e o f s r a m - c t r l

s t a t e - n e x t <= t e s t - i n i t ;

s t a t e - n e x t <= w r - c l k l ;

when r d - c l k l => -- i n i d l e s t a t e o f s r a m - c t r l

when r d - c l k 2 => -- i n r d l s t a t e o f s r a r n - c t r l

when r d - c l k 3 => -- i n r d 2 s t a t e o f s r a r n - c t r l

95

IW

105

I10

I20

125

I30

115

I40

MORE AGGRESSIVE DESIGN 233

14s

150

__ c o m p a r e r e a d o u t ; m u s t u s e u n r e g i s t e r e d o u t p u t
i f (n o t c-std(DATA-W-1 downto O)) / = d a t a - s 2 f then

end i f ;
c - n e x t <= c - r e g + 1;
i f c -nex t=O then

e l s e

end i f ;

e r r - n e x t <= e r r - r e g + 1 ;

s t a t e - n e x t <= t e s t - i n i t ;

s t a t e - n e x t <= r d - c l k l ;

I55 end c a s e ;
end p r o c e s s ;
l e d <= std-logic-vector(inj-reg);

end a r c h ;

Note that the number of write-read mismatches is connected to the seven-segment LED
display and shown as a four-digit hexadecimal number, and the number of injected errors
is connected to the eight discrete LEDs.

We can use this circuit as follows:
0 Perform the read function. Since the SRAM is not written yet, it is in the initial

“power-on” state. The seven-segment LED display should show a large number of
mismatches.

0 Perform the write function.
0 Perform the read function. The number of mismatches should be zero if both the

0 Inject error data a few times (to different memory locations).
0 Perform the read function again. The number of mismatches should be the same as

SRAM controller and the SRAM device work properly.

the number of injected errors.

10.5 MORE AGGRESSIVE DESIGN

Although the previous memory controller functions properly, it does not have optimal
performance. While both the read and write cycles are 10 ns of the SRAM device, the
back-to-back memory access of this controller takes 60 ns (i.e., three clock cycles). In
this section, we study the timing issue in more detail, examine several more aggressive
designs and their potential problems, and discuss some FPGA features that help to remedy
the problems.

10.5.1 Timing issues

Timing issues on asynchronous SRAM There are two subtle timing issues in de-
signing a high-performance asynchronous SRAM controller. The first issue is deactivation
of the w e n signal. The ’0’-to-’1’ transition of w e n functions somewhat like a clock edge
of an FF, in which the data is latched and stored to the internal memory element. Note
that the data hold time (~ H D) is zero for this SRAM. Although it appears that it is fine to
deactivate w e n and remove data at the same time, this approach is not reliable because of
the variations in propagation delays. We must ensure that w e n is deactivated before data
is removed from the bus.

The second issue is the potential conflict on the data bus, dio. Recall that the data bus is
a bidirectional bus. The controller places data on the bus during a write operation, and the

234 EXTERNAL SRAM

SRAM places data on the bus during a read operation. A condition known as f i gh t ing
occurs if the controller and SRAM place data on the bus at the same time. This condition
should be avoided to ensure reliable operation.

Estimation of propagation delay Designing a good memory controller requires hav-
ing a good understanding about the propagation delays of various signals. However, it is a
difficult task. First, during synthesis, an RT-level description is optimized and mapped to
logic cells and wire interconnects. The final implementation may not resemble the block
diagram depicted by the initial description, and thus it is difficult to estimate the propagation
delay from the initial description.

Second, a memory operation involves off-chip data access. Additional propagation delay
is introduced when a signal propagates through the FPGA’s I/O pads. The delay, sometimes
known as pad delay, is usually much larger than the internal wiring delay and its exact value
depends on a variety of factors, including the type of FPGA device, the location of the output
register (in LE or IOB), the I/O standards, the slew rate, the driver strength, and external
loading.

It requires intimate knowledge of the FPGA device and the synthesis software to perform
a good timing analysis and to estimate the propagation delays of various signals.

10.5.2 Alternative design I

The first alternative design is targeted to reduce the back-to-back operation overhead. In-
stead of always returning to the i d l e state, the memory controller can check the mem signal
at the end of current memory operation (i.e., in the rd2 or wr2 state) and determine what
to do next. It initiates a new memory operation immediately if there is a pending request.

The revised ASMD chart for this controller is shown in Figure 10.8. In the rd2 and wr2
states, the mem and r w signals are examined and the FSMD may move directly to the r d i
or w r l state if another memory operation is required.

Timing analysis Most of the original timing analysis in Section 10.4.2 can still be ap-
plied to this design. However, skipping the i d l e state introduces subtle new complications
when different types of back-to-back memory operations are performed. The issue is the
potential fighting on the data bus.

Let us consider a write operation performed immediately after a read operation. During
the read operation, the signal flows from the SRAM to the FPGA. To facilitate this operation,
the tri-state buffer of the SRAM should be “turned on” (i.e., passing signal) and the tri-
state buffer of the FPGA should be “turned off” (i.e., high impedance). During the write
operation, the signal flows from the FPGA to the SRAM, and the roles of the two tri-state
buffers are reversed. Note that a small delay is required to turn on or off a tri-state buffer.
In the SRAM chip, these delays are specified by t H Z o E (o e n to high-impedance time)
and t L Z o E (oen to low-impedance time) in Figure 10.2.

In the original SRAM controller, both tri-state buffers are turned off in the i d l e state.
The state provides enough time for the data bus to settle to the high-impedance condition.
The new design requires the two tristate buffers to reverse directions simultaneously during
back-to-back operations. For example, when moving from the rd2 state to the w r i state, the
FSMD generates signals to turn off the SRAM’s tri-state buffer and to turn on the FPGA’s
tri-state buffer. A problem may occur in this transition if the SRAM’s tri-state buffer is
turned off too slowly or the FPGA’s tri-state buffer is turned on too quickly. In a small
interval, both buffers may allow data to be placed on the bus and fighting occurs. Similarly,
fighting may occur when a read operation is performed immediately after a write operation.

MORE AGGRESSIVE DESIGN 235

Default: oe-n <= 1; we-n <= 1; tri-n <= 1; ready <= 0

,..........

raddr +- addr

.....I

,
; r l

oe-n <= 0

oe-n <= 0
rs2t + dio

4
F mem=l

..

I I

-4

...
-l

t r i g <= 0

OF- mem=l

T

rT<*>F,

raddr + addr

'i...........................i.............
I I

Figure 10.8 ASMD chart of SRAM controller design I.

236 EXTERNAL SRAM

Default: oe-n <= 1 ; we-n <= 1; tri-n <= 1; ready <= 0

L........ -..

1 I
tri-n <= 0

Figure 10.9 ASMD chart of SRAM controller design 11.

Since the interval tends to be very small, the fighting should not cause severe damage to
the devices but may introduce a large transient current which makes the design less reliable.
We must do a detailed timing analysis to examine whether fighting occurs, and may even
need to fine-tune the timing to fix the problem. As discussed in Section 10.5.1, it is a
difficult task.

10.5.3 Alternative design II

Timing analysis in Section 10.4.2 shows that the initial design provides a large safety margin.
In this controller, a memory operation takes two clock cycles, which amount to 40 ns. Since
the read and write cycles of the SRAM are each 10 ns, we naturally wonder whether it is
possible to reduce the operation time to a single 20-11s clock cycle. This can be done by
eliminating the rd2 and wr2 states in the ASMD chart. The second alternative design uses
this approach. The revised ASMD chart is shown in Figure 10.9. It takes one clock cycle
to complete the memory access and requires two clock cycles to complete the back-to-back
operations.

Timing analysis Reducing a state from the original controller imposes much tighter
timing constraints for both read and write operations. Let us first consider the read operation.
During operation, the address signal first propagates through the FPGAs I/O pads to the
SRAM's address bus, and the retrieved data then propagates back through the I/O pads
to FPGA's internal logic. All of this must be completed within a 20-11s clock cycle. In
addition to the 10-ns SRAM address access time (i.e., ~ A A) , the cycle must accommodate

MORE AGGRESSIVE DESIGN 237

two pad delays. The pad delay of a Spartan-3 device can range from 4 ns to more than
10 ns. Therefore, we need to “fine-tune” the synthesis to achieve this margin.

Unlike the read operation, a write operation is “one-way” and only needs to propagate
the address, data, and control signals to the SRAM chip. If we assume that the signals
experience similar pad delays, the absolute value of the delay is a lesser issue. Instead, the
key is the order of signals being activated and deactivated. As discussed in Section 10.5.1,
w e n must be deactivated before data to latch the data properly to the SRAM. In the original
design, this is achieved by including the second state in the write operation, w r 2 , in which
w e n is deactivated but the data is still available (i.e., t r in is still active). In the revised
controller, the w e n and t r i n signals are deactivated simultaneously at the end of the w r l
state. Due to the variations in the internal logic and pad delays, normal synthesis cannot
guarantee that w e n is deactivated before the data is removed from the external data bus.
Again, for a reliable design, we need to fine-tune the synthesis to satisfy this goal.

10.5.4 Alternative design 111

We can combine the features from the two preceding revisions to derive the third alternative
design. This new controller eliminates the second clock cycle in the read and write oper-
ations and allows back-to-back operation without first returning to the i d l e state. This is
the most aggressive design. The revised ASMD chart is shown in Figure 10.10. It com-
bines the modifications from the previous two ASMD charts. The revised design takes one
clock cycle to complete the memory access and one clock cycle to complete back-to-back
operations.

Note that the w e n signal must be asserted for a fraction of the clock period and cannot
be shown in the ASMD chart. We use the w e - t m p in the w r l state and later derive w e n
from this signal.

Timing analysis Since the new design combines the features of the two previous de-
signs, all the timing issues discussed in the two preceding subsections must be considered
for this design as well. One additional issue is generation of the w e n signal. During back-
to-back write operations, the ASMD stays on the w r l state. In the original design, the w e n
signal is a Moore output. It will be asserted to ’0’ continuously in this case. The controller
does not function properly since the data is latched to the SRAM at the ’0’-to-’ 1’ transition
of the w e n signal. To solve the problem, the w e n signal must be asserted in only a fraction
of the clock period.

One possible way to solve the problem is to assert the signal only at the first half of the
clock, which is 10 ns and can satisfy the t ~ p ~ l requirement in theory. Intuitively, we are
tempted to do this by gating the w e - t m p signal with the clock signal, clk:

we-n <= we-tmp or (n o t c l k) ;

However, this is not a reliable solution because of the potential glitches and delay variation.
A better alternative is discussed in the next subsection.

10.5.5 Advanced FPGA featuresxizinx ‘peeif ic

The memory controller examples in this section illustrate the limitations of the FSM-based
controller and synchronous design methodology. Basically, an FSM cannot generate a
control sequence that is “finer” than the period of its clock signal. The operation of these
alternative designs relies on factors that cannot be specified by an RT-level HDL description.

238 EXTERNAL SRAM

Default: oe-n <= 1; we-n <= 1; tri-n <= 1; ready <= 0

, ...
idle

ready < = I

T

rT-<;"'>F7 I
'@; ~

raddr +- addr 0 raddr t addr , c-), -
rr2f t dio

ladr t addr

.. -?-- we-tmp <= 0

mem=l F-

T r.<;'>.1

Figure 10.10 ASMD chart of SRAM controller design 111.

MORE AGGRESSIVE DESIGN 239

Due to the variations in propagation delays, the synthesized circuits are not reliable and
may or may not work.

There are some ad hoc features to obtain better control. These features are usually
device and software dependent. For example, the digital clock manager (DCM) circuit and
input/output block (IOB) of the Spartan-3 device can help to remedy some of the previously
discussed problems. Detailed discussion of DCM and IOB is beyond the scope of this book.
In this subsection, we sketch a few ideas and illustrate how to apply these features to obtain
a more reliable controller.

DCM A Spartan-3 FPGA device contains up to eight digital clock managers (DCMs).
As its name indicates, a DCM is a circuit that manipulates the system clock signal. It can
multiply or divide the frequency or shift the phase of the incoming clock signal to generate
new clock signals.

One way to obtain a “finer” control sequence is to use a faster clock. Since implemen-
tation of a memory controller is fairly simple, the circuit itself can operate at a faster clock
rate. For example, we can isolate the memory controller and drive it with a DCM-generated
200-MHz clock signal, whose period is only 5 ns. Consider the write operation of the
ASMD chart in Figure 10.6. In the new controller, each state lasts only 5 ns. To satisfy the
10-ns w e n requirement, we need to expand the w r l state to two states and assert the w e n
signal in these states. The complete write operation now requires four states. However,
because of the faster clock rate, the four clock cycles amount to only 20 ns, which is much
better than the original 60-11s design.

A simple application of clock phase shift is discussed in the next subsection.

IOB An input/output block (IOB) of a Spartan-3 FPGA device provides a programmable
interface between an I/O pin and the device’s internal logic. It contains several storage
registers and tri-state buffers as well as analog driver circuits that can be configured to
provide different slew rates and driver strength and to support a variety of I/O standards.

To minimize the off-chip pad delay discussed in Section 10.5.3, we can put the output
registers of the memory controller to the FFs inside the IOBs and configure the driver with
the proper slew rate and strength. This can be done by specifying the desired condition and
configuration in the constraint file.

An IOB also contains a double data rate (DDR) register, which has two clocks and two
inputs. Conceptually, we can think that the two inputs are sampled independently by the two
clocks and the sampled values are stored in the same register. The DDR register and DCM
can be combined to generate a control signal whose width is a fraction of a clock signal, as
the w e n signal discussed in Section 10.5.4. The block diagram is shown in Figure 10.1 l(a).
The regular output register is replaced with a DDR register. The top portion of the DDR
consists of the we-tmp signal and the original clock signals, clk. The bottom input of the
DDR is tied to ’ 1 ’ and the clock is connected to the out-of-phase clock signal, clk180,
which is generated by a DCM. The ’1’ is always loaded at the rising edge of the clk180
signal, which corresponds to the falling edge of the clk signal. It essentially deactivates
the second half of the w e n signal. The timing diagram is shown in Figure 10.1 l(b). This
approach generates a clean half-cycle signal and is far more reliable than the clock gating
scheme discussed in Section 10.5.4.

240 EXTERNAL SRAM

dk rn
clk180

Figure 10.11 Generating a half-cycle signal with DDR.

10.6 BIBLIOGRAPHIC NOTES

The data sheet published by ISSI provides detailed information for the IS61LV25616AL
SRAM device. The Xilinx application note, XAPP462 Using Digital Clock Managers
(DCMs) in Spartan-3 FPGAs, discusses the use of DCM, and the data sheet, DS099 Spartan-
3 FPGA Family: Complete Data Sheet, explains the architecture and configuration of the
IOB and the DDR register.

10.7 SUGGESTED EXPERIMENTS

10.7.1 Memory with a 512K-by16 configuration

There are two 256K-by-16 SRAM chips, and their I/O connections are shown in the manual
of the S3 board. We can expand them to form a 512K-by-16 SRAM.

1. Derive a scheme to combine the two chips.
2. Follow the procedure in Section 10.4 to design a memory controller for the 512K-

by- 16 SRAM. Derive the HDL description.
3. Modify the testing circuit in Section 10.4.5 for the new controller and derive the HDL

description.
4. Synthesize the testing circuit and verify operation of the controller and SRAM chips.

10.7.2 Memory with a 1M-by8 configuration

Repeat Experiment 10.7.1 but configure the two chips as a 1M-by-8 SRAM. The l b n and
u b n signals can be used for this purpose.

10.7.3 Memory with an 8M-by1 configuration

A single bit of the 256K-by-16 SRAM can be written as follows:
Read a 16-bit word.
Modify the designated bit in the word.
Write the 16-bit word back.

Repeat Experiment 10.7.1 but configure the two chips as an 8M-by-1 SRAM.

SUGGESTED EXPERIMENTS 241

10.7.4 Expanded memory testing circuit

The memory testing circuit in Section 10.4.5 conducts exhaustive back-to-back read and
back-to-back write tests. We can expand the circuit to include an exhaustive “read-after-
write” test, in which the testing circuit issues write and read operations alternately for the
entire memory space. To make the test more effective, the writing and reading addresses
should be different. For example, we can make the read operation retrieve the data written
16 positions earlier (i.e., if the current writing address is c, the reading address will be
c-16). Create a modified ASMD chart, derive an HDL description, synthesize the circuit,
and verify its operation.

10.7.5 Memory controller and testing circuit for alternative design I

Derive the HDL code for alternative design I in Section 10.5.2 and create an expanded
testing circuit similar to the one in Experiment 10.7.4. Synthesize the testing circuit and
examine whether any error occurs during operation.

10.7.6 Memory controller and testing circuit for alternative design II

Repeat the process in Experiment 10.7.5 for alternative design I1 discussedin Section 10.5.3.

10.7.7 Memory controller and testing circuit for alternative design 111

Repeat the process in Experiment 10.7.5 for alternative design I11 discussed in Section 10.5.4.

10.7.8 Memory controller with DCM

Study the application note on DCM and follow the discussion in Section 10.5.5 to drive
the safe memory controller discussed in Section 10.4 with a higher clock rate (150 MH or
even 200 MHz). Derive an ASMD chart and HDL code, and create a new testing circuit.
Synthesize the circuit and verify operation of the memory controller and the SRAM.

10.7.9 High-performance memory controller

Study the documentation of the DCM and the IOB, and apply these features to reconstruct
alternative design I11 discussed in Section 10.5.4. Create a new testing circuit. Synthesize
the circuit and verify operation of the memory controller and the SRAM.

This Page Intentionally Left Blank

CHAPTER 11

XlLlNX SPARTAN-3 SPECIFIC MEMORY

11.1 INTRODUCTION

A digital system frequently requires memory for storage. To facilitate this need, most FPGA
devices contain dedicated embedded memory modules. While these modules cannot replace
the massive external memory devices, they are useful for applications that require small or
intermediate-sized memory.

Although the basic internal structure of memory modules is similar, there are many subtle
differences in their I/O interfaces. It is usually difficult for synthesis software to extract the
desired features from the code and to infer a matching memory module from the underlying
device library. In Xilinx ISE, we can use HDL instantiation, the Core Generator program,
or the behavioral HDL inference template to incorporate an embedded memory module into
a design. The third one is semi-device independent and we use this method in this book. In
this chapter, we briefly examine Spartan-3 memory modules and the first two methods and
provide detailed descriptions of several key behavioral HDL templates.

11.2 EMBEDDED MEMORY OF SPARTAN-3 DEVICE

11.2.1 Overview

There are two types of embedded memory in a Spartan-3 device: distributed RAM and
block RAM. A distributed RAM is constructed from the logic cell’s look-up table (LUT).
The LUT can be configured as a 16-by-1 synchronous RAM, and multiple LUTs can be

FPGA Prototyping by VHDL Examples. B y Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

243

244 XlLlNX SPARTAN-3 SPECIFIC MEMORY

cascaded to form a wider and deeper memory module. The Spartan-3 XC3S200 device of
the S3 board can provide up to 30K bits of distributed memory, which is small compared
to a block RAM or external memory. Furthermore, since the distributed RAM uses the
logic cells, it competes for resources with the normal logic. Thus, it is feasible only for
applications that require relatively small storage.

A block RAM is a special memory module embedded in an FPGA device and is separated
from the regular logic cells. It can be thought of as a fast SRAM wrapped by a synchronous,
configurable interface. Each block RAM consists of 16K (214) data bits plus optional
2K parity bits. It can be organized in different widths, from 16K by 1 (i.e., 214 by 2’) to
512 by 32 (i.e., 2’ by 25). The Spartan-3 XC3S200 device has 12 block RAMs, totaling
172K data bits. These block RAMs can be used for intermediate-sized applications, such
as a FIFO, a large look-up table, or an intermediate-sized local memory. In comparison,
the external SRAM chips of the S3 board have a capacity of 8M bits.

Both the distributed RAM and block RAM are already “wrapped” with a synchronous
interface, and thus no additional memory controller circuit is needed. They are very flexible
and can be configured to perform single- and dual-port access and to support various types of
buffering and clocking schemes. Detailed discussion is beyond the scope of this book. We
only examine several commonly used configurations, including a synchronous single-port
RAM, a synchronous dual-port RAM, and a ROM in Section 11.4.

11.2.2 Comparison

The Spartan-3 device and the S3 board provide several options for storage elements. It is a
good idea to keep in mind the relative capacities of these options:

0 XC3S2OO’s FFs (for registers): about 4.5K bits, embedded in logic cells and IiO

0 XC3S2OO’s distributed RAM: 30K bits, constructed from the logic cells
0 XC3S2OO’s block RAM: 172K bits, configured as twelve 16K-bit modules
0 External SRAM: 8M bits, configured as two 256K-by-16 SRAM chips

This helps us to decide which option is most suitable for an application at hand.

buffers

11.3 METHOD TO INCORPORATE MEMORY MODULES

Although memory modules have similar internal structure, there are many subtle differences
in their interfaces, such as the numbers of read and write ports, clocking scheme, data and
address buffering, enable and reset signals, and initial values. Although it is possible to
describe the desired module behaviors in HDL code, the synthesis software may or may not
recognize the designer’s intention. Therefore, the HDL code cannot always infer the proper
memory module and is normally not portable. In Xilinx ISE, there are three methods to
incorporate an embedded memory module into a design:

0 HDL instantiation
0 The Core Generator program
0 The behavioral HDL inference template

The first two are specific for Xilinx devices and the third is a semi-device-independent
behavioral description. Because of the clarity of the behavioral description, we use the
third method in this book. We provide a brief overview of the three methods in this section.

METHOD TO INCORPORATE MEMORY MODULES 245

11.3.1

We have used HDL component instantiation in many earlier design examples to include
predesigned modules or to create a hierarchy, Instantiating a Xilinx memory module is
similar except that there is no HDL description for the architecture body. We must check
the manual to find the exact entity name and the associated generics and I/O port definitions.
This is a tedious process and is particularly error-prone for memory modules because of
the large number of configurations and options.

The instantiation code for many Xilinx components can be obtained directly from ISE by
selecting Edit + Language Templates. The following are segments of a 16K-by-1 dual-port
RAM:

Memory module via HDL component instantiation

-- R A M B 1 6 - S L S I : V i r t e x - I I / I I - P r o ,
-- S p a r t a n -3/3E 1 6 k x 1 D u a l - P o r t RAM
__ X i l i n x HDL L a n g u a g e T e m p l a t e v e r s i o n 8 . 1 i
RAMB16-S1-Sl-inst : RAMBlG-Sl-Sl
g e n e r i c map(

init-a => "0" ,
init-b => "0" ,
srval-a = > "0" ,
srval-b = > "0" ,
write-mode-a = > "WRITE-FIRST",
write-mode-b = > "WRITE-FIRST" ,
s im- c o 11 i s i on- c he c k = > " ALL ' I ,
init-00 = > x"0 . . . 0",

init-3f = > x"0 . . . 0"
. . .

I ,

p o r t map(
doa = > doa,
dob = > dob,
addra => addra,
addrb = > addrb ,
clka => clka,
clkb => clkb,
dia => dia,
dib = > dib,
ena = > ena,
enb = > enb ,
ssra => s s r a ,
ssrb = > ssrb,
wea = > wea,
web = > web

) ;

__ p o r t
__ p o r t
__ p o r t
__ p o r t
__ p o r t

p o r t
__ p o r t
__ p o r t
_- p o r t
__ p o r t
-_ p o r t
__ p o r t
__ p o r t
__ p o r t

__

a I - b i t d a t a o u t p u t
b 1 - b i t d a t a o u t p u t
a 1 4 - b i t a d d r e s s i n p u t
b 1 4 - b i t a d d r e s s i n p u t
a c l o c k
b c l o c k
a 1 - b i t d a t a i n p u t
b 1 - b i t d a t a i n p u t
a ram e n a b l e i n p u t
b ram e n a b l e i n p u t
a s y n c h r o n o u s s e t / r e s e t i n p u t
b s y n c h r o n o u s s e t / r e s e t i n p u t
a w r i t e e n a b l e i n p u t
b w r i t e e n a b l e i n p u t

Although the code is readily available, we must study the manual carefully to find the right
component and proper configuration parameters.

11.3.2 Memory module via Core Generator

To simplify the instantiation process, Xilinx provides a utility program, known as Core
Generator (Coregen), to generate Xilinx-specific components. This utility can be invoked
from the ISE environment by selecting Project + New Source. After the New Source

246 XlLlNX SPARTAN-3 SPECIFIC MEMORY

Wizard dialog appears, we select IP (Coregen & Architecture Wizard) to invoke the Coregen
program. The program guides the users through a series of questions and then generates
several files. The file with the .xco extension is a text file that contains the information
necessary to construct the desired memory component. The file with the .vhd extension
contains the “wrapper” code for simulation purpose. This file cannot be used to instantiate
the desired component and is ignored during the synthesis process.

Although using the Coregen program is more convenient than direct HDL instantiation,
it is not within the HDL framework and can lead to a compatibility problem when a design
is not done in the Xilinx ISE environment.

11.3.3 Memory module via HDL inference

Although it is not possible to develop a device-independent HDL description, the synthe-
sis program of ISE, known as XST, provides a collection of behavioral HDL templates to
infer memory modules from Xilinx FPGA devices. These templates are done by behav-
ioral descriptions and contain no device-specific component instantiation. They are easy to
understand and can be simulated without an additional HDL library. However, while the de-
scription does not explicitly refer to any Xilinx component, the code may not be recognized
by other third-party synthesis software, and the desired memory module cannot always be
inferred. Thus, these templates can best be described as “semi-portable” and “semi-device-
independent” behavioral descriptions. Templates for commonly used memory modules are
discussed in Section 1 1.4.

On the downside, the template approach is based on the ability of the XST software to
recognize the template and infer the proper memory module accordingly. The software
may change during upgrade or misinterpret some code. It is a good idea to check the XST
synthesis report to ensure that the desired memory module is inferred correctly.

11.4 HDL TEMPLATES FOR MEMORY INFERENCE

To use behavioral HDL description to infer the Xilinx memory module, the XST’s templates
should be followed closely. To avoid misinterpretation, we should refrain from creating our
own “innovative” code. The codes in the following subsections are all based on templates of
the XST v8.1 i Manual. They are the same as the original templates except that generics are
used for the width of address bits and the width of data bits, and the numeric-std package
is used to replace the proprietary std-logic-unsigned package. It is a good practice to
confine the memory description in a separate HDL module so that the module can easily
be identified and replaced when needed. In this section, we discuss the behavioral HDL
templates for six configurations, including two for single-port RAMs, two for dual-port
RAMs, and two for ROMs.

11.4.1 Single-port RAM

The embedded memory of a Spartan-3 device is already wrapped with a synchronous
interface similar to that in Section 10.3. Its write operation is always synchronous. At
the rising edge of the clock, the address, input data, and relevant control signals, such as we
(i.e., write enable), are sampled. If we is asserted, a write operation is performed (i.e., the
input data is stored into the memory location designated by the address signal).

HDL TEMPLATES FOR MEMORY INFERENCE 247

The read operation can be asynchronous or synchronous. For asynchronous read, the
address signal is used directly to access the RAM array. After the address signal changes,
the data becomes available after a short delay. For synchronous read, the address signal is
sampled at the rising edge of the clock and stored in a register. The registered address is then
used to access the RAM array. Because of the register, the availability of data is delayed
and is synchronized by the clock signal. Due to the internal structure, asynchronous read
operation can only be realized by the distributed RAM.

Single-port RAM with asynchronous read The template for the single-port RAM
with asynchronous read is shown in Listing 11.1. It is modified after the rams-04 entity of
the XST Manual.

Listing 11.1 Template for a single-port RAM with asynchronous read

__ single - p o r t RAM w i t h a s y n c h r o n o u s read
__ m o d i f i e d f r o m XST 8 . 1 i rams-04
l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;

e n t i t y xilinx-one-port-ram-async i s
5 use ieee. numeric-std. a l l ;

g e n e r i c (
ADDR-WIDTH :
DATA-WIDTH : integer : =1

integer : =8 ;

10) ;
p o r t (

c l k : in std-logic;
we: i n std-logic;
addr : i n std-logic-vector (ADDR-WIDTH-1 downto 0) ;

dout : o u t std-logic-vector (DATA-WIDTH-1 downto 0)
I 5 din: i n std-logic-vector (DATA-WIDTH -1 downto 0) ;

) ;
end xilinx-one-port-ram-async;

i0

20 a r c h i t e c t u r e be h - ar c h of x i 1 i nx - one - p or t - r am - as y n c i s
t y p e ram-type i s a r r a y (2**ADDR_WIDTH -1 downto 0)

of std-logic-vector (DATA-WIDTH-1 downto 0) ;
s i g n a l ram: ram-type;

b e g i n
z i p r o c e s s (clk)

b e g i n
i f (clk’event and clk = ’1’) then

i f (we=’l’) t h e n

end i f ;
ram(to-integer (unsigned(addr1)) <= din;

end i f ;
end p r o c e s s ;
dout <= ram(to-integer(unsigned(addr)));

end beh-arch ;

The code is very similar to the register file discussed in Section 4.2.3 except that the
read and write operations use the same address. It contains a user-defined two-dimensional
array data type for storage and uses dynamic indexing to access the element in the array.
The code shows that the write operation is controlled by the clock signal and the read

248 XlLlNX SPARTAN-3 SPECIFIC MEMORY

operation depends only on the address. Since asynchronous read can be realized only by
the distributed RAM, this configuration is only recommended for applications that require
small storage.

Single-port RAM with synchronous read The template for the single-port RAM
with synchronous read is shown in Listing 11.2. It is modified after the rams-07 entity of
the XST Manual.

Listing 11.2 Template for a single-port RAM with synchronous read

__ s i n g l e - p o r t RAM w i t h s y n c h r o n o u s r e a d
__ m o d i f i e d f r o m X S T 8 . 1 i r a m s - 0 7
l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;

s use ieee. numeric-std. a l l ;
e n t i t y xilinx-one-port -ram-sync i s

g e n e r i c (
ADDR-WIDTH :
DATA-WIDTH : integer : =8

integer : =12 ;

10) ;
port (

clk: in std-logic;
w e : in std-logic;
addr: in std-logic-vector (ADDR-WIDTH-1 downto 0) ;

dout : out std-logic-vector (DATA-WIDTH -1 downto 0)
IS d i n: in std-logic-vector (DATA-WIDTH-1 downto 0) ;

1 ;
end xilinx-one-port-ram-sync;

20 a r c h i t e c t u r e be h - ar c h of x i 1 i nx - one -port - r am - s y n c i s
type ram-type i s array (2**ADDR_WIDTH -1 downto 0)

of std-logic-vector (DATA-WIDTH-1 downto 0) ;
s i g n a l ram: ram-type;
s i g n a l addr-reg: std-logic-vector (ADDR-WIDTH-1 downto 0) ;

p r o c e s s (clk)
beg in

25 beg in

i f (clk’event and clk = ’ 1 ’) then
i f (w e = ’ l ’) then

30 ram(to-integer(unsigned(addr))) <= d i n ;
end i f ;

addr-reg <= addr;
end i f ;

end p r o c e s s ;
35 dout <= ram(to-integer (unsigned(addr-reg))) ;

end beh-arch ;

Note that the addr signal is now sampled and stored to the addr-reg register at the rising
edge of the clock, and the memory array (the ram signal) is accessed via the addr-reg signal.
The data is available only after the addr-reg is updated and thus implicitly synchronized
to the clk signal.

Synthesis report During synthesis, a proper RAM module should be inferred from the
code template. We can check the synthesis report to confirm the inference of the RAM

HDL TEMPLATES FOR MEMORY INFERENCE 249

module. For example, consider the instantiation of a 4K-by-8 RAM (212-by-23) with
synchronous read:

g e n e r i c m a p (ADDR-W IDTH= > 12 , DATA-W IDTH = >8)
p o r t map(clk=>clk, we=>we , a d d r = > a d d r ,

d i n = > d i n , d o u t = > d o u t) ;

u n i t - 4 K - b y _ % : e n t i t y work.xilinx-one-port~sram-sync

The inference of RAM should be indicated in the HDL Synthesis section of the synthesis
report:

* HDL Synthesis *

Found 4096x8-bit single-port block RAM for signal <ram>

mode I
aspect ratio I
clock I
write enable I
address I
data in I
data out I
ram-style I

write-first
4096-word x 8-bit
connected to signal <elk>
connected to signal <we>
connected to signal <addr>
connected to signal <din>
connected to signal <dout>
Auto

I I
I I
I rise I
I high I
I I
I I
I I
I I

Summary :
inferred 1 RAM(s).

The number of block RAMS used should be reported in the Final Report section of the
synthesis report:

Device utilization summary:
Selected Device : 3s200ft256-5

* . .
Number of BRAMs: 2 out of 12 16%
* . .

As we expected, a 4K-by-8 single-port block RAM is inferred and two block RAMS are
used to realize the circuit.

11.4.2 Dual-port RAM

A dual-port RAM includes a second port for memory access. Ideally, the second port
should be able to conduct read or write operation independently and have its own set of
address, data input and output, and control signals. To be compatible with older versions
of XST, we consider a configuration with the second port that can conduct a read operation
only. In this book, the main application of the dual-port configuration is for video memory,
which requires one write port and one read port. Thus, this configuration does not impose
a serious limitation for our purposes. As in a single-port RAM, the read operation of a
dual-port RAM can be asynchronous or synchronous.

250 XlLlNX SPARTAN-3 SPECIFIC MEMORY

Dual-port RAM with asynchronous read The template for the dual-port RAM with
asynchronous read is shown in Listing 11.3. It is modified after the rams-09 entity of the
XST Manual.

Listing 11.3 Template for a dual-port RAM with asynchronous read

-- d u a l - p o r t RAM w i t h a s y n c h r o n o u s read
__ m o d i f i e d f r o m X S T 8 . 1 i r a m s - 0 9
l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;

5 use ieee . numeric-std. a l l ;
e n t i t y xilinx-dual-port -ram-async i s

g e n e r i c (
ADDR-WIDTH: integer :=6;
DATA_WIDTH:integer:=8

10) ;
port (

clk: in std-logic;
we: in std-logic;
addr-a: i n std-logic-vector (ADDR-WIDTH-1 downto 0) ;
addr-b : in std-logic-vector (ADDR-WIDTH -1 downto 0) ;
din-a: in std-logic-vector (DATA-WIDTH -1 downto 0) ;
dout-a: out std-logic-vector (DATA-WIDTH -1 downto 0) ;
dout-b : out std-logic-vector (DATA-WIDTH -1 downto 0)

1 ;
20 end xilinx-dual-port-ram-async;

15

a r c h i t e c t u r e beh-arch of xilinx-dual-port-ram-async i s
type ram-type i s array (0 t o 2**ADDR-WIDTH-l)

of std-logic-vector (DATA-WIDTH -1 downto 0) ;
25 s i g n a l ram: ram-type;

beg in
p r o c e s s (clk)
beg in

i f (clk’event and clk = ’1’) then
30 i f (we = ’1’) then

ram(to-integer(unsigned(addr-a))) <= din-a;
end i f ;

end i f ;
end p r o c e s s ;

35 dout-a <= ram(to-integer (unsigned(addr-a)));
dout-b <= ram(to_integer(unsigned(addr-b));

end beh-arch ;

The write operation is similar to that of the single-port RAM, but the code includes a
second output port, dout-b, which retrieves data from the second address, addr-b. As in
a single-port RAM with asynchronous read, the dual-port version can be realized only by
distributed RAM, and thus its size is limited. Note that if we ignore the dout-a port, it is
the same as the single-read-port register file of Listing 4.6.

Dual-port RAM with synchronous read The template for the dual-port RAM with
synchronous read is shown in Listing 11.4. It is modified after the rams-11 entity of the
XST Manual.

HDL TEMPLATES FOR MEMORY INFERENCE 251

Listing 11.4 Template for a dual-port RAM with synchronous read

-- d u a l - p o r t RAM w i t h s y n c h r o n o u s r e a d
-- m o d i f i e d f r o m XST 8 . 1 i r a m s - 1 1
l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;

s use ieee. numeric-std. a l l ;
e n t i t y xilinx-dual-port-ram-sync i s

g e n e r i c (
ADDR-WIDTH :
DATA_WIDTH:integer:=8

integer : =6 ;

10 1 ;
port (

clk: in std-logic;
w e : in std-logic;
addr-a: in std-logic-vector (ADDR-WIDTH -1 downto 0) ;
addr-b: i n std-logic-vector (ADDR-WIDTH-1 downto 0) ;
din-a: in std-logic-vector (DATA-WIDTH-1 downto 0) ;
dout-a: out std-logic-vector (DATA-WIDTH-1 downto 0) ;
dout-b : out std-logic-vector (DATA-WIDTH -1 downto 0)

) ;
20 end xilinx-dual-port-ram-sync;

I S

a r c h i t e c t u r e beh-arch of xilinx-dual-port-ram-sync i s
type ram-type i s array (0 to 2**ADDR-WIDTH-l)

of std-logic-vector (DATA-WIDTH-1 downto 0) ;
25 s i g n a l ram: ram-type;

s i g n a l addr-a-reg , addr-b-reg :
std-logic-vector (ADDR-WIDTH -1 downto 0) ;

begin
p r o c e s s (clk)

30 beg in
i f (clk’event and clk = ’ 1 ’) then

i f (we = ’ 1 ’) then

end i f ;
addr-a-reg <= addr-a;
addr-b-reg <= addr-b ;

ram(to-integer(unsigned(addr-a))) <= din-a;

end i f ;
end p r o c e s s ;
dout-a <= rarn(to-integer(unsigned(addr-a-reg));

40 dout-b <= ram(to_integer(unsigned(addr-b-reg));
end beh-arch;

The code is similar to Listing 11.3 except that the two addresses are first stored in two
registers and the registered outputs are used to access memory.

11.4.3 ROM

Despite its name, a ROM (read-only memory) is a combinational circuit and has no internal
state. Its output depends only on its input (i.e., address). There is no real embedded ROM in
a Spartan-3 device, but it can be emulated by a combinational circuit or a single-port RAM
with the write operation disabled. The content of the ROM can be expressed as a constant

252 XlLlNX SPARTAN-3 SPECIFIC MEMORY

in the HDL code and the values are loaded to the RAM when the device is programmed.
Since the ROM is based in a RAM, the read operation can be asynchronous or synchronous.

ROM with asynchronous read A real ROM is a combinational circuit and thus should
not have a buffer or a clock signal. To be consistent with the terms used in this section, we
call it a ROM with asynchronous read. The template of this type of ROM is shown by an
example in Listing 11.5. The code is to implement the hex-to-seven segment LED encoder,
similar to that in Listing 3.12. The address of the ROM functions as the 4-bit hexadecimal
input and its content is the corresponding LED patterns. The content of the ROM is defined
by the HEX2LEDAOM constant and is essentially the truth table of this circuit.

Listing 11.5 Template for a ROM with asynchronous read

l i b r a r y i e e e ;
use i e e e . std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y rom-template i s

5 p o r t (
a d d r : i n std-logic-vector (3 downto 0) ;
d a t a : out std-logic-vector (6 downto 0)

1 ;
end rom-template;

10

a r c h i t e c t u r e arch of rom-template i s
c o n s t a n t ADDR-WIDTH: integer :=4;
c o n s t a n t DATA-WIDTH: integer : = 7 ;
t y p e rom-type i s array (0 t o 2**ADDR_WIDTH-l)

-- ROM d e f i n i t i o n
c o n s t a n t HEXZLED-ROM: rom-type : = (-- 2 ^ 4 - b y - 7

I 5 of std-logic-vector (DATA-WIDTH-1 downto 0) ;

"0000001", -- a d d r 00
"1001111", -- a d d r 0 1

10 "OOlOOlO", -- a d d r 0 2
"0000110", -- a d d r 0 3
" 1 0 0 1 1 0 0 " , -- a d d r 0 4
"0100100", -- a d d r 0 5
" 0 1 0 0 0 0 0 " , -- a d d r 0 6
" 0 0 0 1 1 1 1 " , -- a d d r 0 7
" 0 0 0 0 0 0 0 " , -- a d d r 0 8
" 0 0 0 0 1 0 0 " , -- a d d r 0 9
"OOOlOOO", -- a d d r 1 0
" 1 1 0 0 0 0 0 " , -- a d d r I 1

70 "0110001", -- a d d r 1 2
" 1 0 0 0 0 1 0 " , -- a d d r 1 3
" 0 1 1 0 0 0 0 " , -- a d d r 1 4
"0111000" -- a d d r 1 5

1 ;
35 b e g i n

data <= HEX2LED_ROM(to_integer(unsigned(addr)));
end a r c h ;

Note that the memory row is defined in ascending order:

. . . a r r a y (0 t o Z**ADDR-WIDTH-I) of . . .

HDL TEMPLATES FOR MEMORY INFERENCE 253

and the first row of the HEX2LEDBOM constant corresponds to the address 00 of the ROM.
The rows defined in the HEX2LEDBOM table must be reversed if the rom-type data type is
defined in descending order:

. . a r r a y (2**ADDR-WIDTH-l downto 0) o f . . .
Since there is no address or data buffer in this circuit, the ROM cannot be realized by a

block RAM. It is actually synthesized as a combinational circuit with the logic cells. The
code can be considered as another form of a selected signal assignment or case statement.
This type of ROM is feasible only for a small table. This code template is very general and
is not specific to Xilinx devices.

ROM with synchronous read For a large table, it is better to utilize a block RAM to
realize the ROM. Since the read operation of a block RAM is controlled and synchronized
by a clock signal, the ROM requires a clock signal as well. The template for the ROM with
synchronous read is shown in Listing 11.6. It is modified after the r a m s - 2 l c entity of the
XST Manual, and the hex-to-seven segment LED encoder is used for demonstration.

Listing 11.6 Template for a ROM with synchronous read

-- ROM with s y n c h r o n o u s r e a d
-_ m o d i f i e d f r o m XST 8 . 1 i r a m s - 2 l c
l i b r a r y ieee;
use ieee . std-logic-1164. a l l ;

j use ieee. numeric-std. a l l ;
e n t i t y xilinx-rom-sync-template i s

p o r t (
c l k : in std-logic;
addr : i n std-logic-vector (3 downto 0) ;

10 data: out std-logic-vector (6 downto 0)

) ;
end xilinx-rom-sync-template;

a r c h i t e c t u r e arch of xilinx-rom- sync- t emplate i s
1 5 c o n s t a n t ADDR-WIDTH : integer : = 4 ;

c o n s t a n t DATA-WIDTH: integer : = 7 ;
t y p e rom-type i s a r r a y (0 t o 2**ADDR_WIDTH-l)

-- ROM d e f i n i t i o n
of std-logic-vector (DATA-WIDTH-1 downto 0) ;

20 c o n s t a n t HEX2LED-ROM: rom-type : = (-- 2 * 4 - b y - 7
" 0 0 0 0 0 0 1 ~ ' , -- a d d r 0 0
"1001111", -- a d d r 01
"OOlOOlO", -- a d d r 0 2
" 0 0 0 0 1 1 0 " , -- a d d r 0 3

23 " 1 0 0 1 1 0 0 " , -- a d d r 0 4
" 0 1 0 0 1 0 0 " , -- a d d r 05
" 0 1 0 0 0 0 0 " , -- a d d r 06
" 0 0 0 1 1 1 1 " , -- a d d r 0 7
" 0 0 0 0 0 0 0 " , -- a d d r 0 8
"OOOOlOO", -- a d d r 0 9
" 0 0 0 1 0 0 0 " , -- a d d r 10
"llOOOOO", -- a d d r 1 1
"OllOOOl", -- a d d r 1 2
"lOOOOlO~', -- a d d r 1 3

30

254 XlLlNX SPARTAN-3 SPECIFIC MEMORY

35 " 0 1 1 0 0 0 0 " , -- a d d r 1 4
" 0 11 1000 " -- a d d r 1 5

) ;

beg in
s i g n a l addr-reg : std-logic-vector (ADDR-WIDTH -1 downto 0) ;

40 -- a d d r r e g i s t e r t o i n f e r b l o c k RAM
p r o c e s s (clk)
beg in

i f (clk'event and clk = '1') then
addr-reg (= addr;

45 end i f ;
end p r o c e s s ;
data <= HEX2LED-ROM (to-integer (unsigned (addr-reg))) ;

end arch;

The code is similar to that of the single-port RAM with synchronous read but with a
predefined constant. Note that operation of this ROM depends on the clock signal, and
its timing is different from that of a normal ROM. Artificial inclusion of the clock signal
is necessary to infer a block RAM for the ROM implementation. During synthesis, the
software automatically determines whether to use regular logic cells or block RAMS to
realize this circuit.

11.5 BIBLIOGRAPHIC NOTES

Two Xilinx application notes, XAPP464 Using Look-Up Tables as Distributed RAM in
Spartan-3 Generation FPGAs and XAPP463 Using Block RAM in Spartan-3 Generation
FPGAs, provide detailed information on the distributed RAM and block RAM. Chapter 2 of
the XST User Guide v8.li, titled HDL Coding Techniques, includes about two dozen HDL
code templates to infer various memory configurations.

The comprehensive ISE tutorial, ISE In-Depth Tutorial, includes a section on the Core
Generator program. Although the program is simple, we need to know the module's basic
functionalities and its relevant parameters to create a proper instance.

11.6 SUGGESTED EXPERIMENTS

11.6.1 Block-RAM-based FIFO

In Section 4.5.3, we design a FIFO buffer that uses a register file for storage. To increase its
capacity, we can replace the register file with a block RAM-based dual-port RAM module.
Derive the HDL code for the new design. Synthesize the verification circuit discussed
in Section 4.5.3 with the new FIFO buffer and verify its operation. Note that due to the
synchronous read, the behavior of the new FIFO is not completely identical to that of the
original FIFO.

11.6.2 Block-RAM-based stack

We discuss the function of a stack in Experiment 4.7.7. To increase its capacity, we can
replace the register file with a block RAM-based dual-port RAM module. Repeat the
experiment.

SUGGESTED EXPERIMENTS 255

11.6.3 ROM-based sign-magnitude adder

We can implement any n-input, rn-output function with a 2"-by-m ROM. Consider the
sign-magnitude adder discussed in Section 3.7.2 and assume that a and b are 4-bit input
signals. Design this circuit as follows:

1. Write a program in a conventional programing language, such as C or Java, to

2. Follow the ROM template in Listing 11.5 to derive the HDL code. Cut and paste the

3. Synthesize the circuit and verify its operation.
4. Check the synthesis report and compare the sizes (in terms of the number of logic

5. Expand a and b to 8-bit input signals and repeat steps 1 to 4.

generate a 28-by-4 truth table for this circuit.

table to the code.

cells) of the original implementation and the ROM-based implementation.

11.6.4 ROM based sin(z) function

One way to implement a sinusoidal function, sin(z), is to use a look-up table. Assume
that the desired implementation requires 10-bit input resolution [i.e., there are 1024 (21°)
points between the input range of 0 and 2.1 and 8-bit output resolution [i.e., there are 256
(2') points between the output range of -1 and +1]. Let the input and output be the 10-bit
z signal and the 8-bit y signal. The relationship between IC and y is

Y - = sin 27r-
27 (;o)

Because of the symmetry of the sin function, we only need to construct a 28-by-7 table
for the first quadrant (i.e., between 0 and 4) and use simple pre- and postprocessing circuits
to obtain the values in other quadrants. Design this circuit as follows:

1. Write a program in a conventional programming language to generate the 28-by-7

2. Follow the ROM template in Listing 11.6 to derive the HDL code for the look-up

3. Derive the complete HDL code.
4. Derive a testbench to generate the sinusoidal output for three complete periods. This

can be done by using a 10-bit counter to generate the 10-bit ROM address for 3 * 21°
clock cycles. In ModelSim, we can display the y signal in Analog format to emulate
the effect of a digital-to-analog converter.

table for the first quadrant.

table. Cut and paste the table to the code.

11.6.5 ROM-based sin(z) and cos(z) functions

In many communication modulation schemes, the sin(z) and C O S (I C) functions are needed
at the same time. Assume that the format of the input and output is similar to that in
Experiment 11.6.4. The new circuit has two outputs, ys and yc:

= sin (2.G)
27

27
- yc = cos (2.5)

Although we can follow the previous procedure and create a new ROM for the C O S (I C)

function, a better alternative is to share the same ROM for both sin(z) and cos(z) functions.

256 XlLlNX SPARTAN-3 SPECIFIC MEMORY

This is based on the observations that cos(z) is only a phase shift of sin(z) and that the
FPGA’s block RAM can provide dual-port access.

Note that this circuit requires essentially a “dual-port ROM.” No HDL behaviorial tem-
plate is given for this type of memory. We need to experiment with HDL codes and to check
the synthesis report to ensure that only one block RAM is inferred. It may be necessary
to use the Core Generator program or direct HDL component instantiation to achieve this
goal.

Construct this special ROM and derive the HDL code for the pre- and postprocessing
circuits. Use a testbench similar to that in Experiment 1 1.6.4 to verify the circuit’s operation.

CHAPTER 12

VGA CONTROLLER I: GRAPHIC

12.1 INTRODUCTION

VGA (video graphics array) is a video display standard introduced in the late 1980s in
IBM PCs and is widely supported by PC graphics hardware and monitors. We discuss the
design of a basic eight-color 640-by-480 resolution interface for CRT (cathode ray tube)
monitors in this book. CRT synchronization and basic graphic processing are examined in
this chapter, and text generation is discussed in Chapter 13.

12.1.1 Basic operation of a CRT

The conceptual sketch of a monochrome CRT monitor is shown in Figure 12.1. The
electron gun (cathode) generates a focused electron beam, which traverses a vacuum tube
and eventually hits the phosphorescent screen, Light is emitted at the instant that electrons
hit a phosphor dot on the screen. The intensity of the electron beam and the brightness of
the dot are determined by the voltage level of the external video input signal, labeled mono
in Figure 12.1. The mono signal is an analog signal whose voltage level is between 0 and
0.7 V.

A vertical deflection coil and a horizontal deflection coil outside the tube produce mag-
netic fields to control how the electron beam travels and to determine where on the screen
the electrons hit. In today’s monitors, the electron beam traverses (i.e., scans) the screen
systematically in a fixed pattern, from left to right and from top to bottom, as shown in
Figure 12.2.

FPGA Prototyping by VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

257

258 VGA CONTROLLER I: GRAPHIC

Figure 12.1 Conceptual diagram of a CRT monitor.

horizontal retrace -
\

horizontal scan

f \ \ -
\ \ v. 4> .-.................. 1 ... ’

--.. -.,- ..
............... ’:*. ... b

...
-.. -.. -.. -*.

%
*-.

%
*a.

i’....
*.. vertical retrace **.

....
**..

%.
1..

%

.....
-*. ,

c’

-*.

.. +... ----:-,:

L /

Figure 12.2 CRT scanning pattern.

INTRODUCTION 259

Table 12.1 Three-bit VGA color combinations

Red (R) Green (G) Blue (B) Resulting color

0 0
0 1
1 0
1 1
0 0
0 1
1 0
1 1

black
blue
green
cyan
red

magenta
yellow
white

The monitor's internal oscillators and amplifiers generate sawtooth waveforms to control
the two deflection coils. For example, the electron beam moves from the left edge to the
right edge as the voltage applied to the horizontal deflection coil gradually increases. After
reaching the right edge, the beam returns rapidly to the left edge (i.e., retraces) when the
voltage changes to 0. The relationship between the sawtooth waveform and the scan is
shown in Figure 12.4. Two external synchronization signals, hsync and vsync, control
generation of the sawtooth waveforms. These signals are digital signals. The relationship
between the hsync signal and the horizontal sawtooth is also shown in Figure 12.4. Note
that the I' 1 and "0" periods of the hsync signal correspond to the rising and falling ramps
of the sawtooth waveform.

The basic operation of a color CRT is similar except that it has three electron beams,
which are projected to the red, green, and blue phosphor dots on the screen. The three dots
are combined to form a pixel. We can adjust the voltage levels of the three video input
signals to obtain the desired pixel color.

12.1.2 VGA port of the S3 board

The VGA port has five active signals, including the horizontal and vertical synchronization
signals, hsync and vsync, and three video signals for the red, green, and blue beams. It
is physically connected to a 15-pin D-subminiature connector. A video signal is an analog
signal and the video controller uses a digital-to-analog converter to convert the digital output
to the desired analog level. If a video signal is represented by an N-bit word, it can be
converted to 2 N analog levels. The three video signals can generate 23N different colors.
This is also known as 3N-bit color since a color is defined by 3N bits. In the S3 board, 1-bit
word is used for each video signal, and this leads to only eight (i.e., 23) possible colors.
The possible color combinations are shown in Table 12.1. If we use the same 1-bit signal
to drive the video signals, they become either "000" or "1 11" and the monitor functions as
a black-and-white monochrome monitor.

12.1.3 Video controller

A video controller generates the synchronization signals and outputs data pixels serially.
A simplified block diagram of a VGA controller is shown in Figure 12.3. It contains a
synchronization circuit, labeled vga-sync, and a pixel generation circuit.

260 VGA CONTROLLER I: GRAPHIC

external
dataicontrol ~

- -
pixel-x -
pixel-y -

video-on -

rgb -

pixel generation
circuit

>
~

Figure 12.3 Simplified block diagram of a VGA controller.

clk - ~

The vga-sync circuit generates the timing and synchronization signals. The hsync and
vsync signals are connected to the VGA port to control the horizontal and vertical scans
of the monitor. The two signals are decoded from the internal counters, whose outputs
are the pixel-x and pixel-y signals. The p i x e l x and pixel-y signals indicate the
relative positions of the scans and essentially specify the location of the current pixel. The
vga-sync circuit also generates the video-on signal to indicate whether to enable or disable
the display. The design of this circuit is discussed in Section 12.2.

The pixel generation circuit generates the three video signals, which are collectively
referred to as the rgb signal. A color value is obtained according to the current coordinates of
the pixel (the pixel-x and pixel-y signals) and the external control and data signals. This
circuit is more involved and is discussed in the second half of this chapter and Chapter 13.

VGA
monitor

hsync
vsync

vga-sync

>

12.2 VGA SYNCHRONIZATION

The video synchronization circuit generates the hsync signal, which specifies the required
time to traverse (scan) a row, and the vsync signal, which specifies the required time to
traverse (scan) the entire screen. Subsequent discussions are based on a 640-by-480 VGA
screen with a 25-MHz pixel rate, which means that 25M pixels are processed in a second.
Note that this resolution is also know as the VGA mode.

The screen of a CRT monitor usually includes a small black border, as shown at the top
of Figure 12.4. The middle rectangle is the visible portion. Note that the coordinate of the
vertical axis increases downward. The coordinates of the top-left and bottom-right corners
are (0,O) and (639,479), respectively.

12.2.1 Horizontal synchronization

A detailed timing diagram of one horizontal scan is shown in Figure 12.4. A period of the
hsync signal contains 800 pixels and can be divided into four regions:

VGA SYNCHRONIZATION 261

Figure 12.4 Timing diagram of a horizontal scan.

262 VGA CONTROLLER I: GRAPHIC

480 horizontal scan lines

,#,

Figure 12.5 Timing diagram of a vertical scan.

0 Display: region where the pixels are actually displayed on the screen. The length of
this region is 640 pixels.
Retrace: region in which the electron beams return to the left edge. The video signal
should be disabled (i.e., black), and the length of this region is 96 pixels.

0 Right border: region that forms the right border of the display region. It is also know
as the front porch (i.e., porch before retrace). The video signal should be disabled,
and the length of this region is 16 pixels.

0 Left border: region that forms the left border of the display region. It is also know
as the backporch (i.e., porch after retrace). The video signal should be disabled, and
the length of this region is 48 pixels.

Note that the lengths of the right and left borders may vary for different brands of monitors.
The hsync signal can be obtained by a special mod-800 counter and a decoding circuit.

The counts are marked on the top of the hsync signal in Figure 12.4. We intentionally start
the counting from the beginning of the display region. This allows us to use the counter
output as the horizontal (x-axis) coordinate. This output constitutes the pixel-x signal.
The hsync signal goes low when the counter’s output is between 656 and 75 1.

Note that the CRT monitor should be black in the right and left borders and during retrace.
We use the h-video-on signal to indicate whether the current horizontal coordinate is in
the displayable region. It is asserted only when the pixel count is smaller than 640.

12.2.2 Vertical synchronization

During the vertical scan, the electron beams move gradually from top to bottom and then
return to the top. This corresponds to the time required to refresh the entire screen. The
format of the vsync signal is similar to that of the hsync signal, as shown in Figure 12.5.
The time unit of the movement is represented in terms of horizontal scan lines. A period
of the vsync signal is 525 lines and can be divided into four regions:

0 Display: region where the horizontal lines are actually displayed on the screen. The
length of this region is 480 lines.

VGA SYNCHRONIZATION 263

0 Retrace: region that the electron beams return to the top of the screen. The video
signal should be disabled, and the length of this region is 2 lines.

0 Bottom border: region that forms the bottom border of the display region. It is
also know as thefrontporch (i.e., porch before retrace). The video signal should be
disabled, and the length of this region is 10 lines.

0 Top border: region that forms the top border of the display region. It is also know
as the backporch (i,e,, porch after retrace). The video signal should be disabled, and
the length of this region is 33 lines.

As in the horizontal scan, the lengths of the top and bottom borders may vary for different
brands of monitors.

The vsync signal can be obtained by a special mod-525 counter and a decoding circuit.
Again, we intentionally start counting from the beginning of the display region. This allows
us to use the counter output as the vertical (y-axis) coordinate. This output constitutes the
pixel-y signal. The vsync signal goes low when the line count is 490 or 491.

As in the horizontal scan, we use the v-video-on signal to indicate whether the current
vertical coordinate is in the displayable region. It is asserted only when the line count is
smaller than 480.

12.2.3 Timing calculation of VGA synchronization signals

As mentioned earlier, we assume that the pixel rate is 25 MHz. It is determined by three
parameters:

0 p : the number of pixels in a horizontal scan line. For 640-by-480 resolution, it is

pixels
line

p = 800 ~

0 1: the number of lines in a screen (i.e., a vertical scan). For 640-by-480 resolution, it
is

l ines
1 = 525 -

screen
0 s: the number of screens per second. For flickering-free operation, we can set it to

screens
second

~ ~ 6 0 -

The s parameter specifies how fast the screen should be refreshed. For a human eye,
the refresh rate must be at least 30 screens per second to make the motion appear to be
continuous. To reduce flickering, the monitor usually has a much higher rate , such as the
60 screens per second specification above. The pixel rate can be calculated by the three
parameters :

pixels
pixel rate = p * 1 * s zz 2512.1 -

second
The pixel rate for other resolutions and refresh rates can be calculated in a similar fashion.
Clearly, the rate increases as the resolution and refresh rate grow.

12.2.4 HDL implementation

The function of the vga-sync circuit is discussed in Section 12.1.3. If the frequency of
the system clock is 25 MHz, the circuit can be implemented by two special counters: a

264 VGA CONTROLLER I: GRAPHIC

mod-800 counter to keep track of the horizontal scan and a mod-525 counter to keep track
of the vertical scan.

Since our designs generally use the 50-MHz oscillator of the prototyping board, the
system clock rate is twice the pixel rate. Instead of creating a separate 25-MHz clock
domain and violating the synchronous design methodology, we can generate a 25-MHz
enable tick to enable or pause the counting. The tick is also routed to the p-tick port as
an output signal to coordinate operation of the pixel generation circuit.

The HDL code is shown in Listing 12.1. It consists of a mod-2 counter to generate the
25-MHz enable tick and two counters for the horizontal and vertical scans. We use two
status signals, h-end and v-end, to indicate completion of the horizontal and vertical scans.
The values of various regions of the horizontal and vertical scans are defined as constants.
They can be easily modified if a different resolution or refresh rate is used. To remove
potential glitches, output buffers are inserted for the hsync and vsync signals. This leads
to a one-clock-cycle delay. We should add a similar buffer for the rgb signal in the pixel
generation circuit to compensate for the delay.

Listing 12.1 VGA synchronization circuit

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y vga-sync i s

c p o r t (
clk, reset: in std-logic;
hsync , vsync : out std-logic ;
video-on, p-tick: out std-logic;
pixel-x , pixel-y : out std-logic-vector (9 downto 0)

10 1 ;
end vga- s ync ;

a r c h i t e c t u r e arch of vga-sync i s
-- VGA 6 4 0 - b y - 4 8 0 s y n c p a r a m e t e r s

c o n s t a n t HF: integer:=16 ; --h. f r o n t p o r c h
c o n s t a n t HB: integer:=48 ; --h. b a c k p o r c h
c o n s t a n t HR: integer:=96 ; --h. r e t r a c e
c o n s t a n t V D : integer :=480; - - v e r t i c a l d i s p l a y a r e a

20 c o n s t a n t V F : integer:=lO; -- v . f r o n t p o r c h
c o n s t a n t VB: integer :=33; -- v . b a c k p o r c h
c o n s t a n t V R : integer : = 2 ; -- v . r e t r a c e
-- mod-2 c o u n t e r
s i g n a l mod2_reg, mod2-next : std-logic;

25 -- s y n c c o u n t e r s
s i g n a l v-count-reg , v-count-next : unsigned(9 downto 0) ;
s i g n a l h-count-reg , h-count-next : unsigned (9 downto 0) ;
_- o u t p u t b u f f e r
s i g n a l v-sync-reg , h-sync-reg : std-logic ;

30 s i g n a l v-sync-next , h-sync-next : std-logic;
__ s t a t u s s i g n a l
s i g n a l h-end , v-end , pixel-tick: std-logic;

-- r e g i s t e r s

I S c o n s t a n t HD: integer :=640; - - h o r i z o n t a l d i s p l a y a r e a

beg in

35 p r o c e s s (clk , reset)

VGA SYNCHRONIZATION 265

40

45

beg in
i f reset=’l’ t h e n

mod2-reg <= ’ 0 ’ ;
v-count-reg <= (o t h e r s = > ’ O ’) ;
h-count-reg <= (o t h e r s = > ’ O ’) ;
v-sync-reg <= ’ 0 ’ ;
h-sync-reg <= ’ 0 ’ ;

e l s i f (clk’event and clk=’l’) t h e n
mod2-reg <= mod2-next ;
v-count-reg <= v-count-next;
h-count-reg <= h-count-next;
v-sync-reg <= v-sync-next ;
h-sync-reg <= h-sync-next ;

end i f ;
so end p r o c e s s ;

-- mod-2 c i r c u i t t o g e n e r a t e 2 5 MHz e n a b l e t i c k
mod2-next <= n o t mod2-reg;
-- 2 5 MHz p i x e l t i c k
pixel-tick <= ’1’ when mod2_reg=’l’ e l s e ’ 0 ’ ;

h-end <= -- end of h o r i z o n t a l c o u n t e r
5s -- s t a t u s

’ 1 ’ when h-count-reg=(HD+HF+HB+HR-l) e l s e --799
’ 0 ’ ;

v-end <= -- end of v e r t i c a l c o u n t e r
tQ ’1’ when v-count-reg=(VD+VF+VB+VR-l) e l s e --524

’ 0 ’ ;
-- mod-800 h o r i z o n t a l s y n c c o u n t e r
p r o c e s s (h_count-reg,h-end,pixel-tick)
beg in

65 i f pixel-tick=’l’ t h e n -- 2 5 MHz t i c k
i f h-end=’l’ t h e n

70

h-count-next <= (o t h e r s = > ’ O ’) ;

h-count-next <= h-count-reg + 1 ;
e l s e

end i f ;

h-count-next <= h-count-reg;
e l s e

end i f ;
end p r o c e s s ;

p r o c e s s (v-count-reg,h-end,v-end,pixel-tick)
beg in

7s -- mod-525 v e r t i c a l s y n c c o u n t e r

80

i f pixel-tick=’l’ and h-end=’l’ t h e n

v-count-next <= (o t h e r s = > ’ O ’) ;

v-count-next <= v-count-reg + 1 ;

i f (v-end=’l’) t h e n

e l s e

end i f ;

v-count-next <= v-count-reg;
e l s e

end i f ;
end p r o c e s s ;
-- h o r i z o n t a l and v e r t i c a l s y n c , b u f f e r e d t o a v o i d g l i t c h

266 VGA CONTROLLER I: GRAPHIC

h-sync-next <=
YO ’ 1 ’ when (h-count-reg >=(HD+HF)) --656

and (h-count_reg<=(HD+HF+HR-l)) else --751
’ 0 ’ .

’ 1 ’ when (v- count -reg >= (VD+VF)) --490

’ 0 ’ ;
-- v i d e o o n / o f f
video-on <=

v-sync-next <=

95 and (v-count-reg<=(VD+VF+VR-l)) else --491

’1’ when (h-count-reg<HD) and (v-count-reg<VD) else
I00 ’ 0 ’ ;

_- o u t p u t s i g n a l
hsync <= h-sync-reg ;
vsync <= v-sync-reg ;
pixel-x <= std-logic-vector(h-count-reg);

I o j pixel-y <= s t d - l o g i c - v e c t o r (v - c o u n t _ r e g) ;
p-tick <= pixel-tick;

end arch;

12.2.5 Testing circuit

To verify operation of the synchronization circuit, we can connect the rgb signal to three
switches. The entire visible region should be turned on with a single color. We can go
through the eight possible combinations and check the colors defined in Table 12.1. The
HDL code is shown in Listing 12.2. As mentioned in Section 12.2.4, an output buffer is
added for the rgb signal.

Listing 12.2 VGA synchronization testing circuit

library ieee;
use ieee. std-logic-1164. all ;
entity vga-test is

port (
5 clk, reset: in std-logic;

sw: in std-logic-vector (2 downto 0) ;
hsync , vsync : out std-logic;
rgb : out std-logic-vector (2 downto 0)

) ;
1 0 end vga-test ;

architecture arch o f vga-test is
signal rgb-reg: std-logic-vector (2 downto 0) ;
signal video-on: std-logic ;

-- i n s t a n t i a t e VGA s y n c c i r c u i t
vga-sync-unit : entity work. vga-sync

I 5 begin

port map(clk=>clk, reset=>reset , hsync=>hsync ,

20 p-tick=>open, pixel-x=>open, pixel-y=>open);
vsync=>vsync, video-on=>video-on,

-- r g b b u f f e r
process (clk , reset)
begin

OVERVIEW OF THE PIXEL GENERATION CIRCUIT 267

5

i f reset=’lJ then

e l s i f (clk’event and clk=’l’) then

end i f ;
end p r o c e s s ;

rgb-reg <= (o t h e r s = > ’ O ’) ;

rgb-reg <= s w ;

10 rgb <= rgb-reg when video-on=’l’ e l s e “000”;
end arch;

12.3 OVERVIEW OF THE PIXEL GENERATION CIRCUIT

The pixel generation circuit generates the 3-bit rgb signal for the VGA port. The external
control and data signals specify the content of the screen, and the p ixe l -x and pixel-y
signals from the vga-sync circuit provide the current coordinates of the pixel. For our
discussion purposes, we divided this circuit into three broad categories:

0 Bit-mapped scheme
0 Tile-mapped scheme
0 Object-mapped scheme

In a bit-mapped scheme, a video memory is used to store the data to be displayed on the
screen. Each pixel of the screen is mapped directly to a memory word, and the p ixe l -x
and pixel-y signals form the address. A graphics processing circuit continuously updates
the screen and writes relevant data to the video memory. A retrieval circuit continuously
reads the video memory and routes the data to the r g b signal. This is the scheme used in
today’s high-performance video controller. For 640-by-480 resolution, there are about 3 10k
(i.e., 640*480) pixels on a screen. This translates to 310k memory bits for a monochrome
display and 930k memory bits (i.e., 3 bits per pixel) for a 3-bit color display. A bit-mapped
example is discussed in Section 12.5.

To reduce the memory requirement, one alternative is to use a tile-mapped scheme. In
this scheme, we group a collection of bits to form a tile and treat each tile as a display
unit. For example. we can define an 8-by-8 square of pixels (i.e., 64 pixels) as a tile.
The 640-by-480 pixel-oriented screen becomes an 80-by-60 tile-oriented screen. Only
4800 (i.e., 8060) words are needed for the tile memory. The number of bits in a word
depends on the number of tile patterns. For example, if there are 32 tile patterns, each word
should contain 5 bits, and the size of the tile memory is about 24k bits (i.e., 5*4800). The
tile-mapped scheme usually requires a ROM to store the tile patterns. We call it pattern
memory. Assume that monochrome patterns are used in the previous example. Each 8-by-
8 tile pattern requires 64 bits, and the entire 32 patterns need 2K (i.e., 8*8*32) bits. The
overall memory requirement is about 26k bits, which is much smaller than the 310k bits of
the bit-mapped scheme. The text display discussed in Chapter 13 is based on this scheme.

For some applications, the video display can be very simple and contains only a few
objects. Instead of wasting memory to store a mostly blank screen, we can generate these
objects using simple object generation circuits. We call this approach an object-mapped
scheme. An object-mapped example is discussed in Section 12.4.

The three schemes can be mixed together to generate a full screen. For example, we can
use a bit-mapped scheme to generate the background and use an object-mapped scheme to
produce the main objects. We can also use a bit-mapped scheme for one portion of a screen
and tile-mapped text for another part of the screen.

268 VGA CONTROLLER I: GRAPHIC

dataicontrol
video-on

pixel-x
pixel-y

generation circuit I
Figure 12.6 Conceptual diagram of object-mapped pixel generation.

12.4 GRAPHIC GENERATION WITH AN OBJECT-MAPPED SCHEME

The conceptual diagram of an object-mapped pixel generation circuit that contains three
objects is shown in Figure 12.6. The diagram consists of three object generation circuits
and a special selecting and routing circuit, labeled rgb mux. An object generation circuit
performs the following tasks:

0 It keeps the coordinates of the current object and compares it with the current scan
location provided by the p ixe l -x and p ixe l -y signals.

0 If the current scan location falls within the region, it asserts the obj-i-on signal to
indicate that the current scan location is within the region of the ith object and the
object should be “turned on.”

0 It specifies the desired color in the ob j -i-rgb signal.
The rgb mux circuit performs multiplexing according to an internal prioritizing scheme.

It examines various obj-Lon signals and determines which obj-i-rgb signal is to be
routed to the rgb output. The prioritizing scheme prioritizes the order of the displays when
multiple ob j i - o n signals are asserted at the same time. It corresponds to selecting an
object for the foreground.

We use a simplified ping-pong-like game to illustrate the various graphic generation
schemes. The design is constructed as follows:

1. Create a simple still screen with rectangular objects.
2. Add a round object.
3. Introduce animation.
4. Add text for scores and information.
5. Create a top-level control circuit.

The first three steps are discussed in this section, and the last two steps are discussed in
Chapter 13.

GRAPHIC GENERATION WITH AN OBJECT-MAPPED SCHEME 269

Figure 12.7 Still screen of the pong game.

12.4.1 Rectangular objects

A rectangular object can be described by its boundary coordinates on the screen. The still
screen of the game is shown in Figure 12.7. It has three objects: a wall, which is shown as
a narrow stripe on the left; a paddle, which is shown as a short vertical bar on the right; and
a square ball. The coordinates of the displayable area of the screen is also shown. Note
that the y-axis increases downward.

Let us first examine generation of the wall stripe. For clarity, we define constants for the
relevant boundaries and sizes in code. The code segment for the wall is

c o n s t a n t WALL-X-L : i n t e g e r : = 3 2 ;
c o n s t a n t WALL-X-R: i n t e g e r : = 3 5 ;

__ p i x e l w i t h i n w a l l
w a l l - o n <=

'1 ' when (WALL-X-L < = p i x - x) and (pix-x<=WALL-X-R) e l s e
' 0 ' ;

__ w a l l r g b o u t p u t
w a l l - r g b <= " 0 0 1 " ; -- b l u e

The wall is a four-pixel-wide vertical stripe between columns 32 and 35, which as
defined as WALL-X-L and WALL-X-R, representing the left and right x-coordinates of the
wall, respectively. The object has two output signals, wall-on and wall-rgb. The wall-on
signal, which indicates that the wall object should be turned on, is asserted when the current
horizontal scan is within its region. Since the stripe covers the entire vertical column, there
is no need for the y-axis boundaries. The wall-rgb signal indicates that the color of the
wall is "001" (blue).

The code segment for the bar (paddle) is

-- b a r left , r i g h t b o u n d a r y
c o n s t a n t BAR-X-L: i n t e g e r : = 6 0 0 ;
c o n s t a n t B A R - X - R : i n t e g e r : = 6 0 3 ;

270 VGA CONTROLLER I: GRAPHIC

-- b a r t o p , b o t t o m b o u n d a r y
c o n s t a n t B A R - Y - S I Z E : integer:=72;
c o n s t a n t BAR-Y-T : integer : = M A X - Y / 2 - B A R - Y - S I Z E / 2 ; --204
c o n s t a n t B A R - Y - B : integer:=BAR-Y-T+BAR-Y-SIZE-l;

-- p i x e l w i t h i n b a r
bar-on <=

’ 1’ when (B A R - X - L <=pix-x) and (pix-x < = B A R - X - R) and

’ 0 ’ ;
(BAR-Y-T<=pix-y) and (pix-y<=BAR-Y-B) e l s e

-- b a r r g b o u t p u t
bar-rgb <= ”010”; - - g r e e n

The code is similar to that of the wall segment except that it includes the y-axis boundaries.
The desired vertical length of the bar is 72 pixels, which is defined by BAR-Y-SIZE. Since
we wish to place the bar in the middle, the top boundary of the bar, which is BAR-Y-T, is
one half of the maximal y-value (i.e., 480/2) minus one half of the bar length. The bottom
boundary of the bar is the top boundary plus the bar length. Generation of the bar-on signal
is similar to that of the wall-on signal except that the vertical scan must be within the bar’s
y-axis boundaries as well.

The code for the ball can be constructed in a similar fashion. The final code segment is
the selection and multiplexing circuit, which examines the on signals of three objects and
routes the corresponding rgb signal to output. The code is

p r o c e s s (video-on, wall-on, bar-on, sq-ball-on,
wall-rgb,bar-rgb,ball-rgb)

beg in
i f video-on=’O’ then

e l s e
graph-rgb <= ” 0 0 0 ” ; - -b lank

i f wall-on=’l’ then
graph-rgb <= wall-rgb;

e 1 s i f bar-on= ’ 1 ’ then
graph-rgb <= bar-rgb;

e l s i f sq-ball-on=’l’ then
graph-rgb <= ball-rgb ;

e l s e
graph-rgb <= ”110”; -- y e l l o w b a c k g r o u n d

end i f ;
end i f ;

end p r o c e s s ;

The circuit first checks whether the video-on is asserted, and if this is the case, examines
the three on signals in turn. When an on signal is asserted, it indicates that the scan is within
its region, and the corresponding rgb signal is passed to the output. If no signal is asserted,
the scan is in the “background” and the output is assigned to be “1 10” (yellow).

The complete HDL code is shown in Listing 12.3.

Listing 12.3 Pixel-generation circuit for the pong game screen

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y pong-graph-st i s

GRAPHIC GENERATION WITH AN OBJECT-MAPPED SCHEME 271

5 p o r t (
v i d e o - o n : i n s t d - l o g i c ;
p i x e l - x , p i x e l - y : in s t d - l o g i c - v e c t o r (9 downto 0) ;
g r a p h - r g b : out s t d - l o g i c - v e c t o r (2 downto 0)

1 ;
10 end p o n g - g r a p h - s t ;

a r c h i t e c t u r e s q - b a l l - a r c h of p o n g - g r a p h - s t i s
-- x , y c o o r d i n a t e s (0 , O) t o (6 3 9 , 4 7 9)
s i g n a l p ix -x , p i x - y : u n s i g n e d (9 downto 0) ;

15 c o n s t a n t MAX-X: i n t e g e r : =640 ;
c o n s t a n t MAX-Y: i n t e g e r : =480;

__ v e r t i c a l s t r i p e a s a w a l l

20 -- w a l l l e f t , r i g h t b o u n d a r y
c o n s t a n t WALL-X-L: i n t e g e r : =32;
c o n s t a n t W A L L - X - R : i n t e g e r : =35;

_- r i g h t v e r t i c a l b a r

-- b u r l e f t , r i g h t b o u n d a r y
c o n s t a n t BAR-X-L: i n t e g e r :=600;
c o n s t a n t B A R - X - R : i n t e g e r :=603;
-- b a r t o p , b o t t o m b o u n d a r y

c o n s t a n t BAR-Y-T : i n t e g e r :=MAX-Y/2-BAR-Y-SIZE/2; --204
c o n s t a n t BAR-Y-B : i n t e g e r :=BAR-Y_T+BAR-Y-SIZE-l;

25 -

30 c o n s t a n t BAR-Y-SIZE: i n t e g e r : = 7 2 ;

__ s q u a r e b a l l

c o n s t a n t BALL-SIZE: i n t e g e r : =8 ;
-_ b u l l l e f t , r i g h t b o u n d a r y
c o n s t a n t B A L L - X - L : i n t e g e r :=580;
c o n s t a n t BALL-X-R : i n t e g e r : =BALL-X-L+BALL-SIZE -1;

c o n s t a n t BALL-Y-T: i n t e g e r :=238;
c o n s t a n t B A L L - Y - B : i n t e g e r :=BALL-Y-T+BALL-SIZE-l;

35 -

40 -- b a l l t o p , b o t t o m b o u n d a r y

-_ o b j e c t o u t p u t s i g n a l s

s i g n a l w a l l - o n , b a r - o n , s q - b a l l - o n : s t d - l o g i c ;
s i g n a l w a l l - r g b , b a r - r g b , b a l l - r g b :

45 -

s t d - l o g i c - v e c t o r (2 downto 0) ;

-- (w a l l) l e f t v e r t i c a l s t r i p e

-- p i x e l w i t h i n w a l l
w a l l - o n <=

S5 -

50 b e g i n
pix-x <= unsigned(pixe1-x);
pix-y <= unsigned(pixe1-y);

272

M)

65

70

75

80

85

90

9s

IW

VGA CONTROLLER I: GRAPHIC

’1’ when (WALL-X-L<=pix-x) and (pix-x<=WALL-X-R) e l s e
’ 0 ’ ;

_- w a l l r g b o u t p u t
wall-rgb <= “ 0 0 1 ” ; -- b l u e

_- r i g h t v e r t i c a l b a r

-- p i x e l w i t h i n b a r
bar-on <=

’1’ when (BAR-X-L<=pix-x) and (pix-x<=BAR-X-R) and

’ 0 ’ ;
(BAR-Y-T<=pix-y) and (pix-y<=BAR-Y-B) e l s e

-- b a r r g b o u t p u t
bar-rgb <= “ 0 1 0 ” ; - -green

s q u a r e b a l l --

-- p i x e l w i t h i n s q u a r e d b a l l
sq-ball-on <=

’ 1 ’ when (BALL-X-L <=pix-x) and (pix-x <=BALL-X-R) and

’ 0 ’ ;
(BALL-Y-T <=pix-y) and (pix-y<=BALL-Y-B) e l s e

ball-rgb <= “100”; -- r e d

-- r g b m u l t i p l e x i n g c i r c u i t

-

process(video-on,wall-on,bar-on,sq-ball-on,
wall-rgb, bar-rgb, ball-rgb)

beg in
i f video-on=’O’ then

e l s e
graph-rgb <= “ 0 0 0 ” ; - - b l a n k

i f wall-on=’l’ then
graph-rgb <= wall-rgb;

e l s i f bar-on=’l’ then
graph-rgb <= bar-rgb ;

e l s i f sq-ball-on=’l’ then
graph-rgb <= ball-rgb;

e l s e
graph-rgb <= ”110” ; -- y e l l o w b a c k g r o u n d

end i f ;
end i f ;

end p r o c e s s ;
end sq-ball-arch ;

After deriving the pixel generation circuit, we can combine it with the VGA synchro-
nization circuit to construct the complete video interface. The top-level HDL code is shown
in Listing 12.4. Note that the graph-rgb signal is routed to output through an output buffer.
It is loaded when the p ixe l - t ick signal is asserted. This synchronizes the rgb output with
the buffered hsync and vsync signals.

Listing 12.4 Complete circuit for a still pong game screen

l i b r a r y ieee;

GRAPHIC GENERATION WITH AN OBJECT-MAPPED SCHEME 273

20

25

use ieee. std-logic-1164, a l l ;
e n t i t y pong-top-st i s

port (
5 clk ,reset : in std-logic ;

hsync , vsync : out std-logic;
rgb: out std-logic-vector (2 downto 0)

1 ;
end pong-top-st ;

a r c h i t e c t u r e arch of pong-top-st i s
10

s i g n a l pixel-x , pixel-y : std-logic-vector (9 downto 0) ;
s i g n a l video-on , pixel-tick: std-logic;
s i g n a l rgb-reg , rgb-next : std-logic-vector (2 downto 0) ;

__ i n s t a n t i a t e VGA s y n c
vga-sync-unit : e n t i t y work. vga-sync

port map(clk=>clk, reset=>reset ,

I S begin

video-on=>video-on, p-tick=>pixel-tick,
hsync=>hsync, vsync=>vsync,
pixel-x=>pixel-x, pixel-y=>pixel-y);

__ i n s t a n t i a t e g r a p h i c g e n e r a t o r
pong-grf-st-unit: e n t i t y work.pong-graph-st(sq-ball-arch)

port map (video-on=>video-on,
pixel-x=>pixel-x, pixel-y=>pixel-y,
graph-rgb=>rgb-next);

__ r g b b u f f e r
p r o c e s s (clk)
beg in

30 i f (clk event and clk= ’ 1 ’) then
i f (pixel-tick=’l’) then

end i f ;
rgb-reg <= rgb-next ;

end i f ;
3 5 end p r o c e s s ;

rgb <= rgb-reg;
end arch;

12.4.2 Non-rectangular object

Direct checking of the boundaries of a non-rectangular object is very difficult. An alternative
is to specify the object pattern in a bit map and generate the rgb and on signals according
to the map. This can best be explained by an example. Assume that we want to have a
round ball in the pong game screen. The bit map of a circle within an 8-by-8 pixel square
is shown in Figure 12.8. The circle object can be generated as follows:

0 Check whether the scan coordinates are within the 8-by-8 pixel square.
0 If this is the case, obtain the corresponding pixel from the bit map.
0 Use the retrieved bit to generate the rgb and on signals for the circle object.

To implement this scheme, we need to include a pattern ROM to store the bit map and an
address mapping circuit to convert the scan coordinates to the ROM’s row and column.

To accommodate the change, the ball portion from Listing 12.3 must be modified. First,
we define a pattern ROM for the circle. It can be done by declaring a two-dimensional

274 VGA CONTROLLER I: GRAPHIC

Figure 12.8 Bit map of a circle.

constant, as in the ROM template of Listing 11.5. To facilitate future animation, we also
use signals to replace constants for the square ball boundaries. The revised architecture
declaration portion becomes

c o n s t a n t BALL-SIZE: i n t e g e r :=8;
-- b a l l l e f t , r i g h t b o u n d a r y
s i g n a l ball-x-l , b a l l - x - r : u n s i g n e d (9 downto 0) ;
-_ b a l l t o p , b o t t o m b o u n d a r y
s i g n a l b a l l - y - t , b a l l - y - b : u n s i g n e d (9 downto 0) ;

-- round b a l l image ROM

type r o m - t y p e i s array (0 to 7) of s t d - l o g i c - v e c t o r (0 to 7) ;
-- ROM d e f i n i t i o n
c o n s t a n t BALL-ROM: r o m - t y p e : =

----___--------_____------------------------- ...

__---

I

"00111100" , -- * * * *
" 0 1 1 1 1 1 1 0 " , -- * * * * * *
"11111111", -- * * * * * * * *
" 1 1 1 1 1 1 1 1 " , -- * * * * * * * *
"11111111", -- * * * * * * * *
"11111111", -- * * * * * * * *
" 0 1 1 1 1 1 1 0 " , -- * * * * * *
I' 0 0 11 1 1 00 " -- * * * *

) ;
s i g n a l rom-addr , r o m - c o l : u n s i g n e d (2 downto 0) ;
s i g n a l r o m - d a t a : s t d - l o g i c - v e c t o r (7 downto 0) ;
s i g n a l r o m - b i t : s t d - l o g i c ;
-- new s i g n a l t o i n d i c a t e w h e t h e r t h e s c a n c o o r d i n a t e s
-- a r e w i t h i n t h e round b a l l r e g i o n
s i g n a l r d - b a l l - o n : s t d - l o g i c ;

Second, we expand the ball generation segment to include the mapping of the circle bit
map:

-- p i x e l w i t h i n s q u a r e b a l l
s q - b a l l - o n <=

'1' when (b a l l - x - l < = p i x - x) and (p i x - x < = b a l l - x - r) and

' 0 ' ;
(b a l l - y - t < = p i x - y) and (p i x - y < = b a l l - y - b) e l s e

_- map c u r r e n t p i x e l l o c a t i o n t o ROM a d d r / c o l
r o m - a d d r <= p i x - y (2 downto 0) - b a l l - y - t (2 downto 0) ;
r o m - c o l <= p i x - x (2 downto 0) - b a l l - x - l (2 downto 0) ;

GRAPHIC GENERATION WITH AN OBJECT-MAPPED SCHEME 275

rom-data <= BALL-ROM(to-integer(rom-addr));
rom-bit <= rom-data(to-integer(rom-co1));
rd-ball-on <=

’1’ when (sq-ball-on=’l’) and (rom-bit=’l’) e l s e
’ 0 ’ ;

_- b a l l r g b o u t p u t
ball-rgb <= “100“; -- r e d

The first statement checks whether the current scan coordinates are within the square ball
region and asserts the sq-ball-on signal accordingly. This part is the same as Listing 12.3
except that signals are used for boundaries. The second part obtains the corresponding ROM
bit according to the current scan coordinates. If the scan coordinates are within the square
ball region, subtracting the three LSBs from the top boundary (i.e., bal l -y- t) provides
the corresponding ROM row (i.e., rom-addr), and subtracting the three LSBs from the left
boundary (i.e., b a l l x - 1) provides the corresponding ROM column (i.e., rom-col). The bit
can then be retrieved by two indexing operations. It is then combined with the sq-ball-on
signal to generate the rd-ball-on signal. This design just assigns a monochrome color
(i.e., “100” red) for the round ball region. We can duplicate the pattern ROM three times to
store the rgb value for each pixel and generate a multiple-color ball.

Finally, we need to make a minor modification in the multiplexing circuit to substitute
the sq-ball-on signal with the rd-ball-on signal:

p r o c e s s . . .
. . .

e l s i f rd-ball-on=’l’ then
graph-rgb <= ball-rgb;

. . .
end p r o c e s s ;

These modifications are incorporated into the animated graph in the next subsection.

12.4.3 Animated object

When an object changes its location gradually in each scan, it creates the illusion of motion
and becomes animated. To achieve this, we can use registers to store the boundaries of an
object and update its value in each scan. In the pong game, the paddle is controlled by two
pushbuttons and can move up and down, and the ball can move and bounce in all directions.
We illustrate how to create animation for these two objects in this subsection.

While the VGA controller is driven by a 25-MHz pixel rate, the screen of the VGA
monitor is refreshed only 60 times per second. The boundary registers only need to be
updated at this rate. We create a 60-Hz enable tick, r e f r - t i c k , which is asserted one clock
cycle every & second.

Let us first examine the design of the paddle. To accommodate the changing y-axis
coordinates, we replace the constants with two signals, bar-y-t and bar-y-b, to represent
the top and bottom boundaries, and create a register, bar-y-reg, to store the current y-
axis location of the top boundary. If one of the pushbuttons is pressed, bar-y-reg either
increases or decreases a fixed amount when the r e f r - t i c k signal is asserted. The amount
is defined by a constant, BAR-V, which stands for the bar velocity. We assume that assertion
of the b tn(1) and b tn(0) signals causes the paddle to move up and down, respectively,
and that the paddle stops moving when it reaches the top or the bottom of the screen. The
code segment for updating bar-y-reg is

276 VGA CONTROLLER I: GRAPHIC

-- new b a r y - p o s i t i o n
p r o c e s s (b a r - y - r e g , b a r - y - b , b a r - y - t , r e f r - t i c k , b t n)
beg in

b a r - y - n e x t <= b a r - y - r e g ; -- d e f a u l t , no move
i f r e f r - t i c k = ’ l J then

i f b t n (l) = ’ l ’ and bar-y-b<(MAX-Y-l-BAR-V) then
-- b u t t o n 1 a s s e r t e d and bar n o t r e a c h b o t t o m y e t

e l s i f b t n (0) = ’ 1 ’ and b a r - y - t > B A R - V then
-- b u t t o n 0 a s s e r t e d and b a r n o t r e a c h t o p y e t

b a r - y - n e x t <= b a r - y - r e g - BAR-V; -- move up
end i f ;

b a r - y - n e x t <= b a r - y - r e g + BAR-V; -- move down

end i f ;
end p r o c e s s ;

The design of the ball is more involved. We have to replace the four boundary constants
with four signals and create two registers, ball-x-reg and ball-y-reg, to store the current
x- and y-axis coordinates of the left and top boundaries. The ball usually moves at a constant
velocity (i.e., at a constant speed and in the same direction). It may change direction when
hitting the wall, the paddle, or the bottom or top of the screen. We decompose the velocity
into an x-component and a y-component, whose values can be either a positive constant
value, BALL-V-P, or a negative constant value, BALL-V-N. The current values of the two
components are stored in the x-delta-reg and y-delta-reg registers. The code segment
for updating ball-x-reg and ball-y-reg is

-- new b a l l p o s i t i o n
b a l l - x - n e x t <=

b a l l - x - r e g + x - d e l t a - r e g when r e f r - t i c k = ’ l ’ e l s e
b a l l - x - r e g ;

b a l l - y - r e g + y - d e l t a - r e g when r e f r - t i c k = ’ l ’ e l s e
b a l l - y - r e g ;

b a l l - y - n e x t <=

and the code segment for updating x-delta-reg and y-delta-reg is

-- new b a l l v e l o c i t y
p r o c e s s (x - d e l t a - r e g , y - d e l t a - r e g , b a l l - y - t , b a l l - x - 1 , b a l l - x - r ,

beg in
ball-y-t,ball-y-b,bar-y-t,bar-y-b)

x - d e l t a - n e x t <= x - d e l t a - r e g ; - - d e f a u l t , no change
y - d e l t a - n e x t <= y - d e l t a - r e g ; - - d e f a u l t , no change
i f b a l l - y - t < 1 then -- r e a c h t o p

y - d e l t a - n e x t <= BALL-V-P ; --down
e l s i f b a l l - y - b > (M A X - Y -1) then - -reach b o t t o m

y - d e l t a - n e x t <= BALL-V-N; --up
e l s i f b a l l - x - 1 <= WALL-X-R then - -reach w a l l

x - d e l t a - n e x t <= B A L L - V - P ; --bounce back (t o r i g h t)
e l s i f (BAR-X-L < = b a l l - x - r) and (b a l l - x - r <=BAR-X-R) then

-- r e a c h x - c o o r d i n a t e of b a r
i f (b a r - y - t < = b a l l - y - b) and (b a l l - y - t < = b a r - y - b) then

-- w i t h i n y -range of b a r , h i t
x - d e l t a - n e x t <= BALL-V-N; --bounce back (t o l e f t)

end i f ;
end i f ;

end p r o c e s s ;

GRAPHIC GENERATION WITH AN OBJECT-MAPPED SCHEME 277

Note that if the paddle bar misses the ball, the ball continues moving to right and eventually
wraps around.

The complete code is shown in Listing 12.5.

Listing 12.5 Pixel-generation circuit for the animated pong game

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y pong-graph-animat e i s

5 p o r t (
clk, reset : std-logic ;
btn: std-logic-vector (1 downto 0) ;
video-on: in std-logic;
pixel-x , pixel-y : in std-logic-vector (9 downto 0) ;

10 graph-rgb : out std-logic-vector (2 downto 0)

) ;
end pong-graph-animate ;

a r c h i t e c t u r e arch of pong-graph-animate i s
I5 s i g n a l refr-tick : std-logic;

-_ x , y c o o r d i n a t e s (0,O) t o (6 3 9 , 4 7 9)
s i g n a l pix-x , pix-y : unsigned (9 downto 0) ;
c o n s t a n t MAX-X: integer :=640;
c o n s t a n t MAX-Y: integer:=480;

-- v e r t i c a l s t r i p e a s a w a l l
20 -

_- w a l l l e f t , r i g h t b o u n d a r y
c o n s t a n t WALL-X-L : integer : =32 ;

25 c o n s t a n t WALL-X-R: integer :=35;

__ r i g h t p a d d l e b a r

-- b a r l e f t , r i g h t b o u n d a r y
30 c o n s t a n t BAR-X-L: integer : = 6 0 0 ;

c o n s t a n t BAR-X-R: integer :=603;
__ b a r t o p , b o t t o m b o u n d a r y
s i g n a l bar-y-t , bar-y-b : unsigned (9 downto 0) ;
c o n s t a n t BAR-Y-SIZE: integer :=72;

35 -- r e g t o t r a c k t o p b o u n d a r y (x p o s i t i o n is f i x e d)
s i g n a l bar-y-reg , bar-y-next : unsigned (9 downto 0) ;
-- b a r m o v i n g v e l o c i t y when a b u t t o n i s p r e s s e d
c o n s t a n t BAR-V: integer:=4;

40 -- s q u a r e b a l l

c o n s t a n t BALL-SIZE: integer:=8; -- 8
-- b a l l l e f t , r i g h t b o u n d a r y
s i g n a l ball-x-1 , ball-x-r : unsigned (9 downto 0) ;

15 -- b a l l t o p , b o t t o m b o u n d a r y
s i g n a l ball-y-t , ball-y-b : unsigned (9 downto 0) ;

_- r e g t o t r a c k l e f t , t o p b o u n d a r y
s i g n a l ball-x-reg , ball-x-next : unsigned (9 downto 0) ;

VGA CONTROLLER I: GRAPHIC 278

50

55

60

65

70

s i g n a l b a l l - y - r e g , b a l l - y - n e x t : u n s i g n e d (9 downto 0) ;

-_ r e g t o t r a c k b a l l s p e e d
s i g n a l x - d e l t a - r e g , x-delta-next : u n s i g n e d (9 downto 0) ;
s i g n a l y - d e l t a - r e g , y - d e l t a - n e x t : u n s i g n e d (9 downto 0) ;
-- b a l l v e l o c i t y c a n b e p o s o r neg
c o n s t a n t BALL-V-P : u n s i g n e d (9 downto 0)

: = t o - u n s i g n e d (2 , 1 0 1 ;
c o n s t a n t BALL-V-N : u n s i g n e d (9 downto 0)

: = u n s i g n e d (t o - s i g n e d (-2,lO) ;
~~

-- r o u n d b a l l i m a g e ROM

type rom- type i s array (0 t o 7)

-- ROM d e f i n i t i o n
c o n s t a n t BALL-RUM: rom- type : =

(

of s t d - l o g i c - v e c t o r (0 to 7) ;

" 0 0 1 1 1 1 0 0 " , -- * * * *
" 0 1 1 1 1 1 1 0 " , -- * * * * * *
"11111111", -- * * * * * * * *
"11111111", -- * * * * * * * *
"11111111", -- * * * * * * * *
"11111111", -- * * * * * * * *
" 0 1 1 1 1 1 1 0 " , -- * * * * * *
" 0 0 1 1 1 100 '1 -- * * * *

) ;
s i g n a l rom-addr , rom-co l : u n s i g n e d (2 downto 0) ;
s i g n a l r o m - d a t a : s t d - l o g i c - v e c t o r (7 downto 0) ;
s i g n a l r o m - b i t : s t d - l o g i c ;

-- o b j e c t o u t p u t s i g n a l s

s i g n a l w a l l - o n , b a r - o n , s q - b a l l - o n , r d - b a l l - o n : s t d - l o g i c ;
s i g n a l w a l l - r g b , b a r - r g b , b a l l - r g b :

s t d - l o g i c - v e c t o r (2 downto 0) ;
begin

85 -- r e g i s t e r s

90

9s

p r o c e s s (c l k , r e s e t 1
begin

i f r e s e t = ' l ' then
b a r - y - r e g <= (o t h e r s = > ' O ') ;
b a l l - x - r e g <= C o t h e r s = > ' O ') ;
b a l l - y - r e g <= (o t h e r s = > ' O ') ;
x - d e l t a - r e g <= (" 0 0 0 0 0 0 0 1 0 0 ' ') ;
y - d e l t a - r e g <= (" 0 0 0 0 0 0 0 1 0 0 ' ') ;

b a r - y - r e g <= b a r - y - n e x t ;
b a l l - x - r e g <= b a l l - x - n e x t ;
b a l l - y - r e g <= b a l l - y - n e x t ;
x - d e l t a - r e g <= x - d e l t a - n e x t ;

e 1 s i f (c l k ' e v e n t and c l k = ' 1 ') then

y - d e l t a - r e g <= y - d e l t a - n e x t ;
IW end i f ;

end p r o c e s s ;

GRAPHIC GENERATION WITH AN OBJECT-MAPPED SCHEME 279

ins

I10

115

i 20

I25

I30

I35

p i x - x <= u n s i g n e d (p i x e 1 - x) ;
p i x - y <= u n s i g n e d (p i x e 1 - y) ;
__ r e f r - t i c k : 1 - c l o c k t i c k a s s e r t e d a t s t a r t o f v - s y n c
__ i . e . , when t h e s c r e e n i s r e f r e s h e d (6 0 H z)
r e f r - t i c k <= ’ 1 ’ when (p i x - y = 4 8 1) and (p ix -x=O) e l s e

’ 0 ’ .

-- (w a l l) l e f t v e r t i c a l s t r i p e

-- p i x e l w i t h i n w a l l
w a l l - o n <=

’1 ’ when (WALL-X-L < = p i x - x) and (pix-x<=WALL-X-R) e l s e
’ 0 ’ ;

_- w a l l r g b o u t p u t
w a l l - r g b <= “ 0 0 1 “ ; -- b l u e

-_ r i g h t v e r t i c a l b a r

-- b o u n d a r y
b a r - y - t <= b a r - y - r e g ;
b a r - y - b <= b a r - y - t + BAR-Y-SIZE - 1;
-- p i x e l w i t h i n b a r
b a r - o n <=

’1 ’ when (BAR-X-L<=pix-x) and (pix-x<=BAR-X-R) and

’ 0 ’ ;
(b a r - y - t < = p i x - y) and (p i x - y < = b a r - y - b) e l s e

-- b a r r g b o u t p u t
b a r - r g b <= “ 0 1 0 ” ; - -green
-- new b a r y - p o s i t i o n
p r o c e s s (b a r - y - r e g , b a r - y - b , b a r - y - t , r e f r - t i c k , b t n)
beg in

b a r - y - n e x t <= b a r - y - r e g ; -- no move
i f r e f r - t i c k = ’ l ’ then

i f b t n (l) = ’ l ’ and bar-y-b<(MAX-Y-l-BAR-V) then

e l s i f b t n (O) = ’ l ’ and b a r - y - t > BAR-V then

end i f ;

b a r - y - n e x t <= b a r - y - r e g + B A R - V ; -- move down

b a r - y - n e x t <= b a r - y - r e g - B A R - V ; -- move up

end i f ;
end p r o c e s s ;

-- s q u a r e b a l l

-- b o u n d a r y
b a l l - x - 1 <= b a l l - x - r e g ;
b a l l - y - t <= b a l l - y - r e g ;
b a l l - x - r <= b a l l - x - 1 + BALL-SIZE - 1;
b a l l - y - b <= b a l l - y - t + BALL-SIZE - 1;
-- p i x e l w i t h i n b a l l
s q - b a l l - o n <=

’ 1 ’ when (b a l l - x - 1 < = p i x - x) and (p i x - x < = b a l l - x - r) and
(b a l l - y - t < = p i x - y) and (p i x - y < = b a l l - y - b) e l s e

VGA CONTROLLER I: GRAPHIC 280

I55

I M I

I65

I70

175

I80

185

190

195

ZW

205

’ 0 ’ ;
-- map c u r r e n t p i x e l l o c a t i o n t o ROM a d d r / c o l
rom-addr <= pix-y(2 downto 0) - ball-y-t(2 d o w n t o ’ 0) ;
rom-col <= pix-x(2 downto 0) - ball-x-l(2 downto 0) ;
rom-data <= BALL-ROM(to_integer(rom-addr));
rom-bit <= rom-data(to-integer(rom-co1));
-- p i x e l w i t h i n b a l l
rd-ball-on <=

’ 1 ’ when
J O ’ ;

__ b a l l r g b
ball-rgb <=
-- new b a l l
ball-x-next

ball-y-next

-- new b a l l

(sq-ball-on=’l’) and (rom-bit=’l’) e l s e

o u t p u t
” 1 0 0 ” ; -- red
p o s i t i o n
<= ball-x-reg + x-delta-reg

when refr-tick=’l’ e l s e
ball-x-reg ;

<= ball-y-reg + y-delta-reg
when refr-tick=’l’ e l s e

ball-y-reg ;
v e l o c i t y

p r o c e s s (x-delta-reg , y-delta-reg , ball-y-t , ball-x-1 , ball-x-r ,

beg in
ball-y-t,ball-y-b,bar-y-t,bar-y-b)

x-delta-next <= x-delta-reg;
y-delta-next <= y-delta-reg ;
i f ball-y-t < 1 then -- r e a c h t o p

y-delta-next <= BALL-V-P ;
e l s i f ball-y-b > (MAX-Y-1) then -- r e a c h b o t t o m

y-delta-next <= BALL-V-N;
e l s i f ball-x-1 <= WALL-X-R then -- r e a c h w a l l

x-delta-next <= BALL-V-P ; -- bounce back
e l s i f (BAR-X-L<=ball-x-r) and (ball-x-r <=BAR-X-R) then

__ r e a c h x o f r i g h t b a r
i f (bar-y-t <=ball-y-b) and (ball-y-t <=bar-y-b) then

end i f ;
x-delta-next <= BALL-V-N ; --hit , bounce back

end i f ;
end p r o c e s s ;

__ rgb m u l t i p l e x i n g c i r c u i t

process(vide0-on,wall-on,bar-on,rd-ball-on,
wall-rgb, bar-rgb, ball-rgb)

beg in
i f video-on=’O’ then

e l s e
graph-rgb <= “000“ ; - -blank

i f wall-on=’l’ then
graph-rgb <= wall-rgb;

e 1 s i f bar-on= ’ 1 then
graph-rgb <= bar-rgb ;

e l s i f rd-ball-on=’l’ then
graph-rgb <= ball-rgb;

GRAPHIC GENERATION WITH AN OBJECT-MAPPED SCHEME 281

e l s e
graph-rgb <= “110”; -- y e l l o w b a c k g r o u n d

110 end i f ;
end i f ;

end p r o c e s s ;
end arch;

As in the still screen, we can combine the synchronization circuit and create the top-level
description. The HDL code is shown in Listing 12.6.

Listing 12.6 Complete circuit for the animated pong game screen

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y pong-top-an i s

p o r t (
5 clk, reset : i n std-logic ;

btn: i n std-logic-vector (1 downto 0);
hsync , vsync : o u t std-logic ;
rgb: o u t std-logic-vector (2 downto 0)

) ;
10 end pong-top-an;

a r c h i t e c t u r e arch of pong-top-an i s
s i g n a l pixel-x , pixel-y : std-logic-vector (9 downto 0) ;
s i g n a l video-on , pixel-tick: std-logic;

I S s i g n a l rgb-reg , rgb-next : std-logic-vector (2 downto 0) ;
beg in

-_ i n s t a n t i a t e VGA s y n c
vga-sync-unit : e n t i t y work. vga-sync

p o r t map(clk=>clk, reset=>reset ,
video-on=>video-on, p-tick=>pixel-tick,
hsync=>hsync, vsync=>vsync,
pixel-x=>pixel-x, pixel-y=>pixel-y);

10

__ i n s t a n t i a t e g r a p h i c g e n e r a t o r
pong-graph-an-unit : e n t i t y work. pong-graph-animate

25 p o r t map (clk=>clk, reset=>reset ,
btn=>btn , video-on=>video-on ,
pixel-x=>pixel-x, pixel-y=>pixel-y,
graph-rgb=>rgb-next);

-- rgb b u f f e r
30 p r o c e s s (clk)

beg in
i f (clk’event and clk=’l’) t h e n

i f (pixel-tick=’l’) t h e n

15

rgb-reg <= rgb-next ;
end i f ;

end i f ;
end p r o c e s s ;
rgb <= rgb-reg;

end arch;

Note that there is no other control mechanism is this code. The ball simply moves and
bounces continuously. A top-level control circuit is discussed in Chapter 13.

282 VGA CONTROLLER I: GRAPHIC

Figure 12.9 Dot trace shown in a 128-by-128 bit map.

12.5 GRAPHIC GENERATION WITH A BIT-MAPPED SCHEME

The bit-mapped scheme maps each pixel to a word in video memory. There are about
3 10k pixels in a 640-by-480 screen. This translates to 3 10k and 930k bits for monochrome
and color displays, respectively. The actual size of the video memory can be much larger
since the memory address must be properly aligned for fast access. For example, to map
the pixel’s current coordinates to a memory location, we can concatenate the pixel’s x-
coordinate, which is 10 bits (i.e., rlog,(640)1), and the pixel’s y-coordinate, which is 9 bits
(Le., [log, (48O)l). This approach requires no additional circuit to translating the pixel’s
coordinates to a memory address but introduces some unused “holes” in memory. The
memory size is increased from 310k words to 512K (i.e., 21°+’) words.

For the S3 board, memory is available from the external SRAM chips and FPGAs
embedded block RAMs, as discussed in Chapters 10 and 11. Recall that the total capacity
of the Spartan 3S200 device’s block RAM is only about 192K bits. It is not large enough
for a full-screen bit-mapped display. We must use the external SRAM, which is 8M bits,
for this purpose.

In this section, we use a small 128-by-128 (27-by-27) area of the screen to illustrate the
design of the bit-mapped scheme. The screen has 16K pixels in this area and requires
a 16K-by-3 video memory for color display. This can be implemented by three embedded
block RAMs. The small area is at the top-left comer of the screen and displays the trace
of a bouncing one-pixel dot, as shown in Figure 12.9. The circuit uses a 3-bit switch to
specify the color of the trace and a pushbutton switch to randomly select the origin of the
trace. When the pushbutton switch is pressed, the dot starts to move, like the bouncing ball
in Section 12.4.3. The trace forms a rectangle after the dot hits the four sides of the small
area. A new trace is generated each time the pushbutton switch is pressed.

12.5.1 Dual-port RAM implementation

A conceptual block diagram of this circuit is shown in Figure 12.10. The video memory is a

GRAPHIC GENERATION WITH A BIT-MAPPED SCHEME 283

-
7

pixel-x =
14
’ addr-w addr-r - - 3 3

Figure 12.10 Conceptual block diagram of a dot trace circuit.

+- din dout - 7

synchronous 16K-by-3 (i.e., 214-by-3) dual-port RAM. The dual-port module discussed in
Listing 1 1.4 can be used for this purpose. The seven LSBs of the pixel’s y-coordinate form
the seven MSBs of the memory address, and the seven LSBs of the pixel’s x-coordinate
form the seven LSBs of the memory address. The d o t x y circuit keeps track of the current
location of the dot and generates its current y- and x-coordinates, which are concatenated as
the write address. The 3-bit external switch input, sw, is the rgb value, which is connected
to the memory’s din-a port. The seven LSBs of pixel-y and the seven LSBs of pixel-x
form the read address. The data is retrieved continuously and the corresponding readout is
routed to the rgb multiplexing circuit.

The complete code of the dot trace pixel generation circuit is shown in Listing 12.7.
We use two registers, do tx - reg and dot-y-reg, to keep track of the dot’s current x- and
y-coordinates and use two registers, v-x-reg and v-y-reg, to keep track of the current
horizontal and vertical velocities. Computation of the dot’s coordinates and velocities is
similar to that of the bouncing ball in Section 12.4.3. In addition to regular updates, the
dot-xnext and dot -ynext signals obtain the values of the seven LSBs of pix-x and
pix-y when the pushbutton switch is pressed. Since these signals change much faster than
a human’s perception, the new origin appears to be random.

Listing 12.7 Pixel-generation circuit for a 128-by-128 bit map

l i b r a r y i e e e ;
use ieee.std-logic-ll64.all;
use i e e e . n u m e r i c - s t d . a l l ;
e n t i t y bitmap-gen i s

5 p o r t (
c l k , r e s e t : s t d - l o g i c ;
b t n : s t d - l o g i c - v e c t o r (I downto 0) ;
s w : s t d - l o g i c - v e c t o r (2 downto 0) ;
v i d e o - o n : in s t d - l o g i c ;

b i t - r g b : out s t d - l o g i c - v e c t o r (2 downto 0)
10 p i x e l - x , p i x e l - y : in s t d - l o g i c - v e c t o r (9 downto 0) ;

) ;
end b i tmap-gen ;

btn we

dot-xy

> bitmap-on -

sw

rg b rgb -
mux we

dual-port
video memory

>

284 VGA CONTROLLER I: GRAPHIC

i j a r c h i t e c t u r e dual-port-ram-arch of bitmap-gen i s
s i g n a l pix-x , pix-y : unsigned (9 downto 0) ;
s i g n a l refr-tick: std-logic;
s i g n a l load-tick: std-logic ;

20

25

30

35

40

45

-- v i d e o s r a m

s i g n a l we: std-logic;
s i g n a l addr-r , addr-w: std-logic-vector (13 downto 0) ;
s i g n a l din, dout : std-logic-vector (2 downto 0) ;

-

-- d o t l o c a t i o n and v e l o c i t y

c o n s t a n t MAX-X: integer : = 1 2 8 ;
c o n s t a n t MAX-Y: integer : = 1 2 8 ;
__ d o t v e l o c i t y c a n b e p o s o r neg
c o n s t a n t DOT-V-P : unsigned (6 downto 0)

:=to_unsigned(l,7);
c o n s t a n t DOT-V-N : unsigned (6 downto 0)

:=unsigned(to-signed(-l ,711;
__ r e g t o k e e p t r a c k of d o t l o c a t i o n
s i g n a l dot-x-reg , dot-x-next : unsigned (6 downto 0) ;
s i g n a l dot-y-reg , dot-y-next : unsigned (6 downto 0) ;
__ reg t o k e e p t r a c k of d o t v e l o c i t y
s i g n a l v-x-reg , v-x-next : unsigned (6 downto 0) ;
s i g n a l v-y-reg , v-y-next : unsigned (6 downto 0) ;

__ o b j e c t o u t p u t s i g n a l s

s i g n a l bitmap-on: std-logic ;
s i g n a l bitmap-rgb: std-logic-vector (2 downto 0) ;

beg in
__ i n s t a n t i a t e d e b o u n c e c i r c u i t for a b u t t o n
debounce-unit : e n t i t y work. debounce

so

port map(clk=>clk, reset=>reset , sw=>btn(O),
db-level=>open, db-tick=>load-tick);

__ i n s t a n t i a t e d u a l - p o r t v i d e o RAM (2 ^ 1 2 - b y - 7)
video-ram: e n t i t y work.xilinx-dual-port-ram-sync

g e n e r i c map (ADDR- W I DTH = > 14 , DATA - W I DTH = > 3)

port map(clk=>clk, we=>we,
(5 addr-a=>addr-w, addr-b=>addr-r,

din-a=>din , dout-a=>open , dout-b=>dout) ;
-- v i d e o ram i n t e r f a c e
addr-w <= std-logic-vector(dot-y-reg & dot-x-reg);
addr-r <=

we <= ’1’;
din <= sw;
bitmap-rgb <= dout;
__ r e g i s t e r s

beg in

60 std-logic-vector (pix-y (6 downto 0) & pix-x (6 downto 0)) ;

65 p r o c e s s (clk, reset

i f reset=’l’ then

GRAPHIC GENERATION WITH A BIT-MAPPED SCHEME 285

70

75

dot-x-reg <= (o t h e r s = > ’ O ’) ;
dot-y-reg <= (o t h e r s = > ’ O ’) ;
v-x-reg <= DOT-V-P;
v-y-reg <= DOT-V-P;

dot-x-reg <= dot-x-next ;
dot-y-reg <= dot-y-next ;
v-x-reg <= v-x-next ;
v-y-reg <= v-y-next ;

e l s i f (clk’event and clk=’lJ) then

end i f ;
end p r o c e s s ;
__ m i s c . s i g n a l s

so pix-x <= unsigned(pixe1-x) ;
pix-y <= unsigned(pixe1-y);
refr-tick <= ’ 1 ’ when (pix-y=481) and (pix-x=O) e l s e

__ p i x e l w i t h i n b i t map a r e a
’ O J ;

85 bitmap-on <=
’1 when (pix-x <=127) and (pix-y <=127) e l s e
J O J . ,

-- d o t p o s i t i o n
-- ” r a n d o m l y ‘I l o a d d o t l o c a t i o n when b t n (0) p r e s s e d

90 dot-x-next <=
pix-x (6 downto 0) when load-tick= 1 e l s e
dot-x-reg + v-x-reg when refr-tick=’l ’ e l s e
dot-x-reg ;

dot-y-next <=
95 pix-y (6 downto 0) when load-tick= ’1 e l s e

dot-y-reg + v-y-reg when refr-tick= 1 e l s e
dot-y-reg ;
-- d o t x v e l o c i t y
p r o c e s s (v-x-reg , dot-x-reg)

v-x-next <= v-x-reg ;
I W begin

I05

i f dot-x-reg =1 then -- r e a c h l e f t
v-x-next <= DOT-V-P ; -- b o u n c e b a c k

e l s i f dot-x-reg=(MAX-X-2) then -- r e a c h r i g h t
v-x-next <= DOT-V-N ; -- b o u n c e back

end i f ;
end p r o c e s s ;
-- d o t y v e l o c i t y
p r o c e s s (v-y-reg , dot-y-reg)

v-y-next <= v-y-reg;
110 begin

I I 5

i f dot-y-reg =l then -- r e a c h t o p

e l s i f dot-y-reg = (MAX-Y-2) then -- r e a c h b o t t o m

end i f ;
end p r o c e s s ;

v-y-next <= DOT-V-P ;

v-y-next <= DOT-V-N ;

-- rgb m u l t i p l e x i n g c i r c u i t
p r o c e s s (video-on , bitmap-on , bitmap-rgb)

120 begin

286 VGA CONTROLLER I: GRAPHIC

I25

i f video-on=’O’ t h e n

e l s e
bit-rgb <= “ 0 0 0 “ ; - -b lank

i f bitmap-on=’l’ t h e n

e l s e

end i f ;

bit-rgb <= bitmap-rgb ;

bit-rgb <= ” 1 1 0 ” ; -- y e l l o w b a c k g r o u n d

end i f ;
130 end p r o c e s s ;

end dual-port-ram-arch;

The HDL code for the top-level system is shown in Listing 12.8.

Listing 12.8 Complete circuit for a bit-mapped screen

l i b r a r y ieee;
use ieee.std-logic-1164.all;
e n t i t y dot-top i s

p o r t (
5 clk, reset : i n std-logic ;

btn: i n std-logic-vector (1 downto 0) ;
sw: i n std-logic-vector (2 downto 0) ;
hsync , vsync : o u t std-logic;
rgb : o u t std-logic-vector (2 downto 0)

10) ;
end dot-top;

a r c h i t e c t u r e arch of dot-top i s
s i g n a l pixel-x , pixel-y : std-logic-vector (9 downto 0) ;

s i g n a l rgb-reg , rgb-next : std-logic-vector (2 downto 0) ;

-_ i n s t a n t i a t e VGA s y n c c i r c u i t
vga-sync-unit : e n t i t y work. vga-sync

20 p o r t map(clk=>clk, reset=>reset ,

15 s i g n a l video-on , pixel-tick: std-logic;

beg in

hsync=>hsync, vsync=>vsync,
video-on=>video-on, p-tick=>pixel-tick,
pixel-x=>pixel-x, pixel-y=>pixel-y);

__ i n s t a n t i a t e bit -mapped p i x e 1 g e n e r a t o r

p o r t map(clk=>clk , reset=>reset , btn=>btn, sw=>sw,
25 bitmap-unit : e n t i t y work. bitmap-gen

video-on=>video-on, pixel-x=>pixel-x,
pixel-y=>pixel-y , bit-rgb=>rgb-next 1 ;

-- r g b b u f f e r
30 p r o c e s s (clk)

beg in
i f (clk ’ event and clk= ’ 1 ’) t h e n

i f (pixel-tick=’ 1’) t h e n
rgb-reg <= rgb-next ;

35 end i f ;
end i f ;

end p r o c e s s ;
rgb <= rgb-reg;

BIBLIOGRAPHIC NOTES 287

e n d a r c h ;

12.5.2 Single-port RAM implementation

Although a dual-port memory is ideal, it is not always available. Using regular single-port
memory, such as the S3 board’s external SRAM, for the video memory requires careful
coordination between the write and read operations to avoid interruption on data retrieval.
For demonstration purposes, we configure the embedded block RAM as a single-port syn-
chronous SRAM and redesign the previous dot trace circuit.

In the dot trace circuit, the dot’s coordinates are updated once every screen scan. Thus,
the video memory can be written at this rate as well. We can do this during the vertical
retrace since the video is off in this period and writing video memory does not interfere
with the screen data retrieval. Note that the refr-tick signal is asserted when pixel-y
is 48 1. The video is off in this location, and writing video memory will not interfere with
the screen data retrieval. We use this signal as the write enable signal, we, for the single-port
RAM. The single-port RAM module discussed in Listing 11.2 can be used for this purpose.
The memory portion of Listing 12.7 now becomes

__ i n s t a n t i a t e v i d e o sram
v i d e o - r a m : e n t i t y work.xilinx-one-port-ram-sync

g e n e r i c map (ADDR-W IDTH = > 14, DATA-W IDTH = >3)
p o r t m a p (c l k = > c l k , we=>we, a d d r = > a d d r ,

d i n = > d i n , d o u t = > d o u t) ;
__ v i d e o ram i n t e r f a c e
addr-w <=std-logic_vector(dot-y-reg & d o t - x - r e g) ;
a d d r - r <=

addr <= addr-w when r e f r - t i c k = ’ l ’ e l s e a d d r - r ;
we <= r e f r - t i c k ;
d i n <= s w ;
b i t m a p - r g b <= d o u t ;

s t d - l o g i c - v e c t o r (p i x - y (6 d o w n t o 0) & p i x - x (6 d o w n t o 0) ;

The dot trace circuit updates one pixel in a screen scan. The required memory bandwidth
for writing is 60*3 bits per second, which is rather low. Thus, the previous design is fairly
straightforward. The design of memory interface becomes much more difficult when a
large memory bandwidth is required (i.e., when a large portion of the screen is updated at
a rapid rate).

12.6 BIBLIOGRAPHIC NOTES

Rapid Prototyping of Digital Systems by James 0. Hamblen et al. contains timing informa-
tion for monitors with different resolutions and refresh rates.

12.7 SUGGESTED EXPERIMENTS

12.7.1 VGA test pattern generator

A VGA test pattern generator produces two simple patterns to verify operation of a VGA
monitor. The first pattern divides the screen evenly into eight vertical stripes, each displaying

288 VGA CONTROLLER I: GRAPHIC

a unique color. The second pattern is similar but the screen is divided into eight horizontal
stripes. A 1-bit switch is used to select the pattern.

Design a pixel generating circuit for this pattern generator and then combine it with the
synchronization circuit in a top-level module. Synthesize and verify operation of the circuit.

12.7.2 SVGA mode synchronization circuit

The specification for the super VGA (SVGA) mode with 72-Hz refresh rate is
resolution: 800-by-600 pixels
pixel rate: 50 MHz
horizontal display region: 800 pixels
horizontal right border: 64 pixels
horizontal left border: 56 pixels
horizontal retrace: 120 pixels
vertical display region: 600 lines
vertical bottom border: 23 lines
vertical top border: 37 lines

a vertical retrace: 6 lines
We wish to create a dual-mode synchronization circuit that can support both VGA and

1. Modify the horizontal and vertical synchronization counters of Listing 12.1 to ac-
commodate both modes.

2. Design a pixel-generating circuit that draws a 100-pixel grid on the screen (i.e., draw
a vertical line every 100 pixels and draw a horizontal line every 100 pixels).

3. Derive a top-level module. Synthesize and verify operation of the two modes.

SVGA modes. The mode can be selected by a switch. Construct the circuit as follows:

12.7.3 Visible screen adjustment circuit

Due to the internal timing error of a monitor, the visible portion of the screen may not
always be centered. We can adjust the location of the visible portion by slightly modifying
the widths surrounding black border areas. In a horizontal scan line, there are 64 pixels
for the right and left border regions. To move the visible portion horizontally, we can add
a certain number of pixels to one border region and subtract the same number from the
opposite border region. We can adjust the visible portion vertically in a similar fashion.
Design a screen adjustment circuit as follows:

1. Expand the VGA synchronization circuit to include this feature. Use a switch to
select the vertical or horizontal mode, and use two pushbuttons to move the visible
screen to leftlup and nghtldown.

2. Modify the testing circuit in Section 12.2.5 to incorporate the new synchronization
circuit.

3. Synthesize and verify operation of the circuit.

12.7.4 Ball-in-a-box circuit

The ball-in-a-box circuit displays a bouncing ball inside a square box. The square box
is centered on the screen and its size is 256-by-256 pixels. The ball is an 8-by-8 round
ball. When the ball hits the wall, the ball bounces back and the wall flashes (i.e., changes
color briefly). The ball can travel at four different speeds, which are selected by two slide

SUGGESTED EXPERIMENTS 289

Figure 12.11 Screen of the breakout game.

switches, and its direction changes randomly when a pushbutton switch is pressed. Derive
the HDL code and then synthesize and verify operation of the circuit.

12.7.5 Two-balls-in-a-box circuit

We can expand the circuit in Experiment 12.7.4 to include two balls inside the box. When
two balls collide, the new directions of the two balls should follow the laws of physics.
Derive the HDL code and then synthesize and verify operation of the circuit.

12.7.6 Two-player pong game

The two-player pong game replaces the left wall with another paddle, which is controlled by
the second player. To better accommodate two players, we can use the keyboard interface
of Section 8.4 as the input device. Four keys can be defined to control vertical movements
of the two paddles. Derive the HDL code and then synthesize and verify operation of the
circuit.

12.7.7 Breakout game

The breakout game is a somewhat like the pong game. In this game, the left wall is replaced
by several layers of “bricks.” When the ball hits a brick, the ball bounces back and the brick
disappears. The basic screen is shown in Figure 12.11. As in the code of Listing 12.5, we
assume that the game runs continuously. Derive the HDL code and then synthesize and
verify operation of the circuit.

12.7.8 Full-screen dot trace

We can implement the full-screen dot trace circuit of Section 12.5 using the external SRAM
chip as follows:

1. Modify the SRAM controller in Chapter 10 to configure the SRAM chip as a 2I9-by-8
memory.

290 VGA CONTROLLER I: GRAPHIC

2. Follow the discussion in Section 12.5.2 to incorporate the new memory module in

3. Synthesize and verify operation of the circuit.
the circuit. Note that accessing the external memory requires two clock cycles.

12.7.9 Mouse pointer circuit

The mouse interface is discussed in Section 9.5. The mouse pointer circuit uses a mouse
to control the movement of a small 16-by-16 square on the screen. It functions as follows:

0 The square moves according to the movement of the mouse.
0 The pointer wraps around when it reaches a border.
0 The pointer changes color when the left button of the mouse is pressed. It circulates

through the eight colors defined in Table 12.1.
Synthesize and verify operation of the circuit.

12.7.1 0 Small-screen mouse scribble circuit

Mouse scribble circuit keeps track of the trace of the mouse movement in a 128-by-128
screen, somewhat similar to the dot trace circuit discussed in Section 12.5. Its specification
is as follows:

0 The 3-bit switch determines the color of the trace.
0 Clicking the left button of the mouse turns on and off the trace alternately.
0 Clicking the right button of the mouse clears the screen.

Synthesize and verify operation of the circuit.

12.7.1 1

Repeat Experiment 12.7.10, but use the full screen. An external SRAM module similar to
that in Experiment 12.7.8 is needed for this circuit.

Full-screen mouse scribble circuit

CHAPTER 13

VGA CONTROLLER II: TEXT

13.1 INTRODUCTION

A tile-mapped pixel generation scheme is discussed in Section 12.3. A tile can be considered
as a “super pixel.” Whereas a pixel is defined by a 3-bit word in a bit-mapped scheme, a tile
is mapped to a predesigned pattern. One method of constructing a text display is to treat the
characters as tiles and design the pixel generation circuit with the tile-mapped scheme. We
discuss this method in this chapter and apply it to add scores and rules to the pong game.

13.2 TEXT GENERATION

13.2.1 Character as a tile

When applying a tile-mapped scheme, we treat each character as a tile. In a bit-mapped
scheme, the value of a pixel represents a 3-bit color. On the other hand, the value of a tile
represents the code of a specific pattern. For the text display, we use the 7-bit ASCII code
for the character tiles.

The patterns of the tiles constitute thefint of the character set. A variety of fonts are
available. We choose an 8-by-16 (i.e., 8-column-by-16-row) font similar to the one used in
early IBM PC. In this font, each character is represented as an 8-by-16 pixel pattern. The
pattern for the letter “A” is shown in Figure 13.1(a).

The character patterns are stored in a ROM and each pattern requires 24 * 8 bits. The
pattern memory is known as font ROM. The original font set consists of 256 patterns,

FPGA Prototyping by VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

291

292 VGA CONTROLLER 11: TEXT

character
address row

1000001 0000
1000001 0001

*?-

.

1000001 1110
1000001 1111

.
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0001 0000
001 1 1000
01 101 100
1 10001 10
11000110
11111110
1 10001 10
1 10001 10
1 10001 10
1 10001 10
00000000
0 0 0 0 0 0 0 0
00000000
0 0 0 0 0 0 0 0 . . .

2"-by-8 ROM

(a) Pixel pattern (b) ROM content

Figure 13.1 Font pattern for the letter A.

including digits, upper- and lowercase letters, punctuation symbols, and many special-
purpose graphic symbols. We implement only the first half [i.e., 128 Q7)] of the patterns
and exclude most graphic symbols. To accommodate this set, 27 * 24 * 8 ROM bits are
needed. It is usually configured as a 211-by-8 ROM.

When we use these 8-by-16 characters (i.e., tiles) in a 640-by-480 resolution screen, 80
(i.e., 7) tiles can be fitted into a horizontal line and 30 (i.e., %) tiles can be fitted into a
vertical line. In other words, the screen can be treated as an 80-by-25 tile screen. We can
put characters on the screen using these scaled coordinates.

13.2.2 Font ROM

Our font set implements the 128 characters of the ASCII code, listed in Table 7.1. The 128
(27) character patterns can be accommodated by a 211-by-8 font ROM. In this ROM, the
seven MSBs of the 1 1-bit address are used to identify the character, and the four LSBs of
the address are used to identify the row within a character pattern. The address and ROM
content for the letter "A" are shown in Figure 13.1(b).

In the ASCII table, the first column (ASCII codes 0016 to lF16) are nonprintable control
characters. The font ROM uses these codes to implement special graphic symbols. For
example, the 0616 code will generate a spade pattern, 6, on the screen. Note that the 0016
code is reserved for a blank tile.

The 211-by-8 font ROM can fit neatly into a single block RAM of the Spartan-3 device.
We use the ROM template of Listing 11.6 to ensure that a block RAM will be inferred
during synthesis. Part of the HDL code is shown in Listing 13.1. The complete code has
211 rows in constant definition and the file can be downloaded from the companion Web
site.

TEXT GENERATION 293

Listing 13.1 Partial code of the font ROM

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y font-rom i s

5 p o r t (
clk: in std-logic;
addr : in std-logic-vector (1 0 downto 0) ;
data: out std-logic-vector (7 downto 0)

) ;
10 end f ont-rom ;

a r c h i t e c t u r e arch of font-rom i s

15

20

25

30

35

40

45

50

c o n s t a n t ADDR-WIDTH: integer :=ll;
c o n s t a n t DATA-WIDTH: integer:=8;
s i g n a l addr-reg : std-logic-vector (ADDR-WIDTH -1 downto 0) ;
type rom-type i s array (0 to 2**ADDR-WIDTH-l)

-- ROM d e f i n i t i o n
c o n s t a n t R U M : rom-type : = (-- 2*11 - b y 4
-- c o d e x00 (b l a n k s p a c e)
" 0 0 0 0 0 0 0 0 " , -- 0
" 0 0 0 0 0 0 0 0 " , -- 1
" 0 0 0 0 0 0 0 0 " , -- 2
" 0 0 0 0 0 0 0 0 " , -- 3
" 0 0 0 0 0 0 0 0 " , -- 4
" 0 0 0 0 0 0 0 0 " , -- 5
"00000000" , -- 6
" 0 0 0 0 0 0 0 0 " , -- 7
"00000000" , -- 8
"00000000" , -- 9
"00000000" , -- a
" O O O O O O O O " , -- b
" 0 0 0 0 0 0 0 0 " , -- c
" 0 0 0 0 0 0 0 0 " , -- d
'1 00000000 , -- e
" 0 0 0 0 0 0 0 0 " , -- f
-- c o d e x O l (s m i l e y f a c e)
" 0 0 0 0 0 0 0 0 " , -- 0
"00000000" , -- 1
"01111110", -- 2 * * * * * *
" 1 0 0 0 0 0 0 1 " , -- 3 * *
" 1 0 1 0 0 1 0 1 " , -- 4 * * * *
" 1 0 0 0 0 0 0 1 " , -- 5 * *
"1OOOOOO1", -- 6 * *
"10111101'~, -- 7 * * * * * *
"10011001", -- 8 * * * *
~ ' 1 0 0 0 0 0 0 1 " , -- 9 * *
I' 10000001 " , -- a * *
"01111110", -- b * * * * * *
I' 00000000 " , -- C

' ' 00000000" , -- d
" 0 0 0 0 0 0 0 0 " , -- e

of std-logic-vector (DATA-WIDTH-1 downto 0) ;

294 VGA CONTROLLER 11: TEXT

Figure 13.2 Two-stage text generation circuit.

" 0 0 0 0 0 0 0 0 " , -- f
__ code x 0 2

1 ;
beg in

-- a d d r r e g i s t e r t o i n f e r b l o c k RAM
p r o c e s s (clk)

S C . . .

M) beg in
i f (clk'event and clk = '1') then

end i f ;
end p r o c e s s ;

addr-reg <= addr;

65 data <= ROM(to-integer(unsigned(addr-reg))) ;
end arch;

Note that the block RAM-based ROM implementation introduces one-clock-cycle delay,
as discussed in Section 11.4.3.

13.2.3 Basic text generation circuit

The pixel generation circuit generates the pixel values according to the current pixel coor-
dinates (provided by the pixel-x and pixel-y signals) and the external data and control
signals. Pixel generation based on a tile-mapped scheme involves two stages. The first
stage uses the upper bits of the pixel-x and pixel-y signals to generate a tile's code, and
the second stage uses this code and lower bits to generate the pixel's value.

The text generation circuit follows this method, and the basic diagram is shown in
Figure 13.2. The screen is treated as a grid of 80-by-30 tiles, each containing an 8-by-
16 font pattern. In the first stage, the pixel-x(9 downto 3) and pixeLy(8 downto
4) signals provides the x- and y-coordinates of the current tile location. The character
generation circuit uses these coordinates, combined with other external data, to generate
the value of this tile (labeled char-addr), which corresponds to a character's ASCII code.
In the second stage, the ASCII code becomes the seven MSBs of the address of the font
ROM and specifies the location of the current pattern. It is concatenated with the four
LSBs of the screen's y-coordinate [i.e., pixel-y(3 downto O), labeled row-addr] to
form the complete address (labeled rom-addr) of the font ROM. The output of the font
ROM (labeled font-word) corresponds to an 8-bit row in the pattern. The three LSBs

TEXT GENERATION 295

of the screen’s x-coordinate [i.e., p i x e l x (2 downto 01, labeled bi t -addr] specify the
desired pixel location, and an 8-to-1 multiplexer routes the pixel to the output.

13.2.4 Font display circuit

We use a simple font display circuit to verify operation of the font ROM and display all
font patterns on the screen. The 128 patterns are arranged in four rows, which correspond
to the four columns of the ASCII table in Table 7.1. We can obtain each pattern by using
the proper x- and y-coordinates to generate the desired ASCII code, which is labeled the
char-addr signal. The code segment is

char-addr <= pixel-y(5 downto 4) & pixel-x(7 downto 3);

The p ixeLx(7 downto 3) signal forms the five LSBs of the ASCII code, and thus 32 (2 5)
consecutive font patterns will be displayed in a row. The p ixeLy(5 downto 4) signal
forms the two MSBs of the ASCII code, and thus four consecutive rows will be displayed.
Since the upper bits of the p i x e l x and pixel-y signals are left unspecified, the 32-by-4
region will be displayed repetitively on the screen. An additional code segment is included
to turn on the display for the top-left portion of the screen only. The complete code is shown
in Listing 13.2.

Listing 13.2 Pixel generation of a font display circuit

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y font-test-gen i s

j p o r t (
clk: in std-logic;
video-on: in std-logic;
pixel-x , pixel-y : std-logic-vector (9 downto 0) ;
rgb-text : out std-logic-vector (2 downto 0)

10) ;
end font-test-gen;

a r c h i t e c t u r e arch of font-test-gen i s
s i g n a l rom-addr : std-logic-vector (10 downto 0) ;

15 s i g n a l char-addr : std-logic-vector (6 downto 0) ;
s i g n a l row-addr: std-logic-vector (3 downto 0) ;
s i g n a l bit-addr : std-logic-vector (2 downto 0) ;
s i g n a l f ont-word: std-logic-vector (7 downto 0) ;
s i g n a l f ont-bit , text-bit-on : std-logic;

-_ i n s t a n t i a t e f o n t ROM
font-unit: e n t i t y work.font-rom

-- f o n t ROM i n t e r f a c e

row-addr <=pixel-y (3 downto 0) ;
rom-addr <= char-addr & row-addr;
bit-addr <=pixel-x (2 downto 0) ;
font-bit <= font-word(to-integer(unsigned(n0t bit-addr)));

text-bit-on <=

20 begin

port map(clk=>clk, addr=>rom-addr , data=>font-word) ;

25 char-addr <=pixel-y (5 downto 4) & pixel-x (7 downto 3) ;

30 -- ” o n ” r e g i o n l i m i t e d t o t o p - l e f t c o r n e r

296 VGA CONTROLLER 11: TEXT

font-bit when pixel-x (9 downto 8) = " 0 0 " and

' 0 ' .
pixel-y (9 downto 6) = 8 ' 0 0 0 0 ' 8 e l s e

35 -- rgb m u l t i p l e x i n g c i r c u i t
process(video-on,font-bit,text-bit-on)
beg in

i f video-on='O' then
rgb-text <= " 0 0 0 " ; - -blank

40 e l s e
i f text-bit-on='l' then

e l s e
rgb-text <= " 0 1 0 " ; -- g r e e n

rgb-text <= " 0 0 0 " ; -- b l a c k
45 end i f ;

end i f ;
end p r o c e s s ;

end arch;

The key part of the code is the font ROM interface. For clarity, we define the following

0 char-addr: 7 bits, the ASCII code of the character
0 row-addr: 4 bits, the row number in a particular font pattern
0 rom-addr: 11 bits, the address of the font ROM; the concatenation of char-addr

0 bit -addr: 3 bits, the column number in a particular font pattern
0 f ont-word: 8 bits, a row of pixels of the font pattern specified by rom-addr
0 f o n t - b i t : 1 bit, one pixel of font-word specified by b i t -addr

signals for the font ROM, as shown in Figure 13.2:

and row-addr

The connection of these signals follows the diagram in Figure 13.2. The routing of the

font-bit <= font-word(to-integer(unsigned(n0t bit-addr)));

Note that a row (i.e., a word) in the font ROM is defined with a descending order [i.e., (7
downto O)]. Since the screen's x-coordinate is defined in an ascending fashion, in which
the numbers increases from left to right, the order of the retrieved bits must be reversed.
This is achieved by the not operator in the expression.

We need to combine the synchronization circuit and create the top-level description. The
HDL code is shown in Listing 13.3.

f on t -b i t signal is done by a multiplexer, coded as an array with dynamic index:

Listing 13.3

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y font-test-top i s

Top-level description of a font display circuit

5 p o r t (
clk, reset: in std-logic;
hsync, vsync: out std-logic;
rgb: out std-logic-vector (2 downto 0)

) ;
10 end font-test-top;

a r c h i t e c t u r e arch of font-test-top i s
s i g n a l pixel-x , pixel-y : std-logic-vector (9 downto 0) ;

TEXT GENERATION 297

signal video-on , pixel-tick: std-logic ;
15 signal rgb-reg , rgb-next : std-logic-vector (2 downto 0) ;
begin

__ i n s t a n t i a t e VGA s y n c c i r c u i t

20

vga-sync-unit : entity work. vga-sync
port map(clk=>clk , reset=>reset , hsync=>hsync ,

vsync=>vsync, video-on=>video-on,
pixel-x=>pixel-x, pixel-y=>pixel-y,
p-tick=>pixel-tick);

__ i n s t a n t i a t e f o n t ROM
font-gen-unit: entity work.font-test-gen

25 port map(clk=>clk , video-on=>video-on ,
pixel-x=>pixel-x, pixel-y=>pixel-y,
rgb-text=>rgb-next) ;

-- r g b b u f f e r
process (clk)

30 begin
if (clk’event and clk=’l’) then

if (pixel-tick=’l’) then
rgb-reg <= rgb-next ;

end i f ;
35 end i f ;

end process;
rgb <= rgb-reg;

end arch;
~~

There is subtle timing issue in this circuit. Because of the block RAM implementation,
the font ROM’s output suffers a one-clock-cycle delay. However, since the pixel-tick
signal is asserted every two clock cycles, the pixelx signal is remained unchanged within
this interval and the corresponding bit (i.e., f ont-bit) can be retrieved properly. The rgb
multiplexing circuit can use this data, and the desired value is stored to the rgb-reg register
in a timely manner.

13.2.5 Font scaling

In the tile-mapped scheme, we can scale a tile pattern to larger sizes by “enlarging” the
screen pixels. For example, we can scale the 8-by-16 font to the 16-by-32 font by enlarging
the original pixel four times (i.e., expanding one pixel to four pixels). To perform the
scaling, we just need to shift pixel coordinates to the right 1 bit and discard the LSBs of the
pixelx and pixel-y signals. This can best be explained by an example. Let us repeat
the previous font displaying circuit with enlarged 16-by-32 fonts. The screen can now be
treated as a grid of 40-by-15 tiles. The new font addresses become

row-addr <=pixel-y (4 downto 1) ;
bit-addr <=pixel-x (3 downto 1) ;
char-addr <=pixel-y (6 downto 5) & pixel-x (8 downto 4) ;

The first two statements imply that the same font-bit value will be obtained when
pixeLx(0) and pixel-y(O) are “OO”, “Ol”, “ lo”, and “ l l ” , and this effectively enlarges
the original pixel to four pixels. The text-bit-on condition also needs to be modified to
accommodate a larger region:

298 VGA CONTROLLER I): TEXT

Figure 13.3 Text generation circuit with tile memory.

text-bit-on <=
font-bit when pixel-x (9) = " 0 " and

' 0 ' ;
pixel-y (9 downto 7) = " 0 0 0 " e l s e

We can apply this scheme to scale up the font even further. Note that the enlarged fonts
may appear jagged because they simply magnify the original pattern and introduce no new
detail.

13.3 FULL-SCREEN TEXT DISPLAY

A full-screen text display, as the name indicates, uses the entire screen to display text
characters. The character generation circuit now contains a tile memory that stores the
ASCII code of each tile. The design of the tile memory is similar to the video memory of
the bit-mapped circuit in Section 12.5. For easy memory access, we can concatenate the x-
and y-coordinates of a tile to form the address. This translates to 12 bits for the 80-by-30
(i.e., ~ ? ~ - b y - 2 ~) tile screen. Since each tile contains a 7-bit ASCII code, a 212-by-7 memory
module is required. A synchronous dual-port RAM can be used for this purpose. A circuit
with tile memory is shown in Figure 13.3.

Because accessing tile memory requires another clock cycle, retrieving a font pattern
is now increased to two clock cycles. This prolonged delay introduces a subtle timing
problem. Because the p ixe l -x signal is updated every two clock cycles, its value has
incremented when the f ont-word value becomes available. Thus, when the bit is retrieved
by the statements

bit-addr <=pixel-x (2 downto 0) ;
font-bit <= font-word(to-integer(unsigned(n0t bit-addr)));

the incremented bi t -addr is used and an incorrect font bit will be selected and routed to
the output. One way to overcome the problem is to pass the p ixe l -x signal through two
buffers and use this delayed signal in place of the p ixe l -x signal.

We use a simple circuit to demonstrate the design of the full-screen tile-mapped scheme.
The circuit reads an ASCII code from a 7-bit switch and places it in the marked location

FULL-SCREEN TEXT DISPLAY 299

of the 80-by-30 tile screen. The conceptual diagram is shown in Figure 13.3. A cursor is
included to mark the current location of entry, where the color is reversed. The cursor
block keeps track of the current location of the cursor. The circuit uses three pushbutton
switches for control. Two buttons move the cursor right and down, respectively. The third
button is for the write operation. When it is pressed, the current value of the 7-bit switch is
written to the tile memory. The HDL code is shown in Listing 13.4.

Listing 13.4 Pixel generation of a full-screen text display

l i b r a r y ieee;
use ieee. std-logic-1164, a l l ;
use ieee . numeric-std. a l l ;
e n t i t y text-screen-gen i s

5 p o r t (
clk, reset : std-logic ;
btn: std-logic-vector (2 downto 0) ;
sw: std-logic-vector (6 downto 0) ;
video-on : in std-logic ;

in pixel-x , pixel-y : in std-logic-vector (9 downto 0) ;
text-rgb : out std-logic-vector (2 downto 0)

) ;
end text-screen-gen ;

15 a r c h i t e c t u r e arch of text-screen-gen i s
-- f o n t ROM
s i g n a l char-addr : std-logic-vector (6 downto 0) ;
s i g n a l rom-addr: std-logic-vector (1 0 downto 0) ;
s i g n a l row-addr : std-logic-vector (3 downto 0) ;

s i g n a l f ont-word: std-logic-vector (7 downto 0) ;
s i g n a l font-bit : std-logic;
__ t i l e RAM
s i g n a l we : std-logic;

s i g n a l din, dout : std-logic-vector (6 downto 0) ;
- - 8 0 - b y - 3 0 t i l e map
c o n s t a n t MAX-X: integer : =80 ;
c o n s t a n t MAX-Y: integer :=30;

s i g n a l cur-x-reg , cur-x-next : unsigned (6 downto 0) ;
s i g n a l cur-y-reg , cur-y-next : unsigned (4 downto 0) ;
s i g n a l move-x-tick , move-y-tick: std-logic;
s i g n a l cursor-on: std-logic ;

s i g n a l pix-xl-reg , pix-yl-reg : unsigned (9 downto 0) ;
s i g n a l pix-x2_reg, pix-y2_reg : unsigned (9 downto 0) ;
-- o b j e c t o u t p u t s i g n a l s
s i g n a l font-rgb , font-rev-rgb:

20 s i g n a l bit-addr : unsigned (2 downto 0) ;

25 s i g n a l addr-r , addr-w: std-logic-vector (1 1 downto 0) ;

30 -- c u r s o r

35 -- d e l a y e d p i x e l c o u n t

40 std-logic-vector (2 downto 0) ;
begin

_- i n s t a n t i a t e d e b o u n c e c i r c u i t for two b u t t o n s
debounce-unit0: e n t i t y work. debounce

port map(clk=>clk, reset=>reset , sw=>btn(O),
45 db-level=>open, db-tick=>move-x-tick);

300 VGA CONTROLLER 11: TEXT

65

debounce-unit1 : entity work. debounce
port map(clk=>clk, reset=>reset , sw=>btn(l),

db-level=>open, db-tick=>move-y-tick);
__ i n s t a n t i a t e f o n t ROM

50 font-unit : entity work. f ont-rom
port map(clk=>clk, addr=>rom-addr , data=>font-word) ;

-- i n s t a n t i a t e d u a l - p o r t t i l e RAM (2 * 1 2 - b y - 7)
video-ram: entity w o r k . x i l i n x - d u a l - p o r t _ r a m _ s y n c

generic map (ADDR-W IDTH=>12 , DATA-W IDTH=>7)
port map(clk=>clk, we=>we,

addr-a=>addr-w , addr-b=>addr-r,
din-a=>din, dout-a=>open, dout-b=>dout);

__ r e g i s t e r s
process (clk)

~i begin
if (clk’event and clk=’l’) then

cur-x-reg <= cur-x-next ;
cur-y-reg <= cur-y-next ;
pix-xi-reg <= unsigned(pixe1-x) ; -- 2 - c l o c k d e l a y
pix-x2_reg <= pix-xl-reg;
pix-yl-reg <= unsigned(pixe1-y);
pix-y2_reg <= pix-yl-reg;

end if ;
end process;

70 -- t i l e RAM w r i t e
addr-w <=std-logic-vector(cur-y-reg & cur-~-reg);
we <= btn(2);
din <= sw;
__ t i l e RAM r e a d

addr-r <=pixel-y(8 downto 4) & pixel-x(9 downto 3);
char-addr <= dout;
-- f o n t ROM
row-addr <=pixel-y (3 downto 0) ;

xo rom-addr <= char-addr & row-addr;
-- u s e d e l a y e d c o o r d i n a t e t o s e l e c t a b i t
bit-addr <=pix-x2_reg (2 downto 0) ;
font-bit <= font-word(to-integer(not bit-addr));
__ new c u r s o r p o s i t i o n

75 -- u s e u n d e l a y e d c o o r d i n a t e s t o f o r m t i l e RAM a d d r e s s

8s cur-x-next <=
(others=>’O’) when move-x-tick=’l’ and -- w r a p a r o u n d

cur-x-reg + 1 when move-x-tick=’l’ else
cur-x-reg ;

(others=>’O’) when move-y-tick=’l’ and -- w r a p a r o u n d

cur-y-reg + 1 when move-y-tick=’l’ else
cur-y-reg;

cur-x-reg=MAX-X -1 else

90 cur-y-next <=

cur-y-reg=MAX-Y -1 else

95 -- o b j e c t s i g n a l s
_- g r e e n o v e r b l a c k and r e v e r s e d v i d e o f o r c u r s e r
font-rgb < = “ 0 1 0 ” when font-bit=’l’ else “ 0 0 0 “ ;
font -rev-rgb <= “ 000 “ when font -b it = ’ 1 ’ else I‘ 010 “ ;

FULL-SCREEN TEXT DISPLAY 301

110

115

u s e d e
cur sor-on

_-

-- r g b m)

a y e d c o o r d
< = ’ l ’ when

J O J ;
1 t i p 1 e x i n g

n a t e s f o r c o m p a r i s o n
pixwy2-reg (8 downto 4)=cur-y-reg and
pix-x2_reg (9 downto 3)=cur_x_reg e l s e

i r c u i t
process(video-on,cursor-on,font-rgb,font-rev-rgb)
beg in

i f video-on=’O’ then

e l s e
text-rgb <= “000“; - -b lank

i f cursor-on=’l’ then

e l s e

end i f ;

text-rgb <= font-rev-rgb;

text-rgb <= font-rgb;

end i f ;
end p r o c e s s ;

end arch;

The font ROM interface signals are similar to those in Listing 13.2 except that the
char-addr is obtained from the read port of the tile memory. To facilitate the font ROM
access delay, we creat two delayed signals, pixx2-reg and pix-y2_reg, from the current
x- and y-coordinates, p i x e l x and pixel-y. Note that the undelayed signals, pixel-x
and pixel-y, are used to form the address to access the font ROM, but the delayed signal,
pix-x2_reg, is used to obtain the font bit. The instantiation and interface of the dual-port
tile RAM is similar to those of the video RAM in Listing 12.7.

The cursor-on signal is used to identify the current cursor location. The colors of the
font pattern are reversed in this location. Because the font bits are delayed by two clocks,
we use the delayed coordinates, pixx2-reg and pix-y2-reg, for comparison.

The delayed font bits also introduce one pixel delay for the final rgb signal. This implies
the overall visible portion of the VGA monitor is shifted to right by one pixel. To correct
the problem, we should revise the vga-sync circuit and use the delayed pixx2-reg and
pix-y2_reg signals to generate the hsync and vsync signals. Since the shift has little
effect on the overall video quality, we do not make this modification.

The top-level code combines the text pixel generation circuit and the synchronization
circuit and is shown in Listing 13.5.

Listing 13.5 Top-level system of a full-screen text display

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
e n t i t y text-screen-top i s

por t (
5 clk ,reset : i n std-logic;

btn: i n std-logic-vector (2 downto 0) ;
s w : in std-logic-vector (6 downto 0) ;
hsync , vsync : out std-logic;
rgb: out std-logic-vector (2 downto 0)

10) ;
end text-screen-top;

a r c h i t e c t u r e arch of text-screen-top i s
s i g n a l pixel-x , pixel-y : std-logic-vector (9 downto 0) ;

302 VGA CONTROLLER 1 1 : TEXT

15 signal video-on , pixel-tick : std-logic;
signal rgb-reg , rgb-next : std-logic-vector (2 downto 0) ;

__ i n s t a n t i a t e VGA s y n c c i r c u i t
vga-sync-unit : entity work. vga-sync

20 port map(clk=>clk, reset=>reset ,

begin

hsync=>hsync, vsync=>vsync,
video-on=>video-on, p-tick=>pixel-tick,
pixel-x=>pixel-x, pixel-y=>pixel-y);

__ i n s t a n t i a t e f u l l - s c r e e n t e x t g e n e r a t o r
25 text-gen-unit : entity work. text-screen-gen

port map(clk=>clk, reset=>reset , btn=>btn, sw=>sw,
video-on=>video-on, pixel-x=>pixel-x,
pixel-y=>pixel-y , text-rgb=>rgb-next) ;

-- r g b b u f f e r
30 process (clk)

begin
if (clk ' event and clk= ' 1 ' then

if (pixel-tick='l') then
rgb-reg <= rgb-next;

35 end if ;
end if;

end process;
rgb <= rgb-reg;

end arch;

13.4 THE COMPLETE PONG GAME

We create a free-running graphic circuit for the pong game in Section 12.4.3. In this section,
we add a text interface to display scores and messages, and design a top-level control FSM
that integrates the graphic and text subsystems and coordinates the overall circuit operation.
The rules and operations of the complete game are:

0 When the game starts, it displays the text of the rule.
0 After a player presses a button, the game starts.
0 The player scores a point each time hitting the ball with the paddle.
0 When the player misses the ball, the game pauses and a new ball is provided. Three

0 The score and the number of remaining balls are displayed on the top of the screen.
0 After three misses, the game is ended and displays the end-of-game message.

In the following subsections, we first discuss the text subsystem, graphic subsystem, and
auxiliary counters, and then derive a top-level FSM to coordinate and control the overall
operation. The conceptual diagram is shown in Figure 13.4.

balls are provided in each session.

13.4.1 Text subsystem

The text subsystem of the pong game consists of four text messages:
0 Display the score as "Scores : DD" and the number of remaining balls as"Bal1: D"

in 16-by-32 font on top of the screen.

THE COMPLETE PONG GAME 303

hsync
vsync

video-on

pixel-x -
pixel-y -

I C - rgb - > vgasync IC pixel-x hit + -
pixel-y miss -b

mux -
7

- btn

graph-still
-b hit state-reg I

btn - btn
graph-still

,
graph-rgb -
graph-on

PongLTaPh

hsync
vsync

rg !J

-b

-

Figure 13.4 Top-level block diagram of the complete pong game.

miss

d-inc -
d-clr - m100- - dig0

dig1 >counter -
FSM ball

control text-rgb
texton

pong tex t
ball

timer-start 1
timer-up

7 > timer

0 Display the rule message "Rules: Use two but tons t o move paddle up o r

0 Display the "PONG" logo in 64-by-128 font on the background.
0 Display the end-of-game message "Game Over" in 32-by-64 font at the end of the

A sketch of the first three messages is shown in Figure 13.5. The end-of-game message is
overlapped with the rule message and not included.

Since these messages use different font sizes and are displayed at different occasions,
they cannot be treated as a single screen. We treat each text message as an individual object
and generate the on status signal and the font ROM address. For example, the logo message
segment is

down. " in regular font at the beginning of the game.

game.

logo-on <=
'1' when pix-y(9 downto 7) = 2 and

(3<= pix-x(9 downto 6) and pix-x(9 downto 6) < = 6) e l s e
J O J .

row-addr-1 <= std-logic-vector (pix-y (6 downto 3)) ;
bit-addr-1 <= std-logic-vector (pix-x (5 downto 3)) ;
with pix-x(8 downto 6) s e l e c t

char-addr-1 <=
"1010000" when " O i l " , -- P x 5 0
r l l O O i l l l " when "100", -- 0 x4f
"1001110" when "101", -- N x 4 e

304 VGA CONTROLLER 11: TEXT

Figure 13.5 Text of the pong game.

“1000111“ when o t h e r s ; -4 x47

The logo-on signal indicates that the current scan is in the logo region and the corresponding
text should be “turned on.” The other statements specify the message content and the font
ROM connections to generate the scaled 32-by-64 characters. The other three segments are
similar. A separate multiplexing circuit examines various on signals and routes one set of
addresses to the font ROM.

The text subsystem receives the score and the number of remaining balls via the ball,
dig0, and digl ports. It outputs the rgb information via the rgb-text port and outputs
the on status information via the 4-bit text-on port, which is the concatenation of four
individual on signals. The complete code is shown in Listing 13.6.

Listing 13.6 Text subsystem for the pong game

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y pong-text i s

5 p o r t (
clk, reset: in std-logic;
pixel-x , pixel-y : i n std-logic-vector (9 downto 0) ;
dig0 , digl : in std-logic-vector (3 downto 0) ;
ball: in std-logic-vector (1 downto 0) ;
text-on: out std-logic-vector (3 downto 0) ;
text-rgb: out std-logic-vector (2 downto 0)

1 ;
end pong-text ;

10

15 a r c h i t e c t u r e arch of pong-text i s
s i g n a l pix-x , pix-y : unsigned (9 downto 0) ;
s i g n a l rom-addr: std-logic-vector (1 0 downto 0) ;
s i g n a l char-addr , char-addr-s , char-addr-1 , char-addr-r ,

char-addr-o : std-logic-vector (6 downto 0) ;

row-addr-o : std-logic-vector (3 downto 0) ;

bit-addr-o : std-logic-vector (2 downto 0) ;

20 s i g n a l row-addr , row-addr-s , row-addr-1 ,row-addr-r,

s i g n a l bit-addr , bit-addr-s , bit-addr-1, bit-addr-r ,

THE COMPLETE PONG GAME 305

35

55

70

75

s i g n a l f ont-word: std-logic-vector (7 downto 0) ;

s i g n a l score-on, logo-on, rule-on, over-on: std-logic;
s i g n a l rule-rom-addr : unsigned(5 downto 0) ;
type rule-rom-type i s array (0 to 63) of

25 s i g n a l f ont-bit : std-logic ;

std-logic-vector (6 downto 0) ;
30 -- r u l e t e x t ROM d e f i n i t i o n

cons tant RULE-ROM: rule-rom-type : =

(
-- row 1
'I 1 0 1 0 0 1 0 " , -- R
" 1 0 1 0 1 0 1 " , -- u
" 1 0 0 1 1 0 0 " , -- L
1 ' 1 0 0 0 1 0 1 " , -- E
" 0 1 1 1 0 1 0 " , -- :
" 0000000 'I , --
I' 0000000 " , --
" o o o o o o o l ~ , --
(I 0000000 " , --
" 0000000 (I , --
"0000000" , --
" 0000000 It , --
(I 0000000 " , --
I) 0000000 " , --
" 0 0 0 0 0 0 0 " , --
" 0 0 0 0 0 0 0 ~ ' , --

" 1 0 1 0 1 0 1 " , -- u
"1110011'1, -- S

"11001011 ' , -- e
" 0000000 " , --
" 1 1 1 0 1 0 0 " , -- t
" l l l o l l l l ' , -- W

" 1 1 0 1 1 1 1 " , -- 0

" 0 0 0 0 0 0 0 " , --
"11OOO1O", -- b
" 1 1 1 0 1 0 1 " , -- U

"1110100" , -- t
"1110100" , -- t
"1101111" , -- 0

" 1 1 0 1 1 1 0 " , -- n
" 1 1 1 0 0 1 1 " , -- S

I1 0000000 'I , --
-- row 3
" 1 1 1 0 1 0 0 " , -- t
"1101111", -- 0

" 0000000 " , --
"1101101", -- m
" 1 1 0 1 1 1 1 " , -- 0

"1110110", -- v
" 1 1 0 0 1 0 1 " , -- e
" 0000000 " , --
"1110000" , -- p

50 -- row 2

306 VGA CONTROLLER II: TEXT

80

" 1 1 0 0 0 0 1 " , -- a
" 1 1 0 0 1 0 0 " , -- d
" 1 1 0 0 1 O O " , -- d
" 1 1 0 1 1 0 0 " , -- 1

1' 0 0 0 0 0 0 0 I' , --
" 0000000 'I , --

" 1 1 1 0 1 0 1 " , -- u
" 1 1 1 0 0 0 0 " , -- p
"oooooool', --
"llooooll', -- a
" 1 1 0 1 1 1 0 " , -- n
"11001001', -- d
" 0 0 0 0 0 0 0 " , --
" 1 1 0 0 1 0 0 " , -- d
"1101111", -- 0

"lllollll', -- W

"1101110", -- n
" 0 1 0 1 1 1 0 " , -- .
" 0000000 I' , --
" 0 0 0 0 0 0 0 " , --
" 0000000 I t , --

I00 I 1 0000000 I' --

" 1 1 0 0 1 0 1 " , -- e

row 4 --

1 ;
b e g i n

pix-x <= unsigned(pixe1-x);
pix-y <= unsigned(pixe1-y);

font-unit: e n t i t y work.font-rom
10s -- i n s t a n t i a t e f o n t ROM

p o r t map(clk=>clk, addr=>rom-addr, data=>font-word);

I10 -- s c o r e r e g i o n
-- - d i s p l a y s c o r e a n d b a l l a t t o p l e f t
-- - t e x t : " S c o r e :DD B a l l : D "
-- - s c a l e t o 1 6 - b y - 3 2 f o n t

11s score-on <=
'1' when pix-y(9 downto 5) = 0 and

' 0 ' ;
pix-x(9 downto 4) < 1 6 e l s e

row-addr-s <= std-logic-vector (pix-y (4 downto 1)) ;
120 bit-addr-s <= std-logic-vector (pix-x (3 downto 1)) ;

w i t h pix-x(7 downto 4) s e l e c t
char-addr-s <=

"1010011" when "OOOO't, -- S x 5 3
ltllOOO1l" when "OOOl", -- c x 6 3

12s "1101111" when "OOlO", -- o x 6 f
'111100101' when "OOll", -- r x 7 2
"1100101" when ttOIOO", -- e x 6 5
"011101011 when ltOIOl" , -- : x 3 a
tlOll" & dig1 when "OllOI', -- d i g i t 10

THE COMPLETE PONG GAME 307

I30

I35

155

IM)

I65

I70

115

I80

1 1 0 1 1 " & dig0 when "Olll", -- d i g i t 1
~ ~ O O O O O O O ~ f when f l l O O O " ,

0000000 If when 1 0 0 1 I) ,
~ l l O O O O I O ~ f when f l l O I O " , -- B x 4 2
' 1 1 1 0 0 0 0 1 " when " l O 1 l l t , -- a x 6 1
1 1 1 1 0 1 1 0 0 " when " 1 1 0 0 " , -- 1 x 6 c
" 1 1 0 1 1 0 0 " when "110lfr, -- 1 x 6 c
"0111010" when " l l l O t l , -- :
" 0 1 1 0 0 ~ ' & ball when o t h e r s ;

~

-_ l o g o r e g i o n :
__ - d i s p l a y l o g o "PONG" a t t o p c e n t e r
__ - u s e d a s b a c k g r o u n d
__ - s c a l e t o 6 4 - b y - 1 2 8 f o n t

logo-on <=
'1' when pix-y(9 downto 7) = 2 and

' 0 ' .
(3<= pix-x(9 downto 6) and pix-x(9 downto 6)<=6) e l s e

row-addr-1 <= std-logic-vector (pix-y (6 downto 3)) ;
bit-addr-1 <= std-logic-vector (pix-x (5 downto 3)) ;
w i t h pix-x(8 downto 6) s e l e c t

char-addr-1 <=
" 1 0 1 0 0 0 0 " when 1 '01111 , -- P x 5 0
"1001111" when " 1 0 0 " , -- 0 x 4 f
~ ' 1 0 0 1 1 1 0 " when " 1 0 1 " , -- N x 4 e
" 1 0 0 0 1 1 1 " when o t h e r s ; -4 x 4 7

-

__ r u l e r e g i o n
__ - d i s p l a y r u l e a t c e n t e r
__ - 4 l i n e s , 1 6 c h a r a c t e r s e a c h l i n e

__ R u l e :
__ Use t w o b u t t o n s
__ t o move p a d d l e
__ up and down

- r u l e t e x t : __

rule-on <= '1' when pix-x(9 downto 7) = " 0 1 0 " and
pix-y(9 downto 6) = "0010" e l s e

' 0 ' ;
row-addr-r <= std-logic-vector (pix-y (3 downto 0)) ;
bit-addr-r <= std-logic-vector (pix-x (2 downto 0)) ;
rule-rom-addr <= pix-y(5 downto 4) & pix-x(6 downto 3);
char-addr-r <= RULE-ROM(to-integer(rule-rom-addr));

-_ game o v e r r e g i o n
__ - d i s p l a y "Game O v e r " a t c e n t e r
__ - s c a l e t o 3 2 - b y - 6 4 f o n t s

over-on <=
-

'1' when pix-y(9 downto 6)=3 and
5 < = pix-x(9 downto 5) and pix-x(9 downto 5)<=13 e l s e

308 VGA CONTROLLER 11: TEXT

190

' 0 ' ;
row-addr-o <= std-logic-vector (pix-y (5 downto 2)) ;

185 bit-addr-o <= std-logic-vector (pix-x (4 downto 2)) ;
w i t h pix-x(8 downto 5) s e l e c t

char-addr-o <=
"1000111" when "OlOl", -- G x 4 7
" 1 1 0 0 0 0 1 " when "OllO", -- a x 6 1
"1101101" when " O l l l " , -- m x6d
"1100101 '1 when " l O O O " , -- e x 6 5
" 0 0 0 0 0 0 0 " when " 1 0 0 1 " , --
" 1 0 0 1 1 1 1 " when " 1 0 1 0 " , -- 0 x 4 f
t ~ l l l O 1 l O 1 t when "IOll", -- v x 7 6

195 "1100101" when " 1 1 0 0 " , -- e x 6 5
" 1 1 1 0 0 1 0 " when o t h e r s ; -- r x 7 2

-

-- mux f o r f o n t ROM a d d r e s s e s and r g b

p r o c e s s (score-on, logo-on ,rule-on ,pix-x ,pix-y ,font-bit ,
-

200

char-addr-s,char-addr-l,char-addr-r,char-addr-o,
r o w ~ a d d r ~ s , r o w ~ a d d r ~ l , r o w ~ a d d r ~ r , r o w ~ a d d r ~ o ,
b i t - a d d r - s , b i t - a d d r - l , b i t - a d d r - r , b i t _ a d d r - o)

b e g i n
205 text-rgb <= " 1 1 0 " ; -- y e l l o w b a c k g r o u n d

char-addr <= char-addr-s;
i f score-on='I t h e n

210

215

220

row-addr <= row-addr-s
bit-addr <= bit-addr-s
i f font-bit='l' t h e n

end i f ;

char-addr <= char-addr
row-addr <= row-addr-r
bit-addr <= bit-addr-r
i f f ont-bit = ' 1 ' t h e n

end i f ;

char-addr <= char-addr

text-rgb <= "001";

e l s i f rule-on=Jl' t h e n

text-rgb <= "001";

e l s i f logo_on='l' t h e n

225

230

row-addr <= row-addr-1;
bit-addr <= bit-addr-1;
i f font-bit='l ' t h e n

text-rgb <= " 0 1 1 " ;
end i f ;

char-addr <= char-addr-o ;
row-addr <= row-addr-o ;
bit-addr <= bit-addr-o;
i f font-bit='l t h e n

end i f ;

e l s e -- game o v e r

text-rgb <= "001";

end i f ;
235 end p r o c e s s ;

THE COMPLETE PONG GAME 309

text-on <= score-on & logo-on & rule-on & over-on;

-- f o n t ROM i n t e r f a c e

240 rom-addr <= char-addr & row-addr;
font-bit <= font-word(to-integer(unsigned(n0t bit-addr)));

end arch;

The structure of each segment is similar. Because the messages are short, they are
coded with the regular ROM template. Since no clock signal is used, a distributed RAM
or combinational logic should be inferred. Generation of the two-digit score depends on
the two 4-bit external signals, digO and d ig l . Note that the ASCII codes for the digits
0, 1, . . ., 9, are 3016, 3116, . . ., 3916. We can generate the char-addr signal simply by
concatenating “Oil” in front of digO and d ig l .

13.4.2 Modified graphic subsystem

To accommodate the new top-level controller, the graphic circuit in Section 12.4.3 requires
several modifications:

0 Add a g r a - s t i l l (for “still graphics”) control signal. When it is asserted, the vertical
bar is placed in the middle and the ball is placed at the center of the screen without
movement.

0 Add the h i t and miss status signals. The h i t signal is asserted for one clock cycle
when the paddle hits the ball. The miss signal is asserted when the paddle misses
the ball and the ball reaches the right border.

The modified portion of the code is shown in Listing 13.7.
Add a graph-on signal to indicate the on status of.the graph subsystem.

Listing 13.7 Modified portion of a graph subsystem for the pong game

-- new b a l l p o s i t i o n
ball-x-next <=

to_unsigned((MAX-X)/2,10) when gra-still=’l’ e l s e

ball-x-reg ;

to_unsigned((MAX-Y)/2,10) when gra-still=’l’ e l s e
ball-y-reg + ball-vy-reg when refr-tick=’l’ e l s e

5 ball-x-reg + ball-vx-reg when refr-tick=’l’ e l s e

ball-y-next <=

i n ball-y-reg ;
-- new b a l l v e l o c i t y
p r o c e s s (b a l l ~ v x ~ r e g , b a l l ~ v y ~ r e g , b a l l ~ y ~ t , b a l l ~ x ~ l , b a l l ~ x ~ r ,

ball-y-t,ball-y-b,bar-y-t,bar-y-b,gra-still)
begin

15 hit < = ’ O ’ ;
miss < = ’ O ’ ;
ball-vx-next <= ball-vx-reg;
ball-vy-next <= ball-vy-reg;
i f gra-still=’l> then -- i n i t i a 1 v e 1 o c i t y

ball-vx-next <= BALL-V-N;
ball-vy-next <= BALL-V-P;

e l s i f ball-y-t < 1 then __ r e a c h t o p

20

310 VGA CONTROLLER it: TEXT

7 5

30

ball-vy-next <= BALL-V-P;

ball-vy-next <= BALL-V-N;

ball-vx-next <= BALL-V-P; -- b o u n c e b a c k

e l s i f ball-y-b > (MAX-Y-1) then -- r e a c h b o t t o m

e l s i f ball-x-1 <= WALL-X-R then -- r e a c h w a l l

e l s i f (BAR-X-L <=ball-x-r) and (ball-x-r <=BAR-X-R) and
(bar-y-t<=ball-y-b) and (ball-y-t<=bar-y-b) then
-- r e a c h x of r i g h t b a r , a h i t
ball-vx-next <= BALL-V-N; -- b o u n c e b a c k
hit <= >1 ’ ;

e l s i f (ball-x-r >MAX-X) then __ r e a c h r i g h t b o r d e r
a m i s s miss <= ’1 ’ ; --

35 end i f ;
end p r o c e s s ;

graph-on <= wall-on or bar-on or rd-ball-on;

13.4.3 Auxiliary counters

The top-level design requires two small utility modules, m100-counter and timer, to
facilitate the counting. The ml00-counter module is a two-digit decade counter that
counts from 00 to 99 and is used to keep track of the scores of the game. Two control
signals, d-inc and d-clr, increment and clear the counter, respectively. The code is shown
in Listing 13.8.

Listing 13.8 Two-digit decade counter

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y m100-counter i s

s p o r t (
clk, reset: i n std-logic;
d-inc , d-clr : in std-logic;
dig0 , dig1 : out std-logic-vector (3 downto 0)

) ;
10 end m100-counter;

20

25

a r c h i t e c t u r e arch of m100-counter i s
s i g n a l dig0-reg , digl-reg : unsigned (3 downto 0) ;
s i g n a l dig0-next , digl-next : unsigned (3 downto 0) ;

__ r e g i s t e r s
p r o c e s s (clk , reset)
beg in

15 beg in

i f reset=’l’ then
digl-reg <= (o t h e r s = > ’ O ’) ;
dig0-reg <= (o t h e r s = > ’ O ’) ;

digl-reg <= digl-next ;
dig0-reg <= dig0-next ;

e l s i f (clk’event and clk=’l’) then

end i f ;

THE COMPLETE PONG GAME 31 1

30

35

40

45

end p r o c e s s ;
__ n e x t - s t a t e l o g i c for t h e d e c i m a l c o u n t e r
p r o c e s s (d-clr , d-inc , digl-reg , dig0-reg)
begin

dig0-next <= dig0-reg;
digl-next <= digl-reg ;
i f (d-clr=’l’) t hen

dig0-next <= (o t h e r s = > ’ O ’) ;
digl-next <= (o t h e r s = > ’ O ’) ;

i f digO_reg=9 t hen
e l s i f (d-inc= ’ 1 ’) t hen

dig0-next <= (o t h e r s = > ’ 0 ’ 1 ;
i f digl-reg=g t hen -- 1 0 t h d i g i t

digl-next <= (o t h e r s = > ’ O ’) ;
e l s e

digl-next <= digl-reg + 1;
end if ;

dig0-next <= dig0-reg + 1 ;
e l s e -- d i g 0 n o t 9

end i f ;
end i f ;

end p r o c e s s ;
dig0 <= std-logic-vector(digO-reg);
dig1 <= std_logic-vector(digl-reg);

50 end arch;

The timer module uses the 60-Hz tick, t imer-tick, to generate a 2-second interval.
Its purpose is to pause the video for a small interval between transitions of the screens. It
starts counting when the timer-start signal is asserted and activates the timer-up signal
when the 2-second interval is up. The code is shown in Listing 13.9.

Listing 13.9 Two-second timer

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y timer i s

5 p o r t (
clk, reset: in std-logic;
timer-start, timer-tick: in std-logic;
timer-up: o u t std-logic

1 ;
10 end timer :

a r c h i t e c t u r e arch of timer i s

begin
s i g n a l timer-reg , timer-next : unsigned(6 downto 0) ;

15 -- r e g i s t e r s
p r o c e s s (clk , reset)
begin

i f reset=’l’ t hen

e l s i f (clk’event and clk=’l ’ 1 then
timer-reg <= (o t h e r s = > ’ l ’) ;

timer-reg <= timer-next;
20

31 2 VGA CONTROLLER II: TEXT

end i f ;
end p r o c e s s ;
-- n e x t - s t a t e l o g i c
p r o c e s s (timer-start , timer-reg , timer-tick)
beg in

25

i f (timer-start = ’ 1 ’ then

e l s i f timer-tick=’i’ and timer-reg/=O then

e l s e

end i f ;
end p r o c e s s ;

timer-up < = ’ l ’ when timer-reg=O e l s e ’ 0 ’ ;

timer-next <= (o t h e r s = > ’ l ’) ;

30 timer-next <= timer-reg - 1 ;

timer-next <= timer-reg;

35 -- o u t p u t l o g i c

end arch;

13.4.4 Top-level system

The top-level system of the pong game consists of the previously designed modules, includ-
ing video synchronization circuit, graphic subsystem, text subsystem, and utility counters,
as well as a control FSM and an rgb multiplexing circuit. The block diagram is shown in
Figure 13.4.

The control FSM monitors overall system operation and coordinates the activities of the
text and graphic subsystems. Its ASMD chart is shown in Figure 13.6. The FSM has four
states and operates as follows:

0 Initially, the FSM is in the newgame state. The game starts when a button is pressed
and the FSM moves to the play state.

0 In the play state, the FSM checks the h i t and m i s s signals continuously. When the
h i t signal is activated, the d-inc signal is asserted for one clock cycle to increment
the score counter. When the m i s s signal is asserted, the FSM activates the 2-second
timer, decrements the number of the balls by 1, and examines the number of remaining
balls. If it is zero, the game is ended and the FSM moves to the over state. Otherwise,
the FSM moves to the newball state.

0 The FSM waits in the newball state until the 2-second interval is up (i.e., when the
timer-up signal is asserted) and a button is pressed. It then moves to the play state
to continue the game.

0 The FSM stays in the over state until the 2-second interval is up. It then moves to
the newgame state for a new game.

The rgb multiplexing circuit routes the t e x t -rgb or graph-rgb signals to output ac-
cording to the text-on and graphic-on signals. The key segment is

i f (text-on (3)= ’1 ’) or
(state-reg=newgame and text-on(l)=’l’) or
(state-reg=over and text_on(O)=’l’) then
rgb-next <= text-rgb ;

rgb-next <= graph-rgb ;

rgb-next <= text-rgb;

e l s i f graph-on=’l’ then -- d i s p l a y g r a p h

e l s i f text_on(2)=’1’ then -- d i s p l a y l o g o

THE COMPLETE PONG GAME 313

default : gra-still <= 1

I

d-clr <= 1

ball +- ball - 1 0
gra-still <= 0

L

Figure 13.6 ASMD chart of the pong controller.

314 VGA CONTROLLER II: TEXT

e l s e

end i f ;
rgb-next <= ”110”; -- y e l l o w b a c k g r o u n d

The t e x t -on (3) = ’ I ’ expression is the condition for the scores, which is always displayed.
The text-on (1) = ’ 1 expression is the condition for the rule, which is displayed only
when the FSM is in the newgame state. Similarly, the end-of-game message, whose status
is indicated by the text-on(0) signal, is displayed only when the FSM is in the over
state. The logo, whose status is indicated by the text-on(2) signal, is used as part of the
background and is displayed only when no other on signal is asserted.

The complete code is shown in Listing 13.10.

Listing 13.10 Top-level system for the pong game

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y pong-top i s

5 p o r t (
clk, reset: in std-logic;
btn: in std-logic-vector (1 downto 0) ;
hsync , vsync : out std-logic;
rgb : out std-logic-vector (2 downto 0)

10) ;
end pong-top;

30

40

a r c h i t e c t u r e arch of pong-top i s
type state-type i s (newgame, play, newball, over) ;

s i g n a l pixel-x , pixel-y : std-logic-vector (9 downto 0) ;
s i g n a l graph-on , gra-still , hit, miss : std-logic ;
s i g n a l text-on: std-logic-vector (3 downto 0) ;
s i g n a l graph-rgb , text-rgb: std-logic-vector (2 downto 0) ;

s i g n a l state-reg , state-next : state-type;
s i g n a l dig0 , dig1 : std-logic-vector (3 downto 0) ;
s i g n a l d-inc , d-clr : std-logic;
s i g n a l timer-tick, timer-start , timer-up: std-logic;

s i g n a l ball : std-logic-vector (I downto 0) ;

-- i n s t a n t i a t e v i d e o s y n c h r o n i z a t i o n u n i t
vga-sync-unit : e n t i t y work. vga-sync

port map(clk=>clk, reset=>reset ,

15 s i g n a l video-on , pixel-tick: std-logic;

20 s i g n a l rgb-reg , rgb-next : std-logic-vector (2 downto 0) ;

25 s i g n a l ball-reg , ball-next : unsigned (1 downto 0) ;

begin

hsync=>hsync, vsync=>vsync,
pixel-x=>pixel-x, pixel-y=>pixel-y,
video-on=>video-on, p-tick=>pixel-tick);

__ i n s t a n t i a t e t e x t module

text-unit : e n t i t y work. pong-text
35 ball <= std-logic-vector (ball-reg) ; - - t y p e c o n v e r s i o n

port map(clk=>clk, reset=>reset ,
pixel-x=>pixel-x, pixel-y=>pixel-y ,
digO=>digO, digl=>digl , ball=>ball,
text-on=>text-on, text-rgb=>text-rgb);

THE COMPLETE PONG GAME 31 5

45

50

55

__ i n s t a n t i a t e g r a p h m o d u l e
g r a p h - u n i t : e n t i t y work . pong-g raph

p o r t m a p (c l k = > c l k , r e s e t = > r e s e t , b t n = > b t n ,
p i x e l - x = > p i x e l - x , p i x e l _ y = > p i x e l - y ,
g r a - s t i l l = > g r a - s t i l l , h i t = > h i t , m i s s = > m i s s ,
graph-on=>graph-on,rgb=>graph-rgb);

__ i n s t a n t i a t e 2 - s e c t i m e r
t i m e r - t i c k <= - -6O-Hz t i c k

'1 ' when p i x e l ~ x = " 0 0 0 0 0 0 0 0 0 0 ~ ~ and

' 0 ' ;

p o r t m a p (c l k = > c l k , r e s e t = > r e s e t ,
t i m e r - t i c k = > t i m e r - t i c k ,
timer-start=>timer-start,
t i m e r - u p = > t i m e r - u p) ;

__ i n s t a n t i a t e 2 - d i g i t d e c a d e c o u n t e r
c o u n t e r - u n i t : e n t i t y work . m100-counter

p o r t m a p (c l k = > c l k , r e s e t = > r e s e t ,

p i x e 1 - y = '' 0 0 0 0 0 0 0 0 0 0 I' e I s e

t i m e r - u n i t : e n t i t y work . t i m e r

d - i n c = > d - i n c , d - c l r = > d - c l r ,
d i g O = > d i g O , d i g l = > d i g l) ;

__ r e g i s t e r s
p r o c e s s (c l k , r e s e t)
beg in

65 i f r e s e t = ' l ' t h e n
s t a t e - r e g <= newgame;
b a l l - r e g <= (o t h e r s = > ' O ') ;
r g b - r e g <= (o t h e r s = > ' O ' 1 ;

e l s i f (c l k ' e v e n t and c l k = ' l ') t h e n
70 s t a t e - r e g <= s t a t e - n e x t ;

b a l l - r e g <= b a l l - n e x t ;
i f (p i x e l - t i c k = ' 1') t h e n

r g b - r e g <= r g b - n e x t ;
end i f ;

75 end i f ;
end p r o c e s s ;
-- f s m d n e x t - s t a t e l o g i c
p r o c e s s (b t n , h i t , m i s s , t i m e r - u p , s t a t e - r e g ,

b a l l - r e g , b a l l - n e x t)
80 beg in

g r a - s t i l l <= '1';
t i m e r - s t a r t < = ' O ' ;

85

w

d - i n c <= ' 0 ' ;
d - c l r <= ' 0 ' ;
s t a t e - n e x t <I s t a t e - r e g ;
b a l l - n e x t <= b a l l - r e g ;
c a s e s t a t e - r e g i s

when newgame = >
b a l l - n e x t <= "11"; __ t h r e e b a l l s
d - c l r <= >l'; __ c l e a r s c o r e
i f (b t n / = I ' O O l ') t h e n -- b u t t o n p r e s s e d

s t a t e - n e x t <= p l a y ;
b a l l - n e x t <= b a l l - r e g - 1;

316 VGA CONTROLLER 11: TEXT

IW

105

I10

I15

I30

end i f ;

g r a - s t i l l <= ’ 0 ’ ; -- a n i m a t e d s c r e e n
i f h i t = ’ l ’ then

d - i n c <= ’1’; -_ i n c r e m e n t s c o r e
e l s i f m i s s = ’ l ’ then

i f (b a l l - r e g = O) then

e l s e

end i f ;
t i m e r - s t a r t <= ’1’; - - 2 - s e c t i m e r
b a l l - n e x t <= b a l l - r e g - 1;

95 when p l a y = >

s t a t e - n e x t <= o v e r ;

s t a t e - n e x t <= n e w b a l l ;

end i f ;

-- w a i t f o r 2 s e c and u n t i l b u t t o n p r e s s e d
i f t i m e r - u p = ’ l ’ and (b t n / = “ 0 0 “) then

end i f ;
when o v e r = >

__ w a i t f o r 2 s e c t o d i s p l a y game o v e r
i f t i m e r - u p = ’1 ’ then

end i f ;

when n e w b a l l = >

s t a t e - n e x t <= p l a y ;

s t a t e - n e x t <= newgame;

end c a s e ;
end p r o c e s s ;

p r o c e s s (s t a t e - r e g , v i d e o - o n , g r a p h - o n , g r a p h - r g b ,

beg in

120 -- r g b m u l t i p l e x i n g c i r c u i t

t e x t - o n , t e x t - r g b)

i f v i d e o - o n = ’ O ’ then

e l s e
125 r g b - n e x t <= ” 0 0 0 ” ; -- b l a n k t h e e d g e / r e t r a c e

__ d i s p l a y s c o r e , r u l e o r game o v e r
i f (t e x t _ o n (3) = ’ 1 ’) or

(s t a t e - r e g = n e w g a m e and t e x t - o n (l) = ’ l ’ 1 or -- r u l e
(s t a t e - r e g = o v e r and t e x t - o n (O) = ’1 ’1 then
r g b - n e x t <= t e x t - r g b ;

r g b - n e x t <= g r a p h - r g b ;

r g b - n e x t <= t e x t - r g b ;

r g b - n e x t <= ” 1 1 0 ” ; -- y e l l o w b a c k g r o u n d

e l s i f g r a p h - o n = ’ l ’ then -- d i s p l a y g r a p h

e l s i f t e x t - o n (2) = ’ l J then -- d i s p l a y l o g o

e l s e

end i f ;
end i f ;

140 end p r o c e s s ;
r g b <= r g b - r e g ;

end a r c h ;

BIBLIOGRAPHIC NOTES 317

13.5 BIBLIOGRAPHIC NOTES

Several other character fonts are available. Rapid Prototyping of Digital Systems by James
0. Hamblen et al. uses a compact 64-character 8-by-8 font set. The tile-mapped scheme
is not limited to the text display. It is widely used in the early video game. The article
“Computer Graphics During the 8-bit Computer Game Era” by Steven Collins (ACM SZG-
GRAPH, May 1998) provides a comprehensive review of the history and design techniques
of the tile-based game.

13.6 SUGGESTED EXPERIMENTS

13.6.1 Rotating banner

A rotating banner on the monitor screen moves a line from right to left and then wraps
around. It is similar to the Window’s Marquee screen saver. Let the text on the banner
be “Hello, FPGA World.” The banner should be displayed in four different font sizes and
can travel at four different speeds. The font size and speed are controlled by four switches.
Derive the HDL description and then synthesize and verify operation of the circuit.

13.6.2 Underline for the cursor

The full-screen text display circuit in Section 13.3 uses reversed color to indicate the current
cursor location. Modify the design to use an underline to indicate the cursor location. Derive
the HDL description and then synthesize and verify operation of the circuit.

13.6.3 Dual-mode text display

It is sometimes better for text to be displayed on a “vertical” screen. This can be done by
turning the monitor 90 degrees and resting it on its side. Design this circuit as follows:

1. Modify the full-screen text display circuit in Section 13.3 for a vertical screen.
2. Merge the normal and vertical designs to create a “dual-mode” text display. Use a

3. Derive the HDL description and then synthesize and verify operation of the circuit.
switch to select the desired mode.

13.6.4 Keyboard text entry

Instead of switches and buttons, it is more natural to use a keyboard to enter text. We can
use the four arrow keys to move the cursor and use the regular keys to enter the characters.
Use the keyboard interface discussed in Section 8.4 to design the new circuit. Derive the
HDL description and then synthesize and verify operation of the circuit.

13.6.5 UART terminal

The UART terminal receives input from the UART port and displays the received characters
on a monitor. When connected to the PC’s serial port, it should echo the text on Window’s
HypterTerminal. The detailed specifications are:

0 A cursor is used to indicate the current location.
0 The screen starts a new line when a “carriage return” code (Od16) is received.

318 VGA CONTROLLER 11: TEXT

pattern code 00 01 11 10

(a) Tile patterns

sarnpledvalues 0 0 0 1 1 1 1 0 0 0 0
-=LA

(b) Encoding of sampled values

Figure 13.7 Tile patterns and encoding of square wave.

0 A line wraps around (i.e., starts a new line) after 80 characters.
0 When the cursor reaches the bottom of the screen (i.e., the last line), the first line will

be discarded and all other lines move up (i.e., scroll up) one position.
Derive the HDL description and then synthesize and verify operation of the circuit.

13.6.6 Square wave display

We can draw a square wave by using four simple tile patterns shown in Figure 13.7(a).
Follow the procedure of a full-screen text display in Section 13.3 to design a full-screen
wave editor:

1. Let the tile size be 8 columns by 64 rows. Create a pattern ROM for the four patterns.
2. Calculate the number of tiles on a 640-by-480 resolution screen and derive the proper

3. Use three pushbuttons for control and a 2-bit switch to enter the pattern.
4. Derive the HDL description and then synthesize and verify operation of the circuit.

configuration for the tile memory.

13.6.7 Simple four-trace logic analyzer

A logic analyzer displays the waveforms of a collection of digital signals. We want to
design a simple logic analyzer that captures the waveforms of four input signals in "free-
running" mode. Instead of using a trigger pattern, data capture is initiated with activation of
a pushbutton switch. For simplicity, we assume that the frequencies of the input waveform
are between 10 kHz and 100 kHz. The circuit can be designed as follows:

Use a sampling tick to sample the four input signals. Make sure to select a proper rate
so that the desired input frequency range can be displayed properly on the screen.
For a point in the sampled signal, its value can be encoded as a tile pattern by including
the value of the previous point. For example, if the sampled sequence of one signal is
"00001 11 lOOO", the tile patterns become "00 00 00 01 11 11 11 10 00 00", as shown
in Figure 13.7(b).
Follow the procedure of the preceding square wave experiment to design the tile
memory and video interface to display the four waveforms being stored .
Derive the HDL description and then synthesize the circuit.

SUGGESTED EXPERIMENTS 31 9

To verify operation of the circuit, we can connect four external signals via headers around
the prototyping board. Alternatively, we can create a top-level test module that includes a
4-bit counter (say, a mod-10 counter around 50 kHz) and the logic analyzer, resynthesize
the circuit, and verify its operation.

13.6.8 Complete two-player pong game

The free-running two-player pong game is described in Experiment 12.7.6. Follow the
procedure of the pong game in Section 13.4 to derive the complete system. This should
include the design of a new text display subsystem and the design of a top-level FSM
controller. Derive the HDL description and then synthesize and verify operation of the
circuit.

13.6.9 Complete breakout game

The free-running breakout game is described in Experiment 12.7.7. Follow the procedure
of the pong game in Section 13.4 to derive the complete system. This should include the
design of a new text display subsystem and the design of a top-level FSM controller. Derive
the HDL description and then synthesize and verify operation of the circuit.

This Page Intentionally Left Blank

PART 111

P ICOBLAZE
M I C RO C 0 N T RO L L E RXILINX S P E C I ~ I ~

This Page Intentionally Left Blank

CHAPTER 14

PICOBLAZE OVERVIEW

14.1 INTRODUCTION

The PicoBlaze processor is a compact 8-bit microcontroller core for Xilinx FPGA devices.
It is provided as a cell-level HDL description (which is known as soft core) and can be
synthesized along with other logic. PicoBlaze is optimized for efficiency and occupies only
about 200 logic cells, which amount to less than 5% resource of a 3.3200 device. While not
intended as a high-performance processor, it is compact and flexible and can be used for
simple data processing and control, particularly for non-time-critical “house-keeping’’ and
I/O operations. The PicoBlaze processor can be easily integrated into a larger system and
adds another dimension of flexibility in an FPGA-based design.

Although the detailed coverage of assembly language programming and microcontrollers
is beyond the scope of this book, this part provides acomprehensive overview of PicoBlaze’s
organization and instruction set, and illustrates the general assembly program development
and I/O interface through a set of examples. We review PicoBlaze’s organization and
instruction set in this chapter, introduce assembly language programming in Chapter 15,
and discuss the general 1/0 interface and interrupt interface in Chapters 16 and 17.

FPGA Protovping by VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

323

324 PICOBLAZE OVERVIEW

14.2 CUSTOMIZED HARDWARE AND CUSTOMIZED SOFTWARE

14.2.1 From special-purpose FSMD to general-purpose microcontroller

The RT-level design and FSMD discussed in Chapter 6 provide a general methodology to
convert a sequential algorithm to customized hardware. The rearranged block diagram is
shown in Figure 14.1(a). In an FSMD, all components, including the number of registers,
the routing of registers’ input and output, the number and types of functional units, and
the control FSM, are tailored to the target application. The data path may contain multiple
function units and multiple routing paths, as shown in the diagram.

An alternative is to keep the same hardware but use customized software for different
applications. The transformation can be done as follows. First, we can replace the cus-
tomized data path with a fixed configuration, as shown in the top of Figure 14.l(b). The data
registers and customized routing networks are replaced by a register file, which has a fixed
number of registers and contains only two read ports and one write port. The customized
function units are replaced with an ALU (arithmetic and logic unit), which can only perform
a set of predefined functions. The data path now can perform RT operations in the following
format only:

r d c r l op r 2

where rl , r2 , and r d are the addresses of two source registers and one destination register,
and op is one of the available ALU functions.

Second, we can replace the customized FSM with a programmable state machine, as
shown in the bottom of Figure 14.l(b). Recall that operation of an FSM consists of three
parts:

0 The state register keeps track of the current state.
0 The output logic activates certain output signals according to the current state.
0 The next-state logic determines the new state.

0 It replaces the state register with the program counter. The content of the program
counter represents the current state of the control path.

0 In an FSM, each state activates certain output signals to control operation of the data
path. The programmable state machine encodes these output patterns into instructions
and stores them in a memory module, known asprogram memory or instruction mem-
ory. A memory address corresponds to a state (i.e., a value) of the program counter.
During execution, the instruction pointed by the program counter is retrieved from
the memory and decoded to generate the control signals. The instruction memory
and decoding logic function as a sophisticated output logic circuit.

0 In an FSM, there is no limitation on where to go next. From a given state, the FSM
can check the input condition and move to one of many possible next states. In a
programmable state machine, the next state is usually the value of the current state
plus 1 (i.e., the program counter is incremented by l) , which reflects the nature of the
sequential execution. The sequential execution may be altered only by several special
instructions, such as a jump instruction, in which the program counter is loaded with
a different value. The incrementor and the associated multiplexing logic function as
a simple next-state logic circuit.

After we replace the data path with a register file and an ALU and replace the dedicated
FSM with a programmable state machine, customizing the system corresponds to developing
a new sequence of instructions (i.e., develop a software program) and loads the instructions

The programmable state machine modifies these operations as follows:

CUSTOMIZED HARDWARE AND CUSTOMIZED SOFTWARE 325

rout
-ing

*

-* -*

-+ registers -* -ing units

-
4

data rout + functional

ctrl ctrl ctrl status

ctrl

(a) Block diagram of an FSMD

~ ~ ~ ~ ~ g i s t e r s and routing
replace
functional units

I / / I

7

ctrl ctrl flag

ctri

.....

ctrl

replace \ replace
output logic

replace
next-state logic state register

(b) Simplified block diagram of a microcontroller

Figure 14.1 Diagrams of an FSMD and a microcontroller.

326 PICOBLAZE OVERVIEW

to the instruction memory. The organization of the FSMD is now the same for different
applications and becomes a general-purpose hardware platform. The platform constitutes
the basic skeleton of the PicoBlaze microcontroller.

14.2.2 Application of microcontroller

In a customized FSMD, the data path can be created to accommodate an individual applica-
tion’s needs. It may contain multiple customized functional units and parallel routing paths,
and can complete complex computation in a single state (i.e., one clock cycle). On the other
hand, the PicoBlaze microcontroller can only perform one predefined RT operation (i.e.,
an instruction) at a time. It may need many instructions to perform the same task and thus
require much more time.

Many tasks can be done by either a customized FSMD or a microcontroller. The trade-
off is between the hardware complexity, performance and ease of development. There is
no exact rule on which one to choose. Because developing software is usually easier than
creating customized hardware, the microcontroller option is generally preferable for non-
time-critical applications. We can determine the feasibility of this option by examining the
computation complexity. PicoBlaze requires two clock cycles to complete an instruction.
If the system clock is 50 MHz, 25 million instructions can be perform in one second. For
a task (or a collection of tasks), we can examine how frequent a request is issued and how
fast the task must be completed, and then estimate the number of available instructions.
For example, assume that a keyboard interface generates a new input data every 1 ms
and the data must be processed within this interval. Within the 1-ms period, PicoBlaze
can complete 25,000 instructions. The PicoBlaze controller will be a viable option if the
required processing can be done by using less than 25,000 instructions. In general, the
microcontroller is suitable for many non-time-critical I/O-interface or “house-keeping’’
tasks.

14.3 OVERVIEW OF PICOBLAZE

14.3.1 Basic organization

PicoBlaze is a compact 8-bit microcontroller with the following characteristics:
0 8-bit data width
0 8-bit ALU with the carry and zero flags
0 16 8-bit general-purpose registers
0 64-byte data memory
0 18-bit instruction width
0 10-bit instruction address, which supports a program up to 1024 instructions
0 31-word callheturn stack
0 256 input ports and 256 output ports
0 2 clock cycles per instruction
0 5 clock cycles for interrupt handling

PicoBlaze is based on the skeleton described in Figure 14.l(b) and adds several enhance-
ments to make it more versatile. The expanded diagram is shown in Figure 14.2. To reduce
clutter, only the main data flow is shown. The sizes of main storage components are listed
in round brackets. The processor makes several enhancements over the original skeleton:

OVERVIEW OF PICOBLAZE 327

I

-b
register

+ file

data memory
address -1

in-port b

memory
(64-by-8)

out-port
port-id

(1 &by-8)

M n s t a n t

....................

logic
stack

(31-by.10)
L....

I

instruction instruction memory 1
address

outside
processor module

.......... ctrl

Figure 14.2 Block diagram of PicoBlaze.

328 PICOBLAZE OVERVIEW

Figure 14.3 Top-level diagram of PicoBlaze.

0 Add a 44-word data memory. It is known as scratch RAM in Xilinx literature but we
call it data RAM. The data RAM can be considered as a reservoir to store additional
data. Note that there is no direct path between the data RAM and ALU. Data must
be fetched to a register for processing and then stored back to the data RAM.
Add an immediate constantfield in some instructions. This allows a constant, rather
than the content of a register, to be used in ALU and other operations. The two-to-one
multiplexer before the ALU’s bottom input is used to select the register output or the
constant field.
Add a 31-word stack to support the callheturn functions. We discuss the call and
return procedure in more detail in Section 14.5.8.

0 Add paths to input and output external data. An 8-bit por t - id signal is used to
identify a port and thus up to 256 input ports and 256 output ports can be supported.
The I/O interface is discussed in detail in Chapter 16.

0 Add an interrupt handling circuit (not shown in the diagram). The interrupt mecha-
nism is discussed in detail in Chapter 17.

14.3.2 Top-level HDL modules

During synthesis, a PicoBlaze system is organized as two top-level HDL modules, as shown
in Figure 14.3. The KCPSM3 module is the PicoBlaze processor. KCPSM3, which stands for
constant (K) codedprogrammable state machine, reflects the original name of the PicoBlaze
processor. It has following input and output signals:

0 c l k (input, 1 bit): system clock signal
0 r e s e t (input, 1 bit): reset signal
0 address (output, 10 bits): address of the instruction memory, which specifies the

0 i n s t r u c t i o n (input, 18 bits): fetched instruction
0 por t - id (output, 8 bits): address of the input or output port
0 in-port (input, 8 bits): input data from I/O peripherals
0 read-storbe (output, 1 bit): strobe associated with the input operation
0 out-port (output, 8 bits): output data to I/O peripherals
0 wri te -s torbe (output, 1 bit): strobe associated with the output operation
0 i n t e r r u p t (input, 1 bit): interrupt request from I/O peripherals
0 in te r rupt -ack (output, 1 bit): interrupt acknowledgement to 110 peripherals

location of the instruction to be retrieved

DEVELOPMENT FLOW 329

The second module is for the instruction memory. During the development, we usually
store the compiled assembly code to memory in advance and configure it as a ROM in HDL
code. It is thus known as an instruction ROM.

14.4 DEVELOPMENT FLOW

While developing a system based on a conventional microcontroller, we examine the re-
quired functionalities and select a processor with the proper computation capability and
adequate IiO interface. Additional chips are frequently needed to perform special functions.
One advantage of using a soft-core microcontroller is that we can have both a customized
circuit and a microcontroller developed and implemented in the same FPGA device. A
large application usually includes many different tasks. In an FPGA platform, we can im-
plement the time-critical tasks in a customized circuit (i.e., “hardware”) for performance
and realize the remaining house-keeping and low-speed I/O functions in a microcontroller
(i.e., “software”).

The basic PicoBlaze-based development flow is shown in Figure 14.4. It consists of the
following steps:

1. Determine the software-hardware partition.
2 . Develop the assembly program for the software portion.
3. Compile the assembly program to generate an instruction ROM. The ROM is an HDL

4. Perform instruction-set-level simulation.
5. Derive HDL code for the hardware portion. The hardware includes customized

circuits to perform special I/O and time-critical functions and customized circuits to
interface with PicoBlaze.

6. Create the top-level HDL code that combines the codes for the PicoBlaze core, the
instruction ROM, and customized hardware.

7. Develop a testbench and perform HDL simulation for the entire system.
8. Synthesize and implement the HDL code and program the FPGA chip on the proto-

file.

typing board.
The subsequent chapters explain these steps in detail.

The step 9 shown in the dotted line is not a part of the normal development flow. It
reloads the instruction memory after the entire system is synthesized. This step is discussed
in Section 15.5.3.

14.5 INSTRUCTION SET

PicoBlaze has 57 instructions. The instructions have five general formats. We organize
the instructions according to the nature of their operations and divide them into following
categories:

0 Logical instructions
0 Arithmetic instructions
0 Compare and test instructions
0 Shift and rotate instructions
0 Data movement instructions
0 Program flow control instructions
0 Interrupt related instructions

330 PICOBLAZE OVERVIEW

hardware
development

r-p.7 PicoBlaze /-/

/-/ assembly

simulation e

/ testbench / / $:::e /
I -

om synthesis

device
programming

0

F-" dowloading

Figure 14.4 Development flow of a system with PicoBlaze.

INSTRUCTION SET 331

s3

sc

Sd

se E sf register file

3c

3D

3E

3F

data
RAM

1.9
:: t-j
3FF

Instruction callheturn
memory stack

El
El
flags

Figure 14.5 PicoBlaze programming model.

In this section, we first examine the program model and instruction format, and then list
and explain each instruction.

14.5.1 Programming model

From an assembly programming point of view, PicoBlaze contains 16 8-bit registers, a
64-byte data RAM, three flags (for zero, carry and interrupt), the program counter and the
top-of-stack pointer. The model, sometimes known as the instruction set architecture, is
shown in Figure 14.5. After an instruction is executed, the contents of these components
are modified explicitly or implicitly. The operations associated with each instruction are
discussed in Section 14.5.3.

We use the following notations for these memory components and some constant defi-
nitions:

sX, sY: each representing one of the 16 general-purpose registers, where X and Y take
on hexadecimal values from 0 to f
pc: program counter
t 0s: top-of-stack pointer of the callheturn stack
c, z , i: carry, zero, and interrupt flags
KK: 8-bit constant value or port id, which is usually expressed as two hexadecimal
digits
SS: 6-bit constant data memory address, which is usually expressed as two hexadec-
imal digits
AAA: 10-bit constant instruction memory address, which is usually expressed as three
hexadecimal digits

332 PICOBLAZE OVERVIEW

14.5.2 Instruction format

In an assembly program, we generally follow the conventions used in our HDL code, in
which a keyword (an instruction mnemonic) is in a boldface font and a constant is in capital
letters. PicoBalze’s instructions have five formats:

op sX, sY: register-register format. The op term specifies the operation. The SX
and SY terms are the two operands and SX also serves as the destination register. It
performs the SX + SX op SY operation.
op sX, KK: register-constant format. This format is similar to the register-register
format except that the second operand is replaced by an immediate constant. It
performs the SX + SX op KK operation.
op sX: single-register format. This format is used in shift and rotate instructions,
which involve only one operand. It performs the SX t op SX operation.
op AAA: single-address format. This format is used in jump and call instructions.
The AAA term is an address of the instruction memory. If the specified condition is
met, AAA is loaded into the program counter.

0 op: zero-operand format. This format is used in some miscellaneous instructions
that do not involve any operand.

There are two assembler programs for PicoBlaze: KCPSM3 from Xilinx and PBlazeZDE
from Mediatronix. The two programs use different mnemonics for several instructions.
In the following subsections, the alternative mnemonics used in PBlazeIDE are shown in
round brackets.

14.5.3 Logical instructions

There are six logical instructions, which support the and, or, and xor operations. An
instruction performs bitwise logical operation between two registers or one register and a
constant. The carry flag, c, is always cleared. The zero flag, z, reflects the result of the
operation. The mnemonics, brief descriptions, and pseudo operations of these instructions
are:

and sX, SY
- bitwise and operation
- pseudo operation:

S X +- sX and sY;
c +- 0 ;

and sX, KK
- bitwise and operation
- pseudo operation:

SX + sX and KK;
c + 0;

0 or sx, SY
- bitwise or operation
- pseudo operation:

S X c sX o r sY;
c + 0;

or sX, KK
- bitwise or operation

INSTRUCTION SET 333

- pseudo operation:
sX t sX or KK;
c t 0;

0 xor s X , SY

- bitwise xor operation
- pseudo operation:

sX t sX xor sY;
c + 0;

0 xor s X , KK

- bitwise xor operation
- pseudo operation:

SX t sX xor KK;
c 4- 0;

14.5.4 Arithmetic instructions

There are eight arithmetic instructions, n ..ich support addition and subtraction with or
without the carry flag. The carry flag, c, and the zero flag, z, reflect the result of operation.
The mnemonics, brief descriptions, and pseudo operations of these instructions are:

0 add s X , SY

- add without the carry flag
- pseudo operation:

sx + sx + sY;

0 add s X , KK

- add without the carry flag
- pseudo operation:

sX t sX + KK;

0 addcy s X , SY (addc s X , s Y)

- add with the carry flag
- pseudo operation:

0 addcy s X , KK (addc s X , KK)
- add with the carry flag
- pseudo operation:

sx + sx + SY + c ;

sX t sX + KK + c;

0 s u b s X , s Y
- subtract without the carry flag
- pseudo operation:

sx t sx - sY;

0 s u b s X , K K

- subtract without the carry flag
- pseudo operation:

S X t SX - KK;

334 PICOBLAZE OVERVIEW

subcy sX, sY (subc sX, sY)
- subtract with the carry flag (flag functioning as a borrow bit)
- pseudo operation:

0 subcy sX, KK (subc sX, KK)
- subtract with the carry flag (flag functioning as a borrow bit)
- pseudo operation:

sx +- s x - S Y - c ;

S X t SX - K K - C ;

14.5.5 Compare and test instructions

The compare and test instructions examine two registers or one register and constant, and
set the carry and zero flags accordingly. The contents of the registers remain intact. These
instructions are usually used in conjunction with a conditional jump or call instruction,
whose operation is based on the values of the flags.

A compare instruction performs subtraction operation. The result is used to set the carry
and zero flags and not stored to any register. The mnemonics, brief descriptions, and pseudo
operations of the two instructions are:

0 compare sX, SY (comp sX, sY)
- compare two registers and set the flags
- pseudo operation:

if s X = s Y t h e n z t 1 e l s e z t 0 ;
if s Y > s X t h e n c t 1 e l s e c t 0 ;

0 compare sX, KK (comp sX, KK)
- compare a register and a constant and set the flags
- pseudo operation:

if s X = K K t h e n z t 1 e l s e z t 0 ;
if K K > s X t h e n c t 1 e l s e c t 0 ;

A test instruction performs an and operation. The result is used to set the flags and not
stored in any register. If the result is 0, the zero flag is set to 1. The result is also fed to an
eight-input xor circuit to obtain the odd panty. If there are odd number of 1’s in the result,
the carry flag is set to 1. The mnemonics, brief descriptions, and pseudo operations of the
two instructions are shown below. The t is the 8-bit temporary result and will be discarded.

0 test sX, SY
- test two registers and set the flags
- pseudo operation:

t t s X and s Y ;
if t = O t h e n z c 1 e l s e z +- 0 ;
c t t (7) x o r t (6) xor . . . xor t (0) ;

0 test sX, KK
- test a register and a constant and set the flags
- pseudo operation:

t t sX and K K ;
if t = O t h e n z t 1 e l s e z t 0 ;
c c t (7) xor t (6) x o r . . . x o r t (0) ;

INSTRUCTION SET 335

7 6 5 4 1 3 1 2 1 1 0 7 6 5 4 3 2 1 0

slx

1 6 5 4 3 2 1 0

sla

rr 7 6 5 4 3 2 1 0

srx

sra

1 6 5 4 3 2 1 0

Figure 14.6 Illustration of shift and rotate instructions.

14.5.6 Shift and rotate instructions

There are four shift-left instructions, four shift-right instructions, and two rotate instructions.
These instructions use the single-register format and have only one operand. The graphical
representations of these instructions are shown in Figure 14.6. The mnemonics, brief
descriptions, and pseudo operations of these instructions are shown below. The & symbol
means to concatenate two operands.

0 s10 sx
- shift a register left 1 bit and shift 0 into the LSB
- pseudo operation:

S X +- s X (6 . . 0) & 0 ;
c + s X (7) ;

0 sll sx
- shift a register left 1 bit and shift 1 into the LSB
- pseudo operation:

s X t s X (6 . . 0) & 1 ;
c + s X (7) ;

0 SIX sx

- shift a register left 1 bit and shift SX (0) into the LSB
- pseudo operation:

S X + s X (6 . . O) & s X (0) ;
c + s X (7) ;

sla sx
- shift a register left 1 bit and shift c into the LSB
- pseudo operation:

S X t s X (6 . . O) & c ;
c t s X (7) ;

336 PICOBLAZE OVERVIEW

0 srOsX
- shift a register right 1 bit and shift 0 into the MSB
- pseudo operation:

s x +- 0 & sX(7..1);
c t sX(0);

0 srl s X

- shift a register right 1 bit and shift 1 into the MSB
- pseudo operation:

sx c 1 & sX(7..1);
c c sX(0);

0 srx s X

- shift a register right 1 bit and shift sX(7) into the MSB
- pseudo operation:

sx + sX(7) & SX(7.. 1) ;
c c sX(0);

a sra S X
- shift a register right 1 bit and shift c into the MSB
- pseudo operation:

sx t c & sX(7..1);
c i-- sX(0);

0 rlsX
- rotate a register left 1 bit
- pseudo operation:

SX + sX(6..0) & sX(7);
c t sX(7);

0 rr sX
- rotate a register right 1 bit
- pseudo operation:

sx +- sX(0) & sX(7..1);
c +- sX(0);

14.5.7 Data movement instructions

In PicoBlaze, the computation is done via the registers and ALU. The data RAM supplies
additional storage and the I/O ports provide paths to peripherals. There are several instruc-
tions to move data between the registers, data RAM, and I/O ports. The instructions can be
divided into three categories:

0 Between registers: the load instruction
0 Between a register and data RAM: the fetch and store instructions
0 Between a register and an I/O port: the input and output instructions

The mnemonics, brief descriptions, and pseudo operations of the data movement instruc-
tions are shown below. The RAM [] notation represents the content of the data RAM. Note
that in some instructions, the indirect address notation, as in (sY), is used in mnemonic to
emphasize that the content of the sY register is used.

INSTRUCTION SET 337

0 l o a d s X , s Y
- move data between two registers
- pseudo operation:

sx + sY;

0 load s X , KK

- move a constant to a register
- pseudo operation:

sX + K K ;

0 fetch sX, (s Y > (fetch sX, sY)
- move data from the data RAM to a register
- pseudo operation:

sX + R A M [(s Y) I ;

0 fetch s X , SS
- move data from the data RAM to a register
- pseudo operation:

a store s X , (sY> (store s X , s Y)
- move data from a register to the data RAM
- pseudo operation:

sX + R A M C S S I ;

R A M C (s Y) l t sX;

0 store sX, SS
- move data from a register to the data RAM
- pseudo operation:

0 input sX, (s Y > (in sX, sY)

- move data from the input port to a register
- pseudo operation:

R A M C S S] t sX;

p o r t - i d + s Y ;
sX + i n - p o r t ;

0 input sX, KK (in sX, KK)

- move data from the input port to a register
- pseudo operation:

p o r t - i d t K K ;
sX t i n - p o r t ;

0 output sx, (S Y) (out sx, S Y)
- move data from a register to the output port
- pseudo operation:

p o r t - i d +- s Y ;
o u t - p o r t t sX;

0 output s X , KK (out sX, KK)

- move data from a register to the output port
- pseudo operation:

p o r t - i d t K K ;
o u t - p o r t +- sX;

338 PICOBLAZE OVERVIEW

There is no explicit instruction to move data to or from the instruction memory. However,
many instructions include a field for an immediate constant. Since the constant is part of
the instruction and stored in the instruction memory, it can be considered as data that is
implicitly moved from the instruction memory to a register.

14.5.8 Program flow control instructions

In PicoBlaze, the program counter indicates where to fetch the instruction. By default, the
execution proceeds to the next address in the instruction memory and the program counter
is implicitly incremented (i.e,, pc t pc + I). The jump, call and return instructions
can explicitly load a value to the program counter and modify the program flow. These
instructions can be executed unconditionally or conditionally based on the values of the
carry and zero flags.

A jump instruction loads new value to the program counter if the corresponding condition
is met. The program execution changes the regular flow and branches to the new address.
The program flow continues normally after this point. The mnemonics, brief descriptions,
and pseudo operations of these instructions are shown below. Recall that AAA is for the
10-bit instruction memory address and pc is for the program counter.

0 jump AAA

- unconditionally jump
- pseudo operation:

pc + A A A ;

0 jump c, AAA

- jump if the carry flag is set
- pseudo operation:

if c = l then p c t A A A else p c +- p c + 1;

0 jump nc, AAA

- jump if the carry flag is not set
- pseudo operation:

if c=O then p c + A A A else pc t pc + 1;

0 jumpz,AAA
- jump if the zero flag is set
- pseudo operation:

if z=1 then p c + A A A else p c + p c + 1;

0 jump nz, AAA

- jump if the zero flag is not set
- pseudo operation:

if z=O then p c t A A A else p c + p c + 1;

The call and return instructions are used to implement a software function. When
a function is called, the processor suspends the current execution and branches to the
corresponding routine. When the routine computation is completed, the processor returns to
the suspended point and continues the execution. Like a jump instruction, a call instruction
loads a new value to the program counter if the corresponding condition is met. In addition,
it also saves the current value of the program counter in a special buffer, known as the stack.
The new address represents the starting point of a routine. The routine should include a
return instruction in the end. The return instruction obtains the saved value from the

INSTRUCTION SET 339

Figure 14.7 Representative flow of a subroutine call.

stack, increments the value by 1, and loads it to the program counter. This allows the
execution to return to the instruction that immediately follows the original call instruction.
A representative program flow is shown in Figure 14.7.

PicoBlaze allows nested function calls, which means that a function can be called within
another function. To support this feature, a stack, which is a last-in-first-out buffer, is used
to store the program counter’s values. In this buffer, the address of the newest call is pushed
to the top of the stack (i.e., the “last-in”). Assume that this routine does not contain other
function call inside. It will be completed first and the saved returned address is on the top
of the stack. It should be popped from the stack (i.e., “first-out”) to resume the previous
execution. PicoBlaze provides a 31-word stack for the nested call and return operations.

The mnemonics, brief descriptions, and pseudo operations of the call and return instruc-
tions are shown below. Recall that and t o s is for the top-of-stack pointer. The STACK [1
notation represents the content of the stack.

- unconditionally call subroutine
- pseudo operation:

0 call AAA

t o s + t o s + I;
STACK[tos] +- p c ;
p c + A A A ;

0 call c, AAA

- call subroutine if the carry flag is set
- pseudo operation:

i f c = l t h e n
t o s t t o s + 1;
STACK[tosl + p c ;
p c +- A A A ;

e l s e

340 PICOBLAZE OVERVIEW

p c + p c + 1;

0 call nc, AAA

- call subroutine if the carry flag is not set
- pseudo operation:

i f c=O t h e n
t o s t t o s + 1;
STACK"Cos1 t p c ;
p c +- A A A ;

e l s e
p c +- p c + 1;

0 call z, AAA

- call subroutine if the zero flag is set
- pseudo operation:

if z = 1 t h e n
t o s t t o s + 1;
STACK[tos] +- p c ;
p c t A A A ;

e l s e

0 call nz, AAA

p c t p c + 1;

- call subroutine if the zero flag is not set
- pseudo operation:

i f z=O t h e n
t o s +- t o s + 1;
STACKCtosI + p c ;
p c c A A A ;

e l s e

0 return (ret)

p c + p c + 1;

- unconditionally return
- pseudo operation:

p c t STACK[tos] + 1;
t o s +- t o s - 1;

0 return c (ret c)
- return if the carry flag is set
- pseudo operation:

if c = l t h e n
p c +- STACK[tos] + 1;
t o s t t o s - 1;

pc t p c + 1;

- return if the cany flag is not set
- pseudo operation:

e l s e

0 return nc (ret nc)

if c=O t h e n
p c t STACK[tos] + 1;
t o s t t o s - 1;

INSTRUCTION SET 341

else
pc + pc + 1

0 return z (ret z)
- return if the zero flag is set
- pseudo operation:

if z=1 then
pc +- STACKCtos] + 1;
tos + tos - 1;

pc +- pc + 1;

- return if the zero flag is not set
- pseudo operation:

else

0 return nz (ret nz)

if z=O then
pc + STACKCtos] + 1;
tos + tos - 1;

pc +- pc + 1;
else

14.5.9 Interrupt related instructions

Interrupt is another mechanism to alter program execution and its detail is discussed in
Chapter 17. Unlike the jump and call instructions, it is initiated from an external request.
When the interrupt flag is enabled and the interrupt request is asserted, PicoBlaze completes
execution of the current instruction, saves the address of the next instruction in the call/return
stack, preserves the carry and zero flags, disables the interrupt flag, and loads the program
counter with 3FF, which is the starting address of the interrupt service routine. PicoBlaze
has two return-from-interrupt instructions, which resume the operation from the interrupted
location. It also has two instructions that enable and disable the interrupt request by setting
or clearing the interrupt flag, i. The mnemonics, brief descriptions and pseudo operations
of these instructions are:

0 returni disable (reti disable)
- return from interrupt service routine and keep the interrupt flag disabled
- pseudo operation:

pc + STACKCtosl;
tos +-- tos - 1;
i +- 0;
c t preserved c;
z +- preserved z ;

0 returni enable (reti enable)
- return from interrupt service routine and keep the interrupt flag enabled
- pseudo operation:

pc + STACKCtosI;
tos + tos - 1;
i t 1;
c +-- preserved c;
z + preserved z ;

342 PICOBLAZE OVERVIEW

0 enable interrupt (eint)
- enable interrupt request
- pseudo operation:

i +- 1;

0 disable interrupt (dint)
- disable interrupt request
- pseudo operation:

i + 0 ;

Note that the interrupt mechanism saves the address of the next instruction. When a returni
instruction is executed, the address saved on the top of the stack (i.e., STACK [tos]) is
restored. This is different from a regular return instruction, in which the incremented
address (i.e., STACK [tos] +1) is restored.

14.6 ASSEMBLER DIRECTIVES

An assembler directive looks like an instruction in an assembly program. However, it is
not part of the microcontroller’s instruction set but is used to help program development.
As its name suggests, a directive “directs” the assembler to perform a specific task, such
as defining a constant or reserving data space. The KCPSM3 and PBlazeIDE assemblers
have somewhat different directives and they are discussed in the following subsections.

14.6.1 The KCPSM3 directives

The mnemonics, descriptions, and examples of key directives used in the KCPSM3 assem-
bler are:

address
- The directive specifies the subsequent code to be put to a specific address in the

- Example:
instruction ROM.

a d d r e s s 3FF

0 namereg

tive.
- The directive gives a symbolic name for a register. It makes code more descrip-

- Example:
namereg s 5 , index

0 constant
- The directive gives a symbolic name for a constant. It makes code more de-

scriptive.
- Example:

c o n s t a n t m a x , FO

14.6.2 The PBlazelDE directives

The mnemonics, descriptions, and examples of key directives used in the PBlazeIDE as-
sembler are shown below. Note that a $ sign is needed for a number in hexadecimal format.

BIBLIOGRAPHIC NOTES 343

org
- The directive specifies the subsequent code to be put to a specific address in the

- Example:
instruction ROM (i.e., “originate” from this address).

org $3FF

equ
- The directive “equates” a symbol to a value or register. It gives a symbolic

- Example:
name for a constant or a register.

max equ 1 2 8 / 8
i n d e x equ s5

0 dsin, dsout, dsio
- These directives equate a symbolic name for an I/O port id. The corresponding

port can be defined as input, output, or both input and output. The difference
between these directives and equ is that PBlazeIDE generates “port indicators”
for these directives on the simulation screen. The I/O activities can be displayed
and simulated via these indicators.

- Example:
k e y b o a r d d s i n $OE
s w i t c h d s i n $OF
l e d dsout $15

vhdl
- This directive generates instruction ROM in VHDL format. The detail is dis-

- Example:
cussed in Chapter 15.

vhdl ” t e m p l a t e . v h d ” , “ t a r g e t . v h d ” , “ R O M ”

14.7 BIBLIOGRAPHIC NOTES

The PicoBlaze’s manual from Xilinx, PicoBlaze 8-bit Embedded Microcontroller User
Guide, provides detailed information about this microcontroller, including the hardware
organization, instruction set, development process, and the KCPSM3 and PBlazeIDE as-
semblers. Ken Chapman, the designer of PicoBlaze, describes the derivation of this mi-
crocontroller in article “Creating Embedded Microcontrollers,” which is available in the
TechXclusives section of Xilinx Web site.

The KCPSM3 assembler, PicoBlaze HDL code, and instruction ROM HDL template
can be downloaded from the Xilinx Web site. Searching with the “PicoBlaze” keyword
will lead to the downloading page. The PBlazeIDE assembler can be downloaded from
the Mediatronix Web site, h t t p : //www . mediatronix. com. The site also provides more
detailed information about the software.

This Page Intentionally Left Blank

CHAPTER 15

PICOBLAZE ASSEMBLY CODE
DEVELOPMENT

15.1 INTRODUCTION

Because of its simplicity, PicoBlaze cannot effectively support high-level programming
languages and the code is generally developed in assembly language. In this chapter, we
provide an overview of code development, which is illustrated in a bottom-up fashion. We
first introduce the segments of frequently used data and control operations and then examine
the use of a subroutine and finally outline the derivation of overall program structure.

15.2 USEFUL CODE SEGMENTS

The PicoBlaze microcontroller contains instructions for byte-oriented data manipulation
and simple conditional branch. In this section, we illustrate how to construct code to
perform bit and multiple-byte operations and to realize frequently used high-level language
control constructs.

15.2.1 KCPSM3 conventions

The KCPSM3 assembler uses the following conventions in an assembly program:
0 Use a “ : ” sign after a symbolic address in code, as in “done : ”.
0 Use a “; ” sign before a comment.
0 Use HH for a constant, in which H is a hexadecimal digit.

FPGA Protovpiping by VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

345

346 PICOBLAZE ASSEMBLY CODE DEVELOPMENT

An example of a code segment follows:

; t h i s is a demo s e g m e n t
t e s t S O , 82 ; compare S O w i t h 1 0 0 0 -001 0
jump z , clr-sl ; i f MSB of S O is 0 , g o t o c l r - s l
l oad s l , FF ; n o , l o a d l I l I _ l I I l t o s l

l oad sl, 0 1 ; load 0000 -0001 t o s l
clr-sl:

15.2.2 Bit manipulation

PicoBlaze’s instruction set is primarily for byte-oriented operations. Bit-oriented operations
are frequently needed to control low-level I/O activities, such as testing, setting, and clearing
a 1-bit flag signal.

To manipulate a single bit, we first define a musk to isolate and preserve (i.e., mask) the
unrelated bits and then apply the designated operation on the desired bits (i.e., unmasked
bits). We can set, clear, and toggle (i.e., invert) some bits of a data byte by performing or,
and, and xor instructions with a proper mask. The following code segment shows how to
set, clear, and toggle the second LSB of the SO register:

c o n s t a n t SET-MASK , 0 2 ; m a s k = 0 0 0 0 ~ 0 0 1 0
c o n s t a n t CLR-MASK , FD ; m a s k = I l I l - l l O l
c o n s t a n t TOG-MASK , 0 2 ;mask=OOOO-OOIO

or S O , SET-MASK ; s e t 2 n d LSB t o 1
and S O , CLR-MASK ; c l e a r 2 n d LSB t o 0
xor S O , TOG-MASK ; t o g g l e 2 n d LSB

The toggle operation is based on the observation that for any Boolean variable z, z C? 0 = z
and z E? 1 = z’. The same principle can be applied to multiple bits. For example, we can
clear the upper nibble (i.e., four MSBs) by using

and S O , OF ; mask =OOOO -1 1 I 1

We can also apply the concept of the and mask to the test instruction to check a single
bit. For example, the following code segment tests the MSB of the SO register and branches
to a proper routine accordingly:

t e s t S O , 80 ; m a s k = 1 0 0 0 ~ 0 0 0 0
jump n z , msb-set ;MSB i s 1 , b r a n c h t o m s b - s e t
; c o d e f o r MSB n o t s e t
jump done

; c o d e f o r MSB s e t
msb-set :

. . .
done :

. . .
A single bit can be extracted by applying the previous code. For example, the following
code segment extracts the MSB of the SO register and stores it in the si register:

load s l , 00
t e s t S O , 8 0 ; m a s k = 1 0 0 0 ~ 0 0 0 0 , e x t r a c t MSB
jump z , done ; y e s , MSB i s 0
l oad s l , 0 1 ; n o , l o a d 1 t o s l

USEFUL CODE SEGMENTS 347

done :

15.2.3 Multiple-byte manipulation

A microcontroller sometimes needs to handle wide, multiple-byte data, such as a large
counter. Since the data width of PicoBlaze is 8 bits, processing this type of data requires a
mechanism to propagate information between two successive instructions. PicoBlaze uses
the carry flag for this purpose. For the arithmetic instructions, there are two versions for
addition and subtraction, one with carry and one without carry, as in the add and addcy
instructions. For the shift and rotate instructions, carry can be shifted into the MSB or LSB
of a register, and vice versa.

Assume that x and y are 24-bit data and each occupies three registers. The following
code segment illustrates the use of carry in multiple-byte addition:

namereg S O , x0 ; l e a s t s i g n i f i c a n t b y t e of x
namereg sl, xl ; m i d d l e b y t e of x
namereg s2, x2 ; m o s t s i g n i f i c a n t b y t e o f x
namereg s3, yo ; l e a s t s i g n i f i c a n t b y t e of y
namereg s 4 , yl ; m i d d l e b y t e of y
namereg s5, y2 ; m o s t s i g n i f i c a n t b y t e of y

; a d d : { x 2 , x l , x O } + { y 2 , y l , y O }
add x0, yo ; add 1 e a s t s i g n i f i c a n t b y t e s
addcy xl, yl ; a d d m i d d l e b y t e s w i t h c a r r y
addcy x2, y2 ; a d d m o s t s i g n i f i c a n t b y t e s w i t h c a r r y

The first instruction performs normal addition of the least significant bytes and stores the
carry-out bit into the carry flag. The second instruction then includes the carry flag when
adding the middle bytes. Similarly, the third instruction uses the carry flag from the previous
addition to obtain the result for the most significant bytes.

The incrementing and subtraction of multiple bytes can be achieved in a similar fashion:

; i n c r e m e n t : { x 2 , X I , XO } + I
add x0, 0 1 ; i n c l e a s t s i g n i f i c a n t b y t e
addcy xi, 00 ; a d d c a r r y t o m i d d l e b y t e
addcy x2, 00 ; a d d c a r r y t o mos t s i g n i f i c a n t b y t e

; s u b t r a c t : (x 2 , x l , x O } - (y 2 , y l , y o }
sub x0, yo ; s u b l e a s t s i g n i f i c a n t b y t e
subcy xl, yl ; s u b m i d d l e b y t e w i t h borrow
subcy x2, y2 ; s u b m o s t s i g n i f i c a n t b y t e w i t h borrow'

Multiple-byte data can be shifted by including the carry flag in the individual shift
instruction. For example, the sla instruction shifts data left one position and shifts the carry
flag into LSB. The code for shifting a 3-byte data left can be written as

; s h i f t { x 2 , x l , x 0 } v i a c a r r y
,510 xo ; O t o LSB of x 0 , MSB of x 0 t o c a r r y
s l a xi ; c a r r y t o LSB of x l , MSB of x l t o c a r r y
s l a x2 ; c a r r y t o LSB of x 2 , MSB of x2 t o c a r r y

348 PICOBLAZE ASSEMBLY CODE DEVELOPMENT

15.2.4 Control structure

A high-level programming language usually contains various control constructs to alter
the execution sequence. These include the if-then-else, case, and for-loop statements. On
the other hand, PicoBlaze provides only simple conditional and unconditional jump in-
structions. Despite its simplicity, we can use them with a test or compare instruction to
implement the high-level control constructs. The following examples illustrate the con-
struction of the if-then-else, case, and for-loop statements.

Let us first consider the if-then-else statement:

i f (sO==sl) {
/ * t h e n - b r a n c h s t a t e m e n t s * /

e l s e {

3
/ * e l s e - b r a n c h s t a t e m e n t s * /

The corresponding assembly code segment is

compare S O , sl
jump n z , e l s e - b r a n c h
; c o d e f o r t h e n b r a n c h

jump i f - d o n e

; c o d e f o r e l s e b r a n c h

. . .

e l s e - b r a n c h :

i f - d o n e :
; c o d e f o l l o w i n g i f s t a t e m e n t
. . .

The code uses the compare instruction to check the sO==sl condition and to set the zero
flag. The following jump instruction examines the flag and jumps to the else branch if the
flag is not set.

The case statement can be considered as a multiway jump, in which the execution is
transferred according to the value of the selection expression. The following statement uses
the SO variable as the selection expression and jumps to the corresponding branch:

s w i t c h (SO) {
c a s e v a l u e l :

/ * c a s e v a l u e l s t a t e m e n t s * /
b r e a k ;

c a s e v a l u e 2 :
/ * c a s e v a l u e 2 s t a t e m e n t s * /
b r e a k ;

c a s e v a l u e 3 :
/ * c a s e v a l u e 3 s t a t e m e n t s * /
b r e a k :

/ * d e f a u l t s t a t e m e n t s * /
d e f a u l t :

The multiway jump can be implemented by a hardware feature known as “index address
mode” in some processors. However, since PicoBlaze does not support this feature, the case
statement has to be constructed as a sequence of if-then-else statements. In other words,
the previous case statement is treated as:

USEFUL CODE SEGMENTS 349

i f (s O = = v a l u e l) {

>
e l s e i f (s O = = v a l u e Z) {

/ * c a s e v a l u e l s t a t e m e n t s * /

/ * c a s e v a l u e 2 s t a t e m e n t s * /

e l s e i f (s O = = v a l u e 3) {
/ * c a s e v a l u e 3 s t a t e m e n t s * /

Jt

e l s e €
/ * d e f a u l t s t a t e m e n t s * /

J

The corresponding assembly code segment becomes

c o n s t a n t v a l u e l , . . .
c o n s t a n t v a l u e 2 , . . .
c o n s t a n t v a l u e 3 , . . .

compare S O , v a l u e l ; t e s t v a l u e l
jump n z , c a s e - 2 ; n o t e q u a l t o v a l u e l , j u m p
; c o d e f o r c a s e 1

jump c a s e - d o n e

compare S O , value:! ; t e s t v a l u e 2
jump n z , c a s e - 3 ; n o t e q u a l t o v a l u e 2 , j u m p
; c o d e f o r c a s e 2

jump c a s e - d o n e

compare S O , v a l u e 3 ; t e s t v a l u e 3
jump d e f a u l t ; n o t e q u a l t o v a l u e 3 , j u m p
; c o d e f o r c a s e 3

. . .

c a s e - 2 :

. . .

c a s e - 3 :

jump c a s e - d o n e

: c o d e f o r d e f a u l t c a s e
d e f a u l t :

. . .
c a s e - d o n e :

; c o d e f o l l o w i n g c a s e s t a t e m e n t

The for-loop statement executes a segment of the code repetitively. The loop statement
can be implemented by using a counter to keep track of the iteration number. For example,
consider the following:

f o r (i = M A X , i = O , i -1) C

>
/ * l o o p body s t a t e m e n t s * /

The assembly code segment is

namereg S O , i ; l o o p i n d e x
c o n s t a n t MAX, . . . ; l o o p b o u n d a r y

350 PICOBLAZE ASSEMBLY CODE DEVELOPMENT

load i , M A X ; l o a d l o o p i n d e x

; c o d e f o r l o o p b o d y
loop-body :

sub i , 01 ; d e c l o o p i n d e x ?
jump nz , loop-body ; d o n e ?
; c o d e f o l l o w i n g f o r l o o p

15.3 SUBROUTINE DEVELOPMENT

A subroutine, such as a function in C, implements a section of a larger program. It is coded
to perform a specific task and can be used repetitively. Using subroutines allows us to
divide a program into small, manageable parts and thus greatly improve the reliability and
readability of a program. It is the base of modem programming practice and is supported
by all high-level programming languages.

PicoBlaze uses the call and return instructions to implement the subroutine. The call
instruction saves the current content of the program counter and transfers the program exe-
cution to the starting address of a subroutine. A subroutine ends with a return instruction,
which restores the saved program counter and resumes the previous execution. A represen-
tative flow is shown in Figure 14.7. Note that PicoBlaze only saves and restores the content
of the program counter during a function call and return. We have to manage the register
and data RAM use manually to ensure that the original system state is not altered after a
subroutine call.

The following multiplication example illustrates the development of subroutines. We
assume that the inputs are two 8-bit numbers in unsigned integer format and the output is
a 16-bit product. The algorithm is based on a simple shift-and-add method. This method
iterates through 8 bits of multiplier. In each iteration, the multiplicand is shifted left one
position. If the corresponding multiplier bit is ' l ' , the shifted multiplicand is added to
the partial product. The assembly code is shown in Listing 15.1. The multiplicand and
multiplier are stored in the s3 and s4 registers. The individual bit of multiplier is obtained
by repetitively shifting s4 to the right, which moves the LSB to the carry flag. Note that
instead of actually shifting the multiplicand to the left, we shift the partial product, which
consists of 2 bytes and is stored in s5 and s6, to the right.

Listing 15.1 Software integer multiplication

,___________________------------------------_-------------
; r o u t i n e : m u l t - s o f t
; f u n c t i o n : 8 - b i t u n s i g n e d m u l t i p l i e r u s i n g

s h i f t -and-add a l g o r i t h m
5 ; i n p u t r e g i s t e r :

s3: m u l t i p l i c a n d
s 4 : m u l t i p l i e r

s5: u p p e r b y t e of p r o d u c t
10 ; s 6 : l o w e r b y t e of p r o d u c t

: o u t p u t r e g i s t e r :

; t e m p r e g i s t e r : i

mult-soft:

.______________-_--_-------------------------------------- ,_______________________________________------_-----------

load s 5 , 00 ; c l e a r s5

PROGRAM DEVELOPMENT 351

15 l oad i, 08 ; i n i t i a l i z e l o o p i n d e x
mult-loop:

srO s4 ; s h i f t LSB t o c a r r p
jump n c , shift-prod ; L S B i s 0
add s5, s3 ; L S B i s 1

20 shif t-prod :
s r a s5

sra s6

; s h i f t u p p e r b y t e r i g h t ,
; c a r r y t o MSB, LSB t o c a r r y
; s h i f t l o w e r b y t e r i g h t ,
; L S B of s 5 t o MSB o f s 6

25 sub i , 0 1 ; d e c l o o p i n d e x
jump n z , mult-loop ; r e p e a t u n t i l i=O
re turn

Because of the primitive nature of the assembly language, thorough documentation is
instrumental. A subroutine should include a descriptive header and detailed comments. A
representative header is shown in Listing 15.1. It consists of a short function description
and the use of registers. The latter shows how the registers are allocated and is crucial to
preventing conflict in a large program.

15.4 PROGRAM DEVELOPMENT

Developing a complete assembly program consists of the following steps:
1. Derive the pseudo code of the main program.
2. Identify tasks in the main program and define them as subroutines. If needed, continue

3. Determine the register and data RAM use.
4. Derive assembly code for the subroutines.

refining the complex subroutines and divide them into smaller routines.

Steps 1, 2, and 4 basically follow a divide-and-conquer approach and are applicable for
any software development. A microcontroller-based application is normally for a simple
embedded system, in which the processor monitors the I/O activities continuously and
responds accordingly. Its main program usually has the following structure:

c a l l initilaization-routine

c a l l taskl-routine
c a l l task2-rout ine

c a l l taskn-rout ine
jump forever

forever :

. . .

Step 3 is unique for assembly code development. Unlike a high-level language program,
in which the compiler automatically allocates storage to variables, we must manually man-
age the data storage in assembly code. PicoBlaze has 16 registers and 64 bytes of data
RAM to store data. The registers can be considered as fast storage, in which the data can
be manipulated directly. The data RAM, on the other hand, is “auxiliary” storage. Its data
needs to be transferred to a register for processing. For example, if we want to increment a
data item located in the RAM, it must first be loaded into a register, incremented there, and
then stored back to the RAM.

Because of the limited space for data storage, its use has to be planned carefully in
advance, particularly when the code is complex and involves nested subroutines. To assist

352 PICOBLAZE ASSEMBLY CODE DEVELOPMENT

09
OA

00 I lowerbvteof a

upper byte of a' + b'
carrv of a' + b'

01 I unused
02 1 lowerbvteof b
03 I unused I
04
05
06 lower byte of b

Figure 15.1 Data RAM memory allocation.

coding, we can first identify the needed global storage or local storage. The former keeps
data that is needed in the entire program. The latter provides space to store intermediate
results, and the data will be discarded after the required computation is completed.

15.4.1 Demonstration example

The development process can best be explained by an example. Let us consider a program
that uses the previous multiplication subroutine. It reads two inputs, a and b, from the
switch, calculates a2 + b2, and displays the result on eight discrete LEDs. Since the I/O
interface is to be discussed in Chapter 16, we limit the I/O to a single input port, the 8-bit
switch, and a single output port, the 8-bit LEDs. We assume that a and b are obtained
from the upper nibble (i,e., the four MSBs) and the lower nibble (i.e., the four LSBs) of the
switch. The main program is

c a l l c l e a r - d a t a- r am

c a l l r e a d - s w i t c h
c a l l s q u a r e
c a l l w r i t e - l e d
jump f o r e v e r

f o r e v e r :

The subroutines are defined as follows:
0 clr-dataaem: clears data memory at system initialization
0 readswi tch : obtains the two nibbles from the switch and stores their values to the

data RAM
0 square: uses the multiplication subroutine to calculate a2 + b2
0 write-led: writes the eight LSBs of the calculated result to the LED port

For demonstration purposes, we create two smaller routines, ge t -uppernibble and
get- lowernibble , within the read-switch routine to obtain the upper nibble and lower
nibble from a register.

The next step in development is to plan the register and data RAM use. For global storage,
we introduce a global register, sw-in, to store the input value of switch and allocate 1 1 bytes
of data RAM to store the inputs and result of the square routine. Allocation of the data
RAM is shown in Figure 15.1. Note that the addresses 01 and 03 are not actually used.
They are reserved to simplify the seven-segment LED display code, which is discussed
in Chapter 16. All remaining registers are used as local storage. For program clarity, we

PROGRAM DEVELOPMENT 353

define three symbolic names, data , addr, and i, as temporary registers for data, port and
memory address, and loop index.

The last step is to derive the assembly code for the subroutines. The complete code is
shown in Listing 15.2. The clr-dataaem uses a loop to clear data memory. The i register
is the loop index and initialized with 64 (i.e., 4016). The index is decremented in each loop
and 0 is loaded to the corresponding data RAM address. The wri te- led routine fetches
the eight LSBs of the calculated result from the data RAM and outputs them to the LED
port.

The read-switch routine includes two smaller routines. The get-uppernibble rou-
tine shifts the da t a register right four times to move the upper nibble to the four LSBs.
The get- lowenibble routine clears the four MSBs of the da t a register to 0’s and thus
removes the upper nibble. The “glue instructions” of read-switch input the switch values,
set up the input for the two nibble routines, and store the result in the data RAM.

The square routine fetches data from the data RAM, utilizes the mult-sof t routine to
calculate u2 and b2, performs addition, and stores the result back to the data RAM.

Listing 15.2 Square program with simple nibble input

10

15

20

2s

30

35

; s q u a r e c i r c u i t w i t h s i m p l e 1 / 0 i n t e r f a c e

; p r o g r a m o p e r a t i o n :
; - r e a d s w i t c h t o a (4 M S B s) a n d b (4 L S B s)
; - c a l c u l a t e a * a + b * b
; - d i s p l a y d a t a on 8 l e d s

; d a t a c o n s t a n t

cons tant UP-NIBBLE-MASK , OF ; 00001 11 1

; d a t a ram a d d r e s s a l i a s

c o n s t a n t a - l s b , 00
c o n s t a n t b - l s b , 0 2
c o n s t a n t a a - l s b , 04
c o n s t a n t aa-msb, 05
c o n s t a n t b b - l s b , 06
c o n s t a n t bb-msb, 07
c o n s t a n t a a b b - l s b , 08
cons tant aabb-msb , 09
c o n s t a n t aabb-cou t , OA

; r e g i s t e r a l i a s

; c o m m o n l y u s e d l o c a l v a r i a b l e s
namereg S O , d a t a ; r e g f o r t e m p o r a r y d a t a
namereg s l , a d d r ; r e g f o r t e m p o r a r y mem & i / o p o r t a d d r
namereg s 2 , i ; g e n e r a l - p u r p o s e l o o p i n d e x
; g l o b a l v a r i a b l e s
namereg s f , sw- in

354 PICOBLAZE ASSEMBLY CODE DEVELOPMENT

; p o r t a l i a s

40 ,’ i n p u t p o r t d e f i n i t i o n s
c o n s t a n t sw-port, 01 ; & b i t s w i t c h e s

o u t p u t p o r t d e f i n i t i o n s
c o n s t a n t led-port , 05

45 ;
; m a i n p r o g r a m

; c a l l i n g h i e r a r c h y :

50 ; m a i n
; - c l r - d a t a - m e m

- r e a d - s w i t c h
- g e t - u p p e r - n i b b l e
- g e t - l o w e r - n i b b l e

- m u l t - s o f t
5s ; - s q u a r e

; - w r i t e - l e d

60 c a l l clr-data-mem
forever :

c a1 1
c a l l square
c a l l write-led

read- sw i t ch

65 jump forever

; r o u t i n e : c l r - d a t a - m e m
; f u n c t i o n : c l e a r d a t a ram

7 0 ; t e m p r e g i s t e r : d a t a , i

; u n i t i z e l o o p i n d e x t o 6 4
clr-data-mem :

load i , 40
load data, 00

75 clr-mem-loop:
s t o r e d a t a , (i)
sub i , 0 1 ; d e c l o o p i n d e x
jump n z , clr-mem-loop ; r e p e a t u n t i l i=O
re turn

80

; r o u t i n e : r e a d s w i t c h
; f u n c t i o n : o b t a i n t w o n i b b l e s f r o m i n p u t
; i n p u t r e g i s t e r : s w - i n

85 ; t e m p r e g i s t e r : d a t a

read-switch :
input sw-in, sw-port ; r e a d s w i t c h i n p u t

PROGRAM DEVELOPMENT 355

l oad d a t a , sw-in
90 c a l l get-lower-nibble

s t o r e d a t a , a-lsb ; s t o r e a t o d a t a ram
l oad d a t a , sw-in
c a l l get-upper-nibble
s t o r e data, b-lsb ; s t o r e b t o d a t a ram

YS

; r o u t i n e : g e t - l o w e r - n i b b l e
; f u n c t i o n : g e t l o w e r 4 b i t s of d a t a
; i n p u t r e g i s t e r : d a t a

IW ; o i i t p u r r e g i s t e r : d a t a

get-lower-nibble:
and data, UP-NIBBLE-MASK ; c l e a r u p p e r n i b b l e
re turn

10s

; r o u t i n e : g e t - u p p e r - n i b l e
; f u n c t i o n : g e t u p p e r 4 b i t s o f d a t a
; i n p u t r e g i s t e r : d a t a

1 1 0 ; o u t p u t r e g i s t e r : d a t a

get-upper-nibble:
s r o data
s r o data

115 srO data
s r o data
re turn

; r i g h t s h i f t 4 t i m e s

IZO ; r o u t i n e : w r i t e - l e d
; f u n c t i o n : o u t p u t 8 LSBs of r e s u l t t o 8 I e d s
; t e m p r e g i s t e r : d a t a

write-led:
125 f e t c h d a t a , aabb-lsb

output data, led-port
re turn

130 ; r o u t i n e : s q u a r e
; f u n c t i o n : c a l c u l a t e a * a + b * b

; t e m p r e g i s t e r : s 3 , s 4 , s 5 , s 6 , d a t a
d a t a l r e s u l t s t o r e d i n ram s t a r t e d w / SQ-BASEADDR

1?5 square :
; c a l c u l a t e a * a
f e t c h s3, a-lsb
f e t c h 9 4 , a-lsb
c a l l mult-soft

140 s t o r e s 6 , aa-lsb
s t o r e s 5 , aa-msb

; l o a d a
; l o a d a
; c a l c u l a t e a * a
; s t o r e l o w e r b y t e of a * a
; s t o r e u p p e r b y t e of a * a

356 PICOBLAZE ASSEMBLY CODE DEVELOPMENT

; c a l c u l a t e b * b
f e t c h s3, b - l s b
f e t c h s 4 , b - l s b

s t o r e s 6 , b b - l s b
s t o r e s 5 , 07
; c a l c u l a t e a*a+b*b
f e t c h d a t a , a a - l s b

s t o r e d a t a , a a b b - l s b
f e t c h d a t a , aa-msb
addcy d a t a , s5
s t o r e d a t a , aabb-msb

addcy d a t a , 00
s t o r e d a t a , a a b b - c o u t
re turn

145 c a l l m u l t - s o f t

150 add d a t a , s6

155 load d a t a , 00

; l o a d b
; l o a d b
; c a l c u l a t e b * b
; s t o r e l o w e r b y t e of b * b
; s t o r e u p p e r b y t e of b * b

; g e t l o w e r b y t e of a*a
; a d d l o w e r b y t e of a * a + b * b
; s t o r e l o w e r b y t e of a * a + b * b
; g e t u p p e r b y t e of a * a
; a d d u p p e r b y t e of a * a + b * b
; s t o r e u p p e r b y t e of a * a + b * b
; c l e a r d a t a , b u t k e e p c a r r y
; g e t c u r r y - o u t f r o m p r e v i o u s +
; s t o r e c a r r y - o u t o f a*a+b*b

,M) ,.--- ...
; r o u t i n e : m u l t - s o f t
: f u n c t i o n : 8 - b i t u n s i g n e d m u l t i p l i e r u s i n g

; i n p u t r e g i s t e r :
s h i f t -and-add a 1 g o r i t h m

165 ,' s3: m u l t i p l i c a n d
s 4 : m u l d i p l i e r

s5: u p p e r b y t e of p r o d u c t
s 6 : l o w e r b y t e of p r o d u c t

; o u t p u t r e g i s t e r :

170 ; t e m p r e g i s t e r : i
,____-_-_____--_____--------------------------------------
m u l t - s o f t :

load s 5 , 00 ; c l e a r s5
load i , 08 ; i n i t i a l i z e l o o p i n d e x

srO s4 ; s h i f t l s b t o c a r r y
jump n c , s h i f t - p r o d ; l s b i s 0
add s 5 , s3 ; l s b i s 1

175 m u l t - l o o p :

s h i f t - p r o d :
180 s r a s 5

sra s 6

; s h i f t u p p e r b y t e r i g h t ,
; c a r r y t o MSB, LSB t o c a r r y
; s h i f t l o w e r b y t e r i g h t ,
; l s b of s 5 t o MSB of s6

sub i , 01 ; d e c l o o p i n d e x

re turn
185 jump n z , m u l t - l o o p ; r e p e a t u n t i l i=O

15.4.2 Program documentation

Developing an assembly program is a tedious process. The use of symbolic names and good
documentation can make the code clear and reduce many unnecessary errors. It also helps
future revision and maintenance. For the KCPSM3 assembler. we can use the constant

PROGRAM DEVELOPMENT 357

directive to assign a symbolic name (alias) to a data constant, a memory address, or a port
id, and use the namereg directive to assign a symbolic name to a register.

A representative main program header is shown in Listing 15.2. It contains the following
segments :

General program description: provides a general description for the purpose, oper-

0 Data constants: declares symbolic names for constants
0 Data RAM address alias: declares symbolic names for data RAM addresses
0 Register alias: declares symbolic names for registers
0 Port alias: declares symbolic names for I/O ports
0 Program calling hierarchy: illustrates the calling structure and subroutines

ation, and I/O of the program

The aliases and directives have no effect on the final machine code. When the assembly
code is processed, they are replaced with the actual constant values. However, using aliases
can greatly enhance the readability of the assembly code and reduce unnecessary errors.
The following code segment further illustrates the impact of the alias and documentation.
The purpose of this segment is to obtain values for variables a, b, and c, and store them
in proper data RAM locations. The location is specified by the UART input, which is the
ASCII code of character a, b, or c. The segment with aliases and proper comments is

; c o n s t a n t a l i a s
c o n s t a n t ASCII-a, 61
c o n s t a n t ASCII-b, 6 2
c o n s t a n t ASCII-c , 6 3

; d a t a ram a d d r e s s a l i a s
c o n s t a n t a-addr, 0 2
c o n s t a n t b-addr, 04
c o n s t a n t c-addr, 06

namereg S O , data
namereg sl , addr
namereg s F , sw-in

c o n s t a n t sw-port , 01
c o n s t a n t uart-rx-port , 02

; r e g i s t e r a l i a s

; p o r t a l i a s

; a s s e m b l y c o d e w i t h a l i a s
; g e t i n p u t
input sw-in, sw-port
input data, uart-rx-port
; c h e c k r e c e i v e d c h a r
compare data, ASCII-a
jump n z , chk-ascii-b
s t o r e sw-in, a-addr
jump done

chk-ascii-b :
compare data, ASCII-b
jump n z , chk-ascii-c
s t o r e sw-in, b-addr
jump done

chk-ascii-c:
compare data, ASCII-c
jump n z , ascii-err

; A S C I I c o d e f o r a
; A S C I I c o d e f o r b
; A S C I I c o d e f o r c

; r e g f o r t e m p o r a r y d a t a
; r e g f o r t e m p o r a r y a d d r
; s w i t c h i n p u t

; s w i t c h i n p u t
; UART i n p u t

; g e t s w i t c h
; g e t c h a r

; c h e c k A S C I I a
; n o , c h e c k n e x t
; y e s , s t o r e a t o d a t a ram

; c h e c k A S C I I b
, ' n o , c h e c k n e x t
: y e s , s t o r e b t o d a t a ram

; c h e c k A S C I I c
; n o , e r r o r

358 PICOBLAZE ASSEMBLY CODE DEVELOPMENT

Store sw-in, c-addr
jump done

ascii-err:

; y e s , s t o r e b t o d a t a ram

done :
. . .

If we use hard literals and strip the comments, the code becomes

; a s s e m b l y code with no a l i a s or comments
input sf, 0 1
input s o , 02
compare S O , 61
jump nz , addrl
s t o r e sf, 02
jump addr4

compare S O , 6 2
jump n z , addr2
s t o r e sf, 04
jump addr4

compare S O , 6 3
jump n z , addr3
s t o r e sf, 06
jump addr4

addrl :

addr2 :

addr3 :

addr4 :
. . .

. . .
While the functionality of this code segment is the same, it is very difficult to comprehend,
debug, or modify.

15.5 PROCESSING OF THE ASSEMBLY CODE

PicoBlaze-based development flow is reviewed in Section 14.4. After the assembly code is
developed, it is then compiled (translated) to machine instruction in step 3. The instruction-
set-level simulation can also be performed to verify the correctness of the code, as in step 4.
The two steps and the direct downloading process (step 9) are discussed in detail in this
section.

Xilinx provides an assembler known as KCPSM3 for compiling in step 3 and download-
ing utility programs in step 9. The programs, HDL codes for the PicoBlaze processor, and
relevant template files can be downloaded from the Xilinx’s web site. A program known as
PBlazeZDE from Mediatronix can perform the instruction-set-level simulation in step 4. It
can also be used as an assembler. PBlazeIDE can be downloaded from Mediatronix’s Web
site.

15.5.1 Compiling with KCSPMB

Assembler is the software that translates the instruction mnemonics to machine instructions,
which are represented as 0’s and l’s, and substitutes the aliases and symbolic branch ad-
dresses with actual values. The machine instructions are then downloaded to the instruction

PROCESSING OF THE ASSEMBLY CODE 359

memory of a microcontroller. Since PicoBlaze is embedded inside FPGA, the instruction
ROM becomes an HDL ROM module with the compiled assembly code. The ROM will be
instantiated later in the top-level HDL code and synthesized along with PicoBlaze and the
I/O interface circuit.

Xilinx provides the KCPSM3 assembler for this task. It is a command-line, DOS-based
program. KCPSM3 basically takes an assembly program, along with the necessary template
files, and generates the HDL code for the instruction ROM. The procedure of compiling an
assembly program is as follows:

1. Create a directory for the project and copy kcpsm3.exe, R O M 4 orm.vhd, R O M 4 orm.v,
and ROM-form.coe to the directory. The latter three are code templates used by
KCPSM3.

2. Create the assembly program and save it as plain text file with an extension of .psm.
Any PC-based editor, such as Notepad, can be used for this purpose.

3. Invoke a DOS window by selecting Start + Programs + Accessories + Command
Prompt. In the DOS window, navigate to the project directory.

4. Type kcpsm3 myf ile.psm to run the program.
5. Correct syntax errors if necessary and recompile.
6. After successful compiling, the file containing the instruction ROM, myf i le.vhd, is

In addition to the HDL file, KCPSM3 also generates files that are suitable for block RAM
initialization and other utilities. The file with the .hex extension can be used for JTAG
downloading, which is discussed in Section 15.5.3, and the file with the .fmt extension is
a reformatted .psm file for “pretty printing.”

generated.

15.5.2 Simulation by PBlazelDE

As the name indicates, instruction-set-level simulation simulates the operation of a Pi-
coBlaze system instruction by instruction. The PBlazeZDE program can be used for this
purpose. PBlazeIDE is a Windows-based program with an integrated development envi-
ronment, which includes a text editor, an assembler, and an instruction-set-level simulator.

PBlazeIDE uses slightly different instruction mnemonics and directives, as discussed in
Section 14.5. Thus, the code written for by KCPSM3 cannot be used directly by PBlazeIDE,
and vice versa. The mnemonic differences are summarized in Table 15.1, and the directive
examples are shown in Table 15.2. Note that the PBlazeIDE assembler uses both decimal
and hexadecimal format for constants. A hexadecimal number is started with a $ sign, as
in $1A.

The procedure of using PBlazeIDE for KCPSM3 code is as follows:
1. Compile the assembly code with KCPSM3.
2 . Launch PBlazeIDE.
3. Select Settings + PicoBlaze 3. This specifies the version 3 of PicoBlaze, which is

used in the Spartan-3 device.
4. Select File + Import and a dialog window appears. Select the corresponding . f m t

file. The “import” function converts the KCPSM3 code to the PBlazeIDE code. The
formatted program is easier for conversion. The converted file may sometimes need
minor manual editing.

5. Manually specify the dsin, dsout, and dsio directives for I/O ports. When one of
these directives is used, a port indicator will be added to the simulation screen to
show the activities of the port.

360

6.
7.

PICOBLAZE ASSEMBLY CODE DEVELOPMENT

Table 15.1 Mnemonic differences between KCPSM3 and PBlazeIDE

KCPSM3 PBlazeIDE

addcy
subcy
compare
store sX, (sY)
fetch s X , (sY)
input sX, (sY>
input s X , KK

output sX, KK
return
returni
enable interrupt
disable interrupt

output sx, (SY)

addc
subc
comp
store sX, sY
fetch sX, sY
in sX, SY
in sX, $KK
out sx, SY
out sX, $KK
ret
reti
eint
dint

Table 15.2 Directive examples of KCPSM3 and PBlazeIDE

Function KCPSM3 PBlazeIDE

code location address 3FF org $3FF
constant constant MAX, 3F MAX equ $3F
register alias namereg addr, s2 addr equ s2

port alias constant in-port , 00 in-port dsin $00
out-port dsout $10
bi-port dsio $OF

constant out-port , I0
constant bi-port , OF

Enter the simulation mode by selecting Simulate + Simulate. Perform simulation.
If the assembly code needs to be revised, it must be done outside PBlazeIDE. Simply
close the current file, invoke an external editor to edit the original .psm file, save
the file, and restart from step 1. If the file is edited within PBlazeIDE, it cannot be
converted back to KCPSM3 code.

A representative simulation screenshot is shown in Figure 15.2. The simulator displays
the assembly code in the central window and highlights the next instruction to be executed.
The instruction address, instruction code, and breakpoints are shown next to the code. The
current state of PicoBlaze is shown at the left, which includes the status of the flags, the
content of the registers, and the content of the data RAM. The values of the program counter
and stack pointer as well as some execution statistics are shown in the bottom row.

The emulated I/O ports created by the dsin, dsout, and dsio directives are shown at the
right. There are an input port, switch, and an output port, led, on this particular screen.
Since PBlazeIDE has no information about I/O behavior, the input port data must be entered
and modified manually during simulation.

During simulation, the assembly program can be executed continuously, by one step, by
one instruction, or to pause at a specific breakpoint. The simulation action is controlled by
the commands of the Simulate menu or the icons on the top:

PROCESSING OF THE ASSEMBLY CODE 361

Figure 15.2 Screenshot of pBlazeIDE in simulation mode.

362 PICOBLAZE ASSEMBLY CODE DEVELOPMENT

0 Reset: clears the program counter and stack pointer
0 Run: runs the program continuously until a breakpoint
0 Single step: executes one instruction
0 Step over: executes the entire subroutine for a call instruction and executes one

0 Run to cursor: runs the program to the current cursor position
0 Pause: pauses the simulation
0 Toggle breakpoint: sets or clears a breakpoint at the current cursor position

Remove all breakpoints: clears all breakpoints

instruction for other instructions

15.5.3 Reloading code via the JTAG port

After the instruction ROM HDL is generated, we can continue steps 6 and 8 in Figure 14.4
to synthesize the entire code and download the configuration file to the FPGA chips. Note
that the synthesis flow must be repeated each time the assembly code is modified.

Since synthesis is a complex process, it requires a significant amount of computation time.
When the I/O configuration is fixed, resynthesizing the entire circuit after each assembly
program modification is not really needed. It is possible to reload the machine code to the
ROM, which is implemented by a block RAM, by using the FPGA's JTAG interface. This
corresponds to the dotted line of step 9 in Figure 14.4. The basic procedure is as follows:

1. Replace the original ROM template with one that contains the JTAG interface circuit.
2. Use KCPSM3 to compile the assembly code as usual.
3. Synthesize the top-level HDL code and program the FPGA chip.
4. In subsequent assembly program modifications, compile the program as usual. Recall

5. Use the Xilinx utility to embed the . hex file to a JTAG programming file and download

The detailed procedure and the relevant programs and templates can be found in the
JTAG-loader directory of the downloaded KCPSM file.

that a file in hex format (ended with the .hex extension) is generated.

the file to the FPGA's block RAM via the JTAG interface.

15.5.4 Compiling by PBlazelDE

As discussed earlier, PBlazeIDE is an integrated program that contains an assembler and
editor. If the program is developed with PBlazeIDE mnemonics, PBlazeIDE can replace
the KCPSM3 assembler. The instruction ROM VHDL file is generated by a directive. If
the HDL file is needed, simply include the vhdl directive in the assembly code. Its syntax
is

vhdl "ROM-form.vhd", " r o m - t a r g e t . vhd" , " r o m - e n t i t y - n a m e "

The "ROM-f orm. vhd" term specifies a VHDL template file, which is the same file as
that discussed in Section 15.5.1. It should be copied to the directory where the assembly
program file resides. The "rom-target.vhd" term specifies the name of the generated
ROM VHDL file, and the " rom-ent i tyname" term indicates the desired entity name
of the previously generated VHDL file. The VHDL file is generated automatically when
PBlazeIDE is switched from the edit mode to the simulation mode.

Note that since PBlazeIDE does not generate a hex file, the reloading scheme discussed
in Section 15.5.3 cannot be applied directly.

SYNTHESES WITH PICOBLAZE 363

Figure 15.3 PicoBlaze with a simple IiO interface.

15.6 SYNTHESES WITH PICOBLAZE

After generating the HDL file for the instruction ROM, we can combine it with PicoBlaze to
synthesize the entire system in an FPGA chip. Unlike a normal microcontroller, PicoBlaze
has no built-in I/O peripherals. The I/O interface is created and customized as needed.
The circuit is described in HDL code. Since the focus in this chapter is assembly program
development, we use a simple 1/0 configuration, which contains only one switch input port
and one led output port, for synthesis. The development of more sophisticated I/O interface
is discussed in detail in Chapters 16 and 17.

The top-level block diagram of this design is shown in Figure 15.3. It contains the
PicoBlaze processor, which is labeled kcpsm3, the instruction ROM, and a register. The
register functions as a buffer for the eight LEDs. When PicoBlaze executes the output
instruction, it places the data on out-port and asserts the wr i t e - s t robe signal, which
enables the register and stores the data in the register. The sw signal is connected to in-port .
When PicoBlaze executes the input instruction, it retrieves the value of the sw signal and
stores it in an internal register. The corresponding HDL code is shown in Listing 15.3. It
consists of instantiations of the PicoBlaze processor and instruction ROM, and a segment
for the output buffer. The kcpsm3 entity is the name of the PicoBlaze processor, and its
code is stored in an HDL file of the same name. The sio-rom entity is from the previously
generated instruction ROM file.

Listing 15.3 PicoBlaze with a simple I/O configuration

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y pico-sio i s

5 p o r t (
clk, reset: in std-logic;
sw: in std-logic-vector (7 downto 0) ;
led: out std-logic-vector (7 downto 0)

) ;
10 end p i c o - s i o ;

a r c h i t e c t u r e a r c h of pico-sio i s
-- KCPSM3/ROM s i g n a Is
s i g n a l address : std-logic-vector (9 downto 0) ;

15 s i g n a l instruction: std-logic-vector (1 7 downto 0) ;
s i g n a l port-id: std-logic-vector (7 downto 0) ;

364 PICOBLAZE ASSEMBLY CODE DEVELOPMENT

signal in-port , out-port : std-logic-vector (7 downto 0) ;
signal write-strobe : std-logic;
__ r e g i s t e r s i g n a l s

20 signal led-reg : std-logic-vector (7 downto 0) ;

30

begin
_-
__ KCFSM and ROM i n s t a n t i a t i o n

proc-unit : entity work. kcpsm3

clk=>clk, reset=>reset ,
address=>address , instruction=>instruction,
port-id=>open, write-strobe=>write-strobe,
out-port=>out-port , read-strobe=>open,
in-port=>in-port , interrupt=>’O’,
interrupt-ack=>open);

25 --

port map(

rom-unit : entity work. sio-rom
35 port map(

clk = > clk, address=>address ,
instruction=>instruction);

__
__ o u t p u t i n t e r f a c e

-- o u t p u t
process (clk)
begin

40 --
r e g i s t e r

if (clk ’ event and clk= ’ 1 ’ then

led-reg <= out-port ;
45 if write-strobe=’l’ then

end if ;
end if ;

end process;
50 led <= led-reg;

__ i n p u t i n t e r f a c e

in-port <= sw;
__

55 end arch;

15.7 BIBLIOGRAPHIC NOTES

The bibliographic information for this chapter is similar to that for Chapter 14. The pro-
cedure of reloading compiled code via JTAG port is explained in the article, “PicoBlaze
JTAG Loader Quick User Guide,” by Kris Chaplin and Ken Chapman, which appears in the
JTAG-loader directory of the downloaded KCPSM file.

SUGGESTED EXPERIMENTS 365

15.8 SUGGESTED EXPERIMENTS

15.8.1 Signed multiplication

The subroutine in Listing 15.1 assumes that the inputs are in unsigned integer format.
Modify the subroutine to perform the signed multiplication, in which the two inputs and
output are interpreted as signed integers, and use simulation to verify its operation.

15.8.2 Multi-byte multiplication

The subroutine in Listing 15.1 assumes that the inputs are 8 bits wide. Some application
may need more precision and we want to extend the subroutine to take 16-bit unsigned
inputs. An operand now requires two registers and the result needs four registers. Develop
the subroutine and use simulation to verify its operation.

15.8.3 Barrel shift function

PicoBlaze can only shift or rotate a single bit. A “barrel” shifting function can perform
the shift and rotate operation for multiple bits. This function has three input registers. The
first register contains data to be shifted or rotated; the second register specifies the amount,
which is between 0 and 7; and the third register indicates the types of operation, which can
be shift left, shift right, rotate left, or rotate right. We assume that 0 will be shifted in for
the two shift operations. Develop the subroutine and use simulation to verify its operation.

15.8.4 Reverse function

A reverse function reverses the bit order of an input. For example, if the input is ”0101001 l ” ,
the output becomes “1 1001010”. We can use the 8-bit switch as input and the 8-bit discrete
LEDs as output. Derive and simulate the assembly code, obtain the instruction ROM and
create the top-level HDL code, synthesize the system, and verify its operation.

15.8.5 Binary-to-BCD conversion

Binary-to-BCD conversion is discussed in Section 6.3.3. This function can be implemented
by using assembly code as well. Assume that the input is an 8-bit binary number and the
output is a two-digit 8-bit BCD number. If the input exceeds 99, the output generates a
special overflow pattern, “1 11 11 11 1”. We can use the 8-bit switch as input and the 8-bit
discrete LEDs as output. Derive and simulate the assembly code, obtain the instruction
ROM and create the top-level HDL code, synthesize the system, and verify its operation.

15.8.6 BCD-to-binary conversion

Repeat Experiment 15.8.5, but develop the assembly code and circuit for BCD-to-binary
conversion.

15.8.7 Heartbeat circuit

A “heartbeat circuit” is discussed in Experiment 4.7.4. We can create a similar pattern
using the eight discrete LEDs as well. Derive and simulate the assembly code, obtain the

366 PICOBLAZE ASSEMBLY CODE DEVELOPMENT

instruction ROM and create the top-level HDL code, synthesize the system, and verify its
operation.

15.8.8 Rotating LED circuit

We want to design a circuit that rotates a simple LED pattern to the left or right at four differ-
ent speeds. The four patterns are "00000001", "00000011", "00001111", and "00001101".
The pattern, direction, and rotation speed can be selected from the 8-bit switch (only 5 bits
are used). The speed should be properly chosen so that all four patterns are visually ob-
servable. Derive and simulate the assembly code, obtain the instruction ROM and create
the top-level HDL code, synthesize the system, and verify its operation.

15.8.9 Discrete LED dimmer

The concept of PWM and LED dimmer are discussed in Experiment 4.7.2. In this exper-
iment, we want to use eight discrete LEDS to show the various degrees of the brightness.
This can be done by changing the "on" fraction of an LED. The "on" fraction of the eight
LEDS will be :, g, :, . . . i. Derive and simulate the assembly code, obtain the instruction
ROM and create the top-level HDL code, synthesize the system, and verify its operation.

CHAPTER 16

PICOBLAZE I/O INTERFACE

16.1 INTRODUCTION

To interact with the external environment, a regular microcontroller chip consists of a
variety of built-in I/O peripherals, such as a UART, SPI (serial peripheral interface), timer,
etc. When starting a new development, we select a microcontroller chip according to the
I/O requirements of the application and may sometimes need to use additional chips to
realize less commonly used functions.

Unlike a regular microcontroller, PicoBlaze has no built-in I/O peripherals. It just pro-
vides a simple generic input and output structure for an I/O interface. I/O peripherals are
constructed as needed and thus are customized to each application. PicoBlaze uses the
input and output instructions to transfer data between its internal registers and I/O ports,
and its interface consists of the following signals:

0 port- id: an 8-bit signal that specifies the port id (i.e., port address) of an input or

0 in-port : an 8-bit signal where PicoBlaze obtains input data during operation of an

0 out-port : an 8-bit signal where PicoBlaze places output data during operation of

0 r e a d s t r o b e : a 1-bit signal that is asserted in the second clock cycle of an input

0 w r i t e s t r o b e : a 1-bit signal that is asserted in the second clock cycle of an output

output instruction

input instruction

an output instruction

instruction

instruction

FPGA Protogping by VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

367

368 PICOBLAZE 110 INTERFACE

Figure 16.1 Timing diagram of an output instruction.

Although there are only two 8-bit ports to input and output data, the 8-bit p o r t - i d signal
can be used to distinguish different peripherals, and thus it is said that PicoBlaze can support
up to 2.56 (i.e., 28) input ports and 256 output ports.

In the remaining chapter, we examine the detailed IiO timing of PicoBlaze and illustrate
the I/O interface development by adding a series of peripherals for the square circuit of
Chapter 15.

16.2 OUTPUT PORT

16.2.1 Output instruction and timing

The output instruction writes data to the output port. It has two forms:

o u t p u t sx, (SY)
o u t p u t s X , p o r t - n a m e

In the first form, the port id is stored in the SY register. In the second form, the port id is
specified explicitly by p o r t name, which is a two-digit hexadecimal number or a previously
defined symbolic constant. The output data is always stored in the sX register.

The timing diagram of an output instruction,

o u t p u t s o , 0 2

is shown in the top five traces of Figure 16.1. Recall that each PicoBlaze instruction takes
two clock cycles. When the instruction is executed, the content of SO is placed on out-port
and 02 is placed on p o r t - i d for two clock cycles. The wr i t e - s t robe signal is asserted
in the second clock cycle. It can be used as an enable tick to store data in an output register
or to initiate the designated peripheral operation.

OUTPUT PORT 369

Figure 16.2 Output decoding of four output registers.

Truth table of a decoding circuit Table 16.1

input output
wri te -s t robe p o r t - id (1) por t - id(0) en-d

- - 0000
0 0 000 1
0 1 0010
1 0 0100
1 1 1000

16.2.2 Output interface

The output interface between PicoBlaze and an output peripheral usually consists of a
decoding circuit and necessary output buffers, which are normally an array of registers.
The decoding circuit decodes the port id and generates an enable tick accordingly. After
the output instruction, the data will be stored in the designated buffer.

To illustrate the construction, let us consider a PicoBlaze interface with four output
buffers. We assign 0016, OIl6, 0216, and 0316 as their port ids. Note that the six MSBs of
the port addresses are identical and only two LSBs are needed to distinguish a port. The
block diagram is shown in Figure 16.2. The key is the decoding circuit, whose function
table is shown in Table 16.1. It is a 2-t0-2~ decoder. In the second clock cycle of an
output instruction, wr i te -s t robe is asserted and 1 bit of the 4-bit en-d signal is asserted
accordingly. The one-clock-cycle enable tick activates the corresponding output register to
retrieve data from the out-port signal. The decoding timing diagram of the instruction

output s o , 02

370 PICOBLAZE 110 INTERFACE

is shown at the bottom of Figure 16.1. During the second clock cycle of the output
instruction, the en-d(2) signal is asserted and the data value on out-port is stored in the
corresponding buffer at the rising edge of the next clock.

Once understanding the basic operation, we can derive the HDL code accordingly. The
code segment is

p r o c e s s (write-strobe , port-id)
begin

i f write-strobe= ' 0 ' then

e l s e
en-d <= "0000";

case port-id(1 downto 0) i s

en-d <= " 0 0 0 1 " ;

en-d <= "0010";

en-d <= " 0 1 0 0 " ;

en-d <= " 1 0 0 0 " ;

when " 0 0 " =>

when " 0 1 " =>

when 1'1011 = >

when o t h e r s = >

end c a s e ;
end i f ;

end p r o c e s s ;

This scheme is very general and can be applied to any number of output ports.
The choice of the port address is somewhat arbitrary. We use the binary code in the

previous example. If the number of the output port is smaller than eight, one-hot code can
be used to simplify the decoding circuit. For example, we can define the four previous port
ids as Oi16 (i.e., 000000012), 0216 (i.e., 000000102), 0416 (i.e., 000001002), and (1 8 ~ 6 (i.e.,
000010002). The decoding logic can be simplified to

process (write-strobe , port-id)
begin

i f write_strobe='O' then

e l s e

end i f ;
end p r o c e s s ;

en-d <= "0000";

en-d <= port-id(3 downto 0);

Note that no decoding logic is needed if there is only a single output port. The wr i te -s t robe
signal can be connected to the register's enable signal, as shown in Figure 15.3.

As discussed in Section 15.4.2, it is good practice to use symbolic aliases for I/O ports
and declare its binary address in the header. For example, the initial output port address
assignment can be declared as

o u t p u t p o r t d e f i n i t i o n s
c o n s t a n t out-port-a , 00
c o n s t a n t out-port-b , 01
c o n s t a n t out-port-c , 02
c o n s t a n t out-port-d, 04

If the assignment is changed, we need to modify the header but keep the remaining assembly
code intact. Using a clear header also allows us easily to identify the port ids when the
companion HDL code is developed.

INPUT PORT 371

Figure 16.3 Timing diagram of an input instruction.

16.3 INPUT PORT

16.3.1 Input instruction and timing

The input instruction reads data from the input port. Similar to the output instruction, it
has two forms:

i n p u t s X , (sY)
i n p u t s X , port-name

The SY register or p o r t n a m e specifies the read port id. The retrieved data is stored in the
SX register.

The timing diagram of an input instruction,

input S O , 0 2

is shown in Figure 16.3. When the instruction is executed, 02 is placed on po r t - id . After
two clock cycles, i n -po r t will be sampled at the rising edge of the clock and its value is
stored in the SO register. The external circuit must ensure that the input data is stable during
the sampling edge to avoid timing violation.

As in the output instruction, the r ead - s t robe signal is asserted in the second clock
cycle. The function of the r e a d s t r o b e signal is less obvious and is discussed in the next
subsection.

16.3.2 Input interface

The input interface between PicoBlaze and input peripherals usually consists of a multi-
plexing circuit, which uses p o r t - i d as the selection signal to route the desired value to
in-port . Sometimes, a decoding circuit similar to the one in the output interface is also
necessary to signal the completion of the data access.

For the purpose of input interface design, an input port can be classified as a continuous-
access or single-access port. For a continuous-access port, the data is presented continu-
ously, such as the switch input of Section 15.4.1. On the other hand, the availability of data
of a single-access port is triggered by a single discrete event, such as receiving a character
in an UART buffer. The flag FF and buffers discussed in Section 7.2.4 are in this category.
After the data is retrieved, we must remove it from the buffer to prevent the same data from

372 PICOBLAZE 110 INTERFACE

Figure 16.4 Block diagram of four continuous-access ports.

Figure 16.5 Block diagram of four single-access ports.

being processed again. This is usually done by utilizing a one-clock-cycle tick to clear the
flag FF or remove a word from a FIFO buffer.

The interface for continuous-access ports involves only a multiplexing circuit. Consider
an interface with four such ports. The block diagram is shown in Figure 16.4.

The interface for single-access ports needs a mechanism to remove the retrieved data from
the buffer in the end of an input instruction. This can be done by using a decoding circuit
that decodes the port-id and read-strobe signals. The circuit is identical to the decoding
circuit of the output interface except that write-strobe is replaced by reads t robe . The
decoded output can be considered as a “removal” signal, which is asserted for one clock
cycle and removes the previously retrieved data. Consider an interface with four FIFOs.
The diagram of the complete decoding and multiplexing circuit is shown in Figure 16.5.
The rv signal is the decoded removal signal. In the end of an input instruction, 1 bit of this
4-bit signal is asserted and the corresponding FIFO performs a read operation, in which the

SQUARE PROGRAM WITH A SWITCH AND SEVEN-SEGMENT LED DISPLAY INTERFACE 373

first word is removed from the buffer. Assume that 0016, Oi16, 0216, and 0316 are assigned
as the port ids. The HDL code segment for the interface is

__ rn u l t i p l e x i n g c i r c u i t
with port-id(l downto 0) s e l e c t

data <= in-data0 when " O O " ,
in-data1 when " 0 1 " ,
in-data2 when " l o " ,
in-data3 when o t h e r s ;

__ d e c o d i n g c i r c u i t
process(reade-strobe,port-id)
begin

i f read-strobe='O' then

e l s e
rv <= " 0 0 0 0 " ;

case port-id(1 downto 0) i s
when If 00 'I = >

when "01" =>

when " 1 0 " =>

when o t h e r s =>

rv <= " 0 0 0 1 " ;

rv <= "0010";

rv <= "0100";

rv <= "1000";
end c a s e ;

end i f ;
end p r o c e s s ;

In a real application, it is likely that the input interface contains both continuous- and
single-access ports. A decoding circuit is only needed for single-access ports.

16.4 SQUARE PROGRAM WITH A SWITCH AND SEVEN-SEGMENT LED
DISPLAY INTERFACE

To demonstrate the construction of the PicoBlaze I/O interface, we add more versatile input
and output peripherals to the square routine of Chapter 15. Recall that the square routine
calculates a2 + b2, where a and b are 8-bit unsigned integers.

We use the 8-bit switch and a pushbutton to enter the values of a and b. The pushbutton
generates a one-clock-cycle tick when pressed. The tick indicates that the current value
of the switch should be loaded. The values of a and b are loaded alternately; i.e., the first
pressing loads a, the second pressing loads b, the third pushing loads a, and so on. A second
pushbutton is also included to clear the PicoBlaze's data RAM and relevant registers.

We use four seven-segment LEDs to display the inputs and computed results. The LEDs
are arranged as four hexadecimal numbers. Since the range of a2 + b2 is up to 17 bits, the
decimal point of the leftmost LED is used for the MSB. The three lower bits of the switch
select what to display, which can be a, b, a', b2, or a2 + b2.

In summary, the interface consists of the following:
Switch: provides the values of a and b and selects the content of the LED display
Pushbutton 0: loads the a and b alternatively when pressed
Pushbutton I : clears data RAM and relevant registers when pressed
Seven-segment LED: displays the selected 17-bit value in four hexadecimal digits

374 PICOBLAZE 110 INTERFACE

Figure 16.6 Output interface of a square circuit.

16.4.1 Output interface

Recall that the four seven-segment LEDs on the prototyping board share the same input pins,
and a time-multiplexing circuit is required. For a PicoBlaze-based design, the multiplexing
can be done by either an external circuit or a software routine. We use the external-circuit
approach, which is simpler for assembly code development, in this section and discuss
the software approach in Chapter 17. The LED time-multiplexing circuit designed in
Section 4.5.1 can be used for this purpose. This circuit shields the timing and appears
as four independent seven-segment LEDs for external system. The block diagram of the
PicoBlaze output interface is shown in Figure 16.6. The interface consists of four 8-bit
output ports, each port representing a seven-segment LED pattern.

In the assembly code, the four LED patterns are stored in PicoBlaze’s data RAM with
symbolic addresses of ledO, led l , led2, and led3. The corresponding code segment is

. . .
; d a t a RAM a d d r e s s a l i a s
c o n s t a n t ledO, 10
c o n s t a n t ledl, 11
c o n s t a n t led2, 12
c o n s t a n t led3, 13

; o u t p u t p o r t d e f i n i t i o n s
c o n s t a n t sseg0-port , 00 ; 7 - s e g l e d 0
c o n s t a n t ssegl-port , 01 ; 7 - s e g l e d 1
c o n s t a n t sseg2-port , 02 ; 7 - s e g l e d 2
c o n s t a n t sseg3_port, 0 3 ; 7 - s e g l e d 3

disp-led:

. . .

. . .

f e t c h d a t a , led0
output data, sseg0-port

SQUARE PROGRAM WITH A SWITCH AND SEVEN-SEGMENT LED DISPLAY INTERFACE 375

Figure 16.7 Input interface of a square circuit.

f e t c h d a t a , l e d 1
o u t p u t d a t a , s s e g l - p o r t
f e t c h d a t a , l e d 2
o u t p u t d a t a , s s e g 2 - p o r t
f e t c h d a t a , l e d 3
o u t p u t d a t a , s s e g 3 - p o r t
r e t u r n

16.4.2 Input interface

The input interface consists of an 8-bit switch and two 1-bit pushbuttons. The former is a
continuous-access port since the value is always present. The latter is a single-access port
since pressing a button leads to only a single event (e.g., loading a to the register once rather
than continuously). Because of the mechanical glitches, a debouncing circuit is needed to
generate a clean one-clock-cycle tick. Since PicoBlaze’s port can take up 8-bit data, inputs
from the two pushbuttons can be grouped together as a single input port. The block diagram
of the input interface is shown in Figure 16.7. The interface consists of two debouncing
circuits, a two-to-one multiplexer, a decoding circuit, and two flag FFs. The function of
the two flag FFs is discussed in Section 7.2.4. They provide a mechanism to set and clear
the “button-pressing event.” When a button is pressed, the debouncing circuit’s output sets
the flag. It remains asserted until it is retrieved by the PicoBlaze’s input instruction, which
sets the selection signal of the multiplexer to route the desired value to PicoBlaze’s input
port, and activates the clear signal. For clarity, we name the pushbutton 1 as the s button
(for setting the value) and pushbutton 0 as the c button (for clearing the data RAM).

The pseudo code to process the input is

; i n p u t t h e b u t t o n f l a g s
; i f c = l t h e n

376 PICOBLAZE 110 INTERFACE

; c a l l t h e c l e a r i n g - r a m r o u t i n e
; i f s = l t h e n
; i n p u t s w i t c h v a l u e
; s t o r e i t t o d a t a ram
; t o g g l e a / b a d d r e s s o f f s e t

Since the s button inputs the values of a and b alternately, we use a global register,
switch-a-b, to keep track of which one is being read currently. The register serves as
the data RAM address offset, which can be 0 or 2, and its value toggles when the s button
is pressed. The corresponding assembly code subroutine is

; i n p u t p o r t d e f i n i t i o n s
c o n s t a n t rd-flag-port , 00 ; 2 f l a g s (x x x x x x s c) :
c o n s t a n t sw-port , 01 ; 8 - b i t s w i t c h

proc-btn :
. . .

input s 3 , rd-flag-port ; g e t f l a g
; c h e c k and p r o c e s s c b u t t o n
t e s t s 3 , 01 ; c h e c k c b u t t o n f l a g
jump z , chk-btns ; f l a g n o t s e t
c a l l init ; f l a g s e t , c l e a r
jump pr o c - b t n- done

chk-btns :
; c h e c k and p r o c e s s s b u t t o n
t e s t s 3 , 0 2 ; c h e c k s b u t t o n f l a g
jump z , proc-btn-done ; f l a g n o t s e t
input data, sw-port ; g e t s w i t c h
load addr, a-lsb ; g e t a d d r of a
add addr, switch-a-b ; add o f f s e t
s t o r e data, (addr) ; w r i t e d a t a t o ram
; u p d a t e c u r r e n t d i s p p o s i t i o n
xor switch-a-b, 0 2 ; t o g g l e b e t w e e n 0 0 , 0 2

re turn
proc-btn-done :

16.4.3 Assembly code development

After designing the I/O interface, we can derive the assembly program. The development
follows the divide-and-conquer approach discussed in Chapter 15 and partitions the main
program into several subroutines. The main program is

c a l l init

; m a i n l o o p b o d y
c a l l proc-btn ; c h e c k C? p r o c e s s b u t t o n s
c a l l square ; c a l c u l a t e s q u a r e
c a l l load-led-pttn ; s t o r e l e d p a t t e r n s t o ram
c a l l disp-led ; o u t p u t l e d p a t t e r n
jump forever

; in i t i a 1 i z a t i o n
forever :

The complete code is shown in Listing 16.1.
The square subroutine is fromchapter 15, and the proc-btn and disp-led subroutines

are discussed in the previous two subsections. The i n i t subroutine performs system initial-
ization. It uses a loop to load 0’s to data RAM (i.e., clear the RAM) and sets the s w i t ch-a-b

SQUARE PROGRAM WITH A SWITCH AND SEVEN-SEGMENT LED DISPLAY INTERFACE 377

register to 0 (i.e., read a). The load - l ed -p t tn subroutine reads the switch input, retrieves
the desired values from the data RAM, converts the values to seven-segment LED pat-
terns, and stores them to the corresponding locations in the data RAM. These patterns are
then written to the output ports in the subsequent d i sp - l ed routine. The load-led-pt tn
routine consists of the g e t - u p p e r n i b b l e and g e t - l o w e r n i b b l e routines to extract the
two hexadecimal digits and the hex-to-led routine to convert a hexadecimal digit to the
corresponding seven-segment LED pattern.

The program requires more storage. In addition to the data RAM and registers required
for the squa re subroutine, this program utilizes a new global register switch-a-b to keep
track of whether a or b is being read, and 4 bytes in data RAM, whose addresses are labeled
ledO, l e d l , l ed2 , and led3, to store four seven-segment LED patterns.

Listing 16.1 Square program with a switch and seven-segment LED interface
,_______________________________________------------------

; s q u a r e c i r c u i t w i t h 7 - s e g LED i n t e r f a c e

; p r o g r a m o p e r a t i o n :

; - c a l c u l a t e a * a + b * b
; - d i s p l a y d a t a on 7 - s e g l e d

._______________________________________------------------ ,-----__-________________________________-----------------

c ; - r e a d a and b f r o m s w i t c h

,_______________________________________-----_-_----------

10 ; d a t a RAM a d d r e s s a l i a s
._______________________________________-_-_-------_------ ,_______________________________________------------------

c o n s t a n t a-lsb, 00
c o n s t a n t b-lsb, 02
c o n s t a n t aa-lsb, 04

I S c o n s t a n t aa-msb, 05
c o n s t a n t bb-lsb, 06
c o n s t a n t bb-msb, 07
c o n s t a n t aabb-lsb , 08
c o n s t a n t aabb-msb , 09

20 c o n s t a n t aabb-cout , O A
c o n s t a n t l e d O , 10
c o n s t a n t l e d l , 11
c o n s t a n t l e d 2 , 12
c o n s t a n t l e d 3 , 1 3

5

,_______________________________________------------------

; r e g i s t e r a l i a s

; c o m m o n l y u s e d l o c a l v a r i a b l e s

namereg s l , addr ; r e g f o r t e m p o r a r y mem & i / o p o r t a d d r
namereg s 2 , i ; g e n e r a l - p u r p o s e l o o p i n d e x
; g l o b a l v a r i a b l e s
namereg sf, switch-a-b ; r a m o f f s e t f o r c u r r e n t s w i t c h i n p u t

,_______________________________________------------------

30 namereg S O , data ; r e g f o r t e m p o r a r y d a t a

35

._______________________________________--------- - - - - - - - - - ,___________________--------------------------------------
; p o r t a l i a s

. i n p u t p o r t d e f i n i t i o n s
,_______________________________________------------------

378 PICOBLAZE 110 INTERFACE

40 c o n s t a n t rd-flag-port , 00 ; 2 f l a g s (x x x x x x s c):
c o n s t a n t sw-port , 01 ; & b i t s w i t c h

c o n s t a n t sseg0-port , 00 ; 7 - s e g l e d 0
c o n s t a n t ssegl-port , 01 ;7 - seg l e d I

45 c o n s t a n t sseg2-port , 02 ;7 - seg l e d 2
c o n s t a n t s s e g 3 _ p o r t , 0 3 ; 7 - s e g l e d 3

o u t p u t p o r t d e f i n i t i o n s

; m a i n p r o g r a m

; c a 1 1 i n g
50 ;

h i e r a r c h y

; m a i n
; - i n i t

55 ; - p r o c - b t n
- i n i t

; - s q u a r e
- m u l t - s o f t

; - l o a d - l e d - p t t n
- g e t - 1 o w e r - n i b b l e
- g e t - u p p e r - n i b b l e
- h e x - t o - l e d

60 3.

; - d i s p - l e d

65 ,'

c a l l init

; m a i n l o o p b o d y

c a l l square ; c a l c u l a t e s q u a r e
c a l l load-led-pttn ; s t o r e l e d p a t t e r n s t o ram
c a l l disp-led ; o u t p u t l e d p a t t e r n
jump forever

; i n i t i a 1 i z a t i o n
forever :

70 c a l l proc-btn ; c h e c k & p r o c e s s b u t t o n s

75

; r o u t i n e : i n i t
; f u n c t i o n : p e r f o r m i n i t i a l i z a t i o n , c l e a r r e g i s t e r / r a m
; o u t p u t r e g i s t e r :

; t e m p r e g i s t e r : d a t a , i
80 ; s w i t c h - a - b : c l e a r e d t o 0

; u n i t i z e l o o p i n d e x t o 6 4

init :
; c 1 e a r memory

load data, 00

s t o r e data, (i)
sub i , 0 1 ; d e c l o o p i n d e x

; c l e a r r e g i s t e r
load switch-a-b, 00

85 load i , 40

clr-mem-loop :

90 jump n z , clr-mem-loop ; r e p e a t u n t i l i=O

SQUARE PROGRAM WITH A SWITCH AND SEVEN-SEGMENT LED DISPLAY INTERFACE 379

re turn

95 .
; r o u t i n e : p r o c - b t n
; f u n c t i o n : c h e c k t w o b u t t o n s a n d p r o c e s s t h e d i s p l a y
; i n p u t r e g :

s w i t c h - a - b : ram o f f s e t (0 f o r a a n d 2 f o r b)

s3: s t o r e i n p u t p o r t f l a g
s w i t c h - a - b : may be t o g g l e d

I W ; o u t p u t r e g i s t e r :

; t e m p r e g i s t e r u s e d : d a t a , a d d r
,____________-__________________________------------------

105 proc-btn:
input s3, rd-flag-port ; g e t f l a g
; c h e c k a n d p r o c e s s c b u t t o n
t e s t s3, 0 1 ; c h e c k c b u t t o n f l a g
jump z , chk-btns ; f l a g n o t s e t

110 c a l l init ; f l a g s e t , c l e a r
jump proc-btn-done

; c h e c k and p r o c e s s s b u t t o n
t e s t s3, 0 2 ; c h e c k s b u t

I I S jump z , proc-btn-done ; f l a g n o t s e
input data, sw-port ; g e t s w i t c h
load addr, a-lsb ; g e t a d d r of
add addr, switch-a-b ; a d d o f f s e t

chk-btns :

o n f l a g

a

s t o r e data, (addr) ; w r i t e d a t a t o ram

xor switch-a-b, 0 2 ; t o g g l e b e t w e e n 0 0 , 0 2

re turn

120 ; u p d a t e c u r r e n t d i s p p o s i t i o n

proc-btn-done :

125 .
; r o u t i n e : l o a d - l e d - p t t n
; f u n c t i o n : r e a d 3 LSBs o f s w i t c h i n p u t a n d c o n v e r t t h e

d e s i r e d v a l u e s t o f o u r l e d p a t t e r n s and
l o a d t h e m t o ram

130 ,' s w i t c h : 0 0 0 : a ; 0 0 1 : b ; O I O : a A 2 ; O l l : b A 2 ;
o t h e r s : a ^2 i b A 2

; t e m p r e g i s t e r u s e d : d a t a , a d d r
; s6: d a t a f r o m sw i n p u t p o r t

135 ;--- ...
load-led-pttn:

input s 6 , sw-port ; g e t s w i t c h
s10 s 6 ; * 2 t o o b t a i n a d d r o f f s e t
compare s 6 , 0 8 ; sw >loo?

140 jump c , sw-ok ; n o
load s 6 , 0 8 ; y e s , sw e r r o r , make d e f a u l t

; p r o c e s s b y t e 0 , l o w e r n i b b l e
load addr, a-lsb

sw-ok :

145 add addr, s6 ; g e t l o w e r a d d r

PICOBLAZE 110 INTERFACE 380

I50

I55

IMi

I65

I70

f e t c h data, (s 6) ; g e t l o w e r b y t e
c a l l get-lower-nibble : g e t l o w e r n i b b l e
c a l l hex-to-led ; c o n v e r t t o l e d p a t t e r n
s t o r e data, ledO
; p r o c e s s b y t e 0, u p p e r n i b b l e
f e t c h data, (addr)
c a I I get -upper-nibble
c a l l hex-to-led
s t o r e data, ledl
; p r o c e s s b y t e 1 , l o w e r n i b b l e
add addr , 01 ; g e t u p p e r a d d r
f e t c h data, (addr)
c a l l get-lower-nibble
c a l l hex-to-led
s t o r e data, led2
; p r o c e s s b y t e 1 , u p p e r n i b b l e
f e t c h data, (addr)
c a1 1 get - upp er- n i bbl e
c a l l hex-to-led
; c h e c k f o r sw=100 t o p r o c e s s c a r r y a s l e d d p
compare s 6 , 0 8 ; d i s p l a y f i n a l r e s u l t ?
jump n z , led-done ; no
add addr , 01 ; g e t c a r r y a d d r
f e t c h s 6 , (addr) ; s 6 t o s t o r e c a r r y
t e s t s 6 , 01 ; c a r r y = I ?
jump z , led-done ; no
and data, 7F ; y e s , a s s e r t msb (d p) t o 0

led-done :

175 re turn
s t o r e data, led3

,_______________________________________------------------

; r o u t i n e : d i s p - l e d
; f u n c t i o n : o u t p u t f o u r l e d p a t t e r n s

180 ; t e m p r e g i s t e r u s e d : d a t a
,_______________________________________------------------

disp-led:
f e t c h data, ledO
output data, sseg0-port

185 f e t c h data, ledl
output data, ssegl-port
f e t c h data, led2
output data, sseg2-port
f e t c h data, led3

190 ou tput data, sseg3-port
re turn

; r o u t i n e : h e x - t o - l e d

; i n p u t r e g i s t e r : d a t a
; o u t p u t r e g i s t e r : d a t a

195 ; f u n c t i o n : c o n v e r t a h e x d i g i t t o 7 - s e g l e d p a t t e r n

SQUARE PROGRAM WITH A SWITCH AND SEVEN-SEGMENT LED DISPLAY INTERFACE 381

hex-to-led:
zw compare data, 00

jump n z , comp-hex-1
l oad data, 81
jump hex-done

205 compare data, 01
jump n z , comp-hex-2
load data, CF
jump hex-done

comp-hex-1:

comp-hex-2 :
210 compare data, 02

jump n z , comp-hex-3
load data, 92
jump hex-done

comp-hex-3 :
218 compare data, 03

jump n z , comp-hex-4
l oad data, 86
jump hex-done

comp-hex-4:
220 compare data, 04

jump n z , comp-hex-5
l oad data, CC
jump hex-done

comp-hex-5 :
22s compare data, 05

jump n z , comp-hex-6
l oad data, A4
jump he x - d one

comp-hex-6:
230 compare data, 06

jump n z , comp-hex-7
l oad data, A0
jump hex-done

comp-hex-7 :
228 compare data, 07

jump n z , comp-hex-8
l oad data, 8F
jump hex-done

comp-hex-8 :
240 compare data, 08

jump n z , comp-hex-9
l oad data, 80
jump hex - done

comp-hex-9 :
24s compare data, 09

jump n z , comp-hex-a
load data, 84
jump hex-done

comp-hex-a:
250 compare data, OA

jump n z , comp-hex-b

; 7 - s e g p a t t e r n 0

; 7 - s e g p a t t e r n 1

; 7 - s e g p a t t e r n 2

; 7 - s e g p a t t e r n 3

; 7 - s e g p a t t e r n 4

; 7 - s e g p a t t e r n 5

; 7 - s e g p a

; 7 - s e g p a

t e r n 6

t e r n 7

; 7 - s e g p a t t e r n 8

;7 - - seg p a t t e r n 9

382 PICOBLAZE 110 INTERFACE

; 7 - s e g p a t t e r n a l oad data, 88
jump hex -done

comp-hex-b:
255 compare data, O B

jump n z , comp-hex-c
l oad data, EO ; 7 - s e g p a
jump hex-done

comp-hex-c:
260 compare data, OC

jump n z , comp-hex-d
l oad data, B1 ; 7 - s e g p a
jump hex-done

comp-hex-d:
265 compare data, OD

jump n z , comp-hex-e
l oad data, C2
jump hex - do ne

comp-hex-e:
270 compare data, O E

jump n z , comp-hex-f

t e r n b

t e r n C

; 7 - s e g p a t t e r n d

l oad data, BO
jump hex - do ne

275 l oad data, B8
comp-hex-f :

hex-done :
r e t u r n

; 7 - s e g p a t t e r n E

; 7 - s e g p a t t e r n F

280 ; r o u t i n e : g e t - l o w e r - n i b b l e
; f u n c t i o n : g e t l o w e r 4 b i t s of d a t a
; i n p u t r e g i s t e r : d a t a
; o u t p u t r e g i s t e r : d a t a

285 get-lower-nibble :
and data, O F
re turn

; c l e a r u p p e r n i b b l e

290 ; r o u t i n e : g e t - u p p e r - n i b b l e
; f u n c t i o n : g e t u p p e r 4 b i t s of i n - d a t a
; i n p u t r e g i s t e r : d a t a
; o u t p u t r e g i s t e r : d a t a

295 get-upper-nibble :
srO data
srO data
srO data
srO data

300 re turn

; r i g h t s h i f t 4 t i m e s

; r o u t i n e : s q u a r e
; f u n c t i o n : c a l c u l a t e a * a + b * b

SQUARE PROGRAM WITH A SWITCH AND SEVEN-SEGMENT LED DISPLAY INTERFACE 383

?OS ; d a t a / r e s u l t s t o r e d i n ram s t a r t e d w / SQ-BASEADDR
,' t e m p r e g i s t e r : s 3 , s 4 , sS, s 6 , d a t a
____________________--_-_--_---------_------_--__--------
square :

; c a l c u l a t e a * a
f e t c h s 3 , a-lsb
f e t c h s 4 , a-lsb
c a l l mult-soft
s t o r e s 6 , aa-lsb
s t o r e s 5 , aa-msb
; c a l c u l a t e b * b
f e t c h s 3 , b-lsb
f e t c h s 4 , b-lsb
c a l l mult-soft
s t o r e s 6 , bb-lsb
s t o r e s 5 , bb-msb
; c a l c u l a t e a*a+b*b
f e t c h data, aa-lsb
add d a t a , s 6
s t o r e data, aabb-lsb
f e t c h data, aa-msb
addcy data, s5
s t o r e d a t a , aabb-msb
load data, 00
addcy data, 00
s t o r e d a t a , aabb-cout
re turn

; l o a d a
; l o a d a
; c a l c u l a t e a * a
; s t o r e l o w e r b y t e o f a * a
; s t o r e u p p e r b y t e o f a * a

l o a d b
l o a d b
c a l c u l a t e b * b
s t o r e l o w e r b y t e o f b * b
s t o r e u p p e r b y t e o f b * b

g e t l o w e r b y t e o f a * a
; a d d l o w e r b y t e o f a * a + b * b
; s t o r e l o w e r b y t e o f a * a + b * b
; g e t u p p e r b y t e o f a * a
; a d d u p p e r b y t e o f a*a+b*b
; s t o r e u p p e r b y t e o f a * a + b * b
; c l e a r d a t a , b u t k e e p c a r r y
; g e t c a r r y f r o m p r e v i o u s +
; s t o r e c a r r y o f a * a + b * b

,_______---____-------------------------__----------_-----
; r o u t i n e : m u l t - s o f t

i ?~ ; f u n c t i o n : 8 - b i t u n s i g n e d m u l t i p l i e r u s i n g
s h i f t -and-add a l g o r i t h m

; i n p u t r e g i s t e r :
s3 : m u l t i p l i c a n d
s 4 : m u l t i p l i e r

sS: u p p e r b y t e o f p r o d u c t
s 6 : l o w e r b y t e o f p r o d u c t

340 ; o u t p u t r e g i s t e r :

; t e m p r e g i s t e r : i
,_______________________________________---_------_-------

3.15 m u lt-soft:
load s 5 , 00 ; c l e a r sS
l oad i , 08 ; i n i t i a l i z e l o o p i n d e x

srO s 4 ; s h i f t l s b t o c a r r y
?SO jump n c , shift-prod ; l s b i s 0

add s 5 , s 3 ; l s b i s 1

sra s5 ; s h i f t u p p e r b y t e r i g h t ,

~ S S s r a s 6 ; s h i f t l o w e r b y t e r i g h t ,

mult-loop :

shift-prod:

; c a r r y t o MSB, LSB t o c a r r j

; l s b of sS t o MSB o f s 6
sub i , 0 1 ; d e c l o o p i n d e x

384 PICOBLAZE 110 INTERFACE

jump n z , mult-loop ; r e p e a t u n t i l i=O
re turn

16.4.4 VHDL code development

The complete HDL code simply combines the PicoBlaze processor, instruction ROM, the
input interface and peripherals shown in Figure 16.7, and the output interface and peripherals
shown in Figure 16.6. It is shown in Listing 16.2.

Listing 16.2 PicoBlaze with a switch and seven-segment LED interface

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y pico-btn i s

5 p o r t (
clk, reset: in std-logic;
sw: in std-logic-vector (7 downto 0) ;
btn: in std-logic-vector (1 downto 0) ;
an: out std-logic-vector (3 downto 0) ;

10 sseg : out std-logic-vector (7 downto 0)

1 ;
end pico-btn ;

a r c h i t e c t u r e arch of pico-btn i s
1 5 -- KCPSM3/ROM s i g n a l s

s i g n a l address : std-logic-vector (9 downto 0) ;
s i g n a l instruction: std-logic-vector (1 7 downto 0) ;
s i g n a l port-id: std-logic-vector (7 downto 0) ;
s i g n a l in-port , out-port : std-logic-vector (7 downto 0) ;

s i g n a l interrupt , interrupt-ack: std-logic;
s i g n a l kcpsm-reset : std-logic ;
-- 1 / 0 p o r t s i g n a l s
__ o u t p u t e n a b l e

-- f o u r - d i g i t s e v e n - s e g m e n t l e d d i s p l a y
s i g n a l ds3_reg, ds2-reg: std-logic-vector (7 downto 0) ;
s i g n a l dsl-reg , ds0-reg : std-logic-vector (7 downto 0) ;
-- two p u s h b u t t o n s

30 s i g n a l btnc-f lag-reg , btnc-f lag-next : std-logic ;
s i g n a l btns-f lag-reg , btns-f lag-next : std-logic ;
s i g n a l set-btnc-f lag, set-btns-f lag : std-logic ;
s i g n a l clr-btn-f lag: std-logic ;

20 s i g n a l write-strobe , read-strobe : std-logic ;

25 s i g n a l en-d: std-logic-vector (3 downto 0) ;

beg in
__------------- __------------- 35 --

-- 1 / 0 m o d u l e s

disp-unit : e n t i t y work. disp-mux
.

port map(
40 clk=>clk, reset=>’O’,

in3=>ds3_reg, in2=>ds2_reg, inl=>dsl-reg,
inO=>dsO-reg, an=>an, sseg=>sseg);

SQUARE PROGRAM WITH A SWITCH AND SEVEN-SEGMENT LED DISPLAY INTERFACE 385

45

50

60

65

btnc-db-unit : entity work. debounce
port map(

clk=>clk, reset=>reset , sw=>btn(O),
db-level=>open, db-tick=>set-btnc-flag);

btns-db-unit : entity work. debounce
port map(

clk=>clk, reset=>reset , sw=>btn(l),
db-level=>open, db-tick=>set-btns-flag);

_--___-_-_-__-___-_---_------------------------------ --____________________-_-__--_-_-----------------------
__ KCPSM a n d ROM i n s t a n t i a t i o n

proc-unit : entity work. kcpsm3
_--___-_-____-___-_--___----------------------------- __-___-______-______-____-_-------------------------- --

55 port map(
clk=>clk, reset =>kcpsm-reset,
address=>address , instruction=>instruction,
port-id=>port-id, write-strobe=>write-strobe,
out-port=>out-port , read-strobe=>read-strobe,
in-port=>in-port , interrupt=>interrupt ,
interrupt-ack=>interrupt-ack);

rom-unit : entity work. btn-rom
port map(

clk => clk, address=>address ,
instruction=>instruction);

_- u n u s e d i n p u t s on p r o c e s s o r
kcpsm-reset <= ’ 0) ;
interrupt <=) O) ;

_---_________-___-_--___----------------------------- --__________________-__---__---------------------------
70 -- o u t p u t i n t e r f a c e

____-_-__---___--_-_____________________------------- --______________________________________---------------
__ o u t p o r t p o r t i d :
-_ 0 x 0 0 : dsO
__ 0 x 0 1 : d s l

75 -- 0 x 0 2 : d s 2
__ 0 x 0 3 : d s 3
---------------------------------=-----================
_- r e g i s t e r s
process (clk)

SO begin
if (clk ’ event and clk= ’ 1 ’) then

if en-d(O)=’l’ then ds0-reg <= out-port; end if;
if en-d(l)=’l’ then dsl-reg <= out-port; end if;
if en-d(2)=’1’ then ds2-reg <= out-port; end if;

85 if en-d(3)=’1’ then ds3-reg <= out-port; end if;
end if ;

end process;

process (port-id , write-strobe)
__ d e c o d i n g c i r c u i t f o r e n a b l e s i g n a l s

YO begin
en-d <= (others=>’O’);
if write-strobe=’l’ then

case port-id(l downto 0) is
when ” 0 0 ” => en-d < = ” 0 0 0 1 ” ;
when ” 0 1 “ => en-d < = “ 0 0 1 0 “ ; 95

386

IW

105

I10

115

I20

I25

130

135

PICOBLAZE 110 INTERFACE

when “ 1 0 “ = > en-d < = “ 0 1 0 0 ” ;
when o t h e r s = > en-d < = “ 1 0 0 0 “ ;

end c a s e ;
end i f ;

end p r o c e s s ;

__ i n p u t i n t e r f a c e

__ i n p u t p o r t i d

__ 0x01: s w i t c h

__

__

__ 0x00: f l a g

__ i n p u t r e g i s t e r (f o r f l a g s)
p r o c e s s (clk)
beg in

i f (clk’event and clk=’l’) then
btnc-flag-reg <= btnc-flag-next;
btns-flag-reg <= btns-flag-next;

end i f ;
end p r o c e s s ;

btnc-f lag-next <= ’ 1 ’ when set-btnc-f lag=’l’ e l s e
’ 0 ’ when clr-btn-f lag= ’ 1 ’ e l s e
btnc-flag-reg;

btns-f lag-next <= ’ 1 ’ when set-btns-f l a g = ’ 1 ’ e l s e
’ 0 ’ when clr-btn-flag=’l’ e l s e
btns-flag-reg;

-- d e c o d i n g c i r c u i t f o r c l e a r s i g n a l s
clr-btn-f lag <= ’ 1 ’ when read-strobe=’ 1 ’ and

port-id (O) = ’ O ’ e l s e
’ 0 ’ ;

__ i n p u t m u l t i p l e x i n g
process(port-id,btns-flag-reg,btnc-flag-reg,sw)
beg in

c a s e port-id(0) i s
when ’ 0 ’ = >

in-port <= ”000000” &
btns-flag-reg & btnc-flag-reg;

when o t h e r s =>
in-port <= sw;

end c a s e ;
end p r o c e s s ;

end arch;

16.5 SQUARE PROGRAM WITH A COMBINATIONAL MULTIPLIER AND
UART CONSOLE

In this section, we add two more IiO peripherals to the previous design. One is a combi-
national multiplier, which accelerates the multiplication, and the other is an UART, which
provides a communication link to a PC.

SQUARE PROGRAM WITH A COMBINATIONAL MULTIPLIER AND UART CONSOLE 387

16.5.1 Multiplier interface

Since PicoBlaze does not contain a hardware multiplier, the multiplication is done by a
software routine, mult-sof t . It uses a shift-and-add algorithm to iterate through the 8-bit
multiplier and requires about 60 instructions in the worst-case scenario. An alternative is
to utilize the Spartan-3 device’s built-in combinational multiplier.

Since PicoBlaze provides no mechanism to use a coprocessor, the multiplier must be
configured as an I/O peripheral. We can create an 8-bit combinational multiplier that
takes two 8-bit operands and returns a 16-bit product. To facilitate this peripheral, the
PicoBlaze’s interface requires two additional output ports and buffers for the two operands
and two additional input ports for the 16-bit product. The assembly routine now only needs
to pass the operands to the output ports and then retrieve the results from the input ports.
The code becomes

; i n p u t p o r t d e f i n i t i o n s
c o n s t a n t mult-prodo-port , 03 : m u l t i p l i c a t i o n p r o d u c t 8 LSBs
c o n s t a n t mult-prodl-port , 04 ; m u l t i p l i c a t i o n p r o d u c t 8 MSBs
; o u t p u t p o r t d e f i n i t i o n s
c o n s t a n t mult-src0-port , 05 ; m u l t i p l i e r o p e r a n d 0
c o n s t a n t mult-srcl-port , 06 ; m u l t i p l i e r o p e r a n d I

mult-hard :
. . .

output s3, mult-src0-port
output s 4 , mult-srcl-port
input s 5 , mult-prodl-port
input s 6 , mult-prodo-port
r e t u r n

Note that the combinational multiplier can complete the computation with one instruction
(i.e., two clock cycles), and thus no additional timing mechanism is needed in the code.
This routine can be used in place of the previous mult-sof t routine.

16.5.2 UART interface

With the UART interface, information can be entered and displayed in Windows HyperTer-
minal, which is more flexible and versatile than switches and LEDs. We use it as a simple
control console for the square routine. A representative screen is shown in Figure 16.8.
The console generates an SQ> prompt and a user can respond with a lowercase a, b, c, or
d character. The a and b characters are used to input values for a and b of the square
routine. When the key is pressed, the value of the 8-bit switch is read and stored into the
corresponding data RAM location. The c character is used to clear the data RAM and
reinitialize the program. Its function is identical to that of the c button. The d character
leads to a “data RAM dump,” in which the 64 bytes of the data RAM are displayed on
screen. This allows us to observe the various values of the square routine and the four
seven-segment LED patterns. An Error message is returned for all other characters.

The UART module designed in Section 7.4 can be used for this purpose. Since the
transmission and receiving FIFO buffers provide a storage and flagging mechanism, no
additional circuit is needed. We need only expand the decoding and multiplexing circuits
to accommodate the additional I/O ports. The UART interface block diagram is sketched
in Figure 16.9, in which the other I/O peripherals are omitted to reduce clutter. PicoBlaze’s
output port, out-port , is connected to w-data of UART. The decoded enable signal is
connected to wr-uart, and the data is written to UART transmitting FIFO when it is

388 PICOBLAZE 110 INTERFACE

Figure 16.8 Representative console screen.

Figure 16.9 UART IiO interface.

SQUARE PROGRAM WITH A COMBINATIONAL MULTIPLIER AND UART CONSOLE 389

asserted. Similarly, r -da ta of UART is routed to PicoBlaze’s input multiplexing circuit,
and the decoded clear signal is connected to rd-uar t . When the UART receiving FIFO
port is specified in an input instruction, the receiving FIFO’s output is routed to PicoBlaze’s
input port, in-port , and the decoded remove signal is asserted one clock cycle to remove
one word from the receiving FIFO. The UART interface also needs to route the two status
signals, rx-empty and tx-f ull, to PicoBlaze’s input multiplexing circuit. The assembly
program needs to check the status before reading or writing the UART’s FIFOs. Since the
signals are only 2 bits wide, they can be grouped with the previous s and c buttons in the
same input port.

16.5.3 Assembly code development

Since the previous assembly code is developed in a modular fashion, we can expand the
program by adding a routine, proc-uart , to process UART transactions. The main program
becomes

c a l l i n i t : i n i t i a l i z a t i o n

; m a i n l o o p b o d y
c a l l p r o c - b t n ; c h e c k & p r o c e s s b u t t o n s
c a l l p r o c - u a r t ; c h e c k & p r o c e s s u a r t r x
c a l l s q u a r e ; c a l c u l a t e s q u a r e
c a 11 l o a d - l e d - p t t n ; s t o r e l e d p a t t e r n s t o ram
c a l l d i s p - l e d ; o u t p u t l e d p a t t e r n
jump f o r e v e r

f o r e v e r :

Because of the complexity of the required console operation, the proc-uart is quite
involved. The pseudo code of this routine is

; i f (n o c h a r a c t e r i n UART r e c e i v i n g F I F O) t h e n

; i n p u t c h a r a c t e r s f r o m FIFO
; i f (c h a r a c t e r s i s a) t h e n

r e t u r n

i n p u t s w i t c h v a l u e
s t o r e i t t o d a t a ram
d i s p l a y p r o m p t
r e t u r n

; i f (c h a r a c t e r s i s b) t h e n
i n p u t s w i t c h v a l u e
s t o r e i t t o d a t a ram
d i s p l a y p r o m p t
r e t u r n

; i f (c h a r a c t e r s i s c) t h e n
p e r f o r m i n i t i a 1 iz a t i o n
r e t u r n

; i f (c h a r a c t e r s i s d) t h e n
dump d a t a ram
r e t u r n

: d i s p l a y e r r o r m e s s a g e
; r e t u r n

We follow the modular development approach and further divide this routine into simpler
routines. A key low-level routine is tx-one-byte, which transmits 1 byte via the UART
port. Its code is

390 PICOBLAZE 110 INTERFACE

; i n p u t p o r t d e f i n i t i o n s
c o n s t a n t rd-flag-port , 00
; 4 f l a g s (x x x x t r s c) :
; t : u a r t t x f u l l , r : u a r t r x n o t e m p t y
; s: s b u t t o n f l a g , c : c b u t t o n f l a g
; o u t p u t p o r t d e f i n i t i o n s
c o n s t a n t uart-tx-port , 04 ; u a r t r e c e i v e r p o r t
; r e g i s t e r a l i a s
namereg sd , tx-data ; d a t a t o b e t x by u a r t

tx-one-byte:
. . .

input s 6 , rd-f lag-port
t e s t s 6 , 08 ; c h e c k u a r t - t x - f u l l
jump n z , tx-one-byte ; y e s , k e e p on w a i t i n g
output tx-data, uart-tx-port ; n o , w r i t e t o u a r t t x f i f o
re turn

Since PicoBlaze’s processing speed is much higher than the UART’s transmission speed, we
must prevent buffer overflow. The routine keeps on checking the status of the transmitting
FIFO buffer, and writes data only when the buffer is not full.

The task of dumping data RAM requires the most work. It displays the data RAM address
and contents as an 8-by-8 table, which lists the byte address first and then the 8 bytes of
data in hexadecimal format, as in

0 0 1 0 0 0 00 OF 0 0 0 9 00 04 00 03
010000 00 00 FF 1D 00 0 0 0 0 19

111000 0 0 0 0 0 0 00 0 0 FF FF FF
. . .

The routine consists of three major routines: disp-ram-addr, which sends ASCII codes to
display the 5-bit base address in binary format; dispxam-data , which sends ASCII codes
to display 8 bytes of data; and hex-to-asci i , which converts a hexadecimal digit to the
corresponding ASCII code.

The complete code is shown in Listing 16.3. It includes detailed comments to explain
operation of the subroutines. The unmodified subroutines of Listing 16.1 are omitted.

Listing 16.3 Square program with a UART console
.___- -______- - - - -___ ______________________- - - -_ -______- -______- - -________- - -_
; s q u a r e c i r c u i t w i t h UART a n d m u l t i p l i e r i n t e r f a c e

; p r o g r a m o p e r a t i o n :

; - c a l c u l a t e a * a + b * b
; - d i s p l a y d a t a on H y p e r T e r m i n a l and 7 - s e g l e d

,________________________-_--______----____-----_____----_

s ; - r e a d a and b f r o m s w i t c h

,___________________----____-_----____------__-----____---
1 0 ; d a t a c o n s t a n t s

,___________________-________---_____---___-_----_____----

; s e l e c t e d A S C I I c o d e s
c o n s t a n t ASCII-0, 30
c o n s t a n t ASCII-1, 31

I 5 c o n s t a n t ASCII-2, 32
c o n s t a n t ASCII-3, 33
c o n s t a n t ASCII-a, 61

SQUARE PROGRAM WITH A COMBINATIONAL MULTIPLIER AND UART CONSOLE 391

c o n s t a n t ASCII-b, 6 2
c o n s t a n t ASCII-c, 6 3

20 c o n s t a n t ASCII-d, 6 4
c o n s t a n t ASCII-o, 6 F
c o n s t a n t ASCII-r, 7 2
c o n s t a n t ASCII-E, 45
c o n s t a n t ASCII-S, 53

25 c o n s t a n t ASCII-Q, 51
c o n s t a n t ASCII-D-U ,44 ; u p p e r c a s e D
c o n s t a n t ASCII-GT, 3 E ; >
c o n s t a n t ASCII-SP, 20 ; s p a c e
c o n s t a n t ASCII-CR, OD ; c a r r i a g e r e t u r n

30 c o n s t a n t ASCII-LF, O A ; l i n e f e e d

; d a t a RAM a d d r e s s a l i a s

35 c o n s t a n t
c o n s t a n t
c o n s t a n t
c o n s t a n t
c o n s t a n t

SO c o n s t a n t
c o n s t a n t
c o n s t a n t
c o n s t a n t
c o n s t a n t

45 c o n s t a n t
c o n s t a n t
c o n s t a n t

a-lsb, 00
b-lsb, 0 2
aa-lsb, 04
aa-msb, 0 5
bb-lsb, 06
bb-msb, 0 7
aabb-lsb, 08
aabb-msb, 09
aabb-cout , OA
ledO, 10
led1 , 1 1
led2, 12
led3, 13

5 0 ; r e g i s t e r a l i a s

; c o m m o n l y u s e d l o c a l v a r i a b l e s
namereg S O , data ; r e g f o r t e m p o r a r y d a t a
namereg sl, addr ; r e g f o r t e m p o r a r y mem & i / o p o r t a d d r

; g l o b a l v a r i a b l e s
namereg s c , switch-a-b ; r a m o f f s e t f o r c u r r e n t s w i t c h i n p u t
namereg sd, tx-data ; d a t a t o b e t x b y u a r t

55 namereg s2, i ; g e n e r a l - p u r p o s e l o o p i n d e x

ho ,’
; p o r t a l i a s

i n p u t p o r t d e f i n i t i o n s
c o n s t a n t rd-flag-port , 00

65 ; 4 f l a g s (x x x x t r s c) :
; t : u a r t t x f u l l
; r : u a r t r x no t e m p t y
; s: s b u t t o n f l a g
; c : c b u t t o n f l a g

70 c o n s t a n t sw-port , 01 ; & b i t s w i t c h e s

392 PICOBLAZE 110 INTERFACE

c o n s t a n t
c o n s t a n t
c o n s t a n t

75 c o n s t a n t
c o n s t a n t
c o n s t a n t
c o n s t a n t
c o n s t a n t

80 c o n s t a n t
c o n s t a n t

uart-rx-port , 02 ; u a r t r e c e i v e r p o r t
mult-prodo-port , 0 3 ; m u l t i p l i c a t i o n p r o d u c t 8 L S B s
mult-prodl-port , 04 ; m u l t i p l i c a t i o n p r o d u c t 8 MSBs

sseg0-port , 00 ; 7 - s e g l e d 0
ssegl-port , 01 ; 7 - s e g l e d 1
sseg2_port, 0 2 ; 7 - s e g l e d 2
s s e g 3 _ p o r t , 03 ; 7 - s e g l e d 3
uart-tx-port , 04 ; u a r t r e c e i v e r p o r t
mult-src0-port , 0 5 ; m u l t i p l i e r o p e r a n d 0
mult-srcl-port , 0 6 ; m u l t i p l i e r o p e r a n d 1

o u t p u t p o r t d e f i n i t i o n s

m a i n p r o g r a m
85

c a l l i n g h i e r a r c h y :

90

IM

105

m a i n
- i n i t

- t x - p r o m p t
- t x - o n e - b y t e

- p r o c - b t n
- i n i t

- p r o c - u a r t
95 - t x - p r o m p t

- i n i t
- p r o c - u a r t - e r r

- dump-mem
- t x - o n e - b y t e

- t x - p r o m p t
- d i s p - r a m - a d d r

- d i s p - r a m - d a t a
- t x - o n e - b y t e

- t x - o n e - b y t e
- g e t - u p p e r - n i b b l e
- g e t - 1 o w e r n i b b l e
- h e x - t o - a s c i i

- s q u a r e
- m u l t - h a r d

110 - l o a d - l e d - p t t n
- g e t - l o w e r - n i b b l e
- g e t - u p p e r - n i b b l e
- h e x - t o - l e d

- d i s p - l e d
11s

c a l l init

: m a i n l o o p b o d y

c a l l proc-uart
c a l l square
c a l l load-led-pttn

forever :

IZO c a l l proc-btn

; i n i t i a l i z a t i o n

; c h e c k & p r o c e s s b u t t o n s
; c h e c k & p r o c e s s u a r t r x
; c a l c u l a t e s q u a r e
; s t o r e l e d p a t t e r n s t o ram

SQUARE PROGRAM WITH A COMBINATIONAL MULTIPLIER AND UART CONSOLE 393

c a l l disp-led
125 jump forever

; o u t p u t l e d p a t t e r n

,_______________________________________------------------
; r o u t i n e : i n i t
; f u n c t i o n : p e r f o r m i n i t i a l i z a t i o n , c l e a r r e g i s t e r / r a m

130 : o u t p u t r e g i s t e r :
s w i t c h - a - b : c l e a r e d t o 0

; t e m p r e g i s t e r : d a t a , i

init :

,--------------_---_____________________------------------

135 ; c l e a r memory
load i, 40 ; u n i t i z e l o o p i n d e x t o 6 4
l oad data, 00

s t o r e data, (i)

jump n z , clr-mem-loop ; r e p e a t u n t i l i=O
; c l e a r r e g i s t e r
l oad switch-a-b, 00
c a 1 1 tx-pr ompt

clr-mem-loop :

140 sub i, 01 ; d e c l o o p i n d e x

145 r e turn

.---______--------______________________------------------ ,_________--____________________________------------------

; r o u t i n e : p r o c - u a r t
; f u n c t i o n : r e a d u a r t i n p u t c h a r :

I50 ; a o r 6 : r e a d a o r b f r o m s w i t c h ;

; i n p u t r e g : s3 (i n p u t p o r t f l a g)
; t e m p r e g i s t e r u s e d : d a t a
; s 4 : s t o r e r e c e i v e d u a r t c h a r o r 0 0 (n o u a r t i n p u t)

proc-uart :

c : c l e a r ; d : d u m p / d i s p l a y d a t a ram o t h e r : e r r o r

, 5 5 , _______----_-____---____________________---------------

t e s t s 3 , 04 ; c h e c k u a r t r x s t a t u s
jump z , uart-rx-done ; g o t o d o n e i f r x e m p t y
; p r o c e s s r e c e i v e d c h a r

160 i n p u t s 4 , uart-rx-port ; g e t c h a r
; c h e c k i f r e c e i v e d c h a r i s a
compare s 4 , ASCII-a ; c h e c k A S C I I a
jump n z , chk-ascii-b ; n o , c h e c k n e x t
input data, sw-port ; g e t s w i t c h

165 s t o r e data, a-lsb ; w r i t e a t o d a t a ram
c a I I tx-pr ompt ; n e w p r o m p t l i n e
jump uart-rx-done

; c h e c k i f r e c e i v e d c h a r i s b

jump n z , chk-ascii-c ; n o , c h e c k n e x t
input data, sw-port ; g e t s w i t c h
s t o r e data, b-lsb ; w r i t e b t o d a t a ram
c a1 1 tx-pr ompt ; n e w p r o m p t l i n e

chk-ascii-b :

170 compare s 4 , ASCII-b ; c h e c k A S C I I b

175 jump uart-rx-done
chk-ascii-c:

394 PICOBLAZE I/O INTERFACE

; c h e c k i f r e c e i v e d c h a r i s c
compare s4, ASCII-c ; c h e c k A S C I I c
jump n z , chk-ascii-d ; n o c h e c k n e x t

jump uart-rx-done

; c h e c k i f r e c e i v e d c h a r i s d
compare s 4 , ASCII-d ; c h e c k A S C I I d

c a l l dump-mem ; d u m p / d i s p 1 a y ram
jump uart-rx-done

; u n d e f i n e d c h a r
190 c a l l proc-uart-error

180 c a l l init ; c l e a r

chk-ascii-d:

185 jump nz , ascii-undef ined

ascii-undefined:

uart-rx-done:
re turn

proc-uart-error:
load tx-data, ASCII-LF

200 c a l l tx-one-byte
l oad tx-data, ASCII-CR
c a l l tx-one-byte
l oad tx-data, ASCII-SP
c a l l tx-one-byte

205 c a l l tx-one-byte
l oad tx-data, ASCII-E
c a l l tx-one-byte
l oad tx-data, ASCII-r
c a 1 1 t x-one- byt e

210 load tx-data, ASCII-r
c a l l tx-one-byte
l oad tx-data, ASCII-o
c a l l tx-one-byte
l oad tx-data, ASCII-r

215 c a l l tx-one-byte
c a l l tx-prompt
re turn

; t r a n s m i t LF

; t r a n s m i t CR

; t r a n s m i t SP
; t r a n s m i t SP

; t r a n s m i t E

; t r a n s m i t r

; t r a n s m i t r

; t r a n s m i t o

; t r a n s m i t r

._______________________________________------------------ ,_______________________________________------------------

220 ; r o u t i n e : dump-mem
; f u n c t i o n : when d r e c e i v e d , dump 6 4 b y t e s o f ram a s

001000 xx xx xx xx xx xx xx xx
010000 xx xx xx xx xx xx xx xx

225 ,' 111000 xx xx xx xx xx xx xx xx
. . .

; t e m p r e g i s t e r u s e d :
; s3: a s o u t e r l o o p i n d e x

s 4 : ram b a s e a d d r e s s
,-______________________________________------------------

19s ; r o u t i n e : p r o c - u a r t - e r r o r
; f u n c t i o n : d i s p l a y " E r r o r " f o r unknown u a r t c h a r

SQUARE PROGRAM WITH A COMBINATIONAL MULTIPLIER AND UART CONSOLE 395

; g e t ram b a s e a d d r (x x x 0 0 0)

230 dump-mem :
load s3, 00 ; a d d r used as l o o p i n d e x

; l o o p body
load s 4 , s3

S I O s 4
s10 s4
c a l l disp-ram-addr
c a 1 1 di sp-ram-dat a

compare s3, 08
jump n z , dump-loop ; l o o p n o t r e a c h 8 y e t
c a I I tx-prompt ;new p r o m p t
re turn

dump-loop :

235 s 10 S4

240 add s3, 01 ; i n c l o o p i n d e x

245

,_______________________________________------------------
; r o u t i n e : t x - p r o m p t
; f u n c t i o n : g e n e r a t e p r o m p t "SQ>"
; t emp r e g i s t e r : t x - d a t a

tx-prompt :

250 .

load tx-data, ASCII-LF
c a l l tx-one-byte ; t r a n s m i t LF
load tx-data, ASCII-CR

255 c a l l tx-one-byte ; t r a n s m i t CR
load tx-data, ASCII-S
c a l l tx- one-byt e ; t r a n s m i t S
load tx-data, ASCII-Q
c a l l tx-one-byte ; t r a n s m i t Q

2 ~) l oad tx-data, ASCII-GT
c a l l tx- one-byt e ; t r a n s m i t >
load tx-data, ASCII-SP
c a l l tx-one-byte ; t r a n s m i t SP
re turn

265

,___________________---------------------_-_-_------------

; r o u t i n e : d i s p - r a m - a d d r
; f u n c t i o n : d i s p l a y 6 - b i t ram addr

bbbOOO

s 4 : b a s e a d d r e s s

i , s7 : 1 - b i t mask

270 ; i n p u t r e g i s t e r :

; temp r e g i s t e r :

,___________________--------------------------------------

275 disp-ram-addr :
;new l i n e
load tx-data, ASCII-LF
c a l l tx-one-byte ; t r a n s m
load tx-data, ASCII-CR

280 c a l l tx-one-byte ; t r a n s m
load tx-data, ASCII-SP
c a I I tx-one-byte ; t r a n s m

t LF

t CR

t S P

396 PICOBLAZE 110 INTERFACE

c a l l tx-one-byte ; t r a n s m i t SP
; i n i t i a l i z e t h e l o o p i n d e x a n d mask

l oad s 7 , 2 0 ; s e t mask t o 0 0 1 0 ~ 0 0 0 0

; l o o p b o d y
l oad tx-data, ASCII-1 ; l o a d d e f a u l t A S C I I 1

jump n z , tx-01 ; t h e b i t i s 1
load tx-data, ASCII-0; ; t h e b i t i s 0 , l o a d A S C I I 0

c a l l tx-one-byte ; t r a n s m i t t h e A S C I I 1 o r 0

srO s7 ; s h i f t mask b i t
sub i , 01 ; d e c l o o p i n d e x
jump n z , tx-loop ; l o o p n o t r e a c h 0 y e t
; d o n e w i t h l o o p , s e n d A S C I I s p a c e

3w load tx-data, ASCII-SP ; l o a d A S C I I SP
c a l l tx-one-byte ; t r a n s m i t SP
re turn

28s load i , 06 ; a d d r u s e d a s l o o p i n d e x

tx-loop :

290 t e s t s 7 , s 4 ; c h e c k t h e b i t

tx-01:

295 ; u p d a t e l o o p i n d e x and mask

.___________________--------_--------_-------------------- ,_______________________________________----------_-------

30s ; r o u t i n e : d i s p - r a m - d a t a
; f u n c t i o n : 8 - b y t e d a t a i n f o r m of

; i n p u t r e g i s t e r :
0 0 11 2 2 3 3 4 4 5 5 6 6 7 7 8 8

s 4 : ram b a s e a d d r e s s (x x x 0 0 0)
110 ; t e m p r e g i s t e r : i , a d d r , d a t a

.___________________-------------------------------------- ,___________________--------_-----------------------------

disp-ram-data:
; i n i t i a l i z e t h e l o o p i n d e x a n d mask
l oad i , 0 8 ; a d d r u s e d a s l o o p i n d e x

; l o o p b o d y
l oad addr, s 4
add addr, i
sub a d d r , 01 ; c a l c u l a t e a d d r o f f s e t

320 ; s e n d u p p e r n i b b l e
f e t c h d a t a , (addr)
c a l l get-upper-nibble
c a l l hex-to-ascii ; c o n v e r t t o a s c i i
l oad tx-data, data

; s e n d l o w e r n i b b l e
f e t c h d a t a , (addr)
c a l l get-lower-nibble
c a l l hex-to-ascii ; c o n v e r t t o a s c i i

330 l oad tx-data, data
c a l l tx-one-byte
; s e n d a s p a c e
load tx-data, ASCII-SP;
c a l l tx-one-byte ; t r a n s m i t SP

3 1 5 d-ram-loop :

'2s c a l l tx-one-byte

33s sub i , 01 ; d e c l o o p i n d e x

SQUARE PROGRAM WITH A COMBINATIONAL MULTIPLIER AND UART CONSOLE 397

jump n z , d - r a m - l o o p ; l o o p n o t r e a c h 0 y e t
re turn

._______________________________________------------------ ,_______________________________________------------------
; r o u t i n e : t x - o n e - b y t e

755 ; f u n c t i o n : w a i t u n t i l u a r t t x f i f o n o t f u l l ;
t h e n w r i t e a b y t e t o f i f o

; i n p u t r e g i s t e r : t x - d a t a
; t e m p r e g i s t e r :

s 6 : r e a d p o r t f l a g
260 .

t x - o n e - b y t e :

input s 6 , r d - f l a g - p o r t
t e s t s 6 , 08 ; c h e c k u a r t - t x - f u l l
jump n z , t x - o n e - b y t e ; y e s , k e e p o n w a i t i n g

365 output t x - d a t a , u a r t - t x - p o r t ; n o , w r i t e t o u a r t t x f i f o
re turn

.---------__________----------------------------------_--- ,---------__________--------------------------------------

; r o u t i n e : s q u a r e
370 ; f u n c t i o n : c a l c u l a t e a + a -+ b * b

d a t a / r e s u l t s t o r e d in ram s t a r t e d w / SQ-BASEADDR
; t e m p r e g i s t e r : s 3 , s 4 , s5, s 6 , d a t a

s q u a r e ;
,_--___--_______________________________------------------

375 ; c a l c u l a t e a * a
f e t c h s3 , a - l s b ; l o a d a
f e t c h s 4 , a - l s b ; l o a d a
c a l l m u l t - h a r d ; c a l c u l a t e a * a
s t o r e s 6 , a a - l s b ; s t o r e l o w e r b y t e o f a * a

180 s t o r e s5, aa-msb ; s t o r e u p p e r b y t e o f a * a
; c a l c u l a t e b * b
f e t c h s 3 , b - l s b ; l o a d b
f e t c h s 4 , b - l s b ; l o a d b
c a l l m u l t - h a r d ; c a l c u l a t e b * b

38s s t o r e 9 6 , b b - l s b ; s t o r e l o w e r b y t e o f b * b
s t o r e s 5 , bb-msb ; s t o r e u p p e r b y t e o f b * b
; c a l c u l a t e a*a+b*b
f e t c h d a t a , a a - l s b ; g e t l o w e r b y t e o f a * a

340 ; r o u t i n e : h e x - t o - a s c i i
; f u n c t i o n : c o n v e r t a h e x number t o a s c i i code

; i n p u t r e g i s t e r : da ta
add 3 0 f o r 0 - 9 , add 3 7 f o r A-F

34s h e x - t o - a s c i i :
compare d a t a , Oa
jump c , a d d - 3 0
add d a t a , 07

is0 add d a t a , 3 0
re turn

a d d - 3 0 :

; O t o 9 , o f f s e t 30
; a to f , e x t r a o f f s e t 0 7

398 PICOBLAZE 110 INTERFACE

add data, s6
390 s t o r e data, aabb-lsb

f e t c h data, aa-msb
addcy data, s5
s t o r e data, aabb-msb
l oad data, 00

s t o r e data, aabb-cout
re turn

395 addcy data, 00

; a d d l o w e r b y t e of a*a+b*b
; s t o r e l o w e r b y t e o f a*a+b*b
; g e t u p p e r b y t e of a * a
; a d d u p p e r b y t e o f a * a + b * b
; s t o r e u p p e r b y t e of a*a+b*b
; c l e a r d a t a , b u t k e e p c a r r y
; g e t c a r r y f r o m p r e v i o u s +
; s t o r e c a r r y o f a*a+b*b

,___________________---------------------_-_--------------
4w ; r o u t i n e : m u l t - h a r d

; f u n c t i o n : 8 - b i t u n s i g n e d m u l t i p l i c a t i o n u s i n g

; i n p u t r e g i s t e r :

405 ,' s 4 : m u l t i p l i e r

e x t e r n a l c o m b i n a t i o n a l m u l t i p l i e r ;

s3 : m u l t i p l i c a n d

; o u t p u t r e g i s t e r :
sS: u p p e r b y t e o f p r o d u c t
s 6 : l o w e r b y t e o f p r o d u c t

; t e m p r e g i s t e r :

mult-hard:

J ,o .

output s3, mult-src0-port
output s4 , mult-srcl-port
input s 5 , mult-prodl-port

415 input s 6 , mult-prodo-port
re turn

____________________---------------_---------------------
; T h e f o l l o w i n g a r e t h e same a s t h e p r e v i o u s L i s t i n g :

;
420 ; p r o c - b t n , l o a d - l e d - p t t n , d i s p - l e d

h e x - t o -1 e d , g e t - 1 o w e r - n i b b l e , g e t - u p p e r - n i b b 1 e

16.5.4 VHDL code development

The new square circuit adds a UART and a combinational multiplier to an I/O interface.
The former is the module discussed in Section 7.4, and the latter can be inferred from the
HDL's * operator. The decoding and multiplexing parts of HDL code in Listing 16.2 can be
expanded to accommodate the two new peripherals. The complete VHDL code is shown in
Listing 16.4. The detailed I/O port address assignment can be found in the header section
of Listing 16.3.

Listing 16.4 PicoBlaze with UART console and multiplier interface

l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y pico-uart i s

5 p o r t (
clk, reset: in std-logic;

SQUARE PROGRAM WITH A COMBINATIONAL MULTIPLIER AND UART CONSOLE 399

sw: i n std-logic-vector (7 downto 0) ;
btn: i n std-logic-vector (3 downto 0) ;
rx: i n std-logic;

sseg : o u t std-logic-vector (7 downto 0) ;
tx: o u t std-logic

10 an: o u t std-logic-vector (3 downto 0) ;

1 ;
end pico-uart ;

a r c h i t e c t u r e arch of pico-uart i s
15

20

25

30

35

40

-- KCPSM3/ROM s i g n a l s
s i g n a l address : std-logic-vector (9 downto 0) ;
s i g n a l instruction: std-logic-vector (17 downto 0) ;
s i g n a l port-id: std-logic-vector (7 downto 0) ;
s i g n a l in-port , out-port : std-logic-vector (7 downto 0) ;
s i g n a l write-strobe , read-strob’e : std-logic ;
s i g n a l interrupt , interrupt-ack: std-logic ;
s i g n a l kcpsm-reset : std-logic ;
-- 1 / 0 p o r t s i g n a l s
__ o u t p u t e n a b l e
s i g n a l en-d: std-logic-vector (6 downto 0) ;
-- f o u r - d i g i t s e v e n - s e g m e n t l e d d i s p l a y
s i g n a l ds3_reg, ds2-reg : std-logic-vector (7 downto 0) ;
s i g n a l dsl-reg , ds0-reg : std-logic-vector (7 downto 0) ;
__ t w o p u s h b u t t o n s
s i g n a l btnc-f lag-reg , btnc-f lag-next : std-logic;
s i g n a l btns-flag-reg, btns-flag-next: std-logic;
s i g n a l set-btnc-f lag, set-btns-f lag: std-logic ;
s i g n a l clr-btn-f lag: std-logic;

s i g n a l w-data: std-logic-vector (7 downto 0) ;
s i g n a l rd-uart , rx-not-empty , rx-empty : std-logic ;
s i g n a l wr-uart , tx-full : std-logic;
s i g n a l rx-char : std-logic-vector (7 downto 0) ;
__ m u 1 t i p 1 i e r
s i g n a l m-srcO-reg, m-srcl-reg: std-logic-vector (7 downto 0) ;
s i g n a l prod: std-logic-vector (15 downto 0) ;

u a r t __

50

55

begin
_____________--__--_--------------------------------- ______________-____-____________________------------- 45 --

__ 1 / 0 m o d u l e s

disp-unit : e n t i t y work. disp-mux

__------------- __ ___________--

p o r t map(
clk=>clk, reset=>’O’ ,
in3=>ds3_reg, in2=>ds2_reg, inl=>dsl-reg,
inO=>dsO-reg, an=>an, sseg=>sseg) ;

uart-unit : e n t i t y work. uart (str-arch)
p o r t map(

clk=>clk, reset=>reset , rd-uart=>rd-uart,
wr-uart=>wr-uart , rx=>rx,
w-data=>out-port , tx-full=>tx-full,
rx-empty=>rx-empty, r-data=>rx-char, tx=>tx);

btnc-db-unit : e n t i t y work. debounce

400

60

65

70

75

80

105

I10

PICOBLAZE I/O INTERFACE

port map(
clk=>clk, reset=>reset , sw=>btn (0) ,
db-level=>open , db-tick=>set-btnc-f lag) ;

btns-db-unit : entity work. debounce
port map(

clk=>clk, reset=>reset , sw=>btn(l),
db-level=>open, db-tick=>set-btns-flag);

-- c o m b i n a t i o n a l m u 1 t i p 1 i e r
prod <= std-logic-vector

(unsigned(m-srcO-reg) * unsigned(m-srcl-reg));
__--------------- ...
__ KCPSM a n d ROM i n s t a n t i a t i o n

proc-unit : entity work. kcpsm3

___________-_____-__-----_--_------------------------ --______________________________________--_-_--_---_--_

port map(
clk=>clk, reset =>kcpsm-reset ,
address=>address , instruction=>instruction ,
port-id=>port-id, write-strobe=>write-strobe,
out-port=>out-port , read-strobe=>read-strobe ,
in-port=>in-port , interrupt=>interrupt ,
interrupt-ack=>interrupt-ack);

rom-unit : entity work. uart-rom
port map(

clk = > clk, address=>address ,
instruction=>instruction);

-- u n u s e d i n p u t s on p r o c e s s o r
kcpsm-reset <= ’ 0 ’ ;
interrupt <= ’ 0 ’ ;

__ o u t p u t i n t e r f a c e

__ o u t p o r t p o r t i d :
__ 0 x 0 0 : dsO
__ 0 x 0 1 : d s l
__ 0 x 0 2 : d s 2
__ 0 x 0 3 : d s 3
__ 0 x 0 4 : u a r t - t x - f i f o
__ 0 x 0 5 : m - s r c 0
-_ 0 x 0 6 : m - s r c l

-_ r e g i s t e r s
process (clk)
begin

____________________--------------------------------- __ ____________________---------------------------------

____________________--------_------------------------ --______________________________________---------------

____________________--------------------------------- --______________________________________---------------

if (clk ’ event and clk= ’ 1 ’) then
if en_d(0)=’lJ then ds0-reg <= out-port; end if;
if en-d(l)= ’1 then dsl-reg <= out-port; end if;
if en-d(2)= ’1 then ds2-reg <= out-port; end if;
if en-d(3)=’lJ then ds3-reg <= out-port; end if;
if en-d(5)= ’1’ then m-src0-reg <= out-port ; end if;
if en-d(6)=’lJ then m-srcl-reg <= out-port; end if;

end if ;
end process;

__ d e c o d i n g c i r c u i t f o r e n a b l e s i g n a l s

SQUARE PROGRAM WITH A COMBINATIONAL MULTIPLIER AND UART CONSOLE 401

I15

I20

I25

I30

I35

140

145

I50

I55

160

I65

p r o c e s s (port-id, write-strobe)
beg in

en-d <= (o t h e r s = > ' O ') ;
i f write-strobe= 1 t h e n

c a s e port-id(2 downto 0) i s
when " 0 0 0 " = > en-d < = " 0 0 0 0 0 0 1 " ;
when " 0 0 1 " => en-d <="OOOOOlO";
when " 0 1 0 " => en-d < = " O O O O I O O ' l ;
when " 0 1 1 " = > en-d < = " 0 0 0 1 0 0 0 " ;
when " 1 0 0 " => en-d < = " 0 0 1 0 0 0 0 " ;
when " 1 0 1 " = > en-d <="OlOOOOO";
when o t h e r s => en-d < = " 1 0 0 0 0 0 0 " ;

end c a s e ;
end i f ;

end p r o c e s s ;
wr-uart <= en-d(4) ;

__ i n p u t i n t e r f a c e

__ i n p u t p o r t i d
-_ 0 x 0 0 : f l a g
__ 0 x 0 1 : s w i t c h
__ 0 x 0 2 : u a r t - r x - f i f o
__ 0 x 0 3 : p r o d l o w e r b y t e
__ 0 x 0 4 : p r o d u p p e r b y t e

__ i n p u t r e g i s t e r (f o r f l a g s)
p r o c e s s (clk)
begin

____________________--------------------------------- --__________________-----------------------------------

____________________--------------------------------- __------------- __

____________________----------------------------------- ____________________---------------------------------

i f (clk'event and clk='l') t hen
btnc-flag-reg <= btnc-flag-next;
btns-flag-reg <= btns-flag-next;

end i f ;
end p r o c e s s ;

btnc-f lag-next <= 1 when set-btnc-f lag= 1 e l s e
' 0 ' when clr_btn-flag='l' e l s e
btnc-flag-reg;

btns-f lag-next <= '1 ' when set-btns-f lag=' 1 e l s e
' 0 ' when clr-btn-flag='l' e l s e
btns-flag-reg;

__ d e c o d i n g c i r c u i t f o r c l e a r s i g n a l s
clr-btn-f lag < = ' 1 when read-strobe= 1 and

port-id(2 downto O) = " O O O " e l s e
' O J ;

rd-uart <= '1' when read-strobe='l' and
port-id(2 downto O) = " O l O " e l s e

' 0 ' ;
__ i n p u t m u 1 t i p 1 e x i n g
rx-not-empty <= no t rx-empty;
p r o c e s s (port-id , tx-full , rx-not-empty ,

begin
btns-flag-reg , btnc-flag-reg , sw, rx-char ,prod)

402 PICOBLAZE 110 INTERFACE

I70

I75

c a s e port-id(2 downto 0) is
when “ 0 0 0 ” =>

in-port <= “ 0 0 0 0 ” & tx-full & rx-not-empty &

btns-flag-reg & btnc-flag-reg;
when ‘I 0 0 1 = >

when “01O1 ’ =>

when “ 0 1 1 “ =>

when o t h e r s =>

in-port <= s w ;

in-port <= rx-char;

in-port <=prod (7 downto 0) ;

in-port <= prod(l5 downto 8);
end c a s e ;

end p r o c e s s ;
180 end arch;

16.6 BIBLIOGRAPHIC NOTES

The basic bibliographic information for this chapter is similar to that for Chapter 14. The
downloaded kcpsm file contains a comprehensive UART and timer design example. The
Xilinx Web site has pages for “PicoBlaze Forum” and “PicoBlaze User Resources,” where
additional PicoBlaze examples are available.

16.7 SUGGESTED EXPERIMENTS

16.7.1 Low-frequency counter I

An accurate low-frequency counter is discussed in Section 6.3.5. We can treat the period
counter, division circuit, and binary-to-BCD conversion circuit as three YO modules, and
replace the top-level FSM with PicoBlaze. Design the I/O interface, derive the assembly
and HDL codes, compile and synthesize the circuit, and verify its operation.

16.7.2 Low-frequency counter II

We can reduce the hardware of the frequency counter of Experiment 16.7.1 by replacing the
division circuit and binary-to-BCD conversion circuit with software subroutines. Redesign
the IiO interface, derive the assembly and HDL codes, compile and synthesize the circuit,
and verify its operation.

16.7.3 Auto-scaled low-frequency counter

An auto-scaled low-frequency counter is discussed in Experiment 6.5.5. We can use Pi-
coBlaze to perform all non-time-critical functions. Redesign the circuit with PicoBlaze and
minimal external hardware. Derive the assembly and HDL codes, compile and synthesize
the circuit, and verify its operation.

SUGGESTED EXPERIMENTS 403

16.7.4 Basic reaction timer with a software timer

The reaction timer is discussed in Experiment 6.5.6. We can redesign the circuit using
PicoBlaze. One task of the design is to keep track of the elapsed time interval. This can be
done by a software counting routine. Recall that a 50-MHz clock is used on the prototyping
board and each instruction takes two clock cycles. We can create a counting loop to record
the number of instructions executed and derive the time interval accordingly. Since the
interval is at least in the millisecond range, multiple registers are needed for this purpose.
Design the I/O interface, derive the assembly and HDL codes, compile and synthesize the
circuit, and verify its operation.

16.7.5 Basic reaction timer with a hardware timer

We can repeat Experiment 16.7.4 with a customized hardware timer. The timer should be
treated as an I/O peripheral. PicoBlaze can output a command to clear, start, or pause the
timer, and can input the counter’s content. Design the I/O interface, derive the assembly
and HDL codes, compile and synthesize the circuit, and verify its operation.

16.7.6 Enhanced reaction timer

An enhanced reaction timer keeps track of the last four response times and the fastest
response time, and displays the data on Windows HyperTerrninal. We can design a console
similar to that of Section 16.5. There should be three commands:

0 c: clears all data
0 f : displays the fastest response
0 r: displays the time of the last four responses
0 All other characters: displays “error”

Expand the design in Experiment 16.7.4 or 16.7.5 to include this feature. Derive the
assembly and HDL codes, compile and synthesize the circuit, and verify its operation.

16.7.7 Small-screen mouse scribble circuit

A small-screen mouse scribble circuit is discussed in Experiment 12.7.10. We can use
PicoBlaze to monitor the activities of the mouse and update the video memory accordingly.
Design the I/O interface, derive the assembly and HDL codes, compile and synthesize the
circuit, and verify its operation.

16.7.8 Full-screen mouse scribble circuit

A full-screen mouse scribble circuit is discussed in Experiment 12.7.11. We can use Pi-
coBlaze to monitor the activities of the mouse and update the video memory accordingly.
Design the I/O interface, derive the assembly and HDL codes, compile and synthesize the
circuit, and verify its operation.

16.7.9 Enhanced rotating banner

A VGA rotating banner circuit is discussed in Experiment 13.6.1. Instead of a fixed message,
we can enhance this circuit by using a keyboard to enter the message dynamically. Assume

404 PICOBLAZE 110 INTERFACE

that the message buffer is 20 characters long and its characters are updated in a first-in-
first-out fashion. Redesign the circuit with PicoBlaze. Design the I/O interface, derive the
assembly and HDL codes, compile and synthesize the circuit, and verify its operation.

16.7.1 0 Pong game

The complete pong game is discussed in Section 13.4. Some functions of the design can
be implemented by PicoBlaze:

0 Top-level control FSM
0 Top-level two-second timer and two-digit decade counter
0 The circuit that updates the paddle position, ball position, and ball velocities in

Modify the original circuit, design the I/O interface, derive the assembly and HDL codes,
compile and synthesize the circuit, and verify its operation.

Listing 12.5

16.7.1 1 Text editor

A UART terminal is discussed in Experiment 13.6.5. We can use PicoBlaze to obtain data
and commands from the UART and update the tile memory accordingly. Design the I/O
interface, derive the assembly and HDL codes, compile and synthesize the circuit, and
verify its operation.

CHAPTER 17

PICOBLAZE INTERRUPT INTERFACE

17.1 INTRODUCTION

During normal program execution, a microcontroller polls the I/O peripherals (i.e., checks
the status signals) and determines the course of action accordingly. An I/O peripheral
is passive and waits for its turn. The interrupt is a mechanism that allows an external
I/O peripheral to initiate the operation. It, as the name shows, interrupts normal program
execution and starts a service routine for the I/O peripheral. For a microcontroller, the
interrupt is usually reserved for a time-critical peripheral operation, which must be processed
immediately. The PicoBlaze microcontroller provides support for simple interrupt-handling
capability. In this chapter, we examine the PicoBlaze’s interrupt mechanism and use an
example to illustrate software and interface development.

17.2 INTERRUPT HANDLING IN PICOBLAZE

Interrupt handling is a coordinated effort between hardware and software. When an external
peripheral needs service through interrupt, it asserts the interrupt signal of PicoBlaze. If
the interrupt service is enabled, PicoBlaze completes execution of the current instruction,
activates the interrupt-ack signal to acknowledge the acceptance of the interrupt request,
and then implicitly executes the call 3FF instruction. When the instruction is executed, the
current content of the program counter is saved in stack and the 3FF address is loaded to
the programmer counter. Note that the 3FF address is the last location in the instruction

FPGA Prototyping by VHDL Examples. By Pong P. Chu
Copyright @ 2008 John Wiley & Sons, Inc.

405

406 PICOBLAZE INTERRUPT INTERFACE

Figure 17.1 Interrupted flow.

memory and serves as the starting point of the interrupt service routine. It usually contains
a jump instruction, which leads to the body of the service routine. The service should be
ended with a returni instruction to return to the interrupted point and resume the previous
execution.

17.2.1 Software processing

Four instructions are associated with interrupt, as discussed in Section 14.5.9. The en-
able interrupt and disable interrupt instructions enable and disable the interrupt request,
and the two return-from-interrupt instructions, returni enable and returni disable, return
execution to the interrupted point.

A typical program segment with interrupt service routine is shown in Figure 17.1. It
generally consists of the following segments:

0 An initial enable interrupt instruction: used to enable the interrupt service. This is
needed since the interrupt request is disabled by default.

INTERRUPT HANDLING IN PICOBLAZE 407

Figure 17.2 Timing diagram of an interrupt event.

0 A jump instruction in the end of the instruction memory (i.e., 3FF): leads to the

Interrupt service routine: the code that actually performs the requested service. The

A representative flow of an interrupt event is shown in Figure 17.1. We assume that
the external I/O assert the interrupt signal in the middle of the add SO, s3 instruction.
PicoBlaze performs the following steps in sequence:

1. Completes execution of the current execution.
2. Saves the content of the program counter, clears the interrupt flag, i, to zero, preserves

3. Executes the jump isr instruction in the 3FF address.
4. Performs the service routine.
5. Executes the returni instruction, in which the saved program counter and flags are

6 . Resumes the interrupted program and executes the sub s5,OI instruction.

interrupt service routine.

routine should be ended with a returni instruction.

the zero and carry flags, and loads the program counter with 3FF.

restored.

17.2.2 Timing

The detailed timing diagram of the previous interrupt event is shown in Figure 17.2. The
basic sequence is:

0 At tl: The external interrupt interface asserts the interrupt signal. PicoBlaze
continues the normal operation to complete execution of the current add sO,s3
instruction.

0 At t 2 : PicoBlaze recognizes the interrupt and aborts the next instruction (sub s5,OI)
and implicitly executes the call 3FF instruction.

0 At t3: PicoBlaze asserts the interrupt-ack signal. It also saves the address of the
sub s5,OI instruction, preserves the zero and carry flags, and clears the interrupt flag
to 0.

0 At t4: PicoBlaze loads and executes the instruction in address 3FF, jump isr.
The external interrupt interface circuit acknowledges the interrupt -ack signal and
deasserts the interrupt signal.

408 PICOBLAZE INTERRUPT INTERFACE

int request - set flag -
+ clr

'flag FF

in-port out-port
reset port-id

readstrobe
write-strobe instruction

interrupt interrupt-ack
address

KCPSM3 >

Figure 17.3 Interrupt interface with a single request

0 At t5: PicoBlaze starts the interrupt service routine.
Note that it requires up to five clock cycles from the time that the interrupt signal is
asserted to the time that the first instruction of interrupt service routine is executed.

17.3 EXTERNAL INTERFACE

The nature of the interrupt request is similar to that of a single-access port discussed in
Section 16.3.2. After the request is accepted, it must be cleared so that the same request
will not be processed multiple times. The flag FF discussed in Section 7.2.4 can be used
for this purpose.

17.3.1 Single interrupt request

If there is only one I/O peripheral in a PicoBlaze system that can generate an interrupt
request, we just need a single flag FF in the interrupt interface circuit, as shown in Fig-
ure 17.3. When the service is required, the external I/O circuit asserted the int request
signal for one clock cycle, which sets the flag IT to '1' and activates the interrupt input
of PicoBlaze. If the interrupt is enabled in PicoBlaze, it acknowledges acceptance of the
request by asserting the interrupt-ack signal for one clock cycle, which clears the flag FF
to '0'.

17.3.2 Multiple interrupt requests

Processing a PicoBlaze system with two or more interrupt requests is more involved. The
PicoBlaze microcontroller must determine which peripheral issues the request and clear
the corresponding flag FF after the request is accepted. This needs the coordination of the
hardware interface and the interrupt service routine.

The interrupt interface with two requests is shown in Figure 17.4. The two individual
requests, int request0 and int requestl, are connected to two flag FFs, and the output
signals of the FFs are passed to an or gate to generate the final interrupt request signal. In
addition, the two signals are also routed to the input multiplexer. If at least one request
is asserted, the interrupt signal of PicoBlaze is asserted. When PicoBlaze senses the
request, it does not know which peripheral or whether both peripherals issue the request.
The interrupt service routine must first input the two request signals and check their values
according to the assigned priority, and then perform the corresponding service.

SOFTWARE DEVELOPMENT CONSIDERATIONS 409

Figure 17.4 Interrupt interface with two requests.

In addition, PicoBlaze also needs to clear the corresponding flag FF. The interrupt-ack
signal cannot be used for this purpose because it is not known which peripheral’s request
is accepted when the interrupt-ack signal asserted. Instead, we need to use a special
output decoding circuit to generate a clear tick. The clr signal of each flag FF is assigned
to a unique port id. In the interrupt service routine, we add an output instruction after
determining which interrupt request is accepted. The instruction does not actually output
any data. It is used to generate a single-clock-cycle tick to clear the corresponding flag FE

To reduce the software overhead and increase response speed, we can design an interrupt
controller to facilitate the process. This approach is discussed in Experiment 17.7.5.

17.4 SOFTWARE DEVELOPMENT CONSIDERATIONS

17.4.1 Interrupt as an alternative scheduling scheme

Recall that a microcontroller-based application usually follows a simple polling program
structure:

c a l l initialization-routine

c a l l taskl-routine;
c a l l task2-routine;

c a I I taskn-rout ine ;
jump forever ;

forever :

. . .

Some tasks may involve IiO operations. During execution, the microcontroller checks
the IiO status in turn and takes actions accordingly. The program structure implicitly
implements a round-robin schedule, in which each task waits in turn to be executed. This
scheme can work properly if the loop interval is short enough so that each I/O request can
be checked and processed in a timely manner. In some applications, there may exist one or
two time-critical IiO requests that require immediate attention. The interrupt mechanism
provides a way to alter the original schedule and gives certain tasks higher priorities.

Since an interrupt can occur at any time, the original loop must consider the frequency
of interrupt and the required service time of each interrupt request. This can be complicated
if there are multiple interrupt requests and the service routine is involved.

410 PICOBLAZE INTERRUPT INTERFACE

Figure 17.5 Interrupt interface with a timer.

17.4.2 Development of an interrupt service routine

The interrupt service routine is somewhat like a subroutine. It suspends normal program
execution, performs an independent task, and then resumes the previous execution. How-
ever, unlike a subroutine call, an interrupt can occur any time. To resume execution later,
the service routine must save the current state (also known as the context) of the PicoBlaze
processor. In other words, the service routine must save all registers used in service routine
computation and then restore them before returning to normal execution. This process is
known as context switching.

Since PicoBlaze is a compact 8-bit microcontroller, the hardware support for context
switching and scheduling is very limited. We should use the polling scheme in general and
keep the interrupt structure simple and straightforward. Instead of worrying about context
switching, we can allocate several dedicated registers to be used exclusively in the interrupt
service routine.

17.5 DESIGN EXAMPLE

The square circuit of Chapter 16 uses a seven-segment LED display to show the values of
input operands and result. We use the predesigned LED multiplexing module, dispmux,
for this purpose. The design of this module is discussed in Section 4.5.1. It consists of a
large counter to generate slow enable pulses and a multiplexing circuit to route the input
patterns.

To save hardware, we can implement this functionality in software and let PicoBlaze
control the 4-bit enable signal, an, and the 8-bit LED signal, sseg, of the four-digit LED
display directly. To generate a visually continuous pattern, the enable pulse and LED
patterns must be refreshed at a constant rate, as shown in Figure 4.6. While using pure
software to keep track of time is possible, the code is tedious and error-prone. We use
a dedicated hardware timer and PicoBlaze’s interrupt facility to perform the task. The
required hardware and software modifications are illustrated in the following subsections.

17.5.1 Interrupt interface

The block diagram of the timer and interrupt interface, as well as the new output buffers, is
shown in Figure 17.5. The timer is a mod-500 counter and generates a single-clock-cycle
tick every 500 clock cycles. Since the 50-MHz clock is used for the timer, the period of
the tick is 0.01 ms. Because there is only one interrupt request, we use the flag FF scheme

DESIGN EXAMPLE 41 1

discussed in Section 17.3.1 for the interrupt interface. The tick sets the flag FF and activates
the i n t e r r u p t signal of PicoBlaze.

17.5.2 Interrupt service routine development

To keep track of the elapsed time, PicoBlaze counts the number of timer ticks. As discussed
in Section 17.4.2, we want to keep the interrupt service routine simple and use two dedicated
registers, countlnsb and count-lsb, for this task. The two registers are cascaded as a
16-bit register and are incremented each time the interrupt service routine is called. They
can count to 0.6 second (i.e., 216 * 0.01 ms). The interrupt-related code segment is

namereg se, count-msb ; t i m e r t i c k c o u n t 8 MSBs
namereg s f , count-lsb ; t i m e r t i c k c o u n t 8 L S B s

; i n t e r r u p t s e r v i c e r o u t i n e
int-service-routine:

add count-lsb, 01 ; i n c 1 6 - b i t c o u n t e r
addcy count-msb, 00
returni enable

; i n t e r r u p t v e c t o r
address 3FF
jump int - s erv i c e -I out ine

17.5.3 Assembly code development

With the timing information available, we can derive a new subroutine, displayrmux-out,
for the LED display. This routine replaces the disp- led routine used in Chapter 16. Two
new output buffers are needed to store the an and sseg signals, as shown in Figure 17.5. The
main task of the subroutine is to store the an pattern, which can be "1 1 lo", "1 101", "101 l " ,
or "01 1 l", and the corresponding seven-segment LED pattern to the registers periodically.
As discussed in Section 4.5.1, the refreshing rate should be around from a few hundred to
a few thousand hertz. In our code we update these registers every 21° ticks, which is about
10 ms. We also use a register, led-pos, to keep track of the current display position (i.e.,
one of the four LED displays).

To incorporate the new interrupt feature into Listing 16.3, the code is modified as follows:
0 Add new port and register definitions.

Replace the original disp- led routine with the displaylnux-out routine.
Add the enable interrupt instruction in the i n i t routine to enable interrupt handling.
Initialize the led-pos, countlnsb, and count-lsb registers in the i n i t routine.
Add the interrupt service routine.

The modified portion of the assembly code is shown in Listing 17.1.

Listing 17.1 Square program with interrupt interface

; r e g i s t e r a l i a s
namereg sb, led-pos ; l e d d i s p p o s i t i o n (0 , I , 2 o r 3)
namereg se, count-msb ; t i m e r t i c k c o u n t 8 MSBs

5 namereg s f , count-lsb ; t i m e r t i c k c o u n t 8 LSBs
. . .

41 2 PICOBLAZE INTERRUPT INTERFACE

; o u t p u t p o r t d e f i n i t i o n s
c o n s t a n t an-port , 00
c o n s t a n t sseg-port , 01

; m a i n p r o g r a m
c a l l init

forever :
; m a i n l o o p b o d y

c a l l square ; c a l c u l a t e s q u a r e
c a l l load-led-pttn ; s t o r e l e d p a t t e r n s t o ram
c a l l display-mux-out ; m u l t i p l e x l e d p a t t e r n s
jump forever

10 . . .

; i n i t i a 1 i z a t i o n

15 c a l l proc-btn ; c h e c k & p r o c e s s b u t t o n s

20

,-______________________________________--_---_-----------
; r o u t i n e : i n i t

init :
,_______________________________________------------------

25 enable interrupt

load led-pos, 00
load count-msb, 00
load count-lsb, 00

30 re turn

.-------_-______________________________------------------ ,___-___________________________________------------------

; r o u t i n e : d i s p l a y - m u x - o u t
; f u n c t i o n : g e n e r a t e e n a b l e p u l s e & l e d p a t t e r n

; i n p u t r e g i s t e r :
35 ; f o r 4 - d i g i t 7 - s e g m e n t l e d d i s p l a y

c o u n t - m s b , c o u n t - l s b : t i m e r c o u n t
l e d - p o s : c u r r e n t l e d p o s i t i o n

40 ; l e d - p o s : u p d a t e d l e d p o s i t i o n
; o u t p u t r e g i s t e r :

; t m p r e g i s t e r : d a t a , a d d r

display-mux-out :

.-------________________________________------------------ ,------__--_____________________________------------------

compare count-msb , 0 2 ; c o u n t =00000100~00000000

; c l e a r t i m e c o u n t e r (c o u n t > 2 0)
load count-lsb, 00
load count-msb, 00
; u p d a t e 7 - s e g m e n t l e d p o s i t i o n

compare led-pos, 04
jump n z , gen-an-signal
load led-post 00 ; l e d - p o s w r a p s a r o u n d

45 jump c , mux-out-done

50 add led-pos, 01

gen-an-signal :
55 ; g e n e r a t e 4 - b i t a n o d e e n a b l e s i g n a l

load data, OE ; x x x x - 1 1 I 0
compare led-pos, 00
jump z , shift-an-0
compare led-pos, 0 1

DESIGN EXAMPLE 41 3

h~ jump z , shift-an-1
compare led-pos, 02
jump z , shift-an-2
s l l data ; s h i f t 1 1 1 0 3 t i m e s

65 s l l data ; s h i f t 1 1 1 0 2 t i m e s

s l l data ; s h i f t 1 1 1 0 1 t i m e s

output data, an-port
70 ; o u t p u t 7 - s e g l e d p a t t e r n

load addr, led0
add addr, led-pos
f e t c h data, (addr)
output data, sseg-port

75 mux-out-done :
return

shift-an-2:

shift-an-1:

shift-an-0 :

3' r o u t i n e : i n t e r r u p t s e r v i c e r o u t i n e
SO ; f u n c t i o n : i n c r e m e n t 1 6 - b i t c o u n t e r

; i n p u t r e g i s t e r :

; o u t p u t r e g i s t e r :
c o u n t - m s b , c o u n t - l s b : t i m e r c o u n t

c o u n t - m s b , c o u n t - l s b : i n c r e m e n t e d
85 ,'

int-service-routine:
add count-lsb, 01 ; i n c 1 6 - b i t c o u n t e r
addcy count-msb I 00
returni enable

90

; i n t e r r u p t

a d d r e s s
95 jump in

v e c

3FF
-se

o r

vice-routine

; T h e f o l l o w i n g a r e t h e same a s t h e p r e v i o u s L i s t i n g :
; p r o c - b t n , l o a d - l e d - p t t n ,

k e x - t o -1 e d ,
; s q u a r e , m u l t - s o f t

I~ ; g e t -10 w e r - n i b b l e , g e t - u p p e r - n i b b 1 e

, . . .
~~~~ ~~~~ ~~~~ ~~~~ ~~~~~ ~~~~ ~ 

17.5.4 VHDL code development 

The I/O interface of the interrupt-based square circuit includes three parts. The input 
interface is similar to that in Section 16.4. The output interface consists of a decoding 
circuit and two output registers for the an and sseg signals, as shown on the right of 
Figure 17.5. The interrupt interface consists of a timer and a flag FF, as shown on the 



414 PICOBLAZE INTERRUPT INTERFACE 

left of Figure 17.5. The HDL code basically follows the block diagram and is shown in 
Listing 17.2. 

Listing 17.2 

library ieee; 
use ieee. std-logic-1164. all ; 
use ieee. numeric-std. all ; 
entity pico-int is 

PicoBlaze-based square circuit with interrupt 

5 port( 
clk, reset: in std-logic; 
sw: in std-logic-vector ( 7  downto 0)  ; 
btn: in std-logic-vector (1 downto 0)  ; 
an: out std-logic-vector (3 downto 0)  ; 

10 sseg : out std-logic-vector ( 7  downto 0)  
1 ;  

end pico-int ; 

architecture arch of  pico-int is 
15 -- KCPSM3/ROM s i g n a l s  

signal address : std-logic-vector (9 downto 0)  ; 
signal instruction: std-logic-vector (17 downto 0)  ; 
signal port-id: std-logic-vector (7 downto 0)  ; 
signal in-port , out-port : std-logic-vector ( 7  downto 0)  ; 

signal interrupt , interrupt-ack: std-logic ; 
-- 1 / 0  p o r t  s i g n a l s  
__ o u t p u t  e n a b l e  
signal en-d: std-logic-vector (1 downto 0)  ; 

signal sseg-reg : std-logic-vector (7 downto 0)  ; 
signal an-reg : std-logic-vector (3 downto 0)  ; 
-- t w o  p u s h b u t t o n s  
signal btnc-f lag-reg , btnc-f lag-next : std-logic ; 

30 signal btns-f lag-reg , btns-f lag-next : std-logic; 
signal set-btnc-f lag, set-btns-f lag: std-logic; 
signal clr-btn-f lag: std-logic; 
__ i n t e r r u p t  - r  e 1 a t e d  
signal timer-reg , timer-next : unsigned(8 downto 0) ; 

signal timer-flag-reg , timer-flag-next : std-logic; 

20 signal write-strobe , read-strobe : std-logic; 

25 -- f o u r - d i g i t  s e v e n - s e g m e n t  l e d  d i s p l a y  

s i g  n a  1 s 

35 signal ten-us-tick: std-logic; 

begin 
__ 
__ 1 / 0  m o d u l e s  

btnc-db-unit: entity work.debounce 
40 -- 

port map( 
clk=>clk , reset=>reset , sw=>btn (0) , 
db-level=>open, db-tick=>set-btnc-flag); 

45 btns-db-unit : entity work. debounce 
port map( 

clk=>clk, reset=>reset , sw=>btn(l) , 
db-level=>open, db-tick=>set-btns-flag); 

_- 



DESIGN EXAMPLE 415 

55 

75 

90 

50 -- KCPSM and ROM i n s t a n t i a t i o n  
--==--------==-----------=-----------===--------======= 
proc-unit : e n t i t y  work. kcpsm3 

port  map( 
clk=>clk, reset =>reset, 
address=>address , instruction=>instruction , 
port-id=>port-id, write-strobe=>write-strobe, 
out-port=>out-port , read-strobe=>read-strobe, 
in-port =>in-port , 
interrupt-ack=>interrupt-ack); 

interrupt => interrupt , 

60 rom-unit : e n t i t y  work. int-rom 
port  map( 

clk = >  clk, address=>address , 
instruction=>instruction); 

___------__---_____---------------------------------- --______________________________________--------------- 
6s -- o u t p u t  i n  t e r f a  c e 

__----------------------------------------------------- 
-- o u t p o r t  p o r t  i d :  

0x00: an __ 
__ 0 x 0 1 :  s s g  

___------___--_____---------------------------------- 7” --______________________________________--------------- 
__ r e g i s t e r s  
p r o c e s s  (clk) 
begin  

i f  (clk ’ event and clk= ’ 1 ’ ) then 
i f  en-d(O)=’l’ then 

end i f  ; 
i f  en-d(l)=’l’ then sseg-reg <= out-port; end i f ;  

an-reg <= out-port(3 downto 0 ) ;  

end i f  ; 

an <= an-reg; 
sseg <= sseg-reg; 
-- d e c o d i n g  c i r c u i t  f o r  e n a b l e  s i g n a l s  
p r o c e s s  (port-id, write-strobe) 

80 end p r o c e s s ;  

85 begin  
en-d <= ( o t h e r s = > ’ O ’ ) ;  
i f  write-strobe=’l’ then 

c a s e  port-id(0) i s  
when ’ 0 ’  = >  en-d <=“01”; 
when o t h e r s  = >  en-d < = “ 1 0 “ ;  

end c a s e ;  
end i f  ; 

end p r o c e s s ;  
___--_---__________---------------------------------- --______________________________________--------------- 

95 -- i n p u t  i n t e r f a c e  

-- i n p u t  p o r t  id  
-- 0x00:  f l a g  
_- 0 x 0 1 :  s w i t c h  

_- i n p u t  r e g i s t e r  ( f o r  f l a g s )  
p r o c e s s  (clk) 

___------____----__---------------------------------- --__________________----------------------------------- 

,w ____________________----------------------------------- ____________________--------------------------------- 



41 6 PICOBLAZE INTERRUPT INTERFACE 

beg in  
i f  (clk ’ event and clk= ’ 1 ’ t h e n  

btnc-flag-reg <= btnc-flag-next; 
btns-flag-reg <= btns-flag-next; 

end i f  ; 
end p r o c e s s ;  

105 

125 

I30 

135 

I40 

145 

150 

15s 

btnc-flag-next <= ’ 1 ’  when set-btnc-flag=’l’ e l s e  
’ 0 ’  when clr-btn-f lag= ’ 1 ’ e l s e  
btnc-flag-reg; 

btns-flag-next <= ’ 1 ’  when set-btns-flag=’l’ e l s e  
’ 0 ’  when clr-btn-flag=’l’ e l s e  
btns-flag-reg; 

__ d e c o d i n g  c i r c u i t  f o r  c l e a r  s i g n a l s  
clr-btn-flag < = ’ l ’  when read-strobe=’l’ and 

port-id(O)=’O’ e l s e  
’ 0 ’ ;  

__ i n p u t  m u l t i p l e x i n g  
p r o c e s s  (port-id,btns-flag-reg,btnc-flag-reg,sw) 
beg in  

c a s e  port-id(0) i s  
when ’ 0 ’  = >  

in-port <= “000000” & 
btns-flag-reg & btnc-flag-reg; 

when o t h e r s  => 
in-port <= sw; 

end c a s e ;  
end p r o c e s s ;  

-_ i n t e r r u p t  i n  t e  r f a  c e  

-- 1 0  u s  c o u n t e r  
p r o c e s s  (clk) 
beg in  

-_________________________________________------------- _-______________________________________------------_ 

----------------__-_____________________------------- ---------_-__-__________________________------------- -_ 

i f  (clk ’ event and clk= ’ 1 ’ ) t h e n  

end i f ;  
end p r o c e s s ;  
timer-next <= ( o t h e r s = > ’ O ’ )  when timer_reg=499 e l s e  

timer-reg <= timer-next; 

timer-reg+l; 
ten-us-tick <= ’ 1 ’  when tirner_reg=499 e 
-- 1 0  us  t i c k  f l a g  
p r o c e s s  (clk) 
beg in  

i f  (clk’event and clk=’l’) t h e n  

end i f  ; 
end p r o c e s s ;  

timer-flag-reg <= timer-flag-next 

s e  ’ 0 ’ ;  

timer-flag-next <= ’1’ when ten-us-tick=’l’ e l s e  
’ 0 ’  when interrupt-ack= ’ 1 ’  e l s e  
timer-flag-reg; 

__ i n t e r r u p t  r e q u e s t  
interrupt <= timer-flag-reg; 



BIBLIOGRAPHIC NOTES 41 7 

end arch; 

17.6 BIBLIOGRAPHIC NOTES 

The bibliographic information for this chapter is similar to that for Chapters 14 to 16. 

17.7 SUGGESTED EXPERIMENTS 

17.7.1 Alternative timer interrupt service routine 

The interrupt service routine in Listing 17.1 uses two dedicated registers to record the 
number of timer ticks. The two registers thus cannot be used for other computation. An 
alternative is to use 2 bytes of the data RAM for this purpose and use the registers only 
temporarily in the service routine. Since interrupt can occur anytime, we must save and 
restore the corresponding registers. For example, if the SO and sl registers are used in the 
service routine for computation, their contents must be saved when the service routine is 
invoked and then restored later when the computation is completed. Derive the assembly 
and HDL codes, compile and synthesize the circuit, and verify its operation. 

17.7.2 Programmable timer 

We can replace the mod-500 counter of Section 17.5 with a general mod-rn counter and 
thus make the timer “programmable.” The new timer operates as follows: 

0 m is a 12-bit unsigned number. 
0 ThefourLSBsofrnis”1111”. 
0 The timer has an 8-bit register to store the eight MSBs of rn. The register is treated 

as a new output port of PicoBlaze. 
0 A new pushbutton controls the loading of the register. When it is pressed, PicoBlaze 

inputs the value from the 8-bit switch and outputs the value to the timer’s register. 
Design the new IiO interface, derive the assembly and HDL codes, and compile and syn- 
thesize the circuit. Load different values in the timer and observe what happens to the LED 
display. 

17.7.3 Set-button interrupt service routine 

In the square circuit discussed in Section 16.4, the s button is used to load the a and b 
operands from the 8-bit switch. Its status is polled continuously in the main loop. We can 
revise this portion of the code and use an interrupt mechanism to perform this task. The 
interrupt service routine involves several temporary registers, and they must be saved and 
restored properly, as discussed in Experiment 17.7.1. Design the new I/O interface, derive 
the assembly and HDL codes, compile and synthesize the circuit, and verify its operation. 

17.7.4 Interrupt interface with two requests 

Assume that we want to implement both the timer interrupt request of Listing 17.1 and 
the set-button interrupt request of Experiment 17.7.3 in a PicoBlaze system. Follow the 



418 PICOBLAZE INTERRUPT INTERFACE 

Figure 17.6 Interrupt interface with a four-request interrupt handler. 

discussion in Section 17.3.2 to design the new interrupt interface and interrupt service 
routine. Derive the assembly and HDL codes, compile and synthesize the circuit, and 
verify its operation. 

17.7.5 Four-request interrupt controller 

An interrupt controller helps the processor to process multiple interrupt requests. The 
block diagram of a four-request interrupt controller is shown in Figure 17.6. The interrupt 
controller should contain four flag FFs and a special priority encoding circuit. If one 
or more interrupt requests are activated, the controller determines which request has the 
highest priority, places its 2-bit code on the req-id port, and asserts the i n t  signal. When 
PicoBlaze asserts the interrupt-ack signal, the controller clears the corresponding flag. 
For simplicity, we assume that i n t  r e q u e s t  -3 has the highest priority and i n t r e q u e s t  -0 
has the lowest priority. 

Derive HDL code for the interrupt controller and repeat Experiment 17.7.4 using the 
new controller (the two unused interrupt requests can be tied to '0'). 



APPENDIX A 

SAMPLE VHDL TEMPLATES 

A.l GENERAL VHDL CONSTRUCTS 

A.1.1 Overall code structure 

Listing A.l Overall code structure 

l i b r a r y  ieee; 
u s e  ieee. std-logic-1164. a l l  ; 
use  ieee. numeric-std. a l l  ; 

5 - -  e n t i t y  d e c l a r a t i o n  
e n t i t y  bin-counter i s  

-- o p t i o n a l  g e n e r i c  d e c l a r a t i o n  
g e n e r i c  (N: integer : =  8) ; 
-- p o r t  d e c l a r a t i o n  

1 0  p o r t (  
clk, reset: i n  std-logic; -- c l o c k  & r e s e t  
load, en, syn-clr: i n  std-logic; __ i n p u t  c o n t r o l  
d: i n  std-logic-vector"-1 downto 0 ) ;  -- i n p u t  d a t a  
max-tick; o u t  std-logic; -_ o u t p u t  s t a t u s  

15 q :  o u t  std-logic-vector(N-1 downto 0 )  -- o u t p u t  d a t a  
) ;  

end bin-counter; 

FPGA Protovping by VHDL Examples. By Pong P. Chu 
Copyright @ 2008 John Wiley & Sons, Inc. 

41 9 



420 SAMPLE VHDL TEMPLATES 

__ a r c h  i t  e c t u  r e  body 
20 a r c h i t e c t u r e  demo-arch of  bin-counter i s  

-- c o n s t a n t  d e c l a r a t i o n  
c o n s t a n t  M A X :  integer : =  ( 2 * * N - 1 ) ;  
_- i n t e r n a l  s i g n a l  d e c l a r a t i o n  
s i g n a l  r-reg : unsigned (N-1 downto 0)  ; 

25 s i g n a l  r-next : unsigned(N-1 downto 0)  ; 
beg in  

__ 
_- c o m p o n e n t  i n s t a n t i a t i o n  
__ 

30 -- no i n s t a n t i a t i o n  i n  t h i s  code  

-- 

-- memory e l e m e n t s  
__ 

35 -- r e g i s t e r  
p r o c e s s  (clk, reset) 
beg in  

i f  (reset=’l’) then 
r-reg <= ( o t h e r s = > ’ O ’ ) ;  

r-reg <= r-next; 
40 e l s i f  (clk’event and clk=’l’) then 

end i f  ; 
end p r o c e s s ;  

45 -- 
__ c o m b i n a t i o n a l  c i r c u i t s  

-- n e x t - s t a t e  l o g i c  
r-next <= ( o t h e r s = > ’ O ’ )  when syn-clr=’l’ e l s e  

__ 

so unsigned(d) when load= ’1 e l s e  
r-reg + 1 when en = ’ 1  ’ e l s e  
r-reg ; 

_- o u t p u t  l o g i c  
q <= std-logic-vector(r-reg); 

55 max-tick <= ’ 1 ’  when r-reg=MAX e l s e  > O ’ ;  
end demo-arch ; 

A.1.2 Component instantiation 

Listing A.2 Component instantiation template 

l i b r a r y  ieee; 
use  ieee.std-logic-ll64.all; 
e n t i t y  counter-inst i s  

port  ( 
5 clk, reset: in  std-logic; 

load16, en16, syn-clrl6 : i n  std-logic; 
d: i n  std-logic-vector ( 1 5  downto 0)  ; 
max-tick8, max-tickl6: out  std-logic; 



COMBINATIONAL CIRCUITS 421 

q :  out std-logic-vector (15 downto 0 )  
10 1 ; 
end counter-inst; 

architecture st ructur e-ar ch of counter - inst is 
begin 

I 5  -- i n s t a n t i a t i o n  o f  16-  b i t  c o u n t e r ,  a l l  p o r t s  u s e d  
counter-16-unit: entity work.bin-counter(demo-arch) 

generic map ( N =  > 16 ) 
port map(clk=>clk, reset=>reset , 

load=>loadl6, en=>enl6, syn-clr=>syn-clrl6, 
20 d=>d, max_tick=>max_tick16, q=>q); 

__ i n s t a n t i a t i o n  o f  f r e e - r u n n i n g  8 -  b i t  c o u n t e r  
__ w i t h  o n l y  t h e  m a x - t i c k  s i g n a l  
counter-8-unit : entity work. bin-counter 

port map(clk=>clk, reset=>reset , 
25 load=>’O’, en=>’l’, syn-clr=>’O’, 

d=>“00000000“, max_tick=>max_tick8, q=>open); 
end structure-arch; 

A.2 COMBINATIONAL CIRCUITS 

A.2.1 Arithmetic operations 

Listing A.3 Arithmetic operations 

library ieee; 
use ieee. std-logic-1164. a l l  ; 
use ieee. numeric-std. all ; 
entity arith-demo is 

5 port( 
a ,  b: in std-logic-vector(7 downto 0 ) ;  
diff , inc: out std-logic-vector ( 7  downto 0 )  

) ;  
end arith-demo ; 

architecture arch of arith-demo is 

begin 

10 

signal au, bu, diffu: unsigned(7 downto 0); 

---------___------------------------------- ____________________----------------------- __ 

15 -- c o n v e r t  i n p u t s  t o  u n s i g n e d / s i g n e d  i n t e r n a l l y  
-- a n d  t h e n  c o n v e r t  t h e  r e s u l t  b a c k  

au <= unsigned(a1; 
bu <= unsigned(b); 

_________---____________________________--- ____-----_______--------------------------- __ 

20 diffu <= au - bu when (au > bu) else 

diff <= std-logic-vector(diffu); 
bu - au; 

25 -- c o n v e r t  m u l t i p l e  t i m e s  i n  a s t a t e m e n t  



422 SAMPLE VHDL TEMPLATES 

A.2.2 Fixed-amount shift operations 

Listing A.4 Fixed-amount shift operations 

l i b r a r y  ieee; 
use ieee. std-logic-1164, a l l  ; 
e n t i t y  fixed-shift-demo i s  

port  ( 
5 a: in std-logic-vector (7 downto 0) ; 

shl, sh2, sh3, rot, swap: out  
std-logic-vector (7 downto 0)  

) ;  
end fixed-shift-demo; 

a r c h i t e c t u r e  arch of f ixed-shift-demo i s  
begin  

10 

-_ s h i f t  l e f t  3 p o s i t i o n s  
shl <= a(4 downto 0)  & " 0 0 0 "  ; 

sh2 <= " 0 0 0 "  & a(7 downto 3); 
-- s h i f t  r i g h t  3 p o s i t i o n s  and s h i f t i n g  i n  s i g n  b i t  
__ ( a r i t h m e t i c  s h i f t )  
sh3 <= a(7) & a(7) & a(7)& a(7 downto 3); 

rot <= a(2 downto 0 )  & a(7 downto 3); 
-- swap two n i b b l e s  
swap <= a(3 downto 0)  & a(7 downto 4); 

15 -- s h i f t  r i g h t  3 p o s i t i o n s  ( l o g i c a l  s h i f t )  

20 -- r o t a t e  r i g h t  3 p o s i t i o n s  

end arch; 

A.2.3 Routing with concurrent statements 

Listing A S  Routing with concurrent statements 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
e n t i t y  decoderl i s  

port  ( 
5 a: in std-logic-vector (1 downto 0) ; 

en: in std-logic; 
y l ,  y2: out  std-logic-vector(3 downto 0)  

) ;  
end decoderl ; 

a r c h i t e c t u r e  concurrent-arch of decoderl i s  

begin  

10 

s i g n a l  s : std-logic-vector ( 2  downto 0) ; 

___________-_____________________________-_-_ _________________________________________-_ 

inc <= std-logic-vector(unsigned(a) + 1); 
end arch; 



COMBINATIONAL CIRCUITS 423 

A.2.4 Routing with if and case statements 

Listing A.6 If and case statement templates 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
e n t i t y  decoder2 i s  

port  ( 
5 a: in  std-logic-vector (1 downto 0)  ; 

en: i n  std-logic; 
y l ,  y2: out  std-logic-vector (3 downto 0)  

1 ;  
end decoder2 ; 

a r c h i t e c t u r e  seq-arch of  decoder2 i s  

beg in  

10 

s i g n a l  s :  std-logic-vector (2 downto 0)  ; 

____________________---------_--------------- ____________________--------_----_--------- 
15 -- i f  s t a t e m e n t  

____________________----------------------- --__________________-__---------------------- 
p r o c e s s  (en, a) 
beg in  

i f  (en='O') then 
yl <= "0000"; 

e l s i f  (a='lOOll) then 
yl <= "0001"; 

e I s i f  (a=" 0 1  'I ) then 
yl <= "0010"; 

e l  s i f  (a=!! 10 ) then 
yl <= "0100"; 

e l s e  
yl <= "1000"; 

I S  -- c o n d i t i o n a l  s i g n a l  a s s i g n m e n t  s t a t e m e n t  
-- 

y l  <= "0000" when (en='O') e l s e  
" 0 0 0 1 "  when ( a = " 0 0 " )  e l s e  
" 0 0 1 0 "  when ( a = " 0 1 " )  e l s e  

20 " 0 1 0 0 "  when ( a = t ' l O 1 l )  e l s e  
'1 1000 1' ; -_ a = "1 1 I' 

-- s e 1 e c t e d 

s <= en & a; 
w i t h  s s e l e c t  

s i g  n a 1 a s s i g n m e n t  s t a  t e m e n t 
25 -- 

YZ <= l t O O O O t l  when " 0 0 0 "  I 11001" I t l O I O "  I " O 1 1 " ,  
0 0 0 1 when 'I 1 0 0 'I , 

30 " 0 0 1 0 1 1  when "101", 
0 1 00 when It 1 10 I' , 

" 1 0 0 0 ' 1  when o t h e r s ;  -- s = "1 1 I 'I 

end concurrent-arch; 



424 SAMPLE VHDL TEMPLATES 

A.2.5 Combinational circuit using process 

Listing A.7 Combinational circuit using process 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
e n t i t y  comb-proc i s  

port  ( 
5 a ,  b :  i n  std-logic-vector(1 downto 0 ) ;  

data-in: std-logic-vector ( 7  downto 0 )  ; 
xa-out , xb-out : out  std-logic-vector ( 7  downto 0 )  ; 
ya-out , yb-out : out  std-logic-vector ( 7  downto 0 )  

) ;  
10 end comb-proc ; 

a r c h i t e c t u r e  arch of  comb-proc i s  
beg in  

_-------------------------------------------- 
15 -- w i t h o u t  d e f a u l t  o u t p u t  s i g n a l  a s s i g n m e n t  

__------------------------------------------- 
-- m u s t  i n c l u d e  e l s e  b r a n c h  
__ o u t p u t  s i g n a l  m u s t  be a s s i g n e d  i n  a l l  b r a n c h e s  
p r o c e s s  (a,b,data-in) 

i f  a > b then 
20 beg in  

xa-out <= data-in; 
xb-out <= ( o t h e r s = > ' O ' ) ;  

e l s i f  a < b then 

end i f ;  
30 end p r o c e s s ;  

40 

45 

__ 

c a s e  s t a t e m e n t  __ 
__ 

35 s <= en !L a ;  
p r o c e s s  ( s )  
b e g i n  

c a s e  s i s  
when l l O O O 1 t  I l t O O 1 l t  I l t O l o l l  I "o111t =>  

when " 1 0 0 "  = >  

when ltl~llp => 

when l l l l O t '  = >  

when o t h e r s  => 

y2 <= " 0 0 0 1 " ;  

y2 <= " 0 0 0 1 " ;  

y2  <= " 0 0 1 0 " ;  

y2 <= " 0 1 0 0 " ;  

y2 <= " 1 0 0 0 " ;  
end c a s e ;  

j n  end p r o c e s s ;  
end s e q - a r c h  ; 



MEMORY COMPONENTS 425 

15 

30 

xa-out <= ( o t h e r s = > ’ O ’ ) ;  
xb-out <= data-in; 

xa-out <= ( o t h e r s = > ’ O ’ ) ;  
xb-out <= ( o t h e r s = > ’ O ’ ) ;  

e l s e  -- a=b 

end i f ;  
end p r o c e s s ;  

-- w i t h  d e f a u l t  o u t p u t  s i g n a l  a s s i g n m e n t  
__ 

3s p r o c e s s  (a, b, data-in) 
beg in  

ya-out <= ( o t h e r s = > ’ O ’ ) ;  
yb-out <= ( o t h e r s = > ’ O ’ ) ;  
i f  a > b then 

10 ya-out <= data-in; 

yb-out <= data-in; 
e l s i f  a < b then 

end i f  ; 
end p r o c e s s ;  

IS end arch; 

A.3 MEMORY COMPONENTS 

A.3.1 Register template 

Listing A.8 Register template 

l i b r a r y  ieee; 
use  ieee.std-logic-ll64.all; 
e n t i t y  reg-template i s  

port  ( 
5 clk, reset: in  std-logic; 

en: in  std-logic; 
qi-next , qz-next, q3-next : in  

ql-reg , q2_reg, q3-reg: out  
std-logic-vector ( 7  downto 0 )  ; 

10 std-logic-vector ( 7  downto 0)  
) ;  

end reg-template; 

a r c h i t e c t u r e  arch of  reg-template i s  
1 5  begin  

__ 

__ r e g i s t e r  w i t h o u t  r e s e t  

p r o c e s s  (clk) 
__ 

20 beg in  
i f  (clk’event and clk=’l’) then 

end i f  ; 
ql-reg <= ql-next; 



SAMPLE VHDL TEMPLATES 426 

25 

30 

35 

40 

45 

50 

end p r o c e s s ;  

__------------------------------------------- 
__ r e g i s t e r  w i t h  a s y n c h r o n o u s  r e s e t  

p r o c e s s  (clk , reset) 
begin 

__------------------------------------------- 

i f  (reset=’l’) t hen  

e l s i f  (clk’event and clk=’l’) t hen  

end i f  ; 
end p r o c e s s ;  

q2-reg < = ( o t h e r s = >  ’ 0 ’ )  ; 

q2-reg <= q2-next; 

__------------------------------------------- 
__ r e g i s t e r  w i t h  e n a b l e  a n d  a s y n c h r o n o u s  r e s e t  

p r o c e s s  (clk, reset) 
begin 

........................................... --______________________________________----- 

i f  (reset=’l ’ )  t hen  

e l s i f  (clk’event and clk=’l’) t hen  
q3-reg < = ( o t h e r s = > ’ O ’ ) ;  

i f  (en=’l’) t hen  

end i f  ; 
q3-reg <= q3-next; 

end i f  ; 
end p r o c e s s ;  

end arch; 

A.3.2 Register file 

Listing A.9 Register file 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
use ieee. numeric-std. a l l  ; 
e n t i t y  reg-file i s  

5 g e n e r i c (  
B :  integer:=8; -- n u m b e r  of b i t s  
W :  integer:=2 -- n u m b e r  of a d d r e s s  b i t s  

) ;  
p o r t  ( 

10 clk, reset: in  std-logic; 
wr-en: i n  std-logic; 
w-addr , r-addr : i n  std-logic-vector (W-1 downto 0) ; 
w-data: in  std-logic-vector ( B - 1  downto 0) ; 
r-data: ou t  std-logic-vector ( B - 1  downto 0 )  

15 ; 
end reg-f ile ; 

a r c h i t e c t u r e  arch of reg-file i s  
t ype  reg-file-type i s  a r r a y  (2**W-1 downto 0)  of 



20 std-logic-vector ( B - 1  downto 
s i g n a l  array-reg : reg-f ile-type ; 

p r o c e s s  (clk, reset) 
beg in  

25 i f  (reset=’l’) t h e n  

beg in  

REGULAR SEQUENTIAL CIRCUITS 427 

0)  ; 

array-reg <= (others=>(others=>’O’)); 

i f  wr-en=’l ’ t h e n  
e l s i f  (clk’event and clk=’l’) t h e n  

array-reg(to-integer(unsigned(w-addr))) <= w-data; 
30 end i f  ; 

end i f  ; 
end p r o c e s s ;  
__ r e a d  p o r t  
r-data <= array-reg(to-integer(unsigned(r-addr))); 

35end arch; 

A.4 REGULAR SEQUENTIAL CIRCUITS 

Listing A.10 Sequential circuit template 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
use  ieee. numeric-std. a l l  ; 
e n t i t y  bin-counter i s  

5 g e n e r i c ( N :  integer : =  8); 
p o r t  ( 

clk, reset: i n  std-logic; 
load, en, syn-clr: i n  std-logic; 
d: i n  std-logic-vector (N-1 downto 0 )  ; 

q: o u t  std-logic-vector (N-1 downto 0 )  
10 max-tick: o u t  std-logic; 

) ;  
end bin-counter; 

I S  a r c h i t e c t u r e  demo-arch of bin-counter i s  
c o n s t a n t  MAX: integer : =  (2**N-1) ; 
s i g n a l  r-reg: unsigned(N-1 downto 0 )  ; 
s i g n a l  r-next : unsigned (N-1 downto 0 )  ; 

20 b eg in  
__ 

__ r e g i s t e r  

p r o c e s s  (clk, reset) 
__ 

25 begin  
i f  (reset=’l’) t h e n  

e l s i f  (clk’event and clk=’l’) t h e n  

end i f ;  

r-reg <= ( o t h e r s = > ’ O ’ ) ;  

r-reg <= r-next; 
30 



428 SAMPLE VHDL TEMPLATES 

end p r o c e s s ;  

__ n e x t - s t a t e  l o g i c  

35 r - n e x t  <= ( o t h e r s = > ’ O ’ )  when s y n - c l r = ’ l ’  e l s e  
u n s i g n e d ( d )  when l o a d = ’ l ’  e l s e  
r - r e g  + 1 when e n  = ’ i >  e l s e  
r - r eg  ; 

40 -- o u t p u t  l o g i c  

q <= std-logic-vector(r-reg); 
m a x - t i c k  <= ’1’ when r-reg=MAX e l s e  ’ 0 ’ ;  

end d e m o - a r c h ;  

A.5 FSM 

Listing A . l l  FSM template 

-- code  f o r  t h e  FSM i n  F i g u r e  A . l  
l i b r a r y  i e e e ;  
use  i e e e .  s t d - l o g i c - 1 1 6 4 .  a l l  ; 
e n t i t y  f s m - e g  i s  

5 p o r t (  
c l k ,  r e s e t :  i n  s t d - l o g i c ;  
a ,  b :  in  s t d - l o g i c ;  
y o ,  y l :  out s t d - l o g i c  

1 ;  
ID end f sm-eg ; 

a r c h i t e c t u r e  t w o - s e g - a r c h  of  f s m - e g  i s  
type  e g - s t a t e - t y p e  i s  ( S O ,  s l ,  s 2 ) ;  
s i g n a l  s t a t e - r e g  , s t a t e - n e x t  : e g - s t a t e - t y p e ;  

15 beg in  

__ s t a t e  r e g i s t e r  

p r o c e s s  ( c l k  , r e s e t  
20 beg in  

i f  ( r e s e t = ’ l ’ )  then 
s t a t e - r e g  <= S O ;  

e l s i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  then 
s t a t e - r e g  <= s t a t e - n e x t ;  

25 end i f  ; 
end p r o c e s s ;  

__ n e x t - s t a t e  / o u t p u t  l o g i c  

__ 

__ 

30 p r o c e s s  ( s t a t e - r e g  , a , b )  
begin  

s t a t e - n e x t  <= s t a t e - r e g , ;  -- d e f a u l t  back  t o  same s t a t e  



FSM 429 

(a) State diagram 

, .......................................... l b  y l  c= 1 

I- 
................... 

y l c - I  

r 6 F .........,.......... 

I , ................... + .......... .........I 

(b) ASM chart 

Figure A.l State diagram and ASM chart of an FSM template. 



430 SAMPLE VHDL TEMPLATES 

35 

40 

45 

50 

yo <= ’ 0 ’ ;  -- d e f a u l t  0 
y l  <= ’ 0 ’ ;  -- d e f a u l t  0 
c a s e  s t a t e - r e g  i s  

when SO = >  
i f  a = ’ l J  t hen  

i f  b = ’ l ’  t h e n  
s t a t e - n e x t  <= s 2 ;  
yo <= ’ 1 ’ ;  

e l s e  

end i f  ; 
s t a t e - n e x t  <= sl; 

-- no e l s e  b r a n c h ,  u s e  d e f a u l t  
end i f  ; 

when sl = >  
y1  <= ’1’; 
i f  ( a = ’ l ’ )  t h e n  

-- n o  e l s e  b r a n c h ,  u s e  d e f a u l t  
end i f  ; 

when s2 => 
s t a t e - n e x t  <= S O ;  

s t a t e - n e x t  <= S O ;  

end c a s e ;  
55 end p r o c e s s ;  

end t w o - s e g - a r c h ;  

A.6 FSMD 

Listing A.12 FSMD template 

-- c o d e  f o r  t h e  FSMD shown i n  F i g u r e  A . 2  
l i b r a r y  i e e e ;  
use i e e e .  s t d - l o g i c - 1 1 6 4 .  a l l  
use i e e e  . n u m e r i c - s t d .  a l l  ; 

p o r t  ( 
5 e n t i t y  f i b  i s  

c l k ,  r e s e t :  i n  s t d -  
s t a r t :  i n  s t d - l o g i c  

o g i c  ; 

10 

i : i n  s t d - l o g i c - v e c t o r  ( 4  downto 0)  ; 
r e a d y ,  d o n e - t i c k :  o u t  s t d - l o g i c ;  
f : o u t  s t d - l o g i c - v e c t o r  (19  downto 0 )  

1;  
end f i b ;  

15 a r c h i t e c t u r e  a r c h  of f i b  i s  
t y p e  s t a t e - t y p e  i s  ( i d l e  , o p , d o n e ) ;  
s i g n a l  s t a t e - r e g  , s t a t e - n e x t  : s t a t e - t y p e  ; 
s i g n a l  t o - r e g  , t o - n e x t  , t l - r e g  , t l - n e x t  : 

u n s i g n e d  (19  downto 0 )  ; 
20 s i g n a l  n - r e g  , n - n e x t  : u n s i g n e d ( 4  downto 0)  ; 

beg in  
-------------------------===========-----==== 



FSMD 431 

start=l 

T (7) t l t  I 

........................................ 

................................................................ 

T 2 

Figure A.2 ASMD chart of an FSMD template. 



432 SAMPLE VHDL TEMPLATES 

30 

15 

45 

50 

55 

60 

65 

70 

-_ s t a t e  a n d  d a t a  r e g i s t e r s  
-___-______-_____-__----------------------- --____________________-__-__-__--__----_----- 

25 p r o c e s s  ( c l k ,  r e s e t )  
begin  

i f  r e s e t = ’ l  ’ then 
s t a t e - r e g  <= i d l e ;  
t o - r e g  <= ( o t h e r s = > ’ O ’ ) ;  
t i - r e g  <= ( o t h e r s = > ’ O ’ ) ;  
n - r e g  <= ( o t h e r s = > ’ O ’ ) ;  

s t a t e - r e g  <= s t a t e - n e x t  ; 
t o - r e g  <= t o - n e x t ;  
t l - r e g  <= t l - n e x t ;  
n - r e g  <= n - n e x t ;  

e I s i f  ( c l k  ) e v e n t  and c l k =  1 ’ ) then 

end i f ;  
end p r o c e s s ;  

________________________________________--- - -_______________________--______-__-- -__-- - -  
40 -- n e x t - s t a t e  l o g i c  a n d  d a t a  p a t h  f u n c t i o n a l  u n i t s  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
p r o c e s s  ( s t a t e - r e g  , n - r e g ,  t o - r e g  , t l - r e g ,  s t a r t  , i  , n - n e x t )  
begin  

r e a d y  < = ’ O ’ ;  
d o n e - t i c k  <= ’ 0 ’ ;  
s t a t e - n e x t  <= s t a t e - r e g ;  -- d e f a u l t  b a c k  to  s a m e  s t a t e  
t o - n e x t  <= t o - r e g ;  -- d e f a u l t  k e e p  p r e v i o u s  v a l u e  
t l - n e x t  <= t l - r e g ;  __ d e f a u l t  k e e p  p r e v i o u s  v a l u e  
n - n e x t  <= n - r e g ;  __ d e f a u l t  k e e p  p r e v i o u s  v a l u e  
case  s t a t e - r e g  i s  

when i d l e  => 
r e a d y  <= ’1 ) ;  
i f  s t a r t = ’ l ’  then 

t o - n e x t  <= ( o t h e r s = > ’ O ’ ) ;  
t i - n e x t  <= ( 0 = > ’ 1 ’ ,  o t h e r s = > ’ O ’ ) ;  
n - n e x t  <= u n s i g n e d  ( i )  ; 
s t a t e - n e x t  <= o p ;  

end i f  ; 
when op = >  

i f  n-reg=O then 
t i - n e x t  <= ( o t h e r s = > ’ O ’ ) ;  
s t a t e - n e x t  <= d o n e ;  

s t a t e - n e x t  <= d o n e ;  

t l - n e x t  <= t l - r e g  + t o - r e g ;  
t o - n e x t  <= t l - r e g ;  
n - n e x t  <= n - r e g  - 1; 

e l s i f  n - r e g = l  then 

e l s e  

end i f  ; 
when done  => 

d o n e - t i c k  <= ’1 ’ ;  
s t a t e - n e x t  <= i d l e ;  

end c a s e ;  
end p r o c e s s ;  

75 -- o u t p u t  



53 BOARD CONSTRAINT FILE (S3 .UCF) 433 

f <= std-logic-vector(tl-reg); 
end a r c h ;  

A.7 S3 BOARD CONSTRAINT FILE (S3. UCF) 

# 

# P i n  a s s i g n m e n t  f o r  X i l i n x  
# S p a r t a n - 3  S t a r t e r  b o a r d  
# 

# 
# c l o c k  and r e s e t  
# :  

NET " c l k "  L O C  = " T 9 "  ; 
NET " r e s e t "  LOC = " L 1 4 " ;  

# 

# b u t t o n s  & s w i t c h e s  
# 

# 4 p u s h  b u t t o n s  
NET " b t n < O > "  LOC = "M13"; 
NET " b t n < l > "  LOC = "M14";  
NET " b t n < 2 > "  LOC = " L 1 3 " ;  
#NET " b t n < 3 > "  LOC = " L 1 4 " ;  # b t n < 3 >  a l s o  u s e d  a s  r e s e t  

# 8  
NET 
NET 
NET 
NET 
NET 
NET 
NET 
NET 

s l i d e  s w i t c h e s  
" s w < O > "  LOC = " F 1 2 " ;  
" s w < l > "  LOC = " G 1 2 " ;  
" s w < 2 > "  LOC = " H 1 4 " ;  
" s w < 3 > "  LOC = " H 1 3 " ;  
" s w < 4 > "  LOC = " 5 1 4 " ;  
" s w < 5 > "  L O C  = " 5 1 3 " ;  
" s w < 6 > "  L O C  = " K 1 4 " ;  
" s w < 7 > "  LOC = " K 1 3 " ;  

# 

# RS232 
# 
NET " r x "  L O C  = " T 1 3 "  I D R I V E = 8  I SLEW=SLOW; 
NET " t x "  L O C  = " R 1 3 "  I D R I V E = 8  1 SLEW=SLOW; 

# 
# 4 - d i g i t  t i m e - m u l t i p l e x e d  7 - s e g m e n t  LED d i s p l a y  
# 

# d i g i t  e n a b l e  
NET " a n < O > "  LOC = " D 1 4 " ;  
NET " a n < l > "  LOC = " G 1 4 " ;  
NET " a n < 2 > "  LOC = " F 1 4 " ;  
NET " a n < 3 > "  LOC = " E 1 3 " :  

# 7 - s e g m e n t  l e d  s e g m e n t s  



434 SAMPLE VHDL TEMPLATES 

NET 
NET 
NET 
NET 
NET 
NET 
NET 
NET 

# 

# 8  
# 

NET 
NET 
NET 
NET 
NET 
NET 
NET 
NET 

s s e g < 7 >  
s s e g < 6 >  
s s e g < 5 >  
s s e g < 4 >  
s s e g  < 3 >  
s s e g < 2 >  
s s e g < l >  
s s e g  <O > 

LOC = 
LOC = 
LOC = 
LOC = 
LOC = 

LOC = 
LOC = 
LOC = 

" P 1 6 " ;  # d e c i m a l  p o i n t  
" E 1 4 " ;  # s e g m e n t  a 
" G 1 3 " ;  # s e g m e n t  b 
" N 1 5 " ;  # s e g m e n t  c 
" P 1 5 " ;  # s e g m e n t  d 
" R 1 6 " ;  # s e g m e n t  e 
" F 1 3 " ;  # s e g m e n t  f 
" N 1 6 " ;  # s e g m e n t  g 

d i s c r e t e  LEDs 

" l e d < O > "  LOC = " K 1 2 " ;  
" l e d < l > "  LOC = " P 1 4 " ;  
" l e d < 2 > "  LOC = " L 1 2 " ;  
" l e d < 3 > "  LOC = " N 1 4 " ;  
" l e d < 4 > "  LOC = " P 1 3 " ;  
" l e d < 5 > "  LOC = " N 1 2 " ;  
" l e d < 6 > "  LOC = " P 1 2 " ;  
" l e d < 7 > "  LOC = " P 1 1 " ;  

# 
# V G A  o u t p u t s  
# 
NET " r g b < 2 > "  LOC = "R12" I D R I V E = 8  I SLEW=FAST; 
NET " r g b < l > "  LOC = " T 1 2 "  I D R I V E = 8  I SLEW=FAST; 
NET " r g b < O > "  LOC = " R l 1 "  I D R I V E = 8  I SLEW=FAST; 
NET " v s y n c "  LOC = " T 1 0 "  I D R I V E = 8  1 SLEW=FAST; 
NET " h s y n c "  LOC = " R 9 "  I D R I V E = 8  I SLEW=FAST;  

# 
# PS2 p o r t  
# 
NET " p s 2 c "  L O C = " M 1 6 "  I D R I V E = 8  I SLEW=SLOW; 
NET " p s 2 d "  L O C = " M 1 5 "  I D R I V E = 8  1 SLEW=SLOW; 

# 
# t w o  SRAM c h i p s  
#: 
# s h a r e d  1 8 - b i t  memory address  
NET " a d < 1 7 > "  L O C = " L 3 "  I IOSTANDARD = LVCMOS33 
NET " a d < 1 6 > "  L O C = " K 5 "  1 IOSTANDARD = LVCMOS33 
NET " a d < 1 5 > "  L O C = " K 3 "  I IOSTANDARD = LVCMOS33 
NET " a d < 1 4 > "  LOC=" 53" I IOSTANDARD = LVCMOS33 
NET "ad<13>"  L O C = I ' J 4 "  1 IOSTANDARD = LVCMOS33 
NET " a d < 1 2 > "  L O C = " H 4 "  1 IOSTANDARD = LVCMOS33 
NET " a d < l l > "  L O C = " H 3 "  I IOSTANDARD = LVCMOS33 
NET " a d < l O > "  L O C = " G 5 "  1 IOSTANDARD = LVCMOS33 
NET " a d < 9 > "  L O C = " E 4 "  I IOSTANDARD = LVCMOS33 
NET " a d < 8 > "  L O C = " E 3 "  I IOSTANDARD = LVCMOS33 
NET " a d < 7 > "  L O C = " F 4 "  I IOSTANDARD = LVCMOS33 
NET " a d < 6 > "  L O C = " F 3 "  I IOSTANDARD = LVCMOS33 
NET " a d < 5 > "  L O C = " G 4 "  I IOSTANDARD = LVCMOS33 

I SLEW=FAST; 
I SLEW=FAST; 
1 SLEW=FAST; 
I SLEW=FAST;  
I SLEW=FAST; 
1 SLEW=FAST; 
I SLEW=FAST; 
I SLEW=FAST; 
I SLEW=FAST; 
I SLEW=FAST; 
I SLEW=FAST; 
I SLEW=FAST; 
I SLEW=FAST;  



53 BOARD CONSTRAINT FILE (S3.UCF) 435 

I W  NET "ad<4>" LOC="L4" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 
NET "ad<3>" LOC="M3" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 
NET "ad<2>" LOC="M4" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 
NET "ad<l>" LOC="N3" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 
NET "ad<O>" LOC="L5" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 

# shared oe, we 
NET "oe-n" LOC="K4" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 
NET "we-n" LOC="G3" I IOSTANDARD = LVCMOS33 I SLEW=FAST; 

# sram chip 1 data, ce, ub, lb 
NET "dio_a<l5>" LOC="Rl" I IOSTANDARD=LVCMOS33 I 
NET "dio_a<l4>" LOC="Pl" I IOSTANDARD=LVCMOS33 I 
NET "dio_a<l3>" LOC="L2" I IOSTANDARD=LVCMOS33 I 
NET "dio-a<12>" LOC=" 52" I IOSTANDARD=LVCMOS33 I 
NET "dio-a<ll>" LOC="Hl" I IOSTANDARD=LVCMOS33 I 
NET "dio-a<lO>" LOC="F2" I IOSTANDARD=LVCMOS33 I 
NET "dio-a<9>" LOC="P8" I IOSTANDARD=LVCMOS33 I 
NET "dio-a<8>" LOC="D3" 1 IOSTANDARD=LVCMOS33 I 
NET "dio-a<7>" LOC="Bl" I IOSTANDARD=LVCMOS33 1 
NET "dio-a<6>" LOC="Cl" I IOSTANDARD=LVCMOS33 I 
NET "dio-a<5>" LOC="C2" I IOSTANDARD=LVCMOS33 1 
NET "dio-a<4>" LOC="R5" I IOSTANDARD=LVCMOS33 I 
NET I' d i o - a < 3 > " I 
NET "dio-a<2>" LOC="RG" I IOSTANDARD=LVCMOS33 I 
NET "dio-a<l>" LOC="T8" I IOSTANDARD=LVCMOS33 I 
NET "dio-a<O>" LOC="N7" I IOSTANDARD=LVCMOS33 I 
NET 'I ce-a-n" LOC="P7" I IOSTANDARD=LVCMOS33 I 
NET "ub-a-n" LOC="T4" I IOSTANDARD=LVCMOS33 I 
NET "lb-a-n" LOC="P6" I IOSTANDARD=LVCMOS33 I 

L 0 C = " T 5 " 1 I 0 STANDARD = LV CM 0 S 3 3 

# sram chip 2 data, ce, ub, lb 
NET "dio_b<l5>" LOC="Nl" I IOSTANDARD=LVCMOS33 
NET "dio_b<l4>" LOC="Ml" I IOSTANDARD=LVCMOS33 
NET "dio_b<l3>" LOC="K2" I IOSTANDARD=LVCMOS33 
NET "dio-b <12>" LOC="C3" I IOSTANDARD=LVCMOS33 
NET "dio-b<ll>" LOC="F5" 1 IOSTANDARD=LVCMOS33 
NET "dio-b <lo>" LOC="Gl" I IOSTANDARD=LVCMOS33 
NET "dio-b <9>" LOC="E2" I IOSTANDARD=LVCMOS33 
NET "dio-b <8>" LOC="D2" I IOSTANDARD=LVCMOS33 
NET "dio-b <7>" LOC="Dl I IOSTANDARD=LVCMOS33 
NET "dio-b <6>" LOC="El 'I I IOSTANDARD=LVCMOS33 
NET "dio-b < 5 > "  LOC="G2" I IOSTANDARD=LVCMOS33 
NET "dio-b <4>" LOC=" J1 I'  I IOSTANDARD=LVCMOS33 
NET "dio-b <3>" LOC="Kl" I IOSTANDARD=LVCMOS33 
NET "dio-b <2>" LOC="M2" 1 IOSTANDARD=LVCMOS33 
NET "dio-b <1>" LOC="N2" I IOSTANDARD=LVCMOS33 
NET "dio-b < O > "  LOC="P2" I IOSTANDARD=LVCMOS33 
NET 'I ce-b-n" LOC="N5" I IOSTANDARD=LVCMOS33 
NET "ub-b-n" LOC="R4" I IOSTANDARD=LVCMOS33 
NET "lb-b-n" LOC="P5" I IOSTANDARD=LVCMOS33 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST ; 
SLEW=FAST; 

SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST ; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 
SLEW=FAST; 



436 SAMPLE VHDL TEMPLATES 

# Timing constraint of S3 50-MHz onboard oscillator 
# name of the clock signal is clk 
# 
NET "clk" TNM-NET = "clk"; 
TIMESPEC 1'TS-clk9t = PERIOD "clk" 40 ns HIGH 50 % ;  



REFERENCES 

1. P. J. Ashenden, The Designer’s Guide to VHDL, 2nd ed., Morgan Kaufmann, 2001. 

2. J. Axelson, Serial Port Complete, 2nd ed., Lakeview Research, 2007. 

3. L. Bening and H. D. Foster, Principles of Verz$able RTL Design, 2nd ed., Springer-Verlag, 2001. 

4. J. Bergeron, Writing Testbenches: Functional Veri&ation of HDL Models, Springer-Verlag, 

5. K. Chapman, “Creating Embedded Microcontrollers,” TechXclusives at www.xilinx.com. 

6. A. Chapweske, “PSI2 MouseIKeyboard Protocol,” http://www.computer-engineering.org. 

7. A. Chapweske, ‘‘PSI2 Keyboard Interface,” http://www.computer-engineering.org. 

8. A. Chapweske, “PSI2 Mouse Interface,” http:/lwww.computer-engineering.org. 

9. P. P. Chu, RTL Hardware Design Using VHDL: Coding for  Eficiency, Portability, and Scalability, 

2003. 

Wiley-IEEE Press, 2006. 

10. M. D. Ciletti, Advanced Digital Design with the Verilog HDL, Prentice Hall, 2003. 

11. M. D. Ciletti, Starter’s Guide to Verilog 2001, Prentice Hall, 2003. 

12. C. E. Cummings, “Coding and Scripting Techniques for FSM Designs with Synthesis-Optimized, 

13. D. D. Gajski, Principles of Digital Design, Prentice Hall, 1997. 

14. J. 0. Hamblen et al., Rapid Prototyping of Digital Systems: Quartus@ II Edition, Springer, 2005. 

15. IEEE, IEEE Standard for  Verilog Hardware Description Language (IEEE Std 1364-2001), In- 

16. IEEE, IEEE Standard VHDL Language Reference Manual (IEEE Srd 1076-2001), Institute of 

Glitch-Free Outputs,” SNUG (Synopsys Users Group Conference), Boston, 2000. 

stitute of Electrical and Electronics Engineers, 2001. 

Electrical and Electronics Engineers, 2001. 

FPGA Protofjping by VHDL Examples. By Pong P. Chu 
Copyright @ 2008 John Wiley & Sons, Inc. 

437 



438 REFERENCES 

17. IEEE, IEEE Standardfor VHDL Register Transfer Level (RTL) Synthesis (IEEE Std 107661999), 

18. IEEE, IEEE Standard VHDL Synthesis Packages (IEEE Std 1076.3-1997), Institute of Electrical 

19. IEEE, IEEE Standard Multivalue Logic System for VHDL Model Interoperability (IEEE Std 

20. Integrated Silicon Solution, “Data Sheet of IS61LV25616AL SRAM,” Integrated Silicon Solu- 

21. R. H. Katz and G. Borriello, Contemporary Logic Design, 2nd ed., Prentice Hall, 2004. 

22. M. Keating andP. Bricaud, Methodology Manualfor System-on-a-Chip Designs, 3rded., Springer- 

23. C. M. Maxfield, The Design Warrior’s Guide to FPGAs, Newnes, 2004. 

24. Mentor Graphics, ModelSim Tutorial, Mentor Graphics Corporation. 

25. S. Palnitkar, Verilog HDL, 2nd ed., Prentice Hall, 2003. 

26. D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The Hardware/Software 

27. J. M. Rabaey, Digital Integrated Circuits, 2nd ed., Prentice Hall, 2002. 

28. J. F. Wakerly, Digital Design: Principles and Practices, Prentice Hall, 2002. 

29. W. Wolf, FPGA-Based System Design, Prentice Hall, 2004. 

30. Xilinx, DS099 Spartan-3 FPGA Family: Complete Data Sheet, Xilinx, Inc. 

3 1. Xilinx, ISE 8.1 i Quick Start Tutorial, Xilinx, Inc. 

32. Xilinx, ISE In-Depth Tutorial, Xilinx, Inc. 

33. Xilinx, PicoBlaze 8-bit Embedded Microcontroller User Guide, Xilinx, Inc. 

34. Xilinx, Spartan-3 Starter Kit Board User Guide, Xilinx, Inc. 

35. Xilinx, XAPP462 Using Digital Clock Managers (DCMs) in Spartan-3 FPGAs, Xilinx, Inc. 

36. Xilinx, XAPP463 Using Block RAM in Spartan-3 Generation FPGAs, Xilinx, Inc. 

37. Xilinx, XAPP464 Using Look-Up Tables as Distributed RAM in Spartan-3 Generation FPGAs, 

38. Xilinx, XST User Guide vS.Ii, Xilinx, Inc. 

Institute of Electrical and Electronics Engineers, 2000. 

and Electronics Engineers, 1997. 

1164-1993), Institute of Electrical and Electronics Engineers, 1993. 

tion, Inc. 

Verlag, 2002. 

Interface, 3rd ed., Morgan Kaufmann, 2004. 

Xilinx, Inc. 



INDEX 

architecture body, 4 
ASCII code, 177, 194 
ASM chart, 108 
ASMD chart, 128 
barrel shifter, 62 
BCD, 147 
binary decoder, 4 3 , 4 5 , 4 8 4 9  
case statement, 49 
CLB, 13 
component instantiation, 6 
conditional signal assignment, 41 
constant, 53 
constraint file, 23 
Core Generator, 245 
counter, 8 1 ,96 
DFF,71  
data type, 3 

enumerated, 11 1 
signed, 37 
std-logic, 3, 39 
stdlogic-vector, 4 
two-dimensional array, 79 
unsigned, 37 

DCM, 239 
DDR register, 239 
debouncing circuit, 118, 132 
development flow, 15 
division circuit, 143 
edge detector, 114 
entity declaration, 3 

FIFO buffer, 100, 171 
flag FF, 169 
floating-point adder, 63 
FSM, 74, 107 
FSMD, 74, 127,324 
generic mapping, 55 
generics, 54 
hold time, 72 
HyperTerrninal, 177, 194,208 
identifier, 3 
if statement, 47 
instruction memory, 324 
instruction ROM, 329, 363 
instruction set, 329 
interrupt, 341,405 
IOB, 239 
KCPSM3,328,332,342,345,359 
logic cell, 11 
logic synthesis, 16 
LUT, 12,243 
macro cells, 13 
maximal operating frequency, 73 
Mealy output, 108 
memory controller, 215, 220, 244 
mode 

in, 3 
inout, 40 
out, 3 

Moore output, 107 
multiplexer, 41, 44 

439 



440 INDEX 

operator 
arithmetic, 37 
concatenation, 38 
logical, 4 
relational, 37 

numeric-std, 37 
stdlogic_l164,3,79 
stdJogic-arith, 38 
stdlogic-signed, 38 
stdlogic-unsigned, 38 

pad delay, 234 
PBlazeIDE, 332,342,359 
placement and routing, 16 
priority encoder, 41,44,48-49 
process, 46 
program counter, 324 
PS2 

keyboard, 188 
mouse, 200 
receiver, 184 
transmitter, 20 1 

block, 244,282,292 
distributed, 243 
dual-port, 249, 283, 298 
single-port, 246 
static, 215-216 

package 

RAM 

register, 72, 77 
register file, 78, 100, 222 
register transfer methodology, 35 
register transfer operation, 127 
regular sequential circuit, 74 
ROM, 25 1,274 

font, 292 
RS-232,163 
selected signal assignment, 44 
sensitivity list, 46 
sequential statement, 46 
setup time, 72 
shift register, 79 
sign-magnitude adder, 59 
slice, 13 
state diagram, 108 
static timing analysis, 16 
structural description, 6 
synchronous design methodology, 7 1 
technology mapping, 16 
testbench, 8, 28, 84 
tri-state buffer, 39, 220 
type conversion, 37 
UART, 163,386 
ucf file, 23 
VGA mode, 260 
video memory, 282 
video synchronization, 260 




