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Chapter 1

Introduction

Time series analysis deals with theobabilistic astuctural inference about a sequence of data
evolving through time. Normally, we shall write; X., ., X as the time series observations. Frequently, this
will be a sample from a continuous stochastic process X ( ) so that X really mgans X Awhere tis the
sampling interval. Our basic model conceptually is a stochastic process X ( ) where t is the time index and
e Q, where 2 ,A , P) is a probability space and P is a probability measure. In simple terms, we are interested
in discovering P based on a time serigs.X , , ,X . Fortunately, or unfortunately, this is a ridiculously hard
problem, in general. Hence, we typically make simplifying assumptions. For the purposes of our discussion, we
will usually only consider finite dimensional distributions, i.e.

Fepx, Uy )= PX< w0 X< wlkVy,..o £V, ;u
which is in the simple one dimensional case,
Fy, W) = P(¥< y).

The well-known Kolmogorov Extension Theorem basically says that knowledge of all finite-dimensional
distributions is sufficient to reconstruct the probability measure P. This theorem is well beyond the scope of our
course, however, and hence will not be discussed any further.

We actually go even further in making assumptions and assume that the finite dimensional
distributions are all multivariate normal (or Gaussian). Since this is the case, it is sufficient to know only the
first and second moments because the first and second moments of a Gaussian distribution is necessary and
sufficient to characterize that distribution. We det= +EX and = cov (%, , X ). Ifwe kpow and
Y, 1., then we have enough information to reconstruct all of the finite dimensional distributions and hence the
probability measure, P.

We actually begin our discussion with even one more simplification. We basically want our process to
be invariant with a time shift, i.e. time homogeneous so that we will assume, at least initially, that the
probability structure does not shift with time. We write this as follows:

(1.1) Fopoxe, (G0 £)= K ... st)

T 7 R

for everyt ,... ,t,for everyi... i, foreverykandforevery . The parameter is the constant time shift.
If this equation holds we say the process Xtiigctly stationary

A corollary to our Gaussian assumption is that strictly stationary implies means and covariances are
invariant with time shifts. In particular,

1.2) He = Hitr

and

(13) Ttits = Vet+rtetT -



Thus ifwe letr = — tin equation (1.2), we have
W = o, aconstant,

andifweletr = 4 in equation (1.3), we have

def
Tats = Vtai—tog = Va—tg -
Thus, the mean is constant; we will usually assume= 0 for convenience. Moreover, the covariance
depends only on the difference between the indices, calleégdhey;, ., is calledttioevariance lag or

covariance. A process which has a constant first moment and a covariance function which depends only on the
lag is said to baveakly stationary orwide-sense stationary A process may be strictly stationary and not weakly
stationary if it has no second-order moments. Conversely, a process may be weakly stationary, but not strictly
stationary is say its third moments change with time. Usually there is no confusion since under Gaussian
distribution assumptions, these two notions are equivalent. In this case we simply say the [statEs®iy.

The problem of estimating P has been reduced to the much easier problem of estimating . This is the
probabilistic or statisticalinference problem. We are also interestedsiructural inference, i.e. finding the
functional structure of the.X process. We can do this ifireggiency domain ortthree domain.

In the frequency domain, we consider the function,
(1.4) Q) = [ e %74, d

This is called thepectral density or power spectral densityThe spectral density is the Fourier transform of the
covariance function and hence carries the same information as the covariance function.

The time domain models, usually assumed to be linear and stationary, are of the form:
(1.5) X = 1 X1+ + ¢p Xepte + O +- e,

where¢:, ..., ¢, 01, ... , 8, are parameters and is a white noise. This is called the autoregressive-
moving average model (ARMA) and is the most genkmehr model of a stationary stochastic process. As we
shall later see, the parameteérs= (¢, ... ¢,, )énd (61, ..., 6, ) determine and are determined by the
covariance function. Moreover, we will see that we can write the spectral density in tg¢rms ¢f and so that we
have a fundamental triad given in the figure below.

Probabilistic

v (P)

Frequency Domain Time Domain

f(A) P, 0

Basically given one corner, we can derive the other two. Hence, under the stationary, Gaussian
assumptions, analyses in the probability domain, the frequency domain, or the time domain are all basically
equivalent and fundamentally dependent upon the mean and covariance structure of the process. The nature of
the problem and what we are trying to infer will generally lead us to prefer one mode over another.

Generally speaking, engineering applications tenddoesd somewhat better with a frequenayndm
model while business and economic applications tend to be somewhat better represented by time domain
models. This, of course, i®t a hard and fast rule by any means. We will consider both frequency domain and
time domain models.






Chapter 2

Frequency Models

The major focus of the first part of our discussion is structural inference for time series in the frequency
domain. Historically, one of the earliest attempts to model this time series structure is knowmethtiteof
hidden periodicities The premise for such a techniques is that the time series may be modeled by a linearly
superimposed sum of sinusoids together with some Gaussian errors. We will develop such a model in several
stages.

2.1. A Single Sinusoid in NoiseConsider the model, % R cos ( t+ ), real-valued is called the
(angular) frequencyy € {7 w ]is called the phase>R 0 is called the amplitude. The stochastic model is

(2.1.1) X =pup+ Rcostd )+

Recall trigonometric identity

(2.1.2) cosg¢ £ )= cos( )cos( » sm( )sth( ).

We may use (2.1.2) to obtain

(2.1.3) Rcost t¥ )= Rcos( t)cgs() R sin( t) gin( ).
Equivalently then, we may rewrite (2.1.1)

(2.1.4) X = u+ Acosf t) + Bsi t) +

where,
A = Rcos¢), B= — Rsinf ).

Least Squares Solution with 0 Mean.
We use least squares for the estimation of A and B. ;Set 0 temporarily and form the sum of
squares (SS).
n—1 n—1
(2.1.5) SS =Y (X— Acoy ty- Bsih( )= e
t=0 =0

Taking partial derivatives with respect to A and B, we obtain

n—1
ass _ ;:) 2(% — Acosk t)— Bsin( t) £ cos( t)

- _ nf 2cos( t) (X— Aco3( - Bsih( t)
t=0

and



n—1
ass ;:) 2(% — Acosk t)— Bsin( t) € sin( t)

n—1

= > —2sinQt) (% — Acosk t)— Bsin t)).
t=0

Setting partials= 0 and collecting coefficients,

A E:lcosQ(kt)+B§ cos( t) siny( t)—ni:1 cos( )% 0
t=0 t=0 t=0

A nf cosQ\ t) sind t) + an sid X t)- nf sin( )= 0
t=0 t=0 t=0

or rewriting,
n—1
Aa+Bb—- > Xcos{t= 0O
t=0
n—1
Ab+Bc— > X sinpt)= 0.
t=0
n—1 n—1 n—1
Here we are lettinga= > cos ( t),d > cos( Hain( t)and S 2 Bin ( t).
t=0 t=0 t=0

Solving for B, we have

n—1
Aab+Bb — b)Y, Xcos(t= O
t=0

and

n—1

Aab+Bac— a) X si t= O.

t=0

So that
A a¥ % sind - b X cos( 1

(2.1.6) B — —= 2
Similarly,

n—1
Aac+Bbc— ¢} Xcos(t= O
t=0



n—1
AR +Bbc— by X sinf )= O.
t=0

Subtracting top from bottom,
n—1 n—1
AM® — ac)+cd. Xco( t- B Xsin(t: O
t=0 t=0
which yields

n—1 n—1
cY X coskt by, X sit)
=0 =0

ac— B

A
(2.1.7) A =

Thus writing out fully,

A SsitanT Xcost T s hoos( & X si( 9
A — t=0 t=0 tD:O t=0

(2.1.8) and
A Tood 0 s xsing S sink 1) cod( (F X co( 1
B — =0 =0 =0 =0

D

where

Doac— B=5 st g5 codX O 5 sin( Hcos( D) .
t=0 t=0 t=0

Closed Form of the Least Squares Solution with 0 Mean

To develop a closed form least squares solution, we may consider the identity,
cos@) cosg )= 5 {cosd B )+coa(— B )}

Letting o = 8 = At,

nf cos? pt) = nf cos( t) coa( t= %nf {cos{2 t) + cos (0)}
t=0 t=0 t=0

NIHJ_l,’_‘

n cos(2 t) +5

D

o



n—1

To find a closed form expression fOr, coa (2 t), we recall the fundamental identity,
t=0

2] *10(t

so that

n—1 n—1 n—1
S cospt)= %{Z g 5 @at}
t=0 t=0 t=0

Each of these is a geometric series, so that,

n-1 ot 1 jan n—1 ot 1 gion
2 — — € 2 — — €
goe = T—>= and t§70 e = T o=

Combining these last two expressions, we obtain

n-1 an an
_ 1 1- ¢ 1- e
t;OCOS@t) = 3 { T—ae T oo }

Factoring out €:  in numerator of first term; e  in denominator of the firSt, e in the numerator of the
second term and finally€  in the denominator of the
second, we have

off
=]
—

(‘D‘
i
=]

|

o
=]
-

n—1 ¢ 1 e 3
;:)COS(I ) = 3 W{T

So that

n—1 agot) | il {977 - GT}
Scospt)=+< & e
t=0 2

or

sin

nl n— sin (%)
;:)cos(l t) = cos(a%) W



Thus lettingr = 2

n—1 i
;j)cos @&t = COS( (A 1/)) Z'?n({f)) '

Finally we have

(2.1.9) nf co$ § )= 3 CO(S G 9)) i

=1 {1 + ﬁi;%)) cos( (n- 1)\)}

= 1{1+ D, (/\)cos( (- 1)X) 2

The function, D & )= (M) s called the Dirichlet Kernel. By similar arguments,

nsin@) ’
(2.1.10) T cosX 1) sinX = 1 DX )si(m ( >1)
t=0
and
n—1 .
2.1.11) Ysihft)=2 {1- D X) co€ r JA)) 1.
t=0

Notice as verification
n—1 n—1
S st )+ cos X 9= § {1+ DX ) ods ¢ ) }
t=0 t=0
F0 41— Q(A)cos( (n- 1)\) =0 4= n

A A
Now we can write A and B in terms of the Dirichlet Kernel in closed form by substituting (2.1.9) through
(2.1.11) in (2.1.8). Now we have defined a, b and c as follows.

a=3{1+D0 0)cof{ (= 1)} |

(2.1.12) b= 1 m\)sir( (A u) ,

and

c = g{l— DLG)coé (n- 1))} .



Least Squares Solutions in Amplitude-Phase Form with 0 Mean
Next recall that A= Rcos)( ) , B — Rsin( ) sothat

A2+B? = R (cod ¢ ) +sig )= R.

A _ A A2 ; B _ Rsing) _
Therefore R = A4 B . Notice alsothat 7 = Reos () = tan ().

. A : . .
We must be careful in calculating since the arctangent is not unique. There are several cases to be
considered.

Case 1. If Ais positive (A > 0), then cas ( ) > 0 which implies; ¢ <35 < . Thus we are on a
principal axis, so that,
¢ = arctan (- 2 ).

Case 2. IfA< 0,B> 0, thencas( )<0sothat is between —a?gij . Also B > 0 implies
thatsin ¢ ) < Owhich inturnimplies € ({7 <5 ). Inthis case

¢ = arctan (- 8 )— 7 .

Case 3. IfA< 0, B« O0Oimplies cog ( 4 0 and<B 0 impliesgin% ) 0. In thisgase,
5, m) so that

¢ = arctan - 2) + 7.
Case 4. If B= 0,theft = O.
Caseb5. If A= 0, B>0,thepr = — 3

Case6. If A= 0 B< 0 thep = 3

A A A A
Thus we can determine kb, from A and B which can in turn be estimated from the data.

Least Squares Solution with Non-Zero Mean

If 1, the mean, is not equal to 0, when we may construct normal equations as follows. Consider again
the sum of squares.

n—1 n—1
SS=Y e = > X - pu— AcosX t) Bsim(t} .
t=0 t=0
Taking partial derivatives and equating to O as before, we have

(2.1.13) 85 = — 2715 {(X—p)— AcosX t)- Bsim(t)coa(td O
t=0



(2.1.14) 85 = — an {(X—p)— AcosX t)- Bsim(t))sin( ¥ O
t=0

and
n—1
(2.1.15) %%S = — 2> {(X— p)— AcosX t- Bsm( )= 0.
t=0
Equations (2.1.13) and (2.1.14) are the same as our previous normal equations-with X substituted for X .

A
Thus the solutions for A and B are

A ST (e—L)oost 95 sing goos( I (64 )sing 1
A — t=0 t=0 t=0 t=0
D
(2.1.16) and
n—1 n—1 A . n—1 i n—1 A
A Y cod Q) (X—u)sin -3 sink t)cos( ) (%1 )cox( 1)
B— 2 =0 =0 =0

- D

where again

D :ni:lsinz(kt)ni:1 co$ A t)— (nf sin{ t)cos( 1)) .
t=0 t=0 t=0

Returning to (2.1.15), we have
n—1 n—1 n—1
S Xe —nu— > Acosht)— > BsinX t= 0.
t=0 t=0 t=0

Which we can solve fau by

n—1

A A
. > {Acos@t)+Bsink t
(2.1.17) o= X— 5 }.

n

A A
Notice two dilemmas: 1. As formulated solution for A and B depencﬁ on and similarly the soluﬁon for

A A —
depends an A and B, and 2. Notice also that the estimator for Is not X. Thus as things stand now we have
a recursive, but not direct solution for the case that 0. Remember that our first inclination would be to
centralize the data by subtract X, but (2.1.17) tells us that we may not do this either and have a least squares
solution.

The Matrix Formulation of the General Least Squares Problem

n—1 n—1
Letting a, b and ¢ have their previous meaning and now definiagd, A cos( t)and& X sin( t),
t=0 t=0

we can write



n—1

Aa+Bb+y d— > X cost= O

t=0
n—1
(2.1.18) Ab+Bci e > X sim(t= O
t=0
and

n—1
Ad+Be+y n— > X= 0.
t=0

In matrix form, we may write

n—1 1
> Xtcos (1)
t=0

A
a b d |A o1
(2.1.19) [b c e} Bl =X %sinXt
d e n A =0
M

n—1
T Xt
t=0

Taking inverse matrix and solving for the unknown parameters, we have

S ;
> Xtcos (1)
t=0

a b dt |,
(2.1.20) = [b c e} > X sinX t
t=0

> m> >
|

n—1
T Xt
t=0

This is a linear model.

A Computationally Quick and Dirty Approximation

While the matrix formulation gives an exact solution, it does involve a matrix inversion. This is really
not a serious impediment to calculation of a solution. _
Nonetheless, a simple quick approximation may be given. Consider the Dirichlet Kernal, B= £ rﬁ'z))

Now



(2.1.21) | nD k) = | 2| < | Lo

sin (\) = sin @)
for A bounded away from 0 and
Thus
n—1
ST cog pt)y= n/2,
t=0
n—1
(2.1.22) > sing t) cos( t= O,
t=0
and
n—1
S siP (A t) = n/2.
t=0
Thus we obtain a quick approximate solution as follows
A 5 n—1 A
A =2Y (% —u)cosh,
t=0

A
(2.1.23) B

SIN

n—1 A .
t;) (X = )sinX t)

and

=>
Il
P

Least Squares Estimation of the Optimal FrequencyX , in Model (2.1.1)

A A
Using this formulation of the quick and dirty estimates of A, B ﬁnd , we may perform a calculation
for the residual sum of squares,

. n—1 A A A
SS (residuals)= > (X— 4 — Acos + B sh?t)
t=0

n—1 A n—1 A A A ) n—=1 A .
= 2 (X —u)? =23 (X — 1) (A cos@t) +B sink )+ > (A cos( t) +Bsin( )
t=0 t=0 t=0

n—1 A A2 2 A2 na A2 n-1
=Y (X;—u)> —2nA — 2nB +A Y cosX t)+B > s t)
=0 =0 =0



i
L

A A .
+ 2AB sin @ t) cosX t)

Therefore,
) n—1 A o AZ A2
SS (residualsy= >° X—u -3 (A +B).
t=0

We may restructure this equation slightly into

n—1

SS(corrected)= > (X-— ﬁ 5 =SS (residuals) + SS (due to model at )
t=0

where we define
2 A 2 A 2
SS(duetomodel&t ¥ 3 (A +B¥ 5 R.
We recall that R is amplitude squared of the cosine model, (2.1.1) and note that we can’regard R as a function

A
of the frequency, RX ). This suggests that we can also estimate . Thus, the least squares estimate of is

that minimizes SS(residuals) or equivalently maximiz&€s\R ( 9 A R ( ), it turns out, plays an interesting role in
2

A
frequency domain analysis. As we shall see latek, 1< 3= AR () is callgubtloglogram.

2.2 The Generalized Hidden Periodicities Model

We now consider the generalized model which is the sum of sinusoidal components.

2.2.1) X — 1+ {Acosk )+B snX D &= 0, A 1
=
In this case,
n—1 n—1 m . 2
(2.2.2) $s= Y& = ¥ X-p- 3 {A cosx; & B sing t) .
t=0 t=0 =1

Taking derivatives and equating to 0, we find we haver2m 1 simultaneous equations

o5 zjzé(x—y—fjl{Ajcos(Ajt)+asinJ(\j t)}) cos, = O, k= 1,. .m
- =

n—1

255 _ 2;}(&—/1—fjl{Ajcos(Ajtwgsin(\j D) sinfi = 0.k= L. m
> £

and

ass _ znf ()g_/l_ f:{Ajcos(/\jt)+38in}{\j t)}) = 0.
g £=0 =1



Letting a:, b, , g ,d ande be defined as follows:

n—1

ay = X%)COSAJ' t) cos); 1)
t=
n—1

b = 3 sin @, 1) cosXs 1)
t=0

(2.2.3) Gy

n—1
> sink; t) sinX; t)
t=0
n—1
d = Y cosi; 1)
t=0
and
n—1
e = Y sinf;t).
t=0

We may then rewrite the normal equations as

%Ajaijr f:lBj@k“‘,uq — Y Xcos\ t= O k 1,
=1 =

t=0
m m n—1 )
(2.2.4) >Ah + >X>Be+ue— Y Xsig = 0 k& 1,
=1 j=1 =0
and
m m n—1
YAdi+ >Be+pun— 3 X= 0
=1 j=1 =0
In matrix form we can write
a; &1 o &l

a}Q a2 a@z

v
Il

aim dm Qm



b= |
b1
Ci1
= |7
Cim
(2.2.5)
di
d =%
d,
A
A= |
A

and finally,

(09
b,

G1
G

Gm

w
|

b2
Br

Cn1
%2

Grm

@ 0



n—1 7
> Xt cos (g 1)
t=0

n—1 .
> Xt cos Q)
t=0

n—1
(2.2.6) S = > X sinX t).
t=0

n—1 .
3 XEsin (A1)
t=0

n—1
3 Xt
L t=0 B
In block matrix form, we may then write
A
a b d A
2.2.7) b c el || =.8
a7 e n] | A
o
Thus taking inverses, we may write
A 1
A a b d
(2.2.8) Bl=|b" 5 &| s
N d' g’ n
o

Closed form expressions for g , b and;c .

It is clear that expressions of the formy a= i &gs( t))gos( t) will play a critical role in

1
7=0
evaluating equations (2.2.8). Let us temporarily divert our attentions to evaluating expressions of this sort. Let
us restrict our attention to & A; < w2 and we will eventually want to consider = 2 (f#n), ] 0, 1,

., h— 1. Thus just as we consider sampled timesj ..0, —,n 1, we consider sampled freguencies

j=0,..., n- 1

Recall the identity we used earlier
cos(a)cos(b)= 3 {cos(@ by costa b)}
We may thus write



n—1 n—1 n—1
> cos@\; t)cosk; t)= %{ > ocadsX+ Ax ))t + > césxj(— Ar ) t.
t=0 t=0 t=0

Using the earlier closed form solution and the Dirichlet formula, we may write

n—1
t;)cos(/\jt)cosJ(Kk )= 1 C((st) nd@)

i % cos( (nfl)(;rm> n Q(x\];/\k)

where D, (x) = % .

Other cross-product terms may be derived in a similar manner. If, in partioulas, = 2 j/n, then
A+ Ar=2r(+K)/n. Ifj# k mod (n), then the first Dirichlet function,Dr (4 k)/n) has a numerator equal

to sin(w (+ k)) = O0since§ kis always an integer. In the same wayr D (j k)/n) has a numerator equal
to sin(w (= k)) = 0 since} kis also always an integer. 2fj k mod(n), then k- j nm for some integer

m. Thus cos(;, t= cosf2 kt/nyk 031 2K nm)/n: cas(2 jtt,r)  Xxps( t). Since weNhawe
2rijin

n—1 n—1
(2.2.9) Y cosf; eos( = Y cds\( B I A D2 j/n)cés 4n A;) :
t=0 t=0
Again D, (2r j/n) has a numerator equal to sin(25) 0. Hencafer = 2 jn
n—1
(2.2.10) > cosk; t)cosg tE= 3§
t=0

Finally we may conclude that for; = #2 j/n,

ni2, =k
(2.2.11) a = {0 e
Similarly,
(2.2.12) b, = 0¥ j k
and

n/2, =k
(2.2.13) G = {0 "

Finally we note that foA; = 2 j/ind= ;e= 0.

Generalized Quick and Dirty Methodology

Based on substituting the results listéd\ae as (2.4.1) through (2.2.13) into equation (2.2.8), it is not
difficult to see that the quick and dirty formulae we had for the single sinusoid case generalizes directly to the
multiple sinusoid case. That in particular the matrix in equation (2.2.8) becomes a diagonal matrix and the set
of equations decouples into

A 27171 A )
A; = 25 (% —f) cost; ), 0<j< n 1
t=0

and



/\ 5 n—1 /\ i )
B; =2 > X—u)sing;t), 0< j< n 1
t=0
and because of symmetry

A A
ILL = A0:

Sl

n—1
> X=X
t=0

which are as before the quick and dirty estimators.



Chapter 3

Fourier Transforms and Harmonic Analysis

With the basic theory of frequency domain models now in hand, it is important to develop diagnostic
tools to structure these models. One of the most powerful of these diagnostic tools is harmonic analysis which
may be intuitively thought of as the decomposition of a time series into its sinusoidal components. Roughly
speaking, our general frequency domain model (2.2.1) suggests that we conceive of a time series as the
superposition of sinusoidal components. The determination of which of these frequency compenents, , are the
critical ones is the point harmonic analysis and the basic mathematical tool for doing this is the Fourier
transform. We begin by considering complex sinusoids. Again we will be assuming throughout the next

several sections that = 72 j/n as we did in the last section.

Complex Sinusoids

Recall that® = cos( } isia( ) which is the so-catechplex sinusoid. From this it is easy to

seethat@ = cos{a )+isin{a X ces(-) isin( )dore 70,
the fundamental identity,

(3.1.1) cosg )= €=

by addition. Similarly, by subtraction,

(3.1.2) sing )= &5
an identity we used earlier. These are called the Eulerian identities.

Now

n71 . . 7 .
Z gt @t — Z é(/\] =) t
t=0

- jzécos( &= Ae)) +ij§§ SOy — A )t

By our earlier derivation of sums of series and cosines, we have

ni:l e =)t — ¢ cos (=1 0y — )
t=0 2
+isin ((nl)(/Z\J/\k)>} n D1< /\/\k))

). From this it is easy to derive

But A\; — A\ = @ so that, S|<r”(A M)) = s(m 4§ }k) 0 since the sine of an integer multiple

of w is 0. Thus the ratio



n D, (_(&y)) = sin(—”(kam> /sin(—AJ2Ak>

is 0 unless\; — A; = 0. In this case the ratio is undefined. Since this ratio is 0, it follows that,

> €Wt = 0 unlesy; — A\, = 0.
t=0

Now if A; — A; = 0, then

n—1 n—1 n—1
el = 3 d =3 1= n.
t=0 t=0 t=0
Thus we have
1 n, =k mod(n)
e
(3.1.3) Y XA — {
t=0 0 )
, otherwise.

This is called th@erthogonality property .

The Discrete Fourier Transform

We now consider a time seriesg X, X and define
n—1 .
(3.1.4) J=1%Y XxeM = 1. ,a L
t=0

The set of possibly complex humbegs J , ,—3J isdiserete Fourier transform (DFT) of X ,,-,X . To
give a bit of intuition to our interpretation of the DFT, suppose X and Y are two times series each with 0
mean. Then the expression,

n—1
cov(X,Y) = 5 X X Y.
t=0

is the sample covariance of the two time series. Now if we take:Y 7 e= Ajces( t) Ajsin( t) as the
fundamental complex sinusoid of frequency , then J measures the degree of “correlatipn” of X with this
fundamental sinusoid of frequengy . Of course, this is not a true correlation in the straight statistical sense
since J may be complex valued. However, if we look at the magnitude of J|, j.e. J we do indeed get
something very close to a correlation. We shall examine this in more detail later. Let us notice now, however,
thatA,—; = 2r(n— )/n= 2 — 2 jin. Thusexp{ Ai_; t= exp( 72 it) exp(2 jt/n). Becauser 2 tis

an integer multiple of2 , we have exp( 7 2 ¥ 1 and expf,—j =t) exp (i t). Thus

n—1 . n—1 . n—1 i
(3.1.5) Iy = %tg X gt = —ﬁtg X vt =4 tg X @t = _J

Moreover, if X is real, then X=X "( will be used to indicate complex conjugate). Thuszifz  a + ib, then

Z = a— ib. Consider then for real X

*
n—1

n—1 . n—1 . .
(316) JL*] = { 3_1' Z(:) 2( eZAJt} — % Z(:) ?( Zé»]t = ?:I‘-I Z tX ‘éA]t = ; J



Combining (3.1.5) and (3.1.6), we have J= J . This is calleHéhmetian or symmetry property . Now let

X: = Y:+Z:. Then

J
1 n—1 . 1 n—1 .
Li=5 X XeM =13 (Y+Z)e
=0 =0

n—1 . n—1 .
=1 t;) Y, e +1 Z% zeM = 3 +)

This is called thdinear or superposition property. Next we claim that
n—1 . n—1 )

(3.1.7) X =3 Jév ifg=1 3% XxXeM
J=0 t=0

We consider then

n—1n—1 n—1 n—1

(3.1.8) %‘ ' J @t gt — % Z I g Ant
t=0 j=0 =0 t=0
Now by (3.1.3)
eln—1 et n, j= k mod(n)
(3.1.9) % ' J et g = _ﬁ Z 7J ){ - . J.
=0 /=0 =0 0,j# k mod(n)

n—1 . n—1 .
Now because,lJ= 13 X&¢ , we mayidentify X in (3.1.8) wih ; Qe . Thedeoareer transform
=0 =0

pairs.

An interesting connection may be made with model (2.2.1). Choose this modgl with 0 and recall
the quick and dirty solution for the;A and the B . In particular

(3.1.10) A = ﬁnfx cos(; ), 0O<g a 1
t=0

and

(3.1.11) B = ﬁnf X sing; t), < K m 1.
t=0

Consider the discrete Fourier transform

n—1 n—1 .on—1
J = %Z)ggi/\ﬁ — %Z X cos(; t + > X sing t).
t=0 t=0 t=0
Thus we have
(3.1.12) J=% A- i B.
Consider

13t=J3=%A- iB)A+ Bx=3 B-2F )
(3.1.13)



= Y{(A+B) = iR.

Thus the square modulus of the Fourier transform is related to the fundamental model. Recall from before that
we had defined R by the expression

(3.1.14) R cosXt#; = A C(.'(Sr\j t) +B Sﬂ:hj t).

Thus the quick and dirty computation of the solution to (2.2.1) can be computed in terms of the real and
imaginary components of the Fourier transform of the time series, i;e=A 2 real (J ) and-B 2

imaginary (J ).
The use of J as a diagnostic tool is to be explored a bit further. Basically we gave a “correlation” type
*

interpretation to J . BecausgJ= ? R is the amplitude squared of the frequency component at . By plotting

RJQ., we can get an idea of power of frequency componext at

Fourier Transforms for a Continuous Range of Frequencies

A natural question concerns the extension of the concept of Fourier transforms to a continuous range of
frequencies. Consider

(3.1.15) B)=1 ni:l X et
=0

as the natural extension @f J . Let us consider the following facts=1fn 0,

et = [ A= 2.
However, if n # 0,
¢ sin(nr) in(=nr) 0-0
;fcos(kr)d\:—n—w = %= o
Also fsin@n)d\:—w)z _1-1_ ¢
et n n )
Thus [ énd= o
Combining these results we have
. 2r, =0
(3.1.16) [ én i = {
- 0, n# 0 and an integer

This result is analogous to the orthogonality result in the discrete case. We may derive

™

(3.1.17) X =S0 [J)é N, & ¢« n

so that J ) and X are Fourier transform pairs as before. To see this consider,



™ ™

n—1
% fJ(/\)eW d = % f% Z X girv i yd
T u=0

by definition. Re-ordering,

1 T
i) eN d= 4 > X[ @9 N
—T u=0 —T

But by (3.1.16),

. 1 2r, =u
%fJ(A)erzizxx{ =4+ X2= X.

0, tfu
Thus we have shown (3.1.17). As before,:if X is real,
n—1 . n—1 . ’ .
(3.1.18) JeA)= 23 Xe= iy xgh = ().
t=0 =0

Parseval's Relation

Now let us consider,
n—1 n—1 . n—1 n—1 " n—1 b
YIX P= X XX = X ¥ ey Je
t=0 t=0 t=0 j=0 k=0
We may reorder the summations to obtain

n-1 n-1 1 nl  n-l . j=k mod(n)
;(:)IXtFZ Z%:J];)ZJZ B = ZjJZZJ{
- = - -

0, j£k mod(n)

A minor simplification yields

n—1 n—1 n—1
YIX F= X 33 n= ny| ;J°?
t=0 =0 =0
The equation
n—1 n—1
(3.1.19) Y oIX[2= ny | J°?
t=0 =0

is calledParseval's relation. Similarly,
s ™ n—1 . n—1 .
JIPa = [y XeM 1y X M.
—r +=0 u=0

—T

Interchanging summations and integration yields



Tl

JlPa =3 L% xx/¥ X,

Using (3.1.16)

T n—1 n—1 2r, Eu
13 Pa =3 > %XX{
- =0 u=0 0, otherwise.
From this it follows that
T n—1 n—1
(3.1.20) J1X) =2 Z% tx;xz%g [« %] .

This is also called?arseval's relation. We shall see later that there is yet another form of this relation in
continuous time. Basically this relation says that the sum of squares in time domain is equal to the sum of
squares in frequency domain. One important implication is that the least squares solutions for a fitting problem
may be done in either frequency or time domain depending on which is more convenient.

Some Examples of Fourier Transforms

In the following discussion we calculate some specific Fourier transforms. First recall that we had
earlier shown

S cose = cod con|nlE)
t=0 sm(%)

In a similar way

(3.1.21) e o gy sin(%)
t=0

sin()

We may use (3.1.21) to calculate the Fourier transform in a number of interesting cases.
Cosine Wave:First, let

0tte) 4 g(ht—9)
(3.1.22) ¥ = RcosX ¢ )= F{%}

Using (3.1.22) in (3.1.4)

n—1 . n—1 .
J =1 g% XeMt = B S cos\(+¢ )EM

t=0
Using the Eulerian identity for cosine, we have
] nzl INE—iA t+ig nzl INE—iAt—ig
R XA+ R —idd—
7 Zntoez R +2nt0ez B

Collecting terms and simplifying



These are each geometric series and may, as before, be written in terms of the Dirichlet kernel. Thus we have

sin n(A—A]) sin n(A+A])
R 4 Hn—1)(A—Ap) 2 X —i(r—1)(A+A) 2
J = 3 & e — 7 g e

ey o+
sm(TJ> sm( 2]>

o

which may be rewritten as

ir-1)(A-\) —3(n—1)(A+A)

J=8¢& e =" DO-XN)E € e T DA+ ).
Or finally,

—i(r—1)\;

(3.1.23) ;: % e { 1&n712))\+2¢) DX—/\j )+71((n—;)x+2¢) rm/\“‘/\j)}

This illustrates thdeakage phenomena. The leakage phenomena refers to the fact that when one takes a
Fourier transform of a single sinusoid, i.e. all energy concentrated at a single frequency, the Fourier transform
suggests that energy has leaked out to neighboring frequencies.

A Step Function: Let

1 &K&km
(3.1.24) X = { .

In this case

1 m—1 1
Y=5 eV =7er —=~
=0 sin (g)

Rewriting in terms of the Dirichlet kernel

—i;(m—1)

(3.1.25) J=T e DX).
Thus
(3.1.26) Re)= J3d= T IPX JI.

The Linear Process Now let
(3.1.27) X = t— ”%1 , = 0,.. ,n 1(chosen to give a mean of 0.)

Let us first recall for a geometric series
*kk%k

(3.1.28) > A= 1+ ‘a= AT
t=0 t=1

Taking the derivative of (3.1.28) with respect to a,



so that
7
1 _ (-aEmthay &&= K 1)
yrd ! = DAL
which is
7
1 _ _ (mD@-aE— (= 7")
yrd = - et
Thus
7 7
o 1 (mD)(-a)d"— aE "' )
;:)td_ ag%té = = :
Finally replacing n by a1,
oy n(l-a)d— a a)
(3.1.29) ;:) ta= -— T
Thus
n—1 . n—1 . n—1 .
Jj — % Z X giMt — %Z tert — %nl Z @t
t=0 t=0 t=0
*kkk
3 = (1- &7)eh 3 e*”;(]_, e’”]“)
T ey n(lfe’uj)z

Y sin (-1, /2
I sn e, 2) .

Hence we may simplify to get

(3.1.30) J= ( - e*J)fl e 1 é%( 1 *évl)( E) *@)72

(=D

» D)

_ n%lef%
Other Properties of the Fourier Transform
Time Shift: Consider
(3.1.31) Y = X, & 0. ,A- L
Then we may let ,
Jy,j:%Z Y, M = %Z X, et
t t
Now we change the variable of summation by lettingu t+hsothatt- u h to obtain
. )\]h Do i
(3.1.32) J; = %Z X ghluh) = éTZ X & = Pgb e d



Symmetry: Let
(3.1.33) X = X:,t= 0,.. ,n.
Thus we have that

T T
L 1 ixg 1 iAt
Ji = n+l Z% X enst = n+l Z% Kot €7

Again we change variables by letting= tsothatt —n u. We thus obtain

Jj — FZI.l Z:O X, ez’/\](nfu) — ﬁ Z:O X @]u z’é]n )

Recallthat\; = 2 (i/n)sothat, B 72 j. Thus'e= 1 and
(3.1.34) J= n%l S OX e
u=0

If X;is a real-valued time series, we may take the complex conjugate of (3.1.34) to obtain

(3.1.35) J= ﬁ% X(Jei/\Ju) — ﬁ% X & = 3,
Roughness Measures:
Let us finally consider

n—1
(3.1.36) Y (% - X}
t=1
as a measure of roughness of the process. This is essentially the variation of the process. Now,
X, — Xep = 3 JleM - el = g @Jt( E) *@J)
7=0

Thus, we may write
*kk%k

Xt = T yen (1 et) T e @ e )
=0 =0
so that
n—1 n—1 n—1 . . . n—1
(3.1.37) Sx-xid=32 % 39( ¢ e)( 2 %) ¥ te
=1 =0 k=0 =1
which by (3.1.3) yields
n—1 n—=1 :
(3.1.38) 2;0%— X1} = X%I,JQI |+ 2.
t= =

But
) (1—@'%)(1— e%) - 2 ( & +@J) = 2 2c0s(3 241 dos( )).
Thus



n—1

S X - X = 27201 1JF (- cos ).

t=1

But by elementary trigonometry, 1 cds ( =) Zsh ( /2), so that

n—=1 n—1
(3.1.39) Y (X - Xaf = 4% [J?] s 12).
t=1 J=0
n—1 n—1
We may use Parseval's relatio), 2 % ;13 |, to scale equation (3.1.39) to obtain
t=0 =0
- Sehe 4TSt
(3.1.40)>. (X — X1)= = V7 ——
t=1 nE 191

This equation may be used as a measure of frequency content. If low frequencies predominate, X is close to
X¢—1 and the ratio is small. If high frequencies are plentiful, the ratio will be large.



Chapter 4
Fast Fourier Transforms

Let us return to our consideration of the discrete Fourier transform (DFT) of X . A; et 2 (ji/n) as
before forj= 0,1,.. ,A 1. Recall that

n—1
(4.1.1) nJ=> Xe&* = 01, ,a L
t=0
In this computation, there aren 1 (complex) multiplies (one foreaehj ... 1, — ,n=1;j OiMpkese 1

so that no multiply is involved). There are also(n 1) additions (adding n terms means n 1 additions).
Since there are a total of n equations, to compute the full Fourier transform, there are n(n 1) complex
additions and n(r 1) complex multiplies.

Now if we notice that € = @7% ,tand$ 0,1, ~n 1 and observe ¥fate 1 for all
integer k, there are only n distinct values of¢ . The idea of the fast Fourier transform (FFT) is basically to
collect the coefficients of the n distinct’s’  depending &n j t mod (n) and do only n multiplications. The
simplest case is the case that n factors sayn;x n n . If nis prime there is no FFT. The generalized
situation isn= px fx---x pn. The most useful case is the special case that’n 2 ,i. e. all factors are
2. They need not be, however; the factors only need be prime. (Actually, primes are required for most efficient
implementation. The FFT can be done with non-primes, but a more efficient prime-based FFT can always be
done.) Let us illustrate with the case thatn ; xn, n .

Write
t=tnp+t, 0 t< p, &Kot< Nn
to generate a rectangular array, e.g=n =55 5x11.

XO X1 ce. X10
X11 1X . 2X
X44 X45 . X54

or, in general
Xo X1 .. Xrp—1
X, X1 . X2n,-1
Xﬂ*ﬂz X7’L77’L2+1 cee anzfl.

Let Y(t1, &) = Xynpet, andletj= 4n +j, 0< 3j< an, & ;K in. Forinteger , lgt=w
e 2mile  Then

izt 7’1171 7’1271

n—1 ) ,
(4.1.2) n =3 Xer =3 Koy, WG
t=0

t1:0 t2:0
or equivalently

1ol
(4]_3) n 9 = mz: nzz: Y{t ot ) Wt1j2ﬂ1ﬂ2+j1t1ﬂ2+j2752ﬂ1+j1752
t1=0 £5=0



. N tafa ;
But W™ = {eQ’”} " _ pi — 1. Thus (4.1.3) simplifies to

7’1171 7’1271

(414) nj]: Z Z Yﬁt ,Qt)letmz sztzm ;WZ
t1=0 £5=0
Also,
o _2m
WZl = ei%nl = e = W2

and, similarly,
_omi —
W?:enwz en = W,

Reversing the order of summation in (4.1.4),
*kkkk

7’1271 7’1171

(4.1.5) nd = ¥ W W X Y(tet)W

to=0 t1=0

Consider the last summation in (4.1.5)
7’1171 .
(4.1.6) ZG.v)= X Y@ . 8) W
t1:0

This is a column by column transform of the original data. In this transform, there are n 1 multiplies and
n; — 1 adds. Now

7’1271

4.1.7) nd = z{ W Z( ,Qt} W

to=0

For a fixed j there are;n- 1 adds in equation (4.1.6) and n 1 adds in equation (4.1.7). Thus there are
n+np, — 2 adds for each j and total of nn o - 2) 1 on nHns —n  2). For multiplies, we haven 1
multiplies in (4.1.6). In addition in (4.1.7), we have-h 1 multiplies for a fixed j, so that we have;n- n 2
for each fixed j. Since we have n j's we have R{n, —n  2) multiplies. The multiplication of the twiddle
factor requires n additional multiplies; & .0, 1,8 3,2t ..0, 5 ,n ). Thus the total multiplies for the
factored form is

nm+n—-2+n=nn@np— 1)

Example: Letn = 50= 5x 10 and consider the full transform DFT. Here 56(560=1) x 50 = 49

2450, so that we have 2450 adds and 2450 multiplies. For the FFT, we have 50(35 2x 568 13 650
adds and 50 (15~ 1F 58 H 700 multiplies. This gives a FFT/DFT ratio of 650/2450 .2653
for adds and 700/2456=  .2857 for multiplies.

Example  Consider this time n= 49 X% 7 in the full DFT. Here 49{49 =1) x49 =48 2352.
Thus we have 2352 adds and 2352 multiplies. Correspondingly for the FFT, we have 49-(7 +# 2% 49

12 = 588 addsand 49 (44 3 49 13 637 multiplies. Thus the FFT/DFT ratio is 5882352 .25
for adds and 637/2352 .2708 for multiplies. We minimize these ratios when n, the number of observations,
is fully factored.

As we indicated before, if == 1n- ;n , we may arrange the observations over a k dimensional table.

k
In this case the number of adds (and multiplies)isn, >0 (— n) ¢ where c depends on exact details. But, in
j=1



k

any case, n-- nY_ M) is an upper bound on the number of adds and the number of multiplies. Thus we may
j=1
consider further examples.

Example:Now let n = 50= 5x b5x 2 so that n is fully factored. Then 50(12) is an upper-bound and
actually in this case 50 (5 +5 +2 3) is the full correct computation for the humber of adds. Notice that 50
x 12 = 600, but 50 (9)= 450. Thus the prime factorization results in a savings of 200 adds and an
efficiency ratio of 450/2450=  .1837.

Frequently, we consider 2 *2, i.e. Jog=n k. Then an upper bound istn(n+ ; =n)
n24+---+2) = 2kn = 2nx log n for the FFT which is compared to n for the standard DFT. The
FFT/DFT efficiency ratio is thus (2leg ) n when the sample size is a power of two.

Example: Consider now n= 128 so that¥ 7 and the FFT/DFT efficiency ratio is 14/64 .1875. Thus

an FFT for 64 terms would takex 64 =6 768 adds and multiplies. RecalHorn = 50 x 10 5, we
had 700 multiplies and 650 adds. One can conclude from this example that not much is lost in absolute
operation count by using FFT with excess terms since we have essentially the same operation counts for an FFT
of 128 terms and a DFT of only 50 terms.

Example:Consider an even more extreme example wite=n 1024, so that k 10 making the FFT/DFT

efficiency ratio to be .019= %‘ , l.e. 28 1024 20480 compared to 1024(1923) 1,047,552. Suppose

now we have X.,. ,X; with x 2= 'n. Let;.X: X, 0.1, ,-n 1land I%t X O=j
n, .., v — 1 so that we fill the data vector out with zeros. Then

n/—1

J;. — % Z efz'/\’]t_
£=0
n—1
Here we will let X, = 2 j/h. Then &= % t;) X exp(iNit )

X

Sl

n
v

n—1
;} X exp(=iNt) = 5 K ).

Thus J&; )= % J . The FFT of the extended series is the Fourier transform of the original series evaluated at
Al instead of\; . Of course,

J = J;)# JX; ) butsincEn> A, = 72 R 72 jRA N
Thus we evaluate 3( ) on a denser grid when we fill out the FFT with zeros.

Example: (Worst caseletn= 1025sothats 1024 too small. Extend the sample sizesto n 2048 with
1023 zeros filled in. Then the number of FFT multiplies foe=n 2848 11 2 xis 2x 11 2048  45,056.
The number of FFT multiplies for = 1024 12 ix2 X0 1024 20,480. However, the number of
DFT multiplies for n= 1025 is 1025 1024 1,049,600 so that even in the worst case scenario the FFT is
dramatically better than the DFT. Consider for a moment the corresponding evaluation grids. For the
n= 2048 FFT case; = 2 j/l2048,4+ .0, ,2047 so that the evaluation points are 0, .0003069, .00614,
.00921, .01227,.. . The evaluation grid for the n=1025 DFT case is computed basee-onn 2 {025, |
0,...,1025. This gives a grid of evaluation points 0, .00612, .01226, which is roughly twice the spacing of
the more desirable FFT grid.



Chapter 5
Leakage and Aliasing

As we have already seen, harmonic analysis can lead to substantial insight into the frequency structure
of a time series. Harmonic methods based on Fourier transforms are not, however, universal panaceas for
understanding the frequency content of a time series. Problems exist with so-called leakage and aliasing and
with lack of controllability of the variance of raw Fourier transforms. In this chapter we shall look into these
problems in somewhat more detail.

5.1 Leakage

Leakage refers to the fact that if we take the Fourier transform of a pure sinusoidal function, we will
get non-zero amplitude for nearby frequencies. To see this, let
X: = exp (Aot),

the complex sinusoid with unit amplitude and zero phase, then

(5.1.1) )= %ni:l N
t=0

so that

(5.1.2) J)=1 Ef o

=

<

Using results from Chapter 3
(=g =) sin (NQ\g—A)/2)
(5.1.3) W)= e 7 XimEaenn -

Taking the square modulus of the expression in (5.1.3), we have
(0
(5.1.4) RQ)= %)K?=<%$%¥%)

It is easy to see from (5.1.4) that there is spectral energy\gear’ A\. R ( ) is plotted in Figure ****, Let
us further consider K defined by

(5.1.5) KO) = Jo)es”
which may be rewritten

i(n—1)Xg H o—
516 0)= &7 x B

We may shift the argument of k by 2 /n to obtain

Ty g
(5.1.7) Kh—F)= e X man (o ()72



We may simplify to obtain

2y m sin (naof/\ Y 2+7r)
(5.1.8) AR e (E
so that approximately

) i1 in (o2 )12)
1 Iy _ _sin (n@o—A)12)
(5.1.9) K@ n ) e x nsin((kofx\)/Z)

Similarly, we can show that
- (o in (NGo—X)/2)
(5.1.10) a+Z) = - &7 SRR
Let us define K X ) by
(5.1.11) Ko)=5 KA-2Z) + LK)+ } Ke+2).

Notice forA # Ao, K ) = O for n sufficiently large for the Dirichlet approximation to hold. In reality we are
interested in X ), not K( ), so we transform back by taking J to be defined by

(5.1.12) KQ)= J4)e"
or equivalently
(5.1.13) Ja)= Kp)es .

This weighted sum is called tianning Window and by it we introduce the idea that we can reduce leakage by
taking weighted sums. A little algebraic manipulation will lend some further insight. First, since (5.1.11) gives
us

Ki(2) = 1 KOV = 3) + 5 KO) + 1 KO+ 2,

we have

i-)-4)
1 2

Ki) =J0—&E)x i x e FI)xLIx &4 K4+ZE xlx

i(r—1)(A+2E)
é 2

Substituting for the J( ), we have

(5.1.14)

n-1 ; 1(n—1) —i2 Om (= 12 : n—
Ki()) = (% X, e M g ZM) X (ie% 6227(71)4-%—!-% ‘S éi(f))
t=0

Simplifying we have



el .
(5.1.15) Ko)=3 &7 & x e {—;Jr—; eds? ( +L21))}
Thus, we may write

(5.1.16) 10)=15 X{M"} o

t=0

We may define a weighted data set by

_ L1y
(5.1.17) Y = X{W)} _

Thus we are led to the idea of weighting the data to reduce this bias introduced by leakage. We have seen that
we can do this in the frequency domain by taking the weighted sums of Fourier transforms

Ki() = TKA=-E)+ iKW+ KA+ Z)

or in the time domain by weighting the data

Y, = X, { 17005(2; (% )/n)}

The latter is called thdata window , the former is usually called sgpectral window . We shall investigate
windowing in much more detail later on.

5.2 Convolutions

One interesting little sidelight to note concerns convolutions. Let Z be defined by

n—1
(5.2.1) Z=> X Y,, t=0,1,. n 1.
u=0
Then,
n—1
(5.2.2) Jo)= z% Z e
=

Writing out Z , we have

n—1n—1

(5.2.3) JA)E=XZ X X Y. e,
t=0 u=0

Interchanging the order of summation
n—1 n—1 .

(5.2.4) JA)=X XX Y. e,
u=0 t=0

Letv=1t— u,sothatwv u= t. Then we have



n—1 n—1
(5.2.5) JA)=> X3 Y et et |
u=0 v=0
We can separate variables to obtain
n—1 . n—1 .
(5.2.6) JA)=2 X e? 3 ¥ e?= JIN¥ ().
u=0 v=0

Thus the Fourier transform of a convolution of two time series is the product of the Fourier transforms of the
two time series and, of course, vice versa. The leakage phenomena can be understood more easily in terms of
convolutions. Leakage really arises because an infinite set of data, namelyy, X ,0X 1, Xo X, X, ,is
multiplied by a finite function, to be precise the function

. 1 i EOnl
(5.2.7) fo, () = {0 i]l‘ E%Orril%

The calculation we have just performed shows us is that we can reduce leakage bias by rgplacing I (j) by a
more tapered window, say

(5.2.8) H () = {71 cos(@ G ’”>} .

Of course, this is not the only window we could use, but it is a computationally simple one. We shall use this
smoothing window idea again in later discussions.

5.3 Aliasing

We have just seen that one problem in dealing with DFTs involves frequency smearing. That is, the
DFT of a single frequency signal yields a frequency spectrum which spreads some energy of the single
frequency signal over frequencies adjacent to that of the signal. Another interesting phenomena involves
aliasing. An alias is another name for something. In the frequency analysis of a continuous time signal we
shall see that potentially many frequencies of a signal will appear in the same place, i.e. many frequencies are
labeled with the same frequency designation. This is the origin of the name, alias.

Let us begin by considering a single frequency process
(5.3.1) X = coskt)
which is sampled at time incremeis t, so thatX gA (j t). Aswewary toward zero the cosine wave

becomes lower in frequency and the wave length, L, increases. Howewver, as gets larger, specifically as

T
A= A

(5.3.2) X — cos(% &) = cosg )= { Lpmerliont

Forf <A< &, letv =% — X, sothat = & — X . Then

(5.3.3) Xi= cosh A t).

Substituting fori



(5.3.4) X = cos{( 2A /\’) A }

which may be simplified to
(5.3.5) Xi= cos (2 j— NAt)= cos£ N A t= cos(Af t).

That is, based on this sampling rate, we can't distinguish between)\’ and . Next cﬁnsid@r < %
A= % + A, sothat’ — % = A . By a similar computation,

X; = cos QAt) = cos{(X’— %) zjx} = co{X’Aj + ﬁ}j = cc(sk” Aj)t .

, let

Graphically, frequencies are folded back upon each other. See Figures **** Because of this folding pattern,

(and, of course, that Nyquist first articulated this idea), the frequendy, / t, is callédydést folding

frequency. For a sampled time series frequencies higher that the Nyquist frequency are indistinguishable from

(alias as) lower frequencies. This process is calieging.



Chapter 6
Random Process Models

6.1 Introduction to Random Processes

To this point we have said nothing of the statistical structure of the process X , especially with respect
to the DFT of X . The DFT is of course itself a random process if X is a random process. The implication is
that a different realization of:X yields a different realization &f J( ). In order to make the DFT a statistically
meaningful diagnostic tool, we must investigate the stochastic structure of X a bit more thoroughly. Basically,
the use of the DFT straight away on the data implies we believe X is essentially deterministic.

We now want to regard.X as a stochastic process. That is to sayfWe let be a sample space and P a
probability on that sample space satisfying the axioms given below.
Axiom 1. ForACQ,0< PAK 1.
Axiom 2. For A C Q, A disjoint). P(A)= RJ A).
i 7

Axiom 3. PQ2)= 1
In this section it is often convenient to regard a random process, X, as complex valued rather than real valued.
Of course, since all real-valued processes are trivially complex-valued, this is no real loss of generality. We
shall define X¢ )= X(tw ) to be a random process if

X, -):Q — R, thereal numbers (&t , the complex humbers).

That is to say, for t fixed, X(t; ) is a mapping of the sample space into the real line (the complex plane). For
each fixed t, X(tw ) is an ordinary random variable. Usually we write X ( ) for X(t, ). It is common to
suppress the explicit dependencewon , although, of course, it is always there implicitly.

The variable, t, is usually thought of as belonging to an indes set, , and usually is thought of as time.
As we had earlier discussed in Chapter 1,

(611) I:th,...,)(tn (u L 1% ): P(X S U EA 1%(S 7’“ )

is the finite dimensional distribution. ; X $trictly stationary  if

(6.1.2) Kooty @oee s )= B @, )

foreveryn,{,.. 4 ,4,. ,u and . Again recall thatif= a constant, usually 0 and;cov (X ,=X )

v, then we say X igveakly stationary.

k
Example: Let X = > {A cos(h t) + B sinfn t)}. Here,A and,B are independent normal random

n=1

variables with meap = 0 and varianee o> , writtethas o{0, ).
Taking expectations we have

E(X.) = il {E(A. ) cos( - E(B )sin(h O] 0.

Consider now the product term and}ake expectation to get
k k
E{X,X.} = E { Yy (Ancos(n/\tl) +B, sin(n ¢ )( A, cos(iot¥ B sin(ﬁnﬂ))}
n=1 m=1

Expanding we obtain,
k

EX X = {E(AZ} cos(nAti)cos( § ) + E(B ) sin(h it )Sinmgt}) ,

n=1

so that

E{X;X:} = Xk: o{cos(nAt;)cos(m § ) + sin(A it )sin(h ot )].
n=1

From our previous trigonometric identities,



k
E{X;X:} = ;a%os(n Alb -1t )) :

This process is thus weakly stationary. Also since a linear combination of normal random variables is normal,
the process is also normal and hence it is also strictly stationary.

In the discussion which follows, we shall assume that the reader is familiar with Riemann-Stieltjes
integration. There is a discussion of Riemann-Stieltjes integration in Appendix A.

A bivariate functiony (s, t) imon-negative definite if for any set of time points.t ,,, ,t and any set of
complex numbers;z.,. ,z

(6.1.3) > Yyt )zz> O
=1 k=1
If the inequality is strict, the function is said tofsitive definite.  In general we will use the * to indicate the

complex conjugate. That is if z is a complex number givenby a bi, the z isa bi. Noticejthat if=(s, t)
E(X:X}) is the covariance function of a zero mean process, then

i

(6.1.4) SYo6 2= EL X X X 24 = E{Zl X x%
=1 k= =

=1k=1

Rewriting (6.1.4) as a modulus square, we have

3

(6.1.5) S )z z= BY X2z 0
1k=1 =1

J

Thus the covariance function of a zero-mean stochastic process is a non-negative definite function. A trivial
modification shows, in fact, that every covariance function is non-negative definite. The converse is also true,
i.e. if v is non-negative definite, then there is a stochastic process for which it is a covariance function.

If we assume X is complex valued and stationary, then without any loss of generality, we may assume
E(X:) = 0. Notice in this case as we did in Chapter 1, we have

(6.1.6) 76 0= EX X)= EX: X, )

Now letr = — tsothaty (s,t= E(X: XX v (s t 0). Itiscustomary to wyite (t, 0) Thus we
may define a one-dimensional function  to be non-negative definite if and only if & t) _» is non-
negative definite. Notice thatif = E(X ;X ), then

(6.1.7) s = E(Xs X)= E(X X,)= 7 -

The propertyy_. = . we have encountered before in connection with\J(= )X J( ). This is called the
Hermetian property If the times series is real-valued, then, of course, the Hermetian property becomes
symmetry property.

Becausey_, = ,the covariance matrix associated with this stationary, real-valued time series is,

70 el -2 TYn-1
el 70 vt T3 Yn-2

72 " vt Yn—4 ')/71.73 = I‘n

Tn—1 Tn-2 el 70



Note that the matrix is symmetric with constant elements on any diagonal. The corresponding correlation
matrix is R, =L, %y .

One of the consequences of positive definiteness is that the determinant and all of its principal minors are
greater than 0.

Hence
‘70 ! 0
T
or
% -1 >0
or
Y > hl
or 1| < 1where; isthe correlation of lag s.
Similarly,
YoM 2
o >0 | ] ean |
Y2

which imply respectively

_l 'YO'YZ*'Y% 1 .
< T <L ki< sk 1<

or equivalently

2
—l1< 2 <L ki< Lo kK L

6.2 Basic Spectral Theorems

The discussion we have had earlier focussed on the the discrete Fourier transform of the raw data.
Because the raw data itself is a stochastic process, its Fourier transform will also be a stochastic process. While
this is interesting from a probabilistic point of view, the fact that our putative spectral distribution is a random
process makes it somewhat unsatisfactory for being used a diagnostic tool. In order to stabilize the notion of a
spectrum, we need to take the Fourier transform of a deterministic function. Thus, we would like to replace X
with the covariance functiony, . The following series of results are designed to lead us to understanding and

interpreting the transform of the covariance function.



Bochner's Theorem: A continuous functiory (t) is non-negative definite if and only if it can be represented by
an integral of the form

(6.2.1) Y=/ & dFy)

where G is a real-valued, non-decreasing and bounded function. The function, F, will be the analog of a
probability distribution function as we shall see shortly. Notice that (6.2.1) strongly resembles relationship for
the inverse Fourier transform we had discussed earlier. Recall

™

(6.2.2) X =3 & X)A.

The proof of Bochner's Theorem is beyond the scope of these lecture notes and will be left as an unproven
assertion. Clearly to employ Bochner's Theorem as it might apply to a covariance fupction, , we need only
show thaty, is continuous.

Lemma: If . is continuous at = O, then it is continuous atrall
Proof: We first considey evaluatedrat afhd . Now

bl = 16 X X} = B Xeo XpI= 1 B (6= X)X}

Since X is stationary, we have by the Schwartz Inequality,

b= el = 1 0= %)%} 1< (51 %12)) ( 1x= x3})" .

But E{ 1% — X-P} = E{ x X | - E{x.x | — E{x:x. } + E{ XX} =290 =7 =0
As 7—7 — 0, v — vy and~y,_, — v by assumption. Hence{ E |} X T12>} + 0 so that
v+ — v~ | — 0. Thusy, is continuous for all
We are now in a position to combine Bochner's Theorem with the basic Lemma we have just show to
obtain the basic spectral representation theorem.

Spectral Representation Theoremif . is the covariance function of;X and is continuous at 0, then there
is a real-valued, non-decreasing bounded function F such that

(6.2.3) =) & dR)

The function, F, is called thepectral distribution function. The proof follows from Bochner's Theorem and the
fact thaty, is non-negative definite and continuous.

Notice thatyy = [ dF{ )= fo > Ffoo ¥ var(X). Since Fis defined up to an

additive constant, choose F(co = 0, so that=  coF( ). As a convention, we chaoseF( W+ F( ),

i.e. we assume continuity on the right. If F has a derivative, thens( Y A de) and

(6.2.4) vo= [ 6" f)d .

The function fQ ) is called thepectral density of:X. The set of all discontinuities of F is called ploét
spectrunof X;.



The spectral representation theorem we have just seen express the covariance function in terms of the
spectral distribution function or the spectral density function. Of major interest is the situation when the
spectral distribution or the spectral density can be represented in terms of the covariance function.

Inverse Fourier Transform Theorem: If [ |y, | & <co , then

(6.2.5) f\) = FQ)existsandX = = jo 8ty dt

—Co

Again we shall leave this inverse result unproven. Recall, however,
n—1

(6.2.6) J)=13 e X.

=0

This is a rather striking analogy. Of course, we are dealing with continuous-time processes in the present
discussion. If X is not a continuous-time process but rather a discrete-time process, the analogies are even
more striking.

To see this, let; be the covariance function for a wide sense stationary discrete time prpcess, X t
=0 +£1, £ 2,... The discrete analog of the Spectral Representation Theorem is known as the Herglotz
Lemma and is given below.

Herglotz Lemma: If +; is the covariance function indicated above, then there is a real-valued, non-decreasing,
bounded function, F, defined on the interval £ = , ) such that

(6.2.7) v :,f &7 d Fx ).

Recall in the case of the discrete Fourier transform we studied earlier that

(6.2.8) X=42 [& nX)A

so that we have an even more striking analogy. As in the continuous case, F is defined up to an additive
constant. Choose F(w > 0, sothatF&) v and as before we takeF ( A+ F( ), i.e. choose F to be
continuous from the right. The discrete version of the inverse Fourier transform can then be given.

Inverse Fourier Transform Theorem (Discrete Version):If > |y;|<co, then

J=—
(6.2.9) f\)= FQ)exists and X( = = > “@ |A| <7
j=—c0
Recall for the discrete Fourier transform we had
n-1 .
(6.2.10) B)=1 gV X.
7=0

To this point, we have been assuming that X is a complex-valued process. If, in;fact, X is a real-valued
processy; = 7v_- . Inthis case

[o9) [o9)

(6.2.11) [ & dR( )= = v = [ & dR()

—Co —Co



Summing the expressions for  apnd-  , we have
2y = vy o = f (ei/\T“‘ et YAR( ).
Thus

(6.2.12) " :7}0%’ d Ft ):jo cos\ ) d K( ).

This implies thatf sinXr )dR( ¥ 0. Similarly

[o9) [o9)

(6.2.13) fo)= £ [ ey dt= £ [ cos{A B dt.

Because of the even symmetry of the cosine function

(6.2.14) fo)= £+ jocosx ty, de £ f”é% d£  HX ).

—Co

Thus for a real-valued stochastic process, the spectral density is symmetric about the 0 frequency. A practical
implication of this fact is that we really need not plot the spectral density function over the whole range from
—mtow. Therange from O to is sufficient. 1if is real sothat is symmetric about O, then we may define
G(\) = 2FQ)— o . In this case

(6.2.15) vo= [ dB( )= [ cos¢ )dR(3 [ cos( )dDG().
5o —% 0

The function G is sometimes called #pectral distribution in real form.

Note that the spectral representation theorem could be (and often is) formulated in many different ways
depending on whether or not the constamt 2 is included in the equation representing or the equation
representing f{ ). A few of the more common representations are

™

(6.2.16) v = [ dR()

(6.2.17) v = = fé*j dR()

or

(6.2.18) vo= [T dR().
_1

2

In this latter expressiorf, is the so-called natural frequency wh&reas is often called the angular frequency.
The relationship between the two }s = «#f2 . All three equations (6.2.16), (6.2.17) and (6.2.18) are
equivalent, but not identical. Care must be taken to insure the use of the correct constants.

6.3 Interpreting Spectral Densities

We have shown that we may write the covariance function as a Fourier transform of the spectral
distribution function (the spectral density) and as we did with the DFT applied to the raw data, we can interpret
the spectral density function as indicating the intensity of the sinusoidal components in the covariance function.



That is to say, § ) is the intensity of the fundamental sinusoid at frequency in the covariance, , much the
same way that |3(?)|= 2R\ ( ) was the intensity of the fundamental sinusoid at frejuency in the data X . Of
course J{ ) is a random process whibke f( ) is a deterministic function. Of course, as we indicated earlier, this is
the reason for exploiting Bochner's Theorem.

We now give a fundamental theorem which will illustrate the relationship between the Fourier
transform of X and the Fourier transformef . Clearly we want to have the Fourier transfgrm of  represent
in some sense the structure of the Fourier transform. of X . We will only give the statement of the following
theorem.

Let X(t) = X; be a zero mean (continuous) process with spectral distribution function, F( ). A
process KX ) is said to have orthogonal increments if for everyset, Ao < A3 < Ay , we have
(6.3.1) E{(K(m— Kew)) (Kw) - Kal))} = o

Spectral Representation TheoremFor every stationary process, X(t), there is a stochastic process, K( ), with
orthogonal increments, such that for each fixed t

(6.3.2) XM = [ & dKg),

K()) is defined up to an additive random variable. We may fix this additive random variable by taking
K(— o) = 0. In this case,

E( K(/\)) — 0
e{ ko1 2} = Fo,

and

E{ld K(/\)F} — dF4).

The process, K ), is called tispectral representation process. (The DFT process, J( ), is an approximation

to K(A) based on a time series). This result may be interpreted to say that the expected sinusoidal oscillations in
X: are the same sinusoidal oscillationsyin , i.e. the structure we expect to find in X are found in . We say
this in the sense that the respective spectral densities are the same. This gives us confidenceythat using as a
deterministic representative of X is very satisfactory since (at least as far as frequency content is concerned) the
structure ofy. is reflective of the structure we expect to find for X .



Chapter 7
Estimating Spectral Densities

7.1 Estimating of the Mean of a Stationary Time Series. want to make a slight change of notation
here. Instead of writing the time series as X , ,—X , | will write the serieg as X,, ,X . Previously, in our
discussion of complex sinusoids for, has been convenient to start with an index of zero so as to make the first
term in the DFT series one. For reasons of symmetry in our present discussion it will be more convenient to
make the first index one. The major effect of this shift is to create a phase shift in the computation of the DFT,
i.e. multiplication by a complex constant whose modulus is one. This will be irrelevant to the use of the DFT as
a diagnostic tool.

As before, let X be a real-valued stationary process with constant mean, , and covariance function,

~.. We assume that we have real-valued time sefies. X , ,X . We consider the sample meaﬁl,X ¢ X.
t=1

Notice that E(X )= 1 I{Z 2(} = 13 u = u sothat X isan unbiased estimate of . Recall that X is not
t=1 t=1

the maximum likelihood estimate for the mean, , in the hidden periodicities model. Here, however, we are
only prepared to assume a stationary model for the process. Thus we are not yet able to compute all other
properties of X. We are interested in computing the variance of X. Unlike the usual independent and
identically distributed case (i.i.d.), the computation is not straightforward. We start with a lemma.

Lemma: Ifa;,j = 0,+ 1,£ 2,.. ,then
moom m—1
(7.1.1) > as = > (m |tha.
t=1 s=1 t=—m+1
Similarly, if h(t) is a real-valued function,
TT T
(7.1.2) ffh(t—s)ydsd= [ (F | tt )h()dt
00 -T

Proof: We prove the discrete case. The other follows in a similar way. Consider

NgE
NgE

&7522

t=1 j=t—m

m t—1
a
t = t

1 s=1

where we are letting+ s . Interchanging the order of summation (see **** figure), we obtain

m +m m m

SYa.= Y Yary

-1
ja .
t=1 =1 j=—mtl =1 =1 t=it1

Rewriting yields

moom 0 m—1 m—1
> 2a.= X M ja+ > (m Ja= > @] [j ya.
t=1 s=1 j=—m+1 =1 j=—m+1

This gives us the result in the discrete case. the continuous case follows in a similar way although actually the
computation is slightly easier.

Applying this lemma to the computation of the variance of X , we have



i

var(X) = E{( X -p¥} = E{% i(x—m} =3 E{ > (z<—u)os—m} .

=1 t=1 s=1
Then
_ 7 7 n—1
var(X) = & X Ywe=5 > O]t .
t=1 s=1 t=—n+1
Canceling an n yields,
(7.1.3) var(X)=1 ¥ Uy,

t=—n+1

We are in a position to have the following theorem.

Theorem: LetX =1 > X. Then Xis unbiased for ~with variance equal to
t=1

[&9)

If > |%]| < co,then

t=—c0

(7.1.4) var(X)~ 1 tiE % as n— oo

In particular, var(X)— 0asn- oo . Furtherif X is a discrete process,

(7.1.5) v = 2 f(0)
t=—co
where f is the spectral density of X . The expression, , means “is asymptotic to."

Proof: The first part has already been shown. To see the second part, consider

_ n—1 It n—1 1 n—=1
nvar(X) = (1— ;)% = Y v—-5 > | It
t=—n+t1 t=—n+l t=—n+1

The second term can be rewritten as

1 n—1 ) jﬂ
S ltw= X L
t=—n+1 t=—00

where term by term we defing | by,

1if—mi1<t<n-1

0 otherwise

Notice that | | (t)% v | < |v%]| . Byresults on series from advanced calculus, we know



im_ Y Loy = ¥ im Loy = 3 0= o

n— t=—00 t=—00

Hence nvar(X)— > v 4+ 0= } ~ . Finally note that

t=—c0 t=—c0

i) = £ ey,
t=—co
so that
f(0) = % >oely = % >

t=—co t=—co

Thus nvar(X)— 2 f(0). Similar results hold for the continuous case. Specifically

(7.1.6) E(X)= u,

(7.1.7) var(X)= & fT -9y, dt
-T

with

(7.1.8) Tvar(X)— [~ dt= 2 f(0).

7.2 Estimation of Variances and Covariances. Let X ,.. ,X, be a time series from; X which is
stationary process with meamn and covariance function . We want now to estimate . A first
approximation variance estimator might be

(7.2.1) ¥, =

Sl

> (X=X}

t=1

the usual estimator of variance with the general stationary covariance estimator
(7.2.2) Y. == (X0 = X).

This, like other ad hoc estimators, has some potential drawbacks. One might object that the first factor in the
summation given in (7.2.2) involves the observations.X ,,, ;X  and yet we subtract X which is computed
from the whole set of observations, X., ,,X . Similarly, the second factor involvgs X , ,X and again we
subtract X . In spite of the symmetry, this clearly will cause the cross products we expect to cancel in quadratic
form computations not to cancel. Hence, a second proposed estimator might be

(7.2.3) ¥, = 5 Zl (X = Xis )Kps — Xoi)
t=
where X; ; = n%s 3 X and %, = r%s > X. Inthis case, expanding the cross product, we have
t=1 t=s+1
(724) E(?s ): n_is E( { XXst __Xl,s )ngs __X2,5>§+7(1,57(2,5}>
t=1

so that



(7.2.5) EG . )= ; XXie = 2(0= % %+ (N s7>a,s‘x25> :
Canceling similar terms, we have

(7.2.6) EG.) = i E( T XX (- s7><1,;><9,s> .

This may be rewritten as

(7.2.7) E¢.)= n%sg (X = 1 )Ks — o H o X+ p Xogs — i — 71,s7<25>

which in turn yields

(7.2.8) E¢.)= E(,%s ;{ (X =1 )Kps — )} — (Xis — 1)Ko —/J)) :
Finally this becomes
(7.2.9) EG.)= v — cov( X, % ).
But
(7.2.10) cov( X , %o )= I{ 5 = b (Xlﬁis“)}
=1 i=1

which in turn may be written

N—87—8

cov(X1s, X20) = Gl 2 2o EOS — ) (Kes — 1)

j=1i=1

so that

n—8 71—8

coV( X1, Xas) = wigp 21 Z:l')/eréfj-
1 =

Using the (7.1.1) from the Lemma, we have

o _ n—s—1 .
(7.2.11) coV(Xs , %5 )= g 2 s (s | i)
J=—n+s+1
As before, if > |v;| < oo ,thencov(X,, % ) Oasa co . We may compute the asymptotic
j=—c0
bias by using (7.2.9) to obtain
n—s—1 .

T - ll

(7.2.12) NEG. v 1= — ncov(X: . %: )=7% X  (F a5

j=—n+s+1



Letting n — oo, we have

(7213) n[EG s )_ Vs ] - _Z Ys+5 = Vs -
J=—00
This shows thaty , is asymptotically unbiased. Computing the asymptotic m&an of is not a trivial task.

Computing the corresponding mearfyof is a real mess! We will not show the algebra of the computation, but
for the record,

(7.2.14) EG . )= v+ var(X)
1 n—1 s 0
ey X M=K+ (—sH > (= s K f+ s ).
k=s+1 k=1 k=—(n—s)—1
Taking limits as n— co and simplifying
(7.2.19) EG . )~ 7-+ var(X)»1
where_lim_r, = %}}o@% , SO that
(7.2.16) (B¢ %) = = X %
Jj=—00

Thus E§f . )— 7. ~ var(X )# Oas — oo . Ingenéral is not asymptotically unbiased.
A simpler estimator assumes we start with a zero mean process. In this case a natural estimator of
is
(7.2.17) A= 23 X%
t=1
It is straightforward to see

n—_

(7.2.18) EQ. )= Iy v =% -9 asm o
i1

Whereas the computation of the variancg' qof  7and is all but impossible, some results are known about the
variance of), . We may get some idea by considering a special case. The following results were developed in

*ax o Let X: = oyb.m—; We shall later see this as amfinite moving average whege are independent
=0

random variables with B( ¥+ O, var(=2 1/8( 9 o andllix 7Kc<0 c<l.plet 2—0 . Then
(7.2.19) Jim Ef - = 25 e ).
J=—

To compute second moments qof X , we have

(7.2.20) Jim nvard )= 3 € + prepie = dppre + B4 E W
Jj=—c0 7 J

and



(7.2.21) SImoncovh Py )= X Aipso + pirsiopis = Poropipi-s

j=—o0

— 2pipspi—s—v + zpsszrUP? )= U, .

From this the correlation is seen to be,

. )\ Uso
(7.2.22) Slimcorr B, Doy, )= 0

The asymptotic distribution is calculated by

(7.2.23) Vb — o) 98t ho,v),

Thus?, is asymptotically unbiased, consistent and asymptotically normal. Under appropriate assu#nptions,
(and¥, by implication) seem to be reasonable estimators of respectively the corrglation, , and the covariance,
~s, respectively. Notice that is we consigei> o(I)ims V , then we have

. _ ) 2
(7.2.24) lim nvarg, )= 3 o% .

J=—00

im VM, = lim
S — &0 S — oQn
Hence even if n is large, when we try to estimate  for large lags, the variance of the éstimate  does not
converge to 0.

7.3 The Periodogram and Other Smoothers. We restrict our attention to real-valued, wide-sense
stationary time series with a spectral density function. Let X ,, ,X be the time series. We want to estimate

the spectral density function Xf( ) [<|r . We assume in this discussionjhat| v, | < oo . Recall by
j=—c0
definition
(7.3.1) )= 5 > v &V .
j=—c0

By analogy to (7.3.1), we can consider an empirical density estimator called the periodogram and given as

n—1 .
(7.3.2) D DR TN - Lol
j=—n+1

n—j
Where%j = 1 3 XX.; is the estimator of the covariance functign, . From our earlier discussions, we

t=1
considered a spectral estimator defined BpR £ ) A IQ\)JI=£ )| > , ““X% | . To see that these are actually

t=1

closely related results, we have the following theorem.

Periodogram Theorem:

[ n—1 .
(7.3.3) L) =5 | > %xeM|2=21 > 4 @Y |A| <7 and
t=1 j=—n+1

(7.3.4) A :f eV o1 x)d .



n—1

Proof: Consider second part, (7.3.4), first. Assume that 1€ )X > %, **e  sothat

k=—n+1
/e =5 [&7 3 g et oM
- - k=—n+1
Interchanging order of summation and integration, we have that
1 T n—1 N fem(kii)d\ n—1 N N
Ly eV L) = X T = > M =7
-7 k=—n+1 k=—n+1

Here,; is the Dirac delta function. That this integral is either 0 or 1 follows from the orthogonality result
(3.1.16). Hence, second part follows immediately from the (7.3.2). Now consider,

In(A) — ﬁlyé Xt gz’/\tjr — ﬁ{é )L( ei/\té Z( Jei/\s}

Simplifying, we have

(A = 5 2 2 €2 X X
t=1 s=1
Now lettings= t— 7 sothat = + swe have
1 7 t—n .
(A = 77 X2 e’ X X, .
t=1 7=t—1
We want to interchange summations. Fog 0, the range on t is 4 to 7 >For 0, the range on t is
7+ 1 to n so that
1 n—1 . 1
) = 3 5 {1 XX}
T=n+

Here because the range of summation on t is dependemt on , we have deliberately left the summation

n+7
ambiguous. For < 0, we considérz ¢ XX . Since is negative
t=1

n+T7

is positive andy. in this case has precisely the definitﬁon,z ¢ XX . TEer 0, we cons%der
t=1
S XX; . Lets= t—7 sothatt= $7 . Then
t=7+1
?_1- Z xtxsz = %Z&XSJrT-
t=7+1 s=1

For real-valued processe§ % . X , so that the above sum is thiidefwf 4, . In either case,

L) =2 X 4 7.
T=—n+1
We define the function,| X ) to be the periodogram. Thus the periodogram, the square modulus of the DFT of
the data, is also the Fourier transform of the covariance estimate in the fofmuta Iy XX L We
t=1
develop this connection in more detail. Letting Z{ ; A cos(+t) ; B )sj;n} t) , we know from the
j=1

quick and dirty formulae that



(7.3.5) A = 23 % cosk; hand B= 2 > X sin( ).
t=1 t=1
Consider then

(7.3.6) AK+B =3 fﬁfﬁ X >g{ cosX; S) cos\( t)+sin( s) si)nj(}t)
J J t=1s=1
which may be simplified to
A2+B2 = 4 33 X X cosf; (t 9).
7 7 t=1s=1

We have assumed that X is real valued. We may take the real padrt-of’A B to have
J J

BIN

t=1

S X MJS}
] ] s=1

A2 +B? = Real{ T XXX X éws)} = Rea{
t=1s=1

This is simplified to

A? +B? = Real{ 4 X é\ﬁ|2} = 2 X#&'?|.
J J t=1 t
Using the results of the Periodogram Theorem, we find that
(7.3.7) R+PB =2x 2rnx {ﬁ]{j xé%t?%:&nnl)(j ).
J J t=1
Hence, it is only a slight obvious geakzation to find that
(7.3.8) Ra)= A+ B=2%L0)
where
(7.3.9) L) = ﬁ 3 X ey
t=1
or
n—1 .
(7.3.10) hQ)= £ Y % &\
j=—n+1
n n n—j
with A, = 2 3" X.cosit) and B =2 >~ Xsinf t), and with, = 2>~ XX; where:X is real valued. Thus
t=1 t=1 t=7

we have a fundamental linkage between the generalized model of hidden periodicities, the DFT, the spectral
density and the covariance function. This gives additional intuitive support to the usé of R ( ) as a diagnostic
tool for fitting the model of hidden periodicities.

Next let us consider some of the statistical properties of the periodogram. It is not hard to see that

(7.3.11) E[LO)N =% X &Y H l= 2 nf @Ajvj{”;rl”}

j=—n+1 j=—nt1

The latter equality follows from a slight adaptation of (7.2.18). A little algebra yields



(7.3.12) ElL Q)= &= nf ew'{ 1—%}%- - 4 fj iy, = (R) ,ash oo

J=—n+1 j=—00

From this it follows that,] X ) is asymptotically unbiased. Consider the variange of I ( ). In general, this is not
a very tractable calculation so that we consider the special case in which X, ,X are independent random
variables. Then

2

Realistically there is not much hope for a simple solution based on (7.3.10), The formulation (7.3.9), however,
yields a more tractable computation, so consider

(7.3.14) E[} 0)] = E{ﬁ fé X e 4|} .

Expanding the quadruple sums yields

(7.3.15) EFO] = 5l X X X ¥ EX X X X]e e e e

Now let the argument of the quadruple sum bg,E . Depending on the values of s, t, u and v, we will get

different sums as follows.
Ifs=t# u= v, Ew, = o* andthere are n{n 1) terms of this form.
IfsS=u# t=V, Ew, = o* & Y andtherearen{n 1) terms of this form.
lfs=v#t=u, Ew, = o* andthere are n{n 1) terms of this form.
Ifs=t=u=v, B+, = w4 and there are n terms of this form.
Otherwise, E,., = O.

We may use these 5 cases to form the equation

s=1

(7.3.16) Ef Q)] = 4ﬂ%n2 (2,4 nin- 1) +p*+ 04{ }:n: 28 2 }_‘>

The — n term in the expression in braces is meant to account for the=ease s t which is double counted in the
square modulus. Using our earlier results related to the Dirichlet kernel

2
ot ot ot i o
(7.3.17) ERQ)N =5 — 20 + 250 + & (sr:ns(irr?x))> - #n

Collecting terms we obtain

2
(7.319 EaN = £+ o i)+ T(%) |

But E[l,(\)] — f(A\) = %2 for a times series which is an independent and identically distributed sequence
(calledwhite noisd. We may combine this with (7.3.18) to obtain an approximation for the variance.

(7.3.19) varfl, ¢ )] = %“‘ﬁ{m— 3,4}_‘_5_:2 (?2%3)) _ %



Simplifying (7.3.19) and recognizing that the second term of (7.3.19) approximates 0 for large n, we obtain

(7.3.20) varl )] = 7 + g (i‘r;??a))) -
If A\ = 0orA= +m, then j'gf{:‘a)) = 1and vag\( )E %_42 for n large. N Oandt +r | then
S — Oasn—oco andvarfIX )= 4= for n large.
Thus
N4 Oandh £ L5
(7.3.21) var[h ¢)] — {
A= 00 # +r .

Thus, even in this simple case of white noise, the variance of the periodogram is asymptotically not equal to
zero. In general,

f2(A), A # 0and\ # £

(7.3.22) varfk )] — {

2f2(\), A= 0o\ =+7 .

Repeating arguments along these lines, we may obtain

(7.3.23) covll &), } &)= {Sir:igf(ia;) SWE?S( @) }f(kifz(a) — 0asns oo .

In general, the periodogram is too rough, i.e. its variance is too large. We want to smooth the periodogram. We
do this with a kernel smoother.

7.4 Kernel Smoothers. We construct a smoothed periodogram by a convolution of the raw periodogram
with a smoother function which we will label X( ). LetX( ) be a real-valued, non-negative function such that

(7.4.1) KO) = K(—2) and[ KE)d = 1.

Consider -

(7.4.2) [ Ke-a)le)d = [Ka—a)i & e d.
—co —co j=—n

Lets=\A—a, sothatds=s — o amd=)\-— s.

o0 nfl
[ KA =a)ly(a) da= £ { [ K(s) & }%j €N
—co j=—n+1
If we define a = jo K(s)® ds, then
(7.4.3) [ Ko—a)be)h = £ ,nijl;@j @
—c0 J=—n+



Thus we can weight the covariance functign by a to smgoth | ( ). We consider therefore estimates of the
form

(7.4.4) Toy=2 ¥ kimp, eV
j=—m
wherea = k({/m)j= — m— m 1.. ,m 1 mande 0 elsewhere. The function, k, is called the

lag windowand m is called théruncation point.

(7.4.5) Kn() = £ 3 éVk(im)

=m

is called thespectral window. K{ )= X [ & K(t) dt is called thepectral window generator. Note that
2r

Km(A) = m K(mX) if K is concentrated on{7 #n, ). We may begin with k(t) and calculate K.or K as
desired. In general, however, we will want to weight the covariance and then use the formula

(7.4.6) hoa)=2 > k@mp, cos( )

j=—m

as the computational form. We are assuming that the time series X is real valued so that the imaginary part of
(7.4.4) is zero yielding the very convenient form (7.4.6).

Examples of lag windows:There are several classical windows for smoothing the periodogram. We may
think of the smoothed periodogram as a nonparametric spectral density estimator. It is nonparametric because
we are not assuming any parametric form for the spectral density. We will later study time-domain models
which are indeed parametric. Thus we will also be able to estimate spectral densities parametrically. The
smoothed periodogram is in a sense an ad hoc estimator. It is not chosen against any optimality criterion. The
practical consideration involves reducing the variance so as to make f ( ) a statistically consistent estimator of
the density f§ ). The trade-off is that the bias,off ( ) will increase. For this reason, a fairly large number of
different functional forms for the kernel, k, have been developed.

Bartlett window.

1— x| for|xE 1
(7.4.7) k(X) = {

0, otherwise.

The Bartlett window is desirable because of its particularly simple computational form.
Daniell window.

(7.4.8) k(x) = 99 6 < X< 00 .

X

Tukey window.

1-2at+ 2acos( x), ¥ 1
(7.4.9) k(x) = {

0, otherwise.

For a = ;11 and XK 1, k(xk —;{ 1+cas( }x) which, of course, is a particularly simple form. The value a

= .23 was at one time a recommendation made by John Tukey.



Parzen window.
-1 ?ex 8|x|s0 dx| 5
(7.4.10) k(x) = {2(1— [x]), 5 |xt 1
0, otherwise.

Generally speaking the choice of a window will have a comparatively minor effect on the spectral density
estimator. The choice of the truncation point, m, is more critical An optimal window can actually be computed
by minimizing

(7.4.11) 1§ { (B (k) }2 ﬁj{ L fe )}2 A

j=—n+1

where f is chosen from a class of smooth functions which we shall not attempt to define here The parameter,

is a bandwidth parameter and L is a differential operator. If L is chosﬁa as |, the the solution to (7.4.11) is a

cubic spline. The expression is, needless to say a rather complex expression and will not be treated here. A
fuller discussion may be found in Wegman (1980, 1981).

7.5 Statistical Properties of Smoothed PeriodogramsChoice of kernels and truncation points are, of
course, factors which will affect the statistical properties of our proposed kernel smoothed periodograms. We
state some results here which can be used to establish choices of both.

Bias. If both the spectral densityAf( ), and and the lag windoiw, k( ), are twice differentiable, then

(7.5.0) im,  m{ B Q)] = — k)

m,n

where i = —% K (0)= %fAQ K& )d . For the Tukey window ¥ — "742 = 2.5. For the Parzen window

ke = 6, so that the Tukey window has better bias properties. Equation (7.5.1) may be rewrittemas-E[f ( )]
f) = — % ).

Variance. The corresponding expression for the variance can be computed as

{fz(/\) Tk du, 0< p K

(7.5.2) " nLIm_) o = var[f, @ )] = .

’ 2 £0) [ RWdu A= 0ok .
Thus
(7.5.3) varf, )] = ® £Q)f Ku)du, 0< A kK «
We want to think of m as a function of n. We writg m . In order to make the smoothed periodogram
asymptotically unbiased, using (7.5.1) it is clear that we must chopse m . In order that the variance of
f.()) converge to O it is also clear from (7.5.3) that we must ch@ese+ 0. Moreover, in order that neither

the bias nor the variance dominate the mean square error, both the bias squared and the variance must converge
to O at the same rate. If this happens, then the mean square error will be

(7.5.4) MSE = & o



where the ¢ -term represents the bias and ¢he c -term represents the variance. We want these terms to
converge to 0 at the same rate (be of the same order) so that we may equate them to obtain

(7.5.5) % — % _
In this case”;‘2 must be a constant so that=m 5 ¢ n. This implies that m: ¢ n is optimal chaice of m in
order to have best rate for mean square error.

7.6 Practical Spectral Estimation. There are 3 choices associated with the estimation of the spectral
density by a smoothed periodogram, i.e. by

(76DE0) = £ > k&) 4, cos ),

j=—m

namely the choice of a lag window, k, the choice of a truncation point, m, and the choice of a set of frequencies,
A; at which to evaluate (7.6.1). We comment on each in turn. For a choice of a lag window, the Tukey window
or the Parzen window are usually quite satisfactory. Window choice is not so critical. For the choice of
bandwidth, m, there is a much more difficult choice here as m determines the degree of smoothing. The choice
of m, = g n? is an optimal asymptotic choice, but we usually have a fixed sample size which means that ¢ is
the critical choice. | recommend that you try m 10% of n to start, but be prepared for some trial and error.
Advanced techniques of cross-validation and other types of error criterion such as Akaike Information Criterion
(AIC) can help but are really beyond our discussion here.

The choice of frequencies,; , at which to evaluate is another fairly critical choice. Here we want a
choice that is reasonably dense along the frequency axis. Fourier frequ@nc'tesog—j are not a bad starting
point, but are probably too dense for large data sets. Some refinement of that choice with a less fine grid may be
in order! In general, there is no optimal theory. This is a nonparametric technique and so some
experimentation is in order.



Chapter 8
Filtering

8.1 Linear Filters. We now turn our attention to filters. A filter maps one stochastic process into
another. It can conveniently be and usually is thought of as a black box which has an input and an output
respectively, X= X1 asinputand.¥= (Yt as output. We can use the conceptual black box to model a wide
variety of systems such as an amplifier, a communication channel, the ocean or atmosphere or any number of
models which may transform one signal into another. Indeed, estimating the filter structure is known in the
electrical engineering literature as the system identification problem. From a more mathematical perspective,
let 7 be a set of complex-valued functions. betF i F ¢. faractional opp@rator in an abstract
mathematical setting. For ys (X5 .Y is afilter.

The filter, ¢, islinear if for every a ,.a €  complex numbers, with X2 X F such that

aX+aX c F,theny @K +a X )= @ (X)+@ €X). Thefiltep, ,is callighe invariant if for
any X € F,thenif X ()= X(t+h)and¥ (= Y(t+h)with (&= Y, wehaye (X2 "Y.

Examples of Filters. Let X; be a stochastic process.
Backward Shift Filter:  Y; = X1, t € 7.
Difference Filter: Y; = X — X1 = AX;,t e T.

k
Moving Average Filter: Y; = >~ a X ;,te 7.
i=0

t
Exponential Filter:  Y; = [e (=9 X ds,te 7 .

Differential Filter: ¢(X;) = X = %,t e T.

General Linear Filter: Y; = [w(t-s) X, ds,te 7 . Ifw(t)= O, fort< O, thent « 0 implies that

w(t—s) = 0. Thusw(t s)> Oonlywhent >s 0, thatis, whent s. Then
t

Y; = jow(t-s)xs ds = [ w(t-s) X ds.

—Co

Since we deal with values of the process in the past with respect to t, we say that the fitiesidally
realizable.

t
General Physically Realizable Filter: Y; = [w(t—s) X ds,te 7 .

The function, w(t), is called thenpulse response function We require  |w(t)| db<

—Co

The domain;7 , of X and.Y , is, in general, a subset-ob¢ co , ). This subset mayde ¢o , 00), {O, ), O,

+1, £2, } for example. The backward shift, the difference and the moving average are examples of

discrete-time filters. The exponential, differential, general linear filters and the general physically realizable
filters are examples of continuous-time filters.

We may define physically realizable filters in the discrete-time case as well. For the filtet, Y
j=—c0
CiX;—;, ifc; = Oforj< O,then ¥= > £ X; and;Y depends only on past values of X. This filter is
=0
physically realizable also.



In the discrete case we considehg=) Y= ; ¢Me L for|< . In the continuous case, we let

j=—c0
g\) = [e™ wt) dtA € (—co o ). The function, §( ), is called tinansfer function  of the filter, while

the function, |g{ J| , is often called the
frequency response functiaf the filter. Notice that the transfer function is the Fourier transform of the
impulse response function.

8.2 Transfer Functions and Spectral DensitiesNow consider a stationary process X with E[¥] 0
and spectral density. f\( ). The process X is possibly complex valued. :Let YY~ ; . ,c X 'Eth

j=—00 J=—co
lc;f < oo
Then we have
(8.2.1) E[Y]= & X 9&;} =2 ¢ E[X;]= 0
J=—o0 J=—o0

Thus the mean of a filtered process is 0 if the original process has mean 0. Consider the the expression for the
covariance,

8.2.2) ENV Y= B X exy X f Koo

J=—00

We may move the expectation operator through the summation signs to obtain

E, YL =% 3 o & ED%; Xl

j=—00 k=—c0

The expectation, however, is just the covariance of the X process so that we have

(8.2.3) EN Yl=3 3 ¢ brer

j=—00 k=—c0

which doesn't depend on t. Hence Y is stationary stochastic process. This is true in general. A time-invariant
linear filtered version of a stationary process is still stationary. We may continue the development of equation
(8.2.3) by replacing the covariance function by the Fourier transform of the spectral density to obtain

(8.2.2) ELY Y..] :g: f: ¢t f e fX VA

j=—00 k=—c0

We may reorder the integration and summations

ELY: Y] = fe? ioj c e“ji & &V fX )M
- k=—0c0

j==eo

so that

(8.2.5) EQY Y. 1= fe |3 ¢ e 2l )x= o

J=—00



But by (6.2.5), we know that! = [ ~@% , A( \d . Thus

(8.2.6) Jer X e eV 2L )d= | & ,A( N .

- j=—00

By equating integrands in (8.2.6) we have

(8.2.7) f0)= L0 ¢ eV

J=—00
or equivalently

(8.2.8) )= £Q)|oh)q.

Thus the spectral density of the Y process may be computed in terms of the spectral density of the X process
that the transfer function of the filter. Frequently we may measure both,the X process and the Y process.
Thus by computing the ratio of the spectral densities, we may estimate the frequency response function of the
filter.

The continuous time computation is similar. Jf¥ [ w(t )X ds wfth (t)kdto , we have

(8.2.9) )= tQ) J}O w(x) €27 dx|
so that
(8.2.10) fO)= £Q)I0k ).

Thus we have shown the following theorem.

Transfer Function Theorem. If a zero mean stationary process X with spectral density, f ( ), is
passed through a filter with transfer functiomy g( ), then

() = () 1gA) F.

The nature of the frequency response function largely determines the properties of the filter. A filter such that

LA <<
(8.2.11) | gk )= {

0, elsewhere

is called éand-pass filter. A filter such that

1 A< o
(8.2.12) gk )Y = {

0, elsewhere

is called dow-pass filter. Finally a filter such that



1, A= Xo
(8.2.13) | ok )4 = {
0, elsewhere

is called ahigh-pass filter.

Recall now that a white noise process, (that is a process which is a sequence of independent and
identically distributed random variables), say , has covariafice l,fors - and Gt for s 0.
Thus the spectral density of a white noise process is

(8.2.14) fa)=2% Y & =2 =12

J=—00

wheres? is the common varianceepf . It is not too hard to think filtering the white noise with a time invariant
linear filter to obtain

(8.2.15) X= Y ce.

J=—
By the transfer function theorem; X has the spectral density function

(8.2.16) )= 2 | ¥ eV,

j=—o0

This is a general linear model for a stochastic process known as an infinite moving average. If

g
(8.2.17) X = ce
=0
then
2 g iy .
(8.2.18) Q)= & | z% ¢ 2|
=

The finite moving average representation of a stationary stochastic progcess, X, yields a powerful parametric
representation in the time domain for a time series. Moreover we can see that the spectral density given in
(8.2.18) has a parametric representation with g 1 parameters. This motivates a general discussion of linear,
time-domain models of time series with a finite humber of parameters. These are known in the statistical
literature as either Box-Jenkins models or autoregressive-moving average (ARMA) models and in the electrical
engineering as linear recursive models. With this motivation, we shall begin our discussion of time domain
modeling.



Chapter 9
Linear Processes

9.1 Structural Models. A structural model describes the relationship among two are more random
variables in contrast to a statistical model which describes the probability structure of one or more random
variables. To be sure there are very intimate connections which as we indicated earlier are captured in the time
series case by the covariance structure of a stationary time series. Nonetheless, in the next chapters we are
interested in describing structural models appropriate to time series. These time domain models are, in essence,
analogs to linear regression models and, in fact, share so rather extensive theoretical connections. They do,
however, also have features which are peculiar to time series analysis.

Let us first consider a discrete time process of the form
Xe = & +ihre 1 +ifoe o +-

or in slightly more convenient form

(9.1.1) X = €& +>_ e ;.
j=1
Thee; 's are uncorrelated random variables with zero means and constant vafiance, . As defined earlier, such

a series §; } is calledvhite noise and the process; {X } is calledgeneral linear process. Notice that the
covariance function fot, is given by

Uf, k=0
(9.1.2) = {

0, k0

and autocorrelation by

1, k=0
(9.1.3) on = {

0, k& 0.

Equation (9.1.1) may be re-written under certain invertibility conditions which we describe later in the alternate
form

X =mXig+mXig ++ e

or again in a slightly more compact form
(914) )Q = Z Uy )g,j +e .
=1

These infinite summation forms, (9.1.1) and (9.1.4), while elegant do not yield a convenient calculus for
manipulating time series. It will be convenient to introduce difference equation notation for this will give us the
tools for manipulating the time domain models more easily. BLet denote the backward shift operator so that



BX; = X,-; andB' X = X_;. SimilarlyF is the forward shift operator so tikat % ;X and, of course,
F/X; = Xirj Thus we maywrite X= (13 4B’ ) as
j=1

(9.1.5) X =98k

where, of course, the operatprB ( ) is defined by {T /B )- In a similar way, we may write>(lr; B )
=1 =1

X = & as

(9.1.6) TB)X = &.

Here the operator B( )= (+ > m;B/ ). These operator forms of the infinite series representations of the
=1
time series allow us to develop a calculus. Consider applyiBg ( ) on both sides of (9.1.6) to obtain

P(B)m(B) X = P(Ber = X
from which we have the identity

(9.1.7) YvBRB)=I.
Herel is the identity operator so thhat; X  X. Notice alsoRBat ; =X8F ; =X ; X, soABat BF
= |. It follows from this thaty £9 B )= |. Combining this result with (9.1.7) we may concludejthat ()

= m(B) or equivalently tha~' § )= « B ) where inverse means the inverse operator.

9.2 The Autocovariance Generating Function and the Spectral Density Function.With the
introduction of the notion of back shift and forward shift operators, we are now in a position to develop some
simple difference equation theory. Let's first use (9.1.1) to notice that

E [tht+T] = E{ io: §:¢j¢i€tj€t+Ti} .

7=0i=0

We may interchange the expectation operator with the summation operators to obtain

E [XiXeys] = i i Yipi Elerjerr—i].

=0 =0

Because the; process is white noise, only products with identical subscripts will contribute to the summation.
Thus

(9.2.1) EXX] = fﬁo iy, oF -
=

We first observe that the right hand side of (9.2.1) does not depend on t. Because isa O mean;process, X is
also a 0 mean process. Thus (9.2.1) describes the covariance fgnction  of a stationary process. We may thus
write

(9.2.2) EXX]= =0’ fﬁolﬁﬂﬁw
£

Our only concern is with the convergence of the infinite series represented in (9.2.2). We assume that

Zzpj? < 00. Using Schwartz's inequality, we may conclude thag i~ < o
=0 =0



We may definey (s > v "s to be thetocovariance generating function. We may substitute the

T=—00

expression (9.2.2) foy, in the definition of the autocovariance generating function to obtain

9.2.3) YE)= 7Y St s,

T=—00 j=0

As is the usual routine, we interchange the order of summation

«) = o2 Y i@ﬁﬂﬁw $

J=0 7=—7
where it is understood that;, = 0<j 0. We may now re-index by letting j= hsoteat — h .
With this we have
V(S) = o2 3 Yhn S
7=0h=0

We may now separate the sums to obtain

W) = o2 S S S Sy
h=0 =0

Finally, re-writing in terms of { ), we have

(9.2.4) ()= ol (sh (5 )

As beforeB™' B = | andalsBB = | sothat= B! . Thus substitutlhg fors

(9.2.5) 18)= oY BYF)

As an example, consider a time series process whose structural equatiends X ; + . We may re-write this
asX = (18)%. Thusy B = 1-B and B = o2 4B (I*B~! ). Notice here we adopt the convention that

& = 1is replaced witl” = | . We may expand this polynomid in  to obtdBn=(c) I+B+B~' BB ¥ ) or
v(B) = 0?(2 I+B+B~!'). We may use the autocovariance generating function to reconstruct the covariance
function. Reading off the coefficients, we may deducethat o2 8 = v 1 = o? , and finaly 0,
Irl > 2.

The autocovariance generating function may be used in another clever way. To see this application, let
s = e® . Recall by definitiony (s 3. v 7s. Thus when we substitite e  for s, we obtain the spectral

T=—00

density function given below as
1(e?) = ¥ yeh = 2R)—r<A<T.

he covariance generating function is reljated to the spectral density function by the equation
(9.2.6) f0)= ty(e?),—m<A<T.
In our previous example, X= ¢ e 1 v, (8 02 (2+s+s ). Thus

) = 10 = Z o4 o<,

We may simplify this to
f()) = 2 2 (1+cosh )= ZEOR) i <q

which is a particularly simple form of spectral density. Another informative example is the case for white noise,

X; = €. In this casey (s)= o2 so that\f( > %2 , aconstantforr < A <7 . This gives insight to the use
of the phrase, white noise. As with white light, white noise contains all frequencies with equal amplitude. The
fact that the spectral density function is constant verifies that all frequencies are of equal amplitude.

The general spectral density is computed by first observing that the autocovariance generating function

is given by
, 1(s) = o P (s (sh).
Substituting e for s, we have
02 i . Ug .

(9.2.7) fO)=¢E" 3 @)= 3 ¢4 & ).
Thus if we know the infinite moving average form of the general linear model, then we may calculate the
spectral density function directly by (9.2.7). This is a very powerful equation as it allows us to move from a
time domain model to a frequency domain model easily. It also has the enormous advantage that if we have a



finite parameter time domain model, we may easily calculate the spectral density parametrically in stead of
having to use the nonparametric smoothing windows techniques we studied in Chapter 7.

9.3 Stationarity and Invertibility. We have already determined that for the infinite moving average

representation, X is always stationary provided ﬁaﬁ? < co Suppose we assugjthat co . For this
=0 =0
series to be convergengt; — Osothat{ | Oaswell. Thus eveniyally | | 1, goithaty. | | |. This
implies that)~ ¢, < co so that
=0

W) = L s
=
exists on and within the unit circle, |s] 1.

If a time series process with -weights can be changed to a process with conwerging -weights, it is
said to beinvertible. A series may not be invertible becauserthe  weights increase instead of decrease.
Consider for example %= | B ¢) . The inverse operatorlis ¢B 1 )= | B+/’B? --- + ) so that
Xi =€ — ¢Xt—1 - ¢2Xt72 -

Thus7; = — ¢’ soifd |>1, the weightsincrease. We say Kwiertible if the generating functionrof the
weights,

7T(S) = Z T s
7=0
exists on and within the unit circle, |s] 1.

In the special case of the -weight representation when we have only a finite number of weights, we
call the processautoregressive and write

(9.3.2) X = g1 X1 tPa XKoo+ Fpp X e

We denote such a process by AR(p) and p is calledrtes of the process. We cah-write B — ---
— ¢,B?) X; = ¢ or in operator form

(9.3.2) pB)X = &

where, of coursep B 3 1 ¢B—--- —¢,B ).

If only a finite number of the) weights are non-zero, we call the process/lg average process
and write

(933) )Q = €& — 91675,1 - 92675,2 — = qut,q .

We denote such a process by MA(q) where now q is calledrties of the process. We can write X
(I — 6B —--- —§,B%e or in operator form

(9.3.4) X = 0B).

If we have more complicated data, it is sometimesessary to use a mixed model which is given in operator

form by

(9.3.5) pB)X = 0B -

This is called amixed autoregressive moving averaggrocess of order (p, q) and abbreviated ARMA (p, Q).
These three classes of models represent the most general form of finite parameter linear models for the structure
of a time series process and are commonly knoBasJenkins models . We will study these time domain
models in more detail. We note in closing this section that autoregressive processes are always invertible by
definition and that moving average processes are always stationary. Autoregressive and ARMA processes may
be stationary and moving average and ARMA processes may be invertible. Conditions under which they are are
the subject of our continued study.



Chapter 10
Autogregressive Models

10.1 Autoregressive Models. Let us now consider a general*p order autoregressive model,
Xi = g1 Xst--+PpXipte or (I —pB—---—¢,B°) Xy =¢(B) Xi =¢. Clearly this is an invertible
process, so the question in this case is whether it is stationarity. For statignarity (s) must converge for |s|
1. We know by definition that (s) is &p order polynomial. Suppose wedvrite in terms of its factors

(10.1.2) ¢ ()= K—up s(—uz s)- I~u, s).
We may expand (10.1.1) in terms of partial fractions as follows

1 1 _ k K
(10.1.2) ) — Tws) Ty (£1U1 s)+ ot @y s)
so that

p
Xt = leil(B) €& = Z —17kllle €t .
i=1

Now expandi—5 « as (1 B B +- ¢ which is stationaryuf |<| 1. Hence'the p order

autoregressive process is stationary;if K | 1fefi 1,.2, ,p. Setting= (s) 0, we fing (1.-- s)

(1-u,s) = 0. Hence the roots are the polynorgial (s) are= § ... ,i , . Fhus | |>1if and only if

lu;] < 1, so that an autoregressive process is stationary if and only if the roots of the eguatien, (s) 0, lie
outside the unit circle. The equatiop, (s) 0, is calledatindliary equation and has much practical
importance in time series analysis.

Let us again consider the autogressive modegk=X: -1 X-- %, +,% + . We wish to develop an
expression for the autocovariance function. Multiplying through this expression by X , we obtain

(1013) x)ng = ¢1 )Qfl K*T +.-- +¢p xfp )QfT +e XfT .

Taking expectations, we see that

(1014) Vr = Pryr1 oo +¢va71} 7 >0.

Note that X, depends only o, ¢ 1 ... and so is uncorrelated awith . Thus, E[ %X ] 0.

Dividing (10.1.4) byy, , we obtain an expression for the autocorrelation function
pro= Prpr1 + tPpprp oo,
or equivalently
(10.1.5) ¢By = 0.
This latter expression is homogeneous linear difference equationwhose solution is given as a linear
combination of a function of the roots of the auxiliary equation.

In particular if¢ (s)= (X uw s)- (+u, s)andallthe are distinct, then

(10.1.6) pr = AUl +AU +-- +AL
wherer is an integer. Consider, for example, the teyg) A . Operate on it with the opératarB ( ). Then
(I-wB)AL U = AiU — uA y ! = 0. Similarly the term Ay s eliminated by y B ). l}l1 is a
double root, i.e. if¢ (s) contains @u; 2s), then the solution becon}ags A th . Notelthat B )
Al = (I=uBJA7E —uA (7 -0 T =(1- uBA 1§ =A ;0 00— A U1 =0

Similarly for higher order multiple roots.

Now returning tqo, = ¢1p,—1 +-- ¥, pr—p , NOtiNng the symmetpy, = p. , and letting k 1,2
, ... » P, We obtain a series of equations
p1 = ¢1 Tap1r o FPppp 1
(10.1.7) p2 = d1p1 tpa too Hppp o

Pp = P1op1 tP2ppa to Py

This set of equations is known as thde-Walker  equations and they relate the autoregressive coefficients to the
autocorrelations (or equivalently the autocovariances). In matrix form write



1 .
A . .
¢: ,p: M le: : p

So that the Yule-Walker equations become
(10.1.8) ¢ = P;lp.

We have used the basic autoregressive difference equation to derjve the  coefficients in terms of the
autocorrelationsp, . Next we wish to derive the variance, , in terms of the autocorrelations and the
autoregressive coefficients. Let's consider agaig-X: -1 X-- #, +,X% + . Multiplying:by X , we obtain

X? = 1 XX+ o+ P X X+ g X
Notingthat E§: X]= Ef ¢ B} |= E{ ]= o2, we obtain
(10.1.9) Yo = b1t Ky, WL
Now dividing byy, = o2,
1= gip + +hopy +2
or

2
2 _ Oe
z

o, = T .
1-¢ip1 — - — dpop

Also notingy (s) = the spectral density becomes

1
#(s)

f(/\) = % hb(é/\ )? = U?;r |1,¢1gm,.1..,¢p e g -

10.2. First Order Autoregressive Process (Gauss-Markov Process)he first order autoregressive
process is X=¢1 X1 & = & d1e 1 qb%et,g +-  where- 4 ¢ < 1 for stationarity. The auxiliary
equation isp (s (&1 sy 0, so that the difference equatios ¢1p, 1 has solutierp] > , Kk 0. In
particularp = p1 = ¢1 so that often the process is written=X0 ;_1Xe; + . The autocorrelation function either
decays exponentially; > 0 or oscillates, but the oscillations decay exponentially. The vatiance is given by

2 2

2 _ T¢ _ %
(1021) g, = T rp% .

The spectral densityX( ) is given by

2

(10.2.2) fQ):%m,—WS/\SW.
This may be expanded as
) = 3 i 95%7951:([9”4* ey —TSALT

or



_ a 1
f(’\) — 2r 1+¢Z—2picosh )
10.3 Second Order Autoregressive Proces3he second order autoregressive process is

(10.3.1) X = ¢1 X1 tPa X o +e .
For stationarity, the roots of the auxiliary equatign, 4s) —14 — o 2 =s 0, must be outside the unit
circle. A necessary and sufficient condition for this is thathy ¢o € i1, ¢o — 1 < 1, iiand
—1< ¢y < 1. This is a triangular region of admissibility for the coefficiefits @&nd . *A%suming
distinct roots, the solution to the difference equation= ¢1p-1  Popk o ,is
(10.3.2) or = AUl +AU .
We need some initial conditions to solve for the unknown coefficients, A and A . Recal) that 1 and,
from the Yule-Walker equations, we havei = ¢ ¢opr .  Henge = 1?;52 . Now since
1-¢is—gS=(1-ws)(Fws)= T U % )sHuy’s,wecanwiie= u o+ gnd= — u
Thus

L= ﬁtluaz
Using this together with the condition that = 1, we can write
(10.3.3) po = A+A = lang = An +Ah = fﬁtlﬁ

Note the symmetry iy, ang ;A and A. Now
Ay + (1— Al)Uz = dtu

I+uiw
which implies
Al — ) = W
so that
_ U (1- 1)
(10.3.4) A= (u—w)(H+uw) -
By symmetry,
_ Uy (1-uf)
(10.3.5) A = gruaraw,
hence
_ @—wat - @-d)gt
(10.3.6) L TRy G ERTYTS)

In this casep, is a mixture of exponentially decaying functions possibly oscillating if either ofu, or is
negative.

If the roots are real and equal, say , then= [UA ™A . Again using the initial conditions,
pPo = Ai=1 and,al = Au+ Au= 1332 . Thus
_ 2
Artl= 175
so that
1-u?
(10.3.7) A= -
Hence
oy = uT+ijr_3zTuT: l+u21jrrL;le2 u.
Thus
17+ (-7 2 e
(10.3.8) pr = % U

Thusp, either decays exponentially or is dominated by a decaying exponential.

Finally, if the roots are complex conjugate pairs, we can wiite u®° e uamdu " e . Since
[ur] < 1, we also havel|< 1. Now
pr = AUTENT 4 AT

Taking complex conjugates,

,0: = p, = AT uTgi/\oT +%UT é/\oT .
Sincep, is real, we can identifyA= A and;A A . LetAl +a bi)andAl +@ bi). Then

pr = S(a— bijr €7 4 (a+bi)r T
Collecting coefficients, we have



- ez)\o'r +e—1)\0-r) é/\077 e—z)\o-r )
(10.3.9) pr=u { CERRLED N i } :

Using our earlier trigonometric identities,
(10.3.10) pr = uT{ a cos\g7 ) + b sik(r })

where a and b can be written in terms of A . Once again wefind is dominated by a decaying exponential.

Using the Yule-Walker Equationg, = ¢1 ¢3p1  apd= é1p1 ¢o+ , we may obtain

(10.3.11) pro= dip1 Hpopt angy = pip h

may be combined to solve for the

(10.3.12) ¢ = T

From this¢; = (1— ¢9 p1 = %ﬁfmm , So that

(10.3.13) b1 = Plii;gz) ]

Solving in turn forp; ang,
(10.3.14p1 = 114,

and
¢
(10315) P2 = 1—¢5 +¢2
The variances? is given by
2 _ o
9 T Tt

Substituting (10.3.14) and (10.3.15) in this expression

o2

2 _ e
g, = q% q% .
15— darih ods

Simplifying by multiplying top and bottom by (2 ¢» ),

2 _ (A-¢2)o?
2T 1-do—di—d3(1-da)—ide "

[

Now collecting coefficients

2

2 Yy o
(10.3.16) 0= Th @

Finally the spectral density is given by

(10.3.17) )= 5 moetse -



Expanding the expression in the denominator, we obtain

S

o =2 ) |
2r 1+¢%+¢%+2¢1 (o— 1){ éM;,rzA } — %2{ @ngzm }

Using trigonometric identities once again, we obtain the closed form for the second order autoregressive spectral
density

S

__ Ge 1
(10.3.18) )= 2 T o) & wse )

Thus the theory of autoregressive processes is quite complete with respect to expressing the autoregressive
parameters .,. ¢, g2 and, by extension, f( ), in terms of the autocovariance, . Since we have the ability
to estimate~, directly from the data, we have a reasonably satisfactory approach to estimating the
autoregressive structure in general. Two facts are evident in this discussion. First, we are estimating functions
of the moments, that is, functions of the covariances. This is essentially applying the method of moments,
which, although it has a long history, is certainly not guaranteed to give us any statistical optimality. It would
be better to consider least squares or maximum likelihood techniques if available. We shall do this later. Also,
left unsaid was how to determine the order, p, of the process. We address this issue by the use of partial
autocorrelations.

10.4 Partial Autocorrelations. The autocorrelationp, , is a valuable diagnostic tool in fitting time
series models. As we have just seen, is a function which either is a decreasing exponential function or at
least is dominated by a decreasing exponential function wheneyer X is an autoregressive process. A second
function which will serve as a diagnostic aid is plagtial autocorrelation function of lag k.- . To define this
let ¢.; be the'f coefficient of an autoregressive process of erder . Thus, our stdhdard p order autoregressive
model becomes

pi = Sripi—1 + Prapi—2 t Fbpir = 1,2,.. T .
From the Yale-Walker equations, we have

¢T1
(10.4.1) = Polps

rr
so thatp.- can be easily picked out. Ngie = p; . Also worth noting is that if X is truly an autoregressive
process of order p, the,  will be non-zerofoK p.

The partial autocorrelations may be estimated by fitting autoregressive processes of orders. 1, 2, 3,
AN N AN
and picking out the estimateés;, ¢35 ¢33 ... . X is an autoregressive process of order p, then for
AN
p+1,4.. should approximate 0 and the its variance given by

h 1
var [¢TT] "

so that the standard erroer‘T is approximated by

(10.4.2) SEp., ]~ L 7> prl

N
As a diagnostic tool, we can thus plot the as a function of . By drawing in the SE limits we can compare

AN AN
the values oft_. to the standard error estimatesp.If lies well within the two standard errors limit, it will
probably be estimating,, = 0 and hence the process is of order less than






Chapter 11
Moving Average Processes

11.1 Moving Average ProcessedVe now turn our attention to a moving average process of order q given

by the expression, )%= ¢; — 6161 —--- — 0,6, . EXxpressing thus in terms of a backwards shift operator, we
obtain
(11.1.2) X = (-6B— —6B} =68

Recall that a moving average process is always stationary, but may not be invertible. However, in its inverted
form we would have; = 67! B ) X. Ifwe let

6(s) :,IQI (1—v;s)
j=1

and expanding as we did in the autoregressive case using partial fractions, we obtain

1 Lom
TS =) =1 s
j=

As with the stationary conditions for an autoregressive process,

1
v = 1+VvB VB4

provide y; | < 1. Hence.,X will bswvertible ify & 1 for eachq 1,2, , g. Or equivalently=X
6(B)e; is invertible if and only if the roots of this auxiliary equatién, £s) 0, lie outside the unit circle.

Just as the autoregressive process was always invertible because:| ¢s)| for all s, so too is the
moving average process always stationary becaguse ()] < &) for all s. It is worthwhile to note this
duality between moving average and autoregressive processes. It recurs frequently. To compute the
autocorrelation function for a MA(qQ) process, consider

Yr = E [thth] = E[(et - 91675,1 - = eqetfq)(eth - 91675,T,1 - = eqethfq)]
Hence, since only terms with similar subscripts onsthe  will contribute to the covariance, we have
(11.1.2) w = (1 +9%+~~~+6§ Y2

and

(—046010r1++ - +0,-10,)0%, 7= 1,2,.. , q
(11.1.3) v, = {

0,7>qg+1l

Thus the autocorrelation is

*197+l91197+1+'"+9477941+5%$§+__Wg, 7T=12,.. ,@r>q+1-
(11.1.4, — {



Notice for the MA(q) process, the autocorrelations behave like the partial auto-correlations do for the AR(p) in
the sense that they are non-zero up to some cut-off point q and the zero from then on.

Similarly for the moving average process the partial autocorrelations will be dominated by an
exponential function. Again the duality between autoregressive and moving average shows up. Comparison of
these two functions, the autocorrelation and the partial autocorrelation, frequently allows us to distinguish
between data which follows autoregressive and moving average processes. Since
P(s)=0(s)= 1-6; s—--- — 0, § , the spectral density function is

n 1o

(11.1.5) )= 2 p@E*fl=2% |6, & —.— 0, 2],

11.2 The First Order Moving Average Processlt is instructive to consider several simple cases of the

moving average process. We begin with the first order moving averagee X 6161 . In the operator form
we have,
(11.2.1) X = (—9B)e = 6B .

For invertibility, — 1< 6; < 1 sincegl1 is the root of the auxiliary equatiion £s) 0. The variance is given
by

(11.2.2) Y = (197 ¥?

and the autocorrelation function

A =1
167"
(11.2.3) pr = { .

0,7>2

Of course, as always = 1. We note from this equafions —6( HHL )Pthat pand  are related in a
non-linear fashion. In facté is a solution then sélis  since

1
2 —06 —61

PL= 103 = & = Te
1

The spectral density function for the first order moving average process is
02 .
(11.2.4) fa)= 2 |1-6 e*? .

Expanding the square modulus

PR

f) = 2 {1+9§— 291(#)}

which reduces to

PR

(11.2.5) fo) = U{1+9§ — 7 cosx(}) .



We can calculate the partial autocorrelations from the Yule-Walker equations and our expressions for
p-. In particular

—6;
1 1463 0
—61 —6;
pp= |Bd 1 TA
: : .
0 0 0 1463 1
so that
—6;
1462
d)TT 0
Solving this forg,, yields,
(11.2.6) 3. = —oT -8

which is dominated by an decreasing exponential. Notice that the partial autocorrelation for the moving
average process has this damped exponential property that the autocorrelation of the autoregressive process has
and simultaneously the autocorrelation of the moving average process has the cutoff property that the partial
autocorrelation of the autoregressive process has.

11.3 The Second Order Moving Average ProcessThe second order moving average process is
X: =€ — 016,17 — Bae, 9. Of course it is automatically stationary. In analogy with the AR(2) process, it will

be invertible if and only if the roots of the equation-8 —& ?=s 0, lie outside the unit circle.
Equivalently, again in analogy to the stationary conditions for the AR(2) case, if and ordy i#; < +ii. 1,
6, — 61 < landiii. — 1< 8, < 1. The variance of the second order moving average process is

(11.3.1) Yo = o? (142 43 )

and the autocorrelation

_ =6i(1-6s)
AL = Trere




(11.3.2) 0y =

and

The spectral density

(11.3.3) o) = %2 |1 6, & — g, e |2

which may be written in real terms as

(11.3.4) )= Z { 16 42— B (16 )cod() @2 COSXZ})—,7r< A<

Again it is clear that the basic theory for moving average time series is in hand. The major difficulty is that, in
general, the relationship between the moving average coefficignts, , and the covariance fynction, , is
nonlinear whereas the relationship between the autoregressive coeffisients, , and the covarianceyfunction,
is given in a linear fashion by the Yule-Walker equations. For this reason as well as their analogy to differential
equations modeling physical systems, the autoregressive models seem to be somewhat preferred. Nonetheless,
the autoregressive models may not be a very economical representation. The most general finite parameter
representation of a linear process is given by the mixed autoregressive-moving average models which we study
in the next section.

11.4 Mixed Processes-Autoregressive-Moving Average Process@sorder to achieve a representation
of a time series data set with a finite number of parameters, we can consider a mixed model

(11.4.1) X =G X+ Hp, X ot —Oie g — =06,
or rewriting in operator form
(11.4.2) PB)X = 6B .
We refer to this as an ARMA (p, q) process. Noting that
X: = ¢~ '(B)I(B)e:

we infer that the process will be stationarypif'! B () exists, that is, if the roots of the auxiliary equation,
#(s) = 0, lie outside the unit circle. By the same token,

0-1(B)p(B) X = e

so that the process is invertibleéf! B () exists, that is, if the roots of the auxiliary equatios, (s) 0, lie
outside the unit circle.
Next, we multiply (11.4.1) by X, to obtain

(1143) XX = ¢1 X 1X r+- +¢p thp X s
*; )ng - 91 x776t71 - eq )Q,TGt,q_

Notice that Ef;_; X, ]= O provided + j>t r , that is, providedjr . WritecE} X =]y 74 ]) SO
that



Yez(T7) = 0, 7 > 0
and
Yez(T) # 0, 7 < 0.

Taking expectations in (11.4.3) we obtain

(11.4.4) Ve =Pyt Wy e Cr0vye - 1~ eq')/ez t- a).

Hence ifr — g> O, thatis; > q

(1145) Yr = ¢1'YT71 +-- +¢p’YT7p
and so
(1146) Pr = ¢1PT71 +-- +¢pp7'7p, T>q *

We may write this operator form as

(11.4.7) $8y, = 0,7> q.
Thus there are q autocorrelations... .1 , which depenéion 6, , aswgll.as¢,, , . The remaining
autocorrelations satisfy the usual difference equatidB,p- (=) 0, and, hence, will be an exponentially decaying

functions or at least dominated by an exponentially decaying function. \en 0,

Y = ¢1'Yl+"'+¢p7p+052 — Ve (= )= — eq')/ez (= a).

Hence to solve for, we must solve simultaneously with the p equations (11.4z43for 1,2, . p-

Using the covariance generating function the spectral density is

_ ot ey’
(11.4.8) fa) = 5= BET T .

Becaused (s) and (s) are polynomials, this is sometimes referred to as a rational spectral density (rational in
polynomials). It is easy to see that rational spectral densities can approximate a very large class of functions, so
that the ARMA model is, indeed, a very powerful one. We may expand these polynomials to

‘17191671)‘7---719;)‘4‘2
[T e ——g e r? -

(11.4.9) )= &=

Finally, sinces; = 6~ 1(B)¢(B)X; andé~" (s) is an infinite series, the paf autocorrelation is infinite in extent
and eventually behaves like the partial autocorrelation of a pure moving average process. It is perhaps worth
examining the ARMA (1, 1) in a bit more detail.

11.5 The ARMA (1, 1) Process To understand the generality of the ARMA (p, q) process, it is
worthwhile examining the ARMA (1, 1) process. This is particularly useful since the parameter estimation
problem for the ARMA (p, q) is in general quite messy and the ARMA (1, 1) illustrates the principles a bit more
clearly. The ARMA (1, 1) given by

(11.5.1) X—¢p1 %1 = &—bie 1.

The process is stationary# <d¢; < 1 and invertible-if <¥; < 1. The autocovariance is given by



Yo = Ar171+07 — b1y (— 1)

(11.5.2) M = $170 — bio?
Y= 1y, T 2 2
Also note
Xieo1 — 1 Xio161 = eeq — b1el |

so that taking expectations we obtain
(11.5.3) Yeo (— 1)— ¢102 = —b10?
Thus, we may substitute the expression in (11.5.3)for— ( 1) into (11.5.2) to obtain
(11.5.4) Yo = g1 B2 — 61 1 — 61 §?
so that using simple algebra
(11.5.5) Yo — ¢ = of (I-bigy 47 ).
Also from (11.5.2) we have,
(11.5.6) g1y — Pl = of (61 h
Eliminating the¢;v; term by adding (11.5.5) to (11.5.6),

Yol —¢2) = o2(1— 16147 — 6161)

so that solving fory we obtain

(115.7) o= o )
1

By a simple substitution,

(11.5.8) y = 052 (1*¢1fi)ng§1*t91) )

By division of these relationships,
_ (=¢61)(¢1—61)

PL= TTrel-2p6;)

and
pr = ¢1pr1, T2 2.

The above discussiorallow us to estimate the parameters of an autoregressive process, a moving
average process or a mixed process once we have settled on a model. The model building process is not a trivial
one and fundamental questions as to model order and type must be addressed. We have suggested the use of the



autocorrelation function and the partial autocorrelation function as tools to the end. The following table
summarizes the behavior of different linear models.



Models in terms
of X's

Models in terms
ofe's

7w Weights
1 Weights

Stationarity
Conditions

Invertibility
Conditions

Autocorrelation
Function

Partial
Autocorrelation
Function

Autoregressive
¢ B )X=e

X=¢"Bg

Finite Series
Infinite Series

Roots ofp (s)= 0 lie
Outside Unit Circle

Always Invertible

Infinite, Tails Off
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Chapter 12
Nonstationary Processes and Time Series

12.1 Nonstationary Time Series Modeldn the previous chapter, we introduced the ARMA model

(12.1.1) pBIX = 0Bk

with ¢(s) and? (s) polynomials in s of degree p and q respectively. We assumgd teat (s) 0 had roots outside
the unit circle so that the resulting process would be stationary. Suppose now we allow the possibility of roots
on or inside the unit circle. For simplicity consider the AR(1) model

(1— QZSB)Xt = €&

If ¢ is taken as two, root is 1/2, then, for example, the series increases or decreases exponentially essentially
with no effect from the random inpug; . We will often refer to ¢he raamlom shocks or jesibcks.
Similarly in any model for which one or more of the rootspof ={s) 0 lie strictly within the unit circle, the
process will behave in this exponential manner essentially independent &f the 's. In this circumstance the
process is essentially deterministic and there is little need for a statistical analysis. We consider then only those
cases where the roots lie on the unit circle.

In particular, we now entertain the model
(12.1.2) ¢ BU-BYX =68} .
Here¢ @) is an ordinary stationary autoregressive operator. WelwriBe= A , the difference operator. Thus
our model can be writtett B(AY % 0 Ble) @b B( )¥= 6 Be) with,¥= A? X . After proper differencing

of the process X we have the usual ARMA (p, q) model. NowX? ;S Y where S is the infinite summation
operator defined by

(12.1.3) SX = zt: X= (1BB B + )X

k=—c0
which may be written
(12.1.4) SX= (B} X=AlX
Thus the summation operator is the inverse of the difference opekator, . Similarly

X = SX +SX 1 +SXy +-
which may be written as

52=ii&

i=—00 h=—00
and

S3Xt=2t: XJ: XZ: X, .

j=—00 i=—00 h=—0c0

Differencing is very much analogous to differentiation while summing is analogous to integration. For this
reason the model (12.1.2) is called theoregressive integrated moving average process of order (p, d, @nd
abbreviated ARIMA(p, d, q).



One important feature of the nonstationary process of the type we seek to analyze with the ARIMA
model is that the local behavior must be independent of the level of the process. That is, we want,

(12.1.5) ¢ B)X+C)= ¢ B)X.
Note that by adding thA  operator in (12.1.5), we obtain
¢(B)A(Xi+c) = ¢(B)[Xi+c— X1 —c] = ¢(BAX;
which is independent of level. Thus, for a process which is homogeneous except in level, the model

(12.1.6) PBNX = 0Bk

is appropriate. If, in contrast, a series has neither fixed level nor fixed slope, we require

(B)(Xi+mt+c) = ¢ B)X

By introducingA? into this equation, we have
P(B)A*(X+mt+c) = ¢ (B X.

In this case an ARIMA (p, 2, q) is appropriate.

It is sometimes useful to consider a slight extension of the ARIMA process

(12.1.7) pBNIX = 6 ¥ B

The operators B ) is the autoregressive operator and it is assumed that the roots lie outside the unit circle. The
operator¢ B \¢ is thegeneralized autoregressive operatoand finally ( Bis the moving average operator

and it is assumed that the roots here also lie outside the unit circle. If we wish to indetdgnainistic

function of time as a trend, this can be done by chodging non-zero. For example ifd 1, we can estimate a
deterministic linear trend in the presence of nonstationary noise.

12.2 Some Important Special Case§Ve consider the following special cases in some deétail:  ARIMA
(O, 1, 1), AX=e—big 1= (—0B¥; ii. ARIMA (O, 2, 2),
AQXt = — 91675,1 — 92675,2 = (| — 918 — 92 BQ)Gt; and iii. ARIMA (1, 1, 1),A X— ¢1A X1 = 91675,1 or
(I — #1B)AX: = (I — 61B)e. Let us now write for the generalized autoregressive operator,

(12.2.1) 3B)= ¢ BN .
We will write the model in three forms.

Let®®B) = |- & B- B — - — &, B, sothat the general modél &  0) can be written
(12.2.2) X =@ %X 1+ +Pp 0% p g — e — = o te

For example, the ARIMA (1, 1, 1) is@¢B )YAB )% ({@IBe) where we drop the suffix ¢on  fand
This ARIMA (1, 1, 1) model may be expanded as

{l —(1+¢)B+¢BQ}X75 = (l — HB) €t
or
Xe = (L+p)X1 — pXigte — O g

It is sometimes convenient to represent the ARIMA models as a infinite moving average, that i, with
weights. For nonstationary time series models,sthe -weight representation does not converge. Thus strictly



speaking the following discussion is only a formal computation. It may be used to suggest relationships among
the 7 -weights, they -weights, the& -weights and the -weights, but because we are manipulating non-
convergent series, these relationships must be verified by more rigorous calculations. We may formally write
X: in the infinite moving average form

Xy = e+hre 1+ o+ -

so that

Xt = lﬁ(B)Gt
Operating with® B ) on both sides yields

®(B) X: = 2(B)y(Be
But since
@(B) Xt = H(B)Gt
we can identifg B )= & B9 B ). Thus,
(I —®1B — - — &, B ) (I+¢1B+ 3B+ ) = (I — 6B — --- — 6,B9)

Notice that if j is sufficiently large, namelyyj max(p+d 1, q), thengthe weights must satisfy

®(B)y; = 0.

Thus for j sufficiently large, thep; satisfy the same homogeneous difference equation as the covariance
function, v, , and, hence, can be written as a mixture of polynomials, exponentials and sinusoids in the
argument j.

Consider for example the ARIMA (1, 1, 1). Here

®(B) = | - (1+B+B?
so that
{I —(1+¢)B+¢B?} A+ Bty B+--) = |- 6B
Thus
—(A+¢) +ipr = — 0

and fory; > 1,

Y5 — (Lt pbj 1+ 5 = 0. '
This is a second order difference equation with roots 1¢and . fhas o (A +A> ,j 1. Solving this
simultaneously with— (14 X = — 6 vyields

Thus the ARIMA (1, 1, 1) can be written
Xi = Y (ActAip)e;
=0

with the above values for)A andi A . Notice that far;A 0, this is not a convergent series and so, in some
sense this infinite series representation is nonsense. Even so, it will have some utility in establishing forecasting
procedures for the nonstationary time series models.

Finally we can write the ARIMA time series model in its inverted far® { 5>¢; or
Xi = mXeo+maXig + -+ .

As before, operating on both sides witiB ( )



6(B)r(B)X; = 6(Be = (B)X..

Thuswehavé Bn K = & B )or

(| —@18— —q)erdBerd) = (| —918— —qu)(l—WlB—WQBQ — )
For j> max(p+d, Q)¢ B 4; = 0. We again return to our ARIMA (1, 1, 1) as an example. We have
(12.2.3) f8xB)= %8)

or
7(B) = {l —(1+¢)B+¢BY( HOBHH? B+ )
so that by equating corresponding coefficients
— T = 9 — 1— ¢
—my = ¢+97 — H(1+p)

—m = O — (I, > 3.
Rewriting and solving for the -weights

and

™ = 1+¢ -6
m = (0 —¢)1-0)
= @ —-#)A-0p7, j> 3.
Let us also observe that if d is greater than 0, since= () «S)1 s), we may concludle that (1) 0.
Substituting in (12.2.3)
0=%@Q) = ¢y ().

Sinced (s) = 0 has roots outside the unit ciréle, ) 0. Thus 1) Osothatd 7 = 1 0 or
j=1

equivalently

(12.2.4) =1

Thus if d > 0, ther -weights must sum to 1. They are not necessarily positive, so that they may not be a
probability distribution.

12.3 Integrated Moving Average Process Modeldn this section we wish to considategrated moving
averageprocesses (IMA) of the form? X= ¢ B) . Two models of particular interest are the ARIMA (0, 1,
1) = IMA (1, 1), %X = X i1+ —0¢ 7 and the ARIMA(O, 2, 2)= IMA (2, 2), X =
2Xi_1 — Xi—oteg — e — bae o,

First the IMA(1, 1). Let us note that we may write
|-6B = (1-6)B+1—-B) = (1-6B+A = nBA ,withp = -6 .

We can thus reparametrize the process as
AXt = 77€t,1+A6t
Again the following computation is purely formal. Applyidg! = S to both sides
Xi = nSe_1+e
ButA—! = (1-B)! = 14#+B?> +- sothat

Xt = nZet,j+€t.
j=1
They -weights argy = lantk = n = 10 >j 1. To consider the inverted form of the model
X: = ijxt,ﬁet = >_(t71(7r)+€t
j=1

where we define X_;  )tob& 7; (X; . We notice
=1



(I-6B)x(B) = | — B.

Equivalently, 165 (1-6)
1- —vs (L 0)s
mS) = 195 = —ies

We may simplify this to obtain
w(s) = 1— &9s,

Expanding the denominator as an infinite series

7(s) = 1— s(1-60)1# st s+ ).
or

7(s) = 1— (1-0)s#% 8%+ ).
But 7; is the negative of the coefficient éf s so that
o= 1-0p" = n@-nyT, j2 1
except formy which is 1. Thus;X is axponentially weighted moving average (EWMA) of previous values.
This is sometimes also called exponential smoother or aaxponential filter. For this case, we can write
Xeal) = 13- "%

so that
Xin) =n Zl (/) p R
=

Factoring out the first term,
Xin) = nXi+n 22(1— nY 1 X1
=

We can make a change of index by letting k— j 1 so that
Xo(n) = X+ n (=) %o
Factoring out (- n ) we have
X(n) = X+ (=i & (A=) X

Thus

B Xi(n) = nXe+ (1=n) Xea(n).
The function, X 4 ), may be thought of as the “level" of the process at time t. Since § 4 1, we have that
O<n< 2. InmostcasesQn< 1. 4f is close to 0, the “level" is almost constant. If is close to 1, the
level is determined almost exclusively by the mesent obsemtion, X . Since
Xy = Xia(n) + &

and B B

X(m) = nXeH 1 —n) Xi1(n)
we have _ _ B

X(n) = nXia(n) +ne + (1—n) Xee1 @)

or



X(n) = Xi1(n) +ner.
Thus while the process itself has the random shgck, , the level of the process has randoma; shock, , which
may be more or less than depending;on

Let us now turn to the ARIMA (0, 2, 2). We write
| — 6B — 63B% = (noA+n;)B+A?
where
6 = 2—m—m anddy =m — 1
or in inverse form
o = 1+92 andm = 1 91 —92 .

We can then write the ARIMA (0, 2, 2) as
A?X; = (qoA+m)e 1 + A .

Again we make a formal computation. Taking invekseA~! = S, twice
Xi = moSe—1 +m Se1 +e .

But

Se 1 = €1 teg tegg +--
so that

S = S +8 +83 +-
We may expand to get
Se 1= €1 +eg te 3 o
te o teg 3+
te 3 te g oo
+ Et—A 4 e g+-o-

Collecting like terms, we have
Seq = €1 +29 +3 3 +-- .
Thus
X = &+ @otIy ) +Qo+dn fro +Go +31 63 +-

The weights are
P = 1
¢j = 770+j7711 JZ 1

To find the inverted form, we equate coefficients in

Thus
mo= 2= 6 =mnm
m o= 61(2—61) — ()= n +21 — oo )
and

(1-6.B—6:,B)r; = 0, j> 3.



Chapter 13
Least Squares Forecasts

13.1 Linear Forecasting Functions.We now wish to consider forecasting based on the general ARIMA
process model

3(B)X: = H(B)AIX, = 6(B)e.

We suppose we are currently at time t and we wish to forecast m steps ahgad, X . We shall write the
AN N
forecast of X,,,, as X (m). We wish to writg X (m) as a linear function of the past values of the time series data

we know, that is, X, X1 , X2 ,.. . Equivalently we may Wrﬁg X (m) as a linear functien ef ; &5 ,...

We will assume an infinite moving average representation exists. For a nonstationary model this
representation doesn't converge. Hence, for nonstationary models, the following discussion is a formal
representation, but not a rigorous proof.

We wish to make a linear representation of the process depending on the past valyes; 5 ...
which we do by setting

N * * %
(13.1.1) X(M)= &+, 61+ P, 002+

Here, thezp; are weights on tke  which may or may not be related # the  weights. We do know however
that

(13.1.2) A Xim = €rm+P1€&im 1+ +Ume + P16 14+
Subtracting X (m) from X, , squaring and then taking expectations yields

N 0 . 2
DG~ RAMIE = (449 44 920 4 3 (s~} o
=
This may be minimized by choosinzg;wj = Ymy; . Thusthe forecast is

N
(13.1.3) X (M) = e+ Y161 + Prmgaeo+ - .

We then may write

e(Mm) = grm+Prepm + - + Y1641

so that
N
(13.1.4) Xim = €(m)+ X (m).
We call e (m) thdorecast error of lead time m. Let us write E[X | Xe.X---, Jas:EX |t]. We first
notice that

DX 1] = B[S e 1= 2 Ebs 0= X ey = X (m).
J= J= J=m

HenceAx (m) is the best linear estimator of X  given the data up to time, t. We may now examine

(13.1.5) E[e (m) | t]Z E[er +eim 1+ Umo1€41 | t]z 0.



Hence the expected forecast error is 0 de X (m) is the minimum mean square error estimator and is unbiased.
N .
Hence X (m) is théest estimator in the Rao-Blackwell sense. Let us also notice that

varfe (m) [t = (92 +---+ 92 | 2.

Forecasting Linear Combinations of X%

Consider now the array,.% .., X, defined as follows
Xip1 = €1+ e+ oerg + o
:Xter = €rm¥P1€pm1+Pme + Y161+
We may define Q by
Q= f:lextﬂ' = W X1 FWoXpio 4 A Wi X
=
Writing the X in terms of theity -weight representations we have

Q= Wneirm + Wmn_1 + Y1 W )etrmo1 + - + (W + D1 + -+ 1 Wen et
+ w4 F YW )e + @ W Y W e

Suppose we want a linear forecast of Q in the forre=Q 1¢; 4€ 261G+ - -- . Then as before

E[Q—E\?]2 = W2, 4+ Wit + P1We, P+ -+ (W + D1 Wo + - 4 1 W, o2
+03{(¢1W1+"'+¢mwm)2 + (¢2M+"'+¢m+1%)2+"'} .

This may be minimized by choosing € ¢ (1 W - +¢m =W ), & (2 W +¥n1 W ), and so on.
Thus the minimum mean square error forecast is

Q= @iy + -+ PrWin)er + (oMo + - + P 1 Wonder 1+

But from our earlier discussion, we know

N
i(t(l) =&+ e+
Xi(2) = e + ih3eg_1 + -+

n
Xe(M) = et + rmy1€1 + .
From this we may conclude that
N N AN
(13.1.6) Q= wX@)+ --- + w X(m).
Thus the least squares forecast of wi X+ -+ + WX ﬂé\w X4} + mAw X (m).

Correlations of Forecast Errors. Now let us consider the correlations of forecast errors. First we note
that

e(l) = X1 — %(1) = doe = €1



The one-step-ahead forecast errors are uncorrelated. Also we note
N
e(M)= Xim — X(M)= epm+dieim 1+ + Y1641

and
N
& (M= Xymy— XM =€ 1mjtP1&im 1+ + Pm16 1.
Thus
Ele (m)e_; (M)]= B + Pr1ebiv1 + -+ + Prm1-itbm—1 P2
m—1
=o? Y i ;  Withy = 1.

i=j

Thus
Tty _
corr{ e (m), e; (m} = == , < kK m
¥ y?

and, of course, 0 elsewhere.

Finally, we observe

. L .
e (Mm+ )= Xm; — X(M+))
= €rmrj T P1€imrj1 o F Viim F Vii6im 1 Y1601

Thus
Ele (m)e (m+ )] = kot +drdbics + - + Ym1¥mij b2

so that
. m—1
Ele (m)e (M+ )] = o7 2 it
From this we may compute the correlation,

. Elwle»]
corr{e(m),e(er J} = —=—

m—1  m—j-1 2
{Ea"g )
k=0 =0

13.2 Other Forms of Forecast Functions. We have so far considered forecasts fromthe -weight
formulation of the general linear model. Let us now consider some alternatives. We first observe that

EXs [ = Xy j = 0,1,2,..
E[Xt+j|t] = Xt(.l)v J = 11 %\! 31

E[Gt,j |t] = &5 = )Q,j - thjfl (1), J = 0, 1, 2,..
and finally



Eleeh; |1 = 0, j= 1,2,3,..
Consider the mixed formulation

Xitm = @i Xoimo1 + -+ PpyaXiympa — O1€1m1 — - —o€tim o+ €1m
Thus we have

(13.2.1) X (M)= &1 EMXernt [t + Spra EXinya |1
-6 EE[Hmfl | t]_ I eq EEerfq | t‘]‘ E[+m | t]-

Using the above forms of the catiohal expectations, we can use (13.2.1) as a forecast function. To make this
clearer, it is worth considering some examples. Consider for example (I -8 B)(l+.BIXerem . Then

Xt+m =18 Xterfl - .8 XerfQ + €ttm -

Then
(1) = 1.8% — 8%,
@) = 1.8% @ - 8x
and
X(m) = 1.8%m- 1)— XM 2), m= 3,45,

As another example, consider
AQXt+m = (I - 9B- 5 g )€t+m .

Then
Xigm =2 Xeom—1 — Xegm—2 + €4m — 9€im_1 + Deymo .

We may thus apply the conditional expectations to obtain
N N N
%t(l) =2 />\<t — X1 — 9 [X - >§\t71(1)] +.5 [Xim1 — Xi—o(1)]
Xi(2)=2X(1)— X — .9 [X — X-1(2)]
and
N A AN
Xy(m)=2X(m- 1)— X (m- 2).

Notice that in both cases, eventualy, ?B)X () 0 where the operator B operates on the index, m. Thus
JAN
eventually the forecast; X (m) has the same structure as the covasiance, . Finally we note that we can write

[ee)
Xivm =2 T Xt1m—j5 + €im
=1

so that
A m—1 A . )
(1322) )g(m): z:lﬂj )g(m— j)+ Zﬂj X—mej
J= J=m
13.3 Practical ForecastingWe have now developed three forms of the forecasting function, specifically

(13.3.1) X (M=t BB |t s Bt [tH -,

(13.3.2) X ()= &1 EX ot [tH -+ @pig EDerpa | 1]
- 91 E[erfl | t‘]’ T eq E{erfq | t‘]’ Ei{-%m | t],



and
A m—=1 A e
(13.3.3) X(m= om X (= )+ o X
J= j=m

Equation (13.3.2) is a useful computational algorithm if the process is purely autoregressive in form. However,
AN

if there is a nontrivial moving average component, the computationepf;E[ | t] involves-X;_;_1X (2).

This leads to an infinite regression and, so, creates a problem with initializing the algorithm. The same is

basically true of (13.3.1). Equation (13.3.3) can be used, but of course we would generally only have data

X1,-..,X: S0 that

t+m—1

A m—1 A .
Xt(m) = lejxt(m - j) + Z My )Q+m7j
J= j=m

is the practical formula. Because of the truncation of the second series, this would only be practical in settings
where ther -weights converged to O sufficiently rapidly that the truncated part of the series were negligible.
Clearly the model for the time series must be invertible for this to be true, but even more the time series must be
sufficiently long so that we can reach sufficiently far back into the tail of the second series.

To calculate ther -weights, we use the standard device we have used earlie® Singe= {B)X; (B)
and alsdI (B)X= ¢ , we can substitute the second in the first to obtain

3(B)X; = O(B)I(B)X..

By equating operators, we get [B)¢ IB) (B). We can then equate the coefficients of the Bs to solve for
In general

st :@1—91
g = B9 — Oy 4 01 (D1 — 61)

6(B)r; = 0, j> max{p+d, q}.
In the last difference equation, the operator (B) operates on the j subscript. Notice that if the roots of the
auxiliary equationf (s¥ O, lie outside the unit circle, thenithe -weights will be exponentially damped (or
dominated by something which is exponentially damped) and, hence, we will be able to use the -weight
representation to initiate our forecasting.
13.4 Updating ForecastsOne issue of substantial interest is an updating procedure. That is, if we know

the time series up to time, t, e.gx X., ¢,X, and we add a new observatign, X , it is desirable not to have to
recompute the whole forecast from scratch. To see how to update, recall that

N
Xir1(M) = Ymeri1 + Ymg1€ + Prmrog_1 + -
and

N
XM+ 1) = i1 + Pmio€i1 + Pmagero + .
Subtracting, we have
N N
Xir1(m) = XM+ 1) = e

or



N N
Xip1(m) = Xe(M + 1) + e

Notice thatA)gH (m) is an updated forecast of X1 with the shift in origin from tio t AQH X (m) and

N

X:(m + 1) both forecast X,.,.1 . Thus to update a forecast, we only need to add a singlg,term, , to the
AN

old forecast. Recall alsothat; = ;X — (X (1). Thus the update term is

X1 — KAL)
To calculate they -weights, we use the same standard device as in the previous section
®(B)¥(B) = 6(B)
so that
(1-®B— —®, ) +¢¥B+¢B>+-)=(1—-6B —--- —6B9.
Equating coefficients, as before,

=& -6
Py = P19h1 + P2 — by

Y=+ + Ppraipa—0;

whereyy = 13, = 0,k Oand;= 03 q.

For example, in our example in the last chapter, we were considering (I -8B)(l: =BaX . The
computation thus is
=1
P =18

P = 1.841 — .8

;= 1841 — 8.
From this it is simple to computgéy, = 43 = 148, = 2.44 = 2:0b— 3.38, . From thisitis a
simple step to update our forecasts. Notice, that)the -weights are increasing. This is as it should be since this

is a nonstationary model and tite -weights will not converge.

13.5 Confidence Limits for Forecasts Finally, we would like to address the question of confidence
N
limits for the forecasts. Let us consider X . We first observe that E[X =|t] X (m) so that

varXe, . | 1= E[Xom —XAm)} 2| ] =E[fe ()} 21] = + 4+ +¢2_) o2

Assuming the; are norally distributed, then so is; X, — AtX (m). Thus upper and lower probability limits for
Xiiom, are

1

m+1 3
X(m) + ps (1+ ’> zpj?) o
=1

and



A m+1 i
Xm) = ps (1+ L 42) o
=1

where g is the (+ o /2x 100 percentile of a standard normal distribution. If we know the model exactly,
then, of coursey, , is known.

In closing this section, it is worth noting that all of this chapter presumes that we know the model
exactly. Thus, none of the coefficiedts ¢;,7;, +«or are estimated. None of this theory really works if when
we take the conditional expectations,-E[ | t], we must account for coeffidents =, , ¢;and  which are
random variables depending on the observations, X ; ,X. In practice, of course, we use estihatés of ,
7; and; based on the data and then forecast into the future based on these estimated coefficients. This is
strictly speaking a questionable practice from a theoretical point of view and is truly a weakness of the theory
just developed. The situation is improved somewhat is the data used to estimate the coelficiénts, , , and
; is different from the data used for forecasting,X . In this case the conditional expectations are at least
legitimate and the minimum mean square error forecast holds at least conditionally. Unfortunately, this is often
not possible, for example, with economic forecasting. In any case, the procedures described above seem to have
value even though the proofs given may not be entirely legitimate in the setting in which these procedures are
often used.



Appendix A

Riemann-Stieltjes Integrals

In our discussion of random process models in Chapter 6, it is convenient to use the concept of
Riemann-Stieltjes integration. Consider an intersald , )andletx < x- < , X be a partitien®f ( , ) so
that

(A1) a=%< X% < < %=p
LetAx = max (x— X ) and consider the sum
J
(A.2) 2 906) (FOs) — FOea ).
=

The Riemann-Stieltjes integral is defined as

s
(A.3) J9() dF(x) = lim g )F(x )} F(x1))

n—oo *
Ax —0"

i

1

If F is the identity function, the Riemann-Stieltjes integral is the ordinary integral as defined in elementary
calculus. The function F in general must be of bounded variation, but for our purposes, we will make the more
restrictive assumption that F is non-decreasing. The usual properties of integrals hold.

s s s
Property 1. [ (g(xH  h(x)) dF(- [ 9(x) dFO9- [ h(x) dF(x).

PropertyZ.f dFx= H » R().

Property 3. Iff(x)= F(x)= £& ,

s s
thefi  g() dFG& [ g(x) f(x) dx.

B
Property 4. Ifg(x)= 1,/ fx)dx= B(> E&()
and, hence,

F(x)= f f(u) du.

If F is a function of two variables, X, y, and

a=X <Xy < < p=PFandy = y< y< - < Yy=956



and alsdA x= max (x- X1 YA ¥ max{y ;M ) then

NgE

lim
AX — 0 2:2:1 =1
Ay —0

— OO

n,m

gx,y)(F(x,y)- F&,y » Fxi yzy¥ Fx ¥ )

86
=[] 9y Fdx dy).

5



1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794

WOLFER SUNSPOT NUMBERS: YEARLY

101
82
66
35
31

7
20
92
154
125

85
68
38
23
10
24
83
132
131
118
90
67
60
47
41

1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819

*100 Observations

21
16
6
4
7
14
34
45
43
48
42
28
10

1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844

16
7
4
2
8
17
36
50
62
67
71
48
28

8
13
57

122
138
103
86
63
37
24
11
15

1845
1846
1847
1948
1949
1850
1851
1852
1953
1954
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869

40

62

98
124
96
66
64
54
39
21

23
55
94
96
77
59
44
47
30
16

37
74



