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Preface

My wife is past-President of the Society for the Study of Addiction, but
I suspect that even she finds it difficult to understand why I have not
been able to free myself from an obsession with tests for econometric
models in the last 30 years. My only defence is that I hoped that these
tests would be useful to applied workers. Like many other researchers in
the area, I had to make use of asymptotic theory when deriving tests.
I now believe that the application of appropriate bootstrap techniques
can greatly increase the usefulness of asymptotic test procedures at low
cost and so I have a new obsession to combine with the old one.

Two types of problems associated with using asymptotic analysis to
obtain tests are often mentioned. First, even when theory is tractable
and leads to asymptotically valid critical values from standard distribu-
tions like Normal and Chi-Squared, which are convenient to use, there
may be serious approximation errors in finite samples. In particular, the
critical values implied by asymptotic theory may produce finite sample
significance levels that are not close to the desired probabilities. Sec-
ond, there are important test procedures for which asymptotic theory
is intractable and does not provide a standard distribution from which
critical values can be taken. The bootstrap has been used to tackle both
types of problem. When a standard asymptotic test is available, the cor-
responding bootstrap test is often found to provide a better finite sample
approximation and the improvement is sometimes remarkable. When
no standard asymptotic test can be derived, the bootstrap can some-
times produce a test that is easy to carry out and has significance levels
that are reasonably close to the desired values.

The bootstrap approach involves using computer programs to generate
many samples from an artificial model that is intended to approximate
the process assumed to generate the actual data. The values of test statis-
tics calculated from these bootstrap samples can then be used to assess
the statistical significance of the corresponding test statistic derived from
the real observations. Given that many artificial samples are generated
and each is subjected to the same statistical analysis as the genuine sam-
ple, there might be concerns about the computational costs of bootstrap
tests. However, given the amazing increases in the power of personal
computers, the real cost of the bootstrap approach is often very small in
absolute terms, for example, the waiting time for results to appear. The

xi



xii Preface

costs of bootstrapping are, therefore, often small and there is a great deal
of evidence to suggest that the benefits can be very large.

The examples in this book that illustrate the value of the bootstrap and
the dangers of relying upon asymptotically justified critical values are in
the familiar framework of ordinary least squares (OLS) procedures for a
linear regression model. The regression model is central to economet-
rics and its familiarity allows the reader to concentrate on the bootstrap
techniques. The level of discussion is at an intermediate textbook stan-
dard and the aim has been to write a book that is useful to a fairly wide
audience. However, references that cover more complicated models and
more technical analyses of bootstrap procedures are provided.

Chapter 1 contains a discussion of regression models and OLS-based
tests in order to summarize key results, to provide details of notation
and to motivate going beyond conventional asymptotic theory as a basis
for inference. The second chapter covers some basic ideas of simulation-
based tests, with bootstrap procedures being given prominence but other
approaches also being discussed. The application of simulation-based
tests in regression models, under the assumption of independently and
identically distributed (IID) errors, is examined in Chapters 3 and 4. The
first of these two chapters covers test statistics that have standard asymp-
totic distributions, for example, Chi-Squared, when the null hypothesis
is true. Chapter 4 is devoted to examples of situations of importance to
empirical workers in which the bootstrap can be applied to statistics that,
under the null hypothesis, have non-standard asymptotic distributions.

While the assumption that regression models have IID errors has often
been made in the past when explaining results concerning the asymp-
totic properties of OLS estimators and test statistics, there has been a
growing body of opinion that it is too restrictive. There are, of course,
many ways in which data can be modelled using regression models with
non-IID errors. The bootstrap world must mimic the process that is
assumed to generate actual data under the null hypothesis. Consequently
there is a need for bootstrap methods that allow for departures from the
assumption of IID errors that are of interest to applied workers. Some of
these methods are discussed in Chapter 5.

When the errors are not restricted to be IID, they can be assumed
to be autocorrelated or heteroskedastic, according to precisely defined
parametric models or in unspecified ways. The basic position taken in
Chapter 5 is that there is rarely very clear guidance about the specification
of parametric error models. There is, therefore, an emphasis on bootstrap
methods that are designed to be asymptotically valid under unknown
forms of autocorrelation and/or heteroskedasticity. Some examples of
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the applications of these methods are examined in Chapter 6, which
contains results on the finite sample behaviour of autocorrelation-robust
and heteroskedasticity-robust bootstrap tests.

All of the tests discussed in Chapters 1 to 6 are based upon the
assumption that the null-hypothesis model is a special case of the
alternative-hypothesis model, that is, the former is nested in the latter.
This assumption is required for much of the standard asymptotic theory
of testing statistical hypotheses. However, competing specifications of
linear regression models in applied econometric work are sometimes not
nested and there is a considerable literature on tests for non-nested rela-
tionships. Chapter 7 contains a discussion of asymptotic and bootstrap
tests for non-nested regression models. This discussion indicates how
the bootstrap can help to overcome both of the above-mentioned gen-
eral types of problem associated with reliance upon asymptotic theory
when implementing tests of non-nested hypotheses. Finally, Chapter 8
contains an epilogue.

In the discussions of the application of bootstrap methods to OLS-
based tests in regression analysis, I have used some examples from articles
that I have written with various coauthors. I owe many debts to Chris
Orme, Hashem Pesaran, Joao Santos Silva, Andy Tremayne and Mike
Veall. It was a pleasure to work with these fine researchers and Mike
Veall deserves special acknowledgment because he introduced me to the
bootstrap during his first visit to York. I am very much indebted to Kerry
Patterson, editor of this series, for his careful and constructive comments
on my drafts. I am also grateful to Taiba Batool, commissioning editor at
Palgrave Macmillan, for her encouragement and help, and to Alina Spiru
for her assistance with the indexes. Finally, my thanks go to Christine
who probably never realized that marriage might lead to the burden of
helping me to sort out my ideas about this book during our lunchtime
walks around the York campus.

L. G. Godfrey



This page intentionally left blank



1
Tests for Linear Regression Models

1.1. Introduction

The linear regression model is often used to study economic relationships
and is familiar from standard intermediate and introductory courses at
the level of, for example, Greene (2008), Gujarati (2003) and Wooldridge
(2006). In such courses, considerable emphasis is usually placed on the
important topic of testing hypotheses about the values of the parame-
ters of the model. The text-book tests for regression models are developed
using very strong auxiliary assumptions that simplify teaching but are
of limited relevance in practical situations. As a consequence, applied
workers often have to replace procedures that are exactly valid in finite
samples under strong assumptions by tests that are based on weaker
assumptions but are only asymptotically valid.

It is also often necessary to rely upon asymptotic, rather than finite
sample, results when carrying out tests for misspecification of a regres-
sion model. It is now commonplace for the results of estimation to be
accompanied by checks of the assumptions required to validate standard
empirical analysis. Even under the restrictive assumptions of the classical
textbook model, many of these checks have to be carried out using crit-
ical values that are only asymptotically valid. When these assumptions
are relaxed, there is an even greater need to use asymptotic theory.

The problem for the empirical researcher is that asymptotic theory
sometimes provides a poor approximation to the actual distribution of
test statistics; so that the use of asymptotic critical values may lead to
misleading inferences. Moreover, there is a second type of problem asso-
ciated with the standard approach to deriving asymptotically valid tests.
In some situations of importance, this approach is not capable of provid-
ing a usable tool for the applied worker. This failure can occur with some

1
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tests when classical assumptions are relaxed, or when several separate
large sample tests are being applied.

The purpose of this book is to explain how computers and appropriate
software can be combined to tackle these problems. More precisely, the
use of procedures involving the simulation of artificial sets of data is
examined and some important cases are discussed in detail. The various
computationally intensive simulation techniques, collectively known as
bootstrap methods, provide:

1. ways to improve the finite-sample performance of well-known and
widely-used large sample tests for regression models; and

2. new tests that can be employed when conventional asymptotic theory
does not lead to a test statistic that can be compared with critical
values from some standard distribution.

The reason for believing that it is worth providing a concise, but quite
extensive, account of bootstrap tests in regression analysis is that, in
recent years, personal computers have become so powerful and relatively
cheap that it is now feasible to implement bootstrap procedures as part of
routine econometric analysis. Also the linear multiple regression model
provides a very useful framework for introducing ideas that can be used in
more complicated models that are of interest to applied workers, students
and others who carry out empirical econometric analyses.

The emphasis is on practical applications of bootstrap methods in
regression models. There are many excellent treatments of theoretical
issues associated with the validity and properties of bootstrap techniques
in quite general settings. References to such technical material will be
provided and key results will be summarized.

This chapter is intended to give an outline of the various frameworks
for which results about regression model tests are available and widely
used. The foundations required for the detailed treatments contained in
later chapters are provided, along with notation. More thorough cov-
erage of tests for regression models, including numerical examples, can
be found in many text books, for example, J. Davidson (2000, chs 2
and 3) and Greene (2008, ch 5). The discussion in Davidson and MacK-
innon (2004, ch 4) links the statistical underpinnings of tests with the
use of simulation methods and so is especially useful for the purpose of
this book.

The important problem of testing linear restrictions in the classical
Normal linear regression model is covered in Section 1.2, which includes
much of the required notation. Section 1.2 provides key results that are
exactly valid under the very strong assumptions of the textbook classical
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model. It is argued that, despite their value in simplifying the teaching of
econometric tests, these assumptions should not be regarded as suitable
for practical applications. Section 1.3 contains comments on carrying out
tests under weaker assumptions about the error terms and explanatory
variables of the regression model. However, the analysis of Section 1.3 is
based upon the assumptions of independence and homoskedasticity. In
Section 1.4, tests that are asymptotically valid in the presence of auto-
correlation and/or heteroskedasticity are described. The tests of linear
restrictions that are covered in Sections 1.3 and 1.4 are only asymptoti-
cally valid. Applied workers have to use data sets with a finite number of
observations and may be concerned about relying on results that only
hold as the sample size tends to infinity. Some examples are provided
in Section 1.5 that illustrate the problems of inadequate approximations
derived from asymptotic theory. Section 1.6 contains examples of situa-
tions in which it is not possible to derive an asymptotic test that permits
reference to a standard distribution to assess statistical significance. A
summary and some concluding remarks are given in Section 1.7.

1.2. Tests for the classical linear regression model

As in many texts, the starting point is the classical linear regression model

yi =
k∑

j=1

xijβj + ui, (1.1)

in which: yi is a typical observation on the dependent variable; the
terms xi1, . . . , xik are the nonrandom values of a typical observation on
the k regressors; the unknown regression coefficients to be estimated
are β1, . . . , βk; and the unobservable errors, with typical term ui, are
independently and identically distributed (IID), each having the Normal
distribution with zero mean and variance σ2. The classical assumptions
concerning the error term will sometimes be written using the nota-
tion NID(0, σ2), with NID standing for “Normally and independently
distributed.”

Suppose that there are n > k observations for statistical analysis. It
follows from (1.1) that the random variables y1, . . . , yn are independently
distributed, with individual distributions being given by

yi ∼ N

 k∑
j=1

xijβj, σ
2

 , i = 1, . . . , n. (1.2)



4 Bootstrap Tests for Regression Models

The system of n equations with typical member (1.1) can be written in
matrix-vector notation as

y = Xβ + u, (1.3)

in which: y and u are the n-dimensional vectors with typical elements
yi and ui, respectively; X is the n by k matrix with typical element
xij, which is assumed to have rank equal to k, that is, there is no per-
fect multicollinearity; and β is the k-dimensional vector with typical
element βj.

The classical assumptions about the errors imply that their joint
distribution can be written in the form

u ∼ N(0n, σ2In), (1.4)

in which: N(µ, �) denotes the multivariate Normal distribution with
mean vector µ and covariance matrix �; 0n is the n-dimensional column
vector with every element equal to zero; and In denotes the n × n iden-
tity matrix. These assumptions, combined with those made about the
regressor terms, also imply that the joint distribution of the elements of
y is given by

y ∼ N(Xβ, σ2In). (1.5)

The parameters to be estimated are, therefore, the elements of θ ′ =
(β ′, σ2).

Under classical assumptions, there are strong incentives to use the
ordinary least squares (OLS) estimator for β because it is best unbiassed
and also the maximum likelihood estimator (MLE). The OLS estimator
of β is

β̂ = (X′X)−1X′y, (1.6)

and so (1.5) implies that

β̂ ∼ N(β,σ2(X′X)−1), (1.7)

with β̂ = (β̂1, . . . , β̂k)′. The implied vector of OLS predicted values is
denoted by

ŷ = Xβ̂ = X(X′X)−1X′y, (1.8)

using (1.6).
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In (1.8), pre-multiplication of y by X(X′X)−1X′ produces ŷ, which is
read as “y-hat.” The n by n matrix X(X′X)−1X′ is sometimes referred to
as the hat-matrix and is denoted by H, that is,

H = X(X′X)−1X′. (1.9)

The diagonal elements of H, denoted by hii, i = 1, . . . , n, are called the
leverage values in the literature on diagnostics for regression models. By
combining (1.7) and (1.8), it can be seen that, in the classical framework,

ŷ ∼ N(Xβ, σ2H), (1.10)

in which H is a matrix that is symmetric and idempotent, having rank
equal to k.

It remains to estimate the error variance σ2. The errors are not observed
but their variability can be estimated by using the OLS residuals as
proxies. The OLS residuals are the elements of

û = y − ŷ = (In − H)y = My = Mu, (1.11)

in which M = In − H = (In − X(X′X)−1X′) has rank equal to (n − k). Like
H, M is a symmetric, idempotent matrix; so that (1.4) implies

û ∼ N(0n, σ2(In − H)), (1.12)

with a typical OLS residual having a Normal distribution according to

ûi ∼ N(0, σ2(1 − hii)). (1.13)

The residual sum of squares (RSS) from OLS estimation is

RSS =
n∑

i=1

û2
i = û′û. (1.14)

Under the assumptions of the classical regression model, the distribution
of RSS is given by

RSS ∼ σ2χ2(n − k), (1.15)

in which n − k is the number of degrees of freedom associated with the
estimation of (1.3). It follows from properties of the χ2 distribution that
if s2 is defined by

s2 = RSS
(n − k)

, (1.16)
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then s2 is unbiassed and consistent for σ2. The MLE of σ2 is given by

σ̂2 = RSS
n

= (n − k)

n
· RSS
(n − k)

, (1.17)

and so is consistent, but not unbiassed.
It will be assumed that β̂ of (1.6) and s2 of (1.16) are to be used for the

estimation of θ ′ = (β ′, σ2), whether or not the restrictive assumptions
of nonrandom regressors and Normally distributed errors are made. In
addition to the unrestricted estimation of the elements of θ , there is
often interest in testing restrictions that reduce the number of elements
of β that require estimation. Such restrictions can take many forms. If
the restrictions are linear, that is, they specify the values of known linear
combinations of the regression coefficients, the assumptions of the clas-
sical model permit the application of tests that are exactly valid. In such
a case, let the restrictions to be tested be written as the null hypothesis

H0 : Rβ = r, (1.18)

in which R is a known q by k, q ≤ k, matrix with rank equal to q and r is
a known q-dimensional vector.

The alternative hypothesis is assumed to be

H1 : β1, . . . , βk are unrestricted.

The OLS estimator β̂ of (1.6) minimizes the residual sum of squares

Q(β) = (y − Xβ)′(y − Xβ),

under H1, and will be called the unrestricted estimator. The elements of
û will be referred to as the unrestricted residuals. It is convenient to add
to the notation by using RSS(H1) to stand for the unrestricted residual
sum of squares, that is, the quantity defined by (1.14) and to denote the
number of degrees of freedom for the unrestricted model by df (H1).

The estimator that minimizes Q(β) subject to H0, that is, subject to the
restrictions of Rβ = r, will be called the restricted estimator and is denoted
by β̃. The restricted residuals are defined by

ũ = y − Xβ̃, (1.19)

and the restricted residual sum of squares is written as

RSS(H0) = ũ′ũ.
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The standard F-statistic for testing H0 against H1 can then be calcu-
lated as

F = RSS(H0) − RSS(H1)

RSS(H1)
· df (H1)

q
, (1.20)

where, in this case, df (H1) = n−k. When the null hypothesis is true and
the classical assumptions are satisfied, F of (1.20) has the F distribution
with q and df (H1) degrees of freedom. This result, which is exactly valid,
is written as

F ∼ F(q, df (H1)),

under H0. Large values of the test statistic in (1.20) indicate that there is
strong evidence against H0, so that a one-sided test should be conducted.
If the required significance level is α, the decision rule can be written as:

reject H0 if F ≥ f (α; q, df (H1)), (1.21)

in which the critical value f (.) is determined by

Pr(F(q, df (H1)) ≤ f (α; q, df (H1))) = 1 − α.

If there is a single linear restriction to be tested, there is an alternative
to calculating the F-statistic of (1.20). Suppose that the null hypothesis
has the form H0 : Rβ = r1, where R is the row vector (R11, . . . , R1k) and r1
is a specified scalar, and the alternative hypothesis is H1 : Rβ �= r1. With
this combination of a single restriction in H0 and a two-sided alternative,
the reference distribution for the F-test is F(1, df (H1)). A random variable
with the same distribution is the square of a random variable that has the
Student t distribution with df (H1) degrees of freedom. This relationship
is denoted by

F(1, df (H1)) = [t(df (H1))]2.

It follows that a test of a single restriction against a two-sided alterna-
tive can be based upon the t-ratio defined by

t = Rβ̂ − r1
SE(Rβ̂ − r1)

, (1.22)

in which SE(.) denotes the estimated standard error, that is,

SE(Rβ̂ − r1) =
√

s2R(X′X)−1R′.
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Under the assumptions of the classical regression model, a two-sided
t-test with significance level α can be based upon the decision rule

reject H0 if |t | ≥ t(α/2; df (H1)), (1.23)

in which Pr(t(df (H1)) ≤ t(α/2; df (H1))) = 1−α/2. This two-sided t-test is
equivalent to the F-test, with the sample values of test statistics obeying
t2 = F.

If there is a priori (non-sample) information about the sign of Rβ − r1
when H0 is false, a one-sided t-test can be applied in the usual way. With
H+

1 : Rβ > r1, the decision rule is

reject H0 if t ≥ t(α; df (H1)), (1.24)

and with H−
1 : Rβ < r1, it is

reject H0 if − t ≥ t(α; df (H1)), (1.25)

where Pr(t(df (H1)) ≤ t(α; df (H1))) = 1 − α.
Rules (1.21), (1.23), (1.24) and (1.25) have all been written so that

the rejection region is in the right-hand tail of the relevant reference
distribution. It is convenient, for the subsequent discussions, to assume
that all tests are set up in this form. Some diagnostic checks, for example,
the widely-used test for heteroskedasticity proposed in Breusch and Pagan
(1979), involve the use of criteria that are asymptotically distributed as
χ2 under the null hypothesis. The rejection region for such tests are, as
with those given above, in the right-hand tail.

It is worth noting that, as an alternative to a χ2-form, many diagnostic
checks can be computed as seemingly conventional tests of the signifi-
cance of artificial (constructed) variables that are added to the regressors
of (1.1). For example, tests for autocorrelation, structural change, errors-
in-variables etcetera can be computed using standard formulae for F or t
statistics, which are applied to an appropriate artificial regression model;
see Davidson and MacKinnon (2004, section 15.2) for a general discus-
sion. In such cases, (1.1) is viewed as the restricted (null) model. The nature
of the unrestricted (alternative) model, which contains the restricted model
(1.1) as a special case, has important implications for the properties of
the test of the latter against the former. The unrestricted model required
for the convenient calculation of a diagnostic check is often such that
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the F and t tests are not exactly valid even when the classical Normal
regression model (1.1) is the correct specification.

The problems associated with appealing to classical finite sample the-
ory in the context of testing for misspecification can be illustrated by
considering the well-known Breusch-Godfrey Lagrange Multiplier (LM) test
for autocorrelation; see Breusch (1978) and Godfrey (1978). Suppose that
quarterly data are being used and that the researcher believes that it is
useful to test the assumption that the errors are independent against the
fourth-order alternative

ui = φ1ui−1 + · · · + φ4ui−4 + εi,

with the variates εi being NID(0, σ2
ε ). The required Breusch-Godfrey test

can be implemented by applying the F-test of the four linear restrictions
φ1 = φ2 = φ3 = φ4 = 0 in the augmented version of (1.1) given by

yi =
k∑

j=1

xijβj +
4∑

j=1

φjûi−j + ui, (1.26)

where terms ûi−j with i ≤ j are set equal to zero. Even under the restrictive

assumption that the errors ui are NID(0, σ2), the F-test of (1.1) against
(1.26) is not exactly valid, but does have a significance level that tends
to the required level α as n −→ ∞, that is, it is asymptotically valid.

The failure of standard finite sample theory to apply to the F-test of
(1.1) against (1.26) might be anticipated on the grounds that the regres-
sors of the latter, which serves as the alternative or unrestricted model,
include random variables, namely, the lagged residuals. However, there
are cases of diagnostic checks in which F-tests are exact even though
the regressors of the alternative model include random variables. An
important example is the RESET test proposed in Ramsey (1969).

The RESET test provides a check of the specification of the mean func-
tion of (1.1), with the OLS predicted values from estimation of this model
being employed to obtain the additional regressors required for the alter-
native model. More precisely, in the formula for the RESET F-statistic
with q test variables, RSS(H0) is derived from OLS estimation of (1.1),
that is, it is given by (1.14), and RSS(H1) is obtained after estimation of
the artificial model

yi =
k∑

j=1

xijβj +
q∑

j=1

ŷj+1
i δj + ui, i = 1, . . . , n, (1.27)
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with df (H1) = n − k − q. The F-statistic for testing δ1 = · · · = δq = 0 in
(1.27) is denoted by FR and

FR ∼ F(q, n − k − q),

under the null hypothesis, when the assumptions of the classical model
concerning X and u hold. Consequently, under these assumptions, it is
possible to have perfect control of finite sample significance levels of the
RESET test. This result follows from a general property of tests involving
functions of ŷ; see Milliken and Graybill (1970).

Notwithstanding the interest to theorists of results such as those in
Milliken and Graybill (1970) and also in Stewart (1997), there is a need
to weaken the assumptions of the classical model and to see what can be
established about the properties of tests under more general conditions.

1.3. Tests for linear regression models under weaker
assumptions: random regressors and non-Normal
IID errors

From the viewpoint of the applied econometrician, the results concern-
ing the exact validity of the F and t tests in the classical linear regression
model are of doubtful relevance. The assumption that the regressors are
non-random and would be fixed if repeated sampling were possible may
well be appropriate for the analysis of data obtained, for example, from
experiments in a laboratory. However, in econometric models, the regres-
sors will usually include economic variables that are properly regarded
as random. Thus, in general, the regressor set will include both random
and non-random terms. The applicability of the results of the previous
section is now open to question.

Suppose first that the following two conditions hold: the regressors are
such that any random term xij is independent of um for i, m = 1, . . . , n;

and the errors um are NID(0, σ2) for m = 1, . . . , n. When the first of
these conditions is satisfied, the regressors are said to be strictly exogenous
or, less precisely, exogenous. The complete independence of errors and
regressors implies that conditioning on regressor values has no impact on
the distribution of the errors. Consequently, given the two conditions,
we can write the conditional error distribution as

u|X ∼ N(0n, σ2In), (1.28)
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and for the conditional distribution of the dependent variable, given the
regressor values, we have

y|X ∼ N(Xβ, σ2In). (1.29)

Comparison of (1.4) and (1.5) with (1.28) and (1.29), respectively, indi-
cates how results given in the previous section for the former pair of
equations will now apply in a conditional sense under the latter pair. In
particular, when testing restrictions of the form (1.18), the F statistic of
(1.20) will have the conditional distribution

F|X ∼ F(q, df (H1)), (1.30)

under the null hypothesis. This conditional distribution is completely
characterized by the values of q and df (H1), but neither of these items
depends upon X. Hence, when the null hypothesis is true, the uncondi-
tional distribution is the same as the conditional distribution in (1.30),
which is the same as the reference distribution appropriate for the classi-
cal model. The F-test is, therefore, exactly valid. Similar arguments apply
to the t-test.

However, the conditions that underpin this argument are very restric-
tive. The assumption that all regressors are strictly exogenous is incon-
sistent with the common practice of including lagged values of the
dependent variable as explanatory variables when estimating regression
models using time series data. For example, the standard partial adjust-
ment model leads to the inclusion of yi−1 as a regressor and this regressor
cannot be independent of all past errors (obviously E(yi−1ui−1) �= 0).
Moreover, there is rarely precise information available about the shape
of the error distribution and, in particular, there seems little reason to
believe that the errors are Normally distributed, even if they are assumed
to be IID.

If the assumption of Normally distributed errors is relaxed, tests involv-
ing the use of critical values from standard distributions must, in general,
be based upon asymptotic theory. Appeal has to be made to versions of a
Law of Large Numbers and a Central Limit Theorem (CLT). Discussions
of these topics and their application to tests for regression models can
be rather technical and readers are referred to Davidson (1994), McCabe
and Tremayne (1993), and White (1984) for detailed treatments. For the
purpose of providing an outline of the relevant arguments of asymptotic
theory, it is useful to introduce the ideas of orders of magnitude for random
variables due to Mann and Wald (1943).
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Given a sequence of real random variables, denoted by {S(n)}, and some
real number a, we say that S(n) is of order of probability na if for any ε > 0
there exists bε > 0 such that

Pr(−bε ≤ n−aS(n) ≤ bε) ≥ 1 − ε,

for all n. The standard notation for such a variable is to write S(n) =
Op(na). If, for some real number c, p lim n−cS(n) = 0, we say that S(n) is
of smaller order of probability than nc and write S(n) = op(nc).

For example, assume that the observations y1, . . . , yn are NID(µ, σ2)

and S(n) = y1 + · · · + yn. Since, in this case, S(n) is N(nµ, nσ2), it follows
that: (i) S(n) = Op(n) with plim n−1S(n) = µ; (ii) S(n) − nµ is Op(n1/2)

with n−1/2(S(n) − nµ) being N(0, σ2); and (iii) S(n) − nµ is op(n) with
n−1(S(n) − nµ) being N(0, n−1σ2) so that plim n−1(S(n) − nµ) = 0.

In standard textbook discussions of linear regression models, assump-
tions are made that imply that β̂ = β + Op(n−1/2), with n1/2(β̂ − β)

being asymptotically Normally distributed with zero mean vector and
finite, positive-definite covariance matrix. Strictly speaking, the nota-
tion used in the discussion of asymptotic theory for regression models
should reflect the dependence of estimators and test statistics on the
sample size n, for example, β̂(n) rather than β̂. However, no confusion
should be caused by adopting the less cluttered style employed above
and the key results can be summarized as follows. First, when using F of
(1.20) to test the null hypothesis of (1.18), asymptotic theory predicts
that, when the null is true, F is Op(1) with

F ∼a
χ2(q)

q
,

in which ∼a is used as a shorthand for “is asymptotically distributed
as”. Second, if q = 1, the t-ratio of (1.22) is Op(1) and is asymptotically
distributed as N(0, 1) when the null hypothesis is true.

Asymptotic theory can also be used as a source of approximations to
the behaviour of test statistics when the null hypothesis is false. Consider
the case of testing a single restriction, which is written as H0 : Rβ = r1,
as above. The relevant t-statistic can be written as

Rβ̂ − r1
SE(Rβ̂ − r1)

= (Rβ̂ − Rβ)

SE(Rβ̂ − r1)
+ (Rβ − r1)

SE(Rβ̂ − r1)
, (1.31)

in which the first term on the right-hand side of (1.31) tends to N(0, 1),
whether or not H0 is true, but the asymptotic behaviour of the second
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term does depend upon the value of Rβ − r1. If H0 is true, Rβ − r1 = 0
and the second term vanishes. If Rβ − r1 is a fixed nonzero number
(so that H0 is untrue), the second term on the right-hand side of (1.31)
is Op(n1/2), under the standard assumptions of asymptotic theory for
regression models. (The standard errors of OLS estimators are Op(n−1/2),
given these assumptions.) Hence, as n −→ ∞, the t-statistic goes to
±∞, according to the sign of the nonzero constant Rβ − r1. Thus, with
fixed alternatives H1 : Rβ − r1 �= 0, asymptotic theory cannot lead to the
limit of a proper distribution with finite mean and variance as a basis
for approximating the behaviour of the t-statistic. A device known as
a sequence of local alternatives, or as Pitman drift, does allow asymptotic
theory to provide such an approximation for the study of power; see, for
example, Godfrey and Tremayne (1988).

The device is to introduce the sequence of alternatives

H1n : Rβ − r1 = λ√
n

, |λ| < ∞, (1.32)

which clearly tends to the null hypothesis as n increases. The second
term of (1.31) is, under (1.32), given by

λ√
nSE(Rβ̂ − r1)

,

which tends to a finite constant, say µλ. Consequently, under the local
alternatives assumption, the asymptotic distribution of the t-ratio can
be written as

Rβ̂ − r1
SE(Rβ̂ − r1)

∼a N(µλ, 1),

and this distribution satisfies the requirements to have finite mean and
variance. Local alternatives are often used when researchers seek to
choose between two or more asymptotically valid tests on the basis of
their sensitivity to departures from the null hypothesis. A similar result
is available when the F-test is used to check several restrictions.

Several researchers, while acknowledging a reliance on asymptotic
theory, prefer to use the conventional F(q, df (H1)) and t(df (H1)) distribu-
tions for critical values, rather than the corresponding limiting forms of
χ2(q)/q and N(0, 1). There may be reason to be concerned about the rel-
evance of asymptotic theory if df (H1) is not large enough for the choice
between, for example, t(df (H1)) and N(0, 1) to be unimportant. Indeed,
from a practical point of view, a question of real interest is how large does
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the sample size have to be before a CLT will give a useful approximation
for controlling the significance level when testing the null hypothesis.
Unfortunately there is no generally valid answer.

The robustness of the standard regression F-test to non-Normality of the
errors is investigated in Ali and Sharma (1996). In addition to the sam-
ple size, degrees of freedom and the actual distribution of the errors,
important determinants of the robustness to non-Normality are the
non-Normality of the regressors and the presence of observations with
relatively high leverage values. The relevance of such characteristics of
the regressor set is not surprising, given the dependence of the test statis-
tic on OLS residuals and the form of (1.11). In view of the uncertain
quality of the approximation provided by asymptotic theory in the case
of a linear regression model with IID, but non-Normal, errors and the
evidence that the approximation is sometimes poor, it is natural to look
for an alternative approach to testing. Chapter 2 contains a discussion
of a simulation-based approach that can be applied in the context of lin-
ear regression models with IID errors. However, like the standard t and
F tests, these simulation techniques may produce misleading inferences
when the errors of (1.1) are not IID, that is, the data are generated by a
generalized regression model.

1.4. Tests for generalized linear regression models

The generalized regression model with exogenous regressors is derived
by combining the model in (1.3), that is,

y = Xβ + u,

with

E(u|X) = 0,

and

E(uu′|X) = σ2�, (1.33)

in which � is an n by n matrix that is symmetric and positive definite.
If the errors are independent but heteroskedastic, the elements of � are
such that: ωij = 0 if i �= j; and ωii �= ωjj for some i �= j. If the errors
are correlated but homoskedastic, the elements of � are such that: ωii =
ωjj = 1, say, for all i and j; and ωij �= 0 for some i �= j. In the latter case, it is
assumed that there are time series data and the errors are autocorrelated.
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(Tests can be developed for models with spatial correlation; see Anselin,
2006.) It will be assumed that autocorrelated errors are generated by
(weakly) stationary processes so that ωij depends upon |i− j|, rather than
on i and j separately. For example, if the errors were generated by a
stationary first-order autoregression

ui = φui−1 + εi, |φ| < 1, εi NID(0, σ2
ε ),

a typical element of � in (1.33) would be ωij = φ|i−j|.
The OLS estimator of β, under the assumptions of the generalized

regression model, has conditional mean vector

E(β̂|X) = β,

and conditional covariance matrix given by

VG(β̂|X) = σ2(X′X)−1X′�X(X′X)−1. (1.34)

In general, the matrix of (1.34) is not equal to the one that appears in (1.7)
and so the tests described above cannot be expected to be asymptotically
valid.

In some special models, the elements of � are known constants. For
example, if each element of u is the sum of a known number of basic
IID disturbances, � can be calculated very simply; see Rowley and Wilton
(1973) for an example based upon the “four-quarter overlapping-change”
model in wage analysis. When � is known, the OLS estimator can be
replaced by the more efficient Generalized Least Squares (GLS) estimator

β̌ = (X′�−1X)−1X′�−1y, (1.35)

which has conditional covariance matrix equal to σ2(X′�−1X)−1. The
estimator of σ2 is no longer given by s2 of (1.16) but is now defined by

σ̌2 = (y − Xβ̌)′�−1(y − Xβ̌)

(n − k)
.

Given β̌ and σ̌2, an asymptotically valid test of H0 : Rβ = r in (1.18)
can be based upon the result that, when H0 is true, the Wald statistic

WGLS = (Rβ̌ − r)′
[
σ̌2R(X′�−1X)−1R′]−1

(Rβ̌ − r), (1.36)

is asymptotically distributed as χ2(q); see, for example, Greene (2008, ch.
8, section 8.3.1) for the corresponding asymptotically valid F-statistic.
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Significantly large values of WGLS indicate that the restrictions of H0 :
Rβ = r are not consistent with the sample data.

Unfortunately, the test statistic of (1.36) is rarely available in practical
situations because, in general, � is unknown and it is not feasible to
calculate the GLS estimator β̌.

When the elements of � are continuous functions of the elements of
an unknown parameter vector ψ , estimates of the parameters of the gen-
eralized regression model can be obtained by minimizing the Nonlinear
Least Squares (NLS) criterion

QNLS(β, ψ) = (y − Xβ)′[�(ψ)]−1(y − Xβ),

with respect to both β and ψ . Alternatively, if some consistent estimator
of ψ , denoted by ψ̂ , is available and necessary regularity conditions are
satisfied, β can be estimated by minimizing the Feasible Generalized Least
Squares (FGLS) function

QFGLS(β) = (y − Xβ)′[�(ψ̂)]−1(y − Xβ).

However, both of these estimation methods are based upon the assump-
tions that: (i) there is a parametric model that determines the structure
of �; and (ii) the general form of �(ψ) is known, with only its finite-
dimensional parameter vector ψ being unknown. While economics
might be a source of useful information about the mean function of
y, there is little reason to suppose that applied workers will know the
form of, for example, heteroskedasticity. Thus it will often be difficult to
have confidence in an assumed error model.

Misspecification of the model for autocorrelation and/or heteroskedas-
ticity will, in general, lead to an inconsistent estimator of the covariance
matrix of the minimizers of QNLS(β, ψ) and QFGLS(β). Hence errors made
in modelling � may imply misleading outcomes of tests of hypotheses
such as (1.18), because such tests use the estimated covariance matrix
to assess the significance of sample outcomes. An investigation of the
effects of misspecifying the model for heteroskedasticity is reported
in Belsley (2002). It is found that effects can be serious and Belsley
concludes that

Correction for heteroskedasticity clearly does best when both the
proper arguments and the proper form of the skedasticity function
are known. But this is an empty conclusion since misspecification is
probably the rule. (Belsley, 2002, p. 1396)
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Moreover, it has been argued that, even with correct specification of
the model underlying �, it is not clear that FGLS is superior to OLS
in finite samples because of the extra variability associated with the
estimation of ψ ; see, for example, Greene (2008, p. 158).

In view of these findings, it is not surprising that there has been an
interest in deriving tests using the uncorrected OLS estimator β̂ and an
appropriate estimator of its covariance matrix, which is no longer given
by the IID-valid formula σ2(X′X)−1 used in (1.7). If the errors are assumed
to be independent and heteroskedastic, a Heteroskedasticity-Consistent
Covariance Matrix Estimator (usually denoted by HCCME) is required.
If the errors are heteroskedastic and autocorrelated, a Heteroskedastic-
ity and Autocorrelation Consistent (usually denoted by HAC) estimator is
needed. The former provides standard errors that are heteroskedasticity-
robust. The latter provides standard errors that are heteroskedasticity and
autocorrelation robust.

Many computer programs offer users the chance to use robust stan-
dard errors from either some HCCME or some HAC estimate, rather than
relying on the traditional IID-valid standard errors given by the matrix
s2(X′X)−1. However, the traditional standard errors are often provided
as the default and this approach has been criticized. Stock and Watson
remark that

In econometric applications, there is rarely a reason to believe that the
errors are homoskedastic and normally distributed. Because sample
sizes are typically large, however, inference can proceed . . . by first
computing the heteroskedasticity-robust standard errors. (Stock and
Watson, 2007, p. 171)

Similarly, it is argued in Hansen (1999) that a modern approach should
involve the use of test statistics that are valid under heteroskedasticity
and do not require the assumption of Normality. (It is also suggested
in Hansen (1999) that applied workers should think about using the
bootstrap for inference, rather than relying on asymptotic theory. Much
of what follows in this book is concerned with presenting evidence to
support this suggestion and to help empirical researchers to select the
appropriate form of the bootstrap.)

Since the use of procedures based upon HCCME and HAC estimates
offers the chance to derive tests that are asymptotically valid in the pres-
ence of unspecified forms of departure from the assumption of IID errors,
such robust tests are of real interest in practical applications. Moreover,
the availability of suitable software means that there is no important
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obstacle to hinder the use of robust tests. Given the potential importance
of these alternatives to the conventional IID-based asymptotic t and F
tests, each will discussed.

1.4.1. HCCME-based tests

Suppose first that the errors ui are independently distributed with zero
means and variances σ2

i , i = 1, . . . , n, with all variances being finite
and positive. It is not assumed that there is any precise information
available to support the specification of a parametric model of the het-
eroskedasticity. The tests that are to be discussed are asymptotically
robust to heteroskedasticity of unspecified form and are also asymptoti-
cally valid under the classical assumption of homoskedasticity. The key
results for HCCME-based inference in linear regression models will now
be discussed.

If the regressors were not random and the errors were Normally dis-
tributed, the OLS estimator would, in the presence of unspecified forms
of heteroskedasticity, have the following distribution

β̂ ∼ N(β, (X′X)−1X′�X(X′X)−1),

or equivalently,

n1/2(β̂ − β) ∼ N(0k, n(X′X)−1X′�X(X′X)−1), (1.37)

in which � is the n by n diagonal matrix with the variances σ2
i , i =

1, . . . , n, as the nonzero elements on its leading diagonal. The random
vector n1/2(β̂ − β) is Op(1), with the covariance matrix that appears in
(1.37) being assumed to tend to a finite positive-definite matrix as n −→
∞. This property of the covariance matrix is more easily seen when it is
noted that

n(X′X)−1X′�X(X′X)−1 =
(

X′X
n

)−1 (
X′�X

n

)(
X′X

n

)−1
.

The covariance matrix that appears in (1.37) is sometimes referred to
as a sandwich covariance matrix; the term depending on error variances,
that is, X′�X, being sandwiched between the two terms equal to (X′X)−1.
The problem of finding useful estimates for the sandwich form in order
to develop methods for feasible inference was studied in the statistics
literature, for example, Eicker (1967). However, interest and applica-
tions in econometrics were stimulated by an important paper by White
who relaxed the assumptions of fixed regressors and Normally distributed
errors; see White (1980).
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White showed that, under suitable regularity conditions, the OLS esti-
mator β̂ is consistent for β, with (β̂ −β) being Op(n−1/2) and n1/2(β̂ −β)

having a limiting distribution ( as n −→ ∞) given by

n1/2(β̂ − β) ∼a N(0k, plim n(X′X)−1X′�X(X′X)−1). (1.38)

It is (1.38) that provides the basis for asymptotically valid hetero-
skedasticity-robust tests. If the null hypothesis H0 : Rβ = r is to be
tested, we can use the result that (1.38) implies that

n1/2R(β̂ − β) ∼a N(0q, plim nR(X′X)−1X′�X(X′X)−1R′),

and so, if the null hypothesis is true,

n1/2(Rβ̂ − r) ∼a N(0q, plim nR(X′X)−1X′�X(X′X)−1R′).

Consequently, if the restrictions of Rβ = r are valid, standard
asymptotic theory implies that

n(Rβ̂ − r)′[plim nR(X′X)−1X′�X(X′X)−1R′]−1(Rβ̂ − r) ∼a χ2(q).

However, this result does not yield a feasible test procedure because it
concerns a random variable that depends upon the probability limit of
a matrix that is, in part, determined by the unknown matrix �.

White provided a very simple and convenient solution to the problem
of deriving a feasible large sample test. In White (1980), it is shown that,
under certain regularity conditions that place mild restrictions on the
behaviour of errors and random regressors,

plim n−1X′�̇X = plim n−1X′�X, (1.39)

in which �̇ is obtained from � by replacing the unknown variance σ2
i

by the calculable squared OLS residual û2
i , i = 1, . . . , n. Consequently

feasible and asymptotically robust tests can be derived by using the
heteroskedasticity-consistent estimator

HC0 = n(X′X)−1X′�̇X(X′X)−1, (1.40)

for the covariance matrix that appears in (1.38). A heteroskedasticity-
robust test of H0 : Rβ = r can then be based upon the statistic

WHC0 = n(Rβ̂ − r)′
[
nR(X′X)−1X′�̇X(X

′
X)−1R′]−1

(Rβ̂ − r) ∼a χ2(q),
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with significantly large values of WHC0 indicating the data inconsistency
of the linear restrictions of H0.

There is a large literature on the construction and analysis of
heteroskedasticity-robust tests for regression models and a summary will
be given in Chapter 6. However, it is worth noting that statistics that are
asymptotically equivalent to WHC0, that is, differ from it by terms that
are op(1), can be obtained by modifying HC0 of (1.40). Three modifica-
tions are often discussed. First, a simple degrees-of-freedom adjustment
is employed, which leads to

HC1 = (n − k)(X′X)−1X′�̇X(X′X)−1. (1.41)

The second and third standard modifications both involve taking the
leverage values hii (see (1.9) above) into account, with the estimators
being defined by

HC2 = n(X′X)−1X′�̈X(X′X)−1, (1.42)

and

HC3 = n(X′X)−1X′...
�X(X′X)−1, (1.43)

in which �̈ and
...
� are derived from �̇ by replacing the terms û2

i by (1 −
hii)

−1û2
i and (1 − hii)

−2û2
i , i = 1, . . . , n, respectively. Clearly HC0 and

HC1 have the same probability limit, with

HC1 = (n − k)

n
· HC0 = HC0 + Op(n−1),

so that (HC1−HC0) is asymptotically negligible relative to HC0. Similarly
the differences (HC2 − HC0) and (HC3 − HC0) are also asymptotically
negligible since each term hii is Op(n−1), with h11 + · · · + hnn = k for
all n ≥ k. An examination of these variants is provided in, for example,
Long and Ervin (2000) and MacKinnon and White (1985).

Many textbooks point out that heteroskedasticity could be present
when regression models are estimated using cross-section data. It is,
therefore, not surprising that the assumption that the regressors are inde-
pendently distributed over the observations is made in White (1980).
However, while this assumption concerning the behaviour of regressors
may often be appropriate for cross-section applications, it is too restric-
tive when time series regressions are estimated and heteroskedasticity
certainly cannot be ruled out in such cases. Fortunately, it is possible to
extend White’s results by establishing that a HCCME can be obtained
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for time series regressions by using one of the estimators given in (1.40),
(1.41), (1.42) and (1.43); see Hsieh (1983).

If time series data are being used in OLS analysis, it does not seem
sufficient to make tests robust to heteroskedasticity because it seems
reasonable to consider the possibility of error autocorrelation. Conse-
quently there is a need to examine the possibility of deriving procedures
that are asymptotically valid in the presence of unspecified forms of both
autocorrelation and heteroskedasticity. The key step to the construction
of such tests is the derivation of a heteroskedasticity and autocorrelation
consistent estimator of the covariance matrix of the OLS estimator.

1.4.2. HAC-based tests

Since the use of HAC-based tests seems especially useful in the con-
text of time series regressions, it will be convenient to rewrite a typical
observation for the linear regression model as

yt =
k∑

j=1

xtjβj + ut , (1.44)

that is, the observation subscript is now t for time period. It is assumed
that the errors can exhibit both autocorrelation and heteroskedasticity,
but there are no unit roots. Details of the regularity conditions needed
to support asymptotic analysis are given in the literature, for example,
see Andrews (1991), Andrews and Monahan (1992), Kiefer and Vogel-
sang (2002), Kiefer, Vogelsang and Bunzel (2000) and Newey and West
(1987).

As before, it is assumed that it is required to test linear restrictions on
the regression coefficients using OLS estimators. Let the k-dimensional
vector xt be defined by

xt = (xt1, . . . , xtk)′,

so that (1.44) can be rewritten as

yt = x′
tβ + ut .

The OLS estimator can then be expressed as

β̂ =
 n∑

t=1

xtx
′
t

−1 n∑
t=1

xt yt ,
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so that we have

n1/2(β̂ − β) =
n−1

n∑
t=1

xtx
′
t

−1

n−1/2
n∑

t=1

xt ut , (1.45)

in which all terms are scaled to be Op(1). As with the simpler case
of HCCME, the basic problem is to obtain a consistent estimator of
the covariance matrix of the asymptotic distribution of n1/2(β̂ − β).
Asymptotic tests of linear restrictions can then be readily found.

Under standard assumptions, the first term on the right-hand side of
(1.45) tends to a finite positive definite matrix and the second term
is asymptotically Normally distributed. The asymptotic covariance of
n1/2(β̂ − β) is then given by

plim

n−1
n∑

t=1

xtx
′
t

−1

× � × plim

n−1
n∑

t=1

xtx
′
t

−1

,

in which � is the asymptotic covariance of n−1/2 ∑n
t=1 xt ut . Consis-

tent estimators of the matrices on the outside of this sandwich form are
obtained simply by dropping the plim operator, so the real issue is how
to estimate �.

It is standard in work on HAC estimation of covariance matrices to
introduce the autocovariance matrices of the vectors xt ut , which are
defined as follows:

�(j) = n−1
n∑

t=j+1

E(utut−jxtx
′
t−j) for j ≥ 0,

= n−1
n∑

t=−j+1

E(ut+jutxt+jx
′
t ) for j < 0. (1.46)

Now � is the limit, as n −→ ∞, of the sum

J =
n−1∑

j=−n+1

�(j);

see, for example, Andrews (1991, eq. 2.3, p. 820) or Hamilton (1994,
pp. 279–283). Several estimators for � have been discussed and there are
many articles of relevance; see, for example, Andrews (1991), Andrews
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and Monahan (1992), Kiefer and Vogelsang (2002), Kiefer, Vogelsang
and Bunzel (2000) and Newey and West (1987). Computer programs
for econometric estimation and testing often provide the Newey-West
estimator, which is

Ĵ = �̂(0) +
l∑

j=1

(
1 − j

l + 1

)(
�̂(j) + �̂(j)′

)
, (1.47)

where �̂(0) = n−1X′�̇X, as in (1.39), and

�̂(j) + �̂(j)′ = n−1
n∑

t=j+1

ût ût−j(xtx
′
t−j + xt−jx

′
t ) for j = 1, . . . , l, (1.48)

where l denotes the lag truncation value that allows all asymptotically
relevant autocorrelations to be taken into account, with l −→ ∞ and
l/n −→ 0, as n −→ ∞.

A test of the usual set of linear restrictions (1.18) can now be obtained,
since

WHAC = n(Rβ̂ − r)′
[
nR(X′X)−1Ĵ(X

′
X)−1R′]−1

(Rβ̂ − r) ∼a χ2(q),

(1.49)

when the null hypothesis is true and l is selected in an appropriate way.
In the analysis of Newey and West, l is o(n−1/4), but it is remarked
that, under different assumptions, l being o(n−1/2) would be appro-
priate for asymptotically valid inference; see Newey and West (1987,
p. 705). Clearly rules about the asymptotic order of magnitude in n of
the truncation value l do not provide real guidance about the choice
of this parameter in a practical situation in which a finite sample is
employed.

There are several problems for the practitioner who has to choose the
form of the HAC estimator to derive an asymptotic test that is robust
to unspecified forms of heteroskedasticity and autocorrelation; see Den
Hann and Levin (1997). The choice can have an important impact on the
finite sample performance of the test and some variants do not guarantee
that the calculated test statistic will be positive, which is inconsistent
with the reference distribution of χ2(q).

There is also an important limitation on the types of model to which
OLS-based HAC tests can be applied. A fundamental requirement is that
E(ut |xt ) = 0, which excludes the possibility of having lagged dependent
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variables as regressors in the presence of unspecified forms of autocorre-
lation. It is very often the case that applied workers use OLS to estimate
time series regression equations with lagged dependent variables as
regressors and HAC tests should not be employed in such situations. It
may be possible to obtain useful HAC tests for dynamic models by using
instrumental variable estimation, rather than OLS. However, instrumental
variable estimation is sometimes associated with difficulties. Some prob-
lems encountered in using instrumental variable methods to estimate
dynamic regression models with autocorrelated errors are discussed in
Chapter 3.

If the asymptotic theory that underpins HAC tests were to provide a
good approximation to actual finite sample behaviour, there would be
no need to carry out tests for either autocorrelation or heteroskedasticity.
However, there remain other types of departures from regularity assump-
tions that must be considered. It has been mentioned that it is vital that
E(ut |xt ) = 0. Consequently it is important to test for endogeneity/errors-
in-variables using the Hausman test and for omitted variables/incorrect
functional form using the RESET test; see Hausman (1978) for the former
procedure and Ramsey (1969) for the latter check. Both of these tests can
be implemented by testing the significance of a subset of regressors in an
expanded version of (1.44). The unrestricted model for computing RESET
statistics is given by (1.27) and the corresponding model for the Haus-
man test is discussed in Krämer and Sonnberger (1986). The restricted
model is (1.44) and the test of the restrictions that yield this model as a
special case of the relevant alternative model should be based upon an
HAC estimator of the covariance matrix.

The application of the HAC estimator of the covariance matrix in the
context of RESET-type procedures is discussed in Godfrey (1987). In such
applications, the unrestricted (alternative) model can be written as

yt =
k∑

j=1

xtjβj +
q∑

j=1

ztjγj + ut , (1.50)

in which the terms ztj represent the test variables, for example, ztj = ŷj+1
t

for the RESET check. When testing the null hypothesis that γ1 = · · · =
γq = 0, a HAC estimator of the covariance matrix is to be constructed
using OLS residuals, for example, as in (1.47) and (1.48). However, it is
not clear at first sight whether the OLS residuals used should be those
from the estimation of (1.44) or those from the estimation of (1.50). The
former choice leads to the use of restricted residuals and the latter choice
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to the construction of the HAC using unrestricted residuals. Under the null
hypothesis, either choice is asymptotically valid.

It is sometimes argued that there may be something to be gained
by using the unrestricted residuals if they are closer to the true errors
than the restricted residuals when the null model is invalid. However,
in the context of RESET-type and Hausman tests, models like (1.50) do
not correspond to genuine alternative explanations of the determina-
tion of the dependent variable. Instead such relationships are simply
artificial (auxiliary) regressions designed to allow the convenient com-
putation of a diagnostic check. The issue of whether to use restricted or
unrestricted residuals when calculating robust tests will be discussed in
the next section and will be considered in Chapter 3 in the context of
simulation-based tests.

1.5. Finite-sample properties of asymptotic tests

It has been pointed out that there is rarely precise information available
about the form of the error distribution and, in particular, there seems
little reason to believe that the errors are Normally distributed. Moreover,
even if Normality is assumed, there are many cases in which this assump-
tion does not imply the existence of exact finite sample tests, for example,
in cross-section studies in which heteroskedasticity-consistent standard
errors are used and in time-series studies in which the regressors include
lagged values of the dependent variable. Consequently it seems reason-
able to suggest that, in most cases of practical relevance, the standard
OLS tests and confidence intervals must be justified by appeal to large
sample theory, rather than to exact results. It is, therefore, important
to obtain evidence about the usefulness of the approximations derived
from asymptotic theory.

Much of the available evidence has been obtained from studies that use
simulation experiments. In such studies, computer programs are written
that allow the specification of a data generation process (DGP), generate
many artificial samples of the required size from the DGP, calculate the
test statistics of interest for each generated sample and use these sample
values to learn about the finite sample distribution of the test statis-
tics; see Davidson and MacKinnon (1993, ch. 21) for a useful discussion.
The increasing power and falling price of modern computers make accu-
rate and extensive simulation analysis feasible. This subsection contains
results from simulation experiments that indicate that asymptotic theory
does not always lead to reliable inferences. It will be argued that there
is, therefore, a need to go beyond the use of conventional first-order
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asymptotic theory when applying tests in econometrics, despite the
convenience of the associated standard distributions (namely, N(0, 1),
t , F and χ2).

Clearly it would not be expected that the predictions from asymp-
totic theory about, for example, finite sample significance levels would
be perfectly accurate. What is of practical importance is how close the
asymptotic values are to the actual finite sample values in an interesting
variety of situations. Opinions will differ about close an approximation
should be to be viewed as useful. In applications in psychology, crite-
ria for robustness of tests have been proposed; see, for example, Bradley
(1978) and Serlin (2000). The stringent criterion for robustness is that the
actual significance level should be in the range 0.9αd to 1.1αd , where αd
denotes the desired (asymptotic) significance level. The range 0.8αd to
1.2αd is sometimes regarded as implying a moderate degree of robustness.
A (very) liberal criterion is that the actual rejection probability should be
in the range 0.5αd to 1.5αd . Whatever, the precise definition of robust-
ness, it is obviously important to know if, for sample sizes of interest
to empirical researchers, there is evidence that a test using asymptoti-
cally valid critical values leads to the rejection of a true null hypothesis
either far too infrequently or far too frequently. In the former case, rejec-
tions may also be infrequent in the presence of departures from the
null that are important, that is, there might be problems of low power.
In the latter case, valid models will be discarded far more often than
intended.

The results from simulation experiments, which are reported in this
subsection, are intended to supplement the predictions of conventional
asymptotic and finite sample theory. It is hoped that the results obtained
from simulation experiments are of value in practical situations, but this
property can never be guaranteed. It is very common to refer to such
experiments as Monte Carlo experiments; see Davidson and MacKinnon
(1993, ch. 21) for an excellent discussion. However, given that “Monte
Carlo” will often be used below to refer to a particular type of simulation-
based test, this terminology will not be adopted in order to avoid any
confusion.

There are three sets of simulation experiments, each reported in its own
subsection. The first subsection contains results about the performance of
F-statistics as checks of the joint significance of a subset of regressors and
it is found that asymptotic theory provides a fair approximation overall.
The second of the subsections provides examples of widely-used tests
for which actual significance levels seem likely to be rather smaller than
the values predicted by asymptotic theory. The third subsection shows
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how, for other tests, asymptotic critical values can lead to finite sample
significance levels that are larger than the desired (nominal) values.

1.5.1. Testing the significance of a subset of regressors

The first case to be examined is one in which, after any necessary renum-
bering, the parameter vector of the regression model can be written as
β = (β ′

1, β ′
2)′ and the null hypothesis is β2 = 0q, with 0q denoting the

q-dimensional vector with every element equal to zero. This example is
familiar from textbook discussions and, if the assumptions of the clas-
sical linear regression model were satisfied, the relevant F-test would be
exactly valid. However, suppose that the errors, while IID, are not Nor-
mally distributed. As a result, the F-test is only asymptotically valid.
White and MacDonald remark that the significance levels of F-tests and
t-tests seem robust to non-Normality and give references to previous
research on this matter; see White and MacDonald (1980). It seems
worthwhile to provide some simulation-based evidence and two small
scale experiments will be used.

In the first experiment, data for the estimation of production functions
are taken from Greene (2008). These data come from a study of produc-
tion in the US. There are 27 statewide observations on value added, VA,
labour input, L, and capital stock, K. The production function relation-
ship includes an intercept and is specified in logs of the basic economic
variables, with xi1 = 1, xi2 = log(Li),and xi3 = log(Ki).

In order to obtain evidence on the behaviour of F-tests with q > 1
restrictions, the problem of testing the Cobb-Douglas form

yi = β1 + β2xi2 + β3xi3 + ui, (1.51)

against the more general translog model

yi = β1 + β2xi2 + β3xi3 + β4x2
i2 + β5xi2xi3 + β6x2

i3 + ui, (1.52)

is considered. For this case, the null hypothesis is HCD : β4 = β5 = β6 =
0, so that q = 3. The conventional F-test therefore uses critical values
taken from the F(3, 27−6) distribution. Finite sample significance levels
of the F-test under Normal and non-Normal IID errors are estimated by
generating data with (1.51) for specified values of the coefficients βj and
error processes that are described below.

Let X1 be the 27 by 3 matrix with typical row (xi1, xi2, xi3) and X2 be
the 27 by 3 matrix with typical row (x2

i2, xi2xi3, x2
i3). The regressor matrix

for the unrestricted model, X = (X1, X2), is then 27 by 6 with typical
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row (xi1, xi2, xi3, x2
i2, xi2xi3, x2

i3). Given β2 = (β4, β5, β6)′ = 03, the F-test
statistic is invariant with respect to the value of β1 = (β1, β2, β3) because

RSS(H1) = û′û = u′M′Mu = u′Mu,

and

RSS(H0) = ũ′ũ = u′M′
1M1u = u′M1u,

in which u′ = (u1, . . . , u27) and M1 = (I27 −X1(X′
1X1)−1X′

1); see David-
son and MacKinnon (2004, pp. 141–142) for a detailed explanation in a
more general setting. Consequently, for the purpose of investigating the
significance levels of the F-test under non-Normality, the elements of β

can all be set equal to zero, without any loss of generality.
The relevant F-statistic can be expressed as

u′M1u − u′Mu
u′Mu

× 21
3

= (cu)′M1(cu) − (cu)′M(cu)

(cu)′M(cu)
× 21

3
,

for any nonzero constant c. It follows that the F-statistic is unaffected by
the choice of the error variance in the simulation experiment. The choice
can be based simply on convenience, given the set of error distributions
to be used.

The distributions that are used to obtain the terms of (u1, . . . , u27) are:
N(0, 1) as a benchmark; t(5) as an example of a symmetric distribution
that is far from being Normal; and the heavily-skewed χ2(2) distribu-
tion. Drawings from these distributions are adjusted, when necessary,
so that, without loss of generality, they come from a population with
zero mean and variance equal to one. (In fact, for the simple case under
consideration, the invariance results given above imply that there is no
need to adjust drawings, but this result does not hold in several of the
experiments discussed later.)

In order to derive fairly precise estimates of rejection probabilities,
25,000 sets of artificial data with n = 27 are generated for each error dis-
tribution, that is, the number of replications is R = 25,000. The regressors
values are held fixed over replications, which corresponds to the classi-
cal assumption of nonrandom regressors. The results of Ali and Sharma
(1996) point to the relevance of leverage values, that is, the diagonal ele-
ments of the hat matrix, to the impact of non-Normality on the F-test.
High leverage values may lead to a lack of robustness. A leverage value
can be viewed as high if it exceeds two or three times the average of the
leverage values; see Belsley et al. (1980) for further discussion of leverage
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Table 1.1 Estimates of significance levels for F-test of
(1.51) against (1.52)

Error distribution αd = 1% 2% 3%

Normal 1.01 4.98 9.79
Student t(5) 1.35 5.76 10.62
χ2(2) 2.18 6.51 10.94

Note: n = 27

in regression analysis. For tests of HCD, the maximum of the diagonal
elements of the unrestricted regression hat matrix is 3.37 times the aver-
age, with the corresponding figure being 2.79 for the restricted regression
hat matrix. Consequently there are no grounds for suspecting that the
experiments will produce over-optimistic evidence about the robustness
of F-tests to non-Normality.

The results from the experiments are summarized in Table 1.1, in
which estimates of null rejection probabilities are given as percentages
and the desired significance levels are the conventional values of 1 per
cent, 5 per cent and 10 per cent. As expected, use of a Normal error dis-
tribution produces estimates that are very well behaved because the test
is exact and the number of replications is quite large. It is also unsurpris-
ing that the distortion of significance levels associated with the markedly
skewed χ2(2) error distribution is greater than that observed with the use
of t(5) errors. With a desired significance level of 1 per cent, the estimate
for χ2(2) errors does not even satisfy the liberal criterion of robustness
given above.

It could be objected that the estimates contained in Table 1.1 over-
state the robustness of the F-test to non-Normality because the regressors
are not random. Given the popularity of dynamic models, it seems use-
ful to combine departures from Normality with the inclusion of lagged
dependent variables as regressors to provide a more stringent check of the
quality of approximation provided by asymptotic theory. A second small-
scale simulation experiment is constructed by considering the problem
of testing

yt = β1 + β2xt + β3yt−1 + β4xt−1 + ut , (1.53)

against

yt = β1 + β2xt + β3yt−1 + β4xt−1 + β5yt−2 + β6xt−2 + ut , (1.54)
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in which the errors ut are IID(0, σ2). The error distributions are the same
as are used in the production function example. Drawings from these
distributions are transformed to obtain variates εt , which have zero mean
and unit variance, and then the errors ut are calculated as ut = σεt , using
a specified value of σ .

The exogenous variable xt is generated according to a first-order
autoregressive (AR(1)) scheme with

xt = 0.8xt−1 + υt ,

in which the terms υt are NID(0, σ2
υ ) and σ2

υ is selected so that the vari-
ance of xt is 1. The initial value x1 is taken from the exogenous variable’s
stationary distribution, that is, N(0, 1).

The null and alternative specifications are Autoregessive Distributed Lag
(ADL) models. Parameter values under the null hypothesis HADL : β5 =
β6 = 0 are set as follows: β1 = 1; β2 = 0.6; β3 = 0.7; and β4 = 0.4. The
value of σ2 is selected by trial and error to give an average value of the
R2 statistic after OLS estimation of (1.53) close to 0.8. The simple invari-
ance results used in the fixed regressor production function experiment
cannot be assumed to hold in the experiment with ADL models.

The dynamic structure of the model under the null hypothesis requires
that start-up values be provided. The start-up values ys, s ≤ 0, are set
equal to the unconditional mean of yt and, given the parameter values,
90 observations are generated, using (1.53). The first 50 of these obser-
vations are then discarded to reduce the impact of using fixed start-up
values. There remain n = 40 observations for estimation and testing
HADL : β5 = β6 = 0. The inclusion of lagged dependent variables in the
regressor set implies that the F-test is only asymptotically valid, even
when the errors are NID. The estimated significance levels, derived from
25,000 replications, are given in Table 1.2. These estimates show that

Table 1.2 Estimates of significance levels for F-test of
(1.53) against (1.54)

Error distribution αd = 1% 5% 10%

Normal 1.06 5.30 10.56
Student t(5) 1.06 5.08 9.95
χ2(2) 1.02 4.68 9.70

Note: n = 40
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there is evidence that the stringent criterion for robustness is satisfied
since all are in the range αd ± 0.1αd .

Overall, the results from these two small experiments do not suggest
major failings are likely to be common when F-tests are implemented
in the presence of non-Normal IID errors. Thus the remarks in White
and MacDonald (1980) are corroborated by the estimates contained in
Tables 1.1 and 1.2.

1.5.2. Testing for non-Normality of the errors

Given the major role played by the Normal distribution in discussions of
inference in the context of linear regression models, it is not surprising
that tests of the assumption of Normality have been developed; see White
and MacDonald (1980) for an important contribution. A test proposed
by Jarque and Bera has become widely used and is discussed in many
textbooks; see Jarque and Bera (1980, 1987).

The basic idea of the Jarque-Bera test is derived from the result that

zt = ut
σ

∼ N(0, 1),

if the errors ut are NID(0, σ2). It follows that, under the null hypothesis
HJB : the errors are NID(0, σ2), the moments of zt are those of a standard
Normal distribution. In particular, when HJB is true, the third and fourth
moments are such that E(z3

t ) = 0 and E(z4
t − 3) = 0. If the errors could

be observed and had a known variance, then the terms zt , t = 1, . . . , n,
could be found and used in an appropriate test in which the researcher
investigated the joint significance of

n−1
n∑

t=1

z3
t = n−1

n∑
t=1

(
u3

t
σ3

)
,

and

n−1
n∑

t=1

(z4
t − 3) = n−1

n∑
t=1

(
u4

t
σ4 − 3

)
;

so that claims about expected values would be tested using the cor-
responding sample means, as is standard. However, the errors are
unobservable and their variance is unknown.

Jarque and Bera show that the effects of replacing ut by the corre-
sponding OLS residual ût and σ =

√
σ2 by the consistent estimator

√
σ̂2
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(or
√

s2) are asymptotically unimportant and that, when HJB is true,

JB = n
[
(
√

b1)2/6 + (b2 − 3)2/24
]

∼a χ2(2), (1.55)

in which

√
b1 = n−1

n∑
t=1

(
û3

t
σ̂3

)
,

and

b2 = n−1
n∑

t=1

(
û4

t
σ̂4

)
;

see Jarque and Bera (1987). The null hypothesis of Normality is rejected
for significantly large values of the statistic JB defined in (1.55), with the
asymptotically valid reference distribution being χ2(2). The test statistic
JB has become part of standard regression output in econometric pro-
grams and so the adequacy of the asymptotic χ2(2) distribution is of
considerable interest.

Several studies have provided evidence that the asymptotic distribu-
tion does not provide an adequate approximation to the finite sample
distribution of JB when n is not very large. Jarque and Bera (1987) report
poor approximations even with n = 500. Further evidence is discussed
in Deb and Sefton (1996) and Urzúa (1996). The picture that emerges
very clearly is that, if sample values of JB are compared with critical val-
ues from the χ2(2) distribution, the actual significance levels are much
smaller than those predicted by asymptotic theory. For example, Deb
and Sefton remark that, when n = 20, the actual significance levels of
tests using asymptotic critical values for 5 per cent and 10 per cent lev-
els are 2.41 per cent and 3.71 per cent, respectively; see Deb and Sefton
(1996, p. 125).

The basic form of the JB statistic (but not its interpretation as a
Lagrange Multiplier criterion) was derived in Bowman and Shenton
(1975). However, as pointed out in Urzúa (1996, p. 248), its deficiencies
had been recognized and summarized as follows in D’Agostino (1986,
p. 391): “Due to the slow convergence of b2 to normality this test is not
useful.”

Attempts have been made to adjust the test statistic in order to obtain
better control of finite sample significance levels. However, as will be
seen in Chapter 3, simulation methods make it possible to obtain an
exact test of Normality when the regressors are exogenous.
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It might be argued that the attempt to derive an asymptotic test of
Normality is misplaced because one would be able to rely upon a CLT
to justify standard t and F tests if the sample size were large enough
to support the use of the test. However, some tests require the assump-
tion of Normality even for asymptotic validity. An important example of
such a procedure is the well-known test for heteroskedasticity proposed
in Breusch and Pagan (1979). The Breusch-Pagan test, like the Jarque-
Bera test, is described in many textbooks and is calculated by several
programs for least squares estimation of regression models. However, as
with the Jarque-Bera procedure, it seems that the actual finite sample
significance levels of the Breusch-Pagan test are smaller than those given
by asymptotic theory. Estimated rejection rates of the Breusch-Pagan test
under the assumption of homoskedasticity are obtained using simulation
experiments in Godfrey and Orme (1999). Godfrey and Orme use the
conventional values of 1 per cent, 5 per cent and 10 per cent for asymp-
totic significance levels. They find that the ratio of estimated significance
level to the corresponding asymptotic significance level is about 3/10
when n = 40 and about 5/10 when n = 80. Thus there is strong evidence
that this very well-established test for heteroskedasticity will underreject
relative to the nominal significance level.

1.5.3. Using heteroskedasticity-robust tests of significance

As remarked above, the use of heteroskedasticity-robust tests is now com-
mon and recommended in several leading textbooks. However, such tests
rely on asymptotic results for their justification. The production data
used in Subsection 1.5.1 are employed in Godfrey and Orme (2002b) to
examine the small sample properties of a heteroskedasticity-robust t-test.
The unrestricted (alternative) model is the Cobb-Douglas relationship
given in (1.51) and the single restriction to be tested is HCR : β2 +β3 = 1,
that is, there are constant returns to scale. The heteroskedasticity-robust
standard error of (β̂2+β̂3−1) can be obtained from the HCCME of White
(1980), denoted by HC0, and used to obtain a t-test that is asymptotically
valid in the presence of unspecified forms of heteroskedasticity.

Godfrey and Orme use the original data to generate an extended data
set of 54 observations by setting

xi+27,j = xij for i = 1, . . . , 27 and j = 1, 2, 3.

They study the behaviour of the HCCME-based test of HCR under
homoskedasticity and various forms of heteroskedasticity, with errors
being defined by ui = σiεi, in which the terms εi are independent
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drawings from standardized versions of the distributions used in the
experiments of Subsection 1.5.1, i = 1, . . . , 54. Godfrey and Orme find
that, when the asymptotic significance level is 5 per cent, the estimates
are in the range 15.60 per cent to 20.25 per cent.

Estimates of the actual significance levels of a heteroskedasticity-robust
t-test are also reported in Horowitz (1997). Horowitz carries out simula-
tion experiments with n = 25 and not surprisingly finds even stronger
evidence of the poorness of the asymptotic approximation than Godfrey
and Orme. With a nominal significance level of 5 per cent, Horowitz
obtains estimates in the range 15.6 per cent to 44.1 per cent when
asymptotically valid critical values are used.

These results are obviously disappointing to applied workers who are
interested in using heteroskedasticity-robust procedures. Chapter 6 con-
tains a detailed discussion of tests for heteroskedastic regression models
and evidence that a version of the bootstrap can lead to reliable robust
tests. However, there is also evidence that asymptotic theory can pro-
vide a reasonable approximation to the finite sample significance levels
of a heteroskedasticity-robust t-test, provided that the HCCME of (1.40)
is modified. The modification is suggested in Davidson and MacKinnon
(1985a) and simply involves replacing the diagonal matrix

�̇ = diag(û2
1, . . . , û2

n), (1.56)

in which ûi denotes a typical OLS residual from the unrestricted (alter-
native) model, by the diagonal matrix

�̇R = diag(ũ2
1, . . . ũ2

n), (1.57)

in which ũi denotes a typical residual from the estimation of the restricted
(null) model, that is, ũ2

i is the square of the ith element of the vector
in (1.19).

In the experiments of Davidson and MacKinnon (1985a), the use of
HC0 calculated as in (1.40) with �̇ produces t-tests that reject true null
hypotheses far too frequently. This finding is consistent with those men-
tioned above. When �̇ is replaced by �̇R, the implied t-tests no longer
suffer from this problem. In fact, Davidson and MacKinnon point out
that if there is a problem associated with the use of �̇R it is that sig-
nificance levels may be a little too low when nominal values are small;
see Davidson and MacKinnon (1985a, p. 214). For example, in one of
the experiments that Davidson and MacKinnon carry out with n = 50,
asymptotic critical values are used that correspond to the widely-used
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significance levels of 10 per cent, 5 per cent and 1 per cent. The esti-
mates from t-tests based upon (1.40) and (1.56), with the unrestricted
squared residuals, are 19.22 per cent, 13.34 per cent and 4.70 per cent.
These estimates indicate that asymptotic theory gives a very poor approx-
imation, with marked overrejection. In contrast, the estimates from
t-tests based upon a modified version of (1.40) using (1.57), that is, with
the restricted squared residuals, are 12.77 per cent, 4.94 per cent and
0.68 per cent, indicating that asymptotic theory gives a much better
approximation. The marked differences in the behaviour of tests based
upon restricted and unrestricted residuals are not predicted by standard
asymptotic theory because

plim n−1X′�̇RX = plim n−1X′�̇X = plim n−1X′�X,

so that differences are asymptotically negligible.
There are two limitations on the usefulness of this finding about the

relative merits of restricted and unrestricted residuals when constructing
the HCCME as a tool for inference. First, there is the practical problem
that the matrix �̇R must be recalculated each time the null hypothesis
is changed. For example, it is conventional to look at the individual
significance of each of the regressors after OLS estimation. In order to
make use of restricted residuals for heteroskedasticity-robust t-tests for
this purpose, it would be necessary to estimate the k restricted models
(each with k−1 coefficients to be estimated) and each heteroskedasticity-
consistent standard error for an estimated coefficient would be based
upon a different value of

HC0R = n(X′X)−1X′�̇RX(X′X)−1,

or of the corresponding variant of one of the HCCME defined in (1.41)–
(1.43). Second, it has been found that, even with the use of restricted
residuals in the HCCME, asymptotic theory does not provide good con-
trol of finite sample significance levels when several linear restrictions
are being tested; see Godfrey and Orme (2004, p. 286). Fortunately, as
will be argued in Chapter 5, there are types of bootstrap procedures that
can lead to reliable heteroskedasticity-robust tests of null hypotheses of
the general form (1.18) in OLS-based regression analysis.

1.6. Non-standard tests for linear regression models

In the discussion above, it has been assumed that the applied worker
is using a test statistic that, when the null hypothesis is true, has a



36 Bootstrap Tests for Regression Models

known distribution, at least asymptotically. In conventional asymptoti-
cally valid tests, the sample values of test statistics can be compared with
critical values from standard distributions. These standard distributions
are: N(0, 1) and t when the null hypothesis imposes one restriction; and
χ2 and F when several restrictions are to be tested. It might be thought
odd that critical values from t and F distributions are used in asymptotic
theory tests because these critical values depend upon the actual finite
sample size, via the term df (H1). The justification for using t(df (H1)) and
F(q, df (H1)) is usually that they give better finite sample approximations
than the corresponding limiting forms of N(0, 1) and χ2(q)/q, respec-
tively; see, for example, Kiviet (1986). However, there are important
tests for which asymptotic theory fails to provide a standard reference
distribution that allows asymptotically valid inferences. The purpose of
this section is to illustrate this failure by considering three important
examples of non-standard tests.

One of the best known tests for regression models is the test of the
hypothesis of constant coefficients described in Chow (1960). The null
hypothesis that each of the coefficients βj is invariant over the n obser-
vations is tested against the alternative that is made up of the following
assumptions: (i) two sets of coefficients apply; (ii) it is known which set
of coefficients is relevant for each observation, so that the researcher
can identify two sub-samples, each characterized by its own set of
coefficients; and (iii) if the two sub-samples contain, say, n1 and n2
(n1 + n2 = n) observations, the inequalities n1 > k and n2 > k are satis-
fied, so that sub-sample estimation by OLS is feasible. In order to simplify
the form of the test, it is usual to make the auxiliary assumptions that
the regressors are strictly exogenous and the errors are NID(0, σ2).

The Chow test can then be viewed as a test of the classical Normal linear
regression model (1.1) against the alternative model

yi =
k∑

j=1

xijβj +
k∑

j=1

(dixij)γj + ui, (1.58)

in which di is a dummy variable that takes the value 0 for all obser-
vations in the sub-sample with n1 observations and the value 1 for all
observations in the sub-sample with n2 observations. Thus, under the
alternative hypothesis, the coefficient vector for the former sub-sample
has elements βj and the coefficient vector for the latter sub-sample has
elements βj +γj, j = 1, . . . , k. The null hypothesis of constant coefficients
can, therefore, be written as HCC : γ1 = · · · = γk = 0. Under the null
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hypothesis HCC, the standard F test yields a statistic, denoted by FCC,
which is distributed as F(k, n − 2k).

While this textbook version of the Chow test may sometimes be
applicable, it has been recognized that it is often the case that there
is uncertainty about the break in coefficient values. Suppose that a
researcher is using time series data to estimate a regression relationship
and there is concern that there was a single change in coefficients but it
is not known exactly when it occurred. If the researcher believes that the
break was no earlier than period i0 and no later than period i1, i1 > i0,
a modified version of the Chow test can be applied. The researcher sim-
ply computes the Chow statistic FCC for each period in the range i0 to
i1 and bases the test of constant coefficients on the maximum of these
test statistics. In Stock and Watson (2007), this procedure is called the
Quandt likelihood ratio (QLR) method; see Quandt (1960). In more gen-
eral settings, this type of check is known as a Sup-test ; see, for example,
Andrews (1993) and the references that it contains.

While, under the null hypothesis, each separate Chow statistic has the
F(k, n − 2k) distribution, it is clear that their maximum will not have the
same distribution. It is not possible to use one of the standard distribu-
tions as the source of asymptotically valid critical values. It is pointed
out in Stock and Watson (2007, p. 569) that the large sample null dis-
tribution depends upon the number of restrictions being tested (which
here equals k) and the fractions i0/n and i1/n. Asymptotic critical val-
ues have been provided, using simulation, so that tests can be applied;
see Andrews (1993, 2003a). However, there is evidence from simulation
experiments which indicates that these asymptotic critical values may
not be accurate approximations to actual finite sample values; see, for
example, Diebold and Chen (1996).

The second example of a non-standard procedure is also based upon
a test described in Chow (1960). As well as proposing a test of the claim
that all regression coefficients are constant, Chow explains how to carry
out a test of the hypothesis that prediction errors have a zero mean.
Greene refers to such procedures as predictive tests; see Greene (2008, pp.
121–122). Predictive tests are used in many applied studies involving the
least squares estimation of a linear regression model, with the number of
predictions often being smaller than the number of regressors. Hendry
has obtained an asymptotically valid simplification of Chow’s test, which
he refers to as a test for predictive failure; see Hendry (1980).

In a predictive test, estimated parameters derived from an estima-
tion sample are used to generate predicted values for a prediction sample.
Let the former contain n1 > k observations and the latter contain n2
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observations, with n2 < k being the usual case. For simplicity of exposi-
tion, it is assumed that the first n1 observations comprise the estimation
sample. In the standard Chow test for prediction residuals, the null
hypothesis is that (1.1) is valid for i = 1, . . . , n and, under the alter-
native, this model is only assumed to hold for i = 1, . . . , n1, that is, the
estimation sample.

Let β̌ be the OLS estimator derived from the estimation sample. The
prediction residuals for the remaining n2 observations are denoted by

ěi−n1
= yi −

k∑
j=1

xijβ̌j, i = n1 + 1, . . . , n, (1.59)

in which n = n1 + n2. Chow proposes testing the joint significance of
the prediction residuals of (1.59) using

P =
(
û′û − ǔ′ǔ

)
/n2(

ǔ′ǔ
)

/
(
n1 − k

) , (1.60)

in which û is the n-dimensional OLS residual vector obtained when all
observations are used for estimation and ǔ is the n1-dimensional OLS
residual vector when only the estimation sample is used. Under the
null hypothesis that the same classical assumptions apply to all n obser-
vations, P has the F

(
n2, n1 − k

)
distribution with large values of this

test statistic indicating predictive failure. Thus, when the significance of
(1.60) is assessed using right-hand tail critical values of the F

(
n2, n1 − k

)
distribution, the null model under test includes the assumption that the
errors ui are Normally distributed.

There are alternatives to Chow’s test. Hendry has proposed a large
sample test for predictive failure that, like Chow’s procedure, requires the
errors to be Normally distributed. Under Normality, it is asymptotically
valid (as n1 → ∞, with n2 fixed) to compare sample values of

H =
∑n2

i=1 ě2
i(

ǔ′ǔ
)

/
(
n1 − k

) (1.61)

to right-hand-tail critical values of the χ2(n2) distribution; see Hendry
(1980, p. 222) and Kiviet (1986, section 4).

The assumption of Normality that justifies both the exact test P and
the large sample test H is convenient, but it may not provide a very good
approximation in practical situations and the effects of non-Normality
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merit consideration. The assumption that errors are NID is, therefore,
replaced by the weaker assumption that they are IID.

In order to derive asymptotically valid results for the case of IID errors
with an unspecified common CDF F , it is necessary to decide what to
assume about the separate behaviour of n1 and n2 as their sum n tends
to infinity. It is often the case that n2 is small relative to n1 and is smaller
than k. In order to generate approximations relevant to such cases, God-
frey and Orme carry out an asymptotic analysis in which n1 → ∞
and n2 is fixed; see Godfrey and Orme (2000) for details of regularity
conditions.

Under the null hypothesis of model constancy and the assumptions
of Godfrey and Orme (2000), Chow’s prediction error test statistic P of
(1.60) is asymptotically equivalent to

P∗ =
∑n2

i=1 u2
i+n1

n2σ2
, (1.62)

when n1 → ∞ and n2 is fixed. Equation (1.62) implies that, when the
null hypothesis is true, the conventional Chow test statistic P is, under
the assumptions of Godfrey and Orme (2000), asymptotically equivalent
to the average squared value of the last n2 elements of the standard-
ized vector ε = σ−1u. Similarly Hendry’s test statistic H is, under these
assumptions and the null hypothesis, asymptotically equivalent to the
sum of the squared values of the last n2 elements of the standardized
vector ε = σ−1u. Thus, when the null hypothesis that the same regres-
sion model holds for all n observations is true, P of (1.60) and H of (1.61)
both have asymptotic distributions that depend upon F , the unknown
error CDF, but not upon either β or σ2.

The final example of the failure of asymptotic theory to provide a
convenient reference distribution has its origins in the common prac-
tice of reporting a collection of diagnostic checks to accompany the
usual results (point estimates, standard errors, goodness of fit mea-
sures) after OLS estimation. Many computer programs that are used
for regression analysis provide a wide range of standard tests for spec-
ification errors and also allow users to set up their own case-specific
diagnostics. In these programs, the standard tests are calculated sepa-
rately for each of the specification errors that is taken into account. In
a typical case, these specification errors might include autocorrelation,
heteroskedasticity, non-Normality, incorrect functional form and omit-
ted variables. Unfortunately, even if asymptotic theory were to provide a
very accurate guide to the actual significance level of each separate test,
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there would not be guidance about the precise magnitude of the overall
significance level.

In order to outline the relevant theory, suppose that the researcher
is using a program that gives J separate diagnostic checks. Let the null
hypotheses and asymptotic significance levels of the separate misspecifi-
cation tests be denoted by H0j and πj, respectively, j = 1, . . . , J . If all the
null hypotheses H0j under test are true, the overall asymptotic probabil-
ity of rejecting the claim that H01, H02, . . . and H0J are simultaneously
true on the basis of the outcomes of the J separate diagnostic checks is,
in general, unknown. However, the results in Darroch and Silvey (1963)
imply that it cannot be smaller than max(π1, . . . , πJ ) and it cannot be
larger than (π1 + · · · + πJ ). In the special case in which the test statistics
are asymptotically independent, it is possible to be more precise, since
the overall asymptotic significance level is

1 −
J∏

j=1

(1 − πj).

For example, suppose cross-section production data are being used
to estimate the regression equation of (1.51), that is, the model to be
checked for misspecification is

yi = β1 + β2xi2 + β3xi3 + ui, i = 1, . . . , n.

Let the OLS predicted values and residuals be, as usual, denoted by ŷi
and ûi, respectively, i = 1, . . . , n. Next suppose that J = 3 diagnostic
checks are used. First, a RESET procedure with ŷ2

i as the only test variable
in the artificial model corresponding to (1.27). Second, the Jarque-Bera
(1980, 1987) test for non-Normality. Third, a test for heteroskedasticity,
as proposed in White (1980), which is derived from the OLS estimation
of the artificial regression

û2
i = γ1 + γ2xi2 + γ3xi3 + γ4x2

i2 + γ5xi2xi3 + γ6x2
i3 + vi, (1.63)

with the test statistic being the product of the sample size n and the R2

statistic from (1.63). If each test has an asymptotic significance level of
5 per cent, the general inequality of Darroch and Silvey (1963) implies
that the overall asymptotic significance level is between 5 per cent and 15
per cent. The problem for the applied worker who wishes to have some
control over the actual overall significance level is, of course, exacerbated
by the fact that the asymptotic significance levels of the separate tests
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may not be close to the actual values. It has already been noted that
asymptotic theory can provide a poor approximation to the finite sample
distribution of the Jarque-Bera statistic. There is also evidence that the
asymptotic χ2 distribution of White’s test for heteroskedasticity is quite
different from the actual distribution under homoskedastic errors unless
the sample size is very large; see Jeong and Lee (1999).

It should be noted that, in contrast to the problem of testing for coeffi-
cient constancy with an unknown break point, it would not be sensible
to try to derive a test by finding the maximum of the separate diagnostic
checks. In general, statistics designed to detect different misspecifications
correspond to null hypotheses that have different numbers of restric-
tions. In the example of the previous paragraph, the RESET, Jarque-Bera
and White tests have asymptotic reference distributions of χ2(1), χ2(2)

and χ2(5), respectively. Consequently, under the assumption of no mis-
specification, asymptotic theory predicts that, if the sample value of the
RESET statistic is 4.000, the probability of obtaining a statistic that is at
least as large as the observed value is

Pr(χ2(1) ≥ 4.000) = 4.55 per cent.

This result would be regarded as leading to rejection of the null hypoth-
esis of correct specification at nominal significance levels of 5 per cent
and 10 per cent since 4.00 must be larger than the corresponding asymp-
totic critical values. However, if the sample value of the White statistic
is 4.351 > 4.000, the corresponding asymptotic probability is

Pr(χ2(5) ≥ 4.351) = 50 per cent, approximately,

indicating that the null hypothesis would not be rejected at any conven-
tional significance level.

In the context of tests with the decision rule being that the null
hypothesis is rejected when the sample value of the test statistic is unusu-
ally large, the probability of observing a value of the test statistic that is
greater than or equal to the sample value is known as the p-value. When
the actual distribution of the test statistic is approximated by its limiting
form, as in the previous paragraph, it is possible to obtain the asymptotic
p-value as an approximation to the actual p-value. Given an observed
test statistic, denoted by τ̂ , its asymptotic p-value, pa(τ̂ ), can, in many
cases, be obtained from a standard continuous distribution, for example,
χ2. The null hypothesis is then rejected at a desired (asymptotic) signifi-
cance level αd if pa(τ̂ ) ≤ αd . A simulation-based (bootstrap) approach to
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tackling the problem of controlling the overall significance level when
several diagnostic checks are applied is discussed in Chapter 4. As will
be seen, this approach involves applying a bootstrap technique to esti-
mates of p-values, rather than to the corresponding observed values of
the diagnostic checks.

1.7. Summary and concluding remarks

It is very often the case that applied researchers wish to apply t-tests and
F-tests to investigate the validity of null hypotheses that impose restric-
tions on regression coefficients. This chapter has contained an outline of
such tests. It has been emphasized that, in general, they are only exactly
valid under the very strong assumptions that the regressors are strictly
exogenous and the errors are NID(0, σ2). If, in time series regressions,
lagged dependent variables are included as regressors or, more gener-
ally, the restrictive assumption of Normality is relaxed, the use of t-tests
and F-tests has to be based upon asymptotic theory. Similarly, when, as
is now common, checks for misspecification are carried out, the sam-
ple values of the diagnostics are compared with critical values that are
typically only asymptotically valid.

Moreover, it has been pointed out above that many econometricians
now argue that it is inappropriate even to assume that the errors are IID
with an unspecified common distribution. Instead it is believed that,
whenever it is possible, best practice methods should involve the use of
OLS-based tests that are asymptotically robust to autocorrelation and/or
heteroskedasticity. Thus, for example, Hansen (1999) urges the use of
heteroskedasticity-consistent covariance matrices for OLS point estima-
tors of coefficients, rather than the standard textbook IID-valid estimates,
when computing test statistics. The finite sample distributions of these
robust test statistics are usually unknown and once again inferences have
to be based upon asymptotic theory.

Unfortunately, as illustrated by the examples provided in Section 1.5,
asymptotic theory cannot be relied upon to provide an acceptable
approximation for all tests of interest. There is evidence that the actual
significance levels associated with asymptotic critical values may not
be close to the desired (nominal) values. For some tests, actual signif-
icance levels appear to be too small, while, for others, estimates of actual
significance levels are much greater than the desired values.

Consequently there is a need to look for a better foundation for tests in
regression models. This need is underlined by the failure of asymptotic
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theory to provide a feasible procedure for some situations of real impor-
tance in applied work; see Section 1.6. The remainder of this book is
devoted to explaining various simulation-based bootstrap methods that
can be used either to improve the finite sample behaviour of existing
tests that use asymptotic critical values or to derive feasible asymptoti-
cally valid tests when conventional asymptotic theory is not capable of
providing such procedures.



2
Simulation-based Tests: Basic Ideas

2.1. Introduction

The merits of tests are usually discussed by considering their behaviour
under both null and alternative hypotheses. In the former situation,
attention is drawn to the problem of devising a decision rule that permits
the probability of rejecting a true null hypothesis to be controlled, at least
approximately, for example, (1.21) of Chapter 1. In the latter situation,
the probability of detecting a departure from the null hypothesis, that is,
the power of the test, is emphasized. Given the decision rule, these prob-
abilities are implied by the sampling distributions of test statistics under
null and alternative hypotheses, respectively. As discussed in the pre-
vious chapter, the exact form of a sampling distribution under the null
hypothesis can sometimes be derived for certain tests, under very restric-
tive assumptions. However, it is much more common in econometrics to
admit that the assumptions required for exact knowledge are not satisfied
in many cases of practical relevance and instead to use approximate sam-
pling distributions that are asymptotically valid under relatively weak
assumptions. A matter of real concern to the applied worker is then the
quality of the asymptotically justified approximation to the sampling
distribution of the test statistic that is being calculated.

Suppose that the null hypothesis that is being tested is true. If it were
possible to take a very large number of samples, it would be feasible to cal-
culate the test statistic for each of the samples. Given the evidence con-
tained in the large number of calculated test statistics, the adequacy of
the approximation based upon asymptotic theory could be investigated.
In effect, the researcher would have drawn a large sample of values from
the finite sample distribution of the test statistic and, for example, the
observed proportion of test statistics deemed “statistically significant”

44
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according to the asymptotically valid decision rule could be compared
with the nominal significance level. Unfortunately few econometricians
are able to draw a large number of samples. In most situations, just one
set of observed data is available, implying a sample of size one from the
sampling distribution of the test statistic. However, it has been shown by
several leading statisticians that things are not as bleak as they first appear
and that simulation-based tests derived by obtaining artificial samples
from the observed data are often worth serious consideration; see the
references and discussion in, for example, Davison and Hinkley (1997),
Efron and Tibshirani (1993) and Hall (1992). The process of making
pseudo-samples from the actual sample is sometimes called resampling.

The combination of a personal computer and appropriate software
makes it possible to simulate playing sports, flying planes and various
activities not for those of a nervous disposition. Similarly econometri-
cians are now able to use computers to generate artificial samples, each of
which gives an opportunity to apply the simulation world counterpart of
the test of interest. Many artificial test statistic values can be found and
used in order to obtain potentially relevant information about the sam-
pling distribution of the test statistic obtained from the actual data. The
simulation world is based upon the estimated model and so the single
body of, say, n actual observations is being used to generate many artifi-
cial samples of size n. Despite first appearances that an attempt is being
made to get something for nothing, this sort of activity is justifiable in
terms of statistical theory; see, e.g., Hall (1992), Mammen (1992) and
Mammen and Nandi (2004). The idea of deriving information by resam-
pling the original data in some way has been likened to the attempt
to pull oneself up by one’s bootstraps and the associated tests are often
referred to as bootstrap tests; see Efron (1979).

The purpose of this chapter is to describe some of the basic ideas that
underpin simulation-based tests. For the sake of exposition, these ideas
are first outlined in the context of using a sample of IID variables to test
an hypothesis about the mean of their common distribution. Having out-
lined the basic ideas of simulation-based tests for IID data in Section 2.2,
their application to linear regression models with IID errors is considered
in Section 2.3. In general, the simulation-based tests, like their more con-
ventional counterparts, are only asymptotically valid. The asymptotic
properties of the former are discussed in Section 2.4 and the potential
benefits of bootstrapping are examined. Section 2.5 contains remarks
on an extension of the original bootstrap approach, which is known as
the double bootstrap. The contents of this chapter are summarized in
Section 2.6, which also includes some concluding remarks.
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2.2. Some key concepts and simple examples of tests for
IID variables

It is useful to start by considering a problem for which the solution is
known from any basic course in statistics. It is assumed that a simple
random sample is available from a Normal population and it is desired
to test the claim that the mean of the population equals zero, without
any restriction on the variance σ2, except that it be finite and positive.

Suppose then that the random variables y1, y2, . . . , yn are Normally,
identically and independently distributed. The null hypothesis to be
tested is H0 : E(y) = 0. As a starting point, it is assumed that the
alternative hypothesis is H+

1 : E(y) > 0. A one-sided test is, therefore,
required. Clearly H0 only determines one of the two parameters that
together define a single member of the family of Normal distributions.
The parameter σ2 remains unknown whether or not H0 is true.

Unknown parameters that are not determined by the null hypothe-
sis are sometimes called nuisance parameters. Nuisance parameters are
often present in econometric applications because the null hypothesis
rarely specifies the values of all of the parameters. A common strat-
egy for dealing with nuisance parameters is to replace these unknown
terms by consistent estimators. For the example being discussed, it is
very convenient to estimate σ2 by

s2
y = 1

(n − 1)

n∑
i=1

(yi − ȳ)2,

in which

ȳ = 1
n

n∑
i=1

yi,

denotes the sample mean which is unbiassed for E(y), whether or not H0
is true.

It is well known that, whatever the true value of E(y),

ȳ − E(y)√
s2
y/n

∼ t(n − 1).

Hence, when H0 : E(y) = 0 is true, the test statistic given by

τ̂ = ȳ√
s2
y/n

, (2.1)
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also has the t(n − 1) distribution. Clearly the sampling distribution of
τ̂ , when H0 is true, does not depend upon any unknown parameters. In
particular, the exact sampling distribution of τ̂ does not depend upon
the value of σ2. This distribution does, of course, depend upon n. Given
the form of the alternative hypothesis H+

1 , large values of τ̂ are viewed
as providing strong evidence against H0.

2.2.1. Monte Carlo tests

A test statistic, like τ̂ of (2.1), that, under its associated null hypothesis,
has a distribution that does not depend upon any unknown parameters
is called a pivotal statistic or a pivot. When the test statistic is pivotal,
it is possible to obtain an exact test using simulation methods. In such
cases, it is usual to refer to the procedures as Monte Carlo tests; see Dwass
(1957) and Barnard (1963) for early contributions and Dufour and Khalaf
(2001) for a discussion of Monte Carlo tests in the context of econometric
settings.

Since the value of σ2 is of no consequence, it is possible to generate
a sample of n independent drawings from any Normal distribution with
zero mean and the corresponding test statistic will have the same distri-
bution as τ̂ has when E(y) = 0. Given a suitable computer program, data

for B artificial samples of size n, denoted by y†
bi, can be generated from

the standard Normal distribution, that is, y†
bi ∼ N(0, 1), b = 1, . . . , B and

i = 1, . . . , n. The simulation world counterparts of the real world sample
mean and variance estimator are given by

ȳ†
b = 1

n

n∑
i=1

y†
bi, b = 1, . . . , B,

and

s†2
yb = 1

(n − 1)

n∑
i=1

(y†
bi − ȳ†

b)2, b = 1, . . . , B,

respectively. The implied artificial test statistics are

τ
†
b = ȳ†

b√
s†2
yb/n

, b = 1, . . . , B, (2.2)

and each of them has the t(n − 1) distribution.
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Hence, when H0 : E(y) = 0 is true, τ
†
1 , . . . , τ†

B form a sample of IID
random variables possessing the same finite sample distribution as τ̂ .

Thus
(
τ̂ , τ†

1 , . . . , τ†
B

)
is a simple random sample of B+1 random variables,

under the null, and the Monte Carlo p-value of the observed test statistic is

PVMC =
∑B

b=1 1
(
τ

†
b ≥ τ̂

)
+ 1

B + 1
, (2.3)

in which 1(A) is the indicator variable that is equal to 1 if the event A is
true and is otherwise equal to zero. The Monte Carlo test rejection rule is

Reject H0 if PVMC ≤ α, (2.4)

with α denoting the required significance level. Given that the alter-
native hypothesis is H+

1 : E(y) > 0, the rule (2.4) is appropriate since
large values of τ̂ imply small values of PVMC. Under regularity condi-
tions provided in Dufour et al. (2004), this rule provides an exact test
when α (B + 1) is an integer.

The above example has used the one-sided alternative H+
1 : E(y) > 0.

Modifications for other alternatives are straightforward. If the alternative
hypothesis were H−

1 : E(y) < 0, the test statistics would be defined by

modified versions of (2.1) and (2.2) in which ȳ and ȳ†
b were replaced by −ȳ

and −ȳ†
b , respectively, before calculating PVMC and applying (2.4). This

treatment corresponds to that implied by (1.24) and (1.25) in Chapter
1. If the alternative hypothesis were two-sided, that is, H1 : E(y) �= 0, it
would be possible to treat positive and negative values of sample means
(observed or artificial) symmetrically. This strategy would lead to the test
statistics being defined in modified versions of (2.1) and (2.2) in which

ȳ and ȳ†
b were replaced by |ȳ| and |ȳ†

b |, respectively. However, as pointed
out in Cox and Hinkley (1974), positive and negative values of the test
statistics of (2.1) and (2.2) need not be treated in this way when there is
no obvious way of defining what are equally important departures from
the null hypothesis. When a symmetric treatment is not imposed, it is
possible to proceed as follows: let

PVMC = 2 min

∑B
b=1 1

(
τ

†
b ≥ τ̂

)
+ 1

B + 1
, 1 −

∑B
b=1 1

(
τ

†
b ≥ τ̂

)
+ 1

B + 1

 ,

and now apply (2.4); see Cox and Hinkley (1974, p. 79).
Two points should be made about the exact test that has been obtained

for the simple example. First, although like the standard t-test for the
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above example, the Monte Carlo test gives exactly the desired signifi-
cance level α, provided regularity conditions are satisfied and α (B + 1) is
an integer, there is clearly an important difference between the standard
rule that uses a specific critical value from the t(n − 1) distribution and
the Monte Carlo rule of (2.4). In the latter approach, there is no fixed
rejection region for values of the test statistic. In Marriott (1979), this
feature of the Monte Carlo test is called the blurring of the critical (that
is, rejection) region. As remarked by Marriott, this blurring effect leads to
loss of power but can be reduced by increasing the value of B, subject to
the restriction that α (B + 1) is an integer; see Marriott (1979) and Section
2.3.4 below for comments on the choice of the value of B.

Second, it is not essential to assume Normality in applications of
Monte Carlo tests. Indeed, when Normality is assumed and suitable
tables for the t-distribution are available, there is little point in using
simulation-based methods to test E(y) = 0. As will be seen below, the
key requirements for the valid application of a Monte Carlo test are that
the correct distribution, whether it is Normal or not, be specified and
that the test statistic be exactly pivotal. However, given the possibility
of uncertainty about the correct form of the distribution, it is reasonable
to be concerned about the robustness of Monte Carlo tests.

The robustness of Monte Carlo tests to misspecification of the distri-
bution is examined in Godfrey et al. (2006). It is found that a Monte
Carlo test will be asymptotically valid when it is derived using an incor-
rect distribution if it is based on a statistic that is asymptotically pivotal.
A statistic is said to be asymptotically pivotal (or equivalently, an asymp-
totic pivot) if, when the null hypothesis is true, it has an asymptotic
distribution that does not depend upon any unknown parameters. In
the definition of this important property, the word “parameters” has a
more general meaning than it has in standard introductory economet-
rics texts and now the parameter vector includes a characterization of
the relevant distribution. It is conventional to use the cumulative den-
sity function (CDF), denoted by F , as the parameter to represent the
general shape of the distribution.

Many test statistics that are used with regression models are asymptot-
ically pivotal, so that corresponding Monte Carlo tests derived under an
incorrect distributional assumption will be asymptotically valid. How-
ever, when the test statistic is asymptotically pivotal, applied workers
may do better to switch from a Monte Carlo test based upon a choice of
distribution, which is very likely to be wrong, and to use instead boot-
strap tests that do not impose a specific type of distribution; see Godfrey
et al. (2006). If the test statistic of interest is not asymptotically pivotal,
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the analysis in Godfrey et al. (2006) indicates that there are even stronger
reasons to use a bootstrap approach. The basic ideas of bootstrap tests
will now be discussed.

2.2.2. Bootstrap tests

In the Monte Carlo test, the simulation scheme which satisfies the null
hypothesis and generates the artificial samples can be constructed with-
out using sample information. For the problem discussed in Section
2.2.1, these samples are obtained using the N(0, 1) distribution, which is
not regarded as an approximation to the true null hypothesis distribu-
tion of N(0, σ2). When the sample data are used in one way or another to
derive the simulation scheme, the artificial samples will be referred to as
bootstrap samples and the simulation scheme will be called the bootstrap
data generation process or bootstrap DGP. One way in which to introduce
a dependence of simulation schemes on actual sample information is to
allow for unspecified forms of non-Normality in the example.

Consider regarding the random variables y1, y2, . . . , yn as IID, with
mean E(y) and variance σ2. Suppose, as seems reasonable, that there is
no precise information available that allows the specification of the form
of their common distribution. An exact Monte Carlo test of H0 : E(y) = 0
against H+

1 : E(y) > 0 is no longer feasible. An asymptotic test is, how-
ever, readily obtained. Under mild restrictions, appeal can be made to a
Central Limit Theorem and so

τ̂ = ȳ√
s2
y/n

∼a N(0, 1), (2.5)

when the null hypothesis is true. Consequently, in this more general
version of the original example, it is asymptotically valid to use critical
values from the standard Normal distribution. Given the form of the
alternative hypothesis, the null hypothesis is to be rejected when values
of τ̂ are judged to be sufficiently large. (The modification of the rejection
rule to take account of another form of the alternative hypothesis is
straightforward; see the discussion of this issue in the context of Monte
Carlo tests above.)

Note that it is only the asymptotic distribution of the test statistic τ̂

that is independent of unknown parameters and so τ̂ is asymptotically
pivotal, but is not an exact pivot. The finite sample distribution of τ̂

under the null hypothesis depends, in part, upon the unknown distri-
bution of a typical term yi. If simulation methods are to be used in an
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attempt to get better control of finite sample significance levels than is
provided by asymptotic theory, the unknown distribution of each yi will
have to be mimicked in the simulation scheme.

As mentioned above, it is convenient to use F , the CDF of the IID
terms yi, to represent the unknown distribution parameter. It has also
been remarked that nuisance parameters are often replaced by consistent
estimators and this strategy was applied in Section 2.2.1 to deal with σ2

when Normality was assumed. The problem, therefore, is how to apply
this strategy when the nuisance parameter is the CDF F .

Now the CDF F evaluated at some number c is defined as

F(c) = Pr(y ≤ c),

which is estimated consistently by the corresponding sample proportion

1
n

n∑
i=1

1
(
yi ≤ c

) = #
(
yi ≤ c

)
n

, (2.6)

where #(A) denotes the number of times that event A occurs. This sam-
ple proportion can be reinterpreted as the CDF for an artificial random
variable y◦, defined conditionally upon the observed data, with

Pr(y◦ = yi) = 1
n

, i = 1, . . . , n, (2.7)

since, with this probability distribution,

Pr(y◦ ≤ c) = F◦(c) = #
(
yi ≤ c

)
n

,

which is often referred to as the empirical probability distribution or the
empirical distribution function (EDF) of the actual data and denoted by F̂ ;
see, for example, the discussions given in Davison and Hinkley (1997,
ch. 2) and Efron and Gong (1983).

In view of the above reinterpretation of the sample proportion (2.6),
it is tempting to think of using (2.7) to derive artificial data. In the sim-
ulation scheme based upon (2.7), each observed value of the real sample
is allocated equal probability. Thus artificial samples of size n, that is,
(y◦

1, y◦
2, . . . , y◦

n), are obtained by simple random sampling, with replace-
ment, from the original data. However, there is a problem with this
artificial data generation process.
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The expected value of y◦ in the simulation world, conditional upon
observed data, is, using an obvious notation,

E◦(y◦) =
n∑

i=1

yi Pr(y◦ = yi) = 1
n

n∑
i=1

yi = ȳ,

but the purpose is to approximate the behaviour of τ̂ under the null
hypothesis, which specifies a zero population mean. In other words, the
simulation scheme of (2.7) does not belong to the family of distributions
in which the null hypothesis is true.

The adjustment that makes the bootstrap population satisfy the null
hypothesis is simple. The original data are recentred by subtracting ȳ from
each value. Given the recentred observed data, B simple random samples
of size n, denoted by [y∗

b1, y∗
b2, . . . , y∗

bn; b = 1, . . . , B], can be drawn, with
replacement, from the bootstrap probability model defined by

Pr(y∗ = yi − ȳ) = 1
n

, i = 1, . . . , n, (2.8)

for which E∗(y∗) = 0, where E∗(·) denotes an expectation taken under the
bootstrap law of (2.8). (The bootstrap world counterparts of the standard
items of notation for asymptotic analysis will be written as o∗(.), O∗(.),
o∗

p(.), O∗
p(.) and ∼

∗
a, when they are required.)

The bootstrap counterparts of the sample mean and variance estimator
from actual data are given by

ȳ∗
b = 1

n

n∑
i=1

y∗
bi, b = 1, . . . , B, (2.9)

and

s∗2
yb = 1

(n − 1)

n∑
i=1

(y∗
bi − ȳ∗

b)2, b = 1, . . . , B, (2.10)

respectively. Similarly the counterparts of τ̂ , as given by (2.5), in
bootstrap samples are

τ∗
b = ȳ∗

b√
s∗2
yb/n

∼

∗
a N(0, 1), b = 1, . . . , B.

The values of these bootstrap statistics are now to be used, in place of
a critical value from the asymptotic reference distribution of N(0, 1), to
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judge the strength of the evidence that τ̂ provides against H0 : E(y) = 0,
with H+

1 : E(y) > 0. As in the Monte Carlo approach, a p-value
is calculated and compared with the desired significance level. There
are differences in opinion about how the bootstrap p-value should be
calculated and two methods are both quite popular.

One of these methods, described in Davison and Hinkley (1997), is
based upon applying a formula like (2.3) to estimate the p-value of an
observed test statistic τ̂ . Thus, in this approach, the bootstrap p-value of
τ̂ is computed using

p̃ = #{τ∗
b ≥ τ̂ } + 1

B + 1
, (2.11)

where the terms τ∗
b , b = 1, . . . , B, are the bootstrap realizations of the test

statistic. The second approach, given in Efron and Tibshirani (1993), does
not use the same formula as a Monte Carlo test and estimated bootstrap
p-values are instead obtained using

p̂ = #{τ∗
b ≥ τ̂ }
B

. (2.12)

It is not clear why the same formula should be used for Monte Carlo
and bootstrap tests. As stressed previously, if the test statistic being con-
sidered were to have a finite sample null distribution that did not depend
upon unknown parameters, it would be possible to obtain exact Monte
Carlo tests. In this special case, τ̂ and τ∗

b , b = 1, . . . , B, would constitute
B+1 independent drawings from the same sampling distribution, under
the null hypothesis, and using (2.11) with the critical region p̃ ≤ α would
give an exact test, given standard conditions; see, for example, Dufour et
al. (2004). However, the test statistics do not have this convenient finite
sample property when a bootstrap approach has to be adopted because
the distribution of y is unspecified.

In the bootstrap tests based upon comparing τ̂ with τ∗
b , b = 1, . . . , B,

an artificial bootstrap world is constructed, conditional on the observed
data, in order to approximate the finite sample null distribution of test
statistics that are only asymptotically pivotal. The use of p̂ of (2.12)
reflects the conditioning on the observed test statistic, with the B boot-
strap statistics being used to obtain the classical sample proportion
estimator, under the bootstrap law, which provides the approximation to
the true p-value. It is remarked in Broman and Caffo (2003) that “Eval-
uating p-value estimates conditionally on the observed data is widely
accepted” and that “it is immaterial whether one uses p̂ or p̃”. Given
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that, in empirical applications, B is likely to be 1,000 or 2,000 and that

0 ≤ p̃ − p̂ ≤ 1
B + 1

, (2.13)

it seems difficult to disagree with the latter comment.
The formula for the bootstrap p-value is not the only source of differ-

ences between statisticians working on bootstrap methods. While there
is general agreement that it is important to carry out resampling in a
way that reflects the null hypothesis, there are differences about how to
achieve this aim. In the discussion above, the same null hypothesis is
tested using actual and bootstrap data, with the latter being drawn with
replacement from recentred versions of the former. In Hall and Wilson
(1991), it is proposed that the bootstrap data should be obtained using
(2.7), not (2.8), and that the null hypothesis tested in the (conditional)
bootstrap world should be H◦

0 : E◦(y◦) = ȳ, not the restriction E◦(y◦) = 0.
For the simple example under consideration, the two methods are exactly
equivalent; see the comments in Tibshirani (1992) and the replies in Hall
and Wilson (1992). In what follows, the approach adopted will be to use
the same null hypothesis for tests applied to actual and bootstrap data
and, when appropriate, to recentre the terms which are to be resampled
to generate the required bootstrap samples. Thus the first golden rule
of bootstrap hypothesis testing given in Davidson (2007) is followed,
with the bootstrap DGP belonging to a general model in which the null
hypothesis is true.

What is important is that bootstrap hypothesis testing should not
be implemented using either the combination of (2.7) and the false
restriction E◦(y◦) = 0 as the bootstrap world null hypothesis, or the
combination of (2.8) and the false restriction E∗(y∗) = ȳ as the bootstrap
world null hypothesis. The point is clear for control of significance lev-
els and several authors point out that using inappropriate combinations
can have a serious impact on power; see, for example, Hall and Wilson
(1991).

There are other guidelines and golden rules that have been discussed
for bootstrap hypothesis testing. As will be seen, some key results are
based upon the assumption that nuisance parameters are estimated con-
sistently. It would be possible to require that estimators for nuisance
parameters should be selected by considering not only consistency, but
also asymptotic variances. Davidson suggests that it is desirable for the
bootstrap DGP to be based upon estimators that are asymptotically
efficient when the null hypothesis is true; see Davidson (2007).
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Also, there seems to be a widespread (but not unanimous) agreement
that, if possible, a test statistic that is asymptotically pivotal should be
bootstrapped. Thus, for the above example, it is τ̂ of (2.5), not

√
nȳ, that

is bootstrapped. The statistic
√

nȳ could be used in a bootstrap test but it
is not asymptotically pivotal since

√
nȳ ∼a N(0, σ2), (2.14)

under the null hypothesis, and the limit distribution in (2.14) depends
upon the unknown parameter σ2. The benefits associated with the use
of asymptotically pivotal statistics are discussed in, for example, Beran
(1988) and Hall and Titterington (1989). The general results will be
outlined below.

One final definition can be provided before moving on to consider
the application of bootstrap methods to tests for regression models.
The bootstrap schemes of (2.7) and (2.8) are derived from the empirical
distribution functions of uncentred and recentred actual observations,
respectively, and are called nonparametric bootstraps. In some economet-
ric models, the general form of the relevant CDF is assumed but there are
nuisance parameters that require estimation before a bootstrap scheme
can be obtained. An important group of such models consists of the
standard microeconometric specifications that are estimated by MLE, for
example, logit, probit and Tobit. When the bootstrap DGP is derived by
combining an assumed family of distributions with estimates of nuisance
parameters, the resampling scheme is called a parametric bootstrap.

2.3. Simulation-based tests for regression models

As in Chapter 1, the discussion will start with the classical Normal
regression model and then the strong assumptions of this model will be
relaxed. For each of the sequence of regression models considered, boot-
strap techniques are examined. For the main part, only general issues are
discussed and specific examples of bootstrap tests for regression models
are the subject matter of later chapters.

2.3.1. The classical Normal model

The regressors are assumed to be strictly exogenous, which is a minor
modification of the classical assumptions in which these variables are
taken to be nonrandom. The relevant conditional results for the model

y = Xβ + u (2.15)
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are then

u|X ∼ N(0n, σ2In), (2.16)

and

y|X ∼ N(Xβ, σ2In). (2.17)

As explained in Chapter 1, there are several tests that are exactly valid
under these strong assumptions about the regressors and error terms.
However, even in this restrictive framework, other widely-used tests are
only asymptotically valid, e.g., the Lagrange Multiplier (LM) tests of
Breusch (1978), Breusch and Pagan (1979) and Godfrey (1978). Hence,
there is still some incentive for considering the use of resampling meth-
ods to improve the approximation to finite sample distributions that is
provided by asymptotic theory. Artificial data which are derived under
the assumption that the error distribution is known, apart from certain
parameters, are denoted by †.

Let S denote the sample data on the regressand and regressors of (2.15).
In view of the assumption of conditional Normality, B bootstrap samples
of size n can be obtained, given S, from the bootstrap DGP of

y†|S ∼ N(Xβ̂, s2In), (2.18)

in which β̂ and s2 are the usual OLS estimators of β and σ2, respectively.
More explicitly, a typical bootstrap sample consists of the n artificial
observations

y†
bi = ŷi + u†

bi, i = 1, . . . , n, (2.19)

in which ŷi is a typical predicted value from the OLS estimation of (2.15)

and the terms u†
bi are n independent drawings from the N(0, s2) distribu-

tion; b = 1, . . . , B and i = 1, . . . , n. There are many programs that allow
the latter terms to be obtained for a specified value of s2. The scheme
given in (2.18) is an example of a parametric bootstrap DGP.

In order to illustrate how the parametric bootstrap might be used
to improve on reliance on conventional asymptotic theory, consider
the problem of testing the assumption of homoskedasticity against the
alternative that variances are determined by

Var(ui) = σ2
i = exp

γ0 +
q∑

j=1

zijγj

 , i = 1, . . . , n,
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in which the terms zij are observations on strictly exogenous variables
that satisfy the regularity conditions of Breusch and Pagan (1979). The
commonly used LM statistic tests the q restrictions of H0 : γ1 = · · · =
γq = 0, which imply σ2

i = exp(γ0) = σ2, i = 1, . . . , n.
The test statistic, denoted by τ̂BP , is one-half of the explained sum of

squares from the OLS estimation of the artificial regression

û2
i

σ̂2
= γ0 +

q∑
j=1

zijγj + residual. (2.20)

If the null hypothesis is true, τ̂BP is asymptotically distributed as χ2(q),
with the rejection region being in the right-hand side of this reference
distribution. Thus the asymptotically valid rejection rule can be written,
in terms of asymptotic p-values, as

Reject H0 if Pr(χ2(q) ≥ τ̂BP) ≤ α, (2.21)

in which α is the nominal significance level. (The effects of replacing
σ̂2 = [(n − k)/n]s2 by s2 in (2.20) are asymptotically irrelevant.)

As an alternative to using the asymptotic reference distribution of
χ2(q), consider computing B artificial values of the Breusch-Pagan statis-

tic, denoted by τ̂
†
BPb, b = 1, . . . , B, and using the empirical distribution

function (EDF) of these statistics to assess the statistical significance of
the actual value of τ̂BP . For each value of b, the vector of n observations
of y†

b, with typical element y†
ib given by (2.19), is used in an OLS regres-

sion with regressor matrix X to obtain a residual vector û†
b, with typical

element denoted by û†
bi. Given the latter vector, the required variance

estimate can be computed as

σ̂
2†
b = n−1(û†

b)′(û†
b).

The bootstrap counterpart of the artificial regression (2.20) can be esti-

mated by OLS to obtain the corresponding Breusch-Pagan statistic τ̂
†
BPb

for b = 1, . . . , B.
The bootstrap p-value p̂ of (2.12) can then be derived, with p̂ being the

proportion of bootstrap Breusch-Pagan statistics that are greater than or
equal to the Breusch-Pagan statistic that was calculated from the actual
data. The rule based upon the asymptotic p-value, that is, (2.21), is now
replaced by a rule that uses the bootstrap estimate of the p-value, that is,

Reject H0 if p̂ ≤ α. (2.22)
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The bootstrap version of the Breusch-Pagan test is still only asymptot-
ically valid. For reasons that are discussed later, there are grounds for
believing that it gives a better approximation to finite sample signifi-
cance levels than the well-established use of asymptotic critical values
from a χ2 distribution. However, there is an alternative approach that
can give perfect control of finite sample significance levels, i.e., an exact
test, under the classical assumptions.

The Breusch-Pagan statistic τ̂BP , like many other statistics, is a function
of the OLS residuals, which are the elements of

û = (In − X(X′X)−1X′)u,

and observations on test variables. Let Z denote the n × q matrix of
observations on test variables that are used in (2.20). The Breusch-Pagan
statistic can then be written as

τ̂BP = h(u, X, Z),

and, given the form of the dependent variable in (2.20), it is clear that

τ̂BP = h(u, X, Z) = h(cu, X, Z), (2.23)

for any constant c > 0. It follows that, when X and Z are both strictly
exogenous and the errors of (2.15) are, under H0, NID(0, σ2) variates, a
Monte Carlo test is easily obtained. First, choose B so that α(B + 1) is an
integer (so B = 99 would be valid, given standard choices for the required
significance level). Next, setting c = σ−1 has no impact in view of (2.23)
and so simulation values of the Breusch-Pagan statistic with the same
finite sample distribution as τ̂BP , under H0, can be derived using

τ̂
†
BPb = h(u†

b, X, Z), u†
b ∼ N(0n, In), b = 1, . . . , B. (2.24)

The n independent drawings from a standard Normal distribution that

make up a typical vector u†
b can be obtained from a number of widely

available computer programs.
In fairness to proponents of Monte Carlo tests, it should be pointed

out there is no need to assume Normality in order to derive the Monte
Carlo test of the assumption of homoskedasticity. Suppose that the errors
of (2.15) are IID(0, σ2) and have a known non-Normal common distri-
bution. Also suppose that a computer program can be used to obtain
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independent drawings from this distribution; there are many random
number generators that cover a large number of standard distributions. If
(2.16) is replaced by

u|X ∼ D0(0n, σ2In),

in which D0 denotes the known non-Normal distribution, it is only
necessary to replace (2.24) by

τ̂
†
BPb = h(u†

b, X, Z), u†
b ∼ D0(0n, In), b = 1, . . . , B.

Provided that D0 is the correct choice for the error distribution, a Monte
Carlo p-value can be calculated as in (2.3) and an exact test obtained
using (2.4), provided regularity conditions are satisfied and α(B+1) is an
integer; see, for example, Dufour et al. (2004).

However, it is not clear that applied workers will have information
that permits the specification of the correct error distribution, whether
or not it is the Normal distribution. Consequently it seems reasonable to
acknowledge that, in practice, there will be limited opportunity for the
application of exact Monte Carlo tests, except when the null hypothe-
sis specifies a particular form for the CDF of the error distribution; see
Neumeyer et al. (2004) for a discussion of tests of null hypotheses that
specify the parametric form of the CDF. Tests that are instead based upon
nonparametric bootstrap methods are now considered.

2.3.2. Models with IID errors from an unspecified distribution

As in the previous subsection, the linear regression function Xβ of (2.15)
is regarded as the conditional mean function E(y|X); so that E(u|X) = 0n.
Also, the regressors of (2.15) are again assumed to be strictly exogenous.
However, the restrictive assumption of Normality is now abandoned.
Instead it is assumed that the error terms in u are, conditionally and
unconditionally, IID with zero mean and finite variance σ2. The gen-
eral family to which the common distribution of the errors belongs
is not assumed to be known. Thus (2.16) is replaced by the weaker
assumption that

u|X ∼ D(0n, σ2In), (2.25)

with the CDF for the unspecified distribution D(., .) being treated as a
parameter and denoted by F . The unknown parameter vector θ now
contains F , as well as the elements of β, that is, θ = (β ′, F).
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In order to set up a bootstrap world, it is necessary to use the actual
data to derive a consistent estimator of θ . Conditional upon the actual
observations, the artificial DGP that is characterized by the sample value
of this estimator can then be used to produce as many bootstrap sam-
ples as are required. Observations derived from the artificial DGP are
denoted by ∗.

For the moment, the emphasis on tests will be put to one side and
instead it is assumed that the researcher simply wants to apply the boot-
strap to simulate the distribution of OLS estimators. In the same way
that the assumed model for actual data is defined by the parameter vec-
tor θ = (β ′, F), the bootstrap world is characterized by θ̈ = (β̈

′
, F̈), with

θ̈ − θ being Op(n−1/2). It is assumed that β̂ of (1.6) is used as the consis-
tent estimator of β. It remains to choose a consistent estimator of F . As
in the simpler example of Section 2.2, for any constant c, the proportion
of errors less than or equal to c, that is,

#(ui ≤ c)
n

, (2.26)

has probability limit equal to F(c). Thus, if the errors were observed, the
EDF of (2.26) would be a consistent estimator of F . In the absence of
observations on errors, it is natural to think of using the corresponding
OLS residuals, given by (1.11). If the EDF of the residuals is adopted, the
estimator F̂ is determined according to

F̂(c) = #(ûi ≤ c)
n

.

This estimator is often written in the form

F̂ : probability
1
n

on ûi, i = 1, . . . , n. (2.27)

With the parameter vector θ of the model for actual data estimated by
β̂ of (1.6) and F̂ of (2.27), the artificial data for bootstrap sample b are
generated using

y∗
bi = ŷi + u∗

bi, i = 1, . . . , n, (2.28)

in which ŷi is a typical predicted value from the OLS estimation of (2.15)
and the terms u∗

bi are sampled randomly, with replacement, using (2.27),
i = 1, . . . , n. Thus the actual residuals are resampled to obtain bootstrap
world errors. However, this scheme is only appropriate if the model for
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the bootstrap data matches a key assumption of the model for actual
data. This assumption is that E(u) = E(u|X) = 0n. The corresponding
expectation for a typical bootstrap error is

E∗(u∗) =
n∑

i=1

ûi Pr(u∗ = ûi) = 1
n

n∑
i=1

ûi = µ∗, say. (2.29)

When the regression model includes an intercept term, as is usually
the case, the first-order conditions for OLS imply that µ∗ = 0; so that
no adjustment is required to the bootstrap scheme that uses (2.27) and
(2.28). If, however, there is no intercept, the OLS residuals will, for almost
all samples, sum to a nonzero value and the OLS residuals must be recen-
tred before being used in (2.27). Thus, when there is no intercept term
in (2.15), (2.27) is replaced by

F̂ : probability
1
n

on (ûi − 1
n

n∑
j=1

ûj), i = 1, . . . , n. (2.30)

It will assumed from now on that an intercept is included in the vector of
regression coefficients and that the adjustment given in (2.30) is unnec-
essary. However, it should be noted that other modifications of the OLS
residuals are sometimes suggested.

One common adjustment is based upon consideration of the variance
of the bootstrap errors of (2.27). This variance is

E∗(u∗2) =
n∑

i=1

û2
i Pr(u∗ = ûi) = 1

n

n∑
i=1

û2
i = σ̂2,

as defined in (1.17) in Chapter 1. Under the probability model for the
actual data, σ̂2 is consistent for σ2 but it is not the standard unbiassed
estimator s2 of (1.16). A simple adjustment based upon the number of
degrees of freedom implies that the bootstrap model variance is s2. More
precisely, the bootstrap error distribution is now given by

F̂ : probability
1
n

on
√

n
(n − k)

ûi, i = 1, . . . , n, (2.31)

rather than (2.27). Efron and Tibshirani suggest that the modification
used in (2.31) is only likely to be important if k > 0.25n; see Efron and
Tibshirani (1993, p. 112). Others express a stronger preference for (2.31).
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A second adjustment of OLS residuals is based upon consideration of
the variances of OLS residuals, under the probability model for the actual
data. As in (1.13) of Chapter 1, the variance of a typical OLS residual is

Var(ûi|X) = σ2(1 − hii),

in which hii is a leverage value, being the ith diagonal element of H
of (1.9). Some argue that the OLS residuals are more like the corre-
sponding errors if they are replaced by transformed versions that are
homoskedastic. The transformation is to divide by

√
(1 − hii); but the

transformed residuals do not sum to zero and so recentred values must be
obtained for resampling. The effect of combining actual-world variance
and bootstrap-world mean adjustments is to have

F̂ : probability
1
n

on

 ûi√
(1 − hii)

− 1
n

n∑
j=1

ûj√
(1 − hjj)

 , i = 1, . . . , n,

(2.32)

as the bootstrap world CDF.
The evidence reported below, like that obtained in some other studies,

suggests that the choice of F̂ from (2.27), (2.31) and (2.32) does not
have a major impact on the finite sample behaviour of bootstrap tests
for regression models. However, it may sometimes be valuable to use
adjusted OLS residuals for resampling when k/n is not small and/or some
of the leverage values are very large relative to others.

When tests are carried out, there are two methods available for
calculating parameter estimates and residuals. The imposition of the
null hypothesis leads to a restricted estimator and associated residuals,
whereas, under the alternative, the unrestricted estimator produces its
own set of residuals. For example, when the null hypothesis consists of
the q linear restrictions of (1.18), the restricted estimator of β is β̃ and
the restricted residuals ũi are the elements of ũ = y − Xβ̃. The restricted
estimator β̃ always satisfies (1.18) but the unrestricted OLS estimator β̂

does not, since Rβ̂ �= r for almost all samples. Consequently, for the
bootstrap DGP to satisfy the null hypothesis, that is, for the first golden
rule of bootstrap tests to be followed, the bootstrap model can be defined
using β̃ and the EDF of restricted residuals ũi. An appropriate scheme can,
therefore, be written as

y∗
bi = ỹi + u∗

bi, b = 1, . . . B and i = 1, . . . , n, (2.33)
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in which ỹi is a typical predicted value from restricted estimation
and, assuming that the restricted model has an unknown intercept
term, the bootstrap errors u∗

bi are obtained by random sampling, with
replacement, from

F̃ : probability
1
n

on ũi, i = 1, . . . , n. (2.34)

(Details of the counterparts of (2.31) and (2.32) are omitted to focus
on (2.34).)

The discussion of the simple example of Section 2.2 suggests an alterna-
tive to using β̃ and F̃ when bootstrapping, say, the F-test of H0 : Rβ = r.
In the simple example, it was pointed out that, rather than making
the bootstrap model satisfy the restriction placed on the actual model
by the null hypothesis, a test could be obtained by changing the null
hypothesis. Applying a similar strategy would lead to using artificial
data generated from a bootstrap DGP with parameters β̂ and F̂ to obtain
bootstrap F-tests of H0 : Rβ = Rβ̂.

Comparisons of bootstrap tests derived from artificial DGPs defined
by restricted and unrestricted estimates are provided in the next chapter.
However, at this stage, it is worth noting a finding that emerges from a
study of bootstrap tests in a simple regression model; see Paparoditis and
Politis (2005). A simple regression with IID errors can be written as

yi = β1 + β2xi + ui, i = 1, . . . , n.

Paparoditis and Politis consider testing H0 : β2 = 0 against H1 : β2 �= 0.
As well as examining the usual t-ratio β̂2/SE(β̂2), the test statistic

√
nβ̂2

is considered. The former statistic is asymptotically pivotal, with a limit
null distribution of N(0, 1). The latter statistic is not asymptotically piv-
otal, and, as n −→ ∞, tends to N(0, var(

√
nβ̂2)), when β2 = 0, with

var(
√

nβ̂2) depending on the unknown parameter σ2.
When the t-ratio is used, Paparoditis and Politis find that performance

is quite robust to the choice of restricted or unrestricted residuals for
resampling. However, when the asymptotically non-pivotal test using√

nβ̂2 is investigated, it is found that resampling unrestricted residuals
leads to an increase in power compared with resampling restricted resid-
uals. However, the practical relevance of this finding for those who wish
to conduct tests of restrictions on regression coefficients may be limited.
It is standard practice to use asymptotically pivotal statistics, for exam-
ple, t and F, to test such restrictions and so the choice between restricted
and unrestricted residuals may be of little consequence.
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The emphasis so far has been on specifying a bootstrap DGP that can
be viewed as consisting of two parts; see, for example, (2.33). First, there
is a conditional mean function that has components, equal to corre-
sponding actual predicted values, which are fixed in repeated sampling
in the bootstrap world. Second, random bootstrap errors are added to
the conditional means, with the former being drawn randomly, with
replacement, from a set of (possibly modified) actual residuals, each of
which is assigned probability 1/n in the bootstrap world. This approach is
in keeping with the interpretation of a regression model as representing
the conditional distribution of the dependent variable, given the values
of strictly exogenous regressors. It also imposes the required IID struc-
ture on errors. There is, however, an alternative approach to generating
bootstrap data from the observed data.

In the alternative to the residual resampling method of (2.28) and
(2.33), it is the terms (yi, x′

i) that are randomly resampled, with replace-
ment, from

[
(y1, x′

1), (y2, x′
2), . . . , (yn, x′

n)
]
.

This approach is known as the pairs bootstrap. It is argued in Hall
(1992, section 4.3.2) that, while such an approach is appropriate when
correlation analyses for multivariate data are considered, the residual
resampling scheme is preferred in the context of regression modelling
with IID errors. Indeed, as will be explained in Chapter 5, the pairs boot-
strap does not impose homoskedasticity and allows for heteroskedasticity
of unspecified form. Several authors have argued against the use of the
pairs bootstrap and for the use of residual resampling when attempting
to bootstrap tests for regression models with IID errors; see, for example,
Davidson and MacKinnon (2006, pp. 822, 835), Davison and Hinkley
(1997, p. 264), Hall (1992, p. 170) and McQuarrie and Tsai (1998, p. 265).
The use of the pairs bootstrap for regression models with heteroskedastic
errors will be discussed in Chapters 5 and 6.

2.3.3. Dynamic regression models and bootstrap schemes

It was remarked in Chapter 1 that applied workers sometimes use lagged
values of the dependent variable as regressors. In such situations, the
regression equation is said to be a dynamic model. For the purpose of
asymptotic analysis, the assumption of strictly exogenous regressors
must be replaced by the assumption that all regressors are predetermined.
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Using t as the subscript for time series observations, a dynamic
regression model can be written as

yt = y′
t(p)α + x′

tβ + ut = w′
tγ + ut , t = 1, . . . , n, (2.35)

in which: y′
t(p)

= (yt−1, . . . , yt−p), p ≥ 1, contains the lagged values of the

dependent variable; α′ = (α1, . . . , αp) has elements such that the roots of

zp − α1zp−1 − · · · − αp = 0,

are all strictly inside the unit circle (for dynamic stability); xt is the
k-dimensional vector holding a typical observation on the strictly exoge-
nous regressors of the model; β is a k-dimensional vector of coefficients;
w′

t = (y′
t(p)

, x′
t ); γ ′ = (α′, β ′);and the errors ut are IID(0, σ2). Let F denote

the CDF of the error term.
Suppose that a null hypothesis is to be tested using results from the

estimation of (2.35). A null hypothesis might consist of linear restrictions
on the elements of γ , or it might reflect an attempt to test for misspecifi-
cation by nesting (2.35) in some more general model. In the former case,
the restricted least squares estimator for (2.35), denoted by γ̃ , and the
EDF of the associated residuals ũt = yt − w′

t γ̃ ,t = 1, . . . , n, can be used
as the parameters of a bootstrap DGP. In the latter case, the unrestricted
least squares estimator for (2.35), denoted by γ̂ , and the EDF of the asso-
ciated residuals ût = yt −w′

t γ̂ ,t = 1, . . . , n, are the bootstrap counterparts
of γ and F . (For convenience, it is assumed that an intercept term is esti-
mated in both cases, which implies that residuals from both restricted
and unrestricted estimation of (2.35) sum to zero and that there is no
need to recentre before resampling.)

The details of generating bootstrap data will be considered for the first
type of test, that is, when the null hypothesis specifies the values of
q < p + k linear combinations of the elements of γ . The modifications
required when dealing with tests for misspecification are obvious. (All
that needs to be done is to replace γ̃ by γ̂ and (2.34) by (2.27) in the
schemes below.) Given the form of (2.35), an obvious way in which to
simulate bootstrap data y∗

t for B samples, each of size n, is to use an
autoregressive (recursive) bootstrap scheme defined by

y∗
t = y∗′

t(p)α̃ + x′
t β̃ + u∗

t , t = 1, . . . , n, (2.36)

in which y∗′
t(p)

= (y∗
t−1, . . . , y∗

t−p) and the terms u∗
t are sampled randomly,

with replacement, from the EDF of (2.34). Clearly, in order to start up
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the simulation engine represented by (2.36), values must be provided
for y∗

s , s = 0, −1, . . . , 1 − p. The obvious solution is to use the actual
values ys, s = 0, −1, . . . , 1 − p. This treatment of initial values implies a
conditioning that is of no consequence asymptotically.

There is one possible difficulty with the use of (2.36) that may occur,
albeit with low probability for moderately large sample sizes. Although
the elements of α are assumed to satisfy conditions for dynamic stability,
it is possible that sampling fluctuations could produce a value of α̃ such
that (2.36) is dynamically explosive. For example, with p = 1, the true
coefficient is assumed to be such that |α1| < 1, but the corresponding
estimate α̃1 might be observed to be greater than 1 or less than −1. When
the null hypothesis is true, the consistency of α̃ implies that, as n −→ ∞,
(2.36) will be an appropriate dynamically stable model that satisfies the
null hypothesis, with IID errors, for almost all samples. However, in
applied work, it would seem sensible to check by examining the roots of

zp − α̃1zp−1 − · · · − α̃p = 0,

to see if any are on or outside the unit circle.
The combination of the autoregressive (recursive) bootstrap (2.36) with

the residual EDF of (2.34) seems a natural way in which to mimic the
DGP assumed to hold for real data, viz., (2.35). Some researchers have
considered a different approach in which the lagged dependent variables,
as well as the exogenous variables, in the regressor set of (2.35) are treated
as fixed in the bootstrap world. In this fixed regressor bootstrap, (2.36) is
replaced by

y∗
t = y′

t(p)α̃ + x′
t β̃ + u∗

t = w′
t γ̃ + u∗

t , t = 1, . . . , n, (2.37)

with the bootstrap errors u∗
t being sampled randomly, with replacement,

from the EDF of (2.34). At first sight, treating all regressors as fixed in
(2.37) seems inconsistent with the general notion that the bootstrap
DGP should be as close as possible to the DGP assumed to yield the
actual observed data, that is, the autoregressive regression model (2.35).
It, therefore, seems reasonable to be concerned about the validity of
using the fixed regressor bootstrap when the assumed model has lagged
values of the dependent variable included as regressors.

The use of autoregressive (recursive) bootstraps and fixed regressor
bootstraps for time series models is examined in Franke et al. (2002).
It is established that, provided regularity conditions are satisfied, both
schemes are asymptotically valid. However, Franke et al. provide evi-
dence from simulation experiments, as well as asymptotic theory, and
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this evidence leads them to the conclusion that the “autoregression
resampling scheme, which takes full account of the dependence struc-
ture, results in much better approximations”; see Franke et al. (2002,
p. 18). In the applications to tests for dynamic regression models to be
discussed in later chapters, autoregressive bootstrap schemes like (2.36)
will, therefore, be adopted.

2.3.4. The choice of the number of artificial samples

Various schemes for generating B artificial samples, each with n obser-
vations, have been described above. However, the choice of B has not
been considered so far. In order to fill this gap in the exposition, some
comments on the importance of this choice and on available evidence
that guides practical implementation are provided in this subsection.

If computing were a free good and computers were infinitely fast, the
obvious choice would be the ideal bootstrap with B being infinitely large.
However, neither of these conditions will ever apply and a finite value of
B must be selected. If a Monte Carlo test is being used, the comments in
Sections 2.2.1 and 2.3.1 indicate that, in order to derive an exact test, B
should be chosen so that, for a required significance level of α, 0 < α < 1,
α(B+1) is an integer. But this rule is not sufficient to guide the choice of
the specific value of B. After discussing the blurring of the critical region
mentioned above and the associated loss of power, Marriott suggests
that, when carrying out a Monte Carlo test, arranging for the value of
α(B + 1) to be 5 might often be suitable; see Marriott (1979) and also
Hall and Titterington (1989) and Jöckel (1986) for related theoretical
analyses.

Given existing computer resources, using B = 999 would be feasible
for Monte Carlo tests for regression models in a very large number of
cases and would satisfy Marriott’s rule of thumb for all standard choices
of α. However, there have been major advances in computing power
since 1979; see the illustration based upon the estimation of regression
equations given in MacKinnon (2002, p. 616), which can be usefully
combined with reported computing times for simulation-based tests in
McCullough and Vinod (1993, section 6). Consequently, unless the test
under consideration is exceptionally difficult to compute, Marriott’s rule
might be updated to choosing B so that α(B + 1) is 15 or 20.

Turning to bootstrap tests, there will not be perfect control of signif-
icance levels in finite samples because the artificial test statistics only
share the null distribution of the actual test statistic asymptotically. Evi-
dence concerning the typical value of B that gives a useful degree of
control for sample sizes of relevance to applied workers is obviously of
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interest. In an important early contribution to the econometrics litera-
ture on bootstrap tests, Horowitz reports that “satisfactory results can be
obtained with as few as 100 bootstrap samples”; see Horowitz (1994, p.
404). However, MacKinnon points out that the use of such a small value
for B can have costs; see MacKinnon (2002, p. 619).

Using a small number of artificial samples clearly affects the precision
of estimation of p-values under the null hypothesis. One way in which
to take precision into account is to construct confidence interval esti-
mates of the p-value. Hedges argues, on the basis of a common desired
width of the approximate 95 per cent confidence interval for the actual
null rejection probability, αa, in favour of using B = 400 with αa = 0.01
and B = 2,000 with αa = 0.05; see Hedges (1992). However, others have
suggested that it is proportionate, rather than absolute, accuracy that
is relevant for significance levels. For example, the stringent criterion
of robustness given in Serlin (2000) is that, with a desired significance
level of αd , null hypothesis rejection probabilities should be in the range
αd ± 0.1αd . Also, as for Monte Carlo tests, behaviour under the alter-
native hypothesis should be considered when selecting the value of B.
Several authors have drawn attention to the loss of power associated with
the use of relatively small values of B; see, for example, Davidson and
MacKinnon (2000) and Hall and Titterington (1989).

As well as being informed by theoretical analyses and simulation stud-
ies of significance level and power, recommendations about suitable
values for B are likely to take into account computing power and the
nature of the calculations required to obtain the test statistic of inter-
est. The estimation of linear regressions is not onerous with modern
computers, especially when the model is not dynamic so that it is not
necessary to invert repeatedly the matrix (X′X), which is fixed for each
bootstrap sample. If the updated version of Marriott’s rule for Monte
Carlo tests were applied to bootstrap tests, with bootstrap p-values deter-
mined by (2.12), the value of B would be selected so that αdB = 15 or 20,
given the prespecified value of αd . Using the more demanding version
of this rule would imply B = 400 when αd = 0.05 and B = 2,000 when
αd = 0.01. These combinations of αd and B are reasonably similar to those
identified by Davidson and MacKinnon as likely to avoid a power loss
of more than 0.01 (1 percentage point); see Davidson and MacKinnon
(2000, p. 60).

In many applications, it would probably be reasonable to use B = 1,000
for bootstrap tests, unless the null is only to be rejected for very strong
evidence (e.g., αd = 0.01) in which case B = 2,000 might be preferred;
see Davidson and MacKinnon (2000). Whichever of these two values is
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adopted, the associated waiting time for the user with access to a typical
personal computer will be of no practical importance. The real obstacle to
the use of the bootstrap as a standard tool is not the required computing
time but the absence of suitable code in commercial estimation packages.
This difficulty should be eliminated as the usefulness of the bootstrap
becomes widely known and discussions of simulation-based tests become
part of econometrics text books and lecture courses.

Finally, it should be noted that B need not be prespecified. The value
of B can instead be selected by pretest methods with the aim of get-
ting close to the performance of ideal bootstrap tests; see Davidson and
MacKinnon (2000). A three-step method for selecting B when construct-
ing bootstrap confidence intervals is proposed in Andrews and Buchinsky
(2002) and its application to bootstrap tests is examined in Davidson and
MacKinnon (2000).

2.4. Asymptotic properties of bootstrap tests

Test statistics that are used in applied analyses are very rarely exactly
pivotal. Consequently, in most cases, the comparison of a test statistic
calculated from the actual data with the values of test statistics calculated
from bootstrap samples is only justified asymptotically. Thus the boot-
strap approach will usually only produce an asymptotically valid test. It
is, therefore, reasonable to ask what is gained by using bootstrap meth-
ods, rather than making use of the critical values implied by asymptotic
theory and the choice of the nominal significance level. There are two
types of gain that can be identified.

First, as illustrated by the examples of Section 1.6, the standard first-
order asymptotic theory does not always permit the derivation of a
feasible test. Horowitz (2003, p. 211) contains the following remarks:

Many important statistics in econometrics have complicated asymp-
totic distributions that depend on nuisance parameters and, there-
fore, cannot be tabulated. . . . The bootstrap and related resampling
techniques provide practical methods for estimating the asymptotic
distributions of such statistics.

The first type of gain is, therefore, that the bootstrap can fill important
gaps in the toolkit of the applied worker. However, even when asymptotic
theory leads to a feasible test for the problem at hand, it may be beneficial
to use a bootstrap procedure.
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The second type of gain from using bootstrap samples may be available
when asymptotic theory, although applicable, provides an inadequate
approximation to finite sample behaviour. As will be shown in later
chapters, there is a great deal of evidence that bootstrapping an asymp-
totic test can lead to an improved degree of control of significance levels
and that the improvement is substantial in some cases.

This second type of gain is often discussed in terms of the difference
between the nominal (asymptotically achieved) significance level and
the actual significance level. This difference is called the error in rejection
probability (ERP). The ability of the bootstrap to reduce the ERP, relative to
the use of standard asymptotic theory, is discussed by Beran, who refers
to the asymptotic refinements associated with bootstrapping; see Beran
(1988).

Beran’s asymptotic analysis is frequently mentioned in the economet-
rics literature on bootstrap tests. It is based upon an assumption that,
under the null hypothesis, the finite sample CDF of the test statistic,
denoted by Gn(.; θ), can be written in the form of an expansion, with

Gn(a; θ) = G∞(a; θ) + n−j/2g(a; θ) + O(n−(j+1)/2), (2.38)

in which G∞(a; θ) denotes the limit null distribution, which is continu-
ous and strictly monotonic, j ≥ 1 is an integer and g(.; θ) is continuous;
see Beran (1988, p. 690). The bootstrap world is defined using the esti-
mator θ̈ which (i) satisfies the null hypothesis and (ii) differs from θ by
terms that are Op(n−1/2) when the null hypothesis is true. The bootstrap
counterpart of (2.38) is

Gn(a; θ̈) = G∞(a; θ̈) + n−j/2g(a; θ̈) + O∗(n−(j+1)/2),

and Gn(a; θ̈) can be approximated using the EDF of the B values of the
bootstrap statistics. Beran uses his expansions to obtain the following
results on the relative magnitudes of the ERP terms for asymptotic and
bootstrap tests.

First, if the test statistic is not asymptotically pivotal, in other words,
G∞(a; θ) really depends on at least one term in θ , the bootstrap test has
an ERP of the same order in the sample size n as the asymptotic test.
Second, if the test statistic is asymptotically pivotal, that is, G∞(a; θ)

is independent of all terms in θ and so can be written as G∞(a), the
bootstrap test has an ERP of smaller order in the sample size n than does
the asymptotic test. A detailed discussion of these findings is given in
section 3 of Beran (1988). The result for an asymptotically pivotal statistic
is widely applicable in econometrics because so many tests are carried out
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using critical values from asymptotically valid standard distributions,
such as N(0, 1) and χ2.

In fact, the result given by Beran can be strengthened for many econo-
metric tests of regression models that are based upon asymptotic pivots.
Davidson and MacKinnon show that a further asymptotic refinement, in
addition to the one established by Beran, is available when the estima-
tor θ̈ , which defines the bootstrap DGP, is asymptotically independent
of the test statistic; see Davidson and MacKinnon (1999, section 4). In
regression models of the type discussed in the previous section there is
asymptotic independence of these objects, given regularity conditions,
when θ̈ = (β̈, F̈) is derived by using appropriate restricted extremum esti-
mators, with the restrictions imposed on the estimators being those
that make up the null hypothesis; see Davidson and MacKinnon
(1999, p. 369).

The results given in Beran (1988) and Davidson and MacKinnon (1999)
on the asymptotic refinements associated with bootstrapping tests can
be linked to those of analytical approaches that provide the same orders
of improvement of ERP relative to an unadjusted asymptotic theory test,
for example, see Hall (1992) for an examination of the bootstrap and
Edgeworth expansions. Horowitz provides a useful summary of results
on the orders of magnitude in the sample size n for the ERP terms of
asymptotic and bootstrap tests, drawing on large sample theory con-
tained in Hall (1992); see Horowitz (2001, section 3). For example, he
mentions that for test statistics that are asymptotically distributed as χ2,
when the null hypothesis is true, the ERP terms for asymptotic and boot-
strap tests are O(n−1) and O(n−2), respectively; see Horowitz (2001, p.
3183). Many standard econometric test statistics fall into this category,
each being compared with an asymptotic critical value in the right-hand
tail of the relevant χ2 distribution.

However, in practical situations with limited sample sizes, it is not
clear how much weight should be placed upon formal results about such
orders of magnitude. These results indicate the relative asymptotic orders
of magnitude of ERP terms, but, as noted in Davidson and MacKinnon
(2006), it is possible that there are cases in which, when n is small, the
asymptotic test works very well but the bootstrap test is a little inferior;
also see MacKinnon (2002, section 4). However, while such cases can-
not be ruled out as impossible, it is important to stress that there is a
great deal of evidence, covering a number of applications, which indi-
cates that asymptotically valid critical values can be far from the true
values for sample sizes of relevance to the empirical worker. Moreover,
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this evidence suggests that the application of the bootstrap does not sim-
ply improve the situation but gives good management of finite sample
significance levels.

The analysis given in Beran (1988) is based on high-level assumptions,
that is, the validity of (2.38), and is an outline of a general approach.
While in no way wishing to detract from the importance of the asymp-
totic analysis in Beran (1988), it must be acknowledged that a full proof
of the asymptotic validity of bootstrap methods for specific applica-
tions usually has to be carried out on a case-by-case basis. Freedman has
provided details for linear regression models and shows the asymptotic
validity of some bootstrap tests, under weak regularity conditions; see
Freedman (1981, 1984). However, as remarked by Freedman, his analysis
is confined to asymptotic theory and he is not addressing the problem
of showing that the bootstrap test is better behaved in finite samples
than the asymptotic test; see, for example, Freedman (1984, p. 827). For-
tunately, in recent years, many researchers have carried out simulation
studies of the relative finite sample performance of asymptotic and boot-
strap tests for regression models. Some of these studies will be discussed
below and references to others will be provided.

2.5. The double bootstrap

As well as comparing tests based upon a limit null distribution with those
derived using the bootstrap, Beran considers a third general method in
which the bootstrap samples are themselves bootstrapped; see Beran
(1988, section 2). In this third approach, the test statistic is said to
be the subject of prepivoting. Whether or not the original test statistic
is asymptotically pivotal, its p-value is asymptotically uniformly dis-
tributed between 0 and 1, when the null hypothesis is true, and so is an
asymptotic pivot. The second level of bootstrapping, therefore, involves
using the first-level bootstrap p-value as the test statistic of interest. (An
equivalent approach would be to work with the CDF of the bootstrap null
distribution, rather than the p-value; see Beran (1988, section 2.3). The
implied adjustments, for example, to rejection rules are straightforward.)

The application of the double bootstrap to tests for regression models
can be described as follows. Suppose that the model used to approximate
the real world is the regression model (2.15), with strictly exogenous
regressors and IID errors having a conditional distribution given by (2.25)
and common cdf F . Also suppose that the number of samples in the first
and second stages of bootstrapping are B and C, respectively. As in Beran’s
analysis, an estimator of θ = (β, F) is required which satisfies the null



Simulation-based Tests: Basic Ideas 73

hypothesis and differs from θ by Op(n−1/2) when this null hypothesis is
true; see Beran (1988, section 3.1). Let θ̈ = (β̈, F̈) be such an estimator
and üi, i = 1, . . . , n, denote the residuals associated with β̈.

If linear restrictions on the elements of β are under test, with (1.18) as
the null hypothesis, θ̈ can consist of the restricted least squares estimator
β̃ and the EDF of the restricted residuals ũi, i = 1, . . . , n. If, on the other
hand, (2.15) is regarded as the restricted model for the purpose of deriv-
ing a test for misspecification, for example, a check for heteroskedasticity,
the OLS estimator β̂ and the EDF of the OLS residuals ûi, i = 1, . . . , n, can
be used to obtain θ̈ . Whatever the nature of the null hypothesis and the
form of the associated restricted estimator, the test statistic calculated
from actual data is denoted by τ̈ .

Consider then the application of a double bootstrap to a test based
upon τ̈ . The first level of the double bootstrap involves deriving B
artificial samples of size n, using

y∗
b = Xβ̈ + u∗

b, b = 1, . . . , B,

in which: y∗
b = (y∗

b1, . . . , y∗
bn)′; and u∗

b = (u∗
b1, . . . , u∗

bn)′ is obtained by
simple random sampling, with replacement, from the EDF defined by

F̈ : probability
1
n

on üi, i = 1, . . . , n.

(For simplicity, it is assumed that β̈ includes an estimator of an intercept,
so that the residuals need not be recentred before resampling takes place.)
By applying the formulae that are used with actual data to these artifi-
cial data, the first-level bootstrap values of coefficient estimates, residual
vectors and test statistics are found. These objects are, using the obvious
notation, denoted by β̈

∗
b, ü∗

b = (ü∗
b1, . . . , ü∗

bn)′ and τ∗
b , for b = 1, . . . , B.

In the second level of the double bootstrap, C artificial samples of
size n are derived using the bootstrap DGP defined by θ̈

∗
b = (β̈

∗
b, F̈∗

b ),
where F̈∗

b is the EDF of the residuals of the vector ü∗
b = (ü∗

b1, . . . , ü∗
bn)′,

for b = 1, . . . , B. More precisely, for each value of b, the second-level
bootstrap data are generated using

y∗∗
bc = Xβ̈

∗
b + u∗∗

bc , c = 1, . . . , C,

in which: y∗∗
bc = (y∗∗

bc1, . . . , y∗∗
bcn)′; and u∗∗

bc = (u∗∗
bc1, . . . , u∗∗

bcn)′ is obtained
by simple random sampling, with replacement, from the EDF defined by

F̈∗
b : probability

1
n

on ü∗
bi, i = 1, . . . , n.
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The simulated data from the BC second-level samples are used to
calculate the bootstrap test statistics τ∗∗

bc , b = 1, . . . , B and c = 1, . . . , C.
In the single bootstrap test, the estimated p-value of τ̈ , that is,

p̈ =
∑B

b=1 1(τ∗
b ≥ τ̈ )

B
= #{τ∗

b ≥ τ̈ }
B

, (2.39)

is used in the rejection rule

Reject H0 if p̈ ≤ αd ,

in which αd is the desired significance level. The bootstrap p-value of
(2.39) is obtained by using the B first-level bootstrap statistics as a ref-
erence set for the actual statistic. In the double bootstrap method, a
bootstrap p-value for each of the first-level statistics τ∗

b is obtained by
using the corresponding C second-level statistics (τ∗∗

b1, τ∗∗
b2, . . . , τ∗∗

bC) as
the reference set. Thus, the estimated p-value of τ∗

b is given by

p̈∗
b =

∑C
c=1 1(τ∗∗

bc ≥ τ∗
b )

C
= #{τ∗∗

bc ≥ τ∗
b }

C
, b = 1, . . . , B.

When p̈ is viewed as an asymptotically pivotal statistic, it is to be com-
pared with the reference set that consists of the terms (p̈∗

1, p̈∗
2, . . . , p̈∗

B).
The double bootstrap p-value is then

p̈D =
∑B

b=1 1(p̈∗
b ≤ p̈)

B
= #(p̈∗

b ≤ p̈)

B
, (2.40)

with small values indicating a large amount of evidence against the null
hypothesis. Given a desired significance level of αd , the double bootstrap
leads to the decision rule

Reject H0 if p̈D ≤ αd .

The double bootstrap p-value p̈D is sometimes referred to as an adjusted
p-value and some authors denote it by padj; see Davison and Hinkley
(1997, p. 175).

By using the asymptotic expansion (2.38), Beran shows that, if the ERP
for the single bootstrap test is O(n−j/2), the ERP for the double bootstrap
test is O(n−(j+1)/2), for some integer j ≥ 1. This additional asymptotic
refinement may be especially useful when the original test statistic is not
asymptotically pivotal, for example, as in the cases discussed in Section
1.6. It is, however, clear that this potential gain in accuracy must be
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bought at the price of a higher computational cost than the standard
single bootstrap discussed in the previous section. The total number of
bootstrap samples required is B(1 + C). There is, however, no need to
select C so that it is equal to B (or of similar size) and C = O(B1/2) is
sometimes recommended; see Booth and Hall (1994). Moreover, there
are several results that show how the computational costs of the double
bootstrap can be greatly reduced compared with direct repetition of the
calculations carried out with the actual sample for all B(1 + C) bootstrap
samples.

It is pointed out by Godfrey and Orme that, when the regressors are
strictly exogenous and so are held fixed over bootstrap samples, time
consuming operations like matrix inversion need only be carried out
once, not 1 + B(1 + C) times, and that fixed projection matrices, like
the hat-matrix of (1.9), can be used in some applications; see Godfrey
and Orme (2002a, p. 433). Godfrey and Orme also refer to results on
the usefulness of stopping rules for the double bootstrap that are given in
Horowitz et al. (2006). Horowitz et al. provide details of stopping rules
for double bootstrap tests and report that the combined effect of the rules
is that the number of second-level samples required in their experiments
is only between BC/11 and BC/15; see Horowitz et al. (2006, appendix
B, p. 861). Computational savings of this size are clearly very useful, but
even more impressive savings are associated with a technique proposed
by Davidson and MacKinnon; see Davidson and MacKinnon (2002b,
2007).

Davidson and MacKinnon describe a fast double bootstrap (FDB) tech-
nique. In the notation of this section, the FDB test uses 2B artificial
samples, with each first-level bootstrap sample being bootstrapped to
give just one second-level sample, in other words, C = 1. Consequently,
there is a first-level test statistic τ∗

b and a second-level test statistic τ∗∗
b1, for

b = 1, . . . , B. The FDB p-value, as discussed in Davidson and MacKinnon
(2002b), is defined by

p̈F =
∑B

b=1 1(τ∗
b > Q̈∗∗

B )

B
= #(τ∗

b > Q̈∗∗
B )

B
, (2.41)

in which Q̈∗∗
B is selected to satisfy

∑B
b=1 1(τ∗∗

b1 > Q̈∗∗
B )

B
= #(τ∗∗

b1 > Q̈∗∗
B )

B
= p̈, (2.42)
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and p̈ is given by (2.39). For any finite number of bootstrap samples, Q̈∗∗
B

must be selected from an interval of possible values implied by (2.42);
see, for example, (2.43) below.

Davidson and MacKinnon draw attention to the need for asymptotic
independence of the bootstrap DGP and the test statistic if the FDB pro-
cedure is to have a smaller order of ERP than the single-bootstrap test
based upon comparing p̈ with the desired significance level; see David-
son and MacKinnon (2002b, p. 423). The standard double bootstrap test
achieves the asymptotic refinement without imposing this assumption,
but it has a much higher computational cost. If the smallest possible
value of Q̈∗∗

B that satisfies (2.42) is selected, a simple link between the
FDB method and the standard double bootstrap can be shown.

In order to illustrate the general rule that the smallest possible value of
Q̈∗∗

B be used, suppose that B = 1, 000 and p̈ = 0.05. Let τ∗∗
[1]1, . . . , τ∗∗

[1,000]1
denote the ordered values of the second-level statistics τ∗∗

b1, with τ∗∗
[1]1

being the largest value. From (2.42), 1, 000 × 0.05 = 50 of the terms τ∗∗
b1

must be greater than Q̈∗∗
1000, so that

τ∗∗
[50]1 > Q̈∗∗

1000 ≥ τ∗∗
[51]1. (2.43)

The smallest suitable value of Q̈∗∗
1000 is, therefore, τ∗∗

[51]1.
A link between fast and standard versions of the double bootstrap can

be shown by introducing the terms p̌∗
b, which are the proportions of the

second-level bootstrap statistics τ∗∗
11, . . . , τ∗∗

B1 not less than τ∗
b , i.e.,

p̌∗
b =

∑B
j=1 1(τ∗∗

j1 ≥ τ∗
b )

B
=

#(τ∗∗
j1 ≥ τ∗

b )

B
, (2.44)

for b = 1, . . . , B. It then follows that 1(τ∗
b > Q̈∗∗

B ) = 1(p̌∗
b ≤ p̈) and so,

considering the numerator of (2.41),

#(τ∗
b > Q̈∗∗

B ) =
B∑

b=1

1(τ∗
b > Q̈∗∗

B ) =
B∑

b=1

1(p̌∗
b ≤ p̈) = #(p̌∗

b ≤ p̈).

Hence, given the rule on selecting Q̈∗∗
B , the FDB p-value of (2.41) can be

rewritten as

p̈Q
F =

∑B
b=1 1(p̌∗

b ≤ p̈)

B
= #(p̌∗

b ≤ p̈)

B
, (2.45)

which can be compared with the conventional double bootstrap p-value
of (2.40).
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The comparison of (2.40) and (2.45) reveals that the computational
savings of the fast double bootstrap, relative to the conventional ver-
sion, result from using the same set of statistics (τ∗∗

11, . . . , τ∗∗
B1) with each

first-level statistic τ∗
b , b = 1, . . . , B, in order to build up an estimated

reference distribution, that is, the EDF of (p̌∗
1, . . . , p̌∗

B), with which to
assess p̈. However, each term τ∗∗

b1 is calculated using an artificial sample
from its own bootstrap population defined by a first-level bootstrap esti-
mate θ̈

∗
b, which varies with b. For an asymptotic refinement of the fast

double bootstrap relative to the single bootstrap, it is required that the
variations in bootstrap DGPs have negligible effects when estimating a p-
value for τ∗

b using (2.44). This requirement highlights the importance of
the asymptotic independence of the bootstrap DGP and the test statistic
that is stressed in Davidson and MacKinnon (2007). The FDB test will be
asymptotically valid under more general conditions; see Davidson and
MacKinnon (2002b).

2.6. Summary and concluding remarks

The conventional approach to testing a null hypothesis involves the
comparison of the sample value of a test statistic with a critical value from
an appropriate standard distribution (such as N(0, 1), t , F or χ2). In many
cases, this approach can only be justified by appealing to asymptotic the-
ory. There are some tests for which it is possible to find sufficiently strong
assumptions to obtain exact, rather than asymptotic, validity. However,
in such cases, it is reasonable to be concerned about the validity of the
restrictive assumptions, for example, Normality, that permit perfect con-
trol of the finite sample significance level. When these assumptions do
not hold, the tests are typically only asymptotically valid. There is, there-
fore, considerable reliance on a body of results that only hold as the
sample size tends to infinity.

In practical situations, the sample size is finite and may not be large.
The quality of the approximation provided by asymptotic theory is
open to question and more reliable approaches to judging the statis-
tical significance of sample outcomes are of interest. This chapter has
contained descriptions of simulation-based methods that replace a tabu-
lated reference distribution by the EDF of a set of test statistics calculated
from artificial samples of the same size as the genuine one. The actual
test statistic is compared with these artificial test statistics to see if it
can be viewed as being so unusual that the null hypothesis can be
rejected.
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It is obviously important that the artificial model used to generate
the simulated data should be specified according to proper guidelines.
It cannot be guaranteed that, for the given actual sample, the applica-
tion of the guidelines will produce a good approximation, but that is
not a good reason not to adopt sensible rules. The first rule identified in
Davidson (2007) is that the artificial model, also known as the bootstrap
DGP, should satisfy the null hypothesis that is to be tested. This rule
means that restricted estimates calculated from the actual data are used
for bootstrap world parameters. It is assumed that the restricted estima-
tors are consistent when the null hypothesis is true. Moreover, as argued
in Davidson (2007), it would seem sensible to use restricted estimators
that are asymptotically efficient.

The focus is on tests for linear regression models. As argued in Hansen
(1999, p. 195), the “interpretation of the regression function as a con-
ditional expectation has no relationship to an auxiliary assumption of
normality” and there seems no good reason to specify the Normal or
any other distribution for the errors, which have been assumed simply
to be IID in this chapter. The absence of an assumption that specifies the
general family of the distribution of an error term leads to an emphasis
in this book on nonparametric bootstraps, rather than parametric boot-
straps and Monte Carlo methods of the type discussed in Dufour and
Khalaf (2001).

The IID terms required for bootstrap world errors are obtained by
simple random sampling, with replacement, from the actual (possibly
modified and/or recentred) residuals. Hence, in a selected set of boot-
strap errors, some residuals will appear more than once and others will
not appear at all. The bootstrap errors are added to predicted values
from actual data, which serve as conditional expectations in the boot-
strap world, in order to derive the required artificial data. This process is
repeated many times and a bootstrap test statistic is calculated each time
an artificial sample is drawn.

The comparison of the actual sample value of the test statistic with
the artificially produced values enables tests to be carried out when there
is no feasible procedure based upon the conventional combination of
asymptotic theory and critical values from a standard distribution. Thus
new tests can be provided for routine application in empirical work,
simply by modifying estimation programs to allow bootstrapping.

When a test can be carried out on the basis of asymptotic theory and
critical values from a standard tabulated distribution, in other words,
the test statistic is an asymptotic pivot, the bootstrap yields asymp-
totic refinements relative to this conventional approach. Indeed Beran
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suggests that classical analytic modifications of asymptotic tests can be
regarded as approximations to bootstrap tests; see Beran (1988, p. 687)
for general comments and Navidi (1989) for a detailed examination of
bootstrap procedures in regression models. In view of the results on rel-
ative orders of magnitude of the errors in rejection probabilities, it is
usually recommended that, when possible, an asymptotically pivotal
test statistic should be bootstrapped.

As well as considering bootstrapping the actual data, the possibility
of bootstrapping the bootstrap data, that is, double bootstrapping, has
been discussed. The theoretical results on any improvements in errors in
rejection probabilities associated with single and double bootstraps have
been outlined. These improvements are obtained without the level of
analytical input required, for example, by an approach using Edgeworth
expansion corrections. As noted in Beran (1988), the “possibility of direct
nonanalytical implementation is a great practical merit” of bootstrap
tests.

It should, however, be recognized that predictions about errors in
rejection probabilities derived from asymptotic expansions might not
be of great value for sample sizes of a magnitude of interest to empirical
workers. It is possible that two test procedures have the same order of
magnitude of the error of rejection probability but are found to exhibit
different finite sample behaviour in simulation experiments. The form of
the test statistic and, in particular, the quality of the covariance matrix
estimate used in its construction may be important; see, for example,
Davidson and MacKinnon (1992). There is even evidence that, when
estimating impulse response coefficients in vector time series models,
it might be better to bootstrap non-asymptotically pivotal quantities,
rather than asymptotic pivots, because of problems with estimating vari-
ances; see Berkowitz and Kilian (2000) and the associated comments in
Davidson (2000) for details.

In order to provide and evaluate evidence on the actual performance
of asymptotic and simulation-based tests, much of the rest of this book
is devoted to discussions of results from simulation experiments that are
intended to be relevant to a number of situations of econometric inter-
est. Chapters 3 and 4 contain results that, like those of this chapter,
are relevant when the regression model has errors that are IID. How-
ever, applied workers may not wish to make the strong assumptions
of independence and homoskedasticity. When either autocorrelation or
heteroskedasticity is part of the model specification, the bootstrap meth-
ods described in this chapter are inappropriate because they are derived
under the assumption that errors are IID with a finite variance. Chapter 5
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contains descriptions of bootstrap techniques that have been proposed
to accommodate departures from the IID assumption. Applications of
these techniques are discussed in Chapter 6.

Although there are many results from analytical investigations and
simulation experiments that support the use of bootstrap tests, there are
also certain unusual cases in which the bootstrap is inconsistent; see
Horowitz (2001, pp. 3167–3169). For example, the results in Athreya
(1987) indicate that there would be problems if the errors were to have
a heavy-tailed distribution with infinite variance. However, the assump-
tion of finite variability of actual economic quantities seems reasonable.
More generally, Samworth suggests that focussing on the consistency
of a bootstrap method “can mask the finite-sample behaviour, and that
inconsistent bootstrap estimators may in fact perform better than their
consistent counterparts”; see Samworth (2003, p. 985). When discussing
applications of bootstrap tests in this book, references will be supplied
to provide potential users not only with information about theory-based
results that are relevant to asymptotic validity, but also with a summary
and comments on evidence derived from simulation experiments that
throws light on finite sample properties.



3
Simulation-based Tests for
Regression Models with IID Errors:
Some Standard Cases

3.1. Introduction

Many applied studies involve the estimation and analysis of a lin-
ear regression model with IID errors. Several tests for this model were
described in Chapter 1 and comments were made about the possible
dangers of using asymptotic theory as the foundation for inference in
empirical investigations. The purpose of this chapter is to show how
simulation methods, which were discussed in Chapter 2, can be used
to provide an improved basis for testing. The general structure of this
chapter follows that of Chapter 2 in so far as exact Monte Carlo tech-
niques are illustrated before the more generally applicable (but only
asymptotically valid) nonparametric bootstrap methods are considered.
When appropriate, the specific examples are accompanied by some
comments on general issues relevant to applied work.

All of the examples discussed in this chapter involve test statistics that
are either exactly pivotal or asymptotically pivotal. In the former case,
the finite sample distribution of the test statistic, under the null hypoth-
esis, does not depend upon any unknown parameters. In the latter case,
it is only the asymptotic distribution of the test statistic, under the null
hypothesis, that is independent of unknown parameters. In practice,
few of the test statistics used in econometrics are exactly pivotal but
many of them have the weaker property of being asymptotic pivots.
Attention is restricted in this chapter to asymptotic pivots which, when
the null hypothesis is true, have a known asymptotic distribution of a
standard type, for example, N(0, 1) or χ2. Test statistics that are either
asymptotically pivotal with non-standard limit null distributions or not
even asymptotically pivotal are discussed in the next chapter. In short,
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this chapter deals with standard cases and the next chapter covers some
non-standard cases.

As explained in Chapter 2, when a test statistic is exactly pivotal, it
is possible to use the Monte Carlo approach to derive an exact test. For
such a test, the error in rejection probability (ERP) is zero. When a test
statistic is only asymptotically pivotal, critical values are often taken
from a known limit null distribution. For tests based upon asymptotic
critical values, the ERP term will tend to zero as the sample size goes to
infinity, but can be large in practical situations. The results contained
in Beran (1988) indicate that, if an asymptotically pivotal test statistic
is combined with the bootstrap approach, the resulting ERP will tend to
zero faster than that associated with the use of asymptotic critical values.
In the terminology of Chapter 2, the bootstrap provides an asymptotic
refinement.

There are many published results on the asymptotic refinements asso-
ciated with bootstrap tests. This literature is technical and sometimes
involves relatively complex asymptotic analysis. However, it is not
always the case that such asymptotic analysis seems to provide a good
explanation of what is observed in finite samples. The following remarks,
which are taken from Davidson (2007), are pertinent:

A technique that has been used a good deal in work on asymptotic
refinements for the bootstrap is Edgeworth expansion of distributions,
usually distributions that become standard normal in the limit of
infinite sample size. The standard reference to this line of work is
Hall (1992), although there is no shortage of more recent work based
on Edgeworth expansions. Whereas the technique can lead to useful
theoretical insights, it is unfortunately not very useful as a quanti-
tative explanation of the properties of bootstrap tests. In concrete
cases, the true finite-sample distribution of a bootstrap P value, as
estimated by simulation, can easily be further removed from an Edge-
worth approximation to its distribution than from the asymptotic
limiting distribution.

In this chapter, the emphasis will be on discussing evidence about
finite sample behaviour of bootstrap tests which is derived from simula-
tion experiments and interpreted in the context of available asymptotic
theory.

The plan of this chapter is as follows. In Section 3.2, the use of a Monte
Carlo test that gives exact control of finite sample significance levels is
explained. The test is of the null hypothesis of Normality. The derivation
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of an exact test for this null hypothesis is of interest because asymp-
totic critical values are sometimes very inaccurate in finite samples; see
Section 1.5.2 above.

Monte Carlo tests, such as the one discussed in Section 3.2, require
that the form of the error distribution be specified, either in the null
hypothesis to be tested or in a set of untested auxiliary assumptions.
However, applied regression analysis is often undertaken without any
precise information about the shape of the error distribution. In such
cases, it is natural to be concerned about the robustness of Monte Carlo
tests and to examine the use of the nonparametric bootstrap as a better
source of control of significance levels than asymptotic theory.

Section 3.3 contains theory-based and simulation results about the
robustness of Monte Carlo tests for heteroskedasticity to incorrect speci-
fication of the error distribution, as well as evidence about the improve-
ments associated with using nonparametric bootstrap checks, rather
than standard asymptotic tests. Well-known and widely-used tests for
heteroskedasticity are used to illustrate general issues.

In Section 3.4, bootstrap techniques are applied to the problem of
testing linear restrictions on regression coefficients, which was covered
at length in Chapter 1. Attention is drawn to the issue of whether to
use restricted or unrestricted estimates from the actual data to define the
bootstrap DGP. A small-scale simulation experiment is reported in which
tests derived using these two types of bootstrap model are compared with
each other and with procedures that use asymptotically valid critical
values from standard distributions.

The choice between restricted and unrestricted estimates for use as the
bootstrap world parameters is also examined in Section 3.5, in which
the widely-used serial correlation test of Breusch (1978) and Godfrey
(1978) is adopted as the procedure for study. On the basis of evi-
dence from simulation experiments, it is argued that, when testing for
serial correlation in dynamic regression models, it is better to use the
restricted (null hypothesis) estimates for the parameters of the bootstrap
process.

A summary of results and some concluding comments are contained
in Section 3.6.

3.2. A Monte Carlo test of the assumption of Normality

This section is based on results that are contained in Dufour et al. (1998).
Dufour et al. discuss the problem of testing the assumption that the IID
errors have a Normal distribution, that is, the errors are NID(0, σ2).
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The linear regression model is written as

y = Xβ + u, (3.1)

in which the usual notation is used; see Section 1.2. The regressors of (3.1)
are assumed to be either fixed in repeated sampling or strictly exogenous.
The null hypothesis is

H0 : u ∼ N(0n, σ2In),

and this claim is to be tested after OLS estimation of (3.1). Let the OLS
residuals be the elements of û′ = (û1, . . . , ûn). These residuals can be used
to obtain

σ̂2 = n−1
n∑

i=1

û2
i , (3.2)

which is consistent for σ2, under standard conditions. Let σ̂ denote the
positive square root of σ̂2.

The most popular test of H0 in econometrics is probably the Jarque-
Bera LM test (Jarque and Bera, 1980, 1987); see Dufour et al. (1998) for
a discussion of this procedure and other tests. The Jarque-Bera statistic,
denoted by JB, is defined as follows:

JB = n
[
(
√

b1)2/6 + (b2 − 3)2/24
]

, (3.3)

in which

√
b1 = n−1

n∑
i=1

(
ûi
σ̂

)3
= n1/2 ∑n

i=1 û3
i[√∑n

i=1 û2
i

]3
, (3.4)

and

b2 = n−1
n∑

i=1

(
ûi
σ̂

)4
= n

∑n
i=1 û4

i[∑n
i=1 û2

i

]2
. (3.5)

Under H0, JB is asymptotically distributed as χ2(2), but, as pointed out
in Dufour et al. (1998), it does not have a tractable finite sample distri-
bution. Unfortunately, as reported in Section 1.5.2, asymptotic theory
cannot be relied upon to provide an accurate approximation.
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It is clear from (3.3)–(3.5) that JB is simply a function of the OLS resid-
uals and moreover that the value of JB would not be affected if every
OLS residual ûi were multiplied by a positive constant c, in other words,
there is a function gJB(.) such that

JB = gJB(û) = gJB(cû), for all c > 0. (3.6)

But, from (1.11) of Chapter 1, û = (In − X(X′X)−1X′)u = Mu; so that,
setting c = σ−1 in (3.6),

JB = gJB(Mu) = gJB(σ−1Mu) = gJB(Mz), (3.7)

in which z =σ−1u. Under H0, z′ = (z1, . . . , zn) is a vector with elements
that are independent N(0, 1) variables.

With access to a random number generator for the standard Nor-

mal distribution, a set of B independent n-dimensional vectors z†
b ∼

N(0n, In), b = 1, . . . , B, can be obtained. (All that is required is to use
the random number generator nB times, with each call yielding a term

denoted by z†
bi, b = 1, . . . , B and i = 1, . . . , n.) Given the value of X and

hence of M, these artificially generated vectors can then be used to cal-

culate the artificial statistics JB†
b = gJB(Mz†

b), b = 1, . . . , B. Conditionally

upon the regressors, the terms JB†
b, b = 1, . . . , B, have the same finite

sample distribution as JB, when H0 is true. It is, therefore, possible to
construct a Monte Carlo test of H0, as explained in Section 2.2.1, with a
finite sample significance level which is equal to the desired significance
level, the latter being denoted by αd . As discussed in Section 2.2.1, it is
important to choose B so that (B + 1)αd is an integer. The value B = 99
is suitable for conventional values of αd and no evidence that power is
improved in important ways by using larger values is found in Dufour
et al. (1998).

The process of implementing a Monte Carlo version of the Jarque-Bera
statistic after OLS estimation of a regression model can be described in
more detail and in more familiar terms as consisting of the following
steps.

Monte Carlo Jarque-Bera test - Step 1

Use the actual data of S = (y, X) to estimate (3.1) by OLS and to obtain
the sample values of associated residuals, which are the elements of û =
(û1, . . . , ûn)′.
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Monte Carlo Jarque-Bera test - Step 2

The residuals from step 1 are used to calculate the sample value of the
Jarque-Bera statistic, denoted by ĴB; see (3.3)–(3.5) above for the relevant
formulae.

If, instead of relying upon the asymptotically valid χ2(2) distribution
for critical values, an exact Monte Carlo approach is adopted for assessing
the statistical significance of ĴB, it is necessary to apply repeatedly steps
like 1 and 2 to simulated samples of data. These samples must yield test
statistics that have the same finite sample distribution, given X, as ĴB
when the null hypothesis is true, that is, the errors of (3.1) are NID(0, σ2).

Let these statistics be denoted by JB†
b, b = 1, . . . , B.

The calculation of JB†
b is based on a corresponding simulated sample

S†
b = (y†

b, X), for b = 1, . . . , B. Each of these simulated samples comes
from the same artificial population, which can be written as

y† = Xβ† + u†, (3.8)

in which the errors in u† are IID and come from a Normal distribution
with zero mean and finite positive variance. Thus simulated data are
drawn from a population which reflects the null hypothesis that is to be
tested using the actual data. Clearly the researcher must have access to
a subroutine intended to give random numbers that can be taken to be
independent drawings from a Normal distribution with specified mean
and variance. The mean of the Normal distribution should be set equal to
zero. The value used for the variance is irrelevant since changes of scale
leave the value of the Jarque-Bera statistic unaltered; see (3.6) and the
associated comments. Drawings from the standard Normal distribution
can, therefore, be used without any loss of generality. Consequently,
if the error term for the ith observation of the bth simulated sample is

denoted by u†
bi, B×n independent drawings from the N(0, 1) distribution

can be used as values for the errors u†
bi, b = 1, . . . , B and i = 1, . . . , n.

Given error terms, simulated data on the dependent variable can be
calculated from (3.8), provided that the value of β† is specified. As noted
above, the Jarque-Bera statistic is just a function of OLS residuals and
so, when calculated from Monte Carlo world data, is independent of the
value of β† since

û† = (In − X(X′X)−1X′)y†

= (In − X(X′X)−1X′)(Xβ† + u†) = (In − X(X′X)−1X′)u†,
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using (In−X(X′X)−1X′)Xβ† = 0n. For the purpose of generating values of
the dependent variable, the choice β† = 0k is convenient and implies no
loss of generality. Consequently, simulated data can be generated using
y† = u†, with u†

∼ N(0n, In).
Steps 3, 4 and 5 for the bth of the B repetitions can be described as

follows, with steps 4 and 5 being the counterparts in the simulation
world of steps 1 and 2 for actual data.

Monte Carlo Jarque-Bera test - Step 3

Use a random number generator for the N(0, 1) distribution to get the n

values required for a realization of u†
b = (u†

b1, u†
b2, . . . , u†

bn)′. Set y†
b = u†

b,

that is, y†
bi = u†

bi for i = 1, . . . , n. The data for the bth artificial sample

S†
b = (y†

b, X) are now available.

Monte Carlo Jarque-Bera test - Step 4

Use an appropriate computer routine to regress y†
b on X in order to obtain

the associated OLS residual vector û
†
b = (û†

b1, û†
b2, . . . , û†

bn)′.

Monte Carlo Jarque-Bera test - Step 5

Use the OLS residuals from step 4 to calculate a test statistic JB†
b; see (3.3).

Monte Carlo Jarque-Bera test - Step 6

Having carried out the full set of B repetitions of steps 3, 4 and 5, the
final step is to calculate the Monte Carlo p-value of ĴB, that is,

MCPVJB =
∑B

b=1 1
(
JB†

b ≥ ĴB
)

+ 1

B + 1
, (3.9)

in which 1(A) is the indicator variable that is equal to 1 if the event A
is true and is otherwise equal to zero. The rejection rule for the Monte
Carlo Jarque-Bera test is that the null hypothesis of Normal errors should
be rejected as data-inconsistent if MCPVJB ≤ αd .

For the sake of exposition, the application of the Monte Carlo version
of the Jarque-Bera test has been described in steps 1 to 6 as requiring
(1 + B) OLS regressions to be fitted. However, the matrix X is fixed

from the first and so the residual vectors û†
b can be computed by pre-

multiplying u†
b by the constant matrix M = (In − X(X′X)−1X′) for

b = 1, . . . , B. Consequently it is only necessary to invert (X′X) once (for
step 1) so that the value of the fixed matrix M can be stored for use in the

B repetitions of the calculation of û†
b = Mu†

b. It would, therefore, not be
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computationally efficient to translate steps 1 to 6 directly into computer
code. However, computers are now so powerful that the cost of ineffi-
ciency in terms of waiting time for a single application would probably
be small. Considerations of computational efficiency are more important
when finite sample properties under null and alternative hypotheses are
investigated using simulation studies. In such studies, steps 1 to 6 would
be repeated many thousands of times; see, for example, Dufour et al.
(1998, section 4) for a description of a simulation study in which each
finite sample rejection probability of interest is estimated using 10,000
replications.

The use of exact Monte Carlo tests for regression models is by no means
restricted to the problem of testing the assumption of Normality. It is
possible to apply arguments similar to those in Dufour et al. (1998) to
other types of test statistic, provided the test statistic is exactly pivotal.
For example, MacKinnon describes how the Monte Carlo approach can
be used to derive an exact form of the widely-used Durbin-Watson test,
under the maintained assumption that each error is N(0, σ2); see MacK-
innon (2002, pp. 618–619). The scope for exact Monte Carlo tests is,
however, limited by the restriction that the IID error terms of the lin-
ear regression model must have a distribution which is specified, up to
knowledge of σ2, either by the null hypothesis or by an untested main-
tained hypothesis. It is not clear that applied econometricians will be
able or willing to make such strong assumptions about error distribu-
tions and, therefore, the use of nonparametric bootstrap tests may be of
greater interest. In the next section, which draws on the work reported in
Godfrey et al. (2006), evidence is provided on the usefulness of nonpara-
metric bootstrap techniques and the lack of robustness of Monte Carlo
tests in the context of checks for heteroskedasticity.

3.3. Simulation-based tests for heteroskedasticity

There is an extensive literature on the construction, implementation
and interpretation of tests for heteroskedasticity in the errors of linear
regression models, which is usefully summarized in a recent paper by
Dufour et al. (2004). As observed in that paper, most test procedures
employ asymptotically valid critical values. Many researchers have car-
ried out simulation experiments in order to learn about the finite sample
behaviour of these asymptotic tests. The evidence that has been reported
indicates that standard asymptotic distributions can be an unreliable
basis for inference and that bootstrapping produces useful improvements
in finite sample behaviour; see, for example, Cribari-Neto and Zarkos
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(1999), Godfrey and Orme (1999) and Jeong and Lee (1999). However,
checks for heteroskedasticity that are derived using a nonparametric
bootstrap remain only asymptotically valid. In contrast, the results of
Dufour et al. (2004) show that, when the distribution of the error of
the regression model is known, or forms part of the null hypothesis, the
test criteria for many homoskedasticity tests are exactly pivotal under
the null. In such cases, it is possible to use Monte Carlo techniques
to eliminate completely the discrepancy between actual and desired
significance levels. The practical question that must be faced when con-
sidering Monte Carlo tests for heteroskedasticity is how robust they are
to incorrect specification of the error distribution.

As in the previous section, the data for the dependent variable are
assumed to be generated by the linear regression model (3.1). When
constructing tests for heteroskedasticity, the errors of (3.1) are often
written as

ui = σiεi, 0 < σi < ∞, (3.10)

in which the terms εi are IID, with CDF denoted by Fε, having zero mean
and variance equal to one, i = 1, . . . , n. The null hypothesis for such tests
is then

Hh
0 : σi = σ , for all i.

Monte Carlo tests for heteroskedasticity could be motivated by argu-
ing that they should be regarded as general (omnibus) tests of a joint
null hypothesis that comprises not only homoskedasticity but also cor-
rectness of mean function and the general form of the CDF of IID errors.
However, this interpretation is not the conventional view of the standard
tests for heteroskedasticity and there is little reason to believe that these
tests would be useful for departures from the joint null which involve
either incorrect mean functions or misspecified error distributions; see
Davidson and MacKinnon (1985b) and Godfrey and Orme (1994, 1996).

In this section, therefore, Monte Carlo tests for heteroskedasticity are
taken to be tests of Hh

0 alone and to be based upon an untested supporting
assumption that specifies the CDF of the errors of the null model. Such
supporting assumptions are used in some of the best known tests for
heteroskedasticity. Some of these tests use test statistics that, under an
unspecified error CDF, are not asymptotically pivotal. Given that such
test statistics are frequently discussed in textbooks and quite popular in
empirical work, they will be included in this Section even though they
are not asymptotically pivotal.
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The LM test proposed in Breusch and Pagan (1979) is one of the most
widely cited checks for heteroskedasticity. It is based upon the following
untested assumptions: first, the conditional mean function is given by

E(y|X) = Xβ; (3.11)

second, the regressors in (3.11) are strictly exogenous; third, the errors
in y − Xβ are independent Normal variables, with common mean
zero, and may be heteroskedastic; and fourth, the error variances are
determined by

Var(ui|zi1, . . . , ziq) = σ2
i = h(γ0 +

q∑
j=1

zijγj), i = 1, . . . , n, (3.12)

in which h(.) is a function with h′(γ0) �= 0 and the terms zij are observa-
tions on strictly exogenous variables that satisfy the regularity conditions
of Breusch and Pagan (1979). The null hypothesis Hh

0 is equivalent to the

q restrictions of γ1 = · · · = γq = 0, which imply σ2
i = h(γ0) = σ2, i =

1, . . . , n.
The Breusch-Pagan test statistic, denoted here by BP, is one-half of

the explained sum of squares from the OLS estimation of the artificial
regression

û2
i

σ̂2
= γ0 +

q∑
j=1

zijγj + residual, (3.13)

and, if the null hypothesis is true, it is asymptotically distributed as χ2(q),
with the rejection region being in the right-hand side of this reference
distribution. It is very important to note that the assumption that the
errors have a Normal distribution is used in Breusch and Pagan (1979)
to establish the asymptotic validity of this test. Normality implies that
E(u4

i ) = 3σ4, under Hh
0 , which is a necessary condition for the Breusch-

Pagan test to be asymptotically valid.
A second test that is often discussed in textbooks is the procedure given

in Glejser (1969). The Glejser test is based upon the assumption that it is
asymptotically valid to apply a conventional test of γ1 = · · · = γq = 0
after OLS estimation of the artificial regression

|ûi| = γ0 +
q∑

j=1

zijγj + residual, (3.14)
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in which the regressors of (3.14) satisfy the same regularity conditions
as those of (3.13). However, in order for such a test to be asymptotically
valid, the error CDF Fε must be such that, under Hh

0 , Pr(εi ≥ 0) = 0.5; see
Godfrey (1996). The symmetry of the error distribution would, therefore,
be sufficient for asymptotic validity of Glejser’s test. The test statistic for
Glejser’s procedure is denoted by G.

The third and final test to be considered is White’s direct test for het-
eroskedasticity; see White (1980). White shows how to construct an
asymptotically valid test that is designed to detect any form of het-
eroskedasticity that invalidates conventional (homoskedasticity-valid)
OLS-based inference. Under weak conditions that do not require spec-
ification of the general shape of the error CDF and do not require that
Pr(εi ≥ 0) = 0.5, White proves that an asymptotically valid test can be
derived after OLS estimation of the artificial regression model

û2
i = γ0 +

r∑
j=1

wijγj + residual, (3.15)

in which the terms wij are the nonredundant variables from the squared
values and cross-products of the regressors of (3.1), and r is the number
of such variables (so that r ≤ k(k + 1)/2). If the R2-statistic for (3.15) is
denoted by R2

w, the test statistic W = nR2
w is asymptotically distributed

as χ2(r), under the null hypothesis; see White (1980, section 3). Thus, of
the three tests, only White’s procedure is based upon a test statistic that
is asymptotically pivotal. The asymptotic null distributions of BP and
G, under Hh

0 , depend (in different ways) upon the error CDF Fε, which,
following Beran (1988), is regarded as part of the parameter vector.

3.3.1. Monte Carlo tests for heteroskedasticity

It is clear from (3.13), (3.14) and (3.15) that the test statistics BPz, Gz
and Ww depend upon the data of y only through the OLS residuals û =
My = (In−X(X′X)−1X′)y. Under the auxiliary assumption that the mean
function (3.11) is specified correctly, û = Mu; so that each of the test
statistics is independent of β. Moreover, as pointed out in Dufour et al.
(2004), these statistics are also independent of the value of σ , when Hh

0 is
true. Consequently, corresponding to (3.7) which defines the Jarque-Bera
statistic, the checks for heteroskedasticity can be written as:

BP = gBP(σ−1Mu) = gBP(Mε); (3.16)

G = gG(σ−1Mu) = gG(Mε); (3.17)
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and

W = gW (σ−1Mu) = gW (Mε), (3.18)

in which ε = (ε1, . . . , εn)′.
In the Monte Carlo test approach, it is assumed that the true error

distribution is specified; see Dufour et al. (2004, eq. 3). Let the CDF for ε

used for the Monte Carlo test be denoted by Gε. For any given statistic,
derived from (3.1), which has a distribution that is independent of β and
σ2, the Monte Carlo approach generates test statistics which, conditional
upon the values of exogenous variables, possess the same finite sample
distribution, when Hh

0 is true and Gε = Fε.

More precisely, since, under Hh
0 , there is no loss of generality implied

by setting regression coefficients equal to zero and the error variance

equal to one, B samples of simulation data can be generated using y†
b =

ε
†
b, with the n elements of

ε
†
b = (ε

†
b1, . . . , ε†

bn)′,

being obtained using a random number generator that mimics the
process of drawing IID terms with CDF Gε, b = 1, . . . , B.

Simulation test statistics can then be calculated using the generated
simulation data for the dependent variable and the actual values of the
exogenous variables. The values of these test statistics are given by

BP†
b = gBP(Mε

†
b); (3.19)

G†
b = gG(Mε

†
b); (3.20)

and

W†
b = gW (Mε

†
b), (3.21)

for b = 1, . . . , B. If Gε = Fε and Hh
0 is true, the B simulation values of

any test statistic can be combined with the test statistic from the actual
data to form a simple random sample of size B + 1. The rejection rules
for Monte Carlo tests for BP, G and W are based upon the Monte Carlo
p-values defined by

MCPVBP =
∑B

b=1 1
(
BP†

b ≥ BP
)

+ 1

B + 1
,
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MCPVG =
∑B

b=1 1
(
G†

b ≥ G
)

+ 1

B + 1
,

and

MCPVW =
∑B

b=1 1
(
W†

b ≥ W
)

+ 1

B + 1
,

respectively. For each test statistic, the null hypothesis of homoskedas-
ticity is rejected if the Monte Carlo p-value is less than or equal to the
desired significance level, denoted by αd . Under regularity conditions
provided in Dufour et al. (2004), which include the requirement that
the specified CDF Gε is correct, this rule provides an exact test of Hh

0
when αd (B + 1) is an integer.

Godfrey et al. consider the robustness of Monte Carlo tests for het-
eroskedasticity when an incorrect CDF has been assumed, that is, Gε �=
Fε; see Godfrey et al. (2006, section 2.3). They base their investigation
on the general approach to asymptotic analysis which is used in Beran
(1988) and come to the following conclusions about Monte Carlo tests
of Hh

0 :

1. if the test statistic is not asymptotically pivotal, the Monte Carlo
test derived using the wrong CDF for the error distribution has
an ERP which is O(1) and therefore delivers asymptotically invalid
inferences; and

2. if the test statistic is asymptotically pivotal, the Monte Carlo test
derived using the wrong CDF for the error distribution is asymptoti-
cally valid and has an ERP which is of the same order in n as the test
using asymptotically valid critical values.

Thus, in the case of White’s direct test statistic, which is an asymp-
totic pivot, a Monte Carlo test with Gε �= Fε has the correct asymptotic
significance level, but enjoys no refinement relative to the asymptotic
test that uses critical values from the χ2(r) distribution. The asymptotic
significance levels of Monte Carlo versions of Breusch-Pagan and Gle-
jser tests are not, in general, equal to the desired value when Gε �= Fε.
Godfrey et al. use asymptotic theory to illustrate this lack of robustness,
using the example of the Breusch-Pagan test; see Godfrey et al. (2006, pp.
83–84). They show that, if the kurtosis implied by Fε is smaller (respec-
tively, larger) than that implied by Gε, then, under homoskedasticity,
the Monte Carlo version of the Breusch-Pagan test procedure will yield
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asymptotic rejection probabilities which are smaller (respectively, larger)
than the desired significance level αd .

3.3.2. Bootstrap tests for heteroskedasticity

As an alternative to the Monte Carlo approach, simulation-based tests for
heteroskedasticity can be conducted using a nonparametric bootstrap
procedure. The results in Beran (1988) indicate that, corresponding to
conclusions 1 and 2 of the previous subsection on Monte Carlo tests,
bootstrap methods have the following characteristics:

1. if the test statistic is not asymptotically pivotal, the nonparametric
bootstrap test of Hh

0 is asymptotically valid and has an ERP which is
of the same order in n as that of the procedure that uses critical values
from the limit null distribution; and

2. if the test statistic is asymptotically pivotal, the nonparametric boot-
strap test of Hh

0 is asymptotically valid and has an ERP which is of
smaller order in n than that of the procedure that uses critical values
from the limit null distribution.

Comparisons of the properties of Monte Carlo and nonparametric
bootstrap tests when Gε �= Fε indicates that the former are inferior to
the latter in terms of asymptotic properties. It is, therefore, important
not to use Monte Carlo tests, rather than bootstrap tests, unless there is
very precise information about the error distribution or this distribution
is specified as part of the hypothesis under test.

Nonparametric bootstrap tests for heteroskedasticity can be carried out
using OLS results. Bootstrap conditional mean values are set equal to the
OLS predicted values from actual data and bootstrap world errors are
obtained by resampling either the actual OLS residuals or some trans-
formations of these residuals; see (2.27), (2.30), (2.31) and (2.32) in
Chapter 2. Thus the B bootstrap samples of size n can be generated from

y∗
bi = x′

iβ̂ + u∗
bi, i = 1, . . . , n,

where u∗
b1, u∗

b2, . . . , u∗
bn is a random sample drawn, with replacement,

from an asymptotically valid OLS residual-based EDF. If (3.1) does not
have an intercept term, the OLS residuals must be recentred before they
are used in a resampling scheme.

Bootstrap test statistics BP∗
b , G∗

b and W∗
b , b = 1, . . . , B, can then be cal-

culated and the p-values of the corresponding actual test statistics can be
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estimated by

BSPVBP =
∑B

b=1 1
(
BP∗

b ≥ BP
)

B
,

BSPVG =
∑B

b=1 1
(
G∗

b ≥ G
)

B
,

and

BSPVW =
∑B

b=1 1
(
W∗

b ≥ W
)

B
,

respectively. The null hypothesis of homoskedasticity is then rejected
when BSPVτ ≤ αd , where αd is the desired significance level, τ =
BP, G, W . If this rule leads to bootstrap tests that have finite sample sig-
nificance levels that are close to desired values, there is little incentive to
risk using the Monte Carlo approach.

3.3.3. Simulation experiments and tests for heteroskedasticity

Simulation evidence on the relative merits of asymptotic, bootstrap and
Monte Carlo tests for heteroskedasticity in finite samples can be obtained
using the designs of the experiments reported in Dufour et al. (2004). In
these experiments, the simulation data generation process, under Hh

0 ,
can be written as

yi =
6∑

j=1

xijβj + ui, ui IID(0, σ2), i = 1, . . . , n, (3.22)

in which: xi1 = 1 for all i, so that β1 is an intercept term; without
loss of generality, βj = 1 for all j; and n = 50, 100. The regressor val-
ues xi2, . . . , xi6 are independent drawings from the uniform distribution
U(0, 10) for i = 1, . . . , n.

The specification of regression model coefficients, together with the
regressor values, allows the calculation of conditional mean values
E(yi|xi), i = 1, . . . , n. The addition of a pseudo-random error to this
value of E(yi|xi) gives an artificial observation. The random number gen-
erators used to obtain errors correspond to the following distributions:
Normal; Student t(5); and χ2(2). Monte Carlo tests are derived using each
of these three error distributions and also the Uniform and Lognormal
distributions.
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Having combined errors and means to obtain an artificial sample of
n observations, (3.22) can be estimated by OLS and tests can be carried
out. When Monte Carlo test techniques are employed, 399 Monte Carlo
samples are generated for each of the five possible error distributions.
Thus, for any given correct choice of the error distribution, there are also
four incorrect models being used. As an alternative to using a parametric
approach, the nonparametric bootstrap is implemented, as in Godfrey
and Orme (1999), with 400 bootstrap samples. When implementing the
nonparametric bootstrap, bootstrap errors are drawn as random samples,
with replacement, from

F̂BS : probability
1
n

on

 ûi√
(1 − hii)

− 1
n

n∑
j=1

ûj√
(1 − hjj)

 , i = 1, . . . , n,

which corresponds to (2.32) of Chapter 2; see Davison and Hinkley
(1997, page 275).

As is clear from (3.13) and (3.14), researchers wishing to use either
Breusch-Pagan or Glejser statistics must choose a set of exogenous test
variables zij. The version of the Breusch-Pagan statistic which is used
in the experiments is computed using xi2, . . . , xi6 from (3.22) for this
purpose. This statistic is denoted by BPx. When the error terms εt are
IID and Normally distributed, BPx is asymptotically distributed as χ2(5).
When the error terms εt are IID, but not Normally distributed, BPx is
not, in general, asymptotically distributed as χ2(5); see Godfrey and
Orme (1999, p. 174).

Following Dufour et al. (2004), the statistic for the Glejser test used
here is the conventional F-statistic for testing that all slope coefficients
equal zero in the artificial regression of |ût | on the regressors of (3.22).
The test statistic is denoted by Gx. Since it has a limit null distribution
that depends upon characteristics of the error distribution, Gx is not
asymptotically pivotal. The results in Godfrey (1996) imply that, if the
null hypothesis is true and the errors have a symmetric distribution, Gx
is asymptotically distributed as χ2(5)/5; so that critical values from the
F(5, n − 6) distribution are asymptotically valid.

Given the form of (3.22), application of White’s direct test would
involve appealing to asymptotic theory to justify using critical values
from a χ2(20) distribution; see White (1980, section 3). In practical sit-
uations, it seems reasonable to try to ensure that orders of magnitude in
the relevant asymptotic theory have some connection with the actual
values implied by the data. In White’s asymptotic analysis, r is fixed and
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so r/n → 0 as n → ∞. Consequently, r/n should be small if appeal is to
be made to this analysis. In the experiments, r = 20 and the sample sizes
are n = 50 and n = 100. It seems useful to reduce the number of restric-
tions being tested. A modification of White’s test is, therefore, examined.
The modified version of White’s test uses only the nonredundant levels
and squares of regressors in (3.1) as the regressors of the artificial model
(3.15). The asymptotic critical values for the modified test are, there-
fore, taken from the χ2(10) distribution when data are generated by
(3.22). The test statistic for this modification of the direct test is denoted
by Wm.

Tables 3.1 to 3.3 contain representative samples of the results that
are reported in Godfrey et al. (2006). In these tables, the desired sig-
nificance level for all of the tests is set to 0.05, in other words, 5 per
cent, as in the experiments in Dufour et al. (2004). Estimates of rejec-
tion probabilities are derived from 25,000 replications. The tests consist
of “standard” versions, as well as bootstrap and Monte Carlo proce-
dures. In “standard” tests, critical values for BPx, Gx and Wm are taken
from the χ2(5), F(5, n − 6) and χ2(10) distributions, respectively, as
would be suggested by a conventional textbook treatment. The boot-
strap tests, denoted by BSPV , use the bootstrap p-value calculated using
400 bootstrap samples. The Monte Carlo tests combine the actual value
of each test statistic with 399 corresponding artificial values so that
0.05 × (399 + 1) is an integer, as required for an exact test. The nota-
tion for Monte Carlo tests is that MC|Normal denotes the test with an
assumed CDF Gε derived by standardizing a Normal distribution, with
the other tests being defined using the same general notation. In each of
the three tables of results, the estimates for the Monte Carlo test based
upon the correct assumed error CDF are given in bold font.

In Table 3.1, the true error distribution is Normal and is, therefore,
symmetric. It follows that all standard tests are asymptotically valid for
the cases of Table 3.1. Asymptotic critical values give quite good control
of finite sample significance levels for BPx and Gx, but provide a poorer
approximation for Wm. This feature of the results may reflect the fact that
the modified White check Wm tests 10 restrictions, whereas the other
two procedures only test 5 restrictions. The corresponding bootstrap tests
work quite well, although the estimates for the bootstrap Breusch-Pagan
test suggest that it is a little undersized. The first row of estimates for a
Monte Carlo test corresponds to the correct choice of CDF and, in this
case, the Monte Carlo test is exact, with estimates that are close to the
desired level. However, the remaining results for Monte Carlo tests show
the consequences of using the wrong error CDF.
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The test statistics BPx and Gx are not asymptotically pivotal and so
Monte Carlo tests that use an incorrect CDF are not, in general, asymp-
totically valid; see Godfrey et al. (2006). The last four rows of results in
Table 3.1 indicate how rejection rates may be far too low or far too high
when an inappropriate Monte Carlo approach is applied to BPx, which
is not asymptotically distributed as χ2 under any of the false Monte
Carlo error distributions. The discussion in Godfrey et al. (2006, pp.
83–84) concerning the properties of inappropriate Monte Carlo tests of
the Breusch-Pagan statistic is pertinent. Results for Monte Carlo tests
using the Glejser statistic Gx and an incorrect distribution depend upon
whether or not the false distribution is symmetric. If the true distribu-
tion is symmetric, as it is for Table 3.1, picking a different symmetric
error distribution has asymptotically negligible effects on the rejection
probability for Gx; see Godfrey (1996). However, using an asymmetric
distribution to carry out a Monte Carlo test will produce rejection rates
that do not converge to desired levels. These predictions are borne out
by the estimates in Table 3.1: t(5) and uniform errors yield estimates
close to 5 per cent, but χ2(2) and lognormal distributions in Monte
Carlo schemes lead to substantial under-rejection. The estimates of Table
3.1 also show that, with the asymptotically pivotal statistic Wm, the
Monte Carlo approach is much more robust to incorrect choice of error
CDF, which is consistent with the asymptotic analysis of Godfrey et
al. (2006). However, the inappropriate Monte Carlo tests based upon
Wm do not, in general, match the performance of the corresponding
bootstrap test.

The symmetric standardized t(5) distribution is used to produce the
errors in the experiments that yield the estimates of Table 3.2. In contrast

Table 3.1 Estimates of rejection probabilities of standard, Monte Carlo and
nonparametric bootstrap tests for heteroskedasticity: true error CDF is from
standardized Normal and αd = 5 per cent

n = 50 n = 100

Test BPx Gx Wm BPx Gx Wm

Standard 4.77 5.30 3.48 5.02 5.28 4.22
BSPV 3.79 4.63 5.03 4.83 5.04 5.40
MC|Normal 5.12 4.88 5.07 5.02 5.07 5.13
MC|t(5) 0.09 4.78 4.81 0.00 4.95 5.19
MC|uniform 27.15 4.81 4.85 36.43 4.97 4.87
MC|χ2(2) 0.00 0.59 3.36 0.00 0.32 4.17
MC|lognormal 0.00 0.29 3.24 0.00 0.17 4.15
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to Table 3.1, the standard form of the Breusch-Pagan test is no longer
asymptotically valid and the estimates indicate that the true rejection
probability is much greater than the desired value when critical values are
taken from the χ2(5) distribution. The Glejser and White test based upon
Gx and Wm are both asymptotically valid under the t(5) distribution.
Asymptotic critical values, however, do not seem to give very accurate
approximations. The estimates for the standard test using Gx are a little
too high, while those for the standard version based upon Wm are too
low. As anticipated, the performance of the asymptotically valid tests is
better for n = 100 than for n = 50.

Using the bootstrap, rather than invalid asymptotic critical values,
with BPx gives much better agreement between estimates and the desired
level; but, since BPx is not asymptotically pivotal, the bootstrap enjoys no
refinement relative to the correct asymptotic test, see Beran (1988). The
bootstrap works better with Gx and Wm, giving good agreement between
estimated and desired significance levels. The estimated rejection rates
for bootstrap versions of Gx and Wm are all in the range αd ± 0.1αd .

The evidence in Table 3.2 concerning the behaviour of correct and
incorrect Monte Carlo tests is similar to that provided by Table 3.1 and is
consistent with the predictions of the asymptotic analysis in Godfrey et
al. (2006). First, inappropriate Monte Carlo tests of BPx produce estimates
in the range 0.13 per cent to 68.58 per cent. Second, the consequences of
using the wrong symmetric distribution with the Glejser test are much
less serious than those of employing an asymmetric distribution to gen-
erate data for the Monte Carlo samples. Third, Monte Carlo tests of Wm
are asymptotically valid, whatever the choice of CDF, but overall their
finite sample behaviour is not as good as that of the bootstrap check.

Table 3.2 Estimates of rejection probabilities of standard, Monte Carlo and
nonparametric bootstrap tests for heteroskedasticity: true error CDF is from
standardized t(5) and αd = 5 per cent

n = 50 n = 100

Test BPx Gx Wm BPx Gx Wm

Standard 22.94 5.77 3.74 31.84 5.46 4.27
BSPV 7.11 4.84 5.18 6.24 4.84 5.13
MC|Normal 23.66 5.45 5.35 31.92 5.23 5.14
MC|t(5) 5.04 5.18 5.16 5.34 5.16 5.03
MC|uniform 52.13 5.14 5.25 68.58 5.07 4.94
MC|χ2(2) 2.38 0.60 3.58 2.83 0.38 4.24
MC|lognormal 0.16 0.35 3.48 0.13 0.14 4.23
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Table 3.3 contains the estimates when errors are linear transforma-
tions of IID χ2(2) variables and so have a heavily skewed distribution.
The only standard test that is asymptotically valid under the error dis-
tribution for Table 3.3 is Wm. The standard versions of BPx and Gx
appear to have excessively high rejection probabilities. The nonparamet-
ric bootstrap is only moderately successful in eliminating the problem for
these well-known tests, which use statistics that are not asymptotically
pivotal.

The estimates for MC|χ2(2) reflect the fact that it is exactly valid for
all three statistics in the cases of Table 3.3. As in Tables 3.1 and 3.2, the
use of the wrong error distribution to derive the Monte Carlo p-value
of BPx leads to estimates that are far from the desired value of 5 per
cent: the relevant ranges of estimates in Table 3.3 are 0.15 per cent to
71.82 per cent for n = 50 and 0.02 per cent to 84.06 per cent for n =
100. When used with Gx in models with asymmetric errors, Monte Carlo
tests that are based upon the wrong assumption about the form of the
distribution are not, in general, asymptotically valid. The estimates for
Gx in Table 3.3 provide very clear examples of the lack of robustness. As
in Tables 3.1 and 3.2, inappropriate Monte Carlo schemes provide much
closer agreement with the desired level when used with the asymptotic
pivot Wm.

The results of Tables 3.1 to 3.3 provide information about the
behaviour of Monte Carlo and bootstrap methods, both of which can be
used to replace asymptotic critical values when testing for heteroskedas-
ticity. The relative merits of these two simulation-based approaches
depend upon the properties of the test statistic that is being used to check

Table 3.3 Estimates of rejection probabilities of standard, Monte Carlo and
nonparametric bootstrap tests for heteroskedasticity: true error CDF is from
standardized χ2(2) and αd = 5 per cent

n = 50 n = 100

Test BPx Gx Wm BPx Gx Wm

Standard 41.13 21.11 5.02 53.32 24.10 5.02
BSPV 11.62 10.27 5.90 9.02 8.44 5.17
MC|Normal 41.85 20.19 7.06 53.28 23.63 5.92
MC|t(5) 10.70 19.49 6.74 10.60 23.24 5.81
MC|uniform 71.82 19.40 6.76 84.06 23.32 5.69
MC|χ2(2) 4.78 4.63 4.97 4.94 4.86 4.86
MC|lognormal 0.15 3.04 4.84 0.02 2.88 5.08
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for heteroskedasticity and the validity of the fixed error distribution that
underpins the generation of Monte Carlo samples.

If the test statistic is exactly pivotal, the Monte Carlo approach offers
the opportunity to have perfect control of finite sample significance lev-
els. However, if the Monte Carlo data generation process is based upon
the wrong assumption about the error distribution, the finite sample
significance level will not equal the desired level and it will only tend
to the desired value, as n −→ ∞, if the test statistic is an asymptotic
pivot. But, if the test statistic is an asymptotic pivot, the nonparamet-
ric bootstrap test is not only asymptotically valid but also enjoys an
asymptotic refinement relative to an asymptotically valid Monte Carlo
test that uses the wrong error CDF. Moreover, unlike a Monte Carlo
test derived with the wrong error CDF, the nonparametric bootstrap test
remains asymptotically valid when the test statistic is not an asymptotic
pivot.

The evidence from the simulation experiments gives cause for real
concern about the robustness of Monte Carlo methods. Given the uncer-
tainty about the error distribution that is probably typical of applied
work, it could be argued that Monte Carlo tests should only be used
when the form of the error CDF is specified by the null hypothesis. The
inclusion of the specification of the distribution in the null hypothesis
is not common and seems to run counter to the persuasive arguments
in Hansen (1999) about the role of distributional assumptions in mod-
ern econometrics. The remaining sections will, therefore, be restricted to
discussions of nonparametric bootstrap tests and their implementation.
An issue of interest in the implementation of such tests is the choice
between restricted and unrestricted estimation when obtaining values
for bootstrap world parameters from actual sample estimates. This issue
will be considered first in the familiar context of the textbook F-test of
linear coefficient restrictions.

3.4. Bootstrapping F tests of linear coefficient restrictions

3.4.1. Regression models with strictly exogenous regressors

It is very often the case that the unrestricted model of the alterna-
tive hypothesis can be written as (3.1), with the null hypothesis to be
tested being that the regression coefficients satisfy a set of exact linear
restrictions. In such a case, the null hypothesis is of the general form

H0 : Rβ = r, (3.23)
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in which R and r have elements that are known constants, with R being
q × k and r being q × 1, q ≤ k. There are no redundant restrictions in the
null hypothesis, so that R has rank equal to q. The unrestricted OLS esti-
mator for the alternative model (3.1) is denoted by β̂. The restricted least
squares estimator that satisfies H0 is denoted by β̃. The n-dimensional
restricted and unrestricted residual vectors are denoted by ũ and û,
respectively. These residual vectors are used to obtain the residual sum of
squares functions that define the F statistic for testing H0; see equation
(1.20).

Now it is well-known that

β̂ = β + (
X′X

)−1 X′u, (3.24)

and, from results contained in Greene (2008, section 5.3.2),

β̃ = β +
(

Ik − (
X′X

)−1 R′ [R (
X′X

)−1 R′]−1
R
) (

X′X
)−1 X′u, (3.25)

when H0 is true. It follows that, given the value of X, both estimators
differ from the true value by a vector of linear combinations of the errors
if (3.23) is valid. Consequently, when the errors of u are IID with an
unknown distribution and H0 is true, the finite sample distributions
of β̂ and β̃, conditional upon X, are unknown. Results for inference
using standard distributions must, therefore, be derived using asymptotic
theory.

It will be assumed in what follows that F tests of null hypotheses of the
form (3.23) are asymptotically valid. General conditions for the asymp-
totic Normality of least squares estimators and the asymptotic validity
of F tests of hypotheses like (3.23) have been provided in the statistics
literature; see, for example, Arnold (1980) and Lai and Wei (1982). It
is also assumed that bootstrapping the F-statistic yields an asymptoti-
cally valid test. Results on the convergence of bootstrap distributions to
the required limits are available; see, for example, Freedman (1981) and
Mammen (1992).

The general form of the F statistic for testing (3.23) is given by (1.20)
of Chapter 1,

F = RSS(H0) − RSS(H1)

RSS(H1)
· df (H1)

q
,
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in which RSS denotes a sum of squared residuals and df (H1) is the number
of degrees of freedom, given here by n − k. It will be useful to note that

RSS(H0) − RSS(H1) =
(
Rβ̂ − r

)′ [
R
(
X′X

)−1 R′]−1 (
Rβ̂ − r

)
;

so that the F statistic can be rewritten as

F =
(
Rβ̂ − r

)′ [
R
(
X′X

)−1 R′]−1 (
Rβ̂ − r

)
RSS(H1)

· df (H1)

q
. (3.26)

The limit null distribution of F is χ2(q)/q, but many applied workers
would probably use the asymptotically valid method of taking critical
values from the F(q, df (H1)) distribution. The application of nonpara-
metric bootstrap techniques to the problem of implementing the F test
is now considered.

In the nonparametric bootstrap approach, an artificial counterpart of
the assumed actual DGP is used to study the sampling distribution of
the test statistic. The assumed statistical model for the actual data has a
parameter vector θ ′ = (β ′, F), where F is the CDF for the error distribu-
tion and has mean equal to zero and variance equal to σ2, 0 < σ2 < ∞.
The DGP for the bootstrap world is obtained, conditional upon the
observed sample, by replacing θ by a consistent estimator θ̈ . The vector
θ̈ is derived by combining an estimator of β and an estimator of F . As
explained in Chapter 2, the latter estimator is obtained from the empir-
ical distribution function (EDF) of residuals. Thus, conditional upon
S = (y, X), the bootstrap DGP can be written as

y∗ = Xβ̈ + u∗, (3.27)

in which u∗ contains IID errors that have a common CDF F̈ given by
the EDF for a set of residuals üi, that is,

F̈ : probability
1
n

on üi, i = 1, . . . , n.

This specification of F̈ is based upon the assumption that the residuals
üi sum to zero and, if this were not true, mean-adjustment would be
required.

When H0 is true, β̃ and β̂ are both
√

n-consistent for β and so either
could be used for β̈. Similarly, under H0, F̈ can be the EDF for either
restricted or unrestricted residuals. Let F̃ and F̂ denote the EDFs of
restricted and unrestricted residuals, respectively. The use of one of these
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EDFs for F̈ implies that the corresponding residuals will be resampled
randomly, with replacement, to serve as bootstrap world errors. As men-
tioned above, it is required that the errors of (3.27), like the errors of (3.1),
have a population mean equal to zero. For simplicity of exposition, it is,
therefore, assumed that (3.1) contains an intercept term which is not
restricted by H0. It then follows that the sample means of restricted and
unrestricted residuals both equal zero. (Least squares residuals that did
not sum to zero over the n observations would have to be recentred by
subtracting their sample average before being used to generate bootstrap
errors.)

The bootstrap world parameter vector θ̈
′ = (β̈

′
, F̈) can be defined in var-

ious ways. Four obvious combinations are: θ̈
′
(1) = (β̃

′
, F̃); θ̈

′
(2) = (β̂

′
, F̂);

θ̈
′
(3) = (β̃

′
, F̂); and θ̈

′
(4) = (β̂

′
, F̃). The first choice uses only results from

restricted estimation of (3.1) and provides the restricted bootstrap test. The
second choice relies upon the results of unrestricted estimation of (3.1)
and gives the unrestricted bootstrap test. The remaining two choices, viz.
θ̈ (3) and θ̈ (4), combine results from both types of estimation and so give
hybrid bootstrap tests. Results that are relevant to understanding the
impact of the choice of θ̈ on bootstrap tests are given in van Giersbergen
and Kiviet (2002). These results will now be summarized.

Let the bootstrap counterparts of β̂ and β̃ be denoted by β̂
∗

and β̃
∗
,

respectively. Corresponding to (3.24), unrestricted estimators obtained
using bootstrap data y∗ generated with θ̈

′ = (β̈
′
, F̈) satisfy

β̂
∗ = β̈ + (

X′X
)−1 X′u∗, (3.28)

for both β̈ = β̃ and β̈ = β̂. However, the form of the bootstrap
counterpart of (3.25) depends on the choice for β̈. If β̈ = β̃, so that
Rβ̈ = r,

β̃
∗ = β̈ +

(
Ik − (

X′X
)−1 R′ [R (

X′X
)−1 R′]−1

R
) (

X′X
)−1 X′u∗. (3.29)

However, if β̈ = β̂, Rβ̈ �= r and the null hypothesis that is being tested
using actual data will not be true in the artificial bootstrap world. When
β̈ = β̂, (3.29) must be replaced by

β̃
∗ = β̈ + δ̈ +

(
Ik − (

X′X
)−1 R′ [R (

X′X
)−1 R′]−1

R
) (

X′X
)−1 X′u∗,

(3.30)
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in which

δ̈ = − (
X′X

)−1 R′ [R (
X′X

)−1 R′]−1 (
Rβ̂ − r

)
. (3.31)

Consequently, when the coefficients of (3.1) satisfy H0 and β̂, the unre-
stricted estimated estimator of β, is used to define θ̈ , as in θ̈ (2) and θ̈ (4),
bootstrap F test statistics of (3.23) do not have the same asymptotic dis-
tribution as the F-statistic given by (3.26). Following the suggestion for
reflecting the null hypothesis that is made in Hall and Wilson (1991),
asymptotically valid bootstrap inference with the choice β̈ = β̂ can be
obtained by using the bootstrap data to test Hu

0 : Rβ = Rβ̂, rather than
H0 : Rβ = r. With this change of null hypothesis, (3.28) and (3.29) will
both be valid when β̈ = β̂; see van Giersbergen and Kiviet (2002) for a
detailed discussion.

In fact, there is an equivalence between the F-statistic for testing
H0 : Rβ = r in bootstrap worlds defined with β̈ = β̃ and the F-statistic
for testing Hu

0 : Rβ = Rβ̂ in bootstrap worlds defined with β̈ = β̂. Let

β̂
∗

denote the unrestricted estimator for bootstrap data and RSS∗(H1)

denote the corresponding sum of squared residuals. When β̈ = β̃ and
the bootstrap-world null hypothesis is H0 : Rβ = r, the form of the boot-
strap statistic F∗ to be used to approximate the behaviour of the actual
criterion F of (3.26) is

F∗ =
(
Rβ̂

∗ − r
)′ [

R
(
X′X

)−1 R′]−1 (
Rβ̂

∗ − r
)

RSS∗(H1)
· df (H1)

q
. (3.32)

When β̈ = β̂ and the bootstrap-world null hypothesis is Hu
0 : Rβ = Rβ̂,

the corresponding bootstrap F-statistic is

F∗ =
(
Rβ̂

∗ − Rβ̂
)′ [

R
(
X′X

)−1 R′]−1 (
Rβ̂

∗ − Rβ̂
)

RSS∗(H1)
· df (H1)

q
. (3.33)

It is shown in van Giersbergen and Kiviet (2002, section 3) that these
two expressions are equivalent and both can be rewritten as

F∗ =
(
R
(
X′X

)−1 X′u∗)′ [
R
(
X′X

)−1 R′]−1 (
R
(
X′X

)−1 X′u∗)
u∗′(In − X(X′X)−1X′)u∗ · df (H1)

q
,

(3.34)
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which implies that, conditional upon X, the bootstrap distribution of
F∗ depends upon that of u∗ and various constants. Given the same real-
ization u∗, (3.32) and (3.33) yield the same value of the test statistic.
Hence, with strictly exogenous regressors, the importance of the choice
between restricted and unrestricted estimations lies in the effects of the
differences between the residual EDFs F̂ and F̃ from which bootstrap
errors are drawn.

The importance of the choice between F̂ and F̃ has been the subject of
some debate. The discussion has usually been based upon a consideration
of the asymptotic properties of the EDF functions viewed as estimators
of the true CDF F . When testing a set of linear restrictions (3.23), F̂ will,
under regularity conditions, be consistent and converge to F , whether
or not the null hypothesis is true. In contrast, the asymptotic behaviour
of F̃ does depend upon the validity of the null hypothesis. When the
null is true, F̃ will, like F̂ , be consistent. When the null is false, F̃ , unlike
F̂ , is inconsistent for F because the restricted residuals are derived using
an inconsistent estimator of β.

These results on the asymptotic properties of F̂ and F̃ as estimators of
F have led some researchers to argue for the use of unrestricted residuals
to define the bootstrap error CDF on the grounds that this choice is
likely to lead to higher power of bootstrap tests; see van Giersbergen and
Kiviet (2002). However, others have argued against this conjecture, at
least for asymptotically pivotal statistics like F of (3.26); see MacKinnon
(2002). Evidence from simulation experiments on the relative merits of
bootstrap tests derived from F̂ and F̃ is discussed below. As will be seen,
there seems little incentive not to use the restricted estimation version
F̃ . It is also convenient to use β̃ for β̈ since it is then valid to use the
same null hypothesis for both actual data and artificial bootstrap data.

Consequently, in what follows, the parameter vector used to define
the bootstrap world will usually be taken to be the restricted estimation
vector θ̈

′
(1) = (β̃

′
, F̃). More precisely, the basic form of the bootstrap

DGP is

y∗ = Xβ̃ + u∗, (3.35)

where u∗′ = (u∗
1, . . . , u∗

n) is obtained by random sampling, with replace-
ment, from

F̃ : probability
1
n

on ũi, i = 1, . . . , n. (3.36)

If the restricted residuals did not sum to zero, they would have to be
recentred before being used in (3.36). Also (3.36) could be replaced by
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some asymptotically valid variant obtained by modifying the restricted
residuals using either the degrees-of-freedom adjustment or the lever-
age adjustment discussed in Chapter 2; see (2.31) and (2.32) for the
corresponding expressions for unrestricted residuals.

The data process defined by (3.35) and (3.36) can be used to generate B
samples of data, denoted by y∗

b, b = 1, . . . , B. The value of the statistic F∗
for testing (3.23) can be calculated from each of these bootstrap samples.
These calculations provide a reference set (F∗

1, . . . , F∗
B), with which the

statistical significance of the actual-data statistic F can be assessed. Thus,
using (2.12) of Chapter 2, the bootstrap p-value is computed as

BSPVF = #(F∗
b ≥ F)

B
, (3.37)

and the restrictions of (3.23) are judged to be data-inconsistent when
BSPVF ≤ αd , where αd denotes the desired significance level.

An example: resampling restricted and unrestricted residuals

It is possible to illustrate the above results by considering a special case
in which q = k and the null hypothesis to be tested using actual data
is G0 : β = 0k. For this special case, β̂, as before, satisfies (3.24) and
β̃ = 0k. These two vectors are alternative choices for β̈ when defining
the parameter vector for the bootstrap data process.

If it is decided to set β̈ = β̂, bootstrap data are generated using

y∗ = Xβ̂ + u∗,

and the bootstrap counterpart of (3.24) is

β̂
∗ = β̂ + (

X′X
)−1 X′u∗. (3.38)

Given that the unrestricted (alternative hypothesis) estimator of β is used
to define the bootstrap DGP, the null hypothesis in the bootstrap world
is Gu

0 : β = β̂, not G0 : β = 0k. With Gu
0 under test, the bootstrap F

statistic checks the joint significance of the elements of β̂
∗ − β̂, where β̂

∗

is defined by (3.38). This F statistic is given by

F∗ =
(
β̂

∗ − β̂
)′ (

X′X
) (

β̂
∗ − β̂

)
u∗′(In − X(X′X)−1X′)u∗ · n − k

k

=
(
X′u∗)′ (X′X

)−1 X′u∗

u∗′(In − X(X′X)−1X′)u∗ · n − k
k

; (3.39)

from (3.34).
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Suppose next that the restricted estimator of β is employed to define
the bootstrap DGP, so the artificial data are generated by

y∗ = u∗,

using Xβ̃ = X(0k) = 0n. With this bootstrap DGP, the bootstrap
counterpart of (3.24) is

β̂
∗ = (

X′X
)−1 X′u∗. (3.40)

With the choice β̈ = β̃ = 0k for the bootstrap data process parameter
vector, the null hypothesis to be tested is left in its original form, that
is, G0 : β = 0k. The test of the joint significance of the elements of β̂

∗
,

given in (3.40), is based upon the F statistic

F∗ = β̂
∗′ (X′X

)
β̂

∗

u∗′(In − X(X′X)−1X′)u∗ · n − k
k

=
(
X′u∗)′ (X′X

)−1 X′u∗

u∗′(In − X(X′X)−1X′)u∗ · n − k
k

. (3.41)

It is clear from (3.39) and (3.41) that, given the same set of bootstrap
errors u∗, the two approaches will produce the same test statistic.

Turning to the choice of the EDF from which the elements of u∗ are
to be drawn, F̂ and F̃ are defined in this example by

F̂ : probability
1
n

on ûi, i = 1, . . . , n,

in which ûi is a typical element of the unrestricted residual vector,

û = (In − X(X′X)−1X′)y = (In − X(X′X)−1X′)u,

whatever the value of β, and

F̃ : probability
1
n

on yi − ȳ, i = 1, . . . , n,

since β̃ = 0k implies that the restricted residual vector is ũ = y, which
must be recentred before bootstrap errors are obtained. When G0 : β = 0k
is true, F̂ and F̃ are derived from terms that differ from the corresponding
errors by asymptotically negligible terms. If, however, G0 : β = 0k is
false, F̂ will tend to the true CDF F , given the consistency of β̂, but
F̃ will not because it is based upon an incorrect fixed value of β when
β �= 0k.
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3.4.2. Stable dynamic regression models

In addition to examining static regression models with strictly exogenous
regressors, van Giersbergen and Kiviet also discuss stable dynamic regres-
sion models of the type for which bootstrap schemes were discussed in
Section 2.3.3; see van Giersbergen and Kiviet (2002, section 4). Using the
subscript t to denote a typical time series observation, a stable dynamic
regression equation can be written as in (2.35) of Chapter 2,

yt = y′
t(p)α + x′

tβ + ut = w′
tγ + ut , t = 1, . . . , n, (3.42)

in which y′
t(p)

= (yt−1, . . . , yt−p), p ≥ 1, w′
t = (y′

t(p)
, x′

t ), γ ′ = (α′, β ′) and
the errors ut are IID with zero mean, finite positive variance and CDF F .
Suppose that the null hypothesis to be tested in model (3.42) consists of
the qγ linear restrictions

Hγ : Rγ γ = rγ , (3.43)

in which Rγ is a qγ × (p + k) matrix with elements that are known
constants and rγ is a qγ -dimensional vector of known constants.

Even if the errors of (3.42) were NID(0, σ2), the usual F-test of Hγ

carried out after restricted and unrestricted estimation would only be
asymptotically valid, given the inclusion of lagged dependent vari-
ables in the regressor set. The results in Freedman (1984) indicate that,
under regularity conditions, bootstrap methods are asymptotically valid.
(Freedman considers bootstrapping the two-stage least squares estimator
in dynamic linear models, but this estimator includes OLS as a special
case.)

The implementation of a bootstrap approach to testing Hγ , as an
alternative to using asymptotic critical values, is straightforward. Given
estimators α̈ and β̈ that are consistent when Hγ is true, an autoregres-
sive (recursive) simulation scheme, as defined by (2.36) in Chapter 2,
can be used to generate B artificial samples of size n. With the strictly
exogenous terms xt held constant, the bootstrap observations for the
dependent variable are generated by

y∗
bt = y∗′

bt(p)
α̈ + x′

t β̈ + u∗
bt , t = 1, . . . , n, (3.44)

in which actual data from (y0, . . . , y1−p) are used as the required start-up
values and the error terms (u∗

bt ; t = 1, . . . , n) are obtained by random
sampling, with replacement, from the EDF of the residuals associated
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with α̈ and β̈, in other words, from

F̈ : probability
1
n

on üt , t = 1, . . . , n. (3.45)

For each of the generated bootstrap samples, the value of the relevant
F-statistic, denoted by F∗

b , b = 1, .., B, can be calculated and the full set
of such statistics is then used, as in (3.37), to assess the strength of the
evidence against Hγ that is provided by the value of F computed from
the actual data.

Asymptotically valid bootstrap tests can be derived by using either the
restricted estimate, or the unrestricted estimate, of γ from (3.42) to define
the bootstrap DGP of (3.44) and (3.45), provided that the bootstrap world
null hypothesis is redefined to be

Hu
γ : Rγ γ = Rγ γ̂

when the unrestricted estimate γ̂ = (α̂′, β̂ ′
)′ is used. However, the equiva-

lence established for models in which all regressors are strictly exogenous
does not hold for dynamic models and the finite sample behaviour of
tests can be strongly influenced by the choice between restricted and
unrestricted estimation; see van Giersbergen and Kiviet (2002). On the
basis of their results from simulation experiments, van Giersbergen and
Kiviet conclude that the use of restricted estimates is to be preferred in
dynamic models because unrestricted estimates suffer from problems of
variability. Additional results on the importance of the choice between
restricted and unrestricted estimation when defining bootstrap schemes
can be obtained using experiments described in Section 1.5.1, in which
the finite sample behaviour of asymptotically valid F tests was examined.

3.4.3. Some simulation evidence concerning asymptotic and
bootstrap F tests

First, consider behaviour of tests under the null hypothesis. Whether
the regression model is static or dynamic, the F statistic for testing a
set of linear restrictions on regression coefficients has a known asymp-
totic distribution when those restrictions are valid, that is, the F statistic
is asymptotically pivotal, under standard regularity conditions. Conse-
quently the results in Beran (1988) indicate that a valid bootstrap test
will have a smaller order of ERP than the asymptotic test. However, the
evidence that was reported in Section 1.5.1 suggests that the asymptotic
test, using critical values from the appropriate F distribution, can have
estimated significance levels that are quite close to the desired levels.
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Hence there may not be much scope for improvement when bootstrap
versions of the F test are employed.

Second, suppose that experiments are conducted in which the null
hypothesis is false. If asymptotic and bootstrap tests all have estimated
significance levels that are close to the desired level, it will be possible to
make empirically relevant comparisons of rejection frequencies obtained
under the alternative hypothesis; see the comments in Horowitz and
Savin (2000). In addition to the comparison of asymptotic and bootstrap
tests, there is interest in two questions related to the implementation of
bootstrap tests when the null hypothesis is untrue:

• What evidence is there about the link between the number of
bootstrap samples and the power of bootstrap tests?

• What evidence is there to guide the choice between restricted and
unrestricted residuals when defining the CDF of the error distribution
for the bootstrap DGP?

Simulation results that are pertinent to these two questions and to the
issue of the relative merits of asymptotic and various bootstrap tests can
be obtained using the experimental designs described in Section 1.5.1.
Consider the problem of testing the log-log estimating equation for
a Cobb-Douglas model against the translog model. The unrestricted
(alternative) model is

yi = β1 + β2xi2 + β3xi3 + β4x2
i2 + β5xi2xi3 + β6x2

i3 + ui, (3.46)

and the null hypothesis is H0 : β4 = β5 = β6 = 0, which implies that the
restricted model is

yi = β1 + β2xi2 + β3xi3 + ui, (3.47)

with the errors being IID with CDF F and the variables of both mod-
els being as defined in Section 1.5.1. The real world data for the
dependent variable and regressors in Greene (2008) are used to obtain
b̂ = (b̂1, b̂2, b̂3, b̂4, b̂5, b̂6)′, the unrestricted OLS estimate for the model
(3.46), and b̃ = (b̃1, b̃2, b̃3, 0, 0, 0)′, the corresponding restricted estimate.
(The sub-vector (b̃1, b̃2, b̃3), therefore, contains the estimates derived by
applying OLS to the null model (3.47), using the actual data.)

Six simulation experiments are used, each of which has, like the
original data series in Greene (2008), n = 27 as the sample size. Data
generation processes are regression models with the same general form
as either (3.46) or (3.47). The actual (real world) data in Greene (2008) are
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used to supply the fixed regressor matrices of unrestricted and restricted
models. Given these regressor matrices, it only remains to specify the
parameter vector θ ′[e] = (β ′[e], F[e]) for experiment e, e = 1, . . . , 6. The null
hypothesis is true in three of the six designs for simulation experiments,
which have parameter vectors:

θ ′
[1] = (b̃

′
, F[1]), θ ′

[2] = (b̃
′
, F[2]) and θ ′

[3] = (b̃
′
, F[3]),

in which F[1], F[2] and F[3] are the CDFs implied by using standard-
ized drawings from Normal, t(5) and χ2(2) distributions, respectively. As
explained in Section 1.5.1, there is no loss of generality implied either
by setting the error variance σ2[e] equal to unity or by using the restricted

estimate b̃ as β[e], when the data process satisfies the null hypothesis.
The three simulation experiments in which the null hypothesis is false

are defined by the parameter vectors:

θ ′[4] = (b̂
′
, F[4]), θ ′[5] = (b̂

′
, F[5]) and θ ′

[6] = (b̂
′
, F[6]),

in which F[4], F[5] and F[6] are the CDFs implied by applying selected
linear transformations to drawings from Normal, t(5) and χ2(2) distri-
butions, respectively. The linear transformations are designed to yield
errors with a zero mean and a variance such that power estimates are in
an interesting range: neither too close to zero nor too close to one. These
linear transformations are selected by trial and error in the simulation
experiments.

Thus the data generation processes for the simulation experiments can
be written as

y[e] = Xβ[e] + u[e], (3.48)

in which the 27 elements of u[e] are IID with CDF F[e], e = 1, . . . , 6. In
the standard jargon of simulation studies, the number of replications
used to estimate rejection probabilities of the tests is R = 25,000. Hence,
for each of the simulation data generation schemes considered, 25,000
samples of data, each with 27 observations, are generated according to

y[e,r] = Xβ[e] + u[e,r], (3.49)

with u[e,r] being a vector containing a simple random sample of 27
drawings from F[e], for r = 1, . . . , 25,000.

Each realization from (3.49) can be used to calculate restricted and
unrestricted estimates of β[e], denoted by β̃[e,r] and β̂[e,r], with associ-
ated residual vectors ũ[e,r] and û[e,r]. The implied F-statistic for testing
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H0 : β4 = β5 = β6 = 0 is denoted by F[e,r]. An asymptotic test can be
obtained by comparing F[e,r] with desired critical values of the F(3, 21)

distribution.
In the bootstrap-based alternative to the asymptotic test, the results

obtained by estimating (3.49) are now employed to define a bootstrap
data generation process from which B samples of bootstrap data are
generated. Consequently the bootstrap counterpart of (3.49) is

y∗
[e,r,b] = Xβ∗[e,r] + u∗

[e,r,b], (3.50)

for b = 1, . . . , B. As explained below, the 27 error terms of u∗
[e,r,b] are

obtained by resampling (possibly modified) residuals from estimation
of (3.49). There are two values of B, B = 400 and B = 1,000, both of
which are combined with six parameter vectors, denoted by θ∗′

[e,r,j] =(
β∗′[e,r], F∗

[e,r,j]
)
, j = 1, . . . , 6, with the terms F∗

[e,r,j] each denoting an EDF

derived from residuals calculated by estimating (3.49).
When setting up the bootstrap worlds, the null hypothesis is reflected

by using β∗[e,r] = β̃[e,r] in all vectors θ∗
[e,r,j], that is, the results of restricted

estimation are used for the regression parameters. With this choice, the
six parameter vectors for bootstrap data generation processes only differ
in the EDF term and they can be written as:

θ∗′
[e,r,j] =

(
β̃

′
[e,r], F̃[e,r,j]

)
, j = 1, 2, 3,

and

θ∗′
[e,r,j+3] =

(
β̃

′
[e,r], F̂[e,r,j]

)
, j = 1, 2, 3,

in which F̃[e,r,j] and F̂[e,r,j] are derived from restricted and unrestricted
residuals, respectively. As both types of residual sum to zero, it is not
necessary to recentre them and j = 1 denotes an EDF for unadjusted
residuals, j = 2 denotes an EDF for residuals adjusted by a degrees-of-
freedom correction, and j = 3 denotes an EDF for the recentred versions
of residuals adjusted by terms that take into account leverage values.
Thus, for example, F̂[e,r,j], j = 1, 2, 3, correspond to (2.27), (2.30) and
(2.31) above.

These combinations of the number of bootstraps and the bootstrap
world parameter vector are intended to throw light on: (i) the effects
of varying the number of bootstraps; (ii) the importance of the choice
between restricted and unrestricted residuals when specifying the CDF
for the bootstrap world; and (iii) the usefulness of adjusting residuals
before using them to derive the bootstrap CDF.
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Given a typical bootstrap sample from (3.50), the null hypothesis H0 :
β4 = β5 = β6 = 0 can be tested. Let the resulting F-statistic be denoted
by F∗

[e,r,b]. A p-value for F[e,r] is computed after completing the process of
generating and analysing the full set of B bootstrap samples in replication
r for simulation experiment e. Using 1(A) to denote the usual indicator
function for event A, this p-value estimate is calculated as

p̂[e,r] =
∑B

b=1 1(F∗
[e,r,b] ≥ F[e,r])
B

, (3.51)

and H0 is rejected if p̂[e,r] ≤ αd , where αd is the desired significance level.
There are six estimates of the form (3.51); one for each of the choices
from the set of bootstrap world parameters {θ∗

[e,r,j], j = 1, . . . , 6}.
Once the full set of R = 25,000 replications is completed for a given

value of θ ′[e] = (β ′[e], F[e]), the finite sample rejection probability of a
bootstrap test, under the design of simulation experiment e, can be
estimated by the proportion of replications in which p̂[e,r] ≤ αd , that
is, by

p̂BS[e] =
∑R

r=1 1(p̂[e,r] ≤ αd)

R
. (3.52)

As with p̂[e,r] of (3.51), there are six values for p̂BS[e], each of which cor-
responds to one of the six approaches to specifying the bootstrap world
parameter vector.

The rejection probability of the asymptotic test is also estimated using
the full set of replications. The estimate is defined by

p̂F[e] =
∑R

r=1 1(A[e,r])
R

, (3.53)

in which A[e,r] is the event that F[e,r] is not less than the nominal crit-
ical value from the relevant F-distribution, which is F(3, 21) in these
experiments.

The desired significance level has three values in the experiments,
with αd = 0.10, 0.05, 0.01. The precision of estimators for each of these
desired levels can be assessed using the well-known formula for the stan-
dard error of the sample proportion. With R = 25,000, the values of√[αd(1 − αd)/R] for αd = 0.10, 0.05, 0.01 are (approximately) 0.0019,
0.0014 and 0.0005, respectively. When levels of power are being esti-
mated, the associated standard errors of estimators can be rather larger.
For example, if a false null hypothesis were rejected in three-quarters of
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the replications, the implied standard error would be calculated to be√
(0.75)(0.25)/25,000, which is approximately 0.0027.
The results for significance levels under the three error distributions

F[j], j = 1, 2, 3, are given in Tables 3.4, 3.5 and 3.6. In each table, the first
row of results corresponds to rejection rates for the asymptotic test that
uses the F(3, n − 6) distribution for critical values. (With n = 27 in all
experiments, the reference distribution for the asymptotic test is always
the F(3, 21) distribution.) The remaining six rows of estimates correspond
to bootstrap tests that are implemented by generating bootstrap data
with parameter vectors of the general form θ∗′

[e,r,j] = (β∗′[e,r], F∗
[e,r,j]), j =

1, . . . , 6, as defined above.
In Table 3.4, the errors have a Normal distribution and the use of the

F(3, 21) distribution for critical values is exactly valid. It is, therefore,
not surprising that the estimates for this test are close to the correspond-
ing desired levels. The bootstrap tests, being only asymptotically valid,
could not do better, but do not do much worse. There is little to choose
between the six bootstrap schemes on the basis of the evidence of Table
3.4, but the use of B = 1,000 appears to give better control of finite
sample significance levels than B = 400.

The estimates in Table 3.5 are for the simulation world with symmetric
t(5) errors. The asymptotic test is no longer exactly valid and there is
clear evidence of nonzero ERP terms, with all estimates being too large,
relative to desired levels. Turning to the bootstrap tests, it really only with
restricted residuals being used for the EDF and B = 1,000 that (minor)

Table 3.4 Estimates of significance levels of asymptotic and bootstrap (BS) F-tests
of (3.47) against (3.46), with errors derived from N(0, 1) distribution

αd is equal to 1.0 5.0 10.0 1.0 5.0 10.0

F(3, 21) 1.0 4.9 10.0 1.0 4.9 10.0
BS test uses B = 400 B = 1, 000
(β̃

′
[e,r], F̃[e,r,1]) 1.2 5.2 10.3 1.1 5.2 10.2

(β̃
′
[e,r], F̃[e,r,2]) 1.2 5.2 10.3 1.1 5.2 10.2

(β̃
′
[e,r], F̃[e,r,3]) 1.2 5.2 10.3 1.0 5.2 10.2

(β̃
′
[e,r], F̂[e,r,1]) 1.2 5.2 10.2 1.0 5.0 10.0

(β̃
′
[e,r], F̂[e,r,2]) 1.2 5.2 10.2 1.0 5.0 10.0

(β̃
′
[e,r], F̂[e,r,3]) 1.3 5.2 10.3 1.1 5.2 10.0

Notes: All estimates are for n = 27, are derived from 25,000 replications and are reported as
percentages, rounded to one decimal place.
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Table 3.5 Estimates of significance levels of asymptotic and bootstrap (BS) F-tests
of (3.47) against (3.46), with errors derived from t(5) distribution

αd is equal to 1.0 5.0 10.0 1.0 5.0 10.0

F(3, 21) 1.4 5.7 10.8 1.4 5.7 10.8
BS test uses B = 400 B = 1, 000
(β̃

′
[e,r], F̃[e,r,1]) 1.5 5.7 10.9 1.2 5.5 10.6

(β̃
′
[e,r], F̃[e,r,2]) 1.5 5.7 10.9 1.2 5.5 10.6

(β̃
′
[e,r], F̃[e,r,3]) 1.5 5.7 10.9 1.2 5.5 10.6

(β̃
′
[e,r], F̂[e,r,1]) 1.6 5.8 10.9 1.4 5.7 10.6

(β̃
′
[e,r], F̂[e,r,2]) 1.6 5.8 10.9 1.4 5.7 10.6

(β̃
′
[e,r], F̂[e,r,3]) 1.6 5.9 11.0 1.4 5.7 10.6

Notes: All estimates are for n = 27, are derived from 25,000 replications and are reported as
percentages, rounded to one decimal place.

Table 3.6 Estimates of significance levels of asymptotic and bootstrap (BS) F-tests
of (3.47) against (3.46), with errors derived from χ2(2) distribution

αd is equal to 1.0 5.0 10.0 1.0 5.0 10.0

F(3, 21) 2.0 6.2 10.0 2.0 6.2 10.0
BS test uses B = 400 B = 1,000
(β̃

′
[e,r], F̃[e,r,1]) 1.7 5.9 10.3 1.7 5.9 10.8

(β̃
′
[e,r], F̃[e,r,2]) 1.7 5.9 10.3 1.7 5.9 10.8

(β̃
′
[e,r], F̃[e,r,3]) 1.6 5.8 10.3 1.6 5.9 10.7

(β̃
′
[e,r], F̂[e,r,1]) 2.0 6.1 10.2 2.1 6.3 10.8

(β̃
′
[e,r], F̂[e,r,2]) 2.0 6.1 10.2 2.1 6.3 10.8

(β̃
′
[e,r], F̂[e,r,3]) 2.0 6.1 10.3 2.1 6.2 10.8

Notes: All estimates are for n = 27, are derived from 25,000 replications and are reported as
percentages, rounded to one decimal place.

improvements are achieved. Modifications of restricted residuals do not
seem important in these cases.
The use of the heavily-skewed χ2(2) distribution for the error distribution
produces the estimates in Table 3.6. The asymptotic test appears to reject
too frequently for the 1 per cent and 5 per cent levels, but the estimated
ERP is not large (about 1 percentage point). Bootstrap tests that use unre-
stricted residuals for resampling do not give systematic improvements.
The use of restricted residuals to obtain the EDF terms F̃[e,r,j], j = 1, 2, 3,
combined with B = 1,000, yields such improvements, with there being
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Table 3.7 Estimates of rejection probabilities of asymptotic and bootstrap (BS)
F-tests of (3.47) against (3.46), with errors derived from Normal distribution

αd is equal to 1.0 5.0 10.0 1.0 5.0 10.0

F(3, 21) 48.6 75.9 86.0 48.6 75.9 86.0
BS test uses B = 400 B = 1,000
(β̃

′
[e,r], F̃[e,r,1]) 51.0 76.5 86.1 49.6 76.1 85.5

(β̃
′
[e,r], F̃[e,r,2]) 51.0 76.5 86.1 49.6 76.1 85.5

(β̃
′
[e,r], F̃[e,r,3]) 50.9 76.6 86.2 49.5 76.0 85.5

(β̃
′
[e,r], F̂[e,r,1]) 50.7 76.4 86.0 49.0 75.8 85.4

(β̃
′
[e,r], F̂[e,r,2]) 50.7 76.4 86.0 49.0 75.8 85.4

(β̃
′
[e,r], F̂[e,r,3]) 51.1 76.6 86.0 49.6 76.1 85.5

Notes: All estimates are for n = 27, are derived from 25,000 replications and are reported as
percentages, rounded to one decimal place.

only small differences between the results for the corresponding three
bootstrap schemes.
Turning to evidence obtained when H0 : β4 = β5 = β6 = 0 is not sat-
isfied, the general features of results are not sensitive to the choice of
distribution for the errors of (3.48). Only the results for Normal errors
are presented here and, as is clear from Table 3.4, estimated significance
levels for this choice are sufficiently similar to support comparisons of
rejection frequencies under the alternative. These rejection frequencies
are given in Table 3.7.

The estimates reported in Table 3.7 do not reveal substantial differences
in the ability of the tests to detect the departure from the null hypothesis.
In relation to the two issues mentioned above, the rejection frequencies
suggest that power is not enhanced either by increasing B from 400 to
1,000 or by using unrestricted, rather than restricted, residuals as the
source of bootstrap errors. The former result is of limited importance,
given the speed of modern computers, and, even though computing
time is positive, the additional waiting time for the larger number of
bootstrap samples is likely to be tiny. The latter result is consistent with
those for asymptotically pivotal significance tests for regression models
that are provided in Paparoditis and Politis (2005). It provides support
for the use of a bootstrap scheme consisting of (3.35) and (3.36), that
is, with both the bootstrap regression coefficient vector and the boot-
strap error CDF being derived from the results of applying the restricted
estimator to the actual data. These findings concerning bootstrap tests
of (3.47) against (3.46) are corroborated by the estimates obtained from
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a set of experiments involving autoregressive distributed lag relation-
ships with non-Normal errors, in which (1.53) is tested against (1.54);
see Section 1.5.1 for details of these models. The same main conclusions
emerge under both null and alternative hypotheses.

As anticipated in the remarks at the start of this section, the applica-
tion of bootstrap methods has not produced substantial improvements
in finite sample behaviour of F-tests of simplifying linear restrictions.
However, marked improvements from bootstrapping have been observed
when different types of test have been studied. For example, Horowitz
discusses the adequacy of asymptotic critical values for the well-known
information matrix (IM) test proposed in White (1982a) and comments
that “experiments carried out by many investigators have shown that
with asymptotic critical values and sample sizes in the range found in
applications, the true and nominal probabilities of rejecting a correct
model can differ by a factor of 10 or more”; see Horowitz (2003, p. 213).
Horowitz also comments that the estimates of ERP terms for IM tests
are small when bootstrap methods are used. In fact, the results in Hall
(1987) imply that the IM test for the linear regression model with exoge-
nous regressors and NID errors can be implemented as a Monte Carlo
procedure which is exactly valid.

White’s IM test differs from the F-tests discussed in this Section because
it provides a check for misspecification. When testing for misspecifica-
tions, there is often uncertainty about the specification of the alternative
hypothesis. (If there were very clear ideas about how a model was wrong,
these ideas would presumably have been incorporated from the start
of the empirical analysis.) Moreover, any test for misspecification can
be linked to a family of locally equivalent alternatives, rather than to a
single more general model; see Godfrey (1981) and Gourieroux and Mon-
fort (1990, pp. 334–335). Consequently the issue of choosing between
restricted and unrestricted residuals for defining bootstrap schemes is
more complicated with misspecification tests than it is with the F-tests
of this section. This choice will now be discussed in the context of test-
ing for error serial correlation when the regression model has lagged
values of the dependent variable as regressors, in other words, it is
dynamic.

3.5. Bootstrapping LM tests for serial correlation in
dynamic regression models

The importance of testing for serial correlation in the error terms of a
linear regression model has been recognized for many years. In general,
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the presence of serial correlation invalidates t and F tests, and leads to the
inconsistency of OLS estimators if the regressors include lagged values of
the dependent variable. Thus it is important for applied workers to have
access to a reliable test for serial correlation when the regression model is
dynamic. It is now standard practice to use the Lagrange Multiplier (LM)
tests of Breusch (1978) and Godfrey (1978). The LM tests are flexible and
use only OLS results. However, the LM tests suffer from the drawback
that they are only asymptotically valid and the asymptotic χ2 critical
values have sometimes been found to give inadequate control of finite
sample significance levels; see, for example, Davidson and MacKinnon
(2007, section 8). The purpose of this section, which is based on Godfrey
(2007b), is to give some results on bootstrapping LM tests in dynamic
models. As in the previous section, the choice between restricted and
unrestricted estimates for use as parameters in resampling schemes is
considered in some detail.

3.5.1. Restricted or unrestricted estimates as parameters of
bootstrap worlds

Suppose that data are generated by the stable dynamic linear model
(3.42). The null hypothesis is that the errors ut are IID with CDF F ,
having mean zero and variance σ2. As in Breusch (1978), Durbin (1970)
and Godfrey (1978), it is assumed that regularity conditions are satisfied,
so that OLS estimators for (3.42) are asymptotically Normally distributed
when this null hypothesis is true, with (γ̂ − γ ) being Op(n−1/2).

All tests of the null hypothesis that the errors ut are serially uncor-
related are constructed using the results of OLS estimation of (3.42).

Let γ̂ ′ = (α̂′, β̂ ′
) denote the OLS coefficient estimator for (3.42) and

the terms ût = yt − w′
t γ̂ be the corresponding residuals, t = 1, . . . , n.

Whether the alternative is a Gth-order autoregression, denoted by AR(G)
and written as

ut =
G∑

j=1

φjut−j + εt , εt IID(0, σ2
ε ), (3.54)

or a Gth-order moving average, denoted by MA(G) and written as

ut =
G∑

j=1

θjεt−j + εt , εt IID(0, σ2
ε ), (3.55)
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a suitable LM test of the null hypothesis can be computed as test of
λ = (λ1, . . . , λG)′ = 0 in the augmented model

yt = y′
t(p)α + x′

tβ + û′
t(G)λ + ut = w′

tγ + û′
t(G)λ + ut , (3.56)

in which û′
t(G) = (ût−1, . . . , ût−G) and ût−g is set equal to zero for t ≤ g.

Let the OLS estimators for (3.56) be γ́ = (ά′, β́ ′
)′ and λ́. The LM test is

then a check of the joint significance of the elements of λ́. The usual
F-test is asymptotically valid and the F-statistic for testing (3.42) against
(3.56) is denoted by LMF .

Since the limit null distribution of LMF is χ2
G/G, this F-statistic is

asymptotically pivotal, that is, its asymptotic distribution is independent
of the nuisance parameters, which are taken to include the error distri-
bution function F . The results of Beran (1988), therefore, indicate that
bootstrap tests may yield more accurate inferences than the asymptotic
checks. A general recursive bootstrap scheme can be written as

y∗
t =

p∑
j=1

y∗
t−jα̈j + x′

t β̈ + u∗
t , t = 1, . . . , n, (3.57)

in which: (i) presample values of y∗ are set equal to those of y; (ii)
α̈ = (α̈1, . . . , α̈p)′ and β̈ are both consistent under the null hypothesis;
and (iii) the distribution function of the bootstrap errors u∗

t converges
to that of the true errors ut when the null hypothesis is true. The choice
of consistent estimator for the regression coefficients and the choice
of scheme used to obtain u∗

t may both have small sample effects that
cannot be neglected. The approaches adopted in the literature can be
summarized as follows.

First, the restricted (null hypothesis) results can be used to mimic the
assumed data process. In this approach, the OLS estimators α̂ and β̂

from (3.42) are used for α̈ and β̈, respectively, and the bootstrap errors
u∗

t are obtained by simple random sampling, with replacement, from the
empirical distribution function

F̂ : probability
1
n

on ût , t = 1, . . . , n. (3.58)

This combination gives the restricted (null hypothesis) bootstrap model

y∗
t =

p∑
j=1

y∗
t−jα̂j + x′

t β̂ + u∗
t , t = 1, . . . , n, (3.59)

with u∗
t being derived using (3.58).
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If (3.42) does not contain an intercept term, the sample mean of the
OLS residuals should be subtracted from each ût before it is used in (3.58).
Mean-adjustment is also required if the OLS residuals ût are modified by
being divided by the square root of (1 − htt ), where htt is the leverage
value, t = 1, . . . , n.

Second, suppose that the bootstrap scheme is to be specified using a
parameter estimator θ̈ that is consistent under the alternative, as well as
the null, in other words, an unrestricted-type estimator is used. Instru-
mental variable (IV) estimators are used in Rayner (1993) for α̈ and β̈, with
the instruments consisting of current and lagged exogenous variables.
With this choice of instruments, the estimators are consistent under a
fixed alternative hypothesis, that is, when at least one of the coefficients
of the alternative model is a nonzero constant. In general, the statistic
LMF is Op(n) under such an alternative; so that the asymptotic rejection
probability tends to unity for any finite critical value.

Let the IV parameter estimators and residuals for (3.42) be denoted by
α̌, β̌ and ǔt , t = 1, . . . , n, respectively. In order to derive an unrestricted
bootstrap scheme, it remains to specify how to obtain u∗

t . An AR(1) alter-
native is assumed in Rayner (1993) and a generalization for the AR(G)
case involves applying OLS to

ǔt = φ1ǔt−1 + · · · + φGǔt−G + et . (3.60)

Let the residuals derived from OLS estimation of (3.60) be denoted by ět .
The unrestricted (fixed alternative hypothesis) bootstrap model is

y∗
t =

p∑
j=1

y∗
t−jα̌j + x′

t β̌ + u∗
t , (3.61)

with u∗
t being obtained by simple random sampling, with replacement,

from the empirical distribution function

F̌ : probability
1
n

on ěc
t , t = 1, . . . , n, (3.62)

where ěc
t is the recentred version of ět . The bootstrap test LM∗

F is
then calculated using these artificial observations y∗

t and the bootstrap
counterparts of (3.42) and (3.56).

In the unrestricted bootstrap model approach of Rayner (1993), the
parameters of the conditional bootstrap law are estimators from observed
data that are consistent in the specified unconditional fixed alternative
model. This feature might be thought to yield residuals that give a better
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approximation to the distribution of the error terms under the alterna-
tive. However, it is well-known that there is more than one alternative
that leads to LMF ; see, for example, Godfrey (1988, section 4.4.1). Con-
sequently the use of the fitted autoregression (3.60) may be invalid under
fixed alternatives. If the ut were generated by a MA(G) process, the resid-
uals ěc

t used in (3.62) would be inappropriate; see Schwert (1987) for
comments on the dangers of relying on pure autoregressions. Ramsey’s
criticism of the use of specific alternative models seems pertinent in the
context of serial correlation tests; see Ramsey (1983, pp. 243–244). Thus
there must be doubts about the general usefulness of the unrestricted
bootstrap of Rayner (1993).

A different type of unrestricted bootstrap is considered in Mantalos
(2003) but only for the case of an AR(1) alternative. A generalization
that allows for the Gth-order alternative consists of the following steps.

1. Estimate (3.42) by OLS to obtain α̂, β̂ and the residuals ût .
2. Estimate (3.56) by OLS to obtain ά, β́, λ́ and the residuals út .
3. Draw e∗

1, . . . , e∗
n by simple random sampling with replacement from

the empirical distribution function

F́ : probability
1
n

on úc
t , t = 1, . . . , n, (3.63)

where úc
t is the recentred version of út ; asymptotically negligible

modifications of the latter residuals (as described, for example, by
MacKinnon, 2002, p. 620) are used in Mantalos (2003).

4. Given e∗
1, . . . , e∗

n from step 3, generate the bootstrap errors u∗
t recur-

sively using

u∗
t =

G∑
j=1

λ́ju
∗
t−j + e∗

t , (3.64)

with required starting values set equal to zero.
5. Generate bootstrap data using

y∗
t =

G∑
j=1

y∗
t−jάj + x′

t β́ + u∗
t , t = 1, . . . , n, (3.65)

in which the bootstrap errors are given by (3.64).
6. The bootstrap value of the Breusch-Godfrey LMF statistic, denoted by

LM∗
F , is then obtained by testing Hu

0 : λ = λ́, not H0 : λ = 0G, in
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the bootstrap counterpart of (3.56); see Section 3.3.1 above and van
Giersbergen and Kiviet (2002, section 1.2). The OLS estimators of the
coefficients of the bootstrap version of the artificial alternative (3.56)
are denoted by γ́ ∗ and λ́

∗
.

In the version of an unrestricted bootstrap given by steps 1 to 6, there
is no need to employ IV, as well as OLS, estimation. This saving reflects
the fact that (3.56) is being used as an approximation to the specified
alternative. The approximation is asymptotically valid under local alter-
natives in which parameters that are under test are O(n−1/2), rather than
O(1); see Godfrey (1981). Thus the coefficients that determine the pat-
tern of error autocorrelation are given by a Pitman-type drift, rather than
being fixed constants.

Under an artificial sequence of alternatives that are drifting towards
the null model at the specified rate in the unconditional (real world)
law, the OLS estimators for (3.56) are consistent and, in particular, λ́

tends to a null vector so that (3.64) represents a local alternative, relative
to H0 : λ = 0G, in the conditional (bootstrap) world. However, the local
asymptotic theory of Pitman drifts may provide a poor approximation
to actual behaviour in finite samples when observed serial correlation is
not weak; see Eastwood and Godfrey (1992, section 4.2). It is argued in
Godfrey (2007b) that, if asymptotic local theory fails to provide a good
approximation in the bootstrap world, the unrestricted procedure based
on steps 1–6 may lead to the true null hypothesis being rejected less fre-
quently than desired in finite samples. The relevance of the asymptotic
theory that underpins all three bootstrap approaches to the implemen-
tation of the Breusch-Godfrey test can be examined using simulation
experiments.

3.5.2. Some simulation evidence on the choice between
restricted and unrestricted estimates

The simulation experiments are based upon the dynamic model

yt = α1yt−1 + α2yt−2 + β1 + β2xt + ut , t = 1, . . . , n, (3.66)

in which n is either 40 or 80. Under the null, the ut are IID(0, σ2). This
process has been used in Dezhbakhsh (1990), Dezhbakhsh and Thursby
(1995) and Godfrey and Tremayne (2005); parameter values in (3.66) are
specified as in these earlier papers. The values of (α1, α2) are (0.5, 0.3),
(0.7, −0.2), (1.0, −0.2), (1.3, −0.5), (0.9, −0.3) and (0.6, 0.2), which all



124 Bootstrap Tests for Regression Models

satisfy the conditions for dynamic stability. The value of (β1, β2) is (1, 1)
in all cases. The values of σ2 are 1, 10 and 100. The OLS estimates of the
parameters of (3.66) are denoted by α̂1, α̂2, β̂1 and β̂2.

The null hypothesis of serially uncorrelated errors is tested with G = 4;
so that the test model corresponding to (3.56) is

yt = α1yt−1 + α2yt−2 + β1 + β2xt +
4∑

j=1

λjût−j + error, (3.67)

in which the terms ût−j are the lagged residuals from the OLS estimation
of (3.66). The OLS estimate of (α1, α2) from (3.67) is denoted by (ά1, ά2).
A test of (3.66) against (3.67) corresponds to the kind of serial correlation
check that might be used when working with quarterly data.

As in several other studies, xt is generated by a stable AR(1) process,

xt = ρxxt−1 + ζt , |ρx| < 1, ζt NID(0, σ2
ζ ). (3.68)

The results discussed below are obtained using ρx = 0.7 and σ2
ζ selected

so that Var(xt ) = 1. In order to obtain IV estimators for (3.66) that are
consistent under a serial correlation alternative, xt , xt−1, xt−2 and an
intercept term are used as instruments. The corresponding IV estimate
of (α1, α2) from (3.66) is denoted by (α̌1, α̌2).

The error terms ut of (3.66) are generated by special cases of the mixed
autoregressive-moving average ARMA(5, 5) model

ut =
5∑

j=1

φjut−j + εt +
5∑

j=1

θjεt−j, (3.69)

in which the εt are IID with zero mean and variance σ2
ε . All pre-sample

values for (3.69) are set equal to zero. Similarly starting values for y and
x are set equal to their respective unconditional means. The effects of
this standard computational device are reduced by generating n + 50
observations and then using the last n of them.

Model (3.69) is sufficiently general to provide evidence about sev-
eral aspects of the performance of the asymptotic and bootstrap tests
derived from (3.66) and (3.67). By appropriate choices of the coefficients
of (3.69), rejection rates can be estimated in the following cases: under
the null hypothesis; under an AR(4) scheme, as is used in the unrestricted
bootstrap tests; and under serial correlation models that are not AR(4).
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The IID error term εt of (3.69) is drawn from three distributions. Fol-
lowing the previous studies of restricted and unrestricted bootstrap serial
correlation tests, the Normal distribution is used. The other two choices
give symmetric and asymmetric non-Normal distributions. The former
involves drawing IID terms from a t(5) distribution and then trans-
forming them to have the required population mean and variance. For
the latter, the χ2(8) distribution is the source of the drawings that are
transformed.

Tests are implemented in p-value form. The estimated p-values for
the restricted, Mantalos-type unrestricted and Rayner-type unrestricted
bootstrap tests are denoted by RES, MUR and RUR, respectively. These
bootstrap p-values are calculated using 1,000 bootstrap samples. Rejec-
tion rates are obtained by comparing calculated p-values with nominal
significance levels of 5 per cent and 10 per cent. Estimates of rejection
probabilities are based upon a maximum of 25,000 replications but some
replications are not suitable for computing bootstrap tests. The problem
is that estimates of (α1, α2), denoted by (α̈1, α̈2), may fail to satisfy the
conditions for dynamic stability and so cannot be used to define covari-
ance stationary bootstrap data generation processes. The conditions that
actual estimates must satisfy for stationarity in the bootstrap world are

−1 < α̈2 < 1, α̈1 + α̈2 < 1 and α̈2 − α̈1 < 1.

In the discussion of the results from simulation experiments, it is useful
to have codes for combinations of (α1, α2) and the error distribution.
These codes are given in Table 3.8. For example, a case with code 2B has
(α1, α2) = (0.7, −0.2) and errors derived from the t(5) distribution.

Table 3.8 Codes for combination of (α1, α2)

and error distribution

1 (α1, α2) = (0.5, 0.3)

2 (α1, α2) = (0.7, −0.2)

3 (α1, α2) = (1.0, −0.2)

4 (α1, α2) = (1.3, −0.5)

5 (α1, α2) = (0.9, −0.3)

6 (α1, α2) = (0.6, 0.2)

A error distribution from Normal
B error distribution from t(5)

C error distribution from χ2(8)
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Before examining estimates of significance levels, consider first the
results that shed light on how frequently bootstrap tests are applicable.
The proportion of replications in which the estimates of (α1, α2) required
for defining the bootstrap population are consistent with stationarity is
an obvious index of applicability. Such proportions, measured in per-
centage terms, are referred to as applicability ratios. Perusal of the results
indicates that applicability ratios are not very sensitive to the choice of
error distribution from A, B and C of Table 3.8. As a representative sam-
ple, results on applicability for cases with Normal errors are reported
in Table 3.9. Table 3.9 has 18 groups of results, each corresponding to
a combination of bootstrap test (3 types), n (2 values) and σ2 (3 val-
ues). There are 6 applicability ratios in each group, corresponding to the
combinations of (α1, α2) in Table 3.8.

As can be seen from Table 3.9, there are important differences between
the applicability ratios for the three different bootstrap tests. The
restricted bootstrap check RES is almost always available whatever the
combination of n and σ2. The unrestricted bootstrap tests, however, fail
to match this level of performance. Instead the value of σ2 is associated
with substantial effects. As σ2 increases so does the relative frequency
with which fixed and local alternative hypothesis estimates of (α1, α2)

Table 3.9 Applicability ratios (percentages) for Normal errors

n = 40 with σ2 = 1 σ2 = 10 σ2 = 100

RES 100.0, 100.0, 100.0, 99.9, 100.0, 100.0, 99.8, 100.0, 100.0,
test 100.0, 100.0, 100.0 100.0, 100.0, 99.9 100.0, 100.0, 99.9

RUR 90.9, 96.6, 92.1, 49.7, 58.7, 53.7, 33.4, 38.2, 35.5,
test 86.9, 95.0, 92.4 49.7, 57.7, 51.4 36.3, 38.0, 33.6

MUR 97.8, 99.8, 99.4, 72.3, 79.7, 79.8, 58.3, 63.7, 64.5,
test 99.7, 99.8, 98.4 86.0, 82.8, 73.7 75.3, 68.5, 58.1

n = 80 with σ2 = 1 σ2 = 10 σ2 = 100

RES 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0,
test 100.0, 100.0, 100.0 100.0, 100.0, 100.0 100.0, 100.0, 100.0

RUR 98.7, 99.6, 99.1, 63.2, 74.1, 67.1, 36.5, 42.3, 39.0,
test 96.0, 99.2, 99.0 62.0, 71.3, 65.4 38.7, 41.8, 36.2

MUR 99.9, 100.0, 100.0, 85.7, 91.1, 92.1, 65.2, 67.6, 72.1,
test 100.0, 100.0, 100.0 95.8, 92.8, 87.6 84.1, 74.9, 65.3
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imply dynamically unstable bootstrap data processes. The problems with
the IV-based procedure RUR derived from Rayner (1993) are so marked
that it is difficult to recommend it as a tool for general use in applied
work. The applicability of the Mantalos-type test MUR is not so severely
impaired by error variance increases, but the effects of such increases are
not negligible.

The sensitivity of unrestricted bootstrap tests to variations in σ2 can
be discussed after rewriting (3.66) as

yt = �(L)st + σ�(L)at , (3.70)

in which: L is the lag operator, with Ljyt = yt−j; �(L) = 1 + ψ1L +
ψ2L2 + · · · = (1 − α1L − α2L2)−1; st = β1 + β2xt ; and at = σ−1ut . In
this representation of the data process, st and at are uncorrelated with
Var(st ) = Var(at ) = 1 in all experiments. It follows that, as σ increases,
the importance of the exogenous component �(L)st decreases relative
to that of σ�(L)at .

In the experiments, Rayner’s version of the unrestricted bootstrap test
uses xt−1 and xt−2 as instruments for yt−1 and yt−2. From (3.70), these
instruments are only correlated with the exogenous component �(L)st−j
of yt−j, j = 1, 2. As σ increases, the exogenous components become
less and less important, so that a type of weak instruments problem is
approached and it is not surprising that IV estimates are not close to the
corresponding true parameter values.

A different explanation is required for the sensitivity of the Mantalos-
type check because it does not use IV estimation. The unrestricted
bootstrap test that is proposed by Mantalos uses OLS estimators of (3.67)
to define the bootstrap process. Under the null hypothesis, the estimators
from (3.67) are inefficient relative to those for (3.66); the latter provide
the parameter values for the restricted bootstrap. The degree of asymp-
totic variance inflation depends upon the extent to which yt−1 and yt−2
are “explained” in linear regressions by ut−1, ut−2, ut−3 and ut−4. Con-
sequently (3.70) implies that the effects of asymptotic variance inflation
increase as σ increases. These effects may be reflected in finite samples
by the greater frequency with which the estimates in (ά1, ά2) from (3.67)
imply nonstationary AR(2) regression models.

The fact that the test MUR is available more often than the test RUR
is not sufficient to imply that the former is either well-behaved or supe-
rior to the latter. It is important to investigate the differences between
actual and desired null rejection probabilities. When the data process of a
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Table 3.10 Estimated null rejection probabilities for RES, RUR
and MUR tests, with nominal significance level of 5 per cent

n = 40 n = 80

Case RES RUR MUR RES RUR MUR

1A 4.2 4.3 2.3 5.1 5.1 2.9
1B 4.2 4.2 2.3 4.9 4.9 2.7
1C 4.3 4.3 2.3 4.8 4.8 2.6
2A 4.6 4.6 2.0 5.0 5.0 2.7
2B 4.6 4.5 1.9 4.9 4.9 2.7
2C 4.4 4.3 1.9 5.0 4.9 2.6
3A 4.8 4.7 2.8 4.8 4.7 3.2
3B 4.3 4.1 2.5 4.8 4.7 3.3
3C 4.4 4.3 2.5 4.8 4.8 3.2
4A 4.3 4.3 3.3 4.9 4.9 4.4
4B 4.3 4.2 3.4 4.7 4.8 4.1
4C 4.3 4.3 3.4 4.9 4.8 4.1
5A 4.7 4.6 2.2 4.7 4.8 2.9
5B 4.3 4.2 2.2 5.0 5.0 3.2
5C 4.6 4.3 2.0 4.7 4.6 2.8
6A 4.9 4.8 2.6 4.8 4.8 2.7
6B 4.4 4.2 2.4 5.0 4.9 2.8
6C 4.5 4.5 2.3 5.0 4.9 2.6

Notes: The case codes given in the first column are derived from the codes
of Table 3.8. The error variance is σ2 = 1.

simulation experiment is such that all tests are usually available, the esti-
mates for MUR are persistently below the desired values and the estimates
for RUR suggest much closer agreement. The possibility of low rejection
rates for MUR is discussed in Godfrey (2007b) and it appears that, in
these experiments, AR error processes in the bootstrap world are not
adequately approximated by the artificial alternative derived by adding
lagged residuals to the original regression model. Table 3.10 contains
results that illustrate these findings.

The results in Table 3.10 are for the data processes defined by combin-
ing the cases of Table 3.8 with σ2 = 1. The use of σ2 = 1 implies that all
tests are available with quite high frequency. Only replications in which
all tests are available are used to obtain the results of Table 3.10. Conse-
quently the number of replications varies with case and sample size. At
worst, there are over 21,000 replications, so that estimation should be
sufficiently precise for practical purposes.
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Table 3.11 Estimated null rejection probabilities of
RES test, with n = 40 and a nominal significance
level of 5 per cent.

Case σ2 = 1 σ2 = 10 σ2 = 100

1A 5.2 5.0 4.6
1B 4.8 4.9 4.7
1C 5.2 5.0 4.6
2A 5.2 5.3 5.1
2B 5.0 5.4 5.2
2C 4.8 5.0 5.1
3A 5.2 5.2 5.1
3B 4.9 4.9 4.9
3C 5.0 4.7 4.8
4A 5.4 5.2 5.0
4B 4.9 4.9 4.8
4C 4.8 5.1 5.1
5A 5.2 5.2 5.0
5B 5.1 5.3 5.0
5C 4.8 5.0 5.1
6A 5.2 5.1 5.0
6B 5.1 4.8 4.7
6C 5.0 5.0 4.9

Notes: The case codes given in the first column are derived
from the codes of Table 3.8; and n = 40.

Rejection rates in Table 3.10 are derived with σ2 = 1 so that all the
tests can be compared. However, these results cannot be assumed to be
representative of those for more general situations in which unrestricted
bootstrap tests are not free of applicability problems. Attention is there-
fore also given to estimates for RES derived using all three values of σ2.
Table 3.11 contains estimates for RES for all values of σ2, with n = 40.
As indicated by Table 3.9, RES is almost always available and no estimate
for this test in Table 3.11 is based upon fewer than 24,948 replications
(many are based upon the full set of 25,000 replications). It is clear that
RES performs well in the experiments. There is no indication of it being
either persistently undersized or persistently oversized and fluctuations
about the nominal size of 5 per cent are small. Every estimate for RES
is in the range 0.9×5 per cent = 4.5 per cent to 1.1×5 per cent = 5.5
per cent; so that all satisfy the stringent criterion of robustness given in
Serlin (2000).
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Repeating the experiments of Table 3.11 with n = 80 does not lead to
important changes. The same general patterns emerge, although the
restricted bootstrap test has a slightly better performance when n = 80,
with the largest difference between an estimate and the target value of 5
per cent being 0.3 per cent, compared with 0.4 per cent when n = 40.

To sum up, consideration of the results for experiments in which
the null hypothesis is imposed leads to two conclusions. First, the
restricted bootstrap leads to good control of finite sample null rejec-
tion rates. Second, doubt is cast upon the general usefulness of the
two unrestricted bootstrap tests either because of the possibility of being
frequently inapplicable or because of excessively low rejection rates.

Findings concerning estimates obtained under the null hypothesis
have implications for comparisons of estimates derived under alterna-
tive hypotheses. In order to make sensible comparisons of power, there
should not be important differences in estimates of null rejection prob-
abilities. There is strong evidence that, when the null hypothesis is true,
MUR rejects less frequently than RES and RUR, both of which have esti-
mates that are closer to desired levels than those for MUR; see Table 3.10.
It is therefore not surprising that MUR fails to detect serial correlation as
frequently as the other tests when nonzero coefficients are used in (3.69).
Given the arguments of Horowitz and Savin (2000), it was decided to
exclude MUR from power comparisons, rather than to attempt to “size-
correct” this test. Estimates for the remaining tests, viz., RES and RUR,
are reported in Table 3.12. These estimates are representative of the full
set derived with various serial correlation models that are special cases
of (3.69).
Table 3.12 contains results for regression models with errors generated by

(1 − 0.7L + 0.17L2 − 0.017L3 + 0.0006L4)ut = εt , εt IID(0, 1), (3.71)

which has the same AR(4) structure as the version of (3.60) used to gener-
ate residuals for implementing the unrestricted bootstrap test RUR. The
polynomial in L used in (3.71) can be factorized as

(1 − 0.3L)(1 − 0.2L)(1 − 0.1L)2.

It is clear from Table 3.12 that, whatever the combination of (α1, α2)

and the error distribution, differences between power estimates are small
and do not reveal a consistent ranking of RES and RUR. Consequently
the results do not suggest that the unrestricted bootstrap test RUR has
better power than the restricted bootstrap test RES. The findings derived
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Table 3.12 Estimated alternative rejection
probabilities for the autocorrelation model
(3.71) and nominal significance level of 10
per cent

Case RES RUR

1A 55.6 55.2
1B 58.2 58.0
1C 56.8 56.6
2A 69.2 69.2
2B 70.3 70.3
2C 69.7 69.8
3A 73.7 73.7
3B 73.8 73.9
3C 73.8 73.9
4A 93.8 94.0
4B 94.3 94.4
4C 93.8 93.8
5A 79.0 79.0
5B 79.5 79.6
5C 79.5 79.6
6A 52.9 52.4
6B 53.9 53.7
6C 53.2 53.1

Notes: The case codes given in the first column are
derived from the codes of Table 3.8; and n = 80.

from Table 3.12 are corroborated by the estimates from all other exper-
iments with serially correlated errors; see Godfrey (2007b) for more
details. This evidence, combined with the results on behaviour under
the null hypothesis, provides support for the use of the restricted boot-
strap scheme of (3.58) and (3.59) when testing for serial correlation after
the OLS estimation of dynamic regression models.

Restricted bootstrap tests for serial correlation in dynamic regression
models are also examined in Davidson and MacKinnon (2007). David-
son and MacKinnon use experiments in which the alternative is that
the errors are generated by an AR(1) model and the regressors include
only one lagged value of the dependent variable. They focus on the sam-
ple size n = 20 in order to highlight the improvements associated with
the fast double bootstrap (FDB) method described in Section 2.5. The
results from the simulation experiments conducted by Davidson and
MacKinnon indicate that asymptotic critical values can be unreliable
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and that, in general, the FDB tests work better than the single bootstrap
versions. However, the correlations between the p-values from FDB and
single bootstrap approaches are high, with all values being greater than
0.975.

3.6. Summary and concluding remarks

Two general approaches to using simulation to carry out tests in regres-
sion analysis have been discussed. First, the Monte Carlo approach has
been described. This method can be used when the test statistic is exactly
pivotal, that is, it has a distribution that does not depend upon any
unknown parameters when the null hypothesis is true. Since the param-
eter vector of a regression model includes the CDF of the standardized
errors, as well as the error variance and regression coefficients, a Monte
Carlo test can only be applied if the CDF of the standardized errors is
assumed to be known or is specified by the null hypothesis, for exam-
ple, as in the test of Jarque and Bera (1980). It has been argued that
these restrictions limit the usefulness of Monte Carlo tests in applied
econometrics.

Second, the nonparametric bootstrap, which is more widely applica-
ble, has been discussed. In contrast to the Monte Carlo technique, the
nonparametric bootstrap does not use a prespecified (non-data based)
CDF for the simulation-world errors, but instead uses an EDF derived
from the residuals calculated from the actual sample data. Under general
conditions, this approach yields a consistent estimator of an unspecified
error CDF and the associated bootstrap test is asymptotically valid, but
has a nonzero ERP in finite samples.

The behaviour of Monte Carlo tests that use a wrong assumption about
the error distribution’s CDF has been examined. Provided the test statis-
tic is asymptotically pivotal, the incorrect Monte Carlo test is, like the
bootstrap test, asymptotically valid. However, in such situations, the
evidence indicates that finite sample significance levels of inappropri-
ate Monte Carlo tests are not as well behaved as those of nonparametric
bootstrap procedures. The predictions of the asymptotic analysis in God-
frey et al. (2006) are corroborated by results from simulation experiments
that are discussed in Section 3.3.

It has, therefore, been argued that the nonparametric bootstrap is a
more widely applicable and robust procedure for carrying out tests in
regression models. The implementation of the bootstrap requires that
a parameter vector for the bootstrap world data generation process be
obtained from the actual data. The bootstrap parameter vector can be
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constructed from either restricted (null hypothesis) estimates or unre-
stricted (alternative hypothesis) estimates. It is sometimes recommended
that unrestricted estimates be used because they remain consistent under
the alternative and this property might enhance the power of boot-
strap tests. However, the evidence from simulation experiments does
not provide strong support for this recommendation. Moreover, in many
situations, there is uncertainty about the alternative, for example, when
carrying out checks for misspecification. The results concerning stan-
dard F-tests in Section 3.4 indicate that restricted bootstrap tests are not
outperformed by unrestricted bootstrap tests. Further evidence on this
issue is provided in Section 3.5, in which the Breusch-Godfrey test for
serial correlation is considered. This evidence indicates that unrestricted
bootstrap implementation of serial correlation tests can lead to serious
difficulties, whether the alternative is taken to be fixed or local. The evi-
dence in Section 3.5 also reveals that the restricted bootstrap works well
under the null and does not appear to be inferior in terms of power when
compared with unrestricted bootstrap tests.

The focus of this chapter has been on test statistics that are asymp-
totically pivotal with a standard limiting distribution under the null
hypothesis. Overall the recommendation that emerges is that a nonpara-
metric bootstrap scheme, defined using restricted estimates, be employed
to assess the statistical significance of such test statistics. The next chapter
is devoted to discussion of results and evidence for tests that are either not
asymptotically pivotal or are asymptotically pivotal with non-standard
distributions. As will be seen, there are several important tests that are
in these two categories.



4
Simulation-based Tests for
Regression Models with IID Errors:
Some Non-standard Cases

4.1. Introduction

There are important situations in which applied workers cannot use stan-
dard statistical tables to obtain asymptotic critical values when carrying
out tests in regression analysis. In such cases, the test that is being applied
will be called a non-standard asymptotic test. The purpose of this chapter
is to provide discussions of some non-standard asymptotic tests of rele-
vance to empirical econometrics. In the absence of convenient tabulated
reference distributions, simulation methods offer the possibility of mak-
ing asymptotically valid inferences. The form of the error distribution
for the regression model is assumed to be unspecified and nonparamet-
ric bootstrap methods will be taken as the source of asymptotic tests and,
in some cases, asymptotic refinements.

The test statistics that are discussed in this chapter are either asymp-
totically pivotal with non-standard limit null distributions or not even
asymptotically pivotal. Applications of a single bootstrap cannot provide
asymptotic refinements for the latter type of test statistic and so dou-
ble bootstrap methods may be useful in applied work to achieve better
control of finite sample significance levels; see Beran (1988). The com-
putational costs of the conventional double bootstrap algorithm can be
reduced by adopting the Fast Double Bootstrap (FDB) of Davidson and
MacKinnon (2007); see Section 2.5 for discussions of double bootstrap
techniques. The application of single bootstraps, double bootstraps and
fast double bootstraps to non-standard asymptotic tests for regression
models will be considered below. The three examples that will be used
are those discussed in Section 1.6.

First, in Section 4.2, the implementation of the predictive test given in
Chow (1960) is considered for cases in which the errors are IID with an
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unspecified distribution. The standard form of the predictive test is based
upon the very strong assumption that the errors are IID with a common
Normal distribution. It is argued that, under more general assumptions
about the error distribution, the test statistic is asymptotically nonpiv-
otal. The results in Beran (1988) suggest that a single bootstrap will yield
a test with the same order of ERP as the appropriate asymptotic test, but
that a second stage of bootstrapping will be required to obtain asymp-
totic refinements, that is, an ERP of smaller order in the sample size. The
implementation of double bootstrap predictive tests is discussed in some
detail.

Second, Section 4.3 contains a discussion of the problem of control-
ling the overall significance level when the specification of a regression
model is checked using a battery of test statistics. This situation is very
commonly encountered in applied work because most modern programs
will provide a number of checks for misspecification of the model, as
well as point estimates of the regression coefficients and standard errors.
When several separate asymptotic tests are carried out, conventional
asymptotic theory can, in general, only provide bounds for the overall
asymptotic significance level, even when all test statistics are asymptoti-
cally pivotal with standard limit null distributions. The use of single and
double bootstrap schemes is again explored, with results from simulation
experiments being used to throw light on the finite sample behaviour of
the tests that are derived.

Third, the problem of detecting a structural break in a regression model
when the breakpoint is unknown is examined in Section 4.4. Several
authors have argued that it is rarely the case that the standard assumption
of a known breakpoint is appropriate and that tests for structural breaks
used in applied econometrics should be of the type proposed in Andrews
(1993); see, for example, Hansen (1999) and Stock and Watson (2007).
An asymptotic null distribution is derived by Andrews, who also pro-
vides tables of asymptotic critical values; see Andrews (1993, 2003a). As
noted, for example, in Diebold and Chen (1996), the asymptotic null dis-
tribution is basically the distribution of the supremum of a collection of
test statistics, each of which is individually asymptotically distributed as
χ2. Diebold and Chen use simulation experiments in order to study the
quality of the approximation provided by the results in Andrews (1993)
and find evidence that the “bootstrap approximation to the finite-sample
distribution appears consistently accurate, in contrast to the asymptotic
approximation”; see Diebold and Chen (1996). Results on the relative
merits of asymptotic and bootstrap tests for a structural break with an
unknown breakpoint are discussed in Section 4.4, as is the usefulness of
the FDB approach.
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Finally, a summary of results concerning bootstrap versions of non-
standard asymptotic tests and some concluding remarks are given in
Section 4.5.

4.2. Bootstrapping predictive tests

Predictive tests, as described in Chow (1960), are widely used in applied
work when estimating regression models by OLS. In such tests, the null
hypothesis is that the same model applies to all the available data, that is,
the regression parameters and error CDF are the same for all observations.
The alternative hypothesis is that there are some observations that do not
come from the same population as the rest. Such tests can be applied
to estimated relationships as diagnostic checks when new data become
available. They are also of interest when there is a priori information
suggesting that some subset of the available data is not generated by the
same process as other observations.

Godfrey and Orme draw the attention of applied workers to the
following: (i) the strong auxiliary assumption of Normality that under-
pins the popular Chow predictive test; (ii) the impact of departures
from Normality on this test; and (iii) the potential for using boot-
strap methods to derive more robust inferences; see Godfrey and Orme
(2000, 2002a). Single bootstrap methods are used with predictive tests
in Godfrey and Orme (2000) and results on the gains associated with a
double bootstrap technique are reported in Godfrey and Orme (2002a).
In this section, relevant asymptotic results are summarized and evi-
dence from simulation experiments is used to evaluate the practical
importance of the asymptotic analysis and the usefulness of bootstrap
techniques.

4.2.1. Asymptotic analysis for predictive test statistics

Following the notation used in Section 1.6, suppose that the full set of n
observations is regarded as consisting of an estimation sample of n1 > k
observations and a prediction sample of n2 = n − n1 observations. The
null hypothesis is that the estimation sample and the prediction sample
both come from the same population, with

yi = x′
iβ + ui, i = 1, . . . , n, (4.1)

in which the errors are IID, having CDF denoted by F . The alternative
hypothesis is that (4.1) is only valid for the estimation sample.
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For convenience of exposition, let the estimation sample consist of
the first n1 observations. As explained in Section 1.6, predictions for the
last n2 observations yi, i = n1 + 1, . . . , n, are calculated using the OLS
estimator of β derived from the estimation sample. This estimator can
be written as

β̌ =
 n1∑

i=1

xix
′
i

−1  n1∑
i=1

xiyi

 . (4.2)

The predicted values, based upon the assumption of the same model
applying to the second subsample, are then given by

y̌j+n1
= x′

j+n1
β̌, j = 1, . . . , n2, (4.3)

and the associated prediction residuals are

ěj = yj+n1
− y̌j+n1

, j = 1, . . . , n2. (4.4)

The null hypothesis implies that E(yj+n1
) = x′

j+n1
β, so

E(ěj) = E(yj+n1
) − E(y̌j+n1

)

= x′
j+n1

β−x′
j+n1

E(β̌)

= 0, j = 1, . . . , n2,

since E(uj+n1
) = 0, j = 1, . . . , n2, and E(β̌) = β. A test of the joint signifi-

cance of the prediction residuals is used to assess the data consistency of
the null hypothesis.

Under classical assumptions, a simple extension of the basic regres-
sion model, using suitable dummy variables, allows calculation of the
prediction residuals ěj and the required test of their joint significance;
see Salkever (1976) for details. The dummy variables for the predictive
test can be defined as follows. Let di, i = 1, . . . , n, be a sequence of n2-
dimensional vectors, with a typical element being dij = 1(i = n1 + j)
for j = 1, . . . , n2, where 1(A) is the indicator variable that equals unity
when A is true and is zero otherwise. The predictive test can then be
implemented as a test of γ = 0 in the augmented model

yi = x′
iβ + d′

iγ + ui, i = 1, . . . , n, (4.5)
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in which a typical element of γ is γj = E(yj+n1
|xj+n1

) − x′
j+n1

β, j =
1, . . . , n2. Salkever shows that the OLS estimator of γ in (4.5) equals the
n2-dimensional vector of prediction residuals (ě1, ě2, . . . , ěn2 )′, in which ěj
is defined in (4.4), j = 1, . . . , n2; see Salkever (1976). Hence the predictive
test can be implemented using the F-test of γ = 0 in (4.5).

The F-statistic for testing γ = 0 in (4.5) is simply the well-known Chow
statistic of (1.60). If the standard assumptions concerning (4.1) are valid,
this F-statistic is distributed as F(n2, n1 −k). These standard assumptions
are that (i) the regressors of xi are non-random or strictly exogenous and
(ii) the errors ui are independent N(0, σ2) variables, for i = 1, . . . , n; see
Chow (1960), Hendry (1980) and Hendry and Santos (2005). In many
situations, when carrying out an F-test, the overly restrictive assumption
that the common distribution of the IID errors is N(0, σ2) can be relaxed
at the cost of relying upon asymptotic theory, rather than finite sample
results. Thus it is often the case that appeal is made to some form of Cen-
tral Limit Theorem in order to claim that an F-test is asymptotically valid
in the presence of unspecified non-Normality of the errors. However, the
predictive test, as discussed in Chow (1960), cannot be regarded as being
asymptotically robust to non-Normality.

It is assumed in Chow’s discussion of predictive tests that the predic-
tion sample is such that n2 ≤ k, with the estimation sample being such
that n1 > k. In conventional asymptotic theory for OLS estimators of
regression models, k is taken as fixed with the number of observations
used for estimation tending to infinity. Asymptotic analysis for the pre-
dictive test is, therefore, based upon allowing n1 −→ ∞, with k and n2
fixed, perhaps with n2 ≤ k.

Since the OLS estimators of the coefficients γj in (4.5) equal the
corresponding residuals ěj of (4.4), it is appropriate to investigate the
asymptotic robustness of the test of γ = 0 in (4.5) by considering the
limiting behaviour of these prediction residuals. The prediction residuals
are given by

ěj = yj+n1
− x′

j+n1
β̌,

and so, under the assumption that the same model applies to all n
observations,

ěj = uj+n1
− x′

j+n1
(β̌ − β),

for j = 1, . . . , n2. Now, as n1 −→ ∞, p lim (β̌ − β) = 0. Hence, under the
null hypothesis, ěj differs from uj+n1

by a term that can be ignored as
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n1 −→ ∞, for j = 1, . . . , n2. It follows that the OLS estimator of γ in (4.5)
tends to (un1+1,un1+2, . . . , un)′ when the null hypothesis is true.

Clearly it is not possible to appeal to a Central Limit Theorem to argue
that the OLS estimator of γ in (4.5) is asymptotically Normal and con-
sequently that the F-test of γ = 0 is asymptotically valid, unless the
individual errors of (un1+1,un1+2, . . . , un)′ are actually N(0, σ2). In gen-
eral, the limit null distribution of the F-statistic for testing γ = 0 in
(4.5), as defined in (1.60), depends upon the unknown CDF of the errors,
that is, F . (Similar remarks apply to the asymptotic predictive test given
in Hendry (1980). The χ2(n2) distribution used for asymptotic critical
values in Hendry’s test is only appropriate, as n1 −→ ∞, if errors are
Normally distributed, as well as being IID.)

In the terminology of Beran (1988), the predictive test statistics pro-
posed in Chow (1960) and Hendry (1980) are not asymptotically pivotal
because of the dependence of their limit null distributions on the error
CDF F . The standard textbook versions, which assume Normality, are
consequently asymptotically invalid when the common error distribu-
tion is not N(0, σ2). Beran’s analysis indicates that the application of a
single bootstrap provides a test that is asymptotically valid, with an ERP
of the same order in magnitude in the sample size as the correct asymp-
totic test. The results in Beran (1988) also suggest that, in order to gain
asymptotic refinements relative to the correct asymptotic test, a second
stage of bootstrapping must be carried out.

4.2.2. Single and double bootstraps for predictive tests

Whether a single or double bootstrap approach is adopted, nonpara-
metric methods can be used and there is no need to make spuriously
precise assumptions about the form of the CDF F . Indeed, the use of a
parametric bootstrap approach in which an assumed error CDF, denoted
by G, is used for generating bootstrap errors would be ill-advised in
practical situations. The dependence of the limit null distribution of
the test statistic for the predictive check upon the true error CDF F
implies that a parametric bootstrap test is asymptotically invalid when
F �= G. The use of a consistent estimator of F in a nonparametric
bootstrap approach seems a much safer foundation for simulation-based
inference.

It was recommended in Chapter 3 that tests be bootstrapped using
restricted estimates from the actual data to define the parameter vector
for the bootstrap scheme. In the context of predictive tests, the restricted
estimator of β is the OLS estimator obtained when the null hypothesis
that all observations are generated by the same model is imposed. This
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restricted estimator is

β̂ =
 n∑

i=1

xix
′
i

−1  n∑
i=1

xiyi

 , (4.6)

and the associated restricted residuals are defined by

ûi = yi − x′
iβ̂, i = 1, . . . , n. (4.7)

An asymptotically valid CDF for the bootstrap world, given the usual
assumption that the regression model has an intercept term, is the basic
restricted residual EDF

F̂ : probability
1
n

on ûi, i = 1, . . . , n. (4.8)

(Since the bootstrap data generation process must mimic the model
under the null hypothesis, the bootstrap error must have an expected
value equal to zero. If the regression model does not include an inter-
cept term, the OLS residuals in F̂ should be recentred according to their
sample mean.)

Remarks made in Section 3.4 concerning restricted and unrestricted
estimates as bootstrap model parameters are pertinent. As is clear from
(1.60), the statistic for the predictive test only depends upon residual
sums of squares and known constants. There is, therefore, no depen-
dence upon the choice of the regression coefficient vector when the
regressors are strictly exogenous. For example, given a common boot-

strap error vector from F̂ , θ̂ = (β̂
′
, F̂)′ and θ̈ = (0′

k, F̂)′ lead to the same
bootstrap Chow statistic; see the discussion of the result implied by (3.34)
in Section 3.4.1.

Assuming that regressors are strictly exogenous, a single bootstrap
method for carrying out Chow-type predictive tests in the presence of
non-Normality can then be implemented using the following steps.

Predictive test: single bootstrap - Step 1

Estimate under the null hypothesis to obtain the sample values of the
OLS estimate β̂, defined in (4.6), and the associated residuals ûi, i =
1, . . . , n. Also use the actual data to calculate the value of the standard
Chow statistic P, which is given by (1.60).
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Predictive test: single bootstrap - Step 2

Generate B bootstrap samples of size n, using the scheme

y∗
bi = x′

i β̂+ u∗
bi, i = 1, . . . , n, (4.9)

in which the bootstrap errors u∗
bi, i = 1, . . . , n, are obtained by simple

random sampling, with replacement, from F̂ of (4.8), b = 1, . . . , B. Appli-
cation of the methods of Step 1 to each of the bootstrap samples provides
values of the following items: Chow’s statistic, denoted by P∗

b ; the OLS

parameter vector estimate, denoted by β̂
∗
b; and the OLS residuals, which

are denoted by û∗
b1, . . . , û∗

bn, for b = 1, . . . , B.

Predictive test: single bootstrap - Step 3

The B values of P∗
b could be ordered to obtain an estimate of the critical

value that corresponds to the desired significance level αd ; see, for exam-
ple, Horowitz (1994). However, a more flexible approach is to estimate
the p-value for the observed test statistic P calculated in Step 1 by

p̂(P) =
∑B

b=1 1(P∗
b ≥ P)

B
, (4.10)

where 1(.) is the usual indicator function. The null hypothesis that the
same regression model applies to all data is rejected if p̂(P) ≤ αd .

The single bootstrap procedure defined by these three steps leads to an
asymptotically valid test when the strong auxiliary assumption of Nor-
mality is relaxed and F is unspecified. In other words, the ERP of the
single bootstrap predictive test is o(1), under non-Normality, whereas
that of the textbook Chow test, which uses critical values from the
F(n2, n1 − k) distribution, is O(1) and does not vanish asymptotically.
However, the results in Beran (1988) indicate that, under standard regu-
larity conditions, it may be possible to improve upon the finite sample
performance of the single bootstrap predictive test by using additional
simulations. More precisely, a double bootstrap will have the benefit of
an asymptotic refinement and its ERP will tend to zero faster than that
of the single bootstrap variant.

The double bootstrap approach can be motivated by viewing the first-
stage bootstrap p-value p̂(P), rather than P, as the test statistic because the
former is asymptotically pivotal, having an asymptotic null distribution
that is uniform between zero and unity; see Davison and Hinkley (1997,
section 4.5). Consequently, following the description in Davison and
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Hinkley (1997), a double bootstrap predictive test can be implemented
by an “adjusted p-value” approach using the following steps.

Predictive test: double bootstrap - Step 1

This step is the same as the first step of the single bootstrap version of
the predictive test.

Predictive test: double bootstrap - Step 2

This step is the same as the second step of the single bootstrap version
of the predictive test.

Predictive test: double bootstrap - Step 3

Conditional upon each of the first-level bootstrap samples, generate C
second-level bootstrap samples of size n according to

y∗∗
bci = x′

iβ̂
∗
b+u∗∗

bci, i = 1, . . . , n and c = 1, . . . , C, (4.11)

where the second-level bootstrap errors u∗∗
bci are obtained by simple

random sampling, with replacement, from

F̂∗
b : probability

1
n

on û∗
bi, i = 1, . . . , n. (4.12)

(As with the second step of the single bootstrap method, the residuals
û∗

bi must recentred to have zero mean for the purpose of defining F̂∗
b if

β does not contain an intercept.)

Predictive test: double bootstrap - Step 4

Let the Chow statistics derived from the second-level bootstrap data
y∗∗
bci, i = 1, . . . , n, be denoted by P∗∗

bc , b = 1, . . . , B and c = 1, . . . , C. For
each value of b, use the values of P∗∗

bc , c = 1, . . . , C, to estimate the p-value
of the first-level test statistic P∗

b by

p̂∗
b(P∗

b) =
∑C

c=1 1(P∗∗
bc ≥ P∗

b)

C
, b = 1, . . . , B.

The terms p̂∗
b(P∗

b) provide an empirical reference distribution for p̂(P) and
can be used to gain an asymptotic refinement over the single bootstrap
rejection rule “Reject null hypothesis if p̂(P) ≤ αd”. An adjusted p-value
is calculated as

padj(P) =
∑B

b=1 1(p̂∗
b(P∗

b) ≤ p̂(P))

B
, (4.13)

and the null hypothesis is rejected if padj(P) ≤ αd .



Simulation-based Non-standard Tests with IID Errors 143

At first sight, the computational cost of the double bootstrap (adjusted
p-value) approach might seem very large. The usual form of the statistic
for Chow’s predictive test involves the residual sums of squares from two
regressions, one using the estimation sample and the other based upon
the full (pooled) sample. (An equivalent method for the calculation of
Chow’s statistic is to estimate (4.1) and (4.5) by OLS and to carry out
the F-test of the former against the latter.) Thus, the double bootstrap
version of the predictive test might be thought to require 2(1+B(1+C))

OLS estimations to generate the necessary values of the test statistic.
However, in order to obtain both levels of bootstrap samples and all the
associated values of the Chow statistic, the only regressions that need
to be estimated are the two involving the genuine data, that is, those
of potential economic interest. Consequently it is possible to reduce the
cost of a double bootstrap predictive test to only a few seconds of waiting
time on a modern computer. The savings, relative to repeated application
of an OLS estimation algorithm, can be explained as follows.

A restricted bootstrap approach is to be used and the null hypothesis
for actual data is to be imposed. When the null hypothesis is true, the
Chow statistic from actual data is

P = [u′Mu − u′
1M1u1]/n2

[u′
1M1u1]/(n1 − k)

= gP(u; M, M1), (4.14)

the values from first-level bootstrap data are given by

P∗
b =

[
u∗′

b Mu∗
b − u∗′

b1M1u∗
b1

]
/n2

[u∗′
b1M1u∗

b1]/(n1 − k)
= gP(u∗

b; M, M1), b = 1, . . . , B, (4.15)

and, for the second-level bootstrap data, the corresponding expression is

P∗∗
bc =

[
u∗∗′

bc Mu∗∗
bc − u∗∗′

bc1M1u∗∗
bc1

]
/n2

[u∗∗′
bc1M1u∗∗

bc1]/(n1 − k)
= gP(u∗∗

bc ; M, M1), c = 1, . . . , C,

(4.16)

in which u = (u1, . . . , un)′, u1 = (u1, . . . , un1)′, u∗
b = (u∗

b1, . . . , u∗
bn)′, u∗

b1 =
(u∗

b1, . . . , u∗
bn1

)′, u∗∗
bc = (u∗∗

bc1, . . . , u∗∗
bcn)′, u∗∗

bc1 = (u∗∗
bc1, . . . , u∗∗

bcn1
)′, M =

In − X(X′X)−1X′, X is the n × k regressor matrix for the pooled sample,
M1 = In1 − X1(X′

1X1)−1X′
1 and X1 is the n1 × k regressor matrix for

the estimation sample. The projection matrices M and M1 in (4.15) and
(4.16) are fixed for all bootstrap samples and need only be calculated
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once. The terms that vary over artificial samples in (4.15) and (4.16)
are u∗

b and u∗∗
bc . Given realizations of these vectors, there is no need to

invert terms like (X′X) and (X′
1X1) for the (B(1 + C)) bootstrap samples.

Consider then the derivation of u∗
b and u∗∗

bc .
The elements of any realization of u∗

b (and hence of its sub-vector
u∗

b1) are obtained by resampling the residuals from the OLS regression
for actual data. Hence the generation of u∗∗

bc (and hence of its sub-
vector u∗∗

bc1), as specified in (4.12), might be thought to require that an
OLS regression be carried out, using first-level bootstrap data, to obtain
residuals û∗

bi, i = 1, . . . , n, which are then resampled, with replacement.
However, it is more efficient to calculate the residuals û∗

bi as the elements
of the product of the fixed projection matrix M and the realization of
u∗

b; so that unnecessary calculations are avoided.
A similar device for reducing the computational costs of double boot-

straps for linear regression models is described in McCullough and Vinod
(1998, p. 93). McCullough and Vinod comment on important savings
gained by calculating OLS parameter estimates for bootstrap data as the
product of the fixed matrix (X′X)−1X′ and the bootstrap data vector for
the dependent variable. They report that this approach produces a sav-
ing of about 80 per cent of the computing time, relative to repeated OLS
estimations.

If the first-level computations required for the single bootstrap ver-
sion of the predictive test are carried out and the results saved before
second-level bootstrapping takes place, reductions of computation time
can be obtained by using stopping rules to avoid carrying out unnec-
essary second-level bootstraps; see Horowitz et al. (2006, p. 861) for a
description of three stopping rules. Horowitz et al. report very substan-
tial savings of computing time as a result of employing stopping rules.
However, for the applied worker, the short-run obstacle to using double
bootstrap predictive tests in regression models is more likely to be the
absence of suitable programs, than the time required to implement the
procedures.

4.2.3. Simulation experiments and results

The above discussion of bootstrapping predictive tests has stressed the
differences, under non-Normal errors, between the asymptotic orders
of magnitude of ERP terms of standard textbook, single bootstrap and
double bootstrap variants. It is, of course, important to have evidence
about the finite sample relevance of asymptotic analysis relating to the
relative magnitudes of these ERP terms. Results from some simulation
experiments will, therefore, be provided. The details of the steps of the
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computations required for the experiments are similar to those described
in Section 3.4.3 on bootstrapping F-tests.

As in Godfrey and Orme (2000), the regression model employed in the
experiments is

yi =
6∑

j=1

xijβj + ui, (4.17)

in which: xi1 = 1; xi2 is drawn from a uniform distribution with
parameters 1 and 31; xi3 is drawn from a Log-Normal distribution with
ln(xi3) ∼ N(3, 1). Unlike xi2 and xi3, the remaining regressors are serially
correlated with

xi4 = 0.9xi−1,4 + vi4,

xi5 = 0.6xi−1,5 + vi5,

xi6 = 0.3xi−1,6 + vi6,

with vis being independently Normally distributed, such that E[xis] = 0
and var[xis] = 1, for s = 4, 5, 6. The errors of (4.17) are IID with zero
mean and variance σ2.

In the experiments based upon (4.17), (i) all regression coefficients βj
are set equal to zero and (ii) the error terms ui have variance equal to
one. Invariance results imply that neither (i) nor (ii) implies any loss
of generality; see Breusch (1980). Since sensitivity to non-Normality is
an important issue when discussing the behaviour of predictive tests,
the errors ui are obtained by standardizing pseudo-random variables
drawn from several distributions. These error distributions are: Normal;
Student’s t with 5 degrees of freedom, t(5); uniform over the unit inter-
val; chi-square with 2 degrees of freedom, χ2(2); and Log-Normal. This
collection of distributions should provide a reasonable guide to how
poor (oversized or undersized) any procedure might be in a practical
situation.

The experiments involve three combinations of (n, n2) with n = (n1 +
n2) = 30, 50, 80 and n2 = 6 in all cases. The reason for this choice of n2 is
that the Chow predictive test is usually applied when n2 ≤ k and it is
found in Godfrey and Orme (2000) that, given n, the performance of the
single bootstrap procedure deteriorates as n2 increases. Thus, in order to
give a stringent check for predictive tests based upon (4.17), attention
is restricted to the case of n2 = k = 6. For the standard Chow predic-
tive test, critical values are obtained from a F

(
6, n1 − 6

)
distribution,
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n1 = 24, 44, 74. In the notation of the previous subsection, single and
double bootstrap predictive tests are implemented using B = 500 and
C = 100.

Results are obtained for the three desired significance levels of 1 per
cent, 5 per cent and 10 per cent. All three conventional significance
levels are used because an applied worker may employ differing levels of
significance according to the purpose of the test. For example, a 10 per
cent level might be appropriate when testing for a genuine regime break,
whilst 1 per cent might be appropriate if the test is just one of a number of
diagnostics being employed. Estimates of the corresponding actual finite
sample rejection probabilities are calculated using 25,000 replications.

In Tables 4.1 to 4.3, estimated rejection probabilities under the null
hypothesis are given as percentages, rounded to one decimal place. For
true rejection probabilities of 1 per cent, 5 per cent and 10 per cent, the
values of twice the standard error of the corresponding estimators are
(approximately) 0.1 per cent, 0.3 per cent and 0.4 per cent. The nota-
tion used in these tables is as follows. The standard Normality-valid test,
using critical values from the assumed F-distribution, is denoted by SNV.
The test based upon the single bootstrap p-value of the Chow statistic
is denoted by SBS. Finally, DBS denotes the double bootstrap (adjusted
p-value) test.

Table 4.1 Estimated rejection probabilities for SNV, SBS and DBS versions of
Chow’s predictive test, n1 = 24 and n2 = 6, with desired significance levels of
1 per cent, 5 per cent and 10 per cent.

Error distribution Normal t(5) Uniform χ2(2) Log-Normal

a. Desired significance level of 1 per cent
SNV 1.0 3.0 0.3 5.4 9.9
SBS 1.1 1.8 0.7 2.6 4.7
DBS 0.8 1.0 0.8 1.1 1.0

b. Desired significance level of 5 per cent
SNV 5.2 8.3 2.4 11.1 15.1
SBS 5.5 7.4 3.9 8.8 11.6
DBS 5.1 6.0 4.3 6.6 7.9

c. Desired significance level of 10 per cent
SNV 10.1 13.5 6.2 15.9 18.8
SBS 10.8 12.8 8.7 14.3 16.6
DBS 10.5 11.7 9.3 12.2 13.8

Notes: The F
(
6, n1 − 6

)
distribution provides critical values for the SNV test. The tests denoted

by SBS and DBS are derived from single bootstrap and double bootstrap methods, respectively.
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Table 4.2 Estimated rejection probabilities for SNV, SBS and DBS versions of
Chow’s predictive test, n1 = 44 and n2 = 6, with desired significance levels of
1 per cent, 5 per cent and 10 per cent.

Error distribution Normal t(5) Uniform χ2(2) Log-Normal

a. Desired significance level of 1 per cent
SNV 1.0 3.9 0.1 6.1 9.5
SBS 1.0 1.6 0.6 1.6 2.1
DBS 0.8 0.9 0.7 0.8 0.5

b. Desired significance level of 5 per cent
SNV 4.8 8.8 1.4 11.3 13.4
SBS 5.2 7.0 4.0 7.7 8.7
DBS 4.8 5.6 4.6 5.7 5.8

c. Desired significance level of 10 per cent
SNV 10.0 13.3 4.7 15.1 16.1
SBS 10.6 11.8 8.8 12.5 12.4
DBS 10.1 10.9 9.7 11.1 11.0

Notes: The F
(
6, n1 − 6

)
distribution provides critical values for the SNV test. The tests

denoted by SBS and DBS are derived from single bootstrap and double bootstrap methods,
respectively.

Table 4.3 Estimated rejection probabilities for SNV, SBS and DBS versions of
Chow’s predictive test, n1 = 74 and n2 = 6, with desired significance levels of
1 per cent, 5 per cent and 10 per cent.

Error distribution Normal t(5) Uniform χ2(2) Log-Normal

a. Desired significance level of 1 per cent
SNV 0.9 4.2 0.0 6.2 9.3
SBS 1.1 1.5 0.7 1.5 1.7
DBS 0.8 0.8 0.9 0.8 0.6

b. Desired significance level of 5 per cent
SNV 4.9 8.8 0.9 11.1 12.9
SBS 5.2 6.5 4.1 6.8 7.2
DBS 4.7 5.4 4.6 5.5 5.9

c. Desired significance level of 10 per cent
SNV 9.8 12.8 3.7 14.8 15.2
SBS 10.3 10.7 8.8 11.0 10.8
DBS 10.0 9.9 9.6 10.0 9.6

Notes: The F
(
6, n1 − 6

)
distribution provides critical values for the SNV test. The tests

denoted by SBS and DBS are derived from single bootstrap and double bootstrap methods,
respectively.
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The estimates for the SNV test in Tables 4.1 to 4.3 show the impor-
tance of Normality for all combinations of n1 and n2. This test is exactly
valid when the errors are independent N(0, σ2) variables. Given the
number of replications, it is, therefore, anticipated that estimates for
SNV will be close to desired significance levels when the error distri-
bution is Normal. However, there are important differences between
estimates and desired significance levels under the non-Normal error
distributions. The results suggest that, under the uniform error distri-
bution, the actual null rejection probability is smaller than desired. The
other non-Normal distributions lead to estimates that are rather greater
than the desired levels, with this tendency being especially marked under
the heavily skewed χ2(2) and Log-Normal distributions. There is very
clear evidence that the standard Chow predictive test is not robust to
non-Normality.

The single bootstrap test SBS is only asymptotically valid, whether or
not the error distribution is Normal. Tables 4.1 to 4.3 reveal the expected
tendency of the behaviour of SBS to improve as n1 increases. The esti-
mates in these tables also show that SBS provides improved agreement
with the desired significance levels, relative to the asymptotically invalid
SNV test, when the error distribution is not Normal. However, the SBS
test is still sensitive to the substantial skewness of χ2(2) and Log-Normal
distributions, with its estimated rejection probabilities being greater than
the corresponding desired significance levels.

As expected from the analysis in Beran (1988), the rejection rates
contained in Tables 4.1 to 4.3 strongly suggest that the double boot-
strap test DBS provides better control of finite sample significance levels
than SBS. Indeed, with the exception of cases that combine the smallest
estimation sample size n1 = 24 with the χ2(2) and Log-Normal error dis-
tributions, the asymptotically valid DBS procedure has estimates that are
quite close to the desired values. Overall, the conclusion that emerges is
that, when carrying out predictive tests, the double bootstrap test DBS is
a much more reliable basis for inference than either the single bootstrap
check SBS or the Normality-valid SNV test described in Chow (1960).
Indeed, the evidence from the simulation experiments shows that the
textbook Chow test SNV appears to be so sensitive to non-Normality
that it cannot be recommended for routine use in modern applied
econometrics.

4.2.4. Dynamic regression models

The discussions of bootstrapping predictive tests and simulation exper-
iments above have been based upon the assumption that the regressors
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are strictly exogenous. The analysis can be generalized to allow for the
inclusion of lagged values of the dependent variable in the regressor set.
Recursive bootstrap methods, as described in Section 2.3.3, can be imple-
mented when the regression model is dynamic; see Godfrey and Orme
(2000) for details and evidence from simulation experiments. Further
extensions of the basic framework are available and several impor-
tant results, covering nonlinear models and estimation by instrumental
variables, are available in Andrews (2003b).

4.3. Using bootstrap methods with a battery of OLS
diagnostic tests

A common feature of modern computer programs for the estimation of a
regression equation is that they offer a variety of OLS-based diagnostics
designed to check the adequacy of the assumed model. There is some
variation between programs, but a basic set of checks often includes:

(i) a version of the RESET test of Ramsey (1969);
(ii) procedures to detect serial correlation; and

(iii) tests for heteroskedasticity.

As well as covering different sorts of violations of the assumptions of
a linear regression model, the diagnostic checks of a program may allow
the calculation of several different tests for a given type of misspecifi-
cation. For example, the user may be allowed to choose the number of
test variables for RESET of (i). For checks of type (ii), programs routinely
permit users to choose the order of the alternative hypothesis for the
Breusch-Godfrey LM tests and sometimes also give the statistic d dis-
cussed in Durbin and Watson (1950, 1951) and/or portmanteau checks;
see Greene (2008, section 19.7) for a useful summary of tests for serial
correlation. When obtaining checks of type (iii) for heteroskedasticity,
the user may be able to define the regressor set for artificial regressions
like (3.13) and (3.14), which are used to produce the test statistic. This
breadth of coverage of diagnostic checks is a useful feature of programs.
By its very nature, testing for misspecification has to be carried out with-
out precise information since any very clear ideas about specification will
presumably be used in the initial modelling.

Applied workers have taken advantage of tools for model checking
and now often report a sizeable battery of diagnostics to accompany
the standard OLS estimation results. However, an important problem
arises when several diagnostics are used. As explained in Section 1.6,
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the applied researcher cannot control the overall significance level using
standard results. There are two sources of difficulty that impede this con-
trol. The first obstacle to precise control is that there may be important
differences between actual and desired significance levels in finite sam-
ples when, as is often the case, individual tests are only asymptotically
valid. The second difficulty would be present even if the asymptotic and
finite sample significance levels of each check were equal. Unless all the
individual tests are, under the null hypothesis of correct specification,
independent, the overall significance level is unknown. Equivalently, it
is not possible, in general, to determine the probability that a correctly
specified model will survive all the checks to which it is subjected.

Standard asymptotic theory provides very limited guidance about the
overall significance level of a collection of separate tests. Only bounds
are available for the general case of asymptotically valid and dependent
tests; see Darroch and Silvey (1963, section 2). The Bonferroni inequality
implies that the overall significance level lies between the maximum of
the significance levels of the individual tests and the sum of these individ-
ual significance levels. Thus, for example, with 6 diagnostic checks, each
with an asymptotic significance level of 5 per cent, the overall asymp-
totic significance level is between 5 per cent and 30 per cent. The use
of asymptotically valid bounds clearly cannot deliver precise control of
the overall significance level of a battery of tests, especially when asymp-
totic theory does not give an accurate approximation to the unknown
finite sample behaviour of individual diagnostic checks. The purpose of
this section, which is based upon Godfrey (2005), is to examine how
bootstrap methods might be used when no standard asymptotic proce-
dure can be applied to control the overall significance level of a group of
OLS-based checks for misspecification.

Before giving details of the bootstrap algorithms, it may be useful to
comment on the purpose of the well-established practice of inspecting a
collection of separate diagnostic checks after OLS estimation. The valid-
ity of conventional OLS analysis of the model that is under scrutiny
requires that all of the null hypotheses of, for example, (i), (ii) and
(iii) are true. Thus, the applied worker looking at such a battery of OLS
diagnostic tests is interested in whether or not the separate checks of
types (i)–(iii) above provide strong evidence against the intersection null
hypothesis of correct mean function specification, no serial correlation
and homoskedasticity. This emphasis on the joint validity of the sepa-
rate null hypotheses is not typical of more general problems in multiple
hypothesis testing; see Benjamini and Yekutieli (2001). It could be argued
that a joint test approach would be more appropriate for econometric
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diagnostic checks, but the reality is that it is standard practice to use a
group of separate tests; see Godfrey and Veall (2000) for a discussion of
joint and separate tests for misspecification.

4.3.1. Regression models and diagnostic tests

Suppose that a time series regression is under test. (If the regression model
were to be estimated using cross-section data, there would be no interest
in serial correlation tests, unless some sort of, for example, spatial cor-
relation were suspected.) Using the subscript t to denote a typical time
series observation, a stable dynamic regression equation can be written
as in (2.35) of Chapter 2,

yt = y′
t(p)α + x′

tβ + ut = w′
tγ + ut , t = 1, . . . , n, (4.18)

in which: y′
t(p)

= (yt−1, . . . , yt−p), p ≥ 1; xt contains a typical observation

on each of k strictly exogenous variables; w′
t = (y′

t(p)
, x′

t ); γ ′ = (α′, β ′);
and the errors ut are assumed to be IID with zero mean, finite pos-
itive variance and unknown CDF F . The model parameter vector is
θ = (α′, β ′, F)′.

Diagnostic tests, which are designed to detect errors in the specifica-
tion of (4.18), are assumed to be calculated after OLS estimation. The OLS
estimator of γ ′ = (α′, β ′) is denoted by γ̂ ′ = (α̂′, β̂ ′

) and the associated
OLS predicted values are ŷt = w′

t γ̂ , t = 1, . . . , n. The corresponding OLS
residuals, which are often used as proxies for the unobservable errors,
are ût = yt − ŷt , t = 1, . . . , n. Under the assumption that (4.18) contains
an intercept term, the EDF of the OLS residuals can be used to generate
bootstrap errors. This EDF is given in (4.8). Asymptotically valid alter-
natives involving modifications of OLS residuals, such as those given
in (2.31) and (2.32), could be used, but are more difficult to justify in
the context of dynamic regression models. (If no intercept is present in
(4.18), the OLS residuals must be recentred to sum to zero before being
used for resampling.)

It is worth stressing that it is assumed that the general form of the
errors’ CDF F is unknown. This treatment of F seems reasonable, given
that it is unlikely that much information about the error distribution
will be available in practical situations. Some researchers do assume that
the error distribution is Normal, but this is a very strong assumption
for which there is little justification. Moreover, many OLS procedures
must be based upon asymptotic theory in the context of the dynamic
model (4.18) and such theory usually applies with general non-Normal
error distributions. Tests for the error distribution of the type discussed,
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for example, in Jarque and Bera (1980) and Neumeyer et al. (2004) are,
therefore, assumed not to be included in the battery of diagnostics. An
implication of not imposing Normality is that, for example, the Breusch-
Pagan (1979) check for heteroskedasticity and the predictive test statistic
given in Chow (1960) are not asymptotically pivotal.

The diagnostic tests to be applied after OLS estimation of (4.18) are
denoted by τj, j = 1, . . . , J . It is convenient, for the discussion of p-values
and the description of bootstrap methods below, to assume all diagnostic
checks have rejection regions in the right-hand tail of the (asymptotic)
null distribution of the test statistic. Tests of a single restriction may
require a minor adjustment to fit into this framework. For example, con-
sider Durbin’s (1970) h-statistic, which is asymptotically N(0, 1) when its
null hypothesis of serial independence is true. If the alternative for this
test is two-sided, the adjustment is to use τ = h2, with the asymptotic
reference distribution being χ2(1). If a one-sided alternative of negative
autocorrelation is thought to be appropriate, the adjustment is to use
τ = −h. If a one-sided alternative of positive autocorrelation is thought
to be appropriate, no adjustment is needed and τ = h.

Let the number of restrictions tested by τj be denoted by dj, j = 1, . . . , J .
If all the diagnostics tested the same number of restrictions, an overall
test might be derived by using the maximum of the test statistics as the
criterion, but equality of the degrees-of-freedom parameters dj is unlikely.
It is more useful to examine the general case with dj �= dl, for some j and
l. In this general situation, it is not the magnitudes of individual diagnos-
tics, but the corresponding p-values that reflect strength of evidence. In
particular, for an indication of the strongest piece of evidence, the min-
imum of these p-values can be examined. The strength of the evidence
against the assumed regression model that is provided by the minimum
p-value is assessed using two levels of bootstrapping.

4.3.2. Bootstrapping the minimum p-value of several diagnostic
test statistics

As noted above, the inclusion of the error distribution CDF F in the
model parameter vector θ = (α′, β ′, F)′ implies that some well-known
diagnostic checks are not asymptotically pivotal. For diagnostic test
statistics that are not asymptotically pivotal, a single bootstrap can be
used to obtain asymptotically valid inferences; see Beran (1988). In
fact, it is proposed in Godfrey (2005) that all regression diagnostics
being applied to the model under scrutiny should be implemented using
bootstrap methods, even if they are asymptotically pivotal. (For any
asymptotically pivotal tests being used, a bootstrap produces an ERP of
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smaller order in n than that associated with the use of asymptotic critical
values; see Beran, 1988.) Having used a single stage of bootstrapping to
obtain estimated p-values for all of the individual checks, the minimum
of these estimates can be derived. This minimum is not asymptotically
pivotal and, in order to assess its statistical significance at a desired level
αd , it is necessary to use another stage of bootstrapping, again making
appeal to the results in Beran (1988). The details of the bootstrap test of
the minimum estimated p-value are as follows.

Minimum p-value test: Step 1

In the first step, the actual data are analysed. The null model (4.18) is
estimated by OLS, using the genuine data set of n observations, and the
sample values of the J diagnostic checks are calculated. These observed
values are denoted by (τo

1 , . . . , τo
J ).

It is recommended in Godfrey (2005) that the p-values of the observed
test statistics τo

j are estimated using a first-stage bootstrap, whether or

not standard asymptotic distributions are available. In this first level of
bootstrapping, B artificial samples, each of size n, are obtained. The next
two steps are, therefore, repeated B times. Step 2 is used to generate
bootstrap data and Step 3 involves applying to these bootstrap data the
statistical techniques used in Step 1 with the actual data.

Minimum p-value test: Step 2

The data for bootstrap sample b are obtained using the recursive scheme

y∗
bt = α̂1y∗

b,t−1 + · · · + α̂py∗
b,t−p + x′

t β̂ + u∗
bt , t = 1, . . . , n, (4.19)

where bootstrap sample starting values are set equal to actual estimation
sample starting values (see Li and Maddala, 1996, section 2.3) and u∗

b =
(u∗

b1, . . . , u∗
bn)′ is derived by simple random sampling, with replacement,

from the EDF in (4.8).

Minimum p-value test: Step 3

The regression model is then estimated using the bootstrap data from
Step 2 to obtain OLS coefficient estimates, residuals and diagnostic test

statistics, denoted by γ̂ ∗
b = (α̂∗

b1, . . . , α̂∗
bp; β̂

∗′
b )′, û∗

b = (û∗
b1, . . . , û∗

bn)′, and

(τ∗
b1, . . . , τ∗

bJ ).

Minimum p-value test: Step 4

When Step 2 and Step 3 have been carried out B times, that is, for b =
1, . . . , B, the p-values of the observed values of the diagnostics τo

j are
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estimated in the fourth step by

p̂∗
j =

∑B
b=1 1(τ∗

bj ≥ τo
j )

B
, j = 1, . . . , J . (4.20)

The minimum of these estimated bootstrap p-values is

m̂p∗ = min
j

(p̂∗
j ). (4.21)

An assessment of the statistical significance of m̂p∗ of (4.21) is derived
via a second-stage bootstrap. In the second-stage bootstrap, C artificial
samples of size n are generated from each of the B first-stage bootstrap
data sets. Consequently Step 5 and Step 6 must be repeated C times for
each b, b = 1, . . . , B.

Minimum p-value test: Step 5

The generation of second-level bootstrap data is carried out in the fifth
step. For each b, a typical second-level bootstrap sample of n observations
is obtained using

y∗∗
bct = α̂∗

b1y∗∗
bc,t−1 + · · · + α̂∗

bpy∗∗
bc,t−p + x′

t β̂
∗
b + u∗∗

bct , t = 1, . . . , n, (4.22)

in which bootstrap sample starting values are set equal to actual estima-
tion sample starting values and the n elements of u∗∗

bc = (u∗∗
bc1, . . . , u∗∗

bcn)′
are selected by simple random sampling, with replacement, from the
first-level bootstrap residual EDF

F̂∗
b : probability 1/n on û∗

bt , t = 1, . . . , n. (4.23)

Minimum p-value test: Step 6

In Step 6, the OLS procedures applied to the actual data in Step 1 are
applied to the second-level bootstrap data from Step 5. Let the test statis-
tics calculated from a typical second-stage bootstrap sample be denoted
by τ∗∗

bcj, j = 1, . . . , J .

Minimum p-value test: Step 7

Step 7 is the bootstrap-world counterpart of Step 4. After repeating Step
5 and Step 6 C times, the p-value for the first-level bootstrap statistic τ∗

bj,

for any pair (b, j), can be estimated by

p̂∗∗
bj =

∑C
c=1 1(τ∗∗

bcj ≥ τ∗
bj)

C
, j = 1, . . . , J and b = 1, . . . , B. (4.24)
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Next, for a given value of b, the minimum of the estimated p-values p̂∗∗
bj

over the J tests can be found. This minimum p-value is denoted by

m̂p∗∗
b = min

j
(p̂∗∗

bj ). (4.25)

Minimum p-value test: Step 8

The final step of the minimum p-value test is straightforward. After the
first and second stages of bootstrapping have been completed, the B
values of m̂p∗∗

b in (4.25) can be used to approximate the sampling distri-
bution of m̂p∗ of (4.21). Unusually small values of m̂p∗ signal evidence
of model inadequacy and the left-hand tail p-value of m̂p∗ of (4.21) is
estimated by

p̂∗
mp =

∑B
b=1 1(m̂p∗∗

b ≤ m̂p∗
)

B
. (4.26)

The rejection rule for the desired (nominal) overall significance level αd is
to reject the null model after application of the battery of checks if p̂∗

mp ≤
αd . Under regularity conditions, the test using this rule is asymptotically
valid, but enjoys no refinement relative to the asymptotic theory test,
despite involving two levels of bootstrapping.

4.3.3. Simulation experiments and results

Two experiments are employed to examine the reliability of the two-stage
bootstrap method in finite samples. In the first experiment, hereafter
Experiment A, the situation considered is one in which several checks
are used to detect the same general type of misspecification. For the
second experiment, hereafter Experiment B, the diagnostic checks con-
sist of separate tests for invalid mean function, autocorrelation and
heteroskedasticity, which correspond to (i), (ii) and (iii) above.

Experiments A and B have the following features in common. The
bootstrap test based upon the minimum p-value of the diagnostic test
statistics is implemented using B = 500 first-stage bootstrap samples and
C = 100 second-stage bootstrap samples. The desired significance lev-
els studied are 5 per cent and 10 per cent. Estimated rejection rates are
calculated using R = 10,000 replications.

Experiment A is based upon a design described in Section 1.5.1.
Consider the problem of testing the log-log estimating equation of a
Cobb-Douglas model for omitted variables and/or incorrect functional
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form. The restricted (null) model is

yi = β1 + β2xi2 + β3xi3 + ui, E(ui|xi2, xi3) = 0, (4.27)

with the errors being IID with CDF F and the variables of (4.27) being as
defined in Section 1.5.1. The real world data for the dependent variable
and regressors in Greene (2008) are used to obtain the corresponding
OLS estimate b̂ = (b̂1, b̂2, b̂3)′ and the error variance estimate s2. In order
to investigate the effects of increasing sample size, an artificial data set
of 54 observations on regressors is generated by setting

xi+27,2 = xi2 and xi+27,3 = xi3, i = 1, . . . , 27.

In the simulations for Experiment A, data on the dependent variable
are generated using

yi = b̂1 + b̂2xi2 + b̂3xi3 + ui, i = 1, . . . n, (4.28)

with the errors ui being IID drawings from Normal, t(5) and χ2(2) dis-
tributions, which are transformed to have zero population mean and
population variance equal to the error variance estimate s2 from OLS
estimation of (4.27) using the actual data set of 27 observations. The
sample size n is either 27 or 54.

The simulated data of Experiment A are used to investigate the use-
fulness of the bootstrap minimum p-value approach when three general
checks of the mean function are carried out. These checks are as follows:
a RESET test that uses only ŷ2

i as a test variable; a RESET test that uses the

three variables of (ŷ2
i , ŷ3

i , ŷ4
i ); and a procedure proposed in Thursby and

Schmidt (1977) that involves testing (4.27) against

yi = β1 + β2xi2 + β3xi3 + δ1x2
i2 + δ2x2

i3 + δ3x3
i2 + δ4x3

i3

+ δ5x4
i2 + δ6x4

i3 + ui.

The numbers of restrictions tested by these three checks are 1, 3 and 6,
respectively.

The data generation process for Experiment B is based upon a sim-
ple version of an Okun’s law-type relationship for time series data. The
dependent variable yt is to be interpreted as the change in the unemploy-
ment rate and the regressor xt is the growth rate of output. Quarterly data
for 1950.1 to 1983.4 on US output levels are used to obtain the values of
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xt ; see Godfrey (2005, section IV) for details. The data generation process
for simulated samples is

yt = β1 + β2xt + β3xt−1 + ut , (4.29)

in which (β1, β2, β3) = (1.5, −0.5, 0.0), as suggested by published OLS
estimates. The errors for (4.29) are drawn in the same way as in Experi-
ment A, except that the error variance is selected to give an average R2 of
about 0.5, corresponding to typical values observed in empirical work.
The sample size is again either 27 or 54.

The model of (4.29) is subjected to three tests, each for a different
general type of misspecification. First, as in Experiment A, a RESET test
using only the squared value of the OLS predicted value is employed to
detect omitted variables or incorrect functional form, so d1 = 1. Second,
the LM test of φ1 = · · · = φ4 = 0 in the expanded model

yt = β1 + β2xt + β3xt−1 +
4∑

j=1

φjût−j + ut ,

provides a check against general fourth order serial correlation, with d2 =
4, as might be useful in a genuine empirical study based upon quarterly
data. Third, a test of the type proposed by Koenker (1981) is applied to
detect heteroskedasticity. It is implemented by calculating n times the
coefficient of determination from the OLS estimation of the artificial
regression of û2

t on ŷ2
t and an intercept term, so d3 = 1.

In both experiments, the bootstrap procedures described in the pre-
vious subsection are applied to each of the 10,000 samples of data
simulated, given a choice of n and the error distribution. The propor-
tion of replications in which comparison of p̂∗

mp in (4.26) with αd leads to
rejection of the true intersection null hypothesis gives the estimate of the
finite sample significance level that corresponds to αd , for αd = 5 per cent
or 10 per cent. The results are summarized in Table 4.4, which contains
estimates as percentages, rounded to one decimal place.

Table 4.4 shows that, while the estimates are often slightly smaller
than the desired level, there a reasonably good degree of control of the
overall significance level in the examples used for Experiments A and B.
Given that the number of replications is 10,000, estimators of signifi-
cance levels can reasonably be treated as being approximately Normal
and the test described in Godfrey and Orme (2000, p. 75) can be applied
to assess the usefulness of the bootstrap procedure. According to this test
every estimate in Table 4.4 for a case with αd = 5 per cent is consistent
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Table 4.4 Estimated significance levels for bootstrap
test of minimum p-value for battery of diagnostics

Error distribution Normal t(5) χ2(2)

a. Desired significance level of 5 per cent
Experiment A, n = 27 4.8 4.6 4.7
Experiment A, n = 54 4.8 4.5 4.4
Experiment B, n = 27 4.7 4.6 4.2
Experiment B, n = 54 4.7 4.5 4.1

b. Desired significance level of 10 per cent
Experiment A, n = 27 9.6 9.2 9.6
Experiment A, n = 54 9.4 9.5 9.4
Experiment B, n = 27 10.5 10.2 8.8
Experiment B, n = 54 10.2 9.9 9.9

with the claim the true rejection probability is between 4.4 per cent and
5 per cent. Similarly, in Panel b of Table 4.4, with αd = 10 per cent, the
test indicates every estimate is consistent with the claim that the true
rejection probability is between 9 per cent and 10.1 per cent. This evi-
dence about the degree of control with sample sizes as small as 27 and
54 is encouraging, especially under the extremely skewed errors derived
from the χ2(2) distribution.

It is reasonable to expect that even better results would be obtained
if a double, rather than single, bootstrap were used with the asymptot-
ically nonpivotal test statistic m̂p∗ of (4.21). However, three levels of
bootstrapping would be required to achieve such improvements and the
computational costs might not be justified. A straightforward double-
bootstrap test is available in the special case in which every test statistic
is asymptotically pivotal and has a standard limit null distribution. In
such a situation, there is no absolute necessity to obtain p-values of
individual statistics by simulation. Instead suitable computer routines
can provide p-values from each of the relevant standard asymptotic
distributions.

Let the CDF of the asymptotic null distribution of τj be denoted by
Gj, j = 1, . . . , J . Given the assumption about the nature of the rejec-
tion region, the asymptotic p-value of the observed value τo

j is pa
j =

1 − Gj(τ
o
j ), j = 1, . . . , J , and the minimum of these values is

mpa = min
j

(1 − Gj(τ
o
j )), (4.30)
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which is the asymptotic theory counterpart of the bootstrap-based term
m̂p∗ of (4.21). The double bootstrap described in Section 2.5 can be
applied to mpa of (4.30) and is expected, on the basis of results in Beran
(1988), to have finite sample significance levels that are closer to the
desired levels than the single bootstrap test of m̂p∗of (4.21).

Godfrey provides simulation evidence on the relative sizes of ERP terms
for the single bootstrap m̂p∗-test and the double bootstrap mpa-test;
see Godfrey (2005, section V). The experimental design corresponds to
Experiment A above, except that 50,000 replications are used to obtain
accurate estimates of differences in null rejection probabilities. These
estimates are summarized in Table 4.5. The contents of Table 4.5 are in
line with what is expected from the asymptotic analysis in Beran (1988).
The estimated ERP term of the double bootstrap mpa-test is, in every
case, smaller than the corresponding value for the single bootstrap m̂p∗-
test. Indeed the rejection rates of the former test are very close to the
desired level.

While the mpa-test appears to be superior to the m̂p∗-test, the former,
unlike the latter, is only available when all test statistics being calcu-
lated are asymptotically pivotal. It would, therefore, seem sensible to
avoid the unnecessary use of test statistics that are not asymptotically
pivotal in applied work. For example, rather than using the LM statis-
tic given in Breusch and Pagan (1979) to test for heteroskedasticity, the
Studentized version given in Koenker (1981) can be employed. How-
ever, as explained in the previous section, it is not possible to adjust the
statistic for Chow’s predictive test to obtain an asymptotically pivotal ver-
sion. Consequently, the mpa-test cannot be used to control the overall

Table 4.5 Estimated significance levels obtained from experiment A for the single
bootstrap m̂p∗-test and the double bootstrap mpa-test

n = 27 n = 54

m̂p∗-test mpa-test m̂p∗-test mpa -test

a. Desired significance level is αd = 5 per cent
Error distribution is Normal 4.4 4.7 4.6 4.8
Error distribution is t(5) 4.5 4.8 4.3 4.6
Error distribution is χ2(2) 4.6 5.0 4.5 4.7

b. Desired significance level is αd = 10 per cent
Error distribution is Normal 9.2 9.9 9.3 10.1
Error distribution is t(5) 9.5 10.3 9.3 10.1
Error distribution is χ2(2) 9.3 10.2 9.1 10.0
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significance level when the predictive test is one of the battery of diagnos-
tic checks. Godfrey obtains results on the performance of the m̂p∗-test
when a battery of three diagnostic checks consists of a predictive test
with n1 = 1, combined with the autocorrelation and heteroskedasticity
checks used in Experiment B; see Godfrey (2005, p. 276, Table 2). Godfrey
finds that all estimates for the m̂p∗-test are consistent with Serlin’s strin-
gent condition that the actual finite sample significance level should be
between 0.9αd and 1.1αd ; see Serlin (2000).

4.4. Bootstrapping tests for structural breaks

One of the best known tests for regression models is the F-test for struc-
tural breaks described in Chow (1960); see, for example, Hill et al. (2008,
pp. 179–181) and Verbeek (2004, p. 64). The null hypothesis of the origi-
nal Chow test is that the regression model (4.1), with NID errors, applies
to all n observations to be used. In its simplest form, the alternative
hypothesis is that there are two population models, which differ only
in the value of the regression coefficient vector, and that, on the basis
of nonsample information, it is known, under this alternative, which
observations belong to each of the two populations. The corresponding
subsample sizes are n1 and n2, with n1 + n2 = n. For Chow’s F-test to be
available, it is required that n1 > k and n2 > k, so that separate subsample
estimation of all regression coefficients is possible.

Under the basic version of the alternative hypothesis, the unrestricted
regression model in Chow (1960) can be written as

yi = x′
iβ + x′

i(diγ ) + ui, i = 1, . . . , n, (4.31)

in which the errors ui are NID(0, σ2) and di is a dummy variable, taking
the values 0 or 1, with its value known for every observation. For the n1
observations with di = 0, the regression model is

yi = x′
iβ + ui, ui NID(0, σ2),

and for the n2 observations with di = 1, it is

yi = x′
i(β + γ ) + ui, ui NID(0, σ2),

so that Normality and homoskedasticity are used as supporting assump-
tions for the F-test of γ = 0k in (4.31). Provided that standard regu-
larity conditions are satisfied, this F-test is asymptotically valid, under
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unspecified forms of non-Normality, when k, the number of regression
coefficients, is fixed and both subsample sizes tend to infinity, with
n1 = O(n) and n2 = O(n). In keeping with previous discussions of tests
for regression models, it will henceforth be assumed that the errors of
(4.31) are simply IID with a CDF of unspecified general form, which is
denoted by F .

Extensions of the alternative hypothesis that relax the assumption of
IID errors by allowing for variance parameter changes will be discussed in
Chapter 6. Other types of modifications of the alternative hypothesis are
possible, for example, (i) there might be more than two different regimes
that are identified by the prior information, or (ii) it might be known
that structural breaks, if present, only affect some of the elements of
the regression coefficient vector. Such extensions can be handled using
standard asymptotic theory for regression tests. However, as noted in
Section 1.6, there is an extension of the alternative hypothesis that has
great practical relevance and does not lead to a test using a standard
asymptotically valid F-distribution for critical values. This extension is
based upon recognition of the fact that there is often uncertainty about
how the sample should be divided into subsamples.

In terms of the extended regression model of (4.31) with IID errors,
there may well be uncertainty about the value of di for some values of i.
If the data are ordered, for example, as in a time series study, and the two
subsamples correspond to the first n1 observations and the last n2 obser-
vations, the problem can be referred to as being that the breakpoint under
the alternative is unknown. Stock and Watson stress that applied workers
who use the data in some way (either formally or informally) to deter-
mine the possible breakpoint cannot appeal to the standard textbook
results in Chow (1960), which are based upon the assumption that the
breakpoint is known on the basis of nonsample (a priori) information;
see Stock and Watson (2007, pp. 569–570).

The problem of the absence of genuine nonsample information about
the location of the structural break could be tackled by randomly select-
ing a value of n1 that satisfies k < n1 < n − k. This artificial device avoids
using the data but may be of limited practical value. Hansen points
out that this sort of arbitrary selection can lead to a true breakpoint
being missed; see Hansen (2001, p. 118). A more systematic data-based
method is required, but, as will be seen, such extensions of the orig-
inal Chow test lead to statistics which have non-standard asymptotic
distributions. It is certainly not valid to continue to rely upon the null
distributions in Chow (1960), which are obtained under the assumption
that the breakpoint for the alternative is known.
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The purpose of this section is to outline asymptotic and bootstrap tests
when there is a single unknown breakpoint under the alternative hypoth-
esis. A very useful discussion of this case and other more general aspects
of testing for structural breaks is provided in Perron (2006, section 8.4).

4.4.1. Testing constant coefficients against an alternative with an
unknown breakpoint

Suppose then that, under the alternative that is being entertained, there
is a single breakpoint for the regression coefficient vector, which puts
the first n1 observations in one regime and the last n2 observations in a
different regime. The alternative model can be written as

yi =
k∑

j=1

xijβj +
k∑

j=1

1(i > n1)xijγj + ui, (4.32)

in which 1(.) is the indicator function and the errors are IID with CDF F .
The value of n1 is treated as an unknown constant in (4.32). If n1 were
instead known, it would, under general conditions, be asymptotically
valid to compare the standard F-statistic for testing γ1 = γ2 = · · · = γk =
0 in (4.32) with critical values from the F(k, n−2k) distribution. However,
with the breakpoint being unknown, problems arise when construct-
ing tests. Andrews summarizes some of the statistical literature on these
problems in a very influential article; see Andrews (1993).

There are two points to note about the exposition in Andrews (1993).
First, there are minor differences in terminology. Andrews refers to
“structural change”, rather than “structural break” and to the “change
point”, rather than the “breakpoint”. Second, Andrews finds it conve-
nient to redefine a relevant parameter of interest and, rather than refer
to n1 as the breakpoint, he introduces π = n1/n, which is treated as the
unknown term to be estimated. Clearly π only appears as a parameter
under the alternative hypothesis and it is this non-standard feature of
the test problem that leads to complications.

The testing of null hypotheses when a nuisance parameter is present
only under the alternative hypothesis is discussed in Davies (1977).
Davies considers the application of the likelihood ratio principle and
suggests that the maximized test statistic over all possible values of the
parameter that vanishes under the null be used as a criterion for testing.
The use of the same general idea in the specific context of linear (simple)
regression models with two different regimes is suggested in two early
articles by Quandt; see Quandt (1958, 1960).
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Under the assumption of NID errors, the log-likelihood for (4.32) can
be maximized over all possible values of n1: recall the inequalities n1 >

k and n2 > k must both be satisfied. The maximum of these maxima
can then be compared with the maximized log-likelihood for the null
model (4.1) to arrive at a test statistic. This strategy leads to the test
statistic

sup
π∈�

LRn(π), (4.33)

in which: LRn(π) denotes the LR statistic for testing γ1 = γ2 = · · · =
γk = 0 in (4.32), calculated using the breakpoint �nπ
, with �.
 being
the integer part operator for the nonnegative term nπ ; and � consists of
values that satisfy

0 < π1 ≤ π ≤ π2 < 1,

for specified values of the lower bound π1 and the upper bound π2. For
notational convenience, the statistic in (4.33) will henceforth be written
as SupLR. Quandt focusses on the likelihood ratio (LR) approach but the
LM and Wald methods are also available. The statistics derived by using
the general method in Davies (1977) with LM and Wald principles can
be written as SupLM and SupW, respectively.

Quandt obtains his SupLR statistic under the assumption that the errors
of the regression model are NID; so that OLS estimators are MLE. In keep-
ing with the more recent contributions, this assumption is not made
here. It is instead assumed that the errors are IID, with an unspeci-
fied common distribution, and that conditions for the consistency and
asymptotic Normality of OLS estimators of regression coefficients are sat-
isfied. It follows that the use of “SupLR”, “SupW” and “SupLM” is, strictly
speaking, incorrect. When the errors are IID, it would be more accurate
to refer to OLS as a quasi-MLE and to modify the notation for test statis-
tics to reflect the use of quasi-likelihood functions, for example, SupQLR
could be used in place of SupLR. However, the use of a more accurate,
but more cumbersome, notation would conflict with common usage in
the literature and so SupLR, SupLM and SupW will be used, even though
the OLS methods used to derive them are not the maximizers of the true
likelihood function.

Standard results on the testing of linear coefficient restrictions in
regression models with IID errors imply that, given a value of π and
hence of n1, the statistics LRn(π), LMn(π) and Wn(π) are all (different)
functions of the F-statistic proposed in Chow (1960); see Godfrey (1988,
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p. 51). This F-statistic is

FC = RSS0 − (RSS1 + RSS2)

(RSS1 + RSS2)
· n − 2k

k
, (4.34)

in which RSS0, RSS1 and RSS2 are the sums of squared residuals from
the OLS regression of yi on (xi1, . . . , xik) for the full sample of n observa-
tions, the first n1 observations and the last n2 observations, respectively.
(The RSS function from the OLS estimation of (4.32) equals RSS1 +RSS2.)
When the null hypothesis is true, FC does not depend upon the param-
eters (β1, . . . , βk, σ2). It follows that, given a value of π , LRn(π), LMn(π)

and Wn(π) all have distributions that are also independent of these
parameters, under the null model.

It is also clear that, given a value of π , LRn(π), LMn(π) and Wn(π) are all
asymptotically distributed as χ2(k) when γ1 = γ2 = · · · = γk = 0 in (4.32),
whatever the form of the error CDF F , provided that weak regularity
conditions are satisfied. Thus the Sup-type statistics proposed in Andrews
(1993) are asymptotically distributed as the supremum of a set of χ2(k)

variables, whatever the value of the parameter vector θ = (β1, . . . , βk, F)′.
The Sup-type statistics are, therefore, asymptotically pivotal. It follows
that asymptotic critical values for general use may be available.

In order to obtain, for example, tables of critical values, it is nec-
essary to determine the asymptotic null distributions of SupLR, SupLM
and SupW. Andrews shows that the three statistics have the same
non-standard limit null distribution. This equivalence under the null
hypothesis corresponds to the classical result for standard test situations.
It has already been established that the limit null distribution of the
Andrews-type statistics does not depend upon θ = (β1, . . . , βk, F)′, but it
clearly depends upon k since each of the statistics is the supremum of a set
of χ2(k) variables. Andrews shows that the asymptotic null distribution
of his Sup-statistics also depends upon

λ = π2(1 − π1)

π1(1 − π2)
. (4.35)

If it is decided to use symmetric trimming of the total sample, with π1 =
π0 and π2 = (1 − π0), λ of (4.35) can be replaced by

λs = (1 − π0)2

π2
0

. (4.36)
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Andrews suggests using symmetric trimming with π1 = 0.15 and π2 =
(1 − π1) = 0.85; see Andrews (1993, p. 826). He stresses that it is not
possible to avoid the problem of selecting values for π1 and π2 by using
the full range of values for π . With π unrestricted, the test statistics
(and their critical value for any prespecified significance level) diverge to
infinity, under the null hypothesis; see Andrews (1993, pp. 838–839).

A table of asymptotic critical values for the Sup-tests is provided in
Andrews (1993). These critical values are derived using simulation; see
Section 5.3 of Andrews (1993) for details. However, the critical val-
ues for k = 8 in Andrews (1993) are not correct. A corrected table,
which is based upon more accurate procedures than the first version,
appears in Andrews (2003a, Table 1, pp. 396–397). The table in Andrews
(2003a) covers the following combinations: desired significance levels of
αd = 0.01, 0.05, 0.10; k = 1, . . . , 20; and � = [π0, 1 − π0] for values of
π0 between 0.05 and 0.50. The form of � implies symmetric trimming
and, for each value of π0, Andrews gives the corresponding value of λs
of (4.36).

Researchers wishing to use asymmetric trimming with π2 �= (1 − π1)

can simply calculate the implied value of λ in (4.35) and then find, or
approximate, the critical value by looking for similar values of λs of (4.36)
in Table 1 of Andrews (2003a). For example, with π1 = 0.2 and π2 = 0.6,

λ = 0.6(1 − 0.2)

0.2(1 − 0.6)
= 6,

and interpolation uses the critical values for λs = 5.44 and λs = 9.00,
which appear in Table 1 of Andrews (2003a).

Although the asymptotic critical values in Andrews (2003a) enable
applied workers to judge the statistical significance of Sup-test statis-
tics at conventional levels, some researchers may prefer to examine
asymptotic p-values. However, the calculation of asymptotic p-values is
not trivial because the relevant limit null distribution is non-standard.
Hansen considers computationally convenient methods for approximat-
ing asymptotic p-values and provides empirical examples to illustrate the
usefulness of his techniques; see Hansen (1997).

The analysis provided in Andrews (1993) has had a great impact and
Sup-tests for structural breaks are often recommended for application in
empirical econometrics. There are, however, two questions that need
to be considered. First, do the asymptotic critical values provided by
Andrews give useful approximations in finite samples? Second, given
that the test statistics are asymptotically pivotal, can the application of
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bootstrap methods produce useful improvements relative to the asymp-
totic theory tests? These questions have been addressed in a number of
simulation studies.

4.4.2. Simulation evidence for asymptotic and bootstrap tests

The evidence which is discussed in this subsection is collected from pub-
lished simulation studies. There are three general issues about which
this evidence is informative: (i) the consequences of invalidly using the
standard Chow-type critical values when the breakpoint is selected using
data-based analysis of some sort (either formal or informal); (ii) the qual-
ity of the finite sample approximation provided by the asymptotic critical
values in Andrews (2003a); and (iii) the merits of a bootstrap approach
to assessing the statistical significance of a Sup-type statistic relative to
the asymptotic theory method in Andrews (1993, 2003a).

Some important results are reported in Diebold and Chen (1996).
Diebold and Chen carry out simulation experiments based upon the sim-
ple dynamic model in which, under the null hypothesis of no structural
breaks, the data are generated by

yt = ρyt−1 + ut , ut NID(0, 1), t = 1, . . . , n, (4.37)

and

y0 ∼ N
(

0,
1

1 − ρ2

)
, |ρ| < 1. (4.38)

The alternative hypothesis is taken to consist of

yt = ρyt−1 + ut , ut NID(0, 1), t = 1, . . . , n1, (4.39)

and

yt = ρ2yt−1 + ut , ut NID(0, 1), t = n1 + 1, . . . , n, (4.40)

with n1 being unknown.
If the value of n1 were known, a conventional asymptotic likelihood-

based test of the single restriction ρ = ρ2 would be possible, with
reference being made to the χ2(1) distribution for a critical value or
asymptotic p-value. However, this approach is not appropriate when n1
is unknown and common practice in modern econometrics is to adopt
the approach discussed in Andrews (1993, 2003a).
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As in Andrews (1993, 2003a), the unknown breakpoint parameter is
defined to be π = n1/n and the values used in Diebold and Chen (1996)
to implement the check for a structural break satisfy π ∈ [0.15, 0.85]. The
associated Sup-type criteria are given by

SupLR = max
π

n log
[

RSS0
(RSS1 + RSS2)

]
, (4.41)

SupW = max
π

n
[

RSS0 − (RSS1 + RSS2)

(RSS1 + RSS2)

]
, (4.42)

and

SupLM = max
π

n
[

RSS0 − (RSS1 + RSS2)

RSS0

]
, (4.43)

in which RSS0, RSS1 and RSS2 are the sums of squared residuals from the
OLS estimation of (4.37), (4.39) and (4.40), respectively.

The problem that faces the applied worker who is using one of these
Sup-statistics is to make accurate judgements about its statistical signif-
icance in a finite sample situation. In order to obtain results that assist
the applied worker, data are simulated by Diebold and Chen, using (4.37)
and (4.38) with a large number of combinations of ρ, n and desired signif-
icance level αd ; see Diebold and Chen (1996, p. 225) for details. Sample
sizes of n = 10, 50, 100, 500 and 1,000 are examined. The parameter ρ has
18 values in the range 0.01 ≤ ρ ≤ 0.99, so that there is considerable vari-
ation in the degree of autocorrelation of the dependent variable. Given
the values of n and ρ, the data y0, y1, . . . , yn are derived for each of 1,000
replications, using (4.37), (4.38) and a random number generator for the
N(0, 1) distribution. These replications are used to estimate finite sample
null hypothesis rejection probabilities, which are compared with desired
levels αd = 1 per cent, 2.5 per cent, 5 per cent and 10 per cent.

The estimates published in Diebold and Chen (1996) are derived under
the assumption that the IID errors have a Normal distribution. How-
ever, Diebold and Chen report that their results are robust to departures
from this assumption about the error distribution; see Diebold and Chen
(1996, p. 223, footnote 2).

The following notation is used by Diebold and Chen when they
discuss the results from their simulation experiments. Correspond-
ing to (4.41), (4.42) and (4.43), the asymptotically invalid tests that
use the χ2(1) distribution for critical values are denoted by ChiSupLR,
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ChiSupW and ChiSupLM. When the asymptotic critical values in Andrews
(1993) are used with the Sup-statistics, the resulting tests are referred
to as AsySupLR, AsySupW and AsySupLM. Finally the bootstrap vari-
ants of the Sup-test for a structural break with unknown breakpoint are
denoted by BootSupLR, BootSupW and BootSupLM. These bootstrap tests
are carried out using 1,000 bootstrap samples and their implementation
for a typical replication of a simulation experiment can be described
as follows.

Diebold and Chen (1996): Step 1

The first step, given the values of n and ρ, is to use (4.37), (4.38) and
a random number generator for the Standard Normal distribution to
obtain the replication sample y1, . . . , yn. These replication-level data are
the counterparts in the simulation experiment of a sample of actual
observations in a genuine application.

Diebold and Chen (1996): Step 2

The second step corresponds to restricted (null hypothesis) estimation.
The data from Step 1 are used to estimate the first-order autoregression
of (4.37) by OLS. Let the OLS estimate of ρ be denoted by ρ̂ and the asso-
ciated residuals by ût , t = 1, . . . , n. Note that (4.37) does not include
an intercept and so the OLS residuals are not constrained to have a
sample mean equal to zero, which is the population mean of an error
term. For the purpose of obtaining bootstrap errors by resampling resid-
uals, it is necessary to recentre the latter to have a zero mean, that is,
the terms

ûc
t = ût − 1

n

n∑
s=1

ûs, t = 1, . . . , n,

must be calculated.
Estimation of the alternative model for each value of n1 which satisfies

�0.15n
 ≤ n1 ≤ �0.85n
 is also carried out. The test statistics SupLR, SupW
and SupLM are then calculated using the relevant results from estimation
of null and/or alternative models.

Given the values of ρ̂ and ûc
t , t = 1, . . . , n, from the replication-level

data, B = 1,000 bootstrap samples, each of size n, are generated. It
is, therefore, necessary to repeat Step 3 and Step 4 B times. The for-
mer step provides bootstrap data and the latter step uses these artificial
observations to derive bootstrap test statistics.
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Diebold and Chen (1996): Step 3

For bootstrap sample b, the initial value y∗
b0 is selected by random

sampling from the replication-level data y1, . . . , yn and then the n
observations y∗

b1, . . . , y∗
bn are generated using

y∗
bt = ρ̂y∗

bt−1 + u∗
bt , t = 1, . . . , n, (4.44)

in which the bootstrap errors u∗
bt are obtained by simple random sam-

pling, with replacement, from the EDF of centred residuals defined by

F̂ : probability
1
n

on ûc
t , t = 1, . . . , n. (4.45)

The use of (4.45) implies that the bootstrap is not parametric and is
appropriate when the CDF of the errors ut is treated as unknown.

Diebold and Chen (1996): Step 4

The OLS-based estimation and testing procedures applied to replication-
level data in Step 2 are now applied to the bootstrap sample. For bootstrap
sample b, let the calculated values of the Sup-statistics be denoted by
SupLR∗

b, SupW∗
b and SupLM∗

b.

Diebold and Chen (1996): Step 5

The bootstrap p-values of the replication-level statistics SupLR, SupW and
SupLM from Step 2 can be calculated when Step 3 and Step 4 have been
carried out the required B times. However, as pointed out in Diebold
and Chen (1996, p. 233), the three bootstrap tests are equivalent; this
equivalence reflects the fact that each of LR, W and LM is a monotone
increasing function of the F-statistic in (4.34). Consequently, if the com-
mon value of the bootstrap p-values for the three test statistics is denoted
by p̂∗

SUP ,

p̂∗
SUP =

∑B
b=1 1(SupLR∗

b ≥ SupLR)

B

=
∑B

b=1 1(SupW∗
b ≥ SupW)

B

=
∑B

b=1 1(SupLM∗
b ≥ SupLM)

B
,
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with B = 1,000 in the simulation experiments in Diebold and Chen
(1996). The asymptotically valid rejection rule for the bootstrap test with
the desired significance level αd is to reject the null hypothesis of no
structural break if p̂∗

SUP ≤ αd .
When the above steps have been carried out for a complete set of R

replications, it is possible to estimate the finite sample null rejection
probability of the bootstrap test. The estimate is just the proportion of
replications in which p̂∗

SUP ≤ αd . Diebold and Chen use R = 1,000, which
is rather smaller than the numbers of replications used to examine the
bootstrap tests discussed above, for example, in Chapter 3. The problem
is that each replication is relatively costly. In general, with B bootstrap
samples used to examine the Sup-tests of Andrews (1993), each replica-
tion involves the OLS estimation of (B + 1)[1 + 2A] linear regressions, in
which A is the number of different breakpoints examined, as implied by
the values of the trimming parameters π1 and π2, and the sample size n.

Having examined the estimates from their experiments, Diebold and
Chen come to the conclusions that: actual rejection rates are much
greater than desired significance levels if the consequences of the data-
based estimation of the breakpoint are ignored and the invalid χ2(1)

distribution is used for critical values; the asymptotically valid critical
values given in Andrews (1993) cannot be relied upon to give good con-
trol of finite sample significance levels, with this failing being especially
marked for the AsySupLM test; and the performance of the bootstrap test
is very good and consistently better than the corresponding asymptotic
theory test.

In order to illustrate the results reported in Diebold and Chen (1996),
Table 4.6 contains estimates with n = 50 for αd = 5 per cent and
10 per cent. This table is constructed from Tables 2, 3 and 4 in Diebold
and Chen (1996), which cover several other cases. The results of Table
4.6 are representative of the full set reported in Diebold and Chen (1996).
If the true null rejection probability is ε per cent, the standard error of
its estimator, based upon 1,000 replications, is

h(ε) =
[√

ε(100 − ε)

1, 000

]
per cent,

with h(5) ≈ 0.7 per cent and h(10) ≈ 0.9 per cent. These approximate
measures of precision are useful when comparing the estimates of Table
4.6 with the corresponding desired significance levels αd or a range of
values such as αd ± 0.1αd ; see Serlin (2000).
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Table 4.6 Estimated null rejection probabilities of tests for structural break with
unknown breakpoint: desired significance levels of 5 per cent and 10 per cent,
with sample size = 50

Test ρ = 0.01 ρ = 0.50 ρ = 0.80 ρ = 0.99

ChiSupW 26.9 46.6 29.0 46.9 33.7 51.8 41.8 61.1
ChiSupLR 25.0 44.9 27.4 44.6 31.4 50.3 39.5 60.4
ChiSupLM 22.9 42.9 25.6 43.1 28.5 48.6 36.8 58.8

AsySupW 1.8 4.3 3.0 5.6 4.1 8.1 7.4 12.4
AsySupLR 1.0 3.1 1.9 4.5 3.3 6.3 5.2 10.3
AsySupLM 0.4 2.3 0.9 3.5 2.2 4.7 3.9 8.0

BootSup 6.6 11.4 5.2 10.3 4.2 10.3 6.1 12.0

Notes: All estimates are in percentage form. The tests BootSupLR, BootSupW and BootSupLM
are equivalent and, in order to avoid duplication, are included under the single heading of
BootSup. Estimates with αd = 5 per cent are given in normal font. Estimates with αd = 10 per
cent are given in bold font.

Before examining the simulation results, it is useful to consider the
relevant predictions of asymptotic theory in order to have a framework
for the discussion. The estimates for ChiSupW, ChiSupLR and ChiSupLM
are not expected to be close to αd because these tests are asymptotically
invalid, that is, each has an ERP term that is O(1) and does not tend to
zero as n → ∞. Asymptotic theory leads to the results that AsySupW, Asy-
SupLR and AsySupLM are asymptotically equivalent and have ERP terms
that are o(1) so rejection probabilities converge to desired levels (see
Andrews, 1993). Thus, if asymptotic theory provided a good approxima-
tion, rejection rates would be close to desired significance levels and be
similar for AsySupW, AsySupLR and AsySupLM. Finally, since the Sup-test
statistics are asymptotically pivotal, the results in Beran (1988) suggest
that the common bootstrap variant will behave better in finite samples
than the asymptotic theory tests.

The general conclusions that can be drawn from the contents of Table
4.6 are the same for both values of the desired significance level. First,
Table 4.6 provides strong evidence that using the critical value for a
single χ2(1) variable when assessing the statistical significance of the
maximum of a set of χ2(1) variables produces overrejection. Rejection
rates for ChiSupW, ChiSupLR and ChiSupLM are all much greater than
required, with departures from the desired level depending upon both ρ

and the form of the test statistic. The costs of failing to take account of
the data-based search for the unknown breakpoint in terms of misleading
inferences are very clear.
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Second, in contrast to the invalid tests using χ2(1) critical values, the
asymptotic test using the critical values in Andrews (1993) produces esti-
mates less than the desired value, except when ρ = 0.99 and either
AsySupW or AsySupLR is used. The variant AsySupLM suffers from the
worst departures from the asymptotic significance level. As explained in
Diebold and Chen (1996, p. 231), the pattern of inequalities between
the rejection frequencies for AsySupW, AsySupLR and AsySupLM is in line
with the well-known inequality relationship between the classical statis-
tics for testing a set of linear restrictions; see Godfrey (1988, pp. 57–59)
for comments on this relationship in the context of dynamic regression
models.

Third, the bootstrap test gives better approximations than the asymp-
totic theory test and is less sensitive to variations in ρ. Application of the
procedure described in Godfrey and Orme (2000a, p. 75) reveals that all
estimates for BootSup in Table 4.6 are consistent with the claim that the
actual null rejection probability is in the range αd ± 0.1αd . The quality
of this performance is not specific to the cases covered in Table 4.6. On
the basis of their much larger complete set of results, Diebold and Chen
remark that

the finite-sample size distortion associated with the use of boot-
strapped critical values is minimal, regardless of the value of the
nuisance parameter ρ (Diebold and Chen, 1996, p. 236).

Other authors have examined the usefulness of bootstrap tests for
structural breaks with unknown breakpoints. For example, Christiano
recommends a bootstrap approach and shows the importance of the
problems caused by ignoring the consequences of pretest use of the
data when selecting the breakpoint of the alternative hypothesis; see
Christiano (1992). Several other studies are mentioned in Perron (2006,
section 8.4), including the important contribution in Hansen (2000).

Hansen points out that the asymptotic theory in Andrews (1993)
that underpins the AsySup-tests involves the assumption that the regres-
sors are stationary. He generalizes previous analyses by allowing for
structural breaks in the marginal distribution of the regressors; so that
it is possible to focus on testing for structural breaks in the condi-
tional model for the dependent variable. A “fixed-regressor” bootstrap
is proposed in order to make asymptotically valid inferences in this
more general framework; see Hansen (2000, section 5). In this version
of the bootstrap, the regressors are treated as fixed even when they
include lagged values of the dependent variable. Hansen shows that
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this bootstrap produces an asymptotically valid test and obtains encour-
aging results from simulation experiments; see Hansen (2000, section
5.3). The fixed bootstrap test is more reliable than the asymptotic theory
test, but “does not completely solve the inference problem”; see Hansen
(2000, p. 110).

It might be thought useful to reduce the magnitude of the ERP term by
using a double bootstrap test. However, as remarked above, the compu-
tational cost of bootstrap tests of Sup-statistics is relatively high even for a
single bootstrap approach. A conventional double bootstrap of the type
discussed in the previous sections of this chapter would have a very high
computational cost. The possibility of applying the “Fast Double Boot-
strap” (FDB) procedure, which is described in Section 2.5, is explored
in Lamarche (2004). Lamarche finds that the estimates of ERP terms for
bootstrap tests are small and that the faster bootstrap methods work very
well. In contrast, the asymptotic theory test is badly behaved in finite
samples. For example, in an experiment in which αd = 5 per cent, the
sample size is n = 20 and the data are generated by a simple regression
with an exogenous regressor, Lamarche obtains rejection frequencies for
bootstrap and asymptotic tests equal to 5.2 per cent and 16.4 per cent,
respectively. Lamarche also provides an example to demonstrate the fea-
sibility of FDB tests of a Sup-statistic in applied work, given existing
computer resources; see Lamarche (2004, section 3).

4.5. Summary and conclusions

This chapter has been concerned with situations in which asymptotic
theory is at best intractable and, in any case, does not lead to one of
the standard (tabulated) distributions as the source of critical values or
p-values. It has been argued that the bootstrap can be especially useful
when the standard asymptotic results for test statistics are not applicable.
If theorists have not derived the relevant non-standard asymptotic null
distribution, the bootstrap offers a way to carry out an asymptotically
valid test when no theory-based method is available. When the non-
standard asymptotic distribution has been derived, asymptotic critical
values are usually approximated using simulation methods. However,
such simulated asymptotic critical values may give poorer finite sample
approximations than a bootstrap test. Moreover, applied workers may be
interested in calculating estimates of p-values, rather than just using one
of the three conventional significance levels. Published tables of asymp-
totic critical values are of limited value when the aim is to approximate
p-values, but the bootstrap allows straightforward estimation.
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There are many examples of non-standard tests that are important
in applied econometric analysis. Three examples have been used in this
chapter to illustrate the usefulness of bootstrap methods when test statis-
tics have non-standard asymptotic null distributions. In the first exam-
ple, the predictive test given in Chow (1960) was examined. This test is
widely used, with critical values being taken from an F-distribution as
proposed in Chow (1960) for the case of NID errors. However, if the errors
are simply assumed to be IID, the predictive test statistic is not asymptot-
ically pivotal. Instead its asymptotic null distribution depends upon the
distribution of the IID errors, even as the sample size tends to infinity.

A single bootstrap version of the predictive test gives an asymptot-
ically valid procedure and a double bootstrap provides an asymptotic
refinement, as defined in Beran (1988). The predictions of the asymp-
totic analysis in Beran (1988) are supported by the results of simulation
experiments, which are discussed in Section 4.2.3. Reliance on the F-
distribution for critical values under non-Normality leads to rejection
rates that are far from the desired significance levels. The use of a single
bootstrap with the predictive test statistic gives quite a good approxima-
tion and a double bootstrap provides even better control of finite sample
significance levels.

In the second example, the problem of controlling the overall sig-
nificance level of a group of separate diagnostic checks was discussed.
This is an important problem which is faced by any researcher who uses
a standard program for the OLS estimation of a regression model. The
limitations of conventional asymptotic theory were explained and appli-
cations of bootstrap methods were discussed. The basic idea is to use
bootstrap techniques to judge the statistical significance of the mini-
mum of the estimated p-values of the various individual diagnostic test
statistics. Evidence from simulation experiments in Godfrey (2005) indi-
cates the potential practical value of two asymptotically valid bootstrap
approaches. The first of these procedures uses bootstrap estimates of
individual p-values in order to derive their minimum. In the second
approach, the minimum p-value is calculated from individual p-values
that are obtained from known asymptotic distributions. Clearly the for-
mer method is more widely applicable than the latter because some test
statistics are not asymptotically pivotal, for example, the predictive test
of the first example. The former method may also be more useful than
the latter when asymptotic distributions are available for all the tests
being used, but there is evidence that suggests that such distributions
can provide inaccurate approximations for some of these checks in finite
samples.
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The third and final example used in this chapter, like the first, is
based upon a generalization of a test proposed in Chow (1960). The
relevant procedure is Chow’s test of the null hypothesis that the regres-
sion coefficient vector is the same for all observations, with an untested
auxiliary assumption being that the errors are NID(0, σ2). (The auxiliary
assumption of Normality can be relaxed if Chow’s F-test is treated as an
approximation based upon conventional asymptotic theory.) The alter-
native hypothesis in Chow’s test can be viewed as consisting of two parts:
(i) there are two different values of the regression coefficient vector; and
(ii) it is known which of these two values applies to each observation of
the complete set.

Many researchers have argued that part (ii) of Chow’s alternative
hypothesis is implausible and not representative of actual applications
in which data are often used to determine the partitioning of the total
sample that provides the strongest evidence against the null hypothe-
sis. Unfortunately standard asymptotic theory cannot be applied when
the data have been used in this way. Non-standard asymptotic theory is,
however, available in the results of Andrews (1993). Given the relevant
non-standard asymptotic null distribution, simulation can be used, as in
Andrews (2003a), to approximate critical values for conventional levels
of significance. The problem for applied work is that such asymptotic
critical values may not be accurate in finite sample situations.

Simulation evidence was summarized. This evidence indicates that
asymptotic critical values from the non-standard distributions in
Andrews (1993) can be unreliable, with rejection frequencies that are
not close to desired significance levels. The corresponding single boot-
strap test does better in terms of the results from simulation experiments
and is found to perform well. Results in Lamarche (2004) indicate that,
despite the relatively high computational costs implied by the nature
of the search-based test, a “Fast Double Bootstrap” test is feasible and is
likely to give even more accurate results.

It is clear that the same general findings emerge from each of the three
examples discussed in this chapter. Bootstrap tests can be useful and
reliable when asymptotic theory fails to provide a standard distribution
as an approximation to finite sample behaviour. In all three examples,
simulation evidence supports the claim that bootstrap tests perform well
for sample sizes of interest to applied workers. In contrast, the non-
standard asymptotic critical values are either unavailable or have not
been found to be generally reliable in simulation experiments.

When the findings of this chapter are combined with those of the pre-
vious chapter, it is evident that there is strong support for the routine use
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of the bootstrap, whether or not standard asymptotic theory is available
for the tests of interest. The generality of these encouraging results on
bootstrap tests is, of course, limited by the assumption that the errors of
the regression model are IID. Modern econometrics texts often contain
the recommendation that inference should be based upon procedures
that are asymptotically robust to non-Normality and heteroskedasticity.
Indeed, in some cases, it is possible to derive tests that are asymp-
totically valid in the presence of unspecified forms of autocorrelation,
heteroskedasticity and non-Normality. However, when either autocorre-
lation or heteroskedasticity of the errors is permitted, the generation of
bootstrap errors by simple random sampling, with replacement, from
the OLS residuals is inappropriate. Alternative bootstrap schemes are
required in order to mimic the features of the assumed actual data gen-
eration process and so to lead to correct asymptotic distributions of test
statistics. Some of these more general bootstrap schemes, which allow
for autocorrelation and/or heteroskedasticity of the regression errors, are
discussed in the next chapter.



5
Bootstrap Methods for Regression
Models with Non-IID Errors

5.1. Introduction

After examining evidence from asymptotic analyses and simulation
experiments, MacKinnon comments that he

would be very surprised to encounter a bootstrap test that did not work
well in the context of a single-equation regression model . . . ,provided
the regressors are exogenous or predetermined and the underlying
error terms are homoskedastic and serially uncorrelated (MacKinnon,
2002, p. 625).

Since the publication of MacKinnon’s remarks, other researchers have
come to the conclusion that bootstrap tests, derived by resampling
residuals, should be used when the null hypothesis model is a linear
regression with IID errors, whether or not standard asymptotic tests are
available. However, the assumption that the errors are IID is restrictive
and it is often thought necessary to allow for heteroskedasticity and/or
autocorrelation in applied regression analysis.

It has been emphasized in the previous chapters that the artificial
model used to obtain repeated samples of bootstrap data should mimic
the model assumed to generate the actual data. Consequently, if the
actual data are assumed to be produced by a regression model with
non-IID errors, a bootstrap model that imposes IID errors will not be
an accurate approximation and cannot be expected to lead to appro-
priate tests, even asymptotically. There is, therefore, a need for more
general versions of bootstrap error processes, which permit the required
departures from the framework of IID disturbances.

177
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The purpose of this chapter is to outline important results for boot-
strap schemes that are relevant to regression models with non-IID errors.
Whether heteroskedasticity or autocorrelation of the errors is to be per-
mitted, there is a choice between two general types of bootstrap test. The
first type consists of model-based bootstrap procedures that are derived
by assuming a specific error model to replace the assumption that the
errors are IID, for example, a simple AR(1) scheme might be used to allow
for autocorrelation. The specification of an error model is not required
for the second type of bootstrap test. Instead tests are derived using
bootstrap schemes that are designed to be asymptotically valid in the
presence of unspecified forms of departure from either homoskedasticity
or independence.

It seems reasonable to conjecture that the first type of test will be more
efficient than the second type of procedure when the former is based
upon the correct parametric form for the non-IID error model. How-
ever, the asymptotic validity of the first type of test will depend upon
the adequacy of the assumed error model from which it is derived. Con-
sequently the first type of test is less robust than the second type. The
choice between the two approaches to deriving bootstrap tests, therefore,
involves consideration of the trade-off between efficiency and robust-
ness; see Liu and Singh (1992) for an analysis of efficiency and robustness
in resampling. Both general types of bootstrap test are discussed below.

The contents of this chapter are as follows. In Section 5.2, bootstrap
procedures that allow for heteroskedasticity of independently distributed
errors are examined. Bootstraps for stationary autocorrelated processes
are discussed in Section 5.3. The implementation of bootstrap schemes
for generating pseudo-data that mimic both heteroskedasticity and auto-
correlation is covered in Section 5.4. Finally, Section 5.5 contains a
summary and some concluding remarks.

5.2. Bootstrap methods for independent
heteroskedastic errors

The primary aim of regression analysis is to gain information about the
conditional mean function for a dependent variable, given the values
of regressors. As stressed, for example, in Hansen (1999), correct specifi-
cation of the conditional mean function does not automatically imply
that the conditional variances are all equal. Consequently it may often
be reasonable to allow for heteroskedasticity. In order to simplify the
exposition of bootstrap methods, discussion of dynamic models is post-
poned until the main ideas relating to heteroskedasticity-valid bootstraps
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have been covered. It is, therefore, assumed initially that all regressors
are either nonrandom or strictly exogenous.

The heteroskedastic regression model is written as

yi =
k∑

j=1

xijβj + ui, i = 1, . . . , n, (5.1)

in which, conditional upon the values of the regressors, the error terms
are independently distributed with common zero mean but different
variances. The conditional variances are denoted by (σ2

1 , . . . , σ2
n ) and

heteroskedasticity is present, so σ2
i �= σ2

j for at least one pair of values i

and j. Standard asymptotic analysis for heteroskedastic regression mod-
els uses the assumption that u2

i , like ui, has a finite positive variance for
all i; so that the first four moments of the conditional distribution of each
error are assumed to be finite. It is also assumed that the regressors satisfy
assumptions required for the consistency and asymptotic Normality of
the OLS estimators for (5.1); see, for example, White (1980).

As usual, the OLS estimators of the regression coefficients in (5.1) are
denoted by β̂j, j = 1, . . . , k. The consistency of these OLS estimators
implies that the former can play the role of the latter when constructing
a bootstrap counterpart of the regression model which is assumed to gen-
erate the actual data. Hence, for a typical observation y∗

i of a bootstrap
sample, the conditional mean could be

E∗(y∗
i |xi1, . . . , xik) =

k∑
j=1

xijβ̂j,

with the addition of a bootstrap error term u∗
i yielding

y∗
i = E∗(y∗

i |xi1, . . . , xik) + u∗
i =

k∑
j=1

xijβ̂j + u∗
i .

The classical residual resampling bootstrap proposed in previous chapters
as a source for the error term u∗

i is no longer appropriate and does not
lead to asymptotically valid tests in the presence of heteroskedasticity.

The failings of the IID-valid residual resampling method can be illus-
trated by considering a simple regression model with heteroskedastic
errors. Suppose that

yi = α + βxi + ui, i = 1, . . . , n, (5.2)
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in which regressor values are not random and the heteroskedastic errors
are independently distributed with

E(ui) = 0 and Var(ui) = σ2
i , i = 1, . . . , n.

Let the OLS estimators for (5.2) be denoted by α̂ and β̂, with the associated
residuals being ûi, i = 1, . . . , n. As is well known, the OLS estimator of
the slope coefficient satisfies

β̂ = β +
∑

i(xi − x̄)ui∑
i(xi − x̄)2

, (5.3)

and, in the presence of heteroskedasticity, the variance of the Op(1) term√
n
(
β̂ − β

)
is

Var
(√

n
(
β̂ − β

))
= n

∑
i(xi − x̄)2σ2

i[∑
i(xi − x̄)2

]2 . (5.4)

If, as part of an attempt to improve on approximations based upon
asymptotic theory, repeated artificial samples were obtained using clas-
sical residual resampling, the bootstrap data would be generated by

y∗
i = α̂ + β̂xi + u∗

i , i = 1, . . . , n, (5.5)

with the bootstrap errors being drawn randomly, with replacement, from
the EDF in

F̂ : probability
1
n

on ûi, i = 1, . . . , n. (5.6)

The implied bootstrap world counterpart of (5.3) is

β̂∗ = β̂ +
∑

i(xi − x̄)u∗
i∑

i(xi − x̄)2
. (5.7)

Now, under the classical resampling approach, the terms u∗
i are IID with

common variance given by

Var∗(u∗) = E∗ [
(u∗)2

]
=

n∑
i=1

Pr(u∗ = ûi)û
2
i

= 1
n

n∑
i=1

û2
i .
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It follows that, under the conditional (on observed data) bootstrap prob-
ability law based upon the false assumption of IID errors, the counterpart
of (5.4) is

Var
(√

n
(
β̂∗ − β̂

))
=

∑n
i=1 û2

i∑
i(xi − x̄)2

,

which is asymptotically equivalent to∑n
i=1 σ2

i∑
i(xi − x̄)2

. (5.8)

As n −→ ∞, the term in (5.8), which is appropriate for IID bootstrap
errors, does not have the same limit as the variance in (5.4), which is
derived allowing for heteroskedasticity of actual errors. Consequently the

use of an IID-based bootstrap implies that
√

n
(
β̂∗ − β̂

)
and

√
n
(
β̂ − β

)
do

not have the same asymptotic variance when the errors ui, i = 1, . . . , n,
are heteroskedastic.

More generally, the classical (IID-valid) residual resampling scheme
based upon (5.6), or some asymptotically equivalent scheme, does
not lead to a consistent estimator of the covariance matrix of β̂ =
(β̂1, . . . , β̂k)′ when (5.1) is estimated by OLS and so will not lead to
valid large sample tests. Four different approaches to bootstrapping that
do have the potential to yield valid asymptotic tests in the presence of
heteroskedasticity will be now be examined.

5.2.1. Model-based bootstraps

Suppose first that a researcher is prepared to specify a model that deter-
mines variances of the dependent variable, as well as one for its mean
values, given exogenous variables. In such a situation, the regression
model (5.1) is combined with a skedastic function. The skedastic func-
tion often takes the form of a transformation of a linear combination of
exogenous variables, which may or may not be related to the regressors
of (5.1). Let

xi = (xi1, . . . , xik)′ and zi = (1, zi1, . . . , ziq)′

denote typical observation vectors on exogenous variables taken to be
relevant to mean and variance functions, respectively, with associated
coefficient vectors

β = (β1, . . . , βk)′ and γ = (γ0, γ1, . . . , γq)′.
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The assumed data generation process (DGP) can then be written as

yi = x′
iβ + ui, i = 1, . . . , n, (5.9)

in which the errors are independent, have zero mean and variances given
by the skedastic function

σ2
i = υ(z′

iγ ), i = 1, . . . , n, (5.10)

for some specified function υ(.).
The literature on heteroskedastic regression models includes discussion

of various forms of υ(.). The multiplicative model is obtained by using
υ(.) = exp(.), that is,

σ2
i = exp(z′

iγ ), i = 1, . . . , n, (5.11)

which is discussed in detail in Harvey (1976). The additive model

σ2
i = z′

iγ , i = 1, . . . , n, (5.12)

is considered in Amemiya (1977). For both specifications, it is possible to
obtain a consistent estimator of γ by applying OLS to an artificial regres-
sion in which the observations on the dependent variable are derived
from the OLS residuals ûi = yi − x′

iβ̂, i = 1, . . . , n. For the multiplicative
scheme (5.11), the artificial regression is

log(û2
i ) = z′

iγ + error;

see Harvey (1976, p. 462). The corresponding artificial regression when
the skedastic model is (5.12) can be written as

û2
i = z′

iγ + error;

see Amemiya (1977, pp. 366–367).
Given a consistent estimator of γ , derived from OLS estimation of a

suitable artificial regression, it is possible to use a feasible GLS method to
re-estimate β. Alternatively, some researchers have assumed Normality
in order to make use of maximum likelihood techniques to estimate β

and γ ; see Amemiya (1977, p. 368) and Harvey (1976, section 3).
For the purpose of outlining model-based bootstrap schemes for het-

eroskedastic regression models, let the estimators of β and γ be denoted
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by β̈ and γ̈ , respectively. Under standard assumptions, the methods men-
tioned above yield consistent estimators for the parameter vectors of (5.9)
and (5.10). These consistent estimators can be used to define a bootstrap
DGP. Let a sequence of scaled residuals be defined as follows:

ëi = (yi − x′
iβ̈)/

√
υ(z′

iγ̈ ), i = 1, . . . , n. (5.13)

A model-based bootstrap that reflects heteroskedasticity can be imple-
mented using

y∗
i = x′

iβ̈ +
(√

υ(z′
iγ̈ )

)
e∗
i , i = 1, . . . , n, (5.14)

in which the terms e∗
1, . . . , e∗

n are obtained by random sampling, with
replacement, from

F̈e : probability
1
n

on

ëi − 1
n

n∑
j=1

ëj

 , i = 1, . . . , n. (5.15)

There are, however, good reasons to question the practical value of
bootstrapping using schemes of the type defined by (5.13) to (5.15).
These schemes require the correct specification of the skedastic model
(5.10) for their consistency. In applied work, there is not likely to be
much information to guide the specification of (5.10). If the wrong
functional form is selected for υ(.), or zi does not include all relevant vari-
ables, the true pattern of heteroskedasticity will not be approached in the
bootstrap world as n −→ ∞. Consequently the model-based bootstrap
approach must probably be judged to provide tools that are too fragile
for general use. Its lack of robustness to misspecification of the variance
model could lead to very misleading inferences; see Belsley (2002) for
an analysis of the effects of using incorrect skedastic functions. Boot-
straps that do not require the specification of variance models in order
to supply heteroskedasticity-robust asymptotic procedures are, therefore,
of interest.

5.2.2. Pairs bootstraps

The usual regression equation framework is not used in the second
approach to bootstrapping in the presence of heteroskedasticity. Instead
the bootstrap samples are obtained by resampling the pairs of observa-
tions yi and xi. More formally, the bootstrap sample S∗ = {(y∗

i , x∗
i ), i =

1, . . . , n} is derived by simple random sampling, with replacement, from
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the joint EDF

G̈ : probability
1
n

on (yi, xi), i = 1, . . . , n, (5.16)

which is equivalent to

G̈ : probability
1
n

on (x′
iβ̂ + ûi, xi), i = 1, . . . , n. (5.17)

This pairs bootstrap is useful when the vectors (yi, x′
i) are viewed as

IID drawings from some joint distribution. As pointed out in David-
son and MacKinnon (2006, p. 822), this interpretation does not rule
out heteroskedasticity in the conditional distributions of yi, given xi, for
i = 1, . . . , n.

Having obtained a pairs bootstrap sample S∗ = {(y∗
i , x∗

i ), i = 1, . . . , n},
the associated bootstrap OLS estimator, denoted by β̂

∗
, can be calculated.

In order for the pairs bootstrap to be a source of asymptotically valid

inferences,
√

n
(
β̂ − β

)
and

√
n
(
β̂

∗ − β̂
)

should, under their respective

probability laws, have the same limiting distribution. Asymptotic analy-
ses that deal with the consistency of the pairs bootstrap are contained in
Freedman (1981) and Mammen (1993). However, while the consistency
of the pairs bootstrap indicates its potential usefulness when the errors
of a regression model are heteroskedastic, several authors have drawn
attention to drawbacks.

First, there may be an interest in inference conditional upon the
observed values of the exogenous regressors and the pairs bootstrap uses
random sets of observations on regressors which may not stay close to
the actual set; see Hinkley (1988, p. 331). Second, as pointed out in
Horowitz (2001, p. 3215), randomly resampling the pairs (yi, xi) does
not impose a condition of the form E(ui|xi) = 0. (Freedman remarks that
“perhaps surprisingly, the condition . . . does not seem to be needed”; see
Freedman (1981, p. 1220). It is shown in Mammen (1993, p. 256) that
E(uixi) = 0k is implied by the standard assumptions.) Third, modifica-
tion of either the null hypothesis or the pairs bootstrap is required when
statistics for testing linear restrictions are to be bootstrapped; see David-
son and MacKinnon (2006, p. 822). Given that the purpose of this book
is to describe tests for regression models, it is worth commenting on the
third point in a little more detail.

If the original pairs bootstrap is used, the null hypothesis to be tested
using bootstrap samples must be modified to reflect what is true for the
actual data. For example, rather than test the actual null hypothesis of
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Rβ = r, the modification is to examine Rβ = Rβ̂ in the pairs bootstrap
world. An alternative modification, which does not require adjustment
of the null hypothesis, is to modify the pairs bootstrap. If the restricted
estimator for the actual data is denoted by β̃, so that Rβ̃ = r, the modified
pairs bootstrap is to derive the sample S∗ = {(y∗

i , x∗
i ), i = 1, . . . , n} by

random sampling, with replacement, from

G̈mod : probability
1
n

on (x′
iβ̃ + ûi, xi), i = 1, . . . , n; (5.18)

see Flachaire (1999) and Mammen (1993, section 4). Flachaire reports
evidence from small-scale simulation experiments that indicates that
replacing (5.17) by (5.18) leads to more reliable tests. Mammen estab-
lishes that, if (5.18) is used in a modified pairs bootstrap, a bootstrap test
of the standard F-statistic is asymptotically valid, despite the fact that
the presence of unspecified forms of heteroskedasticity implies that this
statistic is not asymptotically pivotal.

Given that the pairs bootstrap suffers from the three drawbacks
described above, it is not surprising that there has been interest in alter-
native ways of bootstrapping regression statistics when unspecified types
of heteroskedasticity are permitted. One popular approach, known as the
wild bootstrap, will now be discussed.

5.2.3. Wild bootstraps

Wild bootstraps are more closely linked to the textbook discussions of
regression models than the pairs bootstraps. A wild bootstrap involves
adding together an estimated predicted part, which serves as a bootstrap
world conditional mean, and a bootstrap error term. The key thing is
that the bootstrap error should be obtained in a way that allows for
heteroskedasticity of unknown form. A typical observation for a wild
bootstrap scheme can be written as

y∗
i = x′

iβ̇ + üiεi, (5.19)

in which β̇ is an estimator of β, üi is a residual associated with a (possibly)
different estimator β̈, that is, üi = yi −x′

iβ̈, and εi is a drawing from a pick
distribution. (As usual, the residual üi in (5.19) can be multiplied by an
adjustment term that tends to 1, as n −→ ∞, and reflects consideration of
either leverage values or degrees-of-freedom relative to the sample size.)
Conditional upon the observed data, the terms xi, β̇ and üi in (5.19) are
constants and the randomness of y∗

i about its conditional mean depends
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upon the specification of the pick distribution. There is, therefore, no
need to centre the actual residuals to have zero mean in order for the
bootstrap-world expectation E∗(üiεi) = üiE

∗(εi) to be zero.
The general theory of the wild bootstrap is discussed in the statistics

literature; see Liu (1988), Mammen (1993) and Wu (1986). In order to
serve as basis for asymptotically valid (and hopefully reliable finite sam-
ple) tests, (5.19) should use estimators β̇ and β̈ that are consistent under
the relevant null hypothesis, with β̇ being a restricted estimator that sat-
isfies the null hypothesis. The estimator β̈, which provides the residual
term üi, can come from either restricted or unrestricted estimation. The
pick distribution of (5.19) must also satisfy conditions for the consistency
of the wild bootstrap. At a minimum, the terms εi should be IID random
variables with mean E∗(εi) = 0 and variance E∗(ε2

i ) = 1, i = 1, . . . , n; see
Wu (1986, section 7). A further restriction is sometimes imposed on the
pick distribution. The distribution of a single linear combination of the
elements of the OLS estimator β̂ is considered in Liu (1988). Liu shows
that, if E∗(ε3

i ) = 1, the wild bootstrap enjoys second-order properties,
with the first three moments of the relevant test statistic being estimated
correctly to O(n−1) by the wild bootstrap. Many different pick distribu-
tions are available and clearly evidence on their small sample properties
is of interest to applied workers.

One obvious device for constructing a pick distribution from sam-
ple information is to calculate standardized versions üz

i of the residuals
üi, with

üz
i = a + büi, i = 1, . . . , n,

the constants a and b being chosen so that

1
n

n∑
i=1

üz
i = 0 and

1
n

n∑
i=1

(
üz

i
)2 = 1,

and then to define the pick distribution by

Dε,1 : Pr(ε = üz
i ) = 1

n
, i = 1, . . . , n. (5.20)

When the terms εi are drawn randomly, with replacement, from Dε,1,
the two conditions given by Wu are satisfied but the additional condition
discussed by Liu is not.
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A simple alternative to the data-based approach that leads to Dε,1 is
to assume that the terms εi, i = 1, . . . , n, are NID(0, 1). This assumption
gives

Dε,2 : ε ∼ N(0, 1). (5.21)

As with Dε,1, the first two moments for εi from Dε,2 are E∗(εi) = 0 and
E∗(ε2

i ) = 1. The symmetry of the standard Normal distribution implies

that E∗(ε3
i ) = 0; so that Liu’s additional moment condition is not fulfilled

by Dε,2.
A pick distribution that satisfies all three moment conditions on the

distribution of εi is proposed in Liu (1988). For this pick distribution,
denoted by Dε,3, ε is defined to be the mean-adjusted product of two
Normal variables. More precisely, Liu’s distribution Dε,3 is given by

Dε,3 : ε = df − E(d)E(f ), (5.22)

in which d and f are independent Normal variables with

d ∼ N

(
1
2

(√
17
6

+
√

1
6

)
,

1
2

)
,

and

f ∼ N

(
1
2

(√
17
6

−
√

1
6

)
,

1
2

)
.

An alternative to Dε,3, which has the same first three moments, is given
in Mammen (1993). This alternative pick distribution is denoted by Dε,4
and is probably the most widely-used of the available specifications. It is
based upon a discrete pick distribution with only two possible values, in
which

Dε,4 : Pr

ε =
−

(√
5 − 1

)
2

 =
(√

5 + 1
)

2
√

5
and

Pr

ε =
(√

5 + 1
)

2

 = 1 −
(√

5 + 1
)

2
√

5
. (5.23)

Mammen also proposes a quadratic function of a standard Normal vari-
able that gives the required values for the first three moments of εi in
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(5.19). More precisely, Mammen defines

Dε,5 : ε = z√
2

−
(
z2 − 1

)
2

, (5.24)

in which z ∼ NID(0, 1).
A pick distribution which is much simpler than any of those

already mentioned has been recommended in Davidson and Flachaire
(2001, 2008). The scheme supported by Davidson and Flachaire is the
Rademacher distribution given by

Dε,6 : Pr (ε = 1) = Pr (ε = −1) = 1
2

. (5.25)

For this distribution, E∗(εi) = 0, E∗(ε2
i ) = 1 and E∗(ε3

i ) = 0. At first
glance, this pick distribution might seem to have very little to recom-
mend it. It generates bootstrap errors from heteroskedastic two-point
distributions, with

Pr(u∗
i = üi) = Pr(u∗

i = −üi) = 0.5,

so that Var∗(u∗
i ) = ü2

i , i = 1, . . . , n. Few researchers would suggest such a
simple specification for approximating the distributions of the actual
regression errors. However, despite the simplicity of the Rademacher
distribution, it appears to perform very well in many applications and
some examples that illustrate its usefulness will be provided in the
next chapter. Results from simulation experiments that are discussed
in Flachaire (2005) suggest that Rademacher pick distribution Dε,6 gives
better performance than either pairs bootstraps or the widely-used wild
bootstrap derived from Mammen’s distribution Dε,4.

5.2.4. Estimating function bootstraps

The problem of bootstrapping the OLS estimator of the coefficients of a
linear regression model when the errors are heteroskedastic is examined
in Hu and Zidek (1995). Hu and Zidek put forward an alternative to
pairs and wild bootstraps. Their method is obtained from the estimating
functions (often called the “normal equations”) for the unrestricted OLS
estimator β̂. These estimating functions can be written as

n∑
i=1

xiûi = 0k,
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and imply that the OLS estimator is given by

β̂ = β +
 n∑

i=1

xix
′
i

−1  n∑
i=1

xiui

 .

Hu and Zidek suggest that ri = xiûi be regarded as an estimate of ρi =
xiui, i = 1, . . . , n. The estimating function bootstrap is then carried out by
calculating

β̂
∗ = β̂ +

 n∑
i=1

xix
′
i

−1  n∑
i=1

r∗
i ,

 (5.26)

in which {r∗
1, . . . , r∗

n} is a bootstrap sample obtained by random sampling,
with replacement, from

Fr : Pr(r∗ = xiûi) = 1
n

, i = 1, . . . , n.

Asymptotic analysis to justify the use of the estimating function boot-
strap is provided in Hu and Zidek (1995). It is shown that, under
regularity conditions, this bootstrap technique yields the correct asymp-
totic distribution. Hu and Zidek report encouraging results about small
sample performance from simulation experiments. Hu and Zidek also
compare the estimating function bootstrap with pairs and wild boot-
straps; see Hu and Zidek (1995, section 3). Since the matrix inverse on
the right-hand-side of (5.26) need only be computed once, the estimating
function bootstrap has a smaller computational cost than the pairs boot-
strap method, which involves OLS estimation for each of the regressor
observations sets selected. Also, in contrast to the wild bootstrap, there
is no need to make an assumption about the distribution of an auxiliary
random variable such as εi in (5.19). While the choice of pick distribution
does not affect the asymptotic validity of wild bootstrap tests, provided
that the mean is 0 and the variance is 1, finite sample behaviour may
be sensitive. Consequently there may be a lack of robustness of wild
bootstrap tests to variations in the choice of pick distribution for sample
sizes of relevance in applied work. Simulation results on this issue are
provided in the next chapter.

It should be noted that the usefulness of the estimating function boot-
strap is not confined to the linear regression model with heteroskedastic
errors. Hu and Kalbfleisch provide a wide ranging discussion of this tech-
nique in which several different models are covered and argue that it is
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often superior, in terms of accuracy and computational cost, to standard
bootstrap methods; see Hu and Kalbfleisch (2000). There is, however,
an important restriction on the availability of the estimating function
bootstrap; the data must be independently distributed.

5.2.5. Bootstrapping dynamic regression models

It has been assumed so far that the regressors are all exogenous. This
assumption may be appropriate when the regression analysis is based
upon cross-section data and many textbooks include the remark that
heteroskedasticity is often present when such data are employed; see,
for example, Verbeek (2004, pp. 82–83). However, heteroskedasticity
can also arise in time-series applications. When time-series regression
models are under consideration, the assumption that all regressors are
strictly exogenous must sometimes be relaxed because lagged values of
the dependent variable are included in the regressor set. There is, there-
fore, a need for a discussion of bootstrap methods that can be used for
dynamic regression models with heteroskedastic errors. It is convenient
to use the subscript t , rather than i, for observations, given that it is being
assumed that time series data are being used for the regression analysis.

In order to focus on the consequences of the regression equation being
dynamic, suppose first that the DGP is the AR(p) model

yt = α1yt−1 + · · · + αpyt−p + ut , t = 1, . . . , n, (5.27)

in which: the integer p is finite, known and positive; and the elements
of α = (α1, . . . , αp)′ are such that αp �= 0, with the equation

α(λ) = λp − α1λp−1 − · · · − αp = 0,

having all of its roots inside the unit circle. The OLS estimator for (5.27) is
denoted by α̂ = (α̂1, . . . , α̂p)′. In the standard asymptotic analysis of the
behaviour of α̂, it is assumed that the errors ut in (5.27) are IID, with zero
mean, variance σ2 and finite fourth moment; see, for example, Hamilton
(1994, pp. 215–217). The generalization of these assumptions to allow
for conditional heteroskedasticity is discussed in Gonçalves and Kilian
(2004).

The weaker assumptions that are made by Gonçalves and Kilian
include the requirement that the conditional mean of ut , given the his-
tory of past errors, is zero, so that there is no serial correlation; see
Gonçalves and Kilian (2004, p. 94) for detailed statements of the reg-
ularity conditions needed for the technical analysis. These assumptions
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permit the presence of conditional heteroskedasticity schemes that are
of interest in empirical research, for example, ARCH and GARCH pro-
cesses. Consequently the serially uncorrelated errors can be statistically
dependent, as in Horowitz et al. (2006).

Gonçalves and Kilian show that, under their assumptions,
√

n
(
α̂ − α

)
is

asymptotically Normal with zero mean vector and a finite, non-singular
covariance matrix denoted by C; see Gonçalves and Kilian (2004, The-
orem 3.1). Not surprisingly, given the conditional heteroskedasticity of
the errors, C is of the “sandwich” type, for example as in (1.38). Given
a consistent estimator of C, it is possible to derive standard asymptotic
χ2 tests of hypotheses that impose linear restrictions on α. However,
there is evidence that appropriate bootstrap tests might perform better
in finite samples than such asymptotic theory tests; see Gonçalves and
Kilian (2004).

Gonçalves and Kilian establish the first-order asymptotic validity of
three bootstrap methods for autoregressions with conditionally het-
eroskedastic errors. First, a modification of the recursive bootstrap for the
case of IID errors is examined. This modified dynamic bootstrap scheme
is called the recursive-design wild bootstrap and can be written as

y∗
t = α̂1y∗

t−1 + · · · + α̂py∗
t−p + u∗

t , t = 1, . . . , n, (5.28)

in which a wild bootstrap approach is used to obtain the bootstrap errors
u∗

t , according to

u∗
t = ûtεt , t = 1, . . . , n, (5.29)

with ût being a typical residual from the OLS estimation of (5.27) and the
variables εt being IID drawings from a pick distribution with zero mean,
variance one and finite fourth moment. The start-up values required for
(5.28), that is, y∗

s with s ≤ 0, are set equal to zero in Gonçalves and Kilian
(2004), which reflects the absence from (5.27) of an intercept or other
deterministic terms.

The second bootstrap considered by Gonçalves and Kilian is a fixed-
design wild bootstrap in which the lagged dependent variables used
as regressors in (5.27) are treated as if they were exogenous. In this
approach, bootstrap data are generated by

y∗
t = α̂1yt−1 + · · · + α̂pyt−p + u∗

t , t = 1, . . . , n, (5.30)

in which the errors u∗
t are obtained using a scheme like (5.29).
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The third bootstrap also treats the lagged dependent variables in the
regressor set of (5.27) as if they were fixed in repeated sampling and just
applies the pairs bootstrap approach; so that (5.16) is replaced by

G̈dyn : probability
1
n

on (yt ; yt−1, . . . , yt−p), t = 1, . . . , n.

Given suitable assumptions, Gonçalves and Kilian show that all three
bootstrap methods yield the correct asymptotic distribution for the OLS
estimator; see Gonçalves and Kilian (2004, Theorems 3.2–3.4). Thus it is
possible to use either wild bootstraps or pairs bootstraps in autoregressive
models with serially uncorrelated errors.

In their simulation experiments, which are designed to provide evi-
dence about the finite sample performance of their bootstrap tests,
Gonçalves and Kilian use a standard Normal distribution as the pick dis-
tribution, as in the wild “fixed regressor bootstrap” of Hansen (2000),
but remark that their results are robust to alternative choices. They con-
clude that the recursive-design wild bootstrap of (5.28) and (5.29) “seems
best suited for applications in empirical macroeconomics” and that clas-
sical IID-based residual resampling can lead to serious inaccuracies when
there is conditional heteroskedasticity; see Gonçalves and Kilian (2004,
p. 106).

The simulation experiments conducted by Gonçalves and Kilian allow
for a GARCH(1, 1) process of the form

σ2
t = ω1 + ω2u2

t−1 + ω3σ2
t−1.

If a researcher were confident about the adequacy of a GARCH model, its
estimated counterpart could be used in the bootstrap DGP; see Davidson
and MacKinnon (2006, pp. 824–825). However, in the likely absence of
such confidence, the recursive-design wild bootstrap is a more robust
procedure.

The pure autoregression of (5.27) is, of course, a special case of the
dynamic regression model

yt = y′
t(p)α + x′

tβ + ut = w′
tγ + ut , t = 1, . . . , n, (5.31)

in which y′
t(p)

= (yt−1, . . . , yt−p), p ≥ 1, xt is exogenous, w′
t = (y′

t(p)
, x′

t ),

γ ′ = (α′, β ′) and the errors ut satisfy the assumptions of Gonçalves and
Kilian (2004). Models which, like (5.31), contain both exogenous and
lagged dependent variables are used frequently in applied time series
regressions. Godfrey and Tremayne, relying upon the theoretical analysis
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in Gonçalves and Kilian (2004), apply a recursive-design wild bootstrap,
in which (5.28) is replaced by

y∗
t = α̂1y∗

t−1 + · · · + α̂py∗
t−p + x′

t β̂ + u∗
t , t = 1, . . . , n,

and the errors u∗
t are generated by schemes like (5.29) for various choices

of the pick distribution; see Godfrey and Tremayne (2005). After carrying
out a number of simulation experiments, Godfrey and Tremayne recom-
mend that the Rademacher distribution Dε,6 be used in preference to
the other pick distributions described above. As will be seen in the next
chapter, the Rademacher distribution, which is examined in detail in
Davidson and Flachaire (2001, 2008), often emerges as the source of
reliable inferences when carrying out wild bootstrap tests in regression
models with heteroskedastic errors; also see, for example, Davidson et al.
(2007).

5.3. Bootstrap methods for homoskedastic
autocorrelated errors

Standard textbook discussions include reference to the possibility that
the errors will be autocorrelated when time series data are employed
in applied econometric work. The message is sometimes reinforced by
providing plots of OLS residuals and/or summary statistics derived from
these residuals. However, several authors have commented on the fact
that marked autocorrelation of OLS residuals could reflect the effects of
misspecification of the systematic part of the regression model, rather
than the genuine autocorrelation of errors about a well-specified regres-
sion mean function; see Greene (2008, pp. 626–627) and Mizon (1995).
The bootstrap techniques that are discussed in this section are only
intended for the case of genuine error autocorrelation. They are not being
recommended for application in the context of regression conditional
mean functions that are subject to some unknown form of misspecifica-
tion, for example, incorrect functional form. In addition, the discussion
of bootstrap methods below is based upon the assumption that the error
process is stationary; see Tremayne (2006, section 6.2) for useful expla-
nations of stationarity and other relevant time series properties such as
invertibility.

The format of this section is similar to that of the previous section,
which dealt with heteroskedastic regression models. Model-based boot-
strap methods are described first and then procedures designed to provide
asymptotically valid inference in the presence of unspecified forms of
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autocorrelation are considered. However, there is an important differ-
ence between the effects of heteroskedasticity and autocorrelation on
OLS estimators. Provided standard regularity conditions are satisfied, the
OLS estimator of the regression coefficient vector is consistent in the pres-
ence of unspecified forms of heteroskedasticity, whether or not lagged
values of the dependent variable are included in the regressor set. In
contrast, when there is error autocorrelation of unknown form, the con-
sistency of the OLS estimator requires that lagged dependent variables
are not used as regressors. Consequently, restricting the regressors to
be exogenous is not just a convenient simplification for exposition that
can be relaxed at an appropriate point and allowing for dynamic models
would require the use of, for example, instrumental variable estimators
in place of the OLS method.

5.3.1. Model-based bootstraps

Computer programs sometimes allow the estimation of regression mod-
els with errors that are generated by some special case of the general
autoregressive-moving average (ARMA) model. For example, if it is
assumed that the errors are from an ARMA(p, q) process, the error model
can be written as

ut =
p∑

j=1

φjut−j + εt +
q∑

j=1

θjεt−j. (5.32)

The random variables εt in (5.32) are IID with zero mean and finite
variance σ2

ε . The coefficients that appear in (5.32) must satisfy certain
conditions for identifiability, invertibility and stationarity for the pur-
poses of conventional asymptotic analysis. Detailed discussion of the
properties of stationary ARMA processes can be found elsewhere, for
example, Hamilton (1994, chapter 3) or Tremayne (2006). It is simply
noted here that the following coefficient restrictions must be satisfied:
the equations

φ(λ) = λp −
p∑

j=1

φjλ
p−j = 0,

and

θ(λ) = λq +
q∑

j=1

θjλ
q−j = 0,
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have all roots inside the unit circle; φ(λ) and θ(λ) have no common roots;
and φp �= 0 or θq �= 0.

It is often the case that emphasis is placed on the simpler class of
pure AR(p) models when discussing autocorrelation models for regression
errors. In particular, the stationary AR(1) model, which has the form

ut = φ1ut−1 + εt , |φ1| < 1, (5.33)

is frequently examined in some detail. This simple scheme will be used
as the starting point for discussing model-based bootstraps for regression
equations with autocorrelated errors.

Several articles have been published in which bootstrap methods are
discussed in the context of regression models with exogenous regressors
and stationary AR(1) errors; see Li and Maddala (1996, section 3.3) for
a review. A clear explanation of a bootstrap procedure for AR(1) error
models is given in Rayner (1991). After fitting a regression model of
the form

yt = x′
tβ + ut , t = 1, . . . , n, (5.34)

Rayner uses the OLS residuals ût to estimate the coefficient of (5.33) by

φ̂1 =
∑n

t=2 ût ût−1∑n
t=1 û2

t

.

This estimate can be used to derive a sequence of residual counterparts
of the IID terms εt , according to

ε̂t = ût − φ̂1ût−1, for t = 2, . . . , n.

Let ε̂c
t denote a typical centred residual, that is,

ε̂c
t = ε̂t − 1

n − 1

n∑
s=2

ε̂s.

The n bootstrap errors {u∗
t ; t = 1, . . . , n} are obtained in Rayner (1991)

as follows: (i) select one term randomly, with replacement, from the

sequence {ε̂c
t ; t = 2, . . . , n} and divide this term by

√
(1 − φ̂2

1) in order to

construct u∗
1; and (ii) given φ̂1 and u∗

1 from (i), generate

u∗
t = φ̂1u∗

t−1 + ε∗
t , t = 2, . . . , n,



196 Bootstrap Tests for Regression Models

in which the terms ε∗
t are obtained by random sampling, with replace-

ment, from

F̂ε : probability of
1

n − 1
on ε̂c

t for t = 2, . . . , n.

Step (i) represents an attempt to reflect, in the bootstrap world, the
fact that u1, like any term ut that is generated by (5.33), has mean zero
and variance σ2

ε /(1 − φ2
1). Given the bootstrap errors from steps (i) and

(ii), bootstrap data on the dependent variable can then be derived in the
usual way, that is, with

y∗
t = x′

t β̂ + u∗
t , t = 1, . . . , n, (5.35)

in which β̂ is the OLS estimator. However, the OLS estimator β̂ might be
replaced by some feasible GLS estimator in a practical situation in which
it had been assumed that the errors were generated by (5.33).

Steps like (i) and (ii) which are used by Rayner for the AR(1) error
model must be modified when more complex types of autocorrelation
are required. The asymptotic validity of appropriate modifications of the
bootstrap scheme for the case of ARMA(p, q) autocorrelation models is
suggested by results in Kreiss and Franke (1992). Kreiss and Franke prove
asymptotic validity of a bootstrap based upon

√
n-consistent estimators

of the parameters corresponding to those of (5.32) when an ARMA(p,
q) model is fitted to observed data. The application of their results to
regression modelling can be summarized as follows.

Suppose that the full model consists of (5.32) and (5.34), with the
exogenous regressors of the latter satisfying conditions for the consis-
tency of the OLS estimator. Let ̂ denote a

√
n-consistent estimator;

so that

√
n(β̂j − βj) = Op(1), j = 1, . . . , k,

√
n(φ̂j − φj) = Op(1), j = 1, . . . , p,

and

√
n(θ̂j − θj) = Op(1), j = 1, . . . , q,

when the true DGP consists of (5.32) and (5.34). The fitted residuals,
which correspond to the IID terms εt , are denoted by ε̂t , t = 1, . . . , n.
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Following the suggestion for the treatment of observed data given in
Kreiss and Franke (1992), these residuals can be derived by setting starting
values (ε̂r , r ≤ 0; ûs, s ≤ 0) equal to zero in the recursive scheme

ε̂t = ût −
p∑

j=1

φ̂jût−j −
q∑

j=1

θ̂j ε̂t−j, t = 1, . . . , n,

rather than adopting Rayner’s strategy of trying to mimic the stationary
distribution. Kreiss and Franke report that this approach works well in
their bootstrap. Centred residuals ε̂c

t are then calculated by using

ε̂c
t = ε̂t − 1

n

n∑
s=1

ε̂s, t = 1, . . . , n.

The bootstrap errors u∗
t for the regression model are given by

u∗
t =

p∑
j=1

φ̂ju
∗
t−j + ε∗

t +
q∑

j=1

θ̂jε
∗
t−j, t = 1, . . . , n, (5.36)

in which starting values (ε∗
r , r ≤ 0; u∗

s , s ≤ 0) are set equal to zero
and the terms ε∗

t , t = 1, . . . , n, are obtained by random sampling, with
replacement, from the EDF

F̂ ′
ε : probability of

1
n

on ε̂c
t for t = 1, . . . , n.

The bootstrap errors are clearly not stationary because of the way in
which the recursion (5.36) is started. Some researchers prefer to take
action to reduce the effects of fixing starting values to be zero. A common
device is to generate n + m errors u∗

t , with m being moderately large, for
example, m = 100, and then to discard the first m terms; see Davison
and Hinkley (1997, p. 391). Given a sequence {u∗

t ; t = 1, . . . , n} which is
to be used, bootstrap data can be derived using (5.35).

It might be thought that it is inappropriate to appeal to the results in
Kreiss and Franke (1992) because they are derived under the assumption
that observations are available from the ARMA(p, q) process, whereas
regression errors are unobservable. However, given standard regularity
conditions, the analysis in Pierce (1971) implies that the effects of replac-
ing errors by OLS residuals, which is equivalent to replacing β by β̂,
are asymptotically negligible for regression models with only exogenous
regressors.
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Model-based bootstraps for autocorrelated errors are appealing when
there is a high degree of confidence about the specification of the error
model. If the true error process is the assumed ARMA(p, q) model, the
bootstrap using (5.35) and (5.36) will be asymptotically valid, under reg-
ularity conditions. Unfortunately, as in the discussion of model-based
bootstraps for heteroskedastic errors, it seems reasonable to acknowl-
edge that the applied worker will rarely have precise information about
the error process that leads to the departure from the assumption of
IID errors. Consequently, there is the real possibility that the assumed
autocorrelation model will be wrong.

Suppose that the assumed error model is the ARMA(p, q) scheme of
(5.32) and the true model is ARMA(P, Q). If P > p and/or Q > q, the
assumed model is underspecified and there will be important conse-
quences. With all the regressors being strictly exogenous, the regression
coefficients are estimated consistently but the use of an underspecified
error model will lead to covariance matrices of estimators being estimated
incorrectly. If there are lagged values of the dependent variable in the
regressor set and the assumed autocorrelation model is an underspecified
version of the true error process, the estimators of regression coefficients
are, in general, inconsistent and the bootstrap may lead to very mislead-
ing inferences. More robust bootstrap procedures are, therefore, likely to
be of greater practical value than the model-based bootstrap.

The techniques that are discussed in the rest of this section are
intended for use when there is uncertainty about the autocorrelation
model and the regressors can be assumed to be exogenous. The origins
of these techniques are in the analysis of bootstraps for stationary time
series variables with autocorrelation structures that are not assumed to be
produced by a finite-dimensional parametric model. The relevant time
series literature is sometimes very technical. Useful surveys are provided
in Bühlmann (2002), Härdle et al. (2003), Mammen and Nandi (2004,
section 2.4) and Politis (2003). Reviews written for an audience with
interests in econometrics have also been published; see Berkowitz and
Kilian (2000) and Li and Maddala (1996).

5.3.2. Block bootstraps

Suppose then that the aim is to devise a bootstrap scheme that is appro-
priate when the assumed model is (5.34), with the regressors being
strictly exogenous and the errors being autocorrelated and strictly sta-
tionary. It assumed that E(ut |xt ) = 0, which is equivalent to the assump-
tion that E(yt |xt ) = x′

tβ. The regression parameter β can be estimated
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consistently by the OLS estimator β̂, provided weak assumptions are sat-
isfied, and so ŷt = x′

t β̂ can be used as the conditional mean E∗(y∗
t |xt )

in the bootstrap world. In order to implement (5.35), the remaining
task is to obtain bootstrap errors u∗

t by using the OLS residuals ût to
mimic the dependent errors ut , t = 1, . . . , n. However, no attempt is to
be made to specify a finite-dimensional model of the dependence of the
errors. Instead resampling is based upon subsets of consecutive values of
residuals in what is called a block bootstrap.

A simple form of the block bootstrap, which allows for unspecified
forms of error autocorrelation, can be based upon an approach discussed
in Carlstein (1986). This approach involves partitioning the set of n
OLS residuals (û1, û2, . . . , ûn) into non-overlapping subsets, called blocks,
each of which contains � terms, that is, the block-length is �. For simplic-
ity of exposition, it is assumed that n = b × � for some integer value
of b. Thus the number of non-overlapping blocks is b. The first block is
Û1 = (û1, û2, . . . , û�), the second block is Û2 = (û�+1, û�+2, . . . , û2�) and
so on, with the last block being Ûb = (ûn−�+1, ûn−�+2, . . . , ûn). These
blocks are used to define the probability model for a bootstrap error block
of length �, denoted by U∗, with

Pr(U∗ = Ûj) = 1
b

for j = 1, . . . , b.

In the block bootstrap, a sequence of n = b × � bootstrap errors
is obtained by pasting together the blocks (U∗

1, U∗
2, . . . , U∗

b ), which are
obtained by random sampling, with replacement, from the EDF

F̂U : probability of
1
b

on Ûj for j = 1, . . . , b. (5.37)

Given that sampling is with replacement, an application of the block
bootstrap can lead to some blocks of residuals being used more than once
and others not being used at all in the derivation of bootstrap errors. For
example, if n = 50 residuals are split into 10 blocks, each containing 5
values,

(û1, û2, . . . , û50) = (
Û1 : Û2 : Û3 : Û4 : Û5 : Û6 : Û7 : Û8 : Û9 : Û10

)
,

random sampling, with replacement, might generate the 50 bootstrap
errors of

(u∗
1, u∗

2, . . . , u∗
50) = (

Û4 : Û5 : Û10 : Û4 : Û7 : Û7 : Û1 : Û6 : Û8 : Û6
)
,
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in which Ûj = (û5j−4, û5j−3, û5j−2, û5j−1, û5j) for j = 1, 2, . . . , 10. The
blocks Û4, Û6 and Û7 all appear twice, whereas Û2, Û3 and Û9 are not
used for this drawing of the bootstrap error vector.

The assumption that there is an integer value of b such that n = b × �

can be relaxed without causing any important problems. Suppose that
n/� is not an integer and that �n/�� is the smallest integer not less than
n/�. More than the required number of bootstrap errors can be obtained
by resampling �n/�� blocks, using (5.37). The last [(�×�n/��)−n] bootstrap
errors can then be deleted to define the n-dimensional bootstrap error
vector; see Politis and Romano (1994, p. 1304).

When applying a block bootstrap, the hope is that, if the blocks
of residuals are long enough, the autocorrelation structure of the true
errors will be accurately reflected by the bootstrap errors and so repeated
samples of bootstrap data derived from (5.35) will provide useful approx-
imations for the distributions of statistics that are calculated from the
actual data. The use of too small a value for � will adversely affect the
performance of the procedure and the inappropriate IID bootstrap is pro-
duced in the extreme case of using � = 1. There are, however, costs,
as well as benefits, associated with high values of �. Clearly b = n/�

decreases as � increases, for a fixed sample size n, and so fewer unique
bootstrap samples are available; see Davison and Hinkley (1997, pp. 396–
397) for a discussion of the choice of the block-length. Also some authors
point out that resampled terms may be too similar to the actual set
if too high a value of � is used; see Davidson and MacKinnon (2006,
p. 830).

It is also possible to derive a moving block bootstrap by using over-
lapping blocks of residuals, as suggested in Künsch (1989). With �

again representing a fixed and common block length, the first block
is Û1 = (û1, û2, . . . , û�), as before, but the second block is now Û2 =
(û2, û3, . . . , û�+1), and so on. With overlapping blocks of length � and a
sample size of n, there are n − � + 1 blocks, rather than n/� blocks for the
non-overlapping blocks method. For example, with � = 5 and n = 50,
an overlapping blocks scheme yields 46 blocks and a non-overlapping
blocks scheme has 10 blocks. The relative merits of overlapping and
non-overlapping block bootstraps have been discussed in the statistics
literature; see Horowitz (2001, section 4.1.1) for references. Horowitz
remarks that the differences between the two methods are likely to be
very small in applied work.

Whichever of the two forms of the block bootstrap is adopted, the
choice of the block length can be very important. Consideration of the
asymptotic theory of block bootstraps leads to the conclusion that, as
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n → ∞, � should also tend to infinity but at a slower rate, so �/n → 0. It
is shown in Hall et al. (1995) that the optimal block length depends upon
the context in which the block bootstrap is being used. More precisely,
the optimal values are such that: � = O(n1/3) for variance or bias estima-
tion; � = O(n1/4) for estimation of a one-sided distribution function; and
� = O(n1/5) for estimation of a two-sided distribution function. Unfortu-
nately rules about the optimal asymptotic order of magnitude of � may
not be of great help to the applied researcher who is faced with the prob-
lem of analyzing a finite number of observations. Hall et al. discuss an
empirical method for choosing the block length.

Whatever the choice of the fixed value of �, the way in which the
selected blocks (U∗

1, U∗
2, . . . , U∗

b ) are pasted together implies that the boot-
strap distribution (conditional upon actual data) is nonstationary. If,
instead of being fixed, the lengths of blocks are assumed to be IID random
variables, each having a geometric distribution, so that

Pr(� = m) = η(1 − η)m−1, 0 < η < 1, m = 1, 2, . . . ,

it is possible to obtain a stationary bootstrap error series; see Politis
and Romano (1994). With the block length � being random, resampling
continues until n bootstrap errors have been generated; see Politis and
Romano (1994) for further discussion and numerical examples.

It is clearly useful that the block bootstrap methods do not require
specific assumptions to be made about the form of the error autocor-
relation. However, there are doubts about the practical value of such
methods and open questions about their application in empirical work.
Davidson and MacKinnon remark that the “biggest problem with block
bootstrap methods is that they often do not work very well” (Davidson
and MacKinnon, 2006, p. 831). Results can be very sensitive to the choice
of the block lag length �; see, for example, Léger et al. (1992, section
3.3.1). Even with well-motivated choices for �, asymptotic analyses and
results from simulation experiments suggest that only small improve-
ments may be gained by using the block bootstrap, rather than simply
relying upon first-order asymptotic theory; see Härdle et al. (2003) and
Horowitz (2003).

5.3.3. Sieve bootstraps

As an alternative to the use of the nonparametric block bootstrap
approach, several authors have considered the possibility of approximat-
ing the error process by an autoregression. The use of an autoregression



202 Bootstrap Tests for Regression Models

leads to similarities with the model-based approach outlined above: a
model is fitted; residuals are calculated; and bootstrap samples are gen-
erated by combining the estimated model with resampled sets of the
(recentred) residuals. However, in contrast to the model-based technique,
the order of the autoregression is not assumed to be finite and instead is
assumed to tend to infinity as the sample size grows. This sort of approx-
imation has been used in econometrics and time series analysis for many
years. For example, it is used in the context of feasible generalized least
squares estimation by Amemiya who provides an asymptotic analysis
and comments on empirical application; see Amemiya (1973). In recent
years, the use of autoregressions to approximate unspecified forms of
autocorrelation has become widely known in the context of the Aug-
mented Dickey Fuller (ADF) test for a unit root; see Chang and Park
(2002) and Haldrup and Jansson (2006, section 7.2.1).

In order to make use of the time series results, for example, as reviewed
in Bühlmann (2002), Mammen and Nandi (2004) or Politis (2003), the
error term of (5.34) is assumed to generated by an invertible and station-
ary process. More precisely, the errors are a linear time series with the
AR(∞) representation

ut =
∞∑

j=1

φjut−j + εt , (5.38)

in which
∑∞

j=1 φ2
j < ∞ and the innovations εt are IID with zero mean

and finite variance. The autoregressive (AR) sieve bootstrap, which serves
as an approximation to (5.38), is written as

ut =
p(n)∑
j=1

φjut−j + εt , (5.39)

in which p(n) → ∞ with p(n) = o(n), so that p(n)/n → 0, as n → ∞.
Asymptotic analysis indicates that, when it is applicable, the sieve

bootstrap has properties that are superior to the block bootstrap; see,
for example, the results given in Härdle et al. (2003, section 4.1). Indeed,
Choi and Hall argue that

for linear time series the sieve bootstrap has substantial advantages
over blocking methods, to such an extent that block-based methods
are not really competitive (Choi and Hall, 2000).

However, for the time series results about the sieve bootstrap to have
relevance in regression modelling, they must be applicable to the OLS
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residuals that have to be used as proxies for the unobservable errors
generated by (5.38). Consequently, there must be no asymptotically
relevant effects associated with using residuals in place of errors. It is,
therefore, assumed that the regressors of (5.34) are strictly exogenous
and satisfy standard conditions for the consistency and asymptotic Nor-
mality of OLS estimators. Under the assumption that the use of the
AR-sieve bootstrap is asymptotically justified when applied to OLS resid-
uals, the bootstrap data for the regression model can be generated as
follows.

First, estimate the model (5.34) by OLS and obtain the OLS residu-
als ût , t = 1, . . . , n. The next step is to specify a counterpart of (5.39) by
choosing a value for the lag length p(n). Some researchers have suggested
that Akaike’s information criterion (AIC) be used for this step; see Shi-
bata (1976). Others put forward the idea that the lag length should be
selected so that it leads to estimated residuals for the AR scheme (that
is, estimates of innovations) that appear to be close to independent; see
Amemiya (1973, p. 731). Given a selected value of p̂(n), the estimated
AR coefficients φ̂j, j = 1, . . . , p̂(n), are calculated in the third step. These
estimates can be derived from OLS estimation of

ût =
p̂(n)∑
j=1

φjût−j + error, t = p̂(n) + 1, . . . , n, (5.40)

or by using the Yule-Walker method, as described in Tremayne (2006,
section 6.4.1). Let the residuals (estimated innovations) associated with
φ̂j, j = 1, . . . , p̂(n), be denoted by

rt = ût −
p̂(n)∑
j=1

φ̂jût−j, t = p̂(n) + 1, . . . , n, (5.41)

and their mean value be denoted by r̄. The centred residuals (rt − r̄) are
resampled to generate pseudo-innovations for the fourth step in which
the bootstrap errors u∗

t are simulated.
It is worth explaining the fourth step in detail. The sieve bootstrap

scheme for the generation of error terms u∗
t for the bootstrap world

regression model can be represented by

u∗
t =

p̂(n)∑
j=1

φ̂ju
∗
t−j + ε∗

t , (5.42)
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in which the IID terms ε∗
t are drawn from the distribution defined by

F̂r : probability
1

(n − p̂(n))
on rt − r̄, t = p̂(n) + 1, . . . , n. (5.43)

The scheme in (5.42) implies that, as in the case of the fixed-dimensional
AR(p) model-based bootstrap, the treatment of starting values and issues
of nonstationarity require attention in the context of the sieve bootstrap.
A straightforward method is to set u∗

t = 0 for t = 0, . . . , 1− p̂(n) and then
to use (5.42) to generate u∗

t , t = 1, . . . , n + m, with m being judged to
be large enough to make the effects of conditioning upon zero starting
values very small for the last n terms. The required n + m values of ε∗

t are

obtained by random sampling, with replacement, from F̂r in (5.43). The
first m simulated terms {u∗

t : t = 1, . . . , m} are ignored and the required
bootstrap data y∗

t are obtained from

y∗
t = x′

t β̂ + u∗
t+m, t = 1, . . . , n,

in order to obtain a good approximation to the stationary error distribu-
tion in (5.38).

However, the results from asymptotic analysis on the consistency and
good convergence properties of the sieve bootstrap, as summarized in
Härdle et al. (2003) and Horowitz (2001), do not imply that good approx-
imations to every stationary and invertible error distribution will be
obtained in finite sample situations. For example, investigations of the
finite sample behaviour of ADF tests for unit roots indicate that the use of
autoregressions to approximate pure moving average schemes can lead
to substantial errors; see Schwert (1989). It may, therefore, be reasonable
to be concerned about the importance of the choice of the order of the
AR sieve bootstrap model (5.42).

The choice of the order of (5.42), that is, the value of p̂(n), is dis-
cussed in Choi and Hall (2000). After consideration of their results,
Choi and Hall come to the conclusions that Akaike’s information cri-
terion is a useful way in which to select p̂(n) in empirical studies and the
choice of p̂(n) in the AR-sieve bootstrap is not nearly as important as the
choice of the block length � in the block bootstrap. Results that indicate
robustness of this type are reassuring to applied workers who wish to use
the sieve bootstrap. Further reassurance is provided by Bühlmann who
remarks that
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Our empirical experience is that the choice of an approximating
autoregressive order is quite insensitive with respect to the perfor-
mance of the AR-sieve bootstrap, provided the chosen order is
reasonable (Bühlmann, 2002, p. 58).

It is, of course, important that the sieve bootstrap model (5.42) be sta-
tionary, which implies restrictions on the estimates φ̂j, j = 1, . . . , p̂(n).
As noted above, either least squares or the Yule-Walker equations could
be used for the estimation of φj, j = 1, . . . , p̂(n), in (5.40). The proper-
ties of these methods of estimation, as well as other techniques, have
been the subject of study in the time series literature; see, for example,
Paulsen and Tjøstheim (1985) and Tjøstheim and Paulsen (1983). The
evidence appears to indicate that least squares estimation is superior to
the Yule-Walker method, with the latter sometimes exhibiting severe
bias, even with quite large samples. Unfortunately, the convenient and
familiar least squares method can lead to problems in the context of
the sieve bootstrap. Unrestricted OLS estimation of a model like (5.40)
may produce estimates that do not satisfy the conditions for a stationary
bootstrap world AR model (5.42). A third estimation procedure, known
as the Burg method, should be used if appropriate software is available;
see McCullough (1998) for a description of the Burg method and some
empirical examples of its use.

5.3.4. Other methods

Davison and Hinkley propose a post-blackening scheme in which the
block and sieve-type bootstraps are combined; see Davison and Hinkley
(1997, p. 397). The initial step, which corresponds to the sieve approach,
is to fit an AR model to pre-whiten the OLS residuals {ût ; t = 1, . . . , n}.
This fitted AR model is, however, only intended to eliminate much
of the dependence of the OLS residuals ût and is not interpreted as
an asymptotically valid representation of a true process for the errors
ut . Since some dependence remains, an IID-valid residual resampling
scheme is inappropriate. Instead the residuals from the fitted AR model,
in other words, terms that correspond to rt in (5.41), are first recen-
tred and then resampled, using the block bootstrap, to obtain a set
of bootstrap innovations. Finally the generated innovations are post-
blackened by combining them with the estimated coefficients of the
AR approximation, as in (5.42) and (5.43), to derive the bootstrap
errors u∗

t . In a practical situation, the order of the AR model for pre-
whitening OLS residuals might be selected taking into account the nature



206 Bootstrap Tests for Regression Models

of the data, for example, an AR(4) scheme might be used with quarterly
time series.

The bootstraps that have been discussed so far have used results devel-
oped from analysis in the time domain, that is, from analysis of terms
ordered by a time subscript t . However, time series analysis can also
be conducted in the frequency domain, with observations being regarded
as weighted sums of periodic terms (sines and cosines); see Hamilton
(1994, chapter 6). Bootstraps for regression models with autocorre-
lated errors have been derived using frequency domain techniques; see
Christoffersson (1997) and Hidalgo (2003). Time domain methods are,
however, more familiar to economists and more widely used in empirical
economics than frequency domain procedures.

There are alternatives to bootstrap methods for taking error autocorre-
lation into account. Politis and Romano provide a very clear explanation
of an approach known as subsampling in their comments on Li and Mad-
dala (1996); see Politis and Romano (1996). Politis and Romano propose
that the sampling distribution of the statistic of interest be approximated
using the values of this statistic that can be calculated from subsamples.
For example, if the statistic to be studied is the OLS estimator defined by

β̂ =
 n∑

t=1

xtx
′
t

−1  n∑
t=1

xt yt

 ,

there are (n − � + 1) subsample estimates of the form

β̂(s) =
s+�−1∑

t=s

xtx
′
t

−1 s+�−1∑
t=s

xt yt

 , s = 1, 2, . . . , (n − � + 1),

each of which is based upon a subsample of � observations. Given station-

arity and standard assumptions about asymptotic behaviour,
√

n
(
β̂ − β

)
is Op(1) and has the same asymptotic distribution as

√
�
(
β̂(s) − β̂

)
, when

n → ∞, � → ∞ and �/n → 0, for s = 1, 2, … , (n − � + 1). The EDF of
the scaled terms

√
�
(
β̂(s) − β̂

)
then provides an approximation to the

distribution function of
√

n
(
β̂ − β

)
. Unfortunately, this simple tech-

nique has poor asymptotic properties in terms of the convergence of its
approximation errors to zero; see Härdle et al. (2003), Horowitz (2001)
and Mammen and Nandi (2004). Also, if, in a genuine application, the
values of � and n are to bear some relation to the asymptotic orders of
magnitude assumed for the theory of subsampling procedures, � must be
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large and �/n must be small; so that the sample size n may well have to
be very large.

5.4. Bootstrap methods for heteroskedastic
autocorrelated errors

Having discussed bootstraps designed for situations in which errors are
either (i) autocorrelated and homoskedastic or (ii) heteroskedastic and
serially uncorrelated, it remains to consider the more general case in
which errors are both autocorrelated and (conditionally upon values of
regressors) heteroskedastic. In such a case, tests that are designed to
be asymptotically robust to the presence of unspecified forms of het-
eroskedasticity and autocorrelation are of interest. Procedures of this type
are said to be heteroskedasticity and autocorrelation consistent (HAC)
and are referred to below as HAC tests. It is useful to start by reviewing
some theory-based results for asymptotic HAC tests before discussing
bootstrap methods and their properties. These results indicate that, in
contrast to previous cases, there are two alternative asymptotic theories
from which tests can be derived and compared with bootstrap tests.

5.4.1. Asymptotic theory tests

The assumed model is the linear regression given in (5.34), that is,

yt = x′
tβ + ut , t = 1, . . . , n,

in which: xt and β are k-dimensional vectors; and the errors ut can now
be autocorrelated and heteroskedastic, but must satisfy the moment con-
dition that E(utxt ) = 0k. The moment condition is used in the technical
analysis required to prove consistency and asymptotic Normality of the
OLS estimator β̂; see, for example, the discussion in Fitzenberger (1998,
section 2). As remarked above, there cannot be lagged values of yt in xt if
the moment condition is to hold when the errors ut are generated by an
autocorrelation scheme of unknown form. This is clearly an important
restriction for those wishing to use time series regression models.

The traditional asymptotic theory for HAC tests will be examined first.
Under the regularity conditions specified in Fitzenberger (1998), the
standard asymptotic results apply and

√
n
(
β̂ − β

)
∼a N(0k, Q−1�Q−1), (5.44)
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in which:

Q = p lim n−1
n∑

t=1

xtx
′
t ;

and � is the asymptotic covariance matrix of n−1/2 ∑
t xt ut , which, as

in, for example, Kiefer and Vogelsang (2002), can be written as

� = �(0) +
∞∑

j=1

(�(j) + �(j)′), (5.45)

where �(j) = E(xt utut−jx
′
t−j). The matrix Q can be estimated consis-

tently by

Q̂ = n−1
n∑

t=1

xtx
′
t (5.46)

and so asymptotically valid inference about β requires a consistent
estimator of �.

The discussion in Section 1.4.2 of the consistent estimation of �

covered the well-known Newey-West estimator, defined in (1.47) to be

Ĵ = �̂(0) +
l∑

j=1

(
1 − j

l + 1

)(
�̂(j) + �̂(j)′

)
,

in which �̂(j) = n−1 ∑n
t=j+1

(
xt ût ût−jx

′
t−j

)
, j = 0, 1, . . . , l, and l → ∞ as

n → ∞, with l = o(n). This estimator is one of a general family of variance
estimators based upon kernel functions. A typical member of this family
can be written as

�̂ = k(0)�̂(0) +
n−1∑
j=1

k
(

j
M(n)

)(
�̂(j) + �̂(j)′

)
, (5.47)

in which k(w) is a kernel function such that k(0) = 1, k(w) is continuous
at w = 0, |k(w)| ≤ 1 and

∫ ∞
−∞ k2(w)dw < ∞; see Andrews (1991, p. 821)

for some examples of kernel functions. The term M(n) that appears in the
kernel function estimate in (5.47) is called the bandwidth and can be used
to control truncation for kernel functions that satisfy k(w) = 0 if w > 1.
A requirement for the bandwidth, which is sufficient for consistency of
�̂ in standard cases, is that M(n) → ∞ in such a way that M(n)/n → 0,
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as n → ∞; see de Jong and Davidson (2000). It is this assumption about
M(n) that underpins the traditional asymptotic theory of HAC tests.

Given a consistent estimator �̂, with M(n) = o(n) in (5.47), asymp-
totically valid inferences about β can be obtained in the traditional
asymptotic theory by combining (5.44), (5.46) and (5.47). For example,
if the null hypothesis consists of q < k restrictions that can be written as
Rβ = r, the Wald-type test statistic

W =
(
Rβ̂ − r

)′ [
RQ̂

−1
�̂Q̂

−1
R′

]−1 (
Rβ̂ − r

)
, (5.48)

is asymptotically distributed as χ2(q) when the null is true. In the spe-
cial case in which q = 1, a “t-ratio” procedure can be obtained, with
the Standard Normal distribution being an asymptotically valid refer-
ence distribution for critical values. These results on asymptotic null
distributions are the basis of traditional asymptotic HAC tests and are
outlined in many textbooks. However, many authors have found that
this asymptotic theory provides a poor approximation in finite sam-
ples, with evidence that actual significance levels are much higher than
the desired levels; see, for example, Ligeralde and Brown (1995). Fortu-
nately, there is an alternative approach to asymptotic analysis, which is
proposed in Kiefer and Vogelsang (2005).

Kiefer and Vogelsang focus attention on the assumption that is made
about the order of magnitude of the bandwidth term M(n) in (5.47). It has
been argued above that the assumptions that are made about asymptotic
orders of magnitude should have two characteristics: first, they should
lead to the test statistic having a non-degenerate asymptotic distribution
when the null hypothesis is true; and second, they should bear some
reasonable correspondence to the magnitude of terms in actual appli-
cations. Thus, traditional asymptotic analysis for HAC tests, in which
M(n) = o(n), may be useful when M(n)/n is small and n is large. Kiefer
and Vogelsang point out that M(n)/n will be a positive fraction in any
genuine application and derive an asymptotic theory for HAC tests under
the assumption that M(n)/n = cKV , 0 < cKV ≤ 1. (Kiefer and Vogelsang
use a different notation, with b, not cKV , denoting M(n)/n. However, b
has been used above in this chapter for the number of blocks in a block
bootstrap and will be used below for the same purpose.)

Clearly M(n) = O(n), not o(n), in the new asymptotic theory dis-
cussed in Kiefer and Vogelsang (2005). This change in the assumptions
has important implications for asymptotic analysis. A conventional esti-

mator of the asymptotic covariance matrix of
√

n
(
β̂ − β

)
tends to a
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matrix with elements that are random variables, rather than constants;
see Kiefer and Vogelsang (2005, p. 1142). However, it is the limiting
behaviour of test statistics, not of covariance matrix estimators, that is
of primary interest. Kiefer and Vogelsang show that a statistic like W in
(5.48) is, under the assumptions of their new theory, asymptotically piv-
otal and has a non-standard asymptotic null distribution that depends
upon the form of the kernel function in (5.47) and the value of cKV .
Critical values are simulated for the t-ratio that can be used when testing
a single restriction and are provided via estimated coefficients for the
critical value response surface

cv(cKV ) = a0 + a1cKV + a2c2
KV + a3c3

KV ,

for various combinations of the kernel function and the desired signif-
icance level; see Kiefer and Vogelsang (2005, p. 1146, Table 1). These
new critical values provide an alternative to those from the N(0, 1) dis-
tribution of the traditional asymptotic theory when approximating the
unknown finite sample critical values. After comparing tests based upon
their new theory with those derived from traditional asymptotic analysis,
Kiefer and Vogelsang conclude that their “new approximation performs
much better and gives insight into the choice of kernel and bandwidth”
(Kiefer and Vogelsang, 2005, section 6).

5.4.2. Block bootstraps

In addition to two types of asymptotic test, there is, of course, the possi-
bility of using a suitable bootstrap procedure. When deriving bootstrap
HAC tests, researchers, for example, Fitzenberger (1998), have used a
moving (overlapping) block bootstrap, as discussed in Künsch (1989).
Since a test statistic like W of (5.48) is asymptotically pivotal whichever
of the two asymptotic theories is applied, it might be thought that,
given the results in Beran (1988), the block bootstrap variant of the
HAC test would enjoy an asymptotic refinement. However, as explained
in Davison and Hall (1993), the use of the block bootstrap leads to
complications.

Davison and Hall state that “the block bootstrap method damages the
dependence structure of the data” (Davison and Hall, 1993, p. 216). This
damage has an impact on the asymptotic covariance matrix of the OLS
estimator in the bootstrap world and, unless adjustments are made, the
block bootstrap is no more accurate than asymptotic theory; see Davison
and Hall (1993), Götze and Künsch (1996) and Horowitz (2001, p. 3191).
If the statistics are calculated from bootstrap data using the same formula
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as is employed for the actual data, with no adjustments to variance and
covariance terms being made, the bootstrap test is said to be naive.

In order to describe the block bootstrap in the context of HAC tests,
let � denote the block length, which is assumed to be o(n1/2) for the
asymptotic validity of the bootstrap. As in Fitzenberger (1998), a typical
block of observations on the variables of the regression model can be
written as

Bs,� = {By
s,� : Bx

s,�},

in which By
s,� = (ys, . . . , ys+�−1)′ and Bx

s,� is the � × k matrix with rows
x′

t , t = s, . . . , s + � − 1. There are n − � + 1 possible blocks Bs,�, which
are viewed as the possible values of the � × (1 + k) random matrix B in a
bootstrap probability model defined by

FB : B = Bs,� with probability
1

n − � + 1
, s = 1, . . . , n − � + 1. (5.49)

The desired bootstrap sample size is n∗, which is assumed to be O(n), with
n∗ = b� for some integer value of b. (If n∗ = n, it is assumed, for simplic-
ity of exposition, that n = b� for some integer value of b.) The b required
blocks can be obtained by random sampling, with replacement, from
(5.49). Let the selected blocks be denoted by B∗

s,�, s = 1, . . . , b. The boot-
strap sample of n∗ observations is then formed by joining together the b
selected blocks in the usual way to obtain S∗ = {(y∗

t , x∗′
t ), t = 1, . . . , n∗}.

The bootstrap sample S∗ can be used to obtain the OLS estimator of the
regression parameter vector, which is denoted by β̂

∗
. As in the simpler

models considered in Freedman (1981),
√

n∗(β̂
∗ − β̂), under the condi-

tional (on actual data) bootstrap probability model, and
√

n(β̂−β), under
the assumed probability model for the actual data, have the same asymp-
totic distribution; see Fitzenberger (1998). This result about asymp-
totic distributions for estimators can be used to derive results for test
statistics.

Suppose, as in the discussion of asymptotic HAC tests above, that the
null hypothesis takes the form Rβ = r. The results in Fitzenberger (1998)
imply that the asymptotic distribution of

√
nR(β̂

∗ − β̂) in the bootstrap
world is the same as that of

√
nR(β̂ − β) under the model assumed to

generate the real observations. Now

√
nR(β̂

∗ − β̂) = √
n(Rβ̂

∗ − Rβ̂),
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and

√
nR(β̂ − β) = √

n(Rβ̂ − Rβ) = √
n(Rβ̂ − r),

when the null hypothesis Rβ = r is true. Hence a bootstrap counterpart
of W in (5.48), which is naive in the sense of Davison and Hall (1993),
is given by

W∗ =
(
Rβ̂

∗ − Rβ̂
)′ [

RQ̂
∗−1

�̂∗Q̂
∗−1

R′
]−1 (

Rβ̂
∗ − Rβ̂

)
, (5.50)

in which an asterisk ∗ denotes a quantity defined in terms of bootstrap,
rather than actual, data.

The statistic W∗ of (5.50) is a naive bootstrap statistic because it is
defined using the same formula as W of (5.48), apart from the replace-
ment of r by Rβ̂; see, for example, Gonçalves and Vogelsang (2006).
Gonçalves and Vogelsang remark that a well-established view is that the
naive bootstrap test is no more accurate than the traditional asymptotic
test and refer to the pertinent results in Davison and Hall (1993) and
Götze and Künsch (1996). They show that the naive bootstrap is as accu-
rate as the asymptotic test under the new asymptotic theory of HAC tests
proposed in Kiefer and Vogelsang (2005); see Gonçalves and Vogelsang
(2006, Theorem 4.1).

In addition to asymptotic analyses, several authors have reported
results from simulation experiments in which the finite sample
behaviour of HAC tests is investigated. Kiefer and Vogelsang find
evidence that traditional asymptotic theory provides poorer approxi-
mations than their new asymptotic theory, with the latter providing
finite sample performance which is comparable to that obtained with
bootstrap methods; see Kiefer and Vogelsang (2005). The finite sample
behaviour of HAC t-tests is also investigated in Gonçalves and Vogel-
sang (2006). The results of experiments carried out by Gonçalves and
Vogelsang indicate that the naive bootstrap gives a much more accu-
rate approximation than the traditional asymptotic test based upon the
N(0, 1) distribution. Gonçalves and Vogelsang also find that the simula-
tions suggest that, when the block length is chosen appropriately, a naive
block bootstrap can offer an asymptotic refinement relative to the non-
traditional asymptotic test based upon the results in Kiefer and Vogelsang
(2005). The importance of the block length is also considered in Fitzen-
berger (1998). Fitzenberger provides results from simulation experiments
in which the block length is varied. He also gives programming code for
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an example in which the moving block bootstrap is applied to a sim-
ple regression, with block length varying from 1 to 15; see Fitzenberger
(1998, Appendix D). However, as noted by Fitzenberger, the optimal
choice of block length in finite samples remains an open question.

5.4.3. Other methods

It has been assumed so far that the asymptotic covariance matrix of√
n(β̂ − β), denoted by C, is estimated using Ĉ = Q̂

−1
�̂Q̂

−1
, where

Q̂ and �̂ are defined in (5.46) and (5.47), respectively. Gonçalves and
White establish the conditions under which the moving (overlapping)
block bootstrap yields a consistent estimator of C; see Gonçalves and
White (2005). Given, say, A bootstrap samples, each of size n, the OLS
estimates β̂

∗
i can be calculated, i = 1, . . . , A. The bootstrap population

mean vector can be estimated by

β̂
∗ = 1

A

A∑
i=1

β̂
∗
i , (5.51)

and the bootstrap population covariance matrix of
√

n(β̂
∗ − β̂) can be

estimated by

Ĉ
∗ = n

A

A∑
i=1

(
β̂

∗
i − β̂

∗)(
β̂

∗
i − β̂

∗)′
. (5.52)

The use of estimates of the form (5.51) and (5.52) when applying the
information matrix test to IID data is considered in Dhaene and Hoorel-
beke (2004). Gonçalves and White conduct simulation experiments that
provide evidence that bootstrap estimation of variances can lead to much
more accurate inferences than the kernel-based method for estimating
variances.

In the context of HAC tests, with moving block bootstrap samples,
Gonçalves and White state that their theoretical analysis justifies a dou-
ble bootstrap approach in which the first-level bootstrap delivers terms
like Rβ̂

∗
i −Rβ̂ and, for each first-level sample, a second-level set of B boot-

strap samples is generated in order to estimate the asymptotic covariance
matrix of Rβ̂

∗
i − Rβ̂, i = 1, . . . , A. This double application of the moving

block bootstrap allows the calculation of a set of A bootstrap counter-
parts of the statistic derived from the actual data and the bootstrap



214 Bootstrap Tests for Regression Models

variance-covariance matrix, that is,

WBS = n
(
Rβ̂ − r

)′ [
RĈ

∗
R

′]−1 (
Rβ̂ − r

)
,

and hence the derivation of a bootstrap p-value that can be compared
with the desired significance level.

Not all researchers wishing to use bootstrap tests in the context of
regression models with autocorrelated and heteroskedastic errors have
used block bootstrap methods. Bisaglia and Procidano combine a sieve
bootstrap (with its order selected by AIC) to proxy the autocorrelation
and a wild bootstrap to reflect heteroskedasticity; see Bisaglia and Pro-
cidano (2002). The modification of the standard sieve bootstrap is to
define ε∗

t in (5.42) to be the product of rt in (5.41) and a drawing from
one of the pick distributions described in Section 5.2.3.

The subsampling technique discussed in Politis and Romano (1996)
can also be employed as an alternative to the block bootstrap approach.
The use of subsampling in the context of the OLS estimation of a lin-
ear regression model with heteroskedastic data is examined in Politis
et al. (1997). It is shown that, under regularity conditions, subsampling
methods are asymptotically valid.

5.5. Summary and concluding remarks

Applied workers often carry out regression analyses without imposing
the restrictive assumption that the errors are IID. The basic idea of the
bootstrap approach is to set up an artificial data generation process that
mimics the model assumed to generate the actual data. Consequently,
the use of IID-valid bootstrap techniques, as discussed in Chapter 2,
is inappropriate when the errors of the model for the actual data are
allowed to be either heteroskedastic or autocorrelated. This chapter
has been devoted to descriptions and discussions of bootstrap methods
that, subject to standard conditions, can be employed in the presence
of heteroskedasticity and/or autocorrelation. It is assumed throughout
this chapter that heteroskedasticity and autocorrelation, if present, are
genuinely properties of errors.

There is usually little reliable information about the nature of het-
eroskedasticity or autocorrelation; so that, in general, there are no firm
foundations for the specification of a parametric model that determines
the ways in which the assumption of IID errors is violated. Consequently,
the emphasis has been on bootstrap methods that are not based upon
parametric models for the errors and are instead asymptotically valid
under unknown forms of heteroskedasticity and/or autocorrelation. This
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emphasis reflects a view that it is safer for applied workers to use boot-
strap methods that are robust under quite general conditions than to
adopt model-based methods that are more efficient when the assumed
error model is correct, but are invalid when it is misspecified.

The technique known as the wild bootstrap has been recommended for
use in the context of heteroskedastic regression models. The wild boot-
strap is asymptotically valid under weak conditions that are required for
the consistency of the OLS estimators of the coefficients of the regression
model. It can be used for both cross-section and time series regressions
and, in the latter case, the regressors can include lagged values of the
dependent variable, that is, the regression model can be dynamic. The
implementation of the wild bootstrap requires the specification of an
external “pick distribution” from which to draw standardized IID terms,
each of which is multiplied by a corresponding estimated residual from
the actual data in order to generate a bootstrap error. Several pick distri-
butions have been described and a particularly simple version, called the
Rademacher distribution, has been singled out as often being the source
of the most reliable heteroskedasticity-robust bootstrap tests. Evidence
on bootstrap tests for heteroskedastic regression models that supports
the choice of the wild bootstrap approach with the Rademacher pick
distribution will be provided in the next chapter.

It is more difficult to recommend a bootstrap procedure for general use
when the errors are assumed to be homoskedastic and autocorrelated. If
autocorrelation-robust inferences based upon OLS estimators are to be
made in the presence of unknown types of autocorrelation, the regressors
of the model must be strictly exogenous. However, lagged values of the
dependent variable are often used as regressors in applied econometrics.
The exclusion of lagged dependent variables from the regressor set is,
therefore, an important restriction on the class of time series regression
models that can be considered when obtaining autocorrelation-robust
bootstrap tests after OLS estimation.

If attention is restricted to time series regressions with strictly exoge-
nous regressors, consistent bootstrap methods are available and two of
these have been discussed in detail, viz., the block bootstrap and the
sieve bootstrap. As mentioned above, there is an extensive literature on
the various forms of the block bootstrap. References to this literature and
surveys of findings are provided in, for example, Härdle et al. (2003) and
Li and Maddala (1996). In practical situations, however, the performance
of block bootstrap tests can be sensitive to the choice of the block length
and at best is often not much better than that of the corresponding
asymptotic theory tests.
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The results that have been obtained suggest that the sieve bootstrap,
which is based upon an autoregressive approximation to the error auto-
correlation model, outperforms the block bootstrap when both are
available. Also the sieve bootstrap has been generalized by combining
it with a wild bootstrap; so that, like the block bootstrap, it can be used
with error terms that are both heteroskedastic and autocorrelated. How-
ever, there are many open questions about the application of bootstrap
tests in the presence of unknown forms of autocorrelation; see Horowitz
(2003). After summarizing relevant results from asymptotic analyses and
simulation experiments, Davidson and MacKinnon conclude that

Neither the sieve bootstrap nor the best available block bootstrap
methods can be relied upon to yield accurate inferences in samples
of moderate size. Even for quite large samples, they may perform lit-
tle better than asymptotic tests … (Davidson and MacKinnon, 2006,
p. 835).

Thus the overall picture that emerges is that, while there appears to
be a fairly secure basis for obtaining heteroskedasticity-robust bootstrap
tests for regression models with independent errors, there is much more
uncertainty about how to tackle the problem of error autocorrelation.
Moreover, if OLS is to be the assumed estimation method, asymptoti-
cally valid autocorrelation-robust bootstrap tests can only be derived for
models in which all regressors are strictly exogenous. These remarks are
clearly relevant to the situation in which errors are assumed to be both
heteroskedastic and autocorrelated.

There is an alternative to viewing autocorrelation as a problem that can
be fixed by adjusting the formula for the asymptotic covariance matrix
of the OLS estimators. Some researchers have argued that, while it is
certainly desirable that the form of the econometric model should be
such that its errors are independent in different time periods, there is no
reason why the independent errors should be associated with an auto-
correlation model for the unobservable disturbance term of a regression
model. Instead it might be more appropriate to use a dynamic specifi-
cation of the regression model that is sufficiently general to justify the
assumption of independent errors for the regression model itself; see, for
example, Mizon (1995). Spanos refers to this approach to modelling as
being in the LSE tradition; see Spanos (2006) for a stimulating discussion
of the “error-fixing” strategy and alternatives.

If the restrictive assumptions of homoskedasticity and Normality con-
tained in the model used in Spanos (2006, p. 33, equation 1.10) to
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represent the LSE approach are relaxed, the starting point for regression
analysis can be written as

yt = y′
t(p)α + x′

tβ + ut , t = 1, . . . , n,

in which: y′
t(p)

= (yt−1, . . . , yt−p), p ≥ 1; xt contains current and lagged
values of exogenous variables; and, conditionally on regressor values, the
errors are independently distributed with common zero mean. Spanos
remarks that, as part of the LSE approach, the data are used to select
lag lengths in a “general to specific search”. The OLS-based signifi-
cance tests used in such a search can be made asymptotically robust
to heteroskedasticity but would be invalid if there were autocorrelation.
Consequently, when the LSE modelling strategy is adopted, it is obvi-
ously important that the assumption of independent regression errors
be tested. In particular, if, as is now widely recommended, the assump-
tion of homoskedasticity is to be relaxed, checks for autocorrelation that
are asymptotically robust to heteroskedasticity are required. As will be
seen in the next chapter, the wild bootstrap approach mentioned above
can be combined with standard autocorrelation tests to derive procedures
that are asymptotically valid under heteroskedasticity and are likely to
be useful to applied workers who wish to accept Mizon’s advice not to
use potentially invalid “autocorrelation correction”.



6
Simulation-based Tests for
Regression Models with
Non-IID Errors

6.1. Introduction

The previous chapter contained descriptions of various bootstrap meth-
ods that are designed for application to regression models with non-IID
errors. These bootstrap techniques can be used to implement OLS-based
tests that are asymptotically valid in the presence of heteroskedasticity
and/or autocorrelation. The purpose of this chapter is to discuss some
important examples of such asymptotically robust tests and to exam-
ine evidence about which bootstrap scheme gives the best finite sample
approximation when several are available to the applied researcher.

It is assumed below that the decision to relax the assumption of IID
errors is made before empirical analysis is conducted. Applied workers
should not turn to “robust inference” only in response to statistically sig-
nificant values of checks for either heteroskedasticity or autocorrelation.
Evidence against the use of screening tests when deciding whether or not
to use heteroskedasticity-robust procedures is reported in Long and Ervin
(2000, section 4.3). In addition to this evidence, there are other grounds
for doubting the wisdom of using screening tests for heteroskedastic-
ity. It is sometimes stated that significant values of such tests may reflect
problems with the specification of the conditional mean function, rather
than differences in variances of fluctuations about means. For example,
Zietz argues that

evidence of heteroskedasticity should not be dismissed as unimpor-
tant and/or routinely treated with the application of White’s (1980)
heteroskedasticity-consistent variance covariance matrix estimator.
What is need instead is an examination of the underlying causes for
heteroskedastic residuals (Zietz, 2001).

218
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Similar remarks can be made in the context of testing for station-
ary autocorrelated errors by means of statistics calculated from the OLS
residuals. Davidson and MacKinnon remark that

There is no universally effective way of avoiding misinterpreting mis-
specification of the regression function as the presence of serially
correlated errors (Davidson and MacKinnon, 1993, p. 364).

In view of the above comments, it is recommended that checking
the specification of the regression mean function, and testing other key
assumptions required for the consistency of OLS estimators, should be
an essential part of any empirical analysis in which it is claimed that
inferences are robust to heteroskedasticity and/or autocorrelation. In
the spirit of this recommendation, all of the examples discussed in this
chapter are for robust tests of the null hypothesis that the mean vector
of the conditional distribution of the errors, given regressor values, has
every element equal to zero. This null hypothesis is the standard form
of the moment condition that often plays a central role in asymptotic
theory for OLS estimators and simulation methods.

The first example of a robust bootstrap-based test of the conditional
mean assumption is given in Section 6.2. The long-established RESET
test for omitted variables/incorrect functional form is used to illustrate
the implementation and performance of bootstrap tests that are asymp-
totically valid under unspecified forms of heteroskedasticity and non-
Normality. These robust tests are obtained using wild bootstrap methods.
Section 6.2 includes results from simulation experiments. These results
indicate the inadequacy of the finite sample approximation provided by
asymptotic theory and also provide evidence about the relative merits of
the pick distributions that were described in Section 5.2.3.

The heteroskedastic regression models in Section 6.2 are assumed to
have regressors that are strictly exogenous. For such models, autocorre-
lation would not imply a nonzero conditional mean for an error term,
given contemporaneous values of regressors. However, when lagged
values of the dependent variable are included in the regressor set, auto-
correlation will, in general, imply a nonzero conditional mean for the
error term and the inconsistency of the OLS estimators of regression
parameters. It is, therefore, important to have reliable tests for autocor-
relation that are asymptotically robust to heteroskedasticity, when the
regression model is dynamic.

Section 6.3 contains an examination of the usefulness of combining a
recursive wild bootstrap with a heteroskedasticity-consistent version of
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the widely-used Breusch-Godfrey test, which is appropriate for dynamic
regression models. Results are obtained using simulation experiments.
These results reinforce the evidence reported in Section 6.2 and indicate
the usefulness of wild bootstrap methods in the presence of unspecified
forms of heteroskedasticity.

The wild bootstrap tests that are discussed in Sections 6.2 and 6.3
share the characteristic of having asymptotically pivotal test statistics
that possess standard limit distributions, under the null hypothesis; these
standard distributions are either N(0, 1) when a single restriction is under
test or a χ2 distribution in the more general case of testing several restric-
tions. It was, however, explained in Section 1.6 that some important
test statistics have non-standard asymptotic distributions, when the null
hypothesis is true.

An important example of a statistic with a non-standard asymptotic
distribution is provided by the analysis in Andrews (1993). This analysis
is concerned with the problem of testing for a break in parameter val-
ues when the alternative is that there is a single unknown breakpoint.
Section 6.4 contains a summary of work in which heteroskedasticity-
consistent versions of Andrews (1993)-type tests are studied. These
robust bootstrap procedures are in keeping with the guidelines given
in Hansen (1999) for a modern approach to regression analysis, which
are that: (i) the model be subjected to a structural break test of the
sort proposed in Andrews (1993); (ii) all test statistics should be asymp-
totically valid under heteroskedasticity; and (iii) bootstrap methods,
rather than asymptotic theory, should be considered when making
inferences.

The last example of a robust bootstrap test of the zero conditional
error mean hypothesis is presented in Section 6.5. Hausman provides
a general discussion of testing this hypothesis and, in the context of
a discussion of detecting measurement errors, proposes an estimator
contrast test; see Hausman (1978). The standard version of this test is
derived under the assumption of IID errors. Section 6.5 contains discus-
sions of versions of the Hausman test that are asymptotically valid under
unspecified forms of stationary autocorrelation. Different forms of robust
bootstrap tests are described, including one that makes use of the fast
double bootstrap (FDB) mentioned in Section 2.5. As in other sections,
simulation experiments are used to collect evidence about finite sample
behaviour.

Finally, a summary and some concluding remarks are provided in
Section 6.6.
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6.2. Bootstrapping heteroskedasticity-robust regression
specification error tests

The adequacy of the specification of the conditional mean function is
a prerequisite for reliable inference in regression analysis. Many tests
for specification error have been proposed. However, in several cases,
the original form of the test is based upon the assumption of IID (or
even NID) errors when the null hypothesis of no specification errors
is correct. As argued by many authors in recent years, correct speci-
fication of the mean function does not automatically entail that the
conditional variances are all equal. Consequently there is a need for
heteroskedasticity-robust tests for specification errors. Appropriate forms
of asymptotic and wild bootstrap tests are described in this section and
simulation evidence is presented.

6.2.1. The forms of test statistics

Consider a linear regression model written, as in Chapter 1, in the form

y = Xβ + u, (6.1)

in which: y and u are n-dimensional random vectors, with only the
former being observable; X is the n × k matrix of observations on regres-
sor variables that, under correct specification, are assumed to be strictly
exogenous; and β is the k-dimensional vector of unknown regression
coefficients. The assumption that the mean function of (6.1) is specified
correctly implies that the conditional means of errors satisfy

E (u|X) = 0n, (6.2)

which is called the orthogonality assumption in Hausman (1978). Equation
(6.2) would be false if the conditional mean function of (6.1) were to
suffer from certain specification errors, for example, omitted variables,
incorrect functional form, endogenous regressors. The analysis given in
Ramsey (1969) provides information about how the conditional mean
function E (u|X) could be affected by such specification errors.

A conventional way in which to test the orthogonality assumption
(6.2) is to test the null model (6.1) against the augmented equation

y = Xβ + Wγ + u, (6.3)

in which W is an n × q, n > k + q, matrix of test variables that are
exogenous under the assumption that the mean function of the original
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regression has no specification errors. A test of the q restrictions of
Hγ : γ = 0q is interpreted as a check for specification errors; see, for
example, Thursby and Schmidt (1977). It is worth noting that, in con-
trast to the model given in (6.1) which is under test, the model in (6.3)
need not correspond to a genuine attempt to explain the behaviour
of the dependent variable. Models like (6.3) are often better regarded
as being artificial devices that permit convenient computation of test
statistics.

For any given specification error that has been made when formulat-
ing (6.1), the power of the test associated with (6.3) will be affected by
the choice of the test variables in W. Ramsey stresses that specification
error tests will be applied after the researcher has used the available infor-
mation to decide upon how to specify (6.1) and that the test variables
must, therefore, be selected with impoverished information; see Ramsey
(1983, pp. 243–244). Ramsey’s solution in his RESET test is to use second
and higher order powers of the predicted values from OLS estimation
of (6.1) to form W; see Ramsey (1969). The RESET test is discussed in
many textbooks and included in many estimation programs. The origi-
nal derivation of the RESET test is based upon the assumption that, under
correct specification, the errors are NID(0, σ2) and, in order to indicate
how it can be generalized to be asymptotically valid under much weaker
conditions, it will be useful to introduce some notation.

Let the OLS estimator, predicted value and residual vectors for the null
model (6.1) be denoted by β̂ = (β̂1, . . . , β̂k)′, ŷ = Xβ̂ = (ŷ1, . . . , ŷn)′ and
û = (û1, . . . , ûn)′, respectively. Similarly let (β̃

′
, γ̃ ′)′ and ũ denote the OLS

estimator vector and residual vector for the augmented model in (6.3).
The check for specification errors is to be carried out by testing the joint
significance of the elements of γ̃ .

When Hγ : γ = 0q is true, standard results imply that

γ̃ = (
W′MW

)−1 W′My

= (
W′MW

)−1 W′Mu

=
(
W̃

′
W̃

)−1
W̃

′
u

=
(
W̃

′
W̃

)−1
W̃

′
û, (6.4)

in which M = I − X(X′X)−1X′ and W̃ = MW is the matrix of resid-
uals from the OLS regression of W on X; see, for example, Greene
(2008, section 3.3). If the errors of u =(u1, . . . , un)′ are allowed to be
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heteroskedastic, but assumed to be independent, their covariance matrix
can be represented by a diagonal matrix � = diag(σ2

1 , . . . , σ2
n ). Under

standard conditions, for example, as set out in White (1980), the asymp-
totic null distribution of n1/2γ̃ is multivariate Normal with zero mean
vector and a covariance matrix which is given by

Cγ γ = p lim n
(
W̃

′
W̃

)−1
W̃

′
�W̃

(
W̃

′
W̃

)−1
. (6.5)

Hence it is asymptotically valid to test the null hypothesis by comparing
sample values of a Wald-type statistic defined by

W = nγ̃ ′ [C̈γ γ

]−1
γ̃ , (6.6)

with critical values from the χ2(q) distribution, provided that C̈γ γ is
consistent for Cγ γ of (6.5) when the null is true.

There are many asymptotically valid candidates for the hetero-
skedasticity-consistent covariance matrix estimator (HCCME) C̈γ γ . In
order to discuss some important versions of the HCCME, it is useful to
write its general form as

C̈γ γ = n
(
W̃

′
W̃

)−1
W̃

′
DW̃

(
W̃

′
W̃

)−1
, (6.7)

in which D is an n × n diagonal matrix; so that D = diag(d11, . . . , dnn).
From (6.4), (6.6) and (6.7), the implied heteroskedasticity-robust Wald
statistic is then

W = û′W̃
[
W̃

′
DW̃

]−1
W̃

′
û. (6.8)

Four well-known estimators of Cγ γ are considered in MacKinnon and
White (1985). These estimators are denoted by HC0, HC1, HC2 and HC3.
All are special cases of (6.7), with the diagonal elements of the matrix D
defined as follows:

dii = ũ2
i , i = 1, . . . , n, for HC0;

dii = n
n − k − q

ũ2
i , i = 1, . . . , n, for HC1;

dii = (1 − hii)
−1ũ2

i , i = 1, . . . , n, for HC2,
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in which hii is a typical leverage value for the regressor matrix of (6.3); and

dii = (1 − hii)
−2ũ2

i , i = 1, . . . , n, for HC3.

The HC0 version is derived from the suggestion made in White (1980)
and HC1 incorporates a simple degrees of freedom adjustment. The ver-
sions given by HC2 and HC3 use leverage values to modify White’s
original expression; see Chesher and Jewitt (1987) for evidence on the
importance of leverage values for the properties of a HCCME.

A fifth estimator, which is denoted by HC4, is provided in Cribari-Neto
(2004). Cribari-Neto’s HCCME uses the ratio of each leverage value hii to
the sample average h̄ = 1

n
∑

j hjj = (k+q)/n when modelling the effects of
leverage values. More precisely, Cribari-Neto’s estimator HC4 is defined
using the terms

dii = (1 − hii)
−δi ũ2

i , where δi = min
(

4,
hii

h̄

)
, i = 1, . . . , n,

as the diagonal elements of D.
All five of these HCCME provide asymptotically valid inference in the

presence of unspecified heteroskedasticity and also under homoskedas-
ticity. However, it appears that the finite sample performance of test
procedures can be greatly affected by the choice of HCCME. Several
articles have been published in which the finite sample properties of
heteroskedasticity-robust t-tests of a single restriction are studied by
means of simulation experiments. In particular, the simulation results
in Long and Ervin (2000) and MacKinnon and White (1985) are often
cited. Both studies provide evidence that, when statistical significance
is judged using asymptotic theory critical values, White’s original pro-
posal that HC0 be used leads to t-tests that reject true null hypotheses
too frequently and that HC3 should be used in preference to HC1 and
HC2. The common conclusion is that HC3-based tests should be used
routinely without screening tests for heteroskedasticity.

In subsequent work, Cribari-Neto compares his estimator HC4 with
HC0 and HC3; see Cribari-Neto (2004). The focus is again on the finite
sample behaviour of heteroskedasticity-consistent t-tests. Cribari-Neto
obtains results from simulation experiments which indicate that HC4 is
superior to HC3 and that the standard HC0 form often produces esti-
mated significance levels that are 2 or 3 times greater than the desired
level.

Clearly this body of evidence on the relative merits of alternative ver-
sions of the HCCME is of interest to applied workers wishing to use
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heteroskedasticity-robust tests. However, there is also an important con-
tribution contained in Davidson and MacKinnon (1985a). Davidson
and MacKinnon, like the previously mentioned authors, investigate the
behaviour of quasi-t tests involving the use of asymptotic critical val-
ues. However, Davidson and MacKinnon extend the analysis to include
examination of the importance of the choice between restricted and
unrestricted estimation when constructing the HCCME. The expressions
for HC0, HC1, HC2, HC3 and HC4 above use results from unrestricted
estimation, that is, OLS for the regression model of (6.3). If these unre-
stricted results are replaced by those from the restricted estimation, that
is, OLS for the model in (6.1), new versions of the HCCME are obtained.
These versions are denoted by HCR0, HCR1 and so on. For example,
the counterparts of the estimators studied in Long and Ervin (2000)
and MacKinnon and White (1985) are derived by using (6.7), with the
diagonal elements of the matrix D specified as:

dii = û2
i , i = 1, . . . , n, for HCR0;

dii = n
n − k

û2
i , i = 1, . . . , n, for HCR1;

dii = (1 − hR
ii)

−1û2
i , i = 1, . . . , n, for HCR2,

in which hR
ii is a typical leverage value for the regressor matrix of (6.1); and

dii = (1 − hR
ii)

−2û2
i , i = 1, . . . , n, for HCR3.

Davidson and MacKinnon carry out several simulation experiments
from which the following findings emerge. When unrestricted estima-
tion is used to define the HCCME, the ranking, from worst to best, based
upon the behaviour of quasi-t tests, is HC0, HC1, HC2 and HC3, with
HC0 sometimes having very substantial errors in rejection rates rela-
tive to desired significance levels. In contrast, the HCCME based upon
restricted estimation leads to quasi-t tests that are well behaved in finite
samples. Differences between tests based upon HCR0, HCR1, HCR2 and
HCR3 are small, with HCR0 giving more reliable inferences than HC3,
which is the best of the procedures based upon unrestricted estimation.

Further support for the use of restricted residuals when constructing
t-tests that are heteroskedasticity-consistent is provided by simulation
results in Flachaire (2005). Flachaire remarks that “tests based upon
restricted residuals exhibit more power than those based upon unre-
stricted residuals” (Flachaire, 2005, p. 370). Flachaire also investigates
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the relative merits of wild and pairs bootstraps in his simulation experi-
ments. He finds that the Rademacher pick distribution of (5.25), which
is recommended for general use in Davidson and Flachaire (2001, 2008),
outperforms the pairs bootstrap and the other wild bootstraps that are
considered in his study.

The results in Davidson and MacKinnon (1985a) on the advantages
of using restricted residuals to obtain quasi-t tests are also reinforced
by evidence from simulation experiments that are reported in God-
frey and Orme (2004). As well as examining heteroskedasticity-robust
t-ratios, Godfrey and Orme generalize previous studies by considering
heteroskedasticity-robust tests of several linear restrictions. They find
that, even with restricted estimation being used to define the HCCME,
asymptotic critical values (from the appropriate χ2 distribution) do not
give reliable tests, with the corresponding estimated finite sample signif-
icance levels being too small. After considering the results of simulation
experiments, Godfrey and Orme propose that a wild bootstrap be used to
control the significance level when the null hypothesis consists of sev-
eral linear restrictions. Additional support for this proposal is found in
Godfrey (2006).

Godfrey carries out experiments in which several restrictions are under
test and errors are neither Normally distributed nor homoskedastic; see
Godfrey (2006, section 3) for details. He finds that asymptotic critical
values from a χ2 distribution do not give accurate control of finite sam-
ple significance levels, with HCR-type versions of the HCCME tending
to produce undersized tests. Godfrey then investigates the usefulness of
wild bootstrap tests, using the Rademacher distribution Dε,6 discussed
in Section 5.2.3. After examining the results of a number of experiments,
Godfrey concludes that this wild bootstrap approach provides much bet-
ter behaved tests, with differences between the rejection rates associated
with the various HCR-type estimates not being substantial. Overall, it
appears that it would be reasonable to conjecture that using HCR0 with
a wild bootstrap will produce heteroskedasticity-consistent tests with
reasonably good finite sample performance. The application of such a
procedure to the problem of testing for specification errors in regression
models will now be discussed.

6.2.2. Simulation experiments

The simulation experiments and results discussed in this subsection are
taken from Godfrey and Orme (2002b). The Cobb-Douglas production
function described in Section 1.5.1 is used to illustrate the implemen-
tation of heteroskedasticity-robust versions of the RESET test. Thus the
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null model is

yi = β1 + β2xi2 + β3xi3 + ui, i = 1, . . . , n, (6.9)

in which xi2 and xi3 are the logs of data on labour and capital, respec-
tively, taken from Greene (2008). The OLS predicted values, which are
employed to obtain the RESET statistic, are denoted by

ŷi = β̂1 + β̂2xi2 + β̂3xi3, i = 1, . . . , n.

As is quite common in applied work, the test variables are given by ŷ2
i ,

ŷ3
i and ŷ4

i ; so that the artificial alternative of the RESET test is a special
case of (6.3) with q = 3, that is,

yi = β1 + β2xi2 + β3xi3 + γ1ŷ2
i + γ2ŷ3

i + γ3ŷ4
i + ui, i = 1, . . . , n, (6.10)

Heteroskedasticity is permitted and the errors of (6.9) are determined by

ui = σivi, i = 1, . . . , n, (6.11)

in which σi denotes a typical standard deviation and the terms vi are IID
random variables, with zero mean and variance equal to one, i = 1, . . . , n.
The desired significance level of the heteroskedasticity-consistent RESET
test is αd = 5 per cent.

In the experiments carried out in Godfrey and Orme (2002b), the
regression coefficients of the mean function of (6.9) are set equal to the
corresponding OLS estimates in Table 5.2 of Greene (2008, p. 91). The
largest sample size used in the experiments is n = 108. There are only
27 observations in the original data set in Greene (2008) and so data for
regressors in the mean function are reused, with

xij = xi+27,j = xi+54,j = xi+81,j; i = 1, . . . , 27 and j = 1, 2.

This strategy for obtaining regressor values is often adopted in simulation
studies, see, for example, Cribari-Neto and Zarkos (1999) for references.
Given simulation-world regression coefficients and data for the regres-
sors, it only remains to specify how to obtain errors ui and the value of
the sample size n.

A skedastic function to determine values of σi and a distribution for
vi are both required for the error term ui of (6.11), i = 1, . . . , n. Seven
skedastic functions, which are described below, are used to study the
behaviour of the heteroskedasticity-robust RESET test. Every skedastic



228 Bootstrap Tests for Regression Models

function is combined with three error distributions for vi; namely, stan-
dardized versions of Normal, t(5) and χ2(2) distributions. Each of these
7 × 3 = 21 error models is used with the mean function in (6.9) to form
a data generation process (DGP). The 63 experiments in Godfrey and
Orme (2002b) are then defined by specifying 3 values of the sample size
for each DGP.

The seven skedastic models and associated sample sizes are as follows.
First, the case of homoskedasticity is considered by using σi = s, i =
1, . . . , n, where s is the standard error of regression given in Table 5.2
of Greene (2008, p. 91) and n = 27, 54, 108. The next two schemes are
special cases of the structural change model used in MacKinnon and
White (1985), which requires n to be even. For n = 26 (not 27), 54 and
108, the standard deviations are given by

σi = s for i = 1, . . . , n/2,

and

σi = cmws for i = n/2 + 1, . . . , n,

with cmw = (2, 4); see Godfrey and Orme (2002b) for further discussion
and comments on the choice of parameter values for these and other
schemes. Next, the fourth and fifth types of variance model are given by

σ2
i = λ1 + λ2x2

i2 + λ3x2
i3, i = 1, . . . , n,

in which λ1 = s2, λ2 = (0.0015, 0.0018) and λ3 = 0.5λ2, with n =
27, 54, 108. These two skedastic models can be thought of as arising from
random coefficient models. The last two patterns of heteroskedasticity
are generated by the multiplicative model

σi = s exp
(
cmh

(
β1 + β2xi2 + β3xi3

))
, i = 1, . . . , n, (6.12)

with cmh = (0.35, 0.55) and n = 27, 54, 108.
Given the specification of the DGP and the required sample size, Steps

1 to 6 are repeated for R = 25,000 replications in Godfrey and Orme
(2002b).

Heteroskedasticity-robust RESET test: Step 1

Generate the “actual” data y1, . . . , yn, using (6.9) and (6.11) with the
relevant skedastic function and error distribution.
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Heteroskedasticity-robust RESET test: Step 2

Estimate the relationships that correspond to (6.9) and (6.10) by OLS. Let
the OLS estimates, predicted values and residuals for (6.9) be denoted by
β̂j, ŷi and ûi, respectively; i = 1, . . . , n and j = 1, 2, 3.

Heteroskedasticity-robust RESET test: Step 3

Use the OLS results from Step 2 to compute the heteroskedasticity-robust
test of (6.9) against (6.10), with the covariance matrix estimator being
HCR0. Let the test statistic be denoted by WR. Under the null hypothesis,
WR is asymptotically distributed as χ2(3).

Steps 4 and 5 are for the generation and analysis of wild bootstrap sam-
ples, respectively. In Godfrey and Orme (2002b), these steps are repeated
B = 399 times before proceeding to Step 6.

Heteroskedasticity-robust RESET test: Step 4

Generate a bootstrap sample of n observations for each of the wild
bootstrap schemes to be considered. The bootstrap data can be written as

y∗
ij = ŷi + ûiεij, (6.13)

in which ŷi and ûi, i = 1, . . . , n, are from Step 2 and the terms ε1j, . . . , εnj
are IID drawings from the pick distribution Dε,j, j = 1, . . . , 6, defined by
(5.20) to (5.25) in Chapter 5.

Heteroskedasticity-robust RESET test: Step 5

For each of the six pick distributions being examined, use the bootstrap
data of (6.13) to estimate the regressions corresponding to (6.9) and
(6.10). Apply the HCR0 estimator to obtain the bootstrap counterpart
of the test statistic WR calculated in Step 3. Let the bootstrap test statistic
obtained using the pick distribution Dε,j be denoted by W∗

Rj, j = 1, . . . , 6.

Once Steps 4 and 5 have been carried out B times, the p-value of the
test statistic of Step 3 can be estimated, using the bootstrap values from
Step 5, in the sixth step.

Heteroskedasticity-robust RESET test: Step 6

Having completed the process of obtaining wild bootstrap data and the
associated test statistics, the bootstrap p-values of WR can be derived for
each pick distribution. In the analysis in Godfrey and Orme (2002b),
these p-values are calculated according to (2.11), rather than (2.12), of
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Section 2.2.2, that is,

p̃j =
[
#(W∗

Rj ≥ WR) + 1
]

B + 1
, j = 1, . . . , 6,

with B = 399. The decision rule is then that, for the pick distribution
Dε,j, the null hypothesis that (6.9) contains no specification errors is
rejected if p̃j is not greater than the desired significance level of 5 per
cent, j = 1, . . . , 6.

Heteroskedasticity-robust RESET test: Step 7

Once Steps 1 to 6 have been repeated R = 25,000 times, the actual signif-
icance level of the heteroskedasticity-robust RESET test can be estimated
for each pick distribution as the proportion of replications in which the
null hypothesis is rejected in Step 6.

The results reported in Godfrey and Orme (2002b) concerning the esti-
mated finite sample significance levels of the heteroskedasticity-robust
version of Ramsey’s RESET test can be summarized as follows. The use
of the asymptotic critical value from the χ2(3) distribution produces a
tendency to underrejection relative to the required significance level of
5 per cent, but, as expected, the quality of the approximation tends to
get better as n increases. The wild bootstrap tests enjoy varying degrees
of success in controlling significance levels. There is, however, no rea-
son to discuss each approach in detail because the Rademacher pick
distribution Dε,6 in (5.25) clearly gives the best overall performance
and does extremely well with 59 of its 63 rejection frequencies being
consistent with the claim that the actual significance level is between
4.5 per cent and 5.5 per cent; see Godfrey and Orme (2002b). The esti-
mates derived using the multiplicative heteroskedasticity model (6.12)
are given in Table 6.1 to illustrate the properties of the heteroskedasticity-
robust RESET tests based upon the asymptotic critical value and the six
pick distributions. Similar results are obtained with the other variance
models adopted in Godfrey and Orme (2002b).

Overall the evidence from these experiments and others described
in the literature indicates the possibility of using the Rademacher pick
distribution of (5.25) in a wild bootstrap to obtain good control of
the significance levels of heteroskedasticity-robust checks for specifi-
cation errors when applying regression analysis. It is recommended
that the HCCME used to obtain the robust form of the test statis-
tic should be calculated using the residuals from restricted estimation,
despite the implied inconvenience of recomputing the HCCME for each
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Table 6.1 Estimated significance levels of asymptotic and wild bootstrap (WBS)
versions of HCCME-based RESET test, using HCR0 and αd = 5 per cent, for the
multiplicative heteroskedasticity model

error distribution: N(0, 1) t(5) χ2(2)

value of cMH in (6.12): 0.35 0.55 0.35 0.55 0.35 0.55

a. n = 27
asymptotic test 2.81 2.87 2.57 2.62 2.34 2.49
WBS test and Dε,1 6.56 7.66 6.65 7.64 5.56 6.49
WBS test and Dε,2 6.62 7.38 6.54 7.24 5.61 6.58
WBS test and Dε,3 6.68 7.55 6.45 7.39 5.64 6.63
WBS test and Dε,4 4.66 5.21 4.43 5.07 4.02 4.65
WBS test and Dε,5 5.48 6.36 5.35 6.14 4.77 5.71
WBS test and Dε,6 5.24 5.88 5.19 5.70 4.67 5.24

b. n = 54
asymptotic test 3.57 4.23 3.01 3.40 2.74 3.36
WBS test and Dε,1 6.34 8.18 6.42 7.77 5.05 6.95
WBS test and Dε,2 6.23 7.78 6.13 7.10 5.33 6.60
WBS test and Dε,3 6.40 8.14 6.12 7.32 5.40 6.87
WBS test and Dε,4 4.70 6.09 4.50 5.47 4.17 5.02
WBS test and Dε,5 5.59 7.39 5.22 6.54 4.67 6.19
WBS test and Dε,6 4.91 5.74 4.85 5.28 4.31 5.09

c. n = 108
asymptotic test 4.61 5.02 3.69 4.40 3.87 4.88
WBS test and Dε,1 6.64 7.76 6.15 7.75 5.64 7.65
WBS test and Dε,2 6.46 7.24 5.81 6.95 6.01 7.41
WBS test and Dε,3 6.64 7.65 5.96 7.20 5.90 7.62
WBS test and Dε,4 5.42 6.05 4.62 5.88 4.80 5.68
WBS test and Dε,5 6.15 7.25 5.43 6.89 5.32 6.87
WBS test and Dε,6 5.37 5.51 4.84 5.41 5.01 5.80

Notes: Each estimate is derived from 25,000 replications and bold font denotes that the
estimate is consistent with level being between 4.5 per cent and 5.5 per cent.

null hypothesis under consideration. This recommendation is consis-
tent with conclusions drawn by Davidson and Flachaire after carrying
out simulation experiments for heteroskedasticity-robust t-tests; see
Davidson and Flachaire (2008, p. 168).

6.3. Bootstrapping heteroskedasticity-robust
autocorrelation tests for dynamic models

Conditional heteroskedasticity is a common feature of financial and
macroeconomics time series data. When such heteroskedasticity is
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present, standard asymptotic tests for autocorrelation in the errors of a
dynamic regression model are inappropriate. In this section, a recursive
wild bootstrap technique is used to derive a heteroskedasticity-robust
version of the Breusch-Godfrey autocorrelation test. The finite sample
performance of the robust bootstrap test is discussed in the light of
simulation results, which are taken from Godfrey and Tremayne (2005).

6.3.1. The forms of test statistics

Suppose that time series data are to be used in an OLS-based analysis
of a dynamic linear regression model. Using t as the subscript for the
observations, this model is written as

yt =
p∑

j=1

yt−jαj +
k∑

j=1

xtjβj + ut , (6.14)

so that the regressor set consists of p lagged values of the dependent
variable and k exogenous variables. It is assumed that n observations
are available for the OLS estimation of the parameters of (6.14). An
appropriate generalization of (6.1) is, therefore,

y = Yα + Xβ + u, (6.15)

in which: y, X, β and u are as defined in (6.1); a typical element of the
n × p matrix Y is yt−j, t = 1, . . . , n and j = 1, . . . , p; and α′ = (α1, . . . , αp).

It is necessary to make some conventional assumptions in order to
appeal to asymptotic theory for OLS-based analysis of (6.15). First, the
model is assumed to have the property of dynamic stability with the
coefficients in α′ = (α1, . . . , αp) being such that the roots of

zp − α1zp−1 − · · · − αp = 0,

are all strictly inside the unit circle. Second, the exogenous regressors are
assumed to be asymptotically cooperative with

p lim n−1X′X = �xx,

being a finite positive-definite matrix. It remains to specify assumptions
about the joint distribution of the errors of (6.15).

Under classical assumptions for OLS-based inference, the errors of
(6.15) would be taken to be NID(0, σ2). Acceptance of the arguments
in modern texts, for example, Stock and Watson (2007), leads to the
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relaxation of both homoskedasticity and Normality, leaving only inde-
pendence remaining as a restriction on the joint distribution of the
errors. The general advice given in textbooks is that the OLS estimators
of α and β are inconsistent if autocorrelation of the errors is permitted.
There are, however, special cases in which OLS estimators remain consis-
tent when the regressors include lagged values of the dependent variable
and the errors are autocorrelated. For example, the dynamic model with
MA(1) errors consisting of

yt = α4yt−4 + β1 + β2xt2 + ut , |α4| < 1,

and

ut = εt + θ1εt−1, |θ1| < 1, εt NID(0, σ2
ε ),

does not imply the inconsistency of OLS.
The key feature of such special cases is that the longest lag for which

there is a non-zero error autocorrelation is less than the shortest lag on
the lagged dependent variables that are included as regressors; see Phillips
(1956) and Wise (1957). In general, there is no good reason to believe that
such a restrictive condition will be satisfied and it seems reasonable to
assume the inconsistency of OLS when estimating a dynamic regression
model by OLS in the presence of unspecified forms of autocorrelation.
Consequently the null hypothesis of independent errors remains of
interest, even when the errors are allowed to exhibit heteroskedastic-
ity and non-Normality of unknown forms. There is, therefore, a need for
tests for autocorrelation that are asymptotically valid in the presence of
unspecified heteroskedasticity.

A standard test, which is based upon the assumption of homoskedas-
ticity, is the Lagrange Multiplier (LM) procedure given in Breusch (1978)
and Godfrey (1978). Like the RESET test in the previous section, the LM
test uses results from the OLS estimation of the null model to generate an
artificial alternative model. Let the OLS estimators for α and β in (6.15)
be denoted by α̂ and β̂, respectively, and the residual vector be written as

û = y − Yα̂ − Xβ̂ = (û1, . . . , ûn)′.

The homoskedasticity-only version of the LM test, with the alterna-
tive hypothesis being either the AR(q) or the MA(q) scheme, can be
implemented as an asymptotically valid F-test of HLM : γ = 0q in the
augmented model

y = Yα + Xβ + Ûγ + u, (6.16)
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where Û is a n × q matrix of lagged OLS residuals with typical element
ût−j, t = 1, . . . , n and j = 1, . . . , q. (In order to have the same sample size
for (6.15) and (6.16), it is assumed that ût−j = 0 when t − j is not positive;
this assumption has no impact on the asymptotic theory for the standard
test.) The OLS estimators for the artificial alternative are denoted by α̃,
β̃ and γ̃ . The corresponding OLS residual vector is ũ. Following previous
usage, the elements of û and ũ are called the restricted and unrestricted
residuals, respectively.

When the restrictive assumption of homoskedasticity is relaxed, the
LM test must be based upon a heteroskedasticity-robust test of the
joint significance of the elements of γ̃ . Under the null hypothesis
HLM : γ = 0q,

γ̃ =
(˜̂U′˜̂U)−1 ˜̂U′

u,

in which ˜̂U is the matrix of residuals from the OLS regression of Û on Y
and X. The general formulae of (6.6) and (6.7) can now be applied with

W̃ in the latter equation being replaced by ˜̂U and the diagonal matrix D
being defined by one of the expressions in Section 6.2.1. This substitution
leads to the general expression for the heteroskedasticity-consistent LM
statistic as

LMHR = û′˜̂U(˜̂U′
D˜̂U)−1 ˜̂U′

û, (6.17)

which is asymptotically distributed as χ2(q), when the null hypothesis
is true.

The discussion in the previous section suggests that restricted residuals
be used to calculate D, that is, an HCR-type version of the HCCME should
be employed, and also that a wild bootstrap should be considered as
an alternative to using the limit null distribution for inference. Wild
bootstrap samples of size n can be generated according to the recursive
scheme

y∗
t =

p∑
j=1

y∗
t−jα̂j +

k∑
j=1

xtjβ̂j + u∗
t , t = 1, . . . , n, (6.18)

in which the actual data are used to supply the initial values y∗
t−j for

t − j ≤ 0 and the bootstrap errors u∗
t are defined by

u∗
t = ûtεt , t = 1, . . . , n, (6.19)
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in which the terms εt are IID drawings from a valid pick distribution.
Evidence on the usefulness of the general approach of using a wild boot-
strap to assess the statistical significance of LMHR in (6.17) and on the
relative merits of the various pick distributions that have been proposed
in the literature can be sought using simulation experiments.

6.3.2. Simulation experiments

The experiments discussed in this subsection are taken from Godfrey and
Tremayne (2005) in which simulation models proposed in Dezhbakhsh
(1990) and Dezhbakhsh and Thursby (1995) are used. The dynamic
regression model upon which experiments are based is

yt = α1yt−1 + α2yt−2 + β1 + β2xt + ut , t = 1, . . . , n, (6.20)

in which xt is a scalar variable and n equals 40 or 80. The finite sample
significance levels of versions of heteroskedasticity-consistent tests for
autocorrelation are estimated in Godfrey and Tremayne (2005), with the
alternative being a fourth-order scheme, as might be appropriate when
data are quarterly. Thus (6.20) is tested against

yt = α1yt−1 + α2yt−2 + β1 + β2xt +
4∑

j=1

γjût−j + error, (6.21)

with the test variables ût−j being lagged residuals from the OLS estima-
tion of (6.20). The Wald-type statistic for testing γ1 = · · · = γ4 = 0 is
calculated using the HCCME obtained by using squared restricted resid-
uals for the diagonal elements of D in (6.17), that is, dtt = û2

t , t =
1, . . . , n.

Godfrey and Tremayne compare asymptotic tests with wild bootstrap
tests. They also provide results for the comparison of two pick distribu-
tions. The first is the widely-used two-point distribution defined by

ε = −(
√

5 − 1)/2 with probability (
√

5 + 1)/(2
√

5)

= (
√

5 + 1)/2, otherwise.

This distribution is denoted by Dε,4 in (5.23) of Chapter 5. The sec-
ond pick distribution is the Rademacher distribution Dε,6 in (5.25) of
Chapter 5, that is,

ε = 1 with probability 0.5

= −1, otherwise.
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Godfrey and Tremayne remark that other pick distributions, as described
in Chapter 2, lead to results that are poorer than those derived from Dε,4
and Dε,6.

The choice of regression parameters in (6.20) follows Dezhbakhsh
(1990) and Dezhbakhsh and Thursby (1995). The values of (α1, α2) are
(0.5, 0.3), (0.7, −0.2), (1.0, −0.2), (1.3, −0.5), (0.9, −0.3) and (0.6,
0.2), which all satisfy the conditions for dynamic stability. These val-
ues for (α1, α2) are intended by Dezhbakhsh and Thursby to be typical
of those observed in applied work. In all experiments, β1 = β2 = 1.
Two methods are adopted to provide values on the exogenous regressor.
First, the exogenous variable xt is generated according to the first order
autoregression

xt = ψxxt−1 + vt , (6.22)

with vt being NID(0, σ2
v ), ψx = 0.5 or 0.9, and σ2

v selected, given the
value of ψx, so that Var(xt ) = 1. The starting value x0 is a drawing from a
standard Normal distribution. Second, Godfrey and Tremayne use a stan-
dardized version of the log of quarterly GDP in the UK as the exogenous
regressor in (6.20).

With conditional heteroskedasticity permitted, the error terms ut of
(6.20) can be written as

ut =
√

σ2
t ζt , (6.23)

where σ2
t denotes a conditional variance and, under the null hypothesis,

the terms ζt are IID with zero mean and variance equal to one. Various
distributions for ζt are used. The Normal distribution serves as a bench-
mark and standardized forms of the t(5) and χ2(8) distributions are also
employed. The t(5) distribution is used, following Gonçalves and Kilian
(2004), to investigate robustness of the wild bootstrap methods to sym-
metric non-Normal error distributions. The χ2(8) distribution is used to
provide evidence on the effects of marked skewness; see Godfrey and
Tremayne (2005, p. 385).

The final component required to derive a typical error ut , after drawing

ζt , is the conditional standard deviation
√

σ2
t . The following five specifi-

cations for variance schemes are used in Godfrey and Tremayne (2005).
First, the errors are homoskedastic with

σ2
t = σ2, t = 1, . . . , n, (6.24)
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σ2 being set equal to 1 or 10. Second, the ARCH(1) process is used with

σ2
t = φ0 + φ1u2

t−1, (6.25)

in which φ0 = σ2/(1−φ1), φ1 = 0.4 or 0.8, and σ2 is defined as for (6.24).
In the third model, the widely-used GARCH(1, 1) specification is used in
the form

σ2
t = ψ0 + ψ1u2

t−1 + ψ2σ2
t−1, (6.26)

where ψ0 = 1, ψ1 = 0.1, and ψ2 = 0.8; see Bollerslev (1986). The values
of ψ1 and ψ2 are similar to those reported in empirical work.

Given the widespread use of quarterly data in applied work and the
nature of the alternative hypothesis that underpins the LM test, it seems
appropriate to examine seasonal schemes of heteroskedasticity. Consid-
eration is, therefore, given to a fourth-order model taken from Engle
(1982). As in (38) of Engle (1982, p. 1002), conditional variances σ2

t are
written as

σ2
t = φ0 + φ1(0.4u2

t−1 + 0.3u2
t−2 + 0.2u2

t−3 + 0.1u2
t−4), (6.27)

in which φ0 and φ1 are as defined for (6.25). The fifth and final model
to be adopted has unconditional quarterly heteroskedasticity and can be
written as

(ω2
1, ω2

2, ω2
3, ω2

4) =
(

2σ2

(1 + c)
,

2σ2

(1 + c)
,

2cσ2

(1 + c)
,

2cσ2

(1 + c)

)
, (6.28)

in which ω2
j denotes the variance in quarter j, the average of these terms

is σ2, as specified in (6.24), and c equals 4 or 9. Model (6.28) is similar
to that used in Burridge and Taylor (2001, p. 104).

All tests are carried out with a desired significance level of 5 per cent.
The estimates for the asymptotic test are derived using the upper 5 per
cent critical value from the χ2(4) distribution. For the wild bootstrap
tests, p-values are calculated using B = 399 bootstrap samples, according
to (2.11), rather than (2.12), of Section 2.2.2. The number of replications
for each experiment is R = 25,000. Consideration of standard errors
and the approximate distribution of estimators of rejection probabilities
implies that estimated significance levels that are either less than 4.28 or
greater than 5.74 provide strong evidence against the claim that the true
significance level is in the range 4.5 per cent to 5.5 per cent.
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Given the specification of the simulation experiment DGP, the choice
of a pick distribution (either Dε,4 or Dε,6) and the required sample size,
there are R = 25,000 repetitions of Steps 1 to 6, which can be described
as follows.

Heteroskedasticity-robust serial correlation test: Step 1

Use the selected version of (6.22) or the transformed UK GDP data to
obtain n observations on the exogenous regressor. Generate the “actual”
data y1, . . . , yn, using (6.20) and (6.23) with the selected combination of
skedastic function and error distribution.

Heteroskedasticity-robust serial correlation test: Step 2

Estimate the relationships that correspond to (6.20) and (6.21) by OLS.
Let the OLS estimated coefficients for (6.20) be denoted by α̂1, α̂2, β̂1 and
β̂2, with associated predicted values and residuals denoted by ŷt and ût ,
respectively; t = 1, . . . , n.

Heteroskedasticity-robust serial correlation test: Step 3

Use the OLS results from Step 2 to compute the heteroskedasticity-robust
Wald test of (6.20) against (6.21), with the covariance matrix estimator
being HCR0. Let the test statistic be denoted by LMHR. Under the null
hypothesis, LMHR is asymptotically distributed as χ2(4).

Steps 4 and 5 are for the generation and analysis of wild bootstrap
samples, respectively. These steps are repeated B = 399 times in Godfrey
and Tremayne (2005) before proceeding to Step 6.

Heteroskedasticity-robust serial correlation test: Step 4

Generate a bootstrap sample of n observations using the pick distribu-
tion chosen for the experiment. The bootstrap data are obtained using a
recursive wild bootstrap scheme, with

y∗
t = α̂1y∗

t−1 + α̂2y∗
t−2 + β̂1 + β̂2xt + u∗

t , t = 1, . . . , n, (6.29)

and

u∗
t = ûtεt , t = 1, . . . , n, (6.30)

in which ût , t = 1, . . . , n, are the restricted residuals from Step 2 and the
terms ε1, . . . , εn are IID drawings from the selected pick distribution, that
is, either Dε,4 in (5.23) or Dε,6 in (5.25).
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Heteroskedasticity-robust serial correlation test: Step 5

For the pick distribution being examined, use the bootstrap data of (6.29)
to estimate the regressions corresponding to (6.20) and (6.21). Apply the
HCR0 estimator to derive the bootstrap counterpart of the test statistic
LMHR calculated in Step 3. Let the bootstrap test statistic obtained be
denoted by LM∗

HR.

Heteroskedasticity-robust serial correlation test: Step 6

After repeating Steps 4 and 5 B times, the bootstrap p-value of LMHR from
Step 3 can be derived, following Godfrey and Tremayne (2005), as

p̃LM =
[
#(LM∗

HR ≥ LMHR) + 1
]

B + 1
,

with B = 399. The decision rule is to reject the null hypothesis if p̃LM ≤
5 per cent.

Heteroskedasticity-robust serial correlation test: Step 7

Once Steps 1 to 6 have been carried out for the complete set of R = 25,000
replications, the finite sample significance level of the heteroskedasticity-
robust LM test can be estimated by the proportion of replications in
which the null hypothesis is rejected in Step 6.

Steps 1 to 7 can be carried out for all the required combinations of
simulation-world DGP, sample size and pick distribution for the wild
bootstrap in order to build up a body of evidence on finite sample prop-
erties of robust checks for autocorrelation in heteroskedastic dynamic
regression models.

Consideration of the results given in Godfrey and Tremayne (2005)
leads to the following conclusions about the finite sample behaviour of
heteroskedasticity-robust LM tests for autocorrelation.

First, when the HCCME-based statistic LMHR is compared with asymp-
totic critical values, there is not good control of finite sample significance
levels and instead there is clear evidence of underrejection relative to the
desired level.

Second, the use of the Rademacher pick distribution, that is, Dε,6 of
(5.25), leads to a well behaved test and produces results that are usu-
ally in closer agreement with the desired significance level than those
obtained with the pick distribution Dε,4 of (5.23). This finding supports
the recommendations made in Flachaire (2005) for the implementation
of heteroskedasticity-robust tests in regression analysis.

A sample of results, which is representative of the full set obtained
by Godfrey and Tremayne, is used to illustrate their key findings
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Table 6.2 Estimated significance levels of asymptotic and wild
bootstrap (WBS) versions of HCCME-based LMHR test, using
HCRO, with desired significance level of 5 per cent and n = 40

a. Homoskedasticity with σ2 = 1 in (6.24)
Error distribution N(0, 1) t(5) χ2(8)

asymptotic test 3.69 2.88 3.24
WBS test and Dε,4 5.98 5.48 5.55
WBS test and Dε,6 5.04 4.41 4.61

b. ARCH(1) with φ1 = 0.8 in (6.25)
Error distribution N(0, 1) t(5) χ2(8)

asymptotic test 3.41 2.90 3.18
WBS test and Dε,4 5.99 5.82 6.01
WBS test and Dε,6 5.08 4.78 4.92

c. GARCH(1,1) with ψ1 = 0.1 and ψ2 = 0.8 in (6.26)
Error distribution N(0, 1) t(5) χ2(8)

asymptotic test 3.34 2.98 3.09
WBS test and Dε,4 5.86 5.92 5.75
WBS test and Dε,6 5.07 5.14 4.94

d. ARCH(4) with φ0 = 0.1 and φ1 = 0.8 in (6.27)
Error distribution N(0, 1) t(5) χ2(8)

asymptotic test 3.52 3.04 3.20
WBS test and Dε,4 6.26 5.78 5.88
WBS test and Dε,6 5.20 4.87 4.96

e. Seasonal variances with c = 9 in (6.28)
Error distribution N(0, 1) t(5) χ2(8)

asymptotic test 3.36 2.62 2.99
WBS test and Dε,4 6.62 6.08 6.40
WBS test and Dε,6 5.91 5.47 5.76

Notes: Each estimate is derived from 25,000 replications and bold font
denotes that the estimate is consistent with the true significance level
being between 4.5 per cent and 5.5 per cent, as indicated by the test given
in Godfrey and Orme (2000, p. 75).

Source: From Godfrey and Tremayne, 2005, p. 389, Table 3.

on the performance of asymptotic and wild bootstrap versions of
heteroskedasticity-robust LM tests. This sample of results is presented
in Table 6.2. The estimated significance levels given in Table 6.2 show
the potential value of the very simple two-point pick distribution Dε,6 of
(5.25); see Davidson and Flachaire (2001, 2008) for a detailed analysis of
this pick distribution. In most cases, the estimate for the wild bootstrap



Simulation-based Tests for Regression Models with Non-IID Errors 241

test that uses LMHR, computed with the restricted residual-based HCCME
HCRO, as the test statistic and the Rademacher distribution Dε,6 as the
pick distribution is consistent with the claim that the true significance
level is within 0.5 per cent of the desired value of 5 per cent.

6.4. Bootstrapping heteroskedasticity-robust structural
break tests with an unknown breakpoint

Section 4.4 contained a discussion of the problem of testing the null
hypothesis that the coefficients of a regression model are constant against
the alternative that there is a single breakpoint, which is unknown. As
part of this discussion, evidence on the usefulness of basing tests on an
IID-valid bootstrap scheme was summarized; see (4.44) and (4.45) for an
example of such a scheme. However, the use of an IID-valid bootstrap
may produce very misleading inferences when the actual data are gen-
erated by a regression model with heteroskedastic errors. In this section,
the possibility of using bootstrap methods that are asymptotically valid
under unknown forms of heteroskedasticity is discussed. Attention is also
paid to the treatment of dynamic specification when setting up bootstrap
schemes.

Under the unknown breakpoint alternative, the full set of n observa-
tions consists of two samples, with the conditional mean functions of the
corresponding two populations differentiated by their regression param-
eter vectors. The sample sizes for these two samples, denoted by n1 and
n2, are unknown, but it is assumed that both are large enough to allow
OLS estimation of the corresponding model. As in Andrews (1993), the
unknown ratio n1/n is denoted by π .

With lagged values of the dependent variable included in the regressor
set, the null (restricted) model can be written as

yt =
p∑

j=1

yt−jαj +
k∑

j=1

xtjβj + ut , (6.31)

and the alternative (unrestricted) model as

yt =
p∑

j=1

yt−jαj +
p∑

j=1

[
1(

t
n

> π)yt−j

]
δj +

k∑
j=1

xtjβj

+
k∑

j=1

[
1(

t
n

> π)xtj

]
γj + ut , (6.32)
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for t = 1, . . . , n, in which: 1( t
n > π) is the indicator function which

is zero when the event “ t
n > π” is false and is one when this event

is true; and the heteroskedastic errors ut are distributed independently
with zero means. While the exact value of π is unknown, it assumed
that a parameter space � can be defined by specified lower and upper
bounds, with

0 < π1 ≤ π ≤ π2 < 1.

In the classic article by Chow, it is assumed that n1 is known to the
researcher; see Chow (1960). Hence, under Chow’s assumptions, π is
known and so the values of the regressors of (6.32) are known. The F-
statistic for testing the p + k restrictions of

HC : δ1 = · · · = δp = γ1 = · · · = γk = 0, (6.33)

can, therefore, be calculated after OLS estimation of (6.31) and (6.32).
Under IID errors, critical values from the F(p+k, n−2p−2k) distribution
are asymptotically valid. However, in the situation that is now being
discussed, π is unknown and the absence of a priori information about
the breakpoint implies that Chow’s original test is no longer available.

All that is known is � and so (6.31) can be tested against each of the
possible alternatives defined by having a breakpoint parameter in �. For
example, if n = 100 and it assumed that 0.15 ≤ π ≤ 0.85, with p+k < 15,
there are 71 possible alternatives, each of which can be used to test HC
of (6.33) by means of an F-statistic. It is now common for inference
to be based upon the maximum of these F-statistics and the value of π

that corresponds to the maximum F-statistic provides the estimate of the
breakpoint. With general n and �, the F-test statistic for testing (6.31)
against (6.32) can be denoted by Fn(π), π ∈ �, and the largest of the set
of statistics obtained by varying π between π1 and π2 is

SupF = sup
π∈�

Fn(π).

As discussed in Section 4.4, an asymptotic theory for a test based upon
SupF is provided in Andrews (1993). A bootstrap-based approach which
permits weaker assumptions than those used by Andrews is proposed in
Hansen (2000). Structural breaks of the distributions of regressors, lagged
dependent variables in the regressor set and heteroskedasticity of the
errors are all allowed in Hansen’s analysis; see Hansen (2000). The pres-
ence of heteroskedasticity implies that the IID-valid bootstrap techniques
for Sup-type statistics discussed in Section 4.4 are inappropriate.
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The key features of the alternative to the IID bootstrap that is proposed
in Hansen (2000) can be summarized as follows: (i) the regressors, includ-
ing any lagged values of the dependent variable, are treated as fixed;
and (ii) a wild bootstrap is used to mimic heteroskedasticity. Hansen
shows that a SupF test based upon his “fixed regressor bootstrap” is
asymptotically valid; see Hansen (2000, p. 107, Theorem 6).

Hansen not only establishes the asymptotic validity of his het-
eroskedastic fixed regressor bootstrap test, but also provides some evi-
dence from simulation experiments about its finite sample properties.
The regression model in these experiments has the form

yt = α1yt−1 + α2yt−2 + α3yt−3 + β1xt−1 + β2xt−2 + β3xt−3 + β4 + ut ,

t = 1, . . . , n, (6.34)

with n = 50, α1 = 0.5, β1 = 1 and all other regression parameters set
equal to zero; see Hansen (2000, section 5.3) for full details of the exper-
imental designs. The bootstrap world counterpart of (6.34), given that
all regressors are treated as fixed, is

y∗
t = α̈1yt−1 + α̈2yt−2 + α̈3yt−3 + β̈1xt−1 + β̈2xt−2 + β̈3xt−3 + β̈4 + u∗

t ,

t = 1, . . . , n, (6.35)

with the “double-dot” notation being used to denote a parameter of the
bootstrap model and the bootstrap errors u∗

t being obtained using a wild
bootstrap.

As a consequence of all regressors being treated as fixed in (6.35),
standard invariance results imply that the choice of bootstrap world
regression parameters α̈j and β̈j is unimportant when estimating the sig-
nificance levels of tests of HC; see Breusch (1980). Hansen simply sets
the values of such parameters equal to zero in the bootstrap world. Thus,
his heteroskedasticity-valid fixed regressor bootstrap can be written as

y∗
t = u∗

t , t = 1, . . . , n, (6.36)

and Hansen obtains the bootstrap errors by using

u∗
t = ǔtεt , t = 1, . . . , n, (6.37)

in which εt is a typical drawing from the N(0, 1) distribution, that is,
Dε,2 in (5.21), and ǔt is a typical residual from the OLS estimation of the
model (6.32) that yields the smallest residual sum of squares as π varies
between π1 and π2; see Hansen (2000, p. 106).



244 Bootstrap Tests for Regression Models

Hansen uses (6.36) and (6.37) to generate B = 1,000 wild bootstrap
samples in his simulation experiments. The estimates of finite sample sig-
nificance levels for bootstrap and other tests are derived from R = 5,000
replications in these experiments, with the desired significance level
being 10 per cent. Hansen finds that, in the presence of heteroskedastic-
ity, there is evidence of the following: the asymptotic theory in Andrews
(1993) provides a very misleading approximation; an IID-valid bootstrap
leads to a badly behaved test; and his heteroskedasticity-valid bootstrap
test works much better. However, while the heteroskedastic fixed regres-
sor bootstrap provides a substantial improvement relative to the other
two approaches, it sometimes suffers from over-rejection, relative to the
desired significance level of 10 per cent.

The approach adopted in Hansen (2000) differs from that recom-
mended in previous sections in three ways. First, the lagged dependent
variables that appear as regressors in the model for actual data are treated
as fixed in the model for bootstrap data, in other words, (6.35) is used,
rather than a recursive scheme like (6.18). Second, when defining the
wild bootstrap error in (6.37), the scaling factor is an unrestricted residual
from the estimation of the best-fitting alternative, not the restricted resid-
ual as in, e.g., (6.30). Third, the pick distribution for Hansen’s scheme is
the N(0, 1) distribution in (5.21), whereas the Rademacher distribution
of (5.25) has been recommended several times above.

A wild bootstrap test for a single structural break at an unknown point
discussed in Jouini (2008) is much closer to the general recommendation
made above than Hansen’s procedure. Like Hansen, Jouini allows for
nonstationary regressors and provides simulation evidence about finite
sample behaviour of tests when the regressors include lagged values of
the dependent variable. In Jouini’s simulation experiments, the null
model, which corresponds to (6.34) in Hansen (2000), is

yt = α1yt−1 + α2yt−2 + β1xt−1 + β2xt−2 + β3 + ut , t = 1, . . . , n,
(6.38)

with n = 50, 100. However, in contrast to Hansen’s fixed bootstrap,
Jouini generates bootstrap data using the recursive scheme

y∗
t = α̂1y∗

t−1 + α̂2y∗
t−2 + β̂1xt−1 + β̂2xt−2 + β̂3 + u∗

t , t = 1, . . . , n,
(6.39)

in which: pre-sample values are given by y∗
0 = y0 = 0 and y∗

−1 = y−1 =
0; bootstrap model coefficients α̂j and β̂j are obtained from the OLS
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estimation of (6.38); and the wild bootstrap error is defined by

u∗
t =

[
ût (1 − hR

tt )
−1/2

]
εt , (6.40)

in which ût is a typical residual from OLS estimation of (6.38), hR
tt is a

typical leverage value for a regressor matrix for (6.38) and εt is a drawing
from the Rademacher pick distribution in (5.25). Thus the only difference
between Jouini’s scheme and the one proposed as a general approach
above is that he includes an asymptotically negligible leverage-based
adjustment in (6.40).

As in the results reported in Hansen (2000), Jouini finds that the SupF
test derived from the asymptotic theory in Andrews (1993) provides
misleading inferences in the presence of heteroskedasticity. The wild
bootstrap test for SupF obtained using (6.39) and (6.40) is superior to
the heteroskedastic fixed regressor bootstrap test given in Hansen (2000)
and works well, with estimated significance levels that are close to the
desired levels. These results are encouraging but it could be argued that
they are of limited interest because, if heteroskedastic errors were sus-
pected, the applied worker would use a heteroskedasticity-robust statistic
to test (6.31) against (6.32), not the F-statistic which is derived under the
assumption of homoskedasticity.

MacKinnon has generalized the classic Chow test to make it robust
to heteroskedasticity of unknown form; see MacKinnon (1989). He also
extends the analysis by allowing for a nonlinear regression function,
but, for simplicity of exposition, attention is restricted here to linear
models. The null (restricted) model for the full set of n observations is
then given by (6.31). Under the assumption that the alternative hypoth-
esis specifies the breakpoint π in (6.32), the heteroskedasticity-robust
check for structural change can be obtained from OLS estimation of the
unrestricted model (6.32) by using a Wald statistic based upon an appro-
priate HCCME; see (6.8) and (6.7), respectively, for the general forms of
these terms. An asymptotic test is straightforward. Sample values of the
statistic for the heteroskedasticity-consistent Wald test of HC can be com-
pared with critical values from the asymptotic null distribution, which
is χ2(p + k). However, as stressed in Stock and Watson (2007), applied
workers usually will not be certain about the breakpoint for the alterna-
tive model and that it is, therefore, inappropriate to treat π as a known
constant in (6.32).

Suppose that, in the absence of perfect information about the break-
point, (6.32) is to be estimated for each value of π in the specified set
� and a HCCME-based Wald test of HC is carried out for each of these
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values. A typical HCCME-based test statistic, as derived in MacKinnon
(1989), is denoted by MHR(π), with notation making its dependence on
the value of the breakpoint π ∈ � explicit. The obvious generalization of
the well-known SupF criterion, based upon MacKinnon’s robust method,
is then given by

SupMHR = sup
π∈�

MHR(π),

which is, under HC, asymptotically distributed as the maximum of a set
of χ2(p + k) variables, whether or not heteroskedasticity is present.

Some simulation results on the reliability of wild bootstrap tests of the
significance of the statistic SupMHR are reported in Lamarche (2003).
Lamarche uses the specification of simulation experiments given in
Hansen (2000), that is, the basic DGP is (6.34). Lamarche also follows
Hansen by adopting the fixed regressor bootstrap scheme (6.36) and by
using an estimated unrestricted residual in (6.37). (The unrestricted resid-
uals are those associated with the largest of the test statistics MHR(π).)
Lamarche considers two pick distributions, namely, the Rademacher dis-
tribution and the standard Normal distribution. He also examines the
adjustments of residuals described in MacKinnon and White (1985) in
the context of the construction of the HCCME. His simulation experi-
ments yield estimates of errors in rejection probabilities for values of the
desired significance level in the range zero to 30 per cent.

The new bootstrap SupMHR test appears to be better behaved than SupF
and to be quite reliable in finite samples, provided that the bootstrap
models are asymptotically valid in the presence of heteroskedasticity.
Lamarche remarks that his “test has good finite sample properties under
different resampling procedures and transformations of the residuals”;
see Lamarche (2003). Given the results in Jouini (2008), it seems reason-
able to conjecture that good control of finite sample significance levels
of the SupMHR test might be achieved by using a recursive wild boot-
strap of the type that consists of (6.18) and (6.19), with restricted, rather
than unrestricted, residuals being employed to scale drawings from the
Rademacher pick distribution. This sort of approach is used to obtain
tests of parameter stability in O’Reilly and Whelan (2005).

The simulation results that are reported in O’Reilly and Whelan (2005)
cover tests that are based upon the assumption of IID errors and more
robust procedures that are derived using a heteroskedasticity-consistent
covariance matrix estimator. After conducting simulation experiments,
O’Reilly and Whelan find that the performance of the fixed regressor
bootstrap in Hansen (2000) is not robust to variations in the values of
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the coefficient α1 in the stable AR(1) model

yt = α1yt−1 + β1 + ut , |α1| < 1, t = 1, . . . , n.

The agreement between estimated and desired significance levels gets
worse as α1 increases from the value of 0.5, which is employed in Hansen
(2000), with the fixed regressor bootstrap leading to excessively large
estimates. O’Reilly and Whelan also find that combining a recursive
bootstrap with a wild bootstrap, using the Rademacher distribution for
the pick distribution, works well whether or not there is heteroskedastic-
ity. Additional evidence in favour of the recursive wild bootstrap method,
compared with the heteroskedastic fixed regressor bootstrap, is derived
from experiments with an intercept term, yt−1 and a single autocorre-
lated exogenous variable as regressors; see O’Reilly and Whelan (2005,
section 4).

6.5. Bootstrapping autocorrelation-robust Hausman tests

The asymptotic validity of conventional OLS-based techniques requires
that the regressors are neither endogenous nor measured with errors.
Tests for endogeneity and errors-in-variables are, therefore, of great
importance. A test that is proposed in Hausman (1978) has become
very popular and is described in many textbooks. The standard form
of Hausman’s test is derived under the assumption of IID errors, with
the test statistic being asymptotically pivotal, having a limit null dis-
tribution that is χ2. As anticipated from the results in Beran (1988),
the use of an IID-valid bootstrap produces better behaviour of Haus-
man’s test than is associated with the asymptotic critical values when the
errors are IID; see Wong (1996). The purpose of this section is to exam-
ine the use of bootstrap methods that permit the asymptotically valid
application of Hausman’s test in the presence of error autocorrelation of
unknown form.

6.5.1. The forms of test statistics

In almost every application of regression analysis, there will be regressors
that can be assumed to be measured without error and to be exogenous,
if only because of the inclusion of an intercept term with, say, xtk = 1
for all t . It will, therefore, be convenient to write the regression model
in the partitioned form

y = X1β1 + X2β2 + u, (6.41)
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in which the status of the variables in X1 is open to question, but it is
maintained that X2 contains neither endogenous variables nor incor-
rectly measured regressors. The orthogonality condition that is under
test is that E(u|X1, X2) has all elements equal to zero.

It is useful to introduce some additional notation and to specify some
assumptions. The vectors y and u in (6.41) are both n-dimensional, with
X1 and X2 being n×k1 and n×k2, respectively. The terms β1 and β2 are
k1 × 1 and k2 × 1, respectively. When there is no need to differentiate
between the two types of regressor, the partitioned form of the regression
model can be replaced by

y = Xβ + u, (6.42)

in which X = (X1, X2) and β ′ = (β ′
1, β ′

2). As usual, let k denote the
number of regressors, that is, k = k1 + k2. The errors are assumed to be
stationary, autocorrelated variables with common zero mean when the
orthogonality condition is true. Thus, under the null hypothesis that the
regressors of X1 are correctly measured strictly exogenous variables,

E(u|X) = 0n, (6.43)

and

E(uu′|X) = σ2R, (6.44)

in which R is a symmetric positive-definite matrix with a typical element
being the autocorrelation coefficient Corr(us, ut ) = ρ(|s − t |), say, s, t =
1, . . . , n. When the errors are assumed to be IID, R is the n × n identity
matrix.

Hausman obtains a test of the validity of (6.43) by considering the
difference between OLS and Instrumental Variable (IV) estimators of β

in (6.42). When the orthogonality condition is true, both estimators are
consistent and the difference between them will tend to a vector with
every element equal to zero. When the orthogonality condition is not
satisfied, the OLS estimator is inconsistent and will not have the same
probability limit as the IV estimator; so that the difference between these
estimators does not tend to a zero vector.

In order to present alternative forms for the Hausman test, it is neces-
sary to outline some of the relevant results; see Davidson and MacKinnon
(2004, section 8.7) and Greene (2008, section 12.4) for more detailed
discussions. As in previous analyses, let the OLS estimator for (6.42) be
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denoted by

β̂ = (β̂
′
1, β̂

′
2)′,

with an associated residual vector

û = y − Xβ̂.

It is useful to note that the normal equations for OLS estimators can be
written as

X′
1û = 0k1

, (6.45)

and

X′
2û = 0k2

. (6.46)

The variables of X2 are maintained to be measured without errors and
to be strictly exogenous. These regressors are, therefore, valid instru-
ments for the estimation of (6.42). It is assumed that, as seems sensible,
these regressors are included in the instrument set. The n × m matrix of
instruments can then be written in the form

Z = (
Z1, X2

)
, (6.47)

in which Z1 is n × m1, m1 ≥ k1; so that m = m1 + k2 ≥ k, that is,
there are sufficient instruments for estimation. Let the projection matrix
Z(Z′Z)−1Z′ be denoted by PZ . The IV estimator, with which β̂ is to be
compared, is then

β̃ = (
X′PZX

)−1 X′PZy. (6.48)

The focus in Hausman (1978) is on the vector of estimator contrasts
denoted by q, that is,

q = β̃ − β̂.

Hausman shows that, under the null hypothesis,

√
nq ∼a N(0k, Cqq). (6.49)

It might be thought, given previous results on the construction of test
statistics, that it would be possible to derive an asymptotically valid test
of the significance of the joint significance of the elements of

√
nq in
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which critical values were taken from the χ2(k) distribution. However,
this is not the case because the covariance matrix Cqq in (6.49) is singular
and care must be taken to avoid invalid critical values; see, for example,
Krämer and Sonnberger (1986).

In order to show the cause of the singularity of the covariance matrix
Cqq, it is useful to substitute the OLS-based identity

y = Xβ̂ + û,

in (6.48). This substitution leads to

q = β̃ − β̂

= (
X′PZX

)−1 X′PZ(Xβ̂ + û) − β̂

= (
X′PZX

)−1 X′PZû.

Since PZX is the matrix of predicted values from the OLS regression of
X on Z and X2 is included in Z, X′PZû can be partitioned as(

X′
1PZû

X′
2PZû

)
=

(
X′

1PZû
X′

2û

)
=

(
X′

1PZû
0k2

)
,

in which use has been made of (6.46). Hence

q =
(

q1
q2

)
= (

X′PZX
)−1

(
X′

1PZû
0k2

)
,

and so the last k2 elements of the estimator contrast vector q are lin-
ear combinations of the first k1 elements. It follows that, when X2 is
included in Z, the relevant reference distribution for Hausman’s test is
χ2(k1), not χ2(k). There are two well-known forms of an appropriate
asymptotic theory test statistic.

The first form is a direct Wald test of the significance of

q1 = β̃1 − β̂1; (6.50)

so that only the contrasts corresponding to suspect regressors are used.
Under standard regularity conditions, the asymptotic null distribution
of

√
nq1 is given by

√
nq1 ∼a N(0k1

, Cq1q1), (6.51)
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in which Cq1q1 is a non-singular matrix. Let C̈q1q1 be an estimator of
Cq1q1 that is consistent when the null hypothesis is true. The estimator
contrast form of Hausman’s test is then based upon the result that

H1 = nq′
1

[
C̈q1q1

]−1
q1 ∼a χ2(k1), (6.52)

under the null hypothesis.
Hausman is able to derive a very simple expression for the covari-

ance matrix estimator in (6.52) by imposing the auxiliary assumption
of IID errors; see Hausman (1978, p. 1254). This expression is obtained

by considering the covariance between
√

n
(
β̃1 − β1

)
and

√
n
(
β̂1 − β1

)
.

As explained in Greene (2008, p. 208), “Hausman’s essential result is
that the covariance of an efficient estimator with its difference from an
inefficient estimator is zero.” This result allows the covariance matrix in
(6.51) to be written as the difference between the covariance matrices of
IV and OLS estimators; see Greene (2008, pp. 208–9). However, when
the assumption of IID errors is relaxed, OLS is no longer asymptotically
efficient and Hausman’s simplifying result is not applicable. The form
of the covariance matrix estimator used in (6.52) is more complicated
when either autocorrelation or heteroskedasticity is present. An expres-
sion that is appropriate under general stationary autocorrelation is given
in Li (2006) for the special case in which just enough instruments are
used, that is, Z in (6.47) is n × k.

Given the complexity of the form (6.52) under non-IID errors, a second
(indirect) approach is attractive. In this second approach, straightfor-
ward manipulations are used to establish that Hausman’s test can be
implemented by testing γ = 0k1

in the augmented model

y = X1β1 + X2β2 + [PZX1] γ + u; (6.53)

see, for example, Davidson and MacKinnon (2004, section 8.7). If the
OLS estimator for γ in (6.53) is denoted by γ̌ , a robust version of Haus-
man’s procedure can be obtained by checking the significance of

√
nγ̌ ,

using an appropriate robust covariance matrix estimator in a Wald statis-
tic. According to the departures from the assumption of IID errors that
are being allowed, the covariance matrix should be autocorrelation-
consistent, or a HCCME, or a HAC estimate. If the relevant covariance
matrix estimate is denoted by Čγ γ , then, under the null hypothesis,

H2 = nγ̌ ′ [Čγ γ

]−1
γ̌ ∼a χ2(k1), (6.54)
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with significantly large values indicating the inconsistency of the null
hypothesis with the data.

The two forms of Hausman’s test that are provided in (6.52) and (6.54)
both rely upon asymptotic theory. Given the results in Wong (1996) for
the IID errors case that illustrate the improved performance of Haus-
man’s test when bootstrap methods replace asymptotic critical values,
the use of bootstrap techniques that are appropriate in the presence of
autocorrelation of unknown form, as represented by (6.44), is clearly
worth considering.

Perhaps the most obvious way in which to employ bootstrap methods
is to apply the same formula for the test statistic to the actual sample
and to each of a suitably large number of bootstrap samples. The boot-
strap p-value of the statistic from the actual data can then be calculated
and compared with the desired significance level. In order to be a basis
for asymptotically valid inference under autocorrelation of unspecified
form, the bootstrap samples would have to be generated using one of the
methods discussed in Section 5.3, with the block and sieve bootstraps
being obvious candidates.

It is possible that the direct application of a bootstrap as outlined in the
previous paragraph would lead to difficulties and uncertainties related
to the choice of method used to obtain the relevant autocorrelation-
consistent covariance matrix estimate, either C̈q1q1 in (6.52) or Čγ γ in
(6.54). An alternative bootstrap-based strategy is to use the results in
Gonçalves and White (2005) on the bootstrap estimation of covariance
matrices.

Suppose, for example, that the estimator contrast q1 in (6.50) is to be
checked for statistical significance. If B bootstrap samples are obtained,
using, for example, a block bootstrap as described in Section 5.3.2, then
B bootstrap counterparts of the contrast q1 can be derived. Let these
bootstrap statistics be denoted by q∗

1(b)
, b = 1, . . . , B. A simple estimate

of the covariance matrix of
√

nq1, which can be used in (6.52), is given by

C∗
q1q1

= n
B

B∑
b=1

[(
q∗

1(b)
− q̄∗

1

) (
q∗

1(b)
− q̄∗

1

)′]
,

in which

q̄∗
1 = 1

B

B∑
b=1

q∗
1(b)

.
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A statistic of the form (6.52) can then be computed as

H∗
1 = nq′

1

[
C∗

q1q1

]−1
q1, (6.55)

and its sample value could be compared with a right-hand-tail critical
value from the χ2(k1) distribution.

As with the studies of heteroskedasticity-robust bootstrap tests dis-
cussed above, the special case of testing a single restriction has received
attention in the literature on bootstrap versions of Hausman tests. If
k1 = 1, the statistic H2 in (6.54) can be calculated as the square of the
autocorrelation-robust t-ratio for testing γ = 0 in

y = x1β1 + X2β2 + [PZx1] γ + u, (6.56)

with the asymptotic critical values taken from the χ2(1) distribution.
The relevant t-ratio can be written as γ̌ /ACSE(γ̌ ), with ACSE(γ̌ ) denot-
ing the autocorrelation-consistent standard error of the OLS estimator γ̌ .
If there is uncertainty about how best to calculate ACSE(γ̌ ), or there is
concern that the estimate might be excessively variable for sample sizes
of relevance to the applied worker, it may be reasonable to bootstrap
the coefficient estimate γ̌ , rather than its associated autocorrelation-
consistent t-ratio; see the comments on Berkowitz and Kilian (2000) in
Davidson (2000, p. 49).

If, for example, a block bootstrap were used to generate B bootstrap
samples, then a p-value for the non-asymptotically pivotal coefficient
estimate γ̌ could be calculated as

p̂∗(γ̌ ) =
#(|γ̌ ∗

(b)
| ≥ |γ̌ |)
B

, (6.57)

in which γ̌ ∗
(b)

is the bootstrap counterpart of γ̌ , b = 1, . . . , B. However,
given that the point estimate is not asymptotically pivotal, there is no
asymptotic refinement derived from the bootstrap. A double bootstrap
can be used in an attempt to improve the control of finite sample sig-
nificance levels. In particular, a fast double bootstrap (FDB) of the type
described in Section 2.5 may offer the benefits of good performance at
relatively low computational cost; see Davidson and MacKinnon (2002b,
2007) for discussions of this approach.

Some simulation evidence that throws light on the relative merits
of alternative bootstrap methods for providing autocorrelation-robust
Hausman tests is discussed next. This evidence is obtained using the
experimental designs given in Li (2006).
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6.5.2. Simulation experiments

In the simulation experiments that are conducted in Li (2006), a block
bootstrap is used to carry out an autocorrelation-consistent version of
Hausman’s test of an estimator contrast. The results from the experiments
provide information about the finite sample properties of this bootstrap
test and those of the corresponding test based upon the asymptotic null
distribution. Li describes his block bootstrap test as consisting of the
following three steps.

Li (2006): Step 1

Use the actual data to apply OLS to the regression model (6.42); the OLS
residuals in û and the point estimates in β̂ are saved for use in the next
step. Before proceeding to the second step, (6.42) is estimated by IV and
the statistic H1, as defined in (6.52), is calculated, using an appropriate
autocorrelation-consistent covariance matrix estimate. An invalid form
of the test statistic based upon the false assumption of IID errors is also
computed in Li (2006). This inappropriate statistic is denoted by H×

1 .
Li proposes that a block bootstrap be used to generate B samples,

each of which is used to calculate a value of the autocorrelation-robust
Hausman test statistic. Step 2 is, therefore, repeated B times.

Li (2006): Step 2

The vector of OLS residuals û = (û1, û2, . . . , ûn)′ from Step 1 is divided
into non-overlapping blocks of equal length. Let the common block
length be denoted by � and the number of blocks be r = n/�. The r
blocks of residuals can be written as

Ûj = (û1+(j−1)�, û2+(j−1)�, . . . , ûj�), j = 1, 2, . . . , r.

These blocks are used to define the probability model for a random
bootstrap error block of length �, denoted by U∗, with

Pr(U∗ = Ûj) = 1
r

for j = 1, . . . , r. (6.58)

For repetition b of Step 2, a sequence of n bootstrap errors u∗
(b)

=
(u∗

1(b)
, u∗

2(b)
, . . . , u∗

n(b)
)′ is then generated by randomly sampling, with

replacement, r blocks from the population defined by (6.58) and then
joining the blocks together. The vector u∗

(b)
is combined with the OLS

predicted value of Step 1 to obtain the bth sample of bootstrap data for
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the dependent variable, according to

y∗
(b)

= Xβ̂ + u∗
(b)

. (6.59)

These bootstrap data are used, like the actual data in Step 1, to calculate
the estimator contrast version of Hausman’s test, as given in (6.52). The
bootstrap counterpart of H1 from Step 1 is denoted by H∗

1(b)
.

Li (2006): Step 3

Conventional asymptotic theory can be used to judge whether or not
the sample value of H1 from Step 1 is statistically significant. However,
after Step 2 has been carried out for b = 1, . . . , B, a bootstrap p-value test
can be used. More precisely, the null hypothesis is rejected if

#(H∗
1(b)

≥ H1)

B
≤ αd ,

in which αd is the desired significance level. In Li’s analysis, the inappro-
priate statistic H×

1 is compared with critical values from the asymptotic
null distribution of H1 in order to illustrate the consequences of failing
to take into account the presence of autocorrelation.

The experiments that are used in Li (2006) to investigate the usefulness
of bootstrap tests provided by Steps 1, 2 and 3 can be described as follows.
The regression model in Li (2006) is

yt = xt1β1 + β2 + ut , (6.60)

with ut generated according to either the MA(2) scheme

ut = et + θ1et−1 + θ2et−2, (θ2 = 0.5),

or the AR(1) model

ut = φut−1 + et , |φ| < 1,

and et
xt1
zt1

 ∼ NID


0

0
0

 ,

 1 ρxe 0
ρxe 1 ρxz
0 ρxz 1


 , (6.61)

for t = 1, . . . , n. The non-singularity of the covariance matrix in (6.61)
requires that 1 − ρ2

xz − ρ2
xe > 0. Observation vectors for regressors and
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instruments are defined as xt = (xt1, 1)′ and zt = (zt1, 1)′, respectively,
t = 1, . . . , n. The null hypothesis corresponds to ρxe = 0 and small values
of ρxz provides insights into the issue of weak instruments, as discussed
in Staiger and Stock (1997).

All experiments in Li (2006) have β1 = β2 = 1. The sample size is
n = 100 and the block length is � = 4; so that the number of blocks
is r = 25. The number of block bootstrap samples is B = 1,000. The
desired significance levels are 5 per cent and 10 per cent and, for each
experiment, R = 2,000 replications are used to estimate the correspond-
ing finite sample significance levels. Li summarizes his results as follows.
As might be expected, the invalid test H×

1 has estimates that indicate
substantial departures from the intended significance levels (estimates
are lower than desired and sometimes very low, for example, less than
0.5 per cent). The estimates for the correct asymptotic theory test of H1
have better agreement with the desired values, but satisfactory perfor-
mance is not always observed with some estimates being outside of the
range αd ± 0.2αd . The bootstrap test of the significance of H1 appears to
work well, with evidence of good control of significance levels in almost
every case. Li interprets his results as showing that, after correcting the
Hausman statistic to be asymptotically robust to autocorrelation, a block
bootstrap variant of the test outperforms the version derived using the
standard first-order asymptotic theory. However, these results are subject
to some limitations.

First, when carrying out experiments with MA(2) errors, Li uses a
covariance matrix estimator based upon knowledge of the correct auto-
correlation model, that is, it is assumed that autocorrelations of third
and higher order equal zero. The non-zero autocorrelation terms are cal-
culated using residuals from OLS estimation of (6.60); see Li (2006, p.
80). Li’s use of “null hypothesis” residuals when estimating autocorrela-
tion matrices is supported by results to be found in Ligeralde and Brown
(1995) on restricted versus unrestricted residuals. However, the use of the
correct MA(2) autocorrelation model could be viewed as tending to lead
to estimates that overstate the accuracy of both asymptotic and block
bootstrap tests.

Second, for the experiments with AR(1) errors, Li uses a Bartlett ker-
nel with bandwidth equal to 5; this choice leads to a covariance matrix
for the OLS estimator defined by appropriate special cases of (1.47) and
(1.48) with truncation lag l = 4. However, as demonstrated in Kiefer
and Vogelsang (2005), the choice of bandwidth and kernel may be
important and there are many alternatives to the combination used in
Li (2006).
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In view of these remarks, it seems worthwhile to examine results
obtained by repeating the experiments in Li (2006) without using infor-
mation about the correct error model and without imposing his choices
for the bandwidth and kernel. Three procedures are to be considered
and none of them requires an applied researcher to select a bandwidth
and kernel combination in order to obtain an autocorrelation-consistent
covariance matrix estimate. All are based upon the added variable
approach to computing the Hausman statistic. Since the status of only
one regressor is under test in the experiments of Li (2006), a special case
of (6.56) can be used to calculate test statistics of γ = 0.

In the first test, denoted by T1, block bootstrap samples are used to esti-
mate the autocorrelation-consistent standard error required for a quasi-t
ratio, which is compared with asymptotic critical values from the N(0, 1)

distribution for a two-sided alternative; see Gonçalves and White (2005)
on the bootstrap estimation of standard errors in linear regression mod-
els. For the second and third tests, no standard error is required and
instead it is the point estimate of the coefficient of the test variable in
(6.56) that is the object of interest in block bootstrap samples. The block
bootstrap is used in the second procedure, denoted by T2, to estimate a
p-value, as given in (6.57), which is compared with desired significance
levels. For the third test, denoted by T3, the p-value calculated for T2
is used as the test statistic in a FDB approach. Several descriptions of
standard single level bootstrap tests have been provided above and so
only the application of the FDB test will be described here. The FDB
version of the autocorrelation-robust Hausman test with a single regres-
sor under scrutiny can, like Li’s procedure, be described as a three-step
method.

FDB autocorrelation-robust Hausman test: Step 1

The actual data are used to obtain OLS results for the regression equations
that correspond to (6.42) and (6.56). The OLS residual vector û and
parameter estimate β̂ for the former model are saved to be used for
the generation of block bootstrap data. The point estimate of γ in the
model corresponding to (6.56) is the object used as the statistic of interest
when performing the FDB test of the null hypothesis that the regressor
under investigation is exogenous and measured without error. This point
estimate is denoted by γ̌ .

As in the approach described in Li (2006), the second step is to be
repeated B times before proceeding to Step 3.
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FDB autocorrelation-robust Hausman test: Step 2

It is convenient to break the second step, which is repeated until B
block bootstrap samples have been generated and analysed, into two
parts.

(a) As in Li’s method, the vector of OLS residuals û = (û1, û2, . . . , ûn)′
is divided into non-overlapping blocks of equal length �. The r = n/�

blocks of OLS residuals can, as before, be written as

Ûj = (û1+(j−1)�, û2+(j−1)�, . . . , ûj�), j = 1, 2, . . . , r.

For repetition b of Step 2, a sequence of n bootstrap errors u∗
(b)

=
(u∗

1(b)
, u∗

2(b)
, . . . , u∗

n(b)
)′ is generated by randomly sampling, with replace-

ment, r blocks from the population defined by (6.58) and then joining
the blocks together. The vector u∗

(b)
is combined with the OLS predicted

values of Step 1 to obtain the bth sample of bootstrap data for the depen-
dent variable, according to (6.59). The implied vector of n bootstrap
observations on the dependent variable is y∗

(b)
, which is now subject to

the same OLS analyses as was the actual value y in Step 1. In particular,
the OLS estimation of the first-level bootstrap counterpart of (6.42) yields
point estimates of coefficients and estimated residuals as the elements of
the vectors β̂

∗
(b) and û∗

(b) = (û∗
1(b)

, û∗
2(b)

, . . . , û∗
n(b)

)′, respectively. Also the
OLS estimation of the first-level bootstrap counterpart of (6.56) yields an
estimate for the coefficient of the test variable, which is denoted by γ̌ ∗

(b)
.

(b) In order to implement the FDB test, the block bootstrap is then
applied to û∗

(b) in the same way that it was applied to û in part (a), but only
once. The sampling and joining together of blocks derived from û∗

(b) gives
a single second-level bootstrap vector u∗∗

1(b)
. The corresponding single

vector of second-level observations on the dependent variable is then

y∗∗
1(b)

= Xβ̂
∗
(b) + u∗∗

1(b)
.

Now the second-level block bootstrap counterpart of the artificial model
(6.56) can be estimated by OLS, with the statistic of interest being
the estimated coefficient of the test variable. This estimate is denoted
by γ̌ ∗∗

1(b)
.

FDB autocorrelation-robust Hausman test: Step 3

After Step 2 has been carried out B times, the estimated p-value of the
actual estimate γ̌ can be calculated using (6.57). In the FDB test, this
quantity, denoted by p̂∗(γ̌ ), is now viewed as the test statistic and, in
order to derive a reference distribution, the second-level results are used
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to estimate p-values for each of the first-level terms γ̌ ∗
(b)

. Thus a collection
of B estimated p-values is calculated according to

p̂∗∗
(b)

(γ̌ ∗
(b)

) = 1
B

[
1(|γ̌ ∗∗

1(1)| ≥ |γ̌ ∗
(b)

|) + 1(|γ̌ ∗∗
1(2)| ≥ |γ̌ ∗

(b)
|) + . . .

+1(|γ̌ ∗∗
1(B)| ≥ |γ̌ ∗

(b)
|)
]

, b = 1, 2, . . . , B,

in which 1(.) is the usual indicator function. The FDB adjusted p-value
is obtained by comparing p̂∗(γ̌ ) with p̂∗∗

(b)
(γ̌ ∗

(b)
), b = 1, 2, . . . , B, and is

defined by

p̂F(γ̌ ) = 1
B

B∑
b=1

1(p̂∗∗
(b)

(γ̌ ∗
(b)

) ≤ p̂∗(γ̌ )).

The null hypothesis is rejected if p̂F(γ̌ ) ≤ αd .
Given that T1 is an asymptotic theory test, with the bootstrap used to

calculate the standard error, not a critical value, it might be anticipated
that its small sample performance would be similar to that of T2, which
combines a statistic that is not asymptotically pivotal with a bootstrap.
It is also to be expected that T3 would outperform T2 as a result of the
use of the FDB. Evidence on the behaviour of these three tests in finite
samples is obtained using the experiments employed in Li (2006). In
these simulation experiments, the null (restricted) model is (6.60) and
artificial alternative (unrestricted) model is

yt = xt1β1 + β2 + x̂t1γ + ut , (6.62)

in which x̂t1 is a typical predicted value from the OLS regression of xt1
on zt = (zt1, 1)′, t = 1, . . . , n. Simulation results for T1, T2 and T3 are
derived using the same experiments as are specified in Li (2006), except
that the number of replications is increased to R = 25,000.

The results from the simulation experiments concerning the finite
sample significance levels of the three block bootstrap-based tests T1,
T2 and T3 are summarized in Table 6.3. These results correspond to those
presented in Table 1 of Li (2006). Consequently the two values used
for the desired significance level in Table 6.3 are given by αd = 5 per
cent, 10 per cent. The contents of Table 6.3 indicate that T1 is, on the
whole, slightly inferior to T2 in terms of the agreement between the esti-
mated and desired significance levels. Both tests reject more frequently
than desired, but the problem is not very serious, with the claim that
the actual significance level is between αd and 1.2αd being consistent
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Table 6.3 Estimated significance levels of bootstrap-based
autocorrelation-robust Hausman tests, using block bootstrap
samples, n = 100 and � = 4

a. MA(2) errors

Parameters T1 test T2 test T3 test

ρxz θ1 (i) (ii) (i) (ii) (i) (ii)

0.1 0.3 5.6 10.9 5.5 10.6 5.2 10.2
0.1 0.7 5.6 11.0 5.5 10.8 5.3 10.3
0.4 0.3 5.5 10.9 5.5 10.6 5.2 10.1
0.4 0.7 5.7 11.0 5.5 10.7 5.3 10.3
0.7 0.3 5.4 10.9 5.3 10.6 5.0 10.1
0.7 0.7 5.5 10.9 5.4 10.7 5.2 10.2

b. AR(1) errors

Parameters T1 test T2 test T3 test

ρxz φ (i) (ii) (i) (ii) (i) (ii)

0.1 0.3 5.5 11.0 5.3 10.5 5.0 10.2
0.1 0.8 5.8 11.1 5.9 11.0 5.6 10.5
0.4 0.3 5.7 11.2 5.5 10.9 5.3 10.5
0.4 0.8 5.8 11.3 5.8 11.2 5.5 10.6
0.7 0.3 5.8 11.2 5.7 10.7 5.5 10.3
0.7 0.8 5.9 11.2 5.9 11.2 5.6 10.6

Notes: Estimates that are given under (i) and (ii) correspond to desired
significance levels of 5 per cent and 10 per cent, respectively. Each esti-
mate is derived from 25,000 replications and bold font denotes that the
estimate is consistent with the claim that the true significance level is
between αd and 1.1αd , αd = 5 per cent, 10 per cent, as indicated by the
test in Godfrey and Orme (2000, p. 75).

with all estimates for T1 and T2, for αd = 5 per cent, 10 per cent. As
expected, the evidence in Table 6.3 indicates that the FDB test T3 out-
performs both T1 and T2. The tests in Godfrey and Orme (2000, p. 75)
yield the outcome that none of the estimates for T3 would lead to rejec-
tion of the claim that the actual significance levels of this test are in
range αd to 1.1αd , αd = 5 per cent, 10 per cent. The FDB test, there-
fore, has well-behaved finite sample significance levels and, in contrast
to the block bootstrap test proposed in Li (2006), does not require the
user to specify a choice for the bandwidth and kernel required to obtain
an autocorrelation-consistent standard error.
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The ability of a test to detect departures from the null hypothesis is,
of course, of considerable importance when such departures imply the
inconsistency of the OLS estimators of the regression model. Given that
the FDB test T3 and Li’s block bootstrap test based upon H1 in (6.52)
both seem to be well-behaved under the null hypothesis, it is reasonable
to compare their rejection frequencies under the alternative hypoth-
esis, that is, with ρxe �= 0. Li denotes his bootstrap version of the
autocorrelation-consistent estimator contrast test by Wb and presents
results on its empirical power; see Li (2006, Table 2). Several of these
results are for situations in which rejection rates are close to the desired
significance level. The comparisons of T3 and Wb given here are for the
more interesting cases with higher estimates. More precisely, cases are
selected so that, with a desired significance level of 10 per cent, rejection
rates are approximately 20 per cent, 30 per cent,…,90 per cent and 100
per cent. The estimates for such cases are contained in Table 6.4. The
differences between estimates are sometimes small, but, when they are
more substantial, it is T3 that outperforms Wb.

It might be thought that, despite the evidence in Tables 6.3 and 6.4, the
FDB Hausman test T3 is unattractive because it has a high computational
cost. However, there are simple devices that remove the need for repeated
use of OLS estimation programs in the three steps for the calculation of
T3 that are given above. The key to savings is that the observations in
x1, X2 and Z1 are fixed over first and second levels of block bootstrap
samples. In order to explain the savings, use is made of the n-dimensional
vector v, which is given by

v = (x′
1PZMPZx1)−1MPZx1,

in which M and PZ are as defined above.
Given the definition of v, it follows that γ̌ = v′y = v′u, when γ = 0 in

(6.56). In Step 2 of the scheme for implementing the FDB test, all boot-
strap data are generated under the null hypothesis, that is, with γ = 0
in (6.56). It is, therefore, only necessary to compute v from actual data
in Step 1 and its value can be stored for use in the B block bootstrap
samples of Step 2 to obtain γ̌ ∗

(b)
and γ̌ ∗∗

1(b)
, b = 1, . . . , B. In part (a) of

Step 2, having obtained the first-level block bootstrap errors u∗
(b)

from

û, the results that û∗
(b) = Mu∗

(b)
and γ̌ ∗

(b)
= v′u∗

(b)
can be used to obtain

the required residuals and point estimate without use of OLS estima-
tion for first-level bootstrap data. In part (b) of Step 2, having derived
the corresponding second-level block bootstrap error vector u∗∗

1(b)
from
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Table 6.4 Estimated power of bootstrap-based
autocorrelation-robust Hausman tests, using block
bootstrap samples, n = 100 and � = 4, with desired
significance levels of 5 per cent and 10 per cent.

a. MA(2) errors

Parameters T3 test Wb test

ρxz ρxe θ1 (i) (ii) (i) (ii)

0.4 0.3 0.5 19.0 28.7 17.6 27.6
0.4 0.5 0.5 49.2 61.7 46.4 60.4
0.7 0.3 0.5 69.9 80.1 59.5 74.6
0.7 0.5 0.5 99.8 99.9 98.6 99.7

b. AR(1) errors

Parameters T3 test Wb test

ρxz ρxe φ (i) (ii) (i) (ii)

0.4 0.3 0.8 13.0 20.8 12.9 21.4
0.4 0.5 0.8 27.8 39.2 26.6 39.4
0.7 0.3 0.8 43.6 56.4 36.1 50.6
0.7 0.5 0.8 89.9 94.7 80.2 92.0

Notes: Estimates that are given under (i) and (ii) correspond
to desired significance levels of 5 per cent and 10 per cent,
respectively. Estimates for T3 are derived from 25,000 repli-
cations. Estimates for Li’s test Wb are taken from Table 2
in Li (2006, p. 80).

û∗
(b), γ̌ ∗∗

1(b)
= v′u∗∗

1(b)
can be used to obtain the required coefficient esti-

mate, rather than direct estimation of the counterpart of (6.56). The only
time that OLS estimation is required is when the actual sample data are
analysed.

6.6. Summary and conclusions

In recent years, there has been increasing emphasis on the need to use
robust methods of inference in regression analysis and to abandon meth-
ods derived under the restrictive assumption of IID errors. The robust
significance tests that are now often recommended for general use are
based upon estimators of the sampling covariances and variances of OLS
coefficient estimators that are consistent when the errors are not IID.
The former set of estimators are the elements of the covariance matrix
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estimator, which can be constructed to be consistent in the presence of
autocorrelation and/or heteroskedasticity of the errors. Important early
examples of such covariance matrix estimators are to found in Newey
and West (1987) and White (1980).

In practical situations, attempts to use robust tests often rely upon
standard first-order asymptotic theory. However, the finite sample distri-
butions of test statistics may be poorly approximated by such asymptot-
ically valid results and the use of appropriate bootstrap methods may be
of value in applied work. Since the bootstrap must mimic the data gener-
ation process assumed to apply to the actual observations, the bootstrap
scheme must reflect the permitted departures from the assumption of
IID errors.

The standard results for asymptotic and bootstrap “robust” tests
require that the OLS estimators of the null model are consistent and
asymptotically Normally distributed. Consequently it is vital that there
are no specification errors that imply the inconsistency of OLS estima-
tors. An essential part of regression analysis allowing for non-IID errors
should, therefore, be the calculation and examination of checks for spec-
ification errors, which, in the terminology of Verbeek, correspond to
“cases where the OLS estimator cannot be saved”; see Verbeek (2004,
section 5.2). The tests for these important specification errors should not
be based upon the assumption of IID errors; arguments about robustness
apply to such checks as well as to other significance tests.

Several examples of robust tests for the causes of OLS inconsistency
have been discussed in this chapter, with both asymptotic and bootstrap
versions being considered. Three of the examples illustrate the applica-
tion of heteroskedasticity-robust tests. These examples are: (i) the RESET
test for incorrect functional form and omitted regressors; (ii) the Breusch-
Godfrey test for autocorrelation in dynamic regression models; and (iii)
testing for a structural break with an unknown breakpoint.

One conclusion that emerges from the discussion of the hetero-
skedasticity-robust tests is that asymptotic critical values do not always
provide satisfactory control of finite sample significance levels. Evidence
of much better and more reliable control is observed for a wild boot-
strap test in which the pick distribution is the Rademacher distribution
discussed in Davidson and Flachaire (2001, 2008). This wild bootstrap
scheme has been found to be useful in several quite different applica-
tions and is recommended for general use. When the regression model
is dynamic, it is additionally recommended that a recursive version of
this wild bootstrap be used, rather than relying upon a “fixed regressor”
wild bootstrap approach.
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It seems likely that heteroskedasticity-robust tests will become very
commonly used and it is hoped that standard estimation programs will
allow the use of the Rademacher-based wild bootstrap. As discussed
above and illustrated by the first three examples, there is now a consid-
erable body of evidence to support the general use of the wild bootstrap
recommended in Davidson and Flachaire (2001, 2008), whether or not
first-order asymptotic theory leads to a standard distribution for criti-
cal values. However, not every popular test in regression analysis can
be made asymptotically valid in the presence of heteroskedasticity of
unknown form. In particular, it is argued in Godfrey (2008) that the
predictive tests discussed in Sections 1.6 and 4.2 cannot be modified
to be heteroskedasticity-robust using, for example, the results in White
(1980).

As might be anticipated from the remarks in Section 5.5, there is less
evidence available for bootstrap tests that allow for autocorrelated errors
than there is for heteroskedasticity-robust bootstrap tests. When station-
ary autocorrelation of unspecified form is permitted, no lagged values
of the dependent variable can be included in the regressor set because
the OLS estimators of regression coefficients are required to be consis-
tent and asymptotically Normally distributed. The relevant literature has
been focussed on the use of the block bootstrap as a tool for approximat-
ing the actual dependence of the errors when the regressors are strictly
exogenous. The block bootstrap can be used to obtain a p-value for a test
statistic computed using a selected combination of bandwidth and ker-
nel to derive an autocorrelation-consistent covariance matrix estimate,
or it can be used to estimate the covariance matrix in order to calculate
a Wald statistic that is then compared with an asymptotic critical value.

The final example in this chapter illustrates the application of such
bootstrap techniques and others to a widely-used test proposed in Haus-
man (1978), which is intended to be powerful against endogeneity and
errors-in-variables. The block bootstrap p-value approach has been found
to outperform the asymptotic critical value version of an autocorrelation-
robust form of Hausman’s test; see Li (2006). A fast double bootstrap
test has been used for the special case of a single suspect regressor
in Section 6.5 above and gives very close agreement with desired sig-
nificance levels. The simulation evidence obtained indicates that this
method works relatively well under null and alternative hypotheses,
does not require the estimation of an autocorrelation-robust standard
deviation and need not have a heavy computational cost.

The sieve bootstrap could be used as an alternative to the block
bootstrap to derive autocorrelation-robust procedures. There are several
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applications of the former method to situations in which nonstation-
ary processes are under consideration; see, for example, Chang (2004),
Chang et al. (2006) and Fuertes (2008). However, the use of sieve boot-
straps with OLS-based tests would, like the block bootstrap, require that
no lagged dependent variables be used as regressors.

It has been stressed above that the selected bootstrap scheme must
match the assumptions made about the errors of the model that has
been proposed as the data generation process. For example, the wild
bootstrap tests described in this chapter involve sampling indepen-
dently distributed artificial errors and so would not be appropriate if
the researcher were to need bootstrap tests that are asymptotically valid
in the presence of both heteroskedasticity and autocorrelation. When all
regressors are strictly exogenous, the moving blocks bootstrap discussed
in Fitzenberger (1998) gives asymptotically valid HAC tests, with blocks
of data on the regressand and regressors, rather than blocks of residuals,
being resampled; see Section 5.4.2 for details of Fitzenberger’s bootstrap
approach. The resampling of blocks of data on regressors implies that
the bootstrap observations in the n × k regressor matrix X∗ are not fixed
over bootstrap samples and so the computational savings outlined in,
for example, Section 6.5, are not available.



7
Simulation-based Tests for
Non-nested Regression Models

7.1. Introduction

It has been argued in previous chapters that the proper use of bootstrap
methods can often produce better control of finite sample significance
levels than can be obtained from asymptotic theory. Moreover, an appro-
priate bootstrap approach can sometimes be used to derive a valid large
sample test when none is available from standard asymptotic theory.
However, all of the previous discussions and recommendations have
been based upon the assumption that the model of the null hypothe-
sis is a special case of the model of the alternative hypothesis; it has,
therefore, been possible to refer to the former as restricted and the latter
as unrestricted.

When the null hypothesis model can be obtained by restricting the
coefficients of the alternative specification against which it is being
tested, the two hypotheses are said to be nested. More precisely, the null
hypothesis model is nested in the alternative model. In very many tests
of nested hypotheses, a set of linear coefficient restrictions is imposed
on the alternative model to obtain the null model. In other applications
of nested hypothesis tests, one or more coefficients of the alternative are
assumed to tend to some limit in order to derive the null specification to
be tested. While it is certainly the case that tests of nested hypotheses are
very common in applied econometrics, there are important situations in
which nesting is not possible, that is, the hypotheses involved in the
test are non-nested. This chapter contains discussions of asymptotic and
simulation-based tests of non-nested hypotheses in regression analysis.
As in the chapters on tests for nested hypotheses, the relevant asymptotic
theory and the available evidence from studies of finite sample properties
will be outlined.

266
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The primary purposes of this chapter are to explain the application
of bootstrap techniques to tests of non-nested models and to summarize
evidence about the usefulness of such techniques. No attempt is made to
give a detailed discussion of the theoretical results for tests of non-nested
models that have been obtained. Readers who are interested in learning
more about the theory that underpins tests of non-nested hypotheses
should consult the very useful surveys that have been published; see, for
example, Gourieroux and Monfort (1994), McAleer and Pesaran (1986),
MacKinnon (1983), Pesaran and Dupleich Ulloa (2008), Pesaran and
Weeks (2001) and Szroeter (1999). An assessment of the impact of the
theoretical literature on the practice of applied workers is provided in
McAleer (1995). Although theoretical results and empirical applications
are available for non-nested hypotheses in a wide variety of situations,
only the case of competing linear regression models is discussed in this
chapter.

It is convenient for the purposes of exposition to restrict attention to
cases that can be discussed in the familiar framework of a linear regression
model with IID errors, which is estimated by OLS. Thus the competing
models are assumed to have the same dependent variable, but to have
different sets of regressors that are not nested. This assumption is made
in standard textbook discussions of non-nested regression models; see,
for example, Greene (2008, section 7.3). Greene gives, as an example of
such a situation, the two competing non-nested models

yt = β1 + β2xt + β3xt−1 + ut0,

and

yt = γ1 + γ2xt + γ3yt−1 + ut1,

in which yt and xt denote the levels of consumption and income in
period t , respectively. Clearly, there is the potential for non-nested mod-
els to occur whenever economists disagree about the choice of regressors.
The case of non-nested regressor sets has received a great deal of atten-
tion, with a number of asymptotic and bootstrap tests being proposed
and examined in the literature.

The asymptotic tests proposed for regression models that have non-
nested regressors are outlined in Section 7.2. As will be seen, several issues
arise. Classical likelihood-based approaches to testing lead to results that
are not like those derived in the context of nested hypotheses. Also, some
researchers have used the statistics proposed for testing model validity
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in the presence of non-nested alternatives as tools for model selection.
Remarks on both types of use are provided in Section 7.2.

Bootstrap versions of tests for non-nested regression models are dis-
cussed in Section 7.3. A review of results from simulation experiments
that provide information about the finite sample properties of asymp-
totic and bootstrap tests is given. These results are relevant to assessing
the usefulness of asymptotic critical values, single bootstraps and fast
double bootstraps in both standard and non-standard situations.

Attention is restricted in Section 7.3 to consideration of bootstrapping
test statistics that, under the null hypothesis, have proper asymptotic
distributions (which may or may not have standard forms). When anal-
ysis moves beyond the simple framework of linear regression models,
the derivation of such statistics is sometimes difficult. In one approach
to overcoming problems of analytical intractability, the bootstrap is sim-
ply applied to an easily computed index of relative fit. The simplicity
of this approach is, at first sight, attractive, but, as explained in Section
7.4, it does not, in general, provide an appropriate comparison basis for
estimating p-values.

Finally, Section 7.5 contains a summary and some concluding remarks.

7.2. Asymptotic tests for models with
non-nested regressors

Many econometricians tackling the problems of testing when regressor
sets are non-nested have used results taken from two influential articles
by Cox in which he proposes that a starting point in a general approach
should be the log-likelihood ratio (LLR) statistic; see Cox (1961, 1962).
(Cox refers to non-nested hypotheses as separate families of hypotheses.)
However, direct application of the ideas put forward by Cox does not
always lead to convenient tests and various alternative approaches have
been proposed.

In this section, important tests based upon different approaches are
outlined. As a starting point for exposition, it is assumed that there are
just two non-nested models to be considered. Regularity conditions and
the problems associated with near-orthogonality of the two non-nested
sets of regressors are discussed. The initial assumption that the validity
of one model is to be tested, given a single non-nested alternative, is
then relaxed and testing in the presence of several non-nested alterna-
tives is discussed. Next, as an alternative to checking the assumption
of validity, the use of tests for model selection is considered. Finally
some evidence about finite sample properties of asymptotic tests for
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non-nested regression models that has been obtained from simulation
experiments is summarized.

7.2.1. Cox-type LLR tests

In order to provide details of the implementation of Cox’s suggestion
in the context of non-nested linear regression models, Pesaran assumes
that there are two competing models, which can be written as:

H0 : y = Xβ + u0, u0 ∼ N(0n, σ2
0 In), (7.1)

and

H1 : y = Zγ + u1, u1 ∼ N(0n, σ2
1 In), (7.2)

in which X and Z are n×k0 and n×k1 matrices of observations on strictly
exogenous regressors for H0 and H1, respectively; see Pesaran (1974). The
two sets of regressors are non-nested; so that not every variable in X is a
linear combination of those in Z and not every variable in Z is a linear
combination of those in X.

In contrast to the classical case of nested hypotheses, H0 and H1 are
not reserved to denote the null and alternative hypotheses, respectively.
Applied workers often wish to test H1 against H0, as well as H0 against H1.
In such situations, there are four possible outcomes: (i) both models can
be rejected; (ii) both models can be accepted; (iii) H0 can be accepted and
H1 can be rejected; and (iv) H0 can be rejected and H1 can be accepted;
see, for example, Pesaran and Dupleich Ulloa (2008, pp. 107–108) for
comments.

The regression models of (7.1) and (7.2) can be written in terms of
conditional distributions as

H0 : y|X, Z ∼ N(Xβ, σ2
0 In),

and

H1 : y|X, Z ∼ N(Zγ , σ2
1 In),

respectively. Note that the same conditioning is used for both specifica-
tions; see Gourieroux and Monfort (1994, p. 2592).

For the purpose of explaining the Cox-type test, suppose that the valid-
ity of H0 is to be tested, using H1 as the alternative. Given the models
(7.1) and (7.2), maximum likelihood estimates, and hence the likelihood
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ratio statistic recommended by Cox, can be obtained by Ordinary Least
Squares (OLS) estimation. In order to provide details of the test, it is
useful to introduce some additional notation. Let OLS regression coeffi-
cient estimates, predicted values and residuals for the two models be the
elements of the vectors

β̂ = (X′X)−1X′y,

γ̂ = (Z′Z)−1Z′y,

ŷ0 = Xβ̂ = X(X′X)−1X′y,

ŷ1 = Zγ̂ = Z(Z′Z)−1Z′y,

û0 = (û10, . . . , ûn0)′ = MXy,

and

û1 = (û11, . . . , ûn1)′ = MZy,

where, in the definitions of residual vectors,

MX = In − X(X′X)−1X′,

and

MZ = In − Z(Z′Z)−1Z′.

The maximum likelihood estimates of the error variances for (7.1) and
(7.2) are denoted by σ̂2

0 = n−1y′MXy and σ̂2
1 = n−1y′MZy, respectively.

The LLR statistic is L̂01 = L̂0 − L̂1, in which L̂0 is the maximized log-
likelihood for (7.1) and L̂1 is the maximized log-likelihood for (7.2). The
two maximized log-likelihood functions are given by

L̂i =
n∑

t=1

l̂ti, (7.3)

and

l̂ti = −1
2

ln(2π) − 1
2

ln(σ̂2
i ) − û2

ti

2σ̂2
i

, (7.4)
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that is, l̂ti is the contribution to L̂i, i = 0, 1, that is associated with
observation t , t = 1, . . . , n. It follows that

L̂01 = L̂0 − L̂1 = n
2

ln

(
σ̂2

1

σ̂2
0

)
; (7.5)

see, for example, Pesaran (1974, pp. 156–157) for the derivation of L̂01
and other details.

If the models were nested, with MZX being an n × k0 matrix with
every element equal to zero, −2L̂01 would be asymptotically distributed
as χ2(k1 −k0), under regularity conditions, when (7.1) is valid. However,
this result no longer applies when (7.1) and (7.2) are non-nested and
a different asymptotic theory is required to determine an appropriate
basis for making inferences. In his pioneering articles, Cox concentrates
on the general ideas of his approach to testing non-nested hypotheses,
rather than on details of regularity conditions. General regularity con-
ditions for Cox’s test of non-nested hypotheses are considered in White
(1982b). The details of technical assumptions that imply the asymptotic
validity of the Cox-type approach in the context of linear regression
models are given in White (1982b, section 3). It is important to note
that one of these assumptions is that the regressors of the two models
are not asymptotically orthogonal, that is, plim n−1X′Z must not have
every element equal to zero.

Now, under the regularity conditions for non-nested regression mod-
els, L̂01 is Op(n) when (7.1) is the true model, not Op(1) as it would be if
(7.1) were nested in (7.2). The scaled LLR statistic n−1L̂01 has probability
limit given by

µ01 = plim0 n−1L̂01 = 1
2

ln

(
σ2

0 + β ′�β

σ2
0

)
, (7.6)

in which plim0 denotes that the probability limit is taken assuming that
(7.1) is the true data generation process (DGP) and

� = plim n−1X′MZX.

Under the null hypothesis model (7.1), the term µ01 defined in (7.6) can
be estimated consistently by

µ̂01 = 1
2

ln

 σ̂2
0 + β̂

′
�̂β̂

σ̂2
0

 , (7.7)
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in which

�̂ = n−1X′MZX. (7.8)

Consequently, the centred LLR statistic

T01 = n−1L̂01 − µ̂01, (7.9)

converges in probability to zero when (7.1) is true.
As discussed in Cox (1961, 1962), provided regularity conditions

are satisfied,
√

nT01 is asymptotically distributed as a Normal variable
with zero mean and finite variance V01, under the null hypothesis H0.
Moreover, as shown in Pesaran (1974, p. 158), the estimator

V̂01 =
σ̂2

0

(
β̂

′ [
n−1X′MZMXMZX

]
β̂
)

(σ̂2
0 + β̂

′
�̂β̂)2

, (7.10)

is consistent for V01 when (7.1) is true. Hence the standardized criterion

N01 = T01√
V̂01

, (7.11)

is asymptotically distributed as N(0, 1) under the null hypothesis that
(7.1) is valid.

The statistic N01 in (7.11) can be compared with critical values from
the N(0, 1) distribution to obtain a valid asymptotic test. The literature
includes discussions of both one-sided and two-sided tests. If the model
of (7.2) is the only alternative to which consideration is to be given,
then a one-sided test can be used since the probability limit of N01 is
negative under H1. (Note that, when a one-sided test is employed, a
statistically significant negative value of N01 does not imply that H1 is
correct; see MacKinnon (1983, pp. 91–92).) On the other hand, if the
applied worker wishes to allow for the possibility of some third unspec-
ified model being correct, a two-sided test of the significance of N01 is
appropriate. In the latter case, the Cox-type test can be regarded as a
check for general misspecification in (7.1), rather than a specific test
against (7.2).

The basic form of the Cox statistic N01 is adjusted in Godfrey and
Pesaran (1983) in attempts to obtain procedures with better finite sam-
ple properties; the simulation evidence on small sample behaviour is
discussed at the end of this section. Godfrey and Pesaran make use of
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the assumptions of exogenous regressors and NID errors to derive mean
and variance adjustments. Their adjusted test statistic is denoted by Ñ01;
see Godfrey and Pesaran (1983, section 2). Godfrey and Pesaran also use
an asymptotically valid linearization to obtain a second adjusted statis-
tic, which can be denoted by W01. The adjustments used by Godfrey
and Pesaran are asymptotically negligible, under weak conditions, and
their asymptotic tests Ñ and W would be valid if the errors were sim-
ply assumed to be IID. However, their variance adjustments rely upon
Normality for their justification.

The centred LLR test of Cox (1961, 1962) and the adjusted variants
proposed in Godfrey and Pesaran (1983) have not been widely used; see
McAleer (1995, Table 4). This lack of popularity may reflect the absence
of a clear motivation for considering the LLR statistic when the models
are non-nested. Alternatively it may be that the variance estimates, for
example, as given in (7.10) for N01, do not suggest intuitively appealing
test statistics.

7.2.2. Artificial regression tests

Davidson and MacKinnon provide an alternative to the Cox-type test
that is simpler to implement and much easier to motivate; see Davidson
and MacKinnon (1981). The procedure described by Davidson and MacK-
innon, which is called the J test, is probably the most widely-used method
for testing model specification in the presence of nonnested alternative
models. In the context of (7.1) and (7.2), Davidson and MacKinnon
propose that the former is tested using information about the latter
by carrying out an asymptotically valid t-test of δ = 0 in the artificial
regression model

y = δŷ1 + Xβ + u0, u0 ∼ N(0n, σ2
0 In). (7.12)

If the relevant t-ratio is denoted by J01, Davidson and MacKinnon show
that, as n → ∞, J01 tends to −N01, when H0 is true; see Davidson and
MacKinnon (1981, pp. 789–790). However, the J test method has the
advantages of being simpler to implement than the Cox-type procedure
and has a clearer motivation in terms of assessing the relevance of the
predicted value from the competing specification.

The artificial regression (7.12) is not the only way in which the null
model (7.1) can be nested in an equation for the purposes of deriving a
test statistic. An adjusted J-statistic, denoted by JA, is proposed in Fisher
and McAleer (1981). The JA-type method for checking the validity of (7.1)
uses, as its test variable, the predicted value from the OLS regression of
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ŷ0 on Z. Thus the statistic JA01 is the t-ratio for testing δ = 0 in the
artificial regression

y = δ
[
PZ ŷ0

] + Xβ + u0, u0 ∼ N(0n, σ2
0 In), (7.13)

in which PZ = Z(Z′Z)−1Z′. The J test and JA test are asymptotically
equivalent under the null hypothesis. However, in contrast to the J test,
which is only asymptotically valid, the JA test is exactly valid when (7.1)
is true.

7.2.3. Comprehensive model F-test

As an alternative to the one-degree-of-freedom J and JA tests, it is possible
to form a nesting model by adding the regressors specific to (7.2) to the
regressors of (7.1). This nesting, or comprehensive, model can be written as

y = Xβ + Z1γ1 + u0, u0 ∼ N(0n, σ2
0 In), (7.14)

in which: Z = (Z0, Z1); Z′
0MXZ0 is a matrix with every element equal

to zero; and Z′
1MXZ1 is positive definite. If Z1 is n × k11, the F-statistic

for testing (7.1) against (7.14), which is denoted by F01, is distributed as
F(k11, n−k0 −k11) when the former is valid. If there is only one regressor
which is specific to (7.2), that is, k11 = 1, this F-statistic is the square of
the value of both the J01 and JA01 statistics. Hence the J test is exactly
valid in the special case with k11 = 1; see Godfrey (1984, p. 75).

7.2.4. Regularity conditions and orthogonal regressors

It is possible to motivate tests of (7.1) against the artificial regression mod-
els (7.12), (7.13) and (7.14) without explicit reference to the centred LLR
statistic which is the focus of Cox’s analysis. Consequently there is no
compelling reason to derive such tests under the restrictive assumption of
Normality, which is used in Pesaran (1974) to derive the log-likelihood
functions. Asymptotic validity under weaker assumptions that permit
the inclusion of lagged dependent variables in the regressor set and non-
Normality of the errors is established in MacKinnon et al. (1983). From
now on, it is simply assumed that the errors of the true model are IID and
that regularity conditions corresponding to those given in MacKinnon
et al. (1983) are satisfied.

It has been emphasized in the literature that the conditions for the
asymptotic validity of procedures such as the Cox-type and J tests require
that the regressors of the competing models are not orthogonal; see, for
example, MacKinnon (1983, p. 96). This condition is appropriate when
the models have no regressors in common. However, in most cases, the
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models have one or more regressors in common, for example, there will
usually be an intercept term in both models. As indicated in Michelis
(1999, p. 371), the required absence-of-orthogonality condition is a little
more complicated when some regressors are in both models, or more gen-
erally when some (but not all) regressors of one are linear combinations
of the regressors of the other.

The absence-of-orthogonality condition used in Godfrey and Pesaran
(1983), which covers the case of non-nested models with regressors in
common, is that

φ∗ = plim0 n−1β ′X′PZMXPZXβ, (7.15)

should exist and be a finite positive quantity. This condition implies that
the test variables in (7.12) and (7.13) are asymptotically cooperative; see
Schmidt (1976, section 2.7) for discussion of asymptotically uncoopera-
tive regressors. The simpler condition that n−1X′Z should not tend to a
null matrix is, however, not sufficient to ensure that φ∗ > 0; see Godfrey
and Pesaran (1983, appendix A).

Michelis provides an asymptotic analysis that throws light on the
consequences of weakly correlated regressors in nonnested models; see
Michelis (1999). Michelis allows for a local form of orthogonality, which
he terms near population orthogonality (NPO). In the NPO framework,
β ′X′PZMXPZXβ in (7.15) is Op(1), not Op(n), and so φ∗ = 0, implying
that the condition given in Godfrey and Pesaran (1983) is not satisfied.

Michelis proves that, under the NPO assumption, the J-statistic does
not tend to a N(0, 1) variable when the null hypothesis is true, but instead
tends to a random function that depends upon a nuisance parameter, a
N(0, 1) variable and a χ2 variable. Consequently, when the NPO assump-
tion provides a good approximation to the behaviour of a J-statistic,
the use of critical values from the conventional N(0, 1) distribution will
not give the desired significance level in large samples. Michelis carries
out simulation experiments to assess the impact of weak correlations
between the non-nested regressors and finds evidence that actual rejec-
tion probabilities can be much greater than the desired level when the
assumed asymptotic reference distribution for the J-statistic is N(0, 1);
see Michelis (1999, section 5).

7.2.5. Testing with multiple alternatives

It is not only the failure of the absence-of-orthogonality assumption that
can lead to the standard asymptotic results being an inadequate basis for
inference when testing models with non-nested regressors. In particular,
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problems can arise when the null model is to be tested in the presence of
several non-nested alternative models. Suppose that, as before, the model
to be tested is (7.1), except that the errors are assumed to be IID, rather
than NID. However, it is now assumed that, rather than just having
one non-nested alternative, the researcher has m, m > 1, non-nested
regression models that can be used as a source of evidence against the
null model.

The vectors of OLS predicted values from these alternatives are denoted
by ŷj, j = 1, . . . , m. The corresponding m binary J tests, in each of which
(7.1) is tested against just one of the alternatives, are the tests of δj = 0 in

y = δjŷj + Xβ + u0, u0 ∼ IID(0n, σ2
0 In), j = 1, . . . , m, (7.16)

where the IID errors have an unspecified CDF, denoted by F0. The t-
statistics for testing δj = 0 in models like (7.16) are denoted by J0j, j =
1, . . . , m.

A joint test could be implemented by using an asymptotically valid
F-test of the m restrictions of δ1 = δ2 = · · · = δm = 0 in the artificial
model

y =
m∑

j=1

δjŷj + Xβ + u0, u0 ∼ IID(0n, σ2
0 In), (7.17)

provided n > k0 + m. If the sample size were sufficiently large, it would
also be possible to carry out an asymptotic F-test of the validity of (7.1)
against a comprehensive model that includes the null model and all m
alternative models as special cases. The comprehensive model for this
F-test can be written as

y = Xβ + Z†γ † + u0, u0 ∼ IID(0n, σ2
0 In), (7.18)

in which Z† is obtained from (Z1, . . . , Zm) by first removing any variable
that is a linear combination of the regressors in (7.1) and then delet-
ing any redundant variables; so that (X, Z†) has full column rank for
sufficiently large n.

McAleer draws attention to the fact that, when faced by multiple
non-nested alternatives, applied workers have used collections of sep-
arate binary tests more frequently than they employed a joint test; see
McAleer (1995, p. 162, Table 6). This practice leads to a non-standard
overall asymptotic test. Suppose that two-sided binary J tests are being
used; so that the squared t-ratio can serve as the test statistic for each
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of the m binary checks. Each of these squared t-ratios J2
0j, j = 1, . . . , m,

is asymptotically distributed as χ2(1) when the null model is valid and
regularity conditions are satisfied. If all m binary statistics are insignif-
icant at an individual desired significance level of αd , then J2

0j < c, for

j = 1, . . . , m, where Prob(χ2(1) ≥ c) = αd . It follows that, in such a situa-
tion, SupJ2

0 = max(J2
01, . . . , J2

0m) is less than c. The limit null distribution

of SupJ2
0 is, however, not χ2(1) and the Bonferroni inequality simply

implies that the asymptotic significance level associated with the rule
“Reject H0 if SupJ2

0 ≥ c” is between αd and mαd . Consequently, if (7.1) is
only accepted when all of the m separate binary J tests yield insignificant
outcomes, the overall significance level is unknown, even asymptoti-
cally. The use of the bootstrap in this non-standard case is discussed in
the next section.

In all that has been covered so far, the purpose of testing has been to
check the validity of one model in the light of evidence that is provided
by one or more other non-nested models. In particular, following Cox
(1961, 1962), the LLR statistic L̂01 in (7.5) has been used to obtain a test of
the validity of (7.1) with (7.2) being the non-nested alternative; the roles
of the models can, of course, be reversed if the validity of each in turn
is to be tested. However, there is another way in which the LLR statistic
can be used in a test. As explained by Lien and Vuong, L̂01 in (7.5) can be
employed when the researcher is interested “in discriminating between
the competing models by testing the hypothesis that the models are
‘equivalent’ under some appropriate definition”; see Lien and Vuong
(1987).

7.2.6. Tests for model selection

A general discussion of testing for the purpose of model selection, as
opposed to model validation, is provided in Vuong (1989). The null
hypothesis and regularity conditions used in Vuong imply that, when
the claim that the non-nested models are equivalent is true, plimT
n−1L̂01 = 0, where plimT denotes a probability limit taken under the
unknown true DGP. Vuong shows that, in general, when the models are
equivalent according to his definition,

n−1/2L̂01 ∼a N(0, ω2);

see Vuong (1989, sections 5 and 6). Given a consistent estimator of ω2,
denoted by ω̂2, a test procedure using critical values from the N(0, 1)

distribution is straightforward to apply. Suppose that the asymptotic
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significance level for the model selection test is 5 per cent. There are

three possible outcomes. First, if the sample value of n−1/2L̂01/
√

ω̂2 is
smaller than −1.96, the data are interpreted as suggesting that (7.2) is

better than (7.1). Second, if the sample value of n−1/2L̂01/
√

ω̂2 is between
−1.96 and 1.96, the data are judged to be consistent with the claim that

the models fit equally well. Third, if the sample value of n−1/2L̂01/
√

ω̂2

is greater than 1.96, the data are taken to indicate that (7.1) is better than
(7.2). Further discussion of the implementation of Vuong’s test and an
example of its application are provided in Greene (2008, pp. 140–142).

As has been noted in the literature, the statistic used in Vuong’s test
can be adjusted so that it uses well-known model selection criteria. More
precisely,

n−1/2L̂01 = n−1/2
(
L̂0 − L̂1

)
= n−1/2

[(
L̂0 − s(n, k0)

)
−

(
L̂1 − s(n, k1)

)]
+ op(1),

= n−1/2 [IC0 − IC1] + op(1),

in which IC0 and IC1 are information criteria derived by applying penalty
functions s(n, k0) and s(n, k1) that adjust for the dimension of the model
and are o(n1/2). Many computer programs calculate, as part of the results
for OLS estimation, the values of the Akaike Information Criterion (AIC)
and Schwarz Bayesian Information Criterion (BIC). These criteria are defined
using penalty functions of the type s(., .), with s(n, ki) = ki for AIC and
s(n, ki) = ki ln(n)/2 for BIC, i = 0, 1. Since ln(n) > 2 for sample sizes of
relevance to applied work, the BIC measure clearly gives a greater penalty
per regressor than AIC and is recommended in Hansen (1999) for model
selection.

Clarke, like Vuong, has examined the problem of testing for model
selection, rather than for model validity; see Clarke (2003, 2007). He
refers to the former approach as leading to tests of relative discrimina-
tion and to the latter approach as yielding tests of absolute discrimination.
Clarke provides a simple alternative to Vuong’s procedure. The maxi-
mized log-likelihoods for the models (7.1) and (7.2) are both regarded as
the sum of the n per observation contributions; so that

L̂01 =
(
L̂0 − L̂1

)
=

n∑
t=1

l̂t0 −
n∑

t=1

l̂t1 =
n∑

t=1

(
l̂t0 − l̂t1

)
,
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using the notation in (7.3) and (7.4). Clarke considers the sequence of
differences l̂t0 − l̂t1, t = 1, . . . , n, and computes

p̂C = n−1
n∑

t=1

1
(
l̂t0 − l̂t1 > 0

)
,

that is, the proportion of times in which a positive value of l̂t0 − l̂t1
is observed. He argues that, if the models are equivalent, then, for large
samples, p̂C should be close to 0.5. A standard test for a binomial propor-
tion, with hypothesized value equal to 0.5, is used to assess the evidence
provided by the sample value of p̂C. As with the test in Vuong (1989),
the procedure given in Clarke (2003, 2007) can be modified to be based
upon model selection criteria like AIC and BIC, in place of the unadjusted
maximized log-likelihood functions.

Evidence from simulation experiments is used by Clarke to argue that
the simple test based upon the signs of the terms l̂t0 − l̂t1, t = 1, . . . , n, is
superior to the Vuong test; see Clarke (2007). However, neither Clarke’s
test nor Vuong’s test is designed to detect misspecification of a model.
The purpose of model selection tests is to test the hypothesis that two
models are equally good (or equally bad) according to a specified crite-
rion, not to throw light on whether either of them is consistent with the
sample data. In the rest of this chapter, discussion will be restricted to
tests for model validity.

7.2.7. Evidence from simulation experiments

The finite sample properties of asymptotic tests for model validity, when
regressor sets are non-nested, are investigated in a number of studies
that use simulation experiments for the estimation of rejection proba-
bilities. The evidence from these experiments is summarized in surveys,
for example, McAleer and Pesaran (1986, section 5), Pesaran and Weeks
(2001, section 5.5) and Szroeter (1999, section 3.1.2). More detailed
discussions of the results are provided in Davidson and MacKinnon
(1982, 2002b), Ericsson (1986), Godfrey and Pesaran (1983) and Michelis
(1999). The various researchers have found very similar general features
in their results.

First, the use of asymptotic critical values with unadjusted Cox-type
statistics, such as N01 in (7.11), leads to excessively high estimates of
significance levels; an attempt to explain the observed discrepancies is
given in Ericsson (1986). Second, the comparison of J-statistics like J01
with critical values from the asymptotically valid N(0, 1) distribution
also produces rejection rates that are too high relative to the desired
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significance level αd . For example, with αd = 5 per cent, estimated sig-
nificance levels for the J test in the range 15 per cent to 25 per cent
are obtained in the experiments in Godfrey and Pesaran (1983). The
results given in Michelis (1999) are consistent with those in Godfrey and
Pesaran (1983) and indicate that the unadjusted Cox-type test is even
more badly behaved than the J test when judged by finite sample rejec-
tion frequencies of true models. Third, the asymptotic tests based the
JA-statistic proposed in Fisher and McAleer (1981) and the F-test derived
from a comprehensive model like (7.14) have finite sample significance
levels that seem to be reasonably close to desired values, even in the pres-
ence of lagged dependent variables in the regressor sets and non-Normal
error distributions; see, for example, Godfrey and Pesaran (1983).

However, as argued in MacKinnon (1983), the relatively favourable
findings about the behaviour of the JA test and comprehensive model
F test, under the null hypothesis, are not sufficient to imply that these
procedures can be recommended for routine use in applied economet-
rics because the ability of tests to detect false models is also important.
Unfortunately, there is evidence that the JA test and F test can both lack
power in situations of practical relevance; see Godfrey and Pesaran (1983,
section 4), McAleer and Pesaran (1986, section 5) and MacKinnon (1983,
section 3).

The adjusted Cox-type tests based upon the Ñ01 and W01 statistics pro-
posed in Godfrey and Pesaran (1983) have been found to have estimates
of finite sample significance levels that are quite close to the desired
values, even when the errors do not have a Normal distribution and
the regressors include the lagged value of the dependent variable; see
Godfrey and Pesaran (1983, section 4). Moreover, in power compar-
isons, Godfrey and Pesaran observe that the Ñ and W tests are superior
to both the JA test and the F test. Unfortunately, while applied workers
can compute tests based upon artificial regressions like (7.12), (7.13) and
(7.14) quite easily, the implementation of the Ñ and W tests is much
less convenient unless special routines are included in the estimation
program.

It seems likely that the pattern of usage reflected by Table 4 in McAleer
(1995) will continue in the future with the J test being the most popular
tool for testing regression models with non-nested regressors. How-
ever, the asymptotic theory does not appear to provide an adequate
foundation for empirical analysis using this test (or some of the other
procedures). It is, therefore, not surprising that econometricians have
turned from the standard asymptotic theory for tests of non-nested
regression models and looked to bootstrap techniques in an attempt
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to derive procedures that have acceptable properties whether the null
model is true or false.

7.3. Bootstrapping tests for models with
non-nested regressors

There are several simulation studies in which results are reported for
bootstrap tests of a null model against a single non-nested alternative
model. These results are summarized in Section 7.3.1 and indicate that
bootstrapping gives better control of finite sample significance levels
than asymptotic theory. Serious problems of size distortion that are
observed when asymptotic critical values are employed are solved effec-
tively, in general, by the application of a simple bootstrap method.
However, this is not the only advantage of the bootstrap. As explained
in Section 7.2.5, it is not uncommon for applied workers to be faced
by several non-nested alternatives. When the individual tests of the
null against each of the non-nested alternatives are used in a battery
of checks, asymptotic theory fails to provide a standard reference distri-
bution for the induced overall test; see Darroch and Silvey (1963). The
bootstrap, however, delivers an easily implemented and asymptotically
valid procedure. Evidence relevant to situations in which there are mul-
tiple alternatives is discussed in Section 7.3.2. Many of the results are
taken from Godfrey (1998).

7.3.1. One non-nested alternative regression model:
significance levels

Results that illustrate the potential inadequacy of asymptotic critical val-
ues and the usefulness of bootstrap tests, with a single alternative, are
provided by simulation experiments reported in Fan and Li (1995). In
these experiments, Fan and Li use, as the null model,

HFL
0 : yt = xt1β1 + xt2β2 + β3 + ut0, t = 1, . . . , n,

and their alternative model has the form

HFL
1 : yt = zt1γ1 + zt2γ2 + γ3 + ut1, t = 1, . . . , n,

so that, in the notation of the previous section, k0 = k1 = 3.
The data for simulation experiments are generated using a DGP of a

type that has often been used in the literature; see, for example, Delgado
and Stengos (1994), Godfrey (1998), Godfrey and Pesaran (1983) and
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Pesaran (1982). As a special case of this DGP, Fan and Li specify the
following: β1 = β2 = β3 = 1;xt1

xt2
ut0

 ∼ NID


0

0
0

 ,

1 0 0
0 1 0
0 0 5


 , t = 1, . . . , n,

which implies an asymptotic R2 index equal to 2/7; and n = 25. The
non-nested regressors in Fan and Li (1995) are obtained using

zti = λxti + wti, i = 1, 2,

in which the terms wti are NID(0, 1) and λ is selected to control the
population correlation coefficient between xti and zti. More precisely,
if this population correlation is denoted by ρ, then λ = ρ/

√
(1 − ρ2). Fan

and Li use ρ = 0.1 and ρ = 0.7, with the former intended to capture
near-orthogonality of the type discussed in Michelis (1999).

Fan and Li examine the application of the J test. (They also consider the
JA test, but this procedure is exactly valid when the reference distribution
is t(25 − 3 − 1), given that the DGP in Fan and Li (1995) has exogenous
regressors and NID errors.) The J test is applied as a one-sided test, with
large positive values indicating strong evidence against the null model.
The asymptotic critical values are taken from the N(0, 1) distribution,
as suggested in Davidson and MacKinnon (1981). (Critical values are
sometimes taken from the t(n − k0 − 1) distribution, but there is no
formal result to justify this practice, in general.)

The implementation of the bootstrap version of the J test of (7.1)
against (7.2), as described in Fan and Li (1995), consists of the following
steps.

Fan and Li (1995): Step 1

Use the original data S = (y, X, Z) to compute the OLS estimates of
the two non-nested models and to calculate the value of the J-statistic
for testing (7.1) against (7.2). The predicted values and residuals from
the OLS estimation of (7.1) are denoted by ŷt0 and ût0, t = 1, . . . , n,
respectively. The sample value of the J-statistic is denoted by J01.

Steps 2 to 4 involve the generation and analysis of bootstrap samples;
this set of steps is repeated B times.

Fan and Li (1995): Step 2

Draw a sequence of bootstrap errors u∗
t0, t = 1, . . . , n, by random sam-

pling, with replacement, from the EDF of the recentred OLS residuals,
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that is, from

F̂FL
0 : Pr

u∗
0 = ût0 − 1

n

n∑
s=1

ûs0

 = 1
n

, t = 1, . . . , n. (7.19)

Fan and Li (1995): Step 3

Use the bootstrap errors from Step 2 with the OLS predicted values for
the null model obtained in Step 1 to derive the bootstrap sample data,
with typical observation given by

y∗
t = ŷt0 + u∗

t0.

Let y∗ = (y∗
1, . . . , y∗

n)′.

Fan and Li (1995): Step 4

Apply the OLS procedures used on the actual data S = (y, X, Z) in Step
1 to the bootstrap data S∗ = (y∗, X, Z). Let the bootstrap counterpart of
the actual test statistic J01 be denoted by J∗01.

Fan and Li (1995): Step 5

After repeating Steps 2–4 B times, Fan and Li use a one-sided bootstrap
version of the J test, with the p-value of J01 from Step 1 being estimated as

p̂FL
J = #(J∗01 ≥ J01)

B
. (7.20)

The null model is rejected if p̂FL
J ≤ αd , where αd is the desired significance

level.
The finite sample significance levels associated with asymptotic and

bootstrap variants of the J test are estimated by Fan and Li, with the
former using critical values from the N(0, 1) distribution and the latter
being based upon B = 1,000 bootstrap samples. Estimates that corre-
spond to desired levels of αd = 1 per cent, 5 per cent and 10 per cent
are calculated using R = 1,000 replications. With R = 1,000 replications,
the standard error measures

√
αd(100 − αd)/R are approximately equal to

0.31 per cent, 0.67 per cent and 0.95 per cent for αd = 1 per cent, 5 per
cent and 10 per cent, respectively. The results from Fan and Li (1995) are
given in Table 7.1.
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Table 7.1 Estimated significance levels for asymptotic and boot-
strap versions of J test for n = 25; see Tables 1 and 2 in Fan and Li
(1995, pp. 110–111)

Asymptotic version Bootstrap version

αd ρ = 0.1 ρ = 0.7 ρ = 0.1 ρ = 0.7

1 per cent 11.7 5.4 1.5 1.2
5 per cent 29.3 14.8 5.9 5.3
10 per cent 44.2 22.8 10.9 10.7

Notes: Each estimate is derived from 1,000 replications and 1,000 bootstrap
samples are used to carry out the bootstrap versions of J.

The estimates in Table 7.1 indicate that the asymptotic critical values
from the standard Normal distribution provide very poor control of the
finite sample significance levels, especially when the non-nested regres-
sors are nearly orthogonal. In contrast, the bootstrap J test performs
much better, with quite close agreement with desired values, even when
the regressors are only weakly correlated.

The results for bootstrapped J tests that come from the simulation
experiments in Fan and Li (1995) are encouraging, but their generality is
especially open to question. The errors are always assumed to be NID(0, 5)

and, in terms of the numbers of regressors in the competing models,
k0 = k1 = 3 in all experiments. It is argued in Godfrey and Pesaran (1983,
p. 144) that it is useful to examine sensitivity to non-Normality and that
the finite sample significance levels of the asymptotic J test may devi-
ate from desired values when one or more of the following features are
present: (i) a poor fit of the true model (so that variations of the error vari-
ance in the model design are of interest); (ii) weak correlations between
the regressors of the non-nested models; and (iii) the false alternative
model has more regressors than does the true null model, that is, k0 < k1.
Consequently, additional evidence is required before a strong case can be
made for bootstrapping the J test (and other procedures) for assessing the
validity of regression equations when their regressors are non-nested. The
findings from a larger set of experiments are reported in Godfrey (1998).

When estimating significance levels, Godfrey uses the following
regression equations as null and alternative models, respectively:

HG
0 : yt =

k0∑
i=1

xtiβi + ut0, ut0 IID(0, σ2
0 ), (7.21)
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and

HG
1 : yt =

k1∑
i=1

ztiγi + ut1, ut1 IID(0, σ2
1 ), (7.22)

for t = 1, . . . , n. As in Fan and Li (1995), the regressors xti of (7.21) are
N(0, 1) variables that are independent over both t and i. The regressors
zti for (7.22) are generated using

zti = λxti + wti, i = 1, 2, . . . , min(k0, k1), (7.23)

and, if k0 < k1,

zti = wti, i = k0 + 1, k0 + 2, . . . , k1, (7.24)

with the terms wti being N(0, 1) variables that are independent over
both t and i. Following the conventional approach to designing experi-
ments, λ is selected in order to obtain a required value of the population
correlation coefficient between xti and zti, which is denoted by ρ.

The regression coefficients in (7.21) are all set equal to unity, so βi =
1, i = 1, . . . , k0. The errors of (7.21) are IID(0, σ2

0 ), being derived by taking
appropriate linear transformations of drawings from one of the following
distributions: Normal; LogNormal; and χ2(2). The value of σ2

0 is set

to control the population R2-statistic, denoted by R2
0, by means of the

relationship

σ2
0 = k0(1 − R2

0)/R2
0.

The desired significance level is 5 per cent and finite sample values are
estimated using experiments with values of design parameters taken from

n = 40, 60,

ρ = 0.3, 0.6, 0.9,

R2
0 = 0.3, 0.6, 0.9,

(k0, k1) = (2, 2), (2, 4), (4, 2), (4, 4).

The tests of (7.21) that Godfrey considers are: the F-test against the arti-
ficial comprehensive model that corresponds to (7.14); the unadjusted
Cox test N; the J test; the JA test; and the adjusted Cox-type proce-
dures Ñ and W ; see Godfrey and Pesaran (1983) and Godfrey (1998)
for details. The first of these tests, denoted by F01, is a standard test
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of joint significance of a subset of regressors, with critical values taken
from the right-hand tail of the relevant F(k1, n − k0 − k1) distribution.
As the tests of the validity of models like (7.21) cannot usually be based
upon the assumption that (7.22) is the only possible alternative model,
the remaining five tests are all implemented as two-sided procedures, but
with some variation in the choice of reference distribution for the critical
values. These critical values come from the t(n − k0 − 1) distribution for
the procedures that use an artificial regression, viz. J and JA. The adjusted
and unadjusted Cox-type tests (N, Ñ and W) use the N(0, 1) distribution.
Estimates of the finite sample significance levels associated with asymp-
totically valid critical values are derived using R = 10,000 replications.

Table 7.2 contains results obtained in the experiments in Godfrey
(1998). These results indicate that the F01 and JA01 tests, both of which
are calculated using an artificial model that nests (7.21), are well-behaved
in all cases; these tests are, of course, exactly valid under Normal errors.
However, the J01 test, which also comes from an artificial nesting model,
does not have rejection frequencies that are close to the desired level of
5 per cent, with some estimates being between two and three times the
desired value. The failings of the asymptotic distribution to serve as a

Table 7.2 Estimated significance levels using asymptotic critical values for cases
with (7.21) as the null model, (7.22) as the alternative model, R2

0 = 0.6, ρ = 0.3
and n = 40

Design parameters Test

(k0, k1) Error dbn. F01 J01 JA01 W01 Ñ01 N01

(2, 2) Normal 5.3 7.0 5.2 4.6 5.2 12.7
(2, 2) LogNormal 5.2 6.8 5.3 4.7 5.4 11.8
(2, 2) χ2(2) 4.7 6.2 5.0 4.4 4.9 11.5

(2, 4) Normal 5.3 15.1 5.0 4.5 5.1 17.4
(2, 4) LogNormal 5.2 13.4 5.1 4.2 4.8 16.0
(2, 4) χ2(2) 4.8 14.2 5.0 4.1 4.9 17.1

(4, 2) Normal 5.6 7.7 5.1 4.2 4.8 14.5
(4, 2) LogNormal 5.2 7.3 5.0 4.4 4.9 13.8
(4, 2) χ2(2) 5.2 7.3 5.1 4.3 4.8 14.3

(4, 4) Normal 5.2 13.4 5.0 3.7 4.5 16.4
(4, 4) LogNormal 5.2 12.5 5.2 3.8 4.6 15.1
(4, 4) χ2(2) 5.3 13.7 5.2 4.2 4.8 16.7

Notes: Estimates are based upon 10,000 replications and are rounded to one decimal place.
The desired significance level is 5 per cent in all cases. Source: Godfrey (1998, p. 67, Table 2).
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useful approximation to the finite sample distribution of the J test is a
serious problem, given the widespread use of this test.

The unadjusted Cox-statistic N01 is even more badly behaved in terms
of the too frequent rejection of the true null model. In contrast, the
adjusted variants W01 and Ñ01 do not suffer from over-rejection and,
if anything, the former test is a little under-sized. Although the W01
and Ñ01 tests are quite well behaved for all distributions used in the
experiments, their theoretical justification rests upon an assumption of
Normality.

The estimated significance levels obtained in Fan and Li (1995) and in
Godfrey (1998) show that asymptotic theory does not provide a generally
reliable basis for inference when either the unadjusted Cox-type N-test or
the more popular J test is used to test models with non-nested regressors.
Godfrey, like Fan and Li, examines the possibility that bootstrapping
these tests might produce better agreement between finite sample and
desired significance levels. His approach is similar to the five-step method
used in Fan and Li (1995), which is summarized above. There are the fol-
lowing differences: (i) Godfrey applies the bootstrap to the artificial com-
prehensive model test F01, as well as to the five tests that have their ori-
gins in Cox (1961, 1962); (ii) when bootstrapping the latter group of tests,
a two-sided alternative is used, so that the p-value in (7.20) is replaced by

p̂G
J = #(|J∗01| ≥ |J01|)

B
=

#
(
(J∗01)2 ≥ (J01)2

)
B

, (7.25)

with the estimates for JA, N, Ñ and W being defined in a similar way;
and (iii) as well as using the residual resampling scheme in Step 2 of
the Fan-Li procedure, Godfrey employs degrees-of-freedom and leverage
adjustments, which are described in Godfrey (1998, p. 68).

It is found in Godfrey (1998) that the alternative resampling methods
of (iii) do not produce results that differ in important ways from the
simple scheme (7.19). However, some authors prefer the use of adjusted
residuals when implementing an IID bootstrap. The results reported in
Godfrey (1998) for bootstrap tests are based upon the following bootstrap
world CDF:

F̂G
0 : Pr

(
u∗

0 = a + bûa
t0
) = 1

n
, t = 1, . . . , n, (7.26)

in which: ûa
t0 is a leverage-adjusted residual, as used in (2.32), defined by

ûa
t0 = ût0√

(1 − htt )
,
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where 1 − htt is a typical diagonal element of MX ; and the constants a
and b are chosen so that

E∗(u∗
0) = 1

n

n∑
t=1

(a + bûa
t0) = 0,

and

Var∗(u∗
0) = 1

n

n∑
t=1

(a + bûa
t0)2 = 1

n − k0

n∑
t=1

û2
t0 = s2

0, say.

Following Horowitz (1994), Godfrey bases the bootstrap tests on the
outcomes of B = 100 artificial samples for each of the R = 10,000 replica-
tions of a given experiment. However, in view of the advances in low-cost
computing since the publication of Godfrey (1998), it would involve
very little waiting time to use B = 1,000 in actual applied work. Table 7.3
shows what happens in the cases covered by Table 7.2 when asymptotic
tests are replaced by bootstrap tests.

Table 7.3 Estimated significance levels using bootstrap p-values for cases with
(7.21) as the null model, (7.22) as the alternative model, R2

0 = 0.6, ρ = 0.3 and
n = 40

Design parameters Test

(k0, k1) Error dbn. F01 J01 JA01 W01 Ñ01 N01

(2, 2) Normal 4.6 4.9 4.9 5.0 5.0 4.9
(2, 2) LogNormal 4.9 5.0 5.1 5.0 5.1 5.0
(2, 2) χ2(2) 4.8 4.9 4.8 4.7 4.6 4.6

(2, 4) Normal 4.8 5.2 4.9 5.0 5.1 5.0
(2, 4) LogNormal 5.0 5.0 4.9 4.9 5.0 4.8
(2, 4) χ2(2) 4.5 5.0 5.3 4.9 5.0 4.8

(4, 2) Normal 5.2 5.2 5.2 5.1 5.2 4.9
(4, 2) LogNormal 5.5 5.1 5.4 5.0 5.1 5.1
(4, 2) χ2(2) 4.8 5.1 5.2 5.3 5.4 5.1

(4, 4) Normal 4.7 5.0 4.7 4.7 4.8 4.9
(4, 4) LogNormal 5.0 4.9 4.8 4.6 4.6 4.8
(4, 4) χ2(2) 5.4 5.3 5.2 5.2 5.3 5.4

Notes: Estimates are based upon 10,000 replications and 100 bootstrap samples. They are
rounded to one decimal place. The desired significance level is 5 per cent in all cases. Source:
Godfrey (1998, p. 70, Table 3).
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Comparison of the estimates in Table 7.3 with those in Table 7.2 pro-
vides clear evidence of the way in which bootstrapping can produce
agreement between actual and desired significance levels that is superior
to that obtained using asymptotic critical values. The size distortions of
the N and J tests are essentially eliminated. All of the estimates in Table
7.3 are in the range 4.5 per cent to 5.5 per cent and so they indicate close
agreement with the desired significance level of 5 per cent. Since the esti-
mated significance levels of the bootstrap versions of the tests are close
to the desired value, the differences between them are not so large as
to cast doubt upon power comparisons; see Horowitz and Savin (2000)
for a discussion of when empirically relevant power comparisons can
be made.

7.3.2. One non-nested alternative regression model: power

Table 7.4 contains power estimates for the bootstrap tests. These esti-
mates are obtained by testing (7.21) when data are generated by (7.22),
not the other way around; see Godfrey (1984, pp. 76–77) for comments
relevant to this choice of experimental design. When the data are gen-
erated using (7.22), the coefficients are selected as follows: γi = 1, for

Table 7.4 Power estimates using bootstrap tests for cases with (7.21) as the false
null model, (7.22) as the true alternative model, R2

1 = 0.3, and n = 40

Design parameters Test

(k0, k1) ρ F01 J01 JA01 W01 Ñ01 N01

(2,2) 0.3 88.4 90.0 66.1 91.8 91.9 83.4
(2,2) 0.6 76.5 83.3 72.7 86.4 86.4 84.6
(2,2) 0.9 29.5 40.0 36.2 42.0 44.5 46.1

(2,4) 0.3 82.4 84.8 41.0 85.4 85.5 70.8
(2,4) 0.6 72.8 80.4 43.8 81.4 81.8 70.0
(2,4) 0.9 33.6 47.5 26.4 42.8 45.4 41.3

(4,2) 0.3 86.5 88.5 70.6 91.0 91.1 86.4
(4,2) 0.6 73.9 80.8 71.4 83.9 84.5 82.4
(4,2) 0.9 27.7 37.7 34.0 40.2 43.0 44.1

(4,4) 0.3 77.8 82.4 48.2 84.0 84.2 83.2
(4,4) 0.6 60.6 74.7 56.6 75.4 76.5 78.2
(4,4) 0.9 21.1 40.1 29.8 35.8 38.9 42.8

Notes: Estimates are based upon 2,500 replications and 100 bootstrap samples. They are
rounded to one decimal place. Source: Godfrey (1998, p. 71, Table 4).
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i = 1, . . . , k1; and the error variance σ2
1 is selected by choosing a value

for the population coefficient of determination, according to

σ2
1 = k1(1 + λ2)(1 − R2

1)/R2
1 if k0 ≥ k1,

= (k0λ2 + k1)(1 − R2
1)/R2

1 if k0 < k1,

with R2
1 = (0.3, 0.6, 0.9). The power estimates reported in Table 7.4 are

derived using R = 2,500 replications; so that the maximum standard
error is 1 per cent, corresponding to a true power of 50 per cent. The
desired significance level of all tests of the false model (7.21) equals
5 per cent.

The cases used to obtain the results in Table 7.4 correspond to power
estimates in an interesting range, that is, not close to either 5 per cent
or 100 per cent. As in studies of asymptotic tests, the bootstrap forms of
the comprehensive model test F01 and the Fisher-McAleer test JA01 are
sometimes observed to be less powerful than the bootstrap variants of
the tests proposed in Pesaran (1974), Davidson and MacKinnon (1981)
and Godfrey and Pesaran (1983), viz. N01, J01, Ñ01 and W01. The relative
performance of the bootstrapped version of N01 is a little variable and
this test does not seem to offer any advantage over using one of J01, Ñ01
and W01. The differences between estimates for J01, Ñ01 and W01 in
Table 7.4 are small, but they show that Ñ01 is slightly better than W01 and
that, in most cases, J01 is outperformed by Ñ01 and W01. However, the
estimates do not suggest a serious degree of inferiority of the bootstrap J
test, which has the advantages of being very much easier to implement
and motivate than the modified Cox-tests Ñ01 and W01. The J test also
has the advantage that it is more amenable to theory-based analysis of
its finite sample behaviour.

7.3.3. One non-nested alternative regression model:
extreme cases

Theoretical analysis can sometimes be used to obtain results that provide
a framework for interpreting simulation-based evidence and can be used
to design experiments that provide stringent checks of the usefulness of
bootstrap tests. In Godfrey and Pesaran (1983), the classical assumptions
of exogenous regressors and NID errors are used to obtain mean and vari-
ance adjustments for the basic form of the Cox-type statistic N01, when
testing (7.1) against (7.2), and to identify situations in which asymptotic
tests might behave badly. These assumptions are employed in David-
son and MacKinnon (2002a) to derive a much fuller analysis of the finite
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sample properties of the J test. The theoretical analysis that Davidson and
MacKinnon provide serves two purposes: first, it explains when and why
the asymptotic distribution of the test statistic provides a poor approxi-
mation; and second, it helps to identify certain unusual cases in which
bootstrapping will not yield very good control of significance levels.

Davidson and MacKinnon find that a key factor in determining the
finite sample distribution of J01, when (7.1) is true, is the scalar

�2
0 = β ′X′PZMXPZXβ

σ2
0

; (7.27)

see Davidson and MacKinnon (2002a, Theorem 1). The larger the value of
�2

0, the closer the finite sample distribution of J01 is to N(0, 1). While this
finding is obtained under the assumptions of exogenous regressors and
NID errors, simulation evidence reported in Davidson and MacKinnon
(2002a) indicates that there is a useful degree of robustness to the inclu-
sion of a lagged dependent variable in the regressors and non-Normality
of the errors.

The quantity �2
0 in (7.27) has a simple interpretation. When H0 in

(7.1) is true, the OLS estimator of δ in the artificial regression model

y = δ [PZXβ] + Xβ + u0, u0 ∼ N(0n, σ2
0 In), (7.28)

is distributed as N(0, 1/�2
0); so that �2

0 is a natural measure of the preci-
sion of this estimator. The vector PZXβ is obviously unobservable, but
it is easy to verify that it is the expected value, under the null model,
of both ŷ1 and PZ ŷ0, which links the test variable in (7.28) to those in
(7.12) and (7.13).

Davidson and MacKinnon use their theoretical analysis to design sim-
ulation experiments that represent extreme cases; see Davidson and
MacKinnon (2002b). In these extreme cases, the widely-used asymptotic
J test often rejects a true null model more than 50 per cent of the time and
the single bootstrap does not fully correct this problem. Consequently,
as well as studying the performance of the single bootstrap version of
the J test, Davidson and MacKinnon investigate the usefulness of their
Fast Double bootstrap (FDB) in these extreme cases.

Davidson and MacKinnon obtain B (first-level) bootstrap samples,
according to

y∗
(b)

= ŷ0 + u∗
(b)

,
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in which the n elements of the bootstrap error vector u∗
(b)

are derived by
random sampling, with replacement, from

F̂DM
0 : Pr

u∗
0 =

√
n

n − k0
(ût0 − 1

n

n∑
s=1

ûs0)

 = 1
n

, t = 1, . . . , n,

for b = 1, . . . , B. The degrees-of-freedom adjustment employed in F̂DM
0

is useful in experiments in Davidson and MacKinnon (2002b) for which
k0/n is not small. Davidson and MacKinnon do not find any gain associ-
ated with more complex adjustments of the OLS residuals, for example,
using leverage values. Given the values of the bootstrap statistics J∗01 from
the B generated samples, the p-value of the actual test statistic J01 can
be calculated using either (7.20) or (7.25), depending upon whether a
one-sided or two-sided test is required.

The FDB procedure is implemented by generating a single second-
level bootstrap sample from each of the first-level bootstrap samples
S∗
(b)

= (y∗
(b)

, X, Z), b = 1, . . . , B. These second-level samples are obtained
by treating the first-level bootstrap data as if they were actual data; see
Davidson and MacKinnon (2002b, section 3) for details. An adjusted
p-value can then be computed, as explained in Section 2.5 above. David-
son and MacKinnon explain why the FDB approach is likely to be more
accurate than the single bootstrap approach, while being much cheaper
to carry out than the standard double bootstrap. The results from the
experiments used in Davidson and MacKinnon (2002b) show that the
FDB version of the J test works remarkably well.

There are assumptions that permit perfect control of the significance
levels of the J test. Luger sets out conditions under which exact permu-
tation tests can be derived; see Luger (2006) for specific details for tests
of non-nested models and Kennedy (1995) for a more general discus-
sion. For the case of linear regression models, Luger’s assumptions can
be explained as follows. Let the models under consideration be written as

HL
0 : yt = x′

t0β0 + w′
tψ0 + ut0, t = 1, . . . , n,

and

HL
1 : yt = z′

t1γ 1 + w′
tψ1 + ut1, t = 1, . . . , n,

in which xt0 and zt1 contain observations on the (non-overlapping)
regressors specific to HL

0 and HL
1 , respectively, and wt is a vector of

observations on (overlapping) variables that are common to the two
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models. An exact J test of HL
0 against HL

1 is available if the following
two assumptions are satisfied:

1. Either {yt , xt0, wt ; t = 1, . . . , n} or {zt1; t = 1, . . . , n} is a collection of
exchangeable random variables; and

2. The vectors {yt , xt0, wt ; t = 1, . . . , n} are independent of {zt1; t =
1, . . . , n}.

The notion of “exchangeable random variables” used in the first
assumption is that, for such variables, the joint probability density func-
tion is not altered when the variables are permuted, that is, under shuffles
of the observations. Thus the assumption that the variables are IID is
sufficient (but not necessary) for them to be exchangeable. The single
bootstraps and FDB methods proposed in Fan and Li (1995), Godfrey
(1998) and Davidson and MacKinnon (2002b) do not require these two
strong assumptions about {yt , xt0, wt , zt1; t = 1, . . . , n}, but only enjoy
asymptotic, not exact, validity. These assumptions are not made below,
but the implied loss of control associated with relying upon bootstrap
techniques is not likely to be important. On the basis of the results from
their simulation experiments, Davidson and MacKinnon conclude that
“In practice, we would expect the single bootstrap to work extremely
well, and our FDB procedure to work nearly perfectly, in virtually every
case that an econometrician would be likely to encounter” (Davidson
and MacKinnon, 2002b, p. 428).

7.3.4. Two non-nested alternative regression models:
significance levels

The bootstrap methods described above are recommended for applica-
tion when there are two competing models with non-nested regressor
sets. As noted in McAleer (1995), applied workers are sometimes in a
situation in which there are three or more non-nested models under
consideration. In such a situation, if (7.1) is taken to be the null model
to be tested, the m > 1 alternatives can be written as

y = Zjγ j + uj, uj ∼ IID(0n, σ2
j In), j = 1, . . . , m. (7.29)

Simulation experiments that provide evidence for the special case of m =
2 non-nested alternatives are described in Godfrey (1998, section 3.2).

In his experiments for the estimation of significance levels, Godfrey
uses (7.21) as the null model and the two alternative models have k1 =
k2 = 2 regressors. The first alternative has {zt1, zt3; t = 1, .., n} as regressor
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values and the second has {zt2, zt4; t = 1, .., n}, with the data on these
regressors being obtained using (7.23) and (7.24). The test statistics that
Godfrey examines are as follows.

First, the comprehensive F test statistic, denoted by FC
0 , is derived using

as the alternative

yt =
k0∑

i=1

xtiβi +
4∑

i=1

ztiγi + ut0, ut0 IID(0, σ2
0 ), t = 1, . . . , n,

with the asymptotic test being based upon the F(4, n − k0 − 4), k0 = 2, 4,
distributions. Second, in order to examine the joint version of the
J test, derived from an artificial model corresponding to (7.17), an
asymptotically valid F test of (7.21) against

yt =
k0∑

i=1

xtiβi + δ1ŷt1 + δ2ŷt2 + ut0, ut0 IID(0, σ2
0 ), t = 1, . . . , n,

is carried out, with the test statistic being written as FJ
0. The asymp-

totic critical values for FJ
0 are taken from the F(2, n − k0 − 2), k0 = 2, 4,

distributions.
Joint tests for the adjusted Cox-type tests Ñ and W , which are recom-

mended for a single alternative in Godfrey and Pesaran (1983), cannot be
implemented so easily. McAleer observes that it is common practice for
applied workers to calculate a binary test of the null against each of the
alternatives and to reject the null unless all of the separate binary tests
are statistically insignificant. This practice is equivalent to using the most
extreme of the m separate binary test statistics, or equivalently the min-
imum of the p-values for these test statistics, as the overall test criterion.
The statistics SupÑ2

0 = max(Ñ2
01, Ñ2

02) and SupW2
0 = max(W2

01, W2
02),

therefore, merit consideration and are included in the discussion below.
Conventional tables of critical values are not available when either

SupÑ2
0 or SupW2

0 is used. As explained in the previous section, the max-
imum of the test statistics does not have a standard asymptotic null
distribution. However, as pointed out in MacKinnon (2007), “One of
the big advantages of bootstrap testing is that …it can easily be used to
assign a P value to the maximum of a possibly large number of test statis-
tics.” Consequently, it is of interest to investigate the application of the
bootstrap to SupÑ2

0 and SupW2
0 in the experiments with two alternatives

in Godfrey (1998).
Estimated significance levels for valid asymptotic tests, invalid asymp-

totic tests and bootstrap tests are presented in Table 7.5. As in Tables 7.2
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Table 7.5 Estimates of significance levels with two alternative models for cases
with Normal errors, k0 = 2, and n = 40

Design coefficients Test

FC
0 FJ

0 SupÑ2
0 SupW2

0

R2
0 ρ (a) (d) (b) (d) (c) (d) (c) (d)

0.3 0.3 4.8 4.5 12.6 4.4 10.0 4.9 8.7 4.9
0.6 0.3 5.2 5.1 8.9 4.9 9.7 4.9 8.7 4.9
0.9 0.3 5.1 5.0 5.4 4.4 8.5 4.5 8.3 4.6

0.3 0.6 5.2 5.1 9.6 5.0 9.8 5.3 8.3 5.3
0.6 0.6 4.6 4.6 6.4 4.8 9.1 4.8 7.9 4.7
0.9 0.6 5.1 5.1 5.4 5.3 9.4 5.3 9.1 5.1

0.3 0.9 5.0 4.8 8.2 4.9 8.2 4.9 7.3 5.0
0.6 0.9 4.8 4.9 6.7 4.6 8.7 4.9 8.3 4.9
0.9 0.9 5.4 5.5 5.5 5.2 9.7 5.2 9.4 5.0

Notes: Estimates are based upon 10,000 replications and 100 bootstrap samples. They are
rounded to one decimal place. The critical values are as follows: (a) F(4, 34); (b) F(2, 36); (c)
χ2(1); and (d) bootstrap. Source: Godfrey (1998, p. 74, Table 5).

and 7.3, the estimates are calculated using 10,000 replications and cor-
respond to a desired significance level of 5 per cent. All cases in Table
7.5 are for true null models with NID errors. The comprehensive model
check of FC

0 is, therefore, exactly valid and the estimates for FC
0 in Table

7.5 are not surprisingly close to 5 per cent. The asymptotic joint J test,
based upon FJ

0, behaves quite well when R2
0 = 0.9. However, the qual-

ity of the asymptotic approximation deteriorates as R2
0 decreases, with

R2
0 = 0.3 producing evidence of substantial size distortions. The asymp-

totically invalid tests in which SupÑ2
0 and SupW2

0 are compared with the

5 per cent critical value of the χ2(1) distribution lead to estimates that fall
within the Bonferroni bounds of 5 per cent and 10 per cent, but are not
close to the former, which is the desired value. Application of the single
bootstrap gives good control of significance levels for all procedures, even
the non-asymptotically pivotal tests based upon SupÑ2

0 and SupW2
0 . The

use of the bootstrap is, therefore, recommended when there are multiple
non-nested alternatives, whichever of the approaches to testing is used.

7.3.5. Two non-nested alternative regression models: power

The finding that the bootstrap can be used to fix the finite sample signif-
icance level when checking the maximum of a set of binary test statistics
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does not imply that this method gives better results than a joint test.
In particular, it cannot be guaranteed that a bootstrap Sup-test is more
powerful than a joint test. In any case, it should not be assumed that,
in the event of the null model being rejected, the alternative that yields
the most extreme test statistic is the correct specification.

In order to derive some evidence concerning power properties, the
estimation of rejection probabilities when the null model is false is based
upon data generated using

Hm
1 : yt = zt1 + zt3 + ut1, t = 1, .., n,

in which the errors ut1 are NID(0, σ2
1 ) and the parameter σ2

1 is controlled

via the population R2 for Hm
1 , according to

σ2
1 = (2 + λ2)(1 − R2

1)/R2
1,

when k0 = 2, and

σ2
1 = 2(1 + λ2)(1 − R2

1)/R2
1,

when k0 = 4, with R2
1 = (0.3, 0.6, 0.9). Results obtained using 2,500

replications are given in Table 7.6.
The estimates in Table 7.6 come from a very small set of experi-

ments and it is hoped that more extensive experiments will be carried
out in future research. However, these estimates do indicate that the
bootstrapped joint J test, denoted by FJ

0, outperforms the bootstrapped

Table 7.6 Estimates of power of bootstrap tests with two alternative
models for cases with Normal errors, R2

1 = 0.3 and n = 40

Design parameters Test

ρ k0 FC
0 FJ

0 SupÑ2
0 SupW2

0

0.3 2 81.4 82.8 88.0 87.9
0.6 2 72.3 78.0 82.6 82.5
0.9 2 33.9 43.8 44.4 42.3
0.3 4 76.0 80.1 85.3 85.1
0.6 4 61.4 69.6 77.7 77.2
0.9 4 19.6 29.0 36.8 34.2

Notes: Estimates are based upon 2,500 replications and 100 bootstrap samples.
They are rounded to one decimal place.
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comprehensive model test FC
0 . Both of these easily implemented F tests

are estimated to be less powerful than the bootstrapped SupÑ2
0 and

SupW2
0 procedures. The results in Tables 7.5 and 7.6, therefore, suggest

that bootstrap methods are useful when testing a null model in the pres-
ence of several non-nested alternatives and that joint tests that could
use standard asymptotic distributions may be inferior to bootstrapped
Sup-type criteria.

7.4. Bootstrapping the LLR statistic with
non-nested models

An essential part of the famous procedure described in Cox (1961, 1962)
is the derivation of the mean and variance of the LLR statistic in order to
obtain a standardized variate that, under the null hypothesis, is asymp-
totically distributed as N(0, 1). Unfortunately, in many cases, it is very
difficult to obtain analytical expressions for the mean and variance. The
absence of such difficulties in the analyses of previous sections reflects
the fact that the non-nested regression models share the same dependent
variable and IID error model. In practice, it may be necessary to deal with
other types of non-nested regressions.

First, it is possible that the dependent variable of one model is a known
one-to-one transformation of the dependent variable of another model;
see Yeo (2005) for a more general discussion of transformations in regres-
sion. For example, there is a substantial literature on the problem of
testing linear and log-linear specifications of the general forms

HL
0 : yt =

k0∑
i=1

xtiβi + ut0, ut0 IID(0, σ2
0 ),

and

HLL
0 : ln(yt ) =

k1∑
i=1

ztiγi + ut1, ut1 IID(0, σ2
1 );

see the references in Godfrey and Santos Silva (2004).
Second, the models may have the same dependent variable and regres-

sors, but have non-nested error models. For example, the first-order
autoregressive and moving schemes

ut0 = φut−1,0 + εt0, |φ| < 1, εt0 IID(0, ζ2
0 ),
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and

ut1 = εt1 + θεt−1,1, |θ | < 1, εt1 IID(0, ζ2
1 ),

might be competing non-nested specifications of the error model; see
Walker (1967, 1970) for a detailed analysis of tests for non-nested time
series models.

The purpose of this section is to examine a bootstrap technique that
has been suggested for application outside the simple framework in
which models are linear regressions that are only non-nested in their
regressor sets. Various methods for overcoming the problem of analyti-
cal intractability have been proposed in the literature. Some authors have
recommended the use of simulation-based estimates; see, for example,
Monfardini (2003), Pesaran and Pesaran (1993, 1995) and Yeo (2005).
Other researchers have moved some distance from the original ideas in
Cox (1961, 1962) in order to obtain tests that at least have the virtue
of being convenient to implement in empirical work; see Baltagi and Li
(1995) and MacKinnon et al. (1983, p. 56). A third approach is simply to
bootstrap the raw LLR statistic; see, for example, Coulibaly and Brorsen
(1999) and Kim et al. (1998, section 5.2). It is this third approach that is
discussed in this section.

Suppose that, as discussed in previous applications of the bootstrap,
B bootstrap samples have been generated, using a bootstrap DGP with
parameter vector equal to an estimated parameter vector for the null
model. As in Section 7.2, let the LLR statistic for the actual data be
denoted by L̂01. The corresponding bootstrap statistics are denoted by
L̂∗

01(b)
, b = 1, . . . , B. The proportion of bootstrap values L̂∗

01(b)
less than

or equal to the actual value L̂01 is then

prop =
#(L̂∗

01(b)
≤ L̂01)

B
. (7.30)

A small sample adjustment in which one is added to both the numerator
and denominator of (7.30) is recommended in Coulibaly and Brorsen
(1999), but this adjustment is unimportant for reasonable values of B.
The important issue is whether or not (7.30) delivers an asymptotically
valid p-value.

The application of the bootstrap to the LLR statistic can be illustrated
by using the case of non-nested linear regression models with NID errors,
which was discussed in Section 7.2. In this special case, when (7.1) is to
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be tested against (7.2), the actual LLR statistic is

L̂01 = n
2

ln
(

y′MZy
y′MXy

)
,

and, given suitable bootstrap samples y∗
(b)

from

y∗
∼ N(Xβ̂, σ̂2

0 In),

the corresponding bootstrap LLR statistics are

L̂∗
01(b)

= n
2

ln

(
y∗′

(b)
MZy∗

(b)

y∗′
(b)

MXy∗
(b)

)
,

for b = 1, . . . , B.
All previous attempts to use the bootstrap have been concerned with

test statistics that had proper asymptotic distributions, at least after
appropriate centering and scaling. In contrast, L̂01 is such that, under
the null, n−1L̂01 converges in probability to a constant, that is, n−1L̂01
has a degenerate asymptotic null distribution. In order to transform to
obtain variates with proper asymptotic distributions, it is useful to note
that the numerator of (7.30) can be written as

#(L̂∗
01(b)

≤ L̂01) = #(
√

n
[
n−1L̂∗

01(b)
− µ̂01

]
≤ √

n
[
n−1L̂01 − µ̂01

]
),

where µ̂01 is as given in (7.7), that is,

µ̂01 = 1
2

ln

 σ̂2
0 + β̂

′
�̂β̂

σ̂2
0

 .

Under regularity conditions, T01 = √
n
[
n−1L̂01 − µ̂01

]
has an asymp-

totic null distribution of the form N(0, V01), 0 < V01 < ∞. The
consistency of the bootstrapped LLR test, therefore, requires that, in the

bootstrap world,
√

n
[
n−1L̂∗

01(b)
− µ̂01

]
has the same asymptotic distri-

bution. However, in the bootstrap world, β̂ and σ̂2
0 , which appear in the

expression for µ̂01, are the counterparts of β and σ2
0 , respectively, in the

model assumed to generate the actual data. The terms

√
n

n−1L̂01 − 1
2

ln

 σ̂2
0 + β̂

′
�̂β̂

σ̂2
0

 ,
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and

√
n

[
n−1L̂01 − 1

2
ln

(
σ2

0 + β ′�̂β

σ2
0

)]
,

do not have the same asymptotic null distribution because

√
n

1
2

ln

 σ̂2
0 + β̂

′
�̂β̂

σ̂2
0

 − 1
2

ln

(
σ2

0 + β ′�̂β

σ2
0

)
is not asymptotically negligible. It follows that (7.30) does not yield
an asymptotically valid p-value when two non-nested linear regression
models with NID errors are under scrutiny.

Results on the asymptotic properties of the bootstrapped LLR pro-
cedure in a more general framework are provided in Godfrey (2007a).

Godfrey argues that
√

n
[
n−1L̂∗

01(b)
− µ̂01

]
has a bootstrap world asymp-

totic null distribution that is Normal with the correct (zero) mean, but
the wrong variance relative to that of the asymptotic distribution of√

n
[
n−1L̂01 − µ̂01

]
under the null model; see Godfrey (2007a, p. 411).

Simulation evidence on the consequences of using the bootstrapped LLR
method in the context of testing linear and log-linear functional forms
in regression analysis is given in Godfrey and Santos Silva (2004). The
results reported in Godfrey and Santos Silva (2004) include examples of
important departures from the desired significance level.

7.5. Summary and concluding remarks

In a review of applications of bootstrap techniques in econometrics,
Jeong and Maddala suggest that there are two main uses of the boot-
strap that have firm theoretical foundations and support from empirical
studies or simulation experiments; see Jeong and Maddala (1993, p.
575). First, the bootstrap often gives better approximations than asymp-
totic theory when the latter is tractable, but fails to give an acceptable
level of accuracy for sample sizes of a magnitude of interest to applied
workers. Second, when asymptotic theory is not tractable, the bootstrap
can sometimes offer asymptotically valid procedures that are reasonably
well-behaved in finite samples.

In this chapter, tests of non-nested regression models have been dis-
cussed and examples of both of the uses identified by Jeong and Maddala
have been provided. The testing of a null model against a single non-
nested alternative yields evidence of the value of the bootstrap when
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asymptotic theory is tractable and provides tests that are easy to carry out,
but is of very doubtful relevance for sample sizes of interest. The example
of the widely-used J test, proposed in Davidson and MacKinnon (1981), is
especially clear. This procedure is easily motivated, requires only a t-test
after OLS estimation of an artificial regression model and uses asymp-
totic critical values from the familiar N(0, 1) distribution. However, these
asymptotic critical values can lead to extremely misleading inferences.
MacKinnon reports that, when carried out with a desired significance
level of 5 per cent, the J test can reject a true model more than 80 per cent
of the time, even with a sample size of 50; see MacKinnon (2002, p. 617).

The results discussed in Section 7.3 suggest that the bootstrap is
remarkably effective in removing the excess rejection frequency of the
J test and achieves the same outcome for the unadjusted Cox-type test
derived in Pesaran (1974), which, if anything, can be even more badly
behaved than the J test when asymptotic critical values are used. David-
son and MacKinnon have used theoretical analysis to design simulation
experiments that produce extreme cases of the bad behaviour of the
asymptotic J test. In such extreme cases, asymptotic critical values are
very poor approximations to finite sample values, a single bootstrap gives
much better control of significance levels and the Fast Double Bootstrap
yields excellent results; see Davidson and MacKinnon (2002a, 2002b).

The second main use of the bootstrap that Jeong and Maddala describe
has also been illustrated. No standard asymptotic distribution is avail-
able when a null model is tested separately against each of two or more
non-nested alternatives and an induced test based upon the minimum
p-value of the individual test statistics is used. The evidence in Section
7.3.4 indicates that the application of a single bootstrap gives good con-
trol of finite sample significance levels. The results of the simulation
experiments described in Section 7.3.5 suggest that the bootstrap test
based upon the minimum p-value can be more powerful than a joint J
test for which asymptotic theory is tractable.

It is, of course, important that the bootstrap be applied in a correct
way. Some researchers have tried to simplify the testing of non-nested
models by simply bootstrapping the log-likelihood ratio statistic, or some
other measure of relative goodness of fit. It cannot be guaranteed that
such an approach will yield asymptotically valid inferences. If the prob-
ability limit of the average log-likelihood ratio statistic, that is, n−1L̂01
in the notation of Section 7.2, depends upon the unknown parameters
of the null model, the implied bootstrap asymptotic distribution will be
inappropriate, having the wrong variance. The discussion of this point
in Section 7.4 is reminiscent of the findings reported in Durbin (1970)
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concerning naive tests in which estimates are treated as if they were the
true parameters.

There are many topics that deserve further investigation. A more
detailed study of the behaviour of bootstrap tests when there are mul-
tiple non-nested alternatives would provide useful information. In such
a study of overall assessment based upon the minimum p-value asso-
ciated with a collection of separate binary tests, the single bootstrap
used in Godfrey (1998) might be compared with the two-level bootstrap
approach proposed in Godfrey (2005).

A second important topic for future research is the relaxation of the
assumption of IID errors that has been made in this chapter. In par-
ticular, it has been suggested several times in previous chapters that
heteroskedasticity-robust tests should be used whenever possible. Tests
for non-nested hypotheses that are calculated by applying OLS to arti-
ficial regression models could easily be modified to be based upon
heteroskedasticity-consistent covariance matrix estimators, combined
with a wild bootstrap of the type described in Section 5.2.3. Tests that
are amenable to such modification include the procedures F01, J01 and
JA01, derived for a single alternative, which are described in Section
7.3.1, and also the joint tests for multiple alternatives FC

0 and FJ
0, which

are considered in Section 7.3.4. Given the results in Chapter 6, the
wild bootstrap would appear to offer the promise of reliable tests for
non-nested regression equations in the presence of heteroskedasticity of
unknown form.



8
Epilogue

I hope that the previous chapters have made the following clear: first,
the approximations to the finite sample distributions of test statistics that
are provided by conventional (first-order) asymptotic theory are some-
times inadequate for practical purposes; second, the use of an appropriate
bootstrap method can lead to improved control of finite sample signifi-
cance levels, relative to critical values from asymptotic theory, with some
improvements being very substantial; and third, there are important
problems in testing for which a bootstrapping approach can provide a
tractable solution but asymptotic theory cannot.

In order to simplify the exposition, I have focussed on tests that are
applied after the OLS estimation of a linear regression model in which
all regressors are at least predetermined and have the property that sam-
ple means and sample variances calculated from regressor values tend to
population values, which are finite, as the sample size increases. How-
ever, the bootstrap can be applied in the context of more general models
than the linear regression equation, with more complicated estimators
and with nonstationary data processes.

As well as being studied extensively in the setting of linear regres-
sion, the bootstrap approach has been used with, for example, nonlinear
regressions, systems of simultaneous equations, panel-data regressions,
logit, probit and Tobit models. In terms of extending the coverage
of bootstrap procedures beyond OLS results, researchers have devised
bootstrap methods for application after estimation by generalized least
squares, quantile regression methods, instrumental variables and Gener-
alized Method of Moments techniques. Nonstationarity of the variables
in the regression model can be permitted and there is a substantial and
expanding literature on bootstrap tests for investigating the presence of
unit roots and cointegration.

303



304 Bootstrap Tests for Regression Models

Readers wishing to learn more about bootstrap methods that are out-
side the scope of this book can consult the several excellent surveys
that have been published; for example, see Berkowitz and Kilian (2000),
Davidson and MacKinnon (2006), Horowitz (2001, 2003) and Li and
Maddala (1996). However, looking at these surveys and the contributions
to which they contain references will only be a first step. The study of
bootstrap methods in econometrics attracts many energetic and talented
researchers; so that web-based searches are strongly advised in order to
learn about what results are available for the problem of interest.

At the time of writing, it is almost 30 years since Efron’s article on
the bootstrap appeared; see Efron (1979). It is difficult to describe just
how important Efron’s work has proved to be in applied and theoretical
research. It offers an alternative mind-set for statistical inference. Instead
of using formal analysis and theorems about asymptotic behaviour,
it is possible to substitute capital for labour by employing a personal
computer with a suitable program to generate artificial samples after
specifying a bootstrap world, given the actual data. The statistics cal-
culated from the bootstrap samples then provide a convenient reference
set for judging the statistical significance of the real-world value of the
test statistic. However, the importance of the bootstrap approach to
those wishing to learn and use econometrics is not limited to hypothesis
testing.

As I confessed in the Preface, my research obsession is working on tests
for econometricians, but I am also very interested in teaching econo-
metrics and statistics, especially at the introductory level. My experience
from teaching is that students sometimes find understanding concepts
related to sampling distributions difficult. As persuasively argued in
Kennedy (2001), the bootstrap may prove to be a very valuable teaching
tool and help with motivation and understanding even in introductory
modules. I hope that the authors of first-level econometric textbooks
will adopt the ideas in Kennedy (2001) and that standard economet-
ric estimation packages will be written to include code that allows the
implementation of the bootstrap techniques that have been described in
this book.
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predictive failure, 37–8
predictive tests, 37, 136–9

bootstrapping, 139–44
prepivoting, 72

see also double bootstrap
production function example, 27, 226
projection matrices, 75, 143–4, 249
pseudo-samples, 45
p-value, 41

for bootstrap test, 53–4
for double bootstrap test, 74
for fast double bootstrap test, 75–6
for two-sided alternative, 48

Quandt likelihood ratio (QLR)
method, 37

Quandt SupLR statistic, 163
quasi-likelihood, 163

Rademacher distribution, 188, 193,
215, 226, 230, 235, 239, 240, 245

see also pick distribution
recentred values, 52, 54, 61–2, 94,

104, 151, 205
recursive (autoregressive) bootstrap,

65–6, 109, 120, 191–3, 234,
244, 263

regularity conditions, 19, 21, 39, 48,
57, 66, 72, 93, 109, 119, 189–90,
207, 214, 271–2, 274, 277

relative discrimination tests, 278
replications, 28, 125, 128, 170, 283
resampling, 45, 54–5, 62–4, 66, 69,

177–8
restricted and unrestricted residuals,

107–9
using classical residual scheme

under heteroskedasticity, 180–1
RESET F-statistic, 9–10
RESET test, 9, 24, 149, 222

and HAC estimator of covariance
matrix, 24

heteroskedasticity-robust, 226–31
restricted bootstrap test, 104, 130–1,

133
restricted estimator, 6, 62, 77, 139,

185–6
restricted (null) model, 8, 34, 156, 266
restricted residuals, 6, 24–5, 35, 62–3,

103–4, 106, 111, 118, 140, 225–6,
234–5, 256

use in HAC estimation, 24
use in HCCME, 225, 230–1

robustness of tests, criteria for, 26

sandwich covariance matrix, 18,
22, 191

Schwarz Bayesian Information
Criterion (BIC), 278
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separate family of hypotheses, 268
see also non-nested hypotheses

sequence of local alternatives, 13
see also Pitman drift, 13

sieve bootstrap, 201–5, 216, 264
with wild bootstrap, 214

significance of a subset of
regressors, 24

simple regression, 63, 179, 213
simulation-based tests

for heteroskedasticity, 88–101
simulation experiments and results

for asymptotic and bootstrap F tests,
110–8

for autocorrelation-robust Hausman
test, 253–62

for battery of OLS diagnostic tests,
155–60

for heteroskedasticity-robust test for
autocorrelation, 235–41

for heteroskedasticity-robust test for
specification errors, 226–31

for non-nested regression models
(one alternative), 281–90

for non-nested regression models
(two alternatives), 293–7

for tests for significance of
regressors, 27–31

for tests for heteroskedasticity,
95–101

for tests for predictive failure, 144–8
for tests for serial correlation,

123–32
for tests for structural breaks,

166–73
skedastic function, 181–3, 227
standard errors, 7, 13

autocorrelation robust, 253, 257
heteroskedasticity and

autocorrelation robust, 17
heteroskedasticity robust, 17, 35

stationary variables, 15, 125, 172,
193–4, 198, 201–2, 205

strictly exogenous regressors, 10
structural break, 135
Student t distribution, 7

subsampling, 206, 214
Sup test, 37, 164–5, 173

for F statistics, 242–3, 245
for LM statistics, 163–4, 167
for LR statistics, 163–4, 167
for nonnested models, 277,

294, 297
for W statistics, 163–4, 167

symmetric error distribution, 91,
98–100

t-ratio, 7
t-statistic, 12
t-test, 8, 11, 273, 301

autocorrelation-robust, 253
heteroskedasticity-robust, 33–4, 231
relationship with F test, 7

time domain, 206
time series

data, 11, 21, 37, 156, 193, 231
linear, 202
models, 66, 79, 298
regressions, 20–1, 42, 192, 215

trimming of sample, 164–5

unit root, 21, 202, 204, 303
unrestricted (alternative) model, 8, 24,

34, 266
unrestricted bootstrap test, 104,

124, 133
unrestricted estimator, 6, 62, 104–5
unrestricted residuals, 6, 25, 35, 63,

103–4, 106, 111, 118, 225, 234,
246, 256

use in HAC estimation, 25
use in HCCME, 19–20

Wald statistic
for autocorrelation-robust Hausman

test, 250–1
for GLS, 15
HAC version for OLS, 209
heteroskedasticity-robust version for

OLS, 19–20, 223, 235, 245
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White’s heteroskedasticity-consistent
covariance matrix estimator
(HCCME), 17, 18, 34–5, 218,
223–6, 230, 245–6

White’s test, 40–1, 91, 93, 96–7
Wild bootstrap, 185–8, 214–5, 226,

237, 239, 243

fixed-design, 191
recursive-design, 191
with sieve bootstrap, 214

Yule-Walker method, 205
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