s, béu $\bigcup^{q} v=\frac{q}{k n \epsilon_{0} r}$

$$
\cos ^{1-n} r_{0}^{s}=n \times 0^{1-1} e_{0}^{3} r_{0}^{3}
$$

$$
\begin{array}{lll}
\frac{1}{R} & \frac{\xi}{r} \pi R^{r} & =n q\left(\frac{\epsilon}{\mu} \pi r^{r}\right) \\
v_{n}=\frac{n q}{k \pi \epsilon_{0} R} & & \\
& \longrightarrow R=n^{\frac{1}{r}} r
\end{array}
$$

$$
\left.v_{n}=\frac{n q}{k \pi \epsilon_{0} n^{\frac{1}{r} r}}=n^{\frac{r}{r}} \frac{q}{k \pi \epsilon_{0} r}=n^{\frac{r}{r}} v \rightarrow \underline{r} v \underset{\sim}{r}\right\rangle
$$

$$
E=\sum_{n=0}^{\infty} \frac{q}{\psi n \epsilon_{0} x_{n}^{r}}=\frac{q}{k \pi \epsilon_{0} a^{r}} \sum \frac{1}{\left(r^{n}\right)^{r}}
$$

$$
\begin{aligned}
& v_{A}=\frac{Q}{\left\langle n t_{0}\right.}\left\{\frac{1}{\sqrt{(x+a)^{r}+y^{r}}}-\frac{r}{\sqrt{(x-a)^{r}+y^{r}}}\right\}=0 \Rightarrow \frac{1}{(x+a)^{r}+y^{r}}=\frac{k}{(x-a)^{r}+y^{r}} \\
& \Rightarrow \quad x^{r}-r x a+a^{r}+y^{r}=r x^{r}+r x a+r a^{r}+r y^{r} \Rightarrow r x^{r}+10 x a+r a^{r}+r y^{r}=0 \\
& \Rightarrow \quad x^{r}+r \times \frac{\omega}{r} x a+a^{r}+y^{r}=0 \Rightarrow\left(x+\frac{D}{r^{r}} a\right)^{r}+a^{r}-\frac{r \omega}{a} a^{r}+y^{r}=0 \\
& \Rightarrow\left(x+\frac{\Phi}{r} a\right)^{r}+y^{r}=\frac{r a-9}{a} a^{r}=\frac{14}{9} a^{r} \rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& r=\frac{k_{1}}{4} a \varepsilon^{\prime 2},
\end{aligned}
$$

$$
d^{\prime} \operatorname{con}^{2} \operatorname{les}=1 \mathrm{rr}
$$

$$
\Rightarrow r v_{0}^{r}-\wedge g h=v_{0}^{r}+r g h \Rightarrow r v_{0}^{r}=\operatorname{logh} \Rightarrow v_{0}^{r}=\frac{10}{r} g h
$$

$$
\begin{aligned}
& \Rightarrow r_{n}=r \Rightarrow n=1 \rightarrow v^{2} n^{2}
\end{aligned}
$$

$$
\begin{aligned}
& t=m^{\alpha} v_{0}^{\beta}\left(b v_{0}^{n}\right)^{\gamma} \\
& \text { - 「jlaucuricriojl Eurú } \\
& \Rightarrow \quad s^{\prime}=\mathrm{kg}^{\alpha}\left(\frac{m}{s}\right)^{\beta}\left(\mathrm{kg} \frac{m}{s^{\gamma}}\right)^{\gamma} \rightarrow\left\{\begin{array}{l}
\mathrm{kg}: \alpha+\gamma=0 \longrightarrow \alpha=1 \\
m: \beta+\gamma=0 \rightarrow \beta=-\gamma \longrightarrow \beta=1 \\
s:-\beta-r \gamma=1 \Rightarrow-\gamma=1 \Rightarrow \gamma=-1
\end{array}\right. \\
& t=m^{\prime} v_{0}^{\prime}\left(b v_{0}^{n}\right)^{-1}=\frac{m v_{0}}{b v_{0}^{n}} \Rightarrow t=\frac{m}{b v_{0}^{n-1}} \rightarrow \underset{=r \sim_{n}^{\prime \prime}}{r}
\end{aligned}
$$

$$
\begin{aligned}
& \left.n=1: \frac{r}{\mu}<\frac{1}{r} x \quad n=r: \frac{k}{q}<\frac{1}{r} x \quad n=r: \frac{n}{r v}<\frac{1}{r} x \quad n=r: \frac{14}{n 1}<\frac{1}{r} \forall<\rightarrow r=r\right\rangle^{r}
\end{aligned}
$$

$$
\sim q_{r}=0 \rightarrow \frac{q_{r}}{q_{1}}=0 \rightarrow F=v \dot{\sim}
$$

g \downarrow

$$
\omega=\frac{1}{r}_{\mu \nu}^{\prime \prime} \times \frac{r^{r a d}}{1 / 9}=r^{r a d / s}
$$

$$
\left.f=f_{s}=m \frac{v^{r}}{r}=m r \omega^{r}=\frac{1}{10} \times \frac{r_{0}}{100} \times \pi^{r}=\frac{r}{100} \times r, 1 F^{r}=0,19 \mathrm{~V} \simeq 0, r^{N}\right]_{\underline{r v i n j}}
$$

$$
\underset{\sim}{N}=9 \times 10+10^{0} \times 400 \times 1_{0}^{-\beta}=90+4000=4090 \mathrm{~N} \rightarrow \mathrm{racij}^{2}
$$

$$
m g h+0=0+\frac{1}{r} m v^{r} \Rightarrow r^{r}=r g h
$$

$m \quad v^{\prime} \mu, r_{-} N, l_{0}: N-m g=m \frac{v^{r}}{r}=m \frac{r g h}{\mu h}=\frac{r}{\mu} m g \Rightarrow N=m g+\frac{r}{\mu} m g=\frac{\Delta}{\mu} m g$

$$
\begin{aligned}
& P=k\left(\frac{\left.\frac{a b}{\Delta c} \times r+\frac{a c}{\Delta b} \times r+\frac{b c}{\Delta a} \times r\right)\left(T_{1}-T_{r}\right) \Rightarrow T_{1}-T_{r}=\frac{P}{k\left(r \frac{a b}{\Delta c}+r \frac{a c}{\Delta b}+r \frac{b c}{\Delta a}\right)}}{\Rightarrow T_{1}=T_{r}+\frac{P}{r k\left(\frac{a b}{\Delta c}+\frac{a c}{\Delta b}+\frac{b c}{\Delta a}\right)}}>\rightarrow r V_{C}\right\rangle^{2}
\end{aligned}
$$

$: \underline{Y} 0 \underset{\sim}{n}{ }^{\prime}$ (II)

$$
\begin{aligned}
& c=\frac{K A \epsilon_{0}}{x} \\
& U=\frac{Q^{r}}{r c}=\frac{Q^{r}}{Y K A \epsilon_{0}} x
\end{aligned}
$$

$$
\vec{F}=-\vec{\nabla} U=-\frac{\partial U}{\partial x} \hat{x} \Rightarrow|\vec{F}|=\frac{Q^{r}}{P K \epsilon_{0} A}=P A \Rightarrow, \ln _{0} P=\frac{Q^{r}}{Y K E_{0} A^{r}} \rightarrow \stackrel{r}{=} \dot{\sim}^{\prime} j^{2}
$$

$$
P=\frac{\epsilon}{r} E^{r}=\frac{\epsilon}{r}\left(\frac{\sigma}{\epsilon}\right)^{r}=\frac{\sigma^{r}}{r \epsilon}=\frac{Q^{r}}{r \in A^{r}}=\frac{Q^{r}}{r K \epsilon_{0} A^{r}} \text { relool, }
$$

$$
\begin{aligned}
& \Rightarrow \quad W=q E d\left(1-\cos \theta_{0}\right)
\end{aligned}
$$

$$
\Rightarrow w=q E d\left(1-\cos \theta_{0}\right) .
$$

cob لu：

$$
\begin{gathered}
r^{3} \cdot \frac{k}{\mu} \pi r^{\mu} \sim A \sim \frac{r_{1}}{r_{r}}=\left(\frac{A_{4}}{A_{r}}\right)^{1 / \mu} \\
q \sim z^{1 / \mu} \Rightarrow \frac{q_{1}}{q_{r}}=\left(\frac{z_{1}}{z_{r}}\right)^{1 / \mu} \\
\frac{F_{1}}{F_{r}}=\frac{\left(\frac{q_{1}}{r_{1}}\right)^{r}}{\left(\frac{q_{r}}{r_{r}}\right)^{r}}=\left(\frac{q_{1} r_{r}}{q_{r} r_{1}}\right)^{r}=\left(\frac{z_{1} A_{r}}{z_{r} A_{1}}\right)^{r / \mu}
\end{gathered}
$$

$$
\begin{aligned}
& \tan \alpha \simeq \alpha=\frac{r}{14} \\
& \tan \theta \simeq e=\frac{r}{d} \\
& \text { 二, } b_{r}^{\prime} \text { - ji | , , , }, ~ n_{1} \sin \theta_{1}=n_{r} \sin \theta_{r} \Rightarrow 1 \times \widetilde{\sin ^{\theta} \theta}=1,4 \widetilde{\sin ^{\alpha} \alpha} \\
& \Rightarrow \frac{r}{d}=1,4 \times \frac{r}{14} \Rightarrow d=10 \mathrm{~cm} \\
& M \bar{L} C, 40 l \dot{b}=14-d=4 \mathrm{~cm} \rightarrow \mathrm{KMnin}^{2}
\end{aligned}
$$

 $E_{1} v^{2}=\dot{x}$ 的

$$
(\theta-\alpha)+\theta=90^{\circ}: \mu^{\prime}(\text { syj) (rusond! }
$$

$\tan \alpha=\frac{x}{R^{\prime}} \Rightarrow x=R^{\prime} \tan \alpha$

$$
\Leftrightarrow \alpha=r \theta-9 .
$$

$$
x=R^{\prime} \tan \left(r \theta-q_{0}\right)=-R^{\prime} \cot (r \theta) \Rightarrow v=\dot{x}=R^{\prime}\left(1+\cot ^{r}(r \theta)\right)(r \dot{\theta})
$$

40

$$
\cot (r \theta)=0
$$

$$
V=R^{\prime}(1+0)\left(r \frac{r \pi}{T}\right)=\frac{K R R^{\prime}}{T} \quad=\frac{r}{T} V^{2}
$$

$$
y=a x^{r} \Rightarrow \frac{d y}{d x}=r a x
$$

$$
\text { ivir } \sum_{-i \min \theta=\frac{d y}{d x} \tan x a x}
$$

$$
\left.\begin{array}{l}
y: N \cos \theta=m g \\
x: N \sin \theta=m x \omega^{r}
\end{array}\right\} \rightarrow \frac{\sin \theta}{\cos \theta}=\frac{x \omega^{r}}{g}=r a x \Rightarrow \frac{4 r^{r}}{g T^{r}}=r a \Rightarrow r=\frac{r 2^{r}}{a g}
$$

~U设
MO

 (

$$
\left.F_{i \sim \sim}^{i r}=r f \sin \theta=r B i \ell \sin \theta \quad \xrightarrow{ } \quad v_{\underline{w}}\right\rangle^{2}
$$

 $\stackrel{I}{\Sigma}$ 流

E.

$$
\begin{aligned}
& \left.\begin{array}{l}
n_{N_{r}}=v^{g r} \times \frac{1 \mathrm{~mol}}{\text { ragr }}=\frac{1}{r} \mathrm{moln}_{r} \\
n_{\mathrm{KO}_{r}}=11^{g r} \times \frac{1 \mathrm{~mol}}{1 \mathrm{Hgr}}=\frac{1}{r} \mathrm{~mol} \mathrm{cor}
\end{array}\right\} \rightarrow n_{J_{2}}=\frac{1}{r}+\frac{1}{r}=\frac{1}{r} \mathrm{~mol}
\end{aligned}
$$

$\Delta \rho$

$$
P V=n_{b} \beta T \Rightarrow 10_{0}^{0} \times V=\frac{1}{r} \times \Lambda, r 1 \times r_{00} \Rightarrow v=\frac{r}{r} \times \Lambda, r \left\lvert\, \times 1 \cdot m^{-r}=\frac{r_{\times N}, r \mid}{r}\right. \text { 位 }
$$

$$
\rightarrow \quad r \cos \alpha=\sqrt{r} \rightarrow \cos \alpha=\frac{\sqrt{r}}{r} \Rightarrow \alpha=\mu_{0}^{\circ} \rightarrow \theta=40^{\circ}
$$

$$
\begin{aligned}
& \eta_{r}=1-\frac{r_{00}}{r_{\omega_{0}}+\Delta T} \\
& \eta_{1}-\eta_{\mu}=\frac{\gamma_{D}}{1000}=\frac{1}{\psi_{0}} \\
& L_{0} 1-\frac{\mu_{00}-\Delta T}{\psi \omega_{0}}-\left(K^{\prime}-\frac{\mu_{00}}{\left\langle\omega_{0}+\Delta T\right.}\right)=\frac{1}{\zeta_{0}} \rightarrow \frac{\mu_{00 x}\left\langle\omega_{0}-\left(\mu_{00}-\Delta T\right)\left(K_{0}+\Delta T\right)\right.}{\left(K \omega_{0}+\Delta T\right) K_{0}}=\frac{1}{\zeta_{0}} \\
& \Rightarrow r_{00} y<\omega_{0}-r_{00} \ll \omega_{0}+1 \omega_{0} \Delta T+\Delta T^{r}=\frac{\angle D}{\leftarrow}\left(\angle \omega_{0}+\Delta T\right) \\
& \Rightarrow \Delta T^{r}+\left(1 \omega_{0}-\frac{k \omega}{\kappa}\right) \Delta T-\angle \omega^{r} \times \frac{\Delta}{r}=0 \\
& \Rightarrow \Delta T^{r}+1 r N_{1} V \Delta \Delta T-\omega_{0} 4 r_{10}=0 \rightarrow \Delta T=-14 n_{1} v \Delta, r_{0}
\end{aligned}
$$

9 (vioul

$$
\Delta U=Q+W \Rightarrow Q=\Delta U-W
$$

: ~~ ${ }^{n}$

(;): $\cot \theta=\frac{1,4}{x}, 1+\cot ^{r} \theta=\frac{1}{\sin ^{r} \theta}$
(

$$
\begin{aligned}
& \begin{array}{l}
n(y) \sin \theta(y)=n_{0} \times \sin (\pi / r) \Rightarrow \quad \sin \theta(y)=\frac{1}{1+r \times l^{-v}} \\
\stackrel{d x}{y} \quad r+d y
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta U=\mu\left(P_{r} V_{r}-P_{1} V_{1}\right)=\mu\left(F_{00 \times} \times \frac{4}{100}-140 \times \frac{r}{1.0}\right) \times 1 r^{\mu}=\mu(r-\epsilon, \Lambda) \times 10_{19, r}^{\mu}=\Delta V 400 j \\
& Q=\operatorname{aV} 400-(-\lambda 100)=44000 j=44 \mathrm{KJ}
\end{aligned}
$$

.

$$
S=\frac{\frac{1}{r} t \times t}{r}+\frac{\frac{1}{r} t(T-t)}{r}=\frac{t^{r}}{r}+\frac{t(T-t)}{r}=\frac{T t}{r}=\frac{X^{r} T^{r}}{r \times r^{r}}=r / r^{r} 00 \Rightarrow T^{r}=1 r \times 1 r \times 100
$$

$$
\Rightarrow \quad T=k_{0} s
$$

$$
x_{0}^{10} \mathrm{~km} / \mathrm{h} \cdots \frac{10}{\mathrm{r} / \mathrm{h}}=\mathrm{ram} / \mathrm{s}
$$

$$
\begin{aligned}
& \frac{1}{r}=\frac{r \omega}{t} \Rightarrow t=\omega_{0}^{S},-1=-\frac{r \omega}{T^{\prime}-t^{\prime}} \Rightarrow T^{\prime}-t^{\prime}=र \omega \\
& \quad S=\frac{R \omega^{\prime} \omega_{0}}{r}+r \omega_{0} \times\left(t^{\prime}-\omega_{0}\right)+\frac{r \omega_{x}\left(T_{-}^{\prime}-t^{\prime}\right)}{r}=r \psi_{00}
\end{aligned}
$$

$$
\begin{equation*}
I=\text { Ane } v_{d} \Rightarrow v_{d}=\frac{I}{A n e} \tag{a}
\end{equation*}
$$

- م少

$$
\begin{aligned}
& \Leftrightarrow v_{d}=\frac{1}{\mu_{0}} \mathrm{~mm} / \mathrm{s} \quad!!!
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow t^{\prime}-\omega_{0}=K+x+-\frac{K \omega}{r}-K \omega=\omega \Lambda, \omega^{5} \Rightarrow t^{\prime}=10 \wedge, \omega^{5} \\
& T^{\prime}-t^{\prime}=r \omega \Rightarrow \quad T^{\prime}=1 \mu \mu, \omega s
\end{aligned}
$$

$$
\begin{aligned}
& A B^{r}=\epsilon_{0}^{r}+r_{0}^{r} \Rightarrow A B=\omega_{0}{ }^{\mathrm{cm}} \\
& R \theta A A^{\prime}=r R\left(10^{c m}\right)=r_{0} R \\
& R \theta=A A^{\prime} \Rightarrow \theta=\frac{r_{0} R}{r_{0}}=\frac{R}{r} \Rightarrow T_{0} b_{0} 0_{0}^{\prime} c_{0}^{r} \\
& S_{\omega_{\omega}}=\frac{r_{0} \times t_{0}}{r}=\frac{h \times \omega_{0}}{r} \Rightarrow h=\frac{r_{0} \times t_{0}}{\omega_{0}}=\frac{r_{0}}{\omega}=r k^{\mathrm{cm}}
\end{aligned}
$$

$$
\begin{aligned}
& n=1, E_{1}=E_{0}(\approx, \operatorname{cin} 0)=-1 \pi, 4 \mathrm{eV} \\
& E_{n}-E_{m}=r, \Delta \Delta^{e r} \Rightarrow \frac{1 \mu, 4}{n^{r}}-\frac{1 \mu, 4}{m r}=r, \Delta \infty \Rightarrow \frac{1}{n^{r}}-\frac{1}{m^{r}} r=\frac{r, \Delta \omega}{1 r, 4}=\frac{\mu}{14}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{h c}{\lambda_{\text {min }}}=\left|E_{R}-E_{1}\right|=1 r, 4^{\mathrm{ev}}(\underbrace{\left(1-\frac{1}{14}\right)}_{\frac{10}{14}} \Rightarrow \lambda_{\text {min }}=\frac{h c}{1 r, 4 e v} \times \frac{14}{10} \\
& \frac{h c}{\lambda_{\text {max }}}=\left|E_{r}-E_{\mu}\right|=1 r, 4^{\text {ever }}(\underbrace{}_{\left.\frac{V}{\frac{1}{4}-\frac{1}{14}}\right) \Rightarrow \lambda_{\text {max }}=\frac{h c}{1 r, 4 \text { er }} \times \frac{14 \times 9}{V} \text {. } 14}
\end{aligned}
$$

-

