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Preface

The main purpose of this book is to present in a systematic way the solution to
some classical problems of statistical inference, basically problems of estimation
and hypotheses testing, on the basis of measures of entropy and divergence, with
applications to multinomial (statistical analysis of categorical data) and general
populations. The idea of using functionals of Information Theory, such as en-
tropies or divergences, in statistical inference is not new. In fact, the so-called
Statistical Information Theory has been the subject of much statistical research
over the last forty years. Minimum divergence estimators or minimum distance
estimators (see Parr, 1981) have been used successfully in models for continuous
and discrete data. Divergence statistics, i.e., those ones obtained by replacing
either one or both arguments in the measures of divergence by suitable estima-
tors, have become a very good alternative to the classical likelihood ratio test
in both continuous and discrete models, as well as to the classical Pearson—type
statistic in discrete models. It is written as a textbook, although many methods
and results are quite recent.

Information Theory was born in 1948, when Shannon published his famous
paper “A mathematical theory of communication.” Motivated by the problem of
efficiently transmitting information over a noisy communication channel, he in-
troduced a revolutionary new probabilistic way of thinking about communication
and simultaneously created the first truly mathematical theory of entropy. In the
cited paper, two new concepts were proposed and studied: the entropy, a measure
of uncertainty of a random variable, and the mutual information. Verdd (1998),
in his review paper, describes Information Theory as follows: “A unifying theory
with profound intersections with Probability, Statistics, Computer Science, and
other fields. Information Theory continues to set the stage for the development
of communications, data storage and processing, and other information technolo-
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)

gies.” Many books have been written in relation to the subjects mentioned by
Verdd, but the usage of tools arising from Information Theory in problems of
estimation and testing has only been described by the book of Read and Cressie
(1988), when analyzing categorical data. However, the interesting possibility of
introducing alternative test statistics to the classical ones (like Wald, Rao or
Likelihood ratio) in general populations is not yet found in any book, as far as
I am concerned. This is an important contribution of this book to the field of

Information Theory.

But the following interesting question arises: Where exactly can be situated
the origin of the link between Information Theory and Statistics? Lindley (1956)
tries to answer our question, with the following words with reference to the paper
of Shannon (1948), “The first idea is that information is a statistical concept”
and “The second idea springs from the first and implies that on the basis of the
frequency distribution, there is an essentially unique function of the distribution
which measures the amount of the information.” This fact provided Kullback and
Leibler (1951) the opportunity of introducing a measure of divergence, as a gener-
alization of Shannon’s entropy, called the Kullback-Leibler divergence. Kullback,
later in 1959, wrote the essential book “Information Theory and Statistics.” This
book can be considered the beginning of Statistical Information Theory, although
it has been necessary to wait a more few years for the statisticians to return to
the problem.

The contents of the present book can be roughly separated in two parts. The
first part is dedicated to make, from a statistical perspective, an overview of the
most important measures of entropy and divergence introduced until now in the
literature of Information Theory, as well as to study their properties, in order
to justify their application in statistical inference. Special attention is paid to
the families of ¢-entropies as well as on the ¢-divergence measures. This is the
main target of Chapter 1. Chapter 2 is devoted to the study of the asymptotic
behavior of measures of entropy, and the use of their asymptotic distributions
to solve different statistical problems. An important fact studied in this chapter
is the behavior of the entropy measures as diversity indexes. The second part
of the book is dedicated to two important topics: statistical analysis of discrete
multivariate data in Chapters 3, 4, 5, 6, 7 and 8, and testing in general populations
in Chapter 9.

The statistical analysis of discrete multivariate data, arising from experiments
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where the outcome variables are the number of individuals classified into unique
nonoverlapping categories, has received a great deal of attention in the statistical
literature in the last forty years. The development of appropriate models for
those kind of data is the common subject of hundreds of references. In these
references, papers and books, the model is tested with the traditional Pearson
goodness-of-fit test statistic or with the traditional loglikelihood ratio test sta-
tistic, and the unknown parameters are estimated using the maximum likelihood
method. However, it is well known that this can give a poor approximation in
many [¢ircumstances, [See[Read and Cressie (1988)[land (it ispossible to get et ter
results by considering general families of test statistics, as well as general families
of estimators. We use the word “general” in the sense that these families contain
as particular cases the Pearson and loglikelihood ratio test statistics, for testing,
as well as the maximum likelihood estimator, for estimating. In Chapter 3, the
problem of testing goodness-of-fit with simple null hypothesis is studied on the
basis of the ¢-divergence test statistics under different situations: Fixed number
of classes, number of classes increasing to infinity, quantile characterization, de-
pendent observations and misclassified data. The results obtained in this chapter
are asymptotic and consequently valid just for large sample sizes. In Chapter
4, some methods to improve the accuracy of test statistics, in those situations
where the sample size can not be assumed large, are presented. Chapter 5 is
addressed to the study of a wide class of estimators suitable for discrete data,
either when the underlaying distribution is discrete, or when it is continuous, but
the observations are classified into groups: Minimum ¢-divergence estimators.
Their asymptotic properties are studied as well as their behavior under the set
up of a mixture of normal populations. A new problem of estimation appears
if we have some functions that constrain the unknown parameters. To solve
this problem, the restricted minimum ¢-divergence estimator is also introduced
and studied in Chapter 5. These results will be used in Chapter 8, where the
behavior of ¢-divergences test statistics in contingency tables is discussed. Chap-
ter 6 deals with the problem of goodness-of-fit with composite null hypothesis.
For this problem, we consider ¢-divergence test statistics in which the unknown
parameters are estimated by minimum ¢-divergence estimators. In addition to
the classical problem, with fixed number of classes, the following nonstandard
cases are also treated: ¢-divergence test statistics when the unknown parameters
are estimated by maximum likelihood estimator, ¢-divergence test statistics with
quantile characterizations, ¢-divergence test statistics when parameters are esti-
mated from an independent sample, ¢-divergence test statistics with dependent
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xii STATISTICAL INFERENCE BASED ON DIVERGENCE MEASURES

observations and ¢-divergence test statistics when there are some constraints on
the parameters. Chapter 7 covers the important problem of testing in loglinear
models by using ¢-divergence test statistics. In this chapter, some of the most
important results appeared in Cressie and Pardo (2000, 2002b), and Cressie et
al. (2003) are presented. The properties of the minimum ¢-divergence estima-
tors in loglinear models are studied and a new family of test statistics based on
them is introduced for the problems of testing goodness-of-fit and for testing a
nested sequence of loglinear models. Pearson’s and likelihood ratio test statistics
are members of the new family of test statistics. This chapter finishes with a
simulation study, in which a new test statistic, placed “between” Pearson’s chi-
square and likelihood ratio test statistics, emerged as a good choice, considering
its valuable properties.

Chapter 8 presents a unified study of some classical problems in contingency
tables using the ¢-divergence test statistic as well as the minimum ¢-divergence
estimator. We consider the problems of independence, symmetry, marginal homo-
geneity and quasi-symmetry in a two-way contingency table and also the classical
problem of homogeneity.

The domain of application of ¢-divergence test statistics goes far beyond
that of multinomial hypothesis testing. The extension of ¢-divergence statistics
to testing hypotheses in problems where random samples (one or several) obey
distributional laws from parametric families has also given nice and interesting
results in relation to the classical test statistics: likelihood ratio test, Wald test
statistic or Rao statistic. This topic is considered and studied in Chapter 9.

The exercises and their solutions included in each chapter form a part of
considerable importance of the book. They provide not only practice problems
for students, but also some additional results as complementary materials to the
main text.

I would like to express my gratitude to all the professors who revised parts
of the manuscript and made some contributions. In particular, I would like to
thank Professors Arjun Gupta, Nirian Martin, Isabel Molina, Domingo Morales,
Truc Nguyen, Julio Angel Pardo, Maria del Carmen Pardo and Kostas Zografos.
My gratitude, also, to Professor Juan Francisco Padial for his support in the
technical development of the book.

Special thanks to Professor Arjun Gupta for his invitation to visit the De-
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partment of Mathematics and Statistics of Bowling Green State University as
Distinguished Lukacs Professor. Part of the book was written during my stay
there. My final acknowledgment is to my wife, Professor Maria Luisa Menéndez,
who read many times the early drafts of the manuscript. She gave me valuable
advice and suggested many improvements. Her enthusiasm sustained me during
the period spent in writing the manuscript, and this book is dedicated to her.

Leandro Pardo

Madrid
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Divergence Measures:
Definition and Properties

1.1. Introduction

Let X be a random variable taking values on a sample space X (usually
X will be a subset of R", n-dimensional Euclidean space). Suppose that the
distribution function £ of X depends on a certain number of parameters, and
suppose further that the functional form of F' is known except perhaps for a finite
number of these parameters; we denote by @ the vector of unknown parameters
associated with F. Let (X, Bx, Pp)gece be the statistical space associated with
the random variable X, where Gy is the o-field of Borel subsets A € X and
{Po}gco a family of probability distributions defined on the measurable space
(X, Bx) with © an open subset of RMo, My > 1. In the following the support of
the probability distribution Py is denoted by Sx.

We assume that the probability distributions Py are absolutely continuous
with respect to a o-finite measure p on (X, By). For simplicity p is either the
Lebesgue measure (i.e., satisfying the condition Py(C') = 0, whenever C' has zero
Lebesgue measure), or a counting measure (i.e., there exists a finite or countable
set Sy with the property Py (X-Sx) = 0). In the following

IP fo(x) if p is the Lebesgue measure,
fo(z) = d—:(w) =1 Prg(X =x) =pg(x) if uis a counting measure,
(Cl: GS)()
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2 STATISTICAL INFERENCE BASED ON DIVERGENCE MEASURES

denotes the family of probability density functions if i is the Lebesgue measure,
or the family of probability mass functions if y is a counting measure. In the first
case X is a random variable with absolutely continuous distribution and in the
second case it is a discrete random variable with support Sy.

Let h be a measurable function. Expectation of h (X) is denoted by

/h(m)fg(m)dm if 11 is the Lebesgue measure,
Eg [M(X)] = X
Z h(x)pg(x) if p is a counting measure.
TreSy

Since Mahalanobis (1936) introduced the concept of distance between two prob-
ability distributions, several coefficients have been suggested in statistical litera-
ture to reflect the fact that some probability distributions are “closer together”
than others and consequently that it may be “easier to distinguish” between a
pair of distributions which are “far from each other” than between those which
are closer. Such coefficients have been variously called measures of distance be-
tween two distributions (see Adhikari and Joshi, 1956), measures of separation
(Rao, 1949, 1954), measures of discriminatory information (Chernoff, 1952, Kull-
back, 1959) and measures of variation-distance (Kolmogorov, 1963). Many of the
currently used tests, such as the likelihood ratio, the chi-square, the score and
Wald tests, can in fact be shown to be defined in terms of appropriate distance
measures.

While the cited coefficients have not all been introduced for exactly the same
purpose, they have the common property of increasing as the two distributions
involved are “further from each other”. In the following, a coefficient with this
property will be called divergence measure between two probability distributions.

Before introducing the families of divergence measures that will be used in
later chapters for studying different statistical problems, we consider two classi-
cal and important distances: the Kolmogorov and Lévy distances. Our aim is
to illustrate the important role that distance measures play in Probability and
Statistics.

Given two probability measures Py, and Fp, with associated unidimensional
distribution functions Fp, and Fy,, respectively, the Kolmogorov distance, intro-
duced by Kolmogorov (1933), between Fyp, and Fp, (or between Py, and Pp,) is

© 2006 by Taylor & Francis Group, LLC



DIVERGENCE MEASURES: DEFINITION AND PROPERTIES 3

given by

Kl(Fgl,ng)ZSU£|F31 ('T)_FBQ (.I')| (1‘1)
xe

It is the well known Glivenko-Cantelli Theorem, based on the previous distance,
which states that the empirical distribution function is a uniformly strongly con-
sistent estimate of the true distribution function; i.e., given a random sample
Xi,...,Xy from a population with distribution function Fp,, for any ¢ > 0 it
holds

nh_)n(r)lo Pr{K;(F,, Fp,) >c} =0,

where F;, is the empirical distribution function, i.e.,

1 n
= E Zj(foo,:r] (xz) y
=1
and 14 is the indicator function of the set A.

On the other hand, the Lévy distance is
Ky(Fy,, Fp,) =inf{e >0: Fp, (x —¢) < Fp, () < Fy, (x +¢), for all z};

it assumes values on [0, 1] and it is not easy to compute. It is interesting to note
that convergence in the Lévy-metric implies weak convergence for distribution
function in R (Lukacs, 1975, p. 71). It is shift invariant, but not scale invariant.
This metric was introduced by Lévy (1925, pp. 199-200). Some other results
about probability metrics, relationships between K; and Ky as well as other
interesting results can be seen in Gibbs and Su (2002).

1.2. Phi-divergence Measures between Two Probabil-
ity Distributions: Definition and Properties

In this section we shall introduce different divergence measures; in all the
cases it must be understood provided the integral exists.

Kullback-Leibler divergence measure, between the probability distributions
Pgl and P32, is

Dircun (01,62) = /f01 ) log ;Z;Ez;dﬂ (z) = Eeq, {10 (;Z:Ei;)} (1.2)
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4 STATISTICAL INFERENCE BASED ON DIVERGENCE MEASURES

which was introduced and studied by Kullback and Leibler (1951) and Kullback
(1959). Jeffreys (1946) used a symmetric version of (1.2),

J (01,02) = Dy (01,02) + Dicur (02,01)

as a measure of divergence between two probability distributions. This divergence
measure is also called J-divergence.

Rényi (1961) presented the first parametric generalization of (1.2),

D}61,6) = 1ot [ fo, (@) fou(@)' " dn(a)
v 1
_ 1 fo, (X) -
= IOgEBI [<f92(X) 5 7">0, T?él

Later, Liese and Vajda (1987) extended it for all r # 1,0, by

D}(61,02) = igylog [ foy (@) fou(@)' " du(a)
v 1
fo (XD "
(fﬂ;(X)> ] ) 'r?éoal.

In the following, expression (1.3) will be referred as Rényi divergence. The
cases 7 = 1 and r = 0 are defined by

Di (61,05) = }1_)11% D; (01,02) = Dy (01,02)

(1.3)

1
r(r—1)

log Eg,

and
D} (01,05) = }% D} (01,02) = Dy (02,01),

respectively. The divergence measure Dy (02,01) is called the Minimum dis-
crimination information between the probability distributions Py, and FPy,. Other
two well known parametric generalizations of (1.2) are the one called r-order and
s-degree divergence measure, and the other called 1-order and s-degree divergence
measure. They were given by Sharma and Mittal (1977), by

s—1
r—1

D; 61,62 = iy | | [ fon(@) fos(@) Taut@) | -1
X
fo XD\ =
_ 1 [2 _
= w0 (th (fé(X)) D H
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for r,s # 1 and

D3 (61,02) = =y [ exp slffel )log 21D au(a) | ~1

- i (exp <(s — 1) Eo, {log( ;D )

It can be easily shown that

for s # 1.

Z) hII% Dﬁ (01, 02) - TD; (01,02)
ZZ) lirri Dﬁ (01,02) = D‘f (91, 92)
1) il_)Hi D3 (01,02) = Dguy (01, 62), }1_)11% D} (61,62) = Dy (01, 65) .

The Kullback-Leibler divergence measure is the most famous special case of
the ¢-divergence family of divergence measures defined simultaneously by Csiszar
(1963) and Ali and Silvey (1966) .

Definition 1.1
The ¢-divergence measure between the probability distributions Py, and P,
is defined by

Dy (Pa,, Po,) = Dy (01, 02) = /f92

b i

where ®* is the class of all convex functions qb( ) x > 0, such that at v =

Remark 1.1
Let ¢ € ®* be differentiable at x = 1, then the function

V()=o) —¢' (1) (z—1) (L.7)

also belongs to ®* and has the additional property that v’ (1) = 0. This property,
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6 STATISTICAL INFERENCE BASED ON DIVERGENCE MEASURES

together with the convexity, implies that v (x) > 0, for any x > 0. Further,
_ fo,(x % Jo.(x)
0 (61.02) = lf%(m) (o ()~ ) (182 1) ) dute
_ fel(m)>
l fon(@)0 (2453 ) due)

= Dy (01,07).

Since the two divergence measures coincide, we can consider the set ®* to be
equivalent to the set

P=0"N{¢p:¢ (1)=0}.

Kullback-Leibler divergence measure is obtained for ¢ (z) = xlogx —xz + 1 or
¢ (z) = xlogx. We can observe that 1 (x) = ¢ () — ¢'(1)(x — 1). We shall denote
by ¢ any function belonging to ® or ®*. In the following table we present some
important measures of divergence studied in the literature which are particular
cases of the ¢-divergence. More examples can be seen in Arndt (2001), Pardo, L.
(1997a) and Vajda (1989, 1995).

| o-function | Divergence |
zlogx —x+1 Kullback-Leibler (1959)
—logx+x—1 Minimum Discrimination Information
(x—1)logx J-Divergence
2 (z — 1) Pearson (1900), Kagan (1963)
% Balakrishnan and Sanghvi (1968)
W, s#1, Rathie and Kannappan (1972)
- (L‘”g;r) o ,r>0 Harmonic mean (Mathai and Rathie (1975))
sm—,  0<a<l1 Rukhin (1994)
arlogr (or T oe(rtl-0) "y 20,1 | Lin (1991)
%ﬂ, A#£0,-1 Cressie and Read (1984)
-z 0<a<1 Matusita (1964)
-z a>1 { X — diverg-en.ce o.f order a (Vajda 1973)
’ Total Variation if @ = 1 (Saks 1937)

From a statistical point of view, the most important family of ¢-divergences
is perhaps the family studied by Cressie and Read (1984): the power-divergence

© 2006 by Taylor & Francis Group, LLC



DIVERGENCE MEASURES: DEFINITION AND PROPERTIES 7

family, given by

fo (@)

I,(81,02) = Dy, (61,02) = 5577y / oy @) dp(z) — 1
X

A
1 fo, (X))
pYCES)) (Eel [(f92(X)> ] B 1) '

for —oo < A < 0o. The power-divergence family is undefined for A = —1 or A = 0.
However, if we define these cases by the continuous limits of I (61,02) as A — —1
and A — 0, then I (01,02) is continuous in A. It is not difficult to establish that

;\E% I (601,02) = Dy (61,02)

and
/\l_i)n_11 I (61,02) = Dy (02,01) .

We can observe that the power-divergence family is obtained from (1.6) with

oo (@) = xoim (@ =A@ =1)); AF£ 0N # -1,
P(x) =1 ¢ (@)= limy_gon (x) =zlogr —z +1
¢y (z) = limyx_1 ¢ (z) = —logz +z — 1.

The power-divergence family was proposed independently by Liese and Vajda
(1987) as a ¢-divergence under the name I,-divergence.

The power-divergence family, we shall refer to it in later chapters of this
book, has been used by Cressie and Read, specially for discrete random variables
with finite support (with multinomial data), to link the traditional test statistics
through a single-valued parameter, and provides a way to consolidate and extend
the current fragmented literature. As a by-product of their analysis, a new test
statistic emerged “between” chi-square test statistic and the likelihood ratio test
statistic that has some valuable properties. In the last years, many papers in
the statistical literature have appeared using the power-divergence family to get
competitive estimators as well as test statistics.

The divergence measures of Rényi and Sharma and Mittal given in (1.3) and
(1.4), as well as the measure given by Bhattacharyya (1943)

B (61,05) = — log / o (@) for (@) dp ()
X
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8 STATISTICAL INFERENCE BASED ON DIVERGENCE MEASURES

are not ¢-divergences measures. However, such measures can be written in the
following form:
D} (61,02) = h(Dy (61,62)), (1.8)

where h is a differentiable increasing real function mapping from

t
0,¢(0) + Jim @
onto [0,00); this condition will be justified in Proposition 1.1, with A (0) = 0,
R’ (0) > 0, and ¢ € ®*. In the following table we list the functions h and ¢ that
yield to the mentioned divergence measures:

Divergence ‘ h(x) ‘ o (x)

Rényi dr—lil)log(r(r—l)w—i—l);r;éO,l %;T#O,l
Sharma-Mittal | -1 ((1—0—7“(7“—1)33)% —1) s, # 1 %;T%O,l
Bhattacharyya | —log (—x + 1) —z? 4+ 1 (z+1).

The new family of divergences (1.8), called the (h, ¢)-divergence measures, has
been introduced and studied in Menéndez et al. (1995). An interesting application
of Bhattacharyya divergence in signal selection can be seen in Kailath (1967).

1.2.1. Basic Properties of the Phi-divergence Measures

In this Section we present some of the most important properties, from a
statistical point of view, of the ¢-divergence measures. A complete study of
their properties can be found in Vajda (1989, 1995). It is reasonable to demand
of a divergence the property of increasing when two distributions move apart.
The first proposition is an immediate consequence of this idea, and it will be a
basic tool in later chapters. In the following we assume the existence of the first
derivative of ¢ at x = 1. This assumption is not necessary in order to establish
the following results but with this condition some proofs will be easier. In Vajda
(1995) proofs are given without the assumption of that restriction.

Proposition 1.1
Let Py, and Py, be two probability distributions and let ¢ € ®* be differentiable
att=1. Then
P (r)
0 S D¢ (01,02) S (25(0) + lim _—,

r—oo T
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where
Dy (61,02) =0 if Py, = Po,, (1.9)
and
Dy (64, 65) :¢(0)+T1Lr£10@ if S1N Sy = 0. (1.10)

If ¢ is also strictly convexr at t = 1, then (1.9) holds if and only if Py, = Py,. If
moreover,

¢ (0) + lim @ < 00,
then (1.10) holds if and only if S; N So = 0, where S;, i = 1,2, is the support of
the probability distribution Pp,, 1 = 1,2.

Proof. Using the nonnegativity of the function ¢ given in (1.7), we have
Dw (01, 02) > 0, but we know that D¢ (01, 02) = Dl/, (01, 02) , then D¢ (01, 02) >
0.

It is known that for every convex function ¢ the following inequality holds
0 (1) <6 (0)+1 lim =2, (£20). (1.11)

If ¢ is strictly convex at some ¢y € (0,00) then the inequality in (1.11) is strict
for all ¢ > 0. Using (1.11) we have

Dy 01,62 < [ fou@) (0(0)+ 2 tim £
X

fo, (CC) r—oo T

— $(0) + lim 21,

r—oo T

> dp()

It is clear that Py, = Py, implies Dy (61,02) = 0.
If S1 NSy =0, we have
Jo, (@)
D, (81,62 = [ fou(@)0 (425 duta)
X
fo, (T fo, (X
= [ fo@o(BE) i@+ [ oo (fF) dute)

SFQSQ 510520

Now we are going to establish that if ¢ is strictly convex at t = 1, then
D¢ (01, 02) =0 implies Pgl = sz.
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10 STATISTICAL INFERENCE BASED ON DIVERGENCE MEASURES

In fact, if ¢ is strictly convex at ¢ = 1 then

fo, (m)>
o)
for fo,(x)/fe,(x) > 1 and for fg,(x)/fe,(x) < 1, where 1) is defined in (1.7). If

Dy (61,02) = 0 then fq,(x)/fo,(x) <1 or fo,(x)/fe,(x) > 1. First we suppose
that fo,(x)/fe,(x) < 1. We know that

D¢ (01, 92) = Dw (01, 02) =0,

and
0= Dy (61,0,) = / fo, (x f"l“’”) dp(x)
- /fo2 f”l“’") e >(§j;§£§ 1)) du(a)
= Dy (01,62) — /f92 - 1> dp(x)

= 0-4( /f92 f"(’” 1)d(>

= —¢'(1 / j:z Ei —1 dP92
X

Since ¢ is strictly convex at ¢t = 1, it must be Py, = Py,. For fo, (x)/fo,(x) > 1,
the result can be established in the same way.

The strict convexity of ¢ at ¢ = 1 implies the strict inequality in (1.11), i.e

(1) < 6(0 )+trlggo@ W > 0.
Then the function
1) = 6(0)— o (1) +¢ Jim 20

is positive, for any ¢ > 0.

If we take @ € 51, i.e.,  such that fp,(x) > 0, then ¢ = ;—Z% > 0 and

H#w) >0
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Therefore,
D1(601,02) = [ fo.(@)l (£ due)

X
/ fou(@) (6 (0) = & (12 ) + iy limr oo 242 ) dp()
X

= D (61.02) 1 6(0) + im 27,
but by (1.10) we have
D, (61,02 = 6(0) + i 217
therefore,
Dy (61.6:) = 1 for(o) (2 duta) = .
with

f91(m)>

l > 0.

(fez( )

Then, fg,(x) = 0, because Dl(01,02)—0andl( E ;) > 0, i.e., & ¢ Sy. This

completes the proof. -

Let X1, ..., X,, be a sample from Py, 8 €0. For y being the Lebesgue measure
or a counting measure, let fo(x) = %(w) where = (21, ..., p,). Suppose that T
is a measurable transformation from (X", Sxn) onto a measurable space (), By) .
We denote

Qo, (A) =Py, (T71 (4)), i=1,2, (1.12)
with A € By and

dQe;

g0,(8) = “2(0), fo, (2/8) = G0

dQe,’
by t we are denoting the values of T. In this context we have the following
property.

i=1,2 (1.13)

Proposition 1.2
Let ¢ € ®* and Qp,, Po,, © = 1,2, be two probability measures defined in
(1.12) and (1.13). Then we have

D¢ (Q917Q92) < D¢ (P917P92) :

© 2006 by Taylor & Francis Group, LLC



12 STATISTICAL INFERENCE BASED ON DIVERGENCE MEASURES

The equality holds if T' is sufficient for the probability distributions Py, and P, .

Proof. We have

Do (P For) = [ fou(@)o (£455) dute)
X
= [ [t @/t 90,10 (3265) du(t)anta)
Xy
= [ | [ to.@t)0 (265) duta) | duce
Yy X
Applying Jensen’s inequality we obtain
fol(w)
Dy (P, Po,) 2 4 g0,(2) | 0 l fou (/1) 12 %S du(e) | | dute).
But,
dP91 dQ91 dPol
fo.(x) _ dp _ _dp dQe, _ g6, (t) fo, (®/1) (1.14)
f92 (:13) dP92 dQ92 dP92 96, (t) f92 (‘f‘c/t)7 .
dp dp dQp,
then,

D¢> (P917P92) > /gez(t)(b <321—Eg> d:“’(t) = Dd) (Q017Q02)~
y

If ¢ is strictly convex, the equality holds iff

f01 (:13) . x fgl (CD) . . N
fo,(x) _éf"?( /t) faﬂw)dﬂ( ), for all x.

The second term in the previous inequality is equal to ge, (t)/ge,(t) by (1.14).
Then, using the Factorization Theorem, the equality holds if T is sufficient for

the probability distributions Py, and Py,. -

In the following proposition {FPp}ycq, © C R, is a family of probability mea-
sures defined on the o-field of Borel subsets of the real line with monotone like-
lihood ratio in z, i.e., if for any 6; < 02, fp, (z) and fy, (v) are distinct and the
ratio fp, (x)/ fo, (x) is a nondecreasing function of x. It is also possible to define
families of densities with nonincreasing monotone likelihood ratio in x, but such
families can be treated by symmetry.
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Proposition 1.3

Suppose that the probability distributions {Py}g.q are on the real line, 6 €
(a,b) C R and let Py be absolutely continuous with respect to a o-finite measure
w (Lebesque measure or counting measure). Suppose also that the corresponding
density functions or probability mass functions have monotone likelihood ratio in
z. If a < 01 < 0y < 03 < b and the function ¢ is continuous, it holds

D¢ (91,02) < D¢ (01,93), ¢ € d*. (1.15)

Proof. We assume that p is the Lebesgue measure. We define

Dy (61,02) = /fel (z) ¢ (chzj g;) dz,
R

and we shall establish

Dy, (01,05) < Dy, (61,05), o € ®*. (1.16)

If (1.16) holds, then (1.15) also holds, because if we consider the function

o () = 1o (%) e,

@), (0 @
o= [ e ()

we have

= D¢ (91, 92) .

Since, by hypothesis, the family of distributions {Py}y.o-p has monotone non-
decreasing likelihood ratio, then

o) fo, (2)
f6‘1 (l‘) f91 (.I‘)

are nondecreasing functions of x. The same happens with

ha(x) _ foy (2)
by (1)~ fo, (@)

From (1.17) at the first sight we have three possibilities:

hg (ZL‘) = h3 (l‘) =

(1.17)
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14 STATISTICAL INFERENCE BASED ON DIVERGENCE MEASURES

a) hz(z) < ha (z), for all x
b) hs(x) > hg (x), for all ©

¢) There exists a number a such that hs () < hg (z) for x < a and hs (x) >
ha (x) for x > a.

‘We know that

Ey, [hs (X / for ;Zj i v = By, [he (X)] = 1.

If Eg, [hs (X)] = Ep, [h2 (X)] = 1, then a) and b) are not true, hence it should be
true ¢). Using the monotonicity of hg () and hs () we have

{z:ho(x) <b} C{x:hs(x) <b}, if b<ha(a)

and
{z:ho(x) <b} D{x:hs(x) <b}, if b>ha(a).

If we denote
Fhyx) (t) = Prg, (he (X) <t) = Prg (x €R: ha(x) <1)
th(X) (t) = Prgl (hg (X) < t) = Prgl (l‘ eER: hg (ZL‘) < t)
we have for ¢t < hgy (a)
th(X) (t) = PI‘@1 (.77 ER: hy (l‘) < t) < Pl"go1 (l‘ €ER: hg (.77) < t) = th(X) (t),

and for ¢t > hs (a)
Fryx) (1) = Fryx) () -
Now we shall establish that the statements

a) Ep, [h3 (X)] = Ep, [h2 (X)]

b) Fhy(x) (t) < Fry(x) (t) for t < ha(a) and Fhy(x) (t) > Fhy(x) (t) for t >
ha (a)

imply
Ep, [|h2 (X) — K[| < Ep, [[hs (X) — k] (1.18)
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for all &.

It is well known that the expectation of a nonnegative random variable X can
be written as

E[X]:/Ooo(lFX (2)) da.

In our case,

o0

Ep, [hs (X)] = /0 T (1 B (@) do = /0 (1— Fyyx) (1) dz = By, [ha (X)].

Denoting

I = /OhQ(a) (1= Fyx) (@) = (1 = Fpy(x) () de
and 0o

I, = /’w(a) (1 = Fyex) (@) = (1 = Fhyx) (2))) d,
we have

o)

ha(a)
I = /O (Fho(x) (2) = Fryx) (x)) do, I = /h (Fha(x) (@) = Frg(x) () dav.

2(a)

Therefore,
ha(a)
Ey, [h3 (X)] — Ep, [h2 (X /O (Fhy(x) (2) = Frg(x) (2)) da
+/( th Fh3(X)( ))dl‘ = 0.
ha(a)

Finally, we have

o0

ha(a)
/0 (Faa(x) () — Fog(x) (@) di = /h ) P () = Fiugy (@) de (119

Now we prove (1.18). It is easy to check that

k )
Ly, [|h ]{,’H /0 Fhi(X) () dx +/k (1 — Fhi(X) (l‘)) dz.
Assuming that k > hg (a), an analogous proof can be done if £ < ha (a) ; we have
ha(a) k
B () K = [ B @des [ B s
2(a

" /k (1~ Fyx (),
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16 STATISTICAL INFERENCE BASED ON DIVERGENCE MEASURES

for ¢ = 2, 3. Let us define
s = Ep, [[h3 (X) — k|| — Ep, [|h2 (X) — K],

so that

ha(a) k
s = /0 (Fha(x) () = Fhy(x) (@) do — / (Fhao(x) (x) = Fry(x) () dz

ha(a)
+/k (FhQ(X) (l‘) — th(X) (ZL‘)) dx.

By (1.19) we have

ha(a)
/ (Fra(x) (@) — Foy(x) (1)) dz = / (Frax) (2) — Frag) (@) de
0 h

Vv
S—
=
—~
-
bR
s}
s
S~—
\
=
N
>
—~
=
S~—
SN—
jo W
]

Then we get that

§2 /k (th(X) (z) - Fr,x0 (:U)) dz > 0.

Thus,
Ep, [|hs (X) — k[] = Eg, [|h2 (X) — K] . (1.20)

Finally we prove (1.16) or equivalently that

Ep, [¢ (h3 (X))] = Ee, [6 (h2 (X))].

Since ¢ is continuous and convex we have

where b is nondecreasing and bounded in [0, z]. Integrating by parts it yields,

6(2) — 6(0) = 2b () — /deb(k) _ / (2 — k) db (k) + b (0).
0 0
Now we consider the function

- {20 frehs
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Then we have
6(2)—6(0) = /0 (2 — k) db* () + 2b° (0) +/°o (2 — k) db* (k)
_ /OOO (2 — k) db* (k) + 2" (0)
where we have taken into account that

/Oo(zk:)db*(k:)zo.

Therefore
El6(2) = EUOOO(Z k) db* () + Zb" (0) + 6 (0)
- Ooo OOO k) db* (k) dFy (2) + E[Z] 5 (0) + ¢ (0)
- /OOOEZ k] db* (k) + E[Z]b* (0) + ¢ (0).
But,

/OOOEHZ—kHdb*(k) :/ (/ 2 — k| dFy (2 >db*()
:/O (/O( k) db* (k)

n /:O — (2 — k) db* (k:)) dFy (2)

and ~
/ (2 — k) db* (k) = 0.
Then, - -
/ E[Z — k|| db* (k) :/ EZ - kdv* (),
0 0
and thus

B2 =5 [ B(Z-+1Z-H]db )+ EZ]5 0)+6(0).
If we consider Z = hy(X), we have

Eay [0 ()] =5 [ 1=k + B (Iha (X) = K] db" () + 5" 0) + 6 0)
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18 STATISTICAL INFERENCE BASED ON DIVERGENCE MEASURES

because

In the same way

Boy [0 (hsCO) = 5 [ (1= -+ B lhs (X) ~ Kb () + 5 0) + 6 0).

Applying (1.20) we have the desired result.

Remark 1.2
It is obvious that if h is a differentiable increasing real mapping, the (h,¢)-
divergence measures also satisfy Propositions 1.1, 1.2 and 1.3.

Remark 1.3

If we consider a function ¢ € ®* which is strictly convex at x = 1, the
corresponding ¢-divergence is a reflexive distance on the space P ={P}g g - It is
possible to define a new measure of divergence, based on a given ¢-divergence, in
such a way that the new measure of divergence will be not only reflexive but also
symmetric. This is possible if we consider the measure of divergence associated
with the function ¢ (t) = ¢ (t) + t¢ (1) . For more details see Vajda (1995).

1.3. Other Divergence Measures between Two Prob-
ability Distributions

In this Section we present other important divergence measures between two
probability distributions that are not, in general, special cases of the ¢-divergence
measures. We consider two groups of measures. The first one corresponding to
measures introduced by Burbea and Rao (1982a, 1982b, 1982¢) and the second
one corresponding to the Bregman distances studied by Bregman (1967). Other
important tools in Statistical Information Theory are the Entropy measures. We
introduce them because they are necessary for the definition of the Ry-divergence
measures introduced and studied by Rao (1982a), Burbea and Rao (1982a, 1982b,
1982¢) and Burbea (1983).

In this section we shall assume as in the former section that the integral in
the next definitions exists.
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1.3.1. Entropy Measures

Let X be a random variable with probability distribution Py. From a histor-
ical perspective the first entropy measure was Shannon’s entropy (1948),

H(X) = H(Fa) = H(6) = - [ fol@)log fo(w)du(@) =Fa [~ log fo(X)].
X

The Kullback-Leibler divergence is related to Shannon’s entropy. If we assume
a finite support and the probability distribution Py, is the uniform distribution,
we have

Dguu (61,62) = H(Po,) — H(Pp, ).

The infinite support case may be written in terms of limits.

Rényi (1961) was the first who presented a generalization of Shannon’s en-
tropy, given by

1
1—r

1

1 —
H’f‘(e)_ 1_7,

log/fg(w)rdu(w) = log Eg [fg(X)r_l} , r>0,r#1
X

Liese and Vajda (1987) extended Rényi’s entropy for all » € R— {0, 1} by means
of the expression

H1(6) = ﬁ log / fo @) dpu() = % log By [ fo(X) ], r#0,1.
X

— 7")

(1.21)

In the following, expression in (1.21) will be referred as Rényi’s entropy. Rényi’s

entropy is undefined for r = —1 or » = 0. However, if we define these cases by

the continuous limits of H;} () as r — 1 and r — 0, then H} (6) is continuous in
r. It is not difficult to establish that

lim H} (6) = H (6) and lim H} (6) = / log fo(x)du(x).
X

A review about Rényi’s entropy for different univariate and k-variate random
variables can be seen in Nadarajah and Zografos (2003, 2005) and Zografos and
Nadarajah (2005).

Many entropy measures have been introduced; see Mathai and Rathie (1975).
In order to present a systematic way of studying the different entropy measures,
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Burbea and Rao introduced the so-called ¢-entropies, by

Hy(X) = Hy (Fy) = Hy (6) = / 6 (fo(x)) du(z), (1.22)
X

where ¢ : (0,00) — R is a continuous concave function and

¢(0) = lim ¢ (£) € (00,00 .

£10

Some interesting properties of ¢-entropies, for univariate discrete random va-
riables with finite support, can be seen in Vajda and Vasek (1985), Vajda and
Teboulle (1993), Morales et al. (1996) and references therein.

| ¢ (x) | h(x) | Entropy |
—zxlogx x Shannon (1948)
x” [r(1—7) "logx Rényi (1961)
(r#0,r#1)
pr—mHl (m—r)" logx Varma (1966)
(m—1<r<m,m>1)
™ (m(m —r))" logz Varma (1966)
O<r<m,m>1)
(1—s) " (a° —2) x Havrda and Charvat (1967)
(s #1,5>0)
xt (t—1)""(zf —1) Arimoto (1971)
(t#1,t>0)
exp[(s —1)a]—1 .
xlogx ) Sharma and Mittal (1975)
(s #1,5>0)
x” (1;) (:vr%} - 1) Sharma and Mittal (1975)
(r#1,s#1,r>0,5>0)
(14 Az)log (1 + \x) (1+ +)log(1+ ) — £ | Ferreri (1980)
(A>0)
%P x Kapur (1972)
s#1
ms7(1+m)s+1(:£5271)71(2572)m x Burbea (1984)

Table 1.1. ¢-entropies and (h,$)-entropies

With the ¢-entropies we encounter the same problem as with the ¢-divergences:
some important entropy measures can not be written as a ¢-entropy. For this
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reason, Salicri et al. (1993) defined the (h, ¢)-entropy as follows,
HY(X) = 1) (P) = H3(0) = | [ oGt duta) |, (123
X

where either ¢ : (0,00) — R is concave and h : R — R is differentiable and
increasing, or ¢ : (0,00) — R is convex and h : R — R is differentiable and
decreasing.[] In[Table[1.1[wellist[somelimportant[ entropyimeasuresl based[on
(1.23).

The following result states some important properties of Shannon’s entropy
measure.

Proposition 1.4

Let X=(X1,...,Xp) and Y=(Y1,...,Yy) be two continuous random vectors
with joint probability density functions fi(x), £ER™ and fa(y), yeR™, respec-
tively. We shall assume that (X,Y) is also a continuous random vector with
probability density function f(x,y),(x,y) € R"™™. The conditional probability
density of X when Y =y is given by f(x,y)/f2(y). Then the conditional Shan-
non entropy of X given Y =y is defined by

= [ Ty fly)
HXY=y)== | 5w Ry ¢

and the conditional Shannon’s entropy of X given Y, by

_ . &y, o _
1Y) == [ fay)os LT andy= [ paw)tt (X/v=y) iy,

assuming the existence of the previous entropy. The following properties are

verified by Shannon’s entropy:
a) The Shannon’s entropy of X can be negative.

b) Let ¢ = (@1,...,0n) be a smooth bijection on R™ and we assume that
Y= p(X). Then,

H(Y)=H(X) - - f(@)log|J (p())| dee

where -
) = det (G4(w))
dy; ij=1,..n

is the determinant of the Jacobian matriz corresponding to the inverse
transformation ¥ = (Y1, ..., ¥n) of .
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n
c) If ¢ = (1, ..., n) is a linear transformation, with p;(x) = 3 a;jzr;, i =
j=1

1,...,n, then H(Y) = H (X) + log |det(A)|, where A = (a;;)

ij=1,...,n "

d) It holds

HX) =~ [ fil@)oghi@lies - [ fila)logfolalde, (120

with equality iff fi(x) = fa(x) a.s. This inequality is called Gibbs’s lemma
for continuous random vectors.

e) It holds
H(X,Y)=H(Y)+H(X/)Y)=H(X)+H(Y/X).

f) It holds
H(X/(Y1,Ys) <H(X/Y:1)<H(X).

The first inequality turns into equality if and only if the random vector Y o
is independent of X given Y1 and the second inequality turns into equality
if and only if Y1 is independent of X.

g) We have the chain rule

H (X1, ... X,) = H(X1)+ zn:H (Xp/ X1, Xpo1) < zn:H (X) .
k=2 k=1

The equality holds if and only if X1, ..., X, are mutually independent.
h) We have

H(Xy,...X,)Y) = H(X1/Y)+ zn:H (XY . X1, .., Xo_1)

k=2
n

> H(Xi/Y).

k=1

IN

Proof.

a) Let X be a random variable with exponential distribution of parameter
0 > 0. Then we have

H(@O) = — [ 0e % log (0e %) dx =1 —logh,

therefore, if 8 € (0, e) the entropy is positive and if 6 € (e, 00) the entropy
is negative.
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b) Let B C R,
P(YeB)= P(Xcv(B))

- /¢(B)fwdw / F () 1T ()| dy

being ¥ (B) = {¢(y) : y € B}. Therefore the probability density function
of the random vector Y is given by f (¢(y)) |/ (y)| and

H(Y)= - Rnf ) I (y)log (f (¢ () | (y)]) dy

_ / f(@)log (f(z)|J (p(x))]) da

n

- H(X)- / f(x)log | (p())| dz.

R”

¢) If ¢ is a linear transformation, we have J(y) = det A~!. Plugging this in
b), we get the desired result.

d) Let A={z: fi(x) > 0}. Given &€ A, we have
fr(®) _ fa(z)
lo <
*h@) = he)
and the equality holds if and only if fi(x) = fa(x). Therefore,

f2( ) o
5 h(@)

f17

fi(z)lo

< fo(@) — fi(@).
If we denote
- | h@og fil@ydas [ fil@)iog hla)de
Rn Rn
we have that

L=~ [ @ogh@des [ fi@)os hle)de

o [ h@ia— [ fi@a
@) / fo(x)dx— [ fi(z)dx =0.
Rn Rn

n (1) the equality holds if and only if fi(z)=f2(x) a.s. in A, and in (2) if
and only if fo(x) =0 = fi(x) a.s. in A°. Then the equality holds if and
only if fi(x)=f2(x) a.s

IN

IN
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e) We have

[ | t@w)ios floy)dady
Rm Rm

f(z,y)
[ oo mi

[ | sewios pwdedy
— H(X/)Y)+H(Y).

In a similar way it is possible to establish
H(X,)Y)=H(Y/X)+H(X).
/) Let

9(Y1),9(y1,¥2), s(x,y1) and r(x,y1,ys)

be the probability density functions of the random vectors
Y1, (Y1,Y2),(X,Y1) and (X,Y1,Y2)

respectively. Thus,

H(X/(Y1,Y?2)) / / 9(Y1,Y2) / i log T(?yzflizf)d“o
r(.Y,.Y,) s(T,Y,)
<) // 9(Y1,Y2) / OIS log - N dm)
= s(z,y;) log (? yi)dmdyl

The inequality (1) is established applying part d) to the functions

r@/yyys) o s@/Y)
9(Y1,Y2) g(y1)

The equality holds if and only if

r(wvylv y2) _ S(CD, yl)

9(Y1,Y2) 9(y1)
This is equivalent to saying that

r(x,y1,Y2)  s(x, Y1) 9(Y1, Ya)

9(yy) 9(y1)  9(y1)
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The first ratio on the right side of the equality is the probability density
function of X given Y1 = y;, while the second one is the probability density
function of Y5 given Y; = y;. The term on the left side is the probability
density function of (X,Y3) given Y1 = y;. Thus we have proved the first

part of f).

The second part is obtained in a similar way.
g) By e) we have
H (X1, Xo,...Xpn) =H(X1)+ H(Xo,..., X,/ X1) ..
In the same way as we have established e) it is possible to show that
H(Xo,..,Xn/X1) = H (X2/X1) + H(X3,...,Xn /X1, X2).

Repeating the same arguments, we have

H (X1, Xo,...,Xp) = H (X1) + ZH(Xk/Xla oy Xp—1) -
k=2

h) The result can be obtained using g).

1.3.2. Burbea and Rao Divergence Measures

Based on the concavity property of the (h, ¢)-entropy, Pardo, L. et al. (1993b)
introduced the generalized Rg—divergence between two probability distributions
Py, and Py, by

Pgl +P92> B Hé)l (P91) +H£ (sz)
2 2

Rl(Py,, Po,) = R} (01,0:) = H; (
For h(x) = x, we have the Ry-divergence of Burbea and Rao (1982a, 1982b,
1982c) and for ¢ () = xlogx the information radius of Sibson (1969).

An important family of Rg-divergences is based on the ¢,-entropies. This
family of entropies (Havrda and Charvat (1967)) is obtained considering the
family of functions

e o o
%(x):{(la) (" ~2), a#l

—xlog x, a=1.
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Rao (1982a) used the family of ¢,-entropies, associated with random variables
with finite support, in genetic diversity between populations. In the particular
case of @ = 2 Gini-Simpson index is obtained. This measure of entropy was
introduced by Gini (1912) and by Simpson (1949) in Biometry and its properties
have been studied by several authors. Note that if we consider the Gini-Simpson
index, the associated Rg,-divergence, for the probability distributions pg, (x;),
i =1,..,M, and pg, (z;), i = 1,..., M, is proportional to the square of the
Euclidean distance, namely

M
Ry, (01,67) = Z po, (i) — po, (2:))*.

>J>I>—‘

Another important family of Ry-divergences is obtained if we consider the Bose-
Einstein entropy introduced by Burbea (1984) and given by

- 14z +1+(s—1)1(2°-2)z
(s —2)

The expressions for s = 2 or 1 are obtained by continuity. Another interesting

¢ (x) =

family is obtained by considering the Fermi-Dirac entropy introduced by Kapur
(1972) and its expression is obtained for

¥+ (1—2)° -1
(1-s)

In this case the expression for s = 1 is also obtained by continuity.

¢(z) =

In this context Pardo, M. C. and Vajda (1997) established that the condition

_¢< u+v> _qS(tu);rtgb(tv) _¢(u+v> _gb(u);qb(v),

valid for all positive ¢, u, v, implies the identity
Dy (Po,, Po,) = Ry(Fo,, Fo,),

where D (Py,, P,) is the ¢-divergence between Py, and Pp,, for

gp(x):(b(fv;l) ¢><x>;¢<1>‘

For example, the function ¢ (z) = xlogx — x + 1 satisfies the above condition.
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Burbea and Rao (1982a, 1982b) introduced and studied three new families of
divergence measures: L-, K-, and M-divergences, which are defined as

K(61.02) = [ (o, (@)~ fo@) (W"l(w)) - ‘“f"z(’””)du(mx

fel(w) f92(58)

101,62 = [ [fm(w)cb <}2—E3) T fou(@)o @—E‘zm du(x)

and

M(61,8) = / (6 (for (@) — & (fon (2)))? du).

X

We observe that the L-divergence is a special case of Csiszar’s ¢-divergence
with @(t) = to(t™1) + ¢(t), provided te(t™1) + ¢(t) is a convex function. If
o(t) = tY/2, M(81,02) is the Matusita’s distance (1964). Some applications of
K-divergences in statistical problems can be seen in Pérez and Pardo, J. A. (2002,
2003a, 2003b, 2003c, 2004 and 2005).

1.3.3. Bregman’s Distances

Bregman (1967) introduced a family of divergences in the following way,

B, (61,0:) = /X (e(fo,(®)) — @(fo () — ¢ (fo. () (fo, () — fo.(x))) du(z)

for any differentiable convex function ¢ : (0,00) — R with ¢(0) = %E)r[l) o(t) €
(—00,00). We observe that for ¢(t) = tlogt, B,(61,02) is the Kullback-Leibler
divergence and for o(t) = t? and discrete probability distributions, the Euclidean
distance.

Some properties of the Rg-divergences and Bregman’s distances as well as
their relation with ¢-divergences have been studied by Pardo, M.C. and Vajda
(1997).

1.4. Divergence among k Populations

The measures of divergence previously discussed are designed for two proba-
bility distributions. For certain applications such as in the study of taxonomy in
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biology and genetics, testing if & populations are homogeneous, etc., it might be
necessary to measure the overall difference of more than two probability density
functions. Matusita (1967, 1973) proposed the first generalization of the Bhat-
tacharyya divergence, in order to express in a qualitative way analogies and dif-
ferences among k populations and applied it to discriminant analysis techniques.
He also derived a lower bound of the Bayes probability of misclassification. An
axiomatic foundation in the discrete case was given by Kaufman and Mathai
(1973), and some properties of these measures were derived by Toussaint (1974).
This author also presented a simple measure of divergence: the J-divergence
among k populations.

A general class of divergence measures, called f-dissimilarity among k& popu-
lations, was defined by Gyorfi and Nemetz (1978) as follows:

D(81,-060) = [ £(fo, (@), o (@) di) (1.25)
X
where f is a continuous, convex, homogeneous function defined on the set

S={(s1,.,8k): 0<s; <00, i =1,...,k}.

If f(xq1,..,x,) = —(H?:1 2;)/* the f-dissimilarity is the negative of Matusita’s
affinity (1967) of k populations and if f(z1,..,2x) = —H;?:l ;U;lj,aj > 0 with

Z?:l a; = 1 the f-dissimilarity is the negative affinity introduced by Toussaint,
(1974). More examples can be seen in Gyorfi and Nemetz (1978) and Zografos
(1998a). The f-dissimilarity leads also to the Csiszar’s ¢-divergence if f(x1,x2) =

ap(x1/72).

Other interesting families of divergence measures among k populations can be
seen in Kapur (1988), Sahoo and Wong (1988), Rao (1982a), Toussaint (1978).
In Menéndez et al. (1992), three different ways of generalizing the information
radius for k populations are presented.

Another interesting family is proposed in Burbea and Rao (1982a, 1982b).
Given k probability distributions, Py,, i = 1, ..., k, the ¢-Jensen difference among
the k probability distributions is

k
Ry(Pa,, ., Po,) = Hs(MPo, + ...+ \ePa,) — > NiHy(Pp,),
=1
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where Zle Ai = 1 and Hy is the ¢-entropy defined in (1.22) . In the partic-
ular case of ¢(t) = —tlogt, we have the Information Radius for k probability
distributions.

1.5. Phi-disparities

The concept of ¢-disparity appeared first in Lindsay (1994), who found that
inference based on statistics of type ¢-divergence, called ¢-divergence statistics
(obtained by replacing either one or both probability distributions by suitable
estimators), requires either bounded differentiability of ¢ or boundedness of @,
itself. Since these properties cannot be satisfied on (0, co) by functions ¢ figuring
in statistically applicable ¢-divergences (e.g., no such ¢ is bounded on (0, 0)),
Menéndez et al. (1998a) introduced the ¢-disparity formally as an extension of
the ¢-divergence. Later, these concepts have been used systematically in many
papers.

Definition 1.2
The ¢-disparity between the probability distributions Py, and P, is defined by

Dy(Ps,, Pa,) = Dy (01,85) = /X fo, ()0 (%EZ;) du(z), (1.26)

where the function ¢ : (0,00) — [0,00) is assumed to be continuous, decreasing
on (0,1) and increasing on (1,00), with ¢(1) = 0. The value ¢(0) € (0,00] is
defined by the continuous extension.

Remark 1.4
Note that the class of ¢-disparities contains all ¢-divergences of Csiszdr (see
Csiszdar (1967), Liese and Vajda (1987) or Vajda (1989)) with ¢ : (0,00) —
(0,00) convex and equal to zero only at 1. Then, the assumed converily and
(1) = 0 imply that
o) —6(1) _ o(t)
t—1 t—1
is nondecreasing in the domain t > 0. Therefore, ¢(t) is increasing in the domain

t > 1 unless ¢(t) = 0 on an interval (1,t1), and decreasing in the domain 0 <
t <1 unless ¢(t) =0 in an interval (to,1). But ¢(t) =0 fort # 1 is excluded by
assumptions.

It is easy to verify that the functions
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i) ¢ (x) = min ((x 12— 1/;z)2>

. _ zlogx
i) ¢ () = (14 xlogx)
2z
iii) qﬁ(x):l—m

w) ¢(x)=1—exp <—a(x— 1)2> , a>0,
are not convex, but they verify the properties of ¢-disparities.

Some properties about ¢-disparities can be seen in the cited paper by Menéndez
et al. (1998a) and also in Menéndez et al. (2001a,b,c) and Morales et al. (2003,
2004).
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1.6. Exercises

1. Show that Shannon’s entropy for a random variable X, whose probability
density function (p.d.f.), f (x), vanishes outside an interval (a, b) is bounded
by the entropy of a uniform distribution in the interval (a,b).

2. Let (X1, X9,..., X, Y) be a (n + 1)-variate random vector with probability
density function f(x1,x2,...,xn,y). State the relation between

H(Y/XI,XQ,...,Xn) and H(Y/Xl,XQ,...,Xk) (k’<’l’L)
and find the necessary condition which turns the inequality into equality.

3. Show that Shannon’s entropy of a continuous random variable in R with
finite mean p and variance o2 is bounded by Shannon’s entropy of a normal

distribution with mean p and variance 2.

4. Let X be a random variable with probability density function f(z). Show

/I‘Zf(l‘)dl‘ > ﬁleexp@H(X)).
R

5. It is said that the experiment associated with the random variable X, with
p.d.f. fg(x), is sufficient for the experiment associated with the random
variable Y, with p.d.f. gg(y), if there exists a nonnegative function h on
the product space X x ) for which the following relations are satisfied:

i) go(y) = / Wz, ) fo (@) du(z)
X
ii) h(z,y) >0, / e y)dn(e) - / e y)duty) =1

Show that
H(Y)> H(X).

6. Derive the expression of Shannon’s entropy for the following random varia-
bles: Beta, Cauchy, Chi-square, Erlang, Exponential, F-Snedecor, Gamma,
Laplace, Logistic, Lognormal, Maxwell-Normal, Normal, Normal-generali-
zed, Pareto, Rayleigh and T-Student.
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7. Let X be a random variable with probability mass function Py (X = x;) =
po (), i € N. Show that

J(61,62) > 4R (6,1, 6,),

where R (61,02) is the Rg-divergence of Burbea and Rao with ¢ (z) =
—xlog x.

8. Suppose that a d-variate random vector X = (X7, ..., X4) has a multivari-
ate normal distribution with mean vector g =(j1, ..., tq)” and nonsingular

variance-covariance matrix X.

i) Show that

H(p, %) = r(ll_r)log Tz

and
H(p, =) = Llog <det (2) (27re)d> .

i4) Assuming that X is normal with mean p and variance o2, show using
the results obtained in ¢) that

r—1
o?) 2 _ (-1
H% (/1’70-2) - T(l];'r‘) log ( ’)f'1/2 (27‘—) 2

and
H(p,0?) = 3log (o22me) .

i11) Show that Shannon’s entropy is invariant with respect to orthogonal
transformations.

9. Let A = (ai;); ;= 4 be a symmetric and positive definite matrix. Show
that

d
det (A) < H a;; (Hadamard Theorem).
i=1

10. Let X =(Xq,...,X4) be a d-variate random vector with p.d.f. given by
f (z1,...,xq4) and nonsingular variance-covariance matrix ¥. Show that

H (X1, ... Xq) < %log (det (2) (27re)d) :

and equality holds if and only if X = (X7, ..., X) has a multivariate normal
distribution with nonsingular variance-covariance matrix 3.
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11.

12.

13.

14.

15.

16.

Show that Rényi’s divergence and Kullback-Leibler divergence between two
multivariate normal distributions are given respectively by

(= )T (P + (L=1) 1) (g — o)
2

D} (11, 21), (1o, B2)) =

1 det (7"22 + (1 *7") 21)
IOg 1—r r
2r(r—1) 7 det (21)"" det (2o)

and

Dicun (11, 1), (g, 32)) = 5 (g — po) 'S5 (g — o))

_ det (X2)
1 1
+ 5 <trace (22 21 — I) + log m) .

Determine the Rg-Divergence, with ¢ (x) = z—x2, between two multivariate
normal distributions. Find the expression, as a particular case, for two
univariate normal distributions.

Determine the Bhattacharyya divergence,

B(61.62) = ~1og | (fo, () fo, (2)"* ()
between two univariate normal distributions.

Show that Hellinger’s distance

D (8;,6,) = ( / (Wel \/foz(w)>2du(w))l/2

is a metric. Find its expression for two multivariate normal distributions.

Evaluate the Rényi’s divergence as well as the Kullback-Leibler divergence
for two Poisson populations.

Let X = (X1,...,Xq), Y = (Y1,...,Y)) and (X,Y) random vectors with
multivariate normal distribution and variance-covariance matrices given by
A, B and C respectively. Show that

det(A) det(B)

) H(X) ~ HX/Y) = Jlog “ L0
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17.

1.7.

b) I d=1=1, then H(X) — H(X/Y) = —31log (1 —p(X, Y)2> , being
p (X,Y) the correlation coefficient between X and Y.

(It is important to note that the expression H(X) — H(X/Y) is called
Mutual Information and it is related to the Kullback-Leibler divergence by

Dgwi (Pxy . Px x Py),

where by Pxy- we are denoting the joint probability distribution of the
random variable (X,Y).

Let X and Y be two d-variate normal distributions with mean vectors p;
and py and variance-covariance matrices ¥ and g, respectively. Assume
that Z is an arbitrary d-variate continuous random variable with mean
vector p;, and variance-covariance matrix 3. Show that

Dicunt (N(peq,21), N9, 32)) < Dgir (Z, N(pg, X2)) .

Answers to Exercises

. Applying (1.24), we have

—/baf(x)logf(x)d;vﬁ—/baf(x)logbiadx:—logb 1

=log(b—a).

The result follows because the entropy of a uniform random variable is given
by log (b — a).

. Applying (1.24) to the probability density functions f(y/z1,...,x,) and

f(y/x1,...,zx), we have, denoting by,

= / F@/ 1, o) 108 F (51, s 2n)dy,
R

that
. / F(9/21, s 20108 F(y/1, s 21)dy.
R

The equality holds if and only if given (z1, ..., zy)

f(y/'rla 7:ETL) = f(y/l'h "'7$k)7 \V/y
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Multiplying by f(z1, ... , and integrating on R™, we have
f Z1y..y T </ f y/$1,.-.,$n)10gf(y/x1,-.-,Jjn)dy> dl'l...d$n
S f T1y..., T </ f y/$17‘-‘7$n) logf(y/xlvaxk‘)dy> d.’ljl...dl'n,

and
H(Y/Xb 7Xn) < H(Y/X17 "'an‘)'

The equality holds if and only if
/ey, san) = f(y/ae, . w).

3. Let X be a random variable with probability density function f(x) with
mean p and variance o2. Applying (1.24), we have

/f(z)logf(z)d:r < /f(:z)log (Wexp <%))d$
R R

1 (z — p)?
= —/f(x) <logg(27r)1/2 502 )dw

R

= log (U (277)1/2> + % = log (U (27‘(’6)1/2>
= H(N(p,0)).

4. Since log z is an increasing function it is enough to prove that
1
log/ 22 f(z)dr > log— +2H (X).
R 2me

Letting o2 be the variance of the random variable X, we know that

H(X) <log <(27T6)1/2 0> :

Therefore,
log L +2H (X) <log 1 + log (27‘(’602) = log o
27e — 7 2me '
On the other hand, as 0? < [ @* f(2)dx, we have

log o? < log/ 22 f(z)dx
R
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and then 1
log — +2H (X) <logo? < log/ 22 f(x)da
2me R

. By hypothesis, h(x,y) is a probability density function in y. We consider

the function ¢(x) = logz and the random variable taking on the values

96(y)
Jy (@, 2)ge(2)dp (2)

with probability density function h(x,y). Thus

E@ = h(CB, y)
/ M, z)ge (2)du(2) /y / hx, 2)go (2)du(z)
y y

and
Eq | ¢ 90(Y)
[ @ 2)gp(=du(z)
Yy
is given by
/h(w,y)log %) du(y)-
v | . 2)aa=)dn(z)
Y

Applying Jensen’s inequality, multiplying by f¢(x) and integrating on X

/ / fo(z)h(z,y) log 90(y) du(y)du(x) < 0.
[ @ 2)g0=dn(z)
RY
Denoting
= / / fo(x)h(z, y)log go (y)du(x)du(y)
and

m=[ [ foehie o ( / h(m,z>ge<z>du<z>) du()du(y)
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we have

| —m= L/“ o (1) log g0 () du(y)

/ fo(x <log/ (w,z)ge(z)du(z)> du(x) <0.

The last equality is obtained integrating in “a” the first expression and in
“y” the second one. Then we have obtained

- [ @ iozsn @it > - [ i (m/ ma%wmwﬁwwy

(1.27)
The function

vwﬁiéM%@%@MM@

is a probability density function on X since

/XWmMMw%=t/ / (. 2)g0 (2)dpu(=)dps(e)
=&A([gw@ww0%mww=1

Applying (1.24) to inequality (1.27) we have,

/mwm%@wwz!/MMMh@ww,
% X

i.e.,

H(Y) > H(X).

6. Shannon’s entropy for Exponential, Uniform and Normal probability distri-
butions has already been obtained. Now we present the results for Gamma
and Beta distributions. The remaining can be obtained in a similar way.

i) Gamma distribution
We have

H(G(a,p)) = / F‘é)e_ax:zp_l (ploga —logI (p)) dx

/ e “ar ! (—az + (p — 1) logz) dx
0
= —ploga+logT(p) +

— (p—l)/ %e*“mxl’*llogwdx.
0
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To find the desired entropy, we must find the value of

e~ %P og xdx.
/0 ' (p) s

We know that

oo
aPe” P lde =T (p).
0

Differentiating with respect to p, we have

(o¢] o0 F
/ (log a)aPe™ P~ dx + / aPe %P og adr = 8—@
0 0

op ’
then o dlogT (p)
e’ _ _ ogl \p
e %P og xder = =2 _loga
/0 T (p) s ap g
and
H(G(a,p)) =log(I'(p)/a) + (1 — p)¥(p) +p,
where d1oeT (1)
ogl (p
Up) = —=— 2 1.2
) = =5 (1.28)
is the Digamma function.
i1) Beta distribution
Denoting by
l=H (B(a,b))
we have
! I'(a+b) 1 b—1 I'(a+b) 1 b—1
I'(a+b 70— b—1 a+b
= _</0 rarm e’ (1= @) log g >r<>d$>

— (a-— 1)/ Fr(g;ifé’g):z”_l (1 —z)" ' log xdx

- (b-1) /0 FF(ESJIE?IZ) 291 (1 —2)" Llog (1 — ) dx.

Then
H(B(a,b)) = —log msieh
— (a—1) a‘;;?b / —z)" og zdx
— (b-1) FF(ELGF% 2)" log (1 — z) d.
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Now we have to obtain the following integral fol P x)b_l log xdzx.

We know
frta oo (i)

Then

1
log/ 21 (1—2)Vde =logT (a) + logT (b) — logT' (a +b),
0

and differentiating with respect to a, we get the following equality

1
1 / 291 (1 B l,)bfl log z dz = 810(39;(11“( a) 8loggc(1a+b)
0

I
/ zo—1(1—z) lds
0

Then

1 -1
/0 21 (1 —z)" ogzde = <%%> (¥ (a) —¥(a+b)),

with W (x) defined in (1.28).

In a similar way we get

1 I(a+b) \ "
[ et a—afog (1 =) de = (FE) (0 0) - ¥ (@ +b).

Therefore,

H(B(a,b) = —log i —(a—1)(¥(a) — ¥ (a+D))

(b—1) (¥ (b) =¥ (a+b)).

In the following table we present without proof the entropy corre-
sponding to the other probability distributions.
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| Name p.d.f. Shannon’s Entropy
) = 2% (1—2)* log B (a,b) — (a — 1) (¥ (a)
Beta B(a,b) —U(a+0b)—(b—1)
0<z<l, a,b>0 (T (b) — ¥ (a + b))
flz) = P
C h w(A2+x2) 1 47\
ety —co <z <oo,A>0 og (473)
22 le”3
x) =122 n
Chi-square f=) 221 (4) logr(LQF <22) "
z>0,neZt +(1-3)v(3)+%
f (l‘) — nbjl !xn—le—bx I'(n)
Erlang :c>0,§)>g),neZ+ (1-=n)W¥(n)+log—~ +n
Exponential | f(z) =0"te " 7;2,0 >0 1+logo
mz) 3~ (m mp(m n
flay= LD () (B (5 2)
F-Snedecor B(z,)(metn) ™2 +1- 20 (2) - (1+2)
z>0,mnezt XU (%) 4 medng(min)
p—1 _—ax
Gamma flz) = wupl“e(p) log(I'(p)/a)
z,a,b>0 +(1-p)¥(p) +p
_ 1 -1, ==
Lapl (@) =3a7 e 1+log (2
aplace —oo <z <o0o,a>0 & (20)
— oz —z\ 2
Logistic fle)=e"(1+e™) 2
—00 < & < 00
exp 77(10?:{‘02
Lognormal [ (@)= P 1+ % log (2mea?)
x>0
Maxwell- fz)= <4\ / %) z2ehBa” — L
Normal log \/% T2
x,0>0
I B
Normal fla) = cme = log (ov/2me)
—oo < <o0,0>0
Generalized f(z) = <?(ﬁj)> zo~le=h log (%%)
Normal z0,8>0 : o1 ( a) .
o (v (5) +4
f (:U) = % ﬁ l
Pareto r>k>0,a>0 10g()+1+a
: fa)=(%)e 2 b2
v+1
1422) 2 n+l ntly _ (o
T-Student @) = S7mD 3V~ U(g)})
22 +10g(\/ﬁB bEID) )
—co<x <oojv €L
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Triangul ] e, 0swsa L _log2
riangular | f(x) = 2((11::)) a<z<l1 5 — log
Uniform f(x):(b—la);a<x<b log (b —a)
Weibull f(@)= () te /% 2,c,a >0 u+log( )+1

The function ¥ and the value v appearing in the previous table are given
by

OlogI'(x & _
W) = FEL — @) § (kD)
v = Euler constant = 0.5772156649.

More details about the previous table can be seen in Lazo and Rathie (1978).

. We consider the random variable Z, taking on the values

Po, (l‘l) + Do, (:El)

,1€N
2pe, (i)
with probabilities pg, (z;), ¢ € N. We have
Do, xl + Po, (xl)
Ey, [ po, (x;) = 1.
2 1/621\] 2p02 :I:l) 2( ’L)

If we consider now the convex function ¢ (t) = tlogt, we have

Eo [0 ()] =3 — J2rp92 (&) log 221 (:;;Lj (Z))z -

Applying Jensen’s inequality we get

i€EN

0= ¢ (Ey,[2]) < Zpé)l (%) + pa, (:) lo Do, (i) + pe, (l'z)

2 2 5 2, (11)
Then,
Z pol(mz)+P92(f’~"z log Pol(x’)+p"2(m’) < — Z p—olng log pg, () -
ieN ieN

On the other hand we can write

Ty
Dgir (01,02) = > poy () log Po, (@)
€N ('Tl)
= %pel (9cz)logm)1 (z:) — Z , (i) log pa, ()
1€
— —H(6) - (02)f22w10gp92 ().
€N
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Then,

ieN
Py +P,
= 2 (BT) — (H (Pp,) + H (Pyy))
In a similar way it is possible to prove the statement,

Py, + P,
Dicun 02.61) > 24 (F2f 202 ) = (0 (Fo) + (o).

Thus J (61, 02) has the expression

Py, + F, H(Pp, )+H(P,
Dyt (01,02) + Dxcury (02,61) > 4 <H( o 5 92) _ 91); ( 02));

and hence
J(601,02) > 4R (01,05).

8. Let G4 be the family of all d-variate normal distributions, N(u,X), with
mean vector g =(j1, ..., tq)’ and nonsingular variance-covariance matrix
3. A distribution can be specified by an element (u, ¥) of the parameter
space

@:{(u,E):uERd,EGP(d,R)}7

where P (d,R) is the set of all positive definite matrices of order d. The
p.d.f.’s of the elements of G4 are given by

fi 1) = (272 et (2) 2 exp { =S~ ) B o )

with & = (21, ...,74) € R and (u, %) € O.

i) It is clear that

1
1 —
H’r (l*l'a 2) - r (1 _ ’f‘) IOgKT(M,E), r 7& 07 1
where
Ko(p,S) = /R ((2m) P det () V2 exp { - @B @Y gy
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But
det
K, (p,X) = % fu,(rlz)(xl,u,xd)dw
det (2)~ 7 a1

= ——ap @,

and we get the first result.
On the other hand,

. 1 . 1 logr
H(p,X) = ll_)rri H,(u,X) = ll_)rri (? log det (%) + 5 d og 21 — §T(1g T)) ,

but
d logr d

lim —=—21 _ = &
12 (1—1) 2

Therefore we have the stated expression for H (u,X).
it) The result follows from ¢) with d = 1.

it1) Let Y = LX be a d-variate random vector, where X is a ran-
dom vector with multivariate normal distribution, with mean vector
p =(u1, ..., ug)T and nonsingular variance-covariance matrix 3, and L
is an orthogonal matrix. We have

det(LTSL) = det(LT) det (X) det(L)
= det(L!)det () det(L) = det (X).
Then,
H(X)=H(u,X)=H(Y).

9. Let X = (X1, ..., Xgq) be a d-variate random vector with multivariate normal
distribution, with mean vector g =(p1, ..., tg)? and nonsingular variance-
covariance matrix A = (ai;); ;_; _4- The variance of the random variable
Xi is Qg for i = 1, ,d

We know that 4
H(X1,..Xq) <> H(X;). (1.29)

The marginal distributions of the random variables X;, i« = 1,...,d, are
normal with mean yu; and variance a;;, then

H (X;) = H(pi,ai;) = log (aii27re)1/2.
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10.

On the other hand,
1
H(p, ) = H (X1, ..., Xg) =  log (det (%) (2me))?.
Applying (1.29) we have the stated result.

Let Y =(Y1,...,Yy) be a d-variate random vector with multivariate nor-
mal distribution, with mean vector p and nonsingular variance-covariance
matrix ¥. By (1.24) we have

H(X) < / ] f(z1,...,zq) log ((27T),d/2 det (2)71/2
X oxp f—% (-5 (@~ p})de
= log (( 7T)d/2 det (X2 )1/2)
+ / f(x1,.yxq (w—u)TZ]*1 (x — p) de.

Furthermore, since X! is a symmetric nonnegative definite matrix, there
exists an orthogonal matrix L such LTX 1L = A for some diagonal matrix
A. We shall assume A =diag (A1,...,\g), \i > 0 Vi = 1,...,d. Writing
Ti— Wy = u, © =1, ...,d, we have

H(X) <log <(27r)d/2 det (X2 1/2 /fU g,y ug) w7 du.

Let us make a new change of variables w1, ..., uq by writing U = LV, and
note that the Jacobian of this orthogonal transformation is det (L) = 1,

H(X)< log ((QW)W det (2)1/2)
+ %/Rd fv (1, ., v0) VT LTS Lo do
log <(27T)d/2 det (2 1/2 / fyv (v1,...,va) vTv do
= log <(27r)d/2 det (X 1/2 / fyv (V1,5 04) (Zdjl Ai“?) dv
— log ((%)d/? det (2)1/2) +1 (; \Var (%)) .

Since Cov(U) = LCou(V)LT we have L™*S(L")~! = Cov(V). Therefore
Cov(V) = (LTS7L) "' = A~! and

H(X) <log <(27T)d/2 det (2 1/2> ZAZ% log ( 2776)d/2 det (2)1/2> :

7
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11. Let us denote

K (61,02) = [ fo, (o) fou(0)' " (v).
X

where 61 = (pq,31) and 02 = (s, X2). Then

K} (61,6,) = / ((2m) /2 det (83) /2 exp { - B o) 1)
Rd
<(27T)_d/2 det (E )—1/2 exp {_ (m,uz)Tzégl(m,MQ) }) 1—r o
= (2m) 2 (det (S1) "7 det (%) (—1)
X / exp {*% (@ —py)" (rZ1") (@ - “1)}
Rd
% exp{—f@— )" (1-1)%3") (@ - o) | da.
The expression
(@ —p)" (rZ0Y) (@ — ) + (@ — )" (1 —7)257") (@ — o)

can be written as

X

(@ —p")'C Yz —p")+B
where
pr= (ST (-3 T S e (1) B ,)
Cc1l= 7"271 +(1-7) 251,
B= (g — )T (rZo+ (1 —7)81) " r(1—7) (g — o)

Then we have

Kr(01,8,) = det(31) "2 det (S5) 7 det (13! +(1f r ;)
xexp { 20 (g — )T <r22+<1fr>21> (1 — 1) }
or
det (rEt + (1—r) 551 2
K7 (01,0y) = ( u-r 2)

det (£1)"/2 det (o) 7"
x exp{Mml p2)” (rZ + (1= 1) B0 (i — o) }

Multiplying numerator and denominator in the first term on the right-hand
side of the previous expression by

(det (21) det ()12
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we have

det (12 + (1 — 1) ;) /2
det (%1)"7 det (5) 72
% exp {205 (1 — )T (1B + (L= 1) )7 (1 — aa)

K7 (61,02) =

From here it is immediate to get the expression of the Rényi’s divergence.

Regarding the Kullback-Leibler divergence,

DKull((#lvzl)a(y’%z?)) = }ED}((“lazl)v(y’%z?))

= %(#1 — o) TS (e — o)

1 - 1 det (r¥s 4+ (1 —7r) %)
- 2 l_I)Il -1 log 1—r r "
r=1r(r=1) 7 det (2;)"" det (X2)
But
Odet(A) _10A
0 det(A)trace (A 90 )
Denoting
1o det B+ (=73 det ()" det (25)"
& dot (Z) " det (3)” | det (1B + (1 —1) %)’
and
l =trace ((7“22 +(1-=7r) 21)71 (39 — 21)> ,

we have

da pdet (1 + (1-1) %) 1 det (21)17" det (22)"

or det (£1)207) det ()"

et (r —7)21) (det (21)" " det (22)" ( lo et (%)
bdt(22+(1 )E)(dt(z) dt(z)(lgdet(21)>>

det (21)2177) det (25)*"

From here we have that

lim % = trace (251 (B2 — 31)) + (log det (£2) — log det (21)) .

r—10r
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Then
Dircunn ((N17 Z31)7 (N2722)) = %(lﬁ - N2)T22_1(N1 - N2)
L 57 (85— 1)) + } log 9eL(Z2)
— strace (33" (B2 — 21)) + Ogdt(Z)
or
Dt (111, %1), (9, B2)) = 3y — p2) 755 (g — o) ot (3
1 —1 1 et :
+ §trace(22 EI—I) lgdt(E)

12. We have

Ry (01,02) = Hy <P91;P"2 _ H¢(P91);H¢(P92)
= Jo @)+ 1oy (@) _ (o, (@)+o,(@)\?
- / R ( 2 ( 2 > )du(m)

/Rd <f"1("”) - fel(m)2> du(z)

N[=

3 (@) - fon(@)) duo)
Then,
Ry (01,02) = / (—l—z—(w)+f9( ))Qdu(w)—%—%
+ %(/ fo, (@)’ du(x /f92 2du( ))
and

R (61.02) = 1 (K, B0) + Kaliap, 53)) = 5 [ for(@)fo, @)u(e)
We know

Ko(p, S) = /R (o3 (21, oy 20))? davrdrg = 742274 det () V2.

Then it is only necessary to get

A /R Fuy2 (01,0 2) fuy 3, (@1, 20) e,

i.e.,

A= / (e der(m) T exp (3@ - )T @ - )}
X <(2 ) 42 det (32)” 1/2 exp{—3(x — py)'3; Y — u2)}> dx.
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Therefore,

A-r [ ew {% (@ — )" (@ — ) + (@ — i) TS (o u2>)}
with
L= (2r)"%det (21)"/2 det (25) V2.

Now we shall write the expression

(@ — )" S (@ — ) + (2 — )" 25 (@ — pay)

as
(® —p*)"C (@ — p*) + B,
We must get the expression of u*, C~! and B. We have

K mTZIIm — mTﬁflul — ufﬁflm + ufﬁflul
'S e - "S5y — pi 5w + pg T g
2l (B2 — 2T (3 + 25 )

(F=rt + 3o e + pf S0y + pd 25 .

+

On the other hand

(x —p)'CHx—p)+B = 2'Cle—x"C
(w)'C e+ (p)'C™'p* + B.

Therefore

i) Tl =% 42t

i) Cl =37y + 35 g
and

po= (E TN E e+ 2 ).
Finally we shall get the value of B
B= —(p)TC7 'y + S py + 1785 s
= (37 S ) (ST ) TS e+ S5 )

+ S e+ e s,
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By elementary calculation, it can be obtained that

B = —p'S (S 458 ey - p (S ) Sy
- WS TS
S (T 2 TS ey T ey 4+ 0T
(2 37 (30278 )
p's (EI +25 DIRIWE
Tzz (21 )7121_ Nl
+ pl(zt -5 (21 + 307185 py

We shall study each term of the previous expression.

a) We denote
S=xt-sEteeh) it

‘We have

S = ST -Et s h)ieh

1
CEEYTIE ) - @t s iE
1

EUEEh (R s )
ORI ) Y
IS S B S I e
I+3;'%)7 155t
DI D i) PR Ve
S H(Zo 4+ X)) isy!
By 4+ ) 3!

e e Nt Nt R

Similarly
b) Byt - (B A ) I = (B 4 2y !

¢) Also we have
DUE D)

(=M + =5 )2 )13t
= (= 121+2 I»)-1st
(I+2 121) Iyt
= (Z1+3)!
d) 33N (BT + 3 ) 7TIET = (B 4+ Bg)

Therefore
B = (py — 1) (B2 + 1) (g — o)

© 2006 by Taylor & Francis Group, LLC



50

STATISTICAL INFERENCE BASED ON DIVERGENCE MEASURES

13.

and A is given by
o ~1/2 4e —1/2 _
A= B0 _CAAB) e (g — )T (B2 + 20) 7 (1 — o))

. / P (CalE— )T (B0 + 35 (@ - p)) de

i.e.,
o -1/2 4o -1/2 -
A= 20 exp (- ) (B + ) (1 — o))

-1 _1\—1/2
x det (211 + 3 ) /Rd f‘u*’(zflJrE;l) (1, ..., 2q) dx

and then

det (1) 7Y2 det (25)7Y/2 _
(1) (22) 7 exp((ul—uz)T(22+21) 1(ul—u2))-

(2m)? det (27! + 251)
Finally, we have
Ry (01,62) = 4 (74227 (det (Z1) /2 + det (Z2) 1))
- 1 ( )—d/2 det (31) 42 det (32)~ 12
2 n1/2
det (271 +251)
x - exp (1 — pa) (Sa + £ o - 1))

In the case of two univariate populations we have

1 1

1
Ro (o) . 2) =k (- + «E) T2t e2)
1 2

-2
< exp (M + M2+ = M1M2>
2

We consider Rényi’s divergence for r =1/2.
7 log / V1o.@)\/fou(@)du(a) = 4B(6,,62)

with 01 = (ul,al) and 02 = (MQ,JQ).

Dlz%(al,ag)

r

l
2

Then we have

B((p1,01), (u2,02)) = D! ;((M1701)7(M2702))
2 2
P sl o

o1 + 03 20109
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14. First we establish that D¢ defines a metric.
In fact,
i) D€ (61,05) = 0 if and only if fg, (x) = fo,(z) a.s.
i) The property DH€ (01,85) = D¢ (05, 0,) is trivial.

it1) Applying the Minkowski’s inequality for p = 2 to the measurable
functions

Vfo. (@) = \[fo, () and \/ fo, () = \/ fo, ()

we have, denoting

- ( JACCCE wes(w))Qdu(w))l/g,

that

1/2

= (] (A ) o)
([, (Vi@ - v <w>)2du<w>>”2,

i.e.,

DHe (01, 03) < DHe (01, 02) + DHe (02, 03) .

Now we shall see the relation between D¢ (61,0;) and K} (81,805). We
have

1/2

D¢ (6,,0,) = /(\/fel(m)\/fez(m)>2du(m)

X
1/2

— (22 / Vo @1/ for(@)du(@)
X

- (g me)”

Now the expression between two normal populations can be obtained from
Exercise 11 in which we have derived the expression of K (61,63).
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15.

16.

First we calculate

o [e=01gr\" [tz \ 1"
o - 5 (28 (29
x=0

z! !

= exp(—bir+ (r—1)02)exp (9&1) ,
2
then
D1 (91 92) = 1 log K* (91 92) = 1 971« — 017" + (7" — 1) 02
ATy r(r—1) TATH r(r—1) 92*1
and

. 0
D (01,62) = },Lﬂi D} (61,602) = 61 log 9—; + (02— 61).

a) We know that

H(X) = %log ((27e) det(4))
HY) = % log ((27T6)l det(B))
H(X)Y) = %log ((27T6)d+l det(C)) :

Then,

H(X)-H(X/Y) = HX)+H(Y)-H(X,Y)
= %log ((27re)ddet A)) + log ((27re)ldet(B))

(
~ log ((m)d*l det(C)
1, det(A)det(B)

2 %7 det(C)

b) Denoting by ¢2 and 72 the variances of X and Y respectively and by

C— o por
\ por T2 ’

then det(A) = o, det(B) = 72, det(C) = 0*7% (1 — p?) and the result is
obtained.

p=p(X,Y), we have
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17. We know

DKull (N(I-'le 21)7N(IJ'27 22)) = 7H( “17 /f lOgg

D (2 Ny, %2)) = —H (2) ~ [ t{z) logg(e)de
Rd
where f(x), g(x) and t(x) are the probability density functions associated
with X, Y and Z, respectively.

By Exercise 10

—/t(:z:) log g(x)dx :%log ((27re ]22 /f )log g(x

Rd

and
—H (N(py,%1)) < —H(Z).

Therefore

Dgcur (N(pq,31), N(peg, 32)) < D (Z, N(po, 32))
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Entropy as a Measure of
Diversity: Sampling
Distributions

2.1. Introduction

The term diversity is usually synonymous of “variety” and is simply an in-
dication of the number of different ways a characteristic is present in a group of
elements, taking in account the total of elements with each value of the charac-
teristic. For example, we often speak of a “diversity of opinions”. While simply
accounting for the number of different types of opinions on a topic one can give
a rough idea of the “diversity of opinions;” the total of people with the same
opinion must be taken into account to get the true sense of the diversity.

The concept of diversity appears in a great number of research areas: ecology,
biology, genetics, economics, linguistics, etc. It is in some sense the degree of
heterogeneity of the individuals with respect to characteristics under study.

If diversity is defined as “the presence of a great number of different types
of industries in a geographical area” (Economics) or “the linguistic differences
between the inhabitants of neighboring regions” (Linguistics) or “the number
of species in a place as well as the abundance of those species” (Biology), then
it would be useful to have a summary statistic to describe the diversity of a
characteristic in an area and compare it to that of other areas.
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A diversity measure should satisfy certain intuitive conditions which are satis-
fied by an entropy measure. Later this point will be clarified. Shannon’s entropy
measure as well as Gini-Simpson index (The expected distance between two in-
dividuals drawn at random when the distance is defined as zero if they belong to
the same category and unity otherwise, see Exercise 1 of this chapter) have been
used as indexes of diversity. We can observe in Exercise 1 that Gini-Simpson
index is the ¢,-entropy of Havrda and Charvat with a = 2 and sometimes is
called quadratic entropy. In general, entropy measures can be used as indexes of
diversity.

In the rest of the chapter we shall assume the concept of measure of diversity
given by Rao (1982a,b). A measure of diversity I is a nonnegative real-valued
function defined on the space of probability distributions which reflects the differ-
ences between the individuals within a population. Since we are mainly interested
in categorical data, we consider the space of the multinomial distributions. We
consider a finite population, II, with /N elements that could be classified into M
categories or classes (1, ..., Cjs in accordance with a classification process, C. Let
X ={C1,...,Cr} be the set of the M categories and

M
Ny = {p = (p1y.spmr)t 1 pi >0,i=1,..., M, dopi= 1}
i=1
the convex set of probability measures defined on X'. A function I (.) mapping
A into the real line is said to be a measure of diversity if it satisfies the following
conditions:

i) I(p) > 0,Vp € Ay and I(p) = 0 if and only if p is degenerate.
i1) I is a concave function on Ayy.

We shall refer to I(p) as the diversity within a population II characterized by
the probability distribution p.

The condition i) is a natural one since a measure of diversity should be non-
negative and should be value zero when all the individuals of a population are
identical in accordance with the classification process considered, i.e., when the
associated probability measure is concentrated on a particular point of X'. The
condition #i) is motivated by the consideration that the diversity in a mixture
of populations should not be smaller than the average of the diversities within
individual populations.
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From a historical point of view the two most widely used diversity measures
are Gini-Simpson index given by

and Shannon’s entropy given by

M
H(p)=—)_pilogpi.
=1

Gini-Simpson index was introduced by Gini (1912) and by Simpson (1949)
in biological works. Its properties have been studied by various authors, Lieber-
son (1969), Light and Margolin (1971), Nei (1973), Bhargava and Doyle (1974),
Bhargava and Uppuluri (1975), Agresti and Agresti (1978) and Patil and Taille
(1982). Rao (1982a,b) gave a characterization of this index. Other references can
be obtained from these papers. Regarding Shannon’s entropy, some applications
of this measure in diversity can be seen in Lewontin (1972) and Pielou (1967,
1975).

Rao (1982a,b), Burbea and Rao (1982a, 1982b) and Nayak (1983, 1985, 1986)
investigated the possibility of using other entropy functions as diversity measures.
Pardo, J. A. et al. (1992), Pardo, L. et al. (1992) and Salicri et al. (1993) stud-
ied the behavior of the (h,¢)-entropies as diversity measures. Disregarding the
work context, it is usually very difficult or excessively costly to dispose of a census
information (due to population size), so that it is essential to be able to obtain di-
versity measurement estimates by means of a sample. In this chapter we consider
entropy estimates based on samples from unknown populations. So it would be
of interest to study stochastic behavior of those estimates. We also consider the
natural estimates by replacing p.s by their maximum likelihood estimators and
we derive their asymptotic distributions. We consider this problem for general
populations and then we get the corresponding results in multinomial populations
as a particular case.

Let (X, Bx, Pp)geo be the statistical space associated with the random va-
riable X, where Bx is the o-field of Borel subsets A C X and {Pp}g.e is a
family of probability distributions on the measurable space (X, Bx) with © an
open subset of RMo My > 1. We assume that the probability distributions Py
are absolutely continuous with respect to a o-finite measure p on (X, Bx). For
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simplicity p is either the Lebesgue measure or a counting measure. We shall
obtain the asymptotic distribution of the statistic

HO() = /X o(f5 (@) dp(x),

where 8 is the maximum likelihood estimator of 0, being ¢ : [0,00) — R a concave
function, i.e., we work with ¢-entropies but the results will be extended in a easy
way to (h, ¢)-entropies.

From a historical point of view, the asymptotic behavior of the entropy mea-
sures was first studied in multinomial populations and then in general popula-
tions. Basharin (1959) gave the asymptotic mean of Shannon’s entropy, Lyons
and Hutcheson (1979) obtained exact expression for the first four moments of
Gini-Simpson index, Bhargava and Uppuluri (1975), for this index, gave the ex-
act distribution for small sample sizes and few classes. Nayak (1985) obtained the
asymptotic distribution of the ¢-entropies in random sampling and Salicri et al.
(1993) studied the same problem for the (h, ¢)-entropies, either in random sam-
pling or in stratified random sampling. Finally, Pardo, L. et al. (1997a) studied
the problem in general populations.

2.2. Phi-entropies. Asymptotic Distribution

We assume that the statistical space (X, Bx, Pg)gco satisfies the standard
regularity assumptions considered in the parametric asymptotic statistics theory:

i) For all 8; # 05 ¢ © C RMo

n({e € X fo, (@) # fo,(@)}) > 0.
ii) The set Sy = {x € X: fg(x) > 0} is independent of 6.
i11) The first, second and third partial derivatives

Ofo(x) 0*fo(x) O°fo(x)
26;  06:00; * 600,00,

exist everywhere for all 1 <14, j, k < M.

i g k=1,.., Mo

iv) The first, second and third partial derivatives of fg () with respect to
0 are absolutely bounded by functions «, 8 and -« with finite integrals

/X o(@)du(x) < oo, /X B(@)du(x) < oo and /X (@) fo(@)du(z) < oo.
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v) For each 6 € O, the Fisher information matrix

75 (6) = ( [ TRER TS by a)i(a)

4,j=1,...,Mo

exists and is positive definite, with elements continuous in the variable

0.

In order to simplify some proofs we shall introduce the notation o(.), O(.),
op(.) and Op(.). Sections 14.2-14.4 in Bishop et al. (1975) present a detailed
study of them.

Given two real number sequences {zy},cy and {yn},cy Wwe say that x, =
0(yn) (xy, is little o of y,) as n — oo if z,/y, — 0 and we say that z, = O(yy)
(2, is big O of y,) as n — oo if |2y, /yn| is bounded.

If we consider vectors &, =(zp1, ..., Tnk) the notation x,, = o(y,) means ||z,| =

T

0(yn) where ||z, |* = @,

&, and x, = O(yy) means ||z,| = O(yn).

Given a sequence of random variables { Xy, },, .,y and a sequence of real numbers

{yn} we say that X, = op(yn) as n — oo if X,,/yn £ 0 and we say that
X, = Op(ypn) as n — oo if X,,/y, is bounded in probability.

Given a sequence of random vectors { X, }, ., where X, = (X1, ..., Xni), we
say that X,, = op(yn) if || X || = op(yn) and X,, = Op(yy,) if || X | = Op(yn).

We present without proof some of the most important relations among them:
a) O(zn)O(yn) = O(znyn)

b) O(zn)o(yn) = o(znyn)

¢) o(zn)o(yn) = o(xnyn)

d) O(zn) = O(can), ¢ £ 0

e) o(1) +O(n~2) + O(n~') = o(1)

f) Op(2n)Op(yn) = Op(Znyn)

9) Op(zn)op(yn) = or(Tnyn)

h) OP(l‘n)OP(yn) = OP(xnyn)
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i) If X, 5 X = X, = 0p(1)

j) Op (O(v/n)) = Op(v/n) and 0 (Op(zn)) = op(zn)

k) I X, 5 X = X, +op(l) 5 X

The following result was obtained in Pardo, L. et al. (1997).

Theorem 2.1

Let 8 be the mazimum likelihood estimator of 8. Suppose that i)-v) hold and
that, in addition, ¢ € C* ([0,00)) and there exist a measurable and u-integrable
function F(x) such that

o) 2202

< F(x), i=1,.., M.

Then
” L
Vi (HO(8) — H? (0)) - N (0,03(9)).
provided 033(0) > 0, where
03(0) =T"IF (0) ' T, (2.1)

with TT = (ty, ..., ta,) and

t; _/ o (f af"( )du(w), i=1,.... Mp.

Proof. The first order Taylor expansion of H d’(b\) around 0 gives

1@ = 1(0) + Y100 o[- 0]
i=1

being

i Lo [ tnte) 2o i), =1,

and |6 - 0H2 _ (5 - 9)T(§ o).
Since

n—oo

Jn@—-9) L N (o, Ir (0)*1> : (2.2)
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then ﬁo(”@ 0”) Vno(Op (n~1?%)) =

Therefore, the random variables /n <H > and /nTT(6 — )
y

have the same asymptotic distribution. By (2. 2) we have

/T (@ — 0) —>N(OTTIf T).

n—oo
This completes the proof.
Remark 2.1

If we consider Shannon’s entropy, i.e., ¢(x) = —xlogx, we obtain

t; = —/Xlog fg(w)ajge(f)du(w), 1=1,2,..., M.

Corollary 2.1
We consider the (h, ¢)-entropies defined in (1.22), then we have

\/—(H¢(0) Hd)(a)) L, N(o,TTIf(e)_lT)’

</ o fo(@))du( ))"*“

where T is given in Theorem 2.1.

Proof. A first order Taylor expansion of h(y) around y = yp at y = y gives

h(F) = h(yo) + 1 (y0)(F — yo) + o(F — yo)-
Now for yo = H? () and j = H¢(§), we get

HY(6) = HY(0)+ N </X

. @) (1) - 1 0))
+ o <H¢(§) — Y (0)) :

and hence
Vi (1@~ 17.)) = v i ([ otho(einta)) (@)~ H* ©))+op 1)

because \/n o (Hd’(b\) — H? (9)) = op (1) . Therefore,

Vi (H(©) - Hy (0)) = (0 W < / 6(fo(@))dp(= >>2TTIf(0>1T> -
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Remark 2.2

Under the assumptions of Theorem 2.1, S, = n'/>TT(@ —0) =0 a.s. Vn € N
iff 03(0) = TTZx (6)' T =0.

In fact, if S, =0 a.s. Vn, we have lim Var[S,] = 035(0) = 0. On the other

hand if 03)(0) =TTTr(0)' T =0, then T = 0, since Zr () is positive definite,
and then S, =0 a.s. Vn € N.

If TTZr (9)_1 T =0, we use a second order Taylor expansion to get the as-
ymptotic distribution of H?() in the following theorem:

Theorem 2.2
Assume that i)-v) hold and ¢ € C?([0,00)), 033(0) = 0, and suppose that
there exist measurable functions F(x), G(x) and H(x), such that

S o@) 2| < F@) =1,
0 0
S (1o(e) DD < Gl@) g =1 Mo
/ 0 Jo(@) H =1, M
QS (fg(iﬂ)) aelaej < (CE) 2,7 5 eeey V10

Then,
M (H¢(5) _H? (0)) =y 822,
=1

where Z1, ..., Z, are independent and identically distributed (iid) normal random

variables with mean zero and variance 1, r = rank (I]: 0) ' TZx (0)_1> and

Bls are the eigenvalues of the matriz ATx (0)™", being, A = (aij)ij=1,..mp With

B p dfg(x) dfg(x)  0*fo(x) ,
aij—/X(@ (fo(x)) F—T) + 96,06, (b(fg(ac))) du(x).

Proof. The second Taylor expansion of H ¢(§) around 0 gives

H?®) = H%(6) + %Aﬁjf_jol %gi—géf)(@ —0,)(0; - 0;) + o <H§ - 9H2>

— H0)+1(6-0"A0-0)+0 <H§ - 9H2> ,
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82H¢ (7]
A = (aij)ij=1,..M, = <Wé)>
1 J 1,j=

- (/X <¢//(f0(w))ag§f) a?g(j J) i 8825%(0 )¢ (fo(w))> du(:z:))

~ 2
But n O(H0 - OH ) =op (1), therefore, the asymptotic distribution of the random

variables 2n <H¢(§) — H? (0)> and n(6 — 8)T A(6 — ) is the same. We know
that

i,5=1,...,Mo

Vn(@—8) = N(0,Zr (8)");

n—oo

now the result follows by Corollary 2.1 in Dik and Gunst (1985): “Let X a
g-variate normal variable with mean vector 0 and variance-covariance matrix
3. Let A be a real symmetric matrix of order ¢q. Let r = rank(XAX), r >
1 and let (i,..., 3, be the nonzero eigenvalues of AX. Then the distribution
of the quadratic form X7 AX coincides with the distribution of the random
variable > 7, ﬂiZiz, where Z1,...,Z, are independent, each having a standard

normal distribution”. -

Remark 2.3
In the case of Shannon’s entropy the elements a;; are given by

_ 1 0Ofe(x) Ofe(x) 9 fo(x)
ajj = /X <f0(m) 26, o0, + log fo(x) 30,00, )du(m)

and in the case of the (h, ¢)-entropies

o = ([ ot
(f, (o) 2E 2002) . T 11y 0)) ) o)

+ o </X¢>(fe z du az))

X

X
—
&
S
-
T
E‘

The derivation of this result step by step can be seen in Pardo, L. et al.
(1997a).

© 2006 by Taylor & Francis Group, LLC



64 STATISTICAL INFERENCE BASED ON DIVERGENCE MEASURES

2.3. Testing and Confidence Intervals for Phi-entropies

The previous results giving the asymptotic distribution of the ¢-entropy sta-
tistics can be used in various settings to construct confidence intervals and to
test statistical hypotheses regarding the entropy of a population (diversity). We
consider the following tests:

2.3.1. Test for a Predicted Value of the Entropy of a Population
(Diversity of a Population)

We are interested in testing
Hy : H? (8) = Dy,

i.e., that the ¢-entropy is of a certain magnitude Dy, versus one of the three
following alternative hypotheses:

Hy : H?(0) # Dy, Hy : H® (0) > Dy, Hy : H? (0) < Dy.

We can use the test statistic

7 — Vn <H¢(§A) - D0> |
o4(6)

where the expression of o4(@) is obtained from Theorem 2.1 after replacing 6

by the maximum likelihood estimator @ in 04(0). Using Slutsky’s Theorem (see,
e.g., Ferguson 1996, Chapter 6) and Theorem 2.1, under Hy, the asymptotic
distribution of Z7 is normal with mean zero and variance one. Therefore in the
first case we should reject the null hypothesis if Z; > ¢; or Z; < cg (where ¢;
and co are symmetric, chosen so that the significance level of the test is a, i.e.,
€1 = zq/2 and 3 = —z, /2). zq denotes the z-score from the standard normal
distribution having right-tailed probability a; this is the 100(1 — a) percentile
of that distribution. In the second case we should reject the null hypothesis if
Z1 > ¢ (then ¢ = z4) and, finally, in the third case if Z; < ¢ (then ¢ = —z,).

The power of the two-side test at t # Dy is given by the formula

fon (01 @”(a/z 06(0) )w"( T ®) )
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for a sequence of distributions ®,(x) tending uniformly to the standard normal
distribution ® (). We observe that the test is consistent, in the sense of Fraser
(1957), i.e., By (t) tends to one when n — oo.

2.3.2. Test for the Equality of the Entropies of Two Independent
Populations (Equality of Diversities of Two Populations)

We denote H? (6;), i = 1,2, the ¢-entropy associated with the population
described by the probability distribution FPp,, ¢ = 1, 2. We are interested in testing
Hy: H? (8,) = H? (6,)

versus one of the three following alternative hypotheses:
Hy: H?(0))# H®(05), Hy: H® (01) > H?(85), Hy : H? (1) < H? (6).

Using Slutsky’s Theorem (see Ferguson 1996, p. 39) and Theorem 2.1, under
Hy, the asymptotic distribution of the test statistic

Vi (H(01) - HO(,))

oy = — —
\/n2035(91) + n10§)(92)

is normal with mean zero and variance one, where a(%(/éi), 1 = 1,2, are obtained
from Theorem 2.1. The critical regions are similar to the ones given in the
previous case. We shall assume that the populations are independent.

2.3.3. Test for the Equality of the Entropies of r Independent
Populations

We are interested in testing
Hy: H? (6,) = H® (65) = ... = H? (0,) = Dy

(Dp is a known value) versus the alternative Hy : 3 i,k € {1,...,r} verifying
H? (8;) # H? (0)). We know that

Vi (H?@) - Do)
— N (0,1) t=1,...,7,

D)
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where 0(215(51) is the estimated asymptotic variance for the ith-population given
in Theorem 2.1.

Then,
~ 2
n; <H¢(01) — D[)) I 9
2.9 nj(;o X1-
%(ei)
Therefore,
—~ 2
T o n; (Hd)(el) — Do)
P
o] Ud)(gz) n— o0
We reject the null hypothesis if
~ 2
r.n; (H¢(01) — D())
Z3 - > X%a?

where x? , denotes the 100(1 — a) percentile of the chi-square distribution with r
degrees of freedom and it is defined by the equation Pr(x? > x%a) = a. Now, we
assume that Dy is unknown and we are interested in testing

Hy:H?(0,)=H?(0,)=..=H?(#0,).

In this case we consider the test statistic

~ —\2
L1, H¢( Z) - D
Z4 = Z ( Y7 )
i=1 %(91‘)
where . P
D=— 1n' ""i[(a(e;) (2.3)
— =1 9\
1; 0'425(01)

i=1 035(51') B ;
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The asymptotic distribution of the term on the left-hand side of this equality is
chi-square with r degrees of freedom. Now we shall establish that the asymptotic
distribution of the random variable

r

N i (D - Do)

i=1 04(0:)

is chi-square with one degree of freedom. Using Slutsky’s Theorem and Theorem
2.1,

Vi <H¢(§i) - Do) .

then

0(6:) 0(6:)
where ~ is used to denote “asymptotically distributed as”.

VI 0) (mDo 1)

Therefore

n;

(D — Dy) L, N(0,1) and Z 5 (5—Do)2 =3
n—oo Py U¢(0i) n—oo

~ 2 —~ —\2
S R SR S
=~ — = + s~ — Ly
i=1 ‘733(01) i=1 ‘735(01) i=1 ‘73)(01')
Xr xXi
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Applying now the following result (Rao 1973, p. 187. Result 1)),

“Let Y be an r-dimensional normal vector with mean vector zero and variance-
covariance matrix identity. Let YTY = YTAY + YTBY, where YT AY is
chi-squared distributed with a degrees of freedom. Then YT BY is chi-squared
distributed with » — a degrees of freedom”;

the random variable

follows a chi-square distribution with » — 1 degrees of freedom.

In order to verify the hypotheses of the last result, let us denote

Vi (H*(8;) - Do)

Y, =
i)

D)

¢

and Y = (Y1,...,¥;)". Then we must show that

Y (D-Dy)’=YTAY

with rank (A) = 1 and

~ _\2
— i (H¢( i)~ D> T
Z o= =YT'BY
i=1 0-(15(0’)
Since,
_ r "ijjd)A(a’)
s i=1 U¢(01)
with
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69

we have
IS nl 2
— (D — D
; -6, ( 0)

where A = (a;j)i j=1,..r and

aij =
g

o3(6;)
—~ 2
niH‘f’(G,) n;
20) S0
U¢>( i) i=1 %5( i)
2
_ Do)

N

r ' —1
¢(5¢)0¢(5j)) (; aé@)) '

We also observe that for all ¢, j,m, k =1, ...,r, we have

Qi Qik

Amk

amj

AijAmk — AikQmj

VT T

Vi

(cw(éi) 74(8;

) 06(0m) 0(O)

04(0;) 04(0r) 04(0m) 04(0;)

Then rank (A) = 1. Finally B = I — A and applying the mentioned result we
conclude that the asymptotic distribution of the quadratic form

Y'BY

is chi-square with r — 1 degrees of freedom. This completes the proof.
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2.3.4. Tests for Parameters

In situations where the ¢-entropy is one-to-one function of @ the following

tests
a) Hy:0 =86
b) Hy: 61 =0,
¢) Hy: 0, =60,=..=0, =80
d) Hy:0,=02=..=80,

are equivalent to the tests

a) Hy: H?(0) = H® (60)

b) Ho: H? (01) = H? (65)

c) Ho: H? (61) = H? (62) = ... = H? (8,) = H? (60)
d) Ho: H? (6,) = H? (62) = ... = H*(8,).

Now we are going to see an important application of the previous results to
the problem of equality of variances for independent normal populations.

An Application to Equality of Variances in Normal Populations

Let Xi; (j =1,2,...,n4 7 =1,...,7) be independent normal variables with mean
p; and variance o for population 4, i = 1,...,7. Let

“LX 1 &
—~ ij ~ ~\2
fi = '51 nl: and 77 = e E 1 (Xij — i)
J= J=

be the maximum likelihood estimators of p; and o2, respectively. We are going
to test
Hy: 0% =

I
)

on the basis of Shannon’s entropy.

Shannon’s entropy associated with a normal population with mean y; and

. 2 . .
variance oj is given by

H(a?) =H (N(,Ui,UiZ)) = log \/2meo?.
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In view of the previous result, testing
Hy:0%=.. =02

r

is equivalent to test

Hy: H(o}) =...= H(c?).

On the basis of the result given in Section 2.3.3, the null hypothesis should be
rejected if

~ —\2

H@)-D)

2/n > Xr—1,a
OH

(6:)
where U%{(@) is given in (2.1) for ¢(z) = —xlogx, after replacing 6; by 6; and
D was defined in (2.3).

T nl (
Ssha =Za=»
i=1

Particularly, here
-1
o1 (0:) = T Zr (i 07) Ty,
where T(l)z (tli; tgi)T with

0H(07)
Opi

1 01.2 0
Zr (i, 07) :<0 2g4>~

OH(c?)

o M) 1
T A 301-2 _201-2

t1; =

and

Then 0% (6;) = %, i =1,...,7, and asymptotically the null hypothesis
Hy:0? =...=0?
should be rejected if
2
1 T ' ﬁl
SSha = 3 an log 0J2' — log H (%2.) N (2.4)
j=1 j=1

is greater than x2_, ,, where N = >"!_| n;, i.e., if

I 2
5 ZnJ (UJ - U) > X%—l,om
j=1
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where v; = log ajz and v = Z; 1 N L logo a is the weighted average of the v s.

It is interesting to observe the similarity of the test statistic Sgp, with the
test statistic, for this problem, proposed by Lehmann (1959, pp. 274-275). This
test statistic is given by

1 2
SLehEEZNj (lj*l) y

=1

where [; = logNij Z;“:l (X5 ul)Q = ZJ 1 N* S log N; Z;“:l (X45 — ﬂi)Q, N; =
n; — 1, with N* = N1 + ... + N,. The modification conswts of replacing sample
size n; by degrees of freedom n; — 1.

Now we present a study to compare this new test statistic with other well
known test statistics. For more details see Pardo et al. (1995). Many of the
existing parametric and nonparametric tests for homogeneity of variances and
some variations of these tests were examined by Conover et al. (1981). The
purpose of their study is to provide a list of tests with a stable Type I error rate
when the normality assumption may not be true, and the sample sizes may be
small and/or unequal, and when distributions may be skewed or heavy-tailed. In
order to do a comparative study of these tests with the test statistic given in this
example, we have done a simulation study similar to that performed by them.

Normal Distribution
(n1,n2,n3,n4) (5,5,5,5) (10,10,10,10) | (20,20,20,20) | (5,5,20,20)
Shannon 167 (.488) | .049 (.655) 074 (.810) 141 (.770)
Neyman-Pearson | .123 (.460) | .073 (.653) 064 (.816) .103 (.761)
Barlett .041 (.303) | .044 (.591) .049 (.796) .044 (.646)
Hartley 042 (.234) | .044 (.546) .051 (.781) .047 (.769)
Table 2.1

Two probability distributions were considered: normal and double exponential.
The simulated normal variables were obtained by the Box-Miiller method. The
double exponential variables were obtained from the inverse cumulative distri-
bution function. Uniform random numbers were generated using a multiplica-
tive congruent generator. Four sets of samples were generated with respec-
tive sample sizes (n1,ng,n3,n4) = (5,5,5,5), (10,10, 10, 10) , (20,20, 20, 20) and
(5,5,20,20) . The null hypothesis of equal variances (all equal to 1) was examined
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along with four alternatives (¢4, 03,03,03) = (1,1,1,2), (1,1,1,4), (1,1,1,8) and
(1,2,4,8) . The means were set equal to the standard deviation in each population
under the alternative hypothesis. Zero means were used for Hy. Each of these
40 (2 x 4 x 5) combinations of distribution types, sample sizes and variances was
repeated 10000 times (1000 in Conover et al. (1981)), and the Shannon test sta-
tistics were computed and compared with their 5 percent nominal critical values
400000 times each. The observed frequency of rejection is reported in Table 2.1 for
normal distributions and in Table 2.2 for double exponential distributions. The
numbers in the tables are for null hypotheses, while the figures in parentheses
represent the averages over the four variance combinations under the alternative

hypothesis.
Double Exponential Distribution
(n1,n2,n3,M4) (5,5,5,5) | (10,10,10,10) | (20,20,20,20) | (5,5,20,20)
Shannon .389 (.602) | .359 (.719) .356 (.842) .389 (.818)
Neyman-Pearson | .330 (.564) | .333 (.707) 341 (.839) .344 (.801)
Barlett 179 (.410) | .259 (.653) 309 (.824) .237 (.705)
Hartley 157 (.355) | .237 (.625) .288 (.811) 462 (.828)
Table 2.2

The corresponding figures for the asymmetric case were obtained by making the
transformation aXi2 + p where X; represents the random variable distributed
according to the null hypothesis. The two distributions, normal and double
exponential, the two sets of sample sizes (10, 10, 10, 10) and (5, 5,20, 20), and the
five variance combinations gave a total of 20 combinations. For each combination,
10000 repetitions were run for each of the four statistics. With the same structure
as Tables 2.1 and 2.2, the observed frequencies of rejection are reported in Table
2.3 for normal distributions and double exponential distributions.

Normal Distribution Double Exponential
Distribution
(n1,n2,n3,M4) (5,5,5,5) | (10,10,10,10) | (20,20,20,20) | (5,5,20,20)
Shannon 701 (.828) | .726 (.839) .894 (.922) .906 (.922)
Neyman-Pearson | .679 (.815) | .697 (.877) .887 (.916) .892 (.938)
Barlett 621 (.777) | .595 (.813) .858 (.896) .848 (.908)
Hartley .684 (.764) | .872 (.951) .849 (.879) .926 (.971)
Table 2.3
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In order to interpret their simulation results, Conover et al. (1981) define a
test to be robust if the maximum Type I error rate is less than 0.1 for a 5 percent
test. In this sense, the four tests considered here are sensitive to departures from
normality. If we analyze the numbers in parentheses, the Shannon test appears to
have slightly greater power than the remaining three. If we look at the results in
Table 5, p. 357, of Conover et al. (1981), then we obtain that for the columns 1,
2, 3 and 4 there are just 4, 7, 3 and 0 power values (in parentheses) respectively
greater than the corresponding power values of the Shannon statistic. On the
other hand, we note that the exact level of the proposed test does not converge
very quickly to the asymptotic level 0.05. This point is mentioned in order to
highlight the fact that, as in Conover et al. (1981), asymptotic critical regions
have been used, and therefore the power values have not been calculated for
exact a = 0.05 level tests. To conclude, Shannon entropy provides a reasonably
good test, among the 56 test statistics considered, when the normality assumption
holds. Finally, observe that the four considered tests work under the assumptions
of normality, so in a strict sense, only the numbers in Table 2.1 are probably of
Type I error. An interesting study of this problem, using the quadratic entropy,
is presented in Pardo, J. A. et al. (1997).

2.3.5. Confidence Intervals

If a sufficiently large sample is available it is possible to construct approximate
confidence intervals of any desired level for H? (6) . An approximate (1 — o) 100%
confidence interval for H? () is

(DY _ %(5) Za/2 1607 0¢(§) Za/2
(H (6) N H (0)"’—\/77 ; (2.5)

where 04(0) is given in Theorem 2.1 after replacing € by its corresponding max-
imum likelihood estimator 6.

From (2.5) we have

7‘7(15(0) Ra )2 < H(b(b\) _ g (0) < U¢(0) Zoz/2‘

Vn v

It H ¢(§) is to be used as a point estimate of H? (), our error, which we shall
denote ¢, is given by the difference between the value of H?(6) and the unknown

(2.6)
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value of H? (@) . Therefore we can rewrite inequalities (2.6) as

-~ o~

0 0
_U¢( ) Za/2 <e< U¢( ) Zoe/2.
NLD - NLD
This formula can be used to provide the necessary sample size n for a specified
confidence coefficient 1 —« and a desired degree of precision €. A general formula
for determining the desired sample size is
200\ .2
04(0)z
n = [7(1) 3 a/2] +1,
€

because the equality Pr QH ¢(§) — H? (0)‘ < 5> =1 — « is equivalent to

Vi (@) -1 0)|  .m
= < — =1-aq,
74(0) 7(0)

and then 8ﬁ/a¢(§) = Za/2, Where by [.] we are representing the integer part

Pr

function. If two sufficiently large samples are available it is possible to construct
approximate confidence intervals of any desired confidence coefficient for the dif-
ference H? (61) — H? (82) . This interval is given by

<H¢(a1) — H¢(/0\2)> + Za/2\/0425(01) + 0-3)(02)

ni ng
where 035(51) and 05(52) are given in Theorem 2.1 after replacing 8; and 8, by

the corresponding maximum likelihood estimators.

If n = n1 = ng, the sample size, n, necessary for a specified confidence
coefficient, 1 — o, and a desired degree of precision, ¢, is given by

(033(/0\1) + Ué(b})) 22/2
22

n =
2.4. Multinomial Populations: Asymptotic Distribu-

tions

In this section we obtain asymptotic results for multinomial populations as a
particular case of the results obtained in the previous sections for general popu-
lations.
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Let (X, Bx,Po)oco be a statistical space, where the sample space X =
{z1,...,xp} is finite, By is the family of subsets of X and

M-1
o= {0 = (pl,...,pM_l)T e RM-1. Z pi<lp;>0i=1,...M — 1} .
=1

Let Py be a probability measure on (X, Bx) such that for every 6 € O,

M-1
Po({z:i})=piifi=1,.,M-1 Po({zm})=1- > pi=pum.
i=1
Let i be the counting measure on (X, Bx) attributing mass one to every z; € X.
It is clear that Py is absolutely continuous with respect to the measure p for all

0 €0, and
dPy .
fo («Tz)—d—lu(l‘z)—pz, 1=1,..., M.

In this context the ¢-entropy is given by

M

Ho(p) = H* (0) = " 6(py)

=1
being p= (pl, ...,prl,pM)T S AM

Let Y1 = y1, ..., Y, = y, be arandom sample from the population Pg. The like-
lihood associated with this random sample is given by fo(y1, ..., yn) = p7*..03}"
being n; the number of times that Y; = x;, j = 1,...,n. The maximum likelihood
estimator of the probabilities p; is given by p; = n;/n, i = 1,..., M. Then the
maximum likelihood estimators of @ and p are given respectively by:

0= p1,....on-1)" and p = (Pu,...,om) 7

In the next result we compute the Fisher information matrix for the considered
multinomial model.

Proposition 2.1
The Fisher information matriz in the multinomial model is given by Ir(p) =
T (0) = (i(r,s))r,s=1,....M—1, where

1 1
—+— ifr=s
bPr  DPM
U(r,s) r,s=1,...,.M—1
1
— ifr#s
bMm
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Proof. The (r, s)th-element i(r,s), Of the Fisher information matrix, for r # s, is

— dlog fo (x) Olog fp (x)
i = [ ST by (@) du )
o1 (1 ) )81 (1 ) )
(0] — (0] —
_ M’lalogpkalogpkpk+ & =1 Pr & =1 Pr oar
k=1 8pr 8]75 8pr 8]75

1 1 1
GO
PMm Pm bm

and the element (r,r) has the expression

2
e = [ (ZE) o @ duto
M-1/ § 2 9 M—1 2
= 3 (e e (g (- Z)) o

1\2 1\? 1 1
= (=) et () Pu=—+—.
Dr Pm Dr PmMm

In the following Proposition the inverse of the Fisher information matrix is

obtained.

Proposition 2.2
The inverse of the Fisher information matriz is given by

Tr (8)"' = diag () — 067
b@an 0= (p17 "'7pM71)T'
Proof.

By multiplying the matrix Zz(p) ' = Zr (0) " with elements

z'(_l): pr(1 —py) %fr:s r,s=1,..M—1,
] —PrDs if r 7é S

by the matrix Zr(p) = Zr (@) , with elements
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1 1 .
—+— ifr=s
Pr  PM
i(r,s) = rs=1,...M—1,
1
— ifr+#s
bPm

we get the identity matrix. To check this equality we note that the (r,s)th-

element of the product is given by

Mz—l( ) 1 - ) ( 1 N 1 ) L i

_p p — p _p J— e — =1, 1mr = S,

= T e T T s e
J#r
M-1 1 1 1 1 ‘
> (=prpi)— +—pr(L=pr) =peps | — +— ) =0,if r #s.
,;:1 Pv  PMm Ds DM
iF£T,S

Then Zr (0) ' Zr () = I pr—1yx(m—1) and I (6) ! is the inverse of Zr (0) . -
Theorem 2.3

The analogical estimator, H?(p), obtained by replacing the p;s by its relative
frequencies, p;, in a random sample of size n, verifies

\/H(H‘b(f)) _ H¢(p)> LN (0,03(p))

n—oo

whenever aé(p) > 0, being
M M 2
o5(p) =S"SpS = sipi— (Z Sipi) : (2.7)
i=1 i=1

with § = (s1,..,sm)" = (¢/(p1), ., ¢/ (pm))" and Sp = diag(p) — pp".

Proof. By Theorem 2.1, we have
o(p) =T"Ir(0)' T,
where

T =(t1,...tr—1)" = (&'(p1) — &' (Par), s &' (prr—1) — &' (1))

Now we must show that T7Zx () ' T = STEpS. In fact,
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T'Zr (0) ' T = (¢(p1)swrs @ (Prr—1) T (0) " (& (p1), s & (p2r-1))"
- 2(¢/(p1)7'“7¢/(pM71))I (0) 1( /(pM)v"'7¢,(pM))T
+ (¢,(pM)7"'7¢/(pM))If( ) 1(¢/(pM)7"'7¢,(pM))T

M—1 M-1M-1
= _:le¢¢’(pi)2* 2 2 pipid ()¢ (py)

M—1 =
- 2(¢/<pM> S /() — a1~ par) % pmb’(pi))
NN IONES S SR
M-1 M-—1M-— a a
= ;pié/(pi)Z— ; ;pipﬁ)’(pi)cb/(pj)
— 2 3 000 + a6 e — s o)

M M 2
= S~ (S o)) = 57pS.

Remark 2.4
For the (h, ¢)-entropies we have

Vn

(o)

where Ué(p) was given in (2.7).

(H7®) — H(p)) = N (0,0%(p))

n—oo

A complete study of the statistics based on (h, ¢)-entropies, in simple random
sampling as well as in stratified random sampling, can be seen in Salicri et al.
(1993).

Remark 2.5

Consider an experiment whose outcomes belong to one of M (M > 2) mu-
tually exclusive and exhaustive categories, E, ..., Epr and let p; (0 < p; < 1) be
the probability that the outcome belongs to the ith category (i = 1,...,M). Here
Zi]\il p; = 1. Suppose that the experiment is performed n times, Y1, ..., Yn, and
that the n outcomes are independent. Furthermore, let N; denote the number of
these outcomes belonging to category E; (j = 1,..., M), with Z]]Vil N;j =n. The
random variable (N1, ..., Npr) has a multinomial distribution with parameters n
and p =(p1,...,pam)" .
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If we define

: 1 if YcE;
J { 0 otherwise ! vt J B

the vectors (Tl(i, ...,T]Ej[), i =1,...,n, are functions of Y; and take values on the

set

We also have:

vi — (1.1 = M(Lp1,....pm)
Yv2 — (T1(2,,T]$j) = M(17p177pM)
Y, — (1", .1 = M(Lp1,....pym)
———
(ZT;Z,,ZT](\;) = M(n;plv”pr)a
i=1 i=1
(Ner o Nap)

where = is used to denote “distributed as” and M(n;pi,...,pr) denotes the
multinomial distribution with parameters n and pi,...,ppm- On the other hand,
given the sequence of M-dimensional random variables {Up}, o with

Un = (U1n7 ceey UMn)T

where
EU,)=pn and Cov[Uy| =% vn,

the Central Limit Theorem states that the random vector

verifies
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If we denote

A <N1np1 NanM>’

we have

L (& I (&
A = [— T — vy ——= Ty, —
(G (Gt m) o G5 (- vom))
12 i 12 G
g \/ﬁ glel _pl 7...,\/5 ngM_pM
and applying the Central Limit Theorem we have

<N1np1 NMTLpM> L

Tm NG — N(O,ﬁp),

n—oo

where
Sp = diag (p) — pp".
Therefore,
Vi (®—p) = N(0,3p).

Theorem 2.4

If we assume that Ug(p) = 0, the analogical estimator H?(p), obtained by
replacing the pls by their relative frequencies, p;, obtained from a random sample

of size m, verifies

2n (HO®B) — H(p)) 20 3 32}
=1

where Z1, ..., Z, are i.i.d. normal random vartables with mean zero and variance

1, r = rank(EpBXp) and s are the eigenvalues of the matric BXp being B

the M x M matrix
B = diag(¢" (pi)i=1,..m)-

Proof. In Theorem 2.2 it was established that the random variables

Mm (H¢(§) — g (9)) and  n(@—0)TA/n(6—0)
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have the same asymptotic distribution. The elements of the matrix A are given
by
aij = ¢" ()i +¢" (pmr) 4G =1,..., M —1

because
o )) 0o (x) 0fo () 9*fo (%) ,,
oo = [ (¢ ta) LB L TRy o a)) dio)
_ Mt " 3pk Opx, 82pk / 1 _M_l
-5 (¢ R e )) + (1 & )
M—1 M-1 M-1
(o)) 20 0w
. Op; Op; * Op;Op; ¢ <1 B kZ::I pk>'

Then, for L = (5 — G)TA(g — 0) and denoting 1 =(1,..,1)", we have
— 0)" diag(¢" (p1), -, ¢"(prr—1))(6 — )
6)" ¢ (par)117(6 — 6)
M- M-1 R
= X ¢"(pi)(Pi — pi)* + ¢ (p) 2 (b= pi) 2 (= ps)

=1

L= (
_|_

) Qb)

b

=T

:Zﬁl "(ps) (i — pi)* = (0~ p) B(P - p),

being B = diag(¢" (pi)i=1,.. m)-

By applying Remark 2.5 we obtain

Vad —p) = N(0,Zp).

n—oo

Then using the same argument as in Theorem 2.2 we have the desired result.

Remark 2.6

In the rest of the book the following result is important (Lemma 3, p. 57, in
Ferguson, 1996): Let X be a k-variate normal random variable with mean vector
0 and variance-covariance matriz X. Then X T X is distributed chi-squared with
r degrees of freedom if and only if X is a projection of rank r.

Since X is symmetric and squared it is a projection if X2 = X, and therefore

rank(X) =trace(X).
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Corollary 2.2
If we consider w = (1/M,...,1/M)T, we get

T

Proof. In this case we have 3q, = diag(u) — uu” .

The random variables
2nM (H?(B) — H'(u)) and (p —w)" Mn diag("(1/M))(B — u)

have the same asymptotic distribution, then

i (H@) = ) and i —w diagu™) Vi~ w)

have the same asymptotic distribution. But
Vi —u) diag(u™!)vn(p —u) = X' X,
where
X =/n diag(u™"?)(p — u)

and the asymptotic distribution of X is normal with mean vector 0 and variance-

covariance matrix
»* = diag(u~/?)Sydiag(u™/?).

Now we are going to establish that the matrix 3* is a projection of rank M — 1.
It is clear that
¥ = diag(u™?) Sy diag(u™V/?) = I — diag(u™/?)uuldiag (u=1/?),
where I denotes the M x M identity matrix. Then we have

2 = I —diag(u=Y?)uudiag(u=?) — diag(u=?)uul diag(u=1/?)
x  diag(u~Y?)uu diag(u=?)diag(u=?)uu’ diag(u=1/?).

But
uldiag(u™"?)diag(u™"?)u = 1,

then
»*2* = I — diag(u ) uu diag(u™/?) = B*.
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Now

rank (%) = trace(diag(u™?) Sy, diag(u=?)) = trace(diag(u™")Sqy,),

and
(R E
0 R
diag(u 1)y =
- - (1 —lﬁ) —%1
—u M - (1—37)
Therefore,

trace(diag(u™")Sy) = M(1 — ) =M — 1.

Applying Remark 2.6 we get that the asymptotic distribution of the random
variable X7 X is chi-square with M — 1 degrees of freedom.

Remark 2.7
In the case of Shannon’s entropy we have
L
2n (log M — H(P)) — Xir-1»

n—oo

and for the (h, ¢)-entropies, Salicri et al. (1993),

2nM
¢"(1/M)I (M¢(1/M))

(7 ®) - HY (W) > ¥

Corollary 2.2 as well as Remark 2.7 permit constructing tests of goodness of
fit to one distribution.

2.4.1. Test of Discrete Uniformity

If we want to test

Hy:pp=.. :pM:ﬁ Versus Hy:314,j€{1,..., M} such that p; # p;
we can use the test statistic
2nM

0= g (HB) ~ How) (2.9)
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whose asymptotic distribution, by Corollary 2.2, is chi-square with M —1 degrees
of freedom. We should reject the null hypothesis if Zg > X?\/Ifl, o

It is also possible to get the asymptotic power of the test for p*=(pi, ..., pi;) T #
(1/M,...,1/M)T. This power is given by

Gon(p?) = Pr (2835 (HO®B) — H?(w) > X3y 10/ Hi P = p")
~ i 1/M 2 M "
= 10, (e (LR o) - 100 )

for a sequence of distributions ®,, (x) tending uniformly to the standard normal
distribution ® (x). The expression of o4(p*) is given in Theorem 2.3.
It is clear that
lim B4n(p*) =1—®(—00) =1,
n—oo

i.e., the test is consistent.

The power obtained above can be used to determine approximately the sample
size n* required to achieve a desired power 3* against a given alternative

P =i, i) # (/M. .., 1/M)T.

The power is approximately

n " (1/M 2 3

If we wish the power to be equal to §* we must solve the equation

/! 2
o (S (e i)

It is not difficult to check that the sample size, n*, is the solution of the following
quadratic equation

n? () — H(5")) —noy(p*) (@ (1—57))+25, (M) (H*(u)~HO(p")) = 0.
where

¢//1M 27 N
oy~ LU
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The solution is given by

1
* 2 _ 2
=g (Bi\/B 4428, (M))

where
B = 0y(p") (@1 (1 - 8)? and A = H*(u) - H(p").

The test of discrete uniformity given in this section permits testing the good-
ness of fit of any distribution, i.e.,

Hy: F(z)=Fy(x) Vo € R,
through testing
Hy:pi=1/M,i=1,...M Versus Hy 34,5/ pi # pj,

by simply partitioning the range of the random variable into M intervals with
equal probabilities under Fpy, and then to test if the observations are from the
given discrete uniform distribution. We use the test statistic Zg given in (2.9)
and we should reject the null hypothesis if Zg > X?\/I—l,a‘

The particularization of the results obtained in the previous Section for gen-
eral populations to multinomial populations is vital in order to study the behavior
of the diversity among one or various populations. Based on last results we will
have the possibility to test: ¢) if the diversity of a population is some specified
value, i1) if the diversities of two populations are equal, iii) if the diversities of
several populations are equal, and finally, v) if the population is homogeneous
(discrete uniformity) or not.

Remark 2.8

It is interesting to observe that different diversity measures (entropy measures)
may give different diversity ordering. For instance, if we consider two populations
characterized by the following probability vectors

p=(0.3,0.24,0.22,0.12,0.09, 0.03)"

and
q = (0.36,0.21,0.16,0.12,0.08, O.O7)T ,

we have
Hgs(p) = 0.7806 > Hgs(q) = 0.7750
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while
H(p) =1.61315 < H(q) = 1.631338.

Hence it appears the necessity for the definition of ordering of discrete prob-
ability distributions. In this sense we have the following results:

Definition 2.1
The probability distribution p is majorized by the probability distribution q,
and we denote, p <m q, iff

r

Zp(i) < Zq(i), r=1,.M—1
=1 =1

where pa1y > peay = - 2 pury and qay = q2) = - = q(ur)-

Roughly speaking, the sentence “p is majorized by the probability distribution
q”, means that q is less “spread out” than p and the population represented by
p has more diversity than the population represented by gq.

Definition 2.2
A real function [ defined on the simplex /\y; is said to be schur-concave on

Ay if
P <m q on Ay = f(p) > f(q),

and f s strictly schur-concave on Ay if strict inequality holds whenever p <, q
and p is not a permutation of q.

Some entropy measures are schur-concave functions on Ajys. Some examples
are: Shannon, Havrda and Charvat, Arimoto, Rényi, etc. These results could be
seen in Nayak (1983) as well as in Marshall and Olkin (1979).

2.5. Maximum Entropy Principle and Statistical In-
ference on Condensed Ordered Data

The Maximum Entropy Principle (MEP) stated for the first time by Jaynes
(1957) has had very important applications in Statistical Mechanics, Statis-
tics, Geography, Spatial and Urban Structures, Economics, Marketing, Systems
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Analysis, Actuarial Science, Finance, Computer Science, Spectrum Analysis, Pat-
tern Recognition, Search Theory, Operations Research, etc. (e.g., Kapur (1982,
1989)). In Statistics many problems have been studied on the basis of the MEP,
but perhaps one of the most important results can be found in the nonpara-
metric density function estimation. This problem was first introduced by Theil
and Laitinen (1980) and has been developed by Theil and O’Brien (1980), Theil
and Fiebig (1981), Theil and Kidwai (1981a, b), Theil and Lightburn (1981),
Rodriguez and Van Ryzin (1985), etc.

In relation with the problem of parametric estimation two interesting papers
are: Kapur and Kesaven (1992) and Jiménez and Palacios (1993). These authors
present the problem in the following way. Let Y7, ...,Y, be independent random
variables with a common distribution Fy € {Fp}gco, being © an open subset of
RMo. Let ¥{1) < Yoy < ... < ¥{;) be the ordered sample, define Y5 = —oo,
Y(n+1) = 0o and consider

p1(0) = Fo(Y)),
pl(a) = Fe(if(z))*FH(if(zfl)% 1=2,...,n,
pnt1(0) = 1—Fy(Yp)).

In this context they propose to estimate 8 by means of the value 0c O, verifying

n+1

n+1
—sz ) log pi(6 max< sz ) log p;i(6 ) (2.10)

This method can be justified by the fact that the order statistics

Fo(Y)),--» Fo(Yny)

divide the interval (0,1) into (n + 1) random subintervals with equal expected
length. Therefore, maximizing (2.10) is equivalent to choosing 6 so that the
random variables p;(0) are close as possible to their expected value —~. Also,
Ranneby (1984) introduced an interesting method to estimate 6 by usmg a statis-
tical information theory approach. He proposes to minimize a Kullback—Leibler
divergence, or, equivalently, to select the value 0 of 6 which maximizes

n+1
Sn(0) = 75 Z log(ps(8)(n + 1)),

and it is called the maximum spacing estimate.
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The transformed spacings p;(0) may be used to get test statistics for testing
Hy: F = Fy, (2.11)

see, e.g., Greenwood (1946), Pyke (1965), Cressie (1976) and Hall (1986). Gebert
and Kale (1969) indicate that test statistics of this type are useful for detecting
departures from hypothesized density functions.

If we assume that the above hypothesis is simple, applying the probability
integral transformation Fy to the sample values Yi,...,Y, permits assuming,
without loss of generality, that the null hypothesis (2.11) specifies the uniform
distribution on the unit interval. Then we wish to test

Hy:G(u) =u,0<u<l, (2.12)

where G(u) is the distribution of U; = F\(Y;), i =1,...,n. f Uy <Up) < ... <
U(n) are the order statistics from the transformed sample, the spacings are defined
by V; = Uy — Ui—1y and it is possible to define statistics to test (2.12). See, for
instance, Kimball, (1947), Darling (1953), Kale and Godambe (1967), Kirmani
and Alam (1974), Pyke (1965), Kale (1969), Sethuraman and Rao (1970) and
Rao and Sethuraman (1975). Tests based symmetrically on spacings, namely,
of the form T,, = 1 3" | h(nV;) are more common among these. Kuo and Rao
(1984) demonstrated that among a wide class of such tests, the Greenwood test
statistic obtained with h(x) = 2? has maximum efficacy. Jammalamadaka et al.
(1989) established the asymptotic distribution for h(x) = xzlogz under the null
hypothesis given in (2.12) and the alternatives given by the densities f,(z) =
14+ nY4(x), 0 < & < 1 where [(-) is assumed to be square integrable and
continuously differentiable on [0, 1].

The above tests are known in the literature as test statistics based on first-
order spacings. Several authors have proposed generalizations of first-order uni-
form spacings. Cressie (1976) considers tests statistics of the form

n+2—m
Sflm) = Z g((n—i—l)‘/i(m)) , m<n+1,
i=1

where g is a “smooth” function, and V;(m)

= U(ifler)_U(ifl): 1= 1, R ,n—|—2—m,
are the mth-order spacings or mth-order gaps. See, e.g., Hall (1986), Stephens
(1986), Cressie (1979), Del Pino (1979) among others. In this sense, the results

for testing normality and uniformity, obtained by Vasicek (1976) and Dudewicz
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and Van der Meulen (1981) respectively, are important. These authors propose
the following test statistics based on Shannon’s entropy

Two modified versions of the above test statistic are given by Ebraimi et al.
(1994).

It is important to remark that previous methods for estimation and testing
use all the sample information; however it is very hard to find the asymptotic
distribution of the estimators even in the case of specific parametric models. This
is obviously not the case for the maximum likelihood principle or the method of
moments. Now we propose a method to decrease the amount of sample informa-
tion in order to be able to have estimators with known asymptotic distribution
when the MEP is used.

We consider a population with probability density function fg (z). Suppose
that we have a random sample Y7, ..., Y, and we only observe the order statistics

)/([%]+1)7)/([2ﬁ”]+1)7 s 7)/([(MA711)”}+1)7 (213)
where [z] is the integer part function. We form M cells having boundaries
—00 =Con <Cpn<...<CM-1n < CMn = 00,

where ¢;,, = Y( in7,1)- The observed frequency Ny, in the ith-cell (¢i—1pn,cip] is

viks

nonrandom, N;, = [}\—4] - [%] The vectors of sample and population quantiles
of orders ﬁ, %,% are ¢, = (C1p,...,cM-1n)" and ¢ = (c1,...,cpr-1)7,

respectively. The ith “estimated cell probability” is therefore

pi(cn; 0) = Fo(cin) — Fo(ci—1)n) (2.14)

where 8 = (01, ... ,0MO)T and Fy is the probability distribution function associ-

ated with fg (). These are random, unlike the cell frequencies. For 8 = 6 (true
value of the parameter), we write p; = p;(c;6g) = ﬁ — % = ﬁ, i1=1,...,M.

In this context in Menéndez et al. (1997a) the following definition was given.

Definition 2.3
Let Yy, ..., Y, be a random sample from a population described by the random
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variable X with probability density function fg (x). The MEP estimator based on
the order statistics given in (2.13) is defined by

05y, = argmax H(p(cy; 0)), (2.15)
fcO
where
M
H(p(cn;0)) = = _ pi(cn; 0)logpi(cn; 0),
=1

and pi(€p;0), i =1,..., M, are defined in (2.14).

We remark that the approach that takes some but not all the sample quan-
tiles has been proposed by Bofinger (1973) for problems of testing goodness of
fit with Pearson test statistic. Menéndez et al. (1997a) adapted this idea to
problems of point estimation. Note also that the approach taken here is applied
also to “multiple type II censoring”, in which observations between several sets of
sample percentiles are unavailable. It is necessary only to take each unobserved
interpercentile group as a cell. This is conceptually quite similar to the generality
of censoring allowed in the procedures of Turnbull and Weiss (1978). Another
interesting approach in which only a relatively small number of order statistics
are used in testing for goodness-of-fit is given in Weiss (1974). He establishes
that U([TL&D’U(Z[,nﬁ])’ .. 7U(k(n)[n5])7 with 6 € (3/4,1) and k’(’)’L) = [’)’Ll_é], are as-
ymptotically sufficient and can be assumed to have a joint normal distribution
for all asymptotic purposes.

Under some assumptions, that can be seen in Menéndez et al. (1997a), it can
be established that the estimator, Oy, verifying the condition (2.15), verifies the
following properties,

a) Oy, converges in probability to 6.
b) §Sh is asymptotically efficient, i.e.,

s, = 60 +n By (%ﬁ(@)) +op(n~1?),
0=6,

where By is a matrix of constants which may depend on 6y and log L (0)

is given by
M

log L (0) = Z Nin log pi(cn; 6).
i=1
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¢) n'/2(Bsn — 80) = N(0,Zx (89)7Y).

Based on sample quantiles, the MEP can be used to test if data come from
a given parametric model. In this sense in the cited paper of Menéndez et al.
(1997a) it was established that

~ L
T, =2n (logM — H(p(cp; 95h))> v X?\/[—Mo—l'
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2.6. Exercises

1. Let X = {C4,...,Cyp} be a set of M categories and let p =(p1, ..., par)” be
a probability measure defined on X. Find the expected distance between
two categories drawn at random when the distance is defined as zero if they
belong to the same category and unity otherwise.

2. Find the asymptotic variance of the entropies of Rényi, Havrda-Charvat,
Arimoto and Sharma-Mittal when the probability vector p =(p1, ..., p M)T is
replaced by the estimator p=(p1, ..., pas)” based on a simple random sample
of size n.

3. Consider the hypothesis Hy : p1 = ... = pys = 1/M and the test statistics
based on the entropies appearing in Exercise 2. Find, in each case, the
corresponding expression of the test statistic.

4. The following data correspond to the occupational status by race and year
in Walton County, Florida.

(Observed proportions)
Occupational White | White | Black | Black
Status (1880) | (1885) | (1880) | (1885)
Professional 0.029 | 0.093 | 0.00 0.00
Manager, clerical, proprietor | 0.019 [ 0.099 [ 0.007 | 0.00
Skilled 0.086 | 0.040 [ 0.007 | 0.00
Unskilled 0.053 | 0.073 | 0.046 | 0.049
Laborer 0.455 | 0.517 | 0.776 | 0.896
Farmer 0.358 0.178 | 0.164 0.055
Sample size 209 151 152 144

Source: Nayak, T. K. (1983), Ph. D. Dissertation, University of Pittsburgh.

a) Compute the diversity indexes based on Shannon’s entropy, as well as
the asymptotic variances, for the four populations.

b) Test uniformity in every population with significance level a = 0.05.

¢) From data in the previous table one can observe that diversity for
the black population has decreased over time. Check this conjecture
by using a test statistic with significance level « = 0.05 and a 95%
confidence interval.

d) What happens for the white population? Do a similar study to the
one given in c¢).
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5. We have obtained from welding dive, four random samples corresponding
to bounded areas of 1 squared meter from 5 meters deep. The sampling
stations are found in the Spanish coast of Catalonia, from south to the
north, from the delta of Ebro river (1) through the area of Maresme (2
and 3) to the Rosas bay (4). The two stations in the area of Maresme
have a granite sandy bottom (thick); while the stations situated in delta of
Ebro river and in the Rosas bay have a chalky sandy bottom (thin). The
descriptions of the communities are listed in Tables 2.4, 2.5, 2.6 and 2.7.

Sampling station 1: Riomar (Delta of Ebro river)
date: 30/06/91 Type of sand: Thin

Table 2.4
| Species | Frequency |
Lentidium mediterraneum | 216
Tellina tennis 189
Spisula subtruncata 69
Donax trunculus 51
Mactra corallina 45
Dosina lupinus 40
Carastoderma flancum 37
Otherwise 76
Total 723

Source: Pardo, L., Calvet, C. and Salicri, M. (1992).

Sampling station 2: Canet de Mar (El Maresme)
Date: 25/03/91 Type of sand: Granite
Table 2.5
| Species Frequency |
Spisula sultrancata, 345
Glycymeris glycymeris 52
Alcanthocardia tuberculada | 36
Donax variegatus 36
Donacilla cornea 34
Chamelea gallina 28
Callista chione 18
Otherwise 71
Total 620

Source: Pardo, L., Calvet, C. and Salicra, M. (1992).
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Sampling station 3: Malgrat de Mar (El Maresme)

Date: 17/04/91 Type of sand: Granite

Table 2.6
| Species | Frequency

Chamelea gallina 440
Spisula subtruncata 377
Callista chione 38
Donax variegatus 35
Glycymeris glycymeris | 33
Dosina exoleta 31
Corbula gibba 8
Otherwise 41
Total 1003

Source: Pardo, L., Calvet, C. and Salicri, M. (1992).

Sampling station 4: Rosas (Rosas bay)

Date: 09/03/91 Type of sand: Thin

Table 2.7
Species | Frequency
Ceratoderma glaucum | 134
Spisula subtruncata 93
Tapes decussatus 69
Venerupis aurea 59
Loripes lacteus 52
Chamelea gallina 33
Acanthoc. tuberculate | 32
Otherwise 135
Total 607

Source: Pardo, L., Calvet, C. and Salicri, M. (1992).

a) Compute the indexes of diversity based on the Gini-Simpson index for

the four stations.

b) Test the uniformity in every station with significance level o = 0.05.

¢) Give a 95% confidence interval for the diversity in the four populations.
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. Let Xq,..., X,; a random sample of a normal population, with mean p and

2. By using asymptotic properties of Shannon’s entropy statis-

variance o
tic, prove the following relation v/2n logg LN (0,1), where o is the
n—oo

maximum likelihood estimator of o.

. Two classes of drugs, which are supposed to have some effect in a dis-

ease, were tested on 288 individuals. The individuals were classified in four
groups according to class of drug they had received. Groups 1 and 2: differ-
ent drug, group 3: both drugs, group 4: no drug. The records are presented
in the following table.

Group 1  Group 2 Group 3 Group 4

12 12 13 1
10 4 14 8
13 11 14 9
13 7 17 9
12 8 11 9
10 10 11 4

12 14 0

) 14 1

S? = ﬁ Z?Zl(a:ﬂ —T;)? 1.867 9.696 3.714 16.411

Use the test statistic Sgnq given in (2.4) to test the equality of variances in
the four groups with significance level a = 0.05.

. The following values correspond to a simple random sample from a popula-

tion with distribution function F' and support the real line: -7.238, -0.804,
-0.44, 0.18, -0.02, -1.08, 1.327, 1.98, -0.73, -0.27, -0.32, 0.58, -2.308, -4.37,
0.307, 4.72, 0.32, 0.124, -4.41, 1.98, -0.73, -1.27, -0.32, 0.58, -2.34, -8.19, -
12.99, 1.51, 1.09, -4.37. Suppose that F' is the Cauchy distribution function,
whose probability density function is

1 1

:;1+$2 rzeR

/()

and consider the partition, (—oo, —1], (—1,0], (0, 1], (1, 00).

a) Calculate Shannon’s entropy associated with the previous partition.

b) Based on Shannon’s entropy test the hypothesis that the previous
observations come from a Cauchy population with significance level
a = 0.05.
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¢) Calculate the asymptotic power at the point p* = (%, 1%, 1%, %)T.
9. Let X be a random variable whose density function is f (z) = |z]e *’,

r e R

a) Find an equiprobable partition with four classes in R. Use this parti-
tion to give a test statistic, based on Shannon’s entropy, for testing if
the observations -1.1, 0.42, -0.25, 4.73, -7.2, 12.3, -0.22, 1.8, -0.7, -1.9,
4.77, 2.75, 0.01, -4.2, -0.1, -0.01, 3.23, -0.97, -0.12, -3.2, -0.15, -12.3,
0.75, -0.4, -7.4, 0.27, 1.51, -2.4, -2.67, 0.32 are from the population
described by X with significance level a = 0.05.

b) Find the asymptotic power at the point p* = (1/2,1/4,1/8,1/8)7.

10. We have the following observations from a population with distribution
function F' and support the real line: 1.491, 2.495, 3.445, 1.108, 3.916,
1.112, 3.422, 2.278, 1.745, 3.131, 0.889, 2.099, 2.693, 2.409, 1.030, 1.437,
0.434, 1.655, 2.130, 1.967, 1.126, 3.113, 2.711, 0.849, 1.904, 1.570, 3.313,
2.599, 2.263, 2.208, 1.6771, 3.173, 1.235, 2.034, 4.007, 2.653, 2.269, 1.774,
4.077, 0.733, 0.061, 1.961, 1.916, 2.607, 2.060, 1.444, -0.357, 0.211, 2.555,
1.157.

a) Test the hypothesis, with a significance level a = 0.05, if the previous

observations come from a normal distribution with mean p = 2 and

2

variance o“ = 1.1, using Shannon’s entropy and a partition with 6

equiprobable classes.

b) Obtain the asymptotic power at the point p* = (&, %, =, =, &, 1=)7.

11. Let X4, ..., X, be a random sample of size n from an exponential distribution
of parameter 6. Using Shannon’s entropy, give an asymptotic test statistic
to test Hg : 0 = 0y versus Hy : 0 # 0q.

12. Using the entropy of Havrda and Charvat, H® (0).

a) Find the asymptotic distribution of \/n <H s (5) — H*® (9)), where 8 is
the maximum likelihood estimator of 6.

b) Obtain the asymptotic distribution of v/n (H*(p) — H*(p)), as a par-
ticular case of the result obtained in a).

13. We consider Laplace’s distribution

1
f(z,01,02) = ﬁexp(—%_l |z — 61]), —o00 <z < 00,0 ER, 0 >0
2
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whose variance is 263.
a) Find the expression of the entropy of Havrda and Charvat for this
distribution and derive from it the expression of Shannon’s entropy.

b) Test, using the entropy of Havrda and Charvat, Hp : 2 = 6* versus
Hy : 05 #£ 0™

¢) Derive a procedure for testing that the variances of s Laplace indepen-
dent populations are equal. Give a procedure based on the entropy of
Havrda and Charvat.

14. We consider the population given by the following density function

02°

a) Find the test based on Shannon’s entropy for testing
Hy:0 =20y against Hy : 0 # 0.

b) Using the test obtained in a) and the observations 2.2408, 5.8951,
6.0717, 3.6448, 2.8551, 4.4065, 14.4337, 3.0338, 2.0676, 2.6155, 2.7269,
5.1468, 2.2178, 2.0141, 2.3339, 2.6548, 5.0718, 2.8124, 2.0501, 13.6717,
test Hg : 0 = 2 versus Hj : 6 # 2 with significance level a = 0.05.

15. Find the acceptance region of Ssp, given in (2.4) for equality of two vari-
ances and compare it with the acceptance region of the test statistics given
by Bartlett and Lhemann.

2.7. Answers to Exercises

1. If we consider the distance,

1, 017&0, Pr(d(Ci,C-):l):pip-
d(C;.C:) = J J j
(Ci, C5) {0 C;=C; Pr(d(C;,C))=0)=p?
we have
M M M
Epld =YY ppj=1-) = Hes(p)
i=1 j=1 i=1
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2. It is a simple exercise to get from Remark 2.4 the following table

Measure

Asymptotic variance

Havrda-Charvat

Rényi

Arimoto

Sharma-Mittal (1, s)

Sharma-Mittal (r, s)

(Sil)2 <§)1pfs_1 — (ipf)z)

M
exp (2 (s=1) > pi logpz)
=1

7

M ) M 2
X 'lei (logpi) ('leil‘)gpz)

(S (5))

2(s—7)

(=) (ﬁl p;)

3. From Corollary 2.2 the expression of the statistic given in (2.8) for the

different entropy measures is

Measure Statistics
2n ~
Havrda-Charvat s) M (H*(p) — H* (u))
.. 2n 1/ 1
Renyl (—T’) (Hr (p) - Hr (u))
. 2n ~
Arimoto () T (tH (p) —¢ H (u))
. 2n ~
Sharma-Mittal (1, s) = (HY (p) — Hf (u))
. 2n ~
Sharma-Mittal (7, s) — i (H: (p) — H (u))
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4.

a) First, we obtain the sample entropies, H(p;), i = 1, ...,4, as well as their
asymptotic variances, o2(p;), i = 1, ..., 4, for the four populations. Based on
Theorem 2.3 and taking into account that in the case of Shannon’s entropy
¢(x) = —xlog x, we have

M M 2
ofr(p) = > pillogp:)® — (Zpi 1ngi) .
=1 =1

In the case of the first population we get

H({p,) = -0.02910g0.029 — ... — 0.35810g 0.358 = 1.2707
0% (Py) = 0.029(10g0.029) + ... + 0.358(log 0.358)% — H (p;)?
0.6822.

In a similar way we obtain the results for the other populations:

H(p;) U%{(ﬁi)
White (1880) | 1.2707 0.6822
White (1885) | 1.4179 0.7133
Black (1880) | 0.7053 0.8706
Black (1885) | 0.4060 0.7546

b) Now we have to test
Ho : p1=po= p3=py = (1/6,...,1/6)".

We know that X§70.05 = 11.07 and, on the other hand,

~

X?\/[floz
H(p;) logM — =5—=

2n;
White (1880) | 1.2707 1.7653
White (1885) | 1.4179 1.7551
Black (1880) | 0.7053 1.7553
Black (1885) | 0.4060 1.7533

Therefore we should reject the null hypothesis.

¢) In this case we must test

Ho: H(ps) = H(py)  versus Hy: H(ps) # H(py),
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and we use the test statistic

Vit (H(ps) - H(py))

\/140%(Bs) + nso (B)

Zy =

whose value is Z3 = 2.857. On the other hand the critical region is given
by (—o00, —1.96) U (1.96, 00) and we should reject the null hypothesis.

A 95% confidence interval for H(p3) — H(p,) is given by

o*(By) | *B)\"?
ns nyg '

(H(p3) — H(py)) £ 20.025

After some calculations the following interval is obtained

(0.0934, 0.5039).

This interval does not contain the value zero and then we can conclude that
the change is significant.

d) In a similar way we get that the value of the test statistic is Zo = —1.64
and the confidence interval is

(—2.5072, 2.128).

We can not conclude that the change is significant.

5. a) The expression of Gini-Simpson index is

M
Hgs(p) =1-) 1.
=1

Then

—_

N 2
Hgs(pr) = 1;) (29)2 . (2%%3)2 - (2767%)2— (Z5)" — (555)?
— (m3)° — (353)° — (733)
= 0.8078.

In a similar way we can get the expression of the Gini-Simpson index for
the other populations

Hgs(py) = 0.6576 Hegs(ps) = 0.6598 Hgs(py) = 0.8428.
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Using Exercise 2 (Havrda-Charvat with s = 2) the expression of the asymp-
totic variance is given by

M M 2
o) 4 (S - (zp%> ;
=1

i=1
then,

025(Dy) = 0.0419, 02g(Py) = 0.2312, 0&4(P3) = 0.0882, oZ4(p,) = 0.016.

b) From Exercise 3 we have

M
~ _ L
nM (ZP?M 1) = X3
=1

The numerical value of the test statistic for each population appears in the
following table:

Station Statistic

Riomar 389.15

Canet del Mar  1078.40

Malgrat de Mar 1726.40

Rosas 155.97

But X%,0.05 = 14.076 and we should reject the homogeneity in each one of
the four populations.

¢) A 100 (1 — o) % confidence interval for the Gini-Simpson index in each
one of the four populations is given by

A o~

~

<HGS(P) - %Za/2a Hgs(p) + i\/?za/2> :

In the following table we have the confidence intervals for each one of the
four populations

Station Confidence Interval
Riomar (0.8047, 0.8108)
Canet del Mar (0.6394, 0.6758)
Malgrat de Mar  (0.6543, 0.6652)
(0.8415, 0.8440)

Rosas
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On the basis of the confidence intervals obtained we have the following
relations for the diversities: Rosas diversity is greater than Riomar diversity
and Riomar diversity is greater than Canet diversity and Canet diversity
equal to Malgrat de Mar diversity.

Then in our case the stations with a bottom of thin sand present greater
diversity than the stations with a bottom of granitic sand. A study of this
problem was made by Pardo, L. et al. (1992).

6. For Shannon’s entropy we have
H(0%) = H(N(1,0%)) = log(0*2me) /2,
then

Vi (H@E) ~ H (0%) £ N (0,727 (6)' T),

n—oo
where TT = (t1,t2) is given in the example of Section 2.3.4 and 8 =(u, 0?),

b OH(0?) _0 b OH (0?) _ 1
T on 27 T 002 202

_ o2 0

Then T7Z7 (0) ' T =1/2 and

Vi (H(5%) — H (6?)) n%o’o N (0,1/2).

and

Substituting H(c?) and H(62) by their expressions we have the statement.

7. Based on (2.4), we reject the null hypothesis

Hg:J%zagzagzai

T 2
1 . T o
7y = 5 an (log sz - logjljl (sz.) N) > X%fl’a.
j=1 =
In our case we have
0% = 1.5556, 03 = 8.4840, 03 = 3.25, 73 = 14.359,

and Z4 = 10.32. On the other hand we have X§’0‘05 = 7.82 and then we
should reject the null hypothesis.
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8.

9.

a) It is immediate to show that p; = Pr((—oo, —1]) = p2 = Pr((—1,0]) =
ps = Pr((0,1]) = ps = Pr((1,00)) = 1/4 and H(u) = log4 = 1.3863, where
u=(1/4,1/4,1/4,1/4)T

b) For testing
Hy : The observations come from a Cauchy population,

we could test
Ho:pi=p2=p3=ps=1/4
The critical region is

2n (log4 — H(p)) > X%\471,0.05-

In our case,
p1=0.333,p2 = 0.267,p3 = 0.2,py = 0.2

and then H(p) = 1.3625. Therefore,
Zg = 2n (log4 — H(p)) = 1.4268.

On the other hand X%,o.os = 7.815. Then the null hypothesis should be not
rejected.

T
¢) If we denote p* = (1%, 1%? 1%, 1%) , we have

H(p*) = 1.3705 and o?(p*) = 0.0308.

The power at p* = (1;46, %, 1—36, %)T is given by

Bso(p*) = Pr(2n(log4 — H(P)) > x30.05)
= Pr(—2nH(p) > x3005 — 2nlog4)

—X3.005 + 2n(log4 — H(P*))>

2y/no(p*)
—7.81 1776 — 82.2301
po (7 o ~7815+83.1776 — 82.230 >:o.0002,

= Pr( 255 (H®) - HpY) <

%

2 x 301/2 x 0.1755

where Z is a standard normal variable.

a) First we obtain the equiprobable partition. The first value will be the

al 1
/ ze P dr = -,
. 4

solution of the equation
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and this is given by a; = —0.8305. The second point is obviously ay = 0
and the third one, by symmetry, is ag = 0.8325. Then the partition is given
by

(—o0,—0.8305], (—0.8305,0], (0,0.8305],(0.8305,00).

On the basis of this partition we have

~ 1 8 5 7
p1=75, P2 = , P3 = 5 = .

3 30 30 30
Then
4
H(p)=—) pilogpi = 1.3569
=1
and
n(logd — H(p)) = 2 x 30 (log4 — 1.3569) = 1.7636.

But

X§’0‘05 = 7.8115

and there is not statistical evidence to reject the null hypothesis.

b) The power at p* = (1/2,1/4,1/8,1/8)" is given by
Bro(p®) ~ @ (Y (logd — TH — H(p*))) = 0.6591
where

101 1.1 1. 1 1. 1
i) = —21oet — Lol —1ioel 1ol 10g
(p") = —5log5 — Jlogy — glogg —glog g 30

and
sz log p;)? (Zp, logpz) = 0.3303.

10. a) First we obtain the equiprobable partition. The first value, a;, must
verify
Pr(—oo < N (2,1.1) <a1) ==

this is equivalent to

Pr(zo0 <=7 1756
Then a; verifies )
a
d =1
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11.

where ® denotes the distribution function of the standard normal dis-
tribution. Then a1 = 2 — 0.97 x 1.1 = 0.933 and the first interval is
I = (—0,0.933]; the interval Iy is given by Is = (0.933,as] where ay is
obtained in such a way that the probability of I3 is %. Then as = 1.527. In
the same way we obtain I3 = (1.527,2], Iy = (2,2.473], Ir = (2.473,3.067]
and Is = (3.067,00) .

It is easy to get
p1 =0.14, p» = 0.18, p3 = 0.18, py = 0.18, p5 = 0.14 and pg = 0.18.

Then
6

H(p) =— ) piloghi = 1.7852,
=1

and
Zg = 2n(log M — H(p)) = 1.1259.

On the other hand X%,o.os = 11.07 and we should reject the null hypothesis.

b) It is clear that the power at p* = (&, 2,3, 32 3 3)T g

150 15° 157 157 157 15
V50

Bso(p*) =~ ¢<%

(log 6 — 4357 — H(p*))> = 0.0901
H(p*) = —flogs — &log —4x (£log ) = 1.7367, n =50

a(p*) = (__lpi(logpi)2 - (_Z pi logpl) ) = 0.2936.

i =1

Shannon’s entropy for the exponential distribution is given by
H(0)=1-1logh,
whereas the maximum likelihood estimator and the Fisher information are

0= —— =X "and Ir (0) = 02

Z?:l X a
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We know that

i (H(A) _ H(90)> L5 N (0,02 (6y))

with )
o2 (60) = Tr (0) " <8Ha§f“)) — 03057 = 1.
Then
V(1 —1logh — 1+ log ) n_%:o N(0,1),
and

Vnlog (X6o) L, N(0,1),

i.e., the null hypothesis should be rejected if
‘\/ﬁlog (790)‘ > Za/2-

12. a) A first order Taylor expansion gives
Mo
S\ _ 17S oH*® (90) n n
H*(8) = H® (60) + ;:1 5o 0= 0ig) o0 (He . OOH) .

But /(8 — 60) - N(0,Z5 (60) "), then /7 o (Hé— eOH) — op(1).

Therefore, the random variables
Jn (HS(@) _H (00)) and T7\/n(0 — 8,)
have the same asymptotic distribution, where T7 = (¢, ..., t,) with

b= = [ st ) s 21

Therefore,

Jn (HS(é) _H (00)) L N0, TTZx (80)7' T).

n—oo

b) In this case we have
(A 1
H(p) = 15 < > P - 1) + 1P — 1),

TT = (t1,.tm—1) = =07 = pist 0t — 030
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Then
2

T'Tr(p) T = 2 (87 o ni )T ) i)

- 2(piila"'7p}9\/‘7i1)1—.7:(p)71(p§\217"'7p§\21)

e TEE) i i)
In a similar way to Theorem 2.3 we have
§2 M M 2
T'Ir(p) T = ——5 | >_p ' = | Dpi
(1-9)" \i5 i=1
13. a) The entropy of Havrda and Charvat for Laplace distribution is given by

He (0) = < i - (/Rm—t)sexp(—% |z — 0|)da — 1>

= 1—(21_595_55_1 - 1), s#1, s>0,
-5

and Shannon’s entropy by

lim H° (02) = lim (217503 7°s71 — 1) = log 205 + 1.

-
b) We want to test
Hy : 0y = 0" versus Hy : 0 # 0*

and this is equivalent to test

Hy : 1—:9 (2'700, 5571 — 1)

_ 1 1—-s (p¥\1—s —1
C1-s <2 (67)""s 1) ’
ie.,

Ho : H® (05) = H (6").

For this purpose we use the test statistic
NG (Hs@) — e (9*)) .
Zl = — N(07 1)

0(9*) n—oo

where
o2 (0 =TTZr (") ' T
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and

_— (8H5 (62) OH* (92)>
801 ’ 892 02:9*

|
VN
o
&2,
“o
»
—
e
*
N—
4
N——

Therefore,

o2(0*) = T'Ir(0%)'T

- (07 zlss (9*)s> ( (9;)2 (9(3)2 ) (07 2183 (9*)S>T

2(1—s)
_ 2 52 (9*)7234*2 .

Let us observe that

_ 62 0
Ir(0) " = 2 ,
0 02
because )
log fo, 0, () = —log20y — o |z — 601]
dlog fo, 0, () 1 1
00 - 05 + 9% |z 91’
9*1og fo, 6, (1) 1 2
— - 9—%(1—@@—910.
Then,
02 1og fg, 6, (X) 1 2 1
If(ez)zE[ i }:—(I—E |X91>:_
20 7\~ 5Fl >
because
E[|X — 61]] = 6.

On the other hand we have
dlog fo, 9, (%) 1 -0,

90, T e — 61

therefore,

2
Bl(-L 0=y oL
031X — 03] 02

It is also clear that

P 09?108 fo, 6, (X)]
060,00,
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hence

0;2 0
2

It is not difficult to get that
N 1-s
7= \/ﬁﬁ (%) 1
The null hypothesis should be rejected if
N\ 1-s
\/ﬁlls (Z—i) — 1| > zap2

where
1

with x(q/9) the sample median.
¢) In this case we want to test

Hy:0l=..=0

i.e.,

Hy: 20000)2 = ... = 2(6)2, (2.16)
where (09, Qg)) represent the parameters in the ith-population.

For testing (2.16) we are going to test
Hy: H(0)) = ... = H5(01Y).

In this case the test statistic is

S

-y (@) -D) L 2,

i=10 2i
being
N _ 1 : U s ()
D= — - Z 25@1{(92 ).
Z - i=1 Ui( 2 )
=1 02(05)
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14. a) First, we obtain Shannon’s entropy associated with the considered pop-
ulation. We have

> 20 029 0 1

Then we can test Hy : @ = 0y by testing Hy : H (§) = H (0y) and in this
case we know that

A (nG
=2 (HO - H () = N(©,1)

with o2 (69) = t2Zx (09) ", being

t = (8H—@> — (1 + 90) Ir (90) _ 90—2
0=06¢

00

We have

Then we should reject the null hypothesis if

A
o (6b)

<H(§) ~H (90))' > Za/2:

b) In this case we have = 1.7 and

U\(/Z) <H(§)—H(00)> = 2.9904.

As z9.025 = 1.96 we should reject the null hypothesis.

15. We are going to obtain the acceptance region Sgp, given in (2.4) for r = 2.
In this case, we have

SSha 3 {nl (log 5% — % log o — %2 log 8%)2
+  ng (logos — K logof — 32 log8§)2

1 n2 | o7 2 n o7
3 (Flog3) " +na (108 3h) )

52\°
— mung 1
= ¥ <log 32> .
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Therefore the acceptance region is

nin 52\ 2
0< 12(log—1> <k
o

2N

and this is equivalent to
%1
c1 < = < —,
g C2
where co < 1. The acceptance region is given by

-2
o 1

c< = <= (0<ec<1).
0'2 C

It is not difficult to establish that

n—1)(ng —1 n”i&%
- D )

2(n1 +mn1 —2) 705

and the acceptance region is the same.

The Bartlett’s test is given by

" n'82. " nﬁ?
St = o | 322 | =37 (m = 1) 1o (2217,

j=1 =1

,
where n = Z(n] —1). For r = 2, we have
j=1

~ 2 ~
1 1 n1o? no03

==-nl -1
SBart 9" 8 (4 < + <n23% n103

and the acceptance region is equivalent to

o2 1
C<,\—2<—.
0'2 C
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Goodness-of-fit: Simple Null
Hypothesis

3.1. Introduction

The problem of goodness-of-fit to a distribution on the real line, Hy : ' = Fy,
is frequently treated by partitioning the range of data in disjoint intervals and
by testing the hypothesis Hy : p = p® about the vector of parameters of a
multinomial distribution.

Let P = {E;}i=1,...m be a partition of the real line R in M intervals. Let
p = (p1,...,pm)" and p° = (¥9,...,p8,)T be the true and the hypothetical
probabilities of the intervals E;, i = 1,..., M, respectively, in such a way that
pi = Prp(E;), i =1,..., M, and p{ = Pr g, (E;) = [ dFo, i =1,..., M.

Let Y1,...,Y, be a random sample from F, let N; = Z?:l Ik, (Y}), where
Ig,(Y;) = 1if Y; € E; and zero otherwise, and p = (py, ..., i)’ with p; = N;/n,
1 =1,..., M be the absolute and relative frequencies in the intervals, respectively.

If we wish to test the simple null hypothesis,
Hy:p=p’ (3.1)

the most commonly used test statistics are Pearson’s test statistic (or chi-square
test statistic), X?2:

M 012
2 _ Z (N; — npi)
i=1 i
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and the likelihood ratio test statistic, G :

G2—QZN10g N : (3.3)

i=1 l

These two test statistics are particular cases of the family of power-divergence
test statistics, introduced by Cressie and Read (1984) and given by

D62 = 5o Jgf[j <<@>/\1) :ﬁ§N<($O>A1)

(3.4)
where —oo < A < 0o. The test statistics 70 (p, p°) and T,; 1 (p, p°) are defined to
be the limits of T,i‘(f), pY), as A — 0 and A\ — —1, respectively. Particular values

of A in (3.4) correspond to well known test statistics: Chi-square test statistic
X2(X\ = 1), likelihood ratio test statistic G (A = 0), Freeman-Tukey test statistic
(A = —1/2), modified likelihood ratio test statistic or minimum discrimination
information statistic (Gokhale and Kullback, 1978) (A = —1), Neyman-modified
test statistic or modified chi-square test statistic (A = —2) and Cressie-Read test
statistic (A = 2/3). The expressions of the test statistics X2 and G2 are given in
(3.2) and (3.3) respectively. The expressions of the other test statistics are given
below:

i) A = —2 (Modified chi-square test statistic)

M M
T nz Z npl

i=1 =1

/\2

it) A=—1 (A — —1) (Modified likelihood ratio test statistic)

1 0 - 0 Py - np
T, (5, p°) =20 p)log (pr) =2) Nilog ( N_’) :
i=1 v i=1 v

iii) A = —1/2 (Freeman-Tukey test statistic)

wmern (- $) (- £1)

i=1

© 2006 by Taylor & Francis Group, LLC



GOODNESS-OF-FIT: SIMPLE NULL HypoTHEsIs 115

iv) A =2/3 (Cressie-Read test statistic)

723(p,p%) = ¢n (sz ( i>2/3 B 1) .

Although the power-divergence test statistics yield an important flexible fam-
ily, it is possible to consider a more general family of test statistics for testing
(3.1) and containing (3.4) as a particular case: ¢-divergence test statistics, which
are defined by

T¢(p, p°)

S ne(B). ecw .

In all the chapter we shall assume that ¢ (z) is twice continuously differentiable
for z > 0 with the second derivative ¢”(1) # 0.

Cressie and Read (1984) obtained the asymptotic distribution of the power-
divergence test statistic 7)(p, p°) under Hy : p = p° for any A € R and Zografos
et al. (1990) extended the result to the family T} (p, p°) under Hy : p = p° for
any ¢ € ®*. This result will be proved in Section 3.2., but not only under the
null hypothesis but also under contiguous alternative hypotheses. A review about
¢-divergence test statistics can be seen in Cressie and Pardo (2002a). A usual
practice is to increase the number of intervals M as the sample size n increases.
The large-sample theory of the usual chi-square test statistic for increasing M is
available in the case of a simple null hypothesis (Holst 1972, Morris 1975, Cressie
and Read 1984, Menéndez et al. 1998b). In this situation the behavior of the
¢-divergence test statistic TS (p,p°) is studied in Section 3.3. Finally, in Section
3.4., we study some nonstandard problems on the basis of ¢-divergence test
statistics. More concretely we consider the following problems: a) Goodness-of-
fit with quantile characterization, ) Goodness-of-fit with dependent observations
and ¢) Goodness-of-fit with misclassified data.

Cox (2002) provided some perspective on the importance, historically and
contemporarily, of the chi-square test statistic and Rao (2002) reviewed the early
work on the chi-square test statistic, its use in practice and recent contribu-
tions to alternative tests. Some interesting books in relation to the techniques of
goodness-of-fit are: Agresti (2002), D’Agostino and Stephens (1986), Bishop et
al. (1975) and Greenwood and Nikulin (1996).
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3.2. Phi-divergences and Goodness-of-fit with Fixed
Number of Classes

It is well known that Pearson (1900) proved that X2 —%» 2, | with X2
n—oo

given in (3.2). Note that the power-divergence test statistic, T2 (p, p"), coincides
with the test statistic X2 for A = 1. This result was later extended to the likeli-
hood ratio test statistic and to the modified chi-square test statistic by Neyman
and Pearson (1928) and Neyman (1949). Later Cressie and Read (1984) estab-

lished that T))(p, p°) R X3;_; under Hy : p = p° for any A € R. Zografos et
n—oo
al. (1990) proved that Tf(f),po) £, X3;_1 under Hp : p = p® for any ¢ € ®*.
n—oo
We obtain, in this Section, the asymptotic distribution of the ¢-divergence test
statistic 7. (p,p°) under the null hypothesis Hp : p = p°, under the alternative

hypothesis H; : p = p* # p° and under contiguous alternative hypotheses that
will be formulated later.

Theorem 3.1

Under the null hypothesis Hy : p = p° = (pY,...,0%,)T, the asymptotic dis-
tribution of the ¢-divergence test statistic, T? (P, p°), is chi-square with M — 1
degrees of freedom.

Proof. Let g : RM — R* be a function defined by

91, - ym) ZP?QS(‘%) (3.6)

A second order Taylor expansion of g around p° at p = (py,...,pa)" gives

~ —~ 2 : 39 Yt - YM ~
Yi p=p°

M
y17 7yM)
L1 9, - ym)
> ( s >p:p0<p )@ - )

]:

=25

+

)

But,

9B1,---,pm) = D(®,0°), 9 (Y-, %) = Dy(p°,p°) = (1) =0
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and

9 L i
(89(3/)) _ 40, (8 g(y)) _ )@ ()pg J=1 |
y; p—p° 0y;0y; p=p° 0 JF
where y =(y1, ..., yar). Therefore we have
1 Mo 2 2
Dop") = 50" (133 (=) +o (I~ ).
But
_ 2
no([p—p"") =or (1),

since by Remark 2.5 /n (p — p°) LN (0 by > , where

n—0o0 p°
Spo = diag (8°) ~ ° ()"
Then the random variables
T26.0") = 505 Dolp.p) (37)
and
> (- )’
i=1 11

have the same asymptotic distribution. But
Mo ) .
s B r) = Vi) Vi (p- ), (3.8)
i=1 41

where C is a M x M matrix given by C =diag ((po)%) .
Then, we have
~ T .
Vi (@-p") CVn(p-p’) = X"X,

where X =,/n diag <(p0) 71/2) (f) — po) . The asymptotic distribution of the ran-
dom variable X is normal with mean vector 0 and variance-covariance matrix
given by

L =diag <(p0)71/2> Epodiag ((p0)71/2> .
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We are going to prove that L is a projection of rank M — 1.

It is clear that

L = I-diag <(p0)71/2> p° (pO)T diag ((p0)71/2) )

and
Lx L= I-diag ((po) 71/2) p° (pO)Tdiag (po)*l/2
diag (p0)71/2 pY (pO)Tdiag (0)71/2
+ diag ((p°) ") p* (8°)" diag ((p°)""*) diag ((p°) '*)
p° (pO) diag (pO)—1/2>
= I—diag ((po) 1/2> p° (po) diag <(p0)_1/2> =L,
because,

(PO)T diag <(P0)71/2> diag <(p0)71/2> pY = 1.

On the other hand
rank (L) = rank <diag ((po)ﬂ) 2p0> = rank <C’2po> = trace (C'Epo> ,

but
CEp = (65 —P?)i,jzl,...,M’

then
M

trace < ) 1 —p] — 1.
7j=1

By Remark 2.6, we have

. 2n ~ L
TP = grgyPe®:p") =2 X

n—

Corollary 3.1
Under the null hypothesis Hy : p = p°, the asymptotic distribution of the ¢-
divergence test statistic, T? (p°, D), is chi-square with M — 1 degrees of freedom.

Proof. We consider the function ¢ (z) = ¢ (z7!) . If ¢ € ®* then ¢ € ®* and
from Theorem 3.1 we have

—~ L
TS (,9°) == Xhr_1-

n—oo
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M
—~ 2n - 2n i
I (. p°) = me(p,po) = ) > e (p—>

/!
" (1 = p;
2n Ds < Q) R
= 0_Z¢ TZ = Td) poap )
9" (1) = "\ D n(PP)
and this completes the proof. -

Remark 3.1

a) In the case of Kullback-Leibler divergence, we have

. . L
70, p°) =2nDxui(P, P°) — X31_1

n—oo
and

~ ~ L
72", ) = 2nDrcun(p”, D) —= Xis-1-

The first test statistic is the likelihood ratio test and the second one is the
modified likelihood ratio test.

b) In the case of (h,¢)-divergences the asymptotic distribution of the test sta-

tistics 5
T¢7h = n0) — 7”Dh ~ 0
n (pap ) h/ (0) ¢/, (1) qb(p?p )

and 5
n (p 7p) n (0) ¢// (1) ¢(p 7p)

is chi-square with M — 1 degrees of freedom.

Based on Theorem 3.1, if the sample size is large enough, one can use the
100(1 — «) percentile, X?M—l,oﬂ of the chi-square with M — 1 degrees of freedom,
defined by the equation Pr(X?M,f1 > X%Mfl, ) = @, to propose the decision rule:

“Reject Hy, with a significance level o, if T2(p,p°) > X3/ 1.0 " (3.9)

(or T¥(p%, D) > X31_1.0)-

This is the goodness-of-fit test based on the ¢-divergence test statistic.
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In the following theorem we present an approximation of the power function
for the testing procedure given in (3.9).

Theorem 3.2

Let p* = (p},...,pi)T be a probability distribution with p* # p°. The power
of the test with decision rule given in (5.9), at p* = (p},...,p4)7T, is

Br,g (P1s s Ph) =1 — P (gl(lp*) <¢2/$15)X?\4—1,a - \/HDQS(P*?I)O))) )

where ®,, tends uniformly to the standard normal distribution function ® (z) and
M p* 2 M p* 2
) = tor (o (%) - (Zwe (%)) 6w
i=1 p; i=1 p;

Proof. First we establish that under the hypothesis H; : p = p* # p° we have

Vit (Dg(d,9°) — Do(p*, ")) —= N (0,03(p")),

n—oo
whenever o%(p*) > 0 and with o2 (p*) given in (3.10).
A first order Taylor expansion of the function g, given in (3.6), around p* =

(p’{,...,p}k\é,)T at p= (p1,...,pnm)7 gives

dDy(p,p°)
Op;

<aD¢<p,p°>> _y <p_> =1, M.
8pl p:p* p'lo ? 7 7

Under the hypothesis H; : p = p*, we have that

M
Do(®.5°) = Dy (0°.0°) + 3 ( ) @i —p?) + o (1B - p°1)
i=1 pP=D*

where

Vi B-p) o N(0.5p.),

with 3p- = diag (p*) — p* ()T, then /n o (||p — p*||) = op (1) . Therefore the
asymptotic distribution of the random variables

M
Vi (Dg(p,p") — Dg(p*,p°))  and \/ﬁzti(@—pf),
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with

is the same.

But
M
Vi St i - pl) = VAT (B - p7)
i=1

converges in law to a normal distribution with mean zero and variance TTEp*T,
where T = (t1,...,tar)" . It is not difficult to establish that

TTSpT = o3 (p*).
Then

Bng (05, 03y) = Pr (Tﬁ?(f?,p“) > X1/ Hiip= p*)
/! 1 %
= 1= (557 (528110 — VADs(P"PY) )

where ®,, (x) tends uniformly to the standard normal distribution function ® ()

and o?(p*) is given in (3.10). This completes the proof. -

Based on this result an approximation of the power function of the test, with

decision rule given in (3.9), at p* = (p7, ...,p}k\A,)T, is

(1 %
Bg (1, - Dhg) 21— @ (ﬁp) (%ﬁx%q,a —VnDy(p ,p°)>> :
where @ is the standard normal distribution function.

It is clear that lim, o Bn ¢ (P}, .-, P3s) = 1, i.e., the test is consistent.

Corollary 3.2
In a similar way to the previous theorem it is possible to establish that

Vi (Dy(°,B) — Ds(p°,p7)) =5 N (0,05(p"))

n—oo

where o9(p*) is given by

M M 2
) =S pist (zp:si) |
i=1 =1
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with 0
$i=¢ (p—i> pz¢ (pz> i=1,..,M.
p@ pfl pfl
Corollary 3.3

a) In the case of the Kullback-Leibler divergence measure, we have

2 A p; ’ < pi ’
oi(p*) = X} <10gp> - <lef10gp> ;
1=

) )

b) In the case of (h,¢)-divergences we have
)
)
) = St (0 (a0 (6 () - 2o ()]
~ (Bt s (o (F) -0 ()
Proof. Part a) is a simple exercise. We prove part b). If we consider the

function
9 W1, - Yar) (Zp?qb(%))

and its first Taylor’s expansion around p* = (pj, ..., pj‘w)T at p, we get

"d|"@

STOoleTR

M
o) = Lot (M (Dol p) o (
- (lép?h’ (Ds(p", ) &' (

ST

and

0 . " ~ N
g (D1, D) = g (01, -, Pis +§ (@g) (i —pi) +o(lp—p)-
i/ y=p

Therefore the random variables

V(9 Bt ) — 9 (5 i) and fz((a%)yp* i - p,>>
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have the same asymptotic distribution, i.e.,
M
Vi (Di(B,p°) = Dly(p™, ")) and Vi Yt (i — pi)
i=1
have the same asymptotic distribution, where

t; =1 (Dy(p",p")) ¢f (]%) i=1,. M.

i

In a similar way to Theorem 3.1 one can get o3(p*). -

In order to produce a nontrivial asymptotic power, Cochran (1952) suggested
using a set of local alternatives contiguous to the null hypothesis as n increases.
Consider the multinomial probability vector

P, =p"+d/Vn,

where d = (dy, ...,dp)" is a fixed M x 1 vector such that Z;‘il d; = 0, and recall
that n is the total-count parameter of the multinomial distribution. As n — oo
the sequence of probability vectors {p,},cy converge to the probability vector
p® in the null hypothesis at the rate O (nil/ 2) . We say that

Hin:p=p,=p’+d/Vn (3.11)

is a sequence of contiguous alternative hypotheses, here contiguous to the null
hypothesis p°. Our interest is to study the asymptotic behavior of the test power
under contiguous alternative hypotheses, i.e.,

Bro®2) = Pr (T2B.0") > Xrova/Hin: P=py).  (312)

In what follows we show that under the alternative hypotheses H ,,, as n — oo,
T? (p,p°) converges in distribution to a noncentral chi-square random variable
with noncentrality parameter §, where ¢ is given in Theorem 3.3, and M — 1 de-
grees of freedom (x3,_; (6)) . Lehmann (1959) argues that contiguous alternative
hypotheses are the only alternative hypotheses of interest.

It is interesting to observe that if we consider a point p* # p°, we can write
p* = p’ +n1/2 (vn (p* —p")), and if we define p, = p® + d/\/n with d =
N (p* — po) we can use the expression given in (3.12) to get an approximation
of the power function at p*.
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Theorem 3.3

The asymptotic distribution of the ¢-divergence test statistic T? (P, p°), under
the contiguous alternative hypotheses (3.11), is noncentral chi-square with M — 1
degrees of freedom and noncentrality parameter § given by

6 = d"diag ((pO)A) d.

Proof. We can write

and under the hypothesis Hy ,, : p = p, = p° + %, we have

and
Vi (B-p’) 2 N (d, zpo) .
By (3.8) in Theorem 3.1 we have
~ 2 ~ ~ ~ ~
T6.0°) = Sy Do) = Vil — ) CVip ~ 2) +o ([~ 2]
Then
— ~ T . — ~
TB.0°) = Vi (diag ((0°)7) B-1°)) Vi (diag (0°) ) (- 1))
+ o([p—2l)" = X" X+o (|p - #°|)*

being the asymptotic distribution of X multivariate normal with mean vector
diag ((po)_l/ 2> d and variance-covariance matrix

diag <(p0)71/2> Spodiag ((p0)71/2> :

Applying Lemma (Ferguson 1996 p. 63) “Suppose that X is N (p, X). If 2
is idempotent of rank M and Xp = p, the distribution of X7 X is noncentral
chi-square with M —1 degrees of freedom and noncentrality parameter § = pu” p”,

the result follows if we establish that

diag ((p0)71/2> Epodz'ag ((p0)71/2> diag ((p0)71/2> d = diag <(p0)71/2> "
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because in Theorem 3.1 it was proved that

L = diag ((po)fl/z) X podiag ((po)fl/2

= I—diag <(p0)71/2) p° (pO)sz'ag ((p0)71/2) ,
is a projection of rank M — 1.
We denote by U
diag ((po)_1/2> Epodiag <(p0)_1/2> diag ((po)_1/2> d = Ldiag <(p0)_1/2>
and we have
U= (I-diag ((p°)""*) p* (#°)" diag ((#°) ")) diag ((#°)""*) @
= diag (po)*l/2 d—diag ((p0)71/2> p° (pO)Tdiag <(p0)71) d
= diag (po)*l/2 d,

since (pO)T diag ((p0)71> d =0. -

The asymptotic distribution of the ¢-divergence test statistic in a stratified
random sampling was obtained in Morales et al. (1994) .

3.3. Phi-divergence Test Statistics under Sparseness
Assumptions

In the previous Section we have established the asymptotic distribution of
the ¢-divergence test statistic assuming M fixed and letting the sample size n
tend to infinity. A different approach lets both n and M tend to infinity, but
at the same rate so that n/M remains constant. In Bishop et al. (1975, p.

¢

410) the following can be seen “...One reason for looking at this special type
of asymptotic comes from practical considerations. Typically, multinomial data
arrive in the form of a cross-classification of discrete variables. In many situations
there are a large number of variables which can be used to cross-classify each
observation, and if all of these variables are used the data would be spread too
thinly over the cells in the resulting multidimensional contingency table. Thus
if the investigator uses a subset of the variables to keep the average number of

observations from becoming too small, he is in effect choosing M so that n/M
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is moderate.” Holst (1972) pointed out the following “it is rather unnatural to
keep M fixed when n — oo; instead we should have that lim,,_,.o M = c0.” For
equiprobable cells Hoeffding (1965, p. 372) showed that Pearson test statistic is
much more powerful than likelihood ratio test statistic against near alternative
p satisfying max; [p; — M~!| = O (M), for moderate significance levels, with
n/M moderate and M large.

In this Section we assume that the partition size M depends on the sample
size n, i.e., M = M, with lim,,_,,, M,, = co. The intervals or classes depend, in
general, on n. For this reason we denote the partition by P, and its elements by
E,j, j=1,...,M,. Then we have P,, = {Ep1, ..., Enm, }, with 1 < M, < co. We
denote 7, = n/M,, and we assume that

lim ~, =~ € (0,00). (3.13)

Let p,, = (Pn1, .-, Pnar, )T be the vector of probabilities verifying pp; = Pr (Ep;)
i=1,..., My, and let P, = (Pn1, ..., Dnaz, )’ be the relative frequency vector based
on a random sample of size n, Y1, ..., Yy, i.e., Dn; = Np;/n being N,; the number
of elements in the class Ep;, ¢ = 1,..., M,,. We write N,, = (Np1,..., Nnar,,) to
denote the vector of absolute frequencies.

Assumption (3.13) is realistic in goodness-of-fit testing, where partitions Py,
are usually specified so that all observed frequencies N,; = np,; were approx-
imately the same and relatively large. If we denote the desired level of cell
frequencies by v then we obtain from the condition N,,; =+ Op (n), and from
the law of large numbers condition pn; = pni + op (1), that the ratio n/M,, the
expected number of observations in each cell, must be close to . On the other
hand, (3.13) with small v means that many cells are sparsely frequented. Thus
(3.13) is also known as the sparseness assumption; see Section 4.3 in Read and
Cressie (1988) devoted to testing under this assumption.

The first results of this kind were published by Holst (1972). He developed
a Poissonization technique leading under (3.13) to asymptotic distribution of
Pearson test statistic and likelihood ratio test statistic. The so called Poissoniza-
tion technique is originating from the fact that the vector Z =(Z1,..., Zp) of
independent Poisson random variables with F [Z] = (A, ..., )\M)T is under the
condition Z7 + ... + Zp; = n multinomially distributed with parameters n and
p=1/n, ..., \/n)" . Thus if M = M, and the expectation of Z = Z,, is np,,
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then the conditional distribution of Z,, given Z,; + ...+ Z,n,, = n coincides with
the unconditional distribution of above defined INV,,.

Morris (1975) derived a central limit law for a sequence of X2 and G? test
statistics, each measuring the fit of a known multinomial to a count data set
with M cells. He gave conditions under which X? and G?, suitably standardized,
approach normality as M tends to infinity. The closeness of these distributions
to the normal, for selected sparse multinomial, was examined in a simulation
study by Koehler and Larntz (1980). Dale (1986) obtained the asymptotic dis-
tribution of X? and G? test statistics for product-multinomial model and later
Morales et al. (2003) obtained, for this model, the asymptotic distribution of the
¢-divergence test statistic.

Holst (1972) considered the test statistic
My,
Sn = Zq)n(Nnu Z/Mn)
i=1

where @, : [0,00) x [0,1] =R is a measurable function satisfying the condition
| Dy, (u, v)] < 1 €2
for some c¢1, c2 € R not depending on n. He proved that the conditions:
o .
i) im sup 1§I£1£6LJ>\(4nnpm < 00

o? o2
i1) 0 < liminf — < limsup — < o0
n n n n

imply
Sn = fin BN N(0,1)

On N—00 9 9
being

Mnp

pn =Y B ®n(Zni, i/My)]

i=1

and

M M, 2
o2 = Z Var [®,(Zni, i/My)] —n (Z Cov [ Zni, ®r(Zni, i/Mn)]> ;

=1
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where Z,;, i = 1,..., M, are Poisson random variables with parameters np,;

If we consider q,, = (qny, -, @urs,)? With g > 0, 1 < i < M, and the
continuous piecewise linear function g, : [0,1] —R defined by g¢,(0) =1 and

and we define for u € [0,00) and v € [0, 1]

Bu(u,v) :gn<v>¢( u ) |

9n(v)

then

- (25) -0 () 5

To use the limit theorem of Holst it is necessary to establish that there exist
c1,c2 € R not depending on n and verifying

gal0) 6 (gL()) ] < e

We know that ¢ (¢) > 0 and let us suppose

’(I)n(ua ’U)’ =

#(0) =lim¢(t) <oo and  lim

tl0 t—o0

Since ¢(t) is convex in the domain 0 < ¢ < oo, the function f (t) = (¢(t) — ¢(0))/t
is nondecreasing. Hence if tg > 0 then

P(to) — #(0)
to

—logf(t) < 0 (3.14)

0<o(t) <p(0)+t 0 <t <.

Further, by (3.14) there exist a positive value ¢y and ¢ € R such that
p(t) < et t>to.

Then there exist ¢}, ¢5 € R verifying 0 < ¢(¢) < cfe2t V¢ >0.

Therefore for each 0< 7 < oo we have the relation

u .
TO <—) < 7t eT,
T

© 2006 by Taylor & Francis Group, LLC



GOODNESS-OF-FIT: SIMPLE NULL HypoTHESsIs 129

Since ¢y (1) =7 d(u/T), 0 < u < 00, are convex functions of 7, we have for each
O<m<m<ooand 0<u< o0

olsmefan(2)oe (2))

0 <l f <l f ma < 3.15
jnind iy, s < i, g nani <0 (319)

sup
T1<T<T2

The assumption

implies the existence of 0 < 7 < 75 < 0o and ng with the property 71 < ngn; <
T for all 1 <i < M, and n > ng.

It follows from here that under (3.15) the function ®,(u,v) satisfies for all
n >ng and c¢; = max{7ic}, 7aci}, ca = max{cs/m, c5/m} that

[Py, (u, v)| < c1e"

It is easy to check that in this case p, = n g, and o2 = na?5 ,, for

fon Z s [qmgb( an>]

o= ()] - (8 e (2]

where Z,; are Poisson random variables with E [Z;] = 1 pp;.

and

Now the condition i) given previously is equivalent to

0 < liminf O'g)’n < limsup O'g)’n < o0.
n n

Then we have established the following result for Dy (D, q,,).

Theorem 3.4
If the null hypothesis Hy : p = p,, satisfies

limsup max np;, < oo,
n 1<i<M,
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the conditions:

i) $(0) = ltil%l o(t) <oo and lim log ¢(t) < 00,

t—o00 t

ii) Given q,, = (Gn,, ...,ann)T with gp; >0,V 1 <i< M,

0 < liminf min ng, <limsup max ng, < oo
n 1<i<M,, 1<6i<My,

and

0 < liminf aq%n < limsup aq%n < 00
n ’ n ’

imply that
Iy L
\/E(Dqs(pn’ qn) - iu¢,n)/0-¢,n njo)o N(07 1)

This result was established by Menéndez et al. (1998b). Now we present some
interesting results in relation to the assumptions in the previous theorem.

Proposition 3.1
If we assume that

Gni = 1<i< My, (3.16)

1
M,,’
then it holds

0 < liminf min ng, <limsup max ng,; < oo.
n 1<i<Mp n 1<i<M,,

Proof. This result is immediate since we have assumed that lim, . n/M, =

v € (0,00). -

Proposition 3.2
If q,, = p,,, the condition

0 < liminf min ng, <limsup max ng, < oo
n 1<i<M,, n 1<i<M,

implies the condition

limsup max np;, < 0.
n 1<i<M,
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T
If also p,, = <Min, ey Min) , the conditions lim,, sup maxi<ij<, N Pin < 00 and

0 <liminf min ng, <limsup max ngy, < oo
n 1<i<M,, n 1<i<M,y,

hold and in this case

Zn, = Poisson (ngn;) = Poisson <Ml> = Poisson (Vn) ,

n

where v, = n/M, and then

von= £ [o(32)]
Uq%m =y, Var [¢ <%>} — Cov® [Zn,gb (%)] .

Proof. The result follows by previous theorem.

and

In the mentioned Section 4.3 of Read and Cressie (1988) they considered
the power-divergence test statistic. We point out that this family of test statis-
tics is obtained as a particular case of Dy(Pp,,q,) by taking ¢ (z) = ¢\ (z) =
)\(AIH) (M —2z—X(z—1)), A # 0,—1,where b0y () = limy_g ¢y (z) and
¢(—1) (¥) = limy—,_1 ¢ (z). Using Holst’s theorem, Read and Cressie (1988)
obtained under the uniform hypothesis (3.16) asymptotic distributions of the

test statistics D, (Pn, q,,) for every A > —1. For nonuniform p,, they estab-
lished a similar result, but only for A > —1 and integer-valued. For the proof
they referred to Corollary 4.1 and Theorem 5.2 of Morris (1975), who employed
a Poissonization idea alternative to Holst’s, leading to a similar result under
slightly weaker assumptions about p,,, but only for integer orders A > —1. They
formulated a conjecture that their asymptotic result can be extended to every
A > —1. The theorem presented in this Section, established in Menéndez et al.
(1998b), provides asymptotic distributions also for test statistics not admitted in
the theory of Morris, i.e., for the power-divergence of all orders A > —1, since
the corresponding functions ¢(y) (7) satisfy the condition ¢y (0) < oo if and
only if A > —1. This in particular means that the previous theorem confirms the
conjecture of Read and Cressie.
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3.4. Nonstandard Problems: Tests Statistics based on
Phi-divergences

3.4.1. Goodness-of-fit with Quantile Characterization

The quantile characterization is an alternative method for testing goodness-
of-fit and, perhaps, has some advantage over that using Tﬂf (p,p°) as discussed
previously in Bofinger (1973), Durbin (1978), Menéndez et al. (2001b, 2001c) and
others. The hypothetical and empirical quantile functions are defined as

Fyl(n)=inf{z: Fy () >} and F, ! (7) = inf {z : F,, (z) > 7},

respectively, for every m € (0,1). F, (x) is the empirical distribution function
defined in Section 1 of Chapter 1.

Figure 3.1. Distribution function.

Data are reduced by considering a partition 7 = (71, ..., mar—1) € (0,1)™ ! with
m=0<m<..<mpy_1<1=my, (317)

and by applying the functions Fy * and F,,; ' to &. (See Figures 3.1 and 3.2.)
Let Y1, ..., Y, be a random sample of size n. Hypothetical and empirical quantile
vectors are calculated, respectively, as follows

c= (Cl, ...,CMfl) = (FO 1(71) Fo_l (7TM71)) )
Yn: ( nl,..., ) ( ..,Fn_l (7TM,1)),
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where Y, = Y(,,) (n; = [nm;] + 1,4 =1,..., M — 1) is the n;th-order statistic.

Figure 3.2. Quantile function.

Hypothetical and empirical probability vectors, q° and p(Y,), are calculated
by

"=(q), - 3)" = (Folej)—Folej) : 1< < M) = (mj—mj1: 1 < j < M)T,
and

P(Y0) = (01(Y ), s 2r(Y)) " = (Fo(Ya,) — Fo(Ya,_,) : 1< < M)T,
where ng = 0, ny = +o0, Y,,, = —oo and Y,,,, = +00.

Once we have calculated the probability vectors ¢° and p(Y,), different test
statistics can be used to test
H[) B = F[). (318)
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The ¢-divergence test statistic is given by

TO(p(Y ), q°) = j—%wp(m,q(}), 6c o,

In relation with this family of ¢-divergence test statistics in Menéndez et al.

(1998a, 2001a) the following result was obtained:

Theorem 3.5
Let Fy(x) be continuous and increasing in the neighborhood of each c¢; =
EyNm), j=1,.., M — 1.

i) The decision rule “ Reject Hy if Ty (p(Yn),q°) > X?\/Ifl,a” defines a test
for testing (3.18) with significance level a.

i1) Let G be a distribution function with G # Fy and consider
@ =, @i)" = (Glej) — Glej—1) s 1< j < M)T.

The power [, 4 of the test with decision rule given in part i) satisfies, at
the alternative q*,

P R L (e 2 B £ 0
Brp (@15 s ) = 1 (I)n(0¢(q*)(2ﬁXM—1,a \/77D¢(q,q)> ,

where U(Zb(q*) is given by

M q* 2 M q* 2
) = S (o (%) - (Sev (5))

and @, (x) is a sequence of distribution functions tending uniformly to the
standard normal distribution function ® (x).

i11) The test given in part i) is consistent in the sense of Fraser (1957), that is,
for every alternative q* # qo,

lim B¢ (g7, -, q3r) =1 for all « € (0,1).

n—oo

i) If we consider contiguous alternative hypotheses

Lo,
Hl,n:qn:q0+%(q -q°),
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the asymptotic distribution of the ¢-divergence test statistic, Tf(p(Yn), q°),
given in part i), is noncentral chi-square with M — 1 degrees of freedom and
noncentrality parameter 6 given by

2
v (4 - 4)

The proof of this Theorem is given in Menéndez et al. (2001a). An example for
comparing the procedure given in this Section to the procedure given in Section
3.2 can be seen in this paper.

3.4.2. Goodness-of-fit with Dependent Observations

In this Section we study the ¢-divergence test statistic for testing the sta-
tionary distribution as well as the matrix of transition probabilities in a Markov
chain.

Stationary Distribution

Methods of statistical inference established for stationary independent data are
often applied to dependent data. Investigations into the effects of Markov depen-
dence seem to have been initiated by Bartlett (1951), who showed that such tests
need no longer have the “usual” asymptotic distribution. Later this problem has
been considered in many papers, see for instance Moore (1982), Glesser and Moore
(1983a, 1983b), Molina et al. (2002) and references therein. Tavaré and Altham
(1983) presented for irreducible aperiodic Markov chains a goodness-of-fit test for
the stationary distribution, under simple null hypothesis, based on Pearson test
statistic. In this Section we present a methodology, studied in Menéndez et al.
(1997b, 1999a), for specification of critical values and powers of the ¢-divergence
test statistic in the framework of general statistical models with stationary data.
The general methodology is illustrated in the model considered by Tavaré and
Altham (1983).

Let Y ={Y%, k > 0} be a stationary sequence of random variables taking on
values in the sample space X C R, and F the distribution function of components
Y, on X. We consider the problem of testing the hypothesis Hy : F = Fjy
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based on a realization of length n from Y. We consider the fixed partition P =
{Ei}i=1,..m of X. Let N; = 2?21 Ig,(Y;) be the number of observations in
E;, i = 1,...,M. In other words, we consider the classical goodness-of-fit tests
for vectors p = (p1,...,pm)’, pi = Ni/n, of the observed cell frequencies and
vectors of the theoretical cell frequencies p = (p1, ..., pa)’, where p; = Prp(E;),
i =1,..., M. The hypothesis Fp is indicated by writing p° = (p9,...,p%,), with
P = Prg (E;), i =1,..., M, and it is assumed that all the components of p® are
nonzero.

In this context Menéndez et al. (1997b) established the following result.

Theorem 3.6

If the model satisfies the reqularity assumptions:

i) Under the null hypothesis Hy : p = p°, for n — oo, p; = pY +op (1), for all
1 <e < M.

i1) The autocorrelation structure of the model verifies

NG ((p?)’l/2 B1— 1Y) - 3% (P —p?w)> £, N(0,V),

n—oo
where V' is a given matriz.

Then, the ¢-divergence test statistic

T (3. p°) = ¢,,—()D¢(f’, p")

converges in law to a random variable X, defined by

2n
1

M
X EZpiZf, (3.19)
i=1
where p; are the eigenvalues of the matrix V and Z;, i = 1, ..., M, are independent

standard normal variables.

Remark 3.2
Based on the previous theorem we should reject the null hypothesis F' = Fy if

T2, p°) > Qa,

where Q is the 100 (1 — «v)-percentile of the random variable X given in (3.19).
The matriz V' and, consequently, the eigenvalues p; may not be specified uniquely
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by the null hypothesis Fy (uniquely the marginal distribution of components Y; is
specified ). If V' depends continuously on the model parameters which remain free
under Fy, and there exist consistent estimates of these parameters leading to the
estimate V., of the matriz V', then we can use the tests

T3(®,P°) > Qnas

where Qneq is the 100 (1 — «)-percentile of

M
i=1

and pn; are the eigenvalues of the matriz V,,. The continuity argument leads to
the conclusion that pyn; estimates consistently p;, i.e., Qna estimates consistently

Qa-

Theorem 3.6 and Remark 3.2 assert that all members of the family of ¢-
divergence test statistics T;f (P, p°) are asymptotically equivalent from the point
of view of the test size

a=Pr (T{(®.0°) > Qua/p = 1")

and preferences between them are based on the test powers. The power for
p*#p°is
Bro (") = Pr (T2(B,P") > Qua/P = 7").

The previous ¢-divergence test statistic, T? (P, p°), can be applied to station-
ary irreducible aperiodic Markov chains. We consider a random sample of size n
from a stationary irreducible aperiodic Markov chain Y ={Y}, k& > 0} with state
space {1,...,M}. By P = (p(iaj))i,jzl,...,M we denote the matrix of transition
probabilities of this chain and by p° the stationary distribution, i.e., solution
of the equation p® = P(p°)”. We assume that P is from the class of irre-
ducible aperiodic stochastic matrices with one ergodic class so that the solution
is unique. The irreducibility means that there are no transient states, i.e., p; # 0
for all 1 <¢ < M . The decomposition, considered in the previous theorem, may
be defined by E; = {i}, i = 1,..., M and the assumptions ¢) and i) hold (cf.,
e.g., Billingsley (1961a)). Since the probability distributions associated with the
distribution functions F' and Fp, in this case, coincide with the vectors p and
p°, we consider the hypothesis Hy : p = p° about the stationary distribution
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of the chain matrix P. Since no states are transient, the hypothesis satisfies the
condition that all the components of p® are nonzero.

In the model under consideration the goodness-of-fit test of the null hypothesis
Hy : p = p® based on the Pearson’s test statistic has been considered by Tavaré
and Altham (1983). This result was extended by Menéndez et al. (1997b, 1999a)
to the ¢-divergence test statistic. These authors established that in this case the
¢-divergence test statistic T? (P, p°) converges in law to a random variable X,
defined by

(3.20)

where Ay, ..., \ps_1 are the nonunit eigenvalues of the chain matrix P.

It P = (p(i,J)); j—1,. a has identical rows then it is reversible and all its
nonunit eigenvalues are zero. Thus Theorem 3.6 implies that if data Y7,..., Y,
are independent then all ¢-divergence test statistics T3 (p,p°) are asymptoti-
cally distributed chi-squared with M — 1 degrees of freedom. More generally,
if P=(1—7)Inns+n1(p®)T, where 0 < m <1 and 1=(1,...,1)7, then the
nonunit eigenvalues of P are all equal 1 — 7. Therefore all ¢-divergence test sta-
tistics ﬁT,ff’ (P, p°) tend in law to a chi-square distribution with M — 1 degrees
of freedom.

If the matrix P is not known we can use the relative frequencies p(i,j) =
Vij /Ui, Where

n M
Vij = ZI{(i,j)}(kala Yk) and Vix = Z’Uij,
k=2 Jj=1

to estimate the transition probabilities p(i,7) of the matrix P consistently (cf.,
Billingsley (1961a)). By Iy jy} (Yk—1, Yx) we are denoting the function defined as

1 if Vii=tand VY. =3
I{(Zvj)}(ykflyi/'k) = { 0 k—1 L j

otherwise

Since the eigenvalues \; considered in (3.20) are continuous functions of the el-
ements p(i,j) of P, the substitution p(i,j) = p(7,J) in these functions leads to
consistent estimates \; of \;.

The binary Markov model, considered in Exercise 13, was studied in Menéndez
et al. (1997b) and they found that for the power-divergence test statistics the
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value A\ = —2 (Modified chi-square test statistic) is optimal in the sense of

the power. It is interesting to observe that in the case of independent data
¢(—2) ~ 0\ : . . .

T, 7 (p,p") is rarely optimal in this sense.

Chain Markov and Order

We consider a random sample of size n from an irreduccible homogeneous Markov
chain, Y ={Y%, k£ > 0}, with state space {1,...,M} and matrix of transition
probabilities given by P = (p(i,j)); j—1 s - Billingsley (1961a, 1961b) consid-
ered the problem of testing the hypothesis
Hy: P=P" = (p (Z’j))i,jzl,...,M

on the basis of the likelihood ratio test statistic and chi-square test statistic.
These results were extended in Menéndez et al. (1999b) by considering the ¢-
divergence test statistic. They considered the family of ¢-divergence test statistics
given by

20 Ui g B, )
T7(P.P°) = —= p“m'qb( : ) 3.21

(PP = 5 2 2709055 55 321)
and established that its asymptotic distribution is chi-square with ¢ — M degrees
of freedom, where ¢ is the number of elements in Cy = {(z, J): pgj > O}. The
test statistics given by Billingsley appear as a particular case of the ¢-divergence
test statistic given in (3.21). Interesting papers applicable to stationary finite-
state irreducible Markov chains have been written by Azalarov and Narkhuzhaev
(1987, 1992), Mirvalev and Narkhuzhaev (1990), Ivchenko and Medvedev (1990),
Basawa and Prakasa Rao (1980) and Rousas (1979).

In Markov chains, the future evolution of the chain is conditionally inde-
pendent of the past given the present state. It is, however, possible that the
dependence relation is more complicated. In a second order Markov chain, the
future evolution of the chain over times n+ 1, n+ 2, ... is independent of the past
given the states at times n and n — 1. In a r** order Markov chain, r consecutive
states must be conditioned upon for the future to be independent of the past.
In a r*" order Markov chain, the transition probabilities are r + 1 dimensional, r
for the present and one for the future. The case r = 0 corresponds to a sequence
of independent trials, while r = 1 corresponds to the usual Markov chain. It
is important to be able to determine the order of the chain and for simplicity
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to find the lowest acceptable value of r. This problem has been studied using
the likelihood ratio test statistic and the chi-square test statistic by Billingsley
(1961a, 1961b) and using ¢-divergence test statistics by Menéndez et al. (2001d).

3.4.3. Misclassified Data

The theory of goodness-of-fit tests, in the analysis of categorical data, has
been developed extensively. One of the difficulties, often encountered in practice,
is the possibility of a false classification of one or more individuals into the re-
spective categories or classes. This problem was first discussed by Bross (1954)
for the case of two categories. Bross established that the sample proportion is
a biased estimate of the proportion and the bias is a function of the amount of
misclassification of the data. Mote and Anderson (1965) studied the effect of mis-
classification on Pearson’s test statistic. If errors of misclassification are ignored,
the size of the test will increase and the asymptotic power will be reduced. If
we consider the family of ¢-divergence test statistics T (p,p°), a similar study
to the one realized by Mote and Anderson (1965), gives analogous results. Then
for the goodness-of-fit tests, the usual test requires modification when there are
misclassification errors.

In order to solve the difficulties involved in inference from a sample of cate-
gorical data, obtained by using a fallible classifying mechanism, Tenenbein (1970,
1971, 1972) presented double sampling methods for estimating the multinomial
proportions in the presence of misclassification errors. Hochberg (1977) extended
the use of Tenenbein’s double sample schemes for modeling and testing hypotheses
on the true parameters from general multidimensional contingency tables with
misclassification errors. Cheng et al. (1998) used also the Tenenbein’s double
sampling scheme for introducing an adjusted chi-square test and the likelihood
ratio test.

In Pardo, L. and Zografos (2000), the family of ¢-divergence test statistics for
testing goodness-of-fit when the categorical data are subject to misclassification
was considered.

The double sample scheme is used in the context of the following experimental
situation. Suppose that we have two methods of collecting the data: one which is
error-free but expensive and the second which is fallible but inexpensive. An ob-
vious dilemma results for the researcher, specially when funds are limited. Should
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they sacrifice accuracy for quantity? Diamond and Lilienfield (1962) discuss an
experimental situation in public health research where the true classification de-
vice is the physician’s examination whereas the fallible classifier is a questionnaire
completed by the patient. The Tenenbein’s double sample scheme gives to the
researcher another alternative which incorporates a balance between both mea-
surement methods and their respective cost. The scheme suggests that, at the
first stage, a sample of n units is drawn and the true and fallible classifications
are obtained for each unit, and at the second stage a sample of N — n units is
drawn and the fallible classification is obtained for each unit. Then, there are a
total of n units in the sample which have been classified by both the true and
fallible devices. The multinomial proportions can be estimated from the available
data without going to the extreme of obtaining the true classification for all N
units in the sample.

We denote by Y the random variable associated with the true measurement,
taking on the value “/” if the sampling unit belongs in fact to category FE;, i =
1,..., M, and by Y the random variable associated with the fallible measurement,
taking on the value “j” if the sampling unit is classified by the fallible device as
being in category Ej, j = 1,..., M. Let us denote the marginal probabilities of ¥’

and Y°, by
pi=Pr(Y =i), 7 =Pr(Y'=j), i,j=1,..,M,

respectively, with S, p; = Z]]Vi 1 m; = 1. To describe misclassification we define
0;; to be the probability that a unit, which, in fact, belongs to the category FE;,
is classified in the category Ej;. Thus

0;j = Pr(Y? = j|Y =4), 4,5 =1,.., M,

and it is clear that

S

M
Jj=1 i=1

In this situation a double sampling scheme can be described as follows:

i) A sample of n units is drawn and the true and fallible classifications, denoted
by Yi1,...,Y, and Ylo, ..., Y9 respectively, are obtained for each unit. We
denote by n;; the number of units in the sample whose true category is F;,
¢ =1,..., M, and whose fallible category is F;, j = 1,..., M, and by n;, =

M M
D jm1 Mgy Maj = D it Nije
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it) A further sample of N — n units is drawn and the fallible classifications
Yﬂ? SR Y]{),, are obtained for each unit. We denote by

N

mj = Z I{j}(YkO), j= 1,...,M,
k=n+1

the number of units whose fallible category is Fj;, j = 1,...,M, and by
(m,...,m M)T the vector of frequencies associated with the random sample
Y0 1, .., YN. By It (Y) we are denoting

1 ify2=y
Iy YO — k
1 (Ye) { 0 otherwise
The joint likelihood function associated with the observed data
(Y1, Y), oo, (Y, YO), Y,2 4, YN,
is given by
M M M
L(p,®) =] [T] i)™ (mj — pibhig)™ "5 1] =i,
i=1j=1 k=1

with p = (p1,...,pm)7, © = (0ij); j—1. s (cf., Cheng et al. (1998)). Then the
maximum likelihood estimators (cf., Tenenbein (1972)) are

M
N U R L R U ) L R S Y

Using the above expression for p;, and assuming that n/N — f > 0, as N — oo,
the asymptotic distribution of (i, ...,Da—1) is

~ ~ L
\/N(pl — P15, PM-1 *prl) N:)oo N(07 2)7

where the asymptotic variance-covariance matrix is defined (cf., Tenenbein (1972),
Cheng et al. (1998)) by

pf[l—(l—f)f@], i=j

M
(1 - %) > AikAjkTk = Pigj, 1F ]
k=1

2 =(04); jm1..00> Oif = . (322
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with ¢ = 1 —p;, K; = (COTT [I{i} (Y) ’E[I{i} (Y) ’YOH)? - Z;_ (ki—:l WL]I: a 1)

i0i .
and \ij = E[I;y (Y) Y0 =j] = ]%, fori,j=1,..,.M — 1.
J

Under the simple null hypothesis

Ho : p=p” = (pY, ., p3s)"

Cheng et al. (1998) established that

M—-1M-1

N Z Z pl TZJ p]) i) X?\/l—la

=1 j=1

with -1 = = (7ij); j—1,.ar» and 7 the maximum likelihood estimator of 7, i, j =
1, M—1.

Next result regarding the ¢-divergence test statistic for misclassified data was
established in the cited paper of Pardo, L. and Zografos (2000).

Theorem 3.7
Based on Tenenbein’s (1972) double sampling scheme, let p=(pu, ..., )T be

with p; = Zé\il WM, and assume that n/N — f > 0, as N — 0.
n*j

Then we have

i) Under the hypothesis Hy : p=p° = (p?,...,p%,)T

~ N B
Tﬁ(p,p ) ¢//( ) —) Z >\ ’

where 21, ..., Z, are independent and identically distributed normal random
variables with mean zero and vartance 1 and A;, 1 = 1,...,7 are the eigenval-
ues of the matrix AX, being A the diagonal matriz with elements ( ?)_1,
i1=1,...,M—1, 3 the asymptotic variance-covariance matriz of the random
vector N (p—p°) given in (3.22) and v = rank(AZA).

i) Let p* = (p},...,p4)T be a probability distribution with p* # p°, then

* \/N ka " *
/BN,qb(p ) =1-2y (m (ﬁ¢ (1) - D¢>(P ,p0)>) )
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where U(%(p*) =TTST, T = (t1,....tp)" and

b (3D¢(p, po))
’ Op; p-p-

Pr (Tz‘f}(f?,po) >ko/ Ho:p= p°> = a,

The value k., verifies

and @y (x) is a sequence of distribution functions that tends uniformly to
the standard normal distribution ® (x).

3.4.4. Goodness-of-fit for and against Order Restrictions

In some situations the probability vector p =(p1,...,p M)T exhibits a trend. If,
for example, the classes {E;}i=1 . have the same length in R and the original
probability density function is unimodal, there is a positive integer k£ such that

IN

P11 < P11 <P > .. 2 DPM-1-

Some interesting examples in which the probability vector p exhibits a trend can
be seen in Robertson (1978), Lee (1987), Robertson et al. (1988) and many others
cited there.

Statistical inference concerning a set of multinomial parameters under order
restrictions has been studied since Chacko (1966) considered the maximum likeli-
hood estimation of multinomial parameters subject to a simple order restriction.
He also obtained the asymptotic null distribution of a chi-square type test statis-
tic for testing homogeneity of a set of multinomial parameters against the simple
order. The asymptotic null distribution of this test statistic is a mixture of chi-
square distributions, which is called a chi-bar-square distribution. The mixing
coefficients, which are called level probabilities, depend upon the multinomial
parameter set as well as the order restriction.

Robertson (1966) found maximum likelihood estimates of multinomial para-
meters subject to a partial order restriction and also Robertson (1978) gener-
alized Chacko’s result to the one-sample likelihood ratio test of the equality of
two multinomial parameters (one is known) against a partial order restriction. He
showed that the asymptotic null distribution of this test statistic is chi-bar-square
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and the level probabilities depend upon the known multinomial parameter only
through the sets on which the known parameter is constant. He also considered
the likelihood ratio test of an order restriction as a null hypothesis. He showed
that the asymptotic null distribution of this test statistic is also chi-bar-square
and that the level probabilities depend upon the true parameter only through
the sets on which the true parameter is constant.

Chi-square type tests have been studied by several researchers. Lee (1987)
considered chi-square type tests for and against an order restriction on a set
of multinomial parameters. He compared three test procedures, namely: i) the
likelihood ratio test statistic, ii) the Pearson chi-square test statistic and i) the
modified chi-square test statistic. He showed that all three test statistics have
the same asymptotic null distribution which is of chi-bar-square type. Menéndez
et al. (2002) considered the ¢-divergence test statistic for testing the equality of
two multinomial parameters, one is known, against a partial order restriction and
also for testing an order restriction as a null hypothesis. They established that
the ¢-divergence test statistics, under the null hypothesis, are asymptotically chi-
bar-squared distributed. Other interesting results in this area, using ¢-divergence
test statistics, can be seen in Menéndez et al. (2003a, 2003c).
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3.5. Exercises

1. The following data represent the number of injured players in a random
sample of 200 soccer matches:

Injured players 0 1 2 3 >4
Soccer matches 82 90 20 7 1

a) Test the hypothesis that the distribution is Poisson with parameter
A = 0.775. Take significance level a = 0.05 and Freeman-Tukey test
statistic.

b) Find the power of the test at p* = (0.45,0.35,0.1,0.05,0.05)%".

2. Find the expression of the test statistic for goodness-of-fit based on di-
vergence measures of Pearson, Matusita (a = 1/2), Balakrishnan-Sanghvi,
Rathie-Kanappan, Power-divergence, Rukhin and Rényi.

3. Consider the divergence measure D7 (p,q). Find the asymptotic variance
for the statistic D’ (p,p”) and as a special case the asymptotic variance of
the statistic associated with Rényi divergence.

4. Find the asymptotic variance of the estimated entropy of order r and degree
s as a special case of the estimated divergence of order r and degree s.

5. Let w = (1/M,...,1/M)T. Find the asymptotic distribution of the esti-
mated entropy of order r and degree s as a special case of the result obtained
in Remark 3.1.

6. Let ¢ be a concave function with continuous second derivative.

a) Find the asymptotic distribution of the test statistic 8nR4(p, p°) be-
ing R4 the divergence measure introduced in Chapter 1 and p =

(p[l), ...,p[])\é,)T.
b) Let p° = (1/M, ...,1/M)" . Show that

N 8nM . L
Se(p,p°) = *W%(P,PO) = Xh

provided ¢” (1/M) < 0.
¢) Let ¢ (z) = —xlog x. Find the asymptotic distribution for 8n.Ry(p, p°).
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7. For the study of an urban system in a given region we suppose that a
certain function of service f is more implanted relatively in the cities of
major dimensions than in the smaller ones. For this purpose a spatial
index is used. This index is given by

_ ApiAyr

I, =
I A Ay

where:

Ay; represents the number of addresses of the function f in the city i.
Ay, represents the number of addresses of the function f in the region r.

Ay; represents the total number of addresses of the function f in the city
1.

Ay represents the total number of addresses of the function f in the region
T.

The cities are ordered in six levels taking into account Iy the largest (6)
to the smallest (1). From previous studies the expected frequencies of each
type of city according to its dimension are known.

The theoretical and observed frequencies into the six categories are as fol-

low:
Levels

1 2 3 4 5 6 Total
Theoretical 1 2 5 7 15 20 50
Observed 1 3 6 10 17 13 50

Using the test statistic given in ¢) of the previous exercise, analyze if the
presence of the function f is associated with the city dimension, taking as
significance level oo = 0.01.

8. We want to find a model to predict the probability of winning at a grey-
hound race track in Australia. Data collected on 595 races give the starting
numbers of the eight dogs included in each race ordered according to the
race finishing positions (the starting numbers are always the digits 1,...,8;
1 denotes the dog started on the fence, 2 denotes the second from the
fence, etc.). We assume throughout that the initial positions are assigned
at random to each of the eight dogs. We group the results into eight cells
according to which starting number comes in first. Now we want to test
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10.

the hypothesis that all starting numbers have an equal chance of coming in
first regardless of the positions of the other seven dogs, that is,

H[) P = 1/8; 1= 1,...,8.

For this purpose use the test statistic given in Exercise 6 part b) with the
function

Pa (x) =

—xlogx sia=1

{ (2" —x) sia#l

for a =1, 13/7 and 2 and significance level a = 0.05.

The theoretical and observed frequencies into the eight categories are as

follows:
Dog i Observed FExpected
1 0.175 0.125
2 0.16 0.125
3 0.111 0.125
4 0.106 0.125
5 0.104 0.125
6 0.097 0.125
7 0.101 0.125
8 0.146 0.125

Source: Haberman (1978, p. 2).

Let p, = (1/My, ...,1/M,)T and we consider the notation established in
Section 3.3. Find the asymptotic distribution of the test statistic

, 1 _ n
*(Pr ) me < npm>

Let p,, = g,,- Suppose that the following inequality holds

0 <liminf min ngy < hm Sup max mngn; < 00.
n 1<i<M, 1<i<M,

Show that for ¢ (z) = (1 — fL‘)27

and
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11.

12.

13.

14.

15.

16.

Consider the power divergence family. Find the expression of the mean and
asymptotic variance corresponding to the family of test statistics based on
it for q,, = p,, = (1/My, ..., 1/M,)* and X\ > —1.

‘We consider the Markov chain with states 1 and 2 and stochastic matrix P
of transition probabilities given by

P=<1ﬂ " );0<ﬂ,7§1,ﬂ+7<2-
g L=~

Find the expression of the ¢-divergence test statistic for testing
Ho:p=p"=(1/2,1/2)T.

Find the expression of the ¢-divergence test statistic given in Theorem 3.7
if p° = (po,qo)”, with go =1 —po, 0 < po < 1.

Obtain the expression of the ¢-divergence test statistic given in Theorem
3.7 for

6(x) =5 (w17,

A sample of n = 100 units is doubly classified by true and fallible methods
and a second random sample of 400 measurements is taken and classified

by the fallible method. The sample sizes n and N are respectively 100 and
500. The following table shows the obtained data.

Fallible Device

0 1
True Device 0 61 7 68
1 1 31 32 | First Sample
62 38 100

218 182 400 Second Sample

Test Hy : p = p° = (1/2,1/2)" by using the test statistic based on the
power-divergence family with A = 1, —1 and 0 and significance level o =
0.05.

With the notation of Section 3.3 establish that if N,; = v+ Op (n) and
Dni = Pni + op (1) , then

v =npn; +O0p(1). (3.23)
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17.

18.

3.6.

We consider the population given by the distribution function

0 if 2 < 2
Fy (x) = =2
(=) {1% if o> 2

Use the procedure given in Section 3.4.1 to study if the observations

2.2408 5.8951 6.0717 3.6448 2.8551 4.4065 14.4337
3.0338 2.0676 2.6155 2.7269 5.1468 2.2178 2.0141
2.3339 2.6548 5.0718 2.8124 2.0501 13.6717

are from Fy (z) on the basis of the power-divergence test statistic for A =
-2, —1,—1/2, 0, 2/3 and 1 and significance level o = 0.05.

Find the expression of the asymptotic variance of
Vn (Dg(P,p°) — Dy(p",0)) ,

with p® # p*, using the divergence measures of Pearson, Matusita (a =
1/2), Balakrishnan-Sanghvi, Rathie-Kanappan, Power-divergence and Ru-
khin.

Answers to Exercises

. If we consider the partition of the sample space given by

Elz{O}, EQZ{l}, E3:{2}, E4:{3} andE5:{ZL‘€N2:L‘24},

we have p® = (0.4607, 0.3570, 0.1383, 0.0357, 0.0083)”. Now our problem
consists of testing Hy : p = p°, using the test statistic obtained from the
power-divergence test statistics with A = —1/2. The test statistic obtained
in this case is the Freeman-Tukey’s test statistic and we should reject the
null hypothesis if

T_1/2(p, —8n (1—2\/171]91) >XM 1a:

From the data we get p = (82/200, 90/200, 20/200, 7/200, 1/200)7, and
then
T2 (p, p°) = 8.2971.
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On the other hand X?l, 0.05 = 9.4877. Therefore we should not reject the null

hypothesis.
The asymptotic power at the point p* = (0.45,0.35,0.1, 0.05, 0.05)T is given
by

) V200 [ 9179y (1) X1, . o
5200,45(71/2) (p*) =1-2 <U1(P*) 400 - D¢(71/2) (p*,p") .

It is not difficult to establish that

5 2
o () =4 (1~ (Z\/Eﬁ) ,

then
o1(p*) = 0.2955, Dy _, ,, (p*,P°) = 0.04391 and ¢_; o) (1) = 1.
With these values we get (3200,¢_, /s, (p*) ~ 0.8330.

2. In Theorem 3.1 it was established that

This is the classical chi-square test statistic.

For Matusita (a = 1/2), ¢ (z) = (1 — /z)?, then

0):4n§;<\/;9—\/ﬁ>2.

It is not difficult to establish that this test statistic coincides with the
Freeman-Tukey test statistic.

For Balakrishnan-Sanghvi, ¢ (z) = %)Lb then

_4n2(pl+pz>
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For Rathie-Kanappan, ¢ (x) = x::f”, then

P N ()
n (D, P )—m Z (p0)871 —-1].

=1 [

For ¢ (x) = ¢() (x) , where ¢(y) (z) was given in the first chapter, then

n M~ \A+1
TA(I’? 0) = ﬁ(ZM—l),A#O,—L

py
i=1 (P?)
For Rukhin,
bole) = 1= aefo.]
T 2(a+(1—a)x)’ T
and u
() —p))?
7% (p,p°) = n J — 0<a<l.
( ) ; ap? + (1 —a)p;

Finally, for Rényi divergence we have

log(r(r—1)z+1)

(" —=r(x—-1)—

1)

h(x)= and ¢ (x) =

r(r—1)

and the family of Rényi test statistics is given by

r(r—1)

M
2n
T (p 0:—1 § Qlfr/\,'r_l
n(pap ) ’)"(’I"* 1) og j:1(pj) (pj)

The divergence measure D:(p, q) is a (h, ¢)-divergence, with

h(x):sil((1—0—7"(7“—1)3:)%—1); s, r#1,
and 2 =r(z—-1)—-1 0.1
(b(x)_ T’(T’—l) ’ T’% ) e

By Corollary 3.3, the asymptotic variance of D2 (p, p°) is given by

2 S—r

(S i(ﬂz“) ) gplzﬂpz 2(1-r) (fzw:

=1
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because .
W (x)=r(1+r(r—1)z)1,
1 M 1-r
D¢(p*,p0) = m (Z (p;)" (p?) - 1)
i=1
and s=r
M 1—r T
W (Dy(p",p") =7 (Z ) (1)) )
i=1

‘We know that
lim D}(B,p°) = D} (B, "),

therefore for Rényi test statistic the asymptotic variance is

M -2
S0 (1) (z@m?) )

2
(r—1) i=1 i=1

4. Denoting the uniform distribution by w = (1/M, ..., 1/M)7T, it is immediate
to show that
Dy (p,w) = M'™° (H; (u) — H (p)),

where
s—1
r—1

. M
H} (p) = 15 (.sz) -1

is the entropy of r-order and s-degree (Entropy of Sharma and Mittal).

From Exercise 3, we have
~ « L
Vi (D}(B,w) — D (p*,u)) — N (0,0%(p"))

where o2 (p*) is obtained from (3.25) replacing p° by u. Therefore,

Vi (H; (p7) = H; (B)) == N (0,07,(p")),

where o2 (p*) = o3 (p*)/M>1=%) and

=1 =1

2 M 295 (M M 2
ai(p*) = T (Z (pf)r> > - (Z (pf)r>
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5. By Remark 3.1(b), we have

2n L 9
WD 6(P;u) — Xi-1-

But in our case we have h' (0) = r and ¢” (1) = 1. Then,

On the other hand,

therefore,

onMs—1 . L
— (H; (w) — H (P)) — Xir_1-
r n—o00

a) A second order Taylor expansion gives that the random variables
S5(®,p°) = 8nRy(p, p°)
and
~ T .
vn(p-p") Avn(p-1p°),

with A = diag (—¢" (p1) , ..., —¢” (pmr)) , have the same asymptotic distrib-
ution. Then

8nRy (P, p Z NZ}

where 71, ..., Z,. are independent, 1dentlcally distributed normal random
variables with mean zero and variance 1, r = rank <EpoAEpo) and (s
are the eigenvalues of the matrix AX¥po.

b) In this case we have

A = diag (—¢" (1/M),...,—¢" (1/M)) .
Then S%(p,p°) and

Vi (B —p°)" diag (u™t) v (B - p").

with w = (1/M,...,1/M)", have the same asymptotic distribution. This
asymptotic distribution, see Theorem 3.1, is chi-square with M — 1 degrees
of freedom.
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¢) In this case we have A = diag ((po)_1> , because ¢”(p9) = 1/p. There-
fore

~ L
8nRy(P,p’) — Xir1-

7. We have

6 ~ —~ 6 ~ ~
~ i L i+p9 log p? i +p9 . +p0
400R4(B,p") = 400 (Z PERRER = 5 B log B
=1 =1
0.021og 0.024-0.02 log 0.02 0.024-0.02 0.02+0.02
400 ( : — (0024002155 0.0240.02)

0.26 log 0.264-0.41og 0.4 .264-0. .2640.
n og 2+ og _([)26;—0410g026;-04)>

= 4.89182
and X%, 0.01 = 15.086. Then the null hypothesis Hy should not be rejected.

8. In the following table we have computed the test statistics for the different
values of a,

a | 1 13/7 2
Ss.(,p°) | 20.1768  30.5175 30.788

But X%, 0.05 = 14.07, and the null hypothesis should be rejected.

9. The expression of x*(P,,p,) is obtained from Dy(p,,p,) with ¢ (z) =
(x —1)*. Applying Proposition 3.2 we get

vn (X2(13mpn) ~E {qs (%)D
e o) - o o ()]

where Z, is a Poisson random variable with parameter ~,. Then,

2
e r (@] -2

B
3
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and

0425,71 = mwVar {QZ) <é>] — Cov? [vaﬁb <é ]
Tn Tn
4

(- ()

B[(2-1)7] =20

a2

E {(Z ~ ) (g _ )2 _ )\+2)\(2)\7a)

a

E[(2-1)"] = MO0 A=+ O’

Therefore,

n —~ Mn L

n—oo

E

10. By Theorem 3.4 and using the previous formulae, we have

M,
Zni \] 1 M,
2 )| =S i =

v i=1

My,
Hopn = ZE |:pm'¢ <
=1
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M, ’+3(np ,)2 1 2 M, 1 2
02 = n p2. N Pri n _ - Dy ——
$m 2 " (npni)4 N Pns z; e N Pni
Z 1 3n2 1 % 1\’
= n RN — J— —
73 Pri n4 n2 =n

Mn 1 2M, M, )\ 2
i=1 Pni n n

11. In this case we have for A > —1 and A # 0

7, zZ\M z,
e = 2o (2)] e () - 2)

and
Ji(x)vn wVar m ((%)AH B %)
— Co? Zn’m ((%>)\+1%
= TP (Var <%>A+1] — Y Cov? % <%>A+1D

For A =0, we get
Zn | Zn]
=FE|—log—
Feoy.m [’Yn 8 o

and

n Tn 'Yn Tn ’Yn

Zn |, Iy [ Zy Zn . Zn
03,(0)’” = Yn (Var {— log —] — nCov?® | ==, = log }) ,

where Z,, is a Poisson random variable with mean ~,. In the case of a zero
observed cell frequency, D¢(A)(T)n,pn) is undefined for A < —1, since it
requires taking positive powers of py;/Dn; where Np; = 0.
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12. The class of possible Markov matrices P is given by

1—
B s ,0< B,y <1, a+y<2
gl L—n

and the subclass of possible Markov matrices satisfying the condition p” =

pl' P is
1-8 B . P2
(plﬂ/pz 1p15/p2>7Ogﬂgmm<17p1>7ﬂ<l’

)T and the subclass satisfying (p°)” = (p°)T P is given by

1-6 @8
(5 1_ﬁ>,0<ﬁ<1.

The nonunit eigenvalue of this matrix is A = 1 — 2. Then we have

L 14X
LA
TI,*)OOl—A

where Z is a standard normal variable.

where p =(p1, p2

T (p,p°) 72,

Therefore,
T3P, p°) — ———2%.

n

But if we consider the matrix

( p(1,1) 1-5(1,1) )
1-5(2,2) p(2,2 ’

~—

and

2-p(2,2)+p(L,1) 1 o
p(2,2)+p(1,1) nooo

Therefore we should reject the null hypothesis if

2*ﬁ(272)+ﬁ(171) X2
p(2.2)+p(1,1) ~

T¢(,p°)

n

T¢ (P, p°)

n

A simulation study to choose the best value of the parameter A\ in the
power-divergence test statistics can be seen in Menéndez et al. (1997b).
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13. In this case the null hypothesis is
Hy: p=p°

where p is the probability of having outcome 1 for the binary observation
and ¢ = 1 — p is the probability of having outcome 0. The misclassification
probabilities are § = Pr(Y? = 0]Y = 1) and ¢ = Pr(Y? = 1|Y = 0).

It is immediate that 7 = Pr(Y? = 1) = p(1 — ) + q¢b. Denote by n;; the
number of units in the validation subsample whose true category is ¢ and
fallible category is j; 7,7 = 0,1, and

my, = Z Iy (7). k=0,1.
j=n+1

In this context, the maximum likelihood estimators of the probabilities p,

6 and ¢ are respectively p = AL 4 M0 0L () — Z—!ISJ—Q”*]\;F""L and
* *

TZ — 101 Ny tmy
ny1 N(1-p)

The matrix A3, appearing in Theorem 3.7

3 po'Var(p)  py'Cou(p,1—p)
Az —_— 71 o~ A~ 71 A~
gy Cov(l1 =D, p) qg Var(l-Dp)

pEIVar(ﬁ) —p61Va7"(ﬁ)
—qEIVaT(ﬁ) qalVar(ﬁ) ’
with

o m(1—m)

and f is given by limit as N — oo of n/N with n = n. + n.. It can be

Var(p) = 2200 (1— (1—f>ﬂ<1—e—w>2), d0=1—p,

easily seen that the unique nonzero eigenvalue of A is

I N Poq0 7
u—f<1 (=N 1-0- w>)

2N ~ L
Dy(®.p") — xi.

Then we have

e (1)
If we denote /i = 4 (1 — (- )10 J)?), then
2N D q
T (D) {pmﬁ <p%> +qo¢ <qi0>] N%Oo X3, (3.26)
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14. For ¢(z) = 4(z — 1)%, we get

. 1,
Dy(p,p°) = 5P — p0)?/pogo,

and
2N - N(p — po)?
o PP = T
Podo ¥ (1 -(1- f)m(l —0- @0)2)

This test statistic has been studied in Cheng et al. (1998).

15. For testing the null hypothesis Hy : p = (1/2,1/2)" on the basis of a random
sample of size N —n, and ignoring the possibility of misclassification, it holds
2(N—n) =0y _L 2
— D :
/(/)\) (1) (N (p,p") N:;o XM-1

The expression of the family of test statistics given in Theorem 3.7, for the
power-divergence test statistics, can be written as

2N A+1 A+1
AT (px + 15 *1>7 A#-1,0
2N - ~\P / ~\q
= Do ®.p°) = { % log ((ﬁ’a) (a%) . A=0  , (327

() (37 -

with o =1 —po, §=1—pand i = $(1 — (1 — f)ALs(1 - 6 — 9)?).

From the data we have
5= 0.368, 0 = 0.0245, 1 = 0.129 and 7 = 0.44.

If we do not consider the misclassification and we use only the second sample
(218, 182), we have that the sampling proportions are 0.545 and 0.455
respectively, denoted by p; = (p1,q1 = 1 — p1)7 = (0.545,0.455)7".

For testing the hypothesis Ho : p = (1/2,1/2)7, we have

800 P2 g2

p q —
—1— 1—/3'3— = 3.240, A=1

/2
_ = oy ) 80010e ((22)" (&) —3244, A=0
2(N n)Ddﬁ()\) (pap ) — S 1/ 2 1/2 5

—800log ({%)é(%>5>_3253 A=—1

)_.
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and Xio.os = 3.841. Then for A =1, A = 0 and A = —1, the null hypothesis
Hj should not be rejected if the size of the test is o = 0.05.

Now, we are going to get the expression of the family of test statistics, given
in Section 3.4.3, when we have a double sample data. First we obtain the
expression for [,

~ 1 Pogo T N2
= (1-0- s -9-9)
Then, based on (3.27), we have
~2 ~2
2500 (% + & - 1) — 16.659, A=1
2N 5 2x500 5\ (g \7) _ —
2N D B.0%) = | B8 10g< 1%) (1;72) > =16838, A=0
0 1
2

because in this case p = 0.368 and ¢ = 0.632. Thus if we consider double
sample data, Hg should be rejected. Therefore we can see that if one uses
only the fallible data then one may be led to the wrong conclusion to accept
Hy.

16. To establish (3.23) we have to prove if for n > 0 there exists a constant
k (n)such as if n > n(n), then

Pr(|y — npni| > k() <n.

Denoting ¢ = Pr (|y — npni| > k (1)), we have

q = Pr(ly— Nui+ Nui — npnil > k(1))
< Pr(|’y Nm|>k(n)+Pr<|Nm—npni|>@>
= pr (|7 Na| > H) |y (|Maw o] b
< Pr(|2 - M| > M)y pr (N | > K.

Using the assumption N,; = v+ Op (n), we have that given 7/2 there exist
a constant k1 (£) and n* = n (n) such that for all n > n*,
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17.

Using the assumption pp; = pp; + op (1) we have that given k; (g) and
2 > 0 there exists a number n** = n (k1 () ,7) such that for n > n**,

Nni n n
p D k(—) <
r(n p >12>—2

If we consider k (n) = k1 (%) and n = max (n*,n**), we have that for all
n>0,

3

Pr(|y — npnil > k(n)) < = Uy

\]
\]

We wish to test Hy : F' = Fp using the family of power-divergence test
statistics

M A
A (Yn) B
T (P(Y+),q°) >\+1 z; (( 7 ) 1>,

where p;(Y,) and ¢?, i = 1,..., M must be calculated. We assume M = 4
and consider the partition of the unit interval defined by

mo=0, m =1/4, m =2/4, m3 =3/4, 4 = 1.

We have

0 0 T . T 111 1\7
= (g1, q1)" = (Folej) = Foej-1) 1 1 <j<4) = 111

and
p(Yn) = (Fo(Ye), Fo(Yan)—Fo(Ye): Fo(Yae) —Fo(Yan)), 1-Fo(Yae))) ",

because Y, = Y(,,,y and n; = [20 x m;] + 1,3 =1,2,3.

‘We have
p(Y,) = (0.26566,0.24364,0.3397,0.151)T

because Y(g) = 2.3339, ¥(11) = 2.8551 and Y(1) = 5.1468.

In the following table we report the values of the power-divergence test
statistics 7)) (p(Y '), @°) for different values of .

[ A=-2 A=-1 A=-1/2 A=0 A=2/3 X=1
T) [ 17936 1.6259  1.5643 15153 1.4676  1.4506

On the other hand X3 o5 = 7.815. Therefore we should not reject the null
hypothesis.
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18. The expression of the asymptotic variance is given by

o3(p*)

Then we have

B (v (5)) - (Bne ()

Divergence Asymptotic variance
M *\3 M )2 2
Pearson (pg )2 _ (Z (plo) )
i=1 (p7) i=1 piQ
M
Matusita 1— <Z \/]7;* /p?>
(a=1/2) =1 ,
012
Balakrishnan W>

Rathie-Kanappan

Power-divergence

Rukhin
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=1
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ST @i ey 2

(60— (R (@t D)+ (- 1)p)
&P (apf + (1 — a) p})? )

M M 2
1 (_z@r)”“(p?r” - (z<p1>k+1<p?>-*) )

s A 2s—1(,,0)2(1—s) A *\s(,,0)1—s ’
2 (S - (e )



4

Optimality of Phi-divergence
Test Statistics in
Goodness-of-fit

4.1. Introduction

In the previous chapter we have studied the family of ¢-divergence test sta-
tistics, T? (p,p°), for the problem of goodness-of-fit. If we denote by Fro P po)(t)

the exact distribution of T} (p,p°), for fixed ¢, we established that

FT,?(f),pO)<t> =Fe, () +o(1) as n — 00, (4.1)

under the null hypothesis

Hy:p=1p° (4.2)
Based on (4.1) we considered for the problem of goodness-of-fit given in (4.2) the
decision rule

“Reject, with significance level a, Hy if T?(p, p°) > Xi1a'- (4.3)

Now in this chapter we shall present some criteria to choose the best function ¢
in some sense. In Section 4.2, Pitman asymptotic efficiency (contiguous alterna-
tive hypotheses), Bahadur efficiency and some asymptotic approximations of the
power function for the ¢-divergence test statistic are studied.
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Result (4.1) is asymptotic and it is only valid for large sample sizes but in finite
samples is frequently assumed to hold approximately in order to calculate critical
regions for the ¢-divergence test statistic in goodness-of-fit tests. Then it will
be important to give some methods to improve the accuracy of the ¢-divergence
test statistic in those situations where the sample size cannot be assumed large.
We shall study with the ¢-divergence test statistic the same procedures studied
previously by Read and Cressie (1988) with the power-divergence family of test
statistics. In Section 4.3 we investigate the criterion based on the speed of con-
vergence of the exact moments of the ¢-divergence test statistic, Tff (p, po), to its
asymptotic moments. The exact distribution of every member of the family of
¢-divergence test statistics, T (p, p°) (see (4.1)) differs from chi-square by o (1).
In Section 4.4 a closer approximation to the exact distribution is obtained by
extracting the ¢-dependent second order component from the o (1) term. In Sec-
tion 4.5 comparisons of exact power based on exact critical regions are presented
and finally in Section 4.6 comparisons between the exact distribution of the ¢-
divergence test statistics, T? (p,p°), and the different asymptotic approximations
are studied.

Throughout the chapter we shall assume that ¢ € ®* is 4 times continuously
differentiable in the neighborhood of 1 and ¢” (1) # 0.

4.2. Asymptotic Efficiency

Power functions are usually difficult to evaluate and we mostly have to be
content with approximations based on limit results. In this Section we consider
three approaches in order to choose an optimal ¢-divergence test statistic: Pitman
efficiency, Bahadur efficiency and comparisons based on some approximations to
the power function.

4.2.1. Pitman Asymptotic Relative Efficiency

For a probability vector p* # p°, we established that
Tim B (p) = Pr (T2(B,") > Xirora / Hiip=p") = 1.

Hence to get a limit value less than 1, we must consider a sequence of contiguous
alternative hypotheses
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Hi,:p, =p° +d/Vn,

where d =(dy, ...,dys)T is a fixed M x 1 vector such that Zj\il d; = 0, because
in this case

Jim B (p) =1-Gyz, (6) (Xhr1,0) - (4.4)

where G2~ (5) is the distribution function of a noncentral chi-square random
variable with M — 1 degrees of freedom and noncentrality parameter

6 = d"diag ((p°) ") d. (4.5)

In this context we can consider the Pitman asymptotic relative efficiency to com-
pare the behavior of two test statistics. Let us consider two ¢-divergence test
statistics T2t (p,p°) and T?? (p,p°) and let us suppose that for a given n and a
significance level a there exists a number N,, such that

Br.ir (Pr) = BN, (pNn) = B (any asigned value) < 1,

that is, the powers are equal and that N, — oo as n — oco. By p,, and py,, we
are denoting contiguous alternative hypotheses,

p, = p’+d/v/n and PN, =p’+d/\/N,.

Definition 4.1
The Pitman asymptotic relative efficiency ofTT?2 (p, p°) with respect T (p,p°)
s given by

For more details about the Pitman asymptotic efficiency see Rao (1973, pp.
467-470), Read and Cressie (1988, pp. 54-55) or Pitman (1979, pp. 56-62).

Based on (4.4) the asymptotic power functions £, ¢, (p,) and Oy, 4, (PN)

-1
given on (4.5). For this reason the Pitman asymptotic efficiency is 1 for any ¢-

divergence test statistics i (p,p°) and T?? (p,p°). We can conclude that using
Pitman asymptotic relative efficiency is not possible to discriminate between the

will be equal because both of them are based in Gy2 (5 <x%\4_17a>, with 6

¢-divergence test statistics.
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4.2.2. Bahadur Efficiency

Let {Y%}1ecn be a sequence of independent and identically distributed random
variables from F' and we denote by s = (y1,¥2,.....) a possible outcome of the
previous sequence. We consider the problem of goodness-of-fit

H():F:FO

by partitioning the range of data in disjoint intervals, {E;},_; ,s, by testing
the hypothesis Hy : p = p?, i.e., we consider the notation introduced in Section
3.1. We denote N; = Z?:l Ig,(Yj). We can see that IN; is based on the first
n components of the sequence {Yy}; .. We denote by n;(s) = >0 I, (y;)
and by p(s) the associated probability vector with the first n components of the
outcome “s”. We consider a test statistic H,(p, p°) for testing the null hypothesis
Hy : p=p°, and its outcome based on (y1,y2,....., yn) given by H,(p(s),p°).
Here H,(p,p") denotes a general family of test statistics, not necessarily the
same as the family of the ¢-divergence test statistics 77 (p,p°) considered in

(4.1).

We denote by F, P (t) the distribution function of H,(p,p°) under the
null hypothesis Hy : p = p°. The level attained by H,(p,p°) is defined by

Ln(s) = 1= Fy pp0) (Hu(B(s),1)) -

Bahadur (1971) pointed out that in typical cases L, is asymptotically uniform
distributed over (0,1), under the null hypothesis Hy : p = p® and L, — 0 ex-
ponentially fast (with probability one) under p # p°. Now we define the exact
Bahadur slope.

Definition 4.2
We consider p # p° and p € AT,, where

M
A = {p = (p1yespm)’ ipi >0,i=1,..., M, Sopi= 1} .
=1

We shall say that the sequence {Hn(ﬁ, po)}neN has exact Bahadur slope c(p),
0<c(p) < oo, if

1
lim log Ly, (s) = —3¢ (p), (4.6)

n—oo

with probability one when n — oo.
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This definition is motivated by Bahadur (1971) in the following terms “Con-
sider the Fisherian transformation V,, (s) = —2log L, (s). Then, in typical cases,
Vo — X% in distribution in the null case. Suppose now that a non-null p is ob-
tained and that (4.6) holds, with 0 < ¢ (p) < oo. Suppose we plot, for a given s,
the sequence of points {(n, V, (s)) : » =1,2,...} in the uv-plane. It follows from
(4.6) that, for almost all s, this sequence of points moves out to infinity in the
direction of a ray from the origin, the angle between the ray and the u-axis, on

2

which axis the sample size n is being plotted, being tan™! ¢ (p)

Given e > 0,0 < e < 1, and s, let N = N (g,s) be the smallest integer m
such that L, (s) < € for all n > m and let N = oo if no such m exists. Then N
is the sample size required for the sequence {Hn (D, po)}n N in order to become
significant (and remains significant) at the level . But the most important fact
pointed out by Bahadur (1971) is that, for small e, N is approximately inversely
proportional to the exact Bahadur slope, i.e., if (4.6) holds and 0 < ¢(p) < oo,
then

lim N (¢, 5) /2log (1/¢) = ¢(p) (4.7)
e—
with probability one when ¢ — 0 (see Theorem 7.1 in Bahadur (1971)).

Suppose that {H}L(ﬁ, po)}neN and {Hﬁ(ﬁ, po)}neN are two sequences of test
statistics such that H:(p,p") has exact Bahadur slope ¢; (p), 0 < ¢; (p) < oo,
i = 1,2. From (4.7) if N® (¢, s) is the sample size required to make H(p, p°)
significant at level e, we have

with probability one when ¢ — 0. Consequently c;(p)/ca(p) is a measure of the
asymptotic efficiency of H!(p, p®) relative to H2(p, p°).

Based on this relation we can give the following definition:

Definition 4.3

Let p €A}, A measure of the asymptotic efficiency of H}(p,p°) relative to
HE (. p°) is given by c1(p)/ca(p)-

The following result given in Bahadur (1971) (Theorem 7.2) in general pop-

ulations and adapted to multinomial populations in Lemma 3.1 in Cressie and
Read (1984) will be important to establish the main theorem in this Section.
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Lemma 4.1
If H,(p, p°) is a test statistic for the simple null hypothesis Hy : p = p°, based
on the first n observations of the sequence {Yy}cn , verifying:

i) There exists a function b: A}, — R with —oo < b(p) < oo, such that
n~2H,(p,p°) — b(p)
with probability one as n — oo for each p EAJE and p # p°.

it) For each t in an open interval I, there exists a continuous function f,

verifying
nlogPr {H,(p,p°) > vnt | p=p"} = —f (t) asn — oo
and {b(p) /p#p°} C I.

Then, the exact Bahadur slope for H,(p,p°) is given by c(p) = 2f (b(p)), for
each p GAJE and p # p°.

Theorem 4.1 describes a useful method of finding the exact Bahadur slope for
the ¢-divergence test statistic, Tﬂf (p,p°). It is necessary to give some concepts
before establishing its proof.

Definition 4.4
Let A C A]T/[ and Ay, = Aprn N A, where

M
AM,n = {’U :(Ul,...,UM)T 1V = ij/n, ij € N— {O}, 7j=1,..,M, Z ij = n} .
j=1

Let us say that A is p°-regular, p° € A]T/[, if
lim inf Dgyu(v,p®) = tlzrelfax Dgn(v,p°).

n—oo VEA,

Some properties of this definition are given in the following proposition; its
proof is in Bahadur (1971).

Lemma 4.2
Let A C Al and AY the closure of A° (interior of A). We have:

i) If AC AY (e.q., if A is open) A is p°-reqular
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ii) If A is pO-reqular and p € AT, there exists a positive constant, § (M),
depending only on M, such that

Mo o ) < .
S(M)n~"2 exp( nv1é1£ Dguy(v,p )> _Prpo{peA}

n

< (n+1)Mexp (—n viélj DKull('vaO)> :

Theorem 4.1 describes a practical way to get the exact Bahadur slope for the
¢-divergence test statistic and it is based on Lemmas 4.1 and 4.2.

Theorem 4.1
Let ¢ continuously differentiable and verifying

¢ (0) + lim @<oo

T—00

Then, the sequence of test statistics

(H. 50"}, = { T$<ﬁ,p0>}
neN
verifies

i) Under p €A}, and p # Y,

12T (B, p0) — \/ qj,,i(l)m(p,p%

with probability 1 as n — oco.

ii) Under the null hypothesis Hy : p = p°,
n”'log Pr {\/Tﬁ(ﬁ,po) >n'2t [ p= po} — — inf Dgu(v,p°)
'UEA¢,t

as n — oo for each t in an open interval with

2
Agp = {v tv €AY, and \/WDKull(vvpo) 2 t} :

i11) The exact Bahadur slope of the ¢-divergence test statistic Tff)(ﬁ, p) is given
by

¢y (p) = U’gg¢ 2D gt (v, P°),
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where
By = {v tv €AY, and D¢(v,p0) > Dd,(p,po)},

P EA]T/I and p # p°.
Proof. We shall establish the proof step by step.

i) We know that under p # p°, p =% p. Now the result follows by the continuity
n—oo

of Dy(v,p®) with respect to the first argument. Condition i) of Lemma 4.1 is
verified with

b(p) = \/qj,,i(l)m( p,pY).

ii) It is well known that

0 < Dg(v,p%) < ¢(0) + lim M;

r—oo T

therefore if we denote by 71 = \/ QS”L(I) <q5 (0) + lim ﬂ;l) we have that the
range of b, as p varies over AJD — {po}, is I = (0,71). For ¢t € I, the event

T2 (P, p°) > nl/?t is equivalent to the event

A 2
PEA, = {v v €A, and \/MD¢(v,p0) > t} .

The probability vector p takes its values on the lattice A p,. We consider the
set
A, = A¢’t N AM,n-

The continuity of Dd,(v,po) in v implies that Ay, is the closure of its interior
and by Lemma 4.2, pY-regular for any v €A M - By i) in Lemma 4.2, we have
under p EA}\Z

n~!log Pr {f) € Ast/p= p()} == ir}lf Drgun(v,p°),

Vedyt

n~1log Pr (\/Tr?(v,po) > /nt/p = p0> = — inf Dgu(v,p?).
’UGA(#’t

Therefore we have the condition i) of Lemma 4.1 with

ie.,

f(t) = inf DKull(vva)v tel = (0771)
VEAy ¢
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and f is a continuous function, by the continuity of Dy (’U,po), in I and of
course I D {b(p) /D EA}\Z and p %po} :

iii) Applying Lemma 4.1 we have that the exact Bahadur slope for 4/ T? (v, p?),
with ¢ fixed, is 2f(p); i.e., cy(p) = 2f(p) = 2infyep, Dryu(v,p°), where By, =
Ay, 1(p)-

Since the function g(x) = z? is a strictly monotonic increasing function of

x > 0, then the level obtained by the ¢-divergence test statistic T} (p,p°) will
be the same as the one attained by H,,(p, p°) for every n and s. Hence the exact

Bahadur slopes of both sequences { Hy(p, pO)}n oy and {T;f (p, po)} N will be
ne
the same as Bahadur (1971, see Remark 2, p. 27) pointed out.

Remark 4.1
It is mecessary to consider H, instead of T? due to condition i) in Lemma

4.1.
Remark 4.2

If we consider ¢ (x) = xlogx — x + 1 we have

B = {v:v €A}, and Dguu(v,9°) > Drun(p, p°) }

and then

¢k (P) = 2Dgun(p, P°), p €AY, and p # p°.
Therefore

cy (p) = vé1£¢ 2Dgcun(v, P°) < 2Dkt (p, P°) = creunr(p)

because p €By. Then we have

co(P)/crun(P) < 1, for allv e}, p # p°.

The likelihood ratio test obtained for ¢ (x) = xlogx —x+1 has mazimal Bahadur
efficiency among all the ¢-divergence test statistics. However, in the same way
as Cressie and Read (1984) pointed out with the power-divergence test statistic,
other family members can be equally efficient if there does not exist a probability
vector v satisfying both Dyyy(v,p°) < Dicwn(p, p°) and D¢(v,p0) > Dy(p, ).
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Computing measures of large sample performance often leads to different con-
clusions. We have seen that, when M is fixed, the likelihood ratio test statistic
is superior to any ¢-divergence test statistic in terms of exact Bahadur efficiency,
but all ¢-divergence test statistics are equivalent in terms of Pitman efficiency.
There are interesting results in relation to the chi-square test statistic and likeli-
hood ratio test statistic when the number of cells is not fixed. Quine and Robinson
(1985) studied the problem when M,, — oo and they found that chi-square test
statistic has Pitman efficiency 1 and Bahadur efficiency 0 relative to likelihood
ratio test statistic. But if n/M,, — v € (0,00), i.e., sparseness assumption, chi-
square test statistic is strictly superior to likelihood ratio test statistic in the
Pitman sense but still has Bahadur efficiency 0. Similar results were found by
Kallenberg et al. (1985). An interesting overview of this problem can be seen in
Drost et al. (1989). The results presented by Quine and Robinson (1985) can be
extended to the family of ¢-divergence test statistics. This is an open problem.

4.2.3. Approximations to the Power Function: Comparisons

In Chapter 3 we obtained two approximations to the power function, asso-
ciated with the decision rule given in (4.3), via approximations to the limiting
alternative distribution of the ¢-divergence test statistic, one for contiguous al-
ternative hypotheses and another for fixed alternatives. Given the contiguous
alternative hypothesis p,, we established that

. 2
lim B 4(p,) =1-Gyz  5) (Xhr-1.0)

where § was given in (4.5).

Then every ¢-divergence test statistic has the same asymptotic distribution.
The distribution Gx?w L6 gives a fair approximation to the power function of
the chi-square test statistic when n > 100. The approximation is not as good
for the likelihood ratio test statistic; see Kallenberg et al. (1985) and Broffitt
and Randles (1977). Drost et al. (1989) pointed out that in the case of the
power-divergence family the approximation for values of A # 1 is very poor. The
approach based on G 2 (5) Was considered for the first time by Patnaik (1949).
Slakter (1968) simulated the power of the chi-square test statistic in many cases
and compared it to the approach given by Gx?w L6 He was very pessimistic. An
interesting study is also given in Haber (1980).
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The other asymptotic approximation has the expression

6n,¢(p*)%17q)(o'1(1 )(d;/iﬁ—XM la — \/_D¢ ))

where o1 (p*) is given in (3.10).

Broffit and Randles (1977) compared the two previous approximations, in the
case of the chi-square test statistic, and they conclude that for large values of the
true power the normal approximation is better, but for moderate values of the
power, the approximation GX%J L6 is better. Menéndez et al. (2001a) considered
a model in which the normal approximation, 3, 4(p*), of the power function is
very poor for the family of the power-divergence test statistics. Drost et al. (1989)
proposed two new approximations to the power function for the power-divergence
test statistic. Both the computation and results on asymptotic error rates sug-
gest that the new approximations are greatly superior to the traditional power
approximations. Sekiya et al. (1999) proposed a normal approximation based on
the normalizing transformation of the power-divergence test statistic. Sekiya and
Taneichi (2004) using multivariate Edgeworth expansion for a continuous distri-
bution showed how the normal approximation can be improved. Obtaining these
approximations for the ¢-divergence test statistic is an open problem.

4.3. Exact and Asymptotic Moments: Comparison

The speed of convergence of the exact moments to the asymptotic moments,
in the family of ¢-divergence test statistics, gives us information about the speed
of convergence of the exact distribution to its asymptotic distribution.

We shall consider a second order Taylor expansion of the first three exact
moments of the ¢-divergence test statistic, T? (p,p°), and we compare them to
the corresponding moments of a chi-square distribution with M — 1 degrees of
freedom. The sizes of the correction terms will give information about the errors
that we are doing when we use the asymptotic distribution instead of the exact
distribution.

The method was used by Cressie and Read (1984). We therefore omit its
justification or motivation. We consider the problem under the null hypothesis
as well as under contiguous alternative hypotheses.
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4.3.1. Under the Null Hypothesis

We denote
bz 0 s 0y)?
us(TLB.p°) = B | (T2(8.0") | B=1,23,

and we shall establish, in Propositions 4.1, 4.2 and 4.3 that

. 1 _
13 (Tr‘f’(p,po)> =pp (i) + — J +O(7%), =123,

where pg(x3;_1) = E {(X%wq)ﬂ} . We point out that F {(X?\Jq)ﬂ} =M -1,
M? —1or M3+3M? - M —3,if 3=1,2 or 3, respectively.

Then fg controls the speed at which the first exact three moments, about

the origin, of the ¢-divergence test statistic T? (p,p°), converge to the first three
moments of a chi-square distribution with M —1 degrees of freedom. The function
¢ for which fj =0, 8 =1,2,3, will be the best.

In the next propositions we shall obtain the second order Taylor expansion
of the first three moments, with respect to the origin, of the ¢-divergence test
statistic.

Proposition 4.1

It holds
E [Tﬁf’(ﬁ,p")} =M-1+ %f; +O0(n3/?),
where
" 1 A% 1
fi= ?quS”((l)) (2—3M +S) + ib”((li (1—2M +8) (4.8)

and S = Zjﬂil(p?)*l.

Proof. Let us denote

m:
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A fourth order Taylor expansion of Dy(p,p") around p® gives
M M 2
=0y 6D¢(p,p°)> 0? D¢(p P°) wi
Dy(p.p°) = le (PP4RP2) L, A+ 3 (7)o
8°Dy (P.p°) ﬁ
Bpj p=p° ny/n

8Dy (P,P°) wi —5/2
(24p) " oy
pP=p

+
w|,_.

+
*’il*—‘

Z
i
P>

Tn (p,p") = ¢>~(1) (p ) Zl 7]]— + 3v/ng" (1) ]gl (ng)z (4.9)

M
+ ¢IV 1) Z

12nd" (1) ]3 +Op(n3/?).

1 (v

y (4.9) we can write

E[Tﬁ?(ﬁ,p“)} = %E[:;ﬂ + % (ng] (4.10)
] ~3/2 |
O(n=%/?),

j=1

+

v 1
1§n¢”()1 ; ({)

since

E [Op(ﬁ/?)} = O(n=3/?).

The moment-generating function of a multinomial random variable,

N = (Ny,...Nu)t,
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with parameters n and p° is
Mn(t) = Elexp(#" N)] = (p} exp(t1) + ... + ph exp(tar))”

with ¢ = (t1,...,ta7)T. The moment generating function of the M-dimensional

random variable W = ﬁ (N — npo) is thus given by

Mw(t) = Elexp(t"W)] = Elexp(t” (N/v/i — viip"))]
—  exp(—y/t"p?) Elexp(t” N/ /)] (4.11)
— exp(—y/mtTp) M(t/ /),

and the ath-moment of W; about the origin by

Ewﬂ:@%%@) (4.12)
J t=0

forj=1,...M, a=12, ...
From (4.11) and (4.12) we have
2] _ 0Y2 4 0
E[W]] = *(pj) +pj

B = 02 (2008 565 + 1)

EW}] = 3(* —6(p9)* + 3(p9)?

+ ot (=6 + 1209)° — T0))% + 1))

and substituting these expressions in (4.10) the proof is complete.

| ]
Proposition 4.2
It holds
B[130,p"?] = M? ~ 14 {3+ 0(n~2),
where
2= (2-2M — M2+ 8) + 3571 (10 — 13M — 6M*(M + 8)S)
+§€%%Y@&wwﬂ+w) (4.13)
+ LW (3 5M — 202 + (M + 3) 5)
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Squaring and taking expectations in (4.9) we get

J
M 5 M 21173
24/ (1 E[w?] E[Ww?]
T 3 e Z (pg?)% + %2 p;?(;?f

<[ >4] + Z %Vfﬂ)

J=1 JFi

o) \? (5 B[] E[W"’Wﬂ _3/2
+ <3¢”(1)) ]Zl ®)* J%;Z ®))?* 09)? +O(n™%).
(4.14)
By (4.11) we have
3a+wa( t)
EWewt] = | —————= 4.15
t=0
forj, t=1,....M and a,b=1,2,... . Then
EWJ] = n7!2 (=200)° +500)" —40(r)* +10(55)?)
o2 (24(0)° — 600 +50()* —15(65)* +5)
and
EWP] = —15(p))° +45(p))° — 45(p)" + 15(p])°
+ 0t (130(p9)° — 390(p))° + 415(p9)* — 180(p)° +25(9)?)
+ O(n7?).
For j # i both fixed, we define py, = (p?)“(p?)b; then
E[WJZWf] = 3po2 — p21 — p12 +p11 +n L (=6paz + 2p21 + 2p12 — p11),
E[WJZWE] = n Y2 (=20pa3 + 5p13 + 15pas — 6p12 — pa1 + p11)
E [szwf] = —15p24 + 18pag + 3p14 — 3p22 — 6p13 + 3p12
+  1(130p24 — 156pa3 — 26p1a + 41pa2 + 42p13 — pa1 — 17p12 + p11)
+ 0(n?),
E [Wfo] = —15p33 + 932 + 9pa3 — Ipaa +n L (130ps3 — 78ps2 — T8pa23
+  63paz + 5ps1 + 5p13 — 6pa1 — 6p12 + p11) + O(n~2),

© 2006 by Taylor & Francis Group, LLC



180 STATISTICAL INFERENCE BASED ON DIVERGENCE MEASURES

and substituting these expressions in (4.14) and simplifying we have

b [<Tf(ﬁ’p0)>1 =M -1+ %fﬁ +0(n~%?),

where
fZ = (2—2M - M*+ )
+ 3258 (10— 13M — 6M? + (M +8)S)
+ %g%)2(4—6M—3M2+5S)
+ 250 (3 5M — 2M + (M +3) 5).

To obtain the previous expression we have used the following relations,

M M
(»9) +ijpl =1; Y p)=
j=1 J#i J#
and
M 0
S s
7 P
u
Proposition 4.3
It holds
3
E [(T,?(ﬁ,p(’)) } = M®+3M? — M — 3+ Lf3 4 O(n/2)
where
f3 = (26 —24M —21M? — 3M?3 + (19 + 3M) S)
+ Sl (70— 81M — 64M2 — M3 + (65 + 18M + M?) S)
N 2 4.16
+ (%) (20— 26M — 212 — 303 + (254 5M) ) (4.16)
36TV (1)
+ Sy (15— 22M — 15M% — 2M° + (15 + 8M + M?) S)
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Cubing and taking expectations in (4.9) we have
. M plws M glwiw? M Ewiwiw?
E[Tf(p,po)ﬂ — Z [3.1]4_32 [0]28]_|_ Z [ 000 ]
=Py iFi W) gl PPiPE
M 3 M 21175
¢ (1) Ew]] Bwiwi] Ewiw?]
+ 1z Z + Z 2 Z T 0/(.0\3
Vg (1) (j:l (p(;-) j;éz( ) (pz)2 j#i p(;(p?)s
EWWIW | 1 <¢”’(1)> s~ EW)]
+ - + = 77 ——F
0p? (1) > " ") ;gl (29)°
M Ewsw?] M Ewswp] M E[W3W3W2]
PR o e R
j#i (P?)4P? G (P?)2(P?)3 itk (Pg) (Pz) P
M 8 M ay174 M 21176
"V (1) Ew?] Ewiwi| E[wiw?]
+ 77 Z + Z 7T oN2/7 a3 + 2 Z
WO\ )z )W) T )
M Ew2w2w
+ [0 : zO 3k] + O(n73/2).
jAiAk PiPi (72)
(4.17)

Using again (4.11) we get

EW]] = /2 (210(9)7 — 735(5)° + 945(p9)° — 525(09)* + 105(p)° )
+ O(n*3/2),
EWE] = 105(p9)® — 420(p))" + 630(p9)® — 420(p9)° 4 105(p))* + O(n1).

For j #£ i # k all fixed, we define

pab = (P))*(p?)" and pape = (p9)*(99)° (p)°.
Then

E[W;Wf] = nl/2 (210p43 — 105pa2 — 210p33 + 3pa1 + 144ps2 + 36pas

—  6p31 — 3922 + 3pa1) + O(n~3/2),
E[W;‘Wﬂ = 105p4q — 90 (pa3 + p34) + 9 (p24 + 3paz) + 108ps33

— 18(p32 + pa3) + Ip22 + O(n™ 1),
E[W]5W12] = n U2 (210]952 — 35p51 — 350p42 + 80p41 + 150p32 — H5p31

— 10po + 10p21) + O(n=%/3),
E[WJ.5Wi3] = 105ps3 — 45ps2 — 150p43 + 90paz + 45p33 — 45p3e + O(n~1),
EWSW?2] = 105psz — 15ps1 — 225ps + 45ps1 + 135paz — 45pa;

— 15p3e + 15p31 + O(n7Y),
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E[MGZM/@ZWI?] = —15p222 + 3 (p122 + p212 + p221) — (P112 + p121 + p211) + pin
+ n71(130p222 — 26 (pr22 + pa12 + pa21) +7 (P112 + p121 + p211)
— 3pin) +O(n72),

E[VVJZVVEWIS)] = n*1/2 (210]9223 — 105p222 — 35(p123 _|_p213) + 8p113 + 24(]9112
+ pa2) + 3pa21 — 9puiz — (pau1 + pr21) + pan) + O(n~%?),

E[WQZWQSWﬂ = 105p233 — 15p133 — 45(p223 + p232) + 9 (p132 + p123)
+  27pas2 — Ip122 + O(n™ 1),

E[mezwf] = 105p224 — 15 (p124 + p214) — 90p223 + 3p114 + 18 (p123 + p213)
+  9paga — 6p113 — 3 (P122 + P212) + 3p112 + O(n~ 1),

and by (4.17) we have
b 3 1
E[<Tn(p,P0)) } =M3+3M2—M—3+Ef;;>+o(n73/2)7

where
f3 = (26 —24M —21M? —3M? + (19 + 3M) S)
- ol (70 — 81M — 64M2 — 9M? + (65 + 18M + M?) S)
+ (%8 ) (20 — 26M — 21M2 — 3M3 + (25 + 5M) S)
36"V (1) (15 _ _ 2 _ 973 2
+ (15— 22M — 15M? — 2M3 4 (15+8M + M?) S) .

To obtain the previous expression we have used the following relations:

M(?)Q M

Zp%o+ > pjp’ =S —2M+1

7o S b

and
M

(»9) +3Z (02)*p) + Z ppiPR =
Jj=1 J#i J#iFk

Remark 4.3
It is clear that fé), 1 =1,2,3, control the speed at which the first three exact
moments, about the origin, of the ¢-divergence test statistic, Tff(ﬁ, pY), converge

to the three first moments, about the origin, of a chi-square random variable with
M — 1 degrees of freedom.

© 2006 by Taylor & Francis Group, LLC



OPTIMALITY OF PHI-DIVERGENCE TEST STATISTICS IN GOODNESS-OF-FIT 183

Let us consider a function ¢ € ®* depending on a parameter “a”. In the
following we shall denote it by ¢ = ¢q. In this context as optimal in the sense of
the moments of order 3 we consider the values of “a” from the set Rg of roots
of the equations féa =0,1=1,2,3. Strictly speaking these expansions are valid
only as n — oo for M < oo fized.

If now we consider the null hypothesis Hy : p = p° = (1/M,...,1/M)T, we
have Zj]\/il(p?)_l = M?. However for M increasing the roots of the equation
fd1>a = 0 converge to the roots of the equation

4y (1) +3¢57 (1) =0, for {(1) #0, (4.18)
since the equation (4.8) can be written as

2—3M + M?
49y (1) | 5773 | + 3¢5 (1) =0.
o (Fgirea ) + 36 )
Then the roots of this last equation converge to the roots of the equation (4.18) as
M — oo. In relation with the equations f;a =0, 1= 2,3, it is possible to apply
similar arguments.

If we consider the family of the power-divergence test statistics, ¢ = ¢y, we
have that the roots of the equation (4.18) are A =1 and A = 2/3. These values
were found directly by Read and Cressie (1988).

Example 4.1
We consider the family of ¢-divergence measures given by

(1—a)
2(a+(1—a)z)’
i.e., the family of Rukhin’s divergence measures. This family was introduced by
Rukhin (1994). The associated family of test statistics has the expression

balz) = aco1], (4.19)

T3 (p,p°) = nifj 5 —p)- —  0<a<Ll (4.20)
" et ap} + (1 — a)p; -

Some properties of this test statistic can be seen in Pardo, M. C. and J. A. Pardo
(1999). It is observed immediately that T (p,p°) is the modified chi-square test
statistic and T2 (p,p°) is the chi-square test statistic.

For a € 10, 1] we have

mioN . 3(1—a)? Vi _12(1—a)*
% (@) = —iiemt e % (1) = HiTa
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and the equation (4.18) becomes 36a® — 60a + 24 = 0. Then the roots of the
equation (4.18) are a =1 and a = 2/3.

It seems interesting to know how large M has to be for using the roots a = 1
and a = 2/3. If M is not large we must use the roots of the equations f;a =0,i=
1,2,3 given in (4.8), (4.13) and (4.16). These solutions are given in Tables 4.1,
4.2, 4.3 and 4.4 as the number of classes M increases and Zjﬂil(p?)_l changes.
In particular we have considered, for ij\il(pg)_l, the values M?, M3, M* and
M?.

M 2 3 4 5 10 20 40 50 100 200...00
ax 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00...1.00
a2 1.00 0.83 0.78 0.75 0.70 0.68 0.67 0.67 0.67 0.67... 2/3

9 ax 1.451.20 1.13 1.10 1.05 1.02 1.01 1.01 1.00 1.00...1.00

Ton az 0.55 0.59 0.60 0.61 0.63 0.64 0.65 0.66 0.66 0.66... 2/3
3 ax 1.31 1.09 1.05 1.03 1.01 1.00 1.00 1.00 1.00 1.00...1.00

Tou a2 0.69 0.67 0.66 0.65 0.65 0.66 0.66 0.66 0.66 0.66... 2/3

fi(l

Table 4.1. Roots (a1 > a) for fi =0,i=1,2,3, for 7 (p9) ' = M2,

M 2 3 4 5 10 20 40 50 100 200...00
ai 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00...1.00
as 0.73 0.70 0.68 0.68 0.67 0.67 0.67 0.67 0.67 0.67...2/3

9 a1 1.06 1.03 1.02 1.01 1.00 1.00 1.00 1.00 1.00 1.00...1.00

Jo, as 0.55 0.57 0.58 0.59 0.61 0.63 0.65 0.65 0.65 0.66...2/3
3 a1 0.93 0.93 0.93 0.93 0.95 0.97 0.98 0.98 0.99 0.99...1.00

Io, as 0.62 0.62 0.62 0.62 0.63 0.64 0.65 0.65 0.66 0.66...2/3

I

Table 4.2. Roots (a1 > ag) for f} =0,i=1,2,3, for Z;‘\;(p?)_l = M3.

M 2 3 4 5 10 20 40 50 100 200...00
1 ai 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00...1.00
Jo, as 0.69 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67...2/3
9 a1 1.02 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00...1.00
Io, as 0.55 0.57 0.58 0.58 0.61 0.63 0.65 0.65 0.66 0.66...2/3
3 ax 0.91 0.91 0.92 0.93 0.95 0.96 0.98 0.98 0.99 0.99...1.00
Io. as 0.61 0.61 0.61 0.61 0.63 0.64 0.65 0.65 0.66 0.66...2/3

Table 4.3. Roots (a1 > ag) for f, =0,i=1,2,3, for Zj]\/il(p?)—l = M4,
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M 2 3 4 5 10 20 40 50 100 200...00

1 a1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00...1.00
Jo, as 0.68 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67...2/3
9 ai 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00...1.00
Jo, as 0.55 0.57 0.57 0.59 0.61 0.63 0.65 0.65 0.66 0.66...2/3
3 a1 0.91 0.91 0.92 0.92 0.95 0.96 0.98 0.98 0.99 0.99...1.00
1o, as 0.60 0.60 0.61 0.61 0.63 0.64 0.65 0.65 0.66 0.66...2/3

Table 4.4. Roots (a1 > as) for féa =0,i=1,2,3, for Zjﬂil(p?)*l = M?>.

For M > 20 all roots are within £0.05 of the limiting roots a = 1 and a = 2/3.
Therefore for M > 20, choosing a = 1 or a = 2/3 the convergence of the first
three moments to those of a random variable chi-square with M — 1 degrees of
freedom is faster. For M > 4, most of the roots are within £0.1 of the limiting
roots a = 1 and a = 2/3. This suggests that the “a”’-range [0.6, 1] is optimal for
all M not too small. For M < 4 we should use the previous table.

4.3.2. Under Contiguous Alternative Hypotheses

Under the contiguous alternative hypotheses, Hi, given in Section 3.2, it
was established that the asymptotic distribution of the ¢-divergence test sta-
tistic, T? (p,p"), is noncentral chi-square with M — 1 degrees of freedom and
noncentrality parameter 6 = Z;Ai1 d? /p?. In the same way as under the null
hypothesis we shall establish in this case

E [Tﬁf(ﬁ,po)} =M -1+6+ %g(}ﬁr()(nl) (4.21)

. 1 -
E|T5,p°)] = M? = 142(M - D8 +6+ —=gz +0(n7").  (422)

Vn

Based on (4.21) and (4.22) it is possible to give conditions to the function ¢ for
improving the approximations of the exact moments to the asymptotic moments
for the different values of M, p° and d. The convergence speed of the exact
moments to the asymptotic moments gives information about the convergence
speed of the exact distribution to the asymptotic distribution.

We are going to get the expressions of gé, 1 = 1,2. We shall omit the third
moment and the expansion is only considered until the order O (n_l/ 2) . Note
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that
- 2n R M W2 ¢/l/(1) M 3 B
T’r? ) 0) = —Dg ) 0) = — J O ! 9
(P, p") 70 (P, p") j; P MENCIEY j; Gk +Op(n1)

where W; = nil/z(Nj — np?), j=1,..,M.

Consider the random variable
Vi =n'%(p; —p),i=1,..., M,

where p; = Nj/n and N = (Ny,..., Np) is a multinomial random variable with
parameters n and p = (p1,...,pum)", with p; = p) + n~12d;, j=1,..., M. Then
we have that W; =V, +d;, j = 1,..., M, and the moments of W; can be obtained
from the moments of V;, j =1, ..., M.

‘We know that

M E [sz} ¢///(1) v B [W]ﬂ B .
=X e & o TOeT) U

E | 10(5,p")]

and
EW?] = E[(V; +d;)?| = =(09)® + ) + d} + n~'/2(d; — 2p}d;) + O(n 1),
EW?) = E[(V; +d;)*] = d} — 3d;(p)* + 3d;p] + O(n~/?).

Substituting the expressions of £ [I/Vf] and F [VV;’] in (4.23) we have

G 0 M a2
B|TBp)] = M-1+3 %
j=1"%
L (g o (B & L 4,
— (X G+ 3 %)) +0m?
+ \/ﬁ (j; pg + 3¢ (1) j; (pq)2 + ];1 p? + (n )
= M-1+6+2=g5+0(n7"),
(4.24)
where
M M 3 M
d (b///(l) d? d
1 J J J
9%=> 5+ doaa T3
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On the other hand,

N 2 M 4 M E W2w2
E[(Tff(p,p%)} - > ]+Z iad
j=1 ( pj jFi J
M 27173
20" (1) E[w, ] BW2w?]
+ i + +O0(n=1);
3v/ng" (1) (12 (J) ;{ P; (pz)
(4.25)
and by using the previous procedure we have
EW]] = 3())" = 6(0))? +3(p})* + 6pfd} — 6(p})*d5 + dj
+ nl2 (20( 0)3d; — 30(p2)2d; + 10p%d; + 6% — 12 Odg?),

E[WZW? = 3pas — pa1 — prz + pu1 + (Do — Po2) 45 — 4p11dd;
+ (P10 — P20) djz + djzd? +n"Y2 (6pard; + 6p12d; — p2od;
— 2pudj — po2d; — 2p11d; + pord; + prod; + 2(2p12 — p11)d;
+  (di — 2pords)d3 + 2(2p21 — p11)di — 4(prod; + pord;)d;d;
+ (dj — 2p10d;)d?)

E[W?] = 5(3pg; — 6p3; + 3p3;)d; + 10(poj — p3;)d3 + d2 + O(n~1/2),

EW?W?] = 6(p13 — p12)d; + 3(3p22 — p21 — pr2 + p11)d; + 3(por — po2)d3d;
— 6]?11djd12 + (p10 — pzo)d? + d?d? + O(nil/z),

where pg, = (p?)a(p?)b.

Substituting the previous expressions in (4.25) we get

2
. 2 M g2 M g2
E (Tﬁf’(p,po)) = M2-1+42M-1)> 4+ (> %
=1t \j=1 P
L ((oar+3)5 4105 45 %
v (\ZOTH3) 2 +2 0 50 0o
A & ¢"(1) M g
+ 4 |+ 2(M+3) > %
& <p9>2) 70 ( MEDZ5 )
5 M d; M EQL 9 M EQL M g3
+ +2 —Ly
j; p? jgl p(; 3j;1 p(; j; (p;))z
M 43
+ 3(M+5) Y 5 | | +0@™)
j=1 (p?)
= M?—1+2(M - 1)§+ 6+ J=g3 +0 (n7"),
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where g(% is given by

9

[l
N
N

=<
+
oo

o,
M=
uﬁo|&>&

+
[\}

o,
NS
R

N——

.
M=
STEY

N——
+
N
M
v

M M M
111 d d d
+ —ﬁ,,ff}<(M+3 >+ 2(2;91 (Z#)

9 M 2 9 M 3
58 (5) ()

From (4.24) and (4.26) we observe that the first two moments under the con-
tiguous alternative hypotheses coincide with the moments of a noncentral chi-
square distribution with M — 1 degrees of freedom and noncentrality parameter

6= ZJ 1p _ plus terms g¢ and g¢ of order O(n~'/2) that depend on

M
>—‘

M d2 M d3
¢, M, Zpoj ]leoj and ]lej

plus a term of order O(n~1).

The term of order O(n~/?) is cancelled, in the first moment, if we choose ¢
verifying
~1

¢"(1) S AN RN
= (-3} = +35 =
(D) 2o |\ L aE iy

and for the second moment if
¢///(1) Mo M. M 2 M B
POV G SR DY | P Py
M
>

X ((M+3)%d—%+2 S~ 4

Example 4.2

If we consider the family of divergence measures given by (4.19) and p? =

1/M, j=1,...M, the O (n_l/z) correction factors in the first and second mo-

ment are a = 1 and

2
a=1-—

M )
MY di+M+5

J=1
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respectively. Since M > 1 and Z;VII alj2 > 0 this value belongs to the interval (0,1)

and, when M increases, tends to 1. This result hints at the Pearson’s test statistic
(a = 1) having closest distribution to the approzimate noncentral chi-square under
contiguous alternative hypotheses. The same happens with the power-divergence
family. See Cressie and Read (1984, p. 454).

4.3.3. Corrected Phi-divergence Test Statistic

We know that
p=FE [X?\/I—l] =M —1and o?=Var [X?\/[—l] =2(M —1).

We can modify T, (p, p°) (we shall denote the corrected ¢-divergence test statistic
by CT,ff’(ﬁ, pY)), in such a way that
E[°T?(B,p°)) = n+o(n™")
and
Var[*TS(p,p°] = o* + o(n™1).
We know that
E[TY(®.P°)] = n+ fi/n+o(n?)

and
Var[T?(p,p°)] = 02 + by/n + o(n™h)

where fq% was defined in (4.8) and by is given by

by = (2—2M —M2+S) + 2780 (4— 6M — M2 + 35)

57(1)
1 d)m(l) 2 B B 9
+ 3§V¢,,()> (4—6M — 3M? + 55)
+ ot (-2M+9),

where S = Zj]\/il(p?)*l.

We define .
T (p,p°) —
chr?(i)\7 0): (pvp) /7¢
Vo

in such a way that
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and
Var[*T2(p,p")] = o +o(n™1).

To do this it is necessary to consider

Yo = I <1 — @) —i—fdl,/n and 8y =1+ bg/no?,

ie.,
by = 1¢+ 2()M1 v ((2=2M — M? + 5)
11 1
+ 2B (a—6M - M2 + 38)
¢l// 1
+ 1 gﬁg) (4 — 6M — 3M? + 55)
207V (1) 1 _
+ 2l —am+ S)>
d
an o 1 d)///(l)
Vo = (M—l)(l—\/g)—i-E(W(Q—?)M—FS)
oV (1)
o1 2M+S)>
Example 4.3

We consider the family of divergence measures given in (4.19) and pg.) =
1/M,j=1,...,M. It is immediate to get

o= (0 = 1) (1612) 5 20— ) (= (2 3M 40 30 —) (4 17)

n

and
6a:1+%(—1—6(1—a)(M—2)+3(1—a)2(5M—6)).

4.4. A Second Order Approximation to the Exact Dis-
tribution

In this Section we shall present an approximation of the exact distribution
of T (p,p°) extracting the ¢-dependent second order component from the o (1)
term in (4.1). This second order component was obtained by Yarnold (1972) for
the chi- square test statistic under the null hypothesis (the approximation consists
of a term of multivariate Edgeworth expansion for a continuous distribution and
a discontinuous term), by Siatoni and Fujikoshi (1984) for the likelihood ratio
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test statistic and Freeman-Tukey test statistic, by Read (1984a) for the power-
divergence test statistic and by Menéndez et al. (1997c) for the ¢-divergence test
statistic T} (p,p°).

Let (N1,...,Npr) be a M-dimensional random vector multinomially distrib-
uted with parameters n and p°. We consider the (M — 1)-dimensional random
vector w = (W1, ...,War—1), defined by

W;=+v/n(Nj/n—pj), j=1,...,M—1.
The random vector w takes values on the lattice
L= {Au? = (wl,...,wM_l)T D w = \/ﬁ(m/n—ﬁo) ,MM € K},
where p° = (1Y, ....,p8;_ )T and K is given by

K= {?ﬁ = (nl, . nM,l)T : n; is a nonnegative integer, j =1,...,M —1
with Zj nj < }

Siatoni and Fujikoshi (1984) established, under the null hypothesis, the following
asymptotic expansion for the probability mass function of the random vector “w,

Pr (W) =00 () (14 o () + ()0 (7))

where

— | Lwy 1 &
hi(w)=—3 3. 0 +5 2 o
=1t =W
—~ 1 2, 1 1 & w? 1 &L
h2(w):§(h1(’w)) +12(1*S)+ZZ(??])_27EZ@)L3
i=1 "5 i=1 "
being
o (T M-1
Eo-dmg( ) p(p) ande——Zw]
j=1

This expansion provides a local Edgeworth approximation for the probability
of “w at each point “w in L. If “w had a continuous distribution function it would
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be possible to use the standard Edgeworth expansion to calculate the probability
of any set B, by

(we B) / / (1+—h1(w)+%h2(z~u)> dTu+O(n*3/2>.

(4.27)
But “w has a lattice distribution and Yarnold (1972) indicated that in this case
that expression is not valid and established for “extended convex sets” (convex set
whose sections parallel to each coordinate axis are all intervals) B the following
result

Pr </ﬁ7€ B) =h++J3+0 (n_3/2> )

where J; is the Edgeworth’s expansion for a continuous distribution given in
(4.27), while J is a term to account for the discontinuity of “w. This term is
O (nil/ 2) and Js term is O (nil) and it has a very complicated expression (see
Siatoni and Fujikoshi (1984)).

__ T
We denote p* = (% +p°, Wy = wTJ‘g +p9\4> , Wy = — Zf\ifl w;, and we
consider the extended convex set

B? (b) = {Tu: W € L and TS (p*, p°) < b } . (4.28)

We have (see Menéndez et al. (1997¢)), under the null hypothesis, that the dis-
tribution function of T, (p,p°) can be expressed by

Pr(T%(p,p°) < b) = Pr (WeB‘f’ (b)) =JP+ I+ I 40 (n—3/2)

being
J1_PT(XM 1<b ZT¢PY XM 1+2j<b)+0< _3/2>,
where
ré = 2(1-5)

rf = 655 (5 — M?) =3 (L) (S —2M + 1)

11 2
) (55 = 3M2 — 6M +4) +3(35 — M2 — 2M)

+
/
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g = —2(%i) (85 —6M2 — 60 +4) +3 (L) (S - 20 + 1)
— 2(%) (55 —3M> —6M +4) —6 (M2 +25 — 2M +1)
and

2
¢_ ¢///1
rg = (ﬁgH) (55 — 3M2 — 6M + 4).

J2¢ is a discontinuous O (nil) term to account for the discontinuity in W and
can be approximated to first order by

1/2

M
7§ = (o) — 02y o)) 2 / @e) ]|

j=1

where N?(b) is the number of lattice points in B? (b), and

() Ma-1)/2 v b
V0= e (Hf’ﬂ) (14 sz ()

where

_ ("W Cang? and b —3 (WY g
11_(¢,,(1)> (58 —3M* —6M +4) dlg—3(¢”(1)>(5 2M +1),

being S = Z j=1 30 . This term Jf does not look so complicated but it is very hard

to obtain it When n and M are not small, because of the difficulty for getting
Ve (b).

Finally, Jg) =0 (n_l) and its expression is too complicated. Neglecting the
Jg) term Menéndez et al. (1997c) proposed, in the same way as Read (1984a),
the approximation
Pr(T2(p,p°) < b) ~ J? + J3.

The proof of this result can be seen in Menéndez et al. (1997c). A simi-
lar result has been established in Taneichi et al. (2001a, b) under contiguous
alternative hypotheses.

Read (1984a) studied the usefulness of this approximation to the exact distri-
bution for the power-divergence test statistics and established that it is externally
close to the exact distribution for n so small as 10, and furthermore it provides
a substantial improvement over the chi-square first order approximation.
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Example 4.4
For the family of divergence measures given in (4.19), we have for p? =1/M,
j=1,., M
Fa(b) = Pr(TS(,p°) < b) =~ J§ + J§

being

J¢ =Pr(x3;_1 <b)+ Zr Pr ( XM 1+2]<b)—|—0< 73/2>7

rg= 2(1-M?
ré = 6M(M —1)(1—3(1 —a)?
rg = 12(1—a)(M? —3M +2) +36(1 —a)* (M — 1) — 6(M —1)?

r¢ = 2(3a—2)%(M? - 3M +2).

The term fg has the expression

Ty = (No(0) - 002y (0)) e /(a0

where N(b) is the number of lattice points in B (b), B% (b) is defined in the
same way as B? (b) in (4.28) by replacing ¢ by ¢, and

b)Y (M—1)/2

al(py — M/2
ve) = 1(“((3\/[-1-1)/2) (77) (1 + gt (L — @)’ (M — M2)>
+ O(n=3/?).

4.5. Exact Powers Based on Exact Critical Regions

We consider a function ¢, some specified alternative hypotheses and a sig-
nificance level a and we are going to get the exact power function, using the
exact critical value (without any reference to asymptotic) for the ¢-divergence
test statistic T,? (p,p°). We shall use this exact power function to compare the
members of the family of ¢-divergence test statistics T? (p,p°). This approach
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is similar to one used by West and Kempthorne (1972) and Haber (1984) to
compare the power of the chi-square test statistic and likelihood ratio test sta-
tistic, by Read (1984b) to compare the power-divergence test statistic and by
Pardo, M. C. and Pardo, J. A. (1999) to compare the family of Rukhin test sta-
tistics given in (4.20). We restrict our attention to the equiprobable null model
Hy : p° = (1/M,...,1/M)"and we consider alternative models where one of the
M probabilities is perturbed, and the rest are adjusted so that they still sum to
L,

5\\443471_16 ifi=1,..,M—1
Hy:pi= 1—56 -1 (4.29)

where —1 < § < M — 1.

We are going to justify a little bit the equiprobable null model. Sturges (1926)
initiated the study of the choice of cell and recommended that the cell would be
chosen to have equal probabilities with M = 1 + 2.3031log;,n. Mann and Wald
(1942) for a sample size n recommended M = 4 (2n22; 1) Y5 where Zo denotes the
100(1—c) percentile of the standard normal distribution. Schorr (1974) confirmed
that the “optimum” M is smaller than the value given by Mann and Wald and
he suggested using M = 2n?/®. Greenwood and Nikulin (1996) suggested using
M <min (1/a,logn). Cohen and Sackrowitz (1975) proved that the tests which
lead to reject the above hypothesis if Zf\il h; (z;) > ¢, where c is positive, h;,
1 = 1,..., M, are convex functions and z; > 0, ¢ = 1,..., M, are unbiased for
equal cell probabilities. Bednarski and Ledwina (1978) stated that if tests of fit
are based on continuous functions, then in general they are biased for testing an
arbitrary simple hypothesis.

In order to get the exact power for each ¢-divergence test statistic T;f (p, "),
it is necessary to choose a significance level a and calculate the associated critical
region. To do this, we will see first the way to get exact 100 (1 — «) percentiles,
tfj} M. corresponding to the exact distribution of T? (p,p°).

The distribution function of T, (p, p°) under the null hypothesis Hy : p = p°
is

FT¢(]3,I)0) (t) = PI‘pO <T7?(ﬁap0) < t> =1- PI‘pO (Tr?(ﬁvpo) > t) )

n
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where

Pr po <Tﬁf(ﬁ,p0)>t>: Z Pr po (N1 =n1,..., Ny =nyy),

(nl,...,nM)EA’ALJ,t

fre = {1, oman) € (NULODY foy +omar =, TE(5,p°) >

and
Prpo (N1 =n Ny =n )—L 0
po L = e TEM M_nl!...nM.

The set of upper tail probabilities of TT? (D, po) is
Uy ={a€(0,1):3t >0 with Prpo (T(5,0") > t) = a}.

100(1 — «) percentiles tfi Mo Of T¢ (p, p°) are obtained for any o € Z/{,iam through
the equation o = Pr po <T i (p,p°) > tg’ M, a) . In general it will not be possible to
get an exact percentile and therefore we shall consider an approximate 100(1 — «)
percentile that we are going to define. If « € (0,1) — Z/{ff A We consider

1 = max {ao € (0,a] : 3t > 0 with Prpo <Tf(ﬁ,p0) > t> = oq)},

so that ti M., 18 defined as the approximate 100(1 — a) percentile. We calculate
the approximate percentiles for «, M, n and ¢ all fixed. This process can be
divided into four steps:

1. Generate all the elements &y = (n1,...,npr) of
n M
AM:{(TLL---,TLM)E(NU{O}) /n1+...+nM:n}

and calculate the corresponding probabilities Prpo (N1 = ny,...,Ny =

na).
2. For each x); € A%, calculate the test statistics Tf(ﬁ, p°).

3. Put T,ff)(ﬁ,po) and Prpo(N1 = nq,..., Ny = nyr) in increasing order with
respect to the values of T? (p,p°).

4. Calculate the approximate 100(1 — «) percentile tﬁ} Moy
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We use randomized tests in order to decide with probability ’y;’i Ma the rejec-
tion of the hypothesis Ho : p° = (1/M, ...,1/M)T when the test statistic takes on
the value tﬁ’ Moy - Let @ (T,ff’ (p, p0)> be a function giving the probability of reject-
ing Hy when the ¢-divergence test statistic T2 (p,p°) is observed. This function
is defined by the formula

1 it T9(5.p°) > 10 110,
w(Tf(ﬁ,p0)>: Vot 1 TEBP°) =10 0 - (4.30)
0 1f T’r?(ﬁvpo) < tZ,M,al

We have
a= Epo [90 (Tﬁf’(ﬁ,po)ﬂ
= 1xPrpo (Tff(ﬁ,po) > ti,Mm) + 'yff’M’a Prpo (T;f(ﬁ, p’) = tqu’al) ,

and
a—Pr (T'r?(i)\v pO) > tZ,M,oq)

Pr (TE5.0°) = 12110, )

@ _
FYn,M,a -

Let us consider p = (p1, ...,pM)T with p; given in (4.29). The exact power

function of the test ¢ <Tﬁf(ﬁ, p0)> , defined in (4.30), at p is

Bom (P) = Ep [0 (T2(5.9"))]
= Prp (TLB8°) > 14 10 ) +Vata Prp (T0B.°) = 10010, )

A nice and extensive study about this problem can be seen in Marhuenda (2003).
Now we present a practical example using the family of divergence measures given
in (4.19). The study corresponding to the power-divergence test statistic can be
seen in Cressie and Read (1988).

Example 4.5

We consider the family of Rukhin test statistics, T (p,p°), given in (4.20).
Table 4.5 presents exact powers for the randomized test (4.30) based on o = 0.05
for different values of 6 and “a”, n = 10, 20 and M = 5. For 6 < 0 the power
decreases as “a” increases. For § > 0 the reverse occurs. For alternatives with
6 > 0 we should choose “a” as large as other restrictions will allow in order

to obtain the best power. For alternatives with 6 < 0 we should choose “a” as
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small as possible. If we wish to choose a test with reasonable power against these
alternatives, for every § value, we should choose a € [0.6,0.7]. The reason is that

[P

there is a marked reduction in power as “a” mowves from 0.7 to 1 and a marked

increase in power as “a” moves from 0 to 0.6.

(n =10, M =5) (n =20, M = 5)
5 5

a [-09 05 05 1 15 ||a 9 -5 5 1 15

0 |.1670 .0819 .0707 .1392 .2600|| 0 | .5903 .1281 .0784 .1470 .2573
1 | .1637 0805 .0719 .1412 2617|| .1 | .5853 .1272 .0787 .1473 .2574
2 | .1620 .0797 .0728 .1426 .2630|| .2 | .5658 .1239 .0794 .1521 .2836
3 | .1670 .0818 .0711 .1400 .2607|| .3 | .5688 .1269 .0840 .1864 .3853
4 | 1517 0766 .0755 .1570 .3053|| .4 | .5264 .1265 .0942 .2453 .5159
5 | 1517 .0766 .0755 .1570 .3053|| .5 | .4485 .1224 .1023 .2770 .5627
6 | 1516 0774 .0797 1749 3417|| .6 | .3842 .1182 .1105 .3165 .6245
2/3 | 1429 0772 .0753 .1677 .3353|| 2/3 | .3785 .1177 .1121 .3241 .6366
7 | 1367 .0758 .0833 .1977 .4056|| .7 | .3738 .1170 .1121 .3242 .6367
8 | .1313 0746 .0844 .2028 .4056|| .8 | .3218 .1121 .1186 .3551 .6805
9 | .1372 .0767 .0833 .2009 .4032|| .9 | .2853 .1087 .1205 .3627 .6891
1 | .1247 0737 .0858 .2099 .4212|| 1 | 2731 .1068 .1229 .3722 .7004

Table 4.5. Exact power functions for the randomized size a = 0.05 test of the
symmetric hypothesis.

4.6. Small Sample Comparisons for the Phi-divergence
Test Statistics

The literature contains many simulation studies concerning the accuracy of
using the chi-square distribution tail function F 2 asan approximation to
FT,‘f B for the chi-square test statistic and the likelihood ratio test statistic G2
(e.g., Good et al. 1970; Roscoe and Byars, 1971; Tate and Hyer, 1973; Margolin
and Light, 1974; Radlow and Alf, 1975; Chapman, 1976; Larntz, 1978; Kotze and
Gokhale, 1980; Lawal, 1984; Kallenberg et al. 1985; Hosmane, 1986; Koehler,
1986; Rudas, 1986). Much of what follows in this section generalizes these studies.
Two criteria used by Read (1984b) for comparing the family of power-divergence
test statistics are proposed here for small n. A study in relation to Lin test
statistic can be seen in Menéndez et al. (1997d) and in relation with Rukhin test
statistic in Pardo, M. C. and Pardo, J. A. (1999).
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We have obtained four different asymptotic approximations for the exact dis-
tribution of the test statistic T,ff’(ﬁ, pY). We shall assume that p° = (%, ey ﬁ)T
The first one and the second one were obtained in Chapter 3. The first one is
derived under the assumption that the number of classes is finite, Fy2_ 71(b) =
Pr (x3;_; < b) and the second one, F (b) = Pr (N (0,1) < (b — ppn)/0pn)  when
the number of classes increases to infinity. We must remark that in this case

n —~ L
Vn (fo(p,po) - u¢,n> — N(0,1)
U(b,n n—oo

where pg, and o4, are defined in Proposition 3.2. In this Chapter we have
presented two other approaches. In Section 2 we have considered

Fo (0) = Pr (xdios < (b—5)/8)
and finally in Section 3 we have considered Fgq (b) ~ Jld) + jg) .

Two criteria, considered by Cressie and Read (1988), are presented to com-
pare these four asymptotic approximations for small n. Criterion 1 consists of
recording the maximum approximation error incurred by each of the four approx-
imations to the exact distribution, FT,?(ﬁ,pO) (b), of the test statistic TS (p,p°).
We calculate

)

x| Fry o (105.9°)) = i (T2(5.07)

for ¢ fixed and i = x3, ;, N, C, Ed. The sign associated with the maximum
difference is also recorded. So, we know if the maximum error is an overestimate
or an underestimate.

Criterion 2 consists of assessing the accuracy for the approximation in calcu-
lating the size of a test. We use the standard approximation F, 2 to give a test

with approximate significance level a. We choose ¢, such that 1 —Fea (ca) = «,

ie., co = X?M—l,a' We calculate 1 — E'(X?v[—l,a)v 1= Tﬁ?(ﬁ,po), N, C, Ed, and
assess how they vary for different functions ¢. There are two reasons to take the
critical ¢, to be the (1 — a) percentile of a chi-square distribution with M — 1
degrees of freedom. On the one hand, this is the most commonly used for the
tests based on Pearson and likelihood ratio test. On the other hand, the critical
region obtained from this approximation is independent of ¢.

In the next example we present a practical study based on the divergence
measures given in (4.19).
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Example 4.6

We consider the family of Rukhin test statistics, T (p,p°), with p°® = (1/M,
w1/ MOT Cyivenlin[[4.20)1Figures 4.1 and 4 2 illustratel thel marimuml approz-
imation error resulting from using the approximations Fx?\/f L Fo, Fgq and Fn

for the exact distribution of qu(f), p®) which are labelled Apri, Apr2, Apr3 and
Apr4 respectively on the graphs. The results are illustrated for specific values of
“a” in the range [0,1], number of classes M =5 and sample sizes n = 10 and
n = 20. The approach Fy is obtained in Exercise 1. At first glance, it is clear
that the optimal parameter values are between 0.6 and 1 for the cases considered
here. As n increases from 10 to 20, the error curves flatten over this range;
furthermore, the size of the maximum errors decreases overall except for Aprj.
But this behavior of the approximation Fy is not surprising when one recalls
that it relies on M increasing with n. In general the mazimum error associated
with the approrimations Fx?w 71,FC and Fgq can be seen to be negative and of
a similar order. However the normal approzimation Fy has larger maximum
error than the others and of the opposite sign. Note that F is not defined for
a = 0 for the reason given in Exercise 1. Secondly, we assess the accuracy of the
approximation in calculating the size of a test. We use the standard approxima-
tion FX?M » to give a test with approximate significance level «, i.e., choose cq,
such that 1 — Fx?w,l(Ca) =q, i.6., Cq = X%W—l,oe' We calculate 1 — E(X?\/f—l,a)7

i=Tde (P, p°),IN, C, Ed, anldlassesshowl they varyl for different values of¥a”.
Thel resultsl arel §llustrated inl Figures 413Landl Y. 4 agail forl the specific values
of “a”, sample sizes and number of classes used for criterion 1, and o = 0.1.
There is a close agreement between the exact and nominal levels obtained for Fo
and Fgq than for Fxfw " In general, the normal approximation is clearly poor in
comparison to the other two approximations and tends to overestimate the true
level for all “a” values considered. But this result must be expected because this
approzimation is an asymptotic result in n and M. Due to the value of reference
the chi-square approximation, in the pictures, is represented by a line in 0.1. The
exact and nominal levels for the approzimation F. 2, are quite similar for all
a € [0.6,1] and it is not too similar outside this interval. If we want to use the
approximation given by FX?\/[—l we should use a € [0.6,1] for small M. From the
result obtained in relation with the criterion based on the speed of the convergence
of the exact moment, when M increases, the optimal values were a = 2/3 and
a = 1. This suggests that the range a € [0.6, 1] is also optimum for big values of
M. If we wish to consider values outside the interval [0.6,1] the approximation
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based on F¢ is a good alternative to the approrimation Fgq since the approxima-
tion Fo is easier to get than the approximation Fgq.

n=10, H=5
s [ T T T T ]
L . ]
| E""'EI_ |l = fApri
3 . i {1 -+ AprZ
B g -G g0 - a
0.15 [ = EiSsce P4 % ape3
= I : - Aprd
=]
13
o
=
=
-]
=
a 0.2 0.4 Q.6 0.8 1
a Parameter Value
Figure 4.1
n=20, H=5
Dz o g T T T T ]
L . ]
Q. 5 - Aprl
r B g p— -8 -8 7~ g1 -+ Apr2
i 1-#* Apr3
o 0.12 1 "2 fAprd
[=] L 4
=
oy
Pic} ]
= ]
-]
= -

o 0.2 0.4 0.6 0.3 1

a Parameter Value

Figure 4.2
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n=16, H=5
0.6 F X ' ' ' e
0.5:—__*__\‘\\ .
: X ]
—t 0.4 % \ N
2 : -."* i\\ ]
] [ o % ]
= 9.3 N * Rreotely ]
[ [ BT LY :
B 0.2 fk_ \\ ]
r EL?\ . 3 I
. - S AN ]
0.1 f+—+—+—+— *L\cm R S
o ;. i i i i .:
0 0.2 0.4 0.6 0.8 1

a Parameter Value

Figure 4.3

n=20, M=5
0.6 [ N : : : : I—
L X ]
| % ]
— 0.4 \\ N
g X |
3 - - h \'\ -
¥ Lk :

N .
o o .,
[ =] 0.2 | _.E'-..i"'u_, -, C3¢
i,

E+ e e
0 _I 1 1 1 1 I_
¢} 0.2 0.4 0.6 0.8 1
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4.7.

Exercises

. Consider the family of divergence measures, Dge (p,p°), where ¢, is given

in (4.19) and p° = (1/M,...,1/M)*. Find the asymptotic distribution
obtained in Proposition 3.2 when the number of classes M,, verifies

lim LZ’)/E(O,OO).

n—oo n

. Consider the family of test statistics associated with Lin divergence measure

(Lin, 1991) defined by
¢a (z) = ﬁ (axlogz — (ax + (1 —a))log (ax +1—a)), a € (0,1),

and
¢o (z) = lirr(l)¢a () =zlogz—x+1, ¢ (x) = lirri@l () =—logz —1+x.

Is there some optimum value of “a” in goodness-of-fit according to the
moment criterion given in (4.18)7

Consider the family of test statistics associated with the “harmonic mean
divergence” given by

—1/r

(@) =(1—a)/2=2"" (1+27")""" r>0.

Find the optimum values of “r” in goodness-of-fit according to the moment
criterion given in (4.18).

Consider the family of divergence measures given in Exercise 2 and the
following alternatives

M-1-6 ...
oo m lfl—l,...,M—l
1: Ty .
L
i =

Find the exact power for a = 0.05, n = 20 and M = 5.

. Let ¢ : (0,00) — R be a concave function with continuous fourth derivative

verifying ¢” (1/M) < 0. Find what conditions the function ¢ must verify
to be optimum the statistic S (p,p°), given in Exercise 6 of Chapter 3,
according to the moment criterion with p® = (1/M, ..., 1/M)"".
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10.

11.

12.

4.8.

Consider the family of Ry-divergences given by

L (¢ —2) if a
(ba(x):{la( ) f 7&1

—xlogz if a=1

Find the values of “a” for which the test statistic Sff“(ﬁ, pY), p° =
(1/M, ...,1/M) is optimum according to the moment criterion as M — co.

Consider the power-divergence family of test statistics. Find the expression
of the corrected test statistic given in Subsection 4.3.3 of this chapter.

Consider the family of test statistics given in Exercise 2. Find the expression

of the corrected test statistic given in Subsection 4.3.3 of this chapter, with
T

p’ = (1/M,..,1/M)" .

Consider the test statistic Sff(ﬁ, pY), with p° = (1/M, ..., 1/M)T . Using the
results given in Exercise 5, find the expression of the corrected test statistic
given in Subsection 4.3.3 of this chapter.

Find the expression of the approximation based on Edgeworth’s expansion
associated with Lin test statistic in the case of equiprobable hypothesis.

Find the expression of the approximation based on Edgeworth’s expansion
associated with Pearson-test statistic.

Find the expression of the approximation based on Edgeworth’s expansion
associated with the power-divergence test statistics for A # —1 and X # 0.

Answers to Exercises

. We denote by Dge (p,p°) the family of divergence measures obtained with

the functions defined in (4.19). By Proposition 3.2 we have

Vn

On,a

~ L
(D2 (B.P") = tna) 2 N (0,1)

where

, a €10,1]

o= 5[ (2)] -2 [t
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and

(Yn — Zn)2
29 (ma + (1 —a)Zy)

a € [0,1]. Therefore,

Vi (D2 ®.0") — a) 5 N (0,02)

_ 72
Ui’a =vwVar Z, (vn n)

—Cov? , ,
" 29 (ma + (1 —a)Zy)

where ,
o= E (v—2)
2y (yva+ (1 —a)Z)
and
2 2
2 (v—2) 2 (v—2)
=V —Cov® | Z 0,1
AR Prreren cr7/] Il TP cr7a] R

where Z is a Poisson random variable with parameter ~.

Finally, under the null hypothesis of equiprobability we have
FN(b) = PI"(N(O, 1) < (b - Ma)/aa)‘

We can observe that 1o and o§ do not exist because E [Z~1] does not exist.
For this reason this approximation is valid only for a € (0, 1].

2. We can observe that for a — 0 we have the likelihood ratio test statistic
and for a — 1 the modified likelihood ratio test statistic. It is clear that
for a = 0 and a = 1, the equation (4.18) does not hold. Now we consider
a € (0,1). We have ¢ (1) = —(1+a) and ¢LV (1) = 2(a® + a + 1) and the
equation (4.18) becomes

—4(14+a)+6(a®>+a+1)=0.

This equation does not have any real-valued solution for a € (0, 1), so there
is not an optimum value according to this criterion.

3. It is immediate to check that ¢ (1) = —3/8 — 3/8r and ¢LV (1) = 15/16 +
7/8r — 3/16r2 — 1/8r3, then the equation (4.18) becomes

3 3 5 7 3 1
4 === - e 22  ~.3) )
< g 8r>+3<16+8r 6" 8r> 0

The positive root of the equation (4.18) is r = —% 4+ $1/57.
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4. Using the procedure given in Section 4.4, we have computed the exact
powers for the randomized test (4.30) with aw = 0.05 and for different values
of 6 and a. Taking M =5 and n = 10, we have obtained the powers

(n =20, M = 5)
5

-9 -5 5 1 L5

4463 1213 .1076 .3056 .6103
4841 1244 1012 2765 5678
4948 1252 .1001 2718 .5588
5260 1267 .0953 2521 .5279
5336 1268 .0933 2424 5128
5627 1281 .0886 .2205 .4705
5689 1272 .0849 .1971 .4222
5670 1251 0821 .1759 .3646
5844 1282 .0800 .1640 .3361
5849 1270 .0790 .1503 .2792
5803 1262 .0789 .1474 2574

= o N Wiy = @R

[1Phi

For alternatives with 6 > 0, we must choose “a” as larger as other restric-
tions permit getting the best power. On the contrary, for alternatives § < 0

we must choose “a”

as smaller as possible. Given a fixed “a” the power rises
as | 6| increases. If we want to choose a test with a reasonable power against

the given alternatives for any value of ¢, we should choose a € [0.3,0.6].

5. Using the procedure given for the family of ¢-divergences we have

- 1
(= 0 _ o —rl —3/2
Eﬁunp) = M 1+nm+001 )
2] 1
b/ .0 _ 2 100 —3/2
E{(Sn(p,p)>_ = M?-1+—f2+0(n?)
E{@ﬂﬁﬁws - MWHWP—M>3+%ﬁ+OQfWﬂ
where _
1" IV
fs = s (& =3+ M) + e (G — & +1)
12 :—MLM+5%J%QM+M%$&%
"1 2
+ @//(11/%» Gz =31 +9)
\%4
+'%%%”%—%+LM@

© 2006 by Taylor & Francis Group, LLC



OPTIMALITY OF PHI-DIVERGENCE TEST STATISTICS IN GOODNESS-OF-FIT 207

and

£ = 26— 24M —2M2 LMD (200 943 4 307 4 2702 4 3M3)

¢ v 2¢""(1/M)
+ % (ﬁ — 6 L 18M + 3M2)
9" (/M) 180 234

Therefore, the functions ¢ under which the asymptotic moments are closer
to the exact moments, for fixed M, are those for which it holds

fi=0,i=1,2,3.

This happens because the second order expansions of the first three mo-
ments of S are the same as the first three moments of a chi-square dis-
tribution x3, , plus the correction factor of order O (n_l) , f;, i=1,23,
respectively.

6. We have to solve the equations fé = 0,¢ = 1,2,3 given in the previous
exercise for the given function ¢, as M — oo.
Solving the first equation,
= OO (R - )
+ (M2 -FM+5)=0

and making M — oo, we have

814812 — 6552
- 42 ’

therefore, the solutions of the equation are a = 2 and a = 13/7. On the
other hand, solving the second equation fd%a = 0, we have

(45 — TIM + 19M? 4+ TM3) a®+ (—27M?> — 67TM? + 215M —121) a
+ (26M3 +58M* — 162M 4 78) = 0

and making M — oo, we get

_27T+V272 728
- 14 ’

ie,a=2 and a=13/T7.
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Finally to approximate the third asymptotic moment to the exact one, we
have

f3 = (1035 —1398M + 144M*> + 198M? + 21M*) a*
+ (=81M* —702M3 — 552M? + 4110M — 2775) a
+ (78M* +612M> + 496 M? — 3012M + 1826) =0

and as M — oo, we obtain

~ 81£+/812 - 6552
B 42 ’
therefore the solutions of the equation are a =2 and a = 13/7.

This result is valid for large M. If M is small we should use the next table,

43 77

which has the roots of the equations féa =0,¢=1,2,3, for fixed values

of M that increase to oo.
M 2 3 4 5 10 20 40 50 100 200 500
f{%a a; 3.0 242 223 214 20 20 20 20 20 20 2.0
as 20 20 20 20 298 191 1.8 188 1.86 1.86 1.85
f(l%a a; 3.34 2.52 231 221 2.07 202 20 20 20 20 2.0
ay; 1.65 168 1.7 171 176 1.8 183 183 184 185 1.85
fga a; 3.69 2.62 237 227 2.10 2.04 2.01 2.01 2.0 20 2.0
as 1.3 1.41 147 151 1.62 1.72 1.78 1.79 1.82 1.84 1.85

Values of the roots (a;>az) of féa =0,i=1,2,3.

In this table we observe that for M > 20 we can use the previous result
since the first order factors of the three first moments are closer to 0 for
a=2and a = 13/7. For M < 20, it would be reasonable to choose one test
statistic S9° with a € [1.5,2]. For more details see Pardo, M. C. (1999).

7. In this case, the corrected test statistic is given by

¢(>\)
T¢(>\)( D, p ) = ( ) 7(;3()\)

5%)

where Yoy and 6¢(A) are obtained from the theoretical results given in
Subsection 4.3.3.

Since ¢f) (1) = 1, ¢4y (1) = A — 1, 6}¥; (1) = (A — 1) (A — 2) we have

1+m((2—2M—M2+S)
(A — )(8— 12M —2M? +68)
TN =1)*(4—6M —3M?2 +55)
(A —=1) (A —2) (2 —4M +285))

6¢(>\)

_I_

+ +
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and

Yoo, = (M71)<17\/%> Llx—1)(2-3M+25))

—(A‘l)ﬁ‘” (1-2M +38).

. Similarly to the previous exercise and taking into account that

a() =1, 07 (1)=~1+a), ¢ (1) =2(a’ +a+1)

and M| p? = M2, for a € (0,1), we have

Yo = (M—1)<1—61/2> L(a+1)(2—3M + M?)
+ eigatl (g —2M+M2)

and
o = 1- % — Betl (2 30+ M2) + 59 (2 3M + M)
+ 205l (1-2M + M?).

For a = 0, we have the likelihood ratio test statistic and for ¢ = 1 the
modified likelihood ratio test statistic.

. We know that
E [Sff(ﬁ,po)} =M-1+ag/n+o (n_l)

and
Var {Sﬁ(ﬁ,po)} —2(M —1)+by/n+o(n")

where

¢" (1/M) (2 TV (/M) (1 2
=S (3 =8 M)+ et G )

and

by = —2M +2+ ;000 (12— 18+ 6M) + (45((11//]{;1)))
x (%——+3)+W%l(ﬁ—ﬁ+1).
We define (5.0
c5%(p, p°) — n(D,P") — s
Vs
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in such a way that
B [°89(p,p")] = M ~1+0(n"")

and
Var [CSﬁ(ﬁ,po)} =2(M-1)+o(n").

For this purpose it is necessary to consider

Yo = (M —1) <1 — \/@> +ag/n and  Og = by/n2(M — 1),

i.e.,
by = 1= %+ wmwD <(§>~((11/1\]\44))( —9+3M)
" 2 1%
b (RARY (e +9) + S0 (3 & +1)
and

Yo = (M—1)(1—/54)

+ %(ﬁ#(%}(— 3+ M) + %#Mﬂ}(ﬁ—%+1)>.
10. It is immediate to show that Lin test statistic is
T%(A 0y — 9 (LM’\.l D
v (D, p°) n | 1ma 2 Pilog iz
1 L, )
+ EZpilogm> ac(0,1).

The expression of the approximation based on Edgeworth’s expansion as-
sociated with this test statistic for p° = (1/M, ...,1/M)"

Pr(T%(p,p°) < b) =~ J¢ + J§

being

JE=Pr(x3;_; <b)+ Zr Pr (x4, 1+2]<b)+0( 3/2>7

re = 2(1-M?)
¢ = 6(a®+a+1)(M—1)242(1+a)?(M? — 3M + 2)+6(M? — M)
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11.

rg = -da(a+1) (M?—3M +2) 46 (a> +a+ 1) (M —1)*-6(M? — M)
and

ré = 2(a+2)* (M2 —3M +2).
The term jg has the expression

T = (No(0) - n =02y () 2 /(@m0 1/a0M)

where N%(b) is the number of points (wy, ..., wpr—1) satisfying
N; 1
i = —— =, N;=0,1,2,...
w; =+/n ( - M)

such that Zf\il N; = n and T2* (p,p°) < b, and

(Wc)(M—l)/2

vem) = Lo 1/MM2<1+12(M+1) (1 + a)2(M? = 3M +2)
3(a? +a+1)(M —1)?)) + O(n=/2).

In this case ¢ (z) = (x — 1) /2, then for the test statistic
M

X2=ny (Bi — p})?

0
i=1 Pi
we have Pr(X? < b) ~ Jf + :fg, being

I = Pr(xd_, <b) + 5 (Pr(x3,_, < b)2(1—-S)
+ Pr(x3,.5 < b)(55 — 3M? — 6M +4))

and

M 1/2
T3 = (No(b) = nMD2VE () ) b2 / ((27rn)(M1) I1 pg) ,

i=1

where N?(b) is the number of points (wy, ..., was_1) satisfying

N; 1
P = T ,Niz ,1,2,...
v \/ﬁ ( n M> 0

such that S N; =n and X2 < b and

B (Wb)(M_l)/2 M 1/2
0=t @1?9)

being S = Zjﬂil(pg)*l.
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12. Using similar arguments to that used in the previous exercises and taking

into account that (A)( ) =1, qﬁ/(’g\) (1) =Xx-1, qﬁ{)‘\/) H=A=-1)(A-2)
we have Pr <T¢(A) (p,p°) < b) ~ J} + J2 being

J]. Pr(XM 1<b ZT Pr XM 1+2]<b)+0( 3/2>,
where

ro= 2(1-25)

= 6A-1)(S—M?)-3A=1)(A=2)(S—2M +1)

_I_

(A —1)% (58 — 3M? — 6M +4) + 3(3S — M? — 2M)

(A—=1) (—2(88 —6M? —6M +4) +3(A—2) (S —2M +1))
— 2(A—1)*(58 = 3M?% —6M +4) — 6 (—M? +25 —2M +1)

\3
[}
I

and
3 = M58 —3M? —6M +4).

The term j@ has the expression
M 1/2
T3 = (NA0) = a0y (p) ) et ((2m)<M—1> I1 pg?)
i=1

where N*(b) is the number of X-values such that Td)m (p,p°) < b and
1/2
(M-1)/2 b
() = L 14— (l; —
Vi) = rars 2 Hpﬂ o )

i =(A—1)* (55 — 3M* — 6M +4)

and
lo=3A=-1)(A=2)(S—2M +1),

being S = Z]]Vi 1(p?)_1. For more details see Cressie and Read (1988).
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Minimum Phi-divergence
Estimators

5.1. Introduction

In this chapter we consider a wide class of estimators which can be used when
the data are discrete, either the underlying distribution is discrete or is contin-
uous but the observations are classified into groups. The latter situation can
occur either by experimental reasons or because the estimation problem with-
out grouped data is not easy to solve; see Fryer and Robertson (1972). Some
examples in which it is not possible to find the maximum likelihood estimator
based on the original data can be seen in Le Cam (1990). For example, when
we consider distributions resulting from the mixture of two normal populations,
whose probability density function is given by

fo(x)=w ! ex _L(rzm i +(1—w) ! ex _Lfzzp i
oL = 2101 P 2 o1 V2o P 2 o2 ’

the likelihood function is not a bounded function. In this situation

0 = (u1, 2, 01,02, w), i1, 2 € R 01,09 > 0 and w € (0,1),

and the likelihood function for a random sample of size n, x1, ..., T, is given by

L(e;l‘la ce 7:En) = Hf@(l‘j)
j=1
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If we consider pg = ju; = x; for some i (i = 1,...,n), then fo(x;) > w(v/2moy)~?
and

j — Lg 2 . .
fo(xj) > (1 —w)(V2ro2) Lexp (% (‘”ﬂ ) ) for j # 1.

02

Therefore

n 2
-n n—1_—-1 _—(n—1 1 xTi— T;
L(0;x1,...,zy,) > (27) /2w(1—w) 101 102 ( )exp - } : ( j )

and choosing o1 sufficiently small it is possible to do L as big as it is desired.
Then there are not values w, 01,02, u1 and pz that maximize L.

Several authors have paid attention to estimation of the unknown parameters
of a mixture of two unspecified normal densities. There are mainly three different
approaches: moments, maximum likelihood and minimum distance.

The moment solution to the problem of estimating the five parameters of an
arbitrary mixture of two unspecified normal densities was studied by Karl Pear-
son (1894). Although many random phenomena have subsequently been shown
to follow this distribution until 1966 this estimation problem was not considered.
Important applications of mixture modeling occur in satellite remote-sensing of
agricultural characteristics: specifically, the use of spectral measurements of light
intensity to determine crop types, distributions of wind velocities and distribu-
tions of physical dimensions of various mass produced items. Hassenblad (1966)
seems to have been the first to reopen the question. Since then the problem has
also attracted the attention of Cohen (1967) who showed how the computation
of Pearson’s moment method can be lightened to some extent.

Since the likelihood function is not a bounded function, the objective in the
maximum likelihood approach is to find an appropriate local maximum. Since
closed-form solutions of the likelihood equations do not exist, they must be solved
by using iterative techniques. Day (1969) and Behboodian (1970) find an appro-
priate local maximum of the likelihood function by using iterative techniques.

Minimum distance estimation (MDE), in general, was presented for the first
time by Wolfowitz (1957) and it provides a convenient method of consistently es-
timating unknown parameters. An extensive bibliography for minimum distance
estimators is in Parr (1981). In the mixture model setting, Choi and Bulgren
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(1968) and MacDonald (1971) estimated the mixture proportions (assuming the
component distributions were known) by minimizing the sum-of-squares distance
between the empirical and theoretical distribution functions. Quandt and Ram-
sey (1978) estimated the parameters in the mixture model by minimizing the
sum-of-squares distance between the empirical and theoretical moment generat-
ing functions. Kumar et al. (1979), however, showed that this technique is highly
sensitive to starting values. Bryant and Paulson (1983) examined the empirical
characteristic function in this setting. Fryer and Robertson (1972) considered
the MDE for grouped data and finally by using the families of R4-divergences
and ¢-divergences in Pardo, M. C. (1997b, 1999b) the problem of estimating the
parameters of a mixture of normal distributions was considered.

In this chapter we study the minimum ¢-divergence estimator, considered in
Morales et al. (1995), for grouped data.

5.2. Maximum Likelihood and Minimum Phi-diver-

gence Estimators

Let (X, Bx, Pp)geco be the statistical space associated with the random va-
riable X, where (y is the o-field of Borel subsets A C X’ and {Pp}¢ g is a family
of probability distributions defined on the measurable space (X, Sx) with © an
open subset of RMo My > 1. Let P = {E;}i=1,...m be a partition of X'. The
formula Prg(E;) = pi(0), i = 1,..., M, defines a discrete statistical model. Let
Yi1,...,Y, be a random sample from the population described by the random
variable X, let V; = 2?21 Ig,(Y;) and p; = N;/n, i = 1,..., M. Estimating 6
by maximum likelihood method, under the discrete statistical model, consists of

maximizing for fixed nq,...,n,
n!
Pl"g(Nl =N1,... ,NM = nM) = ﬁpl(e)nl X ... X pM(O)"M (51)
ny....np-
or, equivalently,
logPrg(N1 =n1,..., Ny =ny) = —nDrun(p, p(0)) + k (5.2)

where p = (p1,...,00m)7 , p(8) = (p1(0),...,pr(0))T and k is independent of
0. The equality (5.2) is easy to check because, if we denote [ (8) = log Prg(N =
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ni,..., Ny =npr), we have
n! M
1(6) = log— ;+n ) pilogpi(6)
mni:...Npr- i=1
n! %Al 1 %Al - MAI .
= log—— —n) pilog——= +n > pilogp; —n > p;logp;
gnll...nM! i=1 ’ gpi(e) i=1 iosp i=1 OBk
1 n! %Al pi %Al A
= log——— —n ) p;lo +n ) p;logp;
gnl'nM' i=1 ‘ gpi(e) i=1 Posbi
Mo P R
= —n). p;log +k = —nDgu(p,p(0)) + k.
i=1 pi(0)

Then, estimating @ with the maximum likelihood estimator of the discrete model
is equivalent to minimizing the Kullback-Leibler divergence on 8 € © C RMo,
Since Kullback-Leibler divergence is not the unique divergence measure, we can
choose as estimator of @ the value 0 verifying

D(p.p(@) =, _inf  D(p.p(0)), (53)

where D is a divergence measure.

In the following we assume that there exists a function

p(0) = (p1(0),....pm(0))"

that maps each @ = (61,...,0y,)7 into a point in Ay, where Ay was defined
in Chapter 2, Section 2.1. As 0 ranges over the values of ©, p(0) ranges over a
subset T of Ap;. When we assume that a given model is “correct”, we are just
assuming that there exists a value 8y € © such that p(0y) = m, where 7 is the
true value of the multinomial probability, i.e., w € T.

Definition 5.1

LetYy,...,Y, be a random sample from a population described by the random
variable X with associated statistical space (X, Bx, Pp)gcg- The minimum ¢-
divergence estimator of Oy is any §¢ € O verifying

o~

Dy(p.p(0) = _1nf  “Dy(p.p(8)).

In other words, the minimum ¢-divergence estimator satisfies the condition

0s=arg inf Dy(p,p(0)). 5.4
o=arg Inf (P, p(0)) (5.4)
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This method chooses the point of T closest to p in the sense of the ¢-divergence
chosen.

Remark 5.1

If we consider the family of the power-divergence measures we obtain the min-
imum power-divergence estimator studied by Cressie and Read (1984). This is
given by the condition

~

0y = inf Dy, (p,p(0 .
o =arg, nf s (D, P(0)), (5.5)

where

- 1 & P\
Dy, (P, p(0)) = O+ 1) ;pz‘ (pi(9)> —1]/.

For A — 0 we obtain the maximum likelihood estimator, for A = 1 the minimum
chi-square estimator, for A = —2 the minimum modified chi-square estimator
(or minimum Neyman modified estimator), for X\ — —1 the minimum modified
likelihood estimator (or minimum discrimination information estimator), for A =
—0.5 Freeman-Tukey estimator and for A = 2/3 Cressie-Read estimator.

We know that Kullback-Leibler divergence measure can be obtained from the
power-divergence measure with A\ = 0. For this reason in the rest of the chapter
in order to distinguish between the MLE based on original data and the MLE
associated with the discrete model we shall denote by 5(0) the maximum likelihood
estimator in the discrete model and by 0 the mazimum likelihood estimator based
on the original data.

We present an example to clarify all the notation and concepts introduced
until now.

Example 5.1

Suppose that n independent and identical distributed Poisson variables with
mean 6 (0 > 0) are observed, and let the observations be truncated at x = 2.
Let N1, Ny and N3 be the number of observations taking on the values 0, 1 and
2 or more, respectively. Then NN =(Np, Na, N3) has the trinomial distribution
(n; p1(0),p2(0),p3(0)), where p1(0) = Prg(X = 0) = e, pa(0) = Prp(X = 1) =
B0 and p3(0) = Prg(X >2) =1 — (1 +0)e".

If we consider Cressie-Read estimator, we have to get the minimum in 0 of
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the function

R R ~ 2/3 R ~ 2/3
D¢>(2/3) (p,p(0)) = % {Pl <<§ﬁ> - 1> + P2 ((m%) - 1)

N ~ 2/3
+ b3 ((1—(1+9];Bexp(—9)> o 1>:| )

Now if we assume, for instance, that p = (0.2,0.3,0.5)T we obtain 5(2/3) =
1.6595.

Geometrically, Ag is the triangle side ABC depicted in Figure 5.1, that we
represent in the plane through the triangle of Figure 5.2.

b3

¢=1(0,0,1)

B=(0,1,0)

b2

A= (1,0,0)

b1

Figure 5.1. Set of probability distributions for Example 5.1.
As 6 varies over RT = [0, 00),
p(0) = (7%, 0e7%, 1~ (1+0)e )"

traces out a curve in Ag. This curve is the subset 7. When 6 — 0, p(§) —
(1,0,0)T, and when 6 — oo, p(6) — (0,0, 1)T. Thus, the boundary points of 6
in this example correspond to the boundary points of Az. Figure 5.2 shows the
relationships between Ag, T, v and p in this example. If the Poisson model is
incorrect, then the true value of v does not generally lie on the curve, although
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in principle it can. Because of the discreteness of the multinomial distribution,
it often happens that p does not lie on T' (as is the case in the figure). The
estimation method based on the minimum distance leads to a point in T' closest
to p in the sense of the distance chosen.

A= (1,0,0) B =(0,1,0)

Figure 5.2. Relation between Az, T, 7 and p for Example 5.1.

From a historical point of view the maximum likelihood estimator in grouped
data or the minimum Kullback-Leibler divergence estimator was considered for
the first time by Fisher (1925), the minimum chi-square estimator and the min-
imum modified chi-square estimator by Neyman (1949). Matusita (1955), using
the measure of divergence that has his name, studied the corresponding estimator
for a = 1/2 (Freeman-Tukey estimator). Read and Cressie (1988) considered the
minimum power-divergence estimators and finally Morales et al. (1995) studied
the minimum ¢-divergence estimators. The results obtained by Read and Cressie
(1988) as well as the results obtained in Morales et al. (1995) are generalizations
of the results given by Birch (1964) for the maximum likelihood estimator. The
results we present in this chapter follow the line of that given by Pardo, M. C.
(1997a) for the Ry-divergences, which are a generalization of the procedure given
by Cox (1984) in relation to the maximum likelihood estimator.
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5.2.1. Minimum Power-divergence Estimators in Normal and
Weibull Populations

In this Section we consider the minimum power-divergence estimator, given in
(5.5), of the Normal and Weibull parameters for different values of \. Moreover,
we compare the results obtained with the maximum likelihood estimator based on
the original data and the estimator based on minimizing the Kolmogorov distance
(Kolmogorov estimator). A similar study was carried out for Weibull distribution
by Pardo, M.C. (1997a) using the family of Ry-divergences to define a minimum
distance estimator.

Definition 5.2
Kolmogorov estimator for the parameter 0, of a distribution family {Fp}eco,
is defined as the value Ok, € © verifying

Dy (Oko) = Ignelél D,(0),

Dy(0) = igﬁ{’ Fy(z) — Fy(x) |} = max{D;(6), D, (6)},

Df(O) = ilég{Fn(lL‘) — Fy(z)} = max{0, maxi:17,,,7n{% — Fo(z@))}}

D, (6) = ilelg{Fg(l‘) — Fo(z)} = max{0, max;=1,_._n{Fo(z3)) — %}},

Fy, is the empirical distribution function of the sample x1,...,2, and xq) <
Ty < ... <Xy are the order statistics.

It is well known that a random variable X has a Weibull distribution, We (b, ¢) ,
with parameters 8 = (b,c), b,c, b > 0, ¢ > 0, if the distribution function is given
by

Fo(x) =1—exp(— (z/b)), x> 0.

The general scheme for calculating the minimum power-divergence estimator
is as follows:

Step 1: We fix
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a) sample size (n),
b) number of classes in the partition (M),

¢) number of simulated samples (N):

We consider the partition of the sample space, {Ei}izl,...,M , Ei = (a1, a4,
i1=1,..., M, where the values ay, ..., ap; are obtained from

/l folw)de = 1/M, i=1,.., M.
a;—1

Step 2: Given A fixed, do for i =1to N

a) Generate a random sample of size n,

b) Calculate the relative frequencies, p;, of E; = (aj—1, 4], L =1,..., M,
¢) Minimize on 8 the function Dy, , (P, p(0)). Estimator 5()\)71:(5(1)\) Qéw) )
is obtained.

The minimum of the function Dy, (P, p(#)) has been obtained using the

subroutine ZXMIN of the package IMSL. In other parts of the book we use

the Newton-Raphson method to get minimum ¢-divergence estimators.
Step 3: Let 90\) = (é(l)\),.. 0?/1)) be the mean of the values obtained by

minimizing the function Dy, in step 2(c) for all the samples and mse the mean
squared error of the estimated parameters, i.e.,

N N 9 Mo
-1 J — 1 'y — L
=~ Z P mse(0;) = + Z ( B ) and mse = 31 ste (05)
P =1

=1
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We(1,1 n =20 n = 40 n = 60
0|b 998783 1994317 994150
c 1.063596 1.029655 1.019258

mse .055893 .025969 .014047

Ok, | b 984651 1.006958 978376
c 1.565195 1.137134 1.185521

mse 1.023289 121828 .108134

0 o | D 1.008785 | 1.010294 985119
c 1.423182 1.084708 1.101808

mse 776172 .106446 .080867

9(,1) b 1.013693 1.006479 980422
c 1.406272 1.067542 1.087102

mse 756604 .097466 .078229
9(,0,5) b 992916 1.000374 977708
c 1.380089 1.069138 1.081392

mse 739701 .103279 .07735

B0 | b 976527 995429 9735
c 1.369282 1.052883 1.085483

mse 739195 .093768 .077515

6o | D 974568 982324 967026
c 1.405006 1.06289 1.083276

mse 765451 .098793 .080175

Table 5.1. Estimators for parameters of a Weibull (1,1).

Tables 5.1 and 5.2, show the maximum likelihood estimator with original data,
9, Kolmogorov estimator, 0 Ko, and the minimum power-divergence estimator 9( \)
for Normal and Weibull populations with parameters b = 1, ¢ = 1, for Weibull
populations and p = 0, 0 = 1, for Normal populations. These values have been
calculated by computer simulation for 1000 samples, number of classes M = 6
and sample sizes n = 20,40 and 60. The sums of the mean squared errors of the
two parameters also appear in both tables.

The programs which calculate the 0 Ko and the 9( A) need initial estimates. For
Weibull populations these estimates have been calculated by the Dannenbring

(1997) method, i.e.,

b= T([.6321n]+1) and € =

where x(1/9) is the sample median.
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In the case of normal populations we have taken as initial values the maximum
likelihood estimators based on original data.

As we expected, the mean squared error (mse) associated with the maximum
likelihood estimator based on the original Weibull and Normal values, 9, is smaller
than that associated with the minimum-power divergence estimators, 9( »- On
the other hand the mse associated with the Kolmogorov estimator 0 Ko s greater
than the mse associated with all minimum power-divergence estimators, é( »)» for
Weibull populations, although the Kolmogorov estimator, §KO, is based on the
original data and the minimum power-divergence estimators, 9( »)» classify the

original data into classes.

N(0,1) n =20 n =40 n =60
o|n -.011351 -.004091 -.002958

G 960474 978162 984269

mse 038515 018526 012468

Oro | i 014687 | -.004947 | -.003634
G 972221 985606 987717

mse 043739 1021340 1014099

O | 7 -012443 | -.005091 | -.005469
G 1.020231 | 1.007078 | 1.001058

mse 059777 02851 017253

O 1 | i 010154 | -.005765 | -.003588
G 1.002308 1995969 993877

mse 048961 1024424 015981
005 | I -.010375 | -.005316 | -.002832
G 1991389 1989804 1992492

mse 044468 1023099 015205

00 | A 009577 | -.006597 | -.003736
G 984915 986656 1989282

mse 044277 022511 01498

00 | A -.009477 00711 | -.002969
G 970271 979003 981616

mse .039804 021464 014725

Table 5.2. Estimators for parameters of a Normal (0,1).

In Normal populations the mse associated with Ok, coincides, more or less,
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with the mse associated with é(l). For each sample size, é(l) is the best of the
minimum power-divergence estimators 6y for all sample sizes. It does not hap-
pen the same with Weibull populations because it depends on the sample size.
For n = 20 and 40 it seems that 9(0) is the best estimator and for n = 60, the
best is 8(_¢ 5).-

From the comparison study we carried out, the new family of estimators we
have introduced is a good alternative when it is necessary to classify the data.
In Weibull populations, every member of the family of the minimum power-
divergence estimator is even better than Kolmogorov estimator which is based
on original data. In relation to Normal populations the results are still better,
since é(l) is as good as both estimators based on original data 0 and 6 Ko-

5.3. Properties of the Minimum Phi-divergence
Estimator

Throughout the Section, we assume that the model is correct, so that « =
p(0o), and My < M — 1. Furthermore, we restrict ourselves to unknown parame-
ters O satisfying the regularity conditions 1-6 introduced by Birch (1964):

1. 6y is an interior point of ©.

2. m; = p;i(@y) > 0 fori =1,...,M. Thus ® = (my,...,mp)7 is an interior
point of the set Ajy.

3. The mapping p : © — A,y is totally differentiable at 8¢ so that the partial
derivatives of p;(@g) with respect to each 6; exist at 8y and p;(@) has a
linear approximation at @g given by:

M .
1 (8) = (00) + 30, — ) L2 o6 0]
j=1

where o(||@ — 0y||) denotes a function verifying
. o(]|6 —6ol)) _

lim =0.

6—6, |0 — B9l

4. The Jacobian matrix

J(69) = (31(;;9))0_90 - (8%(9?0)) =i

(5.6)
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is of full rank (i.e., of rank Mp).
5. The inverse mapping p~! : T'— O is continuous at p(8g) = .
6. The mapping p : © — A, is continuous at every point 8 € O.

We first derive the Fisher information matrix for the multinomial model. In
some parts of the book it will be necessary to distinguish between the Fisher
information matrix corresponding to the original model and the Fisher infor-
mation matrix corresponding to an associated discretized model, i.e., the Fisher
information matrix corresponding to a multinomial model. For this reason we
denote Zr (0) the Fisher information matrix associated with the original model
and I'r (@) the Fisher information matrix associated with the multinomial model.

Proposition 5.1

We consider the multinomial model defined in (5.1) based on a random sam-
ple of size n, with n = Zf\il n;. Then the My x My Fisher information matriz
associated with the random sample of size n is given by

Ig_’}) (9) = (Z.(Tvs) (0))r,s:1,...,M0

M1 9p;(6)dp; (6)
= N

= nA0)" A(0)

where A (0) is a M x My matriz given by
A () = diag (p (e)—l/Q) J(0). (5.7)

Forn=1,1%(0)=I5(0)=A(6)" A(6).

Proof.
We have
M
logPro(Ny =n1,...,Nyy =npy) =k + an log p;(8),
j=1

where k is independent of 6.

Therefore,

)

8logPrg(N1:n1,...,NM:nM):Z n; Op;j(0)
00, p;(0) 006,

Jj=1
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and

, [OlogPrg(.) dlogPrg(.)
Yr,s) (0) = FE a0, 00,

[ M Ni 3pl(0) N]‘ 8p](0)
= F
2 7i(6) 06, py(6) 06,

=1p;(0) 90, 00 }+E g_

_ g 127 opi(8) N; 0p;(0)

) 00, p;(0) 00,

But
np; (0) (1 —p; (8)) +n°p; (8) ifi=j
E[NiN;] =
—np; (0) p; (8) +n°p; (8) p; () ifi#j,

then we have

: _ Monp; (8) (1 —pi (8) + n*pi ()° 9pi(8) Opi(6)
Y(r,s) (0) - Z pl2(0) 00, 00

n % —np; (0) p; (8) + n’p; (8) p; (0) dpi(0) Op;(0)
ij=1 pi(0)p; (0) 00, 00

_ LA L w0)omle)

Zipi(0) 00, 00 (1n)]\§ (0) Opi(6)

M Opi(0) Op;(0) | o X Ipi() Op;(6)
T a0, e, . o6, o0,
i#]j i#]j

M1 Opi(0) Opi(0) M Op;( )3]7](9)
B ni;pi(e) 00, 00 +( )3221

M1 Opi(8) 9pi(6)
= "2500) 06, o6,
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By (5.7)
A(8) = diag (p(6)7"/2) J(6),

therefore

M1 0p,(0) 90, (0)
AG)A40) = (Epj(o) T )—}%

5.3.1. Asymptotic Properties

In order to prove the following theorem we use the Implicit Function Theo-
rem: Let
F=(F,.., Fy) : RMTMo _, gMo

be continuously differentiable in an open set D C RM*+Mo_containing the point
0 0 0 0
(330: (l‘l’...,:L'M)’ y[): (y177yM0))

for which F (xo,yy) = 0. Further, suppose that the matrix

OF;
Jp = ( )i:l o, M,
Ay ) =1y

is nonsingular at (xg,y) . Then there exists a neighborhood U of (xg, yy) such

that the matrix Jp is nonsingular for all (x,y) € U, an open set A C RM
containing xp and a continuously differentiable function g = (g1, ..., 90m,) : A —
RMo such that

{(®,y) cU: F(z,y) =0} = {(z,9(z)): x € A}

(see, e.g., p. 148 in Fleming (1977)).

Theorem 5.1
Let ¢ € ®* be a twice continuously differentiable function in x > 0 with
¢"(1) > 0 and w=p(6y). Under the Birch regularity conditions and assum-

ing that the function p: ©—Ap; has continuous second partial derivatives in a
neighborhood of @g, it holds

85 = 00+ I (00) " A(80) diag (/) (B —m) +o(| B ),
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where §¢ is unique in a neighborhood of 6.
Proof.

Let ™ be the interior of the unit M-dimensional cube with Ay < M. Let
V be a neighborhood of 8y on which p : © — Aj,; has continuous second partial
derivatives.

Let
F=(F,..,Fy): M xV - RM

be defined by

9Dy(p,p (0))

F; (p1y -, i 01, -5 00p,) = — 0, Vi =1,.., M.
j
It holds
Fy (w1, ooy mazs 001, -y Oony) = 0, Vi =1,..., My
due to
3D¢(1~9,p(0)):§<¢< i >_¢,< P ) P >apl<o> Vie1.. M
90, — Pu(6) p(0)) pi(8)) 90, o

Since

d (8D¢(f),p(0))>: M ,( Di ) P Opi(0) Opy(0)
=1 Y

09, 09; 0(0) ) (02 06, 06;
Mo, m p Opi(0) Opi(6) p
" l;¢ (Pl(e)) n(0)* 90,  00; pi(0)

(171 ) P Opu(0) Opi(0)
n(6)) p(0)? 90, 90,

" é (Z’zjjggg <¢ (Pl%)) ¢ (Pl%)) P%)) ’

the My x My matrix Jr associated with the function F' at the point (p (6o) , 6o)
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is given by

oF
00y

(%)
99 ) (5.6)=(r1,..n1:801,001, )

_ (( 9 (a%@,p(e)))) )
= . =1, Mo
00: 8‘9] r=L....,Mo (D,0)=(m1,-,ma13001,.--,0001 )

(M 1 3pl(90)3pl(90)>
=i m(6o) 00,  06; ;j%g

= ¢" (1) A(60)" A(80).

We recall that if B is a p X ¢ matrix with rank p and C' is a ¢ X s matrix with
rank (C) = q then rank (BC') = p. By taking

B = J(0))}as and C = diag (p (00)*1/2>MxM

it follows that A (6y)” = BC has rank My by condition 4 of Birch. Also,

rank (A (00)" A (90)> = rank (A (6,) A (90)T> = rank (A (6o)) = Mp.

OF
Therefore, the My x My matrix —— is nonsingular at (71, ..., mas; 6001, ---, fonr ) -

00,

Applying the Implicit Function Theorem there exists a neighborhood U of
(p(69),809) such that the matrix J  is nonsingular (in our case Jr in (p (6o), 09)
is positive definite and then Jp is positive definite for all (p,0) € U, because F
is continuously differentiable). Also, there exists a continuously differentiable

function 0

A CIM — RMo guch that p(6g) € A and

{(B6) €U F(56) =0} = {(BOB) : be A}

We can observe that 8 (p (8)) is an arginf of

W (0) =Dy (p(6o),p(0))

because p (6g) € A and then

F (p(60,80(60) - oD, (p(80) ,;(0 @)
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and also by (5.8), (p(60),0 (p(60))) € U and then Jp is positive definite at
(p (60),6 (p (90))) . Therefore,

Dy (p(80).p (8(p(80))) ) = inf Dy (p(80) . (6)

and by the ¢-divergence properties 0 (p (6g)) = 6.
Applying the chain rule, we get

OF (p.6(p)) , OF(p,0(p)) 96(p)

— = =0
op 00(p) op
and, for p=m,
OF OF 00y _
or 800 on a
Further we know that 5F
—— = ¢"(1)A(60)" A(60)
00,
. . OF .
and we shall establish later that the My x M matrix o is
OF _ 1" T 3: -1/2
5 = ~¢"()A(60)" diag (p (60) %) (5.9)

Therefore the My x M matrix % is
T

00,

8—71' = (A(GO)TA(GO»_1A(00)Tdiag <p (00)_1/2> )

The Taylor expansion of the function 0 around 7 yields

op

D==

8(p) = () + (8" G’)) B—m) +olll - l).

As 0(w) = 8y we obtain from here
B(B) = 0 + (A(B0)" A(80)) " A(B) diag (p(60) ) (B — ) + ol B~ ).

We know that p = 7 =p(6q), so that p € A and, consequently, é(ﬁ) is the
n—oo

unique solution of the system of equations
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oD, (B, p(O®)))
90;

=0, j=1,.., M

and also (13, 5(13)) € U. Therefore, é(ﬁ) is the minimum ¢-divergence estimator,
§¢, satisfying the relation

0, = 60+ (A(80)TA(80)) " A(80)" diag (p (60)~" 2) (P — p(60))
+o([[p — p(8o)])-

Finally, we establish the formula (5.9). We calculate the (i, j)th-element of the

My x M matrix 8—F,
or

() = (ﬁf (o)~ (o) o) a%ie(f))
T

and for (71, ..., mar; 001, ..., Bong,) we have

< P (M>>:_ml 9pi (o)

ap; 0,

Since A(8y) = diag <p (90)*1/2> J (85) then (5.9) holds.

Theorem 5.2
Under the assumptions of Theorem 5.1, it holds

V(85— 80) 5 N(0,Ir (60) ).

Proof.
Applying the Central Limit Theorem, we get
V(B —p(60)) == N(0, p(qy))
being ¥pg,) the M x M matrix

Spoo) = diag (p(60)) —p (60) P (60)" -

© 2006 by Taylor & Francis Group, LLC



232 STATISTICAL INFERENCE BASED ON DIVERGENCE MEASURES

Consequently
Vi(By —80) — N(0,%%),

n—oo

where
== (A(00)TA(80)) " A(80)"diag (p(80) ) Tpia,)
x  diag <p(90)_1/2> A(8o) (A(60)T A(60)) ",

because éd, has the expression

8 + (A(60) A(B0)) " A(B0) diag (p(60) /) (B~ p(60)) + ol B~ P(60) II).

For the M x M matrix

B = diag (p(eg)_l/2) Xp6y)diag <p (00)_1/2> ,
we have

B = diag (p(60) /%) (diag (p (60) ~p (60) p (60)") diag (p (60)"*)
= diag (p(80)""/?) diag (p (60)) diag (p (60)*/?)

~ diag <p(90)71/2> p(00)p (00)" diag (p(eo)’l/ 2)

= Iy — /P (00)\/p (80)".

Therefore,

= = (A(60)"A(60)) "

- (A(GO)TA(GO) A(00)T\/P (00)\/P (80)" A(80) (A(60)" A(80)) L

Finally we establish that 1/p (OO)TA(OO) =01x01,-
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We have
—1/2 ;1 (6o) —1/2 dp1 (6o)
y4! (00) 891 b1 (00) 89M0
A (6p) =
—1/2 9pnr (60) —1/2 9pn (60)
P (0o) o9, v MM (6o) v
then

p(00) AB0) = (p1(00)"*.....o0r (60)') A(60)

M 0Op; (09) M Op; (00)\
(Z 891 7...72 89M0 —01><M0.

i=1 i=1

Finally
> = (A(60)"A(0))) " = Tr (60) .

Based on the last two theorems we have that the minimum ¢-divergence
estimator is a BAN (Best Asymptotically Normal) estimator.

5.3.2. Minimum Phi-divergence Functional Robustness

In this section we consider deviations from the discrete model,

p(0) = (p1(6),....pm(8))",

given by p.(0) = (1 —¢€)p(0) + ep for e > 0, 0 € © and p € Ay Let 85(p) be
the vector that minimizes the function

00,00 = > (0.2 (5 ).

where p_(0) = (p1(0,¢),...,pm(0,¢))T. In order to guarantee the robustness
of 84(p), we have to verify that slight deviations of p(@) correspond to slight
deviations of 63(p) or, analytically, that lim.—.o05(p) = 04(p). The following
theorem gives conditions that guarantee the functional robustness.
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Theorem 5.3
Let the assumptions of Theorem 5.1 be fulfilled and in addition © is a compact
set. Then
lim 65,(p) = 0,(p).

e—0

Proof. Let {¢,} be an arbitrary sequence of positive numbers verifying lim &, =
n—oo
0. Since ¢ is continuous and p;(0,€,) — pi(0),1 = 1,..., M, we get that
En—
e, (D, 9) — go(p, ), YO € O. Since O is compact the pointwise convergence

implies the unlform convergence. Consequently lim., _.osupgeg | 9e,(p,0) —
go(p, 0) |= 0 which implies that

lim | inf g, (p,6) — inf go(p,6) |= 0,

en—0

or equivalently
Jim | ge,,(p, 65" (P)) — 90(p, 05(P)) |= 0.

So, we have proved that
lim_ e, (P, 65 (P)) = 90(p, 05(p))- (5.10)

If lim. .o 02" (p) # 04(p), the compactness of © guarantees the existence of a
subsequence {0‘;" (p)} C {65 (p)} such that lims, .o 9‘35” (p) = 0+ # 64(p). By
(5.10), go(p,0+) = go(p,O4(p)) for 6. # O4(p) which contradicts the assumed
uniqueness of 84(p). The statement of theorem follows from here since the se-

quence {e,} can be chosen arbitrarily. -

A more general way of studying the robustness is to assume that the true
distribution 7 € Ay, verifies || — p(0)|| < € for some 6 € O and to prove that
if € is small, the 84(7) value is near to 84(p(0)) = 6.

Theorem 5.4
Let the assumptions of Theorem 5.1 hold and let w € Apr. Then

lim O,(m) =26 0)) =26.
T o(m) = 04(p(8))

Proof. It is immediate because 84 is a continuous function.
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5.4. Normal Mixtures: Minimum Phi-divergence Es-
timator

In this section we report the results of a simulation experiment designed to
compare empirically some minimum power-divergence estimators 50\) that can
be seen in Pardo, M.C. (1999b). For the parameters of a mixture of two normal
populations we analyze the efficiency as well as the robustness of the chosen
estimators. We consider estimators corresponding to A = —2,—1,-0.5,0,2/3
and 1. Simulations reported in this section are based on mixing proportions 0.25,
0.5 and 0.75. For each of these mixing proportions, firstly, we consider mixtures of
the densities fi(z) and f2 (x) where fi(z) is the density for the random variable
X = aY and fy(z) is the density associated with X = Y + b where a > 0,
b > 0 and Y is standard normal. Secondly, we assume that Y is a Student’s t
distribution with two or four degrees of freedom, or double exponential, to study
the robustness under symmetric departures from normality. Thus, “a” is the
ratio of scale parameters which we take to be 1 and V2 while “b” is selected to
provide the overlap desired between the two distributions. We consider “overlap”
as the probability of misclassification, using the rule: Classify an observation x
as being from population 1 if < z. and from population 2 if x > x. , where z.
is the unique point between p; and pg such that wfi(z.) = (1 — w) fa(x.) with

Wi = / x; fi (x)dx, 1 = 1,2. The overlaps examined in the current study are 0.03

R
and 0.1.

For each set of considered configurations, 5000 samples of size n = 100
were generated from the corresponding mixture distribution, and for each con-
sidered sample the minimum power-divergence estimators 0( 2),0( s 0—1/2)
5(0), 0(2/3) and 9(1) were obtained. Our implementation of the minimum power-
divergence estimator, 5( »)> employed the IMSL subroutine ZXMIN which mini-
mizes a function of various variables. Although all these estimation procedures
provide estimators of all five parameters, Tables 5.3, 5.5, 5.7 and 5.9 present
only [estiiationsIfor (dviThowever Tl Tablel5. L1 wepresent (éstimations forlall[he!

parameters.

For either of the estimators proposed in the previous section to be used in
practice, one must have starting values for the iterative procedures. We choose
an ad hoc quasi-clustering technique used by Woodward et al. (1984) that is easy
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to implement. They allow as possible values for the initial estimate of w only

the values 0.1,...,0.9. For each of these values of w, the sample is divided into

two subsamples, Yi,Ys,...,Y,, and Yy, 41, Y, 42, ..., Yy, where Y; is the ith-order

statistic and ny is “nw” rounded to the nearest integer. So, w is that value at
. 1 2 2 . . .

which w(1 — w)(z(1/2) — x(1/2)) is maximized,

f = 95%1/2):ﬁ2 = $%1/2)» o1 = ((95(11/2) - 95%0.25))/-6745)2

and

53 = ((2{o.15) — @{1y2))/-6745)%,

where ZL‘( ) is@helgthipercentilelfromBheljth-&uibsamplelThlTable5 3 Evepiésent
summary results of the simulation carried out to compare the performance of the
estimators for mixtures of normal components. Estimators of the bias and mean
squared error (mse) based on the simulations are given by

Bzas-—z ) and mse——z

where ng is the number of samples and @; denotes an estimate of w for the ith-
sample. It should be noted that nmse is the quantity actually given in the tables.
We also table empirical measures of the relative efficiencies of each estimator, 5( A)s
with respect to the MLE for grouped data 5(0). The relative efficiency is given
by

~  mse(# 0(0 )

E =
mse(e(o))

We use a minimax criterion to find the best estimator. Let
S={-2, -1, —.5,0, 2/3, 1}

be the values of A considered for 50\) studied. Let Sarn (Pj) = infyeg nmsey (P;),
j =1,...,10 where Pj, j = 1,...,10 is each one of the mixture of normal under
consideration. If we define the inefficiency function as iy (P;) = nmsey (P;) —
Buvin (Pj), 7 =1,...,10, then, n(\) = max; (i) (P;)) can be considered as a in-
efficiency measure of the minimum power-divergence estimator, 5( A A €S We
consider the two best estimators under this criterion. Analyzing the results of
Table 5.3, we can see in Table 5.4 that the minimum chi-square estimator, 5(1),

and minimum modified chi-square estimator, 6(_2), are the best.
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.1 Overlap .03 Overlap
w a Estimator Bias  n mse E Bias  n mse E
25 1 By 062 1997 1.02 037 767 1.02
01 059 1934 .99 038 797 1.06
05 063 1937 .99 037 767 1.02
00) 062 1.960 036 752
02/3) 062 2.053 1.05 035 771 1.03
04 061 1.918 .98 035 760 1.01
5 1 0y -015 1579 1.05  -.012 707 .86
01 -015 1565 1.04  -.014 757 .92
05 015 1455 .97 -.012 19 87
60 -014 1504 011 826
02/3) 018 1594 1.06  -.010 800 .97
0 016 1529 1.02  -.012 781 .95
25 V2 0y -.023 947 1.01  -.001 588 1.05
01 025 1021 1.09  -.002 573 1.03
05 -.025 949 101 -.002 567 1.02
60 -.026 939 -.001 557
0(2/3) -.026 920 .98  -.002 567 1.02
o) -.024 951 101  -.001 564 1.01
5 V2 0y 102 2135 101  -057 1003 .95
01 100 2176 1.02  -062 1057 1.00
05 101 2152 1.01  -.061 1079 1.02
60 101 2123 060 1.054
02/3) 101 2120 1.00  -.063 1124 1.07
o) -098 2043 .96  -.061 1079 1.02
75 V2 0y -168 4563 .98 080 1475 .95
01 167 4700 1.01  -078 1658 1.07
05 167 4628 .99 080 1620 1.04
60) - 166 4.667 076 1.553
023 167 4704 101 -073 1379 .89
) -165 4653 1.00  -.075 1478 .95

Table 5.3. Simulation results for mixtures of normal components.

0

0(—1

40

0(2/3)

0n)

n(-)

0.124

0.279

0.174

0.141

0.099

Table 5.4. Inefficiencies.

In Table 5.5 we display the results for the nonnormal components (double
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exponential components). In this case (see Table 5.6), in accordance with our
criterion, the best are 6y and 0 y/3).

1 Overlap .03 Overlap
w a Estimator Bias nmse E  Bias nmse E
25 1 69 056 1.000 1.00 057 780 1.05
61y 055 975 .98 056 .780 1.05
65 057 1.052 1.06 055 771 1.04
60 054 .995 055 740
a3y 054 961 .97 055 776 1.05
0 053 996 1.00 053 754 1.02
5 1 8, -007 682 .96  -002 425 107
6y -007 716 1.00  -.002 .381 .96
65 -002 703 .99  -.002 391 .99
6oy  -004 713 000 .397
O3 -003 738 1.04  -001 .390 .98
6  -002 712 1.00 001 405 1.02
25 V2 6 013 669 1.00 036 535 .97
6y 012 638 .96 034 517 .93
605 013 659 .99 036 552 1.00
60 014 666 036 554
O3 012 656 .99 036 562 1.02
0 015 662 .99 036 555  1.00
5 V2 8., 052 L1157 1.07  -.029 547 1.01
6y -049 1070 .99  -.027 526 .97
65 -051 1111 1.03  -029 .541 1.00
6y  --048 1.079 -027 541
0oy -050 1.039 .96  -.026 .558 1.03
60  -050 1124 1.04  -028 591 1.09
75 V2 8g -106 2191 114 -078 1.167 1.03
61y -104 2135 111  -078 1185 1.04
65 -096 1841 .96  -.078 1181 1.04
6y  -098 1.921 -075  1.136
625y -095 1908 .99  -075 1.163 1.02
60y  -094 1952 1.02  -072 1071 .94

Table 5.5. Simulation results for mixtures of double exponential components.
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=)

01

05

40

0(2/3)

0n)

n(-)

0.35

0.294

0.091

0.08

0.067

0.111

Table 5.6. Inefficiencies.

In Table 5.7 we present the results for the nonnormal components (t-Student
with 4 degrees of freedom, t(4)).

1 Overlap .03 Overlap
w a Estimator Bias nmse E  Bias nmse E
25 1 6q 084 2699 1.00 049 947 1.04
61y 083 2663 .99 047 901 .99
65 081 2642 .98 047 913 1.00
60 080 2.695 049 911
Bas3y 07T 2576 .96 046 .890 .98
0 081 2604 .97 048 931 1.02
5 1 6, -008 1697 102  -008 .827 1.04
6y -008 1.657 .99  -010 .793 1.00
605 -008 1598 .96  -012 .88 1.06
6o ~ -010 1.668 006 .794
Oy -011 1745 1.05  -008 .837 1.06
6y  -005 1735 1.04  -006 .809 1.02
25 V2 6, -008 1.007 1.0 008 582 1.03
61y -007 1.055 1.06 008 554 .98
65 -007 1.033 1.03 008 564 1.00
8o  -007 999 006 565
Boy3y -010 979 .98 007 553 .98
6y  -007 967 .97 007 574 1.01
5 V2 6, -093 2206 .92  -060 1.191 1.01
61y -098 2539 1.01  -061 118 .999
05 -099 2594 1.04  -060 1151 .98
By  -099 2.504 -058  1.177
Oa3 -099 248 .99  -061 1232 105
6u)  -097 2531 101 -060 1188 1.01
75 V2 6 -189 5818 1.06  -100 1.989 1.06
6y -186 5748 105  -102 2105 113
O 05 -187 5778 1.053  -.098 1876 1.00
By  -181 5487 -096  1.870
Ooy3) 183 5699 1.04  -098 186 .99
6n)  -182 5541 101 -.099 1893 1.01

Table 5.7. Simulation results for mixtures of t-Student (4) components.
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O3 | 0 1) | O05 | B0 |[Oem |0
n() | 0.331 [ 0.261 | 0.298 | 0.208 | 0.212 | 0.235

Table 5.8. Inefficiencies.

For t-Student(4) we have that 5(0) and 5(2 /3) are again the best. Now we
present the results for a t-Student with 2 degrees of freedom, t(2).

1 Overlap .03 Overlap

w a Estimator Bias n mse E Bias n mse E

25 1 69 111 6742 1.00 059 1.468 1.00
61y 113 6963 1.03 060 1.509 1.02
65 110 6755 1.00 057 1.493 1.01
0o 112 6.732 057 1.473
O2y5 107 6.746  1.00 058 1491 1.01
6a) 109 6.839 1.02 058 1495 1.01
5 1 6, -012 3900 .98  -011 1193 107
61y -017 3876 .98  -009 1136 1.02
65 -016 3903 .99  -011 1136 1.02
60y  -017  3.960 -006 1.112
0275 -016 3874 .98  -007 1.006 .995
6q)  -017 3995 1.0l  -005 1138 1.02
25 V2 6y 038 4736 .99 011 832 1.03
6_1) 037 4588 .96 011 869 1.07
05 037 4715 .98 009 836 1.03
00y 037 4797 013 809
O2p5) 032 4740 .99 016 815 1.01
6a) 028 4520 .94 011 802 .99
5 V2 Oy -119 4497 93  -072 1874 1.01
61y -126 4829 1.00  -070 1794 .96
05 -124 4551 .94 071 1796 .96
6o -127  4.839 071 1.862
Ooy3 -126 4827 1.00  -.069 1799 .97
6a)  -126 4795 .99 069 1702 .91
75 V2 0 -220 11064 .99  -121 3.353 1.06
6y -234 11112 1.00  -117 3.177 100
05 -234 11374 102 -117 3.096 .98
60y -231 11145 -113 3171
Oay3 -236 11463 1.03  -111 3.075 .97
60y -230 11102 1.00  -114 3.184 1.00

Table.5.9. Simulation results for mixtures of t-Student (2) components.

© 2006 by Taylor & Francis Group, LLC



MINIMUM PHI-DIVERGENCE ESTIMATORS

241

For t-Student(2), the best are 5(_2) and 5(1), although 5(1) has less bias.

02 |0y | O | O |Oem | On
n() [0.278 [ 0.332 [ 0.31 ] 0.342 [ 0.399 | 0.298
Table 5.10. Inefficiencies.
.1 Overlap
w a Estimator 1 o1 L2 oy W
Normal
25 1 0y 1.02 1.04 1.03 .99 1.02
01 131 1.05 1.02 1.00 .99
05 95 1.01 1.02 .99 .99
6(2/3) 108 105 1.02 .98 1.0
04 .00 1.07 .99 .99 .98
51 6y 101 109 1.03 .97 1.05
01 1.83 1.04 1.04 .99 1.04
0 ) .00 1.05 .99 .96 .97
02/3) 1.04 1.03 1.04 1.01 1.06
01 .00 1.01 .98 .97 1.02
25 V2 0y 1.00 .95 1.03 1.06 1.01
01 98 1.01 1.10 1.03 1.09
05 97 1.02 1.07 1.06 1.01
02/3) 98 111 1.00 .99 .98
01 97 1.00 1.01 1.04 101
5 V2 6y .01 1.08 1.02 1.02 1.0l
01 99 1.06 1.03 1.05 1.02
0 s) 96 1.01 1.02 .97 1.01
02/3) 99 .99 .97 1.02 1.00
01 .00 1.02 .96 .91 .96
750 V2 0y 1.00 1.00 .96 .97 .98
01 111 110 .96 1.00 1.00
05 1.06 1.09 .93 .98 .99
02/3) .00 1.02 .93 105 1.01
0.1 1.02 103 .95 .98 1.00

Table 5.11. Estimated relative efficiencies of the estimators
relative to the MLE for mixture.
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.03 Overlap
w a Estimator 11 o1 e o9 w
Normal
25 1 By 93 1.03 .98 1.00 1.02
01 92 .89 104 1.01 1.06
005 94 .94 98 98 1.02
8(2/3) 1.03 1.02 .99 .97 103
01 95 111 1.01 .96 1.01
5 1 0y 98 1.04 .99 104 .86
0 1) 97 1.01 .93 116 .92
05 96 .99 .96 .98 1.02
02/3) 99 .99 .99 .99 .97
0 1.01 101 .99 94 .95
25 V2 8y 1.01 1.04 1.04 102 105
01 115 121 1.05 .98 1.03
05 98 .93 1.00 .98 1.02
0.2/3) 1.06 104 1.01 103 1.02
01 110 103 1.00 100 1.01
5 V2 0y 96 1.07 1.03 112 .95
01 99 1.04 1.20 1.07 1.00
05 1.04 100 .97 .95 1.02
02/3) 1.04 .99 1.03 1.00 107
0 1.05 1.02 1.09 101 1.02
75 V2 0y 95 93 .90 92 .95
01 97 .93 103 1.05 107
0 s) 1.04 .97 .99 .99 104
0.2/3) 99 .96 .93 .98 .89
01 95 .96 .99 1.01 .95

Table 5.11 (Continuation).

Although our emphasis has been put on the estimation of the mixing propor-
tion, the estimation routines used here obtain estimations for all five parameters.
So, it seems obvious to question about whether the results shown for w are sim-
ilar for the rest of the parameters ui,o01,uo and oo. In Table 5.11 we display
empirical relative efficiencies for all the parameters for normal and t(4) mixtures.
From the table we see that the results for the other parameters with t(4) do not
exhibit in general patterns similar to those shown for w. The Freeman-Tukey
estimator, 6(,,5), seems to be the most efficient for p1,01, e and oo in Normal

and t(4) mixtures.
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.1 Overlap
w a Estimator 1 o1 2 D) w
t-Student(4)
25 1 Oy 1.0l 1.0l 103 100 1.00
01 1.03 1.07 1.03 1.00 .99
65 1.07 1.07 1.03 101 .98
023 1.02 1.33 1.00 103 .96
61 1.05 1.05 1.01 101 .97
51 0y 96 1.03 .99 1.07 102
61 96 .97 .99 1.0l .99
60 93 1.00 .96 1.03 .96
6(2/3) 95 1.00 1.05 1.05 1.05
61 1.05 114 101 .99 104
25 V2 0 99 118 1.03 1.02 1.0l
01 .00 .91 1.02 105 106
65 97 1.02 1.03 1.02 1.03
623 .02 .91 98 .99 .98
61 .02 .96 1.00 .95 .97
5 V2 0y 97 .92 90 .89 .92
01 99 127 .97 1.03 1.01
05 1.03 .84 .90 .94 104
6(2/3) 107 .88 93 .93 .99
0 1.03 .85 .93 .90 101
75 V2 0y 1.05 .88 1.09 107 1.06
01 1.05 .84 1.03 100 105
65 1.05 .85 1.05 1.03 105
62/3) 1.07 1.04 104 103 1.04
6.1 104 .98 1.01 .97 101

Table 5.11. (Continuation).

To sum up, the Freeman-Tukey estimator seems to be, in general, the most
efficient for all the parameters except the proportion parameter. For the propor-
tion parameter we recommend to use 5(2 /3), Cressie-Read estimator. It is the best
alternative for the component distributions double exponential and t(4), almost
as good as the best at the true model. It performs only worse for t(2) when
the departure from normality is more extreme. Finally, the minimum chi-square
estimator is preferable for extreme departures from normality.
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.03 Overlap
w a Estimator 11 o1 o D) w
t-Student(4)
25 1 0y L0196 .99 102 1.04
01 98 .97 .99 1.0l .99
65 1.02 .97 1.02 108 1.00
023 1.03 119 .96 .96 .98
61 1.07 116 98 .99 1.02
5 1 6y 1.03 1.04 114 111 1.04
61 1.04 136 1.0 1.08 1.00
05 1.02 1.0l .96 1.04 106
6(2/3) 1.03 1.06 .94 .99 1.06
04 106 113 91 .94 102
25 V2 0y 86 .92 102 1.06 1.03
01 99 .97 .98 1.04 .98
65 93 .96 1.03 1.00 1.00
023 92 138 1.0l 1.01 .98
61 91 .91 1.01 .98 101
5 V2 0y 95 .86 1.15 116 1.01
01 99 .79 110 115 1.00
05 .04 .80 .99 101 .98
62/3) 108 .77 1.05 101 105
o) 1.05 .77 113 106 101
75 V2 0y 103 116 1.09 .99 1.06
01 2.95 113 122 118 1.13
65 98 112 .99 1.19  1.00
023 100 1.03 1.01 .98 .99
61 102 1.02 126 .95 101

Table 5.11. (Continuation).

5.5. Minimum Phi-divergence Estimator with Con-
straints: Properties

A new problem appears if we suppose that we have v real-valued functions
f1(8),..., f, () which constrain the parameter 0 :
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The problem to obtain the maximum likelihood estimator subject to constraints
was considered, for the first time, by Aitchison and Silvey (1958) in the context
of a random variable whose distribution function F' depends on M, parameters
01, ...,0p, which are not mathematically independent but satisfy v functional
relationships. The Lagrangian multiplier method is used to find the maximum
likelihood estimator of the parameters, which are found numerically by a process
of iteration. The estimator is shown to have an asymptotic normal distribution.
Silvey (1959) further discussed the Lagrangian method and the mathematical
conditions for the existence of the maximum likelihood estimators. Diamond
et al. (1960) considered the restricted maximum likelihood estimator, but in
multinomial populations. Haber and Brown (1986) proposed a two-step algorithm
for obtaining maximum likelihood estimators of the expected frequencies in log-
linear models with expected frequencies subject to linear constraints. Problems
of this type in multinomial models with the log-linear parameterization have
been described by Bhapkar (1979), Bonett (1989), Gokhale (1973), Haber (1985),
Haberman (1974) and Wedderburn (1974).

In this Section we consider the minimum ¢-divergence estimator subject to
some constraints: The restricted minimum ¢-divergence estimator, g(q;), which
is seen to be a generalization of the maximum likelihood estimator, subject to

constraints, was studied for the first time in Pardo, J. A. et al. (2002).

We suppose that we have v (v < My) real-valued functions fi(0),..., f, (0)
that constrain the parameter 8 € © ¢ RMo f,.(8) =0, m = 1, ..., v, and such
that

i) Every fy, (@) has continuous second partial derivatives,

it) The v x My matrix
Ofm (0
B (0) = < 89( )> m=1,...,v
k k=1,...,My

is of rank v.

Under these assumptions the restricted minimum ¢-divergence estimator of

0 is 5((;) € O satisfying the condition

~ () . ~
Dy(p,p(8, ")) = f Dy(p,p(0)).
s(D,p(0y")) {eeegRMo:fnlll(le):(),mzl,.,,y} s(D,p(0))
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In the cited paper of Pardo, J. A. et al. (2002) it was established, under the
conditions of Theorem 5.1 and assuming the previous conditions i) and i) about
the functions

)

that ég has the following expansion

0o+ H (80) Ir (80) " A(6o)" diag (P (00)_1/2> (P—p(00)) +o(llp—p(6o)l)

where ég) is unique in a neighborhood of 8y and the My x My matrix H (6g) is
defined by

H (60) = Inigxar, — Ir (60) " B (60)" (B (80) Ir (60) ™" B (60)") B0y

In the cited paper of Pardo, J. A. et al. (2002) it is also established that

\/5(55[)700) L N(o, =), (5.11)

where the My x My matrix 3, is given by

Ir(80)" <IMMM0 — B ()" (B 00)Ir (60) ' B (00)T> B (00)> Ir(80)".

In Chapters 6 and 8 we describe some important applications of this result.
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5.6.

Exercises

. Let X, Y and Z be Lognormal, Gamma and Weibull random variables.

Let gg () be the p.d.f. obtained from the mixture of the three random
variables,

ge (l‘) = Wlfu,a (1') + 7T2fa,p (l’) + 7T3fc,d (:E) s
with 0 <m; <1,i=1,2,3, Z?:l m; =1, and @ =(my, w9, i, 0, a,p,c,d). We
consider a random sample of size n from the mixture gg (x) . Prove that the
corresponding likelihood function is not a bounded function.

. Let X be a random variable with probability mass function

1 2
Prg(X:xl):§—9, Prg(X::L‘g):§—9and Prg (X =x3) =20,

with 0 < 0 < % Find the minimum ¢-divergence estimator of 8, with

¢(x):%(§+x—2>.

. Let Y1,...,Y, be a sample from the population X with probability mass
function
p(@)= Pr(X=1) =1@2+0)
p ()= Pr(X=2) =1(1-0)
ps(0)= Pr(X=3 =1(1-0)
pi(9)= Pr(X=14) =1,

6 (0,1).
a) Find the minimum ¢-divergence estimator with ¢ (x) = zlogz —xz+ 1.

b) Find its asymptotic distribution.

Let Y7,..., Y, be a sample from a Bernoulli random variable of parameter

0. Find the minimum ¢-divergence estimator of 6 with ¢ (z) = 3 (z — 1)?

as well as its asymptotic distribution.

. Let X be a random variable with associated statistical space given by

(X7BX7 PB)eeeCRMo

with X = R%. We consider the discretized model given by the partition
P = {Ei},—;  a and p; (6) = Prg (E;),i = 1,.., M. Find the asymptotic
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10.

~ ~ ~ \T
distribution of the probability vector p(64) = <p1 (04), ...,pM(Od,)) , being

§¢ the minimum ¢-divergence estimator.
. Find the asymptotic distribution of Shannon’s entropy, H (p(§¢))

. Let Y1,..., Y, be a sample from a Bernoulli random variable of parameter
0. Using the result given in Exercise 6 find the asymptotic distribution of
Shannon’s entropy associated with the Bernoulli model when the parameter
0 is estimated by the minimum ¢-divergence estimator.

. Solve Exercise 7 without using Exercise 6.
. Let Y1,..., Y, be a sample of a random variable, X, with probability mass
function,

p(0)= Pr(X=-1) =6
p(@)= Pr(X=0) =(1-0)>
p3s(0)= Pr(X=1) =20(1-0)

where 6 € (0,1). Find the minimum ¢-divergence estimator of 6 with
¢ (z) =zlogxr —x + 1 as well as its asymptotic distribution.

We consider a 2 x 3 x 2 contingency table and let p = (Pi11, ..., p232)’
be the nonparametric estimator of the unknown probability vector p =
(p111, .-, p232) T where pijk = Pr(X =4, Y =j, K =k). We consider the
parameter space

©={0:0=(pijr; i=1,2,j=1,23k=1,2; (i,5,k) #(2,3,2) 7'}

and we denote by p (0) = (p111, ..., p232)7 = p the probability vector char-
acterizing the model, with

P23z =1 — Z Dijk-

i=1,2; j=1,2,3; k=1,2
(i7j7k)¢(27372)

We assume the following constraints about the parameter 6
fi(p111, -, p231) = pr1ap212 — priepa1in = 0

fo(pi11, ..., p231) = p121p222 — p122pazr = 0 .
f3(p111, .-, P231) = DP131P232 — P132pa3t = O

Find the asymptotic distribution of the minimum ¢-divergence estimator
with the previous constraints.
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5.7. Answers to Exercises

1. We have

L(0§~T17~--7$n):H90($3 H 71—1fu, .I‘] +7r2fap($J)+7r3fcd(~T]))

with @ = (71, w2, i, 0, a, p, ¢, d) . If we consider the particular point of @ given
by (1/3,1/3,log x1,0,a,p,c,d), where x; is the first sample value, we have

—(logr1—logx 2
L(6;x1,...,20) = 3 <\/2_7:crcrl eXP( = %C,al mo ) + fap (1) + fea (551))
X I (71 fue (25) + T2 fap (25) + 73 fea (25))

—_

and choosing o sufficiently small it is possible to do L as large as it is
desired.

2. We consider a random sample of size n, yi,...,yn, and we denote by n;,
1 = 1,2,3, the number of values in the sample that coincide with z;. We
have to obtain the minimum, at 6, of the function

g(0) = %é ()(pjp(je)+p](9)

2) =3 2 20 0) -

where p; (6) = Prg(X = x;), j = 1,2, 3. Differentiating with respect to 0
and setting the result equal to zero, we have

g’(9)=£<§—9—%> (—1)+£<§—9—%> (_1)+2_”(29_@>7

ni

and from ¢’ (f) = 0 we obtain

1 2
S
" 3 3
9¢ (ylv"'ayn) = %
n gy ng

It is easy to prove that this point corresponds to a minimum.
3. a) It will be necessary to obtain the minimum, at 6, of the function
g9(0) = D(p, p(0)) 5
= p1 log ——— (9) + polog —— (9) + p3log —— (9) +pslo gpf?e)
=D log (2 +0) — b2 log (1—0)—Dps log (1—0) —palog +c.

/\ ~
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Differentiating with respect to 6 and setting the result equal to zero, we

have R R R R

! 0 — _ pl p2 p3 _%: )

9O =53 T ¢ 179 ¢ "
Then

0% (1 + D2 + D3 + Pa) + 0 (2P2 + 2P3 — p1 + 1) — 2P = 0,
ie.,
6> +0 (1 — 2p1 + P2 + p3) — 2p1 = 0.
Therefore,
PN . 2 o\ 1/2

. (—=1+2py —p2—Dp3) + ((—1+2p1—p2—p3) +8p4)
0 (Y151 Yn) = 5 -

b) In this case the matrix diag (p (9)71/2> is given by

2(240)"1/2 0 0 0
0 2(1—6)" Y2 0 0
0 0 200—-6)"2 0 ’
0 0 0 20-1/2
and
Opr(6) _ 1 0p2(0) _ 1 0ps(0) 1 ,90pa(0) _1
90 4 00 400 4 90 4

Therefore A () is given by
T
(2*1 (24+6)V2, 271 (1—0) V2 o711 —g)V/2, 2*19*1/2>

Then

AOTAOG) = te+rot+ria-ot a0 410!
1
4

1 2 1 1 20 +1
(—+—+_> “2210)(1-0)0

2460 1—-60 46

Finally,

2(2+90) (190)90) ‘

~ L
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4. We have to minimize, at #, the function

2 ni \2
g(0) = gzz C >(<) T )
_ np; — Ny
=X )
_ (np1(0) — n1)2 + (np2 (0) — ”2)2
n2p1 (6) n2ps (0)

 (np1(0) —my)? N (npy (0) — m1)?
n?py () n2py ()
_ (np1(0) —m)®
n2p1 (0) p2 (0)

= (n0 - n1)2 m

It is clear that
0s (Y15 -y Yn) = n1/n.

Now the asymptotic distribution is given by

i (3 02 - t0) 2o (0, (A" a0) ).

n—oo

But )
' B 9—1 2 0
diag (p(0)""*) = ( 0 (1-0)Y? )
and
op(0) _,  9p(0) _
00 ’ 00 ’
then

9—1/2 0 1 9-1/2
AW)Z( 0 (19)1/2><1>:<(19)1/2>
and

1/2
AQ)" A= (672 —a-07") ( ST ) szt

Therefore

V(0 (Yi, ., Yn) = 09) — N (0,60 (1 — b))

n—oo
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This result could be obtained using directly the Central Limit Theorem

V(=) L
i N

. We have

Vit (p(8y) ~p(80)) - N(0,3.),

with X, = J(8o) (A(60)TA(89)) " J(60)7, but
A(8) = diag (p (80)"/*) J(80):

therefore we have that /n (p(§¢) -p (00)> converges to a normal distrib-
ution with mean vector zero and variance-covariance matrix given by

diag <p (00)1/2) A (80) (A(80)" A(60)) " A(60)  diag (p (00)1/2) .

We have

16, = 1)+ (TGN

+ o(Jp(6:) ~p @)

On the other hand

p(§¢) =p(6g)+ J (6) (§¢ —6) to (H§¢> - 00”)

with
Vit (p(8g) ~p(80)) 5 N(0,3.),

n—oo

being
X, = J(60) (A(60)T A(60)) " T (60)".
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Therefore

Vit (H(p(8s)) — H(p (60)))
converges in law to a normal distribution with mean vector zero and variance-
covariance matrix

..........

7. We know
H(p(0)) = —p1(0)logpi (0) — p2 (0)logp2 (0) .
On the other hand

OH (p(9)) —
agpz (99) = —1—logps(0)=—1—1log(l—0)
ap(f)(é)» = —1-logpi () = 1 logé
and
o (0) _ | o (0) _ |
a0 T00 ’

. = JO(AO)TA@©)IO) = ( ' >9(19)( - )

because

Therefore, denoting

T
_(9H(p(9)) 0H (p (0))
L_( Ipi (0) )i:1,22* (( Ipi (0) )i:1,2) ’
we have

1 -1

L = <—1—log9, 1log(19)>9(19)< : )

—1—1logb

—1—1log(1—0)

~ o0 (el

X
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vn <H(p(§¢)) —H(p (90))> néo N (0, 0o (1 — o) (log 1 7090
8. We have
H(p#)=—-(1—-0)log(l—0)—0logé.
Then

H(p(0:) ~ H (p(0) = (~ oz 55 ) (B = )+ 0 (95 0]

but
\/ﬁ(é\¢ (Yl, ...,Yn) — 90) i> N (0700 (1 - 90))

n—oo

and now the result is immediate.

9. We have to minimize, at 8, the function

/\ /\ ~

P3
) = 1 + p2l + p3log ———
g ( ) pl og ——< (9) p2 og ——< (9) p3 D3 (9)

= D1 logp1 p1 logpr (9) + p2log D2 — p2log p2 (0) + p3 log p3

— p3logps ()
¢ — p1logp1 (0) — palogpa (6) — p3logps (6)
¢ —2p1logf — pa2log (1 — 0) — pslog (20 (1 —0)) .

But
— (1 —0)2p1 + 2p20 — p3 (1 — 20)
/ 0 — (
g (0) 70— 0) :
then we have
~ 2p1 + p:
9¢(y1,..-,yn)=712 3-

We know that

n—oo

\/ﬁ(% (Yi,..., V) —90) LN <0, (A (00>TA(90>)_1>,
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but

A(6) = diag(p(6)™/?) T (6)

-1 0 0 20
- 0 (1-6)" 0 —2(1-9)
0 0 (20(1—0)) 2 2(1— 20)
2
_ —9
2(1-26) ’
20(1—0)
then we have
A0 A®) =
0(1—0)

and therefore

Jn @, (Y1, .., Yy) — 00) L5 N (0,276 (1 — 60)) -

n—oo

10. We can observe that the constraints given can be written in the way

P111p212 P121P222 P131P232
—_—" =1 —="=1 and —/——=
P112p211 P122P221 P132P231

=1,

i.e., using the odds ratios. These odds ratios characterize the model of
conditional independence of the first and third variables given the second
variable. In this case we know that the maximum likelihood estimator
without constraints is given by
Nk

n

Dijk =

where n;;j is the number of elements in the random sample of size n in the
cell (,7,k). We denote by

a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ T
0= (P111,p112,P121,P122,P1317]9132729211,]9212,]9221,p222,p231) ,

and
X9 = diag (6) — 067

It is well known that

Vi@ -6y L N(0,%,),

n—oo
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and the restricted maximum likelihood estimator is given by

~ _ PixkPxjk
Dijk = == »
Dk
where
3 2 2 3
o~ ~k ~ ~~k ~ Sk
Disk = E Dijks» Pxjk = E Pijr and Dug = E E DPijk-
j=1 i=1 i=1 j=1

The vector 5((;) with components

or) o) or)  or)  ar)  plr)  alr)  plr)  p(r)  p(r)  r) \T
(9¢,1117 9(;5,1127 9¢,1217 9¢,1227 9(;5,1317 9¢,1327 9¢,2117 9(;5,2127 9¢,2217 9¢,2227 ¢,231)
denotes the restricted minimum ¢-divergence estimator. Using (5.11), we
have
Vi@ —6) L Nz,

where 3, is given by
Ir (80) " (1-B(80)" (B (80)Ir (60) ' B (80)") "B (60)) Ir (60) ",

because Xg, = I'r (8g) . The matrix B () is given by B (8) = (A1, A,),
where

P212  —P211 0 0 0 0
A = 0 0 D222 —P221 0 0
—p131 —Pp131 —P131 —p131 1 —2p131 —p131 — p231
and
—p112 P11l 0 0 0
Ay = 0 0 —p122  P121 0

—Pp131 —P131 —P131 —P131  —P131 — P132
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Goodness-of-fit: Composite
Null Hypothesis

6.1. Introduction

In Chapter 3 we considered a random sample Y7, ..., Y, from F and we studied
the problem of goodness-of-fit when F' is completely known, i.e., Hy : F = Fp. It
is common to wish to test the composite hypothesis that the distribution function
Fis a member of a parametric family {Fp}y g, where © is an open subset in
RMo_je., we are interested in testing

Hy: F = F,. (6.1)

An approach to this problem is to consider a discrete statistical model asso-
ciated with the original model. In order to do this we consider a partition
P = {E;}i=1,...m of the original sample space. Now the probabilities of the
elements of the partition, F;, i = 1,..., M, depend on the unknown parameter 6,
ie.,
1s (8) = Pro(Ey) :/ AFy, i=1,... M.

E;

The hypothesis given in (6.1) can be tested by the hypotheses

Hy:p=p(0,) €T for some unknown 6y € © (6.2)

Versus
Hy:pelAy —T,
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with
T={p(0)=(p1(0),..pm (0))" € Ap:0 €0},
© C RMo open and My < M — 1.

Pearson recommended (see D’Agostino and Stephens (1986, p. 65)) estimat-
ing O by an estimator 6 based on Yi,...,Y, and testing (6.2), by using the
chi-square test statistic,

M (N: — npi(8))?
( > = Z i(6)) (6.3)

=1 an )

Pearson thought that if 0 was a consistent estimator of 0, the asymptotic dis-
tribution of the test statistic (6.3) would coincide with the distribution of the
test statistic, X2, given in Chapter 3 for testing the null hypothesis (3.1). He
was wrong. Fisher (1924) established that the asymptotic distribution of the test
statistic (6.3) was not chi-square with M — 1 degrees of freedom and also that de-
pends on the method of estimation. Fisher pointed out that the right method of
estimation was the method of the maximum likelihood for the discretized model
or equivalently the maximum likelihood estimator based on grouped data. In
the previous chapter, it was established that this estimator, 5(0), coincides with
the minimum Kullback-Leibler divergence estimator. It is interesting to note that
Fisher also established that the likelihood ratio test statistic,

N.
G2 (0(0> =23 N;log ———, (6.4)
; npi(6(0))
is asymptotically equivalent to X2 (0(0)> and that the minimum chi-square esti-
mator, 9(1), is asymptotically equivalent to 9( 0)- Finally, he established that the
asymptotic distribution of the test statistics X? <9(0)> , X? <9(1)) , G? <0(0)> ,

G? (5(1)> is the same and is chi-square with M — My — 1 degrees of freedom. It is
interesting to note that Neyman (1949) established that the minimum modified
chi-square estimator, 0( 2), is also asymptotically equivalent to 0( 0)-

In this chapter we consider, for testing (6.2), the family of ¢-divergence test
statistics

Tr?l <§¢2> ¢3( )D¢1 <p, (/é@)) ’
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and we study its asymptotic distribution under different situations. We observe
that for ¢y (z) = 5 (z — 1)? and ¢g (z) = zlogz — = 4 1 we get the test statistic
X2 (5(0)) ; for ¢1(x) = ¢2(2) = xloge — x + 1 we have the likelihood ratio

~

test statistic, G2 (5(0)> . The test statistic X? (9(1)) is obtained for ¢ (z) =

2
and ¢ (z) = 3 (v — 1)%

¢ (¥) = 1 (z —1)* and the test statistic G2 (5(1)) for ¢1 () = xloge —x +1

We shall assume that ¢1, ¢o € ®* are twice continuously differentiable in
x > 0 with the second derivatives ¢/ (1) # 0 and ¢4 (1) # 0.

6.2. Asymptotic Distribution with Fixed Number of
Classes

In the same way as in the case of the simple null hypothesis, we state three
theorems. The first one gives the asymptotic distribution under the null hy-
pothesis given in (6.2), the second one under an alternative hypothesis different
from the hypothesis given in (6.2) and finally the third one under contiguous
alternative hypotheses.

Theorem 6.1
Under the null hypothesis given in (6.2), and assuming the regularity condi-
tions given in Theorem 5.1, we have

~ n PN L
10 (02) - 5225 ()

where ¢1, ¢y € P*.
Proof.
First, we obtain the asymptotic distribution of the random vector
vn (ﬁ - p(9¢2)) :
We know that

85, — 60 = (A(80)"A(60)) ™" A(80)"diag (p(80) /) (B — p(60))
+ o(lB - PO
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and
P(85,) — P (80) = J (60) (B, — 00) + o (|8 — 00 )

where J (0p) and A(6y) were defined in (5.6) and (5.7), respectively. Therefore

p(8s,) ~p(00) = 7 (60) (A(60)7 A(80)) " A(80) diag (p(80)'/?)
% (B~ p(00) +0 (|[8s, ~00)) +o (1P~ p(60))]).

In the following we denote by L the M x M matrix
-1 . _
L = J (8) (A(60)" A(60)) " A(60)" diag (p (60)*/*)

and by I the M x M identity matrix. We have

p—p(6o) _ (I =
( p(0s,) ~p(0 >)2Mxl (L)WxM(” PO

Onrx1
" ( o (|[(86 — 80) ) + o (IP— p(OODI) ) |

Then

because

ie.,
p —p(6o) L Epeo)  Zpeo L’
N A L, y(o [ Zpeo P9 '
p(0y,) —p(60) ), o L¥pe,) L3po,L"
Therefore

Vi (- p®s,)) 2 N (0.8p(a,) ~ Dpioy L~ LEp(ay) + LEp(a L")

n—oo
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A second order Taylor expansion of Dy, (p,q) around (p (6o),p (6o)) at
(B,P(85.)) is given, denoting L = Dy, (B,p(By,)) , by

1=} % (Zhape (B~ s (60)) (5 — 1, (60)

OpiOp; ) (D(60),P(60))

M 2
12 3D¢1(p’Q)
L Z( Opi0a; >(p(oo>,p<eo>>

M 2 o~ o~
1 9Dy, (P.9) . o . s
Fd S (TR0 ) oo PiBen) ~ 23 (00) (0(B) —p (60)

p(0e) - p(00)).

(i — pi (80))(pj(84,) — p; (80))

i,j=1

+ o(1p-plon)) +of

But

3D¢1(p7q)_ ;[ Di 8D¢1(p7q)_¢ Di bi [ Pi
o) T ele) (G

and

1
92Dy, (p. i t=J
PiOPj  / (p(60),p(60)) 0 L F ]

In the same way

92Dy, (p, —or 1=y
<W> — 91 ( )pi(OO) T
Pi%4; / (p(60).p(60)) 0 i 7]

Finally,
bi\ bi . .
9?Dy, (p,q) | ¢ (—> S 1=
- 5 = 9 ) q;
0q;0q; 0 iy
and

1
02Dy, (p, (1 i=j
4945/ (p(80),p(80)) 0 i
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Therefore
Mo
L= 3¢{(1) ;pi 00) (pi — pi (60))?
— A2 S s (i~ i (00)) (i8r) — i 60)
A % o i@an) 11 (60) + 0 (I~ p (G0)])
+ o Hp@z) (60)|
— 1(// 1 A 1 /\> 0 2
= 51 ( )i;pi @) {(P: —pi (60)) i
— 255 i (00))(1i(B2) — i (00)) + (pi(Bs) — i (80))*} + 0p ()
M
= 31 2 (= 1B +0p (1Y)
and

NS
o (1) 2 i (80) (Di — pi(84,))* + op (n71)

p(0,,)7C(B — p(04,)) +op (n")

being C = diag <p (00)*1> .

On the one hand

~ 7Y L
V(P = p(0s,) = N (0,3p(e,) — pen) L’ — L3p(e,) + LEp(ey) L")

and on the other hand

where

2n

G Do (Pp@6)) = (B = (82))"Ch—p(@s2)) +0r (1)

= XTX +op(1),

X = /n diag (p (60)~ 1/2) (®—p(04,))

is a M-variate normal random variable with mean vector 0 and variance-covariance

matrix T™ given by

diag (p (00)™"*) W (80) diag (p (80)/*). (6.5)
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where W (0g) = Zpg,) — 21)(90)I/T — LXpe,) + LEP(Bo)LT‘

Therefore X7 X (see Remark 2.6) is chi-squared distributed with 7 degrees
of freedom if T™ is a projection of rank 7.

The matrix T* can be written as

T = diag (p(00)""*) (Zp(e,) — Epeo) L” — L3p(e,) + LEp(a,) L")

X

diag
12) Spayydiag (p(60)1?)

)
)
80)"?) Sp(ay) L diag (p (60)/*)
)
)

b
= diag (p
— diag (p

b

90 —1/2 sz(go)diag <p (00)71/2>
2) Lo, LT diag (p (60) ).

— diag
+ diag (p (0o
Let S denote the M x M matrix
S = diag (p (00)_1/2> Ep(oo)diag <p (00)_1/2> )
We have
N . —1/2 . TN - —1/2
S = diag (p(80)~"?) (diag (p (80)) — p (60) p (80)")diag (p (60)*?)

— I diag (p (00)’1/2> P (80) p(80)" diag <P (00)71/2>
_ I—p (90)1/2 <p (00)1/2)

We define the matrix B
B = diag (p (6)Y 2) L p(o,)diag <p (00)*1/2>
and we are going to express it in a simpler way,

B = diag p(@o)_1/2 L (diag (p(6p)) —P(eo)p(GO)T) diag <P (00)_1/2>
= diag (p(80) /) L diag (p(60)"/?)
— diag (p(80)"""”) Lp (80) p (80)" diag (p (60)*?)

and
p(80)" = /P (80)"diag (p (60)'/*).
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Then we get

B = diag <
— diag <p (00)_1/2> L diag p(00)1/2) p(60)\/P (GO)T

p(80)'/?) (I - \/p(60)y/p (60)")

TN NN

= diag <p (00)71/2> L diag
= K8,

being K the M x M matrix
K = diag <p (00)_1/2> L diag <p (00)1/2) .

Therefore
=S—-KS-SK"+ KSK”
where
K = diag p(00)_1/2 L diag <P (90)1/2)
— diag (p(80)"Y2) T (80) (A(80)"A(80))LA(60) diag (p (60) " 2)
X diag p(00)1/2> .

But
A (60) = diag (p (80) /) J (60).
then
K = A(60) (A(60)" A(60)) " A(60)"
and
T A (89) (A(60 TA(a?))*1 A(60)TS — SK

)
(60))  A(60)" S A(6y) (14(‘90)TA(‘90))71 A(6o)"

+ i

s N oW
3 |
N

A0 T( — /P (60) \/P(OO)T>
- (I VP (00)\/p (80) T) A(8o) (A(60)"A(80)) " A(6p)"

A6,

A6

(s
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We know that
P (00)" A (60) = 01511,

and hence
=I—-/p(60)\/p(80)" — A (60)( TA00)) " A(60).
Now we are going to establish that the matrix T is idempotent,

(T = I- P(Go) (90) —A(6o) (A(GO)TA(GO))i A(6o)"

— +/p(6o) + /P (80)\/p (80)" /P (60) /P p(60)"

+ P(Go)\/P(Oo)TA(Go) (A(60)" A(60)) ' A(60)"

— A(6o) (A(90)TA(90)) A(60)"
+ A(6)) (A(60)" A6 (GO)T\/ (00)\/p (60)"
+ A(00) (A(Bo)"A(0 )) LA(60)T A (60) (A(680)T A(6)) A0,
but
A (60) (A(60)"A(60)) " A(60)"\/p (80)\/p (80)" = Onrsx
p(80) /P (0o) = 1,
then
T")* = P (00)1/p (60)" — A (60) (A(8))T A(6))) " A(6o)"
_ P (00)\/p(60)" — A(8o) (A(60)TA(6))) " A(60)”
= T
In relation to rank of T we have
rank(T*) = trace(T*) = trace(I —trace( p(60)y\/P 90)T>
— trace( (60) (A(80)T A(60)) A(GO)T>
::M—LWm%(wWA@m1M@ﬂM%W

= M—1- M,

because
(A(80)"A(60)) " (A(60)"A(60)) = Tsyxse-

Then the ¢-divergence test statistic (e (5(;,2) is asymptotically distributed chi-

squared with M — 1 — My degrees of freedom. .
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Based on the previous result we should reject the null hypothesis given in
(6.1), with a significance level «; if

72 (84) > Bi-rty- (6.6)

We present, in the sequel, an approximation for the power function of the previous
test statistic. Let g =(q1, ...,qM)T be a point at the alternative hypothesis. If
the alternative hypothesis q is true, we have that p tends, in probability, to q.
We denote by 0, the point on © verifying

0, = arg min Dy, (q,p(0)),

and we have that p(§¢2) tends, in probability, to p (0,). In the next theorem, we
use the following assumption,

Vi ((B:2(05)) — (@.p(6a))) - N(0F), (6.7)

n—oo

under the alternative hypothesis g, where

u X
Y= 1 12 y 211 == dZ(Zg (q) — qu and 212 = 221.
3o X
Theorem 6.2
The asymptotic power for the test given by (6.6) at the alternative hypothesis
q, assuming condition (6.7), is given by

Brg (@) =1— @y ( ! (d;/l/\%) XAr—Mo—1,0 — VD, (g, p (%)))) ,

Oy (Q)

where
Uﬁl (@) = Z"S01Z + 2275158 + T39S, (6.8)

being

27— (2alee <ea>>>v:q7

ST — <8D¢1 (q7 ’LU))
ow ) w=pe.)

and ®,, () is a sequence of distribution functions tending uniformly to the stan-

)

dard normal distribution function ® (z) .
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Proof. A first-order Taylor expansion of the divergence measure gives

Dy, (ﬁ,p(5¢2)> = Dy, (q,p(0.)+Z7 (B —q) + ST (p(04,) — p (84)) + 0p(n~1/2).

Then
Vit (Do, (P.p(Bs,)) ~ Dos (9.2 (02)) 5 N (0.0%,()).

n—oo

for 03)1 (@) given in (6.8). -

The previous result is not easy to apply. For this reason we are going to
consider a sequence of contiguous alternatives that approach the null hypothesis
at rate of O (nfl/ 2) . Consider the contiguous alternative hypotheses,

L
vn
where d = (dy, ..., dM)T is a fixed vector such that Zj]\il d; =0, with p,, # p (6o) ,
6y unknown and 8¢€0. Then we have the following result:

Hiy:p, =p(60) +—=d, (6.9)

Theorem 6.3

The asymptotic distribution of the ¢1-divergence test statistic T <§¢2> , UN-
der the contiguous alternative hypotheses given in (6.9), is noncentral chi-square
with M — Mo — 1 degrees of freedom and noncentrality parameter § given by

§= d'diag (p (00)*1/2> (I — A(60) (A (60)" A (00)> A (00>T>
x diag (p (00)_1/2> d

Proof. We have

vn(@—p(6) = vn(p- pn +pn (00))
= Vn(p +vn(p 6o))
= Vn(p +d

then under the alternatives (6.9),

Vi(®—p(60)) — N (d. Ep(ay))

because under the alternative hypotheses given in (6.9),
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But
~ -1
VitBs, —00) = Vi (A(80) A80)) A(60)" diag (p(60) )
x (p—p(60)) +op(1)
and
Vi —p(80) = Vai(p —p,) +d,
then

\/5(5@790): \/*( C ) A (6 )) A(GO) diag(p(eo)ﬂh)
X< ((P—pn) +n712d) +op (
_ f(A(Go) A(0))) A(eo> diag (p (60)"/*) (B - p,)
+ (A7 A®)  A0) diag (p(60) ) d+o0p (1).

Therefore the random vector [ (9¢2) =./n (p(§¢2) -p (00)) can be written as

1(84,) =J(80)vn(Bg, 90) +or (1)
Z\/ﬁJ(‘%( )) A6 dzag( (6o)~ /2> (P —pn)
+7(80) (A(60)" A(90)> " A(00)" dmg( (00)2) d-+ op (1.

If we denote
-1
L=J(60) <A (60)” A (90)> A(00)" diag <p (00)_1/2> |
and by I the M x M identity matrix, we have

Vi (p(8s) — P (80)) = VAL(B — p,) + Ld+or (1)

Jn p—p(6o) Loy ) [ Zpen Ep(e())LTT
p(0¢2)—p(00) n—oo Ld sz(go) sz(go)L
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and
~ -~ L
V(B-p(0s,)) — N (I —L)d, Sp(o,) — Sp(oy) L' — LEp(a,) + LEp(o,) L") -

On the other hand

%D@ (B.PBs:)) = (B~ (@) diag (p(80) ") (B~ PBy))+op (1)
= XTX +op(1)
with
X = V/ndiag (p (60) /%) (b — p(B))
and

x LN <diag (p (00)*1/2> (I-L)d, T*)
where T is defined in (6.5).

By Theorem 6.1 the rank of the matrix T is M — My — 1. If we prove that
T*u = p, where

n = diag (p(80)") (Irxas — L) d,

we will have established that the test statistic 7" <§¢2> is asymptotically distrib-
uted as a noncentral chi-square distribution with M — My — 1 degrees of freedom
and noncentrality parameter § = u” p.

We know diag <p (00)1/2) A (68p) = J (6g), then

n = (diag(p(80)""*) d~diag (p(80)*/?) diag (p (60)"/*) A (60)
< (A (80 A(B0)) A (80)" diag (p(60) %) ) d
— (diag (p(60) %) — a00) (a60)" 4 00))
— A(8o)" diag (p (90)*1/2>> d

N

By Theorem 6.1 the matrix T has the expression

T"=1-+/p(6o)\/p (60)" — A (6o) (A (60)" A (90)>71 A(6o)".
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Then we have

Therefore

and finally

being § = p’'p and

b= (I — 400 (A0 A(80) A <0>T) diag (p(60)"%) d.
If we denote U = I — A (8) (A (80) A (490)>*1 A(8))" , we have
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UTU = I-A(6)) (A (eo)TA(00)> A (60)"
— 400 (400 A00) " A00)"
+ A0 (A00)7 A (‘90))*1 A(60)" A (6))
< (A0 A60) A"
= 1 A0) (A0 A0) A

Therefore
o = = dding (p(60) ) (1= A00) (a00) A(60) " Alr)")
xdiag <p (00)71/2> d.

The result presented in this theorem was obtained for ¢ (z) = 3 (= — 1)%, chi-
square test statistic, by Diamond et al. (1960). For the ¢-divergence test statistic
the result was obtained by Menéndez et al. (2001a).

6.3. Nonstandard Problems: Test Statistics Based on
Phi-divergences

6.3.1. Maximum Likelihood Estimator Based on Original Data
and Test Statistics Based on Phi-divergences

If we only have the number N;, i = 1,..., M, of observations falling into the
ith of the M cells, it is clear that we have to estimate the unknown parameters
using a minimum ¢-divergence estimator. If the original observations Yi,...,Y,
are available, one is tempted to use more efficient estimators, such as the max-
imum likelihood estimator, 5, from the likelihood function [[;", fo(vi), i.e., the
maximum likelihood estimator based on the original data. One may reasonably
expect this procedure to provide more powerful tests than those based on the
grouped data; at the same time the estimates usually are simpler and easier to
obtain.
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Before proceeding to the main result we shall consider an example.

Example 6.1
Let Y1, ..., Y, be a random sample from a normal population with mean 6 and
variance 1. If we consider the partition of R given by

E; = (—00,0] and E; = (0,00),

we have

0 ;2
Pry(Ey) = p1(9):/ %ﬂexp (_(w 29) >d$

Prg(Ey) = p2(0)=1-p1(0) = T eXp<—($0))d$-

0o V27 2

It is well known that the mazimum likelihood estimator of 0, based on the original
observations, is given by
=Y, (6.10)

and the mazximum likelthood estimator based on grouped data is obtained maxi-
mizing

nl!nzl
Prg (Nl = ’)’L17N2 = ’)’L2) —

p1(0)" p2(0)" .
We consider 1
o) =35 (1-2),
and we are going to study the asymptotic distribution of the ¢-divergence test
statistic TS <9> , where 0 is the mazimum likelihood estimator given in (6.10),

e., the maximum likelithood estimator based on the original data. We have

7 (9) - i (Pi - (7))2 0 ((ﬁl ;1191 )", G- ()

Zi ) n0)
(p1 — n (p1 — pl_(Y)) ) . (P — P (YD .
( P2 (Y) pr(Y)p2 (V)

But
p (Y)p2 (Y) n%o p1(0)p2(0),

and therefore (see Ferguson 1996, p. 39) the asymptotic distribution of TT? <§>
coincides with the asymptotic distribution of

73 () = w22 O

p1(0) p2 (0)
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We have

(V) =i 0)+ 2 50(0) (V= 0) +op (n72),

but

87950(9) — /0 L (z —0) exp (—% (z — 9)2> dzx

then we get

Vi (0 (7) = p1 (0)) = — j;exp (—9—2) (V= 0) +o0r(1).

Now we are going to establish the asymptotic distribution of the random variable
. = T
Vv (pr—p1(0),Y —0)

. . . . . T .
that is a bivariate normal random variable with mean vector (0,0)" and variance-
covariance matriz with elements

Var[y/n(p1 —p1(0))] = nVarpi] = H%Vaﬂ“ [V1]
= oy (0)p2 (6) = p1 (6) 2 (0)

Var [yn (Y —0)] = n‘l/ar [Y — 0] =nVar [Y]
= nEVar Yi] = 1.

n

> (I(—oo,O] (Y;) —m (9)), we have

1
Denoting by T = —
ni=1

Cov [yn(pr—p1(0),Y —0)] = nCov [T,% Zibjl(YZ — 0)}
Cov [I(—o0) (Yi) — p1 (0
E [(I(~c0p) (Yi) — p1 (9? (Yi —0)]
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Therefore
% 0)ps (0) —22l02/2)
anenoy-or x((2) (s =)
Ve

On the other hand \/n (ﬁl —p1(0),p1 (7) - (9))T can be written as

1 0 p1—p1(0)
ﬁ(o exp(—\/;:/2))< Y_o >+0P(1)7

and denoting by

o (mOme —=LEEN
- 7exp!*6’2/2 1 an - 0 7exp(—92/2) ’

Vo Ver
we have ,
.  mOpo) 220
X = AEAT - ( exp(—92) exp%—ez) ) .
27 27
Then
Vi (pr—p1(0),p1 (Y) —p1(9)) n—L:ooN (( 8 ) »2*) :
ex —6?
Vi (p1—p1 (Y)) n_%o N (0,]91 (0)p2 (0) — p2(7r0 ))
and R _
Vﬁ@fnﬁd)Q L, N(0,1).
V1 (6) pa (0) — 2RL0) T
Finally
<o (—02
n (p1—m (7))2 n%(;o (pl (0)p2 (0) — %) xXi
" G—n (7))’
n ]/51 -p (Y i} 2
p Op2(0) e N
with =1 =2 ()

27tpy1 (0) p2 (0)°

© 2006 by Taylor & Francis Group, LLC



GOODNESS-OF-FIT: COMPOSITE NULL HYPOTHESIS 275

Let us prove that A > 0. As the matriz 3* is nonnegative definite, then

exp (—6° exp (—6?
0 <det(X*) = M(m(@pg(@)— p ( 9))

27 o
©) p2 (0 exp —9?
7% exp (—0?) (1 - W) |

Therefore 0 < A < 1.

Now we present the theorem that states the asymptotic distribution of the
¢-divergence test statistic T} (0) . The proof can be seen in Morales et al. (1995)

for ¢-divergence measures in general and in Chernoff and Lehman (1954) for the
particular case ¢1 (z) = 3 (z — 1)%

Theorem 6.4
Under the conditions given in Morales et al. (1995) the asymptotic distribu-

tion of the ¢-divergence test statistic T? (5) , where 0 is the mazimum likelihood
estimator based on the original data, verifies

Mo
2n e -~ L
@ (1)D¢(p,p(0)) an’Q X%\/I—Mo—l + Z (1 — /\j) ij,
=1

where Z; are independent and normally distributed random variables with mean
zero and unit variance, and the A\j, 0 < \;j < 1, are the roots of the equation

det (Ir (600) — AZr (60)) =0,

where Zr (0g) and Ip (0g) are the Fisher information matrices from the original
and discretized models, respectively.

Remark 6.1
Let Fy (F1 = X%M—Mofl) be the asymptotic distribution function of the ¢-
divergence test statistic

1 (86.) = g7 P (P26

Moy
and Fy | F» = X%M—Mo—l + > (1—=X) X%) be the asymptotic distribution func-
j=1

tion of the ¢-divergence test statistic

7¢(9) = j—%m@,p@»-
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We have
F (z) < Fy (x) Vo > 0.

This result indicates that the decision rule “reject Hy, with a significance level a,
if T SG) > X?\/I—Mo—l,oc”’ will lead to a probability of rejection greater than the

desired level of significance when the hypothesis is true. In symbols

o = Pru, (506 (B20) > \3y 1)
= 1-F X%M—Mofl,a) >21-K" (X%MfMofl,a)

= Prn, (500 (P900)) > Groaiy-1)
= Q.

Then when we consider the approximation Fy ~ Fy, the probability of rejecting
the null hypothesis increases and then we are raising the probability of type I
error. However, a numerical investigation of a few special cases indicates that,
at least in the Poisson models (see Chernoff and Lehman (1954)) this excess of
probability of type I error will be so small as not to be serious. The situation
appears to be not quite so favorable in the normal case.

6.3.2. Goodness-of-fit with Quantile Characterization

In this section we consider the problem studied in Section 3.4.1, but here we
assume that F' € {Fg}y.q and O is an open set in RMo. We consider the values
m; defined in (3.17) and the vector

@ =(mj—mi_1:1<j < M)T.
We are going to test Hy : F' = Fy by testing
Hy:q=p(Y,,0), (6.11)
where
P(Y0,0) = (02(Y 0. pr (Y, 0) = (Fp(Ya)) = Fp(Y, ) s 1< < M),

no = 0, ny = +00, Y, = Y,y (n; = [nm;] + 1) is the n;th-order statistic,
Y, = —00 and Y,,,, = +o0.

If we consider G ¢ {Fp}gco an alternative hypothesis to the null hypothesis
given in (6.11) is

a(Vn) = (01(Yn), - (V)" = (G(Yn,) = G(Ya, 1) s 1< 5 < M)' . (6.12)
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For testing (6.11) we can consider the ¢-divergence test statistic defined by

7 (862) = 575 Do (Y 1.000). ). (6.13)

where

0, = ar inf D Y ,.0).q").
& gOE@CRMO ¢2 (p( )a )

Under some regularity assumptions Menéndez et al. (1998a) established that

- P ~ L — = L
05, > 00, VitBs, —00) = N(O,Ip(00)") and T (84,) 5 \iroapr:

n—oo
We can consider the decision rule: “Reject the null hypothesis given in (6.11),
with significance level «, if

T7'(045) > X3r—mo—1.0”- (6.14)

Let 68, a point in the parameter space verifying, under the alternative hy-

pothesis given in (6.12), §¢2 =6, +op(1). We denote
cj = G Nmy), j=1,.., M,

and
p(c*,ea) = (Fga (G_l(ﬁj)) - Fga (G_l(ﬁj_l)) j = 1, ,M) .

Under the assumption

Vit (P(Yn,86,) = P(".60)) = N(0.),

for some matrix 3, and if p(c*,0,) # q°, the power of the ¢-divergence test
statistic (6.13) for testing (6.11), under the alternative hypothesis given in (6.12),
satisfies

/8”:¢1 (q(Y’ﬂ)) =1- (I)TL (0451 ((}/(EYn)) <¢2£Ll) XM—My—1 NeY D¢1 (p(c*,ea), qO))> )

where ®,(x) is a sequence of distribution functions tending uniformly to the

standard normal distribution ®(z) and

M
ail(q(Yn)) _ Z ok, (pj (‘; 0, )) &, <pk (c*, 0, )) 10 10?

k=1 j o 95 9k

for 3= (04;); j—1, .-

Other interesting results in this direction can be seen in Menéndez et al.
(2001a, b, c).
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6.3.3. Estimation from an Independent Sample

Consider the problem in which we wish to obtain the limiting distribution of
T2* when 8 is estimated using information from a second multinomial sample
that is independent of Y,, = (Y1,...,Y},). Then in addition to Y, = (Y1,...,Ys)
we consider the samples Y. = (Y{,..., V%) = (Yo+1, ..., Ynin+) and Y5 =

y tn*
(Y™, ..., Y %) = (Y1,..., Yoqn). Obviously, the samples Y,, and Y. are in-
dependent and Y,, Y. are subsamples of Y I.. We assume that n* depends

on n in such a way that 7 = lim 2= exists. Let 5;2, gr; be the minimum ¢o-
n—oo

dlvergence estimators based on the random samples Y. and Y., respectively
and let p(0¢2) and (0¢2) be the parametric distribution estimators. Then we
have for every 7 > 0 that the asymptotic distributions of the ¢-divergence test

statistics
2n_ (.p0;)) and Dy, (5.p(0))
—_— 11
(1) B e (220
are
9 147 T
XM-—My—171 XMO and  x3,/_ Mo— 1+1+ XMO

respectively, where %, Mo—1 and X3 1, are independent chi-squared distributed

random variables with M — My —1 and M, degrees of freedom, respectively. This
result has been established in Morales et al. (1995).

This is an important generalization of the classical result with ¢a(z) = zlogz—
z+1 and ¢1(z) = 3(1 — x)?, that is to say the classical chi-square test statistic.
In that case the first result was given by Murthy and Gafarian (1970) and the
second one Chase (1972).

Now we denote by @ and 8 the MLE based on the original data Y, =
(Y, .., Y5) and Yii = (Y7, ..., YX5) and by p the relative frequency vector
based on the sample Y,, = (Y1,...,Y,). Under some regularity conditions given

in Morales et al. (1995) the ¢-divergence test statistics

2n ~ ~% 2n ~ A~ skok
o) Do (p,p((’ )) and 2y Do (19,1)(49 ))
are asymptotically distributed as
M() MO
XA— -1+ Z(l +Xj/7)Z3 and X?\/[—MO—1+Z (1=X/(1+7)Z3,
j=1 Jj=1
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respectively, where Z;, j =1, ..., Mp, are independent standard normal variables
and the A;, 0 < \; < 1, are the roots of the equation

det (IF (00) — /\I]: (00)) = 0,

where Zr (6y) and Ir (8y) are the Fisher information matrices of the original and
discretized models, respectively.

6.3.4. Goodness-of-fit with Dependent Observations

In this Section we extend some results considered in Chapter 3, related to
stationary irreducible aperiodic Markov chains Y ={Y}, k > 0} with state space
{1,..., M}, to the situation in which the stationary distribution depend on an
unknown parameter @ € © and © is an open subset of RM°. We denote by p ()
the stationary distribution and by Pg the set of all matrices P such that their
stationary distribution p coincides with p (6) and each element of Py by P (6).
A basic statistical problem is how to estimate in a consistent and asymptotically
normal way the unknown true parameter 8y € © by using a random sample of
size n from Y ={Y}, k> 0} about the states of the chain, i.e., how to find a
measurable mapping 0 taking on values in © such that

i) 6 £ 6,

ii) /(6 — 8p) = N (0,V)

and how to evaluate the My x My matrix V. In this context the minimum
¢-divergence estimator was obtained in Menéndez et al. (1999a) and is given by

0, = ar inf Dy, (p,p(0)),
o =arg inf ~Dq,(p.p(0))

where p is the nonparametric estimator based on the sample of size n.

Under some regularity assumptions in the cited paper of Menéndez et al. the
following statements were established:

B) B, = 00+ (A(00)T A(0)) " A(60)"diag (p(60) ") (B~ p (00))
+o(ll B~ p(80) )
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¢) Vi85, — 80) =~ N (0,A7 BoAo),

where

S Ag = < ))71
- By = diag <P(90) e ) So diag ( (90)_1/2)

and

- So = diag (p (60)) Co+C{ diag (p (80))—diag (p (60))—p (60) p (60)" ,

™! T .
where Cy = <IMxM—P(00)+1p(00) ) and 1 = (1,...,1)7 is the

column vector of M units.

After estimating the unknown parameter 8y we are interested in testing Hy :
p=p (6y) . Regarding this problem of testing, in the cited paper of Menéndez et
al. (1999a), it was established that

gb/?( 1) Dy, (p p(9¢2 > oo sz

where Z; are independently normally distributed random variables with mean
zero and unit variance and p; are the eigenvalues of the matrix

Lo = diag <p (00)*1/2> (I—-W_.)So(I—W_)diag <p (90)*1/2> :

where
W . = diag <p (00)1/2) o diag (p (00)_1/2) ;

W _ = diag <p (00)71/2> X diag <p (00)1/2> ,

and
S = A(B0)" (A(6)" A(8))  A(@)

Another interesting problem is to test the transition matrix of the chain, i.e.,
to test
Ho : P =P (60) = (pij (60)); j—1. s>

for some unknown 6y € ©. Menéndez et al. (1999b) considered the ¢-divergence
test statistic

o (3 M e Uiy pli,5)
T3 <0¢2> = o' (1) Z?pr $2)® i

(0¢2)
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where p(i, j) was defined in Section 3.4.2, and

M M ~.
~ . =~ . Vi p(za.])
0, — f Dy (P, P(6)) = f N s (6 .
v =arg inf Do, (0)) argeeérclRMO; - ;Pg( ) b2 <pij (0)>

Its asymptotic distribution is chi-square with ¢ — M — M, degrees of freedom,
where c¢ is the number of elements of the set,

C = {(Z,]) : Dij (90) > O}

The results presented in this section extend the ideas of Glesser and Moore (1983a,
1983b).

6.3.5. Goodness-of-fit with Constraints

With the notation introduced in Section 5.5, Pardo, J. A. et al. (2002), estab-
lished that given v (v < Mp) real valued functions f1 (0), ..., f, (@) that constrain
the parameter 8 € © Cc RMo_ f, (8) =0, m = 1,...,v and under the null hypoth-
esis given in (6.2) it holds

2n O
o) P (3:®85) ~2 Xarapev

The importance of this result will be seen in Chapter 8.
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6.4. Exercises

1. Consider the following random sample of size n = 20; 1, 1, 1, 2, 2, 2, 2,
1,1,1,1,3,3,3,4,4, 4,1, 1, 1. We wish to test if these observations fit
the distribution given in Exercise 3 of Chapter 5, using ¢1 (z) = ¢2 (x) =
xlogx — x + 1 and significance level a = 0.05.

2. Consider the following random sample of size n = 20; -1, 1, 1,-1, 1, 1, 1, 1,
1,0,0,1,0,-1,-1,0, 0, 1, 0, 1. We wish to test if these observations fit
the distribution given in Exercise 9 of Chapter 5, using ¢; (z) = & (1 — )%,
¢2 (r) = xlogx — x 4+ 1 and significance level a = 0.05.

3. A genetic model indicates that the distributions of the population between
men or women and colour-blind or normal have the probabilities

Men | Women
Normal % 0 (1 - %)
Colour-blind @ —(1_29)

a) Find the minimum ¢o-divergence estimator with ¢5 (x) = xlogz —z+
1.

b) Obtain its asymptotic distribution.

¢) We consider a random sample of size n = 2000 and we obtain the
following results

Men | Women
Normal 894 1015
Colour-blind | 81 10

We want to know if the previous random sample is from the genetic

model considered using ¢2 (z) = 3 (v — 1%, ¢1(z) = zlogz —x + 1

and significance level a = 0.05.
4. Solve Example 6.1 using Theorem 6.4.

5. Let Y1,...,Y, be a random sample from a exponential population of para-
meter 6. We consider the partition

El = (0, 1) and E2 = [1,00)

and define p; (f) = Prg (E;), 1 =1,2.
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a) Find the asymptotic distribution of the test statistic

79 () = ¢,?7Z1)D¢(ﬁ, p(0).

where 0 is the maximum likelihood estimator based on the original
data and ¢ (z) = 3 (z — 1)%.
b) Prove that the eigenvalue A\ associated with the asymptotic distribu-
tion of the test statistic T} (5) verifies 0 < A < 1.
6. Solve Exercise 5 using Theorem 6.4.
7. Let X be a random variable with probability mass function
Prg(X =1)=05-20, Prg(X =2)=05+6 and Prg(X ==x3) =90,
with 0 < 6 < 1.
a) Find the minimum power divergence estimator of 6 for A = —2.

b) Find the asymptotic distribution of the estimator obtained in part a).

¢) In 8000 independent trials the events {i}, ¢ = 1,2,3, have occurred
2014, 5012 and 974 times respectively. Given the significance level
a = 0.05, test the hypothesis that the data are from the population
described by the random variable X, using the power-divergence test
statistic for A = -2, —1, —1/2, 0, 2/3 and 1.

8. Let X be a random variable with probability mass function

Pr(X =1)= p; (61,05) = 0,05

Pr(X =2)= p(61,05) =01 (1—05)
Pr(X =3)= p3(61,02) =02(1—61)
PI"(X=4)= 4(91,02)2(1—02)(1—91),

with 0 < 01, 65 < 1.

a) Find Fisher information matrix as well as the asymptotic distribution
of the minimum ¢-divergence estimator.

b) Find the minimum ¢-divergence estimator with ¢ (z) = zlogx —xz +1
as well as its asymptotic distribution.
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¢) Find the expression of the test statistic T} <§(0)> for ¢ (z) = 3 (x — 1)2
for testing Hy : p (6), where

p(0) = (p11(0) ?p12(0) 7p21(9) 7P22(9) T
= (010,601 (1 —05),05 (1 —061),(1—05) (1 —01)".

9. Let X be a random variable with probability density function given by

1—6cosx

_— € 10,2
fow)={ 2 ©E02)

0 otherwise

6 € (—1,1) and we consider the discretized model obtained on dividing the
interval [0,27) into M intervals of equal size.

a) Find the Fisher information matrix in the discretized model.
b) Find the minimum power-divergence estimator for A = —2.

¢) Find its asymptotic distribution.

10. Given the model

and the stationary distribution given by

@=L 2\ 4co-(0:
PO=\19730) =01

a) Find the minimum ¢-divergence estimator as well as its asymptotic
properties.

b) Find the expression of the minimum power-divergence estimator for

A 1.

6.5. Answers to Exercises

1. In our case we have

P =05, pp =0.2, p3 = 0.15 and py = 0.15,
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then, taking into account Exercise 3 in Chapter 5, we have

. BB (195 512 ) 2
9d>2 (Y1, ey Yn) :( SKINE P3)+(( 12+2p1 P2Pe) +8p4) =04,

and

~

1
p1(0g,) = 1 (2+0.4) =06

~ 1
p2(0s,) = 7(1-04)=0.15

p3(0y,) = 0.15
pa(0y,) = 0.L

The expression of the test statistic is given by

2n ~ ~ Di
—D 0 = ; 1
¢12/ (1) ¢2 (p7p( ¢2)> (2:117 og p1(9¢2)> .

0.5 0.2
= 40(0.5log ¢ +0:2log 5= +0.151og ;o
0.15

dA5log—— | = 1. .
+ 0.15log O.1> 0878

On the other hand X?l—l—l, 0.05 = 9-991 and we should not reject the null
hypothesis.

2. In this case we have

P = (p1,p2.P3)" = (4/20,6/20,10/20)"

and
~ 2p1 + P
Oy (Y1, - Un) = % = 0.45.
Then
p1(0s,) = 0.2025, pa(By,) = 0.3025, p3(0,,) = 0.4950.
Therefore

2n =0 = n ; 0 L _ 2
de}l (p,p(9¢2)> = ;pz(9¢2) (pz(0¢2) 1>

w3 Be=pile))® _ 5 0406 % 10
i=1 p1(9¢2)

On the other hand x%,l,li 0.05 = 5.841 and we should not reject the null
hypothesis.
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3. a) It is necessary to minimize in 6 the function

~

2% 20> .
g(0) = pilog— 7 +p210g1 0+ p3log + palog

2ps 2Dy
9 (2—0) (1—0)?

= —pilogt —palog (1 —0) —p3log (2 —6) — p3log 0
— pa2log(l1—6)+c.
Differentiating with respect to # and equating to zero we have
0% (—1—Dps—P3) + 0 (4 —pr — 2p2) — 2 (P + P3) = 0,

then

7, U1 —2) (4P 262)* +8(-1 s o) (51 +5))
2 = 2(—1—p1—ps)
b) We have
Op1(0) 1 Op2(0) 1 Ops(0) Ops (0)
%~ op ~ 3 op L fad——=-(01-0),
then

A(0) = diag (p(0)"?) T (0)
= (B0 -0 0 (59 (1 0).~v2)

Therefore,

ViBes (i, ¥e) = 00) o (0, (A 007 A 0) ).

n—oo

¢) In our case
p1 = 0.447, pp = 0.0405, p3 = 0.5075, ps = 0.005,

then
Opy (Y1, -y Yn) = 0.9129.

‘We have

p1(04,) = 0.4564, pa(0,,) = 0.0435, p3(0,,) = 0.4962
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and
p4(0¢2) = 0.0039,

and the value of the ¢-divergence test statistic is

2

2n PR 4 D
MD¢I <p,p(9¢2)> = n;pi(%)( = 1)
4 (@—m@sg
S pilfy,)

= 1.9361.

But X%W*MO*LCY = X%,o.os = 5.991 and we should not reject the null hypoth-
esis.

4. The Fisher information associated with the original model is

1
Ir(0)=—==1
F ( ) )
and the Fisher information associated with the discretized model is given
by
Ir(0)=A(0)" A(0)
where

V21 V2r
then
et
Ir(0)=A0)"A(0) = —— .
PO = A0 AO = G @) 2n
We have M =2, My =1and ¢ (z) =1 (1 - x)?, then
~ =\ 2
2n A n(pr—-m(Y))" L 2
——Dy(p,p(0)) = — (11—
7O PP = G @)
being A1 the solution of the equation
et
det(Ip(0) — NIr () =det | ——F——— 2| =0,
e(F() .7:( )) e p1(9)p2(9)27T
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i.e.,
_p2
o0

A= 0 (02

. We have

Prg (E1) =p1(0) =1 —exp(-1/0) and Pry (E2) = p2 (0) = exp (—1/0),
and the maximum likelihood estimator of 6, based on the original data, is
6=Y.

The test statistic T} (5) has the expression

~N Bi—pi (Y))? . Pr—p(Y))? (Pa—p2(Y))?
EI0 R Ve e ( @m0 )
. - (V) r—p(Y))?) _ . (b1 —p (71)2
- ( (@) om0 ) <p1 )2 (V) ) ’

but
p(Y)p2(Y) n%o p1(0)p2(0).

Therefore the asymptotic distribution of T,ff) <§> coincides with the asymp-
totic distribution of the random variable

6 (p) = PP (Y))?
B (0) =

‘We know that

p (Y)=p1(0)+ pée(e) (Y —0) +op <n 2> ,
but 3o (0
PO esp(-1/6).

then we have
Vi (V) = p1(0)) = Q—C exp <%> (Y —6) +op(1).

The asymptotic distribution of the random variable

Vi —pi(0),Y - 6)"
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is bivariate normal with mean vector (0,0)" and variance-covariance matrix
given by

Var [vn(p1 —p1(0))] =nVar(pi] = H%Vaﬂ“ [Ni]
= 01 (0)p2 (6) = 1 ()2 6)

Var [yn(Y —0)] =nVar[Y — 0] =nVar[Y]
= n%Var [v;] = 62

Denoting by T' = (Lo,1) (Yi) — p1(0)), we have

(2

S|~
ygE

3

Cov [\/ﬁ (]31 —p1(0),Y — 9)] = nCov {T, 1 Zj:l (Y; — 9)]
Cov [I() (Vi) — p1(0), Yi — 0]
E 1[—7(0,1) (i) (Yi —0)]

- /0 (x — 0) § exp (—z/0) dx

= —exp(—1/0).
Therefore
. = T L 0 p1(0)p2(0) —exp(-3)
\/ﬁ(pl—pl(e),Y—e) njogN<<0>?< —exp(—%) 02 o ))

On the other hand
Vi (piep1 (0) 1 (V) -p1 (9))T = ﬁ( ; " ) ( A17p19(9) > ’

and denoting by

_ [ »(O)p2(0) —exp(-1/0) _ (1 0
> = ( —exp (—1/6) 0? ) and A4 = ( 0 —exp(-1/6) )

we have

e asar_ [ POPO)  Eexp(-2/0)
B AnAT - ( drexp (—2/0) b exp(~2/6) )
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then

\/E(ﬁ — D1 (9),]71 (?) *pl(e))T i’ N(( 8 ) 72*>7

n—oo
and

Vi (pr—p1(Y)) n_)igo N (0,p1(0) p2 (9) — 02 exp (—2/0))

or \/ﬁ(ﬁ — D1 (?)) L) N((] 1)‘
V1 (0)p2 (0) — 0 2Zexp (—2/6) n—oo
Finally
n (231 — D1 (7))2 TL—)io)o (pl 0) p2 (6) — 02 exp (_2/0)) X%

and ( (_))2

n(pr—p (Y I )

)2 (0) oo M

being A — 1 S(=2/0)

P (0)p2 (0)
Now we are going to see that A > 0. We know that 3* is nonnegative
definite, then

0 < det(Z*) = w (m (0)p2 (0) — w
p1(0) p2 (6) exp (—2/0)
_ “ 022_exp(—2/0) <1——92p1 0) ps (9)> )

and 0 < )\ < 1.

The Fisher information associated with the original model is given by

1

and the Fisher information associated with the discretized model is

Ir(0)=A(0)" A(®9)

being
~1/2
p1 (0 0 _ 1T
aw= (PO ) e
_ (7;01(99);1/2 6_1/9, p2(99);1/2 6—1/9>T 7
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then
1 6—2/9

T 0 p(0)p2 (0)
We have M =2, My =1 and ¢ (z) = % (1 — ), then

n(o-n (V) o

p1(0)p2(0) n—oo

being A1 the root of the equation

(1—)x3

det (Ir(0) — MZr(0)) =0.

It is easy to get

Vo _exp(=2/0)
L (0)p2(0)
7. a) The power-divergence for A = —2 has the expression

Dy _(B.P(0) = — 2“ (Xgp - )

0.5 — 20 . 2
( = ) +(05j9) +€—1).
D1 D2 b3

N =

Differentiating
9(0) = Dy _,, (p,p(0)),

with respect to 6 and equating to zero we get

0(8p2ps + 2p1p3 + 2p1p2) — 2p2ps + pips = 0,

then T
3 1) = 2p2p3 — P1P3
P2 I In) e B ¥ 2P1Ds + 2D1ba
b) We have
op1 (6) dp () 9ps (0)
= _9 =1 d =1
89 , 89 an 80 )
then

A(0) =diag (p(6)"%) T (0)
=(=2(0.5—20)"Y2 (0.5+6)"Y2 9-1/2)T,
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and
(20 +0.5%)

(05— 20)(05+6)6°

AO)T A0 =

Therefore

(0 (0.5 — 260) (0.5 + 6) 00> |

. L
vn <9¢(72) (Y1,...,Yy) — 90) — N (200 + 0.52)

n—oo

c) We have
Di )\+1
D¢(A)(p,p(9))— >\+1 Z ] A)\ -1
=1
It is immediate to get
n 2pap3s — P1D3
O = = 0.1057,

8p2D3 + 2D1D3 + 2D1D2
then

P1(0s_,)) = 2886, pa(0 ) = 0.6057 and ps(fy,_,) = 0.1057,

and

A | -2 1 05 0 2/3 1
e (0g ) | 62853 63583 64017 64498 65213 65.603

On the other hand X3 ; ;05 = 3.841. Then we should reject the null
hypothesis for all the values of A considered.

. a) The matrix A (0) is given by

\/1 0o 01
1— 92 .
A (0) - 1— )
RV, 1701 02
_J1-6  /1-0
1-61 1—-0-

then we have

(01 (1—67))" 0 > |

I:(6)=A(6)T A(6) = ( . 00 1))
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Therefore,
vn ((%»%)T - (9107920)T) n_%;o N <0JF (90)_1> :

b) It is necessary to minimize in ¢; and 6y the function

~ ~ ~

R P~ D2 ~ p3
g (91,02) = p1log —9192 +/132 log 0 (1 — 02) + p3log 05 (1 — 91)
+ Dpalog e
(1—61)(1—069)

= —p1logti0z — palogty (1 — ) — p3logba (1 —01)
— ]/?\4 log (1 — 91) (1 — 92) + c.

Differentiating with respect to #; and 62 and equating to zero we have
t1 = p1 + p2 and O = p1 + ps.
The asymptotic distribution has been obtained, in general, for any ¢ in a).
¢) If we denote p = (D1, D2, P3,p1)" by P = (P11, iz, P21, Da2)”, we have
ni1 +ni2 _ Nix

Oh=p1+p2=Dpuu+pPi2=Dix=—"7T7T=

n n
~ ~ ~ n11 + N2 _ N
92=p1+p3=p11+p21=p*1=T: m

In a similar way

N21 + N2 _ Nox

1—01=1—Dp1x =D2x =
n n

N2 + N2 Nyo
n n

1*52:1*?5*1:]/7\*2:

Then we get
é (nnz nz*n*
s <9¢(0)> = nzl lelj 9¢(o) (p,] (9¢( )) ) Zl Zl MixTinj
? J 1 J

9. a) The partition of the interval [0,27) is given by E; = {[j — 13,35},
7 =1,...,M. It is clear that

p O =Puo(E) = By (i57) ~ B (G103 ) = 5 +0 e

where ¢; = 5-(sen (j — 1)37 — sen j37).

© 2006 by Taylor & Francis Group, LLC



294 STATISTICAL INFERENCE BASED ON DIVERGENCE MEASURES

Then,
1 1
p(0) = (M +0cy, ..., i +0 car)’
and o
c1 (ﬁ +0 Cl)_ /
A(0) =
1 . —1/2
CM (H +0 CM)
Then,
. M 2 M 2
A0) A(9) = T J =My —L—
;(M+ch) ;1+M€Cj
and
M 2
Ir(0)=M —L
r (6) Z 1+ M0 ¢
7j=1
b) The power-divergence for A = —2 is
M 2
_ 1 p; (0)
D )= ——— J -1
M
1 1 2
= 3 ZE(V+9"V) -1
7j=1
Differentiating and equating to zero we have
-1
M M 2
~ 1 cj C;
boo == |77 227 | | 222
(=2) o~ o~
M =1 Pi =1 Pi
¢) The asymptotic distribution is given by
-1
M 2

L

0,  (Yi,..Y,)— N MY 3
VO (Y1, Ya) = 0o) oo 0 21+M900j

10. a) First we are going to obtain the asymptotic properties of the minimum
¢-divergence estimator. We have

© 2006 by Taylor & Francis Group, LLC



GOODNESS-OF-FIT: CoMPOSITE NuLL HYPOTHESIS 295

1
1 10 (1 +60)?
CAf) = ———— B 0
a7 ( 0 6" ) —
(1 + 00)2
1 -1
— EWRE 00_1/2
- A(00)T A(6) = (1+60)265"
CAT = (1+00) 00)' (05, 1)
o1 | 02+600+1 —063
O (1+60) —0o 200+1 |
Therefore,
1/2
(e [ 1 -1 _ (1-6y) 6o —0
So = (1+60)3 ( -1 1 ) and By = (14+60)> ( _98/2 1 )
Then,
Vvn (9452 (Y1,...,Yy) — 90) n%go N (0, AfBoAy) ,
and

AlByAg = 0y(1 - 63).

The minimum ¢-divergence estimator is obtained minimizing, in 6 € (0, 1),
the function

9(0) = Dy, (p,p(0)) = 2 (1 +0)p1) + 062 (0 P2 (1 +9))) .

=l

b) If we consider the power-divergence measure we obtain

q(0) = A(;H) B+ 0 + (100 075 1)
(1+9) <AA+1 +9‘>‘ﬁ§‘+1> _ 1>.

/\(M—l)

q0) = m <(1+0),\ 1)\<AA+1+0 ,\AA+1> (1+0> )\9)‘+1Z/)\5\+1>

A+l AL AL
(1+60)* 1) AA+1+P2+ P2+ _P2+
PYPERI I B! o g L Tox

o+ (P21 )

A1
N () <AA+1 by >
- 9

© 2006 by Taylor & Francis Group, LLC



296 STATISTICAL INFERENCE BASED ON DIVERGENCE MEASURES

and therefore ¢’ (#) = 0 implies § = p2/p1. Then we can conclude that

Opy =DP2/P1 i 0<p2/p1 <1.
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7

Testing Loglinear Models
Using Phi-divergence Test
Statistics

7.1. Introduction

One basic and straightforward method for analyzing categorical data is via
crosstabulation. For example, a medical researcher may tabulate the frequency of
different symptoms by patient’s age and gender; an educational researcher may
tabulate the number of high school drop-outs by age, gender, and ethnic back-
ground; an economist may tabulate the number of business failures by industry,
region, and initial capitalization; a market researcher may tabulate consumer
preferences by product, age, and gender, etc. In all of these cases, the most in-
teresting results can be summarized in a multiway frequency table, that is, in a
crosstabulation table with two or more factors. Loglinear models provide a more
“sophisticated” way of looking at crosstabulation tables. Specifically, one can
test the different factors that are used in the crosstabulation (e.g., gender, re-
gion, etc.) and their interactions for statistical significance. In this introductory
section we present an intuitive approach to loglinear models and in the remaining
sections a systematic study of them.

Example 7.1
The data in Table 7.1 forl206 married persoinls, reportedlinitially by Galton,

© 2006 by Taylor & Francis Group, LLC



298 STATISTICAL INFERENCE BASED ON DIVERGENCE MEASURES

give the number of cases in which a tall, medium or short man was married to a
tall, medium or short woman.

Wife
Tall Medium Short | Totals
Tall 18 28 14 60
Husband Medium | 20 51 28 99
Short 12 25 9 46
Totals 50 104 51 205
Table 7.1

Source: Christensen, R. (1997, p. 67).
Are the heights of husband and wife independent ¢

The answer to the previous question could be given using the classical chi-
square test statistic for independence. However, we are going to deal with the
problem considering a loglinear model for the data assuming independence. Let
X and Y denote two categorical response variables, X and Y having I and J
levels, respectively. The responses (X,Y) of a subject randomly chosen from
some population have a probability distribution. Let p;; = Pr(X =4,Y =j),
with p;; >0,7=1,....,1, 7 =1,..., J. We display this distribution in a rectangular
table having I rows for the categories of X and J columns for the categories of Y.
The corresponding matrix I x J is called a contingency table. Consider a random
sample of size n on (X,Y’) and we denote by n;; the observed frequency in the
(i, j)th-cell for (i,5) € IxJ withn = S0, Z}]:l n;; and the totals for the ith-row
and jth-column by n;, = Z‘-Izl n;; and Zle Nij = Nuj, 1 = 1,.., 0,5 =1,...,J,

J
respectively.

In the following we assume that n;; is the observed value corresponding to
a random variable N;;, ¢« = 1,...,1,7 = 1,...,J, in such a way that the ran-
dom variable (N1, ..., Nyy) is multinomially distributed with parameters n and
(pn, ....,p]J). We denote mg; = E[NU] = NpPij, = 1,...,], j = 1, ,J Under
the independence assumption we have

Hy, 1 Dij = DixDPxj, 1=1,..,1,j=1,...,.J & My = NPixPxj (71)
where p;, = ijl pij and py; = Zi[:l pij. The hypothesis (7.1) can be written as

Hy:log m;j = log n + log p;s + log p., (7.2)
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or equivalently

logm;; = logn + log pix + log ps;

I J
= logpix — <Z logph*> /1 +logpsj — <Z logp*h> /J
h=1 h=1
I J
T lognt (z logph*) /T4 (z logp*h) /7
h=1 h=1

If we denote

I

01y = logpix — (hZ logph*> /1
=1
J

Oaj) = logpsj — (hZ logp*h> /J
=1

I J
u= logn+ <Z logph*> [T+ (Z logp*h> /J,
h=1

h=1

we have log m; (0) = u+0;)+0s(;y,i = 1,..., I, j = 1, ..., J, where the parameters
{01(1)} and {02(])} Verify Zilzl 91(1) = Zj:l 920) = 0

Then the hypothesis of independence given in a two-way contingency table
can be specified by the model

logmij (0) = u—|—01(i) +02(j)7 r=1,...,1, 7=1,...,J,

where the parameters verify ZiI:1 016) = ijl 02y = 0.

The number of parameters of the model, initially, is

U 1
Oy -1 I+J-1,
Osijy  J —

but we are assuming that our data are from a multinomial population with n =
Zle 23'121 mi; (@) ; therefore actually we have I + J — 2 parameters because u
is a function of 6;) and Oy(;).

The loglinear model of independence which justifies the data from Example
7.1 1is
log mij (9) =u-+ 91(1) + 920), 1= 1, ceey 3, ] = 1, ceey 3,

with Z?:l 016) = Z?:1 Oa(5) = 0.
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Since it may be useful to express the loglinear model in a matrix notation, we
obtain the corresponding matrix form for the model of Example 7.1,

logmiy (0) = u+ 60y + b1

logmiz (0) = u+ 011y + a2

logmiz (0) = u+01) + 03 = u+011) — O1) — Oa2)

logmai (6) = u+01(9) + Oz1)

logmas (6) = u+01(9) + Oz

logmas (0) = u+0y2) +0y3) = u+012) — bz1) — oo

logmay (0) = u+0y3) + 00y = u—011) — O12) + 1)

logmag (0) = u+0y3) + 02 = u—011) — O12) + Oa2)

logmss (0) = u+013)+0y3) = u—0y1) — O12) — Oa1) — O22)-

If we denote by

1 1 0 1 O
1 1 0 0 1
1 1 0 -1 -1
1 0 1 1 O
X=]11 0 1 0 1 ;
1 0 1 -1 -1
1 -1 -1 1 0
1 -1 -1 0 1
1 -1 -1 -1 -1

m(0) = (m11 (0),...,mi3(0),...,ms1 (0),...,ms3 (0))T and

0 = (u, 91(1)701(2)702(1)792(2))T7
we have logm (0) = X 6.

In a two-way contingency table the most general loglinear model is

logmi; (8) = u+ b1(3) + b2(j) + O12(5) (7.3)
where
u= 4 Zf:ilzl Z}Izl log m; (6) 1) = 1 Z}Ll logmi; (6) —u
Oa(j) = % >i—1logmi; (0) —u Or2(i5) = logmi; (0) —u — 013y — Oy

The term 6y5(;;) represents the interaction between the two random variables
X and Y. It is easy to verify Z;-’Zl O12i5) = 23'121 01235y = 0. The number of
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parameters in this model is IJ—1. A loglinear model, with multinomial sampling,
in which the number of cells minus one is equal to the number of parameters is
called saturated model. A saturated model is one which attempts to estimate
parameters for all single-variable and all interaction effects. That is, saturated
models include all possible terms, including all interaction effects. They provide
an exact fit for the observed cell counts. Since observed and expected are the
same, there are too many unknown parameters to compute goodness-of-fit test
statistics.

If we assume I = J = 3, denoting

11 o0 1 0 1 0 0 O
11 o0 o 1 0 1 0 O
11 0 -1 -1 -1 -1 O O
1 0 1 10 0 0 1 O
X=|1 o0 1 0o 1 O O O 1]/,
1 o 1 1 -1 0 0 -1 -1
1 -1 -1 1 0 -1 0 -1 0
1 -1 -1 0 1 -1 0 -1
1 -1 -1 -1 -1 1 1 1 1

m (0) = (my1(0),...,m13(0),...,m31 (0),...,ma3 (6))"

and
T
0 = (u,01(1),01(2), O2(1), O22), D121, O12(12) O12(21) B12(22))
we have that the matrix form of the saturated model is logm (6) = X 6. Before

introducing the loglinear models in a three-way contingency table we present an
example.

Example 7.2

Worchester (1971) describes a case-control study of women diagnosed with
thromboembolism for the purpose of studying the risks associated with smoking
and oral contraceptive use. Their data are summarized in Table 7.2.

Contraceptive Cases Controls
use? Smoker nonsmoker Smoker nonsmoker
Yes 14 12 2 8
No 7 25 22 84
Table 7.2

Source: Worchester, J. (1971).
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Loglinear models are useful methods to describe the inter-relationships between
these three factors.

Let X, Y and Z denote three categorical response variables: X having I levels,
Y having J levels and Z having K levels. When subjects are classified based on
the three variables, there are IJK possible combinations of classification. The
responses (X,Y, Z) of a subject randomly chosen from some population have
a probability distribution. Let p;;r = Pr(X =14,Y =j,7Z = k), with p;x > 0,
i =1,.,0,j =1,...,J and k = 1,...,K, and let p =(p111,...,p17Kx)" be the
joint distribution of X, Y and Z. This distribution is displayed in a three-way
contingency table. Consider a random sample of size n on (X,Y, Z) and let n;j
be the observed frequency in the (4,7, k)th-cell for (i,5,k) € I x J x K with
Zle 23'121 Zle nijk = n. In the following we assume that n;j;; is the observed
value corresponding to a random variable Ny, i« = 1,...,1,5 = 1,...,J, k =
1,..., K, in such a way that the random variable (Ni11, ..., N7sx) is multinomially
distributed with parameters n and (pi11, ....,pryx ). We denote m;j, = E [Nyji] =
npiik, 1 =1,..,1, 5 =1,..,J, k=1,..., K. We also denote

K
> logmyj/IJK

IS

I
M~
M~

s
Il
_
<.
Il
fa
bl
fa

logmijk/JK — U

=

I
M
M=

<

Il
-
£

Il
—

I K

92(]) = ;kz_:l logmijk/IK — U
T

93(@ = Z:l 21 logm”k/IJ — U
x J K I K

Or2i5) = > logmyje/K — 3 > logmi/JK — 3 > logmyp/IK +u
k=1 j=1k=1 i=1k=1
J J K I J

Oigary = Z:llogmljk/J Zl kzl logmyji/JK — 21 Z:llogmljk/IJ—i- u
j= = i=1j
I I J

Oy = Z log myjx/1 — Z:lkz logmyji /1K — 231 Z:llogm”k/IJ+u
=1 7 7 ¥

O123(ijk) = logmijp — Z log miji/K — Z log myj/J — Z logmjr/1

<

K
Z Z ogmijp/JK + Y Zlogmijk/IK—i—Z Zlogmijk/IJ—I—u.
; =1i=1 i=17=1
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Then we have
log mj (0) = u+ 0133y + 025y + O3() + 012335y + Or3k) + O3y + Or23(ijny- (74)

It is clear that the parameters verify the following constraints,
I J K
2 01y = 22 by = 22 Osr) =0
=1 j=1 k=1
I J I K J K
Z O123i5) = Z O12(i5) = 21913(1'1@ = kzl 013(ik) = Zl 023(jk) = kZI 023(jk) = 0
= ]: =
K
Z O123(i5k) = Z 0123(ij%) kZl 0123(i5%) = 0.

The number of parameters, initially, in this model is

u 1
91(1) I—-1
92(]) J—1
Qg(k) K-1
by (1—1)(— 1) 18
Or3ry (L —1) (K —1)
Ok (J—1) (K —1)
Ora3ik) (I — 1) (J —1)( )

but under the assumption of multinomial sampling we have IJK — 1 parame-
ters because S1_, Z 0 mujk (8) = n. We have the saturated model, in a
three-way contingency table, because the number of parameters coincide with the
number of cells minus one.

A simpler model in a three-way contingency table is the model
log Mk (9) =u-+ 91(1) + 92(]‘) + eg(k). (75)

This is the independence model in a three-way contingency table, i.e., p;jx =
. J K I K
DixxPxjx Pk with piw = Zj:l Zkzl Pijks Pxjx = 21':1 Zk:1 Pijk and puyp =

I J
>z Zj:l Dijk-

Between the models (7.4) and (7.5) there are different loglinear models that
can be considered:

i) Variable X is jointly independent of Y and Z. In this case we have

log mjx (0) = u + 0133 + Oz(5) + O3y + O23(jik) s
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ii)

i.e., Dijk = DxjkDix+. The number of parameters in this model is
I-D+(J-1D)+(K-1)+(K-1)(J—1).

The random variables X and Z are independent given the random variable
Y. In this case we have

i.e., Piji/Prjx = (Dijx/Dxjx) (Pxjk/Pxjx) - The number of parameters of this
model is

T-D+J-1D+E-D+T-1)J=1)+(J—1)(K —1).

The random variables X, Y and Z are pairwise dependent but the three
random variables X, Y and Z are jointly independent. In this case we have

log myjx, (8) = u + 0133y + o) + O3x) + O123i5) + O13ik) + O23(jk)-

This model does not admit a representation in terms of probabilities. The
number of parameters is given by

I-D)+J-D+(K-1D)+IT-D[J-1D)+(K-D]+(J—-1)(K—-1).

Hierarchical loglinear models require that high order interactions are always

accompanied by all of their lower order interactions. All hierarchical models for

a three-way contingency table are the following;:

Hy: logmyji (0) = u+ 013y + 02y + O3k) + O12¢5) + O13ik) + O23(jn)

Hj 2 logmiji (0) = u + 0133y + Oa(5) + O3k) + O13k) + O23(k)

H3 2 logmyjk (0) = u + 01 + O25) + O3y + O123i5) + O13(ik)

H; : log Mk, (9) =u-+ 91(1') + 92(]‘) + 03(k) + 023(jk)
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H3: logmiji (8) =+ O1) + Oa(5) + O3(k) + Or2(:5)
H3*: logmijr (8) = u+ 013) + Oaj) + O30) + O130ik)
Hy : logmigr (8) = u+ 01() + Oa(j) + O3k

Hj < logmyjy (8) = u + Oy + Ogk) + Oa3 (s

Hy*: logmijy, (0) = u+ 01y + by + 12335

Hp**: logmyjr (0) = u+ 013y + O3x) + O13k)

Hj :log mjk (0) = u + Oqj) + O31)

H: logmij () = u + 0135) + ba()

Hg*: logmyji (6) = u+ 0y + 3k

He : logmyjy, (0) = u + O3

Hg: logmyj (0) =u+ 01(@')

Hg*: log myj (0) = u + 02(5)

Hy :logmgj, () = .

It is clear that, from a practical point of view, the problem consists of obtain-
ing the model that presents a better fit to our data. In relation with Example 7.2
the problem is to find the model, among the previous considered models, that is
able to explain more clearly the given data. In the procedure that follows in the
next Sections it will be necessary to give a method to estimate the parameters of
the model and then to choose the best model. In order to do this second step we
first choose a nested sequence of loglinear models (two loglinear models are said
to be nested when one contains a subset of the parameters in the other) in the
way which is explained in Section 7.4. and then we shall give some procedure to
choose the best model among the models considered in a nested sequence.

7.2. Loglinear Models: Definition

Let Y1, Y3, ..., Y, be asample of size n > 1, with independent realizations in the
statistical space X ={1,2, ..., M}, which are identically distributed according to a
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probability distribution p (6y). For a two-way contingency table we have M = I.J
and for a three-way contingency table we have M = IJK. This distribution is
assumed to be unknown, but belonging to a known family

T={p(@)=pi(6),...pm(0)" :0cO},

of distributions on X with © C RM0 (My < M — 1). In other words, the true
value @ of the parameter 8 = (61, ...,0y,)7 € © C RMo is assumed to be fixed
but unknown. We denote p = (py, ...,px)” and p = (1, ..., par)T with

_N; - .
b= # and  N; =) Iy (Ya); j=1,.. M. (7.6)
i=1

The statistic (Ny, ..., Nas) is obviously sufficient for the statistical model under
consideration and is multinomially distributed; that is,

n! n n
Pr(Ni =n1,..., Ny =ny) = PR (@)™ ..om ()™, (7.7)

for integers ny, ...,npr > 0 such that ny + ... + nyr = n.

In what follows, we assume that p (@) belongs to the general class of loglinear
models. That is, we assume:

M
Py (0) = exp (wge) /Zexp (wEG) cu=1,..., M, (7.8)
v=1
where wl = (wy1, ..., wWyn,) - The M x My matrix W = (wy, ..., 'wM)T is assumed

to have full column rank My (Mo < M —1) and columns linearly independent of
the M x 1 column vector (1, ..., 1)T. This is the model that we shall consider for

the theoretical results in the next sections.

We restrict ourselves to multinomial random sampling but it is possible to
give the results presented in the next sections under the assumptions of either
Poisson, multinomial, or product-multinomial sampling jointly. For more details
see Cressie and Pardo (2002b).
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7.3. Asymptotic Results for Minimum Phi-divergence
Estimators in Loglinear Models

In this Section we present some asymptotic results for the minimum ¢-diver-
gence estimator under the loglinear model (7.8). These results are obtained par-
ticularizing the results obtained in Chapter 5 for a general multinomial model. In
the cited Chapter 5 we establish that the Fisher information matrix in a multino-
mial model has the expression

Ir(6)=A(0)" A(6),
where A (0) is the M x My matrix defined in (5.7).

For a loglinear model we have

M
3]?;‘0(9) =p; (8) wjr —p; (0) Y wurpy (6).
r v=1
Then p (0
%é - (diag (p(6)) ~p(©)p(6)7) W = Spio)W
and hence

A () = diag (p (9)—1/2) Spe)W.

Then the Fisher information matrix for a loglinear model is given by
Ir(0) =W Sy W.

By Theorem 5.2, if §¢ is the minimum ¢-divergence estimator for the loglinear
model given in (7.8), then

Vi(8s —60) > N (0» (WTEp(eo)W)A) )

where
0y = arg inf Dy(p,p(8)), (7.9)

and by Theorem 5.1 verifies

0,=00+1Ir(6)" W'Sp00)diag (p(60)™") (P — p(60)) + o(| B — p(B0) |)-
(7.10)
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Another interesting result, useful later, is the following

Vn (p(5¢) *P(90)> N (0, SponW (W Epey W)™ WTEP(%)) :
(7.11)

From a practical point of view in order to find the minimum ¢-divergence
estimator 64 we must solve the following system of equations

0Dy(p.p () _
89; 9
i=1,.., My

with the condition that p(@) verifies (7.8).

These equations are nonlinear functions of the minimum ¢-divergence esti-
mator, B4. In order to solve these equations numerically the Newton-Raphson
method is used. We have,

p1(6) wyy — 1 (0) z Wusp <e>) ,

A

and

9 (3D¢>(T9,p(9))> _

90, 90; i=1 p(8)) pi(0)? 90, 905 p(0W)

! é ai)]ae (¢ (ter) ¢ (o) i)
(7.12)

AZJ:¢/,< D ) P Opi(0) Opi(0) D
0°p

. ~(t+1)
Therefore the (t+ 1)th-step estimate, 0( ), in a Newton-Raphson procedure

is obtained from 6“) as

o1 (90,m.00") )

()| _ D, D

—G(6 1 )

@") 5 ,
j:1,...,M0

§(t+1) _ a(t)

where G(8) is the matrix whose elements are given in (7.12).

An interesting simulation study to analyze the behavior of the minimum
power-divergence estimator, defined by

0()\) = arg renelél D¢()\) (ﬁ:p (0))7 (713)
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in a three-way contingency table, has been considered in Pardo, L. and Pardo,
M. C. (2003). Notice that 8 ) is the maximum likelihood estimator.

7.4. Testing in Loglinear Models

We denote by p(§¢2) the parametric estimator, based on the minimum §¢2-
divergence estimator, of the loglinear model defined in (7.8). For testing if our
data are from a loglinear model we can use the family of ¢-divergence test sta-
tistics

—~ m PN
Tr?l <9¢2> = =7 Dg (p,p(0¢2)> (7.14)
o1 (1)

which by Theorem 6.1 are asymptotically distributed chi-squared with M —My—1
degrees of freedom. In Example 7.1 we have M = 9 and My = 4, therefore
M—My—1=4=(I—-1)(J—1). In the previous expression §¢2 is the minimum
¢o-divergence estimator for the parameters of the considered loglinear model. In
the rest of the chapter we shall assume the conditions given for the function ¢
in Theorem 5.1 as well as that ¢; (z) is twice continuously differentiable in a
neighborhood of 1 with the second derivative ¢} (1) #0, i =1, 2.

Based on this result it is possible to select a nested sequence of loglinear mod-
els. In order to fix ideas we consider all the possible loglinear models associated
with a I x J x K contingency table where the first element of the sequence is
given by

Hy :logmyjy (0) = u + 010y + 095y + O3y + O123:5) + O133ik) + O23(i)-
The second element should be chosen between the models
Hy : logmiji (0) = u + 0133y + Oa(j) + O3(x) + O13(ik) + O23(jk)
H3 2 logmyjp (0) = u + 01(5) + a5y + O3y + O12(5) + O133ik)
H3* :logmyjr (0) = u + 01y + Oa(5) + O3y + O123i5) + O23(ji)-
We consider the three tests of hypotheses

Hpnun - Ho versus H 45 : The saturated model
Hpoyy - Hy versus H yyy @ The saturated model
Hpyy + H3* versus H yp; : The saturated model
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and we shall choose the model that better support the data. To do the previous

~(1
tests we consider the ¢-divergence test statistic T <0;3> , given in (7.14), where

~(1
by 0;3 we indicate the minimum ¢s-divergence estimator for the parameters of
the loglinear model [, being [ = Ha, H5 or Hy*.

If we assume that we have chosen the model H3, the third element in the
sequence of nested sequence of loglinear models should be chosen between the
models

H3: logmjr (0) = u+ 013y + Oy + O31) + O12(5)
H3*: logmijk, (0) = u+ 0133 + Oy + O3) + O138)-
We consider the two tests of hypotheses

Hpyyy « H3 versus H 5y : The saturated model
Hpyy : H3* versus H 5y : The saturated model

and we choose the model that better support the data. To do the previous tests

~(1
we consider the ¢-divergence test statistic Tj* <0;3) , given in (7.14), where by

~(1
02,2) we indicate the minimum ¢o-divergence estimator for the parameters of the

loglinear model [, being | = H3 or H3*. We can continue in the same way until
getting a convenient nested sequence of loglinear models.

One of the main problems in loglinear models is to test a nested sequence of
hypotheses,

H:p=p@); 0c0;1l=1,...m m< My< M —1, (7.15)
where ©,, C ©,,_1 C ... C O; C RMo; My < M—1and dim(6;) = d;; 1 = 1,...,m,

with
Adm < dm_1 < ...<d; < M[). (716)

Our strategy will be to test successively the hypotheses
Hj,q against H;; [ =1,....,m—1, (7.17)

as null and alternative hypotheses respectively. We continue to test as long as
the null hypothesis is accepted and choose the loglinear model H; according to
the first [ for which H;,; is rejected (as a null hypothesis) in favor of H; (as
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an alternative hypothesis). This strategy is quite standard for nested models
(Read and Cressie, 1988, p. 42). The nesting occurs naturally because of the
hierarchical principle, which says that interactions should not be fitted unless the
corresponding main effects are present (e.g., Collett, 1994, p. 78).

The results presented in this Section were obtained in Cressie, N. and Pardo,
L. (2000) and Cressie, N. et al. (2003).

Theorem 7.1

Suppose that data (Ni,...,Npr) are multinomially distributed according to
(7.7) and (7.8). Consider the nested sequence of hypotheses given by (7.15) and
(7.16). Choose two functions ¢1,p2 € ®*. Then, for testing hypotheses,

Hpyun @ Hiy1 against Hay : H,

the asymptotic null distribution of the ¢-divergence test statistic,

~(l 2n S(+1), ()
T¢(>1),¢2 =70 (1)D¢1 POy, ),p(0s,)), (7.18)

is chi-square with d;— dyy1 degrees of freedom; l =1,....m—1. In (7.18), 5;2 and
5((;;1) are the minimum ¢2-divergence estimators under the models H; and Hyy 1,

respectively, where the minimum ¢-divergence estimators are defined by (7.9).

~(1 ~(1
Proof. The second-order expansion of Dy, 4, = Dy, (p(G;jl)),p(O((m) )> about

(p(60),p(00)) gives

M
8*Dy, (p.q) S(1+1) 2
Dy = 35 (qgipz (pj(% ) —pj (90)>
i1 j (P(60).D(60))
8*Dy, (. q) ~(0) 2
+ 3 (?T (pj(0d>2) —Pj (90)>
=L J (P(60).D(60))
8*Dy, (p,q) S(l+1)
> (W (@s.”) =11 00)
i=1 j:ll J (D(60),P(00))

X

(Pj (
|

+ o ([p@") - pen)| + [p@L) ~pi60)] ).

We have used in the previous Taylor’s expansion that Dy, (p(6o),p (60)) = 0

and the first order term in Taylor expansion is also zero. Thus, Td()ll) #, Can be
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written as

M
=0 1 ~(I+1) A 2
Toips = ”Z i (60) ( i(0g, ") —Dj (00)>

j=1P
M 2
= o (1206) 1 00)
M
_ QHij (100) (p](agjl)) p, (00)> ( 65) — p; (00)>
=1
+ no(Hp(égfl) p(6) H + @5 ~p(80) ‘2>
- (a0 ) o))

x (n'/2diag (p (60) 1) ( ®5") - p(@),
+ no <Hp 9(;:1)) P (60) H + Hp 0¢2 p(90)H2> :

We know from (7.11) that, under the loglinear model (7.8) and the null hypothesis
Hia,

f( DN 90) L, N(O,ZlH)

n—oo

1
with 3G 1) = Spoo) W (111 (W(l+1 ) W(l+1)) (111 Zp(00)> and W)
is the loglinear model matrix of explanatory variables under the null hypothesis
Hiyq.

2
Then Hp 9¢2+1)) P (GO)H = Op (n™!'), and because it is assumed that 6y €

©14+1 C Oy, we also have that Hp(éfg) —-p (00)H2 = Op (n~!) . Consequently,
wo (@) 6o + 2@ ~pi6n)| ) = ort1).

and hence the asymptotic distribution of the test statistic Td()ll) o is the same as
the asymptotic distribution of the random variable Z7 Z, where

(I+1)

Z = Vadiag (p(00) ) (p(®, ") ~ p(O5))
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Then, using (7.10), we obtain

~(I1+1)

U]
(0¢2

1
) = p(6,,) = (Epwo)W(m) (Wi ZpeoWarn) Wi Spoo

S0 W (WIS o W) WS
- P(0o) (l)< (1)='P(0o) (l)> (1)y=*P(60)
dmgg p(80)") B p(6))

o (8. = e0])) = o (8 - 0]

X

_l’_

If we denote
—1
. —1/2 T
Ay = diag (P (80) 7" > Epeo)W (i) (W<i>2p<eo>W<i>>

. ' YA (7.19)
W Xp (e, diag (p (6o) > pi=11+1,

X

which is a symmetric matrix, the random vector Z can be written as

Z = (Ag) — Ag) diag (p (00>—1/2) Vi (B - p(60))

o (B = e0])) = o ([ - 0]

Vadiag (p(60)™?) (p(0,, ) ~p®,)) -2 N (0.

n—oo

Thus,

where

x (A — Aw)

T
and p (90)1/2 = <p1 (90)1/2 ooy DM (90)1/2> . Then, because

(p(00)2)" diag (p (00) /%) Spia,

can be written as

1" diag (p (60)) — 17p (60) p (80)" =0,

where 1 = (1, ..., 1)T, we have, using Exercise 10, that

2= (Ag) — Ag) (Ae) — Aw) = Ag) — Agr-
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Therefore the matrix (A(l) — A(l+1)) is symmetric and idempotent with
trace (A(l) — A(l+1)) =d; —di11

and Z is asymptotically normal with mean vector 0 and variance-covariance ma-
trix (A(l) - A(l+1)) . Applying Lemma 3, p. 57, in Ferguson (1996) (see Remark
2.6), we have that Z" Z is asymptotically chi-squared distributed with d; — diy1
degrees of freedom.

Finally,

~1 _ 2n ~(1+1)

~(1) L 2
T¢17¢2 QS"( )D¢1 ( (0452 )’p(0¢2)> — Xdl dl+1 ™

n—oo

For the (h, ¢)-divergence measures we have the following result:

Theorem 7.2
Under the assumptions given in Theorem 7.1, the asymptotic null distribution
of the (h, ¢)-divergence test statistic,

=0 _ 2n S(141) 0}
T¢1,¢2,h = le/ (1) B (O)h <D¢1 ( (0d>2 )a (0¢2)>> ;

is chi-square with d;—dj+1 degrees of freedom; | = 1,...,m—1, where h is a differ-
entiable function mapping from [0, 00) onto [0,00), with h (0) = 0 and k' (0) > 0.
Proof. We know

D¢1((0§f“)) (5252)0 ¢"()ZTz+ p (),

where ZT Z is asymptotically chi-squared distributed with d; — dj4; degrees of
freedom. Further, because h(x) = h (0) + 1’ (0) x + o (x), we have

70 T L o
¢17¢27 =Z"Z+op(1) o Xdi—dig1 ]

We can observe that in the two previous theorems the estimated model in the
null hypothesis appears in the left argument of the ¢-divergence. It is usual to
consider the null hypothesis in the right argument of the ¢-divergence; for this
reason we present the following theorem.
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Theorem 7.3
Under the assumptions of Theorems 7.1 and 7.2, the asymptotic null distrib-
ution of the ¢-divergence test statistics,

o _ _2n AONSIP(ERY
Toron = grayPe (p(9 2), P04, )) (7.20)
e 2 (1), (1)
O n +1
T¢1,¢2,h - Qslll (1) W (O)h (D¢1 ( (0¢>2) (0¢2 )>> , (7.21)

is chi-square with d;—d; 1 degrees of freedom; | = 1,...,m—1, where h is a differ-
entiable function mapping from [0, 00) onto [0,00), with h (0) =0 and k' (0) > 0.

Proof. We consider the function ¢ (z) = x¢1 (z71). It is clear that ¢ (z) €

« ) _ (l) (1) _ 7
o, T%¢>2 ¢1,¢2 and TSD o2,k T¢1 ¢2,h°

Theorems 7.1 and 7.2.

Then the result follows directly from

Remark 7.1
A well known test statistic appears when we choose

o1 (x) = ¢o(x) =xlogx —xz+1

in the test statistic Td()i), ¢, given in (7.20). It is the classical likelihood ratio test
statistic (Agresti, 1996, p. 197; Christensen, 1997, p. 322) and it holds the well
known result,

~(1)
(9 ) L 2

2 _
G =2n ij log D). a Xdi—dig1
p;(0 )
where é(i) is the maximum likelihood estimator of @ under the model H; (0 € ©;) ;
i=1,1+1.

Another important test statistic appears when we put ¢1 (x) = %(1 - x)2,
o2 (x) = xlogx—x+1 in the test statistic T¢(>ll)¢2 given in (7.20). Then we obtain
the chi-square test statistic given in Agresti (1996, p. 197), as well as the result,

~() ~(1+1) \ 2
L (m@) -p@)
Xt=n}y ~(+1) oo Xdi—dis1
j=1 pj(@ ")
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But this is not the only family of test statistics for testing nested sequences of
loglinear models given in (7.17) based on ¢-divergence measures. In the following
theorem another family of test statistics based on this measure is proposed.

Theorem 7.4

Suppose that data (N1, ..., Ni) are multinomially distributed according to (7.7)
and (7.8). Consider the nested sequence of hypotheses given by (7.15) and (7.16).
Choose the two functions ¢1, ¢ € ®*. Then, for testing hypotheses,

HNull :Hl+1 against HAlt :Hl; l=1,...,m—1,

the ¢-divergence test statistics,

Sg) = Qy?—?l) (D¢ (,3,;,(62*”)) — Dy (ﬁ,p(ag))» , (7.22)
and
Soh = m (h <D¢> (13, p@m)))) —h (D¢> (ﬁ, p@?)))) (7.23)

are nonnegative and their asymptotic null distribution is chi-square with d; —dj41
degrees of freedom; 1 = 1,...,m —1, where h is a differentiable increasing function
mapping from [0,00) onto [0,00), with h (0) =0 and k' (0) > 0.

Proof. It is clear that Sg) >0;1=1,...,m—1, because

~ +1) . ~ . ~ ~ =)
f— > = .
Dy (p,p(% )) eé&fﬂ Dy(p,p(9)) = ot Dy(p,p(0)) = Dy (p,p(% ))

The proof of the asymptotic distribution of the test statistics Sg) and Sg)h follows

the same steps as the proof given in Theorems 7.1 and 7.2. -

Remark 7.2
The asymptotic result of Theorem 7.4 can be generalized further to include a

¢1 for divergence Dy, , and a ¢o for estimation 5((;2) . That 1s, the statistic

(1) 2n .+ P () L o
S¢1’¢2 (25/1/ (1) (Dd)l (p,p(9¢2 )> o Dd)l (p’p(9¢2)>> njo>o Xdz*dl+1

under Hyyq.

The special case of ¢1 (x) = 3 (1 — 2)?, ¢2 (x) = xlogx — x + 1 yields a sta-

tistic based on the difference of chi-square test statistic with mazimum likelihood
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estimation used to obtain the expected frequencies (e.g., Agresti, 1996, p. 197),

namely i
(41
n <‘D%(17:r)2 (p,p(@

) = Dy (2.0))-

However, the nonnegativity of Sé?,dm does not hold when ¢1 # ¢2. Thus,
for the case above, considered by Agresti, the difference of the chi-square test
statistics is not necessarily nonnegative. Since it is common to use mazrimum
likelihood estimation (that is, ¢o (x) = xlogx — x + 1), the test statistic Séli@;
@1 # P2 is not all that interesting to us. In the following we shall concentrate on

the statistics T¢(>?, b -

For testing the nested hypotheses {H; : 1 =1,...,m} given by (7.15), we test
Hpyyy 2 Hiq against Hyay @ Hp, using the ¢-divergence test statistic Td()?, é given
by (7.20); if it is too large, Hpyy is rejected. When Tq(sll),¢2 > ¢, we reject Hyuy
in (7.17), where c is specified so that the significance level of the test is « :

l
Pr (Tqﬁl{@ >c| HlH) =a; ae(0,1). (7.24)

Theorem 7.1 was shown that under (7.7), (7.8) and (7.15), and Hyyy : Hit1,
the test statistic Téfl), #, Converges in distribution to a chi-square distribution with
d; — dyy1 degrees of freedom; [ = 1,...,m — 1. Therefore, ¢ could be chosen as
the 100 (1 — «) percentile of a chi-square distribution with d; — d;,1 degrees of
freedom,

Cc= X?il—dl+1,a' (725)

The choice of (7.25) in (7.24) only guarantees an asymptotic size-« test. Here
we use (7.25) but ask, in the finite-sample simulations given in Section 5, for
what choices of A in T q(5l1)( 2)b2(\) is the relation (7.24) most accurately attained?

The asymptotic chi-square approximation, ¢ = X?ll is checked for a

—djy 1,0
sequence of loglinear models in the simulation study given ilglsection 7.5. We give
a small illustration of those results now. Figures 7.1 and 7.2 show departures of
the exact simulated size from the nominal size of & = 0.05 for one particular choice
(specified in Section 7.5) of Hj,1 and Hj, for various choices of A in ¢1 = A\
and for small to large sample sizes (n = 15, 20, 25, 35, 50, 100, 200). Figure 7.1
represents nonpositive choices of A, and Figure 7.2 represents nonnegative choices

of A. The positive values of A perform the best.
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dotted line) and A = 0 (solid line).

Figure 7.1. (Exact size — Nominal size of 0.05) as a function of = = logn
Shown are A = —2 (dashed line), A = —1 (dotted line), A = —1/2 (dash-

Source: Cressie, N., Pardo, L. and Pardo, M.C. (2003).
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A = 2 (dash-dotted line).

Figure 7.2. (Exact size — Nominal size of 0.05) as a function of = = logn.
Shown are A = 0 (solid line), A = 2/3 (dashed line), A = 1 (dotted line) and

Source: Cressie, N., Pardo, L. and Pardo, M.C. (2003).
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need an asymptotic independence result for the sequence of test statistics T¢(>i) .

Tg?@, vy quzn;i, where m* is the integer 1 < m* < m for which H,,~ is true but
Hpp+41 is not true. This result is given in the theorem below. Notice that our
hypothesis-testing strategy is an attempt to find this value of m*; we infer it to
be [*, the first in the sequence of hypothesis tests for which Hj« 1 is rejected as
a null hypothesis.

Theorem 7.5
Suppose that data (Ni,...,Npr) are maultinomially distributed according to
(7.7) and (7.8). Suppose we wish to test first

Hyun : Hy against Hap : Hy—y,

followed by
HNull . Hl+1 against HAlt : Hl.

Then, under the null hypothesis Hj, the ¢-divergence test statistics

(-1 0]
T¢>1,¢>2 and T¢>1,¢>2

are asymptotically independent and chi-squared distributed with d;_1 — d; and
d; — diy1 degrees of freedom, respectively.

Proof. A similar development to the one presented in Theorem 7.1 gives

10— i (B - p(80)" MIMp/n (B p(60)) +op (1)
and
T8 — /i (B—p(60)" MT,My_1v/i (B —p(60)) +op (1),
where

M; = (A1) — Aw) diag (p (00)‘1/2> ci=1—1,1,

A is given in (7.19) and W ;) is the loglinear model matrix of explanatory
variables under the i¢th-loglinear model; ¢ =1—1, 1, [ 4 1.

Now because
. L
Vn (p—p(6o)) N (0,2poy))

from Theorem 4 in Searle (1971, p. 59), Td(>l1), b and T q(5l1_¢12) are asymptotically
independent if
Pgy =M M, Spe,M{ M, =0.
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Puy= M (Agy—Ag ) <I —VPp (90)\/P(90)T> (A — Ag) M

= M, (Ag — Ag) (Ag) — Ag) My,
since Agj\/p(0o) =0;i=1—1,1,1+1.
Applying Exercise 10, we have
Ap A = AanAe = Ay Apde =Aeii=1-1LLI+1,

therefore M;{lMl,lEp(gO)M;fMl =0. .

Similar results to one obtained in this theorem can be obtained for the ¢-
) O]
T

divergence test statistics qul 620 L) 60 b i;(,ll) o Sg), Sg)h and Sgﬂ b2

In general, theoretical results for the test statistic Td()i), o under alternative
hypotheses are not easy to obtain. An exception to this is when there is a con-
tiguous sequence of alternatives that approaches the null hypothesis H;11 at the
rate of O (nfl/ ?) . Regarding the alternative, Haberman (1974) was the first to
study the asymptotic distribution of the chi-square test statistic and likelihood
ratio test statistic under contiguous alternative hypotheses, establishing that the
asymptotic distribution is noncentral chi-square with d; —d; 1 degrees of freedom.
Oler (1985) presented a systematic study of the contiguous alternative hypotheses
in multinomial populations, obtaining as a particular case the asymptotic distrib-
ution for the loglinear models. Through simulations, she also studied how closely
the noncentral chi-square distributions agree with the exact sampling distribu-
tions. Fenech and Westfall (1988) presented an interesting analytic study of the
noncentrality parameter in the case of loglinear models. Now we generalize their
results to tests based on the ¢-divergence test statistic 7' q(sll) b given by (7.20).

Consider the multinomial probability vector
p, =p(00) +d//n; 6y € Oy, (7.26)

where d = (dy, ..., dM)T is a fixed M x 1 vector such that Zj]\il d; = 0, and recall
that n is the total-count parameter of the multinomial distribution. As n — oo,
the sequence of multinomial probabilities {p,},cn converges to a multinomial
probability in H;,; at the rate of O (n_l/ 2) . We call

Hii1n P, =p(00) +d/vn; 0 € 0144 (7.27)
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a sequence of contiguous alternative hypotheses, here contiguous to the null hy-
pothesis Hyy.

Now consider the problem of testing
Hyuy » Hipq against Hay @ Hyq1p,

using the ¢-divergence test statistics T q(5l1) b given by (7.20). The power of this
test is
l
¥ = Pr <T¢()1)’¢2 >c |Hl+1,n> . (7.28)

In what follows, we show that under the alternative Hj; 5, and as n — oo, Tq(sll), o
converges in distribution to a noncentral chi-square random variable with non-
centrality parameter 6, where ¢ is given in Theorem 7.6, and d; — d;,1 degrees of
freedom (x?llf i (6)). Consequently, as n — oo,

70 - Pr (Xﬁl,dl+1 (6) > c) . (7.29)

In (7.10), it was established that the asymptotic expansion of the minimum
¢-divergence estimator about g € ©;41 is given by

~(I41) -1 ) _1
6, = 00+ (Wi ZpeaWarn) Wiy Speadiag (p(60)")

x (p—p(6o)) +o(llp—p(Bo)l)
(7.30)

where W4 is the loglinear-model matrix of explanatory variables under the null
hypothesis Hj ;.

Under the hypothesis given in (7.27), we have
Vi (p—p(60) =Vn(p-p,) +d

and hence
Vit (B —p(80) — N (d,Zpo,) (731)

o(Ip~pB0)) =0 (Op (n772)) =op (n™?).

Therefore, we have established that under the contiguous alternative hypotheses
given in (7.27), and for 6y € O;41,

SO

~(141) 1

0y = 0o+ (W%;+1)2p(90)w(l+1)>
X (P—p (o) +op(n1/?).

W, 1 Speodiag (p (90)*1)

(7.32)
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This result will be important in the following theorem.

Theorem 7.6

Suppose that data (N, ..., Npr) are multinomially distributed according to
(7.7) and (7.8). The asymptotic distribution of the ¢-divergence test statis-
tic T q(> ) . under the contiguous alternative hypotheses (7.27), is chi-square with
d; — djy1 degrees of freedom and noncentrality parameter 6 given by

6 = d"diag (p (00) /) (Aq) — Aqs) diag (p(00) ) d,

where d = (dy, ...,dy)" is defined in (7.26) and satisfies Zf\il di =0, and A,
1=1,1+1, is given in (7.19).

Proof. By Theorem 7.1, we know that

TV, —2TZ4no (Hp @)~ p(60) H +[|p@5) - (90)H2> ,

where
Z = v/ diag (p(00) ) (p(85,") — p(O5))
But
p@5") - p(6) = 2OV G0 ) 1o ([p@L7) - p00)])

and (7.32) we have

~(1+1)

p(6,, ) —p () =Op (n—1/2>

and

@)~ p80)| = 0p (n7).

In a similar way and taking into account that 8y € ©;11 C Oy, it can be obtained
that

2
Hp 0¢2 (00)H == Op (nil) .
Then
Tq(bll{@ =Z"Z +op(1).

From (7.32), we have, under the contiguous alternative hypotheses, that

Z = /0 (A — Ag) diag (p(80) %) (B — p (60)) +op (1.
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By (7.31)
- L
V(P —p(60)) —= N (d, Zpey))
and hence

zZ 5 N5z,

n—oo

where 8 = (Aq41) — Ag) diag (p(60) /) d and

X = (A(l+1) — A(l)) diag <p (00)_1/2> Ep(go)diag <p (90)_1/2>
x (g — Ag)

= (Ag) —Aw) (I — /P (60)y/ P(Oo)T) (Ag+) — Ap) -

Using the results in the proof of Theorem 7.1, it can be shown that
> = (Ap — Aw) »

and it is an idempotent matrix of rank (d; — dj41).

If we establish that 3*p = u, the theorem follows from the Lemma on page
63 in Ferguson (1996), because in this case the noncentrality parameter is given

by 6 = u" p.
Applying the results obtained in Exercise 10, we have
= (Ag —Ag) p=Agpp — Agp
= A (Ag) — Agy) diag (P (90)_1/2> d—Ag (Aggn) — Ag)
diag (p (80)7" 2) d
= l’l"

X

Then the noncentrality parameter 6 is given by

§ = pTu = d¥ diag <p (00)—1/2> (A(l) _ A(l+1)) diag (p (90)—1/2) d. -

Remark 7.3
Theorem 7.6 can be used to obtain an approximation to the power function of
the test (7.17), as follows. Write

p(60) p(B(()Hl)) n (\/ﬁ <p(0(l)) _ p(O(()Hl)))) 7

Si-
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and define

1
p,(09) = p(6™) + —d,

vn

where d = f( W) — (08”1))) . Then substitute d into the definition of 6,
and finally 6 into the right hand side of (7.29).

The asymptotic noncentral chi-square approximation for power is checked for
finite samples in the simulation given in Section 7.5. Figures 7.3 and 7.4 show
departures of the exact power from the asymptotic power for one particular choice
(specified in Section 7.5) of H;1 and Hj, for various choices of A in ¢1 = ¢y,
and for small to large sample sizes (n = 15, 20, 25, 35, 50, 100, 200). Figure
7.3 represents nonpositive choices of A and Figure 7.4. represents nonnegative
choices of A. These figures need to be interpreted in light of associated exact sizes;
see Section 7.5. However, it is immediately apparent that from an asymptotic-
approximation point of view, A = 2/3 seems to perform the best, particularly for
small and moderate sample sizes.

0.1 _
08 I

LT
04 |\

02 I N —_

02

Figure 7.3. (Exact Power — Asymptotic power) as a function of 2 = logn.
Shown are A = —2 (dashed line), A = —1 (dotted line), A = —1/2 (dash-

dotted line) and A = 0 (solid line).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2003).
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Figure 7.4. (Exact Power — Asymptotic power) as a function of 2 = logn.
Shown are A = 0 (solid line), A = 2/3 (dashed line), A =1 (dotted line)

and A = 2 (dash-dotted line).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2003).

7.5. Simulation Study

Section 7.4 presents theoretical results for testing hypotheses in loglinear mod-
els. The results give asymptotic distribution theory for the ¢-divergence test sta-
tistic Tq(sll), é under the null hypothesis and a sequence of contiguous alternative
hypotheses. The appropriateness of these results in finite samples is demonstrated
inlFigires[ 71,0 7(2,[7[3[ahd[T.41 We now describe the finite-sample simulation
study from which these figures were obtained, and we give new results that com-

pare the powers of tests based on 70 for A\ =-2,-1,-1/2,0,2/3,1,2.

d(0):9(0)
We consider for the estimation problem the maximum likelihood estimator

and for the testing problem the power-divergence test statistics with the values
of A given previously.

Consider a 2 x 2 x 2 contingency table, so M = 8. We simulate data Ny, ..., Njs
from a multinomial distribution with sample size n and probability vector p =
(p1,...,par)T, where n and p are specified. The motivation for our simulation
study comes from a similar one carried out by Oler (1985). The simulation
study, presented in this Section, was carried out in Cressie et al. (2003). For
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the moment, fix [ and consider the power-divergence test statistics Tq(bl()A) b0 for
testing Hyqyy : Hijy1 against Hay : Hl+1,n7 and let py € Hyyuy and Pin € H Ap4,
where p; ,, is a subscript with n because its entries may depend on n. The essence
of our simulation study is to obtain the exact probabilities,

) _ )
ap’ = Pr <T¢(A)7¢(O) > c | po)
(7.33)
_ )
= Pr <T¢(>\)’¢(O) > c | plm) .

(@) (@)

In fact, ay’ and 7’ are estimated using N = 100000 simulations from the
multinomial sampling schemes (n, py) and (n,p, ), respectively. For a given
Py (see below), the various choices of n and p,,, represent the design of our
simulation study. We choose

n = 15,20, 25,35, 50, 100, 200

to represent small, moderate and large sample sizes.

We simulate multinomial random vectors (Ni, ..., Nps) and compute proba-

bilities o’ for (n,py) and 7 for (n,p1,,)- To see what happens for contiguous

alternatives, we fix p; € H; (see below) and define

P, =po+ (25/0)% (py — py). (7.34)

Notice that pj.; = p; and, as n increases, pj, converges to p, at the rate

n~Y2; that is, {p’{n} is a sequence of contiguous alternatives. Our design for
the simulation study is to choose (n,p; ,) as fixed and contiguous alternatives,
which we now give.

Contiguous alternatives:
{(n,p’{,n) : n = 15,20, 25, 35,50, 100,200} ,

where pj , is given by (7.34) and p, is specified below.

Fized alternatives:

{(n,p,) : n=15,20,25,35,50,100,200},
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where p, is specified below.

Notice that for n < 25, the contiguous alternatives are further from Hpyyy
than are the fixed alternatives and that the two sequences share the alternative
(25,p1). These choices allow reasonable coverage of the space of alternatives.

In the simulation study, we consider the following nested sequence of loglinear
models for the 2 x 2 x 2 table:

Hi : piji (0) = exp {u+ 013y + O25) + O3(x) + 012335y + O13(k) + 923(jk)}
Hy : piji (0) = exp {u+ 01y + Oa(j) + O3) + Or23i) + O130k) }

Hs : piji (0) = exp {u+ 014y + Oaj) + O3) + O125) |

Hy : piji (8) = exp {u+ 013y + Oa(j) + O3 } -

Here, exp (—u) is the normalizing constant and the subscript #-terms add to zero
over each of their indices. Based on Oler’s study, we used a moderate value for
each main effect and a small value for the interactions. That is, we used

exp (01(1)) = exp (fa(1)) = exp (031)) = 5/6
€xp (912(11)) = exp (913(11)) = exp (923(11)) =9/10.

Then the simulation experiment is designed so that p; € Hj; 1 =1,2,3.

In Section 7.4, we showed Figures 7.1 and 7.2 (Exact size-Nominal size) for
Hpun @ Hy, using the test statistic Td(j;\) $(0) and ¢ = xim%[as@vemﬂﬁusm@i@?ﬁ
and 7.4 (Exact power — Asymptotic power) for Hyyy : pg € Ha and Hay @ Py ,;
with p; € Hs, using the test statistic Tq(sz())i),qb(o) and c = X%,0.05~

In the simulation study, we shall compare members of the power-divergence
family of test statistics; our criteria for a good performance are:

i) good exact power and size for small to moderate sample sizes. For this, we
consider the following three hypothesis tests with fixed alternatives:

Hyuy : Py € Hiyq versus Hyy @ (n,py), where p; € H; and n = 15,20, 25,
35: 1=1,2,3.

© 2006 by Taylor & Francis Group, LLC



328 STATISTICAL INFERENCE BASED ON DIVERGENCE MEASURES

it) good agreement of exact and asymptotic probabilities for reasonably small
and moderate sample sizes. For this we consider the following three hy-
pothesis tests with contiguous alternatives:

Hpoyi 2 py € Hyyq versus Hay - (n,pin) , where pj , is given by (7.34),
p; € Hy and n = 15,20,25,35; 1 =1,2,3.

First of all, we study the closeness of the exact size for Hnqy : Ho, Hywy : Hs
and Hpy : Hy to the nominal size aw = 0.05. Following Dale (1986), we consider
the inequality,

logit(1 — o) — logit(1 — a)| <e, (7.35)

where logit(p) = In(p/(1 — p)). The two probabilities are considered to be “close”
if they satisfy (7.35) with e = 0.35 and “fairly close” if they satisfy (7.35) with
e = 0.7. Note that for « = 0.05, e = 0.35 corresponds to o e [0.0357,0.0695] ,
and e = 0.7 corresponds to ag) € [0.0254,0.0959]. From the calculations that
yield Figures 7.5-7.7, the test statistics that satisfy (7.35) for e = 0.35 are those
corresponding to A = 2/3,1,2. For e = 0.7, only one extra test statistic, that
corresponding to A = 0, is added.

Figures 7.8-7.10 give a similar comparison of exact to asymptotic, this time
for power under a contiguous alternative. In Figures 7.8 and 7.9, it is clear that
the test statistic corresponding to A = 2/3 has the best behavior. In Figure 7.10,
A = 1,2 are the best but A = 2/3 is still competitive.

Figures 7.11-7.13 show (Exact power-Exact size) for the three hypothesis tests,
H, versus Hs, Hs versus Hs, and Hs versus Hy. This is a measure of how quickly
the power curve increases from its probability of type I error. We see from the
figures that the increase in power is a little more for tests based on negative A
than for positive A\. This should be tempered with the fact that for negative A
the exact size is considered not even “fairly close”. This trade-off between size
behavior and power behavior is a classical problem in hypothesis testing.
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Figure 7.5. |logit(1 — Exact size) — logit(1 — Nominal size of .05)| as a function
of A for model Hy. Shown are n = 15 (dashed line), n = 20 (dotted line), n = 25
(dash-dotted line) and n = 35 (solid line). The two horizontal lines correspond to

Dale’s bounds of e = .35 and e = .7 in (7.35).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).

1.4 |

Figure 7.6. |logit(1 — Exact size) — logit(1 — Nominal size of .0.5)| as a function
of A for model Hs. Shown are n = 15 (dashed line), n = 20 (dotted line), n = 25
(dash-dotted line) and n = 35 (solid line). The two horizontal lines correspond to

Dale’s bounds of e = .35 and e = .7 in (7.35).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).
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Figure 7.7. |logit(1 — Exact size) — logit(1 — Nominal size of .05)| as a function
of X for model Hs. Shown are n = 15 (dashed line), n = 20 (dotted line), n = 25
(dash-dotted line) and n = 35 (solid line). The two horizontal lines correspond to

Dale’s bounds e = .35 and e = .7 in (7.35).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).

e 01 ]
\oos |

\0.06 i
. 0.04 \[

-2 -1 0D \\%_TQ

Figure 7.8. (Exact Power — Asymptotic power) as a function of A for testing
Py € Hy versus pi ,, with p; € Hz. Shown are n = 15 (dashed line), n = 20

(dotted line), n = 25 (dash-dotted line) and n = 35 (solid line).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).
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< 0.04" |
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Figure 7.9. (Exact Power — Asymptotic power) as a function of A for testing
Po € Hj versus pj ,, with p; € Ha. Shown are n = 15 (dashed line), n = 20

(dotted line), n = 25 (dash-dotted line) and n = 35 (solid line).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).

-0.02

Figure 7.10. (Exact Power — Asymptotic power) as a function of A for testing
Py € Hy versus pj ,, with p; € Hy. Shown are n = 15 (dashed line), n = 20

(dotted line), n = 25 (dash-dotted) and n = 35 (solid line).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).
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Figure 7.11. (Exact Power — Exact size) as a function of A for testing Hy versus Hs.
Shown are n = 15 (dashed line), n = 20 (dotted line), n = 25 (dash-dotted line) and
n = 35 (solid line).

Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).

-2 -1 0o 3
Figure 7.12. (Exact Power — Exact size) as a function of A for testing Hs versus Hj.
Shown are n = 15 (dashed line), n = 20 (dotted line), n = 25 (dash-dotted line) and

n = 35 (solid line).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).
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Figure 7.13. (Exact Power — Exact size) as a function of A for testing Ha versus Hj.
Shown are n = 15 (dashed line), n = 20 (dotted line), n = 25 (dash-dotted line) and
n = 35 (solid line).

Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).

In what follows, we consider only the test power-divergence test statistic that
satisfy (7.34) with e = 0.7, and to discriminate between them we calculate:

g1 (V) = AP () = SEPS (V)|

and

-1
g2 (V) = (SEPL (N = STS(, (V)

where APi(f) (\) is the asymptotic power, SEPZ.(Z) (M) is the simulated exact power,

n n

and STSZ.% (M) is the simulated test size of the test statistic Td()l()A) (0)) 1=1,2,3,
under the alternative i = F' (fixed), C' (contiguous) and n = 15, 20, 25, 35. Then,

for a given [, we consider a test statistic T’ d)l( 2),6(0) to be better than a test statistic

O] :
To0n)e0) 1
g1 (Al) < g1 ()\2) and g2 (Al) < g2 (Ag) . (736)

In(Figuresl7.14-7.16,welplot[g=[ga (\) versus = = g1 (A); from (7.36), we look
for values of \ that are as close to (0,0) as possible in the (z,y) plane.
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Figure 7.14. y = g2 (A) versus z = g1 (A) for Td(f()’;\)@(o). Shown are A =0

(Square), A =2/3 (Cross), A =1 (Diamond) and A = 2 (Circle).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).
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Figure 7.15. y = g2 (\) versus = g1 (\) for Td@\) $(0)- Shown are A =0

(Square), A =2/3 (Cross), A =1 (Diamond) and A = 2 (Circle).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).

The points (g1 (A), g2 (A)) far away from (0,0) are those corresponding to smallest
sample size n = 15, as expected. For this sample size, Figures 7.14-7.16 show that the
exact size of the tests based on Tq(f()o) #(0) is too large in relation to that of ngl()/\) 5(0)
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A = 2/3,1,2. For n = 15, the points (g1 (2/3), g2 (2/3)) are closer to (0,0) than the
points (g1 (1),g2 (1)) and (g1 (2),g92(2)). Thus, according to the criterion (7.36), the

{1 . _
test based on T¢(2/3)7¢(0) is the best for n = 15.
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Figure 7.16. y = g2 (A) versus z = gy (A) for Téa)@(o)' Shown are A =0

(Square), A =2/3 (Cross), A =1 (Diamond) and A = 2 (Circle).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).

For n = 20, 25, 35, it can be seen that T¢(>l()2/3),¢(0) is better than qul()/\),¢(0)v for A =

1,2, according to (7.36). However, qul()z/3) (0) is not obviously better than T¢(>l()0) 5(0)?
since g1 (2/3) < g1 (0) but g2 (0) < g2 (2/3). The choice of qul()z/3)7¢(0) or T(Z()l()())7¢(0) for
n = 20, 25, 35, is going to depend on whether we need to make a very good approximation
of the exact power (g1 small) or whether we want to use a test statistic with as much
exact power as possible (g2 small). In the first instance, we should choose qul()Q /3),6(0)

and in the second instance, qul()o),(z)(o)‘

From all the simulation studies we have carried out, our conclusion is that the test

based on Td()l()2 /3),6(0) is a very good and often better alternative to the tests based on the

classical statistics Td()l())\)’ (0) with A =0, 1.
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7.6. Exercises

1. Find the matrix form of the loglinear models,

a) log m;; (0) =u+0; +0; +0;,1,5 =1,2,3, with

3 3
> 0;=0, ) 6;;=0, j=1,2,3, and 0;; = 0}, i,j =1,2,3.
i=1 =1

This is the symmetry model.
b) logmij (9) =u-+ 91(1) + 92(]') + 912(@‘), i,j = 1, 2, 3, with

3 3
D 016y =0, > s =0
i=1 j=1

3

2912@‘) =0, j=1,2,3 and 01205y = bh23ji), %, = 1,2,3, i # j.
=1

This is the quasi-symmetry model.

2. Find the matrix form for the loglinear models

a) logmi; (0) = u+ 01 + a5y + bicij, 1, j = 1,2, with

2 2 2
Y@= b =) 6;=0
i=1 i=1 i=1

and c¢;; known constants.

b) log m;; (0) =u+ el(i) + 92(]-) + pjdij, 1,5 = 1,2, with

2 2 2
> 0@ =D by = _p; =0
i=1 j=1 j=1

and d;; known constants.

C) logmij (9) =u-+ 91(1) + 920‘) + /\(li]‘)2, Z,] = 1, 2, with

2 2
D iy =D O =0
i=1 j=1

and [/;; known constants.

3. We consider the loglinear model of quasi-symmetry given in Exercise 1. Find the
maximum likelihood estimator of the expected values, m (0).

4. Find the expression of the minimum power-divergence estimator for the expected
values, m (0), in the symmetry model.
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5. We consider the loglinear model,

logmij (8) = u+013;) + b2() + O12(5)

with
LS
u= 35>, > logm
i=1j=1
010y = % '21 log mi; —u
1 L
Oay = 7 ;logm” —u
O12i5) = logmi; —u— 013y — baj)
Show that

mg; (0) mst (0)
0125 = 1 mij (6) ms: (6) )
12() = 77 ZZ 8 it (0) m; (0)
6. The maximum likelihood estimators for m;;i (0), 7, j,k = 1,2, in the model
log miji (8) = u + 01(5) + O25) + O3y + O123i5) + Or3ir) + O235)

based on a random sample of size 820, are given in the following table

Variable (C)
Cy Cy
Variable (B) By Bs B, By
Ay 350.5 149.5 59.51 1125
Variable (A) Ay 2551 2349 19.49 79.51

Find the maximum likelihood estimators for the parameters 6,(;) and 0155

7. In 1968, 715 blue collar workers, selected from Danish Industry, were asked a
number of questions concerning their job satisfaction. Some of these questions
were summarized in a measure of job satisfaction. Based on similar questions the
job satisfaction of the supervisors was measured. Also included in the investigation
there was an external evaluation of the quality of management for each factory.
The following table shows 715 workers distributed on the three variables: A: Own
job satisfaction, B: Supervisors job satisfaction and C: Quality of management.

A

B Low High
Bad Low | 103 87
C High | 32 42
Good | Low | 59 109

High | 78 205
Source: Andersen, E. B. (1990, p. 156).

We consider the nested sequence of loglinear models Hq, H3*, Hs, Hy, Hs and Hg
given in Section 7.1.
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a) Find the maximum likelihood estimators of m (@) for all the models.

b) Using as significance level o = 0.05, test the null hypothesis that data are
from model Hy based on the maximum likelihood estimator as well as on the
power-divergence test statistic with A = —2, —1, —=1/2, 0, 2/3 and 1.

¢) Find the best loglinear model among the models: Hy, Hy*, Hs, Hy, H5 and
Hg using the maximum likelihood estimator as well as the power-divergence
test statistics T(;l())\) (0) with A = 0,1, —1 and taking as significance level
a = 0.01.

d) The same as in the previous part but with the power-divergence test statistic

0
So(x),6(0)°

8. The Swedish traffic authorities investigated in 1961 and 1962 on a trial basis the
possible effects of speed limitations. In certain weeks a speed limit of 90 km/hour
was enforced, while in other weeks no limits were enforced. The following table
shows for two periods of the same length, one in 1961 and one in 1962, the observed
number of killed persons in traffic accidents on main roads and on secondary roads.

Type of Roads (C)
Main Secondaries
Speed limit (B) ?I?Iljlil) Free ?IE)II;;I;) Free
1961 8 o7 42 106
Year (A)
1962 11 45 37 69

Source: Andersen, E. B. (1990, p. 158).

We consider the nested sequence of loglinear-models Hy, Ho, H3, Hy, Hs and Hg
given in Section 7.1.

a) Find the maximum likelihood estimators of m (@) for all the models.
b) We consider the model Hs. Find the maximum likelihood estimators for the
parameters Ol(i), 02(]‘), 93(k)7 egg(jk) .

¢) Using as significance level o = 0.05, test the null hypothesis that data are
from model H3 based on the maximum likelihood estimator as well as on the
power-divergence test statistic with A = -2, —1, —1/2, 0, 2/3, 1 and 2.

d) Find the best loglinear model among the models: Hy, Ho, Hs, Hy, Hs and
Hg using the maximum likelihood estimator as well as the power-divergence
test statistics Tél()A)@(o) with A = =2, —1/2, 0, 2/3, 1 and 2 assuming that
for testing

Hpyy 2 Hs versus Hyyy 0 Ho

the null hypothesis was accepted and taking as significance level o = 0.05.
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e) The same as in the previous part but with the power-divergence test statistic
0] : _
S¢(/\)7¢(0) with A = 1.
9. In 1973 a retrospective study of cancer of the ovary was carried out. Information
was obtained from 299 women, who were operated on for cancer of the ovary 10

years before. The following four dichotomous variables were observed:
A: Whether X —ray treatment was received or not.

B: Whether the woman had survived the operation by 10 years or not.
C: Whether the operation was radical or limited.

D: Whether the cancer at the time of operation was in an early or an advanced
stage.

The observed number of women are shown in the following table:

A: X-ray
NO YES
(Stage) (Operation)  (Survival)
Early Radical No 10 17
YES 41 64
Limited No 1 3
YES 13 9
Advanced Radical NO 38 64
YES 6 11
Limited NO 3 13
YES 1 5

Source: Andersen, E. B. (1998, p. 121).

We consider the following nested sequence of loglinear models:

H1 : log Mijkl (9) U+ 91(1) + 920‘) + Gg(k) + 94([)
O12¢i5) + 1) + Oraciry + O23(jr) + O2a0) + O340k

O123(i5k) T O124(i50) T O134(ikr) + O234(581)-

+ +

Hg : log Mijkl (9) U+ 91(1) + 920‘) + Gg(k) + 94([)
O12¢i5) + 1) + Oraciny + O23(jr) + O2a0) + O340k

O124(i51) + O134(int) + O234(jk0) -

+ +

Hs : log mijn (0) w013y 4 0205y + O30y + Oy
O12(i5) + O13(i) + Orairy + O23(jr) + O2a51) + O3a(r1)

O134(ikt) + O234(jk1)-

+ +

Hy :logmijie (0) = w013 + 02¢j) + O3() + Oaq)
O12(i5) + O13(ir) + Oraary + O23(jn) + O2a51) + O3a(r1)

O134(ik1) -

+ +
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Hs :logmiji (0) =  w+ 013) + 0205y + O30y + Oar)
+ 0133y + Oragiry + O23(jk) + O2a(it) + O3a0k1) + O134¢ik1)-

Hg :logmijier (0) = w013y + 02¢j) + O3r)
+ Oy + O13¢ik) T Oragir) + O2a¢50) + O3a000) + O134(ik1)-

Hy :logmijii () = u+ b1 + 0a(5) + Oar)
+ 04y + O13(k) + Oracir) + O3ax1) + O134(ik0) -

a) Using as significance level @ = 0.05, test the null hypothesis that data are
from model Hs based on the maximum likelihood estimator as well as on the
power-divergence test statistic with A = -2, —1, —=1/2, 0, 2/3, 1 and 2.

b) Find the best loglinear models among the models Hq, Ho, Hs, Hy, Hs, Hg and
H7; considered above based on Sébl()o), 5(0) using as significance level a = 0.05.

10. Show that A(Z)A(H-l) = A(H—l)A(l) = A(H—l) and A(Z)A(l) = A(l), where A(i) is
defined in (7.19) for ¢ =1, [ + 1.

7.7. Answers to Exercises

1. Under the given restrictions it is easy to verify that the matrix form is given by

logm11 (9) 1 2 0 1 0 0

logmlg (9) 1 1 1 0 1 0

log m13 (8) 1 0 -1 -1 -1 0 Z

log ma1 (8) 1 1 1 0 1 0 91

logma2 (@) |=[ 1 0 2 0 0 1 02

log mas (8) 1 -1 0 0 -1 -1 9“

log ma1 (6) 1 0 -1 -1 -1 0 912

log mss (0) 1 -1 0 0 -1 -1 22

log mss (0) 1 -2 -2 1 2 1

in the case a) and by

logmi1 (0) 1 1 0 1 o0 1 0 O
log mi2 (8) 1 1 0 0 1 0 1 0 Z
log m13 (6) 1 1 0 -1 -1 -1 -1 0 91“)
log ma1 (6) 1 0 1 1 0 0 1 0 91@)
logma (@) | =] 1 0 1 1 0 0 1 92(”
log mas (8) 1 0 1 -1 -1 0 -1 -1 92@
log ma; (6) 1 -1 -1 1 0 -1 -1 0 912(11)
log ms2 (8) 1 -1 -1 0 1 0 -1 -1 912(12)
log M3 (8) 1 -1 -1 -1 -1 1 2 1 12(22)

in the second case.
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2. a) The matrix X is given by

1 1 C11
-1 co2

-1 1 —C21
-1 -1 —C22

b) The matrix X is given by

1 1 1 di1
1 -1 —dio
X —
1 -1 1 dy
1 -1 -1 —dx
¢) The matrix X is given by
11 1 @1
1 1 -1 1
X = 12
1 -1 1 1
1 -1 -1 1

3. To find the maximum likelihood estimator of m (@) we must maximize the expres-
sion, Y, 25:1 n;jlogmg; (0). We have

I I I I I I
Z Znij log My (0) = nu-+ Z Zni]ﬂl(i) + Z Znijag(j)

i=1 j=1 i=1 j=1 i=1j=1
1] i
R
=1 j=1
and
I I I 1 I I

S s o 0 = 33 oy (6) = o+ 3° Y o 0.

i=1 j=1 i=1 j=1 i=1j=1
‘We denote

L(0) =logPrg (N11 =ni1,..., Nir =ngg);

© 2006 by Taylor & Francis Group, LLC



342 STATISTICAL INFERENCE BASED ON DIVERGENCE MEASURES

then,
I I
L (9) = log ’rL11!7.!7L11! + Z ZnU IngtJ (9)
i=1 j=1
’ I I
= log #‘nn, —nlogn + ZZn” log m;; (6)
i=1 j=1
i I
i=1 j=1
I I ’
DI
=1 j=1
and
I
Prg (N11 =n11,..., Ny =nyg) = exp(fnlogn)m exp {nu + Zni,ﬁl(i)
i=1
I I
+ Zn*jGQ(j) + ZZ ("1 Rig s 1) 912(ij)
j=1 i=1 j=1
Therefore,

I
exp (—nu) = Z exp(—nlog n)#’nn, exp {Z”i*al(i)+

"117 NI =1

+ Zn*]GQ(]) + ZZ ("1 Dot 1) 912(1]

i=1 j=1

Differentiating in the two members of the previous equality with respect to 6155,

we have
ou I
—nexp (—nu) = Z exp(—n log n)—"n!’-r%-!nn! exp Z”i*alu)+
90125 "117 o -
+ Z”*Jaz(a) + ZZ ("’ D i ) Ora(ij) (&%J_) .
i=1 j=1
Then
ou N
77748912(,”) - Z ( . ; 1) Prog (Nll = nll,...,NII = nII)

ni1,---MI1

E Nizv;N,ﬂl

mi; (6)+m;i ()
2
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On the other hand

oL (0) - ou N5 + N4
9012(i5) 9012(i5) 2
myj (9) + myj; (0) N5 + N
= — + .
2 2
Therefore
oL(0)
9012(i5)

or equivalently

mij (0) +m;i (6) | nij +nji
- + .
2 2
Then
mi;(0) +mji(0) = nij; +nji, i # J.

In the same way differentiating with respect to 0;(;) and 6;(;) we have
mt*(/B\) = Nj and my; (5) = Ny

Finally, the maximum likelihood estimators, mij(é), are obtained as a solution of
the system of equations,

mi;(8) + mﬂ(ﬁ) = Mij + Njis 17 ]
145 (0) = 1.

The first set of equations jointly with one of the other two is enough to find the
maximum likelihood estimator of m;;(0).

. To find the minimum power-divergence estimator we must minimize in 8 the ex-

pression
I I
Dy, @:2(0) +1 [ D> i (0)—1] =0, (7.37)
i=1 j=1
with
" B
Dy, (P (0)) = >\(/\+1 E{e_)*f
= 17: (7.38)
A)\+1+AA+1
ot 03 (B e (Ao 0) 1)
i=1 j=1
and

log pi; (0) = logn + logm;; (0) =logn + u+6; + 0; + 6;;.

© 2006 by Taylor & Francis Group, LLC



344 STATISTICAL INFERENCE BASED ON DIVERGENCE MEASURES

It is clear that
Ologpi; ()  Ou
005 o 00;;

+1,

and in a similar way to Exercise 3 we can find that

ou
nae” = —Myy (9) s
then
Ologpi; (6)
=—p;; (0)+1
90, Dij (@) +
Also,
I I
0 21 leiy (6)
i=1j=
S = () (b (6) 1
Differentiating in (7.37) with respect to 6;;, taking into account the expression
(7.38),
1 AA+1+IA7>\+1 Y
ie.,
1 ptAJH +p’\+1 o (0)/\+1
)\ + 1 2 /"Lplj 9
then
L /A1 A1\ XIT
LT (B 40\ L sk e
A + 1 2 M pl] 9
and
i I I /AL S\ 3T
L 1 A+l bij; +pji
- () B (B
=1 j=1
Therefore
1
A+l+ﬁk+1>)\_+l L
e B K,
N ( b) /\)\+1+AA+1 1
pij(e(k)) _ — = (fzj Dji ) L'
£y (BT B R @ en) ™
i=1j=1 i=1j=1
5. We have

O12(i5) = logmy; (0) —u— 013y — Oaj) »
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then

J I
O123ij) = logm; (0) —u— 1 > logm; (0) +u— 1 5" logmy; (0) +u

J]:l i=1
LI L d L LI
= logm; (0) — leogmw 0) — 7 Z:llogmm 0) + 15 21 Z:llogmw (6)
Jj= 1= i=1j=

and

Substituting we obtain

K ~
> logmi;r(0) =4.1771
k=1

<)
00|
M~
Mk

@
Il

—
.
Il

—

iw(0)/JK -1 =0.74818

=)
\

M~

M=
<}
0F]

3

<
Il
i
kol
Il
—

M~
M=

51(2) = 1ogm2jk(5)/JK —u = —0.7418.

<
Il
—
o
Il
—

Only we have to calculate 512(11) because

%2(11) + @2(12) =0
O12(11) + 01221y =0.

Then we get

Bro11) = 4.9727 — 4.9189 — 4.0386 + 4.1771 = 0.1923.

7. a) For the models H3*, Hs, Hy, H5 and Hg, the maximum likelihood estimators

are
Hy H, H, H, Hg
Tlij*Tlsjk Tl ik Thixx TliaexTlx 5 Thax UL Tlsxk
M n n? nl IJ
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This result follows because, for instance, the model H3* can be characterized by

Dijx p*gk

Dijr =
p*j*

For the model H; we do not have an explicit expression and we must use a sta-
tistical package (Statgraphics, SAS, SPSS, etc.). In the following table we present
the maximum likelihood estimators for m;j; (@) for the different models.

’i,j, k‘) Nijk H1 Hék* H3 H4 H5 H6

)| 103 102.3 8 723 503 66.1 66

) 59  59.7 76 639 8.9 1129 1128

) 32 327 228 282 501 659 66

) s rr3 872 107.7  85.7 112.6 1128 .
2,1,1) 87 877 104 1177 819  66.1 66

)

)

)

109 108.3 92 104.1 1399 1129 1128
42 413 512 458 817 659 66
205 205.7 195.8 1753 1395 112.6 1128

b) We are going to establish the goodness-of-fit to the data of the model Hy. We
consider the power-divergence test statistics

2 R 2n
22 A(4))>’\_>\(/\+1)’

1 j=1k=1
J (mwk(e

(4) _
T¢<A>¢<o> B /\ +1)

7

2

whose asymptotic distribution is chi-square with 4 degrees of freedom. In the
following table the values of the test statistics are presented for some choices of A.
x| -2 -1 -1/2 0 2/3 1
Td)w o) | 117.738 114.746 11557 117.98 123.85 128.057

On other hand we have Xi 0.05 = 9.49. Then we should reject the null hypothesis.
¢) For A =1, we have

1
di — diy1 qu()l)’(ﬁ(o) X2 —dys1,0.01 '
H3* versus Hy 1 19.9 6.635

For A = 0, we have

!
dp — di41 Té:mdnm Xa1—di11,0.01 '
H3* versus Hp 1 19.647 6.635

Finally, for A = —1,

(0 2
di—diyr Ty |40 Xdj—dier,001 .
H3* versus H; 1 19.419 6.635
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Independently of the value of A we should choose the model H;.

d) If we consider the test statistic

~ A1) ~
Sq(!()}yqu) =2n <D¢(A) <p’ p(B )) — Dd’()\) <p, p(e ))) .

For [ = 1, we have

;) oo = 19.884 —0.0648 = 19.819
S »P(0)
—  19.712 — 0.0646 = 19. 647
¢S) )
; b = 19.568 — 0.0851 = 19. 483,
—1)»?(0)

and the conclusion is the same as in ¢).

8. a) In a similar way to the previous exercise we get

(i,5,k) | ngjr  Ha H, Hy Hy Hs Hg
( ) 8 88 10.21 10.8 18 15.8 36.3
(1,1,2) | 42 412 46 449 377 332 63.5
( ) 57 56.2 54.80 57.9 50.8 44.7 30.3
(1,2,2) 106 106.8 102 99.4 106.6 93.8 63.5
( )

( )

( )

( )

11 10.2 8.8 82 13.7 158 303
37 378 33 341 287 332 63.5
45 458 47 441  38.6 44.7 303
69  68.2 73 756 81.1 938 63.5

b) The maximum likelihood estimators for the parameters of the model Hj are
given by

011 by O3 0a3(12)

0.1368 -0.619 -0.4912 -0.2213 ~

¢) We have to check the goodness-of-fit of the data to the model Hs,

2 2 2 )M om

3) 2
T¢?>\)¢(0) (>\+1)ZZZ A(3 )>>\_>\(/\+1).

In the following table we present the values of the power-divergence test statistic
for the different values of A,
A | 2 —-1/2 —1 0 2/3 1 2
T(;f’i) b | 3.1795 3.1342 3.1431 3.132 3.13091 3.147 3.1882

On the other hand X%; 0.05 = 7.81. Then we should not reject the null hypothesis.
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d) First we present the test
HNull : H4 versus HAlt . Hg,

using the power-divergence test statistic

A

) 9 2 2 2 (4) s (5(4))
79 i = v LY @) | (20
PP v (3
WO A (A+1) P mijk(g( ))
We have
A 2 0.5 -1 0 2/3 1 2
qufz) b \ 10.069 11.136 10.714 11.626 12.413 12.873 14.579

and X%; 0.05 = 3.84. Then we should reject the null hypothesis and to choose the
model Hs, i.e.,

Hj :logpiji (0) = u+ 013y + O2(5) + O30y + O23(s)-

)

e) The results using the test statistics S(;(A) by AT€ given in the following table

(1) () ! 1
Model  2nDg, (p,p(6 ) 2nDg,, (p,p(6 ")) S<(i><)o>¢<o> 5(55()1)@0)

H, 0.1935 0.1928

H, 2.4427 2.4508 2.2492 2.258
H; 3.142 3. 147 0.6993  0.6962
Hy 13.851 12. 566 10.709 9.419
Hs 20.809 19.638 6.958 7.072
He 109.83 106.72 89.021  87.082

On the other hand Xi,—dlﬂ;a = X3. 0.05 = 3-84, and we should choose the model
Hs.

. a) The predicted values for the frequencies associated with the model Hj are:

(10.69911, 37.45849, 1.781327, 3.034881, 40.30089, 6.541514, 12.21867,
0.0965124,16.99271, 63.84969, 1.526851, 13.65695, 64.00729, 11.15031,
10.47315, 4.343055) .

Based on this vector we have

A -2 -1 -05 0 2/3 1 2
TS 4o | 1:8620 18086 1.9479 2.0242 2,171 2.2667 2.6674

and X?); 0.05 = 11.1. Therefore we should not reject the null hypothesis.
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b) The results obtained with Sg()o)7 (0) are given in the following table,

Model 20D, B.p©0") SV, di—di

H, 0.60

H, 1.23 0.63 1
Hs 1.55 0.32 1
H, 1.93 0.38 1
Hs 2.02 0.09 1
He 112 210 1
Hr 136.73 13261 1

On the basis of this table we should choose the model Hg because x7, g o5 = 3.84.

10. We have
ApAg) =
X
X
X

Sp(oy)diag (p (90)71/2) diag (p (90)71/2) Epoo) = Xpoo)-

—1
diag (P (60)~" 2) Zpeo) W) (W?;)Ep(eo)w(l)) Wi
Sp(o,)diag (p (60)~" 2) diag (p (60)~" 2) Epo0) W ()

WS W) WL Sy, di 0,)"\/?
(WhBpwn W) WhSpe,diag (p(00))
di 00)"2) o W (WL S0 W)
iag (p (6o) Py W) 02peo) W)

W i) Spia diag (p(80)1°).

The last equality follows because

We know that W ;1) is a submatrix of W;; therefore there exists a matrix B
verifying W ;1) = W ;) B. Therefore,

A Aut) =

-1
. —1/2
diag (p (80)™""*) Spo,) W) (W5>2p<eo>W(z>) W) Zpio)

diag (p(80)~?) diag (P (90)71/2) Epoo Wit

1 —
W1 Speo diag (p (60)~" 2)

diag (p (90)—1/2) Ep(BO)W(l)B (WSH)EP(@O)W([H))

(W5+1)2p(eo)W<z+1))

Wi Spoo)diag (p (60)~" 2)

diag (P(Oo)fm) Xpoo)W 41) (W5+1)2p(eo)W(z+1))

Wi Spoo)diag (p (60)~" 2) W11 Speo)diag (P (90)71/2)

Aqt)-

T .
We know (A Ausn) = Al and Al Al = Al ). But Ay, i =1,1+1,

is a symmetric matrix, therefore A 1)Aq) = Aqqy-
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Phi-divergence Measures in
Contingency Tables

8.1. Introduction

In this chapter we study the importance of the estimators based on ¢-divergences as
well as the test statistics based on ¢-divergences in some classical problems of contingency
tables. First, we study the problems of independence, symmetry, marginal homogeneity
and quasi-symmetry in a two-way contingency table and then the classical problem of
homogeneity. There are different approaches to these problems but we study them using
the result given in Section 5.5 in Chapter 5 regarding the minimum ¢-divergence estima-
tor with constraints as well as the result given in Section 6.3.5 in Chapter 6 regarding
the testing problem when the null hypothesis can be written in terms of some constraints
on the parameter space.

Throughout the chapter, the cited results of Chapters 5 and 6 will be very useful.
Due to this we reproduce them now.

We suppose that we have v (v < M) real-valued functions f; (0), ..., f, (0) that con-
strain the parameter @ € © C RMo, f, (8) = 0, m = 1, ..., v, such that they verify the con-
ditions i) and i) given in Section 5.5, and we denote by p (8¢) = (p1 (60) .., par (80))"
where 0 is unknown, the probability vector associated with the multinomial model under
consideration. If we denote by

Oy={0€0: [, (0)=0,m=1,..,v},

the restricted minimum ¢-divergence estimator of 6y or the minimum ¢-divergence esti-
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mator of Oy in O, /0\((;) verifies

A(r) - . - ~ ~

8, = 6+ H (80) Ir (80) " A(00)" diag (p(80)™"/*) (B~ p(80)) + 0 (B — P (8)]])
8.1

(8.1)

where the My x Mo matrix H (8o) is defined by
H(00)= 1—Ir(0)" B(00) (B(0:)Ir(00) B(0:)") B@y): (52)
I denotes the My x My identity matrix and also
vi (0 ~a) £ vo.w @), (53
where the Mo x Mo matrix W (6p) is given by
Ir (85)”" (I ~B(8))" (B(00)Ir00) ' B(6,)") B(0:)Ir (90)1> .

I (6p) is the Fisher information matrix associated with the multinomial model and
B (0y) is the v x My matrix of partial derivatives

B (6,) = <6fm—(90)>

0 ) 3
For testing,
Hy : p=p (6y), for some unknown 6y € Oy C © C R, (8.4)
we consider the ¢-divergence test statistic
¢§?1)D¢1 <ﬁ7 P(afz;))> n_%;o X?\i—]\ig-ﬂ/—l? (8.5)

where 5{(;2) is the minimum ¢s-divergence estimator of 8y in ©.

We shall assume that ¢1, g2 € ®* are twice continuously differentiable in x > 0 with
@Y(1) > 0 and ¢4 (1) > 0.

8.2. Independence

One of the most interesting models in a two-way contingency table consists of testing
the independence between two random variables X and Y.

We consider a two-way contingency table and let p = (P11, ..., Pr J)T be the non-
parametric estimator of the unknown probability vector p = (p11, ..., pr J)T , where p;; =
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Pr(X =14,Y =j), withp;; >0,i=1,....,1, j = 1,..., J. The hypothesis of independence
is given by
HO pl] :pt*p*J, 1= 1, ...,I,j = 1, ceey J, (86)

I J
where p,; =), pij and pi = ijl Dij-
We consider the parameter space

= {9 0= (pijii=1,..,1, j=1,...J,(i,5) £ (I, J))T} (8.7)

and we denote by
p(g) = (pllv'“vaJ)T:pv (88)

I J
the probability vector characterizing our model with pr; =1—>" > p;;. The hy-
=1 j=1
(0,5)#(1,J)
pothesis of independence given in (8.6) can be formulated again using the (I — 1) (J — 1)
constraints
hij (9) = Dij — PixDPxj = 0, i = 1, ,I - 1, j = 1, ceey J—1. (89)

Also considering the parameter 3 = (D14, ..., DI—1x, Ps1, ...7p*J_1)T and the set

B = {(al,...7a1,1,b1,...,bJ71)T S RI+J—2/Z£:_11 a; < 1,2;}:_11 bj <1,
a; >0, b0;>0, i=1,...0—1, j=1,...J —1},

the hypothesis (8.6) can be expressed for some unknown 6y € © with p (6y) = p, as
Ho:py=p(9(By)). ByEB and g(By) = bo, (8.10)
where the function g is defined by g = (¢;5; ¢ =1,....1, j=1,...,J,(4,7) # (I,J)) with
9i;(B) = pispujy =11 —1, j=1,.,J-1

and

-1
i |
gis(B)= [1- ‘21 Pij | Pis, 0 =1,..., 1 — 1.
]:
It is important to remark by (8.8) that p(g(B)) = (9:;(8),i=1,....1, j= 1,...,J)T,
where
J
91s(B) =1— Z Z 9i5(B)-
i=1  j=1
(1.4 T)

With this approach the hypothesis of independence can be formulated in terms of the
results presented in Chapter 6 (see Exercise 8).
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In this Chapter we consider the approach given in (8.9). We can observe that with
this approach the hypothesis of independence can be written as

Hy : p=p(0y), for some unknown 87€0y,

where
©={0€O0:h;;0)=0,i=1,..I—-1, j=1,..,J -1}, (8.11)

with h;; defined in (8.9) and p (@) defined in (8.8).
For I = J = 2, we only have a constraint which is given by

hi1(0) = p11 — p1aps1 = 0,
and for I = J = 3, we have four constraints given by

h11(0) = p11 — p1«ps1 =0
hi2 () = pi2 — pr«ps2 =0
hoi (0) = p21 — p2«Ps1 =0

(0) = p22 — pasps2 = 0.

8.2.1. Restricted Minimum Phi-divergence Estimator

In the following theorem we present the expression of the restricted minimum ¢—diver-
gence estimator for the problem of independence as well as its asymptotic properties. We
can observe that this estimator is the minimum ¢-divergence estimator under the inde-
pendence hypothesis.

Theorem 8.1

The minimum ¢-divergence estimator,

T, T
8"’ = (pl’d)' i= 1,1, j= 1, and (i,5) # (I, J)) ,

2,37

of 00€Oq (i.e., under the hypothesis of independence) is obtained as a solution of the
system of equations

J
Z(pw( : )— f¢/( ’ ))—u =0, i=1..1I

I
Z<p2*¢< - >_ . d)/( 2 >>_,U/ :07 lev'“v‘]v

where p is given by

J
=y <pi*p*j¢ <¢> - (i» :
et NP Prj n NPisPrj

=17

(8.12)
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Its asymptotic distribution is
A1,
Vi (8" ~60) L NOWI(6)) (8.13)

where the (IJ — 1) x (IJ — 1) matrizc Wt (0y) is given by

3o, (I(IJ—I)X(IJ—l) ~ B (60)" (BI (60) X9, B; (OO)T) By (6o) 200> ;o (8.14)

the (I —1)(J — 1) x (IJ — 1) matriz By (6y) is defined by

_ [ 0hi;j (6o)
BI (90) - < 89 i:l,...,[*LjZlv'“’Jil,

and g, = I (80) " is the (IJ—1) x (I.J — 1) matriz verifying g, = diag (89) — 0005 .
Proof. Instead of getting

o~ T
8"’ — (p{ﬁ; i=1,00, j=1,..,J and (i,5) # (I, J))

we shall obtain T
~I,
p(8"") = (p!z¢- i=1,..1, = 1,...7J) .

ij

The p;js minimizing the ¢-divergence

) =YY 0o (22)

=1 j=1

subject to the hypothesis of independence (or the constraints about 8 given in (8.9)) may
be obtained minimizing the Lagrangian function

—1J—

D ITIETESS

=1 j=1 =1 j=

1 I J
Aijhij (8) + 1 [ 1= "py; (8.15)
1

i=1 j=1

where );; and p are undetermined Lagrangian multipliers. Taking into account the
constraints given in (8.9), minimizing the expression (8.15) is equivalent to minimizing
the expression

Zzpz*p*]¢< » ) +,U/1 1 _Zp*] +/1«2 (1 - sz*) .
* *J

=1 j=1

Finally, differentiating with respect to p;« and p.; we get the system of equations given

I,
n (8.12), whose solutions provide the minimum ¢-divergence estimator, 6

The asymptotic distribution follows from (8.3) because Iy (8g)” " = ¥p,, under the

considered parametric multinomial model. -
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Corollary 8.1
The minimum power-divergence estimator

T, ’
p(g d’(k)) _ (p{z(z)(*); i = 17_._717 j = 1,,J)

L)

of p(6o) (i.e., under the hypothesis of independence (8.9)) is given by

I, , .
pU’d)(” fpsz X p, ¢m, i=1,..,1, j=1,..,J
where p;, A and p, D90 are the solutions of the system of equations
1
A+1
J A+1
— PNNCION
j=1
1o (p*y )
1% ™ _1 1= 17 7I
A+1
A+1
)
i=1| j=1 (I/)‘iﬁ(*))
(8.16)
1
1
I A+1
>
= (L ¢<A>)
i=1 (p*
*;ﬁ(k) ! T j= 1,.. ,J
A+1
. A+1
S|y
X
= (Lo
= | = (Pi* <A>)
Proof. In this case the system of the equations (8.12) can be written as
1\ Al
J A1 1 J A+l e
n;; B n;;
> rre==wwae Sl DO DDl
j=1 At (pi* ) (p*j ) i=1 \J=1 At (p*j )
1\ A+l
I A1 1 A+l e
n;; B n;;
> st wrysee il DY s —
i=1 pAtl (P*j ) (Pz‘* ) i=1 \ j=1 p*t1 (pi* )
It is clear that the solution of this system is given by (8.16).
For A =0,
pl;(ﬁ(O) _* and pi.}¢(0) _j7i = 1’ ""I’ j = 17"'7J7
n n
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hence the maximum likelihood estimator, under the hypothesis of independence, is ob-
tained.

If A\ - —1 the minimum modified likelihood estimator under independence is ob-
tained as the solution of the system of equations

Ié_
J Pyj v
~,p—1)
I,¢-1) i=1\ Py .
. = 1=1,...,1
* T4 _ PERRY]
! 1 J Psj n
S| 5
I,¢-1
i=1 j=1 p*j =n
Ié_
I Pix -
I,¢(-1)
Loy _ =1 \ Pix =1,
q - T,6,_ — .
* J I Pi*< Y T
S 5
I,¢-1
j=1 i=1 pi* =n

We call the resulting estimators for A = —2, —1/2, 2/3 and 1 the minimum modified chi-
square estimator, Freeman-Tukey estimator, Cressie-Read estimator and the minimum
chi-square estimator, respectively.

Remark 8.1

For I =J =2, given 6y = (psx101+, (1 — ps1) P1s, Ps1 (1 —pl*))T € Oy, it is easy to
check that

- Br(60) = (1 = p1s — Pe1, —Ps1, —P14) 5

- Xy, = diag (0o) — 0,67,

-1
-+ (B1(600)%0,B1(00)") = (proper (1 = pre = pr +propn))

and it is not difficult to establish that the matrix Wi (0y) is given by

P oI ( P1x (1 —101*) 0 ) < P+1 1 ~Pa P )

1— _
P 1 P 0 Ps1 (1 — ps1) Pix —Pix 1 —Dpis
—DPx1 — P1x

where:

- The matrix

< D1x (10— P1x) o (107 . )
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is the inverse of the Fisher information matriz corresponding to the parameter
A -1
ﬂO:(pl*v p*l) , L€, IF(/@O)

- The matriz
P+ DP1x
1- D=1 —P1x
—Px1 1—pis
9 T
is the matrix of partial derivatives (%) .

Then we have

W00 = (2E0) 1 (240)).

This relation is true in general.

Theorem 8.2
Under the independence model, we have

W (60) = Mg Ir(By) ' Mg, (8.17)
where 99(3
Mg, = < 96(,60)> ,

and g was defined in (8.10).
Proof.
It is not difficult to establish that
Ir(By) = MBOEEJMZQO-
Then we have
-1

MY Tp(8y) " Mg, = M} (MﬂozgolM};O) Mg,. (8.18)
Multiplying (8.17) by 29_01 Mgo on the right and by MﬂOZgol on the left and taking into
account (8.18) and the expression of Wy (6y) given in (8.14), we have

—1 T -1 T
M'aozeo Mﬂo = Mﬂozeo Mﬂo
— Mg, B;(60)" (Bi(80) S0 B; (60)")

1
B (60) M, .
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But
Mg, B (HO)T =0 and By (0)) Mgo =0.

Then we have established that
ATXA=ATYA,
where X = M} Ir(8,)"'Mg,, Y = W, (8)) and A = zgole;O. But the matrix A

has full rank, then X =Y. -

Remark 8.2
The Fisher information matriz associated with the independence model is given by

(MEOIF(ﬂo)_lMﬂo)il,
since if we formulate the problem of independence based on (8.10) we have
Vi (B=By) = N(0.15(80)7).
where ﬁ is the mazimum likelihood estimator of B, and
Vi (9(8) - 9(80)) 2 N (0, M Ir(8) " Mg,).
In Theorem 8.1 we have established that

\/E(El’d’—eo) L N0, W (8o)).

n—oo

Then the restricted minimum ¢-divergence estimator will be BAN if and only if

Wi (6o) = MEOIF (Bo) ™" Mg, .

/\I’ .
Therefore, 6 ¢ is BAN by Theorem 8.2.

Now we are going to present a result that establishes sufficient conditions for unique-
ness of the minimum ¢-divergence estimator in the independence problem.

Theorem 8.3 1o
The minimum ¢-divergence estimator under the hypothesis of independence, 8 =~ =

T
(piljid’; i=1,..,1, j=1,...,J and (i,5) # (I, J)) , 18 unique if
ko(i,§) > —ki(i, ) >0, i=1,..,1; j=1,...J

where

kl(i,j)¢< i ) 2 ¢’( Bij ),il,...,[;jl,...,J

.. nij ” N5 . .
ko(i,j) = 2—5=5—5¢ yi=1,.,1; 7=1,...,J.
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Proof. It is necessary to establish that the function

f(p1*7~-~apl*ap*1a-~-ap*J Zzpz*p*ﬂb(

=1 j=1

npz*p*J )

is strictly convex. Consider the functions

fij(pl*v'“7pI*7p*17~"7p*J) pl*p*]d)( ) ) izlv'“v[a ]:177J

NPixPxj

We will use the fact that if f;; is strictly convex for all ¢ and j, then Z£:1 Z;‘le fij is
strictly convex.

For the sake of brevity, we forget indexes and write

k
f(@,y) = zyo( y)

where k is a positive constant. The determinant of the Hessian matrix of the function f

(Y (b(A) Ea (L) K (A))

which can be written as follows

() BB (8) A (8) - (4))

Hence the result holds.

It is not difficult to establish that in the case of the power-divergence family the
result is verified for A > —1/2.

8.2.2. Test of Independence

Based on the ¢-divergence test statistic given in (8.5) we should reject the hypothesis
of independence if

~1,¢2 2n ~ 1o

I (9 ) =——7D (p,p(O )) > ¢,

" ZiOkee

where ¢ is a positive constant. In the following theorem we establish the asymptotic
I,

distribution of the test statistic ¢ (9 ¢2) .

Theorem 8.4
The asymptotic distribution of the ¢-divergence test statistics

I (5"’”) = %D% (13, p(§1’¢2)) (8.19)
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and
[oh (5“”) = (0)27;,1, o (ps, (B p(51’¢2))) : (8.20)

for testing the hypothesis of independence, is chi-square with (I —1)(J —1) degrees of
freedom.

Proof. In our case we have IJ cells and by (8.7) I.J — 1 parameters that are necessary
to estimate. Using relation (8.9) the number of constraints is (I — 1) x (J — 1) . Then by
(8.5) the asymptotic distribution of the family of test statistics (8.19) is chi-square with

IJ — IJ—-1 + (-1H(J-1) -1 = (I-1)(J-1)
Cells Estimated Constraints Degrees of
Parameters freedom

In relation with the family of (h, ¢)-divergence test statistics given in (8.20), we have
h(z)=h(0)+h (0)z+o(x),

then
~I,¢2 ~I,¢2

h(Deor (B:p0™))) =1 (0) Do, (B.® ™)) +o0r (1)
and we get that the asymptotic distribution of the family of test statistics given in (8.20)
is also chi-square with (I — 1) (J — 1) degrees of freedom.
Remark 8.3
~1,¢2 . .
For ¢1 (z) = ¢2 (z) = zlogz —x+1 = ¢(o) (x) we get that I3 (0 ) coincides with
the classical likelihood ratio test statistic for testing independence given by

I, N Dz
G2 =17 (9 d)(o)) =203 > pijlog P

and for ¢ (z) = zlogz —z+1 = ¢(g) () and ¢y (z) = & (x — 1)% = é1) (x) the classical
chi-square test statistic given by

I J /~ ~ o~ \2
~I,¢ D .
X2 = L(f(l) (9 (0)) =n E E Bij = Pinbe)” .

It is important to note that for ¢o (x) = xlogx —x+1, we get the family of test statistics
studied by Zografos (1993) and Pardo, L. et al. (1993a), which is

o1 (§) = 7o (PO 20 5 s 5
1 (0) =1 (07) = 5y Do (B p(0), (8:21)
o~ /\17
where 0 = 0 ¢ is the maximum likelihood estimator,

o (Mix N . . . T
0= (25 x B i1 L, =1 (1)) £ (1))
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Based on the previous test we should reject the hypothesis of independence with
significance level « if

I (§I’¢2) or ( Iovh (§I7¢2)) > X%I—l)(J—l)@' (8.22)

Power of the Test

Let q = (q11, ...,qIJ)T be a point at the alternative hypothesis, i.e., there exist at least
two indexes ¢ and j for which ¢;; # ¢i« X g«j. We denote by 02 the value of @ verifying

05* =argmin Dy, (¢, (9)),
[2SCH)

where O was defined in (8.11).

It is clear that

007 = (fij(q); i=1,... 1, j=1,...,J,(i,5) # (I, ]) )"
and
p(02?) = (fij(a); i=1,..1, j=1,...J)" = f(q),
with
I J
fri(q Z Z fij(@).
BT

The notation f;;(q) indicates that the elements of the vector 0f2 depend on q. For
instance, for ¢ (z) = zloge —z + 1,

p(efz) = (Q'L* X Qxj; 1= 17'”7—[7 j = 17 7J )T7

and fi;(q) = Gix X Gsj-

We also denote

~I, ¢ T
0" = (P =11 =1 1) £ (1))

]

and then
~I,¢p2

T
p(e ):(p{j¢2;Z.::l""’]-’j::l’""J) Ef(ﬁ)’

where f=(fij; i=1,..,1, j=1,..,J)" . If the alternative q is true we have that p
~1, . .-
tends to g and p(@ ¢2) to p(6%?) in probability.
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If we define the function

\Ij¢1 (Q) = D¢1 (Q7 .f(Q))v

we have

9Dy, (q, f (@) ~
o (9)= o (@) 1) L8 L@ 5 - 4)+o(p - al).
i=1 j=1 i
Hence the random variables

Vn(Dg, (B, f(P)) — D, (q. £(9)))

and

\/—ZZaD¢1qf )(pU ij)

0
=1 j=1 ij

have the same asymptotic distribution. If we denote by

_ 9Dy, (g, f(a))

- 8.23
L) a%’j ( )
and by L = (ly; i =1,..,I, j=1,....J ) we have
L
Vi (Dy, (B, F(B)) — Do, (a F(a)) > N (0.17Sql), (8.24)
where
Bq = (@i Oirjiade) — Giniz)), | -
21 22 EREER]
J1,J2=1,...,J

In the following theorem we present the asymptotic dlstrlbutlon using the maximum
likelihood estimator. In this case we have:

Theorem 8.5

Let p(@) = (Dix X Duj, 1=1,...,1, j=1,.., J)T the mazximum likelihood estimator of
p(0) = (p11, ...7p1J)T, under the independence hypothesis, and q a point at the alternative
hypothesis. Then,

Vi (D, (3.0) = Do, (a.a1s)) == N (0,0%,(2)

n—00
where )
I J
0¢1 E E q’L] 2] E E qmlzg )
=1 j=1 =1 j=1

@) @rj y (_4ri
()22
* rgl < " QT*Q*] Q*] ! QT*Q*]

Lox <q*s¢1( Qs ) QL5¢/( Qs >>+¢,1( %ij )
s=1 QixGxs ix QixGxs QixGxj
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and qry ;= (Qix X Qsj, 1 =1,...,1, j =1, s )" whenever o3 (q) > 0.

Proof.

We have to calculate the elements /;;, given in (8.23) taking into account that in this

case fi;(@) = Gix X qxj . We can write the function ¥y, (q) as

N dij Qi
Uy, (q) = Z Z Qz*Q*j¢1 - | = = Qixxj P1
J

Gix *] Qz*Q*]
Qis ! drj

+ Z QixGxsP1 + Z qr’*‘]*j¢1

s=1 i*Q*s r=1 qr*q*]

s#j r#i

L Z Grs

+ Z Z QrxQxsP1 =G+ G2 + Gs + Gy.

r=1s=1 Qr«Qxs

r#i s#£J

Then we have

oGy 0 (2 (o + gin) + ) (i) Tixdei ~ 4ij (quj + ix)
- * 7%
= o1 () (g +a) + 0 () (1D 2
QixGxj Qixqxj Gix Qx5

oG J
2= Z {Q*s¢1 ( _q > +q1‘*q*s¢/1 <q—> Yis (_1) LZ}

3%] ixQxs QixQxs /) Qxs Qix

J J

Qis / Qis Qis
s; 1 (Qi*Q*s> s; o1 <Qi*Q*s> i
o p

a2 () -5 e ()
= TrsP1 —
a‘]ij %} " Qr«Qx;j rz;:l Qxj Qr«Qxj
0G: _
0q;j .
Therefore,
ov 1
Iy = o (@ _ Z(f*¢1<QT]> qm¢,1<qm
8%] le Qr+Qxj Qx5 Qr«Qxj
Qis Qis |, Qis
+ GxsP1 —
sz_:l( wed (Qi*Q*s qix ¢1 (%*Q*s))
+ d)/ < qlJ
GixGxj
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and based on (8.24) we have
2
I J I J
U?pl (q) = szql = quw’l?j - Zz%jlij
i=1 j=1 i=1 j=1
|

Using this result it is possible to get the power of the test of independence. This is
given by

B (@) =1, ( v <¢"( ) 2

— Dy, (q,q9 ))
o4, (@) \ 2n X{r-1)(-1).0 — Dor (@:@15s)

where ®,, (x) is a sequence of distribution functions leading uniformly to the standard
normal distribution ® ().

Remark 8.4
For the Kullback-Leibler divergence we have

Z Z gy log? —1— Z Z gijlog

=1 j=1 qq] =1 j=1 z*Q*]

. .. ~1 2 ~I,¢2
In general, theoretical results for the test statistics I (9 ) or [¢1h (0 ),
under alternative hypotheses, with ¢o () # xlogax — x + 1, are not easy to obtain.
An exception to this fact is when there is a contiguous sequence of alternatives that
approaches the null hypothesis Hy : p = p(6y) , for some unknown 6y € ©g, at the rate
O (n=Y/2) . Consider the multinomial probability vector

dij . .
pn,z]:pz] (90)+ \/ﬁ, 221,...,1, ]:17~-‘7J7

I J
where d = (di1, ...,dIJ)T is a fixed IJ x 1 vector such that szij = 0; recall that
i=1 j=1
n is the total count parameter of the multinomial distribution and 6y is unknown but
belonging to ©g. As n — oo, the sequence of multinomial probabilities {p,, },, .y With

Dy = (prijy i=1,.., 1, j=1,...,J)"

converges to a multinomial probability in Hy at the rate of O (n‘l/ 2) . Let

Hl,n i Pp,= p(eo) + NEEN (8.25)

d
\/ﬁ?
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be a sequence of contiguous alternative hypotheses, here contiguous to the null hypothesis
Hy : p=p(0y), for some unknown 8,€0,. We are interested in studying the asymptotic

. " ~1 o b1, ~I,¢2 . .
behavior of the power of I (0 ) (or Ioh (0 )) under contiguous alternative hy-
potheses given in (8.25).

The power of this test is

T = Pr (Iﬁfl (@I’d)z) (or Io1h (@I’¢2)) > X%I_l)(J_l)’a/HLn) .

In what follows, we prove that under the alternative Hj 5, and as n — oo,

1 (8") (or 12 ("))

converge in distribution to a noncentral chi-square random variable with noncentrality pa-
rameter 6 given in Theorem 8.6, and (I — 1) (J — 1) degrees of freedom (X?I—l)(J—l) (6))
Consequently, as n — oo

T, — Pr (X%I—l)(J—l) (6) > X%1_1)(J—1),a) :

Theorem 8.6
Under Hy, : p,,=p(00) + %, 0y some unknown value in Oq, the ¢-divergence test

statistics
I (5“”) (or 13" (51"”)) (8.26)

are asymptotically noncentrally chi-squared distributed with (I —1)(J —1) degrees of
freedom and noncentrality parameter

W

=1 j=1

J d2
=1 Zp*]

Proof. Pardo, J. A. et al. (2002) established that for testing Hy : p = p (0) , for some
unknown 8,€0, C © C RMo with
©p={0€0:f,0)=0, m=1,...v},

versus Hy, : p = p(600) + d//n, the asymptotic distribution of the test statistic given
n (8.26), under H ., is noncentral chi-square with M — My + v — 1 degrees of freedom
and noncentrality parameter given by 6§ = p” p, where

p = diag (p(80) /%) (I - L (680)) .,

L (60) = diag (p (80) %) A (60) H (60) Zo, A (60)" diag (p (60) /*) .
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and H (0y) was given in (8.2).
In our case it is not difficult to establish that
u'n= d"diag(p(00) ") { (- A(00) Ze,A (60)"
£ A(00) 0, By (00)" (Br(00)20,B1 (00)")  B1(60) S, A (00)T) }
% diag (p(@o)_l/z) d.

Applying (8.17) we have

1
S0, — o, B1 (60)" (B1(80) Ta,B1 (60)")  Bi(60)To, = M Ir (B)) " Mg, -

Multiplying, in the previous expression, on the right by A () and on the left by A (HO)T
we have

W= d"diag (p(00) ") (I - A(00) Mj Ir(By) "' Mp, A (80)")

x  diag (p (90)‘1/2) d
and

p(00) =p(9(By)), A(60) Mg, = A(g(By)),
then

u'n = d'diag (p(9(80)7")) (I - A(9(B0) Ir (9(B0) " A(g(B)")
xdiag (p(9(80)""*) d.
It is not difficult to establish that the matrix d” diag (p (g(,@o))fl/ 2) is given by

( du di2 diy dn dr2 dry >
\/pl*p*l7 \/pl*p*Q7 h \/pl*p*Jw o \/pl*p*l7 \/PI*P*27 v /PIxDxJ

and the matrix I'r(83,)~! by
Sp, 0
0 Yp, ’

where Xp = diag (p;) — p;p; and Sp = diag (p;) — p,;p}, being

Pr = (P, s p1-1:)" and p; = (Put, s Ps—1)" .
With these expressions one gets
I J 2 I J 2
d2. d2 d?.
S S) I S B ot
i=1 j=1 pi*p*j i—1 Dix j=1 p*j

For more details about the problem of independence in a two-way contingency table
see Menéndez et al. (2005b).
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8.2.3. Multiway Contingency Tables

The parameter space associated with a three-way contingency table is
o= {9 0= (pigp; i=1,. 1, j=1,.J k=1, K, (i,,k) # (I, J,K))T},
where p;jr = Pr(X =1,Y = j,Z = k). The hypothesis of independence,
Ho @ pijic = DissPajubonk, 1 =1, 1, =1,.,J, k=1,.., K,
can be formulated by using the IJK — I — J — K + 2 constraints,
hiji (0) = Pijk — DissDsjsDsske = 0,
where i, j,k € D, being D the set,

{G,5,k))i=1,..,1,j=1,...J k=1,... K, (i,5,k) # (i1, ], K),i1 =1,..., I,
(iujv k) 7é (IvjlaK)a jl = 17“‘7J_ 17 (’Lmjvk) 7é (Ia Jakl)v kl = 17“~7K_ 1}

In this situation similar results to those of the previous subsections can be obtained
(see Pardo, J. A. (2004)).

8.3. Symmetry

An interesting problem in a two-way contingency table is to investigate whether there
are symmetric patterns in the data: Cell probabilities on one side of the main diagonal
are a mirror image of those on the other side. This problem was first discussed by
Bowker (1948) who gave the maximum likelihood estimator as well as a large sample
chi-square type test for the null hypothesis of symmetry. In Ireland et al. (1969) it was
proposed the minimum discrimination information estimator and in Quade and Salama
(1975) the minimum chi-squared estimator. Based on the maximum likelihood estimator
and on the family of ¢-divergence measures, in Menéndez et al. (2001e) a new family of
test statistics was introduced. This family contains as a particular case the test statistic
given by Bowker (1948) as well as the likelihood ratio test. The state-of-the art in relation
with the symmetry problem can be seen in Bishop et al. (1975), Agresti (2002), Andersen
(1998) and references therein.

We consider a two-way contingency table with I = J and let p = (P11, ..., 0r1)%
be the nonparametric estimator of the unknown probability vector p with components
pij =Pr(X =4,Y =j), with p;; >0and ¢,j =1, ..., I.

The hypothesis of symmetry is
H() :pij :pjiy ; i,j: 1,...,[. (827)
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We consider the parameter space

0= {0 0= (piy; ij=1,...1, (i,5) £ (I, 1))T}, (8.28)

and we denote by

p(0) = (p11, --~7PII)T =D (8.29)

the probability vector characterizing our model, with p;; = 1 — 25:1 Z§:1 Dij With
(i,7) # (I, I). The hypothesis of symmetry introduced in (8.27) can be formulated using
the following I (I — 1) /2 constraints

hij (9) =pi; —pi =0, 1<, i=1, I =15=1,..1. (830)

Also considering the parameter B = (P11, ..., P11, P22, -, P2, -, PI-171-1,P1—11) " and the

set
I(I+1) 1.

2

_ T
B = {(ai1,...,a11, a22,...,a01,....,ar—17-1,a7-17)" €R
Zigj ai; < 1, 0< Qij, 1,7 =1, ..71},

the hypothesis (8.27) can be expressed for some unknown 6y € © with p (0y) = p, as

Hy:py=p(9(By)), ByEB and g(B,) = b, (8.31)
where the function g is defined by g = (¢;5; ¢, =1,...,1, (4,5) # ({,I)) with
_ iy 1<y o
ij = LT, g =1,...,1-1,
9i5(B) {pji P> J

and
91;(B) = pjr, j=1,...,1—1
gir(B)= pir, i=1,..,1 -1

Note that p(g(8)) = (g:;(8); irj = 1., )" , where
I
g (B =1-="> g8
i,j=1
(6,3)#,T)
This approach can be formulated in terms of the results presented in Chapter 6.

In this Chapter we consider the approach given in (8.30). We can observe that with
this approach the hypothesis of symmetry can be written as

Hy : p=p(0y), for some unknown 87€0y,

with
©)={0€O:h;(0)=0,i<yj,i=1,.,1-1,j=1,.., 1}, (8.32)

P (0) defined in (8.29) and h;; in (8.30).
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It is clear that the 512;12 x (I — 1) matrix Bg (o) given by

s (6o) = (—(%U (Bo)

8.33
0;; ) o) 2y (8.33)

has rank I (I —1) /2, because the matrix of partial derivatives Bg (6p) has the same
rank as the matrix

(I 1(1;1) % 1(1;1) s I 1(1271) « 1(1271) s (0 1(1271) ><I)

where I rg—  1u-1) is the identity matrix of order /(I —1)/2 and O ru-1, , ; is the matrix
2 2 2

with I(I — 1)/2 rows and I columns whose elements are all zero.

For I =2, we only have a constraint which is given by
hi2 (8) = p12 — pa1 = 0,
and for I = 3, we have three constraints given by
hi2(0) = pi2—pa1 =0

hi3(0) = pi13—p31 =0
ha3 (0) = pa23 —p32 = 0.

In the following we obtain the expression of the minimum ¢-divergence estimator of
6y € Og, i.e., the minimum ¢-divergence estimator under the hypothesis of symmetry
(8.30).

Theorem 8.7
The minimum ¢-divergence estimator,

~5,¢ o . T
67" = (% i =1, and (i) £ (L))

of By in Og (i.e., under the hypothesis of symmetry) is obtained as a solution of the
system of equations

§<¢<p”)+¢(@) p”ab’(’“) p%'(p“))u =0, ij=1,1,
Pij Dij Pij Dij Dij Dij

(8.34)
where p has the expression
I .
1 Di Dji Di ~ DPji
=333 o (B2) v ()] - (B2) - (B2))
i Pij Pij Pij Pij
Its asymptotic distribution is given by
~S,¢
NG (9 - 00) L N0, W5 (60), (8.35)

© 2006 by Taylor & Francis Group, LLC



PHI-DIVERGENCE MEASURES IN CONTINGENCY TABLES 371

where the (I? — 1) x (I? — 1) matriz W g (6o) is

Ws (80) = Zo, — Zo,Bs (80)" (Bs (60) X9, Bs (90)T) Bgs (60) Xg,,

and Bg (6y) is the matriz defined in (8.33).

~S, .. .. T
Proof. Instead of getting 6 v _ (pfj"b; i,7=1,....,1 and (i,7) # (I,I)) we shall

. ~S,¢ Sib. . . T , .. . ..
obtain p(@ ) = (pw D1, = 1,...,]) . The pj;s, i,j = 1,..., 1, which minimize the
¢-divergence

Dy(p,p(0))

subject to the null hypothesis of symmetry (or the constraints about 8 given in (8.30)),
may be obtained by minimizing

I I I I
p
ZZZMW( ”) Y N —pi) | 1= py (8.36)
i=1 j=1 i=1 j=1 i=1 j=1
1<j
with respect to the p;;, where u and )A;; are undetermined Lagrangian multipliers. Min-
imizing the expression (8.36) is equivalent to minimizing the expression

I I I I
532w (o(B) wo(22)) e [1- 2 2m
i=1 j=1 v i=1 j=1

Differentiating with respect to p;j, 4,5 = 1,...,1 we get the system of equations given in

8,
(8.34), whose solutions provide the minimum ¢-divergence estimator 6 ¢

The asymptotic distribution follows from (8.3) because in our model I'r (8g)~" =
o,

Corollary 8.2
.. . . /\Sv(j’(k) o S,qﬁ()\). .. T
The minimum power-divergence estimator, p(@ Y= (p;; M4, 5=1,..,1) of
p(00), under the hypothesis of symmetry (8.27), is given by

(A/\-i-l Jrﬁ?;rl) pesy

S, b ..
i » = - Y , ,7=1,..,1. (8.37)
/\)\ 1 /\)\ 1
SIS
=1 j=1

Proof. In this case the system of equations (8.34) can be written as

A+1

“A+1 Ak+1 u )\+1 /\k+1 il
1 2 i=1 I
p‘kﬂ’l I Z?.] Ty

“ i=1 j=1
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and it is clear that the solution of this system of equations is given by (8.37).

For A =0,
pf77¢(0) = w? i?j = 17 "‘7‘[7
8o we obtain the maximum likelihood estimator for symmetry introduced by Bowker
(1948).

For A — —1, we obtain as a limit case,

S,p(—1) _ (ﬁijﬁji)l/z Lo
pz] - T T ) ’ij - 17'”7—[
~ ~ 31
E E (pijpji)
i=1 j=1

i.e., the minimum modified likelihood estimator for symmetry introduced and studied in
Ireland et al. (1969).

For A =1,

1/2
S,y _ (p22] +p )

Y ()

i=1 j=1

we get the minimum chi-square estimator for symmetry introduced in Quade and Salama
(1975).

Other interesting estimators for symmetry may be: For A = —2 the minimum mod-
ified chi-square estimator, for A = —1/2 the Freeman-Tukey estimator and finally for
A = 2/3 the Cressie-Read estimator.

Remark 8.5
For I =2, given 8y = (p11, P12, pgl)T € Oy, it is easy to check that

Bgs (90) = (O’ 17 _1)

S, = diag (80) — 0067,

- (Bg (60) Xg,Bs (00)T)71 = (— (12 — p21)” + P21 +p12)71 )

and it is not difficult to establish that the matrix W g (0y) has the expression

p11 (1 —p11) —pupiz —Pp11P12
—p11P12 —3p12 (2p12 — 1) —3p12 (2p12 — 1)
—p11P12 —3p12 (2p12 — 1) —3p12 2p12 — 1)

This matriz can be written as
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1 0
0 1 <p11 (1=p11) —pupie > ( 1 00 >
0 1 —P11P12 3p12 (1 — 2p12) 01 1)’
where:
- The matrix

< p11 (1 —p11) —pupie )
—p11P12 1p12 (1 — 2p12)

is the inverse of the Fisher information matriz corresponding to the parameter
A -1
ﬂO: (plla p12) , L€, IF(/@O) .

- The matriz
10
0 1
0 1
T
is the matriz of partial derivatives (%ﬁ)

Then we have

This result can be proved in general in the same way as the one corresponding to the
problem of independence in Section 8.2 .

Theorem 8.8
Under the hypothesis of symmetry, we have

W (60) = MZOIF(ﬂo)MBO-

Proof. The proof follows the same steps as the proof of Theorem 8.2.

From Theorem 8.8, it can be seen that @S’d)z is BAN.

8.3.1. Test of Symmetry

Based on the test statistic given in (8.5) we should reject the hypothesis of symmetry
if
~S,¢2 2n 5.2
S,fl (9 ) = de)l (p,p(@ )) > c,
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where ¢ is a positive constant. In the following theorem we establish the asymptotic
S,
distribution of the test statistic S¢* (0 ¢2) .

Theorem 8.9
The asymptotic distribution of the ¢-divergence test statistics

5 (67%) = 27 D (p07™)) (5.39)
and S 2 S.
s (67 = ) " (Do (P20 ) (8:39)

for testing the hypothesis of symmetry, given in (8.27), is chi-square with I(I; D) degrees

of freedom.

Proof. In our case we have I? cells and by (8.28) I? — 1 parameters that are necessary
to estimate. Using the relation (8.30) the number of constraints is I (I — 1) /2. Then by
(8.5) the asymptotic distribution of the family of ¢-divergence test statistics (8.38) is
chi-square with

7 - I’ -1 + I(I-1)/2 -1 = I(I-1)/2
~~ S—— ——— ———
Cells Estimated Constraints Degrees of

Parameters freedom

In relation with the family of test statistics given in (8.39), we have
h(z)=h(0)+h (0)x+o(x),

then
ey 8¢
h (D¢1 (p,p@9 2))) =1 (0) Dy, (p,p(t9 2)) +op (1)
and we get that the asymptotic distribution of the family of test statistics given in (8.39)
is also chi-square with I (I —1) /2 degrees of freedom.

|
Based on this result we should reject the hypothesis of symmetry if
~5,¢ ~5,¢
Sor (9 2) > X§(171)/2,a (or Sgrh (9 2)) > X?(Iq)/z,a- (8.40)

Remark 8.6 S0
For ¢1 (x) = ¢ (z) = ¢(0) (v) = wlogz — x + 1 we get that S (9 7 2) coincides

with the classical likelihood ratio test statistic for symmetry

I
b0y (590 215
GQES()(G ):2 ni; log —id
' LJZZI Y g+ g
i#j
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~S,¢
For ¢2 (z) = ¢y () = xlogz—x+1 and ¢1 (z) = ¢y () = L (z —1)*, S& (9 2)
coincides with the classical chi-square test statistic of Bowker (1 948) and is given by

I 2
~S. b0 N — Tis
XZES;?(”(H ()):Z(” ji) _
=1 j T i
i<j

It is also important to note that for ¢y (x) = ¢2 (z) = ¢y (z) = & (v — 1)* we get
the test statistic given by Quade and Salama (1975) and for ¢ (z) = :Ulogm —z+1 and
whatever ¢1 (x) we get the family of test statistics introduced and studied in Menéndez et
al. (2001c).

Power of the Test

Let @ =(q11,...,qr1)" be a point at the alternative hypothesis, i.e., there exist at least
two indexes i and j for which ¢;; # g;j;. We denote by %2 the point on © verifying

0} =argmin Dy, (q,p (0)),
[ASCH)

where Oy was defined in (8.32).

It is clear that

00 = (fij(q); i.j=1,...1, (i,5) # (L,1)"
and

p(0§2) = (flj(q)) 7’?.] = 1a "'aIa )T = .f(q)7
with

I
fr@=1=">" fi9.
3,j=1
(w) (I,1)

The notation f;;(q) indicates that the elements of the vector 9f2 depend on q. For
instance, for the power-divergence family ¢(y) (x) we have

_1
A+1 A+1)\ XF1
(75 +a5i) -
fij(Q): i IU Ji , ,7=1,...,1.
A 1 )\
S (@t )™
i=1 j=1

We also denote

8. o T
07" = (pf]¢2, ,7=1,...,1, (i,5) # (I,I) )
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and then -
~5,¢ .. ~
p(e 2)* (pid)Q? Z7.7:17"'7I) Ef(p)a
where f =(fi;; 4,7 =1, ...J)T. If the alternative q is true we have that p tends to g
.S,
and p(0 ¢2) to p (022) in probability.

If we define the function

\I]¢1 (q) = D¢1 (Q7 .f(q))7

we have

5 0Dy, (q, f(q .
b ()= e @)+ 303 22 o Wnla: 7@ 5 )+ o (15~ ).
i=1 j=1 B

Then the random variables

Vn (Dy, (B, £(P)) — Dy, (g, £(2)))

and

vn Z Z 8Dy, (a, f )(ﬁz‘j — Gij)

i=1 j=1 6q”
have the same asymptotic distribution. If we define

2D, g;;jf(q)) (8.41)
and 1 = (lij; i,j =1,...,1)", we have

Vi (Do, (B, () ~ Dos (a. £(@))) 5 N (0,17%ql), (8.42)
where Sq = diag (q) —qq”.

In the following theorem we present the asymptotic distribution using the maximum
likelihood estimator. In this case we have:

Theorem 8.10 r
Let p(@) = (p’ bitbii ,j=1,. I) the mazimum likelihood estimator, under the

symmetry hypothesis, of p(6o) = (p11, ...,pII)T and let q be a point at the alternative
hypothesis (q # p(60p)). Then,

Vit (Do, (B,2(8)) - Dy, (a, £(2))) 2 N (0,02, (a),

n—oo
where

2

I I I I

2 2

o5 (@) =Y ami — | D aumiy |

i=1 j=1 i=1 j=1

i#£j i#£j
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and

-1 _2¢ij 1 24ji i 1 _2ai; 1245
Mij = 2¢1 (Qi,7+q,7i) + 2¢1 (qz',7'+q,7'i + qij+aji 1 qij+a;i — Qij+3ji )

Proof. The result follows from (8.41) and (8.42). -

In the same way as in the problem of independence it is not easy to get the expression
of the power function of the test statistics given in (8.40) when ¢o (z) # xlogx — z + 1;
however we can consider a contiguous sequence of alternative hypotheses that approach
the null hypothesis Hy : p;; = pj; at the rate O (n‘l/ 2). Consider the multinomial
probability vector

dij ..
Pn,ij = Pij(60) + T’Jl, i,j=1,...,1,

where d = (dy1, ...,d”) is a fixed vector such that ZU 1
but belonging to Og. As n — oo, the sequence of multinomial probabilities {p,, }

d:s T
p, = (pn,ij + \/—%,i,j =1, ...,I)

converges to a multinomial probability in Hy at the rate of O (n‘l/ 2) . We name

d;; = 0 and 6y is unknown

neN with

Hlm P, = p(9) + 0 cO,.

4
i
Then, we have the following result:

Theorem 8.11
Under Hy, : p,, = p(00) + %, 0y some unknown value in O, the test statistics

50 (077)  ana st (877)

are asymptotically noncentrally chi-squared distributed with I (I — 1) /2 degrees of freedom
and noncentrality parameter

1 I Z2 I
=52 p—J Z
s W

An interesting analysis of the problem of symmetry as well as a simulation study can
be seen in Menéndez et al. (2005a).
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In some real problems (i.e., medicine, psychology, sociology, etc.) the categorical
response variables (X,Y’) represent the measure after or before a treatment. In such
situations our interest is to determine the treatment effect, i.e., if X > Y (we assume
that X represents the measure after the treatment and Y before the treatment). In
the following we understand that X is preferred or indifferent to Y, according to joint
likelihood ratio ordering, if and only if p;; > p;; Vi > j. In this situation the alternative
hypothesis is

H1 - Pij Z Djis for all ¢ Z j

This problem was first considered by Barmi & Kochar (1995) who presented the likelihood
ratio test statistic for the problem of testing

Hy : pij = pj; against Hy : p;; > pjs, Vi > 7, (8.43)

and considered the application of it to a real life problem: He tested if the vision of both
the eyes, for 7477 women, is the same against the alternative that the right eye has better
vision than the left eye. Menéndez et al. (2003c) considered the three hypotheses, Hy
and H; given in (8.43) and H» no restriction over the p;;’s and studied some ¢-divergence
test statistics for testing Hy against H; and H; against Ho.

8.3.2. Symmetry in a Three-way Contingence Table

If we consider a three-way contingency table, the parameter space, given in (8.7), is

©={0:0=(pijns 1.k =1, 1, (,3.0) # (L1D)},

where pijr =Pr(X =4,Y =3,Z=k),i,5,k=1,....1, (i,j,k) # ({,I,I) and
I

prrir =1-— Z Dijk-

i,j,k=1
(4,5,k)#(I,1,1)

The hypothesis of symmetry is given by
Hy :pijk =pirjiw V(i,5,k) and V permutations (i, 5", k) of (i,j, k). (8.44)

We denote by p(8) = (p111,...,prrr)T the probability vector characterizing our model.
The problem of symmetry formulated in (8.44) can be formulated using the following
I(I—1)(5]+2)/6 constraints about 6

hijk (6) = pijr — pirjir = 0,V permutations (i, 5, k') of (i, j, k). (8.45)
We denote

O0 = {0 € ©/h;ji () =0, V permutations (i, j', k") of (i,,k)}.
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The matrix

B (6)) = Ohijk (6o)
s70 89ijk LU=1)(5142) 13

has rank I (I — 1) (51+2)/6, because the matrix B (6y) has the same rank as the matrix

(8.46)

7III— 5142 I(I— 5142 CII—I 5142 I(I-1)(I4+4 0
< Ui, 10, Craanen , 10-nuen; 0 poneri
is
I(r—1 »5I+2 <1
6
the matrix with I(I —1)(5 +2)/6 rows and I columns whose elements are all zero and
. o I(I=1)(5142 I(I-1)(I+4
CI(I—I)(5I+2) W LI=1)I+4) is the matrix with % rows and % columns
6 6

where I ru_nerie is the identity matrix of order I(I — 1)(51 +2)/6, 0
6

T
whose rank is the same as the rank of the matrix (I I(I-1)(I44) , I1(171)<1+4>) .
6 6

Now we present in the following theorem the expression of the minimum ¢-divergence
estimator of ¢ in Og.

Theorem 8.12
The minimum ¢-divergence estimator,

~S,¢p o L T
0 =(pfj’;f; g k=11, (l,J,k)#(I,LI)) :

of By in Oq is obtained as a solution of the system of equations
ijk ) B

60 (i) +o (i) w0 (i) +0 () 0 (ijk) o (3

T
ko

ptz ! | Pijk sz sz / pzzk
p”kd) p”k) + Pz]k¢ Pijk szk Pijk
_ [ Pjiki 4t ( Pjki Dri / P}m pk i A/ pk i —
(Raver (Bx) + By (Br) + Boeo’ (B 0
i k=1,
(8.47)

where p has the expression
I ~ ~ ~ ~ ~
Pijk Pikj Pjik Pjki pk Pkji
Py Pijk Pijk Pijk Dijk Dijk Dijk
k=
1 Dijk ~ Dikj . Djik
35 (ngk¢ < ) + Dikj ¢’ < J) + Djind’ <J—
Pijk ijk Pijk
1 Djki Dk ~ Dji
I ( J L¢ < ¢ ) ZJ¢ < & +pkjt¢/ J
Pijk Pijk

and its asymptotic distribution is given by

V@™ —8y) L N0, W (8))) (8.48)

n—oo

where the matrizc W (6g) is

S, (Iua_l)xm_l) - B3 (00)" (B (0034, B5(8)") ' Bs <eo>) S,
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and B% (00) is the matriz given in (8.46).

Proof. Instead of getting

~5,¢
0

S, g .y T
pijk7 Zﬂj7k_17"'717 (Z7J7k)7é(lvl7])

. ~S,¢ S,¢. T .. .
we shall obtain p(@ ) = (pmk, 1,4,k = 1,...,[) . The pjjk, 4,j,k = 1,...,1, which
minimize the ¢-divergence Dy (P, p(0)) subject to the null hypothesis of symmetry may
be obtained minimizing

I I
bi
Z Dijk® < ﬂc) + Z Nijke (Pigk — Pirrir) + | 1 — Z Pijk (8.49)

i,5,k=1 i,5,k=1 i,5,k=1

with respect to p;;i, where p and A;j, are undetermined Lagrangian multipliers. Mini-
mizing the expression (8.49) is equivalent to minimizing the expression

I ~ ~ ~ ~
Pijk DPikj Pjik p ki Prij
k=1 Dijk DPijk Dijk Dijk Dijk

2,75

+¢(p’”’) ¢(pk“>>+u =Y

Pijk DPijk i k=1

Differentiating with respect to pjjk, ¢,7,k = 1,..., I, we get the system of equations given

in (8.47) whose solutions provide the minimum ¢-divergence estimator 0
The asymptotic distribution follows from (8.3) because in our model Iy ()" =
Yo,
[

Corollary 8.3
The minimum power-divergence estimator

~5,
p(e ¢(A)) = (pi;f) i .]ak - 1771) )

under the hypothesis of symmetry, is given by

1
A1 A/\+1 >\+1 ~SA+1 A>\+1 A1
5’¢(A) ( Uk +pzkj JZk +pjk:t pku +p ka )

ik - i k=1, 1.
S (B R m e )T
o (8.50)
For \=0,
Sid©) _ Pigk + Dikj + Pjik + Djki + Phij + Diji k=11,

ijk 6 » s
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hence, we obtain the maximum likelihood estimator. This estimator was introduced and
studied by Bowker (1948).

For A — —1, we have

. . ~ ~ ~ ~ \1/6
S,p—1) (pijk X Dikj X Pjik X Pjki X Pkij X pkji) / k=1 I
ijk - I y L)L, R=1,.., 1,
. . . Iy . . \1/6
Z (Dijk X Dikj X Djik X Djki X Dkij X Dhji)
4,5, k=1
the minimum modified likelihood estimator and finally for A =1,
o~ ) =2 o~ o~ o Y2
Sy (pijk + Dikj + Pjik + Piki T Phij +I%i)
ko1 12
) ) 22 22 =9 =2
Z (pijk + Pikj T Pjir T Pjri t Phj +pkji)
4, k=1

we get the minimum chi-square estimator for symmetry.

Based on the test statistic given in (8.5) we should reject the hypothesis of symmetry
if
~S,¢p2 2n . ~S.¢2

where c is a positive constant.

In the following theorem we establish the asymptotic distribution of the ¢-divergence
~S,
test statistic S (9 ¢2) .

Theorem 8.13
The asymptotic distribution of the ¢-divergence test statistics

s (877) = %D% (5.067)) (.51)
and 8,2 2n . ~S.¢2
Senh (9 ) = voam” (D¢1 (p, p(0 ))) , (8.52)

for testing the hypothesis of symmetry, given in (8.44), is chi-square with I(I — 1)(5I +
2)/6 degrees of freedom.

Proof. In our case we have I° cells and by (8.28) I — 1 parameters that are necessary to
estimate. Using the relation (8.45) the number of constraints is I(I —1)(51 42)/6. Then
by (8.5) the asymptotic distribution of the family of test statistics (8.51) is a chi-square
distribution with

3 _ 3_ _ 1 _
I B-1  + II-1(GI+2)/6 -1 I(I - 1)(5I +2)/6
Cells Estimated Constraints Degrees of
Parameters freedom
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In relation with the family of test statistics given in (8.52), we have
h(z)=h(0)+h (0)x+o(x),

then
~S,p2

. 5
h (Do (Pp® ™)) =1 (0) Dy, (B.p(@ ™)) + 0 (1)
and we get that the asymptotic distribution of the family of test statistics given in (8.52)
is also chi-square with I(I — 1)(5I +2)/6 degrees of freedom.

A study of this problem with maximum likelihood estimator and ¢-divergence test
statistics can be seen in Menéndez et al. (2004b).

8.4. Marginal Homogeneity

In case the pattern is not completely symmetric, one likes to check whether, at
least, the two sets of marginal totals have the same distribution: marginal symmetry
(or marginal homogeneity) or the local odd ratios are symmetric: quasi-symmetry. The
problem of marginal homogeneity was first discussed by Stuart (1955), who defined a
test statistic which is a quadratic form in the differences of the corresponding marginal
values, whose matrix is the inverse of a consistent estimate of the covariance matrix of
the differences under the null hypothesis and its asymptotic distribution is chi-square
with I — 1 degrees of freedom under the null hypothesis of marginal homogeneity. This
hypothesis has been discussed by several authors (e.g., Bhapkar 1966, 1979, Ireland et
al. 1969, Bishop et al. 1975, Agresti 1983, Bhapkar and Darroch 1990, Kullback 1971).

We consider a two-way contingency table with I = J and let p = (P11, ....,pr1)7 be
the nonparametric estimator of the unknown probability vector p = (p11, ..., prr)’, where
pij =Pr(X =14,Y =j), with p;; >0, and ¢,j =1, ..., .

The hypothesis of marginal homogeneity is given by

I I
H() : iji = Zpij’ j = 1, ,I - 1, (853)
i=1 i=1
and the parameter space is

o= {0 0= (piji i =1,...1, (i.5) # (I, 1))T}. (8.54)

We denote by
p(6) = (pi1,...,pr1)" =p (8.55)

the probability vector characterizing the marginal homogeneity model with p;; = 1 —

2521 Z§:1 pij with (4,7) # (I, 1).
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The hypothesis of marginal homogeneity formulated in (8.53) can be formulated using
the following I — 1 constraints about the parameter 6,

I I
i=1 i=1

or considering the parameter

T
B = (P11,D21s - P21 s s DI, s DIT—1)

and the set

B = {(ai1,a21,..,021,..,a51,..,ar7-1) : ai; >0, >3 a;; <1
(i,4)€L

where
L:{(i7j):i7j:17"'7‘[7(i7j)#(171)7(i7j)#(17j)7j:27”'7I}'
The hypothesis (8.53) can be expressed for some unknown 6y € © with p(6y) = p,, by

Ho : py=p (9(Bo)) , BoEB and g(B,) = 0o, (8.57)

where the function g is defined by

I I
giiB) == pii+Y o i=1j=2..1
i#1,5 1#]
9i5(B) = pij i# 1,5 =1,..,1,(i,5) # (I,I)
g11(B) = p11.

We recall p(g(lg)) = (gZJ(IB)7 Za.] = 1a "'aI)T7 where

I

gr1(B) =1- Z 9i;(B)-
i,j=1
VA0

This approach can be formulated and solved in terms of the results presented in Chapter
6.

In this Chapter we consider the approach given in (8.56). We can observe that with
this approach the problem of marginal homogeneity can be written as

Hy:p=p(0p), for some unknown 6y€0y,

with
©y={0€0:h;0)=0, j=1,...1—-1},
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p (0) defined in (8.55) and hj, j =1,...,1 — 1, in (8.56).

It is clear that the matrix
oh; (0
Bun (00) = <$> (8.58)
ii ) (I-1)x(12-1)

has rank I — 1 because the matrix I'(;_1)x(7—1) is a submatrix of it.
For I = 2, we only have a constraint and it is given by
h1 (@) = p12 — p21 =0,
so that the problem of marginal homogeneity coincides with the problem of symmetry.
For I = 3, we have the two following constraints,
hi1(0) = pi2+piz —p21 —ps1 =0
ho (0) = pa21 + p23 — p12 — p32 = 0.

In the following we present the expression of the minimum ¢-divergence estimator of
6o under the constraints given in (8.56).

Theorem 8.14
The minimum ¢-divergence estimator,

~MH,$ o T
0" = ("% ij =1, L and () # (1LD)

]

of By in O (i.e., under the hypothesis of marginal homogeneity) is obtained as a solution
of the system of equations

¢(’Q) - iy (’ﬁ) —pAN =N =0 =Ll i)
1

Pij Dij Dij
! ! ! (8.59)
i=1 i=1
where | has the expression
! b bij
=23 (o (G2) + 2 -2 (52)
i1 j=1 Pij Pij
Its asymptotic distribution is
~MH,¢
V(0 ~6,) nf;o N(O, W (6)), (8.60)

where the (12 — 1) x (I? — 1) matriz Wy (o) is given by

o, — S, B (00)" (BMH (60) Xo,Brr (OO)T) B (60) 3o, -
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~MH, T
Proof. Instead of getting 0 v (pf\fH % i.j=1,...1, and (i,7) # (I, I)) we shall
~MH, T
obtain p (9 ¢) = (pf‘le(b ,7=1,. I) . The p’ijs, i,7 = 1,..., I, which minimize
the ¢-divergence
Dy (P, p(9))

subject to the null hypothesis of marginal homogeneity (or the constraints about 6 given
n (8.56)), may be obtained minimizing

1 1 1 I 1
D) SICTIED SN OIS 9t VI TES 3 o1ty B!
i=1 j=1 j=1

i=1 j=1 i=1 j=1

with respect to the p;;, where 1 and \; are undetermined Lagrangian multipliers. Min-
imizing the expression (8.61), is equivalent to solving the system of equations given in
(8.59). The asymptotic distribution is obtained from (8.3) because in our case Iy (6y) " =
3o,
Corollary 8.4
. . . ~MH,¢ MH,p. T
The minimum power-divergence estimator, p(6 )= |p; ;6,7 =1,..., I) of

i
0o under the hypothesis of marginal homogeneity (8.56), is given by

j‘j“f’% — Dig ij=1,..,1
(A1) (—p+ A — A) ™

where p and XA;, i =1, ..., I, must satisfy the system of equations

ZZ ((A+1)( u+>\ _x;))~FT =1

LlJl

I
Z Bij =y —— i=1,..1

< (D) (A AD T () (- RS

The mazimum likelihood estimator, obtained for A =0, is

MHéo, _ __ Dij o
Pij; = ) ,7=1,...,1
J 1+ N\ — )\j
where the \; holds
I ~ I
Sy Py
14\ — )\j 1 + )\ -\’
Jj=1
The minimum modified likelihood estimator, obtained for A — —1, is
o}
peen = i =11,
Zt 1 Z 1 Dijgt ai
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where the a; holds

L= 41
ji
a; E o= o 2 paa, 1=1,..,1
j=1 =1

Remark 8.7

For I = 3, given Og= (p11,p21 + P23 — P32, P31 + P32 — P23, P21, P22, P23, P31, P32
O, it is easy to check that

)" e

0o 1.1 -1 00 -1 0
-BMH(H()):( )7

0O -1 0 1 01 0 -1
- Bg, = diag (8o) — 0005,

-1
- The matrix (BMH (6o) EQOB{JH (90)) 18

1 2(p23+p21)  2pa1+ pas — P32
4po1p31+4p23ps1+4pa1ps2— (P23 —ps2)” 2pa1 + P23 — P32 2 (p31 + p21)

and it is not difficult to establish that the matrix W yrg (69) is

Wrn (6o) = <M>TIF (Bo) ™" (M>

B B
where
100 0 0 O
010 1 0 -1
000 -1 1 1
9B\ | 010 0 0 0
<6,6>_001000
000 1 0 0
000 0 1 0
000 0 0 1

and Ir(By)~" is the inverse of the Fisher information matriz for the parameter B, =
T
(P11, P21, P22, P23, P31, P32)

This result can be proved in general in the same way as the results in Sections 2 and
3 corresponding to hypotheses of independence and symmetry, respectively. From this

~MH,ps |
result, 6 is also BAN.

Theorem 8.15
Under the marginal homogeneity model, we have

Won (60) = MZ;OIF (Bo) ™" Mg,
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Proof. The proof follows the same steps as the proof of Theorem 8.2 -

In the following theorem we present two families of test statistics for testing marginal
homogeneity based on the minimum ¢-divergence estimator.

Theorem 8.16
The asymptotic distribution of the ¢-divergence test statistics

MH? (éMH"”) = ﬁpqﬁl (ﬁ, p(éMH’¢2)) (8.62)
and b1.h (MH.2 2n . ~MH,p;
MH® (9 ) = oD (D¢1 (p, p(@ ))) (8.63)

for testing the hypothesis of marginal homogeneity given in (8.53) is chi-square with I —1
degrees of freedom.

Proof. In our case we have I? cells and by (8.54) I? — 1 parameters that are necessary to
estimate. Using the relation (8.56) the number of constraints is I — 1. Then by (8.5), the
asymptotic distribution of the family of ¢-divergence test statistics (8.62) is chi-square
with

- 7 -1 + (I-1) -1 = (I-1)
~—~ —— N—— N—_——
Cells Estimated Constraints Degrees of

Parameters freedom

In relation with the family of test statistics given in (8.63), we have
h(z)=h(0)+h (0)x+o(x),

therefore
~MH,¢

~ . ~MH,¢
h (D¢1 (p,p(ﬁ’ ))) = h'(0) Dy, (p,p(é’ )) +op (1)
and we get that the asymptotic distribution of the family of test statistics given in (8.63)
is also chi-square with I — 1 degrees of freedom. -
. ~MH, b (AMH 62 ,

If we use the test statistics M H® (0 ) (MH;’fl ! (0 )) for testing the

marginal homogeneity we should reject the null hypothesis, i.e., the hypothesis of mar-
~MH, ~MH, .

ginal homogeneity if M H$ (0 ¢2) (MH,‘fl’h (9 ¢2)) is too large. Based on the
previous theorem we should reject the hypothesis of marginal homogeneity, with signifi-
cance level a, if

M, ~MH,
g (6 ‘”) > X1 or MHS" (8 ¢2) >t
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8.5. Quasi-symmetry

The symmetry concept is stronger than that of marginal symmetry in the sense that
the latter is implied by the former. The hypothesis of quasi-symmetry was introduced by
Caussinus (1965) who introduced the maximum likelihood estimator for quasi-symmetry
as well as a chi-square type statistic for testing this hypothesis. For additional discussion
of quasi-symmetry, see Darroch (1981, 1986), McCullagh (1982), Darroch and McCullagh
(1986) and Agresti (2002). Recently, Matthews and Growther (1997) have studied quasi-
symmetry and independence for cross-classified data in a two-way contingency table.
These models are expressed in terms of the cross-product ratios and a maximum likeli-
hood estimation procedure is proposed for estimating the expected frequencies subject
to the constraints imposed on the frequencies through the cross-product ratios.

We consider a two-way contingency table with I = J and let p = (P11, ...,p11)7 be
the nonparametric estimator of the unknown probability vector p = (pi1, ..., prr)*, where
bij = PI‘(X = Z,Y :j) y Wlthpzj > 0 and i, j = 1,...,[.

The hypothesis of quasi-symmetry is given by
Ho : pijpjkPri = DikPrjDjis (8.64)
forall i,5,k=1,...,1.

We consider the parameter space

and we denote by
p(0) = (pu1,-prr)" =p (8.66)

the probability vector characterizing our model with py; = 1 fzilzl 2]1'21 pi;j and (4, j) #
(L, 1).

There are other two equivalent ways to characterize the quasi-symmetry showed by
Caussinus (1965). The hypothesis (8.64) is equivalent to

Hy:si5 =55, i1 # ]

with
sy = DUPIL iy T -1, (8.67)
PirPrj
as well as to
Hy : Cij = Cji, ) 7é j, Cij > 0 (8.68)

with
Dij = @iCij, a; > 0.
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The hypothesis of quasi-symmetry in the way given by (8.67) could be formulated using
the following (I — 1)(I — 2)/2 constraints about 6,

hi; (0) = pijpjrvri — pirpripsi =0, (8.69)

forall 4,7 =1,...,1 —1, i < j. Also considering the parameter

T
B = (P11,P11, D21, D22, P21, s PI1, P12, s PIT—1)

and the set
a-nu+a)
B = {(ai1,a11,a21,a22,as1, ...,ar1, ar2, marr—1) €RT 2 :
Zai]‘ <1, ;5 > 0, 7,7 = 1,...,]},
0,J
the hypothesis (8.69) can be expressed as
Hy : p=p(g9(Bo)), ByEB and g(By) = bo,
where the function g is defined by
PirP1jPji . . .
gl](ﬂ): L l?j:17"'71_17l<j
pjIpI1

9i1(B) = pir i=1,..,1—1.

We observe that p (g(8)) = (gi;(8), 4,7 =1, ...,I)T, where

I
g(B) =1-">" g;(8).
i,j=1
(4,9)#(I,1)
This approach can be formulated and solved in terms of the results presented in Chapter
6.

In this Section we consider the approach given in (8.67). We can observe that with
this approach the problem of quasi-symmetry can be written as

Ho:p=p(6), for some unknown 6, € O,
with
©={0€O: hj0@)=0,1j=1,.,1—-1, 1<j},
p (0) defined in (8.66) and h;; (@) in (8.69).
In this case the matrix of partial derivatives

Ohij; (60)

Bgs (60) = ( 0., (8.70)

) (I-1)(I=2)/2x (I2=1)
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has rank (I —1)(I—2)/2. For more details about quasi-symmetry hypothesis see Bhapkar
(1979).

For I = 3, we have a constraint given by

hi2 () = p12p23ps1 — p13psap21 = 0.
Next theorem presents the expression of the minimum ¢-divergence estimator of 8,
under the constraints given in (8.69). We shall denote p;. = Z§:1 Dij-

Theorem 8.17
The minimum ¢-divergence estimator,

~QS,¢ L L. T
67" = (%05 = Lo L, (i) # (LD))

of By € O (i.e., under the hypothesis of quasi-symmetry) is obtained as a solution of the
system of equations

pij¢ (g—f) +pjid (%JL) —bij¢’ (ﬁ—f) — pji¢/ (%JL) = npij +psi), bi=1,.,1

I I
Zpiﬂ? (%f) - Z@jd” (%}L) = Upin, i=1,...,1
Jj=1 j=1
(8.71)
with ,
i)\i’ ~ 1/7\2
n= 223 (o (52) -7 (32))
i=1 j=1 Pij Pij
Its asymptotic distribution is
~QS,¢ L
V(@ —80) = N(0,Was(80)), (8.72)

where the (I? — 1) x (I? — 1) matriz W s (6) has the expression

1
o, — S0, Bos (80)" (BQS (60) X9, Bgs (90)T) Bgs (00) X,

and the matriz Bgsg (00) is defined in (8.70).
~Q5, T
Proof. Instead of getting BQ - (pinS’d); i,j=1,...,I, and (4,5) # (I, I)) we shall

obtain -
~QS,$ S ..
p@ )= (pfﬁ 4, = 1,~--,I) :

The p;js which minimize the ¢-divergence

Dy(p,p(0))
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subject to the null hypothesis of quasi-symmetry may be obtained minimizing

I
Z szﬂ? <pw> + Z Xij (Pijpjrpri — pirprjpji) +p | 1 — Z sz‘j

i=1j=1 (i,4)€C i=1 j—1

where C' = {(i,7) : 4,5 = 1,...,] — 1,i < j} . By using the characterization given in (8.68),
we must obtain the minimum of the function

ZZazc”qb( Dij ) Z Nij (cij — ¢ji) + 17221120@] (8.73)

=1 j=1 (i,5)€C i=1 j=1

with respect to a; and c¢;j, where 1 and A;; are undetermined Lagrangian multipliers.
Minimizing the expression (8.73) is equivalent to minimizing the expression

! D ~ 1
1 Dij Dji 1
52 2 <a¢c¢j¢ <a_CJ_.> +ajcij¢ (ajcz>> +ull- §;Z(ai+aj)cij

11 J=1]

and the values of a; and c¢;; are obtained as a solution of the system of equations
given in (8.71). The asymptotic distribution is obtained from (8.3) because in this case
-1

Ir(6g) =3,. -
Corollary 8.5

~Q8, o T

The minimum power-divergence estimator, p (OQ (m)) = (pgs’(b‘”; ,7=1,..., I)

of p(0¢) under the hypothesis of quasi-symmetry (8.64) is given by the solution of the
system of equations

prl prHt L. . .
m(ﬁia‘—;:%ﬂﬁ—ﬁ) =pupij +pji), 6,5 =1...1,i#]

y )
%"rl pi*izpiji)‘ :Mpi*,Z:l’,,,’[’
j=1
where p is
I I )+l
1 p;;
b wnil Eap B D
A+1 = = Dij

It is clear that for A — 0, we obtain the maximum likelihood estimator introduced by
Caussinus (1965), i.e.,

{ Pij +Dji = Dij + Dji
Dix = Dix
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Remark 8.8
For I = 3, given

T

D13P32P31

0= <p11, 7,p13,P21,p22,P23,p31,P32> € O
Pp21P31

it is easy to check that

- Bgs(00) = (10, pospsi, —psep21, —pisps2, O, piapsi, Piapes, —PisPa1 )
- 3, = diag (80) — 006, ,

- The matrix (BQS (60) Xg,Bgs (BO)T) is given by

D23P31
D13D32021 (P23D31 (P23P31 + D21P32 + P13P32 + Pi3D21) + P13p3ap21 (P23 + P31))

and it is not difficult to establish that the matriz Wgg (6o) is

Was 00 = (24000 1y (g, (2460)),

ap op
where
1 0 0 0 0 0 0
0 Pb21P32 Dbi13p32 0 __DPbi13p3ap21 __DPbi13p3ap21 Ppi3p21
Pp23P31 P23P31 p§3p31 P23P§1 Pp23P31
. 0 1 0 0 0 0 0
(3g(ﬂo)> o o 10 0 0 0
o 0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

and Ir(By)~" is the inverse of the Fisher information matriz for the parameter B, =
(pl],p13,p21,p22,p23,p31,p32)T. This result can be obtained in general in the same way

~QS, .
as in the previous problems. Therefore, HQ o2 is BAN.

Now we shall establish a theorem to get the asymptotic distribution of two new
families of test statistics introduced for testing the hypothesis of quasi-symmetry given
in (8.64).

Theorem 8.18

The asymptotic distribution of the ¢-divergence test statistics

Q8% (@QS"”) = %D% (A,p(éQS’d)z)) (8.74)
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and

o1 (aQS62h\ _ 2n Q5S¢
for testing the hypothesis of quasi-symmetry is chi-square with (I — 1) (I —2) /2 degrees
of freedom.

Proof. In our case we have I? cells and I? — 1 parameters that are necessary to esti-
mate. Using the relation (8.69) the number of constraints is (I — 1) (I —2) /2. Then the
asymptotic distribution of the family of statistics (8.74) is chi-square with

2 _ 2 _ _ 1 - _ _
I I -1 + (I-1)(1-2)/2 1 (I-1)(I-2)/2
Cells Estimated Constraints Degrees of

Parameters freedom

In relation with the family of tests statistics given in (8.75), we have
h(z)=h(0)+h (0)x+o(x),

then
~ QS ~ RSP
h (Do (B:pO7™))) =1 (0) Doy (B:pO" ™)) +0p (1)
and we get that the asymptotic distribution of the family of tests statistics given in (8.75)
is also chi-square with (I — 1) (I —2) /2 degrees of freedom. -

Caussinus (1965) showed that symmetry is equivalent to quasi-symmetry and mar-
ginal homogeneity simultaneously holding; then we have

Quasi-Symmetry + Marginal homogeneity = Symmetry. (8.76)

From this idea we consider the two following families of ¢-divergences test statistics
. 5P . ~QS,¢2
Wé\igz - % (D¢1 (p’p(e )) - D¢1 (p,p(e ))) (877)

and 05.6
MH _ 2 neP2
S¢>17¢>2 - ¢’2’?1) D¢1 (p(@
In the following theorem, its proof can be seen in Menéndez et al. (2005¢), we present
their asymptotic distribution.

),p(55’¢2)) . (8.78)

Theorem 8.19
For testing hypotheses,
Hy : Symmetry versus Hi : Quasi-Symmetry,
the asymptotic null distribution of the test statistics W)I —and S}1¥ = given in (8.77)
and (8.78) respectively is chi-square with I — 1 degrees of freedom.
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8.6. Homogeneity

Suppose we have v independent random samples and we are interested in testing
the null hypothesis that the samples are homogeneous, i.e., are from the same un-

T
known population. We denote the samples by x® = (Xl(l),...,Xflll)) ooy X® =

(X%V), ...7X,(LZ))T, of sizes ny,...,n, respectively, and we are interested in deciding if
the samples XM, ..., X are all derived from the same distribution function F (z) =
Q (X <z),z € R, where @ is a probability measure on the real line. In this direction let
P = {E;}i=1,...m be a partition of the real line into M mutually exclusive and exhaus-
tive intervals, where Pr (X,ii) € Ej) =py fori=1,..,v,j=1.,Mand k=1,..,n,
We denote 6; = (pﬂ,...,piM,l)T, where 0 < p;; < 1, Zj.\ilpij =1,Vi=1,...,v, and
p(0;) = (D1, ..., ping)t. IF X, ., X" are all drawn, at random, from the same dis-
tribution function F, then it is expected that p;; = Q (E;), for every ¢ = 1,...,v and
j=1,..., M and therefore the problem is now reduced to a problem of testing homogene-
ity in multinomial populations, i.e., the null hypothesis,

Ho:pij=..=p,;=Q(E;)=p;,j=1,..,M, (8.79)

whereO<p;<1andeM:1p;f:1_

We can observe that our parameter space is given by

0= {9 10 = (p117 ey PIM—1y -+, Prl, ~”7pl/M71)T} ) (880)

T
that is, 8 = (01T, ey 95) and its dimension is (M — 1) v.

The usual test statistics for testing (8.79), if p* = (pf, ...,p}kw)T is completely un-
known, are the chi-square test statistic and the likelihood ratio test given, respectively,

by
v M (ni,,M)z
J
X2=> ) (8.81)
i=1 j=1 T
and
M
Gt =2y ;i (log 24— 1og 222 8.82
=23° 3y (log 24 g 2. 5)
i%

i=1 j=1

Their asymptotic distribution under the null hypothesis Hy given in (8.79) is chi-square
with (M — 1)(v — 1) degrees of freedom. In the expressions (8.81) and (8.82), n;; is
the observed number of the components of X @ G = 1,..,v, belonging to the inter-
val B, j = 1,..,M, nyg = >0 nij, j = 1,..,M, nj = Z]A/i1 nij, ¢ = 1,...,v and
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n=>" Z]M:1 ngj = Z]]Vi1 Nsj = Y iy Nix. In the two previous test statistics the un-
known parameters have been estimated using the maximum likelihood estimator in all
the parameter space (n;;/n;x) and the maximum likelihood estimator under the null hy-
pothesis (n.;/n). The test statistics given in (8.81) and (8.82) were extended by Pardo,
L. et al. (1999) by considering test statistics based on ¢-divergence measures and using
the maximum likelihood estimator. An extension of that result when the probability
distribution p* = (pj, ...,p*M)T depends on some unknown parameters can be seen in
Pardo L. et al. (2001).

In the following we shall denote by

T
= Nl MM
p(gt) = < . ,...,L—> s
Tl Tl
the maximum likelihood estimator of p (8;), i.e., the probabilities corresponding to the
ith-population. We also consider the two following probability vectors

. Nix 7 n ~ T ni1 N1 1 Nyp\ 7T
B (ML p(@)7, o p(@,)7) — (M N e Tt

5 g eeey PIEEEY) PREED)

n n n n n n

and

*(9) = 14 1% Ny Ny T
p ( ) - P11y ) Pviy ey Pvm
n n n n

(“p@)",.. " p(0,)")

The ¢-divergence between the vectors p and p* () is given by

D Z Z fix ngﬁf) (nZ;w >

=1 j=1

It is clear that

v M

12 (0) = gy Dol @) = gy 3D ()

Jj=1

coincides with the test statistic X2, given in (8.81), for ¢ (z) = (33 — 1) where 8 is the
maximum likelihood estimator of 8 € ©, under the null hypothe51s, given by

(8.83)

g eeey g Seey g eeey

9_ (n*1 NxM—1 (, Ml TL*M71)T
n n n n ’

and p* (5) is obtained from p* (@) replacing 6 by 8. The likelihood ratio test statistic G2,
given in (8.82), is obtained for ¢ (x) = xlogx —z + 1.

Pardo, L. et al. (1999) established that the asymptotic distribution of the test statistic
H? (5) is chi-square with (M — 1)(v — 1) degrees of freedom. In this section instead of
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considering the maximum likelihood estimator we consider the minimum ¢-divergence
estimator.

The hypothesis of homogeneity given in (8.79) can be formulated using the (v — 1) (M —
1) constraints,

hij (0) =pij —pyj =0, i=1,.,v—1, j=1,... M —1. (8.84)
In this case
B0 ={0 €0 :h;(0) =0},
therefore if 8y € ©g, O is given by 6y = (p1,...,pM_l,.(.”.7p1,...7pM_1)T, We denote
60 = (p1,...,par—1)" and
I, (80) = diag (\) © T (63)
where \; = lim ni./n, i =1,..,v, A= (A, )7 and

Lo g T

Ty (69) = { TR AR SSE R Ve )
Pm
By ® we are denoting the Kronecker product of the matrices diag (A) and Zx (9(1)) .

In the following theorem, its proof can be seen in Menéndez et al. (2003b), we present
the expression of the minimum ¢—divergence estimator of € under the constraints given
in (8.84).

Theorem 8.20
L. . . ~H,¢ Hé - T
The minimum ¢-divergence estimator, 6 = (pj Ci=1..,M—1) | of0y under
the hypothesis of homogeneity, is obtained as a solution of the system of the equations

Yol g ) - Py ) ) —p=0, j= 1,0, (8.85)

where
E 1k 1] ) / 1]
H= E E b; ¢ - ¢ .
o= NP | NisP; \ NixDj

Its asymptotic distribution is

Vi (677 00) £ N©O.Wi(60). (8.86)

where the matrizc Wy (0g) has the expression

I3 (60) (I ~ By (00)" (B (00) 17" (60) B (60)") ' B (60) T3 (90)> ,
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Oh; (6)
B (60) (1) (ar—1)xv(m—1) = << 62) ) >0 , > ;
s =6,

i=1,...,v—1;5=1,....M—1
s=1,...,v; t=1,....M—1

)

I denotes the (M —1)(v — 1) x (M — 1)(v — 1) identity matriz, My is the matriz given
by

(

T
My = (*I(M—l)x(M—l)y li_-la*I(M—l)x(M—l))

and the rank of By (0¢) is (M —1) x (v —1).
Corollary 8.6

~H,p(x)

T
The minimum power-divergence estimator, p(6 ) = (pH’d’,j = 1,...,M) , of

P (6o) under the hypothesis of homogeneity (8.84) is given by

b AL 1/(A+1)
ij
o
H,px) i=1 T«
p, =

J o B n?jﬂ 1/(A+1)° J
PN DD

Jj=1 \i=1 T

—1,.., M. (8.87)

The proof follows from (8.85) and taking into account the expression of ¢(yy. It is inter-
esting to observe that for A =0,

H,p0) _ Txj

J n?j:]'7"‘7M7

i.e., we obtain the classical mazximum likelihood estimator under homogeneity and for

A=1,
1/2
H,1) i=1 Thix
p. =

J 1/2°
M 2.
> (o
=1 \i=1"ix

the minimum chi-square estimator under homogeneity. This estimator was obtained, for
the first time, in a different way from the one presented here, by Quade and Salama
(1975).

j=1,.,M

Other interesting estimators for homogeneity are: For A = —2 the minimum modified
chi-square estimator; for A — —1, the minimum modified likelihood estimator; for A =
—1/2 Freeman-Tukey estimator and finally for A = 2/3 Cressie-Read estimator.

The asymptotic distribution of the ¢-divergence test statistic for testing homogene-
ity, based on the restricted minimum ¢-divergence estimator, is given in the following
theorem. Its proof can be seen in Menéndez et al. (2003b).
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Theorem 8.21
The asymptotic distribution of the ¢-divergence test statistic

~H, ¢z 2n ~H, ¢z

H¢>1(9 )E—D (A “(0 )
n ¢/1/ (1) ¢ (D, D ( )

for testing the hypothesis of homogeneity is chi-square with (v — 1) (M — 1) degrees of

freedom.

Based on this theorem we should reject the null hypothesis of homogeneity given in
(8.79), with significance level a, iff

~H o
Hy (0 2) > X?ufl)(Mfl),a‘ (8.88)

Remark 8.9

For ¢1(x) = ¢2(x) = xwlogx — x + 1 we get that HS (
classical likelihood ratio test statistic for homogeneity and for ¢o (x) = xlogx —x+1 and
o1 (z) =4 (z— 1)? coincides with the chi-square test statistic.

~H,p2 L .
0 ) coincides with the
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8.7.

1.

Exercises

Find the power function of the test statistic given in (8.88) using the maximum
likelihood estimator and the alternative hypothesis

(T s\ 1"
O

Thyx

v )

where
T
p:( - (p;k177p>;M) P 0 <p:] < 1a
fori=1,..,vand j =1,...,M and there exists an index j with 1 < j < M and
two indexes ¢ and k, 1 < i,k < v and i # k such that i % pzj.

The following data represent the blood types and the predisposition to suffer from
diabetes (A = Low, B = Average and C = High)

Low Average High | Total
O | 137 86 35 258
A 42 23 11 76
B 19 17 7 43
AB | 14 7 2 23
212 133 55 400

Is there evidence to conclude that blood type is independent of predisposition to
suffer from diabetes? Use the power-divergence family with A = —1 —1/2,0,2/3
and 1 for testing and A\ = 0 for estimation, taking as significance level o = 0.05.

Fifteen 3-year-old boys and fifteen 4-year-old girls were observed during 30 minutes
play sessions, and each child’s play during these two periods was scored as follows
for incidence and degree of aggression:

Boys | 96,65,74,82,121,68,79,111,48,53,92,81, 31,48
Girls | 12,47,32,59,83, 14,32, 15,17,82, 21, 34,9, 15,50

Test the hypothesis that there were not sex differences in the amount of aggression
shown, using the power-divergence test statistic with A = —1,—-1/2,0,2/3 and 1,
taking as significance level a = 0.05.

Let S, = n'/? Zle ijl lij (Dij — i) be the first term in the Taylor expansion
of Dy, (P, p(/B\)) around (q,q; ;) in Theorem 8.5. Prove that S, = 0 Vn if and
only if 021 (g) =0.

If gij = @ix X g«; then Uil (g) =0 in Theorem 8.5 because [;; =0Vi=1,...,1,j =
1,...,J. Find a counter example, using the Kullback-Leibler divergence, in which
0% (q) =0 but gij # qix X G;-
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8.8.

Find the expression of the test statistics: Likelihood ratio test, chi-square test
statistic, modified likelihood ratio test statistic, Freeman-Tukey and modified chi-
square test statistic for the problem of symmetry.

Find the expression of the power for Pearson test statistic as well as for the like-
lihood ratio test in the problem of symmetry using the maximum likelihood esti-
mator.

The data in the following table report the relative heights of 205 married couples

Women
Tall Medium Short
Tall 18 28 14
Men Medium | 20 51 28
Short 12 25 9

Source: Christensen, R. (1997, p. 67).

Find the minimum power-divergence estimators, under the hypothesis of symme-
try, for A = —2,—-1,-0.5,0, and 1.

Find the expression of 03) (g) in Theorem 8.5 for the ¢-divergences defined by:

p1(z) = $(@—1)7%; da(x) = (1= VD)% ds(a) = (s= 1) (2" —2); gula) =

A +1)7! (2M! —2) and ¢5(z) = 7((11:(11)(_1(;)?

Answers to Exercises

. We denote

v

« Nix * x )T
qs :Z n*pls7 Szla"'aMa q:(q177QM)
=1

and

* 1% Ny T
q =( q’, .., = qT)
n

Under the alternative hypothesis

and

It is clear that in this case we have:

v M Nij
~ -~ n; Ny i
- 2nDy, (P,p*(9)) =2n Y — > L6 | Tty
=1 j=l non
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2nD¢1p q —QTLZan* *d) (Pw)

=1 j=1

and
Vit (2004, (B.p" (9)) — 20Dy, (0".0")
takes the expression
v M oL
vl <g> (i~ 2y) | +o (-7,
- 1]

where

fZiZnt*qJ (p”>.

=1 j=1

It is not difficult to establish that

v * * *
* p * Phs
L= QZnh* (%d’(%) +o +qs¢< L >+ +qM¢< ))
h=1 Q1 qs QM

where £ is independent of pj;. Taking into account that

o [T s=j
Pl n .
8pij 0 $#£j

nz* Z - p% ph] ¢ ph] + 2774@*(15/ pL*] )
% 4 4 4 4

Then, if we denote

oL
A? =
1) 6177] ’

we have that the random variables

ZZ<6L> By —py) | = (49" Va®-p),

=1 j=1
T
being A? = (Afl, -~-7AfM» -~~»Af1v -~-7AfM) ; and

Vit (2004, (3,9 (8)) - 2Dy, (", 0))
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have the same asymptotic distribution. But
~ 4 L X
Vn(@-p) — N(03),
where £* = diag (A\{ ' Sps, ... A\, Sp: ), Bp: = diag (p}) — p; (p])" ,i=1,..,v

i

and A, = lim,, 0o —

Therefore,

Vit 20Dy, (B,p"(6)) — 20Dy, (9°,0")) | = N (0,03, (),

where
v M 2 M 2
2 *\ -1 ¢ * ¢, x
74, (P7) = Z A Z (Az‘j) Pij — ZAijpij
i=1 j=1 j=1

Based on this result, we have that the power of the test statistic is given by

2
% n XV— —1),«x * %
ﬁn,¢1(p)1¢>n< Vi << UML) D¢1<p,q>>>,

Oy (P*) 2n

where ®,, (x) is a sequence of distribution functions leading uniformly to the stan-
dard normal distribution ® (x).

2. If we consider the maximum likelihood estimator, the power-divergence test sta-

. L9 .
tistic, 9™ (6" has the expression

NN 2n A—1 Mg
I,V (0 = -1
@ =31 |" 22

In our case,
N1+ = 258, ng, = 76, ng, = 43 and ng, = 23
nx1 = 212, nyo = 133 and n.3 = 55.

Then we have

A | -1 12 0 2/3 1
V@) | 2543 2499 2462 2422 2405

On the other hand X%I—l)(J—l) = X&. 0.0 = 12.59, then we should not reject the

Ne%

hypothesis that the two variables are independent.

3. If we consider the maximum likelihood estimator, the power-divergence test sta-

~H, .
tistic H™ (6 ¢(0)) has the expression
m ok AL
H¢(A)(§H7¢(O)) . 2 m " (nn ) .
n - E E 1k
AN \ST T ()]
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If we consider the following partition of the interval [8,122],

Ey = [8,43), Ey = [43,78) and F3 = [78,122],

we have
Ev FEy E3 | ng
Boys | 1 6 8 15
Girls | 10 3 2 15
T 11 9 10
Then,

6 o o (45) (87 + (55)
() () (7))

A | -1 -1/2 0 2/3 1
~H, .
S0 (g "y \ 17.69 15.051 13.42 12.24 11.96

On the other hand X%,o.os = 5.991, then we should reject the null hypothesis.
4. If S, =0 a.s. Vn, we have Var (S,) = 0 Vn and then

and

lim Var(S,) = 0351 (g) =0.

n—oo

Suppose that 021 (g) = 0. We have

Sn = \/_Z Zlm ng Qij)v

i=1j=

then

E[Sy] = \/— Z Z lZJELPU qu} =

i=1j=
I J N N
VaT[S,,J = E|n Z Z l11J1l12j2(p11J1 thl)(phh*qwjz)
i1,i2=1 j1,j2=

1
I J
= n Z Z zlglE[ptlh q11J1 }

+ n Z Z ltlJlllzsz [(ptljl Qiljl) (ﬁizjz - Qizjz)} .

i1,i2=1 j1,j2=1
i17£42 j1#£J2

But,
~ 2 N Qs i (1 — i )
E [(Piljl — Qirjy) } = Vpin,]l= %
a D, ~ — Qiy i1 ini
E [(qiljl - Qiljl) (pi2j2 - Qizjz)] = Cov [piljwpizjz] = 7%’

© 2006 by Taylor & Francis Group, LLC



404 STATISTICAL INFERENCE BASED ON DIVERGENCE MEASURES

therefore
I J I J
Var [SH] = Z Z zljlqhh Qi1j1) - Z Z li1j1 lizjz%lh‘]izjz
i1=1j1=1 i1,i2=1 j1,j2=1
i1742 jl#Jéz
I J 5
= Z Z l’Ll]lqtl.Jl - Z Z lilleilﬁ =04, (q) =0.

i1=1j1=1 i1=1j1=1

Then S,, = 0.

5. We consider the bivariate random variable (X,Y) with probability distribution
g =Pr(X=z1,Y=35p)=1/2 que=Pr(X=21,Y=y3)=0

QQ1:PI‘(X:$2,Y:y1):O q22:Pr(X2$2,Y:y2):1/2.
‘We have
li1 =la2 = —log2, liz =121 =0
with
2
2 2 2 2
Y@=t (XSt o

i=1 j=1 i=1 j=1
On the other hand
Qe = 1/2, qoe = 1/2, g1 = 1/2 and qu2 = 1/2.
Then g;; # i X ¢+; and o2 (q) = 0.

6. It is immediate to get for the power-divergence family and for the maximum like-
lihood estimator that

A
dixy 55P0) 2 2nij
Snt™ (0 =—— gl |— —-1]).
( ) AN+ sz: i i + N
i
Then for A — 0 (likelihood ratio test statistic), we have

b0y 32 P0O\ _ 2 2”ij
S (0 =G"=2) n;jlog———,
nO ) z; ijlog =5
i
for A — —1 (modified likelihood ratio test statistic),
1) 75%0) N5 + Njg
Sn' (6 ) = ; (nij + nji) log —2nij )
i
for A =1 (chi-square test statistic),
)2
b1y 735P0)\ _ 2 nl] nﬂ
Sn' (0 =X° = ,
nO) Z o

z<]
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for A = —1/2 (Freeman-Tukey test statistic),

1/2
b 2 ( AS ¢<0> N5 + N4
Sn 82””( _< 2’!12‘]'
i#]

and finally for A = —2 (modified chi-square test statistic)
& S ol Nij +n 2
(72) (0) i i .
i

. The expression of the m/ ;8 given in Theorem 8.10 for the power-divergence family
is as follows

A A
m® = ! ( 24ij ) " + (—2% ) o 2
" 2 (A +1) Qi; + Qi Qi; + Qi

A A
1 g < 2q;j ) B < 2q;; )
Agij + qji Gij + Qji Qij + Qi

Then for A — 0 and A = 1 we get

(0)

2q;; D qu 3qg¢ + 2929%2

= log , m; =
aGij + g0 Y 2 (qij + q5i)°

Then we have

2
o g g
(b(()) Z ZJ ( QZ] Jr q]l) Z zj 2] + q]’b

z#J t#J

and

2
o2 (q) = Z 3 a3 — 33 +24i;q;i B Z @ — 3¢} + 2qi;45i
oy \4 ij 2 (a: )2 i 2 (a0 )2
ij (gi5 + ¢5i) i (95 + qji)
i#£j i#£]

According to Theorem 8.10

2
Bro (@ =1-2, ( o <X”’2;”2’“ - D%(q,f(q)))) :

Tpxy (q)

then it is easy to obtain (3,4, (q) and B4, (@)
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8. In (8.37) it was established that

_1
A+1 A+1\ X+1
5,¢>(A) (pw + Dji )
ij I ’
)\+1 A+1
ZZ P

=1 j=1

ij=1,..1I

In the following table we present the minimum power-divergence estimators
S, S, S, S, S, S,¢

P11 > P12 > P13 > Paa > Da3 > D33 >

A=-2 0.0885 0.1147 0.0635 0.2508 0.1299 0.0442

A=-1 0.0881 0.1159 0.0634 0.2498 0.1295 0.0440
A=-1/20.0879 0.1165 0.0634 0.2493 0.1294 0.0439

A=0 0.0878 0.1171 0.0634 0.2487 0.1293 0.0439
A=1 0.0874 0.1182 0.0633 0.2477 0.1290 0.0437
9. Taking into account the expression of 02 (q) in Theorem 8.5, we get the following
table
Divergence lij
1 I 2 1 J q2
b1 (2) Tl DO DO
I 1/2 1/2 J 1/2 1/2 1/2 1/2
¢2 (l') 3— Z:l qr71(/1;* - 21 q*51(/12 - 1*1/137
q J . 1 qs 1
3 () 77“21 @ ta; S; i T <1 ST, @y 1)
1 1 qTA+1 J q?‘
o (m) 1 <_ TZI qg*qjj;rl - 32:1 I:Sq?*ﬂ + 2) (—Lq?*q:j - 1)
x l1—a drs + o .
¢5 ( ) ( ) {Tgl ((1*7 ((H-(l (L)#) 2 (1—(L)(a+(1—a) q::;*j) >

J
Qis Gxs
+§1 (q*J(a+(1 a)—u—) + (lfa)(aﬁ»(l a)_z_)

Qixd*s Djxdxs

-1
(a+(1 a)—f—)2

q*Qqxs

The previous ¢-divergences correspond to Pearson, Matusita (a=1/2), Rathie-
Kanappan, Cressie-Read and Rukhin. The expressions of Rathie-Kanappan and
Rukhin ¢-divergences presented in Chapter 1 are obtained from here with

¢3(x) — ¢5(1)(x — 1) and ¢5(z) — ¢5(1)(x — 1),

respectively.
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9

Testing in General Populations

9.1. Introduction

The domains of application of ¢-divergence test statistics go far beyond that of
multinomial testing presented in previous chapters. Thus in this chapter the ¢-divergence
test statistics are introduced and studied in general populations.

Let (X, Bx, Pp)gce be the statistical space associated with the random variable X,
where [y is the o-field of Borel subsets A C & and {Pp}y g is a family of probability
distributions defined on the measurable space (X, Bx) where © is an open subset of
RMo | with My > 1. Probability measures Py are assumed to be described by densities
fo(x) = dPy/du(x), where p is a o-finite measure on (X, By). Let Yi,...,Y, be
a random sample from a population described by the random variable X. For testing
Hy : 0 = 0y against Hy : @ = 0, (simple null hypothesis against simple alternative),
the uniformly most powerful test is given by the Neyman-Pearson criterion. If p is the
Lebesgue measure, i.e., X is a continuous random variable, the criterion establishes:
reject Hy if

ho =hn (Y1,...,Yn) = L(01;Y1,...,Y,)/L(0g; Y1,...,Y,) > ka,
with .
L(O:Yi,....Ya) = [ fo (i),
i=1
and accept Hy otherwise, where k, = ko (1, @, 09, 01) is determined by
Pro, (hn > ko) = a,

where o (0 < av < 1) is the significance level.
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More generally, for testing Hy : @ = 0 against Hy : 8 # 6, the most powerful or
uniformly most powerful test does not exist and we have to rely on other criteria for
the choice of an appropriate test statistic. In such situations the classical solutions are
Wald test statistic, Rao test statistic, likelihood ratio test statistic and more recently the
test statistics based on ¢-divergence measures: ¢-divergence test statistics. The same
problem appears with composite null hypotheses of the type Hy : @ € ©p C © and
again the previous test statistics provide good solutions. In this chapter we study the
properties of ¢-divergence test statistics for testing simple and composite null hypotheses.

We assume that the statistical model (X', Bx, Pp)gcq satisfies the standard regular-
ity assumptions considered in parametric asymptotic statistics, i.e., conditions i)-v) in
Section 2 of Chapter 2, as well as the following assumptions in relation to the functions
¢ involved in the definition of general ¢-divergence test statistics:

(®1) The function ¢ € ®* is twice continuously differentiable, with ¢” (1) > 0 ;
(®2) For each 6y € O there exists an open neighborhood N (6g) such that for all 8 €

N (8p) and 1 < 4,5 < My it holds:
57 [ oo ( J{;"O(f;)) dn(o)= [ (foo ()6 ( J{;"O((‘?))) ().

i oo (25 o= [ 57 (snataro (F225) ) anta.

and these expressions are continuous on N (6y) .

%)
00;

9.2. Simple Null Hypotheses: Wald, Rao, Wilks and
Phi-divergence Test Statistics

The classical test statistics for testing Hy : @ = 0 against H; : 0 # 6y (simple null
hypothesis against composite alternative hypothesis) are the following;:

Wald test statistic

o~ o~

WO =n(0 — 6,)"Zx(6)(8 — 6y), (9.1)

where 8 is the maximum likelihood estimator of @ in © obtained from the sample
Y1,...,Y, and Zx (0) is the Fisher information matrix for the original model.

- Likelihood ratio test statistic
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where

A (6) = > log fo (Y1),
i=1

- Rao test statistic 1
Ry =~U, (60)" Zr (80) ' U, (60) (9.3)

L
o " dlog fo (Vi) = 0log fo (V)
_ og fo (Y5 og jo (X
U, (00) = <27391 3 ) >99 |

i=1

Kupperman (1957, 1958) established that the test statistic based on the Kullback-
Leibler divergence measure

fa(x)
f 0o (l‘ )
is asymptotically chi-squared distributed with My degrees of freedom. This result allows

to test the null hypothesis Hy : 8 = 0y by means of the Kullback-Leibler divergence
measure.

TX(8,00) = 2nD (8, 00) = 2n / f()log dp ()
X

More recently, in the line of Kupperman, Salicri et al. (1994) introduced the ¢-
divergence test statistic and studied its properties including its asymptotic behavior.

- ¢-divergence test statistic

T%(,00) — J—’ZDDQS(@, 60). (9.4)

In the following theorem we present the asymptotic distribution of the test statistics
given in (9.1), (9.2), (9.3) and (9.4).

Theorem 9.1
Let the model (X, Bx, Pa)gce - Suppose ¢ satisfy the assumptions i)-v) considered
in Section 2 of Chapter 2 and (91)-(®2) respectively. Under the null hypothesis

HO 10 = 90 (95)

the asymptotic distribution of the test statistics given in (9.1), (9.2), (9.3) and (9.4) is
chi-square with My degrees of freedom.

Proof. We start with Wald test statistic. Since under Hy : @ = 6,

ai)907

n—oo
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and by assumption v), the elements of Zx () are continuous in 8, it holds

Ir(8) — Ty (8).

n—oo

Then, the asymptotic distribution of the quadratic form
n(6 — 00)"ZF(6)(6 — 8)
coincides with that of the quadratic form
X"X =n(6—00)"Tr (8,) (6 — 60),
where X = \/nZx (60)"/* (6 — 6,).

We also know that under Hy,

Vn(@—8,) = N (Oyff (90)71)

n—oo

which implies
X 55 N(0, Ingyxasy) -

Therefore,
n(0 — 80)"Zr(6)(6 — 60) H > Xy

and the Wald test statistic should reject the null hypothe81s whenever
n(0 —60)"Ix(8)(6 — 60) > Xify a-
As to Rao efficient score test statistic by assumption i), we know that

E9 |:810g6—];0()():| :Ov Z.Zlv"WMO'

Further, by the Central Limit Theorem, under Hy the random vector

| d1og fo. ( dlog fo (Vi) )

0g 90 og 90

~U, (0, = | = 5 )00\ 1)

Lo o) - (33 2l 1y Sl
satisfies 1

L
\/EEUH (90) njo)o N (07 E) )

where X is the variance-covariance matrix of the random vector

dlog fo,(X)  Olog fa, (X)\”
601 s ey 60M0 3

which is obviously Zz (8y) . Therefore

ZRUA (00 £ N (0.7 (60)
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and consequently

1
R?L = EU?L (GO)TI]: (00) " (90) L—) XMO

Now let us establish the asymptotic distribution of the ¢-divergence test statistic,

2n ~

(9 90) ¢//( )D (0 90)
A second order Taylor expansion of Dy(8,6) around 8 = 6 at 0 =0 gives
~ 0D, (0,0 ~
Dy(8,60) = Dy (60,80) + z 9D, (8,80) (8; — 60,)
90; =0,

+

l\')l)—A

j=1
where by (1.6), it is clear that
Dy (60,600) = ¢ (1) = 0.

Now we prove that the second term in the previous expansion is zero.

) /¢ (feo ))) 2t o),

Indeed,

and for 8 = 0

0Dy (0,0,) , dfg (z) / 9
(%)HO =o' (1) )Z e du(e) = ¢ ) 35 [ o @) dutz) <o

This means that the random variables
2nD4(8, 0,)

and

My Mo
82Dy (0,60) - -
ny >, < 96:00, )9_90 (0 — 60i)(0; — bo;)

=1 j=1

. 2
have the same asymptotic distribution, since under Hy o (HO — OOH ) =op (n71).

The second order derivatives are

Dy (0.00) [ (fo@)\ 1 8fs(x)0fs ()
600, / ¢ <feo (x)) for @ o8 o0, "

X

o fo (@) \ 0% fo (@)
/¢ (feo ($)> 90,00, du ()
X

+
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and then

82D¢> (9,90) N /, 1 afeo ) afeo (1’)
< 90,00, )HO = ¢ / @06, o6, W@
X
d)//( I;‘__] 90)

where f}f (6p) is the (i, j)th-element of the Fisher information matrix. Therefore,

~ 2n

(0,60) = 70

and finally, this implies

T¢ Dy(0,00) = n(6—60)"Tr(6,)(0—60)+op (1),

n

2n

16, 60) = o (1)

(9 90) XM(J

In order to obtain the asymptotic distribution of L2 under Hy, we consider the
following Taylor expansion

My 9\, (6) ~
< 20, )9_00(0,—900

W>G_eo (6 — 00:)(8, — Bo;) + o <H(§ _ 90H2> .

O\ (0) Jlog feo
< 00 )0_9 a Z

Then, applying Khintchine Law of Large Numbers we get

6/\n (0) a.s. 610g fgo (x) B
<T&>9_90 — /\;Tf@o (z)dp (z) = 0.

On the other hand, the second derivatives are

<62>\n(9)> I L s, (Yz)afeo (V1) ~ P fo, (V) 1
90:00; ) o g, = fo (Vi)?  00; 96,00, fo, (Vi)

But by Khintchine Law of Large Numbers,

I~ 1 3fe, (V) 0fe, (V) a w5, 71 (g0)
n =1 f@o (Yz)2 801 69] n— o0 F

and
? foo (Y1) 1 a.s, 62f00 (v)
00;00;  fo, (Y1) n—oo 00,00
X

du () = 0.
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Therefore,

n (Mn(@) = A, (80)) = V(8 — 00)"Zr (60) V(B — 00) +0p (1)

and this implies
Ly - Xty -
n—oo
Remark 9.1
The (h, ¢)-divergence test statistics associated with the (h,)-divergence measures

satisfy
bh (D . 2n
Tn (0700) = B (O) ¢//( ) (9 90) XMU

This result is immediate from the relation

DL(8,80) = I (0) Dy(8,80) + 0 (D¢(§, oo)) .

Based on Theorem 9.1 and Remark 9.1, we should reject the null hypothesis given
in (9.5), with significance level o, if T7(6,80) > X3, o (or if T.7"(6,80) > X3, ,)- The
rejection rule is analogous for W2, LY and RO.

In most cases, the power function of this testing procedure can not be calculated ex-
plicitly. In the following theorem we present a useful asymptotic result for approximating
the power function.

Theorem 9.2

Let the model and ¢ € ®* satisfy the assumptions i)-v) considered in Section 2 of
Chapter 2 and (®1)-(®2) respectively. Let 0 be the true parameter, with 0" # 6y. Then
it holds

Vit (Ds(8,00) = Dy (67,00)) = N (0,03 (67))

where (J'i (6") = TTI;t(H*)_l T, T-= (tlw-th)T and t; = (aDa(eejﬂO))e P J =
1 M.

Proof. A first order Taylor expansion gives

Dy(8,80) = Dy (6°,00) + TT (8 — 67) + 0 (H@ s

).

By the Central Limit Theorem,

Jn@—-6) L N (o,zf (0*)*1)

n—oo

and
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Then, it is clear that the random variables,
N (D¢(§, 00) — D, (67, 90)) and T7/n(6 — 0%),
have the same asymptotic distribution.

Remark 9.2
Through Theorem 9.2, a first approximation to the power function, at 6 # 0y, is

given by
11 2
La(07)=1-0 (%@) <¢ U Xine _p, (0*,eo>>> L o)

where ® (x) is the standard normal distribution function. If some alternative 0
0y is the true parameter, then the probability of rejecting 0y with the rejection rule

T? (@, 90) > X?\/[ma, for fixed significance level o, tends to one as n — oo. The test
18 consistent in Fraser’s sense.

In order to produce some less trivial asymptotic powers that are not all equal to 1
we can use a Pitman-type local analysis, as developed by LeCam (1960), confining the
—1/2_peighborhoods of the true parameter values. More specifically, we
consider the power at contiguous alternative hypotheses described by

attention to n

Hi, 0, =0y+n""2d,
where d is a fixed vector in R™0 such that 8,, € © C RMo,

A fundamental tool to get the asymptotic distribution of the ¢-divergence test sta-
tistic T (5, 6y) under the contiguous alternative hypotheses is LeCam’s third lemma, as
presented in H4jek and Sidak (1967). Instead, in the following theorem we present a
simpler proof.

Theorem 9.3
Let the model and ¢ € ®* satisfy the assumptions i)—v) considered in Section 2 of
Chapter 2 and (©1)-(®2) respectively. Under the contiguous alternative hypotheses

Hl,n : 0, = 90 + nil/Qd,

where d is a fived vector in RMo such that 8,, € © C RMo_ the asymptotic distribution
of the ¢-divergence test statistic T(0,80q) is noncentral chi-square, with My degrees of
freedom and noncentrality parameter § = d' Iz (6p) d.

Proof. We can write
V(0 — 80) = Vn(6 — 0,) + (8, — 6) = /(0 — 0,,) +d.
Under H; ,, it holds

Jn(@-8,) = N(o,zf (00)—1) and n(0 — 0y) = N(d,I;c (90)—1).

n—oo n—oo
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By applying the delta method, it is not difficult to establish that
~ ~ ~ ~ 2
T(8,00) = n(6 — 0,)Zr (8;) (6 — 6,)" +n o (Ho - aoH ) .

Then, T? (6, 6y) has the same asymptotic distribution as the quadratic form

~

T ~
XTX = (17(0)" Va0 - 00)) (T (6)'* V(@ —60)).
On the other hand
X =T7 (60)* V(B — 80) - N (If (60)" d, IMoxMo) .

Therefore

(27 (002 V(@ — 00)) " (Zr (00" Vi@~ 00)) L 3y, (),

being 6§ = d* Zr (6y) d.

Remark 9.3
Using Theorem 9.3, we get a second approximation to the power function, at 0, =
00 +n=1/2d, by means of

2 _ 2
/Bn(e’n) =1- GX%{D((S) (XM(J,OA) ’

where G,
X3 (9

with My degrees of freedom and noncentrality parameter § = d* Zr (0o)d. If we want
to approzimate the power at the alternative 8 # 6y, then we can take d = d(n,0,0y) =
V(0 — 6y). We can observe that this approzimation is independent of ¢.

is the distribution function of a moncentral chi-square random variable

The same result can be obtained for the test statistics W2, LY and R (see, e.g., Sen
and Singer (1993) or Serfling (1980)).

Example 9.1

Let Yy, ..., Y, be a random sample from a normal population with mean p and variance
o?. Consider the parameter @ = (u, ). Find the expression of the test statistics given in
(9.1), (9.2) and (9.3), as well as the expression of Rényi test statistic, for testing

Hy:0 =6y = (uo,00) versus H,:0+#6,.

It is well known that the maximum likelihood estimators of pu and o are given by

n

A=Y and = %Z(K—?)Q.
i=1
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The likelihood ratio test statistic becomes

where

1.€.,

n

o= lZ(Yz'*lto)Q,

n

i

=1

~2
L2:2nlog@ —i—n(U—Q—l).

g

The Fisher information matrix is

L0
I]:(/L,O'):(S %)

Therefore, the Wald test statistic has the expression

0 _
Wn -

o)

n (Y = o)’ /6% +2n (G — 00)? /52,

Concerning the Rao test statistic, the score vector is

U, (o,00) =

and then

0log fu.«

>

i=1

o

(Y3) i dlog fu.- (Yi)
’ 0o
T

i=1

(- (=) (%)

0 _
R, =n

(Y — o)

2
]

2

L n 72 —od 2
2 o3 ’

Finally, we obtain the expression of Rényi test statistic.

)

) atr(22)

1
L0 = 2(log | ——— exp(—=
= 2o e

T

(N’U):(NU 700)

The Rényi divergence may be regarded as a (h, ¢)-divergence; that is,

with

and
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h(z)=

¢ (x) =

1
r(r—1)
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Rényi test statistic has the expression

2n

1,(0,60) = AOLAD]

D11“(b\790)

It is easy to see that h' (0) =1 and ¢ (1) = 1. Therefore,

T7(8.60) = % tog [ fy @) fo, (@' du (@), 71,0

X

In Chapter 1 itlwas established! that Rényils divergence measuirel between twol norimal
populations is

1 (p— ;/J())2 1 rog + (1 —r)o?
Dy (1, 9) (110, 00)) = DY s R ey log (22)1” I (9.9)

Using this formula, we get

— 2 =R
T’“(@,B@n( (Y — o) 1 ) r08+(17’)c72>’

rod+(1-r)5% r(r—1) ° (52)"7" (02)
where 8 = (Y,52) and 6y = (1o, 00) -
When r — 1, we get the test statistic based on Kullback-Leibler divergence,

5.2

linﬁ T,:(@, 6y) = 2nDKu”(§, 60) = 2nlog D in (—2 - 1) = Tf“”(@,@o).
r— o

90
Observe that in this case T} (5, 0y) = Tf””(/é, 0o) coincides with LY. The following

Remark provides a sufficient condition for the equality of these test statistics.

Remark 9.4
When the density fg (x) belongs to the exponential family, that is,

fo (2) = 4 (0)  (x) exp (Z 5.(0)1, <x>> vex,

likelihood ratio test statistic coincides with the test statistic based on Kullback-Leibler
divergence measure.
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For the exponential family, likelihood ratio test statistic is given by

fo (M, Ya)
foo (Y1,...,Yn)

d®" T1 ¢ (v; )exp<z zs<> (v, ))

0 = on (An@) e (90)) — 2log

i=1 j=1li=

4(60)" T (. >exp<i 3 00) ))

=1 j=1li=

- 2<10g L0+ 3 5 (5:6)- Si<eo>)ti<Yj>>

) Jj=1i=1
— 2n<logq((0) —&-ZMZ(;( () (90)) (%Zﬁ: i (Y] )))7

while the test statistic based on Kullback-Leibler divergence takes the form

R ) Mo ~
DRG0, = 2nlog (g’o))Jrzni; (5:(8) — 5: (60)) B [t: (X))

It is clear that the two statistics coincide asymptotically since

and
Eglt: (X)) =5 Ep, [t: (X)] .

The following question then arises: Is it possible to find assumptions under which the
two exact tests coincide? Thus, we need to find the conditions under which

Byl ()] = = 3" 1:(%))
=1

The likelihood function is

L(0.Y1,...Y,) = q(0)"H ) exp (ZS tZ )) ,

=1

and the loglikelihood function is
log L (8,Y1,...,Y,,) = nlogq (0 +logHt +ZS )th(Yj)
— j=1

Therefore, the mazximum likelihood estimator, 5, 18 a solution of the system of equations

Dlog L(6,Y1, ..., Vy) n_0q(0) & Mo 9S;(6)
- + ti Y :0,
96, q(0) 00; = 96, k; Te)
j=1,.., M.
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On the other hand, we know that

Mo
/ q(6)t(x)exp (Z S; (0)t; (m)) du (z) = 1.

X
Taking derivatives with respect to 0; in both sides we get
9q
2t we (£50)40) du o)

Yy 95, (6), _
%q(e) @esn (X 560)4 ) ¥ S @ duto) = 0

which is equal to

Thus, for the exponential family it holds

1= J k=1
—1,..., My

{%%f%fti(m - 3 B

b

and this can be written as a homogeneous system
with N

My
D ijZi
i=1
G=1,.., My
95,(0)

1 n
Toj and z; = gkgtl (Yr) — B [t: (X)].

This system has the unique solution z; = 0, i = 1, ..., My, if and only if the determinant
of the matrix

Q5 =

A = (i) joa,. v

is different from zero.

Therefore, the exact likelihood ratio test statistic coincides with the exact test based

on the Kullback-Leibler divergence measure if and only if the determinant of the matrix
95:(0)
;)
i,7=1,...,Mp
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1s different from zero. This condition means that the equality is obtained when the expo-
nential family is not overparametrized.

Buse (1982), by means of simple diagrams, gave an intuitive meaning of the likelihood
ratio test statistic, Rao test statistic and Wald test statistic. Interesting survey articles
about these test procedures were given by Breusch and Pagan (1980) and Engle (1981).

9.2.1. Confidence Regions

We can easily construct families of confidence regions with a prescribed asymptotic
confidence coefficient 1 — o for 8 € © ¢ RMo, We consider the problem of testing Hy :
6 = 6, based on the ¢-divergence test statistic T9(6, 8y). Let Ay (80), 8 € © C RMo,
the region of acceptance associated with the test statistic “reject the null hypothesis Hy,
with significance level a, if T(8,68,) > Xi.a s 1€,

A5 (80) = {(y1,-s3) : T(0,00) < Xsya } -
For each observation (yi, ..., Yn) let Sg(y1, ..., Yn) denote the set

S (U1s s ) = {05 (41, y) € Ay (8), 6 € O}

Then Sy (Y1, ..., yn) is a family of confidence regions for 8 € © C RMo with asymptotic
confidence coefficient 1 — a.

9.3. Composite Null Hypothesis

We assume that the statistical model (X, Bx, Pp)ycq, satisfies the standard regu-
larity assumptions 4)-v) given in Section 2 of Chapter 2 (see also Serfling (1980)). As to
the composite null hypothesis

Hy : 0 c Oy C @, (910)

we assume the following:

(H1) Oy is a subset of RMo and there exist 1 < dy < My, an open subset B C RMo—do
and mappings
g:0 — R% and h:B— 0

such that ©g = {h(3) : 8 € B} and g(6) = 0 on Oy.
(H2) The My x dp matrix
dg; (0
B6) - (“42) -1

90 s=1,...,Mo

exists and is of rank dy for all @ € O, with all elements continuous on .
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(H3) The My x (Mg — dp) matrix

6h-(9)>
Mpg=(—"2—+) -
s < 9B, ) Ao

exists and is of rank My — dy for all 8 € B, with all elements continuous on B.

(H4) The statistical submodel

((X, /BX),{I?B :fh(g) :BGB}ML)

satisfies regularity conditions i)-v).

In order to solve the testing problem
Hy:0€0yCOversus H1 : 0 € © — 0

we shall consider the test statistics given in (9.1), (9.2), (9.3) and (9.4), but adapted to
current context:

- Wald test statistic

~

W, = ng(0) (BO)Z+0) "B () 9(0)". (9.11)

where 0 is the maximum likelihood estimator of 6 in ©, I}-(a)_l denotes the
inverse of the Fisher information matrix, g (8), the mapping defined in (H1) and
B(6) the matrix in (H2).

- Likelihood ratio test statistic
Ly, =2n (An(é) - An(é)) (9.12)

where 6 = h(f']) is the maximum likelihood estimator restricted to the null hy-
pothesis ©g, and

1 n
>\n (9) = E lengG (}/Z) .
- Rao test statistic )
R, = EUn(é)If(é)’lUn(é)T, (9.13)

where

= [x=0log fo (Vi) <= Olog fo (Vi)
U71(«9)<Z—691 ,...,;—%M )9_6.

i=1
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For testing the special composite null hypotheses H = ©g = ©1 X {02} and H* =
0f = {610} X O3 in models with ©® = O; x 04, Salicri et al. (1994) proposed the
¢-divergence test statistics

T (@1,52)’(51,920)) = Qﬁ’?—?l)Dd) ((51,§2),(§1,920))7
T? (@1,52),(9107‘@2)) = qﬁ’?—?l)Dd’ ((51,‘62)7(910,52))

using the maximum likelihood estimator 6 = (@1, @2)

Later Morales et al. (1997), using the ¢-divergence test statistics, studied the problem
under any hypothesis H with the properties (H1)—(H4). They dealt with the following
family of test statistics:

- ¢-divergence test statistic

~~ Mm P

T??(gae) = WD¢(070)7 (914)

where 8 is the maximum likelihood estimator of @ in © and @ is the maximum
likelihood estimator in the null hypothesis ©.

Theorem 9.4

Let the model and ¢ satisfy the assumptions i) —v) considered in Section 2 of Chap-
ter 2 and (®1),(®2). Then, under any hypothesis H with properties (H1)-(H4), the
asymptotic distribution of the test statistics given in (9.11), (9.12), (9.18) and (9.14) is
chi-square with dg degrees of freedom.

The proof of this theorem for the ¢-divergence test statistic given in (9.14) was
established by Morales et al. (1997). For the rest of test statistics, see Serfling (1980)
or Sen and Singer (1993). For the test statistic based on the (h, ¢)-divergence measures,
TT?”L(E,E), we have a similar result.

For composite null hypothesis a result analogous to Remark 9.4 can be established.

Consider the null hypothesis Hy : @ € ©¢ C O and assume that conditions (H1) - (H4)
hold. By Theorem 9.4, the null hypothesis should be rejected if T/ (@, 5) > X?lo,a' The
following theorem can be used to approximate the power function. Assume that 8* ¢ O
is the true value of the parameter so that 0 7::—20 0" and that there exists 8y € ©¢ such

that the restricted maximum likelihood estimator satisfies 8 £ 6¢. Then, it holds

aea-em) Lo((0) (57 22))
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where A1y = A2 (0*,0p), Aoy = AL, and Agy = Agy (0%,8¢) are dy x dy matrices. We
have the following result.

Theorem 9.5
Let the model ¢ € ®* and Oq satisfy the assumptions i)-v), (¢1)-(62) and (H1)-(H4)
respectively. Then

Vit (Ds(8,6) = Dy (67,00)) = N (0,0%(6"))

where
02 (0") =T T (0") ' T+ T  A12S + ST AnT + 5" A8,

T — (am{ggi?eo)) and S — (8D¢ég;702))

T T

0,=0" 0:=0,
Proof.~ The result follows straightforward by making a first order Taylor expansion of
Dy(6,0)

Dy(8,8) = Dy (6",80) + T (6 — 6°) + ST(0 — 00) + o (H@ _6

o)

Remark 9.5
On the basis of this theorem we can get an approzimation of the power function at

0", 3,.4(0") = Pro- (T,‘f’(/é,é) > X?io,a) , in the following way:

50606 =1~ 0 (s (G0~ VD, (67,60 )

where ® () is the standard normal distribution function.

We may also find an approximation of the power of T;f(@, é) at an alternative close to
the null hypothesis. Let 8,, € ©—0 be a given alternative and let 8¢ be the element in ©¢
closest to @,, in the Euclidean distance sense. A first possibility to introduce contiguous

alternative hypotheses is to consider a fixed d € R and to permit 8,, moving towards
6y as n increases in the following way

Hi,:0,=00+n"12d.

A second approach is to relax the condition g (6) = 0 defining ©g. Let § € RMo and
consider the following sequence, 8,,, of parameters moving towards 8, according to

Hi, :g(0,)=n"12%.
Note that a Taylor series expansion of g (6,,) around 6 yields

g(8,) =g (80) +B ()" (8, — o) +0(]6,—8]). (9.15)
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By substituting 0, = 8g +n~'/2d in (9.15) and taking into account that g (8) = 0, we
get

9(8,) =n""2B(80)" d+0(]|6 — 80l)
so that the equivalence in the limit is obtained for 6 = B (BO)T d. In Morales and Pardo
(2001), the following result was established:

Theorem 9.6

Under some regularity conditions, the asymptotic distribution of T (5, 5) under Hy ,,,
is moncentral chi-square with dy degrees of freedom and noncentrality parameter § =
d'Ir (90)71 d and noncentral chi-square with dg degrees of freedom and noncentrality

-1
parameter §* = d* (B (80)Zr (80)" " BT (90)) d under Hy .
Davidson and Lever (1970) obtained the same result for the test statistic L,,.

Example 9.2 (Morales et al. 1997)
Let Y1, ..., Y, be a random sample from a normal population with mean p and variance
02,0 = (1,0) € © = (—00,00) x (0,00). We shall test composite hypotheses
Hy:0=pu/3 VETsus Hy:o0# u/3.

The mazimum likelihood estimators of p and o are i = Y = 13" YV, and ¢ =

(2300 (Vi = Y)H)Y2, respectively. In this case,

©0={(1t,0) €0 :0=p/3}.

Now we are going to calculate the maximum likelihood estimator, 5, of 8 in ©y. The
density function is

N2 1 2
INGuo=n/3) (@) = WGXP{% (Z—/e’f) } = ;W exp{% (ﬁ - ) }

Then, the likelihood function is

3 \"1 9 (Y72 2 &
L(p; Y1,...,Yy,) = <W> H—nexp{—§ (ZF +n—;;Yi>}

i=1

and the loglikelihood function

3 n y2 n
log L(p; Y1,...Y,) =n (—10gu+10g @) -2 <_Z S n—1y Yi) :
Therefore

Olog L(p; Y1,..., Ya)
O

==
I
S
+
’;w|©
ilngh
<<
[\
I
= |©
ngh
=
N——
|
e
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and [ is a solution of the equation

n n n
- 1
—np® +9Y Y —9u) Yi=0 4 +9YM—QEZYZ-2 =0.
i=1 i=1 =1

This solution is

1

. . 1
— | —ov = @72 +ax9-S v2
n=3 (9Y)2 +4x9- >,

i=1

and the mazimum likelihood estimator of 6 in ©q is 6 = (i, Ji/3), where

fi= g (—3? /187 + 4&2> :

Now, taking into account the expression of Rényi divergence for two normal populations
given in (9.9), we get the expression of the Rényi test statistic

2n
VOO ey
- o) (m/3)7" (=)
= n (r(r 1) log r(/3)*+(1—-r)52 - ('r'(ﬁ/3)2+(1—r)82)> ’

17(8,0) = DX(7,5). (i, &)

The likelihood ratio test statistic is given by

L, = TX"(9,6) = lim D'(8,0) = n M9+9— —1+1o 2

n n ) 7,_}1 s ) M g 962
and for r — 0, we have
o - ~2 1 ~2
798,0)= Lm7T7(8,0)=n <(“ D El 12 ) .
r—0 9o /L

Now we consider the test statistics W,, and R,. For the Wald test statistic W,,, we

need the Fisher information matrix, the function g and the matriz B (0). The estimated
Fisher information matriz is

~ 772 0
If: (Na U) = ( 0 25_72 ) y

the function g and the matriz B (0) are g(8) = g(7i,5) = Ji — 36 and B(8) = (1,-3),
respectively.

Then, the Wald test statistic is

W, = ng(®) (BOZ-0)'B"(9)) 9(®) =n

Regarding Rao test statistic, it is necessary to calculate
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AN - dlog fi..0 (Y:) - dlog fi..0 (Y;)
Un (9) - (Z 8'“ 72 80’ o .
1 (1,0)=(1,1/3)

i=1 =

It holds

and
En: 010g fu,0 (Vi) _ (3,211 Z 42
i= < bo (71,71/3) ! poopEEn Vi)

i=1

Therefore
R, = 1U.(0)TZ7(0)"'U.(6)

n

9 — B3 2112 L\
”(ﬁz(y s (Er ma nmem) )

In the following table we summarize the final expressions of the different test statistics

presented here

Statistic FExpression
2(1i — 30)?
Wa 1152
R (2 (L3 Ty o)
" R T N Y N
_ Kl (7 —m)? o’ [l
Ly, =TI M—9+9——1+1og@
2 1 9/\2
70 n((“ A +%—1+1g”>
112
~oN\1—T ,~ r ~ ~
- (o %) " (u/3)? N (i — )
" r(r=1 """ r (/3 + (1 -2 r(u/3)° + (1 —r)5?

The formula for T holds for r # 0, r # 1 when r(j1/3)®> + (1 — )% > 0. When
r(i/3)%* + (1 —r)o? < 0, then T}, = oo.

The null hypothesis, Oy, is given by the line o = p/3. Now we consider the perpendic-
ular line to the null hypothesis across the point (0,c¢). This line is given by 0 = —3u + c.
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The intersection of both lines is a point at the null hypothesis Py = (3¢/10,¢/10). We

consider 10 points on the line 0 = —3p + ¢, four of them under Ps and sixz over Ps,
namely
c (101 17
i=— | =, = j 1,3 1,2,...,11.
/ 16(20’20>+320( i =12

For ¢ =1/2 we have the following 11 points:

Py = (.1562,.0312), P, = (.1547,.0359), P; = (.1531,.0400),
Py = (.1516,.0453), P5 = (.1500,.0500), Py = (.1484,.0547),
Pr = (.1469,.0594), Ps = (.1453,.0641), Py = (.1437,.0687),
Py = (.1422,.0734), Py; = (.1406,.0781).

Given, for instance, Py = (.1547,.0359) , we calculate the power of the test statistics
simulating random normal variables with mean 0.1547 and standard deviation 0.0359.

For any statistic

TeS={W,,R,T,, r=-1,—.6,-.3,0,.3,.5,.7,1,1.3,1.6,2}
and any point P;, the power 1s
Br(P;) = Pr(T > xi 0.05/P;) = Pr(T > 3.84/F;).

This power will be obtained as follows:
e For each P;, j =1,...,11, repeat N = 1000 times:

- Generate n = 50 normal random variables with parameter P; and obtain the max-
imum likelihood estimators.

- Ewvaluate Tj; (value of T for the random sample i (i = 1,...,1000) of parameter P;
(G =1,..,11) with c = 1/2).

o Fstimate

_ Number of Tj; > 3.84 (t=1,...,1000)

In Table 9. 1lwelpiresentlthe powers correspondingtolthe test statisticsW,,, Ry, and T}, r =
-1,—-.6,—.3,0,.3,.5,.7,1,1.3,1.6,2. For r = 1 we have the likelihood ratio test statistic.
Let us denote

S ={Wy, Rn, T, 7 =—1,-.6,—.3,0,.3,.5,.7,1,1.3,1.6,2}

the set of test statistics considered here. We define Bryrax(P;) = suppeg Br(P;), for
j=1,...,11, the maximum power achieved in the class S for each alternative hypothesis
P;. Then

ir(Pj) = Buax (Pj) — Br(F;)
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is the inefficiency on the set of alternative hypotheses for each T' € S. Thus, the quantity

can be regarded as a measure of inefficiency of the test statistic T. The minimazx criterion

chooses the test statistic T € S minimizing 1 (.) .

0(T) = max;zs {ir (P)))

Table 9.1 (Continuation)

Powers
T,
P | W, | Ry r=—1|r=—6|r=-3|r=0|r=3|r=5|r=.7
1| 1.00 | .997 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2| .965 | .853 .979 975 .970 .960 951 .946 .936
3| .675 | .431 742 710 .689 .664 .640 .615 .602
4 | .252 | .099 312 .280 .260 .238 215 .205 191
51 .068 | .044 .095 .078 .074 .067 .059 .056 .054
6 | .083 | .194 .067 .069 .082 .095 .109 119 133
71 .301 | .477 222 .264 .294 .326 .349 .363 377
8 | .5b44 | .7T15 .459 .504 .536 .563 .596 .620 .633
9 | .811 | .907 754 .786 .806 .825 .841 .850 .861
10 | .910 | .962 .872 .895 .907 915 931 .933 .943
11 | .972 | .989 .964 967 .969 .974 977 .979 .980
Table 9.1
Powers
T;

Pilr=1|r=13|r=16|r=2 | Buax())

1 1.00 .999 .997 .997 1.00

2 927 913 .894 .880 979

3 573 .540 .516 ATT 742

4 176 .159 147 126 312

5 .055 .052 .049 .050 .050

6 147 .162 181 .214 214

7 .404 437 463 .496 .496

8 .659 677 701 .730 .730

9 .874 .888 .897 915 915

10 | .950 .958 .960 .966 .966

11 | 981 .986 .989 .992 .992

In Table 9.2 we present the inefficiencies n(T') of the test statistics T).
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Inefficiencies
Ty
P | W, R, r=—1|r=—6|r=—3|r=0|r=3|r=5|r=.7
1 | .000 | .003 | .000 .000 .000 000 | .000 |.000 | .000
2 | .014 | .126 | .000 .004 .009 019 | .028 |.033 |.043
3 | .067 | .311 | .000 032 053 078 |.102 | .127 | .140
4 | .060 | 213 | .000 032 052 074 | .097 |.107 | .121
5 | -.018 [ .006 | -.045 | -.028 | .024 -017 [ -.009 | -.006 | -.004
6 | .131].020 | .147 | .145 132 119 | 105 | .095 | .081
7 | 195].019 | 274 | .232 202 170 | 147 | 133 | 119
8 | .186 [ .015 | .271 226 194 167 | 134 [ .110 | .097
9 | .104 | .008 | .161 129 109 090 | .074 |.065 | .054
10 | 056 | .004 [ .094 | .071 059 051 | .035 |.033 |.023
11 | .020 | .003 | .028 025 023 018 | .015 [.013 |.012
| ] 195] 311 ] 274 232 202 170 | .47 | 133 | .40 |
Table 9.2
Inefficiencies
T?";
J r=1|r=13|r=16|r=2
1 | .003 .001 .003 | .003
2 | .052 066 085 | .099
3 | 169 202 226 | .265
4 | 136 153 165 | .186
5 | -.005 [ -.002 .001 | .000
6 | .067[ .052 033 [ .000
7 | 092 059 033 | .000
8 | o711 053 029 [ .000
9 | .041 027 | 018 | .000
10 | .016 .008 .006 | .000
11| .01l .006 003 [ .000
| [169 |.202 |.226 [.265 |

Table 9.2 (Continuation)

We can see from the last line in Table 9.2 that the test statistic TO:® presents the
minimum relative inefficiency. The relative inefficiency of the test statistic using, e.g.,
the Rao test statistic, is more than 100% higher.
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Observe that T, % = —8nlog(1 — T.E¢/8n), where TE"® is the Freeman-Tukey test

statistic given by ,
75 —an [ (/o) = [fy(@)) do.
R

Furthermore, T? = nlog (1 + En’i) where

o [ a0~ fi@)
X [

18 the chi-square test statistic.

9.4. Multi-sample Problem

This section deals with testing a composite null hypothesis Hy about parameters
from s populations whose distributional structure differs just in the value of a parame-
ter. From each population 4, a sample of size n; is drawn at random, i = 1,...,s. Let
51, .. 9 denote the maximum likelihood estimators and 91, .. 0 the maximum like-
lihood estimators under Hy. When n; = ... = n,, Morales et al. (1997) developed a
testing procedure based on the ¢-divergence test statistic

T¢ ((61,...755), (51,...,65)) : (9.16)

which is obtained by calculating a ¢—divergence between the joint densities
S S
H fg. (xi) and H fg. (i)
i=1 i=1

When the sample sizes are different, the ¢-divergence test statistics given in (9.16)
cannot be used unless they were generalized in some sense. In the literature of Statistical
Information Theory, problems related to s samples have been treated by using families
of divergences between s populations (see Menéndez et al. (1997e), Zografos (1998a),
Morales et al. (1998)). This is a nice possibility, but it is not the natural extension of
the likelihood ratio test statistic, and in some situations the asymptotic distribution of
these test statistics are based on a linear combination of chi-square distributions instead
of on a chi-square distribution.

The likelihood ratio test statistic uses the ratio between

S ng S ng

IIII/%. i) and  JTTI /5 (Vi) (9.17)

i=1j=1 i=1j=1
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for introducing the decision rule. As a parallel approach, in this section we consider
a divergence between the two estimated likelihood functions appearing in (9.17) and
provide a decision rule on the basis of the resulting statistic.

Let (X1, Bxy, Pro,)o1cor,---,(Xs, Bx,, Psa,)o,co, be statistical spaces associated
with independent populations. For ¢ =1,---,s, &; C R™ is the sample space, O, is the
Borel o-field of subsets of Xj, ©; C R¥ is an open set and fi,@, is the probability density
function of P; g, with respect to a o-finite measure p;, @ = 1,...,s. In this section, we
deal with the product statistical space

(X1 X - X X, Bay X == X B, Prg, X+ xPsp,),

with (01,...,0,) €0y x --- x O,. Let u 2 pit X - - x ps be the product measure and
XA X[ X - x X be the product sample space. Consider s independent random sam-
ples, Y1, Yio, ..., Y, i =1, ..., s, from independent and identically distributed random
variables with common probability density function f;¢,, 6; € ©;, ¢ =1,...,s. Assume

that the sample sizes n; tend to infinity with the same rate, that is, if n = Y _;_; n;, then
n;

— — Ne(0,1),i=1.,s (9.18)

n mn;—oo

where Zle A; = 1. Further, assume that the parameters 6; = (0;1,...,0;%,), i =

1,...,s, have the same k first components, that is,
9171 = 9271 = ... = 9571
b0 = b = ... = G2
b = b = ... = 05y,
where k < min{ky,---, ks}. Let us consider the joint sample

Y:(5/117‘"7Y1n1;}/217"‘7§/2’n2;“~;5/517"'7}/57@)7
and the joint parameter

Y= (91,17 .. '?91,k1;02,k+1a .. 'a92,k2; .. ';as,k-‘rla s aes,k‘s)a

with 4 € I', where I' is an open subset of R and M =377 k; — (s — 1)k. Let
fio. Vi) =[] fio.(Ysj) and  L(65 Vi, ...,Yin,) = Y _log fie,(Yij)
j=1 j=1

be the likelihood and the log-likelihood function of 8; based on the i-th sample. The
likelihood and the log-likelihood function of v = (y1,...,7a:) € T based on the joint
sample are

HY)=]]fie.(¥s) and i(v)=> L(6i;Ya, .., Yin,)
i=1 =1
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respectively. The likelihood equations are

6[(’)’) :ZaL(eiQYily--inni) =0, p=1,...,M,

8717 i=1 8’}/17

where, for each i,

a 917}/;"" ”Ll
(6:: Yi Z 1ok 0, (V).

Let Z'(0;) be the Fisher information matrix of the parameter ; associated with the
ith-population with density function fi g, and let I} (6;) the (p, q)th-clement of Z%(6;).
We split Z¢(8;) into blocks as follows

_ T 1(0:) | Tjy, (62)
T'(0:) = | =k -, ’
( T, (0:) | Ti, 1., (6:) s b

where T} ;. (0:), T}, ,,,(0:), I}, ,.(0:) and T}, (6;) are the submatrices whose lower-right
corner elements are respectively [,i7k(9 ), Ik v, (03), I x(6;) and Iik (0;), and whose
sizes are k X k, k x (k; — k), (ki — k) x k and (k; — k) x (k; — k), respectively.

The following M x M matrix, denoted by V' (7), plays the fundamental role of Fisher
information matrix,

Dim1 ’\iIIi,k(ei) Alzé,kl (01) |-+ | AT}, (05)

MI} 4 (01) MIE 5, (61) | 0

V(v) = ) : '
AT,k (65) 0 | NI (8y)

The regularity assumption (vi) is needed to derive the asymptotic normality of the max-
imum likelihood estimators.

(vi) The matrix V() is positive definite.

A composite null hypothesis Hy can be usually described by a subset T'g of the
parametric space and, consequently, the alternative hypothesis is associated with I'y =
I' — T'y. Suppose that I'g can be expressed as

FO:{'YEF : '7i:hi(ﬂ)’ izlv"'vM}:{'YEF:h(/@):'Y}a

where B = (B1,...,0m,)" € B, h =(hy,...,hyr) and B C R0 is an open subset. Sup-
pose that I'g can be also described by the M — My restrictions

92(7):()’ Z.Zl,...,M*Mo,
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where the functions h; and g; have continuous first order partial derivatives and the
ranks of the matrices

_ (99:(v) [ 0h;i(B)
T‘Y o ( 8’)/]' )@1 ..... M—Mg ’ Mﬁ o ( 86] )le

=1,...,M j=1,...,Mq

are M — My and M respectively.

Further, suppose that the s submodels

(le 5/\?17 P1,01)91€917‘ e 7( D ﬁX57 5,05 )95665

restricted to null hypothesis (i.e., with v € T'g) satisfy ¢)-v), with derivatives taken with
respect to the new parameter 3.

For testing the null hypothesis Hy : v = h(3), we shall use the family of ¢-divergence

test statistics 5

¢" (1)
where Dy (7, h(B)) is the ¢-divergence between f5(x) and fh([a)(x)‘

T(5,h(B)) = Dy(3,h(B)),

The following theorem was proved by Morales et al. (2001) for k = 0 and by Hobza
et al. (2001) for k > 1.

Theorem 9.7

Let Hy : v = h(B) be true. For eachi=1,...,s, let Yi1,...,Yin, be independent and
identically distributed random variables with common probability density function f; g, (x)
satisfying the regularity assumptions (9.18) and i)-v). Suppose also that the necessary
conditions for differentiating inside the integrals hold. Then

T3GhB) = 7 Do hB) 2 i,

In the multi-sample case with exponential models, the Kullback-Leibler and the like-
lihood ratio test statistics coincide for & = 0; however this result does not hold for k > 1.

In the case of the (h, ¢)-divergence measure the analogous result holds, i.e.,

L _ 2 L
T A, h(B)) = Wl%(%h(ﬁ)) — X3 Mo -

For instance, in the special case of Rényi’s divergence, the functions i and ¢ were given
in (9.7) and (9.8) and Rényi test statistic is

;5. h(B)) = 2D} (3.h(B) = ——— o8 | [ @ua) £+ i,
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The example below, due to Morales et al. (2001), shows the behaviour of Rényi test
statistic with normal populations.

Example 9.3
Let (Y11, -, Y1iny) 5oy (Ys1, ..y Ysn,) be s independent random samples from normal
populations with unknown parameters (fi1,01), ..., (s, 0s) respectively. We are interested
wm testing
Hy:02 =..=0% wersus Hy:3i#j with o? # 0]2».

In this case, the joint parameter space s
I'= {(ﬂq, e sy Ohy ey 02) ) i ER, 02 > 0,0 =1, ...,s},
and its restriction to Hy is
Lo = { (1, ey lls, 02, 02)ET ) ot = .. =02 > 0}.

Using the functions h; and g; given previously, the null hypothesis Ty can be written in
the following alternative forms:

i) Consider the set B defined by
B={B=(u, ... 1ts,0,..0) ER** : pj; ER and 0 € R}

and the functions,

‘ B i 7= 1,...,3
hi(B) = { 02 i=s+1,..,2s

Then
To={yel:v=hi(B), i=1,..2s}.

i) Consider the function g; : © — R*™1, j=1,...,s — 1, defined by
9 (s ooy s, 01, oy 05) =01 —0j, j=1,...,8— 1.
Obviously g;(p1, ... fs, 01, ...y 05) = 0 for (g1, ..., fis, 01, ..., 05) € L'g. Therefore,
Fo={y€Tl:gij(y)=0, j=1,...,s —1}.

The mazimum likelihood estimator is ¥ = (Y1x,...,Y sx,0%,...,02) and the mawi-
mum likelihood estimator under the null hypothesis is h(3) = (71*, Y52 732)
where 02 = L3752, The Rényi test statistic for testing Hy : 03 = ... = 02 is given
by

N 2 N N _
T!(J,h(B)) = ————=D; (3, h(B)) = 2D} (11, 1), (B, =
n(77 (/8)) ¢//(1)h/(0) r(77 (/8)) r((p‘v 1)7 (I‘l'v 2))7
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with
~ ~T ~m\T ~T cva - I
u‘:(ulv'“vl"’s) ) By :(Yz*vvyz*) =1, Sy
ilzdmg(i’{,...,ﬁz), ifzdiag(&?,...732), 1=1,...,s,
T

~ ~T ~T ~T 54 v \T .
l’l’:(/'l’la"'7/'l’s) ’ B :(Y’L*a7YZ*) 77':1’""87
igzdmg(i’{,...,iz), if:diag(ﬁz,...732), 1=1,...,s.

After straightforward algebra, we get

2 6+ (1-1r)52) .
r(l—ar);nilog% if r#0,r#1

T;3.h(B) ={ Y milogZs if r=1
Zjl B 2
Zni(%—lJrlogg%) if r=0.
i=1 ‘

o~

By Theorem 9.7, the asymptotic distribution of T (5, h(B)) is chi-square with s — 1
degrees of freedom. Therefore, an asymptotically test, with significance level «, for the
problem of testing the equality of variances should reject Hy when T (5, h(8)) > X§71,a~

In Morales et al. (2001), a power simulation study was carried out for comparing
several members of the family of Rényi test statistics.

As a result of this Monte Carlo simulation experiment, they recommended any Rényi
divergence test statistic with r € [5/4,3/2]. They also emphasize that r = 5/4 emerges
as a good alternative since it presents the best numerical results.

Under the assumption 07 = ... = ¢2, it is not difficult to establish that Rényi test
statistic for testing

Hy:py = ... = pg versus Hy : i # j with p; # p;
rejects the null hypothesis if
LY (-
i=1
s n; —

i=1 j=1

> Fs—l,n—s@y

where Fy_1 ,_s « is the 100 (1 — a) percentile of the F distribution with s —1 and n — s
degrees of freedom.
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9.5. Some Topics in Multivariate Analysis

A considerable part of this book is devoted to the use of the ¢-divergence concept,
developing methods of estimation and testing for the analysis of categorical data in several
contexts like analysis of cross-classified data, log-linear models, etc. From this point of
view, the ¢p—divergence is exploited here for the analysis of discrete multivariate data.

The use of divergences in order to meet and study problems of Multivariate Analysis
is not new. It starts in the early 1950, when Kullback (1959), in his pioneer book,
dedicated five chapters to the use of the minimum information discrimination principle for
the study of several problems in multivariate analysis. The bridge which links Statistical
Information Theory and Multivariate Analysis is founded on the fact that multivariate
analysis methods are mainly created on the notion of the distance between observations
or distance among their respective distributions, while on the other hand, Statistical
Information Theory is mainly concerned with the definition of statistical distances or
divergences between distributions and on the development of metric geometries based
mainly on the Fisher information matrix.

The operational link between these two statistical areas has received great atten-
tion over the last four decades. Since Kullback’s pioneer work, there is a vast amount
of contributions based on the information theoretic formulation of multivariate statis-
tical topics, like distribution theory, statistical inference using multivariate continuous,
categorical or mixed data, concepts of multivariate dependence, discrimination and clas-
sification etc. An indicatory, nonexhaustive literature of the subject is the following: i)
Construction of Multivariate Distributions (Kapur (1989), Cuadras (1992a), Cuadras et
al. (1997a), Zografos (1999)), ii) Statistical Inference (Krzanowski (1983), Bar-Hen and
Daudin (1995), Morales et al. (1997, 1998), Zografos (1998a), Garren (2000)), iii) Mea-
sures of Multivariate Association (Kent (1983), Inaba and Shirahata (1986), Joe (1989),
Zografos (1998b, 2000)), iv) Discriminant Analysis (Matusita (1966, 1973), Krzanowski
(1982), Cacoullos and Koutras (1985), Cuadras (1992b), Koutras (1992), Bar-Hen, A.
(1996), Cuadras et al. (1997b), Menéndez et al. (2004, 2005d)). In Sy and Gupta (2004)
it can be seen that Information Theory is a useful tool for data mining.
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9.6. Exercises

1. Find the asymptotic distribution of the statistic Dg (5, 6o), where 0 is the maxi-
mum likelihood estimator obtained from a population with parameter 8 # 6.

2. Find the asymptotic distribution of the (h, ¢)-divergence test statistic 7¢"(8, 6,)
under the contiguous alternative hypotheses

Hi,:0,=0,+n"12d,
where d is a fixed vector in RMo such that 8,, € © ¢ RMo.

3. We consider the divergence measure of order r and degree s.

a) Find the asymptotic distribution of the statistic D3 (5, 6o) under the hypoth-
esis that the observations are from a population with 0 # .

b) We consider the random sample

0.0789 0.1887 0.0828 0.0086 0.0572 0.0041 0.3551 0.0783
0.0732 0.1839 0.1439 0.1681 0.0115 0.1155 0.0566

from a exponential population of unknown parameter 6. Using the (h, ¢)-
divergence test statistic based on the divergence measure of order r and
degree s (s = 2 and r = 0.5) test if § = 10 versus 0 # 10 using as significance
level o = 0.05.

4. We consider the ¢-divergence test statistic 7% (5, 6,) for testing Hy : @ = 6. Ob-
tain the approximate size n, guaranteeing a power 3 at a given alternative 8 # 6,,.

5. We consider two random samples from two populations with parameters 6, and 65
of sizes n and m respectively, and the corresponding maximum likelihood estima-
tors, 81 = (011, ...,010,)7 and @2 = (021, ...,0201,) 7, associated with them. Find
the asymptotic distribution of the test statistic Dy (601, 02) under the two following
assumptions: a) 81 # 05 and b) 61 = 05.

6. Use the result obtained in Exercise 5 for testing Hy : 81 = 05 versus Hy : 01 # 0-.

7. Let Y7,..., Y, be a random sample from a exponential distribution of parameter 6.

a) Find the expression of Cressie-Read test statistic, Dy, (5, o), for A = 2

where 0 is the maximum likelihood estimator of 6.

b) Test Hy : 6 = 3/2 versus Hy : 6 # 3/2, on the basis of the exact test based

~

on Dy, (0,00) and using as significance level a.

8. Let X be a M-variate normal population with unknown mean vector p and known
variance-covariance matrix 3.

a) Find a test statistic for testing g = p versus p # p using Kullback-Leibler
divergence measure as well as the (1 — ) confidence region in R? for .
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b) The measurements on the first and second adult sons in a sample of 25
families are the following;:

First son (X;) 191 195 181 183 176 163 195 186 181
208 189 197 188 192 175 192 174 176

179 183 174 190 188 197 190
Second son (X2) 179 201 185 188 177 161 183 173 182
192 190 189 197 187 165 185 178 176

186 174 185 195 187 200 187
Source: Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979, p. 121).

We assume that X; and X» are independent and that each one is normally
distributed with variance 100, i.e.,

100 0
E_EO_( 0 100)'

Test using as significance level «,

Hy : p= g = (g1, po2) = (182,182)7 against Hy : p # pag
and get a 95% confidence region for the mean of X; and Xo.

9. Let X be a M-variate normal population with known vector mean g and unknown
variance-covariance matrix 3.

a) Find a test statistic for testing X = 3 versus X # 3 using the Kullback-
Leibler divergence measure as well as the 100 (1 — «) confidence region for 3
and M = 2.

b) Test using as significance level a = 0.05 for the data given in Exercise 8

100 0

HO:EEO(O 100

) assuming that p = (182,182)7.

10. Let X be a M-variate normal population with unknown mean vector g and un-
known variance-covariance matrix 3. Find a test statistic for testing

Hy: p=p, versus Hy @ p # p,
based on the Kullback-Leibler divergence measure.

11. Let X be a M-variate normal population with unknown mean vector p and un-
known variance-covariance matrix X. Find a test statistic for testing

Hy: X =3 versus H; : 3 #£ X,

based on the Kullback-Leibler divergence measure.
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12. Given the independent random samples:

0.4068 1.7698 1.7830 1.0186 1.5880 1.9616 1.1334 0.1288 0.8306

and

1.3863 2.5470 0.9480 0.0420 0.1449 0.7971 1.2858 2.9358 1.4829
0.7971 1.2858 2.5335 1.4829

from uniform distributions in the intervals (0,6;) and (0, f3) respectively, using as
significance level o = 0.05, find the exact test based on Kullback-Leibler divergence
measure for testing 61 = 0, versus 01 # 02 (01 < 05).

13. Let Xi,...,X,, and Y7, ..., Y}, be two independent random samples from the distri-
butions

fo,(x) =exp(—(xz —0;)) 0i <w<oo, i=1.2.
Find the test statistic based on Kullback-Leibler divergence measure for testing

Hy: 0, =05 versus Hy:01 > 0-.

14. We consider a population X with probability density function

62"
f@(iﬂ):ﬁ $Z2,9>0

Find the expression of the test statistics of Wald, Rao, Likelihood ratio and Rényi
for testing

Hy:0=20, Versus Hy : 0 # 0y,
based on a sample of size n.

15. We consider a population with exponential distribution with parameter # and we
wish to test Hp : 8 = 1 versus H; : € # 1 using as significance level a = 0.05.

a) Find Rényi test statistic for r = 1/4,3/4,1,5/4,7/4 and 2.

b) Study the accuracy of powers approximations given for n = 20,40, 80 and
200, r = 1/4,3/4,1,5/4,7/4, 2 and 0 = 0.5, 0.6, 0.65, 0.70, 0.75, 0.80, 0.85,
0.90, 0.95, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80, 1.90, 2, 2.10, 2.20, 2.30,
2.40 and 2.50.

¢) Obtain the sample size to get a power of 8 = 0.8 for § = 0.5, 0.6, 0.65, 0.70,
0.75, 0.80, 0.85, 0.90, 0.95, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80, 1.90,
2, 2.10, 2.20, 2.30, 2.40 and 2.50.
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9.7. Answers to Exercises

1. We have, Dg (01,02) = h(Dy (01,62)) , where h is a differentiable i 1ncreasmg func-
tion mapping from [0, c0) onto [0, 00), with A (0) =0 and A’ (0) >

We know that h (z) = b/ (zo) (x — 29) + o (x — x¢) , then
N (DZ(@, 80) — D" (6, 90)) = 1 (Dy(6,8)) [ﬁ (D¢(§, 00) — Dy (6, 90))}
+ op(1),

and

Vi (D(8,80) — Dls(8,80)) £ N (0,07 ,4(6)),
where U,QW(B) (k' (Dy (0, 60)))° 0¢ (0) and ai (0) = TTZr (0)"' T is given in
Theorem 9.2.

2. In a similar way to the previous Exercise we have, under H; ,, that the statistics
D(},bl(/éa 00) and b/ (0) D¢(§> 90)
have the same asymptotic distribution. Therefore,

2 D(8.60) =\, (6).

¢,h
T 0.60) = Gty oy

being § = d’ Zr(0o) d
If we want to approximate the power at some alternative 6, then d = d(n, 0, 0,) =
/1(0 — 6g) should be used in the formula of the noncentrality parameter.

3. The divergence of order r and degree s is given by

s—1
r—1

D;(0,00) = —— (/ fe<:c>’"feo<:c>1"“du<x>) -1].
X

and it can be considered as a (h, ¢)-divergence with

h(z)= ! 1 ((1+r(r—1)x)%—1); s,r#1

s —

and ., ( D1
" —r(zx—1)—
¢ (@)= r(r—1)

a) From Exercise 1 it is only necessary to get the elements of the vector T'.
These are given by

ti (/ fo ()" fo, (x)' " du (x))

X /feo ()" fo (x)"~ l%e(f)du(x), i=1,.., M.

X

s r#£0, 1.
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b) The divergence measure of order r and degree s between two exponential
distributions with parameters A and p is given for Ar 4+ (1 —7) > 0 by

r,l-r :;’}
D) = (s =17 ((#ﬂ—» ) 1> |

and for A\r + p (1 —7r) <0, D(A, ) = +o00. The maximum likelihood esti-
mator in the exponential model is A\ = ! (Y is the sample mean) and for
the given random sample takes on the value A = 9.3379.

Now it is necessary to evaluate the test statistic

~ 2n ~
Tr3(A\ 10) = ————=D; (), 10).
n (/\a 0) Y (O) ¢// (1) r(>\7 0)
In our case h' (0) = r and ¢” (1) = 1, then we have
T8 (Y 2n 2 Y
T7°(3,10) = =D 5(3,10) = 0.0704.

On the other hand Xi 0.05 = 3.841, and we should not reject the null hy-
pothesis.

4. If we consider the expression of the power given in (9.6) the problem will be solved

if we consider the sample size n* obtained as a solution of the equation

71%(1) (9) —1—-® ( ﬁ <¢U(1) X?\/Ima 7D¢, (9790)>> ’

o4 (0) 2n

ie.,

. _A+B+ \JA(AT2B) (9.19)

2D (6, 60)? ’

2
where A = 02(0) (@71(1 - 711,¢ (9))) and B = ¢" (1) x3y,.a Do (6,60). The re-

quired sample size is n = [n*] + 1, where [-] is used to denote “integer part of”.

5. First we consider part a).

a) We have
D¢>(§1,§2) = Dy (01,02) + j\:[il %9:02)(515 —01;)
+ j\_ﬁ %‘?02)@21 —0) +o0 (Hél - 91”)
+ o[[8- 62
then

V7 (Do(8:.82) ~ D, (6:.6,)) = T7(8:~61) + 5B~ 6)

o (/61 =r])) +o ([= 2]

+
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where
T = (tl,...,t]wo)T and S = (81, ...,SJ\4O)T
it fou (@) Oa, ()
o 0, \T 9, \T
fi /qS <f92 fﬁ) 001 (@)
and

wm [ (e ()~ () ot o
On the other hand

JarT@, - 0,) = N (O,TTIf 0,)"" T)

n—oo

JmST(0, —0,) = N (0, STTr(0,)7" s) .

n—oo

Therefore the test statistic

nm
n-—+m

(D6(81,82) — Dy (61,62))

is asymptotically distributed as a normal distribution with mean zero and
variance
AT Ty (0) ' T+ (1-)\)STTr(8,)7" 8,

where
m

A= lim

nmﬁoom—‘,—n

because o (H@l — 01H) =op (nil/z) and o (H@g - 92”) =op (m*1/2) .

b) In this case we have

~ o~ My 2 —~ ~
Dy(01,02) = 5 > (M> (01; — 61i) (015 — 61;)
=i\ 0010015 4 g,

Moy 62D¢) (91 92)) ~ =

]Z_1< 061:00,; 91:92( 1 — 01) (025 — 03)
My 82D (9 9) R ~

1 9Dy (61,65) .
+ 2 Z ( 89%802] )91_92 (922 921)(02] 02])

i,j=1

(ool <o fo-e )
We have

0Dy (61,62) fo, (@) 0fo, () N
T /¢ (f02 x) G @)=L Mo

+
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then

(

(
(

Therefore,

82D¢ (91, 02)
891i891j

)91_92

)91—92
)91_92

82D¢' (917 92)
8912‘892]‘

02D, (01,05)
002,005,

2 o~
7@ 00

On the other hand

Vn(6:

then

9fe, (
001;

)91—92
>01_02

x) 0fo, (x)
891j

dp ()

# / e
-
(

82D¢> (ela 92)
90,00,

92D, (01,05)
901,004,

(61— 01)"Zr (1) (1 — 61)

2001 — 60,)7Z# (61) (8 — 62)

(82— 0.)7 75 (8)) (B2~ 6:) +0 (H@l - "1H2>

o(fo-o)

(61 — 05)7T5 (61) (8, — 82) + 0 (Hél - 91H2>

o(fo-o)

_ 91)
V(6 — 65)

(0, - 60:)
(0, — 05)

L
—
n,m—oo

N (0, PV (01)*1)
N (0, (1-N\)Zr (92)*1) .

L
—
n,m—0o0

Under the hypothesis 81 = 63, we have

mn ) 7l L -
(01 — 62) = N (O,If (61) 1)
therefore )
mn ~ I
T e0102 T2 X

becanse o ([B1 = 6] *) = on (n71) and o ([~ ) =0 ().
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6. We should reject the null hypothesis if
D¢(51,§2) > ¢,

where c is a positive constant. Now it is possible to find two situations:

i) The distribution of the test statistic Dy (51, 52) is known; then independently
of the regularity conditions, we choose ¢ in such a way that the significance
level of the test is «,

Pr (D¢(§1,§2) > c) = q.

it) The exact distribution of the test statistic D¢(51,52) is unknown. In this
case we have to use the asymptotic distribution given in Exercise 5 and we
should reject the null hypothesis if

2 mn ~ o~
——————Dy(01,05) > 3 ..
d)// (1) m + n d’( 1 2) XMO,OL
7. a) The divergence of Cressie and Read for A\ = 2 between two exponential distrib-
utions is given by

< fol2)®
D¢ (9, 90) = 1 dr—1
(2) 6 0 Zgo (x)Q
= i 2—2/ exp (— (30 — 20y) x) dx — 1)
°Jo
3
= 3 (g—gﬁ - 1)

for 6 > %90. Ifo < %90 we have Dy, (0,0p) = +o0.
b) We should reject the null hypothesis, Hy : 0 = 6, if

T2(0,00) = 20Dy, (0. 60) > c.

The maximum likelihood estimator for § is § =Y . Therefore, we can write

4 —
~ 2 ——1 if Y<1
T3(0,6) = 3(27Y2(1Y) )
+00 if Y>1
‘We denote A
e | if <1
9(y) = 3(27y2<1—y> ) /
+00 if y>1

and it is clear that if y — 0 or 1 then g tends to +o0o and also the minimum is
obtained for y = 2/3. Therefore,

9(y) >k
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if and only if y < k1 or y > ko. The values k1 and ks are obtained as a solution of
the equation system

{ g (k1) = g (k2)
Pro_sss (Y € (ki k2)) = .

It is well known that if Y has an exponential distribution with parameter 6,
then 21;1 Y; has a gamma distribution with parameters a = 6y and p = n. Also
Z = 2n6,Y is chi-square with n degrees of freedom. One procedure to calculate the
values k1 and ko determining the critical region in an easier way is the following:

Reject Hp : 0 = 3/2 when
? < ky or ? > ko

is equivalent to reject Hy when 3nY < ¢; or 3nY > ¢y, where ¢; and ¢y are
obtained in such a way that

{ 0.95 = F\2 (c2) — Fy2 (c1)
9(5) =9(5)
Then ¢; and ¢y are the solutions of the equation system

2 1 1. on
0.95 = — e 2%g271{
/ gn/ar (m)¢ T

ABn—c)=ct(3n—c)

8. a) Given two M-variate normal distributions N (p;, 31) and N (4, 39) , Kullback-
Leibler divergence (see Chapter 1) between them is

Dircun (01, 62)

L (s = )" B3 (g — ) + trace (35S — 1))

2

1. |22

Lpe 1221
+ 2ogml‘,

with 81 = (pq,31) and 02 = (py, X2).

In our case 81 = (p, ) and 02 = (g, o) with ¥y known. Given the random
sample

Yl = (5/117 ‘-‘7Y1M)T7Y2 = (5/217 '“7}/2]\4),1—‘ ) 7Yn = (Y’n17 “‘7Y’n]\4)T

from the population distributed N (u, 3¢), the maximum likelihood estimator of
pisY = (?1,?2, ...,?M)T , where

. 1 n )
Y, = gl;n i=1,.., M.

Then the test statistic for testing p = pq

TE (Y, o) = 20Dt (Vs o) =1 (¥ — o)’ S5 (¥ — 1)
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is asymptotically chi-squared distributed with M degrees of freedom. Then we
should reject the null hypothesis if

T (?, Ho) =n (? - HO)T 261 (? - Ho) > X?\l,a'
In this case the exact distribution of the random variable
J— T _ —
n (Y = o) 2o (Y = po)

is also chi-square with M degrees of freedom. Then the exact and asymptotic tests
coincide.

A (1 — a)100% confidence region in R? for the mean of X; and X5 is given by the
values p = (u1, p2) € R? verifying

n(¥ —p) 250 (Y - 1) < Xia
b) Applying a) it is necessary to evaluate
A:n(?fuo)TZal (?*Mo)~

Hence

—1
A =25(3.74,1.84) < 180 180 ) < i"gi ) — 4.343,

and X%,o,os = 5.99. Then the null hypothesis should not be rejected.
The 95% confidence region for (1, o) is given by

{(m,m) € R?: (185.72 — 1) + (183.84 — jio)? < 23.96} .

9. a) In this case 61 = (pg, X) and 02 = (g, Xo). Given the random sample
Yl = (1/117 "'7Y1M)T 3Y2 = (Y213 "'7Y2M)T ’ "'7Y’VL = (KL], R KLM)T

the maximum likelihood estimator of 3, with g = py known (see Mardia et al.
1979, p. 104), is given by
S=5+dd"

where d =Y — p, and S is the sample variance covariance matrix given by

1 - —
S = (sij)ij=1,..m = (g > (Ya=Yi) (Vi - Yj)) :
1=1 i,j=1,..,M
The expression of the test statistic based on Kullback-Leibler divergence is

| 20|

Tf“” (2, Eo) =2nDguu (i, Eo) =n | trace (Eali — I) + log E .

© 2006 by Taylor & Francis Group, LLC



TESTING IN GENERAL PopULATIONS 447

Therefore we should reject the null hypothesis if 2nDKu”(§, o) > X2Mz e
2 )

The confidence region for o = (011, 022, 012) is given by

N 3
011,0922,012) :n | trace - — +log+— | < 7.
SIS 1) +1 | 7.82

=

b) With the data given in Exercise 8, we have

$_ 93.48 66.87 + 13.83 6.84 \ [/ 107.31 73.71
~\ 66.87 96.77 6.84 338 ) \ 73.71 100.11 )’

ie.,

‘i‘( — 5308.96, || = 10000 and trace (2512 - I) — 0.074.

Then
TKull (2,20) — 17.679.

On the other hand X%,oio5 = 7.82 and we should reject the null hypothesis.
10. In this case the unknown parameter is @ = (u, X). Given the random sample
T T T
Y=, .Yim) Yo = (Yor, .. You) 5oy Yo = (Yo, oo, Yam) ™,

from the normal population N(p,X), the maximum likelihood estimator of 6,
under the null hypothesis, is given by

0= (NO,SerdT) ,

where d and S were given in Exercise 9. The maximum likelihood estimator of @
in all the parameter space is given by

6=(Y,S).
Therefore
~ _ -1 __
Dicun(8,8) = (Y —po) (S+ad") (Y- m)
- Sidd”
+ 3 <tmce ((s + ddT) ‘s IMxM> +log lTT[) ,

and we must reject the null hypothesis if

TK4(,0) = 2nDyuu(0,0) > c.
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We are going to find the exact test statistic. We have

M = trace(Inrsnr)

= trace

= trace (S + ddT) o S+ ddT)>

= trace (S + ddT) o S | + trace (S’ + ddT) - ddT>

= trace (S + ddT) - S| +trace | (Y — /,LO)T (S’ + ddT)71 (Y - No))
(

S+ddT)_1 S)+ (Y —po) (S+ddT)_1 (Y — o),

— -1 __
because (Y — uO)T (S + ddT) (Y — py) is a scalar.

Then we have
Kull(p D ’S + ddT’
T.2"(0,60) =nlog
S|
Taking into account that

‘Apxp + BpX’rLC7L><p| = |Ap><p| ’Inxn + CnXpAril Bp><n ’

pXp
we have for A,xp, =8, Bpxn =d and C,,»p = d" that

S| (1 + de—ld)

Kl (@, 0) = nlog
S|

= nlog (1 + dTS_ld) .

Hence TKU!(§, ) > c is equivalent to
(n—1)d"S7'd>T% 1. (9.20)

where TJ%/L .1 is a Hotelling T2 distribution with parameters M and n — 1. For
more details about this distribution see Mardia et al. (1979). Finally, the inequality
given in (9.20) is equivalent to

n—M

dTS_ld > FJ\L n—M, a-
When we use the asymptotic distribution we have
Kull(pg gy _L 2
" (979) n—>—o)o X2M+ M(Jg—l)i(M+ Mgz»2171)):M .
11. In this case, 8 = (u, X), then

0= (?,20,) and 0 = (?,S).
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Therefore,

~ o~ by
2nD1(6,0) =n (trace (=5'S — I) +log TO||>

whose asymptotic distribution is chi-square with degrees of freedom given by

M+ M

dim(@)—dim(@o):M—l—M—&—%(M(M—l))—M 5

12. In this case we are interested in a exact test because the regularity assumptions
are not verified and then it is not possible to use the asymptotic results. It is
necessary to get the exact distribution of the test statistic

DKull(gh 52)-

For 01 > 05 we have

0 0
11 1/91 /2 0 92
D (01,02) = —log —dz + 0lo, dx = log —,
Kull (01,02) , O g1/92 0 g1/02 g91

and

Dicuu(81,6) = log %»
01
with 51 = max (X1, ..., X»), 52 = max (Y1, ..., Yin), where X, ..., X,, is a random
sample from the population U (0,6;) and Y7, ...,Y,, is a random sample from the
population U (0, 05) . We should reject the null hypothesis if log(@ / 51) > ¢, where
c is obtained under the assumption that the test has a nominal size a. This is
equivalent to reject Hy if and only if 52/51 > k.

The probability density functions of 51 and §2 are given by

fo, () = nti7H/07 1 €(0,61)
fo, (k2) = mtyt/05 2 €(0,09),

and the joint probability density function of the random variable (51, 52) by

MmN 1
f@lgz (t1,t2) = th 1t2 ! t1 € (0,61), t2 €(0,602).
1Y2

Now we are going to get the distribution of the random variable 52 /51 under the
null hypothesis 8, = 6,. It is immediate to establish that the distribution of the
random variable (W, T') where

W == and T:§1

01
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is given by
nm _
9w, T) (w,t) = gntm grmam =t (w,t) € A
1
where

A= {(w,t) ER*:wt <y, 0<t<6; andw>0}.

Therefore the probability density function of the random variable W is

—nﬂ%w"”_l w € (0,1]

gw (w) =
—Jfﬁnw_"_l w € (1,00)

Finally, if we assume that o < m/(m + n), from the equation

* nm

w " dw

a:Pr(W>k/Ho):/k .

we have y
le% — n
k= (— ) .
- (n+m)
Then, the null hypothesis should be rejected if
é\ —1/n
2> (g (n+ m)) .
0, m
In our case we have for a = 0.05,

~ ~ ~ o~ —-1/n
§, = 1.9616, O, = 2.9358, B /0, = 1.49 and (% (n+ m)) — 1.31;

hence we should reject the null hypothesis.

13. It is immediate to establish that

DicunO1.02) = [ exp (= (o = 62) (01 — 62) dz = 61~ 0.
01

Therefore
D (01,02) = 61 — 02

with 61 = min (X1, ..., X,) and 63 = min (Y1, ..., Y,,,) and the null hypothesis should
be rejected if

01— 60> >c
where c is obtained in such a way the test has size . We know that

fg, (t1) = nexp(—n(t1—61) 6 <t1 <o
fo, (t2) = mexp(—m(tz —62)) 02 <tz <oo
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Then the probability density function of the random variable (51, 52) is given by

fo o, (t1t2) = nmexp(—n(ty — 61)) exp (—m (t2 — 62))

1,92

where
0, <t < o0, O <ty < o0.

Under 60, = 65, the distribution of the bivariate random variable (W, T'), with
W=0,—0, and T =05,
is given by
fwr (w,t) =mnexp(—n(w+t—61)exp(—m(t —61))) (w,t) e A
where the domain A is
A= {(w,t) eR*/t >0, w >0, —t}.

The distribution of W = 51 - 52 under 61 = 05 is

nm .
o P (mw) if wé€ (—00,0)
f§1—§2 (w) = m . .
n+mexp(—nw) if w e (0,00)

Therefore c is obtained, assuming that a < m/(m + n), by solving the equation

o0
o= / om exp (—nw) dw.
. n+m

o= ()

and we should reject the null hypothesis if

~ o~ 1 m
91—02>510g<m>.

It is immediate to get

In our case

Liog <L> — 0.2349
n (m+n)a

and 51 - 52 = 0.002; then we should not reject the null hypothesis.

14. We have

9n2n0
n

H Y9+1
=1 !

L(0;Y1,...Y,) =
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then .
dlog L (0;Y1,....Y,) n 4
=—+nlog2— ZlogYi
00 0 pat
and the maximum likelihood estimator is given by
f— "
" log Yi
2; log
We have
Mnond nonbo
Ly = 2|log @—QA ~log | 2
H Y9+1 H Y9o+1
K3 (2

i=1 i=1

00— 0 )
2n — +2nlog | — | .

In order to obtain the expression of the test statistics W,, and R, it is necessary
to obtain the Fisher information. We have

dlog fo (x) _ 1

20 9+log2710gx
then 921 b (@)
_p|_(9esfe(@) )| _ L
- (22582)) -4
and

On the other hand,

~ (9logL(6;Y1,...,Y,) B 1 1 &
U?L (90) - < 89 9=, =n 90 + 10g2 - n Zlogi/l

and then

2
0y — Y;
n = 717—5 log— | .
R n( - 0g2>

i=1

Now Rényi’s divergence is given by

1 < 79019, \" [ 2020, 1=r
Dot = e ], () () o

B L 070"
Y (D Rt N SRS
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if 761 + (1 — ) 02 > 0. Therefore Rényi test statistic

2n 5’"98_’"

T7 (0, 00) = log — ,
(6, 60) r(r—1) gr@—i—(l—r)@o

and for r — 1 we have

lim T (0, 00) = TX“(8,600) = 2n (90 5_ 9) + 2nlog <£> =10,

15. For the exponential model with
fo(x) =0exp (—0x) [0,00) (), 6>0,
we consider the problem of testing
Hy:0=1 versus H;:0#1

based on Rényi test statistic T, (5, ). First, we study the accuracy of power
approximations of Remarks 9.1-9.3. Rényi divergence between two exponential
distributions is

1 07 037" .
f 1-—
D} (61,0-) = T(T—l)n91T+02(1_r) if Oir+0,(1—7)>0
00 if 91T+92(1—T)§0,
when r # 0, 1. Limiting cases are obtained for r = 1,
Dicunr (01, 02) = lim Dy (61, 0) = % -1+ ln% (Kullback-Leibler)
= 1 2
and for 7 = 0,
1 91 92
Dy (01,02) = Dicuir (02,01) = - — 1+ 1In =
92 91

the minimum discrimination information.

a) Hy should be rejected if T7(0,1) > ¢, where 6 = n/ S, V; = Y ' is the
maximum likelihood estimator of . In this case T, (0, 1) is given by

ﬁQTLIH (é\’"(@\r—i—l—r)_l) if 0,1 and Or+1—7>0

00 if r#£0,1 and§r+1—r§0
2n(0~t — 1+ 1n6) if =1
2n(0 —1—1nb) if r=0,

but T,’;(@\, 1) > ¢ is equivalent to

1—r)7T+T7T71>01 if Or+1—7>0

Y -InY > ifr=1
L +IY >3 if r=0.
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If we define the function

(1—r)yy"+ry~=t if r#£0,1
gr(y) =¢ y—1Iny if r=1
i—&—lny if r=0,

we have

oy >0 & y<l1
an={ 70 25

and the rejection rule is T,,’;(@,l) >c <= Z, <c¢a1 O Zy > Cro,
where Z,, = 2nY ~ X%n under Hy. Constants c,; and ¢, 2 are obtained by
solving the equations

l—a= Prlei1<Z,<crp)= FX%,L (cr2) — FX%,L (cri1),
9 (50) = 9 (57)

where
(1—r)c"+rcm=t if r#£0,1
gr(c) =< c¢—1Inc if r=1
% +Inc if r=0.

The values of ¢, 1 and ¢, 9, for n = 20,40,80,200 and r = 1/4, 3/4, 1, 5/4,
7/4, 2, are presented in Table 9.3.

r n n=20 n=40 n=80 n=200
1/4 C1/a,1 | 25.855 58.861 128.804 348.637
ci/a2 | 64.033 110.541 200.373  460.411

3/4 c3/4,1 | 25.253 58.100 127.914 347.618
c3/4 | 61.323 108.388 198.531  458.802

1 c1,1 24.879 57.659 127.421 347.074
C1,2 60.275 107.479 197.709  458.051

5/4 Cs/a,1 | 24.449 57.173 126.892  346.505
C5/a2 | 59.371  106.658 196.944  457.334

7/4 Cran | 23.379 56.039 125.714  345.290
Cr/a2 | 57.898 105.239 195.565  455.990

2 €21 22.700 55.374 125.057 344.639
2,2 57.300 104.626 194.943 455.361

Table 9.3. Constants c, 1 and c; 2.

b) Exact powers of tests:

We know that under an alternative hypothesis 8 # 1, the random
variable 20Y is chi-squared distributed with 2n degrees of freedom.
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Therefore the power function of Rényi test statistic, 5, , (0), is given
by
Bn,r ()= 1—Pry (C'r,l < Zp < CT,2)
= 1—Pry (ch,l < 20Y < QCT’Q)
= 1—Pry (ch,l < X%n < QCT’Q) .

For n = 20, » = 0.25,0.75,1,1.25,1.75,2 and different values of 0 in
the interval [0.5,2.5], these exact powers are presented in Table 9.4.

0 B20,1/4(0)  Bo03/4(0)  B201(0)  Boosyall)  Baorsalf)  Bao2(0)

0.50 0.8117 0.8560 0.8714 0.8838 0.9025 0.9094
0.60 0.5417 0.6155 0.6437 0.6676 0.7057 0.7207
0.65 0.4005 0.4768 0.5074 0.5339 0.5774 0.5950
0.70 0.2778 0.3478 0.3771 0.4032 0.4473 0.4656
0.75 0.1821 0.2399 0.2652 0.2883 0.3284 0.3455
0.80 0.1149 0.1581 0.1779 0.1964 0.2295 0.2440
0.85 0.0729 0.1021 0.1160 0.1294 0.1539 0.1649
0.90 0.0511 0.0683 0.0768 0.0852 0.1010 0.1083
0.95 0.0446 0.0522 0.0561 0.0600 0.0676 0.0712
1.10 0.0879 0.0763 0.0699 0.0631 0.0490 0.0418
1.20 0.1557 0.1344 0.1221 0.1089 0.0803 0.0652
1.30 0.2481 0.2180 0.2002 0.1806 0.1366 0.1123
1.40 0.3578 0.3208 0.2983 0.2731 0.2143 0.1803
1.50 0.4750 0.4339 0.4084 0.3792 0.3085 0.2657
1.60 0.5892 0.5476 0.5211 0.4902 0.4124 0.3633
1.70 0.6922 0.6532 0.6278 0.5975 0.5184 0.4662
1.80 0.7788 0.7447 0.7219 0.6943 0.6192 0.5675
1.90 0.8473 0.8192 0.8000 0.7763 0.7092 0.6611
2.00 0.8984 0.8766 0.8613 0.8420 0.7854 0.7429
2.10 0.9348 0.9187 0.9071 0.8921 0.8466 0.8110
2.20 0.9595 0.9481 0.9397 0.9287 0.8937 0.8652
2.30 0.9756 0.9679 0.9621 0.9542 0.9285 0.9065
2.40 0.9857 0.9807 0.9768 0.9714 0.9532 0.9369
2.50 0.9919 0.9887 0.9862 0.9827 0.9701 0.9585

Table 9.4. Powers for n = 20

¢) We know that Rényi divergence is a (h, ¢)-divergence with h and ¢
given in (9.7) and (9.8). Therefore using Exercise 1 we have

Vi (DE,1) = DX 1)) 5 N(0,07 4(0)),

n—oo

where a}%’d}(Q) = (W' (Dy (0, 1)))? ag) (0) and ag) 0) =TTZF(0) ' T. In
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our case, Zr(0) = 072,

and

d

do

2

Dy (0,1) =

D} (6,1) =

fesy D3
a:||°§,|| \‘»—
= ==

(S

1 or :
r(r—1) <9T+(1—r) B 1) if
f—1—1In6 if
Inf —1+671 if

if r=1
if r=0

r#0,1
r =

T =

330(0)

ﬁ%o r(a)

r=1/4

r=3/4

r=1 r=5/4

r=7/4

r=2

.50
.60
.65
.70
.75
.80
.85
.90
.95
1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
24
2.5

0.6088
0.4320
0.3463
0.2677
0.1989
0.1412
0.0944
0.0571
0.0268
0.0571
0.1412
0.2677
0.4320
0.6088
0.7653
0.8791
0.9471
0.9805
0.9940
0.9985
0.9997
0.9999
1.0000
1.0000

0.8083
0.5900
0.4543
0.3105
0.1728
0.0637
0.0086
0.0000
0.0000
0.0000
0.0324
0.1692
0.3293
0.4666
0.5754
0.6600
0.7255
0.7766
0.8165
0.8480
0.8731
0.8931
0.9092
0.9223

0.8165
0.6342
0.5116
0.3714
0.2236
0.0920
0.0147
0.0001
0.0000
0.0000
0.0202
0.1259
0.2697
0.4067
0.5238
0.6199
0.6973
0.7592
0.8083
0.8473
0.8781
0.9025
0.9218
0.9371

0.8271 0.8436
0.6559 0.6787
0.5385 0.5651
0.4006 0.4291
0.2495 0.2756
0.1079 0.1249
0.0188 0.0235
0.0001  0.0002
0.0000 0.0000
0.0000 0.0000
0.0155 0.0116
0.1059 0.0872
0.2392  0.2087
0.3742  0.3399
0.4951 0.4637
0.5979  0.5734
0.6830 0.6669
0.7521 0.7443
0.8075  0.8069
0.8514 0.8563
0.8859 0.8947
0.9128 0.9239
0.9336  0.9457
0.9497 0.9618

0.8804
0.7310
0.6205
0.4860
0.3282
0.1616
0.0351
0.0004
0.0000
0.0000
0.0060
0.0551
0.1492
0.2667
0.3917
0.5136
0.6254
0.7222
0.8019
0.8642
0.9106
0.9435
0.9657
0.9800

1.0000
0.7588
0.6505
0.5155
0.3552
0.1812
0.0421
0.0006
0.0000
0.0000
0.0042
0.0420
0.1215
0.2288
0.3510
0.4772
0.5980
0.7058
0.7956
0.8655
0.9163
0.9509
0.9728
0.9858
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0 |r=1/4 r=3/4 r=1 r=5/4 r=7/4 r=2
0.50 20 19 18 17 13 @)
0.60 36 35 34 32 27 25
0.65 50 48 47 45 41 38
0.70 72 70 69 67 62 59
0.75 109 107 106 104 99 95
0.80 180 178 176 174 168 165
0.85 338 334 332 329 323 319
0.90 801 795 792 788 780 775
0.95 3370 3358 3352 3345 3331 3323
1.10 972 979 981 984 989 991
1.20 266 269 270 272 273 274
1.30 129 131 132 132 133 134
1.40 78 80 81 81 82 82
1.50 54 56 56 56 57 57
1.60 41 42 42 42 43 43
1.70 32 33 33 34 34 34
1.80 26 27 27 28 28 28
1.90 22 23 23 23 24 24
2.00 19 20 20 20 20 21
2.10 17 18 18 18 18 18
2.20 15 16 16 16 16 16
2.30 14 14 14 14 15 15
2.40 13 13 13 13 13 14
2.50 12 12 12 12 12 12

Table 9.6. Sample sizes n = [n*] + 1, where n* is the root of the equation
0.8 = Tll*m (0) . M No value of n is obtained because approximate power is 1.

Therefore afm(@) = |9(;1‘.

First power approximation, }L,T (0), is given by

nf” .8414 or :
1= (|\9C1| (38271 2 - r(rlq) In 9r+1—r>> if 7 70,1
- (0 (B3 —f 1)) ifr =1

2n

and
-0 (B3 g+ 1+ 1n0) ) if r =0,
where ®(-) is the c.d.f. of the standard normal random variable.

Second power approximation (see Exercise 2) is

ﬂ%(e) =1- Gx%(é) (X%,a) )
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where G2 is the distribution function of a noncentral chi-square
random variable with 1 degree of freedom and noncentrality parameter
§ = n(0 — 1)2Zx(1) = n(6 — 1)2. Tt is interesting to note that this
approximation does not depend on the functions h and ¢ considered
in the test statistic 7} .

We are interested in the approximation of B,.(0) by 3, ,.(0) and
B2 ()1 Thl Tablel9[5welpresent theifilvalilesforn = 20, = 0.25,00.75,
1, 1.25, 1.75, 2 and several values of # # 1. We conclude that ﬁ%oﬂ,(@)
and (33,(0) are good approximations for (3a0,(6) in the present model.
Approximations improve as n increases. For the sake of brevity, we
do not present tables for n > 20. It is also interesting to note that for
values of 0 near to 1, and more concretely if § € (0.8,1.3), the approx-
imation 33)(0) is better than the approximation (3, (). Otherwise,
the approximation (33, ,.(6) is better than (33,(#). We conclude that
both approximations can be recommended for practical applications.
For a value of the power function equal to 0.8, » = 0.25, 0.75, 1, 1.25,
1.75,2(and severalWaliteslof 10 5~ (1 [Tinl Table[9.6lwe presént [thelapprox-
imate sample size n = [n*] 4+ 1, where n* is the positive root of the
equation 8 = 1. +(0). As expected, larger sample sizes are obtained
in the neighborhood of § =1 (e.g., # € (0.8,1.3)). Observe that n* can
be obtained from 3 = (). .(0) in explicit form (cf. (9.19)); however,
this is not the case for n** such that § = [, ,(0). In the present
numerical example }L,T(@) and n* are good and easy computable ap-
proximations for G, ,(0) and n** respectively.
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