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Preface

The main purpose of this book is to present in a systematic way the solution to

some classical problems of statistical inference, basically problems of estimation

and hypotheses testing, on the basis of measures of entropy and divergence, with

applications to multinomial (statistical analysis of categorical data) and general

populations. The idea of using functionals of Information Theory, such as en-

tropies or divergences, in statistical inference is not new. In fact, the so-called

Statistical Information Theory has been the subject of much statistical research

over the last forty years. Minimum divergence estimators or minimum distance

and discrete data. Divergence statistics, i.e., those ones obtained by replacing

either one or both arguments in the measures of divergence by suitable estima-

tors, have become a very good alternative to the classical likelihood ratio test

in both continuous and discrete models, as well as to the classical Pearson—type

statistic in discrete models. It is written as a textbook, although many methods

and results are quite recent.

Information Theory was born in 1948, when Shannon published his famous

paper “A mathematical theory of communication.” Motivated by the problem of

efficiently transmitting information over a noisy communication channel, he in-

troduced a revolutionary new probabilistic way of thinking about communication

and simultaneously created the first truly mathematical theory of entropy. In the

cited paper, two new concepts were proposed and studied: the entropy, a measure

of uncertainty of a random variable, and the mutual information. Verdú (1998),

in his review paper, describes Information Theory as follows: “A unifying theory

with profound intersections with Probability, Statistics, Computer Science, and

other fields. Information Theory continues to set the stage for the development

of communications, data storage and processing, and other information technolo-

© 2006 by Taylor & Francis Group, LLC
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gies.” Many books have been written in relation to the subjects mentioned by

Verdú, but the usage of tools arising from Information Theory in problems of

estimation and testing has only been described by the book of Read and Cressie

(1988), when analyzing categorical data. However, the interesting possibility of

introducing alternative test statistics to the classical ones (like Wald, Rao or

Likelihood ratio) in general populations is not yet found in any book, as far as

I am concerned. This is an important contribution of this book to the field of

Information Theory.

But the following interesting question arises: Where exactly can be situated

the origin of the link between Information Theory and Statistics? Lindley (1956)

tries to answer our question, with the following words with reference to the paper

of Shannon (1948), “The first idea is that information is a statistical concept”

and “The second idea springs from the first and implies that on the basis of the

frequency distribution, there is an essentially unique function of the distribution

which measures the amount of the information.” This fact provided Kullback and

Leibler (1951) the opportunity of introducing a measure of divergence, as a gener-

alization of Shannon’s entropy, called the Kullback-Leibler divergence. Kullback,

later in 1959, wrote the essential book “Information Theory and Statistics.” This

book can be considered the beginning of Statistical Information Theory, although

it has been necessary to wait a more few years for the statisticians to return to

the problem.

The contents of the present book can be roughly separated in two parts. The

first part is dedicated to make, from a statistical perspective, an overview of the

most important measures of entropy and divergence introduced until now in the

literature of Information Theory, as well as to study their properties, in order

to justify their application in statistical inference. Special attention is paid to

the families of φ-entropies as well as on the φ-divergence measures. This is the

behavior of measures of entropy, and the use of their asymptotic distributions

to solve different statistical problems. An important fact studied in this chapter

is the behavior of the entropy measures as diversity indexes. The second part

of the book is dedicated to two important topics: statistical analysis of discrete

in Chapter 9.

The statistical analysis of discrete multivariate data, arising from experiments

© 2006 by Taylor & Francis Group, LLC

main target of Chapter 1. Chapter 2 is devoted to the study of the asymptotic

multivariate data in Chapters 3, 4, 5, 6, 7 and 8, and testing in general populations
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where the outcome variables are the number of individuals classified into unique

nonoverlapping categories, has received a great deal of attention in the statistical

literature in the last forty years. The development of appropriate models for

those kind of data is the common subject of hundreds of references. In these

references, papers and books, the model is tested with the traditional Pearson

goodness-of-fit test statistic or with the traditional loglikelihood ratio test sta-

tistic, and the unknown parameters are estimated using the maximum likelihood

method. However, it is well known that this can give a poor approximation in

results by considering general families of test statistics, as well as general families

of estimators. We use the word “general” in the sense that these families contain

as particular cases the Pearson and loglikelihood ratio test statistics, for testing,

as well as the maximum likelihood estimator, for estimating.

problem of testing goodness-of-fit with simple null hypothesis is studied on the

basis of the φ-divergence test statistics under different situations: Fixed number

of classes, number of classes increasing to infinity, quantile characterization, de-

pendent observations and misclassified data. The results obtained in this chapter

are asymptotic and consequently valid just for large sample sizes.

where the sample size can not be assumed large, are presented.

addressed to the study of a wide class of estimators suitable for discrete data,

either when the underlaying distribution is discrete, or when it is continuous, but

the observations are classified into groups: Minimum φ-divergence estimators.

Their asymptotic properties are studied as well as their behavior under the set

up of a mixture of normal populations. A new problem of estimation appears

if we have some functions that constrain the unknown parameters. To solve

this problem, the restricted minimum φ-divergence estimator is also introduced

and studied in Chapter 5.

behavior of φ

For this problem, we consider φ-divergence test statistics in which the unknown

parameters are estimated by minimum φ-divergence estimators. In addition to

the classical problem, with fixed number of classes, the following nonstandard

cases are also treated: φ-divergence test statistics when the unknown parameters

are estimated by maximum likelihood estimator, φ-divergence test statistics with

quantile characterizations, φ-divergence test statistics when parameters are esti-

mated from an independent sample, φ-divergence test statistics with dependent

© 2006 by Taylor & Francis Group, LLC

In Chapter 3, the

In Chapter

4, some methods to improve the accuracy of test statistics, in those situations

Chapter 5 is

These results will be used in Chapter 8, where the

-divergences test statistics in contingency tables is discussed. Chap-

ter 6 deals with the problem of goodness-of-fit with composite null hypothesis.

many circ umstances, see Read a nd Cressie ( 19 88) , and it is p o ssi ble to get b ette r
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observations and φ-divergence test statistics when there are some constraints on

the parameters.

models by using φ-divergence test statistics. In this chapter, some of the most

important results appeared in Cressie and Pardo (2000, 2002b), and Cressie et

al . (2003) are presented. The properties of the minimum φ-divergence estima-

tors in loglinear models are studied and a new family of test statistics based on

them is introduced for the problems of testing goodness-of-fit and for testing a

nested sequence of loglinear models. Pearson’s and likelihood ratio test statistics

are members of the new family of test statistics. This chapter finishes with a

simulation study, in which a new test statistic, placed “between” Pearson’s chi-

square and likelihood ratio test statistics, emerged as a good choice, considering

its valuable properties.

tables using the φ-divergence test statistic as well as the minimum φ-divergence

estimator. We consider the problems of independence, symmetry, marginal homo-

geneity and quasi-symmetry in a two-way contingency table and also the classical

problem of homogeneity.

The domain of application of φ-divergence test statistics goes far beyond

that of multinomial hypothesis testing. The extension of φ-divergence statistics

to testing hypotheses in problems where random samples (one or several) obey

distributional laws from parametric families has also given nice and interesting

results in relation to the classical test statistics: likelihood ratio test, Wald test

The exercises and their solutions included in each chapter form a part of

considerable importance of the book. They provide not only practice problems

for students, but also some additional results as complementary materials to the

main text.

I would like to express my gratitude to all the professors who revised parts

of the manuscript and made some contributions. In particular, I would like to

thank Professors Arjun Gupta, Nirian Mart́ın, Isabel Molina, Domingo Morales,

Truc Nguyen, Julio Angel Pardo, Maria del Carmen Pardo and Kostas Zografos.

My gratitude, also, to Professor Juan Francisco Padial for his support in the

technical development of the book.

Special thanks to Professor Arjun Gupta for his invitation to visit the De-
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Chapter 7 covers the important problem of testing in loglinear

Chapter 8 presents a unified study of some classical problems in contingency

statistic or Rao statistic. This topic is considered and studied in Chapter 9.



Preface xiii

partment of Mathematics and Statistics of Bowling Green State University as

Distinguished Lukacs Professor. Part of the book was written during my stay

there. My final acknowledgment is to my wife, Professor Maria Luisa Menéndez,

who read many times the early drafts of the manuscript. She gave me valuable

advice and suggested many improvements. Her enthusiasm sustained me during

the period spent in writing the manuscript, and this book is dedicated to her.

Leandro Pardo

Madrid
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1

Divergence Measures:

Definition and Properties

1.1. Introduction

Let X be a random variable taking values on a sample space X (usually

X will be a subset of Rn, n-dimensional Euclidean space). Suppose that the
distribution function F of X depends on a certain number of parameters, and

suppose further that the functional form of F is known except perhaps for a finite

number of these parameters; we denote by θ the vector of unknown parameters

associated with F. Let (X , βX , Pθ)θ∈Θ be the statistical space associated with
the random variable X, where βX is the σ-field of Borel subsets A ⊂ X and

{Pθ}θ∈Θ a family of probability distributions defined on the measurable space

(X , βX ) with Θ an open subset of RM0 , M0 ≥ 1. In the following the support of
the probability distribution Pθ is denoted by SX .

We assume that the probability distributions Pθ are absolutely continuous

with respect to a σ-finite measure µ on (X , βX ) . For simplicity µ is either the
Lebesgue measure (i.e., satisfying the condition Pθ(C) = 0, whenever C has zero

Lebesgue measure), or a counting measure (i.e., there exists a finite or countable

set SX with the property Pθ (X -SX ) = 0). In the following

fθ(x) =
dPθ
dµ
(x) =


fθ(x) if µ is the Lebesgue measure,

Prθ (X = x) = pθ(x) if µ is a counting measure,

(x ∈SX )
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2 Statistical Inference based on Divergence Measures

denotes the family of probability density functions if µ is the Lebesgue measure,

or the family of probability mass functions if µ is a counting measure. In the first

case X is a random variable with absolutely continuous distribution and in the

second case it is a discrete random variable with support SX .

Let h be a measurable function. Expectation of h (X) is denoted by

Eθ [h(X)] =


Z
X
h(x)fθ(x)dx if µ is the Lebesgue measure,X

x∈SX
h(x)pθ(x) if µ is a counting measure.

Since Mahalanobis (1936) introduced the concept of distance between two prob-

ability distributions, several coefficients have been suggested in statistical litera-

ture to reflect the fact that some probability distributions are “closer together”

than others and consequently that it may be “easier to distinguish” between a

pair of distributions which are “far from each other” than between those which

are closer. Such coefficients have been variously called measures of distance be-

(Rao, 1949, 1954), measures of discriminatory information (Chernoff, 1952, Kull-

back, 1959) and measures of variation-distance (Kolmogorov, 1963). Many of the

currently used tests, such as the likelihood ratio, the chi-square, the score and

Wald tests, can in fact be shown to be defined in terms of appropriate distance

measures.

While the cited coefficients have not all been introduced for exactly the same

purpose, they have the common property of increasing as the two distributions

involved are “further from each other”. In the following, a coefficient with this

property will be called divergence measure between two probability distributions.

Before introducing the families of divergence measures that will be used in

later chapters for studying different statistical problems, we consider two classi-

cal and important distances: the Kolmogorov and Lévy distances. Our aim is

to illustrate the important role that distance measures play in Probability and

Statistics.

Given two probability measures Pθ1 and Pθ2 with associated unidimensional

distribution functions Fθ1 and Fθ2, respectively, the Kolmogorov distance, intro-

duced by Kolmogorov (1933), between Fθ1 and Fθ2 (or between Pθ1 and Pθ2) is

© 2006 by Taylor & Francis Group, LLC

tween two distributions (see Adhikari and Joshi, 1956), measures of separation



Divergence Measures: Definition and Properties 3

given by

K1(Fθ1 , Fθ2) = sup
x∈R

|Fθ1 (x)− Fθ2 (x)| . (1.1)

It is the well known Glivenko-Cantelli Theorem, based on the previous distance,

which states that the empirical distribution function is a uniformly strongly con-

sistent estimate of the true distribution function; i.e., given a random sample

X1, ..., Xn from a population with distribution function Fθ0, for any ε > 0 it

holds

lim
n→∞Pr {K1(Fn, Fθ0) > ε} = 0,

where Fn is the empirical distribution function, i.e.,

Fn (x) =
1

n

nX
i=1

I(−∞,x] (xi) ,

and IA is the indicator function of the set A.

On the other hand, the Lévy distance is

K2(Fθ1 , Fθ2) = inf {ε > 0 : Fθ1 (x− ε) ≤ Fθ2 (x) ≤ Fθ1 (x+ ε) , for all x} ;

it assumes values on [0, 1] and it is not easy to compute. It is interesting to note

that convergence in the Lévy-metric implies weak convergence for distribution

function in R (Lukacs, 1975, p. 71). It is shift invariant, but not scale invariant.
This metric was introduced by Lévy (1925, pp. 199-200). Some other results

about probability metrics, relationships between K1 and K2 as well as other

interesting results can be seen in Gibbs and Su (2002).

1.2. Phi-divergence Measures between Two Probabil-

ity Distributions: Definition and Properties

In this section we shall introduce different divergence measures; in all the

cases it must be understood provided the integral exists.

Kullback-Leibler divergence measure, between the probability distributions

Pθ1 and Pθ2 , is

DKull (θ1,θ2) =

Z
X
fθ1(x) log

fθ1(x)

fθ2(x)
dµ (x) = Eθ1

·
log

µ
fθ1(X)

fθ2(X)

¶¸
, (1.2)
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4 Statistical Inference based on Divergence Measures

which was introduced and studied by Kullback and Leibler (1951) and Kullback

(1959). Jeffreys (1946) used a symmetric version of (1.2),

J (θ1,θ2) = DKull (θ1,θ2) +DKull (θ2,θ1) ,

as a measure of divergence between two probability distributions. This divergence

measure is also called J-divergence.

Rényi (1961) presented the first parametric generalization of (1.2),

D1
r (θ1,θ2) =

1
r−1 log

Z
X
fθ1(x)

rfθ2(x)
1−rdµ(x)

= 1
r−1 logEθ1

"µ
fθ1(X)

fθ2(X)

¶r−1#
, r > 0, r 6= 1.

Later, Liese and Vajda (1987) extended it for all r 6= 1, 0, by

D1
r (θ1,θ2) =

1
r(r−1) log

Z
X
fθ1(x)

rfθ2(x)
1−rdµ(x)

= 1
r(r−1) logEθ1

"µ
fθ1 (X)

fθ2 (X)

¶r−1#
, r 6= 0, 1.

(1.3)

In the following, expression (1.3) will be referred as Rényi divergence. The

cases r = 1 and r = 0 are defined by

D1
1 (θ1,θ2) = lim

r→1
D1
r (θ1,θ2) = DKull (θ1,θ2)

and

D1
0 (θ1,θ2) = lim

r→0D
1
r (θ1,θ2) = DKull (θ2,θ1) ,

respectively. The divergence measure DKull (θ2,θ1) is called the Minimum dis-

crimination information between the probability distributions Pθ1 and Pθ2 . Other

two well known parametric generalizations of (1.2) are the one called r-order and

s-degree divergence measure, and the other called 1-order and s-degree divergence

measure. They were given by Sharma and Mittal (1977), by

Dsr (θ1,θ2) =
1

(s−1)


Z
X
fθ1(x)

rfθ2(x)
1−rdµ(x)

 s−1
r−1

− 1


= 1

(s−1)

ÃEθ1

"µ
fθ1 (X)

fθ2 (X)

¶r−1#! s−1
r−1
− 1
 ,

(1.4)
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for r, s 6= 1 and

Ds1 (θ1,θ2) =
1

(s−1)

exp
(s− 1)Z

X
fθ1(x) log

fθ1(x)
fθ2(x)

dµ(x)

− 1


= 1
(s−1)

µ
exp

µ
(s− 1)Eθ1

·
log

µ
fθ1 (X)

fθ2 (X)

¶¸¶
− 1
¶
,

(1.5)

for s 6= 1.
It can be easily shown that

i) lim
s→1

Dsr (θ1,θ2) = rD
1
r (θ1,θ2)

ii) lim
r→1

Dsr (θ1,θ2) = D
s
1 (θ1,θ2)

iii) lim
s→1

Ds1 (θ1,θ2) = DKull (θ1,θ2), limr→1
D1
r (θ1,θ2) = DKull (θ1,θ2) .

The Kullback-Leibler divergence measure is the most famous special case of

the φ-divergence family of divergence measures defined simultaneously by Csiszár

(1963) and Ali and Silvey (1966) .

Definition 1.1

The φ-divergence measure between the probability distributions Pθ1 and Pθ2
is defined by

Dφ (Pθ1, Pθ2) = Dφ (θ1,θ2) =

Z
X
fθ2(x)φ

³
fθ1 (x)
fθ2 (x)

´
dµ(x)

= Eθ2

·
φ

µ
fθ1(X)

fθ2(X)

¶¸
, φ ∈ Φ∗

(1.6)

where Φ∗ is the class of all convex functions φ (x) , x ≥ 0, such that at x =

1,φ (1) = 0, at x = 0, 0φ (0/0) = 0 and 0φ (p/0) = limu→∞ φ (u) /u.

Remark 1.1

Let φ ∈ Φ∗ be differentiable at x = 1, then the function

ψ (x) ≡ φ (x)− φ0 (1) (x− 1) (1.7)

also belongs to Φ∗ and has the additional property that ψ0 (1) = 0. This property,
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6 Statistical Inference based on Divergence Measures

together with the convexity, implies that ψ (x) ≥ 0, for any x ≥ 0. Further,

Dψ (θ1,θ2) =

Z
X
fθ2(x)

µ
φ

µ
fθ1(x)

fθ2(x)

¶
− φ0 (1)

µ
fθ1(x)

fθ2(x)
− 1
¶¶

dµ(x)

=

Z
X
fθ2(x)φ

µ
fθ1(x)

fθ2(x)

¶
dµ(x)

= Dφ (θ1,θ2) .

Since the two divergence measures coincide, we can consider the set Φ∗ to be
equivalent to the set

Φ ≡ Φ∗ ∩ ©φ : φ0 (1) = 0ª .
Kullback-Leibler divergence measure is obtained for ψ (x) = x log x−x+1 or

φ (x) = x logx.We can observe that ψ (x) = φ (x)−φ0(1)(x−1).We shall denote
by φ any function belonging to Φ or Φ∗. In the following table we present some
important measures of divergence studied in the literature which are particular

cases of the φ-divergence. More examples can be seen in Arndt (2001), Pardo, L.

(1997a) and Vajda (1989, 1995).

φ-function Divergence

x logx− x+ 1 Kullback-Leibler (1959)

− logx+ x− 1 Minimum Discrimination Information

(x− 1) log x J-Divergence
1
2 (x− 1)2 Pearson (1900), Kagan (1963)
(x−1)2
(x+1)2

Balakrishnan and Sanghvi (1968)
−xs+s(x−1)+1

1−s , s 6= 1, Rathie and Kannappan (1972)

1−x
2 −

³
1+x−r
2

´−1/r
, r > 0 Harmonic mean (Mathai and Rathie (1975))

(1−x)2
2(a+(1−a)x) , 0 ≤ a ≤ 1 Rukhin (1994)
ax logx−(ax+1−a) log(ax+1−a)

a(1−a) , a 6= 0, 1 Lin (1991)
xλ+1−x−λ(x−1)

λ(λ+1) , λ 6= 0,−1 Cressie and Read (1984)

|1− xa|1/a , 0 < a < 1 Matusita (1964)

|1− x|a , a ≥ 1
½

χ− divergence of order a (Vajda 1973)
Total Variation if a = 1 (Saks 1937)

From a statistical point of view, the most important family of φ-divergences

is perhaps the family studied by Cressie and Read (1984): the power-divergence
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family, given by

Iλ (θ1,θ2) ≡ Dφ(λ) (θ1,θ2) =
1

λ(λ+1)

Z
X

fθ1 (x)
λ+1

fθ2 (x)
λ dµ(x)− 1


= 1

λ(λ+1)

Ã
Eθ1

"µ
fθ1 (X)

fθ2 (X)

¶λ
#
− 1
!
,

for −∞ < λ <∞.The power-divergence family is undefined for λ = −1 or λ = 0.
However, if we define these cases by the continuous limits of Iλ (θ1,θ2) as λ→−1
and λ→ 0, then Iλ (θ1,θ2) is continuous in λ. It is not difficult to establish that

lim
λ→0

Iλ (θ1,θ2) = DKull (θ1,θ2)

and

lim
λ→−1

Iλ (θ1,θ2) = DKull (θ2,θ1) .

We can observe that the power-divergence family is obtained from (1.6) with

φ (x) =


φ(λ) (x) =

1
λ(λ+1)

¡
xλ+1 − x− λ (x− 1)¢ ; λ 6= 0,λ 6= −1,

φ(0) (x) = limλ→0 φ(λ) (x) = x log x− x+ 1
φ(−1) (x) = limλ→−1 φ(λ) (x) = − log x+ x− 1.

The power-divergence family was proposed independently by Liese and Vajda

(1987) as a φ-divergence under the name Ia-divergence.

The power-divergence family, we shall refer to it in later chapters of this

book, has been used by Cressie and Read, specially for discrete random variables

with finite support (with multinomial data), to link the traditional test statistics

through a single-valued parameter, and provides a way to consolidate and extend

the current fragmented literature. As a by-product of their analysis, a new test

statistic emerged “between” chi-square test statistic and the likelihood ratio test

statistic that has some valuable properties. In the last years, many papers in

the statistical literature have appeared using the power-divergence family to get

competitive estimators as well as test statistics.

The divergence measures of Rényi and Sharma and Mittal given in (1.3) and

(1.4), as well as the measure given by Bhattacharyya (1943)

B (θ1,θ2) = − log
Z
χ

q
fθ1(x)fθ2(x)dµ (x) ,
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8 Statistical Inference based on Divergence Measures

are not φ-divergences measures. However, such measures can be written in the

following form:

Dhφ (θ1,θ2) = h (Dφ (θ1,θ2)) , (1.8)

where h is a differentiable increasing real function mapping from·
0,φ (0) + lim

t→∞
φ (t)

t

¸
onto [0,∞) ; this condition will be justified in Proposition 1.1, with h (0) = 0,

h0 (0) > 0, and φ ∈ Φ∗. In the following table we list the functions h and φ that

yield to the mentioned divergence measures:

Divergence h (x) φ (x)

Rényi 1
r(r−1) log (r (r − 1)x+ 1) ; r 6= 0, 1 xr−r(x−1)−1

r(r−1) ; r 6= 0, 1
Sharma-Mittal 1

s−1
³
(1 + r (r − 1)x) s−1r−1 − 1

´
; s, r 6= 1 xr−r(x−1)−1

r(r−1) ; r 6= 0, 1
Bhattacharyya − log (−x+ 1) −x1/2 + 1

2 (x+ 1) .

The new family of divergences (1.8), called the (h,φ)-divergence measures, has

been introduced and studied inMenéndez et al . (1995). An interesting application

of Bhattacharyya divergence in signal selection can be seen in Kailath (1967).

1.2.1. Basic Properties of the Phi-divergence Measures

In this Section we present some of the most important properties, from a

statistical point of view, of the φ-divergence measures. A complete study of

their properties can be found in Vajda (1989, 1995). It is reasonable to demand

of a divergence the property of increasing when two distributions move apart.

The first proposition is an immediate consequence of this idea, and it will be a

basic tool in later chapters. In the following we assume the existence of the first

derivative of φ at x = 1. This assumption is not necessary in order to establish

the following results but with this condition some proofs will be easier. In Vajda

(1995) proofs are given without the assumption of that restriction.

Proposition 1.1

Let Pθ1 and Pθ2 be two probability distributions and let φ ∈ Φ∗ be differentiable
at t = 1. Then

0 ≤ Dφ (θ1,θ2) ≤ φ (0) + lim
r→∞

φ (r)

r
,
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where

Dφ (θ1,θ2) = 0 if Pθ1 = Pθ2 , (1.9)

and

Dφ (θ1,θ2) = φ (0) + lim
r→∞

φ (r)

r
if S1 ∩ S2 = ∅. (1.10)

If φ is also strictly convex at t = 1, then (1.9) holds if and only if Pθ1 = Pθ2. If

moreover,

φ (0) + lim
r→∞

φ (r)

r
<∞,

then (1.10) holds if and only if S1 ∩ S2 = ∅, where Si, i = 1, 2, is the support of
the probability distribution Pθi , i = 1, 2.

Proof. Using the nonnegativity of the function ψ given in (1.7), we have

Dψ (θ1,θ2) ≥ 0, but we know that Dφ (θ1,θ2) = Dψ (θ1,θ2) , then Dφ (θ1,θ2) ≥
0.

It is known that for every convex function φ the following inequality holds

φ (t) ≤ φ (0) + t lim
r→∞

φ (r)

r
, (t ≥ 0) . (1.11)

If φ is strictly convex at some t0 ∈ (0,∞) then the inequality in (1.11) is strict
for all t > 0. Using (1.11) we have

Dφ (θ1,θ2) ≤
Z
X
fθ2(x)

µ
φ (0) +

fθ1(x)

fθ2(x)
lim
r→∞

φ (r)

r

¶
dµ(x)

= φ (0) + lim
r→∞

φ (r)

r
.

It is clear that Pθ1 = Pθ2 implies Dφ (θ1,θ2) = 0.

If S1 ∩ S2 = ∅, we have

Dφ (θ1,θ2) =

Z
X
fθ2(x)φ

³
fθ1 (x)
fθ2 (x)

´
dµ(x)

=

Z
SC1 ∩S2

fθ2(x)φ
³
fθ1 (x)
fθ2 (x)

´
dµ(x) +

Z
S1∩SC2

fθ2(x)φ
³
fθ1(x)
fθ2(x)

´
dµ(x)

= φ (0) + lim
r→∞

φ (r)

r
.

Now we are going to establish that if φ is strictly convex at t = 1, then

Dφ (θ1,θ2) = 0 implies Pθ1 = Pθ2 .
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In fact, if φ is strictly convex at t = 1 then

ψ

µ
fθ1(x)

fθ2(x)

¶
> 0

for fθ1(x)/fθ2(x) > 1 and for fθ1(x)/fθ2(x) < 1, where ψ is defined in (1.7). If

Dψ (θ1,θ2) = 0 then fθ1(x)/fθ2(x) ≤ 1 or fθ1(x)/fθ2(x) ≥ 1. First we suppose
that fθ1(x)/fθ2(x) ≤ 1. We know that

Dφ (θ1,θ2) = Dψ (θ1,θ2) = 0,

and

0 = Dψ (θ1,θ2) =

Z
X
fθ2(x)ψ

³
fθ1(x)
fθ2(x)

´
dµ(x)

=

Z
X
fθ2(x)

³
φ
³
fθ1 (x)
fθ2 (x)

´
− φ0 (1)

³
fθ1 (x)
fθ2 (x)

− 1
´´
dµ(x)

= Dφ (θ1,θ2)− φ0 (1)
Z
X
fθ2(x)

³
fθ1(x)
fθ2(x)

− 1
´
dµ(x)

= 0− φ0 (1)
Z
X
fθ2(x)

³
fθ1(x)
fθ2(x)

− 1
´
dµ(x)

= −φ0 (1)
Z
X

³
fθ1 (x)
fθ2 (x)

− 1
´
dPθ2 .

Since φ is strictly convex at t = 1, it must be Pθ1 = Pθ2. For fθ1(x)/fθ2(x) ≥ 1,
the result can be established in the same way.

The strict convexity of φ at t = 1 implies the strict inequality in (1.11), i.e.,

φ (t) < φ (0) + t lim
r→∞

φ (r)

r
, ∀t > 0.

Then the function

l (t) = φ (0)− φ (t) + t lim
r→∞

φ (r)

r

is positive, for any t > 0.

If we take x ∈ S1, i.e., x such that fθ1(x) > 0, then t =
fθ1(x)
fθ2(x)

> 0 and

l
³
fθ1 (x)
fθ2 (x)

´
> 0.
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Therefore,

Dl (θ1,θ2) =

Z
X
fθ2(x)l

³
fθ1 (x)
fθ2 (x)

´
dµ(x)

=

Z
X
fθ2(x)

³
φ (0)− φ

³
fθ1(x)
fθ2(x)

´
+

fθ1 (x)
fθ2 (x)

limr→∞ φ(r)
r

´
dµ(x)

= −Dφ (θ1,θ2) + φ (0) + lim
r→∞

φ (r)

r
,

but by (1.10) we have

Dφ (θ1,θ2) = φ (0) + lim
r→∞

φ (r)

r
,

therefore,

Dl (θ1,θ2) =

Z
X
fθ2(x)l

µ
fθ1(x)

fθ2(x)

¶
dµ(x) = 0,

with

l

µ
fθ1(x)

fθ2(x)

¶
> 0.

Then, fθ2(x) = 0, because Dl (θ1,θ2) = 0 and l
³
fθ1 (x)
fθ2 (x)

´
> 0, i.e., x /∈ S2. This

completes the proof.

Let X1, ..., Xn be a sample from Pθ, θ ∈Θ. For µ being the Lebesgue measure
or a counting measure, let fθ(x) =

dPθ
dµ (x) where x =(x1, ..., xn). Suppose that T

is a measurable transformation from (Xn, βXn) onto a measurable space (Y, βY) .
We denote

Qθi (A) = Pθi
¡
T−1 (A)

¢
, i = 1, 2, (1.12)

with A ∈ βY and

gθi(t) =
dQθi

dµ
(t), fθi (x/t) =

dPθi
dQθi

, i = 1, 2; (1.13)

by t we are denoting the values of T. In this context we have the following

property.

Proposition 1.2

Let φ ∈ Φ∗ and Qθi, Pθi , i = 1, 2, be two probability measures defined in

(1.12) and (1.13). Then we have

Dφ (Qθ1, Qθ2) ≤ Dφ (Pθ1, Pθ2) .
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12 Statistical Inference based on Divergence Measures

The equality holds if T is sufficient for the probability distributions Pθ1 and Pθ2 .

Proof. We have

Dφ (Pθ1 , Pθ2) =

Z
X
fθ2(x)φ

³
fθ1 (x)
fθ2 (x)

´
dµ(x)

=

Z
X

Z
Y
fθ2 (x/t) gθ2(t)φ

³
fθ1 (x)
fθ2 (x)

´
dµ(t)dµ(x)

=

Z
Y
gθ2(t)

Z
X
fθ2 (x/t)φ

³
fθ1(x)
fθ2(x)

´
dµ(x)

 dµ(t).
Applying Jensen’s inequality we obtain

Dφ (Pθ1 , Pθ2) ≥
Z
Y
gθ2(t)

φ

Z
X
fθ2 (x/t)

fθ1(x)

fθ2(x)
dµ(x)

 dµ(t).
But,

fθ1(x)

fθ2(x)
=

dPθ1
dµ
dPθ2
dµ

=

dQθ1

dµ
dQθ2

dµ

dPθ1
dQθ1

dPθ2
dQθ2

=
gθ1(t)

gθ2(t)

fθ1 (x/t)

fθ2 (x/t)
, (1.14)

then,

Dφ (Pθ1 , Pθ2) ≥
Z
Y
gθ2(t)φ

µ
gθ1(t)

gθ2(t)

¶
dµ(t) = Dφ (Qθ1, Qθ2) .

If φ is strictly convex, the equality holds iff

fθ1(x)

fθ2(x)
=

Z
X
fθ2 (x/t)

fθ1(x)

fθ2(x)
dµ(x), for all x.

The second term in the previous inequality is equal to gθ1(t)/gθ2(t) by (1.14).

Then, using the Factorization Theorem, the equality holds if T is sufficient for

the probability distributions Pθ1 and Pθ2 .

In the following proposition {Pθ}θ∈Θ , Θ ⊂ R, is a family of probability mea-
sures defined on the σ-field of Borel subsets of the real line with monotone like-

lihood ratio in x, i.e., if for any θ1 < θ2, fθ1 (x) and fθ2 (x) are distinct and the

ratio fθ1 (x) / fθ2 (x) is a nondecreasing function of x. It is also possible to define

families of densities with nonincreasing monotone likelihood ratio in x, but such

families can be treated by symmetry.
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Proposition 1.3

Suppose that the probability distributions {Pθ}θ∈Θ are on the real line, θ ∈
(a, b) ⊂ R and let Pθ be absolutely continuous with respect to a σ-finite measure

µ (Lebesgue measure or counting measure). Suppose also that the corresponding

density functions or probability mass functions have monotone likelihood ratio in

x. If a < θ1 < θ2 < θ3 < b and the function φ is continuous, it holds

Dφ (θ1, θ2) ≤ Dφ (θ1, θ3) , φ ∈ Φ∗. (1.15)

Proof. We assume that µ is the Lebesgue measure. We define

eDϕ (θ1, θ2) =

Z
R

fθ1 (x)ϕ

µ
fθ2 (x)

fθ1 (x)

¶
dx,

and we shall establish

eDϕ (θ1, θ2) ≤ eDϕ (θ1, θ3) , ϕ ∈ Φ∗. (1.16)

If (1.16) holds, then (1.15) also holds, because if we consider the function

ϕ (t) = tφ

µ
1

t

¶
∈ Φ∗,

we have eDϕ (θ1, θ2) =

Z
R

fθ1 (x)
fθ2 (x)

fθ1 (x)
φ

µ
fθ1 (x)

fθ2 (x)

¶
dx

= Dφ (θ1, θ2) .

Since, by hypothesis, the family of distributions {Pθ}θ∈Θ⊂R has monotone non-
decreasing likelihood ratio, then

h2 (x) =
fθ2 (x)

fθ1 (x)
and h3 (x) =

fθ3 (x)

fθ1 (x)

are nondecreasing functions of x. The same happens with

h3 (x)

h2 (x)
=
fθ3 (x)

fθ2 (x)
. (1.17)

From (1.17) at the first sight we have three possibilities:
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14 Statistical Inference based on Divergence Measures

a) h3 (x) < h2 (x) , for all x

b) h3 (x) > h2 (x) , for all x

c) There exists a number a such that h3 (x) ≤ h2 (x) for x < a and h3 (x) ≥
h2 (x) for x > a.

We know that

Eθ1 [h3 (X)] =

Z
R

fθ1 (x)
fθ3 (x)

fθ1 (x)
dx = Eθ1 [h2 (X)] = 1.

If Eθ1 [h3 (X)] = Eθ1 [h2 (X)] = 1, then a) and b) are not true, hence it should be

true c). Using the monotonicity of h2 (x) and h3 (x) we have

{x : h2 (x) ≤ b} ⊂ {x : h3 (x) ≤ b} , if b < h2 (a)

and

{x : h2 (x) ≤ b} ⊃ {x : h3 (x) ≤ b} , if b > h2 (a) .

If we denote

Fh2(X) (t) = Prθ1 (h2 (X) ≤ t) = Prθ1 (x ∈ R : h2 (x) ≤ t)

Fh3(X) (t) = Prθ1 (h3 (X) ≤ t) = Prθ1 (x ∈ R : h3 (x) ≤ t)

we have for t < h2 (a)

Fh2(X) (t) = Pr θ1 (x ∈ R : h2 (x) ≤ t) ≤ Pr θ1 (x ∈ R : h3 (x) ≤ t) = Fh3(X) (t) ,

and for t > h2 (a)

Fh2(X) (t) ≥ Fh3(X) (t) .
Now we shall establish that the statements

a) Eθ1 [h3 (X)] = Eθ1 [h2 (X)]

b) Fh2(X) (t) ≤ Fh3(X) (t) for t < h2 (a) and Fh2(X) (t) ≥ Fh3(X) (t) for t >

h2 (a)

imply

Eθ1 [|h2 (X)− k|] ≤ Eθ1 [|h3 (X)− k|] (1.18)
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for all k.

It is well known that the expectation of a nonnegative random variable X can

be written as

E [X] =

Z ∞

0
(1− FX (x)) dx.

In our case,

Eθ1 [h3 (X)] =

Z ∞

0

¡
1− Fh3(X) (x)

¢
dx =

Z ∞

0

¡
1− Fh2(X) (x)

¢
dx = Eθ1 [h2 (X)] .

Denoting

I1 ≡
Z h2(a)

0

¡¡
1− Fh3(X) (x)

¢− ¡1− Fh2(X) (x)¢¢ dx
and

I2 ≡
Z ∞

h2(a)

¡¡
1− Fh3(X) (x)

¢− ¡1− Fh2(X) (x)¢¢ dx,
we have

I1 =

Z h2(a)

0

¡
Fh2(X) (x)− Fh3(X) (x)

¢
dx, I2 =

Z ∞

h2(a)

¡
Fh2(X) (x)− Fh3(X) (x)

¢
dx.

Therefore,

Eθ1 [h3 (X)]−Eθ1 [h2 (X)] =

Z h2(a)

0

¡
Fh2(X) (x)− Fh3(X) (x)

¢
dx

+

Z ∞

h2(a)

¡
Fh2(X) (x)− Fh3(X) (x)

¢
dx = 0.

Finally, we haveZ h2(a)

0

¡
Fh2(X) (x)− Fh3(X) (x)

¢
dx =

Z ∞

h2(a)

¡
Fh3(X) (x)− Fh2(X) (x)

¢
dx. (1.19)

Now we prove (1.18). It is easy to check that

Eθ1 [|hi (X)− k|] =
Z k

0
Fhi(X) (x)dx+

Z ∞

k

¡
1− Fhi(X) (x)

¢
dx.

Assuming that k ≥ h2 (a) , an analogous proof can be done if k < h2 (a) ; we have

Eθ1 [|hi (X)− k|] =

Z h2(a)

0
Fhi(X) (x)dx+

Z k

h2(a)
Fhi(X) (x) dx

+

Z ∞

k
(1− Fhi(X) (x))dx,
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16 Statistical Inference based on Divergence Measures

for i = 2, 3. Let us define

s = Eθ1 [|h3 (X)− k|]−Eθ1 [|h2 (X)− k|] ,

so that

s =

Z h2(a)

0

¡
Fh3(X) (x)− Fh2(X) (x)

¢
dx−

Z k

h2(a)

¡
Fh2(X) (x)− Fh3(X) (x)

¢
dx

+

Z ∞

k

¡
Fh2(X) (x)− Fh3(X) (x)

¢
dx.

By (1.19) we haveZ h2(a)

0

¡
Fh3(X) (x)− Fh2(X) (x)

¢
dx =

Z ∞

h2(a)

¡
Fh2(X) (x)− Fh3(X) (x)

¢
dx

≥
Z k

h2(a)

¡
Fh2(X) (x)− Fh3(X) (x)

¢
dx.

Then we get that

s ≥
Z ∞

k

¡
Fh2(X) (x)− Fh3(X) (x)

¢
dx ≥ 0.

Thus,

Eθ1 [|h3 (X)− k|] ≥ Eθ1 [|h2 (X)− k|] . (1.20)

Finally we prove (1.16) or equivalently that

Eθ1 [φ (h3 (X))] ≥ Eθ1 [φ (h2 (X))] .

Since φ is continuous and convex we have

φ (z)− φ (0) =

Z z

0
b (k) dk,

where b is nondecreasing and bounded in [0, z]. Integrating by parts it yields,

φ (z)− φ (0) = zb (z)−
Z z

0
kdb (k) =

Z z

0
(z − k) db (k) + zb (0) .

Now we consider the function

b∗ (k) =

(
b (k) if k ∈ [0, z]
c if k > z

.
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Then we have

φ (z)− φ (0) =

Z z

0
(z − k) db∗ (k) + zb∗ (0) +

Z ∞

z
(z − k) db∗ (k)

=

Z ∞

0
(z − k) db∗ (k) + zb∗ (0) ,

where we have taken into account thatZ ∞

z
(z − k) db∗ (k) = 0.

Therefore

E [φ (Z)] = E

·Z ∞

0
(Z − k) db∗ (k) + Zb∗ (0) + φ (0)

¸
=

Z ∞

0

Z ∞

0
(z − k) db∗ (k) dFZ (z) +E [Z] b∗ (0) + φ (0)

=

Z ∞

0
E [Z − k] db∗ (k) +E [Z] b∗ (0) + φ (0) .

But, Z ∞

0
E [|Z − k|] db∗ (k) =

Z ∞

0

µZ ∞

0
|z − k| dFZ (z)

¶
db∗ (k)

=

Z ∞

0

µZ z

0
(z − k) db∗ (k)

+

Z ∞

z
− (z − k)db∗ (k)

¶
dFZ (z)

and Z ∞

z
(z − k) db∗ (k) = 0.

Then, Z ∞

0
E [|Z − k|] db∗ (k) =

Z ∞

0
E [Z − k] db∗ (k) ,

and thus

E [φ (Z)] =
1

2

Z ∞

0
E [(Z − k) + |Z − k|] db∗ (k) +E [Z] b∗ (0) + φ (0) .

If we consider Z ≡ h2(X), we have

Eθ1 [φ (h2 (X))] =
1

2

Z ∞

0
1− k +E [|h2 (X)− k|] db∗ (k) + b∗ (0) + φ (0)
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18 Statistical Inference based on Divergence Measures

because

Eθ1 [hi (X)] = 1, i = 2, 3.

In the same way

Eθ1 [φ (h3(X))] =
1

2

Z ∞

0
(1− k +E [|h3 (X)− k|])db∗ (k) + b∗ (0) + φ (0) .

Applying (1.20) we have the desired result.

Remark 1.2

It is obvious that if h is a differentiable increasing real mapping, the (h,φ)-

divergence measures also satisfy Propositions 1.1, 1.2 and 1.3.

Remark 1.3

If we consider a function φ ∈ Φ∗ which is strictly convex at x = 1, the

corresponding φ-divergence is a reflexive distance on the space P = {P}θ∈Θ . It is
possible to define a new measure of divergence, based on a given φ-divergence, in

such a way that the new measure of divergence will be not only reflexive but also

symmetric. This is possible if we consider the measure of divergence associated

with the function ϕ (t) = φ (t) + tφ
¡
1
t

¢
1995).

1.3. Other Divergence Measures between Two Prob-

ability Distributions

In this Section we present other important divergence measures between two

probability distributions that are not, in general, special cases of the φ-divergence

measures. We consider two groups of measures. The first one corresponding to

measures introduced by Burbea and Rao (1982a, 1982b, 1982c) and the second

one corresponding to the Bregman distances studied by Bregman (1967). Other

important tools in Statistical Information Theory are the Entropy measures. We

introduce them because they are necessary for the definition of the Rφ-divergence

measures introduced and studied by Rao (1982a), Burbea and Rao (1982a, 1982b,

1982c) and Burbea (1983).

In this section we shall assume as in the former section that the integral in

the next definitions exists.

© 2006 by Taylor & Francis Group, LLC

. For more details see Vajda (



Divergence Measures: Definition and Properties 19

1.3.1. Entropy Measures

Let X be a random variable with probability distribution Pθ. From a histor-

ical perspective the first entropy measure was Shannon’s entropy (1948),

H(X) ≡ H (Pθ) ≡ H (θ) = −
Z
X
fθ(x) log fθ(x)dµ(x) =Eθ [− log fθ(X)] .

The Kullback-Leibler divergence is related to Shannon’s entropy. If we assume

a finite support and the probability distribution Pθ2 is the uniform distribution,

we have

DKull (θ1,θ2) = H(Pθ2)−H(Pθ1).
The infinite support case may be written in terms of limits.

Rényi (1961) was the first who presented a generalization of Shannon’s en-

tropy, given by

H1
r (θ) =

1

1− r log
Z
X
fθ(x)

rdµ(x) =
1

1− r logEθ

h
fθ(X)

r−1
i
, r > 0, r 6= 1.

Liese and Vajda (1987) extended Rényi’s entropy for all r ∈ R− {0, 1} by means
of the expression

H1
r (θ) =

1

r (1− r) log
Z
X
fθ(x)

rdµ(x) =
1

r (1− r) logEθ

h
fθ(X)

r−1
i
, r 6= 0, 1.

(1.21)

In the following, expression in (1.21) will be referred as Rényi’s entropy. Rényi’s

entropy is undefined for r = −1 or r = 0. However, if we define these cases by

the continuous limits of H1
r (θ) as r→ 1 and r→ 0, then H1

r (θ) is continuous in

r. It is not difficult to establish that

lim
r→1

H1
r (θ) = H (θ) and lim

r→0H
1
r (θ) =

Z
X
log fθ(x)dµ(x).

A review about Rényi’s entropy for different univariate and k-variate random

variables can be seen in Nadarajah and Zografos (2003, 2005) and Zografos and

Nadarajah (2005).

In order to present a systematic way of studying the different entropy measures,
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20 Statistical Inference based on Divergence Measures

Burbea and Rao introduced the so-called φ-entropies, by

Hφ(X) ≡ Hφ (Pθ) ≡ Hφ (θ) =

Z
X
φ (fθ(x)) dµ(x), (1.22)

where φ : (0,∞)→ R is a continuous concave function and

φ (0) = lim
t↓0

φ (t) ∈ (−∞,∞] .

Some interesting properties of φ-entropies, for univariate discrete random va-
riables with finite support, can be seen in Vajda and Vasek (1985), Vajda and
Teboulle (1993), Morales et al . (1996) and references therein.

φ (x) h (x) Entropy

−x logx x Shannon (1948)

xr [r (1− r)]−1 logx Rényi (1961)

(r 6= 0, r 6= 1)
xr−m+1 (m− r)−1 log x Varma (1966)

(m− 1 < r < m,m ≥ 1)
x

r
m (m (m− r))−1 logx Varma (1966)

(0 < r < m,m ≥ 1)
(1− s)−1 (xs − x) x Havrda and Charvat (1967)

(s 6= 1, s > 0)
x
1
t (t− 1)−1 (xt − 1) Arimoto (1971)

(t 6= 1, t > 0)
x log x

exp [(s− 1)x]− 1
(1− s) Sharma and Mittal (1975)

(s 6= 1, s > 0)
xr 1

(1−s)
³
x
s−1
r−1 − 1

´
Sharma and Mittal (1975)

(r 6= 1, s 6= 1, r > 0, s > 0)
(1 + λx) log (1 + λx)

¡
1 + 1

λ

¢
log (1 + λ)− x

λ Ferreri (1980)

(λ > 0)
xs+(1−x)s−1

(1−s) x Kapur (1972)

s 6= 1
xs−(1+x)s+1+(s−1)−1(2s−2)x

(s−2) x Burbea (1984)

Table 1.1. φ-entropies and (h,φ)-entropies

With the φ-entropies we encounter the same problem as with the φ-divergences:

some important entropy measures can not be written as a φ-entropy. For this
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reason, Salicrú et al . (1993) defined the (h,φ)-entropy as follows,

Hh
φ(X) ≡ Hh

φ (Pθ) ≡ Hh
φ (θ) = h

Z
X
φ (fθ(x))dµ(x)

 , (1.23)

where either φ : (0,∞) → R is concave and h : R → R is differentiable and

increasing, or φ : (0,∞) → R is convex and h : R → R is differentiable and

decreasing. In Table 1.1 we list some imp ortant entropy measure s based on

(1.23).

The following result states some important properties of Shannon’s entropy

measure.

Proposition 1.4

Let X≡ (X1, ..., Xn) and Y ≡ (Y1, ..., Ym) be two continuous random vectors

with joint probability density functions f1(x), x∈Rn and f2(y), y∈Rm, respec-
tively. We shall assume that (X,Y ) is also a continuous random vector with

probability density function f(x,y), (x,y) ∈ Rn+m. The conditional probability
density of X when Y =y is given by f(x,y)/f2(y). Then the conditional Shan-

non entropy of X given Y =y is defined by

H (X/Y =y) = −
Z
Rn

f(x,y)

f2(y)
log

f(x,y)

f2(y)
dx

and the conditional Shannon’s entropy of X given Y , by

H (X/Y ) = −
Z
Rn+m

f(x,y) log
f(x,y)

f2(y)
dxdy=

Z
Rm
f2(y)H (X/Y =y)dy,

assuming the existence of the previous entropy. The following properties are

verified by Shannon’s entropy:

a) The Shannon’s entropy of X can be negative.

b) Let ϕ = (ϕ1, ...,ϕn) be a smooth bijection on Rn and we assume that
Y = ϕ(X). Then,

H (Y ) = H (X)−
Z
Rn
f(x) log |J (ϕ(x))| dx

where

J(y) = det

µ
∂ψi
∂yj

(y)

¶
i,j=1,...,n

is the determinant of the Jacobian matrix corresponding to the inverse

transformation ψ ≡ (ψ1, ...,ψn) of ϕ.
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c) If ϕ = (ϕ1, ...,ϕn) is a linear transformation, with ϕi(x) =
nP
j=1
aijxj , i =

1, ..., n, then H (Y ) = H (X) + log |det(A)| , where A = (aij)i,j=1,...,n .

d) It holds

H (X) = −
Z
Rn
f1(x) log f1(x)dx≤ −

Z
Rn
f1(x) log f2(x)dx, (1.24)

with equality iff f1(x) = f2(x) a.s. This inequality is called Gibbs’s lemma

for continuous random vectors.

e) It holds

H (X,Y ) = H (Y ) +H (X/Y ) = H (X) +H (Y /X) .

f) It holds

H (X/ (Y 1,Y 2)) ≤ H (X/Y 1) ≤ H (X) .
The first inequality turns into equality if and only if the random vector Y 2

is independent of X given Y 1 and the second inequality turns into equality

if and only if Y 1 is independent of X.

g) We have the chain rule

H (X1, ..., Xn) = H (X1) +
nX
k=2

H (Xk/X1, ...,Xk−1) ≤
nX
k=1

H (Xk) .

The equality holds if and only if X1, ...,Xn are mutually independent.

h) We have

H (X1, ..., Xn/Y ) = H (X1/Y ) +
nX
k=2

H (Xk/Y ,X1, ..., Xk−1)

≤
nX
k=1

H (Xk/Y ) .

Proof.

a) Let X be a random variable with exponential distribution of parameter

θ > 0. Then we have

H (θ) = − R∞0 θe−θx log
¡
θe−θx

¢
dx = 1− log θ,

therefore, if θ ∈ (0, e) the entropy is positive and if θ ∈ (e,∞) the entropy
is negative.
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b) Let B ⊂ Rn,
P (Y ∈B) = P (X∈ ψ (B))

=

Z
ψ(B)

f(x)dx=

Z
B
f (ψ(y)) |J(y)| dy

being ψ (B) = {ψ(y) : y ∈ B} . Therefore the probability density function
of the random vector Y is given by f (ψ(y)) |J(y)| and

H (Y ) = −
Z
Rn
f (ψ(y)) |J(y)| log (f (ψ(y)) |J(y)|)dy

= −
Z
Rn
f(x) log (f(x) |J (ϕ(x))|) dx

= H (X)−
Z
Rn
f(x) log |J (ϕ(x))| dx.

c) If ϕ is a linear transformation, we have J(y) = detA−1. Plugging this in
b), we get the desired result.

d) Let A = {x : f1(x) > 0}. Given x∈A, we have

log
f2(x)

f1(x)
≤ f2(x)
f1(x)

− 1,

and the equality holds if and only if f1(x) = f2(x). Therefore,

f1(x) log
f2(x)

f1(x)
≤ f2(x)− f1(x).

If we denote

l = −
Z
Rn
f1(x) log f1(x)dx+

Z
Rn
f1(x) log f2(x)dx,

we have that

l = −
Z
A
f1(x) log f1(x)dx+

Z
A
f1(x) log f2(x)dx

≤ (1)

Z
A
f2(x)dx−

Z
A
f1(x)dx

≤ (2)

Z
Rn
f2(x)dx−

Z
Rn
f1(x)dx = 0.

In (1) the equality holds if and only if f1(x)=f2(x) a.s. in A, and in (2) if

and only if f2(x) = 0 = f1(x) a.s. in Ac. Then the equality holds if and

only if f1(x)=f2(x) a.s.
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e) We have

H (X,Y ) = −
Z
Rm

Z
Rm
f(x,y) log f(x,y)dxdy

= −
Z
Rn

Z
Rm
f(x,y) log

f(x,y)

f2(y)
dxdy

−
Z
Rn

Z
Rm
f(x,y) log f2(y)dxdy

= H (X/Y ) +H (Y ) .

In a similar way it is possible to establish

H (X,Y ) = H (Y /X) +H (X) .

f) Let

g(y1), g(y1,y2), s(x,y1) and r(x,y1,y2)

be the probability density functions of the random vectors

Y 1, (Y 1,Y 2), (X,Y 1) and (X,Y 1,Y 2)

respectively. Thus,

H (X/ (Y 1,Y 2)) = −
ZZ

g(y1,y2)

µZ
r(x,y1,y2)
g(y1,y2)

log
r(x,y1,y2)
g(y1,y2)

dx

¶
≤(1) −

ZZ
g(y1,y2)

µZ
r(x,y1,y2)
g(y1,y2)

log
s(x,y1)
g(y1)

dx

¶
= −

ZZ
s(x,y1) log

s(x,y1)
g(y1)

dxdy1

= H (X/Y 1) .

The inequality (1) is established applying part d) to the functions

r(x/y1,y2)

g(y1,y2)
and

s(x/y1)

g(y1)
.

The equality holds if and only if

r(x,y1,y2)

g(y1,y2)
=
s(x,y1)

g(y1)
.

This is equivalent to saying that

r(x,y1,y2)

g(y1)
=
s(x,y1)

g(y1)

g(y1,y2)

g(y1)
.

© 2006 by Taylor & Francis Group, LLC



Divergence Measures: Definition and Properties 25

The first ratio on the right side of the equality is the probability density

function ofX given Y 1 = y1, while the second one is the probability density

function of Y 2 given Y 1 = y1. The term on the left side is the probability

density function of (X,Y 2) given Y 1 = y1. Thus we have proved the first

part of f).

The second part is obtained in a similar way.

g) By e) we have

H (X1, X2, ...,Xn) = H (X1) +H (X2, ...,Xn/X1) .

In the same way as we have established e) it is possible to show that

H (X2, ..., Xn/X1) = H (X2/X1) +H (X3, ...,Xn/X1,X2) .

Repeating the same arguments, we have

H (X1,X2, ...,Xn) = H (X1) +
nX
k=2

H (Xk/X1, ..., Xk−1) .

h) The result can be obtained using g).

1.3.2. Burbea and Rao Divergence Measures

Based on the concavity property of the (h,φ)-entropy, Pardo, L. et al . (1993b)

introduced the generalized Rhφ-divergence between two probability distributions

Pθ1 and Pθ2 by

Rhφ(Pθ1 , Pθ2) ≡ Rhφ (θ1,θ2) = Hh
φ

µ
Pθ1 + Pθ2

2

¶
− H

h
φ (Pθ1) +H

h
φ (Pθ2)

2
.

For h (x) = x, we have the Rφ-divergence of Burbea and Rao (1982a, 1982b,

1982c) and for φ (x) = x log x the information radius of Sibson (1969).

An important family of Rφ-divergences is based on the φα-entropies. This

family of entropies (Havrda and Charvat (1967)) is obtained considering the

family of functions

φα (x) =

(
(1− α)−1 (xα − x) , α 6= 1
−x log x, α = 1.
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Rao (1982a) used the family of φα-entropies, associated with random variables

with finite support, in genetic diversity between populations. In the particular

case of α = 2 Gini-Simpson index is obtained. This measure of entropy was

introduced by Gini (1912) and by Simpson (1949) in Biometry and its properties

have been studied by several authors. Note that if we consider the Gini-Simpson

index, the associated Rφ2-divergence, for the probability distributions pθ1 (xi) ,

i = 1, ...,M, and pθ2 (xi) , i = 1, ...,M , is proportional to the square of the

Euclidean distance, namely

Rφ2 (θ1,θ2) =
1

4

MX
i=1

(pθ1 (xi)− pθ2 (xi))2 .

Another important family of Rφ-divergences is obtained if we consider the Bose-

Einstein entropy introduced by Burbea (1984) and given by

φ (x) =
xs − (1 + x)s + 1 + (s− 1)−1 (2s − 2)x

(s− 2) .

The expressions for s = 2 or 1 are obtained by continuity. Another interesting

family is obtained by considering the Fermi-Dirac entropy introduced by Kapur

(1972) and its expression is obtained for

φ (x) =
xs + (1− x)s − 1

(1− s) .

In this case the expression for s = 1 is also obtained by continuity.

In this context Pardo, M. C. and Vajda (1997) established that the condition

1

t
φ

µ
t
u+ v

2

¶
− φ (tu) + φ (tv)

2t
= φ

µ
u+ v

2

¶
− φ (u) + φ (v)

2
,

valid for all positive t, u, v, implies the identity

Dϕ(Pθ1, Pθ2) = Rφ(Pθ1, Pθ2),

where Dϕ(Pθ1 , Pθ2) is the ϕ-divergence between Pθ1 and Pθ2 , for

ϕ (x) = φ

µ
x+ 1

2

¶
− φ (x) + φ (1)

2
.

For example, the function φ (x) = x log x− x+ 1 satisfies the above condition.
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Burbea and Rao (1982a, 1982b) introduced and studied three new families of

divergence measures: L-,K-, and M-divergences, which are defined as

K(θ1,θ2) =

Z
X
(fθ1(x)− fθ2(x))

µ
φ (fθ1(x))

fθ1(x)
− φ (fθ2(x))

fθ2(x)

¶
dµ(x),

L(θ1,θ2) =

Z
X

·
fθ1(x)φ

µ
fθ2(x)

fθ1(x)

¶
+ fθ2(x)φ

µ
fθ1(x)

fθ2(x)

¶¸
dµ(x)

and

M(θ1,θ2) =

Z
X
(φ (fθ1(x))− φ (fθ2(x)))

2 dµ(x).

We observe that the L-divergence is a special case of Csiszár’s ϕ-divergence

with ϕ(t) = tφ(t−1) + φ(t), provided tφ(t−1) + φ(t) is a convex function. If

φ(t) = t1/2, M(θ1,θ2) is the Matusita’s distance (1964). Some applications of

K-divergences in statistical problems can be seen in Pérez and Pardo, J. A. (2002,

2003a, 2003b, 2003c, 2004 and 2005).

1.3.3. Bregman’s Distances

Bregman (1967) introduced a family of divergences in the following way,

Bϕ(θ1,θ2) =

Z
X

¡
ϕ(fθ1(x))− ϕ(fθ2(x))− ϕ0(fθ2(x))(fθ1(x)− fθ2(x))

¢
dµ(x)

for any differentiable convex function ϕ : (0,∞) → R with ϕ(0) = lim
t→0ϕ(t) ∈

(−∞,∞). We observe that for ϕ(t) = t log t, Bϕ(θ1,θ2) is the Kullback-Leibler

divergence and for ϕ(t) = t2 and discrete probability distributions, the Euclidean

distance.

Some properties of the Rφ-divergences and Bregman’s distances as well as

their relation with φ-divergences have been studied by Pardo, M.C. and Vajda

(1997).

1.4. Divergence among k Populations

The measures of divergence previously discussed are designed for two proba-

bility distributions. For certain applications such as in the study of taxonomy in
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biology and genetics, testing if k populations are homogeneous, etc., it might be

necessary to measure the overall difference of more than two probability density

functions. Matusita (1967, 1973) proposed the first generalization of the Bhat-

tacharyya divergence, in order to express in a qualitative way analogies and dif-

ferences among k populations and applied it to discriminant analysis techniques.

He also derived a lower bound of the Bayes probability of misclassification. An

axiomatic foundation in the discrete case was given by Kaufman and Mathai

(1973), and some properties of these measures were derived by Toussaint (1974).

This author also presented a simple measure of divergence: the J-divergence

among k populations.

A general class of divergence measures, called f-dissimilarity among k popu-

lations, was defined by Gyorfi and Nemetz (1978) as follows:

Df(θ1, ...,θk) =

Z
χ
f (fθ1(x), ...., fθk(x))dµ(x), (1.25)

where f is a continuous, convex, homogeneous function defined on the set

S = {(s1, ..., sk) : 0 ≤ si <∞, i = 1, ..., k} .

If f(x1, .., xk) = −(
Qk
j=1 xj)

1/k the f-dissimilarity is the negative of Matusita’s

affinity (1967) of k populations and if f(x1, .., xk) = −
Qk
j=1 x

aj
j , aj ≥ 0 withPk

j=1 aj = 1 the f-dissimilarity is the negative affinity introduced by Toussaint,

(1974). More examples can be seen in Gyorfi and Nemetz (1978) and Zografos

(1998a). The f-dissimilarity leads also to the Csiszar’s φ-divergence if f(x1, x2) =

x2φ(x1/x2).

Other interesting families of divergence measures among k populations can be

seen in Kapur (1988), Sahoo and Wong (1988), Rao (1982a), Toussaint (1978).

In Menéndez et al . (1992), three different ways of generalizing the information

radius for k populations are presented.

Another interesting family is proposed in Burbea and Rao (1982a, 1982b).

Given k probability distributions, Pθi , i = 1, ..., k, the φ-Jensen difference among

the k probability distributions is

Rφ(Pθ1 , ..., Pθk) = Hφ(λ1Pθ1 + ...+ λkPθk)−
kX
i=1

λiHφ(Pθi),
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where
Pk
i=1 λi = 1 and Hφ is the φ-entropy defined in (1.22) . In the partic-

ular case of φ(t) = −t log t, we have the Information Radius for k probability
distributions.

1.5. Phi-disparities

The concept of φ-disparity appeared first in Lindsay (1994), who found that

inference based on statistics of type φ-divergence, called φ-divergence statistics

(obtained by replacing either one or both probability distributions by suitable

estimators), requires either bounded differentiability of φ or boundedness of φ,

itself. Since these properties cannot be satisfied on (0,∞) by functions φ figuring
in statistically applicable φ-divergences (e.g., no such φ is bounded on (0,∞)),
Menéndez et al . (1998a) introduced the φ-disparity formally as an extension of

the φ-divergence. Later, these concepts have been used systematically in many

papers.

Definition 1.2

The φ-disparity between the probability distributions Pθ1 and Pθ2 is defined by

Dφ(Pθ1 , Pθ2) = Dφ (θ1,θ2) =

Z
X
fθ2(x)φ

µ
fθ1(x)

fθ2(x)

¶
dµ(x), (1.26)

where the function φ : (0,∞) → [0,∞) is assumed to be continuous, decreasing
on (0, 1) and increasing on (1,∞), with φ(1) = 0. The value φ(0) ∈ (0,∞] is
defined by the continuous extension.

Remark 1.4

Note that the class of φ-disparities contains all φ-divergences of Csiszár (see

1 1 1989)) with φ : (0,∞) →
(0,∞) convex and equal to zero only at 1. Then, the assumed convexity and
φ(1) = 0 imply that

φ(t)− φ(1)

t− 1 =
φ(t)

t− 1
is nondecreasing in the domain t > 0. Therefore, φ(t) is increasing in the domain

t > 1 unless φ(t) = 0 on an interval (1, t1), and decreasing in the domain 0 <

t < 1 unless φ(t) = 0 in an interval (t0, 1). But φ(t) = 0 for t 6= 1 is excluded by
assumptions.

It is easy to verify that the functions
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i) φ (x) = min
³
(x− 1)2 , (1− 1/x)2

´
ii) φ (x) =

x log x

(1 + x log x)

iii) φ (x) = 1− 2x

1 + x2

iv) φ (x) = 1− exp
³
−α (x− 1)2

´
, α > 0,

are not convex, but they verify the properties of φ-disparities.

Some properties about φ-disparities can be seen in the cited paper byMenéndez

et al . (1998a) and also in Menéndez et al . (2001a,b,c) and Morales et al . (2003,

2004).
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1.6. Exercises

1. Show that Shannon’s entropy for a random variable X, whose probability

density function (p.d.f.), f (x) , vanishes outside an interval (a, b) is bounded

by the entropy of a uniform distribution in the interval (a, b) .

2. Let (X1, X2, ...,Xn, Y ) be a (n+ 1)-variate random vector with probability

density function f(x1, x2, ..., xn, y). State the relation between

H(Y/X1, X2, . . . ,Xn) and H(Y/X1,X2, . . . ,Xk) (k < n)

and find the necessary condition which turns the inequality into equality.

3. Show that Shannon’s entropy of a continuous random variable in R with
finite mean µ and variance σ2 is bounded by Shannon’s entropy of a normal

distribution with mean µ and variance σ2.

4. Let X be a random variable with probability density function f(x). ShowZ
R

x2f (x) dx ≥ 1

2πe
exp (2H (X)) .

5. It is said that the experiment associated with the random variable X, with

p.d.f. fθ(x), is sufficient for the experiment associated with the random

variable Y , with p.d.f. gθ(y), if there exists a nonnegative function h on

the product space X ×Y for which the following relations are satisfied:

i) gθ(y) =

Z
X
h(x,y)fθ(x)dµ(x)

ii) h(x,y) ≥ 0,
Z
X
h(x,y)dµ(x) =

Z
Y
h(x,y)dµ(y) = 1.

Show that

H(Y ) ≥ H(X).

6. Derive the expression of Shannon’s entropy for the following random varia-

bles: Beta, Cauchy, Chi-square, Erlang, Exponential, F-Snedecor, Gamma,

Laplace, Logistic, Lognormal, Maxwell-Normal, Normal, Normal-generali-

zed, Pareto, Rayleigh and T-Student.
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7. Let X be a random variable with probability mass function Pθ (X = xi) =

pθ (xi) , i ∈ N. Show that
J (θ1,θ2) ≥ 4R (θ1,θ2) ,

where R (θ1,θ2) is the Rφ-divergence of Burbea and Rao with φ (x) =

−x log x.
8. Suppose that a d-variate random vector X =(X1, ..., Xd) has a multivari-

ate normal distribution with mean vector µ =(µ1, ..., µd)
T and nonsingular

variance-covariance matrix Σ.

i) Show that

H1
r (µ,Σ) =

1
r(1−r) log

det (Σ)− (r−1)
2

rd/2
(2π)−

d(r−1)
2


and

H(µ,Σ) = 1
2 log

³
det (Σ) (2πe)d

´
.

ii) Assuming that X is normal with mean µ and variance σ2, show using

the results obtained in i) that

H1
r (µ,σ

2) = 1
r(1−r) log

¡σ2¢ − (r−1)
2

r1/2
(2π)−

(r−1)
2


and

H(µ,σ2) = 1
2 log

¡
σ22πe

¢
.

iii) Show that Shannon’s entropy is invariant with respect to orthogonal

transformations.

9. Let A = (aij)i,j=1..,d be a symmetric and positive definite matrix. Show

that

det (A) ≤
dY
i=1

aii (Hadamard Theorem).

10. Let X =(X1, ...,Xd) be a d-variate random vector with p.d.f. given by

f (x1, ..., xd) and nonsingular variance-covariance matrix Σ. Show that

H (X1, ...,Xd) ≤ 1
2
log
³
det (Σ) (2πe)d

´
,

and equality holds if and only ifX = (X1, ..., Xd) has a multivariate normal

distribution with nonsingular variance-covariance matrix Σ.
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11. Show that Rényi’s divergence and Kullback-Leibler divergence between two

multivariate normal distributions are given respectively by

D1
r ((µ1,Σ1), (µ2,Σ2)) =

(µ1 −µ2)T (rΣ2 + (1− r)Σ1)
−1 (µ1 −µ2)

2

− 1

2r (r − 1) log
det (rΣ2 + (1− r)Σ1)

det (Σ1)
1−r det (Σ2)r

and

DKull ((µ1,Σ1), (µ2,Σ2)) = 1
2

¡
(µ1 −µ2)TΣ−12 (µ1 −µ2)

¢
+ 1

2

µ
trace

¡
Σ−12 Σ1 − I

¢
+ log

det (Σ2)

det (Σ1)

¶
.

12. Determine theRφ-Divergence, with φ (x) = x−x2, between two multivariate
normal distributions. Find the expression, as a particular case, for two

univariate normal distributions.

13. Determine the Bhattacharyya divergence,

B (θ1,θ2) = − log
Z
X
(fθ1 (x) fθ2 (x))

1/2 dµ(x),

between two univariate normal distributions.

14. Show that Hellinger’s distance

DHe (θ1,θ2) =

ÃZ
X

µq
fθ1(x)−

q
fθ2(x)

¶2
dµ(x)

!1/2

is a metric. Find its expression for two multivariate normal distributions.

15. Evaluate the Rényi’s divergence as well as the Kullback-Leibler divergence

for two Poisson populations.

16. Let X = (X1, ...,Xd), Y = (Y1, ..., Yl) and (X,Y ) random vectors with

multivariate normal distribution and variance-covariance matrices given by

A,B and C respectively. Show that

a) H(X)−H(X/Y ) = 1
2 log

det(A) det(B)

det(C)
.
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b) If d = l = 1, then H(X)−H(X/Y ) = −1
2 log

³
1− ρ (X,Y )2

´
, being

ρ (X,Y ) the correlation coefficient between X and Y.

(It is important to note that the expression H(X) − H(X/Y ) is called
Mutual Information and it is related to the Kullback-Leibler divergence by

DKull
¡
PXY , PX × PY

¢
,

where by PXY we are denoting the joint probability distribution of the

random variable (X,Y ).

17. Let X and Y be two d-variate normal distributions with mean vectors µ1
and µ2 and variance-covariance matrices Σ1 and Σ2, respectively. Assume

that Z is an arbitrary d-variate continuous random variable with mean

vector µ1 and variance-covariance matrix Σ1. Show that

DKull (N(µ1,Σ1),N(µ2,Σ2)) ≤ DKull (Z, N(µ2,Σ2)) .

1.7. Answers to Exercises

1. Applying (1.24), we have

−
Z a

b
f (x) log f (x)dx ≤ −

Z a

b
f (x) log

1

b− adx = − log
1

b− a = log (b− a) .

The result follows because the entropy of a uniform random variable is given

by log (b− a).

2. Applying (1.24) to the probability density functions f(y/x1, ..., xn) and

f(y/x1, ..., xk), we have, denoting by,

l = −
Z
R
f(y/x1, ..., xn) log f(y/x1, ..., xn)dy,

that

l ≤ −
Z
R
f(y/x1, ..., xn) log f(y/x1, ..., xk)dy.

The equality holds if and only if given (x1, ..., xn)

f(y/x1, ..., xn) = f(y/x1, ..., xk), ∀y.
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Multiplying by f(x1, ..., xn), and integrating on Rn, we have

−
Z
Rn
f(x1, ..., xn)

µZ
R
f(y/x1, ..., xn) log f(y/x1, ..., xn)dy

¶
dx1...dxn

≤ −
Z
Rn
f(x1, ..., xn)

µZ
R
f(y/x1, ..., xn) log f(y/x1, ..., xk)dy

¶
dx1...dxn,

and

H(Y/X1, ..., Xn) ≤ H(Y/X1, ...,Xk).

The equality holds if and only if

f(y/x1, ..., xn) = f(y/x1, ..., xk).

3. Let X be a random variable with probability density function f(x) with

mean µ and variance σ2. Applying (1.24), we have

−
Z
R

f (x) log f (x)dx ≤ −
Z
R

f (x) log

Ã
1

σ (2π)1/2
exp

µ
−(x− µ)

2

2σ2

¶!
dx

= −
Z
R

f (x)

Ã
log

1

σ (2π)1/2
− (x− µ)

2

2σ2

!
dx

= log
³
σ (2π)1/2

´
+
1

2
= log

³
σ (2πe)1/2

´
= H (N (µ,σ)) .

4. Since logx is an increasing function it is enough to prove that

log

Z
R
x2f(x)dx ≥ log 1

2πe
+ 2H (X) .

Letting σ2 be the variance of the random variable X, we know that

H(X) ≤ log
³
(2πe)1/2 σ

´
.

Therefore,

log
1

2πe
+ 2H (X) ≤ log 1

2πe
+ log

¡
2πeσ2

¢
= logσ2.

On the other hand, as σ2 ≤ RR x2f(x)dx, we have
log σ2 ≤ log

Z
R
x2f(x)dx
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and then

log
1

2πe
+ 2H (X) ≤ log σ2 ≤ log

Z
R
x2f(x)dx.

5. By hypothesis, h(x,y) is a probability density function in y. We consider

the function φ(x) = log x and the random variable taking on the values

gθ(y)R
Y h(x,z)gθ(z)dµ (z)

with probability density function h(x,y). Thus

Eθ

 gθ(Y )Z
Y
h(x,z)gθ(z)dµ(z)

 = ZY h(x,y) gθ(y)Z
Y
h(x,z)gθ(z)dµ(z)

dµ(y) = 1

and

Eθ

φ
 gθ(Y )Z

Y
h(x,z)gθ(z)dµ(z)




is given by

Z
Y
h(x,y) log

 gθ(y)Z
Y
h(x, z)gθ(z)dµ(z)

 dµ(y).
Applying Jensen’s inequality, multiplying by fθ(x) and integrating on X

Z
X

Z
Y
fθ(x)h(x,y) log

 gθ(y)Z
Y
h(x,z)gθ(z)dµ(z)

 dµ(y)dµ(x) ≤ 0.
Denoting

l =

Z
Y

Z
X
fθ(x)h(x,y) log gθ(y)dµ(x)dµ(y)

and

m =

Z
Y

Z
X
fθ(x)h(x,y) log

µZ
Y
h(x,z)gθ(z)dµ(z)

¶
dµ(x)dµ(y)
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we have

l −m =

Z
Y
gθ(y) log gθ(y)dµ(y)

−
Z
X
fθ(x)

µ
log

Z
Y
h(x,z)gθ(z)dµ(z)

¶
dµ(x) ≤ 0.

The last equality is obtained integrating in “x” the first expression and in

“y” the second one. Then we have obtained

−
Z
Y
gθ(y) log gθ(y)dµ(y) ≥ −

Z
X
fθ(x)

µ
log

Z
Y
h(x, z)gθ(z)dµ(z)

¶
dµ(x).

(1.27)

The function

γ(x) =

Z
Y
h(x,z)gθ(z)dµ(z)

is a probability density function on X sinceZ
X
γ(x)dµ(x) =

Z
X

Z
Y
h(x, z)gθ(z)dµ(z)dµ(x)

=

Z
Y

µZ
X
h(x, z)dµ(x)

¶
gθ(z)dµ(z) = 1.

Applying (1.24) to inequality (1.27) we have,

−
Z
Y
gθ(y) log gθ(y)dµ(y) ≥ −

Z
X
fθ(x) log fθ(x)dµ(x),

i.e.,

H(Y ) ≥ H(X).

6. Shannon’s entropy for Exponential, Uniform and Normal probability distri-

butions has already been obtained. Now we present the results for Gamma

and Beta distributions. The remaining can be obtained in a similar way.

i) Gamma distribution

We have

H(G(a, p)) = −
Z ∞

0

ap

Γ(p)e
−axxp−1 (p log a− logΓ (p))dx

−
Z ∞

0

ap

Γ(p)e
−axxp−1 (−ax+ (p− 1) log x)dx

= −p log a+ logΓ(p) + p
− (p− 1)

Z ∞

0

ap

Γ(p)e
−axxp−1 log xdx.
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To find the desired entropy, we must find the value ofZ ∞

0

ap

Γ (p)
e−axxp−1 log xdx.

We know that Z ∞

0
ape−axxp−1dx = Γ (p) .

Differentiating with respect to p, we haveZ ∞

0
(log a)ape−axxp−1dx+

Z ∞

0
ape−axxp−1 log xdx =

∂Γ(p)

∂p
,

then Z ∞

0

ap

Γ (p)
e−axxp−1 log xdx =

∂ logΓ (p)

∂p
− log a

and

H(G(a, p)) = log(Γ(p)/a) + (1− p)Ψ(p) + p,
where

Ψ(p) =
∂ logΓ (p)

∂p
, (1.28)

is the Digamma function.

ii) Beta distribution

Denoting by

l = H (B (a, b))

we have

l = −
Z 1

0

Γ(a+b)
Γ(a)Γ(b)x

a−1 (1− x)b−1 log
³

Γ(a+b)
Γ(a)Γ(b)x

a−1 (1− x)b−1
´
dx

= −
µZ 1

0

Γ(a+b)
Γ(a)Γ(b)x

a−1 (1− x)b−1 log Γ(a+b)
Γ(a)Γ(b)dx

¶
− (a− 1)

Z 1

0

Γ(a+b)
Γ(a)Γ(b)x

a−1 (1− x)b−1 log xdx

− (b− 1)
Z 1

0

Γ(a+b)
Γ(a)Γ(b)x

a−1 (1− x)b−1 log (1− x) dx.

Then

H (B (a, b)) = − log Γ(a+b)
Γ(a)Γ(b)

− (a− 1) Γ(a+b)
Γ(a)Γ(b)

Z 1

0
xa−1 (1− x)b−1 log xdx

− (b− 1) Γ(a+b)
Γ(a)Γ(b)

Z 1

0
xa−1 (1− x)b−1 log (1− x) dx.

© 2006 by Taylor & Francis Group, LLC



Divergence Measures: Definition and Properties 39

Now we have to obtain the following integral
R 1
0 x

a−1 (1− x)b−1 log xdx.
We know Z 1

0
xa−1 (1− x)b−1 dx =

µ
Γ (a+ b)

Γ (a)Γ (b)

¶−1
.

Then

log

Z 1

0
xa−1 (1− x)b−1 dx = logΓ (a) + logΓ (b)− logΓ (a+ b) ,

and differentiating with respect to a, we get the following equality

1Z 1

0

xa−1(1−x)b−1dx

Z 1

0
xa−1 (1− x)b−1 log x dx = ∂ logΓ(a)

∂a − ∂ logΓ(a+b)
∂a .

Then

Z 1

0
xa−1 (1− x)b−1 log xdx =

³
Γ(a+b)
Γ(a)Γ(b)

´−1
(Ψ (a)−Ψ (a+ b)) ,

with Ψ (x) defined in (1.28).

In a similar way we get

Z 1

0
xa−1 (1− x)b−1 log (1− x)dx =

³
Γ(a+b)
Γ(a)Γ(b)

´−1
(Ψ (b)−Ψ (a+ b)) .

Therefore,

H (B (a, b)) = − log Γ(a+b)
Γ(a)Γ(b) − (a− 1) (Ψ (a)−Ψ (a+ b))

− (b− 1) (Ψ (b)−Ψ (a+ b)) .

In the following table we present without proof the entropy corre-

sponding to the other probability distributions.
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Name p.d.f. Shannon’s Entropy

Beta
f (x) = xa−1(1−x)b−1

B(a,b)

0 < x < 1, a, b > 0

logB (a, b)− (a− 1) (Ψ (a)
−Ψ (a+ b))− (b− 1)
×(Ψ (b)−Ψ (a+ b))

Cauchy
f(x) = λ

π(λ2+x2)

−∞ < x <∞,λ > 0 log (4πλ)

Chi-square
f (x) = x

n
2
−1e−

x
2

2
n
2 Γ(n2 )

x > 0, n ∈ Z+
log(2Γ

¡
n
2

¢
)

+
¡
1− n

2

¢
Ψ
¡
n
2

¢
+ n

2

Erlang
f (x) = bn

(n−1)!x
n−1e−bx

x > 0, b > 0, n ∈ Z+ (1− n)Ψ (n) + log Γ(n)b + n

Exponential f (x) = σ−1e−
x
σ ;x,σ > 0 1+log σ

F-Snedecor
f (x) =

(mx
n )

m
2
−1(mn )

B(m2 ,n2 )(
mx+n
n )

m+n
2

x > 0,m, n ∈ Z+

log(mnB
¡
m
2 ,

n
2

¢
)

+1− m
2 Ψ

¡
m
2

¢− ¡1 + n
2

¢
×Ψ ¡n2 ¢+ m+n

2 Ψ(
m+n
2 )

Gamma
f (x) = xp−1e−ax

apΓ(p)

x, a, b > 0

log(Γ(p)/a)

+ (1− p)Ψ (p) + p

Laplace
f (x) = 1

2a
−1e−

|x−θ|
a

−∞ < x <∞, a > 0 1+log (2a)

Logistic
f (x) = e−x (1 + e−x)−2

−∞ < x <∞ 2

Lognormal f (x) =
exp

µ
−(log x−µ)2

2σ2

¶
σx
√
2π

x > 0

µ+ 1
2 log

¡
2πeσ2

¢
Maxwell-

Normal

f (x) =

µ
4
q

β3

π

¶
x2e−βx

2

x,β > 0
log
q

π
β + γ − 1

2

Normal
f (x) = 1

σ
√
2π
e−

x2

2σ2

−∞ < x <∞,σ > 0
log
¡
σ
√
2πe

¢
Generalized

Normal

f (x) =

µ
2β

α
2

Γ(α2 )

¶
xα−1e−βx

2

x,α,β > 0

log

Ã
Γ(α2 )³
2β

1
2

´
!

−( (α−1)2 )Ψ
¡
α
2

¢
+ α

2

Pareto
f (x) = aka

xa+1

x ≥ k > 0, a > 0 log
¡
k
a

¢
+ 1+ 1

a

Rayleigh f (x) =
¡
x
b2

¢
e−

x2

2b2

x, b > 0
1 + log

³
b√
2

´
+ γ

2

T-Student f (x) =

³
1+x2

ν

´− (ν+1)
2

ν1/2B( 12 ,
n
2 )

−∞ < x <∞; ν ∈ Z+
n+1
2

©
Ψ(n+12 )−Ψ(n2 )

ª
+ log(

√
nB

¡
1
2 ,

n
2

¢
)
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Triangular f (x) =

(
2x
a 0 ≤ x ≤ a

2(1−x)
(1−a) a ≤ x ≤ 1

1
2 − log 2

Uniform f (x) = 1
(b−a) ; a < x < b log (b− a)

Weibull f (x) =
¡
c
a

¢
xc−1e−x

c/a;x, c, a > 0 (c−1)γ
c + log

³
a1/c

c

´
+ 1

The function Ψ and the value γ appearing in the previous table are given

by

Ψ(x) =
∂ logΓ(x)

∂x
= −γ + (x− 1)

∞P
k=0

((k + 1)(x+ k))−1

γ = Euler constant = 0.5772156649.

More details about the previous table can be seen in Lazo and Rathie (1978).

7. We consider the random variable Z, taking on the values

pθ1 (xi) + pθ2 (xi)

2pθ2 (xi)
, i ∈ N

with probabilities pθ2 (xi) , i ∈ N. We have

Eθ2 [Z] =
X
i∈N

pθ1 (xi) + pθ2 (xi)

2pθ2 (xi)
pθ2 (xi) = 1.

If we consider now the convex function φ (t) = t log t, we have

Eθ2 [φ (Z)] =
X
i∈N

pθ1 (xi) + pθ2 (xi)

2
log

pθ1 (xi) + pθ2 (xi)

2pθ2 (xi)
.

Applying Jensen’s inequality we get

0 = φ (Eθ2 [Z]) ≤
X
i∈N

pθ1 (xi) + pθ2 (xi)

2
log

pθ1 (xi) + pθ2 (xi)

2pθ2 (xi)
.

Then,

−
X
i∈N

pθ1 (xi)+pθ2 (xi)

2 log
pθ1 (xi)+pθ2 (xi)

2 ≤ −
X
i∈N

pθ1 (xi)+pθ2 (xi)

2 log pθ2 (xi) .

On the other hand we can write

DKull (θ1,θ2) =
P
i∈N
pθ1 (xi) log

pθ1 (xi)

pθ2 (xi)

=
P
i∈N
pθ1 (xi) log pθ1 (xi)−

P
i∈N
pθ1 (xi) log pθ2 (xi)

= −H (θ1)−H (θ2)− 2
P
i∈N

pθ1 (xi)+pθ2 (xi)

2 log pθ2 (xi) .
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Then,

DKull (θ1,θ2) ≥ −H (θ1)−H (θ2)− 2
P
i∈N

pθ1 (xi)+pθ2(xi)

2 log
pθ1 (xi)+pθ2(xi)

2

= 2H
³
Pθ1+Pθ2

2

´
− (H (Pθ1) +H (Pθ2)) .

In a similar way it is possible to prove the statement,

DKull (θ2,θ1) ≥ 2H
µ
Pθ1 + Pθ2

2

¶
− (H (Pθ1) +H (Pθ2)) .

Thus J (θ1,θ2) has the expression

DKull (θ1,θ2) +DKull (θ2,θ1) ≥ 4
µ
H

µ
Pθ1 + Pθ2

2

¶
− H(Pθ1)+H(Pθ2)

2

¶
,

and hence

J (θ1,θ2) ≥ 4R (θ1,θ2) .

8. Let Gd be the family of all d-variate normal distributions, N(µ,Σ), with

mean vector µ =(µ1, ..., µd)
T and nonsingular variance-covariance matrix

Σ. A distribution can be specified by an element (µ,Σ) of the parameter

space

Θ =
n
(µ,Σ) : µ ∈ Rd,Σ ∈ P (d,R)

o
,

where P (d,R) is the set of all positive definite matrices of order d. The
p.d.f.’s of the elements of Gd are given by

fµ,Σ (x1, ..., xd) = (2π)
−d/2 det (Σ)−1/2 exp

½
−1
2
(x−µ)TΣ−1(x−µ)

¾

with x = (x1, ..., xd) ∈ Rd and (µ,Σ) ∈ Θ.
i) It is clear that

H1
r (µ,Σ) =

1

r (1− r) logKr(µ,Σ), r 6= 0, 1

where

Kr(µ,Σ) =

Z
Rd

³
(2π)−d/2 det (Σ)−1/2 exp

n
− (x−µ)TΣ−1(x−µ)2

o´r
dx.
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But

Kr(µ,Σ) =
det (Σ)−

(r−1)
2

rd/2 (2π)
d(r−1)

2

Z
Rd
fµ,(r−1Σ) (x1, .., xd)dx

=
det (Σ)−

(r−1)
2

rd/2
(2π)−

d(r−1)
2 ,

and we get the first result.

On the other hand,

H(µ,Σ) = lim
r→1

H1
r (µ,Σ) = lim

r→1

³
1
2r log det (Σ) +

d
2r log 2π − d

2
log r
r(1−r)

´
,

but

lim
r→1
−d
2

log r

r (1− r) =
d

2
.

Therefore we have the stated expression for H (µ,Σ).

ii) The result follows from i) with d = 1.

iii) Let Y = LX be a d-variate random vector, where X is a ran-

dom vector with multivariate normal distribution, with mean vector

µ =(µ1, ..., µd)
T and nonsingular variance-covariance matrix Σ, and L

is an orthogonal matrix. We have

det(LTΣL) = det(LT ) det (Σ) det(L)

= det(L−1) det (Σ) det(L) = det (Σ) .

Then,

H(X) ≡H(µ,Σ) = H(Y ).
9. LetX =(X1, ...,Xd) be a d-variate random vector with multivariate normal

distribution, with mean vector µ =(µ1, ..., µd)
T and nonsingular variance-

covariance matrix A = (aij)i,j=1,...,d . The variance of the random variable

Xi is aii, for i = 1, ..., d.

We know that

H (X1, ...,Xd) ≤
dX
i=1

H (Xi) . (1.29)

The marginal distributions of the random variables Xi, i = 1, ..., d, are

normal with mean µi and variance aii, then

H (Xi) = H(µi, aii) = log (aii2πe)
1/2 .
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On the other hand,

H(µ,Σ) = H (X1, ...,Xd) =
1

2
log (det (Σ) (2πe))d .

Applying (1.29) we have the stated result.

10. Let Y =(Y1, ..., Yd) be a d-variate random vector with multivariate nor-

mal distribution, with mean vector µ and nonsingular variance-covariance

matrix Σ. By (1.24) we have

H (X) ≤ −
Z
Rd
f (x1, ..., xd) log

³
(2π)−d/2 det (Σ)−1/2

× exp
n
−1
2 (x−µ)T Σ−1 (x−µ)

o´
dx

= log
³
(2π)d/2 det (Σ)1/2

´
+ 1

2

Z
Rd
f (x1, ..., xd) (x−µ)T Σ−1 (x−µ)dx.

Furthermore, since Σ−1 is a symmetric nonnegative definite matrix, there
exists an orthogonal matrix L such LTΣ−1L = Λ for some diagonal matrix
Λ. We shall assume Λ =diag (λ1, ...,λd) , λi > 0 ∀i = 1, ..., d. Writing

xi − µi = ui, i = 1, ..., d, we have

H (X) ≤ log
³
(2π)d/2 det (Σ)1/2

´
+
1

2

Z
Rd

fU (u1, ..., ud)u
TΣ−1u du.

Let us make a new change of variables u1, ..., ud by writing U = LV , and

note that the Jacobian of this orthogonal transformation is det (L) = 1,

H (X) ≤ log
³
(2π)d/2 det (Σ)1/2

´
+ 1

2

Z
Rd
fV (v1, ..., vd)v

TLTΣ−1Lv dv

= log
³
(2π)d/2 det (Σ)1/2

´
+ 1

2

Z
Rd
fV (v1, ..., vd)v

Tv dv

= log
³
(2π)d/2 det (Σ)1/2

´
+ 1

2

Z
Rd
fV (v1, ..., vd)

µ
dP
i=1

λiv
2
i

¶
dv

= log
³
(2π)d/2 det (Σ)1/2

´
+ 1

2

µ
dP
i=1

λiV ar (Vi)

¶
.

Since Cov(U) = LCov(V )LT we have L−1Σ(LT )−1 = Cov(V ). Therefore
Cov(V ) =

¡
LTΣ−1L

¢−1
= Λ−1 and

H (X) ≤ log
³
(2π)d/2 det (Σ)1/2

´
+
1

2

dX
i=1

λi
1

λi
= log

³
(2πe)d/2 det (Σ)1/2

´
.

© 2006 by Taylor & Francis Group, LLC



Divergence Measures: Definition and Properties 45

11. Let us denote

K∗r (θ1,θ2) =
Z
X
fθ1(v)

rfθ2(v)
1−rdµ (v) ,

where θ1 = (µ1,Σ1) and θ2 = (µ2,Σ2). Then

K∗r (θ1,θ2) =
Z
Rd

³
(2π)−d/2 det (Σ1)

−1/2 exp
n
− (x−µ1)TΣ−11 (x−µ1)

2

o´r
×

³
(2π)−d/2 det (Σ2)−1/2 exp

n
− (x−µ2)TΣ−12 (x−µ2)

2

o´1−r
dx

= (2π)−d/2
³
det (Σ1)

−r/2 det (Σ2)−
(1−r)
2

´
×

Z
Rd
exp

n
−1
2 (x−µ1)T

¡
rΣ−11

¢
(x−µ1)

o
× exp

n
−1
2 (x−µ2)T

¡
(1− r)Σ−12

¢
(x−µ2)

o
dx.

The expression

(x−µ1)T
¡
rΣ−11

¢
(x−µ1) + (x−µ2)T

¡
(1− r)Σ−12

¢
(x−µ2)

can be written as

(x−µ∗)TC−1(x−µ∗) +B
where

µ∗ =
¡
rΣ−11 + (1− r)Σ−12

¢−1 ¡
rΣ−11 µ1 + (1− r)Σ−12 µ2

¢
,

C−1 = rΣ−11 + (1− r)Σ−12 ,
B = (µ1 −µ2)T (rΣ2 + (1− r)Σ1)

−1 r (1− r) (µ1 −µ2).
Then we have

K∗r (θ1,θ2) = det (Σ1)
−r/2 det (Σ2)−

(1−r)
2 det

¡
rΣ−11 + (1− r)Σ−12

¢−1/2
× exp

n
r(r−1)
2 (µ1 −µ2)T (rΣ2 + (1− r)Σ1)

−1 (µ1 −µ2)
o

or

K∗r (θ1,θ2) =
det

¡
rΣ−11 + (1− r)Σ−12

¢−1/2
det (Σ1)

r/2 det (Σ2)
(1−r)
2

× exp
n
r(r−1)
2 (µ1 −µ2)T (rΣ2 + (1− r)Σ1)

−1 (µ1 −µ2)
o
.

Multiplying numerator and denominator in the first term on the right-hand

side of the previous expression by

(det (Σ1) det (Σ2))
−1/2
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we have

K∗r (θ1,θ2) =
det (rΣ2 + (1− r)Σ1)

−1/2

det (Σ1)
r−1
2 det (Σ2)

−r/2

× exp
n
r(r−1)
2 (µ1 −µ2)T (rΣ2 + (1− r)Σ1)

−1 (µ1 −µ2)
o
.

From here it is immediate to get the expression of the Rényi’s divergence.

Regarding the Kullback-Leibler divergence,

DKull ((µ1,Σ1), (µ2,Σ2)) = lim
r→1

D1
r ((µ1,Σ1), (µ2,Σ2))

= 1
2(µ1 −µ2)TΣ−12 (µ1 −µ2)

− 1
2 limr→1

1

r (r − 1) log
det (rΣ2 + (1− r)Σ1)

det (Σ1)
1−r det (Σ2)r

.

But
∂ det(A)

∂α
= det(A)trace

µ
A−1

∂A

∂α

¶
.

Denoting

a = log
det (rΣ2 + (1− r)Σ1)

det (Σ1)
1−r det (Σ2)r

, b =
det (Σ1)

1−r det (Σ2)r

det (rΣ2 + (1− r)Σ1)
,

and

l = trace
³
(rΣ2 + (1− r)Σ1)

−1 (Σ2 −Σ1)
´
,

we have

∂a

∂r
= b

det (rΣ2 + (1− r)Σ1) l det (Σ1)
1−r det (Σ2)r

det (Σ1)
2(1−r) det (Σ2)2r

− b

det (rΣ2 + (1− r)Σ1)

µ
det (Σ1)

1−r det (Σ2)r
µ
log

det (Σ2)

det (Σ1)

¶¶
det (Σ1)

2(1−r) det (Σ2)2r
.

From here we have that

lim
r→1

∂a

∂r
= trace

¡
Σ−12 (Σ2 −Σ1)

¢
+ (log det (Σ2)− log det (Σ1)) .
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Then

DKull ((µ1,Σ1), (µ2,Σ2)) =
1
2(µ1 −µ2)TΣ−12 (µ1 −µ2)

− 1
2trace

¡
Σ−12 (Σ2 −Σ1)

¢
+ 1

2 log
det (Σ2)

det (Σ1)
,

or

DKull ((µ1,Σ1), (µ2,Σ2)) = 1
2(µ1 −µ2)TΣ−12 (µ1 −µ2)

+ 1
2trace

¡
Σ−12 Σ1 − I

¢
+ 1

2 log
det (Σ2)

det (Σ1)

.

12. We have

Rφ (θ1,θ2) = Hφ

³
Pθ1+Pθ2

2

´
− Hφ(Pθ1)+Hφ(Pθ2)

2

=

Z
Rd

µ
fθ1 (x)+fθ2 (x)

2 −
³
fθ1(x)+fθ2 (x)

2

´2¶
dµ(x)

− 1
2

Z
Rd

³
fθ1(x)− fθ1(x)2

´
dµ(x)

− 1
2

Z
Rd

³
fθ2(x)− fθ2(x)2

´
dµ(x).

Then,

Rφ (θ1,θ2) = 1−
Z
Rd

³
fθ1 (x)+fθ2 (x)

2

´2
dµ(x)− 1

2 − 1
2

+ 1
2

µZ
Rd
fθ1(x)

2dµ(x) +

Z
Rd
fθ2(x)

2dµ(x)

¶
and

Rφ (θ1,θ2) =
1

4
(K2(µ1,Σ1) +K2(µ2,Σ2))−

1

2

Z
Rd
fθ1(x)fθ2(x)dµ(x).

We know

K2(µ,Σ) =

Z
Rd
(fµ,Σ (x1, ..., xd))

2 dx1...dxd = π−d/22−d det (Σ)−1/2 .

Then it is only necessary to get

A =

Z
Rd
fµ1,Σ1 (x1, ..., xd) fµ2,Σ2 (x1, ..., xd)dx,

i.e.,

A =

Z
Rd

³
(2π)−d/2 det (Σ1)

−1/2 exp
©−1

2(x−µ1)
TΣ−11 (x−µ1)

ª´
×

³
(2π)−d/2 det (Σ2)−1/2 exp

©−1
2(x−µ2)TΣ−12 (x−µ2)

ª´
dx.
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Therefore,

A = L

Z
Rd
exp

½
−1
2

¡
(x−µ1)

TΣ−11 (x−µ1) + (x−µ1)
TΣ−11 (x−µ2)

¢¾
with

L = (2π)−d det (Σ1)
−1/2 det (Σ2)−1/2 .

Now we shall write the expression

(x−µ1)TΣ−11 (x−µ1) + (x−µ2)TΣ−12 (x−µ2)

as

(x−µ∗)TC−1(x−µ∗) +B.
We must get the expression of µ∗,C−1 and B. We have

K1 = xTΣ−11 x− xTΣ−11 µ1 −µT1Σ−11 x+µT1Σ−11 µ1

+ xTΣ−12 x− xTΣ−12 µ2 −µT2Σ−12 x+µT2Σ−12 µ2
= xT (Σ−11 +Σ−12 )x− xT (Σ−11 µ1 +Σ−12 µ2)
− (µT1Σ

−1
1 +µ2Σ

−1
2 )x+µ

T
1Σ

−1
1 µ1 +µ

T
2Σ

−1
2 µ2.

On the other hand

(x−µ∗)TC−1(x−µ∗) +B = xTC−1x− xTC−1µ∗
− (µ∗)TC−1x+ (µ∗)TC−1µ∗ +B.

Therefore

i) C−1 = Σ−11 +Σ−12
ii) C−1µ∗ = Σ−11 µ1 +Σ

−1
2 µ2

and

µ∗ = (Σ−11 +Σ−12 )
−1(Σ−11 µ1 +Σ

−1
2 µ2).

Finally we shall get the value of B

B = −(µ∗)TC−1µ∗ +µT1Σ−11 µ1 +µTΣ−12 µ2

= −(Σ−11 µ1 +Σ−12 µ2)T (Σ−11 +Σ−12 )
−1(Σ−11 µ1 +Σ

−1
2 µ2)

+ µT1Σ
−1
1 µ1 +µ

T
2Σ

−1
2 µ2.
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By elementary calculation, it can be obtained that

B = −µTΣ−11 (Σ−11 +Σ−12 )
−1Σ−11 µ1 −µTΣ−11 (Σ−11 +Σ−12 )

−1Σ−12 µ2
− µTΣ−12 (Σ

−1
1 +Σ−12 )

−1Σ−11 µ1
− µTΣ−12 (Σ

−1
1 +Σ−12 )

−1Σ−12 µ2 +µ
TΣ−11 µ1 +µ

TΣ−12 µ2
= µT

¡
Σ−11 −Σ−11 (Σ−11 +Σ−12 )

−1Σ−11
¢
µ1

− µTΣ−11 (Σ
−1
1 +Σ−12 )

−1Σ−12 µ2
− µTΣ−12 (Σ

−1
1 +Σ−12 )

−1Σ−11 µ1
+ µT

¡
Σ−12 −Σ−12 (Σ−11 +Σ−12 )

−1Σ−12
¢
µ2.

We shall study each term of the previous expression.

a) We denote

S = Σ−11 −Σ−11 (Σ−11 +Σ−12 )
−1Σ−11 .

We have

S = Σ−11 (I − (Σ−11 +Σ−12 )
−1Σ−11 )

= Σ−11
¡
(Σ−11 +Σ−12 )

−1(Σ−11 +Σ−12 )− (Σ−11 +Σ−12 )
−1Σ−11

¢
= Σ−11 (Σ

−1
1 +Σ−12 )

−1 ¡Σ−11 +Σ−12 −Σ−11
¢

= Σ−11 (Σ
−1
1 +Σ−12 )

−1Σ−12
=

¡
(Σ−11 +Σ−12 )Σ1

¢−1
Σ−12

= (I +Σ−12 Σ1)
−1Σ−12

= (Σ−12 Σ2 +Σ
−1
2 Σ1)

−1Σ−12
= (Σ−12 (Σ2 +Σ1))

−1Σ−12
= (Σ2 +Σ1)−1Σ2Σ−12
= (Σ2 +Σ1)

−1.

Similarly

b) Σ−12 −Σ−12 (Σ−11 +Σ−12 )
−1Σ−12 = (Σ1 +Σ2)

−1.

c) Also we have

Σ−11 (Σ
−1
1 +Σ−12 )

−1Σ−12 = ((Σ−11 +Σ−12 )Σ1)
−1Σ−12

= (Σ−11 Σ1 +Σ
−1
2 Σ1)

−1Σ−12
= (I+Σ−12 Σ1)

−1Σ−12
= (Σ1 +Σ2)−1.

d) Σ−12 (Σ
−1
1 +Σ−12 )

−1Σ−11 = (Σ1 +Σ2)
−1.

Therefore

B = (µ1 −µ2)T (Σ2 +Σ1)
−1(µ1 −µ2)
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and A is given by

A = det(Σ1)
−1/2 det(Σ2)

−1/2

(2π)d
exp

³
(µ1 −µ2)T (Σ2 +Σ1)

−1 (µ1 −µ2)
´

×
Z
Rd
exp

¡−1
2(x−µ∗)T

¡
Σ−11 +Σ−12

¢
(x−µ∗)¢ dx,

i.e.,

A = det(Σ1)
−1/2 det(Σ2)

−1/2

(2π)d/2
exp

³
(µ1 −µ2)T (Σ2 +Σ1)

−1 (µ1 −µ2)
´

× det
¡
Σ−111 +Σ

−1
2

¢−1/2 Z
Rd
fµ∗,(Σ−11 +Σ−12 ) (x1, ..., xd) dx

and then

A =
det (Σ1)

−1/2 det (Σ2)−1/2

(2π)d/2 det
¡
Σ−11 +Σ−12

¢1/2 exp³(µ1 −µ2)T (Σ2 +Σ1)
−1 (µ1 −µ2)

´
.

Finally, we have

Rφ (θ1,θ2) = 1
4

³
π−d/22−d

³
det (Σ1)

−1/2 + det (Σ2)−1/2
´´

− 1
2 (2π)

−d/2 det (Σ1)
−1/2 det (Σ2)−1/2

det
¡
Σ−11 +Σ−12

¢1/2
× exp

³
(µ1 −µ2)T (Σ2 +Σ1)

−1 (µ1 −µ2)
´
.

In the case of two univariate populations we have

Rφ ((µ1,σ1) , (µ2,σ2)) =
1

8π1/2

µ
1

σ1
+
1

σ2

¶
− 1

2
¡
2π
¡
σ21 + σ22

¢¢1/2
× exp

µ
µ21 + µ

2
2 − 2µ1µ2

σ21 + σ22

¶
.

13. We consider Rényi’s divergence for r = 1/2.

D1
r= 1

2

(θ1,θ2) =
1¡−1
2

¢
1
2

log

Z
X

q
fθ1(x)

q
fθ2(x)dµ(x) = 4B(θ1,θ2)

with θ1 = (µ1,σ1) and θ2 = (µ2,σ2) .

Then we have

B ((µ1,σ1) , (µ2,σ2)) = 1
4D

1
r= 1

2

((µ1,σ1) , (µ2,σ2))

= 1
4

(µ1 − µ2)2
σ21 + σ22

+ 1
2 log

σ21 + σ22
2σ1σ2

.
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14. First we establish that DHe defines a metric.

In fact,

i) DHe (θ1,θ2) = 0 if and only if fθ1(x) = fθ2(x) a.s.

ii) The property DHe (θ1,θ2) = D
He (θ2,θ1) is trivial.

iii) Applying the Minkowski’s inequality for p = 2 to the measurable

functionsq
fθ1(x)−

q
fθ2(x) and

q
fθ2(x)−

q
fθ3(x)

we have, denoting

l =

ÃZ
X

µq
fθ1(x)−

q
fθ3(x)

¶2
dµ(x)

!1/2

,

that

l ≤
µZ

X

³p
fθ1(x)−

p
fθ2(x)

´2
dµ(x)

¶1/2

+

µZ
X

³p
fθ2(x)−

p
fθ3(x)

´2
dµ(x)

¶1/2

,

i.e.,

DHe (θ1,θ3) ≤ DHe (θ1,θ2) +DHe (θ2,θ3) .

Now we shall see the relation between DHe (θ1,θ2) and K
∗
r (θ1,θ2) . We

have

DHe (θ1,θ2) =

Z
X

µq
fθ1(x)−

q
fθ2(x)

¶2
dµ(x)

1/2

=

2− 2Z
X

q
fθ1(x)

q
fθ2(x)dµ(x)

1/2

=
³
2
³
1−K∗1

2
(θ1,θ2)

´´1/2
.

Now the expression between two normal populations can be obtained from

Exercise 11 in which we have derived the expression of K∗r (θ1,θ2) .
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15. First we calculate

K∗r (θ1, θ2) =
∞P
x=0

µ
e−θ1θx1
x!

¶r µ
e−θ2θx2
x!

¶1−r

= exp (−θ1r + (r − 1) θ2) exp
µ

θr1
θr−12

¶
,

then

D1
r (θ1, θ2) =

1

r (r − 1) logK
?
r (θ1, θ2) =

1

r (r − 1)
µ

θr1
θr−12

− θ1r + (r − 1) θ2
¶

and

DKull (θ1, θ2) = lim
r→1

D1
r (θ1, θ2) = θ1 log

θ1
θ2
+ (θ2 − θ1) .

16. a) We know that

H(X) =
1

2
log
³
(2πe)d det(A)

´
H(Y ) =

1

2
log
³
(2πe)l det(B)

´
H (X,Y ) =

1

2
log
³
(2πe)d+l det(C)

´
.

Then,

H (X)−H (X/Y ) = H (X) +H (Y )−H (X,Y )
=

1

2
log
³
(2πe)d det(A)

´
+ log

³
(2πe)l det(B)

´
− log

³
(2πe)d+l det(C)

´
=

1

2
log

det(A) det(B)

det(C)
.

b) Denoting by σ2 and τ2 the variances of X and Y respectively and by

ρ = ρ (X,Y ) , we have

C =

Ã
σ2 ρστ

ρστ τ2

!
,

then det(A) = σ2, det(B) = τ2, det(C) = σ2τ2
¡
1− ρ2

¢
and the result is

obtained.
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17. We know

DKull (N(µ1,Σ1),N(µ2,Σ2)) = −H (N(µ1,Σ1))−
Z
Rd

f(x) log g(x)dx

DKull (Z,N(µ2,Σ2)) = −H (Z)−
Z
Rd

t(x) log g(x)dx

where f(x), g(x) and t(x) are the probability density functions associated

with X, Y and Z, respectively.

By Exercise 10

−
Z
Rd

t(x) log g(x)dx =
1

2
log
³
(2πe)d |Σ2|

´
= −

Z
Rd

f(x) log g(x)dx,

and

−H (N(µ1,Σ1)) ≤ −H (Z) .
Therefore

DKull (N(µ1,Σ1),N(µ2,Σ2)) ≤ DKull (Z, N(µ2,Σ2)) .
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2

Entropy as a Measure of

Diversity: Sampling

Distributions

2.1. Introduction

The term diversity is usually synonymous of “variety” and is simply an in-

dication of the number of different ways a characteristic is present in a group of

elements, taking in account the total of elements with each value of the charac-

teristic. For example, we often speak of a “diversity of opinions”. While simply

accounting for the number of different types of opinions on a topic one can give

a rough idea of the “diversity of opinions;” the total of people with the same

opinion must be taken into account to get the true sense of the diversity.

The concept of diversity appears in a great number of research areas: ecology,

biology, genetics, economics, linguistics, etc. It is in some sense the degree of

heterogeneity of the individuals with respect to characteristics under study.

If diversity is defined as “the presence of a great number of different types

of industries in a geographical area” (Economics) or “the linguistic differences

between the inhabitants of neighboring regions” (Linguistics) or “the number

of species in a place as well as the abundance of those species” (Biology), then

it would be useful to have a summary statistic to describe the diversity of a

characteristic in an area and compare it to that of other areas.
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A diversity measure should satisfy certain intuitive conditions which are satis-

fied by an entropy measure. Later this point will be clarified. Shannon’s entropy

measure as well as Gini-Simpson index (The expected distance between two in-

dividuals drawn at random when the distance is defined as zero if they belong to

used as indexes of diversity. We can observe in Exercise 1 that Gini-Simpson

index is the φα-entropy of Havrda and Charvat with α = 2 and sometimes is

called quadratic entropy. In general, entropy measures can be used as indexes of

diversity.

In the rest of the chapter we shall assume the concept of measure of diversity

given by Rao (1982a,b). A measure of diversity I is a nonnegative real-valued

function defined on the space of probability distributions which reflects the differ-

ences between the individuals within a population. Since we are mainly interested

in categorical data, we consider the space of the multinomial distributions. We

consider a finite population, Π, with N elements that could be classified into M

categories or classes C1, ..., CM in accordance with a classification process, C. Let

X = {C1, ..., CM} be the set of the M categories and

4M =

½
p = (p1, ..., pM)

T : pi ≥ 0, i = 1, ...,M,
MP
i=1
pi = 1

¾
the convex set of probability measures defined on X . A function I (.) mapping
4M into the real line is said to be a measure of diversity if it satisfies the following

conditions:

i) I(p) ≥ 0,∀p ∈ 4M and I(p) = 0 if and only if p is degenerate.

ii) I is a concave function on 4M .

We shall refer to I(p) as the diversity within a population Π characterized by

the probability distribution p.

The condition i) is a natural one since a measure of diversity should be non-

negative and should be value zero when all the individuals of a population are

identical in accordance with the classification process considered, i.e., when the

associated probability measure is concentrated on a particular point of X . The
condition ii) is motivated by the consideration that the diversity in a mixture

of populations should not be smaller than the average of the diversities within

individual populations.
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From a historical point of view the two most widely used diversity measures

are Gini-Simpson index given by

HGS(p) = 1−
MX
i=1

p2i ,

and Shannon’s entropy given by

H(p) = −
MX
i=1

pi log pi.

Gini-Simpson index was introduced by Gini (1912) and by Simpson (1949)

in biological works. Its properties have been studied by various authors, Lieber-

son (1969), Light and Margolin (1971), Nei (1973), Bhargava and Doyle (1974),

Bhargava and Uppuluri (1975), Agresti and Agresti (1978) and Patil and Taille

(1982). Rao (1982a,b) gave a characterization of this index. Other references can

be obtained from these papers. Regarding Shannon’s entropy, some applications

of this measure in diversity can be seen in Lewontin (1972) and Pielou (1967,

1975).

Rao (1982a,b), Burbea and Rao (1982a, 1982b) and Nayak (1983, 1985, 1986)

investigated the possibility of using other entropy functions as diversity measures.

Pardo, J. A. et al . (1992), Pardo, L. et al . (1992) and Salicrú et al . (1993) stud-

ied the behavior of the (h,φ)-entropies as diversity measures. Disregarding the

work context, it is usually very difficult or excessively costly to dispose of a census

information (due to population size), so that it is essential to be able to obtain di-

versity measurement estimates by means of a sample. In this chapter we consider

entropy estimates based on samples from unknown populations. So it would be

of interest to study stochastic behavior of those estimates. We also consider the

natural estimates by replacing p0is by their maximum likelihood estimators and

we derive their asymptotic distributions. We consider this problem for general

populations and then we get the corresponding results in multinomial populations

as a particular case.

Let (X , βX , Pθ)θ∈Θ be the statistical space associated with the random va-

riable X, where βX is the σ-field of Borel subsets A ⊂ X and {Pθ}θ∈Θ is a

family of probability distributions on the measurable space (X , βX ) with Θ an
open subset of RM0 , M0 ≥ 1. We assume that the probability distributions Pθ
are absolutely continuous with respect to a σ-finite measure µ on (X , βX ) . For
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simplicity µ is either the Lebesgue measure or a counting measure. We shall

obtain the asymptotic distribution of the statistic

Hφ(bθ) = Z
X
φ(fbθ(x))dµ(x),

where bθ is the maximum likelihood estimator of θ, being φ : [0,∞)→ R a concave
function, i.e., we work with φ-entropies but the results will be extended in a easy

way to (h,φ)-entropies.

From a historical point of view, the asymptotic behavior of the entropy mea-

sures was first studied in multinomial populations and then in general popula-

tions. Basharin (1959) gave the asymptotic mean of Shannon’s entropy, Lyons

and Hutcheson (1979) obtained exact expression for the first four moments of

Gini-Simpson index, Bhargava and Uppuluri (1975), for this index, gave the ex-

act distribution for small sample sizes and few classes. Nayak (1985) obtained the

asymptotic distribution of the φ-entropies in random sampling and Salicrú et al .

(1993) studied the same problem for the (h,φ)-entropies, either in random sam-

pling or in stratified random sampling. Finally, Pardo, L. et al . (1997a) studied

the problem in general populations.

2.2. Phi-entropies. Asymptotic Distribution

We assume that the statistical space (X , βX , Pθ)θ∈Θ satisfies the standard
regularity assumptions considered in the parametric asymptotic statistics theory:

i) For all θ1 6= θ2 ∈ Θ ⊂ RM0

µ ({x ∈ X : fθ1(x) 6= fθ2(x)}) > 0.
ii) The set SX = {x ∈ X : fθ(x) > 0} is independent of θ.
iii) The first, second and third partial derivatives

∂fθ(x)

∂θi
,
∂2fθ(x)

∂θi∂θj
,
∂3fθ(x)

∂θi∂θj∂θk
, i, j, k = 1, ...,M0

exist everywhere for all 1 ≤ i, j, k ≤M0.

iv) The first, second and third partial derivatives of fθ (x) with respect to

θ are absolutely bounded by functions α, β and γ with finite integralsZ
X
α(x)dµ(x) <∞,

Z
X
β(x)dµ(x) <∞ and

Z
X
γ(x)fθ(x)dµ(x) <∞.
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v) For each θ ∈ Θ, the Fisher information matrix

IF (θ) =
µZ

X
∂ log fθ(x)

∂θi

∂ log fθ(x)

∂θj
fθ(x)dµ(x)

¶
i,j=1,...,M0

exists and is positive definite, with elements continuous in the variable

θ.

In order to simplify some proofs we shall introduce the notation o(.), O(.),

oP (.) and OP (.). Sections 14.2-14.4 in Bishop et al . (1975) present a detailed

study of them.

Given two real number sequences {xn}n∈N and {yn}n∈N we say that xn =
o(yn) (xn is little o of yn) as n → ∞ if xn/yn → 0 and we say that xn = O(yn)

(xn is big O of yn) as n→∞ if |xn/yn| is bounded.
If we consider vectors xn=(xn1, ..., xnk) the notation xn = o(yn) means kxnk =

o(yn) where kxnk2 = xTnxn and xn = O(yn) means kxnk = O(yn).
Given a sequence of random variables {Xn}n∈N and a sequence of real numbers

{yn} we say that Xn = oP (yn) as n → ∞ if Xn/yn
P→ 0 and we say that

Xn = OP (yn) as n→∞ if Xn/yn is bounded in probability.

Given a sequence of random vectors {Xn}n∈N , whereXn = (Xn1, ..., Xnk), we

say that Xn = oP (yn) if kXnk = oP (yn) and Xn = OP (yn) if kXnk = OP (yn).
We present without proof some of the most important relations among them:

a) O(xn)O(yn) = O(xnyn)

b) O(xn)o(yn) = o(xnyn)

c) o(xn)o(yn) = o(xnyn)

d) O(xn) = O(cxn), c 6= 0

e) o(1) +O(n−1/2) +O(n−1) = o(1)

f) OP (xn)OP (yn) = OP (xnyn)

g) OP (xn)oP (yn) = oP (xnyn)

h) oP (xn)oP (yn) = oP (xnyn)
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i) If Xn
L→ X ⇒ Xn = OP (1)

j) OP (O(
√
n)) = OP (

√
n) and o (OP (xn)) = oP (xn)

k) If Xn
L→ X ⇒ Xn + oP (1)

L→ X

The following result was obtained in Pardo, L. et al . (1997).

Theorem 2.1

Let bθ be the maximum likelihood estimator of θ. Suppose that i)-v) hold and

that, in addition, φ ∈ C1 ([0,∞)) and there exist a measurable and µ-integrable
function F (x) such that¯̄̄̄

φ0(fθ(x))
∂fθ(x)

∂θi

¯̄̄̄
< F (x), i = 1, ...,M0.

Then √
n
³
Hφ(bθ)−Hφ (θ)

´
L−→

n→∞ N
¡
0,σ2φ(θ)

¢
,

provided σ2φ(θ) > 0, where

σ2φ(θ) = T
TIF (θ)−1 T , (2.1)

with T T = (t1, ..., tM0) and

ti =

Z
X
φ0(fθ(x))

∂fθ(x)

∂θi
dµ(x), i = 1, ...,M0.

Proof. The first order Taylor expansion of Hφ(bθ) around θ gives
Hφ(bθ) = Hφ (θ) +

M0X
i=1

ti(bθi − θi) + o
³°°°bθ − θ

°°°´
being

ti =
∂Hφ (θ)

∂θi
=

Z
X
φ0(fθ(x))

∂fθ(x)

∂θi
dµ(x), i = 1, ...,M0

and
°°°bθ − θ

°°°2 = (bθ − θ)T (bθ − θ).

Since √
n(bθ − θ)

L−→
n→∞ N

³
0, IF (θ)−1

´
, (2.2)
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then
√
n o

³°°°bθ − θ
°°°´ = √n o ¡OP ¡n−1/2¢¢ = oP (1) .

Therefore, the random variables
√
n
³
Hφ(bθ)−Hφ (θ)

´
and

√
nT T (bθ − θ)

have the same asymptotic distribution. By (2.2) we have

√
nT T (bθ − θ)

L−→
n→∞ N

³
0,T TIF (θ)−1 T

´
.

This completes the proof.

Remark 2.1

If we consider Shannon’s entropy, i.e., φ(x) = −x log x, we obtain

ti = −
Z
X
log fθ(x)

∂fθ(x)

∂θi
dµ(x), i = 1, 2, ...,M0.

Corollary 2.1

We consider the (h,φ)-entropies defined in (1.22), then we have

√
n
³
Hφ
h (
bθ)−Hφ

h (θ)
´

h0
µZ

X
φ(fθ(x))dµ(x)

¶ L−→
n→∞ N

³
0,T TIF (θ)−1 T

´
,

where T is given in Theorem 2.1.

Proof. A first order Taylor expansion of h(y) around y = y0 at y = by gives
h(by) = h(y0) + h0(y0)(by − y0) + o(by − y0).

Now for y0 = Hφ (θ) and by = Hφ(bθ), we get
Hφ
h (
bθ) = Hφ

h (θ) + h
0
µZ

X
φ(fθ(x))dµ(x)

¶³
Hφ(bθ)−Hφ (θ)

´
+ o

³
Hφ(bθ)−Hφ (θ)

´
,

and hence

√
n
³
Hφ
h (
bθ)−Hφ

h (θ)
´
=
√
n h0

µZ
X
φ(fθ(x))dµ(x)

¶³
Hφ(bθ)−Hφ (θ)

´
+oP (1) ,

because
√
n o

³
Hφ(bθ)−Hφ (θ)

´
= oP (1) . Therefore,

√
n
³
Hφ
h (
bθ)−Hφ

h (θ)
´

L−→
n→∞ N

Ã
0, h0

µZ
X
φ(fθ(x))dµ(x)

¶2
T TIF (θ)−1 T

!
.
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Remark 2.2

Under the assumptions of Theorem 2.1, Sn = n
1/2T T (bθ−θ) = 0 a.s. ∀n ∈ N

iff σ2φ(θ) = T
TIF (θ)−1 T =0.

In fact, if Sn = 0 a.s. ∀n, we have lim
n→∞V ar [Sn] = σ2φ(θ) = 0. On the other

hand if σ2φ(θ) = T
TIF (θ)−1 T = 0, then T = 0, since IF (θ) is positive definite,

and then Sn = 0 a.s. ∀n ∈ N.
If T TIF (θ)−1 T = 0, we use a second order Taylor expansion to get the as-

ymptotic distribution of Hφ(bθ) in the following theorem:
Theorem 2.2

Assume that i)-v) hold and φ ∈ C2 ([0,∞)) , σ2φ(θ) = 0, and suppose that

there exist measurable functions F (x), G(x) and H(x), such that¯̄̄̄
φ0(fθ(x))

∂fθ(x)

∂θi

¯̄̄̄
< F (x) i = 1, ...,M0,¯̄̄̄

φ00(fθ(x))
∂fθ(x)

∂θi

∂fθ(x)

∂θj

¯̄̄̄
< G(x) i, j = 1, ...,M0,¯̄̄̄

φ0(fθ(x))
∂2fθ(x)

∂θi∂θj

¯̄̄̄
< H(x) i, j = 1, ...,M0.

Then,

2n
³
Hφ(bθ)−Hφ (θ)

´
L−→

n→∞

rX
i=1

βiZ
2
i ,

where Z1, ..., Zr are independent and identically distributed (iid) normal random

variables with mean zero and variance 1, r = rank
³
IF (θ)−1 TIF (θ)−1

´
and

β0is are the eigenvalues of the matrix AIF (θ)−1 , being, A = (aij)i,j=1,...,M0 with

aij =

Z
X

µ
φ00(fθ(x))

∂fθ(x)

∂θi

∂fθ(x)

∂θj
+

∂2fθ(x)

∂θi∂θj
φ0(fθ(x))

¶
dµ(x).

Proof. The second Taylor expansion of Hφ(bθ) around θ gives
Hφ(bθ) = Hφ (θ) + 1

2

M0P
i=1

M0P
j=1

∂2Hφ (θ)

∂θi∂θj
(bθi − θi)(bθj − θj) + o

µ°°°bθ − θ
°°°2¶

= Hφ (θ) + 1
2(
bθ − θ)TA(bθ − θ) + o

µ°°°bθ − θ
°°°2¶ ,
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where

A = (aij)i,j=1,...,M0 =

µ
∂2Hφ (θ)

∂θi∂θj

¶
i,j=1,...,M0

=

µZ
X

µ
φ00(fθ(x))

∂fθ(x)

∂θi

∂fθ(x)

∂θj
+

∂2fθ(x)

∂θi∂θj
φ0(fθ(x))

¶
dµ(x)

¶
i,j=1,...,M0

.

But n o(
°°°bθ − θ

°°°2) = oP (1) , therefore, the asymptotic distribution of the random
variables 2n

³
Hφ(bθ)−Hφ (θ)

´
and n(bθ − θ)TA(bθ − θ) is the same. We know

that

√
n(bθ − θ)

L−→
n→∞ N(0, IF (θ)

−1);

now the result follows by Corollary 2.1 in Dik and Gunst (1985): “Let X a

q-variate normal variable with mean vector 0 and variance-covariance matrix

Σ. Let A be a real symmetric matrix of order q. Let r = rank(ΣAΣ), r ≥
1 and let β1, ...,βr, be the nonzero eigenvalues of AΣ. Then the distribution

of the quadratic form XTAX coincides with the distribution of the random

variable
Pr
i=1 βiZ

2
i , where Z1, ..., Zr are independent, each having a standard

normal distribution”.

Remark 2.3

In the case of Shannon’s entropy the elements aij are given by

aij = −
Z
X

µ
1

fθ(x)

∂fθ(x)

∂θi

∂fθ(x)

∂θj
+ log fθ(x)

∂2fθ(x)

∂θi∂θj

¶
dµ(x)

and in the case of the (h,φ)-entropies

aij = h0
µZ

X
φ(fθ(x))dµ(x)

¶
×

µZ
X

µ
φ00(fθ(x))

∂fθ(x)

∂θi

∂fθ(x)

∂θj
+

∂2fθ(x)

∂θi∂θj
φ0(fθ(x))

¶
dµ(x)

¶
+ h00

µZ
X
φ(fθ(x))dµ(x)

¶
×

Z
X
φ0(fθ(x))

∂fθ(x)

∂θi
dµ(x)

Z
X
φ0(fθ(x))

∂fθ(x)

∂θj
dµ(x).

The derivation of this result step by step can be seen in Pardo, L. et al .

(1997a).
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2.3. Testing and Confidence Intervals for Phi-entropies

The previous results giving the asymptotic distribution of the φ-entropy sta-

tistics can be used in various settings to construct confidence intervals and to

test statistical hypotheses regarding the entropy of a population (diversity). We

consider the following tests:

2.3.1. Test for a Predicted Value of the Entropy of a Population

(Diversity of a Population)

We are interested in testing

H0 : H
φ (θ) = D0,

i.e., that the φ-entropy is of a certain magnitude D0, versus one of the three

following alternative hypotheses:

H1 : H
φ (θ) 6= D0, H1 : H

φ (θ) > D0, H1 : H
φ (θ) < D0.

We can use the test statistic

Z1 =

√
n
³
Hφ(bθ)−D0´
σφ(bθ) ,

where the expression of σφ(bθ) is obtained from Theorem 2.1 after replacing θ

by the maximum likelihood estimator bθ in σφ(θ). Using Slutsky’s Theorem (see,

e.g., under H0, the asymptotic

distribution of Z1 is normal with mean zero and variance one. Therefore in the

first case we should reject the null hypothesis if Z1 > c1 or Z1 < c2 (where c1
and c2 are symmetric, chosen so that the significance level of the test is α, i.e.,

c1 = zα/2 and c2 = −zα/2). za denotes the z-score from the standard normal

distribution having right-tailed probability a; this is the 100(1 − a) percentile
of that distribution. In the second case we should reject the null hypothesis if

Z1 > c ( then c = zα) and, finally, in the third case if Z1 < c (then c = −zα).
The power of the two-side test at t 6= D0 is given by the formula

βφ,n (t) = 1−Φn
Ã
zα/2 −

√
n (t−D0)
σφ(bθ)

!
+Φn

Ã
−zα/2 −

√
n (t−D0)
σφ(bθ)

!
,
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for a sequence of distributions Φn(x) tending uniformly to the standard normal

distribution Φ (x) . We observe that the test is consistent, in the sense of Fraser

(1957), i.e., βφ,n (t) tends to one when n→∞.

2.3.2. Test for the Equality of the Entropies of Two Independent

Populations (Equality of Diversities of Two Populations)

We denote Hφ (θi) , i = 1, 2, the φ-entropy associated with the population

described by the probability distribution Pθi , i = 1, 2.We are interested in testing

H0 : H
φ (θ1) = H

φ (θ2)

versus one of the three following alternative hypotheses:

H1 : H
φ (θ1) 6= Hφ (θ2) , H1 : H

φ (θ1) > H
φ (θ2) , H1 : H

φ (θ1) < H
φ (θ2) .

H0, the asymptotic distribution of the test statistic

Z2 =

√
n1n2

³
Hφ(bθ1)−Hφ(bθ2)´q

n2σ2φ(
bθ1) + n1σ2φ(bθ2)

is normal with mean zero and variance one, where σ2φ(
bθi), i = 1, 2, are obtained

from Theorem 2.1. The critical regions are similar to the ones given in the

previous case. We shall assume that the populations are independent.

2.3.3. Test for the Equality of the Entropies of r Independent

Populations

We are interested in testing

H0 : H
φ (θ1) = H

φ (θ2) = ... = H
φ (θr) = D0

(D0 is a known value) versus the alternative H1 : ∃ i, k ∈ {1, ..., r} verifying
Hφ (θi) 6= Hφ (θk) . We know that

√
ni

³
Hφ(bθi)−D0´
σφ(bθi) L−→

n→∞ N (0, 1) i = 1, ..., r,
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where σ2φ(
bθi) is the estimated asymptotic variance for the ith-population given

in Theorem 2.1.

Then,

ni
³
Hφ(bθi)−D0´2

σ2φ(
bθi) L−→

n→∞ χ21.

Therefore,

rX
i=1

ni
³
Hφ(bθi)−D0´2
σ2φ(
bθi) L−→

n→∞ χ2r .

We reject the null hypothesis if

Z3 ≡
rX
i=1

ni

³
Hφ(bθi)−D0´2
σ2φ(
bθi) > χ2r,α,

where χ2r,a denotes the 100(1− a) percentile of the chi-square distribution with r
degrees of freedom and it is defined by the equation Pr(χ2r ≥ χ2r,a) = a. Now, we

assume that D0 is unknown and we are interested in testing

H0 : H
φ (θ1) = H

φ (θ2) = ... = H
φ (θr) .

In this case we consider the test statistic

Z4 ≡
rX
i=1

ni

³
Hφ(bθi)−D´2
σ2φ(
bθi)

where

D =
1

rP
i=1

ni

σ2φ(
bθi)

rX
i=1

niH
φ(bθi)

σ2φ(
bθi) . (2.3)

To get the asymptotic distribution of Z4, we do the following decomposition

rX
i=1

ni

³
Hφ(bθi)−D0´2
σ2φ(
bθi) =

rX
i=1

ni

³
Hφ(bθi)−D +D −D0´2

σ2φ(
bθi)

=
rX
i=1

ni
³
Hφ(bθi)−D´2
σ2φ(
bθi) +

rX
i=1

ni

σ2φ(
bθi) ¡D −D0¢2 .

© 2006 by Taylor & Francis Group, LLC



Entropy as a Measure of Diversity: Sampling Distributions 67

The asymptotic distribution of the term on the left-hand side of this equality is

chi-square with r degrees of freedom. Now we shall establish that the asymptotic

distribution of the random variable

rX
i=1

ni

σ2φ(
bθi) ¡D −D0¢2

is chi-square with one degree of freedom. Using Slutsky’s Theorem and Theorem

2.1, √
ni

³
Hφ(bθi)−D0´
σφ(bθi) L−→

n→∞ N (0, 1) ,

then √
niH

φ(bθi)
σφ(bθi) ∼ N

Ã√
niD0

σφ(bθi) , 1
!
,

where ∼ is used to denote “asymptotically distributed as”.
Therefore

√
ni

σφ(bθi)
√
niH

φ(bθi)
σφ(bθi) ∼ N

Ã
niD0

σ2φ(
bθi) , ni

σ2φ(
bθi)
!
,

rX
i=1

niH
φ(bθi)

σ2φ(
bθi) =

rX
i=1

ni

σ2φ(
bθi)D ∼ N

Ã
D0

rX
i=1

ni

σ2φ(
bθi) ,

rX
i=1

ni

σ2φ(
bθi)
!
,

vuut rX
i=1

ni

σ2φ(
bθi)D ∼ N

D0
vuut rX

i=1

ni

σ2φ(
bθi) , 1

 ,
finallyvuut rX

i=1

ni

σ2φ(
bθi) ¡D −D0¢ L−→

n→∞ N (0, 1) and
rX
i=1

ni

σ2φ(
bθi) ¡D −D0¢2 L−→

n→∞ χ21.

Until now we have

rX
i=1

ni
³
Hφ(bθi)−D0´2
σ2φ(
bθi)| {z } =

rX
i=1

ni
³
Hφ(bθi)−D´2
σ2φ(
bθi) +

rX
i=1

ni

σ2φ(
bθi) ¡D −D0¢2| {z } .

χ2r χ21
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Applying now the following result (Rao 1973, p. 187. Result iii)),

“Let Y be an r-dimensional normal vector with mean vector zero and variance-

covariance matrix identity. Let Y TY = Y TAY + Y TBY , where Y TAY is

chi-squared distributed with a degrees of freedom. Then Y TBY is chi-squared

distributed with r − a degrees of freedom”;
the random variable

rX
i=1

ni

³
Hφ(bθi)−D´2
σ2φ(
bθi)

follows a chi-square distribution with r − 1 degrees of freedom.
In order to verify the hypotheses of the last result, let us denote

Yi =

√
ni
³
Hφ(bθi)−D0´
σφ(bθi)

and Y = (Y1, ..., Yr)
T . Then we must show that

rX
i=1

ni

σ2φ(
bθi) ¡D −D0¢2 = Y TAY

with rank (A) = 1 and

rX
i=1

ni
³
Hφ(bθi)−D´2
σ2φ(
bθi) = Y TBY .

Since,

D =
1

s

rX
i=1

niH
φ(bθi)

σ2φ(
bθi)

with

s =
rX
i=1

ni

σ2φ(
bθi) ,

© 2006 by Taylor & Francis Group, LLC
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we have

rX
i=1

ni

σ2φ(
bθi) ¡D −D0¢2 = s

Ã
1

s

rX
i=1

niH
φ(bθi)

σ2φ(
bθi) −D0

!2

=
1

s

Ã
rX
i=1

niH
φ(bθi)

σ2φ(
bθi) −

rX
i=1

ni

σ2φ(
bθi)D0

!2

=
1

s

 rX
i=1

ni

³
Hφ(bθi)−D0´
σ2φ(
bθi)

2

=
1

s

Ã
rX
i=1

√
ni

σφ(bθi)Yi
!2

=
1

s

rX
i=1

rX
j=1

√
ni

σφ(bθi)
√
nj

σφ(bθj)YiYj = Y TAY ,

where A = (aij)i,j=1,...,r and

aij =

Ã √
ni

σφ(bθi)
√
nj

σφ(bθj)
!Ã

rX
i=1

ni

σ2φ(
bθi)
!−1

.

We also observe that for all i, j,m, k = 1, ..., r, we have¯̄̄̄
¯ aij aik
amj amk

¯̄̄̄
¯ = aijamk − aikamj

=

Ã √
ni

σφ(bθi)
√
nj

σφ(bθj)
√
nm

σφ(bθm)
√
nk

σφ(bθk)
−

√
ni

σφ(bθi)
√
nk

σφ(bθk)
√
nm

σφ(bθm)
√
nj

σφ(bθj)
!
s−2 = 0.

Then rank (A) = 1. Finally B = I −A and applying the mentioned result we

conclude that the asymptotic distribution of the quadratic form

Y TBY

is chi-square with r − 1 degrees of freedom. This completes the proof.
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2.3.4. Tests for Parameters

In situations where the φ-entropy is one-to-one function of θ the following

tests

a) H0 : θ = θ0

b) H0 : θ1 = θ2

c) H0 : θ1 = θ2 = ... = θr = θ0

d) H0 : θ1 = θ2 = ... = θr

are equivalent to the tests

a) H0 : H
φ (θ) = Hφ (θ0)

b) H0 : H
φ (θ1) = H

φ (θ2)

c) H0 : H
φ (θ1) = H

φ (θ2) = ... = H
φ (θr) = H

φ (θ0)

d) H0 : H
φ (θ1) = H

φ (θ2) = ... = H
φ (θr) .

Now we are going to see an important application of the previous results to

the problem of equality of variances for independent normal populations.

An Application to Equality of Variances in Normal Populations

Let Xij (j = 1, 2, ..., ni; i = 1, ..., r) be independent normal variables with mean

µi and variance σ
2
i for population i, i = 1, ..., r. Let

bµi = niX
j=1

Xij
ni

and bσ2i = 1

ni

niX
j=1

(Xij − bµi)2
be the maximum likelihood estimators of µi and σ2i , respectively. We are going

to test

H0 : σ
2
1 = .... = σ2r ,

on the basis of Shannon’s entropy.

Shannon’s entropy associated with a normal population with mean µi and

variance σ2i is given by

H(σ2i ) ≡ H
¡
N(µi,σ

2
i )
¢
= log

q
2πeσ2i .

© 2006 by Taylor & Francis Group, LLC



Entropy as a Measure of Diversity: Sampling Distributions 71

In view of the previous result, testing

H0 : σ
2
1 = .... = σ2r

is equivalent to test

H0 : H(σ
2
1) = ... = H(σ

2
r ).

On the basis of the result given in Section 2.3.3, the null hypothesis should be

rejected if

SSha ≡ Z4 =
rX
i=1

ni
³
H(bθi)−D´2
σ2H(

bθi) > χ2r−1,α,

where σ2H(
bθi) is given in (2.1) for φ(x) = −x log x, after replacing θi by bθi and

D was defined in (2.3).

Particularly, here

σ2H (θi) = T
T
(i)IF

¡
µi,σ

2
i

¢−1
T (i),

where T (i)=(t1i, t2i)
T with

t1i =
∂H(σ2i )

∂µi
= 0, t2i =

∂H(σ2i )

∂σ2i
=

1

2σ2i

and

IF
¡
µi,σ

2
i

¢−1
=

Ã
σ2i 0

0 2σ4i

!
.

Then σ2H (θi) =
1
2 , i = 1, ..., r, and asymptotically the null hypothesis

H0 : σ
2
1 = .... = σ2r

should be rejected if

SSha ≡ 1
2

rX
j=1

nj

log bσ2j − log rY
j=1

¡bσ2j ¢njN
2 (2.4)

is greater than χ2r−1,α, where N =
Pr
i=1 ni, i.e., if

1

2

rX
j=1

nj (vj − v)2 > χ2r−1,α,
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where vj = log bσ2j and v =Pr
j=1

nj
N log bσ2j is the weighted average of the v0js.

It is interesting to observe the similarity of the test statistic SSha with the

test statistic, for this problem, proposed by Lehmann (1959, pp. 274-275). This

test statistic is given by

SLeh ≡ 1
2

rX
j=1

Nj
¡
lj − l

¢2
,

where lj = log
1
Nj

Pni
j=1 (Xij − bµi)2 , l =Pr

j=1
Nj
N∗ log

1
Nj

Pni
j=1 (Xij − bµi)2 , Nj =

nj − 1, with N∗ = N1 + ... +Nr. The modification consists of replacing sample

size nj by degrees of freedom nj − 1.
Now we present a study to compare this new test statistic with other well

known test statistics. Many of the

existing parametric and nonparametric tests for homogeneity of variances and

some variations of these tests were examined by Conover et al . (1981). The

purpose of their study is to provide a list of tests with a stable Type I error rate

when the normality assumption may not be true, and the sample sizes may be

small and/or unequal, and when distributions may be skewed or heavy-tailed. In

order to do a comparative study of these tests with the test statistic given in this

example, we have done a simulation study similar to that performed by them.

Normal Distribution

(n1, n2, n3, n4) (5, 5, 5, 5) (10, 10, 10, 10) (20, 20, 20, 20) (5, 5, 20, 20)

Shannon .167 (.488) .049 (.655) .074 (.810) .141 (.770)

Neyman-Pearson .123 (.460) .073 (.653) .064 (.816) .103 (.761)

Barlett .041 (.303) .044 (.591) .049 (.796) .044 (.646)

Hartley .042 (.234) .044 (.546) .051 (.781) .047 (.769)

Table 2.1

Two probability distributions were considered: normal and double exponential.

The simulated normal variables were obtained by the Box-Müller method. The

double exponential variables were obtained from the inverse cumulative distri-

bution function. Uniform random numbers were generated using a multiplica-

tive congruent generator. Four sets of samples were generated with respec-

tive sample sizes (n1, n2, n3, n4) = (5, 5, 5, 5) , (10, 10, 10, 10) , (20, 20, 20, 20) and

(5, 5, 20, 20) . The null hypothesis of equal variances (all equal to 1) was examined
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along with four alternatives (σ21,σ
2
2,σ

2
3,σ

2
4) = (1, 1, 1, 2) , (1, 1, 1, 4) , (1, 1, 1, 8) and

(1, 2, 4, 8) . The means were set equal to the standard deviation in each population

under the alternative hypothesis. Zero means were used for H0. Each of these

40 (2× 4× 5) combinations of distribution types, sample sizes and variances was
repeated 10000 times (1000 in Conover et al . (1981)), and the Shannon test sta-

tistics were computed and compared with their 5 percent nominal critical values

normal distributions and in Table 2.2 for double exponential distributions. The

numbers in the tables are for null hypotheses, while the figures in parentheses

represent the averages over the four variance combinations under the alternative

hypothesis.

Double Exponential Distribution

(n1, n2, n3, n4) (5, 5, 5, 5) (10, 10, 10, 10) (20, 20, 20, 20) (5, 5, 20, 20)

Shannon .389 (.602) .359 (.719) .356 (.842) .389 (.818)

Neyman-Pearson .330 (.564) .333 (.707) .341 (.839) .344 (.801)

Barlett .179 (.410) .259 (.653) .309 (.824) .237 (.705)

Hartley .157 (.355) .237 (.625) .288 (.811) .462 (.828)

Table 2.2

The corresponding figures for the asymmetric case were obtained by making the

transformation σX2
i + µ where Xi represents the random variable distributed

according to the null hypothesis. The two distributions, normal and double

exponential, the two sets of sample sizes (10, 10, 10, 10) and (5, 5, 20, 20) , and the

five variance combinations gave a total of 20 combinations. For each combination,

10000 repetitions were run for each of the four statistics. With the same structure

as Tables 2.1 and 2.2, the observed frequencies of rejection are reported in Table

2.3 for normal distributions and double exponential distributions.

Normal Distribution Double Exponential

Distribution

(n1, n2, n3, n4) (5, 5, 5, 5) (10, 10, 10, 10) (20, 20, 20, 20) (5, 5, 20, 20)

Shannon .701 (.828) .726 (.839) .894 (.922) .906 (.922)

Neyman-Pearson .679 (.815) .697 (.877) .887 (.916) .892 (.938)

Barlett .621 (.777) .595 (.813) .858 (.896) .848 (.908)

Hartley .684 (.764) .872 (.951) .849 (.879) .926 (.971)

Table 2.3
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In order to interpret their simulation results, Conover et al . (1981) define a

test to be robust if the maximum Type I error rate is less than 0.1 for a 5 percent

test. In this sense, the four tests considered here are sensitive to departures from

normality. If we analyze the numbers in parentheses, the Shannon test appears to

have slightly greater power than the remaining three. If we look at the results in

Table 5, p. 357, of Conover et al . (1981), then we obtain that for the columns 1,

2, 3 and 4 there are just 4, 7, 3 and 0 power values (in parentheses) respectively

greater than the corresponding power values of the Shannon statistic. On the

other hand, we note that the exact level of the proposed test does not converge

very quickly to the asymptotic level 0.05. This point is mentioned in order to

highlight the fact that, as in Conover et al . (1981), asymptotic critical regions

have been used, and therefore the power values have not been calculated for

exact α = 0.05 level tests. To conclude, Shannon entropy provides a reasonably

good test, among the 56 test statistics considered, when the normality assumption

holds. Finally, observe that the four considered tests work under the assumptions

Type I error. An interesting study of this problem, using the quadratic entropy,

is presented in Pardo, J. A. et al . (1997).

2.3.5. Confidence Intervals

If a sufficiently large sample is available it is possible to construct approximate

confidence intervals of any desired level for Hφ (θ) . An approximate (1− α) 100%

confidence interval for Hφ (θ) isÃ
Hφ(bθ)− σφ(bθ) zα/2√

n
, Hφ(bθ) + σφ(bθ) zα/2√

n

!
, (2.5)

where σφ(bθ) is given in Theorem 2.1 after replacing θ by its corresponding max-

imum likelihood estimator bθ.
From (2.5) we have

−σφ(
bθ) zα/2√
n

≤ Hφ(bθ)−Hφ (θ) ≤ σφ(bθ) zα/2√
n

. (2.6)

If Hφ(bθ) is to be used as a point estimate of Hφ (θ) , our error, which we shall

denote ε, is given by the difference between the value of Hφ(bθ) and the unknown
© 2006 by Taylor & Francis Group, LLC
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value of Hφ (θ) . Therefore we can rewrite inequalities (2.6) as

−σφ(
bθ) zα/2√
n

≤ ε ≤ σφ(bθ) zα/2√
n

.

This formula can be used to provide the necessary sample size n for a specified

confidence coefficient 1−α and a desired degree of precision ε. A general formula
for determining the desired sample size is

n =

"
σ2φ(
bθ)z2α/2
ε2

#
+ 1,

because the equality Pr
³¯̄̄
Hφ(bθ)−Hφ (θ)

¯̄̄
< ε
´
= 1− α is equivalent to

Pr

¯̄̄̄¯̄
√
n
³
Hφ(bθ)−Hφ (θ)

´
σφ(bθ)

¯̄̄̄
¯̄ < ε

√
n

σφ(bθ)
 = 1− α,

and then ε
√
n/σφ(bθ) = zα/2, where by [.] we are representing the integer part

function. If two sufficiently large samples are available it is possible to construct

approximate confidence intervals of any desired confidence coefficient for the dif-

ference Hφ (θ1)−Hφ (θ2) . This interval is given by³
Hφ(bθ1)−Hφ(bθ2)´± zα/2

s
σ2φ(
bθ1)
n1

+
σ2φ(
bθ2)
n2

where σ2φ(
bθ1) and σ2φ(

bθ2) are given in Theorem 2.1 after replacing θ1 and θ2 by

the corresponding maximum likelihood estimators.

If n = n1 = n2, the sample size, n, necessary for a specified confidence

coefficient, 1− α, and a desired degree of precision, ε, is given by

n =


³
σ2φ(
bθ1) + σ2φ(

bθ2)´ z2α/2
ε2

+ 1.

2.4. Multinomial Populations: Asymptotic Distribu-

tions

In this section we obtain asymptotic results for multinomial populations as a

particular case of the results obtained in the previous sections for general popu-

lations.
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Let (X , βX , Pθ)θ∈Θ be a statistical space, where the sample space X =

{x1, . . . , xM} is finite, βX is the family of subsets of X and

Θ =

(
θ = (p1, ..., pM−1)T ∈ RM−1 :

M−1X
i=1

pi < 1, pi > 0, i = 1, ...,M − 1
)
.

Let Pθ be a probability measure on (X , βX ) such that for every θ ∈ Θ,

Pθ ({xi}) = pi if i = 1, ...,M − 1 Pθ ({xM}) = 1−
M−1X
i=1

pi = pM .

Let µ be the counting measure on (X , βX ) attributing mass one to every xi ∈ X .
It is clear that Pθ is absolutely continuous with respect to the measure µ for all

θ ∈ Θ, and
fθ (xi) =

dPθ
dµ

(xi) = pi, i = 1, ...,M.

In this context the φ-entropy is given by

Hφ(p) = Hφ (θ) =
MX
i=1

φ(pi)

being p = (p1, ..., pM−1, pM)T ∈ 4M .

Let Y1 = y1, ..., Yn = yn be a random sample from the population Pθ. The like-

lihood associated with this random sample is given by fθ(y1, ..., yn) = p
n1
1 ...p

nM
M

being ni the number of times that Yj = xi, j = 1, ..., n. The maximum likelihood

estimator of the probabilities pi is given by bpi = ni/n, i = 1, ...,M. Then the

maximum likelihood estimators of θ and p are given respectively by:bθ = (bp1, ..., bpM−1)T and bp = (bp1, ..., bpM)T .
In the next result we compute the Fisher information matrix for the considered

multinomial model.

Proposition 2.1

The Fisher information matrix in the multinomial model is given by IF(p) =
IF (θ) = (i(r,s))r,s=1,...,M−1, where

i(r,s) =


1

pr
+

1

pM
if r = s

1

pM
if r 6= s

r, s = 1, ...,M − 1.
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Proof. The (r, s)th-element i(r,s), of the Fisher information matrix, for r 6= s, is

i(r,s) =

Z
X
∂ log fθ (x)

∂θr

∂ log fθ (x)

∂θs
fθ (x) dµ (x)

=
M−1P
k=1

∂ log pk
∂pr

∂ log pk
∂ps

pk +

∂ log

µ
1−

M−1P
k=1

pk

¶
∂pr

∂ log

µ
1−

M−1P
k=1

pk

¶
∂ps

pM

=

µ
− 1

pM

¶µ
− 1

pM

¶
pM =

1

pM
, r 6= s, r, s = 1, ...,M − 1,

and the element (r, r) has the expression

i(r,r) =

Z
X

µ
∂ log fθ (x)

∂θr

¶2
fθ (x) dµ(x)

=
M−1P
k=1

µ
∂

∂pr
log pk

¶2
pk +

µ
∂

∂pr
log

µ
1−

M−1P
k=1

pk

¶¶2
pM

=

µ
1

pr

¶2
pr +

µ
− 1

pM

¶2
pM =

1

pr
+

1

pM
.

In the following Proposition the inverse of the Fisher information matrix is

obtained.

Proposition 2.2

The inverse of the Fisher information matrix is given by

IF (θ)−1 = diag (θ)− θθT

being θ = (p1, ..., pM−1)T .

Proof.

By multiplying the matrix IF(p)−1 = IF (θ)−1 with elements

i−1
(r,s)

=

(
pr(1− pr) if r = s

−prps if r 6= s r, s = 1, ...,M − 1,

by the matrix IF(p) = IF (θ) , with elements
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i(r,s) =


1

pr
+

1

pM
if r = s

1

pM
if r 6= s

r, s = 1, ...,M − 1 ,

we get the identity matrix. To check this equality we note that the (r, s)th-

element of the product is given by

M−1P
j=1
j 6=r

(−prpj) 1
pM

+ pr(1− pr)
µ
1

ps
+

1

pM

¶
= 1, if r = s,

M−1P
i=1
i6=r,s

(−prpi) 1
pM

+
1

pM
pr(1− pr)− prps

µ
1

ps
+

1

pM

¶
= 0, if r 6= s.

Then IF (θ)−1 IF (θ) = I(M−1)×(M−1) and IF (θ)−1 is the inverse of IF (θ) .
Theorem 2.3

The analogical estimator, Hφ(bp), obtained by replacing the p0is by its relative
frequencies, bpi, in a random sample of size n, verifies

√
n
³
Hφ(bp)−Hφ(p)

´
L−→

n→∞ N
¡
0,σ2φ(p)

¢
whenever σ2φ(p) > 0, being

σ2φ(p) = S
TΣpS =

MX
i=1

s2i pi −
Ã
MX
i=1

sipi

!2
, (2.7)

with S = (s1, ..., sM)
T = (φ0(p1), ...,φ0(pM))T and Σp = diag(p)− ppT .

Proof. By Theorem 2.1, we have

σ2φ(p) = T
TIF (θ)−1 T ,

where

T = (t1, ..., tM−1)T = (φ0(p1)− φ0(pM), ...,φ0(pM−1)− φ0(pM))T .

Now we must show that T TIF (θ)−1 T = STΣpS. In fact,
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T TIF (θ)−1 T = (φ0(p1), ...,φ0(pM−1))IF (θ)−1 (φ0(p1), ...,φ0(pM−1))T
− 2(φ0(p1), ...,φ0(pM−1))IF (θ)−1 (φ0(pM), ...,φ0(pM))T
+ (φ0(pM), ...,φ0(pM))IF (θ)−1 (φ0(pM), ...,φ0(pM))T

=
M−1P
i=1

piφ
0(pi)2 −

M−1P
i=1

M−1P
j=1

pipjφ
0(pi)φ0(pj)

− 2

µ
φ0(pM)

M−1P
i=1

piφ
0(pi)− φ0(pM)(1− pM)

M−1P
i=1

piφ
0(pi)

¶
+ (1− pM)φ0(pM)2 − φ0(pM)2

M−1P
i=1

M−1P
j=1

pipj

=
M−1P
i=1

piφ
0(pi)2 −

M−1P
i=1

M−1P
j=1

pipjφ
0(pi)φ0(pj)

− 2φ0(pM)pM
M−1P
i=1

piφ
0(pi) + pMφ0(pM)2 − p2Mφ0(pM)2

=
MP
i=1
piφ

0(pi)2 −
µ
MP
i=1
piφ

0(pi)
¶2
= STΣpS.

Remark 2.4

For the (h,φ)-entropies we have

√
n

h0
µ
MP
i=1

φ(pi)

¶ ³Hφ
h (bp)−Hφ

h (p)
´

L−→
n→∞ N

¡
0,σ2φ(p)

¢
,

where σ2φ(p) was given in (2.7).

A complete study of the statistics based on (h,φ)-entropies, in simple random

sampling as well as in stratified random sampling, can be seen in Salicrú et al .

(1993).

Remark 2.5

Consider an experiment whose outcomes belong to one of M (M ≥ 2) mu-
tually exclusive and exhaustive categories, E1, ..., EM and let pi (0 < pi < 1) be

the probability that the outcome belongs to the ith category (i = 1, ...,M). HerePM
i=1 pi = 1. Suppose that the experiment is performed n times, Y1, ..., Yn, and

that the n outcomes are independent. Furthermore, let Nj denote the number of

these outcomes belonging to category Ej (j = 1, ...,M), with
PM
j=1Nj = n. The

random variable (N1, ...,NM) has a multinomial distribution with parameters n

and p =(p1, ..., pM)
T .
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If we define

T
(i
j =

(
1 if Yi ∈ Ej
0 otherwise

, i = 1, ..., n, j = 1, ...,M,

the vectors (T
(i
1 , ..., T

(i
M), i = 1, ..., n, are functions of Yi and take values on the

set

{(1, 0, ..., 0) , ..., (0, ..., 0, 1)} .
We also have:

Y1 → (T
(1
1 , ..., T

(1
M ) ≡ M(1; p1, ..., pM)

Y2 → (T
(2
1 , ..., T

(2
M ) ≡ M(1; p1, ..., pM)

... ... ... ...

Yn → (T
(n
1 , ..., T

(n
M )| {z } ≡ M(1; p1, ..., pM)

Ã
nX
i=1

T
(i
1 , ...,

nX
i=1

T
(i
M

!
| {z } ≡ M(n; p1, ..., pM),

(N1, ..., NM)

where ≡ is used to denote “distributed as” and M(n; p1, ..., pM) denotes the

multinomial distribution with parameters n and p1, ..., pM . On the other hand,

given the sequence of M-dimensional random variables {Un}n∈N with

Un = (U1n, ..., UMn)
T

where

E [Un] = µ and Cov [Un] = Σ ∀n,
the Central Limit Theorem states that the random vector

Un =

1
n

nX
j=1

U1j , ...,
1

n

nX
j=1

UMj


verifies √

n
¡
Un −µ

¢ L−→
n→∞ N (0,Σ) .
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If we denote

A =

µ
N1 − np1√

n
, ...,

NM − npM√
n

¶
,

we have

A =

µ
1√
n

µ
nP
i=1
T
(i
1 − np1

¶
, ...,

1√
n

µ
nP
i=1
T
(i
M − npM

¶¶

=

µ√
n

µ
1

n

nP
i=1
T
(i
1 − p1

¶
, ...,
√
n

µ
1

n

nP
i=1
T
(i
M − pM

¶¶
and applying the Central Limit Theorem we haveµ

N1 − np1√
n

, ...,
NM − npM√

n

¶
L−→

n→∞ N
¡
0,Σp

¢
,

where

Σp = diag (p)− ppT .
Therefore, √

n (bp− p) L−→
n→∞ N

¡
0,Σp

¢
.

Theorem 2.4

If we assume that σ2φ(p) = 0, the analogical estimator Hφ(bp), obtained by
replacing the p0is by their relative frequencies, bpi, obtained from a random sample

of size n, verifies

2n
³
Hφ(bp)−Hφ(p)

´
L−→

n→∞

rX
i=1

βiZ
2
i

where Z1, ..., Zr are i.i.d. normal random variables with mean zero and variance

1, r = rank(ΣpBΣp) and β0is are the eigenvalues of the matrix BΣp being B
the M ×M matrix

B = diag(φ00(pi)i=1,...,M).

Proof. In Theorem 2.2 it was established that the random variables

2n
³
Hφ(bθ)−Hφ (θ)

´
and

√
n(bθ − θ)TA

√
n(bθ − θ)
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have the same asymptotic distribution. The elements of the matrix A are given

by

aij = φ00(pi)δij + φ00(pM) i, j = 1, ...,M − 1
because

aij =

Z
X

µ
φ00 (fθ (x))

∂fθ (x)

∂θi

∂fθ (x)

∂θj
+

∂2fθ (x)

∂θi∂θj
φ0 (fθ (x))

¶
dµ (x)

=
M−1P
k=1

µ
φ00(pk)

∂pk
∂pi

∂pk
∂pj

+
∂2pk
∂pi∂pj

φ0(pk)
¶
+ φ00(1−

M−1P
k=1

pk)

×
∂

µ
1−

M−1P
k=1

pk

¶
∂pi

∂

µ
1−

M−1P
k=1

pk

¶
∂pj

+

∂2
µ
1−

M−1P
k=1

pk

¶
∂pi∂pj

φ0
µ
1−

M−1P
k=1

pk

¶
.

Then, for L = (bθ − θ)TA(bθ − θ) and denoting 1 =(1, .., 1)T , we have

L = (bθ − θ)Tdiag(φ00(p1), ...,φ00(pM−1))(bθ − θ)

+ (bθ − θ)Tφ00(pM)11T (bθ − θ)

=
M−1P
i=1

φ00(pi)(bpi − pi)2 + φ00(pM)
M−1P
i=1

(bpi − pi)M−1P
j=1

(bpj − pj)
=

MP
i=1

φ00(pi)(bpi − pi)2 = (bp− p)TB(bp− p),
being B = diag(φ00(pi)i=1,...,M).

By applying Remark 2.5 we obtain

√
n(bp− p) L−→

n→∞ N(0,Σp).

Then using the same argument as in Theorem 2.2 we have the desired result.

Remark 2.6

In the rest of the book the following result is important (Lemma 3, p. 57, in

Ferguson, 1996): Let X be a k-variate normal random variable with mean vector

0 and variance-covariance matrix Σ. Then XTX is distributed chi-squared with

r degrees of freedom if and only if Σ is a projection of rank r.

Since Σ is symmetric and squared it is a projection if Σ2 = Σ, and therefore

rank(Σ) =trace(Σ).
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Corollary 2.2

If we consider u = (1/M, ..., 1/M)T , we get

2nM

φ00(1/M)

³
Hφ(bp)−Hφ(u)

´
L−→

n→∞ χ2M−1. (2.8)

Proof. In this case we have Σu = diag(u)− uuT .
The random variables

2nM
³
Hφ(bp)−Hφ(u)

´
and (bp−u)TMn diag(φ00(1/M))(bp− u)

have the same asymptotic distribution, then

2nM

φ00(1/M)

³
Hφ(bp)−Hφ(u)

´
and

√
n(bp− u)Tdiag(u−1)√n(bp− u)

have the same asymptotic distribution. But

√
n(bp− u)Tdiag(u−1)√n(bp− u) =XTX,

where

X =
√
n diag(u−1/2)(bp−u)

and the asymptotic distribution ofX is normal with mean vector 0 and variance-

covariance matrix

Σ∗ = diag(u−1/2)Σudiag(u−1/2).

Now we are going to establish that the matrix Σ∗ is a projection of rank M − 1.
It is clear that

Σ∗ = diag(u−1/2)Σu diag(u−1/2) = I − diag(u−1/2)uuTdiag
¡
u−1/2

¢
,

where I denotes the M ×M identity matrix. Then we have

Σ∗Σ∗ = I − diag(u−1/2)uuTdiag(u−1/2)− diag(u−1/2)uuTdiag(u−1/2)
× diag(u−1/2)uuTdiag(u−1/2)diag(u−1/2)uuTdiag(u−1/2).

But

uTdiag(u−1/2)diag(u−1/2)u = 1,

then

Σ∗Σ∗ = I − diag(u−1/2)uuTdiag(u−1/2) = Σ∗.

© 2006 by Taylor & Francis Group, LLC



84 Statistical Inference based on Divergence Measures

Now

rank (Σ∗) = trace(diag(u−1/2)Σu diag(u−1/2)) = trace(diag(u−1)Σu),

and

diag(u−1)Σu =


(1− 1

M ) − 1
M ... ... − 1

M

− 1
M (1− 1

M ) ... ... − 1
M

... ... ... ... ...

... ... ... (1− 1
M ) − 1

M

− 1
M − 1

M ... − 1
M (1− 1

M )

 .
Therefore,

trace(diag(u−1)Σu) =M(1− 1
M ) =M − 1.

Applying Remark 2.6 we get that the asymptotic distribution of the random

variable XTX is chi-square with M − 1 degrees of freedom.

Remark 2.7

In the case of Shannon’s entropy we have

2n (logM −H(bp)) L−→
n→∞ χ2M−1,

and for the (h,φ)-entropies, Salicrú et al . (1993),

2nM

φ00(1/M)h0(Mφ(1/M))

³
Hφ
h (bp)−Hφ

h (u)
´

L−→
n→∞ χ2M−1.

Corollary 2.2 as well as Remark 2.7 permit constructing tests of goodness of

fit to one distribution.

2.4.1. Test of Discrete Uniformity

If we want to test

H0 : p1 = ... = pM = 1
M versus H1 : ∃ i, j ∈ {1, ...,M} such that pi 6= pj

we can use the test statistic

Z6 ≡ 2nM

φ00(1/M)

³
Hφ(bp)−Hφ(u)

´
(2.9)
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whose asymptotic distribution, by Corollary 2.2, is chi-square withM−1 degrees
of freedom. We should reject the null hypothesis if Z6 > χ2M−1,α.

It is also possible to get the asymptotic power of the test for p∗=(p∗1, ..., p∗M)
T 6=

(1/M, ..., 1/M)T . This power is given by

βφ,n(p
∗) = Pr

³
2nM

φ00(1/M)
¡
Hφ(bp)−Hφ(u)

¢
> χ2M−1,α/H1 : p = p

∗
´

= 1−Φn
µ √

n
σφ(p∗)

µ
φ00(1/M)χ2M−1,α

2nM +Hφ(u)−Hφ(p∗)
¶¶

,

for a sequence of distributions Φn (x) tending uniformly to the standard normal

distribution Φ (x). The expression of σφ(p
∗) is given in Theorem 2.3.

It is clear that

lim
n→∞βφ,n(p

∗) = 1−Φ (−∞) = 1,

i.e., the test is consistent.

The power obtained above can be used to determine approximately the sample

size n∗ required to achieve a desired power β∗ against a given alternative

p∗=(p∗1, ..., p
∗
M)

T 6= (1/M, ..., 1/M)T .

The power is approximately

1−Φ
Ã √

n

σφ(p∗)

Ã
φ00 (1/M)χ2M−1,α

2nM
+Hφ(u)−Hφ(p∗)

!!
.

If we wish the power to be equal to β∗ we must solve the equation

β∗ = 1−Φ
Ã √

n

σφ(p∗)

Ã
φ00 (1/M)χ2M−1,α

2nM
+Hφ(u)−Hφ(p∗)

!!
.

It is not difficult to check that the sample size, n∗, is the solution of the following
quadratic equation

n2
³
Hφ(u)−Hφ(p∗)

´2−nσφ(p∗)(Φ−1(1−β∗))2+2Sφ (M) (Hφ(u)−Hφ(p∗)) = 0,

where

Sφ (M) =
φ00(1/M)χ2M−1,α

2M
.
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The solution is given by

n∗ =
1

2A

µ
B ±

q
B2 − 4A2Sφ (M)

¶
where

B = σφ(p
∗)(Φ−1(1− β∗))2 and A = Hφ(u)−Hφ(p∗).

The test of discrete uniformity given in this section permits testing the good-

ness of fit of any distribution, i.e.,

H0 : F (x) = F0 (x) ∀x ∈ R,

through testing

H0 : pi = 1/M, i = 1, ...,M versus H1 : ∃ i, j / pi 6= pj ,

by simply partitioning the range of the random variable into M intervals with

equal probabilities under F0, and then to test if the observations are from the

given discrete uniform distribution. We use the test statistic Z6 given in (2.9)

and we should reject the null hypothesis if Z6 > χ2M−1,α.

The particularization of the results obtained in the previous Section for gen-

eral populations to multinomial populations is vital in order to study the behavior

of the diversity among one or various populations. Based on last results we will

have the possibility to test: i) if the diversity of a population is some specified

value, ii) if the diversities of two populations are equal, iii) if the diversities of

several populations are equal, and finally, iv) if the population is homogeneous

(discrete uniformity) or not.

Remark 2.8

It is interesting to observe that different diversity measures (entropy measures)

may give different diversity ordering. For instance, if we consider two populations

characterized by the following probability vectors

p =(0.3, 0.24, 0.22, 0.12, 0.09, 0.03)T

and

q = (0.36, 0.21, 0.16, 0.12, 0.08, 0.07)T ,

we have

HGS(p) = 0.7806 > HGS(q) = 0.7750
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while

H(p) = 1.61315 < H(q) = 1.631338.

Hence it appears the necessity for the definition of ordering of discrete prob-

ability distributions. In this sense we have the following results:

Definition 2.1

The probability distribution p is majorized by the probability distribution q,

and we denote, p ≺m q, iff
rX
i=1

p(i) ≤
rX
i=1

q(i), r = 1, ...,M − 1

where p(1) ≥ p(2) ≥ ... ≥ p(M) and q(1) ≥ q(2) ≥ ... ≥ q(M).
Roughly speaking, the sentence “p is majorized by the probability distribution

q”, means that q is less “spread out” than p and the population represented by

p has more diversity than the population represented by q.

Definition 2.2

A real function f defined on the simplex 4M is said to be schur-concave on

4M if

p ≺m q on 4M =⇒ f(p) ≥ f(q),
and f is strictly schur-concave on 4M if strict inequality holds whenever p ≺m q
and p is not a permutation of q.

Some entropy measures are schur-concave functions on 4M . Some examples

are: Shannon, Havrda and Charvat, Arimoto, Rényi, etc. These results could be

seen in Nayak (1983) as well as in Marshall and Olkin (1979).

2.5. Maximum Entropy Principle and Statistical In-

ference on Condensed Ordered Data

The Maximum Entropy Principle (MEP) stated for the first time by Jaynes

(1957) has had very important applications in Statistical Mechanics, Statis-

tics, Geography, Spatial and Urban Structures, Economics, Marketing, Systems
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Analysis, Actuarial Science, Finance, Computer Science, Spectrum Analysis, Pat-

tern Recognition, Search Theory, Operations Research, etc. (e.g., Kapur (1982,

1989)). In Statistics many problems have been studied on the basis of the MEP,

but perhaps one of the most important results can be found in the nonpara-

metric density function estimation. This problem was first introduced by Theil

and Laitinen (1980) and has been developed by Theil and O’Brien (1980), Theil

and Fiebig (1981), Theil and Kidwai (1981a, b), Theil and Lightburn (1981),

Rodŕıguez and Van Ryzin (1985), etc.

In relation with the problem of parametric estimation two interesting papers

are: Kapur and Kesaven (1992) and Jiménez and Palacios (1993). These authors

present the problem in the following way. Let Y1, . . . , Yn be independent random

variables with a common distribution Fθ ∈ {Fθ}θ∈Θ, being Θ an open subset of
RM0 . Let Y(1) ≤ Y(2) ≤ . . . ≤ Y(n) be the ordered sample, define Y(0) = −∞,
Y(n+1) =∞ and consider

p1(θ) = Fθ(Y(1)),

pi(θ) = Fθ(Y(i))− Fθ(Y(i−1)), i = 2, . . . , n,

pn+1(θ) = 1− Fθ(Y(n)).

In this context they propose to estimate θ by means of the value eθ ∈ Θ, verifying
−
n+1X
i=1

pi(eθ) log pi(eθ) = max
θ∈Θ

Ã
−
n+1X
i=1

pi(θ) log pi(θ)

!
. (2.10)

This method can be justified by the fact that the order statistics

Fθ(Y(1)), . . . , Fθ(Y(n))

divide the interval (0, 1) into (n + 1) random subintervals with equal expected

length. Therefore, maximizing (2.10) is equivalent to choosing θ so that the

random variables pi(θ) are close as possible to their expected value
1
n+1 . Also,

Ranneby (1984) introduced an interesting method to estimate θ by using a statis-

tical information theory approach. He proposes to minimize a Kullback—Leibler

divergence, or, equivalently, to select the value bθ of θ which maximizes
Sn(θ) =

1
n+1

n+1X
i=1

log(pi(θ)(n+ 1)),

and it is called the maximum spacing estimate.
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The transformed spacings pi(θ) may be used to get test statistics for testing

H0 : F = F0, (2.11)

and Kale (1969) indicate that test statistics of this type are useful for detecting

departures from hypothesized density functions.

If we assume that the above hypothesis is simple, applying the probability

integral transformation F0 to the sample values Y1, . . . , Yn permits assuming,

without loss of generality, that the null hypothesis (2.11) specifies the uniform

distribution on the unit interval. Then we wish to test

H0 : G(u) = u, 0 ≤ u ≤ 1, (2.12)

where G(u) is the distribution of Ui = F (Yi), i = 1, . . . , n. If U(1) < U(2) < . . . <

U(n) are the order statistics from the transformed sample, the spacings are defined

by Vi = U(i) − U(i−1) and it is possible to define statistics to test (2.12). See, for

Tests based symmetrically on spacings, namely,

of the form Tn =
1
n

Pn
i=1 h(nVi) are more common among these. Kuo and Rao

2 has maximum efficacy. Jammalamadaka et al .

(1989) established the asymptotic distribution for h(x) = x log x under the null

hypothesis given in (2.12) and the alternatives given by the densities fn(x) =

1 + n−1/4l(x), 0 ≤ x ≤ 1 where l(·) is assumed to be square integrable and
continuously differentiable on [0, 1].

The above tests are known in the literature as test statistics based on first-

order spacings. Several authors have proposed generalizations of first-order uni-

form spacings. Cressie (1976) considers tests statistics of the form

S(m)n =
n+2−mX
i=1

g
³
(n+ 1)V

(m)
i

´
, m ≤ n+ 1,

where g is a “smooth” function, and V
(m)
i = U(i−1+m)−U(i−1), i = 1, . . . , n+2−m,

are the mth-order spacings or mth-order gaps.

In this sense, the results

for testing normality and uniformity, obtained by Vasicek (1976) and Dudewicz
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instance, Kimball, (1947), Darling (1953), Kale and Godambe (1967), Kirmani

(1984) demonstrated that among a wide class of such tests, the Greenwood test

statistic obtained with h(x) = x

Rao and Sethuraman (1975).

(1986), Cressie (1979), Del Pino (1979) among others.

and Alam (1974), Pyke (1965), Kale (1969), Sethuraman and Rao (1970) and

See, e.g., Hall (1986), Stephens
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and Van der Meulen (1981) respectively, are important. These authors propose

the following test statistics based on Shannon’s entropy

Hn,m =
1
n

nX
i=1

log
³ n
2m
(Y(i+m) − Y(i−m))

´
.

Two modified versions of the above test statistic are given by Ebraimi et al .

(1994).

It is important to remark that previous methods for estimation and testing

use all the sample information; however it is very hard to find the asymptotic

distribution of the estimators even in the case of specific parametric models. This

is obviously not the case for the maximum likelihood principle or the method of

moments. Now we propose a method to decrease the amount of sample informa-

tion in order to be able to have estimators with known asymptotic distribution

when the MEP is used.

We consider a population with probability density function fθ (x) . Suppose

that we have a random sample Y1, . . . , Yn, and we only observe the order statistics

Y([ n
M
]+1), Y([ 2n

M
]+1), . . . , Y([ (M−1)n

M
]+1)

, (2.13)

where [x] is the integer part function. We form M cells having boundaries

−∞ = c0,n < c1,n < . . . < cM−1,n < cM,n =∞,

where ci,n = Y([ in
M
]+1). The observed frequency Nin in the ith-cell (ci−1,n, ci,n] is

nonrandom, Nin = [
in
M ]−[ (i−1)nM ]. The vectors of sample and population quantiles

of orders 1
M ,

2
M , . . .

M−1
M are cn = (c1,n, . . . , cM−1,n)T and c = (c1, . . . , cM−1)T ,

respectively. The ith “estimated cell probability” is therefore

pi(cn;θ) = Fθ(ci,n)− Fθ(c(i−1),n) (2.14)

where θ = (θ1, . . . , θM0)
T and Fθ is the probability distribution function associ-

ated with fθ (x). These are random, unlike the cell frequencies. For θ = θ0 (true

value of the parameter), we write pi = pi(c;θ0) =
i
M − i−1

M = 1
M , i = 1, . . . ,M .

In this context in Menéndez et al . (1997a) the following definition was given.

Definition 2.3

Let Y1, . . . , Yn be a random sample from a population described by the random
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variable X with probability density function fθ (x) . The MEP estimator based on

the order statistics given in (2.13) is defined by

bθSh = argmax
θ∈Θ

H(p(cn;θ)), (2.15)

where

H(p(cn;θ)) = −
MX
i=1

pi(cn;θ) log pi(cn;θ),

and pi(cn;θ), i = 1, ...,M, are defined in (2.14).

We remark that the approach that takes some but not all the sample quan-

tiles has been proposed by Bofinger (1973) for problems of testing goodness of

fit with Pearson test statistic. Menéndez et al. (1997a) adapted this idea to

problems of point estimation. Note also that the approach taken here is applied

also to “multiple type II censoring”, in which observations between several sets of

sample percentiles are unavailable. It is necessary only to take each unobserved

interpercentile group as a cell. This is conceptually quite similar to the generality

of censoring allowed in the procedures of Turnbull and Weiss (1978). Another

interesting approach in which only a relatively small number of order statistics

are used in testing for goodness-of-fit is given in Weiss (1974). He establishes

that U([nδ]), U(2[nδ]), . . . , U(k(n)[nδ]), with δ ∈ (3/4, 1) and k(n) = [n1−δ], are as-
ymptotically sufficient and can be assumed to have a joint normal distribution

for all asymptotic purposes.

Under some assumptions, that can be seen in Menéndez et al . (1997a), it can

be established that the estimator, bθSh, verifying the condition (2.15), verifies the
following properties,

a) bθSh converges in probability to θ0.
b) bθSh is asymptotically efficient, i.e.,

bθSh = θ0 + n
−1B0

µ
∂ logL (θ)

∂θ

¶
θ=θ0

+ oP (n
−1/2),

where B0 is a matrix of constants which may depend on θ0 and logL (θ)

is given by

logL (θ) =
MX
i=1

Nin log pi(cn;θ).
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c) n1/2(bθSh − θ0)
L−→

n→∞ N(0, IF (θ0)
−1).

Based on sample quantiles, the MEP can be used to test if data come from

a given parametric model. In this sense in the cited paper of Menéndez et al .

(1997a) it was established that

Tn = 2n
³
logM −H(p(cn; bθSh))´ L−→

n→∞ χ2M−M0−1.
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2.6. Exercises

1. Let X = {C1, ..., CM} be a set of M categories and let p =(p1, ..., pM)
T be

a probability measure defined on X . Find the expected distance between
two categories drawn at random when the distance is defined as zero if they

belong to the same category and unity otherwise.

2. Find the asymptotic variance of the entropies of Rényi, Havrda-Charvat,

Arimoto and Sharma-Mittal when the probability vector p =(p1, ..., pM)
T is

replaced by the estimator bp=(bp1, ..., bpM)T based on a simple random sample
of size n.

3. Consider the hypothesis H0 : p1 = ... = pM = 1/M and the test statistics

based on the entropies appearing in Exercise 2. Find, in each case, the

corresponding expression of the test statistic.

4. The following data correspond to the occupational status by race and year
in Walton County, Florida.

(Observed proportions)

Occupational White White Black Black

Status (1880) (1885) (1880) (1885)

Professional 0.029 0.093 0.00 0.00

Manager, clerical, proprietor 0.019 0.099 0.007 0.00

Skilled 0.086 0.040 0.007 0.00

Unskilled 0.053 0.073 0.046 0.049

Laborer 0.455 0.517 0.776 0.896

Farmer 0.358 0.178 0.164 0.055

Sample size 209 151 152 144
Source: Nayak, T. K. (1983), Ph. D. Dissertation, University of Pittsburgh.

a) Compute the diversity indexes based on Shannon’s entropy, as well as

the asymptotic variances, for the four populations.

b) Test uniformity in every population with significance level α = 0.05.

c) From data in the previous table one can observe that diversity for

the black population has decreased over time. Check this conjecture

by using a test statistic with significance level α = 0.05 and a 95%

confidence interval.

d) What happens for the white population? Do a similar study to the

one given in c).
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5. We have obtained from welding dive, four random samples corresponding
to bounded areas of 1 squared meter from 5 meters deep. The sampling
stations are found in the Spanish coast of Catalonia, from south to the
north, from the delta of Ebro river (1) through the area of Maresme (2
and 3) to the Rosas bay (4). The two stations in the area of Maresme
have a granite sandy bottom (thick); while the stations situated in delta of
Ebro river and in the Rosas bay have a chalky sandy bottom (thin). The

Sampling station 1: Riomar (Delta of Ebro river)

date: 30/06/91 Type of sand: Thin

Table 2.4

Species Frequency

Lentidium mediterraneum 216

Tellina tennis 189

Spisula subtruncata 69

Donax trunculus 51

Mactra corallina 45

Dosina lupinus 40

Carastoderma flancum 37

Otherwise 76

Total 723
Source: Pardo, L., Calvet, C. and Salicrú, M. (1992).

Sampling station 2: Canet de Mar (El Maresme)

Date: 25/03/91 Type of sand: Granite

Table 2.5

Species Frequency

Spisula sultrancata 345

Glycymeris glycymeris 52

Alcanthocardia tuberculada 36

Donax variegatus 36

Donacilla cornea 34

Chamelea gallina 28

Callista chione 18

Otherwise 71

Total 620
Source: Pardo, L., Calvet, C. and Salicrú, M. (1992).
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Sampling station 3: Malgrat de Mar (El Maresme)

Date: 17/04/91 Type of sand: Granite

Table 2.6

Species Frequency

Chamelea gallina 440

Spisula subtruncata 377

Callista chione 38

Donax variegatus 35

Glycymeris glycymeris 33

Dosina exoleta 31

Corbula gibba 8

Otherwise 41

Total 1003
Source: Pardo, L., Calvet, C. and Salicrú, M. (1992).

Sampling station 4: Rosas (Rosas bay)

Date: 09/03/91 Type of sand: Thin

Table 2.7

Species Frequency

Ceratoderma glaucum 134

Spisula subtruncata 93

Tapes decussatus 69

Venerupis aurea 59

Loripes lacteus 52

Chamelea gallina 33

Acanthoc. tuberculate 32

Otherwise 135

Total 607
Source: Pardo, L., Calvet, C. and Salicrú, M. (1992).

a) Compute the indexes of diversity based on the Gini-Simpson index for

the four stations.

b) Test the uniformity in every station with significance level α = 0.05.

c) Give a 95% confidence interval for the diversity in the four populations.
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6. Let X1, ...,Xn a random sample of a normal population, with mean µ and

variance σ2. By using asymptotic properties of Shannon’s entropy statis-

tic, prove the following relation
√
2n log bσσ L→

n→∞ N (0, 1) , where bσ is the
maximum likelihood estimator of σ.

7. Two classes of drugs, which are supposed to have some effect in a dis-
ease, were tested on 288 individuals. The individuals were classified in four
groups according to class of drug they had received. Groups 1 and 2: differ-
ent drug, group 3: both drugs, group 4: no drug. The records are presented
in the following table.

Group 1 Group 2 Group 3 Group 4

12 12 13 1

10 4 14 8

13 11 14 9

13 7 17 9

12 8 11 9

10 10 11 4

12 14 0

5 14 1

S2i =
1

ni−1
Pni
j=1(xji − xi)2 1.867 9.696 3.714 16.411

Use the test statistic SSha given in (2.4) to test the equality of variances in

the four groups with significance level α = 0.05.

8. The following values correspond to a simple random sample from a popula-

tion with distribution function F and support the real line: -7.238, -0.804,

-0.44, 0.18, -0.02, -1.08, 1.327, 1.98, -0.73, -0.27, -0.32, 0.58, -2.308, -4.37,

0.307, 4.72, 0.32, 0.124, -4.41, 1.98, -0.73, -1.27, -0.32, 0.58, -2.34, -8.19, -

12.99, 1.51, 1.09, -4.37. Suppose that F is the Cauchy distribution function,

whose probability density function is

f(x) =
1

π

1

1 + x2
x ∈ R

and consider the partition, (−∞,−1], (−1, 0], (0, 1], (1,∞).
a) Calculate Shannon’s entropy associated with the previous partition.

b) Based on Shannon’s entropy test the hypothesis that the previous

observations come from a Cauchy population with significance level

α = 0.05.
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c) Calculate the asymptotic power at the point p∗ = ( 416 ,
4
16 ,

3
16 ,

5
16)

T .

9. Let X be a random variable whose density function is f (x) = |x| e−x2 ,
x ∈ R.
a) Find an equiprobable partition with four classes in R. Use this parti-
tion to give a test statistic, based on Shannon’s entropy, for testing if

the observations -1.1, 0.42, -0.25, 4.73, -7.2, 12.3, -0.22, 1.8, -0.7, -1.9,

4.77, 2.75, 0.01, -4.2, -0.1, -0.01, 3.23, -0.97, -0.12, -3.2, -0.15, -12.3,

0.75, -0.4, -7.4, 0.27, 1.51, -2.4, -2.67, 0.32 are from the population

described by X with significance level α = 0.05.

b) Find the asymptotic power at the point p∗ = (1/2, 1/4, 1/8, 1/8)T .

10. We have the following observations from a population with distribution

function F and support the real line: 1.491, 2.495, 3.445, 1.108, 3.916,

1.112, 3.422, 2.278, 1.745, 3.131, 0.889, 2.099, 2.693, 2.409, 1.030, 1.437,

0.434, 1.655, 2.130, 1.967, 1.126, 3.113, 2.711, 0.849, 1.904, 1.570, 3.313,

2.599, 2.263, 2.208, 1.6771, 3.173, 1.235, 2.034, 4.007, 2.653, 2.269, 1.774,

4.077, 0.733, 0.061, 1.961, 1.916, 2.607, 2.060, 1.444, -0.357, 0.211, 2.555,

1.157.

a) Test the hypothesis, with a significance level α = 0.05, if the previous

observations come from a normal distribution with mean µ = 2 and

variance σ2 = 1.1, using Shannon’s entropy and a partition with 6

equiprobable classes.

b) Obtain the asymptotic power at the point p∗ = ( 115 ,
2
15 ,

3
15 ,

3
15 ,

3
15 ,

3
15)

T .

11. LetX1, ...,Xn be a random sample of size n from an exponential distribution

of parameter θ. Using Shannon’s entropy, give an asymptotic test statistic

to test H0 : θ = θ0 versus H1 : θ 6= θ0.

12. Using the entropy of Havrda and Charvat, Hs (θ) .

a) Find the asymptotic distribution of
√
n
³
Hs(bθ)−Hs (θ)

´
, where bθ is

the maximum likelihood estimator of θ.

b) Obtain the asymptotic distribution of
√
n (Hs(bp)−Hs(p)) , as a par-

ticular case of the result obtained in a).

13. We consider Laplace’s distribution

f (x, θ1, θ2) =
1

2θ2
exp(−θ−12 |x− θ1|), −∞ < x <∞, θ1 ∈ R, θ2 > 0
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whose variance is 2θ22.

a) Find the expression of the entropy of Havrda and Charvat for this

distribution and derive from it the expression of Shannon’s entropy.

b) Test, using the entropy of Havrda and Charvat, H0 : θ2 = θ∗ versus
H1 : θ2 6= θ∗.

c) Derive a procedure for testing that the variances of s Laplace indepen-

dent populations are equal. Give a procedure based on the entropy of

Havrda and Charvat.

14. We consider the population given by the following density function

fθ (x) =
θ2θ

xθ+1
x ≥ 2, θ > 0.

a) Find the test based on Shannon’s entropy for testing

H0 : θ = θ0 against H1 : θ 6= θ0.

b) Using the test obtained in a) and the observations 2.2408, 5.8951,

6.0717, 3.6448, 2.8551, 4.4065, 14.4337, 3.0338, 2.0676, 2.6155, 2.7269,

5.1468, 2.2178, 2.0141, 2.3339, 2.6548, 5.0718, 2.8124, 2.0501, 13.6717,

test H0 : θ = 2 versus H1 : θ 6= 2 with significance level α = 0.05.
15. Find the acceptance region of SSha given in (2.4) for equality of two vari-

ances and compare it with the acceptance region of the test statistics given

by Bartlett and Lhemann.

2.7. Answers to Exercises

1. If we consider the distance,

d (Ci, Cj) =

(
1, Ci 6= Cj , Pr(d(Ci, Cj) = 1) = pipj
0 Ci = Cj Pr (d (Ci, Ci) = 0) = p

2
i

,

we have

Ep [d] =
MX
i=1

MX
j=1
i6=j

pipj = 1−
MX
i=1

p2i = HGS(p).
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2. It is a simple exercise to get from Remark 2.4 the following table

Measure Asymptotic variance

Havrda-Charvat
³

s
s−1
´2ÃMP

i=1
p2s−1i −

µ
MP
i=1
psi

¶2!

Rényi
³

1
r−1

´2µMP
i=1
pri

¶−2ÃMP
i=1
p2r−1i −

µ
MP
i=1
pri

¶2!

Arimoto 1
(t−1)2

Ãµ
MP
i=1
p
2
t−1
i

¶µ
MP
i=1
p
1
t
i

¶2(t−1)
−
µ
MP
i=1
p
1
t
i

¶2t!

Sharma-Mittal (1, s) exp

µ
2 (s− 1)

MP
i=1
pi log pi

¶
×
Ã
MP
i=1
pi (log pi)

2 −
µ
MP
i=1
pi log pi

¶2!

Sharma-Mittal (r, s)
³

r
r−1

´2µMP
i=1
pri

¶ 2(s−r)
r−1

Ã
MP
i=1
p2r−1i −

µ
MP
i=1
pri

¶2!

3. From Corollary 2.2 the expression of the statistic given in (2.8) for the

different entropy measures is

Measure Statistics

Havrda-Charvat
2n

(−s) M1−s (H
s (bp)−Hs (u))

Rényi
2n

(−r)
¡
H1
r (bp)−H1

r (u)
¢

Arimoto
2n

(−t−1)M t−1 (tH (bp)−t H (u))
Sharma-Mittal (1, s)

2n

−M1−s (H
s
1 (bp)−Hs

1 (u))

Sharma-Mittal (r, s)
2n

−rM1−s (H
s
r (bp)−Hs

r (u))
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4. a) First, we obtain the sample entropies, H(bpi), i = 1, ..., 4, as well as their
asymptotic variances, σ2(bpi), i = 1, ..., 4, for the four populations. Based on
Theorem 2.3 and taking into account that in the case of Shannon’s entropy

φ(x) = −x log x, we have

σ2H(p) =
MX
i=1

pi(log pi)
2 −

Ã
MX
i=1

pi log pi

!2
.

In the case of the first population we get

H(bp1) = −0.029 log 0.029− ...− 0.358 log 0.358 = 1.2707
σ2H(bp1) = 0.029(log 0.029)2 + ...+ 0.358(log 0.358)2 −H(bp1)2

= 0.6822.

In a similar way we obtain the results for the other populations:

H(bpi) σ2H(bpi)
White (1880) 1.2707 0.6822

White (1885) 1.4179 0.7133

Black (1880) 0.7053 0.8706

Black (1885) 0.4060 0.7546

b) Now we have to test

H0 : p1= p2= p3= p4 = (1/6, ..., 1/6)
T .

We know that χ25,0.05 = 11.07 and, on the other hand,

H b(pi) logM − χ2M−1,α
2ni

White (1880) 1.2707 1.7653

White (1885) 1.4179 1.7551

Black (1880) 0.7053 1.7553

Black (1885) 0.4060 1.7533

Therefore we should reject the null hypothesis.

c) In this case we must test

H0 : H(p3) = H(p4) versus H1 : H(p3) 6= H(p4),
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and we use the test statistic

Z2 =

√
n3n4

³
H(bp3)−H b(p4)´q

n4σ2H(bp3) + n3σ2H(bp4)
whose value is Z2 = 2.857. On the other hand the critical region is given

by (−∞,−1.96) ∪ (1.96,∞) and we should reject the null hypothesis.
A 95% confidence interval for H(p3)−H(p4) is given by

(H(bp3)−H(bp4))± z0.025µσ2(bp3)n3
+

σ2(bp4)
n4

¶1/2

.

After some calculations the following interval is obtained

(0.0934, 0.5039).

This interval does not contain the value zero and then we can conclude that

the change is significant.

d) In a similar way we get that the value of the test statistic is Z2 = −1.64
and the confidence interval is

(−2.5072, 2.128).

We can not conclude that the change is significant.

5. a) The expression of Gini-Simpson index is

HGS(p) = 1−
MX
i=1

p2i .

Then

HGS(bp1) = 1− (216723)2 − (189723)2 − ( 69723)2−
¡
51
723

¢2 − ( 45723)2
− ( 40723)

2 − ( 37723)2 − ( 76723)2
= 0.8078.

In a similar way we can get the expression of the Gini-Simpson index for

the other populations

HGS(bp2) = 0.6576 HGS(bp3) = 0.6598 HGS(bp4) = 0.8428.
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Using Exercise 2 (Havrda-Charvat with s = 2) the expression of the asymp-

totic variance is given by

σ2GS(p) = 4

 MX
i=1

p3i −
Ã
MX
i=1

p2i

!2 ;
then,

σ2GS(bp1) = 0.0419, σ2GS(bp2) = 0.2312, σ2GS(bp3) = 0.0882, σ2GS(bp4) = 0.016.
b) From Exercise 3 we have

nM

Ã
MX
i=1

bp2i −M−1
!

L−→
n→∞ χ2M−1.

The numerical value of the test statistic for each population appears in the

following table:

Station Statistic

Riomar 389.15

Canet del Mar 1078.40

Malgrat de Mar 1726.40

Rosas 155.97

But χ27,0.05 = 14.076 and we should reject the homogeneity in each one of

the four populations.

c) A 100 (1− α)% confidence interval for the Gini-Simpson index in each

one of the four populations is given byµ
HGS(bp)− bσ(bp)√

n
zα/2, HGS(bp) + σ(bp)√

n
zα/2

¶
.

In the following table we have the confidence intervals for each one of the

four populations

Station Confidence Interval

Riomar (0.8047, 0.8108)

Canet del Mar (0.6394, 0.6758)

Malgrat de Mar (0.6543, 0.6652)

Rosas (0.8415, 0.8440)

© 2006 by Taylor & Francis Group, LLC



Entropy as a Measure of Diversity: Sampling Distributions 103

On the basis of the confidence intervals obtained we have the following

relations for the diversities: Rosas diversity is greater than Riomar diversity

and Riomar diversity is greater than Canet diversity and Canet diversity

equal to Malgrat de Mar diversity.

Then in our case the stations with a bottom of thin sand present greater

diversity than the stations with a bottom of granitic sand. A study of this

problem was made by Pardo, L. et al . (1992).

6. For Shannon’s entropy we have

H(σ2) ≡ H(N(µ,σ2)) = log(σ22πe)1/2,
then

√
n
¡
H(bσ2)−H ¡σ2¢¢ L−→

n→∞ N
³
0,T TIF (θ)−1 T

´
,

where T T = (t1, t2) is given in the example of Section 2.3.4 and θ =(µ,σ
2),

t1 =
∂H(σ2)

∂µ
= 0, t2 =

∂H(σ2)

∂σ2
=
1

2σ2
,

and

IF(µ,σ2)−1 =
Ã

σ2 0

0 2σ4

!
.

Then T TIF (θ)−1 T = 1/2 and
√
n
¡
H(bσ2)−H ¡σ2¢¢ L−→

n→∞ N (0, 1/2) .

Substituting H(σ2) and H(σ̂2) by their expressions we have the statement.

7. Based on (2.4), we reject the null hypothesis

H0 : σ
2
1 = σ22 = σ23 = σ24

if

Z4 =
1

2

rX
j=1

nj

Ã
log bσ2j − log rQ

j=1

¡bσ2j ¢njN
!2
> χ2r−1,α.

In our case we have

bσ21 = 1.5556, bσ22 = 8.4840, bσ23 = 3.25, bσ24 = 14.359,
and Z4 = 10.32. On the other hand we have χ23,0.05 = 7.82 and then we

should reject the null hypothesis.
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8. a) It is immediate to show that p1 = Pr((−∞,−1]) = p2 = Pr((−1, 0]) =
p3 = Pr((0, 1]) = p4 = Pr((1,∞)) = 1/4 and H(u) = log 4 = 1.3863, where
u =(1/4, 1/4, 1/4, 1/4)T

b) For testing

H0 : The observations come from a Cauchy population,

we could test

H0 : p1 = p2 = p3 = p4 = 1/4.

The critical region is

2n (log 4−H(bp)) > χ2M−1,0.05.

In our case, bp1 = 0.333, bp2 = 0.267, bp3 = 0.2, bp4 = 0.2
and then H(bp) = 1.3625. Therefore,

Z6 = 2n (log 4−H(bp)) = 1.4268.
On the other hand χ23,0.05 = 7.815. Then the null hypothesis should be not

rejected.

c) If we denote p∗ =
¡
4
16 ,

4
16 ,

3
16 ,

5
16

¢T
, we have

H(p∗) = 1.3705 and σ2(p∗) = 0.0308.

The power at p∗ =
¡
4
16 ,

4
16 ,

3
16 ,

5
16

¢T
is given by

β30(p
∗) = Pr

¡
2n(log 4−H(bp)) > χ23,0.05

¢
= Pr

¡−2nH(bp) > χ23,0.05 − 2n log 4
¢

= Pr

Ã
√
n

σ(p∗) (H(bp)−H(p∗)) < −χ23,0.05 + 2n(log 4−H(p∗))2
√
nσ(p∗)

!
≈ Pr

µ
Z <

−7.815 + 83.1776− 82.2301
2× 301/2 × 0.1755

¶
= 0.0002,

where Z is a standard normal variable.

9. a) First we obtain the equiprobable partition. The first value will be the

solution of the equation

−
Z a1

−∞
xe−x

2
dx =

1

4
,
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and this is given by a1 = −0.8305. The second point is obviously a2 = 0

and the third one, by symmetry, is a3 = 0.8325. Then the partition is given

by

(−∞,−0.8305] , (−0.8305, 0] , (0, 0.8305] , (0.8305,∞) .
On the basis of this partition we have

bp1 = 1

3
, bp2 = 8

30
, bp3 = 5

30
, bp4 = 7

30
.

Then

H(bp) = − 4X
i=1

bpi log bpi = 1.3569
and

2n (log 4−H(bp)) = 2× 30 (log 4− 1.3569) = 1.7636.
But

χ23,0.05 = 7.8115

and there is not statistical evidence to reject the null hypothesis.

b) The power at p∗ = (1/2, 1/4, 1/8, 1/8)T is given by

β30(p
∗) ≈ Φ

³ √
30

σ(p∗)
¡
log 4− 7.8115

60 −H(p∗)¢´ = 0.6591
where

H(p∗) = −1
2
log

1

2
− 1
4
log

1

4
− 1
8
log

1

8
− 1
8
log

1

8
= 1.2130

and

σ2(p∗) =
4X
i=1

p∗i (log p
∗
i )
2 −

Ã
4X
i=1

p∗i log p
∗
i

!2
= 0.3303.

10. a) First we obtain the equiprobable partition. The first value, a1, must

verify

Pr (−∞ < N (2, 1.1) < a1) =
1

6
;

this is equivalent to

Pr(−∞ <
X − 2
1.1

<
a1 − 2
1.1

) =
1

6
.

Then a1 verifies

Φ(
a1 − 2
1.1

) = 1/6,
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where Φ denotes the distribution function of the standard normal dis-

tribution. Then a1 = 2 − 0.97 × 1.1 = 0.933 and the first interval is

I1 = (−∞, 0.933] ; the interval I2 is given by I2 = (0.933, a2] where a2 is

obtained in such a way that the probability of I2 is
1
6 . Then a2 = 1.527. In

the same way we obtain I3 = (1.527, 2] , I4 = (2, 2.473] , I5 = (2.473, 3.067]

and I6 = (3.067,∞) .
It is easy to get

bp1 = 0.14, bp2 = 0.18, bp3 = 0.18, bp4 = 0.18, bp5 = 0.14 and bp6 = 0.18.
Then

H(bp) = − 6X
i=1

bpi log bpi = 1.7852,
and

Z6 = 2n(logM −H(bp)) = 1.1259.
On the other hand χ25,0.05 = 11.07 and we should reject the null hypothesis.

b) It is clear that the power at p∗ = ( 115 ,
2
15 ,

3
15 ,

3
15 ,

3
15 ,

3
15)

T is

β50(p
∗) ≈ Φ

Ã √
50

σ(p∗)
¡
log 6− 11.07

100 −H(p∗)
¢!

= 0.0901

where

H(p∗) = − 1
15 log

1
15 − 2

15 log
2
15 − 4× ( 315 log 3

15) = 1.7367, n = 50

and

σ(p∗) =

Ã
6P
i=1
pi(log pi)

2 −
µ

6P
i=1
pi log pi

¶2!1/2

= 0.2936.

11. Shannon’s entropy for the exponential distribution is given by

H (θ) = 1− log θ,

whereas the maximum likelihood estimator and the Fisher information are

bθ = nPn
i=1Xi

= X
−1
and IF (θ) = θ−2.
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We know that

√
n
³
H(bθ)−H (θ0)´ L−→

n→∞ N
¡
0,σ2 (θ0)

¢
,

with

σ2 (θ0) = IF (θ0)−1
µ
∂H (θ0)

∂θ

¶2
= θ20θ

−2
0 = 1.

Then √
n(1− log bθ − 1 + log θ0) L−→

n→∞ N (0, 1) ,

and √
n log

¡
Xθ0

¢ L−→
n→∞ N (0, 1) ,

i.e., the null hypothesis should be rejected if¯̄√
n log

¡
Xθ0

¢¯̄
> zα/2.

12. a) A first order Taylor expansion gives

Hs(bθ) = Hs (θ0) +

M0X
i=1

∂Hs (θ0)

∂θi
(bθi − θi0) + o

³°°°bθ − θ0

°°°´ .
But

√
n(bθ − θ0)

L−→
n→∞ N(0, IF (θ0)−1), then

√
n o

³°°°bθ − θ0

°°°´ = oP (1) .

Therefore, the random variables

√
n
³
Hs(bθ)−Hs (θ0)

´
and T T

√
n(bθ − θ0)

have the same asymptotic distribution, where T T = (t1, ..., tM0) with

ti =
∂Hs (θ0)

∂θi
=

1

1− s
Z
X
sfθ0(x)

s−1∂fθ0(x)
∂θi

dµ(x) s 6= 1.

Therefore,

√
n
³
Hs(bθ)−Hs (θ0)

´
L−→

n→∞ N(0,T
TIF (θ0)−1 T ).

b) In this case we have

Hs(p) = 1
1−s

µ
M−1P
i=1

psi − 1
¶
+ 1

1−s(p
s
M − 1),

T T = (t1, ..., tM−1) = s
1−s(p

s−1
1 − ps−1M , ..., ps−1M−1 − ps−1M ).
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Then

T TIF(p)−1T = s2

(1−s)2
³
(ps−11 , ..., ps−1M−1)IF(p)−1(ps−11 , ..., ps−1M−1)

T

− 2(ps−11 , ..., ps−1M−1)IF(p)−1(ps−1M , ..., ps−1M )

+ (ps−1M , ..., ps−1M )IF(p)−1(ps−1M , ..., ps−1M )
´
.

In a similar way to Theorem 2.3 we have

T TIF(p)−1T = s2

(1− s)2

 MX
i=1

p2s−1i −
Ã
MX
i=1

psi

!2 .
13. a) The entropy of Havrda and Charvat for Laplace distribution is given by

Hs (θ2) =
1

1− s
µZ

R

1

(2θ2)
s exp(−

s

θ2
|x− θ1|)dx− 1

¶
=

1

1− s(2
1−sθ1−s2 s−1 − 1), s 6= 1, s > 0,

and Shannon’s entropy by

lim
s→1

Hs (θ2) = lim
s→1

1

1− s(2
1−sθ1−s2 s−1 − 1) = log 2θ2 + 1.

b) We want to test

H0 : θ2 = θ∗ versus H1 : θ2 6= θ∗

and this is equivalent to test

H0 :
1

1− s
¡
21−sθ1−s2 s−1 − 1¢ = 1

1− s
³
21−s (θ∗)1−s s−1 − 1

´
,

i.e.,

H0 : H
s (θ2) = H

s (θ∗) .

For this purpose we use the test statistic

Z1 =

√
n
³
Hs(bθ2)−Hs (θ∗)

´
σ (θ∗)

L−→
n→∞ N (0, 1)

where

σ2 (θ∗) = T TIF (θ∗)−1 T
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and

T T =

µ
∂Hs (θ2)

∂θ1
,
∂Hs (θ2)

∂θ2

¶
θ2=θ∗

=

µ
0,
21−s

s
(θ∗)−s

¶
.

Therefore,

σ2 (θ∗) = T TIF (θ∗)−1 T
=

µ
0,
21−s

s
(θ∗)−s

¶Ã
(θ∗)2 0

0 (θ∗)2

!µ
0,
21−s

s
(θ∗)−s

¶T
=

22(1−s)

s2
(θ∗)−2s+2 .

Let us observe that

IF (θ2)−1 =
Ã

θ22 0

0 θ22

!
,

because

log fθ1,θ2 (x) = − log 2θ2 − 1

θ2
|x− θ1|

∂ log fθ1,θ2 (x)

∂θ2
= − 1

θ2
+
1

θ22
|x− θ1|

∂2 log fθ1,θ2 (x)

∂θ22
=

1

θ22

³
1− 2

θ2
|x− θ1|

´
.

Then,

IF (θ2) = −E
·
∂2 log fθ1,θ2 (X)

∂θ22

¸
= − 1

θ22

µ
1− 2

θ2
E [|X − θ1|]

¶
=
1

θ22

because

E [|X − θ1|] = θ2.

On the other hand we have

∂ log fθ1,θ2 (x)

∂θ1
= − 1

θ2

x− θ1
|x− θ1| ;

therefore,

E

"µ
− 1
θ2

θ1 −X
|X − θ1|

¶2#
=
1

θ22
.

It is also clear that

E

·
∂2 log fθ1,θ2 (X)

∂θ1∂θ2

¸
= 0,
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hence

IF (θ2) =
Ã

θ−22 0

0 θ−22

!
.

It is not difficult to get that

Z1 =
√
n

1

1− s

Ãbθ2
θ∗

!1−s
− 1
 .

The null hypothesis should be rejected if¯̄̄̄
¯̄√n 1

1− s

Ãbθ2
θ∗

!1−s
− 1
¯̄̄̄¯̄ > zα/2

where bθ2 = 1

n

¡¯̄
x1 − x(1/2)

¯̄
+ ...+

¯̄
xn − x(1/2)

¯̄¢
,

with x(1/2) the sample median.

c) In this case we want to test

H0 : σ
2
1 = ... = σ2s ,

i.e.,

H0 : 2(θ
(1)
2 )

2 = ... = 2(θ
(s)
2 )

2, (2.16)

where
³
θ
(i)
1 , θ

(i)
2

´
represent the parameters in the ith-population.

For testing (2.16) we are going to test

H0 : H
s(θ

(1)
2 ) = ... = H

s(θ
(s)
2 ).

In this case the test statistic is

Z4 =
sX
i=1

ni

σ2(bθ(i)2 )
³
Hs(bθ(i)2 )−D´2 L−→

n→∞ χ2s−1,

being

D =
1

sP
i=1

ni

σ2(bθ(i)2 )
sX
i=1

ni

σ2i (
bθ(i)2 )Hs(bθ(i)2 ).

© 2006 by Taylor & Francis Group, LLC



Entropy as a Measure of Diversity: Sampling Distributions 111

14. a) First, we obtain Shannon’s entropy associated with the considered pop-

ulation. We have

H (θ) = −
Z ∞

2

θ2θ

xθ+1
log

θ2θ

xθ+1
dx = − log θ

2
+ 1 +

1

θ
.

Then we can test H0 : θ = θ0 by testing H0 : H (θ) = H (θ0) and in this

case we know that

Z1 =

√
n

σ (θ0)

³
H(bθ)−H (θ0)´ L−→

n→∞ N (0, 1)

with σ2 (θ0) = t2IF (θ0)−1 , being

t =

µ
∂H (θ)

∂θ

¶
θ=θ0

= −(1 + θ0)

θ20
, IF (θ0) = θ−20 .

We have bθ = n
nP
i=1
log xi2

.

Then we should reject the null hypothesis if¯̄̄̄ √
n

σ (θ0)

³
H(bθ)−H (θ0)´¯̄̄̄ > zα/2.

b) In this case we have bθ = 1.7 and
√
n

σ (θ0)

³
H(bθ)−H (θ0)´ = 2.9904.

As z0.025 = 1.96 we should reject the null hypothesis.

15. We are going to obtain the acceptance region SSha given in (2.4) for r = 2.

In this case, we have

SSha =
1
2

n
n1
¡
log bσ21 − n1

N log bσ21 − n2
N log bσ22¢2

+ n2
¡
log bσ22 − n1

N log bσ21 − n2
N log bσ22¢2o

= 1
2(n1

³
n2
N log

bσ21bσ22
´2
+ n2

³
n1
N log

bσ21bσ22
´2
)

= n1n2
2N

µ
log

bσ21bσ22
¶2
.
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Therefore the acceptance region is

0 <
n1n2
2N

µ
log

bσ21bσ22
¶2
< k

and this is equivalent to

c1 <
bσ21bσ22 < 1

c2
,

where c2 < 1. The acceptance region is given by

c <
bσ21bσ22 < 1

c
(0 < c < 1) .

It is not difficult to establish that

SLeh =
(n1 − 1) (n1 − 1)
2 (n1 + n1 − 2)

Ã
log

n1
n1−1bσ21
n2
n2−1bσ22

!

and the acceptance region is the same.

The Bartlett’s test is given by

SBart = n log

 rX
j=1

njbσ2j
n

− rX
l=1

(nl − 1) log
µ
nlbσ2l
nl − 1

¶
,

where n =
rX
j=1

(nj − 1). For r = 2, we have

SBart =
1

2
n log

Ã
1

4

µ
1 +

µ
n1bσ21
n2bσ22

¶¶2µ
n2bσ22
n1bσ21

¶!

and the acceptance region is equivalent to

c <
bσ21bσ22 < 1

c
.
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3

Goodness-of-fit: Simple Null

Hypothesis

3.1. Introduction

The problem of goodness-of-fit to a distribution on the real line, H0 : F = F0,

is frequently treated by partitioning the range of data in disjoint intervals and

by testing the hypothesis H0 : p = p0 about the vector of parameters of a

multinomial distribution.

Let P = {Ei}i=1,...,M be a partition of the real line R in M intervals. Let

p = (p1, . . . , pM)
T and p0 = (p01, . . . , p

0
M)

T be the true and the hypothetical

probabilities of the intervals Ei, i = 1, . . . ,M, respectively, in such a way that

pi = PrF (Ei), i = 1, ...,M, and p
0
i = Pr F0(Ei) =

R
Ei
dF0, i = 1, ...,M.

Let Y1, . . . , Yn be a random sample from F, let Ni =
Pn
j=1 IEi(Yj), where

IEi(Yj) = 1 if Yj ∈ Ei and zero otherwise, and bp = (bp1, ..., bpM)T with bpi = Ni/n,
i = 1, . . . ,M be the absolute and relative frequencies in the intervals, respectively.

If we wish to test the simple null hypothesis,

H0 : p = p
0, (3.1)

the most commonly used test statistics are Pearson’s test statistic (or chi-square

test statistic), X2:

X2 ≡
MX
i=1

(Ni − np0i )2
np0i

(3.2)
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and the likelihood ratio test statistic, G2 :

G2 ≡ 2
MX
i=1

Ni log
Ni
np0i

. (3.3)

These two test statistics are particular cases of the family of power-divergence

test statistics, introduced by Cressie and Read (1984) and given by

Tλ
n (bp,p0) = 2n

λ(λ+ 1)

MX
i=1

bpiÃµ bpi
p0i

¶λ

− 1
!
=

2

λ(λ+ 1)

MX
i=1

Ni

Ãµ
Ni
np0i

¶λ

− 1
!
,

(3.4)

where −∞ < λ <∞. The test statistics T 0n(bp,p0) and T−1n (bp,p0) are defined to
be the limits of Tλ

n (bp,p0), as λ→ 0 and λ→ −1, respectively. Particular values
of λ in (3.4) correspond to well known test statistics: Chi-square test statistic

X2(λ = 1), likelihood ratio test statistic G2 (λ = 0), Freeman-Tukey test statistic

(λ = −1/2), modified likelihood ratio test statistic or minimum discrimination

information statistic (Gokhale and Kullback, 1978) (λ = −1), Neyman-modified
test statistic or modified chi-square test statistic (λ = −2) and Cressie-Read test
statistic (λ = 2/3). The expressions of the test statistics X2 and G2 are given in

(3.2) and (3.3) respectively. The expressions of the other test statistics are given

below:

i) λ = −2 (Modified chi-square test statistic)

T−2n (bp,p0) = n MX
i=1

(p0i − bpi)2bpi =
MX
i=1

(np0i −Ni)2
Ni

.

ii) λ = −1 (λ→−1) (Modified likelihood ratio test statistic)

T−1n (bp,p0) = 2n MX
i=1

p0i log

µ
p0ibpi
¶
= 2

MX
i=1

Ni log

µ
np0i
Ni

¶
.

iii) λ = −1/2 (Freeman-Tukey test statistic)

T−1/2n (bp,p0) = 8nÃ1− MX
i=1

q
p0i bpi

!
= 8n

Ã
1−

MX
i=1

r
p0iNi
n

!
.
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iv) λ = 2/3 (Cressie-Read test statistic)

T 2/3n (bp,p0) = 9
5n

Ã
MX
i=1

bpiµ bpi
p0i

¶2/3
− 1
!
.

Although the power-divergence test statistics yield an important flexible fam-

ily, it is possible to consider a more general family of test statistics for testing

(3.1) and containing (3.4) as a particular case: φ-divergence test statistics, which

are defined by

Tφ
n (bp,p0) = 2n

φ00(1)

MX
i=1

p0iφ

µ bpi
p0i

¶
, φ ∈ Φ∗. (3.5)

In all the chapter we shall assume that φ (x) is twice continuously differentiable

for x > 0 with the second derivative φ00(1) 6= 0.
Cressie and Read (1984) obtained the asymptotic distribution of the power-

divergence test statistic Tλ
n (bp,p0) under H0 : p = p0 for any λ ∈ R and Zografos

et al . (1990) extended the result to the family Tφ
n (bp,p0) under H0 : p = p0 for

any φ ∈ Φ∗. This result will be proved in Section 3.2., but not only under the
null hypothesis but also under contiguous alternative hypotheses. A review about

φ-divergence test statistics can be seen in Cressie and Pardo (2002a). A usual

practice is to increase the number of intervals M as the sample size n increases.

The large-sample theory of the usual chi-square test statistic for increasing M is

available in the case of a simple null hypothesis (Holst 1972, Morris 1975, Cressie

and Read 1984, Menéndez et al . 1998b). In this situation the behavior of the

φ-divergence test statistic Tφ
n (bp,p0) is studied in Section 3.3. Finally, in Section

3.4., we study some nonstandard problems on the basis of φ-divergence test

statistics. More concretely we consider the following problems: a) Goodness-of-

fit with quantile characterization, b) Goodness-of-fit with dependent observations

and c) Goodness-of-fit with misclassified data.

Cox (2002) provided some perspective on the importance, historically and

contemporarily, of the chi-square test statistic and Rao (2002) reviewed the early

work on the chi-square test statistic, its use in practice and recent contribu-

tions to alternative tests. Some interesting books in relation to the techniques of

goodness-of-fit are: Agresti (2002), D’Agostino and Stephens (1986), Bishop et

al . (1975) and Greenwood and Nikulin (1996).
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3.2. Phi-divergences and Goodness-of-fit with Fixed

Number of Classes

It is well known that Pearson (1900) proved that X2 L−→
n→∞ χ2M−1, with X

2

given in (3.2). Note that the power-divergence test statistic, Tλ
n (bp,p0), coincides

with the test statistic X2 for λ = 1. This result was later extended to the likeli-

hood ratio test statistic and to the modified chi-square test statistic by Neyman

and Pearson (1928) and Neyman (1949). Later Cressie and Read (1984) estab-

lished that Tλ
n (bp,p0) L−→

n→∞ χ2M−1 under H0 : p = p
0 for any λ ∈ R. Zografos et

al . (1990) proved that Tφ
n (bp,p0) L−→

n→∞ χ2M−1 under H0 : p = p
0 for any φ ∈ Φ∗.

We obtain, in this Section, the asymptotic distribution of the φ-divergence test

statistic Tφ
n (bp,p0) under the null hypothesis H0 : p = p0, under the alternative

hypothesis H1 : p = p∗ 6= p0 and under contiguous alternative hypotheses that

will be formulated later.

Theorem 3.1

Under the null hypothesis H0 : p = p
0 = (p01, . . . , p

0
M)

T , the asymptotic dis-

tribution of the φ-divergence test statistic, Tφ
n (bp,p0), is chi-square with M − 1

degrees of freedom.

Proof. Let g : RM −→ R+ be a function defined by

g(y1, ..., yM) =
MX
i=1

p0iφ

µ
yi
p0i

¶
. (3.6)

A second order Taylor expansion of g around p0 at bp = (bp1, . . . , bpM)T gives
g(bp1, . . . , bpM) = g(p01, . . . , p

0
M) +

MX
i=1

µ
∂g(y1, ..., yM)

∂yi

¶
p=p0

(bpi − p0i )
+ 1

2

MX
i=1

MX
j=1

µ
∂2g(y1, ..., yM)

∂yi∂yj

¶
p=p0

(bpi − p0i )(bpj − p0j)
+ o

³°°bp− p0°°2´ .
But,

g(bp1, . . . , bpM) = Dφ(bp,p0), g ¡p01, . . . , p0M¢ = Dφ(p
0,p0) = φ (1) = 0
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and µ
∂g(y)

∂yi

¶
p=p0

= φ0 (1) ,
µ
∂2g(y)

∂yi∂yj

¶
p=p0

=

 φ00 (1)
1

p0i
j = i

0 j 6= i
,

where y =(y1, ..., yM). Therefore we have

Dφ(bp,p0) = 1

2
φ00 (1)

MX
i=1

1

p0i

¡bpi − p0i ¢2 + o³°°bp− p0°°2´ .
But

n o
³°°bp− p0°°2´ = oP (1) ,

since by Remark 2.5
√
n
¡bp− p0¢ L−→

n→∞ N
³
0,Σp0

´
, where

Σp0 = diag
¡
p0
¢− p0 ¡p0¢T .

Then the random variables

Tφ
n (bp,p0) = 2n

φ00 (1)
Dφ(bp,p0) (3.7)

and

n
MX
i=1

1

p0i
(bpi − p0i )2

have the same asymptotic distribution. But

n
MX
i=1

1

p0i

¡bpi − p0i ¢2 = √n ¡bp− p0¢T C√n ¡bp− p0¢ , (3.8)

where C is a M ×M matrix given by C =diag
³¡
p0
¢−1´

.

Then, we have

√
n
¡bp− p0¢T C√n ¡bp− p0¢ =XTX,

whereX =
√
n diag

³¡
p0
¢−1/2´ ¡bp− p0¢ . The asymptotic distribution of the ran-

dom variable X is normal with mean vector 0 and variance-covariance matrix

given by

L =diag
³¡
p0
¢−1/2´

Σp0diag
³¡
p0
¢−1/2´

.
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We are going to prove that L is a projection of rank M − 1.
It is clear that

L = I−diag
³¡
p0
¢−1/2´

p0
¡
p0
¢T
diag

³¡
p0
¢−1/2´

,

and

L×L = I−diag
³¡
p0
¢−1/2´

p0
¡
p0
¢T
diag

³¡
p0
¢−1/2´

− diag
³¡
p0
¢−1/2´

p0
¡
p0
¢T
diag

³¡
p0
¢−1/2´

+ diag
³¡
p0
¢−1/2´

p0
¡
p0
¢T
diag

³¡
p0
¢−1/2´

diag
³¡
p0
¢−1/2´

× p0
¡
p0
¢T
diag

³¡
p0
¢−1/2´

= I−diag
³¡
p0
¢−1/2´

p0
¡
p0
¢T
diag

³¡
p0
¢−1/2´

= L,

because, ¡
p0
¢T
diag

³¡
p0
¢−1/2´

diag
³¡
p0
¢−1/2´

p0 = 1.

On the other hand

rank (L) = rank
³
diag

³¡
p0
¢−1´

Σp0
´
= rank

³
CΣp0

´
= trace

³
CΣp0

´
,

but

CΣp0 =
¡
δij − p0j

¢
i,j=1,...,M

,

then

trace
³
CΣp0

´
=

MX
j=1

¡
1− p0j

¢
=M − 1.

By Remark 2.6, we have

Tφ
n (bp,p0) = 2n

φ00 (1)
Dφ(bp,p0) L−→

n→∞ χ2M−1.

Corollary 3.1

Under the null hypothesis H0 : p = p
0, the asymptotic distribution of the φ-

divergence test statistic, Tφ
n (p0, bp), is chi-square with M − 1 degrees of freedom.

Proof. We consider the function ϕ (x) = xφ
¡
x−1

¢
. If φ ∈ Φ∗ then ϕ ∈ Φ∗ and

from Theorem 3.1 we have

Tϕ
n (bp,p0) L−→

n→∞ χ2M−1.
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Taking into account that ϕ00 (1) = φ00(1), we have

Tϕ
n (bp,p0) = 2n

ϕ00 (1)
Dϕ(bp,p0) = 2n

ϕ00 (1)

MX
j=1

p0iϕ

µ bpi
p0i

¶
=

2n

φ00 (1)

MX
j=1

p0i
bpi
p0i
φ

µ
p0ibpi
¶
= Tφ

n (p0, bp),
and this completes the proof.

Remark 3.1

a) In the case of Kullback-Leibler divergence, we have

T 0n(bp,p0) =2nDKull(bp,p0) L−→
n→∞ χ2M−1

and

T 0n(p
0, bp) = 2nDKull(p0, bp) L−→

n→∞ χ2M−1.

The first test statistic is the likelihood ratio test and the second one is the

modified likelihood ratio test.

b) In the case of (h,φ)-divergences the asymptotic distribution of the test sta-

tistics

Tφ,h
n (bp,p0) = 2n

h0 (0)φ00 (1)
Dhφ(bp,p0)

and

Tφ,h
n (p0, bp) = 2n

h0 (0)φ00 (1)
Dhφ(p

0, bp)
is chi-square with M − 1 degrees of freedom.

Based on Theorem 3.1, if the sample size is large enough, one can use the

100(1− α) percentile, χ2M−1,α, of the chi-square with M − 1 degrees of freedom,
defined by the equation Pr(χ2M−1 ≥ χ2M−1,α) = α, to propose the decision rule:

“Reject H0, with a significance level α, if T
φ
n (bp,p0) > χ2M−1,α ” (3.9)

(or Tφ
n (p0, bp) > χ2M−1,α).

This is the goodness-of-fit test based on the φ-divergence test statistic.
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In the following theorem we present an approximation of the power function

for the testing procedure given in (3.9).

Theorem 3.2

Let p∗ = (p∗1, . . . , p∗M)
T be a probability distribution with p∗ 6= p0. The power

of the test with decision rule given in (3.9), at p∗ = (p∗1, . . . , p∗M)
T , is

βn,φ (p
∗
1, ..., p

∗
M) = 1−Φn

³
1

σ1(p∗)

³
φ00(1)
2
√
n
χ2M−1,α −

√
nDφ(p

∗,p0)
´´
,

where Φn tends uniformly to the standard normal distribution function Φ (x) and

σ21(p
∗) =

MP
i=1
p∗i

µ
φ0
µ
p∗i
p0i

¶¶2
−
µ
MP
i=1
p∗iφ

0
µ
p∗i
p0i

¶¶2
. (3.10)

Proof. First we establish that under the hypothesis H1 : p = p
∗ 6= p0 we have

√
n
¡
Dφ(bp,p0)−Dφ(p

∗,p0)
¢ L−→
n→∞ N

¡
0,σ21(p

∗)
¢
,

whenever σ21(p
∗) > 0 and with σ21(p

∗) given in (3.10).

A first order Taylor expansion of the function g, given in (3.6), around p∗ =
(p∗1, . . . , p∗M)

T at bp = (bp1, . . . , bpM)T gives
Dφ(bp,p0) = Dφ

¡
p∗,p0

¢
+

MX
i=1

µ
∂Dφ(p,p

0)

∂pi

¶
p=p∗

(bpi − p∗i ) + o (kbp− p∗k)
where µ

∂Dφ(p,p
0)

∂pi

¶
p=p∗

= φ0
µ
p∗i
p0i

¶
, i = 1, ...,M.

Under the hypothesis H1 : p = p
∗, we have that

√
n (bp− p∗) L−→

n→∞ N
³
0,Σp∗

´
,

with Σp∗ = diag (p∗)− p∗ (p∗)T , then √n o (kbp− p∗k) = oP (1) . Therefore the
asymptotic distribution of the random variables

√
n
¡
Dφ(bp,p0)−Dφ(p

∗,p0)
¢

and
√
n
MX
i=1

ti (bpi − p∗i ) ,
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with

ti = φ0
µ
p∗i
p0i

¶
, i = 1, ...,M,

is the same.

But

√
n
MX
i=1

ti (bpi − p∗i ) = √nT T (bp− p∗)
converges in law to a normal distribution with mean zero and variance T TΣp∗T ,

where T = (t1, ..., tM)
T . It is not difficult to establish that

T TΣp∗T = σ21(p
∗).

Then

βn,φ (p
∗
1, ..., p

∗
M) = Pr

³
Tφ
n (bp,p0) > χ2M−1,α/ H1 : p = p

∗
´

= 1−Φn
³

1
σ1(p?)

³
φ00(1)
2
√
n
χ2M−1,α −

√
nDφ(p

∗,p0)
´´
,

where Φn (x) tends uniformly to the standard normal distribution function Φ (x)

and σ21(p
∗) is given in (3.10). This completes the proof.

Based on this result an approximation of the power function of the test, with

decision rule given in (3.9), at p∗ = (p∗1, ..., p∗M)
T , is

βn,φ (p
∗
1, ..., p

∗
M) ' 1−Φ

³
1

σ1(p∗)

³
φ00(1)
2
√
n
χ2M−1,α −

√
nDφ(p

∗,p0)
´´
,

where Φ is the standard normal distribution function.

It is clear that limn→∞ βn,φ (p
∗
1, ..., p

∗
M) = 1, i.e., the test is consistent.

Corollary 3.2

In a similar way to the previous theorem it is possible to establish that

√
n
¡
Dφ(p

0, bp)−Dφ(p
0,p∗)

¢ L−→
n→∞ N (0,σ2(p

∗))

where σ2(p
∗) is given by

σ22(p
∗) =

MX
i=1

p∗i s
2
i −

Ã
MX
i=1

p∗i si

!2
,
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with

si = φ

µ
p0i
p∗i

¶
− p

0
i

p∗i
φ0
µ
p0i
p∗i

¶
, i = 1, ...,M.

Corollary 3.3

a) In the case of the Kullback-Leibler divergence measure, we have

σ21(p
∗) =

MP
i=1
p∗i

µ
log

p∗i
p0i

¶2
−
µ
MP
i=1
p∗i log

p∗i
p0i

¶2
,

σ22(p
∗) =

MP
i=1

¡
p0i
¢2
p∗i
− 1.

b) In the case of (h,φ)-divergences we have

σ21(p
∗) =

MP
i=1
p∗i
³
h0
¡
Dφ(p

∗,p0)
¢
φ0
³
p∗i
p0i

´´2
−

µ
MP
i=1
p∗ih0

¡
Dφ(p

∗,p0)
¢
φ0
³
p∗i
p0i

´¶2
and

σ22(p
∗) =

MP
i=1
p∗i
³¡
h0
¡
Dφ(p

0,p∗)
¢¢ ³

φ
³
p0i
p∗i

´
− p0i

p∗i
φ0
³
p0i
p∗i

´´´2
−

µ
MP
i=1
pi
¡
h0
¡
Dφ(p

0,p∗)
¢¢ ³

φ
³
p0i
p∗i

´
− φ0

³
p0i
p∗i

´´¶2
.

Proof. Part a) is a simple exercise. We prove part b). If we consider the

function

g (y1, ..., yM) = h

Ã
MX
i=1

p0iφ

µ
yi
p0i

¶!
and its first Taylor’s expansion around p∗ = (p∗1, ..., p∗M)

T at bp, we get
g (bp1, ..., bpM) = g (p∗1, ..., p∗M) + MX

i=1

µ
∂g

∂yi

¶
y=p∗

(bpi − p∗i ) + o (kbp− p∗k) .
Therefore the random variables

√
n (g (bp1, ..., bpM)− g (p∗1, ..., p∗M)) and √n MX

i=1

Ãµ
∂g

∂yi

¶
y=p∗

(bpi − p∗i )
!
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have the same asymptotic distribution, i.e.,

√
n
³
Dhφ(bp,p0)−Dhφ(p∗,p0)´ and √n MX

i=1

t∗i (bpi − p∗i )
have the same asymptotic distribution, where

t∗i = h
0 ¡Dφ(p

∗,p0)
¢
φ0
µ
p∗i
p0i

¶
, i = 1, ...,M.

In a similar way to Theorem 3.1 one can get σ22(p
∗).

In order to produce a nontrivial asymptotic power, Cochran (1952) suggested

using a set of local alternatives contiguous to the null hypothesis as n increases.

Consider the multinomial probability vector

pn ≡ p0 + d/
√
n,

where d =(d1, ..., dM)
T is a fixed M ×1 vector such thatPM

j=1 dj = 0, and recall

that n is the total-count parameter of the multinomial distribution. As n → ∞
the sequence of probability vectors {pn}n∈N converge to the probability vector

p0 in the null hypothesis at the rate O
¡
n−1/2

¢
. We say that

H1,n : p = pn ≡ p0 + d/
√
n (3.11)

is a sequence of contiguous alternative hypotheses, here contiguous to the null

hypothesis p0. Our interest is to study the asymptotic behavior of the test power

under contiguous alternative hypotheses, i.e.,

βn,φ(pn) = Pr
³
Tφ
n (bp,p0) > χ2M−1,α/H1,n : p = pn

´
. (3.12)

In what follows we show that under the alternative hypotheses H1,n, as n→∞,
Tφ
n (bp,p0) converges in distribution to a noncentral chi-square random variable

with noncentrality parameter δ, where δ is given in Theorem 3.3, and M − 1 de-
grees of freedom

¡
χ2M−1 (δ)

¢
. Lehmann (1959) argues that contiguous alternative

hypotheses are the only alternative hypotheses of interest.

It is interesting to observe that if we consider a point p∗ 6= p0, we can write
p∗ = p0 + n−1/2

¡√
n
¡
p∗ − p0¢¢ , and if we define pn ≡ p0 + d/√n with d =√

n
¡
p∗ − p0¢ we can use the expression given in (3.12) to get an approximation

of the power function at p∗.
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Theorem 3.3

The asymptotic distribution of the φ-divergence test statistic Tφ
n (bp,p0), under

the contiguous alternative hypotheses (3.11), is noncentral chi-square with M −1
degrees of freedom and noncentrality parameter δ given by

δ = dTdiag
³¡
p0
¢−1´

d.

Proof. We can write

√
n
¡bp− p0¢ =

√
n (bp− pn) +√n ¡pn − p0¢ = √n (bp− pn) + d,

and under the hypothesis H1,n : p = pn ≡ p0 + d√
n
, we have

√
n (bp− pn) L−→

n→∞ N
³
0,Σp0

´
and √

n
¡bp− p0¢ L−→

n→∞ N
³
d,Σp0

´
.

By (3.8) in Theorem 3.1 we have

Tφ
n (bp,p0) = 2n

φ00 (1)
Dφ(bp,p0) = √n(bp− p0)TC√n(bp− p0) + o³°°bp− p0°°2´ .

Then

Tφ
n (bp,p0) =

√
n
³
diag

³¡
p0
¢−1/2´ ¡bp− p0¢´T √n³diag ³¡p0¢−1/2´ ¡bp− p0¢´

+ o
¡°°bp− p0°°¢2 =XTX+o

¡°°bp− p0°°¢2
being the asymptotic distribution of X multivariate normal with mean vector

diag
³¡
p0
¢−1/2´

d and variance-covariance matrix

diag
³¡
p0
¢−1/2´

Σp0diag
³¡
p0
¢−1/2´

.

Applying Lemma (Ferguson 1996 p. 63) “Suppose that X is N (µ,Σ) . If Σ

is idempotent of rank M and Σµ = µ, the distribution of XTX is noncentral

chi-square withM−1 degrees of freedom and noncentrality parameter δ = µTµ”,
the result follows if we establish that

diag
³¡
p0
¢−1/2´

Σp0diag
³¡
p0
¢−1/2´

diag
³¡
p0
¢−1/2´

d = diag
³¡
p0
¢−1/2´

d,
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because in Theorem 3.1 it was proved that

L = diag
³¡
p0
¢−1/2´

Σp0diag
³¡
p0
¢−1/2´

= I−diag
³¡
p0
¢−1/2´

p0
¡
p0
¢T
diag

³¡
p0
¢−1/2´

,

is a projection of rank M − 1.
We denote by U

diag
³¡
p0
¢−1/2´

Σp0diag
³¡
p0
¢−1/2´

diag
³¡
p0
¢−1/2´

d = Ldiag
³¡
p0
¢−1/2´

and we have

U =
³
I−diag

³¡
p0
¢−1/2´

p0
¡
p0
¢T
diag

³¡
p0
¢−1/2´´

diag
³¡
p0
¢−1/2´

d

= diag
³¡
p0
¢−1/2´

d−diag
³¡
p0
¢−1/2´

p0
¡
p0
¢T
diag

³¡
p0
¢−1´

d

= diag
³¡
p0
¢−1/2´

d,

since
¡
p0
¢T
diag

³¡
p0
¢−1´

d =0.

The asymptotic distribution of the φ-divergence test statistic in a stratified

random sampling was obtained in Morales et al . (1994) .

3.3. Phi-divergence Test Statistics under Sparseness

Assumptions

In the previous Section we have established the asymptotic distribution of

the φ-divergence test statistic assuming M fixed and letting the sample size n

tend to infinity. A different approach lets both n and M tend to infinity, but

at the same rate so that n/M remains constant. In Bishop et al . (1975, p.

410) the following can be seen “...One reason for looking at this special type

of asymptotic comes from practical considerations. Typically, multinomial data

arrive in the form of a cross-classification of discrete variables. In many situations

there are a large number of variables which can be used to cross-classify each

observation, and if all of these variables are used the data would be spread too

thinly over the cells in the resulting multidimensional contingency table. Thus

if the investigator uses a subset of the variables to keep the average number of

observations from becoming too small, he is in effect choosing M so that n/M
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is moderate.” Holst (1972) pointed out the following “it is rather unnatural to

keep M fixed when n →∞; instead we should have that limn→∞M = ∞.” For
equiprobable cells Hoeffding (1965, p. 372) showed that Pearson test statistic is

much more powerful than likelihood ratio test statistic against near alternative

p satisfying maxi
¯̄
pi −M−1¯̄ = O ¡M−1¢ , for moderate significance levels, with

n/M moderate and M large.

In this Section we assume that the partition size M depends on the sample

size n, i.e., M = Mn with limn→∞Mn = ∞. The intervals or classes depend, in
general, on n. For this reason we denote the partition by Pn and its elements by
Enj , j = 1, ...,Mn. Then we have Pn = {En1, ..., EnMn} , with 1 < Mn ≤ ∞. We
denote γn = n/Mn and we assume that

lim
n→∞γn = γ ∈ (0,∞) . (3.13)

Let pn = (pn1, ..., pnMn)
T be the vector of probabilities verifying pni = Pr (Eni) ,

i = 1, ...,Mn, and let bpn = (bpn1, ..., bpnMn)
T be the relative frequency vector based

on a random sample of size n, Y1, ..., Yn, i.e., bpni = Nni/n being Nni the number
of elements in the class Eni, i = 1, ...,Mn. We write Nn = (Nn1, ..., NnMn) to

denote the vector of absolute frequencies.

Assumption (3.13) is realistic in goodness-of-fit testing, where partitions Pn
are usually specified so that all observed frequencies Nni = nbpni were approx-
imately the same and relatively large. If we denote the desired level of cell

frequencies by γ then we obtain from the condition Nni = γ +OP (n) , and from

the law of large numbers condition bpni = pni + oP (1) , that the ratio n/Mn, the

expected number of observations in each cell, must be close to γ. On the other

hand, (3.13) with small γ means that many cells are sparsely frequented. Thus

The first results of this kind were published by Holst (1972). He developed

a Poissonization technique leading under (3.13) to asymptotic distribution of

Pearson test statistic and likelihood ratio test statistic. The so called Poissoniza-

tion technique is originating from the fact that the vector Z =(Z1, ..., ZM) of

independent Poisson random variables with E [Z] = (λ1, ...,λM)
T is under the

condition Z1 + ... + ZM = n multinomially distributed with parameters n and

p =(λ1/n, ...,λM/n)
T . Thus if M =Mn and the expectation of Z = Zn is npn
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(3.13) is also known as the sparseness assumption; see Section 4.3 in Read and

Cressie (1988) devoted to testing under this assumption.
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then the conditional distribution of Zn given Zn1+ ...+ZnMn = n coincides with

the unconditional distribution of above defined Nn.

Morris (1975) derived a central limit law for a sequence of X2 and G2 test

statistics, each measuring the fit of a known multinomial to a count data set

withM cells. He gave conditions under which X2 and G2, suitably standardized,

approach normality as M tends to infinity. The closeness of these distributions

to the normal, for selected sparse multinomial, was examined in a simulation

study by Koehler and Larntz (1980). Dale (1986) obtained the asymptotic dis-

tribution of X2 and G2 test statistics for product-multinomial model and later

Morales et al . (2003) obtained, for this model, the asymptotic distribution of the

φ-divergence test statistic.

Holst (1972) considered the test statistic

Sn =
MnX
i=1

Φn(Nni, i/Mn)

where Φn : [0,∞)× [0, 1]→R is a measurable function satisfying the condition

|Φn(u, v)| ≤ c1 ec2u

for some c1, c2 ∈ R not depending on n. He proved that the conditions:

i) lim
n
sup max

1≤i≤Mn

npin <∞

ii) 0 < lim
n
inf

σ2n
n
≤ lim

n
sup

σ2n
n
<∞

imply
Sn − µn

σn

L−→
n→∞ N(0, 1),

being

µn =
MnX
i=1

E [Φn(Zni, i/Mn)]

and

σ2n =
MnX
i=1

V ar [Φn(Zni, i/Mn)]− n−1
Ã
MnX
i=1

Cov [Zni,Φn(Zni, i/Mn)]

!2
,
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where Zni, i = 1, ...,Mn are Poisson random variables with parameters npni
(E [Zni] = npni) .

If we consider qn = (qn1 , ..., qnMn)
T with qni > 0, 1 ≤ i ≤ Mn and the

continuous piecewise linear function gn : [0, 1]→R defined by gn(0) = 1 and

gn(i/Mn) = nqni if 1 ≤ i ≤Mn

and we define for u ∈ [0,∞) and v ∈ [0, 1]

Φn(u, v) = gn(v)φ

µ
u

gn(v)

¶
,

then

nDφ(bpn,qn) = MnX
i=1

n qni φ

µ
Nni
n qni

¶
=

MnX
i=1

gn(i/Mn)φ

µ
Nni

gn(i/Mn)

¶
= Sn.

To use the limit theorem of Holst it is necessary to establish that there exist

c1, c2 ∈ R not depending on n and verifying

|Φn(u, v)| =
¯̄̄̄
gn(v)φ

µ
u

gn(v)

¶¯̄̄̄
≤ c1ec2u.

We know that φ (t) ≥ 0 and let us suppose

φ(0) = lim
t↓0

φ(t) <∞ and lim
t→∞

logφ(t)

t
<∞. (3.14)

Since φ(t) is convex in the domain 0 ≤ t <∞, the function f (t) = (φ(t)−φ(0))/t
is nondecreasing. Hence if t0 > 0 then

0 ≤ φ(t) ≤ φ(0) + t
φ(t0)− φ(0)

t0
0 ≤ t ≤ t0.

Further, by (3.14) there exist a positive value t0 and c ∈ R such that

φ(t) ≤ ec t t > t0.

Then there exist c∗1, c∗2 ∈ R verifying 0 ≤ φ(t) ≤ c∗1 ec
∗
2t ∀ t ≥ 0.

Therefore for each 0< τ <∞ we have the relation

τφ
³u
τ

´
≤ τ c∗1 e

c∗2u/τ .
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Since φu(τ) = τ φ(u/τ), 0 ≤ u <∞, are convex functions of τ , we have for each
0 < τ1 < τ2 <∞ and 0 ≤ u <∞

sup
τ1≤τ≤τ2

¯̄̄
τ φ
³u
τ

´¯̄̄
≤ max

½
τ1 φ

µ
u

τ1

¶
, τ2 φ

µ
u

τ2

¶¾
.

The assumption

0 < lim
n
inf min

1≤i≤Mn

n qni ≤ lim
n
inf max

1≤i≤Mn

n qni <∞ (3.15)

implies the existence of 0 < τ1 < τ2 <∞ and n0 with the property τ1 ≤ n qni ≤
τ2 for all 1 ≤ i ≤Mn and n > n0.

It follows from here that under (3.15) the function Φn(u, v) satisfies for all

n > n0 and c1 = max{τ1c∗1, τ2c∗1}, c2 = max{c∗2/τ1, c∗2/τ2} that

|Φn(u, v)| ≤ c1ec2u.

It is easy to check that in this case µn = nµφ,n and σ2n = nσ
2
φ,n for

µφ,n =
MnX
i=1

E

·
qni φ

µ
Zni
n qni

¶¸
and

σ2φ,n = n
MnX
i=1

V ar

·
qni φ

µ
Zni
n qni

¶¸
−
Ã
MnX
i=1

Cov

·
Zni, qni φ

µ
Zni
n qni

¶¸!2
,

where Zni are Poisson random variables with E [Zni] = npni.

Now the condition ii) given previously is equivalent to

0 < lim
n
inf σ2φ,n ≤ limn sup σ2φ,n <∞.

Then we have established the following result for Dφ(bpn,qn).
Theorem 3.4

If the null hypothesis H0 : p = pn satisfies

lim
n
sup max

1≤i≤Mn

npin <∞,

© 2006 by Taylor & Francis Group, LLC



130 Statistical Inference based on Divergence Measures

the conditions:

i) φ(0) = lim
t↓0

φ(t) <∞ and lim
t→∞

logφ(t)

t
<∞,

ii) Given qn = (qn1 , ..., qnMn
)T with qni > 0, ∀ 1 ≤ i ≤Mn

0 < lim
n
inf min

1≤i≤Mn

n qni ≤ lim sup max
1≤i≤Mn

nqni <∞

and

iii)

0 < lim
n
inf σ2φ,n ≤ limn sup σ2φ,n <∞

imply that √
n(Dφ(bpn,qn)− µφ,n)/σφ,n L−→

n→∞ N(0, 1).

This result was established by Menéndez et al . (1998b). Now we present some

interesting results in relation to the assumptions in the previous theorem.

Proposition 3.1

If we assume that

qni =
1

Mn
, 1 ≤ i ≤Mn, (3.16)

then it holds

0 < lim
n
inf min

1≤i≤Mn

nqni ≤ lim
n
sup max

1≤i≤Mn

n qni <∞.

Proof. This result is immediate since we have assumed that limn→∞ n/Mn =

γ ∈ (0,∞) .
Proposition 3.2

If qn = pn, the condition

0 < lim
n
inf min

1≤i≤Mn

n qni ≤ lim
n
sup max

1≤i≤Mn

nqni <∞

implies the condition

lim
n
sup max

1≤i≤Mn

npin <∞.
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If also pn =
³

1
Mn
, ..., 1

Mn

´T
, the conditions limn sup max1≤i≤Mn npin <∞ and

0 < lim
n
inf min

1≤i≤Mn

n qni ≤ lim
n
sup max

1≤i≤Mn

n qni <∞

hold and in this case

Zni = Poisson (nqni) = Poisson

µ
n

Mn

¶
= Poisson (γn) ,

where γn = n/Mn and then

µφ,n = E

·
φ

µ
Zn
γn

¶¸
and

σ2φ,n = γnV ar

·
φ

µ
Zn
γn

¶¸
− Cov2

·
Zn,φ

µ
Zn
γn

¶¸
.

Proof. The result follows by previous theorem.

In the mentioned Section 4.3 of Read and Cressie (1988) they considered

the power-divergence test statistic. We point out that this family of test statis-

tics is obtained as a particular case of Dφ(bpn,qn) by taking φ (x) ≡ φ(λ) (x) =
1

λ(λ+1)

¡
xλ+1 − x− λ (x− 1)¢ , λ 6= 0,−1,where φ(0) (x) = limλ→0 φ(λ) (x) and

φ(−1) (x) = limλ→−1 φ(λ) (x) . Using Holst’s theorem, Read and Cressie (1988)
obtained under the uniform hypothesis (3.16) asymptotic distributions of the

test statistics Dφ(λ)(bpn,qn) for every λ > −1. For nonuniform pn they estab-

lished a similar result, but only for λ > −1 and integer-valued. For the proof
they referred to Corollary 4.1 and Theorem 5.2 of Morris (1975), who employed

a Poissonization idea alternative to Holst’s, leading to a similar result under

slightly weaker assumptions about pn, but only for integer orders λ > −1. They
formulated a conjecture that their asymptotic result can be extended to every

λ > −1. The theorem presented in this Section, established in Menéndez et al .

(1998b), provides asymptotic distributions also for test statistics not admitted in

the theory of Morris, i.e., for the power-divergence of all orders λ > −1, since
the corresponding functions φ(λ) (x) satisfy the condition φ(λ) (0) < ∞ if and

only if λ > −1. This in particular means that the previous theorem confirms the

conjecture of Read and Cressie.
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3.4. Nonstandard Problems: Tests Statistics based on

Phi-divergences

3.4.1. Goodness-of-fit with Quantile Characterization

The quantile characterization is an alternative method for testing goodness-

of-fit and, perhaps, has some advantage over that using Tφ
n (bp,p0) as discussed

previously in Bofinger (1973), Durbin (1978), Menéndez et al . (2001b, 2001c) and

others. The hypothetical and empirical quantile functions are defined as

F−10 (π) = inf {x : F0 (x) > π} and F−1n (π) = inf {x : Fn (x) > π} ,

respectively, for every π ∈ (0, 1) . Fn (x) is the empirical distribution function

-

6

c1 c

F (c1) = π1

1

F (·)

π

Figure 3.1. Distribution function.

Data are reduced by considering a partition π =(π1, ...,πM−1) ∈ (0, 1)M−1 with

π0 = 0 < π1 < ... < πM−1 < 1 = πM , (3.17)

and by applying the functions F−10 and F−1n to π

Let Y1, ..., Yn be a random sample of size n. Hypothetical and empirical quantile

vectors are calculated, respectively, as follows

c = (c1, ..., cM−1) =
¡
F−10 (π1) , ..., F

−1
0 (πM−1)

¢
,

Y n=
¡
Yn1 , ..., YnM−1

¢
=
¡
F−1n (π1) , ..., F

−1
n (πM−1)

¢
,
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defined in Section 1 of Chapter 1.

. (See Figures 3.1 and 3.2.)
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where Yni = Y(ni) (ni = [nπi] + 1, i = 1, ...,M − 1) is the nith-order statistic.

-

?

6
6

?

0 1π1

c

F−1(π1) = c1

F−1(·)

π

Figure 3.2. Quantile function.

Hypothetical and empirical probability vectors, q0 and p(Y n), are calculated

by

q0=(q01, ..., q
0
M)

T = (F0(cj)−F0(cj−1) : 1 ≤ j ≤M)T = (πj−πj−1 : 1 ≤ j ≤M)T ,

and

p(Y n) = (p1(Y n), ..., pM(Y n))
T =

¡
F0(Ynj )− F0(Ynj−1) : 1 ≤ j ≤M

¢T
,

where n0 = 0, nM = +∞, Yn0 = −∞ and YnM = +∞.
Once we have calculated the probability vectors q0 and p(Y n), different test

statistics can be used to test

H0 : F = F0. (3.18)
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The φ-divergence test statistic is given by

Tφ
n (p(Y n),q

0) =
2n

φ00 (1)
Dφ(p(Y n), q

0), φ ∈ Φ∗.

In relation with this family of φ-divergence test statistics in Menéndez et al .

(1998a, 2001a) the following result was obtained:

Theorem 3.5

Let F0 (x) be continuous and increasing in the neighborhood of each cj =

F−10 (πj), j = 1, ...,M − 1.

i) The decision rule “ Reject H0 if T
φ
n (p(Y n), q0) > χ2M−1,α” defines a test

for testing (3.18) with significance level α.

ii) Let G be a distribution function with G 6= F0 and consider

q∗ = (q∗1, ..., q
∗
M)

T = (G(cj)−G(cj−1) : 1 ≤ j ≤M)T .

The power βn,φ of the test with decision rule given in part i) satisfies, at

the alternative q∗,

βn,φ (q
∗
1, ..., q

∗
M) = 1−Φn

µ
1

σφ(q∗)

³
φ00(1)
2
√
n
χ2M−1,α −

√
nDφ(q

∗,q0)
´¶
,

where σ2φ(q
∗) is given by

σ2φ(q
∗) =

MP
i=1
q∗i

µ
φ0
µ
q∗i
q0i

¶¶2
−
µ
MP
i=1
q∗i φ

0
µ
q∗i
q0i

¶¶2
,

and Φn (x) is a sequence of distribution functions tending uniformly to the

standard normal distribution function Φ (x) .

iii) The test given in part i) is consistent in the sense of Fraser (1957), that is,

for every alternative q∗ 6= q0,

lim
n→∞βn,φ (q

∗
1, ..., q

∗
M) = 1 for all α ∈ (0, 1) .

iv) If we consider contiguous alternative hypotheses

H1,n : qn = q
0 +

1√
n

¡
q∗ − q0¢ ,
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the asymptotic distribution of the φ-divergence test statistic, Tφ
n (p(Y n), q

0),

given in part i), is noncentral chi-square with M −1 degrees of freedom and
noncentrality parameter δ given by

δ =
MX
j=1

³
q∗j − q0j

´2
q0j

.

The proof of this Theorem is given in Menéndez et al . (2001a). An example for

comparing the procedure given in this Section to the procedure given in Section

3.2 can be seen in this paper.

3.4.2. Goodness-of-fit with Dependent Observations

In this Section we study the φ-divergence test statistic for testing the sta-

tionary distribution as well as the matrix of transition probabilities in a Markov

chain.

Stationary Distribution

Methods of statistical inference established for stationary independent data are

often applied to dependent data. Investigations into the effects of Markov depen-

dence seem to have been initiated by Bartlett (1951), who showed that such tests

need no longer have the “usual” asymptotic distribution. Later this problem has

(1983) presented for irreducible aperiodic Markov chains a goodness-of-fit test for

statistic. In this Section we present a methodology, studied in Menéndez et al .

(1997b, 1999a), for specification of critical values and powers of the φ-divergence

test statistic in the framework of general statistical models with stationary data.

The general methodology is illustrated in the model considered by Tavaré and

Altham (1983).

Let Y = {Yk, k ≥ 0} be a stationary sequence of random variables taking on

values in the sample space X ⊂ R, and F the distribution function of components
Yk on X . We consider the problem of testing the hypothesis H0 : F = F0
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been considered in many papers, see for instance Moore (1982), Glesser andMoore

the stationary distribution, under simple null hypothesis, based on Pearson test

(1983a, 1983b), Molina et al . (2002) and references therein. Tavaré and Altham
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based on a realization of length n from Y . We consider the fixed partition P =
{Ei}i=1,...,M of X . Let Ni =

Pn
j=1 IEi(Yj) be the number of observations in

Ei, i = 1, ...,M. In other words, we consider the classical goodness-of-fit tests

for vectors bp = (bp1, . . . , bpM)T , bpi = Ni/n, of the observed cell frequencies and

vectors of the theoretical cell frequencies p = (p1, . . . , pM)
T , where pi = PrF (Ei),

i = 1, ...,M. The hypothesis F0 is indicated by writing p
0 = (p01, . . . , p

0
M)

T , with

p0i = PrF0(Ei), i = 1, ...,M, and it is assumed that all the components of p
0 are

nonzero.

In this context Menéndez et al . (1997b) established the following result.

Theorem 3.6

If the model satisfies the regularity assumptions:

i) Under the null hypothesis H0 : p = p
0, for n→∞, bpi = p0i + oP (1) , for all

1 ≤ i ≤M.

ii) The autocorrelation structure of the model verifies

√
n
³
(p01)

−1/2 ¡bp1 − p01¢ , ..., (p0M)−1/2 ¡bpM − p0M¢´ L−→
n→∞ N(0,V ),

where V is a given matrix.

Then, the φ-divergence test statistic

Tφ
n (bp,p0) = 2n

φ00 (1)
Dφ(bp,p0)

converges in law to a random variable X, defined by

X ≡
MX
i=1

ρiZ
2
i , (3.19)

where ρi are the eigenvalues of the matrix V and Zi, i = 1, ...,M, are independent

standard normal variables.

Remark 3.2

Based on the previous theorem we should reject the null hypothesis F = F0 if

Tφ
n (bp,p0) > Qα,

where Qα is the 100 (1− α)-percentile of the random variable X given in (3.19).

The matrix V and, consequently, the eigenvalues ρi may not be specified uniquely
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by the null hypothesis F0 (uniquely the marginal distribution of components Yi is

specified ). If V depends continuously on the model parameters which remain free

under F0, and there exist consistent estimates of these parameters leading to the

estimate V n of the matrix V , then we can use the tests

Tφ
n (bp,p0) > Qnα,

where Qnα is the 100 (1− α)-percentile of

Xn≡
MX
i=1

ρniZ
2
i ,

and ρni are the eigenvalues of the matrix V n. The continuity argument leads to

the conclusion that ρni estimates consistently ρi, i.e., Qnα estimates consistently

Qα.

Theorem 3.6 and Remark 3.2 assert that all members of the family of φ-

divergence test statistics Tφ
n (bp,p0) are asymptotically equivalent from the point

of view of the test size

α = Pr
³
Tφ
n (bp,p0) > Qnα/p = p0´

and preferences between them are based on the test powers. The power for

p∗ 6= p0 is
βn,φ (p

∗) = Pr
³
Tφ
n (bp,p0) > Qnα/p = p∗´ .

The previous φ-divergence test statistic, Tφ
n (bp,p0), can be applied to station-

ary irreducible aperiodic Markov chains. We consider a random sample of size n

from a stationary irreducible aperiodic Markov chain Y ={Yk, k ≥ 0} with state
space {1, ...,M} . By P = (p(i, j))i,j=1,...,M we denote the matrix of transition

probabilities of this chain and by p0 the stationary distribution, i.e., solution

of the equation p0 = P (p0)T . We assume that P is from the class of irre-

ducible aperiodic stochastic matrices with one ergodic class so that the solution

is unique. The irreducibility means that there are no transient states, i.e., pi 6= 0
for all 1 ≤ i ≤M . The decomposition, considered in the previous theorem, may

be defined by Ei = {i} , i = 1, ...,M and the assumptions i) and ii) hold (cf.,

distribution functions F and F0, in this case, coincide with the vectors p and

p0, we consider the hypothesis H0 : p = p0 about the stationary distribution
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e.g., Billingsley (1961a)). Since the probability distributions associated with the
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of the chain matrix P . Since no states are transient, the hypothesis satisfies the

condition that all the components of p0 are nonzero.

In the model under consideration the goodness-of-fit test of the null hypothesis

H0 : p = p
0 based on the Pearson’s test statistic has been considered by Tavaré

and Altham (1983). This result was extended by Menéndez et al . (1997b, 1999a)

to the φ-divergence test statistic. These authors established that in this case the

φ-divergence test statistic Tφ
n (bp,p0) converges in law to a random variable X,

defined by

X ≡
M−1X
i=1

1 + λi
1− λi

Z2i , (3.20)

where λ1, ...,λM−1 are the nonunit eigenvalues of the chain matrix P .

If P = (p(i, j))i,j=1,...,M has identical rows then it is reversible and all its

nonunit eigenvalues are zero. Thus Theorem 3.6 implies that if data Y1, ..., Yn
are independent then all φ-divergence test statistics Tφ

n (bp,p0) are asymptoti-
cally distributed chi-squared with M − 1 degrees of freedom. More generally,
if P =(1− π) IM×M + π1(p0)T , where 0 < π ≤ 1 and 1 =(1, ..., 1)T , then the
nonunit eigenvalues of P are all equal 1− π. Therefore all φ-divergence test sta-

tistics π
2−πT

φ
n (bp,p0) tend in law to a chi-square distribution with M − 1 degrees

of freedom.

If the matrix P is not known we can use the relative frequencies bp(i, j) =
υij/υi∗, where

υij =
nX
k=2

I{(i,j)}(Yk−1, Yk) and υi∗ =
MX
j=1

υij,

to estimate the transition probabilities p(i, j) of the matrix P consistently (cf.,

{(i,j)}(Yk−1, Yk) we are denoting the function defined as

I{(i,j)}(Yk−1, Yk) =

(
1 if Yk−1 = i and Yk = j
0 otherwise

.

Since the eigenvalues λi considered in (3.20) are continuous functions of the el-

ements p(i, j) of P , the substitution p(i, j) = bp(i, j) in these functions leads to
consistent estimates bλi of λi.

The binary Markov model, considered in Exercise 13, was studied in Menéndez

et al . (1997b) and they found that for the power-divergence test statistics the
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Billingsley (1961a)). By I
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value λ = −2 (Modified chi-square test statistic) is optimal in the sense of
the power. It is interesting to observe that in the case of independent data

T
φ(−2)
n (bp,p0) is rarely optimal in this sense.
Chain Markov and Order

We consider a random sample of size n from an irreduccible homogeneous Markov

chain, Y = {Yk, k ≥ 0} , with state space {1, ...,M} and matrix of transition
probabilities given by P = (p(i, j))i,j=1,...,M . Billingsley (1961a, 1961b) consid-

ered the problem of testing the hypothesis

H0 : P=P
0 =

¡
p0(i, j)

¢
i,j=1,...,M

on the basis of the likelihood ratio test statistic and chi-square test statistic.

These results were extended in Menéndez et al . (1999b) by considering the φ-

divergence test statistic. They considered the family of φ-divergence test statistics

given by

Tφ
n (bP ,P 0) = 2n

φ00 (1)

MX
i=1

υi∗
n

MX
j=1

p0(i, j)φ

µ bp(i, j)
p0(i, j)

¶
, (3.21)

and established that its asymptotic distribution is chi-square with c−M degrees

of freedom, where c is the number of elements in C0 =
n
(i, j) : p0ij > 0

o
. The

test statistics given by Billingsley appear as a particular case of the φ-divergence

test statistic given in (3.21). Interesting papers applicable to stationary finite-

state irreducible Markov chains have been written by Azalarov and Narkhuzhaev

(1987, 1992), Mirvalev and Narkhuzhaev (1990), Ivchenko and Medvedev (1990),

Basawa and Prakasa Rao (1980) and Rousas (1979).

In Markov chains, the future evolution of the chain is conditionally inde-

pendent of the past given the present state. It is, however, possible that the

dependence relation is more complicated. In a second order Markov chain, the

future evolution of the chain over times n+1, n+2, ... is independent of the past

given the states at times n and n− 1. In a rth order Markov chain, r consecutive
states must be conditioned upon for the future to be independent of the past.

In a rth order Markov chain, the transition probabilities are r+1 dimensional, r

for the present and one for the future. The case r = 0 corresponds to a sequence

of independent trials, while r = 1 corresponds to the usual Markov chain. It

is important to be able to determine the order of the chain and for simplicity
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to find the lowest acceptable value of r. This problem has been studied using

the likelihood ratio test statistic and the chi-square test statistic by Billingsley

(1961a, 1961b) and using φ-divergence test statistics by Menéndez et al . (2001d).

3.4.3. Misclassified Data

The theory of goodness-of-fit tests, in the analysis of categorical data, has

been developed extensively. One of the difficulties, often encountered in practice,

is the possibility of a false classification of one or more individuals into the re-

spective categories or classes. This problem was first discussed by Bross (1954)

for the case of two categories. Bross established that the sample proportion is

a biased estimate of the proportion and the bias is a function of the amount of

misclassification of the data. Mote and Anderson (1965) studied the effect of mis-

classification on Pearson’s test statistic. If errors of misclassification are ignored,

the size of the test will increase and the asymptotic power will be reduced. If

we consider the family of φ-divergence test statistics Tφ
n (bp,p0), a similar study

to the one realized by Mote and Anderson (1965), gives analogous results. Then

for the goodness-of-fit tests, the usual test requires modification when there are

misclassification errors.

In order to solve the difficulties involved in inference from a sample of cate-

gorical data, obtained by using a fallible classifying mechanism, Tenenbein (1970,

1971, 1972) presented double sampling methods for estimating the multinomial

proportions in the presence of misclassification errors. Hochberg (1977) extended

the use of Tenenbein’s double sample schemes for modeling and testing hypotheses

on the true parameters from general multidimensional contingency tables with

misclassification errors. Cheng et al . (1998) used also the Tenenbein’s double

sampling scheme for introducing an adjusted chi-square test and the likelihood

ratio test.

In Pardo, L. and Zografos (2000), the family of φ-divergence test statistics for

testing goodness-of-fit when the categorical data are subject to misclassification

was considered.

The double sample scheme is used in the context of the following experimental

situation. Suppose that we have two methods of collecting the data: one which is

error-free but expensive and the second which is fallible but inexpensive. An ob-

vious dilemma results for the researcher, specially when funds are limited. Should
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they sacrifice accuracy for quantity? Diamond and Lilienfield (1962) discuss an

experimental situation in public health research where the true classification de-

vice is the physician’s examination whereas the fallible classifier is a questionnaire

completed by the patient. The Tenenbein’s double sample scheme gives to the

researcher another alternative which incorporates a balance between both mea-

surement methods and their respective cost. The scheme suggests that, at the

first stage, a sample of n units is drawn and the true and fallible classifications

are obtained for each unit, and at the second stage a sample of N − n units is
drawn and the fallible classification is obtained for each unit. Then, there are a

total of n units in the sample which have been classified by both the true and

fallible devices. The multinomial proportions can be estimated from the available

data without going to the extreme of obtaining the true classification for all N

units in the sample.

We denote by Y the random variable associated with the true measurement,

taking on the value “i” if the sampling unit belongs in fact to category Ei, i =

1, ...,M , and by Y0 the random variable associated with the fallible measurement,

taking on the value “j” if the sampling unit is classified by the fallible device as

being in category Ej, j = 1, ...,M . Let us denote the marginal probabilities of Y

and Y 0, by

pi = Pr(Y = i), πj = Pr(Y
0 = j), i, j = 1, ...,M,

respectively, with
PM
i=1 pi =

PM
j=1 πj = 1. To describe misclassification we define

θij to be the probability that a unit, which, in fact, belongs to the category Ei,

is classified in the category Ej. Thus

θij = Pr(Y
0 = j|Y = i), i, j = 1, ...,M,

and it is clear that

MX
j=1

θij = 1 and πj =
MX
i=1

piθij, i, j = 1, ...,M.

In this situation a double sampling scheme can be described as follows:

i) A sample of n units is drawn and the true and fallible classifications, denoted

by Y1, ..., Yn and Y 01 , ..., Y
0
n , respectively, are obtained for each unit. We

denote by nij the number of units in the sample whose true category is Ei,

i = 1, ...,M, and whose fallible category is Ej , j = 1, ...,M , and by ni∗ =PM
j=1 nij, n∗j =

PM
i=1 nij.
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ii) A further sample of N − n units is drawn and the fallible classifications
Y 0n+1, ..., Y

0
N , are obtained for each unit. We denote by

mj =
NX

k=n+1

I{j}(Y 0k ), j = 1, ...,M,

the number of units whose fallible category is Ej, j = 1, ...,M , and by

(m1, ...,mM)
T the vector of frequencies associated with the random sample

Y 0n+1, ..., Y
0
N . By I{j}(Y

0
k ) we are denoting

I{j}(Y 0k ) =

(
1 if Y 0k = j

0 otherwise
.

The joint likelihood function associated with the observed data

(Y1, Y
0
1 ), ..., (Yn, Y

0
n ), Y

0
n+1, ..., Y

0
N ,

is given by

L(p,Θ) =
MY
i=1

MY
j=1

(piθij)
nij(πj − piθij)n∗j−nij

MY
k=1

πmk
k ,

with p = (p1, ..., pM)
T , Θ = (θij)i,j=1,..,M (c.f., Cheng et al . (1998)). Then the

bpi = MX
j=1

(mj + n∗j)nij
Nn∗j

and bθij = (mj + n∗j)nij
Nn∗jbpi , i, j = 1, ...,M.

Using the above expression for bpi, and assuming that n/N → f > 0, as N →∞,
the asymptotic distribution of (bp1, ..., bpM−1) is

√
N(bp1 − p1, ..., bpM−1 − pM−1) L→

N→∞
N(0,Σ),

where the asymptotic variance-covariance matrix is defined (cf., Tenenbein (1972),

Σ = (σij)i,j=1,..,M , σij =


piqi
f
[1− (1− f)Ki], i = j³

1− 1
f

´ MP
k=1

λikλjkπk − piqj, i 6= j
, (3.22)
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with qi = 1 − pi, Ki =
¡
Corr

£
I{i} (Y ) , E[I{i} (Y )

¯̄
Y 0 ]

¤¢2
=
pi
qi

µ
MP
k=1

θ2ik
πk
− 1
¶

and λij = E[I{i} (Y ) |Y 0 = j] =
piθij
πj

, for i, j = 1, ...,M − 1.

Under the simple null hypothesis

H0 : p=p
0 = (p01, ..., p

0
M)

T ,

Cheng et al . (1998) established that

N
M−1X
i=1

M−1X
j=1

(bpi − p0i )bτij(bpj − p0j) L−→
N→∞

χ2M−1,

with Σ−1 = (τij)i,j=1,..,M , and bτij the maximum likelihood estimator of τij, i, j =
1, ...,M − 1.

Next result regarding the φ-divergence test statistic for misclassified data was

established in the cited paper of Pardo, L. and Zografos (2000).

Theorem 3.7

Based on Tenenbein’s (1972) double sampling scheme, let bp=(bp1, ..., bpM)T be
with bpi = PM

j=1

(mj + n∗j)nij
Nn∗j

, and assume that n/N → f > 0, as N → ∞.
Then we have

i) Under the hypothesis H0 : p=p
0 = (p01, ..., p

0
M)

T

Tφ
N(bp,p0) = 2N

φ00(1)
Dφ(bp,p0) L−→

N→∞

rX
i=1

λiZ
2
i ,

where Z1, ..., Zr are independent and identically distributed normal random

variables with mean zero and variance 1 and λi, i = 1, ..., r are the eigenval-

ues of the matrix AΣ, being A the diagonal matrix with elements
¡
p0i
¢−1
,

i = 1, ...,M−1, Σ the asymptotic variance-covariance matrix of the random
vector

√
N(bp−p0) given in (3.22) and r = rank(AΣA).

ii) Let p∗ = (p∗1, . . . , p∗M)
T be a probability distribution with p∗ 6= p0, then

βN,φ(p
∗) = 1−ΦN

Ã √
N

σφ(p
∗)

µ
kα
2N

φ
00
(1)−Dφ(p

∗,p0)
¶!

,
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where σ2φ(p
∗) = T TΣT , T = (t1, ..., tM)T and

tj =

µ
∂Dφ(p,p

0)

∂pj

¶
p=p∗

.

The value kα verifies

Pr
³
Tφ
N(bp,p0) > kα / H0 : p = p0´ = α,

and ΦN (x) is a sequence of distribution functions that tends uniformly to

the standard normal distribution Φ (x).

3.4.4. Goodness-of-fit for and against Order Restrictions

In some situations the probability vector p =(p1, ..., pM)
T exhibits a trend. If,

for example, the classes {Ei}i=1,...,M have the same length in R and the original
probability density function is unimodal, there is a positive integer k such that

p1 ≤ ... ≤ pk−1 ≤ pk ≥ ... ≥ pM−1.

Some interesting examples in which the probability vector p exhibits a trend can

be seen in Robertson (1978), Lee (1987), Robertson et al . (1988) and many others

cited there.

Statistical inference concerning a set of multinomial parameters under order

restrictions has been studied since Chacko (1966) considered the maximum likeli-

hood estimation of multinomial parameters subject to a simple order restriction.

He also obtained the asymptotic null distribution of a chi-square type test statis-

tic for testing homogeneity of a set of multinomial parameters against the simple

order. The asymptotic null distribution of this test statistic is a mixture of chi-

square distributions, which is called a chi-bar-square distribution. The mixing

coefficients, which are called level probabilities, depend upon the multinomial

parameter set as well as the order restriction.

Robertson (1966) found maximum likelihood estimates of multinomial para-

meters subject to a partial order restriction and also Robertson (1978) gener-

alized Chacko’s result to the one-sample likelihood ratio test of the equality of

two multinomial parameters (one is known) against a partial order restriction. He

showed that the asymptotic null distribution of this test statistic is chi-bar-square
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and the level probabilities depend upon the known multinomial parameter only

through the sets on which the known parameter is constant. He also considered

the likelihood ratio test of an order restriction as a null hypothesis. He showed

that the asymptotic null distribution of this test statistic is also chi-bar-square

and that the level probabilities depend upon the true parameter only through

the sets on which the true parameter is constant.

Chi-square type tests have been studied by several researchers. Lee (1987)

considered chi-square type tests for and against an order restriction on a set

of multinomial parameters. He compared three test procedures, namely: i) the

likelihood ratio test statistic, ii) the Pearson chi-square test statistic and iii) the

modified chi-square test statistic. He showed that all three test statistics have

the same asymptotic null distribution which is of chi-bar-square type. Menéndez

et al . (2002) considered the φ-divergence test statistic for testing the equality of

two multinomial parameters, one is known, against a partial order restriction and

also for testing an order restriction as a null hypothesis. They established that

the φ-divergence test statistics, under the null hypothesis, are asymptotically chi-

bar-squared distributed. Other interesting results in this area, using φ-divergence

test statistics, can be seen in Menéndez et al . (2003a, 2003c).
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3.5. Exercises

1. The following data represent the number of injured players in a random

sample of 200 soccer matches:

Injured players 0 1 2 3 ≥ 4
Soccer matches 82 90 20 7 1

a) Test the hypothesis that the distribution is Poisson with parameter

λ = 0.775. Take significance level α = 0.05 and Freeman-Tukey test

statistic.

b) Find the power of the test at p∗ = (0.45, 0.35, 0.1, 0.05, 0.05)T .

2. Find the expression of the test statistic for goodness-of-fit based on di-

vergence measures of Pearson, Matusita (a = 1/2), Balakrishnan-Sanghvi,

Rathie-Kanappan, Power-divergence, Rukhin and Rényi.

3. Consider the divergence measure Drs(p,q). Find the asymptotic variance

for the statistic Drs(bp,p0) and as a special case the asymptotic variance of
the statistic associated with Rényi divergence.

4. Find the asymptotic variance of the estimated entropy of order r and degree

s as a special case of the estimated divergence of order r and degree s.

5. Let u = (1/M, ..., 1/M)T . Find the asymptotic distribution of the esti-

mated entropy of order r and degree s as a special case of the result obtained

in Remark 3.1.

6. Let φ be a concave function with continuous second derivative.

a) Find the asymptotic distribution of the test statistic 8nRφ(bp,p0) be-
ing Rφ

0 =

(p01, ..., p
0
M)

T .

b) Let p0 = (1/M, ..., 1/M)T . Show that

Sφ(bp,p0) = − 8nM

φ00 (1/M)
Rφ(bp,p0) L−→

n→∞ χ2M−1,

provided φ00 (1/M) < 0.

c) Let φ (x) = −x log x. Find the asymptotic distribution for 8nRφ(bp,p0).
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7. For the study of an urban system in a given region we suppose that a

certain function of service f is more implanted relatively in the cities of

major dimensions than in the smaller ones. For this purpose a spatial

index is used. This index is given by

If =
AfiAfr
AtiAtr

,

where:

Afi represents the number of addresses of the function f in the city i.

Afr represents the number of addresses of the function f in the region r.

Ati represents the total number of addresses of the function f in the city

i.

Atr represents the total number of addresses of the function f in the region

r.

The cities are ordered in six levels taking into account If the largest (6)

to the smallest (1). From previous studies the expected frequencies of each

type of city according to its dimension are known.

The theoretical and observed frequencies into the six categories are as fol-

low:
Levels

1 2 3 4 5 6 Total

Theoretical 1 2 5 7 15 20 50

Observed 1 3 6 10 17 13 50

Using the test statistic given in c) of the previous exercise, analyze if the

presence of the function f is associated with the city dimension, taking as

significance level α = 0.01.

8. We want to find a model to predict the probability of winning at a grey-

hound race track in Australia. Data collected on 595 races give the starting

numbers of the eight dogs included in each race ordered according to the

race finishing positions (the starting numbers are always the digits 1,...,8;

1 denotes the dog started on the fence, 2 denotes the second from the

fence, etc.). We assume throughout that the initial positions are assigned

at random to each of the eight dogs. We group the results into eight cells

according to which starting number comes in first. Now we want to test
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the hypothesis that all starting numbers have an equal chance of coming in

first regardless of the positions of the other seven dogs, that is,

H0 : pi = 1/8; i = 1, ..., 8.

For this purpose use the test statistic given in Exercise 6 part b) with the

function

φa (x) =

(
1

1−a (x
a − x) si a 6= 1

−x logx si a = 1

for a = 1, 13/7 and 2 and significance level α = 0.05.

The theoretical and observed frequencies into the eight categories are as

follows:
Dog i Observed Expected

1 0.175 0.125

2 0.16 0.125

3 0.111 0.125

4 0.106 0.125

5 0.104 0.125

6 0.097 0.125

7 0.101 0.125

8 0.146 0.125
Source: Haberman (1978, p. 2).

9. Let pn = (1/Mn, ..., 1/Mn)
T and we consider the notation established in

Section 3.3. Find the asymptotic distribution of the test statistic

χ2(bpn,pn) = MnX
i=1

pni

µ
1− Nni

npni

¶2
.

10. Let pn = qn. Suppose that the following inequality holds

0 < lim
n
inf min

1≤i≤Mn

n qni ≤ lim
n
sup max

1≤i≤Mn

nqni <∞.

Show that for φ (x) = (1− x)2 ,

µφ,n =
Mn

n

and

σ2φ,n =
Mn

n

Ã
1

Mn n

MnX
i=1

1

pni
− γ−1n + 2

!
.
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11. Consider the power divergence family. Find the expression of the mean and

asymptotic variance corresponding to the family of test statistics based on

it for qn = pn = (1/Mn, ..., 1/Mn)
T and λ > −1.

12. We consider the Markov chain with states 1 and 2 and stochastic matrix P

of transition probabilities given by

P =

Ã
1− β β

γ 1− γ

!
; 0 < β, γ ≤ 1, β + γ < 2.

Find the expression of the φ-divergence test statistic for testing

H0 : p = p
0 = (1/2, 1/2)T .

13. Find the expression of the φ-divergence test statistic given in Theorem 3.7

if p0 = (p0, q0)T , with q0 = 1− p0, 0 < p0 < 1.
14. Obtain the expression of the φ-divergence test statistic given in Theorem

3.7 for

φ (x) =
1

2
(x− 1)2 .

15. A sample of n = 100 units is doubly classified by true and fallible methods

and a second random sample of 400 measurements is taken and classified

by the fallible method. The sample sizes n and N are respectively 100 and

500. The following table shows the obtained data.

Fallible Device

0 1

True Device 0 61 7 68

1 1 31 32 First Sample

62 38 100

218 182 400 Second Sample

Test H0 : p = p0 = (1/2, 1/2)T by using the test statistic based on the

power-divergence family with λ = 1, −1 and 0 and significance level α =
0.05.

16. With the notation of Section 3.3 establish that if Nni = γ + OP (n) andbpni = pni + oP (1) , then
γ = npni +OP (1) . (3.23)
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17. We consider the population given by the distribution function

F0 (x) =

(
0 if x ≤ 2
1− 4

x2
if x > 2

.

Use the procedure given in Section 3.4.1 to study if the observations

2.2408 5.8951 6.0717 3.6448 2.8551 4.4065 14.4337

3.0338 2.0676 2.6155 2.7269 5.1468 2.2178 2.0141

2.3339 2.6548 5.0718 2.8124 2.0501 13.6717

are from F0 (x) on the basis of the power-divergence test statistic for λ =

−2, −1, −1/2, 0, 2/3 and 1 and significance level α = 0.05.
18. Find the expression of the asymptotic variance of

√
n
¡
Dφ(bp,p0)−Dφ(p

∗,p0)
¢
,

with p0 6= p∗, using the divergence measures of Pearson, Matusita (a =
1/2), Balakrishnan-Sanghvi, Rathie-Kanappan, Power-divergence and Ru-

khin.

3.6. Answers to Exercises

1. If we consider the partition of the sample space given by

E1 = {0} , E2 = {1} , E3 = {2} , E4 = {3} and E5 = {x ∈ N : x ≥ 4} ,

we have p0 = (0.4607, 0.3570, 0.1383, 0.0357, 0.0083)T . Now our problem

consists of testing H0 : p = p
0, using the test statistic obtained from the

power-divergence test statistics with λ = −1/2. The test statistic obtained
in this case is the Freeman-Tukey’s test statistic and we should reject the

null hypothesis if

T−1/2n (bp,p0) = 8nÃ1− 5X
i=1

q
p0i bpi

!
> χ2M−1,α.

From the data we get bp = (82/200, 90/200, 20/200, 7/200, 1/200)T , and

then

T−1/2n (bp,p0) = 8.2971.
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On the other hand χ24, 0.05 = 9.4877. Therefore we should not reject the null

hypothesis.

The asymptotic power at the point p∗ = (0.45, 0.35, 0.1, 0.05, 0.05)T is given
by

β200,φ(−1/2) (p
∗) ' 1−Φ

Ã √
200

σ1(p∗)

Ã
φ00(−1/2) (1)χ

2
M−1,α

400
−Dφ(−1/2)(p

∗,p0)

!!
.

It is not difficult to establish that

σ1 (p
∗) = 4

1−Ã 5X
i=1

q
p0i
p
p∗i

!2 ,
then

σ1(p
∗) = 0.2955, Dφ(−1/2)(p

∗,p0) = 0.0 4391 and φ00(−1/2) (1) = 1.

With these values we get β200,φ(−1/2) (p
∗) ' 0.8330.

2. In Theorem 3.1 it was established that

Tφ
n (bp,p0) = 2n

φ00(1)

MX
i=1

p0iφ

µ bpi
p0i

¶
L−→

n→∞ χ2M−1 .

For Pearson divergence, φ (x) = 1
2 (x− 1)2 , then

X2 ≡ Tφ
n (bp,p0) = MX

i=1

¡
Ni − p0i

¢2
np0i

.

This is the classical chi-square test statistic.

For Matusita (a = 1/2), φ (x) = (1−√x)2 , then

Tφ
n (bp,p0) = 4n MX

i=1

µq
p0i −

pbpi¶2 .
It is not difficult to establish that this test statistic coincides with the

Freeman-Tukey test statistic.

For Balakrishnan-Sanghvi, φ (x) = (x−1)2
(x+1)2

, then

Tφ
n (bp,p0) = 4n MX

i=1

µbpi − p0ibpi + p0i
¶2
.
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For Rathie-Kanappan, φ (x) = xs−x
s−1 , then

T sn(bp,p0) = 2n

s (s− 1)

Ã
MX
i=1

(bpi)s¡
p0i
¢s−1 − 1

!
.

For φ (x) = φ(λ) (x) , where φ(λ) (x) was given in the first chapter, then

Tλ
n (bp,p0) = 2n

λ (λ+ 1)

Ã
MX
i=1

(bpi)λ+1¡
p0i
¢λ − 1

!
, λ 6= 0,−1.

For Rukhin,

φa(x) =
(1− x)2

2 (a+ (1− a)x) , a ∈ [0, 1] ,

and

Tφa
n (bp,p0) = n MX

j=1

(p0j − bpj)2
ap0j + (1− a)bpj 0 ≤ a ≤ 1. (3.24)

Finally, for Rényi divergence we have

h (x) =
log (r (r − 1)x+ 1)

r (r − 1) and φ (x) =
(xr − r (x− 1)− 1)

r (r − 1)
and the family of Rényi test statistics is given by

T rn(bp,p0) = 2n

r (r − 1) log
 MX
j=1

(p0j )
1−r(bpj)r − 1

 .
3. The divergence measure Dsr(p, q) is a (h,φ)-divergence, with

h (x) =
1

s− 1
³
(1 + r (r − 1)x) s−1r−1 − 1

´
; s, r 6= 1,

and

φ (x) =
xr − r (x− 1)− 1

r (r − 1) ; r 6= 0, 1.

By Corollary 3.3, the asymptotic variance of Dsr(bp,p0) is given by
r2

Ã
MP
i=1
(p∗i )

r
(p0i )

1−r
!2 s−rr−1

(r−1)2

 MX
i=1

(p∗i )
2r−1 ¡p0i ¢2(1−r) −

Ã
MX
i=1

(p∗i )
r ¡p0i ¢1−r

!2 ,
(3.25)
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because

h0 (x) = r (1 + r (r − 1)x) s−rr−1 ,

Dφ(p
∗,p0) =

1

r (r − 1)

Ã
MX
i=1

(p∗i )
r ¡p0i ¢1−r − 1

!
and

h0
¡
Dφ(p

∗,p0)
¢
= r

Ã
MX
i=1

(p∗i )
r ¡p0i ¢1−r

! s−r
r−1

.

We know that

lim
s→1

Dsr(bp,p0) = rD1
r(bp,p0),

therefore for Rényi test statistic the asymptotic variance isµ
MP
i=1
(p∗i )

r ¡p0i ¢1−r¶−2
(r − 1)2

 MX
i=1

(p∗i )
2r−1 ¡p0i ¢2(1−r) −

Ã
MX
i=1

(p∗i )
r ¡p0i ¢1−r

!2 .
4. Denoting the uniform distribution by u = (1/M, ..., 1/M)T , it is immediate

to show that

Dsr (p,u) =M
1−s (Hs

r (u)−Hs
r (p)) ,

where

Hs
r (p) =

1

1− s

Ã MX
i=1

pri

! s−1
r−1

− 1


is the entropy of r-order and s-degree (Entropy of Sharma and Mittal).

From Exercise 3, we have

√
n (Dsr(bp,u)−Dsr(p∗,u)) L−→

n→∞ N
¡
0,σ21(p

∗)
¢

where σ21(p
∗) is obtained from (3.25) replacing p0 by u. Therefore,

√
n (Hs

r (p
∗)−Hs

r (bp)) L−→
n→∞ N

¡
0,σ2r,s(p

∗)
¢
,

where σ2r,s(p
∗) = σ21(p

∗)/M2(1−s) and

σ21(p
∗) =

r2

(r − 1)2
Ã
MX
i=1

(p∗i )
r

!2 s−r
r−1
 MX
i=1

(p∗i )
2r−1 −

Ã
MX
i=1

(p∗i )
r

!2 .
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5. By Remark 3.1(b), we have

2n

h0 (0)φ00 (1)
Dhφ(bp,u) L−→

n→∞ χ2M−1.

But in our case we have h0 (0) = r and φ00 (1) = 1. Then,

2n

r
Dsr(bp,u) L−→

n→∞ χ2M−1.

On the other hand,

Dsr(p,u) =M
1−s (Hs

r (u)−Hs
r (p)) ,

therefore,
2nMs−1

r
(Hs

r (u)−Hs
r (bp)) L−→

n→∞ χ2M−1.

6. a) A second order Taylor expansion gives that the random variables

Sφn(bp,p0) ≡ 8nRφ(bp,p0)
and √

n
¡bp− p0¢T A√n ¡bp− p0¢ ,

with A = diag (−φ00 (p1) , ...,−φ00 (pM)) , have the same asymptotic distrib-
ution. Then

8nRφ(bp,p0) L−→
n→∞

rX
i=1

λiZ
2
i

where Z1, ..., Zr are independent, identically distributed normal random

variables with mean zero and variance 1, r = rank
³
Σp0AΣp0

´
and β0is

are the eigenvalues of the matrix AΣp0 .

b) In this case we have

A = diag
¡−φ00 (1/M) , ...,−φ00 (1/M)¢ .

Then Sφn(bp,p0) and
√
n
¡bp− p0¢T diag ¡u−1¢√n ¡bp− p0¢ ,

with u = (1/M, ..., 1/M)T , have the same asymptotic distribution. This

− 1 degrees
of freedom.
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c) In this case we have A = diag
³¡
p0
¢−1´

, because φ00(p0i ) = 1/p
0
i . There-

fore

8nRφ(bp,p0) L−→
n→∞ χ2M−1.

7. We have

400Rφ(bp,p0) = 400

µ
6P
i=1

bpi log bpi+p0i log p0i
2 −

6P
i=1

bpi+p0i
2 log

bpi+p0i
2

¶
= 400

³
0.02 log 0.02+0.02 log 0.02

2 − ¡0.02+0.022 log 0.02+0.022

¢
+ .........

+ 0.26 log 0.26+0.4 log 0.4
2 − ¡0.26+0.42 log 0.26+0.42

¢´
= 4.89182

and χ25, 0.01 = 15.086. Then the null hypothesis H0 should not be rejected.

8. In the following table we have computed the test statistics for the different

values of a,

a 1 13/7 2

Sφa(bp,p0) 29.1768 30.5175 30.788
.

But χ27, 0.05 = 14.07, and the null hypothesis should be rejected.

9. The expression of χ2(bpn,pn) is obtained from Dφ(bpn,pn) with φ (x) =

(x− 1)2 . Applying Proposition 3.2 we get

√
n
³
χ2(bpn,pn)−E hφ³Znγn ´i´r

γnV ar
h
φ
³
Zn
γn

´i
−Cov2

h
Zn,φ

³
Zn
γn

´i L−→
n→∞ N (0, 1),

where Zn is a Poisson random variable with parameter γn. Then,

µφ,n = E

·
φ

µ
Zn
γn

¶¸
= E

·
Zn
γn
− 1
¸2
=
1

γn
=
Mn

n
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and

σ2φ,n = γnV ar

·
φ

µ
Zn
γn

¶¸
−Cov2

·
Zn,φ

µ
Zn
γn

¶¸
= γn

E ·Zn
γn
− 1
¸4
−
Ã
E

·
Zn
γn
− 1
¸2!2

−
Ã
E

"
(Zn − γn)

µ
Zn
γn
− 1
¶2#!2

= γn

Ã
γn + 3γ

2
n

γ4n
−
µ
1

γn

¶2!
−
·
1

γn

¸2
=

1

γ2n
+
3

γn
− 1

γn
− 1

γ2n
=
2

γn
=
2Mn

n
,

because if Z is a Poisson variable with E [Z] = λ then for every a > 0,

E
£
Z
a − 1

¤
= λ−a

a

E
h¡
Z
a − 1

¢2i
= λ+(λ−a)2

a2

E
h
(Z − λ)

¡
Z
a − 1

¢2i
= λ+2λ(λ−a)

a2

E
h¡
Z
a − 1

¢4i
= λ+3λ2+4λ(λ−a)+6λ(λ−a)2+(λ−a)4

a4
.

Therefore,

n√
2Mn

µ
χ2( bpn,pn)− Mn

n

¶
L−→

n→∞ N(0, 1).

10. By Theorem 3.4 and using the previous formulae, we have

µφ,n =
MnX
i=1

E

·
pniφ

µ
Zni
npni

¶¸
=

MnX
i=1

pni
1

npni
=
Mn

n
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and

σ2φ,n = n
MnP
i=1
p2ni

Ã
npni + 3(npni)2

(npni)4
−
µ

1

npni

¶2!
−
µ
MnP
i=1
pni

1

npni

¶2
= n

MnP
i=1

µ
1

n3 pni
+
3n2

n4
− 1

n2

¶
−
µ
MnP
i=1

1

n

¶2
= 1

n2

MnP
i=1

1

pni
+
2Mn

n
−
µ
Mn

n

¶2
=

Mn

n

µ
1

Mn n

MnP
i=1

1

pni
− γ−1n + 2

¶
.

11. In this case we have for λ > −1 and λ 6= 0

µφ(λ),n = E

·
φ(λ)

µ
Zn
γn

¶¸
= E

"
1

λ(λ+1)

Ãµ
Zn
γn

¶λ+1

− Zn
γn

!#

= 1
λ(λ+1)

Ã
E

"µ
Zn
γn

¶λ+1
#
− 1
!

and

σ2φ(λ),n = γnV ar

"
1

λ(λ+1)

Ãµ
Zn
γn

¶λ+1

− Zn
γn

!#
− Cov2

"
Zn,

1
λ(λ+1)

Ãµ
Zn
γn

¶λ+1

− Zn
γn

!#
= γn

1
λ2(λ+1)2

Ã
V ar

"µ
Zn
γn

¶λ+1
#
− γnCov

2

"
Zn
γn
,

µ
Zn
γn

¶λ+1
#!

.

For λ = 0, we get

µφ(0),n = E

·
Zn
γn
log

Zn
γn

¸
and

σ2φ(0),n = γn

µ
V ar

·
Zn
γn
log

Zn
γn

¸
− γnCov

2

·
Zn
γn
,
Zn
γn
log

Zn
γn

¸¶
,

where Zn is a Poisson random variable with mean γn. In the case of a zero

observed cell frequency, Dφ(λ)( bpn,pn) is undefined for λ ≤ −1, since it
requires taking positive powers of pni/bpni where Nni = 0.
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12. The class of possible Markov matrices P is given byÃ
1− β β

γ 1− γ

!
, 0 < β, γ < 1, α+ γ < 2

and the subclass of possible Markov matrices satisfying the condition pT =

pTP is Ã
1− β β

p1β/p2 1− p1β/p2

!
, 0 ≤ β ≤ min

µ
1,
p2
p1

¶
, β < 1,

where p =(p1, p2)T and the subclass satisfying (p0)T = (p0)TP is given byÃ
1− β β

β 1− β

!
, 0 < β < 1.

The nonunit eigenvalue of this matrix is λ = 1− 2β. Then we have

Tφ
n (bp,p0) L−→

n→∞
1 + λ

1− λ
Z2,

where Z is a standard normal variable.

Therefore,

Tφ
n (bp,p0) L−→

n→∞
1− β

β
Z2.

But if we consider the matrixÃ bp (1, 1) 1− bp (1, 1)
1− bp (2, 2) bp (2, 2)

!
,

the nonunit eigenvalue is bλ = −1 + bp (2, 2) + bp (1, 1) . Then we have
1 + bλ
1− bλ = bp (2, 2) + bp (1, 1)

2− bp (2, 2) + bp (1, 1)
and

Tφ
n (bp,p0)2− bp (2, 2) + bp (1, 1)bp (2, 2) + bp (1, 1) L−→

n→∞ χ21.

Therefore we should reject the null hypothesis if

Tφ
n (bp,p0)2− bp (2, 2) + bp (1, 1)bp (2, 2) + bp (1, 1) > χ21,α.

A simulation study to choose the best value of the parameter λ in the

power-divergence test statistics can be seen in Menéndez et al . (1997b).
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13. In this case the null hypothesis is

H0 : p = p
0,

where p is the probability of having outcome 1 for the binary observation

and q = 1− p is the probability of having outcome 0. The misclassification
probabilities are θ = Pr(Y 0 = 0|Y = 1) and ψ = Pr(Y 0 = 1|Y = 0).
It is immediate that π = Pr(Y 0 = 1) = p(1− θ) + qψ. Denote by nij the

number of units in the validation subsample whose true category is i and

fallible category is j; i, j = 0, 1, and

mk =
NX

j=n+1

I{k}
¡
Y 0j
¢
, k = 0, 1.

In this context, the maximum likelihood estimators of the probabilities p,

θ and ψ are respectively bp = n11
n∗1

n∗1+m1
N +n10

n∗0
n∗0+m0
N , bθ = n10

n∗0
n∗0+m0
N bp andbψ = n01

n∗1
n∗1+m1
N(1−bp) .

The matrix AΣ, appearing in Theorem 3.7

AΣ =

Ã
p−10 V ar(bp) p−10 Cov(bp, 1− bp)

q−10 Cov(1− bp, bp) q−10 V ar(1− bp)
!

=

Ã
p−10 V ar(bp) −p−10 V ar(bp)
−q−10 V ar(bp) q−10 V ar(bp)

!
,

with

V ar(bp) = p0q0
f

µ
1− (1− f) p0q0

π(1− π)
(1− θ − ψ)2

¶
, q0 = 1− p0,

and f is given by limit as N → ∞ of n/N with n = n∗0 + n∗1. It can be
easily seen that the unique nonzero eigenvalue of AΣ is

µ =
1

f

µ
1− (1− f) p0q0

π(1− π)
(1− θ − ψ)2

¶
.

Then we have
2N

µφ00(1)
Dφ(bp,p0) L−→

N→∞
χ21.

If we denote bµ = 1
f

³
1− (1− f) p0q0

π(1−π)(1− bθ − bψ)2´, then
2Nbµφ00(1)

·
p0φ

µ bp
p0

¶
+ q0φ

µ bq
q0

¶¸
L−→

N→∞
χ21, (3.26)

with q0 = 1− p0 and bq = 1− bp.
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14. For φ(x) = 1
2(x− 1)2, we get

Dφ(bp,p0) = 1

2
(bp− p0)2/p0q0,

and

2Nbµφ00(1)Dφ(bp,p0) = N(bp− p0)2
p0q0

1
f

µ
1− (1− f) p0q0

π(1− π)
(1− bθ − bψ)2¶ .

This test statistic has been studied in Cheng et al . (1998).

15. For testing the null hypothesisH0 : p = (1/2, 1/2)
T on the basis of a random

sample of sizeN−n, and ignoring the possibility of misclassification, it holds
2 (N − n)
φ00
(λ)
(1)

Dφ(λ) (bp,p0) L−→
N→∞

χ2M−1.

The expression of the family of test statistics given in Theorem 3.7, for the

power-divergence test statistics, can be written as

2Nbµ Dφ(λ) (bp,p0) =


2Nbµλ(λ+1)
³bpλ+1

pλ0
+ bqλ+1

qλ0
− 1
´
, λ 6= −1, 0

2Nbµ log
µ³ bp

p0

´bp ³ bq
q0

´bq¶
, λ = 0

−2Nbµ log
³³ bp

p0

´p0 ³ bq
q0

´q0´
, λ = −1

, (3.27)

with q0 = 1− p0, bq = 1− bp and bµ = 1
f (1− (1− f) p0q0

π(1−π)(1− bθ − bψ)2).
From the data we have

bp = 0.368, bθ = 0.0245, bψ = 0.129 and bπ = 0.44.
If we do not consider the misclassification and we use only the second sample

(218, 182), we have that the sampling proportions are 0.545 and 0.455

respectively, denoted by bp1 = (bp1, bq1 = 1− bp1)T = (0.545, 0.455)T .
For testing the hypothesis H0 : p = (1/2, 1/2)

T , we have

2(N−n)Dφ(λ)
(bp,p0) =



800

2

³ bp 21
1/2 +

bq 21
1/2 − 1

´
= 3.240, λ = 1

800 log

µ³ bp1
1/2

´bp1 ³ bq1
1/2

´bq1¶
= 3.244, λ = 0

−800 log
µ³ bp1

1/2

´1
2
³ bq1
1/2

´1
2

¶
= 3.253, λ = −1

,
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and χ21,0.05 = 3.841. Then for λ = 1, λ = 0 and λ = −1, the null hypothesis
H0 should not be rejected if the size of the test is α = 0.05.

Now, we are going to get the expression of the family of test statistics, given

in Section 3.4.3, when we have a double sample data. First we obtain the

expression for bµ,
bµ = 1

f

µ
1− (1− f) p0q0bπ(1− bπ)(1− bθ − bψ)2

¶
= 2.0919.

Then, based on (3.27), we have

2Nbµ Dφ(λ) (bp,p0) =


2×500
2×2.0919

³ bp 2
1/2 +

bq 2
1/2 − 1

´
= 16.659, λ = 1

2×500
2.0919 log

µ³ bp
1/2

´bp ³ bq
1/2

´bq¶
= 16.858, λ = 0

−2×5002.0919 log

µ³ bp
1/2

´1
2
³ bq
1/2

´1
2

¶
= 17.267, λ = −1

,

because in this case bp = 0.368 and bq = 0.632. Thus if we consider double

sample data, H0 should be rejected. Therefore we can see that if one uses

only the fallible data then one may be led to the wrong conclusion to accept

H0.

16. To establish (3.23) we have to prove if for η > 0 there exists a constant

k (η) such as if n ≥ n (η) , then

Pr (|γ − npni| > k (η)) < η.

Denoting q = Pr (|γ − npni| > k (η)) , we have

q = Pr (|γ −Nni +Nni − npni| > k (η))
≤ Pr

³
|γ −Nni| > k(η)

2

´
+Pr

³
|Nni − npni| > k(η)

2

´
= Pr

³¯̄̄
γ
n − Nni

n

¯̄̄
> k(η)

2n

´
+Pr

³¯̄̄
Nni
n − npni

n

¯̄̄
> k(η)

2n

´
≤ Pr

³¯̄̄
γ
n − Nni

n

¯̄̄
> k(η)

2

´
+Pr

³¯̄̄
Nni
n − pni

¯̄̄
> k(η)

2

´
.

Using the assumption Nni = γ+OP (n) , we have that given η/2 there exist

a constant k1
¡η
2

¢
and n∗ = n (η) such that for all n ≥ n∗,

Pr

µ¯̄̄̄
γ

n
− Nni

n

¯̄̄̄
> k1

³η
2

´¶
≤ η

2
.
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Using the assumption bpni = pni + oP (1) we have that given k1
¡η
2

¢
and

η
2 > 0 there exists a number n

∗∗ = n
¡
k1
¡η
2

¢
, η
¢
such that for n ≥ n∗∗,

Pr

µ¯̄̄̄
Nni
n
− pni

¯̄̄̄
> k1

³η
2

´¶
≤ η

2
.

If we consider k (η) = k1
¡η
2

¢
and n = max (n∗, n∗∗) , we have that for all

η > 0,

Pr (|γ − npni| > k (η)) ≤ η

2
+

η

2
.

17. We wish to test H0 : F = F0 using the family of power-divergence test

statistics

Tλ
n (p(Y n),q

0) =
2n

λ(λ+ 1)

MX
i=1

pi(Y n)

Ãµ
pi(Y n)

q0i

¶λ

− 1
!
,

where pi(Y n) and q
0
i , i = 1, ...,M must be calculated. We assume M = 4

and consider the partition of the unit interval defined by

π0 = 0, π1 = 1/4, π2 = 2/4, π3 = 3/4, π4 = 1.

We have

q0=
¡
q01, ..., q

0
4

¢T
= (F0(cj)− F0(cj−1) : 1 ≤ j ≤ 4)T =

µ
1

4
,
1

4
,
1

4
,
1

4

¶T
,

and

p(Y n) = (F0(Y(6)), F0(Y(11))−F0(Y(6)), F0(Y(16))−F0(Y(11)), 1−F0(Y(16)))T ,

because Yni = Y(ni) and ni = [20× πi] + 1, i = 1, 2, 3.

We have

p(Y n) = (0.26566, 0.24364, 0.3397, 0.151)
T ,

because Y(6) = 2.3339, Y(11) = 2.8551 and Y(16) = 5.1468.

In the following table we report the values of the power-divergence test

statistics Tλ
n (p(Y n), q

0) for different values of λ.

λ = −2 λ = −1 λ = −1/2 λ = 0 λ = 2/3 λ = 1

Tλ
n 1.7936 1.6259 1.5643 1.5153 1.4676 1.4506

.

On the other hand χ23, 0.05 = 7.815. Therefore we should not reject the null

hypothesis.
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18. The expression of the asymptotic variance is given by

σ21(p
∗) =

MP
i=1
p∗i

µ
φ0
µ
p∗i
p0i

¶¶2
−
µ
MP
i=1
p∗iφ0

µ
p∗i
p0i

¶¶2
.

Then we have

Divergence Asymptotic variance

Pearson
MP
i=1

(p∗i )3

(p0i )
2
−
µ
MP
i=1

(p∗i )2

p0i

¶2
Matusita
(a=1/2)

1−
µ
MP
i=1

p
p∗i
q
p0i

¶2
Balakrishnan

MP
i=1
p∗i

µ
4(p∗i − p0i )(p0i )2
(p∗i + p0i )3

¶2
−
µ
MP
i=1
p∗i
4(p∗i − p0i )(p0i )2
(p∗i + p

0
i )
3

¶2
Rathie-Kanappan s2

(1−s)2

Ã
MP
i=1
(p∗i )2s−1(p0i )2(1−s) −

µ
MP
i=1
(p∗i )s(p0i )1−s

¶2!
Power-divergence 1

λ2

Ã
MP
i=1
(p∗i )

2λ+1(p0i )
−2λ −

µ
MP
i=1
(p∗i )

λ+1(p0i )
−λ
¶2!

Rukhin
MP
i=1
p∗i
(p0i − p∗i )2

¡
p0i (a+ 1) + (a− 1) p∗i

¢2
(ap0i + (1− a) p∗i )4

−
Ã
MP
i=1
p∗i
(p0i − p∗i )

¡
p0i (a+ 1) + (a− 1) p∗i

¢
(ap0i + (1− a) p∗i )2

!2
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4

Optimality of Phi-divergence

Test Statistics in

Goodness-of-fit

4.1. Introduction

In the previous chapter we have studied the family of φ-divergence test sta-

tistics, Tφ
n (bp,p0), for the problem of goodness-of-fit. If we denote by FTφn (bp,p0)(t)

the exact distribution of Tφ
n (bp,p0), for fixed φ, we established that

F
Tφn (bp,p0)(t) = Fχ2M−1 (t) + o (1) as n→∞, (4.1)

under the null hypothesis

H0 : p = p
0. (4.2)

Based on (4.1) we considered for the problem of goodness-of-fit given in (4.2) the

decision rule

“Reject, with significance level α, H0 if T
φ
n (bp,p0) > χ2M−1,α”. (4.3)

Now in this chapter we shall present some criteria to choose the best function φ

in some sense. In Section 4.2, Pitman asymptotic efficiency (contiguous alterna-

tive hypotheses), Bahadur efficiency and some asymptotic approximations of the

power function for the φ-divergence test statistic are studied.
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Result (4.1) is asymptotic and it is only valid for large sample sizes but in finite

samples is frequently assumed to hold approximately in order to calculate critical

regions for the φ-divergence test statistic in goodness-of-fit tests. Then it will

be important to give some methods to improve the accuracy of the φ-divergence

test statistic in those situations where the sample size cannot be assumed large.

We shall study with the φ-divergence test statistic the same procedures studied

previously by Read and Cressie (1988) with the power-divergence family of test

statistics. In Section 4.3 we investigate the criterion based on the speed of con-

vergence of the exact moments of the φ-divergence test statistic, Tφ
n (bp,p0), to its

asymptotic moments. The exact distribution of every member of the family of

φ-divergence test statistics, Tφ
n (bp,p0) (see (4.1)) differs from chi-square by o (1) .

In Section 4.4 a closer approximation to the exact distribution is obtained by

extracting the φ-dependent second order component from the o (1) term. In Sec-

tion 4.5 comparisons of exact power based on exact critical regions are presented

and finally in Section 4.6 comparisons between the exact distribution of the φ-

divergence test statistics, Tφ
n (bp,p0), and the different asymptotic approximations

are studied.

Throughout the chapter we shall assume that φ ∈ Φ∗ is 4 times continuously
differentiable in the neighborhood of 1 and φ00 (1) 6= 0.

4.2. Asymptotic Efficiency

Power functions are usually difficult to evaluate and we mostly have to be

content with approximations based on limit results. In this Section we consider

three approaches in order to choose an optimal φ-divergence test statistic: Pitman

efficiency, Bahadur efficiency and comparisons based on some approximations to

the power function.

4.2.1. Pitman Asymptotic Relative Efficiency

For a probability vector p∗ 6= p0, we established that
lim
n→∞βn,φ (p

∗) = Pr
³
Tφ
n (bp,p0) > χ2M−1,α / H1 : p = p

∗
´
= 1.

Hence to get a limit value less than 1, we must consider a sequence of contiguous

alternative hypotheses
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H1,n : pn = p
0 + d/

√
n,

where d =(d1, ..., dM)
T is a fixed M × 1 vector such that PM

j=1 dj = 0, because

in this case

lim
n→∞βn,φ (pn) = 1−Gχ2M−1(δ)

¡
χ2M−1,α

¢
, (4.4)

where Gχ2M−1(δ)
is the distribution function of a noncentral chi-square random

variable with M − 1 degrees of freedom and noncentrality parameter

δ = dTdiag
³¡
p0
¢−1´

d. (4.5)

In this context we can consider the Pitman asymptotic relative efficiency to com-

pare the behavior of two test statistics. Let us consider two φ-divergence test

statistics Tφ1
n (bp,p0) and Tφ2

n (bp,p0) and let us suppose that for a given n and a
significance level α there exists a number Nn such that

βn,φ1 (pn) = βNn,φ2
¡
pNn

¢ →
n→∞ β (any asigned value) < 1,

that is, the powers are equal and that Nn → ∞ as n → ∞. By pn and pNn we
are denoting contiguous alternative hypotheses,

pn = p
0 + d/

√
n and pNn = p

0 + d/
p
Nn.

Definition 4.1

The Pitman asymptotic relative efficiency of Tφ2
n (bp,p0) with respect Tφ1

n (bp,p0)
is given by

lim
n→∞

n

Nn
.

For more details about the Pitman asymptotic effi

Based on (4.4) the asymptotic power functions βn,φ1 (pn) and βNn,φ2 (pN)

will be equal because both of them are based in Gχ2M−1(δ)

³
χ2M−1,α

´
, with δ

given on (4.5). For this reason the Pitman asymptotic efficiency is 1 for any φ-

divergence test statistics Tφ1
n (bp,p0) and Tφ2

n (bp,p0). We can conclude that using
Pitman asymptotic relative efficiency is not possible to discriminate between the

φ-divergence test statistics.
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4.2.2. Bahadur Efficiency

Let {Yk}k∈N be a sequence of independent and identically distributed random
variables from F and we denote by s = (y1, y2, .....) a possible outcome of the

previous sequence. We consider the problem of goodness-of-fit

H0 : F = F0

by partitioning the range of data in disjoint intervals, {Ei}i=1,..,M , by testing
the hypothesis H0 : p = p

0, i.e., we consider the notation introduced in Section

3.1. We denote Ni =
Pn
j=1 IEi(Yj). We can see that Ni is based on the first

n components of the sequence {Yk}k∈N . We denote by ni (s) =
Pn
j=1 IEi (yj)

and by bp(s) the associated probability vector with the first n components of the
outcome “s”. We consider a test statisticHn(bp,p0) for testing the null hypothesis
H0 : p = p

0, and its outcome based on (y1, y2, ....., yn) given by Hn(bp (s) ,p0).
Here Hn(bp,p0) denotes a general family of test statistics, not necessarily the
same as the family of the φ-divergence test statistics Tφ

n (bp,p0) considered in
(4.1).

We denote by F
Hn(bp,p0) (t) the distribution function of Hn(bp,p0) under the

null hypothesis H0 : p = p
0. The level attained by Hn(bp,p0) is defined by

Ln (s) = 1− FHn(bp,p0) ¡Hn(bp (s) ,p0)¢ .
Bahadur (1971) pointed out that in typical cases Ln is asymptotically uniform

distributed over (0, 1), under the null hypothesis H0 : p = p
0 and Ln → 0 ex-

ponentially fast (with probability one) under p 6= p0. Now we define the exact
Bahadur slope.

Definition 4.2

We consider p 6= p0 and p ∈ ∆+M , where

4+
M =

½
p = (p1, ..., pM)

T : pi > 0, i = 1, ...,M,
MP
i=1
pi = 1

¾
.

We shall say that the sequence
©
Hn(bp,p0)ªn∈N has exact Bahadur slope c (p) ,

0 < c (p) <∞, if
lim
n→∞ logLn (s) = −

1

2
c (p) , (4.6)

with probability one when n→∞.
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This definition is motivated by Bahadur (1971) in the following terms “Con-

sider the Fisherian transformation Vn (s) = −2 logLn (s). Then, in typical cases,
Vn → χ22 in distribution in the null case. Suppose now that a non-null p is ob-

tained and that (4.6) holds, with 0 < c (p) <∞. Suppose we plot, for a given s,
the sequence of points {(n, Vn (s)) : n = 1, 2, ...} in the uv-plane. It follows from
(4.6) that, for almost all s, this sequence of points moves out to infinity in the

direction of a ray from the origin, the angle between the ray and the u-axis, on

which axis the sample size n is being plotted, being tan−1 c (p) ”.

Given ε > 0, 0 < ε < 1, and s, let N = N (ε, s) be the smallest integer m

such that Ln (s) < ε for all n ≥ m and let N =∞ if no such m exists. Then N

is the sample size required for the sequence
©
Hn(bp,p0)ªn∈N in order to become

significant (and remains significant) at the level ε. But the most important fact

pointed out by Bahadur (1971) is that, for small ε, N is approximately inversely

proportional to the exact Bahadur slope, i.e., if (4.6) holds and 0 < c (p) < ∞,
then

lim
ε→0N (ε, s) /2 log (1/ε) = c (p)

−1 , (4.7)

with probability one when ε→
Suppose that

©
H1
n(bp,p0)ªn∈N and ©H2

n(bp,p0)ªn∈N are two sequences of test
statistics such that Hi

n(bp,p0) has exact Bahadur slope ci (p) , 0 < ci (p) < ∞,
i = 1, 2. From (4.7) if N (i) (ε, s) is the sample size required to make Hi

n(bp,p0)
significant at level ε, we have

N (2) (ε, s)

N (1) (ε, s)
→ c1(p)

c2(p)
,

with probability one when ε → 0. Consequently c1(p)/c2(p) is a measure of the

asymptotic efficiency of H1
n(bp,p0) relative to H2

n(bp,p0).
Based on this relation we can give the following definition:

Definition 4.3

Let p ∈4+
M . A measure of the asymptotic efficiency of H1

n(bp,p0) relative to
H2
n(bp,p0) is given by c1(p)/c2(p).
The following result given in Bahadur (1971) (Theorem 7.2) in general pop-

ulations and adapted to multinomial populations in Lemma 3.1 in Cressie and

Read (1984) will be important to establish the main theorem in this Section.
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Lemma 4.1

If Hn(bp,p0) is a test statistic for the simple null hypothesis H0 : p = p0, based
on the first n observations of the sequence {Yk}k∈N , verifying:

i) There exists a function b : ∆+M → R with −∞ < b (p) <∞, such that

n−1/2Hn(bp,p0)→ b (p)

with probability one as n→∞ for each p ∈4+
M and p 6= p0.

ii) For each t in an open interval I, there exists a continuous function f ,

verifying

n−1 log Pr
©
Hn(bp,p0) ≥ √nt / p = p0ª→−f (t) as n→∞

and
©
b (p) /p 6= p0ª ⊂ I.

Then, the exact Bahadur slope for Hn(bp,p0) is given by c(p) = 2f (b(p)) , for
each p ∈4+

M and p 6= p0.
Theorem 4.1 describes a useful method of finding the exact Bahadur slope for

the φ-divergence test statistic, Tφ
n (bp,p0). It is necessary to give some concepts

before establishing its proof.

Definition 4.4

Let A ⊂4+
M and An =4M,n ∩A, where

4M,n =
(
v =(v1, ..., vM)

T : vj = ij/n, ij ∈ N− {0} , j = 1, ...,M,
MP
j=1
ij = n

)
.

Let us say that A is p0-regular, p0 ∈ 4+
M , if

lim
n→∞ inf

v∈An
DKull(v,p

0) = inf
v∈A

DKull(v,p
0).

Some properties of this definition are given in the following proposition; its

proof is in Bahadur (1971).

Lemma 4.2

Let A ⊂4+
M and A0 the closure of A0 (interior of A). We have:

i) If A ⊂ A0 (e.g., if A is open) A is p0-regular
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ii) If A is p0-regular and bp ∈ 4+
M , there exists a positive constant, δ (M),

depending only on M, such that

δ (M)n−
M−1
2 exp

µ
−n inf

v∈An
DKull(v,p

0)

¶
≤ Prp0 {bp ∈ A}

≤ (n+ 1)M exp
µ
−n inf

v∈An
DKull(v,p

0)

¶
.

Theorem 4.1 describes a practical way to get the exact Bahadur slope for the

φ-divergence test statistic and it is based on Lemmas 4.1 and 4.2.

Theorem 4.1

Let φ continuously differentiable and verifying

φ (0) + lim
r→∞

φ (r)

r
<∞.

Then, the sequence of test statistics©
Hn(bp,p0)ªn∈N = ½qTφ

n (bp,p0)¾
n∈N

verifies

i) Under p ∈4+
M and p 6= p0,

n−1/2
q
Tφ
n (bp,p0)→s

2

φ00 (1)
Dφ(p,p0)

with probability 1 as n→∞.
ii) Under the null hypothesis H0 : p = p

0,

n−1 log Pr
½q

Tφ
n (bp,p0) ≥ n1/2t / p = p0¾→− inf

v∈Aφ,t
DKull(v,p

0)

as n→∞ for each t in an open interval with

Aφ,t =

(
v : v ∈ ∆+M and

s
2

φ00 (1)
DKull(v,p0) ≥ t

)
.

iii) The exact Bahadur slope of the φ-divergence test statistic Tφ
n (bp,p0) is given

by

cφ (p) = inf
v∈Bφ

2DKull(v,p
0),
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where

Bφ =
©
v : v ∈4+

M and Dφ(v,p
0) ≥ Dφ(p,p

0)
ª
,

p ∈4+
M and p 6= p0.

Proof. We shall establish the proof step by step.

i)We know that under p 6= p0, bp c.s.−→
n→∞ p. Now the result follows by the continuity

of Dφ(v,p
0) with respect to the first argument. Condition i) of Lemma 4.1 is

verified with

b(p) =

s
2

φ00 (1)
Dφ( p,p0).

ii) It is well known that

0 < Dφ(v,p
0) ≤ φ (0) + lim

r→∞
φ (r)

r
;

therefore if we denote by γ1 =

r
2

φ00(1)

³
φ (0) + lim

r→∞
φ(r)
r

´
we have that the

range of b, as p varies over 4+
M −

©
p0
ª
, is I = (0, γ1). For t ∈ I, the eventq

Tφ
n (bp,p0) ≥ n1/2t is equivalent to the event

bp ∈ Aφ,t =

(
v : v ∈4+

M and

s
2

φ00 (1)
Dφ(v,p0) ≥ t

)
.

The probability vector bp takes its values on the lattice 4M,n. We consider the
set

An = Aφ,t ∩4M,n.
The continuity of Dφ(v,p

0) in v implies that Aφ,t is the closure of its interior

and by Lemma 4.2, p0-regular for any v ∈4M,n . By ii) in Lemma 4.2, we have

under p ∈4+
M

n−1 log Pr
©bp ∈ Aφ,t/p = p

0
ª
= − inf

v∈Aφ,t

DKull(v,p
0),

i.e.,

n−1 log Pr
µq

Tφ
n (v,p0) ≥

√
nt/p = p0

¶
= − inf

v∈Aφ,t

DKull(v,p
0).

Therefore we have the condition ii) of Lemma 4.1 with

f(t) = inf
v∈Aφ,t

DKull(v,p
0), t ∈ I = (0, γ1)
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and f is a continuous function, by the continuity of DKull
¡
v,p0

¢
, in I and of

course I ⊃ ©b (p) /p ∈4+
M and p 6= p0ª .

iii) Applying Lemma 4.1 we have that the exact Bahadur slope for

q
Tφ
n (v,p0),

with φ fixed, is 2f(p); i.e., cφ(p) ≡ 2f(p) = 2 infv∈Bφ
DKull(v,p

0), where Bφ =

Aφ,f(p).

Since the function g(x) = x2 is a strictly monotonic increasing function of

x > 0, then the level obtained by the φ-divergence test statistic Tφ
n (bp,p0) will

be the same as the one attained by Hn(bp,p0) for every n and s. Hence the exact
Bahadur slopes of both sequences

©
Hn(bp,p0)ªn∈N and

n
Tφ
n (bp,p0)o

n∈N
will be

the same as Bahadur (1971, see Remark 2, p. 27) pointed out.

Remark 4.1

It is necessary to consider Hn instead of T
φ
n due to condition i) in Lemma

4.1.

Remark 4.2

If we consider φ (x) = x logx− x+ 1 we have

BKull =
©
v : v ∈4+

M and DKull(v,p
0) ≥ DKull(p,p0)

ª
and then

cKull (p) = 2DKull(p,p
0), p ∈4+

M and p 6= p0.
Therefore

cφ (p) = inf
v∈Bφ

2DKull(v,p
0) ≤ 2DKull(p,p0) = cKull(p)

because p ∈Bφ. Then we have

cφ(p)/cKull(p) ≤ 1, for all v ∈4+
M p 6= p0.

The likelihood ratio test obtained for φ (x) = x log x−x+1 has maximal Bahadur
efficiency among all the φ-divergence test statistics. However, in the same way

as Cressie and Read (1984) pointed out with the power-divergence test statistic,

other family members can be equally efficient if there does not exist a probability

vector v satisfying both DKull(v,p
0) < DKull(p,p

0) and Dφ(v,p
0) ≥ Dφ(p,p

0).
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Computing measures of large sample performance often leads to different con-

clusions. We have seen that, when M is fixed, the likelihood ratio test statistic

is superior to any φ-divergence test statistic in terms of exact Bahadur efficiency,

but all φ-divergence test statistics are equivalent in terms of Pitman efficiency.

There are interesting results in relation to the chi-square test statistic and likeli-

hood ratio test statistic when the number of cells is not fixed. Quine and Robinson

(1985) studied the problem when Mn → ∞ and they found that chi-square test

statistic has Pitman efficiency 1 and Bahadur efficiency 0 relative to likelihood

ratio test statistic. But if n/Mn → γ ∈ (0,∞) , i.e., sparseness assumption, chi-
square test statistic is strictly superior to likelihood ratio test statistic in the

Pitman sense but still has Bahadur efficiency 0. Similar results were found by

Kallenberg et al . (1985). An interesting overview of this problem can be seen in

Drost et al . (1989). The results presented by Quine and Robinson (1985) can be

extended to the family of φ-divergence test statistics. This is an open problem.

4.2.3. Approximations to the Power Function: Comparisons

ciated with the decision rule given in (4.3), via approximations to the limiting

alternative distribution of the φ-divergence test statistic, one for contiguous al-

ternative hypotheses and another for fixed alternatives. Given the contiguous

alternative hypothesis pn we established that

lim
n→∞βn,φ(pn) = 1−Gχ2M−1(δ)

¡
χ2M−1,α

¢
,

where δ was given in (4.5).

Then every φ-divergence test statistic has the same asymptotic distribution.

The distribution Gχ2M−1(δ)
gives a fair approximation to the power function of

the chi-square test statistic when n ≥ 100. The approximation is not as good
ffitt

and Randles (1977). Drost et al . (1989) pointed out that in the case of the

power-divergence family the approximation for values of λ 6= 1 is very poor. The
approach based on Gχ2M−1(δ)

was considered for the first time by Patnaik (1949).

Slakter (1968) simulated the power of the chi-square test statistic in many cases

and compared it to the approach given by Gχ2M−1(δ)
. He was very pessimistic. An

interesting study is also given in Haber (1980).
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for the likelihood ratio test statistic; see Kallenberg et al . (1985) and Bro
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The other asymptotic approximation has the expression

βn,φ(p
∗) ≈ 1−Φ

³
1

σ1(p∗)

³
φ00(1)
2
√
n
χ2M−1,α −

√
nDφ(p

∗,p0)
´´
,

where σ1(p
∗) is given in (3.10).

Broffit and Randles (1977) compared the two previous approximations, in the

case of the chi-square test statistic, and they conclude that for large values of the

true power the normal approximation is better, but for moderate values of the

power, the approximation Gχ2M−1(δ)
is better. Menéndez et al . (2001a) considered

a model in which the normal approximation, βn,φ(p
∗), of the power function is

very poor for the family of the power-divergence test statistics. Drost et al . (1989)

proposed two new approximations to the power function for the power-divergence

test statistic. Both the computation and results on asymptotic error rates sug-

gest that the new approximations are greatly superior to the traditional power

approximations. Sekiya et al . (1999) proposed a normal approximation based on

the normalizing transformation of the power-divergence test statistic. Sekiya and

Taneichi (2004) using multivariate Edgeworth expansion for a continuous distri-

bution showed how the normal approximation can be improved. Obtaining these

approximations for the φ-divergence test statistic is an open problem.

4.3. Exact and Asymptotic Moments: Comparison

The speed of convergence of the exact moments to the asymptotic moments,

in the family of φ-divergence test statistics, gives us information about the speed

of convergence of the exact distribution to its asymptotic distribution.

We shall consider a second order Taylor expansion of the first three exact

moments of the φ-divergence test statistic, Tφ
n (bp,p0), and we compare them to

the corresponding moments of a chi-square distribution with M − 1 degrees of
freedom. The sizes of the correction terms will give information about the errors

that we are doing when we use the asymptotic distribution instead of the exact

distribution.

The method was used by Cressie and Read (1984). We therefore omit its

justification or motivation. We consider the problem under the null hypothesis

as well as under contiguous alternative hypotheses.

© 2006 by Taylor & Francis Group, LLC



176 Statistical Inference based on Divergence Measures

4.3.1. Under the Null Hypothesis

We denote

µβ(T
φ
n (bp,p0)) = E ·³Tφ

n (bp,p0)´β¸ , β = 1, 2, 3,
and we shall establish, in Propositions 4.1, 4.2 and 4.3 that

µβ

³
Tφ
n (bp,p0)´ = µβ ¡χ2M−1¢+ 1

n
fβφ +O(n

−3/2), β = 1, 2, 3,

where µβ(χ
2
M−1) = E

h¡
χ2M−1

¢βi
. We point out that E

h¡
χ2M−1

¢βi
= M − 1,

M2 − 1 or M3 + 3M2 −M − 3, if β = 1, 2 or 3, respectively.
Then fβφ controls the speed at which the first exact three moments, about

the origin, of the φ-divergence test statistic Tφ
n (bp,p0), converge to the first three

moments of a chi-square distribution withM−1 degrees of freedom. The function
φ for which fβφ = 0, β = 1, 2, 3, will be the best.

In the next propositions we shall obtain the second order Taylor expansion

of the first three moments, with respect to the origin, of the φ-divergence test

statistic.

Proposition 4.1

It holds

E
h
Tφ
n (bp,p0)i =M − 1 + 1

n
f1φ +O(n

−3/2),

where

f1φ =
φ000(1)
3φ00(1)

(2− 3M + S) +
φIV (1)

4φ00(1)
(1− 2M + S) (4.8)

and S =
PM
j=1(p

0
j)
−1.

Proof. Let us denote

Wj =
1√
n

¡
Nj − np0j

¢
, j = 1, ...,M.
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A fourth order Taylor expansion of Dφ(bp,p0) around p0 gives
Dφ(bp,p0) =

MP
j=1

³
∂Dφ(p,p0)

∂pj

´
p=p0

Wj√
n
+ 1

2!

MP
j=1

µ
∂2Dφ(p,p0)

∂p2j

¶
p=p0

W 2
j

n

+ 1
3!

MP
j=1

µ
∂3Dφ(p,p0)

∂p3j

¶
p=p0

W3
j

n
√
n

+ 1
4!

MP
j=1

µ
∂4Dφ(p,p0)

∂p4j

¶
p=p0

W4
j

n2
+OP (n

−5/2).

But³
∂Dφ(p,p0)

∂pj

´
p=p0

=

µ
φ0
µ
pj
p0j

¶¶
p=p0

= φ0(1),

µ
∂2Dφ(p,p0)

∂p2j

¶
p=p0

=

µ
1
p0j
φ00
µ
pj
p0j

¶¶
p=p0

= 1
p0j
φ00(1),

µ
∂3Dφ(p,p0)

∂p3j

¶
p=p0

=

µ
1

(p0j)
2φ
000
µ
pj
p0j

¶¶
p=p0

= 1

(p0j)
2φ
000(1),

µ
∂4Dφ(p,p0)

∂p4j

¶
p=p0

=

µ
1

(p0j)
3φ
IV

µ
pj
p0j

¶¶
p=p0

= 1

(p0j)
3φ
IV (1).

Then

Tφ
n (bp,p0) = 2n

φ00(1)Dφ(bp,p0) = MP
j=1

W2
j

p0j
+ φ000(1)

3
√
nφ00(1)

MP
j=1

W3
j

(p0j)
2

+ φIV (1)
12nφ00(1)

MP
j=1

W 4
j

(p0j)
3 +OP (n

−3/2).
(4.9)

By (4.9) we can write

E
h
Tφ
n (bp,p0)i =

MP
j=1

E[W2
j ]

p0j
+ φ000(1)

3
√
nφ00(1)

MP
j=1

E[W3
j ]

(p0j)
2

+ φIV (1)
12nφ00(1)

MP
j=1

E[W4
j ]

(p0j)
3 +O(n

−3/2),
(4.10)

since

E
h
OP (n

−3/2)
i
= O(n−3/2).

The moment-generating function of a multinomial random variable,

N = (N1, ...,NM)
T ,
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with parameters n and p0 is

MN(t) = E[exp(t
TN)] =

¡
p01 exp(t1) + ...+ p

0
M exp(tM)

¢n
with t = (t1, ..., tM)

T . The moment generating function of the M-dimensional

random variableW = 1√
n

¡
N − np0¢ is thus given by

MW(t) = E[exp(tTW )] = E[exp(tT
¡
N/
√
n−√np0¢)]

= exp(−√ntTp0)E[exp(tTN/√n)]
= exp(−√ntTp0)M(t/√n),

(4.11)

and the ath-moment of Wj about the origin by

E[Wa
j ] =

Ã
∂aMW(t)

∂taj

!
t=0

(4.12)

for j = 1, ...,M, a = 1, 2, ....

From (4.11) and (4.12) we have

E[W 2
j ] = −(p0j)2 + p0j

E[W 3
j ] = n−1/2

³
2(p0j )

3 − 3(p0j )2 + p0j
´

E[W 4
j ] = 3(p0j)

4 − 6(p0j )3 + 3(p0j )2
+ n−1

³
−6(p0j)4 + 12(p0j)3 − 7(p0j)2 + p0j

´
,

and substituting these expressions in (4.10) the proof is complete.

Proposition 4.2

It holds

E
h
Tφ
n (bp,p0)2i =M2 − 1 + 1

n
f2φ +O(n

−3/2),

where

f2φ =
¡
2− 2M −M2 + S

¢
+ 2φ000(1)

3φ00(1)
¡
10− 13M − 6M2(M + 8)S

¢
+ 1

3

³
φ000(1)
φ00(1)

´2 ¡
4− 6M − 3M2 + 5S

¢
+ φIV (1)

2φ00(1)
¡
3− 5M − 2M2 + (M + 3)S

¢ (4.13)

and S =
PM
j=1(p

0
j)
−1.

Proof.
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Squaring and taking expectations in (4.9) we get

E

·³
Tφ
n (bp,p0)´2¸ =

MP
j=1

E[W4
j ]

(p0j)
2 +

MP
j 6=i

E[W 2
jW

2
i ]

p0jp
0
i

+ 2φ000(1)
3
√
nφ00(1)

Ã
MP
j=1

E[W5
j ]

(p0j)
3 +

MP
j 6=i

E[W2
jW

3
i ]

p0j(p0i )
2

!
+ 1

n

Ã
φIV (1)
6φ00(1)

Ã
MP
j=1

E[W6
j ]

(p0j )
4 +

MP
j 6=i

E[W2
jW

4
i ]

p0j (p
0
i )
3

!
+

³
φ000(1)
3φ00(1)

´2Ã MP
j=1

E[W6
j ]

(p0j )
4 +

MP
j 6=i

E[W3
jW

3
i ]

(p0j )
2 (p0i )

2

!!
+O(n−3/2).

(4.14)

By (4.11) we have

E[W a
jW

b
i ] =

Ã
∂a+bMW( t)

∂taj∂t
b
i

!
t=0

(4.15)

for j, i = 1, ...,M and a, b = 1, 2, ... . Then

E[W 5
j ] = n−1/2

³
−20(p0j)5 + 50(p0j )4 − 40(p0j)3 + 10(p0j)2

´
+ n−3/2

³
24(p0j )

5 − 60(p0j)4 + 50(p0j)3 − 15(p0j )2 + p0j
´
,

and

E[W 6
j ] = −15(p0j)6 + 45(p0j )5 − 45(p0j)4 + 15(p0j)3

+ n−1
³
130(p0j )

6 − 390(p0j)5 + 415(p0j)4 − 180(p0j )3 + 25(p0j)2
´

+ O(n−2).

For j 6= i both fixed, we define pab = (p0j)a(p0i )b; then
E[W 2

jW
2
i ] = 3p22 − p21 − p12 + p11 + n−1 (−6p22 + 2p21 + 2p12 − p11) ,

E[W 2
jW

3
i ] = n−1/2 (−20p23 + 5p13 + 15p22 − 6p12 − p21 + p11) ,

E[W 2
jW

4
i ] = −15p24 + 18p23 + 3p14 − 3p22 − 6p13 + 3p12

+ 1
n(130p24 − 156p23 − 26p14 + 41p22 + 42p13 − p21 − 17p12 + p11)

+ O(n−2),

E[W 3
jW

3
i ] = −15p33 + 9p32 + 9p23 − 9p22 + n−1 (130p33 − 78p32 − 78p23

+ 63p22 + 5p31 + 5p13 − 6p21 − 6p12 + p11) +O(n−2),
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and substituting these expressions in (4.14) and simplifying we have

E

·³
Tφ
n (bp,p0)´2¸ =M2 − 1 + 1

n
f2φ +O(n

−3/2),

where

f2φ =
¡
2− 2M −M2 + S

¢
+ 2φ000(1)

3φ00(1)
¡
10− 13M − 6M2 + (M + 8)S

¢
+ 1

3

³
φ000(1)
φ00(1)

´2 ¡
4− 6M − 3M2 + 5S

¢
+ φIV (1)

2φ00(1)
¡
3− 5M − 2M2 + (M + 3)S

¢
.

To obtain the previous expression we have used the following relations,

MX
j=1

¡
p0j
¢2
+

MX
j 6=i
p0jp

0
i = 1;

MX
j 6=i
p0j =M − 1

and
MX
j 6=i

p0j
p0i
= S −M.

Proposition 4.3

It holds

E

·³
Tφ
n (bp,p0)´3¸ =M3 + 3M2 −M − 3 + 1

nf
3
φ +O(n

−3/2)

where

f3φ =
¡
26− 24M − 21M2 − 3M3 + (19 + 3M)S

¢
+ φ000(1)

φ00(1)
¡
70− 81M − 64M2 − 9M3 +

¡
65 + 18M +M2

¢
S
¢

+
³
φ000(1)
φ00(1)

´2 ¡
20− 26M − 21M2 − 3M3 + (25 + 5M)S

¢
+ 3φIV (1)

4φ00(1)
¡
15− 22M − 15M2 − 2M3 +

¡
15 + 8M +M2

¢
S
¢ (4.16)

and S =
PM
j=1(p

0
j)
−1.

Proof.
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Cubing and taking expectations in (4.9) we have

E
h
Tφ
n (bp,p0)3i =

MP
j=1

E[W6
j ]

p30j
+ 3

MP
j 6=i

E[W4
jW

2
i ]

(p0j)
2
p0i

+
MP

j 6=i6=k
E[W 2

jW
2
i W

2
k ]

p0jp
0
i p
0
k

+ φ000(1)√
nφ00(1)

Ã
MP
j=1

E[W7
j ]

(p0j)
4 +

MP
j 6=i

E[W4
jW

3
i ]

(p0j)
2
(p0i )

2 + 2
MP
j 6=i

E[W 2
jW

5
i ]

p0j(p0i )
3

+
E[W2

jW
2
i W

3
k ]

p0jp
0
i (p0k)

2

¶
+ 1

n

Ã
1
3

³
φ000(1)
φ00(1)

´2Ã MP
j=1

E[W8
j ]

(p0j)
5

+
MP
j 6=i

E[W 6
jW

2
i ]

(p0j)
4
p0i

+ 2
MP
j 6=i

E[W3
jW

5
i ]

(p0j)
2
(p0i )

3 +
MP

j 6=i6=k
E[W3

jW
3
i W

2
k ]

(p0j)
2
(p0i )

2
p0k

!
+ φIV (1)

4φ00(1)

Ã
MP
j=1

E[W 8
j ]

(p0j)
5 +

MP
j 6=i

E[W 4
jW

4
i ]

(p0j)
2
(p0i )

3 + 2
MP
j 6=i

E[W2
jW

6
i ]

p0j(p0i )
4

+
MP

j 6=i6=k
E[W2

jW
2
i W

4
k ]

p0jp
0
i (p0k)

3

!!
+O(n−3/2).

(4.17)

Using again (4.11) we get

E[W 7
j ] = n−1/2

³
210(p0j)

7 − 735(p0j )6 + 945(p0j )5 − 525(p0j)4 + 105(p0j)3
´

+ O(n−3/2),

E[W 8
j ] = 105(p0j)

8 − 420(p0j)7 + 630(p0j )6 − 420(p0j )5 + 105(p0j)4 +O(n−1).
For j 6= i 6= k all fixed, we define

pab = (p
0
j)
a(p0i )

b and pabc = (p
0
j)
a(p0i )

b(p0k)
c.

Then

E[W 4
jW

3
i ] = n−1/2 (210p43 − 105p42 − 210p33 + 3p41 + 144p32 + 36p23
− 6p31 − 39p22 + 3p21) +O(n−3/2),

E[W 4
jW

4
i ] = 105p44 − 90 (p43 + p34) + 9 (p24 + 3p42) + 108p33
− 18(p32 + p23) + 9p22 +O(n

−1),

E[W 5
jW

2
i ] = n−1/2 (210p52 − 35p51 − 350p42 + 80p41 + 150p32 − 55p31
− 10p22 + 10p21) +O(n

−3/2),

E[W 5
jW

3
i ] = 105p53 − 45p52 − 150p43 + 90p42 + 45p33 − 45p32 +O(n−1),

E[W 6
jW

2
i ] = 105p62 − 15p61 − 225p52 + 45p51 + 135p42 − 45p41
− 15p32 + 15p31 +O(n

−1),
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E[W 2
jW

2
i W

2
k ] = −15p222 + 3 (p122 + p212 + p221)− (p112 + p121 + p211) + p111

+ n−1 (130p222 − 26 (p122 + p212 + p221)+7 (p112 + p121 + p211)
− 3p111) +O(n

−2),

E[W 2
jW

2
i W

3
k ] = n−1/2 (210p223 − 105p222 − 35(p123 + p213) + 8p113 + 24(p112

+ p212) + 3p221 − 9p112 − (p211 + p121) + p111) +O(n−3/2),

E[W 2
jW

3
i W

3
k ] = 105p233 − 15p133 − 45(p223 + p232) + 9 (p132 + p123)

+ 27p222 − 9p122 +O(n−1),

E[W 2
jW

2
i W

4
k ] = 105p224 − 15 (p124 + p214)− 90p223 + 3p114 + 18 (p123 + p213)

+ 9p222 − 6p113 − 3 (p122 + p212) + 3p112 +O(n−1),
and by (4.17) we have

E

·³
Tφ
n (bp,p0)´3¸ =M3 + 3M2 −M − 3 + 1

n
f3φ +O(n

−3/2),

where

f3φ =
¡
26− 24M − 21M2 − 3M3 + (19 + 3M)S

¢
+ φ000(1)

φ00(1)
¡
70− 81M − 64M2 − 9M3 +

¡
65 + 18M +M2

¢
S
¢

+
³
φ000(1)
φ00(1)

´2 ¡
20− 26M − 21M2 − 3M3 + (25 + 5M)S

¢
+ 3φIV (1)

4φ00(1)
¡
15− 22M − 15M2 − 2M3 +

¡
15 + 8M +M2

¢
S
¢
.

To obtain the previous expression we have used the following relations:

MX
j 6=i

¡
p0i
¢2
p0i

+
MX

j 6=i6=k

p0jp
0
i

p0k
= S − 2M + 1

and
MX
j=1

¡
p0j
¢3
+ 3

MX
j 6=i

¡
p0j
¢2
p0i +

MX
j 6=i6=k

p0jp
0
i p
0
k = 1.

Remark 4.3

It is clear that f iφ, i = 1, 2, 3, control the speed at which the first three exact

moments, about the origin, of the φ-divergence test statistic, Tφ
n (bp,p0), converge

to the three first moments, about the origin, of a chi-square random variable with

M − 1 degrees of freedom.
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Let us consider a function φ ∈ Φ∗ depending on a parameter “a”. In the
following we shall denote it by φ ≡ φa. In this context as optimal in the sense of

the moments of order β we consider the values of “a” from the set Rβ of roots

of the equations f iφa = 0, i = 1, 2, 3. Strictly speaking these expansions are valid

only as n→∞ for M <∞ fixed.

If now we consider the null hypothesis H0 : p = p0 = (1/M, ..., 1/M)T , we

have
PM
j=1(p

0
j )
−1 = M2. However for M increasing the roots of the equation

f1φa = 0 converge to the roots of the equation

4φ000a (1) + 3φ
IV
a (1) = 0, for φ00a(1) 6= 0, (4.18)

since the equation (4.8) can be written as

4φ000a (1)
µ
2− 3M +M2

1− 2M +M2

¶
+ 3φIVa (1) = 0.

Then the roots of this last equation converge to the roots of the equation (4.18) as

M → ∞. In relation with the equations f iφa = 0, i = 2, 3, it is possible to apply
similar arguments.

If we consider the family of the power-divergence test statistics, φ ≡ φ(λ), we

have that the roots of the equation (4.18) are λ = 1 and λ = 2/3. These values

were found directly by Read and Cressie (1988).

Example 4.1

We consider the family of φ-divergence measures given by

φa(x) =
(1− x)2

2 (a+ (1− a)x) , a ∈ [0, 1] , (4.19)

i.e., the family of Rukhin’s divergence measures. This family was introduced by

Rukhin (1994). The associated family of test statistics has the expression

Tφa
n (bp,p0) = n MX

j=1

(p0j − bpj)2
ap0j + (1− a)bpj 0 ≤ a ≤ 1. (4.20)

Some properties of this test statistic can be seen in Pardo, M. C. and J. A. Pardo

(1999). It is observed immediately that Tφ0
n (bp,p0) is the modified chi-square test

statistic and Tφ1
n (bp,p0) is the chi-square test statistic.

For a ∈ [0, 1] we have
φ000a (x) = − 3(1−a)3

(a+(1−a)x)4 and φIVa (x) =
12(1−a)4

(a+(1−a)x)5
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and the equation (4.18) becomes 36a2 − 60a + 24 = 0. Then the roots of the

equation (4.18) are a = 1 and a = 2/3.

It seems interesting to know how large M has to be for using the roots a = 1

and a = 2/3. IfM is not large we must use the roots of the equations f iφa = 0, i =

1, 2, 3 given in (4.8), (4.13) and (4.16). These solutions are given in Tables 4.1,PM
j=1(p

0
j)
−1 changes.

In particular we have considered, for
PM
j=1(p

0
j )
−1, the values M2,M3,M4 and

M5.

M 2 3 4 5 10 20 40 50 100 200...∞
f1φa

a1
a2

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00...1.00

1.00 0.83 0.78 0.75 0.70 0.68 0.67 0.67 0.67 0.67... 2/3

f2φa
a1
a2

1.45 1.20 1.13 1.10 1.05 1.02 1.01 1.01 1.00 1.00...1.00

0.55 0.59 0.60 0.61 0.63 0.64 0.65 0.66 0.66 0.66... 2/3

f3φa
a1
a2

1.31 1.09 1.05 1.03 1.01 1.00 1.00 1.00 1.00 1.00...1.00

0.69 0.67 0.66 0.65 0.65 0.66 0.66 0.66 0.66 0.66... 2/3

Table 4.1. Roots (a1 > a2) for f
i
φa
= 0, i = 1, 2, 3, for

PM
j=1(p

0
j )
−1 =M2.

M 2 3 4 5 10 20 40 50 100 200...∞
f1φa

a1
a2

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00...1.00

0.73 0.70 0.68 0.68 0.67 0.67 0.67 0.67 0.67 0.67...2/3

f2φa
a1
a2

1.06 1.03 1.02 1.01 1.00 1.00 1.00 1.00 1.00 1.00...1.00

0.55 0.57 0.58 0.59 0.61 0.63 0.65 0.65 0.65 0.66...2/3

f3φa
a1
a2

0.93 0.93 0.93 0.93 0.95 0.97 0.98 0.98 0.99 0.99...1.00

0.62 0.62 0.62 0.62 0.63 0.64 0.65 0.65 0.66 0.66...2/3

Table 4.2. Roots (a1 > a2) for f
i
φa
= 0, i = 1, 2, 3, for

PM
j=1(p

0
j)
−1 =M3.

M 2 3 4 5 10 20 40 50 100 200...∞
f1φa

a1
a2

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00...1.00

0.69 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67...2/3

f2φa
a1
a2

1.02 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00...1.00

0.55 0.57 0.58 0.58 0.61 0.63 0.65 0.65 0.66 0.66...2/3

f3φa
a1
a2

0.91 0.91 0.92 0.93 0.95 0.96 0.98 0.98 0.99 0.99...1.00

0.61 0.61 0.61 0.61 0.63 0.64 0.65 0.65 0.66 0.66...2/3

Table 4.3. Roots (a1 > a2) for f iφa = 0, i = 1, 2, 3, for
PM
j=1(p

0
j )
−1 =M4.
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M 2 3 4 5 10 20 40 50 100 200...∞
f1φa

a1
a2

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00...1.00

0.68 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67...2/3

f2φa
a1
a2

1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00...1.00

0.55 0.57 0.57 0.59 0.61 0.63 0.65 0.65 0.66 0.66...2/3

f3φa
a1
a2

0.91 0.91 0.92 0.92 0.95 0.96 0.98 0.98 0.99 0.99...1.00

0.60 0.60 0.61 0.61 0.63 0.64 0.65 0.65 0.66 0.66...2/3

Table 4.4. Roots (a1 > a2) for f iφa = 0, i = 1, 2, 3, for
PM
j=1(p

0
j)
−1 =M5.

ForM ≥ 20 all roots are within ±0.05 of the limiting roots a = 1 and a = 2/3.
Therefore for M > 20, choosing a = 1 or a = 2/3 the convergence of the first

three moments to those of a random variable chi-square with M − 1 degrees of
freedom is faster. For M ≥ 4, most of the roots are within ±0.1 of the limiting
roots a = 1 and a = 2/3. This suggests that the “a”-range [0.6, 1] is optimal for

all M not too small. For M < 4 we should use the previous table.

4.3.2. Under Contiguous Alternative Hypotheses

Under the contiguous alternative hypotheses, H1,n given in Section 3.2, it

was established that the asymptotic distribution of the φ-divergence test sta-

tistic, Tφ
n (bp,p0), is noncentral chi-square with M − 1 degrees of freedom and

noncentrality parameter δ =
PM
j=1 d

2
j/p

0
j . In the same way as under the null

hypothesis we shall establish in this case

E
h
Tφ
n (bp,p0)i =M − 1 + δ +

1√
n
g1φ +O

¡
n−1

¢
(4.21)

E
h
Tφ
n (bp,p0)2i =M2 − 1 + 2(M − 1)δ + δ2 +

1√
n
g2φ +O

¡
n−1

¢
. (4.22)

Based on (4.21) and (4.22) it is possible to give conditions to the function φ for

improving the approximations of the exact moments to the asymptotic moments

for the different values of M , p0 and d. The convergence speed of the exact

moments to the asymptotic moments gives information about the convergence

speed of the exact distribution to the asymptotic distribution.

We are going to get the expressions of giφ, i = 1, 2. We shall omit the third

moment and the expansion is only considered until the order O
¡
n−1/2

¢
. Note

© 2006 by Taylor & Francis Group, LLC



186 Statistical Inference based on Divergence Measures

that

Tφ
n (bp,p0) = 2n

φ00(1)
Dφ
n(bp,p0) = MP

j=1

W 2
j

p0j
+

φ000(1)
3
√
nφ00(1)

MP
j=1

W 3
j

(p0j)
2
+OP (n

−1),

where Wj = n
−1/2(Nj − np0j), j = 1, ...,M.

Consider the random variable

Vj = n
1/2(bpj − pj), j = 1, ...,M,

where bpj = Nj/n and N = (N1, . . . ,NM) is a multinomial random variable with

parameters n and p = (p1, . . . , pM)
T , with pj = p0j + n

−1/2dj , j = 1, ...,M . Then
we have that Wj = Vj+dj , j = 1, ...,M, and the moments ofWj can be obtained

from the moments of Vj , j = 1, ...,M .

We know that

E
h
Tφ
n (bp,p0)i =

MP
j=1

E
h
W 2
j

i
p0j

+
φ000(1)

3
√
nφ00(1)

MP
j=1

E
h
W 3
j

i
(p0j)

2
+O(n−1) (4.23)

and

E[W 2
j ] = E[(Vj + dj)

2] = −(p0j )2 + p0j + d2j + n−1/2(dj − 2p0jdj) +O(n−1),

E[W 3
j ] = E[(Vj + dj)

3] = d3j − 3dj(p0j)2 + 3djp0j +O(n−1/2).
Substituting the expressions of E[W 2

j ] and E[W
3
j ] in (4.23) we have

E
h
Tφ
n (bp,p0)i = M − 1 +

MP
j=1

d2j
p0j

+
1√
n

Ã
MP
j=1

dj
p0j
+ φ000(1)

3φ00(1)

Ã
MP
j=1

d3j

(p0j)
2 + 3

MP
j=1

dj
p0j

!!
+O(n−1)

= M − 1 + δ + 1√
n
g1φ +O

¡
n−1

¢
,

(4.24)

where

g1φ =
MX
j=1

dj
p0j
+

φ000(1)
3φ00(1)

 MX
j=1

d3j
(p0j )

2
+ 3

MX
j=1

dj
p0j

 .
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On the other hand,

E

·³
Tφ
n (bp,p0)´2¸ =

MP
j=1

E[W4
j ]

(p0j)
2 +

MP
j 6=i

E[W 2
jW

2
i ]

p0jp
0
i

+ 2φ000(1)
3
√
nφ00(1)

Ã
MP
j=1

E[W5
j ]

(p0j)
3 +

MP
j 6=i

E[W2
jW

3
i ]

p0j(p0i )
3

!
+O(n−1);

(4.25)

and by using the previous procedure we have

E[W 4
j ] = 3(p0j)

4 − 6(p0j)3 + 3(p0j)2 + 6p0jd2j − 6(p0j)2d2j + d4j
+ n−1/2

³
20(p0j )

3dj − 30(p0j )2dj + 10p0jdj + 6d3j − 12p0jd3j
´
,

E[W 2
jW

2
i ] = 3p22 − p21 − p12 + p11 + (p01 − p02) d2j − 4p11djdi

+ (p10 − p20)d2j + d2jd2i + n−1/2 (6p21di + 6p12dj − p20di
− 2p11dj − p02dj − 2p11di + p01dj + p10di + 2(2p12 − p11)dj
+ (di − 2p01di)d2j + 2(2p21 − p11)di − 4(p10dj + p01dj)djdi
+ (dj − 2p10dj)d2i

¢
,

E[W 5
j ] = 5(3p40j − 6p30j + 3p20j)dj + 10(p0j − p20j)d3j + d5j +O(n−1/2),

E[W 2
jW

3
i ] = 6(p13 − p12)dj + 3(3p22 − p21 − p12 + p11)dj + 3(p01 − p02)d2jdi
− 6p11djd

2
i + (p10 − p20)d3i + d2jd3i +O(n−1/2),

where pab = (p
0
j)
a(p0i )

b.

Substituting the previous expressions in (4.25) we get

E

·³
Tφ
n (bp,p0)´2¸ = M2 − 1 + 2(M − 1)

MP
j=1

d2j
p0j
+

Ã
MP
j=1

d2j
p0j

!2
+ 1√

n

ÃÃ
2(M + 3)

MP
j=1

dj
p0j
+ 2

MP
j=1

dj
p0j

MP
j=1

d2j
p0j

+ 4
MP
j=1

d3j

(p0j)
2

!
+

φ000(1)
φ00(1)

Ã
2(M + 3)

MP
j=1

dj
p0j

+ 2
MP
j=1

dj
p0j

MP
j=1

d2j
p0j
+ 2

3

MP
j=1

d2j
p0j

MP
j=1

d3j

(p0j)
2

+ 2
3(M + 5)

MP
j=1

d3j

(p0j)
2

!!
+O(n−1)

= M2 − 1 + 2(M − 1)δ + δ2 + 1√
n
g2φ +O

¡
n−1

¢
,

(4.26)
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where g2φ is given by

g2φ =

ÃÃ
2(M + 3)

MP
j=1

dj
p0j
+ 2

Ã
MP
j=1

dj
p0j

!Ã
MP
j=1

d2j
p0j

!
+ 4

MP
j=1

d3j

(p0j)
2

!
+ φ000(1)

φ00(1)

Ã
2(M + 3)

MP
j=1

dj
p0j
+ 2

Ã
MP
j=1

dj
p0j

!Ã
MP
j=1

d2j
p0j

!
+ 2

3

Ã
MP
j=1

d2j
p0j

!Ã
MP
j=1

d3j

(p0j)
2

!
+ 2
3(M + 5)

Ã
MP
j=1

d3j

(p0j)
2

!!!
.

From (4.24) and (4.26) we observe that the first two moments under the con-

tiguous alternative hypotheses coincide with the moments of a noncentral chi-

square distribution with M − 1 degrees of freedom and noncentrality parameter

δ =
PM
j=1

d2j
p0j

plus terms g1φ and g
2
φ of order O(n

−1/2) that depend on

φ, M,
MX
j=1

dj
p0j
,

MX
j=1

d2j
p0j

and
MX
j=1

d3j
p20j
,

plus a term of order O(n−1).

The term of order O(n−1/2) is cancelled, in the first moment, if we choose φ
verifying

φ000(1)
φ00(1)

=

−3 MX
j=1

dj
p0j

 MX
j=1

d3j
(p0j)

2
+ 3

MX
j=1

dj
p0j

−1
and for the second moment if

φ000(1)
φ00(1)

= −
Ã
2(M + 3)

MP
j=1

dj
p0j
+ 2

Ã
MP
j=1

dj
p0j

!Ã
MP
j=1

d2j
p0j

!
+ 4

MP
j=1

d3j

(p0j)
2

!
×

Ã
2(M + 3)

MP
j=1

dj
p0j
+ 2

Ã
MP
j=1

dj
p0j

!Ã
MP
j=1

d2j
p0j

!

+ 2
3

Ã
MP
j=1

d3j

(p0j)
2

!Ã
MP
j=1

d2j
p0j
+ (M + 5)

!!−1
.

Example 4.2

If we consider the family of divergence measures given by (4.19) and p0j =

1/M , j = 1, ...,M, the O
¡
n−1/2

¢
correction factors in the first and second mo-

ment are a = 1 and

a = 1− 2

M
MP
j=1
d2j +M + 5

,
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respectively. SinceM ≥ 1 andPM
j=1 d

2
j ≥ 0 this value belongs to the interval (0, 1)

and, whenM increases, tends to 1. This result hints at the Pearson’s test statistic

(a = 1) having closest distribution to the approximate noncentral chi-square under

contiguous alternative hypotheses. The same happens with the power-divergence

1984, p. 454).

4.3.3. Corrected Phi-divergence Test Statistic

We know that

µ = E
£
χ2M−1

¤
=M − 1 and σ2 = V ar

£
χ2M−1

¤
= 2(M − 1).

We can modify Tφ
n (bp,p0) (we shall denote the corrected φ-divergence test statistic

by cTφ
n (bp,p0)), in such a way that

E[cTφ
n (bp,p0)] = µ+ o(n−1)

and

V ar[cTφ
n (bp,p0] = σ2 + o(n−1).

We know that

E[Tφ
n (bp,p0)] = µ+ f1φ/n+ o(n−1)

and

V ar[Tφ
n (bp,p0)] = σ2 + bφ/n+ o(n

−1)

where f1φ was defined in (4.8) and bφ is given by

bφ =
¡
2− 2M −M2 + S

¢
+ 2φ000(1)

φ00(1)
¡
4− 6M −M2 + 3S

¢
+ 1

3

³
φ000(1)
φ00(1)

´2 ¡
4− 6M − 3M2 + 5S

¢
+ 2φIV (1)

φ00(1) (1− 2M + S) ,

where S =
PM
j=1(p

0
j )
−1.

We define

cTφ
n (bp,p0)= Tφ

n (bp,p0)− γφp
δφ

in such a way that

E[cTφ
n (bp,p0)] = µ+ o(n−1)
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and

V ar[cTφ
n (bp,p0)] = σ2 + o(n−1).

To do this it is necessary to consider

γφ = µ
³
1−pδφ

´
+ f1φ/n and δφ = 1 + bφ/nσ

2,

i.e.,
δφ = 1 + 1

2(M−1)n
¡¡
2− 2M −M2 + S

¢
+ 2φ000(1)

φ00(1)
¡
4− 6M −M2 + 3S)

+ 1
3

³
φ000(1)
φ00(1)

´2 ¡
4− 6M − 3M2 + 5S

¢
+ 2φIV (1)

φ00(1) (1− 2M + S)
´
,

and
γφ = (M − 1) ¡1−pδφ

¢
+ 1

n

³
φ000(1)
3φ00(1) (2− 3M + S)

+ φIV (1)
4φ00(1) (1− 2M + S)

´
.

Example 4.3

We consider the family of divergence measures given in (4.19) and p0j =

1/M, j = 1, ...,M . It is immediate to get

γa = (M − 1)
³
1− δ1/2a

´
+
1

n
(1− a)

³
− ¡2− 3M +M2

¢
+ 3(1− a) (M − 1)2

´
and

δa = 1+
1

n

¡−1− 6(1− a) (M − 2) + 3(1− a)2 (5M − 6)¢ .

4.4. A Second Order Approximation to the Exact Dis-

tribution

In this Section we shall present an approximation of the exact distribution

of Tφ
n (bp,p0) extracting the φ-dependent second order component from the o (1)

term in (4.1). This second order component was obtained by Yarnold (1972) for

the chi- square test statistic under the null hypothesis (the approximation consists

of a term of multivariate Edgeworth expansion for a continuous distribution and

a discontinuous term), by Siatoni and Fujikoshi (1984) for the likelihood ratio
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test statistic and Freeman-Tukey test statistic, by Read (1984a) for the power-

divergence test statistic and by Menéndez et al . (1997c) for the φ-divergence test

statistic Tφ
n (bp,p0).

Let (N1, ...,NM) be a M-dimensional random vector multinomially distrib-

uted with parameters n and p0. We consider the (M − 1)-dimensional random
vector fw = (W1, ...,WM−1) , defined by

Wj =
√
n
¡
Nj/n− p0j

¢
, j = 1, ...,M − 1.

The random vector fw takes values on the lattice

L =
nfw = (w1, ..., wM−1)T : fw =

√
n
³
m/n− ep0´ ,m ∈ Ko ,

where ep0 = (p01, ..., p0M−1)T and K is given by

K =
nfm = (n1, ..., nM−1)T : nj is a nonnegative integer, j = 1, ...,M − 1
with

PM−1
j=1 nj ≤ n

o
.

Siatoni and Fujikoshi (1984) established, under the null hypothesis, the following

asymptotic expansion for the probability mass function of the random vector fw,
Pr
³gW=fw´ = n−(M−1)/2g (fw)µ1 + 1√

n
h1 (fw) + 1

n
h2 (fw) +O ³n−3/2´¶ ,

where

· g (fw) = (2π)−(M−1)/2 ¯̄̄Σep0 ¯̄̄−1/2 expµ−1
2fwTΣ−1ep0fw

¶

· h1 (fw) = −1
2

MP
j=1

wj
p0j
+ 1

6

MP
j=1

w3j
(p0j )

2 ,

· h2 (fw) = 1
2 (h1 (fw))2 + 1

12 (1− S) + 1
4

MP
j=1

w2j
(p0j )

2 − 1
12

MP
j=1

w4j
(p0j )

3

being

Σep0 = diag
³ep0´− ep0 ³ep0´T and wM = −

M−1X
j=1

wj.

This expansion provides a local Edgeworth approximation for the probability

of fw at each point fw in L. If fw had a continuous distribution function it would
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be possible to use the standard Edgeworth expansion to calculate the probability

of any set B, by

Pr (fw∈ B) = Z · · ·
Z

B

g (fw)µ1 + 1√
n
h1 (fw) + 1

n
h2 (fw)¶ dfw +O ³n−3/2´ .

(4.27)

But fw has a lattice distribution and Yarnold (1972) indicated that in this case

that expression is not valid and established for “extended convex sets” (convex set

whose sections parallel to each coordinate axis are all intervals) B the following

result

Pr
³gW∈ B´ = J1 + J2 + J3 +O ³n−3/2´ ,

where J1 is the Edgeworth’s expansion for a continuous distribution given in

(4.27), while J2 is a term to account for the discontinuity of fw. This term is

O
¡
n−1/2

¢
and J3 term is O

¡
n−1

¢
and it has a very complicated expression (see

We denote p∗ =
³gw√

n
+ ep0, ewM = wM√

n
+ p0M

´T
, wM = −PM−1

i=1 wi, and we

consider the extended convex set

Bφ (b) =
nfw: fw ∈ L and Tφ

n (p∗,p0) < b
o
. (4.28)

tribution function of Tφ
n (bp,p0) can be expressed by

Pr(Tφ
n (bp,p0) < b) = Pr³gW∈Bφ (b)

´
= Jφ1 + J

φ
2 + J

φ
3 +O

³
n−3/2

´
being

Jφ1 = Pr(χ
2
M−1 < b) +

1

24n

3X
j=0

rφj Pr
¡
χ2M−1+2j < b

¢
+O

³
n−3/2

´
,

where

· rφ0 = 2(1− S)

· rφ1 = 6φ
000(1)
φ00(1)

¡
S −M2

¢− 3³φIV (1)
φ00(1)

´
(S − 2M + 1)

+
³
φ000(1)
φ00(1)

´2 ¡
5S − 3M2 − 6M + 4

¢
+ 3(3S −M2 − 2M)
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Siatoni and Fujikoshi (1984)).

We have (see Menéndez et al . (1997c)), under the null hypothesis, that the dis-
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· rφ2 = −2
³
φ000(1)
φ00(1)

´
(8S − 6M2 − 6M + 4) + 3

³
φIV (1)
φ00(1)

´
(S − 2M + 1)

− 2
³
φ000(1)
φ00(1)

´2 ¡
5S − 3M2 − 6M + 4

¢− 6 ¡−M2 + 2S − 2M + 1
¢

and

· rφ3 =
³
φ000(1)
φ00(1) + 1

´2
(5S − 3M2 − 6M + 4).

Jφ2 is a discontinuous O
¡
n−1

¢
term to account for the discontinuity ingW and

can be approximated to first order by

bJφ2 = ³Nφ(b)− n(M−1)/2V φ(b)
´
e−b/2

,(2πn)(M−1) MY
j=1

p0j

1/2

,

where Nφ(b) is the number of lattice points in Bφ (b) , and

V φ(b) =
(πb)(M−1)/2

Γ((M + 1)/2)

Ã
MY
i=1

p0j

!1/2µ
1 +

b

24(M + 1)n
(l1 − l2)

¶
,

where

l1 =

µ
φ000(1)
φ00(1)

¶2 ¡
5S − 3M2 − 6M + 4

¢
and l2 = 3

µ
φIV (1)

φ00(1)

¶
(S − 2M + 1) ,

being S =
PM
j=1

1
p0j
. This term bJφ2 does not look so complicated but it is very hard

to obtain it when n and M are not small, because of the difficulty for getting

V φ(b).

Finally, Jφ3 = O
¡
n−1

¢
and its expression is too complicated. Neglecting the

Jφ3 term Menéndez et al . (1997c) proposed, in the same way as Read (1984a),

the approximation

Pr(Tφ
n (bp,p0) < b) ' Jφ1 + bJφ2 .

The proof of this result can be seen in Menéndez et al . (1997c). A simi-

lar result has been established in Taneichi et al . (2001a, b) under contiguous

alternative hypotheses.

Read (1984a) studied the usefulness of this approximation to the exact distri-

bution for the power-divergence test statistics and established that it is externally

close to the exact distribution for n so small as 10, and furthermore it provides

a substantial improvement over the chi-square first order approximation.
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Example 4.4

For the family of divergence measures given in (4.19), we have for p0j = 1/M,

j = 1, ...,M

Fφa
Ed(b) ≡ Pr(Tφ

n (bp,p0) < b) ' Ja1 + bJa2
being

Ja1 = Pr(χ
2
M−1 < b) +

1

24n

3X
j=0

raj Pr
¡
χ2M−1+2j < b

¢
+O

³
n−3/2

´
,

where

· ra0 = 2(1−M2)

· ra1 = 6M(M − 1)(1− 3(1− a)2

· ra2 = 12(1− a)(M2 − 3M + 2) + 36(1− a)2(M − 1)− 6(M − 1)2

and

· ra3 = 2(3a− 2)2(M2 − 3M + 2).

The term bJa2 has the expression
bJa2 = ³Na(b)− n(M−1)/2V a(b)

´
e−b/2

.³
(2πn)(M−1)(1/M)M

´1/2
where Na(b) is the number of lattice points in Bφa (b), Bφa (b) is defined in the

same way as Bφ (b) in (4.28) by replacing φ by φa, and

V a(b) = (πb)(M−1)/2
Γ((M+1)/2)

¡
1
M

¢M/2 ³
1 + 3b

4(M+1)n(1− a)2(M −M2)
´

+ O(n−3/2).

4.5. Exact Powers Based on Exact Critical Regions

We consider a function φ, some specified alternative hypotheses and a sig-

nificance level α and we are going to get the exact power function, using the

exact critical value (without any reference to asymptotic) for the φ-divergence

test statistic Tφ
n (bp,p0). We shall use this exact power function to compare the

members of the family of φ-divergence test statistics Tφ
n (bp,p0). This approach
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is similar to one used by West and Kempthorne (1972) and Haber (1984) to

compare the power of the chi-square test statistic and likelihood ratio test sta-

tistic, by Read (1984b) to compare the power-divergence test statistic and by

Pardo, M. C. and Pardo, J. A. (1999) to compare the family of Rukhin test sta-

tistics given in (4.20). We restrict our attention to the equiprobable null model

H0 : p
0 = (1/M, ..., 1/M)Tand we consider alternative models where one of the

M probabilities is perturbed, and the rest are adjusted so that they still sum to

1,

H1 : pi =


M − 1− δ

M(M − 1) if i = 1, ...,M − 1
1 + δ

M
if i =M

(4.29)

where −1 ≤ δ ≤M − 1.
We are going to justify a little bit the equiprobable null model. Sturges (1926)

initiated the study of the choice of cell and recommended that the cell would be

chosen to have equal probabilities with M = 1 + 2.303 log10 n. Mann and Wald

(1942) for a sample size n recommendedM = 4
¡
2n2z−1α

¢1/5
where zα denotes the

100(1−α) percentile of the standard normal distribution. Schorr (1974) confirmed
that the “optimum” M is smaller than the value given by Mann and Wald and

he suggested using M = 2n2/5. Greenwood and Nikulin (1996) suggested using

M ≤ min (1/α, logn) . Cohen and Sackrowitz (1975) proved that the tests which
lead to reject the above hypothesis if

PM
i=1 hi (xi) > c, where c is positive, hi,

i = 1, ...,M, are convex functions and xi ≥ 0, i = 1, ...,M, are unbiased for

equal cell probabilities. Bednarski and Ledwina (1978) stated that if tests of fit

are based on continuous functions, then in general they are biased for testing an

arbitrary simple hypothesis.

In order to get the exact power for each φ-divergence test statistic Tφ
n (bp,p0),

it is necessary to choose a significance level α and calculate the associated critical

region. To do this, we will see first the way to get exact 100 (1− α) percentiles,

tφn,M,α, corresponding to the exact distribution of T
φ
n (bp,p0).

The distribution function of Tφ
n (bp,p0) under the null hypothesis H0 : p = p0

is

F
Tφn (bp,p0) (t) = Prp0 ³Tφ

n (bp,p0) ≤ t´ = 1− Prp0 ³Tφ
n (bp,p0) > t´ ,
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where

Prp0
³
Tφ
n (bp,p0) > t´ = X

(n1,...,nM )∈AnM,t

Prp0 (N1 = n1, . . . ,NM = nM) ,

AnM,t =
n
(n1, . . . , nM) ∈ (N ∪ {0})M /n1 + . . .+ nM = n, Tφ

n (bp,p0) > to
and

Prp0 (N1 = n1, . . . , NM = nM) =
n!

n1! . . . nM !
(p01)

n1 . . . (p0M)
nM .

The set of upper tail probabilities of Tφ
n (bp,p0) is

Uφ
n,M =

n
α ∈ (0, 1) : ∃t > 0 with Prp0

³
Tφ
n (bp,p0) > t´ = α

o
.

100(1−α) percentiles tφn,M,α of T
φ
n (bp,p0) are obtained for any α ∈ Uφ

n,m through

the equation α = Prp0
³
Tφ
n (bp,p0) > tφn,M,α´ . In general it will not be possible to

get an exact percentile and therefore we shall consider an approximate 100(1−α)
percentile that we are going to define. If α ∈ (0, 1)− Uφ

n,M , we consider

α1 = max
n
α0 ∈ (0,α] : ∃t > 0 with Prp0

³
Tφ
n (bp,p0) > t´ = α0

o
,

so that tφn,M,α1 is defined as the approximate 100(1−α) percentile. We calculate

the approximate percentiles for α, M, n and φ all fixed. This process can be

divided into four steps:

1. Generate all the elements xM = (n1, . . . , nM) of

AnM =
n
(n1, . . . , nM) ∈ (N ∪ {0})M /n1 + . . .+ nM = n

o
and calculate the corresponding probabilities Prp0(N1 = n1, . . . ,NM =

nM).

2. For each xM ∈ AnM , calculate the test statistics Tφ
n (bp,p0).

3. Put Tφ
n (bp,p0) and Prp0(N1 = n1, . . . ,NM = nM) in increasing order with

respect to the values of Tφ
n (bp,p0).

4. Calculate the approximate 100(1− α) percentile tφn,M,α1 .
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We use randomized tests in order to decide with probability γφn,M,α the rejec-

tion of the hypothesis H0 : p
0 = (1/M, ..., 1/M)T when the test statistic takes on

the value tφn,M,α1 . Let ϕ
³
Tφ
n (bp,p0)´ be a function giving the probability of reject-

ing H0 when the φ-divergence test statistic T
φ
n (bp,p0) is observed. This function

is defined by the formula

ϕ
³
Tφ
n (bp,p0)´ =


1 if Tφ

n (bp,p0) > tφn,M,α1
γφn,M,α if Tφ

n (bp,p0) = tφn,M,α1
0 if Tφ

n (bp,p0) < tφn,M,α1
. (4.30)

We have

α = Ep0
h
ϕ
³
Tφ
n (bp,p0)´i

= 1× Prp0
³
Tφ
n (bp,p0) > tφn,M,α1´+ γφn,M,αPrp0

³
Tφ
n (bp,p0) = tφn,M,α1´ ,

and

γφn,M,α =
α− Pr

³
Tφ
n (bp,p0) > tφn,M,α1´

Pr
³
Tφ
n (bp,p0) = tφn,M,α1´ .

Let us consider p =(p1, ..., pM)
T with pi given in (4.29). The exact power

function of the test ϕ
³
Tφ
n (bp,p0)´ , defined in (4.30), at p is

βφ,n (p) = Ep

h
ϕ
³
Tφ
n (bp,p0)´i

= Prp
³
Tφ
n (bp,p0) > tφn,M,α1´+ γφn,M,αPrp

³
Tφ
n (bp,p0) = tφn,M,α1´ .

A nice and extensive study about this problem can be seen in Marhuenda (2003).

Now we present a practical example using the family of divergence measures given

in (4.19). The study corresponding to the power-divergence test statistic can be

seen in Cressie and Read (1988).

Example 4.5

We consider the family of Rukhin test statistics, Tφa
n (bp,p0), given in (4.20).

α = 0.05

for different values of δ and “a”, n = 10, 20 and M = 5. For δ < 0 the power

decreases as “a” increases. For δ > 0 the reverse occurs. For alternatives with

δ > 0 we should choose “a” as large as other restrictions will allow in order

to obtain the best power. For alternatives with δ < 0 we should choose “a” as
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Table 4.5 presents exact powers for the randomized test (4.30) based on
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small as possible. If we wish to choose a test with reasonable power against these

alternatives, for every δ value, we should choose a ∈ [0.6, 0.7]. The reason is that
there is a marked reduction in power as “a” moves from 0.7 to 1 and a marked

increase in power as “a” moves from 0 to 0.6.

(n = 10,M = 5)

δ

a -0.9 -0.5 0.5 1 1.5

0 .1670 .0819 .0707 .1392 .2600

.1 .1637 .0805 .0719 .1412 .2617

.2 .1620 .0797 .0728 .1426 .2630

.3 .1670 .0818 .0711 .1400 .2607

.4 .1517 .0766 .0755 .1570 .3053

.5 .1517 .0766 .0755 .1570 .3053

.6 .1516 .0774 .0797 .1749 .3417

2/3 .1429 .0772 .0753 .1677 .3353

.7 .1367 .0758 .0833 .1977 .4056

.8 .1313 .0746 .0844 .2028 .4056

.9 .1372 .0767 .0833 .2009 .4032

1 .1247 .0737 .0858 .2099 .4212

(n = 20,M = 5)

δ

a -.9 -.5 .5 1 1.5

0 .5903 .1281 .0784 .1470 .2573

.1 .5853 .1272 .0787 .1473 .2574

.2 .5658 .1239 .0794 .1521 .2836

.3 .5688 .1269 .0840 .1864 .3853

.4 .5264 .1265 .0942 .2453 .5159

.5 .4485 .1224 .1023 .2770 .5627

.6 .3842 .1182 .1105 .3165 .6245

2/3 .3785 .1177 .1121 .3241 .6366

.7 .3738 .1170 .1121 .3242 .6367

.8 .3218 .1121 .1186 .3551 .6805

.9 .2853 .1087 .1205 .3627 .6891

1 .2731 .1068 .1229 .3722 .7004

Table 4.5. Exact power functions for the randomized size α = 0.05 test of the

symmetric hypothesis.

4.6. Small Sample Comparisons for the Phi-divergence

Test Statistics

The literature contains many simulation studies concerning the accuracy of

using the chi-square distribution tail function Fχ2M−1 as an approximation to

F
Tφn (bp,p0) for the chi-square test statistic and the likelihood ratio test statistic G2
(e.g., Good et al . 1970; Roscoe and Byars, 1971; Tate and Hyer, 1973; Margolin

and Light, 1974; Radlow and Alf, 1975; Chapman, 1976; Larntz, 1978; Kotze and

Gokhale, 1980; Lawal, 1984; Kallenberg et al . 1985; Hosmane, 1986; Koehler,

1986; Rudas, 1986). Much of what follows in this section generalizes these studies.

Two criteria used by Read (1984b) for comparing the family of power-divergence

test statistics are proposed here for small n. A study in relation to Lin test

statistic can be seen in Menéndez et al . (1997d) and in relation with Rukhin test

statistic in Pardo, M. C. and Pardo, J. A. (1999).

© 2006 by Taylor & Francis Group, LLC



Optimality of Phi-divergence Test Statistics in Goodness-of-fit 199

We have obtained four different asymptotic approximations for the exact dis-

tribution of the test statistic Tφ
n (bp,p0). We shall assume that p0 = ( 1

M , ...,
1
M )

T .

The first one is

derived under the assumption that the number of classes is finite, Fχ2M−1
(b) =

Pr
¡
χ2M−1 ≤ b

¢
and the second one, FN (b) = Pr (N(0, 1) ≤ (b− µφ,n)/σφ,n) , when

the number of classes increases to infinity. We must remark that in this case
√
n

σφ,n

³
Dφ
n(bp,p0)− µφ,n´ L−→

n→∞ N(0, 1)

where µφ,n and σφ,n are defined in Proposition 3.2. In this Chapter we have

presented two other approaches. In Section 2 we have considered

FC (b) = Pr
³
χ2M−1 ≤ (b− γφ)/δ

1/2
φ

´
and finally in Section 3 we have considered FEd (b) ' Jφ1 + bJφ2 .

Two criteria, considered by Cressie and Read (1988), are presented to com-

pare these four asymptotic approximations for small n. Criterion 1 consists of

recording the maximum approximation error incurred by each of the four approx-

imations to the exact distribution, F
Tφn (bp,p0) (b) , of the test statistic Tφ

n (bp,p0).
We calculate

maxbp
¯̄̄
F
Tφn (bp,p0) ³Tφ

n (bp,p0)´− Fi ³Tφ
n (bp,p0)´¯̄̄ ,

for φ fixed and i = χ2M−1, N, C, Ed. The sign associated with the maximum
difference is also recorded. So, we know if the maximum error is an overestimate

or an underestimate.

Criterion 2 consists of assessing the accuracy for the approximation in calcu-

lating the size of a test. We use the standard approximation Fχ2M−1
to give a test

with approximate significance level α. We choose cα such that 1−Fχ2M−1(cα) = α,

i.e., cα = χ2M−1,α. We calculate 1 − Fi(χ2M−1,α), i = Tφ
n (bp,p0), N, C, Ed, and

assess how they vary for different functions φ. There are two reasons to take the

critical cα to be the (1− α) percentile of a chi-square distribution with M − 1
degrees of freedom. On the one hand, this is the most commonly used for the

tests based on Pearson and likelihood ratio test. On the other hand, the critical

region obtained from this approximation is independent of φ.

In the next example we present a practical study based on the divergence

measures given in (4.19).
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The first one and the second one were obtained in Chapter 3.
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Example 4.6

We consider the family of Rukhin test statistics, Tφa
n (bp,p0), with p0 = (1/M,

..., 1/M )T , given in (4.20) . 1 and 4 .2 il lustrate th e m aximum a pp ro x-

imation error resulting from using the approximations Fχ2M−1
, FC , FEd and FN

for the exact distribution of Tφ
n (bp,p0) which are labelled Apr1, Apr2, Apr3 and

Apr4 respectively on the graphs. The results are illustrated for specific values of

“a” in the range [0,1], number of classes M = 5 and sample sizes n = 10 and

n = 20. The approach FN is obtained in Exercise 1. At first glance, it is clear

that the optimal parameter values are between 0.6 and 1 for the cases considered

here. As n increases from 10 to 20, the error curves flatten over this range;

furthermore, the size of the maximum errors decreases overall except for Apr4.

But this behavior of the approximation FN is not surprising when one recalls

that it relies on M increasing with n. In general the maximum error associated

with the approximations Fχ2M−1
, FC and FEd can be seen to be negative and of

a similar order. However the normal approximation FN has larger maximum

error than the others and of the opposite sign. Note that FN is not defined for

a = 0 for the reason given in Exercise 1. Secondly, we assess the accuracy of the

approximation in calculating the size of a test. We use the standard approxima-

tion Fχ2M−1
to give a test with approximate significance level α, i.e., choose cα

such that 1 − Fχ2M−1(cα) = α, i.e., cα = χ2M−1,α. We calculate 1 − Fi(χ2M−1,α),
i = Tφa

n ( bp, p0 ) , N, C, Ed, a n d asse ss ho w t he y va ry f or different values o f “a”.
The results a re i l lustrated in F igures 4 .3 and 4.4 aga i n f o r the speci fic values

of “a”, sample sizes and number of classes used for criterion 1, and α = 0.1.

There is a close agreement between the exact and nominal levels obtained for FC
and FEd than for Fχ2M−1

. In general, the normal approximation is clearly poor in

comparison to the other two approximations and tends to overestimate the true

level for all “a” values considered. But this result must be expected because this

approximation is an asymptotic result in n and M. Due to the value of reference

the chi-square approximation, in the pictures, is represented by a line in 0.1. The

exact and nominal levels for the approximation Fχ2M−1 are quite similar for all

a ∈ [0.6, 1] and it is not too similar outside this interval. If we want to use the
approximation given by Fχ2M−1

we should use a ∈ [0.6, 1] for small M. From the

result obtained in relation with the criterion based on the speed of the convergence

of the exact moment, when M increases, the optimal values were a = 2/3 and

a = 1. This suggests that the range a ∈ [0.6, 1] is also optimum for big values of

M. If we wish to consider values outside the interval [0.6, 1] the approximation
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based on FC is a good alternative to the approximation FEd since the approxima-
tion FC is easier to get than the approximation FEd.

Figure 4.1

Figure 4.2
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Figure 4.3

Figure 4.4
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4.7. Exercises

1. Consider the family of divergence measures, Dφa
n (bp,p0), where φa is given

in (4.19) and p0 = (1/M, ..., 1/M)T . Find the asymptotic distribution

obtained in Proposition 3.2 when the number of classes Mn verifies

lim
n→∞

n

Mn
= γ ∈ (0,∞) .

2. Consider the family of test statistics associated with Lin divergence measure

(Lin, 1991) defined by

φa (x) =
1

a (1− a) (ax log x− (ax+ (1− a)) log (ax+ 1− a)) , a ∈ (0, 1) ,

and

φ0 (x) = lim
a→0φa (x) = x log x−x+1, φ1 (x) = lim

a→1
φa (x) = − log x− 1+x.

Is there some optimum value of “a” in goodness-of-fit according to the

moment criterion given in (4.18)?

3. Consider the family of test statistics associated with the “harmonic mean

divergence” given by

φr (x) = (1− x) /2− 21/r
¡
1 + x−r

¢−1/r
, r > 0.

Find the optimum values of “r” in goodness-of-fit according to the moment

criterion given in (4.18).

4. Consider the family of divergence measures given in Exercise 2 and the

following alternatives

H1 : πi =


M − 1− δ

M(M − 1) if i = 1, ...,M − 1
1 + δ

M
if i =M

.

Find the exact power for α = 0.05, n = 20 and M = 5.

5. Let φ : (0,∞)→ R be a concave function with continuous fourth derivative
verifying φ00 (1/M) < 0. Find what conditions the function φ must verify

to be optimum the statistic Sφn b 0

according to the moment criterion with p0 = (1/M, ..., 1/M)T .
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6. Consider the family of Rφ-divergences given by

φa (x) =

(
1

1−a (x
a − x) if a 6= 1

−x log x if a = 1
.

Find the values of “a” for which the test statistic Sφan (bp,p0), p0 =

(1/M, ..., 1/M)T is optimum according to the moment criterion asM →∞.

7. Consider the power-divergence family of test statistics. Find the expression

of the corrected test statistic given in Subsection 4.3.3 of this chapter.

8. Consider the family of test statistics given in Exercise 2. Find the expression

of the corrected test statistic given in Subsection 4.3.3 of this chapter, with

p0 = (1/M, ..., 1/M)T .

9. Consider the test statistic Sφn(bp,p0), with p0 = (1/M, ..., 1/M)T . Using the
results given in Exercise 5, find the expression of the corrected test statistic

given in Subsection 4.3.3 of this chapter.

10. Find the expression of the approximation based on Edgeworth’s expansion

associated with Lin test statistic in the case of equiprobable hypothesis.

11. Find the expression of the approximation based on Edgeworth’s expansion

associated with Pearson-test statistic.

12. Find the expression of the approximation based on Edgeworth’s expansion

associated with the power-divergence test statistics for λ 6= −1 and λ 6= 0.

4.8. Answers to Exercises

1. We denote by Dφa
n (bp,p0) the family of divergence measures obtained with

the functions defined in (4.19). By Proposition 3.2 we have

√
n

σn,a

³
Dφa
n (bp,p0)− µn,a´ L−→

n→∞ N (0, 1)

where

µn,a = E

·
φa

µ
Zn
γn

¶¸
= E

"
(γn − Zn)2

2γn(γna+ (1− a)Zn)

#
, a ∈ [0, 1]
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and

σ2n,a = γnV ar

"
(γn − Zn)2

2γn(γna+ (1− a)Zn)

#
−Cov2

"
Zn,

(γn − Zn)2
2γn(γna+ (1− a)Zn)

#
,

a ∈ [0, 1] . Therefore,
√
n
³
Dφa
n (bp,p0)− µa´ L−→

n→∞ N
¡
0,σ2a

¢
where

µa = E

"
(γ − Z)2

2γ (γa+ (1− a)Z)

#
and

σ2a = γV ar

"
(γ − Z)2

2γ (γa+ (1− a)Z)

#
−Cov2

"
Z,

(γ − Z)2
2γ (γa+ (1− a)Z)

#
, a ∈ [0, 1]

where Z is a Poisson random variable with parameter γ.

Finally, under the null hypothesis of equiprobability we have

FN(b) = Pr(N(0, 1) ≤ (b− µa)/σa).

We can observe that µ0 and σ
2
0 do not exist because E

£
Z−1

¤
does not exist.

For this reason this approximation is valid only for a ∈ (0, 1].
2. We can observe that for a → 0 we have the likelihood ratio test statistic

and for a → 1 the modified likelihood ratio test statistic. It is clear that

for a = 0 and a = 1, the equation (4.18) does not hold. Now we consider

a ∈ (0, 1) . We have φ000a (1) = −(1 + a) and φIVa (1) = 2(a2 + a+ 1) and the

equation (4.18) becomes

−4 (1 + a) + 6 ¡a2 + a+ 1¢ = 0.
This equation does not have any real-valued solution for a ∈ (0, 1) , so there
is not an optimum value according to this criterion.

3. It is immediate to check that φ000r (1) = −3/8− 3/8r and φIVr (1) = 15/16+

7/8r − 3/16r2 − 1/8r3, then the equation (4.18) becomes

4

µ
−3
8
− 3
8
r

¶
+ 3

µ
15

16
+
7

8
r − 3

16
r2 − 1

8
r3
¶
= 0.

The positive root of the equation (4.18) is r = −1
4 +

1
4

√
57.
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4. Using the procedure given in Section 4.4, we have computed the exact

powers for the randomized test (4.30) with α = 0.05 and for different values

of δ and a. Taking M = 5 and n = 10, we have obtained the powers

(n = 20,M = 5)

δ

a −.9 −.5 .5 1 1.5

0 .4463 .1213 .1076 .3056 .6103

.1 .4841 .1244 .1012 .2765 .5678

.2 .4948 .1252 .1001 .2718 .5588

.3 .5260 .1267 .0953 .2521 .5279

.4 .5336 .1268 .0933 .2424 .5128

.5 .5627 .1281 .0886 .2205 .4705

.6 .5689 .1272 .0849 .1971 .4222

.7 .5670 .1251 .0821 .1759 .3646

.8 .5844 .1282 .0800 .1640 .3361

.9 .5849 .1270 .0790 .1503 .2792

1 .5803 .1262 .0789 .1474 .2574

For alternatives with δ > 0, we must choose “a” as larger as other restric-

tions permit getting the best power. On the contrary, for alternatives δ < 0

we must choose “a” as smaller as possible. Given a fixed “a” the power rises

as |δ| increases. If we want to choose a test with a reasonable power against
the given alternatives for any value of δ, we should choose a ∈ [0.3, 0.6] .

5. Using the procedure given for the family of φ-divergences we have

E
h
Sφn(bp,p0)i = M − 1 + 1

n
f1φ +O

³
n−3/2

´
E

·³
Sφn(bp,p0)´2¸ = M2 − 1 + 1

n
f2φ +O

³
n−3/2

´
E

·³
Sφn(bp,p0)´3¸ = M3 + 3M2 −M − 3 + 1

n
f3φ +O

³
n−3/2

´
where

f1φ = φ000(1/M)
2φ00(1/M)

¡
2
M − 3 +M

¢
+ 7φIV (1/M)

16φ00(1/M)
¡

1
M2 − 2

M + 1
¢

f2φ = −2M + 2 +
¡
10
M − 13 + 2M +M2

¢ φ000(1/M)
φ00(1/M)

+ 1
4

³
φ000(1/M)
φ00(1/M)

´2 ¡
12
M2 − 18

M + 6
¢

+ 7φIV (1/M)
8φ00(1/M)

¡
3
M2 − 5

M + 1 +M
¢
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and

f3φ = 26− 24M − 2M2 + φ000(1/M)
2φ00(1/M)

¡
210
M − 243 + 3M + 27M2 + 3M3

¢
+ 7φIV (1/M)

16φ00(1/M)
¡
45
M2 − 66

M + 18M + 3M2
¢

+ 1
4

³
φ000(1/M)
φ00(1/M)

´2 ¡
180
M2 − 234

M + 36 + 18M
¢
.

Therefore, the functions φ under which the asymptotic moments are closer

to the exact moments, for fixed M, are those for which it holds

f iφ = 0, i = 1, 2, 3.

This happens because the second order expansions of the first three mo-

ments of Sφn are the same as the first three moments of a chi-square dis-

tribution χ2M−1 plus the correction factor of order O
¡
n−1

¢
, f iφ, i = 1, 2, 3,

respectively.

6. We have to solve the equations f iφ = 0, i = 1, 2, 3 given in the previous

exercise for the given function φa as M →∞.
Solving the first equation,

f1φa = 7
48

¡
3− 6M + 3M2

¢
a2 +

¡−8148M2 + 138
48 M − 57

48

¢
a

+
¡
13
8 M

2 − 18
8 M + 5

8

¢
= 0

and making M →∞, we have

a =
81±√812 − 6552

42
;

therefore, the solutions of the equation are a = 2 and a = 13/7. On the

other hand, solving the second equation f2φa = 0, we have¡
45− 71M + 19M2 + 7M3

¢
a2+

¡−27M3 − 67M2 + 215M − 121¢ a
+

¡
26M3 + 58M2 − 162M + 78

¢
= 0

and making M →∞, we get

a =
27±√272 − 728

14
,

i.e., a = 2 and a = 13/7.
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Finally to approximate the third asymptotic moment to the exact one, we

have

f3φa =
¡
1035− 1398M + 144M2 + 198M3 + 21M4

¢
a2

+
¡−81M4 − 702M3 − 552M2 + 4110M − 2775¢ a

+
¡
78M4 + 612M3 + 496M2 − 3012M + 1826

¢
= 0

and as M →∞, we obtain

a =
81±√812 − 6552

42
;

therefore the solutions of the equation are a = 2 and a = 13/7.

This result is valid for large M . If M is small we should use the next table,

which has the roots “a” of the equations f iφa = 0, i = 1, 2, 3, for fixed values

of M that increase to ∞.
M 2 3 4 5 10 20 40 50 100 200 500

f1φa a1 3.0 2.42 2.23 2.14 2.0 2.0 2.0 2.0 2.0 2.0 2.0

a2 2.0 2.0 2.0 2.0 2.98 1.91 1.88 1.88 1.86 1.86 1.85

f2φa a1 3.34 2.52 2.31 2.21 2.07 2.02 2.0 2.0 2.0 2.0 2.0

a2 1.65 1.68 1.7 1.71 1.76 1.8 1.83 1.83 1.84 1.85 1.85

f3φa a1 3.69 2.62 2.37 2.27 2.10 2.04 2.01 2.01 2.0 2.0 2.0

a2 1.3 1.41 1.47 1.51 1.62 1.72 1.78 1.79 1.82 1.84 1.85

Values of the roots (a1>a2) of f
i
φa
= 0, i = 1, 2, 3.

In this table we observe that for M > 20 we can use the previous result

since the first order factors of the three first moments are closer to 0 for

a = 2 and a = 13/7. For M ≤ 20, it would be reasonable to choose one test
statistic Sφan with a ∈

7. In this case, the corrected test statistic is given by

cT
φ(λ)
n (bp,p0) ≡ Tφ(λ)

n (bp,p0)− γφ(λ)q
δφ(λ)

where γφ(λ) and δφ(λ) are obtained from the theoretical results given in

Subsection 4.3.3.

Since φ00(λ) (1) = 1, φ
000
(λ) (1) = λ− 1, φIV(λ) (1) = (λ− 1) (λ− 2) we have

δφ(λ) = 1 + 1
2(M−1)n

¡¡
2− 2M −M2 + S

¢
+ (λ− 1) (8− 12M − 2M2 +6S)

+ 1
3 (λ− 1)2

¡
4− 6M − 3M2 + 5S

¢
+ (λ− 1) (λ− 2) (2− 4M + 2S))
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and

γφ(λ) = (M − 1)
³
1−

q
δφ(λ)

´
+ 1

n

¡
1
3 (λ− 1) (2− 3M + S)

¢
+

(λ− 1) (λ− 2)
4

(1− 2M + S) .

8. Similarly to the previous exercise and taking into account that

φ00a (1) = 1, φ
000
a (1) = −(1 + a), φIVa (1) = 2(a2 + a+ 1)

and
PM
j=1 p

0
j =M

2, for a ∈ (0, 1) , we have

γa = (M − 1)
³
1− δ

1/2
a

´
− 1

3n (a+ 1)
¡
2− 3M +M2

¢
+ a2+a+1

2n

¡
1− 2M +M2

¢
and

δa = 1− 1
n
− 2(a+1)

(M−1)n
¡
2− 3M +M2

¢
+ (a+1)2

3n(M−1)
¡
2− 3M +M2

¢
+ 2 a

2+a+1
n(M−1)

¡
1− 2M +M2

¢
.

For a = 0, we have the likelihood ratio test statistic and for a = 1 the

modified likelihood ratio test statistic.

9. We know that

E
h
Sφn(bp,p0)i =M − 1 + aφ/n+ o ¡n−1¢

and

V ar
h
Sφn(bp,p0)i = 2 (M − 1) + bφ/n+ o ¡n−1¢

where

aφ =
φ000 (1/M)
2φ00 (1/M)

µ
2

M
− 3 +M

¶
+
7φIV (1/M)

16φ00 (1/M)

µ
1

M2
− 2

M
+ 1

¶
and

bφ = −2M + 2 + φ000(1/M)
φ00(1/M)

¡
12
M − 18 + 6M

¢
+ 1

2

³
φ000(1/M)
φ00(1/M)

´2
× ¡

6
M2 − 9

M + 3
¢
+ 7φIV (1/M)

2φ00(1/M)
¡

1
M2 − 2

M + 1
¢
.

We define

cSφn(bp,p0) = Sφn(bp,p0)− γφp
δφ
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in such a way that

E
h
cSφn(bp,p0)i =M − 1 + o ¡n−1¢

and

V ar
h
cSφn(bp,p0)i = 2(M − 1) + o ¡n−1¢ .

For this purpose it is necessary to consider

γφ = (M − 1)
³
1−pδφ

´
+ aφ/n and δφ = bφ/n2 (M − 1) ,

i.e.,

δφ = 1− 1
n +

1
n(M−1)

³
φ000(1/M)
φ00(1/M)

¡
6
M − 9 + 3M

¢
+ 1

4

³
φ000(1/M)
φ00(1/M)

´2 ¡
6
M2 − 9

M + 3
¢
+ 7φIV (1/M)

4φ00(1/M)
¡

1
M2 − 2

M + 1
¢´

and

γφ = (M − 1) ¡1−pδφ
¢

+ 1
2n

³
φ000(1/M)
φ00(1/M)

¡
2
M − 3 +M

¢
+ 7φIV (1/M)

8φ00(1/M)
¡

1
M2 − 2

M + 1
¢´
.

10. It is immediate to show that Lin test statistic is

Tφa
n (bp,p0) = 2n

µ
1

1−a
MP
i=1
bpi log bpi

abpi+(1−a)p0i
+ 1

a

MP
i=1
p0i log

p0i
abpi+(1−a)p0i

¶
, a ∈ (0, 1) .

The expression of the approximation based on Edgeworth’s expansion as-

sociated with this test statistic for p0 = (1/M, ..., 1/M)T is

Pr(Tφa
n (bp,p0) < b) ' Ja1 + bJa2

being

Ja1 = Pr(χ
2
M−1 < b) +

1

24n

3X
j=0

raj Pr
¡
χ2M−1+2j < b

¢
+O

³
n−3/2

´
,

where

· ra0 = 2(1−M2)

· ra1 = -6(a2 + a+ 1)(M − 1)2+2(1 + a)2(M2 − 3M + 2)+6(M2 −M)
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· ra2 = -4a(a+ 1)
¡
M2 − 3M + 2

¢
+6
¡
a2 + a+ 1

¢
(M − 1)2 -6(M2 −M)

and

· ra3 = 2 (a+ 2)2 (M2 − 3M + 2).

The term bJa2 has the expression
bJa2 = ³Na(b)− n(M−1)/2V a(b)

´
e−c/2

.³
(2πn)(M−1) (1/M)M

´1/2
,

where Na(b) is the number of points (w1, . . . , wM−1) satisfying

wi =
√
n

µ
Ni
n
− 1

M

¶
, Ni = 0, 1, 2, . . .

such that
PM
i=1Ni = n and T

φa
n (bp,p0) < b, and

V a(b) = (πc)(M−1)/2
Γ((M+1)/2) (1/M)

M/2
³
1 + c

12(M+1)n

¡
(1 + a)2(M2 − 3M + 2)

− 3(a2 + a+ 1)(M − 1)2¢¢+O(n−3/2).
11. In this case φ (x) = (x− 1)2 /2, then for the test statistic

X2 = n
MX
i=1

(bpi − p0i )2
p0i

we have Pr(X2 < b) ' Jφ1 + bJφ2 , being
Jφ1 = Pr(χ2M−1 < b) +

1
24n

¡
Pr(χ2M−1 < b)2(1− S)

+ Pr(χ2M+5 < b)(5S − 3M2 − 6M + 4)
¢

and

bJφ2 = ³Nφ(b)− n(M−1)/2V φ(b)
´
e−b/2

,Ã
(2πn)(M−1)

MY
i=1

p0j

!1/2

,

where Nφ(b) is the number of points (w1, . . . , wM−1) satisfying

wi =
√
n

µ
Ni
n
− 1

M

¶
, Ni = 0, 1, 2, . . .

such that
PM
i=1Ni = n and X

2 < b and

V φ(b) =
(πb)(M−1)/2

Γ((M + 1)/2)

µ
MQ
i=1
p0j

¶1/2

being S =
PM
j=1(p

0
j )
−1.
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12. Using similar arguments to that used in the previous exercises and taking

into account that φ00(λ) (1) = 1, φ000(λ) (1) = λ − 1, φIV(λ) (1) = (λ− 1) (λ− 2)
we have Pr

³
T
φ(λ)
n (bp,p0) < b´ ' Jλ1 + bJλ2 being

Jλ1 = Pr(χ
2
M−1 < b) +

1

24n

3X
j=0

rλj Pr
¡
χ2M−1+2j < b

¢
+O

³
n−3/2

´
,

where

· rλ0 = 2(1− S)
· rλ1 = 6 (λ− 1) ¡S −M2

¢− 3 (λ− 1) (λ− 2) (S − 2M + 1)

+ (λ− 1)2 ¡5S − 3M2 − 6M + 4
¢
+ 3(3S −M2 − 2M)

· rλ2 = (λ− 1) ¡−2(8S − 6M2 − 6M + 4) + 3 (λ− 2) (S − 2M + 1)
¢

− 2 (λ− 1)2 ¡5S − 3M2 − 6M + 4
¢− 6 ¡−M2 + 2S − 2M + 1

¢
and

· rλ3 = λ2(5S − 3M2 − 6M + 4).

The term bJλ2 has the expression
bJλ2 = ³Nλ(b)− n(M−1)/2V λ(b)

´
e−b/2

Ã
(2πn)(M−1)

MY
i=1

p0j

!1/2

where Nλ(b) is the number of X-values such that T
φ(λ)
n (bp,p0) < b and

V φ(b) =
(πb)(M−1)/2

Γ((M + 1)/2)

Ã
MY
i=1

p0j

!1/2µ
1 +

b

24(M + 1)n
(l1 − l2)

¶
,

where

l1 = (λ− 1)2
¡
5S − 3M2 − 6M + 4

¢
and

l2 = 3 (λ− 1) (λ− 2) (S − 2M + 1) ,

being S =
PM
j=1(p

0
j)
−1
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5

Minimum Phi-divergence

Estimators

5.1. Introduction

In this chapter we consider a wide class of estimators which can be used when

the data are discrete, either the underlying distribution is discrete or is contin-

uous but the observations are classified into groups. The latter situation can

occur either by experimental reasons or because the estimation problem with-

Some

examples in which it is not possible to find the maximum likelihood estimator

based on the original data can be seen in Le Cam (1990). For example, when

we consider distributions resulting from the mixture of two normal populations,

whose probability density function is given by

fθ(x) = w
1√
2πσ1

exp

Ã
−1
2

µ
x− µ1
σ1

¶2!
+(1−w) 1√

2πσ2
exp

Ã
−1
2

µ
x− µ2
σ2

¶2!
,

the likelihood function is not a bounded function. In this situation

θ = (µ1, µ2,σ1,σ2, w), µ1, µ2 ∈ R,σ1,σ2 > 0 and w ∈ (0, 1),
and the likelihood function for a random sample of size n, x1, ..., xn is given by

L(θ;x1, . . . , xn) =
nY
j=1

fθ(xj).
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If we consider µ2 = µ1 = xi for some i (i = 1, . . . , n), then fθ(xi) > w(
√
2πσ1)

−1

and

fθ(xj) > (1−w)(
√
2πσ2)

−1 exp

Ã
−1
2

µ
xj − xi
σ2

¶2!
for j 6= i.

Therefore

L(θ;x1, . . . , xn) > (2π)
−n/2w(1−w)n−1σ−11 σ

−(n−1)
2 exp

−1
2

nX
j=1,j 6=i

µ
xj − xi
σ2

¶2
and choosing σ1 sufficiently small it is possible to do L as big as it is desired.

Then there are not values w,σ1,σ2, µ1 and µ2 that maximize L.

Several authors have paid attention to estimation of the unknown parameters

of a mixture of two unspecified normal densities. There are mainly three different

approaches: moments, maximum likelihood and minimum distance.

The moment solution to the problem of estimating the five parameters of an

arbitrary mixture of two unspecified normal densities was studied by Karl Pear-

son (1894). Although many random phenomena have subsequently been shown

to follow this distribution until 1966 this estimation problem was not considered.

Important applications of mixture modeling occur in satellite remote-sensing of

agricultural characteristics: specifically, the use of spectral measurements of light

intensity to determine crop types, distributions of wind velocities and distribu-

tions of physical dimensions of various mass produced items. Hassenblad (1966)

seems to have been the first to reopen the question. Since then the problem has

also attracted the attention of Cohen (1967) who showed how the computation

of Pearson’s moment method can be lightened to some extent.

Since the likelihood function is not a bounded function, the objective in the

maximum likelihood approach is to find an appropriate local maximum. Since

closed-form solutions of the likelihood equations do not exist, they must be solved

by using iterative techniques. Day (1969) and Behboodian (1970) find an appro-

priate local maximum of the likelihood function by using iterative techniques.

Minimum distance estimation (MDE), in general, was presented for the first

time by Wolfowitz (1957) and it provides a convenient method of consistently es-

timating unknown parameters. An extensive bibliography for minimum distance

estimators is in Parr (1981). In the mixture model setting, Choi and Bulgren
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(1968) and MacDonald (1971) estimated the mixture proportions (assuming the

component distributions were known) by minimizing the sum-of-squares distance

between the empirical and theoretical distribution functions. Quandt and Ram-

sey (1978) estimated the parameters in the mixture model by minimizing the

sum-of-squares distance between the empirical and theoretical moment generat-

ing functions. Kumar et al. (1979), however, showed that this technique is highly

sensitive to starting values. Bryant and Paulson (1983) examined the empirical

characteristic function in this setting. Fryer and Robertson (1972) considered

the MDE for grouped data and finally by using the families of Rφ-divergences

and φ-divergences in Pardo, M. C. (1997b, 1999b) the problem of estimating the

parameters of a mixture of normal distributions was considered.

In this chapter we study the minimum φ-divergence estimator, considered in

Morales et al. (1995), for grouped data.

5.2. Maximum Likelihood and Minimum Phi-diver-

gence Estimators

Let (X , βX , Pθ)θ∈Θ be the statistical space associated with the random va-

riableX, where βX is the σ-field of Borel subsets A ⊂ X and {Pθ}θ∈Θ is a family
of probability distributions defined on the measurable space (X , βX ) with Θ an
open subset of RM0 , M0 ≥ 1. Let P = {Ei}i=1,...,M be a partition of X . The
formula Prθ(Ei) = pi(θ), i = 1, . . . ,M, defines a discrete statistical model. Let

Y1, . . . , Yn be a random sample from the population described by the random

variable X, let Ni =
Pn
j=1 IEi(Yj) and bpi = Ni/n, i = 1, . . . ,M. Estimating θ

by maximum likelihood method, under the discrete statistical model, consists of

maximizing for fixed n1, . . . , nM ,

Pr θ(N1 = n1, . . . ,NM = nM) =
n!

n1! . . . nM !
p1(θ)

n1 × . . .× pM(θ)nM (5.1)

or, equivalently,

log Pr θ(N1 = n1, . . . ,NM = nM) = −nDKull(bp,p(θ)) + k (5.2)

where bp = (p̂1, . . . , p̂M)
T , p(θ) = (p1(θ), . . . , pM(θ))

T and k is independent of

θ. The equality (5.2) is easy to check because, if we denote l (θ) = logPr θ(N1 =
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n1, . . . , NM = nM), we have

l (θ) = log
n!

n1! . . . nM !
+ n

MP
i=1
bpi log pi(θ)

= log
n!

n1! . . . nM !
− n

MP
i=1
bpi log 1

pi(θ)
+ n

MP
i=1
bpi log bpi − n MP

i=1
bpi log bpi

= log
n!

n1! . . . nM !
− n

MP
i=1
bpi log bpi

pi(θ)
+ n

MP
i=1
bpi log bpi

= −n
MP
i=1
bpi log bpi

pi(θ)
+ k = −nDKull(bp,p(θ)) + k.

Then, estimating θ with the maximum likelihood estimator of the discrete model

is equivalent to minimizing the Kullback-Leibler divergence on θ ∈ Θ ⊆ RM0.

Since Kullback-Leibler divergence is not the unique divergence measure, we can

choose as estimator of θ the value θ̃ verifying

D(bp,p(θ̃)) = inf
θ∈Θ⊆RM0

D(bp,p(θ)), (5.3)

where D is a divergence measure.

In the following we assume that there exists a function

p(θ) = (p1(θ), . . . , pM(θ))
T

that maps each θ = (θ1, . . . , θM0)
T into a point in ∆M , where ∆M was defined

As θ ranges over the values of Θ, p(θ) ranges over a

subset T of ∆M . When we assume that a given model is “correct”, we are just

assuming that there exists a value θ0 ∈ Θ such that p(θ0) = π, where π is the

true value of the multinomial probability, i.e., π ∈ T .
Definition 5.1

Let Y1, . . . , Yn be a random sample from a population described by the random

variable X with associated statistical space (X , βX , Pθ)θ∈Θ. The minimum φ-

divergence estimator of θ0 is any bθφ ∈ Θ verifying
Dφ(bp,p(bθφ)) = inf

θ∈Θ⊆RM0

Dφ(bp,p(θ)).
In other words, the minimum φ-divergence estimator satisfies the condition

bθφ = arg inf
θ∈Θ⊆RM0

Dφ(bp,p(θ)). (5.4)

© 2006 by Taylor & Francis Group, LLC

in Chapter 2, Section 2.1.



Minimum Phi-divergence Estimators 217

This method chooses the point of T closest to bp in the sense of the φ-divergence
chosen.

Remark 5.1

If we consider the family of the power-divergence measures we obtain the min-

imum power-divergence estimator studied by Cressie and Read (1984). This is

given by the condition

bθ(λ) = arg inf
θ∈Θ⊆RM0

Dφ(λ)(bp,p(θ)), (5.5)

where

Dφ(λ)(bp,p(θ)) = 1

λ(λ+ 1)

MX
i=1

bpiÃµ bpi
pi(θ)

¶λ

− 1
!
.

For λ→ 0 we obtain the maximum likelihood estimator, for λ = 1 the minimum

chi-square estimator, for λ = −2 the minimum modified chi-square estimator

(or minimum Neyman modified estimator), for λ → −1 the minimum modified

likelihood estimator (or minimum discrimination information estimator), for λ =

−0.5 Freeman-Tukey estimator and for λ = 2/3 Cressie-Read estimator.
We know that Kullback-Leibler divergence measure can be obtained from the

power-divergence measure with λ = 0. For this reason in the rest of the chapter

in order to distinguish between the MLE based on original data and the MLE

associated with the discrete model we shall denote by bθ(0) the maximum likelihood
estimator in the discrete model and by bθ the maximum likelihood estimator based

on the original data.

We present an example to clarify all the notation and concepts introduced

until now.

Example 5.1

Suppose that n independent and identical distributed Poisson variables with

mean θ (θ > 0) are observed, and let the observations be truncated at x = 2.

Let N1, N2 and N3 be the number of observations taking on the values 0, 1 and

2 or more, respectively. Then N =(N1, N2, N3) has the trinomial distribution

(n; p1(θ), p2(θ), p3(θ)), where p1(θ) = Prθ(X = 0) = e−θ, p2(θ) = Prθ(X = 1) =

θe−θ and p3(θ) = Prθ(X ≥ 2) = 1− (1 + θ)e−θ.

If we consider Cressie-Read estimator, we have to get the minimum in θ of
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the function

Dφ(2/3)(bp,p(θ)) = 9
10

·bp1µ³ bp1
exp(−θ)

´2/3 − 1¶+ bp2µ³ bp2
θ exp(−θ)

´2/3 − 1¶

+ bp3µ³ bp3
1−(1+θ) exp(−θ)

´2/3 − 1¶¸ .
Now if we assume, for instance, that bp = (0.2, 0.3, 0.5)T we obtain bθ(2/3) =
1.6595.

Geometrically, ∆3 is the triangle side ABC depicted in Figure 5.1, that we

C = (0, 0, 1)

B = (0, 1, 0)

A = (1, 0, 0)

p3

p1

p2

·
·
·
·
·
·
·
·
·
·³³

³³
³³

³³
³³

³³
@

@
@

@
@

@

´
´

´
´

´
´

´
´

´́

Figure 5.1. Set of probability distributions for Example 5.1.

As θ varies over R+ = [0,∞),

p(θ) = (e−θ, θe−θ, 1− (1 + θ)e−θ)T

traces out a curve in ∆3. This curve is the subset T . When θ → 0, p(θ) →
(1, 0, 0)T , and when θ → ∞, p(θ) → (0, 0, 1)T . Thus, the boundary points of θ

in this example correspond to the boundary points of ∆3. Figure 5.2 shows the

relationships between ∆3, T, π and bp in this example. If the Poisson model is
incorrect, then the true value of π does not generally lie on the curve, although
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in principle it can. Because of the discreteness of the multinomial distribution,

it often happens that bp does not lie on T (as is the case in the figure). The

estimation method based on the minimum distance leads to a point in T closest

to bp in the sense of the distance chosen.

p̂

T

π

A = (1, 0, 0) B = (0, 1, 0)

C = (0, 0, 1)

T
T
T
T
T
T
T
T
T
T
T
T
T
TT·

·
·
·
·
·
·
·
·
·
·
·
·
··

HHj

XXz

Figure 5.2. Relation between ∆3, T, π and bp for Example 5.1.

From a historical point of view the maximum likelihood estimator in grouped

data or the minimum Kullback-Leibler divergence estimator was considered for

the first time by Fisher (1925), the minimum chi-square estimator and the min-

imum modified chi-square estimator by Neyman (1949). Matusita (1955), using

the measure of divergence that has his name, studied the corresponding estimator

for a = 1/2 (Freeman-Tukey estimator). Read and Cressie (1988) considered the

minimum power-divergence estimators and finally Morales et al. (1995) studied

the minimum φ-divergence estimators. The results obtained by Read and Cressie

(1988) as well as the results obtained in Morales et al. (1995) are generalizations

of the results given by Birch (1964) for the maximum likelihood estimator. The

results we present in this chapter follow the line of that given by Pardo, M. C.

(1997a) for the Rφ-divergences, which are a generalization of the procedure given

by Cox (1984) in relation to the maximum likelihood estimator.
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5.2.1. Minimum Power-divergence Estimators in Normal and

Weibull Populations

In this Section we consider the minimum power-divergence estimator, given in

(5.5), of the Normal and Weibull parameters for different values of λ. Moreover,

we compare the results obtained with the maximum likelihood estimator based on

the original data and the estimator based on minimizing the Kolmogorov distance

(Kolmogorov estimator). A similar study was carried out for Weibull distribution

by Pardo, M.C. (1997a) using the family of Rφ-divergences to define a minimum

distance estimator.

Definition 5.2

Kolmogorov estimator for the parameter θ, of a distribution family {Fθ}θ∈Θ,
is defined as the value bθKo ∈ Θ verifying

Dn(bθKo) = min
θ∈Θ

Dn(θ),

for

Dn(θ) = sup
x∈R
{| Fn(x)− Fθ(x) |} = max{D+n (θ),D−n (θ)},

where

D+n (θ) = sup
x∈R
{Fn(x)− Fθ(x)} = max{0,maxi=1,...,n{ in − Fθ(x(i))}},

D−n (θ) = sup
x∈R
{Fθ(x)− Fn(x)} = max{0,maxi=1,...,n{Fθ(x(i))− i−1

n }},

Fn is the empirical distribution function of the sample x1, . . . , xn and x(1) ≤
x(2) ≤ . . . ≤ x(n) are the order statistics.

It is well known that a random variableX has aWeibull distribution,We (b, c) ,

with parameters θ =(b, c) , b, c, b > 0, c > 0, if the distribution function is given

by

Fθ(x) = 1− exp (− (x/b)c) , x ≥ 0.

The general scheme for calculating the minimum power-divergence estimator

is as follows:

Step 1: We fix
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a) sample size (n),

b) number of classes in the partition (M),

c) number of simulated samples (N):

We consider the partition of the sample space, {Ei}i=1,...,M , Ei = (ai−1, ai],
i = 1, . . . ,M, where the values a0, ..., aM are obtained from

Z ai

ai−1
fθ(x)dx = 1/M, i = 1, ...,M.

Step 2: Given λ fixed, do for i = 1 to N

a) Generate a random sample of size n,

b) Calculate the relative frequencies, bpl, of El = (al−1, al], l = 1, ...,M,
c) Minimize on θ the functionDφ(λ)(bp,p(θ)). Estimator bθ(λ),i=(bθ1(λ),i, ..., bθM0

(λ),i)

is obtained.

The minimum of the function Dφ(λ)(bp,p(θ)) has been obtained using the
subroutine ZXMIN of the package IMSL. In other parts of the book we use

the Newton-Raphson method to get minimum φ-divergence estimators.

Step 3: Let θ̂(λ) = (θ̂1(λ), ..., θ̂
M0

(λ) ) be the mean of the values obtained by

minimizing the function Dφ(λ) in step 2(c) for all the samples and mse the mean

squared error of the estimated parameters, i.e.,

θ̂j(λ) =
1
N

NX
i=1

θ̂jφ(λ),i, mse(θj) =
1
N

NX
i=1

³
θ̂jφ(λ),i − θj

´2
and mse = 1

M0

M0X
j=1

mse (θj) .
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We(1, 1) n = 20 n = 40 n = 60

θ̂ bbbc
mse

.998783

1.063596

.055893

.994317

1.029655

.025969

.994150

1.019258

.014047bθKo bbbc
mse

.984651

1.565195

1.023289

1.006958

1.137134

.121828

.978376

1.185521

.108134

θ̂(−2) bbbc
mse

1.008785

1.423182

.776172

1.010294

1.084708

.106446

.985119

1.101808

.080867

θ̂(−1) bbbc
mse

1.013693

1.406272

.756604

1.006479

1.067542

.097466

.980422

1.087102

.078229

θ̂(−0.5) bbbc
mse

.992916

1.380089

.739701

1.000374

1.069138

.103279

.977708

1.081392

.07735

θ̂(0) bbbc
mse

.976527

1.369282

.739195

.995429

1.052883

.093768

.9735

1.085483

.077515

θ̂(1) bbbc
mse

.974568

1.405006

.765451

.982324

1.06289

.098793

.967026

1.083276

.080175

Table 5.1. Estimators for parameters of a Weibull (1,1).

θ̂, Kolmogorov estimator, bθKo, and the minimum power-divergence estimator θ̂(λ)
for Normal and Weibull populations with parameters b = 1, c = 1, for Weibull

populations and µ = 0, σ = 1, for Normal populations. These values have been

calculated by computer simulation for 1000 samples, number of classes M = 6

and sample sizes n = 20, 40 and 60. The sums of the mean squared errors of the

two parameters also appear in both tables.

The programs which calculate the bθKo and the θ̂(λ) need initial estimates. For
Weibull populations these estimates have been calculated by the Dannenbring

(1997) method, i.e.,

bb = x([.6321n]+1) and bc = log(log 2)

log(x(1/2)/bb)
where x(1/2) is the sample median.
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In the case of normal populations we have taken as initial values the maximum

likelihood estimators based on original data.

As we expected, the mean squared error (mse) associated with the maximum

likelihood estimator based on the original Weibull and Normal values, θ̂, is smaller

than that associated with the minimum-power divergence estimators, θ̂(λ). On

the other hand the mse associated with the Kolmogorov estimator bθKo is greater
than the mse associated with all minimum power-divergence estimators, θ̂(λ), for

Weibull populations, although the Kolmogorov estimator, bθKo, is based on the
original data and the minimum power-divergence estimators, θ̂(λ), classify the

original data into classes.

N(0, 1) n = 20 n = 40 n = 60

θ̂ bµbσ
mse

-.011351

.960474

.038515

-.004091

.978162

.018526

-.002958

.984269

.012468bθKo bµbσ
mse

-.014687

.972221

.043739

-.004947

.985606

.021340

-.003634

.987717

.014099

θ̂(−2) bµbσ
mse

-.012443

1.020231

.059777

-.005091

1.007078

.02851

-.005469

1.001058

.017253

θ̂(−1) bµbσ
mse

-.010154

1.002308

.048961

-.005765

.995969

.024424

-.003588

.993877

.015981

θ̂(−0.5) bµbσ
mse

-.010375

.991389

.044468

-.005316

.989804

.023099

-.002832

.992492

.015205

θ̂(0) bµbσ
mse

-.009577

.984915

.044277

-.006597

.986656

.022511

-.003736

.989282

.01498

θ̂(1) bµbσ
mse

-.009477

.970271

.039804

-.00711

.979003

.021464

-.002969

.981616

.014725

Table 5.2. Estimators for parameters of a Normal (0,1).

In Normal populations the mse associated with bθKo coincides, more or less,
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with the mse associated with θ̂(1). For each sample size, θ̂(1) is the best of the

minimum power-divergence estimators θ̂(λ) for all sample sizes. It does not hap-

pen the same with Weibull populations because it depends on the sample size.

For n = 20 and 40 it seems that θ̂(0) is the best estimator and for n = 60, the

best is θ̂(−0.5).

From the comparison study we carried out, the new family of estimators we

have introduced is a good alternative when it is necessary to classify the data.

In Weibull populations, every member of the family of the minimum power-

divergence estimator is even better than Kolmogorov estimator which is based

on original data. In relation to Normal populations the results are still better,

since θ̂(1) is as good as both estimators based on original data θ̂ and θ̂K0 .

5.3. Properties of the Minimum Phi-divergence

Estimator

Throughout the Section, we assume that the model is correct, so that π =

p(θ0), and M0 < M − 1. Furthermore, we restrict ourselves to unknown parame-
ters θ0 satisfying the regularity conditions 1-6 introduced by Birch (1964):

1. θ0 is an interior point of Θ.

2. πi = pi(θ0) > 0 for i = 1, . . . ,M. Thus π = (π1, . . . ,πM)
T is an interior

point of the set ∆M .

3. The mapping p : Θ→ ∆M is totally differentiable at θ0 so that the partial

derivatives of pi(θ0) with respect to each θj exist at θ0 and pi(θ) has a

linear approximation at θ0 given by:

pi(θ) = pi(θ0) +
MX
j=1

(θj − θ0j)
∂pi(θ0)

∂θj
+ o(kθ − θ0k)

where o(kθ − θ0k) denotes a function verifying

lim
θ→θ0

o(kθ − θ0k)
kθ − θ0k = 0.

4. The Jacobian matrix

J(θ0) =

µ
∂p (θ)

∂θ

¶
θ=θ0

=

µ
∂pi(θ0)

∂θj

¶
i=1,...,M
j=1,..,M0

(5.6)
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is of full rank (i.e., of rank M0).

5. The inverse mapping p−1 : T → Θ is continuous at p(θ0) = π.

6. The mapping p : Θ→ ∆M is continuous at every point θ ∈ Θ.
We first derive the Fisher information matrix for the multinomial model. In

some parts of the book it will be necessary to distinguish between the Fisher

information matrix corresponding to the original model and the Fisher infor-

mation matrix corresponding to an associated discretized model, i.e., the Fisher

information matrix corresponding to a multinomial model. For this reason we

denote IF (θ) the Fisher information matrix associated with the original model
and IF (θ) the Fisher information matrix associated with the multinomial model.

Proposition 5.1

We consider the multinomial model defined in (5.1) based on a random sam-

ple of size n, with n =
PM
i=1 ni. Then the M0 ×M0 Fisher information matrix

associated with the random sample of size n is given by

I
(n)
F (θ) =

¡
i(r,s) (θ)

¢
r,s=1,...,M0

= n

Ã
MP
j=1

1

pj (θ)

∂pj (θ)

∂θr

∂pj (θ)

∂θs

!
r,s=1,...,M0

= nA (θ)T A (θ)

where A (θ) is a M ×M0 matrix given by

A (θ) = diag
³
p (θ)−1/2

´
J(θ). (5.7)

For n = 1, I
(1)
F (θ) ≡ IF (θ) = A (θ)T A (θ) .

Proof.

We have

log Pr θ(N1 = n1, . . . , NM = nM) = k +
MX
j=1

nj log pj(θ),

where k is independent of θ.

Therefore,

∂ logPr θ(N1 = n1, . . . ,NM = nM)

∂θr
=

MX
j=1

nj
pj(θ)

∂pj(θ)

∂θr
,
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and

i(r,s) (θ) = E

·
∂ log Pr θ(.)

∂θr

∂ log Pr θ(.)

∂θs

¸

= E

"
MP
i,j=1

Ni
pi(θ)

∂pi(θ)

∂θr

Nj
pj(θ)

∂pj(θ)

∂θs

#

= E

·
MP
i=1

N2
i

p2i (θ)

∂pi(θ)

∂θr

∂pi(θ)

∂θs

¸
+E

 MP
i,j=1
i6=j

Ni
pi(θ)

∂pi(θ)

∂θr

Nj
pj(θ)

∂pj(θ)

∂θs

 .

But

E [NiNj ] =


npi (θ) (1− pi (θ)) + n2p2i (θ) if i = j

−npi (θ) pj (θ) + n2pi (θ) pj (θ) if i 6= j,
then we have

i(r,s) (θ) =
MP
i=1

npi (θ) (1− pi (θ)) + n2pi (θ)2
p2i (θ)

∂pi(θ)

∂θr

∂pi(θ)

∂θs

+
MP
i,j=1
i6=j

−npi (θ) pj (θ) + n2pi (θ) pj (θ)
pi(θ)pj (θ)

∂pi(θ)

∂θr

∂pj(θ)

∂θs

= n
MP
i=1

1

pi (θ)

∂pi(θ)

∂θr

∂pi(θ)

∂θs
− n (1− n)

MP
i=1

∂pi(θ)

∂θr

∂pi(θ)

∂θs

− n
MP
i,j=1
i6=j

∂pi(θ)

∂θr

∂pj(θ)

∂θs
+ n2

MP
i,j=1
i6=j

∂pi(θ)

∂θr

∂pj(θ)

∂θs

= n
MP
i=1

1

pi (θ)

∂pi(θ)

∂θr

∂pi(θ)

∂θs
+
¡
n2 − n¢ MP

i,j=1

∂pi(θ)

∂θr

∂pj(θ)

∂θs

= n
MP
i=1

1

pi (θ)

∂pi(θ)

∂θr

∂pi(θ)

∂θs
.
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By (5.7)

A (θ) = diag
³
p (θ)−1/2

´
J(θ),

therefore

A (θ)T A (θ) =

Ã
MP
j=1

1

pj(θ)

∂pj (θ)

∂θr

∂pj (θ)

∂θs

!
r=1,...,M0
s=1,...,M0

.

5.3.1. Asymptotic Properties

In order to prove the following theorem we use the Implicit Function Theo-

rem: Let

F = (F1, ..., FM0) : RM+M0 → RM0

be continuously differentiable in an open set D ⊂ RM+M0 , containing the point¡
x0 =

¡
x01, ..., x

0
M

¢
, y0 =

¡
y01, ..., y

0
M0

¢¢
for which F (x0,y0) = 0. Further, suppose that the matrix

JF =

µ
∂Fi
∂yj

¶
i=1,...,M0
j=1,...,M0

is nonsingular at (x0,y0) . Then there exists a neighborhood U of (x0,y0) such

that the matrix JF is nonsingular for all (x,y) ∈ U, an open set A ⊂ RM

containing x0 and a continuously differentiable function g = (g1, ..., gM0) : A →
RM0 such that

{(x,y) ∈ U : F (x,y) = 0} = {(x, g (x)) : x ∈ A}

Theorem 5.1

Let φ ∈ Φ∗ be a twice continuously differentiable function in x > 0 with

φ00(1) > 0 and π =p (θ0). Under the Birch regularity conditions and assum-

ing that the function p: Θ−→4M has continuous second partial derivatives in a

neighborhood of θ0, it holdsbθφ = θ0 + IF (θ0)
−1A(θ0)Tdiag

³
π−1/2

´
(bp− π) + o(k bp− π k),
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where bθφ is unique in a neighborhood of θ0.
Proof.

Let lM be the interior of the unit M-dimensional cube with ∆M ⊂ lM . Let
V be a neighborhood of θ0 on which p : Θ→ ∆M has continuous second partial

derivatives.

Let

F = (F1, ..., FM0) : l
M × V → RM0

be defined by

Fj (ep1, ..., epM ; θ1, ..., θM0) =
∂Dφ(ep,p (θ))

∂θj
, ∀j = 1, ...,M0.

It holds

Fj (π1, ...,πM ; θ01, ..., θ0M0) = 0, ∀j = 1, ...,M0

due to

∂Dφ(ep,p (θ))
∂θj

=
MX
l=1

µ
φ

µ epl
pl(θ)

¶
− φ0

µ epl
pl(θ)

¶ epl
pl(θ)

¶
∂pl(θ)

∂θj
∀j = 1, ...,M0.

Since

∂

∂θr

µ
∂Dφ(ep,p (θ))

∂θj

¶
= −

MP
l=1

φ0
µ epl
pl(θ)

¶ epl
pl(θ)2

∂pl(θ)

∂θr

∂pl(θ)

∂θj

+
MP
l=1

φ00
µ epl
pl(θ)

¶ epl
pl(θ)2

∂pl(θ)

∂θr

∂pl(θ)

∂θj

epl
pl(θ)

+
MP
l=1

φ0
µ epl
pl(θ)

¶ epl
pl(θ)2

∂pl(θ)

∂θr

∂pl(θ)

∂θj

+
MP
l=1

∂2pl(θ)

∂θj∂θr

µ
φ

µ epl
pl(θ)

¶
− φ0

µ epl
pl(θ)

¶ epl
pl(θ)

¶
,

the M0×M0 matrix JF associated with the function F at the point (p (θ0) ,θ0)
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is given by

∂F

∂θ0
=

µ
∂F

∂θ

¶
(ep,θ)=(π1,...,πM ;θ01,...,θ0M0)

=

Ãµ
∂

∂θr

µ
∂Dφ(ep,p (θ))

∂θj

¶¶
j=1,...,M0
r=1,...,M0

!
(ep,θ)=(π1,...,πM ;θ01,...,θ0M0)

= φ00 (1)
µ
MP
l=1

1

pl(θ0)

∂pl (θ0)

∂θr

∂pl (θ0)

∂θj

¶
r=1,...,M0
j=1,...,M0

= φ00 (1)A (θ0)T A (θ0) .

We recall that if B is a p× q matrix with rank p and C is a q× s matrix with
rank (C) = q then rank (BC) = p. By taking

B = J(θ0)
T
M0×M and C = diag

³
p (θ0)

−1/2
´
M×M

it follows that A (θ0)
T = BC has rank M0 by condition 4 of Birch. Also,

rank
³
A (θ0)

T A (θ0)
´
= rank

³
A (θ0)A (θ0)

T
´
= rank (A (θ0)) =M0.

Therefore, the M0 ×M0 matrix
∂F

∂θ0
is nonsingular at (π1, ...,πM ; θ01, ..., θ0M0) .

Applying the Implicit Function Theorem there exists a neighborhood U of

(p (θ0) ,θ0) such that the matrix JF is nonsingular (in our case JF in (p (θ0) ,θ0)

is positive definite and then JF is positive definite for all (ep,θ) ∈ U , because F
is continuously differentiable). Also, there exists a continuously differentiable

function θ̃ :A ⊂ lM → RM0 such that p (θ0) ∈ A and

{(ep,θ) ∈ U : F (ep,θ) = 0} = n(ep,eθ(ep)) : ep∈ Ao . (5.8)

We can observe that eθ (p (θ0)) is an arg inf of
Ψ (θ) = Dφ (p (θ0) ,p (θ))

because p (θ0) ∈ A and then

F
³
p (θ0) , eθ (p (θ0))´ = ∂Dφ

³
p (θ0) ,p

³eθ (p (θ0))´´
∂θ

= 0
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and also by (5.8), (p (θ0) , eθ (p (θ0))) ∈ U and then JF is positive definite at³
p (θ0) , eθ (p (θ0))´ . Therefore,

Dφ

³
p (θ0) ,p

³eθ (p (θ0))´´ = inf
θ∈Θ

Dφ (p (θ0) ,p (θ))

and by the φ-divergence properties eθ (p (θ0)) = θ0.

Applying the chain rule, we get

∂F (ep, eθ(ep))
∂ep +

∂F (ep, eθ(ep))
∂eθ(ep) ∂eθ(ep)

∂ep = 0

and, for ep=π,
∂F

∂π
+

∂F

∂θ0

∂θ0
∂π

= 0.

Further we know that
∂F

∂θ0
= φ00(1)A(θ0)TA(θ0)

and we shall establish later that the M0 ×M matrix
∂F

∂π
is

∂F

∂π
= −φ00(1)A(θ0)Tdiag

³
p (θ0)

−1/2
´
. (5.9)

Therefore the M0 ×M matrix
∂θ0
∂π

is

∂θ0
∂π

= (A(θ0)
TA(θ0))

−1A(θ0)Tdiag
³
p (θ0)

−1/2
´
.

The Taylor expansion of the function eθ around π yields
eθ(ep) = eθ(π) +Ã∂eθ (ep)

∂ep
!
ep=π (ep− π) + o(k ep− π k).

As eθ(π) = θ0 we obtain from here

eθ(ep) = θ0 +
¡
A(θ0)

TA(θ0)
¢−1

A(θ0)
Tdiag

³
p (θ0)

−1/2
´
(ep− π) + o(k ep− π k).

We know that bp c.s.−→
n→∞ π =p(θ0), so that bp ∈ A and, consequently, eθ(bp) is the

unique solution of the system of equations
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∂Dφ

³bp,p(eθ(bp))´
∂θj

= 0, j = 1, ...,M0

and also
³bp, eθ(bp)´ ∈ U. Therefore, eθ(bp) is the minimum φ-divergence estimator,bθφ, satisfying the relation

bθφ = θ0 +
¡
A(θ0)

TA(θ0)
¢−1

A(θ0)
T diag

³
p (θ0)

−1/2
´
(bp− p(θ0))

+o(kbp− p(θ0)k).
Finally, we establish the formula (5.9). We calculate the (i, j)th-element of the

M0 ×M matrix
∂F

∂π
,

∂

∂pi

µ
∂Dφ (p,p (θ))

∂θj

¶
=

∂

∂pi

Ã
MX
l=1

µ
φ

µ
pl
pl(θ)

¶
− φ0

µ
pl
pl(θ)

¶
pl
pl(θ)

¶
∂pi (θ)

∂θj

!

=
1

pi(θ)

µ
− pi
pi(θ)

φ00
µ

pi
pi(θ)

¶¶
∂pi (θ)

∂θj

and for (π1, ...,πM ; θ01, ..., θ0M0) we haveµ
∂

∂pi

µ
∂Dφ(p,p (θ0))

∂θj

¶¶
= − 1

pi (θ0)
φ00 (1)

∂pi (θ0)

∂θj
.

Since A(θ0) = diag
³
p (θ0)

−1/2
´
J (θ0) then (5.9) holds.

Theorem 5.2

Under the assumptions of Theorem 5.1, it holds

√
n(bθφ − θ0)

L−→
n→∞ N(0, IF (θ0)

−1).

Proof.

Applying the Central Limit Theorem, we get

√
n(bp− p(θ0)) L−→

n→∞ N(0,Σp(θ0))

being Σp(θ0) the M ×M matrix

Σp(θ0) = diag (p (θ0))− p (θ0)p (θ0)T .
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Consequently
√
n(bθφ − θ0)

L−→
n→∞ N (0,Σ

∗) ,

where

Σ∗ =
¡
A(θ0)

TA(θ0)
¢−1

A(θ0)
Tdiag

³
p (θ0)

−1/2
´
Σp(θ0)

× diag
³
p (θ0)

−1/2
´
A(θ0)

¡
A(θ0)TA(θ0)

¢−1
,

because bθφ has the expression
θ0 +

¡
A(θ0)

TA(θ0)
¢−1

A(θ0)
Tdiag

³
p (θ0)

−1/2
´
(bp− p(θ0)) + o(k bp− p(θ0) k).

For the M ×M matrix

B = diag
³
p (θ0)

−1/2
´
Σp(θ0)diag

³
p (θ0)

−1/2
´
,

we have

B = diag
³
p (θ0)

−1/2
´³
diag (p (θ0))− p (θ0)p (θ0)T

´
diag

³
p (θ0)

−1/2
´

= diag
³
p (θ0)

−1/2
´
diag (p (θ0)) diag

³
p (θ0)

−1/2
´

− diag
³
p (θ0)

−1/2
´
p (θ0)p (θ0)

T diag
³
p (θ0)

−1/2
´

= IM×M −
p
p (θ0)

q
p (θ0)

T .

Therefore,

Σ∗ =
¡
A(θ0)TA(θ0)

¢−1
− ¡

A(θ0)
TA(θ0)

¢−1
A(θ0)

T
p
p (θ0)

q
p (θ0)

TA(θ0)
¡
A(θ0)

TA(θ0)
¢−1

.

Finally we establish that
q
p (θ0)

TA(θ0) = 01×M0 .
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We have

A (θ0) =



p1 (θ0)
−1/2 ∂p1 (θ0)

∂θ1
... p1 (θ0)

−1/2 ∂p1 (θ0)
∂θM0

. ... .

. ... .

. ... .

pM (θ0)
−1/2 ∂pM (θ0)

∂θ1
... pM (θ0)

−1/2 ∂pM (θ0)
∂θM0


then q

p (θ0)
TA(θ0) =

³
p1 (θ0)

1/2 , ..., pM (θ0)
1/2
´
A(θ0)

=

µ
MP
i=1

∂pi (θ0)

∂θ1
, ...,

MP
i=1

∂pi (θ0)

∂θM0

¶
= 01×M0 .

Finally

Σ∗ =
¡
A(θ0)

TA(θ0)
¢−1

= IF (θ0)
−1 .

Based on the last two theorems we have that the minimum φ-divergence

estimator is a BAN (Best Asymptotically Normal) estimator.

5.3.2. Minimum Phi-divergence Functional Robustness

In this section we consider deviations from the discrete model,

p(θ) = (p1(θ), . . . , pM(θ))
T ,

given by pε(θ) = (1− ε)p(θ) + εp for ε > 0, θ ∈ Θ and p ∈ ∆M . Let θεφ(p) be
the vector that minimizes the function

gε(p,θ) =
MX
i=1

pi(θ, ε)φ

µ
pi

pi(θ, ε)

¶
,

where pε(θ) = (p1(θ, ε), . . . , pM(θ, ε))
T . In order to guarantee the robustness

of θφ(p), we have to verify that slight deviations of p(θ) correspond to slight

deviations of θεφ(p) or, analytically, that limε→0 θεφ(p) = θφ(p). The following

theorem gives conditions that guarantee the functional robustness.
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Theorem 5.3

Let the assumptions of Theorem 5.1 be fulfilled and in addition Θ is a compact

set. Then

lim
ε→0θ

ε
φ(p) = θφ(p).

Proof. Let {εn} be an arbitrary sequence of positive numbers verifying lim
n→∞ εn =

0. Since φ is continuous and pi(θ, ²n) −→
εn→0

pi(θ), i = 1, . . . ,M , we get that

gεn(p,θ) −→
εn→0

g0(p,θ), ∀θ ∈ Θ. Since Θ is compact the pointwise convergence
implies the uniform convergence. Consequently limεn→0 supθ∈Θ | gεn(p,θ) −
g0(p,θ) |= 0 which implies that

lim
εn→0

| inf
θ∈Θ

gεn(p,θ)− inf
θ∈Θ

g0(p,θ) |= 0,

or equivalently

lim
εn→0

| gεn(p,θεnφ (p))− g0(p,θφ(p)) |= 0.
So, we have proved that

lim
εn→0

gεn(p,θ
εn
φ (p)) = g0(p,θφ(p)). (5.10)

If limεn→0 θ
εn
φ (p) 6= θφ(p), the compactness of Θ guarantees the existence of a

subsequence {θδnφ (p)} ⊂ {θεnφ (p)} such that limδn→0 θ
δn
φ (p) = θ∗ 6= θφ(p). By

(5.10), g0(p,θ∗) = g0(p,θφ(p)) for θ∗ 6= θφ(p) which contradicts the assumed

uniqueness of θφ(p). The statement of theorem follows from here since the se-

quence {εn} can be chosen arbitrarily.
A more general way of studying the robustness is to assume that the true

distribution π ∈ ∆M verifies kπ − p(θ)k < ε for some θ ∈ Θ and to prove that
if ε is small, the θφ(π) value is near to θφ(p(θ)) = θ.

Theorem 5.4

Let the assumptions of Theorem 5.1 hold and let π ∈ ∆M . Then

lim
kπ−p(θ)k→0

θφ(π) = θφ(p(θ)) = θ.

Proof. It is immediate because θφ is a continuous function.
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5.4. Normal Mixtures: Minimum Phi-divergence Es-

timator

In this section we report the results of a simulation experiment designed to

compare empirically some minimum power-divergence estimators bθ(λ) that can
be seen in Pardo, M.C. (1999b). For the parameters of a mixture of two normal

populations we analyze the efficiency as well as the robustness of the chosen

estimators. We consider estimators corresponding to λ = −2,−1,−0.5, 0, 2/3
and 1. Simulations reported in this section are based on mixing proportions 0.25,

0.5 and 0.75. For each of these mixing proportions, firstly, we consider mixtures of

the densities f1(x) and f2 (x) where f1(x) is the density for the random variable

X = aY and f2(x) is the density associated with X = Y + b where a > 0,

b > 0 and Y is standard normal. Secondly, we assume that Y is a Student’s t

distribution with two or four degrees of freedom, or double exponential, to study

the robustness under symmetric departures from normality. Thus, “a” is the

ratio of scale parameters which we take to be 1 and
√
2 while “b” is selected to

provide the overlap desired between the two distributions. We consider “overlap”

as the probability of misclassification, using the rule: Classify an observation x

as being from population 1 if x < xc and from population 2 if x ≥ xc , where xc
is the unique point between µ1 and µ2 such that wf1(xc) = (1 − w)f2(xc) with
µi =

Z
R

xifi (x)dx, i = 1, 2. The overlaps examined in the current study are 0.03

and 0.1.

For each set of considered configurations, 5000 samples of size n = 100

were generated from the corresponding mixture distribution, and for each con-

sidered sample the minimum power-divergence estimators bθ(−2), bθ(−1), bθ(−1/2),bθ(0), bθ(2/3) and bθ(1) were obtained. Our implementation of the minimum power-

divergence estimator, bθ(λ), employed the IMSL subroutine ZXMIN which mini-
mizes a function of various variables. Although all these estimation procedures

parameters.

For either of the estimators proposed in the previous section to be used in

practice, one must have starting values for the iterative procedures. We choose

an ad hoc quasi-clustering technique used by Woodward et al. (1984) that is easy
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provide estimators of all five parameters, Tables 5.3, 5.5, 5.7 and 5.9 present

o nly es t i mati on s f or w ; h owever , i n Tab le 5. 11 we pr es e nt e s timat io ns f o r all th e



236 Statistical Inference based on Divergence Measures

to implement. They allow as possible values for the initial estimate of w only

the values 0.1,...,0.9. For each of these values of w, the sample is divided into

two subsamples, Y1, Y2, ..., Yn1 and Yn1+1, Yn1+2, ..., Yn, where Yi is the ith-order

statistic and n1 is “nw” rounded to the nearest integer. So, bw is that value at
which w(1−w)(x1(1/2) − x2(1/2))2 is maximized,

bµ1 = x1(1/2), bµ2 = x2(1/2), bσ21 = ((x1(1/2) − x1(0.25))/.6745)2

and bσ22 = ((x2(0.75) − x2(1/2))/.6745)2,
where xj(q)
summary results of the simulation carried out to compare the performance of the

estimators for mixtures of normal components. Estimators of the bias and mean

squared error (mse) based on the simulations are given by

[Bias =
1

ns

nsX
i=1

(bwi −w) and dmse = 1

ns

nsX
i=1

( bwi −w)2,
where ns is the number of samples and bwi denotes an estimate of w for the ith-
sample. It should be noted that ndmse is the quantity actually given in the tables.
We also table empirical measures of the relative efficiencies of each estimator, bθ(λ),
with respect to the MLE for grouped data bθ(0). The relative efficiency is given
by bE = dmse(6= bθ(0))dmse(bθ(0)) .
We use a minimax criterion to find the best estimator. Let

S = {−2, − 1, − .5, 0, 2/3, 1}

be the values of λ considered for bθ(λ) studied. Let βMIN (Pj) = infλ∈S ndmseλ (Pj) ,
j = 1, ..., 10 where Pj, j = 1, ..., 10 is each one of the mixture of normal under

consideration. If we define the inefficiency function as iλ (Pj) = ndmseλ (Pj) −
βMIN (Pj) , j = 1, ..., 10, then, η(λ) = maxj (iλ (Pj)) can be considered as a in-

efficiency measure of the minimum power-divergence estimator, bθ(λ), λ ∈ S. We
consider the two best estimators under this criterion. Analyzing the results ofbθ(1),
and minimum modified chi-square estimator, bθ(−2), are the best.

© 2006 by Taylor & Francis Group, LLC

is the q th -p er ce ntil e fr o m th e j t h- subsa mple . I n Ta ble 5 .3 we p r esent

Table 5.3, we can see in Table 5.4 that the minimum chi-square estimator,
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.1 Overlap .03 Overlap

w a Estimator [Bias n dmse bE [Bias n dmse bE
.25 1 bθ(−2) .062 1.997 1.02 .037 .767 1.02bθ(−1) .059 1.934 .99 .038 .797 1.06bθ(−.5) .063 1.937 .99 .037 .767 1.02bθ(0) .062 1.960 .036 .752bθ(2/3) .062 2.053 1.05 .035 .771 1.03bθ(1) .061 1.918 .98 .035 .760 1.01

.5 1 bθ(−2) -.015 1.579 1.05 -.012 .707 .86bθ(−1) -.015 1.565 1.04 -.014 .757 .92bθ(−.5) -.015 1.455 .97 -.012 .719 .87bθ(0) -.014 1.504 .011 .826bθ(2/3) -.018 1.594 1.06 -.010 .800 .97bθ(1) -.016 1.529 1.02 -.012 .781 .95

.25
√
2 bθ(−2) -.023 .947 1.01 -.001 .588 1.05bθ(−1) -.025 1.021 1.09 -.002 .573 1.03bθ(−.5) -.025 .949 1.01 -.002 .567 1.02bθ(0) -.026 .939 -.001 .557bθ(2/3) -.026 .920 .98 -.002 .567 1.02bθ(1) -.024 .951 1.01 -.001 .564 1.01

.5
√
2 bθ(−2) -.102 2.135 1.01 -.057 1.003 .95bθ(−1) -.100 2.176 1.02 -.062 1.057 1.00bθ(−.5) -.101 2.152 1.01 -.061 1.079 1.02bθ(0) -.101 2.123 -.060 1.054bθ(2/3) -.101 2.120 1.00 -.063 1.124 1.07bθ(1) -.098 2.043 .96 -.061 1.079 1.02

.75
√
2 bθ(−2) -.168 4.563 .98 -.080 1.475 .95bθ(−1) -.167 4.700 1.01 -.078 1.658 1.07bθ(−.5) -.167 4.628 .99 -.080 1.620 1.04bθ(0) -.166 4.667 -.076 1.553bθ(2/3) -.167 4.704 1.01 -.073 1.379 .89bθ(1) -.165 4.653 1.00 -.075 1.478 .95

Table 5.3. Simulation results for mixtures of normal components.

bθ(−2) bθ(−1) bθ(−.5) bθ(0) bθ(2/3) bθ(1)
η(.) 0.124 0.279 0.241 0.174 0.141 0.099

Table 5.4. Inefficiencies.
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In Table 5.5 we display the results for the nonnormal components (double
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exponential components).

criterion, the best are bθ(0) and bθ(2/3).

.1 Overlap .03 Overlap

w a Estimator [Bias n dmse bE [Bias n dmse bE
.25 1 bθ(−2) .056 1.000 1.00 .057 .780 1.05bθ(−1) .055 .975 .98 .056 .780 1.05bθ(−.5) .057 1.052 1.06 .055 .771 1.04bθ(0) .054 .995 .055 .740bθ(2/3) .054 .961 .97 .055 .776 1.05bθ(1) .053 .996 1.00 .053 .754 1.02

.5 1 bθ(−2) -.007 .682 .96 -.002 .425 1.07bθ(−1) -.007 .716 1.00 -.002 .381 .96bθ(−.5) -.002 .703 .99 -.002 .391 .99bθ(0) -.004 .713 .000 .397bθ(2/3) -.003 .738 1.04 -.001 .390 .98bθ(1) -.002 .712 1.00 .001 .405 1.02

.25
√
2 bθ(−2) .013 .669 1.00 .036 .535 .97bθ(−1) .012 .638 .96 .034 .517 .93bθ(−0.5) .013 .659 .99 .036 .552 1.00bθ(0) .014 .666 .036 .554bθ(2/3) .012 .656 .99 .036 .562 1.02bθ(1) .015 .662 .99 .036 .555 1.00

.5
√
2 bθ(−2) .052 1.157 1.07 -.029 .547 1.01bθ(−1) -.049 1.070 .99 -.027 .526 .97bθ(−.5) -.051 1.111 1.03 -.029 .541 1.00bθ(0) -.048 1.079 -.027 .541bθ(2/3) -.050 1.039 .96 -.026 .558 1.03bθ(1) -.050 1.124 1.04 -.028 .591 1.09

.75
√
2 bθ(−2) -.106 2.191 1.14 -.078 1.167 1.03bθ(−1) -.104 2.135 1.11 -.078 1.185 1.04bθ(−.5) -.096 1.841 .96 -.078 1.181 1.04bθ(0) -.098 1.921 -.075 1.136bθ(2/3) -.095 1.908 .99 -.075 1.163 1.02bθ(1) -.094 1.952 1.02 -.072 1.071 .94

Table 5.5. Simulation results for mixtures of double exponential components.
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In this case (see Table 5.6), in accordance with our
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bθ(−2) bθ(−1) bθ(−.5) bθ(0) bθ(2/3) bθ(1)
η(.) 0.35 0.294 0.091 0.08 0.067 0.111

Table 5.6. Inefficiencies.

In Table 5.7 we present the results for the nonnormal components (t-Student

with 4 degrees of freedom, t(4)).

.1 Overlap .03 Overlap

w a Estimator [Bias n dmse bE [Bias n dmse bE
.25 1 bθ(−2) .084 2.699 1.00 .049 .947 1.04bθ(−1) .083 2.663 .99 .047 .901 .99bθ(−.5) .081 2.642 .98 .047 .913 1.00bθ(0) .080 2.695 .049 .911bθ(2/3) .077 2.576 .96 .046 .890 .98bθ(1) .081 2.604 .97 .048 .931 1.02

.5 1 bθ(−2) -.008 1.697 1.02 -.008 .827 1.04bθ(−1) -.008 1.657 .99 -.010 .793 1.00bθ(−0.5) -.008 1.598 .96 -.012 .838 1.06bθ(0) -.010 1.668 .006 .794bθ(2/3) -.011 1.745 1.05 -.008 .837 1.06bθ(1) -.005 1.735 1.04 -.006 .809 1.02

.25
√
2 bθ(−2) -.008 1.007 1.01 .008 .582 1.03bθ(−1) -.007 1.055 1.06 .008 .554 .98bθ(−.5) -.007 1.033 1.03 .008 .564 1.00bθ(0) -.007 .999 .006 .565bθ(2/3) -.010 .979 .98 .007 .553 .98bθ(1) -.007 .967 .97 .007 .574 1.01

.5
√
2 bθ(−2) -.093 2.296 .92 -.060 1.191 1.01bθ(−1) -.098 2.539 1.01 -.061 1.18 .999bθ(−.5) -.099 2.594 1.04 -.060 1.151 .98bθ(0) -.099 2.504 -.058 1.177bθ(2/3) -.099 2.48 .99 -.061 1.232 1.05bθ(1) -.097 2.531 1.01 -.060 1.188 1.01

.75
√
2 bθ(−2) -.189 5.818 1.06 -.100 1.989 1.06bθ(−1) -.186 5.748 1.05 -.102 2.105 1.13bθ(−0.5) -.187 5.778 1.053 -.098 1.876 1.00bθ(0) -.181 5.487 -.096 1.870bθ(2/3) -.183 5.699 1.04 -.098 1.86 .99bθ(1) -.182 5.541 1.01 -.099 1.893 1.01

Table 5.7. Simulation results for mixtures of t-Student (4) components.
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bθ(−2) bθ(−1) bθ(−0.5) bθ(0) bθ(2/3) bθ(1)
η(.) 0.331 0.261 0.298 0.208 0.212 0.235

Table 5.8. Inefficiencies.

For t-Student(4) we have that bθ(0) and bθ(2/3) are again the best. Now we

present the results for a t-Student with 2 degrees of freedom, t(2).

.1 Overlap .03 Overlap

w a Estimator [Bias n dmse bE [Bias n dmse bE
.25 1 bθ(−2) .111 6.742 1.00 .059 1.468 1.00bθ(−1) .113 6.963 1.03 .060 1.509 1.02bθ(−.5) .110 6.755 1.00 .057 1.493 1.01bθ(0) .112 6.732 .057 1.473bθ(2/3) .107 6.746 1.00 .058 1.491 1.01bθ(1) .109 6.839 1.02 .058 1.495 1.01

.5 1 bθ(−2) -.012 3.900 .98 -.011 1.193 1.07bθ(−1) -.017 3.876 .98 -.009 1.136 1.02bθ(−.5) -.016 3.903 .99 -.011 1.136 1.02bθ(0) -.017 3.960 -.006 1.112bθ(2/3) -.016 3.874 .98 -.007 1.006 .995bθ(1) -.017 3.995 1.01 -.005 1.138 1.02

.25
√
2 bθ(−2) .038 4.736 .99 .011 .832 1.03bθ(−1) .037 4.588 .96 .011 .869 1.07bθ(−.5) .037 4.715 .98 .009 .836 1.03bθ(0) .037 4.797 .013 .809bθ(2/3) .032 4.740 .99 .016 .815 1.01bθ(1) .028 4.520 .94 .011 .802 .99

.5
√
2 bθ(−2) -.119 4.497 .93 -.072 1.874 1.01bθ(−1) -.126 4.829 1.00 -.070 1.794 .96bθ(−.5) -.124 4.551 .94 -.071 1.796 .96bθ(0) -.127 4.839 -.071 1.862bθ(2/3) -.126 4.827 1.00 -.069 1.799 .97bθ(1) -.126 4.795 .99 -.069 1.702 .91

.75
√
2 bθ(−2) -.229 11.064 .99 -.121 3.353 1.06bθ(−1) -.234 11.112 1.00 -.117 3.177 1.00bθ(−.5) -.234 11.374 1.02 -.117 3.096 .98bθ(0) -.231 11.145 -.113 3.171bθ(2/3) -.236 11.463 1.03 -.111 3.075 .97bθ(1) -.230 11.102 1.00 -.114 3.184 1.00

Table.5.9. Simulation results for mixtures of t-Student (2) components.
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For t-Student(2), the best are bθ(−2) and bθ(1), although bθ(1) has less bias.
bθ(−2) bθ(−1) bθ(−.5) bθ(0) bθ(2/3) bθ(1)

η(.) 0.278 0.332 0.31 0.342 0.399 0.298

Table 5.10. Inefficiencies.

.1 Overlap

w a Estimator µ1 σ1 µ2 σ2 w

Normal

.25 1 bθ(−2) 1.02 1.04 1.03 .99 1.02bθ(−1) 1.31 1.05 1.02 1.00 .99bθ(−.5) .95 1.01 1.02 .99 .99bθ(2/3) 1.08 1.05 1.02 .98 1.05bθ(1) 1.00 1.07 .99 .99 .98

.5 1 bθ(−2) 1.01 1.09 1.03 .97 1.05bθ(−1) 1.83 1.04 1.04 .99 1.04bθ(−.5) 1.00 1.05 .99 .96 .97bθ(2/3) 1.04 1.03 1.04 1.01 1.06bθ(1) 1.00 1.01 .98 .97 1.02

.25
√
2 bθ(−2) 1.00 .95 1.03 1.06 1.01bθ(−1) .98 1.01 1.10 1.03 1.09bθ(−.5) .97 1.02 1.07 1.06 1.01bθ(2/3) .98 1.11 1.00 .99 .98bθ(1) .97 1.00 1.01 1.04 1.01

.5
√
2 bθ(−2) 1.01 1.08 1.02 1.02 1.01bθ(−1) .99 1.06 1.03 1.05 1.02bθ(−.5) .96 1.01 1.02 .97 1.01bθ(2/3) .99 .99 .97 1.02 1.00bθ(1) 1.00 1.02 .96 .91 .96

.75
√
2 bθ(−2) 1.00 1.00 .96 .97 .98bθ(−1) 1.11 1.10 .96 1.00 1.00bθ(−.5) 1.06 1.09 .93 .98 .99bθ(2/3) 1.00 1.02 .93 1.05 1.01bθ(1) 1.02 1.03 .95 .98 1.00

Table 5.11. Estimated relative efficiencies of the estimators

relative to the MLE for mixture.
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.03 Overlap

w a Estimator µ1 σ1 µ2 σ2 w

Normal

.25 1 bθ(−2) .93 1.03 .98 1.00 1.02bθ(−1) .92 .89 1.04 1.01 1.06bθ(−0.5) .94 .94 .98 .98 1.02bθ(2/3) 1.03 1.02 .99 .97 1.03bθ(1) .95 1.11 1.01 .96 1.01

.5 1 bθ(−2) .98 1.04 .99 1.04 .86bθ(−1) .97 1.01 .93 1.16 .92bθ(−.5) .96 .99 .96 .98 1.02bθ(2/3) .99 .99 .99 .99 .97bθ(1) 1.01 1.01 .99 .94 .95

.25
√
2 bθ(−2) 1.01 1.04 1.04 1.02 1.05bθ(−1) 1.15 1.21 1.05 .98 1.03bθ(−5) .98 .93 1.00 .98 1.02bθ(2/3) 1.06 1.04 1.01 1.03 1.02bθ(1) 1.10 1.03 1.00 1.00 1.01

.5
√
2 bθ(−2) .96 1.07 1.03 1.12 .95bθ(−1) .99 1.04 1.20 1.07 1.00bθ(−.5) 1.04 1.00 .97 .95 1.02bθ(2/3) 1.04 .99 1.03 1.00 1.07bθ(1) 1.05 1.02 1.09 1.01 1.02

.75
√
2 bθ(−2) .95 .93 .90 .92 .95bθ(−1) .97 .93 1.03 1.05 1.07bθ(−.5) 1.04 .97 .99 .99 1.04bθ(2/3) .99 .96 .93 .98 .89bθ(1) .95 .96 .99 1.01 .95

Table 5.11 (Continuation).

Although our emphasis has been put on the estimation of the mixing propor-

tion, the estimation routines used here obtain estimations for all five parameters.

So, it seems obvious to question about whether the results shown for w are sim-

ilar for the rest of the parameters µ1,σ1, µ2 and σ2.

empirical relative efficiencies for all the parameters for normal and t(4) mixtures.

From the table we see that the results for the other parameters with t(4) do not

exhibit in general patterns similar to those shown for w. The Freeman-Tukey

estimator, bθ(−.5), seems to be the most efficient for µ1,σ1, µ2 and σ2 in Normal

and t(4) mixtures.
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In Table 5.11 we display
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.1 Overlap

w a Estimator µ1 σ1 µ2 σ2 w

t-Student(4)

.25 1 bθ(−2) 1.01 1.01 1.03 1.00 1.00bθ(−1) 1.03 1.07 1.03 1.00 .99bθ(−.5) 1.07 1.07 1.03 1.01 .98bθ(2/3) 1.02 1.33 1.00 1.03 .96bθ(1) 1.05 1.05 1.01 1.01 .97

.5 1 bθ(−2) .96 1.03 .99 1.07 1.02bθ(−1) .96 .97 .99 1.01 .99bθ(0) .93 1.00 .96 1.03 .96bθ(2/3) .95 1.00 1.05 1.05 1.05bθ(1) 1.05 1.14 1.01 .99 1.04

.25
√
2 bθ(−2) .99 1.18 1.03 1.02 1.01bθ(−1) 1.00 .91 1.02 1.05 1.06bθ(−.5) .97 1.02 1.03 1.02 1.03bθ(2/3) 1.02 .91 .98 .99 .98bθ(1) 1.02 .96 1.00 .95 .97

.5
√
2 bθ(−2) .97 .92 .90 .89 .92bθ(−1) .99 1.27 .97 1.03 1.01bθ(−.5) 1.03 .84 .90 .94 1.04bθ(2/3) 1.07 .88 .93 .93 .99bθ(1) 1.03 .85 .93 .90 1.01

.75
√
2 bθ(−2) 1.05 .88 1.09 1.07 1.06bθ(−1) 1.05 .84 1.03 1.00 1.05bθ(−.5) 1.05 .85 1.05 1.03 1.05bθ(2/3) 1.07 1.04 1.04 1.03 1.04bθ(1) 1.04 .98 1.01 .97 1.01

Table 5.11. (Continuation).

To sum up, the Freeman-Tukey estimator seems to be, in general, the most

efficient for all the parameters except the proportion parameter. For the propor-

tion parameter we recommend to use bθ(2/3), Cressie-Read estimator. It is the best
alternative for the component distributions double exponential and t(4), almost

as good as the best at the true model. It performs only worse for t(2) when

the departure from normality is more extreme. Finally, the minimum chi-square

estimator is preferable for extreme departures from normality.
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.03 Overlap

w a Estimator µ1 σ1 µ2 σ2 w

t-Student(4)

.25 1 bθ(−2) 1.01 .96 .99 1.02 1.04bθ(−1) .98 .97 .99 1.01 .99bθ(−.5) 1.02 .97 1.02 1.08 1.00bθ(2/3) 1.03 1.19 .96 .96 .98bθ(1) 1.07 1.16 .98 .99 1.02

.5 1 bθ(−2) 1.03 1.04 1.14 1.11 1.04bθ(−1) 1.04 1.36 1.01 1.08 1.00bθ(−.5) 1.02 1.01 .96 1.04 1.06bθ(2/3) 1.03 1.06 .94 .99 1.06bθ(1) 1.06 1.13 .91 .94 1.02

.25
√
2 bθ(−2) .86 .92 1.02 1.06 1.03bθ(−1) .99 .97 .98 1.04 .98bθ(−.5) .93 .96 1.03 1.00 1.00bθ(2/3) .92 1.38 1.01 1.01 .98bθ(1) .91 .91 1.01 .98 1.01

.5
√
2 bθ(−2) .95 .86 1.15 1.16 1.01bθ(−1) .99 .79 1.10 1.15 1.00bθ(−.5) 1.04 .80 .99 1.01 .98bθ(2/3) 1.08 .77 1.05 1.01 1.05bθ(1) 1.05 .77 1.13 1.06 1.01

.75
√
2 bθ(−2) 1.03 1.16 1.09 .99 1.06bθ(−1) 2.95 1.13 1.22 1.18 1.13bθ(−.5) .98 1.12 .99 1.19 1.00bθ(2/3) 1.00 1.03 1.01 .98 .99bθ(1) 1.02 1.02 1.26 .95 1.01

Table 5.11. (Continuation).

5.5. Minimum Phi-divergence Estimator with Con-

straints: Properties

A new problem appears if we suppose that we have ν real-valued functions

f1 (θ) , ..., fν (θ) which constrain the parameter θ :

fm (θ) = 0, m = 1, 2, ..., ν.
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The problem to obtain the maximum likelihood estimator subject to constraints

was considered, for the first time, by Aitchison and Silvey (1958) in the context

of a random variable whose distribution function F depends on M0 parameters

θ1, ..., θM0 which are not mathematically independent but satisfy ν functional

relationships. The Lagrangian multiplier method is used to find the maximum

likelihood estimator of the parameters, which are found numerically by a process

of iteration. The estimator is shown to have an asymptotic normal distribution.

Silvey (1959) further discussed the Lagrangian method and the mathematical

conditions for the existence of the maximum likelihood estimators. Diamond

et al. (1960) considered the restricted maximum likelihood estimator, but in

multinomial populations. Haber and Brown (1986) proposed a two-step algorithm

for obtaining maximum likelihood estimators of the expected frequencies in log-

linear models with expected frequencies subject to linear constraints. Problems

of this type in multinomial models with the log-linear parameterization have

been described by Bhapkar (1979), Bonett (1989), Gokhale (1973), Haber (1985),

Haberman (1974) and Wedderburn (1974).

In this Section we consider the minimum φ-divergence estimator subject to

some constraints: The restricted minimum φ-divergence estimator, bθ(r)φ , which

is seen to be a generalization of the maximum likelihood estimator, subject to

constraints, was studied for the first time in Pardo, J. A. et al. (2002).

We suppose that we have ν (ν < M0) real-valued functions f1 (θ) , ..., fν (θ)

that constrain the parameter θ ∈ Θ ⊂ RM0 , fm (θ) = 0, m = 1, ..., ν, and such

that

i) Every fm (θ) has continuous second partial derivatives,

ii) The ν ×M0 matrix

B (θ) =

µ
∂fm (θ)

∂θk

¶
m=1,...,ν
k=1,...,M0

is of rank ν.

Under these assumptions the restricted minimum φ-divergence estimator of

θ is bθ(r)φ ∈ Θ satisfying the condition

Dφ(bp,p(bθ(r)φ )) = inf
{θ∈Θ⊆RM0 :fm(θ)=0,m=1,...,ν}

Dφ(bp,p (θ)).
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In the cited paper of Pardo, J. A. et al. (2002) it was established, under the

conditions of Theorem 5.1 and assuming the previous conditions i) and ii) about

the functions

fm (θ) = 0, m = 1, ..., ν,

that bθ(r)φ has the following expansion

θ0 +H (θ0) IF (θ0)
−1A (θ0)T diag

³
p (θ0)

−1/2
´
(bp− p (θ0)) + o (kbp− p (θ0)k)

where bθ(r)φ is unique in a neighborhood of θ0 and the M0 ×M0 matrix H (θ0) is

defined by

H (θ0) = IM0×M0 − IF (θ0)−1B (θ0)T
³
B (θ0) IF (θ0)

−1B (θ0)T
´−1

B (θ0) .

In the cited paper of Pardo, J. A. et al. (2002) it is also established that

√
n(bθ(r)φ − θ0)

L→
n→∞ N (0, Σ∗) , (5.11)

where the M0 ×M0 matrix Σ∗ is given by

IF (θ0)
−1
µ
IM0×M0 −B (θ0)T

³
B (θ0) IF (θ0)

−1B (θ0)T
´−1

B (θ0)

¶
IF (θ0)

−1 .
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5.6. Exercises

1. Let X, Y and Z be Lognormal, Gamma and Weibull random variables.

Let gθ (x) be the p.d.f. obtained from the mixture of the three random

variables,

gθ (x) = π1fµ,σ (x) + π2fa,p (x) + π3fc,d (x) ,

with 0 < πi < 1, i = 1, 2, 3,
P3
i=1 πi = 1, and θ =(π1,π2, µ,σ, a, p, c, d). We

consider a random sample of size n from the mixture gθ (x) . Prove that the

corresponding likelihood function is not a bounded function.

2. Let X be a random variable with probability mass function

Pr θ (X = x1) =
1

3
− θ, Pr θ (X = x2) =

2

3
− θ and Pr θ (X = x3) = 2θ,

with 0 < θ < 1
3 . Find the minimum φ-divergence estimator of θ, with

φ (x) =
1

2

µ
1

x
+ x− 2

¶
.

3. Let Y1, ..., Yn be a sample from the population X with probability mass

function
p1 (θ) = Pr (X = 1) = 1

4 (2 + θ)

p2 (θ) = Pr (X = 2) = 1
4 (1− θ)

p3 (θ) = Pr (X = 3) = 1
4 (1− θ)

p4 (θ) = Pr (X = 4) = 1
4θ,

θ ∈ (0, 1) .
a) Find the minimum φ-divergence estimator with φ (x) = x log x−x+1.
b) Find its asymptotic distribution.

4. Let Y1, ..., Yn be a sample from a Bernoulli random variable of parameter

θ. Find the minimum φ-divergence estimator of θ with φ (x) = 1
2 (x− 1)2

as well as its asymptotic distribution.

5. Let X be a random variable with associated statistical space given by

(X ,βX , Pθ)θ∈Θ⊂RM0

with X = Rd. We consider the discretized model given by the partition
P = {Ei}i=1,...,M and pi (θ) = Prθ (Ei) , i = 1, ..,M. Find the asymptotic
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distribution of the probability vector p(bθφ) = ³p1(bθφ), ..., pM(bθφ)´T , beingbθφ the minimum φ-divergence estimator.

6. Find the asymptotic distribution of Shannon’s entropy, H(p(bθφ)).
7. Let Y1, ..., Yn be a sample from a Bernoulli random variable of parameter

θ. Using the result given in Exercise 6 find the asymptotic distribution of

Shannon’s entropy associated with the Bernoulli model when the parameter

θ is estimated by the minimum φ-divergence estimator.

8. Solve Exercise 7 without using Exercise 6.

9. Let Y1, ..., Yn be a sample of a random variable, X, with probability mass

function,
p1 (θ) = Pr (X = −1) = θ2

p2 (θ) = Pr (X = 0) = (1− θ)2

p3 (θ) = Pr (X = 1) = 2θ (1− θ)

where θ ∈ (0, 1) . Find the minimum φ-divergence estimator of θ with

φ (x) = x log x− x+ 1 as well as its asymptotic distribution.
10. We consider a 2 × 3 × 2 contingency table and let bp = (bp111, ..., bp232)T

be the nonparametric estimator of the unknown probability vector p =

(p111, ..., p232)
T where pijk = Pr (X = i, Y = j,K = k) . We consider the

parameter space

Θ =
©
θ : θ =(pijk; i = 1, 2, j = 1, 2, 3, k = 1, 2; (i, j, k) 6= (2, 3, 2)) T

ª
and we denote by p (θ) = (p111, ..., p232)

T = p the probability vector char-

acterizing the model, with

p232 = 1−
X

i=1,2; j=1,2,3; k=1,2
(i,j,k)6=(2,3,2)

pijk.

We assume the following constraints about the parameter θ

f1(p111, ..., p231) = p111p212 − p112p211 = 0

f2(p111, ..., p231) = p121p222 − p122p221 = 0

f3(p111, ..., p231) = p131p232 − p132p231 = 0

.

Find the asymptotic distribution of the minimum φ-divergence estimator

with the previous constraints.
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5.7. Answers to Exercises

1. We have

L(θ;x1, . . . , xn) =
nY
j=1

gθ(xj) =
nY
j=1

(π1fµ,σ (xj) + π2fa,p (xj) + π3fc,d (xj)) ,

with θ =(π1,π2, µ,σ, a, p, c, d) . If we consider the particular point of θ given

by (1/3, 1/3, log x1,σ, a, p, c, d) , where x1 is the first sample value, we have

L(θ;x1, . . . , xn) =
1
3

³
1√

2πσx1
exp

³−(log x1−log x1)2
2σ2

´
+ fa,p (x1) + fc,d (x1)

´
×

nQ
j=2
(π1fµ,σ (xj) + π2fa,p (xj) + π3fc,d (xj))

and choosing σ sufficiently small it is possible to do L as large as it is

desired.

2. We consider a random sample of size n, y1, ..., yn, and we denote by ni,

i = 1, 2, 3, the number of values in the sample that coincide with xi. We

have to obtain the minimum, at θ, of the function

g (θ) = 1
2

3P
j=1
pj (θ)

µ
pj (θ)bpj +

bpj
pj (θ)

− 2
¶
= 1

2

3P
j=1

n

nj
(pj (θ)− bpj)2 ,

where pj (θ) = Prθ(X = xj), j = 1, 2, 3. Differentiating with respect to θ

and setting the result equal to zero, we have

g0 (θ) =
n

n1

µ
1

3
− θ − n1

n

¶
(−1) + n

n2

µ
2

3
− θ − n2

n

¶
(−1) + 2n

n3

³
2θ − n3

n

´
,

and from g0 (θ) = 0 we obtain

bθφ (y1, ..., yn) =
1

3n1
+
2

3n2
1

n1
+
1

n2
+
4

n3

.

It is easy to prove that this point corresponds to a minimum.

3. a) It will be necessary to obtain the minimum, at θ, of the function

g (θ) = D(bp,p (θ))
= bp1 log bp1

p1 (θ)
+ bp2 log bp2

p2 (θ)
+ bp3 log bp3

p3 (θ)
+ bp4 log bp4

p4 (θ)
= −bp1 log (2 + θ)− bp2 log (1− θ)− bp3 log (1− θ)− bp4 log θ + c.
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Differentiating with respect to θ and setting the result equal to zero, we

have

g0 (θ) = − bp1
2 + θ

+
bp2
1− θ

+
bp3
1− θ

− bp4
θ
= 0.

Then

θ2 (bp1 + bp2 + bp3 + bp4) + θ (2bp2 + 2bp3 − bp1 + bp4)− 2bp4 = 0,
i.e.,

θ2 + θ (1− 2bp1 + bp2 + bp3)− 2bp4 = 0.
Therefore,

bθφ (y1, ..., yn) = (−1 + 2bp1 − bp2 − bp3) + ³(−1 + 2bp1 − bp2 − bp3)2 + 8bp4´1/2
2

.

b) In this case the matrix diag
³
p (θ)−1/2

´
is given by

2 (2 + θ)−1/2 0 0 0

0 2 (1− θ)−1/2 0 0

0 0 2 (1− θ)−1/2 0

0 0 0 2θ−1/2

 ,
and

∂p1 (θ)

∂θ
=
1

4
,
∂p2 (θ)

∂θ
= −1

4
,
∂p3 (θ)

∂θ
= −1

4
and

∂p4 (θ)

∂θ
=
1

4
.

Therefore A (θ) is given by³
2−1 (2 + θ)−1/2 ,−2−1 (1− θ)−1/2 ,−2−1 (1− θ)−1/2 , 2−1θ−1/2

´T
.

Then

A (θ)T A (θ) = 1
4 (2 + θ)−1 + 1

4 (1− θ)−1 + 1
4 (1− θ)−1 + 1

4θ
−1

= 1
4

µ
1

2 + θ
+

2

1− θ
+
1

θ

¶
=
1

2

2θ + 1

(2 + θ) (1− θ) θ

.

Finally,

√
n
³bθφ (Y1, ..., Yn)− θ0

´
L−→

n→∞ N
µ
0,
2 (2 + θ0) (1− θ0) θ0

2θ0 + 1

¶
.
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4. We have to minimize, at θ, the function

g (θ) =
2P
i=1
pi (θ)

µ
1− ni

npi (θ)

¶2
=

2P
i=1

(npi (θ)− ni)2
n2pi (θ)

=
(np1 (θ)− n1)2

n2p1 (θ)
+
(np2 (θ)− n2)2

n2p2 (θ)

=
(np1 (θ)− n1)2

n2p1 (θ)
+
(np1 (θ)− n1)2

n2p2 (θ)

=
(np1 (θ)− n1)2
n2p1 (θ) p2 (θ)

= (nθ − n1)2 1

n2θ (1− θ)
.

It is clear that bθφ (y1, ..., yn) = n1/n.
Now the asymptotic distribution is given by

√
n
³bθφ (Y1, ..., Yn)− θ0

´
L−→

n→∞ N
µ
0,
³
A (θ0)

T A (θ0)
´−1¶

.

But

diag
³
p (θ)−1/2

´
=

Ã
θ−1/2 0

0 (1− θ)−1/2

!
and

∂p1 (θ)

∂θ
= 1,

∂p2 (θ)

∂θ
= −1,

then

A (θ) =

Ã
θ−1/2 0

0 (1− θ)−1/2

!Ã
1

−1

!
=

Ã
θ−1/2

− (1− θ)−1/2

!

and

A (θ)T A (θ) =
³
θ−1/2, − (1− θ)−1/2

´Ã θ−1/2

− (1− θ)−1/2

!
=

1

θ (1− θ)
.

Therefore

√
n(bθφ (Y1, ..., Yn)− θ0)

L−→
n→∞ N (0, θ0 (1− θ0)) .

© 2006 by Taylor & Francis Group, LLC



252 Statistical Inference based on Divergence Measures

This result could be obtained using directly the Central Limit Theorem

√
n
¡
N1
n − θ0

¢
θ0 (1− θ0)

L−→
n→∞ N (0, 1) .

5. We have

p(bθφ) = p (θ0) +µ∂pi (θ0)
∂θj

¶
i=1,...,M
j=1,...,M0

(bθφ − θ0) + o
³°°°bθφ − θ0

°°°´ .
But
√
n o

³°°°bθφ − θ0

°°°´ = oP (1), therefore
√
n
³
p(bθφ)− p (θ0)´ L−→

n→∞ N (0,Σ∗) ,

with Σ∗ = J(θ0)
¡
A(θ0)

TA(θ0)
¢−1

J(θ0)
T , but

A (θ0) = diag
³
p (θ0)

−1/2
´
J(θ0);

therefore we have that
√
n
³
p(bθφ)− p (θ0)´ converges to a normal distrib-

ution with mean vector zero and variance-covariance matrix given by

diag
³
p (θ0)

1/2
´
A (θ0)

¡
A(θ0)

TA(θ0)
¢−1

A(θ0)
Tdiag

³
p (θ0)

1/2
´
.

6. We have

H(p(bθφ)) = H (p (θ0)) +

µ
∂H (p (θ0))

∂pi (θ)

¶
i=1,...,M

(p(bθφ)− p (θ0))
+ o

³°°°p³bθφ´− p (θ0)°°°´ .
On the other hand

p(bθφ) = p (θ0) + J (θ0) (bθφ − θ0) + o
³°°°bθφ − θ0

°°°´
with √

n
³
p(bθφ)− p (θ0)´ L−→

n→∞ N (0,Σ∗) ,

being

Σ∗ = J(θ0)
¡
A(θ0)

TA(θ0)
¢−1

J(θ0)
T .
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Therefore √
n
³
H(p(bθφ))−H(p (θ0))´

converges in law to a normal distribution with mean vector zero and variance-

covariance matrixµ
∂H (p (θ0))

∂pi (θ)

¶
i=1,...,M

Σ∗

Ãµ
∂H (p (θ0))

∂pi (θ)

¶
i=1,...,M

!T
.

7. We know

H (p (θ)) = −p1 (θ) log p1 (θ)− p2 (θ) log p2 (θ) .
On the other hand

∂H (p (θ))

∂p2 (θ)
= −1− log p2 (θ) = −1− log (1− θ)

∂H (p (θ))

∂p1 (θ)
= −1− log p1 (θ) = −1− log θ

and
∂p1 (θ)

∂θ
= 1,

∂p2 (θ)

∂θ
= −1,

then we have

Σ∗ = J(θ)(A(θ)TA(θ))−1J(θ)T =

Ã
1

−1

!
θ (1− θ)

³
1 −1

´
= θ (1− θ)

Ã
1 −1
−1 1

!
because ¡

A(θ)TA(θ)
¢−1

= θ (1− θ) .

Therefore, denoting

L =

µ
∂H (p (θ))

∂pi (θ)

¶
i=1,2

Σ∗

Ãµ
∂H (p (θ))

∂pi (θ)

¶
i=1,2

!T
,

we have

L =
³
−1− log θ, −1− log (1− θ)

´
θ (1− θ)

Ã
1 −1
−1 1

!
×

Ã
−1− log θ

−1− log (1− θ)

!
= θ (1− θ)

µ
log

θ

1− θ

¶2
,
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i.e.,

√
n
³
H(p(bθφ))−H (p (θ0))´ L−→

n→∞ N

Ã
0, θ0 (1− θ0)

µ
log

θ0
1− θ0

¶2!
.

8. We have

H (p (θ)) = − (1− θ) log (1− θ)− θ log θ.

Then

H(p(bθφ))−H (p (θ)) = µ− log θ

(1− θ)

¶
(bθφ − θ) + o

³¯̄̄bθφ − θ
¯̄̄´

but
√
n(bθφ (Y1, ..., Yn)− θ0)

L−→
n→∞ N (0, θ0 (1− θ0))

and now the result is immediate.

9. We have to minimize, at θ, the function

g (θ) = bp1 log bp1
p1 (θ)

+ bp2 log bp2
p2 (θ)

+ bp3 log bp3
p3 (θ)

= bp1 log bp1 − bp1 log p1 (θ) + bp2 log bp2 − bp2 log p2 (θ) + bp3 log bp3
− bp3 log p3 (θ)
= c− bp1 log p1 (θ)− bp2 log p2 (θ)− bp3 log p3 (θ)
= c− 2bp1 log θ − bp22 log (1− θ)− bp3 log (2θ (1− θ)) .

But

g0 (θ) =
− (1− θ) 2bp1 + 2bp2θ − bp3 (1− 2θ)

θ (1− θ)
,

then we have bθφ (y1, ..., yn) = 2bp1 + bp3
2

.

We know that

√
n
³bθφ (Y1, ..., Yn)− θ0

´
L−→

n→∞ N
µ
0,
³
A (θ0)

T A (θ0)
´−1¶

,
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but

A (θ) = diag
³
p (θ)−1/2

´
J (θ)

=

 θ−1 0 0

0 (1− θ)−1 0

0 0 (2θ (1− θ))−
1
2


 2θ

−2 (1− θ)

2 (1− 2θ)


=

 2

−2
2(1−2θ)√
2θ(1−θ)

 ,
then we have

A (θ)T A (θ) =
2

θ (1− θ)

and therefore

√
n
³bθφ (Y1, ..., Yn)− θ0

´
L−→

n→∞ N
¡
0, 2−1θ0 (1− θ0)

¢
.

10. We can observe that the constraints given can be written in the way

p111p212
p112p211

= 1
p121p222
p122p221

= 1 and
p131p232
p132p231

= 1,

i.e., using the odds ratios. These odds ratios characterize the model of

conditional independence of the first and third variables given the second

variable. In this case we know that the maximum likelihood estimator

without constraints is given by

bpijk = nijk
n

where nijk is the number of elements in the random sample of size n in the

cell (i, j, k) . We denote by

bθ = (bp111, bp112, bp121, bp122, bp131, bp132, bp211, bp212, bp221, bp222, bp231)T ,
and

Σθ = diag (θ)− θθT .

It is well known that

√
n(bθ − θ0)

L→
n→∞ N (0,Σθ0) ,
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and the restricted maximum likelihood estimator is given by

bp∗ijk = bpi∗kbp∗jkbp∗∗k ,

where

bpi∗k = 3X
j=1

bp∗ijk, bp∗jk = 2X
i=1

bp∗ijk and bp∗∗k = 2X
i=1

3X
j=1

bp∗ijk.
The vector bθ(r)φ with components

(bθ(r)φ,111,
bθ(r)φ,112,

bθ(r)φ,121,
bθ(r)φ,122,

bθ(r)φ,131,
bθ(r)φ,132,

bθ(r)φ,211,
bθ(r)φ,212,

bθ(r)φ,221,
bθ(r)φ,222,

bθ(r)φ,231)
T

denotes the restricted minimum φ-divergence estimator. Using (5.11), we

have √
n(bθ(r)φ − θ0)

L→
n→∞ N (0,Σ∗) ,

where Σ∗ is given by

IF (θ0)
−1
³
I −B (θ0)T (B (θ0) IF (θ0)−1B (θ0)T )−1B (θ0)

´
IF (θ0)

−1 ,

because Σθ0 = IF (θ0)
−1 . The matrix B (θ) is given by B (θ) = (A1,A2) ,

where

A1 =

 p212 −p211 0 0 0 0

0 0 p222 −p221 0 0

−p131 −p131 −p131 −p131 1− 2p131 −p131 − p231


and

A2 =

 −p112 p111 0 0 0

0 0 −p122 p121 0

−p131 −p131 −p131 −p131 −p131 − p132

 .
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6

Goodness-of-fit: Composite

Null Hypothesis

6.1. Introduction

1 n from F and we studied

the problem of goodness-of-fit when F is completely known, i.e., H0 : F = F0. It

is common to wish to test the composite hypothesis that the distribution function

F is a member of a parametric family {Fθ}θ∈Θ , where Θ is an open subset in

RM0, i.e., we are interested in testing

H0 : F = Fθ . (6.1)

An approach to this problem is to consider a discrete statistical model asso-

ciated with the original model. In order to do this we consider a partition

P = {Ei}i=1,...,M of the original sample space. Now the probabilities of the

elements of the partition, Ei, i = 1, ...,M, depend on the unknown parameter θ,

i.e.,

pi (θ) = Prθ(Ei) =

Z
Ei

dFθ , i = 1, ...,M.

The hypothesis given in (6.1) can be tested by the hypotheses

H0 : p = p(θ0) ∈ T for some unknown θ0 ∈ Θ (6.2)

versus

H1 : p ∈∆M − T,
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In Chapter 3 we considered a random sample Y , . . . , Y
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with

T =
©
p (θ) = (p1 (θ) , ..., pM (θ))

T ∈ ∆M : θ ∈Θª ,
Θ ⊂ RM0 open and M0 < M − 1.

ing θ by an estimator eθ based on Y1, . . . , Yn and testing (6.2), by using the
chi-square test statistic,

X2
³eθ´ ≡ MX

i=1

(Ni − npi(eθ))2
npi(eθ) . (6.3)

Pearson thought that if eθ was a consistent estimator of θ, the asymptotic dis-
tribution of the test statistic (6.3) would coincide with the distribution of the

2 He

was wrong. Fisher (1924) established that the asymptotic distribution of the test

statistic (6.3) was not chi-square withM−1 degrees of freedom and also that de-
pends on the method of estimation. Fisher pointed out that the right method of

estimation was the method of the maximum likelihood for the discretized model

or equivalently the maximum likelihood estimator based on grouped data. In

the previous chapter, it was established that this estimator, bθ(0), coincides with
the minimum Kullback-Leibler divergence estimator. It is interesting to note that

Fisher also established that the likelihood ratio test statistic,

G2
³bθ(0)´ ≡ 2 MX

i=1

Ni log
Ni

npi(bθ(0)) , (6.4)

is asymptotically equivalent to X2
³bθ(0)´ and that the minimum chi-square esti-

mator, bθ(1), is asymptotically equivalent to bθ(0). Finally, he established that the
asymptotic distribution of the test statistics X2

³bθ(0)´ , X2
³bθ(1)´ , G2 ³bθ(0)´ ,

G2
³bθ(1)´ is the same and is chi-square withM−M0−1 degrees of freedom. It is

interesting to note that Neyman (1949) established that the minimum modified

chi-square estimator, bθ(−2), is also asymptotically equivalent to bθ(0).
In this chapter we consider, for testing (6.2), the family of φ-divergence test

statistics

Tφ1
n

³bθφ2´ ≡ 2n

φ001 (1)
Dφ1

³bp,p(bθφ2)´ ,
© 2006 by Taylor & Francis Group, LLC

test statistic, X , given in Chapter 3 for testing the null hypothesis (3.1).

Pearson recommended (see D’Agostino and Stephens (1986, p. 65)) estimat-
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and we study its asymptotic distribution under different situations. We observe

that for φ1 (x) =
1
2 (x− 1)2 and φ2 (x) = x log x− x+ 1 we get the test statistic

X2
³bθ(0)´ ; for φ1 (x) = φ2 (x) = x log x − x + 1 we have the likelihood ratio

test statistic, G2
³bθ(0)´ . The test statistic X2

³bθ(1)´ is obtained for φ1 (x) =
φ2 (x) =

1
2 (x− 1)2 and the test statistic G2

³bθ(1)´ for φ1 (x) = x log x − x + 1
and φ2 (x) =

1
2 (x− 1)2.

We shall assume that φ1, φ2 ∈ Φ∗ are twice continuously differentiable in
x > 0 with the second derivatives φ001 (1) 6= 0 and φ002 (1) 6= 0.

6.2. Asymptotic Distribution with Fixed Number of

Classes

In the same way as in the case of the simple null hypothesis, we state three

theorems. The first one gives the asymptotic distribution under the null hy-

pothesis given in (6.2), the second one under an alternative hypothesis different

from the hypothesis given in (6.2) and finally the third one under contiguous

alternative hypotheses.

Theorem 6.1

Under the null hypothesis given in (6.2), and assuming the regularity condi-

tions given in Theorem 5.1, we have

Tφ1
n

³bθφ2´ = 2n

φ001 (1)
Dφ1

³bp,p(bθφ2)´ L−→
n→∞ χ2M−M0−1,

where φ1, φ2 ∈ Φ∗.
Proof.

First, we obtain the asymptotic distribution of the random vector

√
n
³bp− p(bθφ2)´ .

We know that

bθφ2 − θ0 =
¡
A(θ0)TA(θ0)

¢−1
A(θ0)Tdiag

³
p (θ0)

−1/2
´
(bp− p(θ0))

+ o (kbp− p(θ0))k)
© 2006 by Taylor & Francis Group, LLC
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and

p(bθφ2)− p (θ0) = J (θ0) (bθφ2 − θ0) + o
³°°°bθφ2 − θ0

°°°´ ,
where J (θ0) and A(θ0) were defined in (5.6) and (5.7), respectively. Therefore

p(bθφ2)− p (θ0) = J (θ0)
¡
A(θ0)

TA(θ0)
¢−1

A(θ0)
Tdiag

³
p (θ0)

−1/2
´

× (bp− p(θ0)) + o³°°°bθφ2 − θ0

°°°´+ o (kbp− p(θ0))k) .
In the following we denote by L the M ×M matrix

L = J (θ0)
¡
A(θ0)

TA(θ0)
¢−1

A(θ0)
Tdiag

³
p (θ0)

−1/2
´

and by I the M ×M identity matrix. We haveÃ bp− p(θ0)
p(bθφ2)− p (θ0)

!
2M×1

=

Ã
I

L

!
2M×M

(bp− p(θ0))M×1
+

Ã
0M×1
o
³°°°³bθφ2 − θ0

´°°°´+ o (kbp− p(θ0))k)
!
.

Then

√
n

Ã bp− p(θ0)
p(bθφ2)− p (θ0)

!
2M×1

L−→
n→∞ N

Ã
0,

Ã
I

L

!
Σp(θ0)

¡
I,LT

¢!
,

because
√
n (bp− p(θ0)) L−→

n→∞ N
¡
0,Σp(θ0)

¢
,

i.e.,

√
n

Ã bp− p(θ0)
p(bθφ2)− p (θ0)

!
2M×1

L−→
n→∞ N

Ã
0,

Ã
Σp(θ0) Σp(θ0)L

T

LΣp(θ0) LΣp(θ0)L
T

!!
.

Therefore

√
n
³bp− p(bθφ2)´ L−→

n→∞ N
¡
0,Σp(θ0) −Σp(θ0)LT −LΣp(θ0) +LΣp(θ0)LT

¢
.
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A second order Taylor expansion of Dφ1(p, q) around (p (θ0) ,p (θ0)) at

(bp,p(bθφ2)) is given, denoting l = Dφ1

³bp,p(bθφ2)´ , by
l = 1

2

MP
i,j=1

³
∂2Dφ1

(p,q)
∂pi∂pj

´
(p(θ0),p(θ0))

(bpi − pi (θ0))(bpj − pj (θ0))
+ 1

22
MP
i,j=1

³
∂2Dφ1

(p,q)
∂pi∂qj

´
(p(θ0),p(θ0))

(bpi − pi (θ0))(pj(bθφ2)− pj (θ0))
+ 1

2

MP
i,j=1

³
∂2Dφ1

(p,q)
∂qi∂qj

´
(p(θ0),p(θ0))

(pi(bθφ2)− pi (θ0))(pj(bθφ2)− pj (θ0))
+ o

³
kbp− p(θ0)k2´+ oµ°°°p(bθφ2)− p(θ0)°°°2¶ .

But

∂Dφ1(p,q)

∂pi
= φ01

µ
pi
qi

¶
,

∂Dφ1(p,q)

∂qi
= φ1

µ
pi
qi

¶
− pi
qi
φ01

µ
pi
qi

¶
and µ

∂2Dφ1(p,q)

∂pi∂pj

¶
(p(θ0),p(θ0))

=

 φ001 (1)
1

pi (θ0)
i = j

0 i 6= j
.

In the same way

µ
∂2Dφ1(p,q)

∂pi∂qj

¶
(p(θ0),p(θ0))

=

 −φ001 (1)
1

pi (θ0)
i = j

0 i 6= j
.

Finally,

∂2Dφ1(p, q)

∂qi∂qj
=

 φ001

µ
pi
qi

¶
pi
q2i

i = j

0 i 6= j

and

µ
∂2Dφ1(p,q)

∂qi∂qj

¶
(p(θ0),p(θ0))

=

 φ001 (1)
1

pi (θ0)
i = j

0 i 6= j
.
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Therefore

l = 1
2φ
00
1 (1)

MP
i=1

1

pi (θ0)
(bpi − pi (θ0))2

− 1
2φ
00
1 (1) 2

MP
i=1

1

pi (θ0)
(bpi − pi (θ0))(pi(bθφ2)− pi (θ0))

+ 1
2φ
00
1 (1)

MP
i=1

1

pi (θ0)
(pi(bθφ2)− pi (θ0))2 + o³kbp− p (θ0)k2´

+ o

µ°°°p(bθφ2)− p(θ0)°°°2¶
= 1

2φ
00
1 (1)

MP
i=1

1

pi (θ0)

©
(bpi − pi (θ0))2

− 2(bpi − pi (θ0))(pi(bθφ2)− pi (θ0)) + (pi(bθφ2)− pi (θ0))2o+ oP ¡n−1¢
= 1

2φ
00
1 (1)

MP
i=1

1

pi (θ0)
(bpi − pi(bθφ2))2 + oP ¡n−1¢

and

2Dφ1

³bp,p(bθφ2)´
φ001 (1)

=
MP
i=1

1

pi (θ0)
(bpi − pi(bθφ2))2 + oP ¡n−1¢

= (bp− p(bθφ2))TC(bp− p(bθφ2)) + oP ¡n−1¢
being C = diag

³
p (θ0)

−1
´
.

On the one hand

√
n(bp− p(bθφ2)) L−→

n→∞ N
¡
0,Σp(θ0) −Σp(θ0)LT −LΣp(θ0) +LΣp(θ0)LT

¢
and on the other hand

2n

φ001 (1)
Dφ1

³bp,p(bθφ2)´ = n(bp− p(bθφ2))TC(bp− p(bθφ2)) + oP (1)
= XTX + oP (1) ,

where

X =
√
n diag

³
p (θ0)

−1/2
´
(bp− p(bθφ2))

is aM-variate normal random variable with mean vector 0 and variance-covariance

matrix T ∗ given by

diag
³
p (θ0)

−1/2
´
W (θ0) diag

³
p (θ0)

−1/2
´
, (6.5)
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whereW (θ0) = Σp(θ0) −Σp(θ0)LT −LΣp(θ0) +LΣp(θ0)LT .
Therefore XT

of freedom if T ∗ is a projection of rank r.

The matrix T ∗ can be written as

T ∗ = diag
³
p (θ0)

−1/2
´¡
Σp(θ0) −Σp(θ0)LT −LΣp(θ0) +LΣp(θ0)LT

¢
× diag

³
p (θ0)

−1/2
´

= diag
³
p (θ0)

−1/2
´
Σp(θ0)diag

³
p (θ0)

−1/2
´

− diag
³
p (θ0)

−1/2
´
Σp(θ0)L

Tdiag
³
p (θ0)

−1/2
´

− diag
³
p (θ0)

−1/2
´
LΣp(θ0)diag

³
p (θ0)

−1/2
´

+ diag
³
p (θ0)

−1/2
´
LΣp(θ0)L

Tdiag
³
p (θ0)

−1/2
´
.

Let S denote the M ×M matrix

S = diag
³
p (θ0)

−1/2
´
Σp(θ0)diag

³
p (θ0)

−1/2
´
.

We have

S = diag
³
p (θ0)

−1/2
´
(diag (p (θ0))− p (θ0) p (θ0)T )diag

³
p (θ0)

−1/2
´

= I − diag
³
p (θ0)

−1/2
´
p (θ0) p (θ0)

T diag
³
p (θ0)

−1/2
´

= I − p (θ0)1/2
³
p (θ0)

1/2
´T
.

We define the matrix B

B = diag
³
p (θ0)

−1/2
´
LΣp(θ0)diag

³
p (θ0)

−1/2
´

and we are going to express it in a simpler way,

B = diag
³
p (θ0)

−1/2
´
L
³
diag (p (θ0))− p (θ0) p (θ0)T

´
diag

³
p (θ0)

−1/2
´

= diag
³
p (θ0)

−1/2
´
L diag

³
p (θ0)

1/2
´

− diag
³
p (θ0)

−1/2
´
Lp (θ0) p (θ0)

T diag
³
p (θ0)

−1/2
´

and

p (θ0)
T =

q
p (θ0)

Tdiag
³
p (θ0)

1/2
´
.
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X (see Remark 2.6) is chi-squared distributed with r degrees
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Then we get

B = diag
³
p (θ0)

−1/2
´
L diag

³
p (θ0)

1/2
´

− diag
³
p (θ0)

−1/2
´
L diag

³
p (θ0)

1/2
´p

p (θ0)
q
p (θ0)

T

= diag
³
p (θ0)

−1/2
´
L diag

³
p (θ0)

1/2
´
(I −pp (θ0)qp (θ0)T )

= K S,

being K the M ×M matrix

K = diag
³
p (θ0)

−1/2
´
L diag

³
p (θ0)

1/2
´
.

Therefore

T ∗ = S −KS −SKT +KSKT

where

K = diag
³
p (θ0)

−1/2
´
L diag

³
p (θ0)

1/2
´

= diag
³
p (θ0)

−1/2
´
J (θ0) (A(θ0)

TA(θ0))
−1A(θ0)Tdiag

³
p (θ0)

−1/2
´

× diag
³
p (θ0)

1/2
´
.

But

A (θ0) = diag
³
p (θ0)

−1/2
´
J (θ0) ,

then

K = A (θ0)
¡
A(θ0)

TA(θ0)
¢−1

A(θ0)
T

and

T ∗ = S −A (θ0)
¡
A(θ0)TA(θ0)

¢−1
A(θ0)TS − SK

+ A (θ0)
¡
A(θ0)

TA(θ0)
¢−1

A(θ0)
T S A (θ0)

¡
A(θ0)

TA(θ0)
¢−1

A(θ0)
T

= I −pp (θ0)qp (θ0)T
− A (θ0)

¡
A(θ0)

TA(θ0)
¢−1

A(θ0)
T

µ
I −pp (θ0)qp (θ0)T¶

−
µ
I −pp (θ0)qp (θ0)T¶A (θ0) ¡A(θ0)TA(θ0)¢−1A(θ0)T

+ A (θ0)
¡
A(θ0)TA(θ0)

¢−1
A(θ0)T

µ
I −pp (θ0)qp (θ0)T¶

× A (θ0)
¡
A(θ0)

TA(θ0)
¢−1

A(θ0)
T .

© 2006 by Taylor & Francis Group, LLC



Goodness-of-fit: Composite Null Hypothesis 265

We know that q
p (θ0)

TA (θ0) = 01×M0

and hence

T ∗ = I −
p
p (θ0)

q
p (θ0)

T −A (θ0)
¡
A(θ0)

TA(θ0)
¢−1

A(θ0)
T .

Now we are going to establish that the matrix T ∗ is idempotent,

(T ∗)2 = I −pp (θ0)qp (θ0)T −A (θ0) ¡A(θ0)TA(θ0)¢−1A(θ0)T
− p

p (θ0)
q
p (θ0)

T +
p
p (θ0)

q
p (θ0)

T
p
p (θ0)

q
p (θ0)

T

+
p
p (θ0)

q
p (θ0)

TA (θ0) (A(θ0)
TA(θ0))

−1A(θ0)T

− A (θ0)
¡
A(θ0)

TA(θ0)
¢−1

A(θ0)
T

+ A (θ0)
¡
A(θ0)

TA(θ0)
¢−1

A(θ0)
T
p
p (θ0)

q
p (θ0)

T

+ A (θ0)
¡
A(θ0)

TA(θ0)
¢−1

A(θ0)
TA (θ0)

¡
A(θ0)

TA(θ0)
¢−1

A(θ0)
T ,

but

A (θ0)
¡
A(θ0)

TA(θ0)
¢−1

A(θ0)
T
p
p (θ0)

q
p (θ0)

T = 0M×1q
p (θ0)

T
p
p (θ0) = 1,

then

(T ∗)2 = I −pp (θ0)qp (θ0)T −A (θ0) ¡A(θ0)TA(θ0)¢−1A(θ0)T
= I −pp (θ0)qp (θ0)T −A (θ0) ¡A(θ0)TA(θ0)¢−1A(θ0)T
= T ∗.

In relation to rank of T ∗ we have

rank(T ∗) = trace(T ∗) = trace(I)− trace
µp

p (θ0)
q
p (θ0)

T

¶
− trace

³
A (θ0)

¡
A(θ0)

TA(θ0)
¢−1

A(θ0)
T
´

= M − 1− trace
³¡
A(θ0)TA(θ0)

¢−1 ¡
A(θ0)TA(θ0)

¢´
= M − 1−M0,

because ¡
A(θ0)

TA(θ0)
¢−1 ¡

A(θ0)
TA(θ0)

¢
= IM0×M0 .

Then the φ-divergence test statistic Tφ1
n

³bθφ2´ is asymptotically distributed chi-
squared with M − 1−M0 degrees of freedom.
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Based on the previous result we should reject the null hypothesis given in

(6.1), with a significance level α, if

Tφ1
n

³bθφ2´ > χ2M−M0−1,α. (6.6)

We present, in the sequel, an approximation for the power function of the previous

test statistic. Let q =(q1, ..., qM)
T be a point at the alternative hypothesis. If

the alternative hypothesis q is true, we have that bp tends, in probability, to q.
We denote by θa the point on Θ verifying

θa = argmin
θ∈Θ

Dφ2(q,p (θ)),

and we have that p(bθφ2) tends, in probability, to p (θa). In the next theorem, we
use the following assumption,

√
n
³³bp,p(bθφ2)´− (q,p (θa))´ L−→

n→∞ N (0,Σ) , (6.7)

under the alternative hypothesis q, where

Σ =

Ã
Σ11 Σ12

Σ21 Σ22

!
, Σ11 = diag (q)− qqT and Σ12 = Σ21.

Theorem 6.2

The asymptotic power for the test given by (6.6) at the alternative hypothesis

q, assuming condition (6.7), is given by

βn,φ1 (q) = 1−Φn
µ

1

σφ1(q)

µ
φ001 (1)
2
√
n
χ2M−M0−1,α −

√
nDφ1(q,p (θa))

¶¶
,

where

σ2φ1(q) = Z
TΣ11Z+ 2Z

TΣ12S+ S
TΣ22S, (6.8)

being

ZT =

µ
∂Dφ1(v,p (θa))

∂v

¶
v=q

,

ST =

µ
∂Dφ1(q,w)

∂w

¶
w=p(θa)

,

and Φn (x) is a sequence of distribution functions tending uniformly to the stan-

dard normal distribution function Φ (x) .
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Proof. A first-order Taylor expansion of the divergence measure gives

Dφ1

³bp,p(bθφ2)´ = Dφ1(q,p (θa))+Z
T (bp−q)+ST (p(bθφ2)−p (θa))+oP (n−1/2).

Then √
n
³
Dφ1

³bp,p(bθφ2)´−Dφ1(q,p (θa))
´

L−→
n→∞ N

¡
0,σ2φ1(q)

¢
,

for σ2φ1(q) given in (6.8).

The previous result is not easy to apply. For this reason we are going to

consider a sequence of contiguous alternatives that approach the null hypothesis

at rate of O
¡
n−1/2

¢
. Consider the contiguous alternative hypotheses,

H1,n : pn = p (θ0) +
1√
n
d, (6.9)

where d ≡ (d1, ..., dM)T is a fixed vector such that
PM
j=1 dj = 0, with pn 6= p (θ0) ,

θ0 unknown and θ0∈Θ. Then we have the following result:
Theorem 6.3

The asymptotic distribution of the φ1-divergence test statistic T
φ1
n

³bθφ2´ , un-
der the contiguous alternative hypotheses given in (6.9), is noncentral chi-square

with M −M0 − 1 degrees of freedom and noncentrality parameter δ given by

δ = dTdiag
³
p (θ0)

−1/2
´µ
I −A (θ0)

³
A (θ0)

T A (θ0)
´−1

A (θ0)
T

¶
× diag

³
p (θ0)

−1/2
´
d.

Proof. We have
√
n (bp− p (θ0)) =

√
n (bp− pn + pn − p (θ0))

=
√
n (bp− pn) +√n (pn − p (θ0))

=
√
n (bp− pn) + d,

then under the alternatives (6.9),

√
n(bp− p (θ0)) L−→

n→∞ N
¡
d,Σp(θ0)

¢
because under the alternative hypotheses given in (6.9),

√
n(bp− pn) L−→

n→∞
¡
0,Σp(θ0)

¢
.
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But

√
n(bθφ2 − θ0) =

√
n
³
A (θ0)

T A (θ0)
´−1

A (θ0)
T diag

³
p (θ0)

−1/2
´

× (bp− p (θ0)) + oP (1)
and √

n(bp− p (θ0)) = √n(bp− pn) + d,
then

√
n(bθφ2 − θ0) =

√
n
³
A (θ0)

T A (θ0)
´−1

A (θ0)
T diag

³
p (θ0)

−1/2
´

× ¡
(bp− pn) + n−1/2d¢+ oP (1)

=
√
n
³
A (θ0)

T A (θ0)
´−1

A (θ0)
T diag

³
p (θ0)

−1/2
´
(bp− pn)

+
³
A (θ)T A (θ0)

´−1
A (θ)T diag

³
p (θ0)

−1/2
´
d+ oP (1) .

Therefore the random vector l(bθφ2) ≡ √n³p(bθφ2)− p (θ0)´ can be written as
l(bθφ2) = J (θ0)

√
n(bθφ2 − θ0) + oP (1)

=
√
nJ (θ0)

³
A (θ0)

T A (θ0)
´−1

A (θ0)
T diag

³
p (θ0)

−1/2
´
(bp− pn)

+J (θ0)
³
A (θ0)

T A (θ0)
´−1

A (θ0)
T diag

³
p (θ0)

−1/2
´
d+ oP (1) .

If we denote

L = J (θ0)
³
A (θ0)

T A (θ0)
´−1

A (θ0)
T diag

³
p (θ0)

−1/2
´
,

and by I the M ×M identity matrix, we have

√
n
³
p(bθφ2)− p (θ0)´ = √nL(bp− pn) +Ld+oP (1)

and

√
n

Ã bp− p (θ0)
p(bθφ2)− p (θ0)

!
=
√
n

Ã
I

L

!
(bp− pn) +

Ã
d

Ld

!
+

Ã
0

oP (1)

!
.

Hence

√
n

Ã bp− p (θ0)
p(bθφ2)− p (θ0)

!
L−→

n→∞ N

ÃÃ
d

Ld

!
,

Ã
Σp(θ0) Σp(θ0)L

T

LΣp(θ0) LΣp(θ0)L
T

!!
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and

√
n(bp−p(bθφ2)) L−→

n→∞ N
¡
(I −L)d,Σp(θ0) −Σp(θ0)LT −LΣp(θ0) +LΣp(θ0)LT

¢
.

On the other hand

2n

φ
00
1 (1)

Dφ1

³bp,p(bθφ2)´ = n(bp− p(bθφ2))Tdiag ³p (θ0)−1´ (bp− p(bθφ2))+oP (1)
= XTX + oP (1)

with

X =
√
ndiag

³
p (θ0)

−1/2
´
(bp− p(bθφ2))

and

X
L−→

n→∞ N
³
diag

³
p (θ0)

−1/2
´
(I −L)d,T ∗

´
where T ∗ is defined in (6.5).

By Theorem 6.1 the rank of the matrix T ∗ is M −M0 − 1. If we prove that
T ∗µ = µ, where

µ = diag
³
p (θ0)

−1/2
´
(IM×M −L)d,

we will have established that the test statistic Tφ1
n

³bθφ2´ is asymptotically distrib-
uted as a noncentral chi-square distribution withM −M0− 1 degrees of freedom
and noncentrality parameter δ = µTµ.

We know diag
³
p (θ0)

1/2
´
A (θ0) = J (θ0) , then

µ =
³
diag

³
p (θ0)

−1/2
´
d− diag

³
p (θ0)

−1/2
´
diag

³
p (θ0)

1/2
´
A (θ0)

×
³
A (θ0)

T A (θ0)
´−1

A (θ0)
T diag

³
p (θ0)

−1/2
´¶
d

=

µ
diag

³
p (θ0)

−1/2
´
−A (θ0)

³
A (θ0)

T A (θ0)
´−1

− A (θ0)
T diag

³
p (θ0)

−1/2
´´
d

By Theorem 6.1 the matrix T ∗ has the expression

T ∗ = I −
p
p (θ0)

q
p (θ0)

T −A (θ0)
³
A (θ0)

T A (θ0)
´−1

A (θ0)
T .
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Then we have

T ∗µ =
µ
I −pp (θ0)qp (θ0)T −A (θ0)³A (θ0)T A (θ)´−1A (θ0)T¶µ

and

T ∗µ = µ−pp (θ0)qp (θ0)T ³diag ³p (θ0)−1/2´
− A (θ0)

³
A (θ0)

T A (θ0)
´−1

A (θ0)
T diag

³
p (θ0)

−1/2
´¶
d

− A (θ0)
³
A (θ0)

T A (θ0)
´−1

A (θ0)
T diag

³
p (θ0)

−1/2
´
d

+ A (θ0)
³
A (θ0)

T A (θ0)
´−1

A (θ0)
T A (θ0)

³
A (θ0)

T A (θ0)
´−1

× A (θ0)
T diag

³
p (θ0)

−1/2
´
d.

Therefore

T ∗µ =
µ
I −A (θ0)

³
A (θ0)

T A (θ0)
´−1

A (θ0)
T

¶
diag

³
p (θ0)

−1/2
´
d

+
p
p (θ0)

q
p (θ0)

TA (θ0)
³
A (θ0)

T A (θ0)
´−1

× A (θ0)
T diag

³
p (θ0)

−1/2
´
d

− A (θ0)
³
A (θ0)

T A (θ0)
´−1

A (θ0)
T diag

³
p (θ0)

−1/2
´
d

+ A (θ0)
³
A (θ0)

T A (θ0)
´−1

A (θ0)
T diag

³
p (θ0)

−1/2
´
d

=

µ
I −A (θ0)

³
A (θ0)

T A (θ0)
´−1

A (θ0)
T

¶
diag

³
p (θ0)

−1/2
´
d = µ,

and finally
2n

φ
00
1 (1)

Dφ1

³bp,p(bθφ2)´ L−→
n→∞ χ2M−M0−1 (δ)

being δ = µTµ and

µ =

µ
I −A (θ0)

³
A (θ0)

T A (θ0)
´−1

A (θ)T
¶
diag

³
p (θ0)

−1/2
´
d.

If we denote U = I −A (θ0)
³
A (θ0)

T A (θ0)
´−1

A (θ0)
T , we have
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UTU = I −A (θ0)
³
A (θ0)

T A (θ0)
´−1

A (θ0)
T

− A (θ0)
³
A (θ0)

T A (θ0)
´−1

A (θ0)
T

+ A (θ0)
³
A (θ0)

T A (θ0)
´−1

A (θ0)
T A (θ0)

×
³
A (θ0)

T A (θ0)
´−1

A (θ0)
T

= I −A (θ0)
³
A (θ0)

T A (θ0)
´−1

A (θ0)
T .

Therefore

δ = µTµ = dTdiag
³
p (θ0)

−1/2
´µ
I −A (θ0)

³
A (θ0)

T A (θ0)
´−1

A (θ0)
T

¶
×diag

³
p (θ0)

−1/2
´
d.

The result presented in this theorem was obtained for φ (x) = 1
2 (x− 1)2 , chi-

square test statistic, by Diamond et al . (1960). For the φ-divergence test statistic

the result was obtained by Menéndez et al . (2001a).

6.3. Nonstandard Problems: Test Statistics Based on

Phi-divergences

6.3.1. Maximum Likelihood Estimator Based on Original Data

and Test Statistics Based on Phi-divergences

If we only have the number Ni, i = 1, ...,M, of observations falling into the

ith of the M cells, it is clear that we have to estimate the unknown parameters

using a minimum φ-divergence estimator. If the original observations Y1, ..., Yn
are available, one is tempted to use more efficient estimators, such as the max-

imum likelihood estimator, bθ, from the likelihood function
Qn
i=1 fθ(yi), i.e., the

maximum likelihood estimator based on the original data. One may reasonably

expect this procedure to provide more powerful tests than those based on the

grouped data; at the same time the estimates usually are simpler and easier to

obtain.
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Before proceeding to the main result we shall consider an example.

Example 6.1

Let Y1, ..., Yn be a random sample from a normal population with mean θ and

variance 1. If we consider the partition of R given by

E1 = (−∞, 0] and E2 = (0,∞) ,
we have

Prθ (E1) = p1 (θ) =

Z 0

−∞
1√
2π
exp

Ã
−(x− θ)2

2

!
dx

Prθ (E2) = p2 (θ) = 1− p1 (θ) =
Z ∞

0

1√
2π
exp

Ã
−(x− θ)2

2

!
dx.

It is well known that the maximum likelihood estimator of θ, based on the original

observations, is given by bθ = Y , (6.10)

and the maximum likelihood estimator based on grouped data is obtained maxi-

mizing

Prθ (N1 = n1, N2 = n2) =
n1!n2!

n!
p1 (θ)

n1 p2 (θ)
n2 .

We consider

φ (x) =
1

2
(1− x)2 ,

and we are going to study the asymptotic distribution of the φ-divergence test

statistic Tφ
n

³bθ´ , where bθ is the maximum likelihood estimator given in (6.10),

i.e., the maximum likelihood estimator based on the original data. We have

Tφ
n

³bθ´ = n
2P
i=1

¡bpi − pi ¡Y ¢¢2
pi
¡
Y
¢ = n

Ã¡bp1 − p1 ¡Y ¢¢2
p1
¡
Y
¢ +

¡bp2 − p2 ¡Y ¢¢2
p2
¡
Y
¢ !

= n

Ã¡bp1 − p1 ¡Y ¢¢2
p1
¡
Y
¢ +

¡bp1 − p1 ¡Y ¢¢2
p2
¡
Y
¢ !

= n

¡bp1 − p1 ¡Y ¢¢2
p1
¡
Y
¢
p2
¡
Y
¢ .

But

p1
¡
Y
¢
p2
¡
Y
¢ P−→
n→∞ p1 (θ) p2 (θ) ,

1996, p. 39) the asymptotic distribution of Tφ
n

³bθ´
coincides with the asymptotic distribution of

Rφ
n

³bθ´ = n¡bp1 − p1 ¡Y ¢¢2
p1 (θ) p2 (θ)

.
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We have

p1
¡
Y
¢
= p1 (θ) +

∂p1 (θ)

∂θ

¡
Y − θ

¢
+ oP

³
n−1/2

´
,

but

∂p1 (θ)

∂θ
=

Z 0

−∞
1√
2π
(x− θ) exp

µ
−1
2
(x− θ)2

¶
dx

=

µ
− 1√

2π
exp

µ
−1
2
(x− θ)2

¶¶0
−∞

= − 1√
2π
exp

µ
−θ

2

2

¶
,

then we get

√
n
¡
p1
¡
Y
¢− p1 (θ)¢ = − √n√

2π
exp

µ
−θ

2

2

¶¡
Y − θ

¢
+ oP (1) .

Now we are going to establish the asymptotic distribution of the random variable

√
n
¡bp1 − p1 (θ) , Y − θ

¢T
that is a bivariate normal random variable with mean vector (0, 0)T and variance-

covariance matrix with elements

V ar [
√
n (bp1 − p1 (θ))] = nV ar [bp1] = n 1

n2
V ar [N1]

= n
1

n2
np1 (θ) p2 (θ) = p1 (θ) p2 (θ)

V ar
£√
n
¡
Y − θ

¢¤
= nV ar

£
Y − θ

¤
= nV ar

£
Y
¤

= n
1

n
V ar [Yi] = 1.

Denoting by T =
1

n

nP
i=1

¡
I(−∞,0] (Yi)− p1 (θ)

¢
, we have

Cov
£√
n
¡bp1 − p1 (θ) , Y − θ

¢¤
= nCov

·
T, 1n

nP
i=1
(Yi − θ)

¸
= Cov

£
I(−∞,0] (Yi)− p1 (θ) , Yi − θ

¤
= E

£
(I(−∞,0] (Yi)− p1 (θ)) (Yi − θ)

¤
− E

£
I(−∞,0] (Yi)− p1 (θ)

¤
E [Yi − θ]

= E
£¡
I(−∞,0] (Yi)

¢
(Yi − θ)

¤
=

Z 0

−∞
1√
2π
(x− θ) exp

³
−1
2 (x− θ)2

´
dx

= − 1√
2π
exp

¡−1
2θ
2
¢
.
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Therefore

√
n
¡bp1 − p1 (θ) , Y − θ

¢T L−→
n→∞ N

Ã 0

0

!
,

 p1 (θ) p2 (θ) − exp(−θ
2/2)√

2π

− exp(−θ
2/2)√

2π
1

 .
On the other hand

√
n
¡bp1 − p1 (θ) , p1 ¡Y ¢− p1 (θ)¢T can be written as

√
n

Ã
1 0

0 − exp(−θ
2/2)√

2π

!Ã bp1 − p1 (θ)
Y − θ

!
+ oP (1) ,

and denoting by

Σ =

 p1 (θ) p2 (θ) −exp(−θ
2/2)√

2π

−exp(−θ
2/2)√

2π
1

 and A =

Ã
1 0

0 − exp(−θ
2/2)√

2π

!
,

we have

Σ∗ = AΣAT =

 p1 (θ) p2 (θ)
exp(−θ2)

2π
exp(−θ2)

2π

exp(−θ2)
2π

 .
Then

√
n
¡bp1 − p1 (θ) , p1 ¡Y ¢− p1 (θ)¢T L−→

n→∞ N

ÃÃ
0

0

!
,Σ∗

!
,

√
n
¡bp1 − p1 ¡Y ¢¢ L−→

n→∞ N

Ã
0, p1 (θ) p2 (θ)−

exp
¡−θ2¢
2π

!
and √

n
¡bp1 − p1 ¡Y ¢¢q

p1 (θ) p2 (θ)− exp(−θ2)
2π

L−→
n→∞ N (0, 1) .

Finally

n
¡bp1 − p1 ¡Y ¢¢2 L−→

n→∞

Ã
p1 (θ) p2 (θ)−

exp
¡−θ2¢
2π

!
χ21

and
n
¡bp1 − p1 ¡Y ¢¢2
p1 (θ) p2 (θ)

L−→
n→∞ λχ21

with λ = 1− exp
¡−θ2¢

2πp1 (θ) p2 (θ)
.
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Let us prove that λ ≥ 0. As the matrix Σ∗ is nonnegative definite, then

0 ≤ det (Σ∗) =
exp

¡−θ2¢
2π

Ã
p1 (θ) p2 (θ)−

exp
¡−θ2¢
2π

!
=

p1 (θ) p2 (θ)

2π
exp

¡−θ2¢Ã1− exp
¡−θ2¢

2πp1 (θ) p2 (θ)

!
.

Therefore 0 ≤ λ ≤ 1.

Now we present the theorem that states the asymptotic distribution of the

φ-divergence test statistic Tφ
n

³bθ´ . The proof can be seen in Morales et al . (1995)
for φ-divergence measures in general and in Chernoff and Lehman (1954) for the

particular case φ1 (x) =
1
2 (x− 1)2.

Theorem 6.4

Under the conditions given in Morales et al . (1995) the asymptotic distribu-

tion of the φ-divergence test statistic Tφ
n

³bθ´ , where bθ is the maximum likelihood

estimator based on the original data, verifies

2n

φ00 (1)
Dφ(bp,p(bθ)) L−→

n→∞ χ2M−M0−1 +
M0X
j=1

(1− λj)Z
2
j ,

where Zj are independent and normally distributed random variables with mean

zero and unit variance, and the λj , 0 ≤ λj ≤ 1, are the roots of the equation
det (IF (θ0)− λIF (θ0)) = 0,

where IF (θ0) and IF (θ0) are the Fisher information matrices from the original

and discretized models, respectively.

Remark 6.1

Let F1
¡
F1 ≡ χ2M−M0−1

¢
be the asymptotic distribution function of the φ-

divergence test statistic

Tφ1
n

³bθφ2´ = 2n

φ001 (1)
Dφ1

³bp,p(bθφ2)´
and F2

Ã
F2 ≡ χ2M−M0−1 +

M0P
j=1
(1− λj)χ21j

!
be the asymptotic distribution func-

tion of the φ-divergence test statistic

Tφ
n

³bθ´ = 2n

φ00 (1)
Dφ(bp,p(bθ)).
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We have

F2 (x) ≤ F1 (x) ∀x ≥ 0.
This result indicates that the decision rule “reject H0, with a significance level α,

if Tφ
n

³bθ´ > χ2M−M0−1,α”, will lead to a probability of rejection greater than the
desired level of significance when the hypothesis is true. In symbols

α∗ = PrH0

³
2n

φ001 (1)
Dφ1(bp,p(bθ)) > χ2M−M0−1,α

´
= 1− F2

³
χ2M−M0−1,α

´
≥ 1− F1

³
χ2M−M0−1,α

´
= PrH0

³
2n

φ001 (1)
Dφ1

³bp,p(bθφ2)´ > χ2M−M0−1,α
´

= α.

Then when we consider the approximation F1 ' F2, the probability of rejecting

the null hypothesis increases and then we are raising the probability of type I

error. However, a numerical investigation of a few special cases indicates that,

ff 1954)) this excess of

probability of type I error will be so small as not to be serious. The situation

appears to be not quite so favorable in the normal case.

6.3.2. Goodness-of-fit with Quantile Characterization

In this section we consider the problem studied in Section 3.4.1, but here we

assume that F ∈ {Fθ}θ∈Θ and Θ is an open set in RM0 . We consider the values

πi defined in (3.17) and the vector

q0 = (πj − πj−1 : 1 ≤ j ≤M)T .
We are going to test H0 : F = Fθ by testing

H0 : q = p(Y n,θ), (6.11)

where

p(Y n,θ) = (p1(Y n,θ), ..., pM(Y n,θ))
T =

¡
Fθ(Ynj )− Fθ(Ynj−1) : 1 ≤ j ≤M

¢T
,

n0 = 0, nM = +∞, Yni = Y(ni) (ni = [nπi] + 1) is the nith-order statistic,

Yn0 = −∞ and YnM = +∞.
If we consider G /∈ {Fθ}θ∈Θ an alternative hypothesis to the null hypothesis

given in (6.11) is

q(Y n) = (q1(Y n), ..., qM(Y n))
T =

¡
G(Ynj )−G(Ynj−1) : 1 ≤ j ≤M

¢T
. (6.12)
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For testing (6.11) we can consider the φ-divergence test statistic defined by

Tφ1
n

³bθφ2´ = 2n

φ001 (1)
Dφ1

³
p(Y n, bθφ2),q0´ , (6.13)

where bθφ2 = arg inf
θ∈Θ⊂RM0

Dφ2

¡
p(Y n,θ), q

0
¢
.

Under some regularity assumptions Menéndez et al . (1998a) established thatbθφ2 P→
n→∞ θ0,

√
n(bθφ2 − θ0) L→

n→∞ N(0, IF (θ0)
−1) and Tφ1

n

³bθφ2´ L→
n→∞ χ2M−M0−1.

We can consider the decision rule: “Reject the null hypothesis given in (6.11),

with significance level α, if

Tφ1
n (
bθφ2) > χ2M−M0−1,α”. (6.14)

Let θa a point in the parameter space verifying, under the alternative hy-

pothesis given in (6.12), bθφ2 = θa + oP (1) . We denote

c∗j = G
−1(πj), j = 1, ...,M,

and

p(c∗,θa) =
¡
Fθa

¡
G−1(πj)

¢− Fθa ¡G−1(πj−1)¢ : j = 1, ...,M¢ .
Under the assumption

√
n
³
p(Y n, bθφ2)− p(c∗,θa)´ L−→

n→∞ N (0,Σ) ,

for some matrix Σ, and if p(c∗,θa) 6= q0, the power of the φ-divergence test

statistic (6.13) for testing (6.11), under the alternative hypothesis given in (6.12),

satisfies

βn,φ1 (q(Y n)) = 1−Φn
µ √

n

σφ1 (q(Y n))

³
φ001 (1)
2n χ2M−M0−1,α −Dφ1

¡
p(c∗,θa), q0

¢´¶
,

where Φn(x) is a sequence of distribution functions tending uniformly to the

standard normal distribution Φ(x) and

σ2φ1(q(Y n)) =
MX

j,k=1

σjkφ
0
1

Ã
pj (c∗,θa)

q0j

!
φ01

µ
pk (c

∗,θa)
q0k

¶
1

q0j

1

q0k
,

for Σ = (σij)i,j=1,...,M .

Other interesting results in this direction can be seen in Menéndez et al .

(2001a, b, c).
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6.3.3. Estimation from an Independent Sample

Consider the problem in which we wish to obtain the limiting distribution of

Tφ1
n when θ is estimated using information from a second multinomial sample

that is independent of Yn = (Y1, . . . , Yn). Then in addition to Yn = (Y1, . . . , Yn)

we consider the samples Y∗n∗ = (Y ∗1 , . . . , Y ∗n∗) = (Yn+1, ..., Yn+n∗) and Y∗∗n∗∗ =
(Y ∗∗1 , . . . , Y ∗∗n∗∗) = (Y1, . . . , Yn+n∗). Obviously, the samples Yn and Y∗n∗ are in-
dependent and Yn,Y

∗
n∗ are subsamples of Y

∗∗
n∗∗ . We assume that n

∗ depends
on n in such a way that τ = lim

n→∞
n∗
n exists. Let bθ∗φ2 , bθ∗∗φ2 be the minimum φ2-

divergence estimators based on the random samples Y∗n∗ and Y∗∗n∗∗ , respectively
and let p(bθ∗φ2) and p(bθ∗∗φ2) be the parametric distribution estimators. Then we
have for every τ > 0 that the asymptotic distributions of the φ-divergence test

statistics

2n

φ001 (1)
Dφ1

³bp,p(bθ∗φ2)´ and
2n

φ001 (1)
Dφ1

³bp,p(bθ∗∗φ2)´
are

χ2M−M0−1+
1+ τ

τ
χ2M0

and χ2M−M0−1+
τ

1 + τ
χ2M0

respectively, where χ2M−M0−1 and χ2M0
are independent chi-squared distributed

random variables withM−M0−1 andM0 degrees of freedom, respectively. This

result has been established in Morales et al . (1995).

This is an important generalization of the classical result with φ2(x) = x log x−
x+ 1 and φ1(x) =

1
2(1− x)2, that is to say the classical chi-square test statistic.

In that case the first result was given by Murthy and Gafarian (1970) and the

second one Chase (1972).

Now we denote by θ̂
∗
and θ̂

∗∗
the MLE based on the original data Y∗n∗ =

(Y ∗1 , ..., Y ∗n∗) and Y∗∗n∗∗ = (Y ∗∗1 , ..., Y ∗∗n∗∗) and by bp the relative frequency vector
based on the sample Yn = (Y1, . . . , Yn). Under some regularity conditions given

in Morales et al . (1995) the φ-divergence test statistics

2n

φ001 (1)
Dφ1

³bp,p(bθ∗)´ and
2n

φ001 (1)
Dφ1

³bp,p(θ̂∗∗)´
are asymptotically distributed as

χ2M−M0−1+
M0X
j=1

(1 + λj/τ)Z
2
j and χ2M−M0−1+

M0X
j=1

(1− λj/(1 + τ))Z2j ,

© 2006 by Taylor & Francis Group, LLC



Goodness-of-fit: Composite Null Hypothesis 279

respectively, where Zj , j = 1, ...,M0, are independent standard normal variables

and the λj, 0 ≤ λj ≤ 1, are the roots of the equation

det (IF (θ0)− λIF (θ0)) = 0,

where IF (θ0) and IF (θ0) are the Fisher information matrices of the original and
discretized models, respectively.

6.3.4. Goodness-of-fit with Dependent Observations

stationary irreducible aperiodic Markov chains Y ={Yk, k ≥ 0} with state space
{1, ...,M} , to the situation in which the stationary distribution depend on an
unknown parameter θ ∈ Θ and Θ is an open subset of RM0 . We denote by p (θ)

the stationary distribution and by P θ the set of all matrices P such that their

stationary distribution p coincides with p (θ) and each element of P θ by P (θ) .

A basic statistical problem is how to estimate in a consistent and asymptotically

normal way the unknown true parameter θ0 ∈ Θ by using a random sample of

size n from Y = {Yk, k ≥ 0} about the states of the chain, i.e., how to find a

measurable mapping eθ taking on values in Θ such that
i) eθ P−→

n→∞ θ0

ii)
√
n(eθ − θ0)

L−→
n→∞ N (0,V 0)

and how to evaluate the M0 × M0 matrix V 0. In this context the minimum

φ-divergence estimator was obtained in Menéndez et al . (1999a) and is given by

bθφ2 = arg inf
θ∈Θ⊂RM0

Dφ2 (bp,p (θ)) ,
where bp is the nonparametric estimator based on the sample of size n.

Under some regularity assumptions in the cited paper of Menéndez et al . the

following statements were established:

a) bθφ2 a.s.−→
n→∞ θ0

b) bθφ2 = θ0 +
³
A (θ0)

T A (θ0)
´−1

A(θ0)Tdiag
³
p (θ0)

−1/2
´
(bp− p (θ0))

+o(k bp− p (θ0) k)
© 2006 by Taylor & Francis Group, LLC

In this Section we extend some results considered in Chapter 3, related to
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c)
√
n(bθφ2 − θ0)

L−→
n→∞ N

¡
0,∆T

0B0∆0

¢
,

where

· ∆0 = A(θ0)
³
A (θ0)

T A (θ0)
´−1

· B0 = diag
³
p (θ0)

−1/2
´
S0 diag

³
p (θ0)

−1/2
´

and

· S0 = diag (p (θ0))C0+CT
0 diag (p (θ0))−diag (p (θ0))−p (θ0)p (θ0)T ,

where C0 =
³
IM×M −P (θ0) + 1p (θ0)T

´−1
and 1 = (1, ..., 1)T is the

column vector of M units.

After estimating the unknown parameter θ0 we are interested in testing H0 :

p=p (θ0) . Regarding this problem of testing, in the cited paper of Menéndez et

al . (1999a), it was established that

2n

φ001 (1)
Dφ1

³bp,p(bθφ2)´ L−→
n→∞

MX
j=1

ρiZ
2
i ,

where Zi are independently normally distributed random variables with mean

zero and unit variance and ρi are the eigenvalues of the matrix

L0 = diag
³
p (θ0)

−1/2
´
(I −W+)S0 (I −W−) diag

³
p (θ0)

−1/2
´
,

where

W+ = diag
³
p (θ0)

1/2
´
Σ0 diag

³
p (θ0)

−1/2
´
,

W− = diag
³
p (θ0)

−1/2
´
Σ0 diag

³
p (θ0)

1/2
´
,

and

Σ0 = A(θ0)
T
³
A (θ0)

T A (θ0)
´−1

A(θ0).

Another interesting problem is to test the transition matrix of the chain, i.e.,

to test

H0 : P = P (θ0) = (pij (θ0))i,j=1,...,M ,

for some unknown θ0 ∈ Θ. Menéndez et al . (1999b) considered the φ-divergence
test statistic

Tφ1
n

³bθφ2´ = 2n

φ00 (1)

MX
i=1

υi∗
n

MX
j=1

pij(bθφ2)φ1
Ã bp(i, j)
pij(bθφ2)

!
,
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where bp(i, j) was defined in Section 3.4.2, and
bθφ2 = arg inf

θ∈Θ⊂RM0

Dφ2(
bP , P (θ)) = arg inf

θ∈Θ⊂RM0

MX
i=1

υi∗
n

MX
j=1

pij (θ)φ2

µ bp(i, j)
pij (θ)

¶
.

Its asymptotic distribution is chi-square with c −M −M0 degrees of freedom,

where c is the number of elements of the set,

C = {(i, j) : pij (θ0) > 0} .

The results presented in this section extend the ideas of Glesser andMoore (1983a,

1983b).

6.3.5. Goodness-of-fit with Constraints

With the notation introduced in Section 5.5, Pardo, J. A. et al . (2002), estab-

lished that given ν (ν < M0) real valued functions f1 (θ) , ..., fν (θ) that constrain

the parameter θ ∈ Θ ⊂ RM0 , fm (θ) = 0, m = 1, ..., ν and under the null hypoth-

esis given in (6.2) it holds

2n

φ001 (1)
Dφ1

³bp,p(bθ(r)φ2 )
´

L−→
n→∞ χ2M−M0+ν−1.

© 2006 by Taylor & Francis Group, LLC

The importance of this result will be seen in Chapter 8.
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6.4. Exercises

1. Consider the following random sample of size n = 20; 1, 1, 1, 2, 2, 2, 2,

1, 1, 1, 1, 3, 3, 3, 4, 4, 4, 1, 1, 1. We wish to test if these observations fit

φ1 (x) = φ2 (x) =

x log x− x+ 1 and significance level α = 0.05.
2. Consider the following random sample of size n = 20; -1, 1, 1,-1, 1, 1, 1, 1,

1, 0, 0, 1, 0, -1, -1, 0, 0, 1, 0, 1. We wish to test if these observations fit

the distribution given in Exercise 9 of Chapter 5, using φ1 (x) =
1
2 (1− x)2,

φ2 (x) = x log x− x+ 1 and significance level α = 0.05.
3. A genetic model indicates that the distributions of the population between

men or women and colour-blind or normal have the probabilities

Men Women

Normal θ
2 θ

¡
1− θ

2

¢
Colour-blind (1−θ)

2
(1−θ)2
2

a) Find the minimum φ2-divergence estimator with φ2 (x) = x log x−x+
1.

b) Obtain its asymptotic distribution.

c) We consider a random sample of size n = 2000 and we obtain the

following results

Men Women

Normal 894 1015

Colour-blind 81 10

.

We want to know if the previous random sample is from the genetic

model considered using φ2 (x) =
1
2 (x− 1)2 , φ1 (x) = x log x − x + 1

and significance level α = 0.05.

4. Solve Example 6.1 using Theorem 6.4.

5. Let Y1, ..., Yn be a random sample from a exponential population of para-

meter θ. We consider the partition

E1 = (0, 1) and E2 = [1,∞)
and define pi (θ) = Prθ (Ei) , i = 1, 2.

© 2006 by Taylor & Francis Group, LLC

the distribution given in Exercise 3 of Chapter 5, using
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a) Find the asymptotic distribution of the test statistic

Tφ
n

³bθ´ = 2n

φ00 (1)
Dφ(bp,p(bθ)),

where bθ is the maximum likelihood estimator based on the original

data and φ (x) = 1
2 (x− 1)2 .

b) Prove that the eigenvalue λ associated with the asymptotic distribu-

tion of the test statistic Tφ
n

³bθ´ verifies 0 ≤ λ ≤ 1.

6. Solve Exercise 5 using Theorem 6.4.

7. Let X be a random variable with probability mass function

Prθ (X = 1) = 0.5− 2θ, Prθ (X = 2) = 0.5 + θ and Prθ (X = x3) = θ,

with 0 < θ < 1
4 .

a) Find the minimum power divergence estimator of θ for λ = −2.
b) Find the asymptotic distribution of the estimator obtained in part a).

c) In 8000 independent trials the events {i} , i = 1, 2, 3, have occurred

2014, 5012 and 974 times respectively. Given the significance level

α = 0.05, test the hypothesis that the data are from the population

described by the random variable X, using the power-divergence test

statistic for λ = −2, −1, −1/2, 0, 2/3 and 1.

8. Let X be a random variable with probability mass function

Pr (X = 1) = p1 (θ1, θ2) = θ1θ2
Pr (X = 2) = p2 (θ1, θ2) = θ1 (1− θ2)

Pr (X = 3) = p3 (θ1, θ2) = θ2 (1− θ1)

Pr (X = 4) = p4 (θ1, θ2) = (1− θ2) (1− θ1) ,

with 0 ≤ θ1, θ2 ≤ 1.

a) Find Fisher information matrix as well as the asymptotic distribution

of the minimum φ-divergence estimator.

b) Find the minimum φ-divergence estimator with φ (x) = x log x−x+1
as well as its asymptotic distribution.
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c) Find the expression of the test statistic Tφ
n

³bθ(0)´ for φ (x) = 1
2 (x− 1)2

for testing H0 : p (θ), where

p (θ) = (p11(θ) , p12(θ) , p21(θ) , p22(θ))
T

= (θ1θ2, θ1 (1− θ2) , θ2 (1− θ1) , (1− θ2) (1− θ1))
T .

9. Let X be a random variable with probability density function given by

fθ (x) =


1− θ cosx

2π
x ∈ [0, 2π)

0 otherwise
,

θ ∈ (−1, 1) and we consider the discretized model obtained on dividing the
interval [0, 2π) into M intervals of equal size.

a) Find the Fisher information matrix in the discretized model.

b) Find the minimum power-divergence estimator for λ = −2.
c) Find its asymptotic distribution.

10. Given the model

P (θ) =

Ã
1− θ θ

1 0

!
∈ P θ,

and the stationary distribution given by

p (θ) =

µ
1

1 + θ
,

θ

1 + θ

¶T
, θ ∈ Θ = (0, 1) :

a) Find the minimum φ-divergence estimator as well as its asymptotic

properties.

b) Find the expression of the minimum power-divergence estimator for

λ 6= −1.

6.5. Answers to Exercises

1. In our case we have

bp1 = 0.5, bp2 = 0.2, bp3 = 0.15 and bp4 = 0.15,
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bθφ2 (y1, ..., yn) = (−1+2bp1−bp2−bp3)+((−1+2bp1−bp2−bp3)2+8bp4)1/2
2 = 0.4,

and

p1(bθφ2) =
1

4
(2 + 0.4) = 0.6

p2(bθφ2) =
1

4
(1− 0.4) = 0.15

p3(bθφ2) = 0.15

p4(bθφ2) = 0.1.

The expression of the test statistic is given by

2n

φ002 (1)
Dφ2

³bp,p(bθφ2)´ = 2n

Ã
4P
i=1
bpi log bpi

pi(bθφ2)
!

= 40

µ
0.5 log

0.5

0.6
+ 0.2 log

0.2

0.15
+ 0.15 log

0.15

0.15

+ 0.15 log
0.15

0.1

¶
= 1.0878.

On the other hand χ24−1−1, 0.05 = 5.991 and we should not reject the null

hypothesis.

2. In this case we have

bp = (bp1, bp2, bp3)T = (4/20, 6/20, 10/20)T
and

bθφ2(y1, ..., yn) = 2bp1 + bp3
2

= 0.45.

Then

p1(bθφ2) = 0.2025, p2(bθφ2) = 0.3025, p3(bθφ2) = 0.4950.
Therefore

2n

φ001 (1)
Dφ1

³bp,p(bθφ2)´ = n
3P
i=1
pi(bθφ2)

Ã bpi
pi(bθφ2) − 1

!2
= n

3P
i=1

(bpi − pi(bθφ2))2
pi(bθφ2) = 2.0406× 10−3.

On the other hand χ23−1−1, 0.05 = 3.841 and we should not reject the null

hypothesis.
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then, taking into account Exercise 3 in Chapter 5, we have
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3. a) It is necessary to minimize in θ the function

g (θ) = bp1 log 2bp1
θ
+ bp2 log 2bp2

1− θ
+ bp3 log 2bp3

θ (2− θ)
+ bp4 log 2bp4

(1− θ)2

= −bp1 log θ − bp2 log (1− θ)− bp3 log (2− θ)− bp3 log θ
− bp42 log (1− θ) + c.

Differentiating with respect to θ and equating to zero we have

θ2 (−1− bp4 − bp3) + θ (4− bp1 − 2bp2)− 2 (bp1 + bp3) = 0,
then bθφ2 = −(4−bp1−2bp2)+((4−bp1−2bp2)2+8(−1−bp4−bp3)(bp1+bp3))1/2

2(−1−bp4−bp3) .

b) We have

∂p1 (θ)

∂θ
=
1

2
,
∂p2 (θ)

∂θ
= −1

2
,
∂p3 (θ)

∂θ
= 1− θ and

∂p4 (θ)

∂θ
= − (1− θ) ,

then

A (θ) = diag
³
p (θ)−1/2

´
J (θ)

=
³√

2
2 θ−1/2,−

√
2
2 (1− θ)−1/2 , θ−1/2

¡
2−θ
2

¢−1/2
(1− θ) ,−√2

´
and

A (θ)T A (θ) =
1

2
θ−1 +

1

2
(1− θ)−1 + θ−1

µ
2− θ

2

¶−1
(1− θ)2 + 2.

Therefore,

√
n(bθφ2 (Y1, ..., Yn)− θ0)

L−→
n→∞ N

µ
0,
³
A (θ0)

T A (θ0)
´−1¶

.

c) In our case

bp1 = 0.447, bp2 = 0.0405, bp3 = 0.5075, bp4 = 0.005,
then bθφ2 (y1, ..., yn) = 0.9129.
We have

p1(bθφ2) = 0.4564, p2(bθφ2) = 0.0435, p3(bθφ2) = 0.4962
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and

p4(bθφ2) = 0.0039,
and the value of the φ-divergence test statistic is

2n

φ001 (1)
Dφ1

³bp,p(bθφ2)´ = n
4P
i=1
pi(bθφ2)

Ã bpi
pi(bθφ2) − 1

!2

= n
4P
i=1

³bpi − pi(bθφ2)´2
pi(bθφ2)

= 1.9361.

But χ2M−M0−1,α = χ22,0.05 = 5.991 and we should not reject the null hypoth-

esis.

4. The Fisher information associated with the original model is

IF (θ) = 1

σ2
= 1

and the Fisher information associated with the discretized model is given

by

IF (θ) = A (θ)
T A (θ)

where

A (θ) =

Ã
p1 (θ)

−1/2 0

0 p2 (θ)
−1/2

!µ
− 1√

2π
e−θ2/2,

1√
2π
e−θ2/2

¶T
=

Ã
−p1 (θ)

−1/2
√
2π

e−θ2/2,
p2 (θ)

−1/2
√
2π

e−θ2/2
!T

,

then

IF (θ) = A (θ)
T A (θ) =

e−θ2

p1 (θ) p2 (θ) 2π
.

We have M = 2, M0 = 1 and φ (x) = 1
2 (1− x)2, then

2n

φ00 (1)
Dφ(bp,p(bθ)) = n

¡bp1 − p1 ¡Y ¢¢2
p1 (θ) p2 (θ)

L−→
n→∞ (1− λ1)χ

2
1

being λ1 the solution of the equation

det (IF (θ)− λIF (θ)) = det
Ã

e−θ2

p1 (θ) p2 (θ) 2π
− λ

!
= 0,
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i.e.,

λ1 =
e−θ2

p1 (θ) p2 (θ) 2π
.

5. We have

Prθ (E1) = p1 (θ) = 1− exp (−1/θ) and Prθ (E2) = p2 (θ) = exp (−1/θ) ,

and the maximum likelihood estimator of θ, based on the original data, is

bθ = Y .
The test statistic Tφ

n

³bθ´ has the expression
Tφ
n

³bθ´ = n 2X
i=1

(bpi − pi ¡Y ¢)2
pi
¡
Y
¢ = n

Ã
(bp1 − p1 ¡Y ¢)2

p1
¡
Y
¢ +

(bp2 − p2 ¡Y ¢)2
p2
¡
Y
¢ !

= n

Ã
(bp1 − p1 ¡Y ¢)2

p1
¡
Y
¢ +

(bp1 − p1 ¡Y ¢)2
p2
¡
Y
¢ !

= n

Ã
(bp1 − p1 ¡Y ¢)2
p1
¡
Y
¢
p2
¡
Y
¢ ! ,

but

p1
¡
Y
¢
p2
¡
Y
¢ P−→
n→∞ p1 (θ) p2 (θ) .

Therefore the asymptotic distribution of Tφ
n

³bθ´ coincides with the asymp-
totic distribution of the random variable

Rφ
n

³bθ´ = n(bp1 − p1 ¡Y ¢)2
p1 (θ) p2 (θ)

.

We know that

p1
¡
Y
¢
= p1 (θ) +

∂p1 (θ)

∂θ

¡
Y − θ

¢
+ oP

³
n−

1
2

´
,

but
∂p1 (θ)

∂θ
= − 1

θ2
exp (−1/θ) ,

then we have

√
n(p1

¡
Y
¢− p1 (θ)) = −√n

θ2
exp

µ
−1
θ

¶¡
Y − θ

¢
+ oP (1) .

The asymptotic distribution of the random variable

√
n(bp1 − p1 (θ) , Y − θ)T
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is bivariate normal with mean vector (0, 0)T and variance-covariance matrix

given by

V ar [
√
n(bp1 − p1 (θ))] = nV ar [bp1] = n 1

n2
V ar [Ni]

= n
1

n2
np1 (θ) p2 (θ) = p1 (θ) p2 (θ)

V ar
£√
n
¡
Y − θ

¢¤
= nV ar

£
Y − θ

¤
= nV ar

£
Y
¤

= n
1

n
V ar [Yi] = θ2.

Denoting by T =
1

n

nP
i=1
(I(0,1) (Yi)− p1 (θ)), we have

Cov
£√
n
¡bp1 − p1 (θ) , Y − θ

¢¤
= nCov

·
T,
1

n

nP
i=1
(Yi − θ)

¸
= Cov

£
I(0,1) (Yi)− p1(θ), Yi − θ

¤
= E

£
I(0,1) (Yi) (Yi − θ)

¤
=

Z 1

0
(x− θ) 1θ exp (−x/θ)dx

= − exp (−1/θ) .

Therefore

√
n
¡bp1 − p1 (θ) , Y − θ

¢T L−→
n→∞ N

ÃÃ
0

0

!
,

Ã
p1 (θ) p2 (θ) − exp(-1θ )
− exp(-1θ ) θ2

!!
.

On the other hand

√
n
¡bp1-p1 (θ) , p1 ¡Y ¢ -p1 (θ)¢T = √nÃ 1 0

0 - exp(-1θ )

!Ã bp1 − p1 (θ)
Y − θ

!
,

and denoting by

Σ =

Ã
p1 (θ) p2 (θ) − exp (−1/θ)
− exp (−1/θ) θ2

!
and A =

Ã
1 0

0 − exp (−1/θ)

!

we have

Σ∗ = AΣAT =

Ã
p1 (θ) p2 (θ)

1
θ2 exp (−2/θ)

1
θ2 exp (−2/θ) 1

θ2 exp (−2/θ)

!
,
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then

√
n
¡bp1 − p1 (θ) , p1 ¡Y ¢− p1 (θ)¢T L−→

n→∞ N

ÃÃ
0

0

!
,Σ∗

!
,

and

√
n
¡bp1 − p1 ¡Y ¢¢ L−→

n→∞ N
¡
0, p1 (θ) p2 (θ)− θ−2 exp (−2/θ)¢

or √
n
¡bp1 − p1 ¡Y ¢¢p

p1 (θ) p2 (θ)− θ−2 exp (−2/θ)
L−→

n→∞ N (0, 1) .

Finally

n
¡bp1 − p1 ¡Y ¢¢2 L−→

n→∞
¡
p1 (θ) p2 (θ)− θ−2 exp (−2/θ)¢χ21

and
n
¡bp1 − p1 ¡Y ¢¢2
p1 (θ) p2 (θ)

L−→
n→∞ λχ21

being λ = 1− exp (−2/θ)
θ2p1 (θ) p2 (θ)

.

Now we are going to see that λ ≥ 0. We know that Σ∗ is nonnegative
definite, then

0 ≤ det (Σ∗) =
exp (−2/θ)

θ2

µ
p1 (θ) p2 (θ)− exp (−2/θ)

θ2

¶
=

p1 (θ) p2 (θ)

θ2
exp (−2/θ)

µ
1− exp (−2/θ)

θ2p1 (θ) p2 (θ)

¶
,

and 0 ≤ λ ≤ 1.
6. The Fisher information associated with the original model is given by

IF (θ) = 1

θ2
,

and the Fisher information associated with the discretized model is

IF (θ) = A (θ)
T A (θ)

being

A (θ) =

Ã
p1 (θ)

−1/2 0

0 p2 (θ)
−1/2

!¡− 1
θ2
e−1/θ, 1

θ2
e−1/θ

¢T
=

³
−p1(θ)−1/2

θ2
e−1/θ, p2(θ)

−1/2
θ2

e−1/θ
´T
,
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then

IF (θ) = A (θ)
T A (θ) =

1

θ4
e−2/θ

p1 (θ) p2 (θ)
.

We have M = 2, M0 = 1 and φ (x) = 1
2 (1− x)2, then

n
¡bp1 − p1 ¡Y ¢¢2
p1 (θ) p2 (θ)

L−→
n→∞ (1− λ1)χ

2
1

being λ1 the root of the equation

det (IF (θ)− λ1IF (θ)) = 0.

It is easy to get

λ1 =
exp (−2/θ)

θ2p1 (θ) p2 (θ)
.

7. a) The power-divergence for λ = −2 has the expression

Dφ(−2)(bp,p (θ)) = 1

−2 (−2 + 1)

 3X
j=1

pj (θ)
2bpj − 1


=

1

2

Ã
(0.5− 2θ)2bp1 +

(0.5 + θ)2bp2 +
θ2bp3 − 1

!
.

Differentiating

g (θ) ≡ Dφ(−2)(bp,p (θ)),
with respect to θ and equating to zero we get

θ(8bp2bp3 + 2bp1bp3 + 2bp1bp2)− 2bp2bp3 + bp1bp3 = 0,
then bθφ(−2)(y1, ..., yn) = 2bp2bp3 − bp1bp3

8bp2bp3 + 2bp1bp3 + 2bp1bp2 .
b) We have

∂p1 (θ)

∂θ
= −2, ∂p2 (θ)

∂θ
= 1 and

∂p3 (θ)

∂θ
= 1,

then
A (θ) = diag

³
p (θ)−1/2

´
J (θ)

= (−2 (0.5− 2θ)−1/2 , (0.5 + θ)−1/2 , θ−1/2)T ,
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and

A (θ)T A (θ) =

¡
2θ + 0.52

¢
(0.5− 2θ) (0.5 + θ) θ

.

Therefore

√
n
³bθφ(−2) (Y1, ..., Yn)− θ0

´
L−→

n→∞ N
µ
0,
(0.5− 2θ0) (0.5 + θ0) θ0

(2θ0 + 0.52)

¶
.

c) We have

Dφ(λ)(bp,p (θ)) = 1

λ (λ+ 1)

 3X
j=1

pj (θ)
λ+1bpλj − 1

 .
It is immediate to get

bθφ(−2) = 2bp2bp3 − bp1bp3
8bp2bp3 + 2bp1bp3 + 2bp1bp2 = 0.1057,

then

p1(bθφ(−2)) = . 2886, p2(bθφ(−2)) = 0. 6057 and p3(bθφ(−2)) = 0.1057,
and

λ -2 -1 -0.5 0 2/3 1

T
φ(λ)
n

³bθφ(−2)´ 62.853 63.583 64.017 64.498 65.213 65.603
.

On the other hand χ23−1−1,0.05 = 3.841. Then we should reject the null

hypothesis for all the values of λ considered.

8. a) The matrix A (θ) is given by

A (θ) =



q
θ2
θ1

q
θ1
θ2q

1−θ2
θ1

−
q

θ1
1−θ2

−
q

θ2
1−θ1

q
1−θ1
θ2

−
q

1−θ2
1−θ1 −

q
1−θ1
1−θ2

 ;

then we have

IF (θ) = A (θ)
T A (θ) =

Ã
(θ1 (1− θ1))

−1 0

0 (θ2 (1− θ2))
−1

!
.
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Therefore,

√
n
³
(bθ1φ2, bθ2φ2)T − (θ10, θ20)T´ L−→

n→∞ N
³
0, IF (θ0)

−1
´
.

b) It is necessary to minimize in θ1 and θ2 the function

g (θ1, θ2) = bp1 log bp1
θ1θ2

+ bp2 log bp2
θ1 (1− θ2)

+ bp3 log bp3
θ2 (1− θ1)

+ bp4 log bp4
(1− θ1) (1− θ2)

= −bp1 log θ1θ2 − bp2 log θ1 (1− θ2)− bp3 log θ2 (1− θ1)

− bp4 log (1− θ1) (1− θ2) + c.

Differentiating with respect to θ1 and θ2 and equating to zero we have

bθ1 = bp1 + bp2 and bθ2 = bp1 + bp3.
The asymptotic distribution has been obtained, in general, for any φ in a).

c) If we denote bp = (bp1, bp2, bp3, bp4)T by bp = (bp11, bp12, bp21, bp22)T , we have
bθ1 = bp1 + bp2 = bp11 + bp12 = bp1∗ = n11 + n12

n
≡ n1∗

nbθ2 = bp1 + bp3 = bp11 + bp21 = bp∗1 = n11 + n21
n

≡ n∗1
n
.

In a similar way

1− bθ1 = 1− bp1∗ = bp2∗ = n21 + n22
n

≡ n2∗
n

1− bθ2 = 1− bp∗1 = bp∗2 = n12 + n22
n

≡ n∗2
n
.

Then we get

Tφ
n

³bθφ(0)´ = n 2X
i=1

2X
j=1

pij(bθφ(0))µ bpij
pij(bθφ(0)) − 1

¶2
=

2X
i=1

2X
j=1

(nnij−ni∗n∗j)2
ni∗n∗j .

9. a) The partition of the interval [0, 2π) is given by Ej =
©
[j − 12πM , j 2πM )

ª
,

j = 1, ...,M. It is clear that

pj (θ) = Prθ(Ej) = Fθ

µ
j
2π

M

¶
− Fθ

µ
(j − 1)2π

M

¶
=
1

M
+ θ cj ,

where cj =
1
2π (sen (j − 1)2πM − sen j 2πM ).
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Then,

p (θ) = (
1

M
+ θ c1, ...,

1

M
+ θ cM)

T

and

A (θ) =


c1
¡
1
M + θ c1

¢−1/2
.

.

.

cM
¡
1
M + θ cM

¢−1/2

 .

Then,

A (θ)T A (θ) =
MX
j=1

c2j¡
1
M + θ cj

¢ =M MX
j=1

c2j
1 +Mθ cj

and

IF (θ) =M
MX
j=1

c2j
1 +Mθ cj

.

b) The power-divergence for λ = −2 is

Dφ(−2) (bp,p (θ)) = 1

−2 (−2 + 1)

 MX
j=1

pj (θ)
2bpj − 1


=

1

2

 MX
j=1

1bpj ¡ 1
M + θcj

¢2 − 1
 .

Differentiating and equating to zero we have

bθφ(−2) = −
 1

M

MX
j=1

cjbpj
 MX

j=1

c2jbpj
 1

.

c) The asymptotic distribution is given by

√
n(bθφ(−2) (Y1, ..., Yn)− θ0)

L→
n→∞ N

0,
M MX

j=1

c2j
1 +Mθ0cj

−1 .
10. a) First we are going to obtain the asymptotic properties of the minimum

φ-divergence estimator. We have
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· A (θ0) = 1

(1 + θ0)
−1/2

Ã
1 0

0 θ
−1/2
0

! −
1

(1 + θ0)
2

1

(1 + θ0)
2


=

1

(1 + θ0)
3/2

Ã
−1
θ
−1/2
0

!
· A (θ0)T A (θ0) = (1 + θ0)

−2 θ−10

· ∆T
0 = ((1 + θ0) θ0)

1/2 (−θ1/20 , 1)

· C−10 =
1

(1 + θ0)

Ã
θ20 + θ0 + 1 −θ20
−θ0 2θ0 + 1

!
.

Therefore,

S0 =
(1−θ0)θ0
(1+θ0)

3

Ã
1 −1
−1 1

!
and B0 =

(1−θ0)
(1+θ0)

2

Ã
θ0 −θ1/20
−θ1/20 1

!
.

Then, √
n
³bθφ2 (Y1, ..., Yn)− θ0

´
L−→

n→∞ N
¡
0,∆T

0B0∆0

¢
,

and

∆T
0B0∆0 = θ0(1− θ20).

The minimum φ-divergence estimator is obtained minimizing, in θ ∈ (0, 1) ,
the function

g (θ) = Dφ2(bp,p (θ)) = 1

1 + θ

¡
φ2 ((1 + θ) bp1) + θφ2

¡
θ−1bp2 (1 + θ)

¢¢
.

b) If we consider the power-divergence measure we obtain

g (θ) = 1
λ(λ+1)

³bpλ+11 (1 + θ)λ + (1 + θ)λ θ−λbpλ+12 − 1
´

= 1
λ(λ+1)

³
(1 + θ)λ

³bpλ+11 + θ−λbpλ+12

´
− 1
´
.

Then,

g0 (θ) = 1
λ(λ+1)

³
(1 + θ)λ−1 λ

³bpλ+11 + θ−λbpλ+12

´
− (1 + θ)λ λ 1

θλ+1
bpλ+12

´
= (1+θ)λ−1λ

λ(λ+1)

Ãbpλ+11 +
bpλ+12

θλ
− bpλ+12

θλ+1
− bpλ+12

θλ

!
= (1+θ)λ−1

(λ+1)

Ãbpλ+11 − bpλ+12

θλ

!
,
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and therefore g0 (θ) = 0 implies θ = bp2/bp1. Then we can conclude that
bθφ(λ) = bp2/bp1 if 0 < bp2/bp1 < 1.
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7

Testing Loglinear Models

Using Phi-divergence Test

Statistics

7.1. Introduction

One basic and straightforward method for analyzing categorical data is via

crosstabulation. For example, a medical researcher may tabulate the frequency of

different symptoms by patient’s age and gender; an educational researcher may

tabulate the number of high school drop-outs by age, gender, and ethnic back-

ground; an economist may tabulate the number of business failures by industry,

region, and initial capitalization; a market researcher may tabulate consumer

preferences by product, age, and gender, etc. In all of these cases, the most in-

teresting results can be summarized in a multiway frequency table, that is, in a

crosstabulation table with two or more factors. Loglinear models provide a more

“sophisticated” way of looking at crosstabulation tables. Specifically, one can

test the different factors that are used in the crosstabulation (e.g., gender, re-

gion, etc.) and their interactions for statistical significance. In this introductory

section we present an intuitive approach to loglinear models and in the remaining

sections a systematic study of them.

Example 7.1

1 fo r 20 5 ma rr ied perso ns, repor ted i nitia l ly by Gal ton,
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give the number of cases in which a tall, medium or short man was married to a

tall, medium or short woman.

Wife

Tall Medium Short Totals

Tall 18 28 14 60

Husband Medium 20 51 28 99

Short 12 25 9 46

Totals 50 104 51 205

Table 7.1
Source: Christensen, R. (1997, p. 67).

Are the heights of husband and wife independent ?

The answer to the previous question could be given using the classical chi-

square test statistic for independence. However, we are going to deal with the

problem considering a loglinear model for the data assuming independence. Let

X and Y denote two categorical response variables, X and Y having I and J

levels, respectively. The responses (X,Y ) of a subject randomly chosen from

some population have a probability distribution. Let pij = Pr (X = i, Y = j) ,

with pij > 0, i = 1, ..., I, j = 1, ..., J.We display this distribution in a rectangular

table having I rows for the categories of X and J columns for the categories of Y .

The corresponding matrix I×J is called a contingency table. Consider a random
sample of size n on (X,Y ) and we denote by nij the observed frequency in the

(i, j)th-cell for (i, j) ∈ I×J with n =PI
i=1

PJ
j=1 nij and the totals for the ith-row

and jth-column by ni∗ =
PJ
j=1 nij and

PI
i=1 nij = n∗j, i = 1, ..., I, j = 1, ..., J,

respectively.

In the following we assume that nij is the observed value corresponding to

a random variable Nij, i = 1, ..., I, j = 1, ..., J, in such a way that the ran-

dom variable (N11, ...,NIJ) is multinomially distributed with parameters n and

(p11, ...., pIJ). We denote mij = E [Nij ] = npij , i = 1, ..., I, j = 1, ..., J. Under

the independence assumption we have

H0 : pij = pi∗p∗j , i = 1, ..., I, j = 1, ..., J ⇔mij = npi∗p∗j , (7.1)

where pi∗ =
PJ
j=1 pij and p∗j =

PI
i=1 pij. The hypothesis (7.1) can be written as

H0: logmij = logn+ log pi∗ + log p∗j , (7.2)
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or equivalently

logmij = logn+ log pi∗ + log p∗j

= log pi∗ −
µ

IP
h=1

log ph∗
¶
/I + log p∗j −

µ
JP
h=1

log p∗h
¶
/J

+ logn+

µ
IP
h=1

log ph∗
¶
/I +

µ
JP
h=1

log p∗h
¶
/J.

If we denote

θ1(i) = log pi∗ −
µ

IP
h=1

log ph∗
¶
/I

θ2(j) = log p∗j −
µ

JP
h=1

log p∗h
¶
/J

u = logn+

µ
IP
h=1

log ph∗
¶
/I +

µ
JP
h=1

log p∗h
¶
/J,

we have logmij (θ) = u+θ1(i)+θ2(j), i = 1, ..., I, j = 1, ..., J, where the parameters©
θ1(i)

ª
and

©
θ2(j)

ª
verify

PI
i=1 θ1(i) =

PJ
j=1 θ2(j) = 0.

Then the hypothesis of independence given in a two-way contingency table

can be specified by the model

logmij (θ) = u+ θ1(i) + θ2(j), i = 1, ..., I, j = 1, ..., J,

where the parameters verify
PI
i=1 θ1(i) =

PJ
j=1 θ2(j) = 0.

The number of parameters of the model, initially, is

u 1

θ1(i) I − 1
θ2(j) J − 1

 I + J − 1,

but we are assuming that our data are from a multinomial population with n =PI
i=1

PJ
j=1mij (θ) ; therefore actually we have I + J − 2 parameters because u

is a function of θ1(i) and θ2(j).

The loglinear model of independence which justifies the data from Example

7.1 is

logmij (θ) = u+ θ1(i) + θ2(j), i = 1, ..., 3, j = 1, ..., 3,

with
P3
i=1 θ1(i) =

P3
j=1 θ2(j) = 0.
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Since it may be useful to express the loglinear model in a matrix notation, we

obtain the corresponding matrix form for the model of Example 7.1,

logm11 (θ) = u+ θ1(1) + θ2(1)
logm12 (θ) = u+ θ1(1) + θ2(2)
logm13 (θ) = u+ θ1(1) + θ2(3) = u+ θ1(1) − θ2(1) − θ2(2)
logm21 (θ) = u+ θ1(2) + θ2(1)
logm22 (θ) = u+ θ1(2) + θ2(2)
logm23 (θ) = u+ θ1(2) + θ2(3) = u+ θ1(2) − θ2(1) − θ2(2)
logm31 (θ) = u+ θ1(3) + θ2(1) = u− θ1(1) − θ1(2) + θ2(1)
logm32 (θ) = u+ θ1(3) + θ2(2) = u− θ1(1) − θ1(2) + θ2(2)
logm33 (θ) = u+ θ1(3) + θ2(3) = u− θ1(1) − θ1(2) − θ2(1) − θ2(2).

If we denote by

X =



1 1 0 1 0

1 1 0 0 1

1 1 0 −1 −1
1 0 1 1 0

1 0 1 0 1

1 0 1 −1 −1
1 −1 −1 1 0

1 −1 −1 0 1

1 −1 −1 −1 −1


,

m (θ) = (m11 (θ) , ...,m13 (θ) , ...,m31 (θ) , ...,m33 (θ))
T and

θ =
¡
u, θ1(1), θ1(2), θ2(1), θ2(2)

¢T
,

we have logm (θ) =Xθ.

In a two-way contingency table the most general loglinear model is

logmij (θ) = u+ θ1(i) + θ2(j) + θ12(ij) (7.3)

where

u = 1
IJ

PI
i=1

PJ
j=1 logmij (θ) θ1(i) =

1
J

PJ
j=1 logmij (θ)− u

θ2(j) =
1
I

PI
i=1 logmij (θ)− u θ12(ij) = logmij (θ)− u− θ1(i) − θ2(j).

The term θ12(ij) represents the interaction between the two random variables

X and Y. It is easy to verify
PI
i=1 θ12(ij) =

PJ
j=1 θ12(ij) = 0. The number of
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parameters in this model is IJ−1. A loglinear model, with multinomial sampling,
in which the number of cells minus one is equal to the number of parameters is

called saturated model. A saturated model is one which attempts to estimate

parameters for all single-variable and all interaction effects. That is, saturated

models include all possible terms, including all interaction effects. They provide

an exact fit for the observed cell counts. Since observed and expected are the

same, there are too many unknown parameters to compute goodness-of-fit test

statistics.

If we assume I = J = 3, denoting

X =



1 1 0 1 0 1 0 0 0

1 1 0 0 1 0 1 0 0

1 1 0 −1 −1 −1 −1 0 0

1 0 1 1 0 0 0 1 0

1 0 1 0 1 0 0 0 1

1 0 1 1 −1 0 0 −1 −1
1 −1 −1 1 0 −1 0 −1 0

1 −1 −1 0 1 0 −1 0 −1
1 −1 −1 −1 −1 1 1 1 1


,

m (θ) = (m11 (θ) , ...,m13 (θ) , ...,m31 (θ) , ...,m33 (θ))
T

and

θ =
¡
u, θ1(1), θ1(2), θ2(1), θ2(2), θ12(11), θ12(12), θ12(21), θ12(22)

¢T
we have that the matrix form of the saturated model is logm (θ) =Xθ. Before

introducing the loglinear models in a three-way contingency table we present an

example.

Example 7.2

Worchester (1971) describes a case-control study of women diagnosed with

thromboembolism for the purpose of studying the risks associated with smoking

and oral contraceptive use. Their data are summarized in Table 7.2.

Contraceptive Cases Controls

use? Smoker nonsmoker Smoker nonsmoker

Yes 14 12 2 8

No 7 25 22 84

Table 7.2
Source: Worchester, J. (1971).
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Loglinear models are useful methods to describe the inter-relationships between

these three factors.

LetX,Y and Z denote three categorical response variables: X having I levels,

Y having J levels and Z having K levels. When subjects are classified based on

the three variables, there are IJK possible combinations of classification. The

responses (X,Y,Z) of a subject randomly chosen from some population have

a probability distribution. Let pijk = Pr (X = i, Y = j, Z = k) , with pijk > 0,

i = 1, ..., I, j = 1, ..., J and k = 1, ...,K, and let p =(p111, ..., pIJK)
T be the

joint distribution of X, Y and Z. This distribution is displayed in a three-way

contingency table. Consider a random sample of size n on (X,Y, Z) and let nijk
be the observed frequency in the (i, j, k)th-cell for (i, j, k) ∈ I × J × K withPI
i=1

PJ
j=1

PK
k=1 nijk = n. In the following we assume that nijk is the observed

value corresponding to a random variable Nijk, i = 1, ..., I, j = 1, ..., J, k =

1, ...,K, in such a way that the random variable (N111, ...,NIJK) is multinomially

distributed with parameters n and (p111, ...., pIJK). We denotemijk = E [Nijk] =

npijk, i = 1, ..., I, j = 1, ..., J, k = 1, ...,K. We also denote

u =
IP
i=1

JP
j=1

KP
k=1

logmijk/IJK

θ1(i) =
JP
j=1

KP
k=1

logmijk/JK − u

θ2(j) =
IP
i=1

KP
k=1

logmijk/IK − u

θ3(k) =
IP
i=1

JP
j=1

logmijk/IJ − u

θ12(ij) =
KP
k=1

logmijk/K −
JP
j=1

KP
k=1

logmijk/JK −
IP
i=1

KP
k=1

logmijk/IK + u

θ13(ik) =
JP
j=1
logmijk/J −

JP
j=1

KP
k=1

logmijk/JK −
IP
i=1

JP
j=1
logmijk/IJ + u

θ23(jk) =
IP
i=1
logmijk/I −

IP
i=1

KP
k=1

logmijk/IK −
IP
i=1

JP
j=1
logmijk/IJ + u

θ123(ijk) = logmijk −
KP
k=1

logmijk/K −
JP
j=1
logmijk/J −

IP
i=1
logmijk/I

+
JP
j=1

KP
k=1

logmijk/JK +
IP
i=1

KP
k=1

logmijk/IK +
IP
i=1

JP
j=1
logmijk/IJ + u.
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Then we have

logmijk (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ12(ij)+ θ13(ik) + θ23(jk) + θ123(ijk). (7.4)

It is clear that the parameters verify the following constraints,

IP
i=1

θ1(i) =
JP
j=1

θ2(j) =
KP
k=1

θ3(k) = 0

IP
i=1

θ12(ij) =
JP
j=1

θ12(ij) =
IP
i=1

θ13(ik) =
KP
k=1

θ13(ik) =
JP
j=1

θ23(jk) =
KP
k=1

θ23(jk) = 0

IP
i=1

θ123(ijk) =
JP
j=1

θ123(ijk) =
KP
k=1

θ123(ijk) = 0.

The number of parameters, initially, in this model is

u 1

θ1(i) I − 1
θ2(j) J − 1
θ3(k) K − 1

θ12(ij) (I − 1) (J − 1)
θ13(ik) (I − 1) (K − 1)
θ23(jk) (J − 1) (K − 1)

θ123(ijk) (I − 1) (J − 1) (K − 1)


IJK,

but under the assumption of multinomial sampling we have IJK − 1 parame-
ters because

PI
i=1

PJ
j=1

PK
k=1mijk (θ) = n. We have the saturated model, in a

three-way contingency table, because the number of parameters coincide with the

number of cells minus one.

A simpler model in a three-way contingency table is the model

logmijk (θ) = u+ θ1(i) + θ2(j) + θ3(k). (7.5)

This is the independence model in a three-way contingency table, i.e., pijk =

pi∗∗p∗j∗p∗∗k with pi∗∗ =
PJ
j=1

PK
k=1 pijk, p∗j∗ =

PI
i=1

PK
k=1 pijk and p∗∗k =PI

i=1

PJ
j=1 pijk.

Between the models (7.4) and (7.5) there are different loglinear models that

can be considered:

i) Variable X is jointly independent of Y and Z. In this case we have

logmijk (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ23(jk),
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i.e., pijk = p∗jkpi∗∗. The number of parameters in this model is

(I − 1) + (J − 1) + (K − 1) + (K − 1) (J − 1) .

ii) The random variables X and Z are independent given the random variable

Y . In this case we have

logmijk (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ12(ij) + θ23(jk),

i.e., pijk/p∗j∗ = (pij∗/p∗j∗) (p∗jk/p∗j∗) . The number of parameters of this
model is

(I − 1) + (J − 1) + (K − 1) + (I − 1)(J − 1) + (J − 1)(K − 1).

iii) The random variables X, Y and Z are pairwise dependent but the three

random variables X, Y and Z are jointly independent. In this case we have

logmijk (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ12(ij) + θ13(ik) + θ23(jk).

This model does not admit a representation in terms of probabilities. The

number of parameters is given by

(I − 1)+(J − 1)+(K − 1)+(I − 1) [(J − 1) + (K − 1)]+(J − 1) (K − 1) .

Hierarchical loglinear models require that high order interactions are always

accompanied by all of their lower order interactions. All hierarchical models for

a three-way contingency table are the following:

H1: logmijk (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ12(ij) + θ13(ik) + θ23(jk)

H2 : logmijk (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ13(ik) + θ23(jk)

H∗2 : logmijk (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ12(ij) + θ13(ik)

H∗∗2 : logmijk (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ12(ij) + θ23(jk)

H3 : logmijk (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ23(jk)
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H∗3 : logmijk (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ12(ij)

H∗∗3 : logmijk (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ13(ik)

H4 : logmijk (θ) = u+ θ1(i) + θ2(j) + θ3(k)

H∗4 : logmijk (θ) = u+ θ2(j) + θ3(k) + θ23(jk)

H∗∗4 : logmijk (θ) = u+ θ1(i) + θ2(j) + θ12(ij)

H∗∗∗4 : logmijk (θ) = u+ θ1(i) + θ3(k) + θ13(ik)

H5 : logmijk (θ) = u+ θ2(j) + θ3(k)

H∗5 : logmijk (θ) = u+ θ1(i) + θ2(j)

H∗∗5 : logmijk (θ) = u+ θ1(i) + θ3(k)

H6 : logmijk (θ) = u+ θ3(k)

H∗6 : logmijk (θ) = u+ θ1(i)

H∗∗6 : logmijk (θ) = u+ θ2(j)

H7 : logmijk (θ) = u.

It is clear that, from a practical point of view, the problem consists of obtain-

ing the model that presents a better fit to our data. In relation with Example 7.2

the problem is to find the model, among the previous considered models, that is

able to explain more clearly the given data. In the procedure that follows in the

next Sections it will be necessary to give a method to estimate the parameters of

the model and then to choose the best model. In order to do this second step we

first choose a nested sequence of loglinear models (two loglinear models are said

to be nested when one contains a subset of the parameters in the other) in the

way which is explained in Section 7.4. and then we shall give some procedure to

choose the best model among the models considered in a nested sequence.

7.2. Loglinear Models: Definition

Let Y1, Y2, ..., Yn be a sample of size n ≥ 1, with independent realizations in the
statistical space X = {1, 2, ...,M} , which are identically distributed according to a
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probability distribution p (θ0). For a two-way contingency table we haveM = IJ

and for a three-way contingency table we have M = IJK. This distribution is

assumed to be unknown, but belonging to a known family

T =
©
p (θ) = (p1 (θ) , ..., pM (θ))

T : θ ∈ Θª ,
of distributions on X with Θ ⊆ RM0 (M0 < M − 1) . In other words, the true
value θ0 of the parameter θ = (θ1, ..., θM0)

T ∈ Θ ⊆ RM0 is assumed to be fixed

but unknown. We denote p = (p1, ..., pM)
T and bp = (bp1, ..., bpM)T with

bpj = Nj
n

and Nj =
nX
i=1

I{j} (Yi) ; j = 1, ...,M. (7.6)

The statistic (N1, ..., NM) is obviously sufficient for the statistical model under

consideration and is multinomially distributed; that is,

Pr (N1 = n1, ...,NM = nM) =
n!

n1!...nM !
p1 (θ)

n1 ...pM (θ)
nM , (7.7)

for integers n1, ..., nM ≥ 0 such that n1 + ...+ nM = n.

In what follows, we assume that p (θ) belongs to the general class of loglinear

models. That is, we assume:

pu (θ) = exp
¡
wTuθ

¢
/
MX
v=1

exp
¡
wTv θ

¢
; u = 1, ...,M, (7.8)

wherewTu = (wu1, ..., wuM0) . TheM×M0 matrixW = (w1, ...,wM)
T is assumed

to have full column rank M0 (M0 < M − 1) and columns linearly independent of
the M × 1 column vector (1, ..., 1)T . This is the model that we shall consider for
the theoretical results in the next sections.

We restrict ourselves to multinomial random sampling but it is possible to

give the results presented in the next sections under the assumptions of either

Poisson, multinomial, or product-multinomial sampling jointly. For more details
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7.3. Asymptotic Results for Minimum Phi-divergence

Estimators in Loglinear Models

In this Section we present some asymptotic results for the minimum φ-diver-

gence estimator under the loglinear model (7.8). These results are obtained par-

the cited Chapter 5 we establish that the Fisher information matrix in a multino-

mial model has the expression

IF (θ) = A (θ)
T A (θ) ,

where A (θ) is the M ×M0 matrix defined in (5.7).

For a loglinear model we have

∂pj (θ)

∂θr
= pj (θ)wjr − pj (θ)

MX
v=1

wvrpv (θ) .

Then
∂p (θ)

∂θ
=
³
diag (p (θ))− p (θ)p (θ)T

´
W = Σp(θ)W

and hence

A (θ) = diag
³
p (θ)−1/2

´
Σp(θ)W .

Then the Fisher information matrix for a loglinear model is given by

IF (θ) =W
TΣp(θ)W .

By Theorem 5.2, if bθφ is the minimum φ-divergence estimator for the loglinear

model given in (7.8), then

√
n(bθφ − θ0)

L−→
n→∞ N

³
0,
¡
W TΣp(θ0)W

¢−1´
,

where bθφ = arg inf
θ∈Θ

Dφ(bp,p (θ)), (7.9)

and by Theorem 5.1 verifies

bθφ = θ0 + IF (θ0)
−1W TΣp(θ0)diag

¡
p(θ0)

−1¢ (bp− p(θ0)) + o(k bp− p(θ0) k).
(7.10)
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Another interesting result, useful later, is the following

√
n
³
p(bθφ)− p (θ0)´ L−→

n→∞ N
³
0, Σp(θ0)W

¡
W TΣp(θ0)W

¢−1
W TΣp(θ0)

´
.

(7.11)

From a practical point of view in order to find the minimum φ-divergence

estimator bθφ we must solve the following system of equations
∂Dφ(bp,p (θ))

∂θi
= 0

i = 1, ...,M0

,

with the condition that p(θ) verifies (7.8).

These equations are nonlinear functions of the minimum φ-divergence esti-

mator, bθφ. In order to solve these equations numerically the Newton-Raphson
method is used. We have,

∂Dφ(bp,p (θ))
∂θj

=
MP
l=1

µ
φ

µ bpl
pl(θ)

¶
− φ0

µ bpl
pl(θ)

¶ bpl
pl(θ)

¶
×

µ
pl (θ)wlj − pl (θ)

MP
u=1

wujpu (θ)

¶
,

and

∂

∂θr

µ
∂Dφ(bp,p(θ))

∂θj

¶
=

MP
l=1

φ00
µ bpl
pl(θ)

¶ bpl
pl(θ)2

∂pl(θ)

∂θr

∂pl(θ)

∂θj

bpl
pl(θ

(t))

+
kP
l=1

∂2pl(θ)

∂θj∂θr

µ
φ

µ bpl
pl(θ)

¶
− φ0

µ bpl
pl(θ)

¶ bpl
pl(θ)

¶
.

(7.12)

Therefore the (t+1)th-step estimate, bθ(t+1), in a Newton-Raphson procedure
is obtained from bθ(t) as

bθ(t+1) = bθ(t) −G(bθ(t))−1
∂Dφ(bp,p(bθ(t)))

∂θj

T
j=1,...,M0

,

where G(θ(t)) is the matrix whose elements are given in (7.12).

An interesting simulation study to analyze the behavior of the minimum

power-divergence estimator, defined bybθ(λ) ≡ argmin
θ∈Θ

Dφ(λ)(bp,p (θ)), (7.13)
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in a three-way contingency table, has been considered in Pardo, L. and Pardo,

M. C. (2003). Notice that bθ(0) is the maximum likelihood estimator.

7.4. Testing in Loglinear Models

We denote by p(bθφ2) the parametric estimator, based on the minimum bθφ2-
divergence estimator, of the loglinear model defined in (7.8). For testing if our

data are from a loglinear model we can use the family of φ-divergence test sta-

tistics

Tφ1
n

³bθφ2´ = 2n

φ001 (1)
Dφ1

³bp,p(bθφ2)´ (7.14)

which by Theorem 6.1 are asymptotically distributed chi-squared withM−M0−1
degrees of freedom. In Example 7.1 we have M = 9 and M0 = 4, therefore

M −M0− 1 = 4 = (I −1)(J −1). In the previous expression bθφ2 is the minimum
φ2-divergence estimator for the parameters of the considered loglinear model. In

the rest of the chapter we shall assume the conditions given for the function φ2
in Theorem 5.1 as well as that φi (x) is twice continuously differentiable in a

neighborhood of 1 with the second derivative φ00i (1) 6= 0, i = 1, 2.
Based on this result it is possible to select a nested sequence of loglinear mod-

els. In order to fix ideas we consider all the possible loglinear models associated

with a I × J ×K contingency table where the first element of the sequence is

given by

H1 : logmijk (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ12(ij) + θ13(ik) + θ23(jk).

The second element should be chosen between the models

H2 : logmijk (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ13(ik) + θ23(jk)

H∗2 : logmijk (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ12(ij) + θ13(ik)

H∗∗2 : logmijk (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ12(ij) + θ23(jk).

We consider the three tests of hypotheses

HNull : H2 versus HAlt : The saturated model

HNull : H
∗
2 versus HAlt : The saturated model

HNull : H
∗∗
2 versus HAlt : The saturated model
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and we shall choose the model that better support the data. To do the previous

tests we consider the φ-divergence test statistic Tφ1
n

³bθ(l)φ2´ , given in (7.14), where
by bθ(l)φ2 we indicate the minimum φ2-divergence estimator for the parameters of

the loglinear model l, being l = H2, H
∗
2 or H

∗∗
2 .

If we assume that we have chosen the model H∗2 , the third element in the
sequence of nested sequence of loglinear models should be chosen between the

models

H∗3 : logmijk (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ12(ij)

H∗∗3 : logmijk (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ13(ik).

We consider the two tests of hypotheses

HNull : H
∗
3 versus HAlt : The saturated model

HNull : H
∗∗
3 versus HAlt : The saturated model

and we choose the model that better support the data. To do the previous tests

we consider the φ-divergence test statistic Tφ1
n

³bθ(l)φ2´ , given in (7.14), where bybθ(l)φ2 we indicate the minimum φ2-divergence estimator for the parameters of the

loglinear model l, being l = H∗3 or H∗∗3 . We can continue in the same way until
getting a convenient nested sequence of loglinear models.

One of the main problems in loglinear models is to test a nested sequence of

hypotheses,

Hl : p = p (θ) ; θ ∈ Θl; l = 1, ...,m, m ≤M0 < M − 1, (7.15)

whereΘm ⊂ Θm−1 ⊂ ... ⊂ Θ1 ⊂ RM0 ;M0 < M−1 and dim(Θl) = dl; l = 1, ...,m,
with

dm < dm−1 < ... < d1 ≤M0. (7.16)

Our strategy will be to test successively the hypotheses

Hl+1 against Hl; l = 1, ...,m− 1, (7.17)

as null and alternative hypotheses respectively. We continue to test as long as

the null hypothesis is accepted and choose the loglinear model Hl according to

the first l for which Hl+1 is rejected (as a null hypothesis) in favor of Hl (as
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an alternative hypothesis). This strategy is quite standard for nested models

(Read and Cressie, 1988, p. 42). The nesting occurs naturally because of the

hierarchical principle, which says that interactions should not be fitted unless the

corresponding main effects are present (e.g., Collett, 1994, p. 78).

The results presented in this Section were obtained in Cressie, N. and Pardo,

L. (2000) and Cressie, N. et al . (2003).

Theorem 7.1

Suppose that data (N1, ...,NM) are multinomially distributed according to

(7.7) and (7.8). Consider the nested sequence of hypotheses given by (7.15) and

(7.16). Choose two functions φ1,φ2 ∈ Φ∗. Then, for testing hypotheses,

HNull : Hl+1 against HAlt : Hl,

the asymptotic null distribution of the φ-divergence test statistic,

eT (l)φ1,φ2
≡ 2n

φ001 (1)
Dφ1(p(

bθ(l+1)φ2 ),p(bθ(l)φ2)), (7.18)

is chi-square with dl−dl+1 degrees of freedom; l = 1, ...,m−1. In (7.18), bθ(l)φ2 andbθ(l+1)φ2
are the minimum φ2-divergence estimators under the models Hl and Hl+1,

respectively, where the minimum φ-divergence estimators are defined by (7.9).

Proof. The second-order expansion of Dφ1,φ2 ≡ Dφ1

³
p(bθ(l+1)φ2 ),p(bθ(l)φ2)´ about

(p (θ0) ,p (θ0)) gives

Dφ1,φ2 =
1
2

MX
j=1

Ã
∂2Dφ1 (p, q)

∂p2j

!
(p(θ0),p(θ0))

³
pj(bθ(l+1)φ2 )− pj (θ0)

´2
+ 1

2

MX
j=1

Ã
∂2Dφ1 (p, q)

∂q2j

!
(p(θ0),p(θ0))

³
pj(bθ(l)φ2)− pj (θ0)´2

+
MX
i=1

MX
j=1

Ã
∂2Dφ1 (p,q)

∂pi∂qj

!
(p(θ0),p(θ0))

³
pi(bθ(l+1)φ2 )− pi (θ0)

´
×

³
pj(bθ(l)φ2)− pj (θ0)´

+ o

µ°°°p(bθ(l+1)φ2 )− p (θ0)
°°°2 + °°°p(bθ(l)φ2)− p (θ0)°°°2¶ .

We have used in the previous Taylor’s expansion that Dφ1 (p (θ0) ,p (θ0)) = 0

and the first order term in Taylor expansion is also zero. Thus, eT (l)φ1,φ2
can be
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written as

eT (l)φ1,φ2
= n

MX
j=1

1

pj (θ0)

³
pj(bθ(l+1)φ2 )− pj (θ0)

´2
+ n

MX
j=1

1

pj (θ0)

³
pj(bθ(l)φ2)− pj (θ0)´2

− 2n
MX
j=1

1

pj (θ0)

³
pj(bθ(l+1)φ2 )− pj (θ0)

´³
pj(bθ(l)φ2)− pj (θ0)´

+ n o

µ°°°p(bθ(l+1)φ2 )− p (θ0)
°°°2 + °°°p(bθ(l)φ2)− p (θ0)°°°2¶

=
³
n1/2diag

³
p (θ0)

−1/2
´³
p(bθ(l+1)φ2 )− p(bθ(l)φ2)´´T

×
³
n1/2diag

³
p (θ0)

−1/2
´³
p(bθ(l+1)φ2 )− p(bθ(l)φ2)´´

+ n o

µ°°°p(bθ(l+1)φ2 )− p (θ0)
°°°2 + °°°p(bθ(l)φ2)− p (θ0)°°°2¶ .

We know from (7.11) that, under the loglinear model (7.8) and the null hypothesis

Hl+1,

√
n
³
p(bθ(l+1)φ2 )− p (θ0)

´
L−→

n→∞ N
³
0,Σ∗(l+1)

´
,

withΣ∗(l+1) = Σp(θ0)W (l+1)

³
W T

(l+1)Σp(θ0)W (l+1)

´−1
W T

(l+1)Σp(θ0), andW (l+1)

is the loglinear model matrix of explanatory variables under the null hypothesis

Hl+1.

Then
°°°p(bθ(l+1)φ2 )− p (θ0)

°°°2 = OP ¡n−1¢ , and because it is assumed that θ0 ∈
Θl+1 ⊂ Θl, we also have that

°°°p(bθ(l)φ2)− p (θ0)°°°2 = OP ¡n−1¢ . Consequently,
n o

µ°°°p(bθ(l+1)φ2 )− p (θ0)
°°°2 + °°°p(bθ(l)φ2)− p (θ0)°°°2¶ = oP (1) ,

and hence the asymptotic distribution of the test statistic eT (l)φ1,φ2
is the same as

the asymptotic distribution of the random variable ZTZ, where

Z ≡ √ndiag
³
p (θ0)

−1/2
´³
p(bθ(l+1)φ2 )− p(bθ(l)φ2)´ .
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Then, using (7.10), we obtain

p(bθ(l+1)φ2 )− p(bθ(l)φ2) = µ
Σp(θ0)W (l+1)

³
W T

(l+1)Σp(θ0)W (l+1)

´−1
W T

(l+1)Σp(θ0)

− Σp(θ0)W (l)

³
W T

(l)Σp(θ0)W (l)

´−1
W T

(l)Σp(θ0)

¶
× diag

³
p (θ0)

−1
´
(bp− p (θ0))

+ o
³°°°bθ(l+1)φ2 − θ0

°°°´− o³°°°bθ(l)φ2 − θ0

°°°´ .
If we denote

A(i) ≡ diag
³
p (θ0)

−1/2
´
Σp(θ0)W (i)

³
W T

(i)Σp(θ0)W (i)

´−1
× W T

(i)Σp(θ0)diag
³
p (θ0)

−1/2
´
; i = l, l + 1,

(7.19)

which is a symmetric matrix, the random vector Z can be written as

Z =
¡
A(l+1) −A(l)

¢
diag

³
p (θ0)

−1/2
´√

n (bp− p (θ0))
+ o

³°°°bθ(l+1)φ2 − θ0

°°°´− o³°°°bθ(l)φ2 − θ0

°°°´ .
Thus, √

ndiag
³
p (θ0)

−1/2
´³
p(bθ(l+1)φ2 )− p(bθ(l)φ2)´ L−→

n→∞ N (0,Σ
∗) ,

where

Σ∗ =
¡
A(l+1) −A(l)

¢
diag

³
p (θ0)

−1/2
´
Σp(θ0)diag

³
p (θ0)

−1/2
´

× ¡
A(l+1) −A(l)

¢
=

¡
A(l+1) −A(l)

¢µ
I − p (θ0)1/2

³
p (θ0)

1/2
´T¶¡

A(l+1) −A(l)
¢
,

and p (θ0)
1/2 =

³
p1 (θ0)

1/2 , ..., pM (θ0)
1/2
´T
. Then, because

³
p (θ0)

1/2
´T
diag

³
p (θ0)

−1/2
´
Σp(θ0)

can be written as

1Tdiag (p (θ0))− 1Tp (θ0)p (θ0)T = 0,

where 1 = (1, ..., 1)T , we have, using Exercise 10, that

Σ∗ =
¡
A(l+1) −A(l)

¢ ¡
A(l+1) −A(l)

¢
= A(l) −A(l+1).
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Therefore the matrix
¡
A(l) −A(l+1)

¢
is symmetric and idempotent with

trace
¡
A(l) −A(l+1)

¢
= dl − dl+1

and Z is asymptotically normal with mean vector 0 and variance-covariance ma-

trix
¡
A(l) −A(l+1)

¢
TZ is asymptotically chi-squared distributed with dl − dl+1

degrees of freedom.

Finally,

eT (l)φ1,φ2
≡ 2n

φ001 (1)
Dφ1

³
p(bθ(l+1)φ2 ),p(bθ(l)φ2)´ L−→

n→∞ χ2dl−dl+1 .

For the (h,φ)-divergence measures we have the following result:

Theorem 7.2

Under the assumptions given in Theorem 7.1, the asymptotic null distribution

of the (h,φ)-divergence test statistic,

eT (l)φ1,φ2,h
≡ 2n

φ001 (1)h0 (0)
h
³
Dφ1

³
p(bθ(l+1)φ2 ),p(bθ(l)φ2)´´ ,

is chi-square with dl−dl+1 degrees of freedom; l = 1, ...,m−1, where h is a differ-
entiable function mapping from [0,∞) onto [0,∞) , with h (0) = 0 and h0 (0) > 0.
Proof. We know

Dφ1

³
p(bθ(l+1)φ2 ),p(bθ(l)φ2)´ = φ001 (1)

2n
ZTZ + oP

¡
n−1

¢
,

where ZTZ is asymptotically chi-squared distributed with dl − dl+1 degrees of
freedom. Further, because h (x) = h (0) + h0 (0)x+ o (x) , we have

eT (l)φ1,φ2,h
= ZTZ + oP (1)

L−→
n→∞ χ2dl−dl+1 .

We can observe that in the two previous theorems the estimated model in the

null hypothesis appears in the left argument of the φ-divergence. It is usual to

consider the null hypothesis in the right argument of the φ-divergence; for this

reason we present the following theorem.
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. Applying Lemma 3, p. 57, in Ferguson (1996) (see Remark

2.6), we have that Z
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Theorem 7.3

Under the assumptions of Theorems 7.1 and 7.2, the asymptotic null distrib-

ution of the φ-divergence test statistics,

T
(l)
φ1,φ2

=
2n

φ001 (1)
Dφ1

³
p(bθ(l)φ2),p(bθ(l+1)φ2 )

´
(7.20)

and

T
(l)
φ1,φ2,h

=
2n

φ001 (1)h0 (0)
h
³
Dφ1

³
p(bθ(l)φ2),p(bθ(l+1)φ2 )

´´
, (7.21)

is chi-square with dl−dl+1 degrees of freedom; l = 1, ...,m−1, where h is a differ-
entiable function mapping from [0,∞) onto [0,∞) , with h (0) = 0 and h0 (0) > 0.
Proof. We consider the function ϕ (x) = xφ1

¡
x−1

¢
. It is clear that ϕ (x) ∈

Φ∗, eT (l)ϕ,φ2
= T

(l)
φ1,φ2

and eT (l)ϕ,φ2,h
= T

(l)
φ1,φ2,h

. Then the result follows directly from

Theorems 7.1 and 7.2.

Remark 7.1

A well known test statistic appears when we choose

φ1 (x) = φ2 (x) = x log x− x+ 1

in the test statistic T
(l)
φ1,φ2

given in (7.20). It is the classical likelihood ratio test

statistic (Agresti, 1996, p. 197; Christensen, 1997, p. 322) and it holds the well

known result,

G2 ≡ 2n
kX
j=1

pj(bθ(l)) log pj(bθ(l))
pj(bθ(l+1)) L−→

n→∞ χ2dl−dl+1 ,

where bθ(i) is the maximum likelihood estimator of θ under the model Hi (θ ∈ Θi) ;
i = l, l + 1.

Another important test statistic appears when we put φ1 (x) =
1
2 (1− x)2 ,

φ2 (x) = x log x−x+1 in the test statistic T (l)φ1,φ2
given in (7.20). Then we obtain

the chi-square test statistic given in Agresti (1996, p. 197), as well as the result,

X2 ≡ n
kX
j=1

³
pj(bθ(l))− pj(bθ(l+1))´2

pj(bθ(l+1)) L−→
n→∞ χ2dl−dl+1.
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But this is not the only family of test statistics for testing nested sequences of

loglinear models given in (7.17) based on φ-divergence measures. In the following

theorem another family of test statistics based on this measure is proposed.

Theorem 7.4

Suppose that data (N1, ..., Nk) are multinomially distributed according to (7.7)

and (7.8). Consider the nested sequence of hypotheses given by (7.15) and (7.16).

Choose the two functions φ1,φ2 ∈ Φ∗. Then, for testing hypotheses,

HNull : Hl+1 against HAlt : Hl; l = 1, ...,m− 1,

the φ-divergence test statistics,

S
(l)
φ =

2n

φ00 (1)

³
Dφ

³bp,p(bθ(l+1)φ )
´
−Dφ

³bp,p(bθ(l)φ )´´ , (7.22)

and

S
(l)
φ,h =

2n

φ00 (1)h0 (0)

³
h
³
Dφ

³bp,p(bθ(l+1)φ )
´´
− h

³
Dφ

³bp,p(bθ(l)φ )´´´ (7.23)

are nonnegative and their asymptotic null distribution is chi-square with dl−dl+1
degrees of freedom; l = 1, ...,m−1, where h is a differentiable increasing function
mapping from [0,∞) onto [0,∞) , with h (0) = 0 and h0 (0) > 0.
Proof. It is clear that S

(l)
φ ≥ 0; l = 1, ...,m− 1, because

Dφ

³bp,p(bθ(l+1)φ )
´
= inf

θ∈Θl+1
Dφ(bp,p (θ)) ≥ inf

θ∈Θl
Dφ(bp,p (θ)) = Dφ

³bp,p(bθ(l)φ )´ .
The proof of the asymptotic distribution of the test statistics S

(l)
φ and S

(l)
φ,h follows

the same steps as the proof given in Theorems 7.1 and 7.2.

Remark 7.2

The asymptotic result of Theorem 7.4 can be generalized further to include a

φ1 for divergence Dφ1 , and a φ2 for estimation
bθ(i)φ2 . That is, the statistic

S
(l)
φ1,φ2

≡ 2n

φ001 (1)

³
Dφ1

³bp,p(bθ(l+1)φ2 )
´
−Dφ1

³bp,p(bθ(l)φ2)´´ L−→
n→∞ χ2dl−dl+1

under Hl+1.

The special case of φ1 (x) =
1
2 (1− x)2 , φ2 (x) = x log x− x+ 1 yields a sta-

tistic based on the difference of chi-square test statistic with maximum likelihood
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estimation used to obtain the expected frequencies (e.g., Agresti, 1996, p. 197),

namely

n
³
D1

2
(1−x)2

³bp,p(bθ(l+1))´−D1
2
(1−x)2

³bp,p(bθ(l))´´ .
However, the nonnegativity of S

(l)
φ1,φ2

does not hold when φ1 6= φ2. Thus,

for the case above, considered by Agresti, the difference of the chi-square test

statistics is not necessarily nonnegative. Since it is common to use maximum

likelihood estimation (that is, φ2 (x) = x log x − x + 1), the test statistic S(l)φ1,φ2 ;
φ1 6= φ2 is not all that interesting to us. In the following we shall concentrate on

the statistics T
(l)
φ1,φ2

.

For testing the nested hypotheses {Hl : l = 1, ...,m} given by (7.15), we test
HNull : Hl+1 against HAlt : Hl, using the φ-divergence test statistic T

(l)
φ1,φ2

given

by (7.20); if it is too large, HNull is rejected. When T
(l)
φ1,φ2

> c, we reject HNull
in (7.17), where c is specified so that the significance level of the test is α :

Pr
³
T
(l)
φ1,φ2

> c | Hl+1
´
= α; α ∈ (0, 1) . (7.24)

Theorem 7.1 was shown that under (7.7), (7.8) and (7.15), and HNull : Hl+1,

the test statistic T
(l)
φ1,φ2

converges in distribution to a chi-square distribution with

dl − dl+1 degrees of freedom; l = 1, ...,m − 1. Therefore, c could be chosen as
the 100 (1− α) percentile of a chi-square distribution with dl − dl+1 degrees of
freedom,

c = χ2dl−dl+1,α. (7.25)

The choice of (7.25) in (7.24) only guarantees an asymptotic size-α test. Here

we use (7.25) but ask, in the finite-sample simulations given in Section 5, for

what choices of λ in T
(l)
φ1(λ),φ2(λ)

is the relation (7.24) most accurately attained?

The asymptotic chi-square approximation, c = χ2dl−dl+1,α, is checked for a
sequence of loglinear models in the simulation study given in Section 7.5. We give

a small illustration of those results now.

the exact simulated size from the nominal size of α = 0.05 for one particular choice

(specified in Section 7.5) of Hl+1 and Hl, for various choices of λ in φ1 = φ(λ),

and for small to large sample sizes (n = 15, 20, 25, 35, 50, 100, 200). Figure 7.1

represents nonpositive choices of λ, and Figure 7.2 represents nonnegative choices

of λ. The positive values of λ perform the best.
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Figures 7.1 and 7.2 show departures of

l
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x 54.543.532.5
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Figure 7.1. (Exact size−Nominal size of 0.05) as a function of x = logn.
Shown are λ = −2 (dashed line), λ = −1 (dotted line), λ = −1/2 (dash-
dotted line) and λ = 0 (solid line).

Source: Cressie, N., Pardo, L. and Pardo, M.C. (2003).
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Figure 7.2. (Exact size−Nominal size of 0.05) as a function of x = logn.
Shown are λ = 0 (solid line), λ = 2/3 (dashed line),λ = 1 (dotted line) and

λ = 2 (dash-dotted line).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2003).

To test the nested sequence of hypotheses {Hl : l = 1, ...,m} effectively, we
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need an asymptotic independence result for the sequence of test statistics T
(1)
φ1,φ2

,

T
(2)
φ1,φ2

, ..., T
(m∗)
φ1,φ2

, where m∗ is the integer 1 ≤ m∗ ≤ m for which Hm∗ is true but

Hm∗+1 is not true. This result is given in the theorem below. Notice that our

hypothesis-testing strategy is an attempt to find this value of m∗; we infer it to
be l∗, the first in the sequence of hypothesis tests for which Hl∗+1 is rejected as
a null hypothesis.

Theorem 7.5

Suppose that data (N1, ...,NM) are multinomially distributed according to

(7.7) and (7.8). Suppose we wish to test first

HNull : Hl against HAlt : Hl−1,

followed by

HNull : Hl+1 against HAlt : Hl.

Then, under the null hypothesis Hl, the φ-divergence test statistics

T
(l−1)
φ1,φ2

and T
(l)
φ1,φ2

are asymptotically independent and chi-squared distributed with dl−1 − dl and
dl − dl+1 degrees of freedom, respectively.
Proof. A similar development to the one presented in Theorem 7.1 gives

T
(l)
φ1,φ2

=
√
n (bp− p (θ0))TMT

l M l

√
n (bp− p (θ0)) + oP (1)

and

T
(l−1)
φ1,φ2

=
√
n (bp− p (θ0))TMT

l−1M l−1
√
n (bp− p (θ0)) + oP (1) ,

where

M i =
¡
A(i+1) −A(i)

¢
diag

³
p (θ0)

−1/2
´
; i = l − 1, l,

A(i) is given in (7.19) and W (i) is the loglinear model matrix of explanatory

variables under the ith-loglinear model; i = l − 1, l, l + 1.
Now because √

n (bp− p (θ0)) L−→
n→∞ N

¡
0,Σp(θ0)

¢
,

from Theorem 4 in Searle (1971, p. 59), T
(l)
φ1,φ2

and T
(l−1)
φ1,φ2

are asymptotically

independent if

P (l) ≡MT
l−1M l−1Σp(θ0)M

T
l M l = 0.
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We have

P (l) = MT
l−1
¡
A(l) −A(l−1)

¢µ
I −pp (θ0)qp (θ0)T¶¡A(l+1) −A(l)¢M l

= MT
l−1
¡
A(l) −A(l−1)

¢ ¡
A(l+1) −A(l)

¢
M l,

since A(i)
p
p (θ0) = 0; i = l − 1, l, l + 1.

Applying Exercise 10, we have

A(i)A(i+1) = A(i+1)A(i) = A(i+1); A(i)A(i) = A(i); i = l − 1, l, l + 1,

thereforeMT
l−1M l−1Σp(θ0)M

T
l M l = 0.

Similar results to one obtained in this theorem can be obtained for the φ-

divergence test statistics eT (l)φ1,φ2
, T

(l)
φ1,φ2,h

, eT (l)φ1,φ2,h
, S

(l)
φ , S

(l)
φ,h and S

(l)
φ1,φ2

.

In general, theoretical results for the test statistic T
(l)
φ1,φ2

under alternative

hypotheses are not easy to obtain. An exception to this is when there is a con-

tiguous sequence of alternatives that approaches the null hypothesis Hl+1 at the

rate of O
¡
n−1/2

¢
. Regarding the alternative, Haberman (1974) was the first to

study the asymptotic distribution of the chi-square test statistic and likelihood

ratio test statistic under contiguous alternative hypotheses, establishing that the

asymptotic distribution is noncentral chi-square with dl−dl+1 degrees of freedom.
Oler (1985) presented a systematic study of the contiguous alternative hypotheses

in multinomial populations, obtaining as a particular case the asymptotic distrib-

ution for the loglinear models. Through simulations, she also studied how closely

the noncentral chi-square distributions agree with the exact sampling distribu-

tions. Fenech and Westfall (1988) presented an interesting analytic study of the

noncentrality parameter in the case of loglinear models. Now we generalize their

results to tests based on the φ-divergence test statistic T
(l)
φ1,φ2

given by (7.20).

Consider the multinomial probability vector

pn ≡ p (θ0) + d/
√
n; θ0 ∈ Θl+1, (7.26)

where d ≡ (d1, ..., dM)T is a fixedM ×1 vector such thatPM
j=1 dj = 0, and recall

that n is the total-count parameter of the multinomial distribution. As n→∞,
the sequence of multinomial probabilities {pn}n∈N converges to a multinomial

probability in Hl+1 at the rate of O
¡
n−1/2

¢
. We call

Hl+1,n : pn = p (θ0) + d/
√
n; θ0 ∈ Θl+1 (7.27)
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a sequence of contiguous alternative hypotheses, here contiguous to the null hy-

pothesis Hl+1.

Now consider the problem of testing

HNull : Hl+1 against HAlt : Hl+1,n,

using the φ-divergence test statistics T
(l)
φ1,φ2

given by (7.20). The power of this

test is

π(l)n ≡ Pr
³
T
(l)
φ1,φ2

> c |Hl+1,n
´
. (7.28)

In what follows, we show that under the alternative Hl+1,n, and as n→∞, T (l)φ1,φ2

converges in distribution to a noncentral chi-square random variable with non-

centrality parameter δ, where δ is given in Theorem 7.6, and dl − dl+1 degrees of
freedom (χ2dl−dl+1 (δ)). Consequently, as n→∞,

π(l)n → Pr
³
χ2dl−dl+1 (δ) > c

´
. (7.29)

In (7.10), it was established that the asymptotic expansion of the minimum

φ-divergence estimator about θ0 ∈ Θl+1 is given bybθ(l+1)φ = θ0 +
³
W T

(l+1)Σp(θ0)W (l+1)

´−1
W T

(l+1)Σp(θ0)diag
³
p (θ0)

−1
´

× (bp− p (θ0)) + o (kbp− p (θ0)k)
(7.30)

whereW l+1 is the loglinear-model matrix of explanatory variables under the null

hypothesis Hl+1.

Under the hypothesis given in (7.27), we have
√
n (bp− p (θ0)) = √n (bp− pn) + d,

and hence √
n (bp− p (θ0)) L−→

n→∞ N
¡
d,Σp(θ0)

¢
, (7.31)

so

o (kbp− p (θ0)k) = o³OP ³n−1/2´´ = oP ³n−1/2´ .
Therefore, we have established that under the contiguous alternative hypotheses

given in (7.27), and for θ0 ∈ Θl+1,bθ(l+1)φ = θ0 +
³
W T

(l+1)Σp(θ0)W (l+1)

´−1
W T

(l+1)Σp(θ0)diag
³
p (θ0)

−1
´

× (bp− p (θ0)) + oP ¡n−1/2¢ .
(7.32)
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This result will be important in the following theorem.

Theorem 7.6

Suppose that data (N1, ..., NM) are multinomially distributed according to

(7.7) and (7.8). The asymptotic distribution of the φ-divergence test statis-

tic T
(l)
φ1,φ2

, under the contiguous alternative hypotheses (7.27), is chi-square with

dl − dl+1 degrees of freedom and noncentrality parameter δ given by

δ = dTdiag
³
p (θ0)

−1/2
´ ¡
A(l) −A(l+1)

¢
diag

³
p (θ0)

−1/2
´
d,

where d = (d1, ..., dM)
T is defined in (7.26) and satisfies

PM
i=1 di = 0, and A(i),

i = l, l + 1, is given in (7.19).

Proof. By Theorem 7.1, we know that

T
(l)
φ1,φ2

= ZTZ + n o

µ°°°p(bθ(l+1)φ2 )− p (θ0)
°°°2 + °°°p(bθ(l)φ2)− p (θ0)°°°2¶ ,

where

Z =
√
n diag

³
p (θ0)

−1/2
´³
p(bθ(l+1)φ2 )− p(bθ(l)φ2)´ .

But

p(bθ(l+1)φ2 )− p (θ0) = ∂p (θ0)

∂θ
(bθ(l+1)φ2 − θ0) + o

³°°°p(bθ(l+1)φ2 )− p (θ0)
°°°´ ,

and (7.32) we have

p(bθ(l+1)φ2 )− p (θ0) = OP
³
n−1/2

´
and °°°p(bθ(l+1)φ2 )− p (θ0)

°°°2 = OP ¡n−1¢ .
In a similar way and taking into account that θ0 ∈ Θl+1 ⊂ Θl, it can be obtained
that °°°p(bθ(l)φ2)− p (θ0)°°°2 = OP ¡n−1¢ .
Then

T
(l)
φ1,φ2

= ZTZ + oP (1) .

From (7.32), we have, under the contiguous alternative hypotheses, that

Z =
√
n
¡
A(l+1) −A(l)

¢
diag

³
p (θ0)

−1/2
´
(bp− p (θ0)) + oP (1) .
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By (7.31) √
n (bp− p (θ0)) L−→

n→∞ N
¡
d, Σp(θ0)

¢
,

and hence

Z
L−→

n→∞ N (δ,Σ
∗) ,

where δ =
¡
A(l+1) −A(l)

¢
diag

³
p (θ0)

−1/2
´
d and

Σ∗ =
¡
A(l+1) −A(l)

¢
diag

³
p (θ0)

−1/2
´
Σp(θ0)diag

³
p (θ0)

−1/2
´

× ¡
A(l+1) −A(l)

¢
=

¡
A(l+1) −A(l)

¢µ
I −pp (θ0)qp (θ0)T¶¡A(l+1) −A(l)¢ .

Using the results in the proof of Theorem 7.1, it can be shown that

Σ∗ =
¡
A(l) −A(l+1)

¢
,

and it is an idempotent matrix of rank (dl − dl+1).
If we establish that Σ∗µ = µ, the theorem follows from the Lemma on page

63 in Ferguson (1996), because in this case the noncentrality parameter is given

by δ = µTµ.

Applying the results obtained in Exercise 10, we have

Σ∗µ =
¡
A(l) −A(l+1)

¢
µ = A(l)µ−A(l+1)µ

= A(l)
¡
A(l+1) −A(l)

¢
diag

³
p (θ0)

−1/2
´
d−A(l+1)

¡
A(l+1) −A(l)

¢
× diag

³
p (θ0)

−1/2
´
d

= µ.

Then the noncentrality parameter δ is given by

δ = µTµ = dTdiag
³
p (θ0)

−1/2
´ ¡
A(l) −A(l+1)

¢
diag

³
p (θ0)

−1/2
´
d.

Remark 7.3

Theorem 7.6 can be used to obtain an approximation to the power function of

the test (7.17), as follows. Write

p(θ(l)) = p(θ
(l+1)
0 ) +

1√
n

³√
n
³
p(θ(l))− p(θ(l+1)0 )

´´
,
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and define

pn(θ
(l)) ≡ p(θ(l+1)0 ) +

1√
n
d,

where d =
√
n
³
p(θ(l))− p(θ(l+1)0 )

´
. Then substitute d into the definition of δ,

and finally δ into the right hand side of (7.29).

The asymptotic noncentral chi-square approximation for power is checked for

finite samples in the simulation given in Section 7.5.

departures of the exact power from the asymptotic power for one particular choice

(specified in Section 7.5) of Hl+1 and Hl, for various choices of λ in φ1 = φ(λ),

and for small to large sample sizes (n = 15, 20, 25, 35, 50, 100, 200). Figure

7.3 represents nonpositive choices of λ represents nonnegative

choices of λ. These figures need to be interpreted in light of associated exact sizes;

However, it is immediately apparent that from an asymptotic-

approximation point of view, λ = 2/3 seems to perform the best, particularly for

small and moderate sample sizes.

x 54.543.532.5

0.1

.08

.06

.04

.02

0

02

Figure 7.3. (Exact Power−Asymptotic power) as a function of x = logn.
Shown are λ = −2 (dashed line), λ = −1 (dotted line), λ = −1/2 (dash-
dotted line) and λ = 0 (solid line).

Source: Cressie, N., Pardo, L. and Pardo, M.C. (2003).
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Figures 7.3 and 7.4 show

see Section 7.5.

and Figure 7.4.
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Figure 7.4. (Exact Power−Asymptotic power) as a function of x = logn.
Shown are λ = 0 (solid line), λ = 2/3 (dashed line), λ = 1 (dotted line)

and λ = 2 (dash-dotted line).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2003).

7.5. Simulation Study

Section 7.4 presents theoretical results for testing hypotheses in loglinear mod-

els. The results give asymptotic distribution theory for the φ-divergence test sta-

tistic T
(l)
φ1,φ2

under the null hypothesis and a sequence of contiguous alternative

hypotheses. The appropriateness of these results in finite samples is demonstrated

We now describe the finite-sample simulation

study from which these figures were obtained, and we give new results that com-

pare the powers of tests based on T
(l)
φ(λ),φ(0)

for λ = −2,−1,−1/2, 0, 2/3, 1, 2.
We consider for the estimation problem the maximum likelihood estimator

and for the testing problem the power-divergence test statistics with the values

of λ given previously.

Consider a 2×2×2 contingency table, soM = 8.We simulate dataN1, ...,NM
from a multinomial distribution with sample size n and probability vector p =

(p1, ..., pM)
T , where n and p are specified. The motivation for our simulation

study comes from a similar one carried out by Oler (1985). The simulation

study, presented in this Section, was carried out in Cressie et al . (2003). For
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the moment, fix l and consider the power-divergence test statistics T
(l)
φ(λ),φ(0)

for

testing HNull : Hl+1 against HAlt : Hl+1,n, and let p0 ∈ HNull and p1,n ∈ HAlt,
where p1,n is a subscript with n because its entries may depend on n. The essence

of our simulation study is to obtain the exact probabilities,

α
(l)
n ≡ Pr

³
T
(l)
φ(λ),φ(0)

> c | p0
´

π
(l)
n ≡ Pr

³
T
(l)
φ(λ),φ(0)

> c | p1,n
´
.

(7.33)

In fact, α
(l)
n and π

(l)
n are estimated using N = 100000 simulations from the

multinomial sampling schemes (n, p0) and (n,p1,n), respectively. For a given

p0 (see below), the various choices of n and p1,n represent the design of our

simulation study. We choose

n = 15, 20, 25, 35, 50, 100, 200

to represent small, moderate and large sample sizes.

We simulate multinomial random vectors (N1, ...,NM) and compute proba-

bilities α
(l)
n for (n,p0) and π

(l)
n for (n,p1,n). To see what happens for contiguous

alternatives, we fix p1 ∈ Hl (see below) and define

p∗1,n ≡ p0 + (25/n)1/2 (p1 − p0) . (7.34)

Notice that p∗1,25 = p1 and, as n increases, p
∗
1,n converges to p0 at the rate

n−1/2; that is,
©
p∗1,n

ª
is a sequence of contiguous alternatives. Our design for

the simulation study is to choose (n,p1,n) as fixed and contiguous alternatives,

which we now give.

Contiguous alternatives:©
(n,p∗1,n) : n = 15, 20, 25, 35, 50, 100, 200

ª
,

where p∗1,n is given by (7.34) and p1 is specified below.

Fixed alternatives:

{(n,p1) : n = 15, 20, 25, 35, 50, 100, 200} ,
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where p1 is specified below.

Notice that for n < 25, the contiguous alternatives are further from HNull
than are the fixed alternatives and that the two sequences share the alternative

(25,p1). These choices allow reasonable coverage of the space of alternatives.

In the simulation study, we consider the following nested sequence of loglinear

models for the 2× 2× 2 table:
H1 : pijk (θ) = exp

©
u+ θ1(i) + θ2(j) + θ3(k) + θ12(ij) + θ13(ik) + θ23(jk)

ª
H2 : pijk (θ) = exp

©
u+ θ1(i) + θ2(j) + θ3(k) + θ12(ij) + θ13(ik)

ª
H3 : pijk (θ) = exp

©
u+ θ1(i) + θ2(j) + θ3(k) + θ12(ij)

ª
H4 : pijk (θ) = exp

©
u+ θ1(i) + θ2(j) + θ3(k)

ª
.

Here, exp (−u) is the normalizing constant and the subscript θ-terms add to zero
over each of their indices. Based on Oler’s study, we used a moderate value for

each main effect and a small value for the interactions. That is, we used

exp
¡
θ1(1)

¢
= exp

¡
θ2(1)

¢
= exp

¡
θ3(1)

¢
= 5/6

exp
¡
θ12(11)

¢
= exp

¡
θ13(11)

¢
= exp

¡
θ23(11)

¢
= 9/10.

Then the simulation experiment is designed so that p1 ∈ Hl; l = 1, 2, 3.

HNull : H4, using the test statistic T
(3)
φ(λ),φ(0) and c = χ21, 0. 05 as we l l as F i gu r e 7 . 3

and 7.4 (Exact power − Asymptotic power) for HNull : p0 ∈ H4 and HAlt : p∗1,n;
with p1 ∈ H3, using the test statistic T (3)φ(λ),φ(0) and c = χ21,0.05.

In the simulation study, we shall compare members of the power-divergence

family of test statistics; our criteria for a good performance are:

i) good exact power and size for small to moderate sample sizes. For this, we

consider the following three hypothesis tests with fixed alternatives:

HNull : p0 ∈ Hl+1 versus HAlt : (n,p1) , where p1 ∈ Hl and n = 15, 20, 25,
35; l = 1, 2, 3.
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In Section 7.4, we showed Figures 7.1 and 7.2 (Exact size-Nominal size) for
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ii) good agreement of exact and asymptotic probabilities for reasonably small

and moderate sample sizes. For this we consider the following three hy-

pothesis tests with contiguous alternatives:

HNull : p0 ∈ Hl+1 versus HAlt :
¡
n,p∗1,n

¢
, where p∗1,n is given by (7.34),

p1 ∈ Hl and n = 15, 20, 25, 35; l = 1, 2, 3.

First of all, we study the closeness of the exact size for HNull : H2, HNull : H3
and HNull : H4 to the nominal size α = 0.05. Following Dale (1986), we consider

the inequality,

¯̄̄
logit(1− α(l)n )− logit(1− α)

¯̄̄
≤ e, (7.35)

where logit(p) ≡ ln(p/(1−p)). The two probabilities are considered to be “close”
if they satisfy (7.35) with e = 0.35 and “fairly close” if they satisfy (7.35) with

e = 0.7. Note that for α = 0.05, e = 0.35 corresponds to α
(l)
n ∈ [0.0357, 0.0695] ,

and e = 0.7 corresponds to α
(l)
n ∈ [0.0254, 0.0959] . From the calculations that

corresponding to λ = 2/3, 1, 2. For e = 0.7, only one extra test statistic, that

corresponding to λ = 0, is added.

the test statistic corresponding to λ = 2/3 has the best behavior. In Figure 7.10,

λ = 1, 2 are the best but λ = 2/3 is still competitive.

H4 versus H3, H3 versus H2, and H2 versus H1. This is a measure of how quickly

the power curve increases from its probability of type I error. We see from the

figures that the increase in power is a little more for tests based on negative λ

than for positive λ. This should be tempered with the fact that for negative λ

the exact size is considered not even “fairly close”. This trade-off between size

behavior and power behavior is a classical problem in hypothesis testing.
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for power under a contiguous alternative. In Figures 7.8 and 7.9, it is clear that

l
yield Figures 7.5-7.7, the test statistics that satisfy (7.35) for e = 0.35 are those

Figures 7.8-7.10 give a similar comparison of exact to asymptotic, this time

Figures 7.11-7.13 show (Exact power-Exact size) for the three hypothesis tests,
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Figure 7.5. |logit(1− Exact size)− logit(1−Nominal size of .05)| as a function
of λ for model H4. Shown are n = 15 (dashed line), n = 20 (dotted line), n = 25

(dash-dotted line) and n = 35 (solid line). The two horizontal lines correspond to

Dale’s bounds of e = .35 and e = .7 in (7.35).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).
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Figure 7.6. |logit(1− Exact size)− logit(1−Nominal size of .0.5)| as a function
of λ for model H3. Shown are n = 15 (dashed line), n = 20 (dotted line), n = 25

(dash-dotted line) and n = 35 (solid line). The two horizontal lines correspond to

Dale’s bounds of e = .35 and e = .7 in (7.35).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).
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Figure 7.7. |logit(1− Exact size)− logit(1−Nominal size of .05)| as a function
of λ for model H2. Shown are n = 15 (dashed line), n = 20 (dotted line), n = 25

(dash-dotted line) and n = 35 (solid line). The two horizontal lines correspond to

Dale’s bounds e = .35 and e = .7 in (7.35).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).
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Figure 7.8. (Exact Power−Asymptotic power) as a function of λ for testing
p0 ∈ H4 versus p∗1,n with p1 ∈ H3. Shown are n = 15 (dashed line), n = 20
(dotted line), n = 25 (dash-dotted line) and n = 35 (solid line).

Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).
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Figure 7.9. (Exact Power−Asymptotic power) as a function of λ for testing
p0 ∈ H3 versus p∗1,n with p1 ∈ H2. Shown are n = 15 (dashed line), n = 20
(dotted line), n = 25 (dash-dotted line) and n = 35 (solid line).

Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).
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Figure 7.10. (Exact Power−Asymptotic power) as a function of λ for testing
p0 ∈ H2 versus p∗1,n with p1 ∈ H1. Shown are n = 15 (dashed line), n = 20
(dotted line), n = 25 (dash-dotted) and n = 35 (solid line).

Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).
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Figure 7.11. (Exact Power− Exact size) as a function of λ for testing H4 versus H3.
Shown are n = 15 (dashed line), n = 20 (dotted line), n = 25 (dash-dotted line) and

n = 35 (solid line).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).
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Figure 7.12. (Exact Power− Exact size) as a function of λ for testing H3 versus H2.
Shown are n = 15 (dashed line), n = 20 (dotted line), n = 25 (dash-dotted line) and

n = 35 (solid line).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).
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Figure 7.13. (Exact Power− Exact size) as a function of λ for testing H2 versus H1.
Shown are n = 15 (dashed line), n = 20 (dotted line), n = 25 (dash-dotted line) and

n = 35 (solid line).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).

In what follows, we consider only the test power-divergence test statistic that

satisfy (7.34) with e = 0.7, and to discriminate between them we calculate:

g1 (λ) ≡
¯̄̄
AP

(l)
i,n (λ)− SEP (l)i,n (λ)

¯̄̄
and

g2 (λ) ≡
³
SEP

(l)
i,n (λ)− STS(l)i,n (λ)

´−1
,

where AP
(l)
i,n (λ) is the asymptotic power, SEP

(l)
i,n (λ) is the simulated exact power,

and STS
(l)
i,n (λ) is the simulated test size of the test statisticT

(l)
φ(λ),φ(0); l = 1, 2, 3,

under the alternative i = F (fixed), C (contiguous) and n = 15, 20, 25, 35. Then,

for a given l, we consider a test statistic T
(l)
φ(λ1),φ(0)

to be better than a test statistic

T
(l)
φ(λ2),φ(0)

iff

g1 (λ1) < g1 (λ2) and g2 (λ1) < g2 (λ2) . (7.36)

2 (λ) versus x = g1 (λ) ; from (7.36), we look

for values of λ that are as close to (0, 0) as possible in the (x, y) plane.
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In Figure s 7.14-7.16, we plot y = g
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Figure 7.14. y = g2 (λ) versus x = g1 (λ) for T
(3)
φ(λ),φ(0). Shown are λ = 0

(Square), λ = 2/3 (Cross), λ = 1 (Diamond) and λ = 2 (Circle).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).
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Figure 7.15. y = g2 (λ) versus x = g1 (λ) for T
(2)
φ(λ),φ(0). Shown are λ = 0

(Square), λ = 2/3 (Cross), λ = 1 (Diamond) and λ = 2 (Circle).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).

The points (g1 (λ) , g2 (λ)) far away from (0, 0) are those corresponding to smallest

sample size n = 15, as expected.

exact size of the tests based on T
(l)
φ(0),φ(0) is too large in relation to that of T

(l)
φ(λ),φ(0),
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For this sample size, Figures 7.14-7.16 show that the
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λ = 2/3, 1, 2. For n = 15, the points (g1 (2/3) , g2 (2/3)) are closer to (0, 0) than the

points (g1 (1) , g2 (1)) and (g1 (2) , g2 (2)) . Thus, according to the criterion (7.36), the

test based on T
(l)
φ(2/3),φ(0) is the best for n = 15.
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Figure 7.16. y = g2 (λ) versus x = g1 (λ) for T
(1)
φ(λ),φ(0). Shown are λ = 0

(Square), λ = 2/3 (Cross), λ = 1 (Diamond) and λ = 2 (Circle).
Source: Cressie, N., Pardo, L. and Pardo, M.C. (2001).

For n = 20, 25, 35, it can be seen that T
(l)
φ(2/3),φ(0) is better than T

(l)
φ(λ),φ(0), for λ =

1, 2, according to (7.36). However, T
(l)
φ(2/3),φ(0) is not obviously better than T

(l)
φ(0),φ(0),

since g1 (2/3) < g1 (0) but g2 (0) < g2 (2/3) . The choice of T
(l)
φ(2/3),φ(0) or T

(l)
φ(0),φ(0) for

n = 20, 25, 35, is going to depend on whether we need to make a very good approximation

of the exact power (g1 small) or whether we want to use a test statistic with as much

exact power as possible (g2 small). In the first instance, we should choose T
(l)
φ(2/3),φ(0)

and in the second instance, T
(l)
φ(0),φ(0).

From all the simulation studies we have carried out, our conclusion is that the test

based on T
(l)
φ(2/3),φ(0) is a very good and often better alternative to the tests based on the

classical statistics T
(l)
φ(λ),φ(0) with λ = 0, 1.
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7.6. Exercises

1. Find the matrix form of the loglinear models,

a) logmij (θ) = u+ θi + θj + θij , i, j = 1, 2, 3, with

3X
i=1

θi = 0,
3X
i=1

θij = 0, j = 1, 2, 3, and θij = θji, i, j = 1, 2, 3.

This is the symmetry model.

b) logmij (θ) = u+ θ1(i) + θ2(j) + θ12(ij), i, j = 1, 2, 3, with

3X
i=1

θ1(i) = 0,
3X
j=1

θ2(j) = 0

3X
i=1

θ12(ij) = 0, j = 1, 2, 3 and θ12(ij) = θ12(ji), i, j = 1, 2, 3, i 6= j.

This is the quasi-symmetry model.

2. Find the matrix form for the loglinear models

a) logmij (θ) = u+ θ1(i) + θ2(j) + δicij , i, j = 1, 2, with

2X
i=1

θ1(i) =
2X
j=1

θ2(j) =
2X
i=1

δi = 0

and cij known constants.

b) logmij (θ) = u+ θ1(i) + θ2(j) + ρjdij , i, j = 1, 2, with

2X
i=1

θ1(i) =
2X
j=1

θ2(j) =
2X
j=1

ρj = 0

and dij known constants.

c) logmij (θ) = u+ θ1(i) + θ2(j) + λ(lij)2, i, j = 1, 2, with

2X
i=1

θ1(i) =
2X
j=1

θ2(j) = 0

and lij known constants.

3. We consider the loglinear model of quasi-symmetry given in Exercise 1. Find the

maximum likelihood estimator of the expected values, m (θ) .

4. Find the expression of the minimum power-divergence estimator for the expected

values, m (θ) , in the symmetry model.
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5. We consider the loglinear model,

logmij (θ) = u+ θ1(i) + θ2(j) + θ12(ij)

with

u = 1
IJ

IP
i=1

JP
j=1

logmij

θ1(i) =
1
J

JP
j=1

logmij − u

θ2(j) =
1
I

IP
i=1
logmij − u

θ12(ij) = logmij − u− θ1(i) − θ2(j).

Show that

θ12(ij) =
1

IJ

IX
s=1

JX
t=1

log
mij (θ)mst (θ)

mit (θ)msj (θ)
.

6. The maximum likelihood estimators for mijk (θ) , i, j, k = 1, 2, in the model

logmijk (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ12(ij) + θ13(ik) + θ23(jk),

based on a random sample of size 820, are given in the following table

Variable (C)

C1 C2
Variable (B) B1 B2 B1 B2

A1 350.5 149.5 59.51 112.5

Variable (A) A2 25.51 23.49 19.49 79.51

Find the maximum likelihood estimators for the parameters θ1(i) and θ12(ij).

7. In 1968, 715 blue collar workers, selected from Danish Industry, were asked a

number of questions concerning their job satisfaction. Some of these questions

were summarized in a measure of job satisfaction. Based on similar questions the

job satisfaction of the supervisors was measured. Also included in the investigation

there was an external evaluation of the quality of management for each factory.

The following table shows 715 workers distributed on the three variables: A: Own

job satisfaction, B: Supervisors job satisfaction and C: Quality of management.

A

B Low High

Bad Low 103 87

C High 32 42

Good Low 59 109

High 78 205
Source: Andersen, E. B. (1990, p. 156).

We consider the nested sequence of loglinear models H1,H
∗∗
2 , H3, H4, H5 and H6

given in Section 7.1.
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a) Find the maximum likelihood estimators of m (θ) for all the models.

b) Using as significance level α = 0.05, test the null hypothesis that data are

from model H4 based on the maximum likelihood estimator as well as on the

power-divergence test statistic with λ = −2, −1, −1/2, 0, 2/3 and 1.
c) Find the best loglinear model among the models: H1, H

∗∗
2 , H3, H4, H5 and

H6 using the maximum likelihood estimator as well as the power-divergence

test statistics T
(l)
φ(λ),φ(0) with λ = 0, 1,−1 and taking as significance level

α = 0.01.

d) The same as in the previous part but with the power-divergence test statistic

S
(l)
φ(λ),φ(0).

8. The Swedish traffic authorities investigated in 1961 and 1962 on a trial basis the

possible effects of speed limitations. In certain weeks a speed limit of 90 km/hour

was enforced, while in other weeks no limits were enforced. The following table

shows for two periods of the same length, one in 1961 and one in 1962, the observed

number of killed persons in traffic accidents on main roads and on secondary roads.

Type of Roads (C)

Main Secondaries

Speed limit (B)
90Km

(Hour)
Free

90Km

(Hour)
Free

1961 8 57 42 106

Year (A)

1962 11 45 37 69
Source: Andersen, E. B. (1990, p. 158).

We consider the nested sequence of loglinear-models H1,H2, H3, H4, H5 and H6
given in Section 7.1.

a) Find the maximum likelihood estimators of m (θ) for all the models.

b) We consider the model H3. Find the maximum likelihood estimators for the

parameters θ1(i), θ2(j), θ3(k), θ23(jk).

c) Using as significance level α = 0.05, test the null hypothesis that data are

from model H3 based on the maximum likelihood estimator as well as on the

power-divergence test statistic with λ = −2, −1, −1/2, 0, 2/3, 1 and 2.
d) Find the best loglinear model among the models: H1, H2, H3, H4, H5 and

H6 using the maximum likelihood estimator as well as the power-divergence

test statistics T
(l)
φ(λ),φ(0) with λ = −2, −1/2, 0, 2/3, 1 and 2 assuming that

for testing

HNull : H3 versus HAlt : H2

the null hypothesis was accepted and taking as significance level α = 0.05.
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e) The same as in the previous part but with the power-divergence test statistic

S
(l)
φ(λ),φ(0) with λ = 1.

9. In 1973 a retrospective study of cancer of the ovary was carried out. Information

was obtained from 299 women, who were operated on for cancer of the ovary 10

years before. The following four dichotomous variables were observed:

A: Whether X−ray treatment was received or not.
B: Whether the woman had survived the operation by 10 years or not.

C: Whether the operation was radical or limited.

D: Whether the cancer at the time of operation was in an early or an advanced

stage.

The observed number of women are shown in the following table:

A : X-ray

D
(Stage)

C
(Operation)

B
(Survival)

NO YES

Early Radical No 10 17

YES 41 64

Limited No 1 3

YES 13 9

Advanced Radical NO 38 64

YES 6 11

Limited NO 3 13

YES 1 5
Source: Andersen, E. B. (1998, p. 121).

We consider the following nested sequence of loglinear models:

H1 : logmijkl (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ4(l)
+ θ12(ij) + θ13(ik) + θ14(il) + θ23(jk) + θ24(jl) + θ34(kl)
+ θ123(ijk) + θ124(ijl) + θ134(ikl) + θ234(jkl).

H2 : logmijkl (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ4(l)
+ θ12(ij) + θ13(ik) + θ14(il) + θ23(jk) + θ24(jl) + θ34(kl)
+ θ124(ijl) + θ134(ikl) + θ234(jkl).

H3 : logmijkl (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ4(l)
+ θ12(ij) + θ13(ik) + θ14(il) + θ23(jk) + θ24(jl) + θ34(kl)
+ θ134(ikl) + θ234(jkl).

H4 : logmijkl (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ4(l)
+ θ12(ij) + θ13(ik) + θ14(il) + θ23(jk) + θ24(jl) + θ34(kl)
+ θ134(ikl).
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H5 : logmijkl (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ4(l)
+ θ13(ik) + θ14(il) + θ23(jk) + θ24(jl) + θ34(kl) + θ134(ikl).

H6 : logmijkl (θ) = u+ θ1(i) + θ2(j) + θ3(k)
+ θ4(l) + θ13(ik) + θ14(il) + θ24(jl) + θ34(kl) + θ134(ikl).

H7 : logmijkl (θ) = u+ θ1(i) + θ2(j) + θ3(k)
+ θ4(l) + θ13(ik) + θ14(il) + θ34(kl) + θ134(ikl).

a) Using as significance level α = 0.05, test the null hypothesis that data are

from model H5 based on the maximum likelihood estimator as well as on the

power-divergence test statistic with λ = −2, −1, −1/2, 0, 2/3, 1 and 2.
b) Find the best loglinear models among the modelsH1, H2, H3, H4, H5, H6 and

H7 considered above based on S
(l)
φ(0),φ(0), using as significance level α = 0.05.

10. Show that A(l)A(l+1) = A(l+1)A(l) = A(l+1) and A(l)A(l) = A(l), where A(i) is

defined in (7.19) for i = l, l + 1.

7.7. Answers to Exercises

1. Under the given restrictions it is easy to verify that the matrix form is given by

logm11 (θ)

logm12 (θ)

logm13 (θ)

logm21 (θ)

logm22 (θ)

logm23 (θ)

logm31 (θ)

logm32 (θ)

logm33 (θ)


=



1 2 0 1 0 0

1 1 1 0 1 0

1 0 −1 −1 −1 0

1 1 1 0 1 0

1 0 2 0 0 1

1 −1 0 0 −1 −1
1 0 −1 −1 −1 0

1 −1 0 0 −1 −1
1 −2 −2 1 2 1





u

θ1
θ2
θ11
θ12
θ22



in the case a) and by

logm11 (θ)

logm12 (θ)

logm13 (θ)

logm21 (θ)

logm22 (θ)

logm23 (θ)

logm31 (θ)

logm32 (θ)

logm33 (θ)


=



1 1 0 1 0 1 0 0

1 1 0 0 1 0 1 0

1 1 0 −1 −1 −1 −1 0

1 0 1 1 0 0 1 0

1 0 1 0 1 0 0 1

1 0 1 −1 −1 0 −1 −1
1 −1 −1 1 0 −1 −1 0

1 −1 −1 0 1 0 −1 −1
1 −1 −1 −1 −1 1 2 1





u

θ1(1)
θ1(2)
θ2(1)
θ2(2)
θ12(11)
θ12(12)
θ12(22)


in the second case.
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2. a) The matrix X is given by

X =


1 1 1 c11
1 1 −1 c12
1 −1 1 −c21
1 −1 −1 −c22

 .

b) The matrix X is given by

X =


1 1 1 d11
1 1 −1 −d12
1 −1 1 d21
1 −1 −1 −d22

 .

c) The matrix X is given by

X =


1 1 1 l211
1 1 −1 l212
1 −1 1 l221
1 −1 −1 l222

 .

3. To find the maximum likelihood estimator ofm (θ) we must maximize the expres-

sion,
PI
i=1

PI
j=1 nij logmij (θ) . We have

IX
i=1

IX
j=1

nij logmij (θ) = nu+
IX
i=1

IX
j=1

nijθ1(i) +
IX
i=1

IX
j=1

nijθ2(j)

+
IX
i=1

IX
j=1

µ
nij + nji

2

¶
θ12(ij),

and

IX
i=1

IX
j=1

nij logmij (θ) =
IX
i=1

IX
j=1

nij lognpij (θ) = n logn+
IX
i=1

IX
j=1

nij log pij (θ) .

We denote

L (θ) ≡ log Pr θ (N11 = n11, ...,NII = nII) ;
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then,

L (θ) = log n!
n11!...nII !

+
IX
i=1

IX
j=1

nij log pij (θ)

= log n!
n11!...nII !

− n logn+
IX
i=1

IX
j=1

nij logmij (θ)

= log n!
n11!...nII !

− n logn+ nu+
IX
i=1

ni∗θ1(i) +
IX
j=1

n∗jθ2(j)

+
IX
i=1

IX
j=1

³
nij+nji

2

´
θ12(ij)

and

Pr θ (N11 = n11, ..., NII = nII) = exp(−n logn) n!
n11!...nII !

exp

(
nu+

IX
i=1

ni∗θ1(i)

+
IX
j=1

n∗jθ2(j) +
IX
i=1

JX
j=1

³
nij+nji

2

´
θ12(ij)

 .
Therefore,

exp (−nu) =
X

n11,...,nII

exp(−n logn) n!
n11!...nII !

exp

(
IX
i=1

ni∗θ1(i)+

+
IX
j=1

n∗jθ2(j) +
IX
i=1

IX
j=1

³
nij+nji

2

´
θ12(ij)

 .
Differentiating in the two members of the previous equality with respect to θ12(ij),

we have

−n exp (−nu) ∂u

∂θ12(ij)
=

X
n11,...,nII

exp(−n logn) n!
n11!...nII !

exp

(
IX
i=1

ni∗θ1(i)+

+
IX
j=1

n∗jθ2(j) +
IX
i=1

IX
j=1

³
nij+nji

2

´
θ12(ij)

³nij+nji2

´
.

Then

−n ∂u

∂θ12(ij)
=

X
n11,...,nII

³
nij+nji

2

´
Pr θ (N11 = n11, ..., NII = nII)

= E
h
Nij+Nji

2

i
= mij(θ)+mji(θ)

2 .
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On the other hand

∂L (θ)

∂θ12(ij)
= n

∂u

∂θ12(ij)
+
nij + nji

2

= −mij (θ) +mji (θ)

2
+
nij + nji

2
.

Therefore
∂L (θ)

∂θ12(ij)
= 0,

or equivalently

0 = −mij (θ) +mji (θ)

2
+
nij + nji

2
.

Then

mij(bθ) +mji(bθ) = nij + nji, i 6= j.
In the same way differentiating with respect to θ1(i) and θ2(j) we have

mi∗(bθ) = ni∗ and m∗j(bθ) = n∗j .
Finally, the maximum likelihood estimators, mij(bθ), are obtained as a solution of
the system of equations,

mij(bθ) +mji(bθ) = nij + nji, i 6= j
mi∗(bθ) = ni∗
m∗j(bθ) = n∗j .

The first set of equations jointly with one of the other two is enough to find the

maximum likelihood estimator of mij(bθ).
4. To find the minimum power-divergence estimator we must minimize in θ the ex-

pression

Dφ(λ)(bp,p (θ)) + µ
 IX
i=1

IX
j=1

pij (θ)− 1
 = 0, (7.37)

with

Dφ(λ)(bp,p (θ)) = 1
λ(λ+1)

 IX
i=1

IX
j=1

bpλ+1ij

pij(θ)
λ − 1


= 1

λ(λ+1)

IX
i=1

IX
j=1

µbpλ+1ij +bpλ+1ji

2 exp (−λ log pij (θ))− 1
¶ (7.38)

and

log pij (θ) = logn+ logmij (θ) = logn+ u+ θi + θj + θij.
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It is clear that
∂ log pij (θ)

∂θij
=

∂u

∂θij
+ 1,

and in a similar way to Exercise 3 we can find that

n
∂u

∂θij
= −mij (θ) ,

then
∂ log pij (θ)

∂θij
= −pij (θ) + 1.

Also,

∂
IP
i=1

IP
j=1

pij (θ)

∂θij
= pij (θ) (−pij (θ) + 1) .

Differentiating in (7.37) with respect to θij , taking into account the expression

(7.38),

1

λ (λ+ 1)

µbpλ+1ij +bpλ+1ji

2 pij (θ)
−λ
(−λ) (−pij (θ) + 1)

¶
+ µpij (θ) (−pij (θ) + 1) = 0,

i.e.,

1

λ+ 1

bpλ+1ij + bpλ+1ji

2
= µpij (θ)

λ+1
,

then µ
1

λ+ 1

¶ 1
λ+1

Ãbpλ+1ij + bpλ+1ji

2

! 1
λ+1

= µ
1

λ+1 pij (θ) ,

and

µ
1

λ+1 =

µ
1

λ+ 1

¶ 1
λ+1

IX
i=1

IX
j=1

Ãbpλ+1ij + bpλ+1ji

2

! 1
λ+1

.

Therefore

pij(bθ(λ)) =
µbpλ+1ij +bpλ+1ji

2

¶ 1
λ+1

IP
i=1

IP
j=1

µbpλ+1ij +bpλ+1ji

2

¶ 1
λ+1

=

¡bpλ+1ij + bpλ+1ji

¢ 1
λ+1

IP
i=1

IP
j=1

¡bpλ+1ij + bpλ+1ji

¢ 1
λ+1

.

5. We have

θ12(ij) = logmij (θ)− u− θ1(i) − θ2(j) ,
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then

θ12(ij) = logmij (θ)− u− 1
J

JP
j=1

logmij (θ) + u− 1
I

IP
i=1
logmij (θ) + u

= logmij (θ)− 1
J

JP
j=1

logmij (θ)− 1
I

IP
i=1
logmij (θ) +

1
IJ

IP
i=1

JP
j=1

logmij (θ)

= 1
IJ

IP
s=1

JP
t=1
log

mij (θ)mst (θ)

mit (θ)msj (θ)
.

6. For a three-way contingency table we know

bu = IP
i=1

JP
j=1

KP
k=1

logmijk(bθ)/IJK
bθ1(i) = JP

j=1

KP
k=1

logmijk(bθ)/JK − bu
and bθ12(ij) = KP

k=1

logmijk(bθ)/K − JP
j=1

KP
k=1

logmijk(bθ)/JK
−

IP
i=1

KP
k=1

logmijk(bθ)/IK + bu.
Substituting we obtain

bu = 1
8

IP
i=1

JP
j=1

KP
k=1

logmijk(bθ) = 4.1771

bθ1(1) = JP
j=1

KP
k=1

logm1jk(bθ)/JK − bu = 0.74818

bθ1(2) = JP
j=1

KP
k=1

logm2jk(bθ)/JK − bu = −0.7418.

Only we have to calculate bθ12(11) because
bθ12(11) + bθ12(12) = 0bθ12(11) + bθ12(21) = 0.

Then we get

bθ12(11) = 4.9727− 4.9189− 4.0386 + 4.1771 = 0.1923.
7. a) For the models H∗∗2 , H3, H4, H5 and H6, the maximum likelihood estimators

are
H∗∗2 H3 H4 H5 H6

nij∗n∗jk
nn∗j∗

n∗jkni∗∗
n

ni∗∗n∗j∗n∗∗k
n2

n∗j∗n∗∗k
nI

n∗∗k
IJ

.
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This result follows because, for instance, the model H∗∗2 can be characterized by

pijk =
pij∗ p∗jk
p∗j∗

.

For the model H1 we do not have an explicit expression and we must use a sta-

tistical package (Statgraphics, SAS, SPSS, etc.). In the following table we present

the maximum likelihood estimators for mijk (θ) for the different models.

(i, j, k) nijk H1 H∗∗2 H3 H4 H5 H6
(1, 1, 1) 103 102.3 86 72.3 50.3 66.1 66

(1, 1, 2) 59 59.7 76 63.9 85.9 112.9 112.8

(1, 2, 1) 32 32.7 22.8 28.2 50.1 65.9 66

(1, 2, 2) 78 77.3 87.2 107.7 85.7 112.6 112.8

(2, 1, 1) 87 87.7 104 117.7 81.9 66.1 66

(2, 1, 2) 109 108.3 92 104.1 139.9 112.9 112.8

(2, 2, 1) 42 41.3 51.2 45.8 81.7 65.9 66

(2, 2, 2) 205 205.7 195.8 175.3 139.5 112.6 112.8

.

b) We are going to establish the goodness-of-fit to the data of the model H4. We

consider the power-divergence test statistics

T
(4)
φ(λ)φ(0)

=
2

λ (λ+ 1)

2X
i=1

2X
j=1

2X
k=1

(nijk)
λ+1µ

mijk(bθ(4))¶λ −
2n

λ (λ+ 1)
,

whose asymptotic distribution is chi-square with 4 degrees of freedom. In the

following table the values of the test statistics are presented for some choices of λ.

λ -2 -1 -1/2 0 2/3 1

T
(4)
φ(λ),φ(0)

117.738 114.746 115.57 117.98 123.85 128.057

On other hand we have χ24; 0.05 = 9.49. Then we should reject the null hypothesis.

c) For λ = 1, we have

dl − dl+1 T
(l)
φ(1),φ(0)

χ2dl−dl+1,0.01
H∗∗2 versus H1 1 19.9 6.635

.

For λ = 0, we have

dl − dl+1 T
(l)
φ(0),φ(0)

χ2dl−dl+1,0.01
H∗∗2 versus H1 1 19.647 6.635

.

Finally, for λ = −1,
dl − dl+1 T

(l)
φ(−1),φ(0) χ2dl−dl+1,0.01

H∗∗2 versus H1 1 19.419 6.635
.
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Independently of the value of λ we should choose the model H1.

d) If we consider the test statistic

S
(l)
φ(λ),φ(0)

= 2n

µ
Dφ(λ)

µbp,p(bθ(l+1))¶−Dφ(λ)

µbp,p(bθ(l))¶¶ .
For l = 1, we have

S
(l)
φ(1),φ(0)

= 19.884− 0.0648 = 19. 819
S
(l)
φ(0),φ(0)

= 19.712− 0.0646 = 19. 647
S
(l)
φ(−1),φ(0) = 19.568− 0.0851 = 19. 483,

and the conclusion is the same as in c).

8. a) In a similar way to the previous exercise we get

(i, j, k) nijk H1 H2 H3 H4 H5 H6
(1, 1, 1) 8 8.8 10.21 10.8 18 15.8 36.3

(1, 1, 2) 42 41.2 46 44.9 37.7 33.2 63.5

(1, 2, 1) 57 56.2 54.80 57.9 50.8 44.7 30.3

(1, 2, 2) 106 106.8 102 99.4 106.6 93.8 63.5

(2, 1, 1) 11 10.2 8.8 8.2 13.7 15.8 30.3

(2, 1, 2) 37 37.8 33 34.1 28.7 33.2 63.5

(2, 2, 1) 45 45.8 47 44.1 38.6 44.7 30.3

(2, 2, 2) 69 68.2 73 75.6 81.1 93.8 63.5

b) The maximum likelihood estimators for the parameters of the model H3 are

given by bθ1(1) bθ2(1) bθ3(1) bθ23(12)
0.1368 -0.619 -0.4912 -0.2213

.

c) We have to check the goodness-of-fit of the data to the model H3,

T
(3)
φ(λ)φ(0)

=
2

λ (λ+ 1)

2X
i=1

2X
j=1

2X
k=1

(nijk)λ+1µ
mijk(bθ(3))¶λ −

2n

λ (λ+ 1)
.

In the following table we present the values of the power-divergence test statistic

for the different values of λ,

λ −2 −1/2 −1 0 2/3 1 2

T
(3)
φ(λ)φ(0)

3. 1795 3. 1342 3. 1431 3. 132 3. 1391 3. 147 3. 1882

On the other hand χ23; 0.05 = 7.81. Then we should not reject the null hypothesis.
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d) First we present the test

HNull : H4 versus HAlt : H3,

using the power-divergence test statistic

T
(3)
φ(λ)φ(0)

=
2

λ (λ+ 1)

2X
i=1

2X
j=1

2X
k=1

mijk(bθ(4))

mijk(bθ(4))
mijk(bθ(3))

λ

− 1

 .
We have

λ -2 -0.5 -1 0 2/3 1 2

T
(3)
φ(λ)φ(0)

10. 069 11. 136 10. 714 11. 626 12. 413 12. 873 14. 579

and χ21; 0.05 = 3.84. Then we should reject the null hypothesis and to choose the

model H3, i.e.,

H3 : log pijk (θ) = u+ θ1(i) + θ2(j) + θ3(k) + θ23(ij).

e) The results using the test statistics S
(l)
φ(λ)φ(0)

are given in the following table

Model 2nDφ(0)(bp,p(bθ(l))) 2nDφ(1)(bp,p(bθ(l))) S
(l)
φ(0)φ(0)

S
(l)
φ(1)φ(0)

H1 0.1935 0.1928

H2 2. 4427 2. 4508 2. 2492 2. 258

H3 3.142 3. 147 0. 6993 0. 6962

H4 13. 851 12. 566 10. 709 9. 419

H5 20.809 19.638 6. 958 7. 072

H6 109.83 106.72 89. 021 87. 082

On the other hand χ2dl−dl+1;α = χ21; 0.05 = 3.84, and we should choose the model

H3.

9. a) The predicted values for the frequencies associated with the model H5 are:

(10.69911, 37.45849, 1.781327, 3.034881, 40.30089, 6.541514, 12.21867,

0.0965124, 16.99271, 63.84969, 1.526851, 13.65695, 64.00729, 11.15031,

10.47315, 4.343055) .

Based on this vector we have

λ −2 −1 −0.5 0 2/3 1 2

T
(5)
φ(λ)φ(0)

1. 8629 1. 8986 1. 9479 2. 0242 2. 171 2. 2667 2. 6674

and χ25; 0.05 = 11.1. Therefore we should not reject the null hypothesis.
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b) The results obtained with S
(l)
φ(0),φ(0) are given in the following table,

Model 2nDφ(0)(bp,p(bθ(l))) S
(l)
φ(0)φ(0)

dl − dl+1
H1 0.60

H2 1.23 0.63 1

H3 1.55 0.32 1

H4 1.93 0.38 1

H5 2.02 0.09 1

H6 4.12 2.10 1

H7 136.73 132.61 1

.

On the basis of this table we should choose the model H6 because χ
2
1; 0.05 = 3.84.

10. We have

A(l)A(l) = diag
³
p (θ0)

−1/2´Σp(θ0)W (l)

³
W T

(l)Σp(θ0)W (l)

´−1
W T

(l)

× Σp(θ0)diag
³
p (θ0)

−1/2´
diag

³
p (θ0)

−1/2´Σp(θ0)W (l)

×
³
W T

(l)Σp(θ0)W (l)

´−1
W T

(l)Σp(θ0)diag
³
p (θ0)

−1/2´
= diag

³
p (θ0)

−1/2´Σp(θ0)W (l)

³
W T

(l)Σp(θ0)W (l)

´−1
× W T

(l)Σp(θ0)diag
³
p (θ0)

−1/2´
.

The last equality follows because

Σp(θ0)diag
³
p (θ0)

−1/2´
diag

³
p (θ0)

−1/2´Σp(θ0) = Σp(θ0).
We know that W (l+1) is a submatrix of W (l); therefore there exists a matrix B

verifyingW (l+1) =W (l)B. Therefore,

A(l)A(l+1) = diag
³
p (θ0)

−1/2´Σp(θ0)W (l)

³
W T

(l)Σp(θ0)W (l)

´−1
W T

(l)Σp(θ0)

× diag
³
p (θ0)

−1/2´
diag

³
p (θ0)

−1/2´Σp(θ0)W (l+1)

×
³
W T

(l+1)Σp(θ0)W (l+1)

´−1
W T

(l+1)Σp(θ0)diag
³
p (θ0)

−1/2´
= diag

³
p (θ0)

−1/2´Σp(θ0)W (l)B
³
W T

(l+1)Σp(θ0)W (l+1)

´−1
× W T

(l+1)Σp(θ0)diag
³
p (θ0)

−1/2´
= diag

³
p (θ0)

−1/2´Σp(θ0)W (l+1)

³
W T

(l+1)Σp(θ0)W (l+1)

´−1
× W T

(l+1)Σp(θ0)diag
³
p (θ0)

−1/2´
W T

(l+1)Σp(θ0)diag
³
p (θ0)

−1/2´
= A(l+1).

We know
¡
A(l)A(l+1)

¢T
= AT

(l+1) and A
T
(l+1)A

T
(l) = A

T
(l+1). But A(i), i = l, l + 1,

is a symmetric matrix, therefore A(l+1)A(l) =A(l+1).
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8

Phi-divergence Measures in

Contingency Tables

8.1. Introduction

In this chapter we study the importance of the estimators based on φ-divergences as

well as the test statistics based on φ-divergences in some classical problems of contingency

tables. First, we study the problems of independence, symmetry, marginal homogeneity

and quasi-symmetry in a two-way contingency table and then the classical problem of

homogeneity. There are different approaches to these problems but we study them using

φ-divergence estima-

the testing problem when the null hypothesis can be written in terms of some constraints

on the parameter space.

Throughout the chapter, the cited results of Chapters 5 and 6 will be very useful.

Due to this we reproduce them now.

We suppose that we have ν (ν < M0) real-valued functions f1 (θ) , ..., fν (θ) that con-

strain the parameter θ ∈ Θ ⊂ RM0 , fm (θ) = 0, m = 1, ..., ν, such that they verify the con-

ditions i) and ii) given in Section 5.5, and we denote by p (θ0) = (p1 (θ0) , ..., pM (θ0))
T
,

where θ0 is unknown, the probability vector associated with the multinomial model under

consideration. If we denote by

Θ0 = {θ ∈ Θ : fm (θ) = 0,m = 1, ..., ν} ,

the restricted minimum φ-divergence estimator of θ0 or the minimum φ-divergence esti-
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mator of θ0 in Θ0, bθ(r)φ verifies

bθ(r)φ = θ0 +H (θ0) IF (θ0)
−1A (θ0)

T diag
³
p (θ0)

−1/2´ (bp− p (θ0)) + o (kbp− p (θ0)k)
(8.1)

where the M0 ×M0 matrix H (θ0) is defined by

H (θ0) = I − IF (θ0)−1B (θ0)T
³
B (θ0) IF (θ0)

−1
B (θ0)

T
´−1

B (θ0) ; (8.2)

I denotes the M0 ×M0 identity matrix and also

√
n

µbθ(r)φ − θ0

¶
L→

n→∞ N (0,W (θ0)) , (8.3)

where the M0 ×M0 matrixW (θ0) is given by

IF (θ0)
−1
µ
I −B (θ0)T

³
B (θ0) IF (θ0)

−1
B (θ0)

T
´−1

B (θ0) IF (θ0)
−1
¶
.

IF (θ0) is the Fisher information matrix associated with the multinomial model and

B (θ0) is the ν ×M0 matrix of partial derivatives

B (θ0) =

µ
∂fm (θ0)

∂θk

¶
m=1,...,ν
k=1,...,M0

.

For testing,

H0 : p=p (θ0) , for some unknown θ0 ∈ Θ0 ⊂ Θ ⊂ RM0 , (8.4)

we consider the φ-divergence test statistic

2n

φ001 (1)
Dφ1

µbp,p(bθ(r)φ2 )

¶
L−→

n→∞ χ2M−M0+ν−1, (8.5)

where bθ(r)φ2 is the minimum φ2-divergence estimator of θ0 in Θ0.

We shall assume that φ1, φ2 ∈ Φ∗ are twice continuously differentiable in x > 0 with
φ001(1) > 0 and φ002(1) > 0.

8.2. Independence

One of the most interesting models in a two-way contingency table consists of testing

the independence between two random variables X and Y.

We consider a two-way contingency table and let bp = (bp11, ..., bpIJ)T be the non-

parametric estimator of the unknown probability vector p = (p11, ..., pIJ)
T
, where pij =

© 2006 by Taylor & Francis Group, LLC



Phi-divergence Measures in Contingency Tables 353

Pr (X = i, Y = j) , with pij > 0, i = 1, ..., I, j = 1, ..., J. The hypothesis of independence

is given by

H0 : pij = pi∗p∗j , i = 1, ..., I, j = 1, ..., J, (8.6)

where p∗j =
PI
i=1 pij and pi∗ =

PJ
j=1 pij .

We consider the parameter space

Θ =
n
θ : θ = (pij ; i = 1, ..., I, j = 1, ..., J, (i, j) 6= (I, J))T

o
(8.7)

and we denote by

p (θ) = (p11, ..., pIJ)
T = p, (8.8)

the probability vector characterizing our model with pIJ = 1−
IP
i=1

JP
j=1

(i,j)6=(I,J)

pij . The hy-

pothesis of independence given in (8.6) can be formulated again using the (I − 1) (J − 1)
constraints

hij (θ) = pij − pi∗p∗j = 0, i = 1, ..., I − 1, j = 1, ..., J − 1. (8.9)

Also considering the parameter β = (p1∗, ..., pI−1∗, p∗1, ..., p∗J−1)
T and the set

B = {(a1, ..., aI−1, b1, ..., bJ−1)T ∈ RI+J−2/
PI−1
i=1 ai < 1,

PJ−1
j=1 bj < 1,

ai > 0, bj > 0, i = 1, ..., I − 1, j = 1, ..., J − 1},

the hypothesis (8.6) can be expressed for some unknown θ0 ∈ Θ with p (θ0) = p0 as

H0 : p0 = p (g(β0)) , β0∈B and g(β0) = θ0, (8.10)

where the function g is defined by g = (gij ; i = 1, ..., I, j = 1, ..., J, (i, j) 6= (I, J)) with

gij(β) = pi∗p∗j , i = 1, ..., I − 1, j = 1, ..., J − 1

and

gIj(β) =

µ
1−

I−1P
i=1

pi∗

¶
p∗j , j = 1, ..., J − 1

giJ(β) =

Ã
1−

J−1P
j=1

p∗j

!
pi∗, i = 1, ..., I − 1.

It is important to remark by (8.8) that p (g(β)) = (gij(β), i = 1, ..., I, j = 1, ..., J)
T ,

where

gIJ(β) = 1−
IX
i=1

JX
j=1

(i,j)6=(I,J)

gij(β).

With this approach the hypothesis of independence can be formulated in terms of the

© 2006 by Taylor & Francis Group, LLC

results presented in Chapter 6 (see Exercise 8).



354 Statistical Inference based on Divergence Measures

In this Chapter we consider the approach given in (8.9). We can observe that with

this approach the hypothesis of independence can be written as

H0 : p=p (θ0) , for some unknown θ0∈Θ0,
where

Θ0 = {θ ∈Θ : hij (θ) = 0, i = 1, ..., I − 1, j = 1, ..., J − 1} , (8.11)

with hij defined in (8.9) and p (θ) defined in (8.8).

For I = J = 2, we only have a constraint which is given by

h11 (θ) = p11 − p1∗p∗1 = 0,
and for I = J = 3, we have four constraints given by

h11 (θ) = p11 − p1∗p∗1 = 0
h12 (θ) = p12 − p1∗p∗2 = 0
h21 (θ) = p21 − p2∗p∗1 = 0
h22 (θ) = p22 − p2∗p∗2 = 0.

8.2.1. Restricted Minimum Phi-divergence Estimator

In the following theoremwe present the expression of the restricted minimum φ−diver-
gence estimator for the problem of independence as well as its asymptotic properties. We

can observe that this estimator is the minimum φ-divergence estimator under the inde-

pendence hypothesis.

Theorem 8.1

The minimum φ-divergence estimator,

bθI,φ = ³pI,φi,j ; i = 1, ..., I, j = 1, ..., J and (i, j) 6= (I, J)´T ,
of θ0∈Θ0 (i.e., under the hypothesis of independence) is obtained as a solution of the
system of equations

JX
j=1

µ
p∗jφ

µ
nij

npi∗p∗j

¶
− nij
npi∗

φ0
µ

nij
npi∗p∗j

¶¶
− µ = 0, i = 1, ..., I

IX
i=1

µ
pi∗φ

µ
nij

npi∗p∗j

¶
− nij
np∗j

φ0
µ

nij
npi∗p∗j

¶¶
− µ = 0, j = 1, ..., J,

(8.12)

where µ is given by

µ =
IX
i=1

JX
j=1

µ
pi∗p∗jφ

µ
nij

npi∗p∗j

¶
− nij
n
φ0
µ

nij
npi∗p∗j

¶¶
.
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Its asymptotic distribution is

√
n
³bθI,φ − θ0

´
L→

n→∞ N(0,W I (θ0)) (8.13)

where the (IJ − 1)× (IJ − 1) matrix W I (θ0) is given by

Σθ0

µ
I(IJ−1)×(IJ−1) −BI (θ0)

T
³
BI (θ0)Σθ0BI (θ0)

T
´−1

BI (θ0)Σθ0

¶
, (8.14)

the (I − 1)(J − 1)× (IJ − 1) matrix BI (θ0) is defined by

BI (θ0) =

µ
∂hij (θ0)

∂θ

¶
i=1,...,I−1,j=1,...,J−1

,

and Σθ0 = IF (θ0)
−1
is the (IJ−1)×(IJ − 1) matrix verifying Σθ0 = diag (θ0)−θ0θT0 .

Proof. Instead of getting

bθI,φ = ³pI,φij ; i = 1, ..., I, j = 1, ..., J and (i, j) 6= (I, J)´T
we shall obtain

p(bθI,φ) = ³pI,φij ; i = 1, ..., I, j = 1, ..., J ´T .
The p0ijs minimizing the φ-divergence

Dφ(bp,p (θ)) = IX
i=1

JX
j=1

pijφ

µ
nij
npij

¶
subject to the hypothesis of independence (or the constraints about θ given in (8.9)) may

be obtained minimizing the Lagrangian function

IX
i=1

JX
j=1

pijφ

µ
nij
npij

¶
+
I−1X
i=1

J−1X
j=1

λijhij (θ) + µ

1− IX
i=1

JX
j=1

pij

 (8.15)

where λij and µ are undetermined Lagrangian multipliers. Taking into account the

constraints given in (8.9), minimizing the expression (8.15) is equivalent to minimizing

the expression

IX
i=1

JX
j=1

pi∗p∗jφ
µ

nij
npi∗p∗j

¶
+ µ1

1− JX
j=1

p∗j

+ µ2Ã1− IX
i=1

pi∗

!
.

Finally, differentiating with respect to pi∗ and p∗j we get the system of equations given

in (8.12), whose solutions provide the minimum φ-divergence estimator, bθI,φ.
The asymptotic distribution follows from (8.3) because IF (θ0)

−1 = Σθ0 , under the

considered parametric multinomial model.
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Corollary 8.1

The minimum power-divergence estimator

p(bθI,φ(λ)) = ³pI,φ(λ)ij ; i = 1, ..., I, j = 1, ..., J
´T

of p (θ0) (i.e., under the hypothesis of independence (8.9)) is given by

p
I,φ(λ)
ij = p

I,φ(λ)
i∗ × pI,φ(λ)∗j , i = 1, ..., I, j = 1, ..., J

where p
I,φ(λ)
i∗ and p

I,φ(λ)
∗j are the solutions of the system of equations

p
I,φ(λ)
i∗ =


JX
j=1

nλ+1ij³bpI,φ(λ)∗j
´λ


1

λ+1

IX
i=1


JX
j=1

nλ+1ij³bpI,φ(λ)∗j
´λ


1

λ+1

i = 1, ..., I

p
I,φ(λ)
∗j =


IX

i=1

nλ+1ij³bpI,φ(λ)i∗
´λ


1

λ+1

JX
j=1


IX

i=1

nλ+1ij³bpI,φ(λ)i∗
´λ


1

λ+1

j = 1, ..., J .

(8.16)

Proof. In this case the system of the equations (8.12) can be written as

JX
j=1

nλ+1ij

nλ+1
³
p
I,φ(λ)
i∗

´λ+1 ³
p
I,φ(λ)
∗j

´λ =

 IX
i=1

 JX
j=1

nλ+1ij

nλ+1
³
p
I,φ(λ)
∗j

´λ


1
λ+1


λ+1

IX
i=1

nλ+1ij

nλ+1
³
p
I,φ(λ)
∗j

´λ+1 ³
p
I,φ(λ)
i∗

´λ =

 IX
i=1

 JX
j=1

nλ+1ij

nλ+1
³
p
I,φ(λ)
i∗

´λ


1
λ+1


λ+1

.

It is clear that the solution of this system is given by (8.16).

For λ = 0,

p
I,φ(0)
i∗ =

ni∗
n

and p
I,φ(0)
∗j =

n∗j
n
, i = 1, ..., I, j = 1, ..., J,
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hence the maximum likelihood estimator, under the hypothesis of independence, is ob-

tained.

If λ → −1 the minimum modified likelihood estimator under independence is ob-

tained as the solution of the system of equations

p
I,φ(−1)
i∗ =

JY
j=1

 nijbpI,φ(−1)∗j


p
I,φ(−1)
∗j

IX
i=1

JY
j=1

 nij

p
I,φ(−1)
∗j


p
I,φ(−1)
∗j

i = 1, ..., I

p
I,φ(−1)
∗j =

IY
i=1

 nij

p
I,φ(−1)
i∗


p
I,φ(−1)
i∗

JX
j=1

IY
i=1

 nij

p
I,φ(−1)
i∗


p
I,φ(−1)
i∗

j = 1, ..., J .

We call the resulting estimators for λ = −2, −1/2, 2/3 and 1 the minimum modified chi-
square estimator, Freeman-Tukey estimator, Cressie-Read estimator and the minimum

chi-square estimator, respectively.

Remark 8.1

For I = J = 2, given θ0 = (p∗1p1∗, (1− p∗1) p1∗, p∗1 (1− p1∗))T ∈ Θ0, it is easy to
check that

· BI (θ0) = (1− p1∗ − p∗1,−p∗1,−p1∗) ,
· Σθ0 = diag (θ0)− θ0θ

T
0 ,

·
³
BI (θ0)Σθ0BI (θ0)

T
´−1

= (p1∗p∗1 (1− p1∗ − p∗1 + p1∗p∗1))−1 ,

and it is not difficult to establish that the matrix W I (θ0) is given by

 p∗1 p1∗
1− p∗1 −p1∗
−p∗1 1− p1∗

µ p1∗ (1− p1∗) 0

0 p∗1 (1− p∗1)
¶µ

p∗1 1− p∗1 −p∗1
p1∗ −p1∗ 1− p1∗

¶
,

where:

· The matrix µ
p1∗ (1− p1∗) 0

0 p∗1 (1− p∗1)
¶
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is the inverse of the Fisher information matrix corresponding to the parameter

β0=(p1∗, p∗1)
T
, i.e., IF (β0)

−1

· The matrix  p∗1 p1∗
1− p∗1 −p1∗
−p∗1 1− p1∗


is the matrix of partial derivatives

µ
∂g(β0)

∂β

¶T
.

Then we have

W I (θ0) =

µ
∂g(β0)

∂β

¶T
IF (β0)

−1
µ
∂g(β0)

∂β

¶
.

This relation is true in general.

Theorem 8.2

Under the independence model, we have

W I (θ0) =M
T
β0
IF (β0)

−1Mβ0 , (8.17)

where

Mβ0 =

µ
∂g(β0)

∂β

¶
,

and g was defined in (8.10).

Proof.

It is not difficult to establish that

IF (β0) =Mβ0Σ
−1
θ0
MT

β0
.

Then we have

MT
β0
IF (β0)

−1Mβ0 =M
T
β0

³
Mβ0Σ

−1
θ0
MT

β0

´−1
Mβ0 . (8.18)

Multiplying (8.17) by Σ−1θ0M
T
β0
on the right and byMβ0Σ

−1
θ0
on the left and taking into

account (8.18) and the expression ofW I (θ0) given in (8.14), we have

Mβ0Σ
−1
θ0
MT

β0
= Mβ0Σ

−1
θ0
MT

β0

− Mβ0BI (θ0)
T
³
BI (θ0)ΣθBI (θ0)

T
´−1

BI (θ0)M
T
β0
.
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But

Mβ0BI (θ0)
T = 0 and BI (θ0)M

T
β0
= 0.

Then we have established that

ATXA = ATY A,

where X =MT
β0
IF (β0)

−1Mβ0 , Y =W I (θ0) and A = Σ−1θ0M
T

β0
. But the matrix A

has full rank, then X = Y .

Remark 8.2

The Fisher information matrix associated with the independence model is given by³
MT

β0
IF (β0)

−1Mβ0

´−1
,

since if we formulate the problem of independence based on (8.10) we have

√
n
³bβ − β0

´
L−→

n→∞ N
¡
0, IF (β0)

−1¢ ,
where bβ is the maximum likelihood estimator of β0, and

√
n
³
g(bβ)− g(β0)´ L−→

n→∞ N
³
0, MT

β0
IF (β0)

−1Mβ0

´
.

In Theorem 8.1 we have established that

√
n
³bθI,φ − θ0

´
L→

n→∞ N(0,W I (θ0)).

Then the restricted minimum φ-divergence estimator will be BAN if and only if

W I (θ0) =M
T
β0
IF (β0)

−1
Mβ0 .

Therefore, bθI,φ is BAN by Theorem 8.2.

Now we are going to present a result that establishes sufficient conditions for unique-

ness of the minimum φ-divergence estimator in the independence problem.

Theorem 8.3

The minimum φ-divergence estimator under the hypothesis of independence, bθI,φ =³
pI,φij ; i = 1, ..., I, j = 1, ..., J and (i, j) 6= (I, J)

´T
, is unique if

k2(i, j) > −k1(i, j) > 0, i = 1, ..., I; j = 1, ..., J
where

k1(i, j) = φ

µ
nij

npi∗p∗j

¶
− nij
npi∗p∗j

φ0
µ

nij
npi∗p∗j

¶
, i = 1, ..., I; j = 1, ..., J

k2(i, j) = 2
n2ij

n2p2i∗p
2
∗j
φ00
µ

nij
npi∗p∗j

¶
, i = 1, ..., I; j = 1, ..., J.
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Proof. It is necessary to establish that the function

f(p1∗, ..., pI∗, p∗1, ..., p∗J) =
IX
i=1

JX
j=1

pi∗p∗jφ
µ

nij
npi∗p∗j

¶
is strictly convex. Consider the functions

fij(p1∗, ..., pI∗, p∗1, ..., p∗J) = pi∗p∗jφ
µ

nij
npi∗p∗j

¶
, i = 1, ..., I, j = 1, ..., J.

We will use the fact that if fij is strictly convex for all i and j, then
PI
i=1

PJ
j=1 fij is

strictly convex.

For the sake of brevity, we forget indexes and write

f(x, y) = xyφ(
k

xy
),

where k is a positive constant. The determinant of the Hessian matrix of the function f

is
k4

x4y4
φ00
µ
k

xy

¶2
−
µ
φ

µ
k

xy

¶
− k

xy
φ0
µ
k

xy

¶
+

k2

x2y2
φ00
µ
k

xy

¶¶2
which can be written as follows

−
µ
φ

µ
k

xy

¶
− k

xy
φ0
µ
k

xy

¶¶µ
φ

µ
k

xy

¶
− k

xy
φ0
µ
k

xy

¶
+ 2

k2

x2y2
φ00
µ
k

xy

¶¶
.

Hence the result holds.

It is not difficult to establish that in the case of the power-divergence family the

result is verified for λ > −1/2.

8.2.2. Test of Independence

Based on the φ-divergence test statistic given in (8.5) we should reject the hypothesis

of independence if

Iφ1n

³bθI,φ2´ ≡ 2n

φ001 (1)
Dφ1

³bp,p(bθI,φ2)´ > c,
where c is a positive constant. In the following theorem we establish the asymptotic

distribution of the test statistic Iφ1n

³bθI,φ2´ .
Theorem 8.4

The asymptotic distribution of the φ-divergence test statistics

Iφ1n

³bθI,φ2´ ≡ 2n

φ001 (1)
Dφ1

³bp,p(bθI,φ2)´ (8.19)
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and

Iφ1,hn

³bθI,φ2´ ≡ 2n

h0 (0)φ001 (1)
h
³
Dφ1

³bp,p(bθI,φ2)´´ , (8.20)

for testing the hypothesis of independence, is chi-square with (I − 1) (J − 1) degrees of
freedom.

Proof. In our case we have IJ cells and by (8.7) IJ − 1 parameters that are necessary
to estimate. Using relation (8.9) the number of constraints is (I − 1)× (J − 1) . Then by
(8.5) the asymptotic distribution of the family of test statistics (8.19) is chi-square with

IJ|{z}
Cells

− IJ − 1| {z }
Estimated

Parameters

+ (I − 1) (J − 1)| {z }
Constraints

−1 = (I − 1) (J − 1)| {z }
Degrees of

freedom

.

In relation with the family of (h,φ)-divergence test statistics given in (8.20), we have

h (x) = h (0) + h0 (0)x+ o (x) ,

then

h
³
Dφ1

³bp,p(bθI,φ2)´´ = h0 (0)Dφ1

³bp,p(bθI,φ2)´+ oP (1)
and we get that the asymptotic distribution of the family of test statistics given in (8.20)

is also chi-square with (I − 1) (J − 1) degrees of freedom.
Remark 8.3

For φ1 (x) = φ2 (x) = x log x−x+1 = φ(0) (x) we get that I
φ1
n

³bθI,φ2´ coincides with
the classical likelihood ratio test statistic for testing independence given by

G2 ≡ Iφ(0)n

³bθI,φ(0)´ = 2n IX
i=1

JX
j=1

bpij log bpijbpi∗bp∗j ,
and for φ2 (x) = x logx−x+1 = φ(0) (x) and φ1 (x) =

1
2 (x− 1)2 = φ(1) (x) the classical

chi-square test statistic given by

X2 ≡ Iφ(1)n

³bθI,φ(0)´ = n IX
i=1

JX
j=1

(bpij − bpi∗bp∗j)2bpi∗bp∗j .

It is important to note that for φ2 (x) = x log x−x+1, we get the family of test statistics
studied by Zografos (1993) and Pardo, L. et al . (1993a), which is

Iφ1n

³bθ´ ≡ Iφ1n ³bθI,φ(0)´ = 2n

φ001 (1)
Dφ1(bp,p(bθ)), (8.21)

where bθ ≡ bθI,φ(0) is the maximum likelihood estimator,

bθ = ³ni∗
n
× n∗j

n
, i = 1, ..., I, j = 1, .., J, (i, j) 6= (I, J)

´T
.
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Based on the previous test we should reject the hypothesis of independence with

significance level α if

Iφ1n

³bθI,φ2´ or³ Iφ1,hn

³bθI,φ2´´ ≥ χ2(I−1)(J−1),α. (8.22)

Power of the Test

Let q =(q11, ..., qIJ)
T be a point at the alternative hypothesis, i.e., there exist at least

two indexes i and j for which qij 6= qi∗ × q∗j . We denote by θφ2a the value of θ verifying

θφ2a =argmin
θ∈Θ0

Dφ2(q,p (θ)),

where Θ0 was defined in (8.11).

It is clear that

θφ2a = (fij(q); i = 1, ..., I, j = 1, ..., J, (i, j) 6= (I, J) )T

and

p(θφ2a ) = (fij(q); i = 1, ..., I, j = 1, ..., J )
T ≡ f(q),

with

fIJ(q) = 1−
IX
i=1

JX
j=1

(i,j)6=(I,J)

fij(q).

The notation fij(q) indicates that the elements of the vector θ
φ2
a depend on q. For

instance, for φ2 (x) = x log x− x+ 1,

p(θφ2a ) = (qi∗ × q∗j ; i = 1, ..., I, j = 1, ..., J )T ,

and fij(q) = qi∗ × q∗j .
We also denote

bθI,φ2 = ³pI,φ2ij ; i = 1, ..., I, j = 1, ..., J, (i, j) 6= (I, J)
´T

and then

p(bθI,φ2) = ³pI,φ2ij ; i = 1, ..., I, j = 1, ..., J
´T
≡ f(bp),

where f =(fij ; i = 1, ..., I, j = 1, ..., J)
T
. If the alternative q is true we have that bp

tends to q and p(bθI,φ2) to p(θφ2a ) in probability.
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If we define the function

Ψφ1 (q) = Dφ1(q,f(q)),

we have

Ψφ1 (bp) = Ψφ1 (q) + IX
i=1

JX
j=1

∂Dφ1(q,f (q))

∂qij
(bpij − qij) + o (kbp− qk) .

Hence the random variables

√
n (Dφ1(bp,f(bp))−Dφ1(q,f(q)))

and
√
n

IX
i=1

JX
j=1

∂Dφ1(q,f(q))

∂qij
(bpij − qij)

have the same asymptotic distribution. If we denote by

lij =
∂Dφ1(q,f(q))

∂qij
(8.23)

and by l =(lij ; i = 1, ..., I, j = 1, ..., J )
T
we have

√
n (Dφ1(bp,f(bp))−Dφ1(q,f(q)))

L−→
n→∞ N

³
0, lTΣql

´
, (8.24)

where

Σq =
¡
qi1j1

¡
δ(i1j1)(i2j2) − qi2j2

¢¢
i1,i2=1,...,I
j1,j2=1,...,J

.

In the following theorem we present the asymptotic distribution using the maximum

likelihood estimator. In this case we have:

Theorem 8.5

Let p(bθ) = (bpi∗ × bp∗j , i = 1, ..., I, j = 1, ..., J)T the maximum likelihood estimator of
p (θ) = (p11, ..., pIJ)

T , under the independence hypothesis, and q a point at the alternative

hypothesis. Then,

√
n
³
Dφ1(bp,p(bθ))−Dφ1

¡
q,qI×J

¢´ L−→
n→∞ N

¡
0,σ2φ1(q)

¢
where

σ2φ1(q) =
IX
i=1

JX
j=1

qijl
2
ij −

 IX
i=1

JX
j=1

qijlij

2

,

lij =
IP
r=1

µ
qr∗φ1

µ
qrj
qr∗q∗j

¶
− qrj
q∗j

φ01

µ
qrj
qr∗q∗j

¶¶
+

JP
s=1

µ
q∗sφ1

µ
qis
qi∗q∗s

¶
− qis
qi∗

φ01

µ
qis
qi∗q∗s

¶¶
+ φ01

µ
qij
qi∗q∗j

¶
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and qI×J = (qi∗ × q∗j , i = 1, ..., I, j = 1, ..., J)T whenever σ2φ1(q) > 0.
Proof.

We have to calculate the elements lij , given in (8.23) taking into account that in this

case fij(q) = qi∗ × q∗j . We can write the function Ψφ1(q) as

Ψφ1(q) =
IP
i=1

JP
j=1

qi∗q∗jφ1

µ
qij
qi∗q∗j

¶
= qi∗q∗jφ1

µ
qij
qi∗q∗j

¶
+

JP
s=1
s6=j

qi∗q∗sφ1

µ
qis
qi∗q∗s

¶
+

IP
r=1
r 6=i
qr∗q∗jφ1

µ
qrj
qr∗q∗j

¶
+

IP
r=1
r 6=i

JP
s=1
s6=j

qr∗q∗sφ1

µ
qrs
qr∗q∗s

¶
= G1 +G2 +G3 +G4.

Then we have

∂G1
∂qij

= φ1

µ
qij
qi∗q∗j

¶
(q∗j + qi∗) + φ01

µ
qij
qi∗q∗j

¶
qi∗q∗j − qij (q∗j + qi∗)

qi∗q∗j

= φ1

µ
qij
qi∗q∗j

¶
(q∗j + qi∗) + φ01

µ
qij
qi∗q∗j

¶µ
1− qij

qi∗
− qij
q∗j

¶

∂G2
∂qij

=
JP
s=1
s6=j

½
q∗sφ1

µ
qis
qi∗q∗s

¶
+ qi∗q∗sφ01

µ
qis
qi∗q∗s

¶
qis
q∗s

(−1) 1
q2i∗

¾
=

JP
s=1
s6=j

q∗sφ1

µ
qis
qi∗q∗s

¶
−

JP
s=1
s6=j

φ01

µ
qis
qi∗q∗s

¶
qis
qi∗

∂G3
∂qij

=
IP
r=1
r 6=i
qr∗φ1

µ
qrj
qr∗q∗j

¶
−

IP
r=1
r 6=i

qrj
q∗j

φ01

µ
qrj
qr∗q∗j

¶

∂G4
∂qij

= 0.

Therefore,

lij =
∂Ψφ1 (q)

∂qij
=

IP
r=1

µ
qr∗φ1

µ
qrj
qr∗q∗j

¶
− qrj
q∗j

φ01

µ
qrj
qr∗q∗j

¶¶
+

JP
s=1

µ
q∗sφ1

µ
qis
qi∗q∗s

¶
− qis
qi∗

φ01

µ
qis
qi∗q∗s

¶¶
+ φ01

µ
qij
qi∗q∗j

¶
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and based on (8.24) we have

σ2φ1(q) = l
TΣql =

IX
i=1

JX
j=1

qijl
2
ij −

 IX
i=1

JX
j=1

qijlij

2

.

Using this result it is possible to get the power of the test of independence. This is

given by

βn,φ1 (q) = 1−Φn
µ √

n

σφ1(q)

µ
φ001 (1)
2n

χ2(I−1)(J−1),α −Dφ1(q,qI×J)
¶¶

,

where Φn (x) is a sequence of distribution functions leading uniformly to the standard

normal distribution Φ (x) .

Remark 8.4

For the Kullback-Leibler divergence we have

σ2(q) =
IX
i=1

JX
j=1

qij log
2 qij
qi∗q∗j

−
 IX
i=1

JX
j=1

qij log
qij
qi∗q∗j

2

.

In general, theoretical results for the test statistics Iφ1n

³bθI,φ2´ or Iφ1,hn

³bθI,φ2´ ,
under alternative hypotheses, with φ2 (x) 6= x log x − x + 1, are not easy to obtain.
An exception to this fact is when there is a contiguous sequence of alternatives that

approaches the null hypothesis H0 : p = p (θ0) , for some unknown θ0 ∈ Θ0, at the rate
O
¡
n−1/2

¢
. Consider the multinomial probability vector

pn,ij = pij (θ0) +
dij√
n
, i = 1, ..., I, j = 1, ..., J,

where d =(d11, ..., dIJ)
T is a fixed IJ × 1 vector such that

IX
i=1

JX
j=1

dij = 0; recall that

n is the total count parameter of the multinomial distribution and θ0 is unknown but

belonging to Θ0. As n→∞, the sequence of multinomial probabilities {pn}n∈N with

pn = (pn,ij , i = 1, ..., I, j = 1, ..., J)
T

converges to a multinomial probability in H0 at the rate of O
¡
n−1/2

¢
. Let

H1,n : pn= p (θ0) +
d√
n
, θ0∈Θ0 (8.25)

© 2006 by Taylor & Francis Group, LLC



366 Statistical Inference based on Divergence Measures

be a sequence of contiguous alternative hypotheses, here contiguous to the null hypothesis

H0 : p=p (θ0) , for some unknown θ0∈Θ0. We are interested in studying the asymptotic
behavior of the power of Iφ1n

³bθI,φ2´³or Iφ1,hn

³bθI,φ2´´ under contiguous alternative hy-
potheses given in (8.25).

The power of this test is

πn ≡ Pr
³
Iφ1n

³bθI,φ2´³or Iφ1,hn

³bθI,φ2´´ > χ2(I−1)(J−1),α/H1,n
´
.

In what follows, we prove that under the alternative H1,n, and as n→∞,

Iφ1n

³bθI,φ2´³or Iφ1,hn

³bθI,φ2´´
converge in distribution to a noncentral chi-square random variable with noncentrality pa-

rameter δ given in Theorem 8.6, and (I − 1) (J − 1) degrees of freedom
³
χ2(I−1)(J−1) (δ)

´
.

Consequently, as n→∞

πn → Pr
³
χ2(I−1)(J−1) (δ) > χ2(I−1)(J−1),α

´
.

Theorem 8.6

Under H1,n : pn= p (θ0) +
d√
n
, θ0 some unknown value in Θ0, the φ-divergence test

statistics

Iφ1n

³bθI,φ2´³or Iφ1,hn

³bθI,φ2´´ (8.26)

are asymptotically noncentrally chi-squared distributed with (I − 1) (J − 1) degrees of
freedom and noncentrality parameter

δ=
IX
i=1

JX
j=1

d2ij
pi∗p∗j

−
IX
i=1

d2i∗
pi∗
−

JX
j=1

d2∗j
p∗j
.

Proof. Pardo, J. A. et al . (2002) established that for testing H0 : p = p (θ0) , for some

unknown θ0∈Θ0 ⊂ Θ ⊂ RM0 with

Θ0 = {θ ∈ Θ : fm (θ) = 0, m = 1, ..., ν} ,

versus H1,n : p = p (θ0) + d/
√
n, the asymptotic distribution of the test statistic given

in (8.26), under H1,n, is noncentral chi-square with M −M0 + ν − 1 degrees of freedom
and noncentrality parameter given by δ = µTµ, where

µ = diag
³
p (θ0)

−1/2´ (I −L (θ0))d,
L (θ0) = diag

³
p (θ0)

−1/2´
A (θ0)H (θ0)Σθ0A (θ0)

T
diag

³
p (θ0)

−1/2´
,
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and H (θ0) was given in (8.2).

In our case it is not difficult to establish that

µTµ = dTdiag
³
p (θ0)

−1/2´n³I −A (θ0)Σθ0A (θ0)
T

+ A (θ0)Σθ0BI (θ0)
T
³
BI (θ0)Σθ0BI (θ0)

T
´−1

BI (θ0)Σθ0A (θ0)
T

¶¾
× diag

³
p (θ0)

−1/2´
d.

Applying (8.17) we have

Σθ0 −Σθ0BI (θ0)
T
³
BI (θ0)Σθ0BI (θ0)

T
´−1

BI (θ0)Σθ0 =M
T
β0
IF (β0)

−1
Mβ0

.

Multiplying, in the previous expression, on the right byA (θ0) and on the left byA (θ0)
T

we have

µTµ = dTdiag
³
p (θ0)

−1/2´³
I −A (θ0)MT

β0
IF (β0)

−1Mβ0A (θ0)
T
´

× diag
³
p (θ0)

−1/2´
d

and

p (θ0) = p (g(β0)) , A (θ0)Mβ0 = A (g(β0)) ,

then

µTµ = dTdiag
¡
p
¡
g(β0)

−1¢¢ ³I −A (g(β0)) IF (g(β0))−1A (g(β0))T´
×diag

³
p (g(β0))

−1/2´
d.

It is not difficult to establish that the matrix dTdiag
³
p (g(β0))

−1/2´ is given byµ
d11√
p1∗p∗1

,
d12√
p1∗p∗2

, ...,
d1J√
p1∗p∗J

, ......,
dI1√
pI∗p∗1

,
dI2√
pI∗p∗2

, ...,
dIJ√
pI∗p∗J

¶
and the matrix IF (β0)

−1 by µ
ΣpI 0

0 ΣpJ

¶
,

where ΣpI = diag (pI)− pIpTI and ΣpJ = diag (pJ)− pJpTJ , being
pI = (p1∗, ..., pI−1∗)

T and pJ = (p∗1, ..., p∗J−1)
T .

With these expressions one gets

δ = µTµ =
IX
i=1

JX
j=1

d2ij
pi∗p∗j

−
IX
i=1

d2i∗
pi∗
−

JX
j=1

d2∗j
p∗j
.

For more details about the problem of independence in a two-way contingency table
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8.2.3. Multiway Contingency Tables

The parameter space associated with a three-way contingency table is

Θ =
n
θ : θ = (pijk; i = 1, ..., I, j = 1, ..., J, k = 1, ...,K, (i, j, k) 6= (I, J,K))T

o
,

where pijk = Pr (X = i, Y = j,Z = k) . The hypothesis of independence,

H0 : pijk = pi∗∗p∗j∗p∗∗k, i = 1, ..., I, j = 1, ..., J, k = 1, ...,K,

can be formulated by using the IJK − I − J −K + 2 constraints,

hijk (θ) = pijk − pi∗∗p∗j∗p∗∗k = 0,
where i, j, k ∈ D, being D the set,

{(i, j, k)/i = 1, ..., I, j = 1, ..., J, k = 1, ...,K, (i, j, k) 6= (i1, J,K), i1 = 1, ..., I,
(i, j, k) 6= (I, j1,K), j1 = 1, ..., J − 1, (i, j, k) 6= (I, J, k1), k1 = 1, ...,K − 1}

In this situation similar results to those of the previous subsections can be obtained

8.3. Symmetry

An interesting problem in a two-way contingency table is to investigate whether there

are symmetric patterns in the data: Cell probabilities on one side of the main diagonal

are a mirror image of those on the other side. This problem was first discussed by

Bowker (1948) who gave the maximum likelihood estimator as well as a large sample

chi-square type test for the null hypothesis of symmetry. In Ireland et al . (1969) it was

proposed the minimum discrimination information estimator and in Quade and Salama

(1975) the minimum chi-squared estimator. Based on the maximum likelihood estimator

and on the family of φ-divergence measures, in Menéndez et al . (2001e) a new family of

test statistics was introduced. This family contains as a particular case the test statistic

given by Bowker (1948) as well as the likelihood ratio test. The state-of-the art in relation

with the symmetry problem can be seen in Bishop et al . (1975), Agresti (2002), Andersen

(1998) and references therein.

We consider a two-way contingency table with I = J and let bp = (bp11, ..., bpII)T
be the nonparametric estimator of the unknown probability vector p with components

pij = Pr(X = i, Y = j), with pij > 0 and i, j = 1, ..., I.

The hypothesis of symmetry is

H0 : pij = pji, , i, j = 1, ..., I. (8.27)
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We consider the parameter space

Θ =
n
θ : θ = (pij ; i, j = 1, ..., I, (i, j) 6= (I, I))T

o
, (8.28)

and we denote by

p (θ) = (p11, ..., pII)
T = p, (8.29)

the probability vector characterizing our model, with pII = 1 −PI
i=1

PI
j=1 pij with

(i, j) 6= (I, I). The hypothesis of symmetry introduced in (8.27) can be formulated using
the following I (I − 1) /2 constraints

hij (θ) = pij − pji = 0, i < j, i = 1, ..., I − 1, j = 1, ..., I. (8.30)

Also considering the parameter β = (p11, ..., p1I , p22, ..., p2I , ..., pI−1I−1, pI−1I)T and the
set

B = {(a11, ..., a1I , a22,..., a2I , ..., aI−1I−1, aI−1I)T ∈ R I(I+1)
2 −1 :P

i≤j aij < 1, 0 < aij , i, j = 1, .., I},
the hypothesis (8.27) can be expressed for some unknown θ0 ∈ Θ with p (θ0) = p0 as

H0 : p0= p (g(β0)) , β0∈B and g(β0) = θ0, (8.31)

where the function g is defined by g = (gij ; i, j = 1, ..., I, (i, j) 6= (I, I)) with

gij(β) =

½
pij i ≤ j
pji i > j

, i, j = 1, ..., I − 1,

and
gIj(β) = pjI , j = 1, ..., I − 1
giI(β) = piI , i = 1, ..., I − 1.

Note that p (g(β)) = (gij(β); i, j = 1, ..., I)
T , where

gII (β) = 1−
IX

i,j=1
(i,j)6=(I,I)

gij(β).

In this Chapter we consider the approach given in (8.30). We can observe that with

this approach the hypothesis of symmetry can be written as

H0 : p=p (θ0) , for some unknown θ0∈Θ0,

with

Θ0 = {θ ∈Θ : hij (θ) = 0, i < j, i = 1, ..., I − 1, j = 1, ..., I} , (8.32)

p (θ) defined in (8.29) and hij in (8.30).
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It is clear that the I(I−1)
2 × ¡I2 − 1¢ matrix BS (θ0) given by

BS (θ0) =

µ
∂hij (θ0)

∂θij

¶
I(I−1)

2 ×(I2−1)
(8.33)

has rank I (I − 1) /2, because the matrix of partial derivatives BS (θ0) has the same

rank as the matrix ³
I I(I−1)

2 × I(I−1)
2
,−I I(I−1)

2 × I(I−1)
2
,O I(I−1)

2 ×I
´

where I I(I−1)
2 × I(I−1)

2
is the identity matrix of order I(I−1)/2 andO I(I−1)

2 ×I is the matrix
with I(I − 1)/2 rows and I columns whose elements are all zero.

For I = 2, we only have a constraint which is given by

h12 (θ) = p12 − p21 = 0,
and for I = 3, we have three constraints given by

h12 (θ) = p12 − p21 = 0
h13 (θ) = p13 − p31 = 0
h23 (θ) = p23 − p32 = 0.

In the following we obtain the expression of the minimum φ-divergence estimator of

θ0 ∈ Θ0, i.e., the minimum φ-divergence estimator under the hypothesis of symmetry

(8.30).

Theorem 8.7

The minimum φ-divergence estimator,

bθS,φ = ³pS,φij ; i, j = 1, ..., I and (i, j) 6= (I, I)´T ,
of θ0 in Θ0 (i.e., under the hypothesis of symmetry) is obtained as a solution of the

system of equations

1
2

µ
φ

µbpij
pij

¶
+ φ

µbpji
pij

¶
− bpij
pij

φ0
µbpij
pij

¶
− bpji
pij

φ0
µbpji
pij

¶¶
− µ = 0, i, j = 1, ..., I,

(8.34)

where µ has the expression

µ =
1

2

IX
i=1

JX
j=1

½
pij

·
φ

µbpij
pij

¶
+ φ

µbpji
pij

¶¸
− bpijφ0µbpij

pij

¶
− bpjiφ0µbpji

pij

¶¾
.

Its asymptotic distribution is given by

√
n
³bθS,φ − θ0

´
L→

n→∞ N(0,WS (θ0)), (8.35)
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where the
¡
I2 − 1¢× ¡I2 − 1¢ matrix WS (θ0) is

WS (θ0) = Σθ0 −Σθ0BS (θ0)
T
³
BS (θ0)Σθ0BS (θ0)

T
´−1

BS (θ0)Σθ0 ,

and BS (θ0) is the matrix defined in (8.33).

Proof. Instead of getting bθS,φ =
³
pS,φij ; i, j = 1, ..., I and (i, j) 6= (I, I)

´T
we shall

obtain p(bθS,φ) = ³
pS,φij ; i, j = 1, ..., I

´T
. The p0ijs, i, j = 1, ..., I, which minimize the

φ-divergence

Dφ(bp,p(θ))
subject to the null hypothesis of symmetry (or the constraints about θ given in (8.30)),

may be obtained by minimizing

IX
i=1

IX
j=1

pijφ

µbpij
pij

¶
+

IX
i=1

IX
j=1

i<j

λij (pij − pji) + µ
1− IX

i=1

IX
j=1

pij

 (8.36)

with respect to the pij , where µ and λij are undetermined Lagrangian multipliers. Min-

imizing the expression (8.36) is equivalent to minimizing the expression

1

2

IX
i=1

IX
j=1

pij

µ
φ

µbpij
pij

¶
+ φ

µbpji
pij

¶¶
+ µ

1− IX
i=1

IX
j=1

pij

 .
Differentiating with respect to pij , i, j = 1, ..., I we get the system of equations given in

(8.34), whose solutions provide the minimum φ-divergence estimator bθS,φ.
The asymptotic distribution follows from (8.3) because in our model IF (θ0)

−1
=

Σθ0 .

Corollary 8.2

The minimum power-divergence estimator, p(bθS,φ(λ)) = ³pS,φ(λ)ij ; i, j = 1, ..., I
´T

of

p (θ0) , under the hypothesis of symmetry (8.27), is given by

p
S,φ(λ)
ij =

¡bpλ+1ij + bpλ+1ji

¢ 1
λ+1

IX
i=1

IX
j=1

¡bpλ+1ij + bpλ+1ji

¢ 1
λ+1

, i, j = 1, ..., I. (8.37)

Proof. In this case the system of equations (8.34) can be written as

1
pλ+1ij

µbpλ+1ij +bpλ+1ji

2

¶
=

 IX
i=1

IX
j=1

µbpλ+1ij +bpλ+1ji

2

¶ 1
λ+1

λ+1

, i, j = 1, ..., I

© 2006 by Taylor & Francis Group, LLC



372 Statistical Inference based on Divergence Measures

and it is clear that the solution of this system of equations is given by (8.37).

For λ = 0,

p
S,φ(0)
ij =

bpij + bpji
2

, i, j = 1, ..., I,

so we obtain the maximum likelihood estimator for symmetry introduced by Bowker

(1948).

For λ→−1, we obtain as a limit case,

p
S,φ(−1)
ij =

(bpijbpji)1/2
IX
i=1

IX
j=1

(bpijbpji)1/2 , i, j = 1, ..., I

i.e., the minimum modified likelihood estimator for symmetry introduced and studied in

Ireland et al . (1969).

For λ = 1,

p
S,φ(1)
ij =

¡bp2ij + bp2ji¢1/2
IX
i=1

IX
j=1

¡bp2ij + bp2ji¢1/2
we get the minimum chi-square estimator for symmetry introduced in Quade and Salama

(1975).

Other interesting estimators for symmetry may be: For λ = −2 the minimum mod-

ified chi-square estimator, for λ = −1/2 the Freeman-Tukey estimator and finally for
λ = 2/3 the Cressie-Read estimator.

Remark 8.5

For I = 2, given θ0 = (p11, p12, p21)
T ∈ Θ0, it is easy to check that

· BS (θ0) = (0, 1,−1)
· Σθ0 = diag (θ0)− θ0θ

T
0 ,

·
³
BS (θ0)Σθ0BS (θ0)

T
´−1

=
³
− (p12 − p21)2 + p21 + p12

´−1
,

and it is not difficult to establish that the matrix WS (θ0) has the expression p11 (1− p11) −p11p12 −p11p12
−p11p12 −12p12 (2p12 − 1) −12p12 (2p12 − 1)
−p11p12 −12p12 (2p12 − 1) −12p12 (2p12 − 1)

 .
This matrix can be written as
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 1 0

0 1

0 1

µ p11 (1− p11) −p11p12
−p11p12 1

2p12 (1− 2p12)
¶µ

1 0 0

0 1 1

¶
,

where:

· The matrix µ
p11 (1− p11) −p11p12
−p11p12 1

2p12 (1− 2p12)
¶

is the inverse of the Fisher information matrix corresponding to the parameter

β0=(p11, p12)
T
, i.e., IF (β0)

−1.

· The matrix  1 0

0 1

0 1


is the matrix of partial derivatives

³
∂g(β0)
∂β

´T
.

Then we have

WS (θ0) =

µ
∂g(β0)

∂β

¶T
IF (β0)

−1
µ
∂g(β0)

∂β

¶
.

This result can be proved in general in the same way as the one corresponding to the

problem of independence in Section 8.2 .

Theorem 8.8

Under the hypothesis of symmetry, we have

WS (θ0) =M
T
β0
IF (β0)Mβ0 .

Proof. The proof follows the same steps as the proof of Theorem 8.2.

From Theorem 8.8, it can be seen that bθS,φ2 is BAN.
8.3.1. Test of Symmetry

Based on the test statistic given in (8.5) we should reject the hypothesis of symmetry

if

Sφ1n

³bθS,φ2´ ≡ 2n

φ001 (1)
Dφ1

³bp,p(bθS,φ2)´ > c,
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where c is a positive constant. In the following theorem we establish the asymptotic

distribution of the test statistic Sφ1n

³bθS,φ2´ .
Theorem 8.9

The asymptotic distribution of the φ-divergence test statistics

Sφ1n

³bθS,φ2´ = 2n

φ001 (1)
Dφ1

³bp,p(bθS,φ2)´ (8.38)

and

Sφ1,hn

³bθS,φ2´ ≡ 2n

h0 (0)φ001 (1)
h
³
Dφ1

³bp,p(bθS,φ2)´´ , (8.39)

for testing the hypothesis of symmetry, given in (8.27), is chi-square with I(I−1)
2 degrees

of freedom.

Proof. In our case we have I2 cells and by (8.28) I2 − 1 parameters that are necessary
to estimate. Using the relation (8.30) the number of constraints is I (I − 1) /2. Then by
(8.5) the asymptotic distribution of the family of φ-divergence test statistics (8.38) is

chi-square with

I2|{z}
Cells

− I2 − 1| {z }
Estimated

Parameters

+ I (I − 1) /2| {z }
Constraints

−1 = I (I − 1) /2| {z }
Degrees of

freedom

.

In relation with the family of test statistics given in (8.39), we have

h (x) = h (0) + h0 (0)x+ o (x) ,

then

h
³
Dφ1

³bp,p(bθS,φ2)´´ = h0 (0)Dφ1

³bp,p(bθS,φ2)´+ oP (1)
and we get that the asymptotic distribution of the family of test statistics given in (8.39)

is also chi-square with I (I − 1) /2 degrees of freedom.
Based on this result we should reject the hypothesis of symmetry if

Sφ1n

³bθS,φ2´ > χ2I(I−1)/2,α
³
or Sφ1,hn

³bθS,φ2´´ > χ2I(I−1)/2,α. (8.40)

Remark 8.6

For φ1 (x) = φ2 (x) = φ(0) (x) = x logx − x + 1 we get that Sφ1n
³bθS,φ2´ coincides

with the classical likelihood ratio test statistic for symmetry

G2 ≡ Sφ(0)n

³bθS,φ(0)´ = 2 IX
i,j=1
i 6=j

nij log
2nij

nij + nji
.

© 2006 by Taylor & Francis Group, LLC



Phi-divergence Measures in Contingency Tables 375

For φ2 (x) = φ(0) (x) = x logx−x+1 and φ1 (x) = φ(1) (x) =
1
2 (x− 1)2 , Sφ1n

³bθS,φ2´
coincides with the classical chi-square test statistic of Bowker (1948) and is given by

X2 ≡ Sφ(1)n

³bθS,φ(0)´ = IX
i,j=1
i<j

(nij − nji)2
nij + nji

.

It is also important to note that for φ1 (x) = φ2 (x) = φ(1) (x) =
1
2 (x− 1)2 we get

the test statistic given by Quade and Salama (1975) and for φ2 (x) = x logx− x+1 and
whatever φ1 (x) we get the family of test statistics introduced and studied in Menéndez et

al . (2001c).

Power of the Test

Let q =(q11, ..., qII)
T be a point at the alternative hypothesis, i.e., there exist at least

two indexes i and j for which qij 6= qji. We denote by θφ2a the point on Θ verifying

θφ2a =argmin
θ∈Θ0

Dφ2(q,p (θ)),

where Θ0 was defined in (8.32).

It is clear that

θφ2a = (fij(q); i, j = 1, ..., I, (i, j) 6= (I, I))T

and

p(θφ2a ) = (fij(q); i, j = 1, ..., I, )
T ≡ f(q),

with

fII(q) = 1−
IX

i,j=1
(i,j)6=(I,I)

fij(q).

The notation fij(q) indicates that the elements of the vector θ
φ2
a depend on q. For

instance, for the power-divergence family φ(λ) (x) we have

fij(q) =

¡
qλ+1ij + qλ+1ji

¢ 1
λ+1

IX
i=1

IX
j=1

¡
qλ+1ij + qλ+1ji

¢ 1
λ+1

, i, j = 1, ..., I.

We also denote

bθS,φ2 = ³pS,φ2ij ; i, j = 1, ..., I, (i, j) 6= (I, I)
´T
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and then

p(bθS,φ2) = ³pS,φ2ij ; i, j = 1, ..., I
´T
≡ f(bp),

where f =(fij ; i, j = 1, ..., I)
T . If the alternative q is true we have that bp tends to q

and p(bθS,φ2) to p³θφ2a ´ in probability.
If we define the function

Ψφ1 (q) = Dφ1(q,f(q)),

we have

Ψφ1 (bp) = Ψφ1 (q) +
IX
i=1

JX
j=1

∂Dφ1(q,f(q))

∂qij
(bpij − qij) + o (kbp− qk) .

Then the random variables
√
n (Dφ1(bp,f(bp))−Dφ1(q,f(q)))

and
√
n

IX
i=1

JX
j=1

∂Dφ1(q,f(q))

∂qij
(bpij − qij)

have the same asymptotic distribution. If we define

lij =
∂Dφ1(q,f(q))

∂qij
(8.41)

and l =(lij ; i, j = 1, ..., I)
T , we have

√
n
³
Dφ1(bp,f b(p))−Dφ1(q,f(q))

´
L−→

n→∞ N
³
0, lTΣql

´
, (8.42)

where Σq = diag (q)−qqT .
In the following theorem we present the asymptotic distribution using the maximum

likelihood estimator. In this case we have:

Theorem 8.10

Let p(bθ) = ³ bpij+bpji
2 , i, j = 1, ..., I

´T
the maximum likelihood estimator, under the

symmetry hypothesis, of p (θ0) = (p11, ..., pII)
T and let q be a point at the alternative

hypothesis (q 6= p(θ0)). Then,
√
n
³
Dφ1(bp,p(bθ))−Dφ1(q,f(q))

´
L−→

n→∞ N
¡
0,σ2φ1(q)

¢
,

where

σ2φ1(q) =
IX
i=1

IX
j=1
i6=j

qijm
2
ij −

 IX
i=1

IX
j=1
i 6=j

qijmij


2

,
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and

mij =
1
2φ1

³
2qij

qij+qji

´
+ 1

2φ1
³

2qji
qij+qji

´
+ qij

qij+qji

³
φ01
³

2qij
qij+qji

´
− φ01

³
2qji

qij+qji

´´
.

Proof. The result follows from (8.41) and (8.42).

In the same way as in the problem of independence it is not easy to get the expression

of the power function of the test statistics given in (8.40) when φ2 (x) 6= x logx− x+ 1;
however we can consider a contiguous sequence of alternative hypotheses that approach

the null hypothesis H0 : pij = pji at the rate O
¡
n−1/2

¢
. Consider the multinomial

probability vector

pn,ij = pij(θ0) +
dij√
n
, i, j = 1, ..., I,

where d =(d11, ..., dII)
T is a fixed vector such that

PI
i,j=1 dij = 0 and θ0 is unknown

but belonging to Θ0. As n→∞, the sequence of multinomial probabilities {pn}n∈N with

pn =

µ
pn,ij +

dij√
n
, i, j = 1, ..., I

¶T
converges to a multinomial probability in H0 at the rate of O

¡
n−1/2

¢
. We name

H1,n : pn = p (θ) +
d√
n
, θ ∈Θ0.

Then, we have the following result:

Theorem 8.11

Under H1,n : pn = p (θ0) +
d√
n
, θ0 some unknown value in Θ0, the test statistics

Sφ1n

³bθS,φ2´ and Sφ1,hn

³bθS,φ2´
are asymptotically noncentrally chi-squared distributed with I (I − 1) /2 degrees of freedom
and noncentrality parameter

δ =
1

2

IX
i,j=1
i6=j

d2ij
pij
−

IX
i,j=1
i<j

dijdji
pij

.

An interesting analysis of the problem of symmetry as well as a simulation study can

be seen in Menéndez et al . (2005a).
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In some real problems (i.e., medicine, psychology, sociology, etc.) the categorical

response variables (X,Y ) represent the measure after or before a treatment. In such

situations our interest is to determine the treatment effect, i.e., if X ≥ Y (we assume

that X represents the measure after the treatment and Y before the treatment). In

the following we understand that X is preferred or indifferent to Y , according to joint

likelihood ratio ordering, if and only if pij ≥ pji ∀i ≥ j. In this situation the alternative
hypothesis is

H1 : pij ≥ pji, for all i ≥ j.
This problem was first considered by Barmi & Kochar (1995) who presented the likelihood

ratio test statistic for the problem of testing

H0 : pij = pji against H1 : pij ≥ pji, ∀i ≥ j, (8.43)

and considered the application of it to a real life problem: He tested if the vision of both

the eyes, for 7477 women, is the same against the alternative that the right eye has better

vision than the left eye. Menéndez et al . (2003c) considered the three hypotheses, H0
and H1 given in (8.43) and H2 no restriction over the pij ’s and studied some φ-divergence

test statistics for testing H0 against H1 and H1 against H2.

8.3.2. Symmetry in a Three-way Contingence Table

If we consider a three-way contingency table, the parameter space, given in (8.7), is

Θ =
n
θ : θ = (pijk; i, j, k = 1, ..., I, (i, j, k) 6= (I, I, I))T

o
,

where pijk = Pr (X = i, Y = j,Z = k) , i, j, k = 1, ....., I, (i, j, k) 6= (I, I, I) and

pIII = 1−
IX

i,j,k=1
(i,j,k)6=(I,I,I)

pijk.

The hypothesis of symmetry is given by

H0 : pijk = pi0j0k0 ∀(i, j, k) and ∀ permutations (i0, j0, k0) of (i, j, k). (8.44)

We denote by p (θ) = (p111, ..., pIII)
T the probability vector characterizing our model.

The problem of symmetry formulated in (8.44) can be formulated using the following

I (I − 1) (5I + 2)/6 constraints about θ

hijk (θ) = pijk − pi0j0k0 = 0,∀ permutations (i0, j0, k0) of (i, j, k). (8.45)

We denote

Θ0 = {θ ∈ Θ/hijk (θ) = 0, ∀ permutations (i0, j0, k0) of (i, j, k)} .
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The matrix

B∗S (θ0) =
µ
∂hijk (θ0)

∂θijk

¶
I(I−1)(5I+2)

6 ×I3
(8.46)

has rank I (I − 1) (5I+2)/6, because the matrixB∗S (θ0) has the same rank as the matrixµ
−I I(I−1)(5I+2)

6 × I(I−1)(5I+2)
6

,C I(I−1)(5I+2)
6 × I(I−1)(I+4)

6
,0

I(I−1)(5I+2)
6

×I

¶
,

where I I(I−1)(5I+2)
6

is the identity matrix of order I(I − 1)(5I + 2)/6, 0
I(I−1)(5I+2)

6
×I
is

the matrix with I(I − 1)(5I + 2)/6 rows and I columns whose elements are all zero and
C I(I−1)(5I+2)

6 × I(I−1)(I+4)
6

is the matrix with I(I−1)(5I+2)
6 rows and I(I−1)(I+4)

6 columns

whose rank is the same as the rank of the matrix
³
I I(I−1)(I+4)

6
, I I(I−1)(I+4)

6

´T
.

Now we present in the following theorem the expression of the minimum φ-divergence

estimator of θ0 in Θ0.

Theorem 8.12

The minimum φ-divergence estimator,

bθS,φ = ³pS,φijk ; i, j, k = 1, ..., I, (i, j, k) 6= (I, I, I)´T ,
of θ0 in Θ0 is obtained as a solution of the system of equations

6
³
φ
³ bpijk
pijk

´
+ φ

³ bpikj
pijk

´
+ φ

³ bpjik
pijk

´
+ φ

³ bpjki
pijk

´
+ φ

³ bpkij
pijk

´
+ φ

³ bpkji
pijk

´´
−

−
³ bpijk
pijk

φ0
³ bpijk
pijk

´
+

bpikj
pijk

φ0
³ bpikj
pijk

´
+

bpjik
pijk

φ0
³ bpjik
pijk

´´
−
³ bpjki
pijk

φ0
³ bpjki
pijk

´
+ bpkij

pijk
φ0
³ bpkij
pijk

´
+ bpkji

pijk
φ0
³ bpkji
pijk

´´
− 6µ = 0

i, j, k = 1, ..., I
(8.47)

where µ has the expression

IX
i,j,k=1

µ
pijk

µ
φ

µbpijk
pijk

¶
+φ

µbpikj
pijk

¶
+φ

µbpjik
pijk

¶
+φ

µbpjki
pijk

¶
+φ

µbpkij
pijk

¶
+φ

µbpkji
pijk

¶¶
−1
6

µbpijkφ0µbpijk
pijk

¶
+ bpikjφ0µbpikj

pijk

¶
+ bpjikφ0µbpjik

pijk

¶¶
−1
6

µbpjkiφ0µbpjki
pijk

¶
+ bpkijφ0µbpkij

pijk

¶
+ bpkjiφ0µbpkji

pijk

¶¶¶
and its asymptotic distribution is given by

√
n(bθS,φ − θ0)

L→
n→∞ N(0,WS (θ0)) (8.48)

where the matrix W ∗
S (θ0) is

Σθ0

µ
I(I3−1)×(I3−1) −B∗S (θ0)T

³
B∗S (θ0)Σθ0B

∗
S (θ0)

T
´−1

BS (θ0)

¶
Σθ0 ,
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and B∗S (θ0) is the matrix given in (8.46).

Proof. Instead of getting

bθS,φ = ³pS,φijk ; i, j, k = 1, ..., I, (i, j, k) 6= (I, I, I)´T
we shall obtain p(bθS,φ) = ³

pS,φijk ; i, j, k = 1, ..., I
´T
. The pijk, i, j, k = 1, ..., I, which

minimize the φ-divergence Dφ (bp,p(θ)) subject to the null hypothesis of symmetry may
be obtained minimizing

IX
i,j,k=1

pijkφ

µbpijk
pijk

¶
+

IX
i,j,k=1

λijk (pijk − pi0j0k0) + µ
1− IX

i,j,k=1

pijk

 (8.49)

with respect to pijk, where µ and λijk are undetermined Lagrangian multipliers. Mini-

mizing the expression (8.49) is equivalent to minimizing the expression

IX
i,j,k=1

pijk

µ
φ

µbpijk
pijk

¶
+ φ

µbpikj
pijk

¶
+ φ

µbpjik
pijk

¶
+ φ

µbpjki
pijk

¶
+ φ

µbpkij
pijk

¶

+φ

µbpkji
pijk

¶
+ φ

µbpkji
pijk

¶¶
+ µ

1− IX
i,j,k=1

pijk

 .
Differentiating with respect to pijk, i, j, k = 1, ..., I, we get the system of equations given

in (8.47) whose solutions provide the minimum φ-divergence estimator bθS,φ.
The asymptotic distribution follows from (8.3) because in our model IF (θ0)

−1 =
Σθ0 .

Corollary 8.3

The minimum power-divergence estimator

p(bθS,φ(λ)) = ³pS,φijk ; i, j, k = 1, ..., I´ ,
under the hypothesis of symmetry, is given by

p
S,φ(λ)
ijk =

³bpλ+1ijk + bpλ+1ikj + bpλ+1jik + bpλ+1jki + bpλ+1kij + bpλ+1kji

´ 1
λ+1

IX
i,j,k=1

³bpλ+1ijk + bpλ+1ikj + bpλ+1jik + bpλ+1jki + bpλ+1kij + bpλ+1kji

´ 1
λ+1

, i, j, k = 1, ..., I.

(8.50)

For λ = 0,

p
S,φ(0)
ijk =

bpijk + bpikj + bpjik + bpjki + bpkij + bpkji
6

, i, j, k = 1, ..., I,
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hence, we obtain the maximum likelihood estimator. This estimator was introduced and

studied by Bowker (1948).

For λ→−1, we have

p
S,φ(−1)
ijk =

(bpijk × bpikj × bpjik × bpjki × bpkij × bpkji)1/6
IX

i,j,k=1

(bpijk × bpikj × bpjik × bpjki × bpkij × bpkji)1/6 , i, j, k = 1, ..., I,
the minimum modified likelihood estimator and finally for λ = 1,

p
S,φ(1)
ijk =

³bp2ijk + bp2ikj + bp2jik + bp2jki + bp2kij + bp2kji´1/2
IX

i,j,k=1

³bp2ijk + bp2ikj + bp2jik + bp2jki + bp2kij + bp2kji´1/2
,

we get the minimum chi-square estimator for symmetry.

Based on the test statistic given in (8.5) we should reject the hypothesis of symmetry

if

Sφ1n

³bθS,φ2´ ≡ 2n

φ001 (1)
Dφ1

³bp,p(bθS,φ2)´ > c,
where c is a positive constant.

In the following theorem we establish the asymptotic distribution of the φ-divergence

test statistic Sφ1n

³bθS,φ2´ .
Theorem 8.13

The asymptotic distribution of the φ-divergence test statistics

Sφ1n

³bθS,φ2´ = 2n

φ001 (1)
Dφ1

³bp,p(bθS,φ2)´ (8.51)

and

Sφ1,hn

³bθS,φ2´ ≡ 2n

h0 (0)φ001 (1)
h
³
Dφ1

³bp,p(bθS,φ2)´´ , (8.52)

for testing the hypothesis of symmetry, given in (8.44), is chi-square with I(I − 1)(5I +
2)/6 degrees of freedom.

Proof. In our case we have I3 cells and by (8.28) I3−1 parameters that are necessary to
estimate. Using the relation (8.45) the number of constraints is I(I− 1)(5I+2)/6. Then
by (8.5) the asymptotic distribution of the family of test statistics (8.51) is a chi-square

distribution with

I3|{z}
Cells

− I3 − 1| {z }
Estimated

Parameters

+ I(I − 1)(5I + 2)/6| {z }
Constraints

−1 = I(I − 1)(5I + 2)/6| {z }
Degrees of

freedom

.
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In relation with the family of test statistics given in (8.52), we have

h (x) = h (0) + h0 (0)x+ o (x) ,

then

h
³
Dφ1

³bp,p(bθS,φ2)´´ = h0 (0)Dφ1

³bp,p(bθS,φ2)´+ oP (1)
and we get that the asymptotic distribution of the family of test statistics given in (8.52)

is also chi-square with I(I − 1)(5I + 2)/6 degrees of freedom.
A study of this problem with maximum likelihood estimator and φ-divergence test

statistics can be seen in Menéndez et al . (2004b).

8.4. Marginal Homogeneity

In case the pattern is not completely symmetric, one likes to check whether, at

least, the two sets of marginal totals have the same distribution: marginal symmetry

(or marginal homogeneity) or the local odd ratios are symmetric: quasi-symmetry. The

problem of marginal homogeneity was first discussed by Stuart (1955), who defined a

test statistic which is a quadratic form in the differences of the corresponding marginal

values, whose matrix is the inverse of a consistent estimate of the covariance matrix of

the differences under the null hypothesis and its asymptotic distribution is chi-square

with I − 1 degrees of freedom under the null hypothesis of marginal homogeneity. This

hypothesis has been discussed by several authors (e.g., Bhapkar 1966, 1979, Ireland et

al . 1969, Bishop et al . 1975, Agresti 1983, Bhapkar and Darroch 1990, Kullback 1971).

We consider a two-way contingency table with I = J and let bp = (bp11, ...., bpII)T be
the nonparametric estimator of the unknown probability vector p = (p11, ..., pII)

T , where

pij = Pr (X = i, Y = j) , with pij > 0, and i, j = 1, ..., I.

The hypothesis of marginal homogeneity is given by

H0 :
IX
i=1

pji =
IX
i=1

pij, j = 1, ..., I − 1, (8.53)

and the parameter space is

Θ =
n
θ : θ = (pij ; i, j = 1, ..., I, (i, j) 6= (I, I))T

o
. (8.54)

We denote by

p (θ) = (p11, ..., pII)
T = p (8.55)

the probability vector characterizing the marginal homogeneity model with pII = 1 −PI
i=1

PI
j=1 pij with (i, j) 6= (I, I).
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The hypothesis of marginal homogeneity formulated in (8.53) can be formulated using

the following I − 1 constraints about the parameter θ,

hj (θ) =
IX
i=1

pji −
IX
i=1

pij = 0, j = 1, ..., I − 1, (8.56)

or considering the parameter

β =(p11, p21, .., p2I , ..., pI1, .., pII−1)
T

and the set

B =

(
(a11, a21, .., a2I , ..., aI1, .., aII−1) : aij > 0,

P
(i,j)∈L

aij < 1

)

where

L = {(i, j) : i, j = 1, ..., I, (i, j) 6= (I, I) , (i, j) 6= (1, j) , j = 2, ..., I} .

The hypothesis (8.53) can be expressed for some unknown θ0 ∈ Θ with p(θ0) = p0, by

H0 : p0=p (g(β0)) , β0∈B and g(β0) = θ0, (8.57)

where the function g is defined by

gij(β) = −
IX

i6=1,j
pij +

IX
l6=j
pjl i = 1, j = 2, ..., I

gij(β) = pij i 6= 1, j = 1, ..., I, (i, j) 6= (I, I)
g11(β) = p11.

We recall p (g(β)) = (gij(β), i, j = 1, ..., I)
T , where

gII(β) = 1−
IX

i,j=1
(i,j)6=(I,I)

gij(β).

In this Chapter we consider the approach given in (8.56). We can observe that with

this approach the problem of marginal homogeneity can be written as

H0 : p = p (θ0) , for some unknown θ0∈Θ0,

with

Θ0 = {θ ∈Θ: hj (θ) = 0, j = 1, ..., I − 1} ,
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p (θ) defined in (8.55) and hj , j = 1, ..., I − 1, in (8.56).
It is clear that the matrix

BMH (θ0) =

µ
∂hj (θ0)

∂θij

¶
(I−1)×(I2−1)

(8.58)

has rank I − 1 because the matrix I(I−1)×(I−1) is a submatrix of it.
For I = 2, we only have a constraint and it is given by

h1 (θ) = p12 − p21 = 0,
so that the problem of marginal homogeneity coincides with the problem of symmetry.

For I = 3, we have the two following constraints,

h1 (θ) = p12 + p13 − p21 − p31 = 0
h2 (θ) = p21 + p23 − p12 − p32 = 0.

In the following we present the expression of the minimum φ-divergence estimator of

θ0 under the constraints given in (8.56).

Theorem 8.14

The minimum φ-divergence estimator,

bθMH,φ
=
³
pMH,φ
ij ; i, j = 1, ..., I, and (i, j) 6= (I, I)

´T
,

of θ0 in Θ0 (i.e., under the hypothesis of marginal homogeneity) is obtained as a solution

of the system of equations
φ

µbpij
pij

¶
− bpij
pij

φ0
µbpij
pij

¶
− µ+ λi − λj = 0, i, j = 1, ..., I, i 6= j
IX
i=1

pji −
IX
i=1

pij = 0, j = 1, ..., I
(8.59)

where µ has the expression

µ =
IX
i=1

JX
j=1

µ
pij

µ
φ

µbpij
pij

¶
+ λi − λj

¶
− bpijφ0µbpij

pij

¶¶
.

Its asymptotic distribution is

√
n(bθMH,φ − θ0)

L→
n→∞ N(0,WMH (θ0)), (8.60)

where the (I2 − 1)× (I2 − 1) matrix WMH (θ0) is given by

Σθ0 −Σθ0BMH (θ0)
T
³
BMH (θ0)Σθ0BMH (θ0)

T
´−1

BMH (θ0)Σθ0 .
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Proof. Instead of getting bθMH,φ
=
³
pMH,φ
ij ; i, j = 1, ..., I, and (i, j) 6= (I, I)

´T
we shall

obtain p
³bθMH,φ

´
=
³
pMH,φ
ij ; i, j = 1, ..., I

´T
. The p0ijs, i, j = 1, ..., I, which minimize

the φ-divergence

Dφ(bp,p(θ))
subject to the null hypothesis of marginal homogeneity (or the constraints about θ given

in (8.56)), may be obtained minimizing

IX
i=1

IX
j=1

pijφ

µbpij
pij

¶
+

IX
i=1

λi

 IX
j=1

pij −
IX
j=1

pji

+ µ
1− IX

i=1

IX
j=1

pij

 (8.61)

with respect to the pij , where µ and λi are undetermined Lagrangian multipliers. Min-

imizing the expression (8.61), is equivalent to solving the system of equations given in

(8.59). The asymptotic distribution is obtained from (8.3) because in our case IF (θ0)
−1
=

Σθ0 .

Corollary 8.4

The minimum power-divergence estimator, p(bθMH,φ
) =

³
pMH,φ
ij ; i, j = 1, ..., I

´T
of

θ0 under the hypothesis of marginal homogeneity (8.56), is given by

p
MH,φ(λ)
ij =

bpij
((λ+ 1) (−µ+ λi − λj))

1
λ+1

i, j = 1, ..., I

where µ and λi, i = 1, ..., I, must satisfy the system of equations

IX
i=1

IX
j=1

bpij
((λ+1)(−µ+λi−λj))

1
λ+1

= 1

IX
j=1

bpij
((λ+1)(−µ+λi−λj))

1
λ+1

=
IX
l=1

bpli
((λ+1)(−µ+λl−λi))

1
λ+1

, i = 1, ..., I

.

The maximum likelihood estimator, obtained for λ = 0, is

p
MH,φ(0)
ij =

bpij
1 + λi − λj

, i, j = 1, ..., I

where the λi holds

IX
j=1

bpij
1 + λi − λj

=
IX
j=1

bpji
1 + λj − λi

, i = 1, ..., I.

The minimum modified likelihood estimator, obtained for λ→−1, is

p
MH,φ(−1)
ij =

bpij ajaiPI
i=1

PI
j=1 bpij ajai , i, j = 1, ..., I,
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where the ai holds

ai

IX
j=1

bpji
aj
=
1

ai

IX
l=1

bpilal, i = 1, ..., I.
Remark 8.7

For I = 3, given θ0=(p11, p21 + p23 − p32, p31 + p32 − p23, p21, p22, p23, p31, p32)T ∈
Θ0, it is easy to check that

· BMH (θ0) =

µ
0 1 1 −1 0 0 −1 0

0 −1 0 1 0 1 0 −1
¶
,

· Σθ0 = diag (θ0)− θ0θ
T
0 ,

· The matrix
³
BMH (θ0)Σθ0B

T
MH (θ0)

´−1
is

1
4p21p31+4p23p31+4p21p32−(p23−p32)2

µ
2 (p23 + p21) 2p21 + p23 − p32

2p21 + p23 − p32 2 (p31 + p21)

¶

and it is not difficult to establish that the matrix WMH (θ0) is

WMH (θ0) =

µ
∂g(β0)

∂β

¶T
IF (β0)

−1
µ
∂g(β0)

∂β

¶
where

µ
∂g(β0)

∂β

¶T
=



1 0 0 0 0 0

0 1 0 1 0 −1
0 0 0 −1 1 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


and IF (β0)

−1 is the inverse of the Fisher information matrix for the parameter β0 =
(p11, p21, p22, p23, p31, p32)

T
.

This result can be proved in general in the same way as the results in Sections 2 and

3 corresponding to hypotheses of independence and symmetry, respectively. From this

result, bθMH,φ2
is also BAN.

Theorem 8.15

Under the marginal homogeneity model, we have

WMH (θ0) =M
T
β0
IF (β0)

−1
Mβ0 .
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Proof. The proof follows the same steps as the proof of Theorem 8.2

In the following theorem we present two families of test statistics for testing marginal

homogeneity based on the minimum φ-divergence estimator.

Theorem 8.16

The asymptotic distribution of the φ-divergence test statistics

MHφ1
n

³bθMH,φ2
´
≡ 2n

φ001 (1)
Dφ1

³bp,p(bθMH,φ2
)
´

(8.62)

and

MHφ1,h
n

³bθMH,φ2
´
≡ 2n

h0 (0)φ001 (1)
h
³
Dφ1

³bp,p(bθMH,φ2
)
´´

(8.63)

for testing the hypothesis of marginal homogeneity given in (8.53) is chi-square with I−1
degrees of freedom.

Proof. In our case we have I2 cells and by (8.54) I2−1 parameters that are necessary to
estimate. Using the relation (8.56) the number of constraints is I−1. Then by (8.5), the
asymptotic distribution of the family of φ-divergence test statistics (8.62) is chi-square

with

I2|{z}
Cells

− I2 − 1| {z }
Estimated

Parameters

+ (I − 1)| {z }
Constraints

−1 = (I − 1)| {z }
Degrees of

freedom

.

In relation with the family of test statistics given in (8.63), we have

h (x) = h (0) + h0 (0)x+ o (x) ,

therefore

h
³
Dφ1

³bp,p(bθMH,φ
)
´´
= h0 (0)Dφ1

³bp,p(bθMH,φ
)
´
+ oP (1)

and we get that the asymptotic distribution of the family of test statistics given in (8.63)

is also chi-square with I − 1 degrees of freedom.

If we use the test statistics MHφ1
n

³bθMH,φ2
´ ³

MHφ1,h
n

³bθMH,φ2
´´

for testing the

marginal homogeneity we should reject the null hypothesis, i.e., the hypothesis of mar-

ginal homogeneity if MHφ1
n

³bθMH,φ2
´ ³

MHφ1,h
n

³bθMH,φ2
´´

is too large. Based on the

previous theorem we should reject the hypothesis of marginal homogeneity, with signifi-

cance level α, if

MHφ1
n

³bθMH,φ2
´
> χ2I−1,α or MH

φ1,h
n

³bθMH,φ2
´
> χ2I−1,α.
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8.5. Quasi-symmetry

The symmetry concept is stronger than that of marginal symmetry in the sense that

the latter is implied by the former. The hypothesis of quasi-symmetry was introduced by

Caussinus (1965) who introduced the maximum likelihood estimator for quasi-symmetry

as well as a chi-square type statistic for testing this hypothesis. For additional discussion

symmetry and independence for cross-classified data in a two-way contingency table.

These models are expressed in terms of the cross-product ratios and a maximum likeli-

hood estimation procedure is proposed for estimating the expected frequencies subject

to the constraints imposed on the frequencies through the cross-product ratios.

We consider a two-way contingency table with I = J and let bp = (bp11, ..., bpII)T be
the nonparametric estimator of the unknown probability vector p = (p11, ..., pII)

T , where

pij = Pr (X = i, Y = j) , with pij > 0 and i, j = 1, ..., I.

The hypothesis of quasi-symmetry is given by

H0 : pijpjkpki = pikpkjpji, (8.64)

for all i, j, k = 1, ..., I.

We consider the parameter space

Θ =
n
θ : θ = (pij ; i, j = 1, ..., I, (i, j) 6= (I, I))T

o
, (8.65)

and we denote by

p (θ) = (p11, ..., pII)
T = p (8.66)

the probability vector characterizing our model with pII = 1−
PI
i=1

PI
j=1 pij and (i, j) 6=

(I, I).

There are other two equivalent ways to characterize the quasi-symmetry showed by

Caussinus (1965). The hypothesis (8.64) is equivalent to

H0 : sij = sji, i 6= j

with

sij =
pijpII
piIpIj

, i, j = 1, ..., I − 1, (8.67)

as well as to

H0 : cij = cji, i 6= j, cij > 0 (8.68)

with

pij = aicij , ai > 0.

© 2006 by Taylor & Francis Group, LLC

of quasi-symmetry, see Darroch (1981, 1986), McCullagh (1982), Darroch and McCullagh

(1986) and Agresti (2002). Recently, Matthews and Growther (1997) have studied quasi-
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The hypothesis of quasi-symmetry in the way given by (8.67) could be formulated using

the following (I − 1)(I − 2)/2 constraints about θ,

hij (θ) = pijpjIpIi − piIpIjpji = 0, (8.69)

for all i, j = 1, ..., I − 1, i < j. Also considering the parameter

β =(p11, p1I , p21, p22, p2I , ..., pI1, pI2, ..., pII−1)
T

and the set

B = {(a11, a1I , a21, a22, a2I , ..., aI1, aI2, ..., aII−1)T ∈ R (I−1)(I+4)
2 :P

i,j
aij < 1, aij > 0, i, j = 1, ..., I},

the hypothesis (8.69) can be expressed as

H0 : p=p (g(β0)) , β0∈B and g(β0) = θ0,

where the function g is defined by

gij(β) =
piIpIjpji
pjIpI1

i, j = 1, ..., I − 1, i < j
gij(β) = pij i = 1, ..., I, j = 1, ..., I − 1, i ≥ j
giI(β) = piI i = 1, ..., I − 1.

We observe that p (g(β)) = (gij(β), i, j = 1, ..., I)
T
, where

gII(β) = 1−
IX

i,j=1
(i,j)6=(I,I)

gij(β).

In this Section we consider the approach given in (8.67). We can observe that with

this approach the problem of quasi-symmetry can be written as

H0 : p = p (θ0) , for some unknown θ0 ∈ Θ0,
with

Θ0 = {θ ∈ Θ : hij (θ) = 0, i, j = 1, ..., I − 1, i < j} ,
p (θ) defined in (8.66) and hij (θ) in (8.69).

In this case the matrix of partial derivatives

BQS (θ0) =

µ
∂hij (θ0)

∂θij

¶
(I−1)(I−2)/2×(I2−1)

(8.70)
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This approach can be formulated and solved in terms of the results presented in Chapter

6.
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has rank (I−1)(I−
(1979).

For I = 3, we have a constraint given by

h12 (θ) = p12p23p31 − p13p32p21 = 0.

Next theorem presents the expression of the minimum φ-divergence estimator of θ0
under the constraints given in (8.69). We shall denote pi∗ =

PI
j=1 pij .

Theorem 8.17

The minimum φ-divergence estimator,

bθQS,φ = ³pQSij , i, j = 1, ..., I, (i, j) 6= (I, I)´T ,
of θ0 ∈ Θ0 (i.e., under the hypothesis of quasi-symmetry) is obtained as a solution of the
system of equations

pijφ
³ bpij
pij

´
+ pjiφ

³ bpji
pji

´
− bpijφ0 ³ bpijpij ´− bpjiφ0 ³ bpjipji´ = µ (pij + pji) , i, j = 1, ..., I

IX
j=1

pijφ
³ bpij
pij

´
−

IX
j=1

bpijφ0 ³ bpijpij ´ = µpi∗, i = 1, ..., I

(8.71)

with

µ =
IX
i=1

IX
j=1

µ
pijφ

µbpij
pij

¶
− bpijφ0µbpij

pij

¶¶
.

Its asymptotic distribution is

√
n(bθQS,φ − θ0)

L→
n→∞ N(0,WQS (θ0)), (8.72)

where the (I2 − 1)× (I2 − 1) matrix WQS (θ0) has the expression

Σθ0 −Σθ0BQS (θ0)
T
³
BQS (θ0)Σθ0BQS (θ0)

T
´−1

BQS (θ0)Σθ0 ,

and the matrix BQS (θ0) is defined in (8.70).

Proof. Instead of getting bθQS,φ = ³pQS,φij ; i, j = 1, ..., I, and (i, j) 6= (I, I)
´T

we shall

obtain

p(bθQS,φ) = ³pQS,φij ; i, j = 1, ..., I
´T
.

The p0ijs which minimize the φ-divergence

Dφ(bp,p(θ))
© 2006 by Taylor & Francis Group, LLC
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subject to the null hypothesis of quasi-symmetry may be obtained minimizing

IX
i=1

IX
j=1

pijφ

µbpij
pij

¶
+

X
(i,j)∈C

λij (pijpjIpIi − piIpIjpji) + µ
1− IX

i=1

IX
j=1

pij


where C = {(i, j) : i, j = 1, ..., I − 1, i < j} . By using the characterization given in (8.68),
we must obtain the minimum of the function

IX
i=1

IX
j=1

aicijφ

µ bpij
aicij

¶
+

X
(i,j)∈C

λij (cij − cji) + µ
1− IX

i=1

IX
j=1

aicij

 (8.73)

with respect to ai and cij , where µ and λij are undetermined Lagrangian multipliers.

Minimizing the expression (8.73) is equivalent to minimizing the expression

1

2

IX
i=1

IX
j=1

µ
aicijφ

µ bpij
aicij

¶
+ ajcijφ

µ bpji
ajcij

¶¶
+ µ

1− 1
2

IX
i=1

IX
j=1

(ai + aj) cij


and the values of ai and cij are obtained as a solution of the system of equations

given in (8.71). The asymptotic distribution is obtained from (8.3) because in this case

IF (θ0)
−1 = Σθ0 .

Corollary 8.5

The minimum power-divergence estimator, p
³bθQS,φ(λ)´ = ³pQS,φ(λ)ij ; i, j = 1, ..., I

´T
of p (θ0) under the hypothesis of quasi-symmetry (8.64) is given by the solution of the

system of equations
1

λ+1

µ
pij − bpλ+1ij

pijλ
+ pji − bpλ+1ji

pjiλ

¶
= µ (pij + pji) , i, j = 1, ..., I, i 6= j

1
λ+1

pi∗ − IX
j=1

bpλ+1ij

pijλ

 = µpi∗, i = 1, ..., I,

where µ is

µ =
1

λ+ 1

1− IX
i=1

IX
j=1

bpλ+1ij

pijλ

 .
It is clear that for λ → 0, we obtain the maximum likelihood estimator introduced by

Caussinus (1965), i.e., ½
pij + pji = bpij + bpji

pi∗ = bpi∗ .
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Remark 8.8

For I = 3, given

θ0=

µ
p11,

p13p32p31
p21p31

, p13, p21, p22, p23, p31, p32

¶T
∈ Θ0

it is easy to check that

· BQS (θ0) =
¡
0, p23p31, −p32p21, −p13p32, 0, p12p31, p12p23, −p13p21

¢
,

· Σθ0 = diag (θ0)− θ0θ
T
0 ,

· The matrix
³
BQS (θ0)Σθ0BQS (θ0)

T
´−1

is given by

p23p31
p13p32p21 (p23p31 (p23p31 + p21p32 + p13p32 + p13p21) + p13p32p21 (p23 + p31))

and it is not difficult to establish that the matrix WQS (θ0) is

WQS (θ0) =

µ
∂g(β0)

∂β

¶T
IF (β0)

−1
µ
∂g(β0)

∂β

¶
,

where

µ
∂g(β0)

∂β

¶T
=



1 0 0 0 0 0 0

0 p21p32
p23p31

p13p32
p23p31

0 −p13p32p21
p223p31

−p13p32p21
p23p231

p13p21
p23p31

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


and IF (β0)

−1 is the inverse of the Fisher information matrix for the parameter β0 =
(p11, p13, p21, p22, p23, p31, p32)

T
. This result can be obtained in general in the same way

as in the previous problems. Therefore, bθQS,φ2 is BAN.
Now we shall establish a theorem to get the asymptotic distribution of two new

families of test statistics introduced for testing the hypothesis of quasi-symmetry given

in (8.64).

Theorem 8.18

The asymptotic distribution of the φ-divergence test statistics

QSφ1n

³bθQS,φ2´ ≡ 2n

φ001 (1)
Dφ1

³bp,p(bθQS,φ2)´ (8.74)
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and

QSφ1n

³bθQS,φ2,h´ ≡ 2n

h0 (0)φ001 (1)
h
³
Dφ1

³bp,p(bθQS,φ)´´ (8.75)

for testing the hypothesis of quasi-symmetry is chi-square with (I − 1) (I − 2) /2 degrees
of freedom.

Proof. In our case we have I2 cells and I2 − 1 parameters that are necessary to esti-
mate. Using the relation (8.69) the number of constraints is (I − 1) (I − 2) /2. Then the
asymptotic distribution of the family of statistics (8.74) is chi-square with

I2|{z}
Cells

− I2 − 1| {z }
Estimated

Parameters

+ (I − 1) (I − 2) /2| {z }
Constraints

−1 = (I − 1) (I − 2) /2| {z }
Degrees of

freedom

.

In relation with the family of tests statistics given in (8.75), we have

h (x) = h (0) + h0 (0)x+ o (x) ,

then

h
³
Dφ1

³bp,p(bθQS,φ2)´´ = h0 (0)Dφ1

³bp,p(bθQS,φ2)´+ oP (1)
and we get that the asymptotic distribution of the family of tests statistics given in (8.75)

is also chi-square with (I − 1) (I − 2) /2 degrees of freedom.
Caussinus (1965) showed that symmetry is equivalent to quasi-symmetry and mar-

ginal homogeneity simultaneously holding; then we have

Quasi-Symmetry + Marginal homogeneity = Symmetry. (8.76)

From this idea we consider the two following families of φ-divergences test statistics

WMH
φ1,φ2

= 2n
φ001 (1)

³
Dφ1

³bp,p(bθS,φ2)´−Dφ1

³bp,p(bθQS,φ2)´´ (8.77)

and

SMH
φ1,φ2

= 2n
φ002 (1)

Dφ1

³
p(bθQS,φ2),p(bθS,φ2)´ . (8.78)

In the following theorem, its proof can be seen in Menéndez et al . (2005c), we present

their asymptotic distribution.

Theorem 8.19

For testing hypotheses,

H0 : Symmetry versus H1 : Quasi-Symmetry,

the asymptotic null distribution of the test statistics WMH
φ1,φ2

and SMH
φ1,φ2

given in (8.77)

and (8.78) respectively is chi-square with I − 1 degrees of freedom.
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8.6. Homogeneity

Suppose we have ν independent random samples and we are interested in testing

the null hypothesis that the samples are homogeneous, i.e., are from the same un-

known population. We denote the samples by X(1) =
³
X
(1)
1 , ...,X

(1)
n1

´T
,..., X(ν) =³

X
(ν)
1 , ...,X

(ν)
nν

´T
, of sizes n1, ..., nν respectively, and we are interested in deciding if

the samples X(1), ...,X(ν) are all derived from the same distribution function F (x) =

Q (X ≤ x) , x ∈ R, where Q is a probability measure on the real line. In this direction let
P = {Ei}i=1,...,M be a partition of the real line into M mutually exclusive and exhaus-

tive intervals, where Pr
³
X
(i)
k ∈ Ej

´
= pij for i = 1, ..., ν, j = 1, ...,M and k = 1, ..., ni.

We denote θi = (pi1, ..., piM−1)
T
, where 0 < pij < 1,

PM
j=1 pij = 1, ∀i = 1, ..., ν, and

p (θi) = (pi1, ..., piM)
T . If X(1), ...,X(ν) are all drawn, at random, from the same dis-

tribution function F, then it is expected that pij = Q (Ej) , for every i = 1, ..., ν and

j = 1, ...,M and therefore the problem is now reduced to a problem of testing homogene-

ity in multinomial populations, i.e., the null hypothesis,

H0 : p1j = ... = pνj = Q (Ej) = p
∗
j , j = 1, ...,M, (8.79)

where 0 < p∗j < 1 and
PM
j=1 p

∗
j = 1.

We can observe that our parameter space is given by

Θ =
n
θ : θ = (p11, ..., p1M−1, ..., pν1, ..., pνM−1)

T
o
, (8.80)

that is, θ =
³
θT1 , ...,θ

T
ν

´T
and its dimension is (M − 1) ν.

The usual test statistics for testing (8.79), if p∗ = (p∗1, ..., p∗M)
T
is completely un-

known, are the chi-square test statistic and the likelihood ratio test given, respectively,

by

X2 =
νX
i=1

MX
j=1

³
nij − ni∗n∗j

n

´2
ni∗n∗j
n

(8.81)

and

G2 = 2
νX
i=1

MX
j=1

nij

µ
log

nij
ni∗
− log n∗j

n

¶
. (8.82)

Their asymptotic distribution under the null hypothesis H0 given in (8.79) is chi-square

with (M − 1)(ν − 1) degrees of freedom. In the expressions (8.81) and (8.82), nij is
the observed number of the components of X(i), i = 1, .., ν, belonging to the inter-

val Ej , j = 1, ...,M, n∗j =
Pν
i=1 nij , j = 1, ...,M, ni∗ =

PM
j=1 nij , i = 1, ..., ν and
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n =
Pν
i=1

PM
j=1 nij =

PM
j=1 n∗j =

Pν
i=1 ni∗. In the two previous test statistics the un-

known parameters have been estimated using the maximum likelihood estimator in all

the parameter space (nij/ni∗) and the maximum likelihood estimator under the null hy-

pothesis (n∗j/n). The test statistics given in (8.81) and (8.82) were extended by Pardo,
L. et al . (1999) by considering test statistics based on φ-divergence measures and using

the maximum likelihood estimator. An extension of that result when the probability

distribution p∗ = (p∗1, ..., p∗M)
T depends on some unknown parameters can be seen in

Pardo L. et al . (2001).

In the following we shall denote by

p(bθi) = µni1
ni∗
, ...,

niM
ni∗

¶T
,

the maximum likelihood estimator of p (θi) , i.e., the probabilities corresponding to the

ith-population. We also consider the two following probability vectors

bp = ³n1∗
n
p(bθ1)T , ..., nν∗

n
p(bθν)T´T = ³n11

n
, ...,

n1M
n
, ...,

nν1
n
, ...,

nνM
n

´T
and

p∗ (θ) =
³n1∗
n
p11, ...,

n1∗
n
p1M , ...,

nν∗
n
pν1, ...,

nν∗
n
pνM

´T
=

³n1∗
n
p (θ1)

T
, ...,

nν∗
n
p (θν)

T
´T
.

The φ-divergence between the vectors bp and p∗ (θ) is given by
Dφ(bp,p∗ (θ)) = νX

i=1

MX
j=1

ni∗
n
pijφ

µ
nij
ni∗pij

¶
.

It is clear that

Hφ
n

³bθ´ ≡ 2n

φ00 (1)
Dφ(bp,p∗(bθ)) = 2n

φ00 (1)

νX
i=1

MX
j=1

ni∗
n

n∗j
n

φ

µ
nijn

ni∗n∗j

¶

coincides with the test statistic X2, given in (8.81), for φ (x) = 1
2 (x− 1)2, where bθ is the

maximum likelihood estimator of θ ∈ Θ, under the null hypothesis, given by

bθ = ³n∗1
n
, ...,

n∗M−1
n

, (ν...,
n∗1
n
, ...,

n∗M−1
n

´T
, (8.83)

and p∗(bθ) is obtained from p∗ (θ) replacing θ by bθ. The likelihood ratio test statistic G2,
given in (8.82), is obtained for φ (x) = x logx− x+ 1.

Pardo, L. et al . (1999) established that the asymptotic distribution of the test statistic

Hφ
n

³bθ´ is chi-square with (M − 1)(ν − 1) degrees of freedom. In this section instead of
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considering the maximum likelihood estimator we consider the minimum φ-divergence

estimator.

The hypothesis of homogeneity given in (8.79) can be formulated using the (ν − 1) (M−
1) constraints,

hij (θ) = pij − pνj = 0, i = 1, ..., ν − 1, j = 1, ...,M − 1. (8.84)

In this case

Θ0 = {θ ∈Θ : hij (θ) = 0} ,

therefore if θ0 ∈ Θ0, θ0 is given by θ0 =
³
p1, ..., pM−1, (ν..., p1, ..., pM−1

´T
. We denote

θ01 = (p1, ..., pM−1)
T
and

Iλ (θ0) = diag (λ)⊗ IF
¡
θ01
¢
,

where λi = lim
n→∞ni∗/n, i = 1, ..., ν, λ = (λ1, ...,λν)

T and

IF
¡
θ01
¢
=

(
1
pi
+ 1

pM
if i = j

1
pM

if i 6= j i, j = 1, ...,M − 1.

By ⊗ we are denoting the Kronecker product of the matrices diag (λ) and IF
¡
θ01
¢
.

In the following theorem, its proof can be seen in Menéndez et al . (2003b), we present

the expression of the minimum φ−divergence estimator of θ under the constraints given
in (8.84).

Theorem 8.20

The minimum φ-divergence estimator, bθH,φ = ³pH,φj , j = 1, ...,M − 1
´T
, of θ0 under

the hypothesis of homogeneity, is obtained as a solution of the system of the equations

νX
i=1

ni∗
n

Ã
φ

Ã
nij
ni∗p∗j

!
− nij
ni∗p∗j

φ0
Ã
nij
ni∗p∗j

!!
− µ = 0, j = 1, ...,M, (8.85)

where

µ =
MX
j=1

νX
i=1

p∗j
ni∗
n

Ã
φ

Ã
nij
ni∗p∗j

!
− nij
ni∗p∗j

φ0
Ã
nij
ni∗p∗j

!!
.

Its asymptotic distribution is

√
n
³bθH,φ − θ0

´
L→

n→∞ N (0,WH (θ0)) , (8.86)

where the matrix WH (θ0) has the expression

I−1λ (θ0)

µ
I −BH (θ0)

T
³
BH (θ0) I

−1
λ (θ0)BH (θ0)

T
´−1

BH (θ0) I
−1
λ (θ0)

¶
,
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BH (θ0)(ν−1)(M−1)×ν(M−1) =

Ãµ
∂hij (θ)

∂θst

¶
θ=θ0

!
i=1,...,ν−1;j=1,...,M−1
s=1,...,ν; t=1,...,M−1

,

= (I,MH)

I denotes the (M − 1)(ν − 1)× (M − 1)(ν − 1) identity matrix,MH is the matrix given

by

MH =
³
−I(M−1)×(M−1), (ν−1... ,−I(M−1)×(M−1)

´T
and the rank of BH (θ0) is (M − 1)× (ν − 1) .
Corollary 8.6

The minimum power-divergence estimator, p(bθH,φ(λ)) = ³
pH,φj , j = 1, ...,M

´T
, of

p (θ0) under the hypothesis of homogeneity (8.84) is given by

p
H,φ(λ)
j =

Ã
νP
i=1

nλ+1ij

nλi∗

!1/(λ+1)
MP
j=1

Ã
νP
i=1

nλ+1ij

nλi∗

!1/(λ+1) , j = 1, ...,M. (8.87)

The proof follows from (8.85) and taking into account the expression of φ(λ). It is inter-

esting to observe that for λ = 0,

p
H,φ(0)
j =

n∗j
n
, j = 1, ...,M,

i.e., we obtain the classical maximum likelihood estimator under homogeneity and for

λ = 1,

p
H,φ(1)
j =

Ã
νP
i=1

n2ij
ni∗

!1/2
MP
j=1

Ã
νP
i=1

n2ij
ni∗

!1/2 , j = 1, ...,M
the minimum chi-square estimator under homogeneity. This estimator was obtained, for

the first time, in a different way from the one presented here, by Quade and Salama

(1975).

Other interesting estimators for homogeneity are: For λ = −2 the minimum modified
chi-square estimator; for λ → −1, the minimum modified likelihood estimator; for λ =

−1/2 Freeman-Tukey estimator and finally for λ = 2/3 Cressie-Read estimator.
The asymptotic distribution of the φ-divergence test statistic for testing homogene-

ity, based on the restricted minimum φ-divergence estimator, is given in the following

theorem. Its proof can be seen in Menéndez et al . (2003b).
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Theorem 8.21

The asymptotic distribution of the φ-divergence test statistic

Hφ1
n

³bθH,φ2´ ≡ 2n

φ001 (1)
Dφ1

³bp,p∗(bθH,φ2)´
for testing the hypothesis of homogeneity is chi-square with (ν − 1) (M − 1) degrees of
freedom.

Based on this theorem we should reject the null hypothesis of homogeneity given in

(8.79), with significance level α, iff

Hφ1
n

³bθH,φ2´ > χ2(ν−1)(M−1),α. (8.88)

Remark 8.9

For φ1 (x) = φ2 (x) = x log x − x + 1 we get that Hφ1
n

³bθH,φ2´ coincides with the
classical likelihood ratio test statistic for homogeneity and for φ2 (x) = x log x−x+1 and
φ1 (x) =

1
2 (x− 1)2 coincides with the chi-square test statistic.
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8.7. Exercises

1. Find the power function of the test statistic given in (8.88) using the maximum

likelihood estimator and the alternative hypothesis

p∗ =
³n1∗
n
(p∗1)

T
, ...,

nυ∗
n
(p∗ν)

T
´T
,

where

p∗i = (p
∗
i1, ..., p

∗
iM)

T , 0 < p∗ij < 1,

for i = 1, ..., ν and j = 1, ...,M and there exists an index j with 1 ≤ j ≤ M and

two indexes i and k, 1 ≤ i, k ≤ ν and i 6= k such that p∗ij 6= p∗kj .
2. The following data represent the blood types and the predisposition to suffer from

diabetes (A ≡ Low, B ≡ Average and C ≡ High)

Low Average High Total

O 137 86 35 258

A 42 23 11 76

B 19 17 7 43

AB 14 7 2 23

212 133 55 400

Is there evidence to conclude that blood type is independent of predisposition to

suffer from diabetes? Use the power-divergence family with λ = −1 − 1/2, 0, 2/3
and 1 for testing and λ = 0 for estimation, taking as significance level α = 0.05.

3. Fifteen 3-year-old boys and fifteen 4-year-old girls were observed during 30 minutes

play sessions, and each child’s play during these two periods was scored as follows

for incidence and degree of aggression:

Boys 96, 65, 74, 82, 121, 68, 79, 111, 48, 53, 92, 81, 31, 48

Girls 12, 47, 32, 59, 83, 14, 32, 15, 17, 82, 21, 34, 9, 15, 50

Test the hypothesis that there were not sex differences in the amount of aggression

shown, using the power-divergence test statistic with λ = −1,−1/2, 0, 2/3 and 1,
taking as significance level α = 0.05.

4. Let Sn = n
1/2
PI
i=1

PJ
j=1 lij (bpij − qij) be the first term in the Taylor expansion

of Dφ1(bp,p(bθ)) around ¡q,qI×J¢ in Theorem 8.5. Prove that Sn = 0 ∀n if and
only if σ2φ1(q) = 0.

5. If qij = qi∗ × q∗j then σ2φ1 (q) = 0 in Theorem 8.5 because lij = 0 ∀i = 1, ..., I, j =
1, ..., J. Find a counter example, using the Kullback-Leibler divergence, in which

σ2 (q) = 0 but qij 6= qi∗ × q∗j .
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6. Find the expression of the test statistics: Likelihood ratio test, chi-square test

statistic, modified likelihood ratio test statistic, Freeman-Tukey and modified chi-

square test statistic for the problem of symmetry.

7. Find the expression of the power for Pearson test statistic as well as for the like-

lihood ratio test in the problem of symmetry using the maximum likelihood esti-

mator.

8. The data in the following table report the relative heights of 205 married couples

Women

Tall Medium Short

Tall 18 28 14

Men Medium 20 51 28

Short 12 25 9
Source: Christensen, R. (1997, p. 67).

Find the minimum power-divergence estimators, under the hypothesis of symme-

try, for λ = −2,−1,−0.5, 0, and 1.
9. Find the expression of σ2φ (q) in Theorem 8.5 for the φ-divergences defined by:

φ1(x) =
1
2 (x− 1)2 ; φ2(x) = (1−√x)2; φ3(x) = (s− 1)−1 (xs − x) ; φ4(x) =

(λ (λ+ 1))−1
¡
xλ+1 − x¢ and φ5(x) =

(1−a)(1−x)
a+(1−a)x .

8.8. Answers to Exercises

1. We denote

q∗s =
νX
l=1

nl∗
n
p∗ls, s = 1, ...,M, q =(q

∗
1 , ..., q

∗
M)

T

and

q∗ =
³n1∗
n
qT , ...,

nν∗
n
qT
´T
.

Under the alternative hypothesis

bp P−→
n→∞ p

∗

and

p∗(bθ) P−→
n→∞ q

∗.

It is clear that in this case we have:

· 2nDφ1(bp,p∗(bθ)) = 2n νX
l=1

ni∗
n

MX
j=1

n∗j
n

φ

 nij
n

ni∗
n

n∗j
n


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· 2nDφ1(p
∗,q∗) = 2n

νX
l=1

MX
j=1

ni∗
n
q∗jφ

Ã
p∗ij
q∗j

!
and √

n
³
2nDφ1(bp,p∗(bθ))− 2nDφ1(p

∗,q∗)
´

takes the expression

√
n

 νX
i=1

MX
j=1

Ã
∂L

∂p∗ij

!¡bpij − p∗ij¢
+ o (kbp− p∗k) ,

where

L = 2
νX
l=1

MX
j=1

ni∗q∗jφ

Ã
p∗ij
q∗j

!
.

It is not difficult to establish that

L = 2
υX
h=1
h6=i

nh∗

µ
q∗1φ

µ
p∗h1
q∗1

¶
+ .....+ q∗sφ

µ
p∗hs
q∗s

¶
+ ...+ q∗Mφ

µ
p∗hM
q∗M

¶¶

+2ni∗q∗jφ

Ã
p∗ij
q∗j

!
+ k,

where k is independent of p∗ij . Taking into account that

∂q∗s
∂p∗ij

=

( ni∗
n

s = j

0 s 6= j
,

we have

∂L

∂p∗ij
= 2

ni∗
n

υX
h=1

nh∗

Ã
φ

Ã
p∗hj
q∗j

!
− p

∗
hj

q∗j
φ0
Ã
p∗hj
q∗j

!!
+ 2ni∗φ0

Ã
p∗ij
q∗j

!
.

Then, if we denote

Aφij =
∂L

∂p∗ij
,

we have that the random variables

√
n

 υX
i=1

MX
j=1

Ã
∂L

∂p∗ij

!¡bpij − p∗ij¢
 =

¡
Aφ
¢T √

n (bp− p∗) ,
being Aφ =

³
Aφ11, ...,A

φ
1M , ...,A

φ
ν1, ..., A

φ
υM

´T
, and

√
n
³
2nDφ1(bp,p∗(bθ))− 2nDφ1 (p

∗,q∗)
´
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have the same asymptotic distribution. But

√
n (bp− p∗) L−→

n→∞ N (0,Σ
∗) ,

where Σ∗ = diag
¡
λ−11 Σp∗1 , ...,λ

−1
υ Σp∗ν

¢
, Σp∗i = diag (p

∗
i )− p∗i (p∗i )T , i = 1, ..., ν

and λi = limn→∞
ni∗
n
.

Therefore,

√
n
³
2nDφ1(bp,p∗(bθ))− 2nDφ1 (p

∗,q∗)
´

L→
n→∞ N

¡
0,σ2φ1 (p

∗)
¢
,

where

σ2φ1(p
∗) =

υX
i=1

λ−1i

 MX
j=1

³
Aφij

´2
p∗ij −

 MX
j=1

Aφ
ijp
∗
ij

2
 .

Based on this result, we have that the power of the test statistic is given by

βn,φ1(p
∗) = 1−Φn

Ã √
n

σφ1(p
∗)

Ã
χ2(ν−1)(M−1),α

2n
−Dφ1 (p

∗,q∗)

!!
,

where Φn (x) is a sequence of distribution functions leading uniformly to the stan-

dard normal distribution Φ (x) .

2. If we consider the maximum likelihood estimator, the power-divergence test sta-

tistic, I
φ(λ)
n (bθI,φ(0)) has the expression

I
φ(λ)
n (bθI,φ(0)) = 2n

λ (λ+ 1)

nλ−1 IX
i=1

JX
j=1

nλ+1ij

nλi∗n
λ
∗j
− 1
 .

In our case,
n1∗ = 258, n2∗ = 76, n3∗ = 43 and n4∗ = 23
n∗1 = 212, n∗2 = 133 and n∗3 = 55.

Then we have

λ -1 -1/2 0 2/3 1

I
φ(λ)
n (bθI,φ(0)) 2.543 2.499 2.462 2.422 2.405

.

On the other hand χ2(I−1)(J−1),α = χ26, 0.05 = 12.59, then we should not reject the

hypothesis that the two variables are independent.

3. If we consider the maximum likelihood estimator, the power-divergence test sta-

tistic H
φ(λ)
n (bθH,φ(0)) has the expression

H
φ(λ)
n (bθH,φ(0)) = 2

λ (λ+ 1)

 mX
i=1

kX
j=1

ni∗

¡nij
n

¢λ+1¡n∗j
n

¢λ − n
 .
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If we consider the following partition of the interval [8, 122] ,

E1 = [8, 43) , E2 = [43, 78) and E3 = [78, 122] ,

we have
E1 E2 E3 ni∗

Boys 1 6 8 15

Girls 10 3 2 15

n∗j 11 9 10

.

Then,

H
φ(λ)
n (bθH,φ(0)) = 2

λ(λ+1)

½
n1∗

µµ
( 1
15)

λ+1

( 1130)
λ

¶
+

µ
( 6
15)

λ+1

( 9
30)

λ

¶
+

µ
( 8
15)

λ+1

( 1030)
λ

¶¶

+ n2∗

µµ
( 1015 )

λ+1

( 1130)
λ

¶
+

µ
( 3
15)

λ+1

( 9
30 )

λ

¶
+

µ
( 2
15 )

λ+1

( 1030)
λ

¶¶
− n

¾
and

λ -1 -1/2 0 2/3 1

H
φ(λ)
n (bθH,φ(0)) 17.69 15.051 13.42 12.24 11.96

.

On the other hand χ22,0.05 = 5.991, then we should reject the null hypothesis.

4. If Sn = 0 a.s. ∀n, we have V ar (Sn) = 0 ∀n and then
lim
n→∞V ar (Sn) = σ2φ1 (q) = 0.

Suppose that σ2φ1 (q) = 0. We have

Sn =
√
n

IP
i=1

JP
j=1

lij (bpij − qij) ,
then

E [Sn] =
√
n

IP
i=1

JP
j=1

lijE [bpij − qij ] = 0
V ar [Sn] = E

"
n

IP
i1,i2=1

JP
j1,j2=1

li1j1li2j2(bpi1j1 − qi1j1)(bpi2j2 − qi2j2)
#

= n
IP

i1=1

JP
j1=1

l2i1j1E
h
(bpi1j1 − qi1j1)2i

+ n
IP

i1,i2=1
i1 6=i2

JP
j1,j2=1
j1 6=j2

li1j1li2j2E [(bpi1j1 − qi1j1) (bpi2j2 − qi2j2)] .
But,

E
h
(bpi1j1 − qi1j1)2i = V [bpi1j1 ] = qi1j1 (1− pi1j1)

n
E [(bqi1j1 − qi1j1) (bpi2j2 − qi2j2)] = Cov [bpi1j1 , bpi2j2 ] = −qi1j1qi2j2n

,
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therefore

V ar [Sn] =
IP

i1=1

JP
j1=1

l2i1j1qi1j1 (1− qi1j1)−
IP

i1,i2=1
i1 6=i2

JP
j1,j2=1
j1 6=j2

li1j1 l i2j2qi1j1qi2j2

=
IP

i1=1

JP
j1=1

l2i1j1qi1j1 −
Ã

IP
i1=1

JP
j1=1

li1j1qi1j1

!2
= σ2φ1 (q) = 0.

Then Sn = 0.

5. We consider the bivariate random variable (X,Y ) with probability distribution

q11 = Pr (X = x1, Y = y1) = 1/2 q12 = Pr (X = x1, Y = y2) = 0

q21 = Pr (X = x2, Y = y1) = 0 q22 = Pr (X = x2, Y = y2) = 1/2.

We have

l11 = l22 = − log 2, l12 = l21 = 0
with

σ2 (q) =
2X
i=1

2X
j=1

qijl
2
ij −

 2X
i=1

2X
j=1

qijlij

2

= 0.

On the other hand

q1∗ = 1/2, q2∗ = 1/2, q∗1 = 1/2 and q∗2 = 1/2.

Then qij 6= qi∗ × q∗j and σ2 (q) = 0.

6. It is immediate to get for the power-divergence family and for the maximum like-

lihood estimator that

S
φ(λ)
n (bθS,φ(0)) = 2

λ (λ+ 1)

X
i,j
i 6=j

nij

Ãµ
2nij

nij + nji

¶λ
− 1
!
.

Then for λ→ 0 (likelihood ratio test statistic), we have

S
φ(0)
n (bθS,φ(0)) ≡ G2 = 2X

i,j
i6=j

nij log
2nij

nij + nji
,

for λ→−1 (modified likelihood ratio test statistic),

S
φ(−1)
n (bθS,φ(0)) =X

i,j
i6=j

(nij + nji) log
nij + nji
2nij

,

for λ = 1 (chi-square test statistic),

S
φ(1)
n (bθS,φ(0)) ≡ X2 =

X
i,j
i<j

(nij − nji)2
nij + nji

,
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for λ = −1/2 (Freeman-Tukey test statistic),

S
φ(−1/2)
n (bθS,φ(0)) = 8X

i,j
i 6=j

nij

Ã
1−

µ
nij + nji
2nij

¶1/2!

and finally for λ = −2 (modified chi-square test statistic)

S
φ(−2)
n (bθS,φ(0)) =X

i,j
i 6=j

nij

Ãµ
nij + nji
2nij

¶2
− 1
!
.

7. The expression of the m0
ijs given in Theorem 8.10 for the power-divergence family

is as follows

m
(λ)
ij =

1

2λ (λ+ 1)

Ãµ
2qij

qij + qji

¶λ+1
+

µ
2qji

qij + qji

¶λ+1
− 2
!

+
1

λ

qji
qij + qji

Ãµ
2qij

qij + qji

¶λ
−
µ

2qji
qij + qji

¶λ!
.

Then for λ→ 0 and λ = 1 we get

m
(0)
ij = log

2qji
qij + qji

, m
(1)
ij =

q2ij − 3q2ji + 2qijqji
2 (qij + qji)

2 .

Then we have

σ2φ(0) (q) =
X
i,j
i 6=j

qij

µ
log

2qij
qij + qji

¶2
−

X
i,j
i6=j

qij log
2qij

qij + qji


2

and

σ2φ(1) (q) =
X
i,j
i6=j

qij

Ã
q2ij − 3q2ji + 2qijqji
2 (qij + qji)

2

!2
−

X
i,j
i6=j

qij
q2ij − 3q2ji + 2qijqji
2 (qij + qji)

2


2

.

According to Theorem 8.10

βn,φ(λ)(q) = 1−Φn
Ã √

n

σφ(λ)(q)

Ã
χ2I(I−1)/2,α

2n
−Dφ(λ)(q,f(q))

!!
,

then it is easy to obtain βn,φ(0)(q) and βn,φ(1)(q).
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8. In (8.37) it was established that

p
S,φ(λ)
ij =

¡bpλ+1ij + bpλ+1ji

¢ 1
λ+1

IX
i=1

IX
j=1

¡bpλ+1ij + bpλ+1ji

¢ 1
λ+1

, i, j = 1, ..., I.

In the following table we present the minimum power-divergence estimators

p
S,φ(λ)
11 p

S,φ(λ)
12 p

S,φ(λ)
13 p

S,φ(λ)
22 p

S,φ(λ)
23 p

S,φ(λ)
33

λ = −2 0.0885 0. 1147 0.0635 0. 2508 0. 1299 0.0442

λ = −1 0.0881 0.1159 0.0634 0. 2498 0.1295 0.0440

λ = −1/2 0.0879 0. 1165 0.0634 0. 2493 0. 1294 0.0439

λ = 0 0.0878 0. 1171 0.0634 0. 2487 0. 1293 0.0439

λ = 1 0.0874 0. 1182 0.0633 0. 2477 0. 1290 0.0437

9. Taking into account the expression of σ2 (q) in Theorem 8.5, we get the following

table

Divergence lij

φ1 (x)
qij

qi∗q∗j − 1
2

IP
r=1

q2rj
qr∗q2∗j

− 1
2

JP
s=1

q2is
qi∗q2∗s

φ2 (x) 3−
IP
r=1

q
1/2
rj q1/2r∗
q
1/2
∗j

−
JP
s=1

q1/2∗s q
1/2
is

q
1/2
i∗

− q
1/2
i∗ q

1/2
∗j

q
1/2
ij

φ3 (x) −
IP
r=1

qsrj
qs−1r∗ qs∗j

−
JP
s=1

qsis
qs−1∗s qsi∗

+ 1
1−s

µ
1− s qs−1ij

qs−1i∗ qs−1∗j

¶

φ4 (x)
1

λ+1

µ
−

IP
r=1

qλ+1rj

qλr∗q
λ+1
∗j
−

JP
s=1

qλ+1is

qλ∗sq
λ+1
i∗

+ 2

¶
+ 1

λ

µ
qλij

qλi∗q
λ
∗j
− 1
¶

φ5 (x) (1− a)
(

IP
r=1

Ã
qrj

q∗j
³
a+(1−a) qrj

qr∗q∗j

´2+ qr∗
(1−a)

³
a+(1−a) qrj

qr∗q∗j

´
!

+
JP
s=1

Ã
qis

q∗j
³
a+(1−a) qis

qi∗q∗s

´2 + q∗s
(1−a)

³
a+(1−a) qrj

qi∗q∗s

´
!

− 1

(a+(1−a) qij
q∗q∗s )

2

¾
.

The previous φ-divergences correspond to Pearson, Matusita (a=1/2), Rathie-

Kanappan, Cressie-Read and Rukhin. The expressions of Rathie-Kanappan and

Rukhin φ

φ3(x)− φ03(1)(x− 1) and φ5(x)− φ05(1)(x− 1),
respectively.
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-divergences presented in Chapter 1 are obtained from here with



9

Testing in General Populations

9.1. Introduction

The domains of application of φ-divergence test statistics go far beyond that of

multinomial testing presented in previous chapters. Thus in this chapter the φ-divergence

test statistics are introduced and studied in general populations.

Let (X , βX , Pθ )θ∈Θ be the statistical space associated with the random variable X,

where βX is the σ-field of Borel subsets A ⊂ X and {Pθ}θ∈Θ is a family of probability
distributions defined on the measurable space (X , βX ) where Θ is an open subset of

RM0 , with M0 ≥ 1. Probability measures Pθ are assumed to be described by densities
fθ (x) = dPθ/dµ (x) , where µ is a σ-finite measure on (X , βX ). Let Y1, . . . , Yn be

a random sample from a population described by the random variable X. For testing

H0 : θ = θ0 against H1 : θ = θ1 (simple null hypothesis against simple alternative),

the uniformly most powerful test is given by the Neyman-Pearson criterion. If µ is the

Lebesgue measure, i.e., X is a continuous random variable, the criterion establishes:

reject H0 if

hn = hn (Y1, . . . , Yn) = L(θ1;Y1, . . . , Yn)/L(θ0;Y1, . . . , Yn) ≥ kα,

with

L(θ;Y1, . . . , Yn) =
nY
i=1

fθ (Yi) ,

and accept H0 otherwise, where kα = kα (n,α,θ0,θ1) is determined by

Prθ0 (hn ≥ kα) = α,

where α (0 < α < 1) is the significance level.
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More generally, for testing H0 : θ = θ0 against H1 : θ 6= θ0, the most powerful or

uniformly most powerful test does not exist and we have to rely on other criteria for

the choice of an appropriate test statistic. In such situations the classical solutions are

Wald test statistic, Rao test statistic, likelihood ratio test statistic and more recently the

test statistics based on φ-divergence measures: φ-divergence test statistics. The same

problem appears with composite null hypotheses of the type H0 : θ ∈ Θ0 ⊂ Θ and

again the previous test statistics provide good solutions. In this chapter we study the

properties of φ-divergence test statistics for testing simple and composite null hypotheses.

We assume that the statistical model (X , βX , Pθ)θ∈Θ satisfies the standard regular-
ity assumptions considered in parametric asymptotic statistics, i.e., conditions i)-v) in

φ involved in the definition of general φ-divergence test statistics:

(Φ1) The function φ ∈ Φ∗ is twice continuously differentiable, with φ00 (1) > 0 ;

(Φ2) For each θ0 ∈ Θ there exists an open neighborhood N (θ0) such that for all θ ∈
N (θ0) and 1 ≤ i, j ≤M0 it holds:

∂

∂θi

Z
X
fθ0(x)φ

µ
fθ(x)

fθ0(x)

¶
dµ (x)=

Z
X

∂

∂θi

µ
fθ0(x)φ

µ
fθ (x)

fθ0(x)

¶¶
dµ (x) ,

∂2

∂θi∂θj

Z
X
fθ0(x)φ

µ
fθ(x)

fθ0(x)

¶
dµ (x)=

Z
X

∂2

∂θi∂θj

µ
fθ0(x)φ

µ
fθ (x)

fθ0(x)

¶¶
dµ (x) ,

and these expressions are continuous on N (θ0) .

9.2. Simple Null Hypotheses: Wald, Rao, Wilks and

Phi-divergence Test Statistics

The classical test statistics for testing H0 : θ = θ0 against H1 : θ 6= θ0 (simple null

hypothesis against composite alternative hypothesis) are the following:

· Wald test statistic

W 0
n = n(

bθ − θ0)
TIF(bθ)(bθ − θ0), (9.1)

where bθ is the maximum likelihood estimator of θ in Θ obtained from the sample

Y1, ..., Yn and IF (θ) is the Fisher information matrix for the original model.
· Likelihood ratio test statistic

L0n = 2n
³
λn(bθ)− λn (θ0)

´
, (9.2)
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where

λn (θ) =
1

n

nX
i=1

log fθ (Yi) .

· Rao test statistic
R0n =

1

n
Un (θ0)

T IF (θ0)−1Un (θ0) (9.3)

being

Un (θ0) =

Ã
nX
i=1

∂ log fθ (Yi)

∂θ1
, ...,

nX
i=1

∂ log fθ (Yi)

∂θM0

!T
θ=θ0

.

Kupperman (1957, 1958) established that the test statistic based on the Kullback-

Leibler divergence measure

TKulln (bθ,θ0) ≡ 2nDKull(bθ,θ0) = 2nZ
X
fbθ(x) log fbθ (x)fθ0(x)

dµ (x)

is asymptotically chi-squared distributed with M0 degrees of freedom. This result allows

to test the null hypothesis H0 : θ = θ0 by means of the Kullback-Leibler divergence

measure.

More recently, in the line of Kupperman, Salicrú et al . (1994) introduced the φ-

divergence test statistic and studied its properties including its asymptotic behavior.

· φ-divergence test statistic

Tφn (bθ,θ0) = 2n

φ00 (1)
Dφ(bθ,θ0). (9.4)

In the following theorem we present the asymptotic distribution of the test statistics

given in (9.1), (9.2), (9.3) and (9.4).

Theorem 9.1

Let the model (X , βX , Pθ )θ∈Θ . Suppose φ satisfy the assumptions i)-v) considered
Φ1)-(Φ2) respectively. Under the null hypothesis

H0 : θ = θ0 (9.5)

the asymptotic distribution of the test statistics given in (9.1), (9.2), (9.3) and (9.4) is

chi-square with M0 degrees of freedom.

Proof. We start with Wald test statistic. Since under H0 : θ = θ0,

bθ P−→
n→∞ θ0,
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and by assumption v), the elements of IF (θ) are continuous in θ, it holds

IF(bθ) P−→
n→∞ IF (θ0) .

Then, the asymptotic distribution of the quadratic form

n(bθ − θ0)
TIF(bθ)(bθ − θ0)

coincides with that of the quadratic form

XTX ≡ n(bθ − θ0)
TIF (θ0) (bθ − θ0),

where X =
√
nIF (θ0)1/2 (bθ − θ0).

We also know that under H0,

√
n(bθ − θ0)

L−→
n→∞ N

³
0,IF (θ0)−1

´
which implies

X
L−→

n→∞ N (0, IM0×M0) .

Therefore,

n(bθ − θ0)
TIF(bθ)(bθ − θ0)

L−→
n→∞ χ2M0

,

and the Wald test statistic should reject the null hypothesis whenever

n(bθ − θ0)
TIF(bθ)(bθ − θ0) > χ2M0,α.

As to Rao efficient score test statistic by assumption iv), we know that

Eθ

·
∂ log fθ (X)

∂θi

¸
= 0, i = 1, ...,M0.

Further, by the Central Limit Theorem, under H0 the random vector

1

n
Un (θ0) =

Ã
1

n

nX
i=1

∂ log fθ0(Yi)

∂θ1
, ...,

1

n

nX
i=1

∂ log fθ0(Yi)

∂θM0

!T
satisfies √

n
1

n
Un (θ0)

L−→
n→∞ N (0,Σ) ,

where Σ is the variance-covariance matrix of the random vectorµ
∂ log fθ0(X)

∂θ1
, ...,

∂ log fθ0(X)

∂θM0

¶T
,

which is obviously IF (θ0) . Therefore
1√
n
Un (θ0)

L−→
n→∞ N (0,IF (θ0))
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and consequently

Rn =
1

n
Un (θ0)

T IF (θ0)−1Un (θ0)
L−→

n→∞ χ2M0
.

Now let us establish the asymptotic distribution of the φ-divergence test statistic,

Tφn (
bθ,θ0) = 2n

φ00 (1)
Dφ(bθ,θ0).

A second order Taylor expansion of Dφ(θ,θ0) around θ = θ0 at θ =bθ gives
Dφ(bθ,θ0) = Dφ (θ0,θ0) +

M0P
i=1

µ
∂Dφ (θ,θ0)

∂θi

¶
θ=θ0

(bθi − θ0i)

+ 1
2

M0P
i=1

M0P
j=1

Ã
∂D2φ (θ,θ0)

∂θi∂θj

!
θ=θ0

(bθi − θ0i)(bθj − θ0j) + o

µ°°°bθ − θ0

°°°2¶ ,
where by (1.6), it is clear that

Dφ (θ0,θ0) = φ (1) = 0.

Now we prove that the second term in the previous expansion is zero.

Indeed,
∂Dφ (θ,θ0)

∂θi
=

Z
X
φ0
µ
fθ (x)

fθ0 (x)

¶
∂fθ (x)

∂θi
dµ (x) ,

and for θ = θ0µ
∂Dφ (θ,θ0)

∂θi

¶
θ=θ0

= φ0 (1)
Z
X

∂fθ (x)

∂θi
dµ (x) = φ0 (1)

∂

∂θi

Z
X
fθ (x) dµ (x) = 0.

This means that the random variables

2nDφ(bθ,θ0)
and

n

M0X
i=1

M0X
j=1

µ
∂2Dφ (θ,θ0)

∂θi∂θj

¶
θ=θ0

(bθi − θ0i)(bθj − θ0j)

have the same asymptotic distribution, since under H0 o

µ°°°bθ − θ0

°°°2¶ = oP ¡n−1¢.
The second order derivatives are

∂2Dφ (θ,θ0)

∂θi∂θj
=

Z
X
φ00
µ
fθ (x)

fθ0 (x)

¶
1

fθ0 (x)

∂fθ (x)

∂θi

∂fθ (x)

∂θj
dµ (x)

+

Z
X
φ0
µ
fθ (x)

fθ0 (x)

¶
∂2fθ (x)

∂θi∂θj
dµ (x) ,
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and then µ
∂2Dφ (θ,θ0)

∂θi∂θj

¶
θ=θ0

= φ00 (1)
Z
X

1

fθ0 (x)

∂fθ0 (x)

∂θi

∂fθ0 (x)

∂θj
dµ (x)

= φ00 (1) IijF (θ0) ,

where IijF (θ0) is the (i, j)th-element of the Fisher information matrix. Therefore,

Tφn (
bθ,θ0) = 2n

φ00 (1)
Dφ(bθ,θ0) = n(bθ − θ0)

TIF (θ0) (bθ − θ0) + oP (1) ,

and finally, this implies

Tφn (
bθ,θ0) = 2n

φ00 (1)
Dφ(bθ,θ0) L−→

n→∞ χ2M0
.

In order to obtain the asymptotic distribution of L0n under H0, we consider the

following Taylor expansion

λn(bθ) = λn (θ0) +
M0P
i=1

µ
∂λn (θ)

∂θi

¶
θ=θ0

(bθi − θ0i)

+ 1
2

M0P
i=1

M0P
j=1

µ
∂2λn (θ)

∂θi∂θj

¶
θ=θ0

(bθi − θ0i)(bθj − θ0j) + o

µ°°°bθ − θ0

°°°2¶ .
But µ

∂λn (θ)

∂θi

¶
θ=θ0

=
1

n

nX
l=1

∂ log fθ0 (Yl)

∂θi
.

Then, applying Khintchine Law of Large Numbers we getµ
∂λn (θ)

∂θi

¶
θ=θ0

a.s.−→
n→∞

Z
X

∂ log fθ0 (x)

∂θi
fθ0 (x) dµ (x) = 0.

On the other hand, the second derivatives areµ
∂2λn (θ)

∂θi∂θj

¶
θ=θ0

= − 1
n

nX
l=1

1

fθ0 (Yl)
2

∂fθ0 (Yl)

∂θi

∂fθ0 (Yl)

∂θj
+
1

n

nX
l=1

∂2fθ0 (Yl)

∂θi∂θj

1

fθ0 (Yl)
.

But by Khintchine Law of Large Numbers,

− 1
n

nX
l=1

1

fθ0 (Yl)
2

∂fθ0 (Yl)

∂θi

∂fθ0 (Yl)

∂θj

a.s.−→
n→∞ I

ij
F (θ0)

and
1

n

nX
l=1

∂2fθ0 (Yl)

∂θi∂θj

1

fθ0 (Yl)
a.s.−→
n→∞

Z
X

∂2fθ0 (x)

∂θi∂θj
dµ (x) = 0.
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Therefore,

2n
³
λn(bθ)− λn (θ0)

´
=
√
n(bθ − θ0)

TIF (θ0)
√
n(bθ − θ0) + oP (1) ,

and this implies

L0n
L−→

n→∞ χ2M0
.

Remark 9.1

The (h,φ)-divergence test statistics associated with the (h,φ)-divergence measures

satisfy

Tφ,hn (bθ,θ0) ≡ 2n

h0 (0)φ00 (1)
Dhφ(bθ,θ0) L−→

n→∞ χ2M0
.

This result is immediate from the relation

Dhφ(bθ,θ0) = h0 (0)Dφ(bθ,θ0) + o³Dφ(bθ,θ0)´ .
Based on Theorem 9.1 and Remark 9.1, we should reject the null hypothesis given

in (9.5), with significance level α, if Tφn (
bθ,θ0) > χ2M0,α

(or if Tφ,hn (bθ,θ0) > χ2M0,α
). The

rejection rule is analogous for W 0
n , L

0
n and R

0
n.

In most cases, the power function of this testing procedure can not be calculated ex-

plicitly. In the following theorem we present a useful asymptotic result for approximating

the power function.

Theorem 9.2

Let the model and φ ∈ Φ∗ satisfy the assumptions i)-v) considered in Section 2 of
Φ1)-(Φ2) respectively. Let θ∗ be the true parameter, with θ∗ 6= θ0. Then

it holds √
n
³
Dφ(bθ,θ0)−Dφ (θ

∗,θ0)
´

L−→
n→∞ N

¡
0,σ2φ (θ

∗)
¢
,

where σ2φ (θ
∗) = T TIF (θ∗)−1 T , T = (t1, ..., tM)

T
and tj =

³
∂Dφ(θ,θ0)

∂θj

´
θ=θ∗

, j =

1, ...,M.

Proof. A first order Taylor expansion gives

Dφ(bθ,θ0) = Dφ (θ
∗,θ0) + T T (bθ − θ∗) + o

³°°°bθ − θ∗
°°°´ .

By the Central Limit Theorem,

√
n(bθ − θ∗) L−→

n→∞ N
³
0,IF (θ∗)−1

´
and √

n o
³°°°bθ − θ∗

°°°´ = oP (1) .
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Then, it is clear that the random variables,

√
n
³
Dφ(bθ,θ0)−Dφ (θ

∗,θ0)
´

and T T
√
n(bθ − θ∗),

have the same asymptotic distribution.

Remark 9.2

Through Theorem 9.2, a first approximation to the power function, at θ∗ 6= θ0, is

given by

β1n,φ(θ
∗) = 1−Φ

Ã √
n

σφ (θ
∗)

Ã
φ00 (1) χ2M0,α

2n
−Dφ (θ

∗,θ0)

!!
, (9.6)

where Φ (x) is the standard normal distribution function. If some alternative θ∗ 6=
θ0 is the true parameter, then the probability of rejecting θ0 with the rejection rule

Tφn

³bθ,θ0´ > χ2M0,α
, for fixed significance level α, tends to one as n → ∞. The test

is consistent in Fraser’s sense.

In order to produce some less trivial asymptotic powers that are not all equal to 1

we can use a Pitman-type local analysis, as developed by LeCam (1960), confining the

attention to n−1/2-neighborhoods of the true parameter values. More specifically, we
consider the power at contiguous alternative hypotheses described by

H1,n : θn = θ0 + n
−1/2d,

where d is a fixed vector in RM0 such that θn ∈ Θ ⊂ RM0 .

A fundamental tool to get the asymptotic distribution of the φ-divergence test sta-

tistic Tφn (
bθ,θ0) under the contiguous alternative hypotheses is LeCam’s third lemma, as

presented in Hájek and Sidàk (1967). Instead, in the following theorem we present a

simpler proof.

Theorem 9.3

Let the model and φ ∈ Φ∗ satisfy the assumptions i)—v) considered in Section 2 of
Φ1)—(Φ2) respectively. Under the contiguous alternative hypotheses

H1,n : θn = θ0 + n
−1/2d,

where d is a fixed vector in RM0 such that θn ∈ Θ ⊂ RM0 , the asymptotic distribution

of the φ-divergence test statistic Tφn (
bθ,θ0) is noncentral chi-square, with M0 degrees of

freedom and noncentrality parameter δ = dTIF (θ0)d.
Proof. We can write

√
n(bθ − θ0) =

√
n(bθ − θn) +

√
n (θn − θ0) =

√
n(bθ − θn) + d.

Under H1,n, it holds

√
n(bθ − θn)

L−→
n→∞ N

³
0,IF (θ0)−1

´
and

√
n(bθ − θ0)

L−→
n→∞ N

³
d,IF (θ0)−1

´
.
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By applying the delta method, it is not difficult to establish that

Tφn (
bθ,θ0) = n(bθ − θ0)IF (θ0) (bθ − θ0)

T + n o

µ°°°bθ − θ0

°°°2¶ .
Then, Tφn (bθ,θ0) has the same asymptotic distribution as the quadratic form

XTX ≡
³
IF (θ)1/2

√
n(bθ − θ0)

´T ³
IF (θ)1/2

√
n(bθ − θ0)

´
.

On the other hand

X ≡IF (θ0)1/2
√
n(bθ − θ0)

L−→
n→∞ N

³
IF (θ0)1/2 d, IM0×M0

´
.

Therefore

³
IF (θ0)1/2

√
n(bθ − θ0)

´T ³
IF (θ0)1/2

√
n(bθ − θ0)

´
L−→

n→∞ χ2M0
(δ) ,

being δ = dT IF (θ0) d.

Remark 9.3

Using Theorem 9.3, we get a second approximation to the power function, at θn =

θ0 + n−1/2d, by means of

β2n(θn) = 1−Gχ2
M0

(δ)

¡
χ2M0,α

¢
,

where G
χ2
M0

(δ)
is the distribution function of a noncentral chi-square random variable

with M0 degrees of freedom and noncentrality parameter δ = dTIF (θ0)d. If we want
to approximate the power at the alternative θ 6= θ0, then we can take d = d(n,θ,θ0) =√
n(θ − θ0). We can observe that this approximation is independent of φ.

The same result can be obtained for the test statistics W 0
n , L

0
n and R

0
n

Example 9.1

Let Y1, ..., Yn be a random sample from a normal population with mean µ and variance

σ2. Consider the parameter θ = (µ,σ) . Find the expression of the test statistics given in

(9.1), (9.2) and (9.3), as well as the expression of Rényi test statistic, for testing

H0 : θ = θ0 = (µ0,σ0) versus H1 : θ 6= θ0.

It is well known that the maximum likelihood estimators of µ and σ are given by

bµ = Y and bσ =
vuut1

n

nX
i=1

¡
Yi − Y

¢2
.

© 2006 by Taylor & Francis Group, LLC

(see, e.g., Sen
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The likelihood ratio test statistic becomes

L0n = 2

Ã
log

Ã
1bσn ¡√2π¢n exp(−n2 )

!
− log

Ã
1

σn0
¡√
2π
¢n expµ−n2 eσ2σ20

¶!!
,

where

eσ =
vuut 1

n

nX
i=1

(Yi − µ0)2,

i.e.,

L0n = 2n log
σ0bσ + n

µeσ2
σ20
− 1
¶
.

The Fisher information matrix is

IF (µ,σ) =
µ

1
σ2 0

0 2
σ2

¶
.

Therefore, the Wald test statistic has the expression

W 0
n = n

¡
Y − µ0, bσ − σ0

¢µ 1bσ2 0

0 2bσ2
¶µ

Y − µ0bσ − σ0

¶

= n
¡
Y − µ0

¢2
/bσ2 + 2n (bσ − σ0)

2
/bσ2.

Concerning the Rao test statistic, the score vector is

Un (µ0,σ0) =

Ã
nX
i=1

∂ log fµ,σ (Yi)

∂µ
,
nX
i=1

∂ log fµ,σ (Yi)

∂σ

!T
(µ,σ)=(µ0,σ0)

=

µ
n

µ
Y − µ0
σ20

¶
, n

µeσ2 − σ20
σ30

¶¶T
and then

R0n = n

¡
Y − µ0

¢2
σ20

+
n

2

µeσ2 − σ20
σ20

¶2
.

Finally, we obtain the expression of Rényi test statistic.

The Rényi divergence may be regarded as a (h,φ)-divergence; that is,

D1r(
bθ,θ0) = h³Dφ(bθ,θ0)´ ,

with

h (x) =
1

r (r − 1) log (r (r − 1)x+ 1) (9.7)

and

φ (x) =
1

r (r − 1) (x
r − r (x− 1)− 1) . (9.8)
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Rényi test statistic has the expression

T rn(
bθ,θ0) = 2n

h0 (0)φ00 (1)
D1r(

bθ,θ0).
It is easy to see that h0 (0) = 1 and φ00 (1) = 1. Therefore,

T rn(bθ,θ0) = 2n

r (r − 1) log
Z
X
fbθ (x)r fθ0 (x)1−r dµ (x) , r 6= 1, 0.

1 i t was est ab lish ed th at Rén yi ’s di vergen ce measu re bet ween two no r mal

populations is

D1r ((µ,σ) , (µ0,σ0)) =
1

2

(µ− µ0)2
rσ20 + (1− r)σ2

− 1

2r (r − 1) log
rσ20 + (1− r)σ2
(σ2)1−r (σ20)

r . (9.9)

Using this formula, we get

T rn(bθ,θ0) = n
Ã ¡

Y − µ0
¢2

rσ20 + (1− r) bσ2 − 1

r (r − 1) log
rσ20 + (1− r) bσ2
(bσ2)1−r (σ20)r

!
,

where bθ = (Y , bσ2) and θ0 = (µ0,σ0) .
When r → 1, we get the test statistic based on Kullback-Leibler divergence,

lim
r→1T

r
n(bθ,θ0) = 2nDKull(bθ,θ0) = 2n log σ0bσ + n

µbσ2
σ20
− 1
¶
≡ TKulln (bθ,θ0).

Observe that in this case T 1n(
bθ,θ0) = TKulln (bθ,θ0) coincides with L0n. The following

Remark provides a sufficient condition for the equality of these test statistics.

Remark 9.4

When the density fθ (x) belongs to the exponential family, that is,

fθ (x) = q (θ) t (x) exp

Ã
M0X
i=1

Si (θ) ti (x)

!
x ∈ X ,

likelihood ratio test statistic coincides with the test statistic based on Kullback-Leibler

divergence measure.
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For the exponential family, likelihood ratio test statistic is given by

L0n = 2n
³
λn(bθ)− λn (θ0)

´
= 2 log

fbθ (Y1, ..., Yn)
fθ0 (Y1, ..., Yn)

= 2 log

q(bθ)n nQ
i=1
t (Yi) exp

Ã
nP
j=1

M0P
i=1
Si(bθ)ti (Yj)!

q (θ0)
n

nQ
i=1
t (Yi) exp

Ã
nP
j=1

M0P
i=1
Si (θ0) ti (Yj)

!
= 2

Ã
log

q(bθ)n
q (θ0)

n +
nP
j=1

M0P
i=1

³
Si(bθ)− Si (θ0)´ ti (Yj)!

= 2n

Ã
log

q(bθ)
q (θ0)

+
M0P
i=1

³
Si(bθ)− Si (θ0)´Ã 1

n

nP
j=1

ti (Yj)

!!
,

while the test statistic based on Kullback-Leibler divergence takes the form

TKulln (bθ,θ0) = 2n log
q(bθ)
q(θ0)

+ 2n
M0P
i=1

³
Si(bθ)− Si (θ0)´Ebθ [ti (X)] .

It is clear that the two statistics coincide asymptotically since

1

n

nP
j=1

ti (Yj)
a.s.−→
n→∞ Eθ0 [ti (X)]

and
Ebθ [ti (X)] a.s.−→

n→∞ Eθ0 [ti (X)] .

The following question then arises: Is it possible to find assumptions under which the

two exact tests coincide? Thus, we need to find the conditions under which

Ebθ [ti (X)] = 1

n

nX
j=1

ti (Yj) .

The likelihood function is

L (θ,Y1, ..., Yn) = q (θ)
n

nY
i=1

t (Yi) exp

M0X
i=1

Si (θ)
nX
j=1

ti (Yj)

 ,
and the loglikelihood function is

logL (θ,Y1, ..., Yn) = n log q (θ) + log
nY
i=1

t (Yi) +
M0X
i=1

Si (θ)
nX
j=1

ti (Yj) .

Therefore, the maximum likelihood estimator, bθ, is a solution of the system of equations
∂ logL(bθ,Y1, ..., Yn)

∂θj
=

n

q (θ)

∂q(bθ)
∂θj

+
M0P
i=1

∂Si(bθ)
∂θj

nP
k=1

ti (Yk) = 0,

j = 1, ...,M0.
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On the other hand, we know thatZ
X
q (θ) t (x) exp

Ã
M0X
i=1

Si (θ) ti (x)

!
dµ (x) = 1.

Taking derivatives with respect to θj in both sides we getZ
X

∂q (θ)

∂θj
t (x) exp

µ
M0P
i=1
Si (θ) ti (x)

¶
dµ (x)

+

Z
X
q (θ) t (x) exp

µ
M0P
i=1
Si (θ) ti (x)

¶
M0P
i=1

∂Si (θ)

∂θj
ti (x) dµ (x) = 0,

which is equal to 
n

q (θ)

∂q (θ)

∂θj
+ n

M0P
i=1

∂Si (θ)

∂θj
Eθ [ti (X)] = 0,

j = 1, ...,M0.

Thus, for the exponential family it holds
M0P
i=1

∂Si(bθ)
∂θj

1

n

nP
k=1

ti (Yk) =
M0P
i=1

∂Si(bθ)
∂θj

Ebθ [ti (X)] ,
j = 1, ...,M0,

and this can be written as a homogeneous system
M0P
i=1

aijzi = 0

j = 1, ...,M0

with

aij =
∂Si(bθ)
∂θj

and zi =
1

n

nX
k=1

ti (Yk)−Ebθ [ti (X)] .
This system has the unique solution zi = 0, i = 1, ...,M0, if and only if the determinant

of the matrix

A = (aij)i,j=1,...,M0

is different from zero.

Therefore, the exact likelihood ratio test statistic coincides with the exact test based

on the Kullback-Leibler divergence measure if and only if the determinant of the matrixÃ
∂Si(bθ)
∂θj

!
i,j=1,...,M0
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is different from zero. This condition means that the equality is obtained when the expo-

nential family is not overparametrized.

Buse (1982), by means of simple diagrams, gave an intuitive meaning of the likelihood

ratio test statistic, Rao test statistic and Wald test statistic. Interesting survey articles

about these test procedures were given by Breusch and Pagan (1980) and Engle (1981).

9.2.1. Confidence Regions

We can easily construct families of confidence regions with a prescribed asymptotic

confidence coefficient 1 − α for θ ∈ Θ ⊂ RM0 . We consider the problem of testing H0 :

θ = θ0 based on the φ-divergence test statistic T
φ
n (
bθ,θ0). Let Aφ (θ0) , θ0 ∈ Θ ⊂ RM0 ,

the region of acceptance associated with the test statistic “reject the null hypothesis H0,

with significance level α, if Tφn (bθ,θ0) > χ2M0,α
”, i.e.,

Aφ (θ0) =
n
(y1, ..., yn) : T

φ
n (
bθ,θ0) < χ2M0,α

o
.

For each observation (y1, ..., yn) let Sφ(y1, ..., yn) denote the set

Sφ (y1, ..., yn) = {θ : (y1, ..., yn) ∈ Aφ (θ) , θ ∈ Θ} .
Then Sφ (y1, ..., yn) is a family of confidence regions for θ ∈ Θ ⊂ RM0 with asymptotic

confidence coefficient 1− α.

9.3. Composite Null Hypothesis

We assume that the statistical model (X , βX , Pθ )θ∈Θ, satisfies the standard regu-

the composite null hypothesis

H0 : θ ∈ Θ0 ⊂ Θ, (9.10)

we assume the following:

(H1) Θ0 is a subset of RM0 , and there exist 1 ≤ d0 ≤M0, an open subset B ⊂ RM0−d0

and mappings

g : Θ −→ Rd0 and h : B −→ Θ
such that Θ0 = {h(β) : β ∈ B} and g(θ) = 0 on Θ0.

(H2) The M0 × d0 matrix
B(θ) =

µ
∂gj (θ)

∂θs

¶
j=1,...,d0
s=1,...,M0

exists and is of rank d0 for all θ ∈ Θ0, with all elements continuous on Θ0.
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(H3) The M0 × (M0 − d0) matrix

Mβ =

µ
∂hj (θ)

∂βs

¶
j=1,...,M0

s=1,...,M0−d0

exists and is of rank M0 − d0 for all β ∈ B, with all elements continuous on B.
(H4) The statistical submodel³

(X , βX ) ,
n
pβ = fh(β) : β ∈ B

o
, µ
´

satisfies regularity conditions i)-v).

In order to solve the testing problem

H0 : θ ∈ Θ0 ⊂ Θ versus H1 : θ ∈ Θ−Θ0
we shall consider the test statistics given in (9.1), (9.2), (9.3) and (9.4), but adapted to

current context:

· Wald test statistic

Wn = ng(bθ)³B(bθ)IF(bθ)−1BT (bθ)´−1 g(bθ)T , (9.11)

where bθ is the maximum likelihood estimator of θ in Θ, IF(bθ)−1 denotes the
inverse of the Fisher information matrix, g (θ) , the mapping defined in (H1) and

B(θ) the matrix in (H2).

· Likelihood ratio test statistic

Ln = 2n
³
λn(bθ)− λn(eθ)´ (9.12)

where eθ = h(bβ) is the maximum likelihood estimator restricted to the null hy-

pothesis Θ0, and

λn (θ) =
1

n

nX
i=1

log fθ (Yi) .

· Rao test statistic
Rn =

1

n
Un(eθ)IF(eθ)−1Un(eθ)T , (9.13)

where

Un(eθ) = Ã nX
i=1

∂ log fθ (Yi)

∂θ1
, ...,

nX
i=1

∂ log fθ (Yi)

∂θM

!
θ=eθ .
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For testing the special composite null hypotheses H ≡ Θ0 = Θ1 × {θ20} and H∗ ≡
Θ∗0 = {θ10} × Θ2 in models with Θ = Θ1 × Θ2, Salicrú et al . (1994) proposed the
φ-divergence test statistics

Tφn

³
(bθ1, bθ2), (bθ1,θ20)´ =

2n

φ00 (1)
Dφ

³
(bθ1, bθ2), (bθ1,θ20)´ ,

Tφn

³
(bθ1, bθ2), (θ10, bθ2)´ =

2n

φ00 (1)
Dφ

³
(bθ1, bθ2), (θ10, bθ2)´

using the maximum likelihood estimator bθ = (bθ1, bθ2).
Later Morales et al . (1997), using the φ-divergence test statistics, studied the problem

under any hypothesis H with the properties (H1) — (H4). They dealt with the following

family of test statistics:

· φ-divergence test statistic

Tφn (
bθ, eθ) ≡ 2n

φ00 (1)
Dφ(bθ, eθ), (9.14)

where bθ is the maximum likelihood estimator of θ in Θ and eθ is the maximum
likelihood estimator in the null hypothesis Θ0.

Theorem 9.4

Let the model and φ

Φ1) , (Φ2) . Then, under any hypothesis H with properties (H1) — (H4), the

asymptotic distribution of the test statistics given in (9.11), (9.12), (9.13) and (9.14) is

chi-square with d0 degrees of freedom.

The proof of this theorem for the φ-divergence test statistic given in (9.14) was

established by Morales et al . (1997).

φ)-divergence measures,

Tφ,hn (bθ, eθ), we have a similar result.
For composite null hypothesis a result analogous to Remark 9.4 can be established.

Consider the null hypothesisH0 : θ ∈ Θ0 ⊂ Θ and assume that conditions (H1) — (H4)
hold. By Theorem 9.4, the null hypothesis should be rejected if Tφn (bθ, eθ) ≥ χ2d0,α. The

following theorem can be used to approximate the power function. Assume that θ∗ /∈ Θ0
is the true value of the parameter so that bθ a.s.−→

n→∞ θ∗ and that there exists θ0 ∈ Θ0 such
that the restricted maximum likelihood estimator satisfies eθ a.s.−→

n→∞ θ0. Then, it holds

√
n
³
(bθ, eθ)− (θ∗,θ0)´ L−→

n→∞ N

Ãµ
0

0

¶
,

Ã
IF (θ∗)−1 A12

A21 A22

!!
,
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satisfy the assumptions i) — v) considered in Section 2 of Chap-

ter 2 and (

For the rest of test statistics, see Serfling (1980)

or Sen and Singer (1993). For the test statistic based on the (h,
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where A12 = A12 (θ
∗,θ0) , A21 = A

T
12 and A22 =A22 (θ

∗,θ0) are d0 × d0 matrices. We
have the following result.

Theorem 9.5

Let the model φ ∈ Φ∗ and Θ0 satisfy the assumptions i)—v), (φ1)—(φ2) and (H1)—(H4)
respectively. Then

√
n
³
Dφ(bθ, eθ)−Dφ (θ

∗,θ0)
´

L−→
n→∞ N

¡
0,σ2φ (θ

∗)
¢
,

where

σ2φ (θ
∗) = T TIF (θ∗)−1 T + T TA12S + S

TA21T + S
TA22S,

T =
³
∂Dφ(θ1,θ0)

∂θ1

´T
θ1=θ∗

and S =
³
∂Dφ(θ

∗,θ2)
∂θ2

´T
θ2=θ0

.

Proof. The result follows straightforward by making a first order Taylor expansion of

Dφ(bθ, eθ)
Dφ(bθ, eθ) = Dφ (θ

∗,θ0) + T T (bθ − θ∗) + ST (eθ − θ0) + o
³°°°bθ − θ∗

°°°+ °°°eθ − θ0

°°°´ .
Remark 9.5

On the basis of this theorem we can get an approximation of the power function at

θ∗, βn,φ(θ∗) = Prθ∗
³
Tφn (bθ, eθ) > χ2d0,α

´
, in the following way:

βn,φ(θ
∗) = 1−Φ

µ
1

σφ (θ
∗)

µ
φ00 (1)
2
√
n
χ2d0,α −

√
nDφ (θ

∗,θ0)
¶¶

,

where Φ (x) is the standard normal distribution function.

We may also find an approximation of the power of Tφn (
bθ, eθ) at an alternative close to

the null hypothesis. Let θn ∈ Θ−Θ0 be a given alternative and let θ0 be the element inΘ0
closest to θn in the Euclidean distance sense. A first possibility to introduce contiguous

alternative hypotheses is to consider a fixed d ∈ RM0 and to permit θn moving towards

θ0 as n increases in the following way

H1,n : θn = θ0 + n
−1/2d.

A second approach is to relax the condition g (θ) = 0 defining Θ0. Let δ ∈ RM0 and

consider the following sequence, θn, of parameters moving towards θ0 according to

H∗1,n : g (θn) = n
−1/2δ.

Note that a Taylor series expansion of g (θn) around θ0 yields

g (θn) = g (θ0) +B (θ0)
T (θn − θ0) + o (kθn − θ0k) . (9.15)
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By substituting θn = θ0 + n−1/2d in (9.15) and taking into account that g (θ0) = 0, we
get

g (θn) = n
−1/2B (θ0)

T d+ o (kθn − θ0k) ,
so that the equivalence in the limit is obtained for δ = B (θ0)

T
d. In Morales and Pardo

(2001), the following result was established:

Theorem 9.6

Under some regularity conditions, the asymptotic distribution of Tφn (
bθ, eθ) under H∗1,n,

is noncentral chi-square with d0 degrees of freedom and noncentrality parameter δ =

dTIF (θ0)−1 d and noncentral chi-square with d0 degrees of freedom and noncentrality

parameter δ∗ = dT
³
B (θ0)IF (θ0)−1BT (θ0)

´−1
d under H1,n.

Davidson and Lever (1970) obtained the same result for the test statistic Ln.

Example 9.2 (Morales et al. 1997)

Let Y1, ..., Yn be a random sample from a normal population with mean µ and variance

σ2, θ = (µ,σ) ∈ Θ = (−∞,∞)× (0,∞) . We shall test composite hypotheses

H0 : σ = µ/3 versus H1 : σ 6= µ/3.

The maximum likelihood estimators of µ and σ are bµ = Y = 1
n

Pn
i=1 Yi and bσ =

( 1n
Pn
i=1(Yi − Y )2)1/2, respectively. In this case,

Θ0 = {(µ,σ) ∈ Θ : σ = µ/3}.

Now we are going to calculate the maximum likelihood estimator, eθ, of θ in Θ0. The
density function is

fN(µ,σ=µ/3)(x) =
3

µ(2π)1/2
exp

½
−12

³
x−µ
µ/3

´2¾
=
1

µ
3

(2π)1/2
exp

½
−92

³
x
µ − 1

´2¾
.

Then, the likelihood function is

L(µ;Y1, ..., Yn) =

µ
3

(2π)1/2

¶n
1

µn
exp

(
−9
2

Ã
nX
i=1

Y 2i
µ2
+ n− 2

µ

nX
i=1

Yi

!)

and the loglikelihood function

logL(µ;Y1, ..., Yn) = n

µ
− logµ+ log 3√

2π

¶
− 9

2

µ
nP
i=1

Y 2i
µ2
+ n− 2

µ

nP
i=1
Yi

¶
.

Therefore

∂ logL(µ;Y1, ..., Yn)

∂µ
=
1

µ

Ã
−n+ 9

µ2

nX
i=1

Y 2i −
9

µ

nX
i=1

Yi

!
= 0
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and eµ is a solution of the equation
−nµ2 + 9

nX
i=1

Y 2i − 9µ
nX
i=1

Yi = 0⇔ µ2 + 9Y µ− 9 1
n

nX
i=1

Y 2i = 0.

This solution is

µ =
1

2

−9Y ±
vuut(9Y )2 + 4× 9 1

n

nX
i=1

Y 2i


and the maximum likelihood estimator of θ in Θ0 is eθ = (eµ, eµ/3), where

eµ = 3

2

µ
−3Y +

q
13Y

2
+ 4bσ2¶ .

Now, taking into account the expression of Rényi divergence for two normal populations

given in (9.9), we get the expression of the Rényi test statistic

T rn(
bθ, eθ) = 2n

φ00 (1)h0 (0)
D1r((bµ, bσ), (eµ, eµ3 ))

= n

µ
1

r(r−1) log
(bσ2)1−r(eµ/3)2r
r(eµ/3)2+(1−r)bσ2 + (bµ−eµ)2

(r(eµ/3)2+(1−r)bσ2)
¶
.

The likelihood ratio test statistic is given by

Ln = T
Kull
n (bθ, eθ) = lim

r→1D
1
r(bθ, eθ) = nµ (bµ− eµ)2eµ2 9 + 9

bσ2eµ2 − 1 + log eµ29bσ2
¶

and for r→ 0, we have

T 0n(
bθ, eθ) = lim

r→0T
r
n(
bθ, eθ) = nµ(bµ− eµ)2bσ2 +

eµ2
9

1bσ2 − 1 + log 9bσ2eµ2
¶
.

Now we consider the test statistics Wn and Rn. For the Wald test statistic Wn, we

need the Fisher information matrix, the function g and the matrix B (θ) . The estimated

Fisher information matrix is

IF (bµ, bσ) = µ bσ−2 0

0 2bσ−2
¶
,

the function g and the matrix B (θ) are g(bθ) = g(bµ, bσ) = bµ− 3bσ and B(bθ) = (1,−3),
respectively.

Then, the Wald test statistic is

Wn = ng(bθ)³B(bθ)IF(bθ)−1BT (bθ)´−1 g(bθ)T = n2(bµ− 3bσ)2
11bσ2 .

Regarding Rao test statistic, it is necessary to calculate
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Un(eθ) = Ã nX
i=1

∂ log fµ,σ (Yi)

∂µ
,
nX
i=1

∂ log fµ,σ (Yi)

∂σ

!
(µ,σ)=(eµ,eµ/3) .

It holds Ã
nX
i=1

∂ log fµ,σ (Yi)

∂µ

!
(eµ,eµ/3)

= n
9eµ2 (Y − eµ),

and
nX
i=1

µ
∂ log fµ,σ (Yi)

∂σ

¶
(eµ,eµ/3)

= n

Ã
− 3eµ + 27eµ3 1n

nX
i=1

(Yi − eµ)2! .
Therefore

Rn = 1
nUn(eθ)TIF(eθ)−1Un(eθ)

= n

Ã
9eµ2 (Y − eµ)2 + eµ2

18

µ
− 3eµ + 27eµ3 1n nP

i=1
(Yi − eµ)2¶2! .

In the following table we summarize the final expressions of the different test statistics

presented here

Statistic Expression

Wn n
2(bµ− 3bσ)2
11bσ2

Rn n

Ã
9eµ2 (Y − eµ)2 + eµ2

18

µ
− 3eµ + 27eµ3 1n nP

i=1
(Yi − eµ)2¶2!

Ln ≡ TKulln n

µ
(bµ− eµ)2eµ2 9 + 9

bσ2eµ2 − 1 + log eµ29bσ2
¶

T 0n n

µ
(bµ− eµ)2bσ2 +

eµ2
9

1bσ2 − 1 + log 9bσ2eµ2
¶

T rn n

Ã
1

r(r − 1) log
¡bσ2¢1−r (eµ/3)2r

r (eµ/3)2 + (1− r)bσ2 + (bµ− eµ)2
r (eµ/3)2 + (1− r)bσ2

!
.

The formula for T rn holds for r 6= 0, r 6= 1 when r(eµ/3)2 + (1 − r)bσ2 > 0. When

r(eµ/3)2 + (1− r)bσ2 < 0, then T rn =∞.
The null hypothesis, Θ0, is given by the line σ = µ/3. Now we consider the perpendic-

ular line to the null hypothesis across the point (0, c). This line is given by σ = −3µ+ c.
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The intersection of both lines is a point at the null hypothesis P5 = (3c/10, c/10). We

consider 10 points on the line σ = −3µ + c, four of them under P5 and six over P5,

namely

Pj =
c

16

µ
101

20
,
17

20

¶
+ j

c

320
(−1, 3), j = 1, 2, ...,11.

For c = 1/2 we have the following 11 points:

P1 = (.1562, .0312) , P2 = (.1547, .0359) , P3 = (.1531, .0400) ,

P4 = (.1516, .0453) , P5 = (.1500, .0500) , P6 = (.1484, .0547) ,

P7 = (.1469, .0594) , P8 = (.1453, .0641) , P9 = (.1437, .0687),

P10 = (.1422, .0734), P11 = (.1406, .0781).

Given, for instance, P2 = (.1547, .0359) , we calculate the power of the test statistics

simulating random normal variables with mean 0.1547 and standard deviation 0.0359.

For any statistic

T ∈ S = {Wn, Rn, T
r
n , r = −1,−.6,−.3, 0, .3, .5, .7, 1, 1.3, 1.6, 2}

and any point Pj , the power is

βT (Pj) = Pr(T > χ21,0.05/Pj) = Pr(T > 3.84/Pj).

This power will be obtained as follows:

• For each Pj , j = 1, ..., 11, repeat N = 1000 times:

- Generate n = 50 normal random variables with parameter Pj and obtain the max-

imum likelihood estimators.

- Evaluate Tj,i (value of T for the random sample i (i = 1, ..., 1000) of parameter Pj
(j = 1, ..., 11) with c = 1/2).

• Estimate bβT (j) = Number of Tj,i > 3.84 (i = 1, ..., 1000)

1000
.

1 we p resen t t he powers co rre spon di ng t o t he test sta ti s ti cs Wn, Rn and T rn, r =

−1,−.6,−.3, 0, .3, .5, .7, 1, 1.3, 1.6, 2. For r = 1 we have the likelihood ratio test statistic.
Let us denote

S = {Wn, Rn, T
r
n , r = −1,−.6,−.3, 0, .3, .5, .7, 1, 1.3, 1.6, 2}

the set of test statistics considered here. We define βMAX(Pj) = supT∈S βT (Pj), for
j = 1, ..., 11, the maximum power achieved in the class S for each alternative hypothesis

Pj. Then

iT (Pj) = βMAX(Pj)− βT (Pj)
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is the inefficiency on the set of alternative hypotheses for each T ∈ S. Thus, the quantity

η (T ) = maxj 6=5 {iT (Pj)}

can be regarded as a measure of inefficiency of the test statistic T. The minimax criterion

chooses the test statistic T ∈ S minimizing η (.) .

Powers

T rn
Pj Wn Rn r = −1 r = −.6 r = −.3 r = 0 r = .3 r = .5 r = .7

1 1.00 .997 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 .965 .853 .979 .975 .970 .960 .951 .946 .936

3 .675 .431 .742 .710 .689 .664 .640 .615 .602

4 .252 .099 .312 .280 .260 .238 .215 .205 .191

5 .068 .044 .095 .078 .074 .067 .059 .056 .054

6 .083 .194 .067 .069 .082 .095 .109 .119 .133

7 .301 .477 .222 .264 .294 .326 .349 .363 .377

8 .544 .715 .459 .504 .536 .563 .596 .620 .633

9 .811 .907 .754 .786 .806 .825 .841 .850 .861

10 .910 .962 .872 .895 .907 .915 .931 .933 .943

11 .972 .989 .964 .967 .969 .974 .977 .979 .980

Table 9.1

Powers

T rn
Pj r = 1 r = 1.3 r = 1.6 r = 2 βMAX(j)

1 1.00 .999 .997 .997 1.00

2 .927 .913 .894 .880 .979

3 .573 .540 .516 .477 .742

4 .176 .159 .147 .126 .312

5 .055 .052 .049 .050 .050

6 .147 .162 .181 .214 .214

7 .404 .437 .463 .496 .496

8 .659 .677 .701 .730 .730

9 .874 .888 .897 .915 .915

10 .950 .958 .960 .966 .966

11 .981 .986 .989 .992 .992

Table 9.1 (Continuation)

fficiencies η(T ) of the test statistics T rn.
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Inefficiencies

T rn
Pj Wn Rn r = −1 r = −.6 r = −.3 r = 0 r = .3 r = .5 r = .7

1 .000 .003 .000 .000 .000 .000 .000 .000 .000

2 .014 .126 .000 .004 .009 .019 .028 .033 .043

3 .067 .311 .000 .032 .053 .078 .102 .127 .140

4 .060 .213 .000 .032 .052 .074 .097 .107 .121

5 -.018 .006 -.045 -.028 .024 -.017 -.009 -.006 -.004

6 .131 .020 .147 .145 .132 .119 .105 .095 .081

7 .195 .019 .274 .232 .202 .170 .147 .133 .119

8 .186 .015 .271 .226 .194 .167 .134 .110 .097

9 .104 .008 .161 .129 .109 .090 .074 .065 .054

10 .056 .004 .094 .071 .059 .051 .035 .033 .023

11 .020 .003 .028 .025 .023 .018 .015 .013 .012

.195 .311 .274 .232 .202 .170 .147 .133 .140

Table 9.2

Inefficiencies

T rn
j r = 1 r = 1.3 r = 1.6 r = 2

1 .003 .001 .003 .003

2 .052 .066 .085 .099

3 .169 .202 .226 .265

4 .136 .153 .165 .186

5 -.005 -.002 .001 .000

6 .067 .052 .033 .000

7 .092 .059 .033 .000

8 .071 .053 .029 .000

9 .041 .027 .018 .000

10 .016 .008 .006 .000

11 .011 .006 .003 .000

.169 .202 .226 .265

Table 9.2 (Continuation)

We can see from the last line in Table 9.2 that the test statistic T 0.5n presents the

minimum relative inefficiency. The relative inefficiency of the test statistic using, e.g.,

the Rao test statistic, is more than 100% higher.
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Observe that T−0.5n = −8n log(1− TFren /8n), where TFren is the Freeman-Tukey test

statistic given by

TFren = 4n

Z
R

³q
fbθ (x)−

q
feθ (x)

´2
dx.

Furthermore, T 2n = n log
³
1 +

X2
n

n

´
where

X2
n = n

Z
R

¡
fbθ (x)− feθ (x)¢2

feθ (x) dx

is the chi-square test statistic.

9.4. Multi-sample Problem

This section deals with testing a composite null hypothesis H0 about parameters

from s populations whose distributional structure differs just in the value of a parame-

ter. From each population i, a sample of size ni is drawn at random, i = 1, ..., s. Letbθ1, . . . , bθs denote the maximum likelihood estimators and eθ1, . . . , eθs the maximum like-

lihood estimators under H0. When n1 = . . . = ns, Morales et al . (1997) developed a

testing procedure based on the φ-divergence test statistic

Tφn

³
(bθ1, . . . , bθs), (eθ1, . . . , eθs)´ , (9.16)

which is obtained by calculating a φ—divergence between the joint densities

sY
i=1

fbθi (xi) and
sY
i=1

feθi (xi) .

When the sample sizes are different, the φ-divergence test statistics given in (9.16)

cannot be used unless they were generalized in some sense. In the literature of Statistical

Information Theory, problems related to s samples have been treated by using families

the likelihood ratio test statistic, and in some situations the asymptotic distribution of

these test statistics are based on a linear combination of chi-square distributions instead

of on a chi-square distribution.

The likelihood ratio test statistic uses the ratio between

sY
i=1

niY
j=1

fbθi (Yij) and
sY
i=1

niY
j=1

feθi (Yij) (9.17)
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of divergences between s populations (see Menéndez et al . (1997e), Zografos (1998a),

This is a nice possibility, but it is not the natural extension ofMorales et al . (1998)).
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for introducing the decision rule. As a parallel approach, in this section we consider

a divergence between the two estimated likelihood functions appearing in (9.17) and

provide a decision rule on the basis of the resulting statistic.

Let (X1, βX1 , P1,θ1)θ1∈Θ1 , . . . , (Xs,βXs , Ps,θs)θs∈Θs be statistical spaces associated
with independent populations. For i = 1, · · · , s, Xi ⊂ Rni is the sample space, βXi is the
Borel σ-field of subsets of Xi, Θi ⊂ Rki is an open set and fi,θi is the probability density
function of Pi,θi with respect to a σ-finite measure µi, i = 1, ..., s. In this section, we

deal with the product statistical space

(X1 × · · · × Xs,βX1 × · · · × βXs , P1,θ1 × · · · × Ps,θs) ,
with (θ1, . . . ,θs) ∈ Θ1 × · · · ×Θs. Let µ , µn11 × · · · × µnss be the product measure and

X , Xn1
1 ×· · ·×Xnss be the product sample space. Consider s independent random sam-

ples, Yi1, Yi2, . . . , Yini , i = 1, ..., s, from independent and identically distributed random

variables with common probability density function fi,θi , θi ∈ Θi, i = 1, . . . , s. Assume
that the sample sizes ni tend to infinity with the same rate, that is, if n =

Ps
i=1 ni, then

ni
n
−→
ni→∞

λi ∈ (0, 1) , i = 1, ..., s (9.18)

where
Ps
i=1 λi = 1. Further, assume that the parameters θi = (θi,1, . . . , θi,ki), i =

1, . . . , s, have the same k first components, that is,

θ1,1 = θ2,1 = . . . = θs,1
θ1,2 = θ2,2 = . . . = θs,2
...

...
...

θ1,k = θ2,k = . . . = θs,k ,

where k ≤ min{k1, · · · , ks}. Let us consider the joint sample
Y = (Y11, . . . , Y1n1 ;Y21, . . . , Y2n2 ; . . . ;Ys1, . . . , Ysns),

and the joint parameter

γ = (θ1,1, . . . , θ1,k1 ; θ2,k+1, . . . , θ2,k2 ; . . . ; θs,k+1, . . . , θs,ks),

with γ ∈ Γ, where Γ is an open subset of RM and M =
Ps
i=1 ki − (s− 1)k. Let

fi,θi(Y i) =
niY
j=1

fi,θi(Yij) and L(θi;Yi1, ..., Yini) =
niX
j=1

log fi,θi(Yij)

be the likelihood and the log-likelihood function of θi based on the i-th sample. The

likelihood and the log-likelihood function of γ = (γ1, . . . , γM) ∈ Γ based on the joint
sample are

fγ (Y ) =
sY
i=1

fi,θi(Yi) and l(γ) =
sX
i=1

L(θi;Yi1, ..., Yini)
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respectively. The likelihood equations are

∂l(γ)

∂γp
=

sX
i=1

∂L(θi;Yi1, ..., Yini)

∂γp
= 0, p = 1, . . . ,M ,

where, for each i,

∂L(θi;Yi1, ..., Yini)

∂γp
=

niX
j=1

∂

∂γp
log fi,θi(Yij).

Let Ii(θi) be the Fisher information matrix of the parameter θi associated with the
ith-population with density function fi,θi and let I

i
p,q(θi) the (p, q)th-element of Ii(θi).

We split Ii(θi) into blocks as follows

Ii(θi) =
Ã
Iik,k(θi) Iik,ki(θi)
Iiki,k(θi) Iiki,ki(θi)

!
ki×ki

,

where Iik,k(θi), Iik,ki(θi), Iiki,k(θi) and Iiki,ki(θi) are the submatrices whose lower-right
corner elements are respectively Iik,k(θi), I

i
k,ki
(θi), Iiki,k(θi) and I

i
ki,ki

(θi), and whose

sizes are k × k, k × (ki − k), (ki − k)× k and (ki − k)× (ki − k), respectively.
The followingM ×M matrix, denoted by V (γ), plays the fundamental role of Fisher

information matrix,

V (γ) =


Ps
i=1 λiIik,k(θi) λ1I1k,k1(θ1) · · · λsIsk,ks(θs)
λ1I1k1,k(θ1) λ1I1k1,k1(θ1) ... 0

...
...

. . .
...

λsIsks,k(θs) 0 ... λsIsks,ks(θs)

 .
The regularity assumption (vi) is needed to derive the asymptotic normality of the max-

imum likelihood estimators.

(vi) The matrix V (γ) is positive definite.

A composite null hypothesis H0 can be usually described by a subset Γ0 of the

parametric space and, consequently, the alternative hypothesis is associated with Γ1 =

Γ− Γ0. Suppose that Γ0 can be expressed as

Γ0 = {γ ∈ Γ : γi = hi(β), i = 1, . . . ,M} = {γ ∈ Γ : h (β) = γ} ,

where β = (β1, . . . ,βM0)
T ∈ B, h =(h1, ..., hM) and B ⊂ RM0 is an open subset. Sup-

pose that Γ0 can be also described by the M −M0 restrictions

gi(γ) = 0, i = 1, . . . ,M −M0,
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where the functions hi and gj have continuous first order partial derivatives and the

ranks of the matrices

T γ =

µ
∂gi(γ)

∂γj

¶
i=1,...,M−M0
j=1,...,M

, Mβ =

µ
∂hi(β)

∂βj

¶
i=1,...,M

j=1,...,M0

are M −M0 and M0 respectively.

Further, suppose that the s submodels

(X1, βX1 , P1,θ1)θ1∈Θ1 , . . . , (Xs, βXs , Ps,θs)θs∈Θs
restricted to null hypothesis (i.e., with γ ∈ Γ0) satisfy i)—v), with derivatives taken with
respect to the new parameter β.

For testing the null hypothesis H0 : γ = h(β), we shall use the family of φ-divergence

test statistics

Tφn (bγ,h(bβ)) ≡ 2

φ00 (1)
Dφ(bγ,h(bβ)),

where Dφ(bγ,h(bβ)) is the φ-divergence between fbγ (x) and fh(bβ)(x).
The following theorem was proved by Morales et al . (2001) for k = 0 and by Hobza

et al . (2001) for k > 1.

Theorem 9.7

Let H0 : γ = h(β) be true. For each i = 1, . . . , s, let Yi1, . . . , Yini be independent and

identically distributed random variables with common probability density function fi,θi(x)

satisfying the regularity assumptions (9.18) and i)-v). Suppose also that the necessary

conditions for differentiating inside the integrals hold. Then

Tφn (bγ,h(bβ)) = 2

φ00 (1)
Dφ(bγ,h(bβ)) L−→

n→∞ χ2M−M0
.

In the multi-sample case with exponential models, the Kullback-Leibler and the like-

lihood ratio test statistics coincide for k = 0; however this result does not hold for k > 1.

In the case of the (h,φ)-divergence measure the analogous result holds, i.e.,

Tφ,hn (bγ,h(bβ)) = 2

φ00 (1)h0 (0)
Dhφ(bγ,h(bβ)) L−→

n→∞ χ2M−M0
.

For instance, in the special case of Rényi’s divergence, the functions h and φ were given

in (9.7) and (9.8) and Rényi test statistic is

T rn(bγ,h(bβ)) ≡ 2Dr1(bγ,h(bβ)) = 1

r(r − 1) log
Z
X
frbγ (x)f1−rh(bβ)(x)dµ(x) L−→

n→∞ χ2M−M0
.
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The example below, due to Morales et al . (2001), shows the behaviour of Rényi test

statistic with normal populations.

Example 9.3

Let (Y11, ..., Y1n1) , ..., (Ys1, ..., Ysns) be s independent random samples from normal

populations with unknown parameters (µ1,σ1) , ..., (µs,σs) respectively. We are interested

in testing

H0 : σ
2
1 = ... = σ2s versus H1 : ∃ i 6= j with σ2i 6= σ2j .

In this case, the joint parameter space is

Γ =
©
(µ1, ..., µs,σ

2
1 , ...,σ

2
s) / µi ∈ R, σ2i > 0, i = 1, ..., s

ª
,

and its restriction to H0 is

Γ0 =
©
(µ1, ..., µs,σ

2
1, ...,σ

2
s) ∈ Γ/ σ21 = ... = σ2s > 0

ª
.

Using the functions hi and gi given previously, the null hypothesis Γ0 can be written in

the following alternative forms:

i) Consider the set B defined by

B =
©
β = (µ1, ..., µs,σ, ...σ) ∈ R2s : µi ∈ R and σ ∈ R+

ª
and the functions,

hi(β) =

½
µi i = 1, ..., s

σ2 i = s+ 1, ..., 2s
.

Then

Γ0 = {γ ∈ Γ : γi = hi(β), i = 1, ..., 2s} .

ii) Consider the function gj : Θ→ Rs−1, j = 1, ..., s− 1, defined by

gj(µ1, ..., µs,σ1, ...,σs) = σ1 − σj , j = 1, ..., s− 1.

Obviously gj(µ1, ..., µs,σ1, ...,σs) = 0 for (µ1, ..., µs,σ1, ...,σs) ∈ Γ0. Therefore,

Γ0 = {γ ∈ Γ : gj(γ) =0, j = 1, ..., s− 1} .

The maximum likelihood estimator is bγ = ¡
Y 1∗, . . . , Y s∗, bσ21, . . . , bσ2s¢ and the maxi-

mum likelihood estimator under the null hypothesis is h(bβ) = ¡Y 1∗, . . . , Y s∗, bσ2, . . . , bσ2¢
where bσ2 = 1

n

Ps
i=1 bσ2i . The Rényi test statistic for testing H0 : σ21 = . . . = σ2s is given

by

T rn(bγ,h(bβ)) = 2

φ00(1)h0(0)
D1r(bγ,h(bβ)) = 2D1r((bµ, bΣ1), (eµ, eΣ2)),
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with

bµ = ³bµT1 , ..., bµTs ´T , bµTi = ¡Y i∗, . . . , Y i∗¢T , i = 1, . . . , s,bΣ1 = diag³bΣ∗1, . . . , bΣ∗s´ , bΣ∗i = diag ¡bσ2i , . . . , bσ2i ¢ , i = 1, . . . , s,eµ = ³eµT1 , ..., eµTs ´T , eµTi = ¡Y i∗, . . . , Y i∗¢T , i = 1, . . . , s,eΣ2 = diag³eΣ∗1, . . . , eΣ∗s´ , eΣ∗i = diag ¡bσ2, . . . , bσ2¢ , i = 1, . . . , s.
After straightforward algebra, we get

T rn(bγ,h(bβ)) =


1
r(1−r)

sP
i=1
ni log

(rbσ2+(1−r)bσ2i )bσ2rbσ2(1−r)i

if r 6= 0, r 6= 1
sP
i=1
ni log

bσ2bσi2 if r = 1

sP
i=1
ni

³ bσ2bσi2 − 1 + log bσ2ibσ2
´

if r = 0.

By Theorem 9.7, the asymptotic distribution of T rn(bγ,h(bβ)) is chi-square with s − 1
degrees of freedom. Therefore, an asymptotically test, with significance level α, for the

problem of testing the equality of variances should reject H0 when T rn(bγ,h(bβ)) > χ2s−1,α.

In Morales et al . (2001), a power simulation study was carried out for comparing

several members of the family of Rényi test statistics.

As a result of this Monte Carlo simulation experiment, they recommended any Rényi

divergence test statistic with r ∈ [5/4, 3/2]. They also emphasize that r = 5/4 emerges
as a good alternative since it presents the best numerical results.

Under the assumption σ21 = ... = σ2s , it is not difficult to establish that Rényi test

statistic for testing

H0 : µ1 = .... = µs versus H1 : ∃ i 6= j with µi 6= µj

rejects the null hypothesis if

1
s

sX
i=1

ni
¡
Y i∗ − Y

¢2
1

n−s

sX
i=1

niX
j=1

¡
Yij − Y i∗

¢2 > Fs−1,n−s,α,

where Fs−1,n−s,α is the 100 (1− α) percentile of the F distribution with s− 1 and n− s
degrees of freedom.
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9.5. Some Topics in Multivariate Analysis

A considerable part of this book is devoted to the use of the φ-divergence concept,

developing methods of estimation and testing for the analysis of categorical data in several

contexts like analysis of cross-classified data, log-linear models, etc. From this point of

view, the φ−divergence is exploited here for the analysis of discrete multivariate data.
The use of divergences in order to meet and study problems of Multivariate Analysis

is not new. It starts in the early 1950, when Kullback (1959), in his pioneer book,

dedicated five chapters to the use of the minimum information discrimination principle for

the study of several problems in multivariate analysis. The bridge which links Statistical

Information Theory and Multivariate Analysis is founded on the fact that multivariate

analysis methods are mainly created on the notion of the distance between observations

or distance among their respective distributions, while on the other hand, Statistical

Information Theory is mainly concerned with the definition of statistical distances or

divergences between distributions and on the development of metric geometries based

mainly on the Fisher information matrix.

The operational link between these two statistical areas has received great atten-

tion over the last four decades. Since Kullback’s pioneer work, there is a vast amount

of contributions based on the information theoretic formulation of multivariate statis-

tical topics, like distribution theory, statistical inference using multivariate continuous,

categorical or mixed data, concepts of multivariate dependence, discrimination and clas-

sification etc. An indicatory, nonexhaustive literature of the subject is the following: i)

Construction of Multivariate Distributions (Kapur (1989), Cuadras (1992a), Cuadras et

al . (1997a), Zografos (1999)), ii) Statistical Inference (Krzanowski (1983), Bar-Hen and

Daudin (1995), Morales et al . (1997, 1998), Zografos (1998a), Garren (2000)), iii) Mea-

sures of Multivariate Association (Kent (1983), Inaba and Shirahata (1986), Joe (1989),

Zografos (1998b, 2000)), iv) Discriminant Analysis (Matusita (1966, 1973), Krzanowski

(1982), Cacoullos and Koutras (1985), Cuadras (1992b), Koutras (1992), Bar-Hen, A.

(1996), Cuadras et al . (1997b), Menéndez et al . (2004, 2005d)). In Sy and Gupta (2004)

it can be seen that Information Theory is a useful tool for data mining.
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9.6. Exercises

1. Find the asymptotic distribution of the statistic Dhφ(
bθ,θ0), where bθ is the maxi-

mum likelihood estimator obtained from a population with parameter θ 6= θ0.

2. Find the asymptotic distribution of the (h,φ)-divergence test statistic Tφ,hn (bθ,θ0)
under the contiguous alternative hypotheses

H1,n : θn = θ0 + n
−1/2d,

where d is a fixed vector in RM0 such that θn ∈ Θ ⊂ RM0 .

3. We consider the divergence measure of order r and degree s.

a) Find the asymptotic distribution of the statistic Dsr(
bθ,θ0) under the hypoth-

esis that the observations are from a population with θ 6= θ0.

b) We consider the random sample

0.0789 0.1887 0.0828 0.0086 0.0572 0.0041 0.3551 0.0783

0.0732 0.1839 0.1439 0.1681 0.0115 0.1155 0.0566

from a exponential population of unknown parameter θ. Using the (h,φ)-

divergence test statistic based on the divergence measure of order r and

degree s (s = 2 and r = 0.5) test if θ = 10 versus θ 6= 10 using as significance
level α = 0.05.

4. We consider the φ-divergence test statistic Tφn (
bθ,θ0) for testing H0 : θ = θ0. Ob-

tain the approximate size n, guaranteeing a power β at a given alternative θ 6= θ0.

5. We consider two random samples from two populations with parameters θ1 and θ2
of sizes n and m respectively, and the corresponding maximum likelihood estima-

tors, bθ1 = (bθ11, ..., bθ1M0)
T and bθ2 = (bθ21, ..., bθ2M0)

T , associated with them. Find

the asymptotic distribution of the test statistic Dφ(bθ1, bθ2) under the two following
assumptions: a) θ1 6= θ2 and b) θ1 = θ2.

6. Use the result obtained in Exercise 5 for testing H0 : θ1 = θ2 versus H1 : θ1 6= θ2.

7. Let Y1, ..., Yn be a random sample from a exponential distribution of parameter θ.

a) Find the expression of Cressie-Read test statistic, Dφ(λ)(
bθ, θ0), for λ = 2

where bθ is the maximum likelihood estimator of θ.

b) Test H0 : θ = 3/2 versus H1 : θ 6= 3/2, on the basis of the exact test based
on Dφ(λ)(

bθ, θ0) and using as significance level α.
8. LetX be aM -variate normal population with unknown mean vector µ and known

variance-covariance matrix Σ0.

a) Find a test statistic for testing µ = µ0 versus µ 6= µ0 using Kullback-Leibler
divergence measure as well as the (1− α) confidence region in R2 for µ.
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b) The measurements on the first and second adult sons in a sample of 25

families are the following:

First son (X1) 191 195 181 183 176 163 195 186 181

208 189 197 188 192 175 192 174 176

179 183 174 190 188 197 190

Second son (X2) 179 201 185 188 177 161 183 173 182

192 190 189 197 187 165 185 178 176

186 174 185 195 187 200 187
Source: Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979, p. 121).

.

We assume that X1 and X2 are independent and that each one is normally

distributed with variance 100, i.e.,

Σ = Σ0 =

µ
100 0

0 100

¶
.

Test using as significance level α,

H0 : µ = µ0 = (µ01, µ02) = (182, 182)
T against H1 : µ 6= µ0

and get a 95% confidence region for the mean of X1 and X2.

9. LetX be aM -variate normal population with known vector mean µ0 and unknown

variance-covariance matrix Σ.

a) Find a test statistic for testing Σ = Σ0 versus Σ 6= Σ0 using the Kullback-
Leibler divergence measure as well as the 100 (1− α) confidence region for Σ

and M = 2.

b) Test using as significance level α = 0.05 for the data given in Exercise 8

H0 : Σ = Σ0 =

µ
100 0

0 100

¶
assuming that µ = (182, 182)T .

10. Let X be a M -variate normal population with unknown mean vector µ and un-

known variance-covariance matrix Σ. Find a test statistic for testing

H0 : µ = µ0 versus H1 : µ 6= µ0,

based on the Kullback-Leibler divergence measure.

11. Let X be a M -variate normal population with unknown mean vector µ and un-

known variance-covariance matrix Σ. Find a test statistic for testing

H0 : Σ = Σ0 versus H1 : Σ 6= Σ0,

based on the Kullback-Leibler divergence measure.

© 2006 by Taylor & Francis Group, LLC



Testing in General Populations 439

12. Given the independent random samples:

0.4068 1.7698 1.7830 1.0186 1.5880 1.9616 1.1334 0.1288 0.8306

and

1.3863 2.5470 0.9480 0.0420 0.1449 0.7971 1.2858 2.9358 1.4829

0.7971 1.2858 2.5335 1.4829

from uniform distributions in the intervals (0, θ1) and (0, θ2) respectively, using as

significance level α = 0.05, find the exact test based on Kullback-Leibler divergence

measure for testing θ1 = θ2 versus θ1 6= θ2 (θ1 ≤ θ2).

13. Let X1, ...,Xn and Y1, ..., Ym be two independent random samples from the distri-

butions

fθi(x) = exp(−(x− θi)) θi < x <∞, i = 1, 2.

Find the test statistic based on Kullback-Leibler divergence measure for testing

H0 : θ1 = θ2 versus H1 : θ1 > θ2.

14. We consider a population X with probability density function

fθ (x) =
θ2θ

xθ+1
x ≥ 2, θ > 0.

Find the expression of the test statistics of Wald, Rao, Likelihood ratio and Rényi

for testing

H0 : θ = θ0 versus H1 : θ 6= θ0,

based on a sample of size n.

15. We consider a population with exponential distribution with parameter θ and we

wish to test H0 : θ = 1 versus H1 : θ 6= 1 using as significance level α = 0.05.

a) Find Rényi test statistic for r = 1/4, 3/4, 1, 5/4, 7/4 and 2.

b) Study the accuracy of powers approximations given for n = 20, 40, 80 and

200, r = 1/4, 3/4, 1, 5/4, 7/4, 2 and θ = 0.5, 0.6, 0.65, 0.70, 0.75, 0.80, 0.85,

0.90, 0.95, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80, 1.90, 2, 2.10, 2.20, 2.30,

2.40 and 2.50.

c) Obtain the sample size to get a power of β = 0.8 for θ = 0.5, 0.6, 0.65, 0.70,

0.75, 0.80, 0.85, 0.90, 0.95, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80, 1.90,

2, 2.10, 2.20, 2.30, 2.40 and 2.50.
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9.7. Answers to Exercises

1. We have, Dhφ (θ1,θ2) = h (Dφ (θ1,θ2)) , where h is a differentiable increasing func-

tion mapping from [0,∞) onto [0,∞) , with h (0) = 0 and h0 (0) > 0.
We know that h (x) = h0 (x0) (x− x0) + o (x− x0) , then
√
n
³
Dhφ(

bθ,θ0)−Dhφ (θ,θ0)´ = h0 (Dφ (θ,θ0))
h√
n
³
Dφ(bθ,θ0)−Dφ (θ,θ0)

´i
+ oP (1) ,

and √
n
³
Dhφ(bθ,θ0)−Dhφ (θ,θ0)´ L−→

n→∞ N
¡
0,σ2h,φ(θ)

¢
,

where σ2h,φ(θ) = (h0 (Dφ (θ,θ0)))
2 σ2φ (θ) and σ2φ (θ) = T TIF (θ)−1 T is given in

Theorem 9.2.

2. In a similar way to the previous Exercise we have, under H1,n, that the statistics

Dhφ(
bθ,θ0) and h0 (0)Dφ(bθ,θ0)

have the same asymptotic distribution. Therefore,

Tφ,hn (bθ,θ0) = 2n

φ00 (1)h0 (0)
Dhφ(

bθ,θ0) L−→
n→∞ χ2M0

(δ) ,

being δ = dT IF (θ0) d.
If we want to approximate the power at some alternative θ, then d = d(n,θ,θ0) =√
n(θ − θ0) should be used in the formula of the noncentrality parameter.

3. The divergence of order r and degree s is given by

Dsr (θ,θ0) =
1

s− 1


Z
X
fθ (x)

r fθ0 (x)
1−r dµ (x)


s−1
r−1

− 1

 ,
and it can be considered as a (h,φ)-divergence with

h (x) =
1

s− 1
³
(1 + r (r − 1)x) s−1r−1 − 1

´
; s, r 6= 1

and

φ (x) =
xr − r (x− 1)− 1

r (r − 1) ; r 6= 0, 1.
a) From Exercise 1 it is only necessary to get the elements of the vector T .

These are given by

ti =
r

r − 1

Z
X
fθ (x)

r
fθ0 (x)

1−r
dµ (x)


s−r
r−1

×
Z
X
fθ0 (x)

1−r
fθ (x)

r−1 ∂fθ (x)
∂θi

dµ (x) , i = 1, ...,M.
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b) The divergence measure of order r and degree s between two exponential

distributions with parameters λ and µ is given for λr + µ (1− r) > 0 by

Dsr(λ, µ) = (s− 1)−1
Ãµ

λrµ1−r

λr + µ (1− r)
¶ s−1

r−1
− 1
!
,

and for λr + µ (1− r) ≤ 0, Dsr(λ, µ) = +∞. The maximum likelihood esti-

mator in the exponential model is bλ = Y −1 (Y is the sample mean) and for

the given random sample takes on the value bλ = 9.3379.
Now it is necessary to evaluate the test statistic

T r,sn (bλ, 10) ≡ 2n

h0 (0)φ00 (1)
Dsr(

bλ, 10).
In our case h0 (0) = r and φ00 (1) = 1, then we have

T r,sn (bλ, 10) = 2n

0.5
D20.5(

bλ, 10) = 0.0704.
On the other hand χ21, 0.05 = 3.841, and we should not reject the null hy-

pothesis.

4. If we consider the expression of the power given in (9.6) the problem will be solved

if we consider the sample size n∗ obtained as a solution of the equation

β1n,φ (θ) = 1−Φ
Ã √

n

σφ (θ)

Ã
φ00 (1)χ2M0,α

2n
−Dφ (θ,θ0)

!!
,

i.e.,

n∗ =
A+B +

p
A(A+ 2B)

2Dφ(θ,θ0)2
, (9.19)

where A = σ2φ(θ)
³
Φ−1(1− β1n,φ (θ))

´2
and B = φ00 (1)χ2M0,α

Dφ (θ,θ0). The re-

quired sample size is n = [n∗] + 1, where [·] is used to denote “integer part of”.
5. First we consider part a).

a) We have

Dφ(bθ1, bθ2) = Dφ (θ1,θ2) +
M0P
i=1

∂Dφ (θ1,θ2)

∂θ1i
(bθ1i − θ1i)

+
M0P
i=1

∂Dφ (θ1,θ2)

∂θ2i
(bθ2i − θ2i) + o

³°°°bθ1 − θ1

°°°´
+ o

³°°°bθ2 − θ2

°°°´ ,
thenq

nm
n+m

³
Dφ(bθ1, bθ2)−Dφ (θ1,θ2)

´
= T T (bθ1 − θ1) + S

T (bθ2 − θ2)

+ o
³°°°bθ1 − θ1

°°°´+ o³°°°bθ2 − θ2

°°°´ ,
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where

T = (t1, ..., tM0)
T
and S = (s1, ..., sM0)

T

with

ti =

Z
X

φ0
µ
fθ1 (x)

fθ2 (x)

¶
∂fθ1 (x)

∂θ1i
dµ (x)

and

si =

Z
X

µ
∂fθ2 (x)

∂θ2i
φ

µ
fθ1 (x)

fθ2 (x)

¶
− φ0

µ
fθ1 (x)

fθ2 (x)

¶
fθ1 (x)

fθ2 (x)

¶
dµ (x) .

On the other hand

√
nTT (bθ1 − θ1)

L−→
n→∞ N

³
0,T TIF (θ1)−1 T

´
√
mST (bθ2 − θ2)

L−→
n→∞ N

³
0,STIF (θ2)−1S

´
.

Therefore the test statisticr
nm

n+m

³
Dφ(bθ1, bθ2)−Dφ (θ1,θ2)

´
is asymptotically distributed as a normal distribution with mean zero and

variance

λT TIF (θ1)−1 T + (1− λ)STIF (θ2)−1S,
where

λ = lim
n,m→∞

m

m+ n
,

because o
³°°°bθ1 − θ1

°°°´ = oP ¡n−1/2¢ and o³°°°bθ2 − θ2

°°°´ = oP ¡m−1/2¢ .
b) In this case we have

Dφ(bθ1, bθ2) = 1
2

M0P
i,j=1

µ
∂2Dφ (θ1,θ2)

∂θ1i∂θ1j

¶
θ1=θ2

(bθ1i − θ1i)(bθ1j − θ1j)

+
M0P
i,j=1

µ
∂2Dφ (θ1,θ2)

∂θ1i∂θ2j

¶
θ1=θ2

(bθ1i − θ1i)(bθ2j − θ2j)

+ 1
2

M0P
i,j=1

µ
∂2Dφ (θ1,θ2)

∂θ2i∂θ2j

¶
θ1=θ2

(bθ2i − θ2i)(bθ2j − θ2j)

+ o

µ°°°bθ1 − θ1

°°°2¶+ oµ°°°bθ2 − θ2

°°°2¶ .
We have

∂Dφ (θ1,θ2)

∂θ1i
=

Z
X

φ0
µ
fθ1 (x)

fθ2 (x)

¶
∂fθ1 (x)

∂θ1i
dµ (x) i = 1, ...,M0
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thenµ
∂2Dφ (θ1,θ2)

∂θ1i∂θ1j

¶
θ1=θ2

= φ00 (1)
Z
X

1

fθ1 (x)

∂fθ1 (x)

∂θ1i

∂fθ1 (x)

∂θ1j
dµ (x)

µ
∂2Dφ (θ1,θ2)

∂θ1i∂θ2j

¶
θ1=θ2

= −
µ
∂2Dφ (θ1,θ2)

∂θ1i∂θ1j

¶
θ1=θ2µ

∂2Dφ (θ1,θ2)

∂θ2i∂θ2j

¶
θ1=θ2

=

µ
∂2Dφ (θ1,θ2)

∂θ1i∂θ1j

¶
θ1=θ2

.

Therefore,

2

φ00 (1)
Dφ(bθ1, bθ2) = (bθ1 − θ1)

TIF (θ1) (bθ1 − θ1)

− 2(bθ1 − θ1)
TIF (θ1) (bθ2 − θ2)

+ (bθ2 − θ1)
TIF (θ1) (bθ2 − θ1) + o

µ°°°bθ1 − θ1

°°°2¶
+ o

µ°°°bθ2 − θ2

°°°2¶
= (bθ1 − bθ2)TIF (θ1) (bθ1 − bθ2) + oµ°°°bθ1 − θ1

°°°2¶
+ o

µ°°°bθ2 − θ2

°°°2¶ .
On the other hand

√
n(bθ1 − θ1)

L−→
n→∞ N

³
0,IF (θ1)−1

´
√
m(bθ2 − θ2)

L−→
n→∞ N

³
0,IF (θ2)−1

´
then q

mn
m+n(

bθ1 − θ1)
L−→

n,m→∞ N
³
0,λIF (θ1)−1

´
q

mn
m+n(

bθ2 − θ2)
L−→

n,m→∞ N
³
0, (1− λ)IF (θ2)−1

´
.

Under the hypothesis θ1 = θ2, we haveq
mn
m+n(

bθ1 − bθ2) L−→
n,m→∞ N

³
0,IF (θ1)−1

´
therefore

2

φ00 (1)
mn

m+ n
Dφ(bθ1, bθ2) L−→

n,m→∞ χ2M0
,

because o

µ°°°bθ1 − θ1

°°°2¶ = oP ¡n−1¢ and oµ°°°bθ2 − θ2

°°°2¶ = oP ¡m−1¢ .
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6. We should reject the null hypothesis if

Dφ(bθ1, bθ2) > c,
where c is a positive constant. Now it is possible to find two situations:

i) The distribution of the test statistic Dφ(bθ1, bθ2) is known; then independently
of the regularity conditions, we choose c in such a way that the significance

level of the test is α,

Pr
³
Dφ(bθ1, bθ2) > c´ = α.

ii) The exact distribution of the test statistic Dφ(bθ1, bθ2) is unknown. In this
case we have to use the asymptotic distribution given in Exercise 5 and we

should reject the null hypothesis if

2

φ00 (1)
mn

m+ n
Dφ(bθ1, bθ2) > χ2M0,α.

7. a) The divergence of Cressie and Read for λ = 2 between two exponential distrib-

utions is given by

Dφ(2) (θ, θ0) = 1
6

ÃZ ∞
0

fθ (x)
3

fθ0 (x)
2 dx− 1

!
= 1

6

µ
θ3

θ20

Z ∞
0

exp (− (3θ − 2θ0)x) dx− 1
¶

= 1
6

³
θ3

θ20

1
3θ−2θ0 − 1

´
for θ > 2

3θ0. If θ ≤ 2
3θ0 we have Dφ(2) (θ, θ0) = +∞.

b) We should reject the null hypothesis, H0 : θ = θ0, if

T 2n(bθ, θ0) ≡ 2nDφ(2)(
bθ, θ0) > c.

The maximum likelihood estimator for θ is bθ = Y −1. Therefore, we can write
T 2n(

bθ, θ0) =


n
3

Ã
4

27Y
2 ¡
1− Y ¢ − 1

!
if Y < 1

+∞ if Y ≥ 1
.

We denote

g (y) =

 n
3

µ
4

27y2 (1− y) − 1
¶

if y < 1

+∞ if y ≥ 1
and it is clear that if y → 0 or 1 then g tends to +∞ and also the minimum is

obtained for y = 2/3. Therefore,

g(y) > k
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if and only if y < k1 or y > k2. The values k1 and k2 are obtained as a solution of

the equation system ½
g (k1) = g (k2)

Prθ=3/2
¡
Y ∈ (k1, k2)

¢
= α.

It is well known that if Y has an exponential distribution with parameter θ0,

then
Pn
i=1 Yi has a gamma distribution with parameters a = θ0 and p = n. Also

Z = 2nθ0Y is chi-square with n degrees of freedom. One procedure to calculate the

values k1 and k2 determining the critical region in an easier way is the following:

Reject H0 : θ = 3/2 when

Y < k1 or Y > k2

is equivalent to reject H0 when 3nY < c1 or 3nY > c2, where c1 and c2 are

obtained in such a way that½
0.95 = Fχ2n (c2)− Fχ2n (c1)
g
¡
c1
3n

¢
= g

¡
c2
3n

¢ .

Then c1 and c2 are the solutions of the equation system 0.95 =

Z c2

c1

1

2n/2Γ
¡
n
2

¢e− 1
2xx

n
2−1dx

c22 (3n− c2) = c21 (3n− c1)
.

8. a) Given twoM -variate normal distributionsN (µ1,Σ1) andN (µ2,Σ2) ,Kullback-

DKull (θ1,θ2) = 1
2

³
(µ1 −µ2)T Σ−12 (µ1 −µ2) + trace

¡
Σ−12 Σ1 − I

¢´
+ 1

2 log
|Σ2|
|Σ1| ,

with θ1 = (µ1,Σ1) and θ2 = (µ2,Σ2) .

In our case θ1 = (µ,Σ0) and θ2 = (µ0,Σ0) with Σ0 known. Given the random

sample

Y 1 = (Y11, ..., Y1M)
T ,Y 2 = (Y21, ..., Y2M)

T , ...,Y n = (Yn1, ..., YnM)
T

from the population distributed N (µ,Σ0), the maximum likelihood estimator of

µ is Y =
¡
Y 1, Y 2, ..., YM

¢T
, where

Y i =
1

n

nX
l=1

Yli, i = 1, ...,M.

Then the test statistic for testing µ = µ0

TKulln

¡
Y ,µ0

¢ ≡ 2nDKull ¡Y ,µ0¢ = n ¡Y −µ0¢T Σ−10 ¡
Y −µ0

¢
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is asymptotically chi-squared distributed with M degrees of freedom. Then we

should reject the null hypothesis if

TKulln

¡
Y ,µ0

¢
= n

¡
Y −µ0

¢T
Σ−10

¡
Y −µ0

¢
> χ2M,α.

In this case the exact distribution of the random variable

n
¡
Y −µ0

¢T
Σ−10

¡
Y −µ0

¢
is also chi-square withM degrees of freedom. Then the exact and asymptotic tests

coincide.

A (1− α) 100% confidence region in R2 for the mean of X1 and X2 is given by the
values µ =(µ1, µ2) ∈ R2 verifying

n
¡
Y −µ¢T Σ−10 ¡

Y −µ¢ < χ22,α.

b) Applying a) it is necessary to evaluate

A = n
¡
Y −µ0

¢T
Σ−10

¡
Y −µ0

¢
.

Hence

A = 25 (3.74, 1.84)

µ
100 0

0 100

¶−1µ
3.72

1.84

¶
= 4.343,

and χ22,0.05 = 5.99. Then the null hypothesis should not be rejected.

The 95% confidence region for (µ1, µ2) is given byn
(µ1, µ2) ∈ R2 : (185.72− µ1)2 + (183.84− µ2)2 < 23.96

o
.

9. a) In this case θ1 = (µ0,Σ) and θ2 = (µ0,Σ0). Given the random sample

Y 1 = (Y11, ..., Y1M)
T
,Y 2 = (Y21, ..., Y2M)

T
, ...,Y n = (Yn1, ..., YnM)

T

the maximum likelihood estimator of Σ, with µ = µ0
1979, p. 104), is given by bΣ = S + ddT
where d = Y −µ0 and S is the sample variance covariance matrix given by

S = (sij)i,j=1,...,M =

Ã
1

n

nX
l=1

¡
Yil − Y i

¢ ¡
Yjl − Y j

¢!
i,j=1,...,M

.

The expression of the test statistic based on Kullback-Leibler divergence is

TKulln

³bΣ,Σ0´ = 2nDKull ³bΣ,Σ0´ = n
trace³Σ−10 bΣ− I´+ log |Σ0|¯̄̄ bΣ¯̄̄

 .
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Therefore we should reject the null hypothesis if 2nDKull(bΣ,Σ0) > χ2
M2+M

2 ,α
.

The confidence region for σ = (σ11,σ22,σ12) is given by(σ11,σ22,σ12) : n

trace³Σ−1 bΣ− I´+ log |Σ|¯̄̄ bΣ¯̄̄
 < 7.82

 .
b) With the data given in Exercise 8, we have

bΣ = µ 93.48 66.87

66.87 96.77

¶
+

µ
13.83 6.84

6.84 3.38

¶
=

µ
107.31 73.71

73.71 100.11

¶
,

i.e., ¯̄̄ bΣ¯̄̄ = 5308.96, |Σ0| = 10000 and trace³Σ−10 bΣ− I´ = 0.074.
Then

TKulln

³bΣ,Σ0´ = 17.679.
On the other hand χ23,0.05 = 7.82 and we should reject the null hypothesis.

10. In this case the unknown parameter is θ = (µ,Σ) . Given the random sample

Y 1 = (Y11, ..., Y1M)
T
,Y 2 = (Y21, ..., Y2M)

T
, ...,Y n = (Yn1, ..., YnM)

T
,

from the normal population N(µ,Σ), the maximum likelihood estimator of θ,

under the null hypothesis, is given by

eθ = ³µ0,S + ddT´ ,
where d and S were given in Exercise 9. The maximum likelihood estimator of θ

in all the parameter space is given by

bθ = ¡Y ,S¢ .
Therefore

DKull(bθ, eθ) = 1
2

¡
Y −µ0

¢T ³
S + ddT

´−1 ¡
Y −µ0

¢
+ 1

2

µ
trace

µ³
S + ddT

´−1
S − IM×M

¶
+ log

¯̄̄
S+ddT

¯̄̄
|S|

¶
,

and we must reject the null hypothesis if

TKulln (bθ, eθ) ≡ 2nDKull(bθ, eθ) > c.
© 2006 by Taylor & Francis Group, LLC



448 Statistical Inference based on Divergence Measures

We are going to find the exact test statistic. We have

M = trace(IM×M)

= trace

µ³
S + ddT

´−1 ³
S + ddT

´¶
= trace

µ³
S + ddT

´−1
S

¶
+ trace

µ³
S + ddT

´−1
ddT

¶
= trace

µ³
S + ddT

´−1
S

¶
+ trace

µ¡
Y −µ0

¢T ³
S + ddT

´−1 ¡
Y −µ0

¢¶
= trace

µ³
S + ddT

´−1
S

¶
+
¡
Y −µ0

¢T ³
S + ddT

´−1 ¡
Y −µ0

¢
,

because
¡
Y −µ0

¢T ³
S + ddT

´−1 ¡
Y −µ0

¢
is a scalar.

Then we have

TKulln (bθ, eθ) = n log
¯̄̄
S + ddT

¯̄̄
|S| .

Taking into account that

|Ap×p +Bp×nCn×p| = |Ap×p|
¯̄
In×n +Cn×pA−1p×pBp×n

¯̄
,

we have for Ap×p = S, Bp×n = d and Cn×p = dT that

TKulln (bθ, eθ) = n log |S|
³
1 + dTS−1d

´
|S| = n log

³
1 + dTS−1d

´
.

Hence TKulln (bθ, eθ) > c is equivalent to
(n− 1)dTS−1d > T 2M, n−1, α, (9.20)

where T 2M, n−1 is a Hotelling T
2 distribution with parameters M and n − 1. For

given in (9.20) is equivalent to

n−M
n

dTS−1d > FM, n−M, α.

When we use the asymptotic distribution we have

TKulln (bθ, eθ) L−→
n→∞ χ2

2M+M(M−1)
2 −(M+M(M−1)

2 )=M
.

11. In this case, θ =(µ,Σ) , then

eθ = ¡Y ,Σ0, ¢ and bθ = ¡Y ,S¢ .
© 2006 by Taylor & Francis Group, LLC
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Therefore,

2nDKull(bθ, eθ) = nµtrace ¡Σ−10 S − I¢+ log |Σ0||S|
¶

whose asymptotic distribution is chi-square with degrees of freedom given by

dim (Θ)− dim (Θ0) =M +M +
1

2
(M (M − 1))−M =

M2 +M

2
.

12. In this case we are interested in a exact test because the regularity assumptions

are not verified and then it is not possible to use the asymptotic results. It is

necessary to get the exact distribution of the test statistic

DKull(bθ1, bθ2).
For θ1 > θ2 we have

DKull (θ1, θ2) =

Z θ1

0

1

θ1
log

1/θ1
1/θ2

dx+

Z θ2

θ1

0 log
0

1/θ2
dx = log

θ2
θ1
,

and

DKull(bθ1, bθ2) = log bθ2bθ1 ,
with bθ1 = max (X1, ...,Xn) , bθ2 = max (Y1, ..., Ym) , where X1, ...,Xn is a random
sample from the population U (0, θ1) and Y1, ..., Ym is a random sample from the

population U (0, θ2) .We should reject the null hypothesis if log(bθ2/bθ1) > c, where
c is obtained under the assumption that the test has a nominal size α. This is

equivalent to reject H0 if and only if bθ2/bθ1 > k.
The probability density functions of bθ1 and bθ2 are given by

fbθ1 (t1) = ntn−11 /θn1 t1 ∈ (0, θ1)
fbθ2 (t2) = mtm−12 /θm2 t2 ∈ (0, θ2) ,

and the joint probability density function of the random variable (bθ1, bθ2) by
fbθ1bθ2 (t1, t2) = mn

θn1 θ
m
2

tn−11 tm−12 t1 ∈ (0, θ1) , t2 ∈ (0, θ2) .

Now we are going to get the distribution of the random variable bθ2/bθ1 under the
null hypothesis θ1 = θ2. It is immediate to establish that the distribution of the

random variable (W,T ) where

W =
bθ2bθ1 and T = bθ1
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is given by

g(W,T ) (w, t) =
nm

θn+m1

tn+mwm−1 (w, t) ∈ A

where

A =
©
(w, t) ∈ R2 : wt < θ2, 0 < t < θ1 and w > 0

ª
.

Therefore the probability density function of the random variable W is

gW (w) =


nm
n+mw

m−1 w ∈ (0, 1]

nm
n+mw

−n−1 w ∈ (1,∞)
.

Finally, if we assume that α < m/(m+ n), from the equation

α = Pr (W > k/ H0) =

Z ∞
k

nm

n+m
w−n−1dw

we have

k =
³ α
m
(n+m)

´−1/n
.

Then, the null hypothesis should be rejected if

bθ2bθ1 >
³ α
m
(n+m)

´−1/n
.

In our case we have for α = 0.05,

bθ1 = 1.9616, bθ2 = 2.9358, bθ2/bθ1 = 1.49 and ³ α
m
(n+m)

´−1/n
= 1.31;

hence we should reject the null hypothesis.

13. It is immediate to establish that

DKull (θ1, θ2) =

Z ∞
θ1

exp (− (x− θ1)) (θ1 − θ2) dx = θ1 − θ2.

Therefore

DKull(bθ1, bθ2) = bθ1 − bθ2
with bθ1 =min (X1, ...,Xn) and bθ2 =min (Y1, ..., Ym) and the null hypothesis should
be rejected if bθ1 − bθ2 > c
where c is obtained in such a way the test has size α. We know that

fbθ1 (t1) = n exp (−n (t1 − θ1)) θ1 ≤ t1 <∞
fbθ2 (t2) = m exp (−m (t2 − θ2)) θ2 ≤ t2 <∞ .
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Then the probability density function of the random variable (bθ1, bθ2) is given by
fbθ1,bθ2 (t1, t2) = nm exp (−n (t1 − θ1)) exp (−m (t2 − θ2))

where

θ1 ≤ t1 <∞, θ2 ≤ t2 <∞.
Under θ1 = θ2, the distribution of the bivariate random variable (W,T ), with

W = bθ1 − bθ2 and T = bθ2,
is given by

fW,T (w, t) =mn exp (−n (w + t− θ1) exp (−m (t− θ1))) (w, t) ∈ A

where the domain A is

A =
©
(w, t) ∈ R2/t > θ2, w > θ1 − t

ª
.

The distribution of W = bθ1 − bθ2 under θ1 = θ2 is

fbθ1−bθ2 (w) =


nm

n+m
exp (mw) if w ∈ (−∞, 0)

nm

n+m
exp (−nw) if w ∈ (0,∞)

.

Therefore c is obtained, assuming that α ≤ m/(m+ n), by solving the equation

α =

Z ∞
c

nm

n+m
exp (−nw) dw.

It is immediate to get

c =
1

n
log

µ
m

(m+ n)α

¶
and we should reject the null hypothesis if

bθ1 − bθ2 > 1

n
log

µ
m

(m+ n)α

¶
.

In our case
1

n
log

µ
m

(m+ n)α

¶
= 0.2349

and bθ1 − bθ2 = 0.002; then we should not reject the null hypothesis.
14. We have

L (θ;Y1, ..., Yn) =
θn2nθ

nQ
i=1
Y θ+1
i
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then
∂ logL (θ;Y1, ..., Yn)

∂θ
=
n

θ
+ n log 2−

nX
i=1

logYi

and the maximum likelihood estimator is given by

bθ = n
nP
i=1
log Yi2

.

We have

L0n = 2

log
 (bθ)n2nbθ

nQ
i=1
Y
bθ+1
i

− log
 θn0 2

nθ0

nQ
i=1
Y θ0+1
i




= 2n

Ã
θ0 − bθbθ

!
+ 2n log

Ã bθ
θ0

!
.

In order to obtain the expression of the test statistics Wn and Rn it is necessary

to obtain the Fisher information. We have

∂ log fθ (x)

∂θ
=
1

θ
+ log 2− logx

then

IF (θ) = E
·
−
µ
∂2 log fθ (x)

∂θ2

¶¸
=
1

θ2
,

and

Wn = n

Ã
θ0 − bθbθ

!2
L−→

n→∞ χ21.

On the other hand,

Un (θ0) =

µ
∂ logL (θ;Y1, ..., Yn)

∂θ

¶
θ=θ0

= n

Ã
1

θ0
+ log 2− 1

n

nX
i=1

logYi

!

and then

Rn = n

Ã
−1− θ0

n

nX
i=1

log
Yi
2

!2
.

Now Rényi’s divergence is given by

D1r (θ1, θ2) =
1

r (r − 1) log
Z ∞
2

µ
2θ1θ1
xθ1+1

¶r µ
2θ2θ2
xθ2+1

¶1−r
dx

=
1

r (r − 1) log
θr1θ

1−r
2

rθ1 + (1− r) θ2
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if rθ1 + (1− r) θ2 > 0. Therefore Rényi test statistic

T rn(bθ, θ0) = 2n

r (r − 1) log
bθrθ1−r0

rbθ + (1− r) θ0 ,
and for r→ 1 we have

lim
r→1T

r
n(
bθ, θ0) = TKulln (bθ, θ0) = 2nÃθ0 − bθbθ

!
+ 2n log

Ã bθ
θ0

!
= L0n.

15. For the exponential model with

fθ (x) = θ exp (−θx) I(0,∞) (x) , θ > 0,

we consider the problem of testing

H0 : θ = 1 versus H1 : θ 6= 1
based on Rényi test statistic T rn(

bθ, θ0). First, we study the accuracy of power
approximations of Remarks 9.1—9.3. Rényi divergence between two exponential

distributions is

D1r (θ1, θ2) =


1

r (r − 1) ln
θr1 θ

1−r
2

θ1r + θ2 (1− r) if θ1r + θ2 (1− r) > 0
∞ if θ1r + θ2 (1− r) ≤ 0,

when r 6= 0, 1. Limiting cases are obtained for r = 1,

DKull (θ1, θ2) = lim
r→1

D1r (θ1, θ2) =
θ2
θ1
− 1 + ln θ1

θ2
(Kullback-Leibler)

and for r = 0,

D10 (θ1, θ2) = DKull (θ2, θ1) =
θ1
θ2
− 1 + ln θ2

θ1

the minimum discrimination information.

a) H0 should be rejected if T
r
n(
bθ, 1) > c, where bθ = n/

Pn
i=1 Yi = Y

−1
is the

maximum likelihood estimator of θ. In this case T rn(
bθ, 1) is given by

1
r(r−1)2n ln

³bθr(bθr + 1− r)−1´ if r 6= 0, 1 and bθr + 1− r > 0
∞ if r 6= 0, 1 and bθr + 1− r ≤ 0
2n(bθ−1 − 1 + ln bθ) if r = 1

2n(bθ − 1− ln bθ) if r = 0,

but T rn(
bθ, 1) > c is equivalent to

(1− r)Y r + rY r−1 > c1 if bθr + 1− r > 0
Y − lnY > c2 if r = 1
1
Y
+ lnY > c3 if r = 0.
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If we define the function

gr(y) =


(1− r)yr + ryr−1 if r 6= 0, 1
y − ln y if r = 1
1
y + ln y if r = 0,

we have

g0r(y) =
½
> 0 ⇔ y < 1

< 0 ⇔ y > 1

and the rejection rule is T rn(bθ, 1) > c ⇐⇒ Zn < cr,1 or Zn > cr,2,

where Zn = 2nY ∼ χ22n under H0. Constants cr,1 and cr,2 are obtained by

solving the equations(
1− α = Pr(cr,1 < Zn < cr,2) = Fχ22n(cr,2)− Fχ22n(cr,1),

gr
¡ cr,1
2n

¢
= gr

¡ cr,2
2n

¢
where

gr(c) =


(1− r)cr + rcr−1 if r 6= 0, 1
c− ln c if r = 1
1
c + ln c if r = 0.

The values of cr,1 and cr,2, for n = 20, 40, 80, 200 and r = 1/4, 3/4, 1, 5/4,

7/4, 2, are presented in Table 9.3.

r n n = 20 n = 40 n = 80 n = 200

1/4 c1/4,1 25.855 58.861 128.804 348.637

c1/4,2 64.033 110.541 200.373 460.411

3/4 c3/4,1 25.253 58.100 127.914 347.618

c3/4,2 61.323 108.388 198.531 458.802

1 c1,1 24.879 57.659 127.421 347.074

c1,2 60.275 107.479 197.709 458.051

5/4 c5/4,1 24.449 57.173 126.892 346.505

c5/4,2 59.371 106.658 196.944 457.334

7/4 c7/4,1 23.379 56.039 125.714 345.290

c7/4,2 57.898 105.239 195.565 455.990

2 c2,1 22.700 55.374 125.057 344.639

c2,2 57.300 104.626 194.943 455.361

Table 9.3. Constants cr,1 and cr,2.

b) Exact powers of tests:

We know that under an alternative hypothesis θ 6= 1, the random

variable 2θY is chi-squared distributed with 2n degrees of freedom.
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Therefore the power function of Rényi test statistic, βn,r (θ) , is given

by
βn,r (θ) = 1− Pr θ (cr,1 < Zn < cr,2)

= 1− Pr θ
¡
θcr,1 < 2θY < θcr,2

¢
= 1− Pr θ

¡
θcr,1 < χ22n < θcr,2

¢
.

For n = 20, r = 0.25, 0.75, 1, 1.25, 1.75, 2 and different values of θ in

the interval [0.5, 2.5], these exact powers are presented in Table 9.4.

θ β20,1/4(θ) β20,3/4(θ) β20,1(θ) β20,5/4(θ) β20,7/4(θ) β20,2(θ)

0.50 0.8117 0.8560 0.8714 0.8838 0.9025 0.9094

0.60 0.5417 0.6155 0.6437 0.6676 0.7057 0.7207

0.65 0.4005 0.4768 0.5074 0.5339 0.5774 0.5950

0.70 0.2778 0.3478 0.3771 0.4032 0.4473 0.4656

0.75 0.1821 0.2399 0.2652 0.2883 0.3284 0.3455

0.80 0.1149 0.1581 0.1779 0.1964 0.2295 0.2440

0.85 0.0729 0.1021 0.1160 0.1294 0.1539 0.1649

0.90 0.0511 0.0683 0.0768 0.0852 0.1010 0.1083

0.95 0.0446 0.0522 0.0561 0.0600 0.0676 0.0712

1.10 0.0879 0.0763 0.0699 0.0631 0.0490 0.0418

1.20 0.1557 0.1344 0.1221 0.1089 0.0803 0.0652

1.30 0.2481 0.2180 0.2002 0.1806 0.1366 0.1123

1.40 0.3578 0.3208 0.2983 0.2731 0.2143 0.1803

1.50 0.4750 0.4339 0.4084 0.3792 0.3085 0.2657

1.60 0.5892 0.5476 0.5211 0.4902 0.4124 0.3633

1.70 0.6922 0.6532 0.6278 0.5975 0.5184 0.4662

1.80 0.7788 0.7447 0.7219 0.6943 0.6192 0.5675

1.90 0.8473 0.8192 0.8000 0.7763 0.7092 0.6611

2.00 0.8984 0.8766 0.8613 0.8420 0.7854 0.7429

2.10 0.9348 0.9187 0.9071 0.8921 0.8466 0.8110

2.20 0.9595 0.9481 0.9397 0.9287 0.8937 0.8652

2.30 0.9756 0.9679 0.9621 0.9542 0.9285 0.9065

2.40 0.9857 0.9807 0.9768 0.9714 0.9532 0.9369

2.50 0.9919 0.9887 0.9862 0.9827 0.9701 0.9585

Table 9.4. Powers for n = 20

c) We know that Rényi divergence is a (h,φ)-divergence with h and φ

given in (9.7) and (9.8). Therefore using Exercise 1 we have

√
n
³
D1
r(
bθ, 1)−D1

r(θ, 1)
´

L−→
n→∞ N(0,σ

2
h,φ(θ)),

where σ2h,φ(θ) = (h
0 (Dφ (θ, 1)))

2 σ2φ (θ) and σ2φ (θ) = T
TIF (θ)−1 T. In
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our case, IF(θ) = θ−2,

T =
d

dθ
D1
r (θ, 1) =


1
r−1

³
1
θ − 1

θr+1−r
´
if r 6= 0, 1

θ−1
θ2

if r = 1
θ−1
θ if r = 0

and

D1
r (θ, 1) =


1

r(r−1)
³

θr

θr+(1−r) − 1
´
if r 6= 0, 1

θ − 1− ln θ if r = 0

ln θ − 1 + θ−1 if r = 1

.

β220(θ) β120,r(θ)

θ r=1/4 r=3/4 r=1 r=5/4 r=7/4 r=2

.50 0.6088 0.8083 0.8165 0.8271 0.8436 0.8804 1.0000

.60 0.4320 0.5900 0.6342 0.6559 0.6787 0.7310 0.7588

.65 0.3463 0.4543 0.5116 0.5385 0.5651 0.6205 0.6505

.70 0.2677 0.3105 0.3714 0.4006 0.4291 0.4860 0.5155

.75 0.1989 0.1728 0.2236 0.2495 0.2756 0.3282 0.3552

.80 0.1412 0.0637 0.0920 0.1079 0.1249 0.1616 0.1812

.85 0.0944 0.0086 0.0147 0.0188 0.0235 0.0351 0.0421

.90 0.0571 0.0000 0.0001 0.0001 0.0002 0.0004 0.0006

.95 0.0268 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1.1 0.0571 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1.2 0.1412 0.0324 0.0202 0.0155 0.0116 0.0060 0.0042

1.3 0.2677 0.1692 0.1259 0.1059 0.0872 0.0551 0.0420

1.4 0.4320 0.3293 0.2697 0.2392 0.2087 0.1492 0.1215

1.5 0.6088 0.4666 0.4067 0.3742 0.3399 0.2667 0.2288

1.6 0.7653 0.5754 0.5238 0.4951 0.4637 0.3917 0.3510

1.7 0.8791 0.6600 0.6199 0.5979 0.5734 0.5136 0.4772

1.8 0.9471 0.7255 0.6973 0.6830 0.6669 0.6254 0.5980

1.9 0.9805 0.7766 0.7592 0.7521 0.7443 0.7222 0.7058

2.0 0.9940 0.8165 0.8083 0.8075 0.8069 0.8019 0.7956

2.1 0.9985 0.8480 0.8473 0.8514 0.8563 0.8642 0.8655

2.2 0.9997 0.8731 0.8781 0.8859 0.8947 0.9106 0.9163

2.3 0.9999 0.8931 0.9025 0.9128 0.9239 0.9435 0.9509

2.4 1.0000 0.9092 0.9218 0.9336 0.9457 0.9657 0.9728

2.5 1.0000 0.9223 0.9371 0.9497 0.9618 0.9800 0.9858

Table 9.5. Powers for n = 20.
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θ r = 1/4 r = 3/4 r = 1 r = 5/4 r = 7/4 r = 2

0.50 20 19 18 17 13 (1)

0.60 36 35 34 32 27 25

0.65 50 48 47 45 41 38

0.70 72 70 69 67 62 59

0.75 109 107 106 104 99 95

0.80 180 178 176 174 168 165

0.85 338 334 332 329 323 319

0.90 801 795 792 788 780 775

0.95 3370 3358 3352 3345 3331 3323

1.10 972 979 981 984 989 991

1.20 266 269 270 272 273 274

1.30 129 131 132 132 133 134

1.40 78 80 81 81 82 82

1.50 54 56 56 56 57 57

1.60 41 42 42 42 43 43

1.70 32 33 33 34 34 34

1.80 26 27 27 28 28 28

1.90 22 23 23 23 24 24

2.00 19 20 20 20 20 21

2.10 17 18 18 18 18 18

2.20 15 16 16 16 16 16

2.30 14 14 14 14 15 15

2.40 13 13 13 13 13 14

2.50 12 12 12 12 12 12

Table 9.6. Sample sizes n = [n∗] + 1, where n∗ is the root of the equation
0.8 = β1n∗,r (θ) .

(1)No value of n is obtained because approximate power is 1.

Therefore σ2h,φ(θ) =
|θ−1|
θr .

First power approximation, β1n,r(θ), is given by

· 1−Φ
³√

nθr

|θ−1|
³
3.84145
2n − 1

r(r−1) ln
θr

θr+1−r
´´

if r 6= 0, 1
· 1−Φ

³ √
n

|θ−1|θ
¡
3.84145
2n − 1

θ + 1− ln θ
¢´
if r = 1

and

· 1−Φ
³ √

n
|θ−1|

¡
3.84145
2n − θ + 1 + ln θ

¢´
if r = 0,

where Φ(·) is the c.d.f. of the standard normal random variable.

β2n(θ) = 1−Gχ21(δ)

¡
χ21,α

¢
,
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where Gχ21(δ)
is the distribution function of a noncentral chi-square

random variable with 1 degree of freedom and noncentrality parameter

δ = n(θ − 1)2IF (1) = n(θ − 1)2. It is interesting to note that this
approximation does not depend on the functions h and φ considered

in the test statistic T rn .

We are interested in the approximation of βn,r(θ) by β1n,r(θ) and

β2n (θ ). I n Ta bl e 9 . 5 we pr es e nt t he i r val ue s f or n = 20,  r = 0.25, 0.75,

1, 1.25, 1.75, 2 and several values of θ 6= 1. We conclude that β120,r(θ)
and β220(θ) are good approximations for β20,r(θ) in the present model.

Approximations improve as n increases. For the sake of brevity, we

do not present tables for n > 20. It is also interesting to note that for

values of θ near to 1, and more concretely if θ ∈ (0.8, 1.3), the approx-
imation β220(θ) is better than the approximation β120,r(θ). Otherwise,

the approximation β120,r(θ) is better than β220(θ). We conclude that

both approximations can be recommended for practical applications.

For a value of the power function equal to 0.8, r = 0.25, 0.75, 1, 1.25,

1. 75, 2 a nd s e ve r a l va l ue s o f θ 6= 1 , i n Tab le 9. 6 we pr es e nt t he a pp rox-
imate sample size n = [n∗] + 1, where n∗ is the positive root of the
equation β = β1n∗,r(θ). As expected, larger sample sizes are obtained

in the neighborhood of θ = 1 (e.g., θ ∈ (0.8, 1.3)). Observe that n∗ can
be obtained from β = β1n∗,r(θ) in explicit form (cf. (9.19)); however,

this is not the case for n∗∗ such that β = βn∗∗,r(θ). In the present

numerical example β1n,r(θ) and n
∗ are good and easy computable ap-

proximations for βn,r(θ) and n∗∗ respectively.
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Hájek, J. and Sidák, Z. (1967). Theory of Rank Tests. Academic Press, New York.

Hall, P. (1986). On powerful distribution tests based on sample spacings. Journal of

Multivariate Analysis, 19, 201-224.

Hassenblad, V. (1966). Estimation of parameters for a mixture of normal distributions.

Technometrics, 8, 431-434.

Havrda, J. and Charvat, F. (1967). Concept of structural α-entropy. Kybernetika, 3,

30-35.

Hobza, T., Molina, I. and Morales, D. (2001). Rényi statistics for testing hypotheses
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Tavaré, S. and Altham, P.M. E. (1983). Serial dependence of observations leading

to contingency tables, and corrections to chi-squared statistics. Biometrika, 70,

139-144.

Tenenbein, A. (1970). A double sampling scheme for estimating from binomial data

with misclassification. Journal of the American Statistical Association, 65, 1350-

1361.

Tenenbein, A. (1971). A double sampling scheme for estimating from binomial data

with misclassification: Sample size and determination. Biometrics, 27, 935-944.

Tenenbein, A. (1972). A double sampling scheme for estimating from misclassified

multinomial data with applications to sampling inspection. Technometrics, 14,

187—202.

Theil, H. and Fiebig, R. (1981). Exploiting Continuity: Maximum Entropy Estimation

of Continuous Distributions. Bollinger, Cambridge.

Theil, H. and Kidwai, S. (1981a). Moments of the maximum entropy and symmetric

maximum entropy distribution. Economic Letters, 7, 349-353.

Theil, H. and Kidwai, S. (1981b). Another look at maximum entropy coefficient. Eco-

nomic Letters, 8, 147-152.

Theil, H. and Laitinen, K. (1980). Singular moment matrix in applied econometrics, in

Multivariate Analysis. (V.P.R. Krishnaiah Ed.), 629-649. North Holland, Amster-

dam.

Theil, H. and Lightburn, P. (1981). The positive maximum entropy distribution. Econo-

metric Letters, 6, 231-239.

Theil, H. and O’Brien, P.C. (1980). The median of the maximum entropy distribution.

Econometric Letters, 5, 345-347.

© 2006 by Taylor & Francis Group, LLC



482 Statistical Inference based on Divergence Measures

Toussaint, G. T. (1974). Some properties of Matusita’s measure of affinity of several

distributions. Annals of the Institute of Statistical Mathematics, 26, 389-394.

Toussaint, G. T. (1978). Probability of error, expected divergence, and affinity of several

distributions. IEEE Transactions on System, Man and Cybernetics, 8, 6, 482-485.

Turnbull, B.W. and Weiss, L. (1978). A likelihood ratio statistic for testing goodness

of fit with randomly censored data. Biometrics, 34, 412-427.

Vajda, I. (1973). χ2-divergence and generalized Fisher’s information. Transactions of

6th Prague Conference on Information Theory, 873-886. Academy of Sciences of

the Czech Republic. Institute of Information Theory and Automation, Prague.

Vajda, I. (1989). Theory of Statistical Inference and Information. Kluwer Academic,

Dordrecht.

Vajda, I. (1995). Information-theoretic methods in statistics, in Research Report. Acad-

emy of Sciences of the Czech Republic. Institute of Information Theory and Au-

tomation. Prague.

Vajda, I. and Vasev, K. (1985). Majorization, concave entropies and comparison of

experiments. Problems of Control and Information Theory, 14, 105-115.

Vajda, I. and Teboulle, M. (1993). Convergence of best phi-entropy estimates. IEEE

Transactions on Information Theory, 39, 297-301.

Varma, R. S. (1966). Generalizations of Renyi’s entropy of order α. Journal of Mathe-

matical Sciences, 1, 34-48.

Vasicek, O. (1976). A test of normality based on sample entropy. Journal of the Royal

Statistical Society, Series B, 38, 54-59.
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